~ EDC50077

DISK VERSION $12.95

* POPS:
Stereo Sound
- for Your Atari

- % Boot Campand

Game Desiyn

You can save time, and save a lot of money by subscribing to
AN.AL.O.G. Computing Magazine. Save $14 off the cover

price with the convenience of having A N.A.L.O.G. delivered directly
to your door before it even hits the newsstands. To order use the
handy postage-paid order card located in the back of this magazine!

1 YEAR FOR ONLY $28

SAVE $14 OFF THE COVER PRICE

1 YEAR WITH DISK ONLY $79

G\

NOVEMBER A.NL.A.L.O.G. Computing

This month’s editorial comes to you from
high up (about 37,000 feet) in the friendly
skies, as I jot down some thoughts about what
it’s been like for the past few months, com-
muting from my home in Massachusetts to
ANALOG’s new offices in Los Angeles. Be-
lieve me, it hasn’t been easy.

No sooner have I set foot at Logan Inter-
national Airport in Boston than it seems I
have to turn around and make another bee-
line for the West Coast, banging out a story
or an editorial on my laptop en route to meet-
ing publishing deadlines in the City of
Angels.

The wear and tear of rushing from coast
to coast is taking its toll: I've acquired a hag-
gard, desperate look from not getting enough
sleep; my body suffers from terminal jet lag;
my fiancee barely recognizes me (“Lee
who?”) and a sense of cultural schizophre-
nia has taken root due to the extreme polari-
ties of the laid-back Southern California
lifestyle and the East Coast grind. I no longer
know whether to order sushi or clam
chowder!

So I've made a decision. In order not to
burn out before my time (“Publishing Tycoon
Commits Hara-Kiri”") and to be able to pro-
vide the kind of editorial guidance ANALOG
needs to maintain the high standards we've
worked so hard to reach, I'm heeding the
words of Horace Greeley to “Go west.” From
now on, I'll make my home where the sun
shines all year-round, where snow and sub-
zero temperatures are only a memory. Instead
of Boston Common, I’ll roam Griffith Park.
Instead of catching the Sox at Fenway, I'll
down my foot-long hot dogs at Dodger Stadi-
um (but still root for Wade Boggs and com-
pany). In place of the rocky Massachusetts
coastline and chilly waters of the Atlantic, I'll
sink my feet into Venice Beach’s sandy shores
and bodysurf in the moderate Pacific.

And so, like the Clampetts, I'm loading up
my truck and moving to Beverly. Hills, that
is. Swimming pools. Movie stars. .. .Well,
maybe it’s not all it’s cracked up to be. I'll
have to battle gridlocked freeways, out-of-
control smog and the occasional earthquake.
But that’s a small price to pay to liberate my-
self from the red-eye express, bad airline food
and in-flight movies. Massachusetts, it’s been
great, but so long. California, here I come!

by Lee Pappas

3

g9 |

10
Atari Streamers

A quickie machine-language routine that
allows you to create vertically scrolling text displays.
by Brad Timmins

16
Slave lI: Nimral’s Grace

The sequel to last month’s Slave Cellars
of Golgoloth adventure. Who is trying to kill Shala?
by Clayton Walnum

45
Master Memory Map, Part IV

The memory exploration confinues.
Join us on a romp through your computer’s RAM and ROM.
by Robin Sherer

54
Bits 'n’ Pieces: POPS

This month ANALOG’s electronic wizard
presents a hardware project that'll add four-channel

stereo sound fo your Atari computer,
by Lee. S. Brilliant, M.D.

68
AUTORUN.SYS Secrets

This machine-language program will help you
design AUTORUN.SYS files that'll do just about anything you want,
by LeRoy Baxter

62 3-in-1 Foothall

reviewed by Dave Arlington

73 Panak Strikes

This time around Steve takes a look af
thinking games, plus gives us complete reiews of Solar Star and
Drop Zone from Microdaft
by Steve Panak

51 Battlezone

reviewed by Howard Wen

25 Boot GCamp

by Karl E. Wiegers

32 Database DELPHI

by Michael A. Banks

3 Game Design Workshop

by Craig Patchett

78 End User

by Arthur Leyenberger

3 Editorial

by Lee Pappas

¢ Reader Gomment
7 8-Bit News
66 BASIC Editor Il

by Clayton Walnum

76 ST Notes

NOVEMBER 1988

ISSUE 66

ANALOG
COMPUTING
STAFF

Publisher
LEE H. PAPPAS

Executive Editor
CLAYTON WALNUM

Art Director
MICHIO TSUZUKI

Managing Editor
DEAN BRIERLY

East Coast Editor
ARTHUR LEYENBERGER

West Coast Editor
CHARLES F. JOHNSON

Contributing Editors
LEE S. BRILLIANT, M.D.;
MICHAEL BANKS; FRANK COHEN;
ANDY EDDY; MAURICE MOLYNEAUX;
STEVE PANAK; CRAIG PATCHETT;
ROBIN SHERER; KARL E, WIEGERS
MATTHEW J. W. RATCLIFF

Entertainment Editors
ANDY EDDY, DAVID PLOTKIN

Cover Photography
MICHIO TSUZUKI

|llustrations
MICHIO TSUZUKI
STEPHEN STERLING

Copy Chief
KATRINA VEIT

Copy Editors
ANNE DENBOK
SARA BELLUM
PAT ROMERO
KIM TURNER

Chief Typographer
KLARISSA CURTIS

Typographers
JUDY VILLANUEVA
DAVID BUCHANAN

Contributors
DAVE ARLINGTON
LEROY BAXTER
JIM PATTERSON
BRAD TIMMINS
HOWARD WEN

Vice President, Production
DONNA HAHNER

National Advertising Director
JE PUBLISHERS REPRESENTATIVE
(213) 467-2266
(For regional numbers, see map)

Advertising Production
Director
JANICE ROSENBLUM

Advertising Manager
PAULA THORNTON

Subscriptions Director
IRENE GRADSTEIN

Vice President, Sales
JAMES GUSTAFSON

Where to Write

All submissions should be sent to: ANALOG
Computing, P.O. Box 1413-M.0., Manchester, CT
06040-1413. All other editorial material (letters,
press release, etc.) should be sent to: Editor,
ANALOG Computing, 9171 Wilshire Blvd., Suite
300, Beverly Hills, CA 90210.

Correspondence regarding subscriptions, in-
cluding problems and changes of address, should
be sent to: ANALOG Computing, P.O. Box 16927,
North Hollywood, CA 91615, or call (818)
760-8983.

Correspondence concerning a regular column
should be sent to our editorial address, with the
name of the column included in the address.

We cannot reply to all letters in these pages,
so if you would like an answer, please enclose a
self-addressed, stamped envelope.

An incorrectly addressed letter can be delayed
as long as two weeks before reaching the proper
destination.

Advertising Sales
Address all advertising materials to:
Paula Thornton — Advertising Production
ANALOG Computing
9171 Wilshire Blvd., Suite 300
Beverly Hills, CA 90210.
Permissions

No portion of this magazine may be reproduced
in any form without written permission from the
publisher. Many programs are copyrighted and
not public domain.

Due, however, to many requests from Atari club
libraries and bulletin-board systems, our new poli-
cy allows club libraries or individually run BBSs
to make certain programs from ANALOG
Computing available during the month printed on
that issue’s cover. For example, software from the
July issue can be made available July 1.

This does not apply to programs which specifi-
cally state that they are not public domain and, thus,
are not for public distribution.

In addition, any programs used must state that
they are taken from ANALOG Computing Maga-
zine. For more information, contact ANALOG
Computing at (213) 8587100, ext. 163.

Subscriptions

ANALOG Computing, P.O. Box 16927, North
Hollywood, CA 91615; (818) 760-8983. Payable
in U.S. funds only. U.S.: $28-one year, $54-two
years, $76-three years. Foreign: Add $7 per year.
For disk subscriptions, see the cards at the back

of this issue.
Authors

When submitting articles and programs, both
program listings and text should be provided in
printed and magnetic form, if possible. Typed or
printed text copy is mandatory, and should be in
upper- and lowercase with double spacing. If a sub-
mission is to be returned, please send a self-
addressed, stamped envelope.

For further information, write to ANALOG
Computing, P.O. Box 1413-MO, Manchester, CT
06040-1413.

JE Publishers Representative
6855 Santa Monica Blvd., Suite 200
Los Angeles, CA 90038

Los Angeles — (213) 467-2266
San Francisco — (415) 864-3252
Chicago — (312) 445-2489
Denver — (303) 595-4331
New York City — (212) 724-7767

ANALOG Computing (ISSN 0744-9917) is published monthly by L.F.P., Inc., 9171 Wilshire Bivd., Suite 300, Beverly Hills, CA 90210. © 1988 L.F.P., Inc. Return
postage must accompany all manuscripts, drawings, photos, disks, etc., if they are to be returned, and no responsibility can be assumed for unsolicited materials.
All rights reserved on entire contents; nothing may be reproduced in whole or in part without written permission from the publisher. U.S. subscription: $28 for one

year (12 issues), $52 for two years (24 issues), $76 for three years (36 issues). Foreign subscription: Add $7 per year. Single copy $3.50 (add $1 for postage). Change
of address: Six weeks advance notice, and both old and new addresses are needed. POSTMASTER: Send change of address to ANALOG Computing Magazine,
P.O. Box 16927, North Hollywood, CA 91615. Second-class postage paid at Beverly Hills, CA, and additional mailing offices.

READER
COMMENTS

I am writing this letter because my machine
was recently infected with a virus. The
damage resulting from the infection took
three months to repair. The symptoms start-
ed when I was unable to write to the disks
because they were reported as full by the
operating system. This didn’t seem logical
since some of the disks had small data files
on them which should not have caused a full-
disk message to appear. I started using the
backup disks, but they also became infected
and thus damaged beyond repair. After weeks
of trial and error, neither I nor my friends
were able to discover what caused the
problem. As a result of helping me, my
friend’s system also became infected via disks
used on my system. How far the virus spread
beyond my immediate group is problematic.

I frequently read your magazine and have
not seen any articles forewarning your read-
ers of software viruses. I eventually read a
Newsweek magazine article which described
the problem as a software virus. It was as-
tounding to find the virus problem being dis-
cussed in a periodical which is dedicated to
general news events, especially when the two
computer magazines I read did not mention
them. Since the Newsweek article, I have read
articles in both the Washington Post and Time.
By the way, the Post dedicated all of page 3
in the Sunday edition to the growing problem.

I think it is your responsibility to keep your
readers informed about computer problems
which could result in months of work being
lost. The damage just to my system could buy
a subscription to ten computer magazines for
the next five years.

It is certain that many of your readers are
as ignorant of the problem as I was. It is also
evident that the problem is large enough to
draw national media coverage. It would be
a disservice to your readers not to give them
information about this problem. Therefore I
request that you keep your readers informed

S

of software viruses, symptoms and cures.
—Ralph Allen
Arlington, Virginia

Is there any way an Action! compiled pro-
gram could be converted to BASIC data state-
ments and printed in your magazine? This
would allow more of us Action!-less owners
to enjoy some of those fine programs. I real-
ize they are available on your disk version.

—Everett Rantanen

Milwaukee, Wisconsin

Any binary file may be converted to DATA
statements for use in a BASIC loader or for
typing in by M/L Editor. However, most Ac-
tion! programs, after they’ve been compiled,
are much too large to allow their printing in
the magazine. We realize that many readers
don’t have Action!, but we feel that enough
people are interested in the language to war-
rant the inclusion of an Action! program now
and then. As you mentioned, most of the Ac-
tion! programs (not all of them) are availa-
ble on the disk version of the magazine. Also,
they may be downloaded from ANALOG's
Atari SIG on DELPHI.

I am Polish, and I am 17 years old. I have
an Atari 800XL computer and a 1050 disk
drive. I want to collaborate with other Atari
users. I also want to exchange Atari computer
magazines. Can you help me?

—Artur Nowakowski
W. Wasilewskiej 5/8
08-110 Siedlce
Poland

There’s a problem with Andy Eddy’s piece
on GEnie. I am not the SYSOP. I am one of
the SYSOPs. To make it very clear:

There are two contracts for the Atari round-
tables (RTs). Darlah holds one, and Atari
Corp. holds the other. On Atari’s behalf, I
am the manager of the Atari areas, with 20
members of Atari’s staff currently online

there. Darlah, however, supervises all the ac-
tivities of the assistant SYSOPs (Marty Al-
bert, Mark Booth, Sandy Wilson, Holly
Stowe, Craig Thom and Atarians John Town-
send and Dan Scott).

Darlah works harder for the GEnie RTs
than any SYSOP I've ever seen. She deserves
credit, and listing me as SYSOP is not fair.
I hope you can put something in a future is-
sue to fix this. Thanks. —Neil Harris

Atari Corp.

I will be the first to acknowledge the work
that Darlah has done to make the Atari RTs
what they are. Her contributions are every-
where. What I meant to say in the article was
that you had taken over the management of
the Atari RTs, but it didn’t come out that
way. . .the sun reflected off my monitor. . .1
tripped on a deadline. My apologies to
Darlah and her associates. —Andy Eddy

The following lines were accidentally delet-
ed from the end of Listing 2 of Issue 63’s
Train Crazy. Sorry about that.

JI 4807 FOR T=2 TO 17:VU=U+128:FOR 0=8 TO0
8:NEXT 0:SOLUND 1,V,8,6:POSITION T,1:?
1#6;" [Uel§"':NEXT T:POSITION 17,1

JK 4008 7 #6;" ":POSITION 14,0:7 #6;"
mu eml]

NB 4810 POKE 559,42:POSITION 7,6:7 #6;"[Ha
w3 [veld ":? #6;"':SOUND 1,8,0,6

AW 4030 7 #6;" sfilRe '*;SC+215:2 #6;"
"

FK 4040 7 #6;" Pr%s %arﬁ":? ne;
QW 40645 2 H6;" Gaf3'":? #6;"

"":POKE 559,42:G0OSUB 40586

ZR 4847 FOR VY 1 TO 1S5:POSITION 6,4:7 H6;

'"":FOR T=1 TO 3I6:IF PEEK(S53

279) 6 THEN RUN

PL 4848 NEXT T:POSITION 6,4:2 #6;"PrEs B
par@'':FOR T=1 TO 3I0:IF PEEK(53279)=6 T
HEN RUN

RY 4049 NEXT T:NEXT YY:RUN

GZ 4850 IF 5C>150606 THEN POSITION 4,8:7 8
6; :RETUR

JW 4051 IF S5C310000 THEN POSITION 6,8:2 1
6;"GREAT SCORE':RETLRN

GT 4052 IF 5C>4000 THEN POSITION 7,8:7 H6
'Tnﬂﬂlﬁﬂﬂgﬂ" :RETURN

PR 4053 IF 5C<4800 THEN POSITION 7,8:? #6

ain':RETURN

(P1+Y,P1+Y+19)=PS(I,I+19)

XK 5601 o8 Hokip 4 S=oTIOK (03

PG 5602 IF PEEK(53253))0 THEN 10068

KT 5603 IF S=14 OR S5=13 THEN 422

JF 5004 IF STRIG(O)=8 THEN X=X+1:GOTO 455

FS 5010 POKE 53249,X:IF X<{53 THEN GOTO 30

0T 5638 GOTO S6806

KG 9060 IF PEEK(53253)=2 THEN SC=5C+260:G
0TO0 9662

QF 96061 GOTO 628

WW 9062 RESTORE 9004+LP:READ O:POKE DM+25
3*1;0 g 20UND 1,50,16,8:IF LP=4 THEN C

RT 90603 IF LP 5 THEN CH=-8:BA=6

GT 9064 DATA 206

LW 96065 DnTQ 58

NG 90666 DATA 97

HR 90667 DATA 133

L5 96068 DATA 168

IN 9669 DATA 266

YF 906106 POSITION CX+LP+LP,BA:? "Z"

DM 9611 I=3:VU-120:ZX=ZX+3I:POSITION 3I0-TT+
ZX,2:? “NR'':0=0:FOR Z=Y TO 37 STEP 2:
v= U+10 SOUND 1,V,10,5

YY 9026 PMS(P1+Z, P1iz+193= PS(I,I+19) :NEXKT

Z:I1=58

ON 9025 PM5(P1+34,P1+53)=PS(I,I+19):Y=34:
GOTO 421

ZZ 1066086 IF PEEK(53253)=8 AND LP=5 THEN 9
15

GC 16661 IF PEEK(53253)>8 THEN 9668

ZY 20060 Q=Q+37:POKE DM+256%3+0+2,0:POKE
DM+256%3I+Q+1,0:LP=LP+1:0=0:G0T0 421

GL 30000 RLUN

NOVEMBER A.NL.A.L.O.8. Computing

machines, to name j few. Unfortunate-
1y, this means buy ing many Suppressors: one
for each device YoU want 10 protect.

CPS Electronics has 'mtroduced a novel
new idea in surge suppressors: One unit
covers your entire house- The EG 240R is 2
whole home residem'\a\, circuit preaker SUI-
ge suppressot that mounts to the panel of your
home’s circuit preaker bOX- The unit can also
e fitted 1010 fuse boXes- The EG 240R can
arrest a SUrge of up to 2 000 amps, which
is enough 10 send your computer into orbit.
CPS guaramees the unit with 2 three-year
warranty- The list price is $89.95, and it 18
now available-

CPS E\ectronics

415\—112th Terrace N.

PO. Box 2460

Pinellas park, FL 34290—2460
(800) 137-6010

Anyone call a
doctor?

Mad Scientist Software produces medical
eduction software to teach medical principles
to students and hospital staff. Their latest
offering is the Advanced Cardiac Life Sup-
port (ACLS) package. A four-disk series, the
ACLS system covers EKG training, cardiac
arrest simulations, ACLS terminology and
protocols, and a general quiz to prepare stu-
dents for the ACLS certification test. The
ACLS package costs only $109 and is now
available for the XE/XL.

Mad Scientist Software
2063 North 820 West
Pleasant Grove, UT 84062
(801) 785-3028

Stripless XE/XL

Recently Artworx Software released Strip
Poker II for the Atari ST, Apple IIGS and
IBM-PC. You might remember Strip Poker
as a fun and inventive game where your com-
puter opponent reveals more than just his/her
hand of poker cards. Artworx seems to have
chosen to not produce an XE/XL version of
this quality product. ANALOG encourages
its readers to write to Artworx to change their
mind about the Atari 8-bit market.

Artworx Software
1844 Penfield Road
Penfield, NY 14526
(800) 828-6573

b IC

mmrr

G TR f

AL/65
development
tools

Omega Soft has announced a new develop-
ment system for the 8-bit Atari home com-
puter. Unlike most assemblers, AL/65
compiles 6502 source code into relocatable
code, or code which can be used in other pro-
grams. The editor supports full-screen edit-
ing, macros and custom character sets.

AL/65 is a complete development system
for only $44.95. The package includes an as-
sembler, linker, editor and system utility soft-
ware. AL/65 also comes with a
command-line interpreter (CLI), which al-
lows developers to use typed commands to
maintain files, launch programs and modify
the development environment.

Omega Soft

P.O. Box 139
Harrelis, NC 28444
(919) 532-2359

Mindscape
signs SSI

In a move to increase its audience, Mind-
scape has signed an exclusive publishing
agreement with Strategic Simulations Inc.
(SSI). The agreement gives Mindscape rights
to publish SSI’s backlist of strategy/simula-
tion titles. Well-known classics like Fortress,
Battalion Commander, Nam and Geopoli-
tique 1990 are the first SSI programs to be
published under the new Thunder Mountain
label.

SSI started in the computer war-game mar-
ket in 1980, and has held almost half of the
war-game market since. Mindscape has also
licensed Cartel and Cutthroats, Combat
Leader, Galactic Gladiators and Queen of
Hearts. Most of these titles will be available
for the Atari 8-bits.

Mindscape

3444 Dundee Road
Northbrook, IL 60062
(312) 480-7667

Daisy-Dot II

Roy Goldman has created Daisy-Dot II, a
powerful printing system for 8-bit Atari com-
puters. The software package allows printing
of near-letter-quality text with Epson and Star
compatible printers. Based on the original
Daisy Dot, the new system offers higher out-
put quality and new formatting features.
Fourteen fonts are included with Daisy-Dot
II, including Roman?2 (Times Roman), Ohio
(Geneva), Senator (Helvetica), and Block2
(Modern).

Daisy-Dot II has been put into the public
domain; the entire system can be found on
DELPHI, GEnie and CompuServe. The
double-sided disk and 24-page manual may
be purchased from Roy Goldman for only
$10.

The Daisy-Dot Il Accessory Disk is also
available and is priced at only $5. It comes
with TextPro, a word processor for text en-
try, eight additional fonts and a utility pro-
gram that allows Daisy-Dot II to work with
the AtariWriter.

Roy Goldman
2440 South Jasmine
Denver, CO 80222

Branch
Software

sprouts new
titles

BUY-SELL-TRADE

__UNBELIEVABLE DEALS EVERYDAY!

A new company is producing low-cost,
high-quality software for the 8-bit market.
Branch Software has released several new ti-
tles, all designed to work on any 48K Atari
8-bit computer with DOS 2.0 or 2.5 installed.

In Blockaid you use your shield to defend
yourself against the fiery ball of Zieweunthu.
After learning how to pronounce Zieweun-
thu, you can destroy all the colorful blocks
and advance into the next of 40 rooms. The
game includes a Blockaid Construction Set,
so you can custom design additional screens.
The game even lets you insert your custom
screens into the Blockaid game for future
generations to enjoy.

Trivia Quiz is the improved version of the
public-domain trivia game of the same name.

BUY-SELL-TRADE

Computer Repeats, Inc.

ALL ORDERS PROCESSED IN 24 HRS!

The new version is filled with ready-to-use
questions, with more companion data disks
on their way.

In Agent 16, a role-playing game, three gi-
ant text adventures are stored on one disk.
The central character, Agent 16, is a super-
secret spy that tumbles from one deadly
challenge to another. A special menu loader
lets you see all the instructions and back-
ground information needed to play Agent 16.

All of the new titles are currently availa-
ble and have a list price of less than $20.

Branch Software
2750 Friday Lane
Cocoa, FL 32926
(407) 631-7149

BUY-SELL-TRADE

Atari 1040ST

ALL for your system

}vith trade-in of 130)% 1050, 1702 Mon., NP-10 Printer, modeu‘l

Products - Used

#520ST Computer $335 1040ST Computer $585
SF354 Drive $99 130XE Computer ~ $119
1200XL Computer $59 800XL Computer $69

$29
$139
$79

400-16K Computer
1050 Drive
Atari 1025 Printer

Hayes Smartmodem $49
Atari 1027 LQ Printer $79
Okimate 10 w/PIP $99

ATR-8000 64K, Slaves $199 Slave Drives from $35
Atari 850 Interface $69 Commodore 1702 §135
Koala Touch Tablet ~ $35 Software/Books from $1

Products - New

97

with trade-in of 800XL, 1050 Drive
$CALL for your system

520ST FM CPU $499 520 ST FM color sys$819

Atari 520ST FM
=

PO PSSP P PR VI BE
oasye so8

$CALL for your system

=2 o $%;‘|N9

with trade-in of 800XL, 1050, 1702, NP-10 Printer, 1200 mdm.

512K RAM FM Instild $199 Atari SF314 Drive $219
SM124 mono Monitor $159 SC1224 color Mon. $325

130XE Computer $249 XF-551 Drive $179
1802C Color Monitor $189 Magnavox 80 Mono $99
Avatex 1200HC §99 Avatex 2400HC $199
Atari SX212 Modem $89 Happy Rev. 7.1 $99

256K upgrades 0k from$35
Star NX-1000 144cps $189

R-Time 8 Cartridge ~ $49
Star NX-2400 24 Pin $389

$Cash for your equipment
Thousands of software & book titles
Plus, MUCH, MUCH MORE!
2017 13th Street Suite A
Boulder, CO 80302

-

Atari XF-551

with trade-in of 1050 Drive
$CALL for your system

All references to trade-ins assume equipment to be in good
working condition. Shipping/handling will be added to all
prices.” No additional charge for credit cards or COD. Mail order
prices shown.

WE CHECK FOR CREDIT CARD THEFT!

1-303-939-8144

24 HR Modem Software Quotes: 1-303-939-8174

DISCOVER

AMERICAN EXPRESS
CIRCLE #102 ON READER SERVICE CARD.

Authorized Dealers for
W COMMODORE/AMIGA K
B and ATARI ST/XL/XE

Computers and Accessories.

10

NOVEMBER A.NL.A.L.O.G. Computing

tari Streamers is a machine-

language utility which uses

player-missile graphics to cre-

ate fine-scrolling vertical-

character displays. Excluding
inverse characters (which are automatically
unshifted), displays can be made up of any
string of characters desired—that is, upper-
case, lowercase and graphics characters in
either single- or double-line resolution.
Even custom-character sets can be dis-
played.

Atari Streamers has two entry points.
The first entry point copies your string of
characters into player-missile memory. It
is called by the USR statement:

X=USR (1536, PMADDRESS,
STRINGADDRESS,FONT,LENGTH) .

PMADDRESS is the address of the play-
er you wish to put your character display
in. STRINGADDRESS is the address of
the string of characters that will be copied
to player memory. The best way to store
your character display is to define it as a
string variable, and then use the ADR func-
tion to find its address. FONT is the ad-
dress of the character set you wish to use.
It should be set to 57344, which is the ROM
address for the normal character set,but if
you have an altered character set in

memory, or if you wish to use the interna-
tional character set (found only on the XL
and XE computers), simply substitute the
address of the character set you wish to dis-
play. The international character set is lo-
cated at 52224 . The last value, LENGTH,
is the length of your string of characters.
In double-line resolution, strings can be a
maximum of 16 characters long. In single-
line resolution, strings can be up to 32
characters long.

Excluding inverse
characters, displays
can be made up of
any string of
characters desired.

The second entry point of the routine will
move everything in the player specified one
byte up or one byte down with wrap-
around. It is called by the USR statement:

X=USR(1677,PMADDRESS,D IRECTION)

PMADDRESS is the address of the play-
er you wish to move. DIRECTION is the
direction you wish to move the player in.
If DIRECTION equals zero, everything in
the player will be moved up by one. If
DIRECTION equals one, everything in the
player will be moved down by one. When
this routine is used in combination with the
horizontal-position registers, you can eas-
ily move your character displays anywhere
on screen and over any graphics mode.

The demo program displays and moves
all four players in double-line resolution (if
you wish to change the demo program to
display in single-line resolution, substitute
the lines in the REM statements). The four
missiles are also displayed as a single play-
er. This is not difficult since the missiles
are mapped exactly the same way the play-
ers are mapped. The only difference is that
the missiles have individual horizontal and
collision registers. If you’re going to com-
bine the four missiles into a single player
in your own program, remember to line
them up in the correct order—that is, mis-
sile three, missile two, missile one, mis-
sile zero. They should be spaced two
resolution lines apart. Poke location 623
with 17 to give all players priority over all
playfields and to give all missiles their own
color. You can change the missiles’ color
by poking to location 711.

NOVEMBER A.NLA.L.0O.B. Computing

a4

Listing 1:

BASIC

1 REM ATARI STREAMERS
Z REM BY BRAD TIMMINS
3 REHM Substitute the lines in REM
4 REM statements for single-line
5 REM resolution Players.
6 REM COPYRIGHT 1988 BY ANALOG COMPUTI
NG
58 DIM PB5C16),P15C16) ,PZ5C16) ,P35C16)
yHMISC16) ,CL5(16)
51 REH DIM PB5(32) ,P15(C32),P25(32),P35
(323 ,MI5(32),CL5(3 2
68 7 CHR$(125) SETCOLOR Z2,8,186:SETCOLO
R 4,8,18
78 GOSUB 56886
880 A-PEEK(186)-8:REM A-PEEK({186)-16
98 POKE 54279,A:PMBASE=-ZS56¥*A
188 MISSILE=PMBASE+I84:PMO-MISSILE+128
tPM1I=PMB+1Z28:PMZ=PMLI+12Z28: PHI=-PMZ+128
181 REM MISSILE=PMBASE+768:PMB=-MISSILE
+Z256 : PHI=PMO+256: PMZ=-PM1+256 : PMI=-PMZ+2
114)

118 FONT=57344:REM ROM character set
128 PODKE 559,46:REM POKE 559,62

138 POKE 53277,3:POKE 752,1:POKE 623,1
7

135 REM Position Players

148 POKE 53248,60:P0KE 53249,61:P0OKE 5
3256,195:POKE 53251,19%6

144 REM Position Missiles
145 POKE 53255,122:POKE 53254,124:P0OKE
53253,126:POKE 5325Z,128
1586 POKE 7064,128:PO0KE 765,134:POKE 786
,128:POKE 707,134:P0OKE 711,128

155 REM Define a string of spaces

156 REM the length of the players,

157 REM to clear out Player—-missile
158 REM mewory.

168 CLS=" n

161 REM CLS="

i

180 FOR T=86 TO 4

198 X=USR{1536,MISSILE+{T*128),ADRICLS
J,FONT,;16)

191 REM H=USR (1536 ,MISSILE+(T*256) , ADR
(CL%) ,FONT,32)

288 NEHT T

285 REM Define 5Strings

Zig pas=" Streamers":P15-PBS:PZ25=POS
tPIS=POS I MIS=" Aatari™

215 REM copy strings to Player Memory
228 X=USR(1536,PMB,ADR(PBS) ,FONT,12)
230 H=USR(1536,PM1i,ADRIP1i5) ,FONT,12)
240 H=USR(1536,PMZ,ADRIPZ25) ,FONT,12)
256 H=USR(1536,PM3,ADRCPIS) ,FONT,12)
g?l H=USR(1536, MISSILE QDR(MIs) FONT 1
255 REM Shift Players ONE and THREE
256 REM down by one to create a

257 REM shading effect.

GH

IK
BM

PD

J

AR

PM

VL

YF

HG

278 X=USR(1677,PMi, 1)

238 X=USR(1677,PM3, 1)

235 FOR T=1 TO SO6:NEXT T

388 REM Move Missile and Players zero
385 REM and THO

306 FOR T=1 TO 258:NEXT T

387 FOR I=1i TO 128:REM FORI=8 TO 255
318 H-USR(1677,PMO,B8)

328 H-USR(1677,PMZ,B8)

338 H-USR(1677, MISSILE 1) :POKE 711,I
348 NEXT I:GOTO 306

495 REM 3IBOSEATARI STREAMER 5366

496 REM MACHINE LANGUAGE SUBROLTINE
588 FOR a=1536 TO 1766:READ B:POKE A,B
{NEXT A

585 RETLURN

518 DATA 1084,164,133,2084,104,133,263,1
84,133,206, 184 133 205 104 141 238 6,1
84,141,229,6

520 DﬁTﬁ 194 184, 141 227,6,169,0,141,2
2306 ,169,32, 141 231 173 4? 2, 291 62,

538 DATA 5,169,16,141,231,6,172,228,6,
177,2085,41,127, 261 31,176,4,9, 64 208 7
548 DATA 291 95 176 3,56, 233 32 141 22
5,6,169,0, 141 226 6, 162 3 24,14,225,6
559 paATA 46 226 6, 282 298 24? 24 1?3 2
%g 2 :189, 229 6, 133 207 173 226 6,189,2
568 DaATA 133,2088,162,0,1608,8,161,207,1
23,203,230, 287 230 283 136, 288 245 238
,228 6,173

578 DﬁTn 228,6,205,231,6,240,7,205,227
:6,2409,2,208, 164 96 194 104 133 204 13

3,286

580 DATA 184,133,283,133,285,1084,162,2
55,1608,255,173,47,2,201,62,240,4,162,1
27,160,126

996 DATA 104,261,1,246,19,160,0,177,20
5,141,225,6,230,203,177,203,145,2085,20
8,202,208

668 DAThA 248,240,27,138,168,177,2085,14
1,225,6,136,177,2063,141,226,6,138,168,
173,226,656

616 DATA 145,285,136,136,202,288,239,1
38,168,173,225,6,145,205,96,0,0,08,0,8,
a8

628 DATA ©,224,2,225,2,0

Listing 2

ORG 1536

JATARI STREAMERS ML SUBROUTINE
JHRITTEN FOR THE MACRO ASSEMBLER

;THIS ROUTINE MWILL TAKE A CHARACTER
;3TRING AND COPY IT TO PLAYER
,MISSILE MEMORY .

JZERDO PAGE EQUATES

PLAYER: = 283
STRING: = 285
CHRGET: = 287
MOVEP: = 283
MP: = 285

PLA ;GET UNUSED BYTE

PLA ;GET M5B OF PLAYER ADDRESS
5TA PLAYER+1

PLA ;GET LSBE OF PLAYER ADDRESS
5Ta PLAYER

PLA ;GET M5B OF STRING

5Th STRING+1

PLA ;GET L5B OF STRING

3TA STRING

PLA ;GET MSB OF CHARACTER SET
3TA CHSET+1

PLA ;GET LSB OF CHARACTER SET
5TaA CHSET

PLA ;GET LUNUSED MSB OF LENGTH
PLA ;GET LSB OF LENGTH

3Ta LENGTH

;INIT. VALUES

NOVEMBER A.NLA.L.O.G. Computing

LDaA HO BNE GETSTR;NOT DONE.CONTINUE LOOP.

E;g gggnr RETURN: RTS;DONE.GO BACK TO BASIC.
5Th MaX i THIS ROUTINE WILL MOVE THE PLAYER
jUP OR DOWN MWITH RAP.
JTEST FOR SINGLE OR DOUBLE LINE e e e e o
JRESOLUTION. PLA ;GET LUNUSED BYTE.
PLA ;M5B OF PLAYER.
LDba 559 5TA MOVEP+1
CMP H62 5TA MP+1
BEQ GETSTR PLA ;LS5B OF PLAYER.
LDa Bi6 5TA MOVEP
STA MaX STA MP
---------------------------------- PLA ;UNUSED MSB OF DIRECTION.
'GET ATASCII CHARACTER FROM STRING
;AND CONVERT IT TO FIND ITS CORRECT JSINGLE LINE RESOLUTION SETUP.
;ORDER IN MEMORY.
--------------------------------- LDX #255
GETSTR: LDY COLNT LDY B255
LDA (STRING)I,Y
JTEST FOR DOUBLE OR SINGLE LINE
;IF CHARACTER IS IN INVERSE, JRESOLUTION.
JUNSHIFT IT.
LDA 559
AND #1127 CHMP H62
Ci: CMP H31 BEG S1i
BCS C2
;DOUBLE LINE RESELUTION SETUP.
;GRAPHICS CHARACTER 8-31
jADD 64 TO ITS VALLE. LDX #8127
LDY 1126
ORA HG64
BNE C3 JPULL LSB OF DIRECTION OFF STACK,AND
C2: CMP H95 JFIND OUT THE DIRECTION TO MOVE.
BCS €3
51: PLA
jUPPERCASE CHARACTER 3I2-95 CHMP #1
JSUBTRACT I2 FROM ITS VALUE BEQ MDOWN
SEC 'MDUE PLAYER UP ONE BYTE AND RAP.
QBC HSZ " L 0 T e e et SR e e s s vl e s S Bl s e e 6 0
va e
JLOWERCASE CHARACTER 96-127 LDA t(MP),Y
;DO NOTHING. THEY ARE ALREADY 5TA TEMP
3IN THE CORRECT ORDER. INC MOVEP
UP: LDA CMOVEP),Y
JSTORE NEW CHARACTER VALLE IN TEMP. 5Ta (MP),Y
INY
C3: 5TA TEMP DEX
LDA o BNE UP
STA TEMP+1
——————————————————————————————— ;DONE.GD RAP LAST BYTE AROLND.
,MUTIPLI CHARACTER BY 8
IS TR T P T e e BEQ 53
LDX B3 e
CLC 'MOUE PLAYER DOWN ONE BYTE AND RaP.
C4: aSL TEMP e
ROL TEMP+1 MDDNN. TXA
DEX TaY
BNE C4 LDA CMPI,Y
----------------------------- Ta TEMP
;DD CHARACTER SET ADDRESS, AMND BEY
iPUT THE VALLUE IN ZERO PAGE. 52: LDA CMOVEP),Y
RS T T T TR T L WA T T 5TA TEMP+1
CLC THA
LDA TEHP TAY
ADC CHSET LDA TEMP+1i
5Ta CHRGET 5TA (MPY,Y
LDA TEMP+1 DEY
ADC CHSET+1 DEY
STA CHRGET+1 DEX
-------------------------- BNE 52
-cupv CHARACTER ,“FROMULTSFOREGTNAL B % i 0 s Sse i R e o G e e
'ADDRESS, TO PLAYER MEMORY. -nnp LAST BYTE AROLUND AND EXIT
T e e e e e e e ;ROUTINE.
LDX #a (oo PR LS B B L R
LDY H8 TRA
CP1i: LDA (CHRGET,X) TAY
5TA (PLAYER,XJ 53: LDA TEMP
INC CHRGET 5TA (MP),Y
INC PLAYER RTS
DEY
BNE CP1 ;BYTE FIELD EQUATES
INC COLNT
LDA COLNT TEMP: DB 0,0
CHP MaX; LENGTH: DB @
BER RETLRN COUNT: DB @
CHMP LENGTH CHSET: DB ©,0 a
BEQ RETLRN MAX: DB @

NOVEMBER A.N.A.L.O.G. Computing

13

Lyco Computer

Since 1981

Marketing & Consultants

Air orders processed within 24 hours.

Lyco Means Total Service.

Mark ‘‘Mac'' Bowser, Sales Manager

| would personally like to thank all of our past customers for helping to
make Lyco ComJ:uler one of the larf_esl mall order companles and a
1

leader In the Industry. Also, | would liko to extend my personal Invilation to
all computer enthusiasts who have not experienced the services thal we pro-
vide. Please call our trained sales stall at our toll-lree number to Inquire
aboul our diverse producl line and weekly specials.

First and foremost our philosophy Is to keep abreast of the changing
market so thal we can provide you with not only factory-fresh merchandise
but also the newesl models olfered by the manulaclurers at the absolute best
possible pricas. We olfer the widest selection of compuler hardware, software
and accessories.

Feel free to call Lyco If you want to know more about a particular Item. |
can't stress enough that our toll-free number Is nol just for orders. Many
companles have a loll-free number for ordering, bul if you just want to ask a
queslion about a product, you have 10 make a toll call. Not at Lyco. Our
trained sales stall Is knowledgeabls about all the products we stock and is
happy lo answer any questions you may have. We will do our best to make
sure that the product you selact will lit your application. We also have Satur-
day hours — one more reason to call us for all your computer needs.

Once you've placed your order with Lyco, we don't forget about you.
Our Irlendly, prolessional customer service represantatives will-lind answers
to your questions aboul the status of an order, warranties, product avallabili-
ty, or prices.

Lyco Computer stocks @ mullimlilon dollar Inventory of factory-fresh
merchendise. Chances are we hava axaclly whal you want tlght In our ware-
house. And that means You'll peot it fast. In facl, orders are normally shipped
within 24 hours, Free shipping on prepald ordors over $50, and there Is no
deposlt raquired on C.0.D. ordera. Alr frelght or UPS Blue/Red Label shipping
la avallable, too. And all products carry the full manulacturers’ warrantlos.

| can’t see why anyone would shop anywhere else. Selection from our huge
In-stock Invenlory, best price, service that can't be beal—we've gol it all here
al Lyco Computer.

TO ORDER, CALL TOLL-FREE: 1-800-233-8760
New PA Wats: 1-800-233-8760
Outside Continental US Call: 1-717-494-1030

Hours: 9AM to 8PM, Mon. - Thurs.
9AM to 6PM, Friday — 10AM to 6PM, Saturday

For Customer Service, call 1-717-494-1670,
9AM to 5PM, Mon. - Fri.
Or write: Lyco Computer, Inc.
P.O. Box 5088, Jersey Shore, PA 17740

C.0.D. Risk-Free Policy: e full manufacturers’ warranties @ no sales tax
outside PA e prices show 4% cash discount; add 4% for credit cards e APO,
FPO, intemational: add Sgcrlus 3% for priority ® 4-week clearance on personal
checks ® we check for credit card theft @ sorry, compatibility not guaranteed e
return authorization required @ due to new product guarantee, return restrictions
apply e prioe/availabigg subject to change © prepaid orders under $50 in
Continental US, add $3.00

(MosterCard!

-800-233-8760

NATARI

520 ST-FM Computer

@ Built-in
Drive

o 645055
INDUS

GTS-100 ———
® Atari ST [WecliEm,
Drive

® 3.5” DSDD

$195%

@® plugin and use im-
mediately

® |IBM-XT compatible

® 2-360K Drives

® rree 1-year limited
warranty

$989 %5

@ HiRes color monitor included!

AN ATARI

HARDWARE
S520iRGBE . Can . $749.95
520:Monos & s, $599.95
520 Keyboard...... $459.95
1| SOXER S L e e $135.95
GTS 100 Drive $195.95

A ATARI

520 ST-FM
Color
System

Internal

drive
included

$749%
MNATARI

System
Includes:

® 130 XE
Computer

130 XE
System

MAGNAVOX

CM-8502

® Composite
Color

® Green Text
Switch

® Speaker

T
st

=

==

$179%

JOYSTICKS

® Suggested
Use 130 XE

TAC Bt e S onl o ks e ie
ATACEOIS BRI -y e o et S

TGS AT mans sy e . Gl N
BosSiahalrindi ull o R w8

FiWay s s Tt

Winner 909.............

Wic IBM/AP

liCGontroller.............

Epyx 500XJ X
Kraft KCIIl AP/PC $16.95

CIRCLE #103 ON READER SERVICE CARD.

r Ll
NX-1000 |~
@ 144 cps Draft
® 36 cps NLQ
@ EZ Font Panel
Control

NX-1000 Color ..
NX-15 .
NR-10 .
NR-15 ..
NB-15 24 Pin .

NB24-10 24 Pin
NB24-15 24 Pin
Laser 8 ...

ND-15 .
NL-10 ..
*w/cable purchase

Toshlba

P351 Model II
351 SX 400 cps ..

Access:
Triple Pack
Leader Board Pack

Activision:
Music Studio $19.95
Solid Gold Vol.#1 .. $10.95

Batteries Included:

$11.95
$9.99

Paperclip 80 Col $31.95
Broderbund:
Print Shop . .. $25.95

Print Shop Compan.

$22.95
Graphic Lib. I, I, 11l $13.95
Bank St. Writer $27.95
Electronic Arts:
Pinball Con Set1$8.95

$8.95
. $32.95

Lords of Conquest
Starfleet | ...
Chess Master 2000 .
Music Con Set
Super Boulderdash
One on One

$8.95

Microleague:
Microleag. Baseball $22.95
General Manager . $16.95

Stat Disk $13.95
‘87 Team Disk $13.95
Microprose:

Conflict in Vietnam $22.95
F-15 Strike Eagle $19.95

Kennedy Approach $13.95

$165%

* w/cable purchase

NX-1000 Rainbow
Color Printer $225.95

SEIKOSHA

SEIKOSHA

SP 180Aicccoeeuee $125.95%
SP 1200Aiccooveeee $159.95
SP 1200AS RS232 ... $159.95
SL 80Ai . $289.95

MP5420FA . . $999.95
SP Series Ribbon $7.95
SK3000 Ai .. $339 95

SK3005 Ai . $419.95

SPB 10 ... $CALL
SL 130Ai $599.95
* Quantities lelted
B ROTH ER

M1109 . .. $159.95
M1509 $335.95
M1709 $459.95
Twinwriter 6 Dot &

Daisy $899.95
M1724L ... $619.95
HR20 $345.95

. $659.95
. $649.95

Access:
Leader Board
Tournament #1
10th Frame

Activision:
Champion. Baseball
GFL Football
Music Studio ...
GBA Basketball ...
Beyond Zork .
Zork Trilogy ..

Broderbund:
Superbike Challenge ...

Electronic Arts:
Arctic Fox ..
Starfleet | ...
Chess Master 2000
Gridiron .. =
Marble Madness
Epyx:

Sub Battle Simulator ...
World Games
Wrestling
Winter Games .

Firebird:
Pawn .
Starglider
Golden Path . R
Guild of Thieves ..

Tracker

SP-180Al

@100 cps Draft

® 20 cps NLQ

@ Std, Par, and IBM Graphics
Compatible

Quantities
Limited

EPSON

X800 $184.95
FX86E $329.95
FX286E . .. $424.95
EX800 .. $399.95
LQ500 . $339.95
LQ2500 $789.95
GQ3500 .

LQ850 $525.95
LQ1050 $699.95
Attention
Educational
Institutions:

If you are not currently using
our educational service
program, please cali our
representatives for details.

P a5 wonitors 4

Microleague:

Microleague Baseball .. $33.95
General Manager .. $16.95
Wrestling .. $25.95
Microprose:

Silent Service .. $22.95
F-15 Strike Eagle $24.95
Gunship .. $28.95
Strategic Simulations:
Phantasiec...... $22.95
Phantasie Il $22.95
Wargame Con. Set $19.95
Phantasie Ill $22.95
Sublogic:

Flight Simulator Il $30.95
Scenery Disk .. $14.95
Timeworks:

Wordwriter ST .. $44.95
Partner ST ... $27.95
Data Manager ST $44.95
Unison World:

Art Gallery 1 or 2 .. $14.95
Print Master .. $19.95
Fonts & Borders $17.95
Art Gallery Fantasy $13.95

We stock over 3,000
software titles!

$125%

Panasonic

Office Automahor\(\f\

1080i
Model Ii
« 150 cps Draft Mode

< NLQ Mode
« Friction & Tractor

Feed

$15995

Panasomc OKIDA

Office Automation O

1080i Model Il
1091i Model II

1524 24 Pin
Fax Partner
Optical Scanner .

%CITIZEN

120D $149.95
180D ...
MSP-10 ..
MSP-40 ..
MSP-15E
MSP-50 ..

Thomson:

230 Amber TTL/12” $69.95*
4120 CGA ...

4160 CGA

Blue Chip:

BCM 12" Green TTL ... $64.95
BCM 12" Amber TTL ... $69.95
NEC

Multisync Il $589.95
Magnavox:

BM7652 $79.95
BM7622 .. . $79.95
7BM-613 . . $79.95
7BM-623 $79.95
CM8502 $179.95
CM8505 .. $199.95
9CM-053 . . $CALL
CM8762 .. $245.95
8CM-515 . $259.95
CM9043 .. . $CALL
8CM-873 . .. $499.95

Join the thousands who shop Lyco and Save

ATA

Okimate 20cccvenne $129.95
Okimate 20 w/cart $189.95
1 80kt $219.95
182 $209.95

292 w/interface
293 wiinterface
294 w/interface

Interfacing available
for IBM C 64, Apple
and Alari

2400i PC Card

*w/cable purchase
Hayes:

Smartmodem 300 $139.95
Smartmodem 1200 $279.95
Smartmodem 2400 $419.95

Avarex
1200E

Nimral’s Grace

by Clayton Walnum

s promised last month, here’s the
Asequel to The Slave Cellars of

.~ A Golgoloth, and if you thought just
rescuing the princess was tough, wait until
you try to find out who'’s trying to put her six
feet under. Yep, Slave II: Nimral’s Grace is a
mystery, and in order to be successful in your
attempt to bring the would-be assassin to |
justice, you're going to have to search high
and low for ten vital clues. Only when you've
gathered all the evidence, will you be able to
put the culprlt behind bars.

a0

e st

NIMRAL'S GRACE

PRESS AMY KEY

S

18

- -

Typing it in |

To make your copy of Slave II, follow ex- *
actly the instructions shown below:

1) Type in Listing 1, using BASIC Editor
11 to verify your work. Once you have the list-
ing accurately typed, save it to disk.

2) With a disk in Drive 1, run the program
you typed from Listing 1. A file named
LINES.LST will be written to your disk.

3) Type in Listing 2, using BASIC Editor
I'to verify your work. Once you have the list-
ing accurately typed, save it to disk.

4) With the program you typed from List-
ing 2 still in memory, type ENTER
“D:LINES.LST” and press Return. The file
created in Step 2 will be merged with the pro-
gram lines already in memory.

5) Type SAVE “D:SLAVE2.BAS” and
press Return to save the complete program
to disk. Slave II is now ready to run,

Playing a text adventure game

Like most simple text adventure games,
you communicate with Slave II by typing two-
word commands in a verb/noun format (for
example, OPEN DOOR). There are a few ex-
ceptions to this format, however. All direc-
tional commands should be abbreviated to
one letter (N, S, E, W, U or D). To move
north, for instance, you would simply type
N and press Return. There are also times
when Slave II will accept one-word
responses. You'll discover these as you play.

One command that you'll want to use be-
fore trying anything “dangerous”™ is SAVE
GAME. Saving your position in the game al-
lows you to continue where you left off should
your character be killed, You should also save
your game when you're finished with a ses-
sion, so you can pick up where you left off

NOVEMBER A.N.A.L.O.G. Computing

when you're ready to play again. To resume 3) Npwf uif xbsespcf. How do I turn in the culprit?

a saved game from within Slave II, simply 4) Mppl bu uif bmubs. 1) Gjstu zpv nvtu ibwf fopvhi fwjefodf.
type the command LOAD GAME. 2) Hp up uif qfbdflffqgfs.
Sometimes, a response to a command will ~ How can I get into the king’s quarters without 3) Uzqf BDDVTF gpmmpxfe cz uif gfstpo’t
contain more text than will fit in the text win- getting arrested? obnf.
dow. When this happens you will see the first 1) Zpv dbo’u mfu ijn tff zpv.
few lines and the computer will beep. When 2) Xbju voujm if’t tmffgjoh. What are the ten pieces of evidence?
you've finished reading the text on the screen, 3) Hp bu ojhiu. 1) Cfgpsf zpv sjef up Ojnsbm’t Hsbdf, gjoe
press Return, and the next few lines will be uif ejsu boe mppl bu ju. Uifo mppl bu
shown. uif gppugsjout.
; What’s with the throne? 2) Gjoe uif bnvmfu boe mppl bu ju.
Hint department I1 1) UifsP't tpnfuijoh cfijoe ju. 3) Hp joup uif tipfblfs't tipq boe sfbe ijt
The following adventure hints have been ~ 2) Npwf uif uispof. cppl. Epo’u gpshfu up uvso uif gbhf.
encoded by a forward cycling of the alphabet. 4) Sfnfncfs uif cspxo ipstf zpv tbx sjejoh
That is, the letter A has been changed to B, How do I get past the steel door? bxbz? Hp joup uif tubcmft boe mppl bu
the letter B has been changed to C and so on. 1) Zpv offe b Ifz. uif cspxo ipstf. Uifo mppl bu uif tbeemf.
To use the hints, find the question that ap- 2) Hfu uif Ifz gspn tpnfpof. 5) Gjoe tpnf bmf boe hjwf ju up uif nbo
plies to your problem, and decode the first 3) Uif gsjftu ibt uif 1fz. jo uif tnbmm pggjdf. Xifo if tfut epxo
hint in the list following the question. If, af- uif tjimwfs cppl, qjdl ju vq boe sfbe ju.
ter decoding the first hint you’re still stuck, ~What about registering animals? 6) Gjoe uif kfxfmsz cpy boe mppl bu ju.
decode the next. The last hint in the list is 1) Zpv ibwf up sthjtufs zpvs ipstf. 7) Qpvs uif gpjtpofe xjof gspn uif ubolbse.
the solution. 2) Hp up uif tnbmm pggjdf. Gjoe uif gjohfsgsjou lju boe gjohfsqs-
3) Ufmm uif nbo up SFHITUFS XIJUR. jou uif fnquz ubolbse.
How do I get past the fire? 8) Npwf uif xbsespcf boe mppl bu uif
1) Uifsf't b mblf ofbscz. How can I survive being stabbed? bmubs.
2) Xbufs Iffgt zpv dppm. 1) Xfbs tpnfuijoh gspufdujwf. 9) Gjoe uif opufcppl boe mppl bu uif
3) Kvng jo uif mblf boe hfu xfu. 2) Ibwf zpv gpvoe uif dibjo nbjm? dpwfs.
3) Zpv nvtu ibwf uif dibjo nbjm. 10) Pgfo uif opufcppl boe sfbe xibu’t jotjef.

How can I get to Nimral’s Grace?
1) Ju’t upp gbs up xbml.
2) Zpv dpvme vtf b ipstf.
3) Qsbz bu uif tubuvf.

TH 16 DIM L$(128)

ES 26 OPEN #1,8,0,"D:LINES.LST"

CR 38 L$="5828 cc§=":L$(18)=CHR$(34)

PZ 40 FOR X=1 TO 77:READ A:LSC10+X)Y=CHRS(
A) :NEXT X

KM 58 L5(1i0+X)=CHRS5(34):7 LS:7 Hi;LS

LS="5848 D$="":L5(9)=CHR$(34)

DH 76 FOR X=1 TO I7:READ A:L$(3+X)Y=CHRS(A
) :NEXT X

80 LSC(9+X)=CHRS(3I4):7 L$:7 #Hi;LS

98 L5=""5860 ES$=":L$(9)=CHR$(34)

KF 160 FOR X=1 TO 78:READ A:L5(9+X)=CHRS&(

A) :NEXT X

118 LS C9+HI=CHR5(34):7 L5:? Hi;LS

YZ 120 L5="5880 LS="":L5(9)=CHR$(34)

GA 130 FOR X=1 TO 3I5:READ A:LS(9+X)=CHRS(
) :HEXT X

MU 140 LS(9+HI=CHRS(34):7 L5:7 #1;L$

IH 1568 CLOSE #i:END

N0 999 REM 366060066 CCS DATA OO0

55 1808 DATA 184,1084,133,204,184,133,283,

‘ 104,133,206,104,133,2065,164,164,133%,206

, 7,169,8,141,255,6,178,133,213

ZT 1616 DATA 232,160,0,177,203,209,205,20
8,8,2060,192,4,2088,245,134,212,96,173,2
55,6,24,165,4,197,2087

B0 16286 DATA 240,206,141,255,6,165,205,24,
1065,4,133,2085,165,26066,165,68,133,206,24
8,211,268,269,169,0,133,212,96

DD 1099 REM #606066¢K DS DATA 30E0HOO0E

PG 11608 DATH 216,104,104 ,133,204,1604,133,
263,104,104 ,13%,265,1606,0,177,2063,2061,
61,2406,11,56,233,1,145,283

Kl 1118 DATA 200,196,2065,208,246,96,169,3
3,240,244,208,242

BZ 1199 REM #606006068 ES DATA SOO0O0E6E

HZ 12060 DATA 104,1084,104,141,254,6,164,108
4,141,255,6,165,88,133,2083,165,89,133,
204,162,0,236,255,6,248

NC 1216 DATA 18,165,263,24,105,40,133,263
,165,204,105,08,133,204,232,2408,235,268
,233,169,8,176,1668,39,145

HH 12206 DATA 263,136,16,251,232,236,254,6
,240,17,165,203,24,165,40,133,283,165,
204,185,06,133,2604,169,0,240,226, 96

JL 1299 REM 3*e00006d% LS DATA

YL 13068 DATA 104,104,104,141,255,6,104,13
3,204,104,133,2063,160,0,177,203,261,32
,240,8,200,204,255,6,208

OM 1310 DATA 244,160,0,132,212,169,0,133,
213,96

How do I get past the guard?
1) Zpv dbo’u ep ju bmpof.
2) Zpv offe tpnfpof gspn uif djuz xjui zpv.
3) Tibmb nvtu bddpngboz zpv.

BASIC

1
o=
=m

Listing

How do I read books?
1) Gjstu zpv nvtu pqfo uifn.
2) Tpnfujnft zpv dbo uvso gbhft.

How can I get from night to day or day to
night quickly?
1) Tmffgjoh jt b hppe xbz up gbtt uif ujnf.
2) Zpv nvtu cf jo zpvs sppn up tmffq.
3) Kvtu uzqf HP CFE.

How can I get out of jail?
1) Zpv dbo’u.
How can I get the priest to talk?
1) Uzqf UBML QSJFTU.
2) Zpv ibwf up cf b nfncfs.
3) Stfbe uif cppl jo uif mjcsbsz.
4) Zpv’'mm offe tpnf cmbdl gbjou.
5) Qbjou b cmbdl epu po zpvs gpsfifbe.

Where can I get the password?
1) Ibwf zpv gpvoe b xbsespcf zfu?
2) Uifsf’t tpnfuijoh cfijoe uif xbsespcf.

NOVEMBER A.N.A.L.O.G. Computing 19

: BASIC

Listing 2

JI
0Z

WY

50

JU
JY

HN

Zu

IH

KD

uc

KO

Ut

HJ
MR

LR
VR

UL

8 REM * BY CLAYTON WALNUM *

¥ REVISED 7/22/88 *
1 NL1=11:N12=12Z:N13=13:N14=14:N15=15:N
16=16:N17=17:N18=18:N19=-13:N28=28:N168
B=1000:N6760=-6768
2 N1i=1:N2=2:NI=I:N4=4:N5=5:!N6=6:N7=7:N
B8=8:N9=9:N16=16:NV=26 :NN=59:5Z=13:G0TO

5260
3 A=USRCADREDS) , ADRCASY ,LENCASY) :RETUR

N

4 GOSUB N3:? A5:GOSUB NiL:AS="":RETURN
5 CL=NO:FOR X=Ni1i TO Ni@:CL=CL+CL (X):NE
KT X:RETURN

8 FOR X=255 TO NO® STEP -8.5:50UND NO,X
;N18,N8:NEXT XK:FOR X=N16 TO N8O STEP -8
.1:50UND NO,160,N8,H:NEXT X:RETLURN

9 FOR K=N1 TO 1560:NEHT K:RETURN

18 A=USRCADRCES$3 ,N5,C) :POSITION N2,C:R
ETLURN

11 CLOSE #1:0PEN $N1,N4,N0,"K:":GET HN
1,A:CLOSE HN1:RETURN

12 7?2 "I don't understand.'":GOTO 16686

48 A=USRCADRCESY ,Ni,N1):POSITION NZ,N1i
45 N=NO:S-NO:E-NO:MW=-NO:LU=NOB:D=NO:GOSUB
R¥N1O:POSITION N2Z,N1:GOSUB MN3I:? H6;a%
tAS=""":RETURN

58 AS=""Po'b!cfbdi":TI{41)=-NS:RETLRN

51 AS="Uif!tmbwfst!bsf!bqqspbdi joh!gbht

utttitigspplui fIXftusd"iECN7:RETURN

76 AS="Jo'uif!gpsftu":E-N8:N=-N12:I(41)

=-R:I(24)=-R:RETLRN

808 AS=""Cfhjoojoh!pg!b!spbe'" :N=N9:E=N1iZ
tW=N7:RETLRN

98 AS="Joluifigpsftu":N=88:5=-N8:MW=N12Z:
I(243=-R:RETURN

128 nS'"Jo'bldebSJoh“'E N9 :S5=N7:N=79:
RETUR

138 AS‘"Po'b'npoh'spbe"'N N8:E=N1S5:RET
LURN

131 AS=""Jo'uifle jtubodf!zpv!tffitpnfpo
flhbm.!!'mpqjohibXxbz!po!blcspxolipstf/[l

":GOS5UB N4:RETURN

158 AS="0jnsbmi{t!Hsbdft(!gspou!hbuf':H

=N13:RETURN

i66 nS*"Jo'b'dpusuzbse" N=Z1:E=25:5=N1

7:CY=N1:RETURN

i61 nS'"B'nbo'tufqtlgpsxbse/"Txbnb'tb

zt-111 11 (Epmops—Inz!cfuspuife-1xXizlbsf
1zpu!llllifsf! jol0 jnsbnit!Hsbdfe ([

162 GOSUB N4:AS="Epmops!ublft!Tibmb! jo
lijt!bsnt!boe! ! ! 1 thzt-!1(Tibmb-!nZ!mpwf

-1uibol!0 jnsbm!!1zpylbsf!tbgf=]!

163 GOSUB N4:aS5=""(Hifo!J!ifbsel!pglzpvs
tdbquusf!Jidbnf!lup!pggfs!inz!tfswjdft!

up!zpvs!gbuifs—!1uif!l joh/ (f]"

164 GOSUB N4:AS="(Dpnf-!Tibmb-!zZpus!gh

njmz!bxb jut!zpv/(Epmops!mppltibulzpu/!

(Kbss jps—lzpv!illix jmm!cfisfxbsefe=(f]"
165 GOSUB N4:AS="'(Hvbset=!!Tipx!pvs!hv
ftu'up'th!!!!!!!!rvbsufst/(u"

166 GOSUB N4:AS="":R=I9:UL=Ni:UI=Ni:EN

T=NL1:I(N5)=-43:I(N7)=-76:GOTO N1868O
178 AS="Po!b!tusffu'' :N=N16:RETLRN

218 AS="Po!b!tusffu'':W=22:N=23:5=N16:R
ETURN

228 AS="Cftjefluif!djuz!xbmm:N=24:E=2

 1:I€49)=-R:RETURN

Ja

5K
RC
KY
BX

BM
JuU

oL
BB

NN
NQ
DZ
A0

Ju
JI

238 A%="Po!b!tusffu":H=24:5=21:RETURN
248 aS="Cftjefluif!djuz!xbmm":E=23:5=2

2:CY=N1:I(43)=-R:RETURN

250 AS="Bu!uif!qbmbdf!hbuf':W=N16:E=27
tRETURN

276 AS="Jo!b!ibMW'":W=25:U=3IB:N=28:D=49
tE=I0:I(25)=-R:RETLURN

288 AS="Jo!uif!Qfbdflffqfstipgg jdf'':s5=
27 :RETLURN

2908 AS5="Jo!b!kb _jn!dfmm'':RETURN

368 AS'"JO'b'leM"'N 27:N=31:E=33:5=32
tRETUR

316 AS‘"JO'U:f'hUbSE'SPPn"'S 30:RETURN
3208 nS:"Jo'u:f'spzbnleJoJoh'sppn"'N 30
tRETURN

330 AS=""Jo!'b!ibMM'" i N=308:N=34:5=35:1=44
tI(25)=-R:RETURN

340 AS="Jo'uifluispof!sppn':5=3II:RETLR

N
350 AS="Joluif!tvqqmz!sppn":N=33:RETLR
N

I80 AS="Jo!'b!ibMM''IN=39:5=40:D=27:E=41
1I(25)=-R:RETLRN

390 AS="Zpvus!irvbsufst'":5=3I8:RETLURN

391 AS="B!tfswbou! foufst!uif!sppn!xjui

ihitittlybolbse!pg!xjof/! ! (Dpvsuftz!pg
Tuifl111] joh—-!nz!Mpse/ (fI":GOSUB N4

392 RM=N1:RETLRN

4008 AS$="Jo!0jlojl!uif!Kftups{t!rvbsufs
T'":N=38:RETLRN

418 AS="Jo!'b!ibMR":H=IB:N=42:E=44:5=43
tRETURN

428 aS5="Jo!EpmopsCt!rvbsufst":5=41:RET
LRN

430 A5="Jo!Tibmb(t!rvbsufst'":N=41:5H=N
1:RETURN
448 AS="Jo'b!ibMM":H=41:N=45:D=33:5=46
:I(25)=-R:RETLRN

458 aAS="Jo'Epnojtluif!Bewjtpsi{t!rvbsuf
st'":5=44:RETURN

460 AS="Jo'uif!l joh(t!rvbsufst":N=44:R
ETURN

498 AS="Jo!'b!ibMM'"':N=52:E=58:U=27:RETU

5008 AS="Jo!b!ibMR":W=49:N=53:E=54:RETU
520 A%S="Jo!luif!difnjtuCt!mbc':5=49:RET

528 aS="Joluif!rvffolt!rvbsufst":5=50!
RETURN

548 AS="Jo!uif!mjcsbsz":W=50:RETLRN
658 A%="Jo!uif!dbubdpnct":H=3I4:N=65:E=
66:5=65:RETLURN

668 AS='"Jo!'uif!dbubdpnct":W=66:5=65:E=
65 :N=71:RETLURN

718 AS="Jo!b!ebsl!ufnqnf'":iN=72:5=66:RE
TURN

728 A%="Jo!b!tupsbhf!sppn':5=71:RETLRN
738 AS="Joluiflpggjdf!pg!bojnbr!sfh jtu
SZ":E=N17:RETURN

748 AS="Buluif!tipfnblfs(t":N=23:RETUR
N

758 AS="Buluif!qbxo!tipq":W=21:RETURN
768 AS="Buluif!tubcMft'":W=N17:RETLRN
778 aAS="Jo!b!tnbrMm!dibqfmn':5=23I:RETURN
788 AS="Jo!b!ebsl!uvoofm'':E=24:CY=NB:R
ETURN

798 AS="Jo!'b!nfbepx":5=N12:E=88:RETURN
808 AS="Jo!b!nfbepx":W=79:5=N9:RETLRN
gie nS:"JO!b!ufou":N:NB:RETURN

906 RESTORE 6128:FOR X-N1 TO NN:READ A
$,A:10=5Z-LENCAS) : IS (XKXSZ—-(SZ-N1) ,K¥S5Z-
W =AS!T(RI=AINEXT X

905 RESTORE 6160:FOR X=Ni TO NV:READ A
tVIKIZAINEXT X

925 GOTO 6288

258 C=NS5:GOSUB Nie

951 FOR X=Ni TO NN:IF ABSCI(X))=R THEN
? HNG ;IS (K¥SZ-SZ+N1,H¥*5Z) 1IT=N1

923 NEXKT X:IF IT=NO8 THEN ? HNG;'Nothin

954 RETLRN

968 A=LSR(ADRCES) ,N1,N11) :POSITION N2,
Ni1:IF N+S+E+W+D+l=N6 THEN 7 #N6;'None
"WiRETLRN

962 IF NYN8 THEN 7 HNG;"North ';

963 IF 5)N@ THEN ? HNG6;"South ';

964 IF EYNG THEN ? HN6;"East

965 IF W)NB THEN 7 HNG6;"West ';

966 IF LYN® THEN 2 HN6;“LUp '

967 IF DYNO THEN ? HN6;"Down"

976 RETULRN

980 C=N14:GOSUB N1©

981 FOR K=Ni TO NN:IF I(X)=-N1 THEN 7
HNG IS (K¥5Z-SZ+NL1, X¥5Z) : INU=N1:NEXT X:
RETLRN

982 NEXT X:IF INV=NG THEN ? HN6;"Nothi
ng

983 RETURN

1800 IF LENCA$IONO THEN A=LSRCADR(DS),
ADRCASY ,LENCAS)II 12 AS:AS=Iy

1026 IF UL THEN GOSLB 48:GOSUB 950:G0S
UB 968

1848 IF U5 THEN GOSUB 950

10668 IF LD THEN GOSLB 968

18868 IF UL THEN GOSUB 980

1166 IT=NO:INV=NO:LUL=NO:LUS=NO:UD=NO:UI
=

1128 IF R=N16 AND NOT ENT THEN GOSUB
N11:GOTO 161:as='

1130 IF R=46 AND DY>N8 THEN AS5="Hubset
=iBssftuluijtinbo={|'":GOTO 6608

1146 IF DD THEN GOSUB N9:GOTO 7248
1168 IF R=3% AND NOT RM THEN GOSUB 39

1ras=im
1165 IF R=Ni3 AND NOT SE THEN GOSUB 1
I1:5E=N1

1166 IF R=42 AND DY>N8 AND I(46)=-R TH
EN GOTO 4666
1167 IF DY>NB AND IC46)=-R THEN I(46)=

NOVEMBER A.NLA.L.0O.@. Computing

BN

EH
TK

ou
OH
SM

PT

JE
ZI

HH
GM

Ju

HO
IJ
IP
SH
UR

0J
VIl

IM
PD
BHW
TC
MI
GM
QF
EL
NT
FU
KK
LA

)
1180 IF TURN/1BO=INT(TLURN/168) THEN GO
SUB 6508
1268 IF R=43 AND DYY>NO THEN GOTO 6560
§21211F R=43 AND I(N18)=-40 THEN I(N1i8
1211 IF R{>41 OR I(55)=-N1 OR I(N18) (D>
-R OR NK{>N8 THEN 1213
1212 AS="0jlojliqmuohft!b!lojgf! jolzpy
sidiftu={l":GOSUB N4:GOTO 7248
1213 IF R=41 AND I(N18)=—-R AND NK=N® T
HEN A%="0jl0jl!tubct!zpv—-tcvuluif!dibj
olnb jm! 1 thwftizpy="":NK=N1:GOTO N1868
1214 IF SH AND I(36)<>-NZ AND DY>N6 TH
EN X=RND(NB) :IF X>8.9 THEN 6741
1215 IF R{>41 AND NK THEN I(N18)=-48
1228 IF R=29 THEN CNT=CNT+NL:IF CNT=NS
THEN 6640
1238 IF R=N5 AND TURN=N8 THEN 6744
1248 TRAP 1246:POSITION Ni,N15:? :7 "B
'; 1POKE 752,N@
1268 SOLND N@,N28,N18,N8:FOR H=NL TO N
18:NEXT X:SOLND NO,N8,NO,N8:INPUT INS:
POKE 752,N1
12808 TURN=TURN+Ni1:IF TURN>208 AND CY A
ND MNOT RG THEN RG=NL1:GOTO 6728
1388 IF R=N8 AND INS="E" AND I(N73<{>-N
1NIHEN AS="Jult!uppigbs!up!xbml/":GOTO
868
1348 IF R=N1Z AND INS$="PRAY" THEN 5060
1366 IF I(N18)<>-N1 OR IN$<{>"W' OR R
74 THEN 1460
1388 AS="Uif!tipfnblfs!tdsfbnt—! (Tupq-
Tuifjg=!1libuttinzicppl=({l":UI=N1:I(NL
8)=NB:GOTO 6608
1486 IF I(33I<>-NL OR INS{O“E" THEN 14
60

1428 A$=""(Tupq-!ui jfg=!!Uibulcppl! jt!!
MII3)
=NB:UI=N1:GOTO 6660

1468 L=LENCINS$):IF L=Ni1i THEN VUS$=INS:GO
TO 1826

1486 A=USRCADRELS),L,ADRCINS)I) :IF A=NO
THEN GOTO NiZz

1560 US=INS(NLi,A) :NS=INSCA+NZ,LENCINS)

b}

1528 IF US="SAVE'" THEN 7068

1548 IF V$='"'LOAD' THEN 6820

1568 IF LEN(U$){NZ OR LEN(N%){N3
GOTO Ni2

1588 IF LEN(U$I=NZ THEN VS$(N3)=" "
16066 IF LEN(US)Y=N3 THEN VUS(N4)="' "
1618 IF LENC(N$)Y=NI THEN NS(N4)=' "
1628 Y=USRCADRCCCS) ,ADRCNS) ,ADRINKS) ,L
EN(NN$1)

16408 Z=USRC{ADRICCS),ADRCVS) ,ADRIVBS) ,L
EN(UB%))

THEN

16668 IF NS="PAGE'" AND Z=25 THEN 17406
16808 IF NS(N1i,N4)="'HORS' OR NS$='""BOOK"
THEN ? "Refer to it by color.":GOTO N1
808

1685 IF N$="DOOR'"™ THEN ? '"MWhich one?':
GOTO NiBoe

17608 IF Z=Ni5 AND N$(N1i,N4)="FORE'" THE
N 1748

1728 IF Y=N8® OR Z=N® THEN GOTO MNiZ
1748 Z=V(Z)

1768 IF Z>Ni6 THEN Z=Z-Ni6:GOTO 18086

1780 ON Z GOSUB 2628,2548,2736,2960,29
61,3020,3080,3205,3245,3300,3380,3580,
3700,3980,4160,4220

1860 ON Z GOSLUB 4661,4681,4740,4780,48
40,4980

1828 IF US=U"N'" AND NY>NO THEN R=N:GOTO

1960

1848 IF US="S" AND SY>N6 THEN R=5:GOTO

1960

1866 IF U$="E" AND EX>N6 THEN R=E:GOTO

1960

1880 IF US="W" AND WXNG® THEN R=W:GOTO

1966

1988 IF v$="U" AND UDNS THEN R=U:GOTO

1966

1526 IF v$="D" AND D>NO® THEN R=D:GOTO

1960

1946 2 “[JNO SUCH DIRECTION!":GOTO N1G8
8

1960 UL=N1:GOTO N186®

2028 IF R=N12 AND Y=N4 THEN AS="'lifsf(

t!biqmbrvflpo! ju/":I(43)=-R:US=N1:GOTO
Niooe

2640 IF R=N12 AND Y=43 THEN AS="Uifsf(
t!xsjujoh!po! ju/'":GOTO 1666

20608 IF R=N9 AND Y=29 THEN I(N3I)=-R:LUS
=H1:A$=""GpPpPuUqS jOut=":GOTO Ni6686

NOVEMBER A.NL.A.L.O.G. Computing

HWB
BP

XA
XL

IF
cP
SM
¥5
N
UKW

JN

VI

PT

CE
5M

YH

XY
LN

PH

Xu
BJ

za

GB

NG

KL
LM
SN
VI
LC

ZP
RI

LL
JP

us

oP

oK

NJ
50

MN
IL

LJ
s5Q

2880 IF R=N9 AND Y=3 THEN AS=""Uifz(sf!
bcpyu!t jef!21/":CLINB8)=N1:GOTO Ni6GGO
2180 IF R=24 AND NS (N1i,N3I)="GRO"™ AND I
(3I5)=N8 THEN A$="lif!hspvoe!mpplt!e jtu
vscfe/":GOTO Nioea

2168 IF R=NS5 AND Y=42 THEN AS$="Uifz!mp
pl!bxgvmmz!nfbo="":GOTO N166GO

2188 IF R=NS5 AND Y=41 THEN AS=""Zpv!tff
iuif!gpsftu!uispuhi!uif!gnbnft":GOTo N
a6a

2288 IF R=NS AND ¥=28 THEN AS5=""Uif!xbu
fsimpplt!dpme="":GOTO N1668

2220 IF (I(Y)=R OR ICY)=-N1) AND Y=N5

THEN A$="Tif(t!cfbvujgum="":GOTO N106O
2248 IF R=43 AND Y=N5 THEN AS$="Tif!mpp
1t!ibqqzlup!tff!zpu=""iGOTO N1GGO

2268 IF R=74 AND Y=N18 THEN a$="Uif!dp
wfs!tbzt; 'SPZBM!TJIFT":GOTO Niooe

2288 IF R=76 AND Y=N7? THEN a$="Ju(t!zp
vst-levnnz="":GOTO Ni168GO

2388 IF R=76 AND Y=26 THEN AS$="Jult!xf
bs joh!b!tbeemf/" i T{I7I=-R:US=N1:GOTO N
ieee

2328 IF R=76 AND Y=3I7 AND I(Y)=-R THEN
aS="Julibt!uiflobnf!UPQQFS!po! ju/':CL
(NS)=N1:GOTO N166O

23;gogF (R{>22 aND R<{>24) OR Y<>49 THE
N

2360 AS="Mput!pg!gmpxfst!ifsf/":IF R=2
4 AND I(3I5)=N@ THEN ASCLENCASI+N1)="11!

23860 GOTO Niooa

2488 IF R=73 AND ¥Y=38 AND I(3III=NE THE
N AS="If(t!ipme joh!b!t jmwfs!cppl/":GOT
0 N1066

2428 IF ICYI=-Ni AND ¥=3I3 AND SIL=NO T
HEN AS="Uif!dpwfs!tbzt;!Spzbn!Bo jnbmt"
:GOTO N166GO

2440 IF R=77 AND Y=44 THEN AS$="If!mppl
tibicjultjojtufs/":GOTO N16OGO

24680 IF R=4Z AND DY>N® AND (Y=N2 OR Y=
21) THEN AS$=""(Uibuft!qs jwbuf!qspqfsuz=
1 t1Hyvbset=([]'":GOTO 6608

2480 IF R=42 AND Y=N19 AND DY>N@ THEN
AS="If(t!xbudi joh!zpv!Xbs jnz/":GOTO N1

608

2481 IF R<{>42 OR ¥Y<{>46 OR ICYI{>-R THE
N 2483

2482 AS="UifsfC(t!uif!xXpse!EBSLOFTT!Cfm
pxluif!!ligjhvsf!pg!Hpmhpmpui/":CLIN1)=
N1:GOTO N166O

2483 IF Y=22 AND I(Y)=-N1i THEN AS="Uif
'dpwfs!tbzt; 'QSJFTUT!PG!HPMHPMPLUI'":CLC
N9)=N1:GOTO Ni©G66

2485 IF Y=NZ AND I(N2)=-Ni THEN A%$="lUi

flwfwfu/"":CL{NZ)=N1:GOTO N166O6

2486 IF Y=N1 AND I(CY)=-Ni THEN A%="Ju(
t!joluif!tibqf!pg!b!tubs/":CLCN1B)=N1:
GOTO Ni0G66

25608 ? '"You see nothing of interest.':
GOTO N1iG66

2548 IF I(Y)=-R THEN ? "YOU CAN'T GET
THAT!':GOTO Nieee

2568 IF I(Y)=-Ni THEN ? "YOU ALREADY H
AVE IT!'":GOTO 1168

2600 IF ABS(ICY)YI<>R THEN ? "I DON'T S
EE ACN) '"";N§;'"'":GOTO 11606

2610 IF R=42 AND DY>NB AND (Y=N2 OR Y=
21) THEN aS$="'(Uibu(t!qs jwbuf!qspqfsuz=
1 1Hvbset=([{|'':GOTO 6680

2628 LOCATE NZ,Ni8,A:IF A{>32 THEN 7 "
YOU CAN'T CARRY ANYMORE!'':GOTO Nio@a
2660 ? "Okayt'":ICY)=-Ni:US=N1:UI=N1:GO
TO 1660
2688 GOTO N6760

2738 IF R{>41 DR ICNi8)<{>-41 OR Y<{>36
OR T(363<{>-N1i THEN 27480

2731 AS="Iflublft!luif!hpme-iqspnjtftio
pulup!tlinfoujpo!zpv!xfsf! jo!Tibmb(t!s
PPN/":I(I6)=—N2:UI=NL:GOTO N1i66O

2740 LOCATE N2,N8,A:IF A{>32 THEN ? "T
HERE'S NO MORE ROOM HERE!':? :GOTO 116

5]

2760 IF ICY){>-Ni THEN ? "YOU DON'T HaA

VE IT!":? :GOTO 1i686

2788 IF R<>73 OR It48)<>-N1 THEN 2840

2800 AS="Iflublftluif!cpuumf-!bctfounj

oefemz!!!tfuujoh!epxoluif!cppl/"

2820 I(III=-R:IC48)=NO:US=NLi:UI=N1:GOTO
Ni0B8

2840 ? "Okay+":ICYI=R:US=Ni:UI=N1:GOTO
Nioge

2868 GOTO N6768

29080 IF Y=N16 AND I(Y)=-N1 AND PG=NO T

EU
PY
Dy
ZJ

LF
RQ

JE

TC

KB
ZH

Up

EC

up

HEN A%=05:PG=N1:GOTO NiB686

2928 IF SIL=N® AND Y=33 AND I(Y)=-N1 T
HEN A5=05:5IL=N1:GOTO NiGee

2921 IF Y=22 AND I(Y)=—-N1 AND NOT NB
THEN A$=05:NB=N1:GOTO Ni60@

2924 IF Y=N1i4 AND I(Y)=-N1 AND NOT DI
A THEN A5=05:DIA=N1:GOTO NiB66
2926 IF Y=39 AND I(Y)=—-N1 AND

THEN AS5=05:GR=N1:GOTO Ni1688

2948 GOTO N6760

2961 IF R=34 AND Y=53 AND I(N12)=-N1 A

ND ICYI=—-R AND NOT LINL THEN AS$="Uif!l
fziyompdl fe! ju/" :UNL=N1:GOTO Ni606
2980 GOTO N6760

3028 IF Y=45 AND I(YIY=-Ni THEN aA$="Tpn
fui johlubtuft!gvooz!ifsf="":GOTO NiBB6
3048 GOTO NG6760

3888 IF R{>75 OR ICNi1i1){>-Ni OR Y{)Niil
THEN GOTO N6760

Iiee AS="Iflublft!zpvs!txpse!boe!mbzt!
b!'hpre!llliqjfdf!poluifldpvoufs/"

3120 ICI6GI=R:US=NI1:UI=N1:I(N11)=NO:GOT
0 Ni986

3168 GOTO N6760

3285 IF R{>28 THEN 3228

3216 GOSUB N5:IF CL=N1i® AND Y=N1% THEN
GOTO 6786

3215 asS="Zpv'lepoCu!ibwf! fopvhi! fwjefod
f={]'':GOTO Ni6BO

3220 GOTO N6760

3245 IF Y=45 AND I(45)=-Ni1 THEN AS$=""Pv
uluif!x joepx///":I(453=NB:I(57)=-N1:UI
=“N1:GOTO N166O

3268 GOTO N6760

3300 IF R=43 AND Y=N5 AND KS THEN AS="
Tif!sfuvsot!zpys!l jttft!Ixjui'!hsfbufs!!
qbtt jpo/":GOTO N166GSO

3320 IF R=43 AND Y=N5 THEN AS$="Tif(t!'b
Imjuumfltyusqs jtfe-!cvulsfuvsot!zpvs!lj
tt/":KS=N1:GOTO Ni666

3348 GOTO N6760

3380 IF R{>31 OR (Y<{>51 AND Y{)N8) THE
N 35486

3408 IF CT+N28>TURN OR GD=N4 THEN A%="
Uifz!tbx!zpv'!boe!tupqqfe!ubml joh/":GOT
0 NiB6o

3415 GD=GD*+Ni:IF GD>N3I THEN GD=Ni

3420 CT=TURN:IF GD=N1 THEN aAS$="'(Op'pof
IXjmu!cflhvbse johluiflqs jodfttlirvbsuf
stlupo jhiu/ ("

3440 IF GD=N2Z THEN AS=""(Uif!sfh jtusbs!
sfbmmz ! mpwft!i jtibmf/ ("

3460 IF GD=NI THEN AS%=""(J!ifbs!0jlojl!
sftqpoetixfmmiupluif!iliqspnjtfipglhpm
e/

3500 GOTO Niooo

3540 GOTO N6760

3580 IF ICNi13)<>-NLi DR NS(NLi,N4I{DV"FOR
E'" THEN 3620

3688 aS="Zpv!quu!b!cmMbdl!epu!po!zpvs!g
psfifbe/":PT=N1:GOTO N1666

3628 GOTO N67680

3768 IF R{>N12 OR Y<{>43 THEN 3748

3720 AS=''0sbzfs!boe!hppeleffet!bsfluif

0TO Ni666
3748 IF R=N8 AND Y=N6 THEN AS$="OJNSBM(

NOT GR

T!HSBDF!,.!31'MFBHVFT'":GOTO Nioo@

3768 IF IC(N18)<{>-Ni OR Y{>N18 THEN 382
5]

3788 IF PG=N1 THEN AS=ULJOH!.......!'t}j
AE1231L NI ER L VEN L L VIRV EFOY vonnan L]

££19":GOTO Ni16GO

38088 IF PG=N2 THEN A$ e 1T
eftzirrrnennnnnn i litigjloglt....att
2f121":CLCNII=NL:GOTO NiB68

3820 IF R=N16 AND Y=47 THEN a%='"Ju!tbz

fsfe! jnnfe jbufmz="":GOTO N160O6
38408 IF Y=23 AND I€23)=—-Ni THEN AS$="Kb

FNTFMWFT/":GOTO N1666

3860 IF Y{>33 OR I(YY{>-Ni OR SIL=NO T
HEN 3928

3880 AS=''CPXXpX////////7/7///7/7Ljoh(tleph
trvvvvv v tupqqfs///// /7 ////7//7Eprops(tli
pstfllitimCLING)=NL

390080 ASCLENCAS) +N1)=""Dbuo jq///////////
//RVffoltiqbsbl ffuf]'"':GOSUB NI:? AS:AS=
"M GOSUB Ni11:GOTO NiGoe

3920 IF Y=22 AND I(Y)=-Ni1i AND NB THEN

CLEN7)=N1:GOTO Ni666
3922 IF Y{)N1i4 OR I(Y)<{>-N1i OR
A THEN 3928

NOT DI

KR

HL
BJ
LW

I5
AM

LG
uJ

AW
AR

GT

RU
KH
UN
PN

X

BU
ZY
YM
VE
TG
NQ
SH
KL
FD

LD
PZ

LG
05
BO
EM
RO

GA
HG

BZ

AR
ZB

OR

GX

FC

3924 AS="J'ui jol!uif!l joh!ibt!mfbsofe!

fs/lJi1l1gfbsigpslifsimjgf-"

3925 ASCLENCASY+NLI="!bt!XfMm!bt!nz!px
0/4":GOTO N16GO

3928 IF Y{>39 OR I(Y){>-N1 OR NOT GR

THEN 3331

3929 aAS="B!cmbdl'epu!poluif!gpsfifbe!j
tlgsf.!lirvfounz!vtfelcz!uif!gpmmpxfst
tpg! it IHpMhpmMpui lup"

3938 ASCLENCAS)+N1)="'! jefou jgz! fbdi!pu
ifs/4'":iGOTD Ni6o68

3931 IF Y=N15 AND I(Y)=-Ni THEN AS$="Ui
firvffolibt!cfusbzfe!nf/!!JIxXjmani!!lib
wfinz!sfwfohf=":GOTO N16GG

39468 GOTO N6768

3988 IF R{>N5 OR Y<{>28 THEN 4820

4000 AS="Uif!xbufs(t!tp!dpme!zpvikvng!
sjhiul!tlpyuz!iZpyiboe!Tibmb!bsf!tpblf
e=":WT=N1:GOTO N18088

4028 IF R{>N5 OR Y<{>41 OR NOT WT THEN
4060

4040 AS-"Uifixbufs!ifmqfe!zpv!hfuluisp
Vhi=!IB!!Mjuumf!t johfe—luipvhi/¥" " 1R=N?
tUL=N1:GOTO 16686

4868 IF C(R=N7 AND Y=41) OR (R=N5 AND Y
=41 AND NOT WT) THEN AS="Zpviwf!cffo!
cbscfdvfe=[]'':GOSUB N4:GOTO 7248

418086 IF R=24 AND Y=3I5 AND ICY)=-R THEN
AS="P1lbz="":R=78:UL=N1:GOTO NiBGOO

4182 IF R=34 AND Y=53 AND NOT UNL THE
N aS="Ju(t!mpdlfe/":GOTO Ni66O

4164 IF R=34 AND Y=53 AND LNL THEN R=6

S:UL=N1:GOTO NiGG8e

4185 IF (R=23 OR R=21) AND (Y=58 OR Y=
N9 DR Y=30 OR Y=31) AND DY{N8 THEN AS=
"Jult!dmptfe!lgpsluifl!ojhiu/*":GOTO 16606
4186 IF R=N17 AND (Y=32 OR Y=52) AND D
Y{NB THEN a$="Jult!dmptfel!gps'uif!ojhi
u/":GOTO Niooe

4116 IF R=23 AND Y=50 THEN R=77:UL=N1:
GOTO NiGee

4111 IF R=2I AND (Y=N9 OR Y=38) THEN R

=74:UL=N1:GOTO Ni06O

4112 IF R=21 AND (Y=IB OR Y=3I1) THEN R
=75:UL=N1:GOTO NiG66

4113 IF R=N17 AND Y=32 THEN R=76:UL=N1i
:GOTDO Nib66

4114 IF R=N17 AND ¥Y=52 THEN R=73:LUL=Ni
:GOTO Nio6sa

4115 IF R=39 AND Y=54 THEN AS$=""Zpv!twnf
fq!b!mpoh!lujnf-!uifo!xblf/[I'"":GOSUB N4:
GOSUB 6588:A5=""":GOTO Ni0O6G

4117 IF R=N8 AND Y=59 THEN R=81:UL=Ni:
GOTO Nieee

4128 GOTO N6760

4168 IF Y=45 AND I(Y)=-Ni THEN AS$="Hib
uft!uibu!bxgvm!ubtuf@!!Zpulwflicffolqpj
tpofe=[l]'':GOSUB N4:GOTO 7240

4180 GOTO N6760

4228 IF R=Ni15 AND ICN5){>-N1 AND Y=N8
THEN AS="Hfu!mptu-!tusbohfs=":GOTO Ni@

1)

4240 IF R=Ni1S AND I(NS)=-Ni AND Y=N8 T
HEN A$=""Zpv!ibwfluif!qs jodftt=!!Dpnf!j
o={]'"":UL=N1:R=Ni16:GOTO Ni668

42608 IF (R=75 AND Y=48) OR (R=73 AND Y
=38) OR (R=28 AND Y=27) OR (R=74 AND Y
=N9) THEN AS="(Zft@('":GOTO N1868

4288 IF R{>77 OR Y<>44 THEN 4420

4308 IF ICN12){>N8 THEN aS$="(Zpv!nvtu!
hpl!opx-!cspuifs/('":GOTO Ni1©BO6

4320 IF PT=N8 THEN AS$="If!ufmmt!zpv!lup

'Thfu!mptu="":GOTO N1666
4348 AS="(Xibu(t!uif!qbttxpse-!cspuifs
Q('":GOSUB N3I:? AS:AS="":INPUT PH$

4368 IF PHW$="DARKNESS'" THEN AS="(Ifsf(
Tiuifllfz-lcspuifs/ (":US=N1:ICN12)=R:G
0TO Ni666

4380 AS="If'hsbct!b!txpse!boelsyot!!!!
;éié!!!!!ZPU!UiSPUhi:ﬂ":GOSUB N4:GOTO

4428 IF R{>43 OR Y{)NS THEN 44886

4440 IF K5 THEN ASf"(Tpnfuijoh!tffnt!u

'bwpje joh!nf/(":CLI(N3)=N1:GOTO Ni666
4460 AS="Tif!tbzt-!(J!bn!qmfbtfelzpv!i
Eggédpnf!up!wjtju!nf!upojhiu/(":GOTo N
4480 IF R=45 AND Y=N26 AND DY>N® THEN
AS="(Uif!l joh!upme!nflup!lffqlbo! fzf!p
o!tllzpy///(":GOTO Ni6OO

4482 IF R=41 AND Y=N18 AND I(Y¥)=-R THE
N a$="(J!ifbse!blopjtf!boe!dbnfluplefg
foel!lluiflqsjodftt/(":GOTO N1686O

NOVEMBER A.N.A.L.0.G. Computing

MO

KN
TL
I0
EL

FI
Ky
LM
OH
55

KR
ZF

LY
JE

KT
RR
SP

EQ
LH
JR
KK
NK
FR

RV
PF

RY
NQ

TK
PY

YN

DH
ur
GF

JR
EE
GaA

aJ

EQ

LE

Up
KK

AR

4484 IF (R=42 AND Y=N19 AND DY>NO) OR
(R=40 AND Y=N18) THEN A$="If(t!hpulopu
i joh'up!tbz/":GOTO N10G6G

4500 GOTO N6760

4601 IF R=34 AND Y=N16 AND I(SII=NO TH
EN AS="Uifsf(t!b!epps!cfijoe! juz"":I(53
J=-R:US=N1:GOTO Ni66G0O

4684 IF R{>42 OR Y<{>21 OR IC46)<>N8 TH
EN 4626

4685 IF DY{N® THEN AS$="Uifsflt!tpnfuij
oh!cfi joe! ju="":I(46)=-R:US=N1:GOTO Ni®

a8

4686 AS="Epmops!zfmmt-! (Hubset=!!Bssft

uttiriiity;i jtinbo=(fI":GOTO 66008

4626 GOTO N6768

4670 IF (R=406 AND Y=N18 AND I(Y)=-R) O
R (R=46 AND Y=N17) OR (R=4Z AND Y=N19)
THEN A$="If!tbzt!opui joh/":GOTO N1688
4681 IF Y<{>57 OR I(YI<>-Ni OR I(56)<{>-
N1 THEN GOTO N6768

4682 AS="Tpnf!qs jout!nbudi!b!tfu! jolui
fllju/t!IifZO(Sf!EPMOPSCt/" iCL(N4)=N1
:GOTO NiOBe

4700 GOTO N6768

4746 IF (R=N6 OR R=N7) AND Y=24 THEN A
S$="Uiflusfft!bsflupp!cvsofe/":GOTO Ni@
1]

4745 GOTO N6760

4780 IF I(3I5)=NO AND R=24 AND Y=49 AND
I(34)=-N1 THEN aA$="Zpv!vodpwfsfe!bl!us
bqlepps=":I(3I5)=-R:US5=N1:GOTO Ni666
4800 GOTO N6760

4846 IF I(N18) {>-N1i OR NS{>'"PAGE"™ THEN
GOTO N6760

4868 IF PGX>N® THEN AS$="Plbz-!qbhf! jt!lu

vsofe/":PG=PG+N1:IF PG{N3I THEN GOTO Ni

aee

48808 IF PG=NI THEN PG=NB8:AS(LEN(AS)+N1
J=1Zpvldmptfeluif!!cppl/":GOTO Ni6GG
4940 GOTO N6760

4988 IF R{>73 OR Y{)N? THEN 5028

56000 AS="Uif!nbo!btlt!uif!ipstfi(t!obnf

N1:GOTO Ni666

56260 GOTO N6760

50860 IF I(N7) THEN ? "Nothing happens.

":GOTO Ni606G

5080 FOR X=Ni TO 175:SOLND NO,X,N8,NG6:

SOUND Ni,X+N2,N8,NG6:SETCOLOR NZ,NO6,14:

SETCOLOR NZ,NO,NO:NEXT X

510806 SOUND NO,NO,NO,NO:SOLUND N1i,NO,NO,

NO:POKE 718,N8

5126 ? “A voice says, ";CHRS(3I4);"ask

and receive';CHR$(34);"."

5140 ? :? “ONE WORD:'';:INPUT C$

51668 IF CS$='"'HORSE' THEN ? :? 'Granted!

"IT(N7)=R:US=N1:GOTO NiGGO

5186 ? '"You have no need for that!":GO

TO N16606

5200 GRAPHICS Ni8:POSITION N5,N2:POKE

712,N14:7 uN6 ;"N ITIEEH" :POSITION N3,

N4:? BNG6;'""NIMRAL'S GRACE"

5226 FOR Y=N1 TO N4:FOR X=Nid4 TO N6 ST

EP -8.45:POKE 712,X:S5SOUND NO,N206,X,N8:

NEXT X:NEXT Y

52360 POSITION Ni,Ni108:? #N6;"BY [@layilin
A 1LTTIMY

5240 SOUND NO,NO,NO,N8:GOSUB 5740

5260 GOSUB 5280:G0T0 5340

5280 GRAPHICS NO:POKE 710,48:DL=PEEK(S

60) +256%PEEK (561) +N4:POKE DL-N1,71:FOR
K=2 TO 24 STEP N2:POKE DL+X,N6:NEXT X

5360 POKE DL+N19,N6:POKE DL+21,N6:POKE
DL+23,N6:POKE 82,NB8:POKE 752,N1

5326 POSITION N3,N08:? "NIMRAL'S GRACE"

tPOSITION N9,N13:RETLRN

5340 POSITION N4,N1:? "The alarms are

ringing!'":POSITION 24,N2:7 'You've res

cued Princess Shala from"

5360 POSITION 2,4:7 “the Slavers of Go

1goloth, but you're'":POSITION 22Z,N5:7

'not safe yet! A host of savage war-"

5380 POSITION N2,N7:? ''riors is Crossi

ng the lake in hot':POSITION 22,N8:7

pursuit!*

5400 POSITION 4,16:?7 '"As you drag Shal

a toward the cover'":POSITION 22,11:7 "

of the forest, a cloaked figure steps'

5428 GOSUB 5726:GOSUB 5286

5440 POSITION N2,N1:? 'from the trees.
A survivor from'":POSITION 22,N2:? 'S

hala's ambushed caravan? You rush"

5460 POSITION 2,N4:? '"forward with joy

, not noticing the':POSITION 22,N5:7 '

odor of 0il drifting on the air. The"

NOVEMBER A.NL.A.L.O.G. Computing

HQ
QE
VR
KT
uJ
WK
BD
PG

JH

up

uT

RH

Ef

LS

DV

FF

TR
OM

HL

DS
DZ
av
JF

EB

UN

av

ER

Ak

akK

PD

JH

ZL

5480 POSITION N2,N7:? '"dark figure str
ikes a match and tos-":POSITION 22,N8:
? “ses it into the oil-soaked brush."
5500 POSITION NZ,N16:? "As a curtain o
f flame leaps up, You'":POSITION 22,N1i1
:? "gsee the insignia of the city of"
5528 GOSUB S5726:G0SUB 5286

55468 POSITION N2Z,N1:? "Nimral's Grace
on the figure's cloak."

55586 POSITION 22,N2:? "A traitor from
Shala's home cCcity? You"

5560 POSITION NZ,N4:7 "realize that th
e caravan's ambush was"

5570 POSITION 22,N5:7 "planned, that s
omeone wants Shala out™

55806 POSITION N2Z,N7:7 "of the way.'":PO
SITION 24,N8:7 "The slavers, worshippe
rs of foul"

5600 POSITION NZ,N18:? '"Golgoloth, are
clamoring into their"
5616 POSITION 22Z,N11:? "boats. An inf

erno blocks your path.'"

5628 GOSUB 5728:G0SUB 5286

5648 POSITION N4,N1:? "Great Nimral pr
otect you!'":POSITION 24,NZ2:7 "How will
you escape? MWho is the"

5668 POSITION NZ,N4:?7 ''cloaked assassi
n? HWho wants to keep':POSITION 22,N5:
? "Shala from her wedding? Can you"
56808 POSITION NZ,N7:? "solve the myste
ry before the assassin':POSITION 22Z2,N8
1?7 Y"strikes a fatal blow? You must!™
5760 POSITION 23,Nii:? “IROTENGTITARTTSE
T T AN TSl AT : GOSUB 5726:POKE 8
2,N2:G0TO0 5760

5728 POSITION N3I,N14:? "press any key"
:OPEN #N1i,N4,NO,"K:":GET H#N1,A:CLOSE #
N1i:RETURN

5740 FOR X=Ni1i TO 208:NEXT X:RETURN
57680 POSITION N3,N14:7 ' one moment

"

5788 DIM UBSC(NU*N4) ,I5(NN%¥5Z),A5C168),
DTS CNB) ,HSC(NL12) ,INS(NL16) ,VS(N1B) , NS (N1
8) ,C5(N5) ,USCN193 ,CC5(?7),D5(37)

5800 DIM NNS(NN¥N4) ,I(NN) ,E5(78),CL5(4
2) ,VINV) ,PHS (NB) ,L5(35)

5818 DIM 05 (N16) ,CL(N18)

5815 FOR X=N1 TO N1O:CL(CHI=NO:NEXKT X
5908 05='"Plbz-! jult!pqfo/"

59608 UBS(NL,808)="EXAMLOOKTAKEGET DROPG
IVEOPENUNLOTASTPAWNACCUPOURKISSLISTPAL
NREADGO ENTEDRINTALK'
598g"055(81,184)="MOUEFINGCLIMDIG TURN
REG

6608 NNS(N1,92)="AMULBOX FOOTSTATSHALS
IGNWHITGUARSHOEBLUESWORKEY PAINDIARPAP
ETHROKINGNIKNDOLNDOMNWARDNOTELETT"
6620 NN$(93,184)="TREESTAIBROWPEACLAKE
DIRTSHOPPAWNSTABSILVSHOVTRAPGOLDSADDRE
GIGRAYALE FIRESLAVPLAQPRIEWINEALTA'
66408 NN$(185,236)="PROCATTEGARDCHAPGOS
SOFFISTEEBED CHAIKIT TANKSOLDTENT'

60668 ISC(NLI='' ":IS(NN%¥5Z)=" ":IS(N2)=I
$:GOTO 960
6166 pATA 1,1,2,2,3,3,4,5,6,7,8,9,10,1

1,12,13,14,14,15,16,17,18,19,20,21,22

6128 DATA AMULET,?, JEMEL BOX,42,FO0TPR

INTS,8,5TATUE OF NIMRAL,-12,PRINCESS S
HaLA,5,5IGN, -8, WHITE HORSE,®

6140 DATA GUARD,-15,5HOEMAKER,-74,BLUE
BOOK,74,5WORD, -1, KEY,8,BLACK PAINT,35
,DIARY,53

61668 DATA PAPER, 46, THRONE,-34,KING,-46
,NIKNIK THE JESTOR,-46,DOLNOR,-42,DOMN
I5,-45

6180 DATA WARDROBE,-42,NOTEBOOK,?72,LET
TER, 78, TREES,®,5TAIRS,8, BROMN HORSE,-7
6,R0YAL PEACEKEEPER,-28,LAKE,-5

6260 DATA DIRT,-9,SHOEMAKER'S SHOP,-23
,PAWN SHOP,-21,ROYAL STABLES,-17,SILVE
R BOOK, O

62208 DATA SHOVEL,76,TRAP DOOR,8,GOLD P
IECE,®,SADDLE, 8, REGISTRAR,-73,GRAY BOO
K,54,BOTTLE OF ALE,32

62406 DATA FIRE,®,SLAVERS,-5,PLAQUE,8,P
RIEST,-77, TANKARD OF WINE,39,ALTAR IN
WaLL,8,PROCLAMATION,-16

6260 DATA SHOP ATTENDANT,-?5,GARDEN,®,
SMALL CHAPEL,-23,G055IPING GLUARDS,-31,
SMALL OFFICE,-17,STEEL DOOR,®

6270 DATA BED,-39,CHAIN MAIL,31,FINGER
PRINT KIT,52,EMPTY TANKARD,8, DEAD SOL
DIER,-86,TENT, -8

6280 GRAPHICS NB:POKE 559,N8:POKE 763,
4:DL=PEEK (560) +256%PEEK (561) +N4 : POKE D

LY
RJ

RG

ZI

UH

co

LR

BK

HB

KD

BQ
AJ

RO

FH

TC
HU

PZ
K5
XB

MT

L+N26,130
6360 RESTORE 6328:FOR X=NO TO N19:READ
A:POKE 1664+X,A:NEXT X

6328 DATA 72,138,72,169,192,162,16,141
,18,212,141,24,2068,142,23,208,10684,178,
104,64

6348 POKE 512,128:POKE S13,N6:POKE 542
86,192:POKE 7069,N6:POKE 7106,N8:POKE 71
2,112:POKE 752,N1

6368 POSITION N1,N8:7? ﬂNB';E%CﬂTION:":

POSITION Ni,N4:7 3NG ;" IT]
H':POSITION Ni,N13:? N6 ;" RCIU T8

6380 POSITION Ni,N18:? HN6

6488 POKE 559,34:IF DY{N8 THEN POKE 70

9,12:POKE 7106,N8
6428 IF FLAG THEN LUL=Ni:UI=-N1:GOTO Ni@
a

[}

6440 R=NS:WT=NO:ENT=NO:DD=NO:DY=NL1:CNT

ZNO:PT=NO:LUNL=NO:NB=NB:DIA=NO:GR=NO:NK

=NB:5SH=NO

6445 CY=NO:5E=-NO:RG=NO:PG=NO:5IL=NO:KS

=NB:CT=NO:GD=NO

6460 TURN=NLi:UL=Ni:UI=NLi:aS=""

6480 GOTO 1066

6560 DY=-DY:IF DY{N@ THEN POKE 789,N12

tPOKE 710,N0:I5(343,357)="SLEEPING DOL

NOR":A5="0 jhiu'!ibt!gbmmfo/"

6585 IF DY%NB THEN I$(385,317)=""SLEEPI

NG KING":I$(362,376)="SLEEPING DOMNIS"

6520 IF DY>NG THEN POKE 709,MN0:POKE 71

B,N8:I5(343,357)=""DOLNOR nEing=

“"Ebzmjhiu!ibt!sfuvsofe/"

6525 IF DY>NO THEN IS$(365,317)="KING
MT5(362,376)="DOMNIS 1

65408 GOSUB N3I:? AS:A5=""":RETURN

6568 AS="Uif!'hvbset!cvstu! jo=!!Zpv!!lib

wfll tdpnqspnjtfeluiflqs jodftticz!c

f joh! 11dbvhiu! jo!ifs!sppn=f]"

6608 GOSUB N4:AS=""Zpv(isfluispxo! joup'k

b jm="":GOSUB N3I:? AS:AS="":R=29:LUL=N1:G

0TO Ni©66oe

6640 AS="Tveefomz-!zpv!tffitpnfpofluis

Pvhiluif!cbst/!!Ifluispxt!tpnfui joh!bu

tzpy—'boe juli jut!zpv! jo'luif!ofdl=f]"

6668 GOSUB 6786:A5="Btl!uiflebsult!qpjt

polxpslt! jut!xbz!!!! joup!zpvs!tztufn-!

zpv!sfdpho jéfili il iizpysibuubdl fs/f"

6680 GOSUB 6788:A5='"(Zpv=(-!1zpv!tdsfbn

/1 CJuldbotulcfizpv=¢f]":GOSUB 6788:GOTO

72480

6700 GOSUB N4:RETURN

6728 IF R=29 THEN GOTO NiGoa

6738 AS="Tveefomz-!'hvbset!bqqfbsiboe!h
sbqlzpv-!zfmmjoh!tpnfui joh!bcpvulopu!s
fhjtufs.! joh!zpyus!lipstf={]'':GOTO 6666
6741 IF R=29 THEN GOTO Ni6686
6742 AS="Tveefomz!hvbset!bqqfbs!boe!hs
bc!zpvz!!Tpnfpoflupme!uifn!bcpvulzpus!
witjul ! lup!Tibmub(t!cfesppn={]"
6743 GOTO 6608
6744 AS=""Zpvu(sflupp!mMbuf=!Uif!ItMbwfst!

ibwf!!1lisfbdife!zpu=[]":GOSUB N4:GOTO
7240
6768 ? "YOU CAN'T DO THAT!":GOTO 1166

6780 GRAPHICS NO:POKE 710,NO6:POKE 789,
N18:POKE 752,NL:POSITION N2,N2
6781 ? '"Based on the evidence you've d

__iscov- ered the assassin has been app
re-"
6782 7 "hended. Unfortunately he had
a lot of accomplices and they're eve

TH
za
EZ
RM
HK

“HD

0E

ITION N4,22:7 " ETNGITISEE & & ol S iTE
MSELUESE

YE
QL

n now'
6783 ? "combing the city for you.
have

n*

6784 ? "hearted Shala)

You
to leave the city (and a broke

and search out

the only being who can put an end
toll

6785 ? "the activities of the follower
s of Golgoloth, the diety Niwmral hi
mself, "

6786 ? "It will be a dangerous mission

, but
the'
6787 7 “rest of the world are ever to

you must succeed if Shala and

live in peace. The city gates clos

ell

6788 ? "behind you, and your next adve

nture is only a few steps down the r
dlll

6789 POSITION Nid,28:7 "Watch for'":PO0S

6790 GOTO 6798
6828 TRAP 70406

FP

YP
JK

NH
KH

IH
RE
NJ
GM
GR
FE
Ba
ou

YN
EZ

6848 7 "'LOAD FROM [APE OR [ISK';:INPUT
AS:IF A%="D'" THEN 6968

6868 IF AS{>"T" THEN ? :GOTO 6828

6888 ? :? "CUE TAPE THEN PRESS RETURN

THICE.":INPUT AS:0PEN HN1,N4,N0,"C:":G

0TO 6326

6988 OPEN #N1,N4,N8,"D:SLAVEZ.DAT'":AS=

6926 INPUT HNLi,R,CY,PG,HWT,TURN,ENT,DD,
DY,RM

’
6948 INPUT $##N1,CNT,SIL,PT,KS,GD,CT,RG
6958 INPLUT #HMNLi,LUNL,NB,DIA,GR,SH,NK,SE
65951 FOR X=N1i TO Ni@:INPUT #HN1i,A:CL((X)
“A:NEXT X
6960 FOR X=N1 TO NN*5Z STEP SZ:INPUT 8
1,U5:I5(X,X+5Z-N1) =S :NEXT X
6980 FOR H=N1 TO NN:INPUT HNi,A:IC(H)=A
tNEXT X
7600 IF DY{N® THEN POKE 789,Ni1Z:POKE 7
18,NO:GOTO 7620
7818 POKE 709,N6:POKE 716,N8
7828 CLOSE #MNLi:UL=N1i:UI=N1:7 :7?
1260:G0T0 NiGo@
76848 7 :? "NO GAME DATA SAVED!'™:END
76868 ? “SAVE TO [JAPE OR [NISK'";:INPUT A
$:IF AS="D" THEN A5=",":GOTO 71206
7888 IF AS{>"T'" THEN 7668
7188 ? :? "“"CUE TAPE THEN PRESS RETURN
TWICE.":INPUT A5:A5="",":0PEN HN1i,N8,NO
SUCIMIGOTO 7140
7126 OPEN HN1,N8,NO,"D:SLAVEZ.DAT"
7148 ? BNL;R;AS5:CY;AS:PG;AS; HT; A5 TURN
1AS;ENT;AS:DD; s DY; As;RM
7168 ? nNi;cuT;n§;SIL;QS;PT;QS;KS;nS;G
D;asS;CT;A5;RG
7170 7 HBNLi;UNL;AS;NB;AS;DIA;AS;GR;AS;S
H;Aa5;NK;AS;SE
7171 FOR K=N1 TO N1i©6:7 #N1i,CL (X) :NEXT

:TRAP

X

7188 FOR X=N1 TO NN¥5Z STEP SZ:U5=IS5(X
KESZ-N1) :PRINT HN1i;US:NEKT X

7280 FOR H=N1 TO NN:PRINT #N1i;I(X):NEX
TH

7228 CLOSE #N1:? :? :A$="":GOTO 1180
7248 GRAPHICS Ni7:POSITION N4,N4:7 HNG
3 UEDTTRCTST ST : POSITION N3, N8:7 BNG;'™
DO YOU MWANT TO"

7260 POSITION NZ,N18:7 HNG6;"PLAY AGAIN
? (Mo

7280 GOSUB N1i:IF A=ASC("Y'") THEN RLN
7388 END

NOVEMBER A.NLA.L.O.B. Computing

Light Torch. . .Gird Loins
...Boot Assembler

by Karl E. Wiegers

25

NOVEMBER A.NLA.L.0O.8G. Computing

ow many of you
have ever played
a computer ad-
venture game of
- some sort? | see
a Iot of hands in the air. (Great
eyes, no?) And if you’ve ever
tried to write one yourself,
you quickly discovered that
even a simple adventure
game involves some pretty
sophisticated programming.
The ever-adventurous Clay-
ton Walnum once wrote an
insightful three-part series on
how to design and program
your own adventure games.

Blow the cobwebs off issues 39, 40 and 41 Clayton’s articles told you (among other use-
of ANALOG Computing, from early 1986, ful stuff) that the heart of an adventure game
and re-read what Clayton had to say. It’s okay, is its “‘parser.”’ The parser is the program code
T’ll wait here until you're done. that lets the computer interpret commands you

Back already? Then you’ve learned many type and take some appropriate action. It is the
things (or else you were watching Dallas re- parser that gives the computer some appear-
runs while you were supposed to be studying). ance of being intelligent. Of course, computers

NOVEMBER A.NL.A.L.O.3. Computing

aren’t intelligent in the least; good parser
programmers are.

In reality, parsers are useful for much
more than simply exploring dungeons.
Many kinds of computer applications can
benefit from a user interface that at least
attempts to understand natural language
communications. While it’s pretty hard to
get a computer to understand spoken in-
structions, the written word can be inter-
preted a bit more easily.

In the next Boot Camp or two, we'll see
how a very simple parser can be im-
plemented on the 8-bit Atari, using some
assembly language for the time-intensive
parts. You really aren’t likely to write a
complete application program in assembler
around this word-searcher nucleus. Hence,
we'll set up a simple BASIC program struc-
ture that interfaces to the machine-language
parser routine, to show you how it all fits
together.

Now, what subject area should we use
to illustrate the fine art of parsing? Adven-
ture games are kind of passe by now. Wait!
I've got it! Imagine the kitchen of the fu-
ture, automatically assembling ingredients
in the quantities and sequence you speci-
fy, popping the result into the oven, and do-
ing everything for you except eating the
food. Let’s write a general-purpose parser
in assembly language, then cook up a BAS-
IC program that might be used someday in
Karl’s Komputerized Kitchen.

The joy of parsing

There are three main aspects to a natural
language-processing program or parser: 1) to
take the input string apart into separate words
and/or numbers, 2) to attempt to identify the
individual words by looking them up in a
vocabulary list, and 3) to try to understand
what the input “means”; that is, see if the
words identified in the input string constitute
a recognizable instruction that can be execut-
ed by the program.

Let’s look at all three of these functions in
more detail.

Dissecting the input

The basic idea of natural language process-
ing is that the user (who is presumably a hu-
man being of some sort) can present
instructions or queries to the computer much
as he would communicate with another hu-
man being. I'm sure you recognize how
amazingly complex this kind of communica-
tion really is. After all, you use all sorts of
shortcuts in your verbal and written commu-

NOVEMBER A.NLA.L.O.G. Computing

nications, yet other people who know the
same language can usually figure out what
you’re trying to say. We have to be pretty crea-
tive to do something similar with a
microcomputer.

Take a simple instruction of the sort you
might give to a computerized kitchen when
you want to bake a cake: “Slowly mix in two
cups of brown sugar.”” Most of you should
have a picture in your mind of what this
means. But how do we get the computer to
understand it?

The first step is to break the input string
into separate words. The simplest way to do
this is to look for blank characters as
delimiters between words. But what if the
program user entered more than one blank
between words, or used a punctuation mark
(comma, semicolon, period, etc.) to separate
words instead of (or in addition to) the blank?
For simplicity, we’ll decree that only single
instructions can be entered. This means we
don’t have to look for complex sentences such
as, “Melt the butter, then stir in the flour.”
So, most punctuation marks can be dis-
regarded.

However, we can’t just ignore periods.
What if you want to add 3.5 cups of flour?
The period here is really a decimal point in
a number. Obviously, when we split the in-
put string into words, we must distinguish
numbers from true words that we’ll be try-
ing to find in the vocabulary list.

The moral of the story is that the natural
language interface involves some
“preprocessing” of the user’s input. This step
discards symbols like certain punctuation
marks and builds a list of words for which
we must search in the known vocabulary. Any
numbers or other anticipated special charac-
ter strings will be identified and set aside until
we get to Step 3, in which we try to make
some sense out of the input.

The preprocessor can be a part of the pars-
er code itself or it can be a separate routine.
For simplicity in this example, I'll put the
preprocessor into the BASIC program. If ex-
ecution time is critical, you would want to
recode it into assembler, but BASIC will be
fine for our purposes.

Do I know you?

Once your preprocessing step has come up
with a list of words from the user’s input
string, we need to see if the words are
“known” to the program. Your vocabulary
list should be separate from the parser code
itself, since a general-purpose parser routine
could then be used for many applications hav-
ing different vocabularies. The limited RAM

BOOT
CAMP

In reality, parsers are useful
for much more than simply
exploring dungeons.

277

much latitude you wish to

28

You have to consider how

give the user regarding
different ways to enter
equivalent commands.

in 8-bit microcomputers can really restrict the
size of the vocabulary in a given program,
because you still need some memory for the
rest of the program.

The simplest approach is to put all the
words you want the program to recognize into
the vocabulary list. Some alternative tech-
niques provide more efficient use of memory,
thus allowing larger vocabularies. Have you
ever noticed that some spelling-checker pro-
grams appear to require far less memory than
it seems like they need to handle; say, 30,000
words? Data compression methods and clever
algorithms can be used to substantially reduce
the amount of memory consumed by a block
of information. However, we’ll leave such
techniques to the experts and stick to the brute
force approach.

Another consideration is how much lati-
tude you wish to give the user regarding
different ways he can enter equivalent com-
mands. For example, do you wish to distin-
guish between uppercase and lowercase
letters? This can be important for proper
names, like in a quiz on U.S. presidents. Do
you want the user to be able to get away with
a certain degree of misspelling? One way to
handle this is to add anticipated misspellings
of particular words to the vocabulary. A more
sophisticated approach uses some algorithm
to determine just how closely words must
match vocabulary entries to be considered ac-
ceptable.

In today’s example, we’ll translate all lower-
case letters to uppercase, and the vocabulary
entries will all be in uppercase. Only exact
matches with vocabulary entries will be ac-
cepted.

Yet another one of many characteristics of
human, that is, interpersonal communication
is that we tend to be more or less, I mean
pretty much, wordy lots of the time, you
know? Think back to “slowly mix in two cups
of brown sugar.”” The words “in”” and “of”
certainly are superfluous to the meaning of
this instruction. Prepositions and articles (a,
an, the) can generally be ignored without dis-
turbing the meaning of an instruction. Hence,
we’ll leave them out of the vocabulary. A
word of warning: Be very careful with nega-
tion words like “not” and “don’t.”” “Don’t
boil the milk” is rather different from “boil
the milk”!

How about words like “slowly” and
“brown”? Adjectives and adverbs like these
can be important, but not necessarily. The
specific application dictates whether the ac-
tions to be taken depend on the presence of
modifiers like these in the command string.

Another important aspect of building a
vocabulary is the handling of synonyms. In-

structions to “add flour” and “add sugar” are
obviously different. But are there differences
between “add sugar,” “mix sugar,” “stir su-
gar,” “beat sugar,” “fold sugar”” and so on?
If not, these instructions are all equivalent.
So, even though our parser has to locate the
verb (add, mix, etc.) in the vocabulary, only
one piece of program logic is required to han-
dle all these inputs.

LEINT3

A token gesture

Okay, so we've split the input string into
words and found the words in the vocabulary
list. Each word is assigned a numeric value,
or “token.” Each category of vocabulary en-
tries will have a different set of tokens, and
specific arrangements of tokens will make up
valid instructions. Synonyms are given the
same token.

Listing 1 illustrates what I mean. This is
an Atari BASIC program that creates the
vocabulary file (VOCAB.DAT) for our com-
puterized kitchen example. You can modify
this program to create vocabulary files for
other applications by changing the DATA
statements in Lines 1000-1120. The DIM
statements in Line 100 limit the length of a
single vocabulary entry to 20 characters and
the total length of the vocabulary file to 2,000
bytes, but of course you could change these
restrictions.

The first block of vocabulary words (Lines
1000-1030) pertains to ingredients that we
think someone might want to use in describ-
ing a recipe. FLOUR is assigned the token
1, SUGAR is 2 and so on. Notice that I'm
regarding BUTTER, MARGARINE and
SHORTENING as equivalent ingredients, so
they all are given the same token, a 5 (Line
1010). In the adventure game sense, these
words correspond to the nouns that could be
entered in a simple two-word command.

Another section of our vocabulary con-
cerns operations (verbs) the user might want
to perform while cooking up something tasty.
All of these have tokens in the range 20-29
(Lines 1040-1060). Again, some of them are
considered to be synonymous (MIX, STIR,
ADD, FOLD), and instructions containing
any of these words will be handled in exact-
ly the same way by the evaluator part of the
parser.

Vocabulary words with tokens in the 30-39
range refer to the units on some meaningful
numbers that could be part of a command.
These units refer to cooking time (HOURS,
MINUTES) or temperature (DEGREES).
Words with tokens in the 40s are units per-
taining to the quantities of ingredients that are
to be added (CUPS, TSP and so forth).

NOVEMBER A.N.A.L.O.G. Computing

When we actually get to the part of the
parser that determines whether a valid in-
struction was entered, the program will be
looking at tokens, not at actual words. Cer-
tain patterns of tokens constitute valid com-
mands. For example, suppose the instruction
string entered said, “ADD 2 COCOA.” The
parser would tokenize this into ingredient =
8, amount = 2 (identified as a number), and
operation = 21. However, the parser logic
should recognize that something is missing:
units. “ADD 2 what COCOA?” Cups?
Ounces? Tablespoons? It makes a difference
in the final product, or so I've heard. Hence,
“ADD 2 COCOA” would be flagged as an in-
valid instruction, because no units were
specified. More about the third portion of the
parser next time.

Vocabulary building

Enough preliminaries; let’s look at some
more code! I said that Listing 1 is a utility
program for creating a file containing a
vocabulary list. The entire vocabulary list is
treated as one giant character string variable,
VOCABS$. For convenience of editing and for
ease of reading the file, the contents of the
string are written out to the VOCAB.DAT file
in 40-byte records, in Lines 220-300.

The data statements in Listing 1 contain the
individual vocabulary entries and their cor-
responding tokens. A complete vocabulary
entry in string VOCAB$ consists of: one
character whose ATASCII value equals the
number of characters in the word (Lines
130-140); the word itself (Line 150); and a
character whose ATASCII value equals the
token value for that word (Line 160). This
method for storing the vocabulary limits you
to 255 unique tokens, but if you needed more,
you could go to a two-byte representation for
the tokens; 65,535 tokens should be adequate.

An example: MARGARINE has a length
of nine characters and a token value of 5. The
vocabulary entry for this word consists of
CHR$(9) (Control-I), MARGARINE and
CHR$(5) (Control-E). Make sense?

Line 1130 marks the end of the vocabulary
data with an exclamation mark and a token
value of 0. If the vocabulary searching part
of the parser gets to the end of the vocabu-
lary list without a match, a token of O is
returned.

The word quest

Next month we’ll look at the preprocess-
ing and evaluator parts of the parser. For now,
you’ll have to settle for something simpler.
Listing 2 is a BASIC program that simply

NOVEMBER A.NL.A.L.O.G. Computing

loads the word-finder machine-language pars-
er routine into RAM, reads the VOCAB.DAT
file into string variable VOCABS, lets you
enter a word at the keyboard, and tells you
if the word you entered is found in the
vocabulary list. (Enter QUIT to exit.) This
is a useful way to test whether there are any
errors in your vocabulary file. For today, List-
ing 2 will serve as a framework for illustrat-
ing how the machine-language routine
operates.

Line 40 of Listing 2 DIMs the VOCAB$
variable to the actual length of the vocabu-
lary file or thereabouts. The 40-byte records
from VOCAB.DAT are read in Lines 140-190.

Oh, yeah, I almost forgot: Boot Camp is
supposed to be about 6502 assembly lan-
guage. Well, look at Listing 3. This is the ker-
nel of the parser, the routine that searches for
a particular word in the vocabulary file. It
produces only 79 bytes of object code. Short-
er than you expected, eh? Well, it really isn’t
doing anything particularly fancy. Of course,
if you were to write the entire preprocessor
and evaluator parts of the parser in assem-
bly language, you'd be talking about some
serious code. The preprocessor could be
written so as to be generally useful in any
natural language program. However, the
evaluation code is necessarily specific to each
application.

The machine-language routine in Listing
3 is intended to be called from BASIC by
means of the USR function. It is relocatable,
so it can be loaded at any address you like.
Assemble this listing and create a disk file
called PARSER.OBI.

Listing 2 reads the machine-language code
from PARSER.OBJ. You may recall that bi-
nary (object code) files contain six bytes of
header information. Lines 60-80 of Listing
2 read these six bytes and throw them away.
Lines 90-120 read the actual object code and
load it into a string variable called ML$. An
alternative approach is to read the object code
and poke it into some safe place in RAM.
Since the code is relocatable, this can be se-
cure anywhere, so long as you know the start-
ing address.

The assembly routine uses six RAM loca-
tions for specific purposes. Zero-page bytes
$CB-$CE (decimal 203-206) are needed for
the indirect indexed addressing mode, as we
have seen so many times before. Location
$6FE (decimal 1790) contains the length of
the word being sought in the vocabulary; this
serves as input into the machine-language
routine. Location $6FF (1791) contains the
word’s token value (or a zero if not found);
this is the parser’s output. You can change
these if they conflict with other uses for those

BOOT
CAMP

If you were to write the
entire preprocessor and
evaluator parts of the parser
in assembly language, you'd
he talking about some
serious code.

29

BOOT
CAMP

I's not a bad idea to do
some error checking to
make sure that the
accumulator contains a “2”
after the PLA operation.

Listing 1: BASIC

WY 2680 PRINT #2;TEMPS
GG 2768 NEXT I

IE 18 REM Program name: UVOCAB.BAS HG 2860 TEMP5=VOCABS (40%MAX-39,LENIVDOCABS)
AT 286 REM Utility program to build)
FL 38 REM vocabulary list file for parser HE 2968 PRINT #Z; TEMPS
ZM 48 REM demo program in ""Boot Cawmp" LL 368 CLOSE HZ
BC 568 REM KM 318 PRINT '"All done!i™
D 66 REM by Karl E. Hiegers HW I2686 END
BE 78 REM EC 1666 DATA FLOUR,1,SUGAR,2Z,0IL,3,MILK, 4
KD 88 REM First build VOCABS string AP 1616 DAaTA BUTTER,S,MARGARINE,S,SHORTEN
BG 98 REM ING,5S
BY 1060 DIM TERM5(28),V0CABS5(20088) ,TEMPS(4 AaF 18626 DATA NUTS,6,HWHATER,7,COCOA,S8

13 WU 16368 DATA EGG,10,EGGS,16
YU 118 A=1:PRINT "Building vocabulary..." ZC 10648 DATA MIK,21,5TIR,Z21,FOLD,Z1i,4DD,2
Z5 128 READ TERMS, TOKENW 1
A5 138 INLEN=-LEN(TERMS) 5B 1656 DATA WHIP,2Z,BEAT,ZZ
IK 146 VOCABS (A, AY=CHRS (INLEN) JR 1860 DATA PREHEAT,23,C00K,2Z4,BAKE, 24
MO 158 vVoCaABS(Aat+l,A+INLEN)=TERMS AL 16786 DATA HOURS,31,MINUTES,3Z,DEGREES,
0D 168 VOCABS (A+1+INLEN,A+1+INLENI=CHRS(T 32

OKEN) IV 1686 DaTA CUP,41,CUPS,41,C,41
AZ 170 IF TERMS="!" THEN GOTO 268 BO 16986 DATA TEASPOON,42,TEASPOONS,42,TSP
YG 180 A-A+IHLEN+Z ,42,T5P5,42
MU 196 GOTO 12z@ ZX 11606 DATA TABLESPOON, 43, TABLESPOONS, 43
DU 2868 REM Then print data to file UK 1118 DATA TBSP,43,TBSPS5,43
PB 216 PRINT "Saving in file....'" PM 1120 DATA OUNCE,44,0UNCES,44,0Z,44,0Z5
BYU 228 OPEN HZ,8,8,"D:VOCAB.DAT" , 44
WM 230 MAX=INT(LENC{VOCABS)/41)+1 UF 1138 DaTaA !,08
30 NOVEMBER A.NLA.L.O.@. Computing

addresses in your own programs.

To call this machine-language routine, first
poke the length of the target word (in varia-
ble WORDS$ in Listing 2) into location 1790
(Line 240 of Listing 2). Then call the
machine-language routine with the USR

- function as shown in Line 250, specifying the

addresses of the ML routine itself, the
vocabulary variable string, and the target-
word variable string. Faster than a speeding
bullet, the token value for the word appears
at Address 1791, unless the contents of
WORDS$ aren’t found in VOCABS$, in which
case a zero appears in address 1791. Pretty
simple, eh?

Let’s look at the assembly code a little
more closely. Lines 450-530 in Listing 3 il-
lustrate how to handle arguments passed from
BASIC to machine language. These, you may
recall, are passed via the stack, in two-byte
chunks. The PLA in Line 450 removes a one-
byte counter of how many arguments were ac-
tually passed. It’s not a bad idea to do some
error checking to make sure that the accumu-
lator contains a “2” after the PLA operation;
otherwise, a computer lockup is likely. Next
on the stack are the high byte and low byte
of Argument 1 (address of VOCABS$), fol-
lowed by the high byte and low byte of Ar-
gument 2 (address of WORDS$).

The searching algorithm is really very sim-
ple. It begins by comparing the length of the
target word to the length of the current
vocabulary entry being pointed to by VOCAB
(Lines 680-700, with a branch down to Line
790). If the lengths are different, the words
obviously don’t match, so control passes from

ue 246
LY 258

FOR

Line 810 to label NEXTWORD at Line 1090.
Lines 1100-1320 simply change the contents
of VOCAB to point to the next word in
VOCABS$, by skipping ahead a number of
bytes equal to the length of the current word
plus 2 (one for the length, one for the token).
If the target length did match the current
vocabulary entry length, a character-by-
character comparison is done in Lines
820-960. This comparison actually starts with
the last character in the word and works back-
wards. If all characters match (Ta-da!), we
have a hit. Lines 970-1010 fetch the token
value at the end of the current vocabulary en-
try, store it at address RESULT ($6FF, 1791),
and return to the BASIC program. If the en-
tire vocabulary list is searched with no match,
RESULT contains a zero (Line 710).

Conclusion

So there you have it. A very simple
assembly-language program for searching an
arbitrary list of vocabulary entries to see if
a target character string can be identified.
Next time, we’ll see a way to package this
vocabulary searching part of the parser with
preprocessor and evaluator routines in BAS-
IC to show just how smart a program has to
be to make Karl’s Komputerized Kitchen a
reality.

Acknowledgement

I’'m indebted to Dr. Bruce Argyle of Mad
Scientist Software for sharing his parser code
and concepts with me. Thanks, Bruce.

I=1 TO MAXK-1
TEMPS=VUOCABS (40X¥I-39, 40%*I)

Listing 2: BASIC

NN 18 REM Sawple program to demonstrate

UD 28 REM vocabulary searching for words

XD I8 REM entered by user

BK X5 REM

A5 40 DIM VDOCABS(280),TEMP5(408), HORD5(Z28)
sMLS(79)

NN 56 OPEN HZ, 4, B,"D PARSER.ODBJ"

FP 66 FOR I=1 TD

EF 78 GET HZ,A

IH 88 NEXT I

PJ 98 FOR I=1 TO 79

CB 168 GET HZ,na

AR 118 MLSI{II=CHRS(A)

FU 128 NEXT I

LP 138 CLOSE HZ

ZY 1406 OPEW #2,4,08,"D:VOCAB.DAT"

0C 156 FOR I=8 TO 6

RE 1686 INPUT HZ,TEMPS

YJ 178 UDCQBS(I*40+1) TEHMPS

GH 186 NEXT I

MB 196 CLOSE H2Z

TZ 20880 PRINT CHR5(125)

A0 216 PRINT "Enter a word (QUIT to exitl
[}

KA 220 INPUT MWORDS

IM 236 IF WORDS="QUIT' THEN STOP

ZL 248 POKE 1796,LEN(HORDS)

JH 229 H= USR(QDR(ML$J ADR (VOCABS)Y, ADR (HOR
DSl

GP 26080 IF PEEK({1791)=8 THEN PRINT "Sorry,
I don't know '"';WORDS

BI 2708 IF PEEK(179%1)>8 THEN PRINT "Token
for “;WORDS;" is ";PEEK({17921)

TT 288 PRINT

MU 296 GOTO 218

Listing 3: Assembly

Bie6 .0PT 0BJ,NO LIST
8118 ;
8128 ;Vocabulary searching routine, to
8138 ;be used as part of a natural
8146 ;language parser program
8156 ;
8168 ;by Karl E. HWiegers
8178 ;

81868 ;This machine language subroutine
8198 ;is designed to be called from a
8200 ;BASIC program. It takes two
8218 ;arguments: the address of the
8228 ;vocabulary data string, and the
8238 ;address of the variable that
8248 ;contains the word being searched
8258 ;for, like this:

8260
8270 ;X=USR({loc,ADR(VOCABS) ,AvR (HORDS)
68280

~

. e

8296
8388 VOCAB = SCB
8318 WORD = 5CD

8326 LENGTH = $06FE

8338 RESULT = 506FF

8346 ;

8350 ;routine is orged at %668, but is
83608 ;relocatable

83768 ;

83I8o *¥= 50606

83%8 ;

84606 ;
8410 ;set up arguments passed from
8428 ;BASIC, into page 8 variables
8430
8448
08456 PLA

e e

NOVEMBER A.NLA.L.0O.3G. Computing

8460
8476
04806
8498
8508
8516
8528
8536
85406
85506
8568
85708
8586
8598
06008
8616
8620
8636
0640
8658
8660
8676
0680
8690
87008
8718
87286
87306
8748
8756
0760
87786
8788
87386
6800
8816
8820
8836
6846
8856
88606
8870
0880
8820
6700
8216
8920
8936
8940
8950
8960
8976
8986
8996
1000
ieie

1626
1836
le4a
1858
1668
ie8786
1688
1698
liea
iiie
1ize
1iza
1i48
1is58
1i68
1178
1isge
1138
1288
izia
iz228
1238
1248
1258
1268
1278
1286
1296
1368
1316
1328

PLA jpointer to start
5ThA VOCAB+1 ;of vocabulary
PLA jcharacter string
5TaA VOCAB

PLA ;jpointer to start
5Ta WORD+1 ;of word being
PLA ;jsearched for in
5TaA WORD ;jvocabulary list

jsearch routine starts here with
;jnext word being pointed to by
;vocAaB variable; branch to label
JANALYZE to look for match; if
ino match, return to here; last
;'entry' in VO0CABS has token of
18, s0 store that in RESULT and
jreturn to BASIC program

me e

He
LDAa (VOCAB),Y
BNE ANALYZE
5TaA RESULT

;see if length matches that of
;jnext word in vocabulary

CHMP LENGTH ;lengths match?
BNE NEXTWORD ;no, go on
LDY LENGTH ;yes,check chars

;compare characters in target
:word with those in current word
jin vocabulary

?

CYCLE
LDA CVOCAB),Y ;get next char
DEY ;and compare to

CMP (WORD),Y ;target word

BNME NEXTHORD ;no match,go on

TYA ;jmatches, check

BNE CYCLE ;jnext char

LDY LENGTH ; found! point to

;jtoken value, get

LDA (VDOCAB),Y ;it, and store

5TA RESULT ;in RESULT byte
;all done, s0 exi

;skip to next word by adding
;length of current word to
jpointer to vocabulary list

?
7
NEXTHORD
CLC
LDY #6
L4 VOCAB
ADC (VOCAB),Y
3Ta VOCAB
BCC NOINWC1
INC vOCaAB+1
NOINC1
CLC
LA VOCAB
ADC H2
5Th VOCAB
BCC NOINCZ
INC vOCaB+1
NOINCZ

jcontinue search with next word
jin the vocabulary

e s

cLC
BCC BEGIN =

31

Database
DELPHI

Once you’ve downloaded
what’s accumulated in the
Atari Group’s databases,
maybe you’ll want to submit
some of your own files.

by Michael A. Banks

s I write this, it’s 103 ° outside. The

ground is riddled with crackly brown

stuff that used to be soft green grass.

My air conditioner is chugging away,

giving me occasional pause when the
compressor cuts in and the lights dim. (Yes,
I do have a surge protector and 100-amp serv-
ice; the voltage drops are the result of the high
demand of constantly running air condition-
ers throughout the neighborhood. . .Sigh.)
But that’s okay—I’'m dealing with it crea-
tively. Each problem is a challenge. We have
a ban on watering, so I catch the air-
conditioner condensation with a bucket and
use that to water our small flower garden and
large rosebush (Japanese beetles gotta eat

32

too!) And because Southwestern Ohio, where
Ilive, is particularly hard hit by the drought,
the water is shut off during the day on occa-
sion, which makes it tough when I've forgot-
ten to stock up on bottled water. But I can
melt a couple trays of ice cubes for fresh
drinking water and go on enjoying my iced
tea without interruption.

So, it’s not so bad—in fact, meeting
challenges creatively is kinda fun. But I hope
a cold front moves in soon to help dampen
the effects of Father Sol’s fusion plant so I
can turn my creative energies to more in-
teresting pursuits. . ..

Of course, all that’s history now, as you
read this. Those of you who live in the tem-

NOVEMBER A.NL.A.L.O.G. Computing

perate zones (and even you in the Southwest,
Texas and Florida) are enjoying cooler
weather and earlier sundowns. And like me,
you’re probably spending less time on heat
survival and more on fun and creative ac-
tivities.

As I noted in October’s column, this time
of the year is a good time to catch up on
programming, disk-housekeeping and check-
ing out what’s accumulated in the Atari
Group’s databases while you were on vaca-
tion or busy coping with the drought. And,
now that you have the time, maybe you’ll want
to share some of your own creativity with
other Atari group members via those same
databases. So, as promised, this month’s
column focuses on downloading files from
the Atari database, as well as submitting files
of your own.

Downloading. . . step by step

If you read October’s column, you know
that you must go through two steps prepara-
tory to downloading a database file: Select
a database and read the file’s description. To
select a database, type DA at the Atari
Group’s main menu, then the name of the
database that you wish to access (or, simply
type DA and the first few letters of the data-
base name together: DA GEN).

Once you’re at the database prompt, type
READ to see the description of the database
item. Now, if you just type READ when you
enter the database, you're going to see the
description of the first (newest) file in the
database. So, you might want to do a direc-
tory first (press Return), or search for data-
base items by keyword as I described last
month.

In case you missed the October issue,
here’s a thumbnail sketch of the search
process: Type SEARCH and a keyword, and
you’ll be presented with a list of items con-
taining the specified keyword. All
commands—including READ—will then
operate on the selected items; in effect, you

NOVEMBER A.NL.A.L.O.G. Computing

will have created a temporary subset of the
database that contains only the files match-
ing your keyword. You can also narrow or
expand your search, by selecting either com-
mand from the database menu.

Once you've read a file’s description you’ll
be at the ACTION prompt. Here’s an exam-
ple, of what you’ll see (in this case, I typed
DA GEN at the Atari Group’s main menu,
to reach the general database, after which I
typed READ BOOT CAMP #61):

<<< ANALOG Databases >>>
General Interests Menu:

Directory of Groups
Read (and Download)
Search (by Keyword)
Narrow search
widen search

Set Topic
Submit
Workspace
Help

Exit

DBASES:Gen> (Dir, Read, Set, Exit) READ BOOT CAMP #61

Name: BOOT CAMP #61

Type: PROGRAM

Date: 7-JUN-1988 20:39 by ANALOG4

Karl Wiegers supplies a handful of useful graphics macros in
June's Boot Camp. Please see ANALOG #61 for complete
documentation.

This program Copyright 1988 by ANALOG Computing.

Keywords: PROGRAM, WIEGERS, GRAPHICS, ASSEMBLY, JUNE, #61
Contents:

1 MAC/65 FILE (Size:
2 MAC/65 FILE (Size:

4096 Count: 9)
5248 Count: 8)

ACTION> (Next, Down, Xm, List)

The Action menu

The ACTION prompt is one of the few
places on DELPHI where a menu is not au-
tomatically displayed, even if you are running
with menu prompting. (The ACTION prompt
shows the major commands: “Next,” which
takes you to the next file; “Down,” which
sends the designated file to your computer us-
ing your default download method (more on
this in a bit); “Xm,” which initiates an Xmo-
dem file transfer to your computer; and
“List,” which displays the designated file as
unformatted ASCII text.)

To see the ACTION menu, type MENU
or ?. This menu is displayed:

ACTION Menu:

Next Group/File
Download

List (Unformatted)
Display (Word-wrapped)
Description of Group

Show Files in Group
Set Topic

Help

Exit

The first three items on the menu (Next,
Download and List), I've just explained. Dis-
play is like List, except that the file is dis-
played wordwrapped and with ‘“More?”
prompts. (Note: List and Display should nor-
mally be used only with text files.) Descrip-
tion of Group redisplays the current item’s
description for your review. Show displays a
list of the files in the group (as you’ve no-
ticed in the preceding description, there can
be more than one file). Set Topic allows you
to select a different database. Help and Exit
are self-explanatory.

All of these commands are available
whether you display the menu or not.

Download commands

To download a file, simply type DOWN-
LOAD, and DELPHI will send the file to you
using your default file-transfer method. You
can view your current default-file download
method by typing /FX__METHOD.(The
default method is set at the “Set Preferences”
selection at the Atari Group’s main menu, via
the SETTINGS selection in Workspace, or
in the SETTINGS area of USING DELPHI).

In multiple-group database items (as in the
“BOOT CAMP #61” example), the first file
is sent, unless you specify a different file by
number.

If you don’t want to use your default file-
transfer method (perhaps you want to try
Xmodem, but your default is Kermit), you
can change it temporarily in one of three
ways:

1. Type DOWNLOAD followed by the
name of the file-transfer method you wish to
use. (Example: DOWN XMODEM.)

2. Type /FX_METHOD followed by the
name of the file-transfer method you wish to use.
(Example: /FX__METHOD XMODEM.)

3. Type DOWNLOAD MENU to view this
menu:

Download Method Menu:

XMODEM (128 byte blocks)
Kermit

WXMODEM (Windowed XMODEM)
YMODEM (1024 byte blocks)
Buffer Capture

RT Buffer Capture
¥YB (YMODEM batch)
Help
Exit

DOWNLOAD> (Xm,Kermit,WXm,¥m,Buff, RT,¥B)

33

Database
DELPHI

At this point, you can enter your choice of
file-transfer methods and proceed with the
download. DELPHI will tell you to prepare
your computer to receive the file and provide
any other information necessary (like how to
abort the transfer), then signal you to begin
the necessary procedure to receive the file at
your end.

If your terminal software has the capabili-
ty, I highly recommend using Xmodem, Ker-
mit or Ymodem over ASCII/buffer capture,
even for text files. There’s much less chance
of “‘garbage” getting into a file with one of
those error-checking protocols.

By the way, if you have a comment on a
file, you can E-mail it to the person who up-
loaded the file right at the ACTION prompt.
Simply type REPLY, and a DELPHI mail
message will be addressed to the member-
name listed as the file’s “Owner” (that’s the
person who submitted it to the database),
with the subject header filled in. Type your
comments, then CNTL-Z to send the mes-
sage, and you’re back at the ACTION
prompt.

Submit!

As you know, a major portion of the files
in the Atari Group’s databases is contributed
by DELPHI members like you. The files are
placed there through a process called “‘sub-
mitting.” At present, you can receive free
time when you submit files (select “Request
Free Upload” at the Atari Group’s main menu
for more information).

Before you can submit a file to a database,
the file you wish to submit must be in your

34

Workspace. Files are put in Workspace in one
of three ways: by extracting them from E-
mail, by creating them (text files only) with
the CREATE command or by uploading
them.

You can upload files to your Workspace us-
ing almost any file-transfer method: ASCII
upload, Xmodem, Kermit, Ymodem, Ymo-
dem Batch or WXmodem. The method you
use is up to you. (Type HELP UPLOAD,
HELP XUPLOAD, etc., at the Workspace
prompt for more information on uploading
files.)

Preparing a file for submission

If you’re submitting a program or binary
data file, you can upload the file with no spe-
cial preparation, other than, perhaps, archiv-
ing it to save upload and download time.

If you’re uploading a text file, there are
several things to keep in mind. For openers,
I recommend that you upload long text files,
rather than try to create them online—the
DELPHI text editors are rather difficult to
use compared with your average word proces-
sor. For files which may be read online—
even partially—you should keep your line
width (number of columns) down to 70 or so,
to accommodate wordwrap. Also, it’s a good
idea to begin any text file with .1t (this is a
command that causes DELPHI to display any
text online formatted in the same way you up-
loaded it).

Oh yes—text files should generally be 7-bit
ASCIL.

The submission process

Assuming you have a file in your Work-
space to submit, the next step is to type SUB-
MIT at any database prompt (that’s at the
database name prompt, which says DBASES:
and the first few letters of the name of the
database, like this: DBASES:Gen>). Or,
better yet, type SUBMIT at the Workspace
prompt to submit it right after you upload it.

The actual submission process is merely
a matter of responding to a series of prompts,
and you can abort the process at any time by
entering CNTL-C. When you type SUBMIT,

you’ll be asked if you are ready to submit a
file. Type Y. Next, you’ll be asked to enter
the number of files you are submitting (usual-
ly 1). If you are submitting more than one
file, DELPHI will ask if the files are so relat-
ed that they can be entered as a group in the
database. Answer Y.

Additional prompts will request the follow-
ing information:

The TYPE of file you are submitting. This
tells DELPHI whether the file you are sub-
mitting is a Program, Article, etc. If you are
submitting a program file, DELPHI will ask
you if the file must have a special download
filename (this is normally the same filename
as on your disk).

The TOPIC of the file. This is the database
topic under which your submission will be
stored. (You need not be in the database topic
to which you wish to submit a file.)

A DESCRIPTION of the file. This is the file
description that is displayed when the READ
command is given by members in the data-
base. It’s a good idea to begin this with .1t
on a line by itself, just as you would begin
any text file; that way, the description will
be displayed as you enter it. Make this as
short as possible—but don’t scrimp on neces-
sary details! (And if the file is archived, be
sure to include this fact, along with the name
of the program necessary to de-archive it.)

The DISPLAY NAME of the file. This is the
name that is displayed in the database direc-
tory. It can be up to 32 characters in length
and should be as descriptive as possible.

KEYWORD:s for the file. You’ll have to
select one major keyword from a list of six
keywords established for the database topic
in question (type ? at the Keyword prompt
to see this list). After the initial keyword
specification, you can add several keywords
of your own choice. Remember that keywords
are search aids, so think of the major key-
words under which other DELPHI members
might search for your file. If you’re submit-
ting a printer utility, you might use the key-
words PRINTER, UTILITY, the name(s) of
the printer(s) with which the utility operates
and any other distinguishing features of the
program.

After you’ve entered the all of this infor-
mation, you’ll be prompted for the WORK-
SPACE FILENAME of the file you are
submitting. If you forget the filename, type
a question mark or press Return at this
prompt; DELPHI will display a list of your
Workspace files.

NOVEMBER A.NL.A.L.O.G. Computing

After you have provided all the necessary
information, you will be asked if you wish
the file you have submitted deleted from your
workspace. Answer YES or NO, as you wish,
and the submission process will be com-
pleted.

The file you submit will not be immedi-
ately available in the database to which you
submitted it. It is temporarily stored in a spe-
cial preview area, to await review by the Atari
group manager. The manager will review
your submission, edit the description or key-
words if necessary, and have it in the ap-
propriate database and available to all Atari
group members within a day or two.

Conference reminder

Don’t forget the real-time conference held
in the Atari Users’ Group every Tuesday at
10 p.m., EST. To join, type CO at the SIG
menu, and then type WHO at the conference
menu. You’ll see a conference group name,
with a list of the members participating
beneath the group name. The name will be
preceded by a number. To join, simply type
JOIN followed by the number and you’re in!
Type to talk. If you get stuck, ask those in
the conference group for help or type /HELP.

Be a Game Designer!

Ever wanted to design your own video
game? You're on! MATRAT (Matthew Rat-
cliff) and the ANALOG’s Atari Users’ Group
are giving you the opportunity to help write
a video game. MATRAT has volunteered to
do the programming, and a thread in the For-
um contains all the design elements and sug-
gestions to be used in the game. Things are
progressing nicely, and at this point the ac-
tion gamers seem to have the upper hand over
the adventure gamers. Your input is needed!
To get in on the fun, go to the Forum and
read Message 37596. Then type FOLLOW to
read what everyone else has to say about the
design.

Once you have a handle on what’s happen-
ing, add your comments with ADD or by typ-
ing REPLY 37596.

NOVEMBER A.NL.A.L.O.G. Computing

Once the game is under software construc-
tion, the thread will be posted in the data-
base. Once completed, the game design may
be a feature game and article in ANALOG
Computing.

That’s it for now. Next month: An eclectic
mix of tips and tricks. Until then, see you
online!

In addition to having published science fic-
tion novels and books on rocketry, Michael
A. Banks is the author of DELPHI:The Offi-
cial Guide and The Modem Reference—both
from Brady Books/Simon & Schuster. Look
for his articles on telecommunications and
tips on using DELPHI in the Atari Users’
Group databases. You can contact Banks on
DELPHI by sending E-mail to membername
KZIN.

Make the
DELPHI Connection!

As a reader of ANALOG Computing, you
are entitled to take advantage of a special
DELPHI membership offer. For only $19.95
plus postage and handling ($30 off the stan-
dard membership price!), you will receive a
lifetime subscription to DELPHI, a copy of
the 500-page DELPHI: The Official Guide by
Michael A. Banks and a credit equal to one
free evening hour at standard connect rates.
Almost anyone worldwide can access DEL-
PHI (using Tymnet, Telenet or other net-
working services) via a local phone call.
Make the DELPHI connection by signing up
today!

To join DELPHI:

1. Dial 617-576-0862 with any terminal or PC
and modem (at 2400 bps, dial 576-2981).
2. At the Username prompt, type
JOINDELPHI.

3. At the Password prompt enter ANALOG.

For more information, call DELPHI Mem-
ber Services at 1-800-544-4005, or at
617-491-3393 from within Massachusetts or
from outside the U.S.

DELPHI is a service of General Videotex
Corporation of Cambridge, Massachusetts.

=

35

36

NOVEMBER A.NL.A.L.O.8. Computing

I take the “‘ground

up’’ approach when I

program a game: the
graphics first, then
the game logic.

A little character

Perhaps one of the toughest parts of
programming a game is deciding where to
start (you may, however, disagree). The
best thing to do is begin with the most
dominant part of the game, the part that
everything else tends to rely on. For ex-
ample, I would start with the maze if I were
doing Pac-Man, the terrain if I were doing
Scramble and the centipede if I were do-
ing Centipede. Once these elements are in
place, the rest can be added piece by piece.
It’s sort of the equivalent of building a
house floor by floor, starting with the
basement.

Of course, this is only my personal
preference. You may prefer to start with the
framework and then fill in the details (de-
sign the game logic first and then do the
graphics). The reason I take the “‘ground
up” approach is because in most games the
logic relies on the graphics being in place,
so that it can detect collisions and respond
appropriately. Also, it’s a lot easier to pro-
gram when you can see the results on the
screen.

Needless to say, we'll be programming
our BASIC Invaders example from the
ground up, which means we’ll begin with
the invaders themselves. As a result, this
column will be dealing with character
graphics. Please keep in mind that this may
not be the case in your game. Your key ele-
ment may use bit-mapped graphics or
PMG. The important thing to take note of
here, then, is not the fact that we’re begin-
ning with character graphics, but rather the
techniques that we use to implement the
character graphics.

Our first step is to take the invader shapes
we came up with earlier and translate them
into values that the computer can under-
stand. As you probably already know, this
is done by treating each shape as a series
of bytes stacked on top of each other. Each
byte consists of eight bits which, like the
dots, can be turned on or off. So we treat
each dot as a bit. Because the invaders are
NOVEMBER A.N.A.L.0O.B. Computing

Figure 1

8+444+1=13 —__ —

8+4+2+1= 15\

2=2
4+1=5

PR TS
8i2=10———7

more than eight dots wide, we’ll be using
two characters for each invader.

So let’s get started. Because this is a rela-
tively straightforward process, we’ll
single-step through the first invader. The
first invader is shown in Figure 1.

Now that we have our values, we’re
almost ready to give them to the computer.
First of all, though, we have to reserve a
place to put them, along with the rest of
the character set. We do this with the fol-
lowing program lines:

3158 CB=PEEK(748)-4:POKE
186,CB-4:CA=CB*256

3168 GRAPHICS @8:POKE 756
;CB

Now we have 1024 bytes reserved at the
end of memory, and have told the computer
that it will a find a character set there. So
we’d better set one up quickly! To make
things easier, I'll give you the complete pro-
gram listing first, and then we’ll go over
it line by line:

3838 DIM MLANGS(96)

3056 DIM MOUMEM$(41):GO0S
UB 29500:MOVMEMS=MLANGS
3158 CB=PEEK({748)-4:POKE
186,CB-4:CA=CB¥256

31680 GRAPHICS @:POKE 756

CB
3210 K=USR (ADR (MOVMEMS) ,
57344,Ch,10823)
3228 MEM=CA+512:FOR SEC=
8 TO 1:GOSUB I2508+18X5E
C:X= USR(QDR(MOUMEMS) ADR
(MLQNGS) MEM, LEN(MLQNGS)

3238 MEM=MEM+LEN (MLANGS)

tNEXT SEC

3248 X=USR(ADR(MOVMEMS),

ca+i28,CA+640,335)

289599 END

295688 MLhNGS:“hhnh'h'

Eﬁ&fi!}‘]lh(l“ PACPPWFO f

¢'"":RETLRN

325088 MLQNGS‘"V'V*Q’QV

PHN 144

e

u RETURN
32519 MLQNGS-"al 9'-‘-'@'.2;
O¥ 1 ¥ ¥ ¥ R¥e¥E 2188
1 RETURN

Don’t forget that lines 29500 through
32510 come from a previous column. In
case you're wondering about the rest of the
program, here’s the complete explanation:

121
OVt N ™= O O N
A LS U P

4+241=7— " — T
L

- How to create a shape

If darkened, add up bit
value above the square.

@ @
o TN TN
128=128
128464192
128464432224
128+32+16=176
1284+64+432+16=240
:sa:sa

128+32=160
T—64416280

11 11
|

|

1st
Character

2nd
Character

2 keyboard characters
make up this shape.

3030; You may remember MLANGS$
from the program lines we generated previ-
ously. It’s used for temporary storage of the
machine language routines and character
set data.

3050; MOVMEMS$ holds a machine lan-
guage routine that we’ll be using through-
out BASIC Invaders to move things around
in memory. You’ll see how it’s used later
in this explanation.

3150; You saw this already, but I'll ex-
plain in case it wasn’t clear. Location 740
points to the top (or end) of memory. Lo-
cation 106 points to where the computer
thinks the end of memory is. So, we set a
variable called CB to point to where the be-
ginning of our character set will be
(PEEK(740)-4, which is four pages below
the top of memory, with a page being 256
bytes). Then we reset location 106 to point
1024 bytes (256*4) below the character set.

Why? Because the area of memory right
after that pointed to by location 106 isn’t
always safe. Anyway, it isn’t really that im-
portant for you to understand this. Just keep
in mind that this line will reserve memory
for the character set. You may also want
to know that if you’re using a program like
BASIC A+, which also changes location
106, then you should change
CB=PEEK(740)-4 to CB=PEEK(106)-4.

3160; The screen is usually kept at the
top of memory, and is right now in the
space we've reserved for our character set.
By using a GRAPHICS command, we
move it down below the new top of
memory. Also, we tell the computer where
our new character set will be.

3210; This line moves the regular charac-
ter set to our reserved space, and is an ex-
ample of using MOVMEM. In general, the
way to use MOVMEM is with the follow-
ing command:

K¥=USR {ADR (MOVMEMS) , FROM,
TO,LENGTH-1)

FROM is the address of the first memory
location you want to move from, TO is the
address of the first memory location you

37

Before you start complaining that your invader
characters don’t look right, keep in mind that
you’re looking at them in graphics mode zero.

want to move to and LENGTH is the num-
ber of bytes you want to move. So, in our
example, we are moving the 1024 bytes
starting at location 57344 (the address of
the Atari character set) to the memory area
starting at location CA (the address of our
character set).

3220-3230; Now we put our redefined
characters into the new character set. The
graphics characters being at CA+512.
We’ve already put our character data into
strings in lines 32500 and 32510, so we
GOSUB to these lines, then move the data
from MLANGS to the character set. No-
tice that we once again use MOVMEM.
You’ll find that there are a lot of times that
MOVMEM will come in handy, and not
just the ones that we’ll cover in this book.

3240; Here’s MOVMEM again! Actual-
ly, this line isn’t really necessary at this
point, but I included it because it follows
along with everything else here. All it does
is move the numbers and uppercase charac-
ters into the lowercase part of the charac-
ter set. Why? In graphics mode one, you
have to choose between lowercase/graph-
ics and uppercase/numbers. We want to be
able to have uppercase, numbers and
graphics at the same time (so we can in-
clude the score), so we simply move things
around a little.

28999; That’s it folks.

29500-32510; These are just the subrou-
tines to set up MOVMEM and the rede-
fined characters. See the previous column
on how to set them up.

I know there are a few things that I ha-
ven’'t mentioned yet, and I’ll get into them
soon. First, however, why don’t we make
sure that this program really works. Run
it, and then try typing CTRL-A, CTRL-B
and so forth, all the way up to CTRL-N
(preferably all right next to each other).
This should give you all our invaders
characters. Now before you start complain-
ing that they don’t look right, keep in mind
that you’re looking at them in graphics
mode zero. We'll be using them in graph-
ics mode one, and in a minute you’ll see
38

what they look like in that mode. But first,
it’s time to clear up a few things.

In the process of getting all of this up and
working, I've conveniently neglected to fill
in a few of the details. For example, you
may have noticed that the first character we
redefined was all zeros or a blank space.
Why? Try going into graphics mode zero,
and then POKE 756,226. See how the
screen fills with hearts? What we just did
was switch to lowercase/graphics. In lower-
case/graphics, there is no space character.
What the computer uses instead is the
heart. So, to avoid this problem, we re-
define the heart to be a space. Okay?

Well, that was easy to explain. Next up
is a problem that many people run into
when working with the character set: the
character values. You already know about
ATASCII values, right? Each character is
assigned an ATASCII value between zero
and 255. If you want to find out the value
for a particular character, use the ASC
command from BASIC (PRINT
ASC(“E”), for example).

Anyway, each character has a value,
which tends to put the characters in a
specific order. Now it would make sense
that the characters would be stored in this
order in the character set, right? Of course
it would, but when was the last time a com-
puter made sense? Instead, there is another
order for the character set, called the in-
ternal order. There is an easy way to figure
out the internal value from the ATASCII
value. The following table shows how to do
it:

TYPE OF CHARACTER | ATASCII | INTERNAL
Graphics 0-31 Add 64
Uppercase/Numbers 32-95 | Subtract 32
Lowercase 96-127 Same

(Anything with a value greater than 127 is
just the inverse of the character with the
same value minus 128.)

All this does is switch the graphics and
uppercase/numbers as far as order is con-

cerned. No big deal, but you have to
remember to use the internal order when
dealing directly with the character set.

One more detail that tends to trip a lot
of people up. Suppose you want to change
a character with an internal value of n, and
the character set begins at CA. Do you start
changing bytes at location CA +n? No, be-
cause each character takes up eight bytes
in the character set. That means that the
character starts at CA+n*8. A silly little
detail like this has left a lot of people won-
dering what went wrong!

Okay, now it’s time to put our invaders
into action. What we're going to do is put
them into a long string and then just print
this string on the screen. Remember,
though, that there are two versions of each
invader. So our string will actually hold two
versions of the invader screen. We'll alter-
nately print each version, thus getting some
animation out of the invaders. This will
make more sense after you try it out, so
make the following changes to the previ-
ous program:

3838 DIM MLANGS(98) ,INVS
(4803 ,DATS(16)

31608 GRAPHICS 17:POKE 75
6,CB+2

5370 INUS="'®"':INVS(488)=
"t THUS (2 =INVS

5388 RESTORE S41@

5396 FOR LP=0 TO 4 STEP
2:READ DATS:INVS(LP*40+1
JLP¥40+16)=DATS: INVS (LP*
40+281,LP*48+296)=DATS
54808 READ DATS:INVS (LP*4
0+41,LP*48+56)=DATS: INVS
(LP*4B+241 LP*48+256)=DA

L
?‘1?45’?]4“4 FALIEAL IHF
1/1/1/1/1/
A.Q,_ 7 .\.;A.LA,

0420 POSITION 8,8 :PRINT
H6; INVS(1,240)

5436 POSITION 8,8:PRINT
H6;INUS(241,480)

5440 GOTO 5428

You can go ahead and run the new pro-
gram and watch the results. When you’re
done, here’s the explanation of the changes:

3030; We’ve added two more string vari-
ables to this line. INV$ is going to hold the

NOVEMBER A.N.A.L.O.B. Computing

invaders screens, and we’ll use DATS$ to
help us set up INVS.

3160; We're using a full screen graphics
mode one (GRAPHICS 1+16), and the
graphics/lowercase section of our new
character set.

5370; Okay, now we start setting up
INV$. This line is a tricky way to set the
entire string to hearts, which we'’ve rede-
fined to a space character. Incidentally,
CTRL— will get you the heart character.

5380; In a long program where you’ll be
reading different data over and over again,
it’s a good idea to RESTORE the data first,
just to make sure that you won’t be read-
ing the wrong stuff. That’s why this line
is here.

5390-5400; Now things start to get a lit-
tle complicated, so let’s take a good, close
look at this loop. LP keeps track of the in-
vader row that we’re working on. We’ll be
doing two rows at a time, so we use STEP
2 (there are three types of invaders and two
rows of each). The first thing we do is read
a row of invaders into DAT$. Then DATS$
gets transferred to two places in INVS$
(more about this in a minute). Finally,
another row is read into DAT$ and then
transferred to INVS$, and the loop repeats.

The thing that really needs explaining is
the process of transferring DAT$ to INVS$.
What exactly is going on? Let’s look at the
whole thing in English from start to fin-
ish. When matching the English explana-
tion to the program lines, keep in mind that
the first invader screen starts at INV$ (1,1)
and the second at INV$ (240,240). You
should also be aware that a line on the
screen is twenty characters long, and we
keep a blank line between each row of in-
vaders.

Now that you’re all geared up for the in-
credibly complicated explanation that
you’re sure is about to follow, relax. The
first time through, the loop reads a row of
invaders (version one of invader one) and
puts it into the first row of the first screen
and the second row of the second screen.
Then it reads another row (version two of
NOVEMBER A.NLA.L.O.G. Computing

Workeh

invader one) and puts it into the second row
of the second screen and the first row of
the second screen (by alternating versions
like this, there will be more variety in the
TOWS).

The next time through the loop, version
one of invader two gets put into the third
row of screen one and the fourth row of
screen two. Then version two of invader
two gets put into the fourth row of screen
one and the third row of screen two. The
third and last time through the loop, ver-
sion one of invader three gets put into the
fifth row of screen one and the sixth row
of screen two. Version two of invader three
then gets put into the sixth row of screen
one and the fifth row of screen two. And
that’s all there is to it.

5410; Here’s the data for the rows. How,
you may be wondering, am I supposed to
type this in? Either that, or you somehow
managed to type it in already and are now
extremely upset that I waited until now to
tell you how. Sorry about that. Anyway, it’s
made up of eight CTRL-A/CTRL-Bs, eight
CTRL-C/CTRL-Ds, eight CTRL-
E/CTRL-Fs, eight CTRL-G/CTRL-Hs,
eight CTRL-I/CTRLJs and eight CTRL-
K/CTRL-Ls. If you type it in after running
the original program, it will make more
sense (since these graphics characters will
look like the invaders).

5420; Now we’re ready to get things go-
ing on the screen. We first put the cursor
at the top left of the screen. Then we print
the first 240 characters of INVS$, which is
the first invader screen.

5430; Now we do the same thing, except
this time we print the second 240 charac-
ters of INVS$ or the second invader screen.

5440; Finally, we make it into a loop so
that the invaders will walk in place forever
(or until you press the BREAK key).

So, what do you think so far? Not bad
for BASIC? The problem is, we haven’t
really done anything yet. Keeping that in
mind, what you see on the screen is actu-
ally extremely slow. By the time the rest
of the program is in place, these moving

invaders would be moving in extremely
slow motion. But is there any way to speed
things up?

Before I answer, think about the fact that
what’s slowing us down is the PRINT state-
ment. What we need to do is find another
way to get the invaders from INVS to the
screen. Perhaps I should restate that as
“moving the invaders from the INV$ to the
screen.” Does that suggest a solution to
you? If you thought of MOVMEM, give
yourself ten points. Since we can find out
the address of the screen using locations
88 and 89, there is absolutely no reason
why we can’t use MOVMEM instead of
PRINT. How much of a speed difference
will it make? Make the following changes
and find out for yourself:

51886 MEM1-PEEK(88)+PEEK(
§9) %256

54208 H=USR({ADR (MOUMEMS),
ADR (INVS) ,MEML, 239)

54308 H=LUSR(ADR (MOVMEMS),
ADR CINVS) +248,MEML, 239)
5440 GOTO 5420

Wow, quite a difference, eh? Here’s a
brief explanation:

5180; MEMI is the address of screen
memory.

5420; This is the equivalent of the old
Line 5420.

5430; This is the equivalent of the old
Line 5430.

5440; Do it again (and again and again
and).

Once you get over the shock of the extra
speed, notice the irvader’s color. It may not
be obvious, but it is a different color than
when we were PRINTing them. The rea-
son for this is the fact that when we move
characters directly to screen memory, we’re
dealing with the internal values rather than
the ATASCII ones. In graphics mode zero,
this means that we don’t get the proper
character. In graphics modes one and two,
we either get the wrong character or a
change in color. Change line 5410 to the
following:

39

For some reason, scrolling has become the
BASIC programmer’s dream and nightmare.
Despite the great effects it creates, it’s not easy
to get scrolling working from BASIC.

5416 DATA
ddddddd

Jp L_llfdlf,
IGHGHGH

L
,IJIJIJiJIJIJIJxJ,K
LKLKLKLKLKLKLKL

If you RUN the program with this change
you’ll notice that, despite the fact that we’ve
changed some of the CTRL characters to
letters, we still get the invader characters
on the screen, only in different colors. To
figure out what’s going on, look up the in-
ternal values of the characters in Line 5410
and compare them to the internal values of
the CTRL characters.

In graphics modes one and two, only the
values between zero and 63 are used to de-
termine the character. By adding 64, 128
or 192 to these values, you simply specify
a different color for the character. You
might like to play around with the charac-
ters in Line 5410 to see what I mean. When
you’re done, leave them as they are in the
above line. It’s nice for each type of invader
to have a color of its own.

Before we go on to the next stage of our
game program, a few words about your
own games. Even though we're using
different colored invaders in this game,
each invader only has one color. What if
you want to use more than one color in
each character? Is it possible? Yes, and
there are a number of different ways to go
about it.

In graphics mode zero, there is some-
thing called “‘artifacting” that will allow
you to have more than one color per
character. In this mode, the dots in even-
numbered columns have a different color
than the dots in odd-numbered columns.
Two dots side-by-side make a third color
(white, usually). Along with the back-
ground color, this gives you a total of four
colors instead of the usual two. The only
problem is you have to be careful of where
you place your dots. As an exercise, try
redefining a couple of graphics mode zero
characters so that one is all even-column dots,
one is all odd and the other is a mix.

The other way to get multi-color charac-
ters is through the use of a special graphics
40

mode called ANTIC mode four. In this mode,
each dot can have one of four colors also, but
you don’t have to worry about odd and even.
Also, the dots get their colors from the color
registers, whereas the colors in artifacting
come from a trick, and you can’t change one
of them without changing the rest.

To get four colors in ANTIC mode four,
each dot is two bits wide instead of one.
These two bits can hold a value between zero
and three, which specifies the color register.
So, when designing characters in this mode,
you must keep in mind that each dot is two
bits wide instead of one and has three ways
of being “on” instead of one. Otherwise, the
procedure for redefining characters is exact-
ly the same. As far as getting to the mode
in the first place, that has to do with Display
Lists, which we’ll be getting to in the future.

So much for that. Our next step in
programming our game is to get the invaders
moving back and forth across the screen. Un-
fortunately, here we run into a problem. The
only way to move things using character
graphics alone is to move them a whole
character at a time. This means that charac-
ters will appear to jump across the screen in-
stead of moving smoothly. That’s not good.
We want our invaders to move one tiny step
at a time. So how do we solve this dilemma?

Actually, there is a way to do it with charac-
ter graphics. If we design eight versions of
each character, with each version being shift-
ed to the right one dot, then we can get
smooth movement by switching between
these different versions. Well, this may be a
good solution in some instances, but not in
ours. Don't forget that we're using fourteen
different characters for the invaders and the
invader explosion. Eight versions of each
would mean a total of 112 characters. Not only
is that most of the character set, but it’s also
more than the 64 we're allowed in graphics
mode one.

Besides, even if we could have that many,
we would also have to have eight versions of
INVS, which would take up almost 4K of
memory alone. Nope, this technique is just
not going to work for us here. Instead, we’re

going to use something that I'm sure you
know about but haven’t been able to use much
before: fine scrolling.

Scrolling

For some reason, scrolling has become the
BASIC programmer’s dream and nightmare
at the same time. Despite the great effect it
creates in even the simplest programs, it
seems that it’s not too easy to get scrolling
working from BASIC. Well, by the end of this
discussion, fine scrolling will be just as easy
as a simple POKE or two.

Instead of spending time looking at exact-
ly what fine scrolling is and how it’s done,
let’s jump right into an example. After we’ve
got something up and running, we’ll come
back and take a look at the details. For now,
delete lines 5420, 5430 and 5440 from the
program we just created, and then add the fol-
lowing lines:

28 GOTO 3B8ie

1886 K=USR(ADR(MOVMEMS),
ADR(INVS) +5B, MEML,239)
1688 5B=240%(5B=0)

1288 IF COARSE=4 OR COAR
3E=—2 THEN CHANGE=-CHANG
E:POKE 1791,129-PEEK(179
13

1338 SCROLL=SCROLL+CHANG
E

1X48 IF SCROLL}>15 THEN S
CROLL=SCROLL-16:COARSE=C
DARSE+2:POKE 17906,2:G0T0
1360

1358 IF SCROLL{® THEN SC
ROLL=SCROLL+16:COARSE=CO
ARSE-Z:POKE 17986,2

1366 POKE 1788,SCROLL:PO
KE 1787,1

1388 IF PEEK(1798)<{>8 TH
EN 1388

1398 GOTO 1666

3818 POKE 559,68

Z048 DIM VBLOFF$(28):G0S
UB 29080:VBLOFF$=MLANGS
3168 FOR SEC=6 TO 1:Gc0S5U
B 31666+10%SEC

3176 X=USRCADR CMOVMEMS) ,
ADR (MLANGS) ,CA-256+98%SE
C,LEN(MLQNGg)-l):NEHT SE

c

4880 GRAPHICS 17:POKE 55
2,8:POKE 756,CB+2

5818 DLIST=PEEK(568)+PEE
K(561)%*256

5828 POKE DLIST+3, 86
5830 FOR LINE=2 TO 12:PO
EENELIST+4+LINE,22:NEHT

NOVEMBER A.NL.A.L.0O.8. Computing

9270 SCROLL=0:CHANGE=1:5
B=8:COARSE=8

5268 POKE 559,34

9298 POKE 54276,0

5368 POKE 1789,08:P0OKE 17
98,0:POKE 1791,128

5468 GOSUB I1506:X-LUSRCA
DRI{MLANGS) ,CA-256)

9498 GOTO 16066
29008 MLANGS="hiFHl F1I/ \[

ECELIN \Ee'':RETURN
h

31008 MLANGS="

vll/m)/L_F]" : RETURN
31568 MLANGS="hhTh[E/ \[
$'"":RETURN

Before I get into an explanation of what we
just did, we need to take a look at exactly
what scrolling is in the first place. “Easy
stuff,” you say, “it’s just moving things
around on the screen.” Yes it is, but it’s the
way things are moved that counts. As you
probably know already, you can move charac-
ters around the screen simply by printing
them in different positions. Unfortunately, the
kind of movement that results isn’t exactly the
smoothest thing in the world, and it’s also
very slow. There’s another way to get the
screen to move without actually moving the
objects on the screen. This method involves
something called the “display list,” which you
may have heard of, and is the heart of fine
scrolling.

The Atari computers do something that no
other home computer that I know of allows
you to do: put the screen data anywhere in
memory. You can put the whole screen in one
place, or break it up into two or more pieces
and put each piece in a totally different place.
You can even put two or more of these pieces
in the same place, thus making things appear
in two or more places on the screen (think
that one over).

All of this is because of the display list,
which we'll cover in excruciating detail in the
next column. For now, suffice it to say that
you can specify a different screen memory
location for each line on the screen. In a regu-
lar graphics mode screen, a location is speci-
fied for the first line, and the rest of the screen
is assumed to come right after the date for
NOVEMBER A.NLA.L.0O.8. Computing

Game
Design

Worksh

that line.

Okay, so we’ve now specified where the
screen memory can be found. Let’s suppose
that the number 1234567890 is on the
screen, starting at the top left-hand corner.
What would happen if we now added one to
the screen memory address? Screen memory
would then start at the location that the “2”
is stored in, right? And what effect would that
have on the screen? The “2” will now be in
the top left-hand corner, and the whole screen
would have appeared to shift to the left by one
character (the “1”” will have disappeared off
the left-hand side). Similarly, if we had sub-
tracted one from the address, the screen
would have shifted to the right by one.

This relatively simple concept is the whole
basis of scrolling. Each time you want to
scroll by one character, you just add or sub-
tract one to the screen memory addresses in
the display list (if you don’t want a particu-
lar line to scroll, you just leave the screen
memory address for that line alone).

What if you want to scroll up or down in-
stead of left or right? Let’s suppose you were
using graphics mode one, where there are 20
characters on a line. Scrolling up by one
character would then be the same as scroll-
ing left 20 characters, and scrolling down one
the same as scrolling right 20. Can you see
why? Adding or subtracting 20 from the
screen memory addresses moves screen
memory to the next or previous line respec-
tively, since the lines are stored one after the
other in memory. It’s as simple as that.

Fine scrolling

Who cares about scrolling by one charac-
ter anyway? Wasn’t the whole point of this
column to learn how to scroll by less than a
character, a task called “fine scrolling”? Yes,
and fine scrolling is actually easier than
scrolling by one character (called “coarse
scrolling™). The problem is, you can only fine
scroll by up to two characters (graphics mode
one size). To do more than that, you have to
combine fine scrolling with coarse scrolling.
Before we get into that, however, let’s look
at how to fine scroll.

There are actually only two relatively sim-
ple steps to fine scrolling. The first is to de-
cide which lines you want to fine scroll and
then make some changes to the display list
so that the computer knows which ones too.
The second step is nothing more than a sim-
ple POKE to tell the computer how much to
scroll. That’s it.

But like I said before, the most you can
scroll a line is two characters horizontally and
two characters vertically. To get continuous
fine scrolling, the trick is to fine scroll by two
characters (although some prefer only to
scroll by one), then coarse scroll by two and
reset the fine scrolling at the same time. This
has no visible effect on the screen (since the
coarse scrolling moves moves the screen two
characters in one direction, and resetting the
fine scrolling moves it two characters in the
opposite direction), but you are no longer at
your fine scrolling limit and can now go
ahead and fine scroll two more characters.
By repeating this process, you can fine scroll
forever if you want to.

Are you suffering from information over-
load? Perhaps it’s time to go ahead and ex-
plain the above program lines, since they give
an example of everything we just talked
about.

90; We're going to start by going off to the
end of the program and getting everything all
set up. The stuff that actually gets done dur-
ing the game will come earlier on in the pro-
gram listing, because Atari BASIC is set up
to do the things that come early faster.

1000; This is the routine to move the in-
vaders from INVS to the screen. Apart from
moving it to here, we’ve also changed it so
that the variable SB will determine the screen
version that will be printed. SB is equal to
zero for the first screen (ADR(INV$)+0=
INV$(1,1)) and, for now, 240 for the second
screen (ADR(INVS$)-+240=INV$(241,241)).

1080; After we print a particular screen,
we want to change SB so that the other screen
will be printed next time around. This line
simply switches SB between zero and 240.
(SB=0) is equal to one if SB=0 and O if
SB< >0.

a1

When you fine scroll horizontally, the computer
makes each scrolling line longer than 20
characters per line.

1280; COARSE is a variable that we use
to keep track of how many characters we've
coarse scrolled by so far. We are only wor-
rying about moving the invaders from side
to side at this point, and we want to make
sure that they don’t go off the edge of the
screen. So, we change the direction that
they’re scrolling in when COARSE gets too
high (they’ve reached the right-hand limit) or
too low (they’ve reached the left-hand limit).
CHANGE tells what direction they’re going
in and is equal to one for right and minus one
for left. Location 1791 is used in the machine-
language scroll routine (called SCROLL) and
also keeps track of direction. It is equal to
128 for right and one for left. We'll be going
into more detail on exactly how SCROLL
works later.

1330; The variable SCROLL keeps track
of the amount of fine scrolling that has been
done. I mentioned before that there is a
memory location that takes care of fine scroll-
ing. Actually, there are two. HSCROL at lo-
cation 54276 takes care of horizontal scrolling
and VSCROL at location 54277 takes care of
vertical scrolling. As it turns out, our
machine-language SCROLL will take care of
both of these locations, but regardless of this,
you can only POKE them, you can’t PEEK
(well you can, but you won’t get the same
values you POKEd). That means that you
have to keep track of their values in your own
variables, which is what the variable
SCROLL does.

1340; When we have fine scrolled 16 times,
we will have gone past the fine scrolling limit
and must do a coarse scroll. In this line, we
reset the variable SCROLL (which we will
later use to reset the fine scrolling) and up-
date COARSE. Location 1790 tells our
machine-language routine that we want to
coarse scroll by two characters in the direc-
tion specified by location 1791 (see line
1280). Having taken care of all of these, we
then skip ahead to line 1360.

1350; If we’re scrolling in the other direc-
tion, then we want to do the exact opposite
when we’ve fine scrolled down to zero. We
set the variable SCROLL to 15, update

42

COARSE in the opposite direction, and again
set location 1790.

1360; Location 1789 tells the machine-
language routine the value to store in
HSCROL, and if the value in location 1788
is not zero, then the routine knows that some-
thing needs to be done.

1380; Now we wait until the routine is
finished.

1390; And then we go back to line 1000 to
do the whole thing all over again with the next
invader screen.

3010; We're going to be making some
changes to the display list, so we turn off the
screen temporarily to avoid a mess.

3040; VBLOFF$ will hold a machine-
language routine that is used to turn off our
VBLANK routines. SCROLL is a VBLANK
routine, so we may as well set up and in-
troduce VBLOFF now.

3160-3170; Here we set up SCROLL itself.
The way that SCROLL works, it has to be
stored in memory, not in a string. But it has
been designed so that it can go anywhere in
memory, so we’ll put it right below the
character set, since we’ve already made sure
that part of memory is reserved.

4000; Now we actually set up our initial
graphics mode and tell the computer where
the character set is.

5010; We find out where the display list is.

5020; And change the first line (the one
that also tells where screen memory is) to a
fine scrolling line.

5030; Now we change the next 11 lines as
well.

5200; Our changes are complete, so we
turn the screen back on.

5270; Here we initialize our variables (their
uses are explained in the earlier part of the
listing).

5290; This just makes sure that the scroll-
ing register is initially zero.

5360; Now we initialize the machine-
language routine SCROLL.

5460; This turns on SCROLL. The
CA-256 in the USR command is to tell where
SCROLL is located in memory.

5490; We're all done setting things up, so

go and start the actual movement routine.

29000; This is VBLOFE

31000; This is SCROLL.

31500; This is SCRLON, the routine to
turn on SCROLL.

If you're curious about SCROLL, the
machine-language routine that we’re using
here, you may wish to skip ahead and take
a look at the complete explanation of it. I'm
leaving it until the end because at this point
it should be fairly straightforward as to how
it is used in our program, and there are more
important problems that I'm sure you’ve al-
ready run across that I feel should be ex-
plained first.

Assuming you’ve made the previous addi-
tions to the program and have gotten it run-
ning, you’re probably wondering what’s going
on. After all, the invaders are no longer neat-
ly lined up on the screen any more, are they?
Don’t worry, you didn’t do anything wrong.
The problem comes from the fact that we are
now fine scrolling.

When you fine scroll horizontally, the com-
puter makes each scrolling line longer than,
in the case of graphics mode one and two,
20 characters per line. To be exact, it makes
these lines 24 characters long (48 in graph-
ics mode zero). Why?

Let’s suppose you scroll a normal width
line two characters to the right. What is the
computer supposed to put on the left edge of
that line? The same is true for scrolling to
the left. The computer has to have two extra
characters on either side of each scrolling line
in order to have something to scroll onto the
left or right side of the line. Thus the extra
four characters. When we set up INV$, we
thought there would only be 20 characters on
a line, and that’s why the invaders are now
spread all across the screen.

Our solution? We change the program so
that INVS is set up with 24 characters per line
instead of 20. We'll do this by adding two
spaces at the beginning and end of each line:

1886 X=USRCADR (MOVMEMS) ,
ADR (INVS$) +5B, MEM1,283)
1888 S5B=288%*(5B=08)

NOVEMBER A.NLA.L.O.3. Computing

38036 DIM MLANGS(98) ,INVS
(5763 ,DATS(16)

5370 INUS="#'":INUS(576)=
e TNUS (2)=INVS

5398 FOR LP=8 TO 4 STEP
2:READ DATS:INUS(LP*48+3
JLP¥48+18)=DATS: INVS(LP*
48+339,LP*48+354)=DATS
5400 READ DATS:INVUSILPX4
8+51,LP¥*48+66)=DATS: INVS
(LP¥*48+291,LP*48+3066)=DA
T$:!NEKT LP

Here’s the explanation of these changes:

1000-1080; We've added four characters to
each of the 12 lines that make up each screen,
so we have to add 48 (4*12) to the values in
these lines.

3030-5370; An additional 48 characters per
screen, times two screens, means an addition-
al 96 characters altogether for INV$.

5390-5400; What have we done here?
We’re multiplying LP by 48 now (24*2), have
shifted the beginning position of each row of
invaders by two to give us the extra two
spaces at the beginning of each line, and the
second screen now begins an extra 48 charac-
ters into the string.

How do things look now, a little better? As
you can see though, there’s still a problem.
As the invaders scroll to the right, a pair of
characters that don’t belong appear at the top
left-hand corner of the screen. Before I tell
you why and how to correct it, I'd like you
to think about it. You should be able to come
up with the answer yourself, based on every-
thing we’ve talked about so far.

Give up, or did you figure it out? Either
way, the problem comes from the fact that the
computer is trying to scroll on information
that doesn’t exist. When you first set up a
graphics mode, the computer sets aside an
area of memory for use as screen memory.
The memory right before this screen memory
usually holds the display list. Anyway, when
you coarse scroll far enough so that screen
memory now begins before the point it origi-
nally began at, you start getting strange stuff
appearing on the screen.

That’s our problem now. How do we get
rid of it? We can do one of two things. If we
NOVEMBER A.N.A.L.O.8G. Computing

Game
Design

Worksh

change things so that the first line on the
screen doesn’t scroll, and start printing our
invaders on the second line, we’ll be okay.
This way, we would be backing up screen
memory into the first line, which we know
is full of spaces.

The other way is to change the initial screen
memory address so that it points ahead in
memory. That way we know the memory be-
fore it (which used to be screen memory) is
also full of spaces. Which of these methods
is best? In this case I tend to favor the second,
because it’s just a little easier to do and also
because it will come in handy later in the pro-
gram. Also, with the first method you don’t
get to use the first line for scrolling. As it
turns out, we won’t want to anyway, but it is
something to keep in mind. So, without any
further ado, here are the changes necessary
to move the screen memory forward:

5838 L=PEEK(DLIST+4)+44:
POKE DLIST+5,PEEK(DLIST+
5)+(L>255) :POKE DLIST+4,
L-256%(L>255)

5046 FOR LINE=2Z TO 12:PO
KE DLIST+4+LINE,22:NEXT
LINE

5186 MEML=-PEEK(DLIST+4)+
PEEK(DLIST+5)#256

And, of course, the explanation.

5030; Here we make the changes to the
screen memory address, which is stored at
the beginning of the display list. See next
month’s column to have this make more sense
to you.

5040; This is just the old line 5030.

5180; We now find out where screen
memory is from the display list, not the oper-
ating system (which is what locations 88 and
89 are for).

Ta-da! We're now all cleaned up and look-
ing good. This is all we’re going to do with
the invaders for now. It will make life easier
for us later when we’re figuring out some of
the logic. As a matter of fact, we won’t pro-
gram them to move down the screen until
we're almost finished with the program. For
now, it’s important that the invaders just go

back and forth forever so that we can keep
them under control.

Even though we’re done with the program-
ming part of this column, there’s still more
do discuss. First of all, I should explain
SCROLL, as promised. SCROLL is a
VBLANK routine to do fine and coarse
scrolling for you. VBLANK stands for Ver-
tical BLANK, which happens 60 times a se-
cond and is the time during which the
electron beam is on its way from the bottom
of the screen back to the top (see the column
on Video Magic).

During VBLANK, there are no changes
being made to the television screen, so it is
a good time to make changes to the display
list and screen memory. In this case, we're
making changes to the display list. If we did
not make these changes during VBLANK,
the screen would “‘jump” while you were
making them. Anyway, this is all just to satis-
fy your possible curiosity; you don’t have to
worry about the details since I've already
taken care of them for you. All that you have
to deal with is how the SCROLL routine is
used.

You’ve seen in the above program listings
how to set SCROLL up and turn it on. Once
you turn it on, it will just sit and wait for you
to tell it what to do. And how do you tell it
what to do? By setting two or more of five
memory locations. Here are those locations
and their meanings:

1787; This location tells SCROLL when
you want to do something. You set it to one
after you’ve set the next four locations (em-
phasis on the “after”).

1788; This location is used to set the
horizontal fine scroll register. Just store the
value you want in the register here (and then
set location 1787 to one).

1789; This is the same as 1788, except for
the vertical fine scrolling register.

1790; This location is used to specify the
number of bytes you want to coarse scroll by.
Set it when you’re ready to coarse scroli.

1791; Finally, this location is used to tell
SCROLL what direction to coarse scroll in.
Set it to one for left and up, and 128 for right

43

and down.

Every VBLANK, SCROLL will check lo-
cation 1787 to see if it’s set to one. If it isn’t,
then that’s all SCROLL does. If it is, then
it takes the values in locations 1788 and 1789
and stores them in the fine scroll registers.
Then it checks to see if location 1790 is equal
to zero, in which case it sets location 1787
back to zero and stops. If it isn’t set to zero,
then that means you want to coarse scroll, so
it goes through the display list and updates
all the fine scrolling screen memory address-
es. Then it sets locations 1787 and 1790 back
to zero and waits for your next command.

Let me answer a question that you may
have: Why can’t the fine scroll registers be
changed directly? Why does SCROLL have
to do it? Well, it doesn’t. Try making this
temporary change to our program:

1355 POKE 54276,S5CROLL

Now you’re changing the horizontal fine
scroll register directly. Do you notice the oc-
casional flicker on the screen? That’s why we
use SCROLL for this.

screen. The solution is also similar to that
for horizontal scrolling, and it is to add an
extra line at the bottom of the screen, one that
does not scroll.

This line then tends to act as a buffer and
gives the screen a place to get the extra in-
formation from. So when you’re setting up
your display list for a screen that is to be fine
scrolled vertically, remember to add an ex-
tra line at the bottom of the screen, one that
isn’t set up for scrolling.

The last thing we’re going to cover here is
how to set up screens for games like Scram-
ble and Eastern Front, where they are much
larger than the display screen. For example,
let’s suppose that you want to design a game
in graphics mode one where the entire game
screen is 40 characters wide and 48 charac-
ters high (two display screens wide by two
high). First of all, this means that you will
need four times as much screen memory as
a regular graphics mode one screen. How do
you get this memory? One way is to just
reserve it at the top of memory, just like you
reserve space for a character set. There is,
however, an easier way, at least in this case.

Table 6 MODE 0 1 2
BYTES/ROW 40 20 20
NO. OF ROWS 24 24 12

TOTAL SCREEN BYTES
TOTAL MODE BYTES
(NORMAL SCREEN) 992
(SPLIT SCREEN) =

960 480 240
672

674

420
424

3 4 5 6 7 8 9-11
10 10 20 20 40 40 40
24 48 48 96 96 192 192

240 480 960 1920 3840 7680 7680
432 696 1176 2184 4200 8138 8138
434 694 1174 2174 4190 8112

It’s now time to take care of a few details
about scrolling that BASIC invaders doesn’t
really get into. First of all, our demonstra-
tion game does not use vertical fine scroll-
ing, and chances are that may not be the case
with a game of your own. We've already seen
that vertical scrolling is basically the same
as horizontal, with the exception that we have
to coarse scroll by a whole line instead of one
character.

But there is also another difference be-
tween the two. You recall that we ran into the
problem of needing a wider screen for our
horizontal scrolling. The same type of
problem exists with vertical scrolling, except
it is only a problem at the bottom of the
a4

In Table 6 you’ll find a chart that lists a
whole bunch of information about the vari-
ous graphics modes. One of these pieces of
information is the amount of screen memory
that the graphics modes use, and you’ll see
that graphics mode one uses 480 bytes
(20*%24). We need enough memory to store
48 lines of 40 characters each, or a total of
1920 bytes.

Looking at the chart again, we see that
graphics mode six happens to use 1920 bytes
for screen memory (usually you won't get an
exact match, so you'd pick whatever mode
came closest without going under). So if we
set up a graphics mode six screen, we’ll have
the right number of bytes already set up for

Workehi

us. Of course we will have to change the dis-
play list but, as you’ll see in next month’s
column, that’s a piece of cake.

Once screen memory has been set up, the
next step is set up the display list so that ev-
ery line (except the last one, remember) is
set to scroll vertically and horizontally, and
also specifies a section of screen memory.
Each of these screen memory addresses will
be 48 bytes past the previous one, since that’s
how long our new lines are.

The final step before we actually begin to
scroll is to set up the screen data in screen
memory. This is just a matter of figuring out
how you want the screen to look on paper (or
design it a display screen at a time on the
computer). From there, transfer the data into
a string (remembering that the first 48 bytes
of the string will be the first line of the
screen), and then use MOVMEM to move the
string data into the screen memory.

With all this taken care of, you’re now
ready to scroll around your new giant screen.
This is the easy part, since SCROLL takes
care of all the work for you. All you have to
do is tell SCROLL when to scroll, and also
keep track of how far you’ve scrolled, both
vertically and horizontally, so you don’t run
off the edge of your screen. You can do this
very simply by keeping two variables, say
VCOARSE and HCOARSE. At any given
time, these variables should show how many
bytes you’ve scrolled down and how many
you've scrolled right, respectively (you
should update them every time you coarse
scroll, just like we updated COARSE in our
previous program).

In the case of our example, you don’t want
VCOARSE to get greater than 24, or
HCOARSE to get greater than 16. Why not
48 and 40?7 When VCOARSE gets to 24, 24
lines will have already scrolled off the screen
and there will be 24 lines on the screen, for
our total of 48. Similarly, when HCOARSE
gets to 16, 16 lines will have scrolled off the
screen, and 24 will be on, for our total of 40.

Well, that about does it for fine scrolling.
Of course, I still haven’t explained the dis-
play list. We’ll cover that topic next month.

=

NOVEMBER A.NL.A.L.O.G. Computing

How to read the Memory Map

Beginning users: Read the text that is
printed in bold type only. These memory
locations will be the easiest for you to use
and usually don’t involve assembly
language.

Advanced users: Read everything! Many
areas of memory are not of any practical
use, but you can learn a lot about how a
computer works by reading the boring
parts.

RUNSTK
142,143 008E,008F

This one is a pointer to the runtime stack.
What is a “runtime stack™? Let’s start off
with a quick explanation of a stack.

Ever seen a stack of trays in a cafeteria?
Customers take trays off the top; cafeteria
people put trays on the top. If you’re not
lucky, there’ll be a mad rush of people, and
by the time you get to the stack there will
be none left, and the cafeteria people will
be nowhere to be seen. Well, a computer
stack is the same thing, except it uses
memory locations instead of trays, and
there are no cafeteria people. A special
memory location is used to point to the cur-
rent top of the stack.

Now you know what a stack is, so let’s
talk about the runtime stack. Runtime just
means that it’s used while the program is
running. When you use a GOSUB or a
FOR/NEXT loop, BASIC has to be able
to remember certain things, so it puts them
on the stack until it needs to refresh its
memory. Now you need to know what ex-
actly gets put on the stack.

For each GOSUB encountered, four
bytes are put on the stack (they are taken
off when BASIC RETURNs from the
subroutine). The first byte is a zero and
tells BASIC that this is a GOSUB. The se-
cond and third give the line number that

NOVEMBER A.NL.A.L.O.BG. Computing

the GOSUB was on, and the last one is an
offset into the line so that BASIC knows
where to continue from after the
RETURN.

FOR/NEXT loops are a little more com-
plicated; they require 16 bytes to be put on
the stack. The first six bytes give the num-
ber (in BCD) that the counter in the loop
can go up to. The second six give the STEP
value (also in BCD). The 13th byte gives

the variable number plus 128 of the coun-
ter variable. The next two give the line
number that the FOR statement was on,
and the last one gives the offset within that
line of the FOR. These values remain on
the stack until the FOR/NEXT loop is
complete.

There is one exception to the preceding
two paragraphs. A BASIC POP staiement
will take the top entry off the stack, be it
a GOSUB for a FOR/NEXT. You should

a5

make sure you POP the stack if you have
to leave a FOR/NEXT loop before it’s
finished or a GOSUB before the RETURN.

Don’t forget that the stack is constantly
changing, so its size will vary.

Lastly, since the beginning of the run-
time stack is also the end of the string/array
area, BASIC also calls it ENDSTAR.
Okay?

MEMTOP
144,145 0090,0091

Two uses for this one. First, relevant
to the last location, MEMTOP is also
called TOPSTK and points to the end of
the runtime stack. Since the runtime
stack is the last section of memory used
by your BASIC program, MEMTOP is
a pointer to the end of your BASIC pro-
gram (which makes sense, right?). The
memory locations from the address in
MEMTOP plus one, all the way up to the
display list (see SDLSTL [560,561]), are
free for your use (but don’t forget that
the value in MEMTOP will change dur-
ing program execution, since the run-
time stack will be growing and
shrinking).

For those of you who are still alert,
don’t confuse this MEMTOP with the
MEMTOP at 741 and 742. This is the
BASIC MEMTOP; the other is the OS

MEMTOP.

The BASIC cartridge uses locations
146 to 202 for various uses, not all of
which are worthwhile reporting on—
with the following exceptions, of course:

FORLN
160,161 00A0,00A1

FORLN holds the line number of the
current FOR statement encountered.
For example:

100 FOR X=1 TO 25
110 NEXT X
120 PRINT PEEK(160)+PEEK(161)*256

a6

LSTPNT
173,174 00AD,00AE

List pointer. Contains the location of
the line being LISTed. When you just
type LIST, you find 32767 here.

DATLN
182 00B6

Points to the number of the item wi-
thin the DATA statement. This means we
are currently reading the first number,
the second, etc. Try this program:

10 FOR 1=1TO 8

20 READ A

30 ? PEEK(182)

40 NEXT |

50 DATA 1,2,3,4,5,6,7
DATALN
183,184 00B7,00B8

DATALN holds the line number of the
DATA statement that was last READ. For
example:

100 READ A
110 PRINT PEEK(183)+PEEK(184)*256
1000 DATA 10

You can use DATALN in an error-
trapping routine to find out where a
READ error occurred.

STOPLN
186,187 00BA,00BB

STOPLN holds the line number that
the program was on when the program
stopped, the BREAK key was pressed or
an error was trapped. It is also useful
in error-trapping routines. Now for our
example:

100 TRAP 30000
110 NEXT Y
30000 PRINT PEEK(186)+PEEK(187)*256

ERRSAV
195 00C3

This location holds the number of the
error that was trapped or caused the
program to stop.

PTABW
201 00C9

When you print a whole bunch of
items and separate them by commas in
the PRINT statement (like PRINT
A,B,C$), they get printed on the screen
with a bunch of spaces in between them,
right? Well, PTABW tells how many
spaces to separate them by. In technical
terms, that means it tells how many
spaces there are between each tab stop
on the screen (see TABMAP [675 to 689]
if you want to set tabs for the TAB key).
It can be set to any value from three to
255 but is initialized to ten. Let’s look
at an example:

100 PRINT 1,2,3
110 POKE 201,5
120 PRINT 1,2,3

SYSTEM RESET doesn’t restore
PTABW to its original value; GRAPH-
ICS doesn’t; nothing does. This is a very
durable location.

Pokeing a zero here will cause the
Atari to lock up shop when it encoun-
ters a comma in a PRINT statement.

BININT
202 00CA

If you put anything other than a zero
here, then going into the immediate
mode (i.e., SYSTEM RESET, BREAK
or the program ending) causes the pro-
gram currently in memory to erase
itself—yet another fun way to prevent
people from looking at your program (I
personally like this one; it’s devious).

Noname
NOVEMBER A.N.A.L.O.B. Computing

A floating point register is just a plice used to
hold floating point numbers while operations are
performed on them.

203-209 00CB-00D1

These locations are free, free, free for
your use if you’re programming in BASIC.
If you’re using a different language, check
the accompanying documentation to find
out which page zero locations it leaves free.

Noname
210,211 00D2,00D3

These two locations are reserved for BA-
SIC, which means they have no specific use
but you should stay away from them.

The floating point package

The remaining page zero locations from
212 to 255 are used by the OS’s floating
point package, a whole bunch of subrou-
tines that BASIC uses when doing math and
that kind of stuff. The routines themselves
are stored in the OS ROM, so if you don’t
use them at all in your program, these lo-
cations will be free. Don’t count on it
though, even if you think you’re not using
the routines. They can sneak up on you
when you least expect it.

Floating point math uses six-byte BCD,
which was explained briefly under location
VVTP (134,135). See the section in “De
Re Atari” on the floating point package for
more information.

Unfortunately, the listing for the float-
ing point package is mighty hard to come
by, so some of these locations are going to
have real short explanations. My apologies
to you, and my thanks to the OS Manual
and Mapping the Atari for the information
I couldn’t find anywhere else.

FRO
212-217 00D4-00D9

Floating point register zero. A floating
point register is just a place used to hold
floating point numbers while operations are
performed on them (it may also hold a par-
tial result of an operation). They are all,
including FRO of course, six bytes long,
since they must hold a six-byte BCD

NOVEMBER A.N.A.L.O.G. Computing

representation of the number.

FRO is also used by the USR command.
Remember that USR has the format
X=USR (address [,argument][,...]) where
X can be any variable and the arguments
are optional. If you want your machine-
language routine to give a value to X, you
should store that value in the first two bytes
of FRO (212,213 —low byte and high byte
respectively) before your RTS statement.
BASIC will automatically convert these
bytes into a floating point number and store
it in X (or whatever variable you used for
the call). If you’re not using BASIC, you
can use FRO yourself to convert binary
values to floating point and vice versa. Put
the binary number in locations $D4 and
$D5 and then JSR $D9AA to convert to
floating point (the result will be stored in
FRO). To convert back, JSR $D9D2. Note
that you can’t use these routines from
BASIC since BASIC is constantly using
FRO and will mess up your values.

FRE
218-223 00DA-00DF

This isn’t very well documented, but it
appears to be an extra floating point
register.

FR1
224-229 00EO-00ES

Floating point Register 1. FR1 has the
same format as FRO and is often used in
conjunction with it, especially for two-
number arithmetic.

FR2
230-235 00E6-O00EB
Floating point Register 2.

FRX
236 00EC

A single-byte register used for single-
byte calculations.

EEXP
237 00ED

The value of the exponent (E). I suspect
this is the exponent of the floating point
number currently being processed, but this
is only a suspicion.

NSIGN
238 00EE

The sign of the floating point number
(same suspicion as above).

ESIGN
239 00EF
The sign of the exponent in EEXP (237).

FCHRFL
240 00F0

The first character flag. Your guess is as
good as mine.

DIGRT
241 00F1

The number of digits to the right of the
decimal point (zero to eight).

CIX
242 00F2

An offset into the text buffer pointed to
by INBUFE.

INBUFF
243,244 00F3,00F4

Finally something that can be under-
stood! There are times when BASIC has
to convert an ATASCII representation of a
number to the corresponding floating point
value (like when you type in X=1000). IN-
BUFF points to a buffer used to hold the
ATASCII representation. The result gets
stored in FRO. See LBUFF (1408 to 1535)
for the buffer itself.

a7

ZTEMPI
245,246 00F5,00F6
A temporary register.

ZTEMP4
247,248 00F7,00F8
Another temporary register.

ZTEMP3
249,250 00F9,00FA

Still another temporary register (will it
never end?).

RADFLG

251 O00OFB

RADFLG determines whether the
trigonometric functions (SIN, COS, etc.)
are performed in radians or degrees. If it’s
zero, then radians are used. If it’s six, then
degrees are in fashion. SYSTEM RESET
and NEW both restore RADFLG to radi-
ans (zero).

BASIC also calls this location DEGFLG.

FLPTR
252,253 00FC,00FD

FLPTR holds the address of the float-
ing point number that the package is now
operating on. FLPTR and FPTR2 (to fol-
low) point to the addresses where the
results of the current operation will be
stored. The documentation is sketchy
though, so I'm just making an educated
guess.

FPTR2

254,255 OOFE.00FF

FPTR2 holds the address of the second
floating point number that the package is
operating on.

Page one
Locations 256 to 511 are called page one
and have a very important use. They make

a8

up the stack for the OS, BASIC and DOS
(see RUNSTK at locations 142 and 143 for
an explanation of what a stack is). On
powerup (and on SYSTEM RESET), the
stack pointer is set to 511. Each time a
machine-language JSR or PHA (PusH Ac-
cumulator on stack) instruction is execut-
ed, data is put on the stack and the pointer
moved downward accordingly. When an
RTS or PLA (PuLI Accumulator from
stack) is executed, the corresponding data
is pulled off the stack and the pointer
moved back up. Since the stack pointer
(which is a special location built into the
main part of the computer) is just one byte,
if you try and move it below location 256,
it will wrap back around to Location 511
and vice versa.

Pages two through four

Locations 512 to 1151, as you will see, are
used by the OS as a workspace. Some are
used for variables, some for tables, some
for vectors, some for buffers and some just
for miscellaneous stuff. Now, a few words
on using these locations. Don’t, unless the
description says you can! A lot of them are
very important to the OS, and if you mess
with them, they may cause the computer
to crash, which you don’t want to happen.
Keep in mind, though, that no matter what
you do, you can’t hurt the computer (un-
less you throw it at a wall in frustration).
You’ll just hurt your program.

Also, be careful of locations that don’t ap-
pear to be used. Atari has warned that these
locations may be used in future versions of
the OS, so stay away if you want to make sure
your programs will work on all machines.

Let’s jump right into page two. The first
42 bytes are used for interrupt vectors, so
we'd better take a quick look at interrupts.
As you remember, we first saw interrupts at
location POKMSK (16). If you don’t remem-
ber, go back and reread that section. I'll wait
for you here. . ..

Back again? Okay, so now we have the ba-
sic idea of what an interrupt is. The fype of
interrupt we saw at POKMSK is called an In-
terrupt ReQuest (IRQ). There’s another kind

of interrupt called a Non-Maskable Interrupt
(NMI). What’s the difference? Well, there’s
an assembly-language command called SEI
(SEt Interrupt disable). It tells the 6502 (the
main chip) to ignore IRQ-type interrupts. Un-
fortunately, it can’t tell the 6502 to ignore the
NMIs. They are taken care of by another
chip, called ANTIC, and so ANTIC is where
you must go if you want to ignore NMIs.

The NMIs consist of the Vertical Blank In-
terrupt (VBI), the Display List Interrupt
(DLI) and the SYSTEM RESET interrupt.
We'll be seeing the interrupt vectors for both
IRQs and NMIs in the next few locations,
along with how to use them. An interrupt
vector tells the OS where to go when the cor-
responding interrupt occurs (assuming it
hasn’t been disabled).

You might also want to look at IRQEN
(53774), NMIEN (54286) and NMIST
(54287) for more information on interrupts.

VDSLST
512,513 0200,0201

This is the vector for the Display List In-
terrupt (DLI) ,which is an NMI, as we dis-
cussed in the last location. DLIs interrupt
the screen drawing process so you can do
things like change the screen color halfway
down. They exist entirely for your benefit;
the OS doesn’t use them at all.

To get a DLI going, there are a couple
of things you have to do. First, and most
important, you have to decide what you
want the interrupt to do! Write the routine
to do it, making sure it ends with an RTI
(ReTurn from Interrupt) instruction. Next,
decide which row on the screen you want
it to occur at (it will actually occur at the
end of this row). Go into the display list
and set the leftmost bit (bit seven) of the
instruction for that row. That tells the dis-
play list that there is to be a DLI on this
row. Now tell the OS where the DLI rou-
tine is by setting VDSLST (low byte and
high byte of the routine address). Finally,
you have to enable the DLIs. Do this by set-
ting NMIEN (54286) to 192.

NOVEMBER A.N.A.L.O.G. Computing

DLIs are powerful. They can be used to change
colors, to change character sets, even to change
player/missile positions and the fine scrolling

Here’s a quick example from BASIC,
simply reversing the playfield colors half-
way down the screen:

100 GRAPHICS 0

110 DLIST=PEEK(560)+PEEK(561)*256
120 POKE DLIST+16,130

130 FOR MEM=1536 TO 1553

140 READ INSTR

150 POKE MEM, INSTR

160 NEXT MEM

170 POKE 512,0:POKE 513,6:POKE 54286
,192

180 LIST

190 DATA 72,173,198,2,141,10,212,141
,23,208

200 DATA 173,197,2,141,24,208,104,64

Make sure that the DATA is correct be-
fore you run the program. If it isn’t, the
computer might lock up. Here’s an assem-
bly listing of what those DATA statements
represent:

PHA
LDA
STA
STA
LDA
STA
PLA
RTI

0600 48
0601 ADC602
0604 8DOAD4
0607 8D17D0
060A ADC502
060D 8D18D0
0610 68
0611 40

COLOR2
WSYNC

COLPF1
COLOR1
COLPF2

Now that you know the basics, let me tell
you a few limitations. First of all, there is
very little time available during a DLI be-
fore the next row starts to get drawn. Make
your routine short. Second, because an in-
terrupt often occurs while something else
is going on (like your BASIC program run-
ning), you have to make sure that you re-
store the accumulator and the X and Y
registers if you use them. Do this by push-
ing their values onto the stack before you
use them and then pulling the values back
off before you RTI. Finally, as should be
painfully obvious to you BASIC program-

NOVEMBER A.NL.A.L.0O.G. Computing

registers.

mers by now, this is most definitely
machine-language country. It’s not very
difficult machine language, but it is
machine language.

A few notes now for the machine-language
programmers. Change the hardware regis-
ters, not the shadow registers. The shadow
registers are used to update the hardware
registers during VBLANK. Changing them
halfway down the screen won’t have any ef-
fect until VBLANK Kkicks in.

If you’re going to have more than one
DLI, then each DLI routine will have to
reload VDSLST to point to the next one.
The last one will have to point back to the
first one. Make sure in this case that you
enable the DLIs during VBLANK, or else
they may not execute in the right order.

Use WSYNC (54282) if you're changing
screen colors. When any value is stored in
WSYNC, the next command won't be execut-
ed until the TV has finished drawing the cur-
rent scan line. If you don 't use it, your colors
will change in the middle of a line and will
flicker back and forth. Try it and see for your-
self (get rid of “141,10,212” in Line 190 and
change “1553” in Line 130 to “1550”).

One other problem with DLIs is that press-
ing a key on the keyboard can cause DLI
colors to “jump” down a scan line (try it).
The solution? Well, the easiest is just not to
use the keyboard. For more complex ways
around it, you should consult “De Re Atari.”

DLIs are extremely powerful. They can be
used to change colors, to change character
sets, even to change player/missile positions
and the fine scrolling registers; so be crea-
tive. Proper use of DLIs can produce a pro-
gram that will do things you never thought
the Atari was capable of.

VPRCED
514,515 0202,0203

This one’s an IRQ vector, for an interrupt
called the “serial proceed line interrupt,”
where the word ‘“‘serial” indicates I/O to a

peripheral such as the disk drive. It is initial-
ized to 59314, which just holds a PLA and
an RTI (i.e., the interrupt is used).

VINTER
516,517 0204,0205

Another IRQ, this time for the “serial bus
I/0 interrupt.” Initialized to 59314 again be-
cause it isn’t normally used. Both VINTER
and VPRCED’s interrupts are processed by
the PIA (Peripheral Interface Adapter) chip.

VBREAK
518,519 0206,0207

IRQ again, for the machine-language BRK
command [which is not the same as the
BREAK key; see POKMSK (16) and
BRKKEY (17)]. It’s also initialized to 59314.

VKEYBD

520,521 0208,0209

From now on, if I don’t tell you what kind
of interrupt it is, it’s an IRQ, okay? There’s
a whole bunch of these suckers and only so
many ways to say ‘“here’s another IRQ.”

So here’s another IRQ. This one occurs
whenever a key other than BREAK is pressed
(START, OPTION and SELECT don’t count
because they’re buttons, not keys). It’s initial-
ized to 65470, which is the OS keyboard IRQ
routine (it makes sure that only one charac-
ter gets printed when you press a key, and
resets ATRACT [77]). If you want to put your
own routine in, this is the place to do it. Keep
in mind, however, that your routine will be
executed before the key code gets converted
to ATASCII (see the OS manual for a list of
key codes).

The following three vectors are used to
control communication between the serial bus
and the serial bus devices (serial refers to the
fact that bits are sent or received one after
the other in succession). A much simplified
explanation of this process follows. You
should consult “De Re Atari” if you need
more details.

The data being sent or received is stored

49

in a buffer. If we’re doing output, then a byte
gets transferred from the buffer over to the
serial output register (an interrupt routine
does this). SIO takes it from there and puts
it in POKEY’s serial output shift register.
POKEY then picks it up and sends it out one
bit at a time. An interrupt is then generated,
and the whole process starts over. This goes
on until the checksum byte has been sent, at
which time a “transmit done” interrupt is
generated and SIO hands control back to the
main program, which has been waiting pa-
tiently all this time.

The process is pretty much the same if
we’re receiving data, except in reverse.

VSERIN
522,523 020A,020B

This is a good one. The “POKEY serial
I/0 bus receive data ready” interrupt vector.
It means that this vector is used when the I/O
bus indicates that it has received a byte that
is now waiting in the serial input register,
ready to be moved to a buffer. The routine
in the OS to do this is at 60177, and that’s
what VSERIN is initialized to.

VSERIN is also called INTRVEC by DOS,
which changes its value to 6691, a routine in
DOS that does pretty much the same thing
as the one in the OS, except in a different
place.

VSEROR
524,525 020C,020D

The opposite of VSERIN, VSEROR is used
when the I/O bus is ready to send a byte. Its
official name is the “POKEY serial I/O bus
transmit data ready” interrupt vector, which
should make more sense this time. It is ini-
tialized to 60048, the address of an OS rou-
tine that, logically, moves the next byte in the
buffer to the serial output register (from
whence it gets sent). DOS messes with this
one too, changing it to 6691, the address of
its routine to do the same thing.

VSEROC
526,527

50

020E,020F

Another long-winded name: the “POKEY
serial I/O bus transmit complete” interrupt
vector. Since I'm sure you’re all becoming ex-
perts at interpreting these names, it should
come as no surprise that this vector is used
when all the data has been sent. It is initial-
ized to 60113, a routine that, when the check-
sum byte is sent (see CHKSUM [49]), sets
the “transmission” done flag at XMTDON
(58) and disables this kind of interrupt.

The following three locations are the in-
terrupt vectors for the POKEY timers, all of
which are initially unused and therefore set
to the PLA/RTI combination at location
59314. The timer interrupt occurs when the
associated timer counts down to zero.

For more information on the POKEY
timers, see the section on timers right before
location 53760.

VTIMRI1
528,529 0210,0211

Interrupt vector for POKEY Timer 1 (see
AUDFI [53760,53761]).

VTIMR2
530,531 0212,0213

Interrupt vector for POKEY Timer 2 (see
AUDF?2 [53762,53763]).

VTIMR4
532,533 02140215

Interrupt vector for POKEY Timer 4 (see
AUDW [53766,53767]). This vector only ex-
ists in the “B” version of the OS.

VIMIRQ
534,535 0216,0217

Every IRQ vectors through this location on
its way to the individual interrupt routines.
It is initialized to 59126, the address of an OS
routine that looks at IRQST (53774) to de-
termine what kind of interrupt occurred and
then jumps through the appropriate vector.

Attention B 08 owners!

Since a lot of addresses in the new “B”
version of the OS got shifted around, some
of the initialization addresses given aren’t
the same in that version (which is now in
a majority of the Ataris out there). Here
are the changes (Figure 9).

Software timers

There are two types of timers in the
Atari: software and hardware. We've al-
ready come across the hardware timers (see
VTIMRI-4 [528-533]), and we're about to
learn everything we never wanted to know
about the software timers, which use Lo-
cations 536 to 558. But first, a few words
from our author.

There are, of course, differences between
software and hardware timers, and you’ll
probably want to know them before you go
running off into timer land. The biggest
difference comes from the names.

VECTOR INITIAL VALUE
VDSLST 59280
VPRCED 59279
VINTER 59279
VBREAK 59279
VKEYBD same as before
VSERIN 60175
VSEROR same as before
VSEROC 60111
VTIMRI-4 59279
VIMIRQ 59142
VVBLKI 59310
VVBLKD 59653

Hardware timers are built into the
POKEY chip; software timers are part of
RAM. The big difference comes in the way
they keep time. You recall from location
RTCLOK (18-20) that a jiffy is %, of a se-
cond, the amount of time it takes the tele-
vision set to fill the screen. Well, the
software timers count down by one every
jiffy. The hardware timers, on the other
hand, count down by an amount less than

NOVEMBER A.N.A.L.O.G. Computing

A jiffy is s of a second: that’s the time it
takes the TV set to fill the entire screen with a

a jiffy, which you can specify (see Loca-
tions 53760 through 53769). So, if you want
to time things that take longer than a jiffy,
use the software timers. Otherwise, go for
the hardware.

CDTMV1
536,537 0218,0219

This is the first software timer (affection-
ately known as “System Timer 1”°). Every
VBLANK, the value in CDTMVI1 gets
decremented by one. When it reaches zero,
a flag gets set so the OS knows to JSR
through CDTMAL (550,551). An important
thing to note here is that the decrementing
for this timer (and only this timer) is done
during Stage 1 VBLANK. This means that
CDTMV1 (along with RTCLOK [18-20]
and ATRACT [77]) is updated every
VBLANK, no matter what’s going on else-
where in the computer. The rest of the soft-
ware timers, on the other hand, are updated
during Stage 2, which means that during
time-critical I/O (like disk and cassette I/O;
see CRITIC [66]), the other times are not
updated. Unfortunately, the OS knows this
too, so it uses CDTMVI1 for I/0 routines.
So, you see, we have a catch-22 situation
here. Oh,well! If you're doing your own
time-critical routines though, you know
which timer to use.

CDTMV2
538,539 021A,021B

This is System Timer 2, of course. When
it reaches zero, it JSR’s through CDTMA2
(552,553). And, unless you slept through
the last paragraph, you should already
know that it will not be updated during
time-critical I/O.

CDTMV3
540,541 021C,021D

The third system timer, again hampered
by time-critical I/O. This one has problems
of its own through. First of all, the cassette

NOVEMBER A.NL.A.L.O.G. Computing

picture.

handler uses it. Secondly, instead of JSRing
through a vector when it gets down to zero,
it just clears a flag at CDTMF3 (554). So
don’t use it during cassette operations and
don’t expect it to go anywhere after it’s
done.

CDTM V4
542,543 021E,021F

Let’s see. You’ve already figured out that
this is System Timer 4, that it doesn’t work
during time-critical I/O and you may have
guessed that it clears a flag at CDTMF4
(556) when it’s done instead of vectoring.
What’s left for me to say?

CDTMV5
544,545 0220,0221

The last of the timers. This one is no
different than the last one except that the
flag it clears is at CDTMFS (558). But
since you’re getting to know these things
so well, I shouldn’t have to tell you that.

VVBLKI
546,547 0222,0223

Since this is the vector for the VBLANK
Interrupt (VBI), I suppose this is probably
a good time to explain exactly what verti-
cal blank is. With all the previous mentions
of jiffies in this book, you should know by
now that a jiffy is % of a second. It is im-
portant because that’s the time it takes the
television set to fill the whole screen with
a picture. Since the screen can’t hold on
to that picture for very long, the TV keeps
drawing the picture over and over again,
even if it doesn’t change. It draws it one
line at a time, from top to bottom. When
it gets to the bottom, it stops drawing and
goes back to the top, where it starts all over
again. Now, the important part for us is
when it stops drawing. At that time it tells
the computer, “Hey, I'm not drawing to the
screen anymore,’ thus generating a verti-
cal blank interrupt. You should be able to

see where the name comes from now. In-
cidentally, there is also a horizontal blank,
which occurs while the TV has finished
drawing one line and is on its way to the be-
ginning of the next. Store any value in
WSYMC (54282) and the computer won't do
anything until the next HBLANK occurs.

Back to VBLANK. There are a few rea-
sons why the TV isn’t drawing to the screen.
First of all, it gives us a way to time things,
since VBLANK occurs precisely every ¥, of
a second. Secondly, nothing is being drawn
to the screen during this time, so any graph-
ics changes made during VBLANK will
result in smooth, instantaneous changes on
the screen. But, perhaps most importantly,
VBI code runs independently of mainline
code. What does that mean? It means that
VBI code is essentially a separate program,
running at the same time as your regular pro-
gram! I wrote one VBI program, for exam-
ple, that allowed the computer to play music
at the same time I was typing in programs.
Chris Crawford, in his classic Eastern Front
1941 game, used VBI to separate the think-
ing process of the game from the tedious stuff
like graphics and user input. That allowed the
computer to think about its next move at the
same time the player was thinking about his
or hers, thus simulating a true one-on-one sit-
uation. As you can see, VBLANK is an ex-
tremely powerful tool.

Let’s take a closer look at what normally
goes on during VBI. First of all, there are
two stages. The first stage is always execut-
ed, while the second gets ignored if the time-
vertical I/0 flag at CRITIC (66) is set. The
first is called “immediate” vertical blank, the
second is ‘“deferred.”

VVBLKI is the vector for the immediate
stage, so the OS goes through VVBLKI when
the VBLANK interrupt first occurs. During
this stage the real-time clock (RTCLOK
[18-20]), the attract mode (ATRACT [77],
DRKMSK [78] and COLRSH [79]), and sys-
tem timer one (CDTMV1 [536, 537]) get up-
dated, processed and so forth. Then CRITIC
is checked. If it’s set, indicating that the in-
terrupt occurred in the middle of a time-

51

critical I/O operation, the OS returns from
the interrupt. If it’s not, then it’s okay to go
on to Stage 2, so we do. When the OS is done
with Stage 2, it vectors through VVBLKD
(548,549) to the user’s deferred VBI routine,
and then finally returns from the interrupt
when it’s done there.

VVBLKI is initialized to point to SYSVBV
(58463), which contains a JMP instruction
to the OS Stage 1 code (located at 59345 in
the old OS, 59310 in the new one). If you
change VVBLKI to point to your own rou-
tine, and you still want the OS code to be ex-
ecuted, you should end your routine with a
JMP SYSVBV statement.

Whew, what a lot of mumbo jumbo! If you
managed to plod through all of that, take a
well-deserved rest. When you’re done, we’ll
take a look at how you can use vertical blank
for your own routines.

VVBLKD
548,549 0224,0225

Don’t worry, there’s still more to come on
VBISs! This just seemed like a good time to
formally introduce VVBLKD, the vector for
the user’s deferred VBI routine. The OS in-
itializes VVBLKD to its “exit vertical blank”
routine (at 59710 in the old OS, 59653 in the
new one). If you use VVBLKD to point to
your own routine, make sure to end that rou-
tine with a JMP XITVBL (XITVBL contains
a JMP instruction to the exit vertical blank
routine, which means you don’t have to wor-
ry about which OS is being used since
XITVBL is at 58466 in both). Note that you
can also avoid the whole entire OS VBI code
by writing your own immediate VBLANK
routine and ending it with a JMP XITVBL
instead of a JMP SYSVBV. Remember that
none of the timers or color registers or any-
thing will be updated if you do this (unless
you update them in your routine).

By now you’re probably either real excit-
ed over the prospect of using VBIs yourself,
or you're asleep. If it’s the latter, then you’re
not even reading this because your eyes are
closed, so I'm only going to deal with those
52

of you who are excited, okay? Let’s look at
how to write our own VBLANK routines.

The first step is to decide whether you want
your routine to be immediate or deferred.
Most of the time it doesn’t matter. There are,
however, the following conditions which will
require one over the other.

1. If you want to change locations that the
OS deferred routine also changes, you obvi-
ously want to do so after the OS does. Use
deferred.

2. The maximum amount of time you can
spend in immediate VBI is 2,000 machine cy-
cles (see a book on 6502 assembly language
for information on the number of machine cy-
cles per instruction). If your routine is go-
ing to be long, you should therefore put it in
deferred VBI, which has 20,000 cycles avail-
able. If you don’t, things are going to look
mighty funny on the screen. If you do use
deferred, do your graphics first, since some
of those 20,000 cycles occur while the screen
is being drawn.

3. If you need your routine to be executed
every VBLANK, regardless of whether time-
critical I/O is occurring, use immediate. Be
careful, however, that your routine will not
cause problems with the I/0.

Now that you’ve decided what it should be
(and you’ve presumably written it and put it
in memory somewhere), all you need to do
is change VVBLKI or VVBLKD to point to
it. A simple task, right? Not quite. What hap-
pens if a VBI occurs while you’re changing
the vector? Crash city!

To make sure this doesn’t happen, you have
to change the vectors during VBLANK. But
that itself presents a small problem. How do
we get into VBLANK to change the vectors
if we have to change the vectors to get to
VBLANK (good old catch-22 again)? Luck-
ily, Atari has thoughtfully provided a VBI
routine that makes the change for you. It’s
called SETVBYV and is at 58460. To use it,
load the 6502 Y register (LDY) with the low
byte of the address for your routine, and load
the X register (LDX) with the high byte. Then
load the accumulator (LDA) with a six if you
want immediate VBI, seven if you want

deferred, and JSR SETVBV. Now your VBI
will be up and running.

Here’s a simple example that uses location
Chact (755) to make inverse text blink:

100 FOR MEM=1536 TO 1575

110 READ CODE

120 POKE MEM,CODE

130 NEXT MEM

140 X=USR(1536)

150 DATA 104,169,0,141,29,2,160,186,1
62,6,169,6,141,29,2,32

160 DATA 92,228,96,173,28,2,208,13,1
69,30,141,28,2,173

170 DATA 243,2,73,2,141,243,2,76,95,
228

Make sure that the DATA values are cor-
rect before you run the program. If they
aren’t, the computer will probably crash and
you’ll lose the program.

Here’s the assembly-language listing of the
machine code (which is stored in the DATA
statements):

0600 68 PLA

0601 AS00 LDA #$00

0603 8D1D02 STA CDTMV3+1
0606 A010 LDY #VBLANK&255
0608 A206 LDX #VBLANK/256
060A A906 LDA #$06

060C 8D1D02 STA CDTMV3

060F 205CE4 JSR SETVBV

0612 60 RTS

0613 AD2C02 VBLANK LDA CDTMV3

0616 DOOD BNE VBLXIT

0618 A91E LDA #$1E

061A 8D1E02 STA CDTMV3

061D ADF302 LDA CHACT

0620 4301 EOR #$02

0622 8DF302 STA CHACT

0625 4C5FE4 VBLXIT JMP SYSVBV

. The “LDA #$1E” in the preceding listing
is used to specify a half-second interval ($1E
hex equals 30 decimal equals 30 jiffies equals
half a second) for use in blinking. Make it

NOVEMBER A.N.A.L.O.G. Computing

What happens if a VBI occurs while you're
changing the vector?

larger or smaller to make the interval longer
or shorter, respectively.

CDTMAI
550,551 0226,0227

CDTMAL is the vector for System Timer
1 (CDTMVI [536,537]). It’s initialized to
60400, which is the address of a routine to
set the time-out flag TIMFLG (791). This is
because the OS uses CDTMV1 for I/0 rou-
tines, which is a very good reason why you
probably should use Timer 2 instead.

The OS vectors through CDTMAI when
CDTMVI counts down to zero. If you do use
CDTMV1 and are setting it for a value greater
than 255 (i.e., setting both the low and high
byte), this presents a potential problem. Since
CDTMV1 is updated during VBLANK, and
there is a chance that a VBLANK might oc-
cur while you're setting CDTMVI, you
should set the low byte first. You can also use
the SETVBV routine mentioned in the
VBLANK description preceding. Just LDY
with the low byte, LDX with the high, LDA
with the timer number (I-5), and JSR
SETVBV. This will assure that the timer gets
set during VBLANK.

Since the OS JSRs through this vector, you
should end your routine with an RTS in-
struction.

Incidentally, CDTMV1 reaching zero
generates an NMI, which then does the
Vector.

CDTMA2
552,553 0228,0229

Same as CDTMAL, except this one is not
used by the OS and is therefore initialized to
zero. Oh, and of course CDTMV2 (538,539)
reaching zero causes the vector through here,
not CDTMVI. But then we already knew
that, didn’t we?

CDTMEF3
554 022A

Unlike system Timers 1 and 2, Timers 3
through 5 merely clear a flag when they count
NOVEMBER A.NL.A.L.O.G. Computing

Crash City!

down to zero. This is the flag for CDTMV3
(540,541) and is also used by DOS as a time-
out flag, so beware of possible conflicts if you
use it.

As with the other two flags, you must set
CDTMF3 when you set CDTM V3. Any non-
zero value is okay.

SRTIMR
555 022B

Well, here in the middle of all the timer
stuff is a different kind of timer. As every-
body knows, if you hold down a key on the
Atari, it will start repeating, right? And some-
thing has to tell the OS how long to wait be-
fore starting that repeat and before repeating
it again, right? And can you guess what lo-
cation does that? Sure, I knew you could.
SRTIMR is set to 48 every time a key is
pressed. Every Stage 2 VBLANK that the key
is still held down, SRTIMR gets decrement-
ed by one. When it reaches zero, the repeat
process starts. It gets set to six, decrement-
ed again, the key repeats, it gets reset to six,
and so forth until the key is released. Unfor-
tunately, there are no locations that store the
two delay times, so you can’t speed up or slow
down the process just by changing a couple
of locations. There is, however, another way
to do it.

As you recall, the initial delay time of 48
is set whenever a key is pressed. As you may
or may not recall, we came across a vector
a few locations ago (VKEYBD [520,521]) that
pointed to the IRQ routine for a key being
pressed. It is in this routine that the delay is
set. So in order to change the delay, you must
essentially take the OS routine, change the
delay value, store your revised version in
memory and update the vector. You’ll find the
OS routine at location $FFBE on page 130
of the OS listing.

How about the other delay, the six jiffy
one, once the repeat is started? If you were
paying attention (and I know you were), you
already know that it gets set in Stage 2
VBLANK. Can you guess what you’re go-
ing to have to do to be able to set it yourself?

If you guessed “take the OS Stage 2
VBLANK interrupt routine and put it in my
own deferred VBI routine with the delay
value changed,” then give yourself a pat on
the 'back.

“But wait! The OS Stage 2 VBI routine gets
executed whether I have my own deferred
VBI routine or not,” you say, taking me com-
pletely by surprise. You're right, though (or
would have been if you had said it). Your
deferred routine, however, happens affer the
OSs, so you can just repeat the part that sets
the delay and, since you’ll set it after the OS
does, yours will be the one that counts. The
part you want is at locations $E87C through
$E897 on page 36 of the OS listing, and lo-
cations $E8E8 through $ESEE on page 37
(these locations will be different in the new
OS, but that’s irrelevant here). Be aware that
the OS will now be executing this routine
twice and will therefore be decrementing by
two every VBLANK. You should set
SRTIMR to double the delay you want, and
also change your deferred routine so that it
resets SRTIMR if it’s equal to zero or one.
That makes sure that the OS routine doesn’t
reset it before you get a chance to.

CDTMF4
556 022C

And now, back to our timers. This is the
flag for CDTMV4 (542,543). See CDTMF3
for more information.

INTEMP
557, 022D

INTEMP is used for temporary storage
during the SETVBL routine. As you recall,
SETVBL is at the address stored in 58460.
Heaven only knows what INTEMP is doing
here in the middle of the system timers.

CDTMF5

558 022E
This is the flag for CDTMV5 (558,559).
See CDTMF4 for more information (ha, ha).
53

by Lee S. Brilliant

n the never-ending battle between
AMIGA and ST partisans we hear
rhetoric like:

“Well, I've got 4,000 colors to
choose from!”

“Yeah, but how many can you put up at the
same time?”’

“But I've got a blitter chip!”

“So what, I will have one soon too (ha-
ha!). Besides, my faster clock speed makes
it unnecessary!”

“Okay. Top this: I've got stereo sound!”

Uh-oh. How do you respond to that one?
You could mention the MIDI interface, but
try this retort instead: “Atari gave up that one
with the 8-bit machines because no one ever
used the feature!”

“Say what? The old-fashioned, outdated,
inferior, 8-bit Atari computers had four-
channel stereo sound?”

“Yes! In fact, they had three-channel
sound!”

“So, how come I never heard about it?”

“‘Because until this article, no one ever
knew about it!”

So now you know the subject we will cover
this month. Along the way we will rehash
some old material about POKEY, cover some
new stuff and build the POly Phonic Sound
(POPS) device. So let’s rehash!

POKEY revisited

In the last three installments of “Bits 'n’
Pieces,” we spent a long time discussing
how POKEY performs serial output. Sim-
ply stated, POKEY contains a serial input
54

and a serial output shift register whose
baud rate is controlled by the sound fre-
quency counters. This is similar in concept
to a USART (Universal Synchronous/Asyn-
chronous Receiver/Transmitter). Such
devices form the heart of all serial I/O and
modem devices. Certain aspects of the
POKEY control registers were only
glossed over before, and so now is the time
to go into slightly greater detail. Let’s look
at POKEY register number 15 or
SKSTAT/SKCTL ($D20F,53775). (See
Figure 1.)

You see that bits 4, 5 and 6 control the
USART parameters, determining what in-
put and output modes will be used in vari-
ous combinations of synchronous/
asynchronous I/O. It is not a very
straightforward proposition here, but
I will try to simplify it. The key to under-
standing is to look to the clock lines on the
serial bus. There are two: Clock Out (Pin
2) and Clock In (Pin 1).

Clock Out is relatively straightforward;

whatever frequency is driving the Data-Out
shift register is also present on the Clock-
Out line. But the Clock-In line is bi-
directional and may accept an external
clock signal or act like Clock Out and
transmit a POKEY-generated clock signal.
This allows the input shift register or the
output shift register to either accept an out-
side clock signal or use an internal clock.

Bits 4, 5 and 6 control the sources of
clock pulses for both the In and Out shift
registers and the directionality of the bi-
directional clock, according to Figure 2.
Since POKEY is the internal clock source,
the frequencies generated by its dividers
also appear on the clock lines.

Atari chose to use only asynchronous
communication and clock the shift registers
internally. The OS ignores any external
clocks and does not support synchronous
I/0O even though the hardware can. You can
actually disconnect the clock lines in your
serial cable and still use your 1050 disk-
drive and printer. I cannot say whether all
peripherals will work this way but these
two will. See the diagrams in Figure 3 for
examples of how POKEY can be con-
figured for synchronous or asynchronous
communications.

BIT FUNCTION
7 Forces Serial output to 0
6% Serial port parameter selections
5* " " " "
4* " " " "
3 Changes serial out from 1/0 logic to two-tone
2 Changes from normal to fast POT scan
1 Activates keyboard scanning
0 Enables keyboard debounce circuits

FIGURE 1: SKCTL

NOVEMBER A.N.A.L.0O.G. Computing

The important thing to learn from Figure
2 is that when only bit 6 is set, POKEY
Channel 4 will appear on the Clock-Out
line. Here is the potential for four-voice
sound in ‘“stereo.” Place an amplifier on
the Clock-Out line and “‘play”’ one voice
through the serial port and the others
through the TV in “stereo.” Moreover, you
can have trinaural sound by playing Chan-

nels 2 and 4 on separate clock lines through
separate amplifiers while playing 1 and 3
together on the regular audio output line
via the TV (or the audio output at the 5-pin
plug). You need only set bits 5 and 6 of
SKCTL. This should make AMIGA fans
stand up and take notice. The following in-
formation will allow you to produce two-
or three-channel sound from your Atari.

BIT BIDIRECT SERIN SEROUT
CLOCK CLOCK CLOCK

6 B 4 IN/OUT SOURCE SOURCE* FUNCTION

g 0 0 IN EXT EXT XMIT & RECV RATES SET
BY EXTERNAL SOURCE
AT CLOCK IN

0 O5 IN CH 4 EXT XMIT CLOCKED BY EXT,
RECV BY CH4.
ASYNC RECV, SYNC XMIT

6 1. 0 CH4 CH4 CH4 XMIT & RECV SET BY

ouT CH4. CH4 ON CLOCK IN

o 1. 1 IN CH4 CH4 XMIT & RECV SET BY
CH4. *=x

i 0 0 IN EXT CH4 XMIT SET BY CHA4
RECV. BY EXT CLOCK

101 IN CH4 CH4 XMIT & RECV SET BY
CH4, &%

1 1.0 CH4 CH4 CH2 RECV SET BY CH4. XMIT

OouT SET BY GH2. CH4 OUT

ON CLOCK IN. ##&#

1 4 IN CH4 CH2 RECV SET BY CH4., XMIT
SHT BY CHZ. 5%=

NOTES :

EXT MEANS AN EXTERNAL CLOCK CONTROLS THESE SHIFT REGISTERS

AND SETS THEIR BAUD RATES.

16-BIT RESOLUTION CAN BE USED FOR FINE TUNING.

* SAME SIGNAL ALWAYS APPEARS ON CLOCK OUT LINE.

** LABLED AS NOT USEFUL BY HARDWARE MANUAL.

*%xx TWO-TONE MODE CANNOT BE USED BECAUSE CHANNELS 1 & 2 ARE
USED TO MAKE AUDIO TONES AND WILL CONFLICT.

FIGURE 2: POKEY USART Parameters

EXT
————— >=-m=mmmm=====-==->--CLOCK OUT
DATA DATA

| v
CLOCK IN/OUT----- >SERIN-->---SEROUT
(EXT) *

| ‘
DATA IN-=>-mm===—=—== —mmeeee >----DATA OUT

synchronous, external clock both directions.
Bits 4,5, & 6=

| v
SERIN<---->SEROUT

|)

N R >----DATA OUT

Asynchronous 1/0
Bit 5=1, Bits 4&6=0

FIGURE 3: Examples of USART
configuration.

NOVEMBER A.NL.A.L.O.G. Computing

The POPS device

The POly Phonic Sound (POPS) adap-
ter is really nothing more than three sets
of resistors to reduce, balance and control
volume for the three audio amplifiers; the
rest is done with programming. The two
serial port amplifiers incorporate electronic
volume controls that are regulated through
the joystick ports (PORTA) similar to the
POKEY control registers.

Remember that these sound channels
played on the clock lines are logic level sig-
nals or five volts. This level of audio will
blow away most amps so you need the
resistors to drop the voltage to a more

reasonable 0.5 volts. The 4066 IC is a bank
of electronic switches each of which is con-
nected to a resistor, thus the higher the bi-
nary code applied, the more resistors are
switched in and the more signal passes
through. The desired volume value is
placed in PORTA, which is configured for
output through the joysticks and controls
the volume of POPS left and center chan-
nels. Right channel volume and distortion
are controlled as usual through AUDC
registers.

I have demonstrated this system to users’
groups and it really turns heads, even
among people as jaded as Atari users.
Electronic volume control allows fade-outs
from all voices and can give rise to some
interesting spatial sound effects. Listings 3
and 4 give simple demonstrations of the
abilities of POPS. I have included a
schematic and circuit board for POPS: note
part values, size and polarity of capacitors
and IC orientation.

Power is obtained from a nine-volt DC.
500-milliamp wall supply like the one used
by Atari video games. They are available
in abundance. You may even have one of
these at home! Be sure to note the polarity
of the power plug: + at the tip and — at
the sleeve. POPS is compatible with all
8-bit Atari computers, but the 400 does not
have an audio output line, so you can only
play the right channel through your TV.
Each channel of the amplifier puts out
about half a watt, not enough to shatter
glass but enough to get your wife upset! If
you need more power you can get larger
amplifiers and power supplies from Radio
Shack.

Schematic

To produce stereo sound you must do the
following things:

1) Plug POPS into the serial bus and the
audio output, and then connect the ampli-
fiers to three speakers and turn on the pow-
er. The right channel will come out the
“normal’’ audio line so you can use your
TV for one of the amplifiers on a 400.

2) Set AUDCTL for the proper values for
the kind of sound you want to produce (ie.,
16-bit or different master clock). Try O for
starters (standard setting).

3) Set the bits of SCKTL; 67 (3+[bit
6]64) for two-channel. Without the +3, the
keyboard won’t work, and you will need
RESET to recover from POKE 53775 64.

4) Set your AUDC and AUDF values for
volume and distortion on all audio chan-
nels. Keep in mind that the signals on the
clock lines are taken off before the control
circuits, so the audio control registers have
no effect. You cannot control the noise con-

55

tent of the audio, but for most music this
is just fine. The actual value poked into
AUDC2/4 is not important, except you
want the volume component to be 0, so you
won’t hear these channels play on the au-
dio line or TV: A O works great. You con-
trol volume by poking the volume level
(0-15) into PORTA. Remember that the
value to POKE into 54016 is the left volume
+16%*center value. The channels which
come out the normal audio line do use the
AUDC registers and can be used with
noises for percussion sounds or special ef-
fects. You cannot use the BASIC SOUND
statement because it resets the special
values POKEd into AUDCTL. Build your
POPS, connect it and try this simple
program:

1 REM PLAYS 2 POKEY CHANNELS IN STER
EO THROUGH THE AUDIO CHANNEL (OR TV)
AND SERIAL PORT PIN 2.

2 P=PEEK(54018) :POKE 54018,P-4:POKE
54016,255:POKE 54018,P:REM INIT POR
TA

5 DELAY=100:POKE 53761,174: POKE 53
767,0:REM INITIALIZE AUDC1&4

10 POKE 53768,0:POKE 53775,67:REM |
NITIALIZE AUDCTL AND SKCTL FOR STER
EO

20 POKE 53760,60:REM PLAY A NOTE ON
R CHANNEL

25 GOSUB DELAY:POKE 53760,0:REM TUR
N OFF

30 POKE 53766,91:PLAY A NOTE ON L C

HANNEL

35 GOSUB DELAY:POKE 53766,0

40 POKE 53760,72:POKE 53766, 121:REM
STEREO!

50 GOSUB DELAY:GOSUB DELAY:END

100 FOR S=1 TO 300:NEXT S:RETURN

When you POKE SKCTL with 67, you
get Voice 4 from the left channel and 1, 2
and 3 from the right. You can combine
values for 16-bit resolution with half on
right and three-quarters on left. If you fol-
low the same steps for two-channel sound,
except you POKE SKCTL with 99 ([Bits
5+6=96]+3), you will get three-channel
sound. Now Voice 2 will play through the
left channel, Voice 4 through the center
channel and Voices 1 and 3 on the right
channel. You can combine 3 and 4 to good
advantage here. Figure 4 is a block diagram
of POKEY configuration with both two- and
three-channel modes.

Putting it all together

To use the POPS device you need a good
player program. I will make no bones about
it, my programs are only modifications to
56

CHEI N = ==

DATA

GLOCK [N/OUm- - >SERTN

DATA IN--~-- Sthftanc e
STEREO
CH 3
CH 4
DATA
& 2

AUDIO CENTER
@HEECK IN/OUI: = = >SHRITN

DATA IN--Ses 08 e

______ >-———-—-——--AUDIO RIGHT
CH|3
CHG4
DATA
v v, AUDIO LEET
SEROUT<K - -~~~ >CLOCK OUT
v
_____ >-—-—-DATA OUT
CH 1--->---AUDIO RIGHT
GH 2
DATA
v
v | AUDIO LEFT
SERQUT<K —————— CLOCK OUT
v
_____ >—---DATA OUT

CHANNEL MODE

FIGURE 4:

Enhanced POKEY Player. I chose to modi-
fy this program because the player is in
BASIC and machine language; so I could
easily disassemble it and modify it. (Why
reinvent the wheel?) Enhanced POKEY
Player has been around a long time and was
obtainable in the past from the ANTIC
catalog (AP 0147), but has not been listed
lately. You may have to ask for it specially.
The following programs are published with
the author’s permission.

After you obtain your Enhanced POKEY
Player, make a duplicate to work from and
put the original away. Never use the origi-
nal disk with POPS! You will also need a
separate work disk. Listing 1 is the main
program and consists of a BASIC routine
to load the music files and display titles.
Then there is the Player itself, which is
contained in a large string array, PP$, and
some fixed locations in page 6. One sec-
tion of the player string is essentially blank
which allows us to insert our different rou-

POKEY Multi-mode.

tines for mono, stereo or trinaural sound
generation (CH1$, CH2 and CH3$).
Listing 2 creates these complex strings.
Type in and save both Listings 1 and 2 on
the separate work disk, and then run List-
ing 2 and save as LIST “D:TEMP)”
2000,2300. Load back Listing 1 and
ENTER “D:TEMP.” Now resave to your
working POKEY Player disk as “D:PLAY-
ER.” This new program replaces the origi-
nal Player and will list all available music
files and flag them as three-channel (¥),
two-channel (+) or one-channel. Music
files on the original POKEY Player disk
are all labeled *V, but this new program
requires files with extenders .VIC, .V2C,
or .V3C to denote one-, two- or three-
channel music files. You will need to work
through DOS to change the extenders ac-
cording to Table 1. The player is now able
to tell which mode to use and automatical-
ly adjust itself according to the filename
extenders.
NOVEMBER A.NL.A.L.O.G. Computing

FSONA .vac MINUET2 .vV2C SLP3 .V3C
ANVIL .V1c GLAD .va2c MUSETTE .V2C
SLP4 .V3c BCS .va2c GMARCH .v2C
NELLIE .V1C SLPS .V3C BLUES .V2¢C
GOLDV1 .v2C PRELUDE .V3C SLP6 .vac
BMINOR .V3C GOTHOS .V3C PRESTO .vV2C
SOLDIER .V3C CALLIOPE.V2C GSONA .vac
RIGAUDON.V3C SWISS .V3cC CANTATA .V3C
HBDAY .V2ce SABRE .v2cC THEMEVAR.V3C
CAPRICIO.V3C HOLST .Vic SCAR .V3cC
TPIAM .V2c CLAV .V3c HUMORESK.V3C
SCHERZAD.V3C TPIBF .vV2c COURANTE.V2C
ITALIAN .V2C SCIPIO, +V3C TPIF .va2c
CSONATA .V3C LITTLE: .V3C SLP1 .V3C
WILLTELL.V3C DMARCH .V2C LONDON .V3C
SLP2 .V3C WSOLDIER.V2C FEAST .V3cC
MINUET1 .V1C

TABLE 1: Extender List

Notes about Enhanced
POKEY Player

Writing music with the POKEY Player
editor requires a couple of notes. POKEY
Player has only three voices, naturally la-
beled 1, 2 and 3. POKEY Player Voice 1
uses POKEY chip’s Voice 1 and will be the
right channel in POPS. POKEY Player
Voice 2 similarly is POKEY Voice 2 and
is the left channel in three-channel mode,
but in stereo it will come out the right chan-
nel along with Voice 1. POKEY Player
Voice 3 is POKEY Voices 3 and 4 com-
bined in 16-bit fashion and comes out from
the center channel in three-channel mode
and the left side in stereo.

Only voices from the right channel use
the distortion abilities of POKEY, so you
can always use Voice 1 for percussion or
special effects, but in stereo you can also
use Voice 2. Voice 3 (3/4) usually carries
the melody line because it has the widest
range of note values and can also be used
for really deep bass lines. Not all features
of the POKEY Player editor can be used
by POPS, and for some reason some three-
voice music will not play properly on
POPS’ three-channel mode, but will do
okay in stereo. Some two-voice programs
can only be played in mono. The list of files
on Enhanced POKEY Player are in Table
1 with their proper extenders.

Parts list

The 13-pin Atari Serial Plug (#83-360)
is available from MCM Electronics, 2582
East River Road, Moraine, Ohio 45439;
(800) 858-4330. The resistors, volume con-
trols, capacitors, joystick cables and am-
plifiers are available at Radio Shack. Not
all resistor values are available at Radio
Shack, however. You may need to combine
resistors such as 220K plus 470K to ap-
proximate 800K. Actual values are com-
pletely non-critical. The RCA phono jacks,
speakers and cables are also available at
Radio Shack. The 4066 ICs may be or-

NOVEMBER A.NL.A.L.O.G. Computing

1L.6M

SERIAL

PIN 2

LEFT

SPEAKER
JOYSTICKS
SERIAL
PIN 1
CENTER
AUDIO
N &
-’-
9 o °
R6 =560
820 9volts
In
—L ca
S O—=1 2000pf
16v
R7 LED
lu!:J:f el
(&) |

i

dered specially through Radio Shack. Ask
them to special order SK4066B. Finally,

the power supply is Radio Shack’s
273-1455.

57

Joystick B

B3 " A P B T PR PRSI R *

Y
|

B,

Serial i
gnd” 4

3

Left

Center

Right

Listing 1:
BASIC

5T

MF
FH

KL

IV
NS

HQ

CH

TF
¥5
KH
M5
0J
KG

ik

cu
PF

YD
58

18 REM POKEY PLAYER BY CRAIG CHAMBERLA
IN. MODIFIED BY LEE BRILLIANT M.D.

38 GOSUB 1686

108 IF PEEK(764)<>255 THEN POKE 764,25
5:POKE 1536,8

116 IF PEEK(1536)=1 THEN 1080

128 U=USRCPP+156) :GOSUB 1898:GOTO 100

1660 GOSUB 2000:POKE 675,0:POKE 676,1:
POKE 677,8:POKE 678,8:POKE 679, 0:POKE

65,8

1618 RESTORE 2300:FOR N=1686 TO 1648:R
EAD D:POKE N,D:NEXT N:REM NON-RELOCATB
LE CODE

1828 POKE 752,1:TRAP 19688:7 “"K-———-MULT

I CHANNEL MUSIC PLAYER----"":0PEN H1i,6,

8,"D:¥* . U?C":K=8

1636 INPUT H1,RS$:IF R5€2,2)<{>" " THEN
1878 .

1046 ? RS(I,18);:IF RSC12,12)Y="3" THEN
7 NI

ie658 IF RE€12,123=""2" THEN ? "4u;

1668 ? CHRS$(127);:K=K+1:GOTO 1838

1930 CLOSE H1:POKE 783,4:POKE 752,08:7
UK

1880 IF K=0 THEN ? '"NO MUSIC FILES ON
THIS DISK'":FOR DE=1 TO 588:NEXT DE
1828 TRAP 1958:7 "KRYOUR REQUEST';::INPU
;BRS:IF R$=""" THEN POKE 763,24:GOTO0 18
1108 FS5="D:":FS$(II=RS:FSC(LENCF5Y +1)="%
+UZ?C";0PEN #1,6,08,F

1118 INPUT ul,RglIF R$C12,12)=""1" THEN
PP5(181,254)=CH1S$

1120 IF R$(12,12)="2" THEN PP5(181,254

AR

55
FG

WY

TG
BJ

Iz
HWT
cZ

AM
CJ

QH
NN
QP
NS
05
MI

GE

SUPER POPS
Brilliant
Software °

BITS N’
PIECES:
~— POPS

1iza %F R5€12,12)="3" THEN PP5(181,254
J=CH3

1148 CLOSE $#1:0PEN #1,4,8,F5:A-BUFF
1158 FOR K=6 TO 2:GET #1,L0:GET #1i,HI:
L=LO+256%HI

1166 U=USRCCIO,A,L):IF U>127 THEN POKE
135,U:CLOSE #1:GOTO 1916

11768 U=USRC(PP+94,K,) :A=A+L:NEXT K
1186 FOR N=16061 TO 1664:POKE N,8:NEXT

N:? "Ru;
1190 TRAP 1208:INPUT #1,R$:? :? R$;:GO
TO 11986

1280 IF PEEK(195)¢>136 THEN 1950

1218 TRAP 1958:CLOSE #1

1226 U=USR(PP,PP+180,PP+267,PP+473,PP+
819,PP+625) : POKE 1536,1

1238 RETLRN

19808 IF PEEK(1953=1768 THEN ? "I DON'T
KNOW THAT SONG.'":CLOSE #1:GOTO 1896

13568 ? "KRERROR "';PEEK(195):A=LUSR(PP+15
63

1399 CLR :END

2000 DIM PP5(892) ,CH15(74) ,CH25(74),CH

35(74),CIOS(34),R§(46),FS(lG),BUFFS(FR
E({8)-508)

2885 PP=ADRCPP%) :BUFF=ADR(BUFF$) :CID=A
DRCCIOS)

2248 PP5(876,876)=CHRS (155) :RETURN
2388 DATA 12,24,36,48,244,232,220,208,
1,2,3,4,5,6,7,08,255,254,253,252,251,25
6,249,188,2,6,168,4,6,168,6,6,160,0
23%2 baTa 177,2063,230,263,208,2,230,20
4,

NOVEMBER A.NL.A.L.O.G. Computing

Listing 2:
BASIC

BR
PZ
pu

IL
urt

I
LC
FG
ree
WO

EX
NY

SH
BR
KS
Ry
faJ
CN
5K

UR

JH
JJ
IF
MO

5F

I0

Lp

PK

bC

0o

KG

LB

GD

GD

98 OPEN Hi,4,8,"K:"

188 7 “"R":LINE=2000:FOR N=1 TO 948:REnA
DD

118 IF D{B THEN GOSUB 488:7 "K":LINE=L
INE+16:POSITION 2,3:? LINE;" PPS('; (AB
S(D))'“)'“'CHRS(34) :READ D

124 7 CHRS(D);:NEHT N:GOSUB 406

138 RESTORE 966:7 CHR$ (125) :POSITION 2
;317 Y2200 CHl$'"'CHR$(34);:FOR N=1 TO
74:READ D:? CHRS(D) ; :NEXKT N:GOSUB 460
148 ? CHRS$(125): POSITION 2,3:7 "2218 C
H2$=";CHR$(34);:FOR N=1 TO 75:READ D:?
CHR5 (D) ; :NEXT N:GOSUB 468

i58 ? CHR$(€125):POSITION 2,3:? "2226 C
H3$‘"'CHR$(34);:FOR N=1 TO 75:READ D:?
CHR$(DJ;:NEHT N:GOSUB 4686

168 ? CHR5(125):POSITION 2,3:7 "22308 C

IO$‘"'CHR$(34);:FDR N=1 TO 3I9:REaAD D:?
CHR5(D) NEHT N: GOSUB 480

iz8 7 "HPRESS TO:":? "LIST 'D:T
EMP', 28088, 2380"

188 GET n1 K:IF K{>155 THEN 1880

1%8 LIST np TEMP',280808,2380:END

488 ? 1?7 17 "CDNT":POSITION 2,8:POKE 8
42,13:5T0P

416 POKE 842,12:RETURN

5668 DATA -1,104,164,141,3,6,104,141,2,

6,164,141,5,6,104,141,4,6,104,141,7,6,

164,141,6,6,104

516 DATA 141,14,6,1064,141,16,6,164,141
,15,6,1064,141,11,6,169,0,141,08,6,141,1
,6,141,54,6

528 DATA 169,144,162,5,27,157,54,6,74,
2062,268,249,169,12,141,60,6,169,40,141
,69,6,173,36,2,141,8

538 bATA 6,17%,37,2,141,9,6,169,7,162,
6,1608,-91,93,76,92,228,104,1064,164,176
,104,27,157,21,6,27,157,27,27

5408 DATA 6,104,27,157,18,6,27,157,24,6
,169,0,27,157,39,6,27,157,42,6,27,157,
51,6,168,169,1,27,157,33,6,16%

558 DaATA 36,224,2,208,3,169,48,260,27,
i57,36,6,152,27,1%57,27,30,6,169,166,27
,157,45,6,169,7,27,157,48,6, 96

568 DATA 104,169,7,174,9,6,172,8,6,32,
92,228,169,0,162,7,27,157,08,216,234,26
2,16,249,9%96,-181,0

5?8 DATQ a8, 6,8,8,8,8 B 0,0,06,0,0,0,0,0

:BJa:axap
5808 DATA B,B,B,B,B,B,B 8,0,8,6,8,8,0,0
,80,08,0,060,060,060,0,0,0,0,0
596 DATA ©,0,0,0,0,0,0,0,06,0,0,6,0,0,0
,9,8,8,8,8,0,162,8,32,96,5, 3
688 paATA 224,3,208,248,108,8,6,189,18,

-271,133, 293 189,21,5,133,264,222,33
,6 240,27, 27 189 42,6,208
610 DATQ 18,189,33,6,221,48,6,1?6,19,1
89,65,6,41,15,240,3,222,65,6,96,32,939,
6,32,182,6
628 DATA 133,2067,41,248,201,128,268,18
,165,287,41,7,168,185,70,6,24,27,125,3
6,6,27,157,36,6,24,144,227
638 DATA 165,207,41,7,240,218,168,136,
i85,54,6,27,157,33,6,188,27,36,6,185,1
8,6,133,2085,185,-362,14,6,133
648 DATA 286,165,207,74,74,74,41,15,28
8,106,27,157,65,6,169,1,27,157,42,6,268
,78,168,136,185,78,6,24
658 paTA 27,125,36,6,27,157,36,6,168,1
89,45,6,27,157,65,6,177,205,24,27,125,
39,6,27,157,61,6,224,2,268,13
666 DATA 152,24,105,97,168,177,2685,141
,64,6,24,144,26,189,45,6,41,248,261,16
6,208,17,189,36,6,261
678 DATh 50,144,10,189,45,6,41,15,9,-4
52,192,27,157,65,6,165,267,41,128,27,1
57,42, 6 165 283 27 157,18, 6 165
686 DQTQ 204 27, 157 21,6, 96 166,068,165,
267,41,128, 268 21 189 51 6, 248 5 222 S
1,6, 248 10,189,24,6
690 DATA 133 293 189 27,27,6,133,204,9
6,261,8,208, 13 32 102 6,27, 157 45 6, 32
,182 6 27 15? 48 6 26, 281
700 paTa 16 288 1? 32,102,6,27,157, 51,
6, 165 283, 2? 157 24 6,165, 294 27 15?
7,27,6,96, 281 24, 288,—544 7, 32 182

NOVEMBER A.NL.A.L.O.G. Computing

HE

DD

MH

an

JF

NC

I

KF
RL
JR

uc

5D

oc

BH
FE

WH

ac

VK

NG

HY

VB

G5

Pa

HX

PK

718 DaThA 6,27,157,39,6,96,201,32,268,2
2,166,6,177,203,153,54,6,136,16,248,16
9,7,24,101,263,133,263

728 DATA 144,2,238,294,96,281,48,298,7
,32 i62,6,141,1,6,96,201,48,2068,7,32,1
8z, 141 69 6

730 DQTQ 96,2061,56,2088,7,32,162,6,27, 1
$7,27,30,6, 96 281 64 288 7, 32 102 6, 27
,157,36,6,96,148,8,6

748 DATA 96,209,223 ,237,251,9,27,308,44
,65,-634,79,100,121,149,165,189,217,24
$,17,59,87,129,27,157,199,241,41,75
758 DATA 121,177,233,33,117,173,1,57,1
41,225,81,165,21,133,245,1061,241,37,93,
149,61,229,141,81,21,245

768 DATA 213,2069,205,1,27,253,49,161,2
69,61,16%5,42,234,170,162,154,2,2508, 938,
202,162,122,75,84,212,84,68

778 DATA 52,4,244,196,148,68,244,156,1
68,168,168,135,194 8,232,136,46,136,23

2,?2,8,-724,8,8,8,1,1
788 pbATA 1,1,1,1,1,1,1,1,1,1,2,2,2,2,2
J21213’31313I3I4l4l415

798 bATA 5,5,5,6,6,7,7,7,8,8,9,18,168,1
1,11,12,13,14,14,15,16,17, 19 19 21 22
868 DATA 23,25,26,27,28,27, 29 27 31 I3
;35,38,39, 42 44,47,58 ,53 55 59 63 67 7
1,76,79, 84 89 35,1608

816 pATA 186 112 119,27,126,134,142,15
2,—814,27,159,169,1?9,190,201,213,1,3,
6,9,12,15,18,22,23,25,26,27,28,27,29
826 DaTa 27,31,33,35,37,40,42,45,47,50
;93,57,60,64,68,72,76,81,85,91,936,162,
108,114,121,128,136

836 DATA 144,153,162,173,182,193,2064,2
17,236,243,27,255,116,116,122,131,137,
146,27,0,167,173,185,197,2086,221,233
846 DATA 245,87,91,97,1682,168,115,121,
136

9806 DATA 234,234,234,234,234,234,173,06
,6,240,73,216,169,3,141,50,2,141,15,21
8,173,61,6,141,8

916 pATA 216,173,65,6,141,1,216,173,62
,6,141,2,210,17%,66,6,141,3,216,173,63
,6,141,4,216

926 DATA 173,67,6,141,7,216,173,64,6,1
41,6,210,173,68,6,141,5,2168,173,69,6,1
41,8,210

938 DATA 234,234,234,234,234,234,234,2
34,234,234,234,234,234,234,173,0,6,240
,65,216,169,67,141,15,216

948 DATA 162,6,160,3,185,61,6,27,157,6
,218,2062,202,136,16,245,173,65,6,141,1
216,173,66,6,141

956 baATA I,210,173,67,6,41,15,141,8,21
1,169,0,141,5,210,141,7,2106,173,69,6,1
41,8,210

968 DATA 234,234,234,234,234,234,173,08
,6,248,73,216,169,99,141,15,216,162,6,
166,3,185,61,6,27,157

978 DaTh ©,216,262,202,136,16,245,173,
65,6,141,1,216,173,66,6,41,15,133,08,17
3,67,6,16,106

988 paTh 10,16,5,0,141,0,211,169,0,141
,3,210,141,5,216,141,7,216,173,69,6,14
1,8,216

998 DATA 104,162,16,169,7,27,157,66,3,
1084,27,157,69,3,104,27,157,68,3,104,27
,157,73,3,164,27,157,72

ieee pATA I,32,86,228,132,212,169,08,13
3,213,96

Listing 3:
BASIC

OM
GJ

ZP
RV
HJ

TJ

% GOSUB 366

X8 FOR 5=8 TO 81:READ A,B:POKE 548164
{POKE 53761,B:NEXT S

29 END

ig8 paThA 15,168,15,160,15,1608,31,1668,4
7,168,63,168,79,1668,95,160,111,168,127
,168 142 160, 157 168 1?2 168 18? 168
1ie DAThA 262,1608,217,160,232,160,247,1
60,246,168, 245 169 244 168 243 168 242
,168,241,166,248,161,224,162,288,163
ize paTA 192,164,176,165,160,166,144,1
67,128,168,112,169,96,170,80,171,64,17

589

80 COL. SCREEN!—NEW PRICES! -

™ -
Ilurbobase. "%
3
u " awards "88
“IBM power without the price. . .| really can't think of any feature associated with running
a business that has been left out—except for the huge prices charged for comparaple
software on MS-DOS computers.” —ANTIC, Dec. '87
*...the most time consuming review | have ever done, due to the number of features. ..
Turbobase finally gives what 8-bit owners have been clamoring for for years; true, power-
ful business software. . . set up a fully capable business system for less than $1 ,000....
customer support is superb. .. Practicality-excellent. Documentation-excellent.
—COMPUTER SHOPPER, Aug. '87
“...one of the most powerful and versatile database programs available. ..”
—COMPUTER SHOPPER, Aug. '88

COMPARE TO IBM CLONES:

o Capability o Complete Documentation e Speed among thousands of records
« Capacity « $20-$50 Customizations o Ease of Iearmn? (per feature)

» Remote Terminals o One package/allmodules ¢ Number of English error messages
» Exhaustive Support o All Hardware Upgrades » Adaptability to Existing Application

o No Disk Switching Brand Name Hardware o Hardware/DOS easier than Clone/MS DOS™
e Tiny Footprint o True Integration o Faster Back-up to inexpensive floppy
 Not Copy Protected o Free Application Set-up o Complete Invoice/Payments Error Checking
Turbobase takes $20,000 video store sale from IBM...S.V, Plainfield, NJ
Turbobase takes $20,000 IBM sale for waterbed store. .. A.J, Phoenix, AZ
Turbobase replaces $37,000 air conditioning application...A.B., Alton, NH
Until you have Turbobase you don't have a databasel... Acorn Users Group

Micromiser is looking for resellers. If you have 2 DD drives, oran MIO ™, or hard disk, You qual-
if\{‘lorfree training, dealer prices, marketin%/direct mail help, and myriad customer references
who express extreme satisfaction with Turbobase. Compare the Turbobase ™ /MIO™ configu-
ration at $830 (all hardware & software except printer) with the IBM AT™ : Immediate RAM
access to 6,000 invoices, or 15,000 inventory items, or 50,000 G/L records, or 20,000 payroll
records, or any combination of above! With a hard drive (add only $100) the figures go up!
4,000 addresses too! An unbeatable sellin? point: replace any component for the cost of a
typical IBM™/Apple™ repair billl The small business market is yours! Just ask, “Is IBM ™
compatibility worth $20,000 to you?”

TURBOBASE ™ — the all in one database/business system: 3 databases + word processor
includes file manager/spread sheet/relational features/accounting/report generator, G/L,
P/S, AR, AP, open invoicing/statements, inventory, payroll, mailing, utilities, all truly integrated
in one program/manual so simplified that we can present complete detailed instructions in
only 700+ pages of superb documentation (third re-write) includes separate Quick Course
and Cookbook + 8 disk sides. Runs on any 48K 8-bit Atari, only 1 drive req. Call today!

Turbobase $159—Turbo Jr $99

For XEP—80 col.screen:
Turbobase 80 $179—Jr 80 $119 w/80
colword processoradd $24 80 col word
processor alone $49

STownerslIAskaboutUItrabase ST (B/W mon-
itor only| all Turbobase features + much more
+Ultimate SIMPLICITY and speed

(407) 857-6014

MICROMISER SOFTWARE, 1635-A HOLDEN AVE., ORLANDO, FL 32809
CIRCLE #105 ON READER SERVICE CARD.

THE CONVERTER

It’s Herel Only $19.95(+$2 shipping)
8-bit

Now you can convert your PrintShop
icons to Awardware, Printpower or
Newsroom format. The Converter also
converts Awardware seals to graphics or
vice versa or to Printpower or Newsroom
form. It also has a graphics editor to
allow touchup of the icons or to make
your own icons from scratch.

Algo available at $19.95(+ shipping)

P.S. Users Utility Disk
Almost a dozen features! A icon viewer
for your PrintShop icons, an icon
cataloger, border cataloger, font
cataloger, a transfer program for moving

No Frills Software 800 E.23rd St. Kearney, Ne. 68847 (308) 2346250

For 8bit PrintShop and
Printmaster (ST)

Nearly 6000 icons, fonts & borders from
$2 to $23 a disk(group specials available)
Fonts & Borders 1-4 now $14.95.

Chrigtian Scenes & Symbols 1 or 2 $19.95 each.
DavkaGraphics 1,2,3(Hebrew icons/fonts) $23 each.
PS GRAPHICS 1to 7 now $9.95 each.

JACS PS Graphics 1 to 4 $9.95 each (the ONLY
authorized source for the JACS disks).
Budget Graphics 1 1o 16 now $4.95 each
Budget Graphics 17-24 $2 each
NERDS MAP digk set $15 or $9 each
NERDS Biology set $15 or $9 each
NERDS Chem{periodic table) disk $9
COAT OF ARMS Const. Set now $13
NEWI Beagle Bros. MINIPIX disks 1,2,3 (200 icons
per digk) $19.95 each. $49/95 for all 3.

NEWI Fonts & Borders 5 and 6 $14.95 each (#6 ready
late November). Each font disk has more than 15
fonts and many borders(#3 has fewest borders).

z2,48,173,32,174,16,175,08,175,0,175

aZ 138 DaThA 6,175,0,175,16,175,32,174,48,
17%,64,172,80,171,96,176,112,169,128,1
68,144,167,1608,166,176,165,192,164

RP 1486 DATA 208,163,224,162,240,161,241,1
66,242,160,243,160,244,160,245,1606,246
,168,247,166,232,166,217,1606,262,160

TN 158 DATA 187,1608,172,160,157,160,142,1
66,127,1606,111,166,95,1608,79,168,63,16
6,47,1608,31,160,15,166,15,1606,15,1606

FR 380 P-PEEK(54618) :POKE 540618,P-4:POKE
540816,255:POKE 540618,P

KD 316 SOUND 6,200,10,0:S50UND 1,286,16,8:
SOUND Z,20606,10,0

GZ 320 POKE 53775,99:RETURN

Listing 4:
BASIC

OM 5 GOSUB 3608

FJ 18 PITCH=INT(RND (0)%*1863+15:CH=INT(RND
(O HI)+1

FE 26 ON CH GOSUB 1606,126,148:FOR DE=1 TO
S8:NEXT DE:POKE 54016,8:POKE 53761,8

5M 38 FOR DE=1 TO 58:NEXT DE:GOTO 1@

JL %BB POKE 53768,PITCH:POKE 53761,174:RE
LIRN

¥YG 1260 POKE 53766,PITCH:POKE 54816, 248:RE
TURN

0Z 146 POKE 53762,PITCH:POKE 54816, 15:RET
LIRN

FH 308 P-PEEK(540818) :POKE 54818,P-4:POKE
54816,255:POKE 54018,P:REM JOYSTICKS F
OR OUTPUT

UJ 318 POKE 53775,99:POKE 53768,8:RETLURN

M -Sat.
1-7

We also carry a variety of

other ATARI hard/software.
Send SASE for list (only 1 SASE

needed for all areas here, please
specify areas of interest-PS, pgms,etc).

Bbit
ACE OF ACES- $9.25 BRIDGE 4.0-$14.99
BRIDGE 5.0-$17.99 COMPUBRIDGE- $14.99
LINKWORD(ItalFrench,German Spanish) $14.99 ea
Strip Poker-$17.99 DATA DISKS 1.2.3 $11.99 ea
PEGGAMON-$9.25 GUDERIAN- $17 .99
GULF STRIKE-$17.99 SPITFIRE '40-$20.99
BLAZING PADDLES-$20.99 TYCOON-$11.99
Video Vegas or Rainy Day Games-$17.99ea.
221 Baker St-$17.99 221 Baker case disk-$10.99
Alt.Reality(Dungeon) $25.75 Al Really(cily) $18.75
BISMARK-$19.99 VIDEO TITLE SHOP-$19.99
TOMAHAWK-$19.99 CHESSMASTER 2000-$25.79
EPYX 500XJ Joyslick-$11.87 Spy vs Spy 3-$11.97
Print Power- $9.99 Astro Grover-$6.49

icons from disk to disk, a multi-size label
maker(includes sizes for video
tapes-inside & spine), a bookmark
maker, envelope cachet maker, coupon
maker & more. Currently supports
Epson & fully Epson compatible printers,
send SASE for details & all printers
supported). $2 shipping covers both
ograms. PrintShop is a trademark of
Broderbund Software, Awardware & Printpower
trademarks of Hi- Tech Expressions, Newsroom is a
trademark of Springboard Software, not affiliated
with NO FRILLS SOFTWARE.

Add $1.50 shipping for first PS/PM disk ordered, add
$.50 each additional disk to max of $5.(US shipping).
Add $1 additional to Canada/Mexico, $4 other
countries. Prices on Ps/Pm disks good thru 1988.
Add 4% VISA/MC. checks-2 week clearance/ Prices
above for 8-bit disks. ST disks add $1 per title. All
disks not available for ST. Call or write (SASE $.45
postage) for details/printouts. Discounts available for
large orders (call/write), ST icon disks available in
package groups (call/write).

Printmaster is a trademark of Unison World not 7o :

affiliated with NO FRILLS SOFTWARE. shipping. Add 4% VISA/MC. Call for details

ST icon digks (individual disks only, not package
disks) also contain DEGAS formats of icons.

Sesame Sl. Print Kit-$9.48 Celeb Cookbook-$2089
Gaunt et - $20.99 MIO BOARD 1 MEG-$254.99
NEWSROOM- $29.99 TRAILBLAZER-$17 99
ST litles
Rinball Wzard-20.99 221 Baker St. $25.75
DEGAS ELITE-$38.99 MARK WILLIAMS *C"-$119.99
WORD PERFECT-$195 MONITOR MASTER-$4195
HUNT For Red October-$3195 0IDS-$2199
SUNDOG- $24.99 IB 40 Track drive-$189.99
SHIPPING: add $2 first title ordered. add
$1 each added title. Hardware-call for

on credit card guarentee ordering. Prices
of outside software subject to change

CIRCLE #106 ON READER SERVICE CARD.

60

NOVEMBER A.NL.A.L.0O.B. Computing

Attention
Programmers!

ANALOG Computing is interested in programs, articles, and software review sub-
missions dealing with the Atari home computers. If you feel that you can write as well
as you can program, then submit those articles and reviews that have been floating
around in your head, awaiting publication. This is your opportunity to share your knowl-
edge with the growing family of Atari computer owners.

All submissions for publication, both program listings and text, should be provided
in printed and magnetic form. Typed or printed copy of text is mandatory and should
be in upper and lower case with double spacing. By submitting articles to ANALOG
Computing, authors acknowledge that such materials, upon acceptance for publica-
tion, become the exclusive property of ANALOG Computing. If not accepted for pub-
lication, the articles and/or programs will remain the property of the author. If submissions
are to be returned, please supply a self-addressed, stamped envelope. All submissions
of any kind must be accompanied by the author’s full address and telephone number.

Send your programs and articles to:
ANALOG Computing
P.O. Box 1413-M.0O.
Manchester, CT 06040-1413

3 in 1 Foothall

Lance Haffner Games
P.0. Box 100594
Nashville, TN 37210
(615) 242-2617

48K disk

$39.95

reviewed hy Dave Arlington

What with the player’s strike early in the
1987 season, I once again began my long
quest last fall to find a decent football game
for my Atari computer. I was not looking
for an arcade-type football game like
Touchdown Football or Gamestar Football.
I was looking for a strategic football game
that would allow me to coach real NFL
football teams and their players like
Microleague Baseball lets me manage real
baseball players. Unfortunately, up until
late last year, there were no such football
games for the Atari.

There were some attempts before this
year. Gridiron Glory, late of APX and now
from Main ST. Software, was the first to
allow you to use real football teams. I'm
not sure exactly what statistics they used,
but the game was very unrealistic as the
quarters were only eight minutes long and
the computer coach called plays random-
ly. Next was Football Strategy from Ava-
lon Hill. That game featured 16 historical
NFL teams, mostly Super Bowl par-
ticipants. Again the team values used were
hard to judge and did not feature individu-
al players. They also didn’t seem to have
too much effect on game play, as it was
usually easy for me to beat the computer,
with me taking teams like the (9-7) N'Y. Gi-
ants and giving the computer teams like
the (14-0) Miami Dolphins.

The most recent attempt is Computer
Quarterback from SSI. It is sold as a strate-
gy football game using generic football
teams. In this respect, it is the best foot-

B2

ball game available for Atari, since on
offense you can choose from 36 different
types of plays and 20+ different types of
defenses. The computer coach can also
learn to play better against you if you call
the same types of plays over and over again.
Computer Quarterback also includes a
draft feature where general managers are
given a certain amount of money to spend
on a team to improve certain player posi-
tions. However, neither option uses real
NFL teams or players. SSI began to make
available seasons disks with the NFL teams

for an entire year. Currently 1984, 1985 and
1986 seasons disks are available. Again,
however, teams are rated abstractly by po-
sition and individual players are not
available.

Which brings us to the star of this
review: 3 in 1 Football from Lance Haff-
ner Games. This statistical-based football
game allows you to play with college, NFL,
USFL and WFL football teams with the
rules for college; NFL and USFL being
available to play under. Teams are rated in
many offensive and defensive categories in-

NOVEMBER A.N.A.L.O.G. Computing

cluding the types of plays usually called by
the teams. Individual players are rated at
the following positions: quarterback, run-
ning back (both running and receiving),
receivers, kickers, punters and return
specialists. Everyone else is rated on a team
basis.

Let’s talk about the bad parts of the game
first to get them out of the way. The game
is written in BASIC, as it was translated
from many other computers. Therefore, it
can be very slow at times when loading the
game or the data for the teams. The actual

NOVEMBER A.N.A.L.0O.8. Computing

game itself is very fast. There are absolute-
ly no graphics in this game, so anyone ex-
pecting a fancy display should be
forewarned. It is simple Graphics O text,
white on a black background. I can under-
stand this as the graphics were foresaken
to use as much memory as possible for the
many options this game has.

You may play against a friend, against
the computer or watch the computer play
itself. On defense, you may choose from
six different formations, each having differ-
ent types of effectiveness on certain types

of plays. On offense, you may choose from
14 different offensive plays, or get a quickie
scouting report. As I mentioned above, the
actual game play itself is fast, with an aver-
age game against the computer lasting
maybe 15 to 20 minutes. When the com-
puter takes on itself, games last about five
minutes. This fast game is nice, as it actu-
ally makes the possibility of replaying an
entire season a reality. This would be im-
possible with any of the other longer foot-
ball games mentioned above.

The game uses very realistic statistics for

63

Players perform as they do in real life.
Quarterbacks will pick alternate receivers or
scramble for first downs; so your long pass
attempt might result in a two- or three-yard

gain or loss.

the players. However, since the game fea-
tures no injuries, the program picks the ball
carrier or passer on each play for you. The
player is chosen based on the percentage
of times he actually ran or threw or caught
the ball. This is good in one respect, since
the statistics generated by this game are in-
credibly accurate. The bad point is when
it is third and long, all of a sudden, Don
Strock is throwing the ball instead of Dan
Marino. Or you are faced with a third and
one and you do not know whom the com-
puter will choose to run the ball on the play.

There are other things that take getting
used to as well. First, all yardage is meas-
ured in tenths during the game. For exam-
ple, Payton carries on the inside run for 3.7
yards, making it three and 13.3 to go. This
bothered me until I realized that this was
probably more realistic than the other foot-
ball games, since rarely does a player in
real life gain exactly three yards or exactly
five yards. This sets up situations in 3 in
1 Football where you really do have fourth
and inches to go. And besides, when cal-
culating stats at the end of the game, all
yardage is rounded off as in real life to the

64

nearest yard.

Due to an oversight in programming
(probably lost in a conversion somewhere)
time on the clock does not always show all
the necessary zeroes. For example, when
the clock should say 2:08 left in the first
half, it will say 2:8. This can be confusing
sometimes as you might go from 2:43 to
2:5 on a play, and it looks like the clock
went backwards. Another programming
bug crops up when displaying accumulat-
ed seasons’ statistics. After looking at the
first team, the program will not allow you
to look at another team without first quit-
ting the stat-viewing program and reload-
ing it again.

Also, printing statistics to your printer
results in a tremendous waste of paper, as
each screen is dumped in total to your
printer even if it might contain 20 blank
lines. Since there are about five screens of
information, the results of one game can
cross several pages.

After all this, you’re probably saying that
this game has some real problems. Au con-
traire, mon ami. Sure, it has what I con-
sider small problems, but most of these are

due in part to being translated from so
many computers and not taking advantage
of all the Atari’s features. I feel the game’s
pluses far outweigh its minuses. In fact, the
game has so many great features, I'm afraid
I might miss some!

Let’s see, I already mentioned how ac-
curate the statistics were and how fast the
game plays. Let’s get back to the accuracy
of the game first. Players really do perform
as they do in real life. Quarterbacks will
pick out alternate receivers or scramble for
first downs, so your long pass attempt
might only result in a two- or three-yard
gain or loss. When playing against the com-
puter, teams play as they do in real life. You
can expect the Rams to keep it on the
ground with their boring philosophy, while
Miami will be sure to air it out quite a bit.
Playing Tampa Bay against Chicago is
usually the mismatch it is in real life.

The computer coach is good. It will run
a lot more if leading in the last quarter, and
throw more if behind. The game features
a two-minute offense in the NFL version,
and you can work the clock by throwing
sideline passes, calling time-outs and run-

NOVEMBER A.N.A.L.0O.G. Computing

ning a “hurry up” offense. Games can be
played in either team’s stadium or at a neu-
tral site as is done for the Super Bowl.

The game keeps a complete record of all
game statistics, and they may be shown on
the screen or on your printer at the end of
the game. The game also includes a statis-
tics compiler that will keep track of a
team’s record and the accumulated statis-
tics for all its games. So not only does the
game play fast enough to complete an en-
tire season, but at the end you will have
complete statistics for every team. All this
is included at no extra cost.

I have saved the best for last. How many
teams do you get with the game? 507 100?
Try almost 600! That’s right, almost 600
completely rated and accurate teams with
all the player types and team ratings I've
mentioned above. You get all 28 NFL
teams from 1986, 180 college football teams
from 1986 and 12 WFL teams from 1974.
(Normally the USFL had been included,
but since the USFL did not play in 1986,
the WFL teams were included instead.
Don’t ask me why.) You also get 174 of the
best college football teams of all time, in-

NOVEMBER A.N.A.L.0O.G. Computing

cluding the 1967 USC team with O.J.
Simpson.

And last but not least, you get 96 NFL
teams from past seasons. Or do you? Here
was where I got a big surprise. I just hap-
pened to be poking around on the disk with
the old-timer NFL teams when I noticed a
team that was not on the list that was enclosed
with the game. Looking a little closer at the
list that came with the game, I noticed some
team numbers were missing. It turns out that
you actually get not 96, but 189 past NFL pro
football teams on the disk! With all the pro
teams available on this disk, you can replay
every Super Bowl from 1966 to 1982. Tak-
ing my hometown Buffalo Bills as an exam-
ple of the wide range of teams that are
offered, you can play with the Bills’ teams
that are included from 1986, 1981, 1975, 1974,
1973, 1971, the 1-12-1 1968 team with Eddie
Rutkowski, 1966, 1965, 1964 and even the
1948 Buffalo Bills of the AAFC! Imagine, 11
different Buffalo Bills are yours to coach.

If you are a fan of some other team like
the Miami Dolphins, Oakland Raiders or
Dallas Cowboys, you will find an equally
large range of your favorite teams to choose

from. It is really quite interesting to play 1972
Miami with Bob Griese, Larry Csonka and
Jim Kiick against Vince Lombardi’s 1966
Green Bay Packers with Bark Starr, Boyd
Dowler and Jim Hornung. All the greats are
here to coach in their prime: Joe Namath,
0.J. Simpson, Jim Brown, Otto Graham,
Walter Payton, Fran Tarkenton and many,
many more.

All in all, you get a total of 583 past and
present, college and pro teams. That alone
makes this game a great value. Add the great
statistical accuracy and your ability to replay
some ‘“dream” football games, and you have
a real winner that is a definite bargain and
a great enjoyment.

Dave Arlington, an Atari devotee since
1983, has recently graduated with an A.S. in
computer science and math. He is rediscover-
ing his Atari while looking for ‘‘real’’ em-
ployment. He enjoys programming in Action!
and computer simulations of all types. g}

65

BASIC-—-
EditorIl

ASIC Editor I1 is a utility to help you

enter BASIC program listings pub-

lished in ANALOG Computing. To

simplify the identification of errors,

each program line is evaluated im-
mediately after it’s typed, eliminating the
need for cumbersome checksum listings.
When you've finished entering a program us-
ing BASIC Editor II, you can be certain it
contains no typos.

An option is provided for those who wish
to use standard BASIC abbreviations. Also,
the program retains all Atari editing features.
Finally, for those who prefer to type programs
the conventional way, using the built-in edi-
tor, a post-processing mode is available. It al-
lows you to check typing after the entire
listing has been entered.

Typing in the Editor
To create your copy of BASIC Editor II,
follow the instructions below— exactly.

Disk version:

(1) Type in Listing 1, then verify your work
with Unicheck (see Issue 39).

(2) Save the program to disk with the com-
mand SAVE “‘D:EDITORLI.BAS”’

(3) Clear the computer’s memory with the
command NEW.

(4) Type in Listing 2, then verify your work
with Unicheck.

(5) Run the program (after saving a back-
up copy) and follow all the on-screen
prompts. A data file will be written to your
disk.

(6) Load Listing 1 with the command
LOAD “EDITORLI.BAS”".

(7) Merge the file created by List-

ing 2 with the command ENTER
“D:ML.DAT”".
66

(8) Save the resultant program with the com-
mand LIST “‘D:EDITORII.LST”".

Cassette version:

(1) Type in Listing 1 and verify your work
with Unicheck.

(2) Save the program to cassette with the
command CSAVE. (Do not rewind the
cassette.)

(3) Clear the computer’s memory with the
command NEW.

(4) Type in Listing 2 and verify your work
with Unicheck.

(5) Run the program and follow the on-
screen prompts. A data file will be written to
your cassette.

(6) Rewind the cassette.

(7) Load Listing 1 with the command
CLOAD.

(8) Merge the file created by Listing 2 with
the command ENTER “‘C:’’.

(9) On 4 new cassette, save the resultant pro-
gram with the command LIST “‘C:”’

Using the Editor

Take a look at one of the BASIC program
listings in this issue. Notice that each program
line is preceded by a two-letter code. This code
is the checksum for that line; it’s not a part
of the program.

To enter a program listing from the maga-
zine, load BASIC Editor II with the ENTER
command, and run it. You’ll be asked if you
wish to allow abbreviations (see your BASIC
manual). If you do, type Y and press
RETURN. Otherwise, type N.

Note: If you set BASIC Editor II to allow
abbreviations, the program will run slightly
slower.

Your screen will now be divided into two
“windows.” The upper window will display
each line after it’s processed, as well as the

checksum generated for that line. The lower
window is where program lines are typed and
edited.

When the program’s waiting for input, the
cursor will appear at the left margin of the typ-
ing window. Type a program line and press
RETURN. The line will be evaluated and
reprinted in the message window, along with
the checksum generated.

If the checksum matches the one in the
magazine, then go on to the next program line.
Otherwise, enter the command E (edit) and
press RETURN. The line you just typed will
appear in the typing window, where you may
edit it. When you think the line has been cor-
rected, press RETURN, and it’ll be
reevaluated.

Note: You may call up any line previously
typed, with the command E followed by the
number of the line you wish to edit. For ex-
ample, £230 will print Line 230 in the typ-
ing window. Do not attempt to edit any
program lines numbered 32600 and higher.
These lines fall within the BASIC Editor II
program.

If you're using BASIC abbreviations, the
two versions of the command E work slightly
differently. The command E, without a line
number, will call up the line exactly as you
typed it. When you append the line number,
the line will be printed in its expanded (un-
abbreviated) form.

Leaving the Editor

You may leave BASIC Editor II at any time,
by entering either B (BASIC) or Q (quit). If
you type B, the Editor will return you to BAS-
IC. Enter LIST to review your work, if you
wish. Note that lines 32600 and above are the
Editor program. Your work will appear be-
fore these lines. To return to the Editor, type
GOTO 32600.

Type Q, and you’ll be asked if you really
want to quit. If you type Y, the Editor pro-
gram will be erased from memory, and you
may then save your work in any manner you
like. If you type N, the Q command will be
aborted.

Large listings

If the program you’re entering is particu-
larly long, you may need to take a break.
When you want to stop, type Q and press
RETURN, then save your work to disk or cas-
sette. When you'’re ready to start again, load
the program you were working on, then load
BASIC Editor IT with the ENTER command.
Type GOTO 32600, and you’re back in
business.

NOVEMBER A.NL.A.L.0.@. Computing

The post-processor

Many people may not want to use BASIC
Editor IT when entering a program listing,
preferring, instead, the Atari’s built-in editor.
For that reason, BASIC Editor II will allow
you to check and edit your programs after
they’ve been typed.

To take advantage of this option, type any
magazine program in the conventional man-
ner, then save a copy to disk or cassette (just
in case). With your typed-in program still in
memory, load BASIC Editor II with the
ENTER command, then type GOTO 32600.

Respond with N to the “abbreviations”
prompt. When the Editor appears on your
screen, enter the command P (post-process),
and the first program line will appear in the
typing window. Press RETURN to enter it into
the Editor.

The line will be processed, and the check-
sum, along with the program line, will be
printed in the upper window. If the checksum
matches the one in the magazine, press
RETURN twice, and the next line will be
processed.

If you find you must edit a line, enter the
command E, and the line will be moved back
to the typing window for editing.

When the entire listing has been checked,
you’'ll be asked if you wish to quit. Type ¥
and press RETURN. The Editor program will
be removed from memory, and you may then
save the edited program in any manner you

wish.
Murphy’s Law

Anyone who's been associated with comput-
ing knows this is the industry Murphy had in
mind. You may find that, after typing a pro-
gram with BASIC Editor II, it still won’t run
properly. There are two likely causes for this.

First, it may be that you’re not following the
program’s instructions properly. Always read
the article accompanying a program before at-
tempting to run it. Failure to do so may present
you with upsetting results.

Finally, though you can trust BASIC Edi-
tor II to catch your typos, it can’t tell you if
you’ve skipped some lines entirely. If your
program won’t run, make sure you've typed
all of it. Missing program lines are guaran-
teed trouble.

One last word: Some people find it an un-
necessary and nasty chore to type REM lines.
I don’t condone the omission of these lines,
since they may be referenced within the pro-
gram (a bad practice, but not unheard of). If
you want to take chances, BASIC Editor II is
willing to comply.

NOVEMBER A.NLA.L.O.G. Computing

'rnrés:pezx(135)*P£EK:137)§256

5 B8:7 UTYPE 'GOTO 32600°' TO GDRTINU

32638 IF LSC LSe1,1) :
EN ExL1:TRAP 35624!EL“02L(L$(2))1P0 ITI

(ES), UAL(le)I
682

32680 RETURN
32682 GDSHB 32652:50UND 0 75,10,8!FOR

Listing 1.
BASIC listing.

326088 IF FL THEN 3261

326082 DIM L5(115)‘SV$(115) gzs;z;tss
i

32604 GRAPHICS 8:POK 0:P=0:48
2 “ALLOW QBBREUIQTIONS" li

§=uyi OR A$="'y" THEN AB

32606 BSC(LI=" "iBSC €115y =" "!BS IZBS

32616 OPEN g!?,l 2 0,ME LS “lEDSU 3

2662:START=

32618 POKE 766, 1:POKE 83, 39: POSITION 1
J3IIF L L$)(39 2 (516070 32624
430 e NS 7y THEN 3 Lo, 38517

L5139, LEN(LS)):GOTO 2624
xzazg 2 L$C1,38)17 LSCII, 76317 LS(77,L

EN 33
32624 PDKE 752,0:POKE 766,08:POKE 553,%
4:POKE 82,1: POKE 036381P05 TION 6,16:7

b '":INPu 173L$=
LS:"P") AND START=

32626 IF (LS="P" O
0 THEN P=giL$=''
32628 IF LS="E'" OR L$="e' THEN E=1: POS
16:? 05 GOTO 32

L ﬂ“ R L$=""q" THEN 32696

D P=i THEN 32 86
88 Y"EN 32624 .
32636 IF LS$=''B'" OR LS$="b'' THEN GRAP

$C1,1)=""E" OR

: 32624
326406 Svs“LSSTRhP 32624 8= UﬁL(LSy
E THEN 326

52
gzg;gsgosun 32674:IF NOY ABR OR P THE
‘32646 OKE 766,8:7 cnns«125::vos:rxou

glL'UﬁL(Ls)!LZST Lt7 1? 17 "CONT":LS

!26‘8 POSITION @,8:POKE 842,13:5T0P
322;0L§oxz 842 IZIQ-USR(ADR(SS) ADRILS
i

1,
32652 CH SUH-USRKQDR(HS) aDR(Ls’I%E"!L

5))ICHKSUH-CHKSUHOPEEK(1542) #6565

32654 CHK=CHKSUM- (INT (CCHKSUM/676) %6763
tHIZINT (CHK/26) :LO= CHK‘(HI*ZS):OlQ(I)_
CHRS(H 4653 1C 25!2)‘GHR5(L

3265
662!IF NOT P THEN 3266

«K(Sﬁli

32664 POKE DL-1,7061POKE DL#2 GIPDKE DL
#3, lexPOKE DL+4, ILZIPOKE DL‘S 112:POK

14,112 ,
KE DLiz2, 171 POKE DL+23,112:P0
KE DL+24,65:POKE DL&ZS,PEEK(SSO):POKE
DL#26, PEEK (561) 1 POKE 85,39
32668 POSITION 20,017 b

ITION 0,7:7

ECoD l,
32672 POKE 559,34 tRETUR
32674 GRAPHICS 01POKE 5’.0 POKE 755,1
3POKE 82,08:POKE 83,391POSIT IOH 9,3:7 L
12 “GONY“tPOSIYION 8

12 12 1
'32676 POKE 842,

TOP
32678 POKE Olliézzlnﬁﬁnégﬁggéﬁ A

K=1 To 20iNEKT Xi30UND 0,8, 0,0 0sxTs
1,317 YSYNTAX znnonlnsﬁox 6,1
2654 POKE 83, IBIPOSITION &

070 3262
32686 LINE—PEEK(THTﬁB)*PEEK(STHT“B*l)
%#256:IF LINE)32599 THEN 32690

3%688 0FS$P§§K(S MTanZ)ISTHTGB’STanB

E IPOSITION 1(1012 “READ
¥ T0 QUIT";INPUT ASIIF ASCSUY™ THEN P
0SITION 1,10:7 BSCL, ey 80%0 ¥26 524
2 GRAPHICS 8:7 17 17 {FOR X=32600
2636 5 En 21 x:uzxr KE? HEONTS L PO

; 1STOP
KE 842,1 ﬁnruzc 5,857 17 17 ¢
638 10 32674 STEP 217 KIMEXT X
ONT**1POSITION 0,0

0 13:570P

_POKE 842, 12:GRAPHICS 817 1701
z 2702 STEP 217 KINEKT X
e 12%1POSITION 6,8

NPUT AS:IF &

10 DI LS 1203, m.suw

D! TH
36

[F NOT P OR E 0 —OIGOSUB 32“
l FOR =3 TO -

201, 192,14‘
';05,32 14
228

308,215, 177303, 301, 32,500
47,200,132,

B 169,8,13 365 1216,165, 1

10:1 5US:16

32700 POKE 842,13:5T0P
32702 POKE 16,112!P0!E 53774,112 :RETUR

CHECKSUM DAT
(see issue 39's k’Un

12600 DATA 6,665,923,757,809,171,225,8
3800020499, 910,267.312,144, 755, 8453
32638 DATA 97,358,230 o

127,35,597,230,250,1az,4:o,1s

52668 DaTa’864,953,472,305,8 867,724,72,
§67,908,736,625,612,672,184,891,9672

S Se5a DAhTa b 536 85,543

20 GRAPHICS expoxs 710,0:
SSETTENS TINPUT ASIIF A§ O

AS=UC'" THE K 50
40 ? "PLGCE FORMATTED DISK IN D RIVE'":?
“THEN PRESS RETURN"IINPUT LS:0PEN 811,
B 0,"D:ML.DAY":GOTO 66

0 7 17 UREADY cnssarrE, PRESS RETURN"
:-INPUT LS:0PEN & e

0 L$5="32608 (1)‘“'L§(13}'CHR$(34)

N=119:G SUB 130:L$(14)-HL5(1,58) LS
(LEN(LS)+1)—OHR5(2 810
80 LS(1)="'32610 S(S’)‘"'LS(J=CHRS (X
4) L5(15)HL(59)ZLS(LEN(LSSOI)'CHRS(

ISK OR
mﬁﬂb as¢ “

4):7 ui
LS$¢C 32612 S5=":L$(10) =CHRS (34)
100 MLS PNz 98!605"3 ISBSLSKLI)-HLS!L

S (LENCL HRS (34) ¢

1) L
. 110 LS(I!‘"IZBL‘ ES'":LS(lé)’CHRS(I‘

8 MLS='"':N=69:GOSUB 130:L5(11)‘HL5:L

~$(LEN(L5)#1)’CHR$(34)E’ BLiLSE

K—i TD I!RE&D AHI (K)‘CNRS(A)

104 133,20 133,203, 1
65 159,911; 41,2,6,

133,2

4133, 212,32,170,217,32
10112, 1o, 247 155,511,141 8,6,16

109,4 5,141 5 173,1
1144,3, 238,6 2238,2
88 DATA 61172 12, 6 196 265 208, 176 173

i +6 » ; i ; ,213 ’5

36 Bava 1o4)10 04,104,133,203,1
8,035 205 5 0h b; 308" L
é ' Fl '

60’ DATA 174 95503134, 165 205, 105,49,

33,205,144,2,230 206 éoz,znc 542 160,60

,177,205, 261 840144

516 bata’ 201,96, 144.15,201,128 144,10
6,201,224,144,7,176,8

6 23
é‘ 145 293,200 132~111 2405 3

109,5,6 141 5

1
230 Data 104, 104 1(1,254,5 04,141, 253
183,265,1

65,437 1%, 5

340 bath 205 208,953 6 208,8,200,177, z
as,zos;254,5.24a,15 166,, 175 265,24,
91,205, 133,265,

238,206 178,224.160 4 177 285
2201,55,240,4,160,0,240,89, 1!2,&11,

CHECKSUM DATA.
(see issue 39’s Unicheck)

0 DATA 2035265 ,465,844,294,973,652,27

970 797 835.29’,301 7639
58 DATA i &4 420,’35,818 580,41
 1974,564, 54

67

68

by LeRoy Baxter

i

ver wondered how the AUTO-
RUN.SYS file worked with BASIC?
Ever wanted to automatically run a
BASIC program that wasn’t named

MENU? Ever had a conflict between

the autorun loader and a machine-language
routine that the program needed? How about
a two-stage LOAD and ENTER situation? Or
an AUTORUN.SYS for a language other than
BASIC?

I've seen a lot of AUTORUN.SYS makers,
but none have resolved all the questions and
few that will let you autorun any program but
MENU.

I disassembled one of my AUTORUN.SYS
files and delved into its secrets. I made some
changes and “eliminated some potential
problems. The result is Listing 1, an AUTO-
RUN.SYS maker that is more flexible than
any you’ve ever seen. It works with any Atari-
type DOS (DOS 2.5, MyDOS, etc.) and with
any language.

The secrets revealed

Normally, when BASIC comes up, it
prints the READY prompt on the screen
and then calls the editor to accept a line
from the keyboard. While all the editor
routines are in OS ROM, the designers of
the Atari have allowed us unlimited flexi-
bility by putting the address of the editor
routines in a RAM table called HATABS.
By replacing the editor address in
HATABS, we can supply new routines that
make the computer do what we want.

The program is divided into three parts.
The first part finds the vector for the edi-

tor and replaces it with our own. The han-
dler table is searched from the bottom up
just in case a new E: handler has been load-
ed. The second part is our new (and tem-
porary) E: handler routine. It passes back
a command line to BASIC without waiting
for keyboard input, and then resets the E:
handler vector to its original value. The last
part is the BASIC command line itself.
This can be anything that you could type
on one line from the keyboard. You can
change screen margins, change screen
colors, play music, generate a graphics dis-
play, load one program and enter another
(and then run them), set up password secu-
rity, call DOS—the list is endless and limit-
ed only by your imagination.

Getting started

Using MAC/65 or the Atari Assembler
Editor, type in Listing 1 and save it. (You’ll
want to use it again many times.) Note that
you can just list Line 10 and edit off the line
number and semicolon to cause the program
to be listed to disk. Next, change CMDLIN
to reflect the BASIC command line you want
executed. In Listing 1, the command line
is: 7 “Loading. .. MYPROG”:RUN D:MY
PROG.BAS.” To insert the quote mark into
the BASIC command line, it must be speci-
fied by its ATASCII value ($22) as a
separate byte. Your command line can be
a maximum of 119 characters.

To write the AUTORUN.SYS file, load
the destination disk into your drive and as-
semble Listing 1 to disk with the command:
ASM,,#D:AUTORUN.SYS.

NOVEMBER A.NL.A.L.0O.G. Computing

I've seen a lot of AUTORUN.SYS makers, but
none that have resolved all the questions

and few that will let you autorun any program
but MENU.

“

18 ;LIST HD:AUTOBAS.SRC

26 ;

36 ;for creating AUTORLN.SYS

40 ;

58 ;MACG65 source code with

68 jconversions to atari aAssembler

65 ;Editor
78 ;

88 ;Equates:

98 HATABS = 5$831A

0188 TEMP = SCB

8iieg ;

ai1ze #= 540080 jor anywhere
8138 ;

8148 ;Modify the Handler table

8158 MAIN

8168 LDX HIG ;search from END
8165 ; of table

8176 ELOOP LDA HATABS, X

gise CMP H#H'E ;jfor "E:' handler
[shR-15) BEQ CHANGE

8288 DEX

B6z18 DEX

8228 DEX

BZ38 BPL ELOOP

8248 CHANGE ; the table address
8258 INK

BZ68 5TH EDEXR 1save HATABS loc
B278 LDA HATABS,X ;and E: vector
8288 5T TEMP

8298 LDA ## {NEWTAB ;or NEMWTAB&SFF
83606 5TA HATABS, X

83186 INK

83286 LDA HATABS, X

8336 STA TEMP+1

8340 LDA # >NEWTAB ;or NEWTAB/256
83506 5Ta HATABS, X

8360 ;now transfer ROM table to RAM
837a LDY #5008

8380 STY YsSav

8396 XLOOP LDA (TEMP),Y

8400 5TA NEWTAB,Y

84186 INY

B84za CPY #5186 116 BYTES

84308 BCC HLOOP -branch if {16
8440 ;now setup new getbyte routine
84586 LDQ #t {NEWGET-1

8455 or (NEWGET-1) &5FF
6460 STﬁ GETBYTE

8470 LDﬂ #t >NEWGET-1

8475 or (NEMWGET-1)/256
84806 STQ GETBYTE+1

NOVEMBER A.NL.A.L.O.G. Computing

8498
85608
8518
8528
85308
8548
8558
85606
85708
B580
8598
8595
8600
8610
8626
8629
8636
8648
8658
0660
8670
06806
86906
8768
8716
8720
8738
8748
8750
8760
778
8775
87806
8785
87958
8geo6
0816
08820
6830
08406

8878 CMDLIN ;

RTS
;Handler table space
NEWTAB
OPEN .HORD B8 ;jsee atari 0S5
CLOSE .HORD @ ;Manual,
GETBYTE .WORD 8 ;;DeRe Atari, or
PUTBYTE .WORD @ ;Mappng the atari
5TaAaTUS .WORD 8
SPECIAL .WORD 8
JUMP .BYTE ©,8,0

.BYTE 6,8 ilﬁth byte

N insurance
¥Y5av .BYTE @
EDEX .BYTE ©
;our new GETBYTE routine
NEWGET

LDY ¥5AV

LDA CHMDLIN,Y j;get 1 char

CHP #59B 3if C/R then done
BEQ® DONE
INC YS5AV jindx next char
LDY #5681 ;tell 0.5. 0K
RTS

DONE
PHA ;jsave C/R
THA ;jsave H register
PHA
LDH EDEX ;find 'E:' entry
LDbA TEMP ;in HATABS
5TaA HATABS,X ;replace our
H routine
INK ;with the real
H vector
LDA TEMP+1
5TA HATABS, X
PLA irestore X reg
TAK
PLA jrestore C/R to A
LDY #5681 jset status OK
RTS

passed to BASIC

B88a v BYTE . ""2. 0 522,"Luadxng... MY
PROG" ,522

8896 .BYTE "":RUN ",522,"D:Myprog.b
as",522

890606 .BYTE 59B 3} C/R!!

8918 ;

8928 ;set to execute when loaded

8936 ¥= S02E2

8948 . HORDP MAIN g

69

Unlock your
: Atari

oly device. |97 Stack

Si8dskiss

lllll

ERROR CODES
INTERNAL CODES
PEEK & POKE LOCATIONS
MACHINE LANGUAGE AIDS

&% PLETE POCKET GRAPHIC MODE SPECIFICATIONS
| BASIC COMMANDS WITH ABBREVIATIONS

PROGRAMMING AID
ONLY $795 ea ANALOG COMPUTING

THE #1 MAGAZINE FOR ATARI COMPUTEF OWNERS

LR LS
£

ANALOG

Please send me

a N g LD u E YES' Computing Pocket Reference Cards.
COMPUTING | am enclosing $7.95 per copy.
E:CASH . LIGRECK I CHARGE

P.O. Box 16927
N. Hollywood, CA 91615
Name Card #
Address Exp. date
Signature

State Zip

City

BOOT UP
T0 BIG SAVINGS!

1 YEAR FOR ONLY $28

SAVE $14 OFF THE COVER PRICE

1 YEAR WITH DISK ONLY $105

SAVE '"ME A"D MO“EY sccesesccesssses ecccccscsss cee sesssesese;

01 YEAR @ $28 — SAVE $14! MCKYW
SUBSCRIBE T0 5T-10G : FOREIGN — ADD $7 PER YEAR
SAVE $14 OFF THE : O1YEARWITHDISK @ $79 DCKYW
COVER PRICE WITH ¢ FOREIGN — ADD $15 PER YEAR

THE CONVENIENCE O PAYMENT ENCLOSED O BILL ME
OF HAVING ST-LOG : CHARGE MY: [OVISA OMC#
DELIVERED DIRECT- :

+ EXPIRATION DATE SIGNATURE
LY TO YOUR DOOR + MONEY BACK ON ALL UNUSED PORTIONS OF SUBSCRIPTIONS IF NOT SATISFIED.

BEFORE IT EVEN HITS
THE NEWSSTANDS!
GET THE MOST OUT : Aooress

. NAME

OF YOUR COMPUTER : — ==
SUBSCRIBE ro E MAKE CHECK PAYABLE TO L.F.P., INC., P.O. Box 16928, N. Hollywood, CA 91615. Offer expires January
ST-L06G + 25,1989, Your first issue will arrive in 6 to 8 weeks.
ToDAY! : WATCH FOR IT!

STORE HOURS
TUE - FRI 10am - 6pm
SAT - 10am - 5pm
CLOSED SUN - MON

3257 Kifer Road
Santa Clara, CA 95051

(408) 749-1003

B&C
= ComputerVisions

NEWI! 1050 SUPER ARCHIVER CHIP $69.95

8-BIT INTEGRATED CIRCUITS RUN MAC SOFTWARE ON YOUR ST

$3.50 EACH OR 3.00 IN QTY OF 10 $12.00 EACH

ASSEN REV A 800 CPU 6502 RAM 6810 ASSEM REV B MAGIC SAC 119.95 %
BASIC REV A 810 ROM C POKEY XE GATE ARRAY
MPU 6507 800 ANTIC PIA 6502 XL ANTIC mu;gagop. 2;::2 ; %
PIA 6532 OS ROMS (499B-599B) VCS TIA 444 -
BASIC REV C PRT DRIVERS/FINDER 44.95
$4.50 EACH OR 4.00 IN QTY OF 10 850 ROM B
1771 FDC XL CPU 14806 GTIA FREDDIE
1050 ROM XL/XE MMU XL DELAY XL/XE OS COMPUTERS & INTERFACE

ATARI 800 100.00 MPP-1150 INTERFACE 54.95
ATARI 800XL 119.95 MPP-1151 INTERFACE 74.95
NEW PRINTED CIRCUIT BOARDS WITH PARTS
800 MAIN WITH CHIPS 10.00 800 10K 0/S 10.00 ATART 130XE 149.95 ATARI 850 125.00
800 16K RAM 10.00 800 POWER 5.00
810 SIDE WITH D/S 15.00 800 CPU W/GTIA 10.00 DIAGNOSTICS
810 ANALOG 10.00 810 POWER 15.00 1050 DIAG. DISK 20.00 810/1050 DIAG. CART 25.00
SALT 800XL CART 25.00 SALT 400/800 CART 25.00
JOYSTICKS 5-1/4" ALIGNMENT 40.00 3-1/2" SS ALIGNMENT 50.00
ATARI SPACE AGE 14.95 WICO 3-WAY 29.95
ATARI STANDARD (2) 12.00 WICO BAT HNDL 22.00
ATART TRAK BALL 25.00 NUMERIC KEYPAD 19.95
EPYX 500 JOYSTICK 19.95 ST MOUSE 45.00 HAPPY ENHANCEMENT VER. 7.1
810 OR 1050 - $99.95
MISCELLANEOUS
400/800 POWER PACK 10.00 800 KEYBOARD 40.00
800/810 POWER PACK 15.00 800XL KEYBOARD 25.00 L e T
KLM 400/800 POWER PACK 5.00 130XE KEYBOARD 35.00 DISK CONTROLLER WD1772 25.00 DMA CONTROLLER 26.00
1030 POWER PACK 10.00 520ST KEYBOARD 75.00
PHOTO COUPLER PC900 2.95 MMU 28.00
800XL/XE POWER PACK 20.00 1040ST KEYBORD 85.00
YAMAHA SOUND CHIP 10.00 VIDEO SHIFTER 26.00
2600 POWER PACK 5.00 314/354 POWER 35.00 EARH R A e il
520ST POWER PACK 50.00 1040 POWER PCB 75.00 68000-8 CPU 27.00 68901 MPF 16.00
KEYBOARD CHIP 15.00

DISK DRIVES

810 140.00 (130.00 ATARI XF551

A R 199.95 ATARI XE GAME MACHINE $139.95
ATARI 810 W/HAP 220.00 (210.00) INDUS GT INCLUDES MISSILE COMMAND, FLIGHT SIMULATOR II,
B&C 810 140,00 (120.00) 225.00

BUG HUNT, LIGHT GUN, JOYSTICK, BASIC, AND 64K OF

PRICES IN BRACKETS DO NOT INCLUDE I/O OR POWER PACK MEMORY WITH A REMOVEABLE KEYBOARD. ADD A

FIELD SERVICE MANUALS DISK DRIVE AND PRINTER FOR A COMPLETE HOME
ATARI 400/800, 810 25.00 EACH COMPUTER SYSTEM!
ATARI 800XL, 850,
0.00
SAMS 800 B00RL. o100 ERCHC | wWE CARRY A FULL LINE OF CARTRIDGES FOR THE XE
130XE, 1050 19.95 EACH GAME MACHINE.
SAMS 520ST 35.00
SUPFER SPFECIALS
RECONDITIONED ATARI MERCHANDISE
All merchandise has been tested and reconditioned and is in like-new condition except where noted. 30 day warranty .
ATARI ATARI 1020 COLOR 600XL (64K) SA MR
TRAK BALL SPACE AGE PLOTTER/PRINTER $59.95 $14.95 - NO BOX
JOYSTICK 2 e 2
$9.95 $29.95 Upgraded to run newer | ($19:95 WITH RECON KEYPAD)
40 Columns wide 64K software - includes
SPICE UP THE ACTION IN $5.00 Includes paper and Basic & power supply $24.95 - IN BOX
YOUR ARCADE GA MES! color pen set (29.95 WITH RECON KEYPAD)
400 (16K) 1030 800 48K) NUMERIC DISKETTES
COMPUTER MODEM COMPUTER 2 KEYPAD AFLOWAS 20 CENTS
$29.95 WITH $79 95 $7.95 10-FOR $4.00
48K UPGRADE KIT L) INCL HANDLER DISK USE 1000 FOR $200
$25.00 $29.95 INCL. BASIC CART & ‘ggro‘}(%g{,%lf MOST ARE UNNOTCHED
GET ONLINE TODAY MANUAL WITH OLD SOFTWARE

SHIPPING INFORMATION - Prices do not include shipping and handling. Add $5.00 for small items ($8.00 Min. for Canada). Add $8.00 for
disk drive. Calif. res. include 7% sales tax. Mastercard and Visa accerted if your telephone is listed in your local phone directory. Orders may be
pre-paid with money order, cashier check, or personal check. Personal checks are held for three weeks before order is processed. C.O.D orders are
shipped v(rja UPsszgn(;iomu.st‘ be paid w;llh c;sh, cishhlerl check ?.r mloney or?er.d International andbAPO ordgrs mustha pre-paid with cashier check or
money order. .00 minimum on all orders. sales are final - no refunds - prices are subject to change. Phone ord

THROUGH FRIDAY from 10:00 am to 6:00 pm PST. P ; g BT R I E QDAY
We carry a complete line of ATARI products and have a large public domain library. Write or call for free
catalogue. (408) 749-1003 TUE - FRI 10AM - 6 PM

PRICES SUBJECT TO CHANGE WITHOUT NOTICE - ALL SALES ARE FINAL
CIRCLE #104 ON READER SERVICE CARD.

by Steve Panak

NOVEMBER A.NLA.L.O.G. Computing

gain we are witness to yet another

software market cycle. As you might

have noticed by now, an alarming

number of software publishers are

weaning out Atari 8-bit support.
Some new titles, which I'm certain would be
good sellers, and most of which probably
don’t require more memory than the XL/XE
series provides, just aren’t in our language.
It’s getting hard to find two games a month
to examine for you, much less the four or five
I used to be able to play. And though this
sounds like the beginning of the end and is
extremely distressing to Atari newcomers,
there has been an unexpected but welcome
side effect.

I'm starting to see a lot of independent
producers and developers jumping into the
water. And while some of their stuff is good,
some bad and some mediocre, all of it is sen-
sibly priced. The lack of high marketing,
research and development and packaging
costs is passed right on to us, the end users.
This makes it a lot easier for a novice to stock
his library with a lot of games of different
types, where a few years ago he might only
have been able to afford one or two. To make
things even better, the big boys have seen this
market niche as well, making us even bigger
winners as they discount some of their older
games, attempting to milk the few remain-
ing dollars from their cash cows. If you pick
and choose wisely, you can’t help but be
satisfied.

So keeping these two facts in mind, I think
what we’ll do to kick off the holiday season
is to look at some oldies, and a couple of new
games from a new company. I'm going to
start by bringing you all up to date on a few
of the best thinking-man’s games available for
the 8-bit. Games which require not fast
reflexes nor superb hand-eye coordination,
but instead ask you to think. And because
they demand more of you, I like them the

best. For you action addicts, if you’ll just
hang around until the end, I promise you a
photon fix. And if you’re not careful, you
might even learn something before we're
done.

When I think of thinking games, the first
to come to mind is chess. Chess has been
around for hundreds of years and is still com-
plex enough to challenge the world’s greatest
minds. And when you feel up to the
challenge, your Atari is ready for you, thanks
to the Chessmaster 2000, from Elec-
tronicArts, which I consider to be the best
chess game available. In addition to having
one of the most devastating decision-making
algorithms available the program is also the
most attractive, featuring a three-dimensional
playing field which can be modified to your
heart’s content. Chock full of features, includ-
ing multiple levels of difficulty, the ability to
study the decision-making process and to
print a log of moves, as well as all the stand-
ard options like move take-back and board
setup, this grand master is likely to keep you
engaged for months. And if you don’t know
how to play, Chessmaster is more than hap-
py to teach you. Experts revel in its library
of classic games and the brief history of com-
puter chess contained in the generous manu-
al. For all these reasons, and many more,
Chessmaster 2000 is the best chess simula-
tion on the market and a must for all game
libraries.

Of course if you’re a real masochist, you
will probably love any of the many Infocom
titles. These text adventures feature the most
sophisticated grammatical parser available,
and are able to understand complex and com-
pound sentences. In fact, they often demand
them. My favorite titles are the Zork trilogy,
Stationfall and Planetfall, Suspended, The
Hitchhiker’s Guide to the Galaxy and Leather
Goddesses of Phobos. And although this list
indicates that I am partial to their comedy and

73

74

NOVEMBER A.NL.A.L.O.G. Computing

science-fiction titles, rest assured that, like
a bookstore, Infocom has titles to suit every-
one’s taste. From mysteries to romances to
adventures, nearly every computer user who
loves a good story will find at least one title
to keep them up at night—all night. And to
make it even easier on the pocketbook, many
of their 8-bit prices have been lowered, some
to a mere $9.95. At that price it’s pretty hard
to go wrong.

If you’re into word games, there are a cou-
ple of titles out there to confound you. The
first which comes to mind is Buzzword. This
game is very similar to the Family Feud tele-
vision show (minus the obnoxious Richard
Dawson). In this game, you choose a category
and are then given nine letters which begin
nine words. Also provided are the number of
letters in each word and a pool of available
letters. The object is to guess all the words
in the category and amass the most points.
Different levels of difficulty make for fami-
ly fun, as children of all ages can participate.
Many find the game is most fun when played
in a group setting. There are thousands of
words in the hundred or so categories provid-
ed in the package—enough to keep the aver-
age player active for months. In fact, each
category can be replayed a number of times
before the words will be memorized. Even
though it is a little-known game from a little
known company, Buzzword should not be
overlooked.

The second word game which comes to
mind is Crosscheck from Datasoft. This word
game reminds me of Scrabble, without all the
wooden tiles to lose. Upon further examina-
tion though, it is a very original and mul-
tifaceted game. Up to four players take turns
placing words on a crossword-style board.
These words are guessed from clues given
at the bottom of the screen. The number of
letters in the word is determined randomly
at the beginning of each player’s turn by a roll
of the electronic dice. Different versions of
the game contain different objectives. You can
race to connect two areas of the board or play
for points, with or without a time limit. The
board is huge with a magnify feature allow-
ing you to zoom in to place your word in the
best strategic position. And while some of the
clues are simple, additional clue libraries en-

NOVEMBER A.NL.A.L.O.G. Computing

sure Crosscheck lovers are not left in the
dark. Truly a diamond in the rough, and
worth a look.

Solar Star

by Glenn Cassim
Drop Zone

by Archer Maclean

Microdaft
19 Harbor Drive
Lake Hopatcong, NJ 07849

Here we are in phase two of this month’s
discourse. A look at a couple of new games
from a new company. The new company is
Microdaft (which gets the award for the
stupidest name), and the first game is Drop
Zone. Or should I say the first game is
Defender, as Drop Zone is a copy of Wil-
liam’s arcade classic nearly verbatim; the
only difference being that you are represent-
ed by a man in a spacesuit, rather than by
a sleek star fighter.

In case you didn’t catch Defender the first
time around, it is your basic space shoot-’em-
up, the main twist being the ruthlessness of
the objects you encounter. Of course, in Drop
Zone the names of all these items have been
changed to protect the guilty. Androids and
Nemesites, Spores and Nmeyes will plague
you as you attempt to rescue your men who
are stranded on a planet being overrun by
aliens.

Using the joystick, you move up and down,
left and right. The space bar releases a smart
bomb, which destroys everything on the
screen, while any other key activates your
cloak, which makes you invisible to the ene-
my. The only other key you need to worry
about is the escape key, which pauses the ac-
tion when you feel you need a break. There’s
not a lot to learn about in this game—no great
secrets. But what it lacks in complexity it
makes up for in sheer difficulty. Each suc-
cessive wave of enemy onslaught will tax your
arcade skills to their limits.

The graphics are surprisingly good, given
I’ve come to expect so little from 8-bit games
of late. The action moves every bit as fast as
any arcade game I've seen, commercial or

otherwise, and the joystick is very respon-
sive. The effect as you explode is especially
impressive. The slight manual explains each
control succinctly, making Drop Zone a
pleasant surprise.

Solar Star is a little harder to describe, as
it is one of those rare video games which was
not inspired by or was not a rip-off of some-
one else’s idea. And as it is new and unusual,
it is also a little harder to like. It might be
described as an electronic game of tag, or it
might not.

The background story concerns a giant
energy grid which is used to supply space-
faring vessels with solar fuel. Unfortunate-
ly, the computers which were designed to
protect the grid began to do their job a little
too well, depriving ships of much-needed
fuel. Your mission is to gather as many ener-
gy crystals as possible, blasting disrupters
(the enemy) until they release a crystal. It’s
basically a race against time to complete the
mission before you exhaust your energy.

The screen is divided into four areas. The
top half of the display contains a first-person
point of view as you move about a large grid
which is divided into areas by force fields.
Contact with these fields reduces your ener-
gy, and when you’re out of energy, your game
is over. The bottom right- and left-hand cor-
ners contain overhead views of the grid, in
increasing degrees of magnification. Cen-
tered in the bottom of the screen is a readout
area to keep you abreast of the various game
parameters, such as score and speed. This is
a lot to keep track of, and what made it more
confusing was the fact that I used one of the
bottom displays more than the large main
view.

Collect enough crystals, and you’ll move
on to the next level. The graphics are pretty
standard stuff, about at the level of the
2600—blocky but fast-moving. The manual
is fraught with misspelled words, but other-
wise accurate. I didn’t really like this one as
much as Drop Zone, and I can’t recommend
it. But I do praise it for its originality.

That’s about it for this month. Next month
we’ll take a look at the latest SSI simulation
and evaluate it up against a new simulation

from Datasoft.
Until then, happy holidays. &1

75

76

hen the 520ST was first released,
many of today’s users were satis-
fying their computing needs with
an Atari 130XE or even an old
. Atari 800. This was 1985, when
inflation was at its lowest point in years, and
the economy seemed ready for something
new. The Atari 520ST was introduced, and
for the moment it seemed to be the hottest,
newest, sleekest microcomputer on the block.
It had more memory, terrific graphics and a
hard-disk port built in!

The hard-disk port on the back of your ST
is really an amazing, and mostly overlooked,
addition to the ST computer. If you own an
IBM PC or an MS-DOS clone, adding a hard
disk can become fairly difficult. There is no
standard interface for hard disks on the PC,
nor is there one for the Macintosh. So every
hard-disk manufacturer has to determine their
own product specifications, and this has led
to a market filled with 101 varieties of hard
disks. Some hard disks come on an IBM ex-
pansion card, some have cables that connect
to the PC’s mother board, and some plug into
your floppy-disk port and sit above your nor-
mal floppy. They all look a little differently,
sound a little different and operate a little
differently.

The ST, on the other hand, has one DMA
port which is easily used as the standard hard-
disk interface. Other people have used this
port to connect optical scanners, laser printers
and local area networks. Since the DMA port
is included on all STs—Mega STs use the
same port—all of the hardware manufac-
turer’s products have been designed to work
with one another. The issue of adding a hard
disk to an Atari ST could hardly be simpler.

When the ST was first announced at the
winter Consumer Electronics Show in 1985,
there were some rumors that Atari was work-
ing with Haba Systems, a computer software
company in Los Angeles, California, that
produced Commodore 64 and IBM PC soft-
ware. Haba intended to produce a hard-disk

NOVEMBER A.N.A.L.O0.G. Computing

drive for the ST that would be bundled with
some software and a 520ST. The complete
package would be sold as a complete ST de-
velopment system for developers. Haba was
also putting together a series of classes on
GEM programming for the ST. A turbulent
year for Atari Corp. was 1985, and because
of one thing or another, Haba’s only ST
product became their ST hard-disk drive.

The Haba 10 was a ten-megabyte hard disk
for the ST that sold for less than $600. Haba
received a large amount of publicity for its
announced hard disk mostly because Atari’s
more expensive 20-megabyte hard disk was
the only other alternative.

Haba sold a bunch of hard disks, but then
the problems started to flood in. Haba’s en-
gineers didn’t expect the ST’s DMA port to
be so electronically unstable. Many 520 and
1040STs wouldn’t work with Haba’s hard
disk. Haba eventually created an improved
hard-disk interface which worked with all ST
computers.

Then many users found the Haba hard-disk
operating-system software had bugs. Certain
word processors would lose characters within
a document file when the text was saved and
loaded onto the Haba hard disk. The software
problems were never corrected, mostly be-
cause Haba was about to go out of business
by the time the problems were identified.

Supra Corp. began offering hard disks for
the ST early on, but their prices were close
to Atari’s prices. Supra held the edge on the
hard-disk market with several features not
offered with the Atari or Haba disks. Supra
offered superior operating-system software;
users could create more partitions than the
Atari hard-disk software allowed. Supra also
found Atari’s hard-disk boot software in TOS,
which allowed the Supra’s hard disks to auto-
boot when the ST was first switched on.

Other manufacturers began appearing for
the ST. Astra, Calcom and others began offer-
ing well-built, low-cost hard disks for the ST.
In 1987, the price of a hard disk was down

NOVEMBER A.NL.A.L.0O.BG. Computing

to about $500 for 20 megabytes. Some com-
panies even offered their interface cards for
less than $150. With an interface card, any
SCSI (Small Computer Serial Interface) com-
patible hard disk could be attached to the ST’s
DMA port. SCSI hard-disk drives were be-
ing sold in mail-order houses for less than
$250, so if you were not satisfied with any
of the commercial offerings, you could piece
together the components and make your own
hard-disk unit.

Supra has just recently upgraded their
hard-disk interface card to support several
new features. The new card has a calendar
chip which can update the ST system clock
every time the system is switched on. Also
included is an additional DMA output port.
The second port becomes important for the
Atari laser-printer (SLM804) owners who
must plug their laser printer into the DMA
port to print documents. The Supra DMA
port lets you ‘“daisychain” many DMA
devices. The new Supra card is fully SCSI
compatible, so any advertised SCSI drive
should work with it.

ST-Log built its own hard-disk system us-
ing a Supra interface card. We started with
some basic components:

Atari 520ST

(with one-megabyte memory upgrade)
Supra Hard Disk Interface card
Seagate 20-megabyte hard disk

(with controller built in)

Power supply

Hard-disk enclosure

The Seagate 20 hard disk costs $250. It
came with an integrated controller, which was
mounted on top of the hard-disk unit. A flat
ribbon cable extended from the controller; it
attached to the Supra interface card. The hard
disk, controller and interface card were
mounted into the front of a Haba hard-disk
enclosure. The nice thing about using the
Haba enclosure was the easy mounting of the
hard disk, and the built-in power supply

Atari 520ST

provided the +5 and +12 volts D.C. power
that the other components needed. These
kind of enclosures are readily available from
most mail-order houses.

A special power cable was created to sup-
ply the Supra interface card. The parts to
build the cable were found at a local Radio
Shack store. Total cost was around $10 in
parts.

A cable extends off of the Supra interface
card that attaches to the ST’s DMA port
directly. When the power to the drive was
switched on, we immediately found that the
controller ribbon connector was plugged in
upside-down. With a quick switch of connec-
tors, we started the 520ST and the GEM
Desktop appeared instantly.

When you purchase the Supra interface
card, the kit comes with all the disk operat-
ing software and a small (26-page) manual.
The disk operating system is completely
GEM based, so it is easy to use and some-
what intuitive. The software and interface
card are somewhat sophisticated; when the
formatting utility was started, the program in-
dicated the correct type of hard-disk con-
troller and drive being used. A couple of
mouse clicks later, the formatting program
was off and running.

A special partition control program was
later used to determine the number of disk-
drive partitions that would be used. Supra’s
unique software permits up to 12 partitions
to be created. A partition appears on the
GEM Desktop as a separate disk icon, so
sorting your software into groups becomes
easy.

The entire process of building a hard-disk
system and installing the system software took
less than three hours. The project cost was
about $475. ST-Log does not recommend that
you try this yourself, because a fair amount
of technical knowledge is required. However,
with the modularity and easy availability of
all of the parts, it is amazing that more peo-
ple don’t try it! a

7

g

.

N
m

=— =
—=
_—= =
=
— N
/% \

“\\\\\\\\\\\

I

_

7///

=\

)

_

\

by Arthur Leyenberger

'm late again. My deadline for this
month’s column has come and gone two
days ago. I was all set to sit down tonight
and write the column when I decided to
log onto DELPHI and check out the
latest Atari news and gossip. What a mistake.

Mind you, it wasn’t bad. It was, well,
addictive. I've been doing a lot a traveling
lately, so I had fallen behind on the
ANALOG and ST-Log Atari SIGs. I signed
on to DELPHI and have just spent the last
two hours reading messages in the Forum
section of the ST-Log group.

If you want to know what is happening
within the Atari community, talk with
representatives from Atari and other hard-
ware/software companies; DELPHI is the
place to be. You can talk directly with the edi-
tors and contributors of ANALOG and ST-
Log. And best of all, other Atari users are
available to answer questions or share your
opinions with.

Maybe you knew that already. If not, call
DELPHI at (617) 491-3393 and find out how
you can get a user login and begin to take ad-
vantage of what is available on-line. Of course
there is more to the DELPHI service than just
the Forum. Files are available for download-
ing, electronic mail can be sent and received,
and there is always plenty of excitement wait-
ing for you in the ANALOG and ST-Log
groups.

_

N

i

7

-

\
a0

LR
e

—

A quickie

It has happened to me and I'm sure it has
happened to you. You read an ad about a new
piece of software in ANALOG or perhaps a
rave review about a product that you have
been waiting for. So you rush out and buy it.

Once you get it home, you tear open the
package, shove the disk in the drive and boot
the machine. As the program is loading, you
glance at the owner’s manual, and there you
see it: “[The software company] makes no
expressed or implied warranty with respect
to the program’s quality, performance or fit-
ness for use.”” Then it goes on for another
couple of paragraphs that only a lawyer can
understand.

Most reputable software companies only
warrant the physical media (the disk) and will
replace it if defective. But what if the pro-
gram isn’t so great? What if it is so difficult
to use that you would never subject your worst
enemy to its use? Or what if the program just
doesn’t fit your needs? What do you do? Who
ya gonna call? Program Busters? No. You’re
stuck. No two ways about it.

I use a MS-DOS computer quite a bit and
I recently saw an advertisement in a maga-
zine that amazed me. The ad was for a
product called Excel, a spreadsheet program
that runs on a PC. The company is Microsoft,
the largest PC software publisher.

The ad was titled “The Microsoft Excel
Win-Win Guarantee.” It read, in part, “If you
find a spreadsheet you like better between

NOVEMBER A.N.A.L.0O.G. Computing

If you want to know what is happening
within the Atari community, talk with
representatives from Atari and other

companies; DELPHI is the place to be.

now and January 31, 1990, we’ll give you your
money back. No questions asked.” Whew!
Can you believe that? I have never seen any-
thing like it.

Here is a company that not only stands be-
hind their product, but goes as far as guaran-
teeing that you’ll like it. They guarantee that
Excel will meet your needs. They want you
to be satisfied with the program or you get
your dollars back—without a hassle and for
the next year and a half.

Now, I normally don’t write about MS-
DOS programs in ANALOG. Neither does
anyone else for that matter. But I just had to
share this with you. Microsoft is to be con-
gratulated for having a software policy the
way it ought to be. Can you imagine if Atari
had a policy like that? Can you?

8-bit software

It’s no secret that new 8-bit software is be-
coming more difficult to find these days. The
fact is, very few companies are publishing
new titles for the Atari computer. Even many
of the “big” companies that have supported
the 8-bit machine in the past, such as Elec-
tronic Arts, Batteries Included, OSS, Datasoft
and Synapse, have either gone out of busi-
ness or have had their more popular titles
bought by another company.

I just received a new catalog in the mail
from ICD. ICD has been around since 1984
and has had many innovative products for the
8-bit computer. In January of this year, ICD
bought the OSS product line and continues
to publish OSS products and provide support
for them. Following is a brief look at some
of the current ICD family of products.

The P:R: Connection is a flexible, compact
and more economical alternative to the Atari
850 interface. It plugs into the disk drive
(serial) port of any 8-bit Atari computer and
provides two RS-232 serial ports and one cen-
tronics parallel port. It takes its power from
the computer, and its serial ports possess the
same signals and functions as the 850 Inter-
face, including the R: handler. The P:R: Con-
nection sells for $90.

NOVEMBER A.NLA.L.O.8. Computing

The $60 Printer Connection provides a
centronics parallel capability in a very small
package. One end of the ten-foot cable plugs
into any 8-bit computer (the 1200XL requires
a slight modification) and the other end plugs
into a parallel printer jack. No external power
supply is necessary.

If you want to expand the memory on your
800XL or 1200XL to 256K, the ICD Rambo
XL is what you need. This $40 upgrade board
(DRAM chips are extra) not only makes your
800XL or 1200XL a 256K computer but also
makes the memory compatible with that of
the 130XE. This lets you take advantage of
software that can use the extra memory as
well as allow you to use a 128K RAMDisk.
You’ll need to be familiar with soldering to
install this upgrade.

For advanced users, ICD offers the Multi
I/0. This product features five functions in
one box. It provides RS-232, parallel and
hard-disk interfaces for your computer. It also
gives you a either a 256K or one megabyte
RAMDisk, of which any amount can be used
as a print spooler. The former sells for $240
and the latter $470.

If you haveanAtari 1050 Disk Drive and
want to upgrade it, the US Doubler chip set
will do the job. The $40 upgrade will give
your 1050 true double-density capability for
greater storage, 180K per disk. Once upgrad-
ed, the drive will be compatible with single-
density (90K) disks and the dual-density
(130K) disks. When used with SpartaDOS,
the US Doubler will also triple the I/O speed
of your computer and disk drive.

The SpartaDOS Construction Set is ICD’s
own DOS that is compatible with just about
any disk drive you can use with your 8-bit
Atari. It supports single, dual and double den-
sity, 40- and 80-track 5%-inch drives and
eight-inch drives with the Percom or
ATRS8000. It supports the 360K Atari XF551
drive and hard disks. The $40 program also
provides date/time stamping of files, sub-
directories, a menu-oriented program for
rapid file copying and erasing and more. I
have been using SpartaDOS for several years

and have found it to be the best DOS availa-
ble for the Atari 8-bit computer.

SpartaDOS X is a cartridge-based DOS
that includes all of the features of SpartaDOS
and more. This $80 cartridge features multi-
file operations, high-speed I/O with US Dou-
bler, Indus GT and Atari XF551 drives, the
use of batch files and more. In addition, you
can piggyback another cartridge on top of the
SpartaDOS X and operate just as if you had
booted from disk, except much faster.

The R-Time 8 cartridge has a built-in bat-
tery that provides continuous and automatic
date/time stamping of your files. It too is a
piggyback cartridge that permits you to use
another cartridge at the same time. When
used with SpartaDOS, the R-Time 8 works
automatically, tagging each file you create
with the correct time and date. It sells for $70.

ICD is an excellent company, and I can
highly recommend any of their products. If
you would like more information about ICD
products, contact them at: ICD Inc., 1220
Rock St., Rockford, IL 61101; or call them
at (815) 968-2228. Be sure to request their
catalog which, incidentally, looks as classy
as their products.

Rumors

What fun is it reading an “End User”
column without a couple of rumors? I'm not
one to start any rumors, but I am usually
more than happy to pass them on. And with
the way Atari both announces products be-
fore their time and also plays things close to
the vest, rumors are never far away.

The latest “hot” rumor concerns a sup-
posed ST game machine. That’s right, an ST
game machine. T'll call it, for lack of a bet-
ter name, the Atari STGS (not very original,
I know). Here are the “facts”(?).

Since Atari is doing a “land office” busi-
ness in video games and video-game systems,
it seems only natural for them to come out
with a game system based upon the 68000
microprocessor. This is the very same proces-
sor used in the ST, Commodore Amiga and
Apple Maclntosh.

What will the STGS look like? A moment’s
consideration leads one to suspect that it will
be roughly about the size of the 7800 game
machine. It will probably not have a key-
board, although it may have an interface for
a keyboard and disk drive. It will use car-
tridges for the game software. The price?
How about under $200? A 68000-based game
machine is really not a wacky idea. If this

79

product were true, it would be the first
68000-based video game. One of the poten-
tial roadblocks for this product, I think, is
the need for at least a dozen game carts to
be available for it upon its introduction. Fur-
ther, other companies besides Atari must de-
velop games for the STGS for it to be a
success.

This may not be a problem, though. In the
last year, Atari has done an amazing job of
licensing popular arcade video games, as well
as working with third-party game developers
for new game titles. Also consider the an-
nouncement at the Summer CES that Nolan
Bushnell and company will be developing
new games for “Atari video-game machines.”
But on the other hand, an STGS would re-
quire DRAM chips that are currently in short

HACK PACK

Special OFFER
The Alpha HACK PACK confains all our
finest products for making Back-up copies,
Analyzing, Understanding and Pro'ecﬂn%your
Atari programs. It comes complete with Afari

specuat price of Just $99.95

desfructing programs « Pirate bulletin board

data keys » Weak sectanrg (Phantom, Fi ond unstab

- Bank Select cartridges and MUCH, MUCH M

Profection Scunners, dlrectorv hldlng and more.

BOOK I and 24.95

BOOK i noed proiecﬂon and DISKII $24.95
fer, Order both sels Onlv 39.95

CHIPMUNK

ATARI 8-BIT PO

ALPHA SYSTEMS is constantly innovating to provide more power

Profection Techniques (Book and Disk 1), Advanced Protection Techniques (Book and Disk I1), The
Cmggunk. The Scanalyzer, The Impersonator and Disk Pack 1000. Worth over $150. Gef fiem all

Afari Software Protection Techniques Vol 1 & i
These Book and Disk packages defail the most advanced copy profection methods in use foday. They
guide you through the methods used fo create the protection as well os the copying fechniques fo get
around them. They include information on Phreaking « Hacking « On-line secumy
sysfems » Lo?Ic bombs « New piracy lows « Hardware

e sectors) « Overfilled fracks « CRC errors «
RE. The disks include automatic program protectors,

Aufomatic Disk Back-Up System. Make pedecﬂy runmng unprotected back-up copies of hundreds of
memoségopulur Atari programs. Chipmunk's saphisticated programming Auforatically finds and

supply. If no new supply for these chips is
found, the production of ST computers may
suffer as the video-game machines are made.
Further, if a STGS were made, and it became
a big hit, what would that mean to the “game
image” that Atari has earned? Is Atari a game
company or is Atari a computer company?
Can it be both? Has it been both?

All in all, a very interesting rumor.

Here’s another one: Atari will introduce a
laptop version of the ST with a built-in hard
disk. This rumor is a little tougher to swal-
low than the STGS. The last time Atari dis-
played a portable computer, it was an 8-bitter,
with a six-inch (I believe) monochrome,
40-character screen. I think it was called the
XEP and was shown at the first CES after
the Tramiels took over Atari.

Anyway, a portable ST may be a neat idea
for some of us hard-core Atarians, but I don’t
think it would be a real challenge for the likes
of Toshiba, Zenith or NEC.

Here’s an “oldie but goodie”: an Atari CD-
ROM player by year’s end. Remember the
“under $500”” CD-ROM player Atari showed
three years ago? The time was not right then,
but maybe it is now. There’s also some talk
of an Atari 80286 PC clone. We'll see.

At the summer CES, Atari’s booth was all
video games. There was hardly a computer
in sight, not counting the XEGS. But sever-
al independent sources, both inside and out-
side of Atari, were talking about what Atari
would be doing at the fall COMDEX (Com-
puter Dealers Exposition) in Las Vegas.

The talk centered on space. No, not the an-
nouncement of a manned mission to Mars be-
ing controlled by Atari ABAQ computers:
floor space! It was said that Atari has some
20,000 square feet of exhibit space reserved
at the upcoming COMDEX. With that much
space at a computer trade show, Atari may
be planning to announce all of the above
products and a dozen more. Stay tuned for
what may prove to be the biggest Atari show
yet seen.

Remember, these are just rumors. They
may or may not be true. Chances are that,
like most rumors, they are based on fact, but
the final outcome will be somewhat differ-
ent than stated here. However, keep in mind
that if we didn’t care so much about Atari
computing, we wouldn’t care so much about
Atari rumors.

Keep on computing. See you next month.

(3

foryour 8-bit Ataris

set, a symphony or your own voice.

< Black boxes « Self-

POP-N-ROCKER

sophisticated new hardware device that plugs info youl Jovsnck
port. Parrot Il has fwo inputs, One for a microphone an

powered source such as a fape player, radio or Compact Disk.
The Powerful Parrot Il software lefs you record sounds info your computer and play them back on any
Atari. Parrot I} furns your computers keybeard into a musical instrument with nine differenf sounds
covering three octaves each. The sounds can be anything, a dogs bark, a piano, a complete drum

Parrot Il lets you modify the sounds on a graphie display fo create brand new sounds and special
effects. Best of all, the sounds and voices can be put info your own programs that can be used on
any standard Atari. Explore the world of digital sound and music.

Pre-Recorded Sound Disk More pre-recorded sounds for Parrol $4.95
PARROT Il Demo Disk (Does not require Parrot to run)

a fast paced, multi-player frivia game that mixes quesfions
with real songs (digitized
with Parrot). Be the first to identify the songs and answer the music frivia questions. Pop-N- Rocker

comes with three data disks and lefs you add new questions so if will never get old. You can use a
Parrot Sound digitizer fo add new songs too! Use any kind of music from Rock to Classical fo
Nursery Rhymes. A new concept in enferfainment and a perfect add-on for Parrof.

COMPUTEREYES & MAGNIPRINT Il +

Turn your computer info a digital portrait studio. This complete package lets
you capture, save & print digital images from your Video Camera, VCR

PARROT lI

An All New Parrot sound digitizer for your Atari. Parrot Il is a

one for a

ONLY $59.95

REMOVES copy protection from most Aari programs. Back-up even heavily protected programs with
ease. Finally, a back-up sysfem fhat needs no special hardware or skills.

(If you need a tu\l list of what Chipmunk coples call or write for our free catalog) $34.95

Sc(mulyzor Automu?vcolly scan & cnu!vze commercial programs. Unlock programming secrefs and
 learn from the masters $29.95

lmpomnmor Carfridge to Disk back up system. Creae | running back-up copies of any carfridge
(upito 16K) $29.95
D cuear

Get more from your games with CHEAT. Tired of spending days frying fo beat a game? Tired of gefting
stuck just when you need another life? Cheat is an innovative new product that gives you the chance
you need to beat your favorite games. Cheat works with hundreds of Atari games fo give you

unlimited lives or power. End the frustration and get hours more enjoyment from your games. (Call or
write Alpha Systems for our free catalog with a full list of the programs that work with Cheal) ONLY $24.95

BASIC TURBOCHARGER

NOW for the first time a BASIC programmer can get the power, flexibility and incredible speed of
machine language. BASIC TURBOCHARGER is a book and disk package that contains over 150
ready fo use machine language routines. Complete instructions show how fo add them fo your own
BASIC programs fo get these features and more: « Smooth Scrolling « Player/Missile confrol « Load &
Save Picture files « Sorting and Searching « Special Effects Graphics « Incredible Speed « Much, Much
More < Over 150 programs. You've heard of the power of Assembler, now harness if for your own

needs. $24.9
IR ucr 216-374-7469
\ "___———":%5 PHONE, OR SEND MONEY ORDER TO:

VISA & MASTERCARD, ORDER BY

ALPHA SYSTEMS 1012 SKYLAND DRIVE MACEDONIA, OH 44056
on a disk) Free with any order of 3 or more items. Include $3.00 shp & hdig (US Canada) Ohio res. add 5'/2% sales tox.
Foreign orders add $8.00 shp & hidg. Call or wrile for free catalog. Customer Service Line (216) 467-5665 M-F 9-3.

or TV. COMPUTEREYES hardware plugs directly info your joystick ports for
easy use. Print your picture on a 6 foot poster. §449.95
ComputerEyes camera system

Comes complete with everything above, plus a black and white video
camera and connecting cable. $329.95

Graphics 9 Software — Add a new dimension to your COMPUTEREYES
pictures — caplures images in 16 shades of grey. $42.00
Magniprint Il +

Easily the most powerful print program available today. Print graphics from almost any format in
hundreds of shapes, sizes, and shades. Supports color printing and lefs you create giant posters.
Magniprint I+ lets you siretch and squeeze, inverf, add text, adjust shading and much more.

Works with EPSON, NEC, Citoh, Panasonic, Gemini, Star, XMM801, and compatible printers. 2850
interface or equivalent required). 24.95
Graphics Transformer

Now you can combine the most powerful features of all your graphics programs. Create print shop
icons from a Koala pad picture, from a photo digitized with ComputerEyes, or any picture file
Graphics Transformer lefs you Shrink, Enlarge and Merge pictures for unequaled flexibility. $22.95

YOUR ATARI COMES ALIVE

SAVE MONEY. Finally an alfernative to buying expensive computer add-ons. Your Atari Comes Alive
shows you how fo built them yourself. This 'How-To’ book and disk package gives you complete
step by step instructions and programs needed to built and control these exciting devices and MORE:
= Light Pen « Light & Motor Controllers «Alarm Systems « Voice Recognition « Environmental Sensors
*Data Decoders = More than 150 pages. Your Atari Comes Alive

/il
GIANT WALL SIZED POSTERS.

FREE BONUS: DELUXE SPACE GAMES (3 games

80

CIRCLE #107 ON READER SERVICE CARD.

NOVEMBER A.NL.A.L.O.G. Computing

BATTLEZONE

Atari Corp.

1196 Borregas Avenue
Sunnyvale, CA 94086
(408) 745-2000
Cartridge $19.95

reviewed by Howard H. Wen

Regardless of what faults there might be
with this game, one thing is for sure: It's a
faithful translation of the arcade classic. Un-
fortunately, this means that if there were
things you didn’t like about the arcade Bat-
tlezone, you're going to find them here in this
cartridge version for the XE Game System
and Atari 8-bit computers.

The scenario takes place in the near future
when all nations of the earth have agreed to
world peace. However, a “power-hungry rab-
ble of military malcontents’ don’t really like
the idea of living in a world without war. So
they do what typical military malcontents

would normally do—they send out hordes of

robot tanks programmed to destroy the world!
Naturally, this is where you come in. Your
job is to destroy these tanks before they des-
troy you, on a battlefield littered with three-
dimensional objects—cubes, pyramids and
rectangles. And you do this driving a slow-
moving tank, which only shoots shells one
at a time.

Battlezone is played from a first-person
perspective, appearing as if you're looking
at the battlefield through the tank’s window.

NOVEMBER A.NLA.L.O.G. Computing

The top part of the screen displays an infor-
mation panel. The left side of the panel tells
you of the existence of enemy tanks and if
your tank’s movement is being hindered by
an object. The radar scanner is a circle in the
middle of the panel, which shows the over-
head, entire view of the battlefield: the
wedge-shaped area representing the player’s
point-of-view. Enemy tanks and other
weapons appear as blinking dots on the ra-
dar. Finally, the right side of the information
panel displays your score and the number of
tanks you have remaining.

The object of the game is to simply locate
enemy weapons on the radar scanner, move
in on them, zero in with your gunsight and
blast the target to bits as soon as you see the
gunsight narrow on it. You do this by mov-
ing your tank around the battlefield with your
joystick and firing shells with the joystick but-
ton. Of course, the enemy tanks will try
shooting back. Plus, there are three-
dimensional shapes scattered throughout the
field, which may be used for cover from ene-
my fire, but they tend to be a nuisance by
blocking your way.

Besides the slower-moving, normal tanks,
you also have to deal with more aggressive
supertanks, which move just as fast as you
do. And for bonus points, nonattacking sauc-
ers move across every now and then. But the
toughest of the enemies are the missiles that
suddenly drop from the air and quickly zig-
zag to collide into your tank.

Battlezone’s screen display simulates the
three-dimensional, vector graphics of the
original arcade version. At first it's difficult

to identify objects. Things look especially
confusing when an enemy tank hides behind
a see-through obstacle. The animation of the
kamikaze missiles is erratic, making it ex-
tremely hard to shoot them. A nice visual
touch added to Battlezone occurs when your
tank is hit with an enemy shell, the screen
“cracks.”

The sound effects are well-done and im-
portant to game play—sometimes more so
than what you see on the screen. Certain
sounds tell whether a normal tank or super-
tank is approaching you, warn if a missile is
about to appear or alert that a saucer is mov-
ing across the field.

Veteran Atarians, who have played similar
tank games such as Dimension X or Encoun-
ter, may find Battlezone sluggish in move-
ment and lacking in features. But the
slowness of the player’s tank is probably
deliberate in order to imitate a real tank.

There are five levels to chose from on Bat-
tlezone. On Level 1 tanks and other enemy
weapons are easily blown away. Level 5 is the
most challenging, even for a hard-core video
gamer. The game itself doesn’t progress from
one level to another, but instead, enemy tanks
come after you endlessly, one after another.
The game ends only when you've lost all of
your tanks.

Battlezone will probably satisfy fans of the
arcade version and the many new owners of
the XE Game System;, -but Atari 8-bit old-
timers might be disappointed. Nevertheless,
this one-player game is one of the best, pure
shoot-"em-ups to come along for the Atari
8-bits in a long time. &

£31

When you want to talk Atari

XL/XE HARDWARE

INTERFACES

ICD

P:RIConNNection e o 61.99
Printer Connection. 41.99
Supra

TABQN S o et il fe st I 39.99
15 (200X) e s 40.99
Xetec

Graphix Interface 38.99
Atari

850.iInterace . o b oidE g waa 109.00
COMPUTERS

CMO PACKAGE EXCLUSIVE

Atari 800XL & XF551

Disk Drive
w/5 Undocumented ROMS Asteroids,

Defender, Missile Command, QIX, Star
Raiders

$279
Atari
SOOI ' s o DR S e 1 89.99
130XE T &l T ratiean ol B B as iy 139.00

XL/XE ENHANCEMENTS
Axlon 32K Mem. Board (400/800) .19.99

Atari 80 Column Card 79.99
MODEMS

Atari

SX212:300/1200: (S s - ie . 89.99
XMMB0il=s e s s e e e 42.99
Anchor

VM520 300/1200 ST Dir. Con. .. .119.00
Avatex

12001 HECit s A8 e R e b i 89.99
(0[O R BRI i e 159.00
Supra

2400 Baud XL/XE or ST 169.00
2400 Baud (no software)........ 149.00
MONITORS

Magnavox

CM8505 14"’ Composite/RGB/TTL 199.00

ST HARDWARE

5

ATARI 520 ST FM

RGB/Color System $789

Includes: 520 ST FM with 312" drive,
mouse & 1224 color monitor.

SM124 Monochrome Monitor. . ..179.00
SM1224 RGB Color Monitor. .. .329.00
Call For Current Information
On The Entire ST Line!

Atari

STHCI4 DS/ DRI et 219.00
XF551 Drive (XL/XE) :
SHD204 20 Meg Hard Drive. . . .599.00

Supra

30 Meg Hard Drive $689
1.B.

5% 40 Track (ST). 219.00
5164” 80:Tracka (S e .- o 279.00
1.C.D.

EACST 208Megt: Shisnt st g 629.00
FAeST 30 Meg. 869.00
FAeST Dual Hard Drives. Call
Indus

GTS 100 312’ DS/DD (ST)..... 199.00
GT 1000 5% DS/DD (ST). 209.00
G Drive (X E/XE)S T e 189.00
Supra

FD-10 10MB Removable Floppy

WISESI e S i gl U R 899.00
20 Meg Hard Drive (ST)........ 579.00

20 Meg Hard Drive (XL/XE). 689.00

PRINTERS

‘Atari
1027 LQ XL/XE

Atari XDM121
LQ (XL/XE)

XM-M801 XL/XE Dot Matrix. . ..199.00

$189

XM-M804 ST Dot Matrix 199.00
XDM 121 Letter Qlty. XL/XE209.00
Brother

M-1109 100 cps Dot Matrix. 169.00
M-1509 180 cps Dot Matrix 389.00
HR-20 22 cps Daisywheel 339.00
Citizen

120D 120 cps Dot Matrix 149.00
180D 180 cps Dot Matrix 179.00

Premier-35 35 cps Daisywheel . .549.00

Epson

LX-800 150 cps, 80 col 189.00
Hi-80 4 pen plotter. 269.00
FX-850 264 cps, 80 col Call
FX-1050 264 cps, 132 col Call
LQ-500 180 cps, 24-wire Call
LQ-850 330 cps, 80 col Call
LQ-1050 330 cps, 132 col.. New
NEC

P2200 pinwriter 24-wire 379.00
P5200 pinwriter 24-wire 599.00
P5300 pinwriter 132 col 799.00
Okidata

Okimate 20 color printer 129.00
ML-182 + 120 cps, 80 column ..229.00

ML-320 + 300 cps, 80 column. .379.00
ML-390 + 270 cps, 24-Wire539.00

Panasonic

KX-P1080i 144 cps, 80 col 169.00
KX-P1091i 194 cps, 80 col 199.00
Star Micronics

NX-1000 140 cps, 80 column ...179.00
NX-15 120 cps, 132 column319.00
Toshiba

P321-SL 216 cps, 24-wire 499.00

WE SHIP 90%
OF ALL ORDERS
WITHIN 24 HOURS

o\

SELECT FROM
OVER 3000
PRODUCTS

COMPUTER MAIL ORDER

.eenyOU Want to talk to us.

XL/XE SOFTWARE ACCESSORIES ST SOFTWARE
Access MD1-M SS/DD 5%” 8.49 | Dataeast
Leaderboard Golf 13.99 | MD2-DM DS/DD 54" 8.99 | Speed Buggy................. 24.99
Accolade MF-1DDM SS/DD 3%2".......... 11.99 | Electronic Arts
Hardball ...« cssmvinviiineesiin 19.99 | MF2-DDM DS/DD 316" 18.49 | Gridiron Football/Auto Duel. (ea.) 26.99
Atari Sony Isgur Portfolio 119.00
Atariwriter Plus 35.99 | MD1D SS/DD 5V4"" 6.99 | Firebird
Fllemanager 11.99 | MD2D DS/DD 5V4"" 7.99 | Silicon Dreams 19.99
Music Painter . .. MFD-1DD SS/DD 35" 11.99 | The Sentry/Tracker (ea.) 12.99
MFD-2DD DS/DD 3% 17.99 | Infocom
Allsop Disk Holders Beyond Zork 34.99
Disk File 60-5v4” 9.99 | Metacomco
Disk File 30-3%2"" 999 [ISO Pascal................... 59.99
w,&,:n Curtis Microprose
Gl | Emerald 39.99 [Gunship...................... 28.99
g Safe Strip 19.99 | F-15 Strike/Silent Service (ea.) . ..24.99
Universal Printer Stand 14.99 | Miles Software
il Tool Kit 2299 |STWars 24.99
LOOSE/UNBOXED XL/XE IcD Mindscape
ROM CARTS BBS Express (ST).............. 52.99 |I:;load 7 (V13101 A PP 36.99
poler e Sparta DOS Construction Set28.99 | Mark of the Unicorn
ouae e €a. or 5 for $1458 US Doubler/Sparta DOS 47,99 ||PE IHBIOOM. o onin s cvaa 79.99
ncludes: Space Invaders, Star Raiders, Missile Real Time Clock 48.99 ar iams
ggf’gnmdae"r"’vqﬁf‘”°'dsv Pac Man, Galaxian, Rambo XL . ..o, 29.99 g 119.00
: aradox
Atari Program Exchange Wanderer (3D 24.99
Misc. Programs (cassettes) Progressive Computer b
grode.rbun.d Graphic Artist 1.5 119.00
raphics Library I, I, 1ll......... : Psygnosis
S”?ts"‘?{’ --------------------- . ’ Barbarian/Deep Space. (ea.) 25.99
ATABO BUBBLE GlfosT Soft Logik Corp.
Alternate Reality (City) 4 Publishing Partner 54.99
2'21 Baker SAt 20 99 p Strategic Simulaﬂons
ectronic Arts | Questron Il 37.99
é_utobpgel 29.99 fecoLsme Sublogic
irebir i ‘
Sﬁ’"d oBThieves 19.99 = | . $lilr?12twst;mls"amr 8 ek sasies e
ilicon Dreams 19.99 i i
Jewels of Darkness 19.99 | ACCOLADE g;v;tf;c;arlcsl_/rVordwnter """" {58 gggg
TM-icr%prose Bubble
opGunner................... 16.99
F-15 Eagle: Strikecxmssimsen 21.99 Ghost :
Silent Service 22.99 | Abacus Tiieworks Desktop
Origin Systems PC Board Designer ; - PUBLISHER
Ulima d...........c.cooo... 36.99 | Access ST.
Roklyn SPECIAL Leaderboard Golf
Anti-Sub/Journey to Planet . . .(ea.) 3.99 | Activision
Strategic Simulations Hacker Il i .oiuminmssainyansas
Colonial Conquest............. 24.99 | Antic
Gemstone Warrior 1199 |CAD3-D ;
gublogicA ééagtnGarde TIMEWORKS N 99
cenery Arizona 14.99 MO s swsppsmsmmeminsins 59.99 :
rphtd Batteries included Desktop Publisher 79
Typesetter 2299 | DegasElite 37.99 | Word Perfect Corp
Printshop Interface 21.99 Word Perfect4.1.............. 179.00

In the U.S.A. and in Canada

Call toll-free: 1-800-233-8950

Outside the U.S.A. call 717-327-9575, Fax 717-327-1217
Educational, Governmental and Corporate Organizations call toll-free 1-800-221-4283 v croconrorer

CMO, 101 Relghard Ave., Dept. B7, Willlamsport PA 17701 e D onrs e
OVER 350.000 SATISFIED CUSTOMERS ALL MAJOR CREDIT CARDS ACCEPTED CREDIT CARDS ARE NOT CHARGED UNTIL WE SHIP %
POLICY: Add 3% (minimum $7.00) shipping and handling. Larger shipments may require additional charges. Personal and company checks require 3 weeks to clear.
For faster delivery, use your credit card or send cashier’s check or bank money order. Credit cards are not charged until we ship. Pennsylvania residents add 6% sales
tax. All prices are U.S.A. prices and are subject to change, and all items are subject to availability. Defective software will be replaced with the same item only. Hardware
will be replaced or repaired at our discretion within the terms and limits of the manufacturer’s warranty. We cannot guarantee compatibility. All sales are final and returned
shipments are subject to a restocking fee. We are not responsible for typographic or photographic errors.

CIRCLE #108 ON READER SERVICE CARD. B711

i adustaliC
B m(o‘-m\!\e

ours
e momnitor: e
atinthe compa™
ets the Kift 1 "¢

aitor &
rive

& £
A T is
tari ST is a d
R ofAlarl Ce

"CIRCL
(E #10
10
N READER SERVI
CE fd
CE CARD.

