THE "I MAGAZINE FOR ATARI COMPUTER OMNERS

SEPTEMBER 1988 U.S.A. \$3.50
ISSUE 64

Entertainment Issue!

Snowplow
A COMMERCIAL QUALITY GAME

Kason's
 Tower

Give 'Pm A.N.A.L.O.G., Harry!

Two Historic Facts:

1Dewey did not defeat Truman for the Presidency in 1945. Truman went on to be known for his truthful, forthright style and as one of the nation's most popular Chief Executive Officers.

2You can save time, and save a lot of money by subscribing to A.N.A.L.O.G. Computing Magazine. Save \$14 off the cover price with the convenience of having A.N.A.L.O.G. delivered directly to your door before it even hits the newsstands. To order use the handy postage-paid order card located in the back of this magazine!

1 YEAR FOR ONLY \$28
 SAVE \$14 OFF THE COVER PRICE

Editorizl

by Lee Pappas

It's true. Times are changing. Having just returned from my 14th Consumer Electronics Show (CES), I have nothing to report on the 8 -bit news front. Of course, Atari was there pushing 8-bit products. . .that is just the XE Game System and software. But the days of dozens of new product announcements and releases are long gone-most likely for good.

CES was really lacking the multitude of software companies that have attended in the past, and many that did attend had their own rooms hidden away or went in with distributors. The big names in software now read Nintendo or Nintendo compatible. Even Apple, Mac and PC supporters were missing.

However, I must admit that what was missing for 8 -bit was counterbalanced with quite a few new programs for the ST. And some neat stuff, too, which you can read about in next month's ST-Log.

What's saddest is finding Atari far, far behind Nintendo in the video-game industry. Figure 70% to 80% belongs to Nintendo, with the rest split between Sega and Atari. And from what I saw at the show, it's Sega that gets my vote on gaining ground on Nintendo, not Atari.

The problem with the XE Game System isn't the unit itself, but the software. Most of the games are starving for state-of-theart graphics and just don't have the imagination that is clearly evident in the Nintendo and newer Sega products. Face it, the Nintendo and Sega don't have keyboards. In the Nintendo's case the unit is plain and boring in appearance, and the controls are simple. What those have, however, are spectacular, well-thought-out programs, many of which go far beyond the shoot-em concept.

So that's my 8 -bit report on the summer Consumer Electronics Show. Oh, for the days of pages and pages of exciting new 8 -bit products to announce.
T
U

E
S

Front Cover Photography
Ladi Von Jansky
Front Cover Model
Laurie Ferguson

Publisher
LEE H. PAPPAS
Executive Editor CLAYTON WALNUM

Art Director EDDY G. HERCH

Managing Editor DEAN BRIERLY

East Coast Editor ARTHUR LEYENBERGER

West Coast Editor CHARLES F. JOHNSON

Contributing Editors LEE S. BRILLIANT, M.D., MICHAEL BANKS, FRANK COHEN, ANDY EDDY, MAURICE MOLYNEAUX, STEVE PANAK, CRAIG PATCHETT, MATTHEW J.W. RATCLIFF,
ROBIN SHERER, KARL E. WIEGERS
Eniertainment Editors ANDY EDDY, DAVID PLOTKIN

Illustrations BRENT WATTS

Copy Chief kAtaina veit

Copy Editors
ANNE DENBOK
SARA BELLUM PAT ROMERO
Typographers KLARISSA CURTIS, JUDY VILLANUEVA, DAVID BUCHANAN

Contributors
JAMES J. GRECO
BARRY KOLBE
JOHN PILGE
JIM ROGERS
BRIAN SCHAPPEL
Production Director DONNA HAHNER

National Advertising Director JE PUBLISHERS REPRESENTATIVE (213) 467-2266
(For regional numbers, see map)
Advertising Production Director JANICE ROSENBLUM

Advertising Manager PAULA THORNTON

Subscriptions Director IRENE GRADSTEIN

Vice President, Sales JAMES GUSTAFSON

Where to Write

All submissions should be sent to: ANALOG Computing, P.O. Box 1413-M.O., Manchester, CT 06040-1413. All other editorial material (letters, press release, etc.) should be sent to: Editor, ANALOG Computing, 9171 Wilshire Blvd., Suite 300, Beverly Hills, CA 90210.

Correspondence regarding subscriptions, including problems and changes of address, should be sent to: ANALOG Computing, P.O. Box 16927, North Hollywood, CA 91615, or call (818) 760-8983.

Correspondence concerning a regular column should be sent to our editorial address, with the name of the column included in the address.

We cannot reply to all letters in these pages, so if you would like an answer, please enclose a self-addressed, stamped envelope.

An incorrectly addressed letter can be delayed as long as two weeks before reaching the proper destination.

Advertising Sales

JE Publishers Representative

6855 Santa Monica Blvd., Suite 200 Los Angeles, CA 90038

Los Angeles	$-(213)$
467-2266	
San Francisco	$-(415)$
Chicago	$-(312)$
445-2452	
Denver	$-(303)$
New York City	$-(212)$
	$724-7331$
Address all advertising materials to:	
Paula Thornton - Advertising Production	
ANALOG Computing	
9171 Wilshire Blvd., Suite 300	
Beverly Hills, CA 90210.	

Permissions

No portion of this magazine may be reproduced in any form without written permission from the publisher. Many programs are copyrighted and not public domain.
Due, however, to many requests from Atari club libraries and bulletin-board systems, our new policy allows club libraries or individually run BBSs to make certain programs from ANALOG Computing available during the month printed on that issue's cover. For example, software from the July issue can be made available July 1.
This does not apply to programs which specifically state that they are not public domain and, thus, are not for public distribution.
In addition, any programs used must state that they are taken from ANALOG Computing Magazine. For more information, contact ANALOG Computing at (213) 858-7100, ext. 163.

Subscriptions

ANALOG Computing, P.O. Box 16927, North Hollywood, CA 91615; (818) 760-8983. Payable in U.S. funds only. U.S.: $\$ 28$-one year, $\$ 54$-two years, $\$ 76$-three years. Foreign: Add $\$ 7$ per year. For disk subscriptions, see the cards at the back of this issue.

Authors

When submitting articles and programs, both program listings and text should be provided in printed and magnetic form, if possible. Typed or printed text copy is mandatory, and should be in upper- and lowercase with double spacing. If a submission is to be returned, please send a selfaddressed, stamped envelope.

For further information, write to ANALOG Computing, P.O. Box 1413-MO, Manchester, CT 06040-1413.

ANALOG Computing (ISSN 0744-9917) is published monthly by L.F.P., Inc., 9171 Wilshire Blvd., Suite 300, Beverly Hills, CA 90210 . © 1988 L.F.P., Inc. Return postage must accompany all manuscripts, drawings, photos, disks, etc., if they are to be returned, and no responsibility can be assumed for unsolicited materials. All rights reserved on entire contents; nothing may be reproduced in whole or in part without written permission from the publisher. U.S. subscription: \$28 for one year (12 issues), $\$ 52$ for two years (24 issues), $\$ 76$ for three years (36 issues). Foreign subscription: Add $\$ 7$ per year. Single copy $\$ 3.50$ (add $\$ 1$ for postage). Change of address: Six weeks advance notice, and both old and new addresses are needed. POSTMASTER: Send change of address to ANALOG Computing Magazine, P.O. Box 16927, North Hollywood, CA 91615. Second-class postage paid at Beverly Hills, CA, and additional mailing offices.

Reader comnment

The Whoops department
While I greatly enjoyed Charles F. Johnson's "Binary Load Pictures" in issue 60 (May '88), I had considerable trouble with Charles Bachand's "The MAC/65 Detokenizer.' I've discovered several bugs for which I am enclosing fixes. After carefully typing and rechecking the MAC/65 Detokenizer, I found that:

1) If an error was made in the filename of the MAC/65 file to be read (like leaving off the device D :, for instance), and then the directory was checked for the correct filename, every filename entered after that continued to return errors, and the program had to be restarted, and the filename reentered correctly on the first try!
2) All two-byte hexadecimal literals (like $\$ 0342$ or $\$ E 456$, for instance) were mangled in the conversion to hex digits (like $\$ 0303$ or $\$ \mathrm{E} 404$)!
3) After the file had been detokenized, the output file was never closed, making yet another error every time the program came to Line 1090, where it tried to open the still already open IOCB channel!

The following lines appear to fix these problems when they replace the lines of the same numbers in the original program.

1090 CLOSE \#1:OPEN \#1, 4, 0, A\$ 1100 GET \#1, A:GET \#1, B:TRAP 40000 1400 IF A $=5$ THEN GET \#1, B: GET \#1, $\mathrm{A}: \mathrm{L}=\mathrm{L}-2:$ GOSUB 1680: A = D:GOSUB 1680:GOTO 1340
1440 A = PEEK (195):IF A = 136 THEN CLOSE \#2:GOTO 1070
1755 CLOSE \#3:TRAP 40000:RETURN

-Bob Hardy Chico, CA

I read and typed in all of your programs (even the ones in Base 16). I also typed in the little harmless four-liner on page 37 of the April ' 88 issue and found the good ol' "ERROR 3 AT LINE 20." I found out that the fifth data number in Line 10 is greater than 255 (298 to be exact). I experimented and found out that the following will do the job:

10 DATA $238,198,2,238,198,2,76$

-Jason Locke Levittown, NY

A bug or not?

I just happened to pick up the August ' 86 issue from the stack and happened to turn to Clayton Walnum's review of AtariWriter Plus. I had read it before I bought AW + and remembered his comments about a few bugs. Well, there is one bug he did not mention; one that makes AW + unusable.

If you happen to write a line that exceeds the number of columns allowed,

to this problem. I put it back into the box and filed it with a few other programs that don't work.

Does anyone out there have a fix?
-Carl C. Springer
Merritt Island, FL
Yes, you did indeed catch a bug that I didn't spot, but to say that that small problem makes AtariWriter Plus unusable is a gross exaggeration. Just the fact that I didn't catch the bug shows how rarely it crops up. I wrote many, many articles with $A W+$ and never once ran into the problem you describe (although, I did test AW + again based on your complaint, and found that the software does behave as you've described). When this problem crops up, it's a simple thing to fix; just a quick change of your margin setting will do the trick. I still say that AtariWriter Plus is an excellent product, and I easily recommend it to anyone looking for a good word processor for their 8-bit Atari.

M/L Editor modification

Who hasn't praised the use of M/L Editor by Clayton Walnum when entering all those data statements? However, being a fairly good typist, I had trouble getting used to one feature. I could not get used to seeing a comma and pressing the RETURN key. Nor did I want to. That dilemma prompted this letter and the following solution.

Changing the M/L Editor code to include the following will enable the user to press the comma or RETURN key interchangeably. Now I no longer get confused.
$25 \mathrm{CMMA}=44$
330 IF A $<>$ RETRN AND A $<>$ CMM A AND A $<>$ BACKSP AND (A <48 OR A >57) THEN 320
335 IF ($\mathrm{A}=\mathrm{CMMA}$ OR A = RETRN) AND
$=0$ AND X>1 THEN 350
40 IF (($\mathrm{A}=$ RETRN OR A = CMMA) ND NOT EDIT) OR A = BACKSP) AND =0 THEN 320
;0 IF A = RETRN OR A = CMMA THEN
OKE 752,1:? " ":RETURN

-Larry Locke
Nazareth, PA

8004 PIECE POARD SET \$28.50		
SET INCLUDES 800 MAIN, CPU, 10K ROM AND POWER BRDS ALL MODULES NEW AND COMPLETE WITH IC'S		
800/400 MODULES s 9.50 ea. - 800 Main Board - 800/400 CPU with GTIA - 800 10K "B" O.S. Module - 16K RAM less RAM IC's - 400 Main Board - 800 Power Supply Board - 400 Power Supply Board - $800 \times L$ Modulator	POWER PACKS Replacement transformer for: 800/400, 810, 1050, 1200XL and 1020 units $\ldots .$. \$14.50 1030 Power Pack . . . $\$ 9.50$ REPAR MANUALS SAMS Service Manuals for the following units: $800,800 \mathrm{XL}$, 130XE, 400, $1050 \ldots . . \$ 19.50$ 520 ST Service Man. . $\$ 37.50$	
	1050 MECH Factory fresh TANDON mechs. make difficult repairs a snap. Units are complete with Head, Stepper, Spindle motor, bolt etc. Just plug in, no difficult alignments or adjustments required. $\$ 47.50$	PLLOT PROGRAMMING CART + MANUALS $\$ 7.50$
		FFTWARE
's \$4.50		
	Atari Paddles \$6.50	
1437		

8004 PIECE BOARD SET $\$ 28.50$ ALL MODULES NEW AND COMPLETE WITH IC'S

s 9.50 ea

- 800 Main Board

800/400 CPU with GTIA 800 10K B" O.S. Module 400 Main Board
800 Power Supply Board 400 Power Supply Board

IC's \$4.50 ea

 - CPU COIT COY CO12294- GTIA - ANTIC CPU PIA CO10745

SERVICE RATES

- 800
- 810

1050

CALL TOLL FREE 1-800-551-9995
INSIDE CALIFORNIA OR OUTSIDE U.S. PHONE 415-352-3787 AMERICAN TECHNA-VISION (T.V.)
Mail Order 15338 Inverness St., San Leandro, Ca. 94579
Service Center 2098 Pike Ave., San Leandro, Ca. 94577
NO MINIMUM ORDERI We accept money orders, personal checks or C.O.D.s, VISA Master/Card okay. Credit cards restricted to purchases over $\$ 20.00$. No personal checks on C.O.D. - Shipping: $\$ 4.00$ shipping and handling on orders under $\$ 150.00$. Add $\$ 2.25$ for C.O.D. include 7% sales tax. Prices subject to change without notice. Atari is a trademark of Atari Corp.

SOUTHERN SOFTWARE 205-956-0986

24 HOUR PHONE
CALL OR WRITE FOR FREE CATALOG ALL 8 BIT AND ST SOFTWARE IN STOCK CALL FOR PRICES AND LATEST TITLES SOFTWARE IN STOCK FOR OTHER COMPUTERS PRICES LISTED FOR MAIL ORDER ONLY - ADD 10\% ON PHONE ORDERS

ST COMPUTERS
 $1050 \mathrm{~W} / \mathrm{K}$
130 XE 130×2

$\times F 551$ DI INST 399.95	FIS
139.95	520 DISK DRIVES 850 INTERFAC 8K OMHIMOH APE FACE AVATEX 1200 AVATEX 2400 CHIP IARCHIVE PRO BURMER EZ RAM 520 HAPPY 1050 ENHANC HAPPY 810 ENHANCE HAPPY CONTROLER ICD MIO 1 MEG ICD MIO

ICD MIO
256 K XE ADAPTER FOR MIO 199.95 POWER SUPPLIES PRINTERS
PRINTER COWNECT. R-TIME CARTRIDGE 256K CHIP SET 256K CHIP SET RAMROD XL
LIGHT PEN U.S. DOUBLE UPRINT INTERFACE XL/XE BOS

CHIPMUNG ATARI WRITER PLUS BASIC XE BASIC XE
BASIC SUPER ARCHIVER BIT GRITER DOS 2.5 H/MAMUAL CL/XE POWER SUPP 1027 I IN ROLLER I/0 COPR I/O CORD 10 FY HAC/65 MAC/65 TOOL KIT ACTION ACTION TOOL KIT BASIC XL TOOL KIT BASIC XE TOOL KIT PERSOMAL PASCAL SPARTADOS TOOL KI ST HOST ADAPTER
SPARTS DOS CART OMNIVIEM XL/XE NEWELL 256K OMN IMON 400/800 ST COPY HUMERIC KEYPAD TOP DOS 1.5 PLUS RAMCHARGER RAMCARD FOR 800
SMART LI MOOEM
29.95
39.95
19.95
49.95
39.95
59.95
69.95
9.95
27.95
4.97
34.95
13.95
19.9
64.9
27.9
64.95
27.95
27.95
27.95
7.95
24.95
99.95
69.95
36.95
34.95
44.95
29.95
39.95
29.9
13.9

80 COL CARD COMPULSIVE COPIER COPY II ST
 SX-212 MODEA 1027 PRINTER KOM121 LQ PRINTE ATARI LAB ST KIT JOY STICK LOGIKHRON CLOCK HEGAMAX C MODULA-2 P.R. CONWECTION MARP SPEED DOS X PC BOARD DESIGNER PROLOG
PUBLISH PARTMER

SOUNO DIGITIZER | 119.95 |
| :--- |

SOUNO DIGITIZER 119.95
WE HAVE COLER RIBBONS HE HAVE COLOR RIBBONS
FOR ALL PRINTERS CALI

- atari repair prices ITEAS NOT LISTED 1050 DISK DRIVE 130 XE
65 XE $65 \times \mathrm{XE}$ 520 DISK DRIVE
520 ST 850 INTERFACE $\begin{array}{ll}\text { ATARI PRINTER } & 69.95 \\ \text { XL/XE/150 POW SUP } & 12.95\end{array}$

ADD $\$ 5$ FORICES SUBJECT TO CHANGE WITHOUT NOTICE DAY. FOREIGN ORDERS WELCOME WITH SUFFICIENT SHPPED SAME INCLUDED. ALABAMA RESIDENTS ADD 7% SALES TAX. ADD 6% FOR SOUTHERN SOFTWARE 1879 RUFFNER ROAD BIRMINGHAM, AL 35210

Master

Part II

How to read the Memory Map
Beginning Users-Read the text that is printed in bold type only. These memory locations will be the easiest for you to use and usually don't involve assembly language.

Advanced Users--Read everything! Many areas of memory are not of any practical use, but you can learn a lot about how a computer works by reading the boring parts.

The information is formatted like this:

LABEL
 DECIMAL \# HEXADECIMAL \# DESCRIPTION

HEXadecimal numbers are often preceded by a "\$".

Page Zero

Locations 0 to 255 are called "Page Zero" (in the language of computers, a "page" is 256 bytes). Since one byte can hold any number in the range of 0 to 255 , the computer only needs one byte to hold the address of a page zero location. This saves time when you have to load or store a value in machine language so page zero is very important to machine-language programs that have to run as quickly as possible. That's why the operating system uses the first 128 bytes. The other 128, 10 cations 128 through 255 , can be used by BASIC and you for superfast machine code.

Machine-language programmers should note that Locations 2 through 7 are not cleared by either a coldstart (turning the computer off and then on again) or warmstart (pressing SYSTEM RESET) operation.

LINZBS

0,1
0000,0001
The great mystery location! Nobody seems to know exactly what this location does. According to Atari's operating system listing, it is "LINBUG RAM [and] will be replaced by [the] monitor RAM" (your guess is as good as mine), and the only time it uses it is to define it. It does seem
to be used to store the VBLANK timevalue though, so it's probably not completely useless.

CASINI

2,3
0002,0003
This is used in "cassette initialization." As you probably already know, if you hold down the Start button while turning on the computer, the computer will beep. If you then press RETURN, the computer will expect a machine-language tape to be in the cassette recorder and will proceed to load it. This process is called "booting" a cassette. The first six bytes stored on the machine-language tape contain special information about the tape. The first byte, actually, is ignored. The second tells how many 128 byte "records" are on the tape (when you load in the tape, each beep while loading represents a record). The third and fourth give the starting address that the machine code is to be stored at, called the "load" address. The fifth and sixth give the "initialization" address (where to go to get the program set up and ready to run). The initialization address, as you may have guessed, gets stored here at CASINI. Once the whole program has loaded, the computer jumps to the load address plus six (to skip over these special bytes) where the program either tells it to load some more or RTS (ReTurn from Subroutine). When the computer comes across an RTS instruction, it looks in CASINI for the initialization address and JSRs (Jump to SubRoutine) to that address. Finally (and you thought cassette boots were easy), the computer JSRs to the address in DOSVEC $(10,11)$, which gets the program running (DOSVEC should be set up by the program either in the initialization process or as part of a multiple load).

RAMLO

4.5

0004,0005

RAMLO has a bunch of uses, none of which will be useful to you. First, the OS uses it as an index (like the variable in a FOR/NEXT loop) while clearing out memory after you turn on the computer. It also uses it as an index while testing
memory to make sure everything is A. okay. Finally, and you'll love this one, it's used to store the "disk boot address," which is usually 1798 in case you care, for the boot continuation routine (which is what happens when you want to load into more than one part of memory). By the way, it's real buddy-buddy with TRAMSZ. and TSTDAT (the three work together in the RAM test routine).

TRAMSZ

$6 \quad 0006$
Another location with a whole bunch of uses. As mentioned, TRAMSZ helps out RAMLO in testing the RAM. Its value is then transferred to RAMTOP (location 106). But, before any of that happens, it is used in testing whether or not a left cartridge is plugged in. If there is a left cartridge (also known as cartridge A), then TRAMSZ is set to one. If not, it's set to zero.

TSTDAT

$7 \quad 0007$

This one only has two functions. First, as you already know, it helps out in the RAM test routine (see your OS listing if you're dying to find out what the RAM test routine is). Secondly, like TRAMSZ. it's used initially in testing whether or not the right or B cartridge is present.

Machine-language programmers: Locations 8 through 15 are cleared on cold. start only.

WARMST

$8 \quad 0008$
This is the warmstart flag, telling you whether you're in the middle of a warmstart or a coldstart. If WARMST equals (), then you're in the middle of a coldstart. If it's anything else, then you're in the middle of a warmstart (pressing SYSTEM RESET will set WARMST to 255). The main purpose of WARMST is to make sure that if someone presses the SYSTEM RESET button before everything is initialized properly, the computer will know about it and start over instead of messing

mery

Map

everything up. Nice stuff to know, but generally useless. But wait, you say, can't I trick the computer into rebooting by changing the value of WARMST to 0 , that way preventing people from using SYSTEM RESET to stop by BASIC program so they can LIST it? No. Although you can change the value to 0 , as soon as you press SYSTEM RESET it will change back to 255. See Location COLDST (580) for a way that you can trick the computer. You might also look at locations POKMSK (16)
and STMCUR $(138,139)$ for other ways to protect your BASIC programs from other people's greedy eyes.

Incidentally, warmstart normally starts at location 58484.

BOOT?

90009
Booting, as you will recall, is the process of loading the program into the computer's memory. In our case the pro-
gram is loaded from tape or disk. Sometimes a boot is not successful. Maybe you put a rock 'n' roll tape into your Atari recorder by mistake, or you forget to close the disk-drive door. In any case, BOOT? is used to tell the operating system whether or not the boot attempt was successful. If BOOT? is equal to one, then there was a successful disk boot. A two indicates a disk boot, and a three (a one plus the two) means both the disk and
continued on page 28

When you want to talk Atari

XL/XE HARDWARE

INTERFACES

ICD
P:R Connection 59.99
Printer Connection 41.99
Supra
1150
38.99

1151 (1200 XL)
.41 .99
Xetec
Graphix Interface 38.99
Atari
850 Interface
109.00

COMPUTERS

Atari 130XE

Atari
65 XE . 99.99

XL/XE ENHANCEMENTS

Axlon 32K Mem. Board $(400 / 800) .19 .99$
Atari 80 Column Card 79.99

MODEMS

Atari
SX212 300/1200 (ST) 89.99
835 . 19.99
XMM301 . 42.99
Anchor
VM520 300/1200 ST Dir. Con 119.00
Avatex
1200 HC . 99.99
2400
179.00

Supra
2400 Baud XL, XE 169.00
2400 Baud ST 169.00
2400 Baud (no software) 149.00

MONITORS

Magnavox
CM8505 14'" Composite
199.00

ST HARDWARE

ATARI SM1224 RGB Color Monitor
\$339
520ST FM RGB/Color System. . . 789.00 Includes: 520 ST FM with $31 / 2^{\prime \prime}$ drive, mouse \& 1224 color monitor.
SM124 Monochrome Monitor
179.00 Call For Current Information On The Entire ST Line!

Supra 30 Meg ST Hard Drive

\$699
I.B.

51/4"' 40 Track (ST) 219.00
51/4" 80 Track (ST)
279.00
I.C.D.

FA•ST 20 Meg. 629.00
FA•ST 30 Meg. 869.00
FA•ST Dual Hard Drives.......... Call
Indus
GTS $100311 / 2$ " DS/DD (ST) 199.00
GT 1000 5¼"' DS/DD (ST) 219.00
GT Drive (XL/XE) 189.00
Supra
FD-10 10MB Removable Floppy
w/SCSI.
789.00

20 Meg Hard Drive (ST) 579.00
20 Meg Hard Drive (XL/XE) Call

PRINTERS

Atari

1027 LQ XL/XE 129.00

Atari XM-M801 XL/XE Dot Matrix

XM-M804 ST Dot Matrix 199.00 XDM 121 Letter Qlty. XL/XE 209.00 Brother
M-1109 100 cps Dot Matrix 189.00
M-1409 180 cps Dot Matrix 299.00
HR-20 22 cps Daisywheel 339.00
Citizen
120D 120 cps Dot Matrix 149.00
180D 180 cps Dot Matrix 179.00
Premier-35 35 cps Daisywheel . . 479.00

Epson

LX-800 $150 \mathrm{cps}, 80 \mathrm{col}$. 179.00
Hi-80 4 pen plotter 269.00
FX-86E $240 \mathrm{cps}, 80 \mathrm{col}$. Call
FX-286E $240 \mathrm{cps}, 132 \mathrm{col}$. . Call
LQ-500 $180 \mathrm{cps}, 24$-wire Call
LQ-850 $330 \mathrm{cps}, 80 \mathrm{col}$.
FX-850, FX-1050 New
NEC
P2200 pinwriter 24-wire 369.00
P660 pinwriter 24-wire 459.00
P760 pinwriter 132 col 659.00

Okidata

Okimate 20 color printer 129.00
ML-182 $+120 \mathrm{cps}, 80$ column . 229.00
ML-192 + $200 \mathrm{cps}, 80$ column . 349.00
ML-193 + 200 cps , 132 col. . . . 459.00

Panasonic

KX-P1080i 144 cps, 80 col 179.00
KX-P1091i 194 cps, 80 col 199.00
Star Micronics
NX-1000 140 cps, 80 column ... 179.00
NX-15 120 cps, 132 column . . . 319.00
Toshiba
P321-SL 216 cps, 24-wire
499.00

XL/XE SOFTWARE

ACCESSORIES

ACCESS

Leaderboard Golf
Atari Program Exchange
Misc. Programs (cassettes) at 1.99
Broderbund
Graphics Library I, II, III 13.99
Printshop 25.99
Datasoft
Alternate Reality (dungeon) 25.99
221 Baker St. 20.99
Electronic Arts
Touchdown Football 12.99
Firebird
Guild of Thieves 14.99
Silicon Dreams 14.99
Jewels of Darkness 14.99
Microprose
Top Gunner . 15.99
F-15 Eagle Strike 21.99
Silent Service 21.99
Origin Systems
Ultima 4
Roklyn SPECIAL
Anti-Sub/Journey to Planet . . . (ea.) 3.99
Strategic Simulations
Battallion Commander 23.99
Gemstone Warrior 10.99
Sublogic
Flight Simulator II 32.99
Scenery Arizona 14.99
X-Lent
Typesetter . 22.99
Printshop Interface 21.99

ST SOFTWARE

ATARI

Geometry
Vol. II
$\$ 1699$
Abacus
PC Board Designer 129.00
Access
Leaderboard Golf 22.99
Activision
Hacker II Doomsday 27.99
Antic
CAD 3-D
Avant Garde
PC Ditto.
Batteries Included
Degas Elite 38.99

MD1-M SSIDD 51/4", ${ }^{\text {c }}$	8.49
MD2-DM DS/DD 51/4".	8.99
MF-1DDM SSIDD 3½"	11.99
MF2-DDM DS/DD 3½"	18.49
Sony	
MD1D SS/DD 51/4"	6.99
MD2D DS/DD 514,	7.99
MFD-1DD SS/DD 31/2"	11.99
MFD-2DD DSIDD 3½"	17.99
Allsop Disk Holders	
Disk File 60-51/4"	9.99
Disk File 30-31/2''	9.99
Curtis	
Emerald	. 39.99
Safe Strip	19.99
Universal Printer Stand	. 14.99
Tool Kit	. 22.99
ICD	
BBS Express (ST)	. 49.99
Sparta DOS Construction Set	. 28.99
US Doubler/Sparta DOS	. 47.99
Real Time Clock	. 48.99
Rambo XL	. 29.99
US Doubler	. 28.99

MD2-DM DS/DD $51 / 4$8.99
MF-1DDM SSIDD 31/2 11.998.49
MDID SSIDD 5¼ 99MFD-1DD11.99
Alisop Disk9.9939.99
Safe Strip14.99CD
BBS Express (ST)28.99
US Doubler/Sparta DOS. 48.99US Doubler28.99Geometrys29.00
Comnet
ST Term19.99
Electronic Arts
Isgur Portfolio 26.99
Firebird
Silicon Dreams 19.99
The Sentry 19.99
Infocom
Beyond Zork 34.99
Metacomco
ISO Pascal 59.99
Michtron
Major Motion 25.99
Microprose
Gunship 28.99
F-15 Strike Eagle 24.99
Miles SoftwareST Wars24.99
Mark WilliamsC119.00
Paradox
Wanderer (3D) 24.99
Progressive Computer Graphic Artist 1.5 129.00
Psygnosis
Barbarian/Deep Space (ea.) 25.99
Soft Logik Corp.54.99
Strategic Simulations
Rings of Zilfin/Phantasie III (ea.). 25.99
Sublogic
Flight Simulator II 33.99
Timeworks
Desktop Publisher 89.99
Swiftcalc/Wordwriter (өa.) 46.99
Partner ST 37.99

UNISON WORLDPrintmaster Plus

Call toll-free: 1-800-233-8950

Outside the U.S.A. call 717-327-9575, Fax 717-327-1217
Educational, Governmental and Corporate Organizations call toll-free 1-800-221-4283
CMO, 101 Reighard Ave., Dept. B7, Williamsport, PA 17701

OWER

by Jim Rogers

t's the year 3456, and even though the year is more than half over, you still continue to put 3455 on all of your checks. This is the fifth year in your search for the lost arts of civilization, the meaning of life, the secret of peace among all men and the ultimate free tabloid.

In disgust, you've taken refuge in the lost mountain town of Golenden, where your host (he's the ancestor of the man who was considered to be the most important citizen of Golenden at the time of the fall of civilization-the plumber) has been most gracious. Unfortunately, you rather tactlessly referred to his daughter as "that repulsive little squash-faced gnome," and now, as your punishment, you must scale the ancient Kason's Tower.

The game

Type in Listing 1 using Basic Editor II found elsewhere in this issue. Save a copy of the program before you run it!' If you fail to do this, you'll have to retype the program because it erases itself from memory.
At the start of the game, your man is on one side of a floor of the tower, and a pole is on the other. Use your joystick
to move your man across the floor to the pole, avoiding the arrows that will be fly. ing toward you. Pull down on the joystick to duck beneath the high arrows, and press the trigger to jump over the low arrows. When you reach the pole, your man will be teleported to the next floor. Upon the completion of the top floor, your man will begin on the next level. You're given five men at the beginning of the game, and when these are used up, the game is over.

This program uses BASIC to directly load and run the large machine-language portion of the game. The program is erased after it is run, so be very careful to save a copy before running.

[^0]

I would personally like to thank all of our past customers for helping to make Lyco Computer one of the largest mall order companies and a Ieq̊der In the Indusiry. Also, I would like to extend my personal Invitation to all computer enthusiasis who have not experienced the services that we provide. Please call our trained sales stall at our toll-Iree number to linquire about our diverse product line and weekly specials.
First and faremost our phillosophy is to keep abreast of the changing market so that we can provide you with not only factory.fresh merchandise but also the newest models ollered by the manulacturers at the absolute best possible prices. We olfer the widest selection of compuler hardware, soltware
and accessories.

Feel free to call Lyco if you want fo know more about a particular ltem. I can't stress enough that our toll-free number is not just for orders. Many companies have a toll-lree number for ordering, but if you just want to ask a question about a product, you have to make a toll call. Not at Lyco. Our trained sales staif is knowledgeabls about all the products we stock and is happy to answer any questions you may have. We will do our best to make sure that the product you select will fit your application. We also have Saturday hours - one more reason to call us for all your computer needs.
Once you've placed your order with Lyco, we don't forget about you. Our Irlendly, professional customer sorvice representatives will lind answers to your questions about the status of an order, warranties, product availabilito your ques
ty, or prices.

Lyco Computer stocke mulimilion dollar Inventory of factory-iresh merchandse. Chances are we hava exaclly what you want right in our warehouse. And that means you'll gel il last. In lact, orders are normally shipped within 24 hours. Free shlpplng on prepald orders over $\$ 50$ and there is no deposil required on C.O.D. ordars. Al frelght or UPS BluelRed Label shipplit Ia avallable, too. And all products carry the full manulacturers' warrantlos.

I can't see why anyone would shop anywhere else. Selection from our huge In-slock Inventory, best price, service that can't be beat-we've got It all here
at Lyco Computer.

TO ORDER, CALL TOLL-FREE: 1-800-233-8760
New PA Wats: 1-800-233-8760
Outside Continental US Call: 1-717-494-1030
Hours: 9AM to 8PM, Mon. - Thurs.
9AM to 6PM, Friday - 10AM to 6PM, Saturday
For Customer Service, call 1-717-494-1670,
9AM to 5PM, Mon. - Fri.
Or write: Lyco Computer, Inc
P.O. Box 5088, Jersey Shore, PA 17740
C.O.D. Risk-Free Pollicy: © full manufacturers' warranties e no sales tax
outside PA e prices show 4\% cash discount; add 4\% for credit cards \bullet APO, FPO, infernational: add $\$ 5$ plus 3% for priority e 4 -week clearance on personal checks e we check for credit card theft e sorry, compatibility not guaranteed e apply e price/availability subject to thew product guarantee, return restrictions Continental US, add $\$ 3.00$

爪ATAR1 520 ST Computer

- Built-in Drive

Only $^{\text {On }} \$ 469^{95}$

爪ATARI
GTS-100

- Atari ST

Drive

- 3.5" DSDD

$\$ 195^{95}$

Headstart

COLORSYSTEM

- plug in and use immediately
- IBM-XT compatible - 2-360K Drives - Free 1-year limited warranty
- Hi Res color monitor included!

תATAR1*
 HARDWARE
 520 ST-FM Keyboard $\$ 469.95$ 520 ST-FM Color. $\$ 785.95$
 130 XE Computer. $\$ 135.95$ GTS 100 Drive $\$ 195.95$

Call for More Hardware Information

תATAR1*
520 ST-FM Color System
 Includes:

- 130 XE Computer - 551 Drive

$\$ 299^{95}$

MAGNAVOX

CM-8502

- Composite

Color

- Green Text

Switch

- Speaker

$\$ 179^{95}$
 1-Year Warranty

Tac 3	\$9.95
Tac 2	\$10.95
Tac 5	\$12.95
Boss.	\$11.99
3 Way	\$19.99
Winner 909.	\$24.95
Wic IBM/AP	\$29.95
I Controller	\$13.95
Epyx 500XJ	\$13.95
Kraft KCIII AP/PC	\$16.95

1-800-233-8760

SEIKOSHA

SP-180AI

- 100 cps Draft
- 20 cps NLQ

Std, Par, and IBM Graphics Compatible

PRINTERS

爪ATARI

AATARIST

Access:
Leader Board \$22.95 Tournament \#1 \$11.95 10th Frame \$22.95 Actlvision: Champion. Baseball $\$ 22.95$ GFL Football $\$ 22.95$ Music Studio $\$ 27.95$ GBA Basketball $\$ 22.95$ Beyond Zork \$28.95 Zork Trilogy \$27.95 Broderbund:
Superbike Challenge ... $\$ 11.95$
Electronic Arts:
Arctic Fox $\$ 25.95$ Starfleet I \$32.95 Chess Master 2000 \$25.95 Gridiron \$32.95 Marble Madness \$23.95 Epyx:
Sub Battle Simulator ... $\$ 22.95$ World Games \$22.95 Wrestling \$11.95 Winter Games $\$ 11.95$

Flreblrd:

Pawn \$13.95
Starglider \$25.95
Golden Path \$11.95
Guild of Thieves \$25.95
Tracker \$11.95

STAR	
	NX-1000 \$165.95*
	NX-1000C \$169.95
	NX-1000 Color \$225.95
	NX-1000C Color \$229.95
	NX-15 \$289.95
	NR-10 \$319.95
	NR-15 \$419.95
	NB-15 24 Pin \$669.95
	NX-2400 \$309.95
	NB24-10 24 Pin \$399.95
	NB24-15 24 Pin \$545.95
	Laser 8 \$1759.95
	ND-15 \$349.95
	NL-10 \$149.95
*w/cable purchase	
321SL \$489.95	
341 SL \$659.95	
P351 Model II \$899.95	
	351 SX 400 cps \$979.95

ィATARI ST

Microleague:
Microleague Baseball .. \$33.95 General Manager \$16.95 Wrestling \$25.95 Microprose: Silent Service \$22.95 F-15 Strike Eagle $\$ 24.95$ Gunship \$28.95 Strategic Simulations:
Phantasie \$22.95 Phantasie II $\$ 22.95$ Wargame Con. Set \$19.95 Phantasie III \$22.95

Subloaic:
Flight Simulator II \$30.95 Scenery Disk \$14.95
Tlmeworks:
Wordwriter ST \$44.95 Partner ST \$27.95 Data Manager ST
Unison World:
Art Gallery 1 or 2 $\$ 14.95$ Print Master \$19.95 Fonts \& Borders \$17.95 Art Gallery Fantasy $\$ 13.95$

We stock over 3,000 software titles!

Monitors

Thomson:
230 Amber TTL12" \$69.95* 4120 CGA $\$ 219.95$ 4160 CGA \$244.95* 4460 EGA $\$ 349.95$

Blue Chip:
BCM 12" Green TTL ... $\$ 64.95$ BCM $12^{\prime \prime}$ Amber TTL ... $\$ 69.95$

NEC
Multisync II \$589.95
Magnavox:
BM7652 $\$ 79.95$
BM7622 $\$ 79.95$
7BM-613 $\$ 79.95$
7BM-623 $\$ 179.95$
CM8502 $\$ 199.95$
CM8505 $\$$ SCALL
9CM-053 $\$ 245.95$
CM8762 $\$ 259.95$
8CM-515 $\$$ CALL
CM9043 $\$ 499.95$

Free shipping on pre-
paid orders over \$50
in continental U.S.

Modems

Avatex:
1200e $\$ 69.95$ 1200i PC Card $\$ 65.95$ 1200hc Modem \$69.95* 2400 $\$ 149.95$ 2400i PC Card \$139.95 "w/cable purchase

Hayes:
Smartmodem 300 \$139.95 Smartmodem 1200 \$279.95 Smartmodem 2400 $\$ 419.95$

Avatex"

\$14995
with cable
purchase

Your mother begged you to become an orthodontist and straighten out all those crooked teeth. But you just couldn't see spending eight hours a day with your hands in someone else's mouth. So here you are driving a truck for the highway department. Cutting weeds in the summer and filling potholes in the spring. Not to mention burning tons of leaves in the fall. Oh! Then there's winter and all that snow to plow.

Speaking of which, we just had a snowfall and another storm is on the way. And it looks like a big one. Your regular truck won't do the job. For this one you need a bulldozer. Here we go again. Put on your gloves, get your snow goggles, and grab a thermos of coffee (so you'll be able to stay awake for 24 hours straight). Now get out there and clean up those flakes! Wait a second-make sure you keep tuned to the weather station for the latest weather bulletins.

Starting your dozer

Type in LISTING 1 using the M/L Editor found elsewhere in this issue. To load the game, use the L option from the DOS menu.
If you wish to forgo watching the falling snow on the introduction screen (will you please watch at least once? After all, we did spend some time trying to create this special effect), press any key. After watching the scrolling weather message, press the START key to begin plowing. You may direct the dozer in any of the
four directions using a joystick in port 1 . No! You cannot go off the road-see the centerline markers? Follow them until the roads are completely clear of snow. If you accomplish this task there will probably be another snowfall to test your driving skills.

While you're pushing snowflakes around, storms will occasionally cross your path. If your dozer touches one, it will undoubtedly get diesel-line freeze and crash. You'll need a new one then. As time goes on the storms get more frequent and faster, so beware. Most of the streets are free of vehicles, but there are always some crazy people who venture out and risk

Put on your gloves, get your snow

gogylas, and grah a thermos of

coffee-now get out there and
clean up those flakes!
their lives. Fortunately, a bell sound warns you that they are on the road. If you hit one, you score a 100 -point bonus. These people will honk their horns at you, but I'd just ignore them and keep going. And don't forget to keep your gas tank full.

Remember the Knight-Rider and KIT? Me neither: But KIT had turbo boost. And so does your dozer. So once per level you can jump to the edge of the screen (assuming there's a road there; you wouldn't want to jump into a tree, would you?). If you need to clean off your windshield or take a sip of coffee during plowing, just hit any key to pause. Press a key again to continue. Well, what are you waiting for? Get going!

Technical Notes and Other Stuff

Snowoplow uses the four color Antic mode 5 . Antic 4 would give better resolution but would have taken much more memory. An entire screen takes 2560 bytesroughly 2.5 K or about $1 / 3$ of the entire program. In Snowplow we have an entire screen, but it takes only $1 / 6$ th of the program because it is compacted. We used a compacter similar to the one in $B B K ~ A r$. tist (See issue \#56).

The falling letters on the intro screen are each composed of four defined graphic zero characters. Of course, there's also a complete character set in the DATA.

If you get tired of playing the same gameboard over and over, relief is in sight-a gameboard editor! That's why, when you're playing the game, the disk is being accessed. It's looking for files named SMAP.??? where ??? can be anything that's legal. It will load these files in the order they appear on the disk. As you clear each board, the storm appears on screen more often and moves faster until the 6th board. So leave your drive on while playing Snowplow. Next month, when we present the Snowplow Editor; you'll be able to design your own screens. Excuse me a minute, I think I have to shovel the sidewalk. ...

SNDWPLDW

```
                        #
```


T
 U

randlebrot

by James J. Greco

FOR THE 8-BIT USER

n August of 1985 I received my issue of Scientific American. Inside it, in the "Computer Recre-

 ations" column by A.K. Dewdney, I found some fascinating computer-generated graphics, and the instructions for generating them. They were images of something called the Mandelbrot Set.A brief look at the formula and method for generating these images told me that it was intended for a computer very unlike mine (an Atari 800 XL), a very expensive one.

In January of 1986 I received my issue of ANALOG Computing. To my surprise it contained a program for generating the Mandelbrot Set. There was hope my little Atari could produce these images after all! Hope was lost when I realized that the program was written for the 520ST. At that point I decided I was going to generate some of those images with a program I was going to have to write myself.

I went back to the Scientific American to find out exactly what the Mandelbrot Set was. If it were not for Mr. Dewdney's excellent article, I am sure I would not have ever found out. What follows is my attempt at explaining how they are generated.

The Mandelbrot Set is based on the repeated squaring of complex numbers.

Complex numbers are numbers that involve the square root of -1 . The square root of -1 is represented by the letter i for imaginary. If i is the square root of -1 , then' i squared must be -1 , a real number again. A complex number is a combination of the regular numbers we use every day (real numbers) and imaginary numbers. This combination is the addition of the two. Therefore $2+3 i$ is a complex number, as is $.00531+213 i$. As a sideline, even the real numbers are considered complex, as they can be expressed as a real number plus 0 i .

Addition of complex numbers is easy. All that needs to be done is to add the individual like parts (add the real parts together, then add the imaginary parts together), for example: $(2+3 i)+(4+$ 7 i) $=6+10 \mathrm{i}$.

As I mentioned above, the Mandelbrot Set is generated by the repeated squaring of complex numbers. An example will probably best serve to demonstrate the
squaring of complex numbers. To square $2+3 i$ we expand it to $(2+3 i) *(2+3 i)$. Multiplying this out we get: $4+6 \mathrm{i}+6 \mathrm{i}+9 \mathrm{i}^{2}$, collecting like terms we get $4+12 i+9 i^{2}$. As I mentioned before i squared is -1 . This means that $9 i^{2}=-9$, a real number again. Substituting -9 into the above complex number and collecting all the real parts we get: $-5+12 i$.

Pairs of numbers can be plotted on a plane-this plane has two axes, a horizontal one and a vertical one. Complex numbers can also be plotted on a plane, called the complex plane. The complex plane has a real (horizontal) and an imaginary (vertical) axis.

The Mandelbrot Set is plotted on this complex plane. It seems that if certain complex numbers are continually squared, they will never exceed the size of two. The size of a complex number is the distance of that complex number from the origin. The origin is at $(0,0 \mathrm{i})$. The distance can be calculated by use of the Pythagorean theorem. If we take the sum of the squares of the sides, then take the square root of that, we will arrive at the size of that complex number. The numbers that never exceed the size of two are what make up the Mandelbrot Set. Most of the numbers in the complex plane quickly exceed the size of two, soon after the squaring process begins. These are the numbers that give the Mandelbrot Set its colors. The numbers that lie in the Mandelbrot Set are plotted black. The other numbers are plotted with a color representative of the number of times the squaring process is repeated before the size exceeds two.

Finding and plotting these numbers is

the task of this program. The monitor screen is going to represent the complex plane, with each pixel on the screen corresponding to an individual complex number. The value of the pixel is determined by two factors: 1) the center of the area that you wish to view (specified by a real and an imaginary number), and 2) the size of the area you desire to view. The latter can be likened to magnification. After these parameters are entered, the program calculates the complex values of each pixel. This is done in such a manner that the center of the screen represents the center specified by the entry of the real and the imaginary values entered. The size determines the range of values to either side (and top to bottom) of the center. Each pixel value is then processed in a manner, soon described, that calculates whether that value lies in the Mandelbrot Set (plotted black) or if that value should be plotted with a color.

The function that determines where this value lies is: $\mathrm{Z}^{2} \leftarrow \mathrm{Z}+\mathrm{u}$ where Z and u are both complex numbers that can be represented as follows: $\mathrm{Z}=\mathrm{ar}+\mathrm{ai}$, $\mathrm{u}=\mathrm{br}+\mathrm{bi}$, where r indicates real and i indicates imaginary. The values $b r$ and $b i$ are the value of the pixel, the values $a r$ and $a i$ are initially set to zero. The arrow in $\mathrm{Z}^{2} \leftarrow \mathrm{Z}+\mathrm{u}$ indicates that the values Z and u are added, then squared. If the result of this squaring is less than two, the resultant real value is then put into ar. The resultant imaginary value is then put into $a i$ and the constant values (for the pixel) of $b r$ and $b i$ are then added to the new values of $a r$ and $a i$, then squared again. This process continues until the size of Z^{2} exceeds two or until we can safely assume that the value will never exceed two.

This repeated performing of the same function is referred to as iteration. At the beginning of the program, you will be asked for the iteration limit. This is what determines the number of times the function will be implemented before it is assumed that a point lies in the Mandelbrot Set (assuming that the size does not first exceed two).

If the size does exceed two, the number of times it took to do so is used to determine the color that the pixel will be plotted with. The entire process is repeated for every pixel on the screen. If the area you want to look at lies entirely in the Mandelbrot Set (a very boring picture), and you choose 100 as the iteration limit in high-resolution mode, it would take $160 * 170 * 100(2,720,000)$ calculations to complete the picture. This is why it takes more than a little time for this program to run.

About the program

When you first run the program, you will be asked if you want to save a screen, view a screen, complete a saved screen, see directory (disk version) or none of the above. If you're going to want to save the picture you're going to create, then select the save option. Selecting the view option allows you to view a screen that you have already saved. If, after you have started to create a screen that you are planning to save, you decide you want to turn off the computer, you can save a partial picture by pressing the HELP key. When this key is pressed, the computer dumps the current values and the portion of the screen that is completed to the I/O device (as soon as the line it is working on is completed). To complete the screen at a later
time, choose the complete saved screen option from the menu. Simply pressing RETURN will allow you to create a picture, but it can not be saved. If you select the save option, you'll be prompted to insert your disk or cassette at this time. If you're using a cassette recorder, it will have to remain on until the screen is complete. Disk-drive users may remove their disk and turn off the drive; just turn on the drive and insert the disk when the screen is complete. After selecting the desired graphics mode, you will be asked for the coordinates, size and, iteration limit for the picture you wish to create. The coordinates and size can be determined from a map of the set or, as will be discussed shortly, from the program itself. A good iteration limit seems to me to be about 100; the higher the number you choose the longer the set will take to calculate, however, it will be more detailed and accurate.

After the set has been calculated, or retrieved from disk or cassette, a double cursor will appear. This cursor can be moved around by use of the arrow keys. Finer movement can be obtained by holding down the control key and the desired arrow key. After the cursor has been moved to a position of interest, holding down the RETURN key will return the screen to graphics 0 , and will display the coordinates and sizes of the cursor's two squares. Following the prompts another set can be calculated in the same manner as the first. For an overall look at the Mandelbrot Set, enter the follwing: real -.75 , imaginary 0 and a size of 3 ; the whole set will be plotted. This can be your map; just move the cursor to the area you desire to look at closer and press RETURN.

Entering the program：

For disk users simply type in the pro－ gram as listed．Cassette users make the fol lowing changes．

Change Line 60 to read：

```
60 IF LOR=1 THEN FF=8:DQ今="C
:":GOTO 560
```

Change Line 150 to read：

DOF＝＂C：＂
Delete the following lines：200，240，250， $1275,1290,1300,1340,1350,1360,1370$, 1380，1390， 1400.

Add the following lines：

> 236 IF FF=4 THEN PRINT:PRINT "CUE CASSETTE, PRESS PLAY, THEN RETURN';:INPUT BS:GOTO 280
> 280 NAME $5={ }^{\prime \prime} C: "!I F$ FF $=8$ THEN PRINT "CUE TAPE, PRESS RECOR D AND PLAY, THEN RETURN': :IN PUT B :
> 285 IF LOR=1 THEN ? "WHEN CA SSETTE STOPS LOADING SCREEN,
> REPOSITION TAPE, PRE55 RE CORD AND PLAY"
> 287 IF LOR=1 THEN ? "PRES5 R ETURN WHEN READY";:INPUT BS

Change the last statement of Line 100 to read：

A word of warning to cassette users－this program can be very frustrating．It takes
a long time to save and load the screens， and you will often have errors trying to load a screen that will make hours of com－ puting time worthless．

Some Final Words

The Mandelbrot Set has some proper－ ties that seem to me（a person with a limited math background）to be very un－ usual．It is infinitely complex；that is，no matter how high a magnification（small a size）one chooses，the Set remains just as complex as it is at lower magnification levels．This means that it has an infinite perimeter，yet it encloses a finite area．The set is also self similar；that is，at specific locations and levels of magnification，you will see shapes that are similar to，but not exactly like，shapes seen at other magnifi－ cations and locations．

LISTING 1：BASIC

	200 IF SMS＝＂D＂THEN GOTO
	$210 \mathrm{FF}=0: \mathrm{GOTO} 300$
GY	220 PRINT ：PRINT＂INSERT DI5K，PRES5
	ETURN WHEN READY＇；：INPUT
	Eち：IF SMS＝＂5＂＂THEN 1350
B0	250 IF 5MS＝＂5＂＇OR 5MS＝＇U＇V THEN
	（D05）＋1）＝NAME
	290 IF SMS ${ }^{40}$
0 B	300 PRINT ：PRINT＂FOR HIGH RE
	GRaPHIC5 PRE55
	310 PRINT ：PRINT＂FOR MEDIUM
	N GRAPHICS PRESS
cu	320 PRINT＂FOR LOW R
	PRES5 L＇11
	330 PRINT
	ION PRESS ${ }^{\text {ar }}$
57	349 PRINT ：PRINT ：PRINT＂MAKE GRAPHIC5
	5ELECTION＂：INPUT GRS：IF ZS＝＂0＂OR B
	＝${ }^{\prime \prime}$ I＇THEN GOTO 380
KL	350 PRINT ：PRINT ；IIS；RCF；；：INPUT
RW	360 PRINT ；IIS；ICS：$:$ INPU
UL	370 PRINT IIS： $55:$ INPUT 5：
	HEN PRINT＂SIZE MLST BE POS
	380 PRINT＂ENTER
	UT IL
8P	381 PRINT ：IF IL＜10 THEN PRINT＂ITERAT
	ION LIMIT MUST BE TEN OR GREATER＇：GOTO
	380
su	390 REM LINES 410－450 AS5IGN SPECIC UA
	LUES TO BE USED IN CALCULATIONS DEPEND
	ING UPON GRARHIC5 MODE
KT	400 PRINT＂PLEASE WAIT，
	ARIABLES＂
JY	410 IF GRSご＂L＂OR GR＝21
	$54: Y=79: W=3: F=48: G R=21: L 0=$
	0450
CF	420 IF GRF＝1י＂1 OR GR＝19 TH
	54：Y＝39
	0450
EJ	430 IF GRS＝＂H＂＇OR GR＝31 THEN L＝160：D＝0
	． 77 ：Y＝159： $\mathrm{N}=3: F=170$
	：GOTO 450
	$440 \mathrm{~F}=170: \mathrm{L}=80$
	： $\mathrm{LO}=202 \mathrm{HI}=31$
	$450 \mathrm{~A}=5 / \mathrm{L}: \mathrm{M}=\mathrm{E}-5 / 2: N=H+5 /$
LN	460 REM LINE 470 CALCULATES COLUMN AND
	ROW UALUES FOR COORDS AND SIZE 5E
	ED IT THEN STORES THEM IN ARRA
	480 REM LINES 490－540 ASSIGN COLOR
	UES FOR SPECIFIC COUNTS
	$490 \mathrm{C}=\mathrm{C}+1: \mathrm{B}=1: \mathrm{U0}=\mathrm{C}: \mathrm{IF} \mathrm{C}=\mathrm{IL}$
	500 VO＝V0－1：IF VO＜$=1$ THEN P
	490
	510 IF $B=W$ THEN $B=$

OD 200 IF SMS＝＂ID＂THEN GOTO 1350
F0 210 FF＝0：G0T0 300
SW ETURN WHEN READY＂B：INPUT B 240 ： ES：IF SMS＝＂5＂THEN 1350
BO 250 IF SMS＝＂S＂OR SMS＝＂U＂THEN DOSCLEN （D05）＋1）＝NAME
TU 290 IF SMS＝＂U＂＂THEN GOTO 616
OB 300 PRINT ：PRINT＂FOR HIGH RESOLUTION GRAPHICS PRE55［ ${ }^{\prime \prime}$
V0 310 PRINT ：PRINT＂PFRR MEDIUM RESOLUTIO N GRAPHICS PRESS［ ${ }^{11}$
CU 320 PRINT＂FOR LOW RESOLUTION GRAPHICS PRE55［＂
GL 330 PRINT ：PRINT＂FOR UERY LOW RE5OLUT ION PRESS（0＂
340 PRINT ：PRINT ：PRINT＂MAKE GRAPHIC5 SELECTION＂： BI THEN GOTO 380
；：INPUT E
RW 360 PRINT ；IIS：ITCS：$: I N P U T$ H
376 PRINT IIIS；5S：：INPUT 5：IF 5＜＝0 T 370
RP 380 PRINT＂ENTER ITERATION LIMIT＂：：INP UT IL
KP 381 PRINT ：IF ILS1日 THEN PRINT יITTERAT LIMIT MUST BE TEN OR GREATER GOTO 390 REM LTNES 410－450 A55IGN 5PECIC UA LUES TO BE USED IN CALCULATIONS DEPEND ING UPON GRARHICS MODE
KT 400 PRINT＂PLEASE WAIT，INITIALIZING U ARIABLES＂
JY 410 IF GR $5=" \mathrm{~L}$＂ 0 R GR＝21 THEN $\mathrm{L}=80: \mathrm{D=1}$. $54: Y=79: W=3: F=48: G R=21: L 0=150: H I=4: G 0 T$ 0450
420 IF GRS＝＂U＂＂OR GR＝19 THEN $L=40: D=1$ ． 54：Y＝39：W＝3：F＝24：GR＝19：L0＝168：HI＝1：G0T 0450
EJ 430 IF GRS＝＂H＂OR GR＝31 THEN L＝160：D＝0 ． 77 ：Y＝159：$N=3: F=170: G R=31: L 0=202: H I=31$ －GOTO 450
NG $440 \mathrm{~F}=170: \mathrm{L}=80: \mathrm{D}=0.385: Y=79: \mathrm{W}=15: G R=11$ ：LO＝202：HI＝31
FC 450 a $=5 / \mathrm{L}: M=E-5 / 2: N=H+5 / 2,6$
ROW UALUES FOR COORDS AND SIZE SELECT ED IT THEN STORES THEM IN ARRAYS
470 FOR $G=0$ TO Y：$Q(G)=M+G * A: N E K T G: F O R$ $K=0 \quad T 0 \quad F: R(K)=N-K * A * D: N E X T \quad K: C=0$
OF 480 REM LINES $490-540$ ASSIGN COLOR VAL UES FOR SPECIFIC COUNTS
NE 490 C＝C＋1：B＝1：U0＝C：IF C＝IL THEN 530
YP 510 IF $B=W$ THEN $B=0$

QD $520 \mathrm{~B}=\mathrm{B}+1: \operatorname{GOTO} 500$
EG 530 IF LOR＝1 THEN P（C）＝0：G＝0：K＝K1：U＝0 © G）：Z＝R（K）：C＝0：I＝0：J＝0：G0T0 20
EK $540 \mathrm{P}(C)=0: G=0: K=0: C=0: V=0(G): Z=R(K): G$ RAPHIC5 GR：GOTO 20
PZ 550 REM LINES 560－630 ARE I／O ROUTINES RUN
WN 560 IF FF＝0 THEN 680
KB 570 CLOSE \＃1：POKE 764，12：OPEN \＃1，8，0，D QS：PUT \＃1，GR：PRINT HI，E：PRINT \＃1，H：PRI NT \＃1，5：PUT \＃1，IL
FB 580 PUT \＃1，HI：PUT \＃1，LO：PUT \＃1，G：PUT \＃ 1，K
QU 596 POKE 764，12：POKE 852，PEEKC88）：POKE 853，PEEK（89）：POKE 856，LO：POKE 857，HI： POKE 850，FF＋3：$A=U 5 R(1536,16): C L O 5 E$ \＃1
QT 600 GOTO 680
Ja 610 CLOSE \＃i：POKE 764，12：OPEN Hi，4，0，D 0与：GET \＃1，GR：INPUT \＃1，E：INPUT \＃1，H：INP UT \＃1，5：GET \＃1，TL：GET \＃1，HI
QZ 620 GET \＃1，LO：GET \＃1，G1：GET \＃1，K1：GRAP HIC5 GR：SETCOLOR 4，0，2
QK 630 POKE 764，12：POKE 852，PEEK（88）：POKE 853，PEEK（89）：POKE 856，LO：POKE 857，HI： POKE 850，FF＋：$A=\mathrm{USR}(1536,16):$ CLOSE \＃1
RF 640 IF LOR＝1 THEN GOTO 410
RD 650 GOTO 680
JT 670 DATA $104,104,104,170,76,86,228$
WG 680 SOUND 0，0，0，0
AL 690 POKE 53774，247：REM STARTS PM
H5 700 DATA $255,129,129,129,129,129,129$ ， $129,189,165,165,165,165,165,165,165,16$ $5,165,165,165$
ZC 710 DÁTA $165,165,165,189,129,129,129,1$ $29,129,129,129,129,129,255$
J0 720 DATA $104,160,1,177,203,136,145,203$ ，196，205，200，200，144，245，198，203，96，10 4，164，205，177
PU 730 DATA $203,200,145,203,136,136,16,24$ 7，230，203，96
ZII 740 A＝PEEK（106）－48：POKE 106，A：POKE 542 79，A：5T＝256＊A：POKE 559，62：POKE 53277， 3 ：POKE 53256，3
HU 750 FOR $I=5 \mathrm{~T}+1024$ TO $5 \mathrm{~T}+1280:$ POKE I， $0:$ NERT I：PST＝5T＋1025：POKE 204，INT（P5T／25 6）：POKE 203，P5T－（PEEK（204）＊256）－1
IC 760 POKE 205，34：RESTORE 700：FOR I＝P5T TO PST＋3J：READ A：POKE I，A：NEHT I：FOR I $=1550$ T0 1581：READ JiPOKE I，J：NEKT I
PL 770 FOR Z＝1 TO 30：GOSUB 890：NEHT Z：I＝§ 8：POKE 764，7：UR＝5
UI 780 CU＝PEEK（764）：REM LINES 780－930 ARE FOR CURSOR MOUEMENT 93日，IS END OF P
M 790 IF CU＝7 THEN I＝I＋10：POKE 53248，I：I F $I\rangle=240$ THEN $I=10$
T5 800 IF CU＝ 135 THEN I＝I＋1：POKE 53248，I： IF $I\rangle=240$ THEN $I=10$
FL 810 IF CU＝6 THEN I＝I－10：POKE 53248，I：I F $I<=10$ THEN $I=200$
GP 820 IF CU＝134 THEN I＝I－1：POKE 53248，I： IF $I<=10$ THEN $I=200$
MP 830 IF CU＝14 THEN FOR GG＝1 TO 20：G05UB 910：NEKT GG
KH 840 IF CU＝142 THEN G05UB 910
YH 850 IF CU＝15 THEN FOR GG＝1 TO 20：GOSUB 890：NEHT GG
5 G 860 IF CU＝143 THEN G05UB 890
CC 870 IF CU＝12 THEN POKE 559，0：GOTO 930
Y0 880 POKE 764，32：GOTO 780
H0 890 IF UR $=180$ THEN RETURN
NW 900 UR＝UR＋1：$A=U 5 R(1567): P O K E$ 704，200：R ETURN
BL 910 IF UR $<=-20$ THEN RETURN
IB 920 UR＝UR－1：$A=U 5 R(1550): P O K E$ 704，200：R ETURN
YU 930 POKE 53248，0：POKE 106，PEEK（106）＋48 ：REM FOLLOWING LINES DET．COORDS AND 5 TARTING OF ANOTHER SET
KE 940 IF GR＝11 THEN G＝INT（I／2）－16：K＝UR＋1 2：JJ＝1：D＝0．385：L＝80
UK 950 IF GR＝19 THEN G＝INT（（（I／2）－16）／2）： $K=I N T((U R / 4+2) / 2): J J=0: 42: D=1.54: L=40$
GD 960 IF $G R=21$ THEN $G=I N T(I / 2)-16: K=U R / 4$ ＋2：JJ＝1：D＝1：54：L＝80
EA 970 IF GR＝31 THEN G＝2＊（INT（I／2）－22）+12 $: K=U R+12: J J=2: D=0.77: L=160$
FN 980 $\mathrm{A}=5 / \mathrm{L}: \mathrm{M}=\mathrm{E}-5 / 2: \mathrm{N}=\mathrm{H}+5 / 2.6$

MO 1000 PRINT＂KF＂：PRINT＂THE REAL CENTER OF THE CURSER IS＂IE
WE 1010 PRINT：PRINT＂THE TMAGINARY CENTE R I5＂1H
IY 1020 PRINT ：PRINT＂THE SIZE OF THE TNN ER CURSOR I5 ：i： 5 I＝5＊
YO 1030 PRINT ：PRINT＂THE SIZE OF THE DUT ER CURSOR IS ： $50=12 * A * J J P R I N T 50$
RM 1040 PRINT ：PRINT＂DO YOU WANT TO CREA TE A NEW SET Y OR N＇i：PPOKE 764，28：INPU T Z
RK 1050 IF Z今＝＂Y＂THEN GOTO 1150
PR 1060 GOTO 1230
AL 1079 PRINT＂WHICH PARAMETER（S）DO YOU WISH TO CHANGE R，N，GיINPUT ZS
JU 1080 IF Z今E＂יRi＇THEN PRINT ；IIS；；RCS；； INPUT E：GOTO 1120
 INPUT H：GOTO 1126
GG 1100 IF Z $5=" 55^{11}$ THEN PRINT ：II与：；5与：； 1 NPUT 5：IF 5＜＝0 THEN PRINT USIZE MUST B E GREATER THAN ZERO＂：GOTO 1160
OF 1110 GOTO 1120
AN 1120 PRINT；THS ；RCF：；E：PPRINT ：PRINT ：PRINT：THS：；ICS： H ；：PRINT ：PRINT ：PRI NT ：THS：55：5：
I5 1121 PRINT ：PRINT ：PRINT＂DO YOU WI5H TO CHANGE ANY MORE Y OR NיI：INPUT B与
KB 1130 IF B5ニ＂Y＂THEN GOTO 1070
ON 1140 GOTO 1210
FK 1150 PRINT：PRINT ：PRINT BSELECT SIZE VALUE：＂：PRINT
OE 1160 PRINT＂INNER CURSOR5 SIZE UALUE＇： PRINT ：PRINT＂OUTER CURSORS SIZE UALUE

FC 1161 PRINT ：PRINT $" Y O U R$ OWN SIZE＂：PRIN T ：PRINT ：PRINT＂SELECT I，O OR S＂；
IB 1170 INPUT B $5:$ IF B $5=" 5$＂THEN $25=" 5 ": G 0$ TO 1100
KC 1．180 IF BS＝＂0＂THEN $5=50:$ GOTO 1120
BR 1190 IF BSE＂I＂THEN 5＝5I：GOTO 1120
NE 1200 GOTO 1100
EK 1210 Z $5=" 0 ": P R I N T$＂TO SAUE SCREEN PRES 5 S OTHERWISE RETURN＂IINPUT SMS：I F 5MS＝＂5＂THEN FF＝8：GOTO 220
TT 1220 FF＝0：BS＝＂O＂：GRAPHICS 11：GOTO 300
RS 1230 PRINT ：PRINT＂DO YOU WANT TO DUIT GO BACK TO SELECTED UALUES，OR
OP 1231 INPUT Z $\$$ SET $a, G, O R$ 5י；
UQ 1246 IF $25="$ Q＂THEN END
EE 1250 IF Z5＝＂ 5 ＂THEN CLR ：GOTO 10
NK 1260 GOTO 1000
KC 1265 REM LINES 1270－1330 ARE ERROR HAN DLING／DETECTING ROUTINES
ND 1270 LTNERR＝PEEK（187）＊256＋PEEK（186）：ER R＝PEEK（195）：TRAP $40000:$ TRAP 1270
KM 1275 IF ERR 165 THEN ？＂BAD FILE NAME， TRY AGAIN＂：POKE 764，28：GOTO 240
DI 1286 IF ERR＝139 OR ERR＝140 OR ERR＝142 OR ERR $=143$ OR ERR $=163$ OR ERR $=136$ THEN PRINT＂I／O ERROR＂：END
SW 1285 IF ERR＝138 OR ERR＝144 THEN GOTO L INERR
EK 1290 IF ERR＝145 OR ERR＝160 THEN PRINT ＂DISK ERROR＂：END
OH 1306 IF ERR $=170$ THEN PRINT＂FILE NOT 0 N DISK，TRY AGAIN＂：POKE 764，28：DQS＝＂D： ＂：GOTO 240
MD 1310 IF ERR $=8$ THEN FOR $A A=1$ TO 50：50UN D $0,100,10,15:$ NEKT AA
EQ 1320 50UND 0，0，0，0：PRINT ：PRINT＂※※※※ ＊REENTER＊＊＊＊＊in：PRINT ：GOTO LINERR
KY 1330 PRINT＂ERROR NUMBER＂；ERR；＂AT LI NE＂：LINERR；：END
WU $1349^{\text {REM LINES } 1350-1400 ~ A R E ~ U S E D ~ W I T H ~}$ I／0 ROUTINES ABOUE
PK 1350 CLOSE \＃4：OPEN \％4， 6,0, ＂D：$\%$ ．\because＂：IF 5 MS〈〉＂5＂THEN GOTO 1390
HH 1360 INPUT \＃4，RS：TRAP 1400：$\$ 5=R 5(3, L E N$ （NAME $\$$ ）+2 ）：IF H （ \langle ）NAME 5 THEN IF RS（16， 16）〈〉＂SECTORS＂THEN GOTO 1360
RB 1370 IF KS＝NAMES THEN PRINT＂NAME ALRE ADY USED ON DISK，TRY AGAIN＇：TRAP 4006 0：TRAP 1270：GOTO 240
TG 1380 TRÄP 40000：TRAP 1270：G0T0 250
OF 1390 INPUT \＃4，RS：TRAP 1400：PRINT RS：IF RS（18，16）〈〉＂SECTOR5＂THEN 1390
OE 1400 CLOSE 44

Joytypeby John Pilge
Joytype is a replacement for the typewriter and is not a word processor. It is designed for people who cannot use a typewriter because of limited movement caused by stroke, cerebral palsy or injury. While you may not have a need to use it yourself, you may want to type it in for a friend or charity.

You can also use some of the routines for later programs of your own (directory, printing, scrolling, etc.).

The first step is to get a joystick the handicapped can use. Many prefer joysticks by Wico.

Instructions

The first menu lets you choose the drive on which you will store files. Should you change your mind after making this selection, you return to this menu when you choose to erase a letter from the option menu.

Typing is simple. Move the joystick (or trackball) to the letter of choice. Select the letter for printing by pressing the firebutton. Each space between the letters on the header can be used as a space (just like pressing the spacebar on a typewriter.)

Special functions are on the bottom right of the header. Selecting either D or L is delete. C or R is a carriage return. E is an escape character. O, P or T changes the screen to the option menu. The triangle is a backspace. Backspace would usually be used for forming special characters (using " c " and " p " to make a cents marker) or underlining (if you don't know the escape commands for your printer)

The option menu has functions to save a file, delete a fite, load a file, print, type (returns you to the typing screen), erase the current letter and format a disk.
To avoid mistakes, "FORMAT" doesn't
work. If the person who uses the program has enough control and confidence to risk using FORMAT, merely delete Line 810 of the program, and FORMAT will work.
The first command of the Option menu is "O.NOTHING." This is to prevent an accident in case the user still has the firebutton pressed at the time the screen is displayed.

While directory will show all the files on disk, you cannot access any files with an extension (or any filename with a period). This is to prevent accidental deletion or loading of the DOS.SYS program or the JOYTYPE.BAS program (and the AUTORUN.SYS, if you have the program autoloaded).

To select files for loading, savings, etc. a menu appears with the alphabet (uppercase only), a space on either side of the alphabet, an M to return to the Option menu and a $D L$ to delete errors.
Files can have up to eight letters in the filename. If a filename has less than eight letters, use spaces to make eight characters. A filename cannot start with a space. After eight characters have been selected, the file is acted on in accordance with your choice.

Once the user has worked with the program, it may seem to be too slow. Line 1820 has the variable DLAY that controls the speed of some movements. You can change that number to as low as one or as high (slow) as needed.

The left margin for printing is set on Line 1820 as the variable MRG\$. You can set this in accordance to the needs of your printer. The printer line length is set by PLL on Line 1820.

Joytype files can be checked with most spelling checker programs and can be read by most other word processors. There is a difference between return markers, but not text.

Who gets the program

Just because you spent all night typing the program doesn't mean everyone will want it. You needed patience to type in the program, and you are going to need more patience finding someone to use it.

You will find a lot of charities unable to use the program or willing to make it available to people who need it.

Some charities are only able to deal with donations of money. Some only handle specific needs (such as raising money). Some can only accept programs on Apple or IBM no matter how inexpensive an Atari costs. You will learn a lot about the handicapped services of your community by trying to pass along this program. I have a letter from one local "charity" that doesn't want the program unless it is protected, and they can sell it.

But at least you can make it known that the programs exists and is available to work on a sturdy and inexpensive Atari.

You might be called on to modify the program. Larger characters on the screen is a popular request. There is an easier fix than to rewrite the program. The characters get larger as the TV screen gets larger.

If more than one letter appears as the fire button is pressed, try another joystick. Some joysticks have a rapid-fire ability that speeds up the response of the button. You could also move the button commands (STRIG) after the DLAY loops or make the DLAY value a higher number (slower). For any additions larger than 4 K you may have to shorten the string length of LINE\$, or you run out of memory.

I would like to thank Jimmy Montoya, Jr. (know locally as the "Wizard of OS") for his suggestions, and the Cabrillo College Stroke Center for their encouragement.

John Pilge is your typical, fun-loving Atari computer owner who gets a thrill finding new uses for the Atari. He is known in Santa Cruz County as J.P. or Bladerunner.

Joytype

LISTING 1：BASIC

a，	
UL	1 REM $\#$ JOYTYPE
CL	2 REM $\#$ BY JOHN PILG
GK	3 REM＊
Z2	4 REM \％PUBLISHED IN ANALOG
51	5 REM $*$ COMPUTING，5EPT， 88
ap	
	10 POKE 566，PEEK（566）＋12
AP	20 REM LINE 1820 HAS DELAY，MARGIN
	PRINTER LINE LENGTH UARIABLES
GL	40 REM POKES：77 IS ATTRACT MO
	IS CURSOR POSITION，88－89 I5 5CREEN ME
$R 5$	50 TRAP 1930：G0T0 1800
	$60 \mathrm{~K}=129$ ： 5 CREEN＝PEEK（88）＋PEEK（89）${ }^{(255}$
5 A	70 FOR I＝2 T0 38 5TEP 2：POKE 5CREEN＋I
	K：POKE SCREEN＋（I＋1），128： $\mathrm{X}=\mathrm{H}+1: \mathrm{NEST}$ I
NR	86 FOR I＝42 T0 65 5TEP 2：POKE 5CREEN＋
UG	$90 \mathrm{H}=\mathrm{K}+1: \mathrm{FOR}$ I＝66 T0 79 5TEP 2：P0KE
	REEN＋I， X ： POKE SCREEN＋（I＋1）， $128: \mathrm{K}=\mathrm{K}+1$
	＋I， $\mathrm{K}:$ POKE SCREEN＋（I＋1），128： $\mathrm{H}=\mathrm{K}+$
II	110 K＝187：FOR I＝122 T0 128 5TEP 2：POKE
	5CREEN＋I， H ：POKE SCREEN＋I＋1， 128
	NERT
FJ	120 POKE SCRE
	1，128
	130 8＝225：FOR I＝132 T0 158 5TEP 2：P0KE
	SCREEN＋I， $\mathrm{K}:$ POKE SCREEN＋GI＋
	1：NERT I
H0	140 FOR I＝162 T0 184 5TEP 2：POKE 5CREE
	N＋I， $\mathrm{H}:$ POKE SCREEN＋（I＋1），128：8＝8＋1： NE （ ${ }^{\text {S }}$
	150 POKE SCREEN＋186，37
zz	160 POKE 5CREEN＋187，128：POKE 5CREEN＋18
	8，47：POKE SCREEN＋189，48：POKE SCREEN＋19
	0，52：P0KE 5CREEN＋191，128
LH	170 POKE SCREEN＋192，36：POKE
	44：POKE 5CREEN＋194，128
	180 POKE 5CREEN＋195，128：POKE SCREEN＋19
	6，126：POKE SCREEN＋197， 128 190 POKE SCREEN＋198， 5 ：P0
	， 53
HD	200 POKE 5CREEN＋2，1：5PT＝2：F＝129
UA	210 FOR I＝1 T0 4：POSITION 2，7：PR
EE	
	G05LB 490
ZE	230 FOR SLOW＝1 TO DLAY：NEHT 5LOW
HZ	240 IF $\mathrm{K}=14$ AND（5PT－40）>1 THEN G05UB
50	250 IF $8=13$
	B 348
	260 IF $\mathrm{K}=7$ THEN G05uB 430
NY	270 IF $X=11$ THEN GOSUB
	280 GOTO 220
LP	290 R＝R－3：P05ITION 2，7：？CHRS（156）
	SITION 2，R：RETURN
DM	300 L＝PEEK（5CREEN＋（5PT－40））
	N＋51
	310 IF L＞ 127 THEN
	320 IF L＜128 THEN POKE SCRE
	L＋128
	330 5PT＝5PT－40：F

$\mathrm{N}+5 \mathrm{PT}, \mathrm{F}$

L－128 360 IF L（128 THEN POKE SCREEN＋（5PT＋40） ，L＋128
CK 370 5PT＝5PT＋40：F＝L：RETURN
QG 380 CNG＝1：IF SPT＝2 OR 5PT＝42 OR 5PT＝82 OR 5 PT $=122$ OR $5 P T=162$ THEN CNG $=-37$
JK 390 POKE SCREEN＋SPT，F：L＝PEEK ©SCREEN＋ $\mathbf{5}$ PT－CNG）
ZJ 400 IF L＞ 127 THEN POKE SCREEN＋C5PT－CNG ）$L-128$
UZ 410 IF Lく128 THEN POKE SCREEN＋CSPT－CNG 3，$L+128$
GQ $420 \mathrm{~F}=\mathrm{L}: 5 \mathrm{PT}=5 \mathrm{PT}-\mathrm{CNG}:$ RETURN
NW 439 CNG＝1：TF 5PT＝39 OR 5PT＝79 0R 5PT＝1 19 OR 5PT＝159 OR 5PT＝199 THEN CNG＝－37
FK 440 POKE 5CREEN＋5PT，F：L＝PEEK ©SCREEN＋©5 PT＋CNG）
KB 450 IF L＞127 THEN POKE SCREEN＋【SPT＋CNG ），L－128
TR 466 IF L＜128 THEN POKE SCREEN＋©SPT＋CNG $3, L+128$
FU $470 \mathrm{~F}=\mathrm{L}: 5 \mathrm{PT}=5 \mathrm{PT}+\mathrm{CNG}$ ：RETURN
JK 480 Z＝PEEK（85）：FOR 5PC＝Z T0 39：PRINT ${ }^{(1)}$ 1\％：NEXT SPC：RETURN
QU 490 A＝PEEK（SCREEN＋5PT）：POKE 77，0：IF A＝ 164 OR A＝172 THEN GOTO 620
Ca 500 C＝PEEK（83）：R＝PEEK（84）：IF A＝175 OR $A=176$ OR $A=180$ THEN POP ：？CHR $5(125): G$ $0 T 0710$
KM 510 IF $A=254$ THEN $A=194$
GR 520 IF $A<64$ THEN $A=A+32$
ZU 530 IF $A=163$ OR $A=178$ THEN $A=5$
QI 540 IF $A=165$ THEN $A=27$
BY $550 \quad 5 \mathrm{P}=5 \mathrm{P}+1$
UF 560 IF PEEK（B4）$=23$ THEN GOSUB 290
OU 570 PRINT CHRS（a）：：IF 5P＜1 THEN 5P＝1
ER 580 IF $A=5$ THEN GO5UB 480
P5 590 IF $A=27$ THEN PRINT CHRS（27）；
PA 600 LINES（5P，5P）＝CHRS（A）：R＝PEEK（84）：C＝ PEEK（85）
ZE 610 RETURN
IK 620 IF LINE（ $(5 P, 5 P)=C H R(65)$ THEN G05UB 660
 1：IF 5P＜1 THEN 5P＝1
YH $640 \mathrm{C}=\mathrm{C}-1: I F \mathrm{C}<2$ THEN $\mathrm{C}=39: \mathrm{R}=\mathrm{R}-1: \mathrm{IF} \mathrm{R}$ 人 6 THEN R＝6：C＝2
HZ 650 POSITION C，R：PRINT＂＂；CHRS（30）；：G $0 T 0610$
ZT 660 R＝R－1：IF R＜6 THEN R＝R＋1：RETURN
K5 670 POSITION 2，R：FOR I＝39 TO 2 5TEP－1
YY 686 PRINT CHR（ 630 ）： 1 IF PEEK（93）$=69$ THE N POP：C＝I＋1：RETURN
G0 690 NERT I
KC 700 RETURN ：REM ERROR TRAP
DZ 710 REM MENU FOR FUNCTIONS
PK 720 POSITION 2，14
FB 730 PRINT，＂0，NOTHING＂：？，＂ 11. SAUE FILE＂：，＂12．PRINT IT＂：？， ILE＂：？ 740 PRINT ，＂6．DELETE FILE＇in ？＂7，F
 TION 22，13：PRINT CHRS（293；
YH $750 \mathrm{~K}=5$ TICK（0）： $\mathrm{Y}=5$ TRIG（0）：ROW＝PEEK（84）
TY 760 IF $Y=0$ THEN GOTO 800
HW 770 IF $K=13$ AND ROWく22 THEN PRINT CHRS （29）
JF （00 IF $\mathrm{K}=14$ AND ROW＞ 14 THEN PRINT CHRS （28）：
HW 790 FOR 5LOW＝1 TO DLAY：NEKT 5LOW：GOTO 750
IR 800 GET H6，A：POKE 77，0：POKE 85，22：Aニヘー 175
SW 810 IF $A=8$ THEN GOTO 750
IE 820 ON A GOTO $750,1050,1120,1300,1370$ ， $1450,1550,1590,1810$
QE 830 GOTO 756
 RINT CHRS（125）：PRINT＂WHAT IS THE NAME OF FILE IN DRIUE＂；DI $(2,2)$
VE 850 PRINT ：PRINT：PRINT ：PRINT＂M＂ACHR S（160）： FOR I＝193 T0 218：PRINT CHRS（I） ：：NEKT I
aZ 860 PRINT CHRS（160）；CHRS（160）；＂DL＂：？ E＂：？＂N＂：？＂山口
HZ 870 POSITION 2，10：PRINT DIS
AY $880 \mathrm{COL}=3$
$0 T 890$ P0SITTON COL－2，5：PRTNT CHRS（उ1）：CH RS（31）：：FOR 5LOW＝1 TO DLAY：NEXT SLOW
K0 900 H＝STICK（0）：Y＝5TRIG © 0 ：COL＝PEEK（85）
ZU 910 IF Y＝0 THEN GOTO 960
PD 920 IF $X=7$ AND COL 32 THEN PRINT CHRSC 31）：
PV 930 IF $X=11$ AND COL＞ 2 THEN PRINT CHRS 30）：
ZN 940 FOR SLOW＝1 TO DLAY：NEHT SLOW
PA 950 GOTO 900
NZ 966 GET $\ddagger 6$ ，A：IF A＝196 THEN GOTO 1020
UT 970 IF $A=205$ THEN G0T0 710
WM 986 IF A＝32 AND $58=1$ THEN GOTO 890
FS 990 IF $58>8$ THEN GOTO 1646
TQ 1060 DRS（SK，5K）＝CHRS KA）：P0SITION 5，10： PRINT DR5：？ 5 ： $58=5 \mathcal{H}+1$
TY 1610 G0TO 896
IR 1020 5 $8=5 \%-1: I F \quad 5 H=0$ THEN $5 K=1$
GR 1030 DRS（5K，5K）＝＂＂：P0SITION 5，10：？DR 5；11 1＇？5H：GOT0 890
AY 1640 DIS（4，11）＝DRS：RETURN
TB 1050 G05UB 840：0PEN $42,8,0$ ，DIS：FOR I＝1

EJ 1960 IF KS＝CHRS（163）THEN POP GOTO 10 80
AS 1070 PRINT H2；KS：NE $2 T$ I
NU 1080 PRINT \＃2；CHR5（163）
UG 1090 CLOSE 廿2；PRINT CHRS（125）：？，DIS；＂ I5 SiUED ${ }^{11}$
ZZ 1169 G05UB 1616
PH 1110 G0T0 710
H0 1126 PRINT CHRS（125У：PRINT＂SINGLE 5PA CED OR DOUBLE SPACED？＂：G0SUB 1870
WG 1130 IF $A=49$ THEN L5＝2
RU 1140 IF A＝50 THEN LSニ1
2M 1150 OPEN \＃2，8，6，＂P：＂：PRINT CHRS（125）： ？，＂WAIT＂：PRINT \＃2
MW 116G FOR I＝1 TO LENCLINES》
FC 1179 IF LINES（I，I）＝CHRS《163）THEN POP ：G0T0 1320
ER 1180 FIN＝I
YL 1190 NEKT I：PRINT ，＂PRTMTINTE
AI 1200 LL＝PLL：5P＝1：B＝1：Yニ9：PRINT \＃2；MRG5
YN $1210 \quad Y=Y+1: I F \quad Y>L L$ OR $Y=L L$ THEN GOSUB 1640
ZK 1220 IF SP＝FIN＋1 THEN G05UB 1770：CLO5E \＃2：G0T0 710
TU 1230 IF P＞53．THEN G05山B 1700
KJ 1246 IF LINE $\$(5 P, 5 P)=C H R 5(32)$ AND Y＝1 THEN SP＝5P＋1：G0T0 1210
UA 1250 IF LINES（SP，5P）＝CHRS（5）THEN G0SU B 1720：G0T0 1210
5M 1260 IF LINES（SP，5P）＝CHRS（27）THEN PLL $=L L+2: 5 P=5 P+1: G 0 T 01216$
MP 1270 IF LTNE $\$(5 P, 5 P)=C H R S(126 y$ THEN LL ＝LL＋2：G0T0 1210
C0 1280 IF LINES《SP，5P】＝CHRS《32）THEN PRI NT \＆2；LINE \ddagger（B，5P）；：5P＝5P＋1：B＝5P：G0T0 1 210
GK 1290 5P＝5P＋1：G0T0 1210
HY 1300 G0SUB 840：LINES＝＂＂：5P＝1：PRINT CH RS（125）
JA 1310 OPEN $\# 2,4,0, D I S$
NG 1320 INPUT \＃2，\＆5：IF H5＝CHR与【163）THEN 5P＝5P－1：G0T0 1340
YU 1336 LINES（5P，SP）＝K ：5P＝5P＋1：G0T0 1320
AW 1340 CLOSE \＃2：PRINT CHRS（125）：PRINT ：P RINT DI与：＂LDADED＂：CLOSE \＃2
QN 1350 GOTO 710
TW 1360 CLOSE \＃2：PRINT＂ERROR－－NO 5UCH FI LE＇IFOR I＝1 T0 206：NEXT I
M0 1370 DBS（2，2）＝DIS（2，21：PRINT CHRS（125） ：OPEN \＃1， 6,0, DBS
AK 138日 IMPUT Hi；FS：IF A5C【FS［3，3〕）《65 TH EN 1430
PE 1396 PRINT FS（3，13）；MRG5：
UW 1469 INPUT \＃1；F与：IF ASC《FS（3， 3$\rangle\langle 65$ TH EN GOTO 1430
WP 1410 PRINT FS（3，13）
5M 1426 G0TO 1380
BT 1430 CLOSE \＃1：PRINT：G05UB 1610
QM 1440 GOTO 710
BT 1450 ？CHRS©125У：P05ITION Z，7：PRINT
MP 1460 G05UB 60：FIN＝LEN【LINES》：IF FIN《1 THEN GOTO 226
NU 1476 FOR I＝1 T0 FIN
KR 1480 IF LTNES（I，I）＝CHRS（163）THEN R＝PE EK（84）：C＝PEEK（85）：POP ：G0T0 220

QE 1490 IF LINE $5(I, I)=C H R 5(27)$ THEN PRINT CHRS（197）：G0TO 1536
GR 1506 IF LINES $(I, I)=C H R S(126)$ THEN PRIN T CHRS（194）：G0T0 1530
UN 1510 IF LINES（I，I）＝CHRS（5）THEN PRINT CHRS（5）：G05UB 480：G0T0 1530
M5 1520 PRINT LINES\＆I，I）
AN 153日 R＝PEEK ©84）：C＝PEEK（85）：IF R＝23 THE N G05UB 296
LM 1540 NEHT I：5P＝I－1：G0T0 220
AN 1550 G05LB 840
AY 1560 KIO $33, \$ 1,0,0, D I S: P R I N T$ CHRS（125） ：$?$ ，DISj＂IS RONE＂
日C 1576 G05山B 1619
RA 1580 GOTO 710
BC 1596 PRINT CHRSC125）＂NOW FORTMTINE DR IUE＂，DIS（2，2）：KIO 254，\＃1，0，0，DIF
GF 1606 PRINT MDISK IS NOW FORMATTED＇：G0S UB 1610：GOT0 710
IA 1610 PRINT，＂PRESS FOR MENU＂
KB 1626 Y＝STRIG（6）：IF Y《＞0 THEN GOTO 1620
AU 1630 RETURN
HP 1640 IF LINES $(5 P+1,5 P+1)=C H R 5(32)$ THEN PRINT \＃2；LINES（B，5P）：5P＝5P＋2：B＝5P：IF $Y=L L$ THEN GOTO 1670
UF 1659 IF $(5 P-B) \geqslant 40$ THEN PRTNT H2；LINE B，5P】：IF LS＝2 THEN PRINT $\# 2: G 0 T 0$ 168G
UV 1660 PRINT \＃2
YZ 1676 IF LSニ2 THEN PRINT $\# 2$
CF 1689 Yニ1：LL＝PLL：PRINT H2；MRG5；
BM 1690 RETURN
IF 1700 FOR I＝1 T0 12：PRTNT H2：NEXT I
MJ 1710 PRINT \＃2；MRG5；：P＝0：RETURN
MA 1720 IF $B=5 P$ THEN PRINT \＃2：P $=P+1$
GB 1730 IF B＜SP THEN PRINT \＃2；LINES 8 ， $5 P-$ 1）：$P=P+1$
BA 1740 IF L5ニ2 THEN PRTNT \＃2：P＝P＋1
LE 175＠5P＝5P＋1：B＝5P：Yニ日：LL＝PLL：PRINT \＃2； MRG5：
BF 1769 RETURN
EX 1776 IF B＝5P THEN GOTO 1790
ZN 1780 PRINT $42 ; L I N E S$（B，5P－1）；CHRS（155）
YT 1790 CLOSE H2：5P＝1：RETURN
KN 180日 OPEN $46,4,0, " 5: " S E T C O L O R 2,0,0$
PP 1810 CLR ：DIM LINES（19955），HS（1），FS（15 （DRS（8），DBS（6），DIS（13）：SP＝0：R＝6：C＝2：D

MR 1820 DLAY＝10：DIM MRG567）：MRG5＝11
1：PLL＝64
 TO DRIUE ONE OR TWO？：GOSUB 187G
LP 1846 IF A＝49 THEN DIS $(2,2)=12 "$
GN 1850 IF $A=50$ THEN DIS（2，2）＝＂1＂
UJ 1866 PRINT CHRS（1253：P0SITION 2，7：PRIN T ：G05UB 60：G0T0 220
MH 1870 PRINT \＆＂1＂：PRINT，＂R＂：POSTTION
 HT I
 C＝PEEK（85）
PL 1890 IF R＞2 AND $K=13$ THEN F IINT CHRSC2 8）：
OK 1906 IF R＜3 AND $\mathrm{H}=14$ THEN PRINT CHRSC2 9）：
OG 1910 IF Y＜＞0 THEN GOTO 1880
UH 1926 GET \＃6，A：RETURN
QG 1930 POP ：00P5＝PEEK（195）：IF 00P5＝138 T HEN PRINT＂CHECK PRINTER OR DRIUE＂：GOT 0719
UY 1946 IF OOPS＝139 THEN PRINT＂FAULTY DR IUE？＂：CLOSE H2：GOT0 710
WL 1956 IF 00P5＝5 AND 5P＜2 THEN PRINT ${ }^{1} \mathrm{NO}$ THING WRITTEN，＂：GOTO 710
DO 1960 IF OOPS＝5 THEN PRINT＂TOO MANY CH ARACTERS：SUGGEST SAUE＂：G0T0 716
DI 1976 IF OOPS＝144 THEN PRINT＂DISK PROT ECTED＂：CLOSE \＃2：GOTO 710
MP 1986 IF OOPS 167 THEN PRINT＂FILE LOCK ED＂：CLOSE H2：G0T0 710
KY 1996 IF OOPS＝169 OR 00PS＝162 THEN PRIN T＂DISK FULL－TRY AGAIN WITH ANOTHER DI5K＂：CLOSE H2：GOTO 710
HB 2000 IF $00 \mathrm{P}=170$ THEN GOTO 1360
YI 2919 IF OOPS＜143 THEN PRINT＂WHAT HAUE HOI］DONE TO THIS PROGRAM？＇：？＂ERROR－ ：100P5：G0T0 710
IL 2026 IF 00PS＝166 THEN PRINT＂WRONG DRI VE？＂：CLOSE \＃2：FOR SLON＝1 TO 200：NEHT 5 LOW：GOTO 183G

Mydos 5.0 Goes Shareware

Atari's on-again, off-again disk operating system (DOS) developments have caused many XE/XL owners to write their own DOS utility programs to solve the lack of a good operating system. Many DOS utilities have been written since Atari DOS 2.OS back in the early ' 80 s. $M Y$ DOS, written by Steve Marcelette, was one of the first full-function DOS programs for the XE. MYDOS was originally packaged for sale through the normal dealer channels, but now MYDOS 5.0 has been put into the public domain as a shareware product.

Shareware is a new method of distributing software through public bulletin board systems and your local dealer or user group. You are free to make a copy of MYDOS 5.0 and use it for home or business. If you decide to keep it, the author asks you to send him $\$ 10$, as a royalty for writing a useful program.

MYDOS 5.0 is a pretty hefty program. In addition to a disk sector editor, com-

Shareware is a new method of

 distributing software through public bulletin hoard systems and your local dealer or user group. mand line interpreter (CLI), and multiple autorun file support, MYDOS supports many different types of disk drives for your XL/XE computer. If you have a Happy drive, Atari XF551 or even an ICD hard disk drive, MYDOS allows you to create custom disk drivers to operate your drive. MYDOS is density smart.
Bill Wilkinson, Where Are You?

Last June, ANALOG reported that Optimized Systems Software (OSS), the popular manufacturer of products for the XE/XL computer, had been bought out by ICD Computers. OSS was one of the first companies to develop software for the Atari 800; they even worked on some of the original operating system routines before the $400 / 800$ went into production. One of the founding principals of OSS is Bill Wilkinson, a prolific writer who professes the inherent beauty of the Atari home computer.

Bill has been found at some of the Atarifests, the larger trade shows like Comdex and CES, and some of the local user group meetings. He always has something interesting to say and gets to the point clearly and quickly. But, since the OSS/ICD buyout, no one has seen or heard from Bill. If he has completely re-
moved himself from the Atari community, we ve lost a dedicated friend.

Atari Founds Atari Computers

Much has been written about Atari's positioning of the XL/XE home computer as a high-end video game machine. Most XL/XE owners become disturbed to find Atari openly telling of how bad sales are when they try to sell their 8 -bit computers as home computer systems. But, the truth is that a majority of XL/XE owners surveyed by ANALOG indicate that they have real-world applications for their Atari computers in small businesses and at home.

Speaking at a panel discussion on niche marketing at the Comdex computer trade show in Atlanta this past April, Neil Harris told the small but interested audience that "Atari's roots were firmly placed in games, even before the Tramiels took over the company." Neil said that the slump in the 8 -bit market has partly been due to slow product releases (disk drives and software) and to the lack of a gameplan to revamp the Atari 8-bit home computer market.

Neil was previously employeed by Atari as director of corporate communications, which made him the mouthpiece through which the company would communicate both rumors and facts about news and information pertaining to Atari computers. With a new title, Director of Product Marketing, Neil is now working for a new entity within Atari called Atari Computers. In an age where you can buy an Atari calculator in your local grocery store, or buy a 7600 cartridge-based game machine at your local toy store, Atari Computers is a newly founded division to market Atari's home and business computers in the US market.

Previously, the Tramiels had set up one person to be the marketing director for Atari Corp. Jerry Brown was a well established marketing director at IBM before joining Atari in 1987. Jerry arrived with great fanfare, but left the company six weeks later. Four other marketing directors floated through Atari in 1987. The new Atari Computers is headed by Chuck Babbit, President; Tony Gould, V.P. Sales; and Neil Harris, Marketing. Hopefully the new combination will turn things around for the XL/XE line.

No More MIO Boards (for now...)

After President Reagan's "let's get tough" policy on opening foreign markets caused Dynamic Random Access Memory (DRAM) chips to skyrocket, many companies depending on a supply of these highcapacity memory chips began to feel the squeeze. ICD makes the MIO, a popular add-on board for the XE/XL home computer. The MIO adds 256 K or one Megabyte of extra memory, a hard-disk port, printer and serial port to your computer.
The MIO costs $\$ 239$ for 256 K and $\$ 469$ for one megabyte. These low prices depend -ed on the low price of DRAM chips,

The SP-1600 AI is compatible with Epson FX and IBM graphics printers, so all the usual programs for the XE/XL will work with it. The printer has both serial and parallel connections, so you can use it with an Atari 850 interface or ICD MIO board.

The printer uses a 9-pin print head which gives you enough resolution to print graphics, reports and light business correspondence; the letter quality mode is impressive for such a small printer. The printer

carriage and comes with tractor and friction feed. A sheet feeder is also available. The SP-1600 AI has a suggested list price of $\$ 349$.

Seikosha America Inc.

IIII Macarthur Blvd.
Mahwah, NJ 07430
(20I) 529-4655

Turkey Atari Users Group

A group of Atari 8-bit users in Turkey has been sending letters to user groups in the United States and Canada. The Turkish group has been sending money in the hopes that the domestic user groups will return public-domain software and utilities. Apparently, the Turks love the 130XE computer. But, software and hardware are very expensive overseas. An 800 XL can cost as much as $\$ 800$, and monitors can be priced over $\$ 1,000$.

ANALOG encourages foreign Atari user groups to contact us about your group's activities and interest.
continued from page 9
tape booted. A zero means that everything bit the big one.

If a cassette boot attempt doesn't work, then the OS goes on as though there were no attempt. If the disk boot attempt fails, and this has happened to most of us, then a lovely "BOOT ERROR" message appears on the screen and the OS gives it another try.

Okay, now for some miscellaneous stuff. A cassette boot always comes before a disk one. If there is a successful cassette boot, then every time SYSTEM RESET is pressed the computer will go to the address stored in CASINI.

The address is a location where a routine you want to use is located in memory. This address is usually called a "vector," because it points to something. You can JSR in machine language or USR in BASIC to get to the routine.

Back to CASINI. If the disk boots successfully, then the computer will go to the address stored in DOSVEC $(10,11)$. If BOOT? is set to 255 by you, then the computer will "lockup" if SYSTEM RESET is pressed. This is a great way to keep people from looking at your programs. Incidentally, "lockup" means that the computer will not do anything until you turn it off.

DOSVEC
10,11 000A, 000B
This is another vector, used to tell the OS what to do when SYSTEM RESET is pressed. It holds the cassette-boot starting address, the disk-boot starting address, or the address of the "blackboard mode" routine (type "BYE" from BASIC and press RETURN; that's the blackboard mode and the routine for it starts at location 58481). It's called DOSVEC, because if you're using DOS from BASIC, DOSVEC holds the address that BASIC jumps to when you call DOS (DOSVECtor-get it?). If you want to use this location from BASIC to point it to your own routine, then you'll have to

m
 O1

Map

Master

mory Map

so that the OS knows that you're using that memory (in other words, set APPMHI to point to the memory address after the last one you use).

Other locations that might be of interest here are CHBASE (54281), PMBASE (54279) and RAMTOP (106).

Machine-language programmers: Locations 16 through 127 are cleared on either coldstart or warmstart.

POKMSK

160010
POKMSK is used to turn various types of "interrupts" on or off. An interrupt is exactly what it sounds like; the computer gets interrupted from whatever it's doing and is told to do something else (it then usually returns to what it was doing before it was so rudely interrupted).
For machine-language programmers, POKMSK deals with POKEY interrupts and is used and altered by the IRQ service. It's also a shadow register for IRQEN (53774).

The following chart (Figure 3) shows exactly what part of POKMSK deals with which interrupts. Change a specific bit to a one to turn on that interrupt, zero to turn it off.

Before we decide whether or not any of this is useful, a few notes for the diehards. The default value for POKMSK is 192, BREAK key and "other key" interrupts enabled. When you enable a timer interrupt, the associated AUDF register will be used as a timer and will generate an interrupt request (IRQ) when it has counted down to zero. See VTIMR1/2/4 (528 to 535) and the POKEY chip (53760 to 54015) for more details.

BIT	DECIMAL	TYPE OF
NO.	VALUE	INTERRUPT
7	128	BREAK key
6	64	"Other key"
5	32	Serial input data ready 4
16	Serial output data re- quired	
3	8	Serial out transmission finished POKEY timer four ("B"
2	4	and later OS ROMs and
1	2	only) POKEY timer two POKEY timer one

FIGURE 3. POKMSK Chart
For you beginners, as well as the pros, there is a handy-dandy use for POKMSK. If you haven't guessed already it allows you to disable the BREAK key so that nobody can BREAK into your program and steal your code. All you have to do is turn bit seven off. How do you do that? Try the following subroutine:

1000 BK=PEEK (16) : IF BK) 128 T HEN POKE 16, BK-128:POKE53774 , BK-128 1010 RETURN

Notice that we also change Location 53774. As mentioned before, POKMSK is a shadow register for 53774, and therefore both must be changed. We also check first to make sure that bit seven is on. We do this because, unfortunately, this routine has to be called more than once. You see, the BREAK key is re-enabled by the first PRINT statement that prints to the screen, by an OPEN "S:" or OPEN "E:" statement, by the first PRINT statement after such an OPEN, by the first PRINT statement after a GRAPHICS command, or by a SYSTEM RESET. Phew! To make
sure you keep the BREAK key disabled, you'll want to GOSUB to the preceding routine after each such command.

More for the machine-language programmer. If you have the newer OS ' B ' ROM, there is a vector for the BREAK key interrupt that allows you to write your own routine for the BREAK key. It is called BRKKEY, and can be found at locations 566 and 567.

BRKKEY

17
0011
Okay, you've used POKMSK to zonk out the BREAK key. What happens if for some reason you need to know if somebody's pressing it? BRKKEY tells you just that. If it's equal to zero then the BREAK key is pressed (if it's not then it isn't!). If you're looking at BRKKEY from BASIC, remember that you'll have to keep checking it over and over again; BRKKEY tells if BREAK is pressed, not if it were

Machine-language programmers, this location along with POKMSK lets you write your own BREAK key routines if you don't have the ' B ' ROM, or if you want to make sure your software will work on the old ROMs. If you do have the 'B' ROM (location 58383 will equal zero if you do), you can use the vector mentioned under POKMSK.

A few boring bits if information. If the BREAK key is pressed during an input/output (I/O) opertion, BRKKEY will read 128, not 0 . The keyboard, display, screen, and cassette handlers all check BRKKEY to see if they should BREAK (why else?), as do I/O routines and scroll and draw routines. Also look at locations STATUS (48) and DSTAT (76) for related stuff.

M aster

RTCLOK

18-20
0012-0014
This one's actually fun and interesting, and you may even have used it already. It's a clock-the "internal real-time clock" (which just means that it's inside the machine and actually keeps good time). It doesn't count in seconds though, but rather "jiffies." A jiffy is $1 / 60$ of a second, which happens, not by coincidence, to be the time that it takes the television to fill the screen. After the screen is filled, a special interrupt occurs, called the Vertical BLANK (VBLANK) interrupt. The OS gets a lot of things done during VBLANK, one of which is updating RTCLOK. Every jiffy (during VBLANK), Location 20 gets increased by 1 until it equals 255 . At that point, since 255 is the largest number a memory location can hold, it gets reset to 0 during the next VBLANK, and Location 19 gets increased by 1. You can probably guess what happens next. When Location 19 reaches 255 , it gets set to 0 during the next VBLANK and Location 18 gets increased by 1. Finally, when Location 18 reaches 255, everything gets reset to 0 and the whole thing starts all over again. So, to put things in a more understandable perspective, Location 20 increases by 1 every $1 / 60$ of a second, location 19 every 4.27 seconds (256/60), and location 18 every 18.2 minutes (4.27 seconds*256).

The following routine will tell you the number of jiffies, seconds and minutes that the clock has been running, i.e., since you turned on the computer or last POKEd 18 to 20 with zeros.

Me

$10 \mathrm{~J}=\mathrm{PEEK}$ (20) + PEEK (19) *256+P EEK (18) $2256 * 256$
 $29 \quad 5=\mathrm{J} / 60$
 $36 \quad M=5 / 60$
 40 PRINT "RTCLOCK reads "Jj " jiffies, or ing;" seconds. or "; M": minutes."

All three locations are set to zero when you turn on the computer or press SYSTEM RESET. You can set them to whatever values you want just by POKEing them. Possible uses for RTCLOK include timing things that need precise timing. You can even use it to keep track of the time (what an absurd use for a clock).

BUFADR

21,22 0015,0016
This is a temporary register used to store the disk buffer address. It exists so that the OS can use indirect addressing to access the disk buffer. If this doesn't make sense, the BUFADR is not the place for you.

ICCOMT

230017
Another hard-core location. ICCOMT holds the CIO (Central Input Output) command and is used as an index into the command table to find the offset for the correct vector to the desired handler routine. Like I said, for hard-cores only.

DSKFMS
24,25
0018,0019

mory Map

This is used as a vector to the FMS (File Management System). It is called JMPTBL by DOS (which doesn't know any better).

DSKUTL

26,27 001A,001B

Another location used by DOS. DOS calls it BUFADR, but we'll continue to call it DSKUTL so as not to get confused with the OS BUFADR $(21,22)$. DSKUTL points to a buffer that the disk utilities package (DUP) uses when copying or duplicating a file. If the user says it's okay to use the program area while copying or duplicating, then DSKUTL gets the value in MEMLO (743,744). If the user says no way to the program area, then DSKUTL gets the address of DBUF, a special 250 -byte buffer at Location 7668.

PTIMOT

28
001C
If you're not a big fan of machine language I/O, then skip this one. PTIMOT is the printer timeout value. It's set by your printer handler software, and initialized by the OS to 30 , which represents 32 seconds. If you're good at math you'll realize that 60 would represent 64 seconds. It's updated after each printer status request, getting the specific timeout status from DVSTAT + 2(748).

A timeout is essentially what it sounds like. The printer (it could also be a disk drive or similar device) says, "Hey, timeout," and takes five. This has the noticeable effect of the printer just sitting
there for a brief period of time doing nothing. Then it decides to come back and get to work again. What are you going to do, fire it? Anyway, those of you with the original OS may be very familiar with this situation, since that version of the OS contained a bug causing unnecessary timeouts. You would be doing something like printing when all of a sudden the computer would stop everything for up to five minutes. Version B did away with it.

PBPNT
 29 001D

PBPNT is an index (pointer) into the print buffer. It tells the OS how full or empty the buffer is, and can therefore have any value from zero up to the size of the print buffer, PBUFSZ (30).

PBUFSZ
30 001E
PBUFSZ is the size of the print buffer, but not necessarily the size of the print line. The normal buffer size is 40 bytes (which is obviously not the normal line size for most printers). It is initialized to zero by the OS (and not set until P: is opened), and set to four in the case of a printer status request.
Characters get stored in the print buffer on their way to the printer. The OS checks PBPNT (29) to see whether it's equal to the buffer size (which would mean that the buffer is full) and, if it is, the buffer gets sent to the printer. If the
buffer gets an EOL (End Of Line) character, then the OS fills the rest of the buffer with spaces and sends it to the printer.

PTEMP
 31001 F

This is used by the printer handler to temporarily hold the character being sent to the printer while it goes off and does some chores.

Zero Page Input/Output Control Block (ZIOCB)

The 16 locations from 32 to 47 are used by CIO to make I/O as efficient as possible (remember the speed advantage of page zero). They are set up in the same way as the regular IOCBs (832 to 959) and essentially act as a mirror for the IOCB that wants to be used. In other words, when a CIO operation gets going, the information in the IOCB that's involved is moved to here, where it is used by the CIO routines. When the CIO is all done, then the updated information is moved back to the IOCB. Remember, as complicated as this sounds, it's only done for the sake of speed.

ICHIDZ
 320020

This serves as an index into the handler address table for the file that's currently open on this particular IOCB. If there is no such open file (i.e., the IOCB is free), then ICHIDZ gets set to 255 .

ICDNOZ

330021
The device or drive number. DOS uses it to tell the maximum number of devices, and therefore calls it MAXDEV (I'll bet you can see a connection there). It gets initialized to one.

ICCOMZ

340022
This is the command byte, which is set by the user, in the course of setting up the regular IOCB, to tell CIO what kind of operation is to be performed (GET, PUT, FORMAT, etc.). It also determines the format of the rest of the IOCB (which will be different for different commands).

ICSTAZ

35 0023
ICSTAZ is the status of the last IOCB action taken. The device in question tells CIO what happened, CIO tells the OS, and the OS sets ICSTAZ (a little chain of command here). Hopefully everything went okay, but if it didn't, ICSTAZ is the guy who'll know.

ICBALZ,ICBAHZ
36,37 0024,0025
Another buffer address, this one for data transfer. The OS also uses the ICBAZ twins to get the device name from the user (in this case ICBALZ/HZ holds the address of the location where the device name has been stored).

ICPTLZ,ICPTHZ

38,39 0026, 0027
Each device has its own routine to "put" a byte into the device. The OS sets this location to hold the address (minus one) of the routine for the device being used. When the file is CLOSEd (and on powerup), it is set to the address of CIO's error routine for an illegal put (because you can't put something into a device unless it's open).

ICBLLZ,ICBLHZ
40,41 0028,0029
More buffer stuff. This time we have a counter that is initially set to the maximum number of bytes to PUT or GET in an I/O operation. It gets decremented every time a byte is put or gotten.

Machine language programmers can set this location to the size of the memory
block they want to transfer. By checking after each PUT/GET to see if it's equal to zero, you'll be able to tell when the transfer is done.

ICAX1Z
 42
 002A

This is the first byte in the OPEN command after the IOCB number. It tells whether the user wants to READ, WRITE, or both.

ICAX2Z

43 002B

Okay, the last location was the first byte after the IOCB number, so guess which one this is? Hey, you're on the ball! ICAX2Z has no specific function, it really depends on the device you're using. CIO pretty much uses it as a working variable, although some serial port functions also use it.

Locations 44 to 47 are also called ICSPRZ or ENTVEC and are spare bytes for local CIO usage.

ICAX3Z,ICAX4Z
44,45 002C,002D
BASIC's NOTE and POINT commands use these locations to transfer disk sector numbers.

ICAX5Z
 46
 002E

ICAX3Z/4Z give the sector, ICAX5Z gives the byte within the sector. It is also used to store the IOCB number times 16 (since each IOCB is 16 bytes long, this gives an index to the beginning of the IOCB). In this case, it is called ICIDNO.

ICAX6Z

47
002F

Sometimes this doesn't do anything. But sometimes (only sometimes) it is called CIOCHR and used to temporarily store the byte that's getting ready to be PUT somewhere (aren't computers wonderful?).

Examples of using IOCBs from BASIC
(ICAX1Z and ICAX2Z are referred to as AUX1 and AUX2 respectively).

BASIC Operating System IOCB
 Command
 Parameters

OPEN

\#1,12,0,"E:"" | IOCB = 1 | |
| ---: | :--- |
| | Command = 3 (OPEN) |
| | AUX1 = 12 (READ and |
| | WRITE) |
| | AUX2 = 0 |
| | Buffer Address = ADR |
| | ("E:") |

GET \#1,X	IOCB = 1 Command = 7 (Get character) Buffer length $=0$ The gotten character is stored in the accumulator
PUT	IOCB = 1 \#1,X Command = 11 (Put character) Buffer length $=0$ The character is output through the accumulator.

INPUT
IOCB = 1
Command = 5 (Getrecord) Buffer length $=$ Len (A\$)-1 (no more than 255)
Buffer address = Input line buffer

PRINT

XIO

18,\#6,12,0,
"S:" \quad IOCB = 6
Command = 18 ("fill")
AUX1 $=12$
AUX2 $=0$

STATUS

48 0030

A couple of uses for this guy. First, and probably most important (after all, it got its name for this one), it is used to hold the status of the SIO (Serial Input/Output) routine currently taking place. Figure 4 lists known values:

FIGURE 4. Status Chart

STATUS also uses TSTAT (793) as a temporary storage location. The other use, you may recall, is as a storage register during SIO routines for the BREAK abort, timeout and error values.

CHKSUM

490031

SIO's data frame checksum. A (much) simplified explanation of checksum is called for here. A checksum is essentially a sum of values used to check that the values were received correctly. When data gets somewhere, the computer adds all the values sent into one byte, and then sends that byte as the checksum value. When data is being received, the values are again added and the result compared to the checksum. If the two aren't equal, that means that at least one of the bytes received was incorrect, and the computer usually responds with an error message. In case you're wondering how you can add a whole bunch of bytes together and store the result in just one byte, you can't. If the checksum exceeds 255 , then the carry is just added onto it. For example, in the world of checksums, $254+31=2,128+128=1$, and so on.

A "checksum sent" flag is located at CHKSNT (59). CHKSUM relies on BUFRFL (56) to tell when the checksum is to be sent or received.

BUFRLO,BUFRHI

50,51 0032,0033

Hey, it's another data buffer! This one is used to hold the stuff that gets sent out or received during I/O. Actually, BUFRLO/HI is a dynamic pointer into the buffer (which just means that it points to the next byte to be sent/ received rather than always pointing to the beginning of the buffer).

SIO and DCB (Device Control Block) both use this pointer.

BFENLO,BFENHI

52;53 0034,0035

A pointer to the byte right after the end of the data buffer described in the previous location. This helps SIO and the DCB determine when the buffer is full.

CRETRY

540036

Sometimes you may get an error message trying to do stuff like reading from or formatting the disk. Before you tell the user to go toss the disk in the trash, however, you'll probably want to doublecheck to make sure that there really is something wrong with the disk, and it wasn't just a temporary boo-boo. CRETRY specifies how many times to try again before giving up. It is initialized to 13 .

DRETRY

55
0037
The same basic idea as CRETRY, but where CRETRY double-checks that a specific command doesn't work, DRETRY double-checks to make sure that the whole device doesn't work. It is initialized to one.

BUFRFL
 $56 \quad 0038$

If BUFRFL equals 255 , then the date buffer is full. If it doesn't, it isn't.

RECVDN
 $57 \quad 0039$

If RECVDN equals 255, then all the data that was supposed to be received has been. If it doesn't, it hasn't.

XMTDON

58 003A
If XMTDON equals 255 , then all the data that was meant to be sent was. If it doesn't, it wasn't.

CHKSNT

59 003B
If CHKSNT equals 255 (you should know this already), then the checksum was sent.

NOCKSM

60 003C
More checksum stuff. A zero here means that a checksum follows the current transmission. No zero means no checksum.

BPTR

60 003D
By now you should be getting the idea that buffers are pretty popular items around a computer. Here's another buffer to further enforce that idea. This time we

have one for cassette data. Like BUFRLO/HI, BPTR is actually a pointer into the buffer (which is located at CAS. BUF [1021 to 1151]), indicating how full or empty the buffer is. It can be anything from zero to the value in BLIM (650). If it's equal to BLIM, then the buffer is either empty or full (depending on whether it was being read into or written out of, respectively). It is initialized to 128.

FTYPE

62003 E

You load in a program from cassette and while it's loading, the computer goes "beeeep (pause) beeeep (pause) etc.," right? Well, the pause has a name. It's called an "inter record gap." Can you say "inter record gap"? Sure, I knew you could. Anyway (so much for the comic relief), FTYPE specifies the kind of gap to put on the tape. It equals 0 for normal gaps (like in a CLOAD tape), 128 for continuous (long) gaps (like in an ENTER "C:" tape).

FTYPE gets its value from ICAX2Z (43), which gets it from DAUX2 (779), which gets it from the user.

FEOF

63
003F
Okay, we're still loading from cassette. How do we know when there's no more to read? The last record (each beep when loading represents a record) on a cassette file has a command byte of 254 and is called the EOF (End Of File) record. FEOF is set to 255 when the EOF record is reached, and 0 before that.

See CASBUF (1021) for an explanation of the way cassette records are structured.

FREQ

64
0040

Quite simply, the number of beeps that the Atari makes when you OPEN the cassette handler: one beep for read, two for write (type "CLOAD" and press RETURN for a demonstration).

SOUNDR

65
0041
SOUNDR is used to turn the beeping off (or back on) while the cassette or disk program is loading. A zero here will stop the beeping, anything else will get it going again. Also see location PACTL (54018). The beeping is caused by the loading of data from the right channel. Atari added this to the computer so that
its educational tapes can talk to you while loading programs. Ah, hah! This must mean that the left channel still can be heard even if you change the value in location 65.

CRITIC

660042
CRITIC is used to tell the OS that the current I/O operation is time-critical (disk or cassette operations, for example). This is important, because in the case of timecritical I/O it is important that the computer spend as little time in vertical blank as possible. When CRITIC is a nonzero value, the OS knows not to execute the second stage of the VBLANK process (CRITIC is checked at the end of Stage 1). Since there are some things happening during Stage 2 that you may not want to interrupt (check the OS listing if this is really of concern to you), CRITIC should be used only when necessary. To experiment, poke a 2 into 66 and then press any letter. The repeat capability will not work and CONTROL-2 will sound funny. You can't press any key twice in a row.

The following seven bytes are called FMSZPG and serve as zero-page registers for the disk-file manager system (FMS).

ZBUFP

67,68
0043,0044

When the FMS does disk I/O, it needs to know the user filename so it can OPEN the file. It expects to find it in a buffer pointed to by ZBUFP.

ZDRVA

69,70 0045,0046
Zero-page drive pointer. FMS also uses ZRDVA in its setup, free sector and get sector routines. I know this sounds somewhat cryptic, but it's that kind of location.

ZSBA
71,72
0047,0048
A pointer to the sector buffer.

ERRNO

730049
If things go wrong during disk I / O, this is where you can find the error number. FMS initializes it to 159 .

CKEY

74
004A

If the START button is held down when the Atari is first turned on, CKEY is set to one (zero otherwise). This indicates that a cassette file is to be booted.

CASSBT

75 004B

If a cassette file is booted and the boot is successful, CASSBT gets set to one. Zero means boot no goot. Also see BOOT? (9).

DSTAT	
76	004 C

A location of all trades, DSTAT is used mainly by the display handler to indicate display status and as a keyboard register. It is also used to indicate a cursor out of range error, the BREAK abort status, and too little memory for the desired screen mode.

ATRACT

77 004D

Try leaving the Atari on for about nine minutes without pressing any keys (or save yourself some time by POKEing ATRACT with 128). You've probably run across this effect before. It's called the "attract mode" and, as you can see, causes the colors on the screen to change every four seconds or so, at subdued brightnesses. Why, you may ask? If you leave your computer alone for several hours with a picture on the screen that doesn't change (like when you break for lunch and forget to turn the TV off), it can "burn" the picture tube of your television set and leave a permanent, although faint, image on the screen. You obviously don't want this to happen, so Atari thoughtfully created this solution.

Whenever you press a key IRQ (Interrupt ReQuest) sets ATRACT to 0. Otherwise, every four seconds VBLANK increments it by 1 . When it reaches 127 it gets set to 254 , and the Atari enters the attract mode. That's the way it stays until a key is pressed.

The attract mode only changes the four color registers COLPF0 to COLPF3 (53270 to 53273) and the background COLBAK (53274). That means that you'll have to write your own atract routine for DLI-induced colors.

If you're using joysticks but not the keyboard, you'll have to set ATRACT to zero every few minutes within your program.

DRKMSK

$78 \quad 004 \mathrm{E}$

This is one of the two locations used to change the colors in the attract mode (COLRSH is the other). DRKMSK makes sure that the colors aren't too bright. It's normally set to 246 during the attract mode.
For the curious machine-language programmers, DRKMSK is ANDed with the original color to mask out part of the brightness nibble. This is done during stage two VBLANK.

COLRSH
 79 004F

The other location for changing colors, COLRSH actually does change the colors. It contains the current value of RTCLOK + 1 (19).

Machine-language programmers, COLRSH gets EORed with the color registers (and background) before DRKMSK does its stuff.

Locations 80 to 122 are used by the screen editor and the display handler.

TMPCHR

$80 \quad 0050$

Guess what "TEMP" stands for? That's right, this is a TEMPorary (get it?) register used to move data to and from the screen. TEMP gets used by the display handler, which also calls it TMPCHR.

HOLD1

810051

Another temporary register for the display handler, this time used to hold the number of entries in the display list.

LMARGN

820052

Another tough name to figure out. If you're using graphics mode zero (or have a text window in the mode you're using), LMARGN determines the left margin for text. It's initialized to 2, but you can set it to whatever you want (up to 38). Try POKEing various values into this location.

RMARGIN

83
0053
The right margin (I'll bet that somehow you'd figure that out already). It's initialized to 38 , and you can also set it to whatever you want (try and set it higher than the left margin though, and less than 40 , okay?).

A few words about margins. SYSTEM RESET will restore them to their initial values. Text that is already on the screen will not be affected when you change the margins. Finally, logical lines (the longest a BASIC line can be) couldn't care less when you put the margins. Three lines on the screen and that's it for your logical line, baby, whether that means 120 characters or three.

ROWCRS

840054
This tells you the row on the screen that the cursor is currently on. It works in all the GRAPHICS modes and therefore has a range of 0 to 191 depending on the mode being used. Don't forget that a row is a horizontal line, not a vertical one (you'd be surprised at some of the people that forget). Rows are numbered from top to bottom, 0 being the top.

COLCRS

85,86 0055,0056

The column that the cursor is on, ranging from 0 to 319 . Location 86 can only get set to 1 in graphics mode 8 (where the column number can exceed 255). Columns are numbered from left to right, 0 being the leftmost column. Incidentally, ROWCRS and COLCRS define the next cursor position to be read or written to, not the last one.

DINDEX

```
87 0057
```

This location tells the OS what graphics mode is currently being used (so it knows how to respond to a PLOT or some other screen I/O command). When you OPEN the screen (which the GRAPHICS command takes care of for you), the value of the AUX1 byte is stored in DINDEX. This means that DINDEX can have a meaningful value of anything from 0 to 11, keeping in mind the GTIA modes are numbered 9 through 11.

Most of the time you'll just leave DINDEX alone, because BASIC takes care of it for you. The times that it does come in handy, however, is when you want to use mixed mode display lists. It also comes in handy when you want to use the so-called "GRAPHICS 7.5", which gives you twice the resolution of graphics mode 7 with the same number of colors (machine-language programmers also know this mode as ANTIC mode " E "). The problem with using this mode is that it is, obviously, halfway between graph-

ics modes 7 and 8. That means that the display list is structured the same as a graphics mode 8 display list, but you have to PLOT to it like it was graphics mode 7. So what, you say? Let's look at an example? The following routine sets up what is called a GRAPHICS 7.5 screen by changing a GRAPHICS 8 display list:

```
10日 GRAPHICS 24
119 DLI5T=PEEK\560) +PEEK\561
y*256
126 POKE DLIST+3,78
13G FOR LINE=DLIST+6 TO DLIS
T+204
140 TYPE=PEEK&LINE\
150 IF TYPE=15 0R TYPE=79 TH
EN TYPE=TYPE-1
160 POKE LINE,TYPE
170 NEHT LINE
18G MOLOR 3
196 PLOT 0,0:DRANTO 75,85
2419 POKE 89, PEEK (89) +15
210 PLOT 80,D:DRAWTO 159,95
999 GOTO 999
```

A brief explanation of what's going on here. We first set up for a graphics mode 8 screen with no text window. Then we find out where the display list is (see SDLSTL [560,561$]$) and then change each of the graphics mode 8 commands in it to graphics mode 7.5 s . Then, since we have no text window, we must go into a continuous loop or else the screen will switch back to graphics mode 0 (take out line 1000 and see for yourself). RUN the program and you will see the screen go from blue to black as the display list changes. You now have a screen that is 160 dots wide and 192 dots high. Try adding the following lines to the preceding routine:
180 COLOR 3
190 PLOT 0, 0:DRAWTO 159,191
Now RUN the whole thing. Uhh, oh! What happened? It's supposed to draw a blue line from the top left corner of the screen all the way down to the bottom right corner. Well, unfortunately the OS still thinks that it's in graphics mode 8 , and in graphics mode 8 things get plotted differently than we want here. Let's trick the OS into thinking it's in graphics mode 7. That way it'll plot properly (technically speaking, we want two bits to represent a pixel rather than one). Add the following line:

175 POKE 87,7

RUN it again and whoops! ERROR 141? That means that the cursor went out of its allowed range. We forgot that graphics mode 7 only allows 96 rows. Change Line 190 to the following:

190 PLOT 0,0:DRAWTO 79,95

Now we're okay, but how do we draw
in the lower half of the screen? Unfortunately, the tables that tell the OS how many rows and columns each mode has are in ROM, so we can't fool the OS into thinking that there are more rows. The only way around this problem is to treat a GRAPHICS 7.5 screen as being two separate screens, a top and a bottom (machine-language programmers can also write their own plot and draw routines). You can use SAVMSC $(88,89)$ to pick the screen you want to use. Try the following program additions and then look at SAVMSC to see what's going on:

200 POKE 89, PEEK (89)+15
 210 PLOT 80, 0:DRAWTO 159,95

(This is a tedious process but it's the price you have to pay if you want the benefits of GRAPHICS 7.5)

SAVMSC

88,89
0058,0059
This is the location of the place in memory where the data is kept that goes onto the screen. Each number in memory represents one character on your TV or several pixels if in a graphics mode. The value at memory location SAVMSC goes at the upper left-hand corner of the screen. The next memory location then goes left side, one row down.
When you do I/O to the screen, the OS uses this address to figure out where to PLOT and PRINT. So, for example, the following line will put the letter " A "; in the upper left-hand corner of your graphics zero (or one or two) screen.

SCRMEM=PEEK (88) + PEEK (89) *256 :POKE SCRMEM, 3 3

But wait, you say. CHR\$(33) doesn't give us an "A"; what's going on here? I'll tell you. The Atari stores the characters in memory in a different order than the ATASCII order (which is what CHR\$ uses). See CHRORG (57344) to find out how to convert from one to the other. Anyway, the values in screen memory represent the internal character order rather than the ATASCII one.
If you're not using a text mode, the values you poke to the screen will, obviously, affect the pixels on the screen (the dots on the screen). A pixel is represented by one, two or four bits. See location DMASK (672) to find out what bits in a byte affect which pixels in each mode (that was easy for me to say). Then try POKEing around. You may want to check CHRORG again; it has an example of using such POKEs to get characters on the screen in graphics mode 8.

Okay，so now you know how to change the first character on the screen．What if you want to change the sixth character on the tenth row；how do we know how to find it？Figure 5 shows how many bytes per row are required for each graphics mode．

MODE $\begin{array}{lllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9-11\end{array}$ BYTES／ROW $402020101020204040 \quad 40$

FIGURE 5．Number of bytes per row
Now，if you want to change character X in row Y ，just multiply Y by the num－ ber of bytes per row for the mode you＇re using and add X （don＇t forget that the first row and column are numbered zero， not one）．Add this value to the address in SAVMSC，and POKE away．For exam－ ple，let＇s put the letter＂B＂in the middle of a graphics zero screen（row 11，column 19）：

```
100 GRAPHIC5 0
110 5CREEN=PEEK (88) +PEEK (89)
*256
120 P05=11*40+9
136 POKE SCREEN+P05,34
```

We want to make sure that we don＇t try and change a byte that isn＇t part of the screen，so let＇s add another line to our chart，this one giving the number of rows in each mode．We＇ll also multiply the number of rows times the bytes per row to get the total number of bytes taken up by the screen memory（Figure 6）．

MODE	0	1	2	3	4	5	6	7	8	$9 \cdot 11$
ROWS	24	24	12	24	48	48	96	96	192	192
BYTES	960	480	240	240	480	960	1920	3840	7680	7680

FIGURE 6．Screen memory requirements

Now these values，when added to the address in SAVMSC，will give you the value of the first byte after the end of screen memory．What they don＇t tell you is how much memory the whole graphics mode takes up．Why not？Because they don＇t take into account the display list （see SDLSTL $[560,561]$ ）and a few bytes that get trapped in the middle of every－ thing．So how do we get this total memory amount？Well，it turns out that RAMTOP （106）points to the top of free memory， which coincides with the first byte after the end of screen memory．MEMTOP $(741,742)$ points to the top of BASIC memory，which coincides with the first byte before the display list．So，if we sub－ tract MEMTOP＋ $\mathbf{1}$ from RAMTOP＊ 256 （RAMTOP is in terms of pages），we＇ll get the total memory required．I＇ll save you
the trouble and just give you the values． Our final chart is Figure 7.

Mode	0	1	2	3	4	5	6	7	8	$9-11$
Bytes／Row	40	20	20	10	10	20	20	40	40	40
No．of Rows	24	24	12	24	48	48	96	96	192	192
Total Screen										
Bytes	960	480	240	240	480	960	1920	3840	7680	7680
Total Mode										
Bytes（normal										
screen）	992	672	420	432	696	1176	2184	4200	8138	8138
（Split Screen）	-	-674	424	434	694	1174	2174	4190	8112	

FIGURE 7．Screen requirements chart
You may have told yourself by now that you can change the values in SAVMSC and thereby change where the screen is． And if you can change where the screen is，you can keep more than one screen in memory at the same time．Well，you＇re half right．You definitely can have more than one screen in memory at the same time，but unfortunately SAVMSC only tells the OS where to PRINT and PLOT （and the like）to．It doesn＇t tell the com－ puter what to display on the television screen．Fortunately，there is another pair of locations that tell what to display，and the word＂display＂should tip you off to where they are；they＇re in the display list （this is kind of like adult Sesame Street， isn＇t it？）．Specifically，they＇re the fifth and sixth bytes in a normal（unaltered by you） display list．Try the following：

```
100 DLIST=PEEK\560% +PEEK\561
3*256
110 LOW=PEEK CDLIST+4%
120 LOW=LOW+1
130 IF LOW=256 THEN LOW=0:PO
KE DLIST+5, PEEKCDLIST+5) +1
146 POKE DLIST+4,LOW
150 FOR DELAY=1 TO 10:NEHT D
ELAY
160 GOTO 120
```

This will move the starting address of the screen one byte forward at a time， having the effect of swallowing up whatever was on the screen when you ran it．Press SYSTEM RESET to stop it and get everything back to normal．

A few things to note here．First，if you let this run for a while（get rid of Line 150 to make it hapen faster），the screen will suddenly fill up with a whole bunch of garbage．This＂garbage＂is actually your BASIC cartridge！The starting screen address has been moved so far forward that it has now entered the BASIC zone． You may have astutely noted that the gar－ bage didn＇t scroll onto screen smoothly， but rather just sort of suddenly appeared． This is because the screen memory has committed a no－no．It has crossed a 4 K boundary．What is a 4 K boundary？It＇s the boundary between one group of 4096 bytes and the next one．How do you tell where one is？Well，first of all，the address of a 4 K boundary is a multiple of 4096 ．

Better yet，if you＇re working in hex－ adecimal，the leftmost digit in the four－ digit hex number is the＂ 4 K digit＂（this is not an official term）．When it gets changed，a 4 K boundary has been crossed．Okay？In any case，the whole purpose of this explanation was simply to tell you that the screen memory is not allowed to cross over a 4 K boundary．The GRAPHICS command usually takes care of this for you，but if you＇re setting up more than one screen，you＇ll have to be careful．

Going way back to our program exam－ ple，you should also note that despite what＇s happening on the TV set，the OS still thinks that the screen is where it was originally，since we haven＇t changed SAVMSC．If you expect the OS to keep up with you，change SAVMSC as well as the display list．

Finally（and you thought it would never end），before we move onward and up－ ward，a few bits of memory trivia．The address of the text window memory can be found at TXTMSC $(660,661)$ ．And，in case you thought you weren＇t going to get a good multiple screen example，you＇re right．Just kidding．

99 REM Get everything set up 100 GRAPHICS 1：PRINT \＃6；＂THI 5 IS SCREEM ONE＂
110 DLIST1L＝PEEK（560）：DLIST1 H＝PEEK（561）
120 DLIST1＝DLIST1L＋DLIST1H＊2 56
130 5CRMEM1L＝PEEKCDLT5T1＋4）：
5CRMEM1H＝PEEKCDLTST1＋5）
140 POKE 106，DLISTIH－4
150 GRAPHICS 2：PRINT 卦6；＂THI
5 IS SCREEN TWO＂
150 DLI5T2L＝PEEK 6560）：DLIST2 H＝PEEK 561 ）
170 DLIST2ニDLIST2L＋DLIST2HE2 56
180 SCRMEM2L＝PEEK（DLI5T2＋4）： 5CRMEM2H＝PEEKCDLIST2＋5）
189 REM Do the flipping
190 POKE 560，DLISTIL：POKE 56 1．DLIST1H
200 FOKE 88，5CRMEM1L：POKE 89 5CRMEMIH
210 G05UB 1000
220 POKE 560，DLIST2L：POKE 56 1．DLIST2H
230 POKE 88，5CRMEM2L：POKE 89 SCRMEMZH
240 G05以B 1000
250 GOTO 190
999 REM Pause between scree ns
1000 FOR PAUSE＝1 TO 200：NEKT PAUSE
1010 RETURN
Sorry，but no explanation for this one． You should ne able to figure it by your－ self．I will，however，give you the follow－ ing lines which you may want to add to make the screen look a little less messy．
205 POKE 559， 34
235 POKE 559，34
1005 POKE 559， 6

LISTING 1: BASIC

1013 DATA $118,51,0,0,6,6,28,62,14,103$, $127,255,31,62,12,28,60,116,0,0,0,0,0,2$ 4,66 1014 DATA $126,24,24,24,60,24,60,24,60$, $126,35,65,255,65,35,196,130,255,136,19$ $6,40,40,37,35,35$ 1615 DATA $37,40,42,45,47,50,53,57,60,6$ $4,68,72,76,81,173,165,174,16,0,0,0,0,0$, 0,172
TP 1016 DATA $165,182,165,172,16,121,96,72$,60, $72,56,121,96,96,48,56,37,51,51,6,5$ $1,52,33,50,52$
0山 1017 DATA $0,52,47,0,34,37,39,41,46,3,5$, $6,6,7,7,7,6,6,5,3,0,0,1,1,1$
IE 1018 DATA $1,1,1,1,1,1,1,0,0,34,0,68,16$ $2,144,144,128,121,198,96,91,60,81,121$, 121,121
QY 1019 DATA $81,60,60,60,81,60,60,60,81,6$ $0,47,47,60,47,47,47,47,72,72,81,81,96$, $96,121,96$
TY 1020 DATA $121,144,121,144,121,60,47,60$ $, 134,62,254,46,0,0,154,44,0,56,0,79,72$, 138,72,152,72
RG 1021 DATA $169,1,141,10,212,173,172,6,4$ $1,1,201,1,268,30,172,164,6,185,165,6,1$ $41,2,208,185,225$
LE 1022 DATÂ $6,141,20,208,238,164,6,173,1$ $64,6,201,7,144,5,169,0,141,164,6,172,1$ $74,6,185,175,6$
HO 1023 DATÁ 141,3
KU 1925 DATA 208,238, 174,6,173,174,6,201, $14,144,5,169,0,141,174,6,238,172,6,164$, 168, 194, 176, 164, 64
D.J 1026 DATA $72,138,72,152,72,169,0,141,1$ $64,6,141,172,6,141,174,6,165,224,24,16$ $5,17,133,226,165,225$
NZ 1027 DATÁ $165,6,133,227,166,0,162,17,1$ $69,6,145,203,145,205,200,202,208,246,1$ $73,173,6,133,263,133,265$
R 1028 DATA $160,0,162,17,177,224,145,203$, 177, 226, 145,205,206,202,208,244,173,1 $89,6,201,1,208,53,238,190$
GO 1029 DATÁ $6,174,190,6,224,4,144,5,169$, $0,141,1,210,224,5,144,34,169,6,141,196$, $6,174,191,6$
ZL 1日30 DĂTA $189,137,30,141,0,210,169,163$ $141,1,210,238,191,6,174,191,6,224,38$, $144,5,169,0,141,191$
NK 1031 DATA $6,173,195,6,201,1,208,38,169$ $42,141,3,216,174,196,6,189,37,36,141$, $2,216,238,196,6$
YR 1032 DATA $173,196,6,201,19,208,14,169$, 6, 141, 195, 6, 141,196,6,141,3,210,141,2, $210,173,211,6,201$
RE 1033 DATA $1,208,38,169,166,141,5,216,1$ $74,212,6,189,129,30,141,4,210,238,212$, $6,173,212,6,201,8$
KY 1034 DATA $208,14,169,0,141,211,6,141,2$ $12,6,141,5,210,141,4,216,104,168,104,1$ $70,104,76,98,228,173$
PA 1035 DATA 197,6
MY 1037 DATA $10,141,194,6,169,12,56,237,1$ $94,6,168,169,38,153,175,6,153,176,6,17$ $3,197,6,41,1,201$
UW 1638 DATA $1,208,8,169,214,153,175,6,15$ $3,176,6,160,0,162,6,169,0,153,216,6,20$ $0,202,208,247,96$
UA 1039 DATA $169,175,162,24,56,237,197,6$, $202,208,249,96,169,198,141,207,6,141,0$ $, 208,141,1,208,169,175$
GE $1646 \mathrm{DATA} 141,173,6,169,6,133,20,165,2$ $0,201,3,144,250,96,56,165,106,56,233,1$ $6,141,7,212,141,192$
IP 1641 DATA $6,169,62,141,47,2,169,3,141$, $29,268,173,192,6,24,105,3,133,208,169$, 0,133,207,162,5
QK 1042 DATA 160, $0,169,0,145,207,200,208$, $249,230,208,202,208,242,173,192,6,24,1$ $05,6,133,208,169,36,133$
KB 1043 DATA $207,162,7,142,193,6,160,0,16$ $2,12,185,15,30,145,207,200,202,208,247$ $, 165,207,24,105,24,133$
1044 DATA $267,174,193,6,202,208,227,23$ $0,208,169,29,133,207,162,7,142,193,6,1$ $62,2,142,194,6,160,0$
HO 1645 DATA $162,5,185,32,30,145,207,290$, $202,208,247,165,207,24,105,13,133,202$, $174,194,6,262,208,227,165$
1046 DATÁ $207,56,233,2,133,207,174,193$
（ $6,202,240,47,142,193,6,162,2,142,194$ ， $6,160,6,162,5,185$
JT 1647 DATA 27,30
JZ 1649 DATA $145,207,200,202,208,247,165$ ， $207,24,105,13,133,207,174,194,6,202,20$ $8,227,165,207,56,233,2,133$
HZ 1050 DATA $207,174,193,6,202,208,162,17$ $3,192,6,24,165,4,133,264,133,206,230,2$ $06,162,7,160,0,169,50$
FD 1651 DATÁ $153,165,6,200,202,240,9,169$ ， $198,153,165,6,200,202,208,238,169,0,14$ $1,8,208,141,9,208,141$ 1052 DATA $10,208,141,11,208,141,8,210$ ， $169,3,141,15,216,160,0,162,7,185,175,3$ 0，153，192，2，200，202
OL 1053 DATA $208,246,169,33,141,111,2,169$ $0,141,172,6,141,195,6,141,196,6,141,1$ 97，6，141，203，6，141
PR 1054＇DATÁ $214,6,162,7,160,0,169,38,153$ $175,6,200,153,175,6,200,202,240,13,16$ 9，214，153，175，6，206
AI 1055 DATA $153,175,6,200,202,208,230,16$ $2,7,160,0,169,254,153,225,6,200,202,26$ $8,247,169,29,133,225,169$
AL 1656 DATA $135,133,224,32,46,32,173,48$ ， $2,133,207,173,49,2,133,268,160,1,169,2$ $40,145,207,160,3,177$
NN 1657 DÁTA $207,24,165,128,145,207,160,8$ ，162，12，169，138，145，207，200，200，206， 20 $2,208,246,169,187,141,0,2$
TG 1658 DATA $169,30,141,1,2,169,192,141,1$ $4,212,160,13,162,31,169,7,32,92,228,17$ $3,48,2,24,105,134$
WH 1059 DATA 133,207
UR 1061 DATA $173,49,2,105,0,133,208,162,6$ ，142，193，6，160，0，162，20，169，255，145，20 7，200，202，208，248，165
051062 DATA $207,24,165,120,133,207,165,2$ $68,105,6,133,208,174,193,6,202,268,222$ $173,48,2,24,185,41,133$
OZ 1663 DATA $207,173,49,2,105,4,133,208,1$ $60,0,162,16,185,56,30,145,207,200,202$ ， $208,247,166,0,162,3$
WY 1664 DATA $173,48,2,24,121,182,30,153,2$ $18,0,173,49,2,105,4,153,219,0,200,200$ ， $202,208,233,169,5$
LK 1065 DATA $141,201,6,169,0,141,199,6,14$ $1,189,6,141,0,210,141,1,216,169,26,141$ ，200，6，160，0，162
ET 1066 DATA $20,185,81,30,145,222,200,202$ $208,247,173,31,208,201,6,208,249,160$ ， $0,162,20,169,0,145,222$
UK 1067 DATA $200,202,208,248,169,1,141,18$ $9,6,166,0,173,201,6,24,105,16,145,218$ ， $32,46,32,169,0,141$
QB 1068 DATÂ $197,6,160,0,173,199,6,24,105$ ， $16,145,220,32,20,32,169,2,141,30,208$ ， 173，14，208，41，3
TU 1669 DATA $201,0,208,3,76,20,35,169,0,1$ $41,189,6,169,6,56,237,197,6,168,162,24$ 7，169，164，141，1
Ja 1670 DATA $210,189,81,29,141,0,210,173$ ， $16,210,153,225,6,169,0,133,20,165,20,2$ 01，20，144，250，232，208
BE 1071 DÁTA 226,169
BE 1671 DATA $226,169,210,141,1,210,169,25$ $4,153,225,6,169,1,141,189,6,32,237,31$, $238,197,6,173,197$
MJ 1674 DATA $6,201,7,144,9,238,199,6,206$ ， $200,6,76,145,34,32,34,32,141,173,6,32$ ， 62，32，173，15
FL 1075 DATA $208,41,3,201,0,240,56,169,1$ ， $141,195,6,162,193,173,197,6,41,1,201,1$ ，208，2，162，50
MT 1076 DATA $142,207,6,142,0,208,142,1,20$ $8,32,237,31,206,261,6,160,0,173,201,6$ ， $24,165,16,145,218$
LL 1077 DATA $32,62,32,173,201,6,201,0,208$ $, 3,76,74,34,169,2,141,36,268,173,120,2$ ，141，208，6，173
EL 1078 DATA $205,6,201,1,208,3,76,232,35$ ， $173,202,6,201,1,240,21,173,132,2,261,6$ ，208，14，173，126
U 1079＇DATA $2,141,204,6,169,1,141,202,6$ ， $141,211,6,173,202,6,201,1,208,91,32,34$ ，32，174，203，6
WI 1089 DATA $56,253,101,30,141,173,6,172$ ， $204,6,192,11,246,7,172,264,6,192,16,26$ 8，16，173，207，6，56

LII 1081 DATA $253,113,30,141,207,6,172,204$ ， $6,192,7,246,7,172,204,6,192,6,208,16$ ， $173,207,6,24,125$
WP 1082 DATA $113,30,141,207,6,173,207,6,1$ $41,0,298,141,1,298,238,203,6,173,203,6$ ，201，12，208，8，169
HH 1083 DATA 0， 141
KI 1085 DATA $203,6,141,202,6,76,215,36,17$ $3,205,6,201,1,246,39,173,208,6,201,13$, $268,88,169,1,141$
AU 1086 DATA $265,6,160,0,177,224,201,56,2$ $40,11,169,237,133,224,169,29,133,225,7$ $6,22,36,169,101,133,224$
GC 1087 DATA $169,29,13\}, 225,173,205,6,201$ ，1，208， $49,32,34,32,24,105,4,141,173,6$ ， $238,210,6,173,210$
BE 1688 DATA $6,201,12,208,27,32,34,32,141$ $, 173,6,169,0,141,205,6,141,210,6,165,2$ $24,56,233,102,133$
MC 1089 DATA $224,165,225,233,0,133,225,76$ ，215，36，173，208，6，201，10，240，14，173，20 $8,6,201,8,240,7,173$
DK 1090 DATÁ $208,6,201,11,208,21,169,135$ ； $133,224,169,29,133,225,173,267,6,261,4$ 7，240，3，206，207，6，76
EL 1091 DATA 159，36，173，208，6，201，6，240，1 $4,173,208,6,201,5,240,7,173,268,6,261$ ， 7，208，74，169，255
N5 1692 DATA $133,224,169,28,133,225,173,2$ $07,6,201,200,240,3,238,207,6,173,207,6$ ，141，0，208，141，1，208
RL 1693 DATA $172,214,6,165,224,24,121,125$ $, 30,133,224,165,225,165,0,133,225,238$ ， $215,6,173,215,6,201,3$
SE 1094 DATA $208,26,169,0,141,215,6,238,2$ $14,6,173,214,6,201,4,208,5,169,0,141,2$ $14,6,160,0,162$
JD 1095 DATÁ 2，142
LU 1097 DATA $193,6,173,197,6,10,141,194,6$ ，152，24，105，12，56，237，194，6，170，185，21 $6,6,201,1,208,89$
H0 1698 DATA $185,218,6,201,1,240,18,185,2$ $20,6,56,233,1,153,220,6,201,0,208,69,1$ 69，1，153，218，6
NC 1099 DATA $173,197,6,41,1,201,1,240,29$ ， $254,175,6,254,175,6,189,175,6,261,214$ ， $144,13,169,38,157$
YN 1100 DATA $175,6,169,0,153,216,6,153,21$ $8,6,76,78,37,222,175,6,222,175,6,185,1$ $75,6,261,38,176$
MG 1101 DATA $13,169,214,157,175,6,169,0,1$ $53,216,6,153,218,6,260,174,193,6,262,2$ $08,134,173,216,6,261$
LW 1102 DATA $1,240,38,173,217,6,201,1,240$ $, 31,173,10,210,41,15,24,105,16,141,220$ ，6，141，221，6，173
ZM í1日3 DÁTA 10，210，41，1，168，169，1，153，22 $6,6,141,216,6,141,217,6,174,260,6,160$ ， $255,169,0,133,77$
CT 1104 DATA $136,208,249,202,208,244,76,1$ 71，34
DT 40日G GRAPHIC5 5
GR 4016 KH二山SR（1536）
WW 5001 DATA $164,169,28,133,206,169,252,1$ $33,205,165,129,201,7,208,8,169,7,133,2$ $06,169,0,133,205,165,136$
TE 5062 DÁTĂ $133,203,165,137,133,204,162$ ， $240,224,3,208,108,160,4,206,177,203,20$ $1,48,144,6,177,203,281,155$
W0 5003 DATA $208,243,152,72,136,177,203,5$ $6,233,48,133,207,169,10,133,269,162,2$ ， $134,208,136,177,203,201,48$
MW 5004 DATA $246,20,177,203,201,48,144,23$ $, 56,233,48,170,165,267,24,101,209,202$ ， $208,250,135,207,169,100,133$
KH 5065 DÁA $209,166,208,202,208,218,160$ ， $0,165,207,145,205,230,205,165,265,201$ ， $0,208,2,230,206,164,168,177$
GH 5066 DATA $203,201,155,208,165,160,2,16$ $5,203,24,113,203,133,203,165,204,105,0$ ，133，264，160，4，177，203，261
$0 J 5607$ DATÁ $1,246,146,224,240,240,229,16$ $5,129,201,7,208,34,169,0,133,207,169,7$ ，133，208，169，252，133，205
山а 5008 DATÁ $169,28,133,206,162,8,160,0,1$ $77,207,145,205,206,208,249,230,206,230$ ，208，202，208，240，169，252，141
SU 5609＇DATA $231,2,169,28,141,232,2,76,25$ 2，28

by Michael A. Banks

Keeping in touch is important for those of us online, which is one reason why E mail, Forum and real-time Conference (described in recent installments of this column) are popular features in ANALOG's Atari Users' Group. These are not the only means of information interchange in the SIG, however. There are two special information pipelines provided by the SIG: announcements and polls.

Finding out what's new: Announcements
As you've probably noticed in the past, "one shot" announcements are occasionally displayed when you enter the Atari Users' Group, after the "ANALOG Computing" logo and before the Atari menu. These are special messages called "Briefs." (No, not the kind you wear!) They're displayed to you only once, unless updated by the group manager. Similar messages may pop up when you enter the Conference, Database, Forum or Poll areas.

Ever wonder where those messages come from-or go? Did you miss some-

If you haven't been online in a while, you'll be surprised to
find a slightly altered set of database topics.

Figure I
thing important the last time one scrolled by? Want to find out what else is new in the SIG? It's easy to reread these messages, and see others. Type ANNOUNCEMENTS at the Atari menu. This selection leads you to the Announcements area and this category selection menu:

If you're interested in voicing your

 opinion in public, or collecting opinions of others, check out the Polls area in the Atari Users' Group.Announcements Menu:

What's New
Conference News Database News Forum News Porum News

ANNOUNCE>Which Announcement Category?
The selections on the left side of the menu lead to those "Briefs." Select one of those topics, and you'll see an appropriate prompt (such as WHAT’S-NEW ${ }^{\circledR}$), and DELPHI will tell you how many announcements are available in this particular category. Type SCAN to see a directory of waiting messages, which will be similar to this sample:

7-MAR HAPPY BIRTHDAY
4-MAR BRIEF PROGRAMMER'S PAL
12-FEB BRIEF ATTENTION AUTHORS
WHAT'S-NEW>(Scan, Read, "?" or Exit):
To read a message, simply type its number. Press RETURN to see the message immediately following. (Type ? to see a menu of other choices.)
(The one-time "Brief" messages contair: the word BRIEF in their titles. The What'sNew category contains the Briefs that are displayed when you enter the SIG.)

Of the selections on the right side of the category selection menu, all but one display specific announcements, then return you to the Announcements category selection menu. Thus, "Main Banner Display" displays the SIG's banner (the "ANALOG Computing" logo and accompanying text); "Membership Agreement Display". displays the terms to which you agreed when you joined; and "New Member Welcome Display" displays the welcoming message you read when you first joined the Atari Users' Group.
"Recent Software Changes" leads to a self-directing database which you can search for information about new features in the SIG's operating software.

Take a vote: Poll

If you're interested in voicing your opinion in public, or collecting the opinions of others, check out the Polls area in the Atari Users' Group. This is where you can survey opinions on the computer topics and other matters. You can express your opinion by voting in a poll and adding comments, scanning poll results or creating your own polls. To enter the Poll area, type POLL at the Atari menu. You'll see this menu:
continued on page 44

Make the

Delphi Connection!
As a reader of ANALOG Computing, you are entitled to take advantage of a special Delphi membership offer. For only $\$ 19.95$ plus postage and handling ($\$ 30$ off the standard membership price!), you will receive a lifetime subscription to Delphi, a copy of the 500-page DELPHI: The Official Guide by Michael A. Banks and a credit equal to one free evening hour at standard connect rates. Almost anyone worldwide can access Delphi (using Tymnet, Telenet or other networking services) via a local phone call. Make the Delphi connection by signing up today!

To join Delphi:

1. Dial 617-576-0862 with any terminal or PC and modem (at 2400 bps , dial 576-2981).
2. At the Username prompt, type JOINDELPHI.
3. At the Password prompt enter ANALOG.

For more information, call Delphi Member Services at 1-800-544-4005, or at 617-491-3393 from within Massachusetts or from outside the U.S.

Delphi is a service of General Videotex Corporation of Cambridge, Massachusetts.

POLL Menu:
BROWSE through poll results
CREATE a new poll
EDIT your poll comment
EXIT
HELP
LIST poll names
RESULTS with comments
VOTE on a poll
POLL> (BROWSE, CREATE, EDIT, LIST, RESULTS, VOTE)
The commands are pretty much selfexplanatory, but here's a quick-reference guide to using them. BROWSE is used to view the current voting results of any or all polls. Type BROWSE alone to see the results of all polls in sequence. Each poll's results will be displayed, followed by a prompt asking if you want to vote on the current poll, read the current poll's comments or skip to the next poll. (This feature is a convenient alternate to using VOTE, if you wish to vote on every poll.)

If you type BROWSE followed by the first few letters of the name of a poll you wish to peruse, you'll see the results of that poll only. (To see the names of the available polls, type ? after you type BROWSE.) The option to read, vote or skip will be presented after the poll's voting results are displayed.

CREATE lets you create a poll to sample the opinions of your fellow Atari users. After selecting CREATE, type a descriptive name for your poll (up to 60 characters in length) and select a poll format from among the three available (YESNO, Degree of agreement or disagreement, or Multiple choice). Next, enter a few lines of text to describe and present your issue to the voters. Enter CTRL-Z, and your poll will be posted.

Use EDIT to amend or add to your comments after you have voted on a poll. You'll be prompted to enter the text that will replace your current comments. Enter CTRL-Z when you're finished, or CTRL-C to abort and leave your comment unchanged.

LIST lists the names of all the polls available.

Use RESULTS if you wish to see the complete results of a specific poll, including all comments. Type RESULTS followed by the name of a poll to see the results of that poll. (If you type RESULTS alone, you will be prompted for the name of a poll.)

To vote on a specific poll, type VOTE. Voting is easy-just follow the online prompts. You will be prompted for the poll name, after which DELPHI will display the text presenting the issue and prompt you for your vote and comments (up to four 80 -character lines). Polls show votes by number and percentage, and
users may add voting choices to some polls. A typical poll (with results) looks like Figure 1:

Database reorganization

If you haven't been online in a while, you'll be surprised to find a slightly altered set of database topics (these changes are reflected by the Forum topics as well). The ST topics are gone-there's now a totally separate group for ST users, hosted by ST-Log Magazine (type ST at the GROUPS menu to visit it). This has left room for our 8-bit databases to "stretch out," both topic- and content-wise. Here's the new lineup:

Databases Available Menu:

General Interests
Games \& Entertainment
relecommunications
utilities
Sight \& Sound
Education
Reviews \& News Koala Picture Current Issue Home use

TOPIC>Which topic?
(By the way, if you're not yet online and all this looks interesting, check elsewhere in these pages for a DELPHI online signup and membership offer provided especially for ANALOG readers!)

Conference reminder

Don't forget the real-time conference held in the Atari ST Users' Group every Tuesday at 10 p.m., EST. You don't have to wait for Tuesday to roll around to chat with other Atarians. Type WHO when you enter the SIG to see who's in conference (and chances are very good there will be a conference going on). If there are no conferences going on when you enter the SIG, you'll still see a list of members currently in the SIG. You usually start your own conference by going to the conference area and typing /PAGE followed by one or more of the membernames, separated by commas, listed when you typed WHO. (Example: /PAGE KZIN, ANALOG4.)

Conferences are a great place to share information, get answers to your questions about Atari computers and the Atari Users' Group, and to meet other Atari users. That's it for now. See you next month with more tips and a few surprises. See you online!

In addition to having published science fiction novels and books on rocketry, Michael A. Banks is the author of DELPHI: The Official Guide and The Modem Reference-both from Brady Books/Simon \mathcal{E} Schuster. To order DELPHI: The Official Guide, type GO GUIDE at any SIG prompt. You can contact Banks on DELPHI by sending E-mail to membername KZIN.

he rather cryptic title of this article can be translated as "Binary-
 Coded Decimal and You." Last
 month we discussed some rou-

tines for interconverting strings of numeric

ASCII characters and their binary represen-

I know you're eager to dive into
the sample program for today, but l'm going to hold you back
\section*{a little longer.}

BCD N U

This time we tackle another commonly used method for storing numbers in computers: binary-coded decimal, or BCD for short. After I explain the BCD representation, well see how to change an ASCII string into a BCD storage format. I also have some examples of how to do arithmetic with numbers stored in BCD from, and some traps you can fall into if you don't keep your wits about you.

Binary-Coded Decimal

Look at the bit patterns for digits 0.9 shown in Table 1. Notice that they range form 0000 to 1001. The point here is that we need only four bits to represent any one of the ten decimal digits. You no doubt recall that the standard byte contains a grand total of eight bits. If we think of subdividing a byte, we could make a duplex with each unit containing four bits. A 4 -bit unit is sometimes referred to as a "nybble" (a small byte-get it?). I've seen it spelled more conventionally as nibble, but I'll use the " y " so the noncomputer whizzes who read this will think I'm talking about something really obscure and hence important.

Since we can store the binary representation of any one decimal digit in each nybble, the largest value that could be stored in a single byte this way is 99 . This corresponds to a bit pattern of 1001 in each nybble; the entire storage contains 10011001. This two-digit-per-byte data storage method is the infamous binarycoded decimal.

There are two ways to interpret a bit
pattern of 10011001. In pure hexadecimal, it is $\$ 99$, which corresponds to decimal 153. But if we think of it as two decimal digits, that bit pattern means decimal 99. We need some way to tell the computer which meaning we have in mind at any given time.
Doing arithmetic on BCD numbers is different from processing binary numbers also. In binary, adding 1 to a byte containing the value 00001001 ($\$ 09$) produces the value 00001010 ($\$ 0 \mathrm{~A}$). In BCD, adding 1 to 00001001 (09) would result in 00010000 (10). Similarly, adding 1 to 10011001 in hex terms produces 10011010 ($\$ 99$ to $\$ 9 \mathrm{~A}$). But in BCD we should wind up with 00000000 in this byte and the carry flag set to indicate that a higher order byte must be incremented. This is a fancy way of saying that 99 plus 1 equals 100 .
The 6502 microprocessor in the Atari 8 -bit computers can perform either decimal or binary arithmetic, thereby handling either of the two conditions from the previous paragraph. Bit 3 in the processor status register controls whether decimal mode (bit set) or binary mode (bit cleared) is selected. So far, we've performed only binary arithmetic operations, so most of our programs have begun with a CLD (CLear Decimal mode) instruction. To choose decimal mode, use the SED (SEt Decimal mode) instruction. You will get very strange results if the decimal flag isn't set the way you think it is; so it's always a good idea to explicitly select the desired mode.
Actually, it's a little worse than "very
strange." If you try to do things like print to the screen when the decimal flag is set, you can wind up in computer never-never land, with a coldstart being the only way back. Always clear decimal mode with the CLD instruction when you've finished your decimal arithmetic operations.

Interconverting ASCII and BCD

Today's example is similar in format to last month's discussion of how to interconnect ASCII and binary storage formats for integers. Listing 1 contains two macros in MAC/65 format that should be appended to your MACRO.LIB file using the line numbers shown. Similarly, Listing 2 contains a pair of subroutines called by these macros; append Listing 2 to your SUBS.LIB file.

My MACRO.LIB file is now an even 100 single-density sectors long. If you're using a RAM disk for assemblies, this is only a minor nuisance. However, reading a file that large from a physical disk each time you do an assembly takes a long time, and it doesn't do your disk drive any good. You may want to think about splitting the MACRO.LIB file into several smaller library files, perhaps grouped logically by function. You can do this any way you like, and just. INCLUDE the ones you need for your current project. Be sure to keep the equates needed by the macros accessible (and unduplicated). In fact, you might just collect all the equates into a separate EQUATES.LIB file. I'll leave the details of the MACRO.LIB dissection to each of you.

The two new macros, and their corresponding subroutines, are named ASC2BCD and BCD2ASC. These complement the ASC2INT and INT2ASC routines from the previous Boot Camp. ASC2BCD takes a string of up to six numeric characters and converts it into a three-byte BCD number. Not surprising. ly, BCD2ASC takes a three-byte BCD number and transforms it right back into a printable ASCII string. The macros themselves do some error checking and use parameters to handle ASCII strings and BCD numbers stored at any address, while their subroutine partners do most of the real work.

ASCII to BCD

We'll start at the beginning. Please turn your attention to the ASC2BCD macro in Listing 1. ASC2BCD expects two parameters, the address of the ASCII string to convert, and the address where the resulting three-byte BCD number is to be stashed. An error message appears if the number of parameters is not two (Lines 8130-8140).

This macro begins just like the ASC2INT macro from last time. Lines $8160-8220$ copy the characters from the input string at the address specified in parameter $\% 1$ to a work address labeled ASCII. The ASCII address was defined in Listing 1 from last month as $\$ 0690$. The input string must terminate with an end-of-line character (\$9B). In our sample program today, the numeric string to convert is read from the keyboard using our IN. PUT macro, which automatically guarantees that an EOL character will be present.

Line 8230 calls the VALIDASC subroutine from last month, which makes sure that all the characters in the string are in fact digits in the range $0-9$. If not, the carry flag is set in the subroutine to indicate an error. Line 8240 handles this condition by simply short-circuiting around the rest of the macro code. The main program that invoked this macro handles the error condition, as we'll see a little later. I don't have any provision for handling negative numbers.

Subroutine VALIDASC retains only the lower four bits from the ASCII character. That is, if you entered the digit " 7 " at the keyboard, the ASCII value is $\$ 37$, and VALIDASC changes this back into a plain " 7 " after confirming that it is a legal entry.

After the conversion, the BCD number resides at a work location called NUM, defined as $\$ 0696$ last month. Lines $8280-8350$ copy the BCD result to the desired output address specified in parameter $\% 2$.

After all this monkey business, we wind up with a string of characters at address ASCII which looks exactly like what we typed at the keyboard. Let's pretend we typed the number "7239." Our goal is to convert the input string, now typed in five bytes like this (showing both nybbles in each byte):

$$
07020309 \text { 9B }
$$

into BCD format stored in three bytes like this:

007239
Notice that this numeric storage format is different from the low-byte/high-byte format used for binary integers.

Line 8250 of Listing 1 calls the ASC2BCD subroutine in Listing 2 to handle the details of the conversion. Now please direct your attention to Listing 2.

First we need to know how many input digits to convert to BCD. When we get to today's example in Listing 3, you'll see that

The non-computer

whizzes who read this will think
I'm talking about something
really obscure and important.

The 6502 microprocessor knows how to do arithmetic on numbers stored in both hinary and
decimal modes. There are a few differences.
the value we need was stored in a work address labeled CHARCTR. The value in CHARCTR includes the EOL character, so it is one larger than the actual number of digits in the input number. Lines 4720-4740 of Listing 2 set up the Xregister as an offset for the characters for the BCD bytes. Here's the conversion plan.

We'll begin by zeroing the three bytes where the BCD result will be stored. Lines 4760-4790 handle this task. The conversion step will begin with the least significant (rightmost) digit in the entered ASCII string. This number becomes the low-order nybble in the least significant (rightmost) BCD byte (Lines 4810-4820).

If the ASCII string to be converted contains an odd number of digits, the highorder nybble of one of the the BCD bytes will remain zero. This should be apparent to you. Line 4830 in Listing 2 points to the next ASCII character, which is destined to go into the high-order nybble of the current BCD byte. Line 4840 checks to see if we've reached the end of the ASCII string yet. If not, fetch the contents of the next ASCII byte (Line 4850). Remember that we've already changed this from the original ASCII value to the value of the digit itself (e.g., $\$ 37$ was changed to 7).

Lines 4860-4890 shift this number four bits to the left, thereby relocating it to the high-order nybble of the accumulator. Line 4900 combines the result with the low-order nybble from the previous ASCII digit, and the completed BCD byte (now containing two digits) is stored back where it belongs (Line 4910). Lines 4920-4960 check to see if we're done with the ASCII string yet and loop back to continue if not.

This discussion is a little confusing. You might find it illuminating to use your debugger to trace through a stepwise processing of a sample input number after entering Listing 3, and see how the ASC2BCD subroutine does its thing.

I know you're eager to dive into the sample program for today, but I'm going to hold you back a little longer. The sample program goes through a bunch of BCD arithmetic examples, which we'll get to in a moment. But while the details of the ASCII-to-BCD conversion are fresh in your mind, I want to tackle the reverse process. Bear with me.

BCD to ASCII

I'm sure you can figure out what we must do to change a number stored in BCD format into a printable ASCII string. There are two basic steps. First, split the high and low nybbles of each byte in the

BCD number into separate bytes in the output string. And second, convert the digits into their corresponding ASCII values. As an additional cosmetic nicety, we'll also convert any leading zeros to leading blanks.

The BCD2ASC macro begins at line 8540 of Listing 1, and the complementary BCD2ASC subroutine starts at line 5150 of Listing 2. The macro again requires two parameters, the address of the $B C D$ number to be converted and the address where the resulting ASCII string should be stored. Three bytes at address NUM and six bytes at address ASCII are again used as work locations. Lines 8580-8630 of the macro copy the contents of the BCD number into work location NUM. The subroutine BCD2ASC is then called. Lines $8650-8710$ then copy the resulting string from address ASCII into the address specified in parameter \%2. Lines 8720-8740 tack an EOL character on the end so the string can be printed.

This time the conversion proceeds from left to right (high order to low order). In the BCD2ASC subroutine, I've set aside one byte (called ZEROBLANK, defined in Line 5570 of Listing 2) to indicate whether a zero digit is to be represented as a zero ASCII character (\$30) or as a blank (\$20). ZEROBLANK is initially set to $\$ 20$ in Lines $5160-5170$ so as to print leading zeros as blanks. However, as soon as a non-zero digit is encountered, ZEROBLANK is set to $\$ 30$ so that zeros in the middle of the number appear properly.

Line 5210 gets the first (leftmost) BCD digit, which is saved temporarily on the program stack (Line 5220). (The Xregister is used as an offset into the BCD number, and the Y-register as an offset into the ASCII string.) The high nybble is moved into the low nybble with a series of four right shifts; this is the opposite of the four ASLs we used in the ASC2BCD process. If the result is a zero, Lines 5290-5300 store the current value of ZEROBLANK into the next position in the output string. If the digit is not a zero, Lines 5330-5360 convert the digit to ASCII by adding $\$ 30$ to it, store the result in the output string, and set the value of ZEROBLANK to an ASCII zero.

Lines 5380-5400 point to the next output character, retrieve the BCD byte, and strip off the four most significant bits. This leaves just the low nybble, which is the second of the two digits in the BCD byte. Then the same activities are performed as for the first digit, depending on whether the digit is a zero or not (Lines 5410-5440). After processing all
three BCD bytes, we wind up with a printable ASCII string. Voila.

BCD Arithmetic

Now for the interesting part. The 6502 microprocessor knows how to do arithmetic on numbers stored in both binary and decimal modes. There are a few differences you should keep in mind, and Listing 3 will help you out.

The program in Listing 3 asks you to enter a number up to six digits long, verifies that you entered only digits, converts the string of ASCII characters to a threebyte BCD number, and performs some representative arithmetic operations in both BCD and decimal mode. The results from each operation are printed on the screen in a little table. Let's walk though Listing 3 now.
Line 160 pulls in the macros from our library file. Be sure to change this statement if you are using a real disk drive instead of the D8: RAM disk, or if you segmented the MACRO.LIB file as I sug. gested earlier. Some work variables are defined in Lines 280-310. BCD is the home of the BCD number. CHARCTR contains the number of ASCII characters you entered (including the EOL character). INBUF is an input buffer for the number you enter, and OUTBUF is an output buffer for the printable ASCII result.

As usual, the executable code begins at address $\$ 5000$. Lines 520-590 clear decimal mode (for now), clear the screen, prompt you to enter a number, store the number at INBUF, and store the number of characters you entered at CHARCTR. Lines $650-760$ set up the column and row headings for the output table; the text strings to be printed are stored in Lines 2350-2480. Line 830 converts the input string in INBUF to BCD representation at address BCD. We'll have to repeat this after each sample calculation to make sure the BCD number starts out the same way every time. If there's an error in the BCD conversion, the carry flag will be set and the program terminates due to Lines 840.850 .

The program has four sample calculations: increment the lowest BCD byte; add decimal 25 to the BCD number; add hex 25 to the BCD number; and add the contents of the middle BCD byte to the whole BCD number. Each calculation is done in both binary and decimal modes. I suggest you try this program with several sample entries, to see what happens. Press return after the output appears to try another number. Four interesting numbers to try are $0,1234,999$ and 7239. On the off-
chance that you don't really want to spend the time typing in the listings, I've included tables to the output you would see for each of these test cases (Tables 2-5).

Incrementing

The simplest arithmetic operation you can do in 6502 assembly language is to increment the contents of a byte. The opcode for this is, of course, INC. Lines 980-1030 increment the least significant byte of the BCD number ($\mathrm{BCD}^{\$ 2}$) in binary mode, and Lines $1070-1130$ do the same in decimal mode. Notice the SED instruction in Line 1070 to set the decimal mode flag. Line 1090 clears the flag immediately after the arithmetic is done to avoid problems with subsequent operations. After each operation, the resulting value at address BCD is converted to ASCII at address OUTBUF and printed on the screen.

The first line of Table 2 shows that INC works just fine when the target number is 0 , giving the expected result of 1 in each case. Table 3 shows that INC works fine for the number 1234 also. But wait! An input value of 999 gives the bizarre result of 99:. Something similar happens in Table 5 with 7239. How can this be?

Well, for Table 4, BCD + 2 contains " 99 ," which is incremented to "9A." Converting to ASCII gives two bytes, containing $\$ 39$ (prints as a 9) and $\$ 3 \mathrm{~A}$ (prints as a colon, :). Hmmmm. We really wanted the BCD number " 99 " to increment to " 00 ," setting the carry flag to indicate that the next higher order byte should also be incremented. It appears that the INC instruction has the same effect in decimal mode as it does in binary. Moral: Don't use INC to add 1 to a BCD number. Instead, go through the cumbersome motions of actually adding 1 .

Adding 25

Okay, so let's add something to a BCD number. Lines 1210-1330 add an immediate value of 25 decimal to the BCD number you entered in binary mode. Lines 1370-1490 do the same in decimal mode. These routines use a subroutine called INCREMBCD (Lines 2630-2750 of Listing 3) to handle the case where the carry flag is set after the addition, so that the next higher order byte must be incremented (by adding 1 to it, of course). This in itself might reset the carry flag, so that the highest order BCD byte also has to be incremented. These operations should make sense to you by now.

Let's do it. Now look at the second output line in Tables 2.5 to see how our sample numbers respond. A problem is

The simplest arithmetic operation

you can do in 6502 assembly

 language is to increment thecontents of a byte. The opcode

for this is, of course, INC.

The correct method for adding an

 immediate value to a stored BCD number is to use the desired decimal digits for the immediate number, but tell the computer that it's a hex number.immediately apparent in Table 2. Adding 25 to 0 gave 19 , not 25 . Why? Well, the hex equivalent of 25 is $\$ 19$. Last month we added decimal 25 (using an ADC \#25 instruction) to a number stored as binary, went through the binary-to-ASCII conversion, and got the right answer. But we've scrambled our conventions here. We added a decimal number (stored internally as hex, of course) to a BCD number, using binary mode, and converted the presumed BCD result to ASCII for printing. It's not surprising that the wrong result shows up.

The same thing happens with all the other input numbers. The weird characters in Tables 3 and 4 appear again because the addition results have gone out of the legal $0-9 \mathrm{BCD}$ range, into values which print as other ASCII characters. Check out your table of hex codes for AS. CII characters if you don't believe me.

Adding \$25

The correct method for adding an immediate value to a stored BCD number is to use the desired decimal digits for the immediate number, but tell the computer that it's a hex number. That is, to add decimal 25 to a BCD number, use an ADC \#\$25 instruction. The third output line in each table shows that this approach does indeed produce the result of adding 25 . The initial entry of 1234 fortuitously gives the correct answer in either binary or decimal modes (Table 3). However, an entry of 999 works right only in decimal mode (Table 4). In binary mode, the computer sets the carry flag when the byte's contents exceed $\$$ FF, not $\$ 99$ as it does in decimal.

Adding Two Stored Numbers

The final line of each table shows the result of adding the middle byte of the BCD number to the entire number, just to show how things work when you add together two stored values. Table 2 correctly shows no output for this line, since $0+0=0$, which we print as all blanks. For the other three cases, the correct answer is always obtained when the decimal flag is set, and only in some cases (e.g., Table 4) when in binary mode.

So What?

Now you know more about binarycoded decimal than you ever dreamed possible. But why should you care? Burrow back through your archives to the yellowed, brittle pages of ANALOG \#43. The Boot Camp in that issue discussed floating point numbers and mathematics in the

Atari. Floating point numbers use the BCD representation as a compact way to stuff several digits of precision into a minimum number (six) of bytes. A special notation is used to keep track of the decimal point, exponent and negative sign in floating point numbers. BCD turns out to be a pretty efficient storage format for base-10-type numbers, and most computers use some form of BCD for floating point storage.

You may recall that the main alternative character-coding method in common computer use is called EBCDIC (pronounced ebb-see-dick), used mainly by IBM mainframe computers. That acronym stands for "Extended Binary-Coded Decimal Interchange Code." See? You can run, but you just can't hide from binarycoded decimal.

There's another advantage. In today's example program, we converted BCD numbers to ASCII strings and printed them on the screen. However, you could also take each BCD digit, convert it to the Atari internal character code by ANDing it with $\$ 10$ (as opposed to $\$ 30$, which converts it to ASCII), and poke the result directly into the screen RAM for the current display. This is simpler and faster than printing on the screen, and the visual result is the same. A good example of this technique can be found in James Hague's Streamliner from ANALOG \#56. See the right column of page 37 in that issue.

Promise

I promise: no more hard-core computing for awhile. We'll get back to some graphics (wanna know how to draw circles?), sound effects and real-time clocks (how about a metronome program?), and maybe even the kernel of an adventure program; a simple vocabulary parser. Stay tuned.

Table 1. ASCII Codes for Decimal Characters

Character	ASCII Values	Binary Value
0	$\$ 30$	0000
1	$\$ 31$	0001
2	$\$ 32$	0010
3	$\$ 33$	0011
4	$\$ 34$	0100
5	$\$ 35$	0101
6	$\$ 36$	0110
7	$\$ 37$	0111
8	$\$ 38$	1000
9	$\$ 39$	1001

Table 2. Sample Output From Input
Number of 0 Binary Mode Decimal Mode

Table 3. Sample Output From Input Number of 1234

	Binary Mode Decimal Mode	
INC	1235	1235
Add 25	$124=$	1253
Add \$25	1259	1259
Add 2nd		
Byte	1246	1246

Table 4. Sample Output From Input Number of 999

	Binary Mode Decimal Mode	
INC	$99:$	$99:$
Add 25	$9 ; 2$	1018
Add $\$ 25$	$9 ;>$	1024
Add 2nd		
Byte	$9: 2$	1008

8469
8476
LISTING 1: ASSEMBLY

4750	LDY \#2	0120	
4760	LDA \#to jzeroz bytes	0136	by Karl E. Wiegers
4770	5 SA NUM ; where BCD value	0140	
4780	STA NUM+1 imill go	0150	- OPT NO LTST, OBJ
4790	STA NUM+2	0160	-INCLUDE \#D8: MACRO.LIB
4806	NHTDIG	0170) l (${ }^{\text {a }}$
4810	LDA ASCII, K ;get next char	0180	;----------------------------------10-1
4820	STA NUM, Y low BCD digit	0190	
4836	DEX BCDDONE Point to next	0200	store some work variables at
4849	BMI BCDDONE done yet?	0210	; \$4FE0 50 you can examine them
4850 4860	LDA ASCII, A :get new char	0220	jif you like
4860 4870	ASL ASL	0230	
4880	ast a	0250	
4890	ASL A	8260	\% $=$ \% FED
4900	ORA NUM, Y ;becomes high	0270	
4916	STA NUM, Y : BCD digit	0280	BCD D ${ }^{\text {d }}$
4920	DEH PCDDONE Ppoint to preu.	0290	CHARCTR DS 1
4936 4940	BMI BCDDONE done get?	0300	INBUF ${ }^{\text {OUTEUF }}$ - 5^{7}
4950	CLC jBCD digit	0320	
4960	BCC NKTDIG go get it	0336	
4970	BCDDONE	0346	
4980	CLC :all done. 50	0350	: PROGRAM STARTS HERE
+ 5998	CONUERTMSG2 :leave	0360	
5010	. BYTE "ascil to BCD con'	9386	Y You'11 be prompted to enter a
5620	- BYTE "version error", EOL	0390	is stored at address INBuF.
5036		0406	The BCD number produced is
5050)	0410	stored in 3 bytes starting at
5060	;subroutine BCD2A5C	0430	farithmetic operations are done
5070	fcalled by BCD2A5c macro	0446	in both binary and decimal mode,
5086 5090	converts 3-bute	0450	;and a table of results is
5100	address NuM to a 6-byte Ascil	8460	pprinted out.
5110	;string at address AscII	0480	
5120	;leading zeros are changed to	0490	
5130	;leading blanks	0500	\cdots \# 55000
5146		0510	
5150	BCD2A5C He?a	0515	START
5176	5 Sa ZEROBLANK ichar to blank	0520	CLD ${ }^{\text {chinary mode! }}$
5180	LDX Hor ; Pointer to digit	0540	
5190	LDY \#0 pointer to char	0550	P0SITION 2,2 number
5200	NHTDIG2	0560	INPUT 0, INBUF
5210		0570	LDK 4508 jget number of
5220	PHA ;stash on stack	0580	LDA ICBLL, K : chars entered
5240	LSR a ${ }^{\text {ctave high nubble }}$	0590	STA CHARCTR
5250	LSR A into low nybble	8680	
5260	L5R A	0620	lay out the table of resu
5270	LSR A	0630	; lay out the table of resu
5280	BNE NONZERO1 ; equal to g?	0640	
5290	LDA ZEROBLANK ; yes, set to	0650	POSITION 12,5
5300	5TA ASCII, Y ; leading char	0660	PRINT TITLE
5310	BPL DOLOW ; do low half	0670	P05ITION 12,6
5329	NONZEROI	0689	PRINT HYPHEN5
5330	ORA H530 ; change to ASCII	0690	P05ITION 2,8
5340	STA ASCII, Y ;add to string	0700	PRINT INCRE
5350	LDA \#¢30, set leading	0710	POSITION 2,10
5360 5370	STA ZEROBLANK ;char to "ol	0720	PRINT DEC25
5376	DOLOW	0730	P0SITION 2,12
5386 5390	INY :aim at next char	0740	PRINT HER25
5390 5400	PLA \quad get BCD digit	0750	POSITION 2,14
5400	AND \#50F ;keep low nybble	0760	PRINT ADDBYTE
5410	BNE NONZERO2 ; equal to or	0770	; -
5420	LDA ZEROBLANK ; yes, set to	0780	
5430	STá ASCII, Y ;leading char	0790	convert string to BCD, abort if
5440	BPL BCDDONE2 ;all done	0800	;have a conversion problem
5450	NONZERO2	0810	
5460	ORA H530 ; conver to AscII	0820	;
5470	STA ASCII, Y ;add to string	0830	- ASC2BCD INBUF, BCD
5480 5490	LDA \#530 jset leading char	0846	BCC NOPROBLEM
5490 5500	SCDDA ZEROBLANK ; to zero	0850	JMP END
5509	BCDDONEZ	0860) ${ }^{\text {d }}$
5510	INY ;point to next	0870	
5520		0880	First line: increment the BCD
5540	BNE NKTDIGZ no, continue	0980	; number in binary and decimal
5550	CLC yyes, all done	0916	jbinary before doing anything
5560	RT 5 dexit	0920	felse!
5570	ZEROBLANK .DS 1	0930	ireconvert from input string to
		0949	; BCD after each operation
LISTIN	$N G 3$: ASSEMBLY	0950	---
		0970	NOPROBLEM
0100	Example 1. Interconverting ascil	0980	CLD
0110	fstrings and BCD numbers	0990	INC BCD +2

```
second line: add 25 to the BCD
```

jnumber in binary and decimal
; modes

CLD

LDA BCD+2
ADC $\# 25$
STA BCD+2
BCC NOINCI
JSR INCREMBCD
NOINCI
CLD
BCD2A5C BCD, OUTBUF
POSITION 14, 10
PRINT OUTBUF
ASC2BCD INBUF, BCD
:
add 25 in decimal mode
SED
CLC
LDA BCD+2
ADC \#25
STA BCD+2
BCC NOINCZ
JSR INCREMBCD
NOINCZ
CLD
BCD2ASC BCD, OUTBUF
POSITION 29, 10
PRINT OUTBUF
ASC2BCD INBUF, BCD

Third line: add hexadecimal 25 to the BCD number in binary and jbinary modes
;

1890 ; 0 f $B C D$ number to the entire
1960 inumbers in binary and decimal
1910 ; modes. If number was i-2 digits
1920 long, will just add zero
1936
1946 940
1960
1960
1970
1980
1990
2000
2010
2020
2030
A.N.A.L.O.G. COMPUTING OSEPTEMBER 1988

```
ADD 2ND BYTE TO SRD - BINARY
    CLD
    CLC
    LDA BCD+1
    ADC BCD+2
    5TA BCD+2
    BCC NOINC5
    J5R INCREMECD
NOINC5
```

```
        CLD
        BCD2ASC BCD,OUTBUF
        POSITION 14,14
        PRINT OUTBUF
        ASC2BCD INBUF,BCD
add 2nd byte to total - decimal
```

- SED
CLC
LDA BCD 1
ADC BCD+2
5 TA BCD+2
BCC NOINC6
J5R INCREMBCD
NoTNC6
CLD
BCDZA5C BCD, OUTBUF
PRSITION OUTBUF ${ }^{29}$
END
INPUT 0, INBUF
JMP START
;
text ines for prompt and for
joutput table
:---------------------------------------
PROMPT
-BYTE "Enter a number "
-BYTE "up to 6 digits "
BYTE "long:", EOL
TITLE
BYTE "Binary Mode "
BYTE "Decimal Mode", EOL
HYPHENS

INCRE
BYTE "INC", EOL
DEC25
BYTE "Add 25", EOL
HE 25
BBYTE "Add \$25", EOL
ADDBYTE
-BYTE "Add 2nd byte", EOL
;
don't forget the subroutines!
don torget the subroutines!
.INCLUDE HD8:5UB5.LTB

; subroutine do handle carry if
adding to the third BCD byte
;went aboue 99: can't increment,
so must add 1 to higher order
;bytes as needed
i
ÍNCREMBCD

New Atari Corp. documentation

If you were one of the lucky developers to purchase the Atari ST Developers Kit for $\$ 300$, occasionally you will receive mailings of new information from Atari. Recently, Atari mailed detailed information on the Mega ST system's internal expansion bus. The expansion bus was included inside the Mega for Atari and third-party developers to create additional support products that can easily be interfaced with the Mega's hardware.

At the fall 1987 COMDEX show, Atari's research and development team indicated that several expansion bus products are in the works for the Mega computer. A Local-Area-Network card (LAN) is a natural product for the Mega to give businesses the ability to share information from a central hard disk or use a common printer.

What makes the Mega expansion bus documentation so interesting is that it was printed on a laser printer and is easy to understand with complete explanations. This marks a decided change in Atari's previous documentation efforts. Atari documentation is normally poorly writ-
ten and sloppy in presentation. With evidence of better documentation, Atari might be signaling the industry that it is cleaning up its internal problems and working towards a bright future.

Aaaahhhh-choooooo!

Has your computer been feeling run down? Maybe even a little feverish? It might be due to a computer virus. When the idea of a computer virus was first presented, it seemed like a joke. How could your computer get-sick? But we have found in the age of technological marvels, even the common flu can get your ST down.

A virus is a program that unscrupulous programmers place on boot ST floppy disks. When you first power-up your ST, a program recorded in the "boot-sector" of the diskette in drive A is loaded into your ST's memory. The program initializes some memory and variables and then launches the main operating system stored in ROM.

Viruses change the "boot-sector" by recording their own style of boot program. Instead of the usual coldstart
process, the virus will install itself into your system's memory, and then proceed with the initialization as normal. Your ST turns on and the friendly GEM Desktop appears.

Not all viruses are alike. Their side effects determine the destructiveness of a virus. For example, one virus will remain dormant for a couple of hours. When you try to save a file to your floppy disk, the virus will ocassionally cause the save operation to save incorrect data. When you thought you were saving a letter to your mother, the virus was saving a bunch of random characters.

Viruses can spread, because they can also change the boot-sector of the other disks you insert into your disk drive after the virus has been loaded into your computer system. So, once a virus has been detected, it is important to immunize all of your other diskettes.

So far, only one virus has been identified in the United States. Another has been described by users, but no one has found a way of detecting it. The virus seemed to have been created in Europe, and gradually found its way to the U.S. through the worldwide series of computer networks and telecommunications.

Virus killing has become a popular cause. George Woodside, the author of Turtle, a popular hard-disk backup utility, has been working on a virus immunization program for the ST. George recently posted an anti-virus program that detects and erases a virus program from your ST disks. The program has been made available through DELPHI, CompuServe and GEnie, is also available through Usenet, the worldwide Unix users network.

An interesting twist on the virus issue occurred last month with the release of an imunization program called FluShot. Apparently the same people who developed a virus received a copy of FluShot, added a new virus to it, and re-released FluShot back into the public. FluShot 3 has the virus attached! Later versions of Flu-Shot do not have the virus.

Atari-FAX

Atari is pushing hard to make its Mega ST/SLM804 Laser printer combination a viable desktop publishing system for small businesses. Atari has met with limited sucess in trying to sell the ST and Mega as a general business computer, and has now aimed for the smaller "niche"markets (eg., MIDI music, desktop publishing, eduction, etc.). At the same time, the real world of business computing is finding the modern office equipped with computers able to network, communicate with

mainframes, and send and receive facsimile transmissions, commonly called FAXs.

Most business can buy a dedicated FAX machine for under $\$ 1,500$. FAX is different than its predecessor TELEX, because the recipient of a FAX sees a photocopied image of the original instead of a teletype letter of text. FAX gives you instant copies of business correspondance, invoices and other written reports developed on your computer.

Microfantasy Corp., the company responsible for Atariwriter 80 , is now working with a small development group on adding FAX capabilities to the ST computer. A new device will plug into the cartridge port of the Mega to interface your computer with a FAX interface. When you want to send a FAX to another party, you specify a text or graphic file in the custom FAX program. The document is converted into a standard FAX transmission and sent to the specified FAX machine. The FAX device has built-in Hayes compatible 9600 baud modem. By connecting the FAX device to your phone line, the FAX program will automatically dial and transmit the document to the destination FAX machine. On the receiving end, the scanner device can be set up to automatically retrieve a FAX document in FAX Group 1,2 or 3 format.

When a FAX transmission is received, the document image can be stored as a GEM image file, DEGAS picture or standard data file. A special printing utility
will print the document on any dotmatrix or laser printer (including the Atari SLM804.)

And now for the kicker, the suggested list price will be under $\$ 500$. The FAX unit will be sold on a "direct" basis and should be available at the end of this year.

Multi-Finder ST

The other 68000 -based microcomputers (Mac \& Amiga) have built their new operating systems around a multi-tasking environment. You can run a word processor at the same time that a telecommunications program is downloading a file. Since the operating system supports multi-tasking, programs for the Mac and Amiga can be run at the same time. The ST's GEM system doesn't support multitasking. However, several programs have been popping up that let you run more than one program in your ST's memory at once.
Juggler (Michtron, $\$ 49.95$ list) is a program that lets you load up to seven GEMbased programs into your ST. Each application is loaded into a certain portion of memory. A switchbox allows you to select which application will be the "live" program. The ability to switch instantly between applications can greatly improve your productivity. Michtron just released its new Juggler II, an improved version which lets you partition your ST's memory into two, four or eight sections. The new software handles TOS and nonGEM applications too! So you can switch
between a video game and word proces. sor, quicker than your boss can find you playing games when you should be working.

Revolver (Intersect, $\$ 49.95$ list) is another program that, among other things, switches between various applications. Revolver can save a copy of the entire one megabyte of memory in your 1040 ST to a compressed disk file. At a later time, you can reload the disk-file data into your ST's memory and begin running the program where you left off.

Revolver is a TOS application that is put into the AUTO folder of your boot disk. When you turn on your ST computer, Revolver loads itself into your ST's memory and waits for the user to activate its main menu. Revolver can be accessed in any screen resolution and within any program, GEM or non-GEM. Therefore, you could save a video game during a difficult game playing section, and later reload the section to replay the fun parts. Revolver is also an incredible utility for your ST. In addition to its applicationswitching functions, it has an impressive list of disk utilities, printer spoolers, reset-button-proof RAM disks, automatic backup utilities and other functions for which you might otherwise depend on a desk accessory.

Switch Back (Alpha Systems, $\$ 69.95$ list) is a simple utility which allows a running application to be saved as a compressed binary disk file. You can reload saved applications at any time, giving you the same utility as Revolver's switching function. Switch Back is being promoted as an "unprotect" program which can remove the copy-protection method built into a game or GEM application, so its relative merits dim compared with Revolver and Juggler.

Companies mentioned:

Microfantasy, Inc.
58II Cardoza Drive
Westlake Village, CA 91362

Michtron

576 Telegraph
Pontiac, MI 48053
(3I3) 334-5700

Intersect Software 3951 Sawyer Road, \#108
 Sarasota, FL 33583
 (800) 826-01 30

Alpha Systems

1012 Skyland
Macedonia, OH 44056
(216) 374-7469

Snowplow

continued from page 17

LISTING 1: M/L EDITOR DATA

1000 DАТА $255,255,0,128,10,128,72,169$, $2,141,16,212,141,26,208,104,6014$
1910 DATÁ $64,0,140,255,143,0,0,0,0,0,0$, 0, 0, 236,226,202,3155
1920 DATA $42,162,162,170,170,63,143,16$ $3,168,16,10,16,16,255,255,0,5452$
1636 DÁTÁ $170,128,128,128,128,255,255$, $0,170,10,10,10,10,253,245,213,8922$
1040 DATA $213,213,245,254,254,127,95,8$ $7,87,87,95,191,191,255,255,255,5771$
1050 DATA $255,255,255,255,255,250,234$,
$160,162,160,162,226,250,250,234,170,98$ 25
1660 DATA $170,170,170,234,250,191,175$, $11,171,11,171,175,191,191,175,171,2873$ 1076 Dátá $171,171,171,175,191,6,6,0,0$, $0,24,24,48,255,255,255,6462$
1080 DATA $251,234,251,234,255,254,234$, $239,234,254,254,254,254,191,171,251,28$ 82
1090 DATA $171,191,191,191,191,127,99,9$ $9,99,99,99,127,0,56,24,24,2264$
1100 DÁ'ि́ $24,66,60,69,6,127,99,3,127,9$ $6,96,127,0,126,6,6,9776$
1110 DATA $127,7,7,127,0,112,112,112,11$ $9,119,127,7,0,127,96,96,2628$
1120 DATA $127,7,7,127,0,124,108,96,127$,99,99, 127, $0,127,3,3,675$
1130 DATA $31,24,24,24,0,62,54,54,127,1$ $19,119,127,0,127,99,99,2572$
1140 DATA $127,7,7,7,0,0,0,24,24,0,24,2$ 4, 0, 255,255,254,3749
1150 DATA $248,170,170,207,255,255,255$, $175,171,170,170,243,255,0,0,1,422$
1160 DATA $4,85,85,48,0,0,0,80,84,85,85$,12,0,0,60,102,7638
1170 DATÁ $12,24,0,24,0,0,60,102,110,11$ $0,96,62,0,0,0,63,7460$
1180 DATA $3,127,163,127,0,0,96,96,127$, $115,115,127,0,0,0,127,808$
1190 DATA $96,96,96,127,0,0,3,3,127,99$, $99,127,0,0,0,127,9097$
1206 DÁTÁ $99,127,112,127,0,0,30,24,126$,24,56,56,0,0,0,127,7493
1216 DATA $99,99,127,7,127,0,96,96,127$, $115,115,115,0,0,12,0,9109$
1220 DATA $12,12,28,28,0,0,12,0,12,12,1$ $4,14,126,0,48,48,5212$
1230 DATÁ $118,124,118,115,0,0,24,24,24$,56,56,56, $0,0,0,102,6466$
1240 DATA $127,127,107,99,0,0,0,63,51,1$ $15,115,115,0,0,0,63,8104$
1250 DÁTA $51,115,115,127,0,0,0,63,51,1$ $15,127,112,112,0,0,127,726$
1260 DATA $99,99,127,7,7,0,0,63,51,112$, $112,112,0,0,0,127,8692$
1270 DATA $96,127,7,127,0,0,12,127,12,2$ $8,28,28,0,0,0,51,5097$
1280^{\prime} DATÁ $51,115,115,127,0,0,0,99,99,9$ $9,54,28,0,0,0,99,7601$
1290 DATA $107,127,62,54,0,0,0,102,60,2$ $4,60,102,0,0,0,51,6349$
1300 DATÁ $51,115,127,3,15,0,0,126,12,2$ $4,48,126,0,6,30,24,6279$
1310 DATA $24,24,24,30,0,0,64,96,48,24$, $12,6,0,0,120,24,5850$
1320 DATA $24,24,24,120,0,0,8,28,54,99$, 6, 6, 0, 0, 0, 0, 3700
1330 DATA $0,0,0,255,0,0,0,7,15,28,28,2$ $8,31,15,0,0,4678$
1340 DATA $0,24,31,31,0,0,0,252,252,12$, $0,0,252,254,14,14,3275$
1350 DATA $14,36,252,248,0,0,0,124,124$,
$30,36,31,31,31,29,28,8002$
1360 DATA $28,28,124,124,0,0,0,62,62,56$, $56,56,56,184,248,248,6206$
1370 DATA $120,120,62,62,0,0,0,63,127,1$ $12,112,112,112,112,112,112,4603$
1380 DATA $112,112,127,63,0,6,0,248,252$, 28,28,28,28, $28,28,28,9149$
1390 DATA $28,28,252,248,0,0,0,124,124$, $28,28,28,29,29,29,29,7936$
1400 DATA $31,31,126,124,0,0,0,62,62,56$, 56,56,184,184,184,184,5941
1410 DATA $248,248,126,62,0,0,0,127,127$ $, 28,28,28,28,31,31,28,7574$
1420 DATA $28,28,127,127,0,0,0,240,248$, $28,28,28,28,248,240,0,4965$
1430 DATA $0,0,0,0,0,0,0,127,127,28,28$, $28,28,28,28,28,6137$
1440 DATÁ $28,28,127,127,0,0,0,0,0,0,0$, 0, 10, 0, 0, 0, 2413
1450 DATA $28,28,252,252,0,0,0,63,127,1$ $12,112,112,112,112,112,112,5137$
1460 DATA $112,112,127,63,0,0,0,248,252$,28,28,28,28,28,28,28,9229
1470 DATA $28,28,252,248,0,0,0,124,124$,
$28,28,28,29,29,29,29,8016$
1480 DATÁ $31,31,126,124,0,0,0,62,62,56$
$, 56,56,184,184,184,184,6021$
1490 DATA $248,248,126,62,0,255,255,255$ $, 215,255,255,255,255,0,0,0,1880$
1500 DATĂ $20,0,0,0,0,255,253,255,253,2$ $55,253,255,253,0,1,0,835$
1510 DATA $1,0,1,0,1,255,127,255,127,25$ $5,127,255,127,0,64,0,6739$
1520 DATA $64,0,64,0,64,255,253,255,93$, $255,253,255,253,0,1,0,9571$
1530 DATA $81,0,1,0,1,255,127,255,117,2$ $55,127,255,127,0,64,0,6749$
1546 DATA $69,0,64,0,64,255,253,255,93$, $255,255,255,255,0,1,6,44$
1550 DATA 81, 0,0, 0, 0, 255,255, 255,93,25 $5,253,255,253,0,0,0,9505$
1560 DATA $81,0,1,6,1,255,255,255,117,2$ $55,127,255,127,0,0,0,6715$
1576 DATA $69,0,64,6,64,255,127,255,117$ $, 255,255,255,255,0,64,0,353$
1580 DATĂ 69,0,0,0,0,255,255,255,253,2 $55,253,255,253,0,0,0,963$
1590 DÁTA $1,0,1,0,1,255,255,255,127,25$ $5,127,255,127,0,0,0,6755$
1600 DATA $64,0,64,0,64,255,127,255,127$, $255,255,255,255,0,64,0,468$
1610 DATĂ $64,0,0,0,0,255,253,255,253,2$ $55,255,255,255,0,1,0,1037$
1620 DATA $1,0,0,0,0,255,239,255,85,255$, $255,255,255,0,8,0,9479$
1630 DATĂ $85,0,0,0,0,24,24,24,24,24,24$,24,24, 0, 126,120,7349
i64日́ DÁTÁ $124,110,102,6,0,8,24,56,120$, $56,24,8,0,16,24,28,6010$
1650 DATA $30,28,24,16,0,0,139,39,139,0$ $, 38,53,37,44,6,17,6831$
1660 DATA $21,16,0,48,44,47,55,51,0,19$, $0,0,0,0,0,0,3390$
1670 DATA $51,35,47,50,37,0,16,16,16,16$, 16, 16, 0, 0, 0, 0, 3229
1680 DATA $0,0,155,39,155,0,0,179,174,1$ $75,183,166,172,161,171,165,1524$
1690 DATA $179,0,183,169,174,0,0,0,0,0$, $0,0,112,114,101,115,371$
1700 DATA $115,0,51,52,33,50,52,0,0,0,0$,0,0,0,127,32,5422
1710 DÁTA $127,112,112,112,112,112,112$, $112,66,0,123,2,112,112,112,2,2464$
1720 DATA $2,112,112,112,112,87,0,124,1$ $12,112,112,112,76,160,123,65,5543$
1730 DATA $0,127,128,127,174,127,112,11$ $2,112,66,0,123,2,117,0,144,3300$
1746 DATA $117,128,144,117,0,145,117,12$
$8,145,117,0,146,117,126,146,117,7326$
1750 DATA $0,147,117,128,147,117,0,148$, $117,128,148,213,0,149,70,0,5181$
1766 DATA $139,6,65,128,127,0,64,165,79$,160,50,185,128,127,153,192,8911
1770 DATA $127,136,16,247,169,140,141,2$
$44,2,32,251,64,162,74,160,158,9766$
1780 DATA $169,7,32,92,228,169,0,133,19$
$8,169,0,133,183,133,178,32,8136$
1790 DATA $39,76,76,47,64,32,73,76,32,9$
$0,66,32,215,74,169,3,2740$

1800 DATA $133,182,169,0,133,186,32,225$,73,32,81,78,32,36,75,32,1970
1810 DÁA $48,71,32,130,70,32,215,74,32$,50,65, 165,183, 208, 14, 165,6879
1820 DATA $178,208,10,169,1,133,178,32$, $166,79,76,166,64,32,84,76,3573$
1830 DATA $32,156,70,32,61,71,32,4,72,3$ $2,239,70,32,36,71,32,433$
1840 DÁÁ $242,77,169,11,133,184,32,75$, $65,169,1,133,146,173,31,208,7375$
1850 DÁTÁ $201,6,208,3,76,232,77,173,12$ $0,2,133,184,32,75,65,141,5862$
1860 DATA $30,208,32,0,68,32,145,69,173$,132,2,208,3,32,166,76,4089
1870 DÁTA $32,213,77,175,12,208,201,12$, $176,33,173,13,208,201,12,176,8549$
1880 DÁTA $26,165,175,197,173,208,12,16$ $5,174,197,172,208,6,32,143,70,8781$
1890 DАТА $76,64,64,165,179,5,180,5,181$,208,24,141,30,208,32,241,8474
1900 DATA $73,32,103,75,32,213,73,141,3$ $0,208,32,81,66,76,234,64,5853$
1916 D АТА́ $76,14,74,165,182,246,249,173$ $, 252,2,201,255,240,3,32,131,1670$
1920 DATA $74,76,132,64,169,62,141,47,2$, 169, 17, 141, 111, 2, 169,3,3619
1930 DATA $141,29,208,169,128,141,7,212$,169,46, 141, 192, 2, 169, 6, 141, 7174
1940 DATA $193,2,169,166,141,194,2,141$, $195,2,169,128,133,131,169,112,9379$
1950 DATA $133,133,169,1,141,16,208,141$,11,208,96,160,255,169,0,153,9493
1960 DATA $0,132,153,0,133,153,0,134,15$ $3,0,135,153,0,131,136,192,6982$
1970 DATA $255,208,236,96,162,3,165,184$ $, 221,177,65,240,4,202,16,248,1636$
1980' DATÁ $96,169,189,65,133,265,189,19$ $3,65,133,206,189,197,65,133,203,3206$
1990 DATA $189,201,65,133,204,138,72,16$ $5,133,133,187,24,125,185,65,133,9176$
2000 DATA $134,133,188,168,169,0,153,25$ $5,132,160,6,177,265,166,187,157,2816$
2616 DATA $6,132,177,263,166,188,157,0$, $133,200,230,187,230,188,192,16,3403$
2026 DATA $208,233,166,188,157,0,133,16$ $6,131,142,6,268,104,170,165,131,386$
2030 DATA $24,125,181,65,133,132,141,1$, $208,96,11,7,14,13,255,1,2801$
2040 DATA 0, 0, $0,0,255,1,205,221,237,25$ $3,65,65,65,65,13,29,5096$
2650 DATA $45,61,66,66,66,66,0,0,0,255$, $255,118,118,118,118,118,7626$
2060 DATÁ $116,255,255,0,0,0,0,0,0,255$, $255,110,110,110,110,110,6508$
2070 DATA $110,255,255,0,0,0,0,102,102$, $126,126,126,126,126,126,162,6271$
2080 DАТ $102,102,126,126,102,0,0,102$,
$126,126,102,102,102,126,126,126,6336$
2090 DATÁ $126,126,126,102,102,0,0,170$, $170,128,128,132,132,132,132,132,8582$
2100 DATA $132,128,128,170,170,0,0,253$, $253,1,1,97,97,97,97,97,5514$
2110 DATA $97,1,1,253,253,6,0,255,255,0$,153,153,24,24,153,153,7734
2120 DATÁ $24,24,153,153,0,0,0,0,129,15$ $3,24,24,153,153,24,24,1381$
2130 DATA $153,153,0,255,255,0,160,19,2$ $08,2,160,7,32,247,67,136,6947$
2140 DATA $208,250,96,160,0,169,0,141,8$ $9,86,169,144,141,125,86,185,8999$
2150 DATÁ $89,86,24,105,128,153,90,86,1$ $85,125,86,105,0,153,126,86,6308$
2160 DATA $200,192,33,208,234,162,7,169$
,16,149,212,202,16,251,133,196,2461
2176 DATA $32,48,71,169,3,133,182,169,1$ $9,141,16,139,169,96,133,211,8963$
2180 DATÁ $169,255,133,191,96,216,68,10$
$, 76,0,169,127,133,266,169,136,9691$
2190 DATA $133,205,95,164,130,185,89,86$
,133,205,185,125,86,133,206,96,1136
2200 DATA $22,4,165,184,201,7,268,62,32$, $86,69,144,1,96,165,243,7815$
2216 DATA $201,83,144,1,96,169,1,133,13$ $8,32,197,74,169,1,133,135,6561$
2220 DATÁ $32,61,67,238,183,66,230,243$, $162,3,142,4,212,32,247,67,9471$
2230 DATA $32,165,75,202,16,244,198,138$
,165,138,16,224,32,96,70,32,6710
2240 DATÁ $69,74,32,117,71,96,201,11,20$
$8,79,32,105,69,144,1,96,4185$
2250 DATA $165,243,208,1,96,169,1,133,1$ $36,32,197,74,162,6,142,4,5011$
2260 DATA $212,32,247,67,32,200,75,232$, $224,4,208,242,169,255,133,135,4456$
2270 DATA $162,0,142,4,212,32,61,67,196$,243,206,183,66,198,138,165,2103
2280 DATA $138,16,217,76,243,66,160,0,1$ $85,136,127,24,161,135,153,136,8520$
2290 DATA $127,200,200,200,192,33,208,2$ $40,96,201,14,208,48,32,132,69,8431$
236 DATA $144,1,96,165,244,240,94,32,1$ $97,74,169,255,133,135,32,189,1523$
2310 DATA $67,198,244,206,184,66,162,15$
$, 142,5,212,32,247,67,32,217,9044$
2320 DATA $75,262,16,244,169,0,141,5,21$ $2,76,243,66,96,261,13,208,9413$
2330 DATA $52,32,119,69,144,1,96,165,24$ $4,201,9,144,1,96,32,197,6819$
2340 DATA $74,162,0,142,5,212,32,247,67$ $, 32,217,75,232,224,16,208,733$
2350 DATA $242,162,0,142,5,212,169,1,13$ $3,135,32,189,67,230,244,238,2698$
2360 DATÁ $184,66,76,243,66,96,165,135$, $48,27,160,0,185,136,127,24,6077$
2370 DATA $105,128,153,136,127,200,185$, $136,127,105,0,153,136,127,200,200,1727$ 2380 DATA $192,33,208,232,96,160,0,185$, $136,127,56,233,128,153,136,127,894$
2390 DATA $260,185,136,127,233,6,153,13$ $6,127,200,200,192,33,208,232,96,3204$
2400 DATA $169,0,133,20,165,20,246,252$, $96,165,184,201,7,208,68,165,1302$
2416 D ̆́TA $131,261,124,144,9,165,243,20$ $1,83,176,3,7670,68,165,131,8120$
2426 DATÁ $201,206,176,46,32,86,69,144$, $1,96,32,197,74,160,7,230,6716$
2430 DATA $131,166,131,142,0,208,230,13$ $2,166,132,142,1,268,32,247,67,85$
2446 DATA $32,165,75,136,16,233,238,183$,66,238,183,66,76,243,66,32,9850
2450 DATA $185,66,96,201,11,208,61,32,1$ $05,69,144,1,96,165,131,201,7815$
2460 DATA $132,176,12,165,243,208,232,1$ $65,131,201,48,240,229,144,227,32,4554$ 2476 DÁTÁ $197,74,160,7,198,131,166,131$,142,6,208,198,132,166,132,142,1543
2480 DÁTÁ $1,208,32,247,67,32,200,75,13$ $6,16,233,206,183,66,206,183,2248$
2490 DATĂ $66,76,243,66,201,13,208,106$, $32,119,69,144,1,96,165,13 \%, 7013$
2506 DATA $201,96,144,9,165,244,201,9,1$ $76,3,76,70,68,165,133,201,8824$
2510 DATA $192,176,159,169,15,133,138,3$ $2,197,74,165,133,133,187,165,134,1192$ 2520 DATA $133,188,168,169,0,153,0,133$, $162,15,164,187,185,15,132,153,8890$
2530 DATA $16,132,164,188,185,15,133,20$ $1,24,206,4,169,153,268,6,201,183$
2546 DATA $153,268,2,169,24,153,16,133$, $198,187,198,188,202,16,219,230,3906$
2550 DATA $133,230,134,32,247,67,198,13$ $8,165,138,16,190,238,184,66,76,997$
2560 DATA $243,66,201,14,240,3,76,73,68$ $, 32,132,65,144,1,96,165,5106$
2576 DATA 133,201,112,176,7,165,244,24 $6,3,76,70,68,165,133,201,48,8961$
2580 DATA $208,3,76,70,68,32,197,74,169$,15,133,138,164,132,162,15,7259
2590 DATA $185,0,132,153,255,131,185,0$, $133,201,24,208,4,169,153,208,1147$
2606 DATA $6,201,153,208,2,169,24,153,2$ $55,132,200,202,16,226,32,247,2758$
2616 DÁTA $67,198,133,198,138,165,138,1$ $6,211,206,184,66,76,243,66,172,1945$
2620 DATA $184,66,32,172,66,172,183,66$, $200,200,177,205,133,137,32,82,537$
2630 DATA $70,96,172,184,66,32,172,66,1$ $72,183,66,136,136,76,97,69,7525$
2640 DATA $172,184,66,209,32,172,66,172$ $, 183,66,76,97,69,172,184,66,8636$
2650 DATA $136,32,172,66,172,183,66,76$, $97,69,172,184,66,32,172,66,7263$
2660 DATA $172,183,66,177,205,162,15,22$ $1,53,70,240,6,202,16,248,76,9649$
2670 DATA $224,59,201,27,240,4,201,29,2$ 08, 21, 72, 169,97,145,205,200,1074
2680 DATA $145,205,32,71,72,32,93,74,10$
$4,201,27,240,19,208,26,170,7802$

2690 DATA $232,136,145,205,200,177,205$, $170,232,138,145,205,201,11,240,9,3344$ 2760 DATA $230,174,208,2,230,175,32,75$, $72,165,137,201,8,208,44,230,507$
2716 DÁTA $137,172,184,66,32,172,66,166$,207,165,206,213,224,240,4,202,4888
2720 DATĂ $16,247,96,173,183,66,24,161$, $205,213,218,208,242,169,100,149,4762$
2730 DATA $153,32,254,75,32,48,71,32,13$ $0,70,96,172,184,66,32,172,6748$
$2740^{\circ} \mathrm{DATA}$ 66, $166,165,240,245,165,206,2$ $13,234,240,4,202,16,247,96,165,4734$
2750 DATA $205,24,169,183,66,213,230,20$ $8,242,169,50,149,169,96,96,98,1582$
2760 DATA $100,102,104,106,108,110,112$, $114,116,118,120,8,27,29,97,99,4132$
2770 DATA 101, 103, 105,107,109,111,113, $115,117,119,121,162,28,221,53,70,7633$ 2780 DATA $240,5,202,16,248,56,96,24,96$,198, 181, 165, 181,5,186,5,8158
2790 DATÁ $179,240,20,165,181,16,16,169$,9,133,181, 198, $180,165,180,16,18$
2800 DATA $6,169,9,133,180,198,179,32,1$ $30,70,96,162,2,181,179,9,7559$
2810 DATA $16,157,6,139,202,16,246,96,1$ $69,0,162,15,133,146,32,77,6278$
2826 DATÁ $66,202,16,256,96,162,16,169$, $12,157,66,3,32,86,228,162,7326$
2830 DATA $16,169,3,157,66,3,169,70,157$
,69,3,169, $227,157,68,3,6293$
2846 ВАТА $169,4,157,74,3,169,0,157,75$, $3,32,86,228,16,1,96,2897$
2856 DATA $162,16,169,144,157,69,3,169$, $0,157,68,3,169,0,169,10,3945$
2860 DÁTÁ $157,73,3,169,7,157,66,3,32,8$ $6,228,96,68,49,58,83,3887$
2870 DATA $77,65,86,46,32,32,32,155,160$, 0, 132,172,230,172,132,173,419
2880 DATA $132,176,32,172,66,160,6,177$,
$205,162,12,221,53,70,240,20,8692$
2890 DATĂ $202,16,248,206,200,192,0,208$
,238,230,206,230,176,164,176,192,8248
2900 DATA $10,208,226,96,230,172,208,2$, $230,173,76,10,71,160,50,185,9671$
2916 DATA $192,127,153,128,127,136,16,2$
$47,96,169,6,133,181,169,1,133,8878$
2920 DATA $179,165,192,133,180,96,160,0$
$132,176,132,207,164,176,192,19,1797$
2936 DATA $208,1,96,32,172,66,160,0,177$, 205, 201, 8, 240, 11, 200, 200, 1356.
2946 DATA $192,126,208,244,230,176,76,6$ $7,71,166,207,165,206,149,224,152,5376$ 2950 DATA $24,101,205,149,218,230,207,1$ $65,207,201,6,208,225,96,166,207,61,32$
2966 DATA $240,32,181,153,240,25,214,15$ $3,181,153,208,19,181,224,133,206,4946$
2970 DATA $181,218,133,205,160,0,169,8$,
$145,205,200,169,10,145,205,202,2903$
2980 DATA $16,224,166,185,208,1,96,181$,
$160,240,38,214,160,181,160,208,5016$
2990 DATA $32,181,234,133,206,181,230,1$ $33,205,160,0,177,205,201,96,208,5224$
3060 DÁTÁ $67,169,27,145,205,209,169,28$
, 145,205,169,89,149,166,32,180,1493
3010 DATĂ $77,202,16,211,166,185,181,16$
$6,240,33,214,166,181,166,208,27,3983$
3020 DATA $181,234,133,206,181,230,133$,
$205,160,0,177,295,201,27,208,15,1946$
3030 DATÁ $169,96,145,205,200,145,205,1$
$69,100,149,160,202,16,216,96,169,3253$
3046 DАТА $97,208,239,96,169,29,145,205$
, 200, 169, 30, 208, 187, 160, 10, 132, 1427
З 050 DATÁ $176,132,185,164,176,192,19,2$
$08,1,96,32,172,66,160,10,177,7845$
3060 DATA $205,201,27,240,11,200,200,19$
$2,126,208,244,230,176,76,10,72,2211$
3070 DATA $166,185,165,206,149,234,152$,
$24,101,265,149,230,152,72,169,96,2743$
3080 DATA $145,205,200,145,205,104,168$,
$230,185,165,185,201,4,208,214,96,4952$
3090 DATÁ $162,3,208,2,162,4,181,212,24$, $105,1,149,212,201,26,144,9016$
3100 DATA $14,169,15,149,212,202,48,7,2$ $46,212,161,212,76,84,72,162,1465$ 3110 DATA $5,181,212,157,29,139,262,16$, $248,165,213,197,196,240,7,133,3992$
3120 DATA $196,230,182,32,225,73,96,165$
, 211, 240, 26, 198,211, 166, 189, 189,5892
3130 DATĂ $205,72,141,151,72,189,206,72$
,141,152,72,169,1,133,186,32,8804
3140 DATÁ $255,255,76,98,228,173,10,210$,41,3,170,10,133,189,169,167,9464
3150 DATA $133,211,185,63,73,133,143,18$ $9,67,73,133,144,24,105,12,132,6814$
3160 DATA $141,32,115,73,32,79,73,165,1$ $93,133,238,165,194,133,239,169,4805$
3176 DATA $0,133,186,76,58,228,213,72,2$ $20,72,227,72,234,72,32,102,446$
3180 DATA $73,32,241,72,96,32,71,73,32$, $22,73,96,32,102,73,32,1995$
3190 DATA $22,73,96,32,71,73,32,241,72$, $96,164,143,162,31,185,0,7162$
3206 DÁTA $134,153,255,133,185,0,135,15$ $3,255,134,200,202,16,240,198,143,5116$ 3210 DATA $169,0,164,142,153,1,131,169$, $195,153,255,130,196,142,96,165,3771$
3220 DATA $143,24,105,31,168,162,31,185$, $0,134,1.53,1,134,185,0,135,6886$
3230 DATA $153,1,135,136,202,16,240,230$,143,169, $0,164,142,153,0,131,9989$
3240 DATA $169,195,153,2,131,236,142,96$ $, 1.92,48,48,192,10,224,10,224,103$
\$250 DATA $198,144,198,144,198,141,198$, $141,165,144,141,2,208,24,105,16,8627$
3260 DATA $141,3,208,165,141,141,4,208$, $24,105,6,141,7,208,96,236,9681$
3270 DATA $144,230,144,230,141,230,141$, $165,141,76,79,73,32,197,73,162,253$
3280 DATA $0,164,143,189,165,73,153,0,1$ $34,153,1,134,189,181,73,153,16$
3290 DATA $0,135,153,1,135,206,200,232$, $224,16,208,231,165,143,24,105,2577$
3300 DATA $12,133,142,164,142,169,195,1$ $53,0,131,153,1,131,96,0,4,5089$
3310 DATÁ $2,50,11,7,61,79,12,61,71,11$, $18,18,1,0,0,128,8048$
3320 DATA $72,72,208,230,188,240,50,188$,224,208,76,64,32, 10, 162, 0, 7860
3330 DATÁ $138,157,0,135,157,0,134,157$, $0,131,232,208,244,96,158,182,4657$
3340 DATA $32,225,73,32,48,71,32,130,76$,96,165,182,201, 10,144,4,6665
 $9,96,169,0,141,2,208,141,7227$
3360 DATA $3,208,141,4,298,141,7,208,13$ 3,211,165,193,133,238,165,194,5895
3376 DATA $133,239,169,0,133,186,96,169$ $, 155,141,170,127,169,0,141,169,1508$
3380 DATÁ $127,169,0,133,146,32,41,74,1$ $73,31,208,201,6,208,249,76,686$
3390 DATA $32,64,169,0,141,8,210,162,3$, $142,15,210,162,7,157,6,6267$
3400 DATA $210,202,16,250,96,169,0,141$, $0,210,141,1,216,96,169,0,7956$
3410 DATA $141,3,216,141,2,210,96,169,0$,141,4,210,141,5,216,141,9328
3420 DATA $5,210,141,7,210,96,32,41,74$, $162,1,169,121,141,4,210,7767$
3430 DATA $169,166,141,5,210,169,10,141$, $6,210,169,36,141,7,210,32,7674$
3446 DATA $77,66,32,78,74,32,77,66,202$, $16,224,96,162,255,142,252,3118$
3456 DATA $2,169,0,133,146,32,247,67,17$ $3,252,2,201,255,246,249,142,6702$
3460 DATA $252,2,169,1,133,146,96,165,1$ $46,208,3,76,98,228,165,238,2848$
3476 DATA $5,239,240,13,198,238,165,238$, 201, $255,208,239,198,239,76,162,9369$ 3480 DATĂ $74,198,145,165,145,208,228,1$ $65,195,133,145,76,126,72,165,186,3623$ 3490 DATA $208,13,169,50,141,2,216,169$, $70,141,3,210,32,247,67,96,8978$
3500 DATAी $169,128,133,131,169,112,133$, $133,169,4,141,184,66,169,24,141,9520$
3510 DATA $183,66,169,0,133,243,133,244$, 162, 5, 169, 0, 149,153, 202, 16,70
3520 DATA $251,162,3,189,32,75,149,160$, $169,0,149,166,202,16,244,169,2159$
3530 DATA $0,133,174,133,175,236,174,13$ $3,211,165,195,133,145,32,41,74,809$
3546 DATA $165,193,133,238,165,194,133$, $239,96,48,96,128,176,166,191,224,5271$. 3550 DÁTA $5,240,2,230,191,166,191,189$, $75,75,133,192,189,81,75,133,1797$
3560 DATA $193,189,87,75,133,194,189,93$, 75, 133, 195, 169, 1, 141,88,86, 9449
357 DATA $32,41,74,96,8,7,6,5,4,3,128$, $128,0,128,0,128,1304$

3580 DATA $3,2,2,1,1,0,10,8,6,4,2,1,0,2$ 1,3,3955
3590 DATA $165,184,72,160,4,132,148,169$,0,133,197,162,3,134,147,189,764
3600 DATA $99,75,170,32,86,65,169,134,1$ $41,3,210,165,197,24,165,9,7777$
3610 DATA $133,197,141,2,210,32,81,66,1$ $98,147,166,147,208,225,198,148,4939$
3620 DATA $164,148,208,215,104,133,184$, $32,88,65,32,69,74,96,132,208,8662$
3630 DATA $134,210,165,209,41,1,170,189$ $, 198,75,164,134,153,1,133,153,818$
3640 DATA $2,133,153,13,133,153,14,133$, $230,209,164,208,166,210,96,85,3522$
3650 DATA $169,132,208,134,210,165,209$, $41,1,170,189,215,75,76,177,75,1336$
3660 DATA $170,149,132,208,134,210,164$, $134,162,7,185,4,133,261,153,268,3283$
3670 DATA $4,169,24,208,6,201,24,208,2$, $169,153,153,4,133,206,202,1357$
3680 DATA $16,232,166,210,164,208,96,32$,69,74,169,164,141,3,216,162,1299
3690 DATA $160,142,2,210,32,30,76,224,4$ $5,208,5,169,162,141,3,210,9697$
3700 DATA $202,208,238,32,69,74,96,160$, $200,32,247,67,136,16,250,96,820$
3710 DATA $32,73,76,162,96,169,3,157,66$,3,169, $76,157,69,3,169,6686$
З 720 DATTA $156,157,68,3,169,6,157,74,3$, $169,0,157,75,3,32,86,3452$
3730 DATA $228,96,162,96,169,12,157,66$, $3,32,86,228,96,169,5,162,7874$
3740 DATA $96,157,66,3,169,86,157,69,3$, $169,68,157,68,3,169,20,5502$
3750 DÁTA $157,72,3,169,0,157,73,3,32,8$ $6,228,48,7,173,72,86,5414$
3760 DATÁ $201,70,208,12,32,39,76,169,0$, 133, 178, 104, 104, 76, $86,64,6317$
3770 DATÁ $162,10,189,68,86,157,225,70$, $201,32,240,3,232,208,243,169,5380$
3780 DÁTA $155,157,225,70,96,68,49,58,8$ $3,77,65,80,46,42,155,173,6370$
3790 DATA $88,86,208,1,96,165,184,201,7$, 208, $61,173,183,66,133,140,1472$
$3800{ }^{\prime} \mathrm{DATA}$ 169, $260,56,229,131,74,74,133$, 139, 24, 109, 183,66, 141, 183,66,9653
3810 DATA $206,183,66,206,183,66,32,86$, $69,144,6,165,140,141,183,66,9329$
3820 DĂजि $96,162,200,142,0,208,134,131$ $, 232,142,1,208,134,132,238,183,4745$
3830 DATA $66,238,183,66,206,88,86,96,2$ 01, 11, 208, 63, 173, 183, 66, 133, 1005
3840 DATA $146,165,131,56,233,48,74,74$, $133,139,173,183,66,56,229,139,1477$
3850 DATA $141,183,66,238,183,66,238,18$ $3,66,32,105,69,144,6,165,140,9516$
3860 DATA $141,183,66,96,162,48,142,0,2$ 08, 134, 131, 202, 142, 1, 208, 134, 1242
3870 DATA $132,206,183,66,206,183,66,20$ $6,88,86,96,201,14,206,70,173,1497$
3880 DATÁ $184,66,133,140,165,133,56,23$ $3,48,74,74,74,74,133,139,173,9585$
3890 DATA $184,66,56,229,139,141,184,66$,238, 184, 66,32,132,69,144,6,8677
3900 DATÁ $165,140,141,184,66,96,206,18$
$4,66,32,110,77,169,48,133,133,9364$
3910 DATA $32,75,65,206,88,86,96,160,25$ $5,169,0,153,6,132,153,0,7983$
3920 DATA 133, 136; 208, 247,96,201,13,20 $8,34,173,184,66,133,146,169,192,3526$
$3930{ }^{\circ} \mathrm{DATA} \quad 56,229,133,74,74,74,74,24,16$ $9,184,66,141,184,66,206,184,1252$
उ946 DATĂ $66,32,119,69,144,6,165,140,1$ $41,184,66,96,32,110,77,169,8536$
3950 DATA $192,133,133,32,75,65,238,184$,66,206,88,86,96, $32,69,74,7497$
3960 DATA $169,12,141,2,216,169,169,133$, 177, 198, 177, 165, 177,201,160,144,6214 3970 DATĂ 9,141 , 3,21 角, $32,81,66,76,192$, $77,32,69,74,96,165,186,8261$
3980 DATÁ $240,11,169,134,141,1,210,169$
$391,141,0,210,96,32,66,74,6627,240,249$, $76,14,74,169,127,141,49,2,8128$
4000 DATÁ $169,128,141,48,2,169,192,141$ $, 14,212,169,128,141,1,2,169,8758$
4010 DATA $0,141,6,2,162,4,189,156,66,1$ $57,196,2,202,16,247,96,140$
4020 DATÁ $146,16,0,66,0,238,225,244,23$

3,239,238,225,236,128,247,229,1439 4030 DATA $225,244,232,229,242,128,243$, $229,242,246,233,227,229,128,226,245,38$ 70
4040 DATA $236,236,229,244,233,238,0,0$, $0,0,0,0,0,128,243,238,8249$
4050 DATA $239,247,128,247,225,242,238$, $233,238,231,160,6,132,146,132,186,7190$ 4060 DATA $32,41,74,166,198,208,26,169$, $8,141,31,208,169,96,133,246,2443$
4070 DATA $185,0,142,153,0,125,169,0,15$ $3,0,142,153,0,124,206,208,65$
4086 DATA $239,162,5,181,212,157,172,12$ $3,202,16,248,162,7,169,0,157,1191$
4090 DATA $0,208,202,16,250,168,153,0,1$ $24,136,268,256,160,53,185,28,2314$
4100 DATA $78,153,22,124,136,16,247,160$, 4, 185, 23, 78, 153, 196, 2, 136, 8845
4110 DATA $16,247,169,0,133,205,133,203$,141,198,2,169, 125, 133, 204, 169,4127
4120 DATA $142,133,206,169,0,141,48,2,1$ $69,127,141,49,2,165,198,208,584$
4130 DATA $43,230,198,32,110,79,169,15$, $133,200,169,15,133,150,164,150,1607$
4140 DATA $185,52,86,168,185,150,79,133$ $, 203,133,205,164,200,177,203,32,4816$ 4150 DATÁ $61,79,176,8,198,150,16,230,1$
$98,200,16,222,160,10,146,21,9909$
4160 DÁa $127,185,0,125,153,0,142,200$, $208,247,162,7,142,4,212,169,2510$
4170 DATA $9,133,20,173,31,208,240,38,2$ $01,6,240,23,165,20,240,243,3273$
4180 DATÁ $202,16,233,172,21,127,200,19$ $6,240,208,2,160,0,140,21,127,125$
4190 DATA $76,1,79,169 ; 0,133,183,141,21$,127,141,4,212,96,169,1,8097
4200 DATA $133,183,169,0,240,241,132,19$
$9,201,0,240,32,160,0,145,205,2736$
4210 DATA $196,199,240,24,162,6,134,20$, $174,252,2,224,255,208,17,166,3462$
4220 DATA $20,240,245,72,169,0,145,205$, $104,200,208,226,164,199,24,96,3993$
4230 DATA $162,255,142,252,2,56,96,169$, $1,133,149,173,10,210,41,15,7685$
4240 DATA $141,52,86,173,10,210,41,15,1$ $60,0,217,52,86,240,244,206,2941$
4250. DATA $196,149,208,246,153,52,86,20$ $0,132,149,192,16,208,229,96,0,1963$
4260 DATA $16,32,48,64,80,96,112,128,14$ $4,160,176,192,208,224,240,0,4100$
4270 DATA $123,179,123,0,0,0,0,0,0,0,0$, $0,0,0,0,64,6144$
4280 DATA $66,68,70,72,74,76,78,80,82,8$ $4,86,88,90,92,94,0,4440$
$4290{ }^{\circ} \mathrm{DATA} 0,0,0,0,0,0,0,0,0,0,0,0,0,0$, 0,0,4290
4360 DATA 0, $0,0,0,0,0,0,65,67,69,71,73$,75,77,79,61,2304
4310 DATA $83,85,87,89,91,93,95,0,0,0,0$, 0, 0, 0, 0, 0,6858
4320 DATA $0,0,0,0,0,0,34,57,26,0,34,33$,50,50,57, 00,8223
4330 DATA $43,47,44,34,37,0,33,46,36,0$, $34,50,57,33,46,0,8710$
4340 DATA $51,35,46,33,48,48,37,44,0,0$, $0,0,0,0,0,0,5852$
4350 DATÁ $35,47,48,57,50,41,39,40,52,0$,17,25,24,24,01,34,8087
4360 DATA $34,43,10,37,46,52,37,50,48,50$,41,51,37,51,0,0,9019
4370 DATA $0,6,0,6,0,116,111,112,0,115$, $99,111,114,101,0,16,3462$
4380 DATA $16,16,16,16,16,0,0,166,79,51$, $86,169,144,133,206,169,9671$
4390 DATA $0,133,205,169,42,133,203,169$, 80, 133, 204, 169,1, 133,241,169,4244
4400 DATA $154,133,242,160,6,132,152,13$ $2,202,32,33,80,24,42,38,152,6461$
4410 DATĂ $74,133,201,208,10,32,33,80,1$ $33,202,32,33,80,133,201,165,9820$
4426 DATA $152,240,21,32,33,80,145,205$, $32,12,86,198,201,208,244,165,4032$
44 S6 DATA $202,246,210,198,202,76,222,7$ $9,32,33,80,133,151,165,151,145,2138$ 4440 DATA $205,32,12,80,198,201,208,245$ $, 165,262,240,185,198,202,76,248,9552$
4450 DATA $79,230,205,208,2,230,206,165$,206,197,242,208,8,165,205,197,8211
4460 DATA $241,208,2,104,104,96,177,203$
,230,203,208,2,230,204,96,4,3260
4470 DATÁ $0,30,96,130,108,110,14,96,13$ $0,108,116,6,7,130,114,110,6383$
4480 DATA $28,96,130,27,28,12,96,130,10$ $8,110,22,96,130,108,116,4,5594$
4496 DATÁ $0,130,14,15,3,7,135,1,2,3,4$, 7,5,6,2,7,6329
4500 DATA $130,5,6,3,7,130,5,6,9,7,130$, $98,100,2,7,130,1838$
4516 DÁTÁ $5,6,2,7,136,5,6,6,7,130,98,1$ $00,6,7,130,98,2666$
4520 DATA $100,2,7,137,13,7,1,2,3,4,7,5$,6,27,7,130,8168
4530 DATA $5,6,2,7,130,98,100,5,7,130,1$ $4,15,15,7,130,98,2067$
4540 DATA $100,4,6,2,7,130,114,110,12,9$ $6,130,108,116,6,7,130,4720$
4550 DATA $5,6,4,7,130,98,100,4,7,130,5$,6,2,7,130,5,221
4560 DÁTA $6,4,7,132,98,100,5,6,2,7,132$,5,6,98,104,10,1666
4579 DATA $96,130,108,116,6,7,135,1,2,3$,4,7,5,6,5,7,7251
4580 DATÁ $130,5,6,8,7,132,5,6,98,100,2$,7,130,114,110,14,2828
4590 DATA $96,130,108,116,2,7,130,98,10$ $0,4,0,135,5,6,98,100,3259$
4600 DATA $7,5,6,9,7,133,98,100,7,5,6,5$,7,130,5,6,9311
4616 DATÁ $2,7,130,98,100,14,7,130,98,1$ $00,2,7,130,5,6,2,951$
4620 DATA $7,130,98,100,10,7,133,98,100$,7,5,6,5,7,4,96,244
4630 DATÁ $130,108,116,2,7,130,14,15,11$,7,131,13,98,100,2,7,947
4640 DATA $130,98,100,14,7,130,98,100,2$,7,130,98,100,4,0,2,1705
4650 DATA $7,130,98,100,7,7,135,1,2,3,4$, $7,120,112,12,96,1661$
4660 DATA $130,106,118,14,7,130,98,104$, $6,96,130,162,160,8,7,135,5690$
4670 DATA $1,2,3,4,7,5,6,4,7,130,5,6,3$, 7,130,120,336
4680 DATA $112,12,96,130,108,110,2,96,1$ $36,106,116,2,7,130,98,166,6139$
4690 DATA $2,7,130,114,110,6,96,130,108$, 116, 2, 7, 130,98, 100, 2,4682
4700 DATA $7,130,98,106,4,0,2,7,130,98$, $106,4,7,130,5,6,1131$
4710 DATA $3,7,130,5,6,5,7,130,5,6,2,7$, $130,5,6,6,8443$
4720 DATA $7,130,5,6,2,7,136,5,6,8,7,13$ 0,98,100,6,7,675
4730 DATA $130,98,100,2,7,130,5,6,3,7,1$ $30,5,6,4,7,133,216$
4740 DATA $5,6,7,5,6,16,7,130,8,10,2,7$, $130,98,100,2,885$
4750 DATA $7,130,5,6,2,7,130,98,100,2,7$,138,98,100,13,7,2436
4760 DATA $1,2,3,4,98,100,2,7,130,98,10$ $0,2,7,130,98,100,4205$
4770 DATA $4,0,2,7,130,120,112,30,96,13$ $0,27,28,4,96,130,108,5073$
4780 DATA $116,4,7,130,98,100,6,7,130,9$ $8,100,4,7,130,114,110,5312$
4790 DATA $2,96,130,108,116,4,7,130,114$,110, 2, $96,130,108,116,4,5805$
4800 DATA $7,130,114,116,4,96,130,108,1$ $16,6,7,130,98,100,4,7,3806$
4810 DATA $132,5,6,98,100,2,7,130,120,1$ $12,4,96,2,7,130,98,4061$
4820 DATA $100,2,7,130,98,100,2,7,130,9$ $8,100,4,0,13,7,130,2290$
4830 DATA $5,6,21,7,130,5,6,2,7,130,98$, $100,4,7,132,98,3015$
4840 DATA $100,8,10,4,7,130,98,100,4,7$, $134,98,100,5,6,98,3087$
4850 DÁA $100,4,7,134,98,100,5,6,98,10$ $0,4,7,130,98,100,2,3292$
4860 DATA $7,132,14,15,98,100,6,7,130,9$ $8,100,6,7,130,98,100,4724$
4870 DATÁ $10,7,130,98,100,2,7,130,98,1$ $00,2,7,130,98,100,4,3891$
4880 DÁTÁ $0,130,114,110,28,96,130,108$, $116,6,7,134,14,15,98,106,4663$
4890 DATA $5,6,2,7,130,98,100,6,7,130,1$ $20,112,4,96,130,106,5996$
4906 DATA $118,2,7,130,120,112,4,96,130$, 106, 118, 2,7,130,120,112,6686

4910 DATA $4,96,130,106,118,4,7,130,120$
,112,2,96,130,108,110,2,5881
4920 DATA $96,130,106,118,6,7,130,120,1$ $12,10,96,130,106,118,2,7,4964$
4930 DATA $130,98,100,2,7,130,98,100,4$, $0,139,98,160,7,5,6,2175$
4940 DATA $5,6,5,6,5,6,7,7,130,5,6,3,7$, $130,5,6,8566$
4950 DATA $5,7,130,98,100,4,7,130,114,1$ $10,2,96,130,166,118,4,5672$
4960 DATA $7,130,98,100,6,7,137,13,7,1$, $2,3,4,7,5,6,7566$
4970 DATA $27,7,131,98,100,13,25,7,130$, $98,100,2,7,130,98,100,4860$
4986 DÁTÁ $4,0,130,120,112,10,96,130,8$, $10,6,7,130,5,6,8,486$
4990 DÁTA $7,130,98,100,4,7,130,98,100$, $8,7,130,98,100,8,7,3230$
5000 DATA $130,114,110,18,96,130,108,11$
$6,4,7,130,114,110,6,96,130,6642$
5010 DATA $106,112,4,96,130,27,28,20,96$,130,102,160,2,7,130,98,5032
5020 DATÁ $100,4,0,5,7,130,5,6,16,7,130$,5,6,5,7,136,83
5030 DATÁ $98,160,4,7,130,98,100,8,7,13$ $2,98,100,5,6,2,7,1322$
5040 DATA $130,5,6,2,7,130,98,100,6,7,1$ $38,5,6,7,1,2,9432$
5050 DАТ А $3,4,7,5,6,2,7,130,98,100,4,7$, 130,98,100,24,3189
5060° DATA $7,130,5,6,8,7,130,98,100,2,7$,130,98, 100, 4, 0, 2433
5070 DATA $130,114,110,6,96,130,108,116$, $4,7,130,114,110,6,96,130,6664$
5080 DATÁ $108,116,6,7,130,98,100,4,7,1$ $30,120,112,2,96,130,108,6511$
5090 DATA $116,4,7,130,98,100,2,7,130,5$,6,2,7,132,5,6, 3 35
5100 DATA $98,160,2,7,130,5,6,4,7,130,5$,6,8,7,132,98,1426
5110 DATA $100,8,10,2,7,130,98,104,10,9$ $6,130,168,116,2,7,136,5190$
5120 DATA $13,7,1,2,3,4,1,2,3,7,132,5,6$,5,6,5,7147
5130 DATA $7,130,98,100,2,7,130,98,100$, $4,0,130,98,100,6,7,3213$
5146 DATA $130,98,100,2,7,132,5,6,98,10$ $0,6,7,130,98,100,6,3374$
5150 DATA $7,130,98,100,8,7,130,98,100$, $4,7,130,98,100,8,7,3370$
5160 DATÁ $130,98,100,4,7,130,5,6,12,7$, $130,98,100,4,7,130,3025$
5170 DATA $98,160,2,7,130,5,6,6,7,130,9$ $8,100,6,7,130,98,3607$
5180 DATA $100,2,7,130,5,6,10,7,136,98$, $109,2,7,130,98,100,4267$
5190 DATA $4,0,130,98,100,2,7,130,5,6,2$,7,130,120,112,4,2902
5206 DATA $96,132,106,118,5,6,2,7,134,5$, $6,98,100,5,6,2,471$
5210 ВАТА $7,135,5,6,98,100,7,5,6,5,7,1$ $30,98,160,4,7,1292$
5220 DATA $130,98,100,8,7,130,120,112,8$ $, 96,130,108,110,8,96,130,7249$
5230 DATA $166,118,4,7,130,98,100,5,7,1$ $30,5,6,3,7,130,120,3087$
5240 DÁTÁ $112,6,96,130,106,118,5,7,130$ 5, 6, 7, 7, 134, $98,160,3908$
5250 DATA $14,15,98,100,4,0,130,98,100$, $4,7,130,5,6,10,7,690$
5266 DATA $136,5,6,2,7,130,98,100,2,7,1$ $30,5,6,2,7,130,1596$
5270 DATA $120,112,8,96,130,106,112,4,9$ $6,136,162,160,4,7,130,5,4790$
5280 DATA $6,3,7,130,5,6,2,7,130,5,6,3$, $7,130,98,100,2267$
5290 DATA $2,7,130,5,6,3,7,130,5,6,5,7$, $130,98,164,4,1783$
5300 DATA $96,130,108,116,11,7,130,5,6$, $14,7,131,13,98,160,2,2407$
5310 DATA $7,130,98,106,4,0,130,98,100$, $6,7,130,114,116,6,96,5230$
5320 DATA $132,1,2,3,4,2,7,130,98,100,9$,7,130,5,6,11,684
5330 DATA $7,130,98,100,6,7,130,5,6,10$, $7,130,98,100,4,7,1950$
5346 DATA $130,5,6,8,7,130,98,100,2,7,1$ $32,3,4,98,100,2,2363$
5350 D'िTA $7,136,8,10,24,96,130,106,118$

1650	DIC LDA
1660	5TA \＄D40日
1670	5TA SD日ia
1680	PLA
1690	RTI
1700	
1710	fcharacter set
1720	
1730	＊＝58C00
1740	．INCLUDE \＃D： 5 NOW．PT5
1750	：- THTHTN
1760	＊
1779	．SBYTE＂FUEL 150 PLOW5
1789	－5BYTE＂3 ${ }^{-5 B Y T E}$ SCORE＂
1790	．5BYTE＂000000
1800	＊－GOUER
1810	STOMFE AKES 11
1830	－SBYTE＂WTN Pres
1846	－5BYTE＂5TART
1856	
1860	display lists jintro first
1879	；then game board
1886	
1890	＊ 57 F 00
1969	IDLST BYTE $570,570,570,542$
1920	－WORD 5NOWMEM
1930	－BYTE \＄02，570，570，570，502
1940	－BYTE 502，570，570，570，570
1950	－BYTE 557
1960	LM5 ，WORD 5CRLMEM
1970	－BYTE \＄70，570，570，570，546
1980	，WORD TOPSCORE
1990	－BYTE \＄41
2000	．WORD IDLST
2910	）
2020	＊＝$\quad 7 \mathrm{~F} 80$
2030	DL1 ．BYTE \＄70，570，570
2046	－BYTE 542
2050	，WORD SNOWMEH
2060	．BYTE 2
2070	－BYTE 575
2080	5L1 ．WORD SCNMEM
2090	．BYTE \＄75
2100	－WORD 5C2
2110	－BYTE \＄75
2120	－WORD 5C3
2130	．BYTE $\$ 75$
2140	－WORD SC4
2150	．BYTE \＄75
2160	－WORD 5C5
2170	．BYTE \＄75
2180	－WORD 5C6
2190	．BYTE \＄75
2200	－WORD SC7
2210	－BYTE \＄75
2220	－WORD SC8
2230	－BYTE \＄75
2240	－WORD SC9
2250	．BYTE \＄75
2260	－WORD SC10
2270	．BYTE \＄D5
2280	，WORD SCil
2290	．BYTE \＄46
2300	TME55－WORD THTWIN
2310	，BYTE 6，\＄41
2320	，WORD DLi
2330	
2340	；start of program
2350	
2360	\＃＝\＄4000
2370	
2380	fsave the display list
2390	for next levels
2400	
2410	BEGIN LDY 450
2420	MDL LDA DLI，Y
2430	STA BCKLIP，Y
2440	DEY
2450	BPL MDL
2460	LDA \＃＞CH5ET new chrset
2470	5 TA 756
2480	JSR SETPMG ：player init
2490	；LDU ）${ }^{\text {\％}}$
2500	
2510	LDY \＃＜UBLAK
2520	LDA \＃7
2530	JSR SETUBU

2546 2550	$\begin{aligned} & \text { LDA H0 } \\ & \text { STA IFLAG } \end{aligned}$	jintro flag
2560		
2570	fbegin new leuel	
2580		
2590	NEWBEG LDA \＃6	
2600	STA DIRF	
2610	5 TA MAPFLG	
2620	J5R GETDIR	
2630	JMP NEWB	
2646	NDIRC J5R CLOSE6	
2650		
2660	NEWB J5R INIT	
2670	JSR REPLAY	
2686	LDA ${ }^{\text {H }}$	
2690	5TA LIUES	
2700	LDA \＃0	
2710	5 TA ICEON	
2726	J5R 5H0LIU	
2730	NLEUL JSR STARTI	
2740	J5R FIGLEU	
2750	J5R RESFUL	
2760	JSR DSPFUL	
2770	J5R REPLAY	
2780	JSR CLRPM	
2790	LDA DIRF	
2800	BNE DROK	
2810	MAP2 LDA MAPFLG	；intern map
2820	BNE DROK	
2830	LDA $\#$	
2840	5 Tá MapFLG	
2850	JSR UNCOM	
2860	JMP 5KP	
2870	DROK J5R GETFIL	
2889	JSR LOADMP	
2890	5KP J5R FNDFUL	
2900	JSR FNDCR5	
2910	J5R CNTRDS	
2920	J5R COPYDL	
2930	J5R SETSCN	
2940	LDA \＃S0B	
2950	STA DIRECT	
2966	J5R DEFPLR	
2970	LDA \＃1	
2986	STA UFLG	
2990		
3000	；main loop	
3010		
3020	MAIN LDA CONSOL	
3030	CMP 46	
3040	BNE MNZ	
3050	JMP STKEY	
3060	MN2 LDA STICK	
3079	STA DIRECT	
3080	J5R DEFPLR	
5696	STA HITCLR	
3100	J5R MOUPLR	
31.16	J5R REMOUE	
3120	LDA 644	
3130	BNE NTRG	
3140	J5R JMPEDG	
3150	NTRG J5R ICE5ND	
3160	LDA P日PL	
3176	CMP \＃12	
3180	BC5 OLCH	
3190	LDA P1PL	
3200	CMP \＃12	
3210	BC5 OUCH	
3220	LDA ROADG＋1	
3230	CMP ROADC＋1	
3240	BNE KL	
3250	LDA ROADG	
3260	CMP ROADC	
3270	BNE KL	
3280	J5R WAIT5M	
3290	JIMP NLEUL	
3306	KL LDA FUEL	
3310	ORA FUEL＋1	
3320	ORA FUEL＋2	
3330	BNE KK	
3340	OUCH STA HITCLR	
3350	J5R REMP23	
3360	J5R SPIN	
3370	JSR GRESET	
3380	5 TA HITCLR	
3390	JSR DELAY	
3409	－JMP KK	
3410	OOPS JMP GAMOUR	
3420	KK LDA LIUES	

8720

010510	LDA 4
010520	STA FUEL+2
010530	DEC FUEL+1
010540	LDA FUEL+1
010550	BPL SF3
010560	LDA \#9
010570	5TA FUEL+1
010580	DEC FUEL
010590	5F3 J5R DSPFUL
010608	FRET RTS
010610	
010620	show fuel left
010630	
010640	DSPFUL LDK \#2
010650	D5 LDA FUEL, X
010660	ORA \#510
010670	STA TKTWIN+6, K
010680	DEX
010690	BPL D5
010700	RTS
010710	
010720	;wait some
010730	
010740	WAITSM LDA \#0
010750	LD8 \#15 ; 15 secs
010768	STA UFLG
010776	W5M J5R LDL
010780	DEX
010790	BPL W5M
010809	RT5
010810	
016820	;ptz is rest of game
010830	;pt3 is the screen maker
010840	ipt4 is the introduction
010850	
010860	. TNCLUDE \#D:5N0W.PTZ
010870	- INCLLUDE HD: 5NOW. PT4
010880	.INCLUDE \#D: 5NOW.PT3
010890	
010900	; variables
010910	
010920	RANDS DS 16
010938	DBLF D5 20.
010940	EDGFLG BYTE 1
010950	M128L .D5 36
010960	M128H DS 36
010970	* $=502 \mathrm{E} 0$
010980	. WORD BEGIN
010990	, END

LISTING 3: ASSEMBLY

0100	S SAUE\#D: SN0W. PTZ
0110	j-
0120	; part 2 of game
0130	;
0140	, by:Barry Kolbe
0150	!
0160	!-------
0170	
0180	gload a map from disk
0190	
0200	LOADMP LDK \#ち10
0210	LDA \#S0C
0220	STA ICCOM, ${ }^{\text {S }}$
0230	JSR CIOU
0240	LDX \#\$10
0250	LDA \#3
0260	STA ICCOM, ${ }^{\text {S }}$
0270	LDA \# $>$ MAPNAM
0280	5TA ICBAH, ${ }^{\text {S }}$
0296	LDA \# <MAPNAM
0366	5TA ICBAL, ${ }^{\text {S }}$
0316	LDA \#4
0320	STA AUKI,
0336	LDA \#0
0340	STA AUK2,
0350	J5R CIOU
0369	BPL RDOK
0370	RTS
0389	RDOK LDK \#\$10
6390	LDA $\ddagger>5 \mathrm{CNMEM}$
0406	STA ICBAH, ${ }^{\text {S }}$
0419	LDA \# <SCNMEM
0420	5TA ICBAL, 8
0430	LDA \$0
0446	LDA \#10 ;10 pages
0450	STA ICBLH,

1350 1369 137 1390 1400 1410
1420 1430 1446
1460
1470
1480
1580
1510
1520
1540
1550
576
1580
1600
1610
1630
1640
1660
1670
1689
1690
1700
1710
1730
1740
1750
1770
1780
1790
869
1810
1830 1856 1869 876 1890 919 1926 1930 1946 960 1970 1980 1996 2016
2020 204 2050
2060 888 2096 2106

RTS

CTF LDA \#Sid
STA (JL), Y

4910	J5R DSPFUL	5800	J5R LDL	
4920	RTS	5810	DEX	
4930		5820	BPL HNI	
4940	;show 4 of lives	5830	RT5	
4956		5840		
4960	5HOLIU LDA LIUES	5850	fpause the game	
4970	CMP \#10	5860	;	
4980	BCC GRT	5879	PAUSE LDH \#SFF	
4996	LDA \#9	5889	STK CH	
5000	STA LIUE5	5890	LDA \#0	jhold on Ubi
5010	GRT ORA \#516	5900	5 TA UFLG	
5020	5TA THTWIN+16	5910	J5R WAIT	
5030	RT5	5920	Palls LDA CH	
5049		5936	CMP \#SFF	
5050	let the storm exit stage	5948	BEA PAU5	
5060		5950	STH CH	
5070	REMP23 LDA \#0	5960	LDA	
5080	5 TA HPOSP0+2	5970	STA UFLG	
5090	5 TA HPOSP0+3	5980	RTS	
5100	STA HPOSMG	5990		
5116	5 TA HPOSMQ+3	6006	; the ubi	
5120	STA ICECNT	6010		
5130	LDA ICTL	6020	UBLNK LDA UFLG	;running?
5146	STA OFFSCN	6030	BNE UBC	;yes
5150	LDA TCTH	6848	UBA JMP HITUBU	
5160	5 SA OFFSCN+1	6050	UBC LDA OFFSCN	;coming on?
5170	LDA \#0	6060	ORA OFFSCN+1	
5180	STA ICEON	6070	BEA UBB	yes
5190	RT5	6080	DEC OFFSCN	;countdown
5200	gane over-snow guys win	6090	LDA OFFSCN	
5220	;game over-snow guys win	6110	BNE UBA	
5230	GAMOUR LDA \# > GOUER	6120	DEC OFFSCN+1	
5240	STA TMESS+1	6130	JMP UBA	
5250	LDA \# <GOUER	6148	UBB DEC UTIME	;ubi speed
5260	STA TMESS , tum off ubi	6150	LDA UTIME	
5270	LDA to y turn off Ubi	6160	BME UBA	
5280	STA UFLG	6179	LDA ICESPEED	
5290	JSR SNDOFF , fler START	6180	STA UTIME	
5300	GAM LDA CONSOL ;chk for 5TART	6190	JMP MOUICE	; do the move
5319 5320	CMP H6	6200		
5320 5330	BNE GAM	6210	; make a Plowing	sound
5340		6230	PLW5ND LDA ICEON	; unless
5350	finitialize sound	6248	BNE NOPL	the storm is
5360		6250	LDA H532	; making noise
5370	5NDOFF LDA H0	6260	STA SD202	
5380	$5 T \mathrm{~A}$ SD208	6270	LDA 4 \$ 46	
5390	LDS ${ }_{\text {H }}$	6286	5 TA SD203	
5400	5 SH 5 D 20 F	6298	JSR WAIT	
5410	LDS $\# 7$	6300	NOPL RT5	
5420	5NL STA \$D200, 8	6310		
5430	DEX	6320	jreset some Play	ying stuff
5440	BPL 5NL	6330		
5450	- RT5	6340	REPLAY LDA ${ }^{\text {c }}$	sdozer's
5460 5470	; turn off individ. snds	6350 6360	STA PHP LDA H570	;position
5476 5480	;turn off individ. snds	6360	STA PYP	
5490	OFF1 LDA	6380	LDA H4	; scroll shadows
5500	5TA \$D200	6390	5TA 5MY	
5510	STA \$D201	6400	LDA \#24	
5520	RT5	6410	STA SMK	
5536		6420	LDA H0	sscreen pos.
5548	OFF2 LDA 40	6430	STA SMP	
5550	5TA SD203	6448	STA SYP	
5560 5576	STA SD202	6450	LDH \#5	; fuel timers
5570 5580	RT5	6460	FT1 LDA 40 ¢	
5589		6478	FT1 5TA FTIME, $\%$	
5590	OFF34 LDA ${ }_{\text {L }}$	6480	DEH	
5609	STA \$D204	6490	$\begin{array}{ll}\text { BPL } & \text { FTi } \\ \text { LDH } \\ \text { \#3 }\end{array}$	
5619	STA SD205	6508	CT1 LDA	;car timers
5630	5 TA \$D207	652	STA CARTIM,	
5640	RTS	6530	LDA	
5650		654	STA RMTIM, H	
5660 5670	;honk horn when dozer hits car	6550	DEPL CTI	
5680	HORN J5R SNDOFF	657	LDA 40	;reset road
5690	LDK \#il ; wice!	658	STA ROADG	counters
5700	HN1 LDA \#121	6590	5 Tá ROÁDG+1.	
5710	5 Ta 5D204	6600	INC ROADG	
5720	LDA \#	661	STA ICECNT	
5736	STA SD205	662	LDA TCESPEED	D istorm's speed
5740 5750	LDA 5 TA SD20.	663	STA UTIME	
5750 5760	STA SD206	664	J5R SNDOFF	ssound off
5770	5 TÁ \$D207	666	STA OFFSCN	
5780	JSR LDL	667	LDA ICTH	
5790	J5R OFF34	668	5 T Ó OFFSCN+1	

6690	RTS		TRKR •BYTE \$55, \$09 ; masks
6700	; interval betwen	7590	
6710	jinterval between cars	7609	TRACKL 5TY YH
6720		7610	5 TH \%H
6730	CARSHD .BYTE $\$ 30,560,580,5 B 0$	7620	LDA ${ }^{\text {SDI }}$
6740	' ${ }^{\text {cheed }}$ for next	7630	AND \#1
6750	; speed up for next level	7640	TAX
6760	fuel down by 10	7650	LDA TRKL, ${ }^{\text {P }}$
6770	;storm is off screen less	7660	JMP TRKJMP
6780	fstorm moves faster	7670	
6790		7680	TRKL BYTE 5AA, 595 ; masks
6800	FIGLEU LDX LEUEL	7690	
6810	CP\% \#5	7700	TRACKU 5TY YH
6829	BEa LEA	7710	STH ${ }^{\text {HH }}$
6830	INC LEUEL	7720	LDY PYP+1
6849	LEA LDS LEUEL	7730	LD8 ${ }^{\text {L }}$
6850	LDA FULM, ${ }^{\text {L }}$	7740	TRU1 LDA P1MEM+4, Y
6860	STA FULK	7750	CMP \#599
6870	LDA ICOFFL, K	7760	BNE TRUZ
6880	STA ICTL	7776	LDA \#518
6890	LDA ICOFFH, H	7789	BNE TRU3
6900	STA ICTH	7790	TRU2 CMP 4 \$18
6910	LDA ICESPDT, ${ }^{\text {S }}$	7806	BNE TRU3
6920	STA ICESPEED	7810	LDA
6930	LDA \#1	7820	TRU3 5TA PIMEM+4, Y
6940	STA EDGFLG	7830	INY
6950	J5R 5NDOFF	7840	DEX
6960	RT5	7850	BPL TRU1
6970		7860	LD\% XH
6980	tables for stormy	7878	LDY YH
6990		7880	RTS
7090	FULM BYTE 8,7,6,5,4,3	7890	filling up with fuel sound
7810	ICOFFL . BYTE $580,580,0,580,0,580$	7900	filling up with fuel sound
7030	ICESPDT . BYTE 10, $8,6,4,2,1$	7920	FILSND J5R 0FF2
7040	SPTAB . ВYTE $0,2,1,3$	7930	
7050		7940	5 TA 5D203
7060	;spin dozer if hit by storm	7950	LDH \#160
7070	;or out of fuel	7960	FILi 5TH SD202
7080		7970	J5R FDEL
7090	SPIN LDA DIRECT	7980	CPK \#45
7100	PHA	7990	BNE FIL2
7110	LDY 4	8009	LDA \#5A2
7120	STY YSP	8010	STA SD203
7130	LDA 40	8020	FIL2 DEK
7146	5Ta SP5ND	8030	BNE FILI
7150	5PB LDX \#3	8040	J5R OFF2
7160	5P\% 5 SP	8050	RTS
7170	5PA LDA SPTAB,	8060	
7180	TAX	8076	FDEL LDY 4200
7190	J5R DFOK	8080	FDI J5R WAIT
7200	LDA \#586	8696	DEY
7210	STA \$D203	8109	BPL FDI
7220	LDA SPSND	8110	RTS
7230	CLC	8120	
7240	ADC \#9	8130	get the directory
7250	STA SPSND	8140	Search for 5MAP.???
7260	STA SD202	8150	
7270	JSEC DELAY	88160	GETDIR JSR CLOSE6
7280	DEC H5P	8170	LDH \#560
7290	LDX ${ }^{\text {BSPP }}$	8189	LDA \#3
7300	BNE SPA	8190	5 SA TCCOM, ${ }^{\text {S }}$
7310	DEC YSP	8200	LDA \# >DIRNAM
7320	LDY Y5P	8210	STA ICBAH, ${ }^{\text {S }}$
7330	BNE SPB	8220	LDA H <DIRNAM
7346	PLA	8230	STA TCBAL, X
7350	STA DIRECT	8240	LDA \#6.
7360	J5R DFOK	8250	5 Ta AUKi, H
7370	JSR OFF2	8260	LDA \#
7380	RTS	8270	STA ALM2,
7390	; moue the tracks on the dozer	8280	J5R CIOU
7400	dmove the tracks on the dozer	8290	RT5
7410 7420	TRACKR STY YH	8300 8310	CLOSE6 LDK H560
7430	TRACKR STY YH	8326	LDA \#SbC
7440	LDA KDI	8330	5 TA ICCOM, H
7450	AND \#1	8340	J5R CIOU
7460	TAX	8350	RT5
7470	LDA TRKR, H	8360	
7480	TRKJMP LDY PYP+1	8376	fread ina map from disk
7498	5 TA P1MEM+1, Y	8380	
7500 7510	STA P1MEM+2,Y	8390 8400	GETFIL LDA \#35
7520	5TA P1MEM+14, ${ }^{\text {S }}$	8410	5 SA ICCOM,
7530	INC KDI	8420	LDA ${ }^{\text {P }}$ >DBUF
7540	LDY YH	8430	5 TA ICBAH, ${ }^{\text {S }}$
7550	LDS XH	8440	LDA \# <DBUF
7560	RTS	8450	5 TA ICBAL, ${ }^{\text {¢ }}$
7570		8460	LDA \#20

B \& C ComputerVisions

3237 Kifer Road
Santa Clara, CA 95051
(408) 749-1003

STORE HOURS
TUE - FRI $10 \mathrm{am}-6 \mathrm{pm}$ SAT - 10am - 5pm CLOSED SUN - MON

\$8.95 each
CBS SOFTWARE
(ages 3-6 on disk)
Ernie's Magic Shapes
Astrogrover
Big Bird's Special Delivery
Match Wits
\$8.95 each
FISHER PRICE
SOFTWARE
(on cartridge)
Memory Manor
Linking Logic
Dance Fantasy
Logic Levels
Perfect for Pre-schoolers

$\$ 5.00$ each (on cartridge)

Assembler Rev. A Basic Rev. C Donkey Kong
Gorf (won't run on XL/XE) Missile Command Pac Man
Star Raiders Wizard of Wor

$\$ 9.95 \mathrm{each}$
E.T. Alien Ambush Mr. Cool Cloudburst Atari Tennis
Touch Typing (disk/cass)

$\$ 12.95$ each (on disk) Atari Paint Home Filing Manager Wombats Adventure
14.95 each (on cartridge)

Popeye Cobra Q-Bert

 Frogger Frogger II Star Wars\$15.95 each (on cartridge) Asteroids Centipede
Football Sky Writer Space Invaders Qix

$\$ 8.95$ each

TINK! TONK!

(age 4-8 on disk)
Count and Add (formerly Tinks'a Mazes)
Being a Smart Thinker (formerly Land of the buddy Bots) ABC's
(formerly Tink's Adventure) Subtraction (formerly Subtraction Fair) Spelling (formerly Tuk Goes to Town) Developing Thinking Skills
(formerly Castle Clobber)
Get all 6 titles for only $\$ 39.95$
$\$ 19.95$ each (on cartridge)

Archon Ball Blazer Battle Zone Blue Max
David's Midnight Magic Defender
Donkey Kong Jr.
Fight Night
Final Legacy
Joust
Hardball
Jungle Hunt
Moon Patrol
Ms. Pac Man
One on One (XL/XE only) Rescue on Fractalas Robotron:2084
Star Raiders II
$\$ 9.95$ each

HAYDEN SOFTWARE

(all on disk)
Monkey See, Spell (age 4-9)
Don't shot that Word (age 6+)
(age 4-10)
Micro Add/subtract
Micro Subtraction
Micro Multiplication
Micro Division
(Pre-School)
Shape Up! Match Up!

$\$ 19.95$ each
(on cartridge)
Pole Position
Galaxian
Millipede
Pengo
Dig Dug
\$24.95 each
(on cartridge)
Gato
Lode Runner
Barnyard Blaster (req. light gun) Pastfinder

SUPER SPECIALS

RECONDITIONED ATARI MERCHANDISE
All merchandise has been tested and reconditioned and is in like-new condition except where noted by the letter "B" after the price. The "B" price indicates product may have scratches or other superficial surface marks. 30 day warranty. NO free shipping on this merchandise.

$\begin{gathered} \text { ATARI } \\ \text { TRAK BALL } \\ \$ 9.95 \end{gathered}$ SPICE UP THE ACTION IN YOUR ARCADE GAMES!	ATARI SPACE AGE JOYSTICK $\$ 5.00$	1020 COLOR PLOTTER/PRINTER $\$ 29.95 \mathrm{~A}$ 40 Columns wide Includes paper and color pen set	$\begin{gathered} 850 \\ \text { INTERFACE } \\ \$ 89.95 \\ \text { LIMITED SUPPLY } \end{gathered}$	ATARI BOOKKEEPER \$14.95 - NO BOX (\$19.95 WITH RECON KEYPAD) $\$ 24.95$ - IN BOX (29.95 WITH RECON KEYPAD)
$\begin{gathered} 400(16 \mathrm{~K}) \\ \text { COMPUTER } \\ \$ 29.95 \\ \text { 48K UPGRADE KIT } \\ \$ 25.00 \end{gathered}$	$\begin{aligned} & 1030 \\ & \text { MODEM } \\ & \text { WITH } \\ & \text { EXPRESS! } \\ & \$ 29.95 \\ & \text { GET ONLINE TODAY } \end{aligned}$	$\begin{gathered} 800(48 \mathrm{~K}) \\ \text { COMPUTER } \\ \$ 79.95 \end{gathered}$ INCL. BASIC CART \& MANUAL	NUMERIC KEYPAD \$7.95 HANDLER DISK USE WITH BASIC \& BOOKKEEPER	DISKETTES AS LOW AS 20 CENTS 10 FOR \$4.00 100 FOR $\$ 29.95$ 1000 FOR \$200 MOST ARE UNNOTCHED WITH OLD SOFTWARE

SHIPPING INFORMATION - Prices do not include shipping and handling. Add $\$ 5.00$ for small items ($\$ 8.00$ Min. for Canada). Add $\$ 8.00$ for disk drive. Calif. res. include 7\% sales tax. Mastercard and Visa accepted if your telephone is listed in your local phone directory. Orders may be pre-paid with money order, cashier check, or personal check. Personal checks are held for three weeks before order is processed. C.O.D orders are shipped via UPS and must be paid with cash, cashier check or money order. International and APO orders must be pre-paid with cashier check or money order. $\$ 20.00$ minimum on all orders. All sales are final - no refunds - prices are subject to change. Phone orders accepted TUESDAY THROUGH FRIDA Y from 10:00 am to 6:00 pm PST.
We carry a complete line of ATARI products and have a large public domain library. Write or call for free catalogue. (408) 749-1003 TUE - FRI 10AM - 6 PM

1360
1370
1380
1390
1400
1416
1420
1430
1440
1450
1460
1470
1480
1490
1506
1510
1520
1536
1546
1550
1560
1570
1580
1596
1600
1616
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800

BYTE $6,5,7,130,5,6$
$, B Y T E ~ 8,7,132,5,6,9$
-BYTE 100,2,7,130,114,110

- BYTE 14, $96,130,168,116,2$
- BYTE 7,130,98,100,4,6
,BYTE 135,5,6,98,100,7
-BYTE 5,6,9,7,133,98
, BYTE 100,7,5,6,5,7
-BYTE 130,5,6,2,7,130
-BYTE 98,100,14,7,130,98
-BYTE 100, $2,7,130,5,6$
-BYTE 2,7,130,98,100,10
-BYTE 7,133,98,100,7,5
, BYTE 6,5,7,4,96,130
-BYTE 108, 116,2,7,130,14
, BYTE 15,11,7,131,13,98
- BYTE 100,2,7,130,98,100
-BYTE 14,7,130,98,100,2
-BYTE 7,130,98,100,4,6
- BYTE 2,7,130,98,100,7
-BYTE $7,135,1,2,3,4$
- BYTE 7,120,112,12,96,130
-BYTE $106,118,14,7,130,98$
- BYTE 104, 6,96,130,102,100
- BYTE $8,7,135,1,2,3$
-BYTE 4,7,5,6,4,7
- BYTE 130,5,6,3,7,130
-BYTE 120,112,12,96,130,108
- BYTE 110,2,96,130,106,118
-BYTE 2, $7,130,98,100,2$
-BYTE 7,130,114,110,6,96
-BYTE 130,168,116,2,7,130
, BYTE 98, 100,2,7,130,98
-BYTE 100,4,0,2,7,130
-BYTE $98,100,4,7,130,5$
- BYTE 6,3,7,130,5,6
-BYTE 5,7,130,5,6,2
, BYTE 7,130,5,6,6,7
-BYTE 130,5,6,2,7,130
-BYTE 5,6,8,7,130,98
- BYTE 100,6,7,130,98,100
,BYTE 2,7,130,5,6,3
,BYTE 7,130,5,5,4,7
, BYTE 133,5,6,7,5,6
-BYTE 16,7,130,8,10,2

1810 1820 1830
1846
1850
1860
1870
1880
1890
1900
1910
1920
1936
1946
1950
1960
1970
1980
1990
2006
2010
2020
2030
2946
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
-BYTE 7,130,98,100,2,7
-BYTE 130,5,6,2,7,130

- BYTE 98,100,2,7,138,98
-BYTE 100, 13, $7,1,2,3$
- BYTE $4,98,100,2,7,130$
- BYTE 98,106,2,7,130,98
-BYTE 100,4,0,2,7,130
- BYTE 120,112,30,96,130,27
- BYTE 28,4,96,130,108,116
,BYTE 4,7,130,98,100,6
,BYTE 7,130,98,100,4,7
- BYTE 130,114,110,2,96,130
- BYTE 108, $116,4,7,130,114$
-BYTE 110,2,96,130,108,116
-BYTE 4,7,130,114,110,4
-BYTE $96,130,108,116,6,7$
- BYTE $130,98,100,4,7,132$
-BYTE 5,6,98,100,2,7
- BYTE $136,120,112,4,96,2$
- BYTE $7,130,98,100,2,7$
-BYTE 130,98,100,2,7,130
- BYTE 98,100,4,0,13,7
- BYTE 130,5,6,21,7,130
-BYTE 5,6,2,7,130,98
BYTE 100,4,7,132,98,100
-BYTE $8,10,4,7,130,98$
-BYTE 100,4,7,134,98,100
-BYTE 5, $5,98,100,4,7$
- BYTE 134,98,100,5,6,98
- BYTE 100,4,7,130,98,160
, BYTE 2,7,132,14,15,98
- BYTE 100,6,7,130,98,100
- BYTE 6, 7,130,98,100,10
- BYTE 7,130,98,106,2,7
- BYTE $130,98,106,2,7,130$
-BYTE 98, 100, $4,0,130,114$
-BYTE 110,28,96,130,108,116
- BYTE 6,7,134,14,15,98
-BYTE $100,5,6,2,7,130$
- BYTE $98,100,6,7,130,120$
-BYTE $112,4,96,130,106,118$
- BYTE 2,7,130,120, 112,4
- BYTE $96,130,106,118,2,7$
- BYTE 130,120,112,4,96,130
, BYTE 106, 118, 4,7,130,120

MegaByte

 Computers and Electronics Call TOLL FREE 1-800-255-5786 ORDERS For any inquiries 1(713)338-2231 109 W. BayArea Plase Call Fop Low Priceson Many Webster, Tezas - Prices on Many 77598Other liens!!

[^1]

LISTING 5: ASSEMBLY

0100	SAUEHD: SNOW. PT4
0110)
0120	
0130	Intro 5creen for 5NOWPLOW
0140	
0150	;by: Bryan Schappel
0160	
0170	
0180	
0190	CL5 :BYTE $592,500,500,542,500$
0206	WEATHER , $5 B Y T E$ "national weat"
0210	. 5BYTE "her seruice bulle"
0220	- 5BYTE "tin snaw w
0230	.5BYTE "aming'"
0248	STARTT UBY th turn off ubi
0260	STY UFLG
0270	STY ICEON ; storm off
0280	J5R SNDOFF
0290	LDK IFLAG ;falling
0300	BNE INTRO ; letters?
0310	LDA
0320	5 TA CON50L
0330	LDA \#90 jscroll len
$\begin{aligned} & 0346 \\ & 0356 \end{aligned}$	CP1 5TA 5LENGTH
0369	CPI LDA SET+50200, ${ }^{\text {STA }}$ SETZ, ;out
0370	LDA
0386	STA SET+50200, Y
0390	STA 5CRLMEM, Y
0400	INY
0410	BNE CPI
0420	
0430	INTRO LDA tis jcopy high score
0440	TSLP LDA SCR5, X ; to intro

;
;
$\stackrel{3}{5}$

STA TOPSCORE+12, H ;screen
DEX
BPL TSLP
LDH 47
WNLP 5 TA HPOSPQ, ; Players off
DEK
BPL WWLP
;
TAY set up scroll
STA SCRLMEM, Y ; message
DEY
BNE CWLP
LDY \#53
WCP LDA WEATHER,Y
5 TA SCRLMEM +22 , Y
DEY
BPL WCP
;
LDY Hu pput in colors
GCL LDA CLS,Y
5 TA coloro,y
DEY
BPL GCL
LDA H0 jptrs for chset
STA INDZ ; move
5TA INDR
STA COLOR2
LDA \# >5ET2
STA INDR+1
LDA \# $\boldsymbol{H}[5 E T+50200]$
5TA IND2+1
LDA 〈IDLST ;intro diist
STA SDL5TL
LDA \# >IDLST
5TA SDLSTL+1
LDA IFLAG first time?
BNE SKIPSNOW for snow
INC IFLAG iletters?
J5R GETRAND
LDA $\# 15$
5TA IIY3
LP1 LDA \#15
5TA ICNT
LOOP LDY ICNT
LDA RANDS, Y
TAY
LDA TAB16, Y
STA INDR
STA IND2
LDY IIY3
LDA (INDR), Y
JSR MOUEDN
BCS SKIP 5NOW
DEC ICNT
BPL LOOP
DEC IIYZ BPL LPi
KKIPSNOW LDY \#o STY LMS
5K1 LDA SET2, Y STA SET+50200, Y
INY
BNE 5K1
Scroll Weather Message
ISCRL LDK 47
ISC STH HSCROL
LDA
STA RTCLOK

WT1 LDA CONSOL

BEQ SKPPER
CMP \#6
BEQ GSTART
LDA RTCLOK
BEA WTI
DEX
BPL I5C
LDY LM5
INY
CPY SLENGTH
BNE ISK
LDY 40 STY LM5 JMP I5CRL

A better way to build an Atari ST hard drive system begins with our ST Host Adapter and ends with your choice of standard components.
In other words, you're not limited to those pre-packaged "Atari-only" systems any longer. The ST Host Adapter gives you the support you've been waiting for, whether you connect an SCSI controller to industry standard drives or connect SCSI imbedded drives directly to the ST Host Adapter.

Features include: Built in battery backed-up Time/Date Clock - Supports up to 7 SCSI devices from the ST DMA port • Allows daisy chaining of the DMA port • 100% compatible with Atari and Supra Hard Drive Systems - ICD's AUTOBOOT software allows booting directly from the Hard Drive - Includes format software and handlers to run standard drives with SCSI controllers (our SCSI controllers support two drives) - ICD's hard disk handler is the only one available with built in verify and error retry to ensure error-free read and write.
Build a better ST drive system with our ST Host Adapter. It's a great way to get the system you want . . . exactly the

| | 俋 |
| :--- | :--- | :--- | :--- |

2300 2310
2320
2330
2340
2350
2360
2370
2380
2390
2406
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2576
2580
2590
2600
2610
2620
2630
2646
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740

. BYTE $500,540,500,540$ - BYTE \$FF, \$FD, SFF,\$5D -BYTE SFF, SFF,SFF,SFF - BYTE $\$ 00, \$ 01, \$ 00, \$ 51$ -BYTE \$00,500,\$00,\$00 -BYTE SFF, SFF, SFF, \$5D -BYTE SFF, SFD, SFF, SFD - BYTE $\$ 00,500,500,551$ - BYTE \$00, \$01, \$00,501 -BYTE SFF, SFF, SFF, $\$ 75$ - BYTE SFF, S7F, SFF, S7F - BYTE \$00,\$00,\$00,\$45 BYTE $\$ 00,540,500,540$ BYTE \$FF, \$7F, $5 F F$, $\$ 75$ -BYTE SFF, SFF, SFF, \$FF - BYTE $\$ 00, \$ 40,500,545$ -BYTE $500,500,500,500$ BYTE SFF,SFF,SFF,SFD BBYTE SFF, SFD, SFF, SFD BYTE $\$ 00,500,500,501$ -BYTE \$00,501,500,501 -BYTE SFF, SFF, SFF, S7F , BYTE SFF, \$7F, SFF, S7F . BYTE $500,500,500,540$ -BYTE $500,540, \$ 00, \$ 40$ - BYTE SFF, STF, SFF, STF BYTE SFF,SFF,SFF, SFF BYTE $500,540,500,540$, BYTE $500,500,500,500$ BYTE SFF, SFD, SFF, SFD ,BYTE SFF, SFF, SFF, SFF BYTE $\$ 00, \$ 01,500, \$ 01$, BYTE \$00,500,\$00,500 BYTE \$FF, SEF, SFF, \$55 BYTE SFF, SFF, SFF, SFF - BYTE $500,508,500, \$ 55$ - BYTE $500, \$ 00, \$ 00, \$ 00$ -BYTE \$18,\$18,\$18,\$18 - BYTE $\$ 18, \$ 18, \$ 18, \$ 18$, BYTE $500, \$ 7 E, 578, \$ 7 \mathrm{C}$ -BYTE \$6E,\$66,\$06,500 -BYTE $\$ 08, \$ 18, \$ 38, \$ 78$ -BYTE $538,518,508, \$ 00$.BYTE $\$ 10, \$ 18,51 C, \$ 1 E$.BYTE

Tool Kit

Now SpartaDOS is reaching new potentials with a little help from our SpartaDOS Tool Kit! It's packed full of power and ready to boost SpartaDOS with utilities written especially for the serious user.

- RENDIR.COM: rename subdirectories $■$ VDELETE.COM: verify delete
- WHEREIS.COM: find a file anywhere on disk
- MIOCFG.COM: save and reload M I/O configurations on floppies
- SORTDIR.COM: sorts directories many ways - DISKRX.COM: SpartaDOS disk editor and recovery tool
- DOSMENU.COM: menu for Atari DOS 2 lovers - COMMAND.COM: programmable function keys, IBM-type console keys and ;nore.
Each innovative tool commands a new form of energy and strength when teamed with our already powerful SpartaDOS. There's really no limit to what these power tools can do for you:

1220 Rock Street
Rockford, Illinois 61101
(815)968-2228

BBS: (815)968-2229

Software piracy continues to choke our industry, hurting both software companies and ullimately end users like you and me.

Arthur Leyenberger is a human factors psychologist and freelance writer living in New Jersey. He has written over 100 articles about computers in the last five years and continues to be an Atari enthusiast. When not computing he enjoys playing with robotic toys.

by Arthur Leyenberger

Piracy. It has become a major problem over the years for software manufacturers with every computer. ANALOG magazine has discussed the issue many times before. Readers have responded time and time again. But it's still a problem. Finally, there may be some hope for thwarting the efforts of software pirates.

The hope comes from John Weaver, who has written several programs for the ST. His programs are distributed by Michtron, Inc., the most prolific ST software vendor on the face of the earth. The specifics of the legal case are that a teenager allegedly operated a pirate bulletin board system from which users could download copyrighted programs. One of the programs was Cards, Weaver's card playing simulation for the ST.

John Weaver, who owns the copyright of Cards, is suing not just the teenager, but also his parents. Although pirates have been sued by software companies before, this may be the first case in which the pirate's parents have also been sued. According to Jonathan D. Wallace, Esq., the computer lawyer representing Weaver and a partner in the New York City law firm of Meatto, Russo, Burke \& Wallace, the case raises a question of first impression under the copyright law. "Our argument is that a parent who supplies the computer equipment and telephone line which is used to operate a pirate bulletin board, and who then tolerates the trading of pirated software, contributes to the copyright infringement," Wallace said.
"Since teenagers usually have no assets with which to pay a judgment, holding the parents responsible will give a strong incentive to families not to condone this type of behavior." At the time of this writing, the case is pending in federal court in New York.

As far as I am concerned, more power to Weaver, et. al. I strongly believe that parents have increasingly refused to take responsibility regarding their children for a number of things from sex education to manners to teaching right from wrong. I also believe that software piracy continues to choke our industry, hurting both software companies and ultimately end users like you and me. Hopefully the judge and/or jury will decide that parents can indeed be legally responsible for acts of software piracy by their teen-age children. I'll keep you posted on the outcome of this important case.

In discussing this case and the general problem of software theft with Gordon Monnier, president of Michtron, I learned that Michtron has gone after other software thieves as well. Gordon told me that most of the people caught in the act settle out of court or even on the spot. In fact, they caught this guy in Florida in the process of printing a catalog. As a result, they seized his computer equipment and he settled on the spot. In the past year, Michtron has closed down five bulletin board systems (BBS) and one person that was selling illegal copies of their software outright.

Many of these so called pirate BBS also have stolen telephone and bank credit card numbers. Few people realize that the telephone company is constantly looking for this type of illegal activity. Further, the secret service keeps a database of stolen credit card users and illegal BBS operators. That hot shot computer hacker who runs a pirate BBS may be surprised later
in life when he applies for a top secret clearance for a programmer position and is denied the classification.

The Ah-haa phenomenon

Ever have the experience where you are trying to figure something out and then the answer suddenly dawns on you. When it happens, you say to yourself, "Ah-haa". You're not alone, this experience happens to everybody. Recently it happened to me.

For years, at least the several years that Jack Tramiel and family have been running Atari, I have wondered why they have not been more active in the U.S. computer market. You probably know the story already-Atari talks a good line about advertising computers, shows commercials at trade shows and then nothing substantial appears in the media. If anything, Atari stresses their game machines in the U.S. market.

At the same time, I keep hearing about Atari in the European computer market. Well folks, ah-haa. It now seems clear to me why Atari is more active overseas. First of all, with the ever-declining value of the U.S. dollar, the dollar is worth more in Europe. As a result, Atari gets more bang for the buck when it spends money promoting its products over there.

Second, Atari is the number one sell-
ing computer, at least in France and Germany. Understandably, they do not want to lose their sales lead in those markets. Finally, Atari is still a relatively small company with limited financial resources. They must carefully choose where they spend their advertising and promotion dollars. Whatever they spend in one area means that much less they can spend somewhere else.

Given the resurgence of computer games in the United States and Atari's strength in that market as well as their strength in the European computer market, their marketing policies make sense. However, the ST has not done as well as expected in the US and continued marketing emphasis elsewhere may doom the ST and make it an orphan computer. None of us wants that to happen but Atari will have to do more than make idle promises and rely solely on the hobbyist market is they want the ST to succeed in this country.

Happy anniversary

It has been about a year now since Atari acquired the Federated Group, a southern California based retail consumer electronics chain. Atari originally said they would buy the 67 -store chain for about 67 million dollars in order to increase dis-
tribution of their computers. For over two years, Atari has had difficulty trying to persuade retailers to carry its wares.

Although the Federated Group of stores had been losing money for almost a year prior to the purchase, Atari believed that its financial backing would put the retail chain back in the black and perhaps allow it to begin expanding again. Moreover, Atari was really looking for better distribution. The acquisition was also said to help make Atari a vertically integrated company and give Atari an outlet for new non- computer electronics products that were to be introduced within the year.

It's been a year. Little is heard from the Federated Stores. More importantly, little is heard from Atari about the Federated Stores which probably means they are not fulfilling their initial purpose. And what about those new "noncomputer electronics products" that Atari said they would be introducing? I have not heard about nor seen them. Another smoke screen?

What of Atari's distribution? Has it increased? Have those of us concerned about Atari's future been asking this same question for years? According to a recent New York Times article, some computer retailers such as Computerland have decided not to carry Atari machines

N D

An electronic spreadsheet is prohably the most useful of all programs. Unfortunately, it may also be the most misunderstood.

"partly because Atari has an image as a video game company whose machines would not appeal to corporate customers." Other retailers "are wary of Atari's chairman Jack Tramiel, who in his days as head of Commodore International, undermined his dealers by slashing prices and moving his computers to mass merchandisers such as K mart", the article said.

With little new 8 -bit software being released and the ST not fulfilling its initial promises, Atari will need more than just video games to keep it going in the future. Perhaps now is the time for those "noncomputer electronics products."

Spreadsheets

You may have been wondering what all of the fuss is about regarding programs such as Lotus 1-2-3 on IBM PCs and PC clones or Visicalc and SynCalc for the 8-bit Atari computers. Perhaps you have heard of these programs or know someone who uses them but just don't know why. If this is true, read on.

An electronic spreadsheet is probably the most useful of all computer programs. Unfortunately, it may also be the most misunderstood. It's a shame that more people don't understand and appreciate
the fundamental simplicity of a spreadsheet and therefore the tremendous power that is available in this type of program.

Electronic spreadsheets did not just appear out of thin air. Like many useful categories of computer programs, they are modeled very closely on their manual counterpart. Before computers came along, accountants, bookkeepers, statisticians and even families have used spreadsheets to keep track of everything from depreciation to profit and loss to household budgets. A spreadsheet is nothing more than a two-dimensional set of names and numbers. The key ingredient is rows and columns! If you can understand rows and columns then you understand the underlying principle of a spreadsheet.

Anyone who has ever filled out an income tax form has used a form of a spreadsheet. An income tax form has a vertical list of items such as gross income, number of dependents, deductions, taxable income and tax due. Next to this column is another one for the numbers or dollar amounts. In a spreadsheet, the numerical column may contain one of three types of entries: an input value such as your gross income and number of dependents; a calculation such as taxable income which in this simple example is gross income minus deductions; and a fixed amount such as the amount of tax (for a given taxable income level).

In the precomputer age (not that long ago) spreadsheets were manually done on columnar paper. This paper had horizontal and vertical lines printed on it which made it easy to write the item names down along the left column and units of time across the top line. For example, one could create a home budget that had all of the monthly expenses listed in the first column with all remaining columns labeled by months for one year. Then to find, say the electric bill for July, you would read down the page to find the row containing the electric bill item and straight across to the July column. Remember, rows and columns.

An electronic spreadsheet is nothing more than an old fashioned spreadsheet that is calculated on a computer. Columns are labeled with units of time such as months, quarters, or years and line items are listed down the left side of the form. The major advantage offered by a com-
puterized spreadsheet is automatic recalculation of results. Make one change on an electronic spreadsheet and all calculations that use that value will instantly change. This happens automatically compared to the erase-recalculate-rewrite procedure necessary when using a manual spreadsheet.

A bargain

When I first bought my Atari 800 in 1982, I spent $\$ 200$ on Visicalc, the very first electronic spreadsheet. Visicalc was originally written for the Apple II computer and in fact was the sole reason that many people bought an Apple back in those days. In June 1983, Synapse (no longer in business) announced the Syn series of software, three separate programs for database, business graphics and spreadsheet applications. There were several other programs in the series as well.

By January 1984, Synapse struck a deal with the old Atari for Atari to distribute SynFile +, SynTrend and SynCalc. Just as these products were being shipped out the door, Jack Tramiel and company bought Atari and promptly canceled the Synapse arrangement. Synapse never got paid by Atari for their effort and material, they had to lower the price in order to move as many as possible and Synapse ultimately went out of business as a result. The entire matter is still waiting to be settled in court.

However, SynCalc was an excellent product. To this day, it has features that even the programs running on the big rigs don't have, such as the use of menus that build the command and display it as you type. That way you learn what the command is and are eventually weaned from the menus. Other features of SynCalc include variable- width columns, sorting data either numerically or alphabetically, compatibility with AtariWriter, a 255 row by 128 column maximum matrix and operation with one or two disk drives.

SynCalc was originally scheduled to sell for $\$ 99$. Within a year after it was released it was selling at a street price of about $\$ 35$. Recently I saw it for $\$ 20$ at a megamall toy store. If you have an Atari 8-bit computer and you don't have a spreadsheet for it, SynCalc is the best. If you see it, pick it up. You will be glad you did. A
his month we look at the best in fantasy games. This is without a doubt my favorite genre; a logical progression of my affinity for the classic dungeon and dragon games. And as we saw with war-game simulations, we again find that the computerized fantasy games open the $\mathrm{D} \& \mathrm{D}$ genre to a much larger audience, with a mighty microprocessor replacing complex result tables and multisided dice. In the category of fantasy games, there are three lines of evolution which are the best.

The first, and what I consider the best

Ace of Aces line to follow, is the Phantasie series from SSI. This trilogy follows a brave band of adventurers through their trials and tribulations as they tackle the evil dark lord Nickademus. These games were the first fantasy games to tap the vast graphic power and menuing capabilities of the ST. The 8 -bit versions, while lacking the sensational graphics, still exhibit the engaging story lines and puzzles that
boost Phantasie above all the competition. The only drawback is a lengthy and needlessly involved setup procedure. Unfortunately for 8 -bit owners, as of this writing, only the first two installments are available for our machines.

For those who want a little more difficulty, Datasoft offers up Alternate Real-

Using your arsenal of explosives,

sleeping gas, fake I.D. papers and

a camera and mine detector, you

infiltrate the enemy compound.

Ace of Aces
ity. The premise is abduction basedyou've suddenly been transported away from your comfortable home and into an alternate reality, a medieval world full of adventure and danger. So far there are two such worlds, The City and The Dungeon. Both play pretty much alike, allowing simple interaction between you and each world's many inhabitants. The main drawback of the game and a contributing factor to its difficulty, is the fact that you cannot save your position before attempting to survive a dangerous situation. Saving a game does just that-saves the game and terminates the program. The savegame disk is then used to restart. This operational aberration calls for an altogether different play strategy.

Beginners may find refuge in the Wizard's Crown series. These simple games are the perfect introduction to computerbased D \& D for experienced gamers, due to their moderate level of difficulty. The goal is to search for the wizard's crown, using eight characters which you design. Wizard's Crown and its sequel, The Eternal Dagger require 50 hours of play to complete, and it is 50 hours well spent indeed, with the only drawbacks being an overly complex and poorly designed setup procedure and difficult-to-use command structure.

Unfortunately I have no new fantasies to share with you this month. I hope that Phantasie III is soon converted to 8 -bit, but until that time we'll just have to make do with one of these.

Infiltrator
Mindscape
3444 Dundee Road
Northbrook, IL 60062
64K disk, \$29.95

Ace of Aces
 Accolade
 20813 Stevens Creek Blvd.
 Cupertino, CA 95014
 64K disk, \$29.95

This month we have not one, but twocount them-two flight simulators. Yes,
into a market saturated with similar games, Accolade and Mindscape have chosen to launch their own air-based battle and strategy games. And while I tired long ago of flight simulators, I'll try to hang onto my sanity just long enough to tell you if they're air worthy.

In Mindscape's new game, Infiltrator, you are Captain Johnny "Jimbo Baby" McGibbits, the ${ }^{\top}$ nfiltrator. Your mission, should

Infiltrator you choose to accept it, is to complete three separate assignments, each comprised of a flight into enemy territory, a ground mission and the flight out. As an Infiltrator, success will hinge on your ability to remain hidden from the enemy, sneaking in and out of hostile territory, fighting only when forced to. Your craft is the Gizmo DHX-1 Attack Chopper, nicknamed "The Snuffmaster," and before you hit the skies you'll have to take a little time out to learn at least some of this aircaft's incredible and diverse capabilities.

The features found in this chopper read like Rambo's Christmas wish list: air-to-air heat-seeking missiles, a pair of rapid-fire 20 mm cannons, a turbo booster to get you out of tight situations, flares and chaff to decoy enemy fire and sophisticated communications, guidance, control and surveillance systems. In the spirit of a true simulation, nearly every system is present and accounted for, and you are required to step through as many procedures to get this chopper off the ground as you would find yourself doing with the real thing.

Start by turning on the battery and initializing the computer system. Pressing I starts your engine. Use the joystick to control movement, while the keyboard arms your various offensive and defensive weapons systems. Pressing the fire button

launches your attacks. And if this sounds complicated, wait until you see the cockpit. Once you learn what every dial, read out and warning light in the ultrasophisticated cockpit is trying to tell you, you'll never be in the dark again. In addition to the expected compass, artificial horizon and altimeter and airspeed indicator, warning lights and gauges keep you apprised of critical fuel levels, engine and battery temperatures and engine damage. Sensors detect incoming missiles, while your computer terminal displays craft status and a tactical map. A communications facility allows limited contact with other aircraft, a correct response to messages being required to avoid an attack. And you'll want to avoid a lot of battles if you hope to reach your destination.

Upon arrival, you exit your cockpit and proceed on foot. Using your arsenal of explosives, sleeping gas, fake ID papers and a camera and mine detector, you infiltrate the enemy compound, searching rooms, photographing secret documents. You will be informed when you have completed the mission, so you can hightail it back to your chopper, having saved the world yet again.

As if this were not excitement enough for a worldclass hero, we have yet another flight simulator this month. Into the oversaturated market Accolade launches Ace of Aces, a combat flight simulator pat-
terned after the Mosquito, a maverick RAF fighter bomber of World War II. On your way to becoming "Ace of Aces," you work your way through four missions, involving air battles, train bombings, sub sinkings and the eradication of VI rockets before they reach mother England. In each mission, the threat of aerial dog. fights with Nazi fighters is always present.

After booting up this game, you might want to start in practice mode to familiarize yourself with the controls. The opening sequence (a series of photographs depicting an aircraft scramble as an airraid siren blares annoyingly in the background) is best skipped by pressing the joystick button. Lacking the complexity of Infiltrator, your cockpit in Ace contains only the bare essentials-not unexpected, as this is a primitive WWII aircraft. The pilot's view contains dials indicating airspeed and altitude, while the engineer's view allows you set the throttle and flaps and monitor fuel and engine speed.

The navigator's map shows your posi tion relative to enemy installations, and using the bombardier's view you drop bombs and inventory your armaments. You move through these views by pressing a keyboard number or clicking the joystick button twice and manipulating the stick. An on-screen figure of your plane reminds you which stick direction activates each view, and the figure doubles

On your way to becoming "Ace of

> Aces," you work your way through air battles, train bombings, sub sinkings and the eradication of V1 rockets.

as a trouble indicator. For example, the rear of the plane lights up when the tailbased navigator should be consulted.
Once you gather up enough courage to chance a real mission, you'll be presented with a menu allowing you to designate what types of targets you'll pursue. Next, load your plane with the correct mix of weapons and fuel.
The manual reminds you that bombs are a must for trains and subs, while lots of fuel will be needed for long missions and engaging enemy fighters in dogfights. And once the enemy is vanquished, the mission is over. Unlike Infiltrator, Ace never requires you to leave the cockpit. The complexity in each of these games makes control hard to learn. I found Ace to be more intuitive, thus a little easier to get a grip on. On the other hand, while Infiltrator was a little harder to play, it was also more challenging. However, I did feel that Infiltrator went a little too far in trying to make you feel you were in the pilot's seat. For instance, there's a lot of foolishness as you start each game; the program requiring you to get a number from one console and input it into another to set your guidance system. One would hope a craft as sophisticated as the Snuffmaster would have peripherals that can communicate with one another. The controls on Ace seemed a little more responsive, although both aircrafts were sluggish, lacking the instant response of arcade and ST-based simulators. To make things worse, Ace occasionally accessed
the drive before displaying a new screen. Graphics again were very similar, although I'd have to award this skirmish to Infiltrator. Its cockpit was just a little more detailed. And while both featured a vast number (for 8-bit games) of gauges and indicators, all highly detailed, enemy planes were crudely drawn, explosions less than spectacular. To round out the graphics area, a special mention for Ace is in order for its creative views looking out over each wing.

The manual for Infiltrator is thick and quite complete. It sets up the scenario of the game, then goes on to describe the control and design of the Gizmo DHX-1 in great detail. Numerous illustrations help you quickly identify the various systems in the cockpit and the entire manual is written in a lighthearted way. While I found that the constant "cuteness" of the prose became annoying, it was, at least, not boring. A handy reference card is also included. The documentation for Ace of Aces is much less elaborate (and less cute) than Infiltrator's. However, it does contain most of what you'll need to know about the game along with ample diagrams, so you won't be wondering what the various displays will look like. Unfortunately for 800 owners, both games require 64 K and will not settle for anything less.
It's kind of hard to pick a winner here; I feel like a voter-powerless and forced to choose the lesser of two evils. In this case, that would have to be Ace of Aces. It was easier to learn and offered most of what Infiltrator did, save the ground mission, which I could have done without anyway. But either of these games will let the prospective pilot take to the skies.

Plundered Hearts
 Infocom
 125 Cambridge Park Drive
 Cambridge, MA 02140
 48K disk, $\$ 34.95$

With the release of their latest work of interactive fiction, Infocom has produced
the first such story written by a woman, as well as made its entry into the genre of romance. Spearheading this two-fisted attempt to attract more female purchasers, Amy Briggs has crafted a pirate story full of intrigue, adventure and, yes, romance. Unfortunately, I think most of Infocom's regular audience (presumably male) are likely to forsake this bold new endeavor.

In Plundered Hearts, you are a beautiful young woman who has just received a message detailing how a grave illness has befallen your father. He now lies near death on a tropical island, and an unknown friend, Jean Lafond, claiming to the governor of the island, has penned the note, because your father is too weak to even lift a hand. He pleads that your encouragement may be his only hope. Being a loyal, loving daughter, you board one of the governor's ships and set sail.

But two days into the voyage, pirates attack. The captain of your ship, Bartholomew Davis, who might be considered less than heroic, immediately sees in you a way to divert the pirates, saving his own skin. You are locked in his cabin. Moments later, the door breaks in, and a vile piece of humanity grasps you in his arms. He clutches you tightly, fouling your face with a breath reeking of rum. Just moments before he has his way with you, he slumps, having been knocked unconscious by his leader, one Captain Nicholas Jamison, also known as the Falcon. He too has a note from your father,

Spearheading this two-fisted

attempt to attract more female
purchasers, Amy Briggs has crafted
a pirate story full of intrigue,
adventure and, yes, romance.

labeling Lafond a traitor, and telling you to trust and accompany the Falcon. Does the fact that you feel so attracted to this fine specimen of a man make it a little too easy to trust him? But then, what choice do you have, as your ship burns, the cowardly Davis lying slain at your feet? You go with the Falcon and begin a journey unlike any you've ever imagined.

Since this game is targeted, presumably, at first-time Infocom customers, I'll take a minute to cover some program specifics. (Regular users will want to jump to the next paragraph.) In interactive fiction, you control the game by issuing commands to the main character in a story. In theory, as in a good book, you project yourself into this character. What distinguishes Infocom stories is the complexity of the program's parser and the power of its prose. The program understands (and occasionally demands) complete sentences, containing subject, verb, direct object and adjectives. Abbreviations speed you through often-used commands, while special commands allow you to save your place in the novel, control verbosity and print a journal.

And the simplicity with which you communicate with the program allows you to fully enjoy the rich descriptions and action. Just relax and let the story unfold.

Getting back to Plundered Hearts, included in every package is a velvet reticule (a pouch) containing a 50 guinea note and a letter from Jean Lafond. Also included is the standard Infocom instruction manual, explaining how to play the game, giving helpful tips and highlighting common problems. Finally, a special coupon will allow purchasers to enjoy Cutthroats, another Infocom pirate story, at a special price. But still, I have a lot of trouble recommending this game to everyone.

This is because romance is my least favorite literary form. My personal tastes, firmly ingrained by a childhood filled with Twilight Zone, Star Trek and bad B movies, run toward horror, fantasy and science fiction. So, it should not come as a surprise that I didn't care much for the story. Newcomers will find the puzzles to be standard Infocom fare, and advanced players will find it relatively easy.

Plundered Hearts should be looked at as just what it is, a romantic work of fic-
tion. One trip to the bookstore will convince you that romance is a viable, popular and profitable literary genre. And with the game's program design and prose up to Infocom's traditional high standards, romance readers might just find it worth their while to turn on to these pages.

That's a wrap for this month. But before I go, some old business. I took a look at Bridge 5.0 last month, and in the interim a new version has been released. A cursory test has revealed that although the last version's weak bidding has been strengthened, the auto-play mode still needs some work. Whether you want to hold out for yet a better version is dependent on how much you want to play bridge. Next month: the latest simulation from SSI and yet another flight simulator. Until then, good gaming.

In the six years since Steve joined the Atari community, he has spent thousands of hours playing hundreds of games. Between games, he is an attorney and trust officer in a large Ohio bank. Steve is still searching for the perfect game.

Awardware
Hi-Tech Expressions
1700 N.W. 65th Ave.
Suite 9
Plantation, FL 33313
48K disk, \$14.95

Reviewed by Matthew J.W. Ratcliff

AwardWare is a super new printer graphic art program from HiTech Expressions, another in their progressive line of products that consistently support the Atari home computers. Design and print your own awards, certificates, ribbons, tickets, coupons, checks and more.
AwardWare is like a specialized version of Print Shop. Its functions are similar in many ways. You may choose from 20 different borders, five different fonts, and 25 different graphics in building your awards. What makes AwardWare specialized is that all the page layouts are done for you.

When run, AwardWare presents an impressive graphics introduction display, followed by the main menu. From here you can move on to "Printer Setup," "Create a QuickAward," "Create Awards and More," "Create an AwardDisk" or "Exit." AwardWare exits the program by forcing the system to reboot instead of your having to power cycle the computer: a nice touch. Creating a QuickAward simply allows you to output an award from a layout that has been all or partially completed for you. To create an AwardDisk, you create an award then copy the award disk. You can then send it to a friend with instructions on how to print the last award. I found it odd that the manual would actually instruct you to copy the program and give it to a friend. However, selection of AwardWare's page designs are difficult without documentation. (This is by no means an approval by the manufacturer to make illegal copies of the software, just permission for limited copying of the software for a specific purpose. This policy is quite unusual, and misleading to the uninformed.)
The manual is well written. It begins
with a tutorial on creating your first award, explaining all the parts of the display. Generally you will select the option to "Create Awards and More." This will bring up another menu at the bottom of the screen with the

options to edit the last template (the last award created is always retrievable from disk), create Awards/Licenses, Letterhead/Memos, Checks/Tickets/ Coupons, Ribbons or Miscellaneous.

After a subheading, such as Ribbons, is selected, a smaller menu box pops up showing a number. Press the up and down arrows to change this value, and RETURN to select. You will have to refer to the manual at this point. Every menu selection has its own section in the manual, showing in complete detail all the awards you can choose from, along with the reference number you need to enter.

Next the graphic is shown at the top left of the screen, with the first editable area displayed. At the top right, a template menu is shown, along with a description of the current field type. Pressing RETURN brings up a menu at the bottom left of the display, showing all the graph-
ics, borders, fonts, or whatever is appropriate for this area, that you can choose from.

You can move freely from one field on the graphic to the next, and back again. Changes are quick and easy to make. When finished, select PRINT to make a hardcopy of your award, in either final or draft mode.

While printing, you will see a lot of graphics junk on the display. The program uses the screen RAM as a work area while building the printer graphics output. This is done just to let you see the program working. It's a bit more interesting than a simple "Working, Please Wait" prompt.

Printer setup can be selected from the main menu, a wide variety of printers is supported. If AwardWare doesn't support your printer, a printer-driver construction utility is provided. You will need a good printer reference manual and some understanding of special printer codes. You probably won't have to use the printerdriver editor, however, since 19 different printers are supported, with drivers included for Panasonic, Okidata and Star printers. You will also find some unexpected drivers for the Star NB-24 (24 pin printer), Apple Imagewriter and even the Hewlett Packard QuietJet.
There are 60 different award, license layouts to choose from. Three are five different letterhead and memo designs, each having five border layouts to select from. There are two checks, one ticket, four coupons and four ribbon designs available. Under miscellaneous you will find a scroll, key, trophy, newspaper and more. In all, there are nearly 100 unique basic awards you can create. I have certainly had a lot of fun creating awards for my friends at work, ribbons for my sons and "kiss" coupons for my wife. I haven't come across any apparent bugs in the program at all. AwardWare is an impressive little program for the price. I was pleased to find that AwardWare is not copyprotected, allowing me to make a backup copy, as well as install it on my ICD FA-ST hard drive for faster operation (running under SpartaDOS).

M/L Editor

 For use innnachine language entry.

by Clayton Walnum

Editor provides an easy method to enter our machine-language listings. It won't allow you to skip lines or enter bad data. For convenience, you may enter listings in multiple sittings. When you're through typing a listing with M/L Editor, you'll have a complete, runnable object file on your disk.

There is one hitch: It's for disk users only. My apologies to those with cassette systems.

Listing 1 is M/L Editor's BASIC listing. Type it in and, when it's free of typos, save a copy to disk, then run it.

On a first run, you'll be asked if you're starting a new listing or continuing from a previously saved point. Press S to start, or C to continue.

You'll then be asked for a filename. If you're starting a new listing, type in the filename you want to save the program under, then press RETURN. If there's already a file by that name on the disk, you'll be asked if you wish to delete it. Press Y to delete the file, or N to enter a new filename.

If you're continuing a file, type in the name you gave the file when you started it. If the program can't find the file, you'll get an error message and be prompted for another filename. Otherwise, M/L Editor will calculate where you left off, then go on to the data entry screen.

Each machine-language program in ANALOG Computing is represented by a list of BASIC data statements. Every line contains 16 bytes, plus a checksum. Only the numbers following the word DATA need to be considered.

M/L Editor will display, at the top of the screen, the number of the line you're currently working on. As you go through the line, you'll be prompted for each entry. Simply type the number and press RETURN. If you press RETURN without a number, the default is the last value entered.

This feature provides a quick way to
type in lines with repetitions of the same number. As an added convenience, the editor will not respond to the letter keys (except Q for "quit"). You must either enter a number or press RETURN.

When you finish a line, M/L Editor will compare the entries' checksums with the magazine's checksum. If they match, the screen will clear, and you may go on to the next line.

If the checksums don't match, you'll hear a buzzing sound. The screen will turn red, and the cursor will be placed back at the first byte of data. Compare the magazine listing byte by byte with your entries. If a number is correct, press RETURN.

If you find an error, make the correction. When all data is valid, the screen will return to gray, and you'll be allowed to begin the next line.

Make sure you leave your disk in the drive while typing. The data is saved continuously.

You may stop at any time (except when you have a red screen) by entering the letter Q for byte \#1. The file will be closed, and the program will return you to BASIC. When you've completed a file, exit M/L Editor in the same way.

When you've finished typing a program, the file you've created will be ready to run. In most cases, it should be loaded from DOS via the L option. Some programs may have special loading instructions; be sure to check the program's article.

If you want the program to run automatically when you boot the disk, simply name the file AUTORUN.SYS (make sure you have DOS on the disk.).

Abstract

The two-letter checksum code preceding the line numbers here is not a part of the BASIC program. For more information, see the "BASIC Editor II' in issue 47.

LISTING 1: BASIC LISTING

DELPHI, The Official Guide

by Michael A. Banks Brady Books/Simon \& Schuster 488 pages, $\$ 19.95$

Reviewed by Clayton Walnum

There's no arguing the fact that the major online services are complex systems that can be daunting to even the most experienced user. To the new subscriber, however, the numerous commands required to navigate the network can be intimidating to the point of frustration. Although DELPHI is more userfriendly than most systems of its type, there's no avoiding the fact that to provide the greatest "bang for the buck" a certain amount of complexity must exist. DEL. PHI is an immense and lab. yrinthine web. After all, there are literally hundreds of areas the subscriber may access (everything from an online encyclopedia to more esoteric areas such as AMSEX [American Sexology,] and the Hearing Impaired Forum), and each area has unique features the user must become familiar with. What to do?
If you're a subscriber to DELPHI, I've got great news. There's a new book by Michael A. Banks that absolutely has to be added to your library. DELPHI, The Official Guide will not only escort the beginners among you effortlessly through your inaugural DELPHI wanderings, but will also surprise you old masters with myriad tidbits that will make your online excursions even more fruitful than they were before. In fact, this book is so complete that DELPHI abandoned their own manual and took on DELPHI, The Official Guide as the guide provided to new subscribers at sign-up time. (Could be why it's called the official guide, eh?)

Almost 500 pages in length, the book is loaded with "screen shots" that illustrate exactly what you'll see on-screen during your DELPHI sessions. Command line examples, showing what should be typed at the various prompts, are also included. When you combine the sample screens with the command illustrations, you find that reading the book is almost like being online. You could easily learn the basics of the network without ever touching your computer.

Part 1 of the book, "Getting Started," begins with chapters that describe DELPHI
in a general way and explain what is required to access the services. The basics of communicating with DELPHI are then discussed, including the use of the various types of menus and the entry of the control key and immediate (global) commands.

These introductory chapters are followed by a description of DELPHI's main menu. In this section of the book, each of the primary areas is briefly described, preparing you for the more detailed chapters to come.

The real "meat" of the book lies in Part 2, the "DELPHI Members Handbook," where each of the primary areas gets a chapter unto itself. This 340 -page section is where you'll spend most of your time, where you'll learn how to send E-mail, how to participate in a CO (conference), how to join and steer your way through SIGs (Special Interest Groups), how to upload and download files, how to manage your work space, how to use DELPHI's editors and so on. In short, everything you need to know is described in careful detail, with plenty of examples to ensure understanding.

Part 3, the "DELPHI User's Guide," offers
many tips to help you use your time on DELPHI more efficiently, and Part 4, "Reference", includes a DELPHI index, the DELPHI membership agreement, a troubleshooting section and a list of access numbers for. Telenet, Tymnet and DATAPAC. Finally wrapping up the book is a lengthy glossary and an equally lengthy index. An extra bonus is the quick reference card bound into the back of the book. After removal (no sweat; it has a perforated edge), it will reside right next to your keyboard, where you can Grab it the next time you need a quick answer to a question regarding DELPHI. The book's author, Michael Banks, is not your average computer-hacker-become-writer. He is a seasoned professional who has to his credit many non-fiction books and science-fiction novels. He also has monthly telecommunications columns in several magazines (not the least of which is his "Database Delphi" column in ANALOG Computing) and has published articles and short stories almost beyond counting. To further substantiate his credentials, I should mention that he is the primary manager of DELPHI's Science Fiction and Fantasy SIG.

If you're already a subscriber to DELPHI, you may order a copy of $D E L$ PHI, The Official Guide right online. The book is also available in book. stores throughout the country or by direct order from the publisher. New subscribers to DELPHI will receive the book as part of their sign-up package, a bargain that's hard to ignore.

DELPHI, The Official Guide is a complete, carefully organized and wellwritten book that provides much more information than one has a right to expect for a measly $\$ 19.95$. (Equivalent computer-related handbooks may run as high as $\$ 35$.) An immense amount of labor went into its creation, and it is you and I who gain the fruits of that labor-all the fruits except the royalties.

GameD WO

- ith small programs, it's very easy to just jump right into things and start programming. Unfortunately, it's not

 so easy once they get larger; there are so many things to take care of, that you can get totally lost and confused very quickly. The solution is to take an intermediate step between your mind and the program; something that makes sense to you and is easily converted into a program. This step is called a flowchart.Despite the value of using a flowchart, very few people actually use one, especially in the world of microcomputers. And, if you promise not to tell anyone, I'll let you in on a little secret. Up until this column, I had never used a flowchart either! And I've been programming for seven years now, including some very complicated video games. So I'm not go-
ing to come at you and say, "Well, you should use flowcharts because that's what I was taught to do, and it's worked for me." Instead, I'll explain the advantages and disadvantages that I ran across in using my very first flowchart.

First of all, let's take a look at a simple example of a flowchart. This is for the part of a game that updates the score. In

this particular game, which is actually the BASIC Invaders game that we'll be developing together, a bonus base is given at 10,000 points. The sample flowchart is shown in Figure 1.

So what does this all mean? First of all, notice how easy it is to understand what's going on. That's because, apart from the funny squares and diamonds, everything is written in English, not BASIC. If you were to take a look at the BASIC program that accomplished the same thing, chances are it would be much more difficult to understand what it was doing. At the same time, it's now quite easy to take this flowchart and make it into a program; a lot easier than taking just the original idea.

What is it exactly that a flowchart does to make programming easier? When you go to write a program, you start off with an idea of what you want the program to do. Unfortunately, computers don't run on ideas. You have to be able to break this idea down into a series of very concrete steps, and then write these steps in a language that the computer will understand. Most people (including myself), try to go straight from the idea to the computer, taking care of the intermediate steps in their head. As I said before, this works fine if the resulting program is very small, but most people don't have the capacity to keep a lot of precise steps organized in their head for a larger program. The result is a program that takes a long time to write, and even longer time to debug, and ends up looking like a mess. (Be honest, when was the last time you wrote a program that looked as neat and orderly as the ones in the magazines?) Believe me, I know from experience! Anyway, the point I'm taking too long to make is that a flowchart organizes your thoughts for you. It breaks down your terrific idea into a series of concrete steps that can then be easily translated into a program. It also often has the added benefit of letting you

see in advance where things might go wrong.

Now that you're (hopefully) convinced about the benefits of a flowchart, let's take a look at how to create one. Of course, there is nothing to say that you have to follow these rules. Whatever works best for you is fine, but the following guidelines are a good place to start.

As you saw in our example, flowcharts are made up of a whole bunch of shapes connected by arrows. Inside these shapes are descriptions of each step. Why are there different kinds of shapes? Because there are different kinds of steps. Figure 2 is a summary of the shapes and the kinds of steps they represent.
Input / Output

Figure 2

You'll see these shapes or symbols throughout future columns, and at the end of this column when we present the complete flowchart for BASIC Invaders. Actually, that's not quite true. You won't see the Input/Output symbol, largely be-
cause there is no I/O in the program. How should you use this symbol? In whatever way makes sense to you. As I said before, a flowchart is meant to make things easier for you, so you should use it in whichever way you're most comfortable with.

Now that you know what a flowchart is and how to make one, you're probably wondering whether or not it's worth the effort to use one. After all, it does take time to do a flowchart, and that time could otherwise be spent programming. Well, we've already seen most of the advantages of flowcharts. They break down a program into small steps that can then be easily programmed; which means that it takes less time to do the programming, which makes up for the time it takes to do the flowchart. Another advantage is that it's often easy to look over a flowchart and see where problems might arise, thus helping you to get rid of bugs before they occur.

But what about the disadvantages? After all, I've already told you that I lived without flowcharts for seven years; so there must be some disadvantages to them, right? The big disadvantage to flowcharts is the fact that they aren't the easiest things to create, and especially to change. If you're writing a program and you make a mistake or forget something, then it's easy to take out a line or add one. But with a flowchart, things start to get messy. Take it from me, never do a flowchart in pen! And, there's no way around it, flowcharts do take time. Even though they'll eventually save you time on the programming, that's no consolation while you're spending hours with a piece of paper and not getting any results on the screen.

So what's the verdict? Should you use flowcharts, or shouldn't you? My advice is to try them at least once and see what you think. Maybe they'll work for you and maybe they won't. (Just think, you paid money for advice like this!) Personally, I plan on using flowcharts again, but not for everything. I'm one of those impatient souls that needs to see immediate results on the screen.

So much for our philosophizing, now it's time to get into a real program. As I'm sure you know by now, we're going to be developing a BASIC version of the popular Invaders-type program. Appropriately enough, we're going to be calling it BASIC Invaders. In any case, we'll start off by presenting the complete flowchart for the game. As we go through the game piece by piece, it will help you to look at the flowchart and see how the BASIC code relates to it. So, without any further
ado, Figure 3 is my flowchart for the BASIC Invaders game.

Look it over carefully and then keep it in mind as we write the program. Although we won't be referring to it anymore, it will be used implicitly as we put things together.

Another introduction

Don't worry, this will be relatively short and painless. It is an introduction to the program examples that you will be coming across throughout the rest of the text. These examples serve two purposes. First of all, they are examples of the techniques that we will be covering. In this sense, I will do as much as possible to see that it is obvious how similar sections would be written for games other than the one we will be writing here. Second of all, they are, of course, a part of the final game, our BASIC Invaders. Thus they will eventually all fit together to create the game. Because of this, our line numbers are going to be a little off the wall. This is to save you time, since you will eventually be able to merge all the segments together to make a complete program. Thus the line numbers in the various segments are those from the final program.

And now, our first program. What! How can this be? Well, I mentioned before that I'll be giving you a lot of machinelanguage routines. If you've seen machine-language routines before, you know that they are made up of either a lot of numbers or a lot of funny characters, depending on which technique the author uses. And if you've tried typing in any of these routines, you know it can be a real pain. This column's routines have a grand total of 997 such funny characters. So what do we do? My answer to this problem is the program shown in Listing 1. As you can see, it has numbers, not characters, to make life easier for you. But when you run it, the computer will take these numbers and turn them into characters for you. Neat, huh? Not only that, but it will also check to make sure that you typed in the numbers correctly, and will tell you where you made a mistake if you didn't. Assuming there are no mistakes, the program will create some new lines, because they are the ones that we'll be using in our game. To do this and get rid of the other lines, use one of the follcwing:

LIST "D:MACHINE", 29000, 32510
LIST "C:", 29000, 32510

Of course, which one you use depends on whether you have a disk or cassette.

Figure 3

Now for a summary of each of the routines stored in the lines the program creates:

29000-VBLOFF turns off any VBLANK routines you use.

29500-MOVMEM moves things around in memory.

30000 -MISCLR clears one or more of the missiles.

30500-MEMCLR clears memory.
31000 -SCROLL takes care of fine and

PLAYER BASE
coarse scrolling during VBLANK. 31500 -SCRLON gets SCROLL going. 32000.32070-PMOVE lets you move players and missiles around easily during VBLANK, which means that you don't have to worry about it from BASIC.
$32500-32510$-this isn't a routine, but rather the data for the redefined characters we'll be using in BASIC Invaders.

Throughout the rest of the columns, you should make sure that these lines are included in any segment that uses one of the above routines. Do this by ENTERing the lines back in before or after typing in the segment.

Now, after all this hassle, we're finally ready to start programming a game.

Looks aren't everything (but they're a start)

The first step to writing a game, obviously, is deciding what kind of game you want to write and exactly how things are going to work in it. That's what we did with the flowchart. The next step is deciding how you want the game to look. Perhaps one of the hardest things for a programmer to do is design a game's graphics. Notice that I said "design," not "program." Before all the dazzling details make it to the television screen, they have to be drawn on paper, and there aren't too many programmers that are also artists. Therefore it often takes more time to get the screen looking just right than it does
to actually program it. So let's take a look at what goes into getting a good-looking game.

We'll start with the obvious. What are the various kinds of shapes that have to be designed for BASIC Invaders? Well, there are three types of aliens and two versions of each (so that they appear to be moving). There's an alien ship and the player's base. We also have the barriers that protect the player. Did we miss anything? How about the explosion that occurs when the player shoots an alien? I bet
shapes have to be made up of dots, let's go! The shapes we'll be using are shown in Figures 4 and 5.

Of course, it's real easy to look at these shapes and say, "Yup, that's how they look," but what if you were designing an original game? How do you go about coming up with your own shapes? To start with, you should decide how big you want them to be. In making this decision, you should keep in mind how you're going to put the shapes on the screen. For example, anything that moves is either going
you didn't think of that. That's about it, though, as far as the shapes are concerned. Of course, there is also the text, such as "SCORE" and so forth, but that's already been created for us. So we're left with a total of nine shapes that have to be designed. Remembering that these

UERSION ONE

INUADER EXPLOSION
Figure 4
to be stored in characters or players; in which case you'll have some multiple of eight dots available for width and height (any number up to 256 for player height). So if you end up with a ship that's, say, nine dots wide, you may want to consider shortening it to eight, or taking advantage

UERSION TWO

BOTTOM

Figure 5

Game DesignW orkshop

LISTING 1：BASIC

UW 100 GRAPHICS $0:$ ？Make sure you have 5 aved a copy of＂i？＂this program before RUNning it＇IFOR $K=1$ TO 1050：NEKT K
 （H）＝DAT：NEKT X
PE 130 DATA $20,41,26,36,112,11,657,128$
$0 J 140$ FOR $K=1$ T0 8：TOT＝0：N＝0：G05山B 1000
NH 150 FOR N＝1 TO LNCKJ：READ DAT：TOT＝TOT + DAT
HP 160 IF N／25〈〉INT（N／25）THEN 190
OP 170 T＝TOT：TOTE日：READ DAT：IF DAT《 T THE N 7 H．．．ERROR＂：STOP
0Y 180 G0SUB 1000
JW 190 NEKT N：READ DAT：IF DAT《 TOT THEN？ ．．．ERROR＇ ：STOP
LM 200 NEKT K
AJ 210 RESTORE 20000
$0 \cup 220$ FOR $K=1$ T0 8：L＝28500＋500＊H：G05山B 1 010
BP 230 FOR N＝1 TO LNGK】：READ DAT：？CHR\＄ 82 7）：CHRS（DAT）
TJ 240 IF N／25＝INT（N／25）THEN READ DAT
NF 250 IF N／90＝INT $\mathbb{N} / 901$ THEN G05UB 1020： $L=L+10: 6054 B 1010$
RQ 260 NERT N：READ DAT：G05山B 1020
MA 270 NEKT K
OH 280 END
LW 1000 ？ ？＂CHECKING LINE＂： $19000+1000 \%$ H＋10ッTNT（N／25）；RETURN
DJ 1010 GRAPHIC5 0：POSITION 2，4：？L；＂MLA NG5＝1；CHRS（34）；RETURN
CU 1920？CHRS（34）：＂：RETURN＂：？＂CONT＂：P05 ITION 0，0：POKE 842，13：5TOP
UF 1030 POKE 842，12：RETURN
LG 26000 DATA $104,162,228,160,95,169,6,32$ $, 92,228,162,228,160,98,169,7,32,92,228$ ， 96,2548
QY 21000 DATA $104,104,133,207,104,133,206$ $, 104,133,209,104,133,208,104,170,160,2$ $55,138,208,2,104,168,177,206,145,3719$
EW 21010 DATA $208,136,192,255,208,247,230$ $, 207,230,209,202,224,255,208,233,96,33$ 49
TH 22000 DATA $104,104,133,207,104,133,206$ $, 104,104,168,104,104,133,208,177,206,3$ $7,208,145,206,136,192,255,208,245,3931$
YN 22010 DATA 96,96
JJ 23000 DATA $104,104,133,204,104,133,203$ $, 104,170,169,0,160,255,224,0,208,4,164$ $168,169,0,145,203,136,192,3396$
PM 23010 DATA $255,208,249,230,204,202,224$ ，255，208，234，96，2365
FT 24000 DATA $173,251,6,240,104,173,252,6$ $, 141,4,212,173,253,6,141,5,212,173,254$ $, 6,240,79,173,48,2,3327$
JY 24010 DATA $133,204,173,49,2,133,205,16$ $0,3,177,204,201,65,240,61,201,1,240,52$ $, 41,112,201,64,144,48,3114$
I\＆ 24020 DATA $201,80,144,42,200,173,255,6$ $, 48,18,177,204,24,216,109,254,6,145,20$ $4,260,177,264,165,0,145,3337$
SL 24030 DATA $204,144,20,177,204,56,216,2$ $37,254,6,145,204,200,177,264,233,0,145$ $, 204,144,2,260,206,206,208,3984$
NY 24040 DATA $189,169,0,141,254,6,141,251$ $, 6,76,35,228,1556$
IE 25000 DATA $104,104,170,104,168,169,6,3$ $2,92,228,96,1273$
HM 26009 DATA $164,104,104,141,188,6,104,1$ $64,141,228,6,141,231,6,141,234,6,141,2$ $37,6,238,237,6,141,240,3235$
WO 26 ＠10 DATA $6,238,240,6,169,127,141,199$ $, 6,162,9,160,4,173,47,2,41,16,240,9,16$ $9,255,141,199,6,2765$
FA 26020 DATA $162,19,160,8,140,200,6,160$ ， $9,189,206,6,153,189,6,202,136,16,246,1$
$69,7,174,240,6,160,2969$
OH 26036 DATA $108,32,92,228,96,32,238,6,1$ $89,152,6,24,109,200,6,168,205,199,6,14$ $4,3,172,199,6,189,2809$
BK 26040 DATA $152,6,56,237,200,6,141,201$, $6,136,177,204,200,145,204,136,240,5,20$ $4,201,6,176,242,169,0,3450$
BE 26050 DATA $145,204,96,32,238,6,189,152$ $, 6,56,237,209,6,168,176,2,160,0,189,15$ $2,6,24,109,200,6,2759$
MY 26060 DATA $141,201,6,200,177,204,136,1$ $45,204,200,204,199,6,240,7,204,201,6,1$ $44,239,240,237,169,6,145,3855$
TM 26070 DATA $204,96,138,72,162,4,32,238$ ， $6,104,170,189,160,6,56,237,200,6,168,1$ $76,2,160,0,189,160,2935$
H0 26080 DATA $6,24,109,200,6,141,201,6,13$ $6,177,204,61,202,6,145,204,200,200,189$ $, 202,6,73,255,49,204,3206$
DF 26090 DATA $136,136,17,204,145,204,200$ ， $200,204,199,6,176,7,264,201,6,144,221$, $240,219,189,262,6,49,204,3719$
UU 26100 DATA $145,204,136,189,202,6,49,20$ $4,145,204,96,138,72,162,4,32,238,6,104$ $170,189,160,6,24,109,2994$
IH 26110 DATA $200,6,168,265,199,6,144,3,1$ $72,199,6,189,160,6,56,237,200,6,141,20$ $1,6,200,177,204,61,3,152$
BK 26120 DATA $202,6,145,204,136,136,189,2$ $02,6,73,255,49,204,200,200,17,204,145$, $204,136,136,240,5,204,201,3699$
CO 26130 DATA $6,176,224,189,202,6,49,204$, $145,204,200,189,202,6,49,204,145,204,9$ $6,189,189,6,133,204,24,3445$
GY 26140 DATA $216,173,188,6,125,194,6,133$ $, 205,169,0,133,77,96,162,0,188,128,6,4$ $8,106,185,120,2,41,2707$
M5 26150 DATA $6,208,23,189,148,6,221,136$ ， $6,240,43,169,0,133,77,254,148,6,189,14$ $8,6,157,0,208,208,2931$
WH 26160 DATA $28,185,120,2,41,4,208,21,16$ $9,0,133,77,189,148,6,221,132,6,246,9,2$ $22,148,6,189,148,2652$
WY 26170 DATA $6,157,0,208,188,128,6,185,1$ $20,2,41,2,208,17,189,152,6,221,144,6,2$ $40,30,254,152,6,2668$
Uस 26180 DATA $32,229,6,138,16,21,185,120$, $2,41,1,208,14,189,152,6,221,146,6,240$ ， $6,222,152,6,32,2385$
EX 26190 DATA $226,6,232,224,4,208,140,162$ ， $0,189,164,6,240,83,189,168,6,240,56,1$ $6,23,222,156,6,222,3182$
NF 26200 DATA $156,6,189,156,6,157,4,208,2$ $01,47,176,32,169,0,157,164,6,240,53,25$ $4,156,6,254,156,6,2959$
EL 26210 DATA $189,156,6,157,4,208,201,208$ $, 144,9,169,6,157,164,6,240,106,208,196$ $, 189,172,6,240,57,16,3208$
K0 26220 DATA $23,222,160,6,222,160,6,32,2$ $32,6,189,160,6,201,16,176,39,169,0,157$ $, 164,6,240,74,254,2920$
AI 26230 DATA $160,6,254,160,6,32,235,6,18$ $9,160,6,24,216,105,16,205,199,6,176,4$, $41,240,208,7,169,2830$
AK 26246 DATA $0,157,164,6,240,42,189,176$, $6,61,0,208,240,13,169,255,157,176,6,15$ $7,184,6,169,0,157,2938$
NU 26256 DATA $164,6,189,180,6,61,8,208,24$ $0,13,169,255,157,180,6,157,184,6,169,0$ $, 157,164,6,232,224,3141$
KA 26260 DATA $4,208,145,76,98,228,0,759$
NF 27000 DATA $0,0,0,0,0,0,0,0,1,3,7,13,15$ $, 2,5,10,128,192,224,176,240,64,160,80$, 1,1321
MD 27616 DATA $3,7,13,15,5,8,4,128,192,224$ $, 176,240,160,16,32,8,4,15,29,31,23,20$, $2,16,32,1403$
PT 27020 DATA $240,184,248,232,40,64,2,20$ ， $23,29,31,15,4,8,64,40,232,184,248,240$, $32,16,3,15,31,2245$
CW 27030 DATA $25,31,6,9,48,192,240,248,15$ $2,248,96,144,12,3,15,31,25,31,13,24,12$ $, 192,240,248,152,2437$
HA 27940 DATA $248,176,24,48,0,9,5,0,12,0$, $5,9,6,32,64,0,96,0,64,32,16,16,56,56,1$ 24,1092
山山 27050 DATA $124,198,198,520$
of the other seven dots if you're going to use two characters or players. Things that won't be moving, such as the barriers in BASIC Invaders, will be drawn with bitmapped graphics; in which case they can be any size you want (as long as they don't overlap into the part of the screen that has character graphics).

Once size has been determined, the next step is to come up with the actual shape. The best way to do this is to get some graph paper with reasonably small squares, and block off a section with the number of squares you'll be using for the shape (each square represents a dot). Then sketch a rough version of how you want the shape to look within this area, and color in the squares that your sketch passes through.

You now have your first version, with heavy emphasis on the word "first." This is the stage where somebody will look at your brilliantly designed alien and say, "Hey, nice-looking rock." Don't despair, now is the time to experiment by erasing and filling in dots until you arrive at something that looks good. Luckily, there is a limited number of possible dot combinations; so you're bound to arrive at something that looks right sooner or later. Of course, erasing and filling in dots can be a pain in the you-know-what. The alternative is to use a character editor, which allows you to make these changes on the screen instead of on paper.

Once you get some shapes that, hopefully, you're satisfied with, what's the next step? Are you finally ready to put your creations up on the screen? Not quite. The final step in designing the graphics is to decide how everything is going to be laid out on the screen. Again, this sounds rather obvious, but nothing is obvious to a computer. Everything must be precisely specified. This step involves deciding where the alien saucer is going to fly, where the barriers will be placed, where the player and the score will go and how far across the screen the aliens and player can travel. A lot of these choices will have to do with the display list, which we'll cover later, but the basics can be decided upon without it. The main thing to keep in mind as far as the display list is concerned is that you can't have character graphics and bit-mapped graphics on the same line. Other than this one restriction, you should lay things out in the way that looks best to you. Figure 6 shows the way we're going to do things for BASIC Invaders.

Of course, there's no reason why you can't change any of this to suit your own tastes. As a matter of fact, that's a good
point to bring up at this stage. Nothing that I do here, with the exception of the programming techniques, has to be done the way it is. If you don't like my aliens, or if you think later that the scoring system should be different, or if you run across anything that you think can be improved, then go ahead and do it. One of the easiest ways to learn how things are done is to make changes. If you're lucky, then your changes won't work right away, and you'll have to go into the program more deeply to find out what's going wrong. I've learned more by doing this than by any other method; so go ahead and play.

Before we get into the actual programming, there's one more think that should be included that I've already touched on, but haven't really explained. We've already decided that we'll use character graphics for the aliens, bit-mapped graphics for the barriers and (as it will turn out), player/missile graphics for the alien ship and the player's base. How exactly do we go about making these decisions though? Is there a set of criteria that we should use in deciding what to use for which, or can we just do whatever suits us? Obviously I wouldn't have brought it up if we could just choose randomly; so let's take a quick (because it is relatively simple) look at the decision process.

Just what's on the screen!

There are two basic types of objects on the screen: those that move and those that don't. There are three basic types of graphics that can be used: character, bitmapped and player/missile. Each of these three can be used for either type of object, so you can see that there are a lot of possible combinations. Let's start with the objects that stay still, because they're the easiest. The main rule here is that if the object will change during the course of the game, as in the case of the barriers in Invaders, you should use bit-mapping. The reason is simple; it's much more difficult to change characters than it is to PLOT and DRAWTO. So when should you use character graphics? Sometimes you'll have an object that doesn't move, but is nonetheless animated. Perhaps it's a building with a window that opens and closes, or a flag that waves in the breeze. As you'll see in the columns to come, this is much easier to do with character graphics than it is with bit-mapping.

I said that player/missile graphics (PMG) could be used for nonmoving objects as well. Why should you want to use a player for something that doesn't move? After all, the benefit of PMG is that it
makes movement easier, right? Right, but it also adds some extra colors to the screen. And, if you're not using all four players, there's no reason why you can't have the ones you're not using sit around and make the screen more colorful.

Things that move

On to the things that move. As long as we're on the topic of PMG, we may as well start there. PMG is best at moving objects over or under other objects. It's the easiest way to move something, period. Of course, you are restricted to objects that are no more than eight dots wide, unless you position two or more players side by side. This means that PMG would not be of help in moving the invaders in our game.

How would we move the invaders? Would we use bit-mapped graphics or character graphics? Because they're relatively slow, bit-mapped graphics are not good for much more than moving a couple of dots around, which means that the answer is character graphics (if it's going to have to move).
Believe or not, that about covers it. You'll find that most games written in BASIC tend to rely a little too much on PMG for movement and bit-mapped graphics for nonmovement or background. Why? Because redefining a character set is usually more difficult than PLOTting and DRAWTOing as far as the background is concerned, and finescrolling (which is needed for smooth character movement) is almost impossible to do well from BASIC. Still, we're going to change things a little, by giving you some handy machine-language routines that can be used just as easily as a BASIC statement to get fast professional-looking PMG and fine-scrolling. With the help of these routines, you should be able to break away from the normal and come up with some truly impressive looking games-and all of this without having to learn one bit of machine language. But we're out of time now. See you.

YouOwn an Atar Why Be Forced to Read a Magazne tha

 YOUR ATARI RESOURCE CENTER

 YOUR ATARI RESOURCE CENTER
 ANALOG Computing continues to offer exciting products for you and your Atari Computer. And we're the only magazine for the Atari 8 -bit computer line that hasn't allowed its content to be virtually taken over by coverage of the Atari ST. We include only a minimal amount of ST material so that you can stay informed of what's happening with the 8 -bit computer's brother.

Whether you own a reliable ol' 400 or 800 , a shiny XL, new XE or even an XE Game Machine...we offer usable utilities, entertaining educational software, dynamite disk programs and great graphics and games. In fact, our readers still use ANALOG programs that were published over five years ago!

So when software companies turn their heads to other computers, you can turn yours to the one that supports your 8-bit Atari. And that's ANALOG Computing.

ANALOG's Best! Over 88 of ANALOG Computing's best and
 most requested programs are now available on this series of ten diskettes. The programs are all ready to run and come with complete documentation on the flip side of each floppy diskette. Select from Graphics,

Educational, Utilities 1, Utilities 2, Disk Utilities and Games Disks 1, 2, 3, 4 and 5. Only $\$ 9.95$ each (plus $\$ 1.50$ shipping per order). Specify disk title when ordering.

Unlock the secrets of your Atari Computer! This handy 16-page pocket reference card covers information you need when programming your 8 -bit. Error codes, internal codes, PEEK \& POKE locations, machine-language aids, graphic mode specs and BASIC commands with abbreviations are only some of the helpful items at your fingertips. The analog Computing Pocket Reference Card, only $\$ 7.95$ each!
(Plus $\$ 1.50$ shipping and handling.)

6502
 C Computer. Devotes 500^{0} of fis Pagges to the Atari S T?

An Atari 8-bit Extra. While other "Atari" 8-bit magazines just make claims on how they cover your machine, we come through! Over 130 pages of new, never before published material. Programs like Easy Type, Dragon Chase, Pastels, Display List Mod, Tactics, Trivia and Create-a-base are all documented and ready to type in and run. . . all for just $\$ 8.95$! (Add $\$ 1.50$ for shipping.)

Get the Extra on disk! This special offer for Extra owners gets you all of the programs in an Atari 8-bit Extra on disk. Avoid typing errors, hours of tedious typing and frustration. Just plug in the disk and you are ready to roll! Two, ready-to-run double-sided floppies, \$24.95. (Disks only. Atari 8 -bit Extra sold separately. Please add $\$ 1.50$ for shipping.) From the magazine that always gives you something Extra. Why let your fingers do the walking when your Atari can do the running? Get this issue on disk! Every month we offer all of the programs in ANALOG Computing on disk. . . ready to run. Even if you don't know anything about machine language or don't own the Action! cartridge, we offer programs in converted formats so they'll run on your Atari computer. Get this issue for just $\$ 12.95$ (plus $\$ 1.50$ shipping).

INSDI: THIS SSUW:

MANDLEBROT SET (for 8-bit) DELPH GUIDE REVIEW AWARDWARE REVIEW

[^0]: Jim Rogers has had his 800XL for four years, and is completely self-taught in both BASIC and machine language.
 continued on page 40

[^1]: TRDERING TMPOROMTION:
 Dealer inquiries Welcomel

