

Softside

PUBLISHER
Roger W. Robitaille, Sr. ASSOCIATE PUBLISHER ASSOCIATE PUBLISHER
Randal L. Kottwitz

MANAGING EDITOR ART DIRECTOR
Nancy Lapointe
PROGRAMMING EDITOR
Jon Voskuil
EDITORIAL DEPARTMENT
Scott Adams
Rich Bouchard Mary Locke Lance Micklus Mark Pelczarski
Joan Truckenbrod
Alan J. Zett
ADVERTISING MANAGER
Sue Rowland
PRODUCTION MANAGER
Lynn Wood
PRODUCTION DEPARTMENT
Lynda Fedas
Karen Lawrence
Denise Lafleur
CUSTOMER SERVICE
Cindy Schalk
DEALER SALES
Kathie Maloof
STAFF
Jerry Butler
Mary Edwards
Donna Jean
Bea Kimball
Doris Miller

Photographs by Dean F. H. Macy

SoftSide is published each month by SoftSide Publications, 6 South Street, Milford, New Hampshire 03055. Telephone 603-673-0585. Second class postage paid Milford, New Hampshire and pending at additional mailing offices. ISSN: 0274-8630. Subscription rates: USA and Canada, $\$ 30.00 / 12$ issues. First Class USA, APO, FPO, Mexico, $\$ 40.00 / 12$ issues. Other foreign countries, $\$ 62.00 / 12$ issues. Media subscription rates: For USA, magazine and cassette, $\$ 75.00 / 12$ months. Magazine and disk, $\$ 125.00 / 12$ months. APO, FPO, Canada, Mexico, add $\$ 20.00 / 12$ months. Other foreign add $\$ 50.00 / 12$ months.. All remittances must be in U.S. funds. Mail subscription inquiries to SoftSide Publications, 515 Abbot Dr., Broomall, PA 19008. Entire contents © copyright March, 1982, SoftSide Publications. All rights reserved.

POSTMASTER - send address changes to:
SoftSide Publications
515 Abbot Drive
Broomall, PA 19008
If you do not receive your May issue of SoftSide by May 6, contact Softside Publications, 515 Abbot Drive, Broomall, PA, 19008 or call $1-800-345-8112$ (In PA call 1-800-662-2444).

TRS-80 ${ }^{\oplus}$, Apple, and ATARI ${ }^{\oplus}$ are registered trademarks of The Tandy Corporation, The Apple Computer Company, and Warner Communications, respectively. Envyrn, Envyrnment, Envyrnese, and diversions thru Envyrn are registered trademarks of Roger W. Robitaille, Sr.

Cover illustration by Nancy Lapointe

FRONT RUNNER

21

Microtext 1.2

by Jon R. Voskuil
SoftSide's basic BASIC word processor for all three systems acquires line editing capabilities, plus a few changes to the two previous installments.

FEATURES

9

Sensuous Programmer

by "J"
"J" concludes a year-long exploration of the ins and outs of the intimate art of BASIC programming with some philosophical meanderings.

11

My Side of the Page

by Lance Micklus
For those who like to encourage their computers to talk to other people's computers, this extensive discussion of modems should prove to be very helpful.

15

Introduction to

Word Processing
Review by Dave Albert
18

Word Processing:
 An Art in Transition

by Tom Stanton
This informative essay on the history of the written, printed, and electronic word leads to some fascinating questions about the future.
96
Machine Head
by Spyder Webb

DEPARTMENTS

5 Editorial

6 Input
8 Outgoing Mail
16 Calendar
26 Bugs, Worms, and Other Undesirables
95 New Products

APPLE/SIDE

34 Enhanced Disk Version
 SEMAPHORE by Richard A. Bryant

Semaphore is a form of "word processing" that predates computers by quite a few years. This unique Hi-Res graphics program will enlighten you about a kind of flagwaving quite unfamiliar to most of us.

36 Disk and Cassette Versions
apple F.O.O.L.S. by Jon R. Voskuil
DV and CV subscribers get a sneak preview of the "Apple Fully Optimized Operational Language System" which will appear in listed form in next month's magazine.

37 k-Byter

BATTLESHIP by David Bahr
The old favorite board game is revisited in this compact computerized incarnation.

Programs

white lightning by Randy Fox
You'll have to develop quick reflexes to keep from zapping yourself out of this game. Your score soars as you intercept elusive graphics blocks, but each time you get one it's harder to maneuver.

42 POSTER MAKER by Fred J. Condo
If you have the need (or just an irresistable urge) to print out large-letter posters, this is just what your Apple needs.

48 Comparative Review:

THREE APPLE TEXT EDITORS
SuperText II, SuperScribe II, Apple Writer II reviewed by Jon R. Voskuil

ATARI/SIDE

54 к-byter

CRYPTO by Jerry Aamodt
This is an entertaining code-breaking game, coded into just the form for you and your ATARI ${ }^{\text {® }}$ to solve together.

55 Enhanced Disk Version
 RENUMBERING FOR THE ATARI ${ }^{\oplus}$ by Frank Roberts Anyone who has written a program from scratch knows how messy the line numbering can get after all the changing and revising is done. This program lets your computer do the grubbing work of renumbering the whole thing in nice, neat increments of your choice.

Programs

STARBASE 13 by Mark Lewis Baldwin
This one will give you some heavy practice with your joystick as you defend yourself against attackers from all directions. It's only a matter of time....

ATARI ${ }^{(}$BANNER MACHINE by Alan J. Zett This unique banner-printing program works not only with normal characters, but with any redefined character set that you care to program into your computer. The possibilities are limitless.

63 Comparative Review: WORD PROCESSING PROGRAMS FOR THE ATARI ${ }^{\circledR}$

Letter Perfect, Text Wizard, and Word Processor reviewed by Sheldon Leemon

TRS-8O/SIDE

67 K-Byter
MICRO ADVENTURE by Joseph Felten
Adventure veterans and beginners alike will enjoy this subcompact interactive game.
68 Enhanced Disk Version
SCREEN PRINT by Steven Milliken
Install a Machine Language routine into memory, and you can dump the text and graphics displayed on your screen to a printer - even while another program is running.

Programs

70 GOTHIC LETTER PRINTER Ronald M. Tutone This remarkable program creates large letters in a beautiful Gothic font on your favorite printer. You'll have no more excuises for sloppy garage sale signs.

DATABASE by Mark Pelczarski Translation of the Month, with Enhancements, by Robert Jacobs.
This is a completely updated version of SoftSide's Developing Database, in two versions: sequential access and random access. Those who have long awaited this complete TRS- 80^{\circledR} version will not be disappointed.

Article

DOSPLUS - What Does it Mean? by Alan J. Zett The complete list of all DOSPLUS BASIC error messages - fully explained.

Reviews

The Most Spectacular Extravaganza Ever... For Apple Users

At Applefest '82 hundreds of manufacturers, distributors and dealers will showcase the entire spectrum of Apple-compatible products including computers, components, peripherals, plug-in cards, publications, gifts, magazines, services, accessories and software for home, office and school.
Hands-on centers and multimedia presentations will demonstrate the newest applications for business, education and entertainment.
Seminars and workshops, conducted by the world's leading Apple authorities, will detail new uses to make your Apple more enjoyable and more useful than you ever imagined.
You'll meet thousands of other Apple owners and find the newest of everything for your Apple under one roof . . . and for sale at super show prices.
So if you use an Apple . . . or are thinking about buying one, you won't want to miss a minute of Applefest '82.

Ticket \& Hotel Information

Send your check and a note indicating the specific show you wish to attend. Tickets and hotel information will be mailed back to you. Tickets can also be purchased at the show. Make all checks payable to Northeast Expositions Inc. 824 Boylston Street, Chestnut Hill, Mass. 02167 Tel: 6177392000.

Exhibitor Information

For specific exhibitor information on one or all of the Applefest '82 shows call Northeast Expositions at the telephone number above.

Applefest/Boston

Fri-Sun May 14-16, 1982
Hynes Auditorium
Show Hours: 11AM to 6PM Daily
Admission: $\$ 6$ per day or $\$ 10$ for 2 days,
$\$ 15$ for 3 days

Applefest/Minneapolis

Thurs-Sun Sept 16-19, 1982
Minnesota Auditorium and Convention Hall
Show Hours: 11 AM to 6 PM Daily
Admission: $\$ 5$ per day or $\$ 8$ for 2 days,
$\$ 12$ for 3 days, $\$ 15$ for 4 days

Applefest/Houston

Fri-Sun Nov 19-21, 1982
Albert Thomas Convention Center
Show Hours: 1PM to 10PM Daily
Admission: $\$ 5$ per day or $\$ 8$ for 2 days, $\$ 12$ for 3 days
Applefest/San Francisco
Fri-Sun Dec 3-5, 1982
Moscone Center
Show Hours: IPM to 10PM Daily
Admission: $\$ 5$ per day or $\$ 8$ for 2 days, $\$ 12$ for 3 days
Applefest is produced by Northeast Expositions Inc. and is sanctioned by Apple Computer Inc. and The Boston Computer Society.
*Apple and Applefest are registered trade and service marks of Apple Computer Inc.

"Beneath the rule of men entirely great,

The pen is mightier than the sword."
(Edward Bulwer-Lytton)

'Words, words, words - I'm so sick of words!
I hear words all day through, First from him, now from you! Is that all you blighters can do?"
(Eliza, in My Fair Lady)

> "And God said, 'Let there be light.' And there was light."
'But the words - oh, the words They don't come easy.'
(Mac Davis)

It seems that we've always had mixed feelings about words. On the one hand, their power and influence are undeniable. In the Genesis account, it was the power of the divinely spoken word that brought the world into being. And humanly spoken words, too, are acknowledged as being more powerful even than battles in shaping the course of history. On the other hand, along with Eliza (and especially when sitting through an evening of TV commercials), we get saturated with the endless flow of words that inundates us. And because words have been so cheapened by abuse, there are times when we can't find the right ones to express the really deep and important things at the center of our lives.

Much of everyday living is spent in communicating with other people by means of words. And more and more of those words are being processed electronically. All of us are accustomed to electronic communication: The telephone has been a fixture of life for a long time. But not everyone is accustomed to being able to manipulate words in the ways that computers can - which puts even the best politicians to shame. Throughout more years of school than I care to think about, I pounded typewriter keys week after week, as term papers and lab reports came due. Erasable bond typing paper was one of my major budget items. Throughout eight of the past nine years since then, I've continued to pound the typewriter keys, as I've continued to produce ten to 20 pages of written material each week. (Certainly not much compared to what a professional writer would produce, but enough to make me weary of erasers and correction fluid.)

During this past year, however, I've been (a) writing more than ever before, and (b) enjoying it more. Item (b) is due largely to the computers which have been helping to remove much of the tedium from the writing process. Those of you who have used one of the many excellent text editor programs
available know what I'm talking about. Although I still use a typewriter occasionally (and even put pen to paper from time to time), it's difficult to imagine going back to handwritten and typed manuscripts for serious writing. Writing with a quill and scroll by candlelight is romantic, but not my cup of tea.

As you've undoubtedly noticed, a major theme of this issue of SoftSide is computerized word processing. That's just a little off the primary path of entertainment that we usually tread, but we think most of our readers (with the exception of one or two in our own programming department) see life as more than one big arcade game, and are looking for varied applications for their computers. Besides, many of us do find writing to be entertaining; and using a computer to do a lot of the hard work makes it more so.

Ironically, we've chosen this issue to announce that our recent experiment in computerized submissions procedures hasn't turned out to be all we had hoped. (See '"Outgoing Mail.') Sometimes computers can get in the way more than they can help. At that point, one has to decide whether it's worth it to put up with the computer's clumsiness for the sake of some future goal. This is a legitimate approach; we do it with young children all the time. The alternative is to decide that the computers (or we) just aren't ready for handing over that particular task yet. This is the decision we've reached on this one application of word processing in our precise situation. That's not an indictment of computerized word processing, but an indication that (a) we really don't have the right computer for the job, and (b) computers aren't smart enough to do all the jobs that real people (especially editors) do.

Let me leave you with just one additional warning about the limitations of computerized word processing: Keep writing your love letters with quill and scroll by candlelight.

INPUT

From our readers

Due to the response we've received from our survey published in February, we wanted to share some of the comments with you in this month's Input.
"I like the articles as much or more than the programs. Especially Lance Micklus' My Side of the Page series and the articles by Scott Adams. The ones on the problems of marketing software and naming them are especially interesting! Hardware Corner on the problems of printer interfacing was good as were the disk articles.

After spending hours keying in Quest I had to go out and buy more RAM to make it work on my ATARI® ${ }^{\oplus}$. Aargh!!! The warmed over TRS80^{\circledR} programs that are translated for ATARI ${ }^{\circledR}$ and don't take advantage of the available graphics are frustrating. Actually I have nothing but respect for the TRS80^{\circledR} programmers who can squeeze so much out of their limited B\&W graphics. BRAVO for Microtext."

Richard S. Waller
 Seven Hills, OH

Editor's Reply: We try to publish the best software available for each system and we carefully select the best programs from the submissions we get. Since we receive few ATARI ${ }^{\oplus}$ submissions, we try to work around the problem. To get the ATARI ${ }^{(}$version of Quest to fit in 24 K see "Bugs" in the December issue.
"On the whole, I would say that SoftSide is an excellent magazine. There are a few things I would like to mention though:

Arcade games, TRS-Man, ABM Command, although well written, are just too slow for BASIC. Simulations, e.g., Titan, Dairy Farming, Bridge Contractors, etc., seem to be the same thing only different settings.

Anything written by Edward Umlor is great! Keep up the good work!

One Liners are amazing at times. The problem: incovenient to store \& run separately possible solution: Alter published ones so that instead of running infinitely as most do, have the current line transfer control to the next One Liner. These could then all be saved in one file.
Give quicker response to program submissions.

More Assembly programs \& articles, PROG-80 are you there??

More application programs \& ideas. Printing a picture of the main screen in a program is a gocd idea - more of this.
How about some sort of chart which would show the best possible translation of a statement from one BASIC to another. Thanks for a great magazine."

Stephen Milliken
Randolph, MA
''Fully enjoy SoftSide magazines. I have dropped three other publications to start (TRS-80 ${ }^{\oplus}$) SoftSide DV. Articles covering given equipment are far more useful than ones in general that can not easily be converted to your machine. Keep it coming."

Roland E. Long
Cincinnati, OH
"I find typing programs a most useful help in learning to program - this is why I'm not buying the Disk Version, although it's tempting. All articles \& columns for real beginners are better in your magazines than most - easier to understand."
"I have every issue of SoftSide from the very beginning. I am pleased to congratulate you on the present state of SoftSide. Although I've had my "trying times" with your subscription and shipping departments, I still look forward to receiving my magazines and ATARI ${ }^{\circledR}$ DV every month! Keep up the good work!!!’"

Mansel H. Crowell
 Vincentown, NJ

Editor's Reply: Thanks to all of those subscribers who have had subscription problems in the past for having patience. Bear with us as we make an attempt to go from our in-house subscription facilities to our use of a national subscription fulfillment house.
"Please consider reprinting SoftSide Developing Database. I missed the first issue which is no longer available! (This is the reason I'm not using it.)

I think your graph showing the advantages of the CV is great, but while those that don't have the CV are correcting (typos) I'm still waiting for the cassette to arrive! . . .
Spyder, my man, Machine Head has got to be the No. 1 micro cartoon! Keep it coming! From someone who operates from the right side of the brain, Spdyer, I'm asking you to keep all those logical thinkers loose enough to allow some imagination - to enter the programming of the future!! Where can I get a T-shirt with the SoftSide logo on it? You people at SoftSide have more than customers out here, we're your FANS!"
T.J. Pryts

Sharpsville, PÁ
"I have liked the changes you have made in the past year particularly: DV, Microtext, and Database. Also, the games have improved and mechanics of loading and operating have im-
proved. During the time of transition to DV, I often had to wait up to 3 weeks between receiving the magazines \& disk but that seems to have worked out now too!"
M.C. Shannon

Ft. Worth, TX
Editor's Reply: As you DV and CV subscribers know, we are now mailing the magazine and media so they arrive at approximately the same time. Three cheers!
"If these comments are truly read, then know that SoftSide can stand some improvement. 1st) Magazines should arrive before they get to the store. 2nd) A toll-free phone number for customer service should be available. I've spent over $\$ 100.00$ trying to straighten out my subscription. 3rd) As of this date I am still trying to change my subscription from cassette version to DV.
Now for the good part: Your series "The Sensuous Programmer"' is excellent. The Database series should be offered as a programming course in its completed form when it's finished. Thank you, I will continue my subscription for 1 more year, if I can get ATARI ${ }^{\circledR}$ DV!!!’"

Steve Salkin
Palm Springs, CA

Editor's Reply: 1. The mailing of magazines to dealers and subscribers is done at the same time. Because the dealer packages go UPS and the other magazines go Second Class, there is a time difference in arrival. Nothing can be done to change this. 2. We do have a toll-free number for subscription inquiries. See the Table of Contents page. 3. It takes 6-8 weeks for the changes in subscriptions to take effect.
'Now have a subscription to ATARI ${ }^{\circledR}$ DV. You should include DOS 2 on each disk and make the cover program auto-booting!

When I receive each disk, there are usually some free sectors left. Why not fill the unoccupied space with something? You could fill it with back issue information, ads, or a catalog of items with prices of things offered by The Software Exchange.

Congratulations, February disk and magazine got to me by Feb 2; this is the fastest I've received them! I would like to be able to dial up Compuserve and download SoftSide programs; I'm set up for this now."

Editor's Reply: The reason the DOS has been taken off the ATARI ${ }^{\oplus}$ DV is due to a request from Atari. We cannot get permission to include the DOS. You must first boot up an ATARI ${ }^{\oplus}$ disk to use ATARI ${ }^{\oplus}$ DV.

As for the free sectors on your disk, we are going to be adding the K-Byters to the media and may possibly use your suggestion for the remaining space.
"For me the most useful feature of SoftSide has been the Database manager. Further developments in this area would be of value to me. I purchased DV subscription to save my time helping my son enter games from the magazine. However with additional utilities or editors and extensions of Database \& Microtext I may consider continuing the DV for its value to me. The games - Quest, Titan, esp. - have been generally excellent. Suggest more Hi-Res use of Apple graphics. Some of your columns have been very good (Plaudits to Sensuous Programmer especially.)"

> Eugene R. DeSombre
> Chicago, IL

Editor's Reply: Because SoftSide relies on submisssions, we are sometimes limited in what we publish. All you programmers out there - take note.
"If you are not going to publish a Model III DV, then could you at least make sure that the extra DV programs work on Models I/III? It is very annoying to get a disk with programs like NEWBASIC or HELP that I cannot use."

Jeff Metzner
Loudonville, NY
Editor's Reply: By the May issue, we hope to make available separate Model I and Model III versions of DV. We are using the survey to see how many of our subscribers have each system.
"1. You could possibly include a section about new users groups. 2. Couldn't you provide some extras for C/V subscribers - like giving all C/V subscribers a bonus cassette like that which you offer to new subscribers. Why not include "hybrid" and machine language programs on C/V SoftSide. You would be surprised what can be done with cassette! (e.g., Cload magazine \& Load 80 from Cload Inc. and 80 Microcomputing, respectively.) Keep up the good work!'’

Ben Davis
Amarillo, TX

Editor's Reply: We at SoftSide are in the process of compiling all the cards sent in for users groups. Watch future editions of SoftSide.
"I appreciate your efforts to support the ATARI ${ }^{\oplus}$ \& I applaud your decision to finally put articles for the specific machines into their own "side" a la Compute. It makes your magazine much more useable. I certainly don't object to having programs for the other machines included in the same magazine, but realistically, there's not much useful dialogue that can occur until we understand each other's languages enough to make translations. How about a meaningful series of "Rosetta Stone", articles for that purpose? Obviously, a machine specific magazine would be nice, but I'm afraid the ATARI ${ }^{\circledR}$ edition would only be four or five pages long. (I think that because the ATARI ${ }^{\circledR}$ has been (erroneously) billed as merely a "non-serious", entertainment machine, that fewer of us are competent programmers. I know that I, for one, am still learning.) . . .

Finally, several months ago, I wrote you a letter which was somewhat critical of your support of the ATARI ${ }^{\circledR}$. I now wish to repent $\&$ applaud your efforts on our behalf. In recent months you
have presented some excellent programs for the ATARI ${ }^{\circledR}$ which are beginning to use ATARI ${ }^{\oplus}$ capabilities. . . ."

Bob Dewitt
Provo, UT

Editor's Reply: We are hoping to publish an article on how to translate from one system to another - a great suggestion made by a few people. These types of suggestions are what we hoped the survey would generate. Thanks.
"Your magazine is great - I wish it were published twice a month. The programs are accurate and I find the errors are usually my inaccurate typing. I would like more business applications - Alan Zett has been outstanding for me when solving problems. Since we're new owners, debugging has been somewhat difficult. Without him we would still be on our first program. Keep up the good work and thanks for your sincere cooperation."

Ronald S. Cohen
Lyndhurst, OH

"It's hard to make constructive comments when you are doing such a good job already, however, it might be interesting to see some articles about machine language/assembly language programming a la the Sensuous Programmer. Overall I think the mix of programs and articles is very good. I particularly like the monthly Hints \& Enhancements. I'd like to see it expanded. Keep up the good work!"

Chilcott
Greensboro, NC

Editor's Reply: We look forward to good hints and enhancements being submitted along with developing some using our programming staff.
"My first computer was a TRS-80®. I hated the keyboard and graphics. I sold it and bought an ATARI ${ }^{\circledR}$ 800. My next purchase will be a printer. Actually the interface first. I dislike typing long programs however your disk version is too costly by a long shot. My disk is only one month old. I could use some articles on using it. I find no one is covering this area for newcomers. I would like to see complete addresses on letters printed so it would be possible to communicate with some of those other people out there. I have no quips about advertising. You need it, I even read it. Another suggestion is small program contests! Nothing big, look at Softalk. And maybe specifing a problem that can be solved on a computer as a routine with some/one solution given the next issue, and a new problem, etc.

Expand to include some assembly programming. Try to become an interactive magazine to be read, pondered, challenged, and acted on. Not just a program to be copied. Good Luck."

Larry Johnson
Bellingham, WA
"I like the idea of separate sections for ATARI ${ }^{\circledR}$, APPLE, TRS-80 ${ }^{\circledR}$, and whatever other systems you decide to support. I hope you include other systems (such as the Color Computer) but please don't go back to separate magazines, just make one BIG one. I like seeing the info on non-ATARI ${ }^{\circledR}$ systems, and there are already magazines dedicated exclusively to each system. I think SoftSide has found a unique position in the computer magazine industry: pro-
moting cooperation, communication, understanding and "civilized behavior"' among owners of "different" computers. Keep up the good work and good programs, and keep SoftSide together as one magazine. I sure wouldn't complain if it was thicker than BYTE!’"

Mark Reid
S. Charleston, WV
"SoftSide is the only dependable source for good game software at a reasonable price. I have just subscribed to the cassette version as the programs longer than 16 K take too much time to type in and debug. I have had very good results with most of the listings in SoftSide. Most of my software library is from SoftSide. Keep up the good work."

Lee S. McPherron
Thornton, CO
'I would prefer to see a magazine which has documentation and advertising with a separate code book for each computer."

Sharon Sloan
Bedford, TX

Editor's Reply: We have actually considered the use of a code book instead of printing pages and pages of line listings. The use of a code book would allow us more room for articles and reviews - maybe something for the future with SoftSide.
"This is the first issue I have seen of your mag. It was only luck that I saw your name in the ATARI ${ }^{\oplus} A P X$ mag, otherwise I would have never known you existed. You have a very good mag (which I am going to subscribe to). I like the way your programs have descriptions above every few lines as to what the lines do. I would like to see a longer Q \& A column with a postage PREPAID CARD in each mag so readers can easily send in questions. GREAT MAG!

Ron Bieber
Beverly Hills, CA

Editor's Reply: Great idea about the post card. Will consider it in the future.

[^0]Editor's Reply: When we add the TRS-80 ${ }^{\text {® }}$ Color Computer we will not change our support of the Apple, ATARI ${ }^{\oplus}$ and TRS-80 ${ }^{\oplus}$ I/III.

OUTGOING MAIL

by Nancy Lapointe

Greetings! As another issue nears completion and is about ready to go to press, the excitement at SoftSide peaks. We have been working very hard for some months to compile all the information found in this word processing issue. You will find comparative reviews on word processors for each system along with Microtext 1.2 and two additional programs for each system. Enjoy!

Survey

We are starting to get back quite a few of your surveys from the February issue. Due to the response, we felt it would be worthwhile to use this month's Input column to share some of the comments with you. The answers to the survey will be very influential in deciding what will be in future issues of SoftSide. We need reader input because this magazine is published for you, the reader. So by printing some of the comments we have received, we hope to inspire those of you who haven't returned your survey to do so as soon as possible. Keep those surveys coming!

Media Subscribers

You media subscribers will be happy to know that starting with the March issue for the Apple and this issue for the TRS-80 ${ }^{\circledR}$ and ATARI ${ }^{\circledR}$, the K-Byters will be included on your respective media editions.

After many months of trying to get the magazine and media to arrive together, we finally succeeded. On the survey, the most frequent comment from our media subscribers was that they received their disks a few days before the magazines. It wasn't easy! But after finally finding the best sources of duplication and arranging our schedules, we have managed to
eliminate the time-lapse problem. Thank you all for bearing with the problem and having patience while we solved it.

SoftSide Authors

In the December issue of SoftSide, we asked that all program submissions be sent with documentation on disk or tape, using the Microtext word processing program. We have been living with this experiment for awhile now, and have come to realize that there are worse things in life than files of paper to be maintained. One of those things may be files of disks and tapes which can't be accessed without a spare computer (of the right breed) at hand.

THUS WE HAVE DECIDED FOR NOW TO RETREAT BACK INTO THE PAPYRUS AGE AND ASK THAT AUTHORS ONCE AGAIN SEND ALL DOCUMENTATION ON PAPER. We encourage you to include text files on tape or disk as well, but this is not required.

A new Author's Guide will be completed shortly, detailing submission standards and procedures for those who may not be familiar with them. It's free for the asking - but a selfaddressed, stamped, business-size envelope would be much appreciated.

Subscription Changes

For all of you who are upgrading your subscription to a media version of SoftSide, starting a new subscription, making an address change, or ordering back issues, please realize that you must have patience for approximately 4-6 weeks. It takes that long for the changes to be keyed in and to show up on the new mailing labels generated by our fulfillment house.

It probably is difficult for a subscriber of any magazine to imagine what is involved to produce and get you that magazine each month. In order for an issue to arrive at the beginning of a month, the printing and mailing must happen in the middle of the previous month. Therefore, any changes to subscription information keyed in after the first two weeks of the month will not show up on the labels attached to the magazine until the following month. If, after allowing this amount of time, you still have a question or doubt about your subscription please feel free to contact our fulfillment house in Broomall, PA at the toll-free number found on the Table of Contents page. You can also use this toll-free number to order subscriptions, make changes or order back issues.

On another note, I'd like to take this time to say how proud we are of our programmer, Rich Bouchard. A member of the Computer Science Team at Milford (NH) High School, Rich ranked second in the American Computer Science competition. His ranking is a result of two of the five contests in which the school will compete this school year. We are proud to have him on our team of programmers at SoftSide. Keep up the good work, Rich.

Well, enough of the news, info and gossip of SoftSide. I'll let you get on to the best part of SoftSide - the programs, articles, and especially this month's reviews. We'll be watching the mail for more surveys and your input.

Until next month, Happy Hacking.

Nanogh hapoute
Nancy Lapointe
Managing Editor

Back in 1947 (the year of my birth) a man named Alfred P. Morgan wrote the Preface to the second edition of his book, The Boy Electrician. In that Preface he wrote as follows:
Once upon a time, and this is a true tale, a boy had a whole railroad system for a toy. The train ran automatically, propelled by tiny electric motors, the signals went up and down, the station was reached, a bell rang, the train moved on again and was off on its journey around many feet of track to come back over the old route.
The boy viewed his gift with raptured eyes, and then his face changed and he cried out in the bitterness of his disappointment: "But what do I do?" The toy was so elaborate that the boy was left entirely out of the play. Of course he did not like it. His cry tells a long story.

The prime instinct of almost any boy at play is to make and to create. He will make things of such materials as he has at hand, and use the whole force of dream and fancy to create something out of nothing.
As I was growing up, I waged a single-minded campaign to keep The Boy Electrician from gathering dust on the shelf of our town's library. I succeeded pretty well. Finally my father, taking pity on my frayed library card, bought me my own copy of that wonder-filled book.
Its chapter titles induce waves of nostalgia as I look at them on the desk in front of me. 'Voltaic Cells and Batteries" guided me through the construction of many a homemade battery (some more successful than others). "'An Experimental Wireless Telephone" gave me the idea for a prize-winning Science Fair project in sixth grade on magnetic induction. "Electrical Measuring Instruments" taught me about galvanometers and Wheatstone bridges, concepts I later used (in the eleventh grade) to design sensitive measuring instruments necessary for a chemistry lab project.

My friend Charlie and I built our own radio following the instructions in "How to Build a Radio Receiver with a Crystal Detector." I even got a couple of working motors out of the chapter, "Electric Motors," and some firsthand experience with silver plating from the jam-packed twenty-first chapter, '"Miscellaneous Electrical Apparatus." These many years later, as I page through that 407-page book, each illustration is as familiar as if I had drawn it myself last week.
I now have a son who is six years old. He's still a little young for The Boy Electrician. You might think that a book written 35 years ago about experimenting with electricity would be a little out of date for him anyway. Maybe it is. After all, this is the computer age. Who cares about making a microphone using a carbon rod and binding posts rescued from a discarded No. 6 Ignition Cell? (Who even knows what a No. 6 Ignition Cell is, anymore?) Who would ever want to make a Leyden jar, or a reflectoscope, or a night light with a little hook for hanging your pocket watch so that you can read the time in the dark?

After pulling that book off the shelf
this morning, and reading the 1947 Preface, I turned to the back of the title page and found the original copyright date: 1913. The book that had been so formative in my childhood had been written two years before my father was born. Undoubtedly, Alfred P. Morgan has died sometime in the past 35 years. As far as I know, he never did follow up on a possibility he expressed in the last sentence of his book: "And, as the future years bring new inventions and discoveries, no one now knows but that, some day, perhaps I shall write another "Boy Electrician."

The pace of change is unquestionably far greater now than when The Boy Electrician was written, or when I was a boy. The years that elapsed between those two periods saw nothing in the advance of scientific and technological knowledge, compared to that which has occurred since then. Even though the first computers were becoming a reality by the time Alfred P. Morgan wrote his second Preface, he probably didn't dream that so much could happen so quickly.
Now that such sophisticated electronic devices as Apples and ATARI ${ }^{\circledR}$ s

SOFTSIDE'S BEST FROM THE PAST

'Don't it always seem to go,

 That you don't know what you've got 'til it's gone..." Joni MitchellSad to say, Quest 1 and Flip-It, two of the most popular programs that ever appeared in SoftSide, are no longer available in print. But don't despair: SoftSide Publications is reprinting these two exciting games in a convenient, easy-to-use steno notebook format.

QUEST 1

Quest 1 is an exciting journey into an underground maze in search of treasure and adventure. A host of Undead and other unseemlies await the intrepid explorer. Armed only with sword and bow, you must rely on quick thinking to survive. And don't let the wraiths sneak up behind you!

Flip-It is an excellent implementation of the board game Othello ${ }^{\text {TM }}$. Match wits with a formidable opponent: your computer.

ORDER YOURS NOW!

Our special introductory price for this outstanding software value is only $\mathbf{\$ 2 . 9 5}$ for each booklet. Be sure to order now, before we come to our senses!

6 South Street Milford NH 03055
See page 16 for ordering information.
and TRS- $80^{\oplus} \mathrm{s}$ are becoming the everyday backdrop of our lives, has the simple boyhood romance gone out of experimentation and discovery? Is the computer another toy so elaborate that all we can do is sit back and ask, "But what do I do?" Has everything been done for us inside those chips and upon those printed circuit boards, so that there's little left that demands creativity and imagination? Has a person who has purchased a "canned" home computer utterly sold his soul to the devil of passivity?
Anyone who has experienced the agonies and the ecstacies of computer programming knows that the romance of experimentation and discovery is not dead. Certainly its form has changed. Involvement with a computer is more mental and less physical than involvement with an electromagnet made from a nail, a battery, and a few yards of wire from the hardware store. It is, I think, less intimate in a way more detached, more ethereal, less nitty-gritty. Computers share many of the strengths and weaknesses of television, a powerful medium which at once exposes us mentally to more of reality than we would ever experience on our own, and at the same time lulls us into a physically passive rut. Just as television ought to be only a small part of a well-rounded life, among a great many other activities, computer programming should never be the sole creative outlet in a person's life. I'm going to see to it that my son winds electromagnets as well as typing keys and twisting game paddles.

Yet computers are stimulating in a unique way - even romantic, as hard as that may be for many people to believe. As I argued in my first column, the 'inner reason'' for existence which all computer programs share is to solve a problem of some kind, and that is surely a creative and sometimes romantic activity. I guess that if I weren't romantically involved with computer programming, I wouldn't have had any interest in writing this series of columns. And I presume that if you weren't involved in a similar way, you wouldn't be reading them. (The only people I can think of to whom that definitely wouldn't apply are friends and relatives upon whom I foist each issue of the magazine, saying, 'Look! I'm the Sensuous Programmer!'")

If, in any way, these articles have helped in the process of discovery and experimentation, then their purpose has been fulfilled. And who now knows but that someday, perhaps I shall write another "Sensuous Programmer."

My Side
 of the Page

By Lance Micklus

First this month, let's catch up on some of the news about our old friend, The Mean Craps Machine. Some time ago, I told you that Scott Adams and I had decided not to try to sell the game for the Model I/III and instead just concentrate on the Color Computer market.
Well, it turns out that Adventure International can now make a tape which will load on either the Model I, Model III, or the Color Computer. This means that after Scott makes the master tape, he can sell all three versions with no more effort or expense than a version for one system. So, The Mean Craps Machine will be available for Model I/III users.

I also made the comment some time ago that the secret to making money in this business is to milk a product for all you can get. If sales drop off and the product goes off the market, publish the program and squeeze a few more dollars out of it. One of the other programs I've brought back for the Color Computer is Dog Star Adventure. It's an excellent adventure-type program for beginners because it's challenging but not too much so. As a by-product of Scott's new tape recording technique, the original Model I version will now be available for both the Model I and the Model III.
I consider this to be a major development since it will open up the game market to some authors in both the Color and Model I/III market all at once. This increases the potential for sales and is a bigger incentive for more work to be done in writing computer games.

Just as interesting is that Big Five Software's disk games come on selfbooting disks. What's more interesting is that their disk can boot on a Model I or Model III; single or double density; with 35,40 , or 80 tracks. It's nice to know somebody found a way around the operating system problems.
What happened to Star Trek? Unfortunately, Paramount Pictures and I were unable to agree on a license for
some of the new versions of the game I wanted to release. Among the problems is that after the Star Trek II movie comes out this June, it might be followed by a Star Trek III movie. Thus, my computer program couldn't be called Star Trek III until the third, as yet uncommitted, movie comes out.

Since a name change had to be made anyway, I decided to get out of the Star Trek loop and change the name to StarFlite which I am registering as a trademark. This should prevent problems with names in the future.

In case you missed some parts of the Getting a Bit Serious series, I may put them on my own BBS system if there is enough demand. The number of my BBS is 802-862-7023.

Modems, Modems, Who's Got The Best Modems

On my hit parade of the ten most frequently-asked questions is this one: Who makes the best modem? That's about as easy to answer as trying to figure out who makes the best computer.
I haven't seen all of the popular modems, but I've worked with many of them. And of the modems I haven't seen, I've heard enough comments from people who own them to form some opinions.
The function of a modem is to convert an electronic signal to an audio signal and then back to an electronic signal. An audio signal can be SoftSide
transmitted over ordinary dial telephone equipment just like a human voice can. Thus, the modem interfaces the terminal and the telephone so that each can receive information in a form it can understand.
About a year ago, we stopped using the old acoustical coupler modems inhouse and went to direct-connect modems. This change actually had no effect on users of our communication products, although it sure cleaned up my work space a lot. Until we went to direct-connect modems, we had a separate desk telephone for each phone line. This meant I had three telephones sitting next to me so I could use my modems on any phone line. After getting rid of all of the acoustical couplers, I had a ten-button key set installed and added another badlyneeded phone line.

The acoustical coupler modems are the ones with the big rubber cups on the top. To use them, you dial the phone, and when you hear the tone, you place the receiver on top of the cups on the modem. One cup listens to the phone and the other cup is a speaker which talks into it, so there is no direct wiring into the phone. The advantage of this type of modem is that they are cheaper to manufacture and avoid any problems involved with connecting the customer's equipment to telephone company equipment.

On the negative side, the price advantage of acoustical coupler modems is now very small. The cost of directconnect modems has come down dramatically in the past two years. Also, new changes in FCC regulations have put the phone companies in the position where they can no longer tell you that you can't connect your equipment to their system - provided your equipment is FCC approved.

The almost universal use of modular phone jacks makes it easy to install a direct-connect modem. However, with an acoustical coupler modem, you must have a standard headset. The cups will not fit such things as a

April 198211

Trimline phone.
The biggest drawback to acoustical coupler modems is that they rely on the telephone headset itself. Telephone headsets (the things you hold up to your ear and talk into) use carbon microphones which are not known for their high fidelity. Some headsets are so bad that you can't even understand people when they talk in them, much less use them to send computer data.

You might be able to find a used acoustical coupler modem at an excellent price. (Make sure you have an RS-232 interface first.) If you do, buy it; but also understand what you're getting and make sure your telephone headset is in good condition.

The direct-connect modems come with various features depending on the kind you get. Basically, a directconnect modem plugs directly into the telephone line rather than trying to talk into a headset. Its signal is not degraded by the carbon microphone in the headset so the fidelity of the transmission is better, which results in fewer data errors. Direct-connect modems are not bothered by other noises in the room and are the only practical way to set up unattended systems like FORUM-80, MOUSENET, CBBS, etc.
Other than the price, there are very few other drawbacks to direct-connect modems. Perhaps the biggest is that you must have a modular jack installed to connect it, but that shouldn't be a problem. In my case, since I'm using one of those business ten-button key sets for a phone, I had the phone company mount a separate set of modular jacks for each line coming into the office.
Just about all direct-connect modems offer auto-answer as a standard feature. Many of the hobbyist ones also offer auto-dial. Unfortunately, there are quite a few ways to autodial a modem and different manufacturers use different methods. If autodial is important to you, then you may find your selection of terminal software very limited.

There is a new group of modems starting to appear which call themselves "Smart Modems." According to Madison Avenue, it's a law that "Smart Modems" are better than "Dumb Modems." If you don't understand what you are buying, you may end up spending more money for a modem that doesn't do anything more or better than the cheaper dumb modems.
Smart modems use computer logic chips in them so that they can actually read the data you give them before it is
transmitted. Certain types of characters are interpreted as instructions to the modem and are not sent. Thus, the smart modem is controlled by transmitting certain characters to it rather than by turning on and off the various handshake signals which most terminals have. If you don't have the handshake signals to control the modem, this is the only way to do it. But many terminals and computers do have the handshake signals and you'd only be wasting your money to throw away your handshake signals and pay extra to control the modem "the hard way."

I have yet to hear of a smart modem made by anyone which can be used in a "practical" way for unattended operation. What you find is that you have to use the handshake signal to control your communications in the unattended environment and don't let anybody tell you otherwise. So the smart modems either include or will install at extra charge the handshake signals. This, of course, defeats the whole purpose of the smart modem which is to control the thing without handshake signals.

If you have a TRS- 80° Color Computer, which has no handshake at all, then a smart modem might be worth the extra money. But if you own a Model III and want to use your modem to run a bulletin board, you'd only be wasting your money on a smart modem.

The Standard of Excellence

I have two Anderson-Jacobson 1258 modems. One is connected to my MOUSE-NET bulletin board and the other I use for my own communications. This is not a hobbyist modem. I think the AJ-1258 cost $\$ 995$, although they can be leased for around $\$ 55$ per month.

The AJ-1258 is a direct-connect modem with auto-answer. It does not auto-dial. Its main feature is that it will run both standard 300 baud and 1200 baud in either Bell 202 or Vadic modes. It automatically selects the standard by some magic process I've never completely understood.

Another feature I like is the complete set of indicator lights on the modem. You know exactly what's going on. In fact, when somebody calls my MOUSE-NET board, I can tell if they're using one of my ST80 programs and often know which ST80 they're using just by looking at the indicator lights on the modem.

More important than the indicator lights is that the AJ-1258 correctly uses
the handshake signals according to the RS-232 standards. Some of the hobbyist modems don't and this makes for a lot of software compatibility problems.

In terms of performance, the AJ-1258 has been answering the phone on the bulletin board for almost a year now. It's taken calls from all over the country on good and bad phone lines with all kinds of modems on the other end. It really does get you through.

The major drawback to the AJ-1258 is its high price. Also, the first time you try to connect it, you'll have a lot of fun fiddling with the more than 40 switches and jumpers you can change around.

Radio Shack Modems

The new Modem II by Radio Shack won't be out in any quantity until you read this. Since I don't have one for evaluation now I can't say anything pro or con.

The Modem I seems to be a good seller for Radio Shack - almost to the point of phasing out the Level II acoustical coupler modem. This shouldn't be surprising since the Modem I is $\$ 50$ cheaper then the Level II modem and it's direct-connect too. As everybody knows, direct-connect modems are better. Even I said so earlier. I should have made one exception: The direct-connect Modem I is worse than any I've ever seen except my old Pennywhistle 103. I would call it a tie.

The Modem I seems to work fine on a local phone call to a local computer if the telephone line quality is good. Naturally, when Radio Shack demonstrates their Modem I, they call their local Compuserve number and can usually get a good connection. Then comes the trouble. After the customers buy the modem and call their own timesharing system, they may find that they get a lot of data errors. If it is a long distance call, they may find that they can't even establish a carrier at all.

Almost all of the complaints I get from ST80 users regarding data errors are from Modem I owners. I have also found that Modem I users on my MOUSE-NET bulletin board usually have a fair amount of trouble. I suspect some of them can't even get a carrier going, but I have no way of knowing this.

To check this out, my wife Dianne and I decided to have a little fun at Radio Shack's expense. We were down in northern New Jersey for Christmas so we decided to go to some of the
computer stores in Paramus and act like your basic dumb customer.
First we stopped at GEM Electronic whose window signs boasted that it had microcomputers and low prices. I guess their idea of a microcomputer is different than my idea. They did not know where the Radio Shack Computer Center was but suggested that we continue down Route 17 and we'd probably run into it - which we did.
In the Paramus Radio Shack Computer Center, Dianne and I asked like dumb customers to see the communications stuff they had for a Model III. I asked if I might be able to try it with a terminal program I had with me in the car called ST80-III. (I had a heck of a time keeping a straight face.)

It became quite clear that our salesman was new and he went straight by the book - no non-Radio Shack vendor software allowed. We were shown Videotext using the Modem I on Compuserve and it seemed to work just fine. I also asked if I could try their Videotext/Model III/Modem I on my Compuserve account but it took the permission of the store manager before I could do it. Then I decided to push my luck again. After some careful prompting, I talked our salesman into letting me call my own bulletin board here in Vermont on a credit card call. I made three tries at it and I couldn't even get a carrier.

Of course I was given the story about how the phones are screwed up and that the computer I was calling was not run by Radio Shack. I finally leveled with the salesman and told him who I was. It didn't matter. He never heard of me. I should have known that when he said he never heard of an ST80.
True, this is only one incident with one salesman who had only worked at the computer store for three months and didn't know too much about communications. But what happened to me is exactly what other people say happened to them at other stores with other salespeople. Also, as others had told me, if it's not a local call, the Modem I may not work at all. It didn't work on my system whose quality I know is excellent.

Just to finish the story, Dianne and I finally met the manager of the Paramus Radio Shack Computer Center who knew who I was based on my Star Trek game. Just before we left, we asked if he knew of any other computer stores in the area, but he said he couldn't help us because he didn't know of any. So, Dianne and I left and as we got back to the car, Dianne said, "Look!" Two hundred feet down the road was a sign that said COMPUTER

UNIVERSE. The Radio Shack store manager had to drive by COMPUTER UNIVERSE every time he left the parking lot. There is absolutely no way you can drive north in the south bound lane of Route 17 even if you are trying to commit suicide.
COMPUTER UNIVERSE proved less exciting than GEM Electronics. The magazine rack did not have Kilobaud, 80-Microcomputing, SoftSide, 80-US, Creative Computing, or Byte. There was no software from Instant Software, Sensational Software, Ramworks, Adventure International, Acorn, Big Five, or SBSG. We left after a few minutes for Burger King. True, they don't sell computers, but at that point we needed some "junk food."

Lynx

About a year ago, Emtrol replaced their original Lynx modem with a new model that would work on either the Model I or the Model III. This version of the Lynx includes its own built-in RS-232 board, auto-answer and autodial. On the Model I, it plugs directly into the back of the keyboard or into the screen printer port of the expansion interface. An extra printed circuit board is included for the Model III. The board plugs into the I/O bus on the bottom of the Model III. Switches on the board make the I/O port addresses selectable. This avoids interference with the Radio Shack builtin RS-232. It comes with the ETERM program which is excellent for tape users but probably won't do the job for disk users.

Although I did not write ETERM, the Lynx is based on some of the suggestions I made to Emtrol when the new Lynx was being designed. Unfortunately, my Model III ST80-III was ready before the new Lynx so I had to second-guess them. My guesses were
correct, but without the actual modem in hand, there was no way to make sure ST80-III and the Lynx would work perfectly.

To make a long story short, I blew it. In order for the Lynx to work on the Model III, you need to turn the I/O bus on. This is a simple software instruction that can be done from BASIC. Unfortunately, ST80-III does not turn on the I/O bus correctly. This will be fixed in the next upgrade. In the meantime, you must turn on the I/O bus from BASIC before running ST80III. There is no problem with this on the Model I.

The advantages of the Lynx depend on the machine to which you connect it. On the Model I, the Lynx RS-232 is far more reliable than the Radio Shack one. Lynx is software compatible with most terminal and host software on the Model I. On the Model III, you may have to change the port addresses of your terminal program.

For ST80-III users, there's a public domain program called LYNX/BAS which does this for you. If LYNX/BAS was not on your ST80-III disk, call my bulletin board at 802-862-7023 and download it.

Very little auto-dial support is available for the Lynx right now. However, auto-dial will be available for the Lynx in the next upgrade of ST80-III. Other than that, auto-dial is only available in the ETERM program.

On the negative side, the Lynx seems to have a reputation for being a little deaf. I have no way to check this out but I suspect that it is true. In the few cases I've heard of where the Lynx seemed to need a little more poop, a simple adjustment usually did the job. In any event, the Lynx is vastly superior to the Radio Shack Modem I and I doubt you'll have much trouble with it. Plus Emtrol customer support is excellent.

When does your

 SoftSide subscription

49007STANTG97*BOOE12』1OCT 82
ll02691 017
GEOFFREY STANTON
97 BAYSIDE COURT
KALAMAZOO, MICH. 4900

For more information, write:
SoftSide
515 Abbot Drive, Broomall PA 19008

Microconnection

The Microconnection I'm referring to here is the one with auto-answer and auto-dial. It requires an RS-232 board to use and is a direct-connect modem. Thus, it will work on the Model I, Model II and the Model III.

If there is one good thing I can say for the Microconnection, it's this: When the going gets rough, if a Microconnection can't make it, then nothing will. In the area of sensitivity and noise elimination, it will perform as good or better than my $\$ 995$ Anderson-Jacobson. Indeed, it would be the perfect modem were it not for one problem - software compatibility.

It seems that the handshake signals that the Microconnection wants are non-standard just for normal operation. So you will have to patch your terminal program or make up a special RS-232 cable to get it to work unless you buy a smart terminal program also marketed by the Microconnection people. This is unfortunate because the Microconnection is getting a bad reputation for being software imcompatible. But assuming you don't mind making software patches, the Microconnection is a good buy and does deliver the performance.

BIZCOMP

I have the BIZCOMP 1084 Direct Connection Smart Modem with the 06 option installed. The 06 option gives you all the handshake signals but at additional cost. It is auto-answer and auto-dial and requires an RS-232 in the computer to operate.

Unlike the other modems discussed so far, the BIZCOMP will auto-dial with any software. Since it does not need any handshake at all, you can even use it on the TRS- $80{ }^{\oplus}$ Color Computer. It's small, reliable, and easy to use. It also has a lot of bad features.

Noticeably lacking are any indicator lights. Not even a power-on lamp is provided. As a result, I once spent ten minutes trying to get it to work only to find out that I forgot to plug in the power supply.

To use it for unattended operation, you must add the 06 option, then jumper some of the RS-232 wires around. This defeats the whole selling point of any smart modem, which is that it can be controlled without handshake signals.

D.C. Hayes Stack Smart Modem

This is one modem I haven't seen, but I've heard a lot of comments about it. Unlike the BIZCOMP, the D.C. Hayes Modem does have indicator lights on it and includes handshake signal processing at no extra charge. It is far more intelligent than the BIZCOMP 1084. For example: It will do touch-tone dialing, set the number of rings required before answering, and even turn off the response codes.

On the negative side, I have not been impressed with the customer support from D.C. Hayes. I've had several people set up their MOUSE-NET system with the D.C. Hayes and all of them had trouble. None of them were able to get any information from Hayes regarding the handshake signals used in their modem. The solution actually came from Don Johnson who runs a MOUSE-NET down in Florida. He figured out how to rewire the pins correctly so they would work with MOUSE-NET.

I have mixed feelings about the Hayes. Personally, I think Hayes is trying to treat the TRS-80 ${ }^{\text {® }}$ as if it were an Apple. They definitely are relying on their Apple reputation in the TRS80^{\circledR} market. On the other hand, I am biased against smart modems and haven't seen the Hayes. If I had one to use for a while, I might change my mind. It is priced competitively with dumb modems, yet gives you the smart
modem capability when you need it. I guess my advice on this one is to check it out very carefully and to decide for yourself.

Other Modems

When I first started running my own bulletin board system, I used the old faithful US Robotic. It is now sitting on top of my AJ-1258 as a backup modem. In terms of price, it's not the value it used to be. But it is an old faithful friend that's really good for a BBS system.

There are also a couple of other modems available that include their own terminal program in a built-in ROM. I'd think twice about these. Someday you may want to use some other terminal program and then you can be stuck because you'll also have to replace the ROM modem with a standard one. In the long run, you might be better off getting a no-ROM modem and your favorite terminal software to drive it.

Choice

There are certainly a lot of other modems around that I haven't mentioned, but the ones I have covered are the most popular makes. The best pick really depends on what type of a system you have, and what kind of features you want. If you are going to use your modem for a bulletin board system, stay away from the smart modems. If you are going to use your computer as a terminal, then compare carefully. You may find that the terminal software you like will give your favorite dumb modem all the power you want rather than going with a smart modem and a dumber terminal program. In general, it is better for the computer to directly control the modem with handshake signals than to try to run it by remote control.
My own personal choice is the Anderson-Jacobson 1258. I want the auto-answer with either 300 or 1200 baud capability. It is compatible with all my software. It has lots and lots of lights and is very reliable. It does not auto-dial but that's not a problem to me; my phones have speed dialing on them anyway. All I do is dial two digits and the telephone company does the rest.

Most people have different requirements than I do, so I would imagine that the AJ-1258 would not be your best choice. But whatever you decide on for a modem, I hope the information I've given you will help you make the right choice.

REVIEW

by Hal Glatzer (Sybex) Suggested retail price: $\$ 12.95$

First things first. This is NOT a book about microcomputer word processing applications. To my knowledge, such a book does not exist. However, if you are unfamiliar with word processing applications in general, then this book may be of considerable interest to you. It is a well-written, concise discussion of word processing, from stand-alone electronic typewriters to mainframe computers.

Author Hal Glatzer has done his homework. Furthermore, he has managed to avoid the many possible pitfalls in writing about the burgeoning field of electronic text processing. He does not get lost in technical details that would bore the novice, nor does he succumb to the temptation to riddle his manuscript with technical jargon comprehensible only to the slide rule set. Instead, he has written a book that anyone can understand. His language is simple and very straightforward. His expressed (and achieved) aim is to help non-technical people to get a handle on the possibilities and capabilites of equipment in the new field called word processing.
Introduction to Word Processing opens with a discussion of what "word processing" is, and how it can be valuable to a wide variety of people. Glatzer obeys the cardinal rule of showing, not telling, in this section. He seems to suggest that word processing capabilities can be valuable to almost anyone, a point this reviewer would be reluctant to contradict. He then undertakes to explain what options are available in the realm of lettercrunching.
The options Glatzer discusses are: electronic typewriters, stand-alone word processors, microcomputers, and mainframe and mini computers. At no point does Glatzer suggest one type of system is better than the others; he simply details the advantages and disadvantages inherent in each. The

points he covers are ease of use, cost, cost effectiveness, versatility, and a host of others. Again, he only mentions a few brands, and he does not ever really express an opinion about those he mentions.

With the groundwork laid, Glatzer then tackles actual operation of the various word processing systems. He does not specifically tell one how to use a word processor, but he does go into considerable detail about general operation of the different types, including discussion of the most commonly used functions of word processors. Furthermore, he discusses the various storage media available for the equipment, formatting for printing, and different types of printing available with word processing equipment.
Finally, Glatzer gives some good practical advice about getting hands-on experience with word processing before
running out and dropping a bundle on some machinery. His points are well taken, and he backs up his suggestions with an adequate appendix listing various sources of information about word processing. He also provides a substantial glossary at the end of the book, which will help any potential buyer wade through otherwise hard-tocomprehend industry literature.
In sum, this is a fine introductory guide to word processing. It will not help one to decide what system is best, although it probably will be quite useful in narrowing down one's choices. Glatzer is to be lauded for not discussing specific equipment, nor trying to act as word processor guru in dispensing his wisdom. His writing is quite easy to understand, and his approach is figuratively to take the reader by the hand and lead him merrily into a hitherto confusing world. It is, in all, a job well done.

CALENDAR

April 2-4
The Second Annual Eighty/Apple Computer Show
New York Statler Hotel, New York, NY
Show will feature products and services for the TRS- 80^{\oplus} and Apple computer systems. More than 100 exhibitors will display hardware, software, books, magazines, supplies, and accessories. Contact: Ken Gordon, Kengore Corp., 3001 Rte. 27, Franklin Park, NJ 08823, (201)297-2526.

April 15-17

Computer Showcase Expos

A.J. Cervantes Hall, St. Louis, MO

April 23-25
Miami Expo Center, Miami, FL
Sponsored by The Interface Group, these two shows are part of a series of regional public shows for users of small business and personal computers.
Contact: Peter B. Young, The Interface Group, POB 927, 160 Speen St., Framingham, MA 01701, (800)225-4620. In Massachusetts, (617)879-4502.

April 15-18
The Second Southwest Computer Show and Office Equipment Exposition Market Hall, Dallas Market Center, Dallas, TX
April 22-25
New York Computer Show and Office Equipment Exposition

Nassau Coliseum, Uniondale, NY
These shows will feature mini- and microcomputers for business, education, government, industry, and home use. Data processing and word processing equipment, office machines, computer peripherals and office supplies will be displayed. General admission is $\$ 5$. Contact: National Computer Shows, 824 Boylston St., Chestnut Hill, MA 02167, (617)739-2000.

April 17-18

Trenton Computer Festival Trenton State College, Trenton, NJ
This seventh annual festival will feature an outdoor flea market, indoor commercial exhibit area, Space Invaders contest, forums, talks and seminars. Sessions on software and hardware applications, robotics, music, ham radio, education, business applications and new languages. Day care center for preschool children. Contact: Dr. Allen Katz, Trenton Computer Festival, Trenton State College, Trenton NJ 08625.
April 20-22
American Business Equipment and Computer Trade Show
Hartford Civic Center, Hartford, CT
Designed for executives, managers, administrators and advisors in the business, financial and professional world, this trade show will focus on business operations today and preview office systems of the future.
Contact: Key Productions, 410 Asylum
St., Hartford, CT 06103, (203)247-8363.

April 20-22
D-COM
Hynes Auditorium, Boston, MA
A trade show featuring products and services compatible with Digital Equipment Corporation's products, D-COM will involve vendors and users.
Contact: Ron Davies, D-COM Inc., 7312 Burdette Court, Bethesda, MD 20817, (301)469-7650.

April 22-23

1982 Rocky Mountain Data Processing Expo

Currigan Hall, Denver, CO

Will feature displays of various product lines and services for offices. Conferences will include sessions on training, databases, EDP auditing, programmer productivity, and management concerns. Contact: Mark Cramer, Industrial Presentations West, 3090 S. Jamaica Court, Suite 304, Aurora, CO 80014.

If you or your organization are sponsoring or know of an event you think would be of interest to SoftSide readers, please send complete information to:

SoftSide Publications

Calendar Editor
6 South Street
Milford, NH 03055
Be sure to include complete information concerning dates, location, subject matter and a contact name, address, and phone number.

SOFTSIDE ORDERING INFORMATION

FORM OF PAYMENT

USA

VISA, MasterCard, certified checks, money orders and personal checks are accepted.

Canada/Mexico

The preferred method of payment is by VISA or MasterCard. A bank check is acceptable if it has been preprinted for payment in U.S. dollars. No personal or company checks accepted.

Other Foreign Orders

Payment must either be by a bank check drawn on a U.S. bank payable in U.S. dollars or by affiliated bank credit cards of VISA or MasterCard.

GUARANTEE

All software is guaranteed to load and run. If you experience difficulties with the product within 30 days, it may be returned for replacement. Send your properly protected tape or disk to the attention of the Customer Service Representative and include your name, address, and the reason it is being returned.

LIABILITY

All software is sold on an as-is basis. SoftSide assumes no liability for loss or damage caused or alleged to be caused directly or indirectly by products sold or exchanged by them or their distributors, including, but not limited to, any interruption in service, loss of business or anticipatory profits or consequential damages resulting from use or operation of such software.

PRICES

Prices are subject to change without notice. We are not responsible for typographical errors.
Unless otherwise noted in a published advertisement, the following prices are in effect as of this issue:

USA Mexico Other Foreign Canada APOIFPO

SoftSide Magazine (yr) CV (year)

 (6 mo)DV (year)
(6 mo .)
Adventure of the Month
Month (6 mo.)

Cassette	$\$ 29$	$\$ 35$	$\$ 41$
Disk	$\$ 49$	$\$ 55$	$\$ 61$
Parsec	$\$ 20$	$\$ 21.50$	$\$ 25$
Envyrn	$\$ 200$	$\$ 202$	$\$ 210$
Diversions	$\$ 60$	$\$ 70$	$\$ 85$

BACK ISSUES

Minimum order for magazines only - 3 issues. There is no minimum order for magazine/media combinations.
Price includes shipping to the 48 states only. Alaska, Hawaii, Puerto Rico, APO/FPO, and ALL foreign orders postage is additional.
ALL Foreign orders and all magazine/media combination orders - Order directly from SoftSide, 6 South St., Milford, NH 03055.

C. A on Software and Hardware for TRS-80

CHEXTEXT ${ }^{\circ}$

Let your TRS-80* do the proofreading on your SCRIPSIT: text files!!

Features of this program include:

- Complete dictionary maintenance including the addition and deletion of words.
- Menu driven for ease of operation.
- Spelling Checker
- FREE expanded dictionaries available, depending on your drive storage capabilities. NEW LOWER PRICE $\$ 59.95$

MODEL III PRICE LIST
(All 48 K with TANDON drives)

1 single sided 40 track drive 2 single sided 40 track drives. 1 dual sided 40 track drive. 2 dual sided 40 track drives 1 single sided 80 track drive 2 single sided 80 track drives 1 dual sided 80 track drive. 2 dual sided 80 track drives with RS-232 C Add

NOTE: These Model III computers contain Apparat installed disk drives and memory. They are warranted installed disk drives and mem
by Apparat. Inc for 90 days.
$\$ 1695.00$ $\$ 1695.00$
.1895 .00 1820.00 2145.00 1845.00 2175.00 1995.00 2395.00 .115 .00

MISCELLANEOUS SUPPLIES

DISKETTES
Double density-soft sectored-replacement guaranteed. Spindle/Hub protected. ($5^{1 / 4}{ }^{\prime \prime}$ only)
Verbatim Datalife 51/4" 40 track.................................. $\$ 24.95$
Apparat's No Name $5 \frac{1140}{4} 40$ track................................. $\$ 19.95$ Verbatim Datalife $8^{\prime \prime}$ model II... $\$ 39.95$

PAPER
$9^{1} 2^{\prime \prime} \times 11^{\prime \prime}$ blank white tractor feed paper, full box 15 \# or 20\#.
$14^{1 / 2} \times 11^{\prime \prime}$ green bar, tractor feed paper. full box
$3^{\prime} 2^{\prime \prime} \times 15 / 16^{\prime \prime}$ tractor feed mailing labels.
OTHER
$5^{\prime}{ }^{\prime \prime}$ " plastic library case
$8^{\prime \prime}$ plastic library case.
${ }^{51}{ }^{1.4}$. Flip-sort
$8^{\prime \prime}$ Flip-sort.
16K memory kits
$\$ 24.95$
$\$ 24.95$
$\$ 34.95$
$\$ 34.95$
$\$ 19.95$
\$ 1.95

SPECIAL - FREE GRAFTRAX with EPSON MX-80 Printers MX-80 \$499.00 MX-80F/T $\quad \$ 575.00$ MX-100 \$775.00
Printer Cables $\mathbf{\$ 2 4 . 0 0}$ (Specify Computer Type)

WE ALSO STOCK OKIDATA \& NEC PRINTERS CALL FOR PRICES

APPARAT'S PROM BLASTER

An eprom programmer for all $25 \times X$ and $27 \times \times$ chips. TRS-80 MOD I \& III.. $\$ 149.00$ CABLE .. 17.95 BUS EXTENDER mini version with 2 card slots and no enclosure\$ 69.95

ASSORTED ITEMS OF INTEREST
MICRO CLINIC, Mod I \$24.95, Mod III \$29.95 The ultimate in memory \& disk diagnostics MEAL MASTER, Mod I \& III Disk $\$ 24.95$
meal planning \& grocery shopping aid FLEXTEXT/80 (requires Graftrax) \$34.95 ultilize the additional features of the MX-80 printers under model I \& III scripsit MICRO ACCOUNTING SYSTEM, $\$ 479.00$ Interactive G/L. A/R. A/P \& checkbook manager UNI-TERM/80, $\$ 89.00$
Universal terminal program that takes advantage of the extended NEWDOS/80 commands BASIC BETTER \& FASTER BOOK, $\$ 23.95$

NEW LOWER PRICES ON

 TANDON DISK DRIVESComplete with power supply, chassis \& configured for TRS-80* Model I or III

- Single sided 40 track . \qquad
- Dual 40 or Single 80 track.
- Dual sided 80 track.........
............... .
\qquad
$\$ 285.00$ $\$ 415.00$ ADDS AL MOST 1.5 MEGABYTES OF STORAG TO A D. D. MOD I OR A MOD III)

MODEL I DOUBLE

DENSITY PACKAGE
Converts a standard TRS-80 ModelI to Double Density.
A pparat Doubler \& NEWDOS/80 V2.0. $\$ 278.00$ value for only $\mathbf{\$ 2 1 9 . 0 0}$
Doubler alone \$129.00

NewUOS50

The most sophisticated DOS ever produced for the TRS -80° Models I and III. It provides the user with "MAINFRAME" power on a "MICRO".

Some Features available are:

- Jobstream Control Language
- Mod I/Mod III Diskette interchangability
- Double Density Support on Model I
- Pagenation of BASIC listings on the screen
- Basic program single stepping
- Dynamic variable manipulation
- Multiple array sorts with BASIC CMD
- Complete technical support provided All this plus much more for only $\$ 149.00$

InfoWorld

Software Report Card
NEWDOS/80
Version 2.0

Another phase of word processing, the printed word, is beginning to pass as the dominant form of information storage and retrieval. Print has lasted over 500 years, during which time it spread knowledge in an unprecedented fashion, providing economical copies of classics and original works to whomever could afford them. At no other time in history has so much information been so quickly exchanged. Save, perhaps, for the present.

Yet electronic storage and retrieval is but a change in technologies. Printing will remain, just as handwriting remains, but it will become as uneconomical as handwriting in producing copies. Ultimately, that is all that our "information revolution"' involves: copies. A larger number of available copies, whatever their origin, depends on our desire for them, and the cost per copy.

The Written Word

The first word processors were the scribes, that legion of men and women who followed their masters and wrote of God, business, taxation, and law. They organized their writing skills into a middle-level profession that lasted until the 16th century. With their mistakes, shorthand, and inventions the scribes shaped our alphabet.

Our earliest written records seem to be packing slips. Recent archeological discoveries of symbols stamped on clay vessels have led to speculation that those jars were packing slips, shipped with goods to account for quantity, item, and price. Other discoveries link these symbols with sealed vessels containing stones inside. Archeologists think that stone stamps were cut, pressed into wet clay jars, then sealed inside as a "hardcopy" record of a shipment. These clay vessels have been found almost exclusively in grain houses or aboard sunken ships, and some have remained unbroken, their contents visible only with X-rays.

Stone, clay, and paint were the favorite media for permanent records;
while bamboo, bark, or palm leaves provided semi-permanent media. Alternatives to clay tablets were sought almost from the beginning, and more effort put into developing thin plant or animal skins upon which to write. Egyptian papyrus, in particular, and Formosa "rice paper" were cut from the pith of trees, making them light, portable, not too easily damaged, and economical enough for its purposes.

During this same period, both the Egyptians and the Chinese developed new tools for writing, the former using reed pens, the later a brush. Both of

A sixteenth century portrait of Johann Gutenberg.
these led to more precise character form and the slow evolution of "standardized" writing, that is, to a recognized style as opposed to personal interpretations. Using this foundation the written word made progress.

During the reign of Trajan, in A.D. 105, when his forum was built and each scribe wrote on a hinged board covered with wax (called a codex), T'sai Lun announced to the Chinese emperor, Yuan Hsing, the development of paper. It would take 1000 years before the first paper mills started production in Europe, although printing pictures with wood blocks had already been in-
vented. However, the commercial connection between paper and print could not be completed in the Orient; the ideogrammatic forms favored calligraphy, and it was not until this century that the technology existed to create economical printing for these languages.

After the fall of Rome, Christian monks took over the task of the scribes. The monks retreated with the writing skills and perfected them; they created our upper case and lower case; they established the Roman alphabet as the dominant form in Europe; and they created the book, an enduring means of information storage and retrieval. In every country, using various "national" styles of writing, our alphabet and its end use, the book, grew to maturity. The monks worked in small rooms, three or four to a room, using quill pens and various ink recipes on parchment which was dried animal skin, scraped and polished to smoothness. These rooms opened on a large central room, called the scriptorium, where the work was supervised, proofread, and then passed on to others who gilded or painted decorative initials and pictures on the parchment. The work was done in stages, each monk forwarding the pages until a book was bound and finished.

Naturally these books were highly valued in their day. The fact that possibly ten copies of any work existed was "miraculous," at least by 11th century standards. The monks, who had originally created only liturgical works or approved classics, shared their skills with secular craftsmen, and by Gutenberg's time, the middle of the 15th century, there were large "commercial" scriptoriums as well as religious ones.
The commercial scribes joined guilds and bound themselves with other craftsmen in related fields to form a thriving and powerful group that had seemingly limitless demands for its products. The introduction of paper to 10th century Spain, while not im-
mediately significant to the future of scribes, at least assured them of reasonably-priced materials upon which to write.

The Japanese had already invented block printing in A.D. 760, during the time of Charlemagne in Europe. Kibino-mabi, a Chinese-trained scholar, returned to his native Japan after 20 years of study and brought with him, as some believe, the invention of kata-kana, the oldest and simplest form of Japanese writing. He also supervised the production of scrolls printed from blocks of wood. This first printing, for the Empress Shotoku, consisted of four charms, or dharani, on scrolls about as wide as the column you're reading and 22 inches long, all placed in small wood pagodas. The dharani had been issued after a terrible outbreak of smallpox in Japan, as celestial insurance against another such outbreak.
Block book printing in Europe, however, had been stifled by the powerful guilds, whose scribes and artists had laws passed banning the duplication of images. Printing's first flowering in Europe was from a brisk business in playing cards, followed by devotional images printed by "underground" artists of the day.
It would seem that this period was a most unauspicious time to introduce printing. Yet, it was the perfect time economically, and for one important reason: the Renaissance had created a demand for more books than scriptoriums could ever hope to produce. Many inventors sought to perfect printing: Coster, from the Netherlands, produced a few crude prayer pamphlets using type cast from clay; and Waldfogel, a Czechoslovakian goldsmith in Paris who invented "artificial writing"' in 1446, are two whose names and inventions have been documented. It remained for Gutenberg to create the effective printing technology to take advantage of the abundance of paper produced (at prices well below the cost of any parchment) by a number of mills that had come into existence since 1150 .

The Printed Word

Gutenberg did not 'invent" printing. He invented the processes that made it economical, practical, and marketable. To make type he borrowed from his craft as a goldsmith and produced steel rods upon which letterforms were filed. These rods were then stamped into copper or brass plates. The plates, with their letters in relief, were fitted to a mold. A mixture
of lead, tin and antimony was poured in, and when it had cooled and was opened, the type was removed, the metal dressed, and more letters were cast.
Although it sounds like an agonizingly slow process, it was a very quick and efficient by 15 th century standards. Gutenburg also made other contributions including a good printing ink and the use of a screw press adapted from the winemakers.
At first printed books were declared semipermanent at best by the guild of scribes, but it took only 50 years to change that. By 1500 , printing had already gone through its classic period in Germany and Italy, and emerged as a full-blown industry whose number of workers would exceed those of the scribes in another half a century.
The art of typography in printing took up where calligraphy had left off

Fashioned Lettering styles such as the above example are frequently used in modern magazines and newspapers. Few styles other than Old Fashioned instantly suggest antiquity.
in writing. The type you're reading now has its origins in the Italian calligraphy favored during the Renaissance. Called humanist after the scholars who used it, the letterform was adopted by Italian printers as an alternative to Gutenberg's dark Gothic type, derived from the German "national style." The Italians, and in particular a displaced Frenchman named Nicholas Jenson, nurtured and perfected our present roman alphabet. Some have called Jenson's roman type the most perfect roman ever made.

Though typography flourished, the printing industry itself changed very little. Up until the 1840s books were printed by hand in large rooms containing as many as 15 presses, each producing two sheets a minute. It was the invention of continuous rolls of paper that spurred printers to apply power to their presses.

In 1814, the Times of London began using a power press, and from this development evolved the modern daily newspaper. During this same period, a new method of printing, lithography, was developed, but the full scope of this discovery would not be felt until after the Second World War.
By the 1880 s power presses and continuous paper production were commonplace, yet type still had to be set by hand, letter after letter, much as it was in Gutenberg's day. Many devices for setting type had been tried, including one that cost Samuel Clemens (Mark Twain) considerable money before it folded.
The first real advance came in 1886 with the introduction of the Linotype machine in America and the Monotype in England. The Linotype, as its name suggests, forms a line of type from reusable type molds, casts it, and then returns the type molds to their proper place in the machine. A Monotype, on the other hand, casts each letter individually. Concurrent with these developments was the invention of the typewriter.
As these new technologies took the place of the more labor-intensive ones, print thrived as it never had in previous centuries. Our use of printed paper was measured by metric tons, and the many magazines and newspapers published between 1890 and 1945 document this expansion.
During the Second World War, however, a new kind of technology was being developed. The computer, with an ancestry nearly as long as printing, but more obscure, was being conceived and nurtured with War funding. After the war, the favorable climate for computers grew with the economy of the United States and Europe. The "business machine" and computerphobia became a part of American folklore.

While the computer was being developed, lithographic printing began to replace the 500 -year-old relief printing, and the photo-litho process helped create a new means of setting type. The phototypesetters developed during the 1950s were retro-fitted linotypes, whose type molds carried a letterform on negative film which was exposed through lenses onto photo paper, developed, and used to make photo-litho plates.
In the 1960s this process was refined, and a rotating drum with the characters on film spun about a strobe light, which fired on command whenever the correct letter appeared, exposing the letter onto photo paper. The Photon Corporation produced one of the first machines for the U.S.

Government Printing Office.
At the same time, IBM was perfectting a new type of business machine they called a "word processor." The first models developed for the typesetting industry used a typewriter instead of a photosetter for its output. A typist recorded a job during keyboardding on magnetic tape, which could be stored and used over again without rekeyboarding. IBM later introduced a similar machine to business offices, but such devices had not yet become an economic necessity.
With the commercial introduction of microchip technology, a new breed of typesetter was created. These first machines used the microchips to store programs that automatically justified (made columns even), hyphenated words, and determined where a line would end without operator assistance. They used magnetic tape or hard disk storage at first, but as floppy disk technology became practical and the cost of the chips went down, all storage and computing was done by the machine itself. They were the forerunners of word processing machines for the business office.

Some word processing systems had been in place since the mid-70s, but almost exclusively in larger corporations. With the development of the
microcomputer and related software, these technologies have filtered down far enough so that most anyone in business can afford some kind of word/data processing.

The Electronic Word

Printing will not be replaced by the electronic word before the end of this century. It may never be wholly outmoded, for there are new printing technologies, among them the ink jet, that may bring it back to a kind of prominence. But it will never dominate as it has for the last five centuries.
The microcomputer, armed with a word processing program and a printer, is capable of making digitalized copies complete with updates, at a cost that will one day be competitive with print. For short runs of, for example, 100 copies of a 20 page report, it is quite competitive. Still, this is only an overlapping of forms and technologies that compete to do the same thing. The power of the electronic word exceeds print because it does not need hardcopy replication. The data can be stored without once printing it, information can be sent nearly anywhere, and the cost of the raw materials involved is considerably less than those used for printing.

Remember, too, that I'm speaking
solely about the microcomputer. The deliberate exclusion of mainframes reinforces the fact that the electronic word not only can, but will dominate as our chief source of information. Books will not disappear; they will become rareties devoted to topics worthy of such presentation; instead of the present shabby products that consume millions of acres of vegetation, we may once again have books made "the way they used to be made."
The future of the electronic word will depend on the people who use it. We may develop a global library, translatable into any language, or we may simply develop a collection of our trivia. The question is one of quality.
With the ease of reproduction, will our future copies of data be looked upon as we look upon old books or the monumental writings in stone left us by the ancients? This revolution in information has been taking place since we started writing. We now have a new tool, as crude as we conceive an ancient pen might have been, but no more powerful than that pen for one reason: the hand that guides it.

Perhaps the greatest question we must answer is whether we are ready for this new tool, or even worthy of it. You are the pioneers. You are shaping those answers.

The Little Printer with Big Features

Specifications
Comel ea-Column Dot Matrix Pinfer

Print Fectures	Number of columns	80 col max.	
	Print Speed	125 CPS	
	Print Direction	Single directional and Bidirectional Switch Selectable	
	Throughput Speed	6.3 L.PM at Bidirectional Printing	
	Form Feed Speed	10 L.PS	
	Character Format	${ }^{-} \times 7$ Dot Matrix	
	Character spacing (max. number of	Normal Width Double Width	$\begin{array}{cc} 10 & C \mathrm{PI}(80) \\ 5 & C \mathrm{PI}(t 0) \end{array}$
	columns per line)	Compressed Font	16.5 CPI (132)
		Compressed Font Double W'idth	$825 \mathrm{CPI}\left(\mathrm{Cr}_{6}\right)$
	Line Spacing	6 LPI	
	Print Width	$203 \mathrm{~mm}\left(8^{\prime \prime}\right)$ nax.	
Forms	Width	11.3 mm to $25+\mathrm{mm}\left(4.55^{\prime \prime}\right.$ to 10.0) ${ }^{\prime \prime}$)	
	Total Thickness	0.05 to 0.28 mm ($0.0022^{\prime \prime}$ to $\left.000111^{\prime \prime}\right)$	
	Number of Copies	Original +2 copies nominal	
Form Feed	Method	Sprocket Feed	
	Form Loading	Either bottom or rear	

The Comet-I is the lowest priced printer that we sell. The Comet-I has standard features that are optional on many other higher priced printers. Comet-I's print speed is an impressive 125 cps bidirectional, and print features include 4 character sizes, 4 different alphabets for international use, a high-resolution 7×7 dot-matrix, and a print compression capability that enables the Comet-I user to switch between 5,8.25, 10 and 16.5 CPI and to print up to 132 characters per 8 -inch line. This paper saving feature is very desirable in today's data processing market.

You'll find that the quality, performance and cost economy of this printer puts it ahead of any other competitive model in its price catagory, and it's ready for immediate delivery.
Comet-I Printer, with Centronics-compatible interface \#09-259005H . $\$ 289.00$
Comet-I Printer, with RS-232C interface \#09-259006H
$\$ 289.00$

The Software Exchange
14 South St., Nillford, NH 03055 (603)673-5144 $\begin{array}{ll}\text { 14 South St, NiIford, NH } \\ \text { TOLL FREE OUT.OF-STATE } \\ & 1.800-258.1790\end{array}$

by Jon Voskuil
"Microtext 1.2 is a word processor program for a 16 K Apple (with Applesoft), ATARI ${ }^{\circledR}$, or TRS-80 ${ }^{\oplus}$ (Model I or III).

In the December, 1981, and January, 1982, issues of SoftSide, we published the first two parts of a simple word processor program. Here we add the third (and probably last) main module of the program, which gives it line-editing capability.

A few minor modifications have also been made to other parts of the program. The complete line listings are given; lines which have been added or changed are indicated, so that you need only add these if you have previously typed in the other installments. Please observe that the "Program Documentation Textwriter", subtitle has been dropped, and it is NOT necessary to use Microtext in submitting documentation for programs; see Outgoing Mail for more information.

Upon running, Microtext 1.2 displays a mostly blank screen with an instruction summary line at the top or bottom. You can either start typing, or load a previously saved file from disk or tape. (Please see the note below concerning the Apple version's tape operation.) Capitalization of characters on the Apple and TRS- 80^{\circledR} Model I versions is accomplished by preceding individual characters to be capitalized by an "@" symbol, and words to be capitalized by a double "@@". Normal use of the Model I's shift key inserts the "@" in front of individual characters; the "@"' key itself must be used to insert the double symbol necessary for word capitalization. On the Apple, the shift key is not designed
to operate in this way; pressing ESC once or twice before the letter or word to be capitalized will do the trick.

The Apple and ATARI ${ }^{\circledR}$ versions use the CTRL key to access editor and system functions, while the TRS80^{\circledR} version uses the CLEAR key. Holding down CTRL, or pressing and releasing CLEAR, and then pressing S, $\mathrm{L}, \mathrm{R}, \mathrm{P}$, or E , will access the save, load, review, printout, or edit functions. Although not mentioned in the command summary on the screen, pressing CTRL-Q or CLEAR-Q will quit the program.

Saving and loading files is simply a matter of answering the questions about the medium to be used (tape or disk) and, if disk, the file name. Once you have entered a file name, it will be used as the default until you specify another one or exit the program: Just press RETURN/ENTER when asked for the file name. This simplifies repeated saves during entry of a long document. The Apple disk read/write routine has been modified to make it much faster than before, with the sacrifice of not being able to use standard quotation marks within the body of the text. (An apostrophe, or single-quote, is automatically substituted if the double-quote key is pressed.) If you insist upon retaining the use of normal quotation marks, you'll have to put up with the slower disk I/O. This tradeoff is not necessary with the ATARI ${ }^{\circledR}$ and TRS-80 ${ }^{\circledR}$ versions.

The review function causes the computer to return to the beginning of the text in memory and scroll through it to the end. During this scrolling, you can
press any key to pause. Then, pressing the spacebar will cause one more line to be displayed; pressing RETURN/ ENTER will cause the scrolling to continue; and pressing E will enter the editing mode.

In the editing mode, you can move a cursor up and down through your text, to locate any line which you want to edit or delete. This movement is accomplished with the up- and downarrow keys on the ATARI ${ }^{\circledR}$ and the TRS- 80^{\circledR}, and with the I and M keys on the Apple. You have four options while in the editing mode: Pressing ESC (ATARI ${ }^{\circledR}$ or Apple) or CLEAR (TRS-80 ${ }^{\text {® }}$) will exit to the review mode; pressing D will delete the line at the cursor; pressing X will delete everything from the cursor to the end of the text; and pressing ENTER/ RETURN will allow you to edit the line at the cursor.

If you choose to edit a line, the screen will first clear, and then display a number of lines of text with a gap of several lines in the middle. The cursor will be positioned at the beginning of the line you have chosen to edit, and you can proceed to type in a new line to replace the old one. The new one can be shorter than the original, or may occupy multiple screen lines. Any part of the original line that you want retained must be retyped: Whatever you type in will replace the entire line. When you have finished entering the new text, press CTRL-F or CLEAR-F (not ENTER/RETURN, unless you want a carriage return in the text itself). The computer will check to see if the text lines need to be rearranged, and then return you to the review mode.

The printout function allows you to send your text to a printer, after selecting margins, line spacing, and (in the case of the Apple and the Model I) the case conversion option. Pressing RETURN/ENTER in response to the offered options will select the default value indicated. The case conversion option allows the text to be printed from the Apple or Model I just as it appears on the screen, in all upper case and with the embedded @ symbols; or else to convert it (a bit sluggishly, using a BASIC routine) to normal mixed case for a final printout.

Program Notes

The DIMension statement in line 120, and the CLEAR in line 110 of the TRS- 80^{\circledR} version, reserve memory for the strings which hold the text. The numbers listed work for a 48 K system (40K ATARI ${ }^{\circledR}$) with DOS booted, but will need to be adjusted downward if your system has less available memory. All REM lines may be deleted without effecting the program's operation, to gain more memory space. Many of the individual program lines could also be squeezed together on multiplestatement lines; this kind of packing has been avoided for the sake of clarity, but would increase available memory and possibly execution speed.

If you have a TRS- 80^{\circledR} Model III, some of the listed lines should be changed as follows:

Line 50: Omit ":GOTO 100"
Lines 59-74: Delete
Line 7050: Delete
Line 7130: Change to "LPRINT
TAB(LM);P\$;"
Line 7140: Delete
Line 7590: Change to "LPRINT
TAB(LM);PP\$;'’
Line 7600: Delete
If you have an Apple, and have tried using the tape I/O routines included in previous versions of Microtext, you have undoubtedly noticed that they simply do not work. The STORE and RECALL statements are not designed for use with string arrays, even though they SEEM to work if you don't disturb the computer's memory between program runs. (That's what fooled us into thinking that they did work.) We are working on a method of reading and writing string arrays using tape, which doesn't involve the timeand memory-consuming process of converting the string arrays into integer arrays first. We hope to come up with a solution for publication in the May issue.

APPLE

 - APPLESDFT BASIC \$ * 'microtext l.2' \$ * AUTHOR: jon r. VOSKUIL * - (C) 1982 SOFTSIDE

Title page. (Lines 20 and 40 are changed.)

10 TEXT : HOME
20 VTAB 8: PRINT TAB(8) "M I C ROTEXT 1. 2^{n}
30 VTAB 12: PRINT TAB(12)"BY J ON R , VOSKUIL"
40 VTAB 14: PRINT " copyrieht 19 82 SOFTSIDE FUBLICATIONS"
50 FOR $Z=1$ TO 3000: NEXT 2: GOTO 100

Mixed-case printout conversion routine.
59 REM LOMERCASE PRINT RTN $60 \mathrm{X} \$={ }^{n}{ }^{n}$: IF PP $\$={ }^{n "}$ THEN 74 62 LOCK $=$ NO:LC $=N 1$: FOR K $=N 1$ TO LEN (PP $\$$):CC $=A S C$ (MID $(P F \$, K, N 1))$: IF CC $=$ N32 THEN LOCK = NO
64 IF CC < > N64 THEN 70
66 IF LC = NO THEN LOCK = N1
68 LC = NO: $60 T O 72$
70 PRINT CHR (CC + N32 (LLC AND CC) N64 AND CC (N91) * (NOT LOCK) $)_{\text {: }}$ LC $=\mathrm{N} 1$
72 NEXT
74 RETURN
Initialization. (Lines 130 and 210 are changed.)

99 REM INITIALIIATION
100 HOME : ONERR GOTO 20000
110 POKE 35,22
120 DIM L $\$(1000)$
130 QUOT $=34: E S C=27:$ BKSP $=8: R$ $T N=13: S P C=32: B \$=$ CHR $\$$ (8):CR $=$ CHR $\$(93)$

140 CHAR $=1:$ N $0=0: N 1=1:$ N32 $=$ $32:$ N64 $=64:$ N91 $=91$
$150 \mathrm{LN}=1$
$160 \mathrm{D} \$=$ CHR ${ }^{4}$ (4)
170 PRINT D\$;"MON C, 1,0": HOME
180 LHID $=38$
$190 \mathrm{~V}=1: \mathrm{H}=1$
200 VTAB 23: FOR $1=1$ TO 39: PRINT "-"; NEXT : PRINT

210 VTAB 24: HTAB 1: INUERSE : PRINT
 DIT APRINT"; : NORMAL
220 VTAB V: HTAB H
Input loop. (Line 505 is changed. The original line 890 has been deleted here, but may be retained if preferred.)

499 REM INPUT LOOP
500 GET C $\$: C=$ ASC (C $\$$)
505 IF C $=$ QUOT THEN $C=39: C=$ n) ": 6070740
 64
520 IF C = RTN THEN C $=$ CR
639 REM BACKSPACE
640 IF [< > BKSF THEN 720
650 IF CHAR < 2 THEN 500

670 CHAR $=$ CHAR -1
675 IF CHAR <2 THEN L $\$(L N)={ }^{* \prime \prime}$: $60 T 0500$
$680 \mathrm{~L}(\mathrm{LN})=\mathrm{LEFT}(\mathrm{L}$ (LN), LEN (L $\$(\mathrm{LN})$) - 1)
7006050500
719 REM CTRL CHARACTER
720 IF C < ESC AND C < > RTN THEN 2000
739 REM END OF LINE
740 CHAR $=$ CHAR +1 : IF CHAR \leq LH ID $O R C=$ SPC OR C $=$ RTN THEN 760
750 GOSUB 1000
759 REM ADD TO STRING
$760 \mathrm{~L}(\mathrm{LN})=\mathrm{L}$ (LN) +C
779 REM RETURN
780 IF C < > RTN THEN 8BO
320 PRINT C
$840 L N=L N+1: L \$(L N)={ }^{n}: S L O C=$ 0
850 CHAR $=1$
8606070500
879 REM FRINT ON SCREEN
880 PRINT C $\$$;
899 REM UPDATE SPC POINTER, CHK FOR LINE END
900 IF $\mathrm{C}=32$ THEN SLOC $=$ CHAR: IF CHAR $=$ LHID THEN $L N=L N+1$ $: L \$(L N)=" n: C H A R=1: S L O C=$ 0: PRINT
$920 \quad 6050500$

Subroutine to break line at a space and to initialize the next line.

999 REM JUSTIFY \& INCR LINE
1000 IF SLOC $=0$ THEN PRINT : GOTO 1100

```
1020 HTAB SLOC
1040 PRINT SPC( LHID - SLDC): PRINT
1050 IF SLOC = LHID - 1 THEN 110
    0
1060 L$(LN + 1) = RIGHT$ (L$(LN)
    ,LHID - 1- SLOC)
108O LS(LN) = LEFTS (L$(LN),SLOC
        -1)
1100 LN = LN + 1
1120 PRINT L$(LN);
1140 CHAR = LEN (L$(LN) ) + 2
1150 SLOC = 0
1160 RETURN
```

Subroutine to process command codes.
(Lines 2050 and 2600 are new.)
1999 REM PROCESS CTRL CHARS
$2000 \mathrm{~V}=$ PEEK (37) $+1: \mathrm{H}=$ PEEK (36) +1

2050 IF C $=6$ THEN RETURN : REM
CTRL-F (BACK TO EDIT RTN)
2100 IF C $=18$ THEN GOSUB 3000: REM CTRL-R
2200 IF C $=19$ THEN GOSUB 4000: REM CTRL-S
2300 JF C $=12$ THEN GOSUB 5000: REM CTRL-L
2400 IF $\mathrm{C}=17$ THEN TEXT : END : REM CTRL-Q
2500 IF $\mathrm{C}=16$ THEN GOSUB 7000: REM CTRL-P
2600 IF C $=5$ AND LN >1 THEN I $=$ LN - 1: VU = V: VTAR UV - 1: 60 SUB 9000: G0SUB 3000: REM CTRL-E

29006050210
Subroutine to review entered text. (Lines 3020, 3110, 3125, and 3190 are changed. Original lines 3130, 3140, and 3150 have been deleted.)

2999 REM REVIEM TEXT
3000 VTAB 24: HTAB 1: PRINT SPCL 39)

3010 VTAB 24: HTAB 1: PRINT "PRE SS SPACE BAR TO PAUSE";
3020 HOME : SPEED $=240$
3030 FOR $l=1$ T0 500: NEXT l
3040 IF LN $=1$ THEN 3210
3050 FOR I $=1$ TOLN -1
3060 PRINT L $\$(1)$
3070 IF PEEK (-16384) < 127 AND NOT STP THEN 3200
$3080 \mathrm{STP}=0$: $\mathrm{SPEED}=255$: POKE 16368,0
3090 WU $=$ PEEK (37) +1
3100 VTAB 24: HTAB 1: POKE 35,24 : POKE 34,23: PRINT

3110 PRINT : PRINT " RETURN:CONT SPACEBAR:STEP E:EDIT ";

3120 6ET X $\$: \times=$ ASC ($\mathbf{x} \$$)
3125 IF $X=69$ THEN GOSUB 9000: 60703000
3160 IF $x=13$ THEN 3190
3170 IF $x \ll 32$ THEN 3110
$3180 \mathrm{STP}=1$
3190 SPEED $=240$: POKE 34,0: POKE 35,22: UTAB UV: HTAB 1
3200 NEXT I
3210 PRINT LS(LN);
$3220 \mathrm{~V}=$ PEEK (37) $+1: \mathrm{H}=$ PEEK (36) +1

3230 SPEED $=255$: RETURN

Subroutine to save text to disk or tape. (Lines 4075, 4085, 4088, and 4150 are changed. Line 4210 is retained for historical purposes only; the tape save routine doesn't work. See article for more information.)

3999 REM SAVE TO DISK/TAPE
4000 VTAB 24: hTAB 1: POKE 35, 24
: POKE 34,23: PRINT
4020 vtab 24: htab 1: PRINT "SAU E TO TAFE OR DISK? (T/D/ESC) ';
4030 GET XS: PRINT
4040 IF $\mathbf{X}=$ CHR (ESC) THEN 42 20
4050 L $\$(0)=$ STR $(\operatorname{LN}: 10000+$ SLOC : $100+$ CHAR)
4060 IF X = "T" THEN 4190
4070 IF X () "D" THEN 4020
4075 F15 $=\mathrm{Fs}$
4080 INPUT "FILE NAME: "; $;$
4085 IF F $=$ " " AND F1\% = " THEN 4080
4088 IF F $=$ " THEN F $\$=$ F $1 \$$
4090 INPUT "INSERT DISK AND PRES
S RETURN "; X
4100 PRINT D $\$$;"OPEN "; Fs
4110 PRINT D $\$$;"DELETE ";Fs
4120 PRINT D $\$$;"OPEN "; $\$$
4130 PRINT D $\$$;"URITE "; F\$
4140 FOR I $=0$ TOLN
4150 PRINT CHR (34);L\$(1); CHR\$ (34)

4160 NEXT I
4170 PRINT D\$;"CLOSE "; F\$
4180 60TO 4220
4190 INPUT "START RECORDER AND P RESS RETURN "; \mathbf{x} \$
4200 FLASH : PRINT " SAYING ";: NORHAL
4210 STORE L\$
4220 PRINT

4230 POKE 34,0: POKE 35,22
4240 RETURN
Subroutine to load text from disk or tape. (Lines 5065, 5075, 5078, and 5150 are changed. Original lines 5140 and 5160 have been deleted. Line 5230: see note on line 4210.)

4999 REM LOAD FROM DISK/TAPE
5000 VTAB 24: HTAB 1: POKE 35,24 : POKE 34,23: PRINT
5020 UTAB 24: HTAB 1: PRINT "LOA D FROM TAPE OR DISK? IT/D/ES C) ";
5030. GET X $\$$: PRINT

5040 IF $X \$=$ CHR $\$$ (ESC) THEN 52 50
5050 IF $X=$ " T " THEN 5210
5060 IF X < > "D" THEN 5020
5065 F1 $=$ F
5070 INPUT "FILE NAME: "; ${ }^{\text {T}}$
5075 IF F $=$ "" AND F1 $=$ " THEN 5070
5078 IF F $=$ " THEN F $\$=$ F $\$$
5080 INPUT "INSERT DISK AND PRES
S RETURN " X \$
5090 PRINT D $\$$;"OPEN "; $\$$
5100 FRINT D $\$$; "READ "; F\$
5110 INPUT L $\$(0)$
5120 GOSUB 5290
5130 FOR I $=1 \mathrm{TOLN}$
5150 INPUT L\$(I)
5170 NEXT I
5180 PRINT : FRINT D\$; CLOSE "; F
$\$$
5190 FOR I = 1 T0 500: NEXT I
520060705250
5210 INPUT "GTART RECORDER AND P RESS RETURN "; X \$
5220 FLASH: PRINT " LOADING ";: NORMAL
5230 RECALL L\$
5240 GOSUB 5290
5250 PRINT
5260 POKE 34,0: POKE 35,22
5270 GOSUB 3000
5280 RETURN
$5290 \mathrm{~L}=\mathrm{L} \$(0): \mathrm{L}=\operatorname{LEN}(\mathrm{L} \$)$
5300 CHAR $=$ VAL (RIGHT ($(\$, 2))$
$: L \$=L E F T(L \$, L-2)$
5310 SLOC $=$ VAL (RIGHT ($\mathbf{L} \$, 2$)) $: L \$=\operatorname{LEFT}(1 . \$, L-4)$
$5320 \mathrm{LN}=$ VAL (L $\$$
5330 RETURN
Subroutine to print the text file in memory to a printer.

6999 REM PRINTOUT ROUTINE

7000 HOME : UTAB 6:LIN $=0$
7010 INPUT "LEFT MARGIN? (DEFAUL $T=10)$ " $\quad \times \$: L M=$ VAL $(X \$)$: IF $L M \leqslant 1$ THEN $L H=10$
7020 PRINT : INPUT "RIGHT MARGIN ? (DEFAULT $=70)$ " $\times \$:$ RM $=$ VAL (X) : : IF RM < 1 THEN RM $=70$
7030 PRINT : INPUT "LINE SPACING ? (DEFAULT $=2)$ " $\quad \times \$: L S=V A L$ (X): IF LS < 1 THEN LS $=2$

7040 LL $=$ RM $-\operatorname{LM}$
7050 PRINT : PRINT "CONVERT TO L OHERCASE UNLESS PRECEDED BY 2 ? (DEFAULLT $=$ NO) ": GET X $\$: U C=1$: IF $X \$=$ "Y" THEN $U C=0$
7060 FR\# 1
7070 HOME : PRINT :P = " $1: C R=$ $0: 1=0$
$7080 \mathrm{I}=1+1: \mathrm{P}=\mathrm{F}+\mathrm{L}+(\mathrm{I})$
7090 IF RIGHT $(\mathrm{P} \$, 1)=$ CR $\$$ THEN $C R=1: 60 T 07110$
7100 IF LEN (P\$) < 255 - LUID AND 1 <LN THEN 7080
7110 605UB 7500:CR $=0$
7120 IF I < LN THEN 7080
7130 PRINT TAB (LM);: IF UC THEN
PRINT F $\$:$: $60 T 07150$
$7140 \mathrm{PP}=\mathrm{P} \$: 605 \mathrm{UB} 60$
7150 PRINT ; PR 0
7160 60SUB 3000
7170 FETURN
$7500 \mathrm{~L}=\mathrm{LL}$
7510 IF LEN (P\$) > LL THEN 7550
7520 IF NOT CR THEN 7640
7530 LP $=$ LEN (P\$): IF LP < 2 THEN PF\$ = " ": P\$ = " ": 10 TO 7590
$7540 \mathrm{PP} \$=\operatorname{LEFT} \$(\mathrm{P} \$, \mathrm{LF}-1): \mathrm{P} \$=$ "": 60707590
7550 C $\$=\operatorname{MID} \$(\mathrm{P} \$, \mathrm{~L}, 1)$: IF $\mathrm{C}=$ " " THEN 7580
$7560 \mathrm{~L}=\mathrm{L}-1:$ IF L > O THEN 755 0
$7570 \mathrm{~L}=\mathrm{LL}$
$7580 \mathrm{PP}=\mathrm{LEFT} \$(\mathrm{P} \$, \mathrm{~L}): \mathrm{P} \$=$ RIGHT $\$$ (P ; LEN (P \$) - L)
7590 PRINT TAB(LM);: IF UC THEN PRINT PP $\$$; : 60507610
7600 GOSUB 60
7610 FOR J $=1$ TO LS:LIN $=$ LIN + 1: PRINT " ": NEXT J
7615 IF LIN >59 THEN FOR J $=1$ TO 66 - LIN: PRINT : NEXT J :LIN = 0
7620 IF LEN (P\$) > LL THEN L = LL: $60 T 07550$
7630 IF CR AND LEN (P $\$$) >0 THEN 7530

7640 RETURN

Subroutine to readjust lines in memory so that they fit properly on the screen after editing. (This routine is wholly new.)

7999 REM TEXT REJUSTIFY RTN
8000 HOME : VTAB 5: PRINT "RE-JU
STIFYING TEXT. . ."
$8010 \operatorname{LIN}=E L: L N=L N-1$
$8020 \mathrm{~F} \$={ }^{\mathrm{n}}: \mathrm{CR}=0: \mathrm{I}=\mathrm{EL}-1$
$8030 \mathrm{I}=\mathrm{I}+1: \mathrm{P} \$=\mathrm{P} \$+\mathrm{L}(\mathrm{I})$
8040 IF RIGHT $\$(\mathrm{P} \$, 1)=$ CR $\$$ THEN
$C R=1: 60 T 08060$
8050 IF LEN (P\$) + LEN (L\$ 1 I +
1)) < 256 AND I < LN THEN 80 30

8060 GOSUB 8500
8070 IF NOT CR THEN 8100
8079 REM END OF PARAGRAPH
$8080 X=1+1$ - LIN: IF $X=0$ THEN 8150
$80 B 9$ REM MOUE LNS DOUN IN ARRAY
8090 FOR J = I + 1 TO LN:L\$ (J -
$X)=L(\mathrm{~J}):$ NEXT $\mathrm{I}: L \mathrm{~N}=\mathrm{LN}-$
$x: 60 T 08150$
8100 IF I < LN THEN 8030
8110 L\$(LIN) $=\mathrm{P} \$$
8120 CHAR $=$ LEN $(\mathrm{P} \%)+1:$ SLOC $=$ LEN (P\$)
8130 FOR I = LIN + 1 TO LN: $\$(\mathrm{I})$ = " ": NEXT I
$8140 \mathrm{LN}=\mathrm{LIN}$
8150 RETURN
$8500 \mathrm{~L}=\mathrm{LHID}$
8510 IF LEN (P\$) > LHID THEN 85 50
8520 IF NOT CR THEN 8630
$8530 \mathrm{LP}=\mathrm{LEN}$ (P)
$8540 \mathrm{PP}=\mathrm{LEFT}(\mathrm{P} \$ \mathrm{LP}): \mathrm{P} \$=\mathrm{=}=$; 60708590
8550 C $=$ MID $(P \$, L, 1)$: IF C $=$ " " THEN 8580
$8560 \mathrm{~L}=\mathrm{L}-1:$ IF L > O THEN 855 0
$8570 \mathrm{~L}=\mathrm{LHID}$
8580 PP $\$=$ LEFT $\$(P \$, \mathrm{~L}): \mathrm{P} \$=$ RIGHT $\$$ ($\mathrm{P} \$$, LEN ($\mathrm{P} \$$) - L)
8590 L $\$(\mathrm{LIN})=\mathrm{PP}$
8600 LIN = LIN + 1
8610 IF LEN (P $\$$) $>$ LHID THEN L $=$ LHID: 60TO 8550
8620 IF CR AND LEN (P $\$$) > O THEN 8530
8630 RETURN

Subroutine to edit lines of text. (This routine is wholly new.)

8999 REM EDIT LN SUBRTN
9000 IT = I: POKE 34,0: POKE 35,2 2: IF I >20 THEN VI $=21$: $60 T 0$ 9040
9010 VTAB VU: HTAB 1:V1 = 1
$9020 X=21:$ IF $X>$ LN -1 THEN X $=\mathrm{LN}-1$
9030 FRR I $=1 T+1$ TO X: PRINT L (I): NEXT I
$9040 \mathrm{EL}=\mathrm{VI}+(\mathrm{IT}) 21)$ (IT 21)

9050 O "I, M: MOUE RTN:EDIT D , X:DEL ESC:EXIT"
9060 VTAB 24: HTAB 1: INUERSE : PRINT Q
9070 POKE 34,0: POKE 35,22
9080 UTAB V1: HTAB 1: GET $\mathbf{~} \$$
9090 IF $\mathrm{X} \$ \leqslant{ }^{4} \mathrm{I}^{\mathrm{B}}$ THEN 9130
9100 IF V1 >1 THEN VI = VI - 1; $\mathrm{EL}=\mathrm{EL}-1: 60 \mathrm{TO} 9080$
9110 IF EL = 1 THEN 9080
$9115 \mathrm{EL}=\mathrm{EL}-5$: IF EL <1 THEN $\mathrm{EL}=1$
9120 FOR I = EL TO EL + 20: CALL

- 868: PRINT L\$(I): NEXT ; GOTO 9080
9130 IF X < \langle "月" THEN 9180
9140 IF EL > $=$ LN -1 THEN 9080
$9150 \mathrm{EL}=\mathrm{EL}+1$
9160 IF VI < 21 THEN $\mathrm{VI}_{1}=\mathrm{V}_{1}+1$: 60709080
$9165 \mathrm{NN}=4$: IF NN $>\mathrm{LN}-\mathrm{EL}-1$ THEN $N N=L N-E L-1$
$9170 \mathrm{EL}=\mathrm{EL}+\mathrm{NN:} \mathrm{YTAB} \mathrm{22:} \mathrm{HTAB}$ 1: FOR I = EL - NN TO EL: PRINT L\$(I): NEXT I: $60 T 09080$
9180 IF $\mathrm{X} \$=$ CHR $\$$ (ESC) THEN 95 90
9190 IF X\$ < > D" OR V1 = 1 THEN 9250
9200 FOR J = EL TO LN - 1:L\$(J) =
L\$(J + 1): NEXT :L\$(LN) = "
$9210 x=21-$ V1: IF $x>$ LN - EL THEN $X=L N-E L$
9220 FOR J = EL TO EL + X: CALL
- 868: PRINT L\$(J): NEXT

9230 IF $E L=L N-1$ THEN $V 1=V 1$ $-1: E L=E L-1$
$9240 L N=L N-1: 60 T 09080$
9250 IF X < > "X" THEN 9310
9260 VTAB 24: PRINT "DELETE FROM HERE TO END OF TEXT? (Y/N) ";: VTAB V1: HTAB 1: GET X $\$$: IF X \ll > "Y" THEN 9060
9270 FOR J = EL TO LR:L $\$(\mathrm{~J})=$ " : NEXT J:LN = EL:CHAR = 1:SL $0 C=0$
9280 VTAB V1: HTAB 1: CALL -95

8

9290 VTAB 24：INVERSE ：PRINT Q $\$$ ；：NDRMAL
9300 UTAB V1：HTAB 1： 60709100
9310 IF $\times \$$ 〈＞CHR（RTN）THEN 9080
$9320 L 1=E L-8: I F L 1<1$ THEN $L 1=1$
$9330 \mathrm{~L} 2=\mathrm{EL}+8: \mathrm{IF} \mathrm{L2}$＞ LN THEN $L 2=L N$
9340 HOME ：FOR $J=\operatorname{LI}$ TO EL：PRINT L\＄（J）：NEXT J
9350 PRINT ：PRINT ：PRINT ：PRINT
9360 FOR J＝EL＋ 1 TO L2：PFINT L\＄（J）：NEXT J
9370 VTAB 24：CALL－868：INVERSE ：PRINT＂TYPE NEH LINE ABO VE（ ${ }^{\circ} \mathrm{F}$ TO FINISH）${ }^{\prime} ;$ ：NDRMAL $93 B 0$ VTAB EL－L1＋1：HTAB 1
$9390 \mathrm{TLN}=\mathrm{LN}: \mathrm{LN}=\mathrm{LN}+1$
9400 FOR $\mathrm{J}=1$ T0 5： $\mathbf{L}(\mathrm{TLN}+\mathrm{J})=$ ＂＂：NEXT J
$9410 \mathrm{C1}=$ CHAR：S1 $=$ SLOC：CHAR $=1$ $: S L O C=0$
9420 GOSUB 500
9430 CHAR $=$ C1：SLOC $=\$ 1$
9440 IF L（LN $)=$＂ THEN $L N=L N$ － 1
9450 NL $=\mathrm{LN}-\mathrm{TLN}$
9460 IF NL $=1$ THEN 9510
9470 IF NL ） 0 THEN 9500
9480 FOR $\mathrm{J}=\mathrm{EL}$ TO TLN：L\＄（J）$=\mathrm{L}$
$\$(\mathrm{~J}+1):$ NEXT J

9500 FOR J $=\operatorname{LN}$ TO EL +1 STEP－ $1: L \$(J+N L-1)=L \$(J):$ NEXT J
9510 FOR J＝ 0 T0 NL－1：L $\mathrm{J})=\mathrm{L} \$(\mathrm{LN}+\mathrm{J}): \mathrm{L}(\mathrm{LN}+\mathrm{J})=$ ＂＂：NEXT J
9520 CX $=$ RIGHT $(\mathrm{L}+(\mathrm{EL}+\mathrm{NL}-$ 1），1）
9530 IF CX $\$=$ CR $\$$ THEN 9580
9540 IF CX 〈＞＂＂THEN L\＄（EL＋ $N L-1)=L(E L+N L-1)+$ ＊＂
$95505 S=1: L \$=L \$(E L+N L): L L=$ LEN（L\＄）
9560 IF MID $\$(L \$, 5 S, 1)\rangle "$＂ AND SS《＝LL THEN SS＝SS ＋1：6070 9560
9570 IF LEN（L $\$(E L+N L-1))+$ SS＜＝LHID THEN GOSUB 800 0： 60709590
$9580 L N=T L N+N L-1$
9590 RETURN

[^1]19999 REH ERROR－HANDLING RTN
20000 E $=$ PEEK（222）：PRINT CHR $\$$ （7）
20010 IF $E=0$ OR E $) 15$ THEN PRINT ＂ERROR \＃＂；E；＂IN LINE＂；PEEK （218）＋PEEK（219）＊256：STOP

20020 PRINT D $\$$＂CLOSE＂
20030 PRINT＂DISK ERR：＂；
20040 IF E $=4$ THEN PRINT＂WRIT E－PROTECTED＂；
20050 IF E $=5$ THEN PRINT＂END OF DATA＂：
20060 IF E $=9$ THEN PRINT＂DISK FULL＂：
20070 IF $E=10$ THEN PRINT ${ }^{\text {a }} \mathrm{FIL}$ E LOCKED＂；
20080 PRJNT＂；PRESS A KEY＂；：GET X
20090 POKE 34，0：POKE 35，22； $60 T 0$ 210

ATARI ${ }^{\circ}$

```
$$$$$$$$#$$$$$$$$$$$$$$$$$$$$
$ ATARI BASIC $
            'MICROTEXT 1.2' $
        AUTHOR: JON R, VOSKUIL $
        (C) 1982 SDFTSIDE $
```


Title page．（Lines 20 and 40 are changed．）

10 DIH CL $\$(1): C L \$=$ CHR $\$(125)$ ；PRINT CL 15 POKE 752，1
20 POSITION $8,8:$ PRINT＂M I CR RTEX T 1．2 $2^{\text {n }}$
30 POSITION 12，12；PRINT＂BY JON R．VOS KUJL＂
40 PRINT ：PRINT ${ }^{\text {CCOPYRIGHT }} 1982$ SOFTS
ide publications＂
50 FOR $1=1$ TO 1000 ：NEXT ？
Initialization．（Lines 120，125，and
200 are changed．）
99 REM INITIALIZATION
100 PRINT CL $\$:$ TRAP 20000
120 DIM L $\$(40)$ ， T （ 14000 ）， $\mathrm{B} \$(1), \mathrm{C} \$(1), \mathrm{C}$
$R \$(1), L I N \$(37), L N X T \$(40), F \$(14) ; 5 \$(37)$
，FT\＄（14），LP（500），TT\＄（40），X\＄（5）
125 DIM $\mathrm{P} \$(255), \mathrm{PP} \(80) ， $\mathrm{Q} \$(37)$ ， $\mathrm{F} 1 \$(14)$
130 $\mathrm{BK} . \mathrm{SP}=126$ ：RTN $=155$ ： $\mathrm{SPC}=32: \mathrm{B} \$=\mathrm{CHR} \$(12$ 6）：CR\＄＝CHR\＄（20）

140 CHAR $=1$
$150 \mathrm{LN}=1$

170 UPEN $1,4,0$ ，＂K：＂
$180 \mathrm{LHID}=36$
185 POKE 752，0
$190 \quad Y=2$ ；$H=2$
200 POSITION 2，0；PRINT＂ASAVE LOAD
＊REVIEW＊EDIT APRINT＂；
210 PQSITION 2，1：PRINT LINक；
220 FOSITION H，ViPFINT ${ }^{\text {a }}{ }^{*}$ ；B ；

Input loop．

499 REM INPUT LOOPP
500 GET \＃1，C：C $=\mathrm{C}=\mathrm{HR} \(C)
520 IF C＝RTN THEN C $=\mathbf{F}=\mathrm{CR}$
639 REM BACKSFACE
640 IF CCDBSSP THEN 720
650 IF CHARC2 THEN L $\ddagger=$＂$:$ gitil 500

670 CHAR $=$ CHAK -1
675 IF CHARC2 THEN 500
$690 \mathrm{~L} \$=\mathrm{L} \$(1$ ，CHAP－1）
7006070500
719 REM CHK FOR CTRL DHAR
720 IF ESSPE THEN 2000
759 REM CHK FOR END OF LN
740 CHAR $=$ CHAR +1 IF CHAR L UID OR $C=S P C$
OR C＝RTN THEN 760
750 GOSUS 1000
759 REM ADD TI STRING
760 L $\$$（CHARK－1）$=$ C．$\$$
779 REM RETURN
780 IF CORTN THEN 980
820 PRINT C
340 GOSUR 6000 ：SLDC＝0
950 CHAF $=1$
860 G0TO 500
879 REM FRINT ON SCRN
880 PRINT C \ddagger
899 REM UPDATE SPC PNTER，CHE FOR END Or LINE
900 IF $\mathrm{C}=32$ THEN SLOC＝CHAF－1：IF CHAR $=1$
WID THEN GOSUE 6000：CHAR＝1：SLOC＝0；PRIN T
9206070500
Subroutine to break line at a space and to initialize the next line．

1000 IF SLOC＝0 THEN PRINT ； $60 T 01100$
1020 SS＝LWID－SLOC－1：FOR $\mathrm{J}=1$ TO SS：PRIN
T B\＄：NEXT J
1040 FOR $J=1$ TO SS：PRINT a＂；：NEXT J：P RINT
1050 IF SLOC＝LEN（L $\$$ ）THEN LNXT $\$={ }^{n}$＂$;$ GOT
［1100
1060 LNXT $\$=L$（ $9 L O C+1$ ）
$1080 \mathrm{~L} \$=\mathrm{L} \$(1, S L 0 C)$

1100 GOSUR 6000
1110 L $\$=$ LNXT
1115 LNXTW＝＂＂
1120 PRINT L\＄；
1140 CHAR＝LEN（L）$)+2$
1150 SLOC＝0
1160 RETURN

> Subroutine to process command codes. (Lines 2080, 2085, 2090, and 2600 are new.)

1999 REM PROCESS CTRL CHAR
$2000 \mathrm{~V}=\mathrm{PEEK}(84)$ ； $\mathrm{H}=$ PEEK（ 85 ）
$2050 \mathrm{TL}=\mathrm{LEN}(\mathrm{T} \$)$
$2060 \mathrm{~T}(\mathrm{TL}+1)=\mathrm{L} \$$
2070 POSITION 2，0；PRINT S\＄；PRINT LIN\＄；
2080 IF Cく＞6 THEN 2100：REM CTRL－F（BAC K TO EDIT）

2090 RETURN
2100 IF C＝18 THEN GOSUB 3000：REM CTL－R

2200 IF C＝19 THEN GOSUB 4000：REM CTL－S 2300 IF $\mathrm{C}=12$ THEN GOSUE 5000：REM CTL－L
2400 IF $\mathrm{C}=17$ THEN END ：REM CTL－ B
2500 IF $\mathrm{C}=16$ THEN GOSUP 7000：REM CTL－P
2600 IF $C=5$ AND $L N>1$ THEN $I=L N-1: W V=U$ ： POSITION 2，WU－1：GOSUR 9000：GOSUB 3000： REM CTL－E
2900 IF TL＞0 THEN $T \$=T(1, T L)$
$295060 T 0200$
Subroutine to review entered text．
（Lines 3100 and 3125 are changed； and original lines 3130，3140，and 3150 are deleted．Line 3055 may be optionally deleted．）

2999 REM REVIEW TEXT
3000 PRINT CL $\$$＂Press any key to pause
＂：PRINT LIN\＄
3040 IF $L N=1$ THEN 3210
3050 FOR $I=1$ TO LN－1
3055 FOR $I=1$ TO 20：NEXT I
3060 PRINT T $\$(\mathrm{LP}(\mathrm{I}-1)+1, \mathrm{LP}(\mathrm{I}))$

3070 IF PEEK $(764)=255$ AND NOT STP THE N 3200
3080 STP＝0：POKE 764，255
3090 WV＝PEEK（84）
3100 POSITION 2，1：PRINT LIN ${ }^{2}$ ；PQSITION 2，0：PRINT＊RTN：Cont SPC：Stp EiEdit＂；
3120 X＝PEEK（764）：POKE 764，255
3125 IF $\mathrm{K}=42$ THEN GOSUB 9000：60TO 3000
3160 IF $x=12$ THEN 3190
3170 IF XCY33 THEN 3120
$3180 \mathrm{STP}=1$
3190 POSITION 2，WV：POKE 764，255
3200 NEXT I
$3210 x=L P(L N-1)+1:$ IF $x \leq=\operatorname{LEN}(T)$ THEN P RINT T $\ddagger(X)$ ；
3220 H＝PEEK（85）：V＝PEEK（84）
3230 RETURN
Subroutine to save text to disk or tape．（Lines 4075，4082，4083，and 4085 are changed．）

Bugs，Worms
 and other undesirables

The SoftSide Annual April Fools Bug Report（Seriously．．．the joke is on us！）

Add the following line to the ATARI ${ }^{\circledR}$ version of Space Rescue （February，1982）：

65 IF STRIG（0）$=0$ THEN 80
And change these lines to correct those listed in the magazine and supplied on media：
690 FOR I＝P2 TO 1 STEP－1：SOUND 0，I $\$ 20$ $+40,10,10$ ：FOR $W=1$ TO 50：NEXT W：NEXT I： SOUND 0，0，0，0：IF P2＜6 THEN 699 693 PGSITION 10,16 ？？＂WONUS SHIP！ ＊＊＊：SL＝SL＋1：FOR P2＝1 TO 4：FOR AI＝80 TO 195 STEP 6
696 SOUND $0, A Z, 10,10:$ SOUND $0, A Z+50,10$ ， 10：NEXT AZ：NEXT P2
699 FOR $W=11$ TO 111 STEP 5：FOR AI＝W TO W－7 STEP－ 1 ：SOUND 0，AI， 10,10 ：NEXT AI： NEXT H：SOUND 0，0，0，0；GOTO 20
In the TRS－ 80^{\circledR} version of Space Rescue，change the following line：
$1000 \mathrm{I}=0:$ FORX $=1$ T015B：READY：$I=Z+Y:$ NEXT：IF l》15204THENCLS：PRINT＂DATA BASE ERROR IN LINES 1030－1080，CHECK LISTING：＂：PRINT：

LIST 1030－1080ELSEY＝86： $\mathrm{X}=255$ ；POKE－1， $0:$ IF
 (-16385)＜O OTHENX $=127$

Line 6000 in COMMANDing BASIC （November，1981）should be changed as follows：
$600001=0:$ FORX $=1$ TO158： $\operatorname{READY}: 1=1+Y:$ NEXT：I FL《＞1504THENCLS：PRINT＂DATA BASE ERROR I N LINES 60060－60160，CHECK LISTING，＂：PRI NT：LIST60060－60160ELSEY＝86：$X=255$ ：POKE－1， $0:$ IFPEEK $(-1)<\bigcirc 0$ THENX $=191$ ：FOKE－16385，0：IF FEEK $(-163$ 日5 $)($ OOTHENK $=127$

In Titan ATARI ${ }^{\circledR}$ version（December， 1981）the following line should be changed：
8590 SETCOLOR 4，5，0：SETCOLOR 2，5，0：POS ITION 4，22：？＂The supervisor of＂；As（Y 10－9，Y 110 ）；＂has won＂： 60708640

TRS－80 ${ }^{\circledR}$ Version

8590 FRINT2960，＂The supervisor of＂；MID $\$$ A\＄，Y $\mathbf{Y} 10-9,10$ ：＂has won the right to win e TITAN！！＂：$: 60 T 08700$

The ATARI ${ }^{\circledR}$ version of Gambler （January，1982）should have a line added to zero the L array，as follows：

17 FOR I＝1 TO 6：L（I）＝0：NEXT I
Without this line it＇s possible to get an Error 18 under certain conditions while playing the Lottery．
Also in the ATARI ${ }^{\circledR}$ version of Gambler，replace line 751 with the following line．These instructions will help correct the shape of the horse in the Horse Race routine．
751 REM lat string：SSHIFT＞＞－＊CT
 ！ ＇
In the Apple Program，Rubicube （February，1982），there is a minor error in the instructions printed by the pro－ gram．Line 2860 should be corrected as follows：
2860 HOME ：PRINT＂EACH FACE H
AS A ONE－LETTER NAME－－－－F
IRONT，FIOSTERIOR，LIEFT，R）
IGHT，TIOP，AND BIOTTOM．HIT ANY KEY TO 60 ON．＂；：GET A
Also，in the variable list accompanying the program，variables $\mathrm{C}, \mathrm{C} 2$ ，and C 7 should refer to the column number， not the row number．
In the ATARI ${ }^{\circledR}$ Database program （December，1981）the following lines should be corrected as shown，in order to clear the screen before each for－ matted record is printed：
1220 ？CHR $\$(125)$ ；：ON FS GOSUE 1270， 131 0：POSITION N2，22：？＂FRESS RETUFN（ESC FOR MENU）＂；
1270 IF SR＝N4 THEN FRINT CHR $\$(125)$ ；

3999 REM SAVE TO DISK／TAPE
4000 POSITION 2；0：PRINT S＊；：POSITION 2 ，OiPRINT＂Save to Tape or Disk？（T／D／E SC）＂：
4020 GET \＃1，X
4030 IF $X=27$ THEN 4400
4050 IF $x=84$ THEN 4200
4070 IF X＜ 868 THEN 4000
4075 F1\＄＝F
4080 PGSITION 2，0：PRINT S\＄；PGSITION 2 ，O：PRINT＂File Name：＂；iNPIIT F
4082 IF $5 \$={ }^{* "}$ AND F1 $\$=$＂＂THEN 4080
4083 IF $F \$="$＂THEN $F \$=F 1 \$$
 （3）$=\mathrm{F} \$ \mathrm{~F} ; \mathrm{F}=\mathrm{FT}$ \＄
4090 POSITION 2，0：PRINT＂Insert disk a nd press RETURN ${ }^{\text {；}}$ ；GET \＃1，$\#$
4100 QPEN \＃2， $8,0,5$ F：GOTO 4210
4200 POSITION 2，0：PRINT＂Start tape re corder and press RETURN＂；GET \＃1，X
4205 DPEN $\# 2,8,0$ ，＂C：＂
4210 FRINT \＃2；LN：PRINT \＃2；SIDC：PRINT \＃ $2 ; \mathrm{CHAR}$
4220 FOR $\mathrm{I}=1 \mathrm{TO} \mathrm{LN}-1$
4230 PEINT 2 ；T $\$$（LP $(I-1)+1, L P(I))$
4240 NEXT I
4250 IF CHAR $\$ THEN PRINT \＃2；T\＄ ใLPILN－ 1）+1 ）
4300 CLOSE \＃2
4400 RETURN

Subroutine to load text from disk or tape．（Lines 5075，5082，5083，and 5085 are changed．）

4999 REM LOAD FROH DISK／TAPE
5000 POSITION 2，0：PRINT S＊：aPQSITION 2 ：0：PRINT＂Load from Tape or Disk？iT／D ／ESC．${ }^{\text {＂}}$
5020 GET $11, \mathrm{x}$
5030 IF $x=27$ THEN 5400
5060 IF $x=84$ THEN 5200
5070 IF XC＞68 THEN 5000
5075 F1 $\ddagger=F \%$
5080 POSITION 2，0：PRINT S $\$$ ；POSITION 2 ，OiPRINT＂File Name：＂；：INPUT F
5082 IF $F \$={ }^{\text {R }}$ AND $F 1 \$={ }^{\text {日＂}}$ THEN 5080
5083 IF $F \$={ }^{\text {日 }}$ THEN $F=F 1 \$$
 （3）$=\mathrm{F} \$ \mathrm{~F} F \mathrm{~F}=\mathrm{FT}$ \＄
5090 POSITION 2，0：PRINT＂Insert disk a nd press RETURN＂；GET $\# 1$, \％
5100 OPEN $2,4,0, F=$ GOTO 5210
5200 POSITION 2，0：PRINT＂Start tape re corder and press RETURN＂；：GET $\# 1, \chi$ 5205 DPEN $2,4,0$, ＂C：$^{\text {＂}}$
5210 INPUT \＃2；LN：INPUT \＃2；SLOC：INPUT \＃ 2；CHAR
5215 T $\$=$＂${ }^{\text {＂}}$

5220 FOR $\mathrm{I}=1 \mathrm{TO} \mathrm{LN}-1$
5230 INPUT \＃2，TT\＄；$\$$（LLEN（T $\$$ ）+1 ）$=T T \$$
$5240 \mathrm{LP}(\mathrm{I})=\operatorname{LEN}(\mathrm{T} \$)$
5250 NEXT I

5260 IF CHAR >1 THEN INPUT $\# 2$, TT $\$$ ：T $\$$ LLE $N(T \$)+1)=T T \$: L P(L N)=L E N(T \$) ; L \$=T T$
5300 CLOSE $\# 2$
5350 EOSUE 3000
5400 RETURN

Subroutine to add a line of text to the main text string．

5999 REM ADD LN TO TEXT STRING 6000 T $\$$（LEN（T $\$$ ）+1 ）$=\mathrm{L} \$$
$6080 \mathrm{LP}(\mathrm{LN})=\mathrm{LEN}(\mathrm{T} \$)$
$6100 \mathrm{LN}=\mathrm{LN}+1: \mathrm{LP}(\mathrm{L}(\mathrm{N})=\operatorname{LEN}(\mathrm{T} \$)$
6150 L $=$＂＂
6200 RETURN

Subroutine to print the text file in memory to a printer．

6999 REM PRINTOUT RTN
7000 PRINT CL $\$$ ：PISITION 2，6：LIN $=0$
7010 ？＂Left margin？（Default＝10）＂； ：INPUT X \quad ：LM＝10：IF LEN $(x+1)>0$ THEN IF V AL（X $\$ 1 \geqslant 0$ THEN LM＝VAL（X \ddagger ）：IF LM 37 THEN LH＝37
7020 PRINT ：PRINT＂Right margin？\｛Defa
 ＞O THEN IF UAL $X X \$$ ）O THEN RM＝YAL $(X \$$ ） 7030 PRINT ：PRINT＂Line spacing？（Defa

THEN IF UAL $(X \$)>0$ THEN $L S=Y A L(X \$)$ $7040 \mathrm{LL}=$ RM -LM
 0
$7080 \mathrm{I}=\mathrm{I}+1: \mathrm{P} \$(\mathrm{LEN}(\mathrm{P} \$)+\mathrm{I})=\mathrm{T}(\mathrm{L}(\mathrm{P}(\mathrm{I}-1)+1$ ， LP（I）
7090 IF $P \$(\operatorname{LEN}(P \$))=C R \$$ THEN $C R=1: G O T O$ 7110
7100 IF LEN（P $\$$ ） $255-L W I D$ AND I $\angle L N-1$ TH EN 7080
$71106051187500: C R=0$
7120 IF ILLN－1 THEN 7080
7130 LPRINT $\mathrm{S}=(1, \mathrm{LM}) ; \mathrm{L}$ ；
7150 LPRINT＂＂
7160 GUSUB 3000
7170 RETURN
$7500 \mathrm{~L}=\mathrm{LL}$
7510 IF LEN（F $\$$ ） CL THEN 7550
7520 IF（NOT CR）THEN 7640
 $={ }^{* 4}$ ： 60707590
$7540 \mathrm{PP} \$=P \$(1, L P-1): P \$={ }^{[17} ; 60707590$

$7550 \mathrm{~L}=\mathrm{L}-\mathrm{I}:$ IF L＞0 THE 7550
$7570 \mathrm{~L}=\mathrm{LL}$
$7580 \mathrm{PP} \$=\mathrm{P} \$(1, \mathrm{~L}): \mathrm{P} \$=\mathrm{P} \$(\mathrm{~L}+1)$
7590 LPRINT $9 \$(1$, LM）；PFi \ddagger
7610 FOR $I=1$ TO LS：LIN $=1$ IN $+1:$ LPRINT＂${ }^{*}$ ：NEXT J
7615 IF LIN Sg THEN FOR $\mathrm{d}=1$ T0 66－LIN： LPRINT＂${ }^{\text {：NEXT }}$ J：LIN＝0
7620 IF LEN（P $⿻$（）$)$ LL THEN L＝LL： 60707550 7650 IF CE AND LEN（P 1 IDO THEN 7530 7640 RETURN

＂THE TERM IS THERAPY，MR．KRAVETS，NOT DEBUGGING．＂

Subroutine to readjust lines in memory so that they fit properly on the screen after editing. (This routine is wholly new.)

7909 REN TEXT REJUSTIFY RTN
g000 PRINT CL $\$:$ POSITION 2,5:FRINT "Fejustifying text. . ."
 $=\mathrm{C}-\mathrm{I}: \mathrm{CH}=\mathrm{C}-\mathrm{LF}(\mathrm{H}-1)$
9020 C $\$=$ T $\$(\mathrm{C}, \mathrm{C})$
8030 IF C $\$=$ CR THEN 8100
80S5 IF $\mathrm{C}=\mathrm{TL}$ THEN FL=1: SLOC=SL-LP(N-1) : GOTO 8100
9040 IF C $\$=$ " * THEN SLSC.
8050 IF CHSLHID-1 THEN CH=CH $+1: C=[+1: 6$ 0708020
8060 IF $S L=L P(N-1)$ THEN $S L=C$. $9070 \mathrm{LP}(\mathrm{N})=\mathrm{SL}: \mathrm{C}=\mathrm{SL}+1: \mathrm{N}=\mathrm{N}+1: \mathrm{CH}=1: \mathrm{GOTO} \mathrm{G}$ 020
$9100 L P(5)=[$
8110 IF $L F(N O=L P(N+1)$ THEN $L H=L H-1 ; F 0 N$ I $=\mathbb{N}$ T0 $\operatorname{LN}-1: L \mathrm{LP}(\mathrm{I})=\mathrm{LP}(\mathrm{I}+\mathrm{I}):$ NEXT I B170 RETURN

Subroutine to edit lines of text. (This routine is wholly new.)
g999 REN EDIT SUER

P005 POKE 752,1:IT=J:IF I/21 THEN VI=2 2:50T0 9040
प010 $11=1+1$, FQEITION $2, \mathrm{H}$
$9020 \quad \%=21:$ IF X ㄴN-1 THEN $X=\mathrm{L} N-1$
9025 IF $k=$ IT THEN 9040
 1,LP(I)):NEXT I
$4040 \mathrm{EL}=\mathrm{VI}+(\mathrm{IT} / 21) 4 \mathrm{IT}-21 \mathrm{~T}-\mathrm{I}$
9050 $\mathrm{C}=\mathrm{F}=\mathrm{HP} / \mathrm{DH}$:Hoye RTN:Edit B, X:Del
ESC: Exit"

POSO E=ASC(T)(LP(EL-1)+1!);PGSITION 2,

9000 IF K< 45 THEN F130; REM LIP
9100 IF V1/2 THEN U1= U1-1:EL=EL-1:GOTO 9080
4110 IF EL=1 THEN 9090
प115 EL=EL-5:IF ELC1 THEN EL=1
 -1

 9080
9130 IF \times \SE THEN PIRO:REH DOUH 9140 IF EL $=\mathrm{L} \mathrm{H}-1-\mathrm{FL}$ THEN 9080
$4150 \mathrm{EL}=\mathrm{EL}+1$
9160 IF U1O22 THEN U1= $41+1: 6010$ 9080 O165 NK=4: IF NNL LN-EL-1-FL THEN NN $=1 \mathrm{~N}^{-}$ $\mathrm{EL}-\mathrm{I}-\mathrm{FL}$
9170 EL=EL+NW:POSITION 2,25;FOR I=EL-H N TO EL:PRINT T\$(LP(I-1)+1,LP(I)):NEXT I: E0T0 Y0 00
©180 IF $8=27$ THEN 9580 REM ESC

9200 NE=LPEL!-LF EL-1!:IF EL=LN-1 THE

F205 FOR $\mathrm{I}=\mathrm{EL}$ T0 $\mathrm{LH}-1: \mathrm{LF}(\mathrm{D})=\mathrm{LF}(\mathrm{I}+1)-\mathrm{NC}$: WERT I
 -2
Th20 FOSIIION 2, U1:IF ELSLH-1 THEN FOR
 1,LPTDI: NEXT

9225 PRINT 59
9230 IF $E L=L H-1-F L$ THEL U1= $11-1$: EL $=E L-$ 1
$9240 \mathrm{LH}=\mathrm{LH}-1$; 60704090

प200 PGSIIGN 2, of PFINT "Dolete from h ere to the end of text?"; x © FO THEN 9060

THEN T $\$=T ⿻(11, L F(L N-1)$):G0T0 9240

9200 TL=LEN(Tt): 60709500
9310 IF XC155 THEN 9080
$9 \mathrm{~S}_{19} \mathrm{FE} \mathrm{E}$ EDIT LINE
930 L1=EL-8: IF L1 1 THEN L1=1
$9300 \mathrm{~L}=\mathrm{EL}+\mathrm{E}$: IF L2>LN-1 THEN $\mathrm{L} 2=\mathrm{L} \mathrm{N}^{-1}$
G3do PEINT Cla; "Type nem line belou (*
F to finish) ":pRINT LIN

9350 FOR J=L1 T0 EL;PRINT T $\$(\mathrm{LP}(\mathrm{T}-1)+1$,LFU!!:NEXT J
9360 FRINT :PRINT :PRINT :PRINT
9370 IF L2EEL THEN FOR ITEL+1 TII L2;FR
INT TOLP(J-1)+1,LF(d) :NEXT I
9300 POKE 752,0;POSITION 2, [L-L1+2 9390 [LH=LN
T410 CI=CHAR:S1=5LDC:CHAR=1:SLDC=0 9420 60910 500

O430 CHAR=C1:9LIC=S1
9450 N $=L N-T L N: N C=L P(L N-1)-L P(T L H-1)$
 : 60709490
$9485 \mathrm{~T} 4 \mathrm{~L} \mathrm{P}(\mathrm{EL}-1)+1 \mathrm{I}=\mathrm{T}+(\mathrm{LP}(\mathrm{EL})+1)$
$9490 \mathrm{C}=\mathrm{LP}(E L)-L P(E L-1): F O R J=E L T O L N$ $-1: L P(1)=L P(J+1)-C C: H E X T J: I F$ NL=0 THE

g504 NETT I
 9506 FOR $\mathrm{I}=\mathrm{LN}-2$ TII EL STEF - $1: \mathrm{LP}(\mathrm{I}+\mathrm{NL})$ $=\frac{1}{2}$ (II + NC: NEKT !

 I

$950 \leq N=T L N+N L-1: I F \quad X=C R \$$ OR $E L=L H-N L$ THEN 9580
 1; LL=LEN(P \ddagger
9560 IF Pt 95,55) " "ANO SSLL THEN $55=5 \mathrm{~F}+1: 5070 \quad 550$
9570 IF $L P(E L+N L-1)-L P(E L+N L-2)+5 C=14$ If THEN GUSUE BOOG
9580 TL=LENTTG:IF FL THEN LA=LN-1:Lま $=$
 $\mathrm{L}=\mathrm{LP}$ (Lith-1)
पEOU STF=0FGKE 752, O;RETURN

Error-handling routine.

19099 REM ERROR-HANDLING RTN
2000 CLUSE \#2;EFPEEK:195)
20010 FGSITION 2,0:PRINT St: PGCITION 2,u:PRINT "Error: Code "; E;"; press an y key";
20020 GET 11,3
20030 TRAP 20000
200406050200

TRS-80

- TRS-BO BASIC
* "MICROTEXT 1.2"
* author: jon r. voskuil \$
- (C) 1982 SOFTSIDE \$

Title page. (Lines 20 and 40 are changed.)
10 CLS: PRINT CHR $\$(23)$
20 PRINT 2198, "HICR0TEXT1.2"
30 PRINT 2462, "BY JON R. VOSKUIL"
40 PRINT 2640, "(C) 1982 SOFTSIDE PUBLICATIONS"
50 FOR $\mathrm{l=1}$ TO 1000: NEXT 2: GOTO 100
Mixed-case printout conversion routine.
59 , LOWERCASE PRINT RTN
60 X $\$=$ "": JF PP $\$=$ "" THEN 74
62 LOK=0: $L C=-1$: FOR $k=1$ TO LEN(PP $)$): CC=ASC(MID $(P P(\$, k, 1)):$ IF
CC=32 THEN LOK=0
64 IF CCC>64 THEN 70
66 IF $L C=0$ THEN LOK=-1
68 LC=0: GOTO 72
70 LFRINT CHR $\$(C C-32$ (LC AND CC)64 AND CC(91) *-(NOT LOK));:LC
$=-1$
72 NEXT
74 REIURN
Initialization. (Lines 110 and 200 are changed.)

99 ' INITIALIZATION
100 CLS
110 CLEAR 28000
115 DEFINT A-I
120 DIM L\$(500)
125 ON ERROR $60 T 020000$
130 BKSP=8; RTN=13: SPC=32; CLR=31: $\quad \mathrm{B}=\mathrm{CHR} \(8); CR $\$=$ CHR $\$(140)$
140 CHAR $=1$
145 CU $\$=$ CHR $\$$ (95)
$150 \mathrm{LN}=1$
180 LWID $=62$
$190 \mathrm{P}=128$
200 PRINT 30 ,"SAVE:CLR-S LOAD:CLR-L REVW:CLR-R EDIT:CLR-E PRINT:CLR-P"
210 PRINTA 64, STRING $\$(63, "-$ " $)$;
220 PRINT 2P,"";

Input loop. (Lines 530 and 740 had been omitted in version 1.1, and are included here as they should be.)

499' INPUT LDOP
500 PRINT CU
505 C $\$=$ INKEY $\$$: IF $\mathrm{C}=$ =n" THEN 505 ELSE C=ASC(C $\$$
520 IF C=RTN THEN $C \$=C R \$$
 C $\$=$ CHR $\$(C-32): 60 T 0740$
639° BACKSPACE
640 IF C=RKSP THEN IF CHAR<2 THEN 505 ELSE PRINT B $\$$; 5 ; ; CHAR $=$ CH AR-1: L\$(LN)=LEFT $\$(L \$(L N), \operatorname{LEN}(L \$(L N))-1): 60 T 0500$
719^{\prime} CTRL CHARACTER
720 IF C=CLR THEN 2000
$739^{\text {, END OF LINE }}$
740 CHAR=CHAR+1: IF CHAR)=LHID AND C $C \backslash S P C$ AND C $(>$ RTN THEN GOSUB
1000
759' ADD TO STRING
$760 \mathrm{~L} \$(\mathrm{LN})=\mathrm{L} \$(\mathrm{LN})+\mathrm{C} \$$
779' RETURN
 $60 T 0500$
879 ' PRINT ON SCREEN
880 PRINT B $\mathbf{8} ; \mathrm{C}$;
899 ' UPDATE SPC FOINTER, CHK END OF LINE
900 IF C $\ll 32$ THEN 500 ELSE SL=CHAR: IF CHAR=LWID THEN $L N=L N+1: L$ (LLN)=" ": CHAR=1: SL=0: PRINT
920 GOTO 500
Subroutine to break line at a space and to initialize the next line.

999, JUSTIFY AND INCR LINE
1000 IF SL=0 THEN PRINT: $60 T 01100$
1020 SS=LWID-SL: FOR J=1 TO SS: PRINT B $\$$; NEXT
1040 PRINT STRING\$(SS, 32);:PRINT
1050 JF SL=LMID-1 THEN 1100

$1080 \mathrm{~L} \$(\mathrm{LN})=\operatorname{LEFT}(\mathrm{L} \$(\mathrm{LN}), \mathrm{SL}-1)$
$1100 \mathrm{LN}=\mathrm{L} \mathrm{N}+1$
1120 PRINT L\$(LN);CU\$;
1140 CHAR=LEN(LS(LN)) +2
$1150 \mathrm{SL}=0$
1160 RETURN
Subroutine to process command codes. (Lines 2050 and 2600 are changed.)

1999' PROCESS CTRL CHARACTERS
2000 P $=$ PEEK (16416) $+\operatorname{PEEK}(16417)$ 256-15360: 'CURSOR PSN
2020 C $\$=$ INKEY $\$$: IF C $\mathbf{~}=$ "" THEN 2020
2030 C=ASC(C $\$$
2050 IF $\mathrm{C}=70$ THEN RETURN: 'GACK TO EDIT
2100 IF $\mathrm{C}=82$ THEN G05UB 3000: 6010 200: 'REW
2200 IF $\mathrm{C}=83$ THEN 605UB 4000: GOTO 200: 'SAVE
2300 IF C=76 THEN G0SUB 5000; $60 T 0$ 200: 'LOAD
2400 IF C=81 THEN END: 'QUIT
2500 IF C=80 THEN GOSUB 7000: GOTO 200: 'PRINT
2600 IF $[=69$ AND LN>1 THEN I=LN-1: FP=P: 605UB 9000: G05UR 3000: $60 T 0$ 200: 'EDIT
$2800 \mathrm{~F}=\mathrm{P}-1$: 60 TO 200

Subroutine to review entered text. (Lines 3055, 3110, and 3130 are changed. Original lines 3140,3145 , and 3150 have been deleted.)

2999, REVIEM TEXT
3000 CLS: PRINTA 21, "PRESS ANY KEY TO PRUSE": PRINT STRING 163 , "-")
3040 IF LN $=1$ THEN 3210
3050 FOR I=1 TO LN-1
3055 FOR $Z=1$ TO 20: NEXT Z
3060 PRINT L\$(I)
3070 IF INKEY $\$=$ " AND NDT STP THEN 3200
$3080 \mathrm{STP}=0$
3090 PP=PEEK (16416) + PEEK (16417) $\$ 256-15360$

3110 PRINTD 0，＂ENTER：CONTINUE SPACEBAR：STEP I LINE E：EDIT＂；STRING\＄（63，＂－＂）；

$3130 x=A S C(X)$ ）：IF $x=69$ THEN GOSUB 9000： $60 T 03000$
3160 IF $\mathrm{x}=13$ THEN 3190
3170 IF $\mathrm{K}\rangle 32$ THEN 3110
$3180 \mathrm{STP}=-1$
3190 PRINT 2PP，＂＂；
3200 NEXT I
3210 PRINT L\＄（LN）；
$3220 \mathrm{P}=\mathrm{PEEK}(16416)+\operatorname{PEEK}(16417) * 256-15360$
3230 RETURN
Subroutine to save text to disk or tape．（Lines 4075， 4085， 4088 are new．）

3999＇SAUE TO DISK／TAFE
4000 PRINT264，STRING $\$\left(63,{ }^{n}-\mathrm{n}\right)$ ：：PRINT2 0，STRIN6 $\$(63,32)$ ；PRINT 0，＂SAVE TO TAPE OR DISK？（T／D／CLEAR）＂；
4020 K $\$=$ INKEY $\$$ ：IF $\mathbf{x} \$=$＂＂THEN 4020
4040 IF $X \$=$ CHR $\$$（CLR）THEN 4220

4055 PRINTA 0，STRING $\$(35,32)$ ；
4060 IF $X \neq " T$＂THEN 4190
4070 IF X $\mathbf{~}\rangle$＂D＂THEN 4000
4075 F1 $\$=\mathrm{F}$ \＄
4010 FFINT 0 ，${ }^{n " ; ~ L I N E I N P U T ~ " F I L E ~ N A M E: ~ " ; ~ F ~}$
4085 IF F $\$=$＂＂AND F1 $\$=$＂＂THEN 4080

4090 PRINTD 0，＂INSERT DISK AND PRESS ENTER：＂：PRINT STRING $\$ 63$ ， ＂－＂）；
4095 IF INKEY\＄く＞CHR $\$(13)$ THEN 4095
4100 OPEN＂0＂，1，F\＄
4140 FOR $I=0$ TO LN
4150 PRINTH1，L $\$(\mathrm{I})$
4160 NEXT I
4170 CLOSE
418060504220
4190 FRINT：0，＂START RECORDER AND PRESS ENTER．＂；
4195 IF INKEY\＄（｀CHR $\$(13)$ THEN 4195
4200 FOR I $=0$ TO LN

4210 NEXT I
$4220 \mathrm{~F}=\mathrm{P}-1$ ：RETURN
Subroutine to load text from disk or tape．（Lines
5065，5075，and 5078 are new．）
4999＊LOAD FROM DISK．

TO O，＂LOAD FROM TAPE OR DISK？（T／D／CLEAR）＂；

5040 IF $X \$=$ CHR（CLR）THEN 5250
5045 FRINTJ 0，STRINGs $(40,32)$ ；
5050 IF X
5060 IF $\mathbf{\chi} \$\rangle$＂D＂THEN 5000
5065 F1
5070 PRINTO 0，＂＂；：LINEINPUT＂FILE MAME：＂； Fs

5078 IF F §＝＂ THEN F $\$=F 1 \%$
50BO PRINTO 0，＂INSERT DISK AND PRESS ENTER．＂：PRINT STRING： $63, "$ －＂）；
5085 IF INKEY $\$<$ CHRT（13）THEN 5085
5090 OPEN＇I＂，1，F\＄

5110 INPUTIT1，$\$ \(0)
5120 60SUB 5290
5130 FOR $I=1$ TO LN
5140 LINEINPUT\＃1，L\＄（1）
5170 NEXI I
5180 CLIDSE
5200 G0TO 5250
5210 PRINTA 0，＂START RECORDER AND PRESS ENTER．＂；
5215 IF INKEY\＄く〉CHR $\$(13)$ THEN 5215
5220 INPUT $\#-1,1 \$(0):$ GOSUR 5290
5230 FOR $\mathrm{I}=1 \mathrm{TO} \mathrm{LN}$
5235 INPUTH－1，L\＄（I）
5240 NEXI I
5250 GOSUE 3000：RETURN
$5290 \mathrm{~L} \$=\mathrm{L} \(0) ：L＝LEN（L $\$)$
5300 CHAR $=$ VAL $($ RIGHT $\$(L \$, 2)): L \$=L E F T \$(L \$, L-2)$
$5310 \mathrm{SL}=\operatorname{VAL}(\mathrm{FIGHT}(\mathrm{L} \$, 2)): \operatorname{L} \$=\operatorname{LEFT} \$(\mathrm{~L}+\mathrm{L}, \mathrm{L}-5)$
5320 LN＝VAL（L $\$$ ）
5330 RETURN
Subroutine to print the text file in memory to a prinier．

6999＇PRINTOUT RTN
7000 CLS：LIN＝0

7020 PRINT：X $\$=$＂ 70 ＂：INPUT＂RIGHT MARGIN（DEFAULI $=70$ ）＂；$\%$ ：RM＝ VAL（ 4 \＄）
7030 PRINT：X $\$=$＂2＂：INPUT＂LINE SPACING（DEFRULT $=2$ ）＂ $\mathrm{X} \$: \operatorname{LS}=\mathrm{VA}$ L（X $\$$ ）
7040 LL＝RM－LM
7050 PRINT：X $\$=$＂N＂：INFUT＂CONUERT TO LOWERCASE，UNLESS PRECEDED

7070 CLS：LPRINT＂＂： $\mathrm{F} \$=\mathrm{n}$ ： $\mathrm{CR}=0$ ： $\mathrm{I}=0$
7080 I $=1+1: \quad \mathrm{P} \$=\mathrm{F} \$+\mathrm{L} \$(\mathrm{I})$
7090 IF RIGHT $\$$（F $\$, 1$ ）＝CR $\$$ THEN CR＝－1：GOTO 7110
7100 IF LEN（P $\$$ ） $2255-$ LHID AND ISLN THEN 7080
7110 G05UB 7500：CR＝0
7120 IF ILLN THEN 7080
7130 LPRINT TAB（LM）；：IF UC THEN LPRINT F $\$:$ ： $\operatorname{goto~} 7150$
$7140 \mathrm{PP} \$=\mathrm{P} \$: 605 \mathrm{UR} 60$
7150 LPRINT＂＂
7160 G05UB 3000
7170 RETURN
$7500 \mathrm{~L}=\mathrm{LL}$
7510 IF LEN（P $\$$ ））LL THEN 7550
7520 IF NOT CR THEN 7640

7540 PP $\$=$ LEFT $\$(P \$, L P-1): P \$=": 60 T 07590$

7560 L＝L－1：IF L＞0 THEN 7550
7570 L＝LL

7590 LPRINT TAB（LM）；：IF UC THEN LPRINT PP $\$$ ； 60707610
7600 G05UB 60
7610 FOR J＝1 TO LS：LIN＝LIN＋1：LPRINT＂＂：NEXT J
7615 IF LIN＞59 THEN FOR J＝1 TO 66－LIN：LPRINT＂＂：NEXT J：LIN＝0
7620 IF LEN（P $\$$ ）） LL THEN L＝LL： 60707550
7630 IF CR AND LEN（P $\$$ ）>0 THEN 7530
7640 RETURN
Subroutine to readjust lines in memory so that they fit properly on the screen after editing．（This routine is wholly new．）

7999，TEXT REJUSTIFY RTN
8000 CLS：PRINT＂RE－JUSTIFYING TEXT，．．＂
8010 LIN＝EL：$L N=L N-1$
8020 P\＄＝＂＂：CR＝0：1＝EL－1
8030 I $=\mathrm{I}+1: \mathrm{P} \$=\mathrm{P} \$+\mathrm{L} \(I)
8040 IF RIGHT $\$(F \$, 1)=$ CR $\$$ THEN CR $=-1: 60 T 08060$
8050 IF LEN（P $\$$ ） $\mathrm{LEEN}(L \mathbf{L}(\mathrm{I}+1))<256$ AND I LLN THEN 8030
8060 GOSUB 8500
8070 IF NOT CR THEN 8100
8079＇END DF PARAGRAPH
$8080 x=I+1$－LIN：IF $x=0$ THEN 8150
8089° MDVE LNS DOUN IN ARRAY
8090 FOR $\mathrm{J}=\mathrm{I}+1$ TO $\mathrm{LN}: \mathrm{L} \$(\mathrm{~J}-\mathrm{X})=\mathrm{L}(\mathrm{J})$ ：NEXT J： $\mathrm{LN}=\mathrm{L} \mathrm{N}-\mathrm{X}:$ GOT0 8150
8100 IF IKLN THEN 8030
$8110 \mathrm{~L}(\mathrm{LIN})=\mathrm{P}$
8120 CHAR $=\operatorname{LEN}(P \$)+1 ; ~ S L=L E N(P \$)$
8130 FOR $I=L I N+1$ TO $L N: L \$(I)={ }^{n}$ ：NEXT I
8140 LN＝LIN
8150 RETURN
8500 L＝LHID
8510 IF LEN（F\＄） CLHID THEN 8550
8520 IF NOT CR THEN 8630
8530 LP＝LEN（P $\$$ ）
$8540 \mathrm{PF} \$=\operatorname{LEFT} \$(\mathrm{~F} \$, \mathrm{LP}): \mathrm{P} \$={ }^{n} \mathrm{n}: 60708590$
8550 C $\mathbf{~ = M I D} \$(P), L, 1)$ ；IF $C \$="$＂THEN 8580
8560 L＝L－1：JF L＞0 THEN 8550
8570 L＝LWID
8580 PF $\$=\operatorname{LEFT} \$(\mathbf{P} \$, \mathrm{~L}): \mathrm{P} \$=\operatorname{RIGHT} \$(\mathrm{P} \$, \operatorname{LEN}(\mathrm{P} \$)-\mathrm{L})$
8590 LS（LIN）＝PP\＄
8600 LIN $=L I N+1$
8610 IF LEN（P）$)$ CHID THEN L＝LWID：GOT0 8550
8620 IF CR AND LEN（P $\$$ ）>0 THEN 8530
8630 RETURN
Subroutine to edit lines of text．（This routine is wholly new．）

8999＇EDIT LN SUBRTN
9000 IT $=1:$ IF I $1 / 13$ THEN $V 1=15$ ； $60 T 09040$
9010 V1＝1＋2：PRINT JPP，
$9020 x=13$ ：IF $x>L N-1$ THEN $x=1 N-1$
9030 FOR I＝IT＋1 TO X：PRINT L\＄（I）：NEXT I
$9040 \mathrm{EL}=\mathrm{V} 1-(\mathrm{IT}>13) *(\mathrm{IT}-13)-2$
9050 Q $\$={ }^{n}$ UP／DOUN ARROMS：MOUE ENTER：EDIT $D, X:$ DELETE
CLR：EXIT＂

9080 PRINT 2 U1464－2，＂$\langle E " ;$
9082 IF PEEK（14400）＞0 THEN 9088

9088 FRINT B ${ }^{2}$ ； B ；
9090 IF \mathbf{x} \＄$\$ CHR $\$(91)$ THEN 9130
9100 IF V1） 3 THEN V1＝Y1－1；EL＝EL－1： 60709080
9110 IF EL＝1 THEN 9080
9115 EL＝EL－5：IF EL＜1 THEN EL＝1
9120 PRINT 2127，＂＂：FOR I＝EL TO EL＋12：PRINT L\＄（1）：NEXT： $60 T 09$
080
9130 IF X $\$$ CCHR $\$(10)$ THEN 9180
9140 IF EL $\rangle=$ LN -1 THEN 9080
$9150 \mathrm{EL}=\mathrm{EL}+1$
9160 IF V1 <15 THEN V1 $=V 1+1: 60 T 09080$

9165 NN＝4：IF NN／LN－EL－1 THEN NN＝LN－EL－1
9170 EL＝EL＋NN：PRINT 2960, ；；FOR I＝EL－NN TD EL：PRINT L\＄（I）：NEX
T I： 60709060
9180 IF $\mathrm{X} \$=$ CHR $\$$（CLR）THEN 9590
9190 IF X （ $<$ ）＂ D ＂OR V1 $=3$ THEN 9250

$9210 \quad X=15-\mathrm{V1}$ ： $\mathrm{FF} \quad X>L \mathrm{~N}-\mathrm{EL}$ THEN $X=\mathrm{LN}-\mathrm{EL}$
9220 PRINT 2 U1 $164-65, " \mathrm{n}:$ FOR J＝EL TO EL＋X：PRINT L\＄（J）：NEXT
9230 IF EL＝LN－1 THEN VI＝V1－1：EL＝EL－1
$9240 \mathrm{LN}=\mathrm{L}-\mathrm{N}-1$ ： 60 TO 9080

9260 PRINT 20，＂DO YOU HANT TO DELETE FRDH HERE TO THE END OF TH
E TEXT？（Y／N）＂；
9262 PRINTDV1＊64－2，＂$<E$＂；

9268 IF X \mathbf{X} く〉＂Y＂THEN 9060
9270 FOR J＝EL TO LN： $\mathbf{L} \$(J)=" ":$ NEXT J：LN＝EL：CHAR＝1：SL＝0
92 BO PRINT $2 V 1 * 64-65, " 4$ ：FOR J＝VI TO 14：PRINT：NEXT J
9290 PRINT 30，日 $\$$ ；
9300 PRINT DVI $464-66$ ，＂$\langle E$＂；；GOTO 9100
9310 IF $X \$ \>C H R \$$（RTN）THEN 9080
$9320 \mathrm{~L} 1=E \mathrm{~L}-4$ ：IF $\mathrm{L} 1<1$ THEN $\mathrm{L}:=1$
9330 L2 $2=\mathrm{L}+4$ ：IF L 2 ）L L THEN L2 $=\mathrm{LN}$
9340 CLS：PRINT＂TYPE NEN LINE BELOW（CLR－F TO FINISH）＂：PRINT ST RING（6J，＂－＂）

9350 FOR J＝L1 T0 EL：PRINT L $\$(\mathrm{~J})$ ；NEXT J
9360 PRINT：PRINT：PRINT：PRINT
9370 FOR J＝EL＋1 TO L2：PRINT L\＄（J）：NEXT J
9380 PRINT $\partial(E L-L 1+2)$ 164，；
9390 TLN $=L N: L N=L N+1$
9400 FOR J＝1 TO 5： $\mathbf{~} \$(T L N+J)=$＂＂：NEXT J
$9410 \mathrm{Cl}=\mathrm{CHAR}: \mathrm{SI}=5 \mathrm{~L}: \quad \mathrm{CHAR}=1$ ： $\mathrm{SL}=0$
9420 60SUB 500
9430 CHAR＝C1：SL＝S1
9440 IF $(\$(L N)=" n$ THEN $L N=L N-1$
$9450 \mathrm{NL}=\mathrm{LN}-\mathrm{TLN}$
9460 IF NL＝1 THEN 9510
9470 IF NL＞0 THEN 9500
9480 FOR J＝EL TO TLN： $\mathbf{L} \$(\mathrm{~J})=\mathrm{L} \$(\mathrm{~J}+1):$ NEXT J
9490 L $\$(L N)=$＂＂： 60709580

9520 CX $\$=$ RIGHT $\$(1)$（EL $+N L-1), 1)$
9530 IF CX $=$ CR THEN 9580

$9550 \mathrm{SS}=1: \mathrm{L} \$=\mathrm{L} \$(\mathrm{EL}+\mathrm{NL}): \operatorname{LL}=\mathrm{LEN}(\mathrm{L} \$)$
 9570 IF LEN（L $(E L+N L-1))+S 5$＜＝LWID THEN G0SUB 8000： 60709590 $9580 \mathrm{LN}=\mathrm{TLN}+\mathrm{NL}-1$
9590 RETURN

Error－handling routine．

19999 ＇ERROR－HANDLING RTN
20000 PRINT20，STRING $\$(63,32)$ ；
20010 E＝ERR／2＋1：PRINTəO，＂ERROR：CODE＂；E；
20050 PRINT＂；PRESS ANY KEY＂；
20060 IF INKEY $\$="$＂THEN 20060
$20070 \mathrm{P}=\mathrm{P}-1$ ：RESUME 200

QRUNB

FIRST: CRUSH, THE GREAT MO

And guess who stars as the movie monster. You! As any of six different monsters. More if you have the disk version.

You can terrorize and destroy four of the world's largest and most densely populated cities in over 100 possible scenarios. From Tokyo to the Golden Gate, you are the deadliest creature in the air, on the land, or in the sea.

You can be the deadly amphibian who simultaneously smashes street cars, lunches on helpless humans and radiates a ray of death.
If you were a giant winged creature, think of the aerial attacks you could make on the terrified but tasty tidbits beneath you.

But as in all the best monster movies, you're up against everything the human race can throw at you-even nuclear warheads and a strange concoction developed by a team of mad scientists.

For only $\$ 29.95$ you get 6 stupendous monsters, each with its own monstrous summary card, 4 teeming metropoli displayed in graphic detail on your computer display and mapped in the accompanying 48-page illustrated book, the awesome sounds of monsterly mayhem, and spinetingling, real-time, edge-of-yourseat excitement.

Explanation Of ATARI

Line Listings

SoftSide uses the following conventions in representing unprintable characters in ATARI ${ }^{\oplus}$ line listings, unless otherwise noted:

Characters (including blank spaces) which are underlined should be typed in inverse video.

When graphics or control characters are to be included in a string (between quotation marks), that fact will be noted in a nearby REMark. In such cases, graphics characters are represented by the corresponding lower-case letter, and control characters are represented by the corresponding unshifted key symbol. For example: The lowercase letter s represents a graphics cross, entered by holding down the CTRL key and then pressing the S key. The symbol $=$ represents a control-down-arrow, entered by first pressing and releasing the ESC key, then holding down the CTRL key and pressing the $=$ key. (See Appendix F, and the back cover, of the ATARI ${ }^{\oplus}$ BASIC Reference Manual.)
The one regular exception to the above is that a clearscreen character (ESC CTRL- $<$) is represented in listings by a right-hand brace, which looks like this: \}

A shifted $=$ is represented in the listings by a vertical line with a small gap in it.

WHEN YOU SPEND SO MUCH FOR A PRINTER, YOU SHOULD HAVE ONE THAT YOU CAN USE--Introducing....

THE IBM TOTAL PRINTER/TYPEWRITER

FEATURES:
10 and 12 Pitch, Proportional Space, Full Typewriter Use, Auto Correcting, Sound Cover, "Smart" Keyboard

SPECIFICATIONS:

200 WPM Throughput, Either Serial OR Parellel, Self-Test, Lowest On-Site Maintenance, IBM Backed Printer. Cables stocked for all Apple, TRS(I, II, III), RS-232 systems.

GUARANTEE: 30 days on-site by IBM CONTACT:
|COM 11 N. Main, Lombard, Illinois $60148 \quad$ (312) 932-1766

APPLE"/SIDE page.

ATARI $/$ /SIDE page.

ATTENTION!

by Richard A. Bryant
Semaphore is a Hi-Res graphic program for an Apple II with Applesoft, 48K RAM, and disk drive. It is included as a bonus program on this month's Apple Disk Version.

Once in a while SoftSide receives a program submission which is truly unique. This program, written by a veteran Boy Scouts of America Scoutmaster, demonstrates the use of semaphore flags on the Apple's Hi-Res graphics screen.

It offers both a teaching and a testing mode. In the teaching mode, the message being sent appears on the screen as it is being sent, with a cursor advancing from letter to letter. In the testing mode, the message does not appear until after it has been sent.

As the receiver of the message, you can choose whether to respond or not as it is being sent. If you choose to respond, the program will pause after the initial "ATTENTION" has been sent and after each word sent; at the end of the entire message, you can signal either that

PHORE

you have successfully received it or that you need to have it repeated.

Strings of up to 79 characters can be sent at one time (one character less than two full lines). Note that numbers should be spelled out rather than entered as digits. A range of relative sending speeds is available, from 0 (slow) to 500 (fast). A good learning speed would be around 100 ; a good testing speed about 350 . Five preset messages are built into the program for practice.

On the disk, the program is distributed in four files. The one titled SEMAPHORE is the main control program which loads the shape table (SEMAPHORE SHAPES A\$5060 L\$5A0) and runs PART 1A, which displays the main menu and instructions if desired. PART 2 A is the Hi-Res program of a Boy Scout sending semaphore, and is made to print out on an Axiom IMP-2 if desired. On line 138, P equals the printer card slot, and line 192 accomplishes the actual printout. These, along with line 1120 , can be eliminated or changed if you have no suitable graphics printer or one that needs different instructions.

N

R

X

7

APRIL

K-Byter

Battleship

An Applesoft K-Byter by David Bahr, Appleton, WI

This is a battleship program that involves more than simply trying to come up with random numbers. It requires a knowledge of direction, and the skill of deductive reasoning.

The computer begins by hiding seven ships on a 10 by 10 grid. Having done this, it will display the grid, giving no clue as to where the ships were placed. You will then be asked what coordinates you would like to bomb. After you input the numbers, you will be told if you hit a ship, and your sonar will tell you how many ships lie in each direction from your chosen coordinates.

By placing your shots in strategic positions, your sonar and your deductive powers can home in on the most likely locations for the concealed ships. You'll find it a challenge to destroy all seven ships using less than the suggested "good" score of 20 shots.

```
100 H=7: DIM A(9,9):B$= CHR$
    (7) + CHR$ (7)
110 FOR I = 1 TO H
120 AX = INT ( RND (1) : 10):AY =
        INT ( RND (1) * 10)
130 IF A(AX,AY) = 1 THEN GOTO 1
    20
140 A(AX,AY) = 1: NEXT : GOTO 220
150 UTAB 19: INFUT "INPUT X,Y CO
    ORDINATES: ";AX,AY
160 IF DX < O OR DX > 9 OR DY <
    O OR DY > 9 THEN 150
170 T = T + 1: IF A(AX,AY) = 1 THEN
        60T0 200
180 IF A(AX,AY) = 4 GOTO 220
190 A(AX,AY) = 3: 60T0 220
200 HOME : VTAB 12: PRINT TAB(
```


15);"IT'S A HIT"; B

210 FOR $I=1$ TO 700: NEXT : $H=$ $H-1: A(A X, A Y)=4$
220 HOME : HTAB 14: PRINT * 012 3456789"
230 FOR $Y=0$ TO 9: HTAB 15: PRINT Y;: FOR $X=0$ TO 9: $O N A(X, Y$) $6070240,240,250,260$
240 PRINT " ${ }^{+1 ;:}$ GOTO 270
250 PRINT" ";: 60T0 270
260 PRINT " ${ }^{\prime \prime}$;
270 NEXT : PRINT : NEXT
280 VTAB 4: HTAB 32: PRINT "^A: HTAB
32: PRINT n"n: HTAB 32: PRINT "N"
290 VTAB 5: HTAB 2: FRINT "SHIFS LEFT": HTAB 6: PRINT H
300 IF $T=0$ THEN 150
310 IF H $=0$ THEN 420
320 VTAB 14: PRINT "SONAR REPORT
$330 H=0: E=0: N=0: S=0$
340 FOR $Y=0$ TO 9: FOR $X=0$ TO 9
350 IF AX < 9 AND X 〉AX THEN IF $A(X, Y)=1$ THEN $E=E+1$
360 IF AY >O AND Y 〈 AY THEN IF $A(X, Y)=1$ THEN $N=N+1$
370 IF AY < 9 AND Y > AY THEN IF $A(X, Y)=1$ THEN $S=S+1$
3B0 IF AX > O AND X \{ AX THEN IF $A(X, Y)=1$ THEN $W=W+1$
390 NEXT X,Y
400 PRINT * THERE ARE ${ }^{\prime} ;{ }^{\prime} \mathbf{N}^{*}$ SHI PS NDRTH, "; $5 ;$ " SHIPS SOUTH, "E;" SHIPS EAST, AN D ";H:" SHIPS WEST OF COOR DINATES ";AX;",";AY;"."
$410 \quad 60 T 0 \quad 150$
420 VTAB 17: HTAB 15: PRINT "YOU WIN": PRINT B $\$$; $8 \$$: PRINT : PRINT
" IT TOOK ";T;" SHOTS.": PRINT
" (BELOW 20 IS G00D)": END ©

APPLE"

APPLE"

* APPLESDFT BASIC \$

\$ 'WHITE LIGHTNING'
\$ AUTHOR: RANDY FOX \$

* (C) 1982 SOFTSIDE

Dimension I\% and then jump to title page.

13 TEXT : RESTORE : DIM I\%(230) 15 GOTO 782

Read keyboard. Set x-move, y-move, and old-move (XM, YM, and OM) values.
$22 \mathrm{~KB}=\mathrm{PEEK}(-16384)$
24 IF R $+2=\mathrm{M}$ THEN GOSUB 102
26 IF $\mathrm{KB}=196$ THEN XM $=\mathrm{CB}: \mathrm{YM}=$ CC:OM = CF: RETURN
2 2 IF $K B=197$ THEN $X M=C R: Y M=$ CA:OM = CE: RETURN
30 IF KE $=207$ THEN XH $=$ CA: YM $=$ CB:OM = CD: RETURN
32 iF KB = 208 THEN XH $=$ CC: $Y H=$ CB:DM = CC: RETURN
34 RETURN

Print title line.

42 G0SUB 92: PRINT TAB(4)"HITE LIGHTNINǴ -": PRINT : GOSUB 92: RETURN

Check keyboard for keypress. Utilizes two entry points: Line 52 prints a prompt string; entering at line 54 skips the prompt.

52 FRINT TAB(8) "PRESS ANY KEY to continue:
$54 \mathrm{~KB}=$ PEEK (- 16384): IF KB < 127 THEN 54
56 POKE - 16368,0: RETURN

Initialize variables for a new game.
$72 C A=-1: C R=0: C C=1: C D=2$ $: C E=3: C F=4: C G=5: C H=1$ 5: OM = 1
$74 \mathrm{TP}=0: \mathrm{HT}=0: \mathrm{L}=1: \mathrm{TT}=1: \mathrm{R}=$ $0: H=0: 65=0$

$76 X N=20 ; Y N=20: X R=20 ; Y R=2$ $0: X M=1: Y M=0: X L=1: Y L=$ 0
$78 \mathrm{DI}=230$
80 RETURN

Draw a line of asterisks.

92 FOR $I=0$ TO 39: PRINT "*"; : NEXT 1: PRINT : RETURN

Reset variables when tail breaks.
$102 X R=X N: Y R=Y N: X L=X M: Y L=$ $Y M: M=0: R=0$: RETURN

Plot routine, to draw target. Color is determined by other subroutines.

162 PLDT TX + CA,TY: PLOT TX + C C, TY: HLIN TX + CA, TX + CC AT TY + CA: HLIN TX + CAs TX + C C AT TY + CC
164 RETURN

Draw playing field for higher difficulty level.

182 READ A, B, C
184 IF $A=C H$ THEN 190
186 HLIN XN + Ag XN + B AT YN + C
188 GOTO 182
190 READ A, B, C

192 IF A $=$ CH THEN $60 T 0198$
194 VLIN YN + A, YN + B AT XN + C
$19660 T 0190$
198 READ A, B
200 IF $A=C H$ THEN RESTORE : GOTO 390
202 PLOT XN + A, YN + B
204 GOTO 198
208 DATA $-2,2,-5,-5,-2,-2,-5,-2$ $, 2,-2,2,5,2,5,2,2,5,-2$
210 DATA $-16,-10,-1,-16,-10,1$, $10,16,1,10,16,-1,15,15,15$
212 DATA $-4,-3,-2,-1,1,-5,3,4,-$ $2,3,4,2,-1,1,5,-3,-4,2$
214 DATA $-16,-10,-1,-16,-10,1$, $10,16,1,10,16,-1,15,15,15$
216 DATA $0,-3,-3,0,3,0,0,3,0,0$,15,15

Random number generators for target's x and y coordinates, point value, and time on the screen (TX, TY, TS, and TT).

222 TS = INT (RND (1) 16): IF TS < 1 THEN G0TO 222
$224 \mathrm{TT}=$ INT (RND (1) 122) +2 5: IF TT < 18 THEN 60T0 224
226 TX = INT (RND (1) 37): IF TX < 3 THEN $60 T 0226$
228 TY = INT (.RND (1) *37): IF TY < 3 THEN GOTO 228
230 VTAB 23: HTAB 30: PRINT " ";: HTAB 30: PRINT TS

APPLE

Search coordinates adjacent to TX，TY for screen color white．Jump to subroutine 222 to pick new coordinates if white is found．

242 FOR $A=-1$ TO 1
244 FOR B $=-1$ TO 1
246 IF $\operatorname{SCRN}(T X+A, T Y+B)=C$ ． H THEN GOTO 226
248 IF SCRN $\left(T X+A_{3} T Y+B\right)=C$ ． －THEN GOTO 226
250 NEXT B
252 NEXT A

Count number of targets printed．
$262 T P=T P+C C$

Set target color and draw target with sound．

282 COLOR $=$ CF：FOKE 768，190：FOKE 769，10：CALL 770；POKE 768，1 90：FOKE 769，10：CALL 770：POKE 768，144：FDKE 769，20：CALL 7 70：GOSUB 162：L＝CB：GOTO 5 02

Flash a＂hit＂target and erase the target with sound．

302 POKE 768，113：POKE 769，10：CALL 770
304 COLOR＝CB：GOSUB 162
306 POKE 768，113：FOKE 769，10：CALL 770
$30 \mathrm{COLOR}=$ CF：GOSUR 162
310 POKE 768：113：POKE 769，10：CALL 770
312 COLOR＝CB：GOSUB 162
314 POKE 768，144：POKE 769，56：CALL 770

Increase grand score（GS），add to tail， and check keyboard．End game if the screen border or tall is struck．
$33265=65+T S: H T=H T+C C$
334 VTAB 23：HTAB 12：PRINT 65
$336 \mathrm{R}=\mathrm{R}+\mathrm{CC}:$ IF $\mathrm{R}>\mathrm{DI}$ THEN $\mathrm{R}=$ CB
338 I\％$(\mathrm{R})=$ OM：COLOR $=$ CH：FLOT X N, YN
$340 V=T S+C C$
$342 \mathrm{~V}=\mathrm{V}+\mathrm{CA}:$ IF V ＜ 1 THEN $60 T 0$ 222
344 GOSUB 22
$346 \mathrm{R}=\mathrm{R}+\mathrm{CC}:$ IF R ＞DI THEN $\mathrm{R}=$ CB
$348 \mathrm{I} \%(\mathrm{R})=$ OM：COLOR $=\mathrm{CH}: X N=X N$ $+X M: Y N=Y N+Y M$
$350 \mathrm{HH}=\operatorname{SCRN}(X N, Y N):] F H K=C$
D OR HM＝CH THEN 602
352 FOR $I=1$ TO 40：NEXT
354 PLOT XN，YN： $60 T 0$ 342

Draw the playing field．Add obstacles as selected by skill level variable（LE＝0 denotes a normal game， $\mathrm{LE}=1$ denotes increased difficulty）．

372 HOME ：GR ：COLOR＝CD
374 GC $=6 C+1$
376 FOR $Z=0$ TO 39
37 B PLOT 1， 0 ；PLOT 39， 2 ：PLOT 39
－1，39：FLOT 0，39－2
380 NEXT I
382 FRINT ：FRINT＂YOUR SCORE＝＂： 65，＂TAREET SCORE＝＂；TS
$3 B 4 \times L=C C: Y L=C B$
386 IF $L E=160 T 0182$
388 60T0 392
$390 \times N=25: X R=25: Y N=30 ; Y R=$ 30
3926070222
Main program loop．
$502 \mathrm{~L}=\mathrm{L}+$ CC：IF L／TT＝CC THEN COLOR＝CR：POKE 768，96：POKE 769，56：CALL 770：POKE 768，1 53：FOKE 769，56：CALL 770：GOSUB 162： $60 T 0222$
504 G0Sub 22
$506 X N=X N+X M: Y N=Y N+Y M$
$50 \mathrm{H} H=\mathrm{SCRN}(X \mathrm{~N}, \mathrm{YN}):$ IF $\mathrm{H} H=\mathrm{C}$ D OR HM＝CH THEN 602
510 IF HH＝CF THEN 302
$512 \mathrm{R}=\mathrm{R}+\mathrm{CC}$ ：IF R＞DI THEN $\mathrm{R}=$ CB
514 COLOR＝CH：PLOT XN，YN：I\％（R）$=$ DM
$516 M=M+$ CC：IF M $>$ DI THEN $M=$ CB
518 IF I\％（M）$=$ CF THEN XL $=\mathrm{CB}: Y$ $L=$ CC：60TO 526
520 IF I\％（M）$=$ CE THEN XL $=$ CR：Y $L=$ CA：GOTO 526

522 IF I\％$(M)=$ CD THEN XL $=$ CA：Y $L=C B:$ GOTO 526
524 IF IY（M）＝CC．THEN XL $=$ CC：Y $L=C B$
$526 X R=X R+X L: Y R=Y R+Y L$
528 COLOR＝CB：FLOT XR，YR
530 GDTO 502

Text page for a lost game．Calculate and display values．

602 TEXT ：HOME ：POKE－ 16368 ， 0
604 IF 65 ；HI THEN HI $=65$
606 VTAB 3：PRINT TAB（12）＂SORR Y，YOU LOSE＂
608 PRINT ：IF HW＝CD THEN FRINT TAB（3）＂YOU HIT THE BORDER DR AN OBSTACLE＂
610 IF HH＝CH THEN FRINT TAB （）＂YOU REVERGED DIRECTION OR HIT THE TAIL＂
312 IF GC $=1$ THEN GOSUB 802
614 IF GC ！ $5=$ INT（GC：5）THEN GOSUP 802
616 PRINT ：FRINT TAB（ 12）＂Your SCORE IS＂： 65
618 PRINT ：PRINT TAB（9）＂THE H IGH SCORE IS ${ }^{\mathrm{B}} \mathrm{i} \mathrm{HI}$
620 FRINT ：FRINT TABC 11）＂I DR EW＂：TP；＂TARGETS＂
$622 \mathrm{PH}=\mathrm{INT}($（ $\mathrm{HT} / \mathrm{TF})$ 100）
624 PRINT ：PRINT TAB（7）＂YOU H IT＂PH：＂\％OF THE TARGETS＂
626 IF HT $=0$ GOTO 632
628 TA $=65 / \mathrm{HT}: T \mathrm{~T}=\mathrm{STR}(\mathrm{TA})$
630 PRINT ：FRINT TABC 9 －INT （LEN（TA\＄））／2）＂AVERAGE PO INTS／TARGET＝＂；TA\＄
632 PRINT ：FRINT＂FUSH 〈RETURN〉 TO PLAY AGAIN，＇Q＇TD QUIT＇ ；：GET A
634 IF A ${ }^{4}=$＂ 0^{2}＂THEN 682
636 IF LE $=$ CB THEN GOTO 646
63 B IF LE $=$ CC THEN 6070640
640 PRINT ：GOSUB 92：PRINT＂PRE SS ANY KEY TO DECREASE THE D IFFICULTY＂：PRINT TAB（4）＂P RESS ANY SRETURN〉 TD PLAY AG AIN：GET A＊
642 IF A\＄＜＞CHR（13）THENL $E=0$
644 GOSU日 72： 6070372
646 PRINT ：GOSUR 92：PRINT＂PRE

APPLE＂

SS ANY KEY TO INCREASE THE D IFFICULTY＂：PRINT TAB（4）＂F RESS＜RETURN〉TO PLAY AGAIN＂ ；：GET A
648 IF A\＄〈 ）CHR（13）THEN L $E=1$
650 605UB 72： 6070372

End of game．

682 HOME ：VTAB 10：FRINT THANK YOU FOR PLAYING：FRINT ：PRINT ＂TRY AgAIN SOME DTHER TIME：＂ ：END

Directions for play．

702 HOME ：SPEED $=190$
704 UTAB 8：G0SUB 92：PRINT TABC 4）＂－WHITE LIGHT NING－＂：FRINT
706 GOSUR 92
706 PRINT＂DD YOU HANT DIRECTION 5 （Y OR N）＂：
710 IF A\＄＝＂N＂GOTD 750
712 HOME ：GOSUB 42
714 PRINT＂THE OBJECT OF＇UH ITE LIGHTNING＇IS TO SCO RE AS MANY POINTS AS POSSIBL E bY REACHING TARGETS THAT HILL APFEAR RANDOMLY ON T HE SCREEN．＂：PRINT
716 FRINT＂YOU HILL DIRECT A LIAE ABOUT THE SCREEN． EaCH TIME ThE LEADING END OF THE LINE REACHES THE TARG ET，YOUR SCORE HILL BE INCRE ASED EY THE VALUE OF THE T ARGET AND THE LENGTH OF THE LINE WILL＂
718 PRINT＂BE INCREASED BY A COR RESPONDING AMOUNT：＂：FRINT
720 VTAB 21：GOSUB 92：60SUB 52
722 HOME ：GOSUB 42
724 PRINT＂ANY OF THE FOLLOWING HILL CAUSE YOU TO LOSE THE game：＂：PRINT

726 FRINT＂（1）ALLOHING THE LEA ding end of the Line TO CROSS THE BORDER OF THE SCREEN．＂：PRINT
728 PRINT ${ }^{4}(2)$ ALLOHING THE LEA DING END OF THE LINE TO CROSS THE＇TAIL＇THAT WI LL GROW AS THE GAME PRD GRESSES：＂：PRINT
730 PRINT ${ }^{\text {a }}(3)$ REVERSING DIRECT ION BY 180 DEGREES．YOU MUST REVERSE DIRECTION USING TWO 90 DEGREE TURNS．

732 GOSUB 92：GOSUB 52
734 HOME ：GOSUB 42
736 FRINT＂USE THE FOLLOWING COM MANDS TO ROUE THE LEADING E ND OF THE LINE：＂：FRINT
738 FFINT＂PRESS＇E＇TO MOUE UP＂ ；PRINT ：FRINT＂PRESS＇D＇T O MOVE DOUN＂：PRINT ：PRINT ＂FRESS＇0＇TO MOUE LEFT＂：FRINT ：FRINT＂FRESS＇p＇TO MDVE R IGHT＂
740 VTAB 21：GOSUB 92：g05UB 52
742 HOME ：GOSUE 42
744 PRINT＂EXPERIENCED FLAYE RS MAY WISH TO INCREASE THE DIFFICULTY OF THE gAME．

THE SAME RULES APPLY HITH ONE ADDITION：＂：FRINT
746 PRINT TAB（ 4）＂YOU MAY NOT A LLOU THE LEADING END OF＂：FRINT TAB（ 4）＂THE LINE TO CROSS A NY OF THE ADDED：FRINT TAB 4）＂OBSTACLES：＂
748 PRINT ；GOSUB 92：GOSUB 52
750 PRINT ：PRINT
752 60Su日 92
754 PRINT＂DO YOU WANT TO INCREA SE THE DIFFICULTY？＂：FRINT ： FRINT TAB（ 16$)^{\prime \prime}(Y \text { OR N })^{\prime \prime}$ ：$:$ GET A
755 IF A\＄＝＂N＂THEN LE＝0； $60 T 0$ 758
756 IF A\＄＝＂Y＂THEN LE＝1： $60 T 0$

758
757 FRINT ：GOTO 754
758 HOME ：VTAB 9：GOSUB 92
760 PRINT TAB（5）＂PRESS ANY KEY TO PLAY THE GAME＂：PRINT ；PRINT TAB！15）＂ 6000 LUCK！！＂
762 FRINT ： 60 SUB 97
764 G0SUB 54
766 SPEED $=255:$ GOSUB 72：60T0 3 72

POKEs for Machine Language sound routine．

782 FOKE 770，173：FOKE 771，48：POKE 772，192：POKE 773，136：POKE 774，208：POKE 775，05：POKE 7 76，206：POKE 777，01：POKE 77 8，03：POKE 779，240：FOKE 780 ， 09
784 POKE 781，202：FOKE 782，208：FOKE 783，245：POKE 784，174：FOKE 785，00：POKE 786，03：FOKE 78 7，76：POKE 788，02：POKE 789， 03：POKE 790，96
$78660 T 0702$

Music routine for lost game．

602 POKE 768，153：POKE 769，255：CALL 770：POKE 768，153：FOKE 769， 255：CALL 770：POKE 768，153： POKE 769，56：CALL 770：FOKE 768，153：POKE 769，255：CALL 770：POKE 768，127：FOKE 769， 255：CALL 770
804 POKE 768，137：POKE 769，56：CALL 770：FOKE 768，137：POKE 769， 191：CALL 770：FOKE 768，153： POKE 769，56：CALL 770：FOKE 768，153：POKE 769，191：CALL 770
806 FOKE 768，162：POKE 769，56；CALL 770：POKE 768，153：POKE 769， 255：CALL 770
808 RETURN

APPLE

by Fred J. Condo
Poster Maker is a large-character printing program for an Apple with Applesoft, 16K RAM, and a printer.

Programs that make banners have been around probably as long as there have been computers. But the banners have always run along the paper rather than across it. Poster Maker makes posters with words that run the same way ordinary printing would. It allows you to input a whole phrase, which it will print automatically, one word centered on each line. If you have an Epson MX-80 printer, you can choose the size of character you want by specifying the number of banner-sized characters per line. If any word won't fit, the program puts in a hyphen (but not necessarily in the grammatically correct position). If you just remember that the program starts a new line wherever you type a space, you can insert your own hyphen in a long word where it should be divided. To top it
all off, you can even specify whether each large character should be made up of the small characters that it represents, or of another character that you want to use.

The characters provided in the program are all the upper-case letters plus most of the punctuation available from the Apple keyboard. The character definitions are located in the DATA statements starting in line 10000 . If you want to add or modify character definitions, here is the data organization: First, the character being defined. If in doubt, put this character in quotation marks. Next, 13 line definitions. There must be exactly 13, because the characters are made up of a 12 by 13 matrix. Each line definition is READ by the program (line 110) in number pairs, so each line definition must contain an even number of numeric values. Each of the line definitions must end with a pair of -1 s , since this is the end-ofline flag. (A blank line is the pair of -1s alone.)

Each line definition consists of up
to three pairs of numbers (plus the terminal -1s). The first number of a pair is always a number of spaces to be printed; the second is a number of dots. Together these spaces and dots specify the printing pattern for a particular line of that character. The total number of dots plus spaces in each line must be no more than 12. The program itself does not check for faulty character definitions, so errors will show up either as SYNTAX ERRORs in the DATA lines or as scrambled lettering on the posters.
If you don't have an Epson printer, you will need to make a few small modifications to the program. If your printer can handle only one printing density (80 characters per line), then change line 210 to WIDE $=6$ and make the changes specified in the program documentation at lines $400-430$. If your printer can handle alternate densities, then you'll need to make appropriate modifications of the character codes printed in those lines.

APPLE"

Variables

A: Loop index in sorting routine. A\$: Used by display subroutine to display centered lines on the monitor screen. Also used for Y / N replay at the end of printing.
B: Loop index in sorting routine.
C: The number of dots (characters) in a line definition.
CFLAG: If 1 , user has specified a character to make up the large ones.
CH\$: Contains a character specified by the user to make up the larger characters. If null, characters are made up of their small analogs.
DESC\% ${ }_{(x, y, z): ~ M n e m o n i c ~ f o r ~}^{\text {f }}$ "DESCription;" contains the character definitions. X subscript is the character; y is the line number; and z is the item (number of spaces or dots).
DISPLAY: Used by display
routine: $1=$ normal, $2=$ inverse, and $3=$ flash.
HYFLAG: If 1 , a word was hyphenated.

I: Item number during DATA READing; character number in P1\$ during printing; also a general loop index.
II: Item number during printing.
J, KK: Loop indices.
KK\$: Used in the input-simulation subroutine to accept each character as it is typed at the keyboard.
L: Saves LEN(L\$).
$\mathrm{L} \$$: Contains each word of the input string as it is cut apart. (A word consists of the characters between spaces.)
$\mathrm{L} \$(\mathrm{x})$: Contains the characters defined in the DATA. X is analogous to the x subscript in the DESC \% array.
LL\$(x): Same as $\mathrm{L} \$(\mathrm{x})$, but sorted into ASCII order. Used to present the available characters.
LTR: Number of characters defined, plus 1.
M\$: Used to save the results of MID $\$$ function calls.
OL\$: Mnemonic for "Old L\$." Contains the previous word printed, in order to determine if a hyphen was used. If so, centering
of the next line is suppressed.
P : String input by user to be printed.
P1\$: Same as P\$, but with undefined characters removed. This is the string which is cut up and put piece by piece into $\mathrm{L} \$$. QQ : Number of characters defined. Used to sort and display LL\$(x).
$\mathrm{R} \$$: String returned by the inputsimulation routine.
S: Number of spaces in a line definition.
S\$: Contains the number of spaces needed to center L\$ on a line. T\$: Temporary storage variable used to swap strings in array LL\$ during sorting.
VT: Used by display subroutine. Specifies VTAB number.
WIDE: Number of large characters per line.
WW: Used to get double-width characters from the MX-80. If the modifications to the program for non-MX-80 use have been made, this is always zero.
X: Loop index.

APPLE＂

＊AFPLESOFT BASIC
\＄＇POSTER MAKER’ \＄
＊AUTHOR：FRED J．CONDD
\＄（C） 1982 SDFTSIDE

Set normal text mode and display title header．

10 NOTRACE ：TEXT ：HOME ：SPEED＝ 255：NORMAL
20 UT $=1:$ DISPLAY $=2: A \$="$
POSTER MAKER＂：GOSUB 750：VT $=$ 3：DISFLAY $=1:$ A $=$
＂BY F．J．CONDO＂：GOSUB 750：V $T=4: A \$=$＂JULY 1981＂：G05UB 750
30 FOKE 34,5

READ the character data into the arrays．

40 リT＝12：A\＄＝＂READING DATA＂：DI SFLAY＝5：GOSUB 750
 （53）
60 LTR $=1$
70 READ L $\ddagger(\mathrm{LTR}): L L \$(L T R)=L(L T$ Fi：：IF L $\ddagger(L T R)={ }^{*} X X X^{n}$ GOTO 160
80 VT＝1J：DISPLAY＝1：A＝＂ L\＄（LTR）＋＂）＂：60GUB 750
$90 \mathrm{~L}=1$
$100 \mathrm{I}=1$
110 READ S，C
120 DESC\％（LTR，L，I）$=5:$ DESC\％（LTR， $-1+1!=C$
130 IF $5<>-1$ THEN $I=I+$ 2：GOTO 110
$140 \mathrm{~L}=\mathrm{L}+1: \mathrm{IF} \mathrm{L} \leqslant=136070$ 100
$150 \mathrm{LTn}=\mathrm{LTR}+1:$ GOTO 70

Sort the data in LL\＄（B）in ascending order for later display of available characters．

160 HOME
170 VT $=12:$ DISPL $=3: A \$={ }^{"}$ SORTI NG DATA＂：GOSUB 750
180 QQ $=\operatorname{LTR}-1: F O R A=1$ TO QQ －1：FOR B＝1 TO 时－A：IF $L L(B)$ ）$L L(B+1)$ THEN $T \$=$ $L L \$(B): L L \$(B)=L L \$(B+1): L$ $L(B+1)=T$

190 NEXT E：A

Input maximum line width．（For standard $\mathbf{8 0}$－column printers，use six characters per line．）

200 HOME ：VTAB 12
210 INFUT＂HOW MANY LARGE CHARAC TERS WIDE DO YOU HANT EACH LINE TO EE（MAX，10）？＂；WID E：WIDE＝INT（HIDE）：IF WID E＜ 1 OR WIDE ） 10 GOTO 200
220 A $={ }^{" 4}$ ：FOR I＝ 1 TO 21：A\＄＝ A\＄＋＂＂：NEXT ：VT＝2：DISPL $A Y=1: 605 U B 750$
230 YT $=2:$ DISPLAY $=2: A={ }^{\text {BLI }}$ LIAE 5 HILL BE＂＋STR（WIDE）＋
＂LONG＂：GOSUB 750

Display available characters and input the words to be printed．

240 HOME ：PRINT＂USE ONLY＂：FOR $A=1$ TO QQ：FRINT LL\＄（A）：：NEXT A
250 POKE 34， 8
260 HOME ：VTAB 12：PRINT＂PHRAS
E：＂：GOSUR 700：P\＄＝R\＄
270 IF F\＄＝＂${ }^{\text {＂}}$ THEN TEXT ：HOME ：END

Remove characters from the Input string which are not defined in the DATA statements．P1\＄will then contain the phrase to be printed．

290 P1 1 ＝${ }^{\text {®11 }}$
300 FOR I＝ 1 T0 LEN（P $\$$ ）： $1 \$=$ MID\＄（P\＄，1，1）
310 FOR J $=1$ TO LTR－ 1
320 IF M＜＞L $\$(\mathrm{~J})$ THEN NEXT II
330 IF 1 \＆LTR THEN F1\＄$=$ F1 $\$+$ M
340 NEXT I
350 IF F1\＄$={ }^{n "}$ THEN HOME ：VTAB 12：FRINT＂NO DATA AVAILABLE FOR YOUR INPUT STRING PLEAS E TRY AGAIN，USING DNLY THE CHARAC－TERS LISTED ABOUE＂：FOR $\mathrm{KK}=1$ TO 1800：NEXT KK：GOTO 200

Input the character to be used in forming the large poster characters．

360 CFLAG＝O：INPUT＂CHARACTER T I PRINT OR SRETURN〉 TO MATCH FRINTING CHARACTER TO CHARA CTER EEING REPRESENTED：＂； CH\＄：CH\＄$=$ LEFT $\$(\mathrm{CH} \$, 1)$
370 IF CH\＄＜${ }^{\circ}$＂THEN CFLAG $=$ 1
380 FI $=$ P1 ${ }^{4}+{ }^{n}$
3PO HOME ：VTAB 12：FRINT F1\＄

Lines 400－430 are specifically for the Epson MX－80．For a standard $\mathbf{8 0}$－column printer，delete $\mathbf{4 1 0 - 4 3 0}$

APPLE

and delete everything in line 400 following "PR\#1".

400
FR\# 1: PRINT CHR\$ (27): CHR (48);: REM COMPRESSED LINE SPACING
410 IF WIDE > 6 THEN PRINT CHR (15): REM 132 CHARS/LINE

420 Wh = 0; IF WIDE < 6 AND WIDE > 3 THEN FRINT CHF (15): WW = 14: REM 66 CHARS/LIHE
430 IF WIDE < = 3 THEN WW = 14

Cut P1\$ into words (groups of characters separated by spaces).

440 PRINT
$450 I=1$
$460 \mathrm{~L}={ }^{\text {\# }}={ }^{4}$
470 IF I > LEN (P1 1) THEN PR\# 0: HOME : VTAE 12: $60 T 0 \mathrm{Z} 20$

490 IF 惊 < " " THEN $\mathrm{L}=\mathrm{L}=\mathrm{L}+$

$500 I=1+1$

Center each word, unless the last word was hyphenated. (To center the trailing part of hyphonated words as well, delete line 520.)

520 IF RIIGTT (OL*,1) = "-" THEN HYFLAG = 1
500 IF L > WIDE THEN I = I - (L WIDE) - 2:L = WIDE:L\$ = LEFT $\$$ (L $⿻$ (MIDE - 1) + " - "
540 IF L < HIDE - 1 AND NDT HYF LAG THEN FOR $X=1$ TO (WIDE - L) / 2: $5 \$=5 \$+{ }^{(1)}$: NEXT \%
$550 \square L=\angle \$:$ HYFLAG $=0$
$560 L \$=5 \$+L \$$

Print the current word and then go on to the next one.

570 FOR LINE $=1$ TO 13
5BO FOR Q $=1$ TD LEN (L $\$$):M $\$=$ MID $\$(L \$, Q, 1)$
590 FOR R $=1$ TO LTR - 1
600 IF L $\$(R)$? ? THEN NEXT R
$610 \mathrm{II}=1:$ SCOUNT $=0$
$620 \mathrm{~S}=\mathrm{DESC} \%(\mathrm{R}, \mathrm{LINE}, I \mathrm{I}): \mathrm{C}=\mathrm{DESC}$ $\%(R, L I N E, I I+1)$
630 IF NOT CFLAG THEN CH $\$=L \$$ R)

640 IF $\mathrm{s} \leqslant>-1$ THEN PRINT CHR $\$$ ((WM) ; SPC(5) : : SCOUST $=$ SCOU NT +5 : FOR $x=1$ TO C: FRINT CH: : NEXT X:SCOUNT = SCOUNT + C:II = II + 2: GOT0 620
650 IF SCOUNT < 13 THEN FOR $X=$ SCOUNT TO 12: PRINT " ": : NEXT x
660 NEXT Q: PRINT : NEXT LINE
670 PRINT : PRINT
6806070460

Subroutine to allow inputting of all characters, including commas, quotation rilarks, colons, etc.

700 R $=$ " ": FRINT " $-->"$;
710 GET KK CHR\$ (13) THEN RETURN
720 IF KK = CHR * (8) AND LEN
 \$, LEN (R*) - 1): GOTO 710
730 IF KK $=$ CHR $\$$ (8) AND LEN (R $\$$) < $=1$ THEN R $\$={ }^{" 4: ~ G O T O ~}$ 710

Subroutine to display a string of characters centered on line VT. The value of DISPLAY determines if the string will be printed as normal, inverse, or flashing text.

750 ON DISPLAY GOTO 770,780,790
770 NORMAL : GOTO 800
780 INUERSE : GOTO 800
790 FLASH
800 VTAB UT: HTAB 20 - LEN (A $\$$ / 2: PRINT A\$: NORMAL : RETURN

Done with this poster; do another one?

820 INPUT "MORE? ": A\$; IF LEFT $\$$ (A $A=1$) $=$ "N" THEN TEXT : HOME : END
830 FR $1:$ PRINT CHR (18) CHR $\$$
(20): PR\# 0: GOTD 200

DATA for characters. (See article for deta format.)

10000 IATA A, 4, 4, -1, $-1,3,6,-1,-1$ $, 2,8,-1,-1,1,10,-1,-1,0,12,-$ $1,-1,0,4,4,4,-1,-1,0,4,4,4,-$ $1,-1,0,12,-1,-1,0,12,-1,-1,0$ $, 12,-1,-1,0,4,4,4,-1,-1,0,4$, $4,4,-1,-1,0,4,4,4,-1,-1$
10001 DATA E $, 0,12,-1,-1,0,12,-1$, $-1,0,12,-1,-1,0,4,-1,-1,0,4$, $-1,-1,0,10,-1,-1,0,10,-1,-1$, $0,10,-1,-1,0,4,-1,-1,0,4,-1$, $-1,0,12,-1,-1,0,12,-1,-1,0,1$ $2,-1,-1$
10002 DATA " " $,-1,-1,-1,-1,-1,-1$ $,-1,-1,-1,-1,-1,-1,-1,-1,-1$, $-1,-1,-1,-1,-1,-1,-1,-1,-1,-$ $1,-1$
10003 DATA $I, 2,8,-1,-1,2,8,-1,-1$ $, 2,8,-1,-1,4,4,-1,-1,4,4,-1$, $-1,4,4,-1,-1,4,4,-1,-1,4,4,-$ $1,-1,4,4,-1,-1,4,4,-1,-1,2,8$ $,-1,-1,2,8,-1,-1,2,8,-1,-1$
10004 DATA $0,2,8,-1,-1,1,10,-1,-$ $1,0,12,-1,-1,0,4,4,4,-1,-1,0$, $4,4,4,-1,-1,0,4,4,4,-1,-1,0$, $4,4,4,-1,-1,0,4,4,4,-1,-1,0$ $, 4,4,4,-1,-1,0,4,4,4,-1,-1,0$ $, 12,-1,-1,1,10,-1,-1,2,8,-1$, -1
10005 DATA $1,0,4,4,4,-1,-1,0,4,4$ $, 4,-1,-1,0,4,4,4,-1,-1,0,4,4$, $4,-1,-1,0,4,4,4,-1,-1,0,4,4$ $, 4,-1,-1,0,4,4,4,-1,-1,0,4,4$; $4,-1,-1,0,4,4,4,-1,-1,0,4,4$, $4,-1,-1,0,12,-1,-1,1,10,-1$, $-1,2,8,-1,-1$
10006 DATA " - n, $-1,-1,-1,-1,-1,-1$ $,-1,-1,-1,-1,-1,-1,1,10,-1,-$ $1,1,10,-1,-1,-1,-1,-1,-1,-1$, $-1,-1,-1,-1,-1$
10007 DATA $[, 2,10,-1,-1,1,11,-1$, $-1,0,12,-1,-1,0,4,-1,-1,0,4$, $-1,-1,0,4,-1,-1,0,4,-1,-1,0$, $4,-1,-1,0,4,-1,-1,0,4,-1,-1$, $0,12,-1,-1,1,11,-1,-1,2,10,-$ $1,-1$
10008 DATA $R, 0,10,-1,-1,0,11,-1$, $-1,0,12,-1,-1,0,4,4,4,-1,-1$, $0,4,4,4,-1,-1,0,12,-1,-1,0,1$ $1,-1,-1,0,10,-1,-1,0,8,-1,-1$ $, 0,4,1,4,-1,-1,0,4,2,4,-1,-1$ $, 0,4,3,4,-1,-1,0,4,4,4,-1,-1$

10009 DATA $5,2,9,-1,-1,1,11,-1,-$ $1,0,12,-1,-1,0,4,-1,-1,0,4,-$ $1,-1,0,10,-1,-1,1,10,-1,-1,2$

APPLE"

$, 10,-1,-1,8,4,-1,-1,8,4,-1,-$ $1,0,12,-1,-1,0,11,-1,-1,1,9$, $-1,-1$
10010 DATA $N, 0,4,4,4,-1,-1,0,5,3$ $, 4,-1,-1,0,6,2,4,-1,-1,0,7,1$ $, 4,-1,-1,0,7,1,4,-1,-1,0,4,1$ $, 7,-1,-1,0,4,1,7,-1,-1,0,4,2$,6, $-1,-1,0,4,3,5,-1,-1,0,4,4$ $, 4,-1,-1,0,4,4,4,-1,-1,0,4,4$ $, 4,-1,-1,0,4,4,4,-1,-1$
10011 DATA $8,0,10,-1,-1,0,11,-1$, $-1,0,12,-1,-1,0,4,4,4,-1,-1$, $0,4,4,4,-1,-1,0,12,-1,-1,0,1$ $1,-1,-1,0,11,-1,-1,0,4,4,4,-$ $1,-1,0,4,4,4,-1,-1,0,12,-1,-$ $1,0,11,-1,-1,0,10,-1,-1$
10012 DATA $D, 0,10,-1,-1,0,11,-1$, $-1,0,12,-1,-1,0,4,4,4,-1,-1$, $0,4,4,4,-1,-1,0,4,4,4,-1,-1$, $0,4,4,4,-1,-1,0,4,4,4,-1,-1$, $0,4,4,4,-1,-1,0,4,4,4,-1,-1$, $0,12,-1,-1,0,11,-1,-1,0,10,-$ $1,-1$
10013 DATA $F, 0,12,-1,-1,0,12,-1$, $-1,0,12,-1,-1,0,4,-1,-1,0,4$, $-1,-1,0,8,-1,-1,0,8,-1,-1,0$, B, $-1,-1,0,4,-1,-1,0,4,-1,-1$, $0,4,-1,-1,0,4,-1,-1,0,4,-1,-$ 10014 DATA $H, 0,4,4,4,-1,-1,0,4,4$ $, 4,-1,-1,0,4,4,4,-1,-1,0,4,4$, $4,-1,-1,0,4,4,4,-1,-1,0,12$, $-1,-1,0,12,-1,-1,0,12,-1,-1$, $0,4,4,4,-1,-1,0,4,4,4,-1,-1$, $0,4,4,4,-1,-1,0,4,4,4,-1,-1$, $0,4,4,4,-1,-1$
10015 DATA J, $8,4,-1,-1,8,4,-1,-1$ $, 8,4,-1,-1,8,4,-1,-1,8,4,-1$, $-1,8,4,-1,-1,8,4,-1,-1,8,4,-$ $1,-1,0,4,4,4,-1,-1,0,4,4,4,-$ $1,-1,0,12,-1,-1,1,10,-1,-1,2$, $8,-1,-1$

10016 DATA T, $0,12,-1,-1,0,12,-1$, $-1,0,12,-1,-1,4,4,-1,-1,4,4$, $-1,-1,4,4,-1,-1,4,4,-1,-1,4$, $4,-1,-1,4,4,-1,-1,4,4,-1,-1$, $4,4,-1,-1,4,4,-1,-1,4,4,-1,-$ 1
10017 DATA $Y, 0,4,4,4,-1,-1,0,4,4$ $, 4,-1,-1,0,4,4,4,-1,-1,0,4,4$ $, 4,-1,-1,0,4,4,4,-1,-1,1,10$, $-1,-1,2,8,-1,-1,4,4,-1,-1,4$, $4,-1,-1,4,4,-1,-1,4,4,-1,-1$, $4,4,-1,-1,4,4,-1,-1$
10018 DATA $4,1,3,4,3,-1,-1,1,3,4$ $, 3,-1,-1,1,3,4,3,-1,-1,1,3,4$ $, 3,-1,-1,1,3,4,3,-1,-1,1,3,4$ $, 3,-1,-1,1,3,4,3,-1,-1,1,3,4$ $, 3,-1,-1,1,3,4,3,-1,-1,2,3,2$ $, 3,-1,-1,3,2,2,2,-1,-1,4,4,-$ $1,-1,5,2,-1,-1$
10019 DATA W, $0,3,6,3,-1,-1,0,3,6$ $, 3,-1,-1,0,3,6,3,-1,-1,0,3,6$ $, 3,-1,-1,0,3,6,3,-1,-1,0,3,2$ $, 2,2,3,-1,-1,0,3,1,4,1,3,-1$, $-1,0,3,1,4,1,3,-1,-1,0,12,-1$ $,-1,0,5,2,5,-1,-1,0,5,2,5,-1$ $,-1,0,4,4,4,-1,-1,0,3,6,2,-1$,-1
10020 DATA $L, 0,4,-1,-1,0,4,-1,-1$, 0, 4, -1,-1, 0, 4, -1,-1, 0, 4,-1, $-1,0,4,-1,-1,0,4,-1,-1,0,4,-$ $1,-1,0,4,-1,-1,0,4,-1,-1,0,1$ $2,-1,-1,0,12,-1,-1,0,12,-1,-$ 1

10021 DATA $G, 2,10,-1,-1,1,11,-1$, $-1,0,12,-1,-1,0,4,-1,-1,0,4$, $-1,-1,0,4,-1,-1,0,4,3,5,-1,-$ $1,0,4,3,5,-1,-1,0,4,5,3,-1,-$ $1,0,4,5,3,-1,-1,0,12,-1,-1,1$, $10,-1,-1,2,8,-1,-1$
10022 DATA $1,0,12,-1,-1,0,12,-1$, $-1,0,12,-1,-1,8,4,-1,-1,7,4$, $-1,-1,6,4,-1,-1,5,4,-1,-1,4$,
$4,-1,-1,3,4,-1,-1,2,4,-1,-1$, $1,11,-1,-1,0,12,-1,-1,0,12,-$ $1,-1$
10023 IATA $M, 0,3,6,3,-1,-1,0,4,4$ $, 4,-1,-1,0,5,2,5,-1,-1,0,5,2$,5,-1,-1,0,12,-1,-1,0,3,1,4, $1,3,-1,-1,0,3,1,4,1,3,-1,-1$, $0,3,2,2,2,3,-1,-1,0,3,6,3,-1$ $,-1,0,3,6,3,-1,-1,0,3,6,3,-1$ $,-1,0,3,6,3,-1,-1,0,3,6,3,-1$,-1
10024 DATA $\mathrm{Q}, 1,8,-1,-1,0,10,-1,-$ $1,0,10,-1,-1,0,3,4,3,-1,-1,0$ $, 3,4,3,-1,-1,0,3,4,3,-1,-1,0$ $, 3,4,5,-1,-1,0,3,4,3,-1,-1,0$, 3, 2,5, $-1,-1,0,3,3,4,-1,-1,0$ $, 11,-1,-1,1,11,-1,-1,2,6,2,2$: $-1,-1$
10025 DATA $F, 0,10,-1,-1,0,11,-1$, $-1,0,12,-1,-1,0,4,4,4,-1,-1$, $0,4,4,4,-1,-1,0,12,-1,-1,0,1$ $1,-1,-1,0,10,-1,-1,0,4,-1,-1$ $, 0,4,-1,-1,0,4,-1,-1,0,4,-1$, $-1,0,4,-1,-1$
10026 DATA $K, 0,4,4,4,-1,-1,0,4,3$ $, 5,-1,-1,0,4,2,5,-1,-1,0,4,1$ $, 4,-1,-1,0,8,-1,-1,0,6,-1,-1$ $, 0,7,-1,-1,0,8,-1,-1,0,4,1,4$ $,-1,-1,0,4,2,4,-1,-1,0,4,3,4$ $,-1,-1,0,4,4,4,-1,-1,0,4,5,3$ $,-1,-1$
10027 DATA $X, 0,4,4,4,-1,-1,0,4,4$ $, 4,-1,-1,0,4,4,4,-1,-1,1,3,4$,3,-1,-1,2,3,2,3,-1,-1,3,6,-$1,-1,4,4,-1,-1,4,4,-1,-1,3,6$ $,-1,-1,2,3,2,3,-1,-1,0,4,4,4$, $-1,-1,0,4,4,4,-1,-1,0,4,4,4$ $,-1,-1$
10028 DATA : $4,5,-1,-1,4,5,-1,-1$ $, 4,5,-1,-1,4,5,-1,-1,3,5,-1$, $-1,2,5,-1,-1,-1,-1,-1,-1,-1$, $-1,-1,-1,-1,-1,-1,-1,-1,-1$

APPLE

10029 DATA ! $3,5,-1,-1,3,5,-1,-1$, $3,5,-1,-1,3,5,-1,-1,3,5,-1$, $-1,3,5,-1,-1,3,5,-1,-1,3,5,-$ $1,-1,4,3,-1,-1,-1,-1,3,5,-1$, $-1,3,5,-1,-1,3,5,-1,-1$
10030 DATA $2,5,3,-1,-1,5,3,-1,-1$, $2,10,-1,-1,1,11,-1,-1,0,5,-$ $1,-1,1,9,-1,-1,3,7,-1,-1,1,9$ $,-1,-1,0,5,-1,-1,1,11,-1,-1$, $2,10,-1,-1,5,3,-1,-1,5,3,-1$, -1
10031 DATA ., -1,-1,-1,-1,-1,-1,-$1,-1,-1,-1,-1,-1,-1,-1,-1,-1$ $,-1,-1,-1,-1,0,4,-1,-1,0,4,-$ $1,-1,0,4,-1,-1$
10032 DATA ", ",-1,-1,-1,-1,-1,-1 $,-1,-1,-1,-1,-1,-1,-1,-1,-1$, $-1,-1,-1,-1,-1,2,3,-1,-1,1,3$ $,-1,-1,0,3,-1,-1$
10033 DATA $+,-1,-1,-1,-1,-1,-1,4$, $3,-1,-1,4,3,-1,-1,4,3,-1,-1$ $0,11,-1,-1,0,11,-1,-1,4,3,-$ $1,-1,4,3,-1,-1,4,3,-1,-1,-1$, $-1,-1,-1$
10034 DATA $=,-1,-1,-1,-1,-1,-1,-$ $1,-1,0,12,-1,-1,0,12,-1,-1,-$ $1,-1,0,12,-1,-1,0,12,-1,-1,-$ $1,-1,-1,-1,-1,-1,-1,-1$
10035 DATA $;,-1,-1,-1,-1,-1,-1,2$, $4,-1,-1,2,4,-1,-1,2,4,-1,-1$ $,-1,-1,-1,-1,-1,-1,2,4,-1,-1$, $2,4,-1,-1,1,4,-1,-1,0,4,-1$, -1
10036 DATA $/, 10,2,-1,-1,10,2,-1$, $-1,9,3,-1,-1,8,3,-1,-1,7,3,-$ $1,-1,6,3,-1,-1,5,3,-1,-1,4,3$ $,-1,-1,3,3,-1,-1,2,3,-1,-1,1$,3,-1,-1,0,3,-1,-1,0,2,-1,-1
10037 DATA $\%, 0,4,6,2,-1,-1,0,4,6$,2,-1,-1,0,4,5,3,-1,-1,0,4,4 ,3, $-1,-1,7,3,-1,-1,6,3,-1,-1$,5,3,-1,-1,4,3,-1,-1, 3,3,-1,
$-1,2,3,3,4,-1,-1,1,3,4,4,-1$, $-1,0,3,5,4,-1,-1,0,2,6,4,-1$, -1
10038 DATA $(, 5,2,-1,-1,4,2,-1,-1$,3,2,-1,-1,2,2,-1,-1,1,2,-1, $-1,0,3,-1,-1,0,2,-1,-1,0,3,-$ $1,-1,1,2,-1,-1,2,2,-1,-1,3,2$ $,-1,-1,4,2,-1,-1,5,2,-1,-1$ 10039 DATA $, 5,2,-1,-1,6,2,-1,-1$, $7,2,-1,-1,8,2,-1,-1,9,2,-1$, $-1,9, \pi,-1,-1,10,2,-1,-1,9,3$, $-1,-1,9,2,-1,-1,8,2,-1,-1,7$, $2,-1,-1,6,2,-1,-1,5,2,-1,-1$ 10040 DATA $=4,-1,-1,-1,-1,2,4,-$ $1,-1,2,4,-1,-1,2,4,-1,-1,-1$, $-1,-1,-1,-1,-1,2,4,-1,-1,2,4$ $,-1,-1,2,4,-1,-1,-1,-1,-1,-1$ 10041 DATA $1,4,4,-1,-1,4,4,-1,-1$,3,5,-1,-1,2,6,-1,-1,5,3,-1, $-1,5,3,-1,-1,5,3,-1,-1,5,3,-$ $1,-1,5,3,-1,-1,5,3,-1,-1,3,7$ $,-1,-1,3,7,-1,-1,3,7,-1,-1$ 10042 DATA $2,3,6,-1,-1,2,8,-1,-1$ $, 1,3,3,4,-1,-1,8,3,-1,-1,8,3$ $,-1,-1,7,3,-1,-1,6,3,-1,-1,5$, $3,-1,-1,4,3,-1,-1,3,3,-1,-1$,2,10,-1,-1, 1, 11,-1,-1,1,11, $-1,-1$
10043 DATA $0,2,8,-1,-1,1,10,-1,-$ $1,0,12,-1,-1,0,4,3,5,-1,-1,0$ $, 4,2,6,-1,-1,0,4,2,6,-1,-1,0$, $4,1,2,1,4,-1,-1,0,4,1,2,1,4$ $,-1,-1,0,6,2,4,-1,-1,0,5,3,4$, $-1,-1,0,12,-1,-1,1,10,-1,-1$, $2,8,-1,-1$
10044 DATA 4, 7, 3,-1,-1,6,4,-1,-1 ,5,5,-1,-1,4,6,-1,-1,3,3,1,3 $,-1,-1,2,3,2,3,-1,-1,1,3,3,3$ $,-1,-1,0,12,-1,-1,0,12,-1,-1$, $0,12,-1,-1,7,3,-1,-1,7,3,-1$, $-1,7,3,-1,-1$
10045 DATA $8,2,8,-1,-1,1,10,-1,-$
$1,0,12,-1,-1,0,3,6,3,-1,-1,0$
,3,6,3,-1,-1,1, $0,-1,-1,2,8$, $-1,-1,1,2,6,2,-1,-1,0,3,6,3$, $-1,-1,0,3,4,3,-1,-1,0,12,-1$, $-1,1,10,-1,-1,2,8,-1,-1$
10046 DATA $3,2,8,-1,-1,1,10,-1,-$ $1,0,12,-1,-1,0,3,6,3,-1,-1,9$,3,-1,-1, 4, $7,-1,-1,4,6,-1,-1$ $, 8,3,-1,-1,9,3,-1,-1,0,3,6,3$, $-1,-1,0,12,-1,-1,1,10,-1,-1$, $2,8,-1,-1$
10047 DATA $5,0,11,-1,-1,0,11,-1$, $-1,0,11,-1,-1,0,4,-1,-1,0,4$, $-i,-1,0,10,-1,-1,0,11,-1,-1$, $0,12,-1,-1,8,4,-1,-1,0,4,4,4$, $-1,-1,0,4,4,4,-1,-1,1,10,-1$ $,-1,2,8,-1,-1$
10048 DATA $6,2,8,-1,-1,1,10,-1,-$ $1,0,12,-1,-1,0,4,4,4,-1,-1,0$,4,-1,-1,0,10,-1,-1,0,11,-1, $-1,0,12,-1,-1,0,4,4,4,-1,-1$, $0,4,4,4,-1,-1,0,12,-1,-1,1,1$ $0,-1,-1,2,8,-1,-1$
10049 DATA $9,2,8,-1,-1,1,10,-1,-$ $1,0,12,-1,-1,0,4,4,4,-1,-1,0$, $4,4,4,-1,-1,0,12,-1,-1,1,11$ $,-1,-1,2,10,-1,-1,8,4,-1,-1$, $0,4,4,4,-1,-1,0,12,-1,-1,1,1$ $0,-1,-1,2,8,-1,-1$
10050 DATA $7,0,12,-1,-1,0,12,-1$, $-1,0,12,-1,-1,8,4,-1,-1,7,4$, $-1,-1,6,4,-1,-1,5,4,-1,-1,4$, $4,-1,-1,3,4,-1,-1,3,4,-1,-1$, $3,4,-1,-1,3,4,-1,-1,3,4,-1,-$ 1
10051 DATA ?,2,8,-1,-1,1,10,-1,-$1,0,4,4,4,-1,-1,0,4,4,4,-1,-$ $1,8,4,-1,-1,4,7,-1,-1,4,6,-1$, $-1,4,4,-1,-1,4,4,-1,-1,-1,-$ $1,4,4,-1,-1,4,4,-1,-1,4,4,-1$,-1
19999 DATA XXX

Three Apple Text Editors

A comparative review by Jon Voskuil

Apple Writer II

from Apple Computer, Inc. Suggested retail price: $\$ 150$

SuperScribe II

from On-Line Systems. Suggested retail price: $\$ 130$

SuperText II

from MUSE. Suggested retail price: \$150

You may be considering buying one of the three text editor programs listed (in alphabetical order) above. They're not the only ones available for the Apple by any means, and the choice of these particular three should not reflect in any way upon the many others not reviewed.

I feel it's only fair to tell you at the outset that I am much better acquainted with one of these software packages than with the other two. For over a year I have been working with SuperText II (because it happened to be the only word processor for the Apple that SoftSide had lying around when I came), and therefore know its capabilities pretty thoroughly. Apple Writer II and SuperScribe II have been in my possession only a few weeks. While I've been using them as much as possible to get a feel for them, there are many features that I simply haven't had the time to use. On the balancing side, though, it's the common, ordinary, everyday features of any given word processor that give it its "feel"'; and the special features, which are not likely to be used as much, don't really affect that feel.
The common, ordinary, everyday business of a word processor is to make it easy to write and edit text. All three of these packages do an admirable job of that. They share a number of more-or-less standard writing and editing features which will woo you away from your electric typewriter forever. With any one of these you can:

Type any text into your computer's memory (in both upper and
lower case, even if your computer won't actually display lower-case letters), and transfer that text back and forth between the computer and a disk at will. All of them can take advantage of a simple modification which will allow you to use the shift key in the normal way to capitalize letters. If you have not made this no-cost modification, then capitalization is accomplished by pressing the ESC key before typing a letter to be capitalized.

Forget about carriage returns

when typing normal text, except at the end of paragraphs. If a word won't fit on a line, it will automatically be moved down to the next line as you type.

Correct typing mistakes as you type, simply by backspacing and retyping.

Move the writing cursor to any position in your text, and delete, insert, or change any characters you wish.

Move a block of text from one part of your document to another, without having to retype it.

Find each occurrence of any character or string of characters you're looking for in your text and, if desired, automatically replace those characters with other characters.

Print the text in memory on paper using a printer, in almost any conceivable format. Line spacing, justification, centering, margins, tabs, and page numbering are some of the parameters that can be specified.

The differences among these three word processors are to be found in two areas. They differ, first, in the approach they take to performing the basic editing functions. These differences are important, because they affect the way the program feels as you are using it. Are the keystrokes necessary to move the cursor around the screen and perform other editing functions "natural" ones? Or, at least, do they begin to feel natural after a bit of practice? This can be a rather subjective judgment, of course. Second, the programs differ in the features they add to the basic editing package. These might very well be the deciding factor for you in choosing one over the others. How much flexibility do you need? What kind of tradeoff are you willing to make between simplicity of use and versatility of application?

Apple Writer II

Apple Writer II comes with two identical 16 -sector disks, a 106-page spiral-bound manual of the same dimensions as other Apple manuals, and a tear-out reference card with command summaries for editing and printing. The documentation is very well written and seems virtually error-free, typical of Apple

APPLE ${ }^{\text {" }}$

manuals in general. Someone who has never used a word processor before should have no trouble getting started with this friendly manual.

Apple Writer II is compatible with M \& R Enterprise's Sup'R'Terminal 80 -column board (and possibly others). Upon booting the program, this board will automatically be used if installed. Otherwise you are asked if you have a lower-case adapter installed. (If you don't, upper-case letters will be indicated by inverse characters, and lower-case by normal characters.) You are then shown a title page with a summary of frequently-used commands. Pressing RETURN clears the screen and sets you up to start typing in text. A "Data Line" at the top of the screen (which can be switched off if desired) keeps you informed about the number of characters in your text, the memory remaining, and other information.

If you are at all familiar with the built-in screen editing features of your Apple, you will feel somewhat at home from the start with the editing commands in Apple Writer $I I$. Pressing the ESC key (twice, if you haven't done the shift-key modification) allows you to move the cursor in any direction through the existing text with the usual I, J, K, and M keys. Four similar keys under left-hand control (E, S, D, and X) move up or down 12 lines at a keystroke, or right or left a full word at a time.

One rather disconcerting feature of this mode is the manner in which the cursor moves through the text. Apple Writer's cursor never actually occupies the same location as a character in the text. When you're typing normally, of course, it's always just to the right of the characters you're entering. But when you move it through text already entered, it squeezes itself between two existing characters. Moving left and right across a line, then, gives an interesting ripple effect. The ripple effect when moving up and down from line to line, however, takes a little more getting-used-to. If you move the cursor to a line which is already full, the last word of that line is bumped down to the next - which may in turn cause a word to be bumped from that line
to the next, and so on. This makes for quite a bit of visual chaos on the screen, making it difficult to keep track of where you are in the text when moving rapidly from one line to the next.

The left and right arrows also function as editing keys. The left arrow deletes text backward, and the right arrow re-enters deleted characters, much as they do when editing BASIC program lines. The difference here is that the left arrow actually erases characters from the screen when deleting them, and the right arrow rewrites them. This provides a simple method for moving a portion of text from one place to another: You position the cursor at the end of the text you want to move, delete it from that place using the left arrow, move the cursor using the appropriate ESC key sequence, and then "regurgitate" the deleted text at the new location using the right arrow. This approach is a bit unconventional, but quite ingenious.

All other word processing functions are accessed through control characters. Insertion and deletion of text, for example, can be done a full word or a full paragraph at a time instead of just one character at a time. CTRL-W deletes or inserts a word, while CTRL-X does the same for a paragraph. Whether you're inserting or deleting is controlled by the direction of a little arrow on the Data Line, which is toggled right or left using CTRL-D. You can move directly to the beginning or end of your text by pressing CTRL-B or CTRL-E. Pressing CTRL-R switches you into the replace mode, allowing you to type over existing text with new. CTRL-I moves you to the next tab position, which you set earlier using CTRL-T. Finding and replacing certain characters in your text is accomplished by pressing CTRL-F, followed by the characters you want to find and (optionally) the new ones you want to put in their place. Other control characters allow you to save and load files from disk, clear the current text from memory, convert upper-case text to lower-case and vice-versa, execute normal DOS commands, and access "help", displays which explain various commands.

Two powerful editing features of Apple Writer II bear mentioning. One allows you to define a "glossary" of words, phrases, or any other characters, which you may have occasion to use frequently while writing. Once defined, pressing three keys (CTRL-G plus one other which you specify in the definition) will insert the entire defined term into the text. A single term can be up to 128 characters, and the whole glossary table can be up to 2048 characters long. Any number of glossary tables can be created and stored on disk.

A second powerful feature allows you to split the screen display into upper and lower sections, and display different parts of your text independently in the two areas. This can be very helpful when you need to refer one portion of text while writing or editing another. (Along these same lines, another option allows you to view the contents of a file on disk while not disturbing the file in memory.)

In addition to being a capable editor, Apple Writer II is also a capable printout formatter. Printout formatting can be done either from within the text by use of embedded format commands, or using a print options menu prior to printout time. This menu's default values can be reset at any time, and permanently saved on disk. All the standard options are available, including left, right, and center justification options, paragraph indenting (or 'outdenting'), pause between pages for sheet-feeding your printer, margin values, and page length, and automatic page numbering. Also available are automatic top and bottom line headings.

A major feature of Apple Writer II not yet mentioned is WPL. That stands for "Word Processing Language," and it represents a method of automating various word processing tasks. If you are familiar with the use of the Apple DOS EXEC command, then you understand the basic idea of WPL. WPL allows you to create a disk file containing commands which automatically control the operation of the word processor. Once you create this command file, you can use Apple Writer's DO command to

APPLE

tell the computer to take over, using that set of commands.

The most common application of such automation would be in the creation of form letters. You would first create your standard form letter. Instead of typing a specific name, address, date, and so forth in the letter, you would enter generic phrases of your choice at the correct places. You would then create (or convert to a format usable by Apple Writer) a text file containing your names and addresses and whatever other information you want. Finally you would create a WPL program which would automatically go through the name/address file entry by entry, inserting information where indicated in the form letter, and print out each letter.

Various conditional operations can be included in your WPL program. This would enable you, for example, to insert a certain paragraph in the letter if a person's zip code were within a given range. Keyboard input can also be programmed into the WPL program, to give you the capability of making run-time choices about the exact form and content of the letters.

If WPL sounds versatile, it is. If it sounds a little complex, it is that too. A LITTLE complex. It's the sort of thing that programmers will rather enjoy, and non-programmers might find intimidating. It requires learning a very simple programming language consisting of just 17 commands, and then putting those commands together (very much as you would in a BASIC program) to control the operation of the word processor. You can even use some WPL capabilities without learning the commands, since there are five WPL programs included on the $A p$ ple Writer II disk (including one for printing form letters).

Apple Writer II stores both text and WPL programs in normal text files on normally formatted 16 -sector disks. This makes it easy to back up important files or whole disks, using a copy program such as Apple's FID. (The master and backup disks supplied are in 16 -sector format, but are protected against normal copying methods.) A convenient feature allows you to INITialize a blank disk directly from the editor, in case you run out
of disk space in the middle of an important document. This procedure produces a data disk which will not boot by itself but which gives you 8 K more available space than a normally initialized disk. Other DOS commands - CATALOG, RENAME, LOCK, UNLOCK, and DELETE - can also be executed from the editor without having to exit the program.

SuperScribe II

A step up the alphabet from $A p$ ple Writer II is SuperScribe II. Like Apple Writer, it comes with two 16sector disks, a manual, and a refer-

ence card. In this case the manual is a little thicker (154 pages) and has a ritzier cover (a padded loose-leaf binder), and the reference card is is a folded affair with three sides of information rather than two. The documentation is pretty well written, but rough in places - not quite as ritzy as its cover. The roughness is minor but occasionally annoying, consisting mostly of improper punctuation which gives some sentences a different meaning than was intended. Overall the writing style is not quite as lucid as Apple Writer's.

To be fair, it must be pointed out that describing SuperScribe II is a more complex task than describing Apple Writer II. Its features are more numerous and flexible, and therefore require more extensive knowledge to use effectively. A
quotation from the manual itself highlights the tradeoff that one makes for increased flexibility: "As you have seen, SuperScribe II offers you a great deal of flexibility. It can be used to handle the vast majority of your writing needs. The problem with any program which has such flexibility is that there is a tendency for it to be complicated to use for simple tasks." (p. 73) It goes on to describe a method for reducing that complexity, by creating a number of standard formats which you commonly use and saving these on the master disk. This is a good suggestion, and one that will simplify the use of any word processor. The fact remains that a larger choice of options tends to make overall operation more complicated.

SuperScribe $I I$ is not designed to make use of 80 -column boards or of lower-case adaptors. Such hardware modifications are superfluous, because it generates its own character set using software. That set includes all standard alphanumeric characters and punctuation, plus special symbols representing control characters and carriage return. These are all quite legible and attractive, complete with descenders on the lower-case letters. This is a very (very) nice feature, since working with an upper-caseonly display is aggravating, and lower-case adaptors aren't free.

What makes it even nicer is that, in addition to the normal 40 -column character display, you can switch to a narrower character set which squeezes 70 columns onto one line. If you have a good black and white monitor, you can make use of this 70 -column display as your normal mode. With a color monitor or a normal TV set, the narrower characters are only marginally readable and would be very tiring for continuous use. They are still useful, however, for previewing the way the text will look on a normal printed page, or for constructing charts and tables where you need to visualize everything in vertical columns all the way across the page.

When you boot the SuperScribe II disk, you will be confronted with the main menu, giving you the choice of entering the Editor or the Runoff program. Presumably the two parts of the word processor are
separated in this way because of memory requirements. (After all, an 8 K chunk is taken out of text memory because of using the Hi -Res screen to display the softwaregenerated characters.) It is in some ways a regrettable separation, because it makes the process of getting a printout much more cumbersome.
With most word processors, a few keystrokes and a few seconds will take you from editing text to printing it out on a printer. This one requires that you save the text to disk, exit the editor, and enter the runoff program to obtain your document in final form. In addition to the 30 seconds required to load Runoff, you must then re-enter the name of the disk file that you want to print before you can actually get to the printing. Then, if you find that you want to make the most minor of modifications to the text after you've seen the printout, you must rerun the Editor (30 seconds), reenter the disk file name and load the file, make the changes, save the text again, rerun Runoff, and again reenter the disk file name. (Incidentally, a minor gripe is that after any disk operation, the cursor always returns to the beginning of the file instead of to the location where you were working.)

Some relief from this cumbersome process is found in a feature that allows you to do a rough-form printout directly from the editor. This listing feature allows you to specify only two format parameters: line length and spacing. So, while it is certainly helpful in getting an idea of how the text will look, it's not a substitute for the final product.

The editor itself is a very capable piece of software, with enough features (I would think) to satisfy almost any writer. All the capabilities mentioned above for Apple Writer II are also available with SuperScribe II. The editing functions, however, do not have as familiar a feel at first. Instead of using ESC key sequences to move the cursor about, CTRL and SHIFTCTRL combinations are used, along with the left and right arrows.

The arrow keys do not delete and rewrite text, but merely move the cursor left and right over the characters without effecting them.

To move the cursor vertically, the key combinations CTRL-A and SHIFT-CTRL-A are used. Following a convention used throughout SuperScribe II, the unshifted combination moves forward in the text (down, in this case) and the shifted combination moves backward (up). In like manner, CTRL-Z and SHIFT-CTRL-Z move the cursor a word at a time, and CTRL-P and SHIFT-CTRL-P move it one full screen page at a time. Deleting text is accomplished (in a more conventional manner than with Apple W riter) character by character with CTRL-D or SHIFT-CTRL-D, and line by line with CTRL-K or SHIFT-CTRL-K.
This approach to editing is rather satisfying logically, but does have its problems. The chief problem is that it sometimes requires relatively complex keystroke patterns. To move the cursor up a line in the text (a very common operation), you must hold down three keys simultaneously: SHIFT, CTRL, and A. To move up repetitively, you need to hold down a fourth, the REPT key. I have yet to find a thoroughly comfortable way of doing this, although I'm getting somewhat used to it. If you haven't made the shift-key modification to your Apple, using this editor will impel you to do so. (I did so after half an hour's practice without it. The manual contains how-to instructions, but it's a bit unclear which of the solder points on the underside of the shift-key switch to use. Naturally, I picked the wrong one the first time - with no ill effects, except for all my text being upper case.)
One mark of SuperScribe's versatility, however, is its ability to accept almost any degree of personal customizing. If you think you can work out a better system of moving the cursor around the screen using different combinations of characters, you're free to try. In a way similar to Apple Writer's glossary setup, you can redefine any key or key combination to represent any other key or key combination. So if you'd rather move the cursor up a line using CTRL-S instead of SHIFT-CTRL-A, you just punch a few keys and it's done. Of course, in doing so you lose the ability to move the cursor to the next occurrence of
a given character in a line, which is what CTRL-S normally does. If you want to retain that function, you have to redefine it first in terms of another key combination. Judicious use of such "macros" can be of great benefit, both in redefining editing functions and in quickly entering often-typed words and phrases.

SuperScribe II has several additional capabilities which should be of considerable interest to serious writers. One is its ability to work with text files larger than the available memory inside the Apple, without the writer having to worry about managing several disk files. It does this by automatically reading from and writing to the disk as needed. It's a little disconcerting the first time this happens: The disk drive starts whirring and the keyboard freezes for a second or two, and you're sure that you've been zapped by your friendly neighborhood arc welder. But then the cursor returns, all the characters you typed during that second or two appear on the screen in the right place, and all is well. You can thus work with a file as large as an entire disk's storage capacity.

Another plus for serious writers is the ability to maintain up to four separate indices of key words or subjects in your document. As you write, you can insert an index token character next to any word or phrase that you want to be indexed, and when you actually print out the text all such references will be noted by page number. You could also, if you care to, automatically index every occurrence of a given string of characters using the find/replace function to insert the appropriate index token. The whole system is a flexible one, allowing you to keep track not only of words actually printed in the text, but also of themes or ideas which you may want to index.

Other features include automatic printing of multiple page headers and footers, automatic or manual hyphenation, and the ability to accept footnotes and print them on the proper page of the finished text. You also have the ability to "spool" a text file from a disk to a printer, while working on a different text file with the editor. This can be a signifi-
cant time-saver if you need to print out a very long file.

Complete form-letter capabilities are also built into SuperScribe II. Unlike Apple Writer, you do not need to use a separate control program to execute the necessary repetitive functions; they are all built into the Runoff program. Using a text file containing names and addresses, and another containing the form letter itself, you can automatically print 'personal" letters to your heart's content.

Like Apple Writer II, SuperScribe II uses standard 16-sector formatted disks for text storage. The master and backup disks are not copiable by normal means, however. (You can copy all the files, but you can't create a bootable disk.) Unlike $A p$ ple Writer, you cannot initialize a blank disk from the editor, a minor inconvenience. Incidentally, the SuperScribe disks are very sensitive to disk drive rinisadjustments, due to the complex nature of the disks' architecture (their copy-protection scheme). One of my drives, which handles other commercial disks almost flawlessly (I admit there is an occasional boot error), will successfully load the editor and runoff programs only about a third of the time.

SuperText II

Finally we come to SuperText II, a bit beyond SuperScribe II in both the alphabet and the price scale (but not by much, in either area). It comes with two identical 13-sector disks which will boot also on 16 -sector systems, a 90 -page manual in a moderately ritzy padded binder (same page size as the others), and no rip-out reference card. The quality of the documentation is excellent, on par with that of Apple Writer II.

This editor's functions are divided clearly into three writing/ editing modes, a unique math mode, and a printout mode. The writing/editing modes, in which you spend the vast majority of the time, are the cursor mode, the add mode, and the change mode.

The cursor mode is the one in which you find yourself upon entering the editor, and from which all other modes and operations are accessed. From this mode, moving the cursor around in your text is very
convenient. Like Apple Writer's I-J-K-M diamond of cursor movement keys, SuperText II has its own diamond: The left and right arrows, RETURN, and /. Being close to the REPT key, these are very convenient to use and quickly become second-nature. For grosser movement through the text, there are logical extensions: Pressing the ESC key prior to any of the four basic movment keys causes the cursor to move all the way to the left, right, top, or bottom margin of the screen display. Beyond this, pressing P moves you one screen page forward or backward through the text; the

direction is determined by a direction indicator which is changed using the + and - keys (shifted or unshifted). You can also shift the text display just one line up or down by pressing the L key, move the cursor to the center of the screen or to the location of the last change in the text with one keystroke, or move all the way to the beginning or end of the file by pressing ESC-- or ESC-+.
It is from the cursor mode also that you do such editing operations as deleting (although you can also delete from the change and add modes), finding and replacing strings of characters, and moving blocks of text from one place to another. For instance, CTRL-D deletes a single character, ESC-

CTRL-D deletes to the end of a word, and CTRL-G deletes to the end of a line. CTRL-F is used to find a string, and CTRL-R to replace one string with another. Blocks of text are manipulated in a manner similar to SuperScribe II and other word processors: A block marker is inserted at the beginning and end of the section of text, and then it can be copied to another place, deleted, or saved to disk as a unit. Such block markers, as well as all other embedded control characters, are designated by inverse video letters on the screen (in contrast to Apple Writer, which uses inverse to designate capital letters and flashing video to indicate control characters).

Like Apple Writer, SuperText II has a split-screen mode which allows viewing and manipulating two different sections of text simultaneously. A convenient additional feature allows the split in the screen to be moved upward or downward, to be able to view more of one section than the other. This function, too, is manipulated from the cursor mode.
From the cursor mode you can enter any of the other modes or execute disk operations, each through a different control code. CTRL-L and CTRL-S enable you to load, save, and otherwise manipulate disk files; CTRL-A enters the add mode; CTRL-C enters the change mode; CTRL-E enters the math mode; and X enters the printout mode.

The add mode is the basic writing mode, and operates in much the same way that Apple Writer's basic writing mode does. Anything you type is added into the text wherever the cursor is, pushing any text ahead of it forward as you go. The left arrow deletes text already typed, but doesn't save it for re-entry elsewhere. The right arrow moves to the next location on the current line which is directly under a space on the line above - an "implied tab stop." ESC-SPACE, ESC-/, and ESC-; are variously used to fill a line with spaces or to copy one or more words from the previous line into the current line. Several other tabbing and word-justification commands are also available. The only macro capability is the optional use of the colon key to enter "the"' into the text. Pressing ESC twice returns
you to the cursor mode.
The change mode is very similar to the cursor mode, except that characters at the cursor can be changed by typing over them. The only characters which can't be substituted in this mode are /, carriage return, CTRL-D, and CTRLG , since they are interpreted as cursor movement and editing commands. Return to the cursor mode is again via ESC-ESC.

The printout mode provides the usual opportunities to format the final printout of your file, either through use of the default options which can be set upon booting the disk, or with embedded format lines and other control characters to modify those default values. Six control characters are userdefinable, to represent any control sequence that your printer may require for special printing functions. This doesn't represent as much versatility as the other editors (and setting up the definitions involves a bit of hexadecimal arithmetic and use of the Apple Monitor to modify memory) but it seems adequate for most users.

A preview feature in the printout mode is a convenient option that allows you to view the text on the screen exactly as it will be printed on paper, with line spacing, page breaks, page numbers, and justification. Of course, you can't view 60 columns on a 40 -column display, so lines wider than 40 characters wrap around to the beginning of the next screen line. But the preview does give an accurate impression of the final form of the printout, before wasting any paper.

SuperText II allows you, both in printout and in editing modes, to link any number of disk files together so that they are treated essentially as one file. This method is not quite as transparent to the user as SuperScribe's, but it works effectively. Multiple parts of a large document, then, can be printed sequentially, and edited in either forward or reverse sequence.

A unique feature of SuperText II is its math mode. It allows you, while in the process of preparing a document with the editor, to do various mathematical calculations. With 15 -digit capacity, it is capable of almost any calculations you would normally encounter. It can be
used either directly as a calculator, by simply entering numbers and functions and looking at the displayed result; or, more significantly, to perform calculations on numbers in your text file.

If you have a table or chart, for instance, with columns of figures, and need totals for each column, it's a simple matter to position the cursor over the bottom number, press C or CTRL-C, and see the total appear in the accumulator. This can then be inserted at the proper place in the text by moving the cursor and pressing R. Numbers not in columns can also be used in calculations. Just move the cursor to a number, press a mathematical function key, and that function will be executed using the accumulator total and the number at the cursor. This mode would be extremely helpful for someone who prepares financial, engineering, or other sorts of reports using a word processor.

SuperText II has one distinctive feature which may be either a matter of indifference or a matter of some importance to you. It does not use standard disk formatting. Disks which are to be used to store text must be formatted using the SuperText disk. It also stores text on disk not in a text file format but in a binary file format. The significance of this is that its disks and files are essentially incompatible with everyone else's disks and files. This is of very little or no importance if it is the only word processor you use, and if you have no occasion to want to edit or merge other types of files into your normal word processor files. (The SuperScribe II manual gives instructions for an indirect method of loading SuperText files into the SuperScribe editor, assuming that you have both word processors.)
If, on the other hand, you want to be able to load and edit, say, Applesoft programs (saved in nontokenized form as text files), you just can't do it with SuperText. And that goes for any other disk files which are saved as text files on normally formatted disks. I don't find a word processor to be a very convenient program editor. (The combination of Synergistic Software's Program Line Editor and Highlands Computer Services' Co-Resident

Applesoft Editor is unbeatable in this department.) But if you want to do ANY fooling around with normally formatted text files, be forewarned.

Conclusions and Recommendations

Here are my gut-level reactions to these three products, all of which are excellent and apparently bugfree.

SuperText II is a comfortable and faithful old friend which I have found easy and sensible to use. It doesn't have the kinds of frills that SuperScribe II does, but it has enough to make it perfectly acceptable for everyday word processing and the occasional more lengthy and demanding work I've done.

Apple Writer II is an elegantly simple editor, with which an Apple programmer can feel at home almost instantly. Its Word Processing Language gives it automated capabilities which raise its basic simplicity to a much greater level of sophistication for those who need it.

SuperScribe II is at once the most exciting and the most aggravating of the three. I like all its ingenious features, but dislike some aspects of its basic personality. I definitely have a love/hate relationship with this program.

I can recommend all three as excellent performers. My guess is that serious writers might be happiest in the long run with SuperScribe II, although they might find its complexity a hindrance at times. The more casual writers might be happier with Apple Writer II or SuperText II. Of these, SuperText uses what I perceive as a more conventional approach to editing, although either would be easy enough to adopt in short order.

Form letter capability is not included with SuperText II; however, a form letter/address book module is available (and how many of us need to generate form letters anyway?).

There are undoubtedly other packages out there that offer equally reliable basic editing, and may have special combinations of features that you need. But I don't think you can go too far wrong with one of these.

K-Byter

Crypto

An ATARI ${ }^{\oplus}$ K-Byter by Jerry Aamodt, Rochester, MI

When you RUN this program the computer will select a phrase from its repertoire, encode it, and display the encoded phrase twice on the screen. To decode it you enter the letter to be changed and, when prompted, the letter to be substituted. The first line displayed on the screen will be changed according to your command; the second line will remain in its original form for reference. When the decoding is completed correctly, the computer will select another phrase and continue.
A branch between lines 40 and 50 could be used to allow the input of a phrase (A\$) up to the DIMension you wish to set. You could also allow a coded phrase to be entered ($\mathrm{B} \$$), and then use the program to decode it - in which case the IF...THEN... in line 130 should be deleted or circumvented.
Of course, the DATA statements may be freely changed and supplemented. When changes are made, just make sure that the random number multiplier in line 40 (5 , in the listed program) is changed to equal the total number of phrases in the DATA lines.

```
5 REF CRYPTO by Jerry Aamodt
10 DIM A$(300), B$(300),C$(300), D$(1),E
$(1),A(26)
20 FOR I=1 T0 26:A(I)=-1:NEXT I:C=65:B
$="":FOR I=1 TO 26
30 B=INT(26 &NND (0)+1):IF A(B)<)-1 THEN
    30
40 A(B) =C:C=C+1:NEXT I:RESTORE 1000+IN
T(5*RND (0)):READ A$: $ = =a 
50 FOR I=1 TO LEN(A$):IF ASC(A$(I,I))
64 AND ASC(A$(I,I)<<91 THEN B$(I,I)=CH
RS(A/ASC(A$(I,I))-64))
60 NEXT I:?"\":C$=B%PDOSITION 2,6:? C
$:POSITION 2,15:? B$
100 POSIIION 2,20:? "ENTER LETtER to b
E CHANGED";:INPUT D$
110 POSITION 2,20;? "ENTER LETTER TO &
E TRIED ";:INPUT E$
120 FOR I=1 TO LEN(A):IF R$(I,I)=D$T
HEN C$(I,I)=E$
130 NEXT I:POSITION 2,6:? C %:IF C %=A$
THEN 20
140 60T0 100
1000 dATA NOM IS THE TIME FOR ALL gOOD
    MEN to come to the aid of their count
RY
1001 DATA YOU'vE COME A LONG HAY BABY
1002 DATA SING A SONG OF SIXPENCE POCK
ET FULL OF RYE
looz data I've not yet begun to fight
1004 DATA I'VE GOT THE WORLD ON A STRI
NG

by Frank Roberts

\section*{Renumbering for the ATARI \({ }^{(1)}\) is} a utility program for a 16 K ATARI \({ }^{\ominus} 800\) with disk drive. It is included as a bonus program on this month's ATARI \({ }^{\oplus}\) DV.

Have you ever allowed 'plenty"' of room between lines only to find later all the space had been used in earlier revisions? What does a programmer do when an insertion is needed between lines 1873 and 1874? Renumbers the program, right? After all, BASIC doesn't allow fractional increments and, alas, ATARI® \({ }^{\circledR}\) BASIC has no renumbering command.
At times like these (and I have encountered many), renumbering a program by hand is painfully necessary. The commercial ones I have seen on the market start at around \(\$ 20\). Well, relax. Here's a cheap and easy renumbering program for the ATARI \({ }^{\oplus}\).
The secret to it is in the LIST"D:" command. A program "SAVED" to the ATARI \({ }^{\text {® }}\) disk is written in a tokenized version (speedy and efficient for the com-
puter, incomprehensible to most humans), but a LISTed program is written to the disk exactly as it is entered: a BASIC listing containing all line numbers, variables and word commands.

By using the GET command, each element of the program can be examined in order of its listing. Before RUNning this program the program to be renumbered must be LISTed to the Disk, then the renumbering program LOADed into RAM and RUN. From there on it is all automatic.

The program is in two parts. Part one calls the target program from the disk and places the old numbers into a pseudo string array, then calculates the new line numbers in accordance with user instructions and places them into a corresponding string array (strings take a lot less RAM than numerical arrays).

The second part searches each line for GOTO, GOSUB, THEN and TRAP, and for the line number immediately following each, and matches it with the old destination number. The new number is then
located in the NU\$ and placed in the original line. The edited line is then filed in a temporary file ( \(\mathrm{D}: \mathrm{T}\) ).

When the program has been renumbered, the XIO commands purge the old listing and rename the newly-numbered version, at the user's request. Once this is done, the newly-renumbered program should be ENTERed and the SAVED to the disk before RUNning.

The program is slow, but effective; it is inexpensive and has proven itself indispensable to me. On long programs I just take a break with a cup of coffee while the ATARI \({ }^{( }\)is doing my "dirty work."

Numeric variables and calculated commands such as GOTO X or GOSUB X*1000 will need to be reset manually. The program allows easy access to such lines by recording the lines containing such reroute commands in string array (M\$). At the end of renumbering, these line are printed for the convenience of the programmer. The program also allows for optional printer listing of the renumbered version.


ATARI \({ }^{\circ}\)
by Mark Lewis Baldwin
Starbase 13 is an space game for the ATARI \({ }^{\oplus}\) 400/800 computer with a minmum of 16K RAM.

You are the commander of Starbase 13, the last defensive outpost between Earth and the dreaded alien invasion fleet. The longer you hold out, the more time Earth has to prepare its defenses, so you must stay and fight to the last humanoid.

In order to defend yourself, you have a giant laser cannon capable of penetrating any craft's force shield with a single shot. The joystick is used to change its direction while the trigger button activates firing. But beware, you only have a limited amount of energy. As you fire the cannon your shields weaken and the enemy gets closer.

The aliens have been well trained in attack and flee maneuvers. They will appear at the outer limits of your shields, fire their weapons and retreat. As they gain experience in attacking you, they remain visible for shorter periods of time, so be quick.

To start the game, push the trigger on your joystick controller and off you'll go. Your score is derived from the number of alien ships and missiles destroyed, plus the time you remain alive.

For a change of pace, insert another joystick controller in slot 2 and give it to a friend. Then push any console button and you will hear two beeps denoting the twoplayer mode. Push it again to return to the one-player mode (one beep). While in the two-player mode, player one controls the laser while player two fires. This can be rather tricky.

The following are a few comments about the program coding: The use of almost duplicate sets of coding several places in the program is not a result of poor programming. This was done to gain as much speed as possible out of a program with a very slow language. Also the explosion subroutine at 5300 might be of interest. It allows a long explosion to cycle while the rest of
the program can still continue to execute.

\section*{Variables}

AF: Type laser hit.
ALNP1: Position of alien 1. ALNP2: Position of alien 2.
ALNT1: Time to event, alien 1. ALNT2: Time to event, alien 2. ARNG: Current shield range. AT: Alien reaction time. BASE: Position of base laser cannon.
CONSOL: Address of START buttons.
E: Energy counter.
ESTP: Energy shield loss rate.
FF: Laser fired flag.
HF: Hit flag.
MI(n): Status of missile n.
MS: Missile speed.
P: Stick request.
R: Laser range.
S3: Explosion status.
SC: Score.
T: Time counter.
TSPD: Rate of change of AT.

\section*{ATARI \({ }^{\circ}\)}

* Atari BASIC \$
- 'starbase 13' \$
\$ AUTHOR: Mark Lewis Baldwin
* (c) 1982 SofttSide


5 DIM MI (4):CONSOL \(=53279\)
10 GRAPHICS 0:SETCOLOR \(2,6,1\) :SETCOLOR \(4,6,1: \cup B=\) PEEK (560) + PEEK \((561): 256+4\) : POK E UR-1,70:POKE UB \(+2,7:\) POKE UR \(+3,7\)
20 FOR I=4 TO 8: POKE UB+I, 6: NEXT I:POK E UB \(+22,65\) : POKE UB+23, PEEK (560): POKE U B+24, PEEK (561): SETCOLOR 3,8,6
30 POSITION 4,1:? \(6 ; "\) STARBASE 13 "
40 POKE 87,1:POSITION 2,7:? 6 ; "the la st stand!"
50 POKE 752,1:POKE 87,0:POSITION 5,14:
? "By Mark Lewis Baldwin"
60 IF PEEK (CONSOL) \(<>7\) THEN GOSUB 5500
70 IF STRIG \((0)\rangle 0\) THEN 60
100 GRAPHICS 23:SETCOLOR \(0,1,10:\) SETCOL OR \(1,6,8:\) SETCOLOR \(2,12,6:\) SETCOLOR 4,0 , 0 COLOR I:FOR I=1 TO 40
110 PLOT 159 \&RND ( 0 ), 95tRND ( 0 ) : NEXT I
120 PLOT 74,42: DRAHTO 76,42:PLOT 84,42 : DFAWTO 86,42
130 PLOT 74,43 : DRAWTO 76,43 : PLDT 84,43 : DRAHTO 86,43
140 PLOT 74, 44: DRANTO 86,44:FOR \(I=45 \mathrm{~T}\)
0 51: PLOT 76, I: DRAWTO 84, I: NEXT I: PLOT
74,52: DRAKTO 86,52
150 PLOT 74,53: DRAMTO 76,53:PLOT 84,53
: DRAWTO 86,53
160 PLOT 74,54:DRANTO 76,54:PLOT 84,54 : DRAMTO 86,54
170 FOR I=1 TO 4:MI(I)=0; NEXT I
180 AT \(=20\) : ALNT \(1=2+\) RND ( 0 ) \(\div 5\) : ALNP \(1=0\) : ALN \(\mathrm{T} 2=\mathrm{RND}(0) * A T: A L N P 2=0: M S=4\)
190 TSPD \(=20: 53=200:\) ESTP \(=5\) : ARNG \(=47: 5 C=0\) : POKE 77,0
200 SC=SC \(+1: 60 S U B 5310: T=T+1: I F T \geqslant T S P D\) THEN AT=AT-1: T=0; IF AT<1 THEN AT=1 205 60SUB 2000: IF FF=1 AND BASE〈>0 THE N 250
210 IF BASE=0 THEN 225
215 IF \(P=0\) OR \(P=\) BASE THEN 300
220 COLOR 0:GOSUB 3000: \(\mathrm{BASE}=0\) : \(60 T 0300\)
225 IF \(P=0\) THEN 300
230 COLOR 1: BASE=P:GOSUB 3000:60T0 300
\(250 \mathrm{FF}=2\) : \(\mathrm{E}=\mathrm{E}+1\) : IF E \(>\) ESTP THEN \(\mathrm{E}=0\) : RNGF \(=1\)
\(260 \mathrm{R}=47\); \(\mathrm{HF}=1\) : IF ABS (ALNP1) \(=\) BASE THEN \(H F=2: R=\) ARNG- \(3: A F=1: 60 T 0280\)
270 IF ABS (ALNP2) \(=\) BASE THEN \(H F=2\) : R=ARN


\section*{\(6-3: A F=2\)}

280 IF MI (BASE) 16 THEN HF \(=3\) : \(\mathrm{R}=\mathrm{MI}\) (BASE) 290 60SUB 1000:IF STRIG(TRIG)<>0 THEN FF \(=0\)
300 Q \(=\theta+1\) IF \(0>4\) THEN \(60 T 0400\)
310 IF MI (Q) \(=0\) THEN 200
315 MI (Q) \(=\) MI (Q) - MS: IF MI (Q) 2 THEN 150 0
320 ON a \(6070330,340,350,360\)
330 COLOR O: PLOT 80,48-MI (Q)-MS:COLOR
3:PLOT 80,48-MI ( 8 ): \(60 T 0200\)
340 COLOR O: PLOT 80+HI (Q) + M5, 48:COLOR
3:PLOT \(80+\mathrm{MI}(\mathrm{Q}), 48: 6010200\)
350 COLOR O:PLOT B0,48+HI (0) +MS: COLOR 3: PLOT 80,48+MI(Q):60T0 200
360 COLDR O: PLOT 80-MI(Q)-M5, 48:COLOR 3:PLOT 80-MI( Q ), 48:60T0 200
400 IF RNGF \(=1\) THEN IF ALNP1 \(=0\) AND ALNP \(2=0\) AND ARNG \(>10\) THEN ARNG=ARNG \(-2:\) RNGF \(=\) 0
410 IF \(Q>5\) THEN \(Q=0: 60 T 0600\)
500 ALNTI=ALNT1-1:IF ALNT1>0 THEN 200
530 IF ALNP1>0 THEN 570
540 IF ALNP1<0 THEN COLOR 0:G05UB 4000 \(: A L N P 1=0: A L N T 1=I N T(\) RND \((0) * A T)+1: 60 T 02\) 00
550 ALNP1 \(=\) INT (RND ( 0 ) \(\ddagger 4+1\) ): ALNT1=AT: IF
MI (ALNP1)<>O OR ALNP2=ALNP1 THEN ALNP1 \(=0\) : ALNT1 \(=0\) : \(60 T 0200\)
560 COLOR 3:G0SUB 4000: IF RND (0) \(\because\) AT>0. 5 THEN 200
\(570 \mathrm{MI}(A L N P 1)=A R N G-4: 605 U B\) 5100: ALNTI \(=\) AT: ALNP1=-ALNP1:COLOR 3:0N -ALNP1 GOTO \(700,710,720,730\)

600 ALNT2=ALNT2-1: IF ALNT2>0 THEN 200 630 IF ALNP2 70 THEN 670
640 IF ALNP2 \(<0\) THEN COLOR 0:GOSUB 4010
: ALNP2 \(=0\) : ALNT2 \(=\) INT (RND ( 0 ) \(: ~ A T\) ) \(+1:\) G0TO 2 00
650 ALNP2 \(=\) INT (RND (0) \(44+1\) ): ALNT2=AT: IF MI (ALNP2) \(<>0\) OR ALNP2=ABS (ALNP1) THEN ALNP2 \(=0\) : ALNT2 \(=0: 6070200\)
660 COLOR 3:GOSUB 4010: IF RND (0) tat>0. 5 THEN 200
\(570 \mathrm{MI}(\) ALNP2 \()=\) ARNG-4: 60 SUB \(5100: \mathrm{ALNT}_{2}=\) AT: ALNP2=-ALNP2:COLOR 3:ON -ALNP2 GOTO \(700,710,720,730\)
700 PLOT 80,52-ARNG:60TO 200
710 PLOT 76+ARNG, 48:60T0 200
720 PLOT 80,44+AFNG:GOTO 200
730 PLOT 84-ARNG, 48: 60T0 200
1000 COLOR 2:ON BASE \(60 T 0\) 1010,1020,10 30,1040
1010 PLOT 80,41: DRAMTO 80,48-R:GOSUB 5
000:COLOR O:PLOT 80,41: DRAWTO 80,48-R: 60701050
1020 PLOT 87,48: DRANTO 80+R,48:60SUB 5 000:COLOR 0:PLOT 87,48: DRAMTO 80+R,48: GOTO 1050
1030 PLOT 80,55: DRAHTO 80,48+R: 605UB 5 000: COLOR O:PLOT 80,55: DRAUTO 80,48+R: 60701050
1040 PLOT 73,48: DRANTO 80-R,48: 60SUB 5 000:COLOR 0: PLOT 73,48: DRANTO 80-R, 48

Check type of hit.
1050 ON HF \(60 T 0\) 1060, 1080, 1070

Missed.

1060 RETURN

Hit alien missile.
\(1070 \mathrm{MI}(\) BASE \()=0: S C=S C+5: 60 S U B 5200 ;\) RET URN

Hit alien ship.
1080 SETCOLOR 4,0,14:G0SUB 5300:COLOR 0: SC=SC +50
1090 IF AF \(=1\) THEN GOSUB 4000: SETCOLOR 4,0,0;ALNPI=0; ALNTI=AT:RETURN
1100 GOSUB 4010: SETCOLOR \(4,0,0:\) ALNP2 \(=0\) : ALNT2=AT:RETURN

Blow up base.

1500 SETCOLOR 1,0,14:COLOR 2:FOR I \(=0 \mathrm{~T}\) \(012: A=80-I: B=80+I: C=48-I: D=49+I: S E T C D\) LOR \(4,0,14 * B C: B C=1-B C:\) SOUND \(0,6,0, I+3\) 1510 SOUND \(1,21,0,1+3\) : SOUND \(2,27,0, I+3\) :SOLND \(3,40,0, I+3: P L D T\) A, C:DRAKTO B,C: DRAMTO B, D:DRAWTD A,D:DRAHTD A, C:NEXT I
1515 COLOR 0;FOR \(I=15\) TO 0 STEP \(-1: A=8\) \(0-I: B=80+I: C=48-I: D=48+I: 50 U N D \quad 0,2,0, I\) :SOUND \(1,15,0,1:\) SOUND \(2,20,0,1\)
1520 SOUND \(3 ; 30,0,1:\) PLOT A, C: DRAWTO B I: DRAWTO B, D: DRAWTO A, D:DRANTO A, C:FOR \(\mathrm{J}=1 \mathrm{TO} 20\); NEXT J;NEYT I

\section*{Display score.}

1530 GRAPHICS 18:POSITIOH 2,2:? \({ }^{2}\); "yo ur base was destroyed!!!":POSIT ION 2,5:? \#6; "YOUR SCORE HAS"
1540 POSITION 5,6:? \#6;SC:POSITION 1,8 :? \#6; "THE TOP SCORE HAS":POSITION 5,9 :? 6 ; SCT
1550 IF SC>SCT THEN SCT=SC
Check console to change game modes.

1560 IF PEEK (CONSOL) \(\rangle 7\) THEN GOSUB 550 0

Check to start a new game.
1570 IF STRIG(0)《>0 THEN 1560 \(158060 T 0100\)

Subroutine to check joystick.
2000 IF STRIG(TRIG) \(=0\) THEN 2100 \(2005 \mathrm{ST}=\mathrm{STICK}(0)\) : IF \(\mathrm{ST}=11\) THEN \(P=4: 60 \mathrm{~T}\) 02035
2010 IF \(\mathrm{ST}=14\) THEN \(P=1: 60 \mathrm{TO} 2035\)
2020 IF \(\mathrm{ST}=13\) THEN \(P=3\); 60 TO 2035
2030 IF ST \(=7\) THEN \(P=2: 60 T 02035\)
2035 IF FF \(=2\) THEN \(F F=0\)
2040 RETURN
2100 IF \(F F=0\) THEN \(F F=1\)
2110 RETURN
Subroutine to draw or erase laser cannon.

3000 ON BASE 60TO \(3010,3020,3030,3040\) 3010 PLOT 80,42: PLOT 79,43: DRAWTD 81, 4 3: RETURN
3020 PLOT 86,48: PLOT 85,47: DRAMTO 85,4 9: RETURN
3030 PLOT 80,54: PLOT 81,53: DRAHTO 79,5 3:RETURN
3040 PLOT 74,48: PLOT 75,49: DRAWTO 75,4 7:RETURN

Subroutine to draw or erase alien ships.
4000 ON ABS (ALNP1) \(60 T 04100,4200,4300\) ,4400
4010 DN ARS(ALNP2) \(60 T 0\) 4100, 4200, 4300 ,4400
4100 PLOT 78,48-ARNG:DRAHTO 82,48-ARNG :PLOT 82,49-ARNG: PLOT 80,49-ARN6:PLOT 78,49-ARNG:PLOT 80,50-ARNG
4110 PLOT 79,51-ARM6: DRAHTO 81,51-ARNG : RETURN
4200 PLOT \(80+\) ARNG, 46 : DRAHTO BOtARNG, 50
:PLOT 79+ARNG,50:PLOT 79+ARNG,48:PLOT 79+ARNG,46:PLDT 78+ARN6,48
4210 PLOT 77+ARNG, 47: DRAHTO 77+ARNG,49 : RETURN
4300 PLOT 78,48+ARNG: DRAWTO 82,48+ARNG : PLOT 78,47+ARN6: PLOT 80,47+ARNG:PLDT 82,47+ARNG: PLOT 80,46+ARNG
4310 PLOT 79,45+ARNG: DRANTO 81,45+ARNG : RETURN
4400 PLOT 80-ARNG,46:DRAWTO 80-ARNG, 50 : PLOT 81-ARNG, 50: PLOT 81-ARNG, 48: PLOT 81-ARNG, 45: PLOT 82-ARNG, 48
4410 PLOT 83-ARNG, 49:DRANTO 83-ARNG, 47 : RETURN

Laser fire sound routine.

5000 FOR II \(=10\) TO 30:SOUND \(0,11,10,10\); NEXT II: SOUND 0,0,0,0: RETURN

Missile fire sound routine.

5100 FOR II \(=15\) TO 0 STEP - \(1:\) SOUND 1,50 -21II, 10, II: NEXT II: SOUND \(0,0,0,0\) RETU RH
5200 SOUND 3, 200, 12; 14; FOR II \(=1\) TO 10: NEXT II: SOUND \(3,0,0,0:\) RETURN

Start explosion for explosion subroutine.
\(530053=40\)

Entry for continuation of the explosion.
\(531053=53+5\) : IF \(93>120\) THEN SOUND 2,0 , 0,0:RETURN
5320 SOUND \(2,53,8,(150-53) / 10\) : RETURN

Subroutine to change between player modes.

5500 TRIG=1-TRIG:FOR ITR=0 TO TRIG:SOU ND \(0,100,10,8:\) FOR \(I I=1\) TO 20:NEXT I: 5 OUND \(0,0,0,0\) : FOR II \(=1\) TO 20:NEXT II 5510 NEXT ITR:RETURN


\section*{ATAR1 \({ }^{\circ}\)}

when a different thought suddenly leaped into my mind: Since the ATARI \({ }^{\circledR}\) character set uses a map of 8 by 8 bits to form a character, why not use this same map to create characters on a printer as well as on the screen? In my Character Generator program in the October, 1981, issue of SoftSide, I had already done a lot of the work necessary to create such over-sized characters from the ATARI \({ }^{\circledR}\) 's internal character set. So by going one step further, I developed a version of Character Generator that would print the ATARI \({ }^{\circledR}\) character set, on its side, enlarged to any degree. The characters printed would be an exact duplicate of the characters as displayed on the screen. Taking this basic idea and adding many options has led to Banner Machine.

Banner Machine is designed with Character Generator in mind. The two work hand-in-hand. Note that the print quality of Banner Machine is totally dependent on the character set in memory. This is why I recommend that you use Character Generator first to define a new character set, and then merge this character set with Banner Machine. This has been done to some extent for those who subscribe to the media version of SoftSide; however, I still recommend that you design your own to suit your needs.

The program's operation is quite straightforward. Type "RUN", and after a small wait you will be asked for the character width of your printer. Normal responses are 40 , 80 , or 132 , but anything in between will work if necessary. If you choose 40 characters per line, most of the remaining options will be disabled. This is because at 40 CPL, only a few print options would produce legible print.

The height and width questions allow you to tailor the physical dimensions of the characters to your own taste. The text positioning question helps to make room for other things that you may want to add when the banner is done. You are also given the option of using any ASCII or keyboard character to do the actual printing. This is followed by a routine to allow you to set up your printer with special control codes if desired. Just enter the ASCII values of the control characters, one after the other, and conclude by entering " 999 ". The only option after this is to press the spacebar to stop printing. (The spacebar will only be acknowledged AFTER a character has finished printing. You may press the spacebar ahead of time and the ATARI \({ }^{@}\) will remember.)

Well, that about wraps it up. I hope you get as much use out of this program as I have. One final note: I sometimes have to remind myself that printer ribbons and print heads wear out quite fast when you go through 2000 sheets of printer paper. That's what happens when you foolishly ask someone if they would like a free computer-printed banner. I hope you don't have the same problem!

\section*{Variables}

A: Miscellaneous keyboard input.
B: Binary bit value counter.
BIT: Bit number (0-7) in a byte of character data.
BYTE: Byte number (0-7) of character set data. \(C\) : In line 50 , print density modifier. In line 370, number of character in message string currently being printed.

4975 Brookdale Dept. 06
Bloomfield Hills, Mich. 48013 (313) 645-2140


CH : Character height. Calculated width of a bit, in characters, when printed.
CH\$: Print characters. Defaults to a space for a zero bit in a normal character, a pound sign (\#) for a one bit in a normal character, and vice versa for inverse characters. \(\mathrm{CH}(7,7)\) : An 8 by 8 array of bit mapped character data. (See Take Apart: ATARI \({ }^{\circledR}\) Quest, October, 1981, SoftSide). Bit set \(=1\), bit reset \(=0\).
CHR: In line 370, ASCII value of character number " \(C\) '" in message. In line 380, adjusted value for character data search location. CPL: Character width of printer. 40,80 , or 132 characters per line (CPL).
CPOS: Memory location of the first byte in a letter's character set data.
CW: Character width. Calculated height of a bit, in lines, when printed.
FLAG: Inverse video flag. Used to reverse printing for an inverse character. Normal \(=0\), inverse \(=1\).
HEIGHT: Print height. A value from 1 to 9 ( 10 to 90 percent of full-size print.)
IN: Indent value. Number of spaces to indent printed characters based on print mode and print size descriptions. Preset for 40 CPL to 9 .
IN\$: Indent string. Filled with spaces and used with IN to produce a printed indentation.
LC: Last character printed. Allows program to skip calculation of bits if next character to print is the same as the last one. Inverse bit data is considered the same as normal.
LENGTH: Print length. A value from 1 to 9 ( 10 to 90 percent of full-size print).

MSG\$: Holds entire banner message. Dimensioned to the amount of free memory divided by four, to allow a large message.
PM: Print mode. Text positioning information. Except for line 180, flush left \(=0\), centered \(=1\), flush right \(=2\).
X, Y: Miscellaneous FOR/NEXT loops.
Z: Temporary storage for character set data bytes.

ATARI \({ }^{\circ}\)

```

* ATARI FASIC \$
* 'ATARI Ganner Machine" \$
* Author: Alan d, Zett 本
\$ (c) 1902, SoftSide \$

```


Print introduction．Turn on cursor．
Special Note：The right－hand brace used throughout the program is our printer＇s representation of an ESC SHIFT CLEAR character．This appears on the screen as a left－bending－up． arrow．
\(10 ?\)＂ITHE ATARI BANNER MACHINE＂：？＂\＆ c）1982，ALAN J．ZEIT＂：POKE 752．0

Clear variables，DIMension strings and arrays，open device number one for keyboard input，and assign strings．

20 CLR ：DIM CH \((7,7)\) ，CH \(\$(3)\) ， \(\mathrm{IN} \$(172)\) ，MS G（INT（FRE（0）／4））：OPEN \(1,4,0\) ，＂K＂：？：？ ：CHE＂\＃＂ \(\operatorname{IN} \$(132)="\)＂

Set IN§ to all blanks．
30 IN \(\$(1,1)=" \mathrm{n}\) ：IN \(\$(2)=\operatorname{IN} \$(1)\)
Get printer width into CPL．
100 ？＂INPUT PRINTER LINE LENGTH：＂：？＂ （40，BO，OR 132 CFL）＂：IINPUT CFL：？

If CPL \(=40\) then preset HEIGHT and LENGTH to 9 and skip to line 140.

110 IF \(\mathrm{CFL}=40\) THEN HEIGHT \(=9:\) LENGTH \(=9: G\) OTO 140

Get print height into HEIGHT．
120 ？＂INFUT GANNER HEIGHT（1 Tin 9？＂： ：INFUT HEIGHT：？：IF HEIGHT！1 THEN 120

Get print length into LENGTH．
130？＂INPUT BANNER LENGTH（1 TO 9）＂： ：INFUT LENGTH：？：IF LENGTH：1 THEN 130

Compute print line width in characters for each bit，and assign it to CH ．
\(140 \mathrm{CH}=\)（CPL （HEIGHT／10））／8
Compute print density adjusting ratio and store in \(\mathbf{C}\) ．
150 \(C=10+7 *(C P L>B(1): C=5 / C\)
Compute number of lines to print for each bit，and assign to CW．
\(160 \mathrm{CH}=(\mathrm{CFL}\)（LENGTH／10））／8） CC
If CPL \(=40\) then preset text position to centered．


170 IF CPL \(=40\) THEN FM＝2：GOTO 190
Get text position print mode into PM．
180 ？＂IAPUT TEXT FOSITION：（1＝FLUSH L
EFT， \(2=\) CENTERED， \(3=F L U S H\) RIGHT）＂：I NFUT FM：？

Adjust PM for computer＇s use in calculations．
\(190 \mathrm{PM}=\mathrm{PM}-1\)
Check for invalid print modes．
200 IF FHKO OR FM 2 THEN 190
Compute indent based on character height，printer width，and text position．

210 \(\mathrm{IN}=(\mathrm{CPL} / 2-\mathrm{INT}(\mathrm{CH}) * 4) * P M-1 *(P M=2): F\) OKE 752，1

Print second menu heading．
220 ？＂IPPECIAL PRINT INSTRUCTIONS：＂
Prompt for optional printing with a keyboard character．

230？？？＂DO YOU WISH TO PRINT THE EAN NER WITH A KEYBQARD CHARACTER？（Y／N）＂ ：：GET H：A：？
If reply was＂\(N\)＂then 260.
240 IF \(A=78\) THEN 260
Get keyboard character and modify CH\＄for printing．Turn off cursor and jump to line 310.
250 ？：？＂PRESS CHARCTER NOW ．．．＂：：G
ET \(\# 1, A: C H \$(2,2)=\) CHR \(\$(A): 60 T 0 ~ \$ 10\)

Prompt for option of printing with an ASCII character．

260 ？：？＂DO YOU WISH TO PRINT THE BAN NER WITH AN ASCII CHARACTER？（Y／N）：： GET \＄1，A：？

If reply was＂ N ＂then 290.
270 IF \(\mathrm{A}=78\) THEN 290
Get ASCII code，convert to character and modify CH\＄for printing．Turn off cursor and jump to 310.

280 FOKE 752，0：？：？＂ENTER ASCII CODE ＂：INPUT A：CH \(\$(2,2)=\) CHF \(\$(A)\) ：POKE 752,1 \(: 6070310\)

Check if computer＇s default print character is sufficient．If reply was＂ N ＂ then loop back until print character is established．

290 ？：？＂I＇LL USE MY OWN THEN：OK？＂：： GET \＃1，A：？：IF A＝78 THEN 220

Set CH\＄to default print character．
300 CH \(\{2,2\}=" \$ "\)
Print third menu heading．
\(310 ?\)＂引SPECIAL FRINT INSTRUCTIONS：＂
Prompt for option of sending control codes to printer prior to printing．

320 ？：？＂DO YOU HISH TO SEND ANY SFEC
IAL CODES TO THE FRINTER BEFORE I STAF
T？（V／N）＂：GET \＃1，A
If reply was＂\(N\)＂then 360 ．

\section*{ATAR \({ }^{\circ}\)}

\section*{330 IF \(A=78\) THEN 360}

Turn on cursor and print escape message.

340 POKE 752,0:? :? "ENTER 999 TO END . . .":?

Get printer control code. Check whether it corresponds to the menu's escape code; if not, print to printer and loop for more.

350 INPUT A:IF Aく>999 THEN LPRINT CHR \(\$\) (A): \(: 6070350\)

Print fourth menu heading, turn on cursor, and input message in MSGS. Turn off cursor and set last character printed to 999.

360 ? "JENTER BANHER MESSAGE: ": POSITIO N 2.11:? "MESSAGE": POKE 752,0; INPUT M S6\$:POKE 752,1:LC=799

Set up "C" to loop through characters in message (MSG\$). Get ASCII value of character "C" into CHR and reset inverse video flag. Check if character is inverse; if so, set flag and adjust the value of CHR.

370 FOR \(\mathrm{C}=1\) TO LEN(MS6):CHR=ASC:MSG ( C.C) : FLAG \(=0\) : IF CHR 127 THEN FLAG=1:CH \(\mathrm{F}=\mathrm{CHR}-128\)

Modify character value according to the mixed-up way that ROM holds character set data.

380 IF CHR 96 THEN CHR \(=\) CHF- 32 (CHR 31 ) +641(CHR(32)

Get the memory position of the first byte of charcter data into CPOS.

390 CPOS \(=\) CHR \(88+(\) PEEK \((756): 256)\)

Print printer processing display heading, total banner message, and portion of message printed.

400 ? " 3 YOUR BANNER MESSAEE: ": ? :? MSG 4:? :? "PART PRINTED SD FAR: : ? ? : MSG \(\$(1, \mathrm{C})\)

Print expanded visual display heading and check if the last character is the same as the next one. If so, skip bit processing routine.

410 ? : ? "MORKING ON LETTER: : ? : IF LC \(=\) CHR THEN 490

Bit processing routine. Takes all bytes of a letter's character data and breaks them down into 64 bits which are then bit mapped and stored in an 8 by 8 array in \(\mathrm{CH}(\mathrm{n}, \mathrm{n})\).

420 FOR \(X=0\) TO 7: \(Y=-1: B=256\)
430 I=PEEK (CPOS \(+X\) )
\(440 \mathrm{~B}=\mathrm{B} / 2: \mathrm{Y}=\mathrm{Y}+1\) : IF \(\gamma>7\) THEN 480
450 IF I-B<O THEN CH \((X, Y)=1: 60 T 0470\)
460 IF \(I-B)=0\) THEN \(C H(X, Y)=2: I=2-B\)
\(47060 T 0440\)
480 NEXT X

Plot character bit map with normal and inverse spaces to produce an expanded form of the character currently under processing. Also reset ATARI \({ }^{\oplus}\) 's attract mode flag.

490 FOR \(X=0\) TO 7:FOR \(Y=0\) TO 7 500 IF FLAG \(=0\) AND \(\mathrm{CH}(X, Y)=1\) OR \(\mathrm{CH}(X, Y)\) \(=2\) AND FLAG=1 THEN ? " ";
510 If FLAG \(=0\) AND \(\mathrm{CH}(x, y)=2\) DR \(\mathrm{CH}(x, y)\)
\(=1\) AND FLAG=1 THEN ?" ";
520 NEXT \(Y\) :? : NEXT X: POKE 77,0
Prompt for halting of banner print, and erase any keyboard input by nulling out the "last-key-pressed" memory location.

530 POSITION 5,23:? "PRESS SFACEBAR TO STOP PRINTING"::POKE 764,255

Set BIT to cycle through all eight bits of character data. Set up \(X\) to print the correct number of lines for a given character width.

540 FOR BIT=0 TO 7:FOR \(x=1\) TO CH
If flush left was not chosen, print the leading indent.

550 IF PM \(>0\) THEN LPRINT IN \((1\), IN \()\);

Set BYTE to cycle through all eight bytes of character data.

\section*{560 FOR BYTE=7 TO O STEP -1}

Set up Y to print the correct number of characters for a given character height.

\section*{570 FQR \(Y=1\) TO CH}

Print proper character for any bit and flag combination.

580 LPRINT CH \(\$(\mathrm{CH}\) (RYTE, BIT \()+\) FLAE, CH(BY TE, BIT) + FLAG \()\) : : NEXT Y

Do all bytes, advance paper to next line and finish character.

590 NEXT BYTE:LFRINT : NEXT X:NEXT BIT
If no key has been pressed, then jump to line 630.

600 IF PEEK \((764)=255\) THEN 630

Otherwise get the character into A and erase character from memory.

\section*{610 GET \#1, A:FOKE 764,255}

If the key was the spacebar, then jump to line 640.

\section*{620 IF \(\mathrm{A}=32\) THEN 640}

Continue printing banner with the next letter in MSGs.

\section*{630 LC=CHR: NEXT C:G0TO 660}

Make sure operator wants to stop printing. If reply is " \(\gamma\) " then POP the "C" FOR/NEXT variable and jump to line 670.

\section*{640? "JARE YOU SURE YOU WANT TO QUIT? (Y/N) ": GET \#1, A: IF \(A=89\) THEN POP :GOT 0670}

Otherwise, jump to line 630.

6506070630
Print completion message.
660 ? "AALL DONE!"
Prompt for another banner.
```

670 ? :? "WANT TO MAKE ANOTHER? (V/N)"
:GET \$1,A

```

If reply was " \(N\) " then say goodbye, turn on cursor and END program.
\[
\begin{aligned}
& \text { 680 IF A=78 THEN ? "DOK! RYE!": POKE } 75 \\
& \text { 2, Q: END } \\
& \text { Check if next banner is to use the } \\
& \text { same parameters as the last. If } \\
& \text { reply is "N", then rerun program. }
\end{aligned}
\]

\section*{690 ? :? "USE SAME PARAMETERS? (Y/N)"; :GET 1, A: IF A=78 THEN RUN}

Otherwise, jump to \(\mathbf{3 6 0}\) for next message.

700 60T0 360

\title{
Word Processing Programs for the ATARI
}

\author{
A review by Sheldon Leemon
}

\section*{Text Wizard}
from Datasoft, Inc. Requires 32K. Suggested retail price: \(\$ 99.95\).

\section*{Letter Perfect}
from LKJ Enterprises. Requires \(24 K\). Suggested retail price; \(\$ 149.95\).

\section*{Word Processor}
from Atari, Inc. Requires 48 K . Suggested retail price: \(\$ 149.95\).

One of the nice things about owning a personal computer is that new applications always seem to be turning up. An application which seems to have gained sudden recognition among microcomputer owners is word processing.

Word processing software allows a person to prepare a document by typing the words onto the computer display screen, making all editing corrections on the screen, and then using a printer to print the document on paper. Regular computer disk storage is used for preserving the document on file for later use.

This method of document preparation provides a dramatic increase in ease and efficiency over the old method of composing a rough draft at the typewriter, proofreading the draft, and then typing the finished copy over again. Who in his right mind would opt for repeated entry of every keystroke necessary to prepare a document, when offered the alternative of typing the document once, and entering only those changes which are necessary?

Part of the reason for the sudden rise in interest in word processing software is the recent appearance of relatively inexpensive high quality dot-matrix printers. The popularity of printers like the Atari 850/Centronics 737 and Epson MX-80 is such that although ATARI \({ }^{\oplus}\) computers are being marketed primarily as consumer products, there are now three popular programs for pursuing this more serious application on the ATARI \({ }^{\circledR}\). These programs are Text Wizard, Letter

Perfect, and Atari's own Word Processor. Each program will work with the two brands of printers mentioned above, although certain features are implemented for only one printer or the other, but not both.

All of these programs have in common two major functions. The first is to allow the user to set down thoughts in words, and then to make changes for the purpose of editing content, as well as correcting grammar and spelling. The second function is to establish the format in which those words will appear on paper. This includes such matters as margin settings, spacing, and indentation. Other functions include sav-
"The method of choosing which of the major or minor program functions will be performed varies significantly between these programs.'
ing text to a disk file, and loading in a previously-prepared text. In general, Text Wizard and Letter Perfect handle these tasks in a similar fashion, while a somewhat different approach is taken by Word Processor.

The method of choosing which of the major or minor program functions will be performed varies significantly between these programs. Text Wizard is completely command driven. This means that it does not prompt the user with menu selections to change functions, but rather requires that the user enter a certain combination of keystrokes to make the change. Word Processor, at the other extreme, has
several menu levels that help guide the user through every decision. Letter Perfect takes the intermediate position, offering one main menu that allows switching between major functions, but using keystroke commands for editing and print formatting functions.

Which approach is preferable is mostly a matter of personal taste. Some people like the convenience of menu prompts, as opposed to having to learn a number of command sequences. Others find that once they have have used the program for a while, the menu prompts become irritating, and prefer to learn a few commands which will get them instant results.

\section*{Screen Display}

Another example which illustrates the differences between the systems employed in the various programs is the way in which the screen display is handled for text editing. The problem presented is that the ATARI \({ }^{\circledR}\) screen display is limited to 40 characters per line, while the printed line may contain up to 132 condensed-print characters.

In the case of Text Wizard and Letter Perfect, the approach is to let the computer worry about where to start a new line, and to concentrate on keeping the screen display readable, rather that having it correspond exactly to what is being printed. To that end, both of these programs use a wrap-around technique, which consists of moving any word that would be split at the end of a line to the beginning of the next line.

Word Processor, on the other hand, uses a 'moving window" approach. This looks on the screen as a window on a larger area that includes the entire line of print. A row and column marker in the upper right hand corners lets you know the current position of the cursor. When you get past 40 columns on the screen, the display scrolls to the left, simulating movement of the

\title{
K-Byters
} ATARI \({ }^{\circ}\)

\section*{ANOTHER PROGRAMMING CHALLENGE}

Some time ago SoftSide began inviting its readers to submit "One Liners" - self-contained singleline programs for the TRS-80 \({ }^{\circ}\), Apple, or ATARI \({ }^{\circledR}\) which would provide a continuously changing graphics display. The response has been excellent, and we're still looking for more submissions.

Now we have a new challenge for you as well: "K-Byters." A K-Byter is a BASIC program which fits into \(1 \mathrm{~K}(1024)\) bytes of program memory. There aren't any restrictions on the nature of the program, other than its size. It can be a graphics display, a game, a mini-adventure, or anything your imagination and programming skills can create.

Note that the program does not have to RUN in 1K of memory; it can use as much RAM for arrays, strings, graphics mapping, etc., as you need. We'd prefer that it be able to run in a 16 K system, but this is not an absolute limit.

Here then are the official rules:
1. The program must be written for the Apple, TRS-80 \({ }^{\circ}\), or ATARI \({ }^{\oplus}\), entirely in BASIC (although it may create and call Machine Language routines).
2. The program must occupy no more than 1024 bytes of memory before running.
3. The program must be submitted on tape or disk, accompanied by your name, address, phone number, and a brief written description of its operation.
4. The tape or disk will be returned only if accompanied by a self-addressed envelope with adequate postage AFFIXED (do not send money).
5. Winners will have their programs published in SoftSide and will receive a \(\$ 10\) software certificate for their programming excellence!

Send submissions to:

\footnotetext{
K-Byters, c/o SoftSide
6 South Street
Milford, NH 03055
}
window to the right. This allows you to see the position of each word on the screen as it will actually appear on the printed page.

Obviously, such an approach will be advantageous when it is important to know the exact layout of the page before it is printed. One such case would be where the user is trying to set up information in a columnar format. This task is difficult for those using Letter Perfect, and even more difficult for users of Text Wizard, as that program does not even have tab stops which can be set by the user.

However, the window concept does have its drawbacks, as only a portion of each sentence is displayed on screen at a time. For those applications where the exact layout is not critical, the ability to reread previous sentences without having to scroll the screen may be more valuable than being able to determine the exact position of each word on the page.

\section*{Text Editing}

The actual process of text editing is very similar to the method of screen editing used when writing programs on the ATARI \({ }^{\oplus}\). If there is something on screen which you wish to change, you use the editing keys to move the cursor to the correct spot, to insert lines or spaces, delete lines or spaces, or just type over the old text.

While normal ATARI \({ }^{\oplus}\) cursor placement is handled by the arrow keys, these programs feature other commands to help you get to the spot you wish to edit more quickly. All have commands that allow you to go to the top of the text or the bottom of the text. Letter Perfect and Word Processor also have commands that let you go to the beginning of the line or the end of the line. Each program allows you to scroll the text up or down, although the means of scrolling up is rather clumsily implemented in Letter Perfect.

Letter Perfect and Word Processor allow you to delete lines or insert blank lines much as is done in regular ATARI \({ }^{\oplus}\) editing. When you move the text around this way in Letter Perfect, the screen wrap-around is not preserved, and
must be restored with a separate command.
The method of inserting text is somewhat different in Text Wizard. Instead of inserting fixed-length blank lines, it has an Insert mode, which allows you to move the cursor to a spot and add text in that spot while the rest of the text is scrolled down. Screen wrap-around is preserved at all times, which keeps the appearance neat, but which makes some editing features work a bit slower than they normally would.

The Insert mode is an extremely convenient feature, and is also found on Word Processor, but not Letter Perfect. Word Processor also has a number of different options for deleting a specific word at a time, part of a line, an entire line, or a block of lines. Unlike the other two programs, it will allow you to restore a line that has been edited, back to its original state.

\section*{Advanced Editing Features}

Advanced editing features are available in these programs which allow moving around and duplicating blocks of text, much like "cut and paste" editing on paper, only without the mess. This is accomplished by inserting a designated block of text into a buffer, and then transferring the contents of the buffer to a specific area of text. The buffer features of Letter Perfect and the Word Processor appear to be a bit more flexible than Text Wizard, which allows simple moves of short blocks of text rather easily, but does not allow more sophisticated operations such as combining blocks of text in a buffer, or holding text in the buffer for long periods of time.
Another advanced function that is supported in all three programs is the Search function, which moves the cursor to the each place in the text where a designated word or phrase occurs. This can be combined with an even more powerful Replace function, which will replace each occurrence of the word or phrase with another word or phrase. Such a function can be very valuable for bad spellers, for example, who consistently misspell the same word. In Letter Perfect and Text Wizard,
the user must verify each change (the cursor will move to the word, and you have to enter a keystroke before it will be replaced). Word Processor offers the choice of Replace upon verification, or without verification.

\section*{Formatting the Printout}

The second major function which the user will perform with these programs is setting up the format in which the document is to be printed. Both Letter Perfect and Text Wizard have default formats which allow the document to be printed neatly without special effort by the user. The programs will automatically set margins, rightjustify (insert spaces within the line so that each line ends exactly at the right margin), and will give a formfeed command to the printer at the end of the page, to advance the paper to the top of the next sheet.

Of course, there are many options that can be selected in place of the default values. This selection is accomplished by the use of what are called "format lines." These are lines of characters imbedded in the body of the text which give commands to the printer. Adjustments can be made such as setting left, right, top, and bottom margins; line spacing; turning off justification; or using one of the printer's alternate character fonts. These commands can be given as text is entered, or can be added afterward, allowing, for example, changing margins to allow for indentation of certain paragraphs.

In Text Wizard, right and left margins are set in dot widths, instead of character widths, which allows for very fine adjustment. Also, unlike the other two, Text Wizard permits line spacing to be set by half-spaces. One of the nice extended functions available in all three programs is the ability to designate page headings, as well as automatic page numbering at either the top or bottom of the sheet.

Print formatting is done a little differently on Word Processor. A menu option allows setting of margins, line spacing, etc. This can be done before entering text, and the result will be that the screen
display will be an exact representation of how the printed page will look. If you later decide to change the format, a menu option allows you to change the whole document, or any page. Since files are saved as a series of separate pages, there are also depagination and pagination commands to change the allocation of text on each page. This allows extremely flexible layout options, but takes a little more effort than the other systems, which leave paging and layout to the computer.

Finally, there is the actual printing. Letter Perfect has the most flexible system. It allows you to print single or multiple copies of any page or combination of pages. While Word Processor also allows these options, you cannot print a document straight through; the program pauses at the end of every page and prompts you to advance the paper to the top of the next sheet and type a carriage return. Text Wizard only allows you to print straight through from the beginning or middle of text to the end, and only will let you print one copy at a time.

\section*{Documentation}

There are some other factors, not related to the software itself, that potential purchasers of these programs will want to consider. The first is the documentation. Word Processor's is by far the most elaborate. It consists of an instruction manual, a reference guide, system hook-up instructions, an audio instruction tape, and a diskette of sample material, all in a colorful vinyl binder. The manual assumes that you've never seen a computer, and takes you step by step from plugging it in to putting the paper in the printer. The others are on a less ambitious scale, but are clearly written and easy to follow.

One aspect of Letter Perfect's manual that is somewhat disappointing is that it contains a fairly large number of typographical errors. Although the program itself has been revised, the body of the manual remains the same as for the earlier version. A single update sheet at the beginning explains the
new features which are available.
Text Wizard's manual takes the user through a sample editing session step by step. This approach is very reassuring to the novice, and is a fine teaching tool. However, the manual does leave some questions unanswered. For example, it doesn't fully explain the function and proper structure of the text-formatting lines. Of all of the complaints I have heard about Text Wizard, most have involved an inability to use one or more printing functions as described, and most of these failures resulted from improper placement of the commands in the textformatting lines.

\section*{Interfacing Programs}

Another area of interest to the user is interfacing this program with

duplicating service
307 West Main Street
Maple Shade, NJ 08052
(609) 667-1667
- AMP "Data-sette" blank cassettes for digital use
- Cassette Storage Boxes
- Cassette Labels Custom printing \& blank
- Custom Record Album production from your tapes
- Stereo and Spoken Word cassette duplication

Call or write to:

for more Information.

All cassette work at
AMP R. \& D. is custom work to fit your needs.

\section*{PROGRAM FEATURES}
\begin{tabular}{|c|c|c|c|}
\hline & Word Processor & Text Wizard & Letter Perfect \\
\hline Cursor control (one space up, down, right, left, begin line, end line, last page, next page, top of text, bottom of text & XXX & all but begin/ end line & XXX \\
\hline Scrolling text window & XXX & & \\
\hline Delete word & XXX & & \\
\hline Restore deleted text & XXX & & \\
\hline Auto-insert & XXX & XXX & \\
\hline Move text & XXX & XXX & XXX \\
\hline Duplicate text & XXX & XXX & XXX \\
\hline String search & XXX & XXX & XXX \\
\hline Search and Replace & XXX & on verify only & on verify only \\
\hline Print margin control (top, bottom right, left) & XXX & XXX & XXX \\
\hline Subscripts, Superscripts, & 825 & 825 & MX-80 + Graftrax \\
\hline \multicolumn{4}{|l|}{Underlining} \\
\hline Right justify & not PS set & XXX & XXX \\
\hline Double-column printing & 825 & 825 & 825 \\
\hline Headers and footers & headers & XXX & XXX \\
\hline Page numbering & XXX & XXX & XXX \\
\hline Database merge & & & XXX \\
\hline Output control codes & XXX & & XXX \\
\hline Print selected pages & XXX & & XXX \\
\hline Print multiple-page copies & XXX & & XXX \\
\hline
\end{tabular}
others. For example, Letter Perfect has mail-merge capabilities with its sister program, Data Perfect. This means that mailing lists or other databases created with Data Perfect can be merged with Letter Perfect form letters, so that the computer will literally fill in the blanks in these form letters with data provided by files created with the database.
Datasoft is working on a revised Text Wizard that will allow merger with files created by File Manager 800, an excellent database program by Synapse Software. This revised version, which should be available in this month or shortly after, will also add some features that take advantage of the Graftrax ROMs for the Epson printers, such as underlining and subscripting. These features are already implemented in the revised version of Letter Perfect.

Word Processor has no capabilities for merging data from separate data files into text.
In the same vein, the prospective user should consider that Letter Perfect files are not DOS compatible. This means that it cannot handle some of the extended applications that the other programs permit, such as using the Search and Replace function in editing BASIC programs, or preparing text files for uploading via modem to a computer bulletin board.
From the detailed comparisons given above, a general picture begins to emerge of the differences between these programs. Word Processor is very menu-oriented and page-oriented. It allows the most versatility and accuracy in page layout, at the expense of some convenience. Although it is the only program of the three that will not
right-justify the proportional type of the Atari \(850 /\) Centronics 737, this is offset to some extent by the accurate representation of page layouts which allows the user to hyphenate words as if using a typewriter. The biggest failing of Word Processor may be its inability to type a multipage document straight through.

Letter Perfect has nice print options, allows the user to output command codes directly to the printer, but is somewhat lacking in its userinterface. For example, the program title that always occupies the top line of the editing screen is distracting. And the multitude of control commands are a little difficult to remember. Its files not being DOS compatible precludes its use for some functons, as outlined above.

Text Wizard, although slightly less versatile than the other two, is extremely easy to use. The command codes are well thought out, and are logical extensions of the computer's own system of editing commands. Such features as the screen border changing colors to remind you when you are in Insert mode, or when you are running out of screen memory, lend a nice touch. Its features are sufficiently powerful for most applications, and its ease of use would probably make it the right choice for applications that did not require special page layouts or multiple column printing. The fact that it costs less than the others doesn't hurt, either.

While the above programs pose no serious threat to the sophisticated and expensive standalone word processors used by businesses, they are all good enough to make you want to throw away your typewriter. Any ATARI \({ }^{\ominus}\) owner who has an 80 -column printer should seriously consider the purchase of one of these programs as a relatively painless way of greatly expanding the utility of his or her system. You might as well become familiar with word processing now, because as the price-to-performance ratio of computers and printers continues to rise, and software packages such as these add features to rival the expensive stand-alone systems, there is every possibility that microcomputer word processing systems will replace the typewriter entirely.

\section*{K-Byter}

\section*{Micro Adventure}

A TRS-80 \({ }^{\oplus}\) K-Byter by J. Joseph Felten, Corydon, IN
The goal of this real-time graphics adventure is quite simple: to survive. You are being pursued through a dungeon by a deadly dragon, and you must move yourself around using the arrow keys. Among the many obstacles which are scattered around the screen, there are treasures which you are trying to collect along the way. When you've picked up as many of these as you dare, you attempt to make your escape through the door of the dungeon.
You are displayed on the screen as an " O ", the dragon as a "\#". Obstacles are shown as irregular graphics blocks, and the door to safety is a solid rectangular block near the top center of the screen. An " \(=\) " shows the location of a staircase leading downward. (The obstacles increase as you descend.) In addition, one of the obstacles will occasionally change into a magical sword (shown by an arrow) which is capable of killing the dragon.
The author wishes to acknowledge Steve Geswein as the author of the original Pet version of this adventure.

1 'hicro adventure
by J. J. FELTEN
5 CLS: INPUT"LEVEL"; 5
10 CLS: \(P=15360\) : \(A=64:\) FORP \(=1\) TORND ( 5120 ) ; POKERND (1023) \(+\mathrm{P}, 173\); MEXT: \(P\) OKE15456, 188: \(X=2: Y=32 ; 4=\operatorname{RND}(15): l=R N D(63): P 0 K E P+A I X+Y, 79\) 20 FORI=1T05: POKERND (703) +15680 , 42: MEXT

30 POKERND (960) \(+15423,61\) : \(50=\) RND \((960)+15423\) : POKE50, 93 : POKEP + A \(4 \mathrm{H}+2\) , 35
\(100 \mathrm{~J}=\) PEEK ( 14400 ): IFJ \(=0\) THEN200
105 IFRND (0) <. O5ANDH=OTHENPOKESO,93
\(110 \mathrm{U}=0\) : \(\mathrm{N}=-1\) : IFRND ( 0 ) (. 05 THEN200
115 IFJANDA, \(N=\gamma+1\) ELSEIFJAND \(32 N=\gamma-1\) ELSEIFJAND \(16 N=\chi+1: U=1\) ELSEIFJAN DBN \(=\mathrm{X}-1: \mathrm{U}=1\)
135 IFUANDNKOTHENN=0
140 IFUANDN) 15 THENN \(=15\)
\(145 Q=P+A X X+N:\) IFUTHEN \(A=P+A Z N+Y\)
147 E=PEEK(Q)
150 IFE \(=42 \mathrm{~T}=\mathrm{T}+1\) ELSEIFE=188THEN1000ELSEIFE=173THEN200ELSEIFE=93H=
1ELSEIFE=35THENI100ELSEIFE=61S=S+1: \(\mathrm{H}=0\) : \(\mathrm{h}=0\) : 60 T010
165 POKEP \(+A X X+Y\), 32 : POKED, 79 : IFUTHENX \(=N: E L S E Y=N\)
180 IF \(Y<1\) THEN \(X=X-1: Y=Y+A\)
190 IFY \(>A\) THEN \(X=X+1: Y=Y-A\)
200 IFHTHENIOO
210 IFRND (O)K. 3 THENPOKESO, 173
220 IFRND ( 0 ) <. 1 THEN100
230 XI \(=H-X: Y 1=1-Y: I F X 1=O A N D Y 1=0 T H E N 1100\)
240 IFABS (XI) \()\) ABS (Y1) THENN= \(=\bar{W}-56 N(X 1): U=1: E L S E N=L-S 6 N(Y 1): U=0\)
250 POKEP+ALH +2 , 32 : IFUTHENW=N: \(60 T 0290\)
\(270 \mathrm{l}=\mathrm{N}\)
280 IFl<1THENH= \(\mathrm{H}-1: 1=1+\mathrm{A}\)
285 IFl \(>A\) THEN \(=\mathrm{W}+1: Z=I-A\)
290 POKEP \(+A=4+2,35: 60 T 0100\)
1000 PRINTA19, "YOU WIN WITH"T"TREASURES": END
1100 IFM=OTHEN 1150
1110 IFRND (0) \()\).9THENPRINT224, "THE SMORD BROKE":PRINT: \(60 T 01150\)
1130 POKEP \(+A t H+1,33:\) POKEP \(+A=W+1,32: H=1: 60 T 0100\)

by Stephen Milliken
Screen Print is a routine that works with Level II, Disk BASIC, TRSDOS, NEWDOS and probably any other TRS\(80^{\circledR}\) operating system. It is included as a bonus program on this month's TRS-80 \({ }^{\circledR}\) DV.

One of the first things most people look for when they get a printer is some method to enable them to get a screen listing. Some printer manuals give simple BASIC routines to do this, but they are slow and cumbersome, having to be included in a BASIC program.

NEWDOS, with its JKL function, satisfies this need somewhat, but even here things don't seem right. As it is, the JKL function does not support graphics, and although this can be corrected with various ZAPS or POKES, there is still something wrong. The "something wrong'" is that 16 lines on the printer just don't look like 16
lines on the screen. The aspect ratio, the ratio of a picture's width to its height, is not right.
Here is a BASIC program that will correct this problem by POKEing a relocatable Machine Language program into memory which will give you a real-time "extended graphics" screen print function. This function, activated by pressing the SHIFT and down-arrow keys, will print the contents of the screen on 32 printer lines. This corrects the aspect ratio and the printer listing is now approximately the same size as the screen.

This is made possible by using a technique I call "extended graphics." What this means is that for each screen line, two printer lines are made. The first line includes all non-graphics characters and the top of the "extended graphics." The second line contains just the bottom of the "extended graphics." Try this
function with any sketch or graphics program (i.e., Old Glory, SoftSide, June, 1981), and you will appreciate it.

The BASIC program when RUN, will check MEM SIZE and adjust it to accommodate the Machine Language code. The Machine Language code is relocated using the address figured out above as a base and is POKEd into the nowprotected memory. Because of this, no MEM SIZE has to be set unless some other code is to be used also (i.e., the sound routine in "COMMANDing BASIC", SoftSide, November, 1981). The one exception is if the user will be jumping back and forth between Disk BASIC and the disk operating system, see below.

How to use Screen Print:

All: Load any other nonrelocating Machine Language

\title{
TRS-80 \({ }^{\circ}\) DV
}

routines first. This routine will load below them.

Level II:
1) RUN program.
2) Shift-down-arrow activates, BREAK aborts.

\section*{TRSDOS:}
A) If only Disk BASIC to be used, then same as Level II.
B) If jumping back and forth between Disk BASIC and TRSDOS:
1) Set MEM SIZE 100 less than top of memory. *
2) RUN program.
3) Each time you re-enter Disk BASIC answer 'MEM SIZE?'" with 200 less than number calculated in 1.
4) Shift-down-arrow activates, BREAK aborts.

NOTE: In TRSDOS, hitting BREAK sometimes causes strange things to happen. Typing DIR when you enter seems to cure this problem.

NEWDOS:
1) RUN program.
2) When entering Disk BASIC set MEM SIZE 200 less than end of memory. *
3) Shift-down-arrow activates, BREAK aborts.

NOTE: JKL function still works, so what I do is to use that for any listing without graphics, and use shift-downarrow for any listing with graphics.
*If other Machine Language programs are loaded above this one, make sure you add appropriate number to this figure.

I have found that the program does work with the lower-case driver I have by:
1) RUNning the BASIC program first, following instructions above.
2) Running the lower-case driver.
3) For disk operating systems make sure you now save enough memory on reentry into BASIC for both the driver and the screen print function.

The program is set for an MX-80 in non-TRS-80 \({ }^{\circledR}\) mode. Here are some modifications:
A) If your printer uses standard TRS-80 \({ }^{\circledR}\) code:
1) Change number in line 30 from 18232 to 17772.
2) Change lines 210 and 260 to:

210 DATA 0,0
260 DATA 0,0
B) If your printer does not support graphics characters:
1) Change number in line 30 from 18232 to 17974.
2) Change lines 210 and 260 to:

210 DATA 62,46
260 DATA 62,32

\title{
 \\ \\ 
} \\ \\ 
}
by Ronald M. Tutone

Gothic Letter Printer is a bannermaking program for a TRS\(\mathbf{8 0}{ }^{\circledR}\) with a minimum of 32 K RAM and a 132 -column printer.

Gothic lettering originated in western Europe around the 12th through the 15th century. Gothic Letter Printer recreates this beautiful and outstanding lettering form.
To produce your sign, follow these two steps:
1. Have your printer set for condensed mode (132 characters per line).
2. Type in your message.

Valid gothic characters are the letters A-Z, numbers 0-9, and the following punctuation: exclamation point, question mark, period, colon, semicolon, comma, hyphen, left and right parentheses, double quotes, apostrophe, dollar sign, and ampersand.

Special note: Because of the very large amount of data used in this program, we suggest that before saving the program in its final form, you first type the following one liner
from the command mode (READY prompt):

RESTORE: CLS: \(\mathrm{A}=0\) : FOR X=1 TO 1506: READ A\$: A = A + LEN (A\$): NEXT X: IF A < > 16962 THEN PRINT "DATA BASE ERROR!" ELSE PRINT "THE DATA APPEAR TO BE O.K."

After you press ENTER, the computer will go blank for a while and then print a message. If you get the "DATA BASE ERROR!" message then there are some data in your program which are not the same as is listed in the magazine. If you get the "DATA APPEAR TO BE O.K." message then your data should be the same as listed in the magazine. However, it is possible for the data to appear correct, and still contain a problem. A test run of all valid characters will show for sure if there is anything wrong.

\section*{Variables}
\(\mathrm{A} \$(\mathrm{n})\) : Contains one gothic letter in coded form. \(\mathrm{A} \$(\mathrm{n})\) is decoded to create one gothic letter.
C\$: Character used to create the
sign. Value will be the "delete" character. C\$ may be changed by the user if desired to any alphanumeric character.
CT: Number of lines in one gothic letter.
DT\$: List of the valid gothic characters. It is used to check the user's message for invalid characters.
I, II, J: Counters.
K \(\$\) : Advance paper or restart program.
\(\mathrm{L} \$\) : Get one character from user's input.
MS\$: User's message.
NLT: Number of valid input characters. Value will be 50 . NU: Number of blanks or characters in part of one gothic letter line.
N1\$, N2\$: Used to derive NU from a string of numbers into numeric values.
QUOTE: Determine opening or closing quotation marks. Value will be 1 or 0 .
\(\mathrm{S} \$\) : Character from the user's message for decoding.
ST\$: One line of the gothic letter to be printed.
X: Position on screen where user input is read.

\section*{TRS－80}

```

* TRS-80 Model I/III BASIC !
| "gDTHIC LETTER PRINTER" \
| AUTHOR: Ronald M. Tutone \&
(c) }1982\mathrm{ SoftSide

```


Reserve memory space and define variables．

100 CLS：CLEAR1700：NLT＝50
150 DIMDTS（NLT），A\＄（60），PTR（256）

Display program introduction．
200 PRINT 3335, CHR \(\$(23)\) ；\({ }^{\text {INTRODUCING＂}}\)
250 FORI＝1T01800：NEXT：CLS：FORI＝1T0500：NEXT
300 PRINTA332，CHR（23）；＂THE GOTHIC LETTER＂
350 PRINT3469，CHRs（23）；＂PRINTER＂
400 PRINT2585，CHR（23）；＂BY RONALD M．TUTONE＂
450 FORI＝1TONLT－1：READDT（I）：NEXTI：RESTORE
475 FORI＝1T02000：NEXII：CLS

Initialize variables．
550 QUOTE \(=0:\) C \(\$=\) CHR \(\$(127)\)

Display instructions．
600 PRINT：PRINTTAB（10）＂G OTHIC LETTER PRINTE \(R^{1}\)

700 PRINTO264，＂DIRECTIONS FOR CREATING A BEAUTIFUL GOTHIC SIGN：＂ 750 PRINT：PRINTTAB（3）＂GET PRINTER TO CONDENSED MODE \＆TYPE THE H ESSAGE IN HERE：＂
800 PRINTき985，＂\(\langle\) HIT EHTER＞＂；；PRINT2588，CHR\＄（94）；

Initialize variables
\(850 \mathrm{x}=589: \mathrm{MS} \$=\mathrm{H}\) ： \(\mathbf{~ D T} \$(50)=\) CHR \(\$(34)\)

Get input from operator．
900 PRINT2X，CHR \(\$(93) ;\) ；\(\$=\) INKEY \(\$\) ：IFL \(\$={ }^{\text {n }}\) THEN900ELSEIFL \(\$=\) CHR \(\$(13)\) T HENI100
 FTS（MS\＄，LEN（MS\＄）－1）：GOTO900ELSEIFL \(\$=\) CHR \(\$(8)\) THEN900
1000 IFL \(\$=\) CHR \(\$(9)\) ORL \(\$=\) CHR \(\$(10)\) ORL \(\$=\) CHR \(\$(91)\) THEN900

1100 IFHS\＄＝＂ \(\mathrm{THENPRINT:PRINT:PRINTTAB(16)"〈NO} \mathrm{MESSAGE}\), RY AGAIN \(>^{\text {＂}}\) ：G0T0475
1125 PRINTว985，＂＂；
Check for legal operator input．
1150 FORI \(=1\) TOLEN（MS \(\$\) ）：L \(\$=\) MID \(\$(M S \$, I, 1)\)
1200 FORJ＝1TONLT
1250 IFDT（J）\(=\) LSTHENIFL \(8=\) CHRS（34）THENIFQUOTE \(=0\) THEUP TR \((1)=50: 0\) UOTE \(=1:\) B0T01400ELSEPTR（I）\(=51\) ；OUOTE \(=0 ;\) GOT01400ELSEPTR \((\mathrm{I})=\mathrm{J}:\) GOT014 00

1300 罱䝰J


＇，PLEASE RETYPE）＂；：60T0475
1400 NEXTI

Display heading．

1450 CLS：PRINT：PRINTTAB（11）＂6 O THIC LETTER PRI NTER＇
1500 PRINTTAB（11）＂ I550 PRINT2345，＂YOUR MESSAGE＂：PRINT2409，＂－－－－－－－－－－＂：PRIMT：PRI NTTAB（ABS（ \((31-(L E N(M S \$) / 2)))\) MS \(\$\)

Main program loop．Get one character from operator＇s message．

1600 FORII \(=1\) TOLEN（MS \(\$\) ）： \(5 \$=\) MID \(\$(M S \$, I I, 1)\)
1650 IFS \(\$=\)＂＂THENFORX \(=1\) TO15：LPRINT：NEXTX：NEXTII： \(60 T 01800\)
1700 GOSUB2000
1750 NEXTII

Offer manual paper advance or restart of program．

1800 PRINT2911，STRING \(\left(34,{ }^{*}\right.\)＂）；：PRINT2787，＂\(<\) HIT＇ENTER＇TO REST ART＞＂；
1850 PRINT2848，＂＜DEPRESS＂CHR\＄（91）＂TO ADVANCE PAPER＞＂；
1900 FORI \(=1\) TO10000：\(\$=1\) NKEY \(\$\) ：IFK \(\$=\) CHR \(\$(13)\) THENRESTORE； \(60 T 0475 E L S\) EIFPEEK \((15168)=8\) THENLPRIMT
1950 NEXTI：CLS：PRINT＂TYPE＇RUN’ TO RESTART PROGRAM＂：EMD

Display gothic character which is being printed．

2000 PRINTる913，＂〈 CREATING THE CHARACTER＇＂S＂＂＞＂；

Read data for one gothic letter．

2010 FORI\％\(=1\) TONLT -1 ：READA \(:\) NEXTI\％
2025 FORJ\％\(=1\) TOPTR（II）－1
2150 READCT
2200 FORI\％＝1TOCT：READA（I\％）：NEXTI\％
2250 NEXTJ\％：RESTORE

Create one print line of character data．

2300 FRRJ×1TOCT：ST\＄＂＊＂

2500 FORI \(=1\) TOLEN(A\$(J) \():\) L \(\$=H I D \$(A \$(J), I, 1)\)
2550 IFL \(\$=\) " \(\mathrm{B}^{4} 0 \mathrm{RL} \mathrm{s}=\mathrm{=} \mathrm{C}\) "THENG0SUB2750
2600
NEXTI
Print one line of character data.

\section*{2650 LPRINTST}

Insert spacing between letters.
2700 NEXTJ:LPRINT:LPRINT: RETURN
Construct print line from character data.
2750 N2 \(\$=\) HID \(\$(A \$(\mathrm{~J}), \mathrm{I}+2,1)\)
\(2800 \mathrm{~N} 1 \$=\mathrm{HID}(\mathrm{A} \$(\mathrm{~J}), \mathrm{I}+1,1)\)

2900 IFL \(\$=\) "B"THENST \(\$=S T \$+S T R I N G \$(N U, " ~ ") E L S E S T \$=S T \$+5 T R I N G \$(N U, C\) 3)

2950 RETURN

Legal characters in data form.
3000 DATA" ", "A", "В", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "H" , "N", "0", "P", "Q", "R", "S", "T", "U", "V", "म", "X", "Y", "l", "1", "2", "马"
 ,",",":",""

Gothic character data.
3050 DATA \(39, \mathrm{~B} 26 \mathrm{C} 4, \mathrm{~B} 28 \mathrm{C} 4, \mathrm{~B} 29 \mathrm{C} 5, \mathrm{~B} 30 \mathrm{C} 5, \mathrm{~B} 30 \mathrm{C} 6, \mathrm{~B} 30 \mathrm{C} 7, \mathrm{~B} 30 \mathrm{C} 7 \mathrm{~B} 32 \mathrm{C} 2, \mathrm{~B} 29 \mathrm{C} 9\) B32C3, B28C15B28C4, B28C8B5C7B24C5, B27C8B11C8B18C7, B27C8E17C8B12C8 ,B26C8B24C8B6C9, В26C8R27C21R16C1, \(\mathrm{B26C8B27C22R16C2} ,\mathrm{~B} 26 \mathrm{CBB} 27 \mathrm{CBB4C1}\) 0817C3
3100 DATAR27C7B27CBB10C10B11C4, В29С6В26C8B16С9B6C5, ВЗ2C4B25C8B22 C15, B36C2823C8B27C10, B61C8B23C14, B61C8B16C20, B61C8B9C26, B61C8B2C 31, \(\mathrm{B} 61 \mathrm{C} 38, \mathrm{~B} 57 \mathrm{C} 36, \mathrm{~B} 50 \mathrm{C} 36, \mathrm{~B} 43 \mathrm{C} 35, \mathrm{~B} 56 \mathrm{C} 35, \mathrm{~B} 32 \mathrm{C} 33, \mathrm{~B} 30 \mathrm{C} 27, \mathrm{~B} 28 \mathrm{C} 22, \mathrm{~B} 27 \mathrm{C} 1\) 6, \(\mathrm{B} 26 \mathrm{C} 12, \mathrm{~B} 26 \mathrm{C} 8, \mathrm{~B} 26 \mathrm{C} 7, \mathrm{~B} 26 \mathrm{C} 7, \mathrm{~B} 27 \mathrm{C} 6, \mathrm{~B} 29 \mathrm{C} 5\)
3150 DATA41, \(\mathrm{B} 26 \mathrm{C} 1 \mathrm{B60C4}, \mathrm{~B} 27 \mathrm{C} 3 \mathrm{~B} 59 \mathrm{C} 6, \mathrm{~B} 2 \mathrm{BC} 3 \mathrm{~B} 61 \mathrm{C} 6, \mathrm{B28C5B26C1R33C7}, \mathrm{B29}\)

 ЗОС6481С8, ВЗ0С9B1С55B1C7, BЗ0C10B1C55B1C7
 33C2B18C12, B30C12B32C2B18C12, B30C12B32C2B18C12, B30C12B32C2B18C11 , \(\mathrm{B} 30 \mathrm{C} 12 \mathrm{BJ2C2B18C11,B30C12B31C3B17C12,B30C11R31C4B17C11}, \mathrm{BJ0C11B30}\) C5B17C10, BJOC11829C6B16C11, B29C12B28C7B16C10
3250 DATAB29C11828C8B15C11, B28C12B27C9B15C10, B28C12B25C8B1C2P14C 10, В27C12825C9B1C2B14C9, B26C13B23C10B3C2B12C9, В27C123B21C11B4C3B

9С10, \(\mathrm{B} 29 \mathrm{C} 9 \mathrm{~B} 20 \mathrm{C} 13 \mathrm{~B} 4 \mathrm{C} 5 \mathrm{~B} 6 \mathrm{C} 10, \mathrm{~B} 31 \mathrm{C} 7 \mathrm{B18C14B6C19}, \mathrm{В32C5B17C15B8C17}, \mathrm{ВЗ4C}\) 3B14C17B10C14, B37C3B5C21B13C11
3300 DATAB39C25B18C5, R42C20
3350 DATA38, B26B33C9, B26E27C21, B26E22C31, B26B19C37,B26B16C43, B26
B14C47, \(\mathrm{B} 26 \mathrm{~B} 12 \mathrm{C} 23 \mathrm{~B} 5 \mathrm{C} 2 \mathrm{~B} 10 \mathrm{C} 11, \mathrm{~B} 26 \mathrm{~B} 10 \mathrm{C} 20 \mathrm{~B} 11 \mathrm{C} 4 \mathrm{~B} 12 \mathrm{CB}, \mathrm{B} 26 \mathrm{BBC18B16C5B14C}\) 5, B26B7C16B19C7R13C1R1C3, B26B6C15R21C8B13C1B2CJ, B26B5C14B22C10B1 उС1ВЗС2, В26В4С62ВЗС2, В26BЗС13В1С50ВЗС2
3400 DATAR26B2C12B4C50B4C1, B26B1C12B6C50, B26B1C11B8C50, B26B1C10B
 , \(\mathrm{B} 26 \mathrm{C} 7 \mathrm{B5} 7 \mathrm{C} 14, \mathrm{B26C6B57C14}, \mathrm{B26C6B56C14}, \mathrm{B26C5B56C14}, \mathrm{B26C5B55C14}, \mathrm{B26}\) C5B54C14, B26B1C4B54C13, B2681C4B54C12
3450 DATAB26B2C3B54C12, В26B2C4R5ЗС11, В26ВЗСЗВ54С9, В26B4СЗВ54С8, В 26B5C2B55C7, \(\mathrm{B26B6C2B55C6}, \mathrm{B26B7C2B56C4}\)
3500 DATA41, \(\mathrm{B26C1B60C4}, \mathrm{B26B1C3B59C6}, \mathrm{B26B2C3B6IC6}, \mathrm{B26B2C5B26C1B33}\) С7, В26ВЗС5R26СЗВ31С7, В26ВЗС6826С5В29С7, В26ВЗС7В26С6В27С8, В2684С7
 8, B26B4C9B22C11R22C8, B26B4Cb4BIC8
3550 DATAB26B4C9B1C55B1C7, B26B4C10B1C55B1C7, B26B4C10B3C54B2C5, B2 6B4C1184C54B3C3, B26B4C11B7C54B2C2, B26B4C11B53C12, B26B4C12B52C12, B26E4C12E51C12, B26B4C12R50C13, B26B4C12B50C12, B26B4C12849C13, B26B 4C11849C14, B25B4C11848C14, B2684C11847C14
3600 DATAB26B3C12B46C14, B26B3C11845C15, B26B2C12B44C15, B26B2C12B4 2C16, B26E1C12R42C15, B26C13B40C16, B26B1C12B38C16, B26B3C9B37C17, B2 6В5С7ВЗ5С17, В26В6С5ВЗЗС18, В26В8СЗВЗОС19, В26В11СЗВ23С20, В26B14С5В 12C21, B26B19C28
 , В26ВЗС4Е27СЗВЗ1С7, В26В4С5В26С5В29С7,В26В4С6В26С6В27С8, В26В4С7В2
 82685C9B21C11822C8, B2685C63B1C8
3700 DATAB26B4C65B1C7, B26B4C11B1C54B1C7, B26B4C11B3C53B2C5, B26B3C
 24C12, B2681C12825C7B22C11, \(\mathrm{B} 26 \mathrm{B1C12824C10B20C10}, \mathrm{B26C13B23C10B21C1}\) \(0, \mathrm{~B} 26 \mathrm{C} 12 \mathrm{~B} 23 \mathrm{C} 10 \mathrm{~B} 22 \mathrm{C} 10, \mathrm{~B} 26 \mathrm{C} 12 \mathrm{~B} 22 \mathrm{C} 10 \mathrm{~B} 24 \mathrm{CB}\)
3750 DATAE26C12B21C10B25C8, B26C11824C8B26C7, B26C11B26C6B26C7,B26 C11827C4B28C6, B26C11829С2B28C6, B26C11B60C6, B26C11B61C5, В26B2C9B6 \(2 \mathrm{C4}, \mathrm{~B} 26 \mathrm{~B} 4 \mathrm{C} 7 \mathrm{~B} 63 \mathrm{C} 4, \mathrm{~B} 26 \mathrm{~B} 6 \mathrm{C} 6 \mathrm{~B} 64 \mathrm{C} 3, \mathrm{~B} 26 \mathrm{B8C5B65C2}, \mathrm{~B} 26 \mathrm{~B} 10 \mathrm{C} 3, \mathrm{~B} 26 \mathrm{~B} 12 \mathrm{C} 2\) 3800 DATA \(35, \mathrm{~B} 26 \mathrm{C1B60C4}, \mathrm{~B} 26 \mathrm{CJB60C6}, \mathrm{~B} 27 \mathrm{C} 4 \mathrm{~B} 61 \mathrm{C} 6, \mathrm{~B} 2 \mathrm{CCAB27C1B} 33 C 7, \mathrm{~B} 29\)

 B31C63B1C8, \(\mathrm{B} 22 \mathrm{C} 63 \mathrm{~B} 1 \mathrm{C7}\), B33C63B1C7, B 34 C 63 B 2 C 5
 11, \(\mathrm{B} 62 \mathrm{C} 10 \mathrm{~B} 20 \mathrm{C} 10, \mathrm{~B} 62 \mathrm{C} 10 \mathrm{~B} 21 \mathrm{C} 10, \mathrm{~B} 61 \mathrm{C} 10 \mathrm{~B} 22 \mathrm{C} 10, \mathrm{~B} 60 \mathrm{C} 10 \mathrm{~B} 24 \mathrm{C} 8, \mathrm{~B} 59 \mathrm{C} 10 \mathrm{~B} 25 \mathrm{C}\) 8, В61С8В26С7, В6ЗС6В26С7, В64С4В28С6, В65С2В29С6, В97С6, В99С5, В99С4, B99B1C4, B9983C?
3900 DATA41, \(\mathrm{B} 59 \mathrm{C} 9, \mathrm{~B} 53 \mathrm{C} 21, \mathrm{~B} 4 \mathrm{BC} 31, \mathrm{~B} 45 \mathrm{C} 37, \mathrm{~B} 42 \mathrm{C} 43, \mathrm{~B} 40 \mathrm{C} 47, \mathrm{~B} 8 \mathrm{C} 23 \mathrm{~B} 5 \mathrm{C} 2 \mathrm{~B}\) 10C11, BЗ6C20B11C4B12C8, B34C18B16C5R14C5, B3ЗC16B19C7B13C1B1C3, B32 С15B21C8B13C182CJ, B31C14B22C10B13C1B3C2, BJOC62B3C2, B29C13B1C50B3 C2, \(\mathrm{B} 28 \mathrm{C} 12 \mathrm{B4C50日4} \mathrm{C} 1, \mathrm{~B} 27 \mathrm{C} 12 \mathrm{~B} 6 \mathrm{C} 50, \mathrm{~B} 27 \mathrm{C} 11 \mathrm{BBC50}\)


3950 DATAB27C1OB10C50, B26C10826C2B31C4, B26C9828C3B28C7, R26C8B30C 5B24C10, B26C8B31C6B2IC14, B26C7B33C5B1C2B17C14, B26C7BJ3C6B2C2B14C 14, В26С6ВЗ5С682СЗВ11С14, В26С6ВЗ5С7В2СЗВ9С14, В26С5ВЗ6С7ВЗСЗВ7С14, В26С5В36С8ВЗСЗВ5С14, В27С4ВЗ6С8В4СЗВЗС14
4000 DАТАВ 27 С4ВЗ6С8В4СЗВЗС1З, В28СЗВЗ6С8В4СЗВЗС12, В28С4ВЗ4СВВ5СЗВ ЗС11, В29СЗВЗ4С8B6СЗВ2C10, ВЗ0С2ВЗЗС8B7СЗВЗС9, ВЗ1С2ВЗ1С8В8СЗВ4С8, В 32C2B28C9B10C3B4C7, B34C1B25C10B12C3B4C6, B35C2B21C10B16C3B4C4, B37 C2B16С11B20СЗВ4С2, ВЗ9СЗВ7С16B24СЗВ2С2
4050 DATAB42C19BJIC2
4100 DATA38, B26C3B58C4, B28C4B57C6, B29C5B58C6, B29C7B23C1B3ЗC7, B29
 C9823C8B25C8, B29C9B24C9B23CB, В29C9B24C10B22C8, B29C8B24C11B22CB, 29С65В1С8, В28С8В1С58В1С7, В27С9В2С58В1С7
4150 DATAB27C815C57B2C5, B1C1B24C8B8C57B3C3, B2C2B22C8B12C35B13C12 ,BJC3B20C8B42C2B15C12, B4C3B19C8B43C2B14C11, B4C5B17CBB43C3B13C10,
 С7815С6В38С10B10C8, В9С8B16С4B36С12日10С7
4200 DATAB10C9R17C3B34C11B11C7, B11C11B51C10B13C6, B13C12847C11B13 C6, B14C68B15C6, B16C66B16C5, B19C62B18C4, B21C60B19C4, B23C58B21CJ, B 27С54B23C2, B76C6, B78C5, B81C3
4250 DATA17, B26C1B60C4, B26C3B60C6, B26B1C4B61C6, R26B2C4B27C1B33C7

 , B26B3C11B21C11822C8, B26B2C66B1CB, B26B1C68B1C7
4300 DATAB26B1C69B1C7, B26C71B2C5, B26B2C71BJC3
4350 DATA22, B35C13, B31C20, B29C24, B28C27B32C4, B28C15B3C10B33C6, B2
 8В29С7, В26С6В29С4ВЗОС8, В27С4864С8, В27С4В64С8, В28С4В46СВВ8С8, В29С 4ВЗ6С21B4С8, ВЗОС4BЗОС29BIC8, ВЗ1С5В20СЗ8BICB
4400 DATAB33C62B1C7, B35C61B1C7, B37C36B16C8B2C5, B40C26E26C7B3C3, В 45С14B36С6B3C2, B98C5
4450 DATA41, В26CJB58C4, B28C4B57C6, В29С5В58С6, В29С7В2ЗС1ВЗЗС7,В29 С8В2ЗСЗВЗ1С7, ВЗОС8В2ЗС5В29С7, ВЗоСВВ24С6В27СВ, ВЗОС9В2ЗС7В26С8, ВЗО
 29С65B1C8, B28C8B1C58B1C7, B27C9B2C58B1C7
4500 DATAB27C8B5C57B2C5, B26C8B8C57B3CJ, B26C8B12C56B2C2, B26C3P25C
 6C4B14C4B11C10, B26C8B26C5B11C7B10C10, B27C8B25С6ВВС10В9С10, В29С7B 24C8B5C13B9C8, B30C6B22C10B2C16B8CB
 B16C6, BЗ6C28B6C8B18C6, BЗ2C31B8C5B21C6, ВЗОСЗ2B10С2B24C5, В29СЗ0В40 С4, В28С23849С4, В27С16В59СЗ, B27C11B66C2, B26С9, B26С7, B26С6, В27С4, В \(28 C 3\)
4600 DATA37, B26C1B60C4, B26C3B60C6, B27C4B61C6, B28C4B27C1BJ3C7,B29 С4В27СЗВ31С7, В29С6В26С5В29С7, ВЗОС6В26С6В27С8, ВЗ1С6B25С7В26С8, ВЗ1 С7В24С8B25C8, ВЗ2С7B23С9В23С8, ВЗ2С8B22С10B22С8, ВЗ2С8B21С11822С8, В 32С62B1C8, B31C9B1C54B1C7, BЗ1C10B1C54B1C7
4650 DATABJOC11B3C53B2C5, BЗOC11B5C53BЗСЗ, B29С11B9C53B2C2,B29C11B

54С12, В28C12B53C10, В28C11B54C9, B27C12B55C7, В27C11B57C5, B27C10B59 C4, B26C10B61C3, B26C10B62C3, B26C9B65C2,B26C9,B27C8, B27C8, B28C7,B2 8С7, B29C6, B30C5, BЗ2C3, B34C2, B36C2
4700 DATA55, B26C2B59C4, B28C3B58C6, B29C4B59C6, B30C4B25C1B33C7, B30 С6В24СЗВ31С7, ВЗОС7В24С5В29С7, ВЗОС8В24С6В27С8, ВЗОС9В2ЗС7В26С8, ВЗО
 8, В28С66B1C8, B26C69B1C7, \(\mathrm{B} 27 \mathrm{C} 69 \mathrm{B1C7}, \mathrm{~B} 29 \mathrm{C} 68 \mathrm{~B} 2 \mathrm{C} 5\)
4750 DATAB3IC68B3C3, B35C67B2C2, B94C12, B93C12, B59C1B32C12, B60C3B2 8С12, В61С5B24С12, В62С6В21С12, В62С7В19С12, В62С8В17С12, В31С1ВЈОС9В 15С12, ВЗ0СЗВ29С10В1 \(3 С 12\), В29С5В27С11B12С12, В28С67, В27С67, В26С67, В 27C65, В28C63, B29C61, B30C5B25C10B19C3
4800 DATABT1C3B26C9B22C3, B32C1 R28CEB24CJ, B62C7B26C3, B6ЗС6B27C4, В
 9С5B59C10, \(\mathrm{B} 2 \mathrm{CC} 74, \mathrm{~B} 27 \mathrm{C} 75, \mathrm{~B} 26 \mathrm{C} 76, \mathrm{~B} 27 \mathrm{C} 75, \mathrm{~B} 28 \mathrm{C} 75, \mathrm{~B} 29 \mathrm{C} 74, \mathrm{~B} О С \mathrm{C} 5 \mathrm{~B} 64 \mathrm{C} 5, \mathrm{~B}\) 31C3B66C4, R32C1869C3
4850 DATA40, В26C2BЗ4CJBЗ1С2, В27СЗВЗ4С4В29СЗ, В28С4ВЗЗС5В28С4, В2\% 5ВЗ2С6В26С5, В29С6В31С7В25С6, ВЗОС6ВЗОС8В2ЗС8, ВЗ0С7В29С10В21С10, ВЗ
 B36C20, B26C15B33C20, B28C13B30C20, B30C11B27C20
4900 DATAB32C9B24C20, BJ ЗС20B19С4, В50С20В21С7, В47С20B24С9, В44С20827С11, B41С20ВЗ0С13, ВЗ8С 20B33C15, B35C20B36C13, B32C20B39C12, B29C20B43C11, B28C18B46C10, B27 C75, B26C76, B26C76, B26C11B58C7,B26C10B60C6
4950 DATAB27C8Е62С6, В29С6В6ЗС5, ВЗ1С4В65С4, ВЗЗСЗВ66СЗ
5000 DATA \(38, \mathrm{~B} 59 C 9, B 54 C 21, B 48 C 31, B 45 C 38, B 42 C 43, B 40 C 47, B J 8 C 23 B 6 C 2 B\) 9С11, B36C20B12C3B10C2B1C7, B34C18B16C5B9C2B4C5, B3ЗС16B19С6B9С2B5C 4, B32C15R21C7B9C2B6CJ, B31C14B22C9B9C2B7C2,BJOC58, B29C12B3C45, B28 C12B5C45, B28C11B7C46, B27C11B10C45, B27C10B15C43
5050 DATAB26C10B58C3, B27C8B58C6, B29C5B58C10, B30C3B58C15, B31C2B58
 B40C4840C16, B41C6B35C17, B43C7B29C18, B45C8823C20, B47C11B14C22,849 C41, B52C36, B54C31, B57C25, B60C19
5100 DATA38, B27CЗB58C4, B28C4B57C6, B29C5B58C6, В29C7B23C1B33C7, В29 С8В2ЗСЗВ31С7, ВЗОС8В23С5В29С7, ВЗ0С8В24С6В27С8, ВЗОС9В2ЗС7В26С8, ВЗ0
 29С65В1СВ, В28С8В1С58В1С7, В27С9В2С5ВВ1С7
5150 DATAB27C8B5C57B2C5, B26CBB8C57B3C3, B26CBB12C56B2C2, B26C8B31C 4B25C12, В26CBB30C7B23C11, B26C8B29C1OB20C11, B26C8B28C13B18C11, B26 C8B28C11819C11,B27C8B26C10B21C11,B28C7B25C9B22C11, BЗ0С6B24C8B23C 11, ВЗЗС4в2ЗС7В2ЗС11, ВЗ6СЗВ20С7В24С10, В59С6В24С10
5200 DATAB59C5B24C10, B59C5B23C10, \(\mathrm{B6} 0 \mathrm{C} 3 \mathrm{~B} 23 \mathrm{C} 10, \mathrm{~B} 60 \mathrm{C} 3 \mathrm{~B} 22 \mathrm{C} 9, \mathrm{~B} 60 \mathrm{C} 3 \mathrm{~B} 20\) C10, \(\mathrm{B6} 1 \mathrm{C} 2 \mathrm{~B} 18 \mathrm{C} 10, \mathrm{B6} 2 \mathrm{C} 2 \mathrm{B15C10}, \mathrm{B63C2B12C9}, \mathrm{B65C18}\)
 9С11, ВЗ6С20В12СЗВ10С2B1C7, ВЗ4С18B16С5B9С284С5, ВЗЗС16В19С6В9С2В5С 4, B32C15B21C7B9C2B6CJ, BЗ1C14B22C9B9C2B7C2, BJOC50, B29C12B1C47, B28 C12B3C47, \(\mathrm{B28C11B4C49,B27C11B5C481C45}\)
5300 DATAB27C10B6C5B4C43, B26C10B7C6B45CJ, B27C8B7C7B44C6, B29C5B7C


C15, B29C16B43C15, B28C15B43C16, B27C14R44C16, B26C13B1C4B40C17,B26C 11В4С6В35C17, В26С9В8С7B29C18, B26СВВ11С8В23C19
5350 DATAB26C8B13C11B14C21, B26CBB15C41, B27C7B18C36, B28C6B20C31,B 29C5B23C25, ВЗ0C4B26C19, BJIC4BJOC9, B32C3, B34C2
 С8B23C3B31C7, ВЗОСВВ2ЗС5В29С7, ВЗОС8В24С6В27С8, ВЗОС9В2ЗС7В26СВ, ВЗО C9B23C8B25C8, В29С9B24C9B23C8, B29C9B24C10B22CB, B29C8B24C11B22C8, В 29C65B1C8, B28C8B1C58B1C7, B27C9B2C58B1C7
5450 DATAB27C8B5C57B2C5, В26С8B8C57B3CЗ, В26С8B12C56B2C2, В26С8B29С

 ЗС4B26C6B24C9, B36C3B23C日B22C10, B60C11B20C10
5500 DATAB58C14B19C10, B30C43B18C10, B28C43B1C2B16C10, B27C44B2C2B1 4C10, B26C43B5C3B10С12, B26C41B9C4B5C14, B26C37B14C20, B26C5B48C16, B 26С4B51C12, В26С4B54C6, B27CЗ, B28C3
5550 DATA39, B26C5, B28C4, B30C4, BЗ2C4, B33C5, B34C5B42C2, BЗ5C5B39C5,

 , B36C10BBC1B12C16B10C5, B35C11B8C1B12C15B10C9
5600 DATAB34C12B9C1B10C15B10C14, B33C12B11C2B7C15B10C13, B32C13B14 C2B4C14B11C11, B31C13B18C16B11C11, B29C14B21C13B12C9, B26C17B20C13B 12C10, B27C14B22C12B12C11, B27C13B22C12B1C2B10C11, B2BC11B23C12B4C2 B6C12, B29C8B24C12B8C2B3C11, B 30 C6B25C12B11C13
5650 DATAB30C5B25C12B14C11, B31C2B27C12B14C11, B \(32 C 2 B 25 C 12 B 16 C 10, B\) ЗЗС2B23C12B17C10, B34C2B21C13B18C9B1C2, B35C3B18C13B20C8B4C2, BЗ6C3 B15C13B23C7B6C1, B37C4B10C14B27C6B6C1, B39C25B31C5B5C1, B41C20B36C4 B3C1
5700 DATA38, B59C9B23C1, B53C21B18C2, B48C31B15C2, B45C37B13C3, B42C4 3B11C4, B40C47B10C4, BJ8C23B17C11B9C4, B36C20B27C8BBC.4, ВЗ4C18B14C2B 19С5B7С5, ВЗЗС16B18C3B20C3B6C6, BЗ2C15B21C4B20CЗB4C6, B31C14B2JC5B2 1C2B3C7, B30C13B25C6B21C2B2C7, B29C13B26C7B21C10
5750 DATAB28C12B27C8B22C9, B27C60B9C10, B27C11B1C49B7C10, B27C10B3C 49B5С10, В26С10В5С49B3C11, В26С9В7С49B1С11, В26СВВ9С60, В26СВВ57С11, В26С7В58С11, В26С7В57C11, В26С6В58С11, В26С6В58С11, В26С5В60С9, В26С5 В \(60 С 9, \mathrm{~B} 26 \mathrm{C} 5 \mathrm{~B} 60 \mathrm{C} 9, \mathrm{~B} 27 \mathrm{C4B61C8}, \mathrm{В27C4B61С8}\)
5800 DATAB28C3B62CB, B28C4B62C7, В29C3B62C7, BЗОСЗВ62C6, ВЗ1C2B6ЗС6, BЗ2C2B63C5, ВЗЗС2B64C4

 C76, B30C76, B30C75, B30C74, B29C73, B28C71, B28C12, B27C13, B26C14, B27C 12, B28C11, B29C9, B \(30 C 7, B J 1 C 6 B 61 C 2, B 32 C A B 63 C 4\)
5900 DATABJЗC2B65C4, BЗ4C2B64C5, B35C2B62C7, B \(36 C 70, ~ B 34 C 72, ~ В З 2 C 74, ~ B ~\) З0С76, В28С77, В26С78, В27С1ЗВ57С7, В2BC10B60С6, В29С7В6ЗС5, ВЗОС4В67С 4, B31C2B71C2,B32C2
5950 DATA35, B26C2B36C ЗB31C2, B27C4B34C5B29C4, B28C5B3ЗC6B28C4, B29C 5ВЗ2С7B27С5, В29С6ВЗ0С9В26С6, В29С77, ВЗОС76, ВЗОС76, ВЗОС76, ВЗОС75, В 30C74, B29C10B58C7, B28C11B59C6, B28C12B59C5, B27C13B61C4, B26C14B64C \(2, \mathrm{~B} 27 \mathrm{C} 12, \mathrm{~B} 28 \mathrm{C} 11, \mathrm{~B} 29 \mathrm{C} 9, \mathrm{~B} 30 \mathrm{C} 7, \mathrm{~B} 31 \mathrm{C} 6, \mathrm{~B} 2 \mathrm{C} 4, \mathrm{~B} 33 \mathrm{C} 2\)

5000 DATAB34C2, B35C2B51C9, B36C3B34C28, B37C65, B39C64, B41C63, B43C6 2, B46C33B18C8, B49C14B36C7, B26B75C5, B26B76CJ, B26B77C2
6050 DATA48, B26C2B36C3B29C2, B27C4B34C5B28CJ, B28C5B3ЗC6B27C4, B29C 5B3ЗС6B26C5, B29C6B32C7B25C6, B29C7B31C8B24C7, ВЗ0C7B29C10B22CB, B30 C76, B \(30 C 76, B 30 C 75, B J 0 C 74, B 29 C 75, B 28 C 71, B 28 C 17, B 27 C 14, B 26 C 15, B 27 C\) 12B25C3, В28C11B26C5, В29С9В28С6В26С2


 28C4, BЗ2C2B35C5BJOC2, BJЗCЗBJ6C3, B34C4B49C6
6150 DATAB \(55 C 7 B 41 C 14, B 36 C 11 B 22 C 31, B 37 C 65, B 39 C 64, B 41 C 63, B 43 C 62, B 4\) ЄС 3 ЗН18CB, B49C14B36C7, B53C6B42C5, B26B76C3, B26B77C2
 СЗВ40СВ, В29С8В18С5ВЗ7С9, В28С9В19С6ВЗ4С10, В28С9В20С7B31С11, В28С10 B20C8B27C13, B27C11B21C9B22C15, B27C11B21C10B18C17,B26C12B21C12B12 C19, В \(32 \mathrm{C} 6 \mathrm{~B} 22 \mathrm{C} 12 \mathrm{~B} 7 \mathrm{C} 21, \mathrm{~B} 37 \mathrm{C} 6 \mathrm{~B} 17 \mathrm{C} 12 \mathrm{~B} \mathrm{C} 23\)
6250 DATAR4 \(2 C 6 E 11 C 36, ~ B 49 C 6 B 4 C 33, B 55 C 33, B 59 C 24, B 56 C 23, B 52 C 23, B 48 C\) 29, \(\mathrm{B} 44 \mathrm{C} 29 \mathrm{B4C6}, \mathrm{B40C32B11C6}, \mathrm{B36C36B17C6}, \mathrm{B31C24B6C12B21C6}, \mathrm{B29C21B13}\) C10B21C12, B28C17B19C9B21C11, B27C15B24C8B20C11, B26C13B29C7B19C10, E26C11B33C6B19C9, B26C10B36C5B18C9
6300 DATAB26C9B40C3B17C8, B27C8B62C7, B28C7B63C7, B29C6B64C6, B32C5B 64 C5
6350 DATA36, B26C1B33C3B33C2, B26CЗB33C4B31C4, B27C4B32C5BJOC5, B28C 4В31C7B28C6, B1C2B25C6B29C8B27C7, BЗCЗB22C7B28C9B25C9, B4C4B21C7B26 C11B23C10, B5C5B19C77, B6C5B18C77, В6С6B17C77, В7С6B16C76, B7C6B16C75 , B7C7B14C73, B7C7B14C11B52C3, B7C8B12C12B54C3
6400 DATAB7C8B11C12B57C3, B7C9B12C10B58C4, B6C10B14C8B57C7, B6C10B1 6C5B58C9, B6C10B18C3B57C12, B5C11B20C3B55C11,B5C11B22C3B53C10, B4C1 1B25C3B50C11, B4C11B27C3B48C10, B3C12B29C3B46C10, B2C12B20C69, B1C13 B16C72, B2C11B15C74, BЗC9B14C76, B4C7B1 \(3 C 78\)
6450 DATAB5C5R12C80, B6C3B11C16B60C7, B7C3B8C16B63C6, B9C2JB66C6, B1 1C18B71C5, B15C11B77C3
6500 DATAЗ9, B26CЗB52C5, B28C3B46C14, B29C4B42C19, BJOC5B39C5B6C11, B 30C6B37C3B11C11,B31C7B35C2B13C12,B31C10B32C1B15C13, B31C11B47C15, B32C8B2C2B45C17, B32C9B3C2B43C16, B 2 2C9B5C2B40C16, B32C10B6C2B11C5B 22C15, B32C10R8C2B11C7B17C15
6550 DATAB32C11B9C2B10C8B15C14,B32C11B11C2B8C9B13C14,B32C11B13C2 B6C9B13C14, BJ2C11B15C2B4C9B13C14, B32C12B16C2B2C9B13C13, B32C12B18 C11B12C14, B32C12P20C9B12C14, B32C12B20C9B12C14, B32C12B20C9B12C14, B31C13B20C9B13C13,B31C13B20C10B12C13
4600 DATAB31C13B20C9BIC2B10C13, BJ0C14B20C9B3C2B9C12, B29C15B20C9B 5С2B7C12, В29C15B20C9B7C2B5C12, B28C15822CBB9C2B4C11, B27C16B24C7B1 OC2B2C11, B26C.17B28C5B10C2B1C10,B27C15B46C12,B28C14B12C2B34C10,BJ OC12B13C2B35C9, B32C11B11C4B36C7,B34C10B9C5B38C6
6650 DATAB36C10B5C6B41C4, B38C18B44C3, B40C14B48C2
6700 DATA10, B30C1B59C1, B \(31 C 2 B 57 C 1, B 32 C 2 B 56 C 2, B 33 C 60, B 34 C 60, B 35 C 5\) 8, B36C56, B37C54, B38C2, B39C2
6750 DATA19, B30C7B34C15, BJ1C6B1C4B30C15, B31C7B4C.4B27C15, B32C7B7C


\section*{TRS-80}

3B25C15, B32C7B10C3B23C15, A33C7812C2B33C4, B33C7B14C2B32C4, B32C7B1 7C2B29C6, B32C7B18C2B27C8, B31C7B21C2B24CB, B31C7R22C2B22C8, B30C7B2

6800 DATAB30C6B28C2B14CB, B30C6B29C22, B31C6B29C20, B32C6B29C18, B3J C6B29C16

6850 DATA19, B40C1B45C1, BЗ9C4B43C2, B38C7R41C3, B37C.8B41C.4, BJ6C8B19

 5С8, ВЗ2С4В19С8В7С2B14С8, ВЗ3С2В19С8В9С2В13С8
6900 DATAB34C2B17CBB11C2B11C9, B35C25B13C21, B36C2.3B15C19, B37C21B1 7C17, B38C19819C15
 B3C3, B61C7B5C3, B62C7B6C3, B62C7B8C3, B62C7B10C3, B62C7B12C3, B61C7B1 5СЗ, B34C1B25C8B17CJ, BJЗC3B24C8B20C3, BJ2C60, B31C6З, BЗ0C64, B31C63, B32C62, BJ3C3B24C7, B34C1B28C5

7000 DATA19, \(\mathrm{B40C1B15C38,B39C4B14C36}, \mathrm{B38C7B13C8R20C6}, \mathrm{BJ7C8B14C8B1}\) 8С7, ВЗ6С8B16C8B16C7, BЗ5C8B18C8B15C7, BЗ4C8B20С8B14C6, BJЗC8B22C8B1 2С7, ВЗ2С8В24С8В11С7, ВЗ1С8В26С8В10С7, ВЗОСВВ28С8В9С7, ВЗ1С6Р28С8В10 C7, BJ2C4B28C8B11C7, BJ3C2B28C8B13C6
7050 DATAB34C2B26CBB14C6, B35C34B16C6, B36C32R17C6, B37C30B21C4, B38 C28B24C3
7100 DATA19, B40C44, BJ9C46, B38C48, B37C50, BJ6C52, B35C8B25C2B17C2, B 34С8B27C2B17C2, B33C8B29C2B17C2, B32C8B31C2B15C.4, BЗ1C8B31C4B12С6, B ЗОС8B31C6B11C8,B31C6B31C8B9C8, ВЗ2C4BJ1C9B8C8, ВЗЗС2B31C8B9C8, ВЗ4С


7150 DATABJ8C31B13C4
7200 DATA19, B30C2B54C1, BJ1C2B53C3, B32C2B52C5, B33C5R48C7, BJ4C12B4 ОСА, ВЗ5C19B32C7, BЗ6C23B27C7, B37C29B20C6, B38C31B17C6, B39C2B10C21E 15C5, B40C2B16C17R12C5, B41C2B21C1489C5, B69C11R8C4, B74C9P5C4, B78C7 B4C4, B81C6B2C4, B84C9, B88C5, R91C3
7250 DATA19, B39C16B13C16,B38C19B10C18, B37C22B7C20, B36C24B5C22, R3 5С26ВЗС24, ВЗ4С8В17СЗВ1С8В16С2, ВЗЗС8B20С9В18С2, ВЗ2С8B21C8B20C2, ВЗ 1С8B21C8B20C4, ВЈ0С8B21C8B20C6, BЗ1C5B21C8B20C8, B32C4R21C8B20C8, B ЗС2B21C8B20C8, В34С2B19С9P19C8

7300 DATAB35C2B17C8B1C3B16C8, B36C25BJC25, B37C23B5C23, B38C21B7C21 , B39C19B10C18
7350 DATA20, B40C1820C25, B38C4B17C27,B37C7B14C29, B36CBB13C31,B35C 8B13C33, B34C8B13C8B25C2, B3ЗC8B13C8B27C2, B32C8B13C8B27C4, B31C8B13 C8B27C6, B30C8B15C6B27C8, B31C6B17C4827C8, B32C4B19C2B27C8, B3JC2B21 C2B25C8, B34C2B21C2B23C8, B35C2B21C2B21C8, B36C52
7400 DATAB37C50, B38C48, BЗ9C46, B40C44
7450 DATA19, B40C44, B39C46, B38C48, \(837 C 50, B 36 C 52, B 35 C B B 44 C 2, B 34 C B B\) 46C2, BЗ3C8B48C2, B32C8B48C4, B31C8B48C6, BЗ0C8B48CB, B31C6B48CB, B32C 4В48С8, ВЗЗС2В48С8, ВЗ4С2B46С8, ВЗ5С54, BЗ6С52, BЗ7С50, BЗ8С48
7500 DATA16, \(\mathrm{B} 53 \mathrm{C} 5, \mathrm{~B} 55 \mathrm{C} 6, \mathrm{~B} 56 \mathrm{C} 7, \mathrm{~B} 56 С 8, \mathrm{~B} 56 \mathrm{CB}, \mathrm{B} 56 \mathrm{CB}, \mathrm{B} 56 \mathrm{CB}, \mathrm{B} 5 \mathrm{CB}, \mathrm{B} 56 \mathrm{C}\) 8, В56С8, В56С8, В56С8, В56С8, В56С8, В57С7, В59С6
 4C63, B30C13B4C63, B31C10B14C54, B33C6B31C39, B35C3B49C21

7600 DATA29, \(\mathrm{B} 78 \mathrm{C} 1 \mathrm{B16C1}, \mathrm{B4} 4 \mathrm{C} 21 \mathrm{B1} 14 \mathrm{C} 19, \mathrm{B4} 2 \mathrm{C} 23 \mathrm{~B} 13 \mathrm{C} 20, \mathrm{B4} 1 \mathrm{C} 25 \mathrm{~B} 11 \mathrm{C} 22, \mathrm{B4}\)
 C2B2C9B17C5, \(\mathrm{B} 35 C 10 \mathrm{~B} 25 \mathrm{C} 11 \mathrm{B1} 16 \mathrm{CB}, \mathrm{B} 34 \mathrm{C} 10 \mathrm{~B} 25 \mathrm{C} 11 \mathrm{~B} 16 \mathrm{C} 10, \mathrm{~B} 3 \mathrm{C} 10 \mathrm{~B} 24 \mathrm{C} 12 \mathrm{~B} 15\) C13, B32C10822C14B15C15, B31C10B19C17B15C17
7650 DATAB30C10B16C19B17C18, B31C8B12C22B18C14, ВЗ2C6B9C23B21C12,B ЗЗС4В6С25B23С10, ВЗ4С2ВЗС23B28С9, ВЗ5С23В32С8, ВЗ4С20ВЗ6С7, ВЗ2С17В4 1C7, B30C15B46C5, R30C11B50C3, BJ0C9R1C19B33C2, BJ0C8B3C19B33C1, B30C 785С19, ВЗОС7В6С19, ВЗ2С5В7С19
7700 DATA23, \(\mathrm{B} 97 \mathrm{C} 1, \mathrm{B81C18}, \mathrm{B8OC20}, \mathrm{~B} 9 \mathrm{C} 22, \mathrm{~B} 78 \mathrm{C} 24, \mathrm{~B} 77 \mathrm{C} 26, \mathrm{~B} 78 \mathrm{C} 26, \mathrm{~B} 35 \mathrm{C}\) 1B22C7B14C7B17C2, B35C3B16C15B11C5B19C2, B34C6B11C21B9C3B19C4, B32C 10B7C24B9C1R19C6, B30C13B4C28B26CB, B30C13B3C3B12C15B24C10, B31C10B 4C2B16C14822C10, B33C6B26C12B21C10
7750 DATAB35CЗB29C11B19C10, B \(27 C 1830 C 11817 C 10, B 69 C 10 B 16 C 10, ~ B 70 C 34\) , B71C32, B71C31, B72C29, B72C28
7800 DATA19, \(\mathrm{B} 40 \mathrm{C} 3 \mathrm{~B} 20 \mathrm{C} 9, \mathrm{~B} 42 \mathrm{C4B15C14,B43C5B11C19,B44C5B10C9B10C2,B}\) 44С6В9С8В10С5, В44С7В7С8В10С7, В44С7В7СВВ9С10, ВЗОС64, ВЗОС64, В44С8В
 , \(843 \mathrm{C} 5 \mathrm{B9C8B10C6}, \mathrm{B45C2B9C9B11C5}, \mathrm{B47C18B12C5}\)
7850 DATAB50C14B15C.4
7900 DATA15, B45C1B48C1, B44C52, B43C54, B42C56, B41C58, B40C60, B \(39 C 2 \mathrm{~B}\) 5BC2, BЗBC2B60C2,B37C2B62C2, B36C2B64C2,B35C2B66C2,B34C2B68C2,BJ3C 2B70C2, B32C2B72C2, B31C2B74C2
7950 DATA15, B31C2B74C2, B32C2B72C2, B3 3 C2B70C2, B34C2B68C2, B35C2B66
 C5i, B43C54, R.44C52, B45C1B48C1
8000 DATA9, B35C1, B35C3, B34C6, B32C10, B30C13, B30C13, BJ1C10, B33C6, B 35 C 3
8050 DATA10, \(\mathrm{B} 36 \mathrm{C} 1, \mathrm{BJ} 6 \mathrm{C} 2 \mathrm{~B} 22 \mathrm{C} 1, \mathrm{~B} 37 \mathrm{C} 2 \mathrm{~B} 21 \mathrm{C} 3, \mathrm{B24C1B12C3B19C6}, \mathrm{~B} 24 \mathrm{C} 2 \mathrm{~B} 10\) C5B16C10, \(\mathrm{B} 25 \mathrm{C} 3 \mathrm{~B} 7 \mathrm{C} 7 \mathrm{BI} 13 \mathrm{C13}, \mathrm{B26C17B12C17}, \mathrm{~B} 27 \mathrm{C} 15 \mathrm{B14C10}, \mathrm{B28C13B17C6}, \mathrm{~B}\) 30C10820C3

8100 DATA10, B36C1, B36C2, B37C2, B24C1B12C3, B24C2B10C5, B25C3B7C7,B2 6C17, B27C15, B29C13, B30C10
8150 DATA9, \(\mathrm{B} 35 \mathrm{C} 1 \mathrm{B24C1}, \mathrm{~B} 35 \mathrm{C} 3 \mathrm{~B} 22 \mathrm{CJ}, \mathrm{B} 34 \mathrm{C} 6 \mathrm{~B} 18 \mathrm{C} 6, \mathrm{B32C10B15C10}\), B 30 C 13 B 12C13, B30C13B12C13, B31C10B15C10, 日33C6B19C6, BЗ5C3B21C3
8200 DATA10, B30B74C2, B30B74C3, B91C1B12C3, B91C2B10C5, B92C3B7C7, B9 ЗС17, \(\mathrm{B94C15}, \mathrm{B95C13}, \mathrm{B97C10}, \mathrm{B99C6}\)
8250 DATA29, \(\mathrm{B99C6}, \mathrm{~B} 97 \mathrm{C10}, \mathrm{~B} 95 \mathrm{C13}, \mathrm{B94C15,B93C17,B92C3B7C7,B91C2B10}\)
C5, \(\mathrm{B} 91 \mathrm{C1B12C3}, \mathrm{~B} 74 \mathrm{~B} 30 \mathrm{C} 3, \mathrm{~B} 30 \mathrm{~B} 74 \mathrm{C} 2, \mathrm{B1}, \mathrm{B1}, \mathrm{B1}, \mathrm{B1}, \mathrm{B1}, \mathrm{B1}, \mathrm{B1}, \mathrm{B1}, \mathrm{B1}, \mathrm{~B} 99 \mathrm{C} 6\) , \(\mathrm{B97C10}, \mathrm{~B} 95 \mathrm{C} 13, \mathrm{B94C15,B93C17,B92C3B7C7,B91C2B10C5}, \mathrm{B91C1B12C3,B74}\) B30C3, B30B74C2
8300 DATA29, B30B74C2, B30B74C3, B91C1B12C3, B91C2B10C5,B92C3B7C7,B9

 3, B97C10,B99C6


by Mark Pelczarski TRS-80 \({ }^{\text {® }}\) translation by Robert Jacobs

Database is a set of file manager programs designed to run on a TRS\(80^{\oplus}\) Model I/III with 48 K and one disk drive. Operation in 32 K is possible with modification of the CLEAR statement at the beginning of the programs.

\section*{TRS-80 \({ }^{\circledR}\) SEQUENTIAL FILE DATABASE}

The TRS-80 \({ }^{\circledR}\) version of SoftSide's Database appears in its entirety starting on the next page. It follows the Apple version published in October, 1981, very closely, and the instructions for using the Apple version are appropriate for the TRS \(-80^{\circledR}\). There are a few differences of style and a few minor modifications which spring from the difference between the operating systems of the Apple and TRS-80 \({ }^{\circledR}\). These will be commented upon as they arise in the description below.

The user of this database is first asked whether he or she wishes to begin a new file or load an old one. The files established by the database carry their own headings and format; if an existing file is to be loaded, no further decisions are required of the operator, who is presented with the main menu after the data is loaded. If a new file is to
be created, the number of headings and the name of each must be entered.

The main menu offers most of the usual database manipulations. One may add, delete, alter, sort or print data. The search routine is called if one chooses to print, delete or alter records. As in the original version it is possible to operate on one item, a subset of items, or all items. The heading under which one wishes to select is chosen from the search menu; then a criterion is elected (greater than, less than, or equal to), and a value for comparison is entered.

A partial value may be used by substituting an asterisk for the remainder of the record. To use Mark Pelczarski's example, all zip codes beginning " 60 '" could be selected by entering " 60 "' as the comparison value. The program loops back to the search routine with each selection, so that one may either add criteria or begin the search. If necessary, it is also possible to return to the main menu and start over at this point.

One difference between the Apple and TRS- \(80^{\circledR}\) versions of the database is that the latter telescopes the print options into one menu which offers the choice of printing either to the display or to the lineprinter with either a default or custom format. One keystroke suf-
fices. This menu also warns if the lineprinter is not ready.

On selection of one of the hard copy options, BASIC's TIME\$ is printed. This feature can be disabled without difficulty if desired. If one of the default format options is chosen the search routine already discussed is called; otherwise the user must either load or construct a custom format.

Construction of the format is unchanged from the earlier versions. In making the format (don't forget to save it!) one chooses among the (1) Heading, (2) Item (this is the actual data item), (3) Tab number, (4) Next line, (5) String, and (6) End.

Where necessary the program prompts for the appropriate value. Thus if "tab" is selected, the tab number (not the number of blank spaces!) has to be entered. If "string" is selected, the text of the string must be supplied. If " 1 '" is supplied after the entry of " 4 " (Next line), the printout drops down one line, and so on. The ability to prepare reports as one wishes is an important feature for a database program, and this one is quite versatile.

Users of disk operating systems which permit access to directories from BASIC may wish to enable lines 270,380 and 600 by removing the apostrophes. This will allow a look at the available data files. NEWDOS 2.1 requires that there be several thousand bytes free for this technique to work; one would have to reduce the string space cleared in line 100 to 17,000 (for a 48 K machine) in order to use this command. In NEWDOS-80 Versions 1 and 2, the string space may remain high. Note that in line 600 the drive number is chosen. This may be altered for your own purposes; indeed, some of the better operating systems allow a format like CMD'"DIR 2 /DAT'’ which displays only files with the extension /DAT, a great convenience.

Display of remaining free space has been left optional in the main menu. This is because the \(\operatorname{FRE}(\mathrm{A} \$)\) function, which forces garbage collection, is very slow with large data files.

Many enhancements for this database are possible, some of them
branching out into functions not accessible to the TRSDOS user. Among the obvious possibilities are the use of Machine Language sort and search routines to speed the program, as well as the random access and numerical data enhancements suggested by Mark Pelczarski in his October article. It is to be hoped that we will see a number of these soon.

\section*{Variables}

A\$: User answers.
AS: Accept switch for search routine.
B\$: Formatted output string.
BS: Condition switch.
\(\mathrm{C} \$(\mathrm{n})\) : Test conditions for search.
C1(n), C2(n): Store less, equal or greater choices for search routine.
F\$: Filename.
\(\mathrm{F} \$(\mathrm{n})\) : Character string holding format codes.
FS: Format switch.
H\$: Heading string.
I, I1, I2, I9: Loop and array counters.
II, J, J1, J2: Loop and array counters.
MX: Maximum number of records.
N : Loop counter, format routine.
NF: Number of format instructions.
NH: Number of headings.
NI: Number of items.
P1, P2: Poke addresses for directing output to printer.
PR: Printer driver address.
RS: Return switch; when equal to 1 , control returns to menu.
S1, S2: Poke addresses for directing output to display.
SB: Directs search subroutine to change, delete or print routine.
SC: Screen driver address.
SS: Save switch.
T: Format array counter (3800-3960). At 7100-7160 used as temporary holding variable in sort routine.
\(\mathrm{T} \$\) : Temporary string; holds decision to save file at 500 and is used in sort routine for temporary storage.

\section*{}
\$ TRS-80 Mod 1/3 DISK BASIC \$
- "SEquential database" \$
\$ Author: Mark Pelczarski \$
\$ Translator: Robert Jacobs \$
(c) 1982, SoftSide
\(\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$\)
Main Control routine.
```

100 CLS:CLEAR20000:MX=150
102 SC=16414:S1=PEEK (SC) : S2=PEEK (SC+1)
103 PR=16422:P1=PEEK (PR):P2=PEEK(PR+1)
105 DIMCS(7),C1 (7),C2(7),F$(5)
110 PRINT"(I) INITIALIIE A NEW DATA SET"
120 PRINT"(L) LOAD A PREvIOUSLY SAVED DATA SET ";
130 60SUB60000
140 IFA S="L"ORA$="l"60SUB1000:60T0200
150 IFA$="I"ORA$="i"GOSUB1500:60T0200
16060T0100
200 CLS:PRINT"(S) Save current data"

```
```

210 PRINT"(P) Print data"
220 PRINT" (A) Add data"
230 PRINT"(C) Change a record"
240 PRINT"(D) Delete a record"
260 PRINT"(T) Sort"
270 PRINT"(N) New data file"
280 'PRINT" (F) File names"
290 PRINT"(Q) Quit"
295 'PRINT"(E) Examine free space"
300 605UB 60000;PRINT
310 IFA$="S"0RA$="5"605UR2000:60T0200
320 IFA ="P"ORA\$= "p"GOSUB3000:60T0200
330 IFA \$="A"ORA \$= "a"60SUR4000:60T0200
350 IFA \$="C"ORA $= "C"THENSD=3:60SUB8000;60T0200
360 IFA$="D"ORA$="d"THENSB=4:FS=1:G0SUBB000:60T0200
370 IF A$="T"ORA$="t"THEN GOSUB7000:60T0200
380 'IF A$="F"ORA\$="f"THENGOSUP600:60T0200
390 IFA \$= "G"ORA \$= "q"ORA \$= = N"ORA $= "n"THEN500
395 IFA$="E"ORA$="e"THENGOSUP699:60T0200
397 IFA$<\"Q"ANDA$<\" 2"60T0200
500 T$=A$:IFSS=1THEN540
510 PRINT"CURRENT FILE IS NOT SAVED:":PRINT"CANCEL COMMAND (Y/N)
? ";:GOSUB60000
520 IFA$= 'Y"ORA$=" y"THEN200
530 IFA$
"N"ANDAS\)"n"THEN510
540 IFT \$="N"ORT $="n"THEN100
550 END
600 'CMD"DIR":GOSUB60000:RETURN
699 PRINT"YOU HAVE SPACE FOR';FRE(A$); "CHARACTERS":GOSUB60000;RE
TURN

```

Load subroutine.
1000 LINEINPUT"FILENAME: "; F\$
1005 ON ERRDR GOTO1310
1010 OPEN"I", 1, F \$
1020 INPUTH1, NH, NI
1120 DIMH\$ (NH), I \(\$\) (Mx, NH)
1140 FORI \(=0\) TONH: INPUTH1, H\$(I):NEXT
1200 IFNI=-1THEN1280
1240 FORI \(=0\) TONI
1250 FORJ \(=0\) TONH
1260 INPUT\#1, \(1 \$(\mathrm{I}, \mathrm{J})\)
1270 NEXTJ
1280 NEXTI
1290 CLOSE
1300 ON ERRDR 60T00:SS=1:RETURN
1310 PRINT"FILE NOT FOUND": GOSUB60000:RESUME100
Initialize subroutine.
1500 LINEINPUT"Give your file a name \(=>\) "; \(;\) F
1510 IFF \(\$=\) " "THEN1500
1520 INPUT"How many headings"; NH
1530 IFNH 1 THENS 520
1540 NH \(=\mathrm{NH}-1: \mathrm{NI}=-1\)
1560 DIMHS (NH), I\$ (HX, NH)
1570 FORI \(=0\) TONH
1580 PRINT"Heading \#"; It ; ; INPUT " : "; H\$(I)
1590 NEXTI
1600 SS=0: RETURN

\section*{Write subroutine．}

2000 PRINT＂Use＂；F\＄；＂（Y／N）？＂；：G0SUB60000
2010 IFA \(\$=\)＂\(Y\)＂ORA \(\$=" y\)＂THEN2050
2020 IFA\＄く》＂N＂ANDA\＄《＞＂n＂THEN2000
2030 LINEINPUT＂NAME：＂；F\＄
2040 IFF \(\$="\)＂THEN2030
2045 ON ERRDR GOTO 2290
2050 OPEA＂0＂，1，F\＄
2060 PRINTH1，NH；NI
2070 FORI＝OTONH
2080 PRINT\＃1，H\＄（I）
2090 NEXT
2220 IFNI \(=-1\) THEN2270
2230 FORI \(=0 T O N I\)
2240 FDRJ＝OTONH
2250 PRINT\＃1， \(1 \$(1, \mathrm{~J})\)
2260 NEXT：NEXT
2270 CLOSE
2280 ON ERROR GOTO0：SS＝1：RETURN
2290 PRINT＂DISK ERROR＂：GOSUB60000：RESUME200

\section*{Print subroutine．}

3000 IF NI＝－1THENGOSUB9000：RETURN
3005 CLS：PRINT＂（A）SCREEN PRINT，DEFAULT FORMAT
（B）SCREEN PRINT，SELECT FORMAT
（C）LINE PRINT，DEFAULT FORMAT
（D）LINE PRINT，SELECT FORMAT＂：IFPEEK（14312）＜＞63ANDPEEK（293）O）73 THENPRINT：PRINT＂PRINTER NOT READY！＂： \(605 U B 60000 E L S E G O S U B 60000\)
3006 IFA \(\$=\)＂A＂ORA \(\$=\)＂a＂THENFS \(=1 ; 60 T 03040\)
3007 IFA \(\$=" B " D R A \$=" b " T H E N G O S U B 10000: F 5=2: 60 T 03040\)
 \(0 T 03060\)
3009 IFA \(\$=\)＂D＂ 0 RA \(\$=\)＂d＂THENGOSUB10000；FS＝2； \(58=2\) ：LPRINTCHR（138）：LP RINTTIME \(\$\) ：GOT03060

\(3040 \mathrm{SB}=1\) ：CLS：PRINTAAFTER EACH RECORD〈M〉 HILL RETURN YOU TO MEN U＂：PRINT
3050 PRINT＂Press any key ，．．＂：G0SUB60000
3060 G0SUB8010
3090 IFSB＝2THENPOKESC，51：POKESC＋1，52
3100 RETURN

Print one record to the screen．

3300 ON FSGOSUB 3700,3800
3340 60SUB60000：IFA \(\$=\)＂M＂ORA \(\$=\)＂\({ }^{\text {© }}\)＂THENRS \(=1\)
3350 RETURN
3600 ON FS GOSUB 3700，3800：RETURN

\section*{Print one record default format．}

3700 CLS：PRINT＂＂：PRINT＂RECORD＂；I＋1：PRINT＂＂
3710 FORJ＝OTONH
3720 PRINTH\＄（J）， \(1 \$(\mathrm{I}, \mathrm{J})\)
3730 NEXTJ
3740 RETURN

Print one record custom format．

\(3820 \mathrm{~J} 1=\mathrm{VAL}(\mathrm{MID} \$(\mathrm{~F} \$(\mathrm{~T}), \mathrm{J}, 1)): \mathrm{J}=\mathrm{J}+1\)
3830 IFJ1＜5THENN＝VAL（MID \(\$(F \$(T), \mathrm{J}, 2)): \mathrm{J}=\mathrm{J}+2\)
3840 ON J1 \(60703850,3860,3870,3890,3910,3970\)
3850 A \(\$=H \$(N): G 0 T 03950\)
3860 A \(\$=1 \$(I, N): 60 T 03950\)

＂＂：NEXT
3890 60T03960
3890 PRINTB\＄：IFN＞1THENFORJ2＝2TON：PRINT＂＂：NEXT
3900 B \(\$=\mathrm{F}=\mathbf{6 0 T 0 3 9 6 0}\)
3910 IFJ．LEN（F（T））THENT＝T＋1：J＝1
3920 J2＝J
3930 IFMID \(\$(F \$(T), \mathrm{J} 2,1) \ll>"!\) THENJ2 \(2=\mathrm{J} 2+1: 60 T 03930\)
3940 A \(\ddagger=\mathrm{MID}\)（ \(\mathrm{F} \$(\mathrm{~T}), \mathrm{J}, \mathrm{J} 2-\mathrm{J}): \mathrm{J}=\sqrt{2}+1\)
\(3950 \mathrm{~B}=\mathrm{R} \$ \mathrm{~A}\)－\(\$\)
3960 IFJ \(\\) LEN（F \(\$(T)\) ）THENT \(=T+1: J=1\)
3965 60T03820
3970 PRINTE \(\$\) ：RETURN

Add subroutine．
\(4000 \mathrm{~S}=0 \mathrm{O}: \mathrm{NI}=\mathrm{NI}+1\)
4005 PRINT：PRINT＂Record＂；NI＋1；PRINT
4010 FORJ＝OTONH
4020 PRINTH\＄（I）；；IMPUT＂；＂；I \(\$(\mathrm{NI}, \mathrm{J})\)
4030 NEXTJ
4040 RETURN

Change subroutine．
5000 PRINT：PRINT＂（C）Change item，（ K ）Keep item，or（R）Keep rem ainder of record＂
5030 PRINT：PRINT＂Record＂；I＋1
5040 CS＝1：RS＝0：FORI＝OTONH
5050 PRINT：PRINT H\＄（J）；＂：＂；\(\$\)（I，J）；＂＂；
5055 IFRS＝1THENPRINT： \(60 T 05090\)
 R＂ANDAKく》＂r＂THENSO6O

5070 IFA \(=\)＝＂K＂ORA \(\$=\)＂k＂THEN5090
5075 IFA \(\$=\)＂R＂ 0 RA \(\$=\)＂r＂THENRS \(=1:\) GOT05090
5080 PRINT H\＄（J）；；INPUT＂；＂；I\＄（I；J）
5085 CS \(=0\)
5090 NEXTJ
5095 RS＝0
5100 IFCS＝0 THENSS＝0
5110 RETURH
Delete subroutine．
6000 PRINT：PRINT＂DELETE THIS RECDRD？＂；


6100 FOR I1＝I +1 TO NI
6110 FOR J＝OTD NH
6120 ［ \(\$(\mathrm{I} 1-1, \mathrm{~J})=\mathrm{I} \$(\mathrm{I} 1, \mathrm{~J})\)
6130 NEXTJ：NEXTII
6135 FQRJ＝0TONH：I \(\$(N I, J)=" ': N E X T\)
\(6140 \mathrm{NI}=\mathrm{NI}-1: \mathrm{SS}=0 ; \mathrm{I}=\mathrm{I}-1\)
6150 RETURN
Sort subroutine．

7000 IFNI＝－160SUB9000：RETURN
7010 CLS：FORJ＝OTONH
7020 PRINT2128＋（J\＄32），＂（＂；J＋1；＂）＂；H\＄（J）
7030 NEXTJ：PRINT
7040 INPUT＂SORT ON MHICH HEADING＂；JI
\(7045 \mathrm{~J}=\mathrm{J} 1-1\)
7050 IFJI＜OORJ1 NHRETURN
7060 PRINT＂（A）Ascending or（D）Descending＂：GOSUR60000
7070 IFA \(\$=\)＂A＂ORA \(\$=\)＂a＂THENA \(=1: 60 T 07100\)
7080 IFA \(\$=\)＂\(D\)＂ORA \(\$=\)＂d＂THENA \(=2 ; 60 T 07100\)
7090 60T07060
7100 FORI \(=0\) TONI -1
\(7110 \mathrm{~T}=\mathrm{I}\)
7120 FORI \(1=T+1\) TONI
7122 PRINTO960，1； 11 ；
7125 ONAGOTO7130，7140
7130 IFI \(\$(\mathrm{~J} 1, \mathrm{~J} 1)<\mathrm{I} \$(\mathrm{~T}, \mathrm{~J} 1)\) THENT\(=I 1\)
7135 60T07145

7145 NEXTII
7150 IFT \(=\) ITHEN7180
7155 FORJ＝OTONH
\(7160 \mathrm{~T}=[\mathrm{T}(\mathrm{T}, \mathrm{J}): \mathrm{I} \$(\mathrm{~T}, \mathrm{~J})=\mathrm{I} \$(\mathrm{I}, \mathrm{J}): \mathrm{I} \$(\mathrm{I}, \mathrm{J})=\mathrm{T} \$\)
7170 NEXTJ
7180 NEXTI
\(7200 \mathrm{SS}=0\) ：RETURN

\section*{Search subroutine．}

8000 IFNI＝－1THENGOSUP9000；RETURN
8010 I1 \(=0: 12=\mathrm{NI}: J=0: C 1(0)=-1: \mathrm{PS}=1\)
8015 CLS：PRINT＇SEARCH CRITERIA：＂：PRINT
9020 PRINT＂0 ：RECORD NUMPER＂
8030 FORI＝0TONH：PRINT2（（（I +1\() 432)+128), I+1\) ；＂）＂H\＄（I）：NEXTI
g035 PRINT：PRINTNH＋2；＂）BEGIN＂
8036 PRINTNH＋3；＂！RETURN TO MENU＂
8040 PRINT2896，；：INPUT＂WHICH FIELD＂；I：IFI（OORI 2 NH +3 THEN8040
8045 IFI \(=\) NH +2 THENCI \((\mathrm{J})=-1\) ： \(60 \mathrm{TOS150}\)
g046 IFI \(=\mathrm{NH}+3\) THEN RETURN
\(8050 \mathrm{Cl}(\mathrm{J})=\mathrm{I}-1\)
8055 CLS：IFI＝OPRINTねI28，＂SELECTING ON RECORD NUMBER＂：GOT08050ELS
E：PRINT2128，＂FIELD SELECTED：＂；H\＄（I－1）
8060 PRINTa256，＂INDICATE（1）SMALLER，（2）EQUAL，OR（3）LARGER＂

8080 PRINTTZ84，＂COMPARED TO：＂；：IFC1（J）\(=-1\) THEN8100
8090 INPUT＂＂；C \(\ddagger(\mathrm{J}): \mathrm{J}=\mathrm{J}+1:\) IFJ） 7 THENE160
8095 60T08015
8100 INPUT＂＂；I：IFI＜10RISNI＋1THENB100
8105 I＝I－1
8110 IFC2（ J\()=1\) THENI2 \(=1\)
8120 IFC2 \((\mathrm{J})=2\) THEN \(1=I: I 2=1\)
8130 IFC2（J）\(=3\) THENI \(1=1\)
814060 T 08015
8150 IFJ \(<2\) THEN8200
8160 PRINT 3896, ＂1）ITEM MUST MEET ALL CONDITIONS＂：PRINT＂ 2 ）ITEM
MAY MEET ANY CONDITION＇；：GOSUB60000：AS＝VAL（A\＄）：IFBS〈10RBS）2THEN8 160
8200 PRINT＂SEARCHING ．．．＂：RS＝0：IFSB＝2THENPOKESC，P1：POKESC＋1，P2
8250 I \(=11-1\)
8252 FORI9＝11T012： \(\mathrm{I}=\mathrm{I}+1\)
\(8255 \mathrm{AS}=0 ; \mathrm{FORJ}=0 \mathrm{TOT}\)
```

8260 IFCI (J)=-1THENJ=7: 60T08345
8270 ONC2(J)60T08280,8290,8310
8280 IFI$(I,C1(J)):=C$(J)THENB33O
8285 G0T08340
8290 IFI$(I,C1(J))=C$(J) THEN8330
8295 IFRIGHT$(C$(J),1)<>"\&"THEN8340
8298 T=LEN(C$(J))-1:IF LEN(I$(I,C1(J))\TTHEN8340
8302 IFLEFT$(I$(I,CI(J)),T)=LEFT$(C$(J),T)THEN8330
8305 60T08340
8310 IFI$(I,C1(J)))=C$(J)THEN8330
8320 60T08340
8330 IFBS=2THENAS=1:J=7
8335 60T08345
8340 IFBS=1THENAS=2:J=7
8345 NEXTJ
8350 IFAS=0ANDBS=1THEN8355
8352 IFAS<\1THEN8380
8355 IFSB=1THENGOSUB3300
8560 IFSB=20RSB=4THENGOSUB3600
8365 IFSB=3THENGOSUB5000
8370 IFSB=4THENG0SUB6000
8375 IFRS=1 THENI9=12
83B0 NEXTIT
8390 PRINT:PRINT"THAT'S ALL":FORII=1T0500:NEXT
8400 RETURN

```

\section*{Error subroutine number one．}

9000 PRINT＂There＇s no data in menory．＂
9010 FORI \(=1 T 01000\) ：NEXT：RETURN

\section*{Print Formatting．}

10000 IFF \(\$(0)="\)＂THEN10040
10010 PRINT＂SAME FORMAT？＂；：G0SUPG0000
10020 IFA \(\$=" Y\)＂ORA \(\$=" Y\)＂THENRETURN
10030 IFA\＄（）＂N＂ANDA\＄介）＂\({ }^{0}\) THEN10010
10040 PRINT＂（L）LOAD FORMAT，OR（C）CREATE FORMAT＂；：GOSUR60000
10050 IFA \(\$={ }^{\circ} C^{n} 0 R A \$={ }^{4} \mathrm{C}\)＂THEN10200

10090 ON ERROR GOTO10170
10100 INPUT＂FORMAT NAME：＂；A\＄

10130 INPUT\＃2，NF
10140 FORJ＝OTONF：INPUT\＃2，F\＄（J）：NEXT
10150 CLOSE2
10160 ON ERRORGOTDO：RETURN
10170 PRINT＂FORMAT NOT FOUND＂： 60 SUB60000：RESUME200
\(10200 \mathrm{NF}=0\) ； \(\mathrm{J}=0: \mathrm{F} \$(0)=\mathbf{"}\)
10210 CLS：PRINT＂Start in the upper left corner and work across e ach line＂
10220 PRINT＂ \(1:\) HEADING，2：ITEM，3：TAB，4：NEXT LINE，5：STRING，6：E ND＂：INPUTJ1
10230 IFJ1〈10RJ1〉6THEN10220
10240 \(\$ \$(\mathrm{NF})=\mathrm{F} \$(\mathrm{NF})+\mathrm{RI}\) GHT \(\$(\operatorname{STR} \$(\mathrm{~J} 1)\) ， \(\operatorname{LEN}(S T R \$(\mathrm{~J} 1))-1): \mathrm{J}=\mathrm{J}+1\)
10250 ONJ160T010260，10260，10300，10300，10350， 10400
10260 FORT＝OTDNH：PRINTA128＋（T\＄32）， \(\mathrm{T}+1\) ；＂）＂；H\＄（T）：NEXT
10270 INPUT＂UHICH＂；T：T＝T－1：IFTSOORT \(>\) NHTHEN10270
\(1028060 T 010310\)
10300 INPUT＂HOM MANY＂；T：IFT＜LORT＞99THENPRINT＂OUT OF RANGE．＂：G0TO 10300
```

10310 A$=RIGHT$(STR$(T),LEN(STR$(T))-1):IFT\10THENA$="0"+A$
10320 F$(NF)=F$(NF)+A$:J=J+2
10330 60T010380
10350 INPUT"STRING:";A$:A$=A$+"'"
10360 IFLEN(A$)+J)255THENNF=NF+1:J=0:F$(NF)=""
10370 F$(NF)=F$(NF)+A$:J=J+LEN(A$)
10380 IFJ\252THENNF=NF+1:J=0:F$(NF)="'
10390 60T010210
10400 INPUT"FDRMAT NAME:";A$
10405 ON ERROR G0T010460
10410 OPEN"0",2,A\$
10430 PRINT\$2,NF:FORJ=OTONF:PRINT$2,F$(J);NEXT
10440 CLOSE2
10450 ON ERROR GOTOO:RETURN
10460 PRINT"DISK ERROR":GOSUB60000:RESUME10400
60000 A$="':A$=INKEY \$:IFA \$=""THEN60000ELSEPRINT;RETORN

```

\section*{TRS-80 \({ }^{\circledR}\) Random File Database}

The TRS-80 \({ }^{\text {® }}\) version of SoftSide's random-access database program differs from the Apple version in several respects. Under TRSDOS, random access files have to be "fielded," and in consequence, additional program code has been added at line 20000 to permit the computer to field each 256 -byte disk sector and to distinguish automatically between subrecords within each physical record. The user only needs to know how much space to allocate to each item or heading in the data set; the program then puts as many subrecords as will fit into each 256-byte sector.
This fielding process has a few consequences for the operator of the database program. The first of these is that the user's data set may not be larger than 256 characters total. This limitation exists in the Apple and ATARI \({ }^{\oplus}\) random-access versions also, though for different reasons.
Secondly, it means that the user must give a fair amount of thought to the organization of data. Even divisors of 256 waste the least space. Thus, if a logical record were to be 64 bytes long, four such records would be put into each disk sector and no space would be wasted at all. If the user chooses a logical record length of 129,127 bytes will be wasted in each sector.

The logical record length is established when initializing a new file. It is the sum of the lengths entered for the headings, and is of course figured out before setting the file's initial parameters.
Because TRSDOS will not write a record " 0 " it has proved simplest to alter the program's structure so that records are numbered from 1. This change also allows easy selection of subrecords by the program logic, which fields each physical record as \(\mathbf{B} \$(I, J)\), where \(I\) indexes the item and J is the subrecord identifying number, again beginning from 1 and running to FF, where FF is the total number of subrecords in the sector.
Many different types and sizes of data sets may be manipulated with this program without changing the internal logic and with little waste of disk space. Vastly greater amounts of data can be entered than can be managed in the sequential database system, in which all the data is held in memory.

To give an example, if the user had devoted an entire 40 -track disk to the data file, and if each record were 64 bytes long, this program could manage 1600 records; in double-density and with all other factors constant, 2880 records can be put in. 80-track drives and multiple-head drives increase the capacity accordingly. It is also possible to span disk within the same file by using standard TRSDOS functions.

The remainder of the program is nearly identical to the Apple version. Record deletions are handled by writing a "link" number, LK, to the last empty record, and the formatting, data entry, and sorting features are the same. Note that lines 270, 380, and 600 have been disabled by REMark apostrophes. If your operating system permits access to your disk directory from these BASIC lines, then analogous commands for your system will permit you to examine your data files without exiting the program.

\section*{Variables}

In additional to those listed for sequential:
\(\mathrm{B} \$(\mathrm{I}, \mathrm{J})\) : Fielding array; I counts item numbers, J indexes subrecord numbers.
CH : Array counter to change index array held in memory.
D\%: Length of dummy string.
DS: Index string switch; when 0 , search routine calls new data heading into memory.
DU\$: Dummy string in fielding routine.
FF: Number of subrecords in each physical record.
LK: Link; holds number of record last deleted so empty spaces may be filled.
\(\mathrm{P} \%(\mathrm{n})\) : Integer array; holds sorted order of records.
PR \%: Number of the physical record.
R: Logical record number.
TI\$(n): Holds items to be sorted or searched.

\section*{\(\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$\)}
\$ TRS-80 Mod 1/3 DISK BASIC \$
\$ "RAMDDH DATABASE" \$
\$ Author: Mark Pelczarski \$
\$ Translator: Robert Jacobs \$
(c) 1982, SoftSide
\(\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \%\)

\section*{Main Control routine.}

100 CLS: CLEAR20000
102 SC=16414:S1=PEEK (SC): S2=PEEK (SC+1)
103 PR=16422; \(\operatorname{P1}=P E E K(P R): P 2=P E E K(P R+1)\)
105 DIMC \((77), \mathrm{C} 1 \%(7), \mathrm{C} 2 \%(7), \mathrm{F} \$(5): \mathrm{CH}=0\)

110 PRINT"(I) INITIALIZE A NEH DATA SET"
120 PRINT"(L) LOAD A PREVIOUSLY SAVED DATA SET";
170 GOSUP60000
140 IFA \(\$=" L " O R A \$=" 1 " 60 S U B 1000: 60 T 0200\)
150 IFA \(\$=\) "I"ORA \(\$={ }^{\mathrm{n}} \mathrm{i}\) " \(60 S U B 1500: 60 T 0200\)
\(16060 T 0100\)
200 CLS:PRINT" \({ }^{(S)}\) Save current data"
210 PRINT"(P) Print data"
220 PRINT"(A) Add data"
```

-AFPARATFSSFLEXTEXT/BO-
PUT*S PEP IN THE "EPSSQN"

```

FLEXTEXT/BO provides a SCFIFSIT path to EFSON power. Users will:
* Frint superscripts and subscripts anywhere in text.
* Underline any text (including super and sub scripts).
* Mix 10 innch and 16.5 inch characters (unjustified). (Full lines of either width characters will be justified.)
* Mix normal and 1 cragateq characters in any format. (Mixed normal and elongated characters will be justified.)
* Mix normal and italic Gharacters (even \(\boldsymbol{x} \boldsymbol{y} \boldsymbol{\sim} \boldsymbol{\sim}\)
* Mix normal and emphasized characters (el argated too)" (This \(\boldsymbol{O} \boldsymbol{Z} \boldsymbol{Z}\) is in emphasized, elongated, underlined italics.)
* Dynamically activatefdeactivate double strike printing.
* Dynamictally change line spacing (b/inch, 8/inch, 7/72 inch).
* Set and ewercise horizontal tab stopss such as:

Tab 1 Tab 2 Tab 3 Tab 4 Tab n
* Frint block graphics (graphically stated)

* Combine the above demonstrated features in just about any manner they want.

FLEXTEXT/80 and SCFIFSIT \({ }^{T H}\) were exercised in composing this page.
FLEXTEXT/gO is available now from AFFAFAT. The purchase price is:
\#54-95

THA registered trademart: of The Tandy Corporation. \(_{\text {That }}\)

FLEXTEXT/80 (for MX-80 Printers) Requires Graftrax

On-going Support for Microcomputers
4401 S. Tamarac Pkwy. - Denver. CO 80237 - (303) 741 -1778 • (800) 525-7674
Scripsit \& TRS 80 die a registered trademark of Tandy Corporation Freight FO B Denver-call for shipping charges Foreign Orders shipped Air Freight

230 PRINT" (C) Change a record"
240 PRINT" (D) Delete a record"
260 PRINT" (T) Sort"
270 'PRINT" (F) File names"
280 PRINT" (N) New data file"
290 PRINT" \({ }^{(Q)}\) Quit"
297 PRINT:PRINT NI;" RECORDS FULL, ROOH FOR "; MX-NI-1;" MORE"
300 60SUB 60000:PRINT
310 IFA \(\$=" \mathrm{~S}\) "DRA \(\$={ }^{n} \mathrm{~s}^{\text {" } 60 S U B 2000: 60 T 0200}\)
320 IFA \(\$=\) "P"0RA \(\$={ }^{\text {T }} \mathrm{p}\) " 605 UB3000; \(60 T 0200\)
330 IFA \(\$=" A\) "DRA \(\$=" a\) " \(605 U B 4000 ; 60 T 0200\)

360 IFA \(\$={ }^{*} D^{n} 0 R A=" d\) THENSB \(=4: F S=1:\) GOSUBB000: \(60 T 0200\)

380 'IF A \(\$=" F " 0 R A \$=" f\) "THENGOSUB600:60T0200
390 IFA \(\$=\) " \(Q\) "ORA \(\$=" q\) " ORA \(\$=" N " D R A \$={ }^{*} n\) "THEN500
\(41060 T 0200\)
500 IFSS \(=1\) THEN530
520 60SUB2000
530 CLOSE2
540 IFA \(\$={ }^{\prime \prime} N^{\prime \prime} 0 R A \$={ }^{17} n^{\text {B }}\) THEN100
550 END
\(600^{\text {'CMD }}\) "DIR': GOSUR \(60000:\) RETURN

Load subroutine.
1000 INPUT"FILE NAME (NO EXTENTION PLEASE) "; F
1010 ONERRORGOTO1230

1030 INPUT? \(31, \mathrm{NH}, \mathrm{HI}, \mathrm{MX}, \mathrm{LK}, \mathrm{FF}\)
1040 ONERRORGOTDO
1130 DIMH \((\mathrm{NH}), \mathrm{BH}(\mathrm{NH}+1)\), \(\mathrm{I} \$(\mathrm{MX}), \mathrm{PH}(\mathrm{KX}), \mathrm{TI} \$(\mathrm{NH}), \mathrm{B} \$(\mathrm{NH}+1, \mathrm{FF})\)
1140 FORI \(=0 T O N H:\) INPIT 11 , H\$(I), E\% (I): NEXT
1150 INPUT\#1, \(\mathrm{P} \%(\mathrm{NH}+1)\)
1160 IFNI \(=0\) THEN1 180
1170 FORI \(=1\) TONI: INPUT\#1, P\% (I) : NEXT
1180 CLOSE
1190 60SUP20000
1200 IFNI \(=0\) THEN 1220
1210 g0Supi300
1220 SS=1:RETURN
1230 PRINT"FILE NOT FOUND"; :GOSUR60000:RESUME100
1300 PRINT:FORI \(=1\) TONI
1305 PR\% \(=\mathrm{INT}(\) ( \(\mathrm{P} \%(\mathrm{~J})-1) / \mathrm{FF})+1\)
1310 GET 2,PR\%
\(1320 \mathrm{I} \$(\mathrm{I})=\mathrm{FNSR} \$(\mathrm{P} \$(\mathrm{CH}, \mathrm{P} \%(\mathrm{I})-\mathrm{FF} \ddagger(\mathrm{PR} \%-1) \mathrm{I})\)
1330 NEXT
1340 RETURN

\section*{Initialize subroutine.}

1500 INPUT"FILE NAME (NO EXTENTION PLEASE) "; \(\mathrm{F} \$\)
1510 IFF \(\$=\) " THEN 1500
1520 InPUT"How many headings"; NH
1530 IFNH 1 THEN1520
\(1540 \mathrm{NH}=\mathrm{NH}-1: \mathrm{NI}=0 ; \mathrm{LK}=0: \mathrm{T}=0\)
1560 DIHH\$(NH), \(\mathrm{BK}(\mathrm{NH}+1), \mathrm{TI} \$(\mathrm{NH})\) : \(\mathrm{Ex}(0)=0\)
1570 FORI \(=0\) TONH
1580 PRINT"Heading \#"; I+1; : INPUT": "; H\$(I)
1590 INPUT"MAXIMUM LENGTH: ";B\%(I):TK=T\%+B\%(I)
1610 NEXT
\(1615 \mathrm{FF}=\mathrm{INT}(256 / \mathrm{T} / \mathrm{l}): \mathrm{DIMBS}(\mathrm{NH}+1, \mathrm{FF})\)
1620 INPUT"HHICH HEADING IS THE LONGEST ON WHICH YOU WILL SORT"; \(\mathrm{J}: \mathrm{J}=\mathrm{J}-1:\) IFJ \(<00 \mathrm{RJ}\) ) NHTHEN1620
\(1630 \mathrm{MX}=\mathrm{INT}\) ( (FRE (A \(\$\) ) -2000)/B\% (J) +2 )
1640 DIMI \(\$\) (MX), P\% (MX)
1650 GOSUB20000
1660 SS=0: RETURN
1700 PRINT:R=P\%(I): \(60 S U B 20100\)
1710 GET 2,PR\%
1720 FORJ \(1=0\) TONH

1740 NEXT
1750 RETURN
1800 PRINT: GOSUB20100
1805 FORJI \(=0\) TONH

1820 NEXT
1830 PUT 2,PR\%
1840 RETURN

\section*{Write subroutine.}

2000 PRINT: ONERRORGOTO2290
2010 OPEN" \(0^{\circ}, 1, F \%+\) "/HDG"
2020 PRINT\#1, NH;NI; MX;LK;FF
2040 FORI=0TONH:PRINTH1,H\$(I); ", "; B\%(I):NEXT
2050 PRINTH1, BY ( \(\mathrm{NH}+1\) )
2060 IFNI \(=0\) THEN2270
2070 FORI=1TONI:PRINT\#1,P\%(I):NEXT
2270 CLOSEI
2280 ON ERROR GOTOO: SS=1:RETURN
2290 PRINT"DISK ERROR": GOSUB60000:RESUME200

Print subroutine.

3000 IFNI \(=0\) THENGOSUROOOO: RETURN
3005 CLS: PRINT" (A) SCREEN PRINT, DEFAULT FORMAT
(B) SCREEN PRINT, SELECT FORMAT
(C) LINE PRINT, DEFAULT FORMAT
(D) LINE PRINT, GELECT FORMAT": IFPEEK (14312) < 763 ANDPEEK (293) \(<373\) THENPRINT;PRINT"PRINTER NOT READY!": G0SUB60000ELSEGOSUB60000
3006 IFA \(\$=\) " \(A\) " \(0 R A \ddagger=" a\) "THENF \(=1: 60 T 03040\)
3007 IFA \(\$=" \mathrm{~B} " 0 \mathrm{RA} \$=\mathrm{b} \mathrm{b}\) "THENGOSUB10000: \(\mathrm{FS}=2 ; 60 \mathrm{TO} 3040\)
 T03050

INTTIME \(\$\) : \(60 T 03060\)
3010 60T03005
3040 SB=1:CLS:PRINT"AFTER EACH RECORD〈M. HILL RETURN YOU TO MEN U":PRINT
3050 PRINT"Press any key . . .: \(: 60 S U B 60000\)
3060 60SuP8010
3090 IFSR=2THENPQKESC,S1:POKESC \(+1,52\)
3100 RETURN
Print one record to screen.
```

3300 ON FSGOSUB 3700,3800
3340 IFSB=1THENGOSUB60000: IFA $\$=$ "M"ORA $="$ " ${ }^{\text {"THENRS }}=1$
3350 RETURN

```

Print one record default format.

3700 CLS：PRINT＂＂：PRINT＂RECORD＂；I：PRINT＂＂
3710 FORJ＝OTONH
3720 PRINTH\＄（J），TI\＄（J）
3730 NEXTJ
3740 RETURN

\section*{Print one record custom format．}

3800 CLS：J＝1：T＝0： \(\mathrm{B} \$=\mathrm{n}\)＂
\(3820 \mathrm{~J}=\mathrm{VAL}(\mathrm{MID} \$(F \boldsymbol{F}(\mathrm{~T}), \mathrm{J}, 1)): \mathrm{J}=\mathrm{J}+1\)
3830 IFJ1＜5THENN＝VAL（MID\＄（F\＄（T），J，2））： \(\mathrm{J}=\mathrm{J}+2\)
3840 ON J1 \(60703850,3860,3870,3890,3910,3970\)
\(3850 \mathrm{~A} s=\mathrm{H}(\mathrm{N}): 60 \mathrm{~T} 03950\)
3860 A \(\$ \mathrm{TI} \$(\mathrm{~N}): 60 \mathrm{TO} 3950\)

－＇：NEXT
3880 60T03960
3890 PRINTR：IFN）1THENFORJ2＝2TON：PRINT＂＂：NEXT
\(3900 \mathrm{~B}=\mathrm{F}=\mathrm{C}: 60 \mathrm{~T} 03960\)
3910 IFJ）LEN（F \(\$(T)\) ）THENT \(=T+1: \mathrm{J}=1\)
\(3920 \mathrm{~J} 2=\mathrm{J}\)
3930 IFHID \(\$(\mathrm{~F} \$(\mathrm{~T}), \mathrm{J} 2,1)\left\rangle\right.\) ！！\({ }^{\text {THENJ2 }}=\mathrm{J} 2+1: 60 \mathrm{~T} 03930\)
3940 A \(\$=M I D \$(F \$(T), \mathrm{J}, \mathrm{J} 2-\mathrm{J}): \mathrm{J}=\mathrm{J} 2+1\)
3950 B \(\$=\mathrm{B} \$ \mathrm{~A}\) A
3960 ［FJ）\(\\) LEN \((F \$(T)\) ）THENT \(=T+1: J=1\)
396560703820
3970 PRINTE\＄：RETURN

\section*{Add subroutine．}
\(4000 \mathrm{SS}=0\) ： \(\mathrm{NI}=\mathrm{NI}+1\)
4005 CLS：PRINT＂Record＂；NI：PRINT
4010 FORJ \(=\) OTONH
4020 60SUB4500
4030 NEXTJ
4040 IFLK \(=\) OTHENR \(=\) NI： \(60 T 04080\)
\(4050 \mathrm{R}=\mathrm{LK}\)
4060 GOSUB 20100
4070 GET 2，PR\％：LK＝CVI（B\＄（0，R－FFt（PR\％－1））！
4080605 UB 1800 ； \(\mathrm{P} \%(\mathrm{NI})=\mathrm{R}: \mathrm{I} \$(\mathrm{NI})=\mathrm{TI} \$(\mathrm{CH})\)
4090 RETURN
4500 PRINTH（J）；＂（＂；R（J）；＂CHARACTERS＂；＂！＂；：INPUT＂：＇；TI\＄（J） 4510 RETURN

\section*{Change subroutine．}

5000 CLS：PRINT＂（C）Change item，（K）Keep iten，or（R）Keep readi nder of record＂
5030 PRINT：PRINT＂Record＂；I
5040 CS \(=1\) ：RS \(=0\) ：FORJ \(=0\) TONH
5050 PRINT：PRINT H\＄（J）；＇：＂；TI\＄（J）；＂＇；
5055 IFRS＝1THENPRINT： \(60 T 05090\)
5060 60SUB 60000：IFA\＄（〉＂C＂ANDA\＄く〉＂C＂ANDA\＄くり＂K＂ANDA\＄《＂k＂ANDA\＄く〉＂
R＂ANDA \(\$\) ）＂ r ＂THEN5060
5065 PRINTCHR\＄（ASC（A\＄）＋32t（A\＄）＂Z＂））
5070 IFA \(\xi=\)＂K＂ORA \(\$=" k\)＂THEN5090
5075 IFA \(\$=\)＂R＂ORA \(\$=\)＂r＂THENRS \(=1: 60 T 05090\)
5080 G0SUB4500
5085 CS \(=0\)
5090 NEXTJ
5095 RS＝0

5100 IFCS \(=0 ; \mathrm{R}=\mathrm{PH}(\mathrm{I}): 60 \mathrm{SUR1800}: \mathrm{I}(\mathrm{I})=\mathrm{T} \mid \$(\mathrm{CH})\)
5110 RETURN
Delete subroutine．
6000 PRINT：PRINT＂DELETE THIS RECORD？＂；


6090 LSET B \((0, \mathrm{P} \%(\mathrm{I})-\mathrm{FF}:(\mathrm{PR} \%-1))=\mathrm{HKI}\) I（LK）
6095 PUT 2，PR\％
6110 LK＝PY（I）
6120 FORII \(=1+1\) TONI
6130 I\＄（11－1）\(=1 \$(11):\) P\％（I1－1）\(=P \%(I 1)\)
6135 NEXTII
\(6140 \mathrm{NI}=\mathrm{NI}-1\) ： \(\mathrm{SS}=0\) ： \(\mathrm{I}=\mathrm{I}-1\)
6150 RETURN

\section*{Sort subroutine．}

7000 IFNI \(=0\) OLOSUR9000：RETURN
7010 CLS：FORJ＝0TONH

7030 NEXT
7040 INPUT＂SORT ON HHICH HEADING＂；JI
\(7045 \mathrm{~J} 1=\mathrm{J} 1-1\)
7050 IFJI \(\langle 00 R J 1\) PH RETURN
7055 IFJK \(\\) CHTHENCH＝J1：GOSUP1300
7060 PRINT＂（A）Ascending or（D）Descending＂：60SUB60000
7070 IFA \(\$=\)＂A＂ORA \(\$=\)＂a＂THENA \(=1: 60 T 07100\)
7080 IFA \(\ddagger=\)＂D＂ORA \(\$=\)＂d＂THENA \(=2: 60 T 07100\)
709060707060
7100 IFA \(=1\) THENFORI \(=0\) TONI－1ELSEFORI \(=1\) TONI
\(7110 \mathrm{~T}=\mathrm{I}\)
7120 FORI \(1=\mathrm{T}+1\) TONI
7122 PRINT 3960, I；I1；
7125 ONAGOTO7130，7140
\(7130 \mathrm{JFI}(\mathrm{I} 1)\)（I \(\$(\mathrm{~T})\) THENT \(=\mathrm{II}\)
7135 60T07145
7140 IFI \(\$(\mathrm{II})\) ） \(\mathrm{I} \$(\mathrm{~T})\) THENT \(=11\)
7145 NEXTII
7150 IFT＝ITHEN7180
\(7155 \mathrm{FQRJ}=0 \mathrm{TONH}\)
\(7160 \mathrm{~T}=\mathrm{I} \$(\mathrm{~T}): \mathrm{I} \$(\mathrm{~T})=\mathrm{I} \$(\mathrm{I}): \mathrm{I} \$(\mathrm{I})=\mathrm{T} \$\)
\(7170 \mathrm{~J} 1=\mathrm{F} \%(\mathrm{~T}): \mathrm{P} \%(\mathrm{~T})=\mathrm{F} \%(\mathrm{I}): \mathrm{P} \%(\mathrm{I})=\mathrm{J} 1\)
7180 NEXTI
7200 SS＝0：RETURN

\section*{Search subroutine．}

9000 IFNI \(=0\) THENGOSUB9000：RETURN
8010 I1 \(=1: \mathrm{I} 2=\mathrm{NI}: \mathrm{J}=0: \mathrm{C} 1 \%(0)=-1\) ： \(\mathrm{PS}=1\)
8015 CLS：PRINT＂SEARCH CRITERIA：＂：PRINT
8020 PRINT＂O）RECORD NUMBER＂
8030 FORI＝0TONH：PRINT2128＋（（I＋1） 132\(), \mathrm{I}+1 ;\)＂）＂H\＄（I）：NEXTI
8035 PRINT：PRINTNH＋2；＂）BEGIN＂
8036 PRINTNH＋3；＂）RETURN TO MENU＂

8045 IFI \(=\mathrm{NH}+2\) THENC1\％（J）\(=-1: 60 \mathrm{~T} 08150\)
8046 IFI \(=\mathrm{NH}+3\) THEN RETURN
\(8050 \mathrm{C} 1 \%(\mathrm{~J})=\mathrm{I}-1\)
8055 CLS：IFI＝OPRINTA128，＂SELECTING ON RECORD NUMBER＂：GOTO8060ELS EPRINTD128，＂FIELD SELECTED：＂；H\＄（I－1）

8060 PRINTV256，＂INDICATE（1）SMALLER，（2）EQUAL，OR（3）LARGER＂


8080 PRINTA384，＂COMPARED TO：＂；：IFC1\％（J）＝－1THEN8100
8090 INPUT＂＂；C \(\$(\mathrm{~J}): \mathrm{J}=\mathrm{J}+1:\) IFJ \() 7\) THENB160
8095 60T08015
8100 INPUT＂＂；I：IFIK1ORIWITHENQ100
8110 IFC2\％（J）\(=1\) THENI2 \(=1\)
8120 IFC2\％（ J\()=2\) THEN \(11=1: 12=1\)
8130 IFC2\％（ J\()=3\) THENI \(1=1\)
8140 G0T08015
8150 IFJく2THEN8200
8160 PRINT2896，＂1）ITEK MUST MEET ALL CONDITIONS＂：PRINT＂2）ITEH
MAY MEET ANY CONDITION＂；：GOSUB60000：RS＝VAL（A\＄）：IFPS 10 RBS ）2THEN8 160
8200 PRINT＂SEARCHING ．．．＂：RS＝0： \(11=C 1 \%\)（0）：IFSP＝2THENPOKESC，P1：P OKESC +1, P2
8210 DS＝0；FORJ＝0T07
8220 IFC1\％（J）\(=-1\) THENJ \(=7\) ： \(60 T 08240\)
8230 IFJ1 \C1\％（J）THENJI \(=-2\)
9240 NEXT
8245 IFJ1－1 ANDJ1 \(\\) CHTHENCH＝J1；GOSUB1300
9246 IFJI \(=-2\) THENDS \(=1\)
8250 I＝I1－1：FORI3 \(=11\) TOI2： \(1=1+1\)
8251 IFDS＝0THENTI \(\$(\mathrm{CH})=1 \%(\mathrm{I}): 60 T 08255\)
8252 GOSUB1700
8255 AS＝0：FORJ＝0T07
8260 IFC1\％（J）\(=-1\) THENJ \(=7: 60 T 08345\)
8270 ONC2\％（J）GOTO8280， 8290,8310
8280 IFTI（C1\％（J））\(=(\$(\mathrm{~J})\) THEN8330
8285 60T08340
8290 IFTI \(\ddagger(C 1 \%(\mathrm{~J}))=\mathrm{C}(\mathrm{J})\) THENB330

8298 T＝LEN（C \(\$(\mathrm{~J}))-1:\) IF LEN（TI \(\$(C 1 \%(\mathrm{~J})!)\langle\) TTHEN8340
8302 IFLEFT \(\$(T I \$(C 1 \%(J)!\) ，\(T)=L E F T \$(C \$(J), T)\) THENQ330
\(830560 T 08340\)
\(8310 \mathrm{IFTI} \$(\mathrm{C} 1 \%(\mathrm{~J}))=\mathrm{C} \$(\mathrm{~J})\) THENES30
8320 G0T08340
9330 IFBS \(=2\) THENAS \(=1: \mathrm{J}=7\)
8335 60T08345
9340 IFES \(=1\) THENAS \(=2: \mathbf{J}=7\)
8345 NEXTJ
8350 IFAS＝OANDBS \(=1\) THEN8355
8352 IFAS〈〉1THEN8380
9355 IFDS \(=0\) THENGOSUP1700
8560 IFSB \(<>3\) THENGOSUBT300
9365 IFSB＝3THENGOSUP5000
8370 IFSR＝4THENGOSUR6000
9375 IF RS＝1 THEN \(\mathrm{I} 3=12\)
8380 NEXTIS
8390 PRINT：PRINT＂THAT＇S ALL＂：FORII＝1T0500：NEXT
8400 RETURN

\section*{Error subroutine number one．}

\section*{Print Formatting．}

10000 IFF \(\$(0)=\)＂ THEN 10040
10010 PRINT＂SAME FORMAT？＂；GOSUB60000
10020 IFA \(\$=\)＂Y＂ORA \(\$=" y\)＂THENRETURN
10030 IFA\＄く〉＂N＂ANDA\＄へ＂n＂THEN10010
10040 FRINT＂（L）LOAD FORMAT，OR（C）CREATE FDRMAT＂；；60SUB60000
10050 IFA \(=\)＝＂C＂ORA \(\$={ }^{\text {＂}} \mathrm{C}\)＂THEN 10200

10090 ON ERROR 60TO10170
10100 INPUT＂FDRMAT NAHE：＂；A\＄
10110 DPEN＂I＂， \(3, A \$+\)＂／FMT＂
10130 INPUTH3，NF
10140 FORJ＝OTONF：INPUT\＃3，F\＄（J）：NEXT
10150 CLOSE 3
10160 ON ERRORGOTOO：RETURN
10170 PRINT＂FORMAT NOT FOUND＂：GOSUP60000：RESUME200
\(10200 \mathrm{NF}=0 ; \mathrm{J}=0 ; \mathrm{F} 5(0)=\mathrm{n}\)＂
10210 CLS：PRINT＂Start in the upper left corner and mork across e ach line＂
10220 PRINT＂1：HEADING，2：ITEM，3：TAR，4：NEXT LINE，5：STRING，6：E ND＂：INPUTU1
10230 IFJK＜10RJ1＞6THEN10220

10250 ONJ160T010260，10260，10300，10300，10350， 10400
10260 FORT＝OTONH：PRINT \(128+(T+32)\) ，T +1 ；＂）＂；H\＄（T）：NEXT
10270 INPUT＂\＃HICH＂；T：T＝T－1：IFTイOORT \(\\) NHTHEN10270
\(1028060 T 010310\)
10300 INPUT＂HON MANY＂；T：IFT＜10RT\99THENPRINT＂OUT OF RANGE．＂：GOTO 10300

\(10320 \mathrm{~F} \$\)（NF）\(=\mathrm{F} \$\)（ NF ）\(+\mathrm{A} \$: \mathrm{J}=\mathrm{J}+2\)
10330 60T010380
10350 INPUT＂STRING：＂；\(A \$: A \$=A \$+n!"\)
10360 IFLEN \((A \$)+\mathrm{J} \geqslant 255\) THENNF \(=N F+1: J=0 ; F \$(\) AF \()="=\)
\(10370 \mathrm{~F} \$(\mathrm{NF})=\mathrm{F}\)（ NF ）\(+\mathrm{A} \$: \mathrm{J}=\mathrm{J}+\mathrm{LEN}(\mathrm{A} \$)\)
\(103 B 0\) IFJ \(\geqslant 252 T H E N N F=N F+1: J=0 ; F(N F)=" "\)
\(1039060 T 010210\)
10400 INPUT＂FDRMAT NAME：＂；As
10405 ON ERROR GOT010460

10430 PRINT\＃3，NF：FORJ＝OTONF：PRINT \(\$ 3, F \$(J)\) ：NEXT
10440 CLOSE？
10450 ON ERROR GOTDO：RETURN
10460 PRINT＂DISK ERROR＂：G0SUB60000；RESUME10400
20000 ON ERROR GOTD 20070
20005 DPEN＂R＂， 2, F\＄＋＂／DAT＂
20010 FORJ＝1TOFF
20020 D \(\%=0\)
20030 FORI \(=0\) TONH
20040 FIELD 2，D\％（J－1）\％T\％AS DU \(\$\) ，B\％（I）AS R（I，J）
20050 D\％\(=\mathrm{D} \%+\mathrm{BH}\)（I）
20060 NEXT I：T\％＝D\％：NEXTJ
20065 ON ERROR GOTO O：RETURN
20070 PRIMT＂DISK OR FIELD ERROR；PRESS A KEY TO TRY AGAIN＂：GOSUB 60000：RESUME 100
20100 PRZ \(=\operatorname{INT}((\) R -1\() / F F)+1\) ：RETURN


\section*{DOSPLUS}

\section*{What Does It Mean?}

\author{
by Alan J. Zett
}

Now that you've been presented with the pros and cons of DOSPLUS, the next logical step is to gain a better understanding of how to use it. Learning to use the features available in DOSPLUS to their best advantage can make your programming tasks a lot easier and less time-consuming.

Before you can attempt to use any of the new features, a thorough understanding of DOSPLUS responses to operator input must be attained. The most common form of a computer-generated reply is the error message. One of the first things you may have noticed when using DOSPLUS is the use of twoletter abbreviations for all DOS and BASIC error messages.

To avoid any further confusion, this month we present a list of DOSPLUS error messages explained.
/0 - Division by zero.
AD - File Access Denied: Password protected file.
AO - File Already Open: OPENing or reOPENing a file not previously CLOSEd.
BM - Bad file Mode: Accessing a disk file in a mode other than was specified when OPENed, or an invalid mode type.
BN - Bad file Number: Accessing a file buffer not previously OPENed, accessing a file buffer with a number higher than was reserved on entry to BASIC.
BS - Beyond Subscript error.
CN - Can't CONTinue.
DD - ReDIMensioned array.
DF - Disk Full: All free space on disk has been used.
DS - Direct Statement in file: Attempt to execute or manipulate a non-BASIC disk file from BASIC.
EF - End of File: End of file was encountered while accessing a disk file.
FC - Function Call error.
FD - Bad File Data (on cassette I/O).
FE - File already Exists: Attempt
to rename a file to the same name as one already in use.
FF - File not Found: An illegal or incorrect filespec was specified, or the file is not contained on the disk specified.
FL - Too many Files: All directory file entries have been used up. Even though there may be enough free space on the disk, there is no room left in the directory.
FO - Field Overflow: More bytes were allocated in a FIELD statement than were specified in the LRL (Logical Record Length - See March, 1982, SoftSide for more information) when the file was created or OPENed.
ID - Illegal Direct.
IE - Internal Error: An error in the DOS itself, or a disk I/O error.
IO - Disk I/O error: An error occurred between the disk drive and the computer during a file access. LS - String Length error. MM - Mode Mismatch: Attempt to access a file in a form other than was specified when it was created.

MO - Missing Operand.
NF - NEXT without FOR.
NM - Bad file Name: An illegal filespec was specified.
NR - No RESUME statement.
OD - Out of Data.
OM - Out of Memory.
OS - Out of String space.
OV - Overflow error.
RG - RETURN without GOSUB.
RN - Bad Record Number: A record number which is higher that the last record in the file, or a number less than one was specified. RW - RESUME Without error.
SN - Syntax error.
ST - String formula too complex.
TM - Type Mismatch error.
UE - Undefined Error: This error doesn't exist. Possibly an IE error. UF - Undefined user Function: An FN statement was encountered before a DEF FN statement was specified.
UL - Undefined Line number. WP - Write-Protected disk: Attempt to write to a disk that has the write-protect notch covered.

\section*{Your Adventures Will Start Here}
\[
\begin{aligned}
& \text { Subscribe to } \\
& \text { Adventure of } \\
& \text { the Month }
\end{aligned}
\]

The cost? A six-month membership is just \(\$ 29\) for the tape ( \(\$ 4.83\) per adventure) or \(\$ 49\) for the disk (\$8.16 per adventure). If you're not sure that you can take six full months of excitement, you can order a single tape for \$7 or a disk for \(\$ 10\). Or, if you're especially adventuresome, we're offering disks, packed with three great adventures, for only \(\$ 26\) per disk.

To order, use the card provided in this issue.

> Adventure of the Month 6 South Street, Milford NH 03055

See page 16 for ordering information.


APRIL ADVENTURE OF THE MONTH WITCHES' BREW ADVENTURE
You must find your way to the castle and rescue the Princess who is chained inside its dungeon. A tightlywoven blend of fantasy, horror, and science fiction, this complex adventure will challenge your wits and ingenuity.

\title{
Refware THESAURUS
}

\author{
A review by Kathleen E. Boucher
}

By David C. Whitney (Refware Software Division, David C. Whitney Associates, Inc.) System requirements: 48 K TRS- \(80{ }^{\oplus}\) Model I or III with two disk drives. Suggested retail prices: Nouns 1.0, \$39.95; Adjectives 1.0, \$39.95; Builder 1.0, \$149.95; each on disk with manual.

Anyone who has ever had the "pleasure" of writing a college term paper has had ample opportunity to become familiar with Roget's Thesaurus. Sometimes it's a real chore trying to find the correct word to fit into the context of your paper. Today, it is much easier to write a paper, letter, or presentation on a word processor, but there is still the fumbling around with the paperback or library edition of Roget's work. Now you can update your methods entirely with the Thesaurus programs designed to save time and improve efficiency.

Each of the three Thesaurus programs comes with a separate manual and a Model I disk. Should you wish to purchase only the manual to explore the possibilities of the programs, they are available separately. Each manual begins with a brief history of the original Thesaurus and Mr. Whitney's background. It proceeds in a very easy-tounderstand format that requires no programming knowledge on the part of the user. I went through the manuals completely before attempting to run the programs and found that when I actually started to use the programs they were not foreign to me. The manuals are designed so that the top of each page shows the user what the screen display will look like in that part of the program. Below that are full explanations of what this portion of the program accomplishes. I don't believe the manual could possibly be made any easier to follow.

When you order the Model III version the programs are sent on a

Model I disk "to improve the chance that your disk will arrive with no lost data." This was something I was not too familiar with but I now understand that loss of data is less likely on a singledensity disk. Converting them to run on a Model III required a bit of time as the files are extensive, but it is worth the trouble. Using a formatted disk, the Nouns program

> Right, No Error, Precise, True, Exact, Perfect, Strict, Regular, Melioration, Rectify...

uses 112 grans and the Adjectives program 113. Unless you have a double-density disk, there isn't any way to append the word lists to be contained on one disk. You must run either Nouns or Adjectives as the need arises.

\section*{THESAURUS: Nouns 1.0 and Adjectives 1.)}

When looking for a specific noun (or adjective), the program will search through the 6200 -word file (taking about two minutes) until it finds ten related words. If you wish to search for another group of words, you may instruct the computer to do so. You may get 10,20 ,
or even 30 alternates for each word you select and you will be told when it cannot come up with any additional ones.

You have the option of having just a listing of the words, or a listing of a sentence ten times in which a substitute word replaces your original word. You can also list your choice to the screen or the printer. I prefer to have a printout with the words in a sentence. Often seeing a sentence containing the word you're looking for is more helpful than the word list alone. My only suggestion for improvement on this option is that the sentences would be easier to read if they were doubled-spaced, especially when your sentence is quite long, as the printout wraps around. But this is a minor inconvenience that I can live with.

Another advantage to the Nouns and Adjectives programs is the ability to find words that are difficult to spell. If you wanted to use a word but couldn't remember how to spell it accurately, just think of a commonly-used (and easier to spell) synonym, and the computer will come up with the rest.

Both nouns and adjectives must be entered in singular form. If you use a plural the program will not be able to find any substitute. Neither nouns nor adjectives may be any longer than twelve letters or the computer will not accept them and will ask you to try again.

Some words that you may ask the Thesaurus to supply may not be accurate substitutes for the word you are looking for. An example is airplane. In this case, some of the words given are more a part of the airplane than an alternate for the word itself (e.g., fuselage, wing, etc.).

With files consisting of 6200 words, I'm sure there will be some I won't find, many I wouldn't need anyway, and the most commonlyused words will be available at my fingertips. I couldn't condemn this

\section*{TRS-80}
program for what words may be looking. . . is Roget's Thesaurus all-inclusive?

When trying to find a noun with the Adjectives program, and vice versa, the program will search, but not finding the word, will ask you to check your spelling. It does not have a default for this, but you know the difference between nouns and adjectives in the first place. I tried this test only to see if the program would choke up on misinformation.

The words in both the Nouns and Adjectives programs are cross-referenced well. If you get a list of ten words from the program, you could also select one of the ten and then get a listing with your original word included.

\section*{THESAURUS: Builder 1.0}

The Builder program consists of eight separate utility programs designed for and used to construct the Refware Thesaurus. Instructions are easy to understand and you need no programming experience in order to build your own specialized thesaurus. With this program, the user can design a thesaurus for a particular field, whether it be medicine, law, business, or any other specialized field.

A blank, formatted disk is used for your words file. It has the capacity for 620 word groups for a total of 6200 words. The first time you use this it will create a file called WORDS. If you want more groups of words, they are added to this file or you may add them to another disk.

Your word files consist of a record number (entry number) and group number. The record numbers are sequential and the group numbers are either 1 or 2 depending on which was entered first. Ten words are in each group, and the length of each word must not be more than 12 letters. If you would like a substitute that contains more than one word such as "set of rules" (for law), you would fill the spaces with a "\#'" (set\#of\#rules) and the problem is remedied.

Any user who constructs a specialized thesaurus is asked to submit it to the Refware division for evaluation with the intent of possibly marketing the product commercially with royalties paid to the author.

ALPHFILE automatically creates an alphabetic word file from your Builder program. It takes just over ten minutes to create an alphabetic file of 200 words (just over three seconds for each). The file will then break down and have a separate file for each letter of the alphabet and contain an alphabetic listing of your words. The group and record number are also included here in the event that you must make corrections or additions to your file later on.

In READALPH the computer reads the ALPHRED summary and pauses in between each alpha file and between every 55 lines. This is to give you the opportunity to change single sheets of paper if you want.

\section*{Disadvantages}

If you accidentally end the program before you are actually finished, the program cannot continue with just a CONT command. You must again RUN"، whatever the program name is. This is only if you instruct it to end. Otherwise, the program cannot ac-
-PRACTICAL•ORIGINAL•SINGULAR•SUPERB•UNUSUAL•

\section*{REFWARE THESAURUS}

INNOVATIVE READY-REFERENCE PROGRAMS
How many times have you racked your brain for just the right word when writing an important letter, report, or article? How many times have your ideas been misunderstood because the words you used didn't express your thoughts clearly and accurately?

Now, by using the remarkable new REFWARE THESAURUS programs, your computer can speedily find those words that are on the tip of your tongue but that you can't quite remember at the moment. And it tells you how to spell them!

Just slip a REFWARE THESAURUS disk into your disk drive. Then type in your sentences or paragraphs. The computer will quickly offer a variety of alternatives, retyping your sentences or paragraphs with substitute possibilities chosen from its multi-thousand word vocabulary. It displays the revised sentences on your monitor or types them on your printer as you choose, so that you can mull them over and choose the one that most accurately expresses what you REALLY mean to say.

Having helped thousands of writers learn to express themselves with clarity as editor of such publications as the World Book Encyclopedia the Encyclopedia Americana, and the Reader's Digest Almanac and Yearbook David C. Whitney has drawn on decades of editorial experience to prepare the revolutionary REFWARE THESAURUS programs, bringing the speed and power of the computer to the aid of anyone who wishes to improve his writing or speaking

In addition to the specific programs capable of substituting suggested alternate words for nouns and adjectives, REFWARE THESAURUS Builder enables engineers, physicians, lawyers, educators, business, physicists, chemists, and other professionals and specialists to develop their own in dividually tailored vocabularies of hard-to-remember technical words.

\section*{REFWARE THESAURUS Adjectives 1.0}

6,200 adjectives assist you in choosing the most accurate modifiers in your ads, letters, reports, and speeches.

\section*{REFWARE THESAURUS Nouns 1.0}

6,200 nouns suggest alternates for the names of persons, places, things, and ideas that you use in your writing and speaking.

\section*{REFWARE THESAURUS Bullder 1.0}

Series of eight utility programs enables the user to develop specialized computer thesaurus disk programs of hard-to-remember technical words and their alternates for personal use. Functions independently of Adjec tives and Nouns programs.
REFWARE THESAURUS User's Manuals: Complete descriptions of use of each of the above programs. Included at no additional charge with each of program disks listed above. If ordered separately, price of documentation is refundable upon receipt of order and payment for program disk
MINIMUM System Required TRS 80* Mod I or Mod III 48K with two disk drives. *A Trademark of Tandy Corporation

REFWARE* Reference software division David C. Whitney Associates, Inc. P.O. Box 451, Chappaqua, N.Y. 10514
- A trademark of David C. Whitney Associates, Inc

Specify Mod I( ) or Mod III( )

cidentally reboot while running. It cannot be disabled because the BREAK key and the CLEAR key are not operational. Short of rebooting, it will continue on until you give the END command.

Duplicates are not eliminated from the word file. If you use the same word several times, it will show up in your files. Even using the? for the dummy word will show in your ALPHFILE as "dummy," for whatever amount of times you actually used it.

I get aggravated having to use more disks than necessary. I do not like to change disks constantly in order to use my word file. Using my processor, the Builder program, and my words disks amounted to three disks. On a two-disk system, I found I had to keep removing one of them. In order to get past this obstacle, I again played with several of the invisible files. I found that if you copy C 5 from the Builder program to your words file you will not need to use the Builder program to utilize your words file. After getting into BASIC, all you need do is RUN"'C5 and your program will
start with the FIND utility of the Builder program. From there on, you need only concern yourself with that part. You don't need to swap disks to use your file, only if you wish to get into another part of the Builder program.

Each of the manuals advises the user not to try to list or modify the program. Well, no one can tell me not to do something and expect me not to! I immediately tried to list the program. No luck! All I got was some garbled statements which looked more or less like the REM statements in the manual itself. With the help of a couple of programmers and a little ingenuity, we not only got the word files to list, but also to print out. Great! Just what I always wanted! A printout of 6200 words. But wait, I thought. If I look at the printed sheet versus calling up each word to go through the program, I can see what all the words look like.

After carefully looking over many of the alternate words on the listing, I found that although some words don't have the alternates I would like, the majority of them are just
the thing. In comparing the listings to Roget's (not each one!), I found that many of them were either in the original Thesaurus or adapted from the original.

Although the concepts behind the Thesaurus programs are good, their actual operation leaves something to be desired. I found it to be a bit of a nuisance at first to get out of the word processor I was using, load in another disk, reboot and get into BASIC, find what I am looking for, then get back into DOS and my word processor. But then again, what do you do when that trusty thesaurus has been mysteriously removed from your desk?

Once I familiarized myself with the three programs, I actually tried working with them. They were not such a nuisance at all. A minute or two here and there is really worth it to find the appropriate word for your meaning. So, impress people with your unlimited vocabulary through the use of the Thesaurus programs. You'll surprise yourself with the amount of knowledge you will pick up as you go along.

Microproof

\section*{A review by David A. Kater}
by Phil Manfield (Cornucopia Software, Inc., P.O. Box 5028, Walnut Grove, CA 94596) Suggested retail prices:
Standard Microproof:
TRS- \(80^{\circledR}\) Models I and III
\(\$ 69.50\)
TRS-80 \({ }^{\circledR}\) Model II
\(\$ 149.50\)
CP/M
\$149.50
Apple \(\$ 69.50\)
Correcting Feature
\(\$ 60.00\)
Manual only
\(\$ 5.00\)
Patches for Electric.Pencil
or Scripsit/Superscript \(\$ 35.00\)
Other patches
no charge

A new breed of software has invaded the word processing scene. The market is flooded with spelling checkers: programs that simplify the process of editing and proofing a text file. Spelling checkers operate by checking each word in a text file against a built-in dictionary. Any word that is not included in the dic-
tionary is flagged as a potential spelling error. In more sophisticated forms, spelling checkers will also make grammatical corrections, hyphenate text, repaginate text, and more.

What a terrific boon for authors, typists, technical writers - anyone who uses word processing software. Imagine the joy of writing without worry, knowing that errors will be brought to your attention at the touch of a button. Well, it's not quite a one-button process, but spelling checkers DO take the drudgery out of editing a document.

Be wary of the advertising hype, though. Spelling checker programs are very useful, but they are not mind readers. They can't automatically change an incorrectly spelled word into the word you REALLY had in mind. And they have limited ability to catch correctly spelled words used in the wrong
context. For example, mistakes like 'I told you sew' will go undetected since each word is spelled correctly.

So why should anyone buy a spelling checker? Because these programs can unfailingly catch spelling errors in a few minutes that we might easily miss after countless rereadings. Any word that does not match our customized dictionary of words is brought to our attention for disposition. Spelling checkers can free us to concentrate on manipulating words and organizing concepts rather than fussing with spelling details. Sending a letter to an important business contact? Run it by your spelling checker first. It could save the day.

\section*{Microproof}

Microproof is one of the premier spelling checker programs for microcomputers and is available in
two versions: Standard Microproof and Correcting Microproof.

Standard Microproof works with document files created by a word processing program. Misspelled words are listed to the screen or the printer. Corrections can be made using the search feature of the word processor.

Correcting Microproof interacts directly with the word processing program, making it easy to correct errors and get back to writing. With Correcting Microproof, the corrections are made automatically and saved to disk after the editing session.

Microproof has been implemented on several different computer systems. This review covers Correcting Microproof as implemented with TRS-80 \({ }^{\circledR}\) Model I Scripsit on a two-drive system. Some details are specific to the Model I and Scripsit, but the overall operation is typical of all forms of Microproof.

\section*{A User's View}

Model I Correcting Microproof comes on a single diskette with files on both sides of the diskette. On Side One we find:

ADDTODIC/CMD - Add new words to dictionary
SPATCH/CMD - Program used to modify Scripsit or Superscript CORRECT1/CMD - Correcting program
CORRECT2/CMD - Correcting program
MICPROOF/CMD - Microproof M/CMD - Links MICPROOF/CMD to Scripsit
TEST/CMD - Verifies that diskette survived shipment (50 free grans)

On Side Two, there is:
EXAMPLE - Sample text file
DICT1 - Standard dictionary
DICT2 - Standard dictionary
DICT3 - User dictionary
(10 free grans)
The first thing to do with the Microproof package is backup the diskette. The user must move files around and change some of them; no need to take any chances of los-
ing a file. The original diskette should be stored in a safe place and the backup diskette used as a working master. Single-drive owners must have NEWDOS or access to a two-drive system to make the backups (Cornucopia Software will do this for a nominal charge).

Microproof is supplied with a TEST program to insure that the disk was not damaged during shipment. Use it on the working master.

\section*{Using the Program}

Now we are ready to proof a document. The operation of Correcting Microproof is quite simple. Once Scripsit has been modified with SPATCH/CMD, we are ready to test out the program; Microproof even provides a sample file for our trial flight. We start by loading the file EXAMPLE into Scripsit. Then activate Microproof with BREAK M EXAMPLE. After the file is saved to disk in ASCII format, the user is prompted to insert the dictionary disk. I keep all three dictionary files on the same diskette. If they are stored on separate diskettes, the system asks for them as needed.

The dictionary search is quite fast. Proofing times for typical documents range from 30 seconds to two minutes. This article was checked in about one minute. When the dictionary search is through, misspellings and typos are displayed on the screen. When the document disk is inserted again, Microproof takes us through the list one word at a time with the following options:
1. Correct the word immediately:

A word is corrected by simply retyping it. The corrected text is saved as CORRECT/TXT after we finish with the entire word list.
2. + - Add the word to the dictionary:

If the word is not really an error, it can be added to the dictionary and optionally coded as a noun ( n ), verb (v), adverb (a), and/or adjective (j). Sample entries:
\[
\begin{array}{ll}
+ & +\mathrm{a} \\
+\mathrm{n} & +\mathrm{j} \\
+\mathrm{v} & +\mathrm{nvj}
\end{array}
\]

The coding option allows for many of the common suffixes without taking up valuable disk space. One problem with the current program: if a word like grans appears on the list, there is no provision for immediately adding the coded root word gran to the dictionary. The user must make a note to manually add it later (see Utility Programs below). Words are added to the dictionary after the user runs through the entire word list.
3. ENTER - Leave the word alone:

There may be correct words like Phil or Bellevue that we don't want in our dictionary. Skip these words by pressing ENTER.
4. ? - View the word in context (correcting version only):

If we are not sure just what to do with a word like "sdxd," we can request to see it in context. This happens after all the words are accounted for and the dictionary is updated. Hence, the only options for a word seen in context are to correct the spelling or leave it alone.

\section*{5. ! - Exit the word list:}

Used to leave the word list before each word is checked.

These five options are easy to use. You can zip right through the word list with very little practice. After the word list is completed, the dictionary is updated and the user is asked to insert the document disk. Words in context are then displayed and corrected as necessary. The corrected document is then saved as CORRECT/TXT and loaded into memory for further editing with Scripsit.

\section*{Dictionary Maintenance}

Microproof supports extensive dictionary expansion. The Microproof dictionary is composed of three disk files: DICT1, DICT2, AND DICT3. DICT1 and DICT2 contain a standard 50,000 -word dictionary. DICT3 is used to add words for special applications. Currently, DICT3 is expandable to as much space as available on a single diskette (about 70,000 words). The

\section*{TRS-80}
easiest way to use DICT3 is to simply add words as they occur in all word processing endeavors. Heavy users run a small risk of running out of room on the diskette. If this becomes a problem, we can simply keep DICT3 on a separate diskette.

We can even keep a separate DICT3 diskette for each use of Scripsit. Sample categories might be: business correspondence, personal correspondence, medicine, engineering, microcomputer articles and reviews, insurance, club newsletter, real estate, law, etc. By keeping separate dictionaries for each of these applications, we can afford room for Aunt Sally in the personal file as well as words like grans in the micro files.

\section*{Utility Programs}

Cornucopia provides two utility programs to improve our control of dictionary maintenance. The ADDTODIC/CMD program lets us manually add coded or uncoded words to the dictionary. Just create a normal Scripsit file of these words and run ADDTODIC. It will add them to the dictionary. A sample file might look like:

SALLY
BYTE N
ENCOUNTER VN
FAST VNJ
where \(\mathrm{N}=\) noun, \(\mathrm{V}=\) verb, and \(\mathrm{J}=\) adjective

The second utility program is PRINTDIC/CMD. It transfers all the words in DICT3 to an ASCII format file named DICT3/SRC. This new file can be loaded directly into Scripsit and edited like any text file. (The carriage returns loaded in as Ms on my double-density system, but that was easily corrected by saving the file with: S,A DICT3/SRC then reloading it).

The DICT3/SRC file can be edited to your heart's content: delete words, recode words, etc. Then save the edited version as DICT3/SRC. To build a new dictionary, replace the current DICT3 file with the original one from Cornucopia, then run ADDTODIC to add the words from the edited DICT3/SRC file.

The ADDTODIC and PRINTDIC programs give us complete control over the growth of our personal dictionary. If and when DICT3 becomes too unwieldy, we can use Scripsit to edit out less-frequently used words or break DICT3 into smaller dictionaries for specialized applications.

\section*{Disk Storage}

Authors of spelling checker programs for the Model I computer are faced with the problem of limited disk storage. Manfield is to be congratulated for the data compression and coding techniques he used to cram 50,000 -plus words into about 68 K bytes of disk storage (One CP/M based spelling checker stores 45,000 entries in 136 K bytes). We single-density disk users are quite fortunate to have a program with tremendous word storage capacity on our puny systems.

Another master stroke in disk usage is having the program prompt for DICT3 if that file is not found during the dictionary search. This means we can keep DICT3 (our own dictionary) on a separate diskette. If desired, we could even keep a different dictionary for each writing application. So we have virtually unlimited word storage capacity.

There is one feature of the program I would like to see changed: Microproof's insistence on creating a duplicate copy of the text file on disk as CORRECT/TXT. This feature forces us to make sure in advance that there is enough room on the document diskette or the system diskette for CORRECT/TXT. A system diskette with the Microproof programs leaves about 20 free grans (you can squeeze 25 out of NEWDOS). As an author, I frequently write files that occupy more than 20 grans on the disk. Grrr.

My eventual solution to this dilemma was to designate a separate diskette as a working disk for the text file and CORRECT/TXT. When I wish to check a file, I save it on the working diskette. Using a write-protect tab on the system diskette forces Microproof to save CORRECT/TXT on the working diskette. A formatted diskette con-
tains 67 free grans which should be enough space for almost any application. This approach works like a charm with little inconvenience. Problem solved.

Those who have upgraded to double-density operation will wonder what all the squawking is about. Space is rarely a problem with double-density diskettes. And Microproof works fine with a variety of the operating systems necessary to use double-density on the Model I.

\section*{Limitations and Problems}

Spelling checkers are still in their infancy. Even though Microproof is very powerful, there are a few changes that would make it more user-friendly.

I am continually confronted with plural forms of words that should have been coded as nouns. My only options are to enter the plural form of these words which takes up space in the dictionary, or let the word stand in the text, then go back later and manually add the properlycoded root word to the dictionary. Why not give me the chance to add the coded root word to the dictionary when the error is first encountered? It would save a lot of headaches.

I would like to see the need for CORRECT/TXT eliminated. Unfortunately, Scripsit itself seems to be the source of the problem. It will only operate correctly from a fixed spot in memory, making storage of the entire corrected text in memory impractical.

I could only find a few minor bugs in this program. When viewing a word in context that happens to be in a header or footer, the display goes into double-width, making part of the text unreadable. You can be sure that this will be corrected promptly.

Another problem occurs when no corrections have been made to the text. In this instance, CORRECT/TXT is not a complete duplicate of the text file, but it is loaded into memory at the end of the proofing procedure. A careless user might mistake it for the original text.

\section*{Documentation}

I found the original Users Manual to be the weakest part of the Microproof package. Certainly, most of the needed information is in there somewhere, but I didn't enjoy wading through the material that didn't pertain to my system. The current 33 -page manual is an improvement. More emphasis is placed on setting up working diskettes and explaining how the program interacts with file storage.

Once I made peace with the file arrangement on the diskettes, I found the manual to be helpful. The manual addresses using Correcting Microproof, using Standard Microproof, adding words to the dictionary, and deleting words from the dictionary. The Appendices cover: files included with Microproof, working disk preparation, patching instructions, potential spelling errors, and examples of proofing a document and expanding the dictionary.

\section*{Customer Support}

The gestation period of this article was fortunately long enough to witness several important revisions
of Microproof. The program has been updated numerous times to respond to new versions of word processing programs, customer requests, and new operating systems.

Current TRS- \(80^{\circledR}\) versions operate under virtually every known operating system including DBLDOS, LDOS, DOSPLUS, NEWDOS 2.1, NEWDOS 80, and of course TRSDOS. There are versions for Scripsit on the Models I, II, and III and for Superscript, NewScript, Lazy Writer, Electric Pencil, and CP/M word processors like Word Star and maybe even the Apple by the time this article is in print.

Customer requests have prompted the addition of the correcting feature, seeing a word in context, the PRINTDIC program, the ability to edit unlimited pages on Model II Scripsit, and even separate manuals for the different versions of Microproof. Cornucopia was also most responsive to pleas for help via the phone.

As for their update policy, software revisions are free within one month of purchase and only \(\$ 10\) thereafter. New manuals are \(\$ 5\) if there are any pertinent revisions. Cornucopia Software clearly intends to support their customers.

\section*{Electric Webster}

Speaking of support, Cornucopia has just announced their newest product, Electric Webster. It features greater proofing speed, dictionary lookup to locate correct spellings, and optional grammatical checking and hyphenation.

The cost is \(\$ 89.50\) but it is free to Microproof owners who purchased after Dec. 1, 1981, and \(\$ 35\) to other Microproof owners.

\section*{Summary}

Spelling checkers will change as end-users think up more and more uses for them. We will see improved search times, better handling of homonyms, automatic correction of common mistakes, statistics like total word count and frequency of words, and a host of improvements we can only guess at now.

But there is no need to wait if you have need of a spelling checker now. Microproof has taken a bold step toward automating the editing process. With the support offered by Cornucopia and the innovation already evidenced by Manfield, Microproof and its offspring promise to continue as leaders in document proofing software.

\section*{Hexspell}
by Bernard J. Hughes (Hexagon Systems, P.O. Box 397, Station A Vancouver, B.C. Canada V6C 2N2) Requires 48 K TRS \(-80^{\circledR}\) Model I or III with two disk drives. Suggested retail prices: Hexspell 2 program \$99, Manual only - \$12 Hexspell 1 upgrade - \$35
"What will a computer do?", I asked. The answer came from the salesman without hesitation, 'Well sir, it'll do anything you tell it to do!'"

His answer was a bit of an overstatement, at least in 1978. The microcomputer revolution was in its infancy. Software was very limited in scope and available only from the hardware vendors. First-generation word processing software was nowhere to be found. Most pro-
grammers were busy cutting their teeth on a better Star Trek or Hunt the Wumpus.

Microcomputer software has come a long way since then. The challenge of today's micro user is not HOW to acquire software, but WHICH program to choose. The aftermarket has literally exploded with software for business applications. Programming has achieved a high level of sophistication, in some cases rivaling state-of-the-art software on large computer systems.

The Hexspell 2 spelling checker continues this trend of increasing sophistication and utility. Most importantly, it truly applies the principle for which the computer was devised: to enhance the user's abilities relative to a given task. In this case, the task is proofreading a
document.
Hexspell checks any text file for spelling errors. It alerts the user of potential errors, then saves the corrected file. It provides an extra measure of insurance against shoddy-looking communications.

\section*{Documentation}

The first thing one discovers about Hexspell is, of course, the documentation. Reading the manual is traditionally the most abhorrent part of installing a new program. Computer "experts", can often skip some of the mumbo jumbo; newcomers can't. Fortunately, Hexagon Systems makes the learning process easy for novice and journeyman alike. The 24-page manual is EXTREMELY well
organized and easy to use. We were pleased to find that it clearly explains each step of program use including the process of altering the program for individual needs.

The manual includes sections on using the Hexspell program, altering Hexspell features with the control file, extending the dictionary or creating a new one with the Clear program, using foreign languages, typical user questions and answers, and an index.

Nearly every section starts with an introduction - very important for first-time users. The manual does a particularly good job of getting the user up and running. It also explains how to use the program for several different system configurations.

\section*{Operating Hexspell}

The program is activated by typing HEX SPELL. A document is selected for proofing, and the user is prompted to insert the dictionary diskette.

The text scrolls up the screen so that the user can visually review the document right along with Hexspell. The user can interactively vary the speed from 0 (peddling as fast as it can) to 9 (dead stop).

Each word in the document file is checked against the roughly 4,000 words in memory and then against the SPELL/LST and SPELL/EXT files respectively on disk. If there is no matching word in the dictionary, then the word flashes on the screen and we are given three options:
(S) Skip this word and continue proofing.
(R) Replace this word with a correct spelling.
(L) Learn the word (i.e., add it to the dictionary).
(S) If the word is so outrageous that you don't intend to use it again (e.g., vavavooooom), just skip the word by pressing S .
( R ) If it is clearly misspelled (e.g., compewter), press R then retype the word. Hexspell will immediately check this new word to make sure we aren't trying to pull a fast one. If it passes the test, the proofing continues. Otherwise we are given the same three options for the new word. This immediate check is a
neat feature. It allows us to guess at a correct spelling without running to a paper dictionary.
(L) If the word in question is spelled correctly, we can add it to the dictionary by pressing \(L\).

When we are finished checking the document file, the total word count and number of unrecognized words are displayed. If changes were made, the corrected version is automatically copied to the original document. We are then given the option of proofing another document. At the end of the proofing session, the user may delete any words from the dictionary. This means a quick scan of the list of added words that have been accumulating on the printer (one of the print options). The program ends by updating the dictionary files on disk.

\section*{Hexspell vs. Batch Programs}

Batch word proofing programs operate a bit differently from Hexspell. They break the proofing process into two operations. The text file is first checked against the dictionary while the operator takes a coffee break. Then a word list of potential errors is displayed, and the user decides what to do with the flagged words. The words are not typically displayed in context.

The dictionary search is faster in the batch programs, but the overall time to proof a document AND correct errors is about the same for both methods. We found that seeing the text during the dictionary search is preferable to the out-of-context approach used by some spelling checkers.

\section*{Bright Student}

Hexspell stores up to 4,000 words in memory, and up to 25,000 words in two files on a single-density diskette (more on double-density systems). Hexspell uses a unique method of customizing this dictionary to the user's vocabulary. As a document is proofed, fre-quently-used words are moved toward the front of the dictionary. Unused words work their way to the back. Thus, the dictionary eventually sorts itself in most-used to leastused word order. The more Hexspell
is used, the more it adapts the word list to the user's vocabulary. This speeds up the proofing process considerably.

Newly-added words are placed at the front of the dictionary. If the dictionary ever fills up, the leastused words are dropped off the end of the dictionary to make room for new ones. In this way, the 29,000 -word capacity will automatically adjust to the user's vocabulary without carrying a lot of dead weight. Users with large vocabulary requirements can get the most out of the storage capacity by keeping separate dictionaries for different word processing applications.

The main disadvantage of this dynamic dictionary approach is one of time. There are plenty of common words not included in the original dictionary. Be prepared to spend time training Fido to speak your language.

\section*{Auto Learn}

Users with a radical vocabulary including scientific formulas or technical jargon can use the powerful Auto Learn feature. Simply create a file containing a list of new words, and turn on Auto Learn. Hexspell will learn every word in the file. Of course, the new word list should be checked carefully before being force-fed into Hexspell's dictionary. We don't want to turn out a poorly-educated spelling checker now, do we?

The Auto Learn feature can also be used to teach Hexspell a foreign language. The Clear program should be used first to clear out the current dictionary.

\section*{Customization}

Hexspell's greatest asset is its versatility. With a few keystrokes, we can aiter many of the default parameters of the program. Step right up and choose your operating system, or change default values like printer options, alternate character set (for Model III), auto learn (on/off), extended word list (on/off), input file name, and word file name.

We can even change what Hexspell does with each of the 256

ASCII codes as they are read from the document file. This feature allows special handling of hyphens, apostrophes, lower case, numbers, formulas, and more. For example, some folks might use a hyphen "--" to underline chapter headings. Standard Hexspell will stop at every heading, displaying "---------" as a misspelled word. Not very amusing. But a simple change to the control file causes control file causes Hexspell to consider the hyphen as a word separator (like a comma or space) instead of part of a word. That's all it takes.

\section*{Problems}

The user can give the corrected document any valid file name. This can be a useful feature, but it is too easy to misuse. If drive 0 happens to
be full (and it will be full if you are using the extended dictionary SPELL/EXT) and you forget to add " \(: 1\) " to the corrected document file name, the program will abort. Hexspell hasn't been on the market long enough for bugs like this to be fully worked out.

Hexspell does a tremendous amount of disk access while it is adjusting to the user's vocabulary and word usage. Thus, it is very good at finding weak spots on a diskette. Double-density users would be well advised to use quality diskettes and keep their disk heads clean.

We had trouble getting the extended list (SPELL/EXT) to work reliably for quite some time. It turned out that one particular word inexplicably caused the program to continually abort. But where there is
a will, there is a way. We used the control program to disable the /EXT file, taught the program the problem word, then reenabled the /EXT file. We haven't run into a problem since.

\section*{Summary}

In Hexspell 2 we see the computer fulfilling its promise. It completes a task in a matter of minutes that is time-consuming and redundant for us humans. For some reason, the ability to correctly spell even the most common words of the King's English escapes many of us. A properly-tutored Hexspell program can free us from that drudgery. Hexspell 2's flexibility and ease of use makes it a worthy addition to one's word processing library.

\section*{NewScript Version 6.1}

From Prosoft, Box 839, North Hollywood, CA. For TRS-80 \({ }^{\circledR}\) Models I and III. Suggested retail price: disk - \$99.95.

The search for the perfect word processing package is never-ending. It's usually necessary to weigh the features you want against the features available on any particular package, and somewhere in there, price plays a major part in the decision. The TRS- \(80^{\circledR}\) owner can choose from many packages on the market priced from \(\$ 19.95\) to \(\$ 199.95\). NewScript Version 6.1 is priced right in the middle at \(\$ 99.95\).

NewScript 6.1 is supplied in separate but compatible versions for the TRS- \(80^{\circledR}\) Models I and III on a ready-to-run TDOS (TinyDOS is a derivative of DOSPLUS) disk. The program is compatible with TRSDOS, DOSPLUS, NEWDOS80 or LDOS, but there really is no need to transfer the program off of the TDOS disk.

\section*{Customizing NewScript}

The first time you run the program you are presented with a series of menus that allow you to customize your NewScript disk. The first menu lists all of the special

printer drivers that are available. The author has thoughtfully provided special drivers for the following printers: Centronics 737/ ATARI \({ }^{\circledR} 825 / R S\) LP-IV, Centronics 739, Epson MX-80, MX-80 with Graftrax, MX-100, MicroLine-80/82/83, Anadex 9000/9500, Anadex 9001/9501, Modified Selectric Typewriter, RS Daisy Wheel-II, Diablo 1620/C, Itoh Starwriter, and the NEC SpinWriter. This feature allows NewScript to use all of the special features that are unique to your particular printer. If your printer is not
on the list, NewScript uses a default printer table such as you would find on Electric Pencil or Scripsit.
(A newer version, NewScript 6.2, supports the NEC 8023 dot-matrix printer and the Prowriter. The 6.3 version also allows you to use Microproof with the correction feature. Priced at \(\$ 149.95\), this version fills a complete Model III disk, thus necessitating two disk drives. It is suggested that purchasers return the registration post card; the author periodically offers low-cost updates to the program.)

The second menu of NewScript
6.1 allows you to specify how your printer is attached. It supports parallel printers (the assumed default), serial printers using the RS-232 port, and serial printers using the TRS-232 interface from Small Systems Software.

The third menu is to be used should you wish to move NewScript to a different Disk Operating System (but why bother?). There are six DOS choices to pick from.

At this point all of your choices are permanently recorded on your diskette for future use. You can, of course, make changes at any time, but in most cases you will not be bothered by these three menus again.

\section*{Four Programs in One}

As a previous user of Scripsit, my first reaction to NewScript was - it looks clumsy! The first look through the 180 -page manual shows that NewScript is actually three separate BASIC programs held together by a fourth program.

NS/CMD is the Machine Language program that handles all of the switching between the other programs. This allows the fact that the two main programs are written in BASIC to be well hidden. Other functions taken care of by this module are a 32-character typeahead feature, a user-adjustable auto-repeat, a lower-case driver for the Model I, a string compression indicator, and the ability to insert into your text any ASCII character that your printer can handle. This means that NewScript can imbed GRAPHICS into your text.

EDIT is used to enter and revise text, as well as save it to disk. A line can have up to 255 characters on it, however, you may view only 60 characters at a time. Unlike Scripsit, the screen does not automatically scroll horizontally. If you wish to set up a chart of 132 characters across, for example, you use the View command to specify which 60-character section you wish to see at a particular time. Normally, the text automatically wraps around at the end of the line (at the 60th character or at the end of the word prior to the 60th character). You never have to hit ENTER at the end of a line of text, so you can just keep
on typing. The extended line is only needed to do charts, etc.
In the EDIT mode, the screen is divided into four sections. The top line is called the Command Line, the left-most column is called the LIMA (the LIne Manipulation Area), the bottom line is used for a Character Grid (this can optionally be turned off). The middle 14 or 15 lines (depending if you use the Grid) is the text area. This is where most of the action takes place.

The LIMA is a powerful, simple-to-use editor. This editor is very useful for any manipulations that involve the whole line such as deleting one or more lines, inserting one or more lines into the text, moving a line or replicating a line elsewhere in the text.

To use the main editor place commands in the Command Line. There are 56 commands for doing text manipulation from the Command Line. It is possible to do word location, global search and replace, search and delete, etc.

One of my favorite commands is appropriately named Whoops. This command allows you to make changes on the screen and then after thinking better of them, cancel them with one key stroke.

The main editor is capable of working with 400 lines of text in memory at a time. At first this seems a bit limiting, but there are two extra commands that allow you to handle a document of any size. The first is the IMbed command. Followed by a file name, this command will insert the entire named file at a specified point, and then continue with your text when printing. The second command is the Append command. Placing this command at the end of a document followed by a file name, will append the next document without stopping during the printing process.

SCRIPT is the text formatter printing program. You enter almost all of the commands it uses while in the Edit program. The main purpose of the Script program is to format and print a document to your specifications. To do this task, Script uses 45 commands of its own, plus nine additional escape sequences to control your printer. These commands control the page format by margins, justification,
spacing, pitch, automatic indentation, various titles and automatic page numbering.

When Script is running there are an additional 10 run-time options which can make changes just for that one printing session, without saving the changes to disk. These options include double or triple spacing, extra copies, printing just the third page, etc. The program also supplies a unique mini-edit mode that allows you to delete, replace and insert lines during the printing session.

INDEX is a program that will sort (alphabetize) and merge words and phrases that you have marked as key words while creating your document. This feature makes it quite simple to provide easy references for medium to long documents.

\section*{NewScript in Use}

From the description above, it would seem that NewScript is very complicated to use. Not really. In fact, if you do not already have the operating procedures for one or more word processors already committed to memory, I would say that NewScript is probably one of the easiest and most logical to use.

The manual has a How-To section which makes it easy to learn how to do: form letters with variables supplied from your mailing list, mailing lists, titles, indices, predefined standard setups, hanging indents and long documents. The power that is in this package can only be equalled by purchasing several software products at a far greater total cost.

I do not consider myself an accomplished author. In fact, the last time I wrote anything like this was probably a high school book report. (I think I got a \(\mathrm{C}+\).) But every now and then I come across a product that is great and nobody seems to know about it. The reason for this review is that I use and appreciate NewScript. If you are looking for a word processor for your TRS-80 \({ }^{\circledR}\), or you're not satisfied with the limitations placed on you by your present word processor, I firmly believe that you get more than your money's worth from NewScript. Thank you, Chuck Tessler, for a great word processor and keep on improving it.

\section*{NEW PRODUCTS}

\section*{MENLO SYSTEMS}

3790 EI Camino Real, Suite 221
Palo Alto, CA 94306
(415)327-7424

Autoplot from Menlo Systems opens powerful high-resolution graphics capabilities to the owner of a Radio Shack 48 K TRS-80 \({ }^{\circledR}\) Model I/III microcomputer with one disk drive. Using an Epson MX-80 or MX-100 printer with GRAFTRAX as output device, this curve-plotting program creates graphs of professional quality, with a resolution of \(480 \times 192\) dots.

Autoplot is written in Disk BASIC, enhanced by fast Machine Language routines in high RAM. Data points are entered with a small user-written BASIC subroutine. A few program lines are sufficient to calculate mathematical functions, request input from the keyboard, or read data from a disk file (i.e., Visicalc or Scripsit file.) Many options can be selected with some extra keystrokes. Autoplot does all the rest automatically in minutes.

By selecting options, the user can override the automatic sealing of the axes, plot continuous curves or separated markers, choose linear or logarithmic presentation, request a grid overlay, compute derivatives or integrals, plot more than one curve, or select from four different print sizes and formats.
Despite its power and versatility, Autoplot is extremely easy to use and comes with a 45 -page manual. Autoplot is available on disk for \(\$ 79.50\). A version for the LNW-80 at \(\$ 99.50\) displays the graph in full resolution on the video monitor, before it is printed.


\section*{CUESTA SYSTEMS INC.}

\section*{3440 Roberto Court}

San Luis Obispo, CA 93401
(805)541-4160

Computer Insurance - The Datasaver from Cuesta Systems Inc. safeguards the time and information invested in high technology systems by protecting electronic equipment against unexpected power failures or sudden surges that can cause many systems to fail. The unit, priced from \(\$ 395\), is available immediately.

SYBEX
2344 Six Street

Berkeley, CA 94710
(415)848-8233

From Chips to Systems: An Introduction to Microprocessors is a brand-new, beautifully illustrated book written for all owners and users of personal and business computers. This book carries the reader on a fast-paced journey through the world of microprocessors explaining what a microprocessor is, what it does, and how it does it.

From Chips to Systems, written by Rodnay Zaks in a vivid, direct style, will quickly show the reader how easy it is to understand the microcomputer technology which is already changing the shape of the future. Rapid advances in technology have made it possible for all of us to look forward to using a personal computer to enhance and improve the quality of daily life.

This book, priced at \(\$ 14.95\) is a comprehensive reference tool which is required reading for anyone who wants to have an inside track on the technology which is revolutionizing the future.

In an effort to inform our readers of new products, SoftSide welcomes your company's input to this section. Send all information to:

SoftSide Publications 6 South Street Milford, NH 03055

\section*{GAMMA SOFTWARE}

\section*{P. O. Box 25625 \\ Los Angeles, CA 90025 \\ (213)473-7441}

Hockey is a high-speed action game for a 16 K ATARI \({ }^{\oplus} 400 / 800\) and is available on cassette or disk. This Assembly Language game makes use of high-resolution color graphics and generates a variety of sounds including music and crowd noise. It offers nine different game options.

Hockey is played on an enclosed rink, with scoreboard including clock overhead. The game is for two, three, or four players, who use joysticks as controllers. The three-player version is a novelty in which two players team up against the third.

Offensive players carry the puck, pass and shoot. Defensive players steal the puck and intercept passes. Goalies block and clear shots on goal.

An advanced feature of the game is the inclusion of "smart" players who perform automatically. In case of a tie after regulation time, the game goes into sudden-death overtime.

Both cassette and disk versions sell for \(\$ 29.95\).


\section*{THE ALTERNATE SOURCE \\ 1806 Ada Street \\ Lansing, MI 48910 \\ (517)487-3358}

A new software package, the Automatic Density Recognition for NEWDOS/80 2.0, solves the number one complaint expressed by users of that popular system - the elimination of manual manipulation of the PDRIVE parameters when using various combinations of single- and double-density diskettes. Interested users may request information on the Automatic Density Recognition package by asking for the "DDSD flyer."

DDSD was designed by Allan J. Domuret, noted author for many popular computer magazines. DDSD is no more complicated than executing it from DOS READY. No disk ZAPs of any kind are required. DDSD can even be an "AUTO" file executed every time the user boots the system. This program functions with all TRS-80 \({ }^{\circ}\) DOS systems and will not adversely effect fast CPU clock systems. DDSD will load itself at top of available memory, respecting any and all programs present and is compatible with both Models I and III.


The December, 1980, SoftSide boasts 11 feature programs, a couple of short routines, articles and reviews. This issue contains Developing Database Part 4.

For the TRS-80 \({ }^{\circledR}\) : Kidnapped, an adventure; Missile Evasion; Word Problems; Command; and Space Dodge whose ATARI \({ }^{\circledR}\) version is also included. Other ATARI \({ }^{\circledR}\) programs: Speedello, an Othello-like game; and States and Capitals. Apple programs: Baseball, Connect-A-Dot, and Christmas Card.

While they last, copies of the December, 1980, issue of SoftSide are available for a mere \(\$ 3.50\). For a bit more we'll include a cassette ( \(\$ 9.95\) ) or disk ( \(\$ 14.95\) ) containing all the programs for your computer that appear in the issue. Remember to specify what computer you use when ordering the magazine and media combinations. Order now and prepare yourself for yet another magazine full of top-notch software for you and your family to enjoy.
See ordering information on page 16 .

\section*{Advertiser's Index}
Amp Recordings ..... 65
Apparat, Inc ..... 17, 81
Automated Simulations ..... 32
Continental Adventures ..... 60
Diversions ..... Cover II
Icom ..... 33
National Computer Shows .....  1
Northeast Expositions ..... 4
Refware ..... 87
SoftSide ..... 10, 85, 96, Cover III
Strategic Simulations ..... Cover IV
The Software Exchange ..... 20

MEIINNE LIEII
ハIIIIII



\section*{STOP TYPING!}

\section*{Get Instant Enjoyment from SoftSide's programs with SoftSide's Cassette Version (CV) and Disk Version (DV)!}

Our media editions let you spend less time TYPING - and more time USING the fine software that SoftSide brings you every month. And we let you choose the version you want.

\section*{Cassette Version (CV)}

SoftSide's Cassette Version (CV) offers you an inexpensive way to enjoy our programs without hours of typing or hunting for errors. All programs are tested and ready to go!
CV gives you the programs offered for your system each month in SoftSide on a tape, plus the magazine itself 12 magazines and 12 tapes per year for just \(\$ 75\).

\section*{Disk Version (DV)}

DV contains a BONUS program for your system on the disk in addition to the other programs available that month. Only the documentation for the bonus programs will appear in SoftSide magazine, NOT the code. The bonus programs will be of every conceivable type - multiple and Machine Language programs, modified languages, ongoing modular programs and software so extensive, it would take an entire issue of SoftSide just to print the code.

Feel like you're missing something? You are. Don't wait to take advantage of our offer - 12 magazines and 12 disks for just \(\$ 125\) a year. For orders outside the U.S., add \(\$ 50\). For your convenience we also offer an installment payment plan for MasterCard and VISA holders: Pay just \(\$ 32.50\) per quarter (a total of \(\$ 130\) which includes a \(\$ 5\) billing charge).
To order, use the card provided in this issue.



THE BATTLE OF SHILOH: A brigade-level simulation of the first grand battle of the Civil War, pitting the Confedderate Army against Grant's troops and Union gunboats.


TIGERS IN THE SNOW: Ghostlike Nazi Tiger tanks and infantry sweep across the dark, frozen forests of the Ardennes against a surprised U.S. force in this division/ regiment-level simulation of Hitler's last desperate attack

APPLE ANID THE ThS-80\%

We know it hasn't been easy for you TRS-80 \({ }^{\circ}\) owners to see so many great made-for-Apple-only games from SSI pass you by. But then, it hasn't been easy for us to design games for a 16 K cassette format good enough to meet our critical standards.

After all, we've got a reputation to protect, a reputation in strategy gaming for unsurpassed sophistication, innovation, realism, and playability.

Well, our designers have been hard at work, and we've not only met but surmounted the challenge. We're delighted to announce two historical wargames - deserving of the SSI label - for both the Apple \({ }^{\oplus}\) and the TRS- \(80^{\circ}\) (16K cassette for the TRS-80 Model I and III; 48K disc for Apple II with Applesoft ROM card).

Combining our extensive war-game-design experience and superior programming techniques, we've given a fresh new look and feel to these favorite classic battles.

At \(\$ 24.95\) each for TRS-80 cassette and \(\$ 39.95\) each for Apple disc, these are extraordinary games at quite an ordinary price.

So head on down to your local store and check them out today!

VISA and M/C holders can order by calling 800-227-1617, ext. 335 (toll free). In California, call 800-772-3545, ext. 335.

To order by mail, send your check to: Strategic Simulations Inc, Dept. SS-1, 465 Fairchild Drive, Suite 108, Mountain View, California 94043.

All our games carry a 14-day money-back guarantee.```


[^0]:    "Great magazine, gets better each month. More programs that use the special graphic (ATARI $\left.{ }^{( }\right)$will help - its easy to copy TRS-80 ${ }^{\circledR}$ \& Apple.

    Game Reviews are great - BUT NEED one or two pictures of the game in action!!!

    Hope with the addition of TRS-Color that there won't be less of the three already: (Programs) Home Finance package with Graphics for Graphs would also be nice. What are you going to do when Microsoft comes out for ATARI ${ }^{\oplus}$ ? Two Languages?’’

    John R. Low
    Portland, OR

[^1]:    Error－handling routine．（Line 20090 is changed．）

