Sofide
 VOLUME TWO • NUMBER ELEVEN • AUGUST 1980

This month: Fly a SAILPLANE and soar to new heights!

Race with the wind - CARIBBEAN CRUISING - our SAILBOAT feature.

Armchair GOLF can be challenging. No golf bags to carry!

Be a professional race car driver and try the GRAND PRIX!

Also - Sound for your computer, games to challenge your mind, graphics features of the most popular computers, and programming tips from the pros!

From Harvard Pennington, Scelbi Publications, SoftSide Publications, Dr. David Lien and many more!...

Sargon Handbook
by Dan and Kathe Spracklen
\$15.95 plus \$1
The BASIC Handbook by Dr. David A. Lien
\$14.95 plus \$1
Z-80 Instruction Handbook
by Scelbi Publications
$\$ 4.95$ plus $\$ 1$
The Little Book of BASIC Style by John Nevison
$\$ 5.95$ plus $\$ 1$
TRS-80 Assembly Language Programming by William Barden, Jr.
\$3.95 plus \$1
APL - An Interactive Approach by Gilman and Rose
\$15.50 plus \$3
Introduction to TRS-80 Graphics by Don Inman
\$7.95 plus \$1

Learning Level II

by Dr. David A. Lien

Z.80 Software Gourmet Guide and Cookbook

from Scelbi Publications
\$14.95 plus \$1
TRS-80 Disk and Other Mysteries by Harvard Pennington
\$22.95 plus \$1

TRS-80 Interfacing

by Jonathan Titus

Secret Guide to Computers

 by Russ Walters$\mathbf{\$ 8 . 9 5}$ plus $\$ 1$
$\$ 5.95$ plus $\$ 1$
6502 Gourmet Guide and Cookbook from Scelbi
\$10.95 plus \$1
Introduction to Low Resolution Graphics
from Scelbi Publications
............................... $\$ 7.95$ plus $\$ 1$
Z.80 and 8080 Assembly Language

Programming
by Kathe Spracklen
\$7.95 plus \$1
Pathways through the ROM
from SoftSide Publications
\$15.95 plus \$1
Personal Information Management
System (PIMS)
$\mathbf{\$ 9 . 9 5}$ plus $\$ 1$
Calculating in Basic
............................. $\mathbf{\$ 7 . 9 5}$ plus $\$ 1$
Understanding Microcomputers
....... \$9.95 plus \$1
Take my computer . . . Please
Learn Micro Computers
$\$ 5.95$ plus $\$ 1$
............................... . $\$ 14.95$ plus $\$ 1$
Microcomputer Potpourri
\$2.95 plus \$1

TABLE OF CONTENTS

SOFTSIDE • VOLUME TWO • NUMBER ELEVEN • AUGUST 1980

ARTICLES

15 HOW MUCH COMPUTER DO YOU NEED? Blank
22 GRAPHICS FOR THE S-80, APPLE AND ATARI Explanation of graphics on each machine Staff

56 KEYSTROKE KARNIVAL

The poor man's joystick . . .
YOU CAN HAVE SOUND

Sound routines for the Apple, Atari, and S-80 Cross, Bouchard

PROGRAMS

```
26 SAILPLANE
Soar to new heights . . . . . . . . . . S-80; Nunn
30 CARIBBEAN CRUISING
Sailing in the wind . . . . . . . . . . Apple; Pelczarski, Klink
34 PRO TOUR '80
Golf: can you break par? . . . . . . . . . . S-80; Bohlke
38 MASTER'S GOLF
Golf, for the Atari too . . . . . . . . . . Atari ; Bohlke
42 ROM the ROBOT, part three
Rom on parade . . . . . . . . . . Apple; Smith
48 MAZE SEARCH
Catch the demons lurking in the maze before time runs out . . . . . . . . . . Atari ; Bohlke
50 GRAND PRIX
Can you beat the expert's time? . . . . . . . . . . \(S-80\); Chauvet
52 CONCENTRATION
New concept for an old game - animation . . . . . . . . . . Apple; Kirk
54 STRATOBLASTER OUTPOST
You are the earth's last defense
Atari ; Bohlke
```

HEAVY STUFF - (beginners beware!)
8 GARON'S GOODIES
Fiddling with VARPTR $S-80$; Garon
14 FOUR-OH-ONE-SIX
An address for the machine language programmer to remember S-80; Lord, Jayavant
24 MOD-PROG
A short routine that allows you to make easy program changes Apple, $S-80$; Hanlin,
Garon, Pelczarski
64 SAVE YOUR CRASHED SCRIPSIT
Recover your text after an unexpected reboot S-80; Blank
DEPARTMENTS

4	EDITORIAL Pelczarski
6	OUTGOING MAIL Garon
10	INPUT from our readers
13	S-80 PROGRAMMING HINTS from our readers
16	PRODUCT REVIEWS Garon, Blank, Pelczarski
17	APPLETHINGS Pelczarski
17	BUGS, WORMS, AND OTHER UNDESIRABLES Pasa
24	ONE LINERS from our readers

Lester Anderson
Donna Bennett
Brian Berkebile
Diana Bishop: Suhscriptions George Blank Atari submissions Richard Bouchard Joseph Breton Suzanne Breton Philip Brown Clif Campbell

Nancy Chase
Elaine Cheever
Brenda Cookinham
Donna Cookinham
Pam Demmons
Mary Edwards:
Softuare information
Linda Fedas
Phoebe Fensterman
Karen Fissette
James Garon:
S-80 submissions
William F. Gollan :
Advertising Director
Sheila Jahnle:
Donna Jean
Bette Keenan:
Customer service
Bea Kimball:
Shipping
Rick Koch
Kathy Maloof
Thomas Marshall

Donna McMahon
Lance Micklus
Doris Miller
Lauri Miller:
Glen Ohlund
Mark Ohlund
Mark Pelczarski:
Apple submissions
Mary Reed
Advertising
David Robitaille
Elizabeth Robitaille
Roger Robitaille Sr Publisher
Eric Skyten
Richard Taylor
Jack Torres :
Hardware
Information
Anmar Williams
Gary Young

SoftSide is published each month by SoftSide Publications, 6 South Street, Milford, New Hampshire 03055. Telephone 603-673-5144. Subscription rates: USA Bulk Rate $\$ 18.00$ per year. USA First Class, APO, FPO, Canada, Mexico, Overseas surface mail - $\$ 25.00$ year. Overseas Mail $\$ 30.00$ year. All remittance must be U.S. funds. Mail subscription inquiries to SoftSide Subscriptions, P.O. Box 68, Milford, New Hampshire, 03055. Entire contents copyright 1980 SoftSide
Publications. All rights reserved.

SoftSide Publications
6 South Street
Milford, New Hampshire 03055
Controlled Circulation Pending Milford,
New Hampshire.

Surprise! If you haven't already noticed, what was a tiny little magazine for your TRS-80 or Apple, depending upon your previous vantage point, is now a real size magazine for the TRS-80, Apple, Atari, and more! "What does this mean?" you might ask. A good question, and quite worthy of an editorial.

What will we offer? Why change from a magazine that was entirely for one machine, thus always applicable to YOUR computer, to one that will hold a mixture of items for more than one? The answer to the second question lies in the first. We will still give you the same kind of software we've always given you for YOUR computer, but now we will also show you what people are doing with other machines. We've found that most of the ideas we receive are not necessarily machinespecific, so why not share them with all? Furthermore, along with our format change, we have resolved that we will offer the best in documentation for ALL programs, telling you exactly how they work, defining the variables, and helping you understand them as you type. This means that not only will the programs for your computer be documented in a somewhat tutorial form; programs for other computers will be listed in this manner also. Although the languages vary, actual programming techniques are seldom much different; so you'll learn from the other programs, even though they may not fit directly into your computer. Eventually you may even want to try converting a program from another computer to your own, and we'll provide as much information as we can about the differences in language to help you. In the meantime, you'll still have the best programs we can bring you specifically for your machine.

Another advantage you may find with the new format is that it will inspire some cross-fertilization. A case in point is with the Mod-Prog article this month. When George,

James and I put our heads together, we can occasionally come up with something at the fringes of being useful. When James wondered if Thomas Hanlin's programming hint for the TRS-80 would work with any other computers, we tried it, and lo and behold, it did! (For the Apple, but not the Atari -- perhaps explained by the fact that Microsoft wrote both Applesoft and TRS-80 Level II BASIC). We expect that this type of occurrence will not only be happening in our beautiful downtown Milford offices. We also hope that a lot of people out there will see articles meant specifically for one computer and say "Why not with mine?" -- and make great new advances that would never have occurred if they hadn't been seen done on other computers. Of course, we'd like to hear about this type of event so we can share more with our readers.

You will also notice that we've expanded our general offerings. In addition to regular features on graphics, sound, BASIC in general, and program reviews, we will feature regular columns about adventure programs and simulation games. In the works for future issues, we have several other general features that we hope you'll like.

Concerning direction, we promise to keep our content understandable. We believe that computers are not difficult to use unless they are made so. We don't want to make any pretensions that the use of computers is, or should be, an elitist activity. We will gear our content toward "everyman" (everyperson?), yet there will always be underlying information available if you have the desire to pursue a topic. If you want programs that you can key into your computer, if you want to learn more about how your computer works, or if you want to learn the details of the art of programming, SoftSide will be for you.

New products from

RITAM • ON-LINE-SYSTEMS • SYNERGISTICS SENSATIONAL SOFTWARE

 OUTGOING MAIL

UNDER ATTACK!?

The warning whistle sounds shrilly. Every member of the SoftSide staff quickly grabs for the nearest support. Some hold on to a nearby computer, others reach for each other. The anticipated explosion shakes the entire building. Small pieces of ceiling-plaster drift slowly to the floor, twinkling in the rays of the afternoon sunlight. In a few moments, the reverberations subside. Bravely and calmly the intrepid men and women -whose job it is to bring you SoftSide each month - return to their vital duties (except for a few scattered couples whose lives have taken on a new meaning in the sudden desperate embrace of a fellow worker).

Alien invasion? Nuclear attack? Real-life Kriegspiel? What devastating forces have been unleashed against the innocent yet opulent Milford offices of SoftSide Publications?

UNDERGROUND RUMBLINGS

Fear not, loyal reader; this is NOT the END! This is just the beginning of a shiny new sewer system, urgently needed by the burgeoning town of Milford. It seems the old one was too small to continue to serve the needs of local residents, and so a new one is being blasted out of the ancient New England Bedrock.

Perhaps it is fitting that the explosive changes taking place in Milford should coincide with the expansion of our own beloved SoftSide. With this issue, we take a bold step into the future. Many of you have asked for a bigger magazine, claiming that several of your favorite issues have slipped into the crack between the keyboard and the video monitor, never to be seen again. We have been moved by your plight! The past few weeks have been filled with frenzied activity here, as we reworked, retooled and redesigned the entire magazine.

The most obvious change, other than the larger size, is the inclusion of support for one or
two "other"' computers. Do not let this scare you. We plan to include just as much '"pure TRS-80" material as ever - games, simulations, articles, Take A Parts and programming hints.
The added advantage to you is that when you have gotten all the TRS-80 programs up and RUNning -when you have wrung the last drop of inspiration from that final programming hint, there is still more! It never hurts to get "off your block"' and see how the other third lives. We will be making an effort to document the programs in this and future issues in such a way that TRS-80 people can learn something from "those other computers" and vice versa.
Be honest now; aren't you just a LITTLE bit curious about the Atari's capabilities for four-part harmony - or the fact that the Atari has a grand total of sixteen different graphic modes? Did you know that the Apple has two graphic modes? One mode, called "low resolution" or just "lo- res", has fewer pixels than our own 127 by 48 grid! Just 40 by 40 relatively large boxes can be turned on or off. Of course, having 15 colors as well as black to choose from can make for some eye-catching displays, nevertheless. In "hi-res", the Apple boasts a resolution of 280 by 192.

Except for each computer's unique handling of its own special features (sounds, graphics, joysticks etc.) there is a remarkable similarity among the various BASICS, For those of you who use SoftSide as a learning tool, think of how proud you'll be when the day comes that you can take a program written, say, for the Apple, and get it running on your TRS-80! In fact, if you DO succeed in creating a GOOD translation of a SoftSide program from its original language into LEVEL II, by all means, send it in. If your version has appeal in its own right, you could be on your way to fame as well as (a modest) fortune!?

Construct data base by entering geometric coordinates, then view from different angles. Four programs. Low resolution requires 8 K , high resolution 16K, demonstration program, 24K. Atari 400 or 800.
\$29.95

Put IRV on your programming staff!

IRV is faster than Level II BASIC! More powerful than a speed typist! Able to leap ten subroutines at a single bound! Input shorthand -- one keystroke can enter a whole line! The feature you liked in Level III BASIC and T-Short, now with all keys user programmable. You can even turn your cassette player on or off with a single keystroke. Relocate a line by simply editing the line number -. renumber lines individually.
Video Editor allows cursor oriented editing of your programs. Just move the flashing cursor to the line to be edited and type the corrections, insert or delete. IRV comes with manual and auto-repeat on every key. Machine language tape \$24.95; on disk \$29.95

To Order TOLL FREE 1-800-258-1790 (In NH call 673-5144)

Galactic

 Trilogy 5

Each game: 16 K Level II
Cassette: $\$ 14.95$
Special - all 3 on disk 32K $\$ 39.95$
TO ORDER TOLL FREE 1-800-258-1790
(In NH call 673-5144)

Preferred by computer professionals everywhere!

The

 Green ScreenThe BEST green screen available! Solid, thick green plastic with beveled edges. Don't confuse this with the thin film offered by other manufacturers. Ready to install, self bonding, gives dustproof seal, optically correct with no distortion, and shatterproof. Fits TRS-80 Model I, Model II and Leedex Video 100 monitors.
\$19.95

TO ORDER

TOLL FREE
1-800-258-1790
(In NH call 673-5144)

Garon's GOODIES

FIDDLING WITH VARPTR

Another in a continuing series of programming concepts for the $S-80$.

by James Garon

As is often the case with new discoveries, they seem to leap into the minds of several individuals at once. A famous example of this is the simultaneous invention of Calculus by both Sir Isaac Newton, in England, and Baron Gottfried Wilhelm von Leibnitz, in Germany.

In a similar fashion, the technique outlined here is based on a recent discovery made by several SoftSide authors. It involves the seldom-used and little-understood word, VARPTR. Beginning on page $8 / 8$ of the Level II manual, we learn that when VARPTR in used with a string variable (as in:)

LET V = VARPTR(T\$)

the value returned is a memory location (or a Function Call Error if the string has not been defined). Location V contains a number from 0 to 255 . To see this, just type:

PRINT PEEK(V)

The number which is printed is the length of the string ($\mathrm{T} \$$ in this case). The next two locations $(\mathrm{V}+1$ and $\mathrm{V}+2)$ contain the actual address of the first character in the string. You can have the computer reconstruct this address by having it

$$
\begin{aligned}
& \text { PRINT PEEK } \\
& (\mathrm{V}+1)+256^{*} \text { PEEK } \\
& (\mathrm{V}+2) \text {. }
\end{aligned}
$$

The new discovery mentioned above involves the deliberate alteration of these three locations for our own nefarious purposes. For example, your program might create a graphic display with some random (hence unrepeatable) elements. It is possible, through the use of VARPTR, to save the picture in a string array. Later in the program, the picture can be recreated almost instantly, no matter how long it took to draw originally. It is even possible, once VARPTR has done its magic, to save the entire picture to disk or tape!

Let's assume that the picture is on the screen. The following routine will save the picture in the array T\$:

```
1000 CLEAR2024:DIMT$(15):T$=" "
1010 V=VARPTR(T$)
1020 POKE V,64'SET LENGTH TO 64
1030 FOR I=0 TO 15
1040 S=15360+64*I' ACTUAL SCREEN ADDRESS
1050 H=INT(S/256):L=S-256*H' CONVERT TO HI/LOW BYTES
1060 POKE V +1,L:POKEV+2,H' MAKE T$ POINT TO SCREEN
1070 T$(I)=T$' SAVE IN ARRAY
1080 NEXT
```

If the screen contains only text (no graphics), then it is now a simple matter to make a printed copy of the screen:

1500 FOR I = O TO 15:LPRINT T\$ (I): NEXT

It is slightly more difficult to redraw a saved screen. This is due to the fact that anything PRINTed in the last position of the last line will cause the screen to scroll, thus messing up the picture. Here is one approach:

```
2000 CLS
2010 FORI=0TO14
2020 PRINT@I*64,T$(I);
2030 NEXT
2040 PRINT@960,LEFT$(T$(15),63);
2050 PORE16383,ASC(RIGHT$(T$(15),1))
2060 GOTO2060
```


- Unlock the Hidden Power Of Your Computer! Program fast \& easy! Use ROM routines in your BASIC and Assembly Language programs! All you need to know is in ...

INCLUDES:

SUPERMAP

from Fuller Software
previously sold at \$18.95
TRS-80
Disassembled Handbook
by Robert Richardson
previously sold at $\$ 10.00$

Hex Mem

by John Phillipp
monitor written in BASIC.

Z-80

 Disassembler by George BlankTO ORDER CALL TOLL-FREE
1-800-258-1790
In NH call 673-5144

- Guide to Level II BASIC and DOS Source Code $\$ 19.95$ plus $s 1$ shlipping

by Ron Potkin

A Wargamer's delight! Throw away your pencils, charts* and dice. Let the computer do the dirty work while you concentrate on strategy. Kriegspiel II is a much improved,
two-player version of the original-with machine language routines for extra speed.

Select one of 9,999 scenarios including towns, tanks, and terrain. Choose the number of mountains (up to 200), then sit back and watch as the computer generates your $31 \times$ 32 game board, sets up the pieces, the towns, the mountains and a river.

Even the weather will become an important factor as play proceeds. To win, you must enter the Capitol City of your opponent (or reduce his fighting strength below half of your own).

KRIEGSPIEL II - Level II 16K\$14.95 (cassette version only)

*Combat Resolution Tables, Basic Turn Allowances, Terrain Effects Charts, etc.

To Order
TOLL FREE 1-800-258-1790
(In NH call 673-5144)

INPUTS

A Column of Your Letters

Dear Sirs:
I just had to write to let you know how much I enjoyed the "Galaxy Combat II" program in this month's issue. The graphics are just great and I really get quite a kick out of watching the Base planet revolve. Mr. Case is quite imaginative. Hope he keeps up the great work.
While playing, we (the neighborhood kids and I) were confused as to how many pieces of the planet killer weapon we had. So I added a gauge under the number of enemy count that tallies the weapon pieces. Keeps us from scratching our heads wondering if we have gotten close to the number of pieces needed.
Now, for an onion! In the May issue in the preceeding documentation for "... Tholian Sector," page 73, someone labeled the diagram of the Enterprise wrong. The impulse engines, as every Trekkie knows, are located on the rear of the saucer section not at the ends of the warp engines. The two systems were purposefully separated so that the saucer section could be used as a lifeboat in an emergency. The saucer can jettison the secondary hull and can accommodate the entire crew as a lifeboat. Conversely, the secondary hull may be used as a lifeboat should the saucer be damaged. Each part is fully capable of independent operation.
Well, keep up the good work. I tell every TRS-80 owner I meet about SoftSide; I've even memorized your address. Can I get a commission?

Sincerely, Sherry M. Taylor

[^0]
PROGRAMS FOR YOUR COMPUTER

KINGDOM (CX4102)

This educational program cassette simulates the running of a small agricultural kingdom. Catastrophe may befall your people, your food supply or your crops. You determine the farming strategy and if you are successful you are allowed to reign another term. Teaches and develops mathematical skills.

BASKETBALL (CXL4404)

You can dribble, shoot, pass, block shots, and even make steals. Five different game variations allow one, two, three or four players to compete. Play against the computer, your family or friends. This game uses up to four Joystick Controllers. Cartridge.

BLACKJACK (CX4105)

Play one of the most popular casino games at home with your ATARI Personal Computer System. The computer is the dealer and it plays by the rules. You, on the other hand, bet money and decide whether to stand, draw another card or double down in your efforts to hit 21. One cassette.
COMPUTER CHESS CXL4009)
You can play chess against the computer. Eight levels of play are available. Moves are made using a Joystick Controller. The chess board and pieces are shown on the screen. Both "castling" and "en passant" moves can be made by you or the computer. The board can be set up for a particular chess problem or situation. The computer can play either white or black. Uses one Joystick Controller. Cartridge.

STAR RAIDERS (CXL4011)

A state of war exists between the Atarian Federation and the Zylon Empire. Your mission: Destroy all Zylon star ships. This strategy and action cartridge features four mission skill levels and rates a player at the end of each session. Dramatic sounds and screen displays make this the most exciting space game available today. Your battleground is the entire galaxy. Meteors fly through space; Zylon fleets surround and destroy friendly star bases, and docking at a starbase enables you to receive a new supply of energy and repair damaged equipment. For one player; uses a Joystick Controller.

SUPER BREAKOUT (CXL4006)

This cartridge is a sophisticated version of the popular electronic video game BREAKOUTTM, in which you smash through layers of bricks and knock out a wall. Four different games are available, up to eight players can play, and a rating is displayed at the end of each game. You can optionally suspend play or request up to five additional serves. This cartridge uses up to four Paddle Controllers.

HANGMAN (CX4108)

This educational program cassette has 3 levels of play - Beginner, Intermediate, and Expert. You play against the computer by guessing the word the computer has selected. If you do not guess the word after six tries the computer will hang your man. You may use the computer keyboard or an optional Joystick Controller to guess the letter. Suitable for ages 8 to adult.

3-D TIC-TAC-TOE (CXL4010)

Now you can play Tic-Tac-Toe from a threedimensional perspective. This game cartridge also contains Bottoms-Up, a variation of 3-D Tic-Tac-Toe. Match wits with the computer or compete against another player in either version. One-player games feature eight difficulty levels. Uses Joystick Controllers.

VIDEO EASEL (CXL4005)

You can create a design or pattern on the screen using the keyboard or up to four Joystick Controllers, then watch as the computer expands on the original pattern indefinitely. Many variations allow you to create imaginative and colorful graphic designs. Options include Drawing, Quad Drawing, Life (which uses the mathematic principles of John Conway's game of "LIFE"), resetting the color and six preprogrammed Painting designs. Uses Joystick Controllers. Cartridge.

AN INVITATION TO

PROGRAMMING 1, 2, and 3

These lessons are designed to teach the fundamentals of programming in ATARI BASIC. A recorded voice asks you questions, waits for you to respond, and indicates whether you are correct or incorrect. These self-teaching courses will teach you to use BASIC programming statements as well as the color, graphics, sound and music capabilities of the ATARI Personal Computers. Each lesson requires 8 K of RAM.

MUSIC COMPOSERтм (CXL4007)

Use this cartridge and the computer keyboard to compose songs, recreate old tunes, or experiment. When you program musical notes through the keyboard, you hear the melody as it is simultaneously displayed on the screen. You can change any note or the tempo. And you can arrange the music to play different sections in the order you choose. Once you have entered music, you can save it on the ATARI 410 Program Recorder or the ATARI 810 Disk Drive. You can also write BASIC programs that can convert a melody into melody plus harmony.

BIORHYTHM (CX4107)

Use this program cassette to calculate physical, emotional and intellectual highs, lows, and critical days. By giving the computer your birthdate you can plot a biorhythm chart on your television screen or optional ATARI Printer.

TO ORDER TOLL FREE

1-800-258-1790
(In NH call 673-5144)

Who will take complete control of the earth? In Global War, a highly detailed projective map of the earth's continent is divided into forty regions. The computer assigns each player a portion of the regions and starting armies. The players can allocate armies to specific

The object of the game is to take control of the earth.
This adult strategy game for two to nine players comes complete with instruction manual and rule book, and needs Applesoft ROM or Apple II Plus. Cassette (32K0 \$17.95; Disk (48K)
$\$ 24.95$. regions or attack another player's territory.

To order call TOLL FREE 1-800-258-1790 in NH call 673.5144

S-80 PROGRAMMING TIPS

To make the computer go into EDIT mode automatically with ALL errors (not just SN or SYNTAX errors), add these lines to your program:

10 ON ERROR GOTO 60000 60000 PRINT"THE ERROR IS IN LINE (no.)";ERL;"-CODE";ERR/2plus 1 60001 EDIT.

Sherry Taylor
Haines City, FL

Users of NEWDOS plus may have experienced problems when using LMOFFSET to save on disk a machine language program which normally loads into a DOS conflicting area. LMOFFSET creates a version that loads into high memory. It also adds an "appendage" which moves the entire program back into low memory once DOS is no longer required for the actual load. The
difficulty occurs if the program is moved into the location where NEWDOS patches into the keyboard scan (for debounce and JKL features). Since two objects cannot occupy the same space, the result is chaos. Here's the solution: Disable the debounce routine by pressing and holding down the shift-up-arrow during initialization (power-up or reset). This will deactivate the debounce and reenable the normal Level II keyboard routines.

Michael Stewart
College Point, N.Y.

LOWERCASE FOR SUPERZAP
As many more TRS- 80 programs are being written in both upper and lower case, some users may prefer to be able to display both cases in the ASCII display columns of SUPERZAP.

The following DATA statement can be found at line 14150 in
SUPERZAP 2.0 and at line 32100 in SUPERZAP 3.0:

$$
\text { nnnnn DATA } 254,91,48, \ldots, 46
$$

Change this line to read:

$$
\text { nnnnn DATA } 254,123,48, \ldots, 46
$$

This change will allow SUPERZAP to display lowercase ASCII characters instead of changing them to periods. As the display routine "pokes" directly to the screen, no lowercase driver is necessary with the R.S. lowercase mod. With the "normal" mods, you may either keep the lowercase switch in the "normal" position, except to view the lowercase, or you may have a driver active and keep the switch in the "lowercase" position. All other functions of SUPERZAP are unchanged.

Clay Schneider continued on page 86

HI-RES ADVENTURE

TO ORDER TOLL-FREE 1-800-258-1790
(In NH call 673-5144)

MXSTERY HOUSE

Through the use of over a hundred Hi-Res pictures you play and see your adventure! You communicate with HI-RES ADVENTURE in plain English (it understands over 300 words!) All rooms of this spooky, old house appear in full Hi -Res Graphics complete with objects you can get, carry, throw, drop or???.
In this particular HI-RES ADVENTURE game, you are transported to the front yard of a large, old Victorian house. When you enter the house you are pulled into the mystery, murder and intrigue and can not leave until you solve the puzzles. Your friends are being murdered

[^1] one-by-one. You must find out why, and who the killer is. Be careful, because the killer may find you! As you explore the house there are puzzles to be solved and hazards to overcome. The secret passageway may lead you to the answer.

FOUR-OH-ONE-SIX- is an S-80 article which will be of most interest to Level II users - although most of the ideas presented will also work on disk systems.

The secret to "Load and Go" SYSTEM tapes.

One can redirect the RESET button and cause machine language cassette programs to jump directly to their starting point without having to type "/ENTER"' after the tape is loaded. Both of these magical feats may be accomplished by changing the values stored in memory locations 4016 H and 4017 H .

To understand why these things can occur, one must first understand the function of the two memory locations mentioned above. These two locations contain the address of the keyboard driver. They will be referred to using this term for the rest of this article. When one is in BASIC, the keyboard is constantly being scanned. This keyboard scan is not contained within the Basic controller (ROM). ROM finds the scan routine by looking at the keyboard driver. These two memory locations hold the address of the scan routine. The ROM then JPs to the address contained in the keyboard driver. Fortunately for us mere programmers, the keyboard driver is not located in the ROM and is, therefore, accessible.

After a machine language program is loaded from tape, the prompt ${ }^{* *}$?) appears. During the time between when you see the prompt and when you enter your response, the keyboard is scanned via the address in the keyboard driver. If one uses the ORG statement in the
EDITOR/ASSEMBLER to write into the keyboard driver an address other than that of the scan routine, ROM will attempt to scan the keyboard; however, it will JP to the changed address. For
example, if you locate a machine language program at 4 AOOH (18944 decimal), you could cause the program to be accessed immediately after the program was loaded from tape by putting the following subroutine in the program:

ORG 4016H ;keyboard driver
DEFW 4A00H ;the DEFW will flip
;so that it will load ;LSB first and MSB last
ORG 4A00H ;the rest of the program ;starts here

To alter the location, change the second ORG statement and the DEFW statement. The DEFW statement writes OOH into 4016 H and writes 4 AH into 4017 H . This causes ROM to JP to location 4 A 00 H when it tries to scan the keyboard.

After going into your program after tape loading, if you leave the keyboard driver pointing to the start of your program, the program will restart whenever the RESET button is used (provided, of course, that there is no expansion interface). This is because the keyboard driver was changed so that whenever the RESET button is used, ROM jumps to your program.

In some cases, one may not want to restart the program when the RESET button is used. If one wants to save buffers that are cleared at the start of the program, one should again redirect the scanning routine by changing the keyboard driver. One might use the following routine to change the contents of the keyboard driver to JP to any part of the program when the RESET button is hit:

LD HL,LABEL ;LABEL can point to ;any location in your ;program
LD (4016),HL ;change
keyboard drvr.

By using this method, one can save buffers that would usually be cleared at the start of a program.

One can also write directly on the screen using an ORG statement not set to the start of the program. By using an ORG, the screen will be written on while the tape is loading, not afterwards. The following routine writes directly to the screen while the tape is loading:

ORG	3 COOH ;start of video
DEFM	${ }^{\text {momory }}$ M
	ANYTHING HERE
	THAT YOU WANT
DEFM	'LEAVE Blanks to
	FILL UP THE LINE.'

One can have a very slow clear screen by using this method. If the messages will not all fit on the screen, one may load the screen, then the rest of the program, and,once again, load the screen with different messages.

We hope you find that these subroutines and ideas will enhance your programs of the future and also help you to better understand how your computer works. REMEMBER: A program with only one ORG goes into only one part of the vast computer memory!
by Robert W. Lord
and Rajeev Jayavant

HOW MUCH COMPUTER

DO YOU NEED?

How much computer do you need?
About six months ago I received an irate letter addressed to me through SoftSide: Apple edition. The letter was from a businessman who had just purchased an Apple II computer. He complained that the salesman had told him that the computer would help him in his business, so he bought it. But when he went back to the business with his new "tool", he read the manual and found for the first time that he also needed programs to make it do anything useful. He thought he had purchased something like a cash register or adding machine, when in fact he had merely the beginning of a computer system.

My experience with hardware salesmen has led me to believe that many consider price a major obstacle in selling a computer system. For that reason, they often tend to sell a minimal system without explaining that more purchases will be needed before the customer will be satisfied.

A few years ago, when I became a computer hobbyist, memory cost about $\$ 100$ per K, computers came in kits and software was something you wrote yourself. The sayings at that time were that any working computer was by definition extensively modified, and that a computer hobbyist put a down payment on a computer and kept buying memory until he went bankrupt. Things have changed a lot since then.

Today you can buy a good quality complete computer system for some purposes for less than $\$ 1000$, take it home, plug it in, and use it with little trouble. The kicker in the previous sentence is the words "for some purposes". The real question concerning a personal computer is what you want to do with it.

The chief uses of computers in the home seem to be arcade games, simulation games, word processing, computer education, general education, hobby programming, support of another hobby or job,
and providing a secondary source of income.
If your interests are limited to arcade games, the Atari Video Computer System, Atari 400, or Mattel's Intellivision are probably enough to meet your needs. Most of the general purpose home computers will amount to overkill for this purpose. The Atari 400 also has enough power to allow a minimal amount of computer education, general education, and support of some hobbies or jobs.
Beyond that there are really three different types of home computer systems using the same computers as the core of the system. These three types are cassette and disk based general purpose systems, and systems with accessories for special applications.
The first level is the cassette based general purpose system. This includes the Atari 800, the Radio Shack TRS-80 with Level II BASIC, and the Apple II. None of the three systems is really complete in its minimum configuration. With the Atari, you really need at least 16 K of memory and a television set, with the TRS-80 you need at least 16 K of memory, and with the Apple you need a cassette recorder, video modulator, and television set. (Note: Atari is shifting over to supplying 16 K of memory, but is taking the cassette recorder out of the package.) But once you have 16 K of memory, a good tape recorder, and a display, all three of these computers are good general purpose systems. They will support any of the above mentioned purposes except word processing, special applications, and providing extra income. The majority of home computer users will find their basic computer needs met with this type of system and the necessary programs.

The next step up is to move to diskette storage. Since the disk operating system takes memory space, this also means adding at least another 16 K of memory. In fact, 32 K of memory is usually enough for the TRS-80, with its
limited graphic ability and dedicated screen memory.
However, since many programs written for disk systems tend to be more complex and sophisticated than programs for cassette systems, more memory is often needed in the Apple and Atari. Many of good Apple disk programs assume a complete 48 K of memory, and since memory for the Apple is relatively cheap, any Apple user who gets a disk drive and a controller card will probably want 48 K of total memory. With the Apple you will also want to be concerned about which version of Basic you have: Integer or Applesoft. Integer Basic has been around longer and has had more software available until recently. Most of the programs are now being written in Apple soft, and we recommend starting with the Apple II Plus, which has Applesoft Basic at the same price as the Apple II. Either way, you can buy a language card if you want the other language. In the Atari 800, the disk operating system takes up 10 K of memory and high resolution graphics can take another 8 K , leaving very little in a 32 K machine. At the same time, the BASIC cartridge or any other cartridge preempts the last 8 K of memory, so any memory over 40 K is usually wasted. Therefore, the logical memory for an Atari 800 disk system is 40 K . Unfortunately, the Atari bus structure has problems handling the last memory slot, and program reliability is significantly less with 40 or 48 K than with 32 K . I personally keep 32 K in my machine at all times, with another 8 K available for programs that require it.

A disk system adds some extra income potential to the features of a cassette based general purpose system. Without disk storage, a programmer is really not productive enough to pay for the computer easily, much less to generate income beyond that. Too much valuable time is wasted

PRODUCT

Microsoft Compiler_ A Review (S^{-80})
by James Garon

A DREAM COME TRUE?

It has long been the dream of many TRS-80 programmers to escape the speed limitations of BASIC. BASIC is slow because it is an interpreted language. That means that each time BASIC comes to a line of your program, it spends most of its time looking up the words in that line. Only a small percentage of BASIC's attention actually goes to performing your instructions. The dreamers among us - the speedseekers - have wished for a way to eliminate all this repetitive interpreting; a way to let the potentially fast Z80 chip spend ALL its time doing our bidding.

What we've been dreaming about is called a "compiler". A compiler is a special program which converts a BASIC program directly into machine language. The original BASIC program, called the "source" program, is compiled into a machine language

[^2]continued on page 82

APPLE III UPDATE

By now, you should be able to see the Apple III at your dealers. As we said last month, fear not, it doesn't replace the Apple II. It is directed at the $\$ 4000$ and up business market and comes packaged as The Information Analyst, a business system containing a Mail List Manager, Visicalc III, and Apple Business BASIC. It will also be available in the future as a word processing package.

There are few additions to last month's preview worth noting. Of the peripheral capabilities we mentioned, there are only four expansion slots available to the user. However, the Apple III already comes with an RS-232C compatible serial port, a printer interface for the Apple Silentype printer, a clock, audio output through a 6 bit digital to analog converter, video modulator, and the disk drive. The Languages already announced are Apple Business BASIC, Pascal, and FORTRAN, which will be available in the fall.

Of specific interest to us at Softside, the Apple III will be able to use Apple II software. In the Apple II emulator mode you will not be able to use the full 96 K or add any of the Apple III's additional power; the emulator is limited to 48 K and Apple II's features. This does mean, however, that Apple III owners will be able to take advantage of the multitude of software already developed on the Apple II, not having to wait like owners of most new systems for good software to be developed.

Applesoft vs. Integer BASIC

The period of time that it takes for significant software to be developed on a new system or in a new language seems to be at least a year. Atari owners will take heart in that statement because they are still in that waiting period. There are a few good items available, but software for them is still not overly abundant. (A Catch-22 in this cycle is that a system itself will seldom catch on well until the
consumer sees that there is a quantity of good software available, but the software doesn't usually come until there are a lot of systems sold.) Anyway, such had been the case with Applesoft, which is in most ways a much better language than Integer BASIC. (Integer BASIC does offer a little more if you like programming in machine language, but you could also buy an assembler that would go with Applesoft.) I've seen people buy the Apple II with Integer BASIC rather than with Applesoft for the same price because the dealer told them that all the software was in Integer BASIC.

Such is not the case anymore. Integer BASIC had a good head start, but now that Applesoft has been around a while, we see that most of the new programs are either in Applesoft or machine language, which is usualy compatible with either version of the machine. Although we are still receiving returns from our June SoftSide: Apple survey (which has had a great response), our tally so far shows that over 94% of those responding have Applesoft, or both Applesoft and Integer BASIC. Although we have been running Applesoft and Integer BASIC programs in similar proportions, we will eventually try to phase out Integer in favor of Applesoft in this magazine. We are still looking for good programs in either language, but we expect that the current trend will show itself in our submissions as more and more people use Applesoft in their programming.

Other Things

Another interesting fact from our survey so far is that about 90% of the returns showed systems with at least 48 K of memory, and there were quite a few with the Pascal language system. The most often-mentioned program in the section that asked you to name your five favorites was Invaders. The generic name 'Adventures' ran second, although when named most mentioned Scott Adams' or Microsoft's, and Sargon was third
choice. Other favorites were Star Trek, Visicalc, SubLogic's Flight Simulator, and Three Mile Island. Most mentions of Star Trek were for the Apple version. You'll notice that TSE has added Super Invasion, by far the best version of the arcade game, to its product line. Your voices do not go unnoticed. I might add that if you see an excellent piece of software that TSE does not carry, let us know. Sometimes products don't find their way to us, and we'd like to keep our readers informed of the best.

For those of you contemplating purchase of Apple's language system: Keep your eye on Microsoft's Z-80 Softcard. It looks like it might offer much more power, and the cost is a couple hundred dollars less. We'll review it as soon as possible. $\$$

BUGS, WORMS AND

by Kay Pasa
There are only a couple of bugs to report this month, both minor problems with Apple programs.

In the high resolution drawing program in the June issue, add the line:
$851 \mathrm{NS}=1$
The program was condensed from a larger version, and that line was inadvertently omitted.

In the Horse Race program from July, there is a minor technicality. The program will occasionally give you a one to one payoff, meaning that you get back the money you put down as a bet. This is not a very good way to make money, so make the following change and the lowest payoff will be 2 to 1 :

130 FOR $\mathrm{L}=1$ TO 5: $\mathrm{S}=$ $\operatorname{INT}\left(29^{*} \mathrm{RND}(1)\right)+2: \mathrm{R}(\mathrm{L})=\mathrm{s}:$ NEXT

Also, in the Pork Barrel program in the same issue, line number 520 inexplicably came out of our printer as 544 . Only the electrons know why. \$

The Microsoft Z-80 SoftCard New Power for Your Apple II!

Plug the new Microsoft Z-80 SoftCard into your Apple IItm and start using all of the system and application software written for Z-80 based computers. Software that you could never use before on your Apple II.
The SoftCard actually contains a Z-80 processor and lets you switch between the Apple's 6502 and the Z-80 with simple commands, so you can use software written for either processor.
Starting with Two Software Standards. Versatile $C P / M$, the most widely used microcomputer operating system ever, is included on diskette in the SoftCard package, ready to run on your Apple II.
You get Microsoft's 5.0 BASIC, too, the most powerful version to-date of our famous BASIC interpreter.
PRINT USING, 16-digit precision, CALL, and CHAIN and COMMON are just some of the major BASIC features you'll add. Applesoft's graphics extensions are still included.

More Power Down the Line. You can get even more programming power and versatility by adding Microsoft's FORTRAN, COBOL, BASIC Compiler and Assembly Language Development System. All are available separately to run with the SoftCard system.
And the whole host of CP/M-based business, scientific and educational applications can be easily transferred to your Apple with SoftCard.
The Microsoft Z-80 SoftCard is compatible with most every Apple product from the Apple II to the Apple II Plus, Language Card and peripherals. Independent peripherals for the Apple are supported as well. The SoftCard package requires a system with 48 K and a disk drive.
\$349 for SoftCard, CP/M, Microsoft BASIC and complete documentation.

To Order TOLL FREE

1-800-258-1790
(In NH call 673-5144)
TM Apple II is a trademark of Apple Computer, Inc. $C P / M$ is a registered trademark of Digital Research.

ATARI doubles product line

Atari has just announced 34 new software packages, a light pen, thermal printer, 80 column dot matrix printer, a dual disk drive, an RS-232 serial and parallel interface, and a modem.

The Atari 815^{TM} is a dual density, single-sided dual disk drive using standard $51 / 4^{\prime \prime}$ disks. Each diskette holds 160 K of data, and up to four units can be chained to the computer for 1.3 megabytes of storage. That is four times the capacity of competing computers like Radio Shack's model I.

The new printers are the 822,40 column, 37 character per second thermal printer and the 825,80 column, 50 to 83 character per second dot matrix printer. The 822, apparently from Trendcom, weighs less than 6 pounds and prints upper and lower case letters at a density of 10 characters per inch. It requires thermal paper. The 825 is identical to the Centronics 737 and gives you a choice of proportional or monospaced characters in condensed, normal, or elongated form. The character set includes lower case with true descenders.

The Atari $850{ }^{\mathrm{TM}}$ Interface Module includes four serial RS-
continued on page 57

ATARIEDITOR/ASSEMBLER

Atari 400/800 ROM cartridge Reviewed by George Blank

The Atari Editor/Assembler, due to be released in the near future, is an excellent and very usable Assembly language development system.

My own experience is with a preliminary version, recorded on EPROM and documented with a photocopy of an early draft of the manual, so it is likely that some features will change before the final version is released.

The manual is a guide to the Atari computers and the particular features of the Editor/Assembler, not an introduction to assembly language programming. If you are not already familiar with 6502 assembly language, you will need some other resources. My personal bias is that the Heathkit ET-3400 microprocessor trainer and course
is one of the best introductions to Assembly language. This course teaches 6800 assembly language, but the instruction sets are similar and programming methods are about the same in most assembly languages. However, for those who don't want to spend $\$ 300$ to learn, and who are willing to work somewhat harder to understand programming, Rodnay Zaks "Programming the 6502", published by Sybex, is a good text.

The ROM cartridge actually contains two programs, EDIT and DEBUG. EDIT is used to write, edit, and assemble programs, and DEBUG is a monitor, tracer, disassembler, and mini-assembler. The cartridge interfaces directly with the operating system and disk operating system to avoid repeating code and to save memory.

While the assembler can be used in an Atari 400 or 800 with no other peripherals, the manual recommends an Atari 800 with 16 K of memory, disk drive, and printer for maximum utility. The final version will support disk storage, but may or may not support cassette input/output.

Using the Assembler

Programs are entered in five fields, as follows: STATEMENT NUMBER/ LABEL/ OPERATION CODE/ OPERAND/ COMMENT. The requirements for spacing are not critical except that a label must be separated from the statement number by exactly one space, the operation code mnemonic must be at least two spaces from the statement number, and other fields require a separation of at least one

ADVENTURELANDAdventure International
Cassette/24K/M $\$ 14.95$
ADVENTURE SAMPLERAdventure InternationalCassette/24K/M $\$ 5.95$
AIR TRAFFIC CONTROLLER
Sensational Software
Cassette/16K/M $\$ 9.95$
ANDROID NIM
Disk/24K/A ROM $\$ 17.95$
APPEN I TEXT EDITOR
Muse
Cassette/16K/I $\$ 17.95$
APPILOT EDU-DISK
Muse
Disk/48KII $\$ 49.95$
APPLE 21
Softape
Cassette/24K/I $\$ 15.95$
APPLELISTNER
Softape
Cassette/16K/I $\$ 15.95$
APPLETALKER
Softape
Cassette/16K/I $\$ 15.95$
BASEBALL
Muse
Cassette/16K/A ROM \$14.95
BEST OF MUSE
Disk/32K/I $\$ 39.95$
BISMARCK
Disk 48K/A ROM $\$ 59.95$
BRIDGE CHALLENGER
Personal Software
Cassette/16K/M $\$ 14.95$
CCA DATA BASE MANAGER
(Works in conjunction with Visicalc)
Personal Software
Disk/32K/A $\$ 99.50+\$ 2$
COMPU-READ
Edu-ware
Disk/48K/A \$24.95
COUNT ADVENTUREAdventure InternationalCassette/24K/M\$14.95
DAN'S DISK UTILITIESPeriph. Unl.
Disk/16K/l $\$ 39.95$
DATE STONES OF RYNTape 32K/A ROM/48K/A$\$ 14.95$
Disk/48K/A ROM \$19.95

RESCUE AT RIGEL
Tape/32K A ROM/48K A \$19.95
Disk 48K/A ROM \$24.95
SARGON
Hayden
Cassette/24K/M \$19.95
SARGON II
Hayden
Cassette/24K/M $\$ 29.95$
Disk/24/K/M $\$ 34.95$
SIDE SHOWS
Muse
Cassette/16K/I \$12.95
STARFLEET OF ORION
Tape 16K/I \$19.95
Disks32K/I. \$24.95
STRANGE ODYSSEY ADVENTURE
Adventure International
Cassette/24K/M \$14.95
SUPER INVASION
Sensational Software
Tape 32K/M \$19.95
SUPER-TEXT
Muse
Disk/48K/M. $\$ 99.95$
TANK WAR
Muse
Cassette/16K/M $\$ 12.95$
TEMPLE OF APSHAI
Tape 32K/A ROM/48K/A \$24.95
Disk 48K/A ROM $\$ 29.95$
TEXT EDITOR
Periph Unl.
Disk/48K/A ROM \$64.95

THREE-D
MP Software
Disk/48K/A ROM $\$ 29.95$

THREE MILE ISLAND

Muse
Disk/48K/I \$39.95
U-DRAW I
Muse
Cassette/16K/M \$17.95
U-DRAW II
Muse
Disk/32K/I . $\$ 39.95$
UNCLE SAM'S JIGSAW
Muse
Cassette/32K/A ROM \$12.95
VISICALC
Personal Software
Disk/32K/A \$150.00 + \$2
VOODOO CASTLE ADVENTURE
Adventure International
Cassette/24K/M $\$ 14.95$
WILDERNESS CAMPAIGN
Synergistic
Cassette/48K/I \$14.95
Disk/48K/I $\$ 17.50$
WILDERNESS \& DUNGEON
CAMPAIGNS
Disk/48K/I
\$29.95
WINDFALL
Edu-Ware
Tape/32K/A \$14.95
Disk/32K/A \$19.95

BOOKS
BASIC HANDBOOK
by David Lien $\$ 14.95$ + \$1
6502 GOURMET GUIDE \&
COOK BOOK\$10.95 + \$1
INTRODUCTION TO LOW
RESOLUTIONS $\$ 9.95+\$ 1$
LITTLE BOOK OF BASIC STYLE
by John Nevison $\$ 5.95+\$ 1$

We buy and sell used computers and peripherals for the TRS-80; APPLE; ATARI; and PET: (603)673-5144
*TRS-80, Apple, Atarl, and Pet are trademarks of Tandy, Apple Computer, Warner Communications and Commodore, respectively.

CONVERTING GRAPHICS

From One Computer To Another

A comparative look at the graphics commands of the $S-80$, Apple, and Atari computers.
by George Blank,
Mark Pelczarski
James Garon and Rich Bouchard

One of the most confusing parts of converting programs from one computer to another is converting the graphics routines. At SoftSide, we seek to solve much of that problem with appropriate pictures, but there are a few techniques that can make life simpler. Part of the problem is the variety of graphics modes available.

The TRS-80 is fairly easy. It has only low resolution graphics with a 128 by 48 display. You can SET (turn on) or RESET (turn off) using a command of the form SET (a, b) where a is the horizontal position from 0 to 127 and b is the vertical position from 0 to 47. It is also possible to treat the TRS-80 screen as a collection of 1024 blocks of six squares, 2 wide and 3 high. You can print graphic characters or letters using the command PRINT @ x , where x is a number from 0 to 1027. There are 16 lines of 64 columns, with 0 to 63 at the top of the screen and 960 to 1023 at the bottom. A third way is to POKE these characters directly into video memory. Memory locations 15360 (3C00 Hex) to 16383 (3FFF).

The graphics characters range from CHR\$(128) (space) to CHR $\$(191)$ (all six squares lit).
(Refer to the chart above)
You can also include control characters such as CHR\$(24) (Backspace cursor) and CHR\$(26) (Downward linefeed). These characters can be placed on the screen individually or combined in a string. Yet another trick is to leave a string full of spaces in a program, locate that string with the VARPTR (variable pointer)

function, and then POKE the graphics variables into the string. Radio Shack Level II Basic also includes a STRING\$(a,b) for indicating several characters, where a is the number of characters and b is the particular character. For example, STRING $(20,140)$ would
print a line 20 characters long with the two center blocks of each character turned on.

Here are some sample programs to put a small box in the center of the screen.

```
10 FOR X = 50 TO 71: SET (X,19) : SET (X,28) : NEXT X
20 FOR Y = 20 TO 27: SET(50,Y) : SET(51,Y) : SET (70,Y)
    SET (7l,Y) : NEXT Y
    O PRINT@ 409, CHR$(188); STRING$(9,140); CHR$(188)
    PRINTTAB(25) CHR$(191); TAB(35) CHR$(191)
    PRINTTAB(25) CHR$(191); TAB(35) CHR$(191)
40 PRINTTAB(25) CHR$(143)+STRING$(9,140)+CHR$(143)
I0 POKE 15769,188
20 FOR X = 15770 TO 15778
30 POKE X, l40 : POKE X + 192, 140
40 NEXT X
50 FOR X = 15833 TO 15897 STEP 64
60 POKE X,l.91 : POKE X + l0,191
70 NEXT X
80 POKE 15779,188 : POKE 15961,143 : POKE 15971,143
10 CLEAR 500 : N$=CHR$(26)+STRING$(11,24)
20 A$ = CHR$(188)+STRING$(9,140)+CHR$(188)+N$+CHR$(191)
+" "+CHR$(191) +N$+CHR$(191) +" "+CHR$
    (191)+N$+CHR$(143)+STRING$(9,140)+CHR$(143)
30 PRINT@ 409, AS
```

Apple Graphics are somewhat more complex, with two graphics modes and colors. Low resolution has a 40 by 40 display in 16 colors and high resolution has a 280 by 160 display with 6 colors.

To enter low resolution graphics, you use the command GR and specify the position of the point to be plotted in a range of $0-39$, both horizontally and vertically. Colors are chosen with the command COLOR $=\mathrm{x}$, with the following 16 possibilities for x :

0 Black	4 Dark Green
1 Magenta	5 Light Grey
2 Dark Blue	6 Medium Blue
3 Purple	7 Light Blue
8 Brown	12 Green
9 Orange	13 Yellow
10 Grey	14 Aqua
11 Pink	15 White

The lo-res graphics commands are:
PLOT X, Y which sets the point \mathbf{X}, \mathbf{Y} to the most recent color.

HLIN X1, X2 AT Y which draws a horizontal line from (X1, $\mathrm{Y})$ to ($\mathrm{X} 2, \mathrm{Y}$).

VLIN Y1, Y2, AT X which draws a vertical line from ($\mathrm{X}, \mathrm{Y} 1$) to (X, Y2).

SCRN (X,Y) returns the number of the current color at point X, Y.

To enter the high resolution mode, you use the command HGR and enter the point to be plotted in a range of 0 to 279 horizontally and 0 to 159 vertically. Colors are selected with the command HCOLOR $=\mathrm{x}$ with x selecting the following colors:

| 0 Black 4 Black
 1 Green 5 Orange
 2 Violet 6 Blue
 3 White 7 White |
| :--- | :--- |

The hi-res graphics commands are:

HPLOT X, Y which sets the point at X, Y to the current HCOLOR.

HPLOT X1, Y1 TO X2, Y2 which draws a colored line from point (X1, Y1) to (X2, Y2)

Both high resolution and low resolution graphics modes allow four lines of text at the bottom of the screen. It is possible to override the text window and extend the vertical resolution to 48 lines in lo-res and 192 lines in hires, but you lose all text, since text
and graphics cannot be mixed. To eliminate the text window, POKE-16302, 0 . To restore the window, POKE-16301, 0.
In addition, the Apple also has commands that allow you to use a prepared "shape table" of previously specified patterns. The shape commands are:
DRAW N AT X, Y which draws shape N at the given point on the screen.
XDRAW N AT X, Y which draws the same shape, but reverses
the colors in those positions currently on the screen.

ROT $=\mathrm{X}$ sets the rotation for shapes to follow.

SCALE $=\mathrm{X}$ sets the scale for shapes to follow.

Creating shape tables is a complex process beyond the scope of the present discussion. There are programs such as the Magic Paintbrush graphics package which allow you to create shape tables by simply drawing on the screen with the game paddles.

These programs will draw our box on the screen of the Apple:

```
10 GR : COLOR = 9 : HLIN 15,25 AT 15
20 HLIN 15,25 AT 25
30 VLIN 15,25 AT 15
40 VLIN 15,25 AT 25
10 HGR : HCOLOR = 5 : HPLOT 15,15 TO 15,25
20 HPLOT 25,15 TO 25,25
30 HPLOT 15,15 TO 25,15
40 HPLOT 25,15 TO 15,25
10 HGR : HCOLOR = 5
20 HPLOT 15,15 TO 15,25 TO 25,25,TO 25,15 TO 15,15
```

The ATARI computer has considerabl:' more complex graphics. There are basically 3 text and 6 graphics modes. Actually, there are three more graphics modes not easily
accessible to the Basic programmer, and the three text modes can contain graphics. In addition, there are three variations on each graphics mode. Here is a table of the basic modes.

Mode	Type	Horizontal	Vertical	(Full	Screen)
Colors					
0	Text	40	-	40	2
1	Text	20	20	24	5
2	Text	20	10	12	5
3	Graphics	40	20	24	4
4	Graphics	80	40	48	2
5	Graphics	80	40	48	4
6	Graphics	160	80	96	2
7	Graphics	160	80	96	4
8	Graphics	320	160	192	(2)

The difference between the first and second vertical column is a four line text window at the bottom of the screen. If you do not want tie text window, add 16 to the graphics mode number to override the split screen format. Thus GRAPHICS 22 is a full screen version of GR. 6 with a 160 by 96 display, 0-159 horizontal and 0-95 vertical. Actually, that overstates the size slightly, as the machine initializes with 39 characters across and you have to POKE in the 40 character wide screen. This feature is to allow for overscan on some TV sets. You can also narrow the screen with a similar POKE. The reason the 2 for GR. 8 is in parentheses is that you really are only entitled to two shades of one color. Graphics 9 , 10,11 , and a few special tricks can overcome that problem, but they
are beyond the reach of the current discussion.

The ATARI has 16 colors available, each of them in 8 hues from dark to almost white, using the command SETCOLOR a, b, c with a representing one of 5 color registers, b representing the color from the table below, and can even number from 0 (dark) to 14 (light). You can change colors on the screen without disturbing the drawing by simply changing the color register for that point.

0 Grey	4 Pink
1 Gold	5 Pink Purple
2 Orange	6 Purple
3 Red Orange	7 Blue
8 Blue	12 Green
9 Light Blue	13 Yellow Green
10 Turquoise	14 Orange Green
11 Green Blue	15 Light Orange

In lást month's SoftSide: S-80 edition in the programming hints column, James printed several unique graphic programs. What made them special is the fact that the programs were each only one line long. Being a rather fascinating idea, we thought it would be worthwhile to share the concept with the rest of our readers this month and see how creative you can be.

The rules are as follows:

1. The program must be written as a single line in BASIC.
2. The program must be selfcontained. Do not make any assumptions about string storage available, graphics modes being in effect, etc.
3. The program should provide a continuously changing graphics display, as impressive as possible.

1 CLS:FORT=1TO2STEFO:A=PEEK(14400):E=SGN(((AAND24)-14) (AAND24))
 $X T E L S E X=X+F \div Y=Y+E \div \operatorname{RESET}(X, Y) \div S E T(127-X, Y): S E T(X, 47-Y) \div S E T(127-X$, 47-Y) :SET (X, Y) :IFINKEY\$)CHR $\$(31)$ NEXTELSERUN

Here's a creative example for the 4 S-80 by Rich Bouchard:

This program allows the user to create graphic displays. The program starts by turning on the four graphic points at the corners of the screen. The dot in the upper left will start to flash. You can move the dot with the arrow keys, and all four dots will move also, forming a symmetrical pattern. Diagonal movement is created by holding two keys down; for example, the right and down arrows. When your masterpiece is finished, it may be erased by hitting the CLEAR key.

MODPROG

MODPROG is an $S-80$ program for Level II $4 K$ and up, and an Apple program for those with Applesoft.

by Thomas Hanlin III

Like to be able to change PRINTs to LPRINTs, use one-key abbreviations for statements, use Super Graphics, and quickly find every REMark in your program with one short BASIC program? Modprog will do all this and more in just three lines (Four for Apple users.)

How to use it: load your program into memory and type in Modprog. (The lowest line number in your program must be 4 or higher.) Modprog must be the first four lines in memory, so don't change the line numbers! RUN Modprog. To change one command to another throughout the program (PRINT to LPRINT, SET to RESET, etc.), look up the values of the commands in the chart and enter them when
prompted. Modprog takes it from there. To find a character/ statement (REM, etc.) without changing anything, just enter the appropriate code twice. Line numbers are listed automatically. To change " N " to 'NEXT", etc., use the ASCII value of the letter (see the chart on page C2 of your LEVEL II BASIC USER'S MANUAL) as the number to change. Note that this letter will be changed throughout the program --including, if you're not careful, REMs, PRINTs, and variables! To get Super Graphics, use a character in the PRINT statement that isn't used anywhere else in the program. Search with the ASCII value of that character and change it to the appropriate graphics character code. When Modprog's done, DELETE0-3 and RUN, CSAVE or SAVE your program.

How it works: BASIC program lines are stored in memory starting at location PEEK (16548)
$+256 * \operatorname{PEEK}(16549)$ in the format:

X - Y - A - B - instructions - $\mathbf{0}$ - \mathbf{X} . . . where $X+Y^{*} 256$ is the memory location of the two locations preceding the next line number and $A+B^{*} 256$ is the present line number. When X and Y both equal zero then there is no next line - you're at the end of the program. So . . . Modprog line 0 starts at the beginning of program memory, advances the line counter four lines so it doesn't try to modify itself, and INPUTs the character/statement to change and what to change it to. Line 1 finds the number of the line being looked at and the location of the two locations preceding the next line number (which is also the first location past the end of the line), and search-loops from the beginning to the end of the line. Line 2 continues that loop. Line 3 sets things to search the next program line and determines
continued on page 70

HI RESOLUTION DRAWING

Connect any points on the screen, fill areas, paint with a set of nine "brushes" (or define your own), and draw with, plot, rotate, and scale shapes that you define.

ORDER
TOLL-FREE
1-800-258-1790
(in NH call 673-5144)

SHAPE TABLE DESIGNER

Design shape tables with keystrokes or paddles.

Also included are Applesoft Invaders and Slot Machine colorful variations of well-known diversions whose graphics were created with this package, and instructions for saving graphics on disk and putting them in your own programs.
32K Applesoft ROM, \$29.95 on diskette

"Tired of Disk Errors? Stop blaming your drives... FIX YOUR DOS!!!’ NEWDOS
 BY APPARAT

NEWDOS

NEWDOS corrects over 70 errors and omissions in TRSDOS 2.1 and disk BASIC, yet they are completely compatible! Programs SAVEd under either system need no modification to work with the other. Like going from Level I to Level II: more power, convenience and speed. Use all DOS commands (DIR, FREE, RENAME, COPY etc.) from BASIC, AUTO LOAD and RUN a BASIC program from power-up, produce variable and constant cross reference tables, OPEN " E " to add to the end of a sequential file, send whatever is on the screen to your-printer, even in DOS (great for DIR), renumber BASIC programs, and more . . Fully documented; available on disk for only $\$ 49.95$

NEWDOS PLUS

ALL of the above PLUS: Editor/Assembler for disk, Z-80 Disassembler, LMOFFSET to relocate and save SYSTEM tapes to disk, Level I BASIC language with disk I/O, DIRCHECK to check and LIST disk directory, SUPERZAP-display/print/modify any location in RAM or on disk (worth the price of the entire package when you resurrect that accidentally KILLed file!). NEWDOS+ on disk with documentation, just $\$ 99.95$

NEWDOS/80

Brand new from Apparat, their most powerful DOS ever. EVERYTHING in NEWDOS and NEWDOS + and more: Variable length records (up to 4095 bytes), mix or match your disk drives: 35 , 40 and 77 track drives can be used in any combination-even with 8 inch drives, new security boot-up sequence makes it impossible for the unauthorized to BREAK or LIST. "DOS READY" and "READY" need never appear, enhanced RENUMBER allows relocation of subroutines, powerful program CHAINing, option to PRINT on display and printer simultaneously, execute DOS commands-from DOS- without distrubing your resident BASIC program. Put the "DOS" of the Eighties" to work for you. On disk, with all documentation. \$149.00

TO ORDER TOLL FREE: 1-800-258-1790
(In NH call 673-5144) 6 South St., Milford, NH 03055

SAILPLANE is an S-80 program for Level II I6K and up.

by David J.T. Nunn

The Sailplane Derby program is a 'True to Life' simulation of a cross-country sailplane race.

Competition gliding is carried out by enthusiasts in most countries of the world using sailplanes which are typically of 50foot wingspan, constructed of fiberglass reinforced plastic with extensive streamlining and costing upward of $\$ 30,000$. They are towed aloft by small, powered airplanes and released: from then on the pilots must rely on rising upcurrents of warm air called 'thermals' to stay aloft. Pilots guide their machines across country seeking the summer cumulus clouds that often mark the top of an active thermal and then turn in tight circles to stay within the confines of the narrow columns of rising air, enabling their sailplanes to be lifted upward. When all possible height has been gained (sometimes by entering the cloud capping the thermal), they dart off in search of the next active thermal on the course line.

In competition, the task is usually to fly from the take-off point, around two turning points and back home. This triangular task is timed; the pilot completing the task in the shortest time is the winner.

SAILPLANE PERFORMANCE

A sailplane's performance is usually specified as its maximum glide angle, typically 40 to $1 @ 50$ mph: for every foot in height lost it glides forward 40 feet. However, if the sailplane flies faster, then the glide angle deteriorates due to increased aero-dynamic drag. (Flying slower than 50 mph worsens the glide angle.)

SPEED	40	50	60	70	80	90	100	110	120
G.ANGLE	23:1	40:1	34:1	30:1	26:1	24:1	21:1	19:1	18:1

The table above shows that flying at 50 mph will produce maximum glide distance. However, if the thermals are strong and you
have sufficient altitude, then faster progress can be made at 60 to 80 mph without too large an altitude loss.

THERMAL STRUCTURE

CORRECT 'SPEED TO FLY'

When a sailplane flies through a sinking or rising air mass, its airspeed should be adjusted in accordance with the following general rule:

1. If the sailplane is in sinking air, its speed should be increased.
2 . If in rising air, the speed should be decreased (usually to a minimum of 50 mph).

At first glance, this rule seems illogical. However, the reason is to ensure that, in the case of sink, the sailplane is subject to the sink effect for the minimum 'period of
time', thus reducing the 'total' loss of height; and the converse for lifting air. It should be noted that the exact quantity of each speed adjustment can only be learned by experience, although mathematical treatments for the problem have been derived by several experts including Dr. Paul MacReady (lately of Man Powered Flight fame).

It may be necessary to increase the airspeed of the sailplane if you are attempting to 'penetrate' into a strong wind. Consider the table set out below:

SPEED	40	50	60	70	80	90	100	110	120
G.ANGLE	9:1	20:1	21:1	20:1	18:1	17:1	16:1	15:1	14:1

The table above shows the dramatic effect of glide angle (over the ground) of a sailplane heading directly into a 24 mph wind - the strongest the simulation is likely to inflict on you. You must remember that, although the angle through
the air is still the same as shown in the first glide angle chart, the distance covered 'over the ground' is greatly reduced. You can also see that it pays to fly faster, say at 60 or 70 mph , to achieve maximum distance over the ground.

FLYING IN CLOUD

It is possible to climb much higher in a thermal by allowing your sailplane to be drawn up, while still circling, into the cumulus cloud above. When in cloud, your turn indicator and compass are invaluable in maintaining control and ensuring that the exit from the cloud is made on the correct heading.

It is important to note that both thermal strengths and cloud base heights rise during the day to a maximum in the early afternoon. So it is in the simulation; therefore, better progress may be made later in the day in the better weather conditions (see later section on launch times).

DESCRIPTION OF OPERATION

The simulation program runs as follows:

1. Either you or the computer sets the weather
2. Input number of players
3. Input players names
4. A meterological forecast will now be printed. You should particularly note the thermal strength and wind speed and direction as weak thermals coupled with a strong wind make progress into wind very difficult.
5. The players are now invited to either accept a launch half an hour after the first thermals have developed or request a deferment of the launch for one or two hours (enter 0,1 , or 2 as required).

If either a long distance flight is anticipated or the period of time thermals will be produced is short, then acceptance of an immediate launch is advisable. If not, a faster flight can be achieved by deferring the launch and thereby using the strongest thermals only available during the middle of the day.
(Note: During the last two hours of the day the thermal strengths start to diminish before disappearing altogether.)
6 . The program now requests coordinates of the two turnpoints around which the triangular task is set. You are launched at position $X=20$ and $Y=20$, and the location of the turnpoints are to be in the range $X=10$ to $70, Y=10$ to 70 .

It is suggested that as a beginners task the first turn be at $X=50$ and $Y=50$; the second turn to be at $X=50$ and $Y=30$.
7. The program now produces the cockpit graphic display and requests the first player to commence the task.

YOUR SAILPLANE'S INSTRUMENTS

Your sailplane is equipped with the following instruments:

1. ASI (located top left): Stands for air speed indicator-your speed is limited to the range 40 to 120 mph . 2. ALT (located bottom left): Displays your altitude above ground level in feet.
2. COM (located top center): Compass gives standard 360° compass readout $\left(360^{\circ}=\right.$ North, $270^{\circ}=$ West, $180^{\circ}=$ South, $90^{\circ}=$ East . 4. V-V (located center): This is the most important instrument you have. It is the variometer, the instrument that shows how fast the glider is sinking or rising. An analog (needle type display) is provided. However, you will find that the digital display below is more accurate. A reading of +1 indicates a climb rate of 100 feet per minute and -3 indicates a descent rate of 300 feet per minute. 5. T\&S (located to the right of the variometer): This is the turn indicator which indicates, by both analog and digital output, the rate of turn (in degrees).
3. Stopwatch (extreme right): This times your flight. The watch starts automatically at the beginning of the game. However, it will be reset if a relaunch (see section on commands) is executed. The watch is stopped immediately after a valid crossing of the finish line occurs.

CONTROL COMMANDS

Take special note that operation of any of the following control commands can only take place while the symbol (${ }^{* * *)}$ is seen immediately to the right of the compass. During the period that control commands are allowed, any combination of commands are allowed.

If your computer does not have a numeric keypad, it is suggested that the following alterations are made to the simulation program: Change Line 2000 to read - 2000 IFA $\$=$ " Q "THENS $(B)=S(B)+10$ Change Line 2010 to read - 2010 IFAS="Z"THENS(B)=S(B)-10
You have made a note of these alterations, haven't you!!

FLIGHT CONTROLS (FOR TRS-80 WITHOUT NUMERIC KEYPAD)

4 = Left turn - is incremented in 3 degree units for as long as key is depressed (up to a total of $9 \mathbf{0}^{\circ}$)
$6=$ Right turn - (incremented as above)
$5=$ Neutralizes turn control to the 'straight ahead' position
$\mathbf{Q}=$ Each press increases the
sailplane's speed by 10 mph
$\mathbf{Z}=$ Each press decreases the
sailplane's speed by 10 mph

FLIGHT CONTROLS (FOR TRS-80 WITH NUMERIC KEYPAD)

4 = Left turn - is incremented in 3° units for as long as key is depressed (up to a total of 90°) 6 = Right turn - (incremented as above)
$5=$ Neutralizes turn control to the 'straight ahead' position
$8=$ Each press increases the sailplane's speed by 10 mph
2 Each press decreases the sailplane's speed by 10 mph

ADDITIONAL COMMANDS

(S) = START BUTTON - Once

you have been launched the stopwatch timing your flight starts to run. If, however, you wish, for some tactical reason, to take another start, you can fly back to behind the start line (so that X and Y are both less than 20), and then, provided you are below the height of 3,281 feet, pressing the start button will reset your stopwatch to zero. Why should you want to go to this trouble! Well, the experts, always interested in saving minutes or even seconds, like to climb high in a thermal near to the start line and then dive across the line at 120 mph, pressing the start button at just the right moment. This allows them to decelerate, gaining height by converting speed into altitude, thereby saving the time taken to climb, say, 300 feet in the next thermal. That's the theory anyway. Oh! Why 3281 feet? Well, for the uninitiated, that's equal to 1000 meters, the height the FAI, the international aviation ruling body, determines is the maximum start height.
T = This is the turnpoint button. In real life the competitors carry sealed cameras with which to photograph the turns, which are selected to be some
well-known,easily-recognizable landmark. In the simulation, all you have to do is maneuver your sailplane to the correct location near the turn and press ' T '. If you are out of position, an error message will be flashed up. Correct locations for turning at each turn are as follows:
Turn One: You must be at a higher value for Y (than the turn) and within 2 units of the value for X.

Turn Two: You must be at a lower value for Y (than the turn) and within 2 units of the value for X . Example: If the first turn of the task is at $\mathrm{X}=50 \mathrm{Y}=50$ then to turn correctly you must be at $\mathrm{Y}=50.1$ (or higher) and $\mathrm{X}=48$ to $\mathrm{X}=51.9$. Also note that as soon as you get a 'good turn' message at turn one the program shifts all further analysis to refer to turn two.
F $=$ This is the finish button. When you have completed the task, having rounded both turnpoints, you head for home and the finish line at coordinates $X=20$ and $Y=20$ (your original take-off point). When you cross the finish line - that is when both your X and Y coordinates are less than twenty - press ' F '. This will stop the timer and display your landed position back at the airfield.
$R=$ This is your relaunch button. If, when you are initially launched, you cannot find a thermal to keep you airborne, the relaunch facility will place you back at the original launch position and height. This will then give you a second try at the task. Remember that you can only take 'one' relaunch and that this must be taken within the first hour of flight.
K = Stands for kill control input. If you press this control (you should hold it down for around 8 seconds), the control input routine, marked thus ${ }^{* * *}$, ceases to run, ensuring a faster overall program execution. Of course, you would only use K if certain that control inputs would not be required for a while - to cancel, just hold down K again.

Unlike most so-called simulation programs available today
'Sailplane Derby"' is a fairly close model of actual cross-country gliding; (the author is an experienced glider pilot).
Therefore, a certain level of skill is required for efficient operation of the program. It is suggested that the following training procedure is followed during the first few program runs.

1. Run program.
2. Define weather with thermal strength set at 3 and wind strength set at 1.
3. Defer launch 2 hours.
4. Enter any valid turn-point coordinates (as you will not require turn-points for training).

You will now be launched into a favorable meterological environment with strong thermals and little wind drift.

You should note that the program always initialises one strong thermal close to your launch position. Therefore, as soon as the cockpit display is printed, you should commence a gentle turn, say to the right, at a turn rate of around 25. Also, it is a good idea to slow down to 50 m.p.h. You will now see a panorama of the sky moving across your field of view. When you locate a nearby cloud, that is to say one that is both wide and high in your field of vision, straighten out the sailplane and fly in the direction of the cloud. Try to point your sailplane slightly to one side of this cloud, let us say to the left of the center.

It is essential to understand that when you approach the cloud it will disappear prior to your arrival at the location of the thermal. The disappearance is NOT an indication that you have reached the thermal: therefore, continue to glide in a straight line. DO NOT TURN AT THIS TIME.

If the cloud has a thermal under it (one in every five has sink!), you should notice first a rise in the sink rate and then your variometer should follow approximately the following progression. (The actual numbers will vary with the strength and height of the thermal).
Entering thermal
$\begin{array}{lllllllll}-2.5 & 0 & 1.5 & 3 & 3.2 & 1.0 & -1.0 & -2.5 \\ & & & \uparrow & & & \text { Exiting }\end{array}$ thermal

When the progression has reached almost the peak climb rate (between the two arrows) apply full right turn (90) and you should have your glider approximately central in the thermal. If you were unlucky enough to hit sink, the progression of variometer readings will be different, similar to those shown below.

Entering sink
$\begin{array}{llllll}-1.6 & -1.9 & -2.8 & -3.6 & -3.6\end{array}$
$-2.8-1.9-1.6 \rightarrow$ Exiting sink
The only thing to do here is to steer away and try another nearby cloud.

Looking on the bright side, let us assume that you are climbing in a thermal at the maximum turn rate of 90 which indicates a complete 360 degree turn in four program loops. It is possible in this situation that your climb rate may be varying (see example of variometer readings below).

$$
\begin{aligned}
& \text { Start of } 360 \text { degree turn } \\
& \stackrel{C}{C+4.2}+4.0+1.0+4.1 \underset{\text { End of } 360 \text { degree turn }}{ }
\end{aligned}
$$

This occurrence indicates that you are not correctly centered in the thermal. There are many techniques used for centering, the most common being the so-called 'worst heading' method. To use this technique wait until the least favorable indication of climb appears on the variometer, in our example +1.0 , then wait one program loop until you get the next variometer reading which is + 4.1. Quickly straighten out, and in the very next program loop, apply full turn in the same direction as previously. The effect of this procedure is to move the center of your circles into a position nearer the center of the thermal.

It is suggested that you fly the sailplane in various thermals, practicing centering the glider and training yourself in general flying skills prior to actually attempting to fly a set cross-country task. You should soon gain experience in the handling of the sailplane. This may take a little time but, once mastered,the program will provide interest which will not wane as do some of the more trivial simulations on the market.

10-30 Titles and Copyright statement.
10 CLS:PRINTR462,CHFS(23);"SAILPLANE DEREY"
20 PRINTE650,"BY DAUID J.T. MAN.": $\mathrm{FFORN}^{2}=1$ TO2700:NEXT
30 CLS:PRINTE393,"(D.J.T.NMRN. - LONDON,ENGLAND, COPYRIGHT 1979)

40 Dimension arrays; define integer variables.
40 CLEAR160:DITTH $(30,4), X Y(3)$, 岨 $(3), W(3), X(3), Y(3), H(3), S(3), R($ 3), $\mathrm{N}(3), D(3), K(3), B(3), L(5): D E F I N T D, N, Q, K, O, F, S, W, U, B, C, P: L(4)=$ $1 \div \mathrm{L}(5)=1$
42 RANDOM
44-60 Define user selected weather conditions.
44 CLS:PRINT"DO YOU YISH TO DEFINE YOUR OHN MEATHER CONDITIONS 0
R ACCEPT A RANDONISED HEATHER PATTERN
$1=0 \mathrm{AN}$
z $=$ RANDOK"
46 PRINT" 1 OR 2)"

50 IF $\mathrm{S}_{1}=$ =" 2 "THENO
51 IFK $=$ " 1 "THEN52ELSE46
52 CLS:PRINT"ENTER THEXHAL STRENGTHS
$1=$ HEAK
2 = MEDIUM
$3=$ STRONG"
53 INPUT"(1,2 OR 3 THEN ENTER)";A1:IFA1<1ORA1>3THEN53
54 CLS:PRINT"ENTER MIND SPEED
$1=3-5 \mathrm{HFH}$.
$2=7-13 \mathrm{IFH}$.
$3=19-25 \mathrm{MFH}_{4} "$
ك INPUT"(1,2 OR 3 THEN ENTER)";A3:IFA3<10RA3>3THEN55
57 IF A3=3 THEN A3=5
60 A4=(9-A1)/10;A5=,6:AZ=RND(6):GOT0100
70-80 Define randomised weather conditions.
70 CLS:PRINT"ONE MONENT...":A1=RND(3):A4=(9-A1)/10:A5=+6
$80 \mathrm{~A}=\mathrm{FRND}(6): A 3=\operatorname{RND}(6)$
90 "
100-130 Randomiser selects values for thermals (X \& Y coordinates, strengths).
100 FORN $=1$ TO30:TH $(N, 1)=\mathrm{FND}(425)+130$: NEXT
110 FORN $=1$ TO30: $T H(N, 2)=R N(475)+175:$ NEXT
120 FORN $=1$ TO30:TH $N, 3)=($ RND (5) IA1 $)+7$: NEXT
130 Q5=0:F2=0
140-160 Turns one thermal in every five into sinking air on a random basis.
140 FORN=1T030:T1=RND(5)
$150 \operatorname{IFT} 1=1$ THENTH $(N, 3)=\operatorname{INT}(T H(N, 3) x-, 6)$
160 NEXTN
170 Ensures there is at least one thermal within gliding range of the start by loading a thermal into front of array, using a very limited set of conditions for the randomiser.
$170 T H(1,1)=\operatorname{RND}(120)+140 \div T H(1,2)=\operatorname{FND}(120)+140 \div T H(1,3)=(\operatorname{RND}(5) \geq A 1$ 1+7

180-200 Sets the vertical centroid of the thermal above ground level into the last line of the thermal matrix.

180 FORN $=1$ TO30: $\operatorname{IFTH}(N, 3)<0 T H E N 200$
$190 T H(N, 4)=F N D(A 1=600)+(A 1 \times 500)$
200 NEXTN
210 IFF9=1THEN630
$220 \mathrm{F9}=1$

230-270 Enter player's names and set player counter.
230 CLS:INPUT"MPEEER OF PLAYERS ";P1
240 IFP1<1ORP1>3THEN230
250 INPUT"TYPE NAMES OF PLAYER(S)-AFTER EACH PRESS ENTER ";BS(1)
260 IFP1=1THEN280ELSEIMPUTBS(2)
270 IFP1=2THEN280ELSEINFUTES(3)
280-450 Print meteorological report.
280 CLS:PRINT"NETEOROLOGICAL DATA"
290 PRINT"THERYML STRENGTH: ";
300 IFAI=1PRINT"KEAK"
310 IFA1=2PRINT"MODERATE"
320 IFA1=3PRINT"STRONG"
330 PRINT"CLOLD DEVELOFFTENT EXPECTED : ";
340 PRINT" ISOLATED SURPER CUPALLUS."
350 PRINT"KIND VELOCITY (FROM THE HEST)";
360 IFA3=<ZPRINT": 3-5 MPH."
370 IFA3〈5ANDA3>2PRINT": 7-13 MFH."
380 IFA3>APRINT": 19-25 IFH."
390 IFAI $=1$ THENPRINT"FOUR HOURS OF CONECTION EXPECTED"
400 IFAI=2THENPRINT"FIVE HOURS OF CONVECTION EXPECTED"
410 IFA1=3THENPRINT"SIX HOURS OF CONNECTION EXPECTED"
$420 \mathrm{~T}=15-((1-\mathrm{A} 4) \mathrm{m} 10)$
430 PRINT"THERHALS EXPECTED TO START AT ";T1;"00 HOURS."
440 PRINT"UISIBILITY IS EXPECTED TO BE 20 MIIES."
450 PRINTE788,"PFESS ANY KEY TO CONTINE"

$N=27 T 030: T H(N, 1)=T 2: T 2=T 2+40: N E X T: F O R N=27 T R 30: T H(N, 2)=T 3: N E X T: F O$
$\mathrm{RN}=2 \mathrm{TTO30}$: $\mathrm{TH}(\mathrm{N}, 3)=\mathrm{TH}(27,3)$: NEXT
470 A $\$=I$ NKYY:IFA $="$ "THEN470ELSECLS
480-510 Is launch deferment required if so increment A4 and A5.
480 PRINT"YOU YTIL BE LAUNCHED HALF AN HOUR AFTER
CONDITIONS HAVE BECOKE SDARAELE, AT ";T1;"3O HOURS.":AA=A4+,05 490 INFUT"COMFETITORS MAY REQUIRE A LATER LANNCH. THEREFORE IF A
LALNCH POSTPONFENT IS REQUIRED ENTER MMEEER OF HOURS OF POSTP
ONPENT (1 OR 2), IF NONE REAUIRED ENTER 0";T2
500 IFT2<OORT2>2THENFRINT"ENTER 0,1 OR $2 ":$ COTO490
$510 \mathrm{~T} 2=\mathrm{T} 2 / 10: \mathrm{A} 4=\mathrm{A} 4+\mathrm{T} 2: \mathrm{A} 5=\mathrm{A} 5+\mathrm{T} 2$
$520{ }^{\prime}$
530 Initialise variables for launch of first sailplane.
$530 H(1)=3000: H(2)=3000 \div H(3)=3000: S(1)=60: S(2)=60: S(3)=60: W(1)=6$ $0: H(2)=60 \div W(3)=60: D(1)=45: D(2)=45: D(3)=45: K(1)=3000 \div K(2)=3000: K($ $3)=3000 \div X(1)=200: X(2)=200 ; X(3)=200: Y(1)=200: Y(2)=200 ; Y(3)=200 \div R($ 1) $=0 \div R(2)=0 ; R(3)=0$
$540 \mathrm{E}=1: \mathrm{T} 1=0: T 2=0: T 3=0: T 4=0$
550-600 Request positions of turnpoints and load into memory.
550 PRINT"ENTER TLKAFOINTS (TURN ONE MUST BE NORTH OF TURN TKO)" 560 INPUT"TASKSETTER TO TYPE X CO-ORDINATE OF FIRST TURNPOINT (10 -70)";U1
570 INPUT"Y CO-DRDINATE";U2
580 INPUT"TASKSETTER TO TYFE X CO-ORDIMATE OF SECOND TURAPOINTI 0-70)"; 13
590 INPUT"Y CO-DRDINATE";U4

>70)THENFRINT"ENTER COORDINATES EETMEEN $10 \& 70 ": G 0 T O 560$
602 Call up map S / R to indicate positions of turnpoints.
602 CLS:PRINT"TURNFOINTS ARE DISPLAYED AS CROSSES ON THE FOLLONI
NG MAP " "FOKN $=1$ TOA200:NEXT:CLS:GOSUE3060:FORN=1T010000:NEXT:CLS 610 IFP $1=1$ THENL $(2)=1: L(3)=1$
620 IFP1 $=2 T H E M(3)=1$

w. simisicARIBBEAN CRUISING

by Mark Pelczarski and Jim Klink
CA RIBBEAN CRUISING for the Apple works with 16 K memory and requires Applesoft in ROM

With this simulation, you won't have to worry about flashing screens, obtrusive sound effects, being shot at, or blasting an opponent out of the water. Just sit back and maneuver your sailboat around the islands. As the winds vary, you'll occasionally have to tack as you travel into the wind, or change your foresail to take maximum advantage of conditions. You won't have to worry about fatal mistakes; you cannot run aground, crash into another boat, or rip out your mast or sails. The worst that will happen is your boat will be drawn in red and sit still if you have the wrong sail for the conditions. Once you have some sailing skill, you may even want to try challenging someone to a race.
Sailing a Boat:
Your boat is equipped with a main sail and three different foresails: a jib, a genoa (sometimes called a jenny), and a spinnaker. When you start, the jib will be in place. Your control over the boat is through the game paddle. The knob controls your rudder, and the button allows you to change your foresail. At the lower left corner of the screen (and at the lower right for a second boat, if there are two), you will see your direction and which sail you have in place. Zero degrees is north, 90 degrees is east, 180 degrees is south, and 270 degrees is west. At the bottom center of the screen will be the exact wind direction and speed. There is also a wind vane in the upper right corner.

A jib is a relatively small foresail, and its maximum speed is attained when you are travelling almost at a right angle to the wind. It is still effective with the wind behind you, but its capabilities decrease considerably as you begin to head into the wind. It is the safest sail at higher wind speeds, 30
and the only one that will work in this program if the wind speed is over 35 mph .

A genoa is actually a large jib. It works the same as a jib, but with high wind speeds it is too large and should be replaced with a jib.

A spinnaker is a very large balloon-like sail. It is most effective with the wind directly behind you. As the wind approaches you from a right angle, the spinnaker's effectiveness rapidly decreases. Because of its size, you should not use this sail when the wind speed is over 30 mph .

When sailing, your boat will be drawn in the approximate direction that you are heading, but you should rely heavily on your compass reading at the bottom of the screen. The screen is drawn so that north is at the top. The computer will not let you go off the edge of the screen, nor will hitting the other boat or an island affect you.

When heading into the wind, you must tack, or zigzag, back and forth to get from one point to a nother. This means you may have to change headings several times to avoid going directly into the wind.

('Pathways through the Rum")
To keep in the spirit of things, it wouldn't be a bad idea to fire up your blender to create some concoctions that would add to the atmosphere of this simulation. I just happen to have a couple of ideas here:

The Pina Colada
The Basics: Pineapple Juice, Cream of Coconut (available in cans), and Dark Rum. The proportions aren't too important usually more pineapple juice and less coconut. For a great improvement, add vanilla ice cream. To make Strawberry Coladas, add frozen strawberries; for Banana Coladas, add a banana or two. In general, throw in whatever you want. Blend well and
serve over ice. A cherry or some fresh pineapple adds a nice touch.

The Landfall

Throw all of the following (or reasonable fascimiles) into a blender: Orange Juice, Pineapple Juice, Sweet and Sour Mix (alternately, Whiskey Sour Mix, or Lemon, Lime, and a little sugar), Dark Creme de Cacao, Cream of Coconut, and Dark Rum. Vanilla ice cream also does wonders. I usually go heavier on the orange juice, and lighter on the sweet and sour mix and coconut. Blend well, of course, and serve over ice.

The Morning Sun

Fill a blender $2 / 3$ with Orange Juice. Throw in a Banana or two, a couple scoops of Cream of Coconut, Vanilla Ice Cream (if available), and Dark Rum. Cover the blender and turn it on. It also goes great with breakfast, minus the rum.

It should be noted that all of the above taste just fine without rum, so if you have an aversion to fermented sugar cane, or are under-age, you may still partake in these fine offerings.

Suggested Listening

To complete the mood, you may want to take a run down to your local record store to see if they have any Steel Band albums.
Nonesuch Records has one called Sounds of the Sun, and I've seen others around. An alternative would be any album by Jimmy Buffett (Volcano, Son of a Son of a Sailor, Changes in Latitudes...)

Sailboat's Documentation:
Variables, in alphabetical order:(Note: all subscripted variables, except $\mathrm{S} \$$, will have subscripts of 0 or 1 , corresponding to boat 0 or boat 1.)
$\mathrm{BC}(0-1)$: Boat Color. $\mathrm{BC}(0)$ equals 7 (white), and $\mathrm{BC}(1)$ equals 4 (black).
$\mathrm{BD}(0-1)$: Boat Direction, in degress off North, as explained in the accompanying article.
BN: Number of boats (players). Value will be 1 or 2.
BR(0-1): Boat Rotation, and BS(0-1): Boat Shape.

These 2 are closely related. There are 4 boat shapes (so that as you turn, your boat will never appear upside-down). Each shape will be used in two possible directions, giving 8 possible views of the boat. Each boat shape is drawn so that its X , Y coordinates will determine the bow position on the screen. The rotations correspond to those necessary for the 2 views that are used with each shape. Apple rotations of $0,16,32,48$ correspond to actual clockwise rotations of $0,90,180$, or 270 degrees.

DD: Used in two different ways to compute angles. In one case, it's a difference of 2 measures. In the other case, it's used to determine boat rotation.
FS(0-1): Foresail. Possible values: 1-Jib, 2-Genoa, 3-Spinnaker, 0-Sail is down.
L: Location in which shape subroutine will put data.

PF: Paddle flag. 0 if waiting for boat 0 to put up sail, 1 for boat 1 , and 2 if both boats are under sail. Because the sail choice is put in through the keyboard, only one boat's sail may be down at any given time.
S\$: Used by initial shape subroutine when reading.
S\$(1-3): Sail name. 1-Jib, 2Genoa, 3-Spinnaker.
SP: Speed, used to compute new position.
T: Whose turn. Counts $0,1,0,1 \ldots$

U: Unit distance, set to 4 . Changing this will cause the sailboats to move around the screen in larger or smaller steps.
V: Value poked into memory by subroutine that reads the shape tables.

WD: Wind direction.
WS: Wind speed, varies between 10 and 40 mph .
$\mathrm{X}(0-1), \mathrm{Y}(0-1)$: X, Y coordinates of each boat on the screen. X can be 6 to 273, left to right; Y can be 6 to 153 , top to bottom.
XN, YN: New X, Y coordinates, as they are computed.

LIST

5 REK C. 1980 MAFK PELCZARSKI
Lines 10,20 cause shape table initialization.
10 COSUB 900
20 POKE 232,0: POKE 233,28
Lines 25-45 initialize variables and screen.
$25 \mathrm{~V}=4$
30 DIM $B S(1), B R(1), F S(1), B D(1), X$ (1) $, Y(1), B C(1)$

35 DIM $S \$(3): S \$(1)=$ "JIB \quad " :S\$(2) $=$ "GENDA $\quad " \$ 5(3)=$ "SPINAKKER"
$40 \mathrm{PF}=2: 1 \mathrm{D}=\mathrm{INT}$ (FND (1) $\times 3$ 60): $\mathrm{HS}=$ INT (RND (1) $\times 11$) +20
42 HNNE : VTAB 21: PRINT "1 OR 2 SATLBDATS? ":: GET S\$: IF S \$ < "1" OR S\$ > "2" THEN 42
$438 N=$ VAL (S\$)
45 SCALE = 1: HER
Line 46 creates blue background.
46 HCOLOR= 6: HPLOT 0,0: CALL 62 454
Line 50-80 initialize more variables and draw the boats at starting positions.

```
50 FOK T = 0 TO EN -1
60 FS(T) = 1:BS(T) = 1:BR(T) = 32
    :Y(T)=130+T\times20:X(T) =
    40 + T > 20:BD(T) = 90:BC(T)
    = 7-T`3
```

70 HCOLOR= $\mathrm{BC}(\mathrm{T}): \mathrm{ROT}=32: \mathrm{DRA} \mid$
1 AT $X(T), Y(T)$

80 NEXT

Line 90 draws the wind vane.

90 SCALE $=3:$ ROT $=4 D / 5.625$ DRAN

 5 AT 261,20Line 100 prints initial text information.
100 HOYE : UTAE 21: PRINT "DIR:" ;ED(0); TAB(14);"YIND DIR:" ; ${ }^{2}$; TAB(32);"DIR:";BD(1): PRINT "JIB"; TAE(14);"KIND SPD:"; US; TAB(32);"JIB"
Line 105 checks if ESC has been pressed. If so, go back to start.

```
105 IF PF = 2 AND PEEK (-1638
    4) = 155 THEN POKE - 16368
    ,O: CLEAR : COTO 25
```

Lines 110,112 change wind speed, plus or minus 1 mph .
110 WS = KS + INT (RND (1) - 1: IF WS < 10 THEN LS = 10

112 IF WS > 40 THEN MS $=40$

Lines 120-150 erase the wind vane, choose a new direction in the range plus or minus 2 degrees, and redraw vane.
120 HCOLOR= 6: SCALE $=3:$ ROT $=$ YD / 5.625: DRAN 5 AT 261,20
$130 \mathrm{KD}=\mathrm{KD}+\mathrm{INT}(\mathrm{RND}(1) \times 5)$ -2: IF MD >360 THEN M $=$ 4D-360
140 IF KD < O THEN MD $=$ KD +360
150 HCOLOR $=7:$ ROT $=$ KD / 5.625: DRAH 5 AT 261,20
Line 160 updates the text.
160 UTAB 21: HTAB 23: PRINT MD;" ": HTAB 23: PRINT WS
Line 165 redraws the islands.
165 ROT= $0:$ SCALE $=1: ~ H C O L O R=1:$ DRAN 6 AT 55,100: DRAN 6 AT 200,75: DRAN 6 AT 80,50
Lines $170-820$ repeat for each player's turn.
170 FOR $T=0$ TO BN - 1
Lines 180-200 change the boat's direction according to the paddle setting.
$180 \mathrm{DD}=\mathrm{PDL}(\mathrm{T}) / 25-5$
$190 \mathrm{ED}(\mathrm{T})=\mathrm{BO}(\mathrm{T})+\mathrm{DO}:$ IF $\mathrm{BD}(\mathrm{T})>$
360 THEN BD(T) $=B D(T)-360$
200 IF $B O(T)<0$ THEN $B O(T)=B D$ (T) +360

Lines $210-270$ check if the sail is down, and if so, has a new one been selected? The ASCII values referred to in lines 230-250 correspond to J, G, and S, respectively.
210 IF PF < > T THEN 300
220 IF PEEK (-16384) < 128 THEN 400
225 A = PEEK (- 16384): POKE 16368,0
230 IF A $=202$ THEN FS(T) $=1: \operatorname{cotO}$ 260
240 IF A $=199$ THEN FS(T) $=2: \operatorname{coto}$ 260
250 IF $A=211$ THEN FS(T) $=3: \operatorname{coto}$ 260
255 COTO 400
260 UTAB 23: HTAB 12: PRINT " ";
270 PF $=2:$ UTAB 22: HTAB $\mathrm{T} \times 31+$
1: PRINT S\$(FS(T)): GOTO 400
Lines $300-350$ check if the paddle button is pushed, and if so, take down the sail. If PF is already 0 or 1 , this is skipped. PEEK(T16287) is > 127 if the appropriate button is being pressed.
300 IF PF < > 2 OR PEEK (T - 1 6287) < 128 THEN 400
$310 \mathrm{FS}(\mathrm{T})=0: 4 \mathrm{PF}=\mathrm{T}:$ UTAE 22: HTAE T $\geq 31+1:$ PRINT "DONW $"!\mathrm{EC}(\mathrm{T})=7-\mathrm{T} \times 3$
320 VTAB 23: HTAE 15: PRINT "CHO OSE SAIL"
330 PrINT " (J) JIB, (G) GENDA (S) SPINAKER";

340 UTAB 23: IF $\mathrm{T}=0$ THEN HTAB 12: PRINT "<-": GOTO 400
350 HTAE 26: PRINT "->": GOTO 4 00
Line 400 computes the difference in degrees between the wind and boat directions.
$400 D D=A R S$ ($M D$ - ED (T)): IF DD >180 THEN DD $=360-D D$
Line 410 computes a base speed.
$410 \mathrm{SP}=(\mathrm{MS} / 35) \geq \mathrm{U}$
Line 420 checks if foresail is down; if so, the speed is zero.
420 IF FS $(T)=0$ THEN SP $=0:$ GOTO 600
Lines 430-470 compute the speed if the spinnaker is up.

430 IF $\operatorname{FS}(T)$ < > 3 THEN 500
440 IF WS >30 THEN SP $=0: E C(T)$
= $5:$ coto 600
450 IF DD >90 THEN $5 P=0:$ GOTO 600
460 IF $D D<45$ THEN $5 F=.9 \times S P$: 6070600
$470 \mathrm{SF}=1800 / D D^{\wedge} 2 \times \mathrm{SF}:$ GOTO 600
Lines 500-550 compute the speed if the jib or genoa are up.
500 IF $\mathrm{FS}(\mathrm{T})<>2$ THEN 520
510 IF WS >35 THEN $S F=0: B C(T)$ = 5: GOTO 600
520 IF $D 0>140$ THEN $S P=0:$ GOTO 600
530 IF $D 0>90$ THEN $S P=8100 /$ DD ^ $2 \times$ SP: GOTO 600
$540 \mathrm{SP}=(\mathrm{DD} / 300+.7) \geq 5 P$
550 IF $F S(T)=1$ THEN $S P=S P \mathbf{x}$. 8
Lines $600-630$ convert the directions to normal trigonometric standards and compute vectors for change in X and Y .
$600 D D=B D(T)+90:$ IF $D D>360$ THEN $D D=D D-360$
$610 D D=D D \times 3.14 / 180$
$620 X N=X(T)-\cos (D D) \geq S P$
$630 \mathrm{YN}=\mathrm{Y}(\mathrm{T})-\mathrm{SIN}(\mathrm{DD}) \times \mathrm{SP}$
Lines 640-670 check the range of the new coordinates.
640 IF YN > 153 THEN YN $=153$
650 IF YN < 6 THEN YN $=6$
660 IF XN >273 THEN XN $=273$
670 IF XN < 6 THEN XN $=6$
Line 680 erases the boat.
680 HCOLOR=6: ROT= BR(T): SCALE= 1: DRAN BS(T) AT INT (X(T)) , INT (Y(T))
Lines 690-770 compute the shape and rotation that should be used in drawing the boat with the given direction.
$690 \mathrm{DD}=\mathrm{BD}(\mathrm{T})+22.5$
700 IF DD > 3600 R DO < $=45$ THEN $\operatorname{BS}(\mathrm{T})=3: \mathrm{BR}(\mathrm{T})=0:$ GOTO 80 0
710 IF DO > 45 AND DO < $=90$ THEN $\operatorname{BS}(\mathrm{T})=2: \mathrm{BR}(\mathrm{T})=16: \operatorname{COTO} 8$ 00
720 IF DO > 90 AND DD < = 135 THEN $\mathrm{BS}(\mathrm{T})=1 \div \mathrm{BR}(\mathrm{T})=32:$ COTO 8 00
730 IF DD >135 AND DD < $=180$ THEN $\mathrm{BS}(\mathrm{T})=2: B R(\mathrm{~T})=32 ; \operatorname{COTO} 8$ 00

740 IF DD > 180 AND DD < $=225$ THEN $\mathrm{BS}(\mathrm{T})=1: \mathrm{BR}(\mathrm{T})=48: \operatorname{COTO} 8$ 00
750 IF $D D>225$ AND DD < $=270$ THEN $\mathrm{BS}(\mathrm{T})=4: \mathrm{BR}(\mathrm{T})=48: \operatorname{COTD} 8$ 00
760 IF DD > 270 AND DD < $=315$ THEN $B S(T)=3!B R(T)=48: \operatorname{GOTO} 8$ 00
$770 \mathrm{ES}(\mathrm{T})=4: \mathrm{BR}(\mathrm{T})=0$
Lines 800,810 draw the boat at its new location and update the coordinates.
800 ROT= ER(T): HCOLOK= RC(T): DRAN BS(T) AT INT (XN), INT (YN)
$810 X(T)=X N: Y(T)=Y N$
Line 815 updates the text.
815 VTAB 21: HTAB $5+T \times 31$: PRINT INT (BD(T));" "
Lines 820 and 830 loop back.
820 NEXT T
$830 \quad$ coto 105
Lines 900-990 are instructions, which may be omitted if line 10 is changed to GOSUB 1000.
900 HONE : PRINT" CARIBB EAN CRUISING"
905 PRINT : PRINT " (OR 'PATH HAYS THROUCH THE RUM')"
910 PRINT : PRINT " DON'T MO RRY AEOUT FLASHING SCREENS,"

915 FRINT "ORTRUSTVE SOUND EFFEC TS, DR PEING SHIP-"
920 FRINT "HRECKED. YOU DON'T H AVE TO ELAST ANY"
925 PRINT "OPFONENTS OUT OF THE MATER; UST SIT"
930 PRINT "BACK AND SAIL. DR IF YOU KISH, CHALLENEE";
935 PRINT "A FRIEND TO A RACE AR OUND THE ISLANDS."
940 PRINT : PRINT " THE INFD RHATION AT THE LOHER LEFT"
945 PRINT "KILL BE FOK THE MITE SAIL BAAT AND"
950 PRINT "PADOLE O. THE INFORM ATION AT THE LOHER"
955 PRINT "RIGHT IS FOR THE RLAC K SAIIBDAT AKD"
960 PRINT "PADOLE 1. THE DIAL C ONTRLS THE RLDOER,";
965 PRINT "AND THE BUTTON ALLONS YOU TO CHANEE YOUR";
970 PRINT "SAII. IF YOUR BDAT I SSHON IN RED,"

975 PRINT＂YOUR SAIL IS INAPPROP RIATE FOR THE KIND＂
980 PRINT＂CONDITIONS AND HOUL NORYALY CAUSE＂
985 PRINT＂TROLRE．THE＇ESC＇K EY LETS YOU HONE＂
990 PRINT＂BOTH BDATS BACK TO TH E START．＂
Lines 1000－1200 put the shape table into memory．Discovering that most of this data was in the range 9－63，I put the initial information in decimal into the DATA statement at 1030 ．The rest of the data I was able to condense by adding 24 to each value and using an ASCII character（see pp． 138－9 in the Applesoft manual）． The net result was half as much data in lines 1150－1200，where each character replaces 2 hexadecimal digits．（The same technique could have been used in the Invaders program in May，had I been observant earlier．）Anticipating possible questions，the following characters appear in lines 1150－ 1200：＇0＇，the letter，not the number；＇$\%$＇，not a＇Z＇；and the strange blurbs are consecutive＇W＇s． Other characters that may appear fuzzy are the number＇ 3 ＇and the letter＇ S ＇．
1000 FOK L $=7168$ TO 7181
1010 READ V：POKE L，V
1020 NEXT L
1030 DATA $6,0,14,0,177,0,84,1$ ，247，1，154，2，160，2
1040 FOK $T=1$ TO 6
1050 COSLB 1100
1060 NEXT T
1070 VTAE 24：HTAB 12：PRINT＂＜P RESS ANY KEY＂＂；：GET SS：RETUFN
1100 READ $5 \$$
1110 FOR $V=1$ TO LEN（S $\$$
1120 POKE L，ASC（ MIDS（S $\$, V, 1$ ） ）-24
$1130 \mathrm{~L}=\mathrm{L}+1$ ：NEXT V
1140 POKE $L, 0: L=L+1$ ：RETLRN 1150 DATA＂！AEEEEEE）MALAHUHEEE EEEEEK33333373＋！！！！！！！！）！ H $03+$ ！！AEEEEE－34 $44073+!$ ！AEE
 73＋！！AEEX！！）33334N73＋！！AEX！！
！）33333ヶ73＋！！AK！！！！）33333373 $+1$
1160 DATA＂！！！！！！！！）33333333＋！！ ！！！！！！）33333333＋！！AEE！！！）333 SHK $33+$ ！！！AEE！！） $335+13333+!!!!$ AEE！）ЗS

 $40 "$
1170 DATA＂！ $1!!!!!!133333335+A \%!$ ！！！！！）333333350Е 4 ！！！！！！）！

 7SOEZAEEX！！）33334 ！）33333み7SOA\％AZ！！！！）33333375 ＋＂
1180 DATA＂！！！！！！！！143333333＋！！
 $33373+$ ！！A ！AEERM4

 $3+"$
1190 DATA＂《く，MAN＂
1200 DATA＂！EEAEKK！）ЗSHU日UTW／AK AEEEEE）SWVSHUK3＋AEEEEK！$A-33$

 $733+!!!A Z!!!) 3334+073+!$ AEEEE

GEMIA

Android Nim for the Apple！

by Leo Christopherson
Three rows of continuously animated androids and three executioners provide a new dimension as you try to beat the computer at the age－ old game of NIM．
Disk／24K／Applesoft \＄17．95

PROTOUR 80 is an $S-80$ program for Level II 16 K and up. by David Bohlke

It is no longer necessary to sit in front of your TV screen on weekends and drool over the pro golfers' pars and birdies. Now you can face the same challenge on your TRS with PROTOUR 80. And with a lot of practice and a little skill you can become a scratch golfer!

This links-simulation will generate a different random nine hole course each time you play. Your ball and the tee will be displayed on the left of the screen; and the fairway and green will be constructed towards the right. Each player, in turn, will hit from the tee to the green. After everyone has reached the green, each player will putt out. At the completion of every hole a current scorecard will be displayed.

Accuracy and club selection is very important when you are shooting for the green. If your ball wanders off the fairway or into the sandtrap - you can expect an erratic second shot. And if you are wild enough to hit the ball off the
screen, you will be penalized one stroke and distance; so you will need to hit the ball from your original location.

The direction of your tee and fairway shots must be a number between 10 and 49. In this representation, 10 is due north, 20 is east, 30 is south, and 40 is west (screen reference). For more accurate shots, select a direction between these cardinal directions. For example, to shoot north-east, use 15 for direction; and to shoot east-north-east, you can try 17.

Club selection for distance is also important. The woods (1-4) will hit from about 260-200 yards, respectively. The irons (1-9) will travel from 200-90 yards, respectively. And the wedge will give a distance of approximately 30-70 yards.

For both direction and distance there is always a slight random variation. After all, there aren't any golfers who hit a perfect shot everytime. But with a little practice, you should be able to reach the green in the regulation number of strokes for par fairly easily - and better players will be able to get close to the cup (+), allowing a shorter putt.

As all golfers know, most rounds are won or lost on the putting green. PROTOUR 80 is no exception. You will find the contour greens more challenging. The green representation will be unique for every player since you are shooting at the cup from different angles. To putt, you need only enter the distance of your shot. As a rough estimate, each SET position is one unit of length - so the entire green is 127 units (feet) long. But, in addition to the straight line distance, you'll also have to take into account the contour of the green. A ball going down hill, for instance, will speed up which means that it needs a shorter distance entered as compared to an equivalent level putt.

Well, enough of my jibberish -it's time you tee-up and learn for yourself. As a final note, the more experienced players should enter their names first at the start of the game. Then you will always tee off first, and the other players can get a fairly good idea of direction and distance. You can consider this 'honor' as your handicap. At least you won't waste any time looking for lost balls!

\{ 5-30 Initialiṭation	7100 PRINT" THE BETTER PLAYERS SHOLLD <ENTER THEIR NAHES FI RST, SINCE"
5 REM xxx DAUID EOHLKE COGGON, IA 16 Ully 79 xxx	7110 PRINT"THEY WIIL ALMAYS EE SHOOTING FIFST. THIS WILL ENABLE
6 REM XxX PRO TOLR '80 3xx	THE"
7 DEFINTA-Y:CLEAR300	7120 PRINT"OTHER PLAYERS TO GET A EETTER IDEA OF DIFECTION AND D
20 cosle 7000	ISTANCE."
30 GOT 09000	7130 FRINT"IF YOUR FAIRHAY SHOT MISSES THE FAIRHAY OR LANDS IN T
	HE SAMD-"
\{ 7000-7170 Directions	7140 PRINT"TRAP, THERE IS A POSSIBILITY OF AN ERRATIC SECOND SHO T. Al.50,"
6999 REM xxx DIRECTIONS xxx	7150 FRINT"HHEN PUTTING ON THE CONTOUR GREENS; GE SURE TO ADD A
7000 CLS:PRINTTAE(19)"P R O T OUR 800 ":PRINT	LITTLE"
7010 PRINT" THIS IS A SIMalated coll gaye for 1-4 FLAYERS, U	7160 FFINT"TO DISTAMCE MHEN GOING UFHILL, AND SUBTRACT A LITTLE
SING A"	HEN COING"
7020 PRINT"RANDOFLY GENERATED 9 HRLE COURSE, EACH HOLE HAS THO	7165 PRINT"DOHAHLLL. 7170 EENTES TO CONTIMLE . . .";
INPUT"	7170 INFUTAS:RETURN
7030 PRINT"CYCLES. EACH PLAYER IN TUFN WILL HIT THE BALL FROM T	
7040 PRINT"TO THE GREEN. AFTER ALL PLAYERS HANE REACHED THE GRE	Ft(I) contains the rames of the players
EN, EACH"	Π (I) total score for each player (accumulated)
7050 FRINT"GOLFER WILL AGAIN IN TUPN PUTT OUT, WHEN EACH HOLE I	Z is the number of holes played
5 CO\%-"	
7060 FRINT"FLETED, A CURRENT SCORECARD WILL EE DISFLAYED."	7999 KEM $\mathbf{x x x}$ SCORECAFD $\mathbf{x x x}$

$\{8000-8146$ Frints scorecard lines, hole \boldsymbol{f}, etc.
8000 CLS:FFINT"O FEN GOLF"
8010 FORI=1T09:FFINTEI $\times 5+136$,I; :NEXT
8050 FRINTE260,"F A R"; ;FFINTE133,"HOLE ₹";
8060 FFINTE186, "TOTAL"
8080 FOFI $=1$ TOFL:PRINTQI $128+256$,F\$(I); ;TT(I) $=0$:NEXT
8100 FORI $=1$ TO9:FOR $\mathrm{J}=1 \mathrm{TO} 2 \mathrm{xFL}+35$ TEP2
8110 FRINTEI $\times 5+J \times 64+71$,CHF\$(149);:NEXTJ,I
8120 FOR $J=1 T 02 \times \mathrm{FL}_{\mathrm{L}}+3 S T E F 2$
8130 FFINTEJ $\times 64+121$, CHR $\$(191)$; :NEXT
8140 FORI=1TOFL+2;PRINTQI $\times 128+64, \operatorname{STRING}(63,140)$;
8142 IFI $=1$, FFINTPI $128+64, \operatorname{STRING}(63,188)$;
8144 IFI $=2$, FFINTEI $128+64, \operatorname{STRING} \$(63,143)$;
8146 NEXT
\{8160-8165 Frints Far for each hole
$8160 X=0 ; F O R I=1$ TOZ:FRINTPI $\times 5+264, T F(I) ;: X=X+T P(I)$
8165 FFINTE314, X; :NEXT
$\{8210-8290$ Frints players' scores on scorecard
8210 FORI $=1$ TOFL
8220 FORJ $=1 T 02$
$8230 \mathrm{TT}(\mathrm{I})=\mathrm{TT}(\mathrm{I})+\mathrm{P}(\mathrm{I}, \mathrm{J})$:PRINTQJx5+Ix128+264,F(I, J);
8260 FRINTEIx128+314,TT(I);
8270 NEXTJ
8290 NEXTI
8400 FFINTE960,"ⒺNTER TO CONTINUE . . .";:INFUTAS:RETUFN
$\{9000-9140$ Main game loop
8999 KEM xXx MAIN GAYE LOOF $\quad \mathbf{x w x}$
9000 CLS:COSUE9200:CLS:COSLE:9900
$\left\{\begin{array}{l}9030 \text { loop for rine holes } \\ \operatorname{TF}(Z) \text { is par for each of rine holes }\end{array}\right.$
9030 FORZ $=1$ TO9
9032 GOSUE9800:TF(Z) $=F^{\prime}$
(9050 loop for tee-to-green for each player
M, N is location of ball
FL is the number of players
If $E=1$ ther tee is at the top of the screer,
9050 FOFZZ $=1$ TOFL
$9055 \quad M=1: I F E=1, N=\operatorname{RND}(6)+5 E L S E N=F N D(6)+35$
$\left\{\begin{array}{c}9060-9070 \\ \text { hole }\end{array}\right.$
9060 S=0:COSUE9600
9070 F $(Z Z, Z)=F(Z Z, Z)+S$
9080 NEXT
\{9090-9100 Loop for each player to putt out on green
9090 FORZZ=1TOPL:S=0:DC=E(ZZ) :GOSUE9400
$9092 F^{\prime}(Z Z, Z)=P(Z Z, Z)+S$
9100 NEXT
9110 GOSUEB000
9120 NEXT Z
9130 FFINTE960,"ENTEF FOR ANOTHER GAME . . .";
9140 INFUTAS:RUN
\{9200-9225 Inputs the rumber of players and their names
9199 KEM xxw INITIALIZATION xxw
9200 CLS:PRINTCHF'\$(23):FREINT"G OL F":PRINT:FFINT
9205 INFIT"HOW MANY FLAYERS (1-4) ";FL:FFRINT
9206 IFFL 10 FFL $>4,9200$
9210 FORI=1TOFL: PRRINT"NAME OF FLAYER * ";I;:INPUTF\$(I)
$9215 \mathrm{~F} \$(\mathrm{I})=\operatorname{LEFT} \$(\mathrm{~F} \$(\mathrm{I}), 11)$:NEXT:PRINT
9225 RETURN
\{9400-9590 Putting Sequence
9399 KEM mxx DIRECTION AND DISTANCE ON FAIFKAY SHOTS mxu 9400 CLS
\{9404-9420 SETs contour green
9404 UD $=$ RND (3) $-2:$ IFLD $=0,9404$
$9405 \mathrm{YS}=26: H L=R N D(6)+6: H T=0$
9410 FORX $=0$ TO126STEF2:SET $(X, Y S): S E T(X, Y S+1): S E T(X, Y S+2)$
$9411 \operatorname{SET}(X+1, Y S): \operatorname{SET}(X+1, Y S+1): \operatorname{SET}(X+1, Y S+2)$
9412 IFXD75ANDX<100,9420
9414 IFHT $=0 A N D X>20$ AND $X \backslash 70$ ANDFRD $(12)=1, L D=-1 D: T H T=1$
$9415 \operatorname{IFRND}(H L)=H L, Y S=Y S+U D$
\{9420-9426 Computes location of cLp (FX and FY)
9420 NEXT:FX=FND $(13)+83: F Y=2$
9425 IFFOINT(FX,FY),9430
$9426 \mathrm{FY}=\mathrm{FY}+1: G 0 T 09425$
\{9430-9436 SETs flas and pole
9430 FOR $J=0$ TOFY-3:SET (FX, J) : NEXT
9432 FOF $J=F X T O F X+14$:SET ($\mathrm{J}, 1$):SET($\mathrm{J}, 7$): :NEXT
9434 FORJ $=1$ T07:SET (FX+13,J):SET(FX+14,J):NEXT
9436 PRINTEFX/2+66,Z;
\{9438 Cup location
$9438 \operatorname{KESET}(F X-1, F Y): \operatorname{RESET}(F X, F Y): \operatorname{RESET}(F X+1, F Y): \operatorname{KESET}(F X-1, F Y+1)$
: RESET(FX,FY+1):RESET(FX+1,FY+1)
\{9440-9442 ro putt necessary (DC is distance to cup)
9440 IFDC $>5,9450 E L S E P R I N T C 960, " I T$ 'S IN THE CUF !! ??";
$9442 \operatorname{SET}(F X, F Y+1): S E T(F X+1, F Y+1): F O R I=1 T 02000: N E X T: R E T U R N$
$\{9450-9460$ SETs ball (variables E,C)
$9450 \mathrm{C}=0 \div \mathrm{B}=\mathrm{FX}-\mathrm{DC}: \mathrm{IFB} \mathrm{CO}, \mathrm{E}=\mathrm{FND}(4)$
9452 IFFOINT(E, C+2),9460
$9454 \mathrm{C}=\mathrm{C}+1$; 60 T09452
$9460 \operatorname{SET}(B, C): S E T(B+1, C)$
\{9465-9480 INFUT length of putt
9464 KEM $\mathbf{x X X}$ FUTTING ROUTINE $\mathbf{~ X X X ~}$
9465 FRINTE896, CHR\$(31);
9470 PRINTC960, "EENTER> LENGTH OF FUTT (GREEN IS 127 FEET KIDE)" ;

9475 PRINTE896,F\$(ZZ);"' 'S FUTT . . .";:INFUTPF
9480 IFPF 10 FFF $>111,9465$
$\{9490$ Move ball left or right

9490 IFESFX，MM $=1$ ELSEMM $=-1$

$9492 \mathrm{Fi}=0: \mathrm{S}=\mathrm{S}+1$
\｛9500－9540 Loop to move ball oni green
$9500 \operatorname{RESET}(\mathrm{~B}, \mathrm{C}): \operatorname{RESET}(\mathrm{B}+1, \mathrm{C})$
9502 IFB＞80ANDE＜110，9520
9503 IF $\mathrm{Mi}_{1}=-1,9510$
$9505 \operatorname{IFPOINT}(B+2, C+1), C=C-1: P P=P F-R N D(3)$
$9506 \operatorname{IFPOINT}(E, C+2)=0, C=C+1: F F=P F+R N D(3)$
9507 COTOQ520
$9510 \operatorname{IFPOINT}(E-1, C+1), C=C-1: P P=F P-\operatorname{FND}(3)$
$9515 \operatorname{IFPOINT}(\mathrm{C}+1, C+2)=0, C=C+1 ; P P=P P+F N D(3)$,
$9520 \mathrm{~B}=8+\mathrm{M}$ M $:$ IFB $>124, \mathrm{~B}=124 E L$ SEIFB $\langle 3, \mathrm{E}=3$

9535 IFH作－1ANDB＜3，9460
9536 IFMM＝1ANOB $>120,9460$
9540 IFFMOPP，9500
$\left\{\begin{array}{c}9550-9590 \text { Get another putt if neces5ary，else return } \\ \text { with the number of strokes }(S)\end{array}\right.$

9550 IFE＝FX OR $\mathrm{E}=\mathrm{FX}-1,9560 \mathrm{ELSE} 9465$
$9560 \operatorname{FESET}(\mathrm{~B}, \mathrm{C}): \operatorname{RESET}(\mathrm{B}+1, \mathrm{C}): \mathrm{SET}(\mathrm{B}, \mathrm{FY}+1): \operatorname{SET}(\mathrm{B}+1, \mathrm{FY}+1)$
9590 KETUFN
（9600－9684 hove shots from tee to green
$\{\quad M, N$ is the location of the ball
S is the rumber of strokes
9599 REM xxx MOVE EALL DOAN FAIFWAY xxx
9600 GOSLB9700
$9602 \mathrm{X}=0: \mathrm{KM}_{1}=M: N 1=N: S=S+1$
$9605 \mathrm{ST}=0$ ：IFFOINT（ $\mathrm{M}, \mathrm{N}-1$ ）ORFOINT（ M ， $\mathrm{N}+1$ ），ST＝FND（4）
9606 GISUE：9950
\｛9610－9655 loop to move ball
9610 IFR＝OORC＝0，$M M=R: N N=C: C O T 09615$
$9612 \operatorname{IFRND}(\mathrm{R})=\mathrm{F}$ ；M $\mathrm{M}=1$＝1ELSEMM $=0$
9613 IFRND（C）$=$ C， $\mathrm{NN}=1$ ELSENN $=0$
9615 IFDR 30 ， $194=-19$
9616 IFDR $20 A N D D F<40, N N=-A N$
9620 FESET（M，N）：RESET（M＋1，N）
9622 FRINTEG，Gs；：FRINTEFS，S\＄；
$9630 \quad M=K+M Y: N=N-N N$
9635 IFM作 $=0, D=0-9-S T: G 0 T 09650$
9637 IFN $=0, D=D-5-S T: G O T 09650$
$9638 \mathrm{D}=\mathrm{D}-10-\mathrm{ST}$

9652 SET（M，N）：SET（M＋1，N）
9655 IFD＞0，9610
\｛9660－9661 Check if or green
9660 MG $=(\mathrm{G}-\mathrm{INT}(\mathrm{G} / 64) \times 64) \times 2: \mathrm{NG}=\mathrm{INT}(\mathrm{G} / 64) \times 3-1$
9661 IFM－MG＜0 OR N－NG＜O OF M－MC＞18 OR N－NC $>9,9600$
\｛ $9662 \mathrm{E}(\mathrm{ZZ})$ is each player＇s distarice to cup
$9662 D C=A E S(10-(M-M G)) \times 5+A E S(5-(N-N G) \times 12+F N D(2): B(Z Z)=D C$ 9664 FORIJ＝1TO3：PRINTQPA，CHR＇（30）；；FORII $=1$ T0300： NEXT
9665 PRINTEFA，PS（ZZ）；＂IS ON THE GREEN＂；；FORTI＝1TO500；NEXT：NEXT 9670 RETURN
9680 PRINTEPA，＂OUT OF BOLNDS－PENALTY STROKE＂；
 9684 S＝5＋1：G0T09600

$\left\{\begin{array}{c}9700-9790 \text { Irputs player＇s club choice } \\ D \text { is the distarice the ball will travel }\end{array}\right.$ $D R$ is the direction of the hit

9699 REM xxx GET FAIRHAY SHOT xxx
9700 COSUE9790：PRINTEPA，P\＄（ZZ）\ddagger＂＜ENTER〉 CLUE CHOICE＂：C＝0
9705 PRINTEPA＋64，＂WOOD（W）OR IRON（I）OR SAND WEDGE（S）＂；：PRINTEPA
＋50，＂＂；
$9706 \operatorname{SET}(\mathrm{~K}, \mathrm{~N}): \operatorname{SET}(\mathrm{M}+1, \mathrm{~N}):$ RESET $(M-1, N):$ RESET $(M+2, N)$
9710 INPUTCS：IFC $\$=" \mathrm{~S} ", \mathrm{D}=40+\mathrm{RND}(30):$ COT09730
9712 IFC\＄＂I＂ANDC\＄》＂K＂，9700ELSEGOSLB9790
9714 IFC\＄＝＂I＂PRINTCPA，＂HHICH IRON（1－9）＂；：INFUTC：GOTO9720
9716 FFINTEPA，＂HHICH HOND（1－4）＂；：INFUTC
9720 C＝INT（C）：IFC 1,9700
9722 IFCs＝＂I＂ANDC＞9，9700
9724 IFC $\$=$＂K＂ANDC 4,9700
9726 IFC $\$=" I ", D=(10-C) \times 13+80+R N D(20): G 0 T 09730$
$9728 \mathrm{D}=200+(4-\mathrm{C}) \times 10+\mathrm{RND}(20)$
9730 COSUE 9790

01 ；
9734 PRINTEPA＋128，＂ $30 " ;$
9740 FRINTPFA＋76，＂DIFECTION＂；：PFRINTEFA＋12，＂EENTER＂；
9745 INPUTDF：UFF＝INT（DF）：IFDF＜100FDR 49,9730
9750 COSUE9790：RETURN
9790 FORI＝FATOFA＋128STEF64：FFINTEI，CHF\＄（30）；：NEXT：RETURN
（9800－9882 SETs fairway and green
$\left\{\begin{aligned} Y & \text { is the yards to cup }\end{aligned}\right.$
F is the par
9799 KEM xxx CONSTRUCT FAIFWAY xxx
$9800 Y=260+F N D(200): F=4$
$\{9805$ White screen
9805 FORI $=0$ T0960STEF64：FFINTEI，STRING $\$(63,191)$ ；：NEXT：E＝RND (2)
\｛9806 FA is the FאINTE locations for inputs
9806 IFF $=1, F A=832$ ELSEF $A=0$
$9810 X=F N D(6): I F X=1, F=3: Y=150+F N D(90)$
9812 IF $X=6, F=5: Y=490+R N D(100)$
$9815 \mathrm{~T}=\mathrm{FND}(4)+3: \mathrm{D}=12: \mathrm{F}=0 \div \mathrm{IFE}=1, \mathrm{C}=3 \mathrm{ELSEC}=44$
 AR＂；${ }^{\text {F }}$ ；
$9818 \mathrm{E}=3 \times \mathrm{FF}+\mathrm{FND}(5) \div \mathrm{F}=\mathrm{RND}(3)+2$
\｛9820－9832 Elack．s out fairway
9820 IFE $=2,9822$
9821 FORI＝CTOC $+\mathrm{D}:$ RESET $(\mathrm{R}, \mathrm{I}):$ RESET（ $\mathrm{R}+1, \mathrm{I}):$ RESET（ $\mathrm{R}+2, \mathrm{I}): \mathrm{NEXT}: \mathrm{R}=\mathrm{R}+3$ ：60709823
9822 FORI＝CTOC－DSTEP－1：RESET（R，I）：RESET（ $\mathrm{F}+1, \mathrm{I}$ ）：：RESET（ $\mathrm{R}+2, \mathrm{I}$ ）：：NEXT $: R=R+3$
$9823 \operatorname{IFFND}(8)=1, C=C+R N D(3)-2: I F C<1, C=1 E L S E I F C>46, C=46$
9824 IFRND（4）$=4, D=0+1$ ELSEIFR 100,9835
9825 IFKKEOFRND（T）KT，9820
9826 IFB $=1, C=C+1 E L S E C=C-1$
9827 IFD $18,0=18$
9828 IF $\mathrm{E}=1 \mathrm{ANDC}>25, \mathrm{C}=25$
9829 IFF：＝2AN0C＜22，C＝22
9830 IFP $=3 A N D R>40,9835 E L S E I F F=4 A N O R / 65,9835$
.9832 G0T09820

```
(9835-9860 picks location of greern and sandtrap
    G is the green FRINT Q; G$ is FFINT STRING$
    FS is sandtrap FRINT e; S$ is the PRINT STRING$
9835 G=INT(Y/10)-6:X=F-3
9836 IFG}>50,G=G-1!G0T09836
9840 FORJ=13T034STEF2:IFFOINT(X,J),9844
9842 YY=J
9 8 4 4 ~ N E X T ~
9850 GG=INT(YY/3)\times64+(FND(3)-2)\times64-192:IFGG<640RGC)831,9850
9853 G=C+GG
9857 IFE:=1,FS=G-FND(8)+(RND(2)-3)\times64-1
9858 IFE=2,F'S=G-FND(8)+FND(2)m64-1
9860 FRINTEG,G$;,PFINTEFS,S$;
9880 IFE=1PRINTR64,"TEE";ELSEFRINTP896,"TEE";
9882 RETURN
```

```
{9900-9979 Commor, routires
```

{9900-9979 Commor, routires
9899 REM x** FRINTING STRINGS xxw
9899 REM x** FRINTING STRINGS xxw
9900G =" G G "+CHF$(26)+STRING$(11,24)+"G + G "+CHR\$
9900G =" G G "+CHF$(26)+STRING$(11,24)+"G + G "+CHR\$
(26)+STRING$(11,24)+" G G "
(26)+STRING$(11,24)+" G G "
9905 S$=CHF$(184)+CHF$(191)+CHF$(180)+CHF$(26)+STRING$(3,24)+CHR
9905 S$=CHF$(184)+CHF$(191)+CHF$(180)+CHF$(26)+STRING$(3,24)+CHR
$(1.39)+CHF$(191)+CHF\$(135):RETUFN

```
$(1.39)+CHF$(191)+CHF$(135):RETUFN
```

\{9940-9979 Direction indicators (R and C) for adjustirg the \{ movement of the ball in the tee-to-green sequence

9940 IFST >0, DF $=$ DF $+($ RND $(5)-3) ;$ IFDR $0, ~ D F=49 E L S E I F D R>49, D R=1$
9950 IFDF $=100 \mathrm{RDF}=30, \mathrm{E}=0: \mathrm{C}=1:$ RETURN
9952 IFDF $=200 \mathrm{RDF}=40, \mathrm{~F}=1: \mathrm{C}=0 ; \mathrm{RETUFN}$
9960 IFDR $20, D Z=D R-10:$ COT09970
9962 IFDR $30, D Z=30-D R: G 0 T 09970$
9964 IFDK 40, DZ $=$ DF- $30:$ COT09970
$9966 \mathrm{DZ}=50-\mathrm{DK}$
9970 ON DZ GOT09971,9972,9973,9974,9975,9976,9977,9978,9979
$9971 \mathrm{k}=3: \mathrm{C}=1$:RETURN
$9972 \mathrm{~K}=2: \mathrm{C}=1$: RETUFN
$9973 \mathrm{~K}=1: \mathrm{C}=1$: RETUEN
$9974 \mathrm{~K}=1: \mathrm{C}=2:$ RETUFN
$9975 \mathrm{k}=1: \mathrm{C}=3: \mathrm{KETUFN}$
$9976 \mathrm{~K}=1: \mathrm{C}=4: \mathrm{RETUFN}$
$9977 \mathrm{k}=1: \mathrm{C}=7$: RETURN
$9978 \mathrm{~F}=1: \mathrm{C}=10$: RETUFN
$9979 \mathrm{k}=1: \mathrm{C}=15:$ RETURN

NEW RADIO SHACK COMPUTERS

Radio Shack announced three new computers on August 1. The TRS-80 Color Computer, part 26-3001, has 4 K at $\$ 399$; part $26-3002$ has 16 K (maximum), at \$599, has an extended Basic in ROM, and uses plug-in ROM software cartridges. The processor is a 6809, has an RS-232C interface, and an RF modulator for direct connection to your TV. Cassette recorder (1500 baud), joysticks, and modems are among the options available.

The Model III is an upgrade of the Model I. Part $26-1061$ has 4 K at $\$ 699$, part $26-1062$ has 16 K at $\$ 999$, and part 26-1063 has 32 K and two forty-track double density disk drives for $\$ 2495$. The unit is one piece construction with room for two drives internal, and possibility of two more external. Lower case and real time clock are standard with 16 K and up. Most Model I software will run, and it has both a 500 baud and a 1500 baud tape interface. It also has a built in parallel printer interface.

The third computer is a six ounce, seven inch long, hand-held computer that sells for $\$ 299$. It is programmable in BASIC, has 1.9K RAM, and 57 alphanumeric keys. It also has an optional cassette interface for $\$ 49$.

MASTER'S GOLF - an Atari program requiring at least 16 K of memory and one joystick
by David Bohlke
This version of simulated golf is a modification of PROTOUR 80, which was written on a TRS-80, and is described elsewhere in this issue. Since both games are basically the same, it would be a good idea to read the PROTOUR 80 article first as it describes general game play.

Some of the major differences between the two games are the color, sound, graphics, and input routines utilized on the ATARI. You will need to insert a joystick into paddle slot No. 1. To pick your club (wood, iron, wedge), push the stick to get the different selections; then press the fire button to lock in your choice. To select your club number and direction, push the joystick until the value is reached and then press the fire button. Direction values are the same as on PROTOUR 80: North equals 10, East equals 20, South equals 30, and West equals 40. Any number from $10-49$ is a legal direction entry. The order of tee-off will vary with respect to the lowest score on the previous hole.

When everyone has reached the green, the putting sequence will begin. The player with the longest straight line putt will go first. However, don't always judge successive putts strictly by this distance as the contour of the green will distort the real distance needed to sink the putt. As with club selection, just push the joystick to input your distance, then press the fire button. For a rough estimate, the width of the green is eighty units (feet).

The line listing description and variable definitions should give you a pretty good idea of program flow for MASTERS' GOLF. Instead of commenting on the program specifics, I would like to offer some general impressions of writing on the TRS-80 and ATARI.

For those who haven't had a chance to program in color and with sound -- there is no comparison possible to a mute black and white monitor -- my TRS-80 has become a dust collector since the ATARI arrived. Usually it takes about 50% more time to write a program and get the colors and sounds just right. But the end result is well worth the effort.

Graphics on the ATARI are much more impressive, thanks to the color and resolution (320×192 \max). The PLOT X, Y command is similar to $\operatorname{SET}(\mathrm{X}, \mathrm{Y})$ on the TRS-80. Instead of a RESET command, it is only necessary to change the COLOR register on the ATARI, then use the same routine as in PLOT. To test a plotted point, the TRS-80 uses a POINT(X,Y) command. On the ATARI, the command is LOCATE $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$. Here, X and Y denote the location and Z will contain the value of the COLOR register. This makes it possible to distinguish between the various colors used. The ATARI also has a DRAWTO command for connecting any two points with a straight line. There is also a command which will 'fill in' a pre-defined shape with a specific color.

String handling on the ATARI is a bit more complicated than on the TRS-80. It is not possible to INPUT strings into an array. Rather, the string value must be INPUT into a scratch string and then packed into the array. Check the name input routines from both listings for a comparison.

Cassette save and load operations are superior on the ATARI. There isn't a volume setting to fool with or any plugs to constantly pull in and out (as with the earlier 80's). I've probably had only two or three bad loads, but I'm not sure if it was the recorder, the tape, or the operator at fault.

The keyboard and edit features on the ATARI also have a pleasant advantage. There is upper/lower case, reverse video, auto repeat, no keybounce, and about 30 special
characters. Editing is convenient with versatile insert/delete commands. It is even possible to alter line numbers without changing the line statement.

There are several minor differences in the general BASIC statements. The ATARI does not support an ELSE clause on the IF...THEN statement. But it does have GOSUB var. and GOTO var., which can be handy. Also, the ATARI does allow the abbreviation of statement commands. Another nice feature is that a program can be CONTINUED after a BREAK and an error correction.

It is probably too early to judge the manufacturers' support.
However, I did receive in two separate mailings a Reference Manual and an Introduction to Basic Programming tape which were not ready for distribution when I bought the machine. That seems like a good indication.

Perhaps my earlier comment is the best recommendation I have for the ATARI -- my TRS 80 is getting dusty (but hopefully not rusty).

[^3]60 ? :? :FOR I=1 TO PL
62 PRINT" ENTER name of solfer \#"ilj" " j :INPUT BS:?
 $=$ BK
66 FOR $I=1$ TO $4: H I)=I: T(I)=I$: NEXT I
200-350 Main Game Loop
loop for 9 holes
280 FOR $H=1$ TO 9
plots fairway, green, tee, yardage, sandtrap
210 cosue 900: POKE 752,1
sets player order of hit from tee to green
212 FOR I=1 TO 5:FOR J=1 TO PL-1
$214 X=S(T(J), H L-1): Y=S(T(J+1), H L-1)$
216 IF $X\rangle$ Y THEN $Z=T(J): T(J)=T(J+1): T(J+1$ $=2$
218 NEXT J:NEXT I
loop for each player to hit from tee to green. S is the number of shots
taken.
220 FOR TX=1 TO PL:S=0
225 PRINT "HOLE \# ";HL;" PAR"; FP(H)
;" YARDS ";YA
$239 \mathrm{~T}=\mathrm{T}(\mathrm{TX}):$ IF FL=1 THEN TU=1
240 COSUE 780:S (TU,HL $)=\mathrm{S}$
242 FOR I=1 TO 4:FRINT" IT'S ON THE Grien "
244 FOR J=70 TO 1 STEP -1 : SOARD $0, \mathrm{~J}, 10,4$
: NEXT J: NEXT I
245 NEXT TX: IF PL=1 THEN 258
sets player order to putt-out

0 5:FOR $J=1$ TO PL-1
247 IF PUKHJ) XP(X (K J +1)) THEN $Z=H K$): H (J) $=K\left(\begin{array}{l}(1): H(J+1)=2\end{array}\right.$

248 NEXT J:NEXT I
loop for each player to putt
250 FOR TX=1 TO PL: $S=8$
252 IF PL=1 THEN TU=1:GOTO 260
254 TU\#K TX)
260 cosub 500:FOR I=1 TO 480: NEXT I
238 S(TU,HL)=S(TU,HL)+S: REXT TX
scorecard routine
300 COSUB 460
for 9 holes
350 NEXT H
then end
368 PRINT "END": END
$400-490$ prints scorecard
colors and prints
400 GRAPHICS 0 :SETCOLOR $2,15,4$:SETCOLOR
4,RHD (0)*16,8: POKE 752,1
482? ? ? " MASTERS' GOLF
404 PRINT "HOLE":? :PRINT "PAR"
406 POSITION $3 E, 4$:PRINT "TOT";
prints hole numbers
468 FOR I=1 TO 9:POSITIONI I*3+6,4:PRINT I; : NEXT I
lines in scorecard
410 FOR I=1 TO 38:FOR $=1$ TO PL+1
411 POSITION I, J*3+5:PRINT " "; : NEXT J:N
EXT I
prints par for each hole and total
$412 \mathrm{TP}=0:$ FOR $\mathrm{I}=1$ TO $\mathrm{H}:$ POSITION $\mathrm{I} * 3+6,6$
PRINT P(I); :TP=TP+P(I) : NEXT I
413 POSITION 36,6:FRINT TP;
lines in scorecard
414 FOR I=1 TO 10:FOR J=4 TO FL* $3+8$
416 POSITION I*3+5, J:PRINT " ${ }^{\prime}$;: : E EXT J:N
EXT I
prints players names and score for each
420 FOR $I=1$ TO PL: POSITION $1,1 * 3+7$

$430 T=8: F O R \quad J=1$ TO $H: T=T+S(I, J)$
434 POSITION $\mathrm{J} * 3+6, I * 3+7$:PRINT S(I J$)$;
440 NEXT J
445 POSITION $36, I * 3+7$: PRINT T;

450 NEXT I
check for end of game
470 IF HL=9 THEN POSITION 2,23:PRINT" E
ND MASTERS' GOLF ":END
else return
488 POSITION 2,23:FRINT "Press FIRE to continue
$482 \mathrm{IF} \operatorname{STRIG}(\theta)=0$ THEN RETUJFN
484 SOUND θ, RND $(0) \times 200,10,6: G U T O 482$
498 RETURN
$500-660$ putting routine
colors
500 GRAPHICS 5 : COLOR 1: SETCOLOR 0, 12,6:S ETCOLOR 4,14,8: SETCOLOR 2, 0,12 FOKE 752, 1 :SETCOLOR $1,12,16$
502 COLOR 1
DC is the distance to the cup
$510 \mathrm{DC}=\mathrm{INT}(\mathrm{PU}(\mathrm{TU})$)
plots contour of the green
F is the location of the flag
$530 \mathrm{G}=30: \mathrm{C}=1:$ IF \quad. 5 •RNO (1) THEN $\mathrm{C}=-1$
$532 \mathrm{D}=\operatorname{RND}(1) * 20+10: \mathrm{R}=0.7$
$534 E=R N D(1) * 28+48$
$535 \mathrm{~F}=\mathrm{INT}($ RND $(1) \times 20)+45$
540 FOR $\mathrm{I}=\mathrm{6}$ TO 78 STEF 2
545 PLOT I, G:FLOT I +1 , G. G(I 2$)=6$
546 FLOT I, $\mathrm{G}+1$: FLOT I $+1, \mathrm{G}+1$
548 IF 5>ABS (F-I) THEN 570
558 IF IDE THEN R=D. 95
552 IF I $\triangle 0$ THEN $\mathrm{C}=-\mathrm{C}: 0=109$
560 IF R R RND (1) THEN $G=G+C$
568 IF G >39 THEN $G=39$
578 NEXT I
B is the location of the ball
$58.6 \mathrm{~B}=\mathrm{INT}(\mathrm{F}-\mathrm{CC})$
cup impression in the green
585 COLOR 4:PLOT F,G(F/2) FLOT F,GF/2)+
1
plots for flag and pole

591 FLOT F+8,4: ORFWUTS F,
592 PLOT F $+8,4$ ORSNTO F, ε
no putt is necessary!
595 IF FUKTUK5 THEN FRINT "IT'S IN T HE CUP ! ! ! : COLOR 3: PLOT F, GSF/2 +1 :
SOUND 0, 40, 0, 8: RETUFN
plots ball
596 COLOR 2:FLOT E,G(Eス)-1
inputs length of putt
$600 \mathrm{~L}=20: \mathrm{S}=\mathrm{S}+1$
682 PRINT "Hole \# ";HL;" ewost Lasine
"; S(TU, HL) $+\mathrm{S}-1$
603 PRINT N\$(NCTU-1) +1 ,NKTU) ;" 'S FUT
T ":PRINT " PUTT LEMGTH——?"
;
604 IF $\operatorname{STRIG}(0)=0$ THEN $\in 18$
605 IF STICK $(0)=15$ THEN 684
606 ? : IF STICK $(9)=14$ THEN $L=L+1$: IF L)EX
THEN L=1
607 IF $\operatorname{STICK}(\theta)=13$ THEN $L=L-1:$ IF L $\langle 1$ THE
$N L=80$
609 sound $0,250-\mathrm{L} \times 3,10,4:$ C0T0 603
moves ball across green
$610 \mathrm{C}=9$: $\mathrm{N}=1$: IF B) F THEN $\mathrm{N}=-1$
620 COLOR 4:PLOT B, G(E/2)-1
$622 \mathrm{~B}=\mathrm{B}+\mathrm{N}: \mathrm{COLOR} 2$:FLGT E,G(R2)-1
625 IF $8>77$ THEN $E=77$: 0070 E60
626 IF B<1 THEN $\mathrm{E}=1:$ GOTO 600
627 IF G(E/2) KG (B/2+1) THEN $L=L+I N T(P N D K$ 1) ${ }^{2}$)
 1) 22)
$638 \mathrm{C}=\mathrm{C}+1$: IF C)=L THEN 650
635 SOUNO 0, B*2,10, RNGU(1)*18
640 GOTO 629
another putt attempt is needed
650 IF B<>F THEN 608
putt is good
655 COLOR 4:FLOT B,G(B/2)-1
656 COLOR 2:PLOT E,G(E/2)+1
660 RETURN
700-850 moves ball from the tee to the green
$\mathrm{B} 1, \mathrm{~B} 2$ is plot location of the ball
 LOT $\mathrm{BI}, \mathrm{B} 2: \mathrm{Q}=0 \mathrm{a}: \mathrm{C}=1: \mathrm{z}=2$
input routines for club choice
(D is distance)
$701 \mathrm{Cl}=\mathrm{C}: \mathrm{IF} \mathrm{C}>1$ THEN $\mathrm{C} 1=\mathrm{C} \mathrm{K} \mathrm{C}-8$
702 PRINT N\& (K TUL-1) +1 , HKTUY;" is TURN
":PRINT "SELECT CLLEE ? "; AW(C1,C1+6)
703 IF STRIG(0) $=0$ THEN 707

00, 10, 4: C0T0 70.3
$785 \mathrm{C}=\mathrm{C}+1:$ IF $\mathrm{C}>3$ THEN $\mathrm{C}=1$
706 ? : 6070701
787 PRINT "COMPUTED":FOR $\leq=1$ TO $100:$ NEYT
1
768 IF C=3 THEN 750
769 I $1=4: 1=1: I F \quad \mathrm{C}=2$ THEN $I 1=9$

712 IF STRIG $(0)=6$ THEN GOTD $725+C \times 5$
714 IF STICK $(\overline{0})=15$ THEN SOMD 0, RHO 9 \% 2
00, 10, 4: G070 712
716 I=I+1:IF I>I1 THEN I=1
718 GOTO 710
 55
$735 \mathrm{D}=(9-\mathrm{INT}(\mathrm{I}) \times 12+90+\mathrm{FNO}(1) \times 20: 60 T 075$
5
$750 \mathrm{D}=30+\mathrm{RNO}(1) * 20$
inputs for direction (DR)
$755 \mathrm{DI}=1: 02=1: \mathrm{DR}=20$
756 PRINT "COMPUTED":FOR I=1 TO 160: NEXT I
758 PRINT "UIRECTION ?? "; 10 :? :?
759 IF STRIG $0:=0$ THEN 754
 60, 10,4:60T0 759
761 IF $\operatorname{STICK}(\theta)=14$ THEN $\mathrm{OR}=0 \mathrm{R}+1:$ IF $\mathrm{DR}>49$ THEN DR $=10$
762 IF STICK $(0)=13$ THEN DR=0R-1:IF DR:18 THEN DR=49
7636070758
X, Y are the movement offsets
for direction D4, D5 are
modifications for hits from sand, etc.
764 D4 $=0 \mathrm{R}: 03=0:$ IF $2=0$ THEN $03=$ INT (SND (0) *7)-3:D4=DR+D3: IF 04<10 OR D4)49 THEN 76 4
$766 \mathrm{DR}=\mathrm{D4}:$ IF $Z=0$ THEN $\mathrm{CL}=\mathrm{D}$ ($\mathrm{RND}(8)+2): D=$ D-D5
767 IF DR 21 THEN $X=(\operatorname{TR}-10) / 18: Y=(20-[P)$ 10:00=-1: COTO 780
768 IF DR<31 THEN $\left.X=(30-C R) / 10: Y=(D R-20)^{\circ}\right)$
10: 1070780
769 IF DR<41 THEN $Y=($ DR-30 $) / 10: ~ Y=(40-C R)$ 10:01=-1: 5070785
$778 X=(50-0 R) / 10: Y=(0 R-40) / 10: D 1=-1:[2=-$
1
788 D5=0-RND 0) $\mathrm{KD} \mathrm{D}-16:$ IF $05<28$ THEN $\mathrm{DS}=28$
782 IF $2=3$ THEN $\mathrm{D}=05$
moves ball down the fairway
$800 \mathrm{~S}=\mathrm{S}+1: Q=Q+1:$ IF $Y=0$ THEN $Y=1.0 E-03$
892 IF $X=0$ THEN $X=1$. $8 E-03$
883 COLOR Z: PLOT B1, B2
807 IF X \times RND (1) AND Y YFND (1) THEN $B 1=81+$
D1:D $=0-8: 82=82+D 2:$ GOTO 829
818 IF $X>$ RND (1) THEN $B 1=81+D 1: 0=0-8$
812 IF $Y>$ PNO (1) THEN $B 2=E 2+D 2: 0=0-8$
820 IF ($81>1$) AND ($81\langle 78$) AND (B2)1) AND
(B2<38) THEN 830
826 COLOR 3: PLOT B1, B2:C=1:GOTO 701
830 LOCATE B1,B2, Z:COLOR 3:PLOT B1,B2
832 SOUND $9, B 1+\mathrm{B} 2,12$, PND $(1) * 4+3$
835 IF D 0 THEN 803
not on the green; get another hit
840 IF R1<ABS(B1-G1) THEN $\mathrm{C}=1$: COTO 701 842 IF R1〈ABS(B2-G2) THEN $\mathrm{C}=1:$ GOTO 701 compute length of putt, return
845 PUK TU $)=A B S(B 1-G 1) * 7+A E S(B 2-G 2) * 7+E N D$ (1)*5

850 RETURN
900-983 plots fairway, green, tee, sand, gets yardage

A COLLECTION OF OUR FIVE MOST POPULAR CASSETTE PROGRAMS NOW ON DISK

MAZE GAME, the original and still the best maze game for Apple II users. Set the size and difficulty level of your maze and watch as it is randomly generated. Special graphics place you inside a colorful maze, with a blue floor, green and yellow walls, and a pink sky above. Player options include getting a maze map, having a compass available, and leaving retraceable footprints on the maze floor. 16K Integer
ESCAPE is an exciting 3-D adventure with special color graphics that place you inside a maze of hallways. Find your way out by following the clues of people you meet inside. But be careful . . . the liars will not hesitate to give you false maps and compasses. It's hard to quit this game! Rated as the number 1 Apple program by the Mảrin Computer Center. 16K Integer.
SIDE SHOWS is a collection of six exciting games selected for their originality, ease of operation and imaginative use of the Apple. Includes the Ap-
ple Tree, Safecracker, Pip Shoot, Minelayer, Blockade and Quadripong. In the Apple Tree two players use the paddles to catch randomly falling apples. In Blockade and Minelayer try to surround your opponent with a moving wall or mine field. Pip Shoot can be played by two or more and the object is to shoot down as many "pips" as possible. Quadripong is four wall pong with varying ball speed and sound. Use the paddle carefully to be the first to open the safe in Safecracker. 16K Integer.
TANK WAR is a state-of-theart shootout for two players with dramatic sound and graphics. Players choose the style and size of their tank. Steer your tank with the game paddles to pursue and outmaneuver your opponent. Fire two types of missiles to disable and destroy the enemy. 16 K Machine Language.
THE MUSIC BOX - start the MUSIC BOX and your Apple comes alive with sound and color. Play it as a three-octave
instrument or type in a song and the music box will play it for you! A brilliant full color light show accompanies the music. Standard musical notation includes sharps and flats, note time, rests, dotted notes and tempo. Your songs can be saved on disk and recalled later. All notes can be easily retuned from the keyboard to produce special sound effects. Complete with two songs and documentation that explains basic musical notation. 16K Machine Language.
All on one disk. A $\$ 64.75$ value for only $\$ 39.95$

ROM THE ROBOT is an Integer BASIC program for the Apple and requires at least 16 K .
by Bill Smith
This is the third part of Bill Smith's ROM the ROBOT series, which is an animation tutorial using low resolution graphics on the Apple II. Parts 1 and 2 appear in the June and July issues of Softside: Apple. Part 1 describes the instructions that create the robot's figure and let you turn him in place, make him nod, shake his head, or blink. Part 2 describes the instructions that allow ROM to walk around the screen without falling off. This month's addition combines ROM's abilities into a simple game.

There are a few features of Apple's Integer BASIC that should be noted with regards to this program. In line 20, the PEEK statement checks the keyboard strobe. If a key has been pressed, its ASCII code is put in the variable KEY. If no key has been pressed, the value will be less than 128. Apple's ASCII codes repeat after 128, so both 65 and 193 are codes for the letter A (therefore, line 30 tests for character 194, or a B, etc.).

Two sets of POKE's should also be mentioned. The Apple really has 2 low-res screens, and Bill has set up his program to draw ROM on page 1 , do a memory move to page 2, and display page 2 . With this method you never see ROM actually being redrawn. Line 70 does the memory move, and lines 80,9010 , and 9020 cause page 2 to be displayed.

One last item pertains to Integer BASIC. In an IF-THEN statement, if the condition is true, only the first instruction after THEN is affected. The false condition resumes immediately, not at the next program line. (See line 90 for an example. In most other BASIC's the second IF and the GOTO would be meaningless.)

ROM ON PARADE - PART 3

This month, we are going to teach ROM a game to demonstrate some of his many attributes. This will, together with what we have from parts 1 and 2, make a complete game program, so we had better give it a title. How does ROM ON PARADE sound?

The instructions to play the game are simple, but a certain amount of skill is required to be a successful Drill Sergeant. The idea is to march ROM around the screen using the keyboard commands:
"F" - Front face
"L"' - Left face
"R" - Right face
"'M" - March forward
"C"' - Climb
"D"' - Descend
"H" - Halt

When the heel of ROM's foot is placed above one of the three white spots on the screen, it disappears. Cover them all in turn and the game is over. A counter keeps track of the time, so the appropriate commands must be issued promptly.

For those readers who have been typing in ROM from the previous parts of the series, line 30 needs changing to add a new COMMAND subroutine P (parade game). Lines 2080 to 2083 are the subroutine itself. Lines 26 and 65 in the MAIN LOOP are new, as are the 4000 series.

Lines 2080-2083. The new COMMAND subroutine " P " introduces another flag FP which controls the visits to the 4000 set of lines from the MAIN LOOP. The counter C and spot flags (S1, S2 and S3) are set to zero. Short instructions for the game are also given.

Lines 4010 checks if all the spots have been covered. If so we branch to line 4140 to print the score and a comment before resetting the FP flag and ending the game.

If the spots have not all been covered, we increment the counter C in line 4020, rewrite the instructions with the updated score, then in lines 4040 to 4090 redraw each spot, checking if ROM's heel is over it before returning to the MAIN LOOP for another go-around.

To operate, after RUNning the program type " P ". Read the instructions, type " F " or some other relevant command and you are off . . .

1 REM YROM THE ROESOTX
2 REM BILL SMITH
3 REM GAMEIER ISLAND
4 KEM GIBSONS E.C.
5 REM CANADA
10 GOTO 9000
20 KEY = PEEK (-16384): IF KEYく
128 THEN 60
25 FFINT : FRINT : FRINT
26 IF $\mathrm{FF}=1$ THEN $\mathrm{FP}=2$
30 IF KEY $\$ 194$ AND KEY $\$ 198$ AND KEY $\ddagger 204$ AND KEY $\ddagger 206$ AND KEY $\#$ 210 AND KEY $\$ 217$ AND KEY $\$ 195$ AND KEY $\# 196$ AND KEY $\# 205$ AND KEY $\ddagger 200$ AND KEY $\ddagger 209$ AND KEY $\#$ 208 THEN 50
$40 \mathrm{~A}=\mathrm{KEY}$
50 FTOKE -16368,0
60 COSNE A 10
65 IF $\mathrm{FP}=2$ THEN COSUR 4000
70 POKE 60,0: POKE 61,4: FOKE 62,255: POKE 63,7: POKE 66, 0: POKE 67,8: CALL -468
80 POKE -16299,0: GR
90 IF $X<6$ OF $X>33$ THEN $92:$ IF Y<S OR Y>24 THEN 94: GOTO 20

92 COSTE 8010: GOSLE 8000: IF $X<6$ THEN $X=X+1$; IF $X>33$ THEN
$X=X-1: A=194:$ GOTD 20
94 IF $Y<5$ THEN $Y=Y+1$; IF $Y>24$ THEN $Y=Y-1$: GOTO 20
100 COLOR=4: REM EROOY (EU)
 ,$Y+7$ AT $X-1$: KIN $Y+1, Y+7$ AT $x+1$
120 RETURN
200 COLOR $=15$: REM HEAD FRONT(HF)
210 FLOT $X, Y:$ HLIN $X-1, X+1$ AT Y 1: FILOT $X-2, Y-2 ;$ FLOT $X-1, Y-$
2: FLLOT $X+1, Y-2$: PLOT $X+2, Y-$ 2: FLOT $X-2, Y-3:$ PLOT $X, Y-3$: FLOT $X+2, y-3$
220 HLIN $X-1, X+1$ AT $Y-4$
230 RETUFN
250 COLOK: $=15$: REM EYES ELANK(HB)
260 FLOT X, Y : HLIN $X-1, X+1$ AT Y 1: HLIN $X-2, X-1$ AT $Y-2 ;$ HLIN $X-2, X+2$ AT $Y-3:$ HLIN $X-1, X+$ 1 AT $Y-4$: HLIN $X+1, X+2$ AT Y 2
270 RETURN
300 COLOF=15: REM HEAD FRONT LOOKIN G DOMN (HFD)

310 HLIN $X-1, X+1$ AT Y : FLOT $X-1$, Y-1: PLOT $X+1, Y-1$: FLOT $X-$ $2, Y-2:$ PLOT $X, Y-2:$ FLOT $X+2$, Y-2: HLIN $X-1, X+1$ AT $Y-3$: HLIN $X-1, X+1$ AT $Y-4$
320 RETURN
400 COLOR=15: REM HEAD LEFT(HL)
410 FLOT X, Y : HLIN $X-1, X+1$ AT Y -
1: HLIN $X-2, X+1$ AT $Y-2$: PLOT $X+1, Y-3$: HLIN $X, X+1$ AT $Y-4:$ FLOT X-1,Y-3
420 RETUFN
500 COLOF: $=15$: REM HEAD FACIMG RICHT (HR)
510 FLOT $X, Y:$ HIIN $X-1, X+1$ AT $Y-$ 1: HLIN $X-1 ; X+2$ AT $Y-2$: FLOT $X-1, Y-3$; HLIN $X-1, X$ AT $Y-4$: PLOT $X+1, Y-3$
520 RETUFN
900 COLOR=11: REM LEG \& ARHS FOR RI GHT FACE(LR)
910 ULIN $Y+8, Y+14$ AT $X:$ ULIN $Y+$ $1, Y+7$ AT $X:$ PLOT $X+1, Y+14$
920 RETUFN
950 COLOR=11: REM LEG \& ARKS FOR LE FT FACE (LL)
960 ULIN $Y+8, Y+14$ AT $X:$ VLIN $Y+$ $1, Y+7$ AT $X:$ PLOT $X-1, Y+14$
970 RETUFN
1000 COLOK=11: REM LEGS AND ARTMS FOR FRONT FACE (LF)
1005 COLOR: $=11$
1010 PLOT $X-2, Y+1$: PLOT $X+2, Y+1$
1015 ULIN $Y+2, Y+7$ aT $X+3$: ULIN $Y+$ $2, Y+7$ AT $X-3$
1020 ULIN $Y+8, Y+14$ AT $X-1$: VIN $Y+8, Y+14$ AT $X+1$
1050 RETURN
1100 REM LECS \& ARHTS MAFCH LEFT (LMM)
1110 다야 $=11$
1120 PLOT $X, Y+1$: FLOT $X-1, Y+2$: PLOT $X-2, Y+3!$ PLOT $X-3, Y+4$: FLOT
$X-4, Y+5:$ FLOT $X+2, Y+3$
1130 ULIN $Y+8, Y+14$ AT X: VLIN $Y+$ 10, $Y+13$ AT $X-2:$ FLOT $X-1, Y+$ 9: PLOT $X-3, Y+13:$ PLOT $X-1$, $Y+14$
1140 RETUFN
1150 REM LEG \& AFFMS MAFCH LEFT 1 (LM L1)
1160 COLOR $=11$
1170 FLOT $X, Y+1$: FLOT $X+1, Y+2 ;$ FLOT $X+2, Y+3$: FLOT $X+1, Y+4$: PLOT $X, Y+5$: PLOT $X-2, Y+3:$ FLOT $X-$ $3, Y+4$: FLOT $X-4, Y+5$

1180 ULIN $Y+8, Y+14$ AT $X:$ FLOT $X+$ 1, $Y+11$: PLOT $X-1, Y+14$: PLOT $X+1, Y+13 ;$ FLOT $X+2, Y+12 ;$ PLOT $X-1, Y+10$
1190 RETU䄳
1200 REM LEGS \& AFTKS MARCH RIGHT (LHM R)

1210 COLOK=11
1220 FLOT $X, Y+1$: PLOT $X+1, Y+2$; FLOT $X+2, Y+3$: PLOT $X+3, Y+4$: FLOT $X+4, Y+5$: FLOT $X-2, Y+3$
1230 ULIN $Y+8, Y+14$ AT X : UIN $Y+$ 10, $Y+13$ AT $X+2 ;$ FLOT $X+1, Y+$ 9: FLOT $X+3, Y+13:$ FLOT $X+1$, $Y+14$
1240 FETURN
1250 REM LEG \& ARMS MARCH RIGHT (LIKR 1)

1260 COLOR=11
1270 PLOT $X, Y+1$: PLOT $X-1, Y+2$: PLOT $X-2, Y+3$; FLOT $X-1 ; Y+4$: PLOT $X, Y+5$: PLOT $X+2, Y+3 ;$ FLOT $X+$ 3, $Y+4$: PLOT $X+4, Y+5$
1280 ULIN $Y+8, Y+14$ AT X: FLOT X 1, $Y+11$: FLOT $X+1, Y+14$: PLOT $X-1, Y+13:$ FLOT $X-2, Y+12$: FLOT $X+1, Y+10$
1290 RETLFN
$1940 \mathrm{D}=0$: REN ELINK
1941 IF F>1 THEN F=0: GOSUR EU: GOSNE LF: IF F=0 THEN 1942: GOSLE HE:FF=0: RETURN
1942 GOSNE HF:F=1: RETLEN
1950 REM CLIME
$1951 Y=Y-1$; GOTO 2051
1960 REM DESCEND
$1961 \gamma=Y+1$; GOTO 2051
1980 D=0 \ddagger REM FRONT FACE
1981 COSLE H: GOSLE EU: COSLE LF: RETUFN
2000 REM HALT
2001 IF $D=1$ THEN $A=210$: IF $D=2$ THEN
$A=204$: POF : GOTO 20
2040 D=2; REM. RICHT FACE
2041 GOSLE H: GOSUB EUS GOSLE LL: RETUPN
2050 REM FDRWAFD MARCH
2051 "IF $D=1$ THEN 2052: IF $D=2$ THEN 2055: POF : $A=206$: GOTO 20
$2052 X=X+1$: GOSLE HR: GOSLB EU: IF $F=0$ THEN 2053: IF F=2 THEN 2054:F=F1: GOSUE LR: RETUFN

2053 F=1:F1=2: GOSLE LMF: RETURN
2054 F=1:F1=0: GOSLE LMR1: RETUKN

by Mark Pelczarski

3-dimensional figures can be rotated, shifted, scaled, or distorted. Each figure can be saved on disk and later assembled into larger figures, with each part capable of being manipulated. Screen images may be saved and used with other programs.

48K Applesoft ROM
$\$ 29.95$ on diskette

TO ORDER

TOLL FREE
1-800-258-1790
(In NH call 673-5144)
$2055 x=x-1$: $\cos 1 \mathrm{~B}$ H: $\cos 4 \mathrm{~B}$ BU: IF $F=0$ THEN 2056: IF $F=2$ THEN 2057:F=F1: COSLE LI: RETURN
$2056 \mathrm{~F}=1$: $\mathrm{F} 1=2$: GOSIE LIL: RETURN
$2057 \mathrm{~F}=1$:F1=0: GOSLB LRL1: RETUFN
2060 D=0: REK SHAKE HEAD
2061 GOSLE EU: GOSLE LF: IF F=O THEN 2062: IF F=2 THEN 2063:F=F1: GOSUE HF: RETURN
$2062 \mathrm{~F}=1: \mathrm{F}=2$: GOSLE HL: RETURN
$2063 \mathrm{~F}=1$: F1 $=0$: GOSUB HR: RETURN
2080 COSLE EU: GOSUB HF: GOSLE LF: COLOR=15: PLOT 10,26: PLOT 20,38: PLOT 30,24
2081 FRINT : PRINT "KAFCH ROM AROUND SO THAT HIS HEEL IS OVER EACH OF THE THREE WHITE SLUARES IN"

2082 PRINT "TUFN, YON KILL EE SCORED 0 N SPEED AND THEACCURACY OF THE S FOTS COUERED.";
2083 C=0:S1 $0:$:S2 $=0: S 3=0:$ FP=1: RETURN
2090 REM OUIT ROUTINE
2092 FOKE -16300,0: TEXT: CAL -936
2094 UTAE 10: TAB 18: PRINT "EYE!"
2096 POKE 75,8: POKE 205,8: END
2100 D=1: REM LEFT FACE
2101 GOSLE HR: COSLE EU: COSUE LR: RETUFN
2170 D=0: REM NOD
2171 IF FI THEN F=0: GOSLE RU: GOSUE LF: IF F=0 THEN 2172: cOSLE HF:F=0: RETURN
2172 COSUE HD:F=1: RETUFN
4000 REM PARADE GAFE
4010 IF S1 AND S2 AND S3=1 THEN 4140
4020 COL. 0 F $=15: C=C+1$: IF $C=999$ THEN 4140
4029 FRINT : PRINT "FFFACE FRONT.R=RI GHT FACE.L=LEFT FACE M=FHD MAR CH. $\mathrm{C}=\mathrm{CLITR}, \quad \mathrm{D}=\mathrm{DESCEND}, \mathrm{H}$ =HALT"
4030 UTAE 23: TAE 29: PRINT "SCORE " ; C

4040 IF S1=1 THEN 4060
4050 FLOT 10,26: IF $X=10$ AND $Y=11$ THEN GOSLE 4110

4060 IF S2=1 THEN 4080
4070 FLOT 20,38: IF X=20 AND Y=23 THEN GOSLE 4120
4080 IF $53=1$ THEN 4100
4090 FLOT 30,24 : IF $X=30$ AND $Y=9$ THEN COSLE 4130
4100 RETURN
4110 S1=1: RETURN
4120 S2=1: RETURN
4130 S3=1: RETURN
4140 PRINT : PRINT : PRINT "YOUR SCOR E OF ";C; : IF C>160 THEN 4240 : IF C>120 THEN 4220: IF C> 80 THEN 4200: IF C>40 THEN 4180
4160 PRINT" HAS EXCELLENT ";BS: FriNT "YOUR COUNTRY NEEDS YOU A SA DRIL INSTRUCTOR" i: GOTO 4250
4180 PRINT " HAS GO00 ";Bs: PRINT "EUT IT IS FOSSIBLE TO DO BETTER ": GOTO 4250
4200 PRINT " WAS AUERACE ";B\%: PRINT "KEEF PRACTICING": GOTO 4250

4220 PRINT " HAS POOR ";BS: PRINT "TRY AGAIN": GOTO 4250
4240 PRINT " MAS TERRIELE ";Bs: PRINT "YOU UST HAVE TO EE AELE TO DO EETTER THAN THIS!!!"
$4245 \mathrm{FF}=0$
4250 PRINT "TO PLAY ACAIN HIT 'P', IF FINISHED 'Q'";
4260 RETUFN
8000 REM CFLNT SLEFOUTINE
B002 FOK $Z=1$ TO 10:ZZ= PEEK (-16336): FOR ZZ=1 TO 2: NEXT ZZ: NEXT Z: RETURN
8010 PRINT "OUCH! xxxx THAT HURT MY N OSE Xxxx"
8011 RETLKN
9000 REM INITIALIZATION
9010 POKE 74,0: POKE 75,12
9020 FOKE 204,0: POKE 205,12
$9030 X=19: Y=19$
$9040 \mathrm{Bl}=100: 1 \mathrm{~F}=200 \div \mathrm{HD}=300 ; \mathrm{HL}=400$:HR=500:HE=250:LR=900:LL=950 : LF $=1000$
 : L 1 K1 $1=1250$
9050 FOR $A=20$ TO 24: UTAE A: PRINT
": NEXT A
$9060 \mathrm{~A}=198$: GR
9070 GOTO 20
9999 END

New products from Scelbi Publications

Calculating with BASIC

Use your computer to calculate home mortgage payments, interest rates, payback periods and more. Complete routines already worked out for problem solving using BASIC language. Also includes mathematics, finance and statistics, mechanical engineering and electronics. \$7.95

Learn Micro-Computers

A new multimedia information package. Includes text ("Understanding
Microcomputers") plus high-quality cassette For the beginner just starting in microcomputers. Covers all the basics quickly, easily, and enjoyably. Companion tape includes chapter-by-chapter synopsis of the book. Great new idea for self-study. \$14.95

Personal Information Management System
Increase your personal capabilities . . . save money . . . improve your ability to plan locate important facts quickly ...eliminate the drudgery of routine chores. These all add up to a better life style for you! A new way of living which can be more pleasant, bring you more happiness and success. Information. That's the key. Your command of information is what gives you the power to succeed. PIMS is a ready-to-use data base management program for computers like the TRS-80, PET, etc Without any knowledge of programming you can have your computer manage things such as income tax deductions, department store charges, plan your day, vacation, education and important life events. Use it to keep your personal mailing list, schedule your TV viewing time, keep track of personal disbursements, and more. Much more! There's practically no limit to the type of applications. Includes easy-to-read manual and source listing. Get your copy now! \$9.95

Microcomputer Potpourrl

Data on all the popular chips. Pin connections, diagrams, distinguishing features. All the pertinent information is presented clearly and concisely. Includes glossary. \$2.95

Personal Information Management System
When you're in business you've got a personal stake in how information is managed. That's because information is your key to success PIMS will allow you to unleash the power of a microcomputer - and you don't have to become a programmer first. Use a computer for accounts receivable . . . accounts payable .. maintain inventory records . . . run a mailing list . . . keep track of credit charges. These are just a few of the many things you can do with PIMS. It is a ready-to-use data base management program for computers like the Commodore PET and Radio Shack TRS-80. You can define and construct your own data bases. Each records can contain up to ten fields. You can search, list and sort. There's even a command that lets you sum columns of numbers. PIMS provides a valuable introduction to data base management. Complete source listing. $\$ 9.95$

Calculating with BASIC

Here's a variety of programs in BASIC language to help the businessman, scientist and engineer. Shows how to apply the language to practical problems and equations. Formulas cover calculations of interest, payback periods, mortgage schedules techniques for extending number of useful digits in monetary calculations using limited BASICs. A variety of electronic applied formulas are programmed. The mechanics chapter covers resultant-force calculations attractive forces due to gravity, projectile motion prediction and graphing, moments of inertia for T-section, 1 -section and channel sections. Mathematics chapter includes programs to solve the quadratic formula, general summation formulas such as sum of geometric progression, number of conversion program, algorithms to compute sine, cosine, tangent, log e. \$7.95

Understanding Microcomputers

How do you select a microcomputer system for your business? This book is for the person wanting a full understanding of which system is best. It tells how to select a small computer system. Introduces BASIC language programming. Basic instructions for almost every class of microprocessor are illustrated. Written in simple English. Convenient glossary covers all key terms. $\$ 9.95$

Take My Computer . . . Please!
An uproariously funny book about the true-life misadventures of author Steve Ciarcia and his computer's inability to cooperate. Hardcover. $\$ 5.95$

FLOPPY SAVER PREVENTS:
Computer drive's clamping hub from tearing disk's center hole.

Coating removal, scuffing and dimpling when the disk hits the rotating spindle.

Data loss caused by improper rotation of a floppy disk.

Any damage to Floppy Disk's center hole.

FLOPPY SAVER KIT consists of:

Plastic centering tool and pressure ring.
25 7-mil mylar rings with paper protected adhesive backing.

EASILY installed on disks in seconds. Only one side needs the ring.
for 5 1/4" diskettes ${ }^{\text {C Complete Kit }} \mathbf{\$ 1 4 . 9 5}$ • Refill $\$ 7.95$

PROGRAM LINE EDITOR

Stronger than Integer! More powerful than Applesoft! Faster than a speeding cursor! Able to leap the longest statements in a single move! The Program Line Editor is the most sophisticated program development tool yet for the Apple II computer.
Program Line Editor includes full feature line editors for both Integer and Applesoft programs that render all other techniques obsolete. Program development and modification can now be completed in a tenth the time previously required. The package includes a set of versatile user-definable escape functions which enable you to type commands or sets of commands with only two keystrokes!
The Program Line Editor is available on disk and is compatible with any Apple II or Apple II Plus system with disk drive.
$\$ 40.00$

HIGHER TEXT

Higher Text provides the display capabilities you ne̊ed when the Apple's text output just isn't sufficient. With Higher Text you can print characters in upper case, lower case, upside down, sideways and in any color. If standard characters still aren't adequate, try printing in script, Old English, foreign languages, or special scientific symbology. Define your own specialized or decorative character sets, and easily create professionally customized displays without any hardware modifications.
Higher Text comes on disk and will run on any Apple II or Apple II PLUS system with disk drive. The text generator is in machine language and links easily to the user's application program. $\$ 35.00$

WILDERNESS CAMPAIGN

Free the kingdom of Draconia from the Evil Necromancer! Your party must overcome obstacles, defeat hostile inhabitants, survive natural hazards, explore tombs, temples, castles, and ruins, in search of gold and magical devices. 48K Integer; Cassette \$14.95, Disk \$17.50.

DUNGEON CAMPAIGN

Direct an expeditionary force into an underground labyrinth. Catacombs filled with treasures and hazards, poisonous vapors, evil sorcerers, stairways, pitfalls and an incredible assortment of MONST'ERS. 16K Integer; Cassette $\mathbf{\$ 1 2 . 5 0}$, Disk $\mathbf{\$ 1 4 . 9 5}$.

MAILING LIST DATABASE

Entry and storage of a list of names with associated addresses, cities, states, zip codes, phone numbers, comments, and code designations. List, search, edit, print labels; convert prior mailing lists. Up to 225 records can be loaded on line at any time. 48K AppleSoft, Disk $\mathbf{\$ 3 4 . 5 0 .}$

HIGHER GRAPHICS

A complete set of shape generation, manipulation and utilization tools for the programmer. Quickly and easily, you add sophisticated graphic displays and effects to your programs. Shape Maker,
Table Combiner, Screen Creator, 4 shape tables, 3 high-res displays, and the machine language graphics routines required to produce high resolution graphics on the Apple II. 48K, Integer Basic, Disk \$24.95.

To order call TOLL-FREE 1-800-258-1790

(In NH call 673-5144)

MAZE SEARCH is for an $8 K$ Atari with a jolstick.
by David Bohlke

Has your mind been uncontrollably wandering lately? Then try putting it back in line with a game that demands intense concentration. In MAZE SEARCH you not only need to control your moving cursor to intercept the 24 targets, but you must also diligently plan ahead to be able to negotiate in and out of the maze. Only the very best players will be able to capture all the targets.

Each game begins with your ATARI generating a random maze. Every section within the maze has only one entrance/exit to the outside corridor - which is your means of accessing other sections of the maze. After the maze is completed, 24 blue targets (blocs) will be randomly placed in the maze. The object of MAZE SEARCH is to move your green cursor and run over the blue targets. Several players can in turn compete to determine which player can intercept the most targets.

There is a time limit to each game which you can adjust in line 600 (variable CT). The time remaining in the game is indicated by a green graphics bar to the right of the screen. Time is most efficiently used when you keep your cursor moving! Each time you intercept a target it will be displayed to the left of the maze. When the game is over, press the fire button on your stick control for another game (use paddle slot 1).
$160 T 0160$
2 REM MAZE SEARCH
3 REM by David Bohilke
direction changes for the STICK(0) commands. See page 60 of the Reference manual.
5 GOTO 7
6 COTO 14
$7 x=x+1$: RETIJRN
9 GOTO 13
10 GOTO 11
$11 X=x-1$: RETURN
$13 Y=Y+1$ RETUPN
$14 Y=Y-1$: RETURN
full screen graphics in mode 3
100 LRAPHICS $3+16$
outline of maze
129 COLOR 1:PLOT 4, © ORFEUTO 36, 9 : DRRUTO
36,22 CROWTO 4, 22 : DRANTO 4,0
$\mathrm{M}(200), \mathrm{N}(200)$ will hold the location of every intersection in the maze
290 DIM MK 290 : M 2200)
K is the intersection counter. M, N is the screen location of the intersection
$210 \mathrm{~K}=8: M=18: N=10$
plot the initial intersection
228 PLOT M,N
240-390
Loop to construct maze.
Test if next intersection is filled in.

> 240 LOCATE $M+2, N, x$ IF $x=0$ THEN 250
> 242 LOCATE $M-2, N, x$ IF $x=0$ THEN 254
> 244 LOCATE M,N+2, x IF $x=0$ THEN 250
> 246 LOCATE M,N-2, x IF $X=0$ THEN 250
next intersection is used, so goto 370 to get the previous intersection (M and N) and decrement counter. When $K=0$ we'll be back at the beginning and the maze will be completed.
248 जото 378
there is at least one adjacent open intersection, so pick a random direction (D)

$250 \mathrm{D}=\mathrm{INT}$ (RND (9) $\times 4$) +251 COTO [

offsets for specific directions (M1 and N1)

```
251 M1=-1:N1=9:GOTO 380
252 M1=8:N1=1:GOTO 309
253 M1=1:N1 =8:GOTO 300
254 M1 =0:N1=-1
```

check if the intersection at the random direction is open; goto 250 if not
300 LOCATE M+M1*2,N+N1*2, $:$: IF $X=1$ THEN 2 50
plot to the open intersection
310 PLOT M+M1, N+N1: FLOT M+M1*2,N+N1*2 sound and random color
320 SOUND 0, M+N, 10, 4 : SETCOLUR 0, RNO (B) * 1 5, 10: SETCOLOR 4, RNOC(B): $: 15,8$
adjust M, N to the new intersection. Increment K (counter) and $\mathrm{M}(\mathrm{K}), \mathrm{N}(\mathrm{K})$ as the new intersection location; branch to start process again.

$330 M=1+M 1: 2: N=N+N 1 * 2: K=K+1 \cdot M K K=M \cdot N K)=$ $\mathrm{N}:$ COTO 248

all directions are blocked, so back up to the previous intersection
$378 \mathrm{M}=\mathrm{F}(\mathrm{K}): N=N(K): K=K-1$
check for maze completion
398 IF $\mathrm{K}=0$ THEN 490
not finished, branch to check
previous intersection

398 GOTO 248

clears dimensions (no longer needed)

468 CLR

player starting location
$485 \mathrm{M}=11$: $\mathrm{N}=11$
set colors
410 SETCOLOR 0,1,10: SETCOLOR 4,4, 6
428 SETCOLOR 2,8,8:COLOR 2 PLOT M,N
plot 24 target blocks
430 SETCOLOR $1,12,8$ FOR I=1 TO 24 GOSLB 900: NEXT I
500-700 Main Game Loop
check stick; if not pressed
branch to 600
$560 \mathrm{~S}=\mathrm{STICK}(\theta)$: IF $\mathrm{S}=15$ THEN 680
save position \mathbf{M}, N with scratch variables X,Y GOSUB S will be 5-14 for direction offset
$510 \quad X=1: Y=N$: COSUB S
blank players block, locate new position X,Y
528 COLOR Q:PLOT M,N:LOCATE X,Y,Z
if no move possible (wall), then goto 580
540 IF $Z=1$ THEN 588
if hit a target block, then increment counter (HT) and check for end of game
550 IF $\quad 2=3$ THEN HT=HT+1:FOR $I=1$ TO $20: S 0$ UND 0, I $+50,12,15$: NEXT I : IF HT=24 THEN 88 0
up until first hit branch to 560
551 IF $\mathrm{HT}=8$ THEN 568
plot hits on left of maze
552 COLOR 3: IF $\mathrm{HT} / 2=$ INT(HT/2) THEN PLOT 1,23-HT
554 IF HT/2く)INT(HT/2) THEN PLOT $2,23-\mathrm{HT}$
set M,N to new location \mathbf{X}, \mathbf{Y}
$560 \mathrm{M}=\mathrm{X}: \mathrm{N}=\mathrm{Y}$
plot player's block
500 COUOR 2: PLOT M, N
increment time, plot time block on the right of the screen, check for end of game
680 CT=CT+8. 22 :COLOR 2:PLOT 38,22-CT: PLO T 39,22 -CT: IF CT 221 THEN PLOT 38,9 :PLOT 39,8: COTO 880
a little sound, branch to beginning of game loop
700 SOND 0,2KH 2 2N, 10,4: GOTO 500
game is over; check for the fire button to be pressed to start next game

800 IF $\operatorname{STRIG}(\theta)=0$ THEN RUN
810 SOUND 9, PND (8) *160, 10, 4:G0T0 890
990 COLOR 3: $X=1 N T(\operatorname{RND}(6) * 16) * 2+5: Y=I N T(R$
ND(0) $* 11$) $* 2+1$ LOCATE X, Y, Z
ND(0)*11) $22+1$: LOCATE X, Y, Z
904 IF Z《>0 THEN 900
906 PLOT X,Y:RETURN

This is the one that started the revolution in computer chess. Six levels of play from beginning through advanced amateur. Ready whenever you are.

SARGON II

The best has gotten better! Sargon, the program that came in first in the Creative Computing Microcomputer Chess Tournament has become Sargon II. A greatly improved game, faster response time, new level 0 for beginners, easier to pre-set board, hint mode-what does the computer suggest. Sargon II is the program that took on the maxi-computers in the West Coast tournament, and finished in the money! More thinking power than you ever expected.

> TO ORDER TOLL-FREE $\mathbf{1 - 8 0 0 - 2 5 8 - 1 7 9 0}$

	TRS-80	APPLE
Sargon-(tape) \$19.95	16 K, Level II	24 K Machine Language
Sargon II-(tape) $\$ 29.95$	16 K, Level II	24 K Machine Language
Sargon II-disk) \$34.95	32K, Disk	48 K Machine Language

GRAND PRIX is an S-80 program for Level II I6K and up. by Max Chauvet

This Arcade-type game simulates a qualifying session of an international Grand Prix race.

You are in the driver's seat of a powerful Formula One car and you will try to complete one lap of the circuit in the shortest possible time.

The only controls you have on the car are left and right steering using the arrow keys \leftarrow and \rightarrow

On the straight sections of track you will be going at top speed, but in the curves, whenever you steer, your car will slow down.
Therefore, to break the lap record, you will need to avoid all unnecessary steering-driving tightly into the curves. But be careful; if you go over the edge of the track you will hit the guard rail and lose precious seconds.

When you are approaching the finish line, the program will display the time to beat on the left side of the screen and your current time on the right side.

The program will then allow you to re-run on the same circuit or will randomly generate a new circuit.

Note that the car will continue turning as long as an arrow key is held down.


```
10000'GRAND PRIX RACING
10010' 1980. M.CHANVET
10020 CLEARSOO:DEFINTA-Y:CLS
10025 RPS=0:RO=0:RD=0:EC=0:B=0;KB=0:LC=0:RC=0:TW=2:Z=0:T=0:QZ=17
:UN=1:N=128
10026 SN=0:LP=0:DX=10:SC=600:T1=0:T2=0
10040 Ms=STRING (255,0):MO$=STRING $(75,0)
10050 ADOR=VAFPTR(M0$):IFPEEK(16396)=201 THENPOKE16526,FFEKK(AD+1
1:POKE16527,PEEK(AD+2)
10052 FST=AD
10054 ZD=PEEK (AD +1)+PEEK(AD+2) <256
10056 IF ZD>32767 ZD=ZD-65536
10058 AD=ZD
10060 IFPEEK(16396)<>201THEN DEFUSR0=AD:CHD"T"
10070 CAR=ADOR+182
10080 EC=16: DIM LAP(50)
10090 KEDAFED=14400:TMO=2: EL=32
10100 B =STRING }(8,24):C$CHF(26
10110 A =STRING $ (2,176)+EEFT (E$,4)+C$+"$-"+STRING$(2,191)+"-$"+
    LEFT$(B$,5)+C$+CHF$(170)+CHF$(93)+CHR$(94)+CHR$(149)+LEFT$
    (E$,6)+C$+"$#-"+STRING$(2,191)+"--#"+LEFT$(E$,5)+C$+CHK$
    (34)+CHF$(34)
10200'SCFOLING ROUTINE
10210 DATA CD7F0ATD00018E40C5FD21ED00FD090021E60000092600DD6E000
1
10220 DATA 003C09C1E72802FDE9114003E519E50101400009EE0E10ED
10230 DATA E0110003E1E519E50101400009EB0E3BEDE011EFO2E1E519E501
10240 DATA 01400009EEOE39EDE:O117FO2E1E519E50101400009EEOE3AEDEO
10250 DATA 113002E1E519E5D101400009EEOE3CEDE011EEO2FDE1FDESFD19
10260 DATA FD7E00FD7710FD7E01FD7711FD7E18FD7708FD7E19FD7709113A
10270 DATA O22600DD6E0019ESFDE1E119E5D101400009EEFDESC1EDE83E00
10280 DATA C900000000000000
10290' MOVE CAR
10300 DATA DD213101DD093020313E05117CO219ESD11313E506000DAEO0EDE:
823E5FDE1FD4610
10310 DATA FD7000FD4611FD7001E130C80600DD4E01090023002318053E051
10A00D019117R02
10320 DATA 19E5D11R1RE50600DD4EOOEDE0011200ED42E5FDE1FD4600FD701
OFD
10330 DATA 4601FD7011E130C80600DD4E0109002300231801
10340 DATA 0242063F044208400500
10350 DATA 023E0641043E08400500
```

[^4]Let's first look at the statement line numbers in the program: you will notice that they are all 5 digits long starting at 10000 . This is not due to a special programming technique; actually I wrote this program on top of an earlier version in order to be able to refer some of the original statements while entering the new ones. The original version was eventually deleted.

The optical effect of the car advancing is created by simulating the track receding. This is done by the first part of the machine language routine (Basic being too slow for video games) which scrolls the screen down around the car. The second part of this routine shifts 2 positions right or left every character that forms the car drawing, whenever the arrow keys are pressed. All other functions are in straightforward BASIC.
The car leaving the track is detected by PEEKing the video memory 16 positions left of the right frontwheel and 16 positions right of the left front wheel. In this case 16 is the width of the track. Because track format is identical on both sides of the car, if the right front wheel runs over a dot, then the "crash" spot 16 positions to its left will also contain a dot. The same holds for the left wheel in the opposite direction. This was the tricky part. The rest is easy. Score counter is incremented by 1 with every program cycle, by 2 with every car shift and by 20 with every crash. Final score is compared with a theoretical record score calculated when generating the circuit layout, i.e. the succession of curves and straight lines.

The structure of the main program cycle may be summarized as follows:
(1) Scroll the screen around the car down one line.
(2) Insert a new line at the top -Curves are formed by progressively shifting the position of dots on this line.
(3) Check the arrow keys. If pressed, shift car and update score.
(4) Check crash spots. If not blank, display crash effects and update score.
(5) Return to step (1)

Let's now look in more detail at each of the sections in the program.

LINES 10000-10110 -VARIABLE DEFINITION

In order to speed up execution, an initial value is assigned to the most frequently used variables. Because of this, the BASIC interpreter places them at the beginning of the variable names list, thus reducing search time when referenced later in the program. This is why in statement 10025 several variables are set to zero. Other variables used here are:
M\$,MO\$
: contain the machine
language routine.
ADDR
: absolute starting address of the routine.
EC
: track width
BL
: blank character 32
NL
: null character 128
LAP(50)
: sequence of curves and straights forming the circuit. Each element represents 10 lines on the screen and may take the following values:

- 1 for a left curve

0 for a straight line
1 for a right curve
Note that the screen width limits to 2 the number of successive curves in the same direction

KBOARD

: Keyboard address. When pressing the arrow keys, PEEKing this location will return the value 32 for the left key and 64 for the right key. A\$
: Car drawing. It lays over 5 lines by use of the cursor back (decimal 24) and cursor down (decimal 26) characters.

LINES 10200-10430 - MACHINE LANGUAGE ROUTINE

The DATA statements contain the hexadecimal form of the routine. Lines 10370-10430 convert every 2 characters to their decimal equivalent value which is then POKEd in the reserved string variable space. In order to execute this code, the interpreter must be given a starting address. This is done under Level II BASIC by poking this address into memory locations 16526 and 16527. Under DOS, a DEFUSR statement is required.

If the available memory exceeds 16 K , the routine will be located past the 32767 address because string area is reserved in high RAM. A small problem arises in this case because POKE statements require the address to be in the $[-32768,+32767]$ range; when it exceeds the upper bound the address must be converted to its two's complement form by subtracting 65536 from it. In this manner, 32768 will be converted to -32768 and 65535 to -1.

Simple down scrolling is achieved by transferring the video memory block corresponding to the first 15 lines to a block starting 64 positions higher. A powerful feature in the $\mathrm{Z}-80$ processor allows transfer of blocks of characters with a single instruction: you need only indicate the source block address, the destination block address and the number of characters to be transferred. In our case, however, the area occupied by the car must not be touched. Transfer must therefore be done in several steps.

Note that when the source and destination blocks overlap, as is the case here, transfer must be done from end to start. Referring to diagram A, the order of transfer is as follows:

1) Move block

A-A' to block	a-a'
B-B'	b-b'
C-C	c-B
D-D,	C-d
E-E,	e-D'
F-F',	E-f'
G-G'	g-g'

CONCENTRATION is an Integer BASIC program for the Apple and requires at least 16 K .

by Harris Kirk

Test your powers of concentration!! You are confronted by 36 closed doors, behind which are 18 pair of randomly- distributed pictures.

Just as in the television game, the object is to find the matching pairs by remembering their location in previous turns.

The game is very unique with respect to its detailed graphics. It is an excellent party game for 2 or more players, although it can also be played as 'solitaire'. It is challenging and just plain fun!

INSTRUCTIONS

There are 18 pairs of pictures randomly hidden behind 36 doors.

The object of the game is to find more matching pairs than your opponent.

Only two doors may be opened at a time.

If you have chosen a matched pair, the doors remain open, and you are awarded five points and another turn.

If you fail to find a match, the doors close and you lose your turn!!

Use game controls to choose a door:

1) Choose the column,
2) Hold the button down
firmly,
3) Choose the row,
4) Release the button.

The game ends when all doors are open.

OPTIONAL

Player variations:

1) Game can be played alone using paddle 0 by pressing return for the second player.
2) Several people can play as two teams (enter team as one player).

MAKING YOUR OWN PICTURE MODIFICATIONS:

All pictures are plotted by use of subroutines, each one starting at even multiples of 10 . i.e., 20,40 , 60 , etc.

1) Find a picture that you would like to replace by listing lines 20 to 379.
2) Delete the appropriate line numbers: e.g. DEL 80,98 (note that line 99 is needed to return to the main program loop and line 100 is the start of the next picture).
3) Give your picture a name and enter the command A $\$=$ "NAME": GOSUB 820 at the starting point of the subroutine (line 80 in the previous example).
4) The top left corner of the picture frame is X, Y. The maximum horizontal direction is $\mathrm{X}+4$ and the maximum vertical direction is Y+4. As an example: to place orange dots at the four corners of the picture frame, enter a line number (between 81 and 88 in the example) followed by COLOR = 9: PLOT X,Y: PLOT X,Y+4: PLOT X+4,Y: PLOT $X+4, Y+4$. Any PLOT, HLIN, or VLIN will appear correctly, provided they are within the limits previously mentioned.
5) You can use any variable starting with I, J, K, or L and not affect the main program.
6) You may also add sound to your picture by inserting a line number followed by POKE 0,P: POKE1,D: CALL 2. P is a number between 0 and 255 (low number is a high pitch) D is a number between 0 and 255 (low number is a short tone) The command CALL 2 starts a fast machine language routine that clicks the Apple speaker. It is poked into memory in lines 2030 and 2040. Try the following: FOR $\mathrm{I}=100$ to 10 step $-1:$ POKE $0, \mathrm{I}$: POKE 1,10: CALL 2 NEXT I (on the next line number).

If you wish to view your picture before actually playing the game, type the following: (each followed by a 'return')

DIM A\$(20)
GR
GOTO XX (where XX is the first line number of your picture, which must be an even multiple of 10) The bad return error will not appear when the program is run.
8) Be sure to: check that the last line in your routine is RETURN. SAVE your new version.

An example of a picture subroutine

Picture: Lighthouse

Line \# Function
40 Put 'lighthouse' into A\$; print A\$ using subroutine at 820
41 Plot lighthouse and rocks
42 Do the following lines (up to line 55) three times
43 Plot the lighthouse beam, using black
44 Plot the lighthouse window, using grey
45 Wait
46 Plot the beam, using white; plot the window, using yellow
54 Wait
55 End of for-next loop
57 Plot beam, using black; plot window, using grey
59 Return to the main program loop

VARIABLES

Arrays:

SC Player's game score
SUM Player's total score
CH Status of door (open or closed)
G Contains 2 each of picture numbers (0-17)
PIX Contains 2 each of picture numbers (0-17) randomly distributed.
W Picture numbers of the 2 doors chosen per turn
C Colors of the door rows
K Colors of the books in the 'bookshelf' subroutine

Strings:
A\$ Picture name and temporary storage for printing a string with sound
Y\$ Name of first player
Z\$ Name of second player
H\$ Holds response to program questions

Single Variables:
X Horizontal (X) coordinate of graphics grid
Y Vertical (Y) coordinate of graphics grid
Z Counter in a pause loop I,-
J,K,L Temporary counters
II Holds random position of candle flame
X-
N, YN New x and y coordinates of goldfish position
X-
O, YO Old x and y coordinates of goldfish position
ND Number of door choice (1 or 2)
M-
TCH Number of matched pairs
TRY Number of turns (when playing as 'solitaire')
P Player number (0 or 1)
N Set to 0 if played as 'solitaire', otherwise set to 1
COL Column number (0-5)
C1 Column number of first door choice
ROW Row number (0-5)
R1 Row number of first door choice
D Door number (0-35)
D1 Door number of first door choice
$\mathrm{X} 1, \mathrm{Y} 1 \mathrm{X}$ and y coordinates of first door choice
PP Pitch of tone poke during door closings

0 REM CONCENTRATIO
1 REK BY HAFRIS KIRK
2 REM MAY, 1980
3 REM
4 DIM SC(2), $\mathrm{CH}(36), \mathrm{K}(3), \mathrm{PIX}(40$), H(5), G(40),C(10)
6 DIM As(25), Y\$(40),2\$(40),H\$ (5)

8 DIK SLM $(2): \operatorname{SUM}(0)=0: \operatorname{SUR}(1)=$ 0
16 GOSLE 2800
17 GOTO 1000
18 REM PICTURE SUEROUTINES
20 A $\$=$ "CANOLE": COSUB 820
21 COLOR=8: HLIN $X, X+3$ AT $Y+4$: FLOT $X+2, Y+3$: PLOT $X+4, Y+3$

22 COLOR=15: PLOT $X+2, Y+2$: COLOK $=$ 13: FLOT $X+2, Y+1$
$23 \mathrm{II}=\mathrm{x}+2$
24 FOK I=1 TO 14
26 COLOR=0: FLOT II, Y
$28 \mathrm{II}=$ RND $(3)+1+X$
30 COLOR=13: PLOT II,Y: FOR $Z=$ 1 TO 60: NEXT Z
32 NEXT I
39 RETURN
40 A§="LIGHTHOUSE": COSLE 820
41 COLOR=1: ULIN Y, $Y+3$ AT $X+2$; COLOR=5: HLIN $X+1, X+3$ AT $Y+$

4

42 FOK J=1 TO 3
43 COLOR $=0$: HLIN $X, X+4$ AT $Y+1$
44 COLOR=5: FLOT $X+2, Y+1$;
45 FOK $Z=1$ TO 175: NEXT Z
46 COLOR $=15$: HLIN $X, X+4$ AT $Y+1$: COLOF=13: FLOT $X+2, Y+1$
54 FOK $Z=1$ TO 175: NEXT Z
55 NEXT J
57 COLOR $=0$: HLIN $X, X+4$ AT $Y+1$: COLOR=5: PLOT $X+2, Y+1$
59 RETUFN
60 A $=$ ="FONY": COSLE 820
62 COLOR $=15$
64 HLIN $X+1, X+3$ AT Y+2: ULIN Y, $Y+3$ AT $X+3$
66 FLOT $X, Y+1$: PLOT $X+1, Y+3$: PLOT $X+3, Y+3$: PLOT $X+4, Y$
67 COLOR=8: FLOT $X+2, Y+2$
68 FOR J=1 TO 6
70 COLOR=15: PLOT X,Y+4: PLOT $X+4, Y+4$
71 FOR $Z=1$ TO 65: NEXT Z
72 COLOR $=0$: PLOT $X, Y+4$: PLOT $X+$ $4, Y+4$
73 COLOR=15: PLOT $X+2, Y+4$
74 FOK I=1 TO 3: FOKE 0,191: FOKE 1,14: CALL 2: FOK Z=1 TO 10 : NEXT Z,I

75 COLOF $=0$: FLOT $X+2, Y+4$
76 NEXT J
77 COLOR=15: PLOT X,Y+4: FLOT $x+4, y+4$
79 RETUFN
80 As="R R CROSSING": GOSUE 820
82 COLOR=15
84 PLOT X,Y: PLOT $X+1, Y+1$; PLOT $X+2, y+2$: PLOT $X+3, Y+3:$ PLOT $X+4, Y+4$
86 PLOT $X, Y+4$: PLOT $X+1, Y+3$: PLOT $X+2, Y+2$: PLOT $X+3, Y+1$: PLOT $X+4$, Y
88 FOR J=1 TO 4
90 FOK I=1 TO 3 STEP 2
92 COLOR=1: PLOT X XI, Y+2: POKE 0,114 : POKE 1,133: CALL 2
94 COLOR=0: PLOT $X+I, Y+2$
96 NEXT I, J
99 RETUFN
100 A $\$=$ "EOOKSHELF": GOSUB 820
102 COLOR=8: HLIN $X, X+4$ AT $Y+3$; PLOT $X+1, \gamma+4$: PLOT $X+3, \gamma+4$

105 COLOR=5: PLOT X,Y+2: PLOT $X+$ $4, Y+2$
$110 \mathrm{~K}(1)=7: K(2)=1: K(3)=15$
111 FOR $I=1$ TO 3: COLOR=K(I): ULIN Y, $Y+2$ AT $X+I$: NEXT I
119 RETURN
120 A $\$=$ "RUILT" $:$ COSUB 820
130 FOR $\mathrm{I}=\mathrm{X}$ TO $\mathrm{X}+4$
132 FOK $J=Y$ TO $Y+4$
134 COLOR= RND (15) +1
135 PLOT I,J
136 NEXT J,I
139 RETURN
140 A $\$=$ "COLDFISH TANK": COSLE 820
142 COLOR=15: ULIN Y,Y+4 AT X: YLIN $Y, Y+4$ AT $X+4$: HLIN $X, X+4$ AT $Y+4$
144 COLOR=7: FOR I=0 TO 3: HLIN $X+1, X+3$ AT Y+I: NEXT I
148 FOR J=1 TO 15
150 COLOR=9: $\times 1=X 0+$ RND (3)-1: IF XAD3 OR XNK1 THEN 150
$152 \mathrm{Y}=\mathrm{Y} 0+\mathrm{RND}$ (3)-1: IF YND3 OR YKKO THEN 152
154 PLDT XN+X,YN+Y
156 FOR $Z=1$ TO 60: NEXT Z: IF $\downarrow=$ 15 THEN 158: COLOR=7: PLOT
$x^{2}+X, y+Y$
$157 \mathrm{XD}=\mathrm{XN:YO}=\mathrm{YN}$
158 NEXT J
159 RETURN
160 A $\$=" H E A R T ": \operatorname{COSLB} 820$
163 COLOR $=1$

STRATOBLASTER OUTPOST requires an Atari with at least $8 K$, and a joystick.
by David Bohlke

ALERT! ALERT! ALERT!

STRATOBLASTER OUTPOST
No. 6: A Slipton invasion force has been sighted moving into your sector. We don't want you to panic - but you are Earth's first defense!

From past experience you know that a direct hit is needed to vaporize the Sliptons. Yet, you have just 75 shots in your mighty STRATOBLASTER cannon to put the Slipton force in disarray. Aiming the STRATOBLASTER is easy - you need only push the control stick (paddle slot No. 1) to the left or right, then press the Fire button. Speed is crucial, since you must fire before the Sliptons move out of your sector. Luckily, they don't all come at the same time!
Your marksmanship is well charted. During play, a red bar at the top of the screen will display the number of hits, and a blue bar will show the number of misses. A green bar will indicate the number of invaders that have entered your sector. When the green or blue bar reaches the right edge of the screen, the invasion will have ended.
When the game begins, you have a choice of three possible play modes. In a Vertical Invasion, the Sliptons will move from the top of the screen to the bottom. During a Horizontal Invasion, the saucers will progress either left or right on the display. And for a Random Invasion, the targets will move in varied directions. At the completion of the game, your hits, misses, and a percentage will be displayed - so several players can compete for most hits and/or the highest percentage.

OUTPOST

1 GOTO 1600
2 REM STRATOBLASTER OUTPOST
3 REM by David Bohike, Cosson IA
5-15
subroutine calls for STICK (0) command directions. (Atari BASIC allows a variable to call a subroutine)
5,6,7 move cannon to right
5 GOTO 7
6 GOTO 7
$7 \mathrm{D}=2$: GOSUB 50 : RETURN
9-11 move cannon to left
9 COTO 11
10 GOTO 11
$110=-2$:GOSUB 50 : RETURN
13-15 no action
13 RETLRN
14 RETURN
15 RETURN
50-56 plots cannon
50 COLOR 4:PLOT 39,47:CRANTO C,R:ORSNTO 41,47
$52 \mathrm{C}=\mathrm{C}+\mathrm{D}:$ IF $\mathrm{C}<30$ THEN $\mathrm{C}=30$
54 IF C>50 THEN $C=59$
$56 \mathrm{R}=36+\mathrm{ABS}(49-\mathrm{C}):$ COLOR 1 : PLOT 39, 47 : DRA WTO C,R:DRANTO 41,47: RETURN
100-120 initialize
100 GRAPHICS $5+16: C=40: R=36: T M=1: H=0: M T=$ g: COSUB 50
110 SETCOLOR $4,0,6:$ DIM $Q \times 5$), R(5): FUR $I=1$ T0 5: Q(I)=0:R(I)=0: NEXT I
120 SETCOLOR $0,4,10$: SETCOLOR $2,7,10$
200-350 main game loop
200
get STICK direction from joystick controller, branch to 300 if no FIRE
$200 S=S T I C K(0): G O S U E S: I F S T R I G(\theta)=1$ THE N 309
210 blue background, sound for FIRE
210 SETCOLOR 4,7,9:FOR I=33 TO 43 : SOMD $0,1,10,14$: NEXT I
220-240 direction for laser fire
$220 \quad Y=4: X=(C-36) * 8+8$
230 IF $C<36$ THEN $X=1: \gamma=(35-\mathrm{C}) * 8$
240 IF C>44 THEN $X=78: Y=(C-45)$) ${ }^{2} 8$
250 plot laser beam
250 COLOR 2:PLOT C,R:OROWTO X, Y
260 check 5 targets for hit
260 U $=0$:FOR I=1 TO 5:FOR $\mathrm{J}=\mathrm{QXI} \mathrm{I}+1$ TD QXI > +3
262 branch to 280 if hit
262 LOCATE J.REI) U:IF U>O THEN $T=I:$ GOTO

264 else add 1 to miss counter, check 75 for end of game
264 NEXT J:NEXT I:MT=MT+1:IF MT 75 THEN 680
266 plot miss bar, GOTO 290
266 COLOR 3: PLOT MT, 2: ©OTO 299
280 get new target (after hit)
280 COLOR 4:GOSUE $920:$ (A) $(T)=0$
282 red background, hit blast, add
to hit count, zero target
282 SETCOLOR 4,4,11:FOR I=33 TO 65 : SOAHD
$0,1,2,14$: NEXT I: $H=H+1: Q(T)=0$
284 plot hit bar
284 COLOR 1:PLOT H, 0
290 black background, cancel out laser beam
290 SETCOLOR 4, 0, 6 COLOR 4:PLUT C,R:CRAN TO X,Y
targets move only 70% of the time
295 IF RNO 0) 0.3 THEN 200
300,305 increment time, plot time bar, check for end of game
$380 \mathrm{~T}=\mathrm{T}+1: \mathrm{IF} \mathrm{T}>5$ THEN $\mathrm{T}=1$
3805 COLOR 2:PLOT TM, 1:IF TM)TS THEN 600
get new target if one leaves screen
310 IF Q $(T)=0$ THEN GUSLE 900: TM $=T M+1$ COT

0280

315 saucer sound, black out saucer
315 SOUND $8, Q(T)+R(T), 6,4$:COLOR 4 :GOSUE 929
320-335 new saucer location
$320 \mathrm{U}=1:$ IF $\mathrm{T} / 2=\mathrm{INT}(\mathrm{T} / 2$) THEN $\mathrm{U}=-1$
323 IF TD=1 THEN 335
$330 R(T)=R(T)+\operatorname{INT}($ RNG (0) 33$)+1$
333 IF TD=2 THEN 340
$335 Q(T)=Q(T)+I N T(E N D(Q) * 5+1)$ WU

340 Test for new location off screen

340 IF QXTK2 OR Q(T) $) 74$ OR R(T) $) 44$ THEN Q(T) $=0$: GOTO 290

350 plot saucer in new location, GOTO 200 to continue
350 cosue 919: G0TO 290

600-612 end of game statistics

600 GRAPHICS 5+32:PRINT "HITS ";H,"MISSE
S "; MT, INT (H/(H+MT) *160) ;"\%"
605 PRINT : PRINT " HIT FIRE for rext 9 ame!";
607 FOR $I=1$ TO 1600 : NEXT I
610 IF $\operatorname{STRIG}(\theta)=0$ THEN RUN
612 SOUND D, RND (6) $2550,10,6$: GUTO E10

900 new target location
$990 Q(T)=I N T(R N O(0) * E O)+3: R(T)=I N T(R N O C D$) 2 28) +4
910 new target color
910 COLOR INTCRNO(0)*3) +1

920 plot new target

$928 \mathrm{~A}=\mathrm{Q}(\mathrm{T}): \mathrm{B}=\mathrm{R}(\mathrm{T}): \mathrm{PLOT} \mathrm{A}, \mathrm{B}: F L O T \mathrm{~A}+4, \mathrm{E}: \mathrm{PL}$ OT $\mathrm{A}+1, \mathrm{~B}-1:$: DRFWTO $\hat{\mathrm{A}}+3, \mathrm{E}-1:$ PLOT $\hat{A}+1, \mathrm{E}+1: \mathrm{D}$ RAWTO A $+3, \mathrm{~B}+1$: RETURN
1000- enter invasion options
1000 GRAPHICS 8:FRINT " STRATOELASTER OUTPOST ": PRINT :PRINT :POKE 752,1 1001 FOR I=1 TO 333 : NEXT I
1802 PRINT "PRESS STICK FOR OPTIONE," PRINT : PRINT "PRESS FIRE TO ENGAGE ""
1823 IF STRIG(8)=0 THEN COTO 100
1004 POSITION 4, 14: IF STICK(9) $=15$ THEN :OTO 1603
$1005 \mathrm{TO}=\mathrm{TD}+1$: IF TO>3 THEN TO=1
1806 GOSUE TD +1006 :COTO 1603
1687 PRINT \#E; "HORIZONTAL INLASION. ": RET
URN
1088 PRINT \#6;"UERTICAL INHASION. ":RET
URN 1009 print \#b; "Randoun Imasion. ": RET URN $\mathfrak{\circlearrowleft}$

A BASIC Compiler in BASIC! TINY COMP begins at line number 800. Your Source Code uses line numbers 1 through 799. TINY COMP can compile a subset of Level II BASIC. This subset includes 26 integer variables, GOTO, GOSUB, END, REM, LET, +,-, IF, THEN, INKEY\$, CLS, PRINT @, CHRS\$. The cassette version of TINY COMP adds PEEK, POKE, multiply and divide.

a shortaut to

machine languvarge TINYCOMP
by Dave Bohlke
Supplied with game program "3D TIC-TAC-TOE", which uses all of the TINY COMP statement set and is ready to compile.

The extensive manual includes several sample programs as well as thorough documentation of this small compiler for those whole like to know "how things work" and for those who might wish to EXPAND on TINY COMP's capabilities.

Includes special SYSTEM CSAVE program to allow you to create tapes of your compiled programs.
Tape version: \$19.95 Disk version \$24.95

TO ORDER TOLL FREE 1-800-258-1790
(In NH call 873-5144)

> The most realistic simulation of a pressurized nuclear reactor available . . . THREE MILE ISLAND
from

Is the technology really too complex for ordinary mortals to handle? Decide for yourself.

Four spectacular displays monitor the containment building, turbines, filters, condenser, reactor core and pump house.

Valves, pumps, turbines, filters and control rods are individually activated by keyboard command.

Comprehensive documentation describes in detail the operating mechanisms and component interactions.

Can you avoid all possibility of radiation leaks into the atmosphere while still making a profit?

Are you fast enough to avoid the necessity for extensive evacuation of the population? Integer BASIC 48K, \$39.95

TO ORDER
TOLL FREE
1-800-258-1790
(In NH call 673-5144)

KARNIVAL

KEYSTROKE KARNIVAL is an Atari Program for $8 K$ and up.
by James Garon
As an alternative to OPEN, GET etc. it is possible to check for
keyboard input during program execution by PEEKing at location 764. If no key has been pressed, PEEK(764) will yield 255. If a key has been pressed, the following table shows what PEEKing will reveal at 764:

KEY	PEEK(764)	KEY	PEEK(764)	KEY	PEEK(764)
A	63	O	8	3	26
B	21	P	10	4	24
C	18	Q	47	5	29
D	58	R	40	6	27
E	42	S	62	7	51
F	56	T	45	8	53
G	61	U	11	9	58
H	57	V	16	0	50
I	13	W	46	+(LEFT)	6
J	1	X	22	*(RIGHT)	7
K	5	Y	43	(UP)	14
L	0	Z	23	=(DOWN)	15
M	37	1	31	RETURN	12
N	35	2	30	ESC	28

To use this information in your own programs, you will want to POKE 764 with 255 AFTER your program discovers that a key has
been pressed. This will reset location 764 until the next key is pressed.

EXAMPLE:

```
200 P=PEEK(764)
210 IF P=255 THEN 200: REM KEEP LOOPING UNTIL A
    KEY IS PRESSED
220 POKE 764,255:REM RESET LOCATION 764 FOR NEXT
    KEY
230 IF P=6 THEN? "LEFT"
240 IF P=7 THEN? "RIGHT"
250 IF P=14 THEN? 'UP"
260 IF P = 15 THEN? "DOWN"
2 7 0 ~ G O T O ~ 2 0 0 ~
```

We have here the beginnings of "The Poorman's Joystick Routine'. If you replace the PRINT statements in lines 230-260 with GOSUBS to the appropriate subroutines, you can use the arrow keys (no need to press CTRL) to control the direction of a moving
object on the screen, to change the SOUND from your TV speaker and whatever else your programming heart desires.

ATARI DOUBLES PRODUCT LINE continued from page 19
232C ports, one of which can also be used for 20 ma current loop, and an 8 -bit parallel printer port. It features full duplex operation, programming baud rate from 75 to 9600 baud, choice of stop bits and parity, and even automatic telephone answering with appropriate modem. Different pictures of the interface have been released. The unit on top of the disk drives in the second picture, and not the black box in the first picture, is apparently the production model. The Atari 830 Modem is apparently the popular Cat ${ }^{\text {m }}$ Modem.

Among the software packages announced are a series of accounting packages for small business; a series of investment analysis programs; language lessons in French, German, and Spanish; and Space Invaders (тм of Taito Corp.), all on cassette.

ATARI EDITOR/ASSEMBLER continued from page 19
space. The TAB key is useful for field separation.

Op Codes and Operands

Standard 6502 Operation code mnemonics are used, and are listed in the manual. Among the operands, \$ indicates a hex number, and \# an immediate operand. Absolute operands are evaluated as 16 bit numbers. Absolute indexed operands use a comma and X or Y after a 16 bit number or variable. Indexed indirect operands are written with an 8 bit number or variable, X is always used and the whole operand is enclosed in parentheses. Indexed page zero operands are written with an 8 bit number or variable, a comma, and X or Y. String operands are enclosed in quotes and use specified directives such as .byte.

Commands

The command SIZE tells you the starting address of the current line buffer, the starting address of the edit text buffer, and the highest address in memory. LOMEM allows you to change the location of the buffers. Other commands include LIST, PRINT, FIND, DEL (Delete), NUM (Automatic line numbering), REN (renumber), REP (Replace), SAVE, LOAD, ENTER, and ASM (Assemble).

Programs can be assembled to the edit text buffer, screen printer, or disk as well as the indicated memory location.

Pseudo Ops

A number of directives or pseudo operations are available. The required directive * $=$ allows you to set the memory location at which your program will be assembled. The other required directive is .END, which identifies the end of your program to the assembler. Most of the directives are preceded by a period, and include:
.OPT (Option: List, no list, object, no object, errors, no error messages, page spacing, or no page spacing)
.PAGE (print page numbers)
.TITLE (print title on each page of listing)
.TAB (set field spacing)
.BYTE (reserve space in memory of an operand)
.DBYTE (reserve 2 bytes of memory for each expression in the operand, stored most significant byte first)
.WORD (same as DBYTE, except that low order byte is stored first) $=$ (assign a value to a label)

Demonstration

Here is a sample program to show the format of an assembled program. All it does is add $2+2$ and store the result.

My main disappointment with the assembly process is that a symbol table is not generated at the end of the program.

The Monitor

The DEBUG program is called from the EDIT program by the command BUG. It allows the following commands:
DR (display registers)
CR (change registers)
Dxxxx (Display memory at xxxx in hex)
Cxxxx (Change memory at xxxx)
Mxxx yyyy,zzzz (Move memory between yyyy and zzzz to new location starting at xxxx)
Vxxxx yyyy,zzzz (Compare memory between yyyy and zzzz with memory starting at xxxx) Lxxxx (Disassemble memory starting at $\mathbf{x x x x}$)
Txxxx (Trace execution of memory with disassembly and register contents starting at $\mathbf{x x x x}$)
Sxxxx (Single step through memory
execution starting at xxxx)
Gxxxx (Execute program, beginning at $\mathbf{x x x x}$)
\mathbf{X} (Return to edit mode)
A (Transfer to mini assembler)
The mini assembler allows you to assemble one instruction at a time until you press return at the beginning of an instruction or type .END to return to DEBUG.

Other features

Eighteen error messages are given to assist in finding difficulties in your programs, in addition to the normal DOS error messages that function during disk I/O operations.
Only a minimal selection of operating system memory locations was provided in the preliminary manual for the editor assembler. However, more are listed in the Basic reference manual, and there is an operating system reference manual in preparation with extensive documentation. I have already obtained more than ten pounds of printed material, and have been very impressed by the speed with which Atari is assembling complete documentation for their computer system.
In conclusion, Atari has provided an excellent tool for assembly language development. It should be well worth the $\$ 59.95$ price, especially considering the convenience of a ROM cartridge.

HOW MUCH COMPUTER?
continued from page 15
with accessories for special applications. If you are serious about making money from your computer, you will want to add a printer. Inexpensive printers like the Eaton LRC or Atari 820 are good for making line listings to improve your productivity as a programmer. A slightly better printer like the Centronics 737 (Atari 825 or Radio Shack Line Printer IV) is good for printing reports, minor word processing, mailing labels, and similar applications. If you want true word processing, then you need a letter quality printer such as the

NEC Spinwriter. Other accessories might include an interface and modem for time sharing or electronic mail, a plotter, a control unit for connecting the computer to an appliance or lab instrument, or any of several dozen other items, depending on the application.

You will also need software for the application you desire. SoftSide will provide you with plenty of good games, and also teach you the skills necessary to write your own application programs. In addition, we sell programs ready for many applications.

How much should you budget for software? That depends on your application, but the general rule of the last ten or fifteen years has been that software costs as much as the rest of the system. If you are doing a lot of your own programming, the same rule still jolds, when you consider your time at a fair value. That is the shocker for most people, especially those such as my correspondent with the new Apple.

In summary, here is a chart listing the items needed for a complete general purpose computer system based on our three favorite computers. $\$$ by George Blank

Radio Shack TRS-80	Apple II	Atari 800
	General Purpose cassette based system	
TRS-80 computer	Apple II	Atari 800
Level II BASIC	Cassette Player	Cassette Player
16K memory	Color TV	16K memory
Color TV	Ceneral purpose disk based system	
	Apple II	Atari 800
TRS-80 Computer	48K memory	Color TV
Level II BASIC	Video Modulator	Color TV
Expansion Interface	Disk Drive	Disk Drive
32K memory	Disk Drive	Along with this, you will also need software and any special devices such as a printer.

FROM SENSATIONAL SOFTWARE

- Super Invasion is the original invasion game, with the original moon creatures and faster action than any other invasion game.
- The best Invaders available for the Apple, as good in every way as the famous Invaders game.
- High speed action! - Sound effects!

- Runs on the Apple II and the Apple II Plus

Fifty-five aliens advance and shower you with lethal writhing electric worms. As you pick off the aliens, one-by-one, they quicken their descent. They whiz across the screen wearing away your parapets, your only defense, coming closer and closer to your level. Super Invasion is the original invasion game with the original moon creatures and faster action than any other invasion game on the market.

Super Invasion is available for only $\$ 19.95$ on cassette for a 32K Apple II.

```
TO ORDER TOLL FREE
1-800-258-1790
(In NH call 673-5144)
```

630 Commence first sailplane launch by printing cockpit using S/R.
630 CLS:PRINT"YOAR GO ";B\$(B)
640 FORN: 1 TO1500: NEXT
650 CLS
660 cosuer 390
670 .
680 '
690. Calculate any change in height due to change in velocity of sailplane. (So called total energy effect - or converting potential energy into kinetic energy or the other way around).
$690 \mathrm{Z2}=(\mathrm{H}(\mathrm{B})-\mathrm{S}(\mathrm{B})) \times 10: H(B)=H(B)+Z 2$
700 T3=5(B)
710-720 Calculate height loss assuming a glide thru a static air mass.
710 IFS(B) <50THENT $3=60$
$720 \mathrm{~T} 4=\mathrm{T} 3^{\wedge} 2 / 50 \div \mathrm{T} 3=0: \mathrm{H}(\mathrm{E})=\mathrm{H}(\mathrm{B})-\mathrm{T} 4$
$730 \operatorname{IFD}(B)=0 T H E N(B)=360$
740-800 Calculate, from information on compass course, the new position of sailplane using polar - rectangular conversion.
$740 \mathrm{~T}=(\mathrm{D}(\mathrm{B}) / 360) \times 6.28318$
750^{\prime}
760 D(B) $=$ INT $(D(B)):$ IFD $(B)>90 T H E N 780 ;$ IFD $(B)>180$ THEN790:IFD $(B)>270$
THENBOO
$770 T 1=S I N(T 5) \mathbf{x}(S(B) / 12): X(B)=X(B)+T 1: T 2=T 1 /(\operatorname{TAN}(T 5)+.01): Y(B)=Y$
(B) + T2:GOT0810
$780 \mathrm{~T}=\mathrm{T} 5-1.5708: T 1=S \mathrm{IN}(T 5) \times(S(B) / 12): Y(B)=Y(B)-T 1: T 2=T 1 / T A N(T 5)$: $\mathrm{X}(\mathrm{B})=\mathrm{X}(\mathrm{B})+\mathrm{T} 2 \div \mathrm{GOTOB10}$
$790 \mathrm{~T}=\mathrm{T} 5-3.142: \mathrm{T} 1=\mathrm{SIN}(\mathrm{T} 5) \times(\mathrm{S}(\mathrm{B}) / 12): \mathrm{X}(\mathrm{B})=\mathrm{X}(\mathrm{B})-\mathrm{T} 1: \mathrm{T} 2=\mathrm{T} 1 / \mathrm{TAN}(\mathrm{T} 5):$ $Y(B)=Y(B)-T 2: G 0 T 0810$
$800 \mathrm{~T}=\mathrm{T} 5-4.7120: T 1=S I N(T 5) \mathrm{X}(S(B) / 12): Y(B)=Y(B)+T 1: T 2=T 1 / T A N(T 5)$: $X(B)=X(B)-T 2$

810 Apply wind drift.
810 IFA3=<2THENX(B)=X(B)+.,41ELSEIFA3>2ANDA3<5THENX $(B)=X(B)+.94 E 1$ SEIFA3>4THENX(B) $=X(B)+2.0$
820-850 Sort through thermals and locate nearest one to current position of sailplane.
820 FORN $=1$ TO30:IFA $3=\langle 2 T H E N T H(N, 1)=T H(N, 1)+, 36 E 1$ SEIFAB $>2 A N D A 3<5 T H$
$\operatorname{ENTH}(N, 1)=T H(N, 1)+1 E L$ SEIFA3 $\ 4 T H E N T H(N, 1)=T H(N, 1)+1.9$
830 NEXTN
840 E4=31
850 FORN $=1$ TO30:IFAES $(X(B)-T H(N, 1))>30 C O T O B 70 E L$ SEE $6=A E S(X(B)-T H(N$
,1))!E7=ABS(Y(B)-TH(N,2)):E5=50R((E6^2)+(E7^2))
860 IFE4〉ESTHENE4=E5:E8=N
870 NEXTN
880 Set cloudbase flag if sailplane is currently above cloudbase.

880 IFH(B) $)($ A1 1 A5 52500) THENF $1=1 E L S E F 1=0$
890 IFF $1=1$ THENF $3=1$
900-1020 Calculate change in height due to sailplane flying in sinking or rising air.

900 IFE $4>30$ THEN $(B)=H(B)-(H(B) / 400)-\operatorname{RND}(10): C 0 T 01060$
910 IFTH(E8,3)<0THEN3310
920 IFE $4>15$ THENH $(B)=H(B)-(H(B) /(35+R N D(15))):$ COT01060
930 IFE4=<6COTO940ELSEZ3=TH(E8,3) $\times 60 /(E 4-5) \div C O T 0950$
940 Z3 $=$ TH (E8,3) $\mathbf{1 6 0 \$ G O T O 9 5 0 ~}$
950 IFF $1=1$ THEN960ELSEZ3 $=Z 3 \mathrm{X}((\mathrm{H}(\mathrm{B})+1000) /(\mathrm{A} 1 \mathrm{XA} 5 \times 2500))+.2$
960 T8=TH(E8,4)

970 IFT8 8 H(B) THENT $=$ T8/(H(B) +100)
980 IFT $8=$ = $\mathrm{H}(\mathrm{B})$ THENT $8=H(B) /(T 8+100)$
$990 \mathrm{Z3}=\mathrm{Z} 3 \mathrm{x} 78$
1000 IFH $(B)>(A 1 \times A 5 \times 2500)+4500$ THEN $Z 3=0$
$1010 Z 3=Z 3 \times A 4$
$1020 H(B)=H(B)+Z 3$
1030 IFFI $=1$ THEN 1060
$1040 \mathrm{TH}(E 8,4)=\mathrm{TH}(E 8,4)+(\mathrm{A} 1 \times 20)$
$1050 \operatorname{IFTH}(E 8,4)>(A 1 \times 45 \times 2500)$ THENTH $(E 8,4)=A 1 \times A 5 \times 2500$
$1060 H(B)=H(B)-A E S(C Z / 1.5)$
1070.

1080-1250 Print instrument readings.
1080 PRINTE769,* ";:PRINTE897," ";iPRINTE672," ";: PRINTR789," ";:PRINTE915," ";:PRINTE925," . 00 ";:PFRINTEB 58," ";:FRINTE807," ";
1090 PRINTE671,D(B);:PRINTR787,S(B);:PRINTE914,CINT(H(B));:U1=(1 H(B)-Z2)-K(B)) $\mathbf{x}, 02:$ V1 $^{2}=$ CINT $(V 1 \times 100):$ IFV1 $=0$ THENU1 $=.1$
$1100 \mathrm{VI}=\mathrm{V} 1 / 100$!PRINTE926, $\mathrm{V1}$;
1110 IFCZ=0THENT $1=0: G 0 T 01180$
1120 IFCZ $=>40$ THENT $1=3:$ GOTO1180
1130 IFCZ $=<-40$ THENT $1=-3:$ GOTO1180
1140 IFCZ $=>10$ THENT $1=2:$ COTO1180
1150 IFCZ $=<-10 T H E N T 1=-2:$ COTO1180
1160 IFCZ $<10 A N D C Z>0 T H E N T 1=1: G 0 T 01180$
1170 IFCZ $>-10 A N D C Z<0 T H E N T 1=-1$
1180 PRINTP($810+T 1$), "A";
1190 IFU1 $10107 H E N 1=10$
1200 IFV1<-10THENU1=-10
1210 V1=FIX(V1/2)
1220 PRINTP($863+V 1), "$ "";
1230 PRINTQ769, "X="; ;PRINTE897,"Y=";
1240 PRINTE771," ";:;PRINTE899," ";
1250 PRINTE771,CINT(X(B))/10; :PRINTE899,CINT(Y(B))/10;
1260 Test to see if glider has landed (for negative altitude)
1260 IFH $(B)=<0 T H E M(B)=1: \operatorname{COTO3030}$
1270 Test for climb up through cloudbase.
1270 IFF1=1ANDF2=0ANDE4=<28THEN3320
1280 If glider is already in cloud jump over cloud printing routine.
1280 IFF1=1ANDF2=1ANDE $4=\langle 28$ THEN1770
1290 Test if glider has emerged from cloud.
1290 IFF2=1ANDF1=0THEN3370
1300 IFF $1=1$ ANDF $2=1 A N D E 4>28 T H E N 3370$
1310 ,
1320-1330 Wipe off screen.
$1320 \mathrm{~T} 1=\mathrm{ABS}(\mathrm{C}(\mathrm{H}(\mathrm{B}) / 10)-13)$
1330 FORN $=0$ TOT1-1:PRINTENE64,"
";: NEXTN
1340 IFF3=1THEN1360
1350 IFS $(B)=1(B)$ THEN1380
1360-1370 Clear off old horizon and set new one.
$1360 \mathrm{~T}=\mathrm{ABS}((W(B) / 10)-13)$:PRINTE (T1 164),"
";
1370 T1=ABS((S (B)/10)-13):PRINTP(T1 264),"
1380-1750 Sorts through list of thermals. Detect those that are in the sector of sky covered in the forward view from the cockpit and directs control to the cloud printing S / R which prints each sorted cloud at the appropriate location on the screen.

1380 IFD (B) $)$ POANDD $(\mathrm{B})=<180$ THEN1500
1390 IFD (B$)>180 \mathrm{ANDD}(\mathrm{B})=\langle 270$ THEN1590
1400 IFD(B) >270 THEN1680
1410 FORN: 1 T030
1420 IFTH $(N, 1)\langle X(B) O R T H(N, 1)>(X(B)+200)$ THEN 1480
1430 IFTH $(N, 2)<Y(B)$ ORTH $(N, 2)>(Y(B)+200)$ THEN1480
$1440 G 1=T H(N, 1)-X(B): G 2=T H(N, 2)-Y(B): G 3=S 0 R\left((G 1 \wedge 2)+\left(G 2^{\wedge} 2\right)\right): 13=63$
: $64=61 / 63$
1450 C5=ATN(64/SRR(-64m64+1.001))
$1460 \mathrm{G5}=(55 / 6.284) \times 360: 66=65-D(B):$ IFAES (G6) 20 THEN 1480
$1470 \mathrm{~J} 1=\mathrm{INT}((21+66) \times 1.47):$ COSUB3420
1480 NEXTN
1490 COTO1770
1500 FORN $=1$ TO30
1510 IFTH(N,1)<X(B)ORTH(N,1)>(X(B)+200)THEN1570
1520 IFTH $(N, 2)>Y(B) O R T H(N, 2)<(Y(B)-200)$ THEN1570
$1530 G 2=T H(N, 1)-X(B): G 1=Y(B)-T H(N, 2): C 3=S A R\left((G 1 \wedge 2)+\left(G 2^{\wedge} 2\right)\right): \perp 3=[3$
: $64=61 / G 3$
1540 C5=ATN(C4/SRR(-64×64+1.001))
$1550 G 5=(($ ($65 / 6.284) \times 360)+90): G 6=65-D(B):$ IFAES $(66)>20 T H E N 1570$
$1560 \mathrm{~J} 1=\mathrm{INT}((21+G 6) \times 1.47)$ GOSUR 3420
1570 NEXTN
1580 GOT01770
1590 FORN: 1 TO30
1600 IFTH $(N, 1)>X(B) O R T H(N, 1)<(X(B)-200)$ THEN 1660
1610 IFTH $(N, 2)>Y(E)$ ORTH $(N, 2)<(Y(B)-200)$ THEN1660

:G4=61/G3
1630 C5=ATN(G4/SOR(-64xG4+1.001))
$1640 G 5=(((G 5 / 6,284) \times 360)+180): C 6=65-D(B) ;$ IFABS(C6) $) 20$ THEN 1660
$1650 \mathrm{~J} 1=\mathrm{INT}((21+66) \times 1,47):$ G0S1E3420
1660 NEXTN
1670 GOTO1770
1680 FORNK $=1$ TO30
1690 IFTH $(N, 1)>X(B)$ ORTH $(N, 1)<(X(B)-200)$ THEN1750
1700 IFTH $(N, 2)\langle Y(B)$ ORTH $(N, 2)>(Y(B)+200)$ THEN1750
$1710 \mathrm{GZ}=\mathrm{X}(\mathrm{B})-\mathrm{TH}(\mathrm{N}, 1): \mathrm{G} 1=T H(N, 2)-Y(B): C 3=50 R\left(\left(G 1^{\wedge} 2\right)+\left(G 2^{\wedge} 2\right)\right): 13=63$: $64=61 /$ G3
1720 G5=ATN(G4/SOR(-G4XG4+1,001))
1730 C5 $=(((C 5 / 6.284) \times 360)+270): G 6=C 5-D(B): I F A B S(C 6)>20 T H E N 1750$
$1740 \mathrm{JI}=\mathrm{INT}((21+66) \times 1.47): \operatorname{COSL} 183420$
1750 NEXTN
1760 IFF $1=0$ THENF $3=0$
$1770 \mathrm{~K}_{1}=\mathrm{K} 1+1$
1780-1820 Print stopwatch in cockpit
$1780 R(B)=R(B)+1 / 120$
1790 T9=R(B)-CINT(R(B)):T9=CINT(T9260)/100
1800 PRINTE820," . $00 \mathrm{M} ;$
1810 PRINTE820,CINT(R(B));
1820 IFT9=0THEN1840ELSEPRINTE822,STR\$(T9);
1830
$1840 \mathrm{H}(\mathrm{B})=\mathrm{S}(\mathrm{B}): K(\mathrm{~B})=\boldsymbol{H}(\mathrm{B})$
1850-2080 Control input routine using INKEY for single commands and a keyboard PEEK for the steering command which needs to have a quasi analog function.

1852 IFC $\$=" K$ "ANDOS $=0$ THENQS $=1: G 0 T 02080$
1854 IFC $=$ ="K"ANDC5 $=1$ THENR $5=0$
1856 IFQ5=1THEN2080
1860 PRINTE677," घx ";
1870 PRINTE935," ";
1880 FORN: 1 TOA2
1890 T7=PEEK (14352)
1900 IFT7=32THENCZ=0
1910 IFT7=16THENCZ=CZ-3

1920 IFT7=64THENCZ=CZ +3
1930 IFCZく-90THENCZ=-90
1940 IFCL 90 THENCZ=90
1950 IFCZ $\angle 0 T H E N P R I N T P 935, A B S(C Z) ;$
1960 IFCDDOTHENPRINTP938,CZ;
1970 IFCZ=0THEPRRINTE935,"0 0";
1980 A $\$=$ INKEY
1990 IFA $=$ ="'THEN2060
2000 IFA $\$=" 8$ "THENS $(B)=S(3)+10$
2010 IF $A=$ =" 2 "THENS $(B)=S(B)-10$
2020 IFA $\$=" \mathrm{~S}$ "THENDI=1
2030 IFA $\$=" T$ "THENQ2 $=1$
2040 IFA $\$=$ "F"THENRS $=1$
2050 IFA $\xi=$ "R"THENQA $=1$
2055 IFA $\$=" K$ "THENQ $5=1$
2060 NEXTN
2070 ,
2080 PRINTE677," ";
$2090 \operatorname{IFS}(B)<40 T H E N S(B)=40$
$2100 \operatorname{IFS}(B)>120 T H E N S(B)=120$
2110-2140 Direct control to appropriate S / R for R,S,T,F functions.
2110 IF01=1THENGOSVB2800
2120 IFQ2=1THENEOSUB2860
2130 IFQ3=1THENGOSUB2950
2140 IFQA=1THENGOSUE3930
2150 Q1=0: $02=0 ; 03=0$
2160-2190 Calculate new compass heading.
$2160 D(B)=D(B)+C Z$
2170 IFD $(B)>360$ THEND $(B)=D(B)-360$
$2180 \mathrm{IFD}(B)<0 T H E D(B)=360+D(B)$
$2190 D(B)=\operatorname{CINT}(D(B))$
2200 If less than one hour of flight has elapsed loop back to start of active program for next program loop.
2200 IFM1=<120THEN690
2210 IFB=P1THEN2390
2220-2340 If players hour of flight is over print map via S / R and print position report on sailplane.
2220 COSLE 3060
2230 IFL(B) $=1$ THENFRINTM 769 , "LANDED";
2240 PRINTE513,Es(B);":-"; ;PRINTE577,"FOSITION"; :PRINTE641,"REPO
RT";
2250 T $6=\mathrm{INT}(\mathrm{X}(\mathrm{B}) / 10)+30:$ IFT $6<30$ THENT $6=30$
2260 IFT6>125THENT $=125$
2270 T7=INT(Y(B)/20):T7=45-T7:IFT7<1THENT7=1
2280 IFTT>40THENT7 $=40$
2290 FORO $=1 T 07$
2300 FORN $=17050$
2310 SET(T6,T7): :NEXTN
2320 FORN $=1$ TO50
2330 RESET(T6,T7):NEXTN
2340 NEXTO
2350 M1 $=0$
$2360 \operatorname{IFL}(B)=1$ THEFRKINTE769," ";
$2370 \mathrm{~B}=\mathrm{B}+1$: $\mathrm{IFL}(\mathrm{B})=0$ THEN100
$2380 B=B+1$:IFL $(B)=0$ THEN100
2390 At the end of an hour's flight for all the competitors a map and position report is printed for all competitors in order.

2390 B=1: $41=0$
2400 COSLB3060
2410 PRINTE513,Bs(B);":-";:PRINTE577,"POSITION";:PRINTE641,"REPO

```
RT";
2420 IFL(B)=1THEPPRINTM769,"LANDED";
2430 T6=INT(X(B)/10)+30;IFT6<30THENT6=30
2440 IFT6>125T1ET6=125
2450 T7=INT(Y(B)/20):T7=45-T7:IFT7<1THENT7=1
2460 IFT/>40THENT7=40
2470 FORO=1T07
2480 FORM=1T050
2490 SET(T6,T7)INEXTN
2500 FOPN=1T050
2510 RESET(TG,T7):NEXTN
2520 NEXTO
2530 IFL(B)=1THEPRINTP769," ";
2540 B=B+1
2550 IFB<P1+1THEN2410
2560 IFL(1)=1ANOL(2)=1ANOL(3)=1THEN2660
```

2570-2640 Adjust cloudbase heights and thermal strengths depending on the time of day.

2570 IFA5<1THEAS5-A5+. 1
2580 IFF8=0THEAA=A4+. 1
2590 IFF8=1THENAA=A4-. 2
2600 IFAA=>1THEFF8=1
2610 IFA4 $=.6$ THEAA $=.1$
2620 IFL (1) $=0$ THEN: $=1$
2630 IFL(1) $=1$ THENE $=2$
2640 IFL(1)=1ANOL(2)=1THEN: $=3$
2650 Test to see if randomiser wants to insert an unpredictable change in weather conditions - if so update weather definition variables.

2650 IFRNO(8) <=THEN100ELSEAL FRND (3) :GOTOOBO
$2660 \mathrm{~B}=1$
2670 Calculate finish times.
$2670 \mathrm{~T}=\mathrm{W}(B)-\operatorname{CIN}(W(B)): T 1=\operatorname{CIN}(T 1260) / 100: W(B)=C \operatorname{INT}(W(B))+T$ $1: 8=8+1$
2680 IFPS4THER2670ELSEB=1
2690 Print results
2690 CLS:PRINTT76,CLRs(23);"R E S U LT S":PRINT
2700 IFW(B) $=0$ THERZ7.80ELSEPRINBS(B);" TOOK";CINT(W(B));"/"; (W

2710 IFP<4THENZ70
2730-2770 Is another game required?
2730 PRINT:PRINT"AMOTHER CAFE? (Y OR N)"
2740 I $=$ INEYS
2750 IFIS="Y"THERTN
2760 IFIS=""THENZ740
2770 END
2780 IFBPP1THE $=8+1$:COTOZ 10
2790 PRINTBS(B);" DID NOT FINISH TASK": $8=8+1$:GOTO2710
2800-2850 Start line S/R.
2800 IFX(B) $)=200$ THEN2840
2810 IFY(B) $)=2007$ TVN2840
2820 IFH(B) $) 32811$ HV2850
 UFN
2840 PRINTR2O,""NEGATIVE START - OUT OF POSTTION" ${ }^{\text {; }: \text { RETURN }}$
2850 PRINTE20,"'NECATIVE START - TOO HICH'"; ;RETURN
2860-2940 Turnpoint S/R.
2860 IFw(B) $=1 T H E 2910: ' T U R N S / R$
2870 IFY(B) $\backslash 22 \times 10$ THEV2900
2880 IFX(B)<((U1110)-20)ORX(B)>(U1110)+20) THEN2900
 2900 PRINTE6," "NECATIVE CONTROL AT FIRST TIRN - OT OF POSTITON" ";:RETURN

2910 IFY (B) >14410THEN2940
$2920 \operatorname{IFX}(B)<((L 3 \times 10)-20)$ ORX (B) $)((U 3 \times 10)+20)$ THEN2940
2930 WKK (B)=2:PRINTP20,"‘GO00 TURN AT SECOND TURAPOINT'"; ;RETURN 2940 PRINTEG," NEGATIVE CONTRLL AT SECOND TUPN - OUT OF POSITION '"; :RETURN
2950-3020 Finish line S/R.
2950 IFX(B) $>=200$ THEN3000
$2960 \operatorname{IFY}(B)>=200 T H E N 3000$
2970 IFH(B) $)$ 3281THEN3010
2980 IFLU (B) <2THEN3020
$2990 W(B)=R(B): L(B)=1: Q 3=0 ; C L S: P R I N T C H F(23): P R I N T E 448, " / " ; B \$(B$) \ddagger ", GOND FINISH

HELL DONE'"; ;FOPN=1T02600:NEXT:COTO2210
3000 PRINTE20,"'NESATIVE FINISH - OUT OF POSITION"";:RETUPN
3010 PRINTE20,""NECATIVE FINISH - TOO HIGH"";:RETUPN
3020 PRINTEO,"'NECATIVE FINISH - TUPNPOINTS HAVE NOT BEEN ROMNDE D CORRECTLY'";:RETURN
3030 CLS:PRINTCHR\$(23):PRINTE448,BS(B);" YOU HAVE LANDED SAFEIY. ";
3040 FORN $=1$ T02600:NEXT
3050 GOTO2210
3060-3300 Map printing S/R.
3060 CLS:FOR $)=28 T 0127: S E T(N, 0): S E T(N, 41): N E X T$
3070 FORNN $=0$ T041:SET $(28, N): S E T(29, N): S E T(126, N): S E T(127, N): N E X T$
3080 FOKN- 5 TO40 STEP 5:SET(26,N):SET(27,N):NEXT
3090 FORN $=40 T 0120$ STEF $10 \div$ SET ($N, 42$):SET($N+1,42$) :NEXT
3100 POKE15562,55:POKE15563,48:POKE15882,52:POKE15883,48:POKE162 02,49:POKE16203,48
3110 FORN $=16340$ T016380 STEP 5:POKEN,48:NEXT
$3120 N=16339$: POKEN, 49 : POKEN $+5,50$ PPOKEN $+10,51$:POKEN +15.52 Z POKEN +2 $0,53:$ POKEN $+25,54:$ FOKEN $+30,55:$ FOKEN $+35,56:$ POKEN $+40,57$
3130 PRINTE969,"X-AXIS"; :FOKE16335,94:FFINTE130,"Y-AXIS"; ;FOKE15
497,92:PRINTE376,"360";:PRRINTE500,"270 90"; : PRRINTE696,"180";
:FOKE15800,160:POKE15801,190:POKE15802,180:FORN=21TO28:SET (115,N
): $\mathrm{NEXT}: F O R N=111$ T0119:SET (N, 22) :NEXT
3140 PRINTE2,"FOSITION"; :PRINTEL6,"OISPLAY";;FORN=30T095 STEP 5:
SET(N,10):NEXT:FOFN=10TO40 STEF 3:SET (95,N):NEXT:PRINTEB4, "DOTTE
D LINE INDICATES SUGGESTED TASK AREA";:FRINTE160,"UIND DIRECTION
->->";
3150 FORN $=16079$ T016088:FOKEN, 160 :NEXT
3160 FORN $=16143$ T016152:POKEN, 153:NEXT
3170 FORN=16207T016216:FOKEN, 182:NEXT
3180 T6=INT(U1)+27:IFT6<30THENT6=30
3190 IFT6. >125 THENT $6=125$
3200 T7=INT(UZ/2):T7=45-T7:IFT7<1THENT7=1
3210 IFT7>40THENT7=40
3220 FORN=1T06:SET(T6+N,T7):NEXT
3230 T7=T7-2:T6=T6+3:FORNE1T03:SET(T6,T7+N):SET(T6+1,T7+N):NEXT
3240 T6 $=$ INT (U3) +27 :IFT6<30THENT $6=30$
3250 IFT $6>125$ THENT $6=125$
$3260 \mathrm{T7}=\mathrm{INT}(\mathrm{U4} / 2): T 7=45-\mathrm{T7}: \mathrm{IFT7}\langle 1$ THENT7 $=1$
3270 IFTT>40THENT7=40
3280 FORN $=1$ TO6:SET (T6+N, T7) :NEXT
3290 T7=T7-2:T6=T6+3:FORN=1T03:SET(T6,T7+N):SET(T6+1,T7+N):NEXT 3300 CZ=0:RETURN
3310 Z3=TH(E8,3) $\times 25: Z 3=Z 3 / E 4: Z 3=Z 3 \times H(B) /(A 1 \times 2500): H(B)=H(B)+Z 3: G$ 0701060

3320 Screen white out.
3320 Z=0
3330 PRINTRZ,STRING (64,CHR\$(191));
3340 IFZ>512THEN3360
$3350 \mathrm{z}=2+64$: 60703330
3360 F2=1:G0T01770
3370 Z=576
$3380 \quad$ Clear screen white out.
3380 PRINTRZ,STRINGS (64,CHFS(32));
3390 IFZ 264 THEN 3410
$3400 \mathrm{Z}=\mathrm{Z}-64!50 \mathrm{TO} 3380$
3410 F2 $=0$:C0T01370
3420-3680 Cloud printing S/R.
3420 IF $33>200$ THEN $13=200$
$3430 \mathrm{~J} 2=\mathrm{ABS}((\mathrm{S}(\mathrm{B}) / 10)-13)$
3440 IF J3 3100 THEN3610
3450 IF $\sqrt{3}>40 \mathrm{AND} 3=.<100$ THEN3540
3460 IF $3<10$ THEN3680
$3470, ~ \sqrt{ } 4=-12: \sqrt{5}=12: \sqrt{ } 4=\sqrt{ } 1+\sqrt{ } 4: \sqrt{5}=\sqrt{ } 1+\sqrt{5}:$ IF $\cdot J \angle O T H E N U 4=0$
3480 IF $5>63$ THEN $5=63$
3490 IFFI=1THENS510
$3500 \sqrt{2}=\sqrt{2}-5$
3510 IF $22<0$ THEN3680ELSEJ2 $=(\sqrt{2} 2464)$

91)!;

3530 PRINTEJ2+55,CHR\$(180);:G0T03680
3540 ل $1=-8: \sqrt{5}=8: \sqrt{ } 4=\sqrt{1}+\sqrt{ } 4: \sqrt{5}=\sqrt{1}+\sqrt{5}: I F J 4<O T H E N 44=0$
3550 IF $5>63$ THEM $5=63$
3560 IFF1=1THEN3580
$3570 \sqrt{2}=\sqrt{2}-3$
3580 IFJ2<0THEN3680E1SEJ2=(J2464)
3590 PRINTEJ2+J4,CHR\$(184);:PRINTEJ2+J4+1,STRING\$(J5-J4-1, CRR\$ (1
91)

3600 PRINTEJ2+」5,CHR\$(180);:COTO3680
$3610 \mathrm{~J}=-4: \sqrt{5}=4: \sqrt{ } 4=\sqrt{ } 1+\sqrt{ } 4: . \sqrt{5}=\sqrt{ } 1+\sqrt{5}:$ IF $J 4\langle O T H E N U A=0$
3620 IF $5>63$ THENK $5=63$
3630 IFF1=1THEN3650
$3640 \mathrm{~J}=\sqrt{2}-2$
3650 IF J2 $20 T H E N 3680 E 1 S E J 2=(J 2264)$

91)!;

3670 PRINTPJ2+ 5 , CRFS(180);
3680 RETURN
3690-3920 Cockpit printing S/R.
3690 CLS:Z $=16000$
3700 FORN=0T012:POKEZ+N, 188:NEXT
3710 FOPN $=13$ T026:POKEZ $+N, 140$:MEXT
3720 POKEZ +27 , $191:$ POKEZ $+36,191$:PQKEZ $+28,67:$ PDKEZ $+29,79:$ FOKEZ +30 , 77:POKEZ $+31,80:$ POKEZ $+32,58: F D K N=37 T 047: F O K E Z+N, 140: N E X T$
3730 FDRN $=48$ TO63:POKE $Z+N, 188: N E X T: Z=Z+64$
3740 FORN $=0$ TO12:POKEZ $+N, 191: N E X T$
3750 FORN $=14 T 038: P O K E Z+N, 191: N E X T$
3760 POKEZ $+39,131$:FOKEZ $+40,147:$ POKEZ $+41,147:$ POKEZ $+42,179:$ POKEZ +4
3,163:POKEZ+44,163:POKEZ+45,131:FOKEZ 4 46,191:POKEZ+48,143:POKEZ+
49,143
3770 FORN $=50$ TO63:POKEZ $+N, 191: N E X T$
$3780 Z=Z+64: F O R N=0 T 012: P O K E Z+N, 191:$ NEXT
3790 POKEZ $+14,191$:FOKEZ $+24,191$:FOKEZ $+16,65$: POKEZ $+17,83:$ POKEZ+18, 73:POKEZ+19,58:FOKEZ $+25,45: F O R N=26 T 030: P O K E Z+N, 160: N E X T$
3800 POKEZ $+31,188: F O R N=32 T 036 \div P O K E Z+N, 144: N E X T$
3810 POKEZ $+37,43:$ POKEZ $+38,191:$ POKEZ $+46,191$:POKEZ $+47,191$:POKEZ+48 , 191:FOFN=50T063:FOKEZ+N,191:NEXT
$3820 Z=Z+64: F O R N=0 T 012:$ POKEZ $+N, 191:$ NEXT
3830 FORN=14TO24:FOKEZ+N,191:NEXT
3840 POKEZ $+40,93:$ FOKEZ $+44,94:$ POKEZ $+25,86 \div$ POKEZ $+37,86:$ POKEZ $+38,19$ 1:POKEZ $+41,84:$ POKEZ $+42,38:$ POKEZ $+43,83:$ POKEZ $+46,191:$ POKEZ $+47,191:$ POKEZ $+48,191: F O F N=50 T 063: P 0 K E Z+N, 191: N E X T$
$3850 \mathrm{Z}=\mathrm{Z}+64:$ FORNK=0TO12: POKEZ $+N, 191:$ NEXT
3860 FOKEZ $+14,191$:FOKEZ $+15,65:$ POKEZ $+16,76:$ FOKEZ $+17,84: F O$ ON $=24$ TO2 8:POKEZ $+N$, 191 :NEXT
3870 POKEZ $+38,191$:POKEZ $+46,191:$ POKEZ $48,188:$ POKEZ $+49,188: F 0$ RN $=50$ T063:POKEZ+N, 191 :NEXT
$3880 Z=Z+64: F O R N=0 T 012:$ POKEZ $+N, 191:$ NEXT

3890 POKEZ $+13,176:$ POKEZ $+14,179:$ POKEZ $+15,179:$ POKEZ $+16,131$:FORN=17 TO46:POKEZ+N, 191 :NEXT
3900 FORN $=48$ T063: $\mathrm{POK} E Z+N, 191$:NEXT
3910 PRINTP ((ABS ((W (B)/10)-13)) 2 64),"
3920 RETLRN
3930-3960 Relaunch S/R.
3930 IFXY $(B)=1$ THENPRINTE10,"'YOU HANE ALREADY TAKEN YOUR ONE PER FITTED RELALNCH" $: Q 4=0:$ RETLSN
3940 IFR(B) $=>1$ THENPRINTP10,"'RELALNCH NDT NOH PERHITTED'" $4 Q A=0: R$ ETURN
3950 PRINTR20,"'RELALNCH EXECLITING'": $\{$ PRINTP((ABS((N(B)/10)-13)) x64),"
" $: 1: H(B)=3000: S(B)=60: H(B)=60: D(B)=45: K(B)=3000: X(B)=200: Y($ B) $=200: R(B)=0: X Y(B)=1: Q 4=0 \div C Z=0$

3960 PRINTP((ABS($(W(B) / 10)-13)) \times 64)$,"
": RETURN

LIST OF VARIABLES FOR SAILPLANE

ARRAYS:

$\mathrm{D}(1-3)=$	Compass heading
$\mathrm{H}(1-3)=$	Height
$\mathrm{K}(1-3)=$	Previous height
$\mathrm{L}(1-3)=$	Landings flags
$\mathrm{R}(1-3)=$	Time taken
$\mathrm{S}(1-3)=$	Current speed
$\mathrm{TH}(1-30,1-4)=$	Thermal array..

Line $1=$ X-coordinate
Line $2=Y$-coordinate
Line $3=$ Strength (pos. or neg.)
Line $4=$ Height of vertical centroid of thermal above ground level.
VV(1-3) $=$ Finish times
$W(1-3)=\quad$ Previous speed
$X(1-3)=\quad X$-coordinate of sailplanes
$\mathbf{X Y}(1-3=$ Relaunch flags
$Y(1-3)=\quad Y$-coordinate of sailplanes
String Array
B\$(1-3)= \quad Name of competitors

SINGLE VARIABLES

A1 = Thermal strength multiplier
A2 $=$ Weather type
$\mathrm{A} 3=$ Wind factor
A4 $=$ Multiplier for strength of thermal at particular time of day.
A5 $=$ Cloud base factor
B $=$ Player counter
$\mathrm{CZ}=$ Control store for INKEY commands
E1 = X-coordinate of closest thermal
E2 $=$ Y-coordinate of closest thermal
E3 $=$ Strength
E4 $=$ Diagonal distance to closest thermal
E5 $=$ Temporary trigonometric store
E6 = Temporary trigonometric store
E7 $=$ Temporary trigonometric store
E8 $=$ Temporary store to hold identity of closest thermal
$\left.\begin{array}{rl}\text { F1 } & =\text { Cloudbase flag } \\ \text { F2 } & =\text { Is screen white out operative (1 = yes, } 0=\text { no }) \\ \text { F3 } & =\text { Flag to indicate requirement to print horizon if } \\ \text { descending out of cloud. } \\ \text { F8 } & =\text { Flag to indicate middle of convective period } \\ \text { F9 } & =\text { Flag to inhibit printing of new Met. Forecast if } \\ \text { randomiser changes weather during middle of game. } \\ \text { G1 } & =\text { Temporary X-coordinate } \\ \text { Temporary Y-coordinate } \quad \text { ALL USED IN } \\ \text { G3 } & =\text { Diagonal distance to thermal PRINTING } \\ \text { G4 } & =\text { Sine of angle from datum } \\ \text { G5 } & =\text { Angle of thermal from datum SCREEN } \\ \text { G6 } & =\text { Angle of thermal from course line of sailplane }\end{array}\right\}$

by Dr. Miles A. Smither

Double your computer's ability! Now you can run a line printer and continue with your program without waiting for your printout.

Spool automatically intercepts all LPRINT s, LLISTs, and NewDOS JKL output, stores it in a buffer at the top of memory, and drives the line printer while the program continues.
Select a buffer size in memory appropriate to your program from several options. Can be used from BASIC or DOS; does not require any modifications to BASIC programs.

Requires 32 or 48 K disk system. \$19.95

32 K or 48 K TRS-80 Disk Systems.

Several times I have lost work because my TRS-80 crashed back to DOS from Scripsit. Scripsit does not allow reentry without zeroing the current file. The following procedure will allow you to recover a file that is still in memory, but lost due to such a problem.

You will need a copy of RSM/2D from Small Systems Software (still this editor's favorite program!) and the ability to convert Hex numbers to decimal.

Once the program has crashed to DOS READY, remove the diskette from drive 0 and insert the RSM/2D diskette. This has a very short boot routine that will not interfere with the resident program.

Press RESET to boot the RSM/2D loader. Select the version that will load in the top of memory in your computer, and load the program.

Use the A command to search for your text file. I use the command A 7000. When you find the program, write down the starting and ending points. Convert these numbers to POKE addresses. A POKE address is a decimal number up to 32767. After that, it is the decimal equivalent of the Hex number minus 65536. Thus, 7FFF Hex equals 32767, and 8003 Hex equals 32771-65536 or -32765.

If you have trouble converting a number from Hex to Decimal, use this process. Assume that you have a four-digit Hex number, such as 72 CF .

Multiply the left digit by 4096:
7×4096 equals 28672.
Multiply the next digit by 256 : 2 x 256 equals 512 .

Multiply the next digit by 16: 12 x 16 equals 192.

Write down the decimal equivalent of the remaining digit: 15 . Add these four numbers: 29391. This is your decimal number.

Remember that in the Hexadecimal system, A equals 10, B equals 11, C equals 12, D equals 13, E equals 14 , and F equals 15.
Now, if your number is greater than 32767 , subtract 65536 to get the POKE address. For example, if you had 82FE, the decimal equivalent is 33534 . Subtracting 33534 minus 65536 , we get a POKE address of -32002 . We now know that our text file is located in memory starting at 29391 and ending at -32002 . All we need to do now is go to disk BASIC without disturbing the text area, PEEK our text our of memory and write it to a disk file, then reload Scripsit, and load our file back in.
If our program starts at 29391, we can proceed by inserting a

SYSTEM diskette (it is best to keep fresh disks on hand with DOS and BASIC already on them, but any disc that has enough free space for the file and no AUTO message will do) into drive 0 and rebooting DOS.

Now we enter BASIC, protecting our text area by reserving memory right below our text, with the command: BASIC 29390 (NewDOS), or BASIC and answering Memory Size with 29390 (TRSDOS).

Now we need to write a program to save the program on disk. This program can be used by simply changing the starting and ending points from 29391 and -32002 to the values you find.

```
10 OPEN, "0", 1, "RECOVER/TXT:0"
20 FOR M = 29391 TO 32767
30 PRINT # 1, CHR$(PEEK(M));
40 NEXT M
50 FOR M = -32768 TO -32002
60 PRINT # 1, CHR$(PEEK(M));
70 NEXT M
80 PRINT # 1,CHR$(0)
90 CLOSE
```

Now type RUN and your program will store the contents of memory in a file called
RECOVER/TXT. Line 80 terminates the file with a zero to tell Scripsit where the text ends. All that is left is to load Scripsit and then the file RECOVER/TXT.

Of course, this same method can be used to recover almost anything in memory and store it as a disk file. The Scripsit example is just to start you thinking. If memory is tight, go back to BASIC specifying only one file buffer to save nearly 600 bytes.
by George Blank

Mountain Hardware, Inc.

THE APPLE CLOCK.

The Apple Clock from Mountain Hardware keeps time and date in 1 mS increments for over one year. On-board battery backup keeps the clock running in the event of power outage. Software controlled interrupts are generated by the clock. That means you can call up schedules, time events, date printouts . . . all in real time on a programmed schedule.

EASY TO USE!

The Apple Clock is easily accessed from BASIC using routines
 carried in on-board ROM. With it, you can read time and program time-dependent functions for virtually any interval.
From milliseconds to days, months or a year.
PLUG IN AND GO!
Plug the Apple Clock into a peripheral slot on your Apple II and yourre ready to go.

ROMPLUS+

NEW EXPANDABILITY.

ROMPLUS + is a peripheral board whose added features can turn the APPLE* computer into the most powerful personal computer available today. ROMPLUS + provides six sockets to accept individually addressable 2 K ROM's or EPROM's. Keyboard FilterTM a 2 K ROM program, comes installed on the ROMPLUS + board and adds many useful features to your Apple, including: • Upper and lower case letters. - Multiple user-defined character sets. - Colored or inverse-colored letters. - Keyboard macros -two key-stroke, automatic typing of multiple, user-defined words or phrases. Including BASIC and DOS commands. - Mixed text and graphics. - Improved cursor control. STOP LIST and END LIST. - Works with integer BASIC, RAM or ROM Applesoft, and DOS. - And more ... quick to learn. Easy to use. - Software support provided on disk includes demonstration programs and two Editors that allow you to define your own characters or keyboard macros. In addition to the Keyboard Filter ROM, ROMPLUS + offers five sockets for ROM or EPROM, plus "scratchpad" RAM. And, sophisticated firmware on ROMPLUS + allows one, two, or more of its chips to be used simultaneously for programs
longer than 2 K .

You can have SOUND

on YOUR

That would produce a sound from voice 1 with a pitch of 100 , a distortion of 10 , and a loudness of 7. The voice must be in the range of $0-3$, the pitch $1-255$, the distortion an even number from 0 14 and the loudness 1-15. Any note will be played until an END statement is encountered or until another note is played using the same voice. To shut off a voice, play a note to that voice with a
loudness of zero. In this program, the variables V, T and L may be set to different values for the voice number, tone and loudness to be used.

Sound can add to any program, making it more interesting to the user, and, with a little imagination, the possibilities of sound are almost endless.

Listing for the TRS-80 :

[^5]
Exciting

Entertaining
Software
for the
Apple II and Apple II Plus!

If you liked "Invaders", you'll love ASTEROIDS IN SPACE by Bruce Wallace. Your space ship is traveling in the middle of a shower of asteroids. Blast the asteroids with lasers, but beware - big asteroids fragment into small asteroids! The Apple game paddles allow you to rotate your space ship, fire its laser gun, and give it thrust to propel it through endless space. From time to time you will encounter an alien space ship whose mission is to destroy you, so you'd better destroy it first! High resolution graphics and sound effects add to the arcadelike excitement that this program generates. Runs on any Apple II with at least 32 K and one disk drive. On diskette - \$19.95

(In NH call 673-5144)

YOU CAN HAVE SOUND continued from page 66

Listing for the Apple in Applesoft :

190 FOR PALSE $=1$ TO 1000: NEXT PAUSE
200 FRINT : FRINT "OLD MACDONALD "
210 \& $\mathrm{T} 106,128: \& \mathrm{~T} 106,128: \& \mathrm{~T}$ 06,128: 8 T142,128
220 \& $\mathrm{T} 126,128: \& \mathrm{~T} 126,128: \& \mathrm{Tl}$ 42,255
230 \& $\mathbf{~ T 8 4 , 1 2 8 : ~ \& ~ T 8 4 , 1 2 8 : ~ \& ~ T 9 4 , ~}$ 128: 8 T94,128
240 FOKE 805,3: \& T106,128: REM 805 PLAYS TRIFLE LENGTH NOT E

250 FOKE 805,1: REM RETUFN TO N OKHAL LENGTH
260 FOF PAUSE $=1$ TO 1000: NEXT PAUSE
270 FRINT : PRINT "CLEMENTINE"
280 \& T188,64: \& T188,64
290 \& T188,128: \& T255,128: \& T1 50,64: \& T150,64
300 \& T150,128: \& T188,128: \& T1 50,64: \& T150,64
310 \& ${ }^{\top} 126,128: ~ \& ~ T 126,128: ~ \& ~ T 1$ 42,64: \& T150,64
320 \& $\mathrm{T} 168,255: \& T 168,64: \& T 15$ 0,64
330 \& $\mathrm{T} 142,128: \& T 142,128: \& T 1$ 50,64: \& T168,64
340 \& T150,128: \& T188,128: \& T1 88,64: \& T150,64
350 \& T168,128: \& T255,128: \& T2 00,64: \& Ti68,64
360 \& T188,255
370 FOF PAUSE $=1$ TO 1000: NEXT PAUSE
380 FRINT : PRINT "LOW NOTES - P AUSES BETHEEN PLAYING TONES"

390 FOR J = 1 TO 9: FDK I = 1 TO 100: \& T255,1: FOR PAUSE = 1 TO J: NEXT PAUSE,I,J
400 FOF PAUSE $=1$ TO 1000: NEXT PAUSE
410 PRINT : PRINT "MISCELLANEOUS "
420 FOK $I=1$ TO 127: FOKE 805,4 : 8 T128-I,1: POKE 805,1: \& T128 + I, 1: NEXT I
430 FOR PALSE $=1$ TO 1000: NEXT PALSE
440 FRINT : PRINT "RED ALERT"
450 FOK $I=1$ TO 5: FOR $F=100 \mathrm{TO}$ 1 STEF - 2: \& TP,3: NEXT F
460 FOK $\mathrm{P}=1$ TO 88 STEF $2: \& \mathrm{TP}$,2: NEXT P,I
470 END
480 RESTORE : REM THIS SLEFOUTI NE FOKES THE TONE
490 REM FLAYING PROGFAM INTO ME MOFY
500 DATA 201,84,208,15,32,177,0, $32,248,230,138,72,32,183,0,2$ $01,44,240,3,76,201,222,32,17$ 7,0,32,248,230
510 FOK I = 768 TO 833: READ F: POKE I,F: NEXT I
520 DATA $104,134,3,134,1,133,0,1$ $70,160,1,132,2,173,48,192,13$ 6,208,4,198
530 DATA $1,240,7,202,208,246,1$ 66,0,208,239,165,3,133,1,198 ,2,208,241,96
540 REM CALL TONE SUE WITH ATFE RSAND T FITCH CONTA DURATION

550 KEEM PITCH AND DURATION MUST EE 255 OR LESS
560 REM FOKE 805, NHMEE OF TIM ES TO REFEAT THE NOTE
570 REM DEFAULT LOCATION 805=1
580 FOKE 1013,76: POKE 1014,0: FOKE 1015,3
590 RETURN

Listing for the Atari:

$50 \mathrm{~L}=10: \mathrm{T}=10: \mathrm{U}=0$

160 GRAPHICS 0 : PRINT "PHASER SOUNOS"
110 FOR $X=1$ TO 5:FOR $P=1$ TO 100 STEP 3
120 SOUND U,P,T,L:NEXT P:NEXT X
130 PRINT :PRINT "OLD MACDONGLD"
140 FOR $X=1$ TO 12 : READ A,B:SOND U,A,T,L
150 FOR I=1 TO E:NEXT I:SOUND $U, 0,0,0$:NE XT X
160 DATA $106,108,106,108,106,108,142,108$ $, 126,188,126,188,142,260,84,188,84,188,9$ $4,188,94,198,186,255$
165 PRINT :PRINT "CLEMENTIHE".
170 FOR $X=1$ TO 30 : READ A,B SOUND U,A,T,L
180 FOR I=1 TO B:NEXT I:SOUND $U, 0,0,0$:NE
XT X
199 DATA $188,64,188,64,188,128,255,128,1$
$50,64,150,64,150,128,188,128,150,64,150$,
$64,126,128,126,128,142,64,150,64$
280 DATA $168,255,168,64,150,64,142,128,1$
$42,128,150,64,168,64,150,128,188,128,188$
,64, 150, 64, 168, 128,255, 128
219 DATA $260,64,168,64,188,255$
228 MRINT : PRINT "LOW NOTES - PQUSES EET LEEN NOTES"
238 FOR $J=1$ TO 9:FOR I=1 TO 20 : SOUND $U, 2$ 55, T,L:SOUND U, $0,0,0$
240 FOR P=1 TO J: NEXT P: NEXT I: NEXT J
250 PRINT :PRINT "MISCELLANEOUS"
260 FOR $x=1$ TO 3:FOR $I=9$ TO 127 :SOUND 0,
I $\$ 2,10,10$
262 SOUND $1,255-I * 2,10,10$: soun $2, I, 10,1$
0 :SOND $3,255-1,10,10$: NEXT I : NEXT X
265 SOUND 0, $0,0,0$: SOUND $1,0,0,0$: SOUND 2,
$0,0,0$: SOUND $3,0,0,0$
270 PRINT :PRINT "RED ALERT"
289 FOR $X=1$ TO 5:FOR $F=190$ TO 1 STEP -3
299 SOUND U,P,T,L:FOR I=1 TO 2: NEXT I:NE XT P
300 FOR P=1 TO 88 STEP $4:$ SOUTD U,P,T,L:N EXT P: NEXT X

For those interested, an assembly listing of the TRS-80 machine language tone maker follows:
continued on page 69

7 FOO	00100	OFG	7 FOOH	
7 FOO CD7F0A	00110 START	CALL	OATFH	;GET USR ARGUMENT
7F03 7E	00120	LD	A, (HL)	;GET LENGTH OF STRING
7 F 04 32427F	00130	LD	(COUNT), A	PFUT IN COUNT
7F07 23	00140	INC	HL	;ADVANCE VAFPTR POINTER
7 F 085	00150	L	E, ($\mathrm{H}_{\text {L }}$)	;FUT STRING ADDRESS
750923	00160	INC	HL	;POINTER IN
7FOA 56	00170	10	D, (HL)	;THE DE REGISTER PAIR,
7FOB EB	00180	EX	DE,H.	;THEN TRANSFER TO HL.
7FOC 28	00185	DEC	HL	;START ONE EEFORE
7FOD 3A4038	00190 FLAY	LD	A) (14400)	;SCAN KED
7F10 CB57	00200	BIT	2,A	;CHECK FOR EREAK KEY
7F12 CO	00210	RET	NZ	;IF break IS HIT, RETURN
7 F 13 3A427F	00220	LD	A, (COWNT)	;GET CHARACTER COUNT
7F16 87	00230	OR	A	;IS IT ZERO?
$7 \mathrm{~F} 17 \mathrm{C8}$	00240	RET	Z	;YES, RETURN
$7 F 1830$	00250	DEC	A	;IS IT ONE?
7 F 19 C8	00260	RET	Z	;INCOMPLETE PAIR, RETLRN
7F1A 3D	00270	DEC	A	;DECREPENT AGATN
7F1B 32427F	00280	LD	(COUNT), A	;PUT BACK IN CHAR. COUNT
TF1E 23	00285	INC	HL	;ADVANCE TO DURATION
7F1F 56	00290	LD	D, (HL)	;FUT DURATION
7F20 1E00	00300	LD	E, 0	;INTO DE PAIR.
7F22 23	00310	INC	FiL	;ADVANCE TO FITTCH
7F23 46	00330 SLUND	10	B, (HL)	;GET PITCH
7F24 3E01	00340	LD	A, 1	
7F26 D3FF	00360	OUT	(255), A	;CYCLE ONE
7F28 10FE	00370 LOOF'1	DJNZ	LOOP1	;DELAY FOR PITCH
7F2A 46	00380	LD	E, (HL)	;GET PITCH BACK
7F2B 3C	00400	INC	A	
7F2C D3FF	00410	OUT	(255), A	;CYCLE THD
7F2E 10FE	00420 L00P2	DNWZ	L00P2	;DELAY FOR PITCH
7F30 46	00430	LD	B, (HL)	;GET PITCH AGAIN
7F31 7A	00440 LOOF3	LD	A, D	; CHECK MSE OF DE
7F32 87	00444	OR	A	;FOR ZERO.
7F33 2007	00448	\checkmark	NZ, M M ${ }^{\text {P }}$;NO, CONT
7F35 78	00452	LD	A, E	;YES, CHECK LSB
7F36 ET	00456	OR	A	; FOR ZERO
7 F 372804	00460	JR	Z,FLAY	; IF YES, NEN NOTE
7F39 30	00464	DEC	A	; HAS DE A ONE
7F3A 2801	00468	$\mathrm{JR}^{\mathbf{R}}$	Z,FLAY	; IF YES, NEN MOTE
7F3C 18	00472 NAPP	DEC	DE	;DECREMENT DURATION
7F30 18	00476	DEC	DE	; TVICE
7F3E 10F1	00480	D.NZ	L00P3	;LOOP FOR DURATION
7F40 18E1	$\begin{aligned} & 00488 \\ & 00489 \end{aligned}$	UR	SOLRD	;CONTIME NOTE UNTIL ;DURATION IS OVER.
0001	00510 COANT	DEFS	1	;STORAEE AREA
0001	00520	END		;THAT'S ALL FOLKS!
00000 TOTAL ERRORS				
COUNT 7F42	0051000130	001300022000280		(
UPP 7F3C	0047200448			5
L00F1 7F28	0037000370			
L00F2 7F2E	0042000420			
L00F3 7F31	0044000480			
FLAY 7F00	0019000460	00468		
SOUND 7F23	0033000488			
START 7F00	00110			

sersational softwape

AIR TRAFFIC CONTROLLER

This real-time machine language program puts you in the chair of a busy air-traffic controller. 27 prop planes and jets are depending on you as they take off, land and fly over your air space. You give orders to turn, maintain a holding pattern, change altitude, approach and land at either of two airports.
Written by an air traffic controller, this realistic fast-paced simulation includes navigational beacons and the requirement that planes take off and land into the wind. The program's continuously variable skill level assures that you won't soon tire of this instructive and absorbing simulation.
In Alr Traffic Controller you assume responsibility for the safe flow of air traffic within a 15×25 mile area up to 5,000 feet in altitude. During your shift as a controller in charge of this airspace 26 aircraft become active and under your control. Jets and prop planes have to be guided to and from the two airports, navigational beacons and ten entry/exit fixes. The aircraft enter the controller's airspace at various altitudes and headings whether or not you are ready.

Alr Traffic Controller retains the basic realism of air traffic control. This program requires the same steady nerves under pressure and the same instant, almost instinctive, analyses of complex emergencies which are demanded of a professional air traffic controller. But "ATC" adds the excitement and well-defined goals of a game. This is just a simulation, and all passengers left in air traffic limbo by a panicked player will live to fly another day.
Alr Traffic Controller is available for the 16 K TRS-80, the Apple II, and Apple II plus on cassette for $\$ 9.95$

MOD PROG
whether there is a next line. If there is, jump back to line 1 and keep looking; otherwise, end the program.
Variables:
$\mathrm{A}, \mathrm{A}+1, \mathrm{~A}+2, \mathrm{~A}+3$: correspond with $\mathbf{X}, \mathbf{Y}, \mathrm{A}, \mathrm{B}$ in format example,respectively.
$\mathrm{A}+4$: beginning of the program information in the line.
B: loop to skip Modprog lines.
CT: character to change to.


```
]LIST
O A = PEEK (103) + PEEK (104) *
    256: FOR B = l TO 4:A = PEEK
    (A) + PEEK (A + l) * 256: NEXT
    : INPUT "STATEMENT/CHARACTER
        TO CHANGE (NUMBER)";TC: INPUT
    "STATEMENT/CHAR CHANGE TO (N
    UMBER) ";CT
l NP = PEEK (A) + PEEK (A + l) *
    256:LN = PEEK (A + 2) + PEEK
    (A + 3) * 256: FOR X = A + 4
        TO NP - l: IF PEEK (X) = T
        C THEN POKE X,CT: PRINT "JU
        ST CHANGED LINE ";LN
2 NEXT X:A = NP: IF PEEK (A) =
        O AND PEEK (A + 1) = 0 THEN
        PRINT "ALL DONE!!!": END
3 GOTO 1
```


Mod-Prog in Applesoft

Below is a listing of the Applesoft version of Mod-Prog, which allows you to change any character or statement token in a program to any other character or token. The lines below must appear at $0-3$ in your program. The variables used are the same as those in the TRS-80 version. Applesoft tokens appear on page 121 in the Applesoft manual, and the ASCII codes are on pages 138-9 of the same book.

With the help of the Apple, this game puts you on the other side of an Oil Crisis . . . as the Chief Executive of Engulf Oil. As a helpless public lines up at your stations, you attempt to turn crisis into cash, making your "Windfall Profits". Huge gains (or losses) accrue from your manipulation of prices, wages, foreign suppliers, stock sales and collusion with the competition.

For Apple II and II-plus computers
Requires 32 K (48K with disk and RAM Applesoft)
Cassette $\$ 14.95$
Diskette \$19.95

Comipu=read

A series of four programs designed to enhance the user's reading ablility. A sequence of increasingly complex skills, from simple character recognition to identification of rapidly displayed words is presented in the first two programs. In the third program, vocabulary practice is provided using synonyms and antonyms as a tool. Finally, user response to high speed sentence presentation builds skills in speed and comprehension.

For Apple II and II-plus computers
Requires 32K RAM and Disk Drive Disk \$24.95

* games

TRS-80 Opera Theatre
Magnificent sound! by Richard Taylor
Level II, 16K $\$ 9.95$
Level II, 16
Word game with sound by Richard Taylor
Level II 16K
Opera Theatre Plus Challenge
on disk, 32K...
. $\$ 9.95$

Bridge Challenger
by Personal Software
Level II, 16K...........

Invasion

by Chris Freund
by Chris Freund
Level II, 16K . $\$ 9.95$
X-Wing Fighter II
by Chris Freund
Level II, 16K...
. $\$ 9.95$
Taipan
by Art Canfil
Sargon Chess
by Dan and Kathe Spracklen
Levei II, 16K..................................... . . $\$ 19.95$
Sargon II
by Dan and Kathe Spracklen
by Dan and Kathe Sprackien
Level II, 16K....................................... . . . $\$ 29.95$

by Robert. Wallace
Level II, 16K.

Snake Eggs

With sound by Leo Christopherson
Level II, 16K................................... $\$ 14.95$
Life Two
With sound by Leo Christopherson
Level II, 16K.
$\$ 14.95$

Andraid Nim

With sound by Leo Christopherson
Level II, 16K......................... . .

Bee Wary

Bee Wary
With sound by Leo Christopherson
Level II, 16K..................................... . . $\$ 14.95$
Mastermind II
by Lance Micklus \qquad
Tycoon
Tycoon
by David Bohike
Level II, 16K..
Games for Preschool Children
by George Blank
Level II, 16K...
. $\$ 9.95$
End Zone II
by Roger W. Robitaille
Level II, 16K . $\$ 9.95$
Space Batties
by Level IV
Level II, 16K tape . \$14.95
32K disk$\$ 19.95$

32K disk
by Lance Micklus
Level II, 16K (May 1980 issue) $\$ 14.95$
by Lance Micklus
Adventures on Tape
by Scott Adams
Level II, 16K.
Choose one:
Adventureland: Magical beings, perils and puzzles!
Pirate's Cove: Clue in a bloodsoaked book
Mission Impossible: Foil the saboteur, save the reactor!
The Count: Protect your neck! Who do you think lives here?
Voodoo Castle: Remove the curse from Count Cristo.
Strange odyssey: The ruins of an ancient alien culture?
Fun House: Takes all your brains to get past the gate! Pyramid of Doom: Watch out for the Nomad!
Ghost Town

Adventures on Disk
 by Scott Adams

$\$ 39.95$ for three-game combinations

1) Mission Impossible, Pirate's Cove, Adventureland 2) Voodoo Castle, The Count, Strange Odyssey
\$24.95 for two-game combinations:
2) Fun House, Pyramid of Doom

Adventure Sampler

by Scott Adams
Mini-version of Adventureland, serves as introduction
Level II, 16K........ $\$ 5.95$
Pork Barral
by George Blank
Level II, 16K . $\$ 9.95$

Barricade

by Small Systems Software
Machine Language . $\$ 9.95$
Pentominoes
by James Garon
Level II, 16K... . . $\$ 7.95$
Mean Chackers Machine
by Lance Micklus
Level II, 16K tape $\$ 19.95$
Disk . $\$ 24.95$
Kriegspied II \$14.95
Time Trek
by Joshua Lavinsky
Level II, 16K................................ $\$ 14.95$
Kamikaze
by Russell Starkey
Level II, 16K . $\$ 7.95$
Wordo
from Microfantastic Programming
Level II, 16K.................................... . . $\$ 9.95$
Fastgammon
Fastgammon
trom Quality Software
Level II, 16K..................................... $\$ 19.95$
Cribbage
by Roger W. Robitaille Sr.
Level II, 16 K . $\$ 7.95$
Galactic Empire

Level II, 16K..............
by Doug Carlston

Level II, 16K....\$14.95

by Doug Carlston

Level II, 16K . \$14.95

Galactic Trader and Emplre
on disk 32 K . $\$ 29.95$
All 3 on disk . $\$ 39.95$
Armail Pliot . $\$ 7.95$
Air Traffic Controiler. $\$ 7.95$
Ar Rald
by Small Systems Software
Level I or II, 4 K.................................... . . $\$ 9.95$
Lost Dutchman's Gold
by Teri Li
by Teri LI
Level II, 16K
$\$ 9.95$
Original Adventurs
by Microsoft as played on PDP-10
32K disk $\$ 29.95$
Pigskin (Footbali)
by Acorn Software
Level II, 16K... $\$ 9.95$
PA Dogight
by David Bohlke
Level II, 16K... . . $\$ 7.95$
Ting Tong
from Acorn Software
Machinie Language, with sound
Level $11,16 \mathrm{~K}, .$. 95
Journey to the Centor of the Earth
by Greg Hassett
Level II, 16K. $\$ 7.95$
Seo Softside on cassettes for sdilitional games
Datestones of Ryn
cassette

NOTICE

All prices are subject to change without notice. The Software Exchange is not responsible for typographical errors, including prices.

* TRS-80 is a trademark of Radio Shack division of Tandy Corporation - makers of the TRS-80, and Video Genie.

APL-80 3.0

by Phelps Gates

Deluxe version-32K disk $\$ 39.95$
Level II, 16K tape-reduced features, no course or book
Book (separately) . $\$ 16.95+\$ 3$
File Manager 60
by Nepenthe
32K disk.
Automated Disk Directory
by George Blank
32K disk, requires NEWDOS \qquad
$\$ 49.95$

STAD
Trace and Debug Monitor for tape and disk systems 16,
32 and 48 K on one tape $\$ 24.95$
NEWDOS by Apparat . $\$ 49.95$
NEWDOS+ by Apparat . $\$ 99.95$
NEWDOS 80 by Apparat . $\$ 149.00$
RSM2 by Small Systems Software
Level II, $16 \mathrm{~K}$.
Disk for $16-48 \mathrm{~K}$ on one tape $\$ 29.95$
KVP by Lance Micklus

Disk . $\$ 19.95$
ST80 Smart Terminal
by Lance Micklus
Level II, 16K..
ST800 Smarter Terminal
by Lance Micklus
. . . . $\$ 79.95$
sT80-UC dedicated to THE SOURCE
by Lance Micklus
Level II, 16K
. $\$ 24.95$
ST80 III
by Lance Micklus . $\$ 150.00$
Micro Text Editor
by Don Coons
Level II, 4K or 16K . $\$ 9.95$
Level III BASIC
by Microsoft .
. \$49.95
Level I in Level II
by Apparat
\qquad

Level II, 16 K
$\$ 15.00$
FORTRAN
by Microsoft
32K, 2 disks . $\$ 80.00$ + $\$ 2.50$
Assembler
by Microsoft
32 K . $\$ 80.00+\$ 2.50$
FORTRAN Plus Assembler. \qquad $. \$ 150.00+\$ 5$
Spool
Will print an ASCII file to a parallel line printer at the same time you are using your computer for another program. For 32 K disk systems only. Will NOT work with NEWDOS (2.3 or VTOS 3.0 OK).
Disk.
by Lance Micklus
Level II cassette versions
XREF $\$ 19.95$
RENUMX (XREF with RENUMBER and rescue after PER separately .. $\$ 24.95$ RENUMBER separately $\$ 7.95$
RX-Cross Reference for Disk
by Lance Micklus
32K, 1 disk . \$24.95
RENUMBER
by Lance Micklus
The full-featured RENUMBER program. One version
now works in $16 \mathrm{~K}, 32 \mathrm{~K}$, or $48 \mathrm{~K}$.
Systam Copy
by Kalman Bergen
Level II, 16K . $\$ 9.95$
Floppy Disk Dlagnostic
by Dave Stambaugh
Disk with manual . $\$ 24.95$

* books

Sargon Handbook	
The BASIC Handbook	
by Dr. David A. Lien	\$14.95 + \$1
2-80 Instruction Handbook	
by Scelbi Publications $\$ 5.95+\$ 1$	
The Littie Book of BASIC Styie	
by John Nevison	\$5.95 + \$1
Pathways Through the ROM	
	\$19.95
TRS-80 Assembly Language	
Programming	
by William Barden, Jr.	\$3.95 + \$1
APL - An Interactive Approach	
by Gilman and Rose	\$16.95 + \$3
Learning Level II	
by Dr. David A. Lien	. $\$ 15.95$ + \$1
2-80 Software Gourmet Guide and Cookbook	
from Scelbi Publications $\$ 15.95$ + \$1	
TRS-80 Oisk and Other Mysteries	
by Harvard Pennington	\$22.95 + \$1
TRS-80 interfacing	
by Jonathan Titus	\$8.95 + \$1
Secret Guide to Computers	
by Russ Walters	\$5.95 + \$1
Information Managoment System	
P.I.M.S. $\$ 11.95$ + \$1	
Calculating with BASIC $\$ 8.95+\$ 1$	
Understanding Micro Computers	
	\$9.95 + \$1
Take my Computer Please $\ldots \ldots . ~ \$ 5.95+\$ 1$	
Learn Micre Computers	
	\$14.95 + \$1
Micro Computer PotPourri	
	\$3.95 + \$1
SUPPLIES	

Cassettes: Boxes of 10 each	
$\mathrm{C}-20$	\$7.95 + \$1
Diskettes:	
Dysan (premium quality)	
Box of 5	\$29.95 + \$1
BASF	
Box of 5	. $\$ 19.95+\$ 1.50$
Box of 10.	\$34.95+\$2
Case of 100	\$299.00 + \$3
Scotch	
Box of 10	. . ${ }^{\text {c }}$ 39.95 + \$2
Diskette Sterage Box	\$5.00 + \$1
Floppy Armorra	
Protective envelopes for shipping floppy disks. 5 pack $\$ 4.95+\$ 1$	
Soltside Vinyl Binders $\$ 4.95+\$ 1$
Tape Recorder Alignment Kit	. $\$ 9.95+\$ 1$
Floppy Disk Savers	\$14.95
Floppy Blsk Raflils	. \$7.95

No sales tax.

- All C.O.D.'s or special delivery orders are a minimum of $\$ 5.00$ for special handling.
For more details descriptions of our software and supplies send for the TSE Catalog • it's FREE! Write or call today for your copy:

Name
Address
City
MAIL TO: The Software Exchange, PO Box 68, Milford, NH 03055

CONCENTRATION continued from page
166 HIIN $X, X+4$ AT $Y+1$: HLIN $X, X+$
4 AT $Y+2 ;$ HLIN $X+1, X+3$ AT $Y+$
3: FLOT $X+2, Y+4$: PLOT $X+1, Y$:
PLOT $X+3, Y$
179 RETURN
180 A $\$=$ "F'ICNIC TAELE": COSSB 820
182 COLOR=8: HLIN $X, X+4$ AT Y
184 PLOT $X+1, Y+1$: FLOT $X+3, Y+1$: FLOT $X+2, Y+2$: PLOT $X+1, Y+3$: FLOT $X+3, Y+3:$ FLOT $X+4, Y+$ 4: FLOT $X, Y+4$
199 RETUFN
200 A $\$=$ "EEER MUG": GOSLB 820
203 COLOR $=15$; ULIN $Y, Y+4$ AT $X+2$: VLIN $Y, Y+4$ AT X
205 HLIN $X, X+2$ AT $Y+4$: ULIN $Y+1$, $Y+3$ AT $X+4$: PLOT $X+3, Y+3:$ PLOT $X+3, Y+1$
210 COLOF $=13$: FOR $Z=1$ TO 150: NEXT Z
212 FOK $I=Y+3$ TO Y STEP -1
214 FLOT $X+1, I$; FOR $Z=1$ TO 150: NEXT Z
216 NEXT I
219 RETUFN
220 A $=$ "SAILEDAT": GOSUB 820
224 COLOK: $=2$: HLIN $X, X+4$ AT $Y+4$: COLOR=1: VIN $Y, Y+3$ AT $X+1$

226 COLOF: $=15:$ VIN $Y, Y+2$ AT $X+2$: VLIN $Y+1, Y+2$ AT $X+3$: FLOT $X+4, Y+2$
239 RETLEFN
240 A $=$ ="EED" $\ddagger \operatorname{GOSNB} 820$
242 COLOR $=8$: ULIN $Y, Y+4$ AT $X+4$: UIN $Y+1, Y+4$ AT X : HLIN X, $X+4$ AT $Y+3$
246 COLOF $=15$: HLIN $X+1, X+3$ AT $Y+$ 2: FLOT $X+3, Y+1$
259 RETURN
260 A $\$=$ "TOASTER": COSLB 820
264 COLOK $=5$: FOR $I=Y+2$ TO $Y+4$: HLIN $X, X+4$ AT I: NEXT I
265 COLOR $=15$: PLOT $X, Y+2$; FLOT $X+4, Y+2$: PLOT $X, Y+4$: PLOT $X+$ $4, Y+4$: ULIN $Y, Y+1$ aT $X+1$: VIIN $Y, Y+1$ AT $X+3$
267 COLOK $=0$: FLOT $X+2, Y+2:$ FOR $Z=1$ TO 200: NEXT Z
268 ULIN $Y, Y+1$ AT $X+1$: VLIN $Y, Y+$ 1 AT $X+3$
270 COLOR $=5$: FLOT $X+2, Y+2$: COLOR $=$ 0: FLOT $X+2, Y+3$: FOR $Z=1$ TO 550: NEXT Z
272 COLOR=5: FLOT $X+2, Y+3$; COLOR $=$ 0 : FLOT $X+2, Y+2$: COLOR $=13$: VLIN $Y, Y+1$ AT $X+1:$ ULIN $Y, Y+1$ AT $X+3$

274 POKE 0,90: POKE 1,58: CALL 2
279 RETUFN
280 A $=$ ="EOILING POT": GOSNB 820
282 COLOR=13: HLIN X, $X+2$ AT $Y+2$: HIN $X, X+2$ AT $Y+3$
284 COLOR $=8$: HLIN $X+3, X+4$ AT $Y+$ 2
286 COLOR-5: GOSLE 296: COLOR=11 : COSLE 296: COLOR=9: GOSLE 296
287 FOR $\mathrm{I}=1$ TO 125: COLOR= RND (2) $\times 15:$ PLOT RND (3) $+X$, RND (2)+Y: NEXT I

288 COLOR $=0$
289 HLIN $X, X+3$ AT Y : HLIN $X, X+3$ AT $Y+1$
290 COLOR $=5$: HLIN $X, X+2$ AT $Y+4$
293 GOTO 299
296 HITN $X, X+2$ AT $Y+4$: FOR $Z=1$ TO 250: NEXT Z
299 RETUFN
300 A $\$=" D O O F$ CHITES" $;$ GOSLE 820
302 COLOF $=8$: HLIN $X, X+4$ AT Y
305 COLOR $=13$: ULIN $Y+1, Y+2$ AT X : UIN $Y+1, Y+3$ AT $X+2 ;$ UIN $Y+1, Y+4$ AT $X+4$
310 POKE 0,113: POKE 1,200: CALL 2
312 FOKE 0,125: POKE 1,200: CALL 2
314 POKE 0,118: POKE 1,200: CALL 2
316 FOKE 0,174: POKE 1,200: CALL 2
319 RETUFN
320 A\$="CIGAFETTE": GOSLB 820
322 COLOR=15: HLIN $X, X+4$ AT $Y+4$: COLOR=13: PLOT $X+4, Y+4$: FOR $Z=1$ TO 200: NEXT Z
323 COLOK=1: FLOT $X, Y+4$
324 FOR K=1 TO 9
326 COLOR $=0:$ ULIN $Y, Y+3$ AT $X:$ ULIN $Y, Y+3 \cdot A T X+1:$ COLORE $=5:$ PLOT $X, Y+3$
327 FOR $I=Y+2$ TO Y STEP -1
$330 L=X+$ RND (2)
332 PLOT L,I: FOR $Z=1$ TO 26: NEXT Z
335 NEXT I
337 NEXT K
339 RETURN
340 A $\$=$ "SWISS FLAG": GOSLE 820
344 COL.OR=1
345 FOF $I=X$ TO $X+4$: ULIN $Y, Y+4$ AT I: NEXT I
350 COLOR $=15$: HLIN $X+1, X+3$ AT $Y+$ 2: UIN $Y+1, Y+3$ AT $X+2$

359 RETURN
360 A $\$=$ "FACKAGE": COSLB 820
363 COLOR=15: FOR I=X TO X+4: UIN
$Y+2, Y+4$ AT I: NEXT I
365 COLOR=1: ULIN $Y+1, Y+4$ AT $X+$
2: HLIN $X, X+4$ AT $Y+3$: PLOT
$X+3, Y:$ PLOT $X+1, Y$
379 RETURN
820 REM PRINTS PICTURE MAYE
821 IF ND=2 THEN PRINT
822 TAE: 24: FFINT A\$: : RETURN
1000 GOSUE 1990
1010 REK INITIAL CONDITIONS
1020 FOR $I=0$ TO 35:CH(I)=1: NEXT
I: REM 'CLOSE' ALL DOORS
1030 SC $(0)=0: S C(1)=0:$ RTCH $=0:$ TRY $=$ 0
1040 GOSLE 1600
1050 REM
1060 REM BEGIN MAIN LODF
107 REM
1080 FOR $P=0$ TO N: REM P=PLAYER
1090 GOSLB 1270
$1100 \mathrm{ND}=0$: REM $\mathrm{ND}=\mathrm{DOOR} \mathrm{NO} *$
1110 COSLE 1410
$1120 \omega(\mathrm{NB})=\mathrm{PIX}(\mathrm{D})$: REM SAVE EACH DODR
1130 GOSLE 1790
1140 GOSTE PIX(D) $220+20$: REM PLOT T HE PICTURE BEHTND THE DOOR
1150 IF $N D=1$ THEN 1110
1160 TRY=TRY+1
1170 IF W(1) ${ }^{2}$ (2) THEN 1200 : REK ND K ATCH
1180 GOTO 1310
1190 GOTO 1090
1200 FOR $Z=1$ TO 500: NEXT Z
1210 GOSLE 1870
1220 NEXT P
1230 GOTO 1080
1240 REM
1250 REM END OF MAIN LOOF
1260 REM
1270 REM FFINTS PLAYER NAYE
1280 CALL -936: VTAE 23: GOTO 1290 +10xp
1290 PRINT Y $3:$: RETURN
1300 PRINT Z\$:: RETUFN
1310 REM OFANGE FLASH ON MATCH
1320 REM AND INCREASE SCORE
1330 FOR $K=1$ TO 3
1340 FOF $J=9$ TO 0 STEF -9
1350 COLOR $=\mathrm{J}$
1360 FOK $I=0$ TO 18 STEF 6: UTN 0,36 AT 18+I: VIIN 0,36 AT 18-I: HLIN 0,36 AT 18+I: HLIN 0,36 AT 18-I

1370 FOKE $0,(I+4) \times 2$: POKE 1,10: CALL 2
1380 NEXT I, J,K
1390 SC(P) $=$ SC(P) P : $: \mathrm{KTCH}=\mathrm{FTCH}+1$: IF HTCH=18 THEN 2590
1400 GOTD 1190
1410 REM GET DOOF THFU PDL'S
1420 REM GET COLLAN
$1430 \mathrm{COL}=\mathrm{FOL}(P) \times 5 / 255: X=C O L \times 6+$ 1

1440 COLOR=15: HLIN X, X+4 AT 38
1450 IF FEEK $(-16287+P)>127$ THEN 1480
1460 IF FOL (P) $\mathbf{x} 5 / 255=$ COL THEN 1450
1470 COLOR $=0$: HLIN 0,39 AT 38: COTO 1430
1480 REM GET ROW
 1
1500 COLOR=C(ROW): ULIN Y,Y+4 AT 38:
1510 IF FEEK $\left(-16287+{ }^{2}\right)<=127$ THEN
1520 IF FOL (${ }^{\circ}$) $\times 5 / 255=$ RON THEN 1510
1530 COLOR=0: ULIN 0,39 AT 38: GOTO 1490
1540 COLOR $=0$: ULIN 0,39 AT 38: HLIN 0,39 AT 38:D $=$ FOWW $6+C O L$: IF CH $(\mathrm{D})=1$ THEN 1570
1550 UTAE 22: TAB 1: PRINT "ALREADY 0 FEN !!";: POKE 0,255: POKE 1,255: CALL 2
1560 TAB 1: CALL -868: GOTO 1430
1570 ND $=\mathrm{ND} \mathrm{D}+1$: IF $\mathrm{ND}=2$ THEN 1590
1580 R1=FROH:XI=X:Y1=Y:D1=D: REM SAVE THE FIRST DOOR
1590 KETUFN
1600 KEM FLOT DOOKS
1610 REK RON COLORS SET BY C()
$1620 C(0)=11: C(1)=4: C(2)=2: C(3)=$ $8: C(4)=13: C(5)=3$
1630 GK
1640 FOK K=0 TO 35: COLOR $=C(K / 6)$
: HLIN 0,36 AT K: NEXT K
1650 COLOR $=0:$ FOR I=0 TO 36 STEP 6: HIN 0,36 AT I: MLIN 0,36 AT I: NEXT I
1660 UTAE 21: FOR I=4 TO 34 STEP 6: TAE I: PRINT I/6+1;: NEXT I
1670 FOKE 34,21: RETURN
1680 REK AFFAY G IS FILLED WITH
1690 REM 0-18 (2 OF EACH)
1700 FOK $\mathrm{I}=0$ TO $35: \mathrm{G}(\mathrm{I})=\mathrm{I} / 2$: NEXT I

1710 REM A RAND \ddagger IS CHOSEN 1720 KEM THEN ARRAY IS SHFLRK

1730 KEK TO DFOF \ddagger CHOSEN
1740 REM RESULT IS 18 PAIRS OF
1750 REM NHREERS THAT AFE PICTUFE
1760 REM SLEKKOUTINES IN FIX()
1770 FOK $L=36$ TO 1 STEF -1: $\mathrm{L}=$ RND
(L) :PIX(L-1)=G(J): FOR $I=J T O$ $\mathrm{L}: \mathrm{G}(\mathrm{I})=\mathrm{G}(\mathrm{I}+1)$: NEXT I, L

1780 RETURN

1790 KEM OFEN DOOF W/SOUND
1800 COLOK $=0$
1810 FOF $I=X+4$ TO X STEF -1
1820 ULIN $Y, Y+4$ AT I
1830 POKE 0,9: POKE 1,8: CALL 2
1840 NEXT I
1850 CH(D) $=0$: REM DOOR IS OPEN
1860 RETUFN
1870 KEM CLOSE DOOFS W/SOMND
$1880 \mathrm{PF}=6: \operatorname{COLOR}=\mathrm{C}(\mathrm{R} 1)$
1890 FOK $\mathrm{I}=\mathrm{X} 1$ TO X1+4
1900 ULIN Y1,Y1+4 AT I
$1910 \mathrm{PP}=\mathrm{FP}+1$: POKE 0,PP: POKE 1,
5: CALL 2
1920 NEXT I:CH(D)=1
$1930 \mathrm{PP}=6: \mathrm{COLOR}=\mathrm{C}(\mathrm{RON})$
1940 FOR $I=X$ TO X +4
1950 ULIN Y, Y+4 AT I
1960 PFFFFP+1: POKE 0,PP: POKE 1,
5: CALL 2
1970 NEXT I:CH(D1)=1: REM DDOR IS CL OSED
1980 RETUKN
1990 REM INTRODUCTION
2000 TEXT : CALL -936
2010 PRINT "CONCENTRATION, BY HARRIS KIFK"
2060 GOSUE 1680
2460 CALL -936
2470 TAE 13: PRINT "》 FLAYERS 〈<"
2480 PKINT : FKINT
2490 A $\$=$ "FIRST FLAYER ": COSLE 2760 : INFUT YS: PRINT
2500 IF LEN(Y) $)<19$ THEN 2520
2510 GOSUE 2570: GOTO 2490
2520 As="SECOND FLAYER ": GOSUE 2760: INFUT Z\$
2530 IF LEN(Z) <19 THEN 2550
2540 cosie 2570: coto 2520

2560 G0TO 2580
2570 FRINT "HAYE TOO LONG!": PRINT : KEM CTRL-G
2580 RETUFN
2590 FOKE 34,20: CALL -936
2600 A $\$=$ "FKESS RETUFN FOR SCOKES"
: GOSIE 2760: INPUT HS
2610 COLOR $=0$
2620 FOK I=0 TO 4: FOR $ل=1$ TO 31 STEP 6

2630 HLIN 0,39 AT JHI: FOKE 0,250
: POKE 1,25: CALL 2
2640 NEXT J,I: FOR $Z=1$ TO 300: NEXT Z
2650 TEXT : CALL -936: IF N=0 THEN 2720
2660 FOR $I=0$ TO 1 :SUM $(I)=S L M(I)+$ SC(I): NEXT I
2670 TAE 5: FRINT "FLAYER";: TAB 19: PRINT "GANE": : TAB 32: PRINI "SERIES"
2680 TAE 5: PRINT "--" $\#:$: TAB 19: PRINT "---";: TAB 32: PRINI "---_-"
2690 PRINT Y\$;: TAB 20: PRINT SC(0);: TAE 33: PRINT SLM(0)

2700 PRINT $2 \$;:$ TAB 20: PRINT SC(1);: TAE 33: FRINT SUM(1)

2710 GOTO 2730
2720 A $\$=$ "GAME COFFLETED IN ": GOSLE 2760: PRINT TRY;:A§=" TRIES" : GOSIE 2760
2730 COSLE 1680
2740 UTAE 20: TAB 1:A $\$=$ "ANOTHER GATE? (Y/N)": COSLE 2760: INFUT H\$
2750 IF $\mathrm{H} \$=" \mathrm{TH}$ THEN 1010: IF H\$(1 ,1) \ddagger "N" THEN 1010: GOTO 2780

2760 KEK FRINT As WITH SOUND
2770 FOR $=1$ TO LEN(A\$): PRINT As (J, J): : FOKE 0,30: POKE 1,23 : CALL 2: NEXT J: RETUFN
2780 CALL -936: PRINT "THANKS FOR FLA YING. . .HAVE A NICE DAY!"

2790 END

2800 REM POKES FOR A SITFLE TONE 2810 REM ROUTINE. SEE THE 2820 REM APPLE RED EDOK
2830 POKE 2,173: POKE 3,48: POKE
4,192: POKE 5,136: POKE 6,208
: POKE 7,4: POKE 8,198: POKE
9,1: POKE 10,240
2840 POKE 11,8: POKE 12,202: FOKE 13,208: POKE 14,246: POKE 15 ,166: POKE 16,0: POKE 17,76 : FOKE 18,2: POKE 19,0: POKE 20,96: RETUFN

Watch for the $S-80$ version of CONCENTRATION
next month

```
10800 IFPEEK(LC)=ELANDFEEK(LC-1)=EL AND PEEK(RC)={LANDFEEK(KC+1)
=&L. GOT011000
10810 T=T+20; IF PEEK(LC)OELORPEEK(LC-1)\@LTIEN LEFT=0 ELSE LE
FT=-1
10812 LI=FEEK(CAF)+640: IF LEFT THEN L1=L1-17
10815 PRINTEL1," xCRASHx";
10820 IF NOT(LEFT) THEN GOSLE20000:GOSUE20010:GOSUE20000:GOSUC20
000 ELSE GOSUE20010:GOSUE20000:GOSLE20010:GOSLE20010
10830 FOFL=1TO50:NEXTL
10850 PRINTEL1,COFS(201);
11000 NEXTI
11010 T=T+DX: FFPPTKTHEN11200
11020 T1=T/SC:T2=T-T1XSC:PRINTR965,TB$;:PRINTR1010;;:PRINTUSING"
##:姓.#";T1,T2/DX;
11030 IFLP=TLTHENFRINTERFS-15360,STRING$(5,153)"FINISH"STRING$(5
,166);
11200 NEXT LP
11205 FORI=1T010:PRINTRO,CHFS(255);:Z=USR(0):NEXTI
11210 IFT<TB THEN YE$="YOU EROKE THE LAP KECOKD !":H=470:COSUB21
000:G0T011280
11220 IFT-TB>200 PRINTR464,"YOUR DRIVER'S LICENCE HAS BEEN CANCE
UED!"!GOTO11280
11230 IFT-TB>100 PRINTE464,"PERHAPS YOU NEED A NIDER TRACK":GOTO
11280
11240 PRINTR464,"YOU'VE QUALIFIED IN ";
11250 PLACE=INT((T-TB)/5)+1:IFFL=1THENPRINT"1ST";ELSEIFPL=2THENP
RINT"ZND";ELSEIFPL=3THENPRINT"3RD";ELSEPRINTPLACE"TH";
11260 PRINT" PLACE";
11280 T=0
11290 FORI=1T01000:NEXTI
11300 PRINTE528,CHES(31);"HIT ENTER TO TRY AGAIN OR"
11305 PRINTE592,"X TO MONE TO ANOTHER CIRCUIT";
11310 \$=TNKEY\:IFY {=CHF$(13)THEN10570ELSEIFY %="X"THEN10500ELSE1
1310
12000 IF B=32 THEN L1=LC-15360-6:LEFT=-1 ELSE LI=RC-15360+1:LEFT
=0
12005 L1=570+PEEK(CAR)
12010 PRINTEL1,"OOOFS!";: FORL=1TO50:NEXTL; PRINTEL1,CHF$(198);
12020 IF LEFT THEN12500
12030 IFPEEK(LC)O&LORFEEK(LC-1)\\ELTHEN12600
```

12040 GOSUR20010:GOT012030
12500 IFPEEK(RC) ○ELORPEEK(RC+1) ○ELTHEN12600
12510 COS1820000:GOT012500
$12600 \mathrm{~T}=\mathrm{T}+10$
12620 GOTO10812
15000 PART=PART+1:IFINT(PART/2) 22OPART RETUFN
15050 ONPART/2G0T016000,' $3025,16030,16040,16050,16070$
15060 RETURN
16000 PRINTE25,"xx GRAND FRIX xx"
16010 PRINTE192,"YOU AFE AEOUT TO TAKE PART IN THE QUALIFYING SE SSION"
16020 PRINT"OF AN INTERNATIONAL GRAND PRIX RACE."
16022 RETUFN
16025 PRINT"YOUR 'FORFWULA ONE' CAR IS CONTROLLED EY THE AFFON KE YS "CHF\$(93)" AND "CHF\$(94)
16027 RETUFN
16030 PRINT"YOU WILL TRY TO TURN IN THE FASTEST LAF KEEPING IN M IND THAT :"
16035 RETUFN
16040 PRINT" - EVEEY TINE YOU STEER YOU LODSE $2 / 10$ OF A SECO ND"
16042 PRINT" SO YOU SHOULD DRIVE CLOSE TO EDGE OF THE TRAC
K."

16045 RETURN
16050 PRINT" AND"
16060 PRINT"
16065 RETURN
16070 PRINT"
YOU"
16080 PRINT"
."
17000 RETUFN
$200002=U S R(2): P O K E ~ C A R, P E E K(C A R)-T M O: L C=L C-T H O: K C=R C-T H O$ 20008 RETURN
20010 Z=USR(1):POKE CAR,PEEK(CAR) + TMO:LC=LC+THO:RC=RC+THO 20020 RETUFN
21000 FORK=1T010:PRINTEK,CHF\$(192+LEN(MES)); :FORI=1T050:NEXTI;PR INTRK, MES; ; FORI=1TO25:NEXTI, K:RETURN
colors
900 GRAPHICS 5:COLOR 1:SETCOLOR $0,12,6: 5$ ETCOLOR 4, 14,8: SETCOLOR 2,0,12 POKE 752, 1:SETCOLOR 1,12,10
T1 is location of tee
$910 \mathrm{~T}=\mathrm{INT}(\operatorname{RND}(1) * 32)+4$
$\mathrm{G} 1, \mathrm{G} 2$ is location of green; R1 is radius of green
$912 \mathrm{G} 1=\operatorname{INT}(R N O(1) * 55)+20: \mathrm{G}=\mathrm{INT}($ RND $(1) * 3$ 0) $\mathbf{2} 5:$ R1 $=\mathrm{INT}($ RNO $(1) * 2)+3$
conditions for tee, green
913 IF ($\mathrm{G} 1<45$) AHO (ABS (T1-G2) 10) THEN 910
914 IF RND 1×0.1 THEN 920
916 IF ABS (T1-62) 20 THEN 910
subroutine 950-983 plots the fairway 920 cosub 950
plots green, YA is yardage to green
922 FOR $x=0$ TO R1
923 Y=SAR (R1*R1-X*X):COLOR 2
930 PLOT G1- $X, Y+G 2$: GRFAUTO E1-X, G2-Y
932 PLOT G1+X, G2+Y: DRANTO G1 $1+X, G 2-Y$
934 NEXT $X: Y A=G 1 * 5+A E S(62-T 1) * 4$
plots tee, cup
936 FOR $X=T 1-3$ TO $T 1+3:$ FLOT $0, X:$ DRANTO 5 , X : $\mathrm{E} E \mathrm{CT} X$
938 COLOR 1 •PLOT G1,G2
par for hole
$939 \mathrm{P}(\mathrm{H})=3: I F \mathrm{YA} \mathrm{Cl}^{2} 10$ THEN $\mathrm{P}(\mathrm{H})=4$
940 IF $\mathrm{Y} \cdot>488$ THEN $F(H L)=5$
plots sandtrap, returns
$942 \mathrm{E}=\mathrm{INT}(\mathrm{G} 2-\mathrm{T} 1) / 1.5+\mathrm{T} \cdot \mathrm{A}=\mathrm{G} 1-10-\mathrm{FND}(0) * 7$
: IF G1<29 THEN $\hat{A}=\mathrm{G} 1-1 \overline{\mathrm{E}}$
944 COLOR $3:$ PLOT A,B: ORFAUTO A, B+2:PLOT A $+1, \mathrm{~B}-1$: DRSMTO $\mathrm{A}+1$, $\mathrm{E}+3$: FLOT $\mathrm{A}+2, \mathrm{E}-2$: DROANT $0 \mathrm{~A}+2, \mathrm{E}+4$
946 FLOT $\mathrm{A}+3, \mathrm{~B}-1$: ORANTO $\mathrm{A}+3, \mathrm{~S}+3$: FLOT $\mathrm{A}+4$
, E : CRSANTO $\mathrm{A}+4, \mathrm{~B}+2$
949 RETUFN
950 IF G1<35 THEN E1=RNOC(1)+3
952 IF G1)34 THEN E1=RND (1) +1.8
$954 \mathrm{E} 1=\mathrm{INT}(\mathrm{G} 1 / \mathrm{B1})$
$960 \quad \mathrm{~F}_{1}=\mathrm{T} 1-4: \mathrm{F} 2=\mathrm{T} 1+4$
962 FOR $I=0$ TO E1:FLUT $I, F 1:$ ORFANTO $I, F 2$
964 IF FNLC 1 र0. 1 THEN F1=F1-1:IF F1<0 T
HEN $F 1=0$
966 IF $\operatorname{RND}(1 \times 0.1$ THEN F2=F2+1:IF F2 239 THEN F $2=39$
968 SOLND $6,1 \times 2,10,2$ NEXT I
970 FLOT B1, F1: ORANTIO E1, F2: SOUND D, F1+F $2,10,2$
971 B1=E1+1:IF E1>79 THEN 983
972 IF 81$) 61+5+\mathrm{EHDC}(1)$ W8 THEN 983
975 IF F1 $)$ G2-8 THEN F $1=F 1-1$
976 IF F $1<\mathbf{C} 2-8$ THEN $51=F 1+0.5$
977 IF F1<E THEN F! $=8$
978 IF $F 2$ CO $2+8$ THEN $F 2=F 2-0.5$
979 IF F2<Li +8 THEN $F 2=F 2+1$
980 IF F2 179 THEN F2 $=79$
981 GOTO 970
983 RETUPN

TO ORDER TOLL-FREE 1-800-258-1790
(In NH call 673-5144)

ANDROID NIM

The newest version of TRS-80's first animated graphics game - Android NIM - now with more animation and sound! Level II, 16K \$14.95

BEE WARY

This fast-paced real time action game is a contest between a Bee operated by the player and a Spider operated by the computer. Machine language subroutines, but loads as Level II for easy operation.

SNAKE EGGS

Here is a computerized reptilian version of 21 complete with arrogant snakes and appropriate sound. Level II

16K. \$14.95

LIFE TWO

Two in one: Game of Life, at an astouding 100 generations a minute, plus Battle of Life with animated creatures and sound. Level II 16K. \$14.95

GRAND PRIX TAKE APART continued from page 51

LINES 10440-10548 - CIRCUIT SET UP

The DATA list in statement 10440 is read into array C; each element of the array contains the number of positions the upper part of the track has to be shifted, on each update, to draw a curve. As an example, a curve to the right is formed by printing the top part of the track at position $\mathrm{X}+\mathrm{C}(0)$ followed by one line down scroll, then at position $\mathrm{X}+\mathrm{C}$ (1) . . and so on. TM is the index of the last element of the array LAP (50) which, as explained earlier, contains the sequence of curves and straight lines. In other words, TM represents the circuit length. The time to beat, TB, is calculated according to the minimum number of shifts the car must make (+ a tolerance factor of .1) to reach the finish line. Here the order in the sequence of curves is very important, for two successive curves in the same direction require more shifts than, let's say, a right curve followed by a left.

LINES 10550-11200
MAIN PROGRAM CYCLE
Here are some of the variables used: CH\$
: clears the top line of the screen.

CAR

: absolute address of the byte containing the position of the car on the screen.
RCRASH, LCRASH
: right and left "crash spots" RPS
: position of track on top line; modified by array C when drawing curves.

RO

: Character forming current line of track. The effect of the track receding in a straight line is created by alternating character 132 (1 dot) with character 145 (2 dots). For curves, character 132 alone is used.
RD
: indicates whether character in RO is to be modified.

TK

: First of the last 5 elements in array LAP. When counter LP reaches TK, the current time T and the time to beat TB are displayed at the bottom of the screen.

Although the role of some of the variables in this program may seem a bit confusing at first, a closer study of the listing should clarify all your doubts and perhaps reveal some programming techniques that you can apply in your own programs.

I hope you have as much fun playing with this program as I had in writing it.

by Max Chauvet

CoMPUIER PRODCTS

STRATEGY PACK I 6404

Roman Checkers. This ancient game has been a favorite for hundreds of years. It couldn't be easier to play, yet playing the game well takes skill, cunning, and strategy as you try to outthink your opponent.
Frame up. Try to out-manuever your opponent or play against the computer in this game of wits and calculated strategy. You will alternate selecting numbers and controlling your opponents choices. Joysticks are optional.
2 programs on cassette.
$\$ 29.95$

STRATEGY PACK II 6405

Target Chase. Choose a partner or challenge the computer to this fast action, catch-or-be caught adventure.
Tunnels. In this electronics hide-and-seek, only the computer knows where you will appear next.
Survival. Intercept your opponent before you crash or are devoured.
Snake Hunt. Fast maneuvering and quick response are essential to capture - or escape from - your opponent. Joysticks are required.
4 programs on cassette.
\$29.95

SKILL BUILDER I 6406

Bingo Duel. This fast-action skill game for one or two players provides an exciting challenge, because young children and adults can compete equally. The computer adjusts to match your skill and problems are specifically selected to help you gain speed.
Number Hunt. Matching numbers is easy enough for young children, yet this computer game quickly advances in difficulty to challenge the experts. Joysticks are required. 2 programs on cassette.
$\$ 29.95$

WALL STREET CHALLENGE 6402

This computer simulation of the stock exchange is easy to play and always challenging. Invest in several corporations ranging from Municipal Power and Light, a blue chip stock that usually provides steady growth, to Offshore Industries Limited, a high-flying speculative stock that is certain to change often. Stock charts, and the Dow Jones show you the trends. Both 8 K and 16 K memory versions are included.
Cassette
$\$ 19.95$

ALL STAR BASEBALL 6401

This computerized version of America's favorite sport is full of fast action fun. Each player takes a turn at bat while the other player is both pitcher and the outfield. Innings, score, batting averages, and even errors are calculated by the computer and displayed on the official scoreboard. Balls, strikes, and all plays are called with absolute precision. Joysticks are optional for both players. Both 8 K and 16 K memory versions included.
Cassette
$\$ 19.95$

MIND MASTER 6403

This classic strategy game takes on a new dimension as the computer designs the hidden problems and reports the results of each guess. Multiple players may compete against the computer and each player may select the level of difficulty that matches their skill, ability, and patience. This program also contains a formula for solving logic problems. Create the answer and watch the computer use deductive logic to discover the secret code. Both 8 K and 16 K versions.
Cassette
\$19.95

TO ORDER TOLL FREE 1-800-258-1790
 (In NH call 673-5144)

INPUT
continued from page 10
Mr. Roger Robitaille, Publisher:
We may be the first to complain, but I'll bet we won't be the only ones to take exception to the art work on page 9 of the May issue and page 25 of the June 1980 issue of the S-8ighty magazine. If you want to bite one of the hands that feed you, then you have a lot to learn about the feelings of anyone who owns a computer, as we all think our system is the greatest, whatever make it may be.

We take exception to the insult of the garbage can with the frowny face inside, next to "SoftSide: S-80". We will not resubscribe to SoftSide, the cassette program, Prog 80, or buy any more software from the Software Exchange, and SoftSide, until an apology is published and this "emblem" is no longer used.

John R. and John D. Lindemann Cincinnati, Ohio
Thanks for your concern. Radio Shack is very sensitive about their trademarks, and we have been searching for a readily. recognizable symbol for products that can he used with the Model I. We are open to suggestions. P.S. It is a trash can, not a garhage can.

Dear Mr. Blank,
First, I would like to thank you for the best computer magazine ever.

I was very excited to see Lance Micklus' 3.4 version STARTREK program in your May issue of SoftSide. To save a lot of typing, I loaded my 3.3 version of STARTREK. Then after entering the new lines, I just renumbered the program to match the 3.4 version. This made it easy to check the GOTO's, and add any data needed to a line. Then the program was up and running, but it was missing something. Edit line 3180 to this and you will have a 50% better program (that's 150% total!): 3180 For K equals 0 to 4 : print at $512, \mathrm{~B} \$$: for J equals 0 to 100 : OUT 255,1: OUT 255,2: next J. Hook the "aux" wire to an amplifier to add a buzzing when you enter yellow, or red alert. (You can also add this to give you sound when firing phazers, etc.)

Just a little sound to a super program. Keep up the great work.

Subject: Apple Computer Complaint

Folks, I won't waste much of your time. Just thought you might want to know about this and perhaps pass the word.

Since buying my Apple at the end of last year, I've written Apple nine times regarding warranty registration, the "Contact" updates and the "Apple Orchard." In essence, I would like them to acknowledge that I am on record there somewhere.

No response is forthcoming. I've called them and even talked to them at the NCC and got a promise of action, but no results to- date. Some of the letters I sent had a S.A.S.E. enclosed, and the last letter was certified and they had to sign for it. Inside I warned that if they didn't respond, I would write every club, magazine, etc. I could find and announce it on the Source. Still no response.

So far, the computer has behaved perfectly. I hope it never needs service.... Thank you for your time.

Sincerely,
Tom Wade
Instant Screen Service San Diego, CA

Follow-up letter

You folks reported that Radio Shack's Model Il was having problems. That took guts - I haven't heard anyone else even HINT such a thing.

See if you find (as I have) that this communication problem with Apple, Inc. is common. People should know these things before they buy.

Garon's GOODIES
continued from page 8
By POKEing the final character (line 2050), we avoid the scrolling. The concept of "fooling" a string into being something different is quite useful. It is used in Mr. Jensen's PINBALL (July S-80 SoftSide) to cause lines of graphics to advance toward the paddles. MONSTER MAZE and ESCAPE, by Joel Mick (to be published in an upcoming issue) both use this approach to save a picture of a randomly generated maze, for later display. It looks like VARPTRfiddling is a technique whose time has come.

Roy K. Brookins
Beaufort, S.C.

for your Apple CCA DATA

 MANAGEMENT SYSTEM- Complete, manual in a three ring binder
- Handles 1 or 2 disk drives
- Written in BASIC, with instructions for writing your own programs to use DMS files, including I/O routines.
- Create, add, update, or delete files easily.
- Search any field for any data.
- Sort by any field.
- Print reports, selecting any fields in any order, and maintain totals and subtotals on any numberic fields.
- Print mailing labels.
- Print records selectively, for example, only customers with New York addresses.
- Complete index in manual
- Scan function to report statistically on file. You might ask how many accounts are overdue and receive a report that started 10 records found in 200 records scanned (5\% of file).
- Automatically tests line printer ready state to avoid system lockup.
- Printer alignment pattern for labels.
- Warning issued if you try to compact data without creating a backup.
- On Disk (32K) Applesoft ROM.
- Works in conjuction with Visicalc. $\$ 99.95$ plus $\$ 2$ shipping.

VISICALC

Now you can dispense with pencil, paper and calculator —instead you can have an "electronic sheet" to do your calculations, projections, and planning!
Calculate sales projections, income taxes, personal budget, cost astimates, engineering change even balance your checkbook. Visicalc is partitioned into a matrix of rows and columns. At each position in this matrix you can define a title, formula, or number. By writing on your "electronic sheet" you can set up individualized charts, tables, and records. For example, you can design your own sales forecasting format to assist in making the important "What if?" business decisions.

What would happen if sales increased by 10% ?
What if delivery time were decreased by 2 weeks?
What would be the result if I produced 500 widgets this month instead of 600? What if I produced 700?
Let Visicalc assist you in performing these calculations and save you countless hours.
Visicalc requires 32 K , Applesoft and disk drive. $\$ 150.00$
TRS-80 and Atari versions available soon!

TO ORDER TOLL FREE

1-800-258-1790
(In NH call 673-5144)

PRODUCT REVIEW

 continued from page 16The routine at line 10 uses SET and single precision variables. Lines 100-150 also use SET, but with integer variables. Lines 1000-1050 use single precision POKEs, and finally, the routine at line 10000 uses integer variables combined with POKEs.

The four methods were timed before and after compiling. The times (in seconds) are given below:

METHOD BEFORE	AFTER	
1	52	43
2	42	3
3	9	3
4	8	0

Of course, integer POKEs didn't really take zero seconds, but the screen was whited-out so fast that the only thing certain about the time is that it was MUCH less than half a second; if you blink at the wrong time you will miss it.

ADDITIONAL FEATURES

In addition to compiling most Level II or Disk BASIC programs, the Microsoft compiler adds many more features. Notice lines 1000 and 1010 in the above program. Level II would treat the variables VIDEO and FINISH as if they were VI and FI. The compiler lets you use long variable names and does NOT ignore all characters after the second one.

You can now make liberal use of REMark statements, since they will not be compiled. Thus your source program can be extensively documented without paying the price in either memory or time in the final object program.

All of the advanced math functions, including LOG, EXP, SIN, COS, TAN and the up-arrow can now produce answers which have double precision accuracy.

Assuming you have two disk drives, here's how you would compile a program. (The procedure for compiling on a onedrive system is similar - it merely involves some disk-swapping.) First you write the source program. Let's refer to it as TEST/BAS. Since you are writing in Disk BASIC, you do not need to learn a new language. For editing purposes you use the familiar EDIT command. Once TEST/BAS is written and RUNning to your satisfaction, you must SAVE it on disk in ASCII format.

Type:

SAVE''TEST/BAS',A
You now return to DOS by typing CMD" S '" or pressing the reset button. There are two diskettes supplied with the compiler. Place diskette 1 , which contains the compiler and something called a "linking loader" in drive 1. To test for errors which might prevent a successful compilation, type:

BASCOM = TEST
BASCOM is the name of the compiler. It will search for the disks for a BASIC source program called TEST/BAS (no need for you to tell it "/BAS''; it knows) and test it for errors. Hopefully you will soon be told that there are no "fatal" errors. If not, BASCOM will show you where in your program the difficulty is. You must correct the problem in your source program and try again. Once BASCOM signifies that the source program is error-free, it is time to begin the actual compiling.

This time, type
BASCOM TEST,TEST = TEST
This will produce two new files on disk: TEST/REL and TEST/LST. The first one, TEST/REL, is the first stage of the compiled program, but it is not quite finished. The second file, TEST/LST, is a listing of your source program lines along with the partially translated portion of your machine language object code. Now type:

L80 TEST

This runs the linking loader, which pinpoints the places in TEST/REL which BASCOM couldn't handle. After producing a list of these places, L80 stops. Now it is time to use the second diskette provided with the compiler. This diskette contains an enormous (38 grans!) file called BASLIB which is a library of all routines that might be needed to complete BASCOM's job. Type:

BASLIB-S
The "-S" is called a "switch". It gives additional information to the compiler. The various switches are explained in the manual. Now it is time to stand up and stretch while the huge BASLIB library is searched. This usually takes a few minutes. When BASLIB is through, type:

TEST-N-E
(-N and -E are two more switches.) In a few moments, another file will be written to disk; this one is called TEST/CMD. TEST/CMD is
the long - awaited compiled version of TEST/BAS. TEST/CMD is self-contained - that is, it does not need any of the compiler programs to run properly.

To use TEST/CMD at any time, simply type:

TEST
from DOS.
There are some important things to be aware of. For one thing, the compiled version of a program will be much larger than the original. A program which took one gran of disk storage in its BASIC form required nine grans in its compiled form. Just out of curiosity, I compiled a one-line program: 10'
When compiled, it needed 3 grans of disk space! (A gran is 1280 bytes.)

Another thing to be aware of is that Microsoft expects you to pay them a royalty if you sell compiled versions of your programs. You have your choice of a flat yearly rate of $\$ 195.00$ or 9 percent of your total sales. Of course, if you only use the compiler to speed up your personal programs, and do not sell them, you do not need to pay Microsoft. If you do choose to sell compiled programs, the fee is certainly worth it if you have a reasonable sales volume. Your programs will run faster and will be more difficult to copy. Any special BASIC code you have developed will not be exposed to the public eye.

All in all, the Microsoft Compiler package (2 diskettes and manual) is well worth the price.

TSE has the Microsoft Compiler in stock for 48K Disk TRS-80 systems. Price is $\$ 195.00$ plus $\$ 3.00$ shipping and handling.

A Review of Program Line Editor from Synergistic Software (Apple)

It's going to be difficult to keep this review from sounding like an advertisement. The Program Line Editor is the handiest program I've yet to find for the Apple. Written by Neil Konzen, Program Line Editor is a machine language program that works with any Apple. The package contains a HELLO program that will put the Editor in place as soon as you
boot your disk system. Once there, it remains invisible to most normal operations unless you need it.
Its first function, and the one you might expect, is in editing a program. Just press Control-E and the line number you wish to edit and you can insert, replace, or delete characters with ease. Delete a string of characters? Move the cursor to a certain character immediately? Type upper and lower case for an adapter? All of the above. But the power that isn't apparent from the title lies in a little key in the upper left corner of the keyboard that will soon wear through to the contact points when you get this program. The Program Line Editor also allows you to create 'Escape' functions. These are the things that allow you to type 'ESC 1' and magically get a catalog from drive 1. You can set 'ESC H' to compute and print HIMEM, 'ESC L' for LOMEM. Define functions to correspond to any key you desire. The functions can be words, commands, or sets of commands; anything that you type often can be reduced to a matter of two keystrokes. The package, which includes excellent documentation, costs $\$ 40$ and works with any Apple that has a disk.

Mini-Review-

Monty from Ritam
Corporation (S^{-80} and Apple)
Monty, from Ritam Corporation, is a program that makes a Monopoly player out of your computer. Available for both the Apple and TRS-80, not only does it play a good game of Monopoly, it also is quite entertaining. You play with a regular Monopoly set, and Monty will play along with whomever else happens to be playing. The graphic displays are very well done (yes, Monty even has an almost life-size head behind that screen), and he also has a little tune that goes with every space on the board. Part of the fun is just trying to figure out the connections between the songs and the spaces; for example, 'Hail to the Chief' goes with --Pennsylvania Avenue! (5)

APL80 VERSION 3.0

APL80, a large subset of the powerful mathematically elegant APL language of the IBM $5110 \ldots$ you can create matrices with up to 64 dimensions and manipulate them with over 60 built-in functions and six different kinds of user defined functions. Syntax of functions is identical with the IBM version.

Improved Disk version now includes Monadic and Dyadic Transposition, choice of dimension format, latent expressions, COPY, random and sequential files, and double precision arithmetic.

16K Level II Tape version $\$ 14.95$. Enhanced Disk Version $\$ 39.95$ (32 K 1 disk). Book APL: An Interactive Approach by Gilman and Rose $\$ 15.50$ plus $\$ 2$ shipping. Send SASE for data.

TO ORDER
TOLL FREE 1-800-258-1790
(In NH call 673-5144)

You don't have to be an engineer or scientist to have high resolution graphics for your computer! This program permits rotation, scaling, shift, distortion, and combination of three dimensional graphics on the screen. MP Software.
48K disk Applesoft-ROM . 29.95

STAR RAIDERS

The best! A ROM cartridge holds the game. A fast-paced full-color, space battle in which you must defeat the enemy Zylon ships while protecting your home bases. Real-time action and effects make this game the best space game available. Sixty levels of rating from Garbage Scow 4th Class to Commander make for continuously exciting play.
ROM cartridge
$\$ 59.95$

3D GRAphics

High quality graphics program for the ATARI computer allows you to rotate, distort, shrink, and combine three dimension graphic projections on the screen. With the high resolution abilities of the ATARI, one of the finest graphics packages available anywhere! 16K cassette.
\$29.95

WALL STREET CHALLENGE 6402

A computer simulation of the Stock Anange is easy to play and always challenging. Invest in stocks, and try to make it big!
8 K and 16 K version on one cassette
$\$ 19.95$

ALL STAR BASEBALL 6401

Two players face each other, one at batand the other pitcher and outfield. langs, balls, strikes, and a variety of Joysticks are optional.
8 K and 16 K versions on one cassette.

STARFLEET ORION

Command a starfleet! 2 player game system includes rule book, battle manual, control sheets. Two programs. 22 space ship types and 12 play tested scenarios.
8K cassette . \$19.95

RESCUE AT RIGEL

Search the moon base and rescue Delilah Rookh from the High Tollah. Automatic Simulations. 24 K cassette \$19.95

MORLOC'S TOWER

Match wits with the evil wizard and try to defeat him! Automated Simulations. 32K cassette $\$ 14.95$

TIME TREK

by Brad Templeton from Personal Software. Real time action. Star Trek type game with sound effects. There are no 'turns'. The action continues whether you move or not. You and the Klingons can move, steer, and fire at the same time.
8 K cassette
\$14.95

This is only a very small sample of our product line. For a complete selection, send $\$ 1$ for our catalog of hardware, software, and publications and receive a $\$ 2$ credit toward your first order.

APPLE, ATARI, and PET are trademarks of
Apple Computer Co., Warner Communications,
and Commodore, respectively

VISA ${ }^{\circ}$
The Software Exchange \& Hardside (Div. of Robitaille \& Sons, Enterprises, Inc.), SoftSide Publications

Subscribe today! Until November 1, 1980, the price is only $\$ 15.00$. After November 1, the price will be $\$ 18.00$, so why not save $\$ 3.00$ and start your family on the road to microcomputing?

[^6]

- View two text screens at once; Keep notes on one and edit the other.
- Complete cursor control.
- Built in floating point math.
- Automatic tabbing.
- Delete character, word, line or screen.
- Right, left, or center justify.
- Unlimited text movement.
- Global search and replace.
- Complete file merging capabilities.
- Automatic page numbering.
- Upper and lower case.
- Superscripts, subscripts and underscoring.

For the APPLE II and APPLE II Plus, 48K $\$ 99.95$

TO ORDER TOLL.FREE 1-800-258-1790

S-80 PROGRAMMING TIPS
continued from page 13
The up-arrow method of raising a number to a power is sometimes subject to rounding error.

On my computer (16k Level II) it says that 16 raised to the third equals 4095.998046875 when obviously it equals 4096 . These types of errors can be dangerous in a program that uses large numbers. An alternative approach is to start your program with a subroutine that fills a matrix with the values. For example:

10 DEFDBL D:DIM $D(20): D(0)=1: F O R X=1$ to $20:$ $\mathrm{D}(\mathrm{X})=\mathrm{D}(\mathrm{X}-1)^{*} 16:$ NEXTX

This loads the D matrix with the values of 16 raised to the numbers $0-20$. To calculate different powers simply change X or the 16 .

> Robert W. Lord
> Rajeev Jayavant

In the 32 character mode, only messages that start at evennumbered PRINT positions will be displayed; those PRINTed at oddnumbered locations will not appear on the screen.

Example: ?@513,‘THIS IS AN EXAMPLE" will not appear on the screen if the video display is in the 32 character mode.

How many times have you tried to BACKUP a diskette only to receive the message "BACKUP REJECTED, DIFFERENT PACK IDS?" The PACK ID is the name of the diskette, such as TRSDOS. To get by this problem, get the name of the original diskette from the DIRectory, then FORMAT the new diskette with the same name. Then BACKUP the new diskette. You should no longer have any problems.

For those of you who write programs for SoftSide and also have Level III BASIC from Microsoft, I suggest the following. Since SoftSide now only accepts programs for publication which are compatible with both Level II and Disk BASIC, if your program makes use of a USR routine, you can use Level IIl to debug your DEFUSR initialization of machine
code. This works because Level III and Disk BASIC use the same technique to initialize USR calls.

Recently, I have noticed the use of a new kind of sound effect in some programs. The sound is created by rapidly toggling the cassette relay. I have talked with the repair people at HardSide and I've been informed that failure or fusing of the cassette relay is one of the most common problems with the TRS-80. It is not a good practice to use any program which toggles this relay for sound as the relay gets overheated very easily and, given a little time, WILL fuse solid. This will prevent the computer from being able to stop the cassette recorder upon completion of a CSAVE, CLOAD or any other tape operation. Put very simply, if you want sound, use an amplifier: it won't damage your computer.

Phil Case
Springfield, MO

ST80* has a smart terminal package for you!
 TO ORDER TOLL FREE
 1-800-258-1790
 (In NH call 673-5144)

All four programs dinclude the ability to use an unmodified TRS-80 keyboard to produce RUB, ESC, and other control characters for time sharing, software control of the RS-232-C board, repeat key, bell, software support for the three most common upper/lower case hardware conversions, and line printer output.

ST80*UC

Preset parity, word length, and baud rate (regardless of switch settings on the RS-232-C board) for THE SOURCE, MICRONET, and FORUM 80, automatic testing of the RS-232-C board; and even spooling of prepared messages on tape directly into FORUM 80 using a basic program supplied as a line listing. 4 K Level II cassette, $\$ 24.95$
ST80*
Reprogram your RS-232-C board from the keyboard, and run at different baud rates. Note: does not have auto testing of the RS-232-C or tape spooling. 4K Level II cassette $\$ 49.95$

ST80*D

Connection time clock, option of user-created translation tables for keyboard, gathering and pre-formatting data to be sent directly from disk to host computer, spooling of received files to disk or printer, editing of received files, and auto logon. Use it with VTOS 3.1, and get device-driven I/O, job logging, and chaining. 32 K disk program, $\$ 79.95$

ST-80 D with extra utility programs. 32K disk program, $\$ 150.00$
*ST80 is a trademark of Lance Micklus Inc.

Unlock the of the $Z-80$ STAD

SYMBOLIC TRACE AND DEBUG

A powerful monitor for the TRS-80 with special Debugging. Single Step through the machine language programs or set up to three breakpoints, and look at this display format!

A FJRST(0) LAST(FFFF)	ASCII dump
A FIRST 0	formatted ASCII dump
	start of branch table
B VALA	display in decimal
B VALA VALB(0)	hex arithmetic
	check system tape
D FIRST(0) LAST(FFFF)	dump hex
E FIRST(0)	edit memory
F FIRST LAST VALUE	find byte
G BRKPTS (3 max.)	set breakpoints, continue
H FIRST LAST VALUE	find word
I PORT	read port
K	keyboard echo
L	load system tape
L SECTOR MEMORY COUNT(1)	load from disk
M FIRST LAST BLOCK	move memory
N	display symbol table
N 0	symbol table to tape
N VALUE	define value for symbol table
N FIRST 0	define start symbol table
O PORT VALUE	write to port
P	initialize memory blocks
P ENTRY P FIRST LAST	write memory blocks and start define a memory block
Q FIRST LAST	calculate checksum
R	display / modify registers
S FIRST LAST OPTION(0)	disassembler
T COUNT OPTION(6)	trace instructions
U FIRST COUNT OPTION(0)	unformatted tape I/O
\checkmark FIRST LAST BLOCK	verify memory
W SECTOR MEMORY COUNT(1)	write to disk
X FIRST LAST BLOCK	exchange memory
Z FIRST LAST VALUE(0)	zero memory

CONVERTING GRAPHICS

continued from page 23
It is important to distinguish between the color number and the color register on the Atari computers. The color number selects the color in the SETCOLOR command and puts it in a COLOR register. For example, the command SETCOLOR 2, 12, 4 sets one of the color registers to a medium green. (It sets register 3 in modes 3,5 , and 7). This can be confusing as it does not set register number two. Here is a chart of the registers affected by ' C ' in SETCOLOR C, x, x :

Register affected Graphics mode			
'C'	3,5 \& 7	4,6	8
0	1	1	none
1	2	none	1
2	3	none	0
3	none	none	none
4	0	0	none
Text modes 0,1 , and 2 work differently			

The COLOR command selects a color register, not a color.
Therefore, if we wanted to use our green in register 3, you would specify COLOR 3 before plotting your points. After that, you could change the color of the points already plotted by changing register 3 to another color.

It is not necessary to use a SETCOLOR command, as there is a default color for each of the five registers, as follows:

Register 0	Orange
1	Green
2	Dark Blue
3	Pink
4	Black

The GRAPHICS n command resets the registers to the default values.

The primary graphics commands for the Atari are as follows:

PLOT x, y (PL.) Displays one block at horizontal position x and vertical position y.

DRAWTO x, y (DR.) Draws a line from the previously plotted position to the position specified.

POSITION x, y (POS.) Places the cursor at the specified position.

LOCATE a, b, X (LOC.) Places the cursor at a, b and stores the current color register number of that point in variable X .

PUT \# 6, c Places an ASCII character at the current location of 88
the graphics cursor. The 6 is the device number of the graphics window.

PRINT \# 6 It is also possible to use graphics characters and print them directly on the screen. The following chart shows most of the
graphics characters. To get these characters directly from the keyboard, hold down the CONTROL key and press the letter in the corner of the character illustration on the chart.

Here is our little box for the Atari:

10 GR.3: PLOT 15,8
20 DR. 25,8:DR. 25,12 : DR. 15,12 : DR. 15,8

You could also use the control graphics characters, with CONTROL Q, E, Z, and C for the four corners, CONTROL R for the horizontal lines, and control V and B for the vertical lines. These would have to be put in a string variable or enclosed in quotes in a PRINT statement.

Converting low resolution plotted graphics from one computer to another can be quite simple. Just determine the scale from the screen display descriptions in this article, and convert the horizontal and vertical coordinates over. Most of these calculations can be done mentally. For example, if you start with the Apple II in low resolution graphics with a 40 by 40 display, you can go to the TRS-80's 128 by 48 display by multiplying the horizontal dimension by three and leaving the vertical dimension untouched. You might have to double or triple the width of the vertical lines to get it to look right. The same conversion can go to Atari Graphics mode 4 by doubling the horizontal coordinate or to mode 3 by. halving the vertical coordinate.

SET on the TRS-80, PLOT and HPLOT on the Apple, and PLOT on the Atari differ only in the scale of the drawing. The HLIN statements on the Apple are very
similar to DRAWTO on the Atari, but you need a FOR NEXT loop on the TRS-80.

High resolution graphics can be converted directly between the Apple and the Atari by adjusting for scale, but it takes creative imagination to convert these programs to the TRS-80. You may have to plot out the graphics on a piece of graph paper, then use your ingenuity on your own computer.

ULTRA SONIC COMMAND CONSOLE ... Its
keyboard permits remote control operation of lights and appliances in up to 16 separate locations. (List \$49.95) . . . \$42.99
LAMP MODULE . . . Will control any incandescent lamp rated up to 300 watis from control signals received from Command Console. Functions include on and off, brighten and dim. (List \$16.99). \$14.99
APPLIANCE MODULE . . . Receives signals from the Command Console to turn an appliance on and off (e.g.: TV, stereo, fan, etc.). (List \$16.99). \$14.99
WALL SWITCH MODULE . . . Receives signals from the Command Console to control lights or lamps normally operated by a wall switch. (List \$16.99) $\$ 14.99$
CORDLESS CONTROLLER . . . Transmits signals to the Ultra Sonic Command Console from any distance up to 30 feet. All functions of the Command Console are duplicated on the Cordless Controller. (List \$24.99). \$19.99

> BUSY BOX . . . Connects to your micro-computer and transmits signals to the Ultra Sonic Command Console from any distance up to 30 feet. Your computer can now be programmed to control all functions of the BSR X-10 Home Control System, including dimming of lights. This unit connects directly to your TRS-80 (List \$109.95) or APPLE (List \$114.95) \$99.95 S-100 Busy Box (List \$119.95) $\$ 114.95$
SPECIAL CONTROLLER STARTER KIT . . . Includes
BSR X-10 Ultra Sonic Controller, 2 Lamp Modules, 1 Appliance Module, 1 Cordless Controller and Busy Box (specify for TRS-80 or APPLE). (List $\$ 240.90$) $\$ 199.95$
TRS-80 4 YEAR HOME CONTROL PROGRAM ... $\$ 19.95$
(Above prices do not include postage and handling)

The Software Exchange Order Form

| DESCRIPTION | | | PRICE | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |

Signature. \qquad Exp. Date \qquad Inter. No. \qquad

Name \qquad

Address \qquad
\qquad

MAIL TO: The Software Exchange 6 South St. Milford, NH 03055 (In NH call 673-5144)

or, CALL TOLL FREE for Orders Only Zip 1-800-258-1790

HARDSIDE ORDER FORM

NAME

STREET
$\overline{\text { CITY }}$ STATE \quad ZIP \quad TEL. NO.

VISAIMASTER CHARGE
EXP. DATE

QUAN.	PART NO.	PRODUCT DESCRIPTION			AMOUNT
				Total Retail	
		UPS Zone	Weight	Handling Charge	
HAR				Insurance	
6 Sou	Street			Shipping Charge	
Milfo	NH 03055			TOTAL	
	NT			Amount Enclosed	
IMPORT				COD Balance	

Use this form for hardware orders only. To avoid delay, be sure to fill in all the necessary information. Please PRINT CLEARLY. Hardside's terms and conditions are stated in this catalog. We are not responsible for typographical errors, including incorrect prices. Prices are subject to change without notice. We reserve the right to limit quantities.

UPS CHART
 ADDITIONAL CHARGES:

For each COD received for collection - $\$ 1.25$
For each Address Correction - $\$ 1.25$
For each Acknowledgment of Delivery (AOD) 22 cents.
For each package with a declared value over over $\$ 100.00-25$ cents for each additional $\$ 100$ or fraction thereof.

WEIGHT AND SIZE LIMITS:
Maximum Weight per package 50 POUNDS Maximum Weight of all packages from one shipper to one consignee in one day - 100 pounds.
Maximum Size per package - 108 INCHES IN LENGTH AND GIRTH COMBINED
Minimum charge for a package measuring over 84 inches in length and girth combined will be equal to charge for a package weighing 25 pounds.

5		Ur	nite CO	d P MM Inc		el S	ARervi	Fice	Sur	rchar	rge	Effect HAR	tive M	May 1,	1980
AnY fraction of a pound over the weight smown takes the mext migher rateRates to mates to															
				zone st	,						On	2ont 3	10,	zowe	E
1 lb .	\$1.08	\$1.10	\$113	\$118	\$123	\$128	\$1 34	26 lb .	\$323	\$384	\$4 66	\$5 58	1\$692	\$8 32	\$995
2 "	116	122	128	135	145	156	168	27 "	332	395	480	575	715	860	1029
3 "	126	133	142	1.53	168	184	2.03	28 "	340	406	494	594	737	888	1064
4 "	134	1.44	156	170	190	213	237	$29^{\prime \prime}$	349	417	509	611	761	917	1098
5 "	1.43	1.54	170	187	214	240	271	$30^{\prime \prime}$	358	427	522	628	783	944	1133
6 "	$\cdot 151$	1.65	184	2.06	236	268	306	31 "	367	439	536	646	806	972	1167
	160	1.76	199	223	259	2.97	340	32 "	375	450	550	664	829	10.01	1201
8 "'	168	187	213	241	282	325	375	33 "	384	461	564	682	852	1029	1236
$9{ }^{\prime \prime}$	1.77	1.99	227	258	305	354	409	34 "	392	472	578	699	8.74	1058	1270
10 "	185	209	240	276	327	381	444	35 "	401	482	593	116	898	1085	1305
11 "	1.94	2.20	254	294	350	409	478	36 "	409	493	607	734	920	1113	339
12 "	2.03	231	268	311	373	438	513	37 "	4.18	504	6.21	752	943	11.42	1374
$13^{\prime \prime}$	2.12	242	283	329	396	466	547	38 "'	426	516	635	770	965	1170	1408
$14^{\prime \prime}$	2.20	2.53	2.97	346	418	494	581	$39^{\prime \prime}$	436	5.27	649	787	989	1198	14.43
15 "	2.29	263	311	364	4.42	522	6.16	$40^{\prime \prime}$	444	5.37	663	804	1011	1226	1477
$16^{\prime \prime}$	2.37	275	325	3.82	4.64	550	650	41"	453	548	677	823		1254	5.11
$17^{\prime \prime}$	2.46	286	339	399	487	5.78	6.85	42 "	461	559	691	840	1057	1282	546
18 "	2.54	297	354	417	5.10	6.07	719	$43^{\prime \prime}$	470	570	705	858	1080	1311	1580
$19^{\prime \prime}$	263	3.08	368	435	533	635	754	$44^{\prime \prime}$	4.78	581	719	8.75	11.02	13.39	615
$20^{\prime \prime}$	2.71	318	3.81	452	555	663	788	$45^{\prime \prime}$	487	5.92	733	892	1125	13.67	1649
$21^{\prime \prime}$	2.81	329	3.95	470	578	691	823	$46^{\prime \prime}$	495	603	748	911	11.48	1395	1684
22 "	289	3.40	409	4.87	601	719	857	$47^{\prime \prime}$	504	614	762	928	1171	14.23	1718
$23^{\prime \prime}$	2.98	3.52	423	505	624	748	891	$48^{\prime \prime}$	513	6.25	776	946	11.93	1452	1752
$24^{\prime \prime}$	3.06	363	438	5.23	6.46	716	926	$49^{\prime \prime}$	5.22	636	790	963	1217	14.80	1787
25 "	315	373	4.52	540	670	803	960	$50^{\prime \prime}$	530	646	803	981	12.39	1507	1821

COMING IN THE

ต $\mathrm{S}-80$
Dr. Livingston, in search of . . .
Adventure in the dark continent!

Lone Star Corral

Can you outsmart a horse?

© APPLE

Stereo Music Generator

Why settle for monaural sound?

Foosball

Paddle yourself silly! !

SEPTEMBER ISSUE

๑ATARI

Ricochet

Strain your powers of deduction!

Sleuth

Mind boggling

Super Barricade

Crossover adds to the challenge!

ต PLUS ...

columns, articles, and other features!
Don't miss a single issue of the great new SoftSide!

The BONE FONE is a miniaturized AM/FM stereo system that drapes over your shoulders like a scarf. The BONE FONE gives new meaning to the word portable. You don't carry a BONE FONE around with you. You wear it. Ski with it, cycle, jog or just take a leisurely stroll through the woods with it. It's the hands-free stereo that brings beautiful music to every indoor or outdoor activity without disturbing those around you and without covering your ears.

The BONE FONE stereo is covered with a sleeve made of Lycra Spandex - the same material used to make expensive
swim suits, so it's easily washable. You simply remove the sleeve, dip it in soapy water, rinse and let dry. The entire system is also protected against damage from moisture and sweat making it ideal for jogging or bicycling.

The BONE FONE has been selling nation-wide for $\$ 70$. HARDSIDE's special price is ONLY $\$ 56.95$ plus $\$ 2.50$ handling (we pay the UPS charges).
9902.
$\$ 56.95$

Bone Fone

Join
 We're Bigger and Better than Ever

 Celebration!
Special Offer to New Subscribers:

SoftSide - \$15 for one year (12 issues)

Don't miss a single issue of SoftSide - the finest software source for the Radio Shack TRS-80*, APPLE II*, and ATARI*! Save hours of typing - buy SoftSide's programs for your computer already on cassette or diskette, with magazine. Try our low introductory price for one year (12 issues).
To order, call TOLL FREE 1-800-258-1790 (in NH call 673-5144) or mail the following information to: SoftSide Publications, Subscriptions, 6 South Street, Milford, NH 03055.

```
SoftSide: $15., one yr.,(12 issues)
SoftSide: Apple on cassette $69.
SoftSide: Apple on diskette $129.
```


SoftSide: S-80 on cassette $\$ 69$.
SoftSide: S-80 on diskette $\$ 129$. SottSide: Atari on cassette and diskette will be available soon!

I own:

\square
Exp. Date \qquad Interbank \#(M/C only) \qquad
Signature \qquad
Name \qquad
Address
\qquad
\qquad

[^0]: Thanks for the informative letter, Sherry. You sure know your Enterprise! Yes, we plan to feature more of Phil Case's excellent work, possibly in our very next issue. As for that commission - your software certificate is already on its way for your helpful programming hint (originally included in your letter, but now' in our Official Programming Hints section - right next to some hints from Phil Case himself!) Ed

[^1]: Apple
 48"JMachine Language \$24.95

[^2]: 3 CLS
 5 PRINT" (1) SINGLE PRECISION": PRINT" (2) INTEGER PRECISION": PRINT" (3) SINGLE PRECISION POKE":PRINT" (4) INTEGER PRECISION POKE";:INPUTP
 6 ON P GOTO $10,100,1000,10000$
 7 GOTO 5
 10 CLS:FOR Y=0 TO 47
 20 FOR X=0 TO 127
 $30 \operatorname{SET}(X, Y)$
 40 NEXT X
 50 NEXT Y
 60 PRINT@O, ;
 70 GOTO5
 100 CLS: FOR Y\% $=0$ TO 47
 110 FOR $X \%=0$ TO 127
 $120 \operatorname{SET}(\mathrm{X} \mathrm{\%}, \mathrm{Y} \%$)
 130 NEXT X\%
 140. NEXT Y\%

 150 GOTO60
 1000 CLS:VIDEO $=15360$
 1010 FINISH=16383
 1020 FOR I=VIDEO TO FINISH
 1030 POKE I, 191
 1040 NEXT I
 1050 GOTO 60
 10000 CLS:VIDEO $\%=15360$
 10010 FINISH\% $=16383$
 10020 FOR I\% 10 VIDEO\% TO FINISH\%
 10030 POKE I\%,191
 10040 NEXT I\%
 10050 GOTO 60

[^3]: 1 REM MASTERS' GOLF
 2 REM by David Bohilke
 20-50, 66
 initialization
 G(40) holds contour of green
 B\$(7) scratch string
 $\mathbf{N} \$(20)$ holds names of four players
 $N(4)$ length of players names
 $P(9)$ par for nine holes
 $S(4,9)$ each players score for each
 of 9 holes
 $\mathrm{PU}(4)$ lengths of each players putt $\mathrm{T}(4), \mathrm{H}(4)$ retains player order of hit
 for tees and greens
 20 DIM As(22):A5=" WOOD IRON WEDGE "
 9), P(4), T(4), H(4)

 50 GRAPHICS O:SETCOLOR 2,11, 6 :SETCOLOR 4 ,15,6
 inputs number of players and names 52? ? ? " MASTERS' GOLF 54 ? ,"by David Bot,lke":? :?
 56 ? "ENTER number of solfers (1-4)" ;:INPUT NS:PL=ASC(N5)-48:IF PL<1 OR PL>4 THEN RUN

[^4]: 10360 DATA END
 10370 READ D $\$$: IF $\$=$ "END" THEN 10440 ELSE COSUE 15000 10380 FORI $=1$ TOLEN (D $\$$)STEP2
 $10390 \mathrm{D}=\mathrm{ASC}(\mathrm{MID}(\mathrm{D} \$, \mathrm{I}, 1)): \mathrm{D} 1=\mathrm{ASC}(\mathrm{MID}(\mathrm{D} \$, \mathrm{I}+1,1))$
 10400 IFD >57 THEN $0=0-7$
 10410 IFD1 $1>57$ THEND $1=01-7$
 $10420 \mathrm{D}=(\mathrm{D}-48) \times 16+D 1-48:$ POKE $A D O R, D: A D=A D+1$
 10430 NEXT I : GOTO 10370
 10440 DATA $0,1,1,2,3,3,2,1,1,0$
 10450 FORI $=1$ T010: READC(I): NEXTI
 10460 POKE ZD +6 ,FEEK(FST+1)
 10470 POKE ZD +7 , PEEK(FST+2)
 10500' CIRCUIT SET UF'
 10510 TM=30+RND (20): TB=TM10.1: TK=TM-5: TL=TM-1: $C N=0$
 10520 FOR I=2 TO TM-2: DIR=RND (3)-2:CN=CN+DIR:IFAES(CN) >1 THENCN $=$ CN-2xDIR;DIR=-DIR
 10524 IF $\mathrm{PFV}=0$ PFUV=DIR
 10526 IF DIK THEN IF DIR=PRV THEN TB=TB+14:PRV=DIR ELSE TB=TB+6: PRV $=0 / \mathrm{R}$
 $10530 \operatorname{LAP}(\mathrm{I})=$ =DIR:NEXTI
 $10540 \operatorname{LAP}(1)=0!\operatorname{LAF}(T M)=0: \operatorname{LAP}(T M-1)=0: C L S$
 10542 PRINTE466,"THE CIRCUIT IS ";:PRRINTUSING" \ddagger, \ddagger MILES LONG";T M/20;
 10545 PRINTP530,"THE LAP RECORD IS $" ;: T 1=T B / 600: T 2=T B-T 12600: F K I$

 10547 FORI $=548$ T0554:TB $=$ TB $\$+$ CHR $($ PEEK $(15360+I)$) :NEXT
 10548 怆 $=$ TB $:$: $\mathrm{H}=548$:GOSU821000:FORI $=1$ TO200:NEXTI:CLS
 10550 CH $=$ CHFS (28) +CHF $\$(255)$
 10570 CLS: PRINTE671,As;
 10580 POKE CAR 36 : RCRASH $=15360+733+E C+1$: LCRASH $=$ RC $+5-2$ IEC -1
 10590 RPS=15384: $\mathrm{ROAD}=132$: $\mathrm{RD}=13$
 10600 FOR LP=1 TO TM
 10610 SN=LAF (LP) : IF SN THEN $\mathrm{KO}=132: \mathrm{RD}=0$ ELSE $\mathrm{RD}=13$
 10620 FORI $=1 T 010:$ RFS $=F F S+C(I) \times S N: Z=1 S R(0):$ PRINTCH $;:$ POKE RFSS,RO:
 FOKE RFS $+E C, R 0: K 0=F O+R D: R D=-R D: E 1=E: B=F E E K(K E): I F S N$ POKE RFFS-U
 N, NR: POKE RFSS + QZ, M
 10625 IFB $=0$ THEN 10800
 $10630 \mathrm{~T}=\mathrm{T}+2$: $\mathrm{IFB}=32$ THEN10700
 $10650 \mathrm{Z}=\mathrm{USR}(1): P O K E \quad C A R$, PEEK (CAR $)+T W O: L C=L C+T H O: R C=R C+T H 0: G O T 010$ 710

 10710 IFB1 OTHENIFE1OETHEN12000
 continued on page 78

[^5]: 100 CLEAR1000
 110 FORX=32512T032578:READA:FOKEX,A:NEXTX
 120 DEFLSR $=8$ H7F00' FOF LEVEL II - FOKE 16526,0!POKE16527,127
 130 DATA $205,127,10,126,50,66,127,35,94,35,86,235,43,58,64,56,20$
 3,87,192,58
 140 DATA $66,127,183,200,61,200,61,50,66,127,35,86,30,0,35,70,62$,
 1,211,255
 150 DATA $16,254,70,60,211,255,16,254,70,122,183,32,7,123,183,40$,
 212,61,40
 160 DATA 209,27,27,16,241,24,225,0
 170 CLS:PRINT"FHASER SOUNDS":FOKF'=1T0100STEP2;S $\$=S \$+C H F \$(2)+C H R \$$
 (F) :NEXTF
 180 FORI $=1$ TOS:U=USR(UARPTR(S\$)):NEXTI
 190 FRINT!PRINT"OLD MACDONALD"
 200 FORT $=1$ TO12:READA, $B ; S \$=C H F(B)+C H R \$(A): U=U S R(U A R F T R(S \$)): N E X T$
 T
 210 DATA $106,88,106,88,106,88,142,88,126,88,126,88,142,170,84,88$
 220 DATA $84,88,94,88,94,88,106,255$
 230 PRINT:PRINT"CLEMENTINE"
 240 FORT $=1$ T030 \ddagger FEADA, B:S $\$=C H F \$(E)+C H R \$(A): U=U S R($ UAFFTR $(S \$)) \div N E X T$
 T
 250 DATA $138,44,138,44,138,108,180,108,110,44,110,44,110,108,138$
 ,108,110,44
 260 DATA $110,44,86,108,86,108,102,44,110,44,128,255,128,44,110,4$
 4,102,108
 270 DATA $102,108,110,44,128,44,110,108,138,108,138,44,110,44,128$
 ,108,180
 280 DATA $108,150,44,128,44,138,255$
 290 FRINT:FFINT"LOW NOTES - FAUSES BETWEEN FLAYING TONES"
 300 FOR $J=1$ TO9; $\$ \$=C H-\$(1)+C H F \$(255): F O R I=1 T O 20: K=U S R(V A F F \cdot T R(S \$)):$
 FORP $=1$ TOJ
 310 NEXTP, I, J \ddagger PRINT:PRINT"MISCELLANEOUS"
 320 FORI $=2 T O 127$ STEF $2 ; S \$=$ S $\$+$ CHF $\$(1)+$ CHF $\$(128-I)+C H F \$(1)+\mathrm{CHF} \$(128+$
 I) : NEXTI
 330 FORT $=1$ TO7:U=USR(UAFFTR $(\$ \$))$:NEXTT
 $340 \mathrm{~S} \$==1 \mathrm{~T} \div$ PRINT
 350 FOKF $=100 \mathrm{TO}$ STEP $-3 ; S \$=S \$+C H R \$(2)+C H F(F):$ NEXTP
 360 FORP $=1$ TOB8STEP $4: 5 \$=5 \$+$ CHF $\$(1)+C H R \$(F) \div$ NEXTF
 370 FORT $=1$ TO5: $U=U S R(U A F P T R(S \$)): F R R I N T C H R \$(29) ; " K E D$ ALERT";
 $380 \mathrm{U}=\mathrm{USR}(\mathrm{VARPTR}(5 \$)) \div \operatorname{PFINTCHR} \$(29) ; \operatorname{STRING} \$(9,143) ;:$ NEXTI

[^6]: The So fluare Exchange 6 south st.. milford, nh $0305 s$
 To order: Call Toll-Free 1-800-258-1790 (in NH call (603) 673-5144)
 The Software Exchange \& HardSide (Div. of Rohitalle \& boms, Enterpmara, Ime). Sotthide Puhbir diom
 The Solnware Exrhan \& Hand

