o
+ wk

REGISTRATION FORM

To qualify for maintenance and
update information
you must return your registration card.

The Mark Williams Company is pleased to provide our customers with
maintenance and update information but you must be a registered customer.
| Please complete the form below, detach it, and return it to us within 30 days.
No postage 1S required.

When vou complete your registration card, please be sure to let us know
where you learned about our product. This will allow us to spend less money
on advertising and more money developing quality software for you, our valued
customer.

e e

Mark Willlams Company REGISTRATION CARD
Piease complete and return this card within 30 days of purchase o quality lor maintenance and updates

Customer Data
! MameTitke

Company Name
;ﬁ.ddrm

City L State or Country Zip
ETay_'Ii.rﬁe Telephone
Product Data
Purchased from Date Purchased
Product

Version Number

Computer

Hard Disk Mame Hard Disk Memory Size
How did you first hear about this product?

= Saw your ad in __ ipisaie soeciy)
O Other — — chnzsn mpecibyl

I e e

| “ " | NOPOSTAGE
NECESSARY
IF MAILED

UNITlgL‘!TQTEATES fOl’ ﬂ’le
Atari ST

BUSINESS REPLY CARD

FIRST CLASS « PERMIT NO. 10820 « CHICAGO, IL
POSTAGE WILL BE PAID BY ADDRESSEE

Mark Williams Company
1430 Wrightwood Avenue
Chicago, lllinois 60614

m‘ Mask Williams Comparwy

Copyright (¢) 1986 by Mark Williams Company.

This publication conveys information that is the property of Mark Williams Company.
It shall not be copied, reproduced, or duplicated in whole or in part in any form
without the express written permission of Mark Williams Company. Mark Williams
Company makes no warranty of any kind with respect to this material, and disclaims
any implied warranty of merchantability or fitness for any particular purpose.

Mark Williams C and COHERENT are trademarks of Mark Williams Company.
Atari, ST, and TOS are trademarks of Atari Corp.

Revision 3 Printing 5 4 3 2 1

Published by Mark Williams Company, 1430 West Wrightwood Avenue, Chicago,
Tlinois 60614,

Table of Contents

1. A Tutorial Tntroduction

What is in Mark Williams C7
Hardware requirements
How to use this manual
User registration and reaction report
Getting started

Introducing the Mark Williams C micro-shell
What 15 msh?
How to enter msh
Introducing MicroEMACS, the screen editor
Setting the shell's internal variables
Setting the environment
Direclories
Renaming, moving, copying, and removing files
Redirecting input and output
Redirecting to peripheral devices
Logical devices
File-name substitutions
Quoted strings
Joining and separating commands
The profile [ile

Compiling with Mark Williams C
Compiling from the GEM desktop
Compiling through msh
The phases of compilation
Edit errors automatically
Compiling multiple source files
MNaming executable files
Linking without compiling
Compiling without linking
Floating point output
Assembly language files
Generating assembly language output
Changing stack size

Using the Mark Williams C Libraries
Strings and string handling
Input and output
Bvte-by-byte 1/0
Word-by-word 1/0
String [/O

ot
el = = - B LV IO R SN = R I W SRR B L L B]

i —
(TN LN R R]

L¥]

T B
T RN R I B

0 b
g =g

ka2

B
-

I
b

L
tar tad B2

[
Ly

Mark Williams C l

Mark Willlams C for the Atari ST

Block 1/0 25
Formatted 1/0 25
Random access 26
Sorting 27
Dynamic memory allocation 27
Mathematics routines 28
hios, xbios, and gemdes functions 28
UNIX routines 29
The AES and VDI libraries 29
Compiling programs that use AES and ¥ DI a0
The Line A library a0

Debugging Programs with Mark Williams C 31
db: the debugger 31
od: octal or hexadecimal dump 31
nm; print symbol tables 3z

Selected References 2
Atari 8T information 33

2. Frror messages 35
3. The Lexicon 50

example Give an example of Mark Williams Lexicon format

ahort End program immediately

abs Return the absolute value of an integer

ACOS Calculate inverse cosing

address

AES

aesbind.h

alignment

appl_exit Exit from an application

appl find Gret the TD of another application
appl_init Initiate an application

]

appl_read Read a message [rom another application
appl_tplay Replay AES activity

appl_trecord Record user actions

appl_ write Send a message to another application

ar The librarian/archiver

arena

arge Argument passed to main

argy Argument passed to main

array

as Mark Williams assembler

aso8toas Convert DRI assembler to Mark Williams assembler
ASCIL

asclime Convert time structure to ASCII string

Mark Williams C

Table of Contents

asin

assert
assert.h
#assert
atan

atanl

atof

atod

atol

auto

‘\auto

amx
backspace
basepage.h
Bconin
Bconout
Beonstat
Bceostat
hios.h

bios

BIDS
Bioskeys
bit

bit map
bombs
boot
buffer
byte

byte ordering
C language
cabs
calling conventions
calloc
canon.h
carriage return
cat

Cauxin
Cauxis
Cauxos
Cauxout
cc

ccl)

¢cl

ccl

ccd

Mark Williams C

h—___

Caleulate inverse sina

Check assertion at run time

Text of assert message

Check assertion at compile time
Calculate inverse tangent

Calculate inverse tangent

Convert ASCIT strings to floating point
Convert ASCII strings to integers
Convert ASCI strings to long integers

Receive a character

Send a character to a peripheral device
Return the input status of a peripheral device
Read the gutput status of a peripheral device

Call an input/output routine in the TOS BIOS

Reset the kevboard to its default

Complex absolute value function

Allocate dynamic memary

Concatenate files

Read a character from the serial port

Check if characters are waiting at serial port
Check if serial port is ready to receive characters
Write a char to the serial port

Compiler driver

tad

Mark Williams C for the Atari ST

Ceonin
Cconis
Cconos
Cconout
Cronrs
Croonws
cd

ceil
char

character constant

clearerr
CLK_TCK
clock

close

cmp
Cnecin
commands

compound asumber

con

CO%

cosh

cp

cpp
Cproos
Cproout
Crawcin
Crawio
creat
crtsl.o
crisd.o
crisg.o
cshecony
ctime
ctype
ctype.h
cursconf
Cursconf
daemon
data formats
data types
dale
dayspermonth
db
Dereate
Ddelete

Read a character from the standard input
Find if a character is waiting at standard input
Check if console is ready to receive characters
Write a character onto standard ocutput

Read and edit a string from the standard input
Write a string onto standard output

Change directory

MNumeric ceiling function

Present stream status

Get number of clock ticks since system bhoot
Close a file

Compare bytes of two files

Perform modified raw input from standard input

Calculate cosing

Calculate hyperbolic cosine

Copy a file

C preprocessor

Check if printer is ready to receive characters
Send a character to the printer port

Read a raw character from standard input
Perform raw 170 with the standard input
Create/truncate a file

Run a Mark Williams C program under the Beckemeyer C she
Caonvert system time to an ASCIL string

Header file for data tests
Set the cursor’s configuration
Get or set the cursor's configuration

Print/set the date and time

Return number of days in a given month
Assembler-level symbolic debugger
Create a directory

Delete a directory

Mark Williams C

declarations

#deline

desk accessory

df
Diree
Dgetdry

Dgetpath

diff
difftime

directory

Dosound
donhble
driomw
Drymap
Dsetdry

Dsetpath

dup
dup2
echo
ecyl
edata
egrep
end
enum
environ
enyp
EQOF
erroo
errno.h

error codes

etext

eviot bution
evnt_dclick
evot keyhd
evont mesag
evni _mouse
eviol multi
evnt_timer
executable file:

BEXECYE
exlt
exit
_exit
exp
extern

Mark Williams C

e

Table of Contents

Measure free space on disk

Get the location of free space on a drive
Find which disk drive is the current drive
Get the current directory name
Summarize differences between two files
Return difference between two times

Start up the sound daemon

Convert from DRI to Mark Williams format
Get a map of the logical disk drives

Make a drive the current drive

Set the current directory

Duplicate a file descriptor

Duplicate a file descriptor

Repeat/expand an argument

Convert floating point numbers to strings

Extended pattern search

Variable passed to main

External integer for return of error status
Error numbers used by errno function

Await a specific mouse button event
Get/set double-click interval

Await g keyboard event

Await 3 message

Wait for mouse to enter specified rectangle
Await one or more specified events

Wait fora specified length of time

Terminate a program diredtly
Terminate a program directly
Compute exponent

Mark Willlams C for the Atari ST

fabs
Fattrib
felose
Felose
Fcreate
fovt
Fdatime
Fdelete
Fdup
feof
ferror
fflush
Fforce
fgetc
Fgetdta
fgets
fgetw
field
file

file
FTLE

file descriptor

fileno

flexible arrays

float

floor
Flopfmt
Floprd
Flopver
Flopwr
fopen
Fopen
form_ alert
form center
form_dial
form_ do
farm_ error
fprintf
fpute
fputs

fputw
fread
Fread

free
Frename

Compute absolute value

Get and set file attributes

Close stream

Close a file

Create a file

Convert floating point numbers to ASCIT strings
Get or set a file's date/time stamp
Delete a file

Generate a substitute file handle
Discover stream status

Discover stream status

Flush stream output buffer

Force a file handle

Eead character from stream

Get a disk transfer address

Read line from stream

Read integer from stream

MName a file's type
Deseriptor for a file stream

Get file descriptor

Set a numeric floor

Format tracks on a floppy disk

Read sectors on a floppy disk

Verify a floppy disk

Write sectors on a floppy disk

Open a stream for standard 1,0

Open a file

Display an alert box

Center an object on the s¢reen
Eeserve/free screen space for dialogue
Handle user input in form dialogue
Display a DOS error alert

Format output

Write character to stream

Write string to stream

Write an integer to a stream

F.ead data from stream

Read a file

Return dyvnamic memory to free memory pool
Rename a file

Mark Williams C

Talle of Contents

freopen

frexp

fscanf

fseek

Fseek

fsel _input
Fsetdta
Fsfirst

Fsnext

fstat

ftell

function
fwrite

Fwrite

govt

EEm
gemdefs.h
gemdos
gemout.h
Getbhpb

gelc

getchar
geteol

geteny
Getmph
getpal
getphys
getrez

Getrez

gets

Getshift
Gettime

getw

Giaccess
GMT

gmtime

graf draghox
grafl growbox
gral _handle
graf mbox
graf mkstate
gral _mouse
gral _rubbox
graf shrinkbox
graf slidebox

Mark Williams C

Open a stream for standard 1/0
Separate mantissa and exponent
Format input from a file

Seek on stream

Move a file pointer

Select a file

Set disk transfer address

Search for first occurrence of a file
Search for next occurrence of file name
Find file attributes

Return current position of file pointer

Write to stream

Write into a file

Convert floating point numbers to ASCII strings
Run a GEM-DOS program

GEM structures and definitions

Call a routine from GEM-DOS

GEM-DOS file formats and magic numbers

Get pointer to BIOS parameter block for a disk drive
Read character from stream

Read character from stream

Get a color value

Get environmental variable

Copy memory parameter block

Get the color palette settings

Get the base of the physical screen's display
(et screen’s current resolution

Read the current screen resolution

Read line from stream

Get or set the status flag for shift/alt/control keys
Read the current time

Read integer from stream

Access a register on the GI sound chip

Convert system time to system calendar structure
Draw a drapable box

Draw a growing box

Get VDI handle

Mowve a box

Get the current mouse state

Change the shape of the mouse pointer

Draw a rubber box

Draw a shrinking box

Track the slider within a box

Mark Williams C for the Atarl 8T

graf watchhox
handle
header file
help
hidemouse
HOME
horlzontal tab
htom

hypot
Ikbdws
INCDIR
#include
include Tile
index
Tnitmous

int
interrupt
lorec
isalnum
isalpha
isascii
iscntrl
isdigit
isleapyear
islower
isprimi
ispunct
isspace
isupper

jo

il

jday to_time
jday to tm
Jdisint
Jenahint

jn
Ebdvhase
kbrate
Khrate
kevboard
Keythl
keyword
Kegettime
kick
Esettime

Draw a watched box

Print concise description of command
Hide the mouse pointer

Redraw screen from high to medium resolution
Compute hypotenuse of right triangle
Write a string to the intelligent keyboard device

Find a character in a string
Initialize the mouse

Set the /0 record

Check if a character 15 a number ar letter
Check if a character is a letter

Check if a character is an ASCII character
Check if a character is a control character
Check if a character 15 4 numeral

Indicate if a year was a leap vear

Check if a character is a lower-case letter
Check if a character is printable

Check if a character is 2 punctuation mark
Check if a character prints white space

Check if a character 15 an an upper-case lattar
Compute Bessel function

Compute Bessel function

Convert Julian date to system time

Convert Julian date to system calendar format
Disable interrupt on muli-function peripheral device
Enable a multi-function peripheral port interrupt
Compute Bessel Munction

Return a pointer to the kevboard vectors
Reset the kevboard’s repeat rate

Get or set the keyboard®s repeat rate

Set the kevboard’s translation table
Read time from intelligent keyboard's clock

Force OS to reread the disk cache
Set time in intelligent kevboard's clock

Mark Williams C

Table of Contents

lealloe Allocate dynamic memory

Id Link relgcatable object files

Idexp Separate mantissa and exponent

Lexicon

libaes.a

libc.a

libm.a

LIBPATH

library

libvdi.a

line feed

Line A

linea.h

Imalloc Allocate dynamic memory

localtime Convert OS time to ASCII string

log Compute natural logarithm

logl0 Compute common logarithm

Loghase Read the logical screen's display base

long

longjmp Return from a non-local goto

Irealloc Reallocate dyvnamic memory

Is List directory contents

lseek Set read/write position

Itam Redraw the screen from low to medium resolution

Ivalue

MACrD

main

make Program building discipline

malloc Allocate dynamic memory

Malloc Allocate dynamic memory

manifest constant

mantissa

math.h Header file for mathematics functions

mathematics library

me Invoke MicroEMACS screen editor

me.a

Mediach Check whether disk has been changed

memory allocation

meno

menu_bar Show or erase the menu bar

menu_icheck Write or erase a check mark next to & menu item

menu_ienable Enable or disable a menu item

menu_register Add a name to the desk accessory menu list

menu__text Replace text of a menu item

menu_tnormal Display menu title in normal or reverse video
Mark Williams C ?

B -~ — e R e

Mark Williams C for the Atari ST

metafile
mf
Mfpint
Miree
Midiws
mkdir
mktemp
modf
modulus
msh
Mshrink
msleep
mioh
mtol
mtype.h
my

nested comments

newline

om

nolmem
n.out

NIL

NULL
nybble
ohdefs.h
obje_add
obje change
ohjc_delete
objc_draw
obje_edit
obje find
objc_order
objc_set
object
object format
od

Offgibit
Ongibit
open
operator
oshind.h
path

PATH
patterns
peekb

Measure space left in RAM
Initialize the MFP interrupt

Free allocated memory

Write a string to the MIDI port
Create a directory

Generate a temporary file name
Separate integral part and fraction

Shrink amount of allocated memory

Stop executing for a specified time

Redraw the screen from medium te high resclution
Redraw the screen from medium to low resolution

Print a program's symbol table
Check if memory is allocated

Redefine a child object within an object tree
Change an object's state within a clipping rectangle
Delete an object from an object tree

Diraw an object

Edit a text object

Find if mouse pointer 18 over particular object
Reorder a child object within the object tree
Calculate an object’s absolute sereen position

Clear a bit in the sound chip‘g A port
Turn on a bit in the sound chip’s A port
Open a file

Extract a byte from memory

Mark Williams C

Table of Contents

peekl
peekw
perrar
Pexec
Physhase
picture
pnmaich
pointer
pokeb
pokel
pokew
port
portability
pow

pr
precedence
printf
pra:
process
Protobt
Prtblk
Pterm
Ptermi
Ptermres
pun
Puntaes
putc
putchar
puls
putw
pwd
gsort
rand
Random

random access

ranlib

rational number

rc_copy
rc_equal
rc_lIntersect
rc_union
read

read-only memory

real numbers
realloc

Mark Williams C

Extract a long from memory

Extract a word from memory

System call error messages

Load or execute a process

Read the physical screen’s display base
Format numbers under mask

Match string pattern

Insert a byte into memory
Insert a long into memory
Insert a long into memory

Compute a power of a number
Paginate and print files

Format output

Generate a prototype boot sector

Print a dump of the screen

Terminate a process

Terminate an O8 process

Terminate a process but keep it in memory

Disable AES

Write character to stream

Write a character to standard output

Write string to standard output

Write word to stream

Print the name of the current directory
Sort arrays in memoty

Generate pseudo-random numbers
Generate a 24-bit pseudo-random number

Copy a rectangle

Compare two rectangles

Check if two rectangles intersect
Calculate overlap between two rectangles
Read from a file

Reallocate dynamic memory

Mark Williams C for the Atarl ST

record
Rect
cegister
register variable
rewind
rindex

rm

rmdir
rsconf
Rsconf
rsrc_free
rsre_gaddr
rsre_load
rsre_oblix
rerc_saddr
runiime startup
rralue
Rwabs
scanf
Scrdmp
screen control
scrp_read
scrp write
set

setbuf
seteol
Setcolor
seteny
Setexc
setjmp
setjmp.h
setpal
Setpallete
setphys
setprt
Setprt
selrez
Setscreen
Settime
shel envrn
shel find
shel read
shel write
shellsort
short

Reset file pointer

Find a character in a string

Remove files

Remove a directory

Reconfigure the serial port

Configure the serial port

Free memaory allocated to a set of resources
Get the address of a respurce object

Load a resource file into memory

Change the form of an object’s coordinates
Store address of a free string or a bit image

Read or write data on a disk drive
Format input
Print a dump of the screen

Read the scrap directory
Write to the serap directory

Sat alternative stream buffers

Reset a color

Set one color

Set an environmental variable

GGet or set an exception vector

Perform non-local goto

Header file for setimp and longjmp functions
Eeset the color palette

Set the screen’s color palette

Reset physical screen’s display space

Reset the printer port

(Fet or set the printer’s configuration

Reset the screen resolution

Set the video parameters

Set the current time

Search for an environmental variable

Search PATH for file name

Let an application identify the program that called it
Run another application

Sort arrays in memaory

Mark Williams C

Table of Contents

show
showmouse
signal.h
sin

sinh
size
sizeof
sleep
snap
sort
sprintf
sgri
srand
sscanf
stack

standard inpuf
standard output

stat.h
stat
static
stdin
STDIO
stdio.h
stdout
stime

. stksize
storape class
strcat
strcmp
strcpy
stream
string
strip
strlen
strocat
strncmp
strncpy
struct
structure

structure assignment

SUFF
Super
Supexec
Sversion
swabh

Mark Williams C

Display a stored screen image
Redisplay the mouse pointer

Calculate sine
Calculate hyperbolic sine
Print the size of an object module

Stop executing for a specified time
Save a screen image

Sort lines of text

Format output

Compute square root

Seed random number generator
Format input

Definitions and declarations used to obtain file status
Find file attributes

Set the time

Append one string to another
Compate two strings
Copy one string into another

Strip symbol table from object file
Measure the length of a string
Append one string to another
Compare two strings

Copv one string into another

Enter supervisor mode

Run a function under supervisor mode
Get the version number of 08

Swap a pair of bytes

Mark Williams C for the Atari ST

system

system varlables
tail

tan

tanh
temponam
tetd to im
Tgetdate
Tgettime
Tickeal

lime

time
time_ to_ jday
time.h
timezone
TIMEZONE
tm_to jday
tm_to tetd
TMPDIR
tmpnam
toascii
tolower

_ tolower

tos

TOS

touch

toupper
__toupper
Tsetdate
Tsettime

type promotion
type checking
typedef
ungeic

union

unig

UNIX routines
unlink

unset
unseieny
unsigned
v_arc

v_bar
v_hit_image
v cellarray

Print the end of a file

Calculate tangent

Calculate hyperbolic cosine

Generate a unique name for a temporary file
Convert IKBD time to system calendar format
(et the current date

Get the current time

Return system timer's calibration.

Get current time

Convert system time to Julian date
Header file with time-description structure

Time zone environmental parameter
Convert calendar format to Julian time
Convert system calendar format to IKBD time

Generate a unique name for a tempoarary file
Convert characters to ASCII

Convert characters to lower case

Convert letter to lower case

Exegute GEM-DOS program

Update modification time of a file
Convert characters to upper case
Convert letter to upper case

Set a new date

Set a new ume

Return character to input stream
Remove/count repeated lines in a sorted [ile

Remaove a file
Discard a shell variable
Discard an environmental variable

Draw a cir¢ular are

Draw a rectangle

Print a bit image file

Draw a table of colored cells

Mark Williams C

Table of Contents

y_circle Draw a circle
v_clear_disp list Clear a printer’s display list
v_clrwk Clear the virtual workstation
v _clsywk Close the screen virtual device
v_clswk Close a virtual workstation
v_contourfill Fill an outlined area
v_curdown Move text cursor down one row
v_curhome Move text cursor to the home position
v_curleft Mowve text cursor left one column
v_curright Move text cursor right one column
v_curtext Write alphabetic text
v curup Move text cursor up one row
v_dspcur Maove mouse pointer to point on screen
¥_eeol Erase text from cursor to end of screen
Y_Eeos Erase {rom text cursor to end of screen
v_ellarc Draw an elliptical arc
v_ellipse Diraw an ellipse
v_ellpie Draw an elliptical pie slice
v_enter cur Enter text mode
v_exit_cur Exit from text mode
v_fillarea Draw a complex polvgon
v _form adv Advance the page on a printer
v_pet pixel See 1f 3 given pixel is set
v gtext Draw graphics text
v_hardcopy Write the screen to a hard-copy device
v_hide ¢ Hide the mouse pointer
v_ justified Justif'y graphics text
v_meta_extents Update extents header of metafile
v_opovwk Open the virtual screen device
v_opowk Open a virtual workstation
v_output window Dump a portion of a virtual device to a printer
v_pieslice Draw a circular pie slice
¥ pline Draw a line
v _pmarker Draw a marker
v_rbox Draw a rounded rectangle
v_rfhox Draw a filled, rounded rectangle
¥_rmeur Remove last mouse pointer from the screen
v_rvoff End reverse video for alphabetic text
¥_rvom Display alphabetic text in reverse video
v_show ¢ Show the mouse cursor
v _updwk Update a virtual workstation
v_write meta Write a metafile item
VDI
vdibind.h Declarations for VDI and AES routines
version Print/create a version string

Mark Williams C 15

R

Mark Williams C for the Atari ST

vertical tab

vex buty

YexX_ cury

vex mofy

vex timy
ym_filename
void

vg_ cellarray
vq_cheells
vq_color
vq_curaddress
vg_ extod

vg key s

Yq_ mouse

vq_ tabstatus
vaf attributes
vgin mode

vql attributes
vqm _attributes
vqp_ error
vqp_ films
vip_ state

vgt attributes
vgi_extent
vqt_fontinfo
vql_name

vgi width
vr_recfl
yr_trofm
vro_cpyim
vrq_choice
vrq_ locator
vrq_ sfring

vrg_ valuator
vrt_cpyfm
vs_clip
vs_color
vs&_curaddress
vs palette
vsc_form

vsf _color

vsf interlor
vsf perimeter
vsf style

vsf udpat

Set new button interrupt routing

Set new cursor interrupt routine

Set new mouse Movement interrupt routine
Set new timer interrupt routine

Rename a metafile

Return information about cell arrays

Find how many characters virtual device can print
Check/set color intensity

Get the text cursor’s current position

Perform extend ingquire of VDI virtual device
Check control key status

Check mouse position and button state

Find if graphics tablet is available

Read the area fill's current attributes

Determine mode of a logical input device

Read the polyline’s current attributes

Read the marker's current attributes

Inquire if an error occurred with the Polaroid Palatte
Get films supported by driver for Polaroid Palette
Read current settings of the Polaroid Palette driver
Read the graphic text’s current attributas

Calculate a string's length

Get information about special effects for graphics text
Get name and description of graphics text font

(et character cell width

Draw a rectangular fill area

Transform a raster image

Copy raster form, opaque

Return status of function keys when any key is pressed
Find location of mouse cursor when a key 15 pressed
Read a string from the keyboard

Eeturn status of shift and cursor keys

Copy raster form, transparent

Set the virtual device's clipping rectangle

Set color intensity

Move alphabetic cursor to specified row and column
Select color palette on medium-resclution screen
Draw 2 new shape for the mouse pointer

Set a polyvgon's fill color

Set a polyzon's fill type

Set whether to draw a perimeter around a polygon
Set a polygon’s fill style

Define a fill pattern

Mark Williams C

Table of Contents

vsin_maode
vsl color
vil ends

¥sl type

vsl udsty
vsl_width
vsm_ choice
vsm_ color
vsm_ height
vsm_locator
vsm_ string
¥im_ [ype
vsm_ valuator
VEp_message
VED_ Save
Ysp_ state

vst allgnment
vst_color
vst_effects
vst_font
vst_height
vst_load_fonts
vst point
vst_rotation
vst_unload fonis
véwr_mode
VYsync

we

wildcards
wind cale
wind _close
wind_create
wind _delete
wind find
wind _pet
wind _open
wind set
wind_update
window

write

xhios

xbios.h
Xbtimer
XOFF

XON

Mark Williams C
- S

Set input mode for logical input device

Set a line’s ¢color

Attach ends to a line

Set a line’s type

Set vser-defined line type

Set a line's width

Return last function key pressed

Set a marker's color

Size a marker

Return mouse pointer’s position

Read a string from the keyboard

Set VD marker type

Return shift/cursor key status

Suppress messages from Polaroid Palette device
Save to disk current setting of Polaroid Palette driver
Set the Polaroid Palette driver

Realign graphics text

Set color for graphics text

Set special effects for graphics text

Select a new font

Reset graphics text height, in absolute values
Load fonts other than the standard font
Reset graphics text height, in printer’s points
Set angle at which graphic text is drawn
Unload fonts

Set the writing mode

Svnchronize with the screen

Count words, lines, and characters in files

Calculate a window's borders or area

Close a window and preserve its handle
Create a window

Delete a window and free 1ts resources
Determine if the mouse pointer is in a window
Get information about a window

Open or reopen a window

Set specified fields within the window

Lock or unlock a window

Write to a file
Call 4 routine from the extended TOS BIDS

Initialize the MFP timer

1. A Tutorial Introduction

Congratulations on choosing the Mark Williams C compiler. Mark Williams C has the
state—of -the-art power and flexibility that the professional programmer needs, but is
simple enough for the beginner to learn quickly,

Mark Williams C uses the latest advancements in compiler design. Tt parses programs
by recursive descent and uses table-driven code generation to produce fast, dsnse
code. Then it performs extensive optimization to make the code even hetter. Easze of
use, full documentation, and compact generated code make Mark Williams C the right
tool for the rapid development of vour programs,

Mark Williams C for the Atari 5T is a member of the Mark Williams Company family
of C compilers, Mark Williams Company compilers support many different environ-
ments and processors. The environments include the following:

COHERENT
CP/M-BRK
ISIS-11
M5-DOS
RMX

TOS
WVAX/VMS

In addition to the 68000 family, the processors supported include:

PDP-11
Z8001
Z8002
8086
80186
802RA

What iy in Mark Williams C?

Mark Williams C is a uniquely powerful C programming svstem designed for the Atari
ST. It consists of the following;

1: The Mark Williams C compiler, plus an assembler, a linker, a preprocessor, and
other tools.

2. A set of commands selected fram the COHERENT operating system, including
the MicroEMACS screen editor and the make programming discipline,

Mark Williams C 1

Mark Williams C for the Atari 8T

153 A full set of libraries, including the standard C library, a mathematics library,
plus libraries that implement the Atari AES, VDI, and Line A routines.

4. A set of sample programs, including full source code for the MicroEMACSE
editor, and text files to be used with the tutorials included vour documentation.

5. The Mark Williams micro-shell msh, a command processor designed to control
the operation of the compiler and its commands.

Mark Williams C is designed to work through msh, a gommand progcessor that com-
bines aspects of the Bourne and Berkeley shells into a small but powerful program.
With msh, vou can petform numerous tasks (0 speed program development. Tt gives
sark Williams C unique power in developing programs for the Atari 8T,

Hardware requirements

Mark Williams C is designed to be used on the Atari ST, either the 320 or 1040
models. Tt can be used with the following hardware configurations:

& An Atart ST with two disk drives, single- or double-sided.
* An Atari ST with one floppy disk drive and a hard disk.

* An Atari ST with one double-sided floppy disk drive, one megabyte of RAM,
and a 500-kilobyte RAM disk,

How to use this manual

This manual is in four sections, Section 1, which vou are now reading, is a tutorial
introduction to Mark Williams C. It will show you how to use the micro-shell msh,
how to use its commands, how to compile programs, and how to use the various
libraries available with Mark Williams C.

Secrion 2 1s a table of all error messages produced by the compiler, the azsembler, and
the linker,

Szction 3 is the Lexicon. This is by far the largest part of the manual, The Lexicon
contains several hundred entries; each describes a command, a function, defines a C
technical term, or otherwise gives you useful inf ormation,

All of the Lexicon's entries are in alphabetical order, and are designed to be pasily
used, For example, if you want information on how to use the STDIO routines,
simply turn to the entry in the Lexicon on STDIO; there, you will find a list of all the
<TDIO routines, a description of each, and instructions on how to use them. Or, if
vou want information on how Mark Williams C encodes floating point numbers,
simply turn to the entry on float. There, you will Tind & full description of floating
point numbers. Many Lexicon entries have full C programs as examples; all have full
cross-references to related entries,

2 Mark Williams C

Tulorial Introduction

This tutorial will refer constantly to the Lexicon, If vou are unfamiliar with a techni-
cal term used in this manual, look it up in the Lexicon. Chances are, you will find a
full explanation. If you are not sure how to use the Lexicon, look up the entry for
Lexicon within the Lexicon, This will help vou get started.

Finally, the back of this manual has a tutorial for the make program building dis-
cipline and the MicroEMACS screen editor, If you are unfamiligr with gither of these
tools, vou will find that these tutorials will give you a good besinning in vsing them.

User registration and reaction report

Before you go any further, [ill out the User Registration Card that came with your
copy of Mark Williams C. Returning this card will make you aligible for direct
telephone support from the Mark Williams Company technical staff, and ensures that
yvou will automatically receive information about all new releases and updates. Many
interesting developments and additions are planned for Mark Williams C.

If vou have comments or reactions to the Mark Williams C software or documentation,
please fill put and mail the User Reaction Report included at the end of the manual,
We especially wish to know if vou found errors in this manual. Mark Williams Com-
pany needs your comments to continue to improve Mark Williams C.

Getting started

The rest of this tutorizl assumes that you have installed Mark Williams C on vour
Atari 8T. If you have not yet dome so, turn to the Release MNotes that are included
with this manual. There vou will find directions on how to install Mark Willizams C
on your system; how to set up your system to run Mark Williams C properly; how to
install the Mark Williams rebootable RAM disk; and how to run this product with un-
usugl configurations of hardware.

If you wish to continue with this tutorial, return here after you have installed Mark
Williams C on vour system.

Introducing the Mark Williams C micro-shell

Mark Williams C is designed to run under a micro-shell, called msh. msh allows the
passing of commands that are longer and more complex than can he handled easily
through the GEM desktop; it also gives you an easy way to redirect the output of
commands, pipe output to other commands, build and access tree-structured direc-
tories, and perform many other tasks to speed program development. msh comes with
a full complement of utilities and tools, to increase its usefulness,

Mark Williams C 3
F

Mark Willlams C for the Atari 8T

What is msh?

msh is a command processor. It reads and interprets commands, which can either be
typed directly into msh, or stored in files, called scripts, that msh opens and reads.
msh differs from icon-driven or menu-driven systems in that you type words into it
rather than clicking items on the screen. If you have used COHERENT or UNIX,
you will Find that msh combines aspects of the Bourne shell and the Berkeley C chell
to create a command processor that is simple vet powerful.

How to enter msh

Entering msh is sasy. Tf vou have a two-floppy disk system, just place your installed
disk that 15 labelled “compiler’™ into drive A:, then use the mouse to open drive A and
display the contents of bin, If vou have a hard disk, use the mouse to display the
contents of bin on the logical drive on which vou have stored the compiler, Point to
the icon Iabellad MSH.PRG and click the left button twice,

The screen clears and a dollar sign ‘$" appears in the upper left-hand corner. Ths
dollar sign is a prompt: it means that msh 15 ready to accept a command.

To test msh, type the following command:
echo foo

Press the carriage return key, echo is a command that repeats all of the words, or ar-
guments, that follow it. You will find that this command is quite useful in certain
programming situations. As you can see, the argument foo appeared on the next line
of the screen: then another dollar sign appeared, which signals that msh is ready 1o
accept another command.

Iniroducing MicroEMACS, the screen editor

Mark Williams C includes a fuil screen editor, called MicroEMACS. MicroEMACS
allows you to divide the sereen into windows and edit different files simultanecusty,
Tt has a full search-and-replace function, allows you to define keyboard macros; and
has a large set of commands for killing and moving text.

For a list of the MicroEMACS commands, see the Lexicon entry for me, the
MicroEMACS command. At the back of this manuval is a full tutorial that shows you
how to use most of its commands, and contains 4 number of exercises to help you
sharpen vour skill.

You can begin to use the editor immediately, however, by remembering a half-dozen
or so commands. To see how MicroEMACS works, do the following exercise: First,
make sure that MicroEMACS is available to vour system; if you have a system with

4 Mark Williams C

Tutorial Introduction

anly floppy disks or with only a floppy disk and a RAM disk, make sure that the
scompiler” disk is in a disk drive. Now, type the following command:

me hello.c

As you can see, the screen clears, and an information line appears at the botlom.
Type the following text, as it is shown here. If you make a mistake, simply backspace
gver it and tyvpe it correctly; the backspace key will wrap argund lines:

main{l {
primtf{thelle, worldyn®);
I

When vou have finished, save the file by typing <ctrl-X><ctrl-S= (that is, hold down
the control key and tvpe ‘X', then hold down the control key and type 'S').
MictoEMACS will tell yvou how many lines of text it just saved. Now, exit from the
editor by typing <ctrl-X=<ctrl-Cs.

Mow, type Is -1, In a second, the /ist command Is will print some information about
the file, including its size, the date and time it was created, and its name. This proves
that the file has been created and stored on disk.

If you wish to change a file, just type the me command, as before:
me hello.c

The text of the file you just typed is now displayed on the screen. Now, try changing
the word hello to Hello, as follows: First, type <ctrl-N>. That moves vou o the nex!
line. (The command <ctrl-P> would move vou to the previous line, if there were
one.) Now, type the command <ctrl-F>, As you can see, the cursor moved forward
one space. Continue to type <cirl-F> until the cursor is located over the letter *h’ in
hello. If you overshoot the character, move the cursor backwards by typing <ctrl-B>.
When the cursor is correctly positioned, delste the *h' by typing the delete command
<cirl-D>: then type a capital *H’ to take its place, Now, again save the file by typing
<ctrl-X»<ctrl-8=, and exit from MicroEMACS by typing <ctrl-X=<ctrl-Cs,

With these few commands, you can load files into memory, edit them, creale new
files, save them to disk, and exit. This just gives you a sample of what MicroEMACS
can do, but it is enough to get vou started,

Serting the shell's internal variables

msh is designed to allow you to alter the way it operates. In effect, you can customize
msh to suit vour own needs. One way to do so is by using the set command.

For example, you may wish to change the prompt from the dollar sign to something
else: You can do this with the set command. To change the prompt to st=, type the

Mark Williams C 5

Mark Williams C for the Atari 8T

following command:

et prompt=lst>
Try iL.

As you can see, the prompt changed as soon as you pressed the carriage return key. If
you type set by itself, a list of variables will appear. set allows you to defing new
variables, which are read by msh and interpreted.

Try using set to create a “quick and dirty” command to clear the screen, As shown in
the Lexicon article on screen control, the escape sequence that clears the screen on the
Atari ST is <esc»E—that is, the escape character followed by a capital "E'. MNote that
*] is the way the Atari 8T echoes the escape character on the screen. To create your
new command, just type the following into msh:

set clze"echo -n “[E"
Now, try typing:
icls

The dollar sign tells msh that the following string is a variable rather than a command.
As you can see, the sereen cleared and the cursor is now in the upper left-hand corner
of the screen. msh replaces cls with its defined value, and executes echo as if it has
been typed in from the kevboard.

To erase a variable, use the command unset. For example, to erase the variable cls,
type:

unset ¢ls
Try typing $cls again, The shell sends you the message

variable f'cls' is nat set

which shows that ¢ls has been erased.

Setting the environment

msh manages a set of environmental variables. These can be used by programs that run
under msh. For example, when the compiler driver ce begins its work, it looks for an
environmental variable called LIBPATH, which tells ce which directories hold
libraries. This system was designed to spare you the trouble of constantly giving
programs the same information. For example, vou need to sst the LIBPATH variable
only once: instead of telling ee where to look for the libraries every time you compile

I Mark Williams C

Tutorial Introduction

o program, you can save space on the command line for more important items, such as
the names of the files you wish to compile.

The command seteny sets envirgnmental variables. Try typing seteny. msh replies by
printing a list of the environmental variables that have already been set. Most are set
in the file profile, which msh reads as it begins; this will be described in detail below,

To see how a program Can use an envirommental variable, try resetting the enviromn-
mental variahle HOME. This variable is used by the change directory command cd
when that command is entered without an argument. To set HOME to B:\,, which is
the root directory on drive B, tvpe:

aeteny HOME=b:'

Now, type the following commands;

The first command changes directories for vou; because you did not tell it which
directory to go to, it moved you by default to the directory named by the HOME en-
vironmental variable, pwd prints the working directory: as vou ¢an see, the current
directory is bi%, which is the directory that ed moved you to,

The command unseteny erases environmental variables, For example, vou can erase
the wvariable TIMEZONE with the following command:

unseteny TIMEZONE

Now, tvpe setenv again, As vou can see, the TIMEZONE environmental variable is
no longer present,

Directories

You have probably noticed by now that msh uses tree-structured directories. This
means that its directories branch out from one angther; each dirgctory can contain
files and sub-directories that themselves can contain files and directories. One direc-
fory 1s called the root directory; this is the name of the device. For example, the root
d}chtory for drive A is called &\, The root directory can have one or more sub-
dlI‘ECIC-TlIrE.‘S; these are also called child directories because they all stem from the same
Farent directory. Thus, while a directory can have many child directories, it can have
only ong parent directory.

f“;_lﬁm that two dots **."" stands for the parent directory. The following examples will
Snow how to use this abbreviation.

Mark Williams C 7

Mark Williams C for the Atari 5T

msh comes with a full set of commands to create and remove directories, and copy,
rename, move, and remove files. As yvou will see, these are quite easy to use, and
quite powerful.

To begin, you can make a directory with the command mkdir. To create a directory
called stuff, tvpe:

mkdir stuff

Try it. If vou wish, you can specify a full path name to create a subdirectory imna
directory other than the one you are currently in. For example, to make the sub-
directory temp in the directory stuff, just type:

mkdir stuff\temp
Try it. Now, tell the list command, Is, to show you the contents of stuff, as follows:
la stuff

As you can see, Is printed the name of the subdirectory you just created.

The remove directory command rmdir allows you to erase directories. To remove the
directory temp, use the following command:

rmdir stuffytemp

If temp had had files and subdirectories in it, rmdir would have given you an error
message. This is to help prevent you from accidentally erasing valuable files.

Renaming, woving, copying, and removing files
Az mentioned above, msh has a number of commands to help you handle files,

The move command my lets you rename a file, The following example creates a file
called smith, and then renames it jones:

echg stuff »amith
mv smith jones

Wote that if the file jones had already existed, it would have been removed and the
file smith given its name.

You can also use mv to move a file from one directory to another. For example, the
command

m jones stuff

will move the file jones from the current directory to the directory stuff.

8 Mark Williams C

Tutorial Introduction

EL I L]

As mentioned above, two periods “.." is shorthand for a directory's parent directory.
Thus, to move the file jomes back from the directory stuff to the current directory,
type the following command:

my 3tuffyjanes ..

1f vou tvpe ls without any arguments, it will show the contents of the current direc-
tory; it should show that the file jones has been returned to the current directory,

The copy command ep will copy one or more files for you. To copy the file jones
back into the file smith, type:

cp jones smith

As with the mv command, if the file smith had already existed, it would have been
removed and the new copy of jones given its name.

cp can also copy several files at once into another directory. To copy the files smith
and jones into directory stuff, type:

cp emith jones stuff

cp is intelligent encugh to know that stuff is a directory; it will copy smith and jones
into stuff and give the copies the same names as the originals,

The command rm removes 4 file, To remove the files smith and jones from directory
stuff, rype:

rmostuffhamith stuffyjones

If vou tvpe rm without an argument, it will print an error message on the screen,

Redireciing input and oul put

msh allows vou to change, or redirect, the place from which a program receives input

a_nr.i the place to which it writes output. The technical term for this is [/0 redirec-
Lign.

The C language normally defines three channels through which data can be passed:
the srandard input, the standard output, and the standard error. The standard input
and the standard output, respectively, are connected to the keyboard and the screen
bF_default_ The standard error is the device on which error messages appear; by
default, it is the screen. Note that the terminal screen continues to be the standard
error, even if the standard output is redirected elsewhere,

Mark Williams C 9

nMark Williams C for the Atari 5T

A redirection gperator is a character that tells msh to redirect the standard input, stan-

dard output, or standard error somewhere other than its default. The following lists
the more commonly used of msh's redirection operators:

= file

=& fffé‘

== file

==& file

< file

Redirect the standard output of a command into file. 1t file already ex-
ists, replace its contents with the output of the command. For example,
typing

echa hello »teppfile

opens the file tempfile and then echoes the argument helle into it. IF the
file tempfile already exists, its contents will be replaced with the string
hello,

Redirect both the standard gutput and the standard error of 4 command
into file,

Append the standard output of a command onto file. If file does not ex-
ist, create it and fill it with the output of the command. For example, the
command

¢cho goodbye >rtempfile

appends the word goodbye to the end of the file tempfile, which you
created in the earlier example,

Append both the standard cutput of a command and the standard error
anto file. If file does not exist, create it and Fill it with the output and
diagnostic messages generated by the command.

Tse the contents of file as the standard input for a command.

For a full list of redirection operators, see the entry for msh in the Lexicon.

Redivecting to peripheral devices

As vou can see from the examples in the previous section, redirection itz most often
performed into or out of files on disk. However, as will be described below, C treats
peripheral devices as if they were files; therefore, you can use a redirection symbaol to
send material to, say, the printer or the serial port.

For example, if vou have a printer plugged into your Atari ST, turn it on and type the
following command:

echo hella =pra:

This types the word hello on your printer.

10

Mark Williams C

Tutorial Introduction

Logical devices

TOS, the Atari's opcr_ating system, has built into it _lhree Eogffq! dml-."c!e_rt. msh can uose
these logical devices in e?cactl‘_f the same way that it handles f‘ iles: 1t can open them,
read data from them, write data to them, and close them again. The logical devices
are as follows: con:, which 1s the coqsole‘s screen; pro:, which 1s the printer port; and
auxz, which is the gumhar}r: or serial, port. These are described in more detail in
their respective Lexicon entries,

Redirecting data to the printer port can be guite useful; for example, you can print
listings of your programs. Try this exercise. Turn on your printer, and type the
following command:

pr -n hella.c *pra:

As you can see, 4 listing of your program appears on vour printer, with each line
numbered for your convenience. The command pr formats material for printing, and
its -n option tells it to insert line numbers. pr is, of coutse, described more fully in
the Lexicon.

File-name substitutions

Often, typing in the names of a group of files is tedious, For that reason, msh allows
vou to deal with files in groups, by using file-name substitutions.
msh can use the punctuation marks [1?7 * { and } to substitute for all or part of a file's
name. The following describes what each does:
[ist), [e-z]
In the first form, this looks for, or matches, any of the characters [, i, s, or £ in
the second form, it matches all of the characters between a and z.

Try the following exercise. First, use the echo command to create three sample
files, as follows:

etho stuffl »files
echo stuff2 »fileb
eche stuffd >filec

The following command tells the /ist command Is to find these files in the cur-
rent directory:

ls filelabel

As you can see, the shell expanded file[abe] into filea fileb filec, which it then
handed to Is to find.

Mark Williams C

Mark Williams C for the Atari ST

The next exercise uses the concatenation command cat to display the contents
of these three files. Type the following:

cat filela-cl

msh expands filela-c| into file a through ¢, inclusive, or filea fileb filec. As you
can see, cat opened all three files and displayed their contents for you on the
screen,

Match any character. For example, typing
iz file?

will list every program in the current directory that is named fileanpletrer.
Note that the ‘7" is a wildcard character; see the entry for wildcard in the
Lexicon for more information.

Match any character, any string of characters, or no character. Try typing
Iz *[a-c]

As vou can see, Is lists all files whose names end with the character *a' through
‘o' “The asterisk is also a wildcard; see the entry on wildeards in the Lexicon for
more information.

(5.1}

12

Use the enclosed letters [.is5.f to form a series of words. For example, the com-
mand

ls filefa, b,c}
is equivalent to typing
Is fitea fileb filec

To see how this differs from the ‘[' ‘]’ characters described above, type the
following commands:

echo foo[abc]
echo feof{a, b, cl

The first command prints

foo [abel

whereas the second returns

Mark Williams C

Tutorial Introduction

foos foob fooc

Quoted strings

At times, vou want to pass a string to & command literally, without its being inter-
preted or matched by the shell. Passing a string in thizs manner is called guoting i,
because you indicate the special character of the string by enclosing it within guota-
tion marks or apostrophes. (An “apostrophe™ is also known as a “single quote”; the
apostrophe is found on the same key as the quotation mark, directly to the left of the
carriage return key.)

Mote that if you guote a string with quotation marks instead of apostrophes, msh will
rraat white space as part of the string, but further expand variables within the string.
To see how this works, type the following exercize:

set A=MXYI"
set B="QRS"
acho §A 3B
pcha "EA B"
echa "3A B!

As you can see, in the first case echo expanded $A and $B, but threw away the extra
spaces between them. In the second case, it expanded $A and $B, and preserved the
extra space between them: in the third case, echo preserved the extra space between
ZA and B, but did not expand them.

Joining and separaling commands

msh use: a number of different punctuation marks, or operators, to join and separate
commands. Each operator performs a specialized task, as follows:

; Commands separated by a semicolon ;' are run one after the other. This allows
you to tvpe more than one command on the same line, for convenience,

Form a pipe; that is, pass the standard output of the command on the left into
standard input of the command on the right, Try the following example. First,
turn on your printer, and then type:

lg -l | pr > pro:

A5 you can see, the names of the files in the current directory are being printed
on vour printer. The command Is first read the names of the files in the current
directory, (The switch -1 tells Is to write the names in the long format, which
_gi‘r'ers vou extra information, such as the size of each file.) Normally, Is writes
its output onto the screen: the pipe symbol ', however, told s to pass its output
to the pagination command pr, which used it as input. Finally, pr redirected its

Mark Williams C 13

Mark Williams C for the Atari ST

output to the logical device pro:, so that it appeared on your printer,

As you can see, pipes and redirection symbols allow you to construct chains of
commands that are quite powerful, vet quite easy to use.

| & Form a pipe that passes to the command on the right both the output and any
error messages from the command on the left.

The profile file

Whenever vou invoke msh, it automatically reads a file called profile and executes all
of the commands it finds there, By altering your profile, vou can customize msh fo
suit your preferences and the tasks at hand.

The following is a sample profile;

et drive=a:

seteny PATH=.bin, Sdrive\bin,$drive\command
seteny SUFF=,.pra,.tos,.ttp

seteny LIBPATH=3drive\lib, 2drivershin,
seteny THRDIR=S5drive\tmp

seteny INCDIR=3drivelinclude

seteny TIMEZONE=CET:0:COT

set prompt='% !

st histery=5

The first line,
set drivesa:

sets the variable drive to a:; this means that the variable $drive will be interpreted as
a: by msh.

The next line,

sebeny PATH=.bin, , 3drivesbin, $drive\command

sat the PATH environmental variable, which tells msh where to find executable filss,
The [irst directory, .bin, stands for msh itself: this tells msh to check and see if the
command you have typed in is built into msh itself. The rest of the command

. Bdrive\bin, $drive\command

tells msh to look for executable files first in the present directory {as indicated by the
two commas with nothing Between them), then in the directory a:\bin, and finally in
the directory az‘\command (remember that $drive is interpretad to mean a:). MNote that
unless this line is set correctly, msh will not be able to execute the rest of the com-
mands in profile.

14 Mark Williams C

Tutorial Introduction

The next lines,

seteny SUFF=,.prg,.tos,.ttp

seteny LIBPATH=%drive\lib, Sdrive\hin,
seteny THPDIR=Bdrive\tmp

setenv INCDIR=%drive\includey

seteny TIMEZOME=CST:0:COT

sat the environmental variables that msh exports to various other commands. Each
variable is described ar length in the Lexicon,

Finally, the lines

set prompt='% 1
set history=8

set the prompt to a dollar sign *%°, and set the history buffer to hold the last eight
commands entered, This is vsed with the history command; for more information on
this command, see the Lexicon entry for msh.

You can use the profile file to fine-tune msh so that it carefully $uits your needs and
preferences.

After a while, vou will grow familiar with msh and will want to use 1ts power more
fully, See the entry for msh in the Lexicon for a complete description of what it can
do.

For more information about the commands that come with your copy of Mark
Williams C, see the Lexicon entry for commands; this entry lists all of the available
commands and briefly describes what each one does. Each command has its own
entry in the Lexicon, which will give you all the information you need to use it
properly.

Compiling with Mark Williams C
Thisz section describes how to compile C programs with Mark Williams C.

In brief, a C compiler transforms files of C source code into machine code. Compila-
tion is complex and involves several steps; however, Mark Williams C simplifies it
with the ee command, which controls all the actions of the compiler,

Compiling from the GEM deskiop

Befare you begin, note that Mark Williams C was designed to be run through the
tmicro-shell msh; however, you can run cc and the compiler from the GEM desktop.
Ta do so, perform the following steps:

Mark Williams C 15

Mark Williams C for the Atari ST

1. Rename the file cc.prg to ce.tip.

2. Mave the following files plus your source code into the same folder;

cC.ttp
cell.pre
cel.prg
cel.pre
ccd.prg
Cpp.PrE
crisl.o
Id.prg
libc.a
libm.g

Also move all of the header files, which have the suffix .h.

3 Use the mouse to double-click the icon labelled CC.TTP. When the Open ap-
plicatlon box appears, enter the names of the files you wish to compile,

MNote that the micro-shell msh preserves the case of arguments passed to Mark
Williams C. The GEM-DOS desktop, however, translates all arguments to upper case,
in some instances changing their meaning.

Compiling through msh

The rest of this section assumes that you are running Mark Williams C under the
micro-shell msh.

For an example of how cc works under the micro-shell msh, try compiling the
program called hello.e, which vou typed in earlier to test the MicraEMACS screen
editor. Type the following command:

e -¥ hello.c

The switch -V tells ce to print a brief description of each action it takes. Ag vou can
s2g, cc guides the program throuzh all phases of compilation, invokes the linker Id,
and links in all necessary routines from the libraries to produce a file called hello.prg
that is ready to execute,

To try out your newly compiled program, type hello. The program will print
Hello, wWorld

0T ¥our screen.

16 Mark Williams C

Tutorial Introduction

The phases of compilation

You probably noticed that when hello.c was being compiled, cc invoked a number of
different programs. This s because Mark Williams C is not just one program, but a
number of different programs that work together to produce an executable file for
you. Each program performs a phase of compilation. The following summarizes each
phase;

cpp The C preprocessor. This processes any of the *#' directives, such as #include
or #ifdef, and expands macros.

cell The parser. This phase parses programs: it uses recursive descent to translate
the program into a parse-tree format, which is independent of both the lan-
guage of the source code and the microprocessor for which code will be
genarated.

ccl The code generator. This phase reads the parse tree generated by cel and
translates into machine code. The code generation is table driven, with entries
for each gperator and addressing mode. Although this phase is followed by an

optimizer, it is designed to generate excellent code that needs minimal ap-
timization.

ccl The optimizer/object generator. This phase optimizes the generated code and
writes the object code. It eliminates common code, optimizes span-dependent
jumps, and removes jumps to jumps. It also scans the generated code
repeatedly to eliminate unnecessary instructions, then writes the object file.

ced The compiler also includes a fifth phase, called cc3, which is a disassembler,
This phase writes an output file in assembly language. This phase iz optional,
and allows you to examine the code generated by the compiler. Tf vou want
Mark Williams C to generate assembly language, use the -S option on the cc
command line.

Unless you specify -5 on the cc command line, the compiler outputs an object module
that is named after the source file being compiled. This module has the suffix .0. An
cbject module is sot executable; it contains only the code genetated by compiling a C
scurce file, plus information needed to relocate parts of the code bafore routines from
the C libraries are linked into the program. See the entry on object module in the
Lexicon for more information.

As the final step in its execution, ec calls the linker 1d to produce an executable
Drogram. In the previous example, the linker combines the object module hello.o
with the function printf from the standard C library to produce the executable
brogram called hello.prg. The suffix .prg indicates that the file is executable,

Mark Williams C 17

Mark Williams C [or the Atari ST

Edit errovs automatically

Often, when you're writing a new program, vou face the situation where vou try to
compile, only to have the compiler produce error messages and abort the compilation..
You must then invoke vour editor, change the program, close the editor, and try the
compilation over again. This cycle of compilation—editing—recompilation can be
quite bothersome,

Ta remove some of the drudgery from compiling, the ce command has the automatic
or MicroEMACS option, -A, When you compile with this option, the MicroEMACS
screen editor will be invoked automatically if any errors occur. The error or errors
generated during compilation will be displayed in one window, and vour text in the
other, with the cursor set at the number of the line that the compiler indicated had
the error.

Try the following example. Use MicroEMACS to enter the following program, which
vou should call error.c:

mainl} {
printf{"Helle, world®)
¥

Note that the semicolon was left of f of the printf statement, Now, try compiling er-
ror.c with the following ee command:

cc -A errar.c

You should see no messages from the compiler, because thev are all being divertad
into g file to be used by MicroEMACS. Then, MicroEMACS will appear automati-
cally., Tn one window you should see the message:

3+ migsing ";!

and in the other you should see vour source code for error.c, with the cursar set on
line 3.

If vou had more than one, typing <ctrl-X>» would move vou to the next line with an
error in it typing <eirl-Xs>« would return vou to the previous error, MNote that with
some errors, such as those for missing braces or semicolons, the compiler cannot al-
wavs tell exactly which line the error accurred on, but it will almost always point o a
line that is near the source of the error.

Now, correct the error. Close the file by tvping <ctrl-Z>. ¢c will be invoked again
automatically, to produce a normal working executable file. MNote that ce will con-
tinug to invoke the MicroEMACS editor sither until the program compiles without
error, or until vou exit from the editor by typing <ctrl-Us> followed by <etrl-

18 Mark Williams C

Tutorial Introduction

Keaotr]=Ca.

Compiling multiple source files

Many programs consist of more than one source file. For example, the sample
program factor, which is provided with Mark Williams C, consists of the files factor.c
and ated.c. To compile a program with multiple source files, just type each file name
as a separate argument on the ce command line:

cc factor.c etod.c -lm

This command compiles both source files, The argument -lm tells ¢c to include
routines from the mathematics library libm when linking the object modulss to
produce an executable file. This option must come after the names of all of the
source files which reference the library, or it will not work properly.

When the cc command line includes several file name arguments, ce by default uses
the name of the first to form the name of the executable file. In the above example,
ce produces the non-executable object modules factor.o and atod.o, and then links
them together to produce the executable file factor.prg.

Naming executable files

To give the executable file a name other than the default, use the -o (output) option,
followed by the desired name. For example, when Mark Williams C compiles the
source file hello.c, by default it assigned the executable file the name hello.pre.

Should you wish the executable file to have the name hello.tos, use the following
command:

cc -o hello.tos hella.e

Linking without compiling

If you are writing a program that consists of several source files, vou probably will
Wwant to compile the program, test it, and then change one or more of the source files.
‘ather than recompile all of the source files, you can save time by recompiling only
tUie modified files and relinking the program.

For example, suppose you modified the factor program by changing only the source
e factor.c, To recompile, vou can use the following command:

ce factor.c atod.o -lm

The eption -lm tells ec that this program needs to have the mathematics library libm.a

Mark Williams C 19

Mark Williams C for the Atari ST

included when it is linkead.

In this example, the first two arguments are the C source file factor.c and the ohject
module atod.o, rather than the source file atod.c. cc recognizes that atod.o is an object
midule and simply passes it to the linker without compiling it. You will find this
particularly useful when your programs consist of many source [iles, and you need to
compile only a few of them.

To simplify compiling, especially if you are developing systems that use many source.
modules, you should consider using the make command that is included with Mark
Williams €. For more information on make, see the entry in the Lexicon, or ses the
tutorial for malke that appears later in this manual.

Compiling without linking

Al times, vou may find it useful to compile a source file without linking the resulting
object module to the other object modules or the libraries. You would do this, for
example, if vou wanted to compile a module to insert into a library. Use the -¢ op-
tion to tell cc not to link the compiled program. Later, you ¢an use another ce com-
mand to link the program. For example, if you wanted just to compile factor.c
without linking it, you would type:

cc -¢ factor.c

To link the resulting object module with the object module atod.o and with the ap-
propriate libraries, type the following command:

cc factor.a atod.o -lm

Floating point oul pul

A large amount of code is required to print floating point numbers, Because most C
programs do not need to print floating point numbers, the conversion routine in the
standard C library merely prints the message

You must compile with the -f option
te include printf() floating point.

To include the routines that print floating point numbers, use the - aoption with the
¢c command,

20 Mark Williams C

Tutorial Introduction

Assembly language files

¢ miakes most assembly language programming unnecessary; however, you may wish
io write small parts of your programs in assembly language for greater speed or to
provide access to processor features that C cannot use directly. Mark Williams C in-
cludes an assembler, named as, which is described in detail in the Lexicon,

To compile a program that consists of the C source file cprog.c and the assembly lan-
guage soutce file aprog.s, simply use the cc command in its usual manner;

G Cprog.c Bprog.s

ce recognizes that the suffix .s indicates an assembly language source file, and as-
sembles it with the assembler as; then it links both object modules to produce an ex-
ecutable file.

The Lexicon entry for the TOS macro Setexc includes an example that demonstrates
how to compile assemnbly language files with C-language files,

Generating assembly language out pul

The cc switch -5 directs the C compiler use the disassembler ce3 to compile into as-
sembly language rather than an object (.0) module. You may wish to éxamine these
assembly-language listings to debug a program, or examine how a particular library
routine does its work,

Changing stack size

The size of the stack cannot be altered while a program is running. By default, the
linker sets the stack size to two kilobytes; however, a highly recursive function may
cause the stack to grow to the point where it invades other data areas. This will cause
your program to work incorrectly.

Should your program need more than two kilobytes of stack, include the following
elobal statement anywhers in your program:

lang _stksize = AL;

where i is an even decimal number of bytes.

The ¢c command is summarized in the Lexicon, under the entry ce. Each phase of th_e
compiler has its own entry. The entry for as gives full information on how to use this
tool, plus listing the set of 68000 machine instructions.

Mark Williams C 21

Mark Williams C for the Atari 5T

Using the Mark Williams C Libraries

Mark Williams C includes a number of libraries whose routines perform many uselul
tasks, These include standard input and output (STDO), memory management, S0r-
ting, and searching; mathematics functions; and accessing the GEM AES and VDI
routines, as well as the Atari Line A functions.

Mark Willlams C also includes the archiver ar, which helps vou to update the current
libraries or create vour own libraries,

The following paragraphs will introduce some of the routines included in the Mark
Williams C libraries, show vou how to include them when vou compile g program, and
describe briefly how to use the archiver utility.

Strings and string handling

A commonly used data structure is the character string. The usual run-time represen-
tation for a string is an array of characters delimited by a NUL character.

If vou need to move characters, use the library routine strepy. This function takes two
arguments: the first points to where the string will be copied to; the second points to
where the string will be copied from, strcpy then copies all characters, through NUL,
and returns the first argument.

You can measure the length of a string by using strlen. This function takes one argu-
ment, a pointer o a string, and returns the number of characters in the string, £x-
cluding the NUL that concludes the string.

streat concatenates strings (ie., joins them together). It takes two pointers to strings
as arguments, and appends a copy of the second string to the end of the first. The
first string is assumed to have enough extra space at the end to hold the new charac-
ters. streat returns a pointer to the new result, which is delimited with NUL.

Often, strings must be compared. This must be done, for example, if an array of
strings is being sorted. stremp compares strings. Tt takes two arguments, both
pointers to strings, and compares the strings they point o, siremp returns a number
less than zero il the first string is less than the second string, using native machine
character comparisons; one equal to 0 if the two strings arc equal; and one greater
than O if the first string 1s longer than the second string.

Applications that deal with fixed-length strings can use the routines strocat, sirncpy,
and strnemp. They perform the same functions as their variable-length counterparts,
however, all take a third argument that specifies the maximum length of the string.

See the entries in the Lexicon for these routines and for string; these will give vou ex-
amples of how to use them ina C program.

22 Mark Williams C

Tutorial Tntroduction

Tnput and out put

The standard library provides routines that perform input and ouput, or [/0, at a
number of levels, Data can be transferred byte-by-byte, word-by-word, by string,
tv block, and in a formatted manner. For more information and examples of how to
use these routines, see the Lexicon entry for STDIO.

The standard 1/0 header file stdio.h includes a type definition, or typedef, for the
FILE type. A FILE iz a structure that contains all of the information needed by the
[;0 routines to perform I/O operations on a connection, A pointer to a FILE is the
external name of an 1/0 stream, and is passed to the various routines in the T/0
library to specify which stream participates in the transfer. Note that a FILE can
either be a file of data written on a disk or a logical device as defined by the
gperating system, e.g., the keyboard, the serial port, or the parallel part, C, like msh,
does not distinguish between logical devices and files on disk—it rezards them all
merely as sources of data for it to handle,

To open a file and allocate a FILE type, use the routine fopen, Tt takes two arguments;
the first is a string that contains the name of the file to be opened, and the second isa
string that specifies the access mode required. The mode is one of the following: r,
for plain reading; w, for plain writing; r+w, read plus write, or update; or a, for ap-
pend. In addition, the mode string can contain the character b, for binarv, which
specifies that this is a binary stream; this ensures that newline characters will not be
mapped into a carriage return/line feed sequence.

;F the mode 13 w or a and the named file does not exist, it will be ¢reated. If the mode
i3 woand the file does exist, it will be truncated to zero length, Tf the FILE could be

opened, fopen returns a pointer to a FILE object; if it could not be opened, it returns
NULL.

‘~"r'_h_3n all proceszing on a FILE is completed, the file must be clozed by calling fclose,
This routine takes one argument, a pointer to a FILE, All buffers are flushed and
released, and the connection is detached.

The routine exit will automatically close all open files and return control of the com-
Puter to TOS, Your programs should always call exit when they are finished,

S_es the Lexicon entries for exit, fopen, felose, and STDIO for more information, and
for examples of how to use these routines.

Byte-by-byie 170

The lowest level of 1/0 15 the byte-by-byte level, Here, data are read from or written
Lﬁ.a FILI‘IJ one character at a time. All higher-level 1/0 routines use these byte-by-
¥ie routines to read and write data.

Mark Williams C 23

Mark Williams C for the Atari 5T

The most basic read routine is gete{/p). This function takes one argument, a pointer
to a FTILE, and returns an int that contains either the next character from the FILE or
the end-of-file signal EQOF. EOF is defined in the header file stdio.h.

In ASCIT mode, gete throws away all carriage return characters (0x0D); the line feeds
at the end of the lines (0x0A) mark the end of the lines, because the *'n' in C is equal
to 020A. In binary mode, all characters are passed without interpretation.

The routine getchar iz equivalent to gete(stdin); it reads characters from the standard
input FILE, which is normally the kevboard.

The routine ungete(e, () returns ¢ to the FILE fp. This 15 useful for looking ahead at
the next input character and then returning it to the input file. Only one character
can be “unread™ with ungete.

The most basic write routine is putc(e, fp). This takes two arguments: ¢, which con-
tains the byte to be written; and fp, which points to the output FILE. putc returns
the first argument unless write error occurs, in which case it returns EQF.

putchar{c) is equivalent to pute(e, stdout). It writes characters to the standard output
FILE, which is normally the video display.

See the Lexicon entries for these routines, which contain more information and ex-
amples of how to use them in C programs,

Weord-by-word T/0

A program may tead the next word (16-bit object) from a FILE by using the routine
getw(fr). This routine takes one argument, a pointer to a FILE; it returns the word
read.

Wote that getw can return anv bit pattern, including control characters. A special
character like EOF can appear even in the middle of a file. Therefore, to prevent the
file from being truncated accidentally, your program must test for end of file by
using the macro feof(fp), from stdio.h. This macro looks at the FILE pointed to by
fpand returns true if the last call to getw ran into the end of the file.

If a file has an pdd size, the last call to getw will return the dats and an error will be
posted to the FILE, This error may be detected by using the ferror(/p) macro. End
of file alone is posted if a call to getw produces no dara.

In g similar manner, putw{w, fp) writes a word to a file. The ferror macro must be:
used to check for 1/0 errors.

See the Lexicon entries for these roatines for examples and more information.

24 Mark Williams C

Tutorial Introduction

String IO

A number of routines perform I/0 on strings. The most basic one is fgets(h, #, p).
It readsa string delimited by a newline character from the FILE pointed to by fr, and
stores it into the array of characters b, The newline character iz transferred to the
huffer, NUL is placed in the bBuffer immediately after the newline. The integer »
specifies the length of the buffer; this prevents fgets from writing bevond the array if
3 long line is encountered in the input. fgets returns & if any characters were read
and NULL if not.

The routine gets{siring) reads a newline-delimited string from the standard input
stream and stores it within the array of characters siring, Unlike fgets, gets deletes
the newline character from the end of the string and replaces it with NLTL.

The most basic string output routine is fputs(owtput,). This routine writes the
string oputput into the FILE pointed to by fp. puts(siring) writes siring, followed by a
ngwline, onto the standard output.

For more information and examples of how to use the string T/0 routines, see their
entries in the Lexicon.

Block 1/0

The standard Hbrary provides facilities to transfer blocks of memory to and from user
programs. These are most often used on binary streams to move raw binary informa-
tion to and from files; however, they may be used on ASCII streams without altering
their data, with the possible exception of altering newline interpretation.

The [function fread(b, size, n, fp) reads »n objects of size bytes into the buffer pointed
to by b from the FILE pointed to by fp. It returns the number of items actuslly read.

Likewise, the routine fwrite(h, size, . fp) writes n objects, each size bytes long, from
the buffer b to the FILE pointed to by fp. It returns the number of items written.

See the Lexicon entries for fread and fwrite for examples and more information. The
feof and ferror macros can be used to check for end of file and transmission errors on
block reads and writes.

Farmatied {70

Routines are provided that permit formatted 1/0 to and from FILE streams. Data
may he read from and written into a number of formats and bases (dacimal, octal,
hexadecimal): strings may be truncated or padded; and fields may be justified to the
lef1 or 1o the right.

Mark Williams C 25

Mark Williams C for the Atari 8T

Although these routines are usuvally used on ASCII streams, they work perfectiy well
on binary streams; thev are, after all, interfaces to pute and gete.

The formatted I/0 routines printf and seanf are complex. The details of all theéir for-
maltting options are described in detail in the Lexicon entries that describe them,

Briefly, all formatted 1/0 routines work by interpreting one argument gs a formal
stririg. This string consists of format specifications, each of which is introduced by a
a percent-sign character ‘%, plus other characters that specify the tyvpe of formatting
to do. As each format specification 15 encountéred in the format string, an argument
iz extracted from the list of parameters of the formatted I/0 routine and interpreted
in g fashion determined by the format specification: the first format specification
takes the first argument, the second takes the second argument, and so on. The type
of the argument must agree with that expected by the format specification; if this i3
not the case, such as when a long is placed in the argument list where an int is ex-
pected, the result is undefined. Characters placed between the guotation marks that
do not belong to a format string (e.g., commas or spaces) are printed out literally.

For more information on how to use print and scanf, see their entries in the Lexicon.

Random aceess

All of the examples seen so far deal with sequential aceess FILE streams; however, the
1/0 library supports random access transfers as well. Associated with every FILE is a
seek pointer. This pointer starts at the beginning of the file or. when a stream is
openad for appending, at the end of a file; as data are read from or written to the
FILE, it moved [orward through the file.

You can obtain the value of this pointer by using ftell{fp). It returns the current
value of the seek pointer for the FILE pointed to by fp.

The seek pointer can be moved about in the file with the routine fseek(fp where.
how). This resets the seek pointer in the FILE pointed to by fp to where, also a 32-bit
integer. The fow argument spacifies if the sesk is relative to the beginning of the
filefhow = 0), to the current-seck position (how = 13, or to the end of the [ile (how =
2). Iseek returns 0 on success or -1 on failure.

Some FILE streams cannot perform random access operations; these include the ones
attzched to the videodisplay, the serial port, or the printer port.

Returning the sesk pointer to the start of a file is eased by the routine rewind{/p).
This routine is equivalent to fseek({/y, 0L, 0},

See the Lexicon entries for these routines for more information and examples.

26 Mark Williams C

Tutorial Imtroduction

Sorting

often. data must be sorted, The standard library contains two sort functions. These
functions are general, in that they implement only the skeleton of the sort algorithm.
The user must provide a comparison function and tell the sort function the size of the
objects being sorted.

The gsort(®, n, size. f) routine implements Hoare's quicksort algorithm. The argu-
ment & points to the base of the block of data being sorted, and the » argument
specifies number of elements to be sorted. Each of these objects has size bytes; the
routine needs the size to be able to move the objects around and to update its internal
pointers. [points to a function that performs comparisons. The shellsort(h, n, size. /)
routine has exactly the same calling sequence as gsort, but uses Shell’s sorting method.

gsort can use large amounts of stack, because it i% a recursive algorithm. Tao alter the
zize of the stack, include the following global statement:

leng _stacksize = L

where # is an even number of byvtes.

For more information on these routines and for examples, see the entries for gsort and
shellsortin the Lexicon,

Dynamic memory allocation

When vou build linked data structures or deal with arrays whose size can be deter-
mined only at runtime, it is helpful to be able to allocate blocks of memory dynami-
callv. The standard functions malloc, calloe, and free implement a general-purposs
memory allocation system used to allocate buffers,

To allocate memory, use malloe(n). This routine allocates a block of memory of at
least 1 bytes and returns a character pointer to it. The block may be larger than re-
Guested, if allocating the exact size would create a very small, and prabably unusable,
Ps;nck on the list of free memory. The block contains random information; it is not
initialized in any way. If no memory is left in the fres space pool, a NULL pointer
will be returned.

callog(n, size) uses malloc to allocate a block of memory large enough to hold n ob-
12215 of size size; this memory is then zeroed. If there 1t insufficient free memory, a
NULL pointer is returned,

Blocks of memory that are no longer needed can be returned to the free pool by pas-
SINE a pointer to the block to free(p). This routine places the block back in the free
list and merges adjacent free areas into single, larger free areas. Tt is a serious error to
Dess an incorrect pointer to free. No checking is done; a subsequent call to one of the

Mark Williams C 27

Mark Williams C for the Atari ST

allocation functions will probably return a very strange value,

Mathematics routines

The mathematics library libm.a contains a number of transcendental functions. They)
will calculate the sine, cosine, and tangent of a figure, plus their inverses and hvper-
bolic forms; calculate both natural and decimal logarithms; compute powers and ex—
ponenis; and compute Bessel functions,

The Lexicon entry for the mathematics library introduces these functions; each has its
own entry in the Lexicon, which include fuller descriptions and examples,

Note that to use a mathematics function, you must name the mathematics library on
the cc command line when you compile your program. For example, if the program
sample.c containg a mathematics function, use the following form of the cc command:

cc sample.c -lm

The option -Im indicates that you want the mathematics library to be included at link
time. Mote that this option must come at the end of the cc command, or the program
will not link properly,

bios, xbios. and gemdos functions

Mark Williams C allows you to call directly the Atari ST's bios, xbios, and gemdos
routines. Strictly speaking, these are not library f unctions; rather, they use routines
that are built into the Atari BIOS to perform operating system tasks.

The bies routines perfarm basic 1/0, such as managing the peripheral devices and disk
drives. xbios routines extend the normal bips T unctions, to provide access to system
clocks, the sound chip, the intelligent keyboard manager, the mouse, and other
devices. gemdos routines perform such tasks as 1/0) with the parallel and serial ports,
managing the disk drives, performing file 1/0, managing dynamic memory, and
Managing processes.

These routines can be called directly through C programs. All are defined in the
header file osbind.h, which is included with vour distribution.

The following program demonstrates how the xbios function Setcolor is used in a C
program. It inverts the color setting on a monochrome monitor:

#include <oskind.he

maingy ¢

int color = Seteelor(d, -13;
Setcolor(l, ++colarks);

28 Mark Williams C

Tutorial Introduction

For more information on these routines, see the entries for bios, gemdos, and xbios in
the Lexicom.

UNIX routines

The standard library Env;!ude__s a number of ml;tines that mimil:_.‘ a variety nf LINTX
system calls, to manipulate files. These work in a snrqewhat different fashion ﬂ}an
similar routines built inte TOS, and allow programs written for the UNTX operating
system or for M5-DOS to be compiled and run under TOS with minimal alteration.

For more informartion, see the Lexicon entry on UNTX routines.

The AES and VDI libraries

AES and VDI are elements in the GEM (graphics environment management) system.
Together, they give the user a convenient way to interact with the computer through
graphics 1mages.

VDI stands for virtual device interface, Tt consists of a set of basic graphics routines
that draw lines, polygons, circles, and ellipses; plus routines that allow your program
to receive information from the user: plus a set of text fonts and device drivers,

The VDI allows programmers to create graphics images that can be displaved on any
of a number of devices, including the screen, printer, tablet, plotier, video slide
camera, and others.

In addition, the VDI allows you to write metafiles, which hold the logical deseription
of a graphics image. An image stored in this manner can be manipulated easily by the
usér, which enhances the interactive powers of the GEM system.

AES stands for application environment system. Tn effect, the AES combines elements
of the disk operating system and of the VDI to create a graphics-oriented environ-
ment for the user. The AES governs the running of pracesses, or applications, on the
Adari 5T; it also controls the running of menus and windows on the GEM desktap.

To programmers, AES routines give a way to use windows, menus, graphics objects,
dialogues, and the other pre-defined elements of the graphics environment.

The ATS and VDI routines themselves live in the Atari ROM BIOS. Calls to them are

SPLin two libraries: Tibaes.a and libvdi.a, respectively. Bindings that declare these
foulines in the C manner are kept in the header files aeshind.h and vdibind.h. Three
alj*'h'flf"yh‘il header files are also included to help you create programs, as follows; gem-
: Efg: b includes a number of mnemaonic definitions, and declares some structures used
m Vo brograms, obdefs.h declares structures used to create graphics objects: and
Bortab.h defines terms used in the DRI dialect of C.

Mark Williams C

Mark Williams C for the Atari ST

Compiling programs that use AES and VDT

To cumpile_ a program with AES or VDI routines, use the -VGEM option on the ce
command line. For example, if the program sample.c has AES routines in it, vou can
compile it with the following command:

co -VGEM sample.c

Every AES and VDI routine, header file, and archive is described in the Lexicon. If
vou are not sure where to begin, first look up the individual entries for AES and VDI,
Each gives more information about how these tools work; each also contains a list and
brief summary of each of its library routines. Separate articles also have been written
to describe windows, menus, graphics objects, and metafiles, These entries describe in
detail how to use these specialized graphics forms. The entries for the individual
library routines also contain numerous examples. Each example 15 a complete C
program that can be compiled and run, and demonstrates some aspect of the
AES/VDL environment. These examples are 3 good place to begin your study of
AES/VDI.

The Line A library

Line A is the interface to the Atari ST's assembly-language-level graphics routines.
Tts name refers to the fact that its opcodes all begin with the hexadecimal number “A°
(OxA)

Fach Line A function consists of few lines of assembly language, which sdve registers,
load parameters, execute one of the unimplemented Ling A instructions, restors
registers, and return., These perform simple graphics functions, such as drawing lines,

displaying characters, or drawing polvgons. The GEM VDI routines use Line A to do
their work.

Most Line A functions pass their parameters through an external structurs, rather
than through arguments passed in the usual manner, The exceptions are linea7, which
uzes a specialized structure to copy and move portions of the screen (also called “blit-
ting"™); lineac, which takes a pointer; and linead, which takes two pointers. All
functions and structures are declared in the header file linea.h.

The entry on Line A in the Lexicon contains more information, and includes two
sample programs.

30 Mark Williams C

'I_'l._l torial Infroduction

Debugging Programs with Mark Williams C

aark Williams € comes with several utilities that help vou debug vour programs,
These include db, which is a powerful symbolic debugger; nm, which prints symbol
bles from programs, for analysis: and od, which will print an octal dump of a file.

db; the debugger

vark Williams © includes a symbolic debugger to assist you with debugging your
programs. db can work with a compiled program, and includes a number of com-

mands that allow you to examine just what your program is doing during its execu-
tind.

To see what db can do, compile the program hello.c, which you created earlier in this
tetorial, by entering the following command:

cc helle.t

Now, step through the following script. db's commands are in holdface in the left-
hand ‘column; the right-hand column gives a brief description of what each command

dnes,

db hello.prg invoke debugger

prinif:b set tracepoint on printf

P display all breakpoints

:e TUR Program

4 do traceback

T look-at the registers

printf, 20 symholically disassemble 20 instructions

H continue execution

p display breakpoints; none shown as program is over
i quit db

AS vou can see, db allows vou to set breakpoints, run through the progtram, and ex-
aming what it does in a variety of manners. Fora fuller introduction dby, and instruc-
tinns on how to use it to debug vour programs, see the entry for db in the Lexicon.

od: aotal or hexadecimal dump

ol prints out a file in octal machine words, Tf you type od without an argument, it
aceepts what you type at the keyboard as input; when you type a <ctrl-Z» and car-
riage return, it then returns what you typed in octal. Normally, you give od 2 file
name as an argument; to display an octal dump of the file tempfile, type:

Mark Williams C

Mark Williams C for the Atari ST

od tempfile

od can also display files In hexadecimal or decimal, and in bvtes or words, whichever
vou prefer,

nm. print symbol tables

nm prints out the symbol table from an object module or library, Tt is designed to
work with libtaries cteated by with the archiver ar, and with object modules com-
piled with Mark Williams C.

By default, nm only prints symbols with a C-style format. To use for the library
libe.a, simply type
mm amnlibvlibe.a

For more information on using these debugging tools, see their entries in the Lexicon.

Selected References

The following list names books that you may find helpful in developing vour skills
with C. This list is by no means exhaustive; however, it should prove helpful to both
beginners and experienced programmers.

American National Standards Institute: Draft Programming Language C (Mayp 1086
Draft). Washington, D.C.: X3 Secretariat, Computer and Business Egquipment
Manufacturers Association, 1986.

AT&T Bell Laboratoriess The C Programmer's Handbook, Englewood Cliffs, N.J.:
Prentice-Hall Ing,, 1985,

Chirlin, P.M.: Tntroduction to €. Beaverton, Or.: Matrix Publishers Inc., 1984,
Derman, B. (ed.): Applied C. New York: Van Nostrand Reinhold Co. Inc., 1986,
Feuer, A.R.: The C Puzzle Book. Englewoond Cliffs, N.J.: Prentice-Hall Inc., 1982,

Gehani, G.: Advanced C: Food for the Educated Palate. Rockville, Md.: Computer
Science Press, 1985,

Hanecock, L., Krieger, M.: The C Primer. New York: McGraw-Hill Book Publishers
Inc., 1982,

Hogan, T.: The C Programmer's Handbook. Bowie, Md.: Brady Publishing, 1984,

Kernighan, B.W., Ritchie, D.M.: The C Programming Language. Englewood Cliffs,
W.J.. Prentice-Hall Inc., 1978.

32 Mark Williams C

Tutorial Introduction

Kernighan, B.W., Planger, P.J: The Elemenis of Programming Style, ed, 2, New
vork: McGraw-Hill Book Co., 1978.

i ochan, 5.G.: Programming in C. Hasbrouck Heights, N.J.: Hayden Book Co. Ing,,
|98 3,

Knuth, TLE: The Art of Computer Programming, vol. 1: Basic Algorithms. Reading,
Ma.: Addison-Wesley Publishing Co., 1969,

Enuth, D.E: The Art of Computer Programming, vol. 20 Seminumerical Algorithmis.
Reading, Ma: Addison-Wesley Publishing Co_, 1969,

Knuth, DE: The Art of Computer Programming, vol. 31 Sorting and Scarching,
Reading, Ma.: Addison-Wesley Publishing Co., 1989,

Plum, T.. Leéarning to Program in C. Cardiff, N.J.. Plum Hall Inc., 1983,
Plum, T.; C Programming Guidelines, Cardiff, N.J.: Plum Hall Inc., 1984,
Purdum, I.: C Programming Guide. Indianapolis; Que Corp., 1983,

Purdum, J., Lesiie, T.C., Stegemoller, A L.: C Programmer's Library. Indianapolis;
Cue Corp., 1984,

Traister, R.J: Programming in C for the Microprocesior User. Englewood Cliffs,
M.J.: Prentice-Hall Inc., 1984,

T;gistef, R.): Going from BASIC to C. Englewood Cliffs, MN.J.. Prentice-Hall Inc..
19%4.

‘ﬁ\;aiia, M., Prata, 8., Martin, D.; C Primer Plus. Indianapoliss Howard W. Sams Tnc.,
1984,

‘;’gegher Systems, Inc.:. C Language User’'s Handbook. New York: Ballantine Books,
d.

Zahn, C.T.. € Noies. New York: Yourdan Press, 1979.

Atari 8T informaiion

?;%Télﬁ P., Fitler, W Programmer's Guide to GEM. Berkeley, Calif: SYBEX, Inc.,

Digital Research Tnstitute: GEM Programmer's Guide. Pacific Grove, Calif: Digital
es¢arch Institute, Inc., 1984,

G?nerall Instrument Corporation: Programmable Sound Generator Data Manual,
Hicksville, N.Y.: General Instrument Corporation, 1981,

?Er_it& K., Englisch, L., Bruckmann, R.. Atari 8T [nternals: The Authoritative
Ritder's Guide, Grand Rapids, Mich.: ABACUS Software, Inc., 1986,

Mark Williams C 33

Mark Williams C for the Atarl ST

MeS000 16/32-Bit Microprocessor Programmer’s ed.

Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1984,

Oren, T.. Professional GEM. Awailable through CompuServe, ANTIC-ONLINE,
Atari 8T forum. Highly recommended.

Szezepanowski, M., Gunther, B Atari 8T GEM Programmer's Reference. Grand
Eapids, Mich.: ABACUS Software, Inc., 1986,

Reference Manual, 1

34 Mark Williams C

Error messages

2. Error messages

This chapter lists all of the error messages that the compiler, the assembler as, and the
linker 1d can produce,

The messages are in alphabetical order, and are marked whether they come from the
compiler, the assembler, or the linker. Those from the compiler are marked by the
compilation phase, and whether it indicates a fatal, error, sirict, or warning condi-
tion, The compilation phases are cpp, the preprocessor: ccfl, the parser: ccl, the code
generator; cc2, the optimizer; and cc3, the disassembler.

A fatal message usually indicates a condition that caused the compiler to terminate
execution; faral errors from the later phases of compilation often cannot be fixed by
the user, and most likely indicate problems in the compiler itself.

An error message refers to a condition in the source code, such as unbalanced braces,
that caused compilation to cease,

Warning messages point out code that is compilable, but mav produce trouble when
the program is executed. A strict message refers to a passage in the code that is unor-
thodox and may not be transportable.

Each error message is followed by a brief description and explanation.

. (as, error)
Dot label error. This indicates that a period was used as a label, e.g., ..

a {as, error)
Addressing error. This is generated by nearly any kind of operand/instruction
mismatch or semantic error in address fields.

address wraparound (Id, fatal)

A segment of the program has excesded the size allowed by the microproces-
sor's architecture.

ambiguous reference to “siring™ (cel, error)

string is defined as a member of more than one struct or wnion, and is
referenced via a pointer to one of those structs or unions, and there 18 more
than one offset that could be assigned.

argument list has Incorrect syntax {ee0, error)
The argument list of a function declaration contains something other than a
comma-separated list of formal parameters.

array bound must be a constant (cc0, error)
AT array size has been declared with a variable or undefined size.

array bound must be positive {ech, error)
An drray was declared to have a negative size.

Mark Williams C 35

Mark Willlams C for the Atari ST

array bound too large (ccd, error)
The array is too large to be compiled with 16-bit index arithmetic. The
programmer should devise a way to divide the array into compilable portions,
or rethink the approach to handling these data.

array row has O length {ecl, error)
An array was declared to be zero units long, or some dimension of the array
ather than the first was made to be flexible.

associative expression too complex (eel, fatal)
An expression involving associative binary operators, such as '+ in
i=11+i2+i3+...4130;, has too many operators. Simplify the expression,

bad argument storage class {ecl, error)
An argument was assigned a storage class that the compiler does not recoghize.
The only valid storage class is register.

bad external storage class (ec, error)
An extern has been declared with an invalid storage class, e.g.. register or
autno.

bad field width (ccl, error) e
A field width was declared to be negative or greater than will fit into the ob-
ject holding it.

bad filler field width (ccl, error)
A T[iller field width was declared to be negative or greater than will fit into
the object holding it

bad flexible array declaration (cc, error)
Flexible arrays have missing array bounds, &.g., char *argy|].

taddisk:disk error (1d, Catal) ;
1d either cannot read or cannot write to the mass-storage device. Check the
disk vou are using to see that it is working correctly.

break not in a loop (ced, errot)
A break gocars that is not inside a loop or a switch statement,

call of non funetion (ecl), error})
What the program attempted to call is not a function.

cannot add pointers (cel, error)
The program attempted to add two pointers. ints may be added to or sub-
tracted from poimters, and two pointers to the same type may be subtracted,
but no other arithmetic operations are legal on pointers,

cannot apply unary “&" toa bit field (cel, error) i e o
The program attempted to use the address of a b:[within g byte, which 5
illegal: only bytes can be addressed, not the bits within them.

36 Mark Williams C

Error messages

cannot apply unary ‘& o a register variable (ecl, error)
Because register variables are stored within registers, they do not have addres-
ses. which means that the unary & operator cannot be used with them.

cannot cast double to pointer (ecl, error)
The program attempted to cast a double to a pointer.

cannot cast pointer to double {ce0, error)
The program attempted to cast a pointer to a double,

sannat cast structure or union (ccl, error)
The program atfempted to cast a sfructor a union.

cannot cast to structurs or union (ced, error)
The program atempted to casta variable to a union or struct.

giring: cannot ¢reate (as, ercor)
The assembler as cannot create the outpuat file it was requested to create. This
often is due to a problem with the output device; check and make sure that it
is working correctly and not [ull,

siring cannot create (epp, fatal)
The preprocessor cpp cannot create the output file siring that it was asked to
create. This often s due to a problem with the cutput device; check and make
sure that it is working correctly and is not fall.

cannol create string (1d, fatal)
The linker Id cannot create the output File it was requested to ¢reate, This of-
ten is due to a problem with the output device; check and make sure that it is
waorking correctly and 1§ not full,

cannot declare array of functions (ecl, error)
extern int (*f]|)(); declares F to be an array of pointers to functions that return
ints. Arrays ol functions are illegal.

cannot declare [lexible automatic array (cc0, error)
The program doss not explicitly declare the number of elements in an
aulomatic array.

cannot initialize fields (e, error} o
The program attempted to initialize bit fields within a structure. This 15 not
supported.

cannot initialize unions {cel, error)
The program attempted to initialize a union within its declaration. unions
cannot be initialized,

string: cannot open (cpp. fatal))
The preprocessor cpp cannot open the file siring of source code that it was
asked to read. cpp may not have been correctly told the directory in which

Mark Williams C 17

Mark Willlams C for the Atari ST

this file is to be found; check that the file is located correctly.

cannot open include file srring (epp, error)
The program asked for file string, that was not found in the same r:hrectory
the source file, nor in the default include directory specified by the Enwmn
mental varmble INCDIR, nor in any of the directories named in -1 optior
given to the ce command.]

cannot open string (seg mumber) (1d, fatal)
The linker 1d cannot open the object module that it was asked to read. Ma
sure that the storage device is working correctly, and that 1d has been given
the correct names of the file and of the directory in which it is stored.

siring: cannot reopen (ec2, fatal)
The optimizer ¢c? cannot reopen a file that it has been working with. Mak
sure that your mass storage device is working correctly and that it is not full,

can't open libstring.a (1d, fatal)
The linker 1d cannot open a library that it has been asked to link into vour
program. Make sure that you named the library correctly and that the en-
vironmental parameter LIBPATH is set correctly if you used the -1 option ta
the ce command line. 4

can't open séring (1d, fatal)
The linker Id cannot open a file that it has been asked to work with. Make
sure that your mass storage device is working cnrrectly, and that 1d has been
given the correct names of the file and of the directory in which it is stored,

can't open temp file (Id, fatal)
The linker Id cannot open the temporary file created by the compiler or the
assembler. Make sure that vour mass storage device is working correctly, and
that Id has been given the correct names of the file and of the directory in
which it is stored.

can't read siring (Id, fatal)
The linker Id cannot read the file named. Make sure that vour mass storage
device is working correctly, and that 1d has been given the correct names of
the file and of the directory in which it is stored.

case not in 8 switch (cc, error)
The program uses a case label outside of a switch statement,

class not allowed in structure hody (ecl, error)
A storage class such as register or auto was specified within a structure,

compound statement required (cel, error) A
A construction that requires a compound statement, e.g., a function definition,
array initialization, or switch statement, does not have one.

38 Mark Williams C

Error messages

sonstant expression required (ecl, error)
The program uses a variable in a statement that requires a constant expression.

conslant “aumber” promoted to long (cc0, warning)

The compiler promoted a constant in your program to long, although this is
aot strictly iflegal, it may create problems when you attempt to port your code
1o another system, especially if the constant appears in an argument list.

consrant used in truth context (eel, strict)
A conditional expression for an if, while, or for statement has turned out to be
always true or always false.

construction not in Kernighan and Ritchie (cc0, strict)
This construction is not found in The C Programming Language; although it
can be compiled by Mark Williams C, it may not be portable to another com-
piler,

corntinue aot in g loop (el error)
The program uses 4 continue statement that is not inside a loop.

#deline argument mismatch (cpp, warning)
The definition of an arsument in a #define statement does not match its sub-
seguent use, One or the other should be changed.

declarator syntax {ccD, error)
The program used incprrect syntay in a declaration,

default label not in a switch {cel, error)
The program used a default label outside a switch construct.

disk erear (1d, fatal)
The linker 1d encountered a problem with the storage device when it at-
tempted to read or write a file. Check that the disk 15 working correctly; if 1d
is working with a floppy disk, make sure that the disk is sound and that it is
not write-protected,

divide by zero (ecO, warning)
The program will divide by zero if the code just parsed is executed. Although
the program can be parsed, this statement may create trouble if executed.

duplicated case constant (ec0, error)
A ¢ase value may appear only once in a switch statement.

#else used without #if or #ifdef (cpp, error)
The program has an #else without a preceding #if, Most likely, an extra #else
was inserted, or an #if or #ifdef was overlooked.

Empty switch (ecl, warning)
A switch statement has no case labels and no default labels.

Mark Williams C 39

Mark Willlams C for the Atari ST

#endif used without #if or &ifdef {(cpp, error)
The program has an #endif without a preceding #if,

EOF in commeant {cpp, crmrj
An EOF appears in a comment. The file of source code may have been trun--
cated, or you failed to close a comment' make sure that each opén- commenti
symbol */*" is balanced with a close-comment symbol “* /™.

EOQOF in macro argument (epp, warning)
An EOF appears in a macro argument.

error in #deline syntax (cpp, error)
The syntax of a #define statement is incorrect.

error in enumeration list syntax (ccl, error)
The syntax of an enumeration declaration containg an error.

arror in expression syntax (eel, error)
The parser expected to ses a valid expression; but did not.

error in #include syntax (cpp, error)
An #include directive must be followed by a string enclosed by either quota-
tion marks (" ") or angle brackets (<),

expression too complex (ccl, fatal)

The code generator cannot generate code for an expression. Simplify your
code.

external syntax (eel, error)
This could be one of several errors, most often & missing '{".

file ends within a comment (ccl, error)
The source file ended in the middle of a comment, If the program uses nested
comments, it may have mismatched numbers of begin-comment and end-
comment markers. If not, the program began a comment and did not end i
perhaps inadvertently when dividing by *something, e.g., a=h/®cds,

function cannot return a function {ccl, error)
The function iz declared to return to another function. A function, however,
can return a pofater to a function, as does int (*signal(n, a))().

function cannot return an array (ccl, error)

A function is declared to return an array. A function can return a pointer to a
structure or array.

functions cannot be parameters (ec0, error)
The program declares a function as a parameter, &.g., int g(): x(q):.

identifier “string™ 15 being redeclared (ccl, error)
The program declares variable string to be of two different types. This often
may be due to an implicit declaration, the use of a function before a subse-

40 Mark Williams C

Error messages

quent declaration. Check for name conflicts.

identifier “string™ is not a label (ecl, error)
The program attempts to goto a nonexistent identifier.

identifier “siring™ is not a parameter (ccl, error)
The variabla “string™ did not appear in the parameter list,

identifier “string™ is not defined {ce0, error)
The program uses identifier string but does not define it.

identifier “séring" not usable (c¢l, error)
siring is probably a member of a structure or union which appears by itself in
an expression.

illegal character constant {ccl, error)
Legal character constants consist of a single letter, a backslash ' followed by
one of %, n, t, b, r, I, v, or a, or & backslash followed by up to three octal
digits:

illegal character (number decimal) (ecl, error}

A control character was embedded within the source code. number is the
decimal value of the character.

illegal # construct {cel, error)
The parser recognizes control lines of the form #lire number (decimal) or
#file_name. Anything else is illegal.

izzal cantrol line {cpp, grror)
4 ‘&' is followed bv a word that the compiler does not recognize,

illegal label “siring™ (ccl, error)
The program uses the keyword string as a goto label. Remember that each
label must end with a colon.

illegal operation on “void™ type (ccll, error)
The program tried to manipulate a value returned by a function that had been
declared to be of type void.

illegal structure assignment (ec0, error)
The structures have different sizes.

leps| subtraction of pointers (ce0, error)
A pointer can he subtracted from another pointer only if both point to objects
of the same size.

illagal use of a pointer (ce0, error)
& pointer was used illegally, e.g., multiplied, divided, or anded. You may get
the result yvou want if you ¢ast the pointer to a long.

Mark Williams C 41

Mark Willlams C for the Atari ST

illegal use of a structure or union (ccl, error)
You may take the address of a struct, gccess one of its members, assign it t@
another structure, pass it as an argument, and return. All else is illegal.

illegal use of floating point (ecl, error)
A [loat was used illegally, e.g., in a bit-field structure.

illegal use of “void" tvpe (cel, error)
The program used void creatively, Strictly, there are only void functluns,
Mark Williams C also supports the cast to void of a function call.

illegal use of void type in cast (cc0, error)
The program uses a pointer where it should be using a variable,

string in #if (cpp, error) .
A syntax error occurred in a #if declaration. string describes the error in
detail. i

inappropriate “alien” modifier {ccl, error)
The alien type is used to interface C with non-C functions; your program
tried to use aliem as an internal Tunction rather than as a tefercnce to an ex-
ternal function.

inappropriate “long™ (ccl, error)
Your program used the type long inappropriately, e.g., to describe a char.

inappropriate “short' (ccl, error)
Your program used the type short inappropriately, e.g., to describe a char.

inappropriate *“unsigned” (ccl, error)
Your program used the type unsigned inappropriately, e.g., to describe a
double.

indirection through non pointer (cel, error)
The program attempted to use a scalar as a pointer; you must first cast it to &
pointer to something.

initializer too complex (cel, error)
An initializer was too complex to be calculated at compile time. You should
simplify the initializer to correct this problem.

integer pointer comparison {cel, striceg)
The program compares an mtegar with a pointer without casting one to the
type of the other. While this is legal, the comparison may not work on
machines with non-integer pointers, e.g., segmented Z8000 or LARGE-model
8086, or on machines with pointers larger than ints, e.g., the 65000,

integer pointer pun {(ecl, strict)
The program assigns a pointer to an integer, or vice versa, without casting the
right-hand side of the assignment to the type of the left- hand side. While this

42 Mark Williams C

Error messages

iz permitted, it is often an error if the integer has less precision than the
pointer does. Make sure that any functions called in the expression that
return pointers are properly declared.

rpal compiler error {ccl, cel, cc2, cc3, fatal)
The program produced a state that should not happen during compilation,
Forward a copy of the program, preferably on a machine-readable medium, to
Mark Williams Company, together with the version number of the compiler,
the command line used to compile the program, and the system configuration.
For immeadiate advice during business hours, telephone Mark Williams Com-

pany.

Internal error, c=number in expr. (as, error)
Internal prablem; contact Mark Williams Company.

inte

“eerfin™ 15 @ enum tag (ccl, error)
“erring™ 18 a struct tag (ccl, error)

“eiring™ i5-4 uniton tag (ccl, error)
string has been previously declared as a tag name for a struct, union, or enum,
and 15 now being declared as another tag. Perhaps the structure declarations
have been included twice.

“siping” 15 not a tag (ced, error)
A struct or union with tag string is referenced before any such struct or union

is declared. Check vour declarations against the reference,

“string’ s not a typedef name {¢c, error)
siring was found in a declaration in the position in which the base type of the
declaration should have appeared. string is not one of the predefined types or
4 typedel name.

“string™ is not an “enum” tag (ecl, error)
An enum with tag string is referenced before any such emum has been
declared,

elass “siring™ (nurtber) 1s not used (ccl, strict)
Space was allocated for the variable string of the given clasy by the declara-
tion on line #uwiher, but it was not used.

label “srring™ undefined (ecl, error) :
The program does not declare the label string, but it 18 referenced ina goto
statement,

left side of “string™ not usable (e, error)
The left side of string should be a pointer, but is not,

lvzluz required (cel, error)
The left-hand walue of a declaration is missing or incorrect.

Mark Williams C 43

Mark Willlams C for the Atari ST

m (as, error)

Multiple definition. The offending line is involved in the multiple definition
of a label,

macro body too long (epp, Fatal) _
The size of the macro in question exceeds 200 bytes. which is the limi
designed into the preprocessor, Try to shorten or split the macra.

macro expansion overflow (epp, fatal)

The propram containg 8 macro extension that exceeds the allowed limit of 200
bBytes. '

macro string redefined (cpp, warning)
The program redefined the macro string,

macro siring requires arguments (cpp, error)
The macra calls for arguments that the program has not supplied.

macros nested nuenber deep, loop likely (cpp, error) i
Macros call each other numtber times, You would be well advised to simplify
the program.

member “siring is not addressable (ecl, error)
The array string has exceeded the machine's addressing capability. Structure
members are addressed with 16-bit signed offsets on most machines.

member “siring” is not defined (cel, error)
The programs references a structure member that has not been declarad,

mismatched conditional (ccl, error)
In a *?"-"" expression, the colon and all three expressions must be present.

misplaced *:" operator (ccl, error)

The program used a colon without a preceding guestion mark. It may bea
misplaced label, |

migsing =" (ccl, warning)
An equal sign 15 missing from the initialization of a variable declaration. Note:
that this is a warning, not an error; this allows Mark Williams C to compile
programs with “old style initializers, such as int i 1; however, use of this fea-
ture is strongly discouraged.

misging *:" (ccl, error)
A colon ' is missing after a case label, a default label, or 3 *? in a *7'-%" con—
stroction,

missing " (cc0, error)
A comma i5 missing from an enumeration member list,

44 Mark Williams C

Error messages

missing " (cel, errotr) . o |
A left brace *{" is missing after a struct fag, union fgg, or enum fag n 4
definition.

missing “(" (cc0, errot)
The if, while, for, and switch keywords must be followed by parenthesized
2XPIessions,

missing “y** {cel, error))
A right brace ‘) is missing from a struct, union, or definition, from an in-
itialization, or from a compound statement.

missing *'1" (ecl, error)
A right bracket ‘T is missing from an array declaration, or from an array
reference.

missing)" (ecl, error)
A right parenthesis ') is missing anywhere after a left parenthesis (",

missing ‘%" (cc0, error)
A semicolon ' does not appear after an external data definition or declara-
tion, after a struct or union member declaration, alter an gutomatic data dec-
laration or definition, after a statement, or in a for(y;) statement.

missing “while" (ccl, error)
A while command does nat appear after a do in a2 do-while() statement.

missing #endif (epp, error)
An #if, #ifdel, or #ifndef statement was not closed with an #endil statement.

missing label name in goto (cel, error)
A goto statement does not have a label.

missing mermber {cell, error)
A 1 or ¥ox" s not followed by a member name.

missing output file (cpp, fatal)
The preprocessor cpp found a -o option that was not followed by a file name
for the output file.

missing right brace (ccl, error) .
A tight brace is missing at end of file. The missing brace probably precedes
lines with errors reported earlier.

missing “sering™ (ccl, error)
The parser ccl expects to sce token siring, but sees something else,

missing semicolon (ce, error) !
Extarnal declarations should continue with %, or end with)%,

Mark Williams C g

Mark Williams C for the Atarl 8T

missing type in structure body {celd, error)
A structure member declaration has no type.

multiple classes (cel, error)
An element has been asigned to more than one storage class, e.g., extern
register,

multiple #elsa’s (cpp, warning)
An #ifdef, #if, or #ifndef statement is followed by more than one #else
statement.

multiple types {ccd, error)
An element has been assigned more than one data type, e.g., integer Tloat,

nested comment (cpp, warning)
By default, Mark Williams C does not accept nested comments. To tell Mark
Williams C to gccept nested comments in your program, use the option
-VOCNEST on your cc command line.

newline 1n maero argument (cpp, warning)
A macro argument containg a newline character,

no input found (1d, fatal)
The Id command line nameas no object ar archive files to link,

nonterminated string or character constant {cel, error)
A line that contains single or double guotation marks left off the -::lasmg-
quotation mark., A pewline in a string constant may be escaped with .

number has too many digits (ccl, error)
A number is too big to fit into its type.

o {as, error)
An unrecognized opcode mnemonic was found. Contrast this with error ‘q’s
where the opeode 15 recognized but the syntax line 18 in error.

only one default label allowed {cel, error)
The program uses motre than one default label in a switch.

out of space (Id, fatal)
malloc could not allocate adequate space in memory for the linker Id 1o work.

out of space {fBcppfR, cel, cel, ecl, ccd, fatal)
The compiler ran out GE' space while attempting to compile the program. To!
remove this error, examine vour source and break up any functions that are:
extraordinarily large.

out of tree space {cch, fatal)
The compiler allows a program to use up to 350 tree nodes; the program ex-
ceeded that allowance.

46 Mark Williams C 3

Error messages

gutdated ranlib (1d, warning} -
The date stamp on the library file is vounger than that in the ranlib header. Tf
the library has been altered, the ranlib can be updated with the archiver ar;
sep the Lexicon entry on ar to see how this is done. IT the library has not been
altered, this message may be due to an installation error; see the Lexicon entry
on ranlib for more information,

p (as, error) .)
Phase error. The value of a label changed during the assembly. An instruc-

tion has a size that differs between the first and second passes.

potentially nonportable structure access (ce0, strict)
A program that uses this construction may not be portable to another com-

piler.

preprocessor assertion failure (cpp, warning)
A #asserf directive that was tested by the preprocessor cpp was found to be
false,

q (a&s, error)
(uastionable syntax. The assembler has no idea how to parse this line, and it
has given up.

T (A%, &TTor)
Relogation error. The program attempted o create or use an expression in a
way that the linker cannot resolve,

return tvpe/function type mismatch {ec0, error)
What the function was declared to return and what it actually returns do not
maich, and cannot be made to match.

returnfe) illegal in void function (cc0, error)
A Tunction that was declared to be type void has nevertheless attempted Lo
return a value. FEither the declaration or the function should be alterad.

risky type in truth context (cel, strict)
The program uses a variable declared to be a pointer, long, unsigned long,
float, or double as the condition expression in an if, while, do, or *7°-%". This
could be misinterpreted by some C compilers.

5 f&.‘., l:"l‘j_'{]]'jl
Segment error, The program attempted to initialize something in a segment
that containg only uninitialized data;

Slze ol srruet “string™ is not known (ecl, error)

size of union “string™ is not known (ce0, error))
A pointer to a struct or union is being incremented, decremented, or subjected
te array arithmetic, but the struct or union has not been defined.

Mark Williams C 47

Mark Williams C for the Atari ST

size of string too large (ccl, error)
The program declared an array or struct that is too big to be addressable, e. gy
long a|20000]; on a machine that has a 64-kilobyte limit on data size ang
four-byte longs.

sizeof(srring) set to number (ccl, warning)
The program attempts to set the value of siring by applying sizeof to a Func-
tion or an extern; the compiler in this instance has set siring to nuwmber.

starage ¢lass not allowed in cast (cch, error)
The ptogram ¢asts an item as a register, static, or other storapge class.

structure “string™ does not contain member “m” (ccl, error)
The program attempied to address Thﬂ variable siring.m, which is not defined
as part of the structure siring.

structure or union used in truth context (ecd, error)
The program uses a structure in an if, while, or for, or *?°-%" statement,

switch of non integer (ecl, error)
The expression in a switch statemnent is not type int or char, You should cast
the switch expression to an int if the loss of precision is not critical:

switch overflow (ccl, fatal)
The program has more than ten nested switches.

too many adjectives (cel, error}
A wvariable's type was described with too many of long, short, or uns:gned

too many arguments (ecl, fatal)
Mo functicn may have more than 30 arguments.

too many arguments in a8 macro (cpp, fatal)
The program uses more than ten arguments with & macro.

too many cases (ccl, fatal)
The program cannot allocate space to build a switch statemant.

too many directories in include list (cpp, fatal)
The program uses more than ten #include directories,

too many initializers (ecD, error)
The program has more initializers than the space allocated can hold.

too many structure initi&ﬁze‘rs {cel, error) i |
The program contains a structure initialization that has more values than__
members,

trailing **," in initialization list (cc0, warning)
An initialization statement ends with a comma, which is legal.

48 Mark Williams C

Error messages

gype clash {eclh, error))))
g The parser expected to find matching tvpes but did not. For example, the
types of el and €2 in (x) ? el : 2 must either both be pointers or neither be

pointers.

type required in cast (ecl, error)
The type is missing from a cast declaration.

u (as, ETFOT) .] o
A symbol is used but never defined. The symbol's name is displayed.
unexpected end of enumeration list (ce0, error)
An end-of-file [lag or a right brace occurred in the middle of the list of
ENUMErators.

unexpected EOF (cel, ccl, ecl, ccd, fatal)
EQF occurred in the middle of a statement. The temporary file may have

been corrupted or truncated by an earlier phase.

union “xering’ does not contain member m (ccl, error)
The program attempted to address the variable string m, which is not defined
as part of the structure string.

string: unknown option (cpp, fatal)
The preprocessor cpp does not recognize the option string. Try re-typing the
¢ command line.

zero modulus {ecl, warning)
The program will perform a modulo operation by zero if the code just parsed
is executed. Although the program can be parsed, this statement mav create
trouble if executed.

Mark Williams C 49

Mark Williams C for the Atarl ST

3. The Lexicon

The rest of this manual consists of the Lexicon. The Lexicon consists of more th
700 articles, each of which describes a function or command, defines a term, g
otherwise gives you useful information. The articles are organized in alphabetical gro
der, to ensure that everything is easy to find. 3

The following page gives a sample article in the Lexicon format. For more infor
tion on how to use the Lexicon and how it is organized, see the enitry in the Le;
on Lexicon.

50 Mark Williams C

example

sxample- -Sample entry .
: Give an example of Mark Williams Lexicon format
long example(foo, bar) int foo: long har;

This is an example of the Mark Williams Lexicon format of software documen-
tation. At this point, each entry has a brief narration that discusses the topic in
detail.

‘The line in boldface above gives the usage of the function being described. The
imaginary function is called example, long means that it returns a long; if no
type is given, then assume that it returns an int; and if the function should
return nothing, it will be given as type vold. foo and har are example’s ar-
guments; foo must be declared as an int, and bar as a long.

Example

maindd {
printf{"Many articles have an example.\n");
1

See Also
all other related topics and funciions

Notes
If technical terms are used that vou do not entirely understand, look them up in

the Lexicon. In this way, vou will gain a secure understanding of how to use
Mark Williams C.

Mark Williams C 51

abort-acos

abort—General function (libc.a/abort)

abs—General function (libe.a/abs)

52

End program immediately
abort()

abort terminates a process and prints a message on the screen. It is normall
voked 1n situations in a program that “should not happen™. The terminati
carried out by a call to exit, with a non-zero exit status.]

See Also
exit, exit

Diagnestics
abort prints the relative address from the beginning of the program, so that y
can look the location up in the symbol table. See the entry for nm for more
formation on how to extract the symbol table from an executable program.

Return the absolute value of an integer
abs(n) int

abs returns the absolute value of integer #.
Example

maing3{
extern char *gets{);
extern int atoi{):
char string[&6] :
int input;
for {723
printf{"Enter an integer: ");
if(getsistringy) {
input = atoidstring):
printf("abs(Xd) s Xd.\n", input, abs{input}l;
¥
elze break;

¥

See Also
fabs, floor, int

MNates
On two's complement machines, the abs of the most negative integer is itself.

Mark Williams C

jcom Acos

gxl
Let

_wathematics function (libm.a Jfacos)
Calculate inverse cosine

sinclude <math.h>

double acos(arg) double arg;

n;ﬂi—

4cos calculates inverse cosine. arg should be in the range of [-1., 1.]; the result
will be in the range [0, PI].

Example : :
This example demonstrates the mathematics functions acos, asin, atan, atan2,
cabs. cos, hypot, sin, and lan,

#include <math.hx

dodisplayivalue, name}
deuble value; char *name;

{
if {errngd
perror{namel;
alse
printf("iiog Xs\n", value, name);
errno = 05
3

fdefine display(=) dedisplayi(doublel(xd, gy

main{}
extern char *gets();
douole Xx;
char string[&4];

for(;ey £
printf{YEnter mumber: "3}
ifegets{string) == O
break;

% = gtof{strimad;
display{n};
displaylcos(xl};
dizplayl{sin{x});
display{tan{x)};
display{acos{cos(xid};

display(asinfsin{x}1);
display{atanftan(x)3);
displeyiatan2(sin{x), cos{n)}l;
display(hypot{sin(x),cos(x)));
display{cabs{sin{x), cos(x)));

Mark WI"!BI‘I‘IS C 53

address- AES - Lexicn

address—Definition

AES—Definition

54

Seg Also
erriio, errno.h, mathematics library, perror

Diggrostics
Qut-of-range arguments set errno to EDOM and return 0.

An address is the location where an item of data is stored in memory. An.
dress on the 68000 is simply a 24-bit integer that is stored as a 32-bit int
Om the 68000, the upper eight bits are ignored; this is not true with mor
vanced microprocessors in this family, such as the 68020, On machines
memory-mapped 1/0, such as the 68000, some addresses may be used to con
ar communicate with peripheral devices. Thus, using an incorrect address as
argument to poke may accidentally disable a peripheral dewvice.

Fee Also
peekh, peekl, peekw, pokeb, pokel, pokew

AES stands for application environmen! services. Tt draws and manipulates p
defined graphics elements, such as icons, pull-down menus, and windows. 1
the highest level of GEM, and the one that a programmer will deal with m
often.

AFES consists of the following elements: a kernel, a screen manager, buf fars, and
a set of “libraries”. Each is briefly described below.

The kernel performs rudimentary 1/0 and provides limited multi-tas
capability, It manipulates concurrently executing routines, or “processes™,
the following manner. When a process has executed to the point where it m

a request from the kernel, it's placed on a “not ready™ list, where it slee
When a “event” occurs that the program is awaiting (that is, when the
manipulates the mouse or types on the kevboard, when the system’s timer sl
nals that a certain amount of time has elapsed, or when a message is rec

[rom another process), the kernel moves the process from the not-ready list:
the end of the “ready™ list, and returns a description of the event to the proce

Note that each “event generator™ (i.e., mouse, keyboard, and timer) has its
buffer, which ensures that no event is “dropped on the floor™, or lost, Wh
another is being processed.

The screen manaper tracks the mouse pointer on the screen, and manages
dows and menus. It signals when a mouse button 1s pressed with the mol
pointer fixed on a significant area of the screen (e.g., the work area ina
dow), returns a message when the user manipulates a window, and drops
appropriate menu when the pointer ¢rosses into the menu bar at the top of
screen,

Lexicon

Finally, AES contains a number of sets, or “libraries”, of functions that create
and manipulate screen elements, These functions are accessed through the
library libaes.a, and their bindings are carried in the file aesbind.h.

The following names each AES routine and briefly describes what it does.

appl_exit tell the AES that the program is exiting
appl_find get ancther application’s handle
appl_init initialize a new application

app!_read read a message from another process
appl tplay replay recorded AES events
appl_trecord record AES events

appl write send a message to another process

evot button
EYIE r;dcliclc
evnt keyhd
evnl mesag
evit mouse
evat_mulli

evot timer

form alert
form_center
form _dial
form_do
form_ error

fsel input

graf growbox
graf handle
graf mbox
gral mkstate
graf mouse
gral rubbox
gral shrinkbox
graf slidebox
graf watchbox

menu_bar
menu_icheck

menu_ fenable
menu register

await a mouse button event
set/pet double-clicking speed
await a keyboard event

awalt a message

wait for mouse to enter a rectangle
await more than one event

wait a given amount of time

perform an alert dialogue
center dialogue box on screen
reserve/release dialogue box
use dialogue box

display preset error box

display/run file selector box

draw expanding box outline

return VDI handle

draw moving box

return current mouse states

change mouse pointer's shape

draw box that expands with mouse pointer
draw a shrinking outline

find center of box's “slider”

check if mouse pointer is within box

displav/erase menu bar
display/remove checks by menu items
enable/disable menu items

name desk accessory on desk menu

menu_text change text of menu item |
menu_tnormal show menu title in normal/reverse video
objc_add add an object to object tree

olbjec change

Mark Williams C

change an object’s state

335

AES

Lexicon

obje_delete
objc draw

delete object from object tree
draw an ohject

objc_ edit edit text within an object

obje find find if mouse is over an object
objc_order change order of object within its tree
ohjc_set compute object’s location
rc_copy copy a rectangle

re_egual compare two rectangles
re_intersect caleulate overlap of rectangles
rc_union combine rectangles

rsrc free free memory allocated to resource
rsre_gaddr get address of data structure
rsre_load load resource file into RAM
rsre__obfix convert character coordinates
rsre_saddr store index to data structure
scrp_read find name of scrap directory
scrp_write set name of scrap directory

shel envrn

search for eavironmental variable

shel find find a file name

shel read return name of parent program

shel write invoke another program or exit from GEM
wind cale calculate window size

wind close
wind create

close a window
create a window

wind_ delete delets window

wind_find find a window under mouse painter
wind_get get information about a window
wind open open a window

wind set set values for window

wind _update

inhibit/allow updates to windows

Each routing has its own entry within the Lexicon its bindings are given, with
a fuller description and, often, an example.

Erogramming the AES

Some graphics-based systems have been designed to automate as much work as
possible. The AES is not such a system. In programming the AES, vou must
specifically guide each function each step of the way. This means that you

must do more work, but it also means that you have fuller, and finer, control of

the operation of the program. For example, program flow under an automated.
system often appears to function as follows:

Mark Williams C.

AES

action occurs;
if faction was desired)
gaed;
else
tough_luck;

Programming under the AES more often resembles the following model:

infermation received /% e.9., mouse moved, keyboard pressed */

parse information

it (information meets test) {
pass to_reutine(informaticn);
perform_asction();
cleanup debris();
return;

% else if (information meets second test) {
pass_to_otherroutine information);
take slternative_action{);
cleanup debris();
return;

1 elae ignorel);

The second model of programming obviously is harder to work with than the
first. However, it has the advantage of protecting you from random, system-
generated errors—or at least gives you the tools with which to work around such
errors should they occur,

In programming for AES, note that each process must be declared to the AES
thtough the function appl_init. This gives the process a handla, so it can be
Tecogmzed and manipulated by the kermel, and notifies the AES that this
program it a GEM application. When a process is finished, it is good practice
to close it with the function appl _exit. This frees up AES structures allocated to
the process, and ensures that the process terminates gracefully.

Mote that not all {0 programs use the AES specifically. Programs that use only
UNIX routines or STDIO need never worry about the AES, All programs that
use the graphics interface, however, must run under the AES; this means that
-‘.ﬂll programs that use the VDI must begin with appl_init and close with ap-
pl_exit,

The AES provides sophisticated routines to help draw windows and menus, and

create graphics ohjects. See the entries for window, menu, and objeet for more
derails,

For information about compiling AES programs, see the entry for TOS.

See Also
aeshind.h, gemdefs.h, libaes.a, libvdi.a, menu, object, TOS, windew

Mark Williams C 57

aesbind.h-alignment Lexicon !

Maotes

The AES binding library uses the object file crystal.o 1o access the AES ser-
vices. A program should never call this function directly; it is automatically
linked with libaes.a. You should never name a function or a global variable
erystal if your program uses the AES.

Mote that both the AES and the VDI use trap 2 to access the services.

aeshind.h—Header file

g‘eshind.‘h is the header file that declares the the GEM AES routines contained
i the library libaes.a, and shows a sample call for each. It also defines the
following structures:

Rect Describe g rectangle by its x, v coordinates and its width and height.
This structure is called GRECT in the header file obdefs.h, and is
described as follows:

typadef struect £ int %, ¥, ¥, h; 3 Rect:

Mouse Pass pointers to the x, y coordinates, mounse button state, and kevboard
state:

typedef struct { int =x, *v, *b, *k; » Mouse;
Prect Pass pointers to the x, v coordinates, width, and height of a rectangle;
typedef struct { int ®x, "y, "W, *h; ¥ Prect;

See Also
AES, header file, TOS

alipnment—Delinition

Alignment refers to the fact that the address of 3 data entity must be aligned on
a certain numeric boundary in memory, such that address modulo mumber e-
quals zerp, For example, on 68000 and the PDP-11, an integer must be aligned
along an even address, i.e., address%2==0. Generally speaking, alignment is a
problem omly if you write programs in assembly language; for C programs,
Mark Williams C will ensure that data types are aligned properly under most
foreseeable conditions.,

Alignment may be a problem when porting programs to the YAX. On this
computer, certain data tvpes have quad-word boundaries, and exceeding these
boundaries can mean a significant penalty in the speed with which programs
execute,

Processors react differently to alignment problems; an alignment problem on the
VAX or the 80B6 causes programs to run more slowly, whereas on the 55000
they cause bus errors,

Mark Williams C

Lexicon appl exit-appl init

See Also
data types, declarations

appl_exit—AES function (libaes.a/appl_exit)

appl

appl |

Exit from an application
#include <aesbind.h>
int appl_exit()

appl_exit is an AES routine that notified the AES that the program no longer
requires its services. It frees up the AES structures and the handle associated
with the process, Tt does not terminate program execution.

appl_exit returns zero if an error occurred, and a number greater than zero if
ane did not,

Example

For examples of how to use this routine, see the entries for evnt multi and
window,

See Also
AES, appl_init, TOS

Mnd—AES function (libaes.a/appl find)

 Get the ID of another application

#include <aesbind. h>
int appl_find({ filename) char *filename

appl find is an AES routine that fetches the handle of another application.
filename is the name of the file in which the application is stored; it cannaot be
longer than eight characters. appl find returns the handle if it is found, and -1
if an error occurred.

See Also
AES, TOS

init—AES function (libaes.a/appl init)
Initiate an application

#include <aeshind.h>

int appl init()

appl init is an AES routine that declares an application. 1t registers the ap-
plication with AES, and initializes all resources used by the the application, Tt
returns the application’s handle if a1l went well, and -1 if an error gecurred.

Mark Williams C 59

appl read—AES function (libaes.a/appl_read)

appl _tplay—AES function (libaes.a/appl_ tplay)

appl_trecord—AES function (libaes.a/appl_ trecord)

a0

E}lp! read-appl trecord

Example

For an example of this routine, see the entries for evnt multi, menu, nbjécté
and window,

Kee Also
AES, appl_exit, TOS

Read a message from another application
#include <aesbhind.h>
int appl_read{handle, length, buffer) int handle, length; char *huffer;

appl_read is an AES routine that reads a message from another application.
handle 13 the AES handle of the application that owns the pipe to be read. and
length 15 the number of bytes to read from the pipe. buwffer is the place into
which the message is written, Tt returns zero if an error oceurred, and a num-
ber greater than zero if one did not.

Mote that this routine is used only in specialized programming situations, tg
receive messages sent with the routine appl write. Normally, an application
receives messages by using the routines or evat_multi.

See Also
AES, appl _write, evot_mesag, TOS

Replay AES activity
#include <aeshind. h=
int appl_tplay(buffer, mumber, speed) char *buffer; int number, speed;

appl_tplay is an AES routine that replayvs a set of AES events. These events
must be recorded with the function appl trecord. buffer is the name of the
buffer in which the actiong are stored. sumber 15 the number of actions that
vou wish to replay, and speed 15 a number from ong to 10,000 that indicates
how [ast the actions should be replayed. appl tplay always returns one.

See Also
AES, appl_trecord, TOS

" Record user actions
#inglude <aesbind.h> _
int appl_trecord(bufier, capacity) char *huffer; int capacity;

appl_trecord is an AES routine that records a user’s AES actions. IEach
recorded action requires an int and a long's worth of storage. The int indicates

Mark Williams C

Lexicon] appl_write-ar
———

the tvpe of event being recorded, as follows;

] timer event
1 mouse button event
2 MOuse event

3 kevboard event

The long can hold a variety of information, depending on the tvpe of event
being recorded, as follows:

timer milliseconds elapsed

button low word: state (O=up, I=down)
high word: number of clicks

mouse low word: X coordinate

high word; Y coordinate
keyboard low word: character typed
high word: kevboard state

buffer is the buffer into which the user's actions are recorded. capacity is the
number of events that can be stored. This should equal the amount of storage
available to buffer, divided by six (the number of bytes used by each event).

appl_trecord returns the number of events actually recorded. These events can
be replayved with the function appl _tplay.

See Also
AES, appl_tplay, TOS

appl write—AES function (libaes.a/appl_ write)
Send a message to another application
#include <aesbind.h>

int appl write(Chandle, length, buffer) int handle, lengih; char *buffer;

appl_write i5 an AES routine that sends a message to another application.
handle is the handle of the application to which the message is being sent, and
length is the length of the message, in bytes. buffer gives the address where
¥ou write vour message. appl write returns zero if an error occurrad, and a
number greater than zero if one did not.

Maote that this routine is used only in specialized programming situations, The
target application must use the routine appl read to receive messages sent via
appl write,

Sew Alsp
AES, appl _read, TOS

Mark Williams € H

ar

Lexicon

ar—Command
The librarian/archiver
ar option [modi fierll position] archive [member]

62

The librarian ar edits and examines libraries. It combines several files into a
file called an archive or library. Archives reduce the size of directorics and
allow many files to be handled as a single unit. The principal use of archives iz
for libraries of object files, The linker Id understands the archive format, and
can search libraries of object files to resolve undefined references in a program.

The mandatory option argument consists of one of the following command keys:

d

X

Delete each given member from archive. The ranlib header 15 updated if
present.

Move each given member within grehive. If no modifier is given, move
each member to the end, The ranlib header is modified if present.

Print each mesber, This is useful only with archives of text files.

Quick append: append each member to the end of archive unconditionally,
The ranlib header is nof updated.

Replace each member of archive. The optional modifier specifies how to
perform the replacement, as described below. The ranlib header is
moadified if present.

Print a table of contents that lists each member specified. Tf none is
given, list all in grckive. The modifier v tells ar to give you additional in-
formation.

Extract sach given member and place it into the current directory, lf";
none is specified, extract all members. archive is not changed.

The modifier may be one of the following. The modifiers a, b, i, and u may be
used only with the m and r options.

a

If member does not exist in archive, insert it after the member named by
the given position.

If member does not exist in archive, insert it before the member named by
the given position.

Suppress the message normally printed when ar creates an archive.

If member does not exist in grchive, insert it before the member named by
the given positicn. This is the same as the b modifier, described above.

Preserve the modify time of a file. This modifier is useful only with the
r. 4, and x options.

Modify an archive’s ranlib header, or create it if it does not exist. This 5
used only with the r, m, and d options.

Mark Williams C.

aArena
xjeon ol
Lex

u Update grchive only if member 18 newer than the version in the archive.
¥ Generate verbose messages.

All archives are written into a specialized file format. Each archive starts with
a *magic humber” called ARMAG, which identifies the file as an archive, The
members of the archive follow the magic number; each is preceded by an
ar _hdr structure, as follows:

#define DIRSIZ 14

#define ARMAG 0177535 J* magiec number %/

grruct ar_hdr f
char ar_name [DIRS12]; f* member name */
time t ar_date; i time inserted ™/
short ar_gid; /* group oWner */
short ar_uid; {* user owner */
short ar_mode; [file mode */
size T ar_size; /* file . size */

b

The structure at the head of each member 15 followed the data of the file,
which oceupy the numbet of bytes specified by the variable ar_ size.

See Alsa
commands, ld, nm, ranlib

Notes

It is recommended that each object-file library you create with ar have a name
that begins with the string lib. This will allow you to call that library with the
-1 option to the ce command.

MNote that ar now adjusts the time file in the ranlib header so that out-of-date
ranlib headers are now dated in 1970, and up-to-date ranlib headers are dated a
decade into the future. This should eliminate improper outdated ranlib error
messages from the linker.

arena—Definition

Mark Williams C uses an arena, rather than a heap, for allocation of dynamic
memory, An arema is the area of memory that is available for a program to
allocate dvnamically at run time. It consists of an area of memory that is
divided into allocated and unallocated blocks. The unallocated blocks together
form the “free memory pool™.

Portions of the arena can be allocated using the functions malloe, cal}cc, or
realloc; returned to the free memory pool with free; or checked to see if they
are allopated or not with notmem.

Mark Williams C 63

arge-argy

See Also
calloc, free, malloe, noimem, realloc

arge—Definition
Argument passed to main
int arge;

arge 15 an abbreviation for argument count. It is the traditional name for the
first argument to a C program’s main routine, By convention, it holds the num-
ber of arguments that are passed to main in the argument vector argy. Note that
because argv]0] is always the name of the command, the value of arge is always
pne greater than the number of command-line arguments that the user enters.

Example .
For an example of how to use arge, see the entry for argy.

Fee Also
argy, main
The C Programming Language, page 110

argv—Delinition
Argument passed to main
char *argv|[;

argy is an abbreviation for argument vector. It is the traditipnal name for a
pointer to an array of string pointers passed to a C program’s main function,
and is by convention the second argument passed to main. Note that by conven-
tion, argy[0] always points to the name of the command itself.

Under the draft ANSI standard for the C language, the default arguments to.a
C program are iot arge and char *argyvl]. Mark Williams C passes these ar-
guments and looks for them in two different ways: in the command tail of the
basepage sructure, and in the environment.

Why a different conveniion?

TOS allows programs to be run in a number of different wavs: under a shell,
from the desktop with arguments {.tip), or from the deskiop without arguments
(.tos, .pre). The Mark Williams conventions for passing argument are designed
1o increase run-time flexibility; programs compiled under Mark Williams C
should run transparently from the shell, or from the deskiop, using every pos=
sible run-time envirgnment.

Using the environment to pass parameters also has the advantage of lifting the
limit on the number or size of arguments that can be passed; it also has the ad-
vantage of not mapping all of the arguments to upper case.

64 Mark Williams C

argy

[L —
pexico

7S convenlions . ‘ ‘
The current TOS convention for passing arguments is to pass up to 127 charac-
ters in the command tail of the Pexec command. If the tail is parsed by the
desktop, it will be limited to 40 upper-case characters.

Mark Williams convention

The Mark Williams convention is first to parse the argument into words, then
pass the words within the Pexec environment. Within the Pexec environment,
the arguments begin immediately after the environmental variable ARGY and
continue to the end of the environment, The arguments may contain any ASCIT
chargcter except NUL, which is used to terminate both individual arguments
and the Pexec environment as 3 whole.

The Mark Williams library function execve executes a given command with a
specifed argy and envp, Tt copies envp into an allocated buffer, appends the
string ARGY=jpvector environment, and then appends the strings to the array to
which argv points. This concatentation of strings, which is terminated by an
empty string, becomes the environmeni passed to Pexec. In another part of the
allocated buffer, execve concatenates up to 127 characters, starting with
argvf 1] and continuing through argvf], separating the arguments with spaces.
This concatenation of strings, which is prefixed by a count, becomes the com-
mand (qil passed to Pexec. When execve now calls Pexec(0, command, com-
mand _tail, enviramment), TOS copies environment into a newly allocated buffer,
copies command tail into the newly allocated basepage, loads command, and ex-
ecutes it,

Summary

Mark Williams C puts the arguments into the environment so that programs that
use the the Mark Williams run-time start-up routine, crtsQ.o, will find them
therg, It puts them into the command tail, so that programs that use the
Jdtp-style run-time start-up (crisg.o) will find them there.

The Mark Williams run-time start-up module, crisfl.o, looks for arguments in
the environmant, If it finds them there, it uses them. If no arguments were
found in the environment, cris0.o assumes that it was started from the desktop
or 2 TOS convention command line interpreter, so it Tooks in the command tail
anid parses the contents into arguments that are delimited by space and tab
characters,

Mark Williams C looks for arguments in the environment because a command
may need more arguments than can be fit into the 40-character command tail
available when a program is run with the .ttp feature. In addition, a command
{e.g., egrep) can take arguments that contain literal spaces or tabs; these would
be interpreted to be word separators if arguments were passed simply through
the command tail.

At a last resort, Mark Williams C also looks for arguments in the command tail,
because 40 characters mapped to upper case are better than nothing.,

Mark Williams C 65

The execve function passes arguments in both the environment and the com-
mand tail, and the run-time start-up routine cris0.o takes arguments from the
command tail if’ the environment has none. Mark Williams C uses both conven-
tions in both places to allow as many programs to work in as many environ=
ments as possible.

Example

This example demonstrates both arge and argy[], to create the command echo,
For another example of arge, see the entry for basepage.

mainiargec, argv)

int arge; char *argvil;

{
int i:
for {i = 1; 1 <arge:) €
printf("is=", argvlil);
if (+*+i < arge)
putchar(! '3;
¥
putchar{'\n");
return 03
3
See Alsa

arge, crisl.o, crisd.o, crtsg.o, main, Pexec
The C Programming Language, page 110

array—Definition

a6

An array is a collection of data elements of the same type or structure, which
are stored in consecutive memory and which share the same name but are dif-
ferentiated by a subscript. For example, the array fool3] has three elements:
fool], foo[l], and fool2].

MNote that the numbering of elements within an array always begins with ‘0"

Arrays, like other data elements, may be automatic (auto), static, or external
(extern).

Arravs can be multi-dimensional; that i to s3v, each element in an array can it-
self be an array. To declare a multi-dimensional array, use more than one set
of square brackets. For example, the multi-dimensional array fool3][10] is a
two-dimensional array that has three elements, each of which is an array of ten
elements, MNote that the second sub-script is always necessary in a multi-
dimensional array, whereas the first is not. For example, [ool][10] is acceptable,
whereas foo[10]]] is not; the first form is an indefinite number of ten-glement
arrays, which is correct C, whereas the second form is ten copies of an in-
definite number of elements, which is illegal,

Mark Williams C

pexicon as

The C Programming Language, page 83, forbids the initialization of automatic
arravs. Mark Willhams C Lifts this restriction. It allows you to initialize
qutomatic arrays and structures, provided that yvou know the size of the array,
or of any array contained within a structure. The initialization has the same
form as that of the external aggregate, but is performed on entry to the routing
instead of at compile time. Note, however, that because this feature iz not
defined as part of the language, its use will limit the portability of your
progranm.

Seeg Afso
declarations, flexible array, struct
The © Programwming Language, pages 25, 83, 210

as—Command
Mark Williams assembler
as [=glx] [-o outfile] file ...

as is the Mark Williams assembler. It consists of one program, called as, which
turns files of assembly Janguage into relocatable object modules, similar to those
produced by the C compiler, Relocatable object modules produced by the as-
sembler and the compiler are of the same format.

a5 is 1 multipass assembler for writing small subroutines in assembly language.
Because it is not intended to be used for full-scale assembly-language program=-
ming, it lacks many of the more glaborate facilities of full-fledged assemblers,
such as conditional compilation or user-defined macros. However, as doss op-
timize span-dependent instructions.

Usage

Normally, the assembler as is invoked automatically by ce to assemble programs
with a suffix of .s. However, you can invoke as directly from the shell msh, by
using the following command:

as [-glx| [-o outfile] file ...
The following describes the available options:
-0 Write the assembled executable into ouwrfile. The default is Lout,

-g Give all symbols that are undefined at the end of the first pass the type
undefined external, as though they had been declared with a .globl direc-
tive.

-1 Generate a listing on the standard output.

-x Strip all non-global symbols that begin with the character L' from the
symbal table of the object module. This speeds the linking of files by
removing compiler-generated labels from the symbol table.

Mark Williams C 67

68

Lexical conventions)
Assembler tokens consist of identifiers (also known as “symbols™ or “names"),
constants, and operators.

An identifier is a string of alphanumeric characters, including the period °." and
the underscore *_*. The first character must not be numeric. Only the first 16
characters of the name are significant; the rest are thrown away, Upper case
and lower case are different. The machine instructions, assembly directives,

and symbols that are used frequently are in lower case.

Numeric constants are defined by the assembler by using the same syntax as the
C compiler; 2 sequence of digits that beging with a zero 0" is an octal constant; g
sequence of digits with a leading '0x’ is a hexadecimal constant (*A° through ‘F'
have the decimal values 10 through 15)% and any strings of digits that do not
begin with '0" are interpreted as decimal constants.

A character constant consists of an apostrophe followed by an ASCTI character.
The constant’s value 15 the ASCII code for the character, right-justifisd in the
machine word.

A blank space can be represented either as Ox20 (its ASCIL walue in
hexadecimal), or as an apostrophe followed by a space ("), which on paper
looks like just an apostrophe alone.

The following gives the multi-character escape sequences that can be used in 8
character constant to represent special characters:

\b Backspace (0010)
AT Formfeed (0014)
o Newline (0012}
Nr Carriage return (0015)
LY S Tab {0011}
¥ Vertical tab (0013)
S Oetal value {Orrnn)

Spaces and tab characters can be used freely between tokens, but not within
identifiers. A space or a tab character must separate adjacent tokens not other-
wise separated, e.g., an instruction opcode and its first operand.

Masks

as accepts a register mask syntax for the movem instruction. The syntax is as
follows:

Ve Sermask>, - (<an>)
mavem F<fmask> <adr>
mavem <gdre S<fmasks>
e e {<an>)+, S<fmagks

The abbreviations between angle brackets *<' *»' mean the following;

Mark Williams C

Geon a5
g_\ICE _
pesicon

zan> The registers al} through a7,
<adr> The effective address (not register direct), ie., the location of the
address.

<rmask> (reverse mask) This can be either a word whose bits show which
registers to save, with bit 0 indicating register a7 to bit 13 in-
dicating register d0; or a list of the registers to save, enclosad in
braces *{" ‘7.

<fmasks> (forward mask) This, too, is either a word whose bits show which
registers to save or restore, with bit 0 indieating register d0 through
bit 15 indicating register a7; or a list of these registers enclosed in
braces,

MNote that if the {lisf} variety of mask is used, the assembler automatically
produces a consistent value for all addressing modes (bits backward for destina-
tion, minus the contents of register aW), If a word value is used, the bits are
not modified. Thus:

maviem. 1 ${g2-d7 a2-ab), - (5p)
mavem. 1 (zpi+, 3{d2-d7,a2-35%2

produces the same code as:

mavem. $0x3F3C, - (=p)
mawvem. | (ap)+, S0x3CFC

Maote, too, that ranges that include both register sets are allowed; thus
mewvenm. | £{d0-a5)},4(a8)

will save d0 through a3, The instruction
mevem. | ${a5-d0}, 4(a5)

does the same thing. Likewise,

mavem, | ${d2, d3-d5;a5,85-a7), - (=p)
rESuIrsl in code that saves d2, d3 through d5, a3, and a5 through.a?. The in-
struction
mavem. | ${d0}, -{sp}
saves di.
Commaenis

Comments are introduced by a slash (*/*) and continue to the end of the line,
The assembler ignores all comments,

FProgram sections
The assembler permits the division of programs into a number of sections, sach

corresponding (roughly) to a functional area of the address space. E;u:h
program section has its own location counter during assembly. The eight

Mark Williams C 69

a8

Lexicon

70

program sections are subdivided into thres groups that contain ¢ode and data, as
follows:

shared: shri shared instruction
shrd shared data
private: pryi private instruction
prvd private data
uninitialized; bssi uninitialized instruction
bssd uninitialized data
strn strings

All Mark Williams assemblers use the same set of sections: this increases the
portability of programs among operating systems, In most instances, the
programmer need not worry about what all of the program sections are, and can
simply write code under the keywords .prvi or .shri, and write data under the
keywords .prvd or .shrd. At the end of assembly, the sections of a program are
concatenated so that within the assembly listing the program looks like a con-
tiguous block of code and data.

The current location
The special symbol*.' (period) is a counter that represents the current location,
The current location can be changed by an assignment; for example;

.= +5TART

The assignment must not cause the value to decrease and it must not change the
program section, Le,, the right-hand operand must be defined in the same sec-
tion as 15 the current section.

Expressions

Am expression is a sequence of symbols that represent a value and a program
section. Expressions are made up of identifiers, constants, operators, and
brackets., All binary operators have equal precedence and are executed in a
sirict left-to-right order, unless altered by brackets. MNote that square brackets,
[' and *J", are used to group the elements of expression, because parentheses are
used for addressing indexed registers,

Types
Every expression has a fype, which is determined by that expression’s operands.
The simplest operands are symbols, which yield the following types:

undefined A symbol is defined if 1t 18 a constant or a lahel, or whean it is
assigned a defined value; otherwise, it is undefined, A sym-
bol may become undefined if it is assigned the wvalue of an
undefined expression. [t is an error to assemble an undefined
expression in pass 2. With option fB-gfR, pass | allows as-
sembly of undefined expressions, but phase errors may be
produced if undefined expressions are used in certain con-
texts, such as in a .blkw or .blkb.

Mark Williams C

as

pexico?

absolute An absolute symbaol is one defined ultimately from a constant
or from the difference of two relocatable values of the same
type.

register The machine registers.

Relocatable All pther user symbals gre either defined labels {in a program

section) or externals. These are relocated at link time. Every
user program section and external symbol defines a unique
type class.

Each keyword in the assembler has a secret type that identifies it imternally;
however, all secret types are converted to an absolute constant in expressions.
Thus, any keyword can be used in an expression to obtain the basic value of the
keyword:

Mote that the tyvpe of an expression does not include such attributes as length, so
the assembler will not remember whether a particular variable was defined as a
word or 2 byte. Addresses and constants have different types, but the assembler
does not treat a constant as an immediate value unless it is preceded by a dollar
sign *S', If a constant is used where an address 15 expected, the constant will be
treatad like an address (and vice versa). The programmer must distingnish ba-
vween variables and addresses or immediate values.

O perators
The following table shows various characters interpreted as operators in expres-
sions.

+ Addition

- Subtraction
Multiplication

- Unary negation

~ Unary complement

8 Type transfer (cast)

| Segment construction

Type propagation

When operands are combined within expressions, the resulting type is a fune-
ticn of both the operator and the tvpes of the operands. The **', *~*, and unary
‘-' gperators can manipulate only absolute operands and always vield an ab-
solute result,

The *+' operator signifies the addition of two absolute operands to yield an ab-
solute result, and the addition of an absolute to a relocatable operand to yield a
result with the same type as the relocatable operand.

The binary ‘- operator allows two operands of the same type, including
relocatable, to be subtracted to vield an absolute result; it &I_sn allows an ab-
solute to be subtracted from a relocatable, to vield a result with the same type

Mark Williams C 71

as

Lexicon

as the relocatable operand.

The binary **' operator vields a result with the value of its left operand and the
tvpe of its right operand. It may be used to create expressions (usually intended
1o be psed in an assignment statement) with any desired type.

Slatements

A program consists of a sequence of statements separated by newlines or by
semicolons. There are four kinds of statements: null statements, assignment
statements, keyword statements, and machine instructions.

Any statement may be preceded by any number of labels. There are two kinds
of labels: nante and temporary.

A name label consists of an identifier followed by 2 colon (). The program
section and value of the label are set to that of the current location counter. It
is an error for the value of a label to change during an assembly. This most of -
ten happens when an undefined symbol iz used to control a location countar ad-
justment.

A temporary label consists of a digit (‘0" through *9') followed by & colon ('),
Such a label defines tempotrary symbols of the form xf and xb, where x is the
digit of the label, References of the form xf refer to the first temporary label
i Torward from the reference; those of the form xh refer to the first temporary
label x; back from the referance. Such labels conserve symbol table space in the
assembler.

A null statement is an empty line, or a line that contain only labels or a
comment.. Null statements can occur anywhere, They are ignored by the as-
sembler, except that any labels are given the current valug of the location
counter.

Note that the programmer is responsible for proper alignment of data. See the
entry on alignment for more information.

Assignment statements

An assignment statement consists of an identifier that is followed by an equal
sign ‘=" and an expression. The value and type of the identifier are set to those
of the expression. Any symbol that is defined by an assignment statement may
be redefined, either by another assignment statement or by a label. An assign-
ment statement is eguivalent to the equ keyword statement found in many as-
semblers.

Assembler directives
Assembler directives give instructions to the assembler, Each directive keyword
bezins with a period, and some are followed by operands.

Changing the current program section
These directives change the current program section to the named section.

Mark Williams C

a5

hssd .shrd
.bssl shri
.prvd stro
.prvl

The current location counter 15 set to the highest previous value of the location
counter for the selected section,

JAascil siring
In this directive, the first non-whitespace character, typically a gquota-
tion mark, after the kevword is taken as a delimiter. Successive
characters from the string are assembled into successive byies until this
delimiter 15 again encounterad. To include a quotation in a string, use
some other character for the delimiter,

Tt is an error for a newline to be encountered before reaching the final
delimiter. The multi-character escape sequences that are described
above in the subsection Comstanis mav be uwsed in the string to
represent newlines and other special characters.

blkb expression ;
This directive assemblas blocks that are filled with zeros. The size of
the block 15 expression bytes.

Ikl expression
This directive assembles blocks that are filled with zeros. The size of
the block i expression longs.

Dlkw expression .
This directive assembles blocks that are filled with zeros. The size of
the block is expression words,

yte expression | | expression |
Here, the gxpressions in the list are truncated to byte size and as-
sembled into successive bytes. Expressions in the list are separated by
COMMmas,

JEVEN The directives .even and .odd force alignment by inserting NUL, if
necessary, to set the location counter to the next even or odd location,
respectively.

-Elobl ideniifier [, identifier]
Here, the identifiers separated by commas are marked as global. If
they are defined in the current assembly, they may be referenced by
other object modules: if they are undefined, they must be resolved by
the linker before execution.

Jong expression|, expression]
In this directive, the expressions in the list are truncated to long and
the resulting data are assembled into successive longs. Expressions in

Mark Williams C 73

74

the list are separated by commas.

.page This causes the assembly listing to skip to the top of a new page by in-
serting a form-feed character into the file. The title i4 printed at the
top of the page.

gitle siring
Here, string appears on the top of every page in the assembly listing.
This directive also causes the listing to skip to a2 new page.

.odd The directives .even and .odd force alignment by inserting NUL, if
necessary, to set the location counter to the next even or odd location,
respectively.

.globl identifier [, identifier]

word expression| , expression |
The expressions in this list are truncated to word size and the resulting
data are assemblad into successive words. Expressions in the list are
sepatated by commas.

Conventions

C compiler conventions, naming conventions, function calling conventions, the
management of arguments, and return values are all described in detall in the
Lexicon entry for calling conventions,

G000 register names

The assembler for the Motorola 68000 microprocessor uses a subset of the
machine opcodes and register names provided by the manufacturer’s assembler.
All unsupported names are longer synonyms for names that are supported.
Assembler directives, statement syntax, and expression syntax are different.

The following register names are predefined, In general, length of operation is
specified by opcode. The -1 suffixes are used only in indexed addressing to
differentiate 16-birand 32-bit indices.

16-hil 32-bit

usp sp

ccr pe

sr di.l
a0 dl.l
dl d2.1
dz d3.l
d3 dd.1
dd d3:l
ds da.l
da a7l
d? all.l
al al.l
al az.l

Mark Williams C

Aas

pexicol

a2 a3l
a3 ad.l
a4 as.l
a3 af.l
ah at.l
a7 sp.l

Address descriptors

The following syntax is used for general source and destination address descrip-
tors. The syntax is a subset of that' used by Motorola assemblers, excent that the
character “%' is used to specify immediate data, and that the suffix :s appended
o an absolute address forces absolute short addressing. Note that short address
modes are pot supported by the TOS system executable format.

In the examples, the symbols a, d, and r refer to address, data, and any register,
respectively, and the symbol ‘e” refers to any expression.

dn Data register direct

an Address register direct

(a) Address register indirect

(a)+ Address register postincrement
-{a) Address register predecrement
efa) Address register displacement
e{a,r) Address register short index
e(a,r.]) Address register long index
€5 Absolute short address

e Absolute long address

e(pc) Program counter displacement

e(pc,r) Program counter short index
e(pe,r.]) Frogram counter long index
Fe Immediate data

1 Label

ea represents the effective address of any data address. an indicates any
register from a0 to a7; dn, any register from d0 to d7.

The addressing modes are classified into four categories that are used in the in-
struction listings to distinguish allowed addresses:

¥ Data addresses are all addresses except address registers.

* Memory addresses are all addresses except data and address registers,

* Control addresses are all memory addresses, except address register
predecrement and address register postincrement.

Alterable addresses are all addresses except program counter displacement,
program counter index, and immediate,

Failure to observe eategory restrictions will generate address errots.

Mark Williams C 75

Machine instructions

The following machine instructions are defined. For the most part, they form
subset of the instructions provided by Motorola assemblers that eliminates lon
synonyms such as bsr. or add.w. The conditions hs (higher or same) an
{lower) are provided as synonyms for ce (carry clear) and cs {carry set).

In the examples an, dn, and ro refer to address, data, and registers, ea refers ta
general effective uddresses I refers to direct addresses, e refers to a general ex-
pression, and n refers to an absolute expression.

Many syntactically correct instructions may prove to have semantic errors be- =
cause of restrictions of effective addresses to data, alterable, memory, or control
categories. Contrary to appearances, no 68000 instruction operates on all a:i-.
dressing modes; some modes are always forbidden. These restrictions are no

at the end of each instruction description in the 68000 user’s manual. In the
following listing, instructions have been classified according to their allowed
addressing modes. Each classification is named by the lexicographically first
instruction in the class,

ABCD Type: These instructions accept only two kinds of operands: data register
direct and address register predecrement, The BCD instructions opsrate on byte
size operands only.

abed dn,dn
abed -{an},~{an)
abecd C100

addx D140
addx.b D100
addx.1 DI1&0

shed 8100
subx Q140
subx.b 9100
subix .1 QIR0

ADD Type: These instructions take a data-register source to 2 memory-alterable
destination or any source to a data-register destination. If the operation size is
byte, then address-register direct sources are forbidden.

add dn.ea
add ea.dn
add D040
add.b OO0
add.l DOA0
sub 9040
sub.b QOO0
sub.l Q080

ADDA Type: These instructions accept any source effective address. The cmp

Mark Williams C

as

Lexicol

instruction cannot combine byte operations with address-register sources,

adda
addal
cmp
cmph
cmp.l
cmpa
cmpia.l
moves
movea.l
suba
suba.l

2a.an
ea an
ea.dn
ea,dn
ea.dn
ea.an
£d,4n
ea,an
£a,an
ea,an
£a,4n

DOCD
Di1Co
B0
BOOO
BO30
BOCO
BICD
3040
2040
90C0
910

ADDT Type: These instructions require a data-alterable desﬁnation—eff‘ective
addrass. The nbed instruction, set according to condition, and the tas mmstruc-

tions are implicitly byte sized.

addi
addi.b
addi.l
clr
clr.b
clr.l
cmpi
cmpi.b
cmpil
eor
eor.b
eor.l
nhecd
nNgg
neg.b
neg.l
negx
negx.b
negx.l
not
not.b
fot.]
so0

5C5

saq

st

sge
st

shi

shs

Mark Williams C

En,ea
&n.ea
$n,ea
ea
ea
ea
Inea
$n.ea
$r,ea
dn,e2a
dn,ea
dn,ea
ea
ea
ea
ea
ea
ea
ea
ea
ed
ea
ea
ea
ea
ea
ea
ga
ea
ea

0640
0600
0680
4240
4200
4280
0C40
0Coo
0C80
Bl140
B10O
BI1&0
4800
4440
4400
4480
4040
4000
4080
4640
4600
4680
54C0
35C0
57C0
51C0
5CCO
SECO
52C0
54C0

77

sla es SFCO
slo ea 53C0
sls Ba S3C0
slt ea 3DCO
ST 2a SBCO
ine ea S6C0
spl e 5ACD
st ed S0C0
subi Sn.ea 0440
subi.b %n.ea 0400
subi.l $o.ea 0480
sVe ea 38C0
5VS ea 59C0
tas. ed 4AC0
tst ea 4440
5tb ed 4A00
tatl ea 4A8R0

ADDQ Type: These instructions take an immediate-source operand in the range
1 to & and an alterable effective-address destination operand. If the operation
size iz byte, then address-register direct destinations are forbidden.

addg Sn.ea 3040 {
addg.b Sn.ea 5000 i
addg.l $n,ea 5080
subqg Fn,ea 5140
subqg.b fn.ea 5100
suba.l En.ea 5180 1

AND Type: These instructions take two forms: data register direct source to
memory-alterable destinations, and data source effective address o0 a data
register direct destination, |

and dn,ea |
and ea,dn |
and 040 .
and.b 000 l
and.l COR0

ar 5040 |
or.b 8000

or.l 8080 |

ANDI Type: These instructions combine an immediate source operand Wlﬂl_ |
sither a data-alterable effective address destimation ﬂpemnd or the status
register. The whaole status register or only the low byte is selected, depending |
on whethar the operation size is word or byte. '

Mark Williams C

andi
andi

andi
andib
andi.l
BOT1
eorl.b
eort,l
ori
orib
oril

$fn.ea
fn.sr

0240
0200
0280
0A40
0400
0ARD
0040
0000
0080

ASL Twpe: The shift instructions come in three flavors: immediate shift count

of data register, data register shift count of data register, and shift by one of 2
word at a memorv-alterable effective address. The memory shift opeode is

formed from the opcodes given by setting bits 6-7, and by moving bits 3-4 to

positions 9- 10,

asl
asl
asl

as]
asl.b
asl.1
asr
asr.h
asr.l
i1
Islb
Izl
lsr
lsr.b
lsr.l
rol
rol.h
rol.l
TOT
ror.b
ror.)
roxl
roxl.b
roxl.l
TOXT
roxr.b
raxr.]

Mark Williams C

$n.dn
dn.dn
£a

E140
E100
E180
EO40
EQO0
E{QRD
E148
E108
EL58
E048
E003
E038
E158
ENE
E1598
EO38
EJIS
E053
E1350
ELID
E150
E030
EGID
E020

79

as

80

BCHG Type: The bit instructions take an immediate or data register sou
operand and a data-alterable destination elfective address. The operation
is implicitly long for data register destinations and implicitly byte for
destinations.

behe En,ea
bchg dn.ea
behp 0140
belr 0180
hset 01C0
bitst 0100

CHEK Type: These instructions take a data-source efTective address and a data=-
register destination. Source and destination are implicitly word-sized for chk,
muls, and mulu. Source is word sized, and destination is long for divs and diva,

chk ed,dn 4180

divsg ea.dn 81C0
divu eq.dn 8QC0
muls eadn CICO
mulu ea.dn CoCo

JMP Type: These instructions require control-effective addresses.

jmp ea 4EC]
IsT ea 4ES0
lea ed,an 41C0
pea =5 4540

MOVE Type: Move instructions take any source effective address to data-alter—
able destination effective addresses, but byte moves from address registers are
forbidden. When the destination is the condition-code or status register, the.
source must be a data effective address and the instruction size is implicitly,
byte or word respectively. When the status register is the source the destination
must ke a data-alterable effective address. When the user stack pointer is an
operand, the other aperand is an address register and the instruction size is im-=
pligitly long.

Mark Williams C

as

pexico®

move
move.b
move.]
HIOVE
maove
move
move
move

gd.ea
ea.ea
ea.ea
ea.cor
£a.5r
sr.ea
an,usp
usp,an

3000
(000
2000
440
46C0
40C0
4E60
4E68

MOVEM Type: These instructions take two forms: an immediate-register mask
source with a control or predecrement destination, or a control or postincrement

source with an immediate-register mask destination,

The bit ordering in

register masks is the programmer's responsibility.

movem
movem
movem.]
maovem,]

%n.ea
ea. bn
Sn,ea
ea,5n

4830

4C80
48C0
4CC0

MOYEP Type: The move-peripheral instruction uses data register and address
register indirect with displacement operands,

maovep
movep
movep.]
movep.l

e(dan},dn
dn.e(an}
efan),dn
dn,efan)

0108
0188
0148
01Cs

hIES_CEIlIaHEﬂus Instructions; the remaining instructions have operand syntax
which is self explanatory, Mnemonics with **.5" are short displacements, within
+127 or =128 bytes (nor words).

bee
bee.s
bes
hoss
beqg
beq.s
bee
bge.s
bat
bBels
bhi
bhi.s
bhs
bhs.s
ble
ble.s

Mark Williams C

1
i
I
1
1
1
1
1
|
|
1
1
1
|
1
l

8400
6400
6500
6300
6700
6700
600
600
GEG0
GEND
6200
6200
6400
6400
GEO0
6F00

&l

82

blo
blo.s
his
bls.s
bit
blt.s
bmi
bmi.s
bne
bne.s
bpl
bpls
bra
bra.s
bse
bsr.s
bBve
Bve.s
bvs
bvss
cmpm
cmpm.b
cmpm.l
dhee
dbes
dbeqg
def
dbge
dbgt
dbhi
dbhs
dble
dblo
dbls
dblt
dbmi
dbpe
dbpl
dbra
dbt
dbve
dbvs
exg
ext
ext.l
link

ek et o bk ek e e e e e e b ot b e e — —

(an)+ (an)+
{anj+,(an)+
{ani+,(an}+
dn.1

dn,l

dn,l

do,l

dn,l

dn,l

dn,]

dn,l

dn,l

dn.l

dn,l

dn.l

dn,l

dn,l

dn.l

dn,l

dn,l

dn,l

dn,1

TA,Th

dn

dn

an.$n

6500
6500
6300
6300
6D00
6D00
6R00
6B00
6600
6600
6A00
6A00
6000
6000
6100
6100
6300
6800
6900
6900
Bl148
BLOS
B188
54C8
55C8
57C8
51C8
5CC8
SECS
52CE
54C8
SFC8
55C8
53C8
SDC8
SBCS
56C8
5ACS
S0C8
50C8
53C8
59C8
C100
4880
48C0
4ES0

Mark Williams C

ashBtoas- ASCIT

i ‘ﬂﬂ. e —
maveq fn.dn 7000
no [:‘ 4E:'r].
reset 4E70
rig 4E73
rtr 4E77
ris 4E75
stop In 4ET2
swip dn 4840
rrap En 4E40
trapv 4E76
unlk an 4E58
See Also

ash8toas, ce, cpp, commands, driomw, 1d

Diggnasiics

as reports errors on the standard error device. It gives a one-letter error code,
the line number, the input file (if more than one specified), and a svmhbal where
appropriate. See the section on Errors, presented earlier in this manual, for in-
terpretation of error codes,

asf8toas—Command

Convert DRI assembler to Mark Williams assembler
as68toas <old file.asm =pew/ile.s

ast8toas converts files of 68000 assembly language from the DRI dialect into
the Mark Williams dialect. Tt accepts DRI-style instructions from the standard
input device (normally the keyboard), and produces Mark Williams-style in-
structions on the standard output (normally the screen). If it cannot handle a
given instruction, it will notifv you via the standard error inormally the screen),

As shown above, files can be converted automatically under the microshell by
using the redirection operators ‘< and ‘»". Thus, to convert the file foo.asm,
which is written in DRI-style assembly Janguage, into a file of Mark Williams-
style assembly language, called foo.s, simply tvpe:

asbfitozs <foo.asm »fao.s

Note that files of Mark Williams-style assembly language must have the suffix
5 otherwise, they will not be accepted by the assembler as.

See Also
a5, commands, drtomw, TOS

ASCII—Definition

ASCII 15 an acronym for the American Standard Code for Tnformation Inter-
change. It is a table of seven-bit binary numbers that encode the letters of the
alphabet, numerals, punctuation, and the most commonly used control sequen-

Mark Williams C 83

ASCII

Lexicon

&4

ces for printers and terminals, ASCII codes are used an all microcomputers sold
in the United States.

The following

Necessary.
aoe 9

0ol 1

ooz 2

03 3

o044

D3 A

006]

007 7

a8

il 9

012 10
013 11
014 12
015 13
0le 14
017 15
020 6
021 17
022 18
023 19
024 20
025 21
026 22
027 23
030 24
031 25
032. 26
033 27
034 28
035 29
036 30
037 31
240 32
041 33
042 34
043 35
044 36
045 37
0ds 3R
047 3y

table gives the ASCIT characters in octal, decimal, and
hexadecimal numbers, their definitions, and expands abbreviations where

0x00
Dx0
0x02
Ox03
Ox04
0x03
0x08
0=07
0x08
0x09
Ox0A
0x0B
0x0C
0x0D
0x0E
Ox0OF
0x10
Ox11
Ox12
Ox13
Ox14
0x15
0x16
Ox17
Ox18
Dx19
OxlA
0x1B
0xIC
0xI1>
0x1E
Ox1F
0x20
0x21
(22
0x23
Ox24
Ox25
0x26
0x27

NUL
S0H
STX
ETX
EQOT
ENQ
ACK
BEL
BS
HT
LE
VT
FE
CR
50
5L
DLE
DCI
DC2
DC3
DC4
MNAK
3YN
ETBE
CAN
EM
SUB
ESC
Fs
G5
RS
us
SP

L

<ctrl= (>
«clirl-A>
<cirl-Bx>
<ctrl-C=
<ctrl-D=
<cirl-Ex>
=ctrl-F=
<cirl-G>
<cirl-H>
<ctrl-T=
<cirl-J=
zctrl-K=
<cirl-L=
<ctrl-M>
<ctrl-MNx
<ctrl-0=
<cirl-P»
<cirl-(J=>
<ctrl-R=>
<ctrl-5>
=gtrl-T=
<cirl-Us>
<ctrl-V»
<ctrl-We
<ctrl-X=
<ctrl-¥=
<ctri-E»
=zctrl-[=
<cirl-4>
<ctrl-]>
<ctrl-">
<ctrl- >
Space

NUL character

Start of header

Start of text

End of text

End of transmission
Enquiry

Positive acknowledgement
Bell

Backspace

Horizontal tab

Line feed

Vertical tab

Form feed

Carriage return

Shift out

Shift in

Data link escape

Device control 1 (X ON)
Device control 2 (tape on)
Devige control 3 (XOFF)
Device control 4 (tape off)}
Megative acknowledgement
Synchronize

End of transmission block
Cancel

End of medium
Substitute

Escape

Form separator

Group separator

Record separator

Unit separator

Exclamation point
Quotation mark
Pound sign

Dollar sign
Percent sign
Ampersand
Apostrophe

Mark Williams C

050
05l
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
0100
0101
0102
0103
0104
0105
0106
0107
0110
0111
0112
0113
0114
0115
0116
0117
0120
0121
0122
0123
0124
0125

Dx28
0x29
Dx2A
0x2B
0x2C
Dx2D
0x2E
0x2F
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
Ox3A
0x3B
0x3C
0x3D
0x3E
Ox3F
0x40
Oxdl
{Jx42
0x43
Oxd4
Ox45
Ox46
Oxd7
0x48
0x49
Oxda
Ox4B
0x4C
0x4D
0x4E
Ox4F
x50
0x351
Ox52
0x53
Ox54
Ox55

Mark Williams C

R

R e N R R S N ™ B

OHYPOYOZZrRE - IQMEOAE R 2Y I A

Left parenthesis
Right parenthesis
Asterisk

Plus sign

Comma

Hyphen (minus sign)
Perind

Wirgule (slash)

Colon

Semicolon

Less-than symbol (left angle bracket}
Equal sign

Greater-than symbol (right angle bracket)
Question mark

At sign

ASCIL

Lexleon

84

0126
0127
0130
0131
0i32
0133
0134
Q135
0136
0137
0140
0141
0142
0143
0144
0145
0146
047
0150
0151
0152
01353
0154
0155
0156
0157
0160
0isl
0162
0163
0164
0163
0166
0167
0176
0171
0172
0173
G174
0175
0176
M7

86
87
88
89
90
91
o2
93
94
95
96
87
95
89
100
101
102
103
104
105
106
107
108
109
1o
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

See Also

string

0x56
0x57
Ox38
0x59
Ox54
0x5B
Ox5C
0x5D
0x35E
0x5F
Ox60
Oxal
Ox62
Oxa3
x6d
Ox65
Oxa6
0x67
OxH8
Ox69
OxB6A
0x6B
O=6C
0x6D
Ox6E
Ox6F
Ox70
0x71
0x72
0x73
0x74
0x73
Ox76
0x77
Dx78
0x79
Ox7A
0x78
0x7C
0x7D
0x7E
O0x7F

PN K E

UI“""'_"‘*H%Mﬂ{ﬁ"“".ﬁ-ﬁﬂﬂg"‘#'—““'ﬂ‘m"ﬂﬂ =S - |

Left bracket (left square bracket)
Backslash

Right bracket (right square bracket)
Circumflex

Underscore

Grave

Leaft brace (left curly bracket)
Wertical bar

Right brace (right curly bracket)
Tilde

Delete

Mark Williams C

asc tir

asctime

ne—Time function {libe.a/ctime)
Convert time structure to ASCIT string
#include <time.hs>

char *asctime({mp) tm_t *imp;

gsctime takes the data found in tmp, and turns it into an ASCII string that can
ke read by humans. tmp is declared to be of the type tm_t, which is a structure
defined in the header file time,h. This structure must first be initialized by
gither gmtime or localtime before it can be used by asctime. For 3 further dis-
cussion of tm_ t, see the entry for time.

Example

The following example demonstrates the functions asctime, ctime, gmtime,
localtime, and time, and shows the effect of the environmental variable
TIMEZONE. For a discussion of the variable time t, see the entry for time,

#include <time.h>

main{) {
time t timenumber;
tm_t *timestruct;

time{&t imenumber);
priptf("Es”, ctime(itimenumber));

timestruct = gmtime{&timenumber);
printf("¥s", asctime{timestruct});:

timestruct = localtime(&t imenumber);
printf("Es", asctime(timestruct));
¥

The following gives an “optimized" form of the above program. It shows marte
clearly how return values can be passed as arguments, and how nesting can in-
crease the work dong by each line of code.

#Finclude: <time.h>
maing) {
time t t;
timel&td:
printf(st ctime(&t));
princf("¥és" asctime{gmtime(&T)d);
printf{"%s" . asctime{localtime{&t))};
3

See Also
Lime

Mark Williams C 87

asin-assert

asin—Mathematics function (libm.a/asin)

assert—Debugging macro

&8

Notes !
asctime returng a pointer to a statically allocated data area that i3 overwritten Iy
successive calls, d

Calculate inverse sine
#include <math.h>
double asin{arg) double arg;

asin calculates the inverse sin of arg, which must be in the range [-1., 1.]. The
result will be in the range [-PI/2, PI/2]]

Example
For an example of this function, see the entry for acos.

See Also
mathematics library

Diggnosiics
Out-of -range arguments set errno to EDOM and return 0.

Checlc assertion at run time
#include <assert.h>
assert(condition)

assert checks the value of the given condition. If the conrdilion is false (0), assert
prints an error message and exits. assertshould be used to detect situations ﬂf-alg_
are expected never to happen. MNote that the -DNDEBUG argument to cc
disables all checking of assertions.

Example

#include <assert.he

main(dy
int &
int b

1;
F-H

sszert{ arb };
3

See Also
#assert, assert.h, c¢

Diagnostics

assert prints assert(condition) failed when condition is not true, Because assert
iz a macro that uses printf, it expands into an illegal C statement if condition
includes quotation marks (). It also cannot be used in an expression,

Mark Williams C

Lexicon) assert.h-atan

gssert.h —Header file

Text of assert message
#include <assert.he>

assert.h is the header file that contains the assert macro deflinition,

See. Alsa
assert, header file

zassert—Definition

Check assertion at compile time
#assert cxpression

The Mark Williams C preprocessor cpp, in addition to the directives mentionsd
in The C Programming Language, recognizes the #assert directive. It has the
form;

#assert constant _expression

The preprocessor evaluates the constant expression. If it is false (zero), cpp
prints a diagnostic message. The condition being tested must be an expression
that involves constants of the form acceptable to the preprocessor’s #if func-
tion. This tool should be used to ensure that variables in complex preprocessor
code are correct throughout the program.

Example
1f the line

#assert SIZE < B0

is included in a program, the assertion will succead if SIZE is less than 80, and
fail if it is 80 or more.

See Alsa

cpp :

The € Programming Language, page 86

Diagrostics
The failure of an #assertcauses the message

Preprocessor assertien failure

to appear on the standard error device; however, failure of an #assert directive
does not terminate compilation,

atan—Mathematics function (libm.a/atan)

Calculate inverse tangent
#include <math.h>

Mark Williams C 89

atan2-atof

atan?—Mathematics function (libm.a/atan2)

double atan(arg) double arg;

atan calculates the inverse tangent. arg may be any real number,
will be in the range [-P1/2, PI/2].

Example

For gn example of this function, see the entry for acos.

See Also
errno, mathematics library

Caleulats inverse tangent
double atan2{num, den) double num, dem

atan? calculates the inverse tangent of the guotient of its arguments murm/den.
num and den may be any real numbers. The result will be in the range [-PT,
PI). The sine of the result will have the same sign as nwm, and the cosine will
have the same sign as den.

Example
For an example of this function, see the entry for acos.

See Also
errnn, mathematics library

atof—Creneral function (libe.a/atof)

a0

Convert ASCII strings to floating point
double atof(siring) char * string;

atof converts the argument siring to a binary representation of a double-preci-
sion floating point number. The argument string must be the ASCII representa-
tion of a floating-point number. 1t can contain a leading sign, any number of
decimal digits, and one decimal point. It can be terminated with an exponent,
which consists of an ‘e’ or *E! and followed by an optional leading sign and any
number of decimal digits. atof ignores leading blanks and tabs; it stops scan-
ning when it encounters any unrecognized character,

Example
For example of this function, see the entry for acos.

See Also
atoi, atol, float, long, printf, scanf

Notes
No overflow checks are performed. atof returns 0 if it receives a string it can-
not interpret.

Mark Williams C

axicon : aloi-atol

—General function (libe.a/atoi)
Convert ASCIT strings to integets
int atoi(siring) char ® string;

atol

atol converts the argument string to the binary representation of an integer.
siring may contain a leading sign and any number of decimal digits. atoi ig-
nores leading blanks and tabs; it stops scanning when it encountats any non-
numeral other than the leading sign, and returns the resulting int.

Example
The following demonstrates atod. It takes a string tvped at the terminal, turns it
into an integer, then prints that integar on the screen. To exit, type <ctrl-Cs.

mainf) {
extern char *gets();
extern int atoil);
char string[&4]):

for{;;} £
printf("Enter numeric strimg: ");
if{gets{string))
printf{"Ed\n, atei(stringd);
else
break:
3
}
See Also

atof, atol, int, printf, scanf

Nates
No overflow checks are performed, atoi returns 0 if it receives a string it can-
not interpret.

atel—General function (libe.a/atol)
Convert ASCIT strings to long integers
long atol(string) char *string;

atol converts the argument sirfrg to a binarv representation of a long. string
may eontain a leading sign (but no trailing sign) and any number of decimal
digits. atol ignores leading blanks and tabs; it stops scanning when it en-
counters any non-numeral other than the leading sign, and returns the resulting
long.

Example

Mark Williams C 4

auto=‘auto Lexicon

— i

maincy £
extern char *gets{);
sxtern Long atoll);
char stringlédl;

for(y;d 4
printf{"Enter numeric string: "1;
iffgets(stringd)
printf(Eldyn, atol(stringdd;
elze
break;
¥
¥
See Also

atof, atol, float, long, printf, scanf

Notes
No overflow checks are performed. atel returns 0 if it receives a string it can-
not interpret.

auto—Definition

auto iz an abbreviation for an awnfomatic variakle. This is a variable that appliss.
only to the function that invokes it. and vanishes when the functions exits. The
word auto is a C keyword, and may not be used to name any function, macro,
or variable.

See Also
extern, kevwords, stack, static, storage class
The C Programming Language, page 28

yauto—Definition

9

‘auto is a directory that is scanned by TOS when it boots. TOS looks for this
directory on the disk in drive AL If it is present, TOS executes all of the files
stored there that have the suffix .prg, in the order in which they appear. This
35 useful for automatically setting up such tools as RAM disks.

Note that when TOS executes the programs in \auto, the AES and VDI have not
yet heen initiatized, 50 no GEM applications can be run. The current directory
of the programs run from \auto is the root of the boot disk. If Line A
functions are used, they must provide their own contrl, intin, and infout arrays.
¥ou can place msh.prg into \auto and enter it automatically when you boot
your system; however, subsequent attempts to run any GEM application
through msh generates effects that are unpredictable and usually unwelcome.

Mark Williams C

Yauto

Lg!{i':_ﬂ_“__

Example

The tollowing example shows a few things that you can do in a program thar is
placed in ‘\auto. It demonstrates the functions Cursconf, Iorec, Khrate, lineal,
Ptermres, Rsconf, Setprt, stime, and time, the global variable stksize, and the
header [iles basepage.h and xhios.h.

ginclude <lines.h>
#include <osbind_ h>
ginelude <tima h>
#include <basepege.h>
#include <xbios_ h>

long _stksize = 256; /* We need very little stack for this */
maindd f
IE

* Init: lineal(}: initialize la_data for grephics

* [nitializing these pointers allows Lines grephics inm ‘\aute*.prg

bt

4

static int intin[128]1, inteut([12B], ptsinl1281, ptscutl128]:
static int *contrl[4]:
Linead();
INTIN = intin;

INTOUT = intout;
PTZIN = prging

PTSOUT = ptsout:
CAONTRL = contrl;

J,'*
® Init: stime(): set initial system time from the keyboard clock
* time{} reade the keyboard clock, stimel) will set the GEM-DDS time

2y
L
time t 1T
time&t);
stime(&t);
¥
J"*

* Init: Terec{): resize the input/output buffers

* Inereasing the buffer sizes may aor may not be necessary

* It depends on how fast the buffers are filled and emptied

o

{

register struct forec *ip;
static char auxin[1024], eu=out (10241, midiC1024], kbd[1024]:
&tatic struct forec tmg = { 0, 1024, 0, 0, 258, T&8 };

Mark Williams C 93

aux: LEX:EII_ A

ip = lorec(ld AX): tmp.ic buff = auxin; *ip = tmp;]
ip += 1; tmp.io buff = auxout; *ip = Tmp;

ip = lorec{lC MID); tmp.ic buff = midi; *ip = tmp;

ip = Torec{l0 KED); tmp.io buff = kbd; *ip = tm;

llft
* Init: Rsconfl(): configure rs232 port
t 2pt the default baud rate and control protocol for the serial port
*

Recond{RS_BFE00, RS_KOWNOEF, -1, -1

A P P
% Init: $etprt(): set printer configuration ¥/
Setpri(PR_SER1AL |PR_EFSON|PR_MOND |PR_MATRINY;
.If*
* Init: Cursconf{): set cursor configuration
= This slows the blink down to helf the normal speed
*§
Cursconf(CC_ SET, {(int)Cursconf({CC_GET, 0)*2);

Ilfi'
* [nit: Kbrate(): set keyboard repeat configuration
* Again, simply slow it down & bit
=y
L
register int start, delay;
start = Kbrate(-1, -13;
delay = start & Oxff;
atart == B;

a

start &= Oxff;
start *= 2;

delay *= &;
Kbrate(start, delay);

f!
* init: terminate and stay resident, so the buffers we assigned do not
* get clobbered by the next program that runs
L
Prermres(EF->p hitpa-BF->p lowtpa, 03;
3

See Also
TOS

aux:—TO8S device
TOS logical device for serial port auxiliary device

TOS gives names to its logical devices. Mark Williams C uses these names, 10
allow the STDIO library routines to access these devices via TOS. aux: is the

94 Mark Williams C

Lexicon

aux:

logical device For the the serial port auxiliary device.
Example

#include <stdic.h>

maingi{
FILE *fp, *fopen():
if ((fp = fopen{Maux:","w"}) I= WULL})

tfprintf(fp,"aux: enabled.\n"};

else printf{"aux: cannot open.\n¥);

3

See Also

con:, pro:, Rsconf

Motes
aux: may be spelled aux: or AUX:,

Mark Williams C

95

backspace-Beonin

backspace—Definition

basepage.h—Header file

Beonin—hios function 2 {usbind.h}

Mark Williams C recognizes the literal character “\b' for the ASCII spa
character BS (octal 010). This character may be used as a character constan
in a string constant, like the other character constants: “a', which rings
audible bell on the terminal; *\f°, to pass a formfeed command to the pri
“.r', for a carriage return; “\t', for a horizontal tab character; and ', the ver
cal tab character.

See Also
ASCIL, character constant

TOS header file
#include <hasepage.h>

hasepage.h is a header [ile that defines the GEM base page structure. Tts text{-
as follows:

#ifrelef BASEPAGE K
#define BASEPAGE H
tyvpedef struct

Long p lowipa; /* Low trensient program area */
Leng p hitpa; /* Kigh transiemt program area */
long p_thase; /¥ Text segment base */

long ptlen; #* Text segment length */

Lang pdbese; /* bata lergth base *f

tang pdlen; /% pata Lemgth length */

long bbase; /* Bss segment base =/

lang p blen; J* Bog segment length %/

Lamg p fxxG131; F* Fill ares ore */

Long penv; J* Epwironment string painter *f
leng pofax1[201; #* FiLL block two *f

char p codlin{1281; J/* Command line */

} BASEFAGE;

extern BASERPAGE startill;
#define BF (& start[-11)
#endif

See Also

header [ile, TOS

Receive a character
#include <osbind.h>
#include <hins.h>

Mark Williams C

Beonin

Lexicon =

jong Beonin{fandle) Int handle;

Beonin receives a character from a peripheral device. handle is an integer that
indicates which device is being read, as follows:

0 pro: {the line printer)

aux: (the auxiliary serial port)

con: (the console)

the MIDI port

the intellizent Kevboard (output only)
the raw sereen (output only)

U e ek b e

When Beonin reads [rom con:, it returns the Key's raw scan code in the low byte
of the high word and either an ASCII character or zero in the low byte of the
low word, depending upon whether the key typed generates an ASCII character
or not; when it is reading from aux:, it returns the character in the low byvte of
the low word,

For a table of kevboard scan codes, see the entry for kevboard. Note, too, that
this function is unaffected by redirection of either con: or aux:.

Example
This example emulates a simple dumb terminal. It demonstrates the functions
Beonin, Beonout, Beonstat, Beostat, and Pterm0.

#inglude <osbind.h>
#include <bies.h>

maing}
1
register lomg c:

for 333 (
if (Boonztat(BC CON))
¢ = Beonin(BC CONY;

if ({intio== 03 {
c =x= 16;
if {c == KC_LNGC)
break;
else
Boonout{BL CON, "\a');

} else {
while {Boostat{BL_AUX} == 0}

Boonout{BC_ AL, {intled;

Mark Williams C 97

Beonoui-Bconstat

if {Beonstat(BC ALY {
¢ = Boonin{BC_ALX];
Bootwout (BC_CON, (int)ed;

¥
¥
Prermdl};
3
See Alsa

anx:, Beonout, Beonstat, Beostat, bios, con:, keyhoard, TOS

Beonout—bios function 3 (oshind.h)
Send a character to a peripheral device
#include <osbind.h=
sinclude <bios.h>

void Beonout{handle, character) int handle, character;

Beonout sends characters to an output device. handle is an integer that in-

dicates which device to send characters, as follows:

pra; {the line printer)

aux: (the auxiliary serial port)

con: (the console)

the MIDT port

the intelligent kevboard {output only)
the raw screen (output only)

Uy B e bk =S

character is the character being output, which is encoded in the lo

of the integer. Beomout returns nothing, This function is unaffected by

redirection of the logical devices con: OT auX:.

If handle 15 set to five, characters are displaved on the screen a
number 2, but control characters are not interpreted. This allows

graphics characters from the Atari character set, in the range of ong through 31.

Example
For an example of this f unction, see the entry for Beonin.

See Also
Beonin, Beonstat, Beostat, bios, TOS

Beonstat— bios function 1 (oshind.h)
Raturn the input status of a peripheral device
#include <oshind.h>
#include <hios.h>
long Beonstat{device) int device;

58 Mark Williams C

wer eight bits.

s with device
the display of

Bcostat-hios.h

Beonstat reads the input status of the specified peripheral device. device is an
integer that encodes the Beostat of the desired device, as follows:

0 pro: {the line printer)

1 aux: (the auxiliary serial port)

2 con: (the console)

3 the MIDI port

4 the intelligent kevboard (output only)

5 the raw screen (output only)
Beonstat returns -1 if at least one character is ready to be handled, and 0 if no
characters are ready. This function is unaffected by redirection.
Example
For an example of this function, see the entry for Beonin.
See Also

Beonin, Beonout, Beostat, bios, TOS

[icostat—bios function & (oshind.h)

Read the output statos of a peripheral device
#include <osbind.h>

#include <hios.h>

long Beostat(frandle) int handie;

Beostat reads the output status of a peripheral device. handle 15 a number that
indicates the device to be checked, as follows:

0 pro: (the line printer)

1 aux: (the auxiliary serial port)

2 con: (the console)

3 the MIDI port

4 the intellizent kevboard (output only)
5 the raw screen {ourput only)

Beostat returns -1 if the device is ready, 0 if it is not. This function is unaf-
fected by redirection.

Example
For an example of this function, see the entry for Beonin.

See Alsa
Beonin, Beonout, Beonstat, bios, TOS

hins. h—Header file

#include <hios.hs

Mark Williams C 99

bios

Lexicon

bios.h is a header file that includes all constants and structures used by the
CGEM-DOS bios functions, For a list of these functions, see the entry [or bios.

See Also
hins, header file, TOS, xbios h

hios— TS function

100

Call an input/output routine in the TOS BIOS
#include <osbind, h=
extern long bios(s, f1. 2 ... fru);

bios allows you to call an input/output function directly in the Atari BIOS. It
works by building a stack frame and executing trap no. 13, Unless the
-VNOTRAP option is used when compiling a program, the instruction jsr bios
is replaced by a trap no. 13 instruction,

1 is the number of the function, and f! through fn are the parameters to be
used with the routine. In most circumstances, il iz unnecessary to call bies, for
the header file osbind.h defines 2 number of functions that use it directlv. All
structures and constants used by these functions are contained in the header file
bios.h.

The following functions call bies to deal with the peripheral devices:

Bconino receive a character
Beonoutl output a character
Beonstat return input status of device
Brostat return output status of device
Devmap return map of logical drives
Gethphb return pointer to BIOS parameter block
Getmpb copy memory parameter block
Getshift get/set status for shif t/alt/control Keys
Mediach check if medium has been changed
Rwabs read/write a disk drive
Setexc 5ol an exception vecior
Tickeal return system timer’s calibration

Fee Also

oshind.h, TOS

Noies

™o bios function checks for incorrect device numbers. Passing a bogus device
number to a routine will crash the system.

Note that the Atari BIOS will support up to three recursive calls at any one
time, Using more than three will cause the system to crash.

Note that all bios functions are unbuffered. Combining them with buffered
rputines, such as those in the STDIO library, will lead at best to unprediciable

Mark Williams C

Lexicon BIOS-hit map

results,

p10%- Deflinition
BIOS is an acronvm for basic input Sowtpad system. Tn most machines, the BIOS
consists of a routing carried in the read-only memory (ROM).

See Afso
bios, STDIO

Binskeys—xblos function 24 (osbind.h)
Eeset the keyboard to its default
#include <oshind. hx
#include <xhios. h>
void Bloskeys()

Bioskeys resets the kevboard to irs default setrings, and returns nothing. It un-
does whatever changes were made with the function Keythl.

Example

#include <pshind.h>

main() {
Bicskeys{d;

3

See Also
Keytbl, TOS, xbios

bit—Definition

bit is an abbreviation for binary digit. It is the basic unit of data processing,
the computer analogue of Democrites’ atoms, A bit can have a value of either
zero or one, and can be concatenated into strings. A bit can be used either as a
placeholder to construct a number with an absolute wvalue, or as a flag whose
value as a particular meaning under specially defined circumstances. In the
former use, a string of bits builds an integer. Tn the latter use, a string of bits
forms a map, in which each bit has a meaning beyond its numeric value,

See Also
bit map, bvte, integer, nybhle

bit map—Definition
A bit map is a string of bits in which each bit hag a gymbolic, rather than
numeri¢, value. For example, the Drvmap function returns a 16-bit map of the
active drives on the Atari ST. The bits indicate which of 16 possible disk drives
is available, with bit O {i.e., 1<<0) corresponding to drive A, bit | to drive B,

Mark Williams C 101

hombs-boot

bomhbs—Definition '

loot—Definition

102

ete,

See Also

bit, byte

The € Programming Language, page 136

Noles
(" permits the manipulation of bits within a byte through the use of bit field
routines. However, programs that use bit fields often run more slowly than
those that use masking and shifting,

When a program goes seriously wrong on the Atari 8T, TOS takes the f ulmwingf,
default actions:

1. 1t stores a description of the program’s state in a buffer in low memory.

2. 1t displays one or more “cherry bombs™ on the screen; persons with older
versions of the operating system may see little “mushroom clouds™ in-
stead, The number of bombs seen is equal to the number of the processor
exceplion.]

3. TOS attempts to terminate the program and continue processing.

You use the debugger db to display the program state saved in low memory by
TOS. Use the following commands:

db -k enter db

' display contents of registers
of print type of fault
i guit

This prints the processor registers at the time of the fault and identifies the
fault. The exceptions that occur on the 63000 processor are listed in the header
file signal.h.

See Alsa
db, signal.h, TOS

Bool is an abbreviation for Bootstrapping procedure; this refers to the procedure;
by which a computer loads certain elementary routines to organize and test
memory, and initialize peripheral devices. The term warm hoat is used with'
some operating svstems to refer to the second-stage bootstrapping procedure,
which is done simply to restore portions of the operating system that may have
been overlaid by user code during the operation of a program, or thal
reinitializes the system state without going through the entire boot procedure.

Mark Williams C

bulfer-byte ordering

See Also

exit

MNewes s
T35 does not warm boot on program termination.

huffer—Det"in[tiﬂn

bvte

A buffer iz a portion of memory reserved for a particular purpose. In the con-
text of C, a buffer most often is an area set aside to hold data for a peripheral
device:; often, although not always, this involves setting aside a portioh of the
arena with malloe or its related functions.

wany operating svsiems automatically place data from a peripheral device into
a buffer, Buffers normally can be cleared with fflush, by pressing the carriage
return key on routings that perform input, or by sending a newline character on
routines that perform output. The function close, which closes a file, will flush
all buffers: exit calls close by default.

Wote that combining in one program unbuffered and and buffered 1/0
functions on the same file or device may produce results that are, at best, un-
predictable.

o the Atari ST, all STDRIO routines use buffering by default. stdin and stdout
stderr is not. Buffering can be turned off with the function setbuf. All Atari
functions that perform 1/0 gre not buffered.

See Also
arena, array, Cconrs, Ceonws, fflush, malloc, setbuf, STDIO
The C Programming Language, page 173

-Definition

A byte i3 8 group of eight bits, which often is used to encode a character. Mote
that *““byte™ is not a legitimate term of data organization in C. Data types are
defined as multiples of the data type char; what a char is defined to be depends
on the hardware. Although a char is often defined as being eight bits long, the
same a3 a byte, this definition iz not universal.

See Also
bit, char, data formats, nybble

byte ordering—Definition

Byte ordering is the order in which a given machine stores successive bytes of a
multibyte data item. The following example displays 2 few simple sxamples of
byte ordering:

Mark Williams C 103

hiyte ordering

104

maingd ¢
union {
¢har bI&l;
int 1[21;
long 1;
¥ u;

ol = Qx1234557T8L;
printf("ie % Xx Mx\n®, u.bl0l, w.br1], u.bCEl, u.bi313;
printfCe Bon, w00y, willld;
printfURinin, u.ld;
>
When run on g PDP-11 under the COHERENT operating svstem, it gives the
following results:

34 12 78 56
1234 5478
12345675

When run on the 68000 under TOS or an the Z&000 under COHERENT, it gives
the following resules:
12 34 56 7B
1234 5478
12345678
When run on the 18086 under UDI or COHERENT, it gives the following
rasults;
TE 56 34 12

S47E 1234
12345678

Ag can be seen, the order of the bytes dif fers between the machines,

See Also
canon.h, data formals

Mark Williams C

Lexicon

C language

¢ language —verview

The following summarizes how Mark Williams C implements the C language.

Tdeniifizrs:

Characters allowed; A-Z, a-z, | 0-9
Compiler and linker are case sensitive.

Number of significant characters in a variable name:

at compile time:
at Iink time:

128
16

C identifier tag appended by compiler: _ at end of identifier

Reserved identifiers (kevwords):

alien
auto
break
CASE
char
continue
default
do
douhble
else

entry
exfern
float
for
goto
if

int
long

readonly
register

refurn
short
sizenf
static
slruct
switch
typedef
union
unsigned

while

The kevword entry 15 not implemented. The proposed ANSI standard for C
adds const, signed, and volatile to the above set, and deletes entry and readonly.
Mark Williams C reserves the kevwords readonly and alien, but these are not

implemented on the 65000,
Data formals (in Bits)

char:

double:

float:

int;

long:

pointer:

short:
unsigned char;
unsigned short:
unsigned int:
unsigned long:

Mark Williams C

64
32
16
iz
32
16

16
16
a2

C language Lexicon

106

float format:
DECVAX floating point format
1 sign hit
&-bit exponent
24-bit normalized mantissa with hidden bit
DECVAX double format
Same as float, but with 56 bits of mantissa
Reserved valuas:
+- infinity, -0
All floating-point operations are done as doubles
Limits:
Maximum bitfield size: 16 bits
Maximum numbet of cases in a switch: no formal limit
Maximum block nesting depth:; no formal limit
Maximum parentheses nesting depthy no formal limit
Maximum structure size: no formal limit
Maximum array size; 64 kilobytes

Preprocessor instruciions.!
#asserl #ifdef
#define #ilndef

#else #include
#endif #line
#file #undef
#if

Structure #ame=spaces:
Supports both Berkeley and Kernighan and Ritchie conventions
for structure in union.

Begister variables!
Five available for ints or longs
Three available for pointers

Function linkage:

REeturn values for chars, ints, longs, or pointers in d0

Return values for doubles in d0 and dl

Pointers to returned structures in d0, copied to destination by caller

Parameters pushed on stack in reverse order, chars and shorts pushed
as words, longs and pointers pushed as longs, structures
copied onto stack

Caller is responsible for elearing parameters off stack

Stack frame linkage is done through a6

Mark Williams C

C language

Regisier usage:

dd, dl: Scratch data and function return values

d2?: Scratch data

d3, dd, d5, d6, d7: Register variables for longs and ints
ad, al, a2: Scratch addresses

a3, a4, a3 Register pointers for any type or structure
aé: Call frame linkage pointer

aT: Stack pointer

Special features and optimizations:

By default, the compiler makes the following substitutions:

jsr gemdos_ trap %1
jsr micrortx trap %35
jsr bics._ trap %13
isr xbios_ trap %14

This reduces the overhead for system calls and makes the code reentrant
{although the system itself may not be). Turn off this feature with the
option -VNOTRAP.

Branch optimization is performed: this uses the smallest branch instruc-
tion for the required range.

Unreached code is eliminated.

Duplicate instructlon sequencess are removed,

Jumps to jumps are eliminated,

Cross-jumps are eliminated. This changes code like this:

move 8, b
bra LABELY
LABELD: move ¢, b
bra LABELZ
LABELT:move b, d
bra LABEL3
LABELZ:move f, d
bra LABEL3

oy
move &, b
move &, d
bra LAEBEL3
LABELD:move ¢, b
mowve f, d
bra LAEELZ

Mark Williams C 107

cabs-calling conventions Lexicon

See Also

byte ordering, data formats, data types, declarations, kevwords, Lexicon,
memaory allocation

cabs —Mathematics function (libm.a/cabs)

Complex absolute value function
#include <math.hs
double cabs(z) struet [double r, it } 23

cabs computes the absolute value, or modulus, of its complex argument = The
ahsolute value of a complex number is the length of the hypotenuse of a right
triangle whose sides are given by the real part r and the imaginary part i. The
result is the square toot of the sum of the squares of the parts.

Example
For an example of this function, see the entry for acos.

See Also
hypot, mathematics library

calling conventions—Definition

1018

This entry discusses the Mark Williams C function calling conventions, This in-
formation is helpful to users who wish to interface C programs with assembly
language routines or with object code generated by other language processors.
Programs that depend upon specific details of these calling conventions may not
be portable to other processors or other C compilers.

In general, Mark Williams C pushes arguments from right to left. Mark
Wwilliams C pushes function arguments as follows:

char as a word

short as a word

int as a word

long as a long word

Tloat as 1 pair of long words

double as a pair of long words
pointer as a long word

“Ward™ in this instance means a 68000 (16-bit) word,

An underbar *_ 7 is appended to the name of the Munction. This makes assembly
language programmers append *_° to the names of their € callable functions.
This is also used by the utility nm to choose the symbols printed with the -a
Option.

An add. lea, or addq instruction after the call removes the arguments from the
stack.

Mark Williams C

Lexicon —

calling conventions

The C prologue executes a link to allocate space for automatics and saved
registers. Because C functions may use registers a3 through ad and d3 through
d7 for register variables, the C prologue saves used registers, and the C epilogue
restores them, The C epilogue executes an unlk before returning.

Parameters and local variables in the called functon are referenced as offsets
from the (frame pointer) register, The stack-pointer register points below the
local variable with the lowest address.

Functions return values as follows:

char in di. W
imt in d0.W
long in dij.L
float in ddand dl

double in d0 and d|
pointer in d0.L

Functions that return struct or union actually return a pointer to the struct or
union, The code generated for the function call will move the result to its des-
tination.

C does not require that the number of arguments passed to a function be the
same as the number of arguments specified in the function’s declaration.
Routines with a variable number of arguments sre not uncommeon, The two
formatted 1/0 routines in the standard library (printf and scanf) are, in fact,
routines that take a variable number of arguments,

Consider the following program as an example:

long fia, b, ©)
char a;
int by
long c;
L
return ({a * b) *= c);
}
mainl) €
char a = 1;
int b =2;
lomg & = 3;

fla,b,c);
3

When compiled with the -5 option, it produces the following code:

Mark Williams C 109

calling conventions Lexicon

110

Lzhri
globl f_

A
Link ah, %0
mave 10¢asy, d0
muls Blab), 40
ent. L da
add. L 12¢asy, dd
unlk ab
rts
Lglobl main_

mafr_:
Link a6, 58
moved $1, 40
move. b di, -2(ad)
M %2, do
mave dl, -&{ad)
maved $3, 40
mawve. 1 did, -8Lad)
move. | -Btaky, -(a’h
move -4{ak)y, -({am
move.b -2¢ab), dl
ext di
move go, -(ah
isr i
addg %8, a¥
unlk ah
ris

The symbols main and { have become main_ and f__. The automatic variables
in main are addressed at nmegative offsets from a6: char a 15 located at -2(aé),
int b at -4(a6), and long ¢ at -8(a6). A byte of unused storags follows a so that
b occurs on an even address. main pushes c, then b, then sign extends a and
pushes the resulting word. The arguments in f are addressed at positive offsety
[rom aé: char a iz located at 8(a6), int b at 10(a6), and long c at [2(af). charc
i¢ treated as an int. The result expression is computed into d0.L., When I
returns, main pops the arguments with an addq instruction.

in f after execution of the link, the stack appears as follows:

Mark Williams C

calling conventions

| high &% | <--A& = frame pointer for f
| Lew A6 |

| high return |

b |
| high ¢ |
| lew ¢ |

The following function returns 8 structure:

struct dete {
int month, day, year;
¥ today;

struct date
mkdalm, &, ¥}

L
struct date tmp;
tmp. month=m;
trp.day =d;
tep.year =y;
returnf tmgd ;

3

maingy

{
today = mikda(3, 20, 85);

b

When this program translated into assembly language by compiling it with the
-8 option, the result is as follows:

.bssd

.globl today_
today. :

.hblkb Oxé

Mark Williams C 111

calling conventions

mkda_:

zhri

.alobl mkda

.bszd

L10G01:

Lblkb Oxd
.chri

link a8, %-6

move B(e6), -6(ab)
mave 10(ad), -4(ab)
move 12(=6), -2(aé)
Lea -&(a6), al

L100G3:

Linon2s:

L1o005:

112

e, L SL10001, al
move 35, dO

bra.s L10002

move . b {aly, (s
addq 31, a
addg 31, &l

dbf d, L10003
mave. | $L10001, d0
unlk =L

rrs

Lghobl main_

Link a6, 0
moveq $85, dD
mave a0, -{a7)
Ve $20, do
move di, -¢a’y
MHved $£3, o0
mave dg, -{afm
jsr mkda_

Bddq 55, &7
moves. i dl, al
maves. L Stoday_, al
move 36, dd
bra.s L1000
mave. b taly, {al)
addy $1, af
addg £1, 21

Mark Williams C

oxicon calloc-carrfage return

L1000k
dbf da, L1005
unlk at
res

See Also
memory allocation

¢alloe—General function (libe.a/calloc)

Allocate dynamic memory
char "calloc{count, 5ize) unsigned count, size;

callog is gne of a set of routines that helps manage 8 program’s arena, calloc
calls malloe to obtain a Block large enough to contain count items of size bytes
gach; it then initializes the block to zeroes and returns a pointer to it. Dynamic
memory that is no longer needed can be returned to the free memory pool with
the function free.

See dlso
arena, free, lcalloc, Imalloc, Irealloc, malloc, notmem, realloc

Diapuostics

calloe returns NULL if insufficient memory is available.

Motes

The related function lealloc takes unsigned long arguments, and therefore can
allocate memory blocks that are Targer than 64 Kilobytes,

canon. h—Header file

Canonical conversion for the 68000
#include <canon.h>

canon.h defines canonical conversion routines used for the 68000, to ensure that
byte ordering is correct.

See Also
byte ordering

carriage return—Definition

Mark Williams C recognizes the literal character '\r' for the ASCII carnage
return character CR (octal 015). This character “throws the carriage”, ie,.
returns the cursor to the beginming of the line. The newline character "\n’
drops the cursor down to the next line. With the UNIX library routines, \nisa
synonym for Yn plus \r. TOS routines, such as Cconws, need both characters
explicitly,

Mark Williams C 113

cat—Command

Cauxin—gemidos function 3 {oshind.h)

114

gat-Cauxin

“r may be used as a character constant or in a string constant, like the othep
character constants: “4a’, which rings the qudible bell on the terminal; "\, to
backspace; *\f", to pass a formfeed command to the printer; ¢, fora horizontal
tab: and “yv", for a vertical tab.

See Also
ASCII, character constant

Concatenate Files
cat [-u] [file ..l

cat copies each file to the standard output. A file specified by *-" indicates the
standard input. If no file is specified, cat reads the standard input.

The -u option makes the output aunbuffered. Otherwise, cat bulfers the output
in units of the machine’s disk block size.

Mote that <ctel-5> pauses the outp utting of text, and <ctrl-Q» resumeas output-
ting.

See Also
commands, msh

MNotes
Redirecting the output of cat into ane of its input files is an error, as the com-
mand will never terminate. For example:

cat * >out

will cause the system to loop, with the file out being read and written into until
the file system runs out of space.

Read 4 character from the serial port
#include <oshind.h>
long Cauxing()

Cauxin reads a character from the serial port aox:, and returns the character:
read, 1t is affected by redirection.

Example [

The following example creates a dumb terminal emulator that operates through
the serial port. It demonstrates the macros Cauxin, Cauxis, Cauxos, Caunxout,
Cconis, Ceonout, and Crawein, You can exit from the program by typing <cirl=

7>, Run the example either from the GEM desktop, or with the tos command.

Mark Williams C

Cauxis

#include <osbind.he

main() {
char o
for (7% £
if (Cauxis()d
Ceonout({c = Caunin{));
if (Ceonis()) {
if ((o'= Crawcin(}) == 26) {
break;
} else {
if (Couxos()) /* 1f resdy ™/
Cauxout{c); /% send char =/
else JE Otherwizse %/
Ceanaut("\0T'); FE ring bell %/
3
b
3
¥
See Also

crisg.0, gemdos, tos, TOS

Motes

TOS defines handle 2 as being aux:, the serial port. The microshell msh norm-
ally redirects handle 2 to another device; because Cauxin and its related
functions can be redirected, any program that uses Cauxin, Cauxls, Cauxos, or
Cauxout must be run directly from the GEM desktop, or run under the shell
with the tos command, which re-redirects handle 2 to the aux: device.

An alternative is to use Beonin and its relatives instead of the Cauxin family
when writing programs to be run under msh.

Cauxis—gemdos function 18 (osbind.h)
Check if characters are waiting at serial port
#include <osbind.h>
long Cauxis()

Cauxls checks to see if characters are waiting to be read at the serial port, Tt
returns -1 if there are characters waiting, and 0 if there are not.

Example :
For an example of how to use this macro, see the entry for Cauxin,

See Also
gemdos, fos, TOS

Mark Williams C 115

Cauxos-ce

Cauxos—gemdos function 19 (osbind.h}

Cauxoul—gemdos function 4 (oshind.h)

ce—Command

116

Nares
This function must be compiled with the -VGEM option, and run either from
the GEM desktop or with the tos command.

Check if serial port is ready to receive characters
#include <osbind.h>
long Cauxos()

Cauxos checks the output status of the serial port. Cauxos returns -1 if the
serial port is ready to send a character, and 0 if it is not. i

Example
For an example of how to use this macro; see the entry for Cauxin.

See Also
gemdos, tos, TOS

Nofes J
This function must be compiled with the -VGEM option, and run either from
the GEM desktop or with the tos command.

Write a char to the serial port
#include <oshind.h>
void Cauxout(c) int ¢;

Cauxout writes the character ¢ to the serial port, and returns nothing.

Example
For an example of how to use this macro, see the entry for Cauxin.

See Also
gemdos, tos, TOS

MNoles
This function must be compiled with the -VGEM option, and run either from
the GEM desktop or with the tos command.

Compiler driver

cc |options] file ...
cc is the program that controls the compilation process. It guides files of source
and object code through each phase of compilation and linking. cc has many
options to assist in the compilation of C programs; in essence, howewver, all you
need to do to produge an executable file from your C program 15 tyvpe ¢t

Mark Williams C

[exicofl 8

followed by the name of file (or files) that holds your program. Tt checks
wheather the file names you give it are reasonable, selects the right phass for
each file, and performs other tasks that ease the compilation of vour programs.

cc assumes that each file name that ends in .c or Jh isa C program and proces-
seg it with the C compiler. It assumes that each file argument that ends in s s
an assembly-language program and processes it with the assembler as. Tt passes
all files with the suffixes .o or .a unchanged to the linker Id.

The normal operation of the cc command is as follows. First, it compiles and
assembles the source files, naming the resulting object files by replacing the .c
or .5 suffixes with the .o suffix. Then, it links the object files with the C run-
time startoff routine and the standatd C library, and leaves the result in file
fife.prg. 1 only one object file is created during compilation, it is deleted after
linking: however, if more than one gbject file is created, or if an object file of
the same name had been written before the present compilation, the object files
are not-deleted.

ce lopks for the compiler and its other tools in directories that the user names.
The names of these directories together compose cc's environment, and each
name comprises an eavirormental varighle, An environmental variahle 13 zet
through the micro-shell msh, by using the command seteny, The user must set
the following environmental variables for ce to work correctly:

LIBPATH This names the directories that hold the phases of the compiler,
the libraries, and the C run-time start-up routines, MNote that if
you have more than one version of a file, ¢c will use the first
one that it finds along the LIBPATH.

INCDIR This names the “defzult™ directory within which the C
preprocessor cpp.prg will look for files that are called with a
#include statement, This default directory is searched along
with the directory of the source file and the directories specified
with -I options.

TMPDIR This names the directory into which temporary files should be
written. The default if this variable is not set is the directory in
which the source files are kept, Note that this variable need be
set only if space is a problem on any of your storage devices.

These environmental variables should be set in your profile file. See the entry
for msh for more information about profile.

cc's behavior may be altered by means of command line options. These are
described below. cc passes all other options through to the linker 1d unchanged,
and correctly interprets to 1d the -e, -0, and -u options, which are described
below.

The C compiler itself consists of several phases. The preprocessor cpp expands
#define and #include directives, among others, in the source program. The

Mark Williams C 117

118

parser ccl parses the preprocessor outpul. The code generator cel generates
code for the program. The optimizer eel optimizes the gensrated code ang

writes the object file. If an assembly-language listing is requested, the disas-
sembler ccd writes it

Note that a number of the options are esoteric and are not used typically when
compiling a C program. In general, the most commonly used options are -A
(to invoke the editor automatically when errors occur), -f (1o include floating-

point routines), -lhame (to pass the name of a library to the linker), -0 name

frename the executable file), -V {run in varbose mode), and a number of ﬂ]ﬁﬁ
-Vsiring variant options.

-A MicroEMACS option. If an error occurs during compilation, ¢e
automatically invokes the MicroEMACS screen editor, The error or er-
rors are displaved in one window and the source code file in the other,
with the cursor set to the ling number indicated by the first error mes— 4
sage. Typing <ctrl-X>» moves to the naxt error, <ctrl-X>< moves to the
previous error. To recompile, close the edited file with <ctrl-Z=. Com-
pilation will continue either until the program compiles without error, or
until you exit from the editor by typing <ctrl-Us> followed by <ctrl-—
K> <ctrl-Cx.

-Blsiring]

Backup option. Use alternate versions of the compiler for ccfl, ec1, cc2,
and ec3. If siring is supplied, cc prepends it to the names of the phases of
the compiler to form the pathnames where these are found. (Mherwise, ce
prepends the name of the current directory. 1f a -t option was prevmusly
given, only the parts of the compiler specified by it are affected. Any
number of -B and -t options may be used, with each -1 option spec:i‘vm;g;

the passes affectsd by the subsequent -B option. For example, the com-
mand

oo -tpd -Brow hetlo.c
will compile hello.c using newce? in place of the ordinarily used ‘\libheel.
and using newcpp in place of the ordinarily used “libhepp,

-¢ Compile option. Suppress linking and the removal of the object files,

-Drame]=value]

Define name to the preprocessor, as if set by a #define directive, If valug
is present, it 1% used to initialize the deflinition.

-E Expand option. Run the C preprocessor and write its output onlo the
standard outpuat.

-f Floating point option. Add object files with floating point output to the
linker command line, Because the floating point conversion routines re-
quire approximately five kilobvtes, the standard € library doss not in-
clude them; the - aption tells the compiler to include them. If a program

Mark Williams C

Lexicon cc

is compiled without the -f option but attempts to print a floating point
number during execution by using the e, f. or g format specifications ta
printf, the message

You must comgile -f
will be ptinted and the program will exit.

-Idirectory
Include option. Specify the directory the preprocessor should search for
files given in #include directives, using the following criteria: If ths
#include statement reads

#include "file.h"

cc searches for file.h first in the source directory, then in the directory
named in the -Idirectory option, and finally in the systemi’s defaunlt direc-
tories, If the #include statement reads

#include <file.h>

cc searches for fTile.h first in the directory named in the -Idireciory op-
tion, and then in the system’s default directories. Multiple -Ldireciory
options are searched for in their order of appearance.

-K Keep option. Save the intermediate files generated during the compila-
tion in the current directory, using file names generated by replacing .c
with a descriptive suffix.

-l nante
library option. Pass the name of a library to the linker. ¢c sxpands
-lname into libname.a and searches LIBPATH.

-M string
Machine option. Use an alternate version of ¢c0, ccl, ecla, cclb, ccl,
ccd, as, lib*.a, and crtsd.o, named by fixing string between the directory
name and the pass and file names.

~N[p0123sdirt]siring
Name option. Rename a specified pass to string. The letters p123sdlrt
refer, respectively, to ¢pp, cc0, cel, ec2, ec3, the assembler, the linker,
the libraries, the run-time start-up, and the temporary files. For ex-
ample, the ~VGEM option described below implicitly executes the opticn
-Nrertsg.o to change the name of the run-time start-up module,

-0 HAME
Cutput option. Rename the executable file from the default file.prg to
narme,

-q[p0123s] -
guit option. Terminate compilation after running the specified pass. The
letters p0123s refer, respectively, to cpp, ccl, ccl, cc2, ced, and the as-

Mark Williams C 119

=1 name

-V

Ysiring

sembler, For example, o terminate compilation after running the pa
ccl, type -qgl.

Quist option. Suppress all messages.

Suppress the object-writing and link phases, and invoke the disassemb
cc3. This option produces an assembly-language version of a C progra
for examination, for example if a compiler problem is suspected. The

sembly=language output file name replaces the .¢ suffix with .s. This
equivalent to the -YASM oplion.

Undefine symbol name. Use this option to undefine symbols that

preprocessor defines implicitly, such as the name of the native system o
machine.

Verbose option. cc prints onto the standard output a blow-by-h
deseription of each action it takes. This option is normally used for
check the compiler if you suspect something iz wrong with it; it can

be used on heavily loaded system to reassure the user that compilation s
in fact proceeding.

Variant option. Togele (i.e,, turn on or off) the variant string during th_
compilation. Options marked. Strict: generate messages that warn of the
conditions in guestion. ce recognizes the following variants:

=-VASM Qutput assembly-language code; identical to -5 option,
abowve, Default is off,

=VONEST Allow nested comments. Default is off.

-VCOMM Permit .comm-style data items. Default is on.

-VFLOAT Include floating point printl routines.

Same as -f option,
above.

-VGEM Use routines designed for GEM environment. This uses run-

time startup routine crtsg.o and links in the libraries libaes.a
and libvdi.a, Default is off.

-VGEMACC Use routines designad for a GEM desk accessory. This uses

runtime startup routing crtsd.o and links in the ijhrarieﬁz_?
libaes.a and libvdi.a. Default is off,

8

-VGEMAPP Use routines designed for a GEM application. This is 3
synonym for -VGEM, Default is off.

-VNOOPT Turn off optimization. Default is off.

-¥NOTRAPS _
Turn off trap substitution. By default, all gemdos, !:.11:35',_.-
xhios., and micro_rtx calls are traps. By setting this option,

Mark Williams C

Lexicon Eltlﬂ

subroutine calls will be generated instead of traps. A trap is
a single-word instruction, analogous to an interrupt; it is
faster and takes up less space than an ordinary subroutine
call. This option allows the user to test routines that have any
of the aforementioned names. Default is off.

-¥PSTR Put strings into the shared seament, if possible. Used 1o
generate ROMable code. Defaull is off,

=-¥QUIET Suppress all messages; identical to -Q option. Default is off,

-¥8BOOK Strict: note deviations from The © Programming Language.
Default is off.

-¥VSCCON Strict: note constant conditional. Default is off,

-VSINL Implement struct-in-union rules instead of Berkeley-member
resolution rules. Default is off, ie., Berkeley rules ara the
default.

=VSLCON Strict: int constant promoted to long because value iz tog big.
Default 15 on.

-YSMEMB Strict: check use of structure/union members for adherence to
standard rules of C. Default is an,

-¥SMNREG Strict register declaration reduced to auto, Default is off,
~-¥SPYAL Strict: pointer value truncated. Default 15 off.

~-¥VSRTYC Strict: risky types in truth contexts. Default is off,
-VSTAT Report commands run and statistics; same as =V option,
-VSUREG Strict; note unused registers. Default is off.

-¥VSUVAR Strict: note unused variables. Default is on.

-Z Pause between passes and prompt for disk change, Used with the com-
piler using single-sided disks.

See Also

as, cc0, ecl, ec2, ced, commands, cpp., Id

cel—Definition
ccll 15 the Mark Williams C's parser. Tt parses C programs using the method of
recursive descent, to translate the program into a tree format.

See Also
ce, cel, ec2, ccd, cpp

Mark Williams C 121

ccl-Ceonin Lexicon

cel —Definition

ce2—Definition

cod—Definilion

Cconin—gemdos function 1 (osbind.h)

cel is the Mark Williams C code generator. This phase generates code from th :
trees created by the parser, cel, The code gensration is table driven, wi
entries for each operator and addressing mode.

See Also
ce, ccl), ce2, ccd, cpp

ccl is the optimizer/object generator phase of Mark Williams C. Tt opti
the code generated by ccl, and writes the object code. The Mark Willi
Company compiler uses multiple optimization algorithms, One optimizes jum
sequences; it eliminates common code, optimizes span-dependent jumps, :
removes jumps to jumps. The other function scans the generated o
repeatedly to eliminate unnecessary instructions,

See Also
ce, cef), ecl, ce3, cpp

ccd is the disassembler phase of Mark Williams C. It writes its output in
sembly language rather than in object code. This phase is optional, and all
the user to examine the code generated by the compiler. To produce an
sembly-language output of a C program, use the -5 option on the cc comm

ling; for example, »

cc -8 foo.c

tells cc to produce a file of assembly language instead of an object maodule,

See Also
ce, ccl), ¢cl, cc2, cpp

Read a character from the standard input
#include <oshind.h>
long Ceonin()

output. 1t returns the character read. |

Mark Williams &

Lexicon Ceonis

Example
This example gets characters from the kevboard and displays them on the
screen until a <ctrl-Zs is typed.

#include <ozhind.h>
main{) {
int e =0Q;

while (¢ = Or1A)
Ceomout{{int){c = Cconin{}));
i

See Also
gemdos, TOS

Ceonis—gemdos function 11 {oshind.h)

Find if a character is waiting at standard input
#include <osbind.h»>
int Cconis()

Cconis checks to see if characters are waiting at from the standard input. Tt
returns -1 if a character is waiting, and zero if no character is waiting,

Example
This example displays a moving asterisk until any non-shift key is typsd.
Cconis 15 also demonstrated in the example for Cauxin.

#include <osbind.h>

main()
int x=0;
int dir=0;
CeomMs (" OI3MO33FY; /* Home, curscr disabled */
while {Ceconis() == 0) £ J® Until a key is typed */
ifidir == Q) { /2 0f left to right =/
Coorms{ "y 010 *i).
if{++x » TR}
dir++;
Y elze { J* 0F right to left *7
Ceonws ("\O100DT0NDZ3K ™) ;. /* Back up, clear to end */
if {--x <= 0)
dir=0;
¥
¥
% = Cooning); /* Eat the character */
Coonms{"\033e"); f*Turn cursor on. *f
¥

Mark Williams C 123

Ceonos-Ceonrs

Ceonos—gemdos function 16 (osbind.h)

Cconout—gemdos function 2 (osbind.h)

124

Fee Also
gemdos, screen control, TOS

Check if console is ready to receive characters
#include <oshind. h>
lang Cconos()

Ceonos checks to see if the console is ready to receive characters. Tt returns -1
if the console is ready, and 0 if it is not.

Example .
This program exits with a status of 1 if the console cannot be written to; other-
wise, it displays a message and exits with a status of 0.

#Finclude <ocbhind.h>
mainfy {
if {Cconosé) == 03 {
exit(1);

b
Coonws{"The console is ready...\n\r');
exit{0);

¥

See Also
gemdos, screen control, TOS

Notes
As of this writing, Ceonos always returns -1, and dogs no checking,

Write a character onto standard output
#include <oshind.h>
void Ceonout{c) ints;

Cconout writes character ¢ onto the standard output. It returns nathing,

For information on the screen handling escape sequences used by this routine,
see the entry for sereen control,

Exampis
For an example of this function, see the entry for Cauxin,

See Also
gemdaos, screen control, TOS

Mark Williams C

Lexicon Ceonws

¢conrs—gemdos function [0 (osbind.h)

Read and edit a string from the standard input
#include <oshind. h>
void Ceonrs{siring) char *siring;

Ceonrs reads and edits string, which it receives from the standard input. The
first byte of string holds the length of the data portion of the buffer; the second
byte holds the actual number of characters read; and the remainder holds the
characters read, with a NUL character appended to the end,

Example

This example reads an edited string from stdin and writes it and its length to
stdout. buff]0] is the the size of the data portion of the buffer, and buff]1] is the
length read,

#include <osbind.hx
mainl
unsigned char buff[1303;

buffill = 128;

Coonrs{buff);

printf("string '%s' is %d bytes long\n", &buffiZl, buffiil);
E

See Also
gemdos, TOS

Nofes
<ctrl-C> aborts a program if typed in response to a Ceonrs.

Ceonws—gemdos function 9 (oshind.h)

Write a string onto standard output
#include <oshind.h>
void Ceonws{siring) char *string;

Cconws writes string onto the standard output. Tt stops writing when it reads
the NUL, Cconws returns nothing.

Example - ;
This example writes a NUL-terminated string to stdout. Note the \r used with
the Yn.

#include <oshind.h>
mainiy {

Coomwa("This is a HUL-terminated string.h\e\n®);
}

See Also
gemdos, sereen control, TOS

Mark Williams C 125

Ed—cell

cd—Command

ceil—(reneral function (libm.a/ceil)

126

Notes .
Mote that <ctrl-S»>, <ctrl-Q=, and <ctrl-C> act, raspectively as XON, XUFE
and abort while Ceonws is acting. d

Change directory
cd directory

The micro-shell msh keeps track of the directory in which the user is currently
working. If a command is not specified by a complete path name begmnmg
with the name of the storage device on which it is kept, msh prefixes it with the
name of the current working d]rect-::ury cd changes the current working direg—
tory to directory. It no directory is specified, the directory named in the.
SHOME environmental variable becomes the current working directory,

For example, consider a disk on drive B:\ that has two directories: foo and bar.
By definition, the root directory is B:\, and foo and bar sach ars sub- directories
of B:. To change to the sub-directory foo, you would type:

cd foo
To move from foo to bar, type the full path name of bar
cd brvbar

MNote that the symbol *.." stands for a directory’s parent dirgctory; in this ex-
ample, both foo and bar have B:\ as their parent directory. By definition, a
root directory has no parent. So, to move back from bar to Toeo. you could type:

cd ..\foo

This first moves vou from bar to bhar’s parent directory, Bi\; then from the
parent directory into foo.

See Also
commands, msh, pwd

Mumeric geiling function
#include <math.h>
double ceil{z) double =;

ceil returns a double-precision floating point number whose value is the
smallest integer greater than or equal tooz.

Example
The following example demonstrates how to use ceil:

Mark Williams C

char-character constant

jexicon

#dinclude <math.h>
dedisplay{value, name}
double walue: char *bname:

¢
if {errnaol
perror{name};
elae
printf{"%10g ¥shn", velue, name);
errne = Q;
¥
#define display(x) dodisplay({(double)ix), Hx"})
maing) {
extern char *gets();
double x;
char stringl&4];
fard;:) L
printf{“Enter number: "};
if{gets{string} == 0}
break;
¥ = atof(stringl;
display{x);
display{ceil{x));
display({floor{x});
display({fabs{x)};
displaylsgrtix));
¥
b
See Also

abs, fabs, floor, frexp

char—Definition
char is a C data tvpe. It is the smallest addressable unit of data, and it usually
consists of eight bitz (one byte) of storage, By definition, sizeof char equals
one, with all other data types defined as multiples thereof. All Mark Williams
compilers sign-extend char when it is cast to a larger data type.

See Also
byte, data formats, declarations, unsigned

character constant—Definition
A character constant is a constant of the form A7, where X is any printable
character, and 15 enclosed between two apostrophes. The value of the constant
15 the machine value of the character it represents, whatever it might happen to
be on yvour system.

Mark Williams C 127

clearerr-CLK TCK

clearerr—STDIO macro

CLK TCK—Manifest constant

Selected non-printable characters can also be represented as character consta
by vsing the following escape sequences:

Y0 NUL
LN N octal number
“a bell

b backspace

WE formfeed

Yo newline

\r carriage return

MW tab character

% vertical tab

W x VA hexadecimal number

An oetal value can also be directly output by preceding the three-digit octal
aumber with a backslash \; for example

OBS !
will print the letter “A’ on any machine that uses the ASCII table.

See dlxo
ASCII, backspace, carriage return, horizontal tah, newline, vertical tab
The C Brogramming Language, page 35

Present stream s{atus
#include =<stdio.h>
clearerr(fp) FILE *fp;

clearerr resets the error flag of the argument fp. If an error condition |$
detected by the related macro ferror, clearerr can be called to clear it.]
See Also

ferror, STDIO

CLK_TCK is a manifest constant that is set in the header file time.h. Tt is
defined as being equivalent to the rate at which the system clock ticks. On the:
Atari ST, the system clock ticks 200 times per second,
See Also

time, time.h

Mark Williams C

—

|

§

yicon clock-cmp

clock—Time function {libc.a/clock)

(zer number of clock ticks since system boot
#include <time. h>
clock_telock()

clock returns the number of times the ¢lock has ticked since the system was last
turned on. The number of ticks per second is defined by the manifest constant
CLK TCK, which is declared in the header file time.h. Note that this value
varies from computer to computer, On the Atari 8T, the clock ticks every five
milliseconds.

clock returns a value of the type clock _t; this type is defined in time.h as being
equivalent to an unsigned long, Note that this value will overflow c¢lock_t and
be resefr to zero approximately 148 days after the machine is turned on.

Example
For an example of this function, see the entry for Pexec.

See Also
CLK_TCK, time, time.h

close—TUUNIX svstem call (libe.a/close)

Close a file
close(/d) int fd

close closes a file that 1 identified by the file descriptor fd, which was returnad
by creat, dup, or open. close frees the associated file descriptor. Because each
program can have a limited number of open files, programs that process many
files should close files whenever possible. Mark Williams C closes all open files
automatically when a program exits.

Example
For an example of this function, see the entry for open.

See Also
creat, open, STDIO, UNIX routines

Diggnostics
close returns -1 if an error occurs, such as its being handed a bad file descrip-
tor; otherwise, it returns zero.

cmp—Command

Compare bytes of twa files
cmp [-1s] filel filed [skipl skip2]

Mark Williams C 129

Cnecin Lexico

cmp compares filel and file2 character-by-character for equalitv. If filel ig
, cmp reads the standard input,

MNormally, emp notes the [irst difference and prints the line and character nr:i'sl;_-
tion, relative to any skips. If it encounters an end-of-file flag on one file but
nat on the other, it priots the message “EOF on filex”. The following are the
options that can be usad with cmp:

-1 Mote each differing byte by printing the positions and octal values of the
bytes of each file.

-5 Print nothing, but return the exit status.

If the skip counts gare present, cmp reads skipl bytes on file! and skip2 bytes on
file2 before it begins to compare the two files,

See Also
commands, diff, msh

Diggrnostics
The exit status is zero f‘ or identical files, one for non-identical files, and two.
for errors, e.2., bad command vsage or inaccessible file.

Cnecin—gemdos function § (osbind.h)
Perform modified raw input from standard input
#include <oshind.h>
long Cnecin)

Cunecio reads a character from the standard input and returns it. The character
1% not echoed to the standard output,

Example _))
This example reads characters from the standard input device, changes their

¢ase, and writes them out to the standard output device until 2 <ctrl-D= charac-
ter is typed.

130 Mark Williams C

Lexicon commands

#include =osbind, h>
#include <ctype.hx

main{) { 'i
unziagred cher c;

while({c=Crecin{)} '= 0x04) {

if{isupper{c}} /* Toogle case of char */
¢ = tolawer{c);
else
¢ = toupperic);
Crawio{e);
if{c == 0xdD} S= If a <RETURN=> */
Crawic(0x08); /* hppend a line feed */
¥
:
See Alsa

gemdos, screen control, TOS

Notes

Thiz routine has been documented elsewhere as recognizing the special
meanings of the characters <ctrl-C», <ctrl-S>, and <ctrl-Q=; this inf pormation,
however, appears to be incorrect.

commands—Overview
Mark Williams € includes a number of commands. They are listed below, with
the command given on the left and a description on the right.

ar the archiver/librarian

as the assembler

ast8toas convert DRI to Mark Williams assembler
cat concatenate files

o the compiler driver

cd change directory

cmp compare two files

cp copy a file

cpp the C preprocassor

csheony run under the Beckemeyer C shell
cursconf change cursor style and position
date print/set the system date and time
db symbolic debugger

df measure free space on disk

diff compare two files

driomw convert from DRI to Mark Williams
echo repeat/expand an argument

egrep find embedded strings

exit leave msh

Mark Williams C 131

commanids

132

file
gem
geteol
getpal
getphys
geirez
help
hidemouse
htom
kbrate
kick
1d

Is

liom
make
me

mf
mkdir
msh
msleep
mioh
mtol
my

nm

od

pr

pwd
rdy

Tm
rmdir
rsconf
sel
seteool
seleny
setpal
seiphys
sefpri
selrez
show
showmouse
size
sleep
STIAD
sort
strip
tail

determine file tvps

run a GEM-DOS program

gef g color palette entry

get color palette

get base of physical screen memory
get screen resolution

print help files on screen

hide mouse pointer

redraw screen, moving from high to medium resolution
get/set the kevboard's repeat rate

force TOS to reread the floppy disk cache

the linker

list directory contents

redraw screen, moving from low to medium resolution
programming discipline

MicroEMACS screen editor

measure free space in RAM

create a directory

the Mark Williams micro-shell

suspend processing for # milliseconds

redraw screen, moving from medium to high resolution
redraw screen, moving from medium to low resolution
rename a file

print symbol tables

print an octal dump of a file

format ASCII files for printing

print the current directory

create, save, and load a rebootable RAM disk

remove a file

remove a directory

set attributes of serial (auxiliary) port

set a shell variable

set a palatie color

set an environmental variable

set the color palette

set the physical base of the screen’s memoty

set attributes of paralle] port

set screen resolution

display saved screen image

show the mouse pointer

print size of a file

suspend processing for » seconds

take a “snapshot™ of the current screcn image

sort ASCIT files

strip symbol tables from objects

print the end of a file

Mark Williams C

pexicon compound number-con;

tos run unredirected GEM-DOS program
touch change a file’s date

unig list/destroy duplicate lines

unset discard a shell variable

unseteny discard an environmental variakle
version print/assign version number

we count words,/lines in ASCTI files

mote that many of the commands are built into msh itself, whereas the others
are executable programs in their own right. For a list of the commands that are
tuilt into msh, type the command

zet in .bin

Note that commands not built into msh must be stored in one of the directories
named in the environmental wvariable PATH, so that they can be found
automatically by msh. Note, too, that commands not built into msh can be run
independently from the GEM desktop: in most instances, this will require that
the suffix be changed from .prg to .ttp, so the command in quastion can receive
arguments,

For more information on any of these commands, see its entry within the
Lexicon,

See Also
Lexicon, msh

compound number—Definition

A compound nmumber is a number that consists of two numbers of different
tvpes. Ln the context of C, this applies usually to floating point numbers, which
are constructed of a sign bit; an exponent; and a mantissa, or base upon which
the exponent operates.

See Also
data formats, double, float

con:—TOS device

TOS logical device for the console

TOS gives names to its logical devices. Mark Williams C uses these names, 1o
allow the STDIOQ library toutines to access these devices via TOS., com: is the
Ingical device that describes the console.

Example
The following example demonstrates how to open the console device,

Mark Williams C 133

cos-cosh Lexi

cos—Mathematics function (libm.a/cos)

cosh—Mathematics function (libm.a/cosh)

134

#include sstdie.h>
mairgaf
FILE *fp, *fapen{};
it ({fp = fopentcon:¥, "w")) 1= NULL)
fprintf{fp,"con: enabled.\n");
else printf("con: cannot open.i\n"};
3

See Also
aux:, pro;

MNotes
con: may be spelled con: or CON:.

Calculate cosine
double cos(radian) double radian:

cos calculates the cosine of its argument radian, which must be in radian
measure.

Example
For an example of this function, see the entry for acos.

See Also
mathematics library

Calculate hyperbolic cosine
#include <math.h>
douoble cosh{radian) double radiam

cosh calculates the hyperbolic cosine of radian, which is in radian measure.

Exagmple
The following example demonstrates how to use cosh:

#include <math.h>
dedizplay{value, nams}
double walue: char *name;

£
if (errmo) perror{name);
else printf{"¥ila ¥s\n", value, name);
errno = O;

¥

Mark Williams |

Lexicon

#define display(x) dodizplay({(doublel(x), *x"}
mainl} €

extern char *gets();

deuble x;

char string[54];

for(;:) €
printf{"Enter number: "J;
if{getsistring) == 0}
break;
¥ = atof{string);

display(x};

display{cesh{x}};
display{sinh{x}};
digplay{tanh{x)};

3

See Also
mathematies library

Diggnostics
When overflow occurs, cosh returns a2 huge value that has the same sign as the
actual result,

cp—Command
Copy a file
cp old file new/file
cp oldfilel ... old fileN directory

cp copies files. In its first form, cp copies the contents of oldfile to new/file,
which is created if necessary. If wewfile is a directory, cp copies oldfile to a
file of the same name in directory new file.

In its second form, cp copies each file, from oldfilel through oldfileN, into
directory.

If a file is copied to itself, the result is undefined, but probably undesirable.

See Also
commands, msh, mv, wildcards

cpp—Command
C preprocessor
cpp lopiion...| [file...]

epp is the C preprocessor. It performs the operations described in appendix A
of The C Programming Language such as file inclusion, conditional code selec-

Mark Williams C

cpp

tion, ¢onstant definition, and macro definition. The cc command runs cpp as
the first step in compiling a C progranm and cpp can be run hy itself,

cpp reads each input file, or the standard input if no file is specified, processog
directives accordingly, and writes ity product on the standard output. Tha
product is a C program that is identical to the concatenated input files with
preprocessor directives completed,

The following summarizes cpp’s options:

-DIYARTABLE
Define VARIABLE for the preprocessor at compilation time. For ex-
ample, the command

ce -PLIMIT=20 foa.c

tells the preprocessor to define the variable LIMIT to be 20. The com-
piled program acts as Fhuugh the directive #define LIMIT 20 were in-
cluded before its first line,

-E Strip all comments and line numbets from the source code. This option is
used for preprocessing assembly language or other sources, and should not
be used with the other compiler phases.

=1 directory
C allows two types of #include directives in a C program, i.e., #include
"file.h" and #include <file.h>. The -1 option adds directories that the
preprocessor searches for files named in these directives. By default, epp
looks for these files in the directory named by the INCDIR environmental
variable and the directory of the source file. For information on how to
set this variable, see the Lexicon’s entries for it and [or seteny.

-o file
Write output inta file. It this option is missing, epp writes its output onto
the standard output device, which may be redirected.

-UIFARITABLE
Undefine VARJABLE, as if an #undel directive wers included in the
source program. This is used to undefine the variables that cpp defines
by default, i.e,, GEMDOS and M&8000.

In addition to the directives described in The C Programming Languoge cpp
processes the #assert directive. The form of this directive is #assert consian-
expression. cpp evaluates the constawi-expression; if its value is false (zera),
cpp prints a diagnostic message on the console. Assertion failures are nonfatal;
they do not stop compilation.

MNote that cpp, like all other phases of the compiler, can be run on its own.
Thus, cpp can be used to modify files that do not contain C programs. For ex-
ample, assembly sources can be preprocessed with ¢pp o provide file inclusion,
conditional assembly, and macro expansion. All of cpp’s directives (e.zn,, #ifdef)

136 Mark Williams C

Lexicom

Cprnos-Cprnout

can be used. To assemble a file that contains preprocessor directives, use the
following commands:

vlibhesp <E file.s -o file.p

as -gxo file.s file.p
as noted above, the option -E tells epp to omit the source file line number
dirsctives that it usually provides for the C compiler,

See Also
#assert, cc, cel, cel, ce2, cc3, #include, 1d
The € Programming Language, page 86

Cprnos—gemdos function 17 (oshind.h)

Check if printer is ready to receive characters
#include <oshind.h>
long Cpronos()

Cprnos attempts to execute a *handshake™ routine to see if the printer is ready
to receive characters. It returns -1 if the printer is ready, and 0 if it i3 not.

Example
The following example demonstrates Cprnos,

#include <osbind.h>

mainl) {
if(Cornog{) 1=)
Ceomws("Printer Ready.\n\r*};

elee
Ceormmad"Printer not ready.\nhr"l;
3
See Also
gemdos, TOS

Cprnout—gemdos function 5 (osbind.h)

Send a character to the printer port
#include <oshind.h>
vold Cpronout{c) int ¢

Cprnout sends the character ¢ to the printer port, and returns nothing.

Example
This example writes a line to the printer.

Mark Williams C 137

Cravwcein-Crawio

#include <osbind.h>
mainl) {
unzigned char "c="This is printed on the printer.\r\n";
Wile (®c = 1001}

Cprrout(®cs+);
3
See Also
gemdos, TOS

Crawcin—gemdos function 7 {oshind.h}
Read a raw character from standard input
#include <osbind.h>
long Crawcin()

Crawcin reads a raw character from the standard input, and returns it to the
calling program. The character is not echoed to the standard output, and the
special meanings of the characters <ctrl-Cs, <ctrl-8>, and <ctrl-Q> are ig-
nored.

Exumple
This example reads characters from the standard input device, and writes
characters out to the standard output device until a <ctrl-Z> is tvped, Crawcin
1z alzo demonstrated in the example for Cauxin,

#include <osbhind, h>
maing) {
unsigned char ¢;

whilefic = Crawcin{)y i= Dxld) {

Crawio{c):
ifle == 0x0DY
Crawiof{Ox04);
3
3
See Alyo
gemdos, TOS

Crawio—gemdos function 6 (osbind.h)
Perform raw 1/0 with the standard input
#include <oshind, h>
long Crawiofc) int o

Crawio performs raw 1/0 with the standard input. If the argument ¢ squals
OxFF, then a characrer is read from the standard input and returned. If ¢ does
not equal 0xFF, then it is written onto the standard putput,

138 Mark Williams C

pexico® creat-crislh.o

Example
This example reads characters from the standard input device, and writes them
on the standard output device until a =ctrl-Z> is typed.

Hinclude <osbind.h>
main{} {
unsigned char c;

while ((¢ = Crawio{OxFF}) 1= OxIA) {
Crawiofc);
it (e == 0x00)
Crawiof{Ox04);

¥

See Also
gemdos, TOS

creat—UINIX function (libe.a/creat)
Create/truncate a file
int ereat(file, mode) char *file; int mode;

creal creates 2 new file or truncates an existing file. It returns a file descriptor
that identifies file for subsequent svstem calls. If file already exists, its con-
tents are erased. creat ignores its mode argument. This argument exists [or
compatibility with implementations of creat under the UNIX system and other
operating systems.

Example
For an exampla of how to use this routine, see the entry for open.

See Alsp
STDIO, UNIX routines

Diggnostics 5 -
If the call is successful, creat returns a file descriptor. It returns -1 if it could

not create the file, tvpically because of insufficient system resources, 0r nonex-
istent path.

crtsl.o—C runtime startup
C runtime startup

crtsl,o is the runtime startup routine for C programs compiled into TOS objact
format.

crisll provides an efficient, portable environment for C programs. When used
with the micro-shell msh, it can provide arbitrarily long argument lists, easily
configured environmental parameters, and redirection of up to six input/output
channels.

Mark Williams C 139

crisd.o-crisg.o

The runtime startup module, ertsl.o0, 5 the first code executed when your
program is run. As its first action, it parses the environment string list passed
by TOS into a vecmr of string polnters. This vector is saved in the the variahle
external char "“enviran, for the use of the library routing getenv(), and passed
as the parameter char envp[l for the information of the function main(),

If the environment vector containg g parameter named ARGV, then the run
time start-up assumes that the program was exscuted by msh (or by some other
program that agrees that programs should have arguments), and that the
remainder of the environment vector is an argument vector that should be
passed as the parameter char *argy[] to the function main(},

If the parameter ARGY has a value, such as ARGV=CCAP??, then the value
should consist of characters from the set [CAPF?]. The characters describe the
origin of the system file handles as Console, Auxiliary port, Printer port, File,
or unknown. The runtime sf:artup stores the value of ARGV, if it exists, into
the external variable char * iovector for the use of the routines that Emulale'
the functions of the COHERENT operating system,

If no ARGV parameter is found in the environment, then the run time start-up:
program assumes that the program was executed by a simple GEMDOS Pexec(),
The buffer emdtail 1s parsed to form the argument vector for maian(). ARG V[0]
iz supplied by the external variable char _emdname[], which should be supplied
by your program, or it will be set to ? by the library. The value of the variable

_iovector will be set to the default CCAP?2?72727227227290272022927;,

See Also
argy, runtime startup, system

crisd.o—C runtime startup

 runtime startup, GEM environment

crisd.o 15 the runtime startup routine for C programs that designed to be used as
a GEM desktop accessory.

crisd.o can be invoked on the ce command line in one of two ways. First, the
~-VGEMACC option will include it, well as the libraries libaes.a and libvdi.a.
Second, crisd.o can be used independently of the Iibraries by using the name
option Nrertsd.o.

See Also
argy, cc, crisl.o, crisg.o, runtime startup

crisg.0—C runtime startup

140

C runtime startup, GEM environment

Mark Williams C

Lexicon eshcony

crisg.o is the runtime startup routine for C programs that use the GEM VI
and AES routines.

erisg.o is a simple but fast runtime startup routine. MNote the following dif-
ferences from the default runtime startup crisf.o:

1. ARGY, ARGC, and ENVP are all set to zero,

2 getenv is not enabled; this means programs that use crtsg.o will cannot
read environmental parameters.

3. stderr will send error messages to the auxiliary port rather than to the
console.

crisg.o can be invoked on the ec command line in one of two ways. First, the
-YVGEM option will include it, well as the libraries libaes.a and libvdi.a. Second,
crisg.o can be uwsed independently of the libraries by using the name option
Mrerisg.o.

See Also
argy, cc, cris.o, ertsd.o, runtime startup

csheonv—Command
Eun a Mark Williams C program under the Beckemeyer C shell
csheony filename [argument .|

csheonv allows users of the Beckemeyer C shell to ¢all the Mark Williams com-
piler and utilities, and programs that are compiled with Mark Williams C.

The user must compile the source file cshtomwe.c into one of two executable
forms, depending on the version of the C shell being used. Users with environ-
mental C shalls {i.e.. those in which the setenv command exists) should use the
default version by compiling

ot -6 csheony cshtomWe.c

In this version, the environment 15 reparsed from scratch because the Mark
Williams run-time start-up truncates the environmental parameter st when it
finds a statement of the form ARGV=, This environment is then loaded into
argv[]. and the number of arguments is loaded into arge. WNext, the 1/0 vectors
are set to the ¢orresponding input, output, and error files and, finally, esheony
calls for the execution of the specified Mark Williams C program.

Users with pre-environmental C shells (i.e,, those in which the seteny command
does not exist) must edit the source file cshtomwe.c to set the default environ-
mental variables to values that match the ones on their system. In particular,
the user must alter the environmental strings of the following block ‘of code in
cshtomwe.c:

Mark Williams C 141

ctime

ctime—Time function {libc.a/ctime)

142

char *defervi]l = {
UEATH=.bin, a:%\\bin, bbin®,
"EUFF=, .pro,.tos, .. ttpt,
NTHRD IR=a:\\Tmp",
HINCDIR=a:\hinclude®,
HLiBRATH=ELib, BosLibY,
0

b+

MWote that double backslashes are necessary to prevent the C compiler from in-
terpreting the backslash as a C escape character.

When these changes are made, compile the source code under the microsheil_
msh with the following command line:

ct DOLDCSHELL -a csheony cshtoime. s

Tn this version, the environmental pointer points to the user-defined environ-
ment defen+[], the 1/O vectors are set to the corresponding input, output, ang
error file handles, and csheony calls for the execution of the specified Mark
Williams program. |

Caveats
Wote that the following restrictions are placed on programs run under csheony:

1. You must give a complete file name for the program you wish to run.

2. You must set the environment strings that Mark Williams C requires to
run properly, ie., INCDIR, LIBPATH, PATH, SUFF, and TMPDIR.

3. The environments must be 1n Mark Williams C format, with the exception
of PATH, which can use the C shell's list separator.

4. If wou redirect stdin to a file or a pipe, the program vou call will not find
EQF on stdin.

5. If vou redirect stdout into a file, all material written to stderr will end up
there as well.

Fee Alser
argy, commands

Convert system time to an ASCII string
char *ctime(timep) time t *timep;

ctime converts the system’s internal time to 2 form that can be read by humans.
It takes a pointer to the internal time type time t, as defined in the header file
time.h, and returns a fixed-length string in the form:

Thi Har 14 11:12:14 198740

Mark Williams C

Lexicon ctype

MNote that time t is defined as being equivalent to a long, Mark Williams C
defines the internal system time as being equivalent to the number of seconds
that have passed since January |, 1970 Q0h00mO0s GMT.

ctime is implemented as a call to localtime followed by a call to asctime.

Example
For an example of this function, see the entry for asctime.

See Also
tiome

Notes
ctime returns a pointer to a statically allocated data area that is overwritten by
successive calls,

ctype—Overview

The ciype macros and functions test a character’s rype, and can transform some
types of characters intg other types. They are;

isalnum test if @ number

isalpha test if alphabetic

lsascii test if ASCII

iscntrl test if a control character
isdigit test if a numeric digit
islower test if lower case

Isprint test if printable

ispunct test if punctuation mark
isspace test if a tab, space, or return
isupper test if upper case

toascii change to ASCII character
tolower change to lower case
_tolower change to lower case
toupper change to upper case
__toupper change to upper case

These are defined in the header file ctype.h, and each is deseribad further in its
own Lexicon entry.

Example

The following example demonstrates the macros isalnum, isalpha, isascii,
iscntrl, isdigit, islower, isprint, ispunct, isspace, and toupper. It changes a text
file to all upper-case characters, and prints some information about the tvpe of
characters it contains.

Mark Williams C 143

ctype.h

#include <ctype.h>
#irclude <stdio.h>
mainl}
FILE *fp;
int fileneme[201;
int ¢h;
int alnum = 0;
int aipha = 0;
int control = 0;
int printable = 0;
int punctustion = 0;:
int space = Q;

printf("Enter name of text file to examine; ")

gets{filenamel;

if ({fp = fopeni{filename,"r"}) I= KULLY {

while {{ch = fgetc(fp}) = EOF)} {
if{igascii(ch)) {

ff{isalnum{ch)) alnum+;
if(isalphafch)) alpha++;
iftisentrlich)} control+s;
iftisprint{ch)} printabless;
Pflispunctich)) punctuations+;
iflisspace{ch)) space++;
putchartislawer{ch) 7 toupper(ch) : chi;

} else {
printf{"%s iz not ASCII.\n", filename);
exit{1}:

¥

b

printf("%s has the follewing:\n", filename);
printfiHid alpharumeric characters\n®, almum);
printf(“%d alphabetic characters\n®, alpha);
printf("%d control charactersin®, control);

printf({"¥d printable characters\n", printable);
printf{"%d punctuation marks\n", punctuation};
printf{"%d white space characters\n", space};
exit(d);)
} else printf(“Cannct open *Ha'.\n®, filenama};
¥

See Alsa
ctype.h, Lexicon

ctype.h—Header [ile
Header file for data tests
#include <ctype.h>

144 Mark Williams C

Lexicon cursconf-Cursconf

ctype.h is a header file that holds the texts of the macros described in the gver-
vigw entry cltype.

See Also
ctype, header file

cursconf—Command
Set the cursor’s configuration
cursconf rask [rate]

cursconf i5 2 command that uses the xbios function Cursconf to alter the cur-
sor's configuration. Tt can take one or two arguments. fask indicates what to
do, as follows:

hide the cursor

show the cursor

set the cursor to blink

set the cursor not to blink
set the cursor to blink at rate
return the current blink rate

LF I L =

If task is set to 4, then you should give cursconf the argument rate, which sets
the rate at which the cursor blinks. rafe should be set to proportions of the
normal rate parameter, which is one half of the normal cycle time (60 Hz for
the color mmonitor, 70 Hz for the monochrome monitor, and 50 Hz for
monitors set in PAL mode). For example, setting rare to 35 will cause the cur-
sor 1o blink twice a second on a monochrome monitor.

See Also
commands, TOS

Cursconf—xbios function 21 {osbind.h)
Get or set the cursor’s configuration
#include <osbind.h>
i #include <xblos.h>
int Cursconf(function, rate) lnt function, raie;

Cursconf gets or sets the cursor's configuration. function is an integer that tells
TOS to do one of the following;

Mark Williams C 145

Cursconf

146

] Hide the cursor

1 Show the cursor

2 Set the cutsor to blink

3 Set the cursor not to blink

4 Set the cursor to blink at rate
5 Return the current blink rate

rate, as noted above, sets the rate at which the cursor blinks. Tt is used to s '5
the rate only if func:mn is set to 4; otherwise it is Ignorad rate should be set to
proportions of the normal rate parameter, which is one-half the normal cygl
time (60 Hz for the color monitor, 70 Hz for the monochrome monitor, and 50
Hz for monitors set in PAL mode). For example, setting rate to 35 will canse.
the cursor to Blink twice & second on a2 monochrome monitor.

Mote that Cursconf returns the current cursor blink rate when function 13 set '=
5; otherwise, it returns a meaninglass value,

Example
This example creates a utility for the micro-shell msh that can turn off or tum.
on the cursor’s blink mode, Because this example uses argv, do nor compile it
with the -YGEM option. For an example of using Cursconf in a GEM
program, see the entry for \auto.

#include <osbind.h>
#define JUNK 50 /* Place-holding value that has no meaning */

main(arge, argy)
int argc;
char *argvil;
i
if {farge-1y.== 03 (
Cursconf{3, JUNK):

exit{0);
b
else if {({argc-1) == 1) &% (stremplargv(ll, “blink") == 03) {
Curaconf{2, JUNK};
exit{0y:
¥
elae [
printf(YUsage: cursor [blink]yn®);
exit{1);
¥
¥
See Also

screen control, TOS, xbios

Mark Williams C

daemon-data types

daemon— Definition

A daemon, in the context of C programming, is a process that is designed to
perform a particular task or control a particular device without requiring the
intervention of a human operator. Under the COHERENT system, for ex-
ample, the line printer is controlled by the ling printer daemon Ipd. The daemon
periodically checks when a file has been queued for printing; when it detects
gne, it starts up the printer and passes the file to it without needing human in-
tervention,

See Also
process

data formats—Definition
Mark Williams Company has written C compilers for a number of different
computers; these computers have different architectures and define data for-
mats in different ways, Mote that these formats may not be compatible with
eode produced by other processors or other C compilers.

The following table gives the sizes, in chars, of the data types as they are
defined by various microprocessors.

B086 S084
Tyvpe SMALL LARGE Z8001 Z8002 68000 PDP1]1 FAY
char 1 1 1 | 1 1 |
double 8 g B 8 b 8 8
float 4 4 4 4 4 4 4
int 2 2 2 2 2 2 4
long 4 4 4 4 4 4 4
pointer P 4 4 2 4 7 4
short 2 2 2 2 2 2 2

Mark Williams C places some alignment restrictions on data. Byte ordering is
set by the microprocessor; see byte ordering for maore information.

Fee Also

byte ordering, C language, data tvpes, declarations, double, float, memory
allocation

data types—Definition
The following describes the data types recognized by Mark Williams C. The
left-hand column below gives compound tyvpe specifiers mentioned in The ©
Programming Language; the right-hand column gives additional specifiers
recognized by Mark Williams C,

Mark Williams C 147

date-davspermonth

short int unsigned short int
long int unsigned short
unsigned int unsigned long int
long float unsigned long

unsigned char

The first pair of additional unsigned terms have the same meaning, as do
second pair. The type unsigned char is an addition to the language. If used
arithmetic expressions, it is automatically cast to unsigned int,

See Also |

C language, char, data formats, double, float, int, long, pointer, short, un-
signed

date—Command
Print/set the date and time
date [-i] [[yvpmmddlrRmm].55]]

date prints the time of day and the current date, including the time zone. If
argument is given, the system’s current time and date is changed, as follows:

3y year (00-99)
mm month {01-12)
dd day (01-31)

hh hour (00-23)
rmim minute (00-59)
55 seconds (00-39)

For example, typing
date BA0512141233

sets the date to May 12, 1988, and the time 1o 2:12:33 P.M. Note that at least th
and mm must be specified—the rest are optional. The command

date -
displays the current date and time in the form acceptable to date as input.

The library time conversion routines used by date look for the envirunm{:_g:@_
variable TIMEZONE, which specifies local time zone and daylight saving T.Iil‘.lg
information in the format described in ctime.

See Also
commands, ctime, msh, time, TIMEZONE

.
148 Mark Williams C

davspermonth—Time function (libc.a/davspermonth)
Return number of days in a given month
#include <time.h>
int dayspermonth(month, year) int month, pear;

dayspermonth returns the number of days in a given month of a given vear
A.D. monath is the number of the month in question, from cone to 12, yvear is
the vear A.D. in which month appears, Note that there is no vear 0.

See A4lso
isleapyear, time, time.h

db—Command
Assembler-level symbolic debugger
db [-Tkor] [mapfilel |datafile]

db is an assembler-level debugger. Tt allows vou to run object files and execur-
able programs under trace control, run programs with embedded breakpoints,
and dump and patch files in a variety of forms.

What ix db?

db is a symbolic debugger, which means that it works with the symbal tables
that the compiler builds into the object files it generates. For that reason, it
will not work with programs that have had their syvmbal tables stripped out.
Likewise, because db is designed to work on the level of assembly language, the
user needs a working knowledge of 68000 assembly language and microproces-
sor architecture.

frvoking dhb

To invoke db, type its name, plus the options vou want (if any) and the name of
the files with which you will be working. mapfile is an ohject file that supplies
a symbal table. datafile is the executable program to be debugged. If possible,
db accesses darafile with write permission.

The following options to the db command specify the format of program:
-f Map progrant as a straight array of bytes.

-k The kernel option, This allows a user to debug all of the Atari §T's
memory, The default spmbolfile in ossym defines the documesntad
locations in low memory. The symbolfile is used to provide symbolically
interpreted output. All of the ST's memory, from address 0 in RAM to
the end of the ROM, is available for displav or patching. Note that this
option allows the user to perform a post-mortem on programs that crash;
use the command :r to display the registers and the command :f to display
the fault identifier in the process dump area. These commands are
described in detail below.

Mark Williams C 149

dh

Lexicon

-0

=

program is an object file. If mapfile is given, it is another object file that
provides the symbol table,

Read file only, even though you can write into it. This is used to givea
file additional protection.

Commands and addresses

db executes commands that vou give it from the standard input. A command
usually consists of an address, which tells db where in the program to execute
the command: and then the command name and its options, if any,

An address is represented by an expression, which can be built out of one or
more of the following elements:

*

The *.', which represents the current address. When an address is enterad,
the current address is set to that location. The current address can be ad-
vanced by typing <RETURN>.

The name of a register. db recognizes the register names d0 through d7,
a0 through a7, pe. and sp. Typing the name of a register displays its con-
tents,

The names of global symbaols and symbolic addresses can be uszed in place
of the addresses where they occur. This is useful when setting a break-
point at the beginning of a subroutine.

An integer constant, which can be used in the same manner as a global
symbol, The default is decimal; a leading 0 indicates octal and Ox in-
dicates hexadecimal.

The following binary operators can be used:

+ addition

- subtraction

) multiplication

J integer division

All arithmetic is done in longs.
The following unary operators can be used:

- complementation
- negaticn
. indirection

All operators are supported with their normal level of precedence,
Parentheses ()" can be used for binding,

Display commands

The following commands merely display information about program. The sym-
bol b represents the address, which defaults to the current display address if
omitted, cownt defaults to one.

Mark Williams C

Eexicon db

address| count J?{ format]
Display the jformai count times, starting at address. The formar string
consisis of one or more of the following characters:

2 reset display address o °.°

+ increment display address

- decrement display address

b byte

c char; control and non-chars escaped
C like ‘¢’ except 0" not displaved

d decimal

f float

F double

i machine instruction, disassembled

1 long

n output *h\n'

o octal

] symbolic address

5 string terminated by *\0°, with escapes
s string terminated by *.{°, no escapes
u unsigned

W word

x hexadecimal

¥ time

The format characters d, o, u, and x, which specily 2 numeric base, can be
followed by b, 1, or w, which specify a datum size, to describe a single datum
for display, A format item mav also be preceded by a count that specifies how
many times the item iz to be applied. Note that formar defaults to the
previously set format for the segment (initiglly i for instructions). Except
where otherwise noted, db increments the display address by the size of the
datum displaved after each format item.

Execution comnmands

In the following commands, address defaults to the address where execution
stopped, unless otherwise specified; count and expr default to 1. eomrands 18
an arbitrary string of db commands, terminated by 4 newline, A newline may
be included by preceding it with a backslash *\",

faddressj=
Print addresy in current display base. address defaults to ', The com-
mand = assigns values to locations in the traced process. The size of the
assigned value is determined from the last display format used. You can
and set display the registers of the traced process, just like any other ad-
dress in the traced process. Thus,

a7l
gl=0

Mark Williams C 151

db

displays the value of register d0 as 2 long, and then sets (long) d0 to zerg
To display the character in the low byte of d0, use:

di+37e
To set the low byte of d0 1o ASCIT <esc>, use
d0+3=033

[address| count] J=value| value| value]...]
Patch the contents starting at gaddress to the given valie, address defau
to ', Up to ten values can be listed. i

? Print verbose version of last error message.
faddress] a
Print address symbolically. address defaults to '),

[address ibf commands | |
Set breakpoint at address; save commands to be executed when break-
point i3 encountered. commands defaulis to 2a'\nl+. 2i\nix,

hr [commands |
Set breakpoint at return from current routine. The defaults are the sas
as for :b, above,

[address | e
Continue execution from address.

faddress [:dir|is]
Delete breakpoint at address. If optional v or s is specified, delete retu
or single-step breakpoint, address defaults 1o *)

[address el commandline] _
Begin traced execution of the object file at address (default, entry point)
The commandline is parsed and passed to the traced process. argy[0] mu t
be tvped directly after ze if supplied. For example, :e3 foo bar baz
argv[0] to 3, argv[l] to foo, argvi2] to bar, and arg[3] to baz. Quotan
marks, apostrophes, and redirection are parsed as by msh, but specil
characters *7¥[| and shell puncruation *{}{}};" are not,

& Print type of Fault which stopped the traced process.

Jexpr B[filename]
The log option. If expr is non-zero, open filename as a log file; if zxpr 15
zero, close the currently open log file. db echoes all its responses into the
apen log file.

[fexprf o .
Set default numeric display base to expr: B, 10, and 16 indicate, respec=
tively, octal, decimal, and hexadecimal,

Lexicot db

p Display breakpoints.

{expr] g
1f expr is nonzers, quit the current level of command input (see :x). xpr
defaults to 1. End of file is equivalent to :q.

i Display registers.

Faddress] fcount lislelf commands |
Single-step execution starting at address, for cownt steps, executing com-
mands at each step. commands defauls to 2.

After a single-step command, <RETURN> iz equivalent to ., 1:sfe]. If the
optional ¢ is present, db terns of f single-stepping at & subroutine call and
turns it back on upon return.

fdepth] :t
Frint a call traceback to depth levels. IT depeh is O (default), unwind the
whole stack.

fexprlx)
If expr is nonzero, read and execute commands from the standard input
up to end of file or :q. expr defaults to 1.

Example af the commands

The following example shows how each db command can be used to examing an
sxecutable file. It uses the following C program, called count.e, which counts
the number of ASCII characters in a file:

#include <ctype.h>
#include <stdio.h>

main{arge, arav)
int argc:
char *argv(l;
L
FILE-*fp;
int result, ch;

if ({(fp = fopeniargw1], "r"}) I= HULL) {
while {{ch = fgetc{fp)d '= EOF) {
if{isascii{chl) result++;
elge fatel{argv[i], "Not ASCIIM});

3

printf("%s: %d characters\n", argv[1], resultl;
3
else fatal{argvi1l, "Cannot open');

Mark Williams C 153

dh

134

fatal{filenams, message)d
char *filename, *message;
€
printf("#s: ¥s\n", filename, message);

¥

For purposes of this example, count.prg will be used to count the characters in a
text file called tester. Its contents are as follows;

Sennet 30

When to the zeszions of sweet silent thought

I summen up remembrance of things past,

I zigh the lack of many a thing I scught,

And with the old woes new wail my dear time's waste:
Then can [drown an eye, urused to flew,

For precious friemds hid in death's dateless night,
And weep afresh love's long since canceled woe,
And moan the expense of many a wanished sight:
Then can [grieve at grievances foregone,

And heavily from woe to wos tell o'er

The sad zccount of fore-bemoaned moarn,

Which ! new pay as if not paid before.

But if the while 1 think on thee, dear friend,

ALl losses are restored, and sSorrows end.

To begin, compile ecount.c by typing the following command;
ce -V count.c

When the program has been compited, invoke db with the following command: '
db count.prg

Addressing commandy
As noted above, db offers several different ways o sel the address, or the posi=
tion within the program that you are examining. One way is by entering a vari=
able name. Type printf, db replies;

printf_ Link as, 0x0

Another way to set the address is by entering an absolute address. Type Dﬁﬂ{L
db replies: i

main +0x70 jsr printf_ .l

The symbol " (dot) echoes the current address. Type a dot; db will raply:
matn_+(x70 isr priritf_.1L

which iz, as expected, identical to the previous reply.

The equal sign =" displays the absolute address of any variable that preccdé_i'ji:
To see how this works, type printf=. db replies:

Mark Williams

Dx1C&

which is the address of printf,

Instructions can be shown, beginning at a named address. The formar must be
introduoced with a question mark *?'. For example, .,% shows the current ling in
the instruction space, as indicated by the format string 7?1, When this com-
mand 15 typed, db raplies:

main +0x7 jsr printf .1

Now, show the next five instructions from the current point by typing .,571. db
raplias:

main_ + 07l jsr printf_.l
main_ +0x76 lea.l DxAlaT), a7
main_+0xTA bra main_+Qxee
main +0x7C maove . | BO0w24FR, -(al)
main_+0x82 movea.l OxAfadd, al

Onee a format is set, it remains the default untl the format is reset with
another format string. For example, the command printf,20 prints 20 instruc-
tions, beginning with printf; the format ?I temains in effect. Type this com-
mand. db replies:

printf_ Link a&, $0x0
printf_+0xé pes. | OxB{ab)
printf_+0x3 meove, | % stdout_, -(af)
printf +0xE jsr sprintf_+0x3C. 1
printf_+0xis addd. W $0x8, a¥
printf_+0xi6 unlk ab

printf +0xig rts

fprintf_ Link at, $0x0
fprintf_+0x4 pea.l OxCiab)
fprint?_+0xB8 move. L OxB{akh), -(av}
fprintf_+0xC Isr sprimtf_+0x3C, |
fprintf «0x12 addg.w $0x8, af
fprintf_+0x14 unik ab

fprintf +0xi6 ris

sprintf_ Link ab, $0xFFES
sprintf +0x4 pea. L OXFFE&Cas)

sprimtf_+0x8 Mmeve W £0x8000, -{aT)
sprintf_+0ul mowie, L OxBLat), -(al)
sprintf_«0x10 isr _stropen_.L
sprintf «0x16 lea.l OxALafy, av

Typing ,20 prints the next 20 instructions, beginning from where the previous
command left off. When you type this, db replies:

Mark Williams C 155

dly

156

sprintf_+0x1A pea.l OxCiad)
sprintf +0x1E pea.l JxFFE&Lad)
sprintf_+0x22 jsr sprintf_+0x3C. |
sprintf +0xZ8 addg.w 20x8, a’l
sprintf_+0x2n pea.l DxFFE&(ab}
sprintf_+0x2E clr.W ~{ar)
sprintf_+030 jsr fpute .1
sprintf_+0x36 addg.w £0x45, &7
‘sprintf _+0x33 unlk L
sprintf_«0x38 rts
sprintf +0x3C Llink ah, F0xFF94

sprintf_+0x40 movem.l dffasd/ad, (a7}
sprintf +0x44 move.l 0xC{ab), OXFFFCLab)
gsprintf_=0x4f movea.l OxFFFC{a&d, al
sprintf +0x4E8 move.l (ald), do
sprintf_#0x50 movea.l o, aé
sprintf_+0x52 eddq,l $0x4, OxFFFC{BS)
sprintf_+0x56 move.b {aby+, di
sprintf_+0x58 ext.w di

sprintf +0x5A move.w dg, dr

Finally, the command :a displays an address symbolically. The default is the
current address. Type this command; db replies:

sprintf_+0x54

which is the same address as that of the last instruction in the previous example;
in other words, the address advanced as the command was processed.

To reset and display the address at the point where the instruction fatal is, type
fatal:a. db replies:

fatal _

Execurion commands

db allows vou to execute portions of your program; this is done by setfing
Bregkpoints, or points where execution stops. Breakpoints are set with the com-
mand :b. Set breakpoints at main, printf, and fatal as follows:

main:o
printf:b
Tatsl o

The command :p digplavs the current breakpoints:

DOGOO110 {mair_) i+.7iknix\n
Goon0ics (printf) i=.7i\mixin
00000TAS {fatal) i+.7ivnaxhn

MNow, begin execution with the command :e. Az noted above, ie can take ar-
guments: the arguments correspond to the elements in the array argy; in this ex-
ample, use the following command to pass as an argument the name of the text
file tester, whose text is given above:

Mark Williams C

Lexicon dhb

i tester
db repligs;
matn_ Link 86, SOxXFFFE

The program has executed up to the first breakpoint, set on main, The com-
mand m:t performs a call traceback on the stack to r levels; the default is zero,
which means to unwind the whole stack. Type:

Tt
db replies;

Ox035E10 main (0x0002, Ox0003, Ox581A, 0x0005, Ox35F6)

Mote that the address of main has changed because the program is now loaded
into memory.

The commangd :c continues execution of the program to the next breakpoint.
When yvou tyvpe it, db will reply;

primtf_ Link ab, £0z0
Perform another stack traceback by typing :t. db replies:

0x0350F6 printf_(0x0003, O0x32CB, OxO0003, OxZD&1, OxD272)
Ox035E10 main (Dx0002, 0x0003, 0x561A, 0x0003, OxS55F6)

Type :c to continue execution to the next breakpoint. db replies:

tester: &26 characters
Child process terminated (0}

The first line shows the output of of the program; in this case, a message that
the file tester has 626 characters. The message about the child process indicates
that the program has finished execution and exited; the number in parentheses
is the value that exit returned to the calling program (in this case, db).

Mow, type :p to print a list of the breakpoints. db makes no reply because no
breakpoints remain set; all have been erased as the program executed.

Finally, quit the debugsing session by typing :q.

Example of debugging
This example shows how to use db to track down a simple bug. Tt uses the
following program, called bug.e:

#include <stdio by

maing}
putput CHULL, stdout); /* send number to stdout */
¥

Mark Williams C 157

Lexicon

158

cutput{number, fo)
int number;
FILE *fp;
i
fprintfifp, "The number s %d.\n", number);
¥

This program passes a number to the routine output, which writes it into the
named file or device, The program illustrates a comman error in O program-
ming.

To begin, compile bug.c by using the following command;
cc -V bug.o

YWou should see no error messages during compilation. When compilation i
finished, try running the program. Instead of writing its message on the stan—
dard output device, the program should generate a bus error (as indicated bg

the appearance of two “bombs™ on the screen), 1

Now, invoke db with the following command:
db bug.prg

Cine way to approach this problem 15 to set a breakpoint on main and step-
through the program, The following sefs the breakpoint;

mainzh

The :e commands performs traced execution at the program'’s entry point
When vou tvpe e, db replies as follows:

main Link as, $0x0

The :5 commands performs single-step execution. The following commands
follows the program through [ive steps:

5:s
dh replies as follows:

mair_+0xd e, | % stdout , -(af)
main +ixh clral -{af)

main_+0xC jsr output .1

output Link s, H0x0

output +0xk TOVE . W OxB{ab), -{a7)
The command :f allows you to perform a stack traceback, db replies as follows:

Dx0343F6 output +0x4(0x0000, 0x0000, 0x0003, Dx3ALE)
Dx034406 main_+0x12(0x0001, 0x0003, 0x3C14, Ox0003, 0x3aF0)

The number in parentheses indicate what is being passed on the stack to the
routine. Each four-digit number represents a machine word (two bytes). The
first line indicates the source of the trouble: the routine output is being pas

Lexicon Dcreate

four words, when it is defined as receiving three: an int and a pointer, The
problem, of course, is that main passed output two pointers, NULL and stdout:
on the 68000, unlike on some other processors, NULL and zero are s 1denti-
cal. (For more information on this topic, see the Lexicon entries for pointer,
MNULL, and data formats.)

Another, simpler approach to this problem iz to enter db and then immediately
seta breakp_r}int with :b, perform a traced execution with te followed by a stack
traceback with the ;t command, db replies as follows:

OxD3435C fputc +0x32(0x0054 , 0x0000, Ox00033

Dx034304 sprintf_+0x74¢0<0000, 0x0003, 0x0003, 0xé3F0)
0x034384 fprintf_+0x12¢0<0000, 0x0003, 0x0003, Ox3AsA, 0x0000)
Dx0343F6 output_+0x18(0x0000, 0xD000, OxDO03, Ox3ACE}
Dx034406 main_+0x12(0x0001, Ox0003, Ox3C14, 0x0003, 0x3BFO)

Again, the display shows how output was passed an improper argument, which
made it pass an improper argument to fprintf.

See Also
commands, od

Dereate—gemdos function 57 (osbind.h)

Create a directory
#lneclude <osbind.he>
long Dereate{ path) char *path;

Dereate creates a directory; it returns zero if the directory was created success-
fully, one if it was not. path points to the subdirectory’s path name, which
should be a NUL-terminated string. Dereate returns a negative value when an
BITOT QCCUTS.

Example
The following example uses Dereate to create a directory,

#include <osbind. h=>
extern int errno;

main{arge, argv) int arge; cher **argv;
int status;

if (arge < 2) {
Cootws({"Usage: Doreate pathnamehrin®);
Ptermi1);

Mark Williams C 159

Ddelete Lexicon

if ({status = Dcreatedargv(113) != 0)
arrne = -status;
perror(Micreate failured);
Prerm{1y;

3

Coconws{"Directory Y};

Coonws{argvy [1]};

Coomes(" created.\ryat);

Prarmiil;

b

See Also
gemdos, TOS

Ddelete—gemdos function 53 (oshind.h)
Delete a directory
#include <oshind.h=>
long Ddelete parh) char ®"path;

Ddelete deletes a directory; it returns zero if the deletion was successful, non-
zero if the deletion failed. path points to the subdirectory’s path name, whv;h 1
must be a NUL-terminatad string, i

Example
The following example deletes a directory
Finclude <stdic.h>

#include =osbind.h>
#define EACCESS (-34) J* Access violation errar code L7

extern int errng;

mein(arge, argvd int arge; char **argv; {
int status:

if targe < 2) £
Ceonws("Usage: Ddelete pathname\ryn');
Prerm{i};

160 Mark Williams €

Lexicon declarations

if {(status = Ddeletelaravill)) 1= 0} £
if (status == EACCESS) {
fprintf(stderr, "\nOirectory %s contains files\n",
arg¥[11};
T oelse {
errno = -5tatus;
perror("idelete failurem);
3
Eterm{1);
¥
printf{"Directory %s deleted.\n", arav(il};
Pterml{};
¥

See Also
gemdos, TOS

declarations—Overview]]
Mark Williams C recognizes the following as legal declarations for data types:

char

double

enum

flaat

int

long

long float

long int

short

short int

struct

union

unsigned char
unsigned int
unsigned long
unsigned long int
unsigned short
unsigned short int
yoid

The following pairs of terms are synonymous; the more commonly used term 1%
given on the right;

long float double

long int long

shortint short
unsigned long int unsigned long
unsigned short int unsigned short

Mark Williams C 161

#deline-desk accessory Lexicon

#define—Definition

desk accessory—Definition

62

See Also
C language, data formats, data types, Lexicon

#define tells the C preprocessor cpp to defing a variable as a manifest constant..
For example, the instruction

#define HAXARGS ¥
tells epp to replace every instance of the string MAXARGS with the numeral 9

throughout the program. (Mote that numerals are manifest constants by defini-
tion.)

#define instructions are very useful becavse their judicious use allows a
programmer to write code that more easily understood, maintained, and en-
hanced. With them, a programmer can modify a major parameter throuzhout
his program just by changing asingle line of code. Theyv also allow a program-
mer to wse a variable name that suggests the function of the parameter it
represents; for example, the name MAXARGS within g program obviously
refers to the maximum number of arguments, whereas the numeral 9 could
refer to nearly anything.

See Also
cpp, manifest constant

A desk accessory iz a program that is loaded by TOS into the GEM desktq}l
when it 1§ booted. The desktop gives each accessory its own icon, keeps it resi-
dent in memory, and gives you direct access to it. When vou build a menu, the
routing menu bar will automatically include the name of the accessory whcn ith
builds the list displayved under the desk entry.

To compile a desk accessory with Mark Williams C, use the option
-VGEMACC. This will automatically link in the special run-time start-up
routine crisd.o, and otherwise perform all that is needed 1o create a desk acces=
sory, Mot that all desk acceéssories must have the suffix .ace. Therefore, 100
compile the program foo.c into a desk accessary, use the following form of ﬂ'ﬂ?-‘-')
cc command;

& ~¥GEMACC -0 foo.ace foo.c

To install a desk accessory, move the compiled program into your system's roof
directory. If you Have a hard disk, it should be in directory e:\; otherwise.
should be in the root directory of the disk with which you boot TOS, Do #
place it into the directory “auto; this will cause all manner of unpleasant thmg?
to happen, The program will be loaded into the desktop automatically whel
you reboot your system.

Mark Williams €

Lexicon desk accessory

Because of their specialized nature, desk accessories restrict the number and
variety of programming tools you can use with them, Note the following:

* Do not use any stdio routines

* Do not use the malloc routines found in libe.a
x Do not use exit, Pterm, Pterm0, or Ptermres

|

Do not return from main

Also, vou should keep the following in mind as vou write your accessory:

. If you use rsc_load, remember to use rse_unload before you give up
control, if possible,

* Do not use evat_timer calls: use evnt_multi instead.

Example

The following example is the digital clock desk accessory. It is a public demain
program written by Jan Gray in 1986, Tt displays a digital clock on the GEM
SCreemn.

#irclude <gemdefs h>
#include <cshind.h>

/* Macros to extract times from TOS time format =/
fidefine MINS(TY {{t »>> 5) & Ox3f)

#define HRS(LY (t > 113

#define DIGIT(d) {(d) + *O")

/* Some manifest constants */

#definpe HO_WINDOW -1 S no window opened */

#defina NO_POSITION -1 /* window has no position yet */
#define TEMPLATE "hhimm AW"

#define TEMP_LEW 8

* A window descriptor, used in this example */
typedef struct window {

int id; /= GEM window 1D from wind create{} */
int x; f* ¥ arigin on the screen for the window */
frt v f* Y origin on the screen for the windoW */
int W f* width of the window */
int h; /* height of the window */

T Window;

.Irt
* Maip program: Initislize the desk sccessory and call the
* routine that maintains the clock.
7
maing) {
iRt mepuln; f* whare this is on the desk memu */
extern int gl_apid; /% The applicetion [D for this DA */

Mark Williams C 163

desk accessory L

appl_init();
merulD = menu register{gl_apid, " Digital Clock");
/* Register as a desk accessory */
events(menulbl; J* call event loop routine =7
J* Mever returns| */
3

/* Loop processing events; Wake up every 30 seconds te update time. */

events{menull}
int menuil; J* Where this accesgory is in the desk me
‘ i
Wirdow wind; 7% Place to keep track of the windew */ |
int event; #* Which event from ewnt_multi */ |
int msgbuf[8]; /* Meszage buffer ®/
int ret; J* Dummy return buffer */ |
/% initialize the clock window, which doesn't exist yet. %/ [
wind.id = NO_WINDOW; /* Mo window yet */
wind.x = HO_POSITION; /= Mo position for mon-existent window %/
for ;2 € £* Until reboot *f
event = evnt multi(HU_MESAG | MU_TIMER,/* Wait for sither */
o, 0,0, /* B message or a */f
0, 0, 0,0, 0, /* timer event ¥/
0, 0,0, 0,0,
megbuf, 30000, O, J* 30 seconds Y/

&ret, &ret, &ret, &ret, Eret, &ret);

/* Event has been received, now what is it? =/
if (event & MU MESAG) switch (msgbuf[01) {
case AC_OPEN: |
if (megbufl4] == menull}) |
if (wind.id == HO_WINDOW)
oper i ndow(&xind}; |
else
wind_set{wind.id, WF_TOP, 0, O, 0, 0);
break;

case AC CLOSE: {

if (megbuf[3] == menull) i
wind.id = NO_WIMDOM:

break: |

case WM CLOSED:
if (megbuf (31 == wind.id)
closelindow! Bwind);
break;

164 Mark Williams €

Lexicom desk accessory

case WM MOVED: |
wind_set{wind.id, WF_CURRXYWE, K msgbuf[4], msgbuf[S], |.
megbuf (6], magbut (71); |

wind.x = magbuf[4]; wind.y = megbuf[5]: |,!
wind.w = msgbuf (81; wird.h = megbuf[71; |

break; |

case WM NEWTOR: |
case WM_TOPPED: [l
if {msgbuf (3] == wind.id}

wind setiwind.id, WF_TOP, O, G, O, Q);
break: |
¥
if (event & MU _TIMER && wind.id != NO_WINDOW) '
update{Ewind): !
¥
¥
llr*
¥ Update the title on the clock wirdow to reflect current GEMDOS
* time. |
b I
updatel{wp) |
Window *wp; /* The clock window descriptor */ .‘
£
static char time(] = TEMPLATE; J* Time string buffer */
unsigned t = Tgettime(); /* the current DOS time */ ‘
unsigned hrs = HRS{t); J® extract hours %/ |
unsigned hrgl12 = thra ¥ 12 == 01 712 = hre X 12; |
unsioned mins = HINS(t); /* extrect minutes */
.I'*

* Create time string for Wwindow title...
¥ Do things the hard way: sprintf{) would spend too much memary.

L

time[0] = Chrald »= 10) 2 DIGETCT) & v b

time[1] = DIGIT{hrst2 % 103;

time[3] = DIGIT{mins / 10%;

time[4] = DIGIT{mins % 10};

timeft]l = (hrs < 12) 7 "A' 3 TR';

wind set(wp->id, WF_NAME, time, 0, 0};/* Set windew title to time */
¥

Mark Williams C 165

)ri-
* Create and open a window just big encugh to hold the time on its title bar
* and the CLOSER box.

xr
opetid i nodod (W)
Window *wp; /= Window descripter =/ .
€

int workW: F* work ares width */

int workH: /* work area height */

int ret; J* Dummy return buffer */

if {Wp->id == NO_WINDOW) { /¥ 1§ there iz no window *f

if (wp-=x == NO_POSITION) € /* If there is no position */

I

* pagition the clock in the center of the screen. This i & hack to
* determine the size and position of the window.
*
graf_handle{fwp->w, Bret, Lret, Ewp->h);
Wp->W *= TEMP LEN + 3;
Wwind get(0, WF_WORKNYWH, Ewp->x, EwWp-*Yy,
EBworkW, EworkH);
Wp-rx #= (wWorkW - wp-rwl S O2;
Wp >y #= {workH - wp->h} f 2;
¥
/% Create 8 Wwindow with name, closer and moveable =7
wpr>id = wird _create{MAME | CLOSER |HOVER,
WREX, WRORY, WEeRW, WRerh))
wind openlup->id, Wp-*X, Wp-2y, Wp-*W, Wp-*hl;
updatelwpl;

H

J* Remove the time window from the screen *f
closeWindow{wp)

Window *wp; /* Window descriptor *f
{
if (wpr>id = HO_WIRDOW) (J* only if there 3 & window */
wird_closelwp->id); /* close that window */
wind_delete(wp-=id); /% dalete that window */
wprrid = ND WIKDOW; /* remembar {t's gone *f
B)
b
See Also
crisd.o, TOS
df—Command

Measure free space on disk
df [-a) device

166 Mark Williams C

Lexicom Dfree

Al mesasures the amount of [ree space left on a floppy disk, on a logical device
on 2 hard disk, or on a RAM disk. device is the name of the device you wish to
check: for example, to check the amount of space left on the disk in drive Al
type:

df a:
The default device is the oneg you are logged into.
The aption -a prints the amount of space left on all devices.

See Also
commands, mf, msh

Diree—gemdos function 34 (osbind.h)

et the location of free space on a drive
#include <osbind.h>
void Dfree(fs, drive) long fs[d]; Int drive;

Diree retrieves information about free space on a disk drive, and writes it into
the arguments f5 and drive, which it keeps. fs points to an array of four un-
signed longs that hold, respectively, the amount of free space on a drive, the
number of clusters on the drive, the sector size in bytes, and the cluster size in
sectors. drive 15 the number of the disk drive itself, with zero indicating the
default drive, one indicating drive A, ete,

Exampls)
This example displays disk statistics for the default drive.

#include <ozbind.h>

struct disk_info {
unsigried long di_free; /™ free allocation units */f
unsigned long di_many; /* how many AUz on disk =/
unsigned long di_ssize; /* zector size */
unsigned long di_spau; /* gectors per AU %S

X

maingy {
lomg fs:
long fbp
int dd;
long ts;
long th;

struct disk_info disk;

Mark Williams C 167

Dgetdrv-Dgetpath

dd = Dgetdrv();
Dfree(fdisk, ddvi});

fs = disk.di_free*disk.di_spau;

t5 = dizsk.di_spautdisk.di_many;

b= fs * disk.di_ssize; |
th = ts * disk.di_ssize;

printf{"disk ¥c: haz %d bytes free in ¥d sectors\n",
deerar, fb, fs);
printf{"from total of %d bytes in ¥d sectors (cluster size Edi\m,
th, ts, disk.di_spautdisk.di_ssize);
3

See Also
gemdos, TOS

Dgetdrv—gemdos function 25 (osbind.h)
Find which disk drive is the current drive
#include <oshind. h>

| int Dgetdrv()

| Dgetdry returns an integer that indicates the current drive: 0 corresponds
drive A, and so on through 15 corresponding to drive P,]

diff-

Example
This example prints the default drive.

#include <osbind.h»
maing) {
printf("'Z%cct iz the current default drive.\nM,
{char) Dgetdrw(} + "A');

|]

See Also
I Dsetdry, gemdos, TOS

Dgetpath—gemdos function 71 (osbhind.h)
Get the current directory name
#include <oshind.h>)
long Dgetpath(buf fer, drive) char *buffer; int drive;

Dgetpath gets the name of the current directory. buffer points to the HIEET
where the buffer name is to be stored. drive holds a number that indicates the
disk drive to be examined, as [ollows: 0, the default drive; |, drive A; elc.

Example
This example prints the current path name and device string.

168 Mark WiI[iams,‘:-.‘-':';iE

fevicon) diff

#include <oshind.h>

main} {4 il
int drvy {1768 1
char pathbuf [£4]: /* Path buffer */ |
char *buf; I| !

1l
buf = pathbuf; 1
*huf++ = {drv=Dgetdrv(})+'a’; 7% Get drive */ | |
*hypfhd = 1zix FE- T ‘
bgetpethi{buf, drvl; f* Rest of path *f |
printf("Current path iz Xs\n", pethbuf 3: /* Display it */ ”

3
See Also I| ‘
Dsetpath, gemdos, TOS |

dif f-—Command
Summarize dif ferances between two files i
diff [-b] [-c symboll filel file2 ‘
!

diff compares filel with file2, and summarizes the changes needed to turn filef
into fifel. |

spicified in place of a file by entering a hyphen *-' in place of filel ar file2,
Second, if' filel is a directory, diff looks within that directory for a file that |
has the same name as [file2, then compares file? with the file of the same name
i directory filel.

Two options involve input file specification. First, the standard mmput may be |.(!
(1%
[

The default output script has lines in the following format: i
1,2 ¢35, 4%

The numbers [.2 refer to line ranges in filel, and 34 to ranges in file2. The
range 15 abbreviated to a single number if’ the first number is the same as the |
second, The letter ‘¢ indicates that lines 1,2 of fife] should be changed 1o lines il |
3.4 of file2. diff then prints the text from each of the two files, Text as- |
sociated with filed is preceded by ‘<, whereas text associated with file? is
preceded by *= ", ‘

The following summarizes diff*s options.

-k Tgnore trailing blanks and treat more than one blank in an input line as a ' q
single blank. Spaces and tabs are considered to be blanks for this com-
pATISOn,

Produce output suitable for the C preprocessor cpp; the output contains [
#ifdef, #ifndef, #else, and #endif lines. symbol is the string used to

-¢ svmbol |‘
build the #ifdel statements. If vou define symbol to the C preprocessor “

Mark Williams C 169 il

difftime-Dosound Lexi

difftime—Time function (libe.a/difftime)

directory—Delinition

Dosound—xhios function 32 (osbhind.h)

170

cpp, it will produce filz2 as its output; otherwise, it will produce filel]
MNote that this option does nor work for files that already contain #ifde e-
#ifndef, #else, and #endif statements, i

Fee Also
commands, egrep

Diggnostics
dif {'s exit status is 0 when the files are identical, 1 when they are different, an,
2 if a problem was encountered (e.g., could not open a file).

Rewrn difference between two times

#include <time.h>

double difftime{iime], iime2) time tiimel, time2;

diffiime calculates the difference, 1n seconds, between fimel and fimed. |
Both arguments are of type time_t, which is the current system time, and.
which is defined in the header [ile time h. Note that the function time returns
the current time in this format,

Mark Williams C defines the current system time as being the number ﬂf*
seconds since January 1, 1970, OhQ0mO0s GMT.

See Also
lime, time.h

A directory is a function that maps names to files; in other words, it ESSDE]E&",-E;-
the names of a file with their locations on the mass storage device. Under some. |
operating systems, directories are also files, and can be handled like a file.

Directories allow files to be organized on a mass storage device in a ratmnal
manner, by function or owner. MNote that the documentation for TOS uses the
term “folder* as a synonym for “directory™.

See Also
file, msh

Start up the sound daemon

#include <oshind.h> |
#include <xbios.h> .
void Dasound{bu/fer) char *buffed;

Mark Williams C

Lexicon . Dosound

Dosound starts up a daemon to control the sound generator. buffer points to
tuffer that holds the commands and arguments to be passed to the dasmaon,

Each command consists of an eight-bit hexadecimal number followed by one or
mare characters; the commands are as follows:

0x00-0x0F
Each of these commands is followed by a one-character argument: each
writes its argument into the appropriate register in the GI sound gener-
ator, with 0x00 corresponding to register 0, 0x01 to register |, and so on,
For a fuller explanation of what each register governs in the sound
register, see the entry for Giaccess.

Ox80 This takes a one-character argument and writes it into the temporary
register.

0x81 This command takes three one-character arguments. It takes the character
that had been lpaded into a temporary register with the 0x80 command,
lpads it into a sound generator register, and controls its execution. The
first argument is the number of the register into which the previously
stored character iz to be loaded. The szecond argument is a two's-
complement number that is added to the contents of the temporary
register. The third argument is an end-point value. The instruction that
was loaded is executed continually, once each update, and the contents of
the temporary register are incremented; this process ends when the valus
stored in the temporary register equals that of the end-point value.

0x82-0xFF
Each of these commands takes a one-byte argument. If the argument is
zero, sound processing is halted. If the argument is greater than zero, it is
taken to indicate the number of timer ticks (each tick being 20
milliseconds long) that must pass until the next sound process is per-
formed. In effect, these commands can set how long a tone is sustained.

Exagmple
This example generates an interesting series of sounds. Type a key after the
bell spunds,

#include <osbind.he

char noise[]=(

OxFF, Ox50, /* Delay a while... */

0x00, OxFé&, /* Lead reg O (Channel A fregq, fine} */
0x0%, Ox02, /® Lead reg ¥ {Channel A freq, coerse) */
Ox02, OxDE, /* Lead reg 2 {Charnel B freq, fine) */
0x03, 0Ox07, /* Lead reg 3 (Chennel B freq, ccarse) */
Ox04, Ox3F, /™ Lead reg & {Channel € freg, fine) */
0x0%, OxD1, /* Load reg 5 {Chennel C freq, ccarsed */
Dx06, Ox00, /* Load reg & {Koise period) */

Mark Williams C 171

Dosound

0x07, 0OxF5, /* Load reqg T (Voice enable) =/
Dx08, 0x10, /* Load reg B {Channel A& wvolume) */
Ox0%, 0x10, /* Load reg © (Channel B wvolume) */
OxOA, Ox10, /* Load reg A (Channel C volume) */
Ox0g, Ox00, /% Loed reg B (Env period fine tune E} */
Qnlc, O30, /* Loed reg € (Env period coarse tune E) %/
Ox0p, Ox09, /* Load reg O (Env shape/oycle) */
OxFF, 0x30, /= Delay *=f
0x00, 0x00, /* Loed reg O {Channel A freg, fine) */
0=, 0x01, /* Load reg 1 {Channel A freq, coarse) ¥/
0x07, 0x3E, J* Load reg T (Voice emable) ¥/
Cx03, 0x08, /* Load reg & {Channel & wol) */
Ox0%, OxC0, /* Load reg 9 (Channel B wvol) */
Ox0&, Ox0O, /* Load reg A (Channel C vol) */
Dx80, Ox01, J* Init temp register %/
Ox81, 0x00, Ox01, OxFF,
" Loop defiped. .. */
0x01, Ox02, J® Next step down */
0x80, ow0i, J* Init temp register egain */
0x81, 0x00, Dx07, OxFF,
/* Loop again *f
0x07, Ox3F, /* Dissble woices... */
DxFF, Ox40, /* Delay 40 ticks... */
Ox0, Dx34, /* Load reg © {Charnel A freg, fine) =/
Ox01, 0x00, /* Load reg 1 {Channel A freg, coarse) ™/
Ox02, 0x04, 4% Load reg 2 (Channel B freq, fine) */
0x03, Ox00, /* Load reg 3 (Channel B freg, coarse} */
Gx0é&, 0x00, /* Load reg &4 (Channel € freg, fine) */
x5, Ox00, /* Lozd reg 5 (Channel C freg coarse) ¥/
Ox0&, 0=00, /* Load reg & (Hoise pericd) ®/
w07, OxFE, /* Load reg 7 (Voice ensble) */
ax08, 0x10, /® Load reg B (Channel A wol) */
Ox0%, w0, /® Load reg ¥ (Channel B vol} =/
Dx0A, Ox00, /* Load reg A (Channel C wvol) */
0x0E, Ox00, /* Load reg & (Env pericd fine tume E) */
0xGC, Ox10, /% Load reg © {Env pericd cosrse tunme E) */
OxGh, Ox09, /* Load reg I {Env shapefcycle) */
OxFF, OxCO /* Terminate delay timer ¥/
B ot
maingy)
Dogound{ noise 31 /% Make some noise... */
while (Ceenisf) == 073 /* Loop until user types a key */
Coomms({"Listen... "};
Coonindd; /T Get the key. =/
Dosound(noise); J/® Make some noise again */
3}

172 Mark Williams C

Lexicom double-drtomw I

See Also
daemon, Giaccess, TOS, xbios |

double—Definition

A double is the data tvpe that encodes a double-precision floating=point num-
ber. On most machines, sizeof(double) 15 defined as four machine words, or
eight chars. Programmers who wish to write portable code should mor use
routines that depend on 3 double being 64 bits long. Different formats are used
to encode doubles on wvarious machines. These formats include TEEE,
DECYAX, and BCD (binary coded decimal) as mentioned above; they are
described in the entry for float,

Soe Also
data formats, declarations, float, portability

driomw-—Command
Convert from DRI to Mark Williams format
drtomw [-T] file ...

driomw converts an object, an execuiable object, or an archive from DRI to
Mark Williams format. 1t writes the converted file into a temporary file, which
it then writes over the original file; this will fail if the disk with the input files
is write-protected or if the input file is set as read-only. The option -f forces
conversion despite a possible error condition, as described below. |

driomw generates messages to indicate to the user the tvpe of file given as in-
put, whether object file or archive., Normally, the format of a file cannot be
distinguished easily by its contents; therefore, driomw distinguishes file format
by the suffix to the file name: relocatable objects should the suffix .o, whereas
executable objects should have any other extension or no extension at all.

When working with a DRI archive, drtomw first converts the archive into a
Mark Williams object archive, and then converts all of the object files within it
to Mark Williams object files. The archive will still need a ranlib header, which
may be added by using the command:

ar re arefingme.e ranlib.sym

driomw converts DRI executeable files to Mark Williams format. This involves
appending a Mark Williams format header to the end of the file. If characters
are. present beyvond the end of the relocation bytes of the executsable file,
driomw reports this and aborts the conversion unless you use the -f (force) flag.

Sea Alzo
as, as68toas, commands

Mark Williams C 173

Dryvmap-Dsetdry Lexig

Drymap—bios Tunction 10 (osbind.h)
Geat a map of the logical disk drives
#include <oshind.h>
#include <bios.h>
long Drymap();

Dryvmap returns a bit map of the system's logical configuration of disk drives.
In this map, bit 0 corresponds to drive A, bit 1 to drive B, eic.

Example

#include <osbind.h>
main(} {
Long drivemap;
int drv;
long drvmsk=1;
drivemap = Drvmepi);
puts("krives on system:\n'"};
for{dry = 0 2 dry < 16 ; drwee)
if{drvmsk & drivemap)
printfmtdrive Bocovn®, (drv+'A'3);
drvmsk <<= 1;

¥

See Also
bios, bit map. TOS

Dsetdry-gemdos function 14 (osbind.h}
Malke a drive the cuarrent drive
#include <oshind. h>
long Dsetdrv{drive) int drive;

Dsetdry makes drive the current disk drive, drive can be any integer between |
and 15, with 0 indicating drive A, | indicating drive B, and so on through 13
indicating drive P. Dsetdrv returns a bit map of the drive configuration, A
hits 0 through 15 indicating drives A through P, respectively; setting a bit to &
indicates that the respective disk drive is present on the system.

Exanmple - el
This example sets the default drive to B:. Upon exiting, the default driv

reset to Al

174 Mark William .

jcon o Dsetpath

#ipclude <osbind.he
gdefine DRIVE_A O
#define DRIVE_B 1
ddefine DRIVE C 2
#dafine E DRIVE (-&6L) f* Invalid Drive Specified */
maint) {
Long drivemap;

if{{drivemap=Dsetdrv({DRIVE_B}} < 01 {
if{drivemap == E_DRIVE}
printf("Invalid drive (%c:) specified.\n®,
{DRIVE_B *+ 'A'3);
else
printf("GEMDOS error Bldyn", drivemap);
} else {
int drv;
long drvmsk=1;
printf("Current drive is '¥c:!. Others are:yn",
{DRIVE B + "A'});
forfdry = 0 ; drv < 16 ; drvs+) {
ifidrymsk & drivemap)
printf{"tdrive %e:\n®, (drvetAr));
drvmsk <<= 1;

1

See Also
Dgetdrv, Drymap, gemdos, TOS

Notes

The msh built-in function pwd and cd maintain their own ides of the current
drive. Programs, like the example, which reset the current drive render the
shell’s data invalid, A cd to a completely specified path will fix this.

Dsetpath—gemdos function 59 (esbind.h)
Set the current directory
#inelude <osbind.h>
long Dsetpath{path) char * path;

Dsetpath sets the current directory; it returns O if the directory could be set,
and non-zero if it could not. path points to the directory’s path name, which
must be a NUL-terminated string.

Example

This example allows the user to set and display the default path, or get the cur-
rent path string for device specified, If drv equals -1, it uses the default drive
and returns a pointer to the path buffer.

Mark Williams C 175

Dselpath

176

#include <osbind.h=
char *getpath{pathbuf, drv}
char *pathbuf;

int drv; £
char *buf;
buf = pathbuf; i
if fdey < 0 Fad

drv=Dgetdrvii; I*

Faufes = drvelpty "
*pgfae = tois "
pgetpath{buf, drv+i); f e
returnipathouf); i

3

I*

* Allow default directory to be chenged.
=

mainfarge, ergv) int argc: char **argv; {
char path[80];
char =dst;
char *zrc;

ifcarge < 23 X
Ceonwe(MCurrent path is "};
Cconwsigetpath(path,-11);
Coomwa "\ rin!};

Prerml(); i

3

Coonwz{"Qld path was ");

Ceonws{getpathipath,-13);

Coonmma{ "\ rin'};

dst = sre = aravill;

white { "sre t= "W0' 3 {
if ¢ =sro++ == bzt) {
int drv;

V&
¥id
I*
I*

drv = gref-21;
ifidry > 111
drv -=

elae .
dry == 1A'

iftdry »= 0 && dry <= 13}

Deetdrvidry);
dst = sre;
brzak;

Target buffer */

If drive is default *f

get default dreive no, */

Put drive Letter in string */
dz *f

get the rest of the path =/
Return the buffer sddresz =/

Wo mew path? display old */

Then exit. */

Get new path */

Scan for device %/
1f foumd, set device */
Move pointer past "o */

Mark Williams C

exicon dup-dup?

if {™dst 1= "\0')
if (Osetpath(dst) I=10 } (
Ceconws(YSetpath failed, Path iz “);
Ceonms(getpathipath, - 12);
Coonws iy riynt;
Prerm{i};
¥
b
Coonws("Path now aet to 1);
Coeonws(getpath{path, -1)3;
CoomWs(™\riyn);
Pterml(};
¥

See¢ Also
Dgetpath, Dsetdry, Dgetdry, gemdos, TOS

Nores

The msh functions pwd and cd maintain their own idea of the current path.
Programs, like the example, which reset the current drive tender the shell’s data
mvalid, A ed to 2 completely specified path will fix this.

dup—UINIX system call {libe.a/dup)

Duplicate 3 file descriptor
dup(/d) int fd;

dup duplicates the existing file descriptor fd, and returns the new descriptor.
The returned value is the smallest file descriptor that is not already in use by
the calling process. fd must be less than six under TOS.

Example) .
The following example duplicates a file descriptor,

maing) €
int fd, result;
fd = 2;
if {fresult = dup{fd)) 1= <1}
printf{"file descriptor dupliceted successfully wn");
elze printf(iduplication unsuccessful n");
?

See Also
STDIO, UNIX routines

Diagnostics
dup returns a number less than zero when an error occurs, such as a bad file
descriptor or no file descriptor available.

Mark Williams C 177

dup2—UNITX system call (libe.a/dup2)

178

Duplicate a file descriptor
dup2(/d, rewfd) int fd, new/d;

dup? duplicates a [ile descriptor. Unlike its cousin dup, dup2 allows the re-
questing process to specify a new file descriptor newfd, rather than having
svstem select one, If mewfd 13 already open, the system closes it before ass
ning it to the new file. dup2 returns the duplicate descriptor. Under TOS, fd
must be greater than five, and #ew/d greater than six. i

Fee Alzo
STDI(, UNIX routines

Diggrastics
dup? returns a number less than zero when an error o¢ours, such as a bad
descriptor or no file descriptor available.

Mark Williams C

Lexicon echo-edata

echo—Command

Repeat/expand an argumeang
echo |-n] [arguwment]

echo prints each grgument on the standard cutput, placing a space between gach
arenment, 1t appends a newline to the end of the output unless the -n flag is
present.

If argument is a msh variable, echo will expand it before printing it. For ex-
ample, if vou type
S8T SRCTLRECT

set cls=%{esc)E ; echo 3cls

where <esc> indicates the escape character, echo will send the characters <esc=E
to vour terminal, which will clear the screen and home the cursor,

See Also
commands, msh

eevt—CGeneral function (libe.a/ecvt)

Convert floating point numbers to strings
char *ecvt(d, w, dp. signp) double &; intw, Ydp. *signp;

ecvt converts 4 into a NUL-terminated ASCII string of numerals that is w
characters wide: it rounds the last digit and returns a pointer to the result. On
return, ecvl sets dp to point to an integer that indicates the location of the
decimal point relative to the beginning of the string, to the right if positive, to
the left if negative; and it sets signp to point to an integer that indicates the sign
of d, zero if positive and nonzero 1f negative. ecvt performs conversions within
static string buffers that are overwritten by each execution.

See Also
fovt, frexp, gevt, ldexp, modf, printf

edata—Linker-defined symbaol

extern int edatal];

edata is the location after the shared and private data segments, It is defined by
the linker when the linker binds the program together for execution. The value
of edata is merely an address. The location to which this address points con-
tains no known value, and mav be an illegal memory location for the program.
The value of edata does not change while the program is running.

Mark Williams C 179

egrep

Example))
For an example of this function, see the entry for memory allocation,

Seoe Also
end, etext

cgrep—Command
Extended pattern search
egrep [option ..] |pattern] [file ...]

egrep searches each file for occurrences of patrern (also called a regular exprey

sion). If no file is specified, it searches the standard input.. Nermally, it prii _:
cach line matching the pattern.

The simplest patierns accepted by egrep are ordinary alphanumeric. strings.
egrep can also process parterns that include the following wildecard characters:
i Match beginning of line, unless it appears immediately after ‘" (see
below).

b Match end of line,

Match zero or more repetitions of preceding character.

Match any character except newline, I

|chars] A
Match any one of the enclosed chars. Ranges of letters or digits may be
indicated using *-°,

[*ehari]
Match any character excepr one of the enclosed chary. Ranges of letters or
digits may be indicated using *-'.

\e Disregard special meaning of character c.

| Match the preceding pattern or the following pattern. For example, the

patiern cat/dog matches either cat or dog. A newline within the patrern
has the same meaning as '['.

+ Martch one or more occurrences of the immediately preceding pattern

element: 1t works like **', axcepl it matches at least one occurrence in-
stead of zero Or more goCurrences.

!
1
'l

(...) Parentheses may be used to group patterns. For example, (Ivan)+

matches a sequence of one or more occurrences of the four letters *1" *v'

Match zero or one occurrence of the preceding element of the pattern. l
‘a" or ‘n'.

Because the metacharacters **', 'Y, "800,), 0. 'T. and *" are also special to the |
micro-shell msh, patterns that contain those characters must be guoted by

120 Mark Williams C

Le_ﬁjt{!ﬂ end

enclosing pattern within double quotation marks.
The following lists the available options:

-h With each output line, print the block number in which the line started
(used to search file systems).

-c Print how many lines match, rather than the lines themselves.
-e The next argument is paitern (useful if the pattern starts with '-").

-f The next argument is a file that contains a list of patterns separated by
newlines: there is no patiern argument.

-h When more than one file is specified, output lines are normally accom-
panied by the file name; -h suppresses this.

-1 Print the name of each file that contains the string, rather than the lines
themselves,

-n The line number in the file accompanies each line printed.
-8 Suppress all output, just return status.
-y Print a line only if the pattern is not found in the line,

-y Lower-case letters in the pattern match lower-case and upper-case letters
on the input lines. A letter escaped with '/ in the pattern must be
matched in exactly that case,

See Also
commands

Diagnostics
egrep returns an exit status of 0 for success, 1 for no matches, and 2 for error.

Notes

egrep uses a deterministic finite automaton (DFA) for the search, It builds the
DFA dynamically, so it begins doing useful work immediately. This means that
egrep is considerably faster than other, earlier pattern-searching commands, on
almost any length of file.

end—Linker-defined symbaol
extern int end|};

end iz the location after the uninitialized data segment; it is defined by the
linker when the linker binds the pregram together for execution. The value of
end is merely an address. The location to which it points contains no known
value, and may be illegal memory locations for the program. The value of end
does not change while the program is running.

Mark Williams C 181

Example
For an example of this function, see the entry for memory allocation.

See Also
edatsa, etext

enum—Definition

132

An enum declaration is a data type whose syntax resembles those of the struct
and union declarations. enum declares a type and a set of identifiers that can be
used as values for objects of the declared type. For example,

enum opinion {yes, maybe, no)} guess;

declares an enumerated type apinion with three values: yes, no, and maybe, It
also declares a variable of type opinlon enum guess. guess may only have a value
of either yes, mo, or maybe. As with a struct or union declaration, the tag
fopinion in this example) 15 optional; if present, it may be used in subsequent
declarations, After the above declaration, the statement

register enum opinion *op;
declares a register pointer to an object of tvpe opinion.

All identifiers in an enumeration declaration must be distinct from other iden-
tifiers in the program. The identifiers act as constants and may appear
wherever constants are appropriate. Mark Williams € assigns values to the
identifiers from left to right, normally beginning with 0 and increasing by 1.
The values often are Ints, although if the range of values is small enough, the
enum will be an unsigned char. If an identifier in the declaration is Mollowed by
an equal sign and a constant, the identifier is assigned the given value, and sub-
sequent values increase by 1 from that value,

To add enum to the formal definition of C, amend the list of tvpe-specifiers in
Appendix A of The C Programming Language o include enum-specifier, and
add the following syntax:

enum-specifier:

enum { enum-list }

enum identifier { enum-Hst)

enum identifler
enum-list

enumerator

enum-list , enumerator
EnuMmMerator:

identifier

identifier = constant-expression

Mark Williams C

exicon environ-EOF
Lexic

See Alsa
declarations

environ—Definition

580 1]

extern char **envirom;

environ is a pointer s2t by the run-time start-up routine. It points to the en-
vironment vector, which is equal to the third argument passed to main, char
*envpl]; this, in turn, is the handle that the function getenv uses to find the en-
vironment.

Example _
For an example of how this element is used in a C program, see the entry for
memory allocation,

See Also
envp

Definition
Variable passed 1o main
char *envpl;

envp 15 an abbreviation for environmental parameter, It is the traditional name
for a pointer to an array of string pointers passed to a C program’s main func-
tion, and is by convention the third argument passed to main.

Example
For an example of this function, see the entry for memory allocation,

Sec Also
arge, argy, main

EQF—Manifest constant

EOF is an acronym for “end of file"; it is the manifest constant defined in
stdio.h that is used to signal that the end of a file has been reached,

To signal EOF to a program reading from the console keyboard under TOS, you
should type <ctrl-Z> followed by <RETURN> on a line by itself. <ctrl-Z> as
an EOF signal is implemented by the read routine, Programs that use TOS calls
to read the console must implement an EOF signal themselves,

Example

Mark Williams C 183

errno-error codes

errno—LINTX data (erts0.0)

errng. h—Header file

error codes—Deflinition

184

#include <stdio.h>
main(y £
int ¢;
while{{c=getchar({)}!=E0F}
putchar(e¢);
)

Sec Also
manifest constant, stdie.h

External integer for return of error status
extern int errno;

errno i5 an external integer that is set to the negative value of any error mtua
returned by TOS to the UNIX system call emulation routines. The routine per=

ror() or the array of string sys_errlist may be used to provide a textual trans-
lation of errno.

Muathematical functions also use errmo to indicate classifications of errors on
return. It is defined within the header file errno.h, Because not every function
uses errno, it should be polled only in connection with those functions that
document its use and the meaning of the various status values,

The error codes returned by TOS are listed in the entry for error codes, below,

See Also
errno.h, error codes, mathematics library, perror, UNIX routines

Error numbers used by errno function
#include <errno.h>

errno.h is a header that defines and describes the error numbers returned by er-
Fio,

See Also
errno, header file, TOS

The following lists the error codes returned by TOS:
BIOS-level errors:

AE OK oL OK, no error
AERROR -iL basic, fundamental error
AEDRVNR -2L drive not ready

Mark Williams C

Le xil:ﬂ_ﬂ etexl

AEUNCMD -3L unknown command

AE_CRC -4L CRC error

AEBADR(Q -5L bad request

AE_SEEK -6L seek error

AEMEDIA -7L unknown media

AESECNF -8L sector not found

AEPAPER -S9L noc paper

AEWRITF -10L write fauit

AEREADF -11L read fault

AEGENRL -12L general error

AEWRFPRO -13L write protect

AE_CHNG -14L media change

AEUNDEY -15L unknown device

AEBADSF -16L bad sectors on format

AEOTHER -17L insert other disk
GEMDOS-level errors:

AEINYFN -32L invalid function number

AEFILNF -33L file not found

AEPTHNF -34L path not found

AENHNDL -35L too many open files no handles left

AEACCDN -36L access denied

AETHNDL -37L invalid handle

AENSMEM -39L insufficient memory

AEIMBA -40L invalid memory block address

AEDRIVE -46L invalid drive was specified

AEXDEY -48L cross device rename not documented

AENMFIL -49L noe more files
Miscellaneous error codes:

AERANGE -64L range errar

AEINTREN -65L internal error

AEPLFMT -66L invalid program load format

AEGSBF -47L setblock failure due to growth restrictions
See Also

errno, errno.h, perror

etext—Linker-defined symbaol
extern int etext[];

etext is the location after the shared and private text {¢code) segments; it is
defined by the linker when it binds the program together for execution. The
value of etext is merely an address. The location to which it points contains no
known value, and may be illegal memory locations for the program. The value
of etext does not change while the program is running.

Mark Williams C 185

Exarmple
For an example of this function, see the entry for memory allocation.

See Also
edata, end. malloc

evint_button—AES function (libaes.a/evnt_bullon)

186

Await a specific mouse button event
#include <aeshind.h>

int evot__button(clicks, buiton. state. record)
int clicks, butign, state; Mouse record;

eval_button is an AES routine that waits for a specified button event. ¢licks is
the number of clicks to await. buwiton is the number of the button to await,
counting from the left, as follows: Ox1, leftmost button; 0x2, second from left;
Ox4, third from left; etc.

state is the button state to await: zero indicates up and one indicates down.
evot_button returns zero if an error occurred, and a number greater than zero
if one did not.

record points to where evnt_button writes the result of a button event. It i§
declared to be of type Mouse, which is a structure of four pointers to integers
that is declared in the header [ile aesbind.h, as follows:

X X coordinate of mouse pointer
¥ Y coordinate of mouse pointer
b button state when event occurred
k state of control, alt, and shift keys, OR'd together:
Ox0; all keys up
0x1: right shift key down
Ox2: lef1 shift key down
0x4: control key down
0x8; alt key down

evnt_button returns the number of times the button entered the desired state.

Example
For an example of this routine, see the entry for v_circle.

See Also
AES, TOS

Naotes

Mate that this routine can be told only to wait for one specified button evenl.
e.g., for button | alone, If you attempt to tell it to wait for button | or button
2, it will react as if vou told it to wait for button | gnd button 2, ie., for both
buttons to be pressed simulianeously.

Mark Williams C

Lexicon evnt dclick-evnt _keyhd

evnt delick—AES function (libaes.a/evnt_dclick)

~ Get/set double-click interval
#include <aeshind.h=>
int evnt_dclick(speed. getset) Int speed, getsel;

evnt_dclick is an AES routine that gets or sets the mouse's double-click speed.
speed is the double-click speed, from zero through four, with zero being the
slowest and four the fastest. It is ignored if getset is set to zero. pgetset is a flag:
zero tells AES to return the current speed, and one tells it to set the new speed.
eval_dclick returns the old click speed (if getset is set to zero) or the new click
speed (if it is set to one).

See Also
AES, TOS

evil _keybd—AES function (libaes.a/evnt_keybd)

Await a keyboard event
#include <aeshind.h>
int evat_keybd()

evnt_keybd is an AES routine that awaits a keyboard event; in other words, it
waits for the user 1o press a key on the keyboard. evnt_keybd returns the code
of the key pressed.

Example

The following example prints out the scan code for each key pressed. Pressing
the <return> key exits,

dinclude <pesbind.h>
#include <gemdefs. h>
Wcdef ine RETURN Dx1CO0D

main{) €
unsigned key;

appl_init();
fori;;) (
key = ewnt_keyba(d;

switchikey) {
case RETURN:
appl_exitl);
exit{0):

Mark Williams C 187

evnl mesag

default:
printf{("The scan code Ts5: Xx\n®, key):
break;

¥
3

See Also
AES, keyboard, TOS

evit_mesag—AES Function (libaes.a/evnt_mesag)
Awail a message
#include <aeshind.h>
int evnt_mesag(buffer) char *buffer;

evnt_mesag is an AES routine that awaits a message. bu/fer points to where the
message is to be written.

GEM uses 12 predefined messages to pass information among its applications.
Each message i¢ eight ints long, and has the following structure;

0 Type of message
1 Handle of application
2 Number of extra bytes in message; i.e.,
number of bytes beyond 16
3-7 Contents of message

The following lists the predefined messages by the value of word 0, as defined
in the header file gemdefs.h;

MMN_SELECTED (menu selected) Word 3 gives the number within its objest
tree of the title of the selected menu, and ward 4 gives the.
number of the selected item,

Wh REDRAW (redraw a2 window) Word 3 gives the window's handle;
words 4 through 7 give, respectively, the X coordinate, the
Y coordinate, the width, and the height of the window to be
drawn. A

WM _TOPPED (make a window the topmost window) Word 3 gives the
window handle.

WM_CLOSED (close-window box clicked) Word 3 gives the window'’s
handle.

WM _FULLED (full-window box clicked) Word 3 gives the window's
handle.

188 Mark Williams C

Lexicon

evnl mouse

WM_ARROWED

WM_HSLID

WM_VSLID

WM_SIZED

WM_MOVED

AC_OPEN
AC_CLOSE

evnt_mesag always

Example
For an example of 1

Sec Also
AES, TOS, window

{arrow or scroll bar clicked) Word 3 gives the window's
handle. Word 4 gives the action requested. as follows:

Page up
Page down
Fow up
Row down
Page left
Page right
Column left
Column right

=] O LN da fad b = D

(horizontal slider moved) Word 3 gives the window’s handle,
Word 4 gives the slider's position: zero indicates the leftmost
position, and 1,000 the rightmost.

(vertical slider moved) Word 3 gives the window's handle,
Word 4 gives the slider’s position: zero indicates the leftmost
position, and 1,000 the rightmost.

{window size altered) Word 3 gives the window's handle,
Words 4 through 7 give, respectively, the X coordinate, the
Y coordinate, the new width, and the new height.

(window position altered) Word 3 gives the window's
handle. Words 4 through 7 give, respectively, the new X
coordinate, the new Y coordinate, the width, and the
height.

(desk accessory opened) Word 3 gives the desk accessory's
menu item identifier, as set by the function menu__register,

{desk accessory closed) Word 3 gives the desk accessory's
menu item identifier, as set by the function menu_register.

refurns one.

his routine, see the entry for window,

evnl mouse—AES function (libaes.a/evnt_mouse)
Wait for mouse to enter specified rectangle
#include <aesbind.h>
int evot _mouse{inout, rectangle, record)
int nour; Rect recrangle; Mouse record;

Mark Williams C

189

evnt

multi Lexicon

evnl

190

_ mulli—AES function (libaes.a/evnt_multl)

evnt moose is an AES routine that waits for the mouse pointer to enter or leave
a specified rectangle on the screen. inow tells AES whether to wait for the
pointer to enter (zero) or leave (one) the reﬁtangle Note that the screen
manager constantly checks the location of the mouse; it is more accurale to say
that evnt_mouse waits for the mouse pointer to be found inside or outside the
rectangle,

rectangle is of the type Rect, which is defined in the header [ile aesbind.h, Rect
consists of four elements:

x X coordinate of rectangle
¥ Y coordinate of rectangle
W width ol rectangle
h height of rectangle

record points to where evat_mouse writes the result of a mouse button event. [t
is declared to be of type Mouse, which is a structure of four pointers to in-
tegers. Mouse is declared in the header file aesbind.h, as follows:

X coordinate of mouse pointer

Y coordinate of mouse pointer
button state when event occurred
state of control, alt, and shift keyx
Ox0: all keys up

Ox1: right shift key down

0x2: left shift key down

Ox4: control key down

Ox8: alt key down

ol e

eynl mouse alwavs returns one.

See Also u
AES, TOS

Await one or more specified events
#include <aesbind.h>
int evat multi{events, clicks, button. state, mlinowt, rectanglel.
m2inout, reclangle?, &buffer, lowtime, hightime, record, key, times)
Int events; clicks, button, siate, miinous, m2inout, lowtime, hightime;
Rect rectangle!, rectangle2; Mouse record; long buffer; Int *key, *times;

eynt mulii is an AES routine that awaits ong or more of a set of events. LS
one of the most complex AFS functions, and the one most commaonly used.

evenis is a flag that indicates the events for which the process is waiting,
follows:

Mark Williams C

Lexicon evnt multi

0x01 kevboard event

0x02 mouse button event

0x04 first defined mouse event
0x08 second defined mouse event
0x10 message from another process
0x20 umer event

clicks is the number of mouse button clicks the process is awaiting, burton is a
mask of the number of the mouse button that the processing is awaiting, from
one to 16 (as counted from the left) Ox| indicates the leftmost button; 0x2, the
button second from the left 0x4, the button third from the left, ete. Note that
as of this writing no mouse has more than three buttons. siate i5 the button
state being awaited: zero indicates up, and one indicates down.

evpt multi can await either or both of two mouse events. mlinout indicates
that the process is waiting for the mouse pointer to enter (zero) or exit (one) the
first mouse rectangle. Note that the screen manager is constantly polling the
screen to check the location of the mouse; it is more accurate to say that
evnt multi waits for the mouse pointer to be found inside or outside the rec-
tangle. recianglel defines the area on the screen to be watched. It is declared
to be of type Rect, which is declared in the header [ile aesbind.h; Rect consists
of four elements, as Follows:

X coordinate of rectangle

¥ Y coordinate of rectangle
width of rectangle
h height of rectangle

m2inowe and reciangle? define the second mouse event being awaited; they are
defined in exactly the same manner as m/inow and rectanglel.

buf fer is the space into which AES writes any message from another process.

lowtime and hightime are, respectively, the low word and the high word of the
time interval that the process will wait before it “times out™, in milliseconds.

record points to where evnt_multi writes the result of a mouse button event. It
is declared to be of tvpe Mouse, which is a structure of four pointers to integers
that is declared in the header file aesbind.h, as follows:

Mark Williams C 191

eval multi

92

e

X coordinate of mouse pointer
Y coordinate of mouse pointer
button state when event occurred

state of control, alt, and shift kevs: O=up, I=down

Ox0: all kevs up

0x1: right shift key down
Ox2: left shift key down

Ox4: control key down
Ox8: alt key down

If a keyboard event occurs, ey points to the code of the key pressed. See the
entry keyhoard for a table of the key codes.

Finally, times points to where to number of times the mouse button entered the |
desired state.

evat _multl returns a number that indicates which event occurred, encoded in
the same manner as the variable events, above.

Example

This example demonstrates how to use evat_multi. Tt displays a window; the
mouse pointer changes from an arrow 10 @ bumblebee when it moves from in=
side to outside the window, The program exits when a key is typed.

#ine lude <aecbind.hy
finclude <gesdefs hs
int nowhere = 0;

main{) {

/* declarations for window *f
int handle;
char *title = * TITLE *;

/* declarations for ewnt multi() */
int selection;
unsigned int which = (MU_KEYED

int clicks = 1;

int button = 1;

int buttonstate = 0;
int into = 0;

Rect bigrect;

Rect nmorect;

int outof = 1;

int *buffer = Enowhere;
int lowtime = nowhere;
int hightime = nowhere;
House place;

int key = 0;

int times = 0;

/* place for unused pointers to point at */f

/* code for event that occurred */

| v M1 | WU W2);

/* nueber of clicks expected on mouse button %/
J* which button; 1 = lefimost =/

J/* button state expected; 0 = down */

/* st mouse event; 0 = into rectangle */

/* rectangle for both mouse events */

/* someplace for rectangle to come from =/

f* Ind mowse event: 1 = out of rectangle */f

/* buffer for messsges; not usad here %/

/¥ Low word for timer event; mot used here ®f
/* high word for timer event; not used here */
/™ where mouse event odcurred; not used here %/
/* which key wes pressed; not used here =/

/* no. of times mouse button entered state *f

Mark Williams C

Lexicon

evat multi

/* initialize rectangles used, in rasters =/
bigrect.x = 210;
bigrect.y = 100;
bigrect.w = 220;

bigrect.h = 200;
norect.x = Of
norect.h = 0;
norect.w = O;
norect.h = 0;

/* initialize place, although mot used here */
place.x = place.y = place.b = place.k = Encwhere;

appl_initl);

handle = wind create{MAME, bigrect);
wind set(handle, WF_MAME, title, O, 0);
graf_growbox(norect, bigrect);
wind_openthardle, bigrect);

ferf:i) L

selection = evnt_multi(uhich, clicks, button, buttonstate,

inta, bigrect, outef, bigrect, buffer, lowtime,
hightime, place, Ekey, Etimes):

switchiselection) (

cose MU KEYED:
wind close(handle);
graf_shrinkbox{norect, bigrect);
appl_exit();
exit(0d;

case MW M1;
graf_mouse(ARROM, Lrowhere);
which = (MU EETED | WU M2);
break;

case MU M2:
graf_mouse(BUSY BEE, Lnowhere);
which = (MU _KEYED | WU _W1);

break;
default:
break;
3
b
i
See Also
AES, keyhoard, TOS
Nates

Note that, with regard to bution events, you can tell evnt_multi to _wait onlﬁr for
one specified event, e.g., for button 1 to be pressed. 1f vou tell it to wait for
button 1 or button 2 o be pressed, it will act as if you told it to wait for button

| and button 2 to be pressed, which the hardware cannot handle.

Mark Williams C

193

evnl_limer-execve

eynt_timer—AES [unction (libaes.a/evnt_timer)

execulable fite—Definition

execve—UUNIX system function

194

Wait for a specified length of time
#include <aeshind.h>
int evnt _timer{/owiime, hightime) int lowiime, hightime;

evnt_timer is an AES routine that awaits a timer event, i.e., that waits for a
given length of time to pass. The time interval to wait before “timing out™
given in milliseconds. lowiime is the low word of the time interval, a
hightime is the high word. evnt_timer always returns one.

See Also
AES, TOS

Notes
As of this writing, using evat_timer within a desk accessory will cause the sys-
tem to crash if the desk accessory performs any calls to a BDOS routine. For
more information on BDOS, see the entries for VDI and metafile.

An executable file is one that can be loaded directly by the operating system’
and executed. Normally, an executable file is one that has gone through both
the compilation phase, where it has been rendered into machine language, and
the /ink phase, in which the compiled program has all operating system-specific’
information added and all library functions are copied into the program,

See Also
file

int execve—Execute a command
execve(file, argy, env)
char *file, *arg+|], "envl]

execve permits you 1o tell 1o TOS execute a specific command, This is dong
through the GEMDOS call Pexec. The calling program is suspended while the
command is being executed; the calling program returns when the command has:
finished executing. file is the complete path name of the file to be executed.
argy points to a list of argumenis to be passed to the command. &nv points 0 &
list of status environmental parameters, If the Pexec status is negative, then er=
roo is set to the absolute value of the stams.

Mark Williams C

Lexicon exit-exp

See Also
environment, Pexec. system

pxit-—Command

Exit from msh
exit [status]

exit terminates the shell msh. msh executes exit directly. The optional argu-
ment status is an integer which is returned as the exit status,

See Also
commanis, msh

exit—General function (libe.a/exit)

Terminate a program directly
int exit(srarus) int siatus;

exit terminates a program gracefully. It flushes all buffers, closes each open
file, and then returns the given siafus. Some systems, such as the Series III un-
der ISIS, throw away the exit. On TOS, it is returned to the parent program as
the result of Pexec.

See Also
exit, runtime startup, system, UNIX roatines

The € Programming Language, page 154

extt—UMNIX system call (libc.a/ _exit)

Terminate & program directly
_exht(status) Int slatus;

_exit terminates a program. It returns stafus to the calling program, and never
returns,

See Also
exit, Pterm, runtime startup, system, UNIX routines

Notes

Programs should normally terminate via exlt, which flushes buffered 1;0 and
closes associated files. Note that on the Atari 8T, _ exit is implemented via the
function Pterm.

exp—Mathematics function (libm.a/exp)

Compute exponent
#include <math.h>
double exp(z) double =;

Mark Williams C 195

exp returns the exponential of =, or ™.

Example
The following example demonstrates exp:

#include <math. h>

dedisplay{value, name)
double value; char *nams;
{

if {errno)
perror{namne);

else

printf{"%i0g As\n”, value, name):
arrna = 0;

3
fidefine display(x) dodisplay((double)(x), "x")

main()
extern char "getsi);
double x:
char string[é4];

ford;;d ¢

printf{"Enter nusber: ®);

ifigatalotring) == 0)
break;

x = atof{string);

display(x);
disploy(exp{x)});
disptey(pow(10.0,x3); i
display{loglexp{x))); 1
display(logi0{pow(10.0,x)));

H

See Also
errnp, mathematics library

Diagnostics i
exp indicates overflow by an errno of ERANGE and 2 huge returned value,

extern—Definition
extern indicates that a C element belongs to the external storage class.
variables and functions may be declared to be extern. extern symbols
“visible" outside of the source file of definition. All functions and all
defined outside of functions are implicitly extern unless declared statie.

When a source file references data that are defined in another file, it m
declare the data to be extern, or the linker will return an error message of

196 Mark William

Lexiconm extern
W e

form:
undefined symbol name

For example, following declares the array tzname:
extern char tzneme (2] [32];

When a function calls a function defined in another source file or a library, it
chould make an extern declaration of the function. In the absence of a declara-
tion, extern functions are assumed to return Ints, which may cause serious
problems if the function actvally returns a 32-bit pointer, a long Int, or a
doulle.

See Also
auto, pun, register, stafic, storage class
The C Programming Language, pages 28, 72, 204

Mark Williams C 197

fabs-Fatirib

fabs—Mathematics function (libm.a/fabs)

Fattrib—gemdos function 67 (osbind.h)

Compute absolute value
#include <math.h>
double fabs(z) double z;

fabs implements the absolute value function. It returns = if z is zero or posi--
tive, or -z if z is negative.

Example
For an example of this function, see the entry for ceil.

See Also
abs, ceil, floor, frexp, mathematics library

Get and set file attributes

#include <osbind.h>

long Fattrib(name, readset, setairib) char *name;
int readsct, selatrik;

Faltrib gets and sets file attributes. name points to the file's name, which must
be a NUL-terminated string. readset contains a 0 if you wish to read the file's:
attributes, or a | if vou wish to ser them. setarrib contains an integer than en-
codes the file's attributes, as follows: 0x01, read only; 0x02, hidden from direc-
tory search; Ox04 set to system, hidden from directory search; 0x08, contains
volume label in first 11 bytes; 0x10, file is a subdirectory; and 0x20, file has
been written to and closed. Fattrib returns the file's attributes if they have
been read successfully; otherwise, it cannot be relied on to return meaningful
informatian.

Example

ginclude <eosbind.h>
extern int errno;

char "atriable(] = {
"read only",
"hidden® ,
gwetem file¥,
Uyolume label®™,
Hgubdirectory®,
Ywritten to and clozed™

Mark Williams C

Lexicon fclose
Lexit—

main{arge, argv) int erge; char *Targvy {
unsigned attribs;
unsigned point;
int i;

if (argc < 2) {
printf{"Usage: Fattrib file\n®);
Pterm({1);

¥

if ((attribs = Fattriblargv(1], 0, 03 < 0) (
printf{"Can't Fattrib file X8 --yn®, argviil);
errnc = -attribs;
perror{YFattrib failure®);
Prerm{1});

¥

printf(™File Xs:™, argvill):

if (attribs == Q) {
printf{"™ normal fileyn™);
Prermd{);

)

paint = 1;

for (i=0 ; f<& ; Q+4) {
if (point £ attribe)

printf(™ (Xs)*, atrtablelil);

pn[nt £om 1;

}

printf(™\n);

b

See Afso
gemdos, TOS

felose—STDIO Function (libe.a/felose)

Close stream
#include <stdio.h>
It felose{/p) FILE *fp;

fclose closes the stream fp. It calls fflush on the given fp, closes the associated
file, and releases any allocated buffer. The library function exit calls felose for
open streams.

Example
For examples of how to use this function, see the entries for fopen and [seek.

See Also
STDIO
The C Programming Languoge, page 153

Mark Williams C 199

Felose-Fereate

Felose—gemdaos function 62 (esbind.h)

Fereate—gemdos function 60 (osbind.h)

Diggnostics
fclose returns EQF on error.

Close a file
#include <osbind.h>
long Felose{handie) int handle;

Felose closes a file. handle is the file handle that was returned by Fopen()

Fereate(), Fdup(), or inherited by the process. Felose returns 0 if the file could
be closed, and non-zero if 1t could naot.

Example
For example of how to use this macro, see the entries for Fseek and Fereate.

See Also
gemdos, TOS

Create a file
#include <osbind. h>
long Fereate(name, type) char *name; int 1y pe;

Fereate creates a file. mame points to the file’s path name, which must be a
MNUL-terminated string. type contains a number that encodes the file's at-
tributes, as follows; 0x01, read-only; 0x02, hidden from directory search; -::-xn4.,
sel to system, hidden !'mm directory search; and 0x08, contains volume Inb-al m'
first 11 bytes. Fereate returns a file handle, which is understood by TOS,

Example _
The following example, when compiled, takes two arguments, file/ and file2;it
then copies file] into file2. If file2 does not exist, it is created.

Mark Williams C

Lexicon Fcreate

#include <osbind.h>
#include <stdio.h>
#include <stat.h>
extern int errno;

main{arge, argy) int argc; cher *fargv; {
int status;
int -inhand;
int outhand;
struct DMABUFFER *mydta;
char *buffer;
long copyeize;

if (arge < 33 (
Cconwe (“Usage: Foreate source targetirin®);
Prerm{1);

3

if ((inhand = Fopen(argv[1], 03} < 0) {
fprintf{stderr,*\nCan't open input file Xs¥ argv(1]);
errno = -inhand;
perror(“Fopen failuret);
Prerm{1);

)

Fretdtalmydta=({atruct DMABUFFER *)malloc(sizeof(struct DMABUFFER)));

if (tetetussFefirstiargv(l], OxFT)) i= 0)
Felose(inhand);
fprintfistderr, "\rError getting stats on irput file Xs¥,
argviily;
grmo = -~status;
perror{"Fafirst failure®);
Prerm{1);
¥

statis = mydta->d_fattr & 7;

{f{touthend = Fcreate(argv(2], status}) < 03 (
Felose(inhand):
fprintf{stderr, "\nCan't open output file Xa* argvi2l);
errng = -outhand;
perror{"Fereate failed®);
Pterm{i};

Mark Williams C 201

buffer = {char *)mallocCsl®s);
copysize = mydta->d fzize;
while (copysize>L096) (
if ((status=Fread{inhand, S0%6L, buffer)) < 0) {
Felose(inhand);
Felose{outhard);
Fdelete{argvidl);
fprintf(stderr,"\nRead error on Xs*, argvill);
errno = -status;
perror{"Read failure™);
Prerm{1);
)

if (etatus=Furitelouthand, &096L, bufferd) <03 (
Felosel inhand);
Felose{outhand);
Foelete(argvi2]);
fprintf{stderr, ™ \irite error on file Xs*, nargvi2]);
errno = -gtatus;
perrori™drite falflure™);
Pterm(1);
)

copyeize -= LORG;
)
if (copysize » 0) ¢
if ((status=Fresd{inhand, copyeize, buffer)) < 0) {
Folosel imhand);
Felose{outhand);
Foelete{argvi2));
fprintf(stderr, “\riead error on X8™, argv(11);
errna = -status;
perror{“Read failure™);
Pterm{1);
}

if [(status=Furite{outhand, copysize, buffer)) < 0) {
Felose(inhand);
Felose(outhand);
FdeletelargviZl};
fprintf{stderr, "\nkrite errar on Xs% argv[2]);
errno = ~Status;
perror{™drite failure*);
Prerm(1};

202 Mark Williams

Lexicon

fevt-Fdatime

Fclose(inhand);
Felose(outhand);
printf(“File X= copied to file Xsi\n*, argvill, argv[21);
free(mydta};
Fretdta(MULLY:
Ptermd{);
1

See Also
gemdos, TOS

fevi—General function (Hbe.a/fevt)

Convert [loating point numbers to ASCII strings
char *fevt(d, w, dp. signp) double d; int w, *dp, *signp

fevt converts floating point numbers to ASCII strings. fevt converts d into a
NUL-terminated string of decimal digits that is w characters wide. It rounds
the last digit and returns a pointer to the result. On return, Tevt sets dp to point
to an integer that indicates the location of the decimal point relative to the
beginning of the string: to the right if positive, and to the left if negative. Fin-
ally, it sets signp points to an integer that indicates the sign of & zero if posi-
tive, and nonzero if negative. Tevt rounds the result to FORTRAN F-format.

See Also
ecvt, frexp, govl, ldexp, modf, printf

Notes
fevt performs conversions within static string buffers that are overwritten by
each execution.

Fdatime—gemdos function 87 (osbind.h)

et or set a file’s date/time stamp
#include <oshind.h>

void Fdatime(info, handle, getser)
int handle, gersel, infol2l;

Fdatime retrieves or sets a file's time/date stamp. handle is the file's handle
that was set when the file was first opened. getset indicates whether the stamp
is ta be reset or retrieved: 0 indicates get, and | indicates set. info points to a
buffer that holds two integers; this buffer either have the time/date stamp writ-
ten into it, or will hold the new time/date stamp that is to replace the previous
stamp, depending on whether the stamp is to be retrieved or reset. In either
case, the first integer of info encodes the time and the second integer encodes
the date, as follows:

Mark Williams C 203

infaoflt} 0-4

no. of two-second increments (0-29)

5-10 no. of minutes (0-59)
11-15 no. of the hour (0-23)
infof 2] 0-4 day of the month {1-31)
5-8 no. of the month (1-12)
9-15 no. of the year (0-119, 19580 = 0),

Fdatime returns nothing.

Example
The following example demaonstrates Fdatime.

Binclude <osbind.h>
#include <errno.he
#include <time. h>

main{arge, argv)
int arge; char *argvil; ¢

int fd;

rtetd t rtd; /* Backwards tiee, date */
utetd t utd; /* Forwards date, time */
time t t; /% COMERENT time */

.t "t /% Tiee flelds */

if farge < 23 ¢
printf(=Usage: Fdatime <filename»yn®};
exiti);

b

it ((fd = Fopen{argvi1l, D)) < 0} {
errng = -fd;
perror{argv(1l);
exit{1y;

p

Fdatime(&rtd, fd, 0);

utd.g_date = rtd.g_rdate;

utd.g time = rtd.g rtime;

tp = tetd_to tm{utd);

t = jdey to_time{tm to jeay(tp));

printfi*ks", ascrime{tp));
printfimxsy, crime(dt));
revurn Q;

}

See Also
gemdos, TIMEZONE, TOS

204 Mark Williams C.

pexiconl Fdelete-feof

Notes

msh updates the time it returns by one hour if the daylight savings time flag 13
cet in the TIMEZONE environmental parameter. Therefore, durimg the sum-
mer months, the time returned by this routine may be one hour behind the time
returned by the date command.

Ficlete—gemdos function 65 (osbind.h)
Delete a [ile
#include <osbind.h>
long Fdelete{name) char "name;

Fdelete deletes a file. name poinmts 10 the file's name, which must be a NUL-
terminated string. Fdelete returns 0 if the file could be deleted, and non-zero
if it could not.

Example
For examples of how to use this macro, see the entries for Fseek and Fereate,

Ser Also
gemdos, TOS

Fdup—gemdos function 69 (osbind.h)
Generate a substitute file handle
#include <osbind.h>
long Fdup(handle) int handie;

Fdup generates a substitute file handle for a standard file handle: between one
and five, inclusive. It returns the new, non-standard file handle if successful,
ar the errar code EINHNDL (invalid handle) or ENHNDL (no handles left, i.e.,
too many files open) if not.

See Also
gemdos, TOS

Nores

Fdup returns with no error indication if the argument it is passed is a file
handle that has been processed by Felose: however, the svstem will generate an
address error when the process terminates.

leof—STDIO macro (stdio.h)
Discover stream status
#include <stdio.h>
feof(fp) FILE*fm

feof is a macro that tests the status of the argument stream fp. It returns a aum-
ber other than zero when fp has reached the end of file, and 0 otherwise. One

Mark Williams C 205

ferror-Florce Lexicon

ferror—STDIO macro (stdio.h)

use of feof i5 to distinguish a value of -1 returned by getw from an EOF.

Example
For an example of how to use this Tfunction, see the entry for fopen,

See Also
STDIO

Discover stream status
#include <stdio.h>
ferror(fp) FILE *fp;

ferror is 8 macro that tests the status of the argument stréam fp. Tt returns ol
number other than zero if an error has occcurred on fp. Any error condition tha
is discovered will persist either until the stream is closed or until clearerr is
used to clear it. For write routines that employ buffers, fflush should be calles
before ferror, in case an error occurs on the last block written, 1 |

See Also g
STDIO

(flush—STDIO function (libe.a/fflush)

Flush stream output buffer
#include <stdio.h>
fflush(/p) FILE *fp;

fflush writes any buffered output data associated with the stream fp. The file
stays open after Tflush is called. felose calls (Tlush: there is no need for the user
program to call it directly under ordinary conditions.

Example
For an example of this routine, see the entry for v_gtext,

See Also
STDIO

Diagnostics
[flush returns EOF if it cannot fiush the contents of the buffers.

Fforce—gemdos function 70 (osbind.h)

206

Force a file handle |
#include <osbind.h>

long Fforce(shandle, nshandle) int shandle. nshandle; |

Fforce forces the standard file handle, ie_, zero through five, 1o point to th’!;:
same file as the non-standard file handle, ie., six and up. Fforce returns

Mark Williams C

Lexicon fgetc

E _OK {no error) if successful, or EIHNDL (invalid handle) if not.

See Also
Fdup, gemdos, TOS

fpete—STDIO function (libe.a/fgetc)
Read character from stream
#include <stdio.h>
int feete(fp) FILE *fm

fgetc reads characters from the input stream fp. It is a function whose body is
the macro getc. In general, it behaves the same as getc] it runs more slowly than
gete, but yields a smaller object module when compiled.

Example
This example counts the number of lines and “sentences” in a file.

Finclude <stdla.h>
maing 3
FILE *fp;
int ch, nlines, nEents;
fnt filename(20];
nlires = neents = 0;
printf{"Enter file to test: ");
gets(filename);
{f ((fp = fopen(filename »r*)) 1= WULL) (
while (fch = fgetc{fp)) 1= EDOF) {
i1 (ch == tyn') ++nlines;
elag If (ch=m ¥ .0 || ch=s *)" || ch == 177} (

it (¢ch = fgetelfp)) 1= ') (
+angents;
ungetei{ch, fp);

)

alse forfchs'.'; (ch=fgetc(fpl)=="."})

¥
)
printf("%d line{s), Xd sentence(sl.\n", nlines, nsents);
3} else
printf{ Cannot open %s.\n", filenama);
¥

See Also
gete, STDIO

Diagnostics
fgetc returns EQF at end of file or on read error.

Mark Williams C 207

Fgetdta L:

Feetdta—gemdos function 47 {osbind.h)
Get a disk transfer address
#include <oshind.h>
#include <stat.hs
DMABUFFER *Fgetdta()

Fgetdta gets and returns the disk transfer address that had been set by Fsetdta,
and will be used by Fsfirstand Fsnext. '

Example
The following example creates a version of the find wudility for TOS., It
generates a full path name and description for every file in vour file system;

?ut]put can be piped to if you wish to find where vou stored a particular file, ag
ollows:

find | egrep filename

This example demonstrates the TOS functions Fgetdta, Fsetdta, Fsfirst, and
Fsnext. It also demonstrates the use of Isascli, isupper, free, malloc, strcat,
strepy, strlen, and tolower,

This example also demonstrates how to use the giobal variable _stksize to check
for stack overflow,

#include <osbind.h»
#include <stat.h»
#include <crype.h>
extern long stksize;

/® Translate string to lower case */

char *|owsrcase(rnnms)

char *nnme;

C
reglster char ®*p = name; reglster int c:
while {c'= *p) *p++ = lgascii{c) & isupper{c) ? tolower{c) t c;
return i

¥

/* Concatentate path suffix to path prefix =7

char *dircat{pfx, sfx)

register char *pfx, *sfx;

{
extern char *malloc{), *strcat{); |
regizter char *p; register int nb, npfx;
nb = {npfx = strien(pfx)) + 1 = strien{sfx) + 1; I

208 Mark Williams C

fgets

if ((p = malloc{mb}} == 0} exit({1};
strepylp, pfxd;

if (npfx 1= 0 B pfalrpfx-11 1= "W} streat(p, "\W\");
return streatip, sfx);

}

/%= Search the directory specified by dname */
{4 nd{ name)
chaf *name;
{
register char *globname, *newnase; DHASUFFER dumb, "saved;

if ({longilsaved <» _stkeize+128) {
printf("stack near overflow in find{)\nhr"); return;
¥

globname = dircat{name, "*.*%);
saved = [(DMABUFFER *)Fgetdtall;
Fretdtalbdumb);

it {Fafirstiglobname, OxfF) == 0) (
do
if (dumb.d_frome (0] I= *.')
newname = dircat(name, dumb.d fname);
printf(“Xs\n", lowercane{nesmame));
£ i { newriome) -
free(newnne)

]

3 while (Fenext() == 0);
)
freel{globname);
Feetdta{saved);
3

mafrd)

{
find(v¥y; return 0;
}

See Also
Fsetdta, Fsfirst, Fsnext, gemdos, TOS

fpets—STDIC function (libe.a/{gets)
Read line from stream
#include <stdlo.h>
char *fgets(s, n, fp) char *5; int n; FILE *fp;

fgets reads characters from the stream fp into string s until n-1 characters have
been read or until a newline or EOF is encountered. It retains the newline, if
any, and appends a NUL character at the end of of the string. fgets returns the

Mark Williams C 209

foetw

leetw—STDIO function (libe.a/getw)

argument 5 if any characters were read, and NULL if none were read.

Example
This example looks for the pattern pattern given by argy[1] in standard inp it
in file argv]2]. Tt demonstrates the functions pnmatch, fgets, and freopen,

#include <stdio.h>
#cdefine MAXLINE 12B
char buf [RAXLIKE] ;

mainferge, argv) int arge; char ®argvil; {
if (arge 1= 2 E& arge 1= 3)
fatal("Usage: prmatch pattern [file 1");
if tarpe == 3 k& frecpenCargvi2l, "r®, stdin) == WULL)
fatal{"canmot open ifrput file®);
while (fgets(buf, MAXLIKE, stdin) 1= WULL) (
if (prmatchibuf, argvi1l, 1))
printf(*%s™, buf};
)

if (1 fecf(stdin}}
fatal{"read error=);
exit(0);:
}

fatal{s) char *s; {
fprintf(stderr, "prmatch: Xs\n", s8);
exit(1);

3}

See Also
STDIO
The C Programming Language, page 155

Diagnostics
fgets returns NULL if an error occurs, or if EOF is seen before any characters
are read.

Read integer from stream
#include <stdio.h>

int fgetw(/p) FILE */p;
fgetw is a function that reads an integer from the stream [p.

See Also
STDIO

Mark Williams C

I,E\'imn field-file

Notes
fgetw returns the value EQF on errors. A call to feof or ferror may be neces-
sary to distinguish this value from a valid word.

field—Definition

A field is an area that is set apart from whatever surrounds 1t, and that is
defined as containing a particular type of data. Tn the context of C program-
ming, a lield is either an element of a structure, or a set of adjacent bits within
an inl.

See Also
bit map, data formats, structure
The C Programming Language, page 136

file—Command

Name a file's type
file file ...

file names the type of each file named. It examines files to make an educated
guess about their format.

file recognizes the following classes of text files: files of commands to the shell;
files containing the source for a C program; files containing assembly language
source; files containing unformatted documents that can be passed to nroff; and
plain text files that fit into none of the above categories,

file recognizes the following classes of non-text or binary data files: the various
forms of archives, object [iles, and link modules for various machines, and mis-
cellaneous binary data files.

See Alsa
commands, ls, msh, size

Naotes
Because file only reads a set amount of data to determine the class of a text [ils,
mistakes can happen.

file—Definition

A file is a mass of bits that has been given a name and is stored on a nonvolatile
medium, These bits mayv be ASCII characters or machine-readable material of
some sort. Under the UNIX system, the COHERENT system, and related
operating systems, external devices can mimic files, in that they can be opened,
clased, read, and written 1o in 32 manner identical to that of files.

Mark Williams C 211

FILE-flexible arravs Lexic

FILE—Definition

file d,escriptor—t)eﬁmllﬂn

fileno—STDIO function (libe.a/flleno)

flexible arrays—Definition

212

See Also
close, fopen, fclose, FILE, open

Descriptor for a [ile stream
#include <stdio.h>

FILE describes a stream or a peripheral device through which data flow, It is
defined in the header file stdio.h. A pointer to FILE is returned by fopen,
freopen, and related functions.

See Also
fopen, freopen, stdio.h, stream

A file descriptor i5 an integer that appears as an entry in a table of files, 1

used by routines like open, close, and Iseek to work with files, Note thata f
descriptor is nor the same as a file pointer, which is used by routines like fope
fclose, or fread. Note, too, that TOS routines use the term handle as a synony
for “file descriptor.

Gret Tile descriptor
#include <stdio.h>
fileno(fp) FILE */p;

fileno returns the file descriptor, a small, non-negative integer, associated with
the stream fp. This file descriptor, called the kandle, is the integer returned by
the open ar ereat call, which a routine such as fopen used 1o create the stream..

See Also
STDIO

Flexible arrays are arrays whose length is not declared explicitly. Each has eg‘ :
actly one empty ‘[]' array bound declaration, and if the array is multidimen=
sional, then the flexible dimension of the array must be the {irst array bound 1o
the dcharatiﬂn.

Flexible arrays occur in only a few contexis, for example, as parameters:

char *argv(l:
char pll[8];

Mark Williams €

Lexicon float

a5 extern declarations:
extern int encll;
as extern or static initialized definitions:
static char digit{]="O1234567";
or as a member of a structure, usually, though not necessarily, the last:

struct nlist {
struct nlist "nexi;
char namell;
¥
See Also
array, data types

Moat—Definition

Floating point numbers are a subset of the real numbers. Each has a built-in
radix point that shifts, or “floats™, as the value of the number changes. It con-
sists of one sign bit, which indicates whether the number is positive or negative;
bits that encode the number's exponent; and bits that encode the number's frac-
tion, or the number upon which the exponent works. Note that elsewhere, the
fraction is often called the mantissa. In general, the magnitude of the number
encoded depends upon the number of bits in the exponent, whereas its precision
depends upon the number of bits in the fraction.

The exponent often uses a bias. This is a value that is subtracted from the ex-
ponent to yield the power of two by which the fraction will be increased,

Floating point numbers come in two levels of precision: single precision, called
floats: and double precision, called doubles. With most microprocessors,
sizeof(float) returns four, which indicates that it is four chars (bytes) long; and
sizeof(double) returns gight.

Several formats are used 10 encode fioats, including IEEE, DECYAX, and BCD
(binary coded decimal). Mark Williams C uses DECVAX format. Each format
is described below,

DECVAX Format
The 32 bits in a float consist of one sign bit, an eight-bit exponent, and a 23-
bit fraction, as follows:

§ign Exponent fraction
|z eeseeee|e fffffﬂ|f~fﬂ'fo:Iffi:‘f1‘ﬂ
Byte & Byte 3 Byte 2 Eyte 1

Nate that the exponent has a bias of 125,

If the sign bit is set o one, the aumber is negative; if it is set to zer10, then the

Mark Williams C

float

214

number is positive. If the number is all zeroes, then it equals zero; an expa
and fraction of zero plus a sign of one (“negative zero™) is by definition not 3
number. All other forms are nomeric values:

The format for doubles simply adds another 32 fraction bits to the end of the
float representation, as follows:

Sign Exponent Mantisss
s eeeeces|e ﬂrffffr[Hffm'f|ffffffffEffffffff[ﬂfﬂffffrfffffffjﬁ{ﬂffft
Byte 8 Byte 7 Byte 5 Byte 5 Byted Eyted Byte @ Byte

For this reason, a double under Mark Williams C has double the precision of &
float, but the same magnitude.

TEEE Formail
The TEEE encoding of a flost is the same as that in the DECVAX fo
Note, however, that the exponent has a bias of 127, rather than 129,

Unlike the DECVAX format, IEEE format assigns special values to a numbes
of floating point numbers. Note that in the following description, a tiny ex=
ponent is one that is all zeroes, and a huge exponent is one that is all ones:

x A tiny exponent with a fraction of zero equals zero, regardless of the sot= |

ting of the sign bit. I

A huge exponent with a fraction of zero equals infinity, regardless of the
setting of the sign bit.

A tiny exponent with a fraction greater than zero is a denormalized num- |
ber, i.e., a number that is less than the least normalized number,

* A huge exponent with a fraction greater than zero is, by definition, not &
number. These values can be used to handle special conditions.

The 64 bits in a double unlike the IEEE format, does not increase the number
of exponent bits, but consist of a sign bit, an 11-bit exponent, and a 52-
fraction, as follows: -]

Sign Expanent Mantissa
|s BEEgEEe | Bese fﬂfl'Ffffffﬂ1HffiH!'|fffffi'fl'|ffffﬂﬂ]fffﬂ‘fH[HHfffﬂ
Byte B Byte T Eyte & Byte 5 BSyle4 Byted Byte?2 Hytel

Note that the éxponent has a bias of 1,023, The rules of encoding are the s ne
as for foats.

BCD Format
The BCD (“binary coded decimal™) format is used in accounting, to eliminate:
rounding errors that alter the worth of an account by a fraction of a cent. Fi
that reason, BCD format consists of & sign (s), an exponent (e}, and a chain
four-bit numbers, each of which is defined to hold the digits zero through
(d).

A BCD float has 3 sign bit, seven bits of exponent, and six four-bit decimal

Mark Williams €

]:exil:{}n floor-Flopfmt

floor-

numbers, as follows:

Sign Exponent Hantisss
| eeeeeez| dddd dddd|dddd dddd|dddd dddd)
Byte & Byte 3 Byte 2 Byte 1

A BCD double has a sign bit, 11 bits of exponent, and 13 four-bit decimal
numbers, as follows:

Sign Exponent Mantissa
|s ecooose|oecs dddd{dddd dddd|dddd dddd |dddd dddd|dddd dddd [dddd dodd [dddd dddd |
Byte B Byte T Byte & Byte 5 Byte & Byte 3 Byte 2 Byte 1

Note that passing the hexadecimal numbers A through F in a decimal digit
yields unpredictable results.
Note the following rules in handiing BCD numbers:

A tiny exponent with a fraction of Zero equals zero.

L A tiny exponent with a fraction of non-zero indicates a denormalized
number,

. A huge exponent with a fraction of zero indicates infinity.

. A huge exponent with a fraction of non-zero is, by definition, not a
number: these non-numbers are used to indicate errors.

See Also

data formats, declarations, double
The Art of Computer Programming, vol, 2, page 180f/

~Mathematics function (libm.a/{loor)
Set a numeric floor

#include <math. h>

double floar(z) double =;

floor sets'a numeric floor. It returns a double-precision floating point number
whose value is the largest integer less than or equal to 2.

Example
For an example of this function, see the entry for cell.

Sep Afso
abs, ceil, fabs, frexp, mathematics lbrary

Flopfmt—xbios function 10 {oshind.h)

Format tracks on a floppy disk

#include <oshind.h>

#include <xbios.h>

int Flopfmt(buffer. filler, device sectors, frack, side. interleave, magic, new)

Mark Williams C 215

Flopfmt Le

char *buffer. *filler. *magic; int device, sectors, track. side, interleave, new;

Flopfmt formats a track on a floppy disk. The Atari SF314 and SF354 floppy
disk drives each support 80 tracks per disk, and zero to ten sectors per track.,

e

buffer points to a buffer large encugh to hold the image of an entire trag|
filler is unused, and can be set to anything. device is the number of the flopp
disk drive, i.e., zero or one. sectors is the number of sectors to Format j
track: the usual number is nine. frack is the number of the track that you v
to format, from zero to 79. side is the side of the floppy disk on which 3
wish to write, i.e., Zero or one. interleave is the number that governs the in
leaving of sectors; it is usually set to one. magic 15 a magic number that must
set 1o OxB87654321.

Finally, new is the word-fill value that is used for new sectors; a good setting
OxESES. j

Flopfmt returns zero if the information was written correctly, and returns
numeric error code if it was not. If bad sectors are discovered, their numbe
are written into buffer in the form of a NUL-terminated string. The user then
has the choice of attempting to re-format the sector, or recording this string to
map out bad sectors in any further attempts to write to that track, '

Example ‘
This example formats a single-sided Moppy disk and initializes the First twoo
tracks. 1t demonstrates the macros Flopfmt, Flopwr, and Protobt. i
|
I

dinclude <stdia.h>
#inciude <osbind.he

fcdef ine BLANK (OxESES) /* Standard séctor format value *f il

ficdef ine MAGIC (OxBTE3L321L) /% Manditory magic rumber value */

goef e BUFSIZE (F*1024) /* Buffer size for 9 sectors */ L

extern Int errne; /= Error ramber for perrori} *f

mein) |
int treck; /* Track counter */
int side; J* &ide counter %/
int status; J* Status word... */ !
short *bi; /* Buffer prr. =/ '
char reply; I® Reply..: *f i
short *middle; /* Painter for bed block dump */

£ide = 0: /= Only format side 0 =/

printf(*keally format dizk in drive B2 =);

fflushi{ztdout);

if {Creply = Crawcin({)) 1= ‘y* &R reply = 'Y'} (
printf("io. Floppy in drive B not formatted.\n"}; {
Pterml(});

Mark Williams C

Flopfmt

printfares\n");

printf(“Press any key when ready..."™);
ffiush{ztdout);

Crawcini);

printf{™n"});

bf = ¢(short *) mal loc(BUFSIZE);

/* First -- Format the floppy */
for (track=0; track<B0; track#+) {
printf{*nou formatting track Xd:", track);
ffluch{stdout);
gtatus = Flopfmt(bf, OL, 1, ¥, track, side, 1, MAGIC, BLANK);

if (status) €
middle = bf;
printf{¥\tXdy\n®, status);
while (*micdle) {

printf{™\tBad sector X\n", *middle++);

¥

) oolse {
printf{"yrokayin®);

¥

)

printf("Format of all tracks completedin®);
printf(“Amy key to continue...™);
fflush{stdout);

Crawcing);

printf{*Initialfzing directory structure\n™);

‘fI
* Mow, clesr out the first two tracks (all zeros...
* First, zero out the buffer...
*
for (track = 0; treck < (BUFSIZE»»1); bf[tracke+] = 0);
/* Wow, write It to all sectors of the first two tracks *f
for (tracke=l;track<Z;) {
printf{"Zeroing track Xd.\n", treck);
{1 (etatus = Flopwr(bf, OL, 1, 1, tracke+, O, 93) {
ErFnG = -STATUS;
perror{“Flopur failure};

3

/* Now, we will prototype the boot bleck... =/
Protobtibf, (long)Random{}, 2, 0);

Mark Williams C 217

/* Finally, write this out to the boot sector...
status = Flepwr({bf, OL, 1, 1, 0, 0, 1);
if (status) {

errng = -status;

perror{"Write of boot-block fafled.");

)
I verify the write... *f

status = Flopver(bf, OL, %, 1, 0, 9, 1);

if (status) {
errpo = -status;

perror{™Verify of boot-block failed.®);

b
printf{"Progrom done. Disk in drive B is formatted.\n");
frecibf);
Prermd(};
¥
See Also
TOS, xbios

Floprd—xblos function 8 (osbind.h)
Read sectors on a floppy disk
#include <oshind.h>
#include <xbios.h>

int Floprd(huffer. filler. device, sector, track, side, count)
char *buffer. *filler; int device, sector, track, side, count;

Floprd reads one or more sectors on a floppy disk. filler is not used, but must
be passed properly for this function to work. buffer must point to a buffer that
is large enough to hold the number of sectors read. device is the number of the

device, i.e., zero or one. seclor is the sector at which to begin reading, i.e., ong

through nine. track is the track number to seek to, i.e., zero through 79. sidei§
the side of the floppy to read, zero or one. Finally, count is the number of sec-

tors to read; this can be no greater than the number of sectors on the track.
Floprd returns zero if the read succeeded, and returns an error code number 15

it did not,
Example

Finclude <osbind.h>

finclude <bios.h>

gdefine uword(x) ((un=igned)(x))

#define ulomgix) {{unsigned Llong)(x}}
#define can2(x,y) (uword(x)|(usord(y)=<8})
#detine card(x,y,2) (cen2(x,y}|(ulong(z)<<ig))

Mark Williams C

0
i

Lexicon Flopver

STruct bbpb hib;
maini) €
Floprdi&bb, OL, 1, 1, 0, 0O, 1); /* read the boot block */
printf(¥serial number: Xlu\n®,
can3(bb.bp serial [01,bb.bp serial[1],bb.bo_serial (212);

printf{“bytes per sector: Xu\n",
eanZ(bb.bp bpe (0], bb.bp bps(11)3;

printf{"sectors per cluster: Tu\n®,
uword{bb.bp spc));

printf{®“reserved sectors: Xwin",
can2ibb.bp_res(0] ,bb.bp resf11});
printf{*rumber of fate: Xu\n®,
wword{bb.bp nfats});
printf("root directory entries: Xu\n*,
cen2{bb.bp ndirsi0],bb.bp ndirs(111);
printf(®sectors on media: XTu\n",
canZ (bb.bp nsects (0] ,bb.bp neectsll)));

printf{*media descriptor: Xuyn®,
waord(bb.bp medind);

printf("sectors per fat: Xuln®,
cang{bb.bp spf[0) bb.bp spf(1]10);

printf{®"sectors par track: Xu\n®,
can2({bb.bp spt[0] ,bb.be sprilld);

printf{*hesds per device: Ruin®,
tnnhh.h:l__nl!dl:m],,H:.tp_rnith:l't”::
printf("hidden sectors: Lin",
esn2{bb.bp_nhid(0],bb.bp rhid(113);
printf{®check sum: Xx\n*, can2{bb.bp chk[01,bb.bp_chk(11));
return 0

:

See Also
Flopwr, TOS, xblos

Flopver—xbios function 19 (osbind.h)

Verify a floppy disk

#include <osbind.h>

#include <xhios.h>

int Flopver{buffer, filler, device, sector, track, side, count)
char *puffer, *filler; int device, sector, track, side, count;

Flopver reads a sector from a floppy disk, to verify that it can in fact be read.
buffer points to a buffer of 1,024 bytes into which a list of bad sectors (if any)
will be written. filler is not used, and can be initialized to anything. device is
the number of the floppy disk, and can be set to zero or one. sector is the num-
ber of the sector to read, one through nine. frack is the track on which to seek

Mark Williams C 219

Flopwr-fopen

the sector in question, zero through 79. side is the side of the disk to read, zero
or one, Finally, count is the number of sectors to read, and can be no greater
than the number of sectors available on a track.

Flopver returns zero if it could read the sector, and returns an error code if it
could not. If it found bad sectors, it writes a NUL-terminated string of the
numbers of those sectors into buffer; otherwise, it writes zero into buffer.

Example
For an example of how to use this macro, see the entry for Flopfmt.

See Also
Flopfmt, Flaprd, Flopwr, TOS, xblos

Flopwr—xbios function ? {oshind.h)
Write sectors on a floppy disk
#include <oshind.h>
#lnclude <xbios.h>
int Flopwr(buffer. filler, device, sector, track, side, count)
char *buffer. * filler; int device. sector, track, side. count;

Flopwr writes one or more sectors on a lloppy disk. filler is not used, but must
be passed properly for this function to work. buf/fer points to a buffer that
holds the information to written onto the disk. device is the number of the
device, i.e., zero or one. secfor is the sector at which to begin writing, i.e., one.
through nine. track is the track number to seek 1o, i.e., zero through 79. side i§.
the side of the floppy on which to write, zero or one. Finally, count is the
number of sectors to write: this can be no greater than the number of sectors on
the track.]

Flopwr returns zero if it succeeded in writing the information, and returns nn1
srror code number if it did not. Note that writing over the boot sector on the.
disk (sector 1, side 0, track 0) is not recommended.

Example
For an example of how to use this macro, see the entry for Flopfmt.

See Also
Floprd, TOS, xbios

fopen—STDIO function (libc.a/fopen)
Open a stream for standard 1/O
#include <stdio.h>
FILE *fopen (name, type) char *name, “type;

fopen allocates and initializes a FILE structure, or strean; opens or creales the
file name; and returns a pointer to the structure for use by other STD
routines. mame may refer either to a real file or to one of the devices aux:, co

220 Mark Williams C

Lexicon

fopen

or pro:. ivpe is a string that consists of one or more of the characters “rwab™, to

indicate the mode of the string, as follows;

r read ASCIL error if file not found
rh read binary data

W write ASCII; truncate if found, create

il not found

wb write binary data

a append ASCII; no truncation, create
if not found

ab append binary data

rw read and write ASCIL; no truncation,
error if not found

rwh read and write binary data

wr write and read ASCIT, truncate if
found, create if not found

wrb write and read binary data

ar append and read ASCIL, no truncation,

create if not found
arb append and read binary data

r+, w+, and a+ are synonyms for rw, wr, and ar, respectively. The modes that
contain a set the seek pointer to point at the end of the file, so that data may ba

appended: all other modes set it to point at the beginning of the file,

Example

This example copies argv]1] to argv|2] using stdio routines. It demonstrates the

functions fopen, fread, fwrlte, felose, and feof.

#include <stdia.h>
char buf [BUFSIZ];

main{arge, argv) int arge; char "argvil; (
register FILE *ifp, "ofp;
register unsigned int n;

if (argc I= 3}
fatal (“Usage: copy source cdestination™);

if ((ifp = fopen{argv(1), ®rb*)) == MULL)
faral(“cannat open Input file®);

if ({ofp = fopen{argv(2l, “wb")) == WULL)
fatal(Ycannot open-output file¥):

while ((n = fread(buf, 1, BUFSIZ, ifp)) 1= 0O} {
if (furitetbuf, 1, n, ofp) I= n)
fatal ("urite error¥);

Mark Williams C

221

Fopen-form_ alert Lexi

Fopen—gemdos function 61 (osbind.h)

form_alert—AES function (libaes.a/form_alert)

222

if (1feaf{ifp))
fatal{™read error®);
if {fclose{ifp) == EOF || fcloselofp) = EOF)
fatal({"cannot close™);
exie(0);
}

fatal{s} char *s; {
fprintfistderr, "copy: Xs\n", s);
exit{1);

¥

See Also
FILE, freopen, STDIO
The C Programming Language, page 151, 167

Diagnostics
fopen returns NULL or if it cannot allocate a FILE structure, if the ¢ype stri
is nonsense, or if the call to open or creat fails. Currently, only 20 FILE stry
tures can be allocated per program, including stdin, stdout, and stderr.

Open a file
#include <osbind. h>
long Fopen(name, mode) char *name; int mode;

Fopen opéens a file. name points to the file’s path name, which must be a NL
terminated string. mode is an integer than encodes the mode in which the file
opened, as follows: zero, read only; one, write only; and two, read or wri
Fopen returns a file handle, which is understood by TOS.

Example
For examples of how to use this macro, see the entries for Fseek and Fereate.

See Also
gemdos, TOS

Display an alert box
#include <aesbind.h>
int form_ alert(futton, string) int butron; char *string;

form alert is an AES routine that displays an alert dialogue box on the s r
An alert dialogue box consists of three elements: an icon, which is selected frof
a predefined set of three; text, which describes the alert; and one or more “'é |
buttons™, or little boxes that the user chicks to indicate what he wants to do.

button definas which exit button is the default; the default button is drawn with

Mark Williams €

Lexicon form_alert

a heavier outline and it is the one selected if the user presses the return Key in-
stead of using the mouse. The default is set as follows: zero, no default button;
one, first exit button: two, second exit button; and three, third exit button.

string points to the string used with the alert box. The string has the following
format;

trl tiextl fexill

The square brackets are entered literally, » refers to the number of the icon
yvou wish to display, as follows:

no icon

NOTE icon (exclamation point)
WAIT icon (question mark)
STOPF icon (stop sign)

e b = D

fext is the text displayed within the alert box. Note that an alert box can hold
no more than five lines of text, each no longer than 40 characters. A vertical
bar *|' indicates a line break. exit describes the exit buttons. It can have no
more than 20 characters. If vou want more than one exit button, separate their
texts with a vertical bar. For example,

(31 [Cannot find file[Do you wish to try again?] [Ouit|Try sgaind

indicates that you want the STOP icon (icon no. 3), that the box is to have two
lines of text (“Cannot find file/Do yvou wish to try again?"), and that you want
two exit buttons, one marked *Quit™ and the other marked *Try again”,

form_alert returns the number of the exit button selected.

Example

This example shows a program called alert.c; it opens a text file and displays ity
contents, and keeps the text on the screen until a key is pressed. The program
uses fsel input to accept information from the user, and form_alert to handle
various error conditions. Note that the line

char DIRPATHIB0T = "p:\\exasplesi\®."";

points to the directory examined; you should insert the name of the directory
you wish to work with. The default is a:\,.

#ginclude <ctype.hs
#include <sesbind.h>

#define CAMTOPEN O
#defire ROTRSCHL 1
pdefipe FOULLP 2
#define UNDEFINED 3

Mark Williams C 223

form alert

224

char DIRPATH[BO] = “b:\\examplesi*."™;
static char *STRINGI] = {
#(2] [Cannot Open File] [Quit|Try Againl®,
“[31[File Is Not ASCIIY (K1,
n[3] fFoul-wp in fsel input] [OKI™,
H[3] Undefimesd Error] [K]™

HH

FILE *mewopen() {
FILE *tmp;
char name [80] ;
int button;

rame [0} = '\D';

if (fsel_input(DIRPATH, name, Lbutton) == 0)
alert{FOULUP);

olse
return(fopeniname, "ro));

maing) {
FILE *fp;
int ch;

sppl_initid;

while ((fp = pewopen{)) == NULL) (
nlert{CARTOPEN);

3

while (tch = fgeérclfp)) 1= EOF) {
if Cismsciiqch))
putchar(ch);
else
alerc(NOTASCIT);
}
evnt_keybd(}; J* stop processing until keyboard hit *=/
appl_exit();
exit(0);
¥

alert(flag) int flag; {

int button = 1;

if{flag > UKDEFINED)
flag = UNDEFIKED;

if(form slert{button, STRINGEflagl) = 2)
FETUrn;

appl_exit();

exitil};

Mark Williams C

Lexicon form center-form dial

See Also
AES, cc, gem, TOS

form center—AES function (libaes.a/form_center)
Center an object on the screen
#include <aesbind.h>
#include <obdefs.h>
int form_center(picture, location) OBJECT *picture; Prect location;

form center is an AES routine that centers an object on the screen.

picture points to the object being manipulated. The type OBJECT is defined in
the header file ochdels.h.

focation points to where the object is centered on the screen. It is declared to
be of type Prect, which is defined in the header file aeshind.h. Prect is a struc-
ture that consists of four pointers to integers, as follows:

x X value of centered coordinate
¥ ¥ value of centered coordinate
w width of centered object
h height of centered object

form_center always returns one.

Example
For an example of this routine, see the entry for object.

See Also
AES, obdefs.h, object, TOS

form_dial—AES function (libaes.a/form_dial)
Reserve/free screen space for dialogue
#include <aesbind.h>
int form_ dlal(flag, smallbox, bighox) int flag; Prect smallbox, bighox;

form dial is an AES routine that either reserves space for a dialogue box, or
frees space previously reserved. flag indicates whether the space is to be
reserved or freed: zero indicates reserve and three indicates free. The space
being reserved was originally designed to be a box that grows from smallbox to
bighox, as shown by the bindings.

Both smallbox and bighox are of type Prect, which is declared in the header file
sesbind.h. Prect iz a structure that consists of four pointers to integers, as
follows:

Mark Williams C 225

form_do-form error Lexicon

X value of centered coordinate
Y value of centered coordinate
width of centered object
height of centered object

N

form dial returns zero if an error occurred, and a number greater than zero 1&“
one did not.

Example
For an example of this routine, see the entry for object.

See Also
AES, form_do, object, TOS

form_do—AES function (libaes.a/form_do)
Handle user input in form dialogue
#include <aeshind.h>
int form_ do{tree. object)
long tree; int object;

form_do is an AES routine that handles text the user may need to input into an
object. free points to the object tree that will accept the text. object indicates
the object within the tree that has an editable text field; zero indicates that the
tree contains no editable text field. form_do returns the index of the object
that closes the dialogue. [

Example
For an example of this routine, see the entry {or object,

See Also
AES, form_ dlal, object, TOS

form _error—AES lunction (libaes.a/form_error)
Display a DOS error alert
#include <aesbind.h>
int form_error{error) !
inl errar;

form_error is an AES routine that displays a preset DOS error alert. error is an
integer that indicates which error message vou wish to displayv, as follows:

226 Mark Williams C

Lexicon

fprintf

1]
1
2
3
4
5
[
T
8
9
10
11
12
13
14
15
16
17
18

MNote thar

Undefined

Undefimed

Cannat Tind file or folder

Same as 2

Mo room to open another document
Item with this name already exists
Undeflined

Undefined

Mot enough RAM to run application
Undefined

Same as 8

Sameas B

Undefined

Undefined

Undefined

Specified drive does not exist
Cannot delete current folder
Undefined

Same as 2

the above numbers correspond to error codes under MS-DOS. All

codes greater than 18 are associated with no specific error message. farm_error
returns the number of the exit button that the user clicked, from one through
three. At present, all error alerts have only one exit button.

Example

This example displays the preset error forms.

Finclude <assbind.h>

maingy

int counter;

applt_ipic();
for (counter = 0; counter <= 20; counter++)

form_error{counter);

appl_exiti);

}
See Also

AES, TOS

fprintf—STDIO function (libc.a/printf)
Format output
#lnclude <stdio.h>

fprintf{fp, format [, arg] ...}

Mark Williams C 227

FILE *jp; char * format;

fprintf uses the format string to specify an output format for each arg, which it
then writes into the file fp. See printf for a description of fprintf"s formatting
codes. i

See Also
printf, sprintf, STDIO
The C Programming Language, page 152

Notes

Because C does not perform type checking, it is essential that an argument
match its specification. For example, if the argument is a long and the
specification is for an lat, fprintf will peel off the first word of that long and
present it as an ot

fpute—STDIO function (libe.a/Tputc)

Write character to stream
#include <stdio.h>
fputc(c, fp) char ¢; FILE *fp;

fpute writes the character ¢ onto file stream fp, and returns ¢ upon success.

Example
The following example demonstrates lpule.

#include <stdio.h>
mafng)€
FILE *fp, *fout;
int ch;
int infile[20];
int outfilef20);
printf{*Enter name to copy: ");
gets{infile);
primtf{“Enter name of new file: =);
gets{outfile);

if ((fp = fopentinfile,"r)y 1= WULL) {
it {(fout = fopen{outfile,™w™}) I= NULL)
while {(ch = fgatc{fp)) != EOF}
fputel{ch, fout);
else printf(“Cannot write Xs.wn®, outfile);
¥

else printf("Cannot read Xs.\n*, infile);
felosel{fp);
fclosel{fout);

Mark Williams C

Lexicon fputs-Tread

See Also
STDIO

Diagnostics
EOF is returned when a write error occurs, e.g., when a disk runs out of space.

fputs—STDIO function (libc.a/fputs]

Write string o stream
#inclade <stdio.h>
fputs(siring, fp) char *string; FILE *fp;

fpuls writes string onto the stream fp. Unlike its cousin puts, it does not append
a newline character to the end of string.

See Alse
STDIO

The C Programming Language, page 155

fputw—STDIO function (ibe.a/Tputw)

Write an integer 10 a stream
#include <stdio.h>
fputw(word, [p) Int word; FILE *fp;

fputw writes word to the stream fp, and returns the value written.

See Also
STDIO

Diggpnostics y
EOF it returned when an error occurs. A call to ferror may be needed to dis-
tinguish this value from a valid data item.

fread—STDIO function (libe.a/fread)

Read data from stream

#lnclude <stdio.h=

int fread(buffer, size, n, fp) char *buffer;
unsigned size, m FILE */pm;

fread reads n items of size bytes long each, from stream fp into memory loca-
tion buffer, and returns the number of items read.

Example
For an example of how to use this function, see the entry for fopen.

Mark Williams C 229

Fread-Frename Lexicon |

Fread--gemdos function 63 (osbind.h)

free—General function (libe.a/malloc)

See Also
fwrite, STDIO

Diagnestics
fread returns 0 on end of file or error, and the number of 1items read otherwise,

Read a file

#inclode <oshind.h>

long Fread{handie, n. buffer)
int handle; long m; char *buf fer;

Fread reads n bytes from a file opened by Fopen or Fereate.

handle is the file handle generated when the file was opened; buffer points to:
the location where the material being read is stored. Fread returns n if the file
was read successfully, and an error code if it was not.

Example
For examples of how 10 use this macro, see the entries for Fseek and Fcreate.

See Also
gemdos, TOS

Return dynamic memory 1o free memory pool
free(pir) char *pir;

free helps to manage a program's arena. [t returns to the free memory pool
memory that had previously been allocated by malloc or calloc. [ree marks the
block indicated by pir as unused and coalesces it with contiguous free blocks.
ptr must have been obtained from malloc, calloc, or realloc.

Example
For an example of how to use this routine, see the entry for malloe, For an ex-
ample of this function in a TOS application, see the entry for Fgetdta.

See Also
arend, calloe, malloc, notmem, realloc, setbuf

Diagnostics
free prints a message and calls abort if it discovers that the arena has been cor-

rupted, which most often occurs by storing past the bounds of an allocated
block.

Mark Williams C

Lexicon freopen

Frename—gemdos function 86 (osbind.h)
Rename a file
#include <osbind.h>
long Fremame(n. old path, newpatk) int n;
char *oldpath, newpath;

Frename renames a file. oldparh points 1o the file’s old path name, and newpath
to its new path name; both names must be NUL-terminated strings. newpath
must not be the name of an existing file. n is reserved for TOS, and must be
zero. Fremame can move a file to another subdirectory, but only on the same
disk drive. Tt returns zero if the file could be renamed, non-zero if it could
not.

Example
This example renames a file,

Finclude <stdio.h>
Finclode <cebind.h»

extern int errno; /* globel for last error... %/

mainfarge, argv) int arge; char **argv; (
fnt status;

If {arge < 3) {
printf{"Usage: Frename oldname Pewname\n');
Pterm{1);

b

if ((statuseFrename(0, argv(], argvi21)) 1= 0 (
errno = -gtatus;
perror{"Rename falled");

Prerm{1);
b
primtf("File Xs renamed to Xa\n®, argv(l], argv[21);
Pterml();
)
See Also

gemdos, TOS

freopen—STDIO function (libc.a/freopen)
Open a stream for standard 1/0
#include <stdlo.h>
FILE *freopen (name, type, fp)
char *name, *1ype; FILE *[p;

freopen reinitializes fp, closes the file currently associated with it, opens or
creates file name, and returns a pointer to the structure for use by other STDIO
routines. name may refer either to a real file or to one of the devices aux:, con:,
or pro:.

Mark Williams C 231

frexp-fscanf Lexicon

frexp—Genernl function (libe.a/frexp)

fscanf—STDIO function (libe.a/scanf)

232

type is a string that consists of one or more of the characters “rwab™ (for read,
write, append, binary) to indicate the made of the stream. For additional dis
cussion of the tvpe variable, see fopen. freopen differs from fopen only in ¢
fr specifies the stream to be used. Any stream previously assoctated with fp
closed by fclose. freopen is usually used to change the meaning of stding
stdout, or stderr. '

Example
For an example of how to use freopen, see the entry for fgets.

See Also
fopen, STDIO

Diaggnostics
freopen returns NULL if the type string is nonsense or if the file cannat be
opened. Currently, only 20 FILE structures can be allocated per program, in-
cluding stdin, stdout, and stderr.

Separate mantissa and exponent
double frexp(real, ep) double real; int "em

frexp breaks double-precision floating point numbers into mantissa and ex-
ponent. It returns the mantissa m of its real argument, such that 1/2 <=m < |
or m=0, and stores the binary exponent ¢ in location ep. These numbers satisfy
the equation real = m ® 2%e,

See Also
atofl, ceil, fabs, floor, ldexp, modf

Format input from a file
#include <stdio.h>
fscanf(fp, formai [, arg | ...)
FILE *fp; char * format;

fscanf reads the file fp, and uses the string format to specify a format for each
arg, which must be a pointer, For more information on fscanf’s conversion
codes, see scanf,

See Also
STDIO

The C Programming Language, page 152

Mark Williams C

Le: xigon fzeek

Notes

Because C does not perform type checking, it is essential that an argument
match its specification. For that reason, fscanf is best used only to process data
that you are certain are in the correct data format, such as data previously writ-
ten out with fprintf.

fseek--STDIO function (libc.a/lseek)

Seek on stream

#include <stdio.h>

int fseek(fp. where. how)
FILE *fp; long where; int how;

fseek changes the location where the next read or write operation will oceur in
stream fp. Tt handles any effects the seek routine might have had on the internal
buffering strategies of the system. The arguments where and how specify the
desired seek position. where indicates the new seek position in the file; it is
measured from the start of the file if how equals zero, from the current seek
position if how equals one, and from the end of the file if how equals two.

Example
This example opens file argy[1] and prints its last argv[2] characters (default,
100). It demonstrates the functions fseek, ftell, and fclose.

K¥include <stdio.h»

extern Long mtoll);

main{arge, argy) int arge: char ®argw(l; {
register FILE *ifp;
reginter Int g
long nchars, size;

If targe <2 || srge > 3)
fatal("Usage: tail file [nchars J™);
pchars = (arge == 33 7 atol{ergv(2]) : 100L;
if ({ifp = fopen(argv[1]l, ®r*)) == WILL)
fatal{"cannot open input file");

it {Feeek{ifp, OL, 2) == -1) J® Seek to end =/
fatal{"seek error®};
size = frell({ifp); /® Find current size */

gize = (size « nchars) 7 OL : size - nmchars;

Mark Williams C 233

Fseek

Lexicon

if (fseek(ifp, size, 0} = -1) /* Seek to point */
fatal ("seek error™);
while {{c = getc{ifp)) 1= EOF)
putchar{cy;: /* Copy rest to stdout */
if (fcloselifp) == EOF)
fatal{"cannot close™);
exiv(0);
¥

fatal(z) char ®*s; {
fprintfistderr, “tail: Xs\n", s);
exitil};

3}

See Also
ftell, STDIO

Diagnostics

For any diagnostic error, lseek returns - 1; otherwise, it returns zero. Note that
if fseek goes bevond the end of the file, it will not return an error message until
the corresponding read or write is performed,

Fseek—gemdos Tunction 66 (osbhind.h)

234

Move a file pointer
#include <oshind.h>
long Fseek(n, handle, mode) long u; int handle, mode;

Fseek moves a file pointer. handle is the file's handle, which was generated
when the {ile was opened; n is a signed long integer that indicates the number
of bytes the pointer is to be moved. made containg an integer that encodes the
manner in which the pointer is to be moved, as follows: zero, move n bytes
from beginning of file; one, moveé n bytes from current location; and two, move
1 bytes from the end of the file. Fseek returns the nomber of bytes that the file
pointer is now located from the beginning of the file.

Example
This example demonstrates Fseek. It copies one file into another,

#include <osbind.h>

#include <stat.h>

#include <errno.h>

char buffer8192]; /* BE buffer =/

woid reverse(buffer, Len)

char *buffer; int len;

£
register char place, *forward, *barckward;
forward = EbufferiD];
backward = Ebuffer[len];

Mark Williams C

Lexicon

Fseek

b

while (forward < beckward) (
place = *--backward;
*hackward = *forward;
*foruards+ = place;

fatalferror, msg)
int error; char *msg;

£

.

@rrng o= -errory
perror(msgl;
exitill;

main{arge, Brgv)
int arge; char “argvil;

L

{nt stotus, infd, outfd, size;
DMABUFFER dma;

if (arge < 3} <
printf("isage: Fseek source targetin"};
exiti{1);

2

if ((infd = Fopentargv(l], 03} < 0}
fatal(infd, ergvil});
Fsetdtalfdmal;

if (¢statussFafirst{argvill, OnFT)) 1= 0}
fatol(atatus, argvill);
status = dme.d_fartr & 7;

i1 ttoutfd = Foreatefargvi2l, ststus)) < 0)
fatal (outfd, argvidl);
while (dra.d_fsize > 0) €
if (dma.d_faize » sizeof(bufferd)
site = sfzecf(buffer);
eloe
size = dma.d_fsize;

Fseak(dma.d_feize-size, infd, 0);

if ((statussFresd(inid, (long)size, buffer)) < 03
Foelatelargvi2l), fatallstetus, argviil};

revarselbuffer, sizel;

if (esratus=Furitetoutfd, (longisize, puffer)) < 0)
Fdeletetargv (2]}, fatel{status, argvizl);
dma.d_fsize -= size;

Mark Williams C

235

fzel lInput

Lexicon

Fclose(infd);
Felose{outfd);
printft*File %5 copied to file Xs.\n", argviil, ergvi2l);
return 0;
»
See Also
Fsnext, gemdos, TOS
Diaggnostics

For any diagnostic error, Fseek returns -1, otherwise, it returns zero. Note that
if Fseek goes bevond the end of the file, it will not return an error message un-
til the corresponding read or write is performed.

fsel _input—AES function (libaes.a/fsel_input)

236

Select a file
#include <aesbind. h>
int fsel_input(directory. file, button) char *directory. [ile; int *button;

fsel _Input is an AES routine that allows the user to select a file in the current
directory, or create a new file. It displays a box on the screen; within the box is
a window that shows the contents of direciory.

The user can use the mouse to scroll through the contents of directory and select
one; she can also move up or down within the directory tree, or specify a naw
directory. The box also contains two “exit buttons™, one marked "Cancel” and
the other marked “OK",

directory, as noted above, points to a buffer that holds the name of the direc-
tory being read. Note that directory must be large enough to hold the full path
name for any file selected, including those selected from subdirectories within
the directary first displayed.

To avoid accidentally creating a C-language escape character, be sure o usé
two backslashes *\\' to separate elements of the path npame. The default direc-
tory is named a:\\. The path name must end with a string that indicates which
files vou wish to examine in the directory; for example, A displays all the
files in a directory, whereas **.¢" displays only the C programs.

If the user clicks z directory while using this function, the name in the buffer
that directory points to is altered to reflect this change.

file is the name of the first file in directory. 1t is initialized by AES, IF the user
selects a file other than the first one in the directory, what file points to is also
altered to reflect this change.

button points to a integer that indicates which exit button the user selected: zero
indicates that she selected the Cancel button, and one indicates that the OK
button was selected.

Mark Williams C

Lexicon Fsetdia-Fstirst

fsel_input returns zero if an error occurred, and a number greater than zero if
one did not.

Example
For an example of this function, see the entry for form_alert.

See Also
AES, TOS

Fsetdta—gemdos function 26 {oshind.h)
Set disk transfer address
#include <oshind.h>
#include <stat.h>
void Fsetdta(c) DMABUFFER *5;

Fsetdta sets the pointer ¢ 1o the address of a DMA buffer, a 44-byte buffer that
can be subsequently used by the macro Fsfirst. It returns nothing,

Example
For an example of of this function, see the entry for Fgetdta.

See Also
Fgetdia, Fslirst, gemdos, TOS

Fsfirst—gemdos function 78 {osbind.h)
Sparch for first occurrence of a file
#include <osbind. h>
winclude <stat.h>
int Fsfirst(name, attrib) char "name; int arerify

Fslirst searches for the [irst occurrence of a file name. name points 1o the file's
name, which must be a NUL-terminated string. attrib is an integer that en-
codes the search’s attributes, as follows:

0x00 normal files only; no hidden files, subdirectories,
system [iles, or volume labels will match

0x01 include read-only files

0x02 include files hidden from directory search

Ox04 include system files

0x08 include volume-label files

0x10 include subdirectory files

0x20 include files that have been written to and closed

Note that if you specify volume label, no other type of file can be searched for.
The order in which file matches are found depends on the order in which the
files are arranged in the directory, and is not governed by alphabetical order or

Mark Williams C 237

Fsnext-fstat Lexicon

creation date.

If the search is successful, Fsfirst takes the 44-byte DMA buffer that had been
created with Fsetdts, and fills it as follows: bytes zero through 20, reserved for
TOS; byte 21, file attributes; bytes 22-23, the Tile's time stamp; bytes 24-25, the
file's date stamp; bytes 26-29, the file's size; and bytes 30-43, the file’s name,
The DMA buffer is declared in the header file stat.h.

Fsfirst returns E_OK (success) if the search succeeded, and EFILNF (file not
found) if 1t did not,

Example
For an example of this function, see the entry for Fgetdta.

See Also
Fsetdia, Fsnext, gemdos, stat.h, TOS

Fsnexl—gemdos function 79 (osbind.h)

Search for next oecurrence of file name
#include <oshind.h>

#include <stat.h>

int Fsnext{)

Fsnext continues the search for a file, by using the information that had been
written into the 44-byte file name buffer by Fsfirst or by a previous call to
Fsnext, If Fsnext finds another file with the given name, it updates the DMA
buffer to accommodate the name and attributes of the newly found file, The.
DMA buffer is declared in the header file stat.h.

Fsnext returns E_OK (success) if the search was successful, and ENMFIL (no
more Tiles) if it was not.

Example

For an example of this function see the entry for Fgetdia,

See Also
Fslirst, gemdos, stat.h, TOS

fstat—General Munction (libc.a/stat)

238

Find file attributes
#include <stat.h>
fstat{descriptor, statprr) FILE *descripior; struct stat *siatptr;

fstat returns a structure that contains the attributes of a file. descriptor points
to the file descriptor, as returned by the library function fopen, and siatpir
points to a structure of the type stat, which is defined in the header file stat.h.

The following summarizes the structure stat and defines the permission and file
tvpe bits.

Mark Williams C

Lexicon ftell-funclion

struct stat {

dev_t &t_dev;
int_t st_ino;
unsigned short &1_mode;
short st_nlink;
short st_uid;
short st_gid;
dev t st rdev;
gize t st _size;
time t st_atime;
time t st_mtime;
time t st ctime;

L

#dofine S_TJRON OxdY /* Read-only */

Hdefine 5_1JHID Oadd J/* Hidden from search "/

fidefing 5 14575 Oula /* System, hidden from search */f
#define 5_1JvOL 008 /* Yolume |abel in first 11 bytes */
#define 5 _[JOIR Ox10 /* Directory *f

#detine §_[JUKC 020 /" dritten to and closed */

The majority of entries in the structure stat are there to preserve compatibility
with the COHERENT operating system., Most return meaningless values when
used on the Atari ST, with the following exceptions: st_atime, st_mtime, and
st_ctime all return the time that the file or directory was last modified.

See Also
Is, msh, open, stat, stat.h

Diggnostics
fstat returns -1 if the file is not found or if statpir is invalid.

Mell—STDIO function (libe.a/Ttell)

Mark Williams C

Return current position of file pointer
#include <stdio.h>
long ftell(fp) FILE *fpi

ftell returns the current position of the seek pointer. Like its cousin fseek, frell
takes into account any buffering that is associated with the stream fp.

Example
For an example of how to use this function, see the entry for fseek.

See Also
fseek, STDIO

fwrite-Fwrite

function—Definition

fwrite—STDIO function (libc.a/Twrite)

Fwrite—gemdos function 64 (osbind.h)

240

A Tunction is the C term for a portion of code that is named, can be invoked by
name, and that performs a task. Many functions can accept data in the form
arguments, modify the data, and return a value to the statement that invoked

Although functions most often are described as though they were ng
programmers would do well to think of them verbs, for a function's name i34
predicate of almost every C statement.

See Also
data types, portability

Write to stream

#include <stdio.h>

int Twrite(buffer. size. n. fp)

char *huffer; unsigned size, n; FILE *fp

fwrite writes n items of size bytes each from bu/fer to stream fp, and returns
the number of items written. 3

Example
For an example of how to use this function, see the entry for fopen.

See Also
fread, STDIO

Diaggnostics))) N
fwrite normally returns the number of items written; if an error occurs, the
returned value will not be the same as n.

Write into a file
#include <osbind.h>
long Fwrlte{handle, n, buffer) int handle; long n; char *buf/fen;

Fwrite writes n bytes into a file. handle is the file handle that was generated
when the file was opened by Fopen or Fcreate. buf/fer points to the material to
be written. Fwrite returns n if the material was written successfully, and an'er-
ror code if it was not.

Example
For examples of how to use this macro, see the entries for Fseek and Fereate,

See Also
gemdos, TOS

Mark Williams C

!_.exic on gevi-gemdefs.h

gevi—General function (libc.a/gevi)
Convert floating point numbers to ASCIT strings
char *gevt(d, w, buffer)
double 4; int w: char *buffen

gevt converts floating point numbers to ASCII strings, Tt converis its argument
d into a string of numerals that is w characters wide and terminated with NUL.
Unlike itz cousins ecvt and fevt, gevt uses a buffer that is defined by the caller.
buffer must be large enough to hold the result. When generating its output,
govt will mimie fovt if possible; otherwise, it mimics ecvt. gevt returns buffer.

See Also
ecvt, fovt, Frexp, ldexp, modl, printf

gem—Command
Run a GEM-DOS program
gem command args

gem allows vou to run a GEM-DOS command under the micra-shell msh, It
rosets file handle 2 to the aux: device, Unlike its cousin, the tos command, gem
enables the mouse cursor.

Note that gem does not read the environment; you must specify exactly where
the program is located, and give its full name.

Because some GEM programs read resource files and expect to find them in the
current directory, you should use gem with a ed command. For example,

get game=‘cd c:il\games; gém game.prg; cd

allows you to run the GEM application game.prg by typing $Sgame. When you
exit from game, you will be returned to your HOME directory.

When you are finished, just exit from the GEM-DOS program in the normal
way, and gem will return you 1o msh.

See Also
commands, msh

Notes

Some Atari GEM programs appear to depend on the GEM desktop to perform
unspecified clean-up after they run, and thus cannot be run through the gem
command, These programs include Atari Logo and Atari BASIC. Running
these programs under msh may damage memory-resident programs, such as
RAM disks.

Mark Williams C 241

gemdos Lexicon

gemdefs.h—Header file

GEM structures and definitions
#include <gemdefs.h>

gemdefs.h is a header file that declares structures and definitions useful for
programming in the GEM environment. Many of the mnemonics used through
GEM programs are also defined in this file,

Sep Alsa
AES, header file, TOS, VDI

gemdos—TOS function

242

Call & routine from GEM-DOS
#include <osbind.h>
extern long gemdos(n, argl..argn);

gemdos allows you to call a8 GEM-DOS routine directly from your program. i
is the number of the routine, and grg/ through argn are the argument numbers
to be used with the routine. In most circumstances, it is unnecessary lo use
gemdos directly, for a library of functions that use it are defined in the header
file osbind.h.

The following functions use gemdos:

Cauxin Read character from serial port
Cauxis Return serial port input status
Cauxos Return serial port output status
Cauxout Write character to serial port
Ceonin Read character from console
Ceonis Return console input status
Ceonout Write character to console
Cconos Return console output status
Ceonrs Read and edit string from console
Ceonws Write a string to the console
Cnecin Read character from console, no echo
Cproos Check paralle! port output status
Cprunout Write character to parallel port
Crawin Read raw character from console
Crawlo Perform raw 170 with console
Dcreate Create a subdirectory

Ddelete Remove a subdirectory

Diree Find free space on disk

Dgetdry Return current disk drive
Dgetpath Return current directory
Dsetdry Set the default drive

Dsetpath Set the current directory

Fattrib Get/set file attributes

Fclose Close a file

Mark Williams C

Lexicon gemout.h

Fcreate Create a file

Fdatime Get/set file's date stamp

Fdelete Delete a file

Fdup Duplicate a file’s handle

Florce Force a file handle

Fgetdia Get a disk transfer address

Fopen Open a file

Fread Read a file

Fremame Rename a file

Freek Move a file pointer

Fsetdta Set disk transfer address

Fslirst Search for first occurrence of file
Fsnext Search for next occurrence of file
Fwrite Write into a file

Malloc Allocate dynamic memory

Mfree Free dynamic memory

Mshrink Shrink amount of allocated memory
Pexec Load or execute 8 process

Pterm Terminate a process

Plerm(Terminate a TOS process
Plermres Terminate a process but keep in memory
Typetdate Get date

Teettime Get time

Tsetdate Set date

Tsettime Set time

Sversion Get TOS version number

See Also
oshind.h, TOS

Notes
No gemdos function will support a recursive call. Attempting to use a recursive
call with a gemdos function will crash the system.

Note that all gemdos functions are unbuffered. Combining them with buffered
1/0 routines, such as those in the STDIO library, will lead at best to unpredict-
able resuls,

gemoul.h—Header file
GEM-DOS file formats and magic numbers
#inclode <gemout.h>

gemout.h is a header file that declares formats for the GEM-DOS executable
files and archives. It also includes a number of “magic numbers” used in hand-
ling these formats.

Mark Williams C 243

Gethph-gete

Lexicon

See Also
header file, TOS

Gethpb--bios function 7 {oshind.h)

(iet pointer to BIOS parameter block for 2 disk drive
#include <osbind.h>

#include <hios.h>

char *Gethpb(device);

int device;

Gethph returns a pointer to the BIOS parameter block for a given disk drive.
device is-an integer that indicates which drive you wish to examine: zero, drive
A: one, drive B; etc. If the BIOS parameter block cannot be determined for
whatever reason, Gethpb returns zero, '

Example
The following example dumps the BIOS parameter block for the disk in drive
B

#include <oabind.h»
#inctde <bion.h>

maingy
struct bpb *bp;
bp = (struct bpb *) Getbpb{1);
printf("0igk in drive B:\n");
primtf{*\tSector Size:\1X5d bytes\n", bp->bp recsiz)]
primef(*ytCluster Size:\tX5d bytes (Xd sectors)in®,
bp-rbp clsizb, bp->bo clsiz);

printf{*\tbirectory:\t%5d sectors\n", bp-»*bp_rdlend;
printf{"\TFAT:\t\tX5d sectors\n®, bp-*bp feiz);
printf{"\thats Clusters:\tX5d\n", bp->bp numel);
princf{"ytFlags:\t\t Leu\n", bp->bp_flags);

b]

See Also
bios. TOS

gele—STDIO macro (stdlo.h)

244

Read character from stream
#include <sidio. h>

int gete(fp) FILE *fm
getc is a macro that reads a character from the stream fp, and returns an int.

Mark Williams C

Lexicon getchar-geteny

See Also
fgete, getchar, STDIO
The C Programming Language, page 152

Diagnostics
getc returns EOF at end of file or on read error.

MNotes

Because getc is a macro, arguments with side effects probably will not work as
expected. Also, getc 15 a complex macro, and its use in expressions of too great
a complexity may cause unforeseen difficulties. Use of the function fgetc may
solve such a problem.

petchar—STDIO macro (stdio.h)
Read character from stream
#include <stdio.h>
int getchar()

getchar is a macro that reads a character from the standard input. Tt is equiv-
alent to getc(stdin).

See Also

gete, STDIO

The C Programming Language, page 144, 152

Diagnostics
getchar returns EOF at end of file or on read error.

getcol—Command
Get a color value
geteol position

geteol is a command that uses the xbios function Setcolor to read the color for a
position on the current color palette. position is the palette position in question,
from zero through 15.

See Also
commands, setcolor, Seteolor, TOS

getenv—General function (libe.a/geteny)
Get environmental variable
char *getenv(varighle) char *variable;

A program may read certain variables in its environmeni. This allows the
program to accept information that is specific to you. The environment consists
of an array of strings, each having the form VARIABLE=VALUE. When called
with the string VARJ4ABLE, getenv returns a pointer to the string FALUE,

Mark Williams C 245

Lexicon

See Also
cc, environment, msh

Diggnostics
When VARTABLE is not found or has no value, geteny returns NULL.

Getmpb—bios Ffunction 0 (oshind.h)
Copy memory parameter block
#loclude <oshind.h>
#include <bios.h>
void Getmpb{pornter);
char ®painter;

Getmph tells TOS to copy its memory parameter block into the 24-byte space
pointed to by pointer. The useful portions of the memory parameter block are
described in the example; as of this writing, the memory parameter block does:
not appear to be utilized by TOS. Note, too, that the lists returned are in sys-
tem-protected memory; unless the user is in supervisor mode, accessing these
lists will generate a bus error.

Example

The following example demonstrates Getmpb. It prints out the amount of
memory frée and memory used.

#include <osbind.h>
#include <bios.h>

Llong chasefcp, mp)
char *cp; register struct mdb *mp;
{
register long save, total;
struct mey mob;
printf(*Xs:\n", cp);
total = O;

while (mp 1= (&truct mch *)0L) {
cave = Super{0L); mdb = *mp; Superi(save);
totsl += mob.md size;
primtfi™\ti0alx: Xld bytes cwned by Xixin“,
mb.pd base, mib.ed gize, mob.wd proc);
mp = mob.md_next;

printfi“xid bytec total.\n", toteld;

Mark Williams C

Lexicon getpal-Getrez

main} €
struct mpb mpb;
Getmpb(Eapb) ;
chase("Free Hemory®, mpb.sp free);
chase{"Used Memory®, spb.mp_used);
return 0;

3}

See Also
bios, TOS

getpal—Command
(et the color palette settings
getpal

getpal uses the xbios function Setpallete (sic) to read and return the current
settings of the color palette.

See Also
commands, setpal, Setpallete, TOS

getphys—Command
Get the base of the physical screen’s display
getphys

getphys is a command that uses the xbios function Physhase to abtain the base
of the screen display’s physical memory. The address of the base is returned 10
the standard output.

See Also
commands, Physhase, setphys, TOS

getrez—Command
GGet screen’s current resolution
getrez

getrez is a command that uses the xbios function Getrez to read the screen's
current resolution. It returns to the standard output a code that indicates the
current resolution, as follows: zero indicates high resolution: one, medium
resolution; and two, low resolution,

See Also
commands, Getrez, setrez, TOS

Mark Williams C 247

Getrez—xbios function 4 {oshind.h)
Read the current screen resoclotion
#include <osbind.h>
#include <xhios.h>
int Getrez()

Getrez reads the current screen resolution, and returns the following:

0 low resplution
1 medium resclution
2 high resolution

Example))))
This program prints out the current resolution of the wvideo display. For
another example, see the entry for Priblk.

#include <osbind,h>
#include <aibios.h>

atruct reztab { int r_rez; char *r_name; } reztab(] =
GR_LOW, “lowt,
GR_MED, “medium®,

GR_HIGH, "high",
=1, "unknown®
b
maint)
regiater struct rezteb *rp;
register int rex;
rez = Getrex();
for (rp = rertab; rp->r_rez 1= rez &b rp->r_rex I= -1 rp += 1)
i
printf{"Your 5T is in ¥s resclution mode.\n", rp-»r_name);
H
See Also
TOS, xbios

gets—STDIO function (libe.a/gets)
Read line from stream
#include <stdio.h>
char *gets(s) char "5

geis reads characters from the standard input into the string s, up to the next
newline or EQF, It discards the newline, if anv, appends a trailing NUL
character, and returns s.

248 Mark Williams C

E;Exii‘ﬂn Getshift

See Also
STDIO

Diagnostics

gets returns NULL if an error occurs or if EOF is seen before any characters
are read.

Notes
Unlike its cousin fgets, gets deletes newlines.

Getshifti—bios Monction 11 (oshind.h}
Get or sel the status flag for shift/alt/control keys
#include <osbind.h>
#include <bios.h>
long Getshift(flag)int flag;

Getshift gets or sets the status flag for the shift, alt, and control keys. If flag is
-1, then the status flags of the keys are read and a map returned; if flag is any
number other than -1, then the flags are set to flag, and a map of their pre-
vious settings returned. The map is laid out as follows: bit 0, right shift key; bit
I. left shift key: bit 2, control key; bit 3, alt key; and bit 4, caps lock key. If a
bit is set to zero, the key is not depressed; if it is set to one, the key is
depressed.

Example
This example displays characters, scan codes, and shift states until you type
<ctrl-D=,

#finclude <osbind.h>
#include <bios. h>
#include <ctype.h»

gtruct shift { int & bit; char *s_name; } shiftll = {
G5 _LSH, “left shift",
GS_REH, "right shift®,
65 CTRL, ®control",

GE_ALT, nglternate,
G5 _CAPS, “caps lock®,
G5 RME, "right mouse”,
GS LME, “lefr mouse",
0
'
main() €

register int ¢, s;
register long cop
register struoct shift *sp;

Mark Williams C 249

Gellime

Lexicon

do {
cc = Beonin{BC_CON);
& = Getshift(-1);
€= ¢c; /* get low word =/
cc *»= 16; /* get scan code */
Beonout{BC RAM, c);

if (isascii(c) && | isprint(e))
printf(": “Xe: =, c+'@');
elee
primtf(®: Xc: ", c);
printf{"X021x:%02x-%02x", cc, ¢, 6);

for (sp = shift; sp->s_bit > 0; sp+= 1)
it (s & sp-2s BiD)
printf(“[Xs]*, sp-»s name);
printfemnm;
} while (c b= (*D" & (' *-1)));
]

See Also
bios, TOS

Gettime—xbios Function 23 (osbind.h)

250

Read the current time
#include <osbhind.h>
#include <xblos. h=
long Gettime()

Geftime reads and returns the intelligent keyboard’s setting of the current time.

It returns a 32-bit mask whose bits indicate the following:

0-4 no. of two-second increments (0-29)
5-8 no. of minutes (0-59)
9-15 no. of hours (0-23)

16-20 day of the month (1-31)
21-25 month (1-12)
27-31 year (0-119, 0 indicates 1980)

Example

This example gets the keyboard time. WNote that if yvou have not set the
keyboard time since you booted vour computer, the time returned by this ex-

-ample will not be correct.

Mark Williams C

Lexicon geiw

#include <osbind.he

mainl}
register unsigned long Time;
int seconds;
int minutes;

int hours;

int day;

int month;

int year;

time = Gettimel); /* Get syztem time */
geconds = (time & OxOOVF) << 1; J* Bita D0:6 %/
minutes = (time »> 53 & O0x3F; J* gits 5:10 */
hours = (time >> 113 B Ox1F; I Bits 1115 %

day = (time >> 143 & Ox1F; /* Bits 16:20 */

month = (time »» 21) & O20F; /* Bits 27:26 %/

year = ({time >> 25) & OuA7F)+1980; J* Bits 25:31 %/

printf{"The ATAR] 57 thinks it f¢ Xd sec past %d min\n",
seconds, minutes});
printf(¥past the hour of %d®, hours);
printf(® on Xd/%d/Xd\n", sonth, day, yeer);
)

For another example of this function, see the entry for time,

See Alsa
Kgeitime, Settlme, time, TOS, xbios

Notes
The time data in the bit map returned by Gettime is in exactly the reverse order
of the data returned by the gemdos functions.

getw—STDIO function (libe.a/getw)
Read integer from stream
#lnclude <stdio.h>
int getw(/p) FILE */p;

getw reads a word (an int) from the stream fp.

See Also
gete, STDIO

Notes

getw returns EOF on errors. A call to feof or ferror may be necessary to distin-
guish this value from a valid data word. The bytes of the word it receives arg
assumed 1o have been written by putw, which writes them in the natural byte
ordering of the machine.

Mark Williams C 251

{(ziaccess Lexicon

Giaccess—xbios function 28 (osbind.h)
Access a register on the GT sound chip
#include <oshind.h>
#include <xbios. h>
char Glaceess{dala. register) char data; int register;

Giaccess accesses a register on the GI sound chip, register is the name of the
register being accessed, zero through 15, Bit 7 of this variable indicates
whether this register is to be read or written to: zero indicates read, one in-
dicates write, date is the eight-bit value being passed to the register when this
macro is in write mode; if Giaccess is in read mode, this value is ignored.

Giaccess returns the value read if in read mode, and a meaningless value if in
write mode,

The Atari §T's sound generator is controlled by 16 eight-bit registers. The
sound generator itself has three channels, named A, B, and C. Each can be
programmed independently, Mote that the contents of the address register
remain unaltered until reprogrammed, which allows you to use the same data

repeatedly without having to resend them. What each register does is listed in
the following:

0,1 Set pitch and period length for channel A. The eight bits of register 0
set the pitch, and the first four bits of register | control the period
length; the lower the number formed by the 12 significant bits of these
registers, the higher the pitch of the tone generated.

2.3 Set the pitch and period length for channel B,
4,5 Set the pitch and period length for channel C.

6 The low five bits of this register control the generation of “white
noise’: the smaller the value to which these bits are sel, the higher the
pitch of the noize generated.

7 This register holds an eight-bit map whose bits toggle various aspects of
sound generation; for each hit, zero indicates on and one indicates off.
The bits control the following functions:

Channel A tone

Channel B tone

Channel C tone

Channel A white naise
Channel B white noise
Channel © white noise
Port A; O=input, l=output
Part B; O=input, I=output

—h O B e B == O

252 . Mark Williams C

Lexicon Giaccess

8 Bits 0 through 3 set the signal volume for channel A; the settings can be
zero through 15, with zero being the softest setting and 15 the loudest,
Setting bit 4 indicates that the “envelope generator, register 13, should
be used; in this case, the contents of bits O through 3 are ignored.

9 Same as register 8, only for channel B,
10 Same as register 8, only for channel C.

11,12 Control tone generation, A tone is constructed of four aspects: attack,
decay, sustain, and release. Attock defines how long a tone takes to
reach 15 loudest point: decay defines how long that loudest point is held
before it softens to the volume that is sustained; susiain defines how
long the sustained level is held; and release defines how long it takes a
tone to decay into silence. These registers govern the four aspects of
tone generation; register 11 holds the low byte, register 12 the high byte.

13 Bits 0 through 3 set envelope generator’s waveform. A tone’s “en-
velope™ 15 the “shape™ of the tone generated, which is best studied by
experimental listening.

14,15 Control the Atari 8T's 1/O ports. Register 14 controls port A, and
register 15 port B, If set to output by register 7, the contents of these
registers can be exported. Note that these ports have nothing to do with
sound generation, and are used on the Atari 8T to control the floppy
disk drives,

Example) .
This example uses Glaccess to set the select lines for the floppy disk drives. It
is not recommended that this be done from user programs in general,

#include <oshind.h>

prompt{strng) /* Write prompt; wait for key to be typed */
char "strng;
{
Coonws(strrgl; J* Write the string */
Crawcini); /¥ Wait for 8 key */
Coomms ™\ rynty; /* CR-LF to congsole *f
s

Mark Williams C 253

GMT-gmtime Lexicon

main{) {
prompt{“iLet drives stop; then press any key to continue");
Gimccess{{Giaccess(0,14) & OxFB},14)0x80%;
prompt{M8oth lights en... Hit any key"):
Gisccess{(Giaccess{0,14) & OxFB) |2, 14| 0xBOY;
prompt"Drive B selected... Hit any key");
Gilaccess((Giaccess(0,14) & OxF8) |4, 14| 0x80);
prompt("Drive A selected... Hit any key");
Giaccess((Gisccess{0, 14) & OxF2) |6, 14 |0x80);
prompt(“Heither drive selected... Hit any key"):
FrermO();

¥

See Also
Offgibit, Ongibit, TOS, xbios
Programmable Sound Generator Data Manual

GMT—Definition

GMT s an abbreviation of Greenwich Mean Time, the time recorded at the
Greenwich Observatory in England, where by international convention the
Earth’s 0 meridian is fixed,

See Also
gmtime, localtime, time.h, TIMEZONE

gmtime—Time function (libc.a/ctime)

254

Convert system time to system calendar structure
#include <time.h>
tm_t *gmtime(timep) time € *timep;

gmtime converts the internal time from seconds since midnight January 1, 1970
GMT, into fields that give integer years since 1500, the month, day of the
month, the hour, the minute, the second, the day of the week, and veardav. It
returns a pointer to the structure tm_t, which defines these fields, and which is
itsell defined in the header file time.h. Unlike its cousin, localtime, gmtime
returns Greenwich Mean Time (GMT).

Example

For an example of how to use this function, see the entry for asctime.

Jee Also

localtime, time

Notey

gmtime returns a pointer to a statically allocated data area that is overwritten by
zuccessive calls,

Mark Williams C

I ﬁrican graf dragbox

graf _dragbox—AES function {libaes.a/graf _dragbox)
Draw a dragable box
#inclode <aeshind.h=
int graf dragbox(widih, height. starix, starty, bhoundary, &finishx, &finishy)
int width, height, startx, starty, finishx, finishy; Reet boundary;

graf _draghox is an AES routine that allows the user to drag a box within a
specified boundary rectangle. The boundary rectangle puts limits on how far
the box can be dragged: it can be set to the entire screen, to a window, or to
some other boundary,

width and height give, respectively the width and height of the box, in rasters.
Mote that the number of raster on the screen varies with the degree of screen
resolution; the following gives the dimensions of the screen in rasters, by

resolution;
Resolution Width Height
High 640 400
Medium 640 200
Low 320 200

startx and starty give, respectively, the starting X and Y coordinates for the
box. firishx and finishy hold the coordinates after the box has been dragged;
these values are set by the function.

boundary is the outline of the boundary rectangle. It is declared to be of type
Rect, which is defined in the header file aeshind.h. Rect consists of four

elements:
x X coordinate of rectangle
¥ Y coordinate of rectangle

w width of rectangle
h height of rectangle

graf draghox returns zero if an error occurred, and a number greater than zero
if one did not.

Example
For an example of this function, see the entry for yro_cpyfm.

See Alsa
AES, TOS

Noies ;
graf _dragbox returns when the mouse button is released. If it is called while
the mouse button is up, it returns immediately,

Mark Williams C 255

gral growbox-graf _handle Lexicon

graf _growhox—AES function (libaes.a/grafl_growbox)

Diraw a growing box
#include <aeshind.h=
int graf growbox{small. big) Rect small, big;

gral growbox is an AES routine that draws a growing box on the screen. The
box drawn by gral growbox does not stay on the screen; this routine is
designed merely to add a “star wars”-style flourish to GEM programs. The ar-
guments small and big are both defined as being of type Rect, which is defined
in the header filz aeshind.h, Rect consists of four elements:

x X coordinate of rectangle
¥ Y coordinate of rectangle
w width of rectangle

h height of rectangle

The box grows from the dimensions described in small to those described in
large. The unit of measure is the number of rasters for the screen; the number
of rasters held by the screen varies with the degree of resolution, as follows:

Resolution Width Helght

High 640 400
Medium 640 200
Low 320 200

graf _growbox returns zévo if an error occurred, and a number greater than zero
if one did not.

Exagmple

For an example of this toutine, see the entry for window.

See Also
AES, gem, graf _shrinkbox, TOS, window

grafl handle—AES function {libaes.a/graf_handle)

256

Get VDT handle

#include <aeshind. h>

int graf _handle{chwidth, chheight, bwidth, bheight)
inl "chwidth, *chheight, *bwidrh, *Bheight;

graf handle is an AES routine that returns the VDI handle for the “virtual
waorkstation”, or the physical device on which vou are working; 1t also returns
the size of the font with which vou are working. It returns the current VDI
handle. ehwidth and chheight point, respectively, to the character width and
character height of the font being used. bwidth and bheight point to the width
and height of the box in which a character is displaved. In effect, the dif-

Mark Williams C

W E
Lexicon graf _mbox-graf _mkstate 1| |
|

ference between the character size and the box size governs how much “white [
space” surrounds gach character. These values are set by GEM.

See Also
AES, TOS

graf mbox—AES function {libges.a/gral mbox) il
Move a box
#include <aesbind. h=
int graf _mbox(width, height, fromx, fromy. tox, toy)
int width, height, fromx, fromy, [ox, 10y,

graf mbox is an AES coutine that moves a box without changing its size. widh |
and height are the dimensions of the box. fromx and fromy give the original .
position of the box: tox and foy the destination position of the box. Note that
both of these pairs of coordinates refer to the upper left-hand corner of the box
being moved, gral mbox returns zero if an error occurred, and a number

greater than zero if one did not.

See Also
AES, TOS

graf mkstate—AES function (libags.a/graf _mkstate)
Get the current mouse state
#include <aeshind. h>
int graf mkstate(record) Mouse record;

graf _mkstate is an AES routine that returns the current mouse state, record is
declared to be of type Mouse, which is a structure of four pointers to integers
that is declared in the header file aesbind.h, as follows:)

X ¥ coordinate of mouse pointer
¥ Y coordinate of mouse pointer
b button state when event ogeurred
k state of control, alt, and shift keys:
0x0: all keys up
Ox1; right shift key down
Dx2: left shift key down
Ox4: control key down
0x8; alt key down

These values are set by GEM,

graf mksiate always returns one.

Mark Williams C 257

graf mouse Lexicon i

See Also
AES, TOS

graf _mouse—AES function (libaes.a/graf mouse)
Change the shape of the mouse pointer
#include <aesbind.h>

int graf mouse(form. definition) int form char *definition: [

graf _mouse is an AES routine that changes the mouse pointer from the default

arrow o another shape. formt is an integer that indicates what new shape vou
want, as follows:

Arrow (default)

Wertical line

Bee

Hand with pointing finger
Hand with extended fingers
Thin cross hairs

Thick cross hairs

Qutlined cross hairs

258 Use user-described shape
256 Hide mouse pointer

257 Display mousg pointer

o - N R Y

definition points to 2 35-word block in which the user has specified her new
pointer shape. This argument 15 ignored if form is any value other than 255,

graf mouse returns zero if an error occurred, and a number greater than zero if
one did not,

Exgniple
The following example cycles through the preset shapes for the mouse pointer.
#include <aesbind.h>

maini) £
int counter;
int nawhere; /¥ Someplace to point */
appl_init():
for {(counter = 0; counter <=7; counters=+) {
graf mouse{counter, &nowhers); |

evit_kevbd{); /* Halt until B key it typed *f
}
appl exit();
exitill;
¥
|
258 Mark Williams C

[Lexicon grafl _rubbox-graf_shrinkbox

For further examples, see the entries evat _multi, object, window.

See Also
AES, object, TOS, window

graf rubbox—AES function (libaes.a/graf rubbox)
Draw a rubber box
#include <aeshind.h>
int graf rubbox(box, newwidth, newheight)
Rect box: int *newwidih, *newheight;

graf rubbox iz an AES routine that draws a “rubber box" on the screen; a rub-
ber box is one whose dimensions can be altered by the user. hox defines the in-
itial dimensions of the rubber box. It is of the tvpe Rect, which is defined in
the header file aesbind.h. Rect consists of four elements:

X coordinate of rectangle
¥ coordinate of rectangle
width of rectangle
height of rectangle

=

newwidih and wewheight point to the values for width and height to be set by
the user.

This routine can be used to define a block of screen area that can be copied
glsewhere, For example, the GEM desktop routine that allows vou to click
more than one file at a time employs graf _rubbox.

gral _rubbox returns zero if an error occurred, and a number greater than zero
if one did not,

Example
For an example of this routine, sce the entry for v_ bar.

See Also
AES, TOS

Notes
This routine is often called graf_rubberbox in other bindings.

graf _shrinkbox—AES function (libaes.a/graf _shrinkbox)
Draw a shrinking box
#include <aeshind. h=
int graf _shrinkbox{smallbox. bighox) Rect smallbox, bighox;

graf shrinkbox is an AES routine that draws a shrinking box on the scresn.
The box drawn by graf shrinkbox does not stay on the screen; this routing is
designed merely to add a “star wars”-style flourish to GEM programs, The ar-

Mark Williams C

graf _slidebox _Lexicon

guments sthalfbox and bighox are both defined as being of tvpe Rect, which iz
defined in the header file aeshind.h. Rect consists of four elements:

X coordinate of rectangle
¥ Y coordinate of rectangle
width of rectangle

h height of rectangle

The box grows from the dimensions described in smallbox to those described in
large. The unit of measure i3 the number of rasters for the screen, as follows:

Resplution Width Height

High 640 400
Medium 640 200
Low 320 200

graf shrinkbox returns zero if an error occurred, and a number greater than
zero if one did not.

Example
For an example of how to use this routine, see the entry for window,

See Also
AES, pem, graf prowbox, TOS

gral slidebox—AES function (libaes.a/graf slidebox)

260

Track the slider within a box

#include <aesbind.h>

#include <obdefs.h>

int graf _slidehox(iree, parent, slider, direction)
char *tree; int parent, slider, direction;

graf _slidebox iz an AES routine that tracks the movement of the “slider”
within a box. The “slider™ is the area of the window that the uset can click to
scroll through the contents of the file or directory being displaved in the win-
dow,

iree points to the address of the object tree that containg the slider. parens is
the index of the parent object within the object tree, and sfider i3 the indes of
the slider object. direcrion is the direction of movement relative to the position
of the parent object zero indicates horizontal movement and one indicates ver-
tical movement. graf slider returns the position of the center of the slider
relative to the parent object. If movement is vertical, then zero indicates the
topmaost position and 1,000 the bottom-most; and if movement is horizontal,
then zero indicates the leftmost position and 1,000 the rightmost,

Mark Williams C

Lexicon graf watchbox

See Also
AES, TOS

gral watchbox—AES function (libaes.a/graf watchbox)
Diraw a watched box
#include <aesbind.h>
#include <obdels.h>
int graf _watchbox(free. object, insidepattern, outsidepatiern)
OBJECT *tree; int object, insidepaltern, oulsidepatier '

graf _watchbox is an AES routine that draws a “watchable baox™, that is, a box
that the screen manager can poll to see if the mouse pointer is ms:rie it ar aul-
side it. The user must hold down the leftmost mouse button while moving the
pointer; gral _watchbox returns the position the pointer was at when the button
was released,

free points to object tree that produces the box in question. object is the index
of this object within the tree. insidepaitern and outsidepatrern indicate, respec-
tively, the pattern used to fill the area within the box and outside the box, a3
follows:

normal

selected

crossed

checked

outlined

shadowed

O LA e L b e

gral watchbox returns a value that indicates whether the mouse pointer was
inside or outside the box when the button was released: zero indicates outside,
and one indicates inside.

See Also
AES, TOS

Mark Williams C 261

exicon

handle-help : L

handle—Definition
A handle 15 a generic term for a unique identifier used by TOS and GEM.
Three types of handles are commonly uszed: file handles, workstation handles,
and process handles.

A file handle 15 identifies a source of bits; it can refer either to a file on disk or
to a character device. File handles are returned by fopen, fereat, and fdup, and
are used by fwrite, fread, and fseek.

A workstation hardle is used by the GEM VDI to identify a virtual device, Tt is
returned by the routines v_opnwk and v_opnvwk, and is alwavs the Tirst argu-
ment accepted by a VDI routine.

A process handle identifies a process that runs under the AES. At present,
these handles have only limited uvse, because the AES currently can run only
Ong process at a time.

See Alse
AES, ¥DI, UNIX routines

header file—Definition
A header file is a file of text that containg definitions, declarations, and struc-
tures commonly used in g given situation. By tradition, a header file alwavys has
the suffix *.h*. Header files are invoked within a C program by the command
#include, which is read by cpp, the C preprocesser; for this reason, they are also
called *include files™.

Header files are one the most useful tools available to a C programmer. They
allow you to put into one place all of the information that the different modulas
of your program share. Proper use of header [iles will make your programs
much easier to maintain and port to other environments,

See Also
#include, math.h, portability, stdio.h

help—Command
Print concise description of command
help command

help prints a concise description of the options available for each specifed com-
mand. T the command is omitted, help prints a simple description of itself, The
primary purpose of help is to refresh the memory of a user who has forgotten a
command option.

Information used by help is kept in the file named helpfile. Information about a
comnmand begins with a line

262 Mark Williams C '

Lexicon hidemouse-htom

ZEoorrand

and ends with the next line beginning with ‘#'. If you wish, vou can edit this
File and add new descriptions for commands that you want to run under msh,

See Alsp
commands, msh

hidemouse—Command
Hide the mouse pointer
hidemouse

hidemouse is a command that uses the function lineaa to hide the mouse
pointer. Note that if hidemouse is used when the mouse pointer is already hid-
den, the mouse pointer will need to be called twice before it reappears.

See Afso
commands, Line A, showmouse, TOS

HOME-—Environmental parameter
HOME names where the micro-shell msh should look for a file when no other
directory is specified. For example, if you type the ed command without an ar-
gument, msh will change the directory to the one you named as the HOME
directory.

Tt 1% set with the seteny command,

See Also
mszh, seteny

horizontal tab—Definition
sark Williams C recognizes the literal character "\t for the ASCII haorizontal
tab character HT (octal 011). This character may be used as a character con-
stant or in a string constant, like the other character constants: “\a’, which rings
the audible bell on the terminal; *\b', to backspace; “\f", to pass a formfeed
command to the printer: “ir', for a carriage return; and "v", for a vertical tab
character,

See Also
ASCIT, character constant

htom—Command
Redraw screen from high to medium resolution
hiom

Mark Williams C 263

hypot Lexicon |

htom is a command that redraws the screen, moving from high to medium
resolution,

Fee Also
commands, ltom, mtoh, mtol, TOS

hypot—hdathematics function (libm.a/hypot)
Compute hypotenuse of right triangle
#include <math. h>

double hypot(x, 1) double x, 1;

hypot computes the hypotenuse, or distance from the origin, of its arguments x
and p. The result is the square root of the sum of the squares of x and y.
Example

For an example of this function, see the entry for acos, For an example of its
use in & GEM-DOS application, see the entry for v_circle,

See Also
cabs, mathematics library

264 Mark Williams C

Ikb :lws—-#inc_l ;_1_4:]1_-_

[kbdws—xbios function 25 {oshind.h}

Write a string to the intelligent kevboard device
#include <osbind.h>

#include <xbios.h>

void Tkbdws(mumber, buffer) int nuntber; char *buffer;

Ikbdws writes a string of characters to the intelligent keyboard. number 15 the
number of characters to write, minus one, and huffer points to the buffer
where these characters are kept,

The Atari ST's intelligent keyboard can accept many commands that affect the
keyboard itself, the mouse, and the joystick, For more information on haw the
intelligent keyboard manipulates these devices, sec the entry for Kbdvhase.

See Also
Gettime, Kbdvbase, Settime, TOS, xbios

INCDIR—Environmental parameter

INCDIR names the default directory in which cc looks for files 1o be imcluded
during compilation. The directory that contains the source files and directories
named in the -1 option to the ¢c command are also searched for include files.
To set INCDIR, use the setenv command.

Fee Also
#include, msh, seteny

#include—Definition

#include <file.h>
#include "file.h"

sinclude is a statement processed by the C preprocessor cpp. Iis operation is

simple; the preprocessor replaces the #include statement with the contents of
fileh,

The name of the file can be enclosed within angle brackets (<file.h=] or quota-
tion marks ("/ile.h"). Angle brackets tell cpp to look for file.h in the direc-
tories named with the -7 option to the ec command line, and then in the stan-
dard directoty, in this instance the directory named by the INCDIR envircn-
mental parameter. Quotation marks tell epp to look for file.h in the source
file's directory, then in directories named with the -1 option, and then in the
standard directory.

Files that are called with #include statements are called header files or include
files.

Mark Williams C 265

T

include file-Initmous Lexicon

See Also
cpp, header file, msh
The © Pragromming Lanpuage, page 207

include file—Delinition
Include file 15 another name for a header file.

See Also
header file

index—String function (libe.a/index)
Find a character in a string
char *index(string; ¢) char *siring; char ¢;

index scans the given siring for the first occurrence of character o If ¢ i3
found, index returns a pointer to 1t. If it 15 not found, index returnsg NTULL.

Fee Also
siring
The C Programming Language, page 67

Initmous—xhios function 0 (oshind.h)
Initialize the mouss
#include <osbind.h>
#include <xbios.h>
void Tnitmous(!ype. parameter, vector)
int tvpe: char *parameier; long vector;

Initmous initializes the mouse, and returns nothing,
tvpe indicates the mode into which the mouse is to be set, as follows:

turn mouse off

enable in relative maode
enable in absolute mode
unused

enable in keycode mode

L b =D

parameter is the addrass of the 14-byte parameter block. Bytes 0 through 3 are
used under all modes; bytes 4 through 11 are used only if the mouse s in-
itializad info absolute mode. The parameter block’s byites indicate the

following:
0 non-zero, set Y axis 0 at bottom; zero, sat Y axis 0 at top
1 set the parameter for command to set mouse buttons
2 set parameter for X axis threshhold-scale-delta
3 sel parameter for Y axis threshhold-scale-delta
266 Mark Williams C

Lexicon int-lorec

4 most significant byte (MSE) for mouse’s absolute maximum
position on X axis

5 feast significant byts (LSB) for mouse's absolute maximum
position on X axis | ‘
[MSE for mouse's absolute maximum position on Y axig |
7 LSB for mouse’s absolute maximum position on Y axis |
8 MSB for mouse's initial position on X axis 1
9 LSB for mouse’s initial position on X axis |
A MSB for mouse’s initial position on Y axis [
B LSBE for mouse's initial position on Y axis il
Finally, vector gives the mouse's interrupt vector routing. l
See dlso | !
TOS, xbios |.
[l
- ' v II
int—Definition !

An int is the most commonly used numeric data type, and is normally vsed fo il
encode integers. On the 68000, as on most microprocessors, sizeof int equals 2,
that is, two chars (15 bits plus a sign bit); therefore, an int can contain values -
from -32768 to +32767. An int normally 15 sign extended when cast to a larger
data tvpe: an unsigned int, however, will be zero extended. '

See Also |
data types, declarations, long
interrupt—Definition ‘

An interrupt is an interruption of the sequential flow of a program. It can be
generated by the hardware, from within the program itself, or from the |
operating system.

The functions bios, gemdos, and xbios all employ traps, a form of interrupt, to |
perform their respective tasks.

See Also
bios, gemdos, xbios r|

Torec—xblos Tanction 14 (osbind.h)
Set the 1/0 record
#include <osbind.h>
#include <xbios.h=
iorec *"lorec(device) int device;

Torec returns a pointer to a serial device's input buffer record. device is an in-
teger that encodes the serial device: the legal settings are 0, 1, or 2, for the RS-
232 port, the keyboard, or the musical instrument device interface (MIDI} port,

Mark Williams C 267

Torec Lexicon g!

respectively.

As noted, Torec returns a pointer to the device's input buffer record. The
record is 2 structure that is laid out as follows:

struct jorec €

char *io_buff; f* Buffer *¢

short io_bufsiz; /* Buffer size in bytes %/

shart io_head; /* Current write peinter ®f
short io_tail: /* Current read painter %/

short jo_low; ¥ Low water mark, unstop line */
shert io_high; /* High water mark, stop Line *f

]

huffer points to the device's buffer. size is the buffer’s size; high is its “high
water mark™, or where an XOFF is sent to the transmitting device; and low is
its “low water mark™, or the point where an XON iz sent to the transmitting
device. Finally, kead is the head index and tail the tail index. Note that for the
R5-232 port, the input-buffer record is followed by an output-buffer record
that is structured exactly the same,

Example

This example examines all of the input devices and displays their buffers. For
an example of using this function from the ‘\auto directory, see the entry for
“auto.

#include <osbind.h>
#include <xbios.h>

fodump(ptr}
register struct iorec *ptr;
int ccount;

if ({ccount = ptr-»fo_tail - ptr->ig_head} < 0
coount += ptr->io_bufsiz;

printf("Buffer at ¥lx has ¥d out of %d characters in Tt.\n",
ptr-ric buff, ccaunt, ptr-»io bufsiz);
printf{"L'WH at %d characters, HWM at ¥d charactersin",
ptr-¥io low, ptr->io_high);
3

mairgy €
struct iorec *bp;

bp = larec(D); J* get 10 buffer for serial port =f
printf{"Serial port input buffer\n');

jodumpdbpd ;

printf{"Serial port cutput buffer:in');

=

268 Mark Williams C |

Lexicon isalnum-isascii

bp = lorec{l); /* How for the keyboard */

printf{“Keyboard imput buffer:in'); | |

fodumpibe); |

bp s lorec{2); J* MIDD input buffer =/

printf("MIDI input buffer:in"); '

i odumplbpd r |
¥ I |
See Also i |
TOS, xbios |

fodump b 1‘.

isalnum—ctype macro (ctype.h)
Check if 3 character is'a number or letter :
#include <ctype.h> i | |
isalnumi{c) int 3 l

isalnum tests whether the argument ¢ is alphanumeric (0-9, A-Z, or a-z). It !'

returns non-zero if ¢ is of the desired type, zero if it is not. isaloum assumes {
that ¢ is an ASCII character or EQOF, 1 |
Example 1
For an example of how to use this macro, see the entry for ctype. r' '
See Also 1
ctype

isalpha—ctype macro {ctype,h)
Check if a character iz a letter
#include <ctype.h>
isalpha(c) int ;
isalpha tests whether the argument ¢ is a letter (A-Z or a-z). It returns non-
zero if ¢ is, zero if it is not. isalpha assumes that ¢ is an ASCII character or
EQF.
Example
For an example of this macro, see the entry for ctype,

See Also
ctype

isascii—ctype macro {civpe.h)
Check if a character 15 an ASCII character
#include <ctype.h>
isascii{c) int o

Mark Williams C 269

—ﬁ

?_S‘.Cl'ttl‘f—isiﬂ apyear .= -l,‘?fi.f‘:.g n.

isascii tests whether the argument ¢ is an ASCII character (0 <= ¢ <= 0177). It
returns non-zero if ¢ 15 an ASCII character, zero if it is not. Many other ctype
macros will Fair if passed non- ASCIT values other than EQF,

Exampie
For an example of how to use this macro, see the entry [or ctype. For an ex-
ample of its use in a TOS application, see the entry for Fgetdta.

See Also
ASCII, ctype

iscntrl —ctype macro (ctype.h)
Check if a character is a control character
#include <ctype.h>
isentrl{c) int ¢

iscntrl tests whether the argument ¢ is a control character (including a newling
character) or a delete character. It returns non-zero if ¢ is of the desired type,
zero if it is not, iscntrl assumes that ¢ 15 an ASCII character or EQF.

Exantple
For an example of how to use this macro, see the entry for ctype.

See Also
ctype

isdigit—ctype macro {ciype.h)
Check if a character is & numeral
#include <ctype.h>
isdigit(c) int ¢;

isdigit tests whether the argument ¢ is a numeral {0-9). Tt returns non-zero if ¢
is of the desired type, zero if it is not. isdigit assumes that ¢ is an ASCIL
character or EQF,

Example
For an example of how to use this macro, see the entry for ctype.

See Also
civpe

isleapvear—Time function (libe.a/isleapyear)
Indicate if a year was 4 leap year
#include <time.h>
int isleapyear{year) int year;

B
=1
5

Mark Williams C

Lexicon islower-ispunct

isleapyear indicates whether a given year A.D. isa leap vear or not. pear is the
year A.D, in which vou are interested. isleapyear returns zero if year was nota
leap vear, and a number greater than zero if it was,

See Also
davspermonth, time, time.h

islower—ctype macro (ctype.h)
Check if a character is a lower-case letter
#include <ctype.h=
islower(c) int c;

islower tests whether the argument ¢ is a lower-case letter (a-z). Ttreturns non-
zera if ¢ is of the desired type, zero if it is not. islower assumes that ¢ is an
ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ctype

isprint—ctype macro (ctype.h)
Check if a character is printable
#include <ctyvpe.h=
isprint{c) int ¢

isprint is a3 macro that tests whether the argument ¢ is printable, 1., whether it
is meither a delete nor a control character. Tt returns non-zero if ¢ is of the
desired type, zero if it is not. isprint assumes that ¢ iz an ASCII character or
EQF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ctype

ispunci—ctype macro {ctype.h)
Check if a character is a punctuation mark
#include <ciype.h>
ispunct(c) int c;

ispunct tests whether the argument ¢ is 2 punctuation mark, i.e., neither an al-
phanumeric character nor a control character. Tt returns non-zero if the
character tested is of the desired type, zero if it is not. ispunct assumes that ¢ 15

Mark Williams C 271

isspace-isupper

an ASCIT character or EQOF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
clype

isspace—ctype macro {ctype.h)
Check if a character prints white space
#include <ctype.h>
isspace(c) int o3

isspace tests whether the argument ¢ is a space, tab, newline, carriage return, or
form-feed character. It returns non-zero if ¢ is of the desired type, zero if it is
not. isspace assumes that ¢ is an ASCII character or EOF,

Example
For an example of how to use this macro, see the entry for ctype.

See Also
civpe

isupper—ctype macro (ctype.h)
Check if a character is an an upper-case letter
#include <ctype.h>
isupper(c) int c;

isupper tests whether the argument ¢ is an upper-case letter (A-Z). Tt returns
non-zero if ¢ is of the desired type, zero if it is not. Isupper assumes that ¢ is
an ASCII character or EOF,

Example
For an example of how to use this macro, see the entry for ctype. For an ex-
ample of its use in a TOS application, see the entry for Fpetdta.

See Also
ctype

Tk
=
(]

Mark Williams C
P

}exicuu jo

j0—Mathematics function {libm.a/j0}
Compute Bessel function
#include <math.h=>
double j0(z) double =3

j0 takes the argument = and computes the Bessel function of the first kind for
arder 0,

Example
This example, called bessel.c, demonstrates all of the Bessel functions. Compile
it with the following commangd line
cc -f bessel.c -Ilm
to include floating-point functions and the mathematics library.

#include <math.h®
dodisplay({value, name)
deuble value; char *name;

{
if (errna}
parror{name};
clse
princfg®ilg Xshn", value, namel;
errno = 07
¥
#define display(x) dedisplay{{doublelxd, Iy
matn{) {
extern char *gets();
double x;
char stringl&a];
forl;;d 4
printf{"Enter number: ");
ifigetsistring) == 03
break;
¥ = atof{string);
digplay{x);
digplay(jO(x1);
displayej1ox)y;
digphayl Jn(d;x33;
display(in{l,x});
displaytin{2,x1};
display(in(3,%32;
}
b

Mark Williams C 273

”a

jl-jday to tm Lexicon

Fee Also
j1. jn, mathematics library

jl—Mathematics function (libm.a/j1)
Compute Bessel function
#include <math.h>
double j1{z) double =3

j1 takes the argument £ and computes the Bessel funection of the first kind for
order 1.

Example
For an example of this Munction, see the entry for j0.

Sec Also
j0, jn. mathématics library

jday to_ time—Time function (libc.a/jday tfo time)
Convert Julian date to system time
#include <lime.h>
time | jday to_time(time) jday_t time;

jday (o time converts Julian time to system time. (fme iz the Julian time to be
converted, It is of type jday t, which is defined in the header file time.h,
jday t is a structure that consists of two unsigned longs, The first gives the
number of the Julian day, which is the number of days since the beginning of
the Julian calendar (Januvary 1, 4713 B.C.}. The second gives the number of
seconds since midnight of the given Julian day.

jday to time returns the Julian time as converted to type time_ € this type is
defined in the header file time.h as being equivalent to a long. Mark Williams C
delines the current system time as being the number of seconds from January [,
1970, DhO0mOls GMT, which 15 equivalent to the Julian day 2,440 5875,

See Also
jday to tm, time, time.h, time to jday, tm to jday

Note
This function mainly 15 of wse to astronomers, geographers, and historians,

jday to tm—Time function (libc.a/jday _to_tm)
Convert Julian date to system calendar format
#include <time.h>
tm_t *jday to_ tm{time) jday t ifime;

274 Mark Williams C '

Jdisint-jn

jlay to tm converts Julian time to the svstern calendar format. time 1% the
julian time to be converted. It is of type jday L which is defined in the
header file time.h, jday_t is a structure that consists of two unsigned longs, The
first gives the number of the Julian day, which iz the number of days since the
beginning of the Julian calendar {January 1, 4713 B.C.}. The second gives the
number of seconds since midnight of the given Julian day.

jday te_tm returns 2 pointer to a copy of the structure tm_[, which is defined
in the Reader file time.h. For more information on this structure, see the
Lexicon entry for time,

See Also
jday to_time, time, time.h, time_to_jday, tm_to_jday

Note
This function is of use mainly to astronomers, geographers, and historians.

Jdisint—xbios function 26 (osbind.h)

Disable interrupt on muli-function peripheral device
#include <oshind.h>

#include <xbios.h>

void Jdisint(number) Int number;

Jdisint disables an interrupt on the multi-function peripheral device, and
returns nothing, mumber 15 the number of the interrupt to disable. For a table
of interrupt codes, see the entry for Mfpint.

Fee Also
Jenabint, Mfpint, TOS, xbios

Jenabint—xbios function 27 (osbind.h)

Enable a multi-function peripheral port interrupt
#include <osbind.h>

#include <xbios.h=

void Jenabint(number) int number;

Jenahint enables the multi-function peripheral (MFP) interrupt, and returns
nothing. number is the number of the interrupt to disable. For a table of inter-
rupts, see the entry for Mfpint.

See Alxp
Jdisint, Mfpint, TOS, xbios

jn—Mathematics function (libm.a/jn)

Compute Bessel function

Mark Williams C 275

276

#include <math.h>
double jo(s, z) int #: double z;

in takes an argument = and computes the Bessel function of the first kind for
arder n. o

Example _ _ _
For an example of this function, see the entry for 0.

See Also
j0, j1, mathematics library

Mark Williams C

Lexicon Khdvhase

Kbdvhase—xhios function 34 (osbind.h)
Return a pointer to the keyboard vectors
#include <oshind.h>
#include <xbios.h>
khdvbase *Kbdvybase()

Khdvbase returns a pointer to a structure that holds the following elements:

struct kbdvbase {

void (*kb midivec}{); 7= BIDE input datas vecter */
waid (*kb vkbderri{d; /* keyboard error vector ®/
vaid (*kb vmiderc) ()] /% MID1 arror vector */

woid (*kb statvec}(}; /* keyboard status packet *f
void (*kb mousevec)i}; J/* keyboard mouse packet */
void (*kb_clockvesy(d; /¥ kevboard clock packet =/
wvaid (=kb_joyveck{); #* keyboard Joystick packet %/
void ¢=kb midisys)(d; J* gystem midi wectar *f

void (*kb kbdsysI(); ;% system keyboard vector ¥/

3;

midivee points to a routine that moves data from the musical instrument digital
interface (MIDI) into the MIDI buffer.

kb_vkbderr and kb_vmiderr point 10 routines that are called whenever an error
condition is detected, respectively, on the intelligent keyboard or on the MIDL

kb_statvec, kb_mousevec, kb _clockvee, and kb__ point to routines that process
data received [rom, respectively, the intelligent kevboard status handler, the
mouse, the clock, and the joystick.

Finally, kb_midisys and kb_ikbdsys point to routines that call handlers when
characters become available for, respectively, the MIDI and the intelligent
kevboard.

Manipulating peripheral devices

#y default, the keyboard reports each make/break contact on the jovstick port,
each make/break contact on the mouse buttons, and each movement of the
mouse that exceeds a preset threshold. Each report consists of a “packet” of
three bytes that indicate which device is changing and what change teok place.
MNote that the packet for the joystick has been documented elsewhete as consis-
ting of two bytes; this is incorrect.

The joystick packets consist of three bytes: The first is always 0xFF, which 1n-
dicates joystick event on port I} the second is filler, and is always 0x00; and
third records the closed switches on the joystick as set bits in the low nybbie,
Technically, the high bit of the third byte should encode the state of the joys-
tick fire button. In the default set-up, the fire button is set to the left mouse
button. This will change if you instruct the kevboard to adopt some other
reporting mode,

Mark Williams C 277

—ﬂ

Kbdvbase Lexicon_

The mouse packets consist of three bytes: The first is 0xF8, which indicates
relative mouse event and encodes the state of the mouse buttons and joystick
fire hutton in the low bits of the low nvbble The second and third encode,
respectively, the relative X- and Y-axis motion as signed characters.

If you do not have a joystick, vou can simulate one by plugging your mouse
into the joystick port. The mouse quadrature signals show up as the north south
east west switch closure bits in the jovstick packet. Tn addition, the left mouse
button still shows up as 8 mouse event, but the right button is inoperative.

Example
The following example monitors the kevboard's mouse and joystick vectors,
#include <oshind, h>

#inciude <bios.h>
#Finclude <xbios.h>

unien {
char k_c[41; /* tranzlate four-character packet ... */
long k_s; f® oeTnte a8 long =/
¥ kst; F*oene for jowstick and mouse */
long ktm; /M packet time stamp */
kbdvec(p) char *p;
€
kst.k cll] = *pr+; /¥ store four byte packet */
kst.k_c[1] = *ps+; J* HB: 'p' could be an odd address ¥/
ket.k_cl2] = "p++;
kst.k c[31 = pp
ktm = *{clong *)0x5BA): ¥ gystem 200hz clock tick */
i
maindd
{

register struct kbdvbase *kbp;
register void (*xx_joyvec)(), (*xx_mousevec}(};
register long ks, kit;

kbo = Kbdvbase{); /% keyvboard wector table */
xx_joyvec = kbp-»kb jeyvec; J* seve old joystick vector =/
kbp- >kb_joyvec = kbdwec; S¥ install new joystick wecter ®f

. mouseves = kbp-rkb_mousever; f* ditte for mouse =/
kbp-»kb mousevec = kbdwec;
ks = kst.k_g; /* initialize state record =/

278 Mark Williams C

"d

I_.E!Cil’!l]l:l _!i_!:l _I::_ltc-Khrate

while (Boonstat{BC _CON) == 0) { S* e, until 8 key is struck *f

if (ks 1= kst.k s) { /* ned eventy */
ks = kst.k_s; /% then report new state ... %/
¥t = ktm; f* ... and timestemp */
printf("Z0BLx ¥luvn", ks, kt);
¥
¥
Beonin{BC_CON3; /* clear keystroke *=/
kbp-=kb_joyvet = xr_joyvec; /* |RESTORE VECTORSE */
kbp-=kb mouseves = R Mousewvec] /® |OR YOU BOMB ON THE MEXT EVENT! =7
return O;
¥
See Also
TOS, xhios
kbrate—Command

Reset the kevboard’s repeat rate
kbrate start. delay

kbrate uses the xbios Tunction Kbrate to reset the kevboard's repeat rate. siart
is the amount of time to pass before repeating begins, and defay is the time in-
terval between repeats. Both are measured in “'system ticks", each tick being 20
milliseconds long. For example, the command

kbrate 50 3

tells the system that a key must be held down half a second before repeating
begins, and then repeating will occur ten times a second thereafier.

See Also
commands, TOS

Kbrate—xhios function 35 (osbind.h)
Get or set the kevboard’s repeat rate
#include <oshind.h>
#include <xbios.h=
int Kbrate(start, delay) int start, delay;

Kbrate gets or sets the keyboard's repeat rate. Rates are set as multiples of
“svstem ticks™; sach tick is 20 milliseconds long. first sets the number of ticks
to wait before a key begins to repeat; defay sets the number of ticks to wait be-
tween repeats. If either variable is set to OxFFFF (-1}, that value is not
changed. Kbrate returns an int that holds the previous setting of the kevboard
rate: the value of first is written as the high byte, and the value of delay as the
low byte.

Mark Williams C 279

kevhoard Lexicon

Example

This example displavs the keyboard repeat rate and delay period; it then sets
them to unreasonable values, lets the user try them out, and finally resets the
previous values. For an example of using this function from the ‘\auwto direc-
tory, see the entry for ‘auto.

#include <osbind.h=
#define DEL 10
#define RT 1

maing}
int old rate;
int old delay;
char ¢;

old rate = KEbrate{DEL,RT); /® Set the new rate. L7

old delay = (old rate=>B)80xFF;

old rate &= OxFF;

printf("The repeat delay is Hd/50 secordsin", old delayl;

printf("ard repeat rate is once every %d/50 secondsin',
old rate);

printf("Rates are changed to delay=¥d, rete=sid\n", DEL, RT};

printf{"Try typing something--end with “C.A\mn");

while{{c = Crawcin{}) '= "\03') {
Crawicic);

¥

Kbrate(old delay,old rate);

printf{ “ynRates restared.’\n" };

¥

See Also
TOS, xblos

kevboard—Definition
The Atari keyboard is table-driven. The keyboard tables are vectors of byte
values that are indexed by the scan code passed from the intelligent keyboard
(IKBED). The table is zero-based, so the first entry is always NULL, The
following display shows the layout of the keyboard, with the scan code each key
generates being given in hexadecimal:

280 Mark Williams C

Lexicon Kevthl

FABSICIAD IE/IFIND A1 FARIES b

o S e S S S e S A TS S SR e mn T T
{01 |02|03]04]05 |06 07| 08|09 |0 |08 joc|oo |29]0E| | 62 |51 |(63[6cl65 (68|
'|.1+--+..+“1---+._+_.¢---+-.+.a¢.-+--+..4..-+--]l._...---jl._+..+--i_.]
|nr1mn1|12|13|1:.|15|151=?11a|19|u]1a;1c|53|§52|45|4?]ie.?[53|59|u|
Bt L T ot el bkt S +--[|--+a-+--||--+--1-v-+--|
[1o]12|1F|20|21|22| 23|24 |25 |26 27 (28| |28 |48]50]4D] |6a |68 |6C|4E]
ST e TET TRE LEL SRS St St B +[--+--+--+--|
|2a]60]2¢c 20 |26 | 2F |30]31]32{33 13435 |38] | &0 | 6E | 6F | T2]
|--+.-..------...n----.-...------.+...|.--|. i--_..+..| 1
38| 39 LY | 7o |7 |
R e bbbl P s +

Mote that the kevboard sold in the United States does not have the key with
scan code 60, This key is sometimes called the “1S0 Key", and is onlv on
European maodels.

See Also
ASCIL, Kevtbl, TOS

Kevtbl—xhios function 16 {pshind.h)

%pt the keyboard’s translation table

#include <osbind.h>

#include <xbios.h>

char *Keytbl{unshifted, shifted, caplock) char *ynshifted. shifted, caplock:

Keythl sets the keyboard's translation tables. On the Atari 5T, each key
generates three scan codes: one in normal mode, one in shifted mode, and one
in caps-lock mode. Each scan code iz then translated into an ASCII character
by being looked up in the appropriate table. The variables shifted, unshifted,
and capslock each point to a translation table for the indicated mode; each table

must be 128 bytes long. Keytbl returns & pointer 1o the following structure:

struct keytbl {
char *unshifted;
char ®shifted;
char *cepslock;
¥

Example

This example prints out the default kevboard map in the form of a C source
file. This example also demonstrates a good method of obtaining data from the
Atari's memory,

#include <oshind.h>
#include <xbios.h>

Mark Williams C 281

—ﬁ-

keywaord Lexicon

shownzpimap, pl
reaister char *map, “p;

T
register Tht i, §;
printf(Mchar 301281 = { FE aE0sLx =/AnY mep, p):
for {i = 0; 1 =B 7 % 13 (
putchar('\t');
for (J =0; J =¥ J+= 1)
if t*l'-'l <1 ¥ H *F| == 0177 |'| *P = Iy |'| ‘P== AR
printf{¥i3d4, ", *p++ & OxFF);
elaa
printf(tize! v, *pi+ & OxFF);
putchar{*yn');
i
printf{"}:\n"y;:
¥
mainidy £
struct keytbl *kp;
kp = Keytble-fL, =1L, -1L);
showmep("normal", kp->kt_normal);
showmap{ "shifted", kp->kt_shifted);
shownap{ "capslock", kp-»kt capslock);
return . 0;
¥

Fee Alsa
Bioskeys, TOS, xbios

keyword—Definition
A keyword is a word that is reserved within C, and may not be used to name

variables, functions, or macros. The following gives kevwords recognized by
bark Williams C:

alien entry return
auto extern short
break float sizeof
case for stafic
char goto struct
continue if switch
default int typedefl
do long union
double readonly unsigned
else register while

282 Mark Williams C

Lexicon Kgettime-Ksettime

The keyword entry is not implemented. The proposed ANSI standard for ©
adds const, signed, and volatile to the above set, and deletes entry and readonly.
Mark Williams C reserves the kevwords readonly and alien, but these are not
implemented on the 68000,

See Also
C language

Kgettime—Time function (libe.a/Kgettime)
Eead time from intelligent kevboard's clock
#include <time.h>
tm_t *Kgeitime();

Kgettime is a function that reads the time from the intelligent keyboard's clock.
Mote that this clock i1z maintained apart from the other clocks on the Atari ST,
Kgettime returns a pointer to the structure tm_t, which it initializes. tm t is
defined in the header [ile time.h; for more information about it, see the ETItTY
for time.

See Alvo
Ksettime, time, time.h

Notes
Unlike the function Gettime, which deals in two-second increments, Kgettime
allows the programmer to work with clock ticks,

kick—Command
Force TOS to reread the disk cache
kick drive

kick forces TOS to read a disk cache. drive is the name of the disk drive whose
cache is to be read. kick should be used when disks are switched in a drive, to
ensure that TOS has the correct form of the disk’s root directary in memory.

See Also
commands, TOS

Ksettime—Time function (libc.a/Ksettime)
Set tme in intelligent keyboard's clock
#include <time.h>
int Ksettime(time) tm_t *time;

Ksettime is a function that sets the time on the intelligent kevboard's clock.
MNote that this clock is maintained apart from the other clocks on the Atari ST,
time points to a copy of the structure tm_t, which is filled by the functions
gmtlme or localtime, This structure is defined in the header file time.h: for

Mark Williams C 283

284

more information about it, see the entry for time.

See Also
Kgettime, time, time.h

Notes o ‘
Unlike the function Settime, which deals with two-second increments, Ksettime
works directly with clock ticks.

Mark Williams C

Lexicon Icalloc-1d

Icalloe—General function (libe.a/lcalloc)
Allocate dynamic memory
char *lealloc{count, 5ize)
unsigned long counl, size;

lcalloc is one of a set of routines that helps vou to manage the computer's (ree
memory, or arena. lcalloc calls Imalloc to obtain a block Jarge enough to con-
tain cown items of size bytes each; it then initializes the block to zeroes and
returns a pointer to it. Dynamic memory that is no longer needed ¢an be
returned to the free memory pool with the function free.

Unlike the related Tunction calloc, lealloc takes arguments that are wnsigned
longs; therefore, it can allocate memory blocks that are larger than 64 kilobyvtes.

See Alse
arena, calloe, free, Imalloc, Irealloe, malloc, notmem, realloc

Diagnostics
lcalloe returns NULL if insufficient memaory is available,

ld—Command
Link relocatable object files
\d foption ...[file ...

A compiler translates a file of source code into a relocatable object. This
relocatable object cannot be executed by itself, for calls to routines stored i
libraries have not vet been resolved. 1d combines, or links, relocatable object
files with libraries produced by the archiver ar to construct an executable file.
For this reason, 1d is sometimes called a linker, a link editor, or a loader.

1d scans its arguments in order and interprets each option as described below.
Each non-option argument is either a relocatable object file, produced by ec,
as, or 1d, or a library archive produced by ar. Tt rejects all other arguments and
prints a diagnostic message.

Each relocatable file argument is bound into the output file if its maching type
matches the machine tvpe of the first file so bound; if it does not, a diagnostic
message is generated. The symbol table of the file is merged into the output
symbo! table and the list of defined and undefined symbols updated ap-
propriately, If the file redefines a symbol defined in an earliar bound module,
the radefinition is reported and the link continues. The last such redefinition
determines the value that the symbol will have in the output file, which may be
acceptable but is probably an error.

Each library archive argument is searched only to resolve undefined ref erences,
i.e. if there are no undefined symbols, the linker goes to the next argument 1m-
mediately. The library is searched from first module to last and any module

Mark Williams C 285

Lexicon

that resolves one or more undefined symbols is bound into the output exactly as
an explicitly named relocatable [ile is bound. The library is searched repeatedly
until an entire scan adds nothing to the executable file.

The order of modules in a library is important in two respects: it will affect the
time required to search the library, and, if more than one module resolves an
undefined symbaol, it can alter the set of library modules bound into the output.

A library will link faster if the undefined symbols in any given library moduls
are resolved by a library module that comes later in the library. Thus, the low-
level library modules, thoze with no undefined symbols, should come at the end
of the library, whereas the higher-level modules, those with many undefined
symbols, should come at the beginning, The library module ranlib.sym, which
is maintained by the ar s modifier, provides Id with a compressed index to the
symbols defined in the library. But even with the index, the library will link
much faster if the modules ogcur in top-down rather than bottom-up order,

A library can be constructed to provide a type of “conditional™ linking if alter-
nate resolutions of undefined symbols are archived in a carefully thought-out
order. For instance, libe.a containg the modules

finit.o
exit.o
_finish.o

in precisely the order given, though some other modules may intervene. finit.o
containg most of the internals of the STDIO library, exit.o contains the exit()
function, and _ finish.o contains an empty version of _finish(), the function
that exit() calls to close STDIO streams before process termination. If a
program uses any STDIO routines, macros, or data, then finit,o will be bound
into the output with its version of finish{), If a program uses no STDIO, then
the “dummy™ _finish.o will be bound into the output because it is the first
module that defines finish() that the linker encounters after exit.o adds the
undefined reference. This saves approximately 3,000 bytes. To set the order of
routines within a library, vuse the archiver ar; this, of course, has its own entry
in the Lexicon.

The available options are as follows:

- Define common regions even if relocation information is retainad, By
defanlt, 1d leaves common areas undefined if’ there are undefined symbols
or if the -r option 15 specified.

-k filename
Link with the object file filesame. This option is used to link programs to
access code or data at fixed locations outside the program being linked,
such as a library burned into a ROM or the fixed low memory locations
documented by Atari.

Mark Williams C

Lexicon Idexp

=1 name
An abbreviation for the libraries named in the environmental variable
LIBPATEH. |d searches each directory named in LIBPATH for a fils
named libname.a,

-o file
Write output to file (default, Lprg.)

-R value

Relocation base option. By default, Id links executeable files to run at the
user-base for the computer, In almost all cases, the user-haseis zero. I
the -R option is used, Id will link the executeahle 1o run at value instead
of at zers, value can be set to any C-style constant, or to a symbol name
that 1d can find in the object files and archives being linked; remember
that a C-accessible symbol must end with an underscore character *_".
This option is used primarily to produce output files that can be burned
intoc ROM. These programs must make their own provisions for
relocating initialized data and other tasks.

-r Retain relocation information in the cutput, and issue no diagnostic mes-
sage for undefined symbols. By default 1d discards relocation information
from the output if there are no undefined symbols.

-5 Strip the symbol table from the putput. The same effect may be obtained
by using strip. The -s and -r options are mutuslly exclusive.

-u symbol
Add spmbol to the symbol table as a global reference, usually to force the
linking of a particular library maodule.

_X Discard local compiler-generated symbols of the form g EeE

-x Discard all local symbols,

See Also
ar, as, cc, commands, n.out

Notes

If vou are linking a program by hand (that-is, running 1d independently from
the ¢c command), be sure to include the appropriate run-time start-up routing
with the Id command line; otherwise, the program will not link correctly,

ldexp—General function (libc.a/ldexp)

Separate mantissa and exponent
double ldexp(sm, £) double »; int &

ldexp combines the mantissa m with the binary exponent ¢ o return a floating
point value real that satisfies the equation real=m*2%e.

Mark Williams C 287

I

Lexicon Lexicon

See Also
atof, ceil, fabs, floor, frexp, modf

Lexicon—Introduction
The Mark Williams Lexicon is a new approach to documentation of computer
software. The Lexicon has been designed to improve documentation and
climinate some limitations found in more conventional documentation,

How ter use the Lexicon

The Lexicon consists of one large document that contains all entries for every
aspect of Mark Williams C. You will not have to search through a number of
different manuals to find the entry you are looking for.

Every entry in the Lexicon has the same structure. The first line gives the
name of the topic being discussed, followed by its type (e.g., Mathematics
function) and, where appropriate, the file where it is kept.

The next lines briefly describes the item, then give the item's usage, where ap-
plicable. These are followed a brief discussion of the item, and an example,

Cross-references follow: these can be to other entries or to other texts, notably
to The Art of Computer Programming or The C Programming Language. Diag-
nostics and notes, where applicable, conclude each entry.

Types of catries
There are several types of entries, as follows:

Command
Commands or utilities that run directly under the micro-shell msh, or
from the GEM desktop.

Libirary functions
Functions or macros that are included with Mark Williams C; these in-
clude the following: ctype macros (a macro that checks the tvpe of data
being handled); debugging macros; general functions (non-specialized C
functions and macros); mathematics functions; STDIO functions; STRIO
macros; string functions (routines used to manipulate character strings);
and time functions (routines used to manipulate the time sstting rendered
by TOS).

Definition
These entries define technical terms and provide backround information
that is useful in C programming,

Overview
Give an overview of a group of routines,

Symbols and constants

Data elements that are used while compiling or running programs; thess
include environmental parameters, linker-defined symbols, and manifest

288 Mark Williams C

Lexicon libaes.a

constants.

TOS support
Entries that give information wseful in programming for the Atari 8T,
these include the following: TOS devices (logical devices used by TOS to
describe its peripheral devices); TOS functions; and TOS support
(routines designed to support the TOS operating s$ystem).

UNIX routines
A function, maero, or data item included to provide compatibility with
UNIX, COHERENT, and related operating systems.

The Overview entries review an entire topic, and give full cross-references to all
of the entries that belong to the category discussed. If vou are unfamiliar with
a particular variety of routine, be sure to check the Overview entry that discus-
seg it. The following Overview entries are included in the Lexicon:

C language
commands

ciype

declarations

TOS functions
UNIX system calls

Lise the Lexicon

If, while reading an entry, you encounter a technical term that yvou do not un-
derstand, be sure to look it up in the Lexicon, You should find an entry for it.
For example, if a function is said to return a data type float and you do not
know exactly what a float is, look it up. You will find it described in full. In
thiz way, vou should increase your understanding of Mark Williams C, and so
make your programming easier and more productive,

We wish to hear your comments on the Lexicon; we especially wish to hear if
you discover something wrong or if an entry that you looked for is missing.

libaes.a—Definition
libaes.a is the library that holds the GEM AES binding routines. AES stands
for application environment services; the routines contained in libaes.a allow you
to invoke the elements of the GEM graphics interface, such as icons, windows,
and pull-down menus. See the entry for AES for a brief description of the
routines in this library,

To alter libaes.a or print out its table of contents, use the archiver ar.

This library can be called on the cc command line in one of two ways. First,
the =VGEM will automatically link it in, plus the library libvdi.a and the run-
time startup module crisg.o. Second, it can be included by itself with the library
option -laes; note that this option must come at the end of the cc command line,
ot the library will not be linked in.

Mark Williams C 289

likc.a-library Lexicon

Example
For an example of a program that uses libaes.a, see the entry for AES.

See Alto
AES, ar, crisg.o, gemdefs.h, library, nm, TOS, vdibind.h

libe.a—Definition
libe.a is the archive [ile that holds the more commonly used C functions, svstem
calls, and compiler Tun-time support routines., See the entries for string,
STDIO, and UNIX routines for information about many of the routines within
libe.a. For a complete listing of the modules within libe.a, pass the following
command to msh:

ar t Libc.a »foo
This writes a list of the library’s contents into the file foo.

See Also
ar, library, nm

libm.a—Definition
libm.a is the archive file that holds the mathematics library.

See Also
ar, library, mathematics library, math.h, nm

LIBPATH—Environmental parameter
LIBPATH names the directories that ee searches for the compiler’s executable
programs and libraries, make also searches these directories for the files
mmacros and mactions, and 1d looks them for its libraries. For example, the
command

seteny LIBPATH=a:\Llib, b:ylib

tells e to look for the compiler’s executable files first in directory lib on drive
Az, then in the current directory (as indicated by the two commas with nothing
between them), and finally in lib on drive B:.

It is set with the seteny command.

See Alse
msh, seteny

lihrary—Definition
A library 15 an archive file of commonly used functions that have been com-
piled, tested, and stored for inclusion in @ program at link time. Normally, C

290 Mark Williams C

Eexicon libvdi.a-line feed

uses two libraries: libe.a, which holds most standard C functions, such as I/0
function; angd libm.a, which holds mathemartical functions. Users, howsever,
may create their own libraries of functions or purchase such libraries from else-
where. Mark Williams C includes an archiver that allows you to create custom
libraries.

The files in a library can be listed with ar; the sizes of the files can be listed
with size; the symbol tables of the object files may be listed with nm.

See Alsa
ar, function, libaes.a, libe.a, libm.a, libvdi.a

libvdi.a—Definition

libvdi.a is the library that holds the GEM VDI routines, VDI stands for virrual
device interface. These routines perform low-level GEM graphics tasks, and
are kept in the library libvdi.a. For a brief summary of the routines in this
library, see the entry for YDL

libvdi.a's table of contents can be printed out with the command nm, and its
contents can be altered with the archiver ar.

This library can be called on the cc command line in one of two ways. First,
the -¥VGEM will automatically link it in, plus the library libaes.a and the run-
time startup module ertsg.o. Second, it can be included by itself with the library
option -lvdi; note that this option must come at the end of the cc command line,
or the library will not be linked in.

See Also
AES, ar, crisg.o, gemdefs.h, library, nm, TOS, vdibind.h

line feed—Definition

Mark Williams C recognizes the literal character “\n' for the ASCII line feed
character LF (octal 013). This character may be used as a character constant or
in a string constant, like the other character constants: “\a', which rings the
aodible bell on the tarminal; “\b', 1o backspace; *\{", to pass a formfeed com-
mand to the printer; *\1*, for a carriage return; ', for a horizontal tab charac-
ter; and *\v", for a vertical tab character.

See Alsa

ASCII

Notes .

On many systems, Y0 both feeds the line and tosses the carriage; however, on

the Atari ST %n must be used with \r if the program does not work through
STDIO.

Mark Williams C 291

Line & Lexicon

Line A—Definition
Line A is the interface to the Atari 8T's assemblyv-language-level graphics
rOULInegs.

If the machine instructions of the 88000 are sorted by their bit patterns, they
may be categorized into 16 “lines", according to the value of the high nybble of
the ingtruction word, Lines 1, 2, and 3, for instance, give the move instructions.
Lines A and F are not used by the 68000 instruction set, so the processor traps
when it encounters instructions with these initial kit patterns, Line F is used by
the Atarl ROM to make GEM AES and VDI fit into the ROM. Line A 1s used
to call the low-level graphics routines.

Each Line A function consists of few lines of assembly language, which save
registers, load parameters, execute one of the unimplemented Line A instruc-
tions, restore registers, and teturn. These perform simple graphics functions,
such as drawing lines, displaying characters, or drawing palygons. They under-
pin the GEM VDI routines,

Muost functions pass their parameters through the structure la_data. la_data is
referenced through a pointer in in the structure la_init, which is initialized by
function lineal. The exceptions are linea7, which takes the structure la blit;
lineac, which takes a pointer; and linead, which takes two pointers. All
functions and structures are declared in the header file linea.h, which also con-
tains a number of macros vsed to access elements within the Line A structures.

The following briefly summarizes the Line A functions:

lingal Initialize

lineal Put pixel

linea2 Get pixel

lineal Draw a line

linead Drraw a horizontal line
lineas Draw a [illed rectangle
lineat Draw a filled polygon
linea7 Bit bBlit

linea¥ Text blit

linea?d Show the mouse's pointer
lineaa Hide the mouse's pointer
lineah Transtorm the mouse's pointer
lineac Erase a sprite

linead Diraw a sprite

lineae Copy a raster form
lineaf Seedfill

1]
]
Lo]

Mark Williams C 5)

_l.exir:uu Line A

Examples

The first example demonstrates linea3d, linea5, and linea8, When compiled, it
takes four arguments, in decimal: an ASCIL character; a column number (0
through 79): a row number (0 through 23); and a mode number (0 through 63).
The mode indicates how the character named in the first argument is displayed.

#include <stdia.h>
Hinclude <lines.h>
struct la_fant *fontp: /* font pointer for linea interface */
char Line[1001, *p;

char ser_wrk[10281; /* area for graphics */ ,

int. ser_fat, ser_chi; /* Length and disp for underline */

_|l'*

* Put a character on the screen.

*f

put_serd{e, x, ¥y, mode)

int &} /* character to put out */f

int:x, ¥r /* % & y coordinates on 80%Z5 screen *f
tnt moder /* see vet_effects for list of codes %/
L

unzigned int tmp;
static long patmsk = -1;

tmg = c - fontp->font_low_ade;

DELX = fontp->font char_offtmp+1] -
(SRCX = fontp->font_char_off [tmpl);

PETY = w =< 3;

DSTY = y << &;

WMODE 0;

STYLE = (mode & Ti;

ifimode & &) (/* reverse ¥/
X2 = (X1 = D&TY) + sor_fat;
Y2 = (Y1 = DETY) + scr_chi;
PATPTR = &Gpatmsk;
FATHSK = 1;
CLIP = 0;
Linead(d; /¥ filled rectangle */
WMODE = 2: SR oxor mode *f

/* replace mode */

Mark Williams C 203

Line A Lexicon

iftmode & 18) € 7* underline */
X2 = (X1 = DETRY + ser_fat}
Y2 = ¥1 = DETY + scr_chi;

Linea8{);
LHMASK = -1;
WHOOE = 2:
Linealcy;

2y

else
Limesl();

3

/% ipftialize meterial for screen %/
init_ser() €

Linead{); J* inftialize linea */
Lineaal); /* hide mouse */
fontp = ta_init.li_al(d1; J* Balé system font */

FBASE = fontp->font_dsta;

FWIDTH = ‘fmtﬂwfont_width; |
TEXTFG = 1; /* text forground white ®/
SRCY = 03+

DELY = fontp-»font_height;

aer_fat = fontp->font_fatest;
scr_chi = fontp-»font_height - 1;
COLBITG = 1;

coLeiTY = O;

COLBITZ = 0;

COLBIT3 = 0;

LITEMSK = Dx5555:

SKEWMSE = Ox17111;

SCRTCHP = sor_wrk;

WEIGHT = 1:

LETLIN = -1: |

¥

init megl) {

7 printf{m033EPregram to demonstrate some Linea cepabilitiesin);
printf{"Each line should have four decimal numbers or 'guit'\n"};
printf("The ASCIT value of the cher 'A'==&5, ete.\n"};
printf("The » ard y coordinates relative to a 2580 scresnin');
arintf("The mode 1sthicken 2=grey 4=italicin®);
printf{" Be=reverse 1é=urderline\nt);
printf("Combinations work but some are weirdinhn®);

main(} {
int o, X, ¥, W
init scri);
init_magll;

294 Mark Williams C

:_[.E'.‘Cl“:l)'l'l Line A

forl;;» £
printf{"O33a053K= 133
ffiush{stdout);
gets{linel;
Pf(lstrempd Line, Yguith})

return(0);

zscanfiline, "id ¥d ¥d ¥dv, Bc, &, BY, Emy;
put_serie, ®, ¥, m;

¥

¥

The second example uses linea$ to draw a filled rectangle. Typing any key
ends the dizplay.

#include <linea.h=
#include <osbind.h>
box{i, 17
€
leng patmsk = -1; /* pattern all ones *f

WMCDE = 2; 7 xor mode *f

PATPTR = &patmsk;

PATHSE = 1; /* gizeof pattern */f

: J* o clipping */

¥1 =21 =1;
X2 =¥2 =
LimeaS(y; /% drawk box */

¥

main{l{
int ;
Lineal(};
limeaa();
CronmslMO3ZENI33F Any key stops the display"l;

for(:Ceonis() == 0;)
for(i = 50; i <« 200; i++)
box(i, 400-7);
Cecnin); J* gat char *f

Ceomws{ "\ O3aehn")y
}

See Also
linea.h, TOS, VDI

Notes

Line A is described in chapter 3.4 of Atari ST Internals, and in unpublished
Atari documentation. These functions are extremely complex, and are not
thoroughly documented., Programmers who wish to use these routines are well
advisad to use the above example as a model for testing the Line A functions
and studying how they manipulate the screen.

Mark Williams C

(o
W
L¥]

_ ?a.

linea.h-localtime Lexicon

linea.h—Header fila
linea.h is the header file that declares the the Atari’s Line A routines. It also
defines all specialized siructures used by them.

Sec Also
hzader file, Line A, TOS

Imalloc— General Function (libe.a/Imalloc)
Allocate dynamic memory
char *Ilmalloc(size) unsigned long size:

Imalloe helps to manage an a program’s arena, It uses a circular, first-fit algo-
rithm to select an unused block of at least size bytes, marks the portion it uses,
and returns a pointer to it. The function free can be wsed to return allocated
memoty to the free memory pool.

Unlike the related function malloe, Imalloe takes an unsigned long as its size
argument, which allows allocation of memory blocks larger than 64 kilobvtes,

Example
For an example of a related function, s=e malloc.

Soe Also
arena, calloc, free, lealloe, Irealloe, malloe, notmem. realloe, setbul [

Diggnostics

lmalloc returns NULL if insufficient memory is available, Tt prints a message
and calls abort if 1t discovers that the arena has been corruptad, which most of -
ten occurs by storing past the bounds of an allogated block, Imalloc will behave
unpredictably if handed an unreliable per.

localtime—Time function (libe.a/ctime)
Convert TOS time to ASCI string
#include <time.h>
tm_ t *localtime(iimep) time t *fimem
tm_t *localtime(iimep) long *timep, |

localtime converts the svstem's internal time into the form described in the |
structure tm__ £,

{imep points to the system time. It is declared to be of type time f, which is
defined in the header file time.h as being equivalent to a long. The system time,
in turnm, is returned by the function time, Mark Williams C defines the system
time seconds singe midnight January 1, 1970 0h00m00s GMT,

296 Mark Williams C

Lexicon log-logll

localtime returns a pointer to the structure, tm_t, which is also delined in
time.h, tm_t breaks the system time down into integer vyears since 1500, the
month, dayv of the month, the hour, the minute, the second, the day of the
week, and yvearday. The function asctime turns tm_t into an ASCII string that
can be read by humans.

Unlike its cousin gmtime, localtime returns the local time, including conversion
to davlight saving time, if applicable. The daylight saving time flag indicates
whether daylight saving time is now in effect, not whether it is in effect during
some part of the year. Note, too, that the time zone it 5¢t by localtime every
time the value returned by

geteny{"TIHEZONE")
changes.

Example
For an example of how to use this function, see the entry for asctime,

See Also
gmtime, time, TIMEZONE

Notes

localtime returns a pointer to a statically allocated data area that is overwritten
by successive calls.

log—Mathematics function (libm.a/log)
Compute natural logarithm
#include <math.h>
double log(z) double =;

log returns the natural (base e) logarithm of its argument z.

Example
For an example of this function, see the entry for exp.

See Alsa
loglQ, mathematics library

Diagnostics
A domain error in log (2 is less than or equal to 0) sets errno 10 EDOM and
returns 0,

logl10—Mathematics function (libm.a/logl0)
Compute commaon logarithm
#include <math.h>
double log10{z) double z;

Mark Williams C 297

___TZIIIQ!!'ll

Loghase Lexicon

logl® returns the common {base 10) logarithm of its argument =.

Example
For an example of this function, see the entry for exp.

See Also
log, mathematics library

Diggnostics
A domain error in legld (z is less than or equal to 9) sets erroo to EDOM and
returns Q.

Logbase—xbios function 3 (osbind.h)
FRead the logical screen’s display base
#include <osbind. h=
#include <xbios.h>
long Loghase()

Loghase reads the screen’s logical display base, and returns a pointer to it

The logical base is where the screen-drawing primitives do their work., This is
in contrast to the physical base, which 1% returned by Physbase; the latter is
where the display hardware gets the image that is displaved on the monitor.
This differentiation allows vou to draw one pattern while displaving another.

Example

This example zets the logical and physical screen base addresses. If they are the I
same, it Tills the top of the screem with the pattern 10101010; otherwise, it

prints out each address. ln the case of this program, they will generally be

equal,

#include <osbind.h>

mafng)
lorg *ibase;
lorg *phaze;
int x;
LEase
phase

if(pbase == lhaze) {
far{x=0;x<0x1000; k=3
*phases+ = QxAMALRARAL ;

{long *) Logbase(); S* Ger Logical screen ®/
(long *) Physbase(); J/* Get physical screen %/ |

o

¥ else {
printf{"The logical zcreen i5 at Xba\n", lbase); |
printf{"“The physicel screen iz at %lxyn", pbasze);

¥

exitl);

298 Mark Williams C
B -

Lexicon long-lrealloc

See Also
Physhase, TOS, xbhios

long—Definition
A long is a numeric data tvpe. By definition, a long is the largest integer data
type; it cannot be smaller than an iat, although on some machines an int and a
long will be the same size. On most machines, sizeof long will equal two
machine words, or four chars (31 data bits plus a sign bit),

See Also
declarations, int

longjmp—Ceneral function (libe.a/setjmp)
Return from a non-local goto
#include <setjmp.h>
longjmp(eny, real) jmp buf env; int real

The function call is the only mechanism that C provides to transfer control be-
tween functions. This mechanism is inadeguate for some purposes, such as
handling unexpected errors ot interrupts at lower levels of a program. To
answer this need, longjmp helps to provide a non-local goto facility.

longjmp restorss an environment that had been saved by a previous setjmp call,
and returns value rval to the caller of setjmp, just as if the setimp call had just
returned. longimp must not restore the environment of a routine that has al-
ready returned, The type declaration for jmp_buf is in the header file
setjmp.h, The environment saved includes the program counter, stack pointer,
and stack frame. Thess routines do not restore register variables in the en-
vironment returned,

See Also
setjmp, setimp.h

Notes

Programmers should note that many user-level routines cannot be interrupted
and reentered safelv., For that reason, improper use of longjmp and setjmp will
result in the creation of mysterious and irreproducible bugs. Do not attempt to
use longjmp within an exception handler,

Irealloc—Ganeral function (libe.a/lrealloc)
Reallocate dvnamic memory
char *lrealloc(pir, size)
char *pir; unsigned long 5iz¢e;

Irealloc helps to manage a program’s arena, It returns a block of size bytes }hat
lizlds the contents of the old block, up to the smaller of the old and new sizes.

Mark Williams C 299

———-—-?

s Lexicon

lrealloc tries to return the same block, truncated or extended; if size is smaller
than the size of the old Block, lrealloc will return the same pir,

Unlike the related function realloe, Irealloe takes an unsigned long gs its size
argument, and therefore can reallocate a memory blocks that is larger than 64
kilobytes.

See Also
arena, calloc, free, lealloe, Imallog, malloc, notmem, realloc, setbuf

Diggrostics

Irealloc returns NULL if insufficient memory is available. Tt prints & message
and calls abort if it discovers that the arena has been corrupted, which most of -
ten occurs by storing past the bounds of an allocated block. Irealloc will behave
capriciously if handed a fallacious per.

Is—Command
List directory contents
Is [-adlrt] [file ...]

Is prints information about each file. Normally, Is sorts by file name and prints
only the name of each file. If a directory name is given as an argument, Is sorts
and lists its contents, not including *. and *.. If no file is named, ls lists the
contents of the current directory,

The following options control how Is sorts and displays its output,

-1 Print all directory entries, including *’, ., any hidden [iles, and volume
ID's.

-d Treat directories as if they were files,

-1 Print information in long format. The fields give mode bits, size in bytes,
date of last update, and file name.

-r Reverse the sense of the sort.
=t Sort by time, newest first.

The mode field in the long list format consists of four characters, The first
character will be one of the following:

- regular file
d directory

5 system file

¥ volume identifier

The mext two charaeters are r or = if the file is read-only, and w if the file can
be written to. The fourth character is h if the [ile is hidden,

300 Mark Williams C

Lexicon lseek-Ivalue

See Also
commands, msh

Iseek-UINIX system call (libe.a/Iseek)
Set read /write position
long lseek(fd, where, how)
int fd, how: long where;

lseek changes the lpcation where the next read or write operation occurs within
the file identified by file descriptor fd. Each read or write procedure executes
at the current seek position, and advances the seek position by the aumber of
bytes successfully transferred. The where and how arguments specify the
desired seek position. where indicates the new seek position in the file; it i3
measured from the beginning of the file if kow is zero, from the current seek
position if how is one, or from the end of the file if how is two. A successful
call to Iseek returns the new seek position.

Ses Also
STDIO, UNIX routines

Diggnostics
Iseek returns (long)-1 on an error, such as seeking to a negative position.

Notes

For any diagnostic error, lseek returns -1; otherwise, it returns 0, Note that if
Iseek goes beyond the end of the file, it will not return an error message until
the corresponding read or write is performed.

ltom—Command
Redraw the screen from low to medium resolution
ltom

lom redraws the screen, moving from low to medium resclution.

Ser Alsa
commands, htom, mtoh, mtol, TOS

Ivalue—Definition
An lvalue is an expression that designates a region of storage. The name comes
from the assignment expression el=e2;, in which the left operand must be an
Ivalue.

An identifier has both an [value (its address) and an rvalue (its contents). Some
C operators require Ivalue operands; the left operand of an assignment must be
an lvalue. Some operators give lvalue results; if ¢ is a pointer expression, *e is
an Ivalue that designates the gbject to which ¢ points. The following example

Mark Williams C 301

Lexicon

Ivalue

shows the use of both an lvalue and a rvalue:

int §, *ip;
ip = &i; /* ip is en lvalue, i and &7 are rvelues %/
i=3; /% 7 is an lvalue, 3 is an rvalue =/
ip =oh; F *ip is en lvalue, 4 is an rvalue #/
See Also

rvalue

anz2 Mark Williams C

l.exicon

macro-make

macro - Definition

A macro is 4 collection of instructions that is given a name and can be
referenced in a program. For example, getchar() 15 a macro that consists of the
function call gete(stdin). Note that because macros may employ an argument »
tirmes, any arguments that have side effects will have the side effect repeated »
times as well, which may be undesirable.

See Also
Tunction

main—Definition

A C program consists of a set of functions, one of which must be called main.
This function is called from the runtime startoff after the runtime environment
has been initialized.

Programs can terminate in one of two ways. The easiest Is simply to have the
main routine return, Control i& passed back to the run-time start-up cods,
which performs cleanup opetations and then returns contro] to the operating
system, passing the returned value from main as exit status. In some situations
(errors, for example), it may be necessary to stop @ program, and you may not
want {or even be able} to return to the main routine. Here, the exit routine can
be used; it cieans up the debris left by the broken program and returns control
to the operating system.

A second exit routine, called _exit, gquickly returns control to the operating
system without performing any cleanup. This routing should be used with care,
because bypassing the cleanup will leave files open and buffers of data in

memaory,

Programs compiled by Mark Williams C return to the program that called them;
if thev return from main with a value or call exit with a value, that value is
returned to their caller. Programs that invoke other programs through the sys-
tem, execve, or Pexec functions check the returned value to see if these secon-
dary programs terminated successfully,

See Also
arge, argy, envp, exit, _exit, runtime startup

make—Command

Program building discipline
make [option .| largument .| [target ..]

make assists in building programs fram more than one compilable module,

Complex programs are often ¢onstructed of several object muodules, which are

Mark Williams C 303

make

Lexicon

304

the product of compiling sowrce programs. Source programs may refer fo
include files, which are subject to independent change. Recompiling and
relinking complicatad programs correctly can be difficult and tedious.

make regenerates a program, based upon a specification of the structure of the
program in makefile and the modification times of the files involved; make will
recompile a source file only if it is vounger than the object module.

makefile has three types of lines: macro definitions, dependency definitions, and
commands. Macro definitions contain the equal sign ‘="; dependency definitions
have & target name at the beginning of a ling followed by a colon; and command
lines begm with a space or tab, Comments within [ines begm wilh an unquoted
pound sign ‘%7, and end at the end of the line. Long non-comment lines may be
broken with a quoted newline character. Tf no targef s given on the command
line, make assumes the target to be the first target in makefile.

Dependencies

makefile specifies which files clepend upon other files, and how to recreate the
dependent files. Each targer file is followed by a culon followed by a space-
separated list of files upon which it depends, The cammqnds to recreate the
dependent file are on the following lines, each beginning with a tab or spage. Tf
the target file test.o depends upon the source file test. ¢, the dependency is
illustrated by

test: test.o
cc -0 tést.o -0 test

If test.c is modified or recreated; make will issue the ce command to regenerate
the dependent file test.o.

make knows about common dependencies, e.g., that .o [iles depend upon e files
with the same base name. The target .SUFFIXES contains the suffixes make
knows about. make also has a set of rules to regenerate dependent files, For
example, for a source file with suffix .c and dependent file suffix .o, the target
.c.0 gives the regeneration rule:

-C.0%

cc -0 ¢ F<o

Here %< stands for the name of the file that causes the action. The default suf-
fixes and rules are kept in the files mmacros and mactions, which should be
kept in one of the directories named in the LIBPATH environmental variable.
The dependencies can be changed by editing these files,

Muacros
To simplify the writing of complex dependencies, make provides a macro
Facilityv. To define a macro, write

NAME = string

The siring is terminated by the end-of-line character, so it can contain blanks.
To refer to the value of the macro, vse a dollar sign ‘%" Tollowed by the macro

Mark Williams C

Lexicon

miake

name enclosed in parentheses:
ENAME)

If the macro name is one character, parentheses are not necessary, make uses
macros in the definition of default rules;

L e
$(0C) SCCFLAGS) -© <

where the macros dre defined as

CC=co
CFLAGS=-0

Other built-in macros used in Interpretation of rules are:

& target name less suffix

@ farget name

= st of referred files

2 referred files newer than target

Each command line argument should be a macro definition of the form
OBJECT=a.0 b.o

Arguments that include spaces must be surrounded by quotation marks, because
blanks are significant to the micro-shell msh,

Cptions
The following lists the options that can be passed to make on its command line.

-d (Debug) Give verbose printout of all decisions and information going into
decisions.

~f fife
file contains the make specification. If this option does not appear, make
uses the file makefile or Makefile in the current directory.

-i Ignore error returns from commands and continue processing. MNormally,
make exits I commands return arror status.

-0 Test only: suppresses actual execution of commands.
-p Print all macro definitions and target descriptions.

-g Return a zero exit status if the targets are up to date. No commands are
executed.

-r Do not use built-in rules describing dependencies.

-5 Do not print command lines when executing them. Commands precsdad
by *@" are not printed, except under the -n option.

Mark Williams C 305

-t {Touch option) Force the dates of targets to be the current time, and
bypass actual regeneration.

Favoking make
make can be used gither from the micro-shell msh, or from the TOS desktop.

To use make from the TOS desktop, its suffix must be changed to TOS ar TTP,
Once this is done, vou ¢an invoke make simply pointing to the appropriate icon
with your mouse and clicking 1t, When the Open Application box appears,
enter the options and target vou want. make reads whatever makelile 15 in the
current directory, and executes its instructions, [t cannot accept options from
the desktop, however,

If vou wish to use make from msh, simply invoke msh from TOS, then enter the
make command as vou normally would, including options and a path name for
the makefile, should it be in a directory other than one that wyou have
previously defined in the PATH environmental parameter.

See Also

commands, msh

See the tutorial Building Programs with Make, which iz included at the end of
this manual,

Diggnostics

make reports its exit status if interrupted or if an executed command returns
error status. It replies “Target name not defined” or “Don’t know how to make
target aare™ if it cannot find appropriate rules.

MNotes

MNote that the order of items in mmacros/ . SUFFIXES matters. The consequent
of a default rule (e.g., .obj) must precede the antecedent (e.g., .c) in the entry
SUFFIXES. Otherwise, make will not work properly.

malloc—General function (libe.a/mallac)

306

Allocate dvnamic memory
char *malloc(size) unsigned 5ize;

malloc helps to manage an g program’s arena, Tt uses a circular, first-fit algo-
rithm to select an vnused block of at least size bvtes, marks the portion it uses,
and returns a pointer to it. The function free can be used to return allocated
memory to the frée memory pool,

Example

This example reads from the standard input up to NITEMS items, each of
which is up to MAXYLEN long, sorts them, and writes the sorted list onto the
standard output, Tt demonstrates the functions gsort, malloe, free, exit, and
stremp. You may want to use as input what the example for Random has output.
For an example of how to use malloc 1n a TOS application, see the entry for
Fgetdta,

Mark Williams C

Lexicon Malloe

#include =stdio.h=
#cdefine NITEMS 512
#define HAXLEN 256
char *data[NITEMS] ;
char string [MAXLEN] ;

maing) €
register char *®*cpp;
register int count;
extern int compare();
extern char *malloc{);
extern char *gets();:

for {cpp = &datall); cpp < ddata[NITEMSI; cpp++) {
if {gets{string} == KULL}
break:
if {(("cpp = malloc{strlen{string) + 1}) == HULL}
exit{13;
stropy{*cpp, string):
¥
count = cpp - &datalll;
grortidsta, count, sizeof{char =}, compare);
for (cpp = &datal0}; cpp < Bdatalcounmt]; cppt+) {
printf(MEs\n", *cpp);
free{*cppl;
¥
exit{d);
3

compare{pl, p2)
register char *¥pil, **pZ;

£
extern int stromgl);
returnistrempl*pl, *p23);
3
See Alsg

arena, calloc, free, Icalloc, Imalloe, Irealloc, notmem, realloc, setbuf

Diaggrnostics

malloc returns NULL if insufficient memory i available. It prints a message
and calls abort if it discovers that the arena has been corrupted, which most of -
ten occurs by storing past the bounds of an allocated block.

The related function Imalloc takes an unsigned long as its size argument, and
therefore can allocate memory blocks that are larger than 64 kilobytes.

Malloc—gemdos function 72 {osbind.h)

Allocate dvnamic memory
#include <osbind.h>

Mark Williams C 307

_manii'est constant-mantissa

long Malloe(n) long n;

Malloc allocates dynamic memory. # contains either the number of bytes to be
allocated, or the number -1L (0xFFFFFFFF), which returns all available
memory. If # contains the number of bytes to be allocated, Malloe returns a
pointer to the starting address of the memory allocated; if n contsing - 1L, then
Malloc returns the number of bytss available; in either case, Malloc returns 0
upon failure,

Example
This program displays the amount of free memory available.

#include <osbind.h>

maing)
L

printf("[kld bytes of memary freelin", Malloo(-1L));
3

Bee Also
gemdos, Mfree, Mshrink, TOS

Nates

As of this writing, Malloe appears to have some peculiarities. Always Malloc
even-size blocks of memory. Alwavs Mfree memory in the reverse order of
allocation. Finally, try to Malloc a few pieces of memory; there appears to be
an undocumented limit on the number of times Malloe can be called by a given
program. Though large, this number is finite; when 1t is exceeded, Malloe will
return NULL even though considerable amounts of memory are still available.

manifest constant—Definition
A manifest constant i 4 numeric constant that 1z referenced by a svmbolic
name, to allow it to be defined differently under different computing environ-
ments. An example is EOQF, the end-of -file marker, which has wildly diffarant
representations vnder different operating systems,

The use of manifest constants in programs help to ensure that code is portable,
by isplating the definition of these elements in a single header file, where they
belong.

See Also
EOF, header file, NULL, portability

mantissa—Definition
In mathematics, @ mantissa is the fractional part of a logarithm, In the context
of C, *mantissa” refers to the fractional portion of a floating point number.

308 Mark Williams C

Lexicon math. h-mathematics library

math.

See Also
data formats, double, float, frexp

h—Hezader file
Header file for mathematics functions
#include <math.h>

math.h is the header file t¢ be included with programs that use any of Mark
Williams ('s mathematics routines. It includes the following: definitions for
mathematical Functions; error return values, as uvsed by the errmo function;
definitions of mathematical constants, e.g., PI: the definition of structure epx,
which describes complex wariables; definitions of internal compiler functions;
and, finally, declarations of mathematical functions.

Seg Also
libm.a, mathematics llbrary

mathematics library—Cverview

The following mathematics routines are available with Mark Williams C:

acos inverse cosing

asin inverse sing

atan inverse tangent

atan2 inverse tangent of quotient
cahs complex absolute value
cos cosing

cosh hyperbolic cosine

exp exponent

fahs absolute value function
floor floor function

hypot hypotenuse

jo Bessel function, order 0
j1 Bessel function, order |
jn Besszel function, order #
log natural logarithm

log1l common logarithm

pow power

sin sine

sinh hyperbolic sine

sqrt sruare root

tan tangent

tanh hyperbolic tangent

Mark Williams C 300

Lexicon

See Also
libm.a, Lexicon, math.h

Notes

When programs that contain mathematics routines are compiled, the mathe-
matics libraries must be called specifically on the cc command line. For ex-
ample, to compile the example presented under the entry for acos, use the
following c¢ command line:

ce f -0 acos.prg ecos.co-lm

The -f option links in the floating point routines for printf, while the -Im op-
tion links in the mathematics libraries., MNote that the -lm option must come las!
on the ec command line, or the library will not be searched properly.

me—_ ommand

R

Invoke MicroEMACS screen editor
me [=e] [file ..]

me i5 the command that invokes MicroEMACS, Mark Willlams C's screen
editor. With it, the user can insert text, delete text, move text, search for a
string and replace-it, and perform many other editing tasks. MicroEMACS
reads text from files and writes edited text to files; it ¢can edit several files
simultaneously.

If the command me is used without arguments, MicroEMACS opens an empty
buffer, If used with one or more [ile name arguments, MicroEMACS will to
open each of the [iles named, and display its contents in a window. Il a [ils
cannot be found, MicroEMACS will assume that voo are creating it for the first
time, and create an appropriately named buffer and file descriptor for it.

The fast line of the screen is used to print messages and inguiries. The rest of
the screen is portioned into one or more windows in which texl iz displaved,
The last line of each window shows whether the text has been changed, the
name of the buffer, and the name of the file associated with the window,

MicroEMACS notes its current position and displavs a cursor under the charac-
ter to the right of that position, Tt remembers a position called the mark. Some
commands manipulate the block of text between the current position and the
mark,

The printable ASCII characters, from * ° to '~', can be inserted at the current
position. Control characters and escape sequences are recognized as comnandy,
deseribed below. A command character can be inserted into the text by
prefixing it with <ctrl-Qs,

Commands remove text in two different ways. Delere commands remove text
and throw it away, whereas &idf commands remove text bur save it in the Lilf

Mark Williams C

Lexicon _ me

buffer. Successive kill commands append text to the previous kill buffer.

Search commands prompt for a search string terminated by <RETURMN> and
then search for it. Case sensitivity for searching can be toggled with the com-
mand <escr@. Typing <RETURN> instead of a search string tells
MicroEMACS to use the previous search string.

Some commands manipulate words rather than characters; a word consists of
upper-case and lower-case letters, *_*, and ‘$". Usually, a character command
is a control character and the corresponding word command is an escape se-
quence. For example, <ctrl-F> moves forward one character and <esc>F moves
forward one word. Note that the MicroEMACS commands are not case sensi-
tive; for example, <ctrl-F> and <ctrl-f> are identical.

MicroEMACS can be invoked automatically by the compiler command cc to
display for correction any errors that occurred during compilation. The -A op-
tion to cc will cause MicroEMACS to be invoked with error messages in one
window, source code in the other, and with the cursor fixed at the line on
which the first error occurred. When the text is altered, exiting from
MicroEMACS will automatically cause the file to recompile. This cyele will
continue either until the file compiles without error, or until you break the
cyvele by typing <ctrl-Us <etrl-X= <ctrl-Cx.

The option -e to the me command allows you to invoke the error buffer by
hand: compilation ¢an then be performed by passing a command to the shell
using the <ectrl-X>! command,

The following list gives the MicroEMACS commands. They are grouped by
function, e.g., Moving the cursor. An argumeni giving a repeal count can
precede a cammand the default argument is 1. <ctrl-U» introduces an argu-
ment, If it is followed by an optional minus sign ‘-' and decimal digits, the
number gives the argument, If not, each <ctrl-U> multiplies the value of the
argument by four,

Moving the cursor

<ctel-A> Move to start of line,

<¢trl-B> (Back) Move backward by characters.
<esc>B Move backward by words.

<ctrl-E> (End) Move to end of line,

<ctrl-F> (Forward) Move forward by characters.
<escxF {Forward)} Move forward by words,
<esc>G Go to an absolute line number in a file.
<ctrl=N> (Next) Move to next ling,

Mark Williams C 311

me Lexicon

<ctrl-P> (Previcus) Move to previous line.

<ctrl-V> Move forward by pages.

<ese> Y Move backward by pages.

<cfrl-X>= Print the current position.

<ctrl-X>G Go to an absolute line number in a file. Can be used with an argu-
ment; otherwise, will prompt for a line number,

<e5c>] Move to the line within the window given by argument; the posi-
tion is in lines from the top if positive, in lines from the bottom if
negative, and the center of the window if (J,

<eSCE< bMove to the beginning of the current buffer,

CERCH> Move to the end of the current buffer,

Killing and deleting

<ctrl-D= {Delete) Delete next character.

<gse=D Kill the next word.

<ctrl-H> I no argument, delete previous character. Otherwize, kill grgument
previous characters,

<ctrl-K»> (Kill) With no argument, kill from current position to end of line; if
at the end, kill the newline. With argument 0, kill from beginning
of line to current position. Otherwise, kill argument lines forward
(if positive) or backward (if nepative).

<ctrl-We Kill text from current position to mark,

<esc> W Kill text from mark to current position. Same as <ctrl-W=,

<ctrl=-X><ctrl-0O>
K ill blank lines at current position,

<ctrl-¥> (Yank) Copy the kill buffer into text at the current position; set
current position to the end of the new text,

<gscx«ctrl-Hx>
Kill the previous word.

<ese>
Kill the previous word.

 If no argument, delete the previous character, Otherwise, kill gr-
gument previous characters,

312 Mark Williams C

Lexicon me

indows
<ctrl-X>1 Display only the current window,

<cfrl-X=2 Split the current window; usually followed by <ctrl-X>B or <ctrl-
Ks<ctrl-¥s.

<ctrl-X=N (Next) Move to next window,
<cirl-X=P (Previous) Move to previous window,
<ctrl-X>Z Enlarge the current window by argument lines.

<cirl-X><cirl-N>

Move current window down by argument lines.
zotrl-X><ctri-F>

Move current window up by argument! lines.

<ctrl-Xz<ctrl-Z>
Shrink current window by argument lines,

Buffers

<ctrl-X>B (Buffer) Prompt for a buffer name, and display the buffer in the
current window,

<ctrl-X>K (Kill) Prompt for a buffer name and delete it.

<ctrl-X»<ctri-B>
Display a window showing the change flag, size, buffer name, and
file mame of each buffer.

<ctrl-X=><cirl-F>
(File name) Prompt for a file name for current buffer.

<ctrl=-X><ctrl-R>
(Read) Prompt for a file name, delete current buffer, and read the
file.

<ctrl-X><cirl-V>
{Visit) Prompt for a file name and display the file in the current
window.

Saving lext and exiling

<ctrl-X><ctrl-C>
Exit without saving text.

cctrl-Xe <ctrl-5=
(Save) Save current buffer to the associated file.

<cirl-X><ctrl-W- ‘
{(Write) Prompt for a file name and write the current buffer to it

Mark Williams C 313

— Lexicon

<ctrl-Z> Save current buffer to associated file and exit.

Compilation ervor handling

<ctrl-X>> Move to next error.

<ctrl-X» < Return to previous error.

Search and replace

<cirl-R> (Reverse) Incremental search backward; a pattern i$ searched for as
each character is typed in.

<escxR {Reverse) Search towards the beginning of the file.

<ctrl-S8= (Search) Incremental search forward; a pattern is searched for as
each character is typed in.

wescS {Search) Search toward the end of the file.

<escx Search and replace. Prompt for two strings; then search for the
first string and replace it with the second.

<ese/ Search for next occurrence of a string entered with the <ese=S or
<ese>R commands; this remembers whether the previous search had
been forwards or backwards.

<psC (@ Toggle case sensitivity in search commands.

Keyboard macros

<ctrl-X>(Begin a macro definition. MicroEMACS collects everything typad
until the end of the definition for subssquent repeated execution,
<ctrl-G» breaks the definition.

<ctrl-X=) End a macro definition.

<ctrl-X>E (Execute) Execute macro.

Change case of lext

<pseC (Capitalize) Capitalize the next word,

<ctrl-X><cirl-L>
{Lower) Convert from current position to mark into lower case,

<zescxL {(Lower) Convert the next word to lower case.

<virl-X><ctrl-Us
{Upper) Convert from current position to mark into upper case.

<esc>1 (Upper) Convert the next word to upper case.

314

Mark Williams C

Lexicon me

White space
<ctrl-I> Insert a tab.
<ctrl-J= Insert a new line and indent to current level.

<ctrl-M> (Return) If the following line is not empty, insert a new ling; if
empty, move to next line.

<cirl=-0» (Open) Open a blank line; that is, insert newline after the current
position.

<TAB=> With argument, set tab indentation to argumeni characters. An ar-
gument of zero restores the default of eight characters.

Send commands Lo operaling system

<ctrl-C> Suspend MicroEMACS and invoke a new copy of msh. Typing exit
returng you to MicroEMACS and allows you to resume editing.

<ctrl-X=! Prompt for an msh command and execute it
Setting the mark

<ctrl-g@> Set mark at current position.

<REC>. Set mark at current position,

Miscellangous

<cirl-G> Abort a command,

<ctrl-L> Refresh the screen.

<ctrl-Q= (Quote) Insert the next character into text; used to insert control

characters.

<esc>0) {Quote) Insert the next control character into the text, same ag
<ctrl-0)=.

<ctrl-T> (Transpose) Transpose the characters before and after the current
position.

<ctrl-Us Specify a numeric argument, as described above,
<gtrl-%X>F Set word wrap to argument column.,

zctrl-X><ctrl-X>
Exchange current position and mark,

Diggnostics)
MicroEMACS prints error messages on the bottom line of the screen. It prints
informational messages (enclosed in square brackets *[* and 'T to distinguish
them from error messages) in the same place,

MicroEMACS manipulates text in memory rather than in a file. No changes to

Mark Williams C 315

m_e.a—Mediach Lexicon

a file occur until the user writes edited text, MicroEMACS prints a warning
and prompts the user whenever a command would cause it to lose changed texl.

Because MicroEMACS keeps text in memory, it does not work for extremely
large files. It prints an error message if a file is too large; when this happens,
vou should exit from the editor immediately, without saving the file. Otherwise,
your file on disk will be truncated.

See Also
commands
See the accompanying tutorial MicroEMACS Screen Editor Turorial.

Notes

This version of MicroEMACS does not include many facilities available in the
original EMACS display editor, which was written by Richard Stallman at
M.LT. In particular, it doss not include user-defined commands. Tt also does
fot includs pattern search commands.

Mote that the current version MicroEMACS, including source code, is
proprietary to Mark Williams Company, The code may be altered or otherwise
changed for your personal use, but may nol be used for commercial purposes,
and may not be distributed without prior written consent by Mark Williams
Company.

MicroEMACS is based the public domain editor by David G. Conroy.

me.a—Archive

me.a is an archive that holds the source files for the Mark Williams proprietary
version of the MicroEMACS screen editor. If you wish to recompile
MicroEMACS, vou must first extract the source files from the archive, Use the
command ed to move to the directory where you have stored this archive, then
give msh the following command:

ar AV me.a

See Also
ar, me

Mediach— bios function 9 (oshind.h)

3la

Check whether disk has been changed
#include <oshind.h>

#include <bios. h>

long Mediach{drive) int drive;

Mediach checks whether a disk has been changed. drive is a number from zero
to 15, and indicates which drive to ¢heck: zero indicates drive A, one indicates
drive B, etc. Mediach returns zero if the medium has not been changed, one if
it may have been changed, and two if it was changed.

Mark Williams C

Lexicon memory allocation

Exampie
This example discovers whether the floppy disks have been changed.

#include <osbind.h>
mainld {
int d, ds;
cher *status[3] = { "not", "possibly”, Pdefinitely" ¥;

for (d=0; d<2; d+= 1) &
ds = Mediach(d};
printf{"drive ¥ has ", d+'a'};
if (ds <0 || ds > 2)
printf{"bed status: Xdin", ds);
elee
printf{"ks changed\n", statusids]);

¥

See Also
bias, TOS

memory allocation—Definition

The following diagram shows how Mark Williams C allocates memory,

Mark Williams C

317

memory allocation Lexicon

| VIDED RAM | highest address

| ARENA |

| AND |

| FREE |

| HEHORY |

[STACK |
Hot in | | uninitialized
image | UWINITIALIZED DATA | instructions
file I | & data

| private data,

In | INITIALIZED DATA | shared data,

i | strings

I I
image | TExT COOE | instructions

I I
file | RUHTIME STARTUP |

| |

| BASE PAGE | low address

|

The stack descends from the highest address in its space, toward the static data
area; new arguments are placed on the stack in its lowest address. Everything
from the top of the stack space to the end of the data segment is free to accept
dynamically allocated data.

The size of the stack cannot be altered while a program is running. The amount
of stack is set by the global variable stksize. By defanlt, the run-time start-up
sets _ stksize to two kilobytes. Note, however, that a highly recursive function
may cause the stack to grow larger than two kilobytes, so that it overwrites
other data areas. This will cause vour program to work incorrectlv.

Should vour program need more than two kilobytes of stack, include in it the
following global statement;

long stksize = HL;
where # is & constant that specifies the number of bytes to allocate.

Mark Williams C

Lexicon

memory allocation

Example
The following example displays the “memory map” of a GEM-DOS process, Tt
demonstrates arge, argy, envp, environ, end, etext, edata, and _ stksize, as well
as how to use the header file basepage.h.

¥include <bazepage.h>
dodisplayivalue, fame)
lotig yalue; char ®name;

i

b

printf("0x%081x %shn", value, name):

#define display(x) dodisplay({iong){x), "x"}

main{argc, argy, envpl
int arge; char *argv[]l, *envp[l;

{

extern long stksize;
extern char "*environ;
extern cher etext(l, edata(l, end(]);

digplay(BE->p env];
display(envp[0]);
display(environ[0]);
display(argv[0]);

if {argv1] 1= 0}
display(argv([i1);

if Large » 2}
display(ergvlarge-11);

display{BF);
display(BP->p lowtpal;
display(8P->p cmdlin+1);
display(_start);
display(BF->p thase);

display(etext);
display(BF-»p_tbase+BP-»p tlen);
display(edata);

display(BF-»p dbase+BP-»p dlen);
display({end):

display(BF->p_bbase+BP->p blen);
display(envp):

dizplay{environ);

diaplaylargv);
display(argv+argc):

Mark Williams C

319

Lexicon

dizplay(_stksize};

display(&arge);

display{&argv);

display{&envp);

display{BF->p_hitpal;
¥

See Also
C language, calling conventions, data format

menn—Definition

320

A menu is 8 graphics form that is used extensively in programs that run under
TOS. Tt is a specialized form of AES object that uses the structure OBJECT
described in the header file obdefs.h. For more information on this structure,
see the entry for object,

Each menu’s object tree must be built in a special way. The roof object is a
G_TBOX that is sized to dimensions of the screen. Note that in high resolution,
the screem is 640 rasters wide by 400 high; in medivm resolution, it is 640
rasters wide by 200 high: and in low resolution, it is 320 rasters wide by 200
high, The root has two childremn: the bar object and the screen object.

The toot ohject’s first child 15 the bar object. Tt describes the menu bar, at the
top of the screen, and is of object type G_BOX. Its length is that of the screen,
and its width is that of a normal character plug two rasters for gutter, In high
and medium resolutions, a character is 16 rasters high; in low resolution, it is
eight rasters high; thus, in high resolution the bar object is I8 rasters high: in
mediom and low resolutions, it is ten rasters high.

The bar object has one child: an active object, whose type is G_1BOX. The ac-
tive box is sized to hold all of the titles that appear in the bar along the wp of
the screen.

The active box, in turn, has one or more children: the title strings, which are
the titles of the menus. These strings are of the type G_TITLE; note that this
tvpe 1s used only with menus. By design, the first (leftmost) title must be called
“Desk™ it triggers the drop-down menu that names the available GEM desk ac-
cessories.

The screen object is the object’s other child. Tt is of type G_IBOX, and it is
sized to cover the portion of the screen that is used by the drop-deown menus.
Thus, it should be as wide as the screen and as high as the longest drop-down
menu. The screen object has one or more children; each child i3 a box that dis-
plavs a drop-down menu. There should be one box for each drop-down menu;
i, the number of boxes and titles must be the same. Each box is of type
G_BOX; each must be wide enough and high enough to hold all of the text that
will be written into it; for example, if the longest string to go into it is ten
characters wide, then the box must be at least 64 rasters wide {in high resolu-

Mark Williams C

LE-“iCP“ menu

lI
tion) or the string will splash over its edge. Each box should be aligned on the
left with its corresponding title; there is no need, however, to keep the various [
boxes from overlapping. MNote that the Atart 5T has a buffer in which to store

the portion of the screen that is overwritten by a drop-down menu, so that it |
can be restored when the menu is erased. This buffer can hold up to one |
quarter of the screen, or 64,000 pixels; no box should exceed this limit, or |
debris will be left on the screen when the menu i3 erased. |

Each hox can have one or more children, called names. Each name i of tvpe
G _STRING, and names the particular option that you are offering the user.
Note that all the names must be as wide as the box; otherwise, the box will
“laak", and cause more than one selection to be Numinated when the mouse
pointer is moved into that box. The Y coordinate for each name must he in-
creased by one line's height; for example, if a box has three names, the ¥ coor-
dinate of the first should be zero, that of the second should be & (in high
resolution, eight in medium or low resolution), and that of the third should be
32. This will keep the names from overlapping, which could possibly have dis-
astrous results. As always, the X and Y coordinates of an object are relative to
those of its parent.

The first (leftmost) box is special in that the AES can manipulate its name ob- |
jects. By design, the first box must have eight name children. The first name

can be defined by the user. The second name consists of a tow of hyphens; its

state iz set to DISABLED, which causes it to be written in gray, rather than

solid, letters. The next six names should point to empty strings. These will be

filled in by the AES with the names of the available desk accessories, The AES

will alter the size of the Jeftmost box if fewer than six are available,

The following “geneological table” shows the object tree for a menu that has
two drop-down menus, the latter with three entries. The numbers indicate sach
element's place in the object tree, and are used to set the parent-child-sibling
pointers. These are set by the order in which the elements are loaded into the
object's array;

Mark Williams C 321

menu

Lexicon

Ll

I 1. ROOT |
,-r _______________ {
[2. BAR] <--n-eeorooeeo> [6. SCREEN|
| ! 4
|3. AcTIvE| 7. B0K| +eeee- > 116, 80|
b \ i pA

| & TL | ==> | 5. TL | [8B. N1|...|15. N8| |1? Wil... |19, rt‘i[

The menu should be invoked with the menu_ bar call; the AES will handle the
rest. Mote that, as shown in the sbove example, meno_bar regards as sig-
nificant the order in which the elements of a menu are loaded into the object
array. The order should be as follows:

root

bar

active

title(s)

screen

first menu box
first items

last menu box
last items

When the mouse is used to select a menu entry, the AES generates a message
that contains that object’s index number within the menu tres; use evol_mesag
to receive the message and initiate the proper response, The AES will
automatically handle all invocation of desk elements; you do not neead to write
code for them,

Example
This axump]e clears the screen and displays a menu that lists all of the GEM

desk accessories. Note that the objects are sized in rasters for a high- resolution
screen,

#include <aesbird.h>
#include <obdefs.h>
#include <gemdefs.h=

Mark Williams C

Lexicon

menu

#define SPEC Ox111CIL

.|“"

¥ lee.s (1 == 18} | [Border 1 raster thick]

.4 (BLACK << 12) | [Fill cotor; BLACK = 1}

* (BLACK << 8 | [Text color]

* {1 =7 | [Turn on replace bit]

* 4 << &) | (Fill pattern to grayl

" [Together make one nybblel)

* BLACK [Border colorl

*f

#idefine COLOR 0x010FOL

I.r*

] Toee, (0 =< 16} [Border thickness 01

- (BLACK << T2) [Fill color; BLACK = 1]

* [(WHITE << &) [Text celerk

* {1 =T [Replace Bit onl

* (7 s &) [Fill pattern to sclid] [one nybblel

* WHITE [Border color; WHITE = 0]

!

/* Strings used in the menu object *f

char desk{l = " Desk";

char quitll = " oQuit";

char Linel]l = % swscaraariedieomas M

char blank[} = ww,

J* Define an cbject thet mesks the screen */

DBJECT maskll = {

M OHS T/ type J flags [/ state Sspecifications Nf Y/ W/ H */
-1, =1, -1, G_BOK, LASTCB, NORMAL, SPEC, 0, 0, 539, 399

§

J* Define the menu cbject */f

OEJECT menul] = {

i NF OB TS type / flags / state fspecif./) X /7 Y[/ W/ H¥
-1, 1, &, G_IB0K, MONE, NORMAL, OxOL, 0, 0, 639, 399, /¥ ROOT */
&, 2, 2, G BOX, WONE, NORMAL, COLDR, 0, 0, 639, 18, /* BAR */
1, 3, 3, G 1BOX, NONE, NORMAL, OxOL, 0, 0, &4, 18, /% ACTIVE */
2, -1, -1, G TITLE, NOME, MORMAL, desk, 0, 0, &4, 18, /= TITLE */
0, 5, 5§, G_IBOX, HOME, MORMAL, OxOL, 0, 1B, &39, 140, /= SCREEN =/
4, 6,13, G BOX, NOME, MORMAL, COLOR, 0, 0O, 188, 140, /* BOX */
7, -1, +1, G STRING, MOME, MORMAL, quit, 0, 0, 188, 18, /* N1 %=/
8, 1, -1, G STRIMG, MOME, DISABLED, Lline, O, 16, 168, 16, /* N2 =/
%, -1, -1, G STRING, MOME, NORMAL, blenk, 0, 32, 168, 16, /* NI %/
10, -1, -1, G-STRING, KOKE HORMAL , blank, 0, 48, 1568, 16, /* H& */
11, -1 -1, G_STRING; HOME NORMAL , blank, 0, &4, 168, 16, JE N5 */
12, -1, -1, G_STRING, NONE, NORMAL, blank, 0, BO, 188, 16, /* N6 %/
13, -1, -1, G_STRIMG, NOME, NORMAL, blank, D, 9& 188, 18, /* N7 */
5, -1, -1, G_STRING, LASTDE, NO®MAL, blank, 0, 112, 1868, 16 /% NB %/

¥

Mark Williams C 323

menu__bar-menu_icheck Lexicon

main() {
int buffer[8];
int nowhere = 0; S* Unuzed painters point here */
appl_init{); /¥ Begin application =/
graf_mouse(ARROW, Sncwhere); J* Mouse ptr. to arrow */

objec_draW(mask, ROOT, MAX CEPTH, O, 18, 639, 380);
/= Mask the screen =f
meru_barfmenu, 13; F* Shouw mend bar *f

for{;;1 {
evnt_mesag{buffer);
if (buffer[l] == HN_S-EI.ECTE:I:I €
switchi{buffer{4l) {

case 6: /= i.e., object & clicked */
mers_barimerd, 03;
appl_exit(l;
exiti0y;
defaul t:
break;
¥

¥

See Also
AES, ohject, TOS, window

menu__bhar—AES function (libaes.a/menu_ bar)

324

Show or erase the menu bar

#include <aesbind.h>

#include <obdefs.h>

int menu_bar(tree, eraseshow) OBJECT *tree; int eraseshow;

menu_bar is an AES routine that shows or erases the menu bar; the menu bar is
the bar that appears at the top of the screen and names the menus that are
available to the user. free is the name of the object tree being used. eraseshow
indicates whether vou want to show or erase the menu bar zero indicates erase,
and one indicates show. menu_bar returns zero if an error occurred, and 4
number greater than zero if one did not.

Examplc
For an example of how ta use this routine, see the entry for menu.

See Also
AES, menu, object, TOS

Mark Williams C

Mark Williams C

l.exicon menu ienable-menu register

menu_icheck—AES function (libaes.a/menu_ icheck)

Write or erase a check mark next to a menu item

#include <geshind. h>

#include <obdefs. h>

int menu_icheck(iree. item, eraseshow) OBJECT *iree; int item, eraseshow;

menu_icheck is an AES routine that draws or erases a check mark next to a
selected menu entry. iree points to the object tree that holds the meno, and ob-
ject is the object within the tree that is being handled, eraseshow indicates
whether vou want to show the check mark or erase it zero indicates erase, and
one indicates show. menu_icheck returns zerg if an error ocecurred, and 2
number greater than zero if one did not.

See Also
AES, menu, object, TOS

menu__fenable—AES function (libaes.a/menu_ ienable)

Enable or disable a menu item
#include <aesbind. h>

#include <obdefs.h>

int menu_ienable(iree. obfect. disable)
OBJECT *tree; int object, disable:

menu_ienable is an AES routine that enables or disables a menu item. A dis-
abled item is displayed in faint letters and cannor be clicked by the user. free
points to the object tree that contains the menu, and object is the number of the
object within the tree. disable indicates whether the item should be enabled or
disabled; zerc indicates disable, and one indicates enable. menu_ienable

returns zero if an error occurred, and a number greater than zeto if one did not.

See Also
AES, menu, chject, TOS

menu_register—AES function (libaes.a/menu_ register)

Add a name to the desk accessory menu list

#include <aesbind.h>

#include <obdefs.hi>

int menu_reglster(accessory, teststring) int aceessory; char *tesisiring;

menu_ register is an AES routine that adds a name to the desk accessory menu
list. accessary is the 1D of the desk accessory. teststring points to the desk ac-
cessory's desk menu test string. The test string is a template used to check
whether text tvped by the user, if any, is of the correct type (8.g., lower-case
letters only). For more information about the template, see the entry for menu,

menu_register returns the desk accessory’s identifier, from zero through five.

L]
(]
L

menu text-metafile Lexicon

See Also
AES, desk accessory, menu, object, TOS

Notes
Because only six desk accessories can be used at any one time, only zix items
can be displayed on the desk accessory menu,

menu__text—AES function (libaes.a/menu_ text)

Replace text of a menu item
#include <aesbhind.h>

‘#include <obdefs.h>

int menu_text(tree, ohject, text) OBJECT *tree; char *text: Int object;

menu__text is an AES routine that changes the text for a menu item. (free points
10 the object tree for the menu, and object is the number of the object within
the rree that holds that particular menu entry, fext pointg to the text siring to
be plugged into the manu, menuo_ text returns zero if an error occurred, and a
number greater than zero if one did not.

See Also
AES, menu, abject, TOS

menu__tnormal—AES function (libaes.a/menu_ tnormal)

Display menu title in normal or reverse video

#include <aeshind.h>

#include <obdefs.h>

int menu_tnormal(iree, object, video) OBJECT *tree; int object, video,

menu_tnormal iz an AES routine that displays the menu title in normal or
reverse video. fre¢ points to the object tree that encodes the menu, and ohject
is the number of menu title within the tree. video indicates whether you want
the title to be in normal or reverse video: zero indicates reverse video, and one
indicates normal. menu_ fnormal returns zero if an error oecurred, and a num-
ber greater than zero if one did not.

Seo Also
AES, menu, object, TOS

metafile—Definition

326

A metaflile 15 a file of VDI instructions that can be stored on disk and incor-
porated into other programs. This allows you to create “hoiler-plate™ images
that are transferred easily.

Note that a metafile consists of a set of YDI instructions, rather than device-
dependent bits. This allows you to edit such a file easily to alter its aspects,
More importantly; because the elements of an image are described logically

Mark Williams C

Lexicon metafile

rather than absolutely, it allows the elements to be manipulated easily, and the
image az a whole 1o be maneuvered. This allows vou to create images inde-
pendent of the the type or resolution of the device on which they are displayed.

Consider, for example, the example of the bouncing colored ball used in the
Atari demonstration program. At present, that program has a set of *snapshots™
of the ball in different positions; to animate the ball, the program simply cvcles
through the snapshots. If this program were stored in a ¥ DI metafile, however,
a programmer could describe how each plane on the surface of the ball is logi-
cally connectad to its neighbors; by setting parameters, then, the entire ball in
all of its aspects could be resized easily or moved about the screen. This, in
turn, would allow the programmer to create a user interface, in which the uzer
¢ould “zoom in" toward the ball, zoom out, move the ball around the screen,
change its rate or direction of rotation, etc.

Metafile struciure

For a full description of the VDI metafile structure, see Appendix C to volume
1 of the GEM Pregrammer's Guide, The following briefly summarizes the
metafile format,

Each metafile begins with a 16-integer header, structured as follows:
1 Alwavs set to 0xFFFF.

2 VDI version number: 100 times the major version number, plus the
minor version number,

3 Tvpe of coordinates: zero indicates mormalized device coordinates
{NDC): two indicates raster coordinates (RC). One 15 reserved by TOS.

4-7 Respectively, minimum width and height, and maximum width and
height required to display imag:& in the file. These are set with the
function v_extent_meta; otherwise, they are set to zero,

B-16 Reserved; always set to zerpes.

The header is follow by a series of VDI entries; each consists of an array of Ints,
in the following order:

0 The VDI function's opcode. See the list below for the appropriate op-
code for each legal ¥ DI routine.

1 The number of vertices (i.e., endpoints or corners) in the figure being
drawn,

The number of integer parameters passed to the ¥ DI routine,

The VDI routine’s sub-opcode; see the table below for each routing’s
appropriate sub-opeode.

4-n The settings for each vertex. The number of vertices described cor-
responds to the valus in 1.

Mark Williams C 327

metafile

Lexicon

328

n#d=-m The wvalues for each integer parameter. The number of parameters

described corresponds to the value 1o 2.
Finally, each metafile closes with an integer set to 0xFFFF.

Customized routines can be

v_meta write,

Metafile routines

The following VDI library routines ¢an be incorporated into metafiles. The
first column gives the routine's opcode, the second gives its sub-opcode, the
third gives its name, and the fourth a brief description of its action.

3 o
4 0
3 %
3 3
5 20
3 a2
3 22
5 23
6 i}
7 0
g 4]
9 4]
11 1
11 2
11 3
11 4
11 5
11 a
11 7
11 g
11 g
12 0
13]
14 0
135 0
16 o
17 0
18 a
19 0
20 a
21 0
22 0
23 0
24 Y
25 (&

v_clrwk
v_updwk
¥_exit cur
Y_enter_cur
¥v_form__adv

v_ootput_window
v_clear disp_list

v_bit image
v pline
v_pmarker
¥y_gtext
v_fillarea
¥_bar
'!'_ﬂ.fi:

v_ pieslice
v_circle
v_ellipse
v_ellarc
v_ellpie
v_rhox
v_rfhox
vst_height
vst_rotation
¥s_color
vsl_type
¥sl_width
vsl_color
vsm_ {ype
vsm_height
vsm_ color
vst font
vst_color

vsf interior
vsi style

vsf color

inserted into a metafile with the function

clear a virtual device

update workstation (flush buffers)
exit from alphabetic mode

enter alphabetic mode

advance page on hard-copy devige
print portion of a virtval device
clear a printer's display list

print a bit-image fila

draw a polyline

draw a polymarker

output graphics text

flond enclosed area with fill pattern
draw an cutlined, filled rectangle
draw a circular arc

draw a circular pie segment

draw a circle

draw an ellipse

draw an elliptical arc

draw an elliptical pie segment
draw rounded rectangle

draw rounded rectangular £ill area
set graphics text height, in pixels
set angle of graphics text

set mix for a color

set polvline's pattern

set polyline width

set polvline color

guery graphics text attributes
query character cell’s height
query color settings

set graphics text font

sef graphics text color

set [ill type

set fill styvle

set fill color

Mark Williams C

Lexicon mfi-Mfpint

a2

9

104

106

107

108

112

113

114

129

See Also
TOS, v_extent_meta, v_write_meta, VDI, ym_ filename

vswr mode set writing mode

vst_alignment set graphics text alipnment

vsf perimeter set drawing of perimeter
vst_effects set graphics text special effects
¥5f_point set graphics text height, 10 points
vsl ends set palyline end types

vsf _udpat set user-defined fill pattern
vsl_udsty set user-defined polyline stvle
vr_recfl draw a rectangular fill area
vs_clip clip an area of the virtual device

[v B B e 8 i B e e e .

Notes
Metafiles need the VDI's GDOS in their operation, They should not be used if
the GDIOS is not present in your edition of VDL

mf—Command]
Measure space left in RAM
mf

mf is & command that measures the amount of free space left in RAM for
program execution. It takes no arguments,

See Also
commands, df, msh

Mfpint—xbios function 13 (osbind.h)
Initialize the MFP interrupt
#include <oshind. h>
#include <xbios.h>
void Mfpint(interrupt, vector) int interrupt; char *vector;

Mfpint initializes the multi-function peripheral (MFP} interrupt, and returns
nothing. This routine allows a programmmer to trap a hardware interrupt in her
program. interrupt is the number of the interrupt to be set, O through 15, as
follows, going from lowest to highest priority:

Mark Williams C

Miree

Lexicon

MFP_BITO
MFP_BITI
MFP_BIT2
MFP_BIT3
MFP_TIMD
MFP_TIMC
MFP_BIT4
MFP_BITS
MFP_TIMB
MFP_XERR
MFP_EMPT
MFP_RERR
MFPF FULL

MFP_TIMA

MFP_BIT6
MFP_BIT7

WO 00 =l Oh Lk e B e

10
11
12
13
14
15

I/0 port bit 0

undefined

undefined

undefined

timer D, R8-232 baud rate generator
timer C, system 200-hz clock
I/0 port bit 4

undefined

timer B

R5-232 transmit error

RS8-232 transmit buffer empty
R5-232 receive error

RB5-232 receive buller full
timer A, user programmahle
1/0 port bat &

1/0 port bit 7

vector points to the interrupt routine to be set.

See Also

Jdisint, Jenabit, TOS, xbios

Miree—gemdos function 73 {osbind.h)

Free allocated memory
#include <oshind.h>
long Mfree(memory) long mermory:

Mfree frees memory allocated by the function Malloc, memory points to the ad-
dress of the memory to free. Mfree returns 0 if memory could be freed. and

non-zerg if it could not,

Example

The following example prints the number of bytes currently free and the num-

ber allocated.

330

Mark Williams C

:Le xicon Midiws

#include <osbind.h>

maing} {
unsigned long memleft:
unsigned long memhere:
char *almem;

I*
* Thig first ‘printf! iz needed to make the rumbers
* |pok right, because printf malloc's memory for the
* FILE buffer

i

printf{"Test of Malloc(), Mfree(} and Mshrink()yn'):

printf{"E8ix bytes free, ¥8lx bytes allocatedi\n®,
{membeft = Malloc(-1L)), OLY;

memhers = memleft>=1;

almem = (char *) Mallocimemhera);

printf("E3ilx bytes free, XBLx bytes allecated (Halx)wnno,
Halloc{-1L), memleft-Malloc{-1L), memhere);

Mshrink{almem, Ox1000LY;
printf("%3lx bytes free, XBlx bytes allocated (Z3Lx)\nM,
Malloc{-1L), memleft-Malloc(-1L), Ox1000L);
Mfree{almem);
printf{"38lx bytes free, X8lx bytes allocated (%&Llx)\n®,
Malloc(-1L), memleft-Malloc(-ILY, OL);
b

See Also
gemdos, Malloc, Mshrink, TOS

Notes

Do not attempt to Mfree blocks of memory not directly allocated by Malloc.
Memory freed by Mfree 15 not inserted into the arena used by malloe, but is
returned to the system,

Midiws—xbios function 12 {osbind.h)
Write a string to the MIDI port
#include <osbind.h>
#include <xbios.h>
void Midiws{counr, pointer) int count; char *pointer;

Midiws writes a string to the musical instrument device interface (MIDI) port,
and returns nothing, cowst gives the number of characters that will be sent,
minus ong; and buffer points to where the characters are stored. Mote that this
routine will transmit cownt characters; NUL characters will be used like any
other character.

Mark Williams C 331

Midiws . Lexicon

Example
This example plays some notes on a MID! instrument connected to the ST
through the MIDI-OUT plug.

#include <osbind.hs
J* MID] status byte values ®/

#define NOTE_OFF (O0x20) S* Key off command */
#define MOTE_DH (OxP0) S* Key on command */

£* Some useful things to know,.. */
#define MIDDLE_C (&0

#define C_OFFSET (0}
#define D_OFFSET (2)
#define E_OFFSET (4)
#define F_OFFSET (5)
#define G_OFFSET {7}
gdefine A_DFFSET (%)
ddefine B_OFFSET (11)
Adefine FLAT (-1}
#define SHARP (1}
#define DCTAVE STEP (12)

unzigned char notes [128]; /* Mote counters... =/

key down({nete_offset)
int note_offset; € /* Note relative... ™/
f*to middle C %/
int midi_note;
char midi_buf [47;

if ({midi_neote=MIDDLE C+nate affsety < 0 || midi_note =127}

return; J* Return i out of range */
notes[midi_notel++; J* Mark as key-dewn... =/
midi_buf [0]=NOTE_OK; /* Note on... =f
midi_buf11=midi_note; /* This ene... %/
midi_buf [21=0m40; /* this fast... */
Hidins{Z, midi_buf; /* Send message out ®f

Mark Williams C

Lexicon

key upinote_offset)

int note_offset; { /* Hote *f
int midi_note;
char midi_buf[41;

if (tmidi_note=MIDDLE C+note_offset) < 0 || midi_note = 127}
return; £* Beturn 1f cut of range *f
if (motes[midi_notel-- < 0)
notes (midi_note] = 0; J* Decrefment down count ®f
midi_buf (01=NOTE_DFF; /* Hote off... %/
midi_buf[11=midi_note; /* This one... %/
midi_buf2]=0x40; /* this fast... %/
Hidiws{2, midi_buf); M* send message out *f
¥

clean_upl{) €
char midi_buf [258]; f* buffer for commands */
char *mp; % And a painter. =/
int i=0; * A counter. Y/
int c=0; f* Another counter */f

mp = midi_buf;
*mgrk+ = HOTE_OFF;
while (7 < 128) {
while{metes[il I= 0) {
notes[il--;
et = 7
*mget+ = Oxdl;
=
¥
j4+;
¥
iftc = 0)
Midiws{o=el, midi_buf);
¥

/* Delay for & Little while -- Use the verticsl sync for timing.*/

delayin)
intn; {
int i;
whiletn-- = 0} {
fordi=35 & i»0 : §i--3
Waync(k;

Mark Williams C

mkdir-mktemp Lexicon

maing} €
int i;
int n;
key_down(C_OFFSET);
delay(2);
key down(E_OFFSETY;
delayi2}:
key down(G OFFSET);
delay(2);
key down(C OFFSET+OCTAVE STEP);
delay(5);
key Up(E_OFFSET);
key up(G OFFSET);
key_down(F_OFFSET);
key down{A_OFFSET);
delay(203;
clean up(};

¥

See Also
TOS, xbios

mhdir—Command

Create a directory
mhdir directory

mkdir creates directory. Files or directories with the same name as directory
must not already exist. directory will be empty except for the entries *, the
directory’s link to itself, and *.”, its link to its parent directory,

See Alsa
commands, msh, rm, rmdir

mktemp—Genaral function (libe.a/mktemp)

334

Generate a temporary file name
char *mktemp(pattern) char *patters;

mkiemp generates a unique file name, for such purposes as naming intermeadiate
data files.

Mote that the functions tmpnam and tempnam assemble temporary file name
and then call mktemp. These routines ease somewhat the difficulty in creating a
proper name for a temporary file,

Mark Williams C

Lexicon modf- ms_h

See Also
msh, tempnam, tmpnam

modl—General function (libe.a/mod)
Separate integral part and fraction
double modf(real, ip) double real, ®ip:

modf iz the floating point modulus function, Tt returns the fractional paret of its
real argument; which is a value f in the range 0 <= f =< 1. It also stores the in-
tegral part in the double location referenced by fp. These numbers satisfy the
equation real = f + *ip.

See Also
atof, ceil, fabs, floor, frexp, ldexp

modulus—Definition
Modulus is the operation whereby the remamder 15 derived from a division
operation; for example, 12 modulo 4 eguals 0, because when 12 is divided by 4
it leaves mo remainder. The term “modulo’™ alse refers to the product of a
modulo operation; in the above example, the module is 0. In C, the modulo
operation is indicated with a percent sign ‘%'"; therefore, 12 modulo 4 is written
12%4.

msh—Command f
msh is the Mark Williams micro=shell, which is designed for use under TOS. Tt
combines aspects of the Bourne shell and the Berkeley C shell into one com-
mand that is powerful and easy to use,

msh Is a command processor. It finds commands and executes them either singly
or in batches; and it allows the user to direct the output of a command 1o a
device, into a new file, of to another command for further processing. It can
replace text with symbols defined by the user, or with wildcards that are ex-
panded according to carefully defined rules.

The simplest command consists of a 1ist of words: the words are separated from
each other by spaces or tab characters, and the list is terminated by a <newline>
sequence. Each word may contain kisfory substitutions, variable substitutions,
file name substitutions, quoted characters, quoted strings, or file redirection. msh
also supports aliasing, for use in batch files and scripis. These are discussed
below,

Several commands may be placed on the same line; the commands are then
separated with semicolons or other command separators; these are outlined
below. A list of commands mav be grouped inte a single command by enclosing
the list within parantheses,

Mark Williams C 335

msh

Lexicon

s

Both simple commands and lists of commands be made to extend over mare
than one line by typing a slash */" before pressing the <returns> kay,

History substitutions
A history substitution allows vou to use all or part of a previously entered com-
mand or a shell variable in your present command. For example, tyvping

echo foo
techo >bar

is equivalent to typing:

echa foo
echo foo =bar

The history substitution oo tells msh to repeat all of the previous command
echo foo; if msh does not find foo in history, it looks for the shell variable foo,
Typing !n repeats the nth command before the present one. Note that YOU must
tell msh how many commands to save: for example

set history=8

saves the last eight commands issued. The default setting is one. To see what
commands have been stored in the history buffer, type;:

set in history

History substitutions may be used anywhere on the command line, For ex-
ample, typing

Ls \documents\zcripts\editors
echo foo & |-

is equivalent to typing

Le \documents\scriptaheditors
echo foo ; ls ‘documentsh\scriptsieditors

Mote, too, that history substitutions can use variable names,

Fariable substitution

A variable is a symbol defined by the user with the set command; for example,
the command

set ¥=Yecho foolt

declares that X is a symbol equivalent to the string echo foo. When a variahle is
used in a msh command line, it must be preceded by a dollar sign *$’ or an ex-
clamation point ', For example, to call the variable set in the above example,
type X or !X, When it sees a token that begins with either of these punctuation
marks, msh searches for it first on the lst of variables that have been assigned
with the set command, then on the list of those assigned with the seteny com-
mand, and finally on the list of tokens that it received from TOS or [rom the
parent shell, For example, if vou type

Mark Williams C

Lexicon msh

Mark Williams C

st egso="t[Y
set cla="echo ${esc}E"

(where <esc» indicates the escape character) and then type
Scls

msh will expand this variable into
echo *[E

and then executs the echo command with the argument <esc>E, which in turn
clears the screen,

The difference between Sname and !nasme 15 that the latter mav include com-
mand separators because it is rescanned as inputl, whereas the former is not res-
canned. For example, the variable set with the command

get X=Mecho foo ; echo bard

should be reference with the token 'X rather than $X. Command separators are
described in detail below,

File name substitutions) .
File name substitutions contain the punctuation marks [] 7 * { }. The following
notes what each punctuation mark does:

[list], [a-2]

Match any of the characters | i, &, or (, or any character in the range a-z.

? Match any one character or no character,

¥ Match any character, any string of characters, or no character.
{fist) Braces enclose a list of words that are each combined with the remainder
of the word.

Character quotations

A guotation 15 used when you want msh to disregard the special meaning of a
character and read it merely as a literal character. Tn general, preceding a
character with a slash will remove the special meaning of a character, except
under the following circumstances: '

1. & slash followed by an end-of-file indicator is always an error.

% A slash followed by a <newline> becomes a space and continuas input on
the next line.

3. When set between " "'s or * “'s, a slash followed by a <newline> translates
into <newline>, and /" becomes a literal gquotation mark. All other
characters quoted with */" are left untouched.

el

338

4, Within literal quotations, */* is literal.

Quoted strings

Sirings may be guoted by enclosing them in apostrophes or quotation marks.
CQuoting a string means that msh or a command is to accept it literally, Note
that quoting a string with apostrophes prevents any further expansion; all
wildcards and wvariables will be treated as literal characters. Quoting a string
with quotation marks, however, tells msh 1o treat white space as part of the
string, but allows further expansion of variables. The following exercise will
demonstrate how these forms of guotation differ

et A=ni23n
sat B="xyzY
echo 34 %B
echa "EA $Bu
echo "HA 5B

File redirection
:l'he term file redirection means redirecting the input or output of a command
into a file, The following redirection operators are recognized by msh;

= file Redirect output of a file into file. IT file already exists, replace its con-
tents with the output of the command.

=& file
Redirect the output of a command and any disgnostic messages it
produces into file,

=» file
Append the output of a command onto file. Il file does not exist, create
it and fill it with the output of the command.

»»& file
Append the gutput of a command and all of the diagnostic messages it

generates onto file. If file does not exist, create it and {10l it with the out-
put and diagnostic messages generated by the command.

= file Use the contents of file to control the execution of a command,

Separaling and joining commands

Commands can be separated or joined on rhe same command line by using the
following marks: !

: Execute commands sequentially.

&& Execute commands sequentially until gne terminates with non-zero exit
status {1.e,, until an errar occurs in onel,

| Form a pipe between the commands: feed the standard output of the
command on the left of the ' into the standard input of the command on
the right.

Mark Williams C

Lexicon) msh

[& Form a pipe that passes both the output of the command on the left and
any diagnostic messages it produces as input to the command on the right,

[Commands separated by ¥ | are run sequentially until one terminates with
zero exit status (i.e., executed without error).

Commands

Mark Williams C includes a number of commands that are designed to be used
with msh. For a list of these commands and a brief deseription of each, see the
entry for commands. If yvou need help with msh or any of its built-in ecom-
mands, type help and the name of the command for which you need help, msh
will print on the sereen a summary of how to use that command.

Felting the environment

msh allows vou to set a number of environmenial variahles. msh uses some of
these variables, and makes all of them available to programs that run under it.
A program can read these variables by using the function getenyv. Environmen-
tal variables can be set or changed with the command setenv, and erased with
the command unsetenv. Typing setenv without an argument will display the list
of environmental variables plus their settings.

For Mark Williams C to work properly, the following environmental parameters
must be set;

HOME The default directory: where msh performs a task when no other
directory is named.

INCDIR Name the directory in which cc searches for header files and other
text files to be included in compilation.

LIBPATH Mame the path along which ce searches for the executable files for
the compiler and the linker 1.e., ccll.prg, ccl.prg, cel.prg, cod.pre,
crisl.o, ld.prg, and the libraries.

PATH This environmental variable consists of a list of directory prefixes
that are separated by commas. These prefixes name the directories
that are searched in order for commands or batch files to be run.
For example, typing

PATH = Abin\Lib

will ensure that msh will search the the current directory. then the
directories \bin and \lib, in that order, to find the executable file
named in a command.

SUFF This consists of a list of file-name sutfixes that are separated by
commas. These suffixes are appended 1o the given command name
when searching the directories named in ${PATHY,

TMPDIR Name the dirgctory into which temporary files are written.

See the Lexicon entry environment for more information.

Mark Williams C 339

Mshrink Lexicon

Shell variahles ;
The following variables control the operation of msh, Some can be set with the
set command. Typing set without an argument will display a list of all current
variables, both those set by the user and those set by msh:

history Set the length of the history list. For example, to set the history
variable to eight, type the following;

set history=8

This allows you to invoke any of the last eight commands by using
the form !-n.

cwid The current working directory. This variable cannot be reset by
the user.

prompt This variable holds the prompt string. The default is '§'.

status This variable holds the exit status returned by the last command
executed. Tt should not be reset by the user,

Command files

msh reserves the variables $0 through %9 for arguments passed on a command
line, This allows you to write shell scripts whose variables can be set when you
run the script.

For example, the following commands could be typed into the file foo:
ce -y <% 3253 -lm

Thereaflter, typing foo followed by the names of up to three C source files will
compile the files with the floating point printf routines, and link in the mathe-
matics library.

The profile file

Whenever you invoke msh from the GEM desktop, it automatically reads a file
called profile and executes all of the commands that it finds therein. By al-
tering vour profile, you can customize msh to suit your preferences and tasks at
hand.

Fee Also
commands, environment, sef, seteny, wildeard, unset, unseteny

Mshrink—gemdos function 74 (oshind.h)

Shrink amount of allocated memory
#include <oshind.h>
long Mshrink(begin, length) int n; long begin, length;

Mshrink shrinks the amount of memory allocated by a program, and returns
dynamic memory to the free memory pool. begin points to the beginning of the
space to be returned, and lemgth indicates the amount of memory to be

Mark Williams C

jixi::un msleep-miype.h

returned. Mshrink returns zero if memory could be de-allocated, and non-zero
if 1t could not,

Example
For an example of how 1o use this function, see the entry for Mfree.

See Also
gemdos, Malloe, Miree, TOS

NOTES
The gemdos call has a third parameter that is always zers: the Mshrink macro
inserts this parameter automatically.

msleep—Command

Stop executing for a specified time
msleep milliseconds

msleep suspends processing for a set time. milliseconds is the amount of time to
suspend processing, in milliseconds,

See Alsa
commands, sleep, TOS

mtoh—Command

minl-

Redraw the screen from medium to high resolution
mitoh

mioh redraws the screen, moving from medium to high resolution.

See Also
commands, htom, ltom, mtol, TOS

Command
Redraw the screen from medium to low resolution
mtol

mtol is a command that redraws the screen, moving from medium to low
resalution,

See Also
commands, htom, Htom, mioh, TOS

mivpe h—Header file

The header file mtype.h assigns a code number to each of the processors sup-
ported by Mark Williams C compilers. These include the Intel 8086, 8088,
80186, and 80286; the Zilog Z8001 and Z8001; the DEC PDP-11 and VAX; the

Mark Williams C 341

my Lexicon
IBM 370, and the Motorola 68000,
See Also
header file

my—_ommand
rename files or directories
my ald file newfile
my file ... directory
my renames files. In the first form above, it changes the name of ofdfile to
newfile. I newfile previously existed, mv deletes its former contents: if not, mv
creates it. I mew/file is a directory, mv places old file under that directory.
In the second form, my moves each file argument into the directory argument.
If the source and destination files are on different disk drives, my copies the
source to the destination and removes the source,
my will not copy directories between devices and will not remove directories
that occupy the destination of the command.
See Also
commands, cp, msh

342 Mark Williams C

Lexicon_ nested comments-nm

nested comments—Definition

The C Programming Lenguage declares that comments cannot be nested, The
-VCNEST option to Mark Williams C allows nested comments, and prints a
warning whenever they occur.,

The following gives an example of properly nested comments:
£® nested /* comment *f Y/

Note that the open-comment and close-comment symbols are balanced. The
following shows improperly “nested” comments;

1% not

/* nested

F* comment *f
See Also
cC

Notex

A program with inappropriately nested comments will fail if the aption is used,
but will compile correctly if it is not used. A program with correctly nested
comments, however, will compile correctly if is used, but will fail if it is not
used. Tn general, it is best to use if you use nested comments in your program,
to ensure correct compilation of your program,

newline—Definition

Mark Williams C recognizes the literal character \n' for the ASCIL newline
character LF (4012). This normally feeds the line and returns the carriage.
This character may be used as a character constant or in a string constant, like
the other character constants: “a', which rings the audible bell on the terminal:
“ib', to backspace; "\f", to pass a formfeed command to the printer; “\r*, for a
carriage return; "\t°, for a tab character: and ', for a vertical tab character.

See Also
ASCII, character constants

Notes
On the Atari 8T, *\n" must be used with the carriage return character “\¢* if the
program does not go through STDIO.

nm—Command

Print a program’s symbol table
nm [-adgnopru | fife ...

Mark Williams C 343

naotmem Lexicon

nm prints the symbol table of each file in its argument list. Each file argument
may be an Mark Williams C object module or an object library built with the
archiver ar. If an argument is a library, nm prints the symbol table for each
member of the library.

The first-argument selects one of several options. It is optional; if present, it
must begin with *-'. The options are as follows:

—a Print all symbols. Normally, nm prints names in a C-style format and ig-
nores symbols with names inaccessible from C programs.

-4 Print gnly defined symbol.
-g Print only global symbols.

-n Sort numerically rather than alphabetically, nm uses unsigned compares
when sorting symbols with this option.

-p Prepend the file name to each output line.
-p Print symbols in symbol table order.

-r Sort in reverse order.

-y Print only undefined symbols,

By default, nm sorts symbol names alphabehcallv Each symbol is followed by
its value and its segment. For relocatable object modules, the letter *LI” appears
in place of a value if the symbol is undefined. Tf the file is an executable
program, the value is the address of the symbol. The segment type designations
for global symbols are shown below.

51 shared instructions
PI private instructions
Bl instruction space BSS
5D shared data

PD private data

BD data space BSS

D debug table

A absolute

C cOmmon

Static symbols have the same segment type descriptors in lower-case letters.

See Also
co, commiands, 1d

notmem—Cieneral function (libc.a/notmem)
Check if memory is alloeated
int notmem(ptr} char *pir

344 Mark Williams C

i.-exil_:_gll n.out-NUL

notmem checks if a memory block has been allocated by malloc, Imalloc,
realloc, calloe, or lealloe. The pointer pir indicates the block to be checked.
nofmem searches the arena for pir; it returns one if ptr has not been allocated,
and one if it has.

See Also
arena, calloe, free, malloc, realloc, setbuf

n.out—Definition
n.out is the format used by the Mark Williams C compiler, assembler and linker
to generate their output.

n.out first gives global information and information about the size of each seg-
ment. Segments of the indicated size follow the header in a [ixed order. n.out
defines the header structure for the 68000 as follows:

struct ldhesder €

short |_magic;

short L_flag;

short |_machine;

short [_tbase;

size t |_ssize[NLSEG);

leng L_entry;
Y
All elements of the nout header are stored in canonical byte order. 1 _magic is
the "magic number" that identifies a load module; it always contains 0407.
1_flag contains flags that indicate the type of the object module. 1 _machine is
the processor identifier. |_thase is the start of the text segment. | _entry con-
tains the machine address where execution of the module commences. | ssize
zives the size of each segment,

size prints the segment sizes of the n.out format header, nm lists the symbaols,
and strip will remove the symbols.

See Also
as, Id, nm, size, strip

NUL—Definition
NUL is the character ASCITI O and, in C, signals the end of a string. It 1s
represented as “\(0°. Note that NUL is defined as part of the string it s ter-
minating; therefore, a string that is defined to be 30 characters long in fact
holds 49 printable characters plus NUL.

Mark Williams C

NULL-nybble Lexicon

See Also
ASCII, string, NULL

NULL—Definition

NULL is defined in the header file stdio.h. It is the null pdinter (char *)0,
which is a pointer filled with zeros. Numerous routines return this value to in-
dicate failure: it is useful as a return value because it points nowhere, and so
removes the possibility of accidentally destroying a section of memory after
failure,

See Also
manifest constant, NUL, pointer, stdio.h

Nates
References through NULL on the Atari 8T cause a bus error, ie., two cherry
bombs appear on the screen.

nybble—Definition

346

A nybble is four bits, or half of an eight-bit byte. The term is generally used to
refer to the low four bits or the high four bits of a byte; thus, a byte may be
said to have a “low nybble” and a *high nybble”. One nybble encodes one
hexadecimal digit.

Sec Also
hit, byte

Mark Williams C

Lexicon obdels.h-obje change

agbdefs.h—Header filz
TOS header file
#include <obdefs. hx>

obdefs.h is a header file that contains TOS common object definitions and
structures, Tt defines numerous elements used in programs written for the Atari
ST, such as definitions of color settings, editable fields, and fonts.

See Also
header [ile, object, TOS

obje add—AES function (libaes.a/obje_add)
Redefine a child object within an object tree
#include <aeshind.h>
#include <ohdefs.h>
int obje add(iree, parent, child) OBJECT *treg; int parent, child;

objc_add is an AES routine that redefines a child object within an object tree;
specifically, it redefines an object as being the offspring of a specified parent.
iree points to the object tree being modified. child is the numbear of the ohject
being redefined, and parest is the number of the object being made child’s
parent.

objc_add returns zero if an error oceurred, and a number greater than zero if
one did not.

See Also
AES, object, TOS

obje change—AES function (libaes.a/obje_change)
Change an object’s state within a clipping rectangle
#include <aesbind.h>
#include <ohdefs.h>
int ohjc_change(iree. object, junk, rectangle. newstate, redraw)
OBJECT *tree; int ob fect, junk, newstate, redraw; Rect rectangle;

objc_change is an AES routine that changes the state of an object within a
named clipping rectangle. rree points to the object tree being modified, and ob-
Ject is the number of the gbject within the object tree. junk is reserved, and
must be zara.

rectangle is the clipping rectangle being used. It is of the type Rect, which is
defined in the header file aesbind.h, Rect consists of four elements:

Mark Williams C 347

Elbjc __t_i_giete-nbjc_d raw Lexicon

X coordinate of rectangle
Y coordinate of rectangle
width of rectangle
height of rectangle

i

stare indicates the new state for the object, as follows:

0x00 normal

D01 selected

0x02 cross-hatched
0x04 checked

008 disabled

010 outlined

0x20 shadowed

Finally, redraw indicates whether or not to redraw the object being modified:
zero indicates not to redraw, and one indicates redraw,

obje_change returns zero if an error occurred, and a number greater than zero
if one did not,

See Also
AES, object, TOS

objc_delete—AES function (libaes.a/ohjc_ delete)

oljc

348

Delete an object from an object tree

#include <aesbind.h>

#include <obdefls.h>

int obje_delete(tree, object) OBIECT *tree; int object;

obje_delete is an AES routine that deletes an object from an object tree, tree
points to the object tree being modified, and ohject 15 the number of the object
within the object tree. objc_delete returns zerc if an error occurred, and a
number greater than zero if one did not.

See Also
AES, object, TOS

draw—ARES function (libaes.a/obje_ draw)
Diraw an object

#include <aeshind.h>

#include <ohdefs.h>

int ohjc_ draw(iree, object, depth, rectangle)
OBJECT “tree; int object, depth; Rect rectongle:

Mark Williams C

lL.exicon objc ‘edit

objc_draw is an AES routine that draws an ohject, free points to the ohject
tree that contains the object in guestion. object is the number of the ohject
within the object tree. depth indicates how many levels deep the object should
be drawn; zero, draw only the object itself; one, draw the object plus. its
children; two, draw the object and its children and grandchildren: through eight
(which is called MAX DEPTH in obdefs.h), which draws the object and all of
its descendents. Thus, setting ohject to zern (the root object within the tres)
and setting depth to MAX _DEPTH will draw the entire object.

rectangle defines the clipping rectangle to be used in drawing the object, Tt is
of the type Rect, which is defined in the header file aeshind.h. Rect consists of
four elements;

x X coordinate of rectangle
¥ Y coordinate of rectangle
w width of rectangle
h height of rectangle

obje_draw returns zero if an error occurred, and a number greater than zero if
one did not.

Example
For an example of this routine, see the entry for object.

See Also
AES, object, TOS

obje_edit—AES function (libaes.a/obje_edit)
Edit a text object
#include <aeshind.h>
#include <obdefs.h>
int obje_edit(tree, object, character, oldindex, kind, &newindex)
OBJECT *iree; int object, character, oldindex, kind. newindex;

obje_edit is an AES routine that edits a text object within an object tree. The
chject being edited must be either of type G_TEXT or G_BOXTEXT. iree
points to the object tree that contains the object being edited, and object is the
number of that gbject within the tree. characier is the character to be inserted
into the text. oldindex is the index of the character being replaced. kind is the
type of replacement you want performed, as follows:

] Reserved

1 Move input text into template; turn on cursor

2 Compare input with validation string; update text; display string
3 Turn off cursor

Mark Williams C 349

objc find-objc order Lexicon

abje

ohjc

350

newindex 1s the index of character that follows the one edited. This value 15 set
by AES.

objc_edit returns zero if an error occurred, and a number greater than zero if
ong did not.

See Also
AES, TOS

find—AES function (libaes.a/obje_find)

Find if mouse pointer is over particular object
#include <aeshind.h>

#include <obdefs.h=

int obje find(tree. object. depth, mousex, mousey)
OBJECT *trec; int objeci, depth, mousex, mousey;

abjc_find is an AES routine that finds whether the mouse pointer is positioned
gver a particular object. free points to the object tree that holds the object in
question, and ohject is its number within the object tree. depth is the depth to
which the object tree should be searched, as follows: zero, search only for ob-
Ject; ane, search for ohject and its children; two, search for the object plus its
children and grandchildren; through eight iwhj{:h iz called MAX DEPTH in
obdefs.h), which searches for the object and all of its descendents. objc_find
returns the number of the object over which the mounse pointer was found to be
positioned, or -1 if it was found not to be positioned gver any requested object.

See Alsg
AES, object, TOS

_order—AES function (libaes.a/obje_order)

Reorder a child object within the object tree
#include <aesbind.h>

#include <obdefs. h>

int objc_order(iree, object. newposition)
OBJECT *tree; int object, newposition

obje _order is an AES routine that moves a child object fo a new position within
the abject tree. (ree points to the object tree that holds the object to be moved,
and object is its number within the object tree. wewposition gives the new posi-
tion for this object in the list of its siblings: zero indicates the bottom of the
list, one indicates one from the bottom, and so on; -1 indicates the top of the
list. objc_order returns zero if an error occurred, and a number greater than
zero 1if one did not.

Mark Williams C

Lexicon ohje_set-object

Seec Also
AES, object, object, TOS

objc set—AES function (libaes.a/objc_set)

Calculate an object's absolute screen position
#include <aesbind. h>

int objc_set(tree, obfect, &xcoord, &ycoord)
OBJECT *tree; int object, xeoord, yeoord,

objc_set is an AES routine that returns the absolute position on the screen of a
given object. tree points to the object tree that holds the object in guestion,
and o&ject 15 its number within the tree. xcoord and yooord give, respectively,
the X and Y coordinates of the object; these are set by AES. obje sef returns
zero if an error occurred, and a number gredater than zero if one did not:

See Also
AES, object, TOS

Notes
Other sets of bindings call this routine abjc_offset.

object—Definition

Mark Williams C 351

An object is an AES data form that encodes an element to be displaved on the
screen. An object can be a rectangle, a text string, a box, a hit-mapped picture,
a combination of any of these, or (most importantly) a number of such elements
linked together in the form of an object tres.

The ohjiect tree

An phject tree is a group of visual elements that are linked together to form a
tree. One object is the tree's rool object; it can have one or more child objects
and each child object can have one or more siblings and children.

Consider the following example, for the object tree foo. Like all object trees,
foo has a root object, fool0l. This object, in turn, has three children: foolll,
fool2], and fool3]. Each of these three children has two siblings; e.g., fon[2]'s
siblings are fooll] and fool3]. Each of these children can, in turn, have its own
children, each of which can have siblings and children of its gwn.

As you can see, the name foo points to an array of objects; each object’s sub-
seript depends on the order in which it is read into memory., If vou wish to
write an object tree by hand, it is up to you to know each object's subscript in
order to write the tree correctly.

Each object within the tree containg three “pointers™ in its description. These
are not true C pointers (i.e., memory addresses), but integers that are used by
the AES to orient each object within its tree. The first pointer, next, points to
the object's next sibling. For example, the next pointer for foo[1] i= 2, which

object Lexicon

352

points to fool2]. If an object is the last of its siblings or if it has no siblings,
then mext must point to the object’s parent object. The only exception is the
root object, which has no sibling and no parent; its next pointer is always set to
-1. The second pointer and third pointers, head and tail, point respectively to
the object’s first child and its last child. For example, fool0] has a head pointer
of 1, which indicates that foo[l] is the first of its children,; and a tail pointer of
3, which indicates that foo[3] is the last of its children. If an object has only
one child, then the head and tail pointers must both point to if; and if an object
has no children, then both pointers must be set to -1. Note, however, that if
object 1's head is set to 2 and its tail is set to 7, this does nof mean that objects
3 through 6 are all children of object 1. It only means that the first of its chain
of children is 2 and the last is 7; the members of object 1°s “family™ are in-
dicated by the next pointers of the children themselves.

The OBJECT struciure
Each object in an object tree must be described with the OBJECT structure
that iz declared in the header file obdefs.h. This structure 1s declared as follows:

typedef struct object

{
int ob next; /*® Dbject's next siblimg */
int ob_head; J* Head of object's children ¥/
int ob_tail; J* Teil of object's children ¥/
unsigned int ob_type;: /* Type of object */
ursigned int ob flags;: /* Flags */
unsigred int ob state; /= Status %/
lorg ob_spec; {* Ohject's specification */
int ob x; /* X coordinate of ocbject *f
int ob_y; /* Y coordinate of object */
int ob width; J* didth *f
int ob height; /* Height */

} OBJECT;

An phject, as can be seen, is built out of following 11 elements:

ob next The next pointer.
ob_head The head pointer.
ob_tail The tail pointer.
ob_type This indicates the object’s type. The different types of object
will be discussed helow,
ob_flags This field encodes one of a set of flags for the object. The
allowable flags are a3 follows:
0x000 NONE Mo flags selected
0x001 SELECTABLE Selectable by user
0x002 DEFAULT Default {e.g., for buttons)
0x004 EXIT 1f selected, ends dialogue
0x008 EDITABLE Editable by user (e.g., string)

Mark Williams C

Lexicon

ob_state

ob_ width
ob_height

0x010 RBUTTON Radio button

0x020 LASTOB Last object in tree

0x040 TOUCHEXIT Click once to end dialogue
0x080 HIDETREE Hide ohject from searches
0x100 INDIRECT Redirect to another object

Mot every flag applies to every type of object. Some flags are
mutually exclusive, e.g., EXIT and TOUCHEXIT; both force an
exit from a dialogue, but the former requires that the button he
clicked twice and the latter reguires only one click.

This indicates the object's status, ie., how the ohject i3 to be
displayed. The status codes are as follows:

0x00 NORMAL Normal display

0x01 SELECTED Displayed in reverse video

002 CROSSED Draw an "X’ in object; used with
rectangles only

Oxii4 CHECKED Draw check mark next to object

0x03 DISABLED Draw in shading rather than solid

0x10 CUTLINED Draw border around object

0x20 SHADOWED Draw shadow on object

Mote that this specification can be changed as the program runs;
for example, in the specification in a menu object can change to
indicate that the item is disabled or has been selected.

The object's specification. This [ield, which is the only long
field in the OBJECT structure, can hold 3 pointer to a string, &
pointar to a structure, or a bit map, depending on the type of
object being described. Which specification belongs with which
object will be described below,

X coordinate of the object. In the root object, this value is an
ahsolute value, in rasters; for each subordinate ohject, this value
is relative to the X value of its parent, This allows the entire
object tree to be repositioned on the screen simply by redefining
the X coordinate of the root object.

Y coordinate of the object. In the root object, this value is an
absolute value, in rasters; for each subordinate object, this value
18 relative to the Y value of its parent,

The object’s width, This is always an absolute value,

The ohject’s height. This is always an absolute value.

Types of objects
The following table lists the available types of objects. As noted above, each
type of object used the field ob_spec in a different way; the specification is

also given:

Mark Williams C

object Lexicon

G_BOX Draw a rectangle on the screen. The field ob_spec holds a bit
map that describes the box's color and the thickness of its bor-
der, as follows:

high word The high byte 13 not vsed, The low byte holds
the thickness of the border, from -127 ta 127,
Megative numbers draw the border outwards
from the edge of the rectanzle, whereas positive
numbers draw the border inwards.

fow word The high nybble of the high byte holds the color
of the interior of the rectangle, from one to 15,
as follows:
0 WHITE
1 BLACK
2 RED
3 GREEN
4 BLUE
5 CYAN
6 YELLOW
T MAGENTA
8 WHITE
9 GRAY
10 LREED
11 LGREEN
i2 LBLUE
13 LOCYAN

14 LYELLOW
15 LMAGENTA

The names in capital letters are mnemonics that
are defined in the header file ohdefs h; this
means that you can use these mnenomics in your
program, without having to remember the
numeric ¢code of each color,

The low nybble of the high byte encodes the
color of any text shown, as above.

In the low byte, the first bit of the high nybhble
indicates whether or not the object should be
transparent; zero indicates that the object is
transparent and one indicates that it is not, The
next three bits hold the fill pattern, from zero
through seven. Zero indicates hollow; seven in-
dicates solid; and one through six indicate
gradations of shading, with the higher numbers

354 Mark Williams C

Lexicon

G_BOXCHAR

G_BOXTEXT

indicating increasing darkness,

Finally, the low nybble the low word indicates
the color of the border, as'above,

Example Ta set a figure with a border width of one raster,
an inside color of white, a text color of black, the
transparent bit off, the fill pattern of solid, and
the border color of black, use the following C
code:

C{T<<18) | (MHITE=<12) | (BLACK=<8) | (1e<T}| (T<4) |BLACKD

This translates into the hexadecimal number
0x101F1.

This draws a rectangle with a single character inzide it. It is
used for elements like the “fuller™ button on GEM windows.
ob_ spec points to a string that must be only one character long.

This draws a box and writes text inside it. oh_spec points to the
structure TEDINFO, which 15 daseribed below,

G_BUTTON This draws a button, which AES handles in its usual manner,

G_FTEXT

ob_ spec points to the string that is written inside the button.

This draws a string on the screen that can be edited by the user
in the form of a dialogue, This is demonstrated in the second
example, below. ob_spec points to the structure TEDINFO,
which iz described below,

G_FBOXTEXT

G_IBOX

This draws an editable string, like G_FTEXT, but surrounds it
with a box as well. ob_spec points to the structure TEDINFO,
which is described below,

This draws an “invisible box" on the screen, This box is used to
connect a number of elements without changing the appearancs
of the object, For example, if vou wished to reverse a large sec-
tion of the screen when an icon is clicked, vou would overlay
the icon with an invisible box sized to the dimensions of the areq
vou wished to reverse; when the icon was ¢licked, the entire area
within the invisible hox would be reversed, not just the icon it-
self. ob_spec encodes the color information, as in G_BOX.

This draws an icon on the screen, ob_ spec points to the struc-
ture [CONBLK, which 15 described below,

Mark Williams C

object Lexicon

G _IMAGE This draws a user-defined shape on the screen. ob_spec points
to the structure BITBLK, which is described below,

G _PROGDEF
This is an object defined by the programmer. ob_spec points to
the structure USERBLE, which is described below

_STRING This writes a string. ob_spee points to the string being written,

G _TEXT This writes formatted text on the screen. ob_spec points to the
structure TEDINFO, which is described below.

G _TITLE This is used to create a title on the menu bar. ob_spec points to
the string to be written. As indicated above, four specialized
structures are used by the set of objects: BITBLK, ICONBLE,
TEDINFO, and USERBLK,

The BITBLK structure
The BITBLK structure is defined in the header file obdefs.h as follows:

typedef struct bit_block

€
int *bi pdeta; /* Points to bit map */
int bi_wb; J* Width of bit map in bytes */
int bi hi; /* Height in lLines */
int bi x; /* Source ¥ in bit form */f
int bi y; /* Source Y in bit form */
int bi_colaor; /* Color of bit =/
¥ BITBLE;

bi_pdata points to an array of integers that encode the object’s bit map, bi_wh
gives the width of the bit map, in bytes. Note that the value of this variable
must be even, to align along word boundaries. bi hl gives the height of the bit
map, in rasters. bi_x and bi_y give, respectively, the X and Y coordinates of
the bit map. Finally, bi color gives the object’s color, encoded as above.

The ICONBLEK structure
The structure ICONBLEK is defined in the header file ohdefs.h as follows:

Mark Williams C

Lexicon

typedef struct jcon block

{
int ®ib_pmask; /* Points to fcon mask =/
int *ib pdata; /* Points to icon description */
char *ib_ptext; /* 5tring to appear in icon */
int ib_char; /#* Character to appear in jcon */
int ib ®char; /* % location of character */
int ib ychar; /* Y location of charecter */
int ib xicon; £ X location of icon *f
int ib_yicon; /™ Y location of icon *f
int b wicon; /* Width of icon */
int ib hicon; /* Height of fcon */
int ib_xtext; /X location of text */f
int ib ytext; J5Y location of text *f
int ib wWtext; /™ Width of text */
int ib_htext; £* Helght of text *f

3} ICONBLK;

ib pmask points to an array of integers that describe the icon mask. ib_pdata
points to an array of integers that describe the icon itself. ib_text points to a
string to be written into the icon; ib_char points to a single character to be
drawn on the icon. ib_xchar and ib ychar give, re':pectively, the X and ¥
coordinates of the character, ib_xicon, ib_yicon, ib __wicon, and ib_yicon give,
respecmely, the X coordinate, the Y coordinate, the width, and the height of
the icon; and ib_ xtext, ib_ ytext, ib_ wtext, and lb htext give, respectively, the
¥ coordinate, the Y coordinate, the width, and the height of the text string
within the icon.

The TEDINFO siructure
This structure is used to create an editable dialogue. It is defined in the header
file obdefs.h as follows;

typedef struct text edinfo
L
long te ptext; /* Points to text */
long te prmplt; /* Points to templete */
long te_pvalid; f* Points to validation chara */
int te_font; /* Font %/
int te junki; /* dunk word =/
int te just; /* Justification */
int te color; /* Colar *f
int te_junké; * dunk word */
int te thickness; f* Border thickness */
int te txtien; /* Lergth of text string */
int te tmplen; /* Length of template string */
3 TERINFO:

te ptext points to a string to be displayed within the object. The text tyvped by
the user will be written over this string. If vou do not want text to be dis-
plaved, replace it with a string of ‘@’ characters a5 long as the maximum lenzth

Mark Williams C

object Lexicon

358

of the string to be input.

te_ptmplt points to a template that will be used to input data. The template
consists of a prompt, plus a string of underbar characters that is as long as the
maximum length of the string that the user can input. The following is an ex-
ample of a template string:

ENTER FILE MAME:

te_pvalid peints to a string of validation characters. This string must be as long
as the string that the user can input. Each character input by the user i3
checked against its corresponding validation character to ensure that it is of the
right type. The validation characters are as follows;

All numerals, zero through nine

All alphabetic characters plus space

Alphabetic characters, numerals, space

Valid TOS path name characters

Upper-case alphabetic characters plus space

Upper-case alphabetic characters, space, numerals

TOS file name characters, question mark, asterisk, colon
TOS path name characters, question mark, asterisk, colon
Anvything

g P T 80O

Note that wse of any validation character besides F or X will cause a catastrophic

EySiem error.

te font indicates which font you want. te_junkl and te junk2 are reserved;
they can be set to any value. te_ just indicates how you want the text to be jus-

tified; TE LEFT indicates left justification; TE_RIGHT, right justification;

and TE CNTR, centering, te color mdn’:ates the color of the object; the color
codes are the same as for G BOX.

te thickness is the thickness of the border; it uses the same values as G_BOX,
Finally, te_txtlen and te_tmplen give, raspecnvalv the length of the user input
string and the length of the template, each in bytes. The length of each should
be one byte longer than the strings pointed to by te_ptext and te_ ptmplt, to
allow the addition of the NUL character at the end of each,

The USEREBLK struciure
The USERBLK structure can also be called the APPLBLK or APPL_BLK
structure in other bindings. It is defined in the header file obdefs.h as follows:

typedef struct user blk
<

tong ub_code; /* points to user's code =/
tong ub_parm; /* points to parameter */
} USERBLK;

Mark Williams C

Lexicon

= = object

This structure allows the programmer to define her own object or routine;
ub_ code points to the routing in question, which can be specialized code writ-
ten in C or assembly language o do specific tasks beévond the scope of the nor-
mal AES routines. uh_parm points to the parameter to be passed to the routine
named in ub code. To use this structure, a programmer must have a sophis-
ticated grasp of the AES.

Designing objects

Designing an object by hand is difficult. 17 possible, vou should use a resource
construction set (RCS) in designing screen elements; however, it is best to know
how to modify the output of the RCS in order to gain exactly the resulis vou
want,

Before beginning, you should do the following: First, draw a pictare of the ob-
ject on graph paper. For text, each cell on the graph paper can considered
equivalent to one character cell, i.e., the space taken up by one standard charac-
ter on the screen (in high resolution, a character is eight rasters wide by 16
high: in medium resolution, it is eight rasters wide by eight high; and in low
resolution, it is four wide by eight high). Otherwise, each cell can be con-
sidered equivalent to a pixel. Drawing the picture may seem tedious, bur will
save you time over trying to draw it *on the fly™ on the screen,

Second, draw a “geneological table™ of all the objects within the object tree.
This will ensure that you set the next, head, and tail pointers for each object
carrectly. An example of such a table appears in the entry for menu,

Examples)
The first example draws a set of seven nested rectangles on the screen, Typing

any key returns you to msh, Note that all objects are sized in rasters, for a
high-resolution screen,

¥include <asshind.h>
#include <pbdefz h>
#ginclude <gemdefs. h>
#define SPECY Ox100FIL

J,I’t

* lie.: (1 <= 18) | [Border 1 raster thick]

* (WHITE =< 12) | [Border color; WHITE = 01

N {WHITE << 8) | [Text colerd

* 1 =< 7y | [Turn on replace)

* (T 24y | [Fill pattern to selidl [one nybblell
* BLACK [FiLl eolor; BLACK = 11

*f

Mark Williams C 359

object Lexicon

#define SPECZ Ox111FOL

;*

¥ T.e.s . £7 =< 16) | [Border 1 raster thick]

* (BLACK << 12) | [Border color]

* (BLACK <t 8} | [Text color]

= {1 <=7 | [Turn on replace]

* (7 << 43 | [Fill pattern to solid]l [one nybblel}
. WHITE [Fill colord

*f

OBJECT Fill[l = £
Il next/head/tail/type/ flags / state fspecif./ X /Y J W FH *f
-1, 1, 1, G_BOX, DEFAULT, NORMAL, SPECT, 0, 0, £39, 359,

0, 2, 2, G_BOX, DEFAULT, NORMAL, SPEC2, 50, 30, 539, 339,
1, 3, 3, G_BOX, DEFAULT, NORMAL, SPECT, 50, 30, 439, 279,
2, 4, 4, G_BOX, DEFAULT, NORMAL, SPECZ, 50, 30, 33%, 21%,
3, 5, 5, G BOY, DEFAULT, NORMAL, SPECT, 50, 30, 239, 159,
4, 6, &, G_BOX, DEFAULT, NORMAL, SPEC2, 50, 30, 13%, 99,
5, -1, -1, G _BOM, DEFAULT, NORMAL, SPECT, 50, 30, 39, 3%

35

‘ft

* Note: ¥, Y are absolute for root object; for all others, X & ¥ are
* relative to the parent object. W & H are absolute for all objects.
* all values in rasters: calculeted for high-resolution screen.

*r

maingd {
int meshere = 0; /* For unused pointers */
appl_init(); /* Begin application *7
graf_mouse(M_OFF, &nowhere); /* Turn off mouse pointer */
objec_draw(fill, ROOT, MAX DEPTH, O, 0, 639, 399);
evnt_keybd(); /¥ Mait for keybd event *f
graf_mouse(M_OW, &nowhere); /* Turn on mouse pointer */
appl_exit{); /* Exit from application *7
exiti0);

¥

The second example presents a brief dialogue, and demonstrates the TEDINFO
structore. Note that all objects are sized in rasters, for a high-resolution screen.

ginclude <aesbhind.h>
#include <obdefs.h=
#include <gemdefs.h»

Mark Williams C

Lexicon object

#define SPEC OxS10FIL
IIHr
* I.e.x (5 << 16) | [Border 5 rasters thick]

* (BLACK =< 12) |[Border color; BLACK = 1]

* (WHITE =< &) |[Text color; WHITE = 0]

* {1 <=7y | [Turm on replace bit)

* (7 << 43 | [Fill pattern solid]l [Topether onme nybhle] 3

* BLACK [Fill color]

=1

#define BIFLAGS Ox5 /* l.e.: SELECTABLE | EXIT #*¢

#cdefine BZFLAGS Ox7 /* L.e.: SELECTABLE | DEFAULT | EXIT */

J* Strings ard structure used with dialogue */
cher input[]l = 'gaadas@aga:

char templatel] = "YOUR NAME: e
char check{] = "FFFFEFFFFFY;

char buttoni[l = MOK";

char button2[] = WEXITH:

TEDINFO text[] {
/* pointer to text ('8 indicates mo text)
pointer to text template
| painter to validation string
| font code character
| reserved integer {takes amything)
| justification code character
| | color code
| | reserved integer {takes anything)
| | | border thickness (rasters)
| | | | input string Cchars)
I [|| | template string (chars)
¥ ¥ WY ¥ v
CHTR,WRITE,5,1,11,22

LT T T T R S

I
I
I |
I |
I |
| |
| [
| I
| I
I I
L ¥

v
imput, temolate, cheek,
X:

|
|
|
I
W
1

g

TE

alr T

/* Define the dialogue object *y

DEJECT dizloguell = ¢

Fis next/head/teily type flags state/ specif./ X / ¥/ WS H=f
=¥, Yo i3 G_BOX, NOME, KORMAL, SPEC, 0, DO, 800, 250,

=T, =1, G_FTEXT, EDITABLE, HORMAL, text, 100, 50, 400, 100,

3, -1, -1, G_BUTTON, B1FLAGS, NORMAL, buttoni, 230, 200, 20, 20,

&, -1, <1, G EBUTTOM, EZFLAGS, WORMAL, button2, 300, 200, 40, 20

r

¥

35

/% Rectangles used in ensuing fraces */f
Rect tempbox = € 0, 0, 0, O 3;
Prect tempptr = { Etempbox.x, Stempbox.y, &tempbox.w, &tempbox.h Js

Mark Williams C 361

object format-od

Lexicon

main{d L
int nowhere = 0; /% For orphaned pointers */
int guit;
char newstrirg [29] = "YOUR MAME 15 ";
appl_initl); /* Begin application */
agraf mouselARROW, Enowhere); /* Mouse ptr. to arroW */

3

form center{dialogue, tempptr); /® Center dizlogus box */
form dial¢0, 1, 1, 1, 1, tempbox); /* Get screen area */
form_dial¢l, 1, 1, 1, 1, tempbox); /® "Star wars" effect */
obje drew{dialogue, ROOT, MAX_DEFTH, tempbox);

/* Draw dialogue object */

for €5 €
quit = form_do(dialogue, 13;
if (gquit == 23 {
streat{newstring, inputl;
stropyl{template, newstring);
objc_draw{dialogue, RDOT, WAX DEPTH, tempbox);
3}

if {quit == 33 {
form dialt2, 1, 1, 1, 1, tempbox);
form dialt¢3, 1, 1, 1, 1, tempbox);
appl_exitf);
exit(0y;

See Also
AES, menu, obdefs.h, TOS, window

object format—Definition
An object format describes the form of compiled program that still contains
relocation information, The linker Id reads file in object format to create ex-
ecutable files.

Mark Williams C creates object modules that are in the format n.out, which
differs somewhat from other formats used on the Atari 8T,

See Also
Id, n.out

od—Command
od |-bedox] [File]l [[+] offse.1lbl]

362

Mark Williams C

Lexicon Offgibit

od prints the specified file as a sequence of octal numbers, or machine words.
If no file is specified, od dumps the standard input,

The following options allow the user to select the output format:

-b bwtes in hexadecimal

-¢ bytes in ASCIT characters
=d words in decimal

-0 words in octal

Dumping can start at o/ sed into the file, The specified offset is octal unless
the . sulfix is present to signify decimal. The offset is in bytes unless the b
suffix is present to signify 512-byte blocks.

Fee Also
ASCII, commands, db, msh

Offgibit—xhios function 29 (osbind.h)
Clear a bit in the sound chip’s A port
#lnelude <oshind.h>
#include <xbios.h>
vold Offgibit{mask) char mask;

Offgibit manipulates the sound chip's register A (also called the “A port”).
This port controls the disk drives,

Offgibit reads the contents of register A; it then ANDs this value with mask:
and it writes the result back into register A. The bits in this register are bound
to various control lines within the Atari ST. For a table of which bits bind
which lines, see the entry for Ongibit.

Example
The lollowing example demonstrates Ongibit and Offgibit;

dinclude <osbind.h>

mainf) {
unsigned char a;

Ceonws("Wait for both fleppy drives to stop and type a key\r\n");

Creeing);

a4 = Giaccess(0, 143; /* save the origipal value... */
Dffgibit{0xFRy: f* turn of f bits 1 and 2 */
Coonws{"Both floppy drive Lights ea...\nbr");

Cnecindy:

Mark Williams C 163

Ongibit-open Lexicon

Drgibit{oxd2); J* turn on bit 1 ¥/
Coomms("Drive A Light off...unve);
Crecing);

orgibic{On0sy; J* turn on bit 2 *7
Coormes(MOrive B Light of f...amr);
Crecing);

Giaccess(a, Ox80)163; /* restore original contents */
Prermi(};
¥

See Also
Giaccess, Ongibit; TOS, xbios

Ongibit—xbios function 30 (oshind . h)

364

Turn on a kit in the sound chip’s A port
#include <osbind.h>

#include <xhios.h>

vold Ongibit{mask) char mask;

Ongibit manipulates the sound chip's register A (also called the A port™).

Ongibit first reads the contents of register A; it then ORs with mask; and fin-
ally it writes the result back into register A,

The bits in register A are bound to various control lines within the Atari 8T, as
follows:

0 side of the floppy disk (G/1)

1 drive A (selected when clear)

2 drive B (selected when clear)

3 RS5-232 request-to-send (RTS) line

4 E5-232 data-terminal-ready (DTR) line

5 Centronics data strobe

6 general purpose output (GPO) on video connector

T unused
ruriber should be set the bit that corresponds to the desired line.
Example
For an example of this function, see the entry for Offgibit.
See Also

Giaccess, (ffgibit, TOS, xbios

Mark Williams C

Lexicon

open—UINIX system call (libe.a/open)
Open a filg
apen(file, iype) char *file; int type:

open prepares a file to be written into, or to have its data read. When success-
ful, open returns a file descriptor, which is a small, positive integer that iden-
tifies the open file for subsequent calls to read, write, close, dup, or dup?, The
{ype argument can be set to zero for reading, one for writing, or two for both
reading and writing. After a file is opened, reading or writing will begin at
byte (.

Example
This example copies argy[l] to argv]2] by using UNIX-style routines. It
demonstrates the functions open, close, read, write, and creat,

Finclude <stdio.h>
fidefine BUFSIZE (20%*512)
char buf [BUFSTZE];

main{arge, argvl int arge; char *argvll: {
register int ifd, ofd;:
register unzigned int n;

if {argec |= 3)
fatal{"Usage: copy source destination"):
if ({ifd = opentaraviil, 033 == -13
fatal{"camnot open fnput filed):
if ({ofd = creat{argvi2l, 01) == -1)
fatal{"cennot open output file");
while {{n = reed{ifd, buf, BUFSIZE}) != 0} ¢
if {no== -1}
fatal("read errart');
if {write(ofd, buf, n} 1= n)
fatal({"write error'};
3
if Celese(ifd) == -1 || closelofd) == 1)
fatal{"cannot close™):
exit{0);
Hi

fatal{s) char *s:

{
fprintfistderr, “copy: ¥&\n", sj:
exit(1);

¥

See Alsn
STDIO, UNIX routines

Mark Williams C

operator Lexicon

Diagnostics ; . .
open returns -1 if the file is nonexistent, or if a system resource is exhausted.

Notes
open is a low-level call that passes data directly to TOS. It should be inter-
mixed cautiously with high-level calls, such as fread, fwrite, or fopen.

operator—Definition

An operafor relates one operand to another, For example, the statement
1+2

relates 1 and 2 through the operation of addition: on the other hand, the
statement

L]

relates A and B logically, by asserting that the former is greater than the latter;
whereas

A=B

relates A and B by assigning the wvalue of the latter to the former. The
following is a table of C's operators:

. multiplication

division

% remainder

+ addition

- subtraction

< less than

<= less than or equal to
= greater than

>= greater than or equal to
Se e logical AND

l= inequality

! logical negation

[logical OR

Mark Williams C

[exigon oshind.h

= assign

= increment and assign
-m decrement and assign
i multiply and assign

/= divide and assign
5 modulo and assign

o increment

- decrement

== equivalence

& hitwise AND

* bitwise exclusive OR

| bitwise inclusive OR

2. shift left

5 shift right

* indirection

& render an address

() function indicator

] array indicator

—= structure pointer

i structure member

& conditional expression
See Also

precedence, sizeof
The C Programming Language, page 49.

oshind, h—Header file
#include <oshind h>

osbind.h is a header file that declares the functions bios(), gemdos(), and
xbios(). It also defines numerous macros that ease the use of these functions.
The text of oshind.h is included with your copy of Mark Williams C.

See Also
bios, gemdos, header file, xbios, TOS

Mark Williams C 367

path-peekb Lexicon

path-—Definition

A path iz the full name of a file, including the names of all the directories
within which it resides. Conventions for naming paths vary among operating
systems; for example, the file foobar that is in the directory computer that, in
turn, is owned by user anne could be listed as follows under the COHERENT
SYStEm:

Jusr/anne/computer/f foobar
but as follows under MS-DOS or TOS:
computeryfoobar

The latter two operating svstems do not use user names in constructing the path
name. Note, too, that MS-DOS and TOS use the backslash '\’ rather than the
glash */7 to separate the elements of a path name.

See Also
directory

PATH—Environmental parameter

PATH names directories that msh searches when looking for files that vou have
asked it to execute. For example, typing

seteny PATH=.bin, \bin, Alib

tells msh to search for executable files first in its set of built-in commands (as
indicated by .bin), then in the directory “bin, then in the current directory (as
indicated by the two commas with nothing between them), and finally in the
directory lib.

It is et with the setenv command.

See Also
msh, seteny

patterns—Definition

A pattern is any combination of ASCI characters and wildcards that can be in-
terpreted by a command.

See Also
egrep, wildcard

peekb—Library function (libeia/peekh)

368

Extract a byte from memory
ini peekbi{fp) char *bp;

Mark Williams C

peekl-perror

Lexicom

peekb examines an arbitrary location in memory. It reads a byte located at the
address &p. peekb circumvents the system's memory protection by temporarily
entering supervisor mode.

See Also
peekl, peekw, pokeb, pokel, pokew

peckl—Library function (lihc.a/peekl)
Extract a long from memory
long peekl({/p) long *!{p;

peekl returns the lomg {four bytes) at /p. peekl citcumvents the system’s
memaory protection by temporarily entering supervisor mode,

See Also
peekb, peekw, pokeb, pokel, pokew

Nates
peekl does not test for odd addresses, and will generate a bus error if given such
an address, In general, be careful about what vou peek and poke.

peekw—Library function (libe.a/peekw)
Extract a word from memory
int peekw(wp) int *wp;

peekw returns the word (two bytes) at wp. peekw circumvents the svstem's
memory protection by temporarily entering supervisor mode.

Fee Also
peekb, peekl, pokeb, pokel, pokew

Notes
peekw does not test for odd addresses, and will generate a bus error if givan
such an address. In general, be careful about what you peek and poke.

perror—General function (libe.a/perror)
Svstem call error messages
#ioclude <errno.hs
perror(siring)}
char *siring; extern int sys_nerr; extern char *syvs_errlisif [;

perror prints an error message on the standard error device. The message con-
sists of the argument siring, followed by a brief description of the last system
call that failed. The external variable errno contains the last error number,
Mormally, siring is the perror of the command that failed or a file perror,

Mark Williams C

Pexec

Lexicon

The external array sys_errlist gives the list of messages used by perror, The ex-
ternal sys merr gives the number of messages in the list.

See Also
errno, errno.h, error codes

Pexec—gemdos function 75 (osbind.h)

370

Load or execute a process

#include <osbind.h>

long Pexec(mode, path, tail, env) int mode ;
char *path, *tail, *env;

Pexec loads or executes a process. mode equals zero if the process is to be
loaded and executed, or three if the process is to be loaded but not executed;
the latter mode is used with overlays. path points to the path name of the file
to be loaded; it must be a NUL-terminated string. fail points to the command
tail, which included redirection information. env points to a block of strings
that define the environment. Each string must terminate with a NUL character,
and the block as a whole must terminate in NULL.

If mode equals zero, Pexec returns the child process's exit status when the child
process exits; if mode equals three, it returns the address of the base page of the
loaded process. In either instance, it returns a negative error code if it cannot
load the process.

Example
This example times the execution speed of a program. It also demonstrates the
time function clock,

#incluwle <osbind. h>
#irclude <time.h>

mafinf{argc, argv)
int argc; char *argvi];
€
cher program[80];
char command[258] ;
int X:
clock_t timer;
int status;

if {arge < 2) £
printf(“usage: time command [args ... 1Wn¥):
exit{1);

Mark Williams C

pexicon Physhase-picture

stropy(program,argv[1]3;
streat{program,".PRGY]
comeand [0] = O

for (x=2 ; x < argec ; x++) {
streat{ command, " "}
streat! command, argv[x]):
¥

timer = clock{):
status = Pexec{l, program, command, "PATR=%0%);
timer = clock() - timer;
printf{"Eld. 20304 secondsin¥,
timeryCLE TCK, (timer¥CLE TCK) = (1000/CLK TCK3);
return status;

3

See Also
argv, gemdos, TOS

Physbase—xblos function 2 {oshind.h)
Read the physical screen’s display base
#include <oshind.h>
#lnclude <xblos.h>
long Physhase()

Physhase reads the physical screen’s display base, and returns a pointer to the
display baze. The physical screen base is the location in memory currantly dis-
played.

For examples of this function, see the entries for Logbase and Priblk.

See Also
Loghase, Setscreen, TOS,; xbios

Picture—Exampls
Format numbers under mask
double picture(number, mask, output)
double number; char "mask, "out put;

bleture uses a mask to format a double-precision number; it returns any over-
flow, Tt is designed to be used with accounting programs, and other utilities
that require precise formatting of printed numbers,

picture formats a given number by using a mask string. The mask may contain
any characters; however, only a few have special significance. Non-special
characters in the mask body are printed if, during execution, they come to be
preceded by one or more numerals. Trailing non-special characters print if the

Mark Williams C

[]
—

picture

Lexicon

372

displayed number i3 negative.

The following lists the special characters that control formatting within a mask:

9

Z

Provides a slot for a number, For example, § with mask 999 CR gives
005 <sp><sp><sp>, whereas printing -5 with mask 999 CR gives 005 CR.
Note that "C" and 'R’ are not special characters, but are taken literally.

Provide a slot for a number, but supress leading zeroes. For example,
printing 1034 with mask ZZZ,ZZZ gives <sp><sp>1,034. Note that the
comma is not a special character,

Provide a slot for a number, but shrink out leading zerogs, For example,
printing 1034 with mask JJJ.JJJ gives 1,034,

Provide a slot for a number, but shrink out any zeroes. For example,
printing 070884 with mask K9/K9/K9 gives 7/8/84,

Float a dollar sign to the front of the displayed number. For example,
printing 105 with mask $Z, 227 gives <sp><sp>3105.

Separate the number between decimal and integer portions., For example,
printing 105.67 with mask ZZZ.999 gives 105.670.

Provide a slot for a number, but supress trailing zeroes. For example,
printing 105.670 with mask ZZ3.9TT gives 105.67 <sp>.

Provide a slot for a number but shrink out trailing zerpes. For example,
printing 105.600 with mask ZZ9.955 gives 105.6.

This character, if placed to the left of the mask, floats to the front like
the *%', but only if the number iz negative. For example, printing 105
with mask -Z,ZZZ gives «<sp><sp>105, whereas printing -105 gives
<sp=<sp>-105.

This character acts like the minus sign *-°, but prints a *{'. For example,
printing 105 with mask (ZZZ)} gives whereas printing -5 gives
<sp=<sp=(5).

If placed to the left of the mask, this character floats to the front like the
minus sign “-°, but is replaced by a *-" if’ the number iz minus. For ex-
ample, printing 5§ with mask +ZZZ gives <sp><sp>3+, whereas printing -5
gives <sp><sp>-5. Placed behind the mask, it is printed if the number is
positive, but ig replaced by a minus sign *-" if the number is negative.
For example, printing 5 with mask ZZZ+ gives whereas printing -5 gives
<5p=<spES-,

When placed to the left of the mask, this character Fills all leading spaces
to its right, For example, printing 104.10 with mask "ZZZ,272Z .99 gives
22641 04.10, and printing 104.10 with mask *$ZZ,ZZZ.99 gives
**2e2104.10.

Mark Williams C

Lexicon pnmatch

See Also
commands, STDIO

Diagnostics
picture returns all overflow as a double. For example, attempting to print -1234
with mask (ZZZ) gives (234) and returns -1,

Notes
For the source code of picture, see the file picture.c.

pnmatch—General function (libc.a/pnmatch)
Match string pattern
int pnmatch{siring, paitern, flag)
char ®string, *pattern; int flag;

pnmatch matches string with pattern, which s a regular expression. pnmatch
returns 1 if pattern matches string, and 0 if it does not. Each character in pat-
tern must exactly match a character in string; however, the wildeards **, 7", ',
and '|' can be used in patfern to expand the range of matching. The flag argu-
ment must be either 0 or 1: 0 means that patfern must match string exactly,
whereas 1 means that patters can match any part of string. In the latter case, the
wildeards ' and ‘$' can also be used in pattern.

Example
This example locks for pattern argv[1] in standard input or in file argv[2]. Tt
demonstrates the functions pnmatch, fgets, and freopen.

ginclude <stdic.h>
#define MAXLINE 128
char buf [MAXLINE];

main{arge, argv) int arge; char *argvil; {
if {argc 1= 2 &8 arge 1= %)
fatal("Usage: prmatch pattern [file 1M);
if (arge == 3 && freopen{aravi2l, "r", stdin) == NULL)
fatal(“cannot open input file");
while (fgets(buf, MAXLIME, stdin) I= WULLY {
if {prmatchibuf, argv[1], 13}
printf("%st, bufl;
3
if {Ifecf(stdin))
fatal{"read error");
exitily;
3

fatai(s) char *s; {
fprintf(stderr, “"pomatch: %s\n" =)
exit({1);

Mark Williams C

pointer-pokeh Lexicon

See Also
egrep, msh, string

Notes
[lag must be zero or one for pnmatch to yield predictable results.

pointer—Definition

A pointer is a data type that consists of the address of another item of datg;
therefore, it is said to “point™ to that item of data.

The physical size of the pointer data type is determined entirely by the
microprocessor. Pointers are 16 hits long on the i8086, SMALL model, tion-
segmented Z8000, and on the PDP-11; they are 32 bits long on the 18086,
LARGE model, segmented Z8000, the 63000, and the VAX.

Mote that failure to declare a function that returns a pointer (most commonty, 4
char *) will result in that function being implicitly declared as an int. This will
not cause an error on microprocessors in which an int and a pointer both have.
the same size; transporting this code to a microprocessor in which an int consists
of 16 bits and a pointer consists of 32 bits will result in the pointers being trun-
cated to 16 bits and the program probably failing.

C allows pointers and integers to be compared or converted to each olh_er
without restriction, Mark Williams C flags such conversions with the strict
MEessage

integer pointer pun
and comparisons with the strict message

integer pointer comparison
These problems should be corrected if you want your code to be portable to
other computing environments.

Casting a pointer from one data type to another may result in the loss of preci-
sion when alignment restrictions are taken into account. These sorts of d:_ma.
transformations should be done with great care to ensure that code remains
portable.

See Also
data formats, declarations, pun

pokeb—Library function (libc.a/pokeb)

Insert a byte into memory
int pokeb{dp, b) char *bp; int &;

pokeb writes the character b at an arbitrary location bp In memory. pokel cjr-
cumvents the system's memory protection by temporarily entering supervisor

Mark Williams C

Lexicon pokel-portahility

mode. pokeb returns its argument b,

See Alse
peekh, peekl, peekw, pokel, pokew

pukel—-Library function (libc.a/pokel)
Insert 2 long into memory
long pokel(lp. I) long *ip, [

pokel writes the long ? (four bytes) at an arbitrary location /g in memory. pokel
circumvents the system’s memory protection by temporarily entering supervisar
mode.

See Also
peekh, peekl, peekw, pokeb, pokew
Notes

pokel does not test for odd addresses, and will generate a bus error if given
such an address. In general, be careful about what you peek and poke,

pokew—Library function (libe.a/pokew)
Insert & long into memory
int pokew(wp, [) int *wp, w;

pokew writes the word w (two byvtes) at an arbitrary location wp in memory,
pokew circumvents the system’s memory protection by temporarily entering su-
pervisor mode.

See Also
peekb, peekl, peekw, pokeb, pokel
Noles

pokew does not test for odd addresses, and will ‘generate a bus error if given
such an address. In general, be careful about what you peek and poke.

porf—Definition
A port passes data to and receives data from remote devices.

See Also
aux:, fclose, FILE, fopen, pro:, stream

portability—Delinition
Portability means that code can be recompiled and run under different com-
puting environments without modification, Although true portability is an
ideal that iz difficult to realize, vou can take & number of practical steps to en-
sure that your code is portable:

Mark Williams C

pow=pr ' Lexicon

1. Do not assume that an integer and a pointer have the same size. Remem-
ber that undeclared functions are assumed to return an int. If a function
returns a pointer, declare it so.

2. Do not write routines that depend on particular order of code evaluation,
particular bvte ordering, or particular length of data types.

L) (19

3 Do not write routines that play tricks with a machine’s “magic numbers™;
for example, writing a routine that depends on a file's ending with <etrl-
Z> instead of EOF ensures that that code can run only under operating
systems that recognize this magic number,

4. Always use manifest constants, such as EOF, and make full use of
#define statements.

1se header files to hold all machine-dependent code.

6. Declare everything explicitly. In particular, be sure to declare functions
to void if they do not return a value; this avoids unforeseen problems with
undefined return values.

Fee Also
#define, header file, manifest constant, pointer, pun, void

pow—Mathematics function (libm.a/pow)
Compute a power of a number
#include <math.h=
double pow(z, x) double z, x;
pow teturns = raised to the power of x, or 2.
Example
For an example of this function, see the entry for exp.

See Also
mathematics library

Diaenostics
pow indicates overflow by an errno of ERANGE and a huge returned value.

pr—Command
Paginate and print files
pr [options] [file ...]

pr paginates each named file and sends it to the standard output, The file name
‘" means standard input, 1f no file is specified, pr reads the standard input,

Each page hasa header that gives the date, file name, and page and line num-
bers. pr may be used with the following options.

376 Mark Williams C

Lexicon precedence-printf
+i# Skip the first # pages of each input file.

- Print the text in # columns. This is used to print out material that was
typed in one or more columns,

-h header
Use keader in place of the text name in the title, If header is more than
one word long, it must be enclosed within guotation marks.

-l Set the page length to # lines (default, 66).

-m Print the texts simultaneously, in separate columns, Fach text will ba as-
signed an equal amount of width on the page; any lines longer than that
will be truncated. This is used to print several similar texts or listings
simultaneously,

-n Number each line as it s printed,

-s¢ Separate each columm by the character . You can separate columns with a
letter of the alphabet, a period, or an asterisk. Normally, sach column is
left justified in a fixed-width field.

-t Suppress the printing of the header on each page, and the header and
footer space.

-wn 3et the page width to »# columns (default, 80). Text lines are truncated to
fit the column width. The maximum width is 256 columns.

Example

To print a numbered listing of a text file, do the following: First, plug a printer
into your Atari 5T and turn it on. Second, type this command:

pr -n filename sprn:

where filename is the name of the file you wish to print.

See Also
commands, pro:

brecedence—Definition
Precedence refers to the property of each C operator that determines priority of
execution; operators are exscuted in order of their degree of precedence, from
highest to lowest, The order of precedence for operators is summarized on page
49 of The C Programming Language.

See Also
operators

Mark Williams C 37

printf

Lexicon

printf—General function (libe.a/printf)
Format output

#include <stdio.h>

printf{format [, arg]...) char *format;

printf uses the formaf string to specify an output format for each arg, which it

then writes on the standard output. printf reads characters from format one at
a time; any character other than a percent sign ‘%' or a string that is introduced
with a percent sign is copied to the output directly, *W' tells printf that what
follows specifies how the corresponding arg 15 to be formatted; the characters
that follow ‘%' can set the output width and the type of conversion desired.
The following modifiers, in this order, may precede the conversion type:

1.

A minus sign =" will left-justify the output field, instead of the default
right justify.

A string of digits gives the width of the output field. Normally, the field
is padded with spaces to the field width; it is padded on the left unless
left justification is specified with a*-". If the field width begins with ‘07,
the field iz padded with *0° characters instead of spaces; the ‘0" does not
cause the field width to be taken as an octal number. If the width
specification is an asterisk **', the routine uses the next arg as an integer
that gives the width of the field.

A period ' followed by a string of digits indicates the precision. For

floating point (e, f, and g) conversions, the precision is the number of

digits printed after the decimal point, For string (s) conversions, the
precision is the maximum number of characters used from the string. If
the precision specification is given as an asterisk **', the routine uses the
next arg as an integer giving the precision.

The letter *I’ before any integer conversion (d, o, %, or u} indicates that
the argument is a long rather than an int. Capitalizing the conversion type.
has the same effect; note, however, that capitalized conversion tvpes aré
not compatible with all C compiler libraries.

The following format conversions are recognized:

%%

g = o

L)

Qutput a "%’ character. No arguments are processed.
Convert the int argument to a character.

Convert the int argument to signed decimal.
Convert the long argument to signed decimal.

Convert the float or double argument to exponential form. The format is
d.ddddddesdd, where there is always one digit before the decimal point
and as many as the precision after it (the default is six). The expeonent
sign 5 may be either *+' or *-*

Mark Williams C

pexicof

Convert the float or double argument to 4 representation with an optional
leading minus sign *-', at least one decimal digit, a decimal point {*."),
and optional decimal digits after the decimal point. The number of digits
after the decimal point is the precision (default, six),

Convert the float or double argument to whichever of the formats d, e, or
f loses no significant precision and takes the least space.

Convert the int argument to unsigned octal.
Convert the long argument to unsigned octal,

The next argument points to an array of new arguments that may be vsed
recursively, The first argument of the list is a char * that containg a new
format string. When the list 15 exhausted, the routing continuss from
where it left off in the griginal format string.

Clutput the string to which the char ®* argument points. Reaching either
the end of the string, indicated by a NUL character, or the specifisd
precision will terminate cutput. If no precision is given, only the end of
the string will terminate.

u Convert the int argument to unsigned decimal.

u Convert the long argument to unsigned decimal.

X Convert the int argument to unsigned hexadecimal.
X Convert the long argument to unsigned hexadecimal,

Example

The following example uses prinif to print the location of the mouse pointer on
the screen. The code “033H tells printf to output an <esc> character and the
letter *H', which tells TOS o home the cursor,

#include cgemdafs. hs
#ihclude <pesbind.h>

Hdefine CLICKS 1 fFone. of clicks expected on mouse button */
Fdefine BUTTON 1 /¥ which butten; 1 = leftmost */
#detine DOWH 1 /* i.e., the mouse button is down */

/¥ throw-awsy declarstions, to keep system from scribbling over itself ¥y
int nowhere = 0;
Rect morect = £ 0, 0, 0, 0¥

maingd £

/* declarations used by evnt_multi()y */
int selection; S*code for event that cccurred */
unsigned int which = (MU_KEYBD | MU_BUTTON);
int bufferfill; /*® place to write AES messages */
int mousex; /™ mouse X coordinata *f
int meusey; /* mouse Y coordinate */

Mark Williams C

PED: Lexicon

J* 0K, here we go ... */
appl_init();
graf mouse{ARROW, &nowhere);

fori;;d €
selection = evnt_multifwhich, CLICKS, BUTTON, DOWH,
0, norect, 0, norect, buffer, 0, 0, &mousex, Emousey,
Encwhere, Enowhere, Enowhere, &nowhere);

sWwitchiselection) {

case MU_KEYBD:
appl_exit();
exit(0d;

cage MU BUTTON:
graf_mouse(M_OFF, &nowhere);
printf{ 0330 : X03d Y: X03d\n', mousex, mousey);:
graf_mousa(M_OM, dnowhere);

break;
default:
break;
2
}
3
See Also

fprintf, pute, puts, scanf, screen control, sprintf, write

MNotes
Because C does not perform type checking, it is essential that each argument
match its specification in the format string.

The use of upper-case format characters to specify long arguments is not stan-
dard, and will be phased out to conform with the ANSI standard. Use the ‘'
modifier,

prn:—TOS device 0
TOS logical device for parallel port

TOS gives names to its logical devices, Mark Williarqs C uses these names, ta.
allow the STDIO library routines to access these devices via TOS, prn: is the
logical device for the the parallel port.

Example

380 Mark Williams C

Lexicom process-Priblk

#include <stdio.h>
maing)}l
FILE *fp, *fopen();
if {{fp = fopen{"prn:d Bybyy 0= NULL)
fprintf{fp,"prn: enabled.\n");
else printf{"prn: canrict open.\n'};
3
See Also
aux:, con:

process—Definition
A process is a program in the state of execution.

Protobi—xblos function 18 {oshind.h)
Crenerate a prototype hoot sector
#include <osbind.h>
#include <xbios.h>
vold Protobt{buffer, serialno, type. flag)
char *buffer; long serialng; int type, flag:

Protobt generates a prototype boot sector, and returns nothing. Auffer points to
a 312-byte buffer; this buffer may already contain an image of a boot sector,
but whether it does or not i irrelevant. serialne is a2 serial number that will be
stamped into the boot sector; setting serialno to -1 leaves the boot sector's serial
number unchanged, whereas setting it to any number higher than 0x01000000
creates a random serial number that will be stamped into the boot sector. fype
is an integer that encodes the type of disk being worked with, as follows:

] 40 tracks, single sided
1 40 tracks, double sided
2 B0 tracks, single sided
3 80 tracks, double sided

3etting fype to -1 retaing the current disk type,

Finally, flag indicates whether the boot sector is executable or non-executable:
zerp indicates executable; one, non-executable; and -1, retain the current type.

Example
For an example of how to use this macro, see the entry for Flopfmt.

See Also
TOS, xbios

Mark Williams C

Priblk Lexicon

Priblk—T0O8 macro (oshind.h)

382

Print a dump of the screen
#include <osbind.h>
#include <xbios.h>

int Prtblk{p) struct priblk *p;

Prihlk is 2 macro that uses the TOS function xbios. It prints out & block of
memory; it returns 0 if the printing was successful, and nonzero 3{‘ it was not. p
points to a specialized structure, which is defined in the header file xbios.h.

Pritblk can also be used to print text strings.

Example]
This example demonstrates the functions Priblk, Setprt, Physbase, Getrez, and
Setcolor.

#include <osbind.h>
#include <xbios.h>

maingd {
struct priblk pb;
int palettelisl;
register int i;

J* Determine printer characteristics */
i = Setprt(-13;
if (i & PR_DAISY)
po.po_type = PB_DALSY;
else if (i & PR_MOHD)
pb.pb_type = PB_MONQT&D;

else if (i & PR_EPSON)
pb.pb_type = PE_MONO120;
else
pb.pb_type = PB_COLOR1SD;

pb.pb port = (i & PR_SERIAL) ? PE_ALX : PB_PRT;
pb.ph dstres = (i & PR_FINAL) 7 PB_FIMAL : PB_DRAFT;

/® Print the screen ®/
if {pb.pb type t= PB_DAISY} {
pb.pb blkptr = Physbase();

aWitch (po.pb srcres = Getrez{l) {
caze O: pb.po width = 320;
pb.pb_height = 200;
break;

case 1: pb.pb width = 320;
pb.pb height = 400;

break;

Mark Williams C

pexicon Pterm

case 2: po.pb wWidth = &40;
ph.pb_height = 400;
bBreak;

}

po.pb colpal = &palette(0];
for (i =0: 7 <16; i += 1)
palette{i]l = Setcolor{i, -1};

pokew Dx4EEL, 137 /* set pricnt, locks out Sordmpl) =/
if (Prebleiipo) 1= 03
Coonws("Screen print failed.\r\n");

T elge
Ceonws("Cannot print graphics on daisy wheel printer.\rynt};

J* Print a text string */

pr.p_blkptr = "\rinThis is a string.\r\n";
pb.pix_width = strilen(pb.pb blkptry;
po.pb_height = 0;

pokew(DxGEEL, 13;

if (Prtblk{&pb) i= 03
Coormes{"Text print failed.\r\n");

return 0;
}

Fee Also
TOS, xbios, xbios.h

Pterm—gemdos function 76 {osbind. k)

Tearminate a process
#include <osbhind.h>
void Pterm(siafus) Int siatus;

Pierm terminates the current process, and returns control to the parent process.
siails can be a status code that can be interpreted by the parent process, Plerm
returns non-zerg in the unlikely event that the process could not be terminated,

Example
This program exits with a non-zero status,
#include <osbind.h>

maitgd {
Prerm{2): J* Exit with return code set to 2 */
¥
See Also
gemdos, Pexec, Pterm, Ptermres, TOS

Mark Williams C 383

Pterm{-pun Lexicon .

Pierml—gemdos function 0 (osbind.h)

Ptermres—gemdos function 49 (osbind.h)

pun—Delinition

384

Terminate an TOS process
#include <osbind.h>
void Pterm()

Pierm terminates a TOS process, and never returns,

Example
For an example of this function, see the entry for Beonin,

See Also
gemdos, Pterm, Ptermres, TOS

Terminate a process but keep it in memory
#include <osbhind.h>
void Ptermres(n, code) long n; int code;

Piermres terminates a process in TOS, but retains n bytes of _the process i?.l:?_
memory. code is the exit code for the process being terminated; 1t 15 returned to
the process that invoked the current process.

Example
For an example of this function, see the entry for \auto.

See Also
gemdos, Pexec, Pierm, Pterm(, TOS

Nofes
Programs that use this macro may not be portable to future versions of TOS;
but they are interesting to work with in the meantime.

In the context of C, a pun occurs when a programmer uses one data form inter=
changeably with another. These puns are supported by the language's willing=
ness to apply implicit conversion rules.

A pun most often occurs unintentionally when the programmer fails to declare’
a function as returning a pointer; by default, what the function returns is as—
sumed to be an int, thus creating a pun between the int and pointer into which:
the function’s return value is stored. No trouble will arige if the program is run.
on a machine that defines an int and a pointer to be the same length; however,
such code cannot be transported to an environment in which this is not the case.

Mark Williams €

Puntaes-pute

See Also
pointer, portability

puntaes—xbios function 39 (osbind.h)
Disable AES
#include <oshind.h.h>
#include <xbios.h>
void Puntaes(}

Puntaes disables the AES. Note that this function may not work if the AES is
in ROM.

See Also
TOS, xhios

pute—STDIC macro (libe.a,/pute)
Write character to stream
#include <stdio.hs
int pute(e, fp) char ¢; FILE *fp;

pute iz a macro that writes a character ¢ onto file stream fp, and returns that
character upon success,

Example
The following example demonstrates pute.

#include <stdio.h>

maing)L
FILE *fp;
int ch;
int filename[20];
printf{"Enter file name: "};:
gets(filename);

if {(fp = fopeni{filename, "ri)) 1= NULLY {

while {({ch = fgetc{fp}) I= EOF)
putedlch, stdout);

3

else
printf{'Cennot open Xs.\n', filerame);

fclose{fp);

H

See dlsa
fpute, putchar, STDID
The C Programming Language, pages 152, 166

Mark Williams C

putchar-puts Lexicon:

——

Diagnostics
EOF is returned when a write error occurs.

Notes
Because putc is a macro, arguments with side effects may not work as expected,

putchar—STDIO macro (stdio.h)
Write a character to standard output
#lnclude <stdio.h>
int putchar(c) char 3

putchar is 2 macro that expands to pute(c, stdout); it writes a character onto the
| standard output.

Example

#include <stdio.h>
maing 3L
| FILE *fp;
int ch:
int filenams[20];
printf("Enter file name: "};
gets(filenama);
if ({fp = fopen(filename,"r")) I= NULL) {
while ({ch = fgetc(fp)) != EOF)

putchar{ch);
¥
alse
printf{"Cannot open Zs.\n", filename);
feloge{fpl;
¥
See Also

fputc, putc, STDIO
The C Programming Language, pages 144, 152

Diagnostics
EOF is returned when a write error occurs,

Notes
Bacause putchar is a macro, arguments with side effects may not work as ex—
pected.

puts—STDIO function (libe.a/puts)
Write string to standard output
#include <stdio.h>
puts(siring) char *siring

386 Mark Williams C

Lexicolm putw-pwd

puts appends a newline character to the argument siring and writes the result on
the standard output.

See Alzo
fputs, STDIO

puiw— STDIO macro (stdio.h)

Write word (o stream
#include <stdio.h>
putwi{ward, {p) int word; FILE *fp

The macro putw writes word (an int) to the stream fp, and returns the value
written,

See Also
ferror, STDIO

Diggnostics

putw returns EOF when an error occurs. A call to ferror may be nesded to dis-
tinguish this value from a valid data item,

MNotes

Because putw is 8 macto, arguments with side effects may not work as expected.
The bytes of word are written in the natural byte order of the machine.

pwd—Command

Print the name of the current directory
pwd
pwd prints the name of the current working directory,

See Also
cd, commands, msh

Mark Williams C 387

gsort Lexicon

gsort—General function (libe.a/gsort)
Sort arrays in memotry
qsort{data, n, size, comp) char *data; int n, size; int (*comp)();

gsort is a generalized algorithm for sorting arrays of data in primary MEemory,
It uses C. A, R, Hoare's “quicksort” algorithm. gsort works with a sequential
array of memory called data, which is divided into » parts of size bytes each.
In practice, date is usually an array of pointers or structures, and size is the
sizeol the pointer or structure. Each routine compares pairs of items and ex-
changes them as required. The user-supplied routine to which comp points per-
forms the comparison. It is called repeatedly, as follows:

(*compl(pl, p2)

char *pl, *p2;
Here, p/ and p2 each point to a block of size bytes in the date array, In prac-
tice, they are usually pointers to pointers or pointers to structures. The com-
parison routing must return a negative, zero, or positive result depending on
whether pl is logically less than, equal to, or greater than p2, respectively,

Example
For an example of how to use this function, see the entry for malloc.

See Also
shellsort, stremp, strnemp
The Art of Computer Programming, vol. 3

Notes
qsort uses a recursive algorithm that may overflow the default stack allocated;
however, this is unlikely.

388 Mark Williams C

rand-Random

rand—General function (libc.a/rand)
Generate pseudo-random numbers
int rand(}

rand generates linear, congruential, pseudo-random numbers. It returns in-
tzgersin the range 0 to 2*15-1, and purportedly has a period of 2432,

xample
This example tests the functions rand and srand. It uses 3 threshold level that is
passed in argy|1] (default, MAXVAL/2), the number of trials passed in argy|2]
{default, 1,000}, and a seed passed in argv[3] (default, no seeding).

#define MAXVAL 32747 /* range of rand(): [0, 2*15-1] %/
maintarge, argy) int arge; char *srgvil; €
register int i, hits, threshold, ntrials;

hitz = 0;

threshald = {arge > 1) ? atoifargv[1]l) : HANVALSZ;

ntrials = (arge » 2} ? atoi(argvi2l) = 1000:

if {arge » 3}

srand{atoi(argv[31));

for {1 = 1; 1 <= ntrials; j++)
if (rand{) > thresheld)
++hits;
printf("Zd values sbove ¥d in ¥d trials (XDA).\nY,

hits, threshold, ntrials, (100L*hitsi/ntrials);
¥

See Also
srand
The Art of Computer Programming, vol. 2

Random-—xbios function 17 (osbind.h)
Generate a 24-bit pseudo-random number
#include <osbind.h>
#include <xbios.h>
long Random()

Bandum genetates and returns a 24-bit pseudo-random number. The generatar
15 seeded from the frame-counter, and is likely to be different svery time the
computer is turned on.

Example
The following example generates an array of random numbers. You may wish
to use this as input for the example in malloe, which demonstrates sorting.

Mark Williams C 389

random access-ranlib

#include <osbind.h>
main) {
int i;
for {1=100;7=0;4--) {
printf{"zild *, Random{l);
if { i% ==101
printf{ "yn" j;

3

See Also
TOS, xbios
The Art of Computer Programming, vol, 2

Nates
The lowest bit has a distribution of exactly 50%.

random access—Definition

In the context of computing, random access means that an entity, such as
memory, can be accessed at any point, not just at the beginning. This Means
that all points within memory can be accessed equally qumkIy This contrasts
with seguential access, in which entities must be accessed in a particular order,
so that some entities take longer to access than do others.

A tape drive is an example of a sequential access device, i.2., the order in which
they stream past the tape head. Random-access memory (RAM) demonstrates
random access, Hard disks and floppy disks are combine elements of random
access and sequential access,

RAM, which usually consists of semiconductor integrated circuits, is alsa
strictly random access. In this regard, the term “RAM" is slightly misleading,
and should be called “RWM", for read/write memory, contrasting it with read-
only memory (ROM), which is also random access memory.

See Also
read-only memory

ranlib—Definition

80

The ranlib is a “directory" that appears at the beginning of each library. It
contains the name of each global symbol (ie., function name) that appears
within the library, and a pointer to the module in which that symbol is defined.
Thus, the ranlib eliminates the need for the linker to search the entire library
sequentially to find a given global symbal, which speeds up linking noticeably.

If the date on the library file is later than that in the ranlib header, the linke_:r
will ignore the ranlib and perform a sequential search through the library: the
linker will also send the warning message

Mark Williams C

Lexicon rational number-rc copy

outdated ranlib

to the standard error device. This is done to prevent the accidental use of an
outdated ranlib, which could be disastrous. When vou use the archiver ar o
update a library or to create a new library, be sure to employ the options that
update the ranlib as well as modify or create the library.

See Also
ar, date, Id, touch

Notes

Under certain circumstances, it was possible to generate the Outdated ranlib er-
ror message even though the ranlib was in fact up to date. Tn previous releases
of Mark Williams C, this occurred when it was installed on a svstem with the
date set to the current date, rather than not set, as requested in the installation
procedures. Installing Mark Williams C with the date set on the system had the
effect of updating the date stamp on the library files, which put the date on the
ranlib header and that of its library file out of synch. The linker thus thought
that the ranlib was outdated, when it was in fact correct. This problem was
fized on a previous release.

rational number—Definition
A rational number is the quotient of two integers.

See Also
integer, real number

re__copy—AES function (libaes.a/re_copy)
Copy a rectangle
#include <aeshind. h>
int rc_copy(oldrect, newrect) Rect Soldrect, *newrect;

re_copy is an AES routine that copies a rectangle from one part of the screen to
another. oldrect and newrect point, respectively, to the rectangle being copied
and the area to which it is being copied. Each is defined as pointing to a struc-
ture of the type Rect, which is defined in the header file aesbind.h, as follows:

x X coordinate of rectangle
¥y Y coordinate of rectangle
w width of rectangle
h height of rectangle

re_copy returns zero if an error occurred, and a number greater than zero if
one did not.

Mark Williams C

rc_equal-rc_intersect Lexicon

See Also
AES, TOS

Notes

A ::I‘ippi‘ng rectangle should be set using the VDI function vs_clip before this
routing is used.

re_equal—AES function (libres.a/rc_equal)

Compare two rectangles
#include <aeshind.h>
int re_equal(rect!, rect2) Rect *rect], *rect2;

re_equal 13 an AES routine that compares two rectangles. rect] and rect? point
to the two rectangles being compared. Each is declared as pointing to & strug-
ture of the type Rect, which is defined in the header file aesbind.h, as follows:

X X coordinate of rectangle
¥ Y coordinate of rectangle
w width of rectangle
h height of rectangle

rc_equal returns zero if the rectangles are not idefitical, and one if they ara,

See Also
AES, TOS

rc_intersect—AES function (libaes.a/rc_intersect)

Check if two rectangles intersect
#include <aeshind.h>
int re_intersect{reci], rect2) Rect *rectf. "reci2;

re_intersect is an AES routine that check to see if two rectangles intersect.
rect] and reci? point to the two rectangles being compared. Each is declared as
pointing to a structure of the type Reet, which 15 defined in the header file aes-
bind.h, as follows:

X X coordinate of rectangle
¥ Y coordinate of rectangle
w width of rectangle
h height of rectangle

The values of the structure to which rect2 points will be changed to the coor-
dinates of the area common to both rectangles, or to nonsense if they do not in—
tersect. re_intersect returns zero if the rectangles do not intersect, and one if
they do.

Mark Williams C

re u

read

Lexicol rc_union-read

See Also
AES, TOS

re uman—AFSiunctmn {(libaes.a/rc_union)

Calculate overlap between two rectangles
#include <aeshind.h>
void re_union{rect!, rect2y Rect *rect], “rect2;

rc union is an AES routine that computes a rectangle that encloses two over-
Iapumg rectangles. rect! and reci2 point to the two uvcrlappmg rectangles.
Each is declared as pointing to a structure of the type Rect, which is delined in
the header file aesbind.h, as follows:

X coordinate of rectangle
Y coordinate of rectangle
width of rectangle
height of rectangle

e

The values of the structure to which rect? points will be changed to the coor-
dinates of the rectangle that encloses the overlapping rectangles; these variables
are set to nonsense if the rectangles do not intersect. re_union returns nothing.

See Also
AES, TOS

Nates

Uhis routine should be used only if you are certain that the rectangles in ques-
tion do overlap. The routine re_intersect returns a value that indicates if the
rectangles do in fact overlap.

read—UINIX system ¢all (libc.a/read)

Mark Williams C

.

end from a file
read(fd, buffer, i) int fd; char *huffer; int

read reads up to n bytes of data from the file descriptor fdf and places them into
the data segment at address buffer, The amount of data actually read may be
less than that requested if EOF is encountersd, The data are read at the current
seek position in the file, which was set by the muost recently executed read or
lseek routine. read advances the seek pointer by the number of chardacters actu-
atly read.

Example
For an example of how to use this function, see the entry for open,

Tak
WO
ik

read-only memory-realloe Lexicog

read-only memory—Delinition

real numbers—Delinition

realloc—General function (libe.a/realloc)

394

See Also
UNIX routines, STDIO

Diagnostics
With a successful call, read returns the number of byvtes read; thus, zero bytes
signals the end of the file. It returns -1 if an error occurs: bad file descripto
bad buffer address, and physical read error are among the possibilities,

Notes

read is a low-level call that passes data directly to TOS. It should not be inter=
mixed with high-level calls, such as fread, fwrite, or fopen, without caution,

As ils name suggests, read-only memory, or ROM, is memory that can be res 1
but not written to. It most often is used to store material that is used frequently)
or in key situations, such as a language interpreter or a boot routine,

See Also
random access

A real number is any number of the set of rational numbers or irrational num=
bers.

See Also
lloat, rational number, integer, irrational number

Reallocate dynamic memory
char *realloc(pir, xize) char *pir; unsigned size;

realloc helps to manage a program's arena. It returns a block of size bytes t
helds the contents of the old block, up to the smaller of the old and new si
realloc tries 10 return the same block, truncated or extended; if size is sma
than the size of the old block, realloc will return the same pir,

See Alvn
arena, calloe, free, lcalloe, Imalloc, Irealloc, malloc, notmem, setbufl

Diagnostics .
realloc returns NULL if insufficient memory is available., It prints a message
and calls abort i it discovers that the arena has been corrupted, which most of =
ten occurs by storing past the bounds of an allocated block. realloc will behave: |
unpredictably if handed an incorrect pir.]

The related functicn lrealloc takes an unsigned long as its size argument, au
therefore can reallocate memory blocks that are larger than 64 Kilobytes. '

Mark Williams C.

pexicon record-register variable

record—Definition

Heol-

A record is a set of data of a fixed length that has been given a unigue iden-
tifier, and whose structure conforms to an exact description. An example of a
record is an entry in an entry in a file of names and addresses: each entry hasa
fixed length, is marked by 3 unique identifier, and has a fixed number of bytes
set aside in fixed order to record name, address, city, state, and ZIF code.

Mote, too, that what is called a “record” in Pascal is called a “structure” in C.

See Also
field, structure

Definition

Rect is a structure that is defined in the header file aesbind.h. It defines a rec-
tangle in @ manner that can be understood by an AES routine. [t consists of
four integers, as follows:

X X coordinate of rectangle

¥ Y coordinate of rectangle

w width of rectangle

h height of rectangle
Because Mark Williams C aliows vou to pass a structure directly, this structure
can be placed in the argument list of AES functions to replace the four ar-
guments that indicate coordinates, height, and width of a rectangle.

See Also
AES, aeshind.h, struct, TOS

register—Delinition

A reglster is memory within a microprocessor within which data can be stored
and modified. The size and the configuration of a microprocessor’s registers
affect its computing potential. Registers can be manipulated much faster than
RAM,

See Also
register variable

register variahle—Deflinition

register is a C storage class. A register declaration tells the compiler to try to
keep the defined local data item in a machine register. Under Mark Williams C,
the int foo can be declared to be a register variable with the following
statement

Mark Williams C 395

rewind-rindex

rewind—STDIO function (libc.a/rewind)

rindex—String function (libe.a/rindex)

396

register int fog;

O the 18086, two registers are available to accept register variables; if more
than two are declared, all after the first two will be treated as ordinary aufos,
On the 68000, eight registers are available to accept register variables: three ad
dress registers and five data registers.

By definition of the C language, registers have no addresses, so pointers to
registers cannot be passed as function arguments. Placing heavily-used local
variables into registers often improves performance, but in some cases declaring
register variables can degrade performance somewhat.

See Also
auto, extern, static, storage class
The C Programming Language, page 31

Reset file pointer
#include <stdio. h>
rewind(/p) FILE */m

rewind resets the file pointer to the beginning of stream fp; it is a synonym for
fseek(fp, OL, 0).

See Also
fseek, STDIO

Find a character in a string
char *rindex(string, c) char *siring; char ¢

rindex scans string for the last occurrence of character ¢. If ¢ is found, rindex
returns @ pointer to it, If it is not found, rindex returns NULL.

Example
This example, when handed a path name, returas a pointer to a file name with
the leading directory information stripped away.

#detine PATHSER '* /* path neme separator */
gxtern char ®*rindex{);

basename{path) register char “path;
<
reglster char "cp;
return {({cp = rindex{path, PATHSEP}) == WULL) ? path : +cpl;

Mark Williams C

[exicod rm-Rsconl

See Also
index, string

rm—Command

Remove files
rm file ...

rm remaves each file, and frees data blocks associated with it.

See Also
commands, msh, rmdir

raddir—-Command

Remove a directory
rmdir directory ...

rmdir removes each directory. This will not be allowed if a direcrory is the cur-
rent working directory or is not empty.

rmdir will not allow you to remove the current working directory

See Also
commands, mkdir, msh, rm

rsconl—Command

Reconfigure the serial port
rsconf speed. flow, UCR, RSR, TSR. SCR

rsconf is & command that uses the xbios function Rsconf to reconfigure the
serinl port., speed is the baud rate to which the port will be ser; flow sets the
form of flow control. [/CR is a bit map that sets the control register; RSR is 4
bit map that sets the receive status; TSR is a bit map that sets the transmission
status: and SCR seis the synchronous character register. For details on the
values for these arguments, see the eniry for Rsconf.

See Also
commands, Rsconf, TOS

Rsconf—xhios function 15 (eshind.h)

Configure the serial port

#include <osbind.h>

#include <xblos.h>

vold Rsconf({speed. flow, UCR, RSR. T5R. 5CR)
int speed, flow, UCR, RSR. TSR. SCR;

Mark Williams C 397

Rsconf Lexicon

395

Rsconf configures the serial port, and returns nothing. speed is an integer that
sets the baud, as follows:

i} 19,200 8 600
1 9600 9 300
2 4800 10 200
i 3600 11 150
4 2400 12 134
5 2000 13 110
6 1800 14 75
7 1200 15 30

flow is an integer that sets the flaw control, as follows:

0 None (the default)

1 HOMN/XOFF (<ctrl-8»/<ctrl- Q=)

2 Request to send/clear to send (RTS/CTS)
3 XON/XOFF and RTS/CTS

UCR stands for USART control register. (USART, in turn, means universal
synchronous-asynchronous receiver-transmitter). This wvariable is an byte-
length bit map that controls the operation of the serial port. Tts bits encode the
following information;

Bit 0 unused
Bit 1 0 indicates odd parity; |, even parity
Bit 2 0 indieates no parity: 1, parity as set in bit |
Bits 3,4 Start/stop bits and format;
an synchronous; start=0; stop=0
10 asynchronous; start=1; stop=1
01 asynchronous; start=1; stop=1.5
11 asynchronous; start=1; stop=2
Bits 5,6 Word length:
a0 & bits
10 7 bits
ol 6 hits
11 5 bhits
Bit 7 (=TTse frequency from transmit control

and receive control directly
1=Divide frequency by 16

RSE isa byte-length bit map that controls the receive status register; setting the
bits sets the following conditions;

Mark Williams C

exli
Lexl

Bit 4

Bit 5
Bit 6
Bit 7

Enable reception

In synchronous mode, enable comparison of
character in SCR with character in

receive huffer

1n synchronous mode, signal that character
identical to character in SCR may be
received; in asynchronous mode,

signal reception of start bit

In synchronous mode, signal that character
identical to character in SCR has been
received; in asvnchronous mode,

signal reception of BREAK

Signal frame error; stop bit isa NUL, but
byte received is not

Signal parity error

Signal buffer overrun

Signal buffer full

TSR is a byte-length bit map that controls the transmitter status register. The
bits in this map indicate the following:

Bit 1
Bits 2.3

Bit 3
Bit 4
Bit 5

Bit 6

Bit 7

Enable transmission

High or low output mode:

00 High

10 High

4] Low

11 Loop-back mode

In synchronous mode, not used; in
asynchronous, sends break condition
Send end-of-transmission character after
current character

Switch to reception immediately alter
end of transmission

Send character in sender floating register
before writing new character into send
buffer

Buffer empty

Finally, SCR initializes the synchronous character register; this variable should

be set to zero.

Mote that setting UCR, RSR, TSR, or SCE to -1 will cause it to be ignored by

TOS.

Mark Williams C

rsrc free-rsrc gaddr Lexicon

rsre_free—AES function (libaes.a/rsrc_free)

rsre_gaddr—AES function (libaes.a/rsrc._gaddr)

400

Example
This example sets the serial port to 4800 baud with XON/XOFF flow control,

For an example of using this function from the \auto directory, see the entry
for \auto.

Finclide <osbind.h>

#define BR_4BOO (2) S* 4800 baud */
#define FC_XON (1) SE NOMSAOFF */
meingy £

Rscenf(BR_4800, FC_XOM, -1, -1, -1, -13;
Coonws("Serial port set to 4BO0 baud, MOM/XOFF\WMARY);
-

See Also
TOS, xbios

Notes
Fesetting the speed, even If there is no change, will transmit an ASCIL DEL

across the serial line. This may be inteénded to help remote systems or mode ms
to determine line speed.

Free memory allocated o a set of resources
#include <aeshind.h>
int rere. free()

rsre_[ree is an AES routine that frees the random-access memory that had been
allocaled to a set of resources by the routine rsre _load. Because the contents ﬂ S
only one resource [ile can be kept in memory at any given time, this mutmﬂ "
should be employed before loading a second resource file. rsre load returns
zero if an error occurred, and a number greater than zero if one did not.

See Also
AES, TOS

(Get the address of 8 resource abject
#include <aeshind.h>

int rsrc__gaddr(type, index, address) Int fype, index; char *address;

rsrc_gaddr is an AES routine that gets the address of a given resource objﬁ';ﬁ-
type indicates the type of object being sought, as follows;

Mark Williams

Lexic

T5rC_

Ma

pexicon rsrc_load-rsre_ obfix

] abject tree

1 object within a tree

2 text (TEDINFO)

3 icon (ICONBLK)

4 predefined bit pattern (BITBLK)

5 string

& image data

7 object specification

8 pointer to text {TEDINFQO)

9 pointer to text template (TEDINFO)
10 pointer to text validation string (TEDINFQ)
i1 pointer to mask for icon image (ICONBLK)
12 pointer to data for icon image (ICONBLEK)
13 pointer to icon text (ICONBLK)
14 pointer to bit image (BITBLEK)
15 address of pointer to free string
16 address of pointer to free image

index pives the index number of the object within the object tree. address
points to the address of the data sought; this value is set by the rourine.
rsrc_gaddr returns zero if an error occurred, and a number greater than zero if

ong did not.
See Also
AES, TOS

rsre_load -AES [unction (libaes.a/rsre_load)

Load a resource file into memory
#include <aesbhind.h>
int rsre_load(filename) char * filename;

rsrc_load is an AES routine that loads a resource file into memory. filenane

points to the name of the file to be loaded. Note that by convention, the name
of the file must have the suffix .rsc.

Mote that only one resource file can be loaded into memory at any given time!
rirc_load automatically calls rsrc free to free the memory allocated to any
previously loaded resource file. rsre_load returns zero if an error occurred,
and a number greater than zero if one did not.

Fee Also
AES, TOS

Mark Williams C 401

rsre saddr-runtime startup Lexicon

rsre_ obfix—AES function (libaes.a/rsre__oblix)

Change the form of an object's coordinates
#include <aeshind.h>

#include <obdefs.h>

int rsre._obfix(irec. object) char *iree; int object;

rsre_obfix is an AES routine that changes the form the coordinates for an ob-
ject that is stored in a resource file. A resource file encodes an object's coor=
dinates in the form of character coordinates, not pixel coordinates; these
character coordinates are transformed into pixel coordinates when the resource:
file is loaded, when the resolution of the screen is known. tree points to the ad-
dress of the tree that containsg the gbject in guestion, and ebject is the number
of the ohject within the tree, rsrc_obfix always returns one.

See Also
AES, TOS

rsre_saddr—AES function (libaes.a/rsrc_saddr)

Store address of a free string or a bit image
#include <aeshind.h>
int rsrc_saddr(iype. index, address) int iype, index; char *address;

rsre_saddr is an AES routine that copies into an object the address of a pointer
to either the [ree string or the free image of another object within the object
tree. fype denotes the type of pointer whose address is being stored; 15 in-
dicates a pointer to a free string, and 16 indicates a pointer to a bit image.
rsee_saddr returns zero if an error occurred, and a number greater than zero if
one did nat,

See Alse
AES, TOS

runtime startup—Delinition

402

The € runtime startap is an initialization routine that 15 linked with a C
program as the first part of an executable object program. It performs the.
functions necessary to start and terminate the C environment. Al 8 minimum,.
it initializes the stack, calls main, and calls exit with the return value from
main.

Three C runtime startup routines are available on Mark Williams C for the Atari
ST: crtsD.o, the normal runtime startup; crtsg.o, the runtime startup for the
GEM environment; and crtsd.o, which i3 used to create a GEM desktop ap-
plication. The default is crisD.o, which is appropriate for most uses. You can
call ertsg.o on the ec command line in either of two ways: with the switch
-VGEM, or with the name option Nrertsg.o. The crtsd.o start-up routine can
be called with the option =-VGEMACC or with the name option Nertsd.o.

Mark Williams C

Lexicon rvalue-Bwabs
Lexit™

See Also
cc, crisl.o, crisd.o, crisg.o, stack, _stksize

ryalue—Definition
An rvalue is the value of an expression. The name comes from the assignment
expression el=el;, in which the right operand is an rvalue,

Fee Also
Ivalug

Rwabs—bios function 4 {oshind.h)
Read or write data on a disk drive
#include <oshind. h>
#include <blos.h>
long Rwabs(rorw, buffer i, rec, drive)
int rorw, 1, rec, drive; char *huf fer;

Rwabs reads from or writes dara to a disk drive. rorw indicates whether the
process will read or write: zero indicates read, and one indicates write. n is the
nurmber of sectors to transfer: rec is the number of the first record to transfer;
and drive is the name of the disk drive to use; zero indicates drive A, one in-
dicates drive B, etc. buffer points to the area to which the data are to be wril-
ten, or from which they are to be read.

See Also
bios, TOS

Mark Williams C 403

scanf

Lexicon

scanf—STDIO function (libe.a/scanf)

Format input
#include <stdio.h>
scanf(format [, arg 1...) char *format;

scanf reads the standard input, and uses the string formar to specify a format
for each arg, each of which must be a pointer. scanf reads one character at a
time from format; white space characters are ignored. The percent sign charac-
ter *%' marks the beginning of a conversion specification. ‘%’ may be followed
by characters that indicate the width of the input field and the type of conver—
sion to be done. The following modifiers, in this order, may precede the con-
version type:

1. The asterisk **', which indicates that the next input field should be
skipped rather than assigned to the next arg. '

2. A string of decimal digits, which specifies 2 maximum [ield width.

3. An 1, which specifies that the next input item is a long object rather than
an int object. Capitalizing the conversion character has the same effect.

The following conversion characters are recognized:

c Assign the next input character to the next arg, which should be of type:
char *.

d Assign the decimal integer from the next input [ield to the next arg,
which should be of type int *,

D Assign the decimal integer from the mext input field to the next arg,
which should be of type long *.

e Assign the floating point number from the next input field to the next
arg, which should be of type float ®. |

E Assign the floating point aumber from the next input field to the next
arg, which should be of type double *,

f Same as e.
F Sameas E.,

o Assign the octal integer from the next input field to the next arg, which
should be of type int *, .

0 Assign the octal integer from the next input field to the next arg, which
should be of type long *,

S Assign the siring from the next input figld to the next arg, which shou_l_ﬂi-
be of type char **. The array to which the char ** points should be long.
enough to accept the string and a terminating NUL character.

Mark Williams C

Lexicon _ Serdmp

x Assign the hexadecimal integer from the next input field to the next arg,
which should be of type int*,

X Assign the hexadecimal integer from the next input field to the next arg,
which should be of type long *.

See Alse

STDIO

The Programming Language, page 147

Notes

Because C does not perform type checking, it is essential that an argument
match its specification; for that reason, scanf is best used to process only data
that vou are certain is in the correct data format. The use of upper-case format
characters to specify long arguments is not standard; vse the ‘I modifier for
portability.

Scrdmp—xbios function 20 (osbind.h)
Print a dump of the screen
#include <oshind.hs>
#include <xbios.h>
vaid Scedmp()

Scrdmp dumps the screen to the printer port, and returns nothing, Note that at
present this routine works only with the monochrome monitor.

Exaniple

This example dumps the screen to a printer, Be sure that before you use this
example, vour printer is plugged into your computer, properly described to
TOS, and turned on.

#include <psbind.h>
#include <bics.h>

main{}) {
if{Bcostat(BC_PRT) == 0)
Ceonwsl "The printer is not ready.\m\r");

else {
Cocomws{ “The screen is being printed... Please watt.\myr" 3;
Scrdmpl §;
Cconws("The screen 13 printed.\nyr');
3
return(0);
3

See Also
TOS, xhios

Mark Williams C 405

screen control Lexicon

screen control—TOS data

406

The Atari ST uses the following escape sequences to control the terminal screen,
These can be passed by the macro Ceonout, 35 well as by numerous other output
routines, to manipulate the Atari §T's screen;

Mote that <esc> represents the escape character, ASCIT 033,

<esc>A Cursor up

<esc>B Cursor down

zese>C Cursor forward

<escx Db Cursor backward

<esc>E Clear screen, home cursor

<escxH Home cursor

<esex1 Return to same position on previous line
<eserd Erase to the end of the page

<ese=K Clear to the end of the line

<ese=L Insert line

<ese=M Dielete line
<e5e=Y row col
Position cursor at row, col, which are
row /column numbers plus 040 (space character)
<esexbe Set foreground color to ¢
<BECHCC Set background color to ¢

zgsexd Erase beginning of display
<ESCrE Make cursor visible
<escx>T Make cursor invisible
T | Save cursor position
<escxk Restore cursor position
<gsesl Erase a ling

<ESC>0 Erase from beginning of line to cursor
<5 Enter reverse video mode
<Esc>g Exit reverse video mode
<@SC>Y Wrap text at end of line
<50 W Discard text at end of line

For the sequences <esc>b and <eses¢, the variable ¢ i3 the color index plus. B#ﬁ
In monochrome mode, the color index can be zero or ong; in medium resolu-
tion, it can be zero through three; and in low resolution, it can be one through
15, \
Exampli ,
The following example clears the screen and homes the cursor, then moves
cursor to row 12, column 6 on the screen.

Mark Williams €

Lexicon___ _scrp_read-serp_write

mainty £
char roW = 12400400 ;
char column = &+30407;

priotf{"\033E");
printfON033r ke, row, calumn);
b}

See Also
Ceonout, gemdos, TOS

serp_read—AES function (libaes.a/scrp_read)
Read the scrap directory
#include <aeshind.h>
int scrp_read{buffer) char *buf fer;

The *scrap™ feature provides a way for applications o pass information among
themselves.

The information to be passed is written into a file, which 15 always called
scrap.xxx. The suffix indicates what tvpe of information the file contains: text
(.txt), 2 GEM metafile {.gem), a bit image (.img), or spreadsheet data (.dif).

The name of the directory that holds the scrap file is written into a static buff-
er, or clipbpard. The clipboard contains only the name of the directory in which
the information is kept, not the mformation itself. The clipboard is overwritten
each time it is vsed. so in effect only one scrap file can be used at any given
tme. AES provides routines for reading and writing to the clipboard; it i3 up to
you to see to it that the scrap file is correctly written and read.

scrp read is an AES routine that reads the clipboard. Buffer points to the name
of a buffer into which the contents of the clipboard will be written. scrp_ read
returns zero if an error occurred, and 2 number greater than zero if one did not.

See Also
AES, TOS

scrp write—AES function (libaes.a/serp write)
Write to the scrap directory
#lnclude <aesbind.h>
int serp_ write{direciory) char *direciory;

scrp_write is an AES routine that writes the name of the scrap directory onto
the clipboard. direciory is the name of the scrap directory. serp write returns
zerg if an error occurred, and a number greater than zero if one did not. For
more information on using the clipboard, see the entry for scrp_read.

Mark Williams C 407

set-sethuf Lexicon

sei—Command

setbuf—STDIO function (libc.a/setbuf)

408

See Also
AES, scrp_read, TOS

Set an msh variable
set [WARTABLE=value]

set sets sets the msh FARTABLE to value. For example, the command
set b="bibin®

tells msh that the variable b is equivalent to b:\hin; thus, typing
cd 3b

is equivalent to typing
cd bivbin

Typing set without an argument displays all the variables that have been set.
Typing

set in history
lists the contents of the shell's history buffer. Typing
set in .bin

lists the installed built-in functions; .bin iz msh's internal directory, which
points to areas in absolute memory where commands are stored.

Additional forms of the built-in functions can be installed into .bin with the seﬂl
command, For example, the command

set in .bin off="cursconf 3¢

installs the command off into .bin, and declares it to be equwalent to the com=
mand cursconf 3, cursconf is a command that is built into the micro-shell, amil
uses the TOS function Cursconf to manipulate the system curser. This com=
mand turns off the cursor blink.

See Also
commands, msh, unset

Zet alternative stream buffers
#include <stdip.h>
setbuf(/p, buffer) FILE *fp; char *buffer;

The standard 1/0 library STDIO automatically buffers all data read and written
in streams, with the exception of streams to terminal devices, STDIO nﬂrmalti".
uses malloc to allocate the buffer, which is a char array BUFSIZ characters

Mark Williams C

seteol-Setcolor

Lexicon

long: BUFSIZ is defined in the header file stdio.h. setbuf's arguments are the
siream pointer fp and a buffer to be associated with the stream. The call should
te issucd after the stream has been opened, but before any input or output re-
quest has been issued, The buffer passed to setbuf may be NULL, in which case
the stream will be unbuffTered, or must contain at least BUFSIZ bytes.

See Also
STDIO

setcol—Command
Reset a color
setcal color, value

seteol 18 2 command that wses the xbios function Setcolor to reset a color. eodor
is the entry in the c¢olor palette that you wish to reset, from zero through 15.
vafue 35 & three-digit octal number that indicates the color to which vou wish to
sel caler.

See Also
commands, getcol, TOS

Setcolor—xbios function 7 (oshind.h)
Set one color
#include <osbhind.hs
#include <xbios.h>
int Setcolor(number, value) int number, valie;

Setcolor sets one color. number is the element on the color palette that is being
redefined; it can be any number from zero to 15. value is the color value to
which number 1z being reset; setting any mumber to a negative value ensures that
no change is made.

On monochrome monitors,
Setcolor({D, 0);

gives a black background and white letters, whereas
Setcolor(0, 1);

switches the screen to a white background and black letters.

Setcolor returns the old value of number. The change will be made during the
next vertical blank,

Examples
Ihe first example reads and prints out the values of the color map. For another
example, see the entry for Setcolor.

. Mark Williams C 409

seteny Lexicon

setenv—Command

410

#include <oshind.h>
colar_disp(inds, val}

int indx;

int wval:

{
int red, green, blue;
red = (val>>B) & 7; /* Red velue in bitas 8-10 */
green = {val>=4) & 7; /* Green value in bits 4-4 %/
blue = val & 7; /* Blue value in bits 0-2 %/
printf(* %2d @ X1d ¥id ¥1dwn", indx, red, green, blue };

}

maing) £
int 1;
printf{ “Entry R G B\A" J};
for (i=0; i<16 ; i++)
color_disp(i, Setcolor{ i, -1 2}

¥

The second example works with a monochromatic monitor. Tt reverses the
colors of the characters and background, e

Finclude <osbind.h>

maind} {
int coler = Seteolor(d, -13;
Setcolor{Q, ++color¥d);

¥

See Also
TOS, xbios

Set an environmental variable
seteny |WARIABL E=value]

seteny sets an environmental variable. Environmental variables are those
are exported, or handed to other programs for their use at run time. For
ample, the environmental variable TIMEZONE is read by the C routine ¢t
as part of its time-handling work: whereas the environmental var
LIBPATH is read by the linker Id to locate its libraries.

You are free to define new environmental variables ?vi;hin your programs, and
use setenv to define them on your system, Note that it is traditional to spel
vironmental variable with capital letters,

Typing setenv without any arguments displays all of the environmental variables
that have been set so far.

Lexicon Setexc

See Also
commands, msh, unseteny

Setexc—bios function 5 (oshind.h)
Get or 560 an exception vector
#include <oshind, hx>
#include <hios.h>
long Setexc(number, address) int number; char *address;

Setexc gets or sets an exception vector, Vectors 0x00 through 0xFF are delined
by the 68000 hardware; the extended vectors are defined in the header file sig=-
nal.h, as follows;

Ox100 timer tick

0x101 critical error handler

Dx102 terminate handler
0x103-0x1FF reserved for future use by TOS
0x200-0x2FF reserved for future use by users

number i3 the number of the exception vector to be read or set. address 15 the
address to be set into the exception table: -1 indicates that the vector 15 to be
read rather than set. Sefexc returns either the previous address if it i3 setting
the vector, or the current address if is reading the vector.

Example

This example shows how to use Setexc to trap divide-by-zero errors. MNote that
this program calls the routine setrte, which s included with Mark Williams C in
the file setrte.s. To compile, use the command line

cc -2 Setexc.prg Setexc.c setrte.s
The following gives the text of Setexc.c:

#include <osbind.h>
#define DIVD (5) /* Divide by 0 wettor number */

diverrid {
setrtedl; /* Meke thiz an exception routine %/

Ceomms{"™r\nBivision by 0hrin¥);

Mark Williams C 411

setjmp-setjmp.h Lexicon

main() {
register unsigned lLong oldvec:
int a=10;
int b:
aldvec = (unsigned lorg)Setexc(DIVD, diverr);

/* Set the exception #/
printf("Thiz is a test of divide by 0...\n");

b = 133/a; /* Generate error */
printf("The result of 133/%d iz Xa\n", a, b);
Setexc(DIVO, oldvec); J/*® Set vector back *f
exit{0); /® Return to system */

3

See Also

bios, signal.h, TOS

Notes

TOS does not reset exception vectors on process termination; therefore, you
must reset them vourself or face the consequences.

setjmp—General function (libe.a/setjmp)
Perform non-local goto
#include <setjmp.h>
setfmp(eny) jmp buf enwv

The function call is the only mechanism that C provides to transfer control be-
tween functions. Thizs mechanism is inadequate for some purposes, such as
handling unexpected errors or interrupts at lower levels of a program. To
answer this need, setjmp helps to provide a non-local gote facility. sefjmp saves
a stack context in env, and returng value zero. The stack context can be res-
tored with the function longjmp. The type declaration for jmp_buf is in the
header file setjmp.h. The context saved includes the program counter, stack.
pointer, and stack frame. This routing does not restore register variables, but
other variables are not affected.

See Also
gelenv, longjmp, setjmp.h

Naoles

Programmers should note that many user-level routines cannot be interrupted
and reentered safely. For that reason, improper use of setjmp and longjmp will
result in the creation of mysterious and irreproducible bugs. The use of
longjmp to exit interrupt exception or signal handlers is particularly hazardous.

setjmp,h—Header file ‘
Header file for setjmp and longjmp functions
#include <setjmp.h>

412 Mark Williams C

Lexicon setpal-setphys

setjmp.h defines the structure jmp_buf for a setjmp environment.

See Also
header file, longjmp, setjmp

5e tpﬂ]—cﬂmmﬂﬂd
Reset the color palette
setpal

setpal is 8 command that uses the xblos function Setpallete (sic) to reset the sys-
tem’s color palette,

See Also
commands, getpal, TOS

Setpallete—xbios function 6 (osbind.h)
Set the screen’s color palette
tinclude <osbind.hs>
#include <xbios.h>
void Setpallete(palette) int palettel16];

Setpallete (si¢) sets the screen's color palette, and returns nothing. paleie
points to an array of 16 hexadecimal integers, each of which indicates a dif-
ferent color. The palette is implemented at the next vertical blank interval.

Example
This example sets the color palette. A palette is a table of 16 words containing
the definitions for 16 colors as indexed by set bits in the “planes™.

#include <osbind.h>

shert uglyll = {
0=000, Ox111, Ox222, Ox333,
Dxébs , 0x555, Ox&&s, Ox777,
0x007, 0x070, Ox700, Ox7O7,
Ox770, O0x07F7, Ox737, Ox337
i

malngy ¢
Setpalletef ugly J;
¥

See Also
TOS, xbios

setphys—Command
Feset phvsical screen's display space
setphys address

Mark Williams C 413

setpri-Setprt Lexicon

setpri—Command

Setprt—xbios function 33 (oshind.h)

414

setphys is a command that resets the physical screen’s display base. address is
the address of the new display base,

See Also
commands, geiphys, TOS

Eeset the printer port
setprt configuration

setprt is a command that uses the xbios function Setprt to reconfigure the
printer part. configuration is an integer that indicates the port's new configura-
tion. For a table of the configuration codes, see the entry for Setprt,

See Also
commands, Setprt, TOS

Get or set the printer’s configuration
#include <osbind.h>

2include <xbios. h>

int Setprt(configuration) int configuration;

ngprt gets or sets the configuration of the printer port. configuraiion is a 16-
kit map that configures the port. If it is set to 0xFFFF (-1), the port's current
configuration is read; otherwise, its value is used to set the port, as follows:

0x01 daisywheel printer

002 monochrome printer

0x04 if set, Epson-type dot-matrix printer; if not, Atari printer
0x08 if set, final mode; if not, draft mode

0x10 if =et, printer uses serial port; if not, printer port

0x20 if set, uses single sheets; if not, uses fanfold paper

Bits._ 6 through 14 are reserved, and bit |5 must be zero. These values are
defined in the header file xbios.h.

Setprt returns the printer port's current configuration when configuration 13 set
to -1; otherwise, it returns a meaningless value.

Example
For examples of this function, see the entries for \auto and priblk,

see Also
Prtblk, TOS, xhios, xblos.h

Mark Williams

Lexicon setrez-Setscreen

setrez—Command 1
Reset the screen resolution
selrez resolution

setrez is 4 command that resets the screen's resclution. reselulion indicates the
new screen resolution, as follows; zero, high resolution; one, medium resolution;
and twno, low resolution. Note that using this command inappropriately (e.g.,
resetting a monochromatic monitor to low resolution) will cause a meaningless
jumble to appear on the screen,

See Also
commands, getrez, Getrez, TOS

Setscreen—xblos function 5 (oshind.h)
Set the video parameters
#include <osbind.h>
#include <xbios.h>
void Setscreen(fog, phys. res) char *log, *phys; ot res;

Setscreen sets the video parameters, and returns nothing. log and phys are the
bases of the logical and physical screen displays. res is the new screen resolu-

tion:
0 high resolution
1 medium resolution
2 low resolution
Setting any wvariable to a negative number ensures that that variable will be 1g-
nored.
Example

This example demonstrates Setscreen.

Binclude <oshind.h>
#include <bios.h>

main{) {
char *newscr, *oldser, *memblk;
int %, ¥;
Coonws("Working...\n™);
ocldscr = {char *) Physbase();

if(imemolk = (char *IMalloc(32*10245L3) == 03 {
printf{"Malloc of %ld bytes failed.\n", 32*71024L);
Prerm{1);

Mark Williams C 415

Settime

Lexicon

newscr = (char *) {(({long) membik + DxFFL) B ~(OxFFL});

Setscresninewser,-1L,-13; /* Change logical base %/
Ceomws {"OIZHN0I3M) ; /* Clear logical screen =/
for (y=0; y<24; y3+) { /* for 20 rows... %/

for (&=0; x<39; x»+) { /= 39 times each... */

Beonout(BC RAW, OROE};
Boonout(BC_RAW, Ox0F});
3
Coonws("yriyn®) s
3

Setscreent- 1L, mewscr, - 1); /* Move physical base..

Cconing);

Setscreenfoldscr,oldser, - 1); /* Restore sddresEes...

return 0;

¥

See Also)
Getrez, Loghase, Physbase, TOS, xbios

Settime—xbios function 22 (osbind.h)
Set the current time
#include <osbind.h>=
#include =xbios.h>
void Settime(datelime) long datetime;

. Ef

*

Settime sets the current time and date for the intalligent kevboard (IKBD), and
returns nothing, datetime is a 32-bit mask whose bits indicate the following:

0-4 no. of two-second increments (0-29)
5-8 no. of minutes (0-59)
9-15% na. of hours (0-23)

16-20 day of the month (1-31)
21-26 month (1-12)
27-31 vear {0-119, 0 indicates 1380)

Example

This examples sets the IKBD time. Note that this does not affect the current

GEM-DOS time.

416 Mark Williams C

Lexicon Settime

#include <osbind_ h>

main{y €
register unsigned long time;
int seconds:
int minutes;
int hours;
int day;
int month;
int year;

printf{"Enter the date and time (MH/DD/YYYY HH:MM): "3;
seanf (i /Rd/%d Kd: 4", Emonth, &day, &year, &hours, Eminutes)
secords = 0;
if{year = 100}

year += 1900;
time = {(unsigned long){year-19803<<25)

[{tunsianed Longdmanthe<21)

[¢tunsigned Long)day<cis)

|¢tunsigned Lorgdholrs<<113

|ttunsigned long)minutes<<S}

|ttunsigned long)seconds=>13;
timeprint{"We are setting the time toM, time 3;
Settime(time};

/* Verify what we did. */

time = Gettime{):
timeprint("What we get iz", tima);
]

void fixdigibuf, onumber, size)

char *buf;

int ooumber;

int sizer

T
register lLong limit;
register Long number;
int o

RUTRET = onumber:
Limit = 10;

for {0 = 1; 0 < size ; o)
Limit *= 10;

Mark Williams C 417

shel envrn

Lexicgn_

2

if {(rumber >= Limit)]|({number <03) {
for (0 = 0; o < size; ox+)

Shufis = tREn
*buf = 0
return;

}

for (6 =0; o < size; o) {
Limit /= 10;
*huf++ = "0'+number/limit:
nurber = numberXlimit;

2

*h_rf = Il\ﬂl;

timeprint{string, time)
char *string:
register unsigned long time;

L

¥

int seconds;
int minutes;
int hours;
int month;
int day;

int year;
char mins[31;
char secs[3]:

seconds = (time & OxDDIF) <= 1: F® Bits 0:4 %y

minutes = (time »* 5) & Ox3F; /® Bits 5:10 */
hours = {(time »> 11) & Ox1F; £* Bits 11:15 */
day = (time »> 16) & Ox1F; 7 Bits 16:20 *y
month = {(time > 213 & OxQF; S= Bits 21:24 *7
year = ({time >> 25) & Ox7F)y+1980; /* Bits 25:31 *f

fixdigi{mins, minutes, 23:

timdig({secs, seconds, 23:

printf("ks Xd:Xs:¥s on Xd/Rd/Edn", strimg, hours, mins,
secs, month, day, yesr);

For another example of this function, see the entry for time.

See Also
Gettime, Ksettime, time, TOS, xbios

Notes

The time data in the bit map used by Settime is in exactly the reverse order of
the data used by the gemdos functions.

418

Mark Williams C

Lexicon shel_[lind-shel write

chel_envrn—AES function (libaes.a/shel envrn)
Search for an environmental variable
#include <aesbind.h>
int shel envro{parameter, name) char *parameter, *name;

shel envrn 15 an AES routine that searches for a particular environmental vari-
able, name points to the name of the v‘arlable for whose value vou want; note

that the name must end with an equal sign *=". parameter points to the byte 1m-
mediately following the value of the variab]e. shel envrn always returns one.
See Also

AES, TOS

shel find—AES function (libaes.a/shel_find)
Search PATH for file name
#include <aesbind.h>
int shel find(pathname) char *pathname;

shel find is an AES routine that does searchez for a file in the directories
named in the PATH environmental variable, pathname points to the name of
the file being sought; shel find changes this name to the full path name of the
file if it is found. shel find returns zero if an error occurred. and a number
greater than zero if one did not.

See Also
AES, PATH, TOS

shel read—AZFES function (libaes.a/shel read)
Let an application identif'y the program that called it
#include <aesbind.h>
int shel read{command. tail) char *command, *lail,

shel read is an AES routine that returns the name of the command that in-
voked the current AES application, command points to the name of the com-
mand, and fail points to its tail; the values of both are set by this routine.
shel read returns zero if an error occurred, and a number greater than zero if
one did not,

See Also
AES, TOS

shel wrlte—AFES function (libaes.a/shel write)
Run another application
#include <aeshind.h>
int shel write(/lag, graphic, gem, command, rail}
int flag, graphic, gem; char *rommand, *1ail;

Mark Williams C 419

shellsori-short o _ Lexicon

shellsort—General function (libe.a/shellsort)

short=Definition

420

shel write is an AES routine that tells AES whether to run another application,
and, if necessary, which application to run, flag indicates whether to run
anoiher application: zero, exit to the operating system; one, run another ap=
plication. graphic indicates if the application to be run is a graphics applica-
tion: zero indicates no, and one indicates yves. gem indicates if the application
to be run is an AES application: zero indicates no, and one indicates ves.

Finally, command and iail point, respectively, to the command's name and tail.
shel write returns zero if an error occurred, and a number greater than zero if
one did not.

See Also
AES, TOS

Sortarrays in memory
shellsort{dara, n, size, comp)
char "dala; ol n, size Int (Ccomp();

shellsort is a generalized algorithms for sorting arrays of data in primary
memory. shellsort uses D, L. Shell's sorting method. shellsort works with a se-
quential array of memory called data, which is divided into # parts of size bytes
each. In practice, data is usually an array of pointers or structures, and size is
the sizeof the pointer or structure. Each routine compares pairs of items and
exchanges them as required. The user-supplied routine to which comp points
performs the comparison. It is called repeatedly, as follows:

(*comp){pl, pd)
char *p1, *p2;
Here, pI and p2 each point to a block of size bytes in the data array. In prac-
tice, they are wsually pointers to pointers or pointers to structures. The com=
parison rouline must return a negative, zero, or positive result depending on
whether pl is less than, equal to, or greater thm p2, respectively.

Example))
For an example of how to use this routine, see the entry for siring.

See Also
clype, qsort
The Art of Computer Programming, vol. 3, pp. 84(F, 114ff

Notes
shellsort is an iterative algorithm; it does not use much stack.

A short is a numeric data type. By definition, it cannot be longer than an int
a long. For Mark Williams C, a short is equal to an int; that is, sizeof short

Mark Williams €

Lexicon

quals two chars, or 15 bits plus a sign. A short normally is sign extended when
cast to a larger data type; however, an unsigned short will be zero extended
when cast,

See Alse
declarations

show—Command
Display a stored screen image
show screenfile

show displays a screen image that has been stored with the command snap.
screenfile is the name of the file in which the screen image is stored. show
checks to see that screenfile is the correct size, i.e., large enough to hold an en-
tire screen image (32 kilobytes). If the file is of the wrong size, show exits
silently.

See Also
commands, snap, TOS

showmouse—Command
Redisplay the mouse pointer
showmouse

showmouse uses the function linea9 to redisplay the mouse pointer,

See Also
commands, hidemouse, Line A, TOS

signal.h—Header file
TOS header file
#include <signal.h>

signal.h is a header file that defines signals used on the Atari 8T. These include
68000 machine exceptions, trap instructions, and GEM-DOS aliases.

See Also
bombs, header file, TOS

sin—Mathematics function (libm,a/sin)
Calculate sine
#lnclude <math.h>
double sin{radiar) double radiam

sin calculates the sine of its argument radian, which must be in radian measure.

Mark Williams C 421

sinh-size

Lexicon

Example
Far an example of this function, see the entry for acos.

See Also
mathematics library

sinh—Mathematics function (libm.a/sinh)

Caleulate hyperbolic sine
#include <math.h>
double sinh{radian) double radian;

sinh calculates the hyperbolic sine of radian, which is in radian measure,

Example
For an example of this function, see the entry for cosh.

See Also
mathematics library

size—Command

422

Print the size of an object module
size [-—act] file...

size prints the size of each segment of each given Mark Williams C object
module file in decimal, plus the total of all the segments in both decimal and

hexadecimal. All sizes are in bytes. Each file must be a Mark Williams C ob-
ject module.

The options are as follows:
-a Print the size of debug, symbol, and relocation segments as well.
- Print the total size of all common areas in each relocatable object module.

-t At the end, print the total size of each segment summed over all the [iles;

no total is printed if only one file is specified. The segmented listed are
the following:

.shri shared instruction
prvi private instruction (usually zero)
bssi uninitialized instruction (usually zero)
shrd shared data
prvd private data
bssd uninitialized data
See Also

cc, commands, cpp, nm, strip

Mark Williams C

Lexicon sizenf-sort

cizenf—Definition
sizeof 15 C operator that returns a constant iot the size of any given data
zlement. The element examined may be a data object or a piece of a data ob-
ject, or a type cast. sizeof returns the size of the element in chars.

MNote that sizeof is especially useful in malloc routines, and to specify byte
counts to I/0 routines. Using it to set the size of data tvpes instead of using a
predetermined value will increase the portability your code.

See Also

data types, operators

The C Programming Language, page 188

sleep—Command
Stop executing for a specified time
sleep seconds

sleep suspends execution for a specified number of seconds. This routine is
especially useful with other commands to the shell msh, For example, typing

aleep 3400; echo coffes break time

will execute the echo command in one hour (3,600 seconds) to indicate an im-
portant appointment. sleep operates in two-second increments under TOS,

See Alseo
commands, msh, msleep

snap—Command
Save a sCreen image
snap screenfile

snap takes a “snapshot™ of the screen’s image, and writes it into screenfile. Note
that screenfile is always 32 kilobytes long; if the disk drive dogs not have
enough space to hold a file of this size, snap exits without an error message.

See Also
commands, show, TOS

sori—Command
Sort lines of text

sort [-hedfimnru] [-t ¢] [-0 out file] |- T dir] [+hegl-end]|l file ...

sort reads lines from each file specified, or the standard input Iif none. It wrilo:s
to the standard ocutput in sorted order. The order into which the output s

Mark Williams C 423

sort

Lexicon

424

sorted is determined by comparing a key from each line; the kev is all or part of
an input line, depending upon options are selected. By default, the kev is the
entire input record (ling) and ordering is by the ASCII collating sequence, ie,,
lower-valued ASCII characters sorted before higher-valued.

The following options affect how the key is constructed or how the output is
orderad.

-h Tgnore leading white space (blanks or tabs) in key comparisons.

-d Dictionary ordering; only letters, blanks, and digits are considered in key
comparisons. This is essentially the ordering used to sort telephone direg-
tories.

-f Fold upper-case letters to lower case for comparison purposes.
-i Ignore all characters ocutside of the printable ASCII range (040-0176).

-m This option tells sert that the key is a numeric string, which consists of
optional leading blanks and optional minus sign followed by any number
of digits with an optional decimal point. The ordering is by the numeric,
as opposed to alphabetic, value of the string.

-r Reverse the ordering, i.e., sort from largest to smallest,

As noted above, the key compared from each line nzed not be the entire input
line. The option +feg indicates the beginning position of the key field in the
input line, and the optional -end indicates that the key field ends just before
the end position. If no -emd is given, the key field ends at the end of the line.
Each of these positional indicators has the form +munf or -snf, where m is the
number of fields to skip in the input line and » is the number of characters to
skip after skipping fields. Optional flags f are chosen from the above key flags
{bdfinr) and are local to the specified field.

The following additional options control how sort works,

- Check the input to see if it is sorted. Print the first out of order line
found.

-m Merge the input files. sort assumes each file to be sorted already. For
large files, it runs much faster with this option.

-0 outfile
Put the output into owifile rather than on the standard output. This
allows sort to work correctly if the output file is one of the input files.

-tc Use the character ¢ to separate fields rather than the default blanks and
tabs.

-u Suppress multiple copies of lines with key fields that compare equally,

Mark Williams C

Lexicon sprintf-srand

See Also
commands

Diagnostics

sorf returns a neonzero exit status if file opening errors or other internal
problems occurred, or if the file was not correctly sorted in the case of the -
option.

sprintf—STDIO function (Iibc.a/printf)
Format output
#include <sidio h>
sprintf(siring, format [, arg 1...)
char *string, *format;

sprintfl uses the string format to specify an output format for each arg; it then
Wwrites every arg into string, which it ends with NUL. For a detailed discussion
of sprintf’s formatting codes, see printf,

See Also
printf, sprintf, STDIO
T'he C Programming Language, page 150

Neates

The output string passed to sprintf must be large enough to hold all output
characters. Because C does not perform type checking, it is essential that each
argument match its format specification.

sqri—Mathematics function (libm.a/sqrt)
Compute square root
#include «<math.h>
double sqrt(z) double =;

sqrt returns the square root of z.

Example
For an example of this function, see the entry for ceil.

See Also
mathematics library

Diggnostics
A domain error in sqrt (2 is negative) sets errno to EDOM and returns 0.

*rand—General function (libe.a/srand)
5eed random number generator
srand(seed) Int seed);

Mark Williams C 425

sscanf-stack Lexicon

srand uses seed to initialize the sequence of pseudo-random numbers returned
by rand. Unequal values of seed initialize different sequences.

Example
For an example of how to use this function, see the entry for rand.

See Also
rand
The Art of Computer Programming, vol. 2

sscanf—STDIO function (libe.a/scanf)

Format input

#include <stdio.h>
sscanf(string, format [, arg] ...)
char *siring: char *formar;

sscanf reads the argument siring, and uses format to specify a format for each
arg, each of which must be a pointer. For more information on sscanf’s con-
version codes, see scanf.

See Also
STDID
The C Programming Language, page 150

Noies

Beca_uge C does not pgrform type checking, an argument must match its format
specification. sscanf is best used only to process data that you are certain is in
the correct data format, such data that were previously written out with sprintf.

stack—Deflinition

426

The stack 13 the segment of memory that holds function arguments, local
variables, function return addresses, and stack frame linkage information.
Neither the 68000 nor the Atari 5T support dynamic stack resizing, so programs
run on the 8T have a fixed segment allocated to the stack at run time.

The Mark Williams C runtime startup routine allocates _stksize bytes of stack
when a program is executed, and sets the 68000 stack pointer register, a7, to
point at the highest address in this segment. _ stksize is then assigned a pointer
to the lowest address that the stack pointer may reach before the stack begins to
overwrite program data. _ stksize is set to two kilobytes by the Mark Williams
C library. It may be set to another value by including an initialized declaration
for it in your program; for example

long _stksize = 15000;

Mark Williams C

Lexicofl standard input

sets the stack size to 16,000 bytes.

The value of _sthslze must be even, The size of the stack cannot change once
your program has begun to execute because the allocation must be made before
the stack is used and your program uses stack as soon as it beging to execute.

If wour program uses recursive algorithms, or declares large amounts of
automatic data, or simply containg many levels of functions calls, the stack may
“overflow", and overwrite the program data. You can check for stack overflow
very simply. The runtime startup reinitializes the long _stksize to point to an
address that the stack should not reach. You can compare stksize to the ad-
dress of the last automatic variable in any function; as long as _ stksize is less
than the address of that automatic function, vou are safe.

Example

This example checks for stack overflow: it aborts the program and prints a mes-
sage when overflow occurs. The main routine prints the location of its ar-
guments, calls the stack overflow routing, and then calls itself recursively. For
anather example, see the entry for Fgetdta.

_athktest()(
fnt iz
if ({long)&ai <= stksize) {
puts ("Stack overflowl");
exit{id:

¥

main{erge} int arge; €
extern long stksize;
printf(“arge at Xlxun, Sarge);
_atktestl);
mainlargc):

¥

Fee Also
_ stksize

Motes

TOS pushes data onto the user stack; therefore, vou should make sure that vour
stack has a cushion of at least 128 bytes to hold these data when vour program
enters the system.

standard input—Definition
The standard input is the device from which data are accepted by default; it is
defined in the header file stdio.h under the abbreviation stdin, and will be the
computer's keyboard unless redirected by msh or freopen.

Mark Williams C 427

standard output-stat Lexicon

See Also
freopen, header file, msh, standard output, stdio.h

standard output—Definition
The standard output is the peripheral device upon which programs write output
by default. Tt is defined in the file stdio.h under the abbreviation stdout, and in
most instances is defined to be the computer’s monitor.

See Also
header file, standard input, stdio.h

stal.h—Header file o
Definitions and declarations used to abtain file status
#include <stat. h>

stat.h is a header [ile that contains the declarations of several structures used by
the routines fstat and stat, which return information about a file's status.

See Also
fstat, header file, stat

stat—General function (libe.a/stat)
Find file attributes
#include <stat.h>
stat(file. statpir)
char *file; struct stat *stafpir;

stat returns a structure that containg the full GEM-DOS attributes of a file;
note that the listing shown by the command does not describe attributes fully.
file points to the path name of file, and statpir points to a structure of the type
stat, as defined in the header file stat.h.

The following summarizes the structure stat and defines the permission and file
type bits.

428 Mark Williams C

Lexicod stalic

—_—

struct stat {

dev t st dav;
int_t et ino;
unsigned short st _mode;
short st_nlink;
short st uid;
short st gid;
dev t st _rdev;
size t st size;
time_t st atime;
time t st mtime;
time_t st ctime;

=

#define 5_1JRON 0x01 /* Read-only */

#define S_1JHID Dx02 /* Widden from seerch */

#define 5 _1J5YS Ox04 /* System, hidden from search */
#define & 14VOL Ox0B #* Nolume label in first 11 bytes */
#define 5_1JDIR Ox10 /* Directory */

#define & IJWAC Ox20 /* Written to and closed */

Entries In the structure stat are there to preserve compatibility with the
COHERENT operating system. Most return meaningless values when used on
the Atari 8T, with the following exceptions: st_atime, st_mtime, and st_ctime
all return the time that the file or directory was last modified; st size gives the
size of the file, in bytes; and st _mode gives the mode of the file, as described in
the entry for Is.

See Also
fstat, Is, msh, open, stat.h

Diggrostics
stat returns -1 if the file is not found.

static—Definition
static is a C storage class,

A static variable resembles an extern in that it does not disappear when its
calling function exits, Unlike an extern, however, a static variahle is “private™
when internal to a function, it can be accessed only by that function; when used
external to a function, it can be accessed only by functions that are defined
within the same source file as that variable. This helps to avoid name conflicts;
for example, if a program consists of two files, each of which has a variable
named foo, declaring each foo to be static keeps them from being written into
gach other.

Functions that are wsed locally can also be declzred to be static; this halps to
prevent name conflicts when assembling programs from a number of different
spurces, such as libraries from a variety of vendors and modules written by dif-

Mark Williams C 429

stdin-STDIO Lexicon

stdin—Definition

STDIO—Overview

430

ferant programmers.

See Also
auto, extern, register variable, storage class
The C Programming Language, page 80

stdin is an abbreviation for standard input. It is defined in the header file
stdio.h.

See Also
sidio.h, standard input

STDIO is an abbreviation for standard input and output. Tt tefers to a set of
standard library functions that accompany all C compilers and that govern input
and output with peripheral devices,

Mark Williams C includes the following STDIO routines:

clearerr Present status stream

exit Leave a program gracefully
fclose Close a stream

fdopen Open a stream for /0

feol Discover a stream’s status
ferror Discover a stream’s status
fflush Flush a buffer

fgetc Get a character

fgets (et a string

fgetw Get a word

fileno et a file descriptor

fopen Open a stream

fprintf Format and print to a file
fpute Cutput a character

fputs Cutput a string

fputw Cutput a3 word

fread Read a stream

freopen Open a stream

fscanf Format and read from a file
fseck Seek im a stream

ftell Return file pointer position
fwrite Write to a stream

gefc (et a character

getchar Get a character

gets Get a string

getw Get a word

Mark Williams €

stdio.h-stime

Lexicon
pexicon

putc
putchar
puts
pulw
rewind
scanf
setbuf
sprintf
sscanf
ungeic

Output a character

Output a character

Qutput a string

Output a word

Eeset a file pointer

Format and input from standard input
Set alternative stream buffers

Format and print to a string

Format and read from a string

Return character to input stream

Mote that STDIO routines are buffered by default,

See Also

buffer, FILE, Lexicon, stdio.h, stream
The © Programming Language, page 166

stdio. h—Header file

stdio.h is a header file that defines several manifest constants used in 1/0, such
as NULL and FILE, declares the STDIO functions, and defines numerous /0

MACTOS.
See Also

header file, manifest constant, STDIO

stdout—Deflinition

stdout is an abbreviation for standerd owtput: it is defined in the header file

stdio,h.
See Also

standard output, stdio.h

stime —Time function
52t the time
#include <time.hs>

stime{timep) time _t *timep;

stime sets the system time, which Mark Williams C defines as being the number

of seconds since midnight of January 1,

1970, Oh00mO0s GMT. The argument

umep poinis to the new system time, whn:h is Df the type time t; this is defined
in the header file time.h as being equwalent to a3 long.

Mark Williams C

431

_ stksize-streat Lexicon:

Example
For an example of using this function from the \auto directory, see the entry
for hauto.

See Also
date, time

Diggnostics
stime returns -1 on error, zero otherwise.

_ stksize—External data
_ stksize is an external symbol that sets the size of the stack. It is defined in the:
Mark Williams Company libraries as being equal to two kilobytes, which 15 more
than enough stack for most applications,

If you wish to have more stack, insert into main the declaration
long _stksize = M;
where n is the number of bytes required. »n must be even.

Example

For an example of how to use this variable in a program, see the entry for
memory allocation. For an example of a program that uses _ stksize to check for
stack overflow, see the entry for Fgetdta. i

See Also
Id, stack

storage class—Definition
Storage class refers to the part of a declaration that indicates how data are to be
stored. The legal storage classes are as follows;

auto
extern
regisier
static

typedef is technically defined as a storage class as well, but it does not actually
indicate how data are stored. The default class is auto.

See Also
auto, extern, register, static, typedef
The C Programming Language, page 192

streat—String funection (libc.a/strcat)
Append one string to another
char *strcat{siring/, string2) char *stringl, *string 2

432 Mark Williams C

stremp-strepy

strcat appends all characters in siringd onto the end of siringl, It returns the
modified seringl.

Example
See string,
For an example of this function in a TOS application, see the entry for Fgetdia.

Fee Also
string, stroeat
The C Programming Language, page 44

Netes
strimgd must contain enough space to hold itsell and sieing2.

stremp—String funetion (libc.a/stremp)
Compare two strings
stremp{siringl, siring2) char *siring !, *siring2;

stremp compares siring! with siring? lexicographically. 1t returns zero if the
strings are identical, -1 if stringl occurs earlier alphabetically than siring2, and
one if it occurs later. This routine is compatible with the ordering routine
needed by gsort.

Example
See string and malloe.

See Also
gsort, string, strncmp
The C Programming Language, page 101

strepyv—=String function (libe.a/strepy)
Copy one string into angther
char *steepy(siringl, string2) char *string !, *string 2;

sircpy copies the contents of stringZ, up to the NUL character, into siring !, and
returns siring /. The order of the arguments is reminiscent of an assignment
statement.

Example
See string.

For an example of using this function in a TOS appligation, see the entry for
Feetdta.

Mark Williams C 433

stream-string

stream—Definition

string—Overview

434

See Also
string, strocpy
The C Programming Language, page 100

Notes
stringl] must contain enough space to hold string2.

The term stream applies to any entity that can be named and through which i
can flow, such as a device or a file. The name “stream™ reflects the fact that
the C programming environment eschews record descriptors and other devices
that predetermine what form data assumes; rather, data, from whatever sourge,
are seen merely to be a flow of bytes whose significance is imposed entirely by
the context that the calling program creates.

See Also
bit, byte, data formats, {ile

The character string is a common structure in C programs. The runtime
representation of a string is an array of ASCII characters that is terminated by a
NUL character {*\0"). Mark Williams C uses this representation when a program
contains a string constant, for example:

Ul am a string constant®

The address of the first character in the string acts as the starting point,
“handle™, of the string; note that a pointer to a string is nothing more than tk
address. MNote, too, that an array of 20 characters holds a string of 19 {(mo 20}
non-NUL characters: the 20th character is the NUL that terminates the string.

The Tollowing routines are available to help manipulate strings:

index search fora character
rindex search for a character
streat concatenate a string
stremp compare two Strings
strepy copy a string
sirlen measure a string
strocat concatenate a string
strocmp compare two strings
strncpy copy a string
Example

This example reads from stdin up to NNAMES names, each of which is no mo
than MAXLEN characters long. Tt then removes duplicates names, sorts U
names, and writes the sorted list to the standard output. Tt demonstrates
functions streat, siremp, sircpy, and strlen,

Mark Williams C.

Lexicon steip

P

#include <ztdjo.h=

dcdafine WMAMES 512
#datine MAXLEN &0

char *array [NMAMES] ;
char firstIMAXLEN], mid[MAXLEN], lest[MANLEN];
cher *space = ® u;

excern int streomol):
extern char *streat{);

main{) {
register int index, count, inflag;
register char *neme;

count = O;
while (scanf("¥s Xs Es\n", first, mid, laszt) == 3} (
streat(first, space);
streat(mid, spacel;
name = streat(first, {streat{mid, last)d):
inflag = 0;
for (indexn=0; index <« count; index++)
if {stromplerraylindex], name} == 03
infleg = 1;
if (inflag == 0} {
arrey {count] = malloc{strien{name) + 13;
strcpylarray [eountl , namel;
I'_'ﬂl.l‘lt*"":.

¥

shellsort{array, count-1, sizeofichar ¥), stroomp);
for (index=0; index < count; irdex+s)
printf{"Zs\m", array[irdex]}:
exit{0):
E

stroomplsl, 223
register char *¥*s1, **52;

i
extern int strempd);
return{stremp{®*s?, *s52)3;
3
See Also

ASCIT, Lexicon

Srip—Command
Strip symbaol table from object file
strip -drs file ...

Mark Williams C 435

strlen-sirncat Lexicon

strip removes the symbol table, relocation information, and debug tables from
each object file specified. strip effects reasonable savings on systems where file
space is at a premiom,

strip recognizes the following options:
-d Keep debug information.

-r Eeep relocation information.

-5 Keep symbols.

See Also
cc, commands, Id, nm

Notes
strip should be used only on fully hnked files.

strlen—5tring function (libe.a/strlen)

Measure the length of a string
strlen(siring) char *siring;

strlen measures string, and returns its length in bytes, not including the NUL.
terminator, This may be useful in determining how much storage to allocate for
a string.

Example

For an example of how to vse this function, see the entry for string. For an ex-
ample of using this function in a TOS application, see the entry for Feetdia.

See Also
string
The C Programming Language, page 95

strocat—String function {libc.a/strncat)

436

Append one string to another
char "strocat{stringl, string2, n)
char *siring !, *string 2y unsigned n;

strncat copies up to # characters from siring2 onto the end of seringl. Tt sta;:i:i
when n characters have been copied or it encounters a3 NUL character IIL
string 2, whichever occurs first, and returns the modified string 7.

See Also

slreat, string

Mark Williams C

strocmp-struct

Notes
string ! should contain enough $pace to hold itself and # characters of slring 2,

sirnemp—5tring function (libe.a/strnemp)
Compara two strings
stroempi{siringt, string 2, 1)

char *string !, *string2; unsigned m;

strncmp compares lexicographically the first n bytes of stringl with string 2.
Comparison ends when » bytes have been compared, or 4 NUL character en-
countered, whichever occurs first. stroemp returns zero if the strings are iden-
tical, =1 if string? occurs earlier alphabetically than siring2. and one if it ocours
later. This routine is compatible with the ordering routine needed by gsort,
Example

For an example of the related string-handling function stremp, see the entry for
string,

See Also
stremp, string

strncpy—String function (libe.a/strnepy)
Copy one string into another

char *strncpy(string], siring2, n}
char ®string I, "string2; unsigoed m;

strocpy copies up to n bytes of siring2? into stringl, and returns string /. Copving
ends when #; bytes have been copied or a NUL character has been encountered,
whichever comes first. If string? is less than n characters in length, string2? is
padded to length # with one or more NUL bytes. The order of the arguments is
reminiscent of an assignment statement.

Example

For an example of the related string-handling function strepy, see the entry for
string,

See Also
strepy, string

Naies
siring I should have enough space to hold itself and » characters of strimg2.

Struci—Definition
struct 15 a C kKeyword that introduces a structure. The T ollowing is an example
of how struct can be used in the description of a name and address file:

Mark Williams C 437

structure-SUFF

structure—Definition

structure assignment—Definition

4

8

struct address
char firstname(101;
char lastrame[15%];
char street[25];
char city[101;
char statel2];
char zipi31;
int salescode;

¥
The definition of C in The C Programming Language prohibits the assignmen
of structures, the passing of structures to functions, and the returning of stru
tures by functions. Mark Williams C allows structures to be assigned, provide
they are of the same type, and allows structures to be passed and returned from
functions, These features are supported by most compilers, but users should be
aware that their use can cause problems in porting code to some compilers.

See Also
array, field, structure
The C Programming Language, page 119

A structure is a set of variables that has been given a name and can be work
with as a single entity. The variables may be of different data types. Structu
are 3 convenient way to deal with data elements that belong together, such
names and addresses, emplovee descriptions, or sales and inventory informat

See Also
field, record, stroct
The C Programming Language, page 119

The € Programming Language forbids structure assignment, the passing
structures to functions, and returning structures from functions (as opposed
the passing or returning of peinters to structures). Mark Williams C lifts th
restrictions.

Some other O compilers modify structure arguments and structure refurns
structure pointers. Note that the use of structure assignment, structure
guments, or structure returns may create problems when porting the mtft}
another computing environment.

See Also
structure

Mark Williams €

Lexiﬂﬂn o Supi

gUUFF—Environmental parameter
- SUFF names g set of suffixes that msh will automatically append to command
names. The suffixes are appended to the given command name when searching
the directories named in the PATH environmental variable. For example,
typing
seteny PATH=“bin, A\Lib
seteny SUFF=,.prg,.tos,.ttp

means that when you give msh the command
fog
it will look for a file with one of the following names:

Abinyfoo
\binvfea.prg
veimyfoo. tos
\bBinvfoo.ttp
foo

foo.prg
foo.tos
foo.ttp
slibyfoo
\ibyfoo.prg
\libxfoo.tos
\libvfoo.ttp

The file names are searched for in the order given above, and msh stops sear-
ching after finding the first file that matches the requested pattern.

I1 15 set the with seteny command,

See diso
msh, sefeny

Super—gemdos function 32 {osbind.h)
Enter supervisor mode
long Super(s:ack) char *stack:

Super manipulates the Atari $T's supervisor mode, which, in theory, must he
obtained before the extended BIOS routines can be used. stack points to & new
supervisor stack. If the machine is presently set in user made, it switches 10 su-
pervisor mode; if in supervisor mode, it returns to user mode,

Example
This example changes the floppy writs verify flag so floppy writes are not

automatically verified. This speeds up processing, but can be dangetous, and is
not recommended.

Mark Williams C 439

Supexec Lexicon

#include <osbind.h>
#define FVERIFY ({short *) OxD444L)

main{) {
long save ssp;
save_ssp = Super(OL); f* Switch to system mode */
EVERIFY = 07 / Clear the word. */
Super(save ssph; J* Restore system */

5)

See Also

gemdos, TOS

MNotes

Super has been documented elsewhere as returning the supervisor/user mode
flag if stack is set to -1L; however, it crashes the system instcad_. With syste
that have TOS in ROMSs, siack should be set to one to perform this task.

Supexec—xbios function 38 {oshind.h)
Eun a function under supervisor mode
#include <osbind.hs
#include <xbios.h>
unsigned long Supexec{address)
int *address:

Supexec invokes supervisor mode, and allows you torun a routine under it. ad-
dress is the address of the function to be run.

The Supexec function has two features that are not widely known but co
prove useful in vour programs,

The first is that any value returned by function run under under Supexec
returnad untouched by the xblos trap.

Example ..
The following example uses the return value of a function run under Supexec &
time execulion speeds:

/* Redefine Supexec() function te get long return value */
#include <osbind.h>

#undef Supexec

#define Supexec{a) xbios(38, a)

/* Return the system 200 hz timer tick count */
long read_ticks() { return *({long =)0xibad; }

440 Mark Williams C

Lexicon Supexec

/= Return microseconds that (*f3{) takes to execute *}
Ltong time function(f) int (*f3{);

{

register int ntimes = 4*5%1000;

long tstart = Supexec(read ticks);

while (--ntimes >=0) [(*F)3{):

return {Supexec({read ticks) - tstart + 2} >+ 2;
3

J* Some fumctions to time *f

null function{} { return; 2

int ia = 0x0123, ib = Ox3210;

int iret_function{} { return ia,ib;
int iadd_function(} { return ja+ib;
ipt isub functiond) { return ia-ib;
int imul_function{) { return ia%ib;
int idiv_furction() { return iasib; 3

(R

long la = Ox01234567L, b = OxT&E543210L;
long Llret function(} { return le,lb; 3
long ladd functioni} { return le+lb; ¥
long lsub function{) { return la-lb;
long lmul_functiont) { return la*lb;
Lomg ldiv_furction{) { return laslb;

coubde de = 12340.0, db = 4321.0;

double dret_fumction{) { return da, db;
double dagdd function{) { returnh da+dd;
double dsub_ functiont) { return da-db;
double dmul_funetion() € return da*db;
deouble ddiv_functien() € return dasdb;

[]

L]

/® Report the times for the functions */

main{) {
printf("null Xld microsecondsyn®, time fumnction(null function}):
printf("iret 3ld microsecondsin®, time fumction{iret function});
printf(iadd %ld microseconds\n®, time function(iadd fumction});
printf("isub %ld microsecondsin®, time_function{isub function}):
printf("imul %ld microseconds\n®, time_function{imul function)):
printf("idiv %ld microseconds\n", time function{idiv_function});

printf{"lret 3ld microsecondsyn", time_function{lret function});
printf{"ladd Xld micrageconds\n', time_ function{ladd functien));
printf{"lsub ¥ld microzsecondsin', time function{isub fumction));
printf{*lmil %ld microseconds\n", time_function{imul_fumction)};
printf{"idiv %ld microseconds\n", time function{ldiv_function));

Mark Williams C 441

Sversion Lexican

printf("dret %ld microsecords\n® time_functionidret_function));
printfidadd Xld microseconds\n®, time function{dadd function));
printfi"dsub %ld microseconds\n®, time function{dsub function));
printfirdmul Xld microseconds\n®, time function(dmul function});
printfi"ddiv %id microseconds\n", time function(ddiv_function)l;
return 0;

3

The second feature is that a function run under Supexec can be passed
parameters by including them in the call to the xbios trap. The first paramet
to the function will always be a long pointer to itself. Any subseguent
parameters will be available if they are declared in normal C style.

Example
The following example passes three arguments to a function run under Supex_____
to copy a block of low memory to a user-supplied buffer. |

/% Redefine Supexec() to pass 3 arguments */
#include <osbind.h>

#undef Supexec

#defire Supexec(a,b,c,d) xbios(38,a,b,c,d)

/* Word copy function with dummy parameter */
supercopy({sel f,destp, srop, neds) register int (*self)(), *"destp, *srcp, nwds;
£

while {--nwds == 0) ¥destpr+ = ¥srepte;
¥

/* Copy the process durp area to our data space and print it */
maing)
int proc[$41; /% More or less */f
Supexec{supercopy,proc, 023801 ,843;
for (i = 0; 1 < 64; 1 += 4}
printf{"g04x 104x %0bx X¥04x\n", preclil, procli+1], procii+2l,
proc[i+31);
return 0;
}

See Also
TOS, xbios

Sversion—gemdos function 48 (osbind.h)
(Get the version number of TOS
#include <osbind.h>
int Sversion()

Sversion gets and returns the current TOS version number,

442 Mark Williams E

Lexicon swah-system

Example
This example prints the TOS version number on the standard output,

#inclode <oshind.he

maing) €

unien €
struct {
unsigned minor:d;
unsigned major:d;
¥ braker;
int all;

3} wersng

versn.all = Sversion();
printf{"TOS/GEMDOS version ¥2X revision X2x.\n",
versh.braker.major, versn, braker.minor);
¥

See Also
gemdos, TOS

swab—General function (libc.a/swah)

Swap a pair of bytes
swab(sre, dest, nb) char *sre, "dest; unsigned nby

The ordering of bytes within a word differs from machine to machine, This
may cause problems when moving binary data between machines. swab inter-
changes each pair of bytes in the array src that is # bytes long, and places the
result into the array dest, The length nb should be an even number, or the last
bvte will not be touched. sre and dest may be the same place.

See Also
byte ordering

syilem—General function (libe.a/system)

Pass a command to TOS for execution
int system{ commandline) char *commandline;

svstem passes commandling to the Mark Williams shell, which loads it into
memory and executes it. system executes commands exactly as if they had been
typed directly into the shell.

Example
This example uses the system function to list all C programs in the present
directory.

Mark Williams C 443

system variables Lexicon

system variables—Definition

444

main{d {
extern int system(};
system{*echo [a-z1%.c");
3

See Also
exit, msh, Pexec

Notes
Mo shell variable that has been set with the set command i3 duplicated,

The TOS operating system uses a number of “magic locations™ where it stores
key system variables. By using the peek and poke routines included with Marﬁ
Williams €, wvou can alter these wvariables directly, to customize TOS mare.
closely to vour needs and tastes. i

Note that you can safely manipulate the address 0x0 to 0x800 only when your:
program is in supervisor mode; you can enter supervisor mode by calling the
gemdos function super,

The following table gives each “magic location”, the common Atari mnemonic
for it (should vou wish to build a header file to work with these locations), t.he€
length of the system variable, and a brief description,

0x400/ety_timer/long
Points to the timer event handler.

Ox404 /ety critic/long
Points ta the critical error handler,

0x408/etv_term/long
Points to routine that ends a program.

0x420/memvalid/int
Check if the memory controller's canfiguration is valid.

Ox424/memctrl/int
Copy of configuration value in memory controller.

0x426 /resvalid/long
If proper value given, jump is made to reset routine pointed to by address
Ox42A. 1

Ox42A/resvector/long
Address of reset routine,

0x42E/phystop/long
Top of RAM,

Mark Williams €

Lexicon system variables

0x432/ membot/long
Points to beginning of transient program area.

0x436/ memtop/long
Points to end of transient program area.

Ox43A/memval2/long
This if set properly, declares memory configuration to be valid.

43E/Tlock/int
If set to a value other than zero, disk access is in progress.

Ox440/seekrate/int
Set disk drive seek rate, as follows: zero, six milliseconds; one, 12
milliseconds; two, two milliseconds; and three, three milliseconds.

0x442/ timer_ ms/int
Clock rate, in microseconds.

0x444/ fverify/intn
If set to a value other than zero, every disk write access is verified.

x446;/ bootdey/int
MNumber of disk drive from which operating system was loaded.

0x448 /palmode/int)
IT set to a value other than zero, system is in PAL mode (50 Hz); other-
wise, system is in NTSC mode,

0x44A/defshiftmod/int
If Atari shifted from monochrome to color, new resolution is set here:
zero indicates low resolution; one, medium resolution.

0x44C/sshiftmod,/int
Screen resolution, as follows: zero, low resolution: one, medium resolu-
tion; two, high resolution.

0x44C/ v bas_ad/long
Points to logical screen base. Address always begins on a 236-byte boun-
dary.

0x452/vblsem,int
If set to zero, vertical blank routines are not executed.

Ox454/nvhls/int
MNumber of vertical blank routines gqueued for execution.

0x456/ vblgueue/long
Points to the list of routines queued to be executed during vertical
blanking.

Mark Williams C 445

system variables Lexicon

446

—

Dxd45A /colorptr/long _
If other than zero, holds pointer to color palette to be executed during
next vertical blank,

0x45E/screenpt/long
Point to beginning of video BAM.

0x482/ vbclock/long
MNumber of vertical blank interrupt routines.

Ox466/ freclock/long :
MNumber of vertical blank routines executed.

0x46A/hdv_Init/long
Point to hard-disk initialization.

Ox46E/swv_vec/long

Point to routine to change screen resolution.
0x472/hdv_bpb/long

Point to fetch BIOS parameter block for hard disk.

0x476/hdvy_rw/long
Point to read/write routine for hard disk.

0xdTA/hdv_boot/long
Point to routine to reboot hard disk,

Ox47E/hdy_mediach/long
Point to routine to handle medium change for hard disk,

0x482/ comload/int) I
1f set to a value other than zero, system will attempt to load file com-

mand.prg after TOS has been loaded. |

(0x484/conterm/char b
Set console attributes. This is a byte-length bit map, whose first four bils
signify the following: bit 0, toggle key click: bit |, toggle key repeat; bit
2, togele bell when <cirl-G> is typed; and bit 3, toggle returning Kbshift
in bits 24-31 for the Function Conin.

Ox486/trpldret/long
Beturn address for call to trap 14,

Oxd48A eriticret/long
Return address of critical error handler,

0x48E/themd/4 longs
Memory deseriptor filled by function Getmph.

Ox4A2/savpir/long
Pointer to save area for process registers after a BIOS call.

Mark Williams C

1

exicon system variables

Ox4A6/ nflops/int
Number of [loppy disk drives.

0x4A8/con_state/long
Point to screen output routine,

0x4AC/save row/int
Save cursor line temporarily when moving cursor with <ese>Y.

Ix4AE/sav_context/long
Point to temporary areas used by exception-handling routines.

0x4B2/ bufl/2 longs
Pointers to heads of buffer lists; first points to head of data sector list;
second points to head of FAT (file allocation table).

0x4BA/ hz 200/long
Counter for 200-Hz svstem clock.

0x4BC/the env/4 chars
Default environment string, four NULs.

0x4C2/ drvbits/long
Bit map indicating connected drives: bit zero indicates drive A:, bit gne
indicates drive B, etc,

0xd4C6/ dskbufp/long
Pointer to 1,024-byte disk buffer.

0x4CA/ autopath/long
Pointer to autoexecute path.

Ox4CE/ vbl list/8 longs
List of pointers to standard vertical blank routines.

O0x4EE/ dumpflg/int
if zet to one, & dump of the current screen is sent to the printer port,
Dump ¢an be aborted by typing help and alt kevs simultanecusly.

Ix4F0/ priabt/int

Printer abort flag due to tima-out.
0x4F2/ sysbase/long

Pointer to beginning of operating system.

0x4F6/ shell p/long
Pointer to global shell information.

0x4FA/end os/long
Pointer to end of operating system.

Ux4FE/exec os/long
Pointer to start of AES.

Mark Williams C 447

system variahles Lexi

| =

Example)
The following example pokes address 0x484 to turn off the key click:

mainiy €
pokeby{Ox484L, peekbl0x4B41L) & <1);
¥

See Also
memory allocation, peekh, peekl, peekw, pokeb, pokel, pokew, TOS

t:

1:

448 Mark Williams

icon tail-tanh
Lexicot —

Eaﬂ__(‘;_‘m'nr:f!3,11':!)
Print the end of a file

tail [+#[belll [fife]

tail [-n[bel]] [file]

tail copies the last part of the specified file, or of the standard input if none, to
the standard output,

The given number tells tail where to begin to copy the data. Numbers of the
fgrm +mnumber measure the starting point from the beginning of the f iler those
of the form -number measure from the end of the file.

A specilier of Blocks, characters, or lines (b, ¢, or 1, respectively) may follow
the number, If no nwmber is specified, a default of - 10 is assumed.

See Alse
commands

Newes
As tail buffers data measured from the end of the file, large counts may not
work.

tan—Mathematics function (libm.a/tan)
Calculate tangent

#include «math.h>

double tan(radian) double radian:

tan calculates the tangent of its arpument radian, which must be in radizn
measure,

Example)
For an example of this function, see the entry for acos.

See Also
mathematics library

Diggrosiies

tan returng & very large number where it is singular, and sets errno o
ERANGE.

tanh-—Mathematics function (libm.a/tanh)
Calculate hyperbolic cosine
#include <math. h>

double tanh{radian) double radiam

Mark Williams C 449

tempnam-tetd to_ tm Lexieg ..

tanh calculates the hyperbolic tangent of radian, which is in radian measure,

Example
For an example of this function, see the entry for cosh.

See Also
mathematics library

Diggnostics
tanh sets errno to ERANGE when an overflow occurs.

tempnam—General function (libe.a/tempnam)
(Generate a unique name for a temporary file
char *tempnam{directory, name)
char “direciory, *rame;

tempnam constructs a unigque temporary name that can be used with your
program.

directory points to the name of the directory in which you want the temporal
file written. Tf this variable is NULL, tempnam reads the environmental vari:
able TMPDIR and uses it for directory, If neither direciory nor TMPDI
given, tempnam uses \tmp.

tame points to a string of letters that vou want to prefix the temporary o
this string should not be more than a few characters, to prevent truncatio
duplication of temporary file names. If name is NULL, tempnam will set it to

tempnam uses malloc to allocate a buffer for the temporary file name it retur
If all goes well, it returns a pointer to the temporary name it has written; othe
wise, it returns MULL if the allocation fails or if it cannot build a tempo
file name successfully.

See Also
environment, mkitemp, msh, tmpnam

tetd to tm—Time function (libe.a/tetd_to_tm)
Convert 1K BD time to system calendar format
#include <time.h>
tm_t*tetd to tm{time) tetd t time;

tetd to_ tm converts the time setting for the intelligent keyboard, as returd
By the function Gettime, into the system’s calendar format. j

time is of type tetd t, which is defined in the header file time.h as bei
equivalent to an unsigned long. It holds the 32-bit map returned by Gettin
For information on what the bits of this map signify, see the entry for Getti

4350 Mark Williams =

Lexicon Tgetdate

tetd _to tm returns a pointer to the structure tm_t, which is defined in the
header file time.h. For more information on this structure, see the entry for
{ime.

See Also
time, time.h, tm_to tetd

Tgetdate—gemdos function 42 (oshind.h)
et the current date
#include <oshind.h>
int Tgetdate()

Tgetdate gets the current date from TOS. It returns an integer whose hits in-
dicate the following:

0-4 dav (1-31)
5-8B menth {1-12)
9-15 year (0-119, 0=1980)

Example

This examples demonstrates both Tgetdate and Tgetiime, Note that the time
returned by this example will be one hour earlier than the time returned by msh
if the latter is adjusting for davlight savings time.

#include <oshind.h>

maing) 4
unsigned int date;
uwnsigned int time;

cate = Tgetdate(); f* Get system date */
time = Tgettime(); J* Get system time */f
timeprint{"The T0S time is", time):
dateprint("The T0S date is", date);

o

3

void fixdig(buf, ormmber, size)

char *buf:

int onumber:

int size;

L
register long Limit;
register long mamber;
int o;

nunber = arumber;

limit = 10;
for {o = 1; o < gize | o¥)
Limit %= 10;

Mark Williams C 451

Teetdate

432

if ({number »= Limit}|]{number <0)) {

for (o = 0; o < size; ot+)
Fhrf et = 1%,

*buf = 0:
return;

¥

for (o= 0; o < gize; o)
Limit f= 10;)
Tpuf+d = 0enumber/limit;
mumber = number¥limit;

¥

tmf - 1 "'..[I';

}

timeprint{string, time}
char *ztring:
register unsigred int time;

x
int seconds;
int minutes;
fnt hours;
char mins{3];
char secs(3];
seconds = (time & OxOO0IF) << 1; S® Bits 0:4 %7
minutes = (time »>» 5) & Ox3F; Fx Bite S5:i0 %y
howrs = (time »> 11} & Ox1F; /® Bits 11:15 *7
Fixdig{ming, minutes, 2);
fixdig(secs, seconds, 231;
printf{%s Xd:Xs:Xs\n", string, hours, mins, secs);
¥

dateprint{string, date}
char *string;
unsigned int date;
<
int year:
int month;
int day;:

day = date & Ox1F;

month = [date==5) & OxOF;

yvear = {(date>»9) & OxTF) + 1980;

printfiis %d/kd/gdvan, string, menth, day, year);
b

For another example of this function, see the entry for time,

Mark Williams

Lexicon Tgettime-time

Fee Also
gemdos, time, Tsetdate, TOS

Tgettime—gemdos function 44 (osbind.h)
(Get the corrent time
#include <osbind.h>
int Tgettime()

Tgettime obtains the current time from the operating system. It teturns the
time encoded in the form of an integer whose bits mean the following:

0-4 number of two-second increments (0-29)
5-10 number of minutes {0-59)
11-15 number of hours (0-23)

Exanple
For example of how to use this function, see the entries for Tgetdate and time.

See Also
gemdos, time, Settime, TOS

Tickeal—bios function 6 (osbind.h)
Return system timer’s calibration.
#include <osbind.h>
#lpelude <bios.h>
long Tickeal()

Tickcal returns the system timer's calibration, rounded to the nearest
millisecond.
Example
This example demonstrates Tickeal., Also see the example in the entry for time,
#Finclude <oshind.h>
mairyg)
L
printf("System clock ticks once every Xld msec.\n", Tickecal());
1
Fee Also
bios, time, TOS

lime—Time function (libe.a/time)
Get current time
#include <timeb.h>
time t time(tp) time t *p;

Mark Williams C 453

time

time—Overview

454

time reads the current system time. It 15 a simpler version of the functigp
ftime, {p is a pointer of the type time_t, which is defined in the header fj
time.h as being equivalent to a long. Note that Mark Williams © defines
current system time as being the number of seconds since January |, 1970
0h00mO0s GMT.

Example
For an example of this function, see the entry for asctime,

See Also
time (overview)

Mark Williams C includes a number of routines that allow the user to set and
manipulate time, as recorded on the system’s clock, into a variety of forma
These routines should be adequate for nearly any task a programmer has th
involves temporal calculations or the maintenance of data gathered over a |
period of time.

511 functions, global variables, and manifest constants used in connection m T
time are defined and described in the header file time.h.

The ANST Draft Time Standard

The draft ANSI standard for the C language describes functions designed
used with calendar time (i.e., the Gregorian calendar), local time, and dayligl
savings time,

The basic unit of time is defined as the CLK_TCK, which is defined as on
tick of the system clock. On the Atari 8T, the CLK_TCK is equivalent to fi
milliseconds. Three types are declared:

clock t
This is an implementation-specific type that is capable of encoding clo
time. On the Atari 8T, this 15 set to an unsigned long,

time t
This iz an implementation-specific type that can represent time: £
Mark Williams C, time t is defined as a 32-bit number that holds.
number of seconds since Janvary 1, 1970, 0h00mO0s GMT.

struct tm or tm_1t
This structure encodes the slements of calendar Ume. It iz defined 85
follows:

Mark William

Lexicon time

typedef struct tm {

int tm_sec; /Y second [0-35%] =/

int tmomin; £% minute [0-38] =/

int tm_hour; /% hour [0-231: O = midnjght */

int tm_mclay; /* day of the month [1-2B,2% 30,311 *f
int tm mor; S= month [0-111: O=lenuary %/

int tm year; M= wvear since 1900 A.D. */

int tm wday: S day of week [0-81: O=Surdlay */

int tm yday; F® oday of the year [0-385,358] =/

int tm_isdst; /* daylight savings time flag */

Jtmt;

The ANSI standard also describes 8 number of time functions, as follows:

asctime convert time to ASCIT string

clock return time since system was turned on
clime output an ASCIT string that gives the time
difftime compute difference between calendar times
gmtime return Greenwich Mean Time

localtime return local time

stime set time (UNIX/COHERENT-compatible)

Extensions to the ANS! Standard

Mark Williams C includes a number of extensions to the ANSI standard, Thess
are designed to increase the scope and accuracy of the standard, and to egse cal-
culation of some time elements.

To begin, Mark Williams C includes three variables that are used by the func-
tion localtime; it parses the environmental variable TIMEZONE into the

following:
timezone seconds from GMT to give local time
dstad just seconds to local standard, if any
tzname array with names of standard and davlight times

The following functions return information about the calendar:

isleapvear iz this year AD a leap year?
dayspermonth how many davs in this historical month?

Time on Mark Williams C is modelled after time on the COHERENT oparating
system. As noted abowve, the variable time t is defined as the number of
seconds since January 1, 1970, Oh00m00s GMT;: this moment, in turn, is ren-
dered as day 2,440.587.5 on the Julian calendar., This allows accurate caloula-
tion of time as far back as January 1, 4713 B.C.

Conversion to the Gregorian calendar s ser to October 1582, when it was first
adopted in Rome. The issue of conversion of when a nation changed from the
Julian to the Gregorian calendar is moot in the United States, Canada (except
Cuebec), Asia, Africa, Australia, and the Middle East: however, users in

Mark Williams C 43

s

time

456

Quebec, Latin America, Eurcpe, the Soviet Union, and European-influence "'
areas of Asia (e.g., Ind:a}l may wish to to write their own functions to converg
historical data properly from the Julian to the Gregorian calendar.

The following functions assist in conversion from Julian to Gregorian time:

time_to_ jday convert time_t to the Julian date
jday_to_time convert Julian date to time_t
tm_to_Jjday converttm fstructure to Julian date
jday_ to_tm convert Julian date to tm_t structure

Atari 8T Timie Functions
The Atari ST's ROM BIOS contains a number of functions that manipulats sys-
tem time. This task is complicated by the fact that the ST has saveral cloc
which do not reference each other; each can be set independently, and each
wsed under different circumstances.

The following functions convert between standard time and TOS time:

tm_to tetd converttm tto TOS time.
tetd to_tm convert TOS time to tm_t

The intelligent keyvboard (IKBD) keeps time to the second, but it not supported
by either the xbios or the gemdos functions. The following two functions con—
vert between time as encoded in tm_ t and the TKBD clogk;

Kgettime turn IKBD time to tm_t
Ksetiime turn tm_ t to IKBD time

Finally, the Atari gemdos and xhios routines Include a number of functions that
directly manipulate system time, as follows: i

Fdatime get/set a file's time and date stamp
Gettime get the system time {xbios)
Settime set the system time {xbios)
Tegettime get the systemn time (gemdos)
Tegetdate get the system date (gemdos)
Tsettime get the system time {gemdos)
Tsetdate set the system date (gemdos)
Example

For an examle of time functions, see the entry for asctime. The following ex-
ample demonstrates the header file time.h, and the functions Gettime, Kge
time, Ksettime, Seltime, stime, tetd to tm, Tgetdate, Tgettime, tim
time_to_tm, tm_to tetd, tm_ to time, Tsetdate, and Tsettime.

Mark Williams €

Lexicon time_to_ jday

#include <time.h>
wm_t getdatelp)
char *p;
G
stetic tm_t t;

sscanf(p, "R4R2dR2diadi2d. Kad", Et.tm_year, &t.tm_mon, Et.tm_mday,
Et.tm_hour, &t.tm min, &t.tm sec);
t.tm_year -= 1900;
t.tm_mday -= 1;
return &t
3

dedisplay{tp, name)
tm_t *tp char *name;

!
printf("ELdE02OR02dH02dR02d. 802D Ke\n,
tp->tm_year+1900, tp-=tm_mor+1, tp->tm mday,
tp->tm_hour, tp-=tm_min, tp-rtm_sec, namel;
3

#define display(x) dodisplay({tm_t *3{x), "x");

mainfarge, argv)
int arga; char *argvll;
L
tmot *tp;
tetd_t td;
time_t t;

if (arge > 17 (
tp = getdatelargv[l]};
td = tm_to_tetd(tp);
t = tm to time(tp);
stimelht);

Ksettime{tp);

Settimaltd);

Tsetdate(td.g date);

Teettime{td.g_date);
>

display(time_to tm{time(OL)});
display{kgettime()l;
displayl{tetd to_tm{Gettime())};
display(tetd_te_tmi({long)Tgetdate]14<18) [(unsigned) Tgettimel31y;
¥
Seée Also
Lexicon

Mark Williams C 457

time . h-TIMEZONE Lexicon

time_to jday—Time Function {libe.a/time_to jday)

time.h—Header [ile

timezone—Time library data

TIMEZONE—Environmental parameter

458

—

T Convert systam time Lo Julian date
#include <fime.h>
jday tiime to jday(time) time t rime;

time to_ jday converts system time to Julian da‘_i.-'s fime is the current system
time. It is declared to be of type time_t, which is defined in the header file
time.h as being equivalent to a long. Mark Williams C defines the current sys-
tem time as being the number of seconds from Januwary 1, 1970, OhOOmO0s
(3MT. The function time returns the current system time in this format.

time to_jday returns the structure jday_t, which is defined in the header file

time.h. jday t consists of two unsigned Ints. The [irst gives the number of the
Julian day, which is the number of days since the beginning of the Julian
calendar (January 1, 4713 B.C.). The second gives the number of seconds since
midnight of the given Julian day.

Fee Also
jday to_ time, jday to tm, time, time.h, tm to jday

Header file with time-description structure
#include «<tlime.h>

time.h is a header file that contains descriptions and declarations for elements
used to manipulate time under TOS.

See Also
lime, timeb.h

timezone helps to convert TOS time to a form readable by humans, Tt is an ex=

ternal variable that contains the number of seconds to be subtracted from GMT
to obtain local standard time.

Example
For an example of how to use this routine, see the entry for time

See Also
settz, tfime, TIMEZONE

Time zone environmental parameter
TIMEZONE=standard:of (sell:daylight: date:d ateshouryminutes]

TIMEZONE is an environmental parameter that is set to information about fhﬁh
user's time zone. This information is used by ctlme to construct its description

Mark Williams €

pexicon TIMEZONE
Lexe

of the current time and day. To set the TIMEZONE parameter, use the set
command, as follows:

seteny TIMEZOKE=[description]

where Idescription] describes vour time zone. Most users write this command
into the file profile, 5o that the TIMEZOMNE parameter is set automatically
whenever they reboot their svstem.

A TIMEZONE description contains at least two fields that are separated by
colons: the first gives the name of the standard time zone and second its offset
from Greenwich Mean Time in minutes. OFfsets are positive for time zones
wast of Gresnwich and neagative for time zones east of Greenwich,

Fields 3 through 7 are optional. Field 3 gives the name of the local davlight
saving time zone. The absence of this field indicates that no daylight saving
time correction should be made. 1If TIMEZONE contains no additional fields,
the changes between standard time and daylizght saving time occur at the times
currently legislated in the United States: at 2 AM. standard time on the last
Sunday in April, and at 2 AM._ davlight saving time on the last Sunday in
October.

Fields 4 and 5 specify the dates on which davlight saving time beging and ends,
Fach consists of three numbers separated by periods. The first number
specifies which occurrence of the weekday in the month marks the change.
counting positive occurrences from the beginning of the month and negative
occurrences from the the end of the month, The second number specifies a day
of the week, numbering Sunday as one. The third number specifies a month of
the yvear, numbering January as one.

Finally, fields & and 7 specify the hour of the day at which davlight saving tims
begins and ends, and the number of minutes of adjustment.
Example
The following are possible descriptions of Central Standard Time:
TIMEZOME=CST 2380
TIMEZONE=CST:360:C0T

TIMEZONESCST:340:00T:-1.1.46:-1.1.110
TIMEZONE=CST :360: 00T - 1.1 .4:-1.1 . 10:2:80

The first setting provides conversions to standard time only, 8 convention used
by many farmers, The last three settings provide conversions to daylight time
and specify the default conversion rules in increasing detail.

Note that under the microshell msh, it usually not necessary to set the offset
field, unless you wish to keep your system set to Greenwich Mean Time.

For an example of this variable's use in a program, see the entry for asctime.

Mark Williams C 459

tm_ to jday-tm_to tetd Lexicon

tm_to_jday—Time function (libc.a/tm_to_ jday)

tm_to_tetd—Time function (libc.a/tm_to_ tetd)

460

See Also
environment, seteny, time

Nates
The time zone that time and fiime depends on how the time zone was originally.
set. If date and TIMEZONE has the correct offset from Greenwich, then the
system time is GMT; however, if the time was set on the GEM desktop, or if
TIMEZONE has set the offset from Greenwich incorrectly, then the system
time 15 not GMT, '

The default profile included with your copy of Mark Williams C has g
TIMEZONE setting for Central Standard Time (CST/CDT). Users who live
outside that time zone may wish to edit TIMEZONE to reflect their time zone.

Convert calendar format to Julian time
#include <time. h>
jday ttm_to jday(iime) tm_t*time

tm_to_jday converts the system time, as described in the system calendar for-
mat, to Julian time. time points to a copy of the structure tm_t, which is.
defined in the header file time.h. The functions gmtime and localtime returns
the current time in this format. For more information on tm_t, see the Lexicon
entry for time,

tm_to_jday returns the structure jday_t, which is defined in the header file
time.h. jday_t consists of two unsigned ints. The first gives the number of the'
Julian day, which is the number of days since the beginning of the Julian
calendar (January 1, 4713 B.C.). The second gives the number of seconds since
midnight of the given Julian day.

See Also
jday to time, jday to tm, time, time.h, time_to_jday

Convert system calendar format to IKBD time
#include <time. h>
tetd ttm to tetd(iime) tm_t *time;

tm_to_tetd converts the system calendar structure, as returned by the functions
gmtime and localtime, into a form that can be used by the Atari function Set-
time to set the intelligent keyboard’s clock.

trime points to a copy of the structure tm_t, which is defined in the header file
time.h. For more information on this structure, see the entry for time.

tm_to_tetd returns a data element of the type tetd_t, which is defined in the
header file time.h as being equivalent to an unsigned long. It holds the 32-bit

Mark Williams C

_[,ex'il:ﬂ“ TMPDIR - tolower

map used by Settlme to set the intelligent keyboard's clock. For information on
what the bits of this map signify, see the entry for Settime.

See Alsa
tetd to tm, time, time.h

TMPDIR—Environmental parameter

TMPDIR directive names the directory into which msh and its commands write
their temporary files,

It is set with the seteny command,

See Also
msh, seteny

impnam—General function (libe.a/tmpnam)
Generate a unique name for a temporary file
#include <stdio.h>
char *tmpnam(name) char *rame;

impnam constructs & unique temporary name that can be used with vour
program. xagme is the name of a buffer into which tmpnam writes the tem-
porary name. I wame is NULL, tmpnam writes the name into an internal buff-
er that 1s gverwritten each time it is called.

tmpnam assumes that the temporary file will be written into directory \tmp and
builds the name accordingly. It returns the address of the internal buffer.

See Also
mktemp, tempnam

loascii—ctype macro (ctype.h)
Convert characters to ASCI1
#include <ctype.h>
toascii{c) int ¢

toascii takes any integer value ¢ and keeps the low seven bits. If ¢ i3 already a
valid ASCII character, it is unchangead.

See Also
ctype

tolower—ctype macro {(ctype.h)
Convert characters to lower case
tolower(c) int ¢

Mark Williams C 461

_tolower-tos Lexicon

_tolower—ctype macro (ctype.h)

tos—Command

462

tolower converts the letter ¢ to lower case. If ¢ is not a lettér, the result is un-
defined.

Example
The following demonstrates tolower.

For an example of its use in a TOS application, see the entry for Fgetdta.

#include <ctype.h>
#include <stdio.h>
maing){
FILE *fp;
int ch:
int filename[20];
printf(™Enter nome of file to use: *);
gets(filenmme);
if ((fp = fopen{filename, *r*)}) 1= NULL) {
swhile ((ch = fgetc(fp)) i= EOF)
putehar(isupper{ch) ¥ tolower{ch) : ch);
k]
elae printf(“Cannat open Xs.\n", f1lename);
)

See Also
clype, toupper

Convert letter to lower case
#include <ctype.h>
_tolower(c)

int ¢

__tolower is a macro that returns ¢ converted to lower case. If ¢ is not a letter,
the result is undefined.

See Also
clype

Execute GEM-DOS program
tos prograrm options

tos allows vou to run under msh a program that uses unredirected GEM'D_{:?E':
file handles. It resets file handle 2 to the aux: device; unlike its cousin, the gem
command, tos does not enable the mouse cursor. program is the name of t
program you wish to execute; note that you should give the full path name
the program and its full name, including suffix. options are a list of options
that are passed directly to the program to be executed.

Mark Williams L

Lexicon
Lex]cd

See Also
commands., gem

TOS—Overview
TOS is the operating system for the ATARI ST. It includes a number of com-
ponents, including Digital Research’s Graphics Environment Manager (GEM)
and the GEM-DOS disk operating system.

The lollowing entries in the Lexicon describe features of TOS:

AES This describes the GEM Application Environment System (A ES),
which allows the programmer to vse predefined windows, icons, pull-
down menus, and other GEM elements. Tt also lists and briefly
describes all of the AES routines; each AES routine has its own entry
within the Lexicon,

bios This entry describes the TOS function bies, and introduces the
functions that use it to manipulate the Atari ST"s BIOS.

desk accessory
This entry describes how 10 compile a GEM desk accessory.

error codes
This lists and defines the error codes that can be returned by TOS.

gemdos This entry describes the TOS function gemdos, and introduces the
functions that use it to manipulate GEM-DOS.

keyboard
This describes the layout of the Atwri ST kevboard, with the codes
generates by each key.

Line A This describes briefly the Atari “Line A™ interface routines, which
allow the creation and manipulation of graphics displays.

screen control

This entry lists the escape sequences used 1o control text on the Atari
ST's screen,

system variables

This entry lists all of the “‘magic locations” within memaory where TOS
stores its key elements,

VDI This describes the GEM Virtual Device Interface (VDI), which gives
the user access to basic graphics routines, It also lists and describes
briefly all of the VDI routines; each VDI routine also has its own entry
within the Lexicon.

Mark Williams C

464

xhios This entry describes the TOS function xbios, and introduces the func- g
tion that use it to manipolate the Atari 5T's extended BIOS.

A number of header files are also used with TOS. These include the following;

aeshind.h bindings for GEM AES routines

basepage.h TOS basepage structure

bios.h declarations for bios functions

errno.h gemdos,/bios/xbioserror number enumeration
gemdefs.h miscellaneous declarations

gemoui.h TOS executable and archive file formats

linea.h ST linea interface header

obdefs.h miscellaneous object and variable definitions
oshind. h bindings for bios/gemdos/xbios functions
signal.h ST processor exception, extended trap vectors
stat.h TOS DMABUFFER structure and file attributes
time.h time and date services

vdibind.h bindings for GEM VDI routines

xbios.h declarations for xbios functions

Compiling TOS programs
You can include the AES/VDI libraries in your compilations in any of three:
ways,

First, you can include the libraries with the library option 1o the ce cnmmaﬁﬂ;
line. To compile the program sample.c, use the following form of the ce com=
mand line:

cc sample.c -laes - |vdi
The -1 option is described in the Lexicon entry for cc,

The other two methods involve using a switch on the cc command ling,
-¥GEM is used to create an ordinary GEM program. It automatically links
the AES and VDI libraries, and calls the special run-time start-up rou
crisg.o. For example, to use the -YGEM option to compile sample.c, use
following command line:

ce -WGEM sample.c

crisg.o has the advantage of being smaller, faster, and simpler than the defau L
run-time start-up routine, crisD.o. Note, however, that it differs from
default runtime siartup crisd.o in the following ways:

1, argy, arge, and envp are all set 10 zero.

2. getenv is not enabled; this means programs that use crisg.o cannot read
environmental parameters.

Mark Williams

Lexicon touch-toupper

3. stderr will send error messages to the auxiliary ports rather to the consale.

-VGEMACC is used to ¢reate a GEM desktop accessory. It works in much the
same way as -VGEM, except that it uses the run-time start-up routine crisd.o
instead of crisg.o.

The source files for ertsd.o and crtsg.o are included with your copy of Mark
Williams C, should you wish to enhance it.

Finally, libaes.a uses the routine erystal.o to call traps. This routine is mever
called by the programmer, but it is automatically linked with libaes.a.

See Also
AES, bios, crtsg.o, gem, gemdos, keyboard, Lexicon, Line A, screen control,
VDI, xbios

touch—Command
Update modification time of a file
touch | -¢ | file ...

TOS keeps track of when each [ile was last modified. touch changes the
modification time of each file to the current time, but does not modify its con-
tents, By default, touch creates file if it does not already exist; the -c flag sup-
presses this,

See Also
commands, make, msh

toupper—ctype macro (ctype.h)
Convert characters to upper case
#include <ctype.h»>
toupper(c) int ¢

toupper is & macro that converts the letter ¢ to upper case. If ¢ is not a letter or
is already upper case, the result is undefined.

Example
This example demonstrates toupper and putchar.

Mark Williams C

__toupper-Tsetdate Lexicon

_toupper—ctype macro (ctype.h)

Tsetdate—gemdos function 43 (osbhind.h)

466

#include <ctype.h>
#include <stdie.he
maind i{
FILE *fp;
int ch;
int filensme [20];
printf("Enter file name: *):
gets{ filenams):
if ({fp = fopen(filename,™r®)) I= MULLY C
while ({ch = fgetc{fp)) I= EOF)
putchar(ielower{ch) 7 toupper(ch) : ch);
}
else printf("Cannot open Xs.\n®, filensse);
H

See Also
ctype, tolower

Convert letter to upper case
#lnclude <ciype.h>
__toupper(c)

int ¢

_toupper is a macro that returns ¢ converted to upper case. If ¢ is not a letter,
the result is undefined. 4

See Also
clype

Set a new date
#include <oshind.h>
long Tsetdate(!) inti;

;_I."s;imale sets @ new date. The 16 bits of the integer i encode the date, 35
GLIOWS:

0-4 day (1-31)
5-8 month (1-12) '
9-15 year (0-119, 0=1980)

Example

This example demonstrates the macros Tsetdate and Tsettime, and also uses
macros Tgetdate and Tgettime, For another example of this function, see the
entry for time.

Tsetdate

dcon
Lexicon

#include <osbind.h>

main{} £
unsigned int date;
unzigned int time;
int seconds;
int minutes;

int hours;
int day;

int month;
int year;

printf{"Enter the date and time (MDDSTYYT HH:MMY: "2
scanf("3d/Ld/ % Bd:ka, Bmonth, Bday, &year, Rhours, Eminutes);
secongde = 0

if {year < 100)
year += 1900;

date = ((unsigned){year- 1980)<<¥)
| € furs | gred ymonth<<5)
| funs § gred yday

time = ({unsignedihours<<ll)
| € € § gred hmi nutes <<5)
£ Euns i gned}seconds>»1);

timeprint("About to set the TOS time to®, time);
dateprint(vAbout to set the TOS date to", date):
Teetdate({dote);
Taettime(time);

date = Tgetdate{): /* Get the system date */
time = Tgettime(): J* Get the system time =/
timeprint{"Now the TOS time is®, time);
dateprint(®Now the TOS date is¥, date);

¥

vold fixdigibuf, onumber, £fze)
char *buf;

Int onumber:

int size;

L

register long limit;

register long number;

int o;

number = onumber;

limit = 10;

for (o= 1; & <size ; oo~}
Limig == 10;

Mark Williams C

467

Tsetdate Le:

if ((rumber »= Limit)||(rumber <03) {
for (o = 0; o < size; oH+)
‘th+" - I'I‘l.-
*ouf = O;
returng

3

for (o =0; o < size; o) {
Limit /= 10;
*bufss = "Drenumber/limit;
mumber = rumberXlimit;
¥
*buf = "\D';
¥
timeprint{string, time}

char ®"string;
register unsigned int time;

4
int geconds;
int mimates;
int hours:
char mins(31;
char sgeca[3);
reconds = (time & Ox001F) << 1; /™ Bits 0:4 %/
mirutes = (time »>» 5) & Ox3F; /* Bits 5:10 */
hours = (time >> 11) & Ox1F: J* Bite 11215 %y
fizdigimins, minutes, 23:
findiglsecs, seconds, 2):
printf("Es Xd:Xs:Xs\n", string, hours, mins, secs);
]

dateprint{string, date)
char *string:
unsigned int date;
{
int year;
int month;
int day;

day = date & Ox1F;

month = (date>>5) & OxOF;

year = {(dates>9) & OxTF) + 1980;

printfi*is X/ d/Zd\n", string, month, day, year);
}

See Also
gemdos, Tgetdate, time, TOS

468 Mark Williams 1

Tsettime-typedel

J.exicon
i 5

Tsettime—gemdos function 45 (osbind.h)
Set a new time
#include <osbind.h>
long Tsettime(time) int fime;

Tsettime sets a new system time. The argument time is an integer whose bits
encode the time, in the following manner;

0-4 two-second increments (0-29)
5-10 minutes (0-59)
11-15 hours (0-23)

Example
For examples of this function, see the entries for time and Tsetdate.

See Also
gemdos, Tgettime, time, TOS

type promotion—Definition
In arithmetic expressions, Mark Williams C promaotes signed types 1o signed
tvpes by sign extension and unsigned types to unsigned types by zero padding,
For example, char promotes o int by sign extension, while unsigned char
promaotes to unsigned int by zero padding.

See Alse
data formats, declarations

tyvpe checking—Delinition

Every expression has a fype, such as int, char, or double. C is not strongly
typed, and allows different tvpes to be mixed relatively freely. This gives a
programmer freedom to write programs of great power and scope, which is
consistent with the C philosophy of paying out plenty of rope to 2 programmer;
whether she uses that rope to pull herself out of a bog or 1o hang herself is en-
tirely up to her. Mark Williams C checks types mare strictly than the C stan-
dard implies, which most wsers appreciate. Mark Williams C's type checking
can be enabled or disabled in degrees, wsing -VSTRICT and other *“varmant”™
options with the cc command.

See Also
cC

typedef—Definition
typedef iz a C facility thar allows programmers to define new data tvpes. Such
definitions are always made in terms of existing data types; for example,

Mark Williams C 469

typedef Lexicon

470

typedef long FOO;

establishes a data type called FOO, and defines it to be equivaient to a long;
Mote that, by convention, programmer-defined data types are written in capitaj
letters.

Judicious use of the typedef facility can make programs easier to maintain, and
improve their portability, -

See Also
declarations, manifest constants, portability, storage class
The € Programming Language, page 140

Mark Williams €

Lexicon ungetc-union
LexicOT

ungete—STDIO function (libe.a/ungetc)
Return character to input stream
sinclude <stdio.h>
ungete (¢, fp)int c; FILE *fp:

ungetc returns the character ¢ to the siream fp. ¢ ¢an then be read by a subse-
gquent call to getc, gets, getw, scanf, or fread. Exactly one character at a time
can be pushed back into any stream. A call to fseek will nullify the effecis of a
previous ungetc.

Example

#include <stdio.h>
main{} {
FILE *fp;
fnt ch, nlines, neents;
int 1ilename[20];
nifres = nsents = O;
printf{"Enter name of file to check: ");
getelfilename):

it (fp = fopen(filename,™r*)} 1= BULL) (
while ({ch = fgetc(fp}) I= EOF) (
i1 {ch == "\nt) winalines;

else 11 (ch we + 0 || ch ww 01 || ch == #7')
if {(ch = fgetclfpl)) Im * 0} (
enaente;
ungetcich, 1pl;
¥

else forlch=".': (ch=fgetc(fp)i==",1:}
¥
b
printf{4%d Line{s), % sentencel{s).\n", niines, nsents):
¥
else printf{“Camnat open %5.4\n", f|lenase):
b

See Also
fgete, gete, STDIO
The C Programming Language, page 158

Diagnostics

ungetc normally returns ¢ it returns EQF if the character cannot be
back.

Mark Williams C

unig Le

unipn—Definition
A union describes an area of storage that accepts any one of a number g
heterogeneous data elements. For example, a2 union may be declared to consi
of an inl, a double, and a char *; any one of these three elements can be held
the unien at a time, and will be handled appropriately by iL

unions are helpful in dealing with heterogeneous data, especially within strug
tures; however, the programmer i5 responsible for keeping track of what ds
tvpe the union is holding at any given time. Passing a2 double to a union
then reading the union as though it held an int will vield results that are unprgi
dictable, and probablv unwelcome, '

Example

union {
int rumber;
double bignumber:

char *stringptr;
b L) e el ©

See Also
struct, struclure
The C Programming Language, page 138

unig—Command
Remove/count repeated lines in a sorted file
uniq [-edu] |-n] [+n] infilelou file]]

unig normally reads input line by line from infile and writes all non-duplicated
lines to outfile. The input file must be sorted. wnig uses the standard inpul
outpul if either infile or owfile 1s omitted. The following describes the a
able options:

-c Print each line once, discarding duplicate lines; before each ling, print thel
number of times it appears within the file.

-d Print only lines that are duplicated within the file; print each line -'j'_-
once; do not print any counds.

-y Print only lines that are nor duplicated within the file
uniq by default behaves as if both -u and -d were specified, 50 it prints ed ch
unique line onge.

Optional specifiers allow unig to skip leading portions of the input lines W
comparing for uniqueness,

=it Skip n fields of each input line, where a field is any number of non-w
space characters surrounded by anv number of white space chara
(blank or tab).

472 Mark Williams

il

Lexicdd

UNIX mullnes—unlil_l_k_

1 Skip n characters in each input line, after skipping fields as above.

Sce Also
commands

UNIX routines—Overview
Mark Williams C includes a number of routines that were originally written for
the UNIX system and related operating svstems; these allow Mark Williams C to
compile programs that were originally written for these systems.

The routines are as follows:

close
creat
dup
dup2
errmo
_exit
Iscek
open
read
unlink
write

See Also
Lexlicon

cloze a [ile

create/truncate a file
duplicate a file descriptor
duplicate a file deseriptor
integer returned by error routine
exit directly (rom a program
set read/write position

open a file

read from a file

remove & file

write 1o a file

unlink—UNIX system call (libe.a/unlink)

Remove a file

unlink(/p) FILE */p;

unlink removes the directory entry for the given file fp. The name is a histori-

cal artifact.

Example

This example removes a file named on the command line.

Mark Williams C

473

unset-unsigned Lexie

mainiarge, argy) int arge; char ®argvil; €
register int i;

for (i = 1; 7 < arge; T+) (

if (unlink{argvlil) == 1) {
printf{"cannot unlink \"Xe\"\n", argviil);
exit{1);
3}
¥
exit(0}:
¥
See Also

UNIX routines, STDIO

Digganostics
unlink returns -1 if there are any errors, and zero otherwise.

unset—Command
Discard a shell variable
unset VARIABLE

unset discards a variable that had been set with the set command. For examplé,

if you wished to discard the the variable b, simply type
uniet b

and it will be erased,

See Also
commands, msh, sel

unseteny—Command
Discard an environmental variable
unseleny VARFABLE

unset discards an environmental variable. For example, if you wish for
reason to discard the TMPDIR variable, type

unseteny THPRIR

See Also
commands, msh, setenvy

unsigned—Definition
The unsigned modifier tells the compiler to treat the variable as an unsig
value. This in effect doubles the largest positive value storage in that typés
changes the lowest storage value to zero. MNote that the 68000 uses *two's COE

474 Mark Willia

unsigned

[exicon

plement” storage, not sign magnitude.

See Also
data type
The ¢ Programming Language, page 34

Mark Williams C

¥_arc—V DI function (libvdi.a/v_ arc)

v__bar—VDI function (libvdl.a/v_bar)

476

Draw a circular are
#include <aeshind.h>
#include <vdibind.h>
void v _are(handle, xcoord. yooord, radius, beginangle, endangle)
int kandle, xeoord. yeoord, radius, begingngle, endangle;

v_arc is a VDI routine that draws a circular arc. handle is the virtuil device’s
VDI handle. xecoord and yeoord give, respectively, the X and Y coordinates
the imaginary center of the circle of which v_arc is drawing a section. rad
is the radius of the imaginary circle. These measurements will dilfer, depe
ding on whether the device has been set as using normalized device coording
(NDC) or raster coordinates (RC). Finally, beginmangle and ondangle gi
respectively, the beginning and end angles of the arc, measured in tenths of
degree, Counting on an imaginary clock, zero degrees is at 3 o'clock, 90
grees (900) at noon, 180 degrees (1800) at 9 o'clock, and 270 degrees (2700) at§
o'clock.

Hop Also

TOS, v_circle, YDI

Draw a rectangle

#include <sesbind.h>

#include <vdibind.h>

void v _bar(handle, xyarray) int kandle, xyarray{d];

v_bar is a VDI routine that draws a rectangle. Unlike its cousin vr_reefl
v_bar can draw a perimeter as well the preset fill pattern,

handle is the virtual device's VDI pattern. xyarray sets the X and Y coordi
from which to construct the rectangle; the even-numbered entries indicate |
% coordinates, and the odd-numbered entries the Y coordinates. Which ¢
of the rectangle each pair of coordinates indicates will differ dependin
whether the virtoal device has been set to normalized device coordinates (NE
or to raster coordinates (RC). On an NDC device, the First pair points 19
lower left-hand corner and the second pair to the upper right-hand co
whereas on an RC device, the first pair points to the upper lefi-hand €0
and the second pair to the lower right-hand corner.

Note that to use this routine, the fill rype must be set with vsf_interior, the
stvle by vsf_style, the perimeter flag by vsf_perimeter, and the fill color
vsf_color. To output a complex polygon (ie., a shape other than a rectang
use the routing v fillarea.

Mark Williams

¥ bar

Lexicon

Example

The following program draws a filled rectangle onto the screen. By clicking the
mouse's left button and dragging the mouse, you can draw a rectanzle on the
screen. Pressing the *T" key changes the rectangle's fype of fill; and pressing the
‘2* kev changes its styvle. Pressing <relurn> £Xits.

#include <gemdefs.h>
#include <aeshind.h>
dinclude <vdibind.h>

#define RETURN Ox1COD
#efine T_KEY OxiéTd
#detine 5 KEY Ox1FT3

f* scan code for <returpn> key */f
/* scan code for T key */

7

scan code for & key %/

/* plobal line A variables used by wdl; MUIST be included *7
int comtrl (121, intin{128), ptein{1eB8], intout(128], ptsout(128];

/* array used by v _bar() */

int xyarray[l =1, 1, %, %

/* array used by vs_clip() */f

int cliparrayll = ¢ 1, 1, 439, 399 };

J* arrpys used by v_opak() *S

intwork Al =¢ %, %, L, L, L, L L, L2

Int work _out [57);

I* throw-away declarstions, to keep system from scribbling over itsalf "/

Int nowhere = 0;
Rect norect = { 0, 0, 0, 0);:

main() {
/* declarstions used by ewnt_multi() */
int selaction;

J

code for event that cocurred *f

ungigned fnt which = (WU _KEYSD | My _BUTTOM);
no. of clicks expected on mouse button */

int clickes = 1;

int button = 1;

int buttonstate = 1;
int buffer{11];

int mousex;

int mousey;
ungigned key;

/* misc declarations =/
int vdihendle;
int type = 0;
int style = 1;
int width:
int depth:

Mark Williams C

Ji
.|""
"
i
L
.I"
F i

™
IF’
_lﬂ
.I'I.
.|""

which button; 1 = leftmoat */
button state sxpected: 1 = down ¥/
plsce to write AES messages "/
mouge X coordinate ®/

mouse Y coordinate ¥/

key typed by user */

virtual device's handle */

type of filt =f

style of fill =/

width of rubberbox user draws =/
depth of rubberbox user draws =/

477

vy bar

478

/* DK, here we g0 ... */
appl_imiti);
graf mouse(ARROM, Enowhere);
vdihandle = graf_handle(Enocwhere, Enowhere, Encwhere, Enowhere);
v_oprvwk(work_in, &vdihandie, work out);
vs_clip{vdihandle, 1, cliparray);
vaf perimeter{vdihandie, 1};

for(;;1 £
selection = evnt_multilwhich, clicks, button, buttonstate,
0, norect, O, norect, buffer, 0, 0, Smousex, Emousey,
Encvhere, Enowhere, Lkey, Enowhere);

suitch{selection) {
case MU KEYBD:
switchi{key) {
cate RETURM:
v_clsvwk({vdihandle);
spol_exit();
exit{0);

case T_KEY:
type = (+styped3);
vl _interior{vdihandle, type};
graf _mouse(M OFF, Enowhere);
v_bar(vdihandle, xyarray);
graf_scume(M ON, &nowhere);
break;

case § KETV:
style = {(=+s1ylel2L)+1);
wsf_style{wdihandle, style);
graf_mouse(M_OFF, Enowhere);
¥ _bar{vdihandle, xyarray);
graf_mouse(M OM, Enowhere);
break;

}

break;

case MU BUTTOM:
graf_rubbox{mousex, mousey, 3, 3, Bwidth, &depth);
xyarrey[D] = mousex;
ayarrey[1] = mousey;
xyarray[2] = (mousex+width):
xyarray (3] = (mouseyrdepth);
gref_mouse{M OFF, Enowhere};
v bar{wdihandle, xyarray);
graf_mouse{H 0N, Enouhere);
bresk;

Mark Williamr

Lexicon

¢ Also
TOS, vr_recll, VDI

v hit rmnge—VDI function (libvdl.a/v_bit _image)
" "Primt a bit image file
#include <aeshind.h>
#include <vdibind.h>
void v_ bit_lmage(handle, filename, aspect, scaling, points, xyvarray)
inl handie, aspect, scaling, points, xyarray{4l; char *filename;

v _bit_Image is a VDI routine that prints a bit image file. handle is the virtual
device’s ¥DI handle. filename points to the name of the file that holds the bit
imnge; note that this name must be terminated with a NUL character.

aspect pives the code for the aspect ratio used to transfer the bit image onto
paper, as follows: zero indicates that aspect ratio should be ignored; one, honor
pixel aspect ratio; and two, honor page aspect ratio. Pixel aspect ratin ensures
that the figures within the bit image remain constant, e.g,, that a circle will
remain circular; this may involve some cropping or shrinking of the image when
printing. Page aspect ratio ensures that one full page in the bit image file is al-
ways printed as one {ull page of paper; this may result in some distortion of the
figures within the bit image, however.

scaling describes how the bit image should be scaled onto to the page being
printed; zero indicates that the X and Y coordinates should be scaled together,
wheregs one indicates that they should be scaled separately. Note thar this ar-
gument is meaningful only if the variables in xvarray are set. If the X and Y
coordinates are scaled together, the printed image may not fully occupy the rec-
1angle defined by xyarray on the output device. If they are scaled separately,
the bit image will entirely fill the area defined by xyerray, but the setting of
aspect will be ignared.

Finally, xyparray defines the upper lefi-hand and lower right-hand eorners of
the area on the page into which the bit image will be printed.

See Also
TOS, VDI

Nates

This routing vses the VDI's GDOS in its operation, It should not be wsad if the
GDOS is not present in your edition of YDL

Mark Williams C

v_cellarray-v circle Lexican

v_cellarray—V DI function (libvdi.a/v_cellarray)

v circle—=YDI function (libvdi.a/v_circle)

480

Draw n table of colored cells

#include <aesbind.h>

#include <vdibind.h>

void v_cellarray(handle. xyarray, rowlengih, cells, rows. mode. cellarray)
inl kandle, xyvarray, rowlengthid)]. ceils. rows, mode, cellarravinl:

v_cellarray is 3 VDI routine that draws a table of colored cells, handle is
virtual device’s VDI handle., xyarray gives the X and Y coordinates for 1."."-
rectangle in which the table will be drawn. Note that these values will va
depending on whether the device is set to normalized device coordinates (
or raﬂler ::rmrdinalﬁ (RC). On NDC devices, .'l:.mrrm'[l']j and xvarrayf{ I} g|.

righl—handle corni:r. On R{' deviéﬂs. x}'arra}-{ﬁ; and .1'_rarrn_1'.|".ff RivE, respe:
tively, the X and Y coordinates of the upper left-hand corner, whereas x
ravf2] and xyarrayf3) give the X and Y coordinates of the lower right-
COrner.

cells is the number of cells to be drawn in each row, and rows is the number
rows of cells to draw., mode is the writing mode in which the cells will be
drawn: one indicates replace mode; two, transparent mode; three, XOR
{exclusive or); and four, reverse transparent mode. A

Finally, cellarray gives the array of colors to be shown in the cells. n must
equal to cells times rows,

See Also
TOS, VDI, vq_ cellarray

Nertes .
This routine uses the VDI's GDOS in its operation. It should not be used if the
GIDOS i not present in your edition of VDL

Diraw a circle
#include <aeshind.h>
#include <vdibind.h> -
void v_circle(handle, xcoord. yeoord. radius) int handle; xcoord, yeoord, radit

v circle 35 a VI routing that draws a ¢ircle. handfe 15 the virtual device's]
handle. xcoord and ycoord give, respectively, the X and Y coordinates of -
circle's center. radius gives the circle’s radine. These measurements will va
depending on whether the device has been defined as using normalized de¥
coordinates (NDC) or raster coordinates (RC).

Mark Willia

Lexic“_“_ v. circle
Ler

Example

The following program, called circle.c, draws a circle on screen. The first
mouse click sets the circle's center: the second mouse click sets its radius. The
“W* key cycles through the available write modes, for truly psvchedelic effects,
Pressing <return> exits. Compile it with the command line

cc -V -VGEM circle.c -1lm
to include the necessary mathematics routine,

#include <gemdefs. h>
#include <pesbind.h>
g#imciude <vdibind.h>

fidefinm ASTERISK 3 f* code for drawing an asterisk marker */
#define UP O /* mouse button iz up */

#oefine DOWH 1 f* mouse button is down */

#define W _KEY Ox1177 /* scan code returned by W key *f

#define RETURN DxCOD /* scan code returned by <return> key */
fdefine XO& 3 /* X0R mode for writing mouse pointer =/

/* global Line A varisbles used by wdi; MUST be included */
int contrl (121, Intin[128), ptsinli2B), intout(128), ptsout(128]:

/* array used to calculate redius =/
it gyarroy &) ;

/* array used by v pmarker() */
int xymarker[2];

/= array used by vi_clip() */
int cliparrey[} = { 1, 1, 439, 399);

/* mrrays used by v _opwaik() */
int work InDd = ¢4, 1,1, 1, 1,1, 4,.1,1, 1, 2%
int work out[57];

/* throw-away declarations, to keep system from scribbling over ftgelf *7
int nowhere = 0:
Rect porect = £ 0, 0, 0, 0);

maind) {
/* declarations used by evnt_multi() */f
int selection; /* code for event that occurred */
unsigned {nt which = (MU_KEYBD | MU_BUTTON);
int clicks = 1; /* mo. of clicks expected on mouse button =f
int button = 1; /® which button; 1 = laftmost =/
int bufferill]; /* place to write AES messages */
int mousex; /™ moute X coordinate "/
int mousey: /* mouse Y coordinate =/
unaigned key; f* ey typed by user =/

Mark Williams C 481

v circle

Lexic

COn

482

/* misc declarations */

int wdihandle; /* virtual device's handle */

int writectr = 0; 7* used to cycle through write modes */

int fillctr = 1: 7% used to cycle through circle fill styles 'l
int n= 0; /* used to keep track of xyarray */ i

here we go ... ®f

oppl_init{);

graf_mouse(ARROM, Enowhere);

vdihandle = graf_handle{incwhere, Lnoshere, Lnowhere, Encwherel;
v_oprvk(work_in, Evdihandie, work out);

ve_clip({vdihandle, 1, cliparray);

vaf_interior(vdihandle, 2);
vef_perimeter(vdihandle, 1);
vim_height{wditandle, 3);
vem_type{wdihandie, ASTERISK);

for{;:) €
#election = evnt_multi(which, clicks, button, DOWM,
0, norect, 0, norect, buffer, 0, 0, Emoumex, Emousey,
Enowhere, Enowhere, Lkey, Enowhere);

switchi{selection) {
cone MU KEYRD:
it (key == RETURN) (
v_clevwk{vdihandle);
appl_exit();
exit{0);
¥
if (key == W KEY)
writectres:
break;

case MU_BUTTON:

ewnt_butten{clicks, button, UP,
Enowhere, Enowhere, Bnoshere, Enowhere);

it (n==0) ¢
J/® drew center merker in XOR moce v/
xymarkeri0] = mouses;
xymarker[1] = mousey;
graf_mouse(M OFF, dnowhere);
vaur modelwdihandle, XOR):
v_pmarkec{vdihandle, 1, xymarker);
graf_mouse{M_OM, Snowhere);

Lexicon v_clear_ disp_list
Lexi®t
xyarray [n+] = mousex;
xyarcay[me+] = mousey;
ff tn>3) {
ns=0;
fillerres;
/* NOR-away the center marker ... %/
v_pmarker{vdihandle, 1, xymarker);
/* o, 8nd set new drawing mode =/
vswr_mode{vdihandle, (writectr¥&)+1);
vsf _style{wdihandle, (fillctrX26)+1);
drawcircle{vdihandle);
3
break;
default:
break;
¥
b
1
drovefrelethondle)
int handle;
{
fnt legl; f* firat leg of triangle to compute radius %/
int leg2; /* second leg *f
int radius; /* radius of circle = hypoteruse */
extern double hypot(); /* declere hypot() function */f
Jf'

* Calculate two legs of right trisngle, then use Pythagorean theorem
* to compute hypotenuse, which equals redius of circle to be drawn.

* Note necessary casts of
w
/

varisbles.

legl = abs(xyarray(2] - xyarray(0));
leg? = sbs(xyarray[3] - xysrray(1]);
radius = {Int) hypot{ (double) Leg), (double) Leg2):

/* now, draw the circle ®/

graf_mouse(M OFF, Lnowhere);
v circlelhandle, xyarray{0l, xyarrayill, radius);
graf _mouse(M_ON, Lnowhere);

return;

3

See Also
TOS, v_ellipse, YD1

¥_clear_disp list—VDI function (libvdi.a/v_clear disp_list)
Clear a printer's display list

Mark Williams C

483

v_clrwk=-v_clsvwk Lexi

#include <aesbind.h>
#include <vdibind.h>
void v_clear_disp_list{hand!/e) Int handle;

v_clear_disp_list is a VDI routine that clear’s a printer's display list. Unli .
the related function v_clrwk, it does not set a new page. i

See Also
TOS, v_form_adv, v_clrwk, VDI

Nates
This routine uses the VDI's GDOS in its operation. It should not be used if
GDOS is not present in your edition of VDL

v_clrwk—VDI Tunction (Hbvdi.a/v_clrwk)
Clear the virtual workstation
#include <aeshind.h>
#include <vdibind.h>
vold v_clrwk(handle) int handle;

v_clrwk is a VDI routine that clears the virtual workstation. It is executed
automatically after a device i5 opened. It clears the screen device by setti
to the background color, and clears a hard-copy device (e.g., printer, plot
by sending a new-page signal. handle is the device's VDI handle.

Example :
For an example of this function, see the entry for v_gtext.

See Afso
TOS, v_clear disp_list,v_form_adv, YDI

v clsywk—VDI Tunction (libvdla/v_clsywk)
Cloze the screen virtual device
#include <aeshind. h>
#lnclude <vdibind. h>
void v_clsywk({handle) int kandle;

v clsvwk is a VDI routine that closes the screen virtual device. It also flus
all appropriate buffers, frees the space assigned to the screen's device dri ;
and otherwise performs other tasks to ensure that the device is closé
gracefully. handle iz the screen's VDI handle.

Example
For an example of this routine, see the entry for v_pline.

484 Mark Williams €

Lexicon v_¢lswk-v_contourfill
Fexict

See Also
TOS, VDI, v_clswk, v_opovwk, v_opawk

v clswk—VDI function (libvdl.a/v_clswk)
= (Close a virtual workstation
#include <aeshind. h>
#include <vdibind.h>
void v _clswk(handle) int handle;

v _clswk is a VDI routine that closes a virtual workstation. It also flushes the
any associated buffers and frees the memory allocated to the workstation's
driver, to conclude matters gracefully. handle 15 the device's VDI handle.

See Also
TOS, VDI, v_opnywk, v_opnwk

Niores
This routine uses the VDI's GDOS in its operation. It should not be used if the

GIOS s not present in your edition of VDI. To close the screen device, use the
related function v_clsvwk,

v_contour{ill—V D1 function (libvdi.a/v_contourflll)
Fill an outlined area
#Ilnclude <aesbind.h>
#include <vdibind.h>
void v_contourfill(handle, xcoord. ycoord, color)
int handle, xcoord, yeoord, colar;

v_contourfill is a2 VDI routine that fills an outlined area with a fill pattern,
Note that the fill type must be set by the function vsf_Interlor, and the fill
style by the Tunction vsf_style.

handle is the virtual device's VDI handle. xcoord and yeoord give, respectively,
the X and Y coordinates of the point at which filling 15 to begin. Finally, color
is the code for the color at which filling stops. For a table of color settings, see
the entry for v _opnwk.

Example
The following example lets the user draw a number of “rubber lines”™ on the

screen, The W' key floods an enclosed area with the fill pattern. Pressing
<return> exits,

#Finclude <gemdefs. h>
girnclude <sesbind.h>
#include <vdibind.h>

Mark Williams C

v_contourfill Lexicas

486

Wdefime RETURN Oxi1CDD /* scan code returned by return key */
#define W_KEY Dx1177 /® scan code returned by W key %/

#define UP O /* mouse button is up */

#dafine DOWN 1 J* mouse button is down */

Rdefine CLICKS I M o, of clicks expected on mouse button *7
gdefine BUTTON 1 J* which button; 1 = leftmost ®/

fdefine X0& 3 /* make writing mode XOR =/

#define REPLALCE 1 /* make writing mode REPLACE */

#define FUJI & /* set fill type to Little “fujist */
#define BLACK 1 /* code for color black *f

/* global line A verisbles used by wdi; MUST be included */
int contrl(12], intin(128], ptsin(128], intout(128), ptsout{128);

j"t

* prray wwed by ve_clip{); MUST be set, or images that extend
* beyond the screen perimeters will write over low-level memory
* (e.g., RAM digks, spoolers, otc.)

*/

int cliparrayl) = € 1, 1, 439, 399 X

/* oarray used by evnt_multi(), for writing AES messages "/
int buffer[111;

J/* arroys used by v_opvwk() */
fmt work_Tnfl = €1, 7, 1, 0,0, 1, 1,1, 20
int work_out [57];

/* arroy used by v pline() */
int xyarray(&];

/* throw-away declarations, to keep system from scribbling over (taelf *f
int nowhere = 0;
Rect morect = { 0, 0, 6, 0);

maingy {

/* declarations used by evnt_multi() *f
int selection; /* code for event that occurred *f
unsigned key; /* gcan code of key pressed by user ¥/
int mousex; /* mouse X coordinate */f
int mousey; /* mouse Y coordinate *f
fnt vdihandle; /= wirtual device's handle */
int flag = 0; f* hes Line been drawn yet? *f

/* 0K, here we go ... */
appl_init();
graf_mouse{ARRDM, Encwhere);
vdthandle = graf _handle(inowhers, Lnowhere, Enowhere, Erowhere);
v_opnvwk{work _in, &vdihandle, work_out);

Mark Williams'

jcon
Lexicon

wva_clip{wdihendle, 1, cliparray);
vsf_'_intl,lriofhﬂihuﬂ{e, FUIT);
waWr_mode(vdihandle, XOR);

for(;:) (
selection = ewnt_multi(MU_KEYED | MU BUTTOM, CLICKS, BUTTON,
DOWN, O, norect, 0, norect, buffer, 0, 0, tmousex,
Emousey, dnowhere, Enowhers, &key, &nowhers);

switchi(selection) (
case MU _KEYBD:
if (key == RETURN) (
¥_clswwic{vdihandle);
sppl _exin(};
axit(D);
¥

if (key == W KET) (
graf_souse(M OFF, Lnowhere);
v_contourfill{vdihandle, mousex, mousey, BLACK);
graf_mouse(M 0N, Lnowhere);

¥

break;

case MU BUTTON:
/* Prubberline” routine */
if (flag > 03 (
/* if Line has moved ... */
if ((xyarray(2] i= mousex) || (xyarray(3] != mousey)) {

f* ee undraw old Lire ... %7
graf_souse({M OFF, Lnowhere):
w_pline(wdihandle, 2, xyarray);
graf_mouse(M OM, Enowhere):

/® ... change far endpoint ... */
syarray (2] = mousex;
xyarray[3] = mousey:

/* .. and draw new Line */
graf_mouse(M _OFF, Lnowhere);
v_pline{vdihandle, 2, xyarray};
graf_mouse(M_OM, Lnowhere);

Mark Williams C

¥ contourfill

487

v curdown Lexic

v_curdown—Y DI function (libvdi.a/v_curdown)

488

if (flag == 0) {
J* redraw Line in REPLACE mode */
wewr_mode{wdihandle, REPLACE};
graf_mouse{M_OFF, &nowhere);
v_pline(vdibandie, 2, xyarray);
graf_mouse(M OM, &nowhere);
vsWr_mode(wdihandle, XOR);

f* reset endpoints */

syarray (0] = mousex;
xyarray[1] = mousey;
syarray(2) = moumex;
gyarray[3] = moumey;
flag = 1;
]
flag = check(};
break;
default:
break;
3
)
}
check() {
int buttonstate = 1: /* button state */

evnt_multi({My TIMER, CLICKS, BUTTON,
U, 0, norect, 0, norect, buffer, 0, 0, Lnowhere,
Enowhere, Bbuttonstate, dnowhere, Enowhere, Enowhere):

return{buttonstate);
3}

See Also
TOS, YDI

Notes .
Due to the way the AES routine reads the mouse buttons, the example will ot
always notice that the mouse button has returned to the up position,

Move text cursor down one row
#include <aeshind.h>

#include <vdibind.h>

void v curdown(handle) int handle

v_curdown is a VDI routine that moves the text cursor down one row. It
not affect the cursor’s horizontal position. Note that the virtual device T
first be put into text mode with the function v_enter_cur before this f
can be used. handle is the virtual device's VDI handle.

Mark Williams €

i v curhome-v curright
Lexico® = :
.—''_'_'_'_

See Also
TOS. v_curhome, v_ curleft, v_curright, v_ curap, VDI

curhome— ¥ DI function (libvdi.a/¥_curhome)
— move text cursor 1o the home position
s#include <aeshind.h>
sinclude <vdibind.h>
void ¥ curhome(handle) lat kandle:

¥

v curhome is @ VDI routing that moves the text cursor to the home position,
ie.. 1o the upper left-hand corner. Note that the virtual device must first be
put into text mode with the function v_enter_cur before this function can be
used. handle is the virtual device’s VDI handle.

Soe Also
TOS, v_curdown, v_curleft, v_curright, v_curhome, VDI

v curleft—Y¥ DI function (libvdl.a/y _curlelt)
© Muowve text cursor left one column
#include <aeshind.h>
glnclude <vdibind.h>
vold v_eurleflt(handle) int handle;

vy curleft is a VDI routine that moves the text cursor one column to the left, [t
dees not affect the cursor’s vertical position. Note that the virtual device must
first be put into text mode with the function v_enter_cur before this function
can be used, handle is the virtual device’s VDI handle.

See Afso
TOS, v_curdown, v_curhome, v_curright, v_curup, VDI

V_curright—VDI function (libvdl.a/v__curright)
Maove text cursor right one column
#include <aeshind.h>
#include <vdibind.h>
vold v _curright(handle) Int handlé;

v_curright is a VDI routine that moves the text cursor one column to the right,
It does not affect the cursor's vertical position, Note that the virtual device
must first be put into text mode with the function v_enter cur before this
function can be used. handle is the virtual device's VDI handle.

Mark Williams C 489

v_curtext-v_dspcar Lexicon

v_curtext—VDI function (libvdi.a/v_curtext)

v _curup—¥ DI function (libvdl.a/v_curup)

v dspeur—VDI function (libvdi.a/v_dspcur)

450

See Also
TOS, v_curdown, v_curhome, ¥v_carleft, v_curup, YD1

Write alphabetic text
#include <aesbind.h>
#include <vdibind.h>
void v_curtext(handle, string) int handle; char *string;

v_curtext is a2 VDI routine that writes alphabetic text on the virtunl devige
MNote that to use this routine, the virtual device must fitst be placed in text
mode, using the routine v_enter _cur. handle is the virtual device's VDI hnnd le.
string points to the NUL-terminated string of alphabetic characters to be writ=

en.

See Also
TOS, VDI

Move text cursor up ong row
#include <aesbind.h>

#include <vdibind.h>

vold v_curup(handle) int handle;

v _curup is 3 VDI routine that moves the text cursor up one row. It does not af=
fect the cursor's horizontal position. Note that the virtual device must first
put into text mode with the function v_enter_cur before this function ca
used. handle is the virtual device's VDI handle.

See Also
TOS, v_curdown, v_curhome, v_curleft, v _curright, VDI

Move mouse pointer to point on screen

#include <aesbind.h>

#include <vdibind.h>

void v_ dspcur(handle, xcoord. yeoord) int handle. xcoord, yeoord:

v_dspeur is a VDI routine that moves the mouse pointer to a specified poin
the screen. handle is the virtual device's VDI handle. xeoerd and ycoo
respectively, the X and Y coordinates to which the mouse cursor will be

See Also
TOS, VDI

Mark Williams

v_ecol-v_ellarc

v eeol—VDI function (libvdi.a/v eeol)
Erase text from cursor to end of screen
ginclude <aeshind.h>
#include <vdiblad.h>
void ¥ _eeol(handle) int handie;

v_eeol 153 YDI routine that erases alphabetic text from the position of the text
cursor to the end of the line. Note that the virtual device must first be put into
text mode with the function v_enter_cur before this function can be used.
handle is the virtual device's VDI handle.

See Also
TOS, v_eeos, ¥YDI

v eens— VDI function (libvdi.a/v_ecos)
"~ Erase from text cursor to end of screen
#include <aeshind.h>
#include <vdibind.h>
vold v eeos{ handle) Int handle;

v eeos is a VDI routine that erases a virtual device from the positinn of the text
cursor to the end. Note that the virtual device must first be put into text mode,
with the function v enter cur before this function can be used, handle is lhl:‘
virtual device's VDI handle,

See Also
TOS, v_eeol, VDI

v_ellure—VDI function (libvdL.a/v_ellare)
Draw an elliptical are
#include <aesbind.h>
#include <vdibind.h>
vold v_ellarc(handle, xcoord, ycoord, xradius, yradius, beginangle, endangle)
int handle, xcoord, yeoord, xradius, yradius, beginangle, endangle:

v_ellarc is a VDI routine that draws an elliptical arc. handle is the virtual
device's VDI handle. xcoord and yeoord give, respectively, the X and Y coor-
dinates of the center of the imaginary ellipse of the curve being drawn isa part,
aradius is the horizontal radius of the ellipse, and yradius is the vertical radius.
Mote that all of these values will vary, depending on whether the virtual device
utes normalized device coordinates (NDC) or raster coordinates (RC). Finally,
heginangle and endengle represent the beginning and end angles of the ellipse,
in tenths of a degree. On an imaginary clock, zero degrees is at 3 o'clock, 90
degrees at noon, 180 degrees at 9 o'clock, and 270 degrees at 6 o'clock.

Mark Williams C

v_ellarc Le:

Example
The following program uses STDIO routines to create a “rough-and-re
dialogue; the user sets the X radius, the Y radius, the beginning angle, an
end angle, which are then used to draw an elliptical arc on the screen.

#®include <gemdefs.h>
#include <sesbind.h>
#include «vdibind.h>

#define ESCAPE Dx1B /* zcan code returned by escape key */
#define ROUNDED 2 f* put rounded ends on lines */

#def ine REPLACE 1 /* code for REPLACE writing mode */
#define XOR 3 /* cocke for YOR writing mode *f

/* global line A variables weed by vdi; MUST be included =/
int contrl (121, intin({128), ptsin[128], intout[128], ptsout(128];

Jrl

* array used by ve clip(); MUST be set, or imeges that extend
* beyord the screen perimeters will write over low-level memory
* {¢.g., RAM disks, spoolers, etc.)

*f

int cliparcayl) = (1, 1, 639, 39);

/* arrays uied by drowline() */

wyvert(l = { 320, 1, 320, 399);
ayhoriz(l = { 1, 200, &3%, 200 3;

/* arrays usied by v_opvak() */
intwork In0) = 1, 1, %, 1, 0,0, 1,0, L, 2%
int work_out[57);

/* throw: awsy declaration, to keep system from scribbling over itaelf =f
int nowhere = 0;

maingd {
unsigned key; /* key returned by user ¥/
int vdihandle; /* wirtual device's handle ®/
int xradius;: /™ length of ¥ radius %/
int yradius; /™ length of ¥ radius */f
int beginangle; /* beginning angle */
int endangle; /* end angle =/

™ 0K, here we go ... *f
appl_init);
graf_mouse(M OFF, Enowhere);
wdihandle = graf_handle{inowhere, &ncwhere, Encuhere, Enowhere);
v_opmewk{work_in, Evdihandle, work out);
ve_clip{wvdihandle, 1, cliparray);
val_ends{vdihandle, ROUNDED, ROUKDED);

492 Mark William$

Lexicon v_ellarc
e s S

for(;:) {
printf{"Type <return> to continue, <esc> to exit.\n");
key = evnt_keybd():
switch{(charikey) {

case ESCAPE:
v_clsvwic{wdihendle);
appl_exit();
exit{l);

case "\n':
drawlines(vdihandie);
/* Enter X radius */
xradiue = getdata(“Enter X radius (screen, 0-320)");
syhoriz(0} = 320 - aradius;
xyhoriz(2] = 320 + xradius;
drewlines{vdihandle):

/* Enter Y rodius */
yradius = getdata{"Enter Y radius (screen, 0-2003");
gyvert(l] = 200 - yradius:
xyvert (3] = 200 + yradius;
drowl ires{vdihandie);

/* Enter begimning angle */
beginargle = getdata("Enter beginning angle (0-350)") * 10;
drasl inesvdihandle):

f* Enter end angle */
erdangle = getdata(™Enter end angle (0-3&03") = {0:
drawl ines{vdihandle);

/* And now, drew the elliptical arc */f
val width(vdihandle, 5);
v ellarc({vdihandle, 320, 200, xradius, yradius,
beginangle, endangle);
bresk;

default:
break;

b

Mark Williams C 493

v ellipse Léxico

v_ellipse—VDI function (libvdi.a/v _ellipse)

4494

drewl ines{handle)
int handle;
L
printf (O33N s
vel width(handle, 1);
v plinethandle, 2, xyvert);
v_plinethandle, 2, xyhoriz);

return;:
b]
getdeta(message)
char *message;
{
fari::) {
char string[20]; /* string used with user input */
int walue: M value user Intended */f
printf{"Xs: ¥, message);
fflushintdout):
if{{value = atol{pets(atring))) »= 0}
return{value};
}
3
See Also

TOS, VDI, v_ellipse

Draw an ellipse

#include <aeshind.h>

#include <vdibind.h>

vold v _ellipse(handle, xcoord, yeoord, xradius, yradius)
int handle, xcoord, yeoord, xradius, yradius;

v_ellipse is a VDI routine that draws an ellipse. handle is the virtual device
VDI handle. xcoord and yecoord give, respectively, the X coordinates and !
coordinates of the ellipse’s center. MNote that these measurements will chang
depending on whether the virtual device is set to normalized device coordina
(NDC) or raster coordinates (RC). Finally, xradius gives the ellipse’s horizol
radius, and yradius gives its vertical radiuos,

Example !
The following example draws ellipses on the screen. Clicking the mouse d
a rubber box; releasing the mouse fixes the box, whose dimensions are us
calculate the ellipse. Pressing the ‘W' kev cycles through the available ¥
maodes, for truly psvchedelic effects. Pressing <return> eXits.

Mark Williar

v_ellipse

#ipclude <gemdefs.h>
pipelude <aesbind, h>
#inelude <vdibind.h>

fdefine DOWK 1 /* mouse button is down */
gcafine W _KEY Dx1177 /* scan code returned by W key ¥/
§cefine RETURN Ox1C00 /* scan code returned by creturne key ¥/

;= global Line A varisbles used by wdi; MUST be included */
int contrl[12), intin(128], ptein(i12B1, intout(1281, ptsoutl1281;

J* array used by ws_clipl) */
int cliparray(= {1, 1, &3%, 399 };

/% arrys used by v_opwi() */
{nt work_infl = 1, 1,1, 1,1,1
int wark out[571;

A P PR A P

/* throw:-away declarations, to keep system from scribbling over itself #*/
int nowhere = O;
Rect norect = { 0, 0, 0, 0 ¥;

mabrfy {
/* declarations used by ewnt_multi() =/
int selection; /* code for event that occurred */
unsigned int which = (MU _KEYBD | MU _BUTTOM};
int clicks = 1; 7 mo. of clicks expected on mouse button */
int button = 1; /* which button; 1 = leftmont */
int buffer(11]; /* place to write AES messages */
int mousex; f* eouse X coordinate *f
int mousey; /* moume Y coordinate */
A greed key; F* key typed by user */

* misc declarations */
int wdihandle; /® wirtual device's handle %/
int writectr = 0; /* used to cycle through write modes */
int flillctr = 1; /* used to cycle through circle Fill styles 7
int width: f* box width set by graf_rubbox */
int height; /* box height set by graf_rubbox */
int xcoord; /* X coordinate of ellipse’s center */
int ycoord: /* Y coardinate of ellipse's center */
int xradius: /X radius of ellipse */
int yradius; f* ¥ redivs of ellipse =/

here we g0 ... */f

appl_initl);

graf_mouse(ARRDW, Enowhere);

vdihandle = graf_handle{fnowhere, Enowhere, Enowhere, Enowhere);
v opmvi(work in, dvdihandle, work _out);

ve_clip{wdihandle, 1, cliparray);

Mark Williams C

v ellpie

vsf_interior{vdihandle, 2):
vsf_perimeter{vdihandle, 1});
vam height{vdihandle, 3);

fori;;) {
selection = ewmt_multilwhich, clicks, button, DOWN,
0, norect, 0, norect, buffer, 0, 0, Emousex, Emousey,
Enovhere, Enowhere, kkey, &nowhere);

switchiselection) {
case WU_KEYBD:
if (key == RETURN) ¢
¥_clewwi(wdihandle);
appl_exit();
exit{0);
)

if (key == W KEY) (

uritectres:

vidr_sodefvdihandle, (writectrid)e=1);
¥
break;

case MU BUTTON:
fillotres:
wvif_style{vdihardie, (Fillctrk2i)el);
graf_rubbox({mousex, mousey, 0, 0, fwidth, Eheight);
scoord = mousex+(widthy/2);
yooord = mouseys(height/2):
xrodive = width/2;
yradius = helght/2;
v_ellipse{wdihandle, xcoord, ycoord, xradius, yradlus);

break:
default:
break:
¥
}
)
See Alsn
TOS, VDI, v_ellare, v_ellpie
Notes

v_ellipse can only create ellipses that are oriented horizontally or vertica
cannot create ellipses that are oriented diagnonally.

v_ellpie—VDI function (libvdi.a/v_ellpie)
Draw an elliptical pie slice
#include <aeshind.h>
#lnelude <vdibind.h>

496 Mark Willia

v_enter cur-v_fillarea

exicoD
L

vaid v_ellpieChandle. xcoord. yooord. xradius. yradius,
beginangle, endangle)
int handle xcoord, yeoord, xradius, yradius, beginangle, endangle;

v clipie is 2 VDI routine that draws an elliptical pie slice, #handie is the virtual
device's VDI handle. xcoord and yveoord give, respectively, the X and ¥ coor-
dinates of the imaginary ellipse of which v_ellpie draws a part. xradius gives
the imaginary ellipse’s horizontal radius, and yradius gives its vertical radius,
Finally, beginangle and endangle give, respectively, the beginning and end
angles of the pie slice, in tenths of a degree. On an imaginary clock, zero de-
grees is at 3 o'clock, 90 degrees at noon, 180 degrees at 9 o'clock, and 270 de-
grees at 6 o'clock.

See Also
TOS, VDI, v_ellipse

v_enter _cur—YDI function (libvdi.a/v_enter_cur)
~ Enter text mode

#include <aeshind.h>

#include <vdibind.h>

void v_enter _cur(handle) int handle;

v_enter_cur i5s 8 VDI routine that moves a virtual device into text mode. It
hides the mouse pointer and draws the text cursor. handle is the virtual device's
Y131 handle,

See Also
TOS, v_exit cur, ¥DI

v__exit _eur—VDI function (libvdi.a/v_exit_cur)
Exit from text mode
#include <aeshind.h>
#include <vdibind. h>
vold v exit _cur(handie) int handle;

v_exlt cur is a8 VDI rovtine that forces & virtual device to exit from text mode
and return to graphics mode, should these modes be separate on that device. It
removes the ext cursor I'mm the device and restores the mouse pointér, should
the virtual device support them, handle is the virtual devica's VDI handle.

See Also
TOS, v_enter _eur, VDI

¥_fillarea—VDI function (libvdi.a/+ _fillares)
Draw a complex polygon
#include <aeshind. h>

Mark Williams C

v fillarea Le;

498

#include <vdibind.h>
void v_fillarea(handle. count. xyarray) int handle. count, xyarrayinl;

v_Tillarea is a VDI routine that draws and fills a complex polygon. Note th
use the full power of this routine, you must first set the fill type with vsf
terior, the fill style with »sf_style, and the fill color with vsf_color.

handle is the virtual device’s VDI handle. count is the number of corners on
polygon. xyvarray gives the X and Y coordinates for each of the corners: g
the even-numbered entries hold X coordinates, and all the odd-num
entries hold Y coordinstes. Note that the value of n must be exactly douhl
of count.

Example
The following program draws a filled polygon on screen. Use mouse to
markers on the screen, with a maximum of 40 points. Pressing <esc> "¢0
the dots™ to draw and fill the polygon. Pressing the ‘T key cycles thr
tyvpes of fill; pressing the 'S key cycles through styles of [ill. Pressing <re

exils. N

Winc lude <gemdefs.h>
#include <pesbind.h>
#include <vdibind.h>

#cdefine RETURK Ox7COD /* scan code for <return> key */
#deline ESC Oxi1B /* scen code for <escr key */
#define T_KEY Oxi&fa /* scan code for T key */
Bdefine 5 KEY Ox1FT3 /* scan code for 5 key *f

Bdefine RSTERISK 3

/" global line A varisbles used by wdi; MUST be included */
int contrl[121, intin(128), ptsin(i28], intout(128), ptsout[128];

/% array vsed by v _pmarker() *f
int xymarker[2]:

/* array used by v_fillareat) */
int xypoly(80];

/™ oarray used by vs clipl) =/
int cliparrayll = € 1, 1, &3%9, 399);

/* erreys used by v opwk()
intwork in(l = ¢ %, 7, %, 10, 1,1, %, 1,1,1, 2%
int work_outi5T);

/™ throw-ewey declsretions, 1o keep system from scribbling over itself */
int nowhere = 02
Rect morect = £ 0, O, @, 0 3;

Mark Williams®

v fillarea

mairnt)
Iz deciarations used by ewnt_multi() */
int selection; /* code for event that occurred */
uns{gned int which = (MU_KEYBD | MU_BUTTON);
int clicks = %; /* no. of clicks expected on mouse button */
int buttoh = 1; /* which button; 1 = leftmost */
int buttonstate = 1; /* button state expected; 1 = down W/
int buffer[11]; /* place to write AES messages ¥/
int mousex: /* mouse X coardinate *7
int mousey; /* mouse T coordinate *7
uns T gred key; /* key typed by user */
J/* misc declorations */
int vdihardle; f* wirtual device's handle =/
int type = 0Q; I/ type of fill =/
Int gtyle = 1; r* atyle of fill =/
int n=.0; /™ used with xyarray(l */
int fleg = Q; /* has polygon been drawn yet? *f

/¥ 0K, here we go ... "/
appl_init();
grof_moune(ARROM, Lnowhere);
vidihandle = graf_handleddnowhere, browhere, Lnowhere, Enowhere);
v_oprvwWk(work_in, Lvdihandle, work_out);
ve_clip{vdlhandle, 1, cliparray);

wsm_height(vdihandle, 3);
vam_type(wdihandle, ASTERISK);

forg;:) &
selection = evnt_mulei({which, clicks, button, buttonstate,
D, norect, 0, norect, buffer, 0, 0, Emousex, Emousey,
tnowhere, Enowhere, Lkey, Enowhere);

sWitchiseiection) {
case MU KEYBD:
suitchikey) ¢
case RETURM:
v clevwk{vdihandle):
sppl_exitl):
exit({0);

case ESC:
graf_mouse(M _OFF, &nowhere};
v _fillaresivdihandle, n/2, xypoly);
graf_ mouse(M ON, Enowhere);
fleg = 1;
break;

Mark Williams C 499

v fillarea

case T_KEY:
if (flag =0 (
break;
) else {
type = (*+typa¥3);
wvsf_interior(vdihandle, type);
graf_mouse(M OFF, Enowhere);
v_fillarea{vdihandle, n/2, xypoly);
graf_mouse(M_ON, Lnowhere);
3
break:
cese §_KEY:
§f (flag == 0) {
break;
J olee {
style = ((=sprylaX2E)el);
vaf_stylelvdihandle, style);
graf_mouse(M_OFF, Lnowhere);
w_fillares(wdihandie, n/2, xypolyl;
graf_mouse(M OM, Enowhere);
i)
break;
¥
break;

cose WU _BUTTON:
if (flmg > 0) ¢
ne=g;
flag = 0;
}
symarker (0] = mousex:
xymarker{l] = mousey;

if {n <= 79) {
xypoly(n]l = mousex:
Lad
aypolyln]l = mousey;
Frvs &

}

graf_mouse(M OFF, Lnowhere);
v_pmarker{wdihandle, ASTERISE, xymarker);
graf_mouse(M OM, EInowhere);
break;

defeult:
break;

b

500 Mark Willia

pexicod ¥ form_ adv-v gtext
:—''-'_'_'_

Sae Also
TOS, v_bar, VDI, vr_recfl

y_form_ adv—VY DI function (libvdi.a/v_form_ady)
Advance the page on a printer
#include <aeshind. h>
#include <vdibind. h>
void v _form_ adv(handle) int handie;

v form__adv is a VDT routine that advances the page on a printer. Unlike the
related function v_clrwk, v_form_ adv does not erase material that has not yet
been written onto the printer.

See Also
TOS, v_clear_disp_list,v_clrwk, VDI

v_get _pixel—=VDI function (libvdi.a/v_get pixel)
See if a given pixel is set
#include <aesbind.h>
#include <vdibind.h>
void v get_pixel(handle, xcoard, yeoord, & flag. &color)
int handle, xcoord, yeoord, flag, color;

¥_get pixel is a VDI routine that indicates whether or not a pixel is set, handle
is the virtual device's ¥DI handle. xcoord and yeoord are, respectively, the X
and Y coordinates of the pixel in question. flag is set by v _get_pixel; zero in-
dicates that the pixel is not set, whereas one indicates that it 15 set. Finally,
color is set by v_get pixel; il the pixel is set, this variable holds the code of the
color to which it is set. For a table of color codes, see the entry for v_opnwk,

See Also
TOS, vDI

Y_gtext—VDI function (libvdi.a/v_gtext)
Draw graphics text
#include <aesbind,h>
#include <vdibind.h>
vaid v _gtext{handle, xcoord, ycoord. text) int text, xcoord, veoord; char *rext;

v_ptext is a VDI routine that draws graphics text on the screen. handle i the
virtual device's VDI handle. xcoord and yeoord are, respectively, the X and Y
coordinates of the point on the screen where the drawing of the string will
begin. Note that these values will change, depending upon the virtual device
has been set to normalized device coordinates (NDC) ar raster coordinates (RC).
Finally, text points to the string to drawn.

Mark Williams C

Lgtext

302

The font of the string drawn, its size, its color, the angle at which it is
played, and the manner of its alignment can all be set with separate VDI
See the entries given below for more information. i

Example

The following example draws cross-hairs on the screen, and then ali

string *Mark Williams C" against them. Pressing the ‘E’ key cycles thron
available special effects; *H’, the available horizontal alignments; ‘R’ th
rotation; *S°, the available font sizes; and 'V, the vertical alignments. T
<return> exits from the program :

#include <gemdafs. h>
#include <pesbind.h>
#include ovdibind.h>

#define RETURN Ox1CO0 /* scan code returned by return key %y
#define E_KEY Ox1285 /* scen code returned by E key */
Hdefine H_KEY 0aZ358 /* scan code raturned by W key *f
Hdefine R_KEY Ox1372 J/* scan code returned by R key */
Kdafine S KEY Cx1FT3 J* scan code returned by § key */
Wdefine ¥ _KEY Dn2FT6 /* scon code returned by V key */ 3
#define RESERVED O /* used by system for its own purpomes #f)
#define ESCAPE Ox1B /% ASCI] code for <esc> %/ |

/* global Lline A variasbles used by vdi: MUST be inclucked */
int contrl[12), intin(128], ptsin{128], intout(128), ptsout(128];

/% array used by va_clipl) */
int cliparreyll = ¢ 1, 1, 639, 399 };

/* arreye used by drawline() *f
wywert(l = { 320, 1, 320, 3%)
ayhorizll = (1, 200, 639, 200);:

/* string used by drawtext() *f
char ®*text = "Mark Williams C®;

f* srrays used by v_opwwi() */
int werlcinf) = ¢ 1, 1, 1, 1, 1, %, 1, %, 1,1, 2 %
int work_out [571;

/* throw-swasy declaration, to keep system from scribbling over itself */
int nowhere = 0;

maing) ¢
unsigned key: /® key typed by user */
int wdihandle; J* virtual device's handle */
int sfze = 1; J/* text's size, in rasters */
int effect = 1; /® text's special effect used %/
int halign = 0O: /® text's horizontal aligrment */f
int valign = D: /* text's vertical aligrment */
int angle = O; /* angle at which text is drawn */

Le]{il:ﬂ“

J* 0K, here we go ... */
appl_init();
graf_mouse(M_OFF, Enowhere):
vdihandle = graf handle(Enowhere, Enowhere, Enowhers, Enouwhere);
v_opavwk(werk_Tn, Lvdihandle, work_out):
vs_clip{wdihandla, 1, cliparray);
drawtext{vdihandle);

farl;:y €
key = evnt_keybd(});
sWitchikey) {

case RETURN:
graf_mciuse(M 0N, Enowhere);
v_elgwk{vdihandie);
appl_exit();
exit{0);

case E_KEY:
vit_offectalvdihandle, affect);
if (++effect > 322
effect = 1;
drawtext{vdihandle):
break;

coke H_KEY:
haligre+:
vst_alignment({vdihandle, (haligni3), (valignXd)y,
inowhere, bnowhere);
/* legal H value 0-2, ¥V value 0-5 *f
dravtext{vdihandle):
break;

case R_NEY:
/* Mote: 5T draws text only at right angles *7
argle += 900;
if (angle » 35003
angle = 0;
wit_rotation{vdihandle, angle);
drawtext{vdihandle):
break;

case 5_KEY:

wut_height(vdihandle, size, &nowhere,
&ncwhere, bnowhere, Enowhere);
/*® character size in rasters */

i (+igize > 28)
size = 1;

drewtext{vdihandle):

break;

Mark Williams C

¥ hardcopy

case W KEY:
wvaligns+:
vst_sl ignment{vdihandle, (halignX3}), (valign¥&),
Enowhersa, EBnowheral;
/* legal H value 0-2, ¥ value 0-5 */

drawtext{vdihandle);
bresk;
default:
break;
3
¥
¥
drawl ines(handle)
int handle;
4
v_plinethandle, 2, syvert);
v plinethandle, 2, xyhoriz);
return;
3
drawtext{handle)
int handle;
{
w_clrwk(handle);
draul ines{handle);
v_gtext(handle, 320, 200, text);
return;
¥
See Also

TOS, v_Jjustified, VDI, vqt_extent, vgt_name, vqt width, vst_alig
vl cnlur, vst_effects, vst_height, vst Iuld _fonts, vst_point, vst_rola
vst_unload fonts

v_hardcopy—VDI function (libvdl.a/v_hardcopy)

504

Write the screen to a hard-copy device
#include <aesbind.h>

#include <vdibind. h>

vold v_hardcopy(handle)

v_hardeopy is 3 VD! routine that writes a copy of the virtual device toa pr
or other attached hard-copy device. handle is the virtoal device's VI hand

See Also
TOS, vDI

Mark Williams €

Lexicon v_hide_ c-v_justified

Notes
The printer must be installed with TOS before this routine will work properly.

v |“|;Ie c—VDI function (libvdi, a/v hide ¢)
Hide the mouse pointer
#include <aesbiod.h>
#include <vdibind. h>
void v_hide_ c(handle) int handlie;

v_hide_¢ is a VDT routine that hides the mouse pointer. This routine should be
invoked when vour program redraws the screen: if the pointer 15 not hidden, it
will leave a grayish patch on the screen when it 15 moved.

See Also
TOS, v_show_¢, VDI

v justified—VDI function (libvdl.a/v_ justified)
Justify graphics text
#include <aesbind.h>
#include <vdibind.h>
void v_justified(handle, xcoord, yeoord. siring. length, charsp, wordsp)
int handle, xeoord, yeoord, length, charsp, wordsp; char *string;

v Justified is'a VDI routine that justifies a string a text on a preset line length,
Justificarion means that slivers of space are inserted between words or charac-
ters to ensure that each string fills exactly the same space. This paragraph is an
example of justified text,

handfe is, as always, the virtual device's VDI handle. xcoord and ycoord give,
respectively, the X and Y coordinates of the point where the text is to begin
printing. fength is the length to which you want the text set; this value will
vary, depending an whether the virtual device is set to normalized device coor-
dinates (NDC) or to raster coordinates (RC)., siring points to the string you
want to set. Finally, charsp and wordsp are flags that indicate whether you
want spacing altered between words or characters when performing justifica-
tion; zero turns off spacing, and one turns it on. Therefore, setting both charsp
and werdsp to zero effectively turns of { justification.

Note that if the string is too long to fit into space, the characters will overlap.

See Also
TOS, v_gtext, YDI

Nates
This routine uwses the VDI's GDOS in its operation. It should not be used if the
GDOS is not present in yvour edition of VDL

Mark Williams C

v _meta extents—v_opnvwk Le

v_meta_extents—VDI function (libvdl.a/v_meta_extents)

v_opnywk—VDI function (libvdi.a/v_opnvwk)

306

Update extents header of metafile

#include <aesbhind.h>

#include <vdibind.h>

void v_meta_extents{handle. minx. miny, maxx. maxy)
int Aandfe, mmx, miny, moxx, maxy,

v_meta_extents is a VDI routine that updates the extents header of a metafi
The extents header gives the minimum space needed to draw all of the
primitives contained in the metafile; it is used by some routines in alloca
space. handle is the virtual device's VDI handle. minx and miny give, reg
tively, the minimum width and height of the area needed to hold the 1
primitives contained within the metafile; whereas maxx and maxy give, respecs
tively, the maximum width and height.

See Also
TOS, v_write_meta, VDI, ym_ [llename

Notes I
This routine uses the YDI's GDOS in its operation. It should not be used if the
GDOS is not present in your edition of VDL

If this routine is not wsed when an item is added to a mertafile, the ext
parameters will be set 1o zero.

Open the virtual screen device

#include <aesbind.h>

#include <vdibind.h>

void v_opnyvwk(weork _in, handle, work _out)
Int work__inl11], *handle, work_oudl 57};

v_opnvwk is a VDI routine that opens the virtual screen device. wark _in i
array of |] integers that must be set before invoking v opnvwk. These
described in the entry for v_opnwk.

handle is the device handle for the screen. Because the desktop has alrea
opened the physical screen device, you must use the AES routine gral_han
to obtain the YDI handle for the screen, as follows:

foo = gref hendle{Excoord, &ycoord, &awidrh, Sheightd;

In this example, fee is the VDI handle, which is returned by graf hand
xcoord, ycoord, width, and height give the dimensions of a character cell in
screen device, and dre set by graf _handle.

work _ouf is an array of 57 integers that are set by v_opnywk. Your prog

Mark Williams

fexicod

v_opawk

.,--"'"_'_'_

may need to interrogate thisarray for information; what each integer encodes is
described in the entry for v_opnwk.

Example)
For an example of this routine, see the entry for v_ pline.

See Alsa
TOS, v_opnwk, VDI

Nites

At present, device attributes cannot be set through the work _inarray. With the
exception of weork_inf10], they are all ignored and should be set to zero. To
set device attributes, use the appropriate attribute functions, as listed in the
entry for VDI

y_opnwk—VDI function (libvdi.a/v_opnwk)

Open a virtual workstation

#lnclude <aeshind.h>

#include <vdibind. h>

void v_opnwk(work_in, handle, work _owt)
int wark_inl11], *handle, work awifﬂ],

v_opnwk is @ VDI routine that opens a virtual workstation. This routine
should used to open all virtual workstations except the screen, because the
screen 15 already set by GEM when it boots. To open the screen, use
v opnywk.

waork _in is an array of 1] integers that must be set before v_opawk is invoked.
Their values are as follows:

work _inffl] Device number, as follows:

1 screen
11 plotier
21 printer
31 mewfile
4] camera
51 tabhlet
work_inf1] Line type, as follows:
1 solid
2 long dashes
3 dots
4 dashes plus dots
5 short dashes
6 dazh, dot, dot
7 user-defined
8-n device-independent

Mark Williams C 507

v opnwk Le

work_inf2] Line color, as follows:

WHITE
BLACK
RED
GREEN
BLUE
CYAN
YELLOW
MAGENTA
WHITE
BLACK
LRED
LGREEN
LBLUE
LCYAN
LYELLOW
LCYAN
16-n device-independent

ki
N e b e S WD 00 s O U R L b =D

Note that the names in capital lefters are mnemonics -'-';"
defined in the header file obdefs.h.

work_inf3] Marker type, as follows:

dot

plus sign

asterisk

square

diagonal cross
diamond
device-independent

wd B LA e T =

work inf4] Marker color; same as above.

work inf5] Text face. These can vary greatly, depending on the
being opened. For a list of the code and names of the the
available on a virtual device, use the function vqt_font_infos

work_inf6] Text color; same as above.

wark _inf7] Fill type, as follows:

0 hollow

1 sohd

2 patterned

3 cross-hatched
4 user-defined

508 Mark Williams *

work_inf8]

work _inf9]

11-'|:'.|r.|11.'_|‘.'i'I]'r Iﬂj

Fill style. There are 24 styles of patterned fill, and 12 styles of
cross-hatching. See the enatry for wsf_imterior for a program
that displays the fill styles.

Fill color: same as above.

Coordinate system. Zero indicates normalized device coor-
dinates (NDC). This 15 a svstem in which the screen is divided
intc 8 grid of 32,768 by 32,768 points, with the beginning point
in the lower left-hand corner. Two indicates raster coordinates
(RC). This uses the absolute number of rasters on the screen,
counting from the upper left-hand corner of the screen. Note
that the number of rasters varies with screen resolution: high
resolution is 640 wide by 400 high; medium resolution, 640 wide
by 200 high; and low resolution, 320 wide by 200 high, At
present, the Atari 8T can accept only raster coordinates.

handle is the device's VDI handle, and is set by TOS.

work_out is an array of 57 integers that is filled in by v_opnwk, as follows:

0

1
2
3
4
5
6
7
8
9

width of device, in rasters (no. of X coordinates)
height of device, in rasters (no. of ¥ coordinates)
uses precision scaling? (O=ves, l=no)

width of one pixel, microns

height of one pixel, microns

no.
no.
no.
no.
no.
no,
no.
no.
ng.
no.

of possible character heights (O=continuous scaling)
of line tvpes

of possible line widths (O=continuous scaling)

of marker types

of possible marker sizes (O=continuous scaling)

of text fonts available

of fill styles available

of cross-hatching stvles available

of colors that can be shown simultaneously

of generalized drawing primitives (GDI's)

first 10 GDI's supported (- 1=end of list);
I=rectangle, 2=curve, 3=circle segment,
4=circle, 5=ellipse, 6=¢lliptical arc,
T=elliptical segment, 8=rounded rectangle,
9=filled, rounded rectangle, 10=justified text
attribute of corresponding GDI from
work out[15]-[24] (-1=end of listk
(=line, I=marker, 2=text, 3=area fill,
4=no attribute

color capability? (O=no, 1=yes)

text rotatable? (0=no, l=yes)

can fill areas? (0=no, I=yes)

supports cell arrays? (O=no, I=vyes)

Mark Williams C

v_output_window

39 no. of colors supported:
O=more than 32,767; l=monochrome; >2=no. of colors

40 Cursor control devices: |=keyboard only; 2=keyboard and
mouse

41 no. of mappable devices: |=kevboard, Z=another device

42 no. of choice devices: I=function keys, 2=another key field

43 no. of string devices: |=keyboard

44 workstation type: O=output only; |=input oniy:
2=input/output; 3=reserved; 4=metafile

45 minimum character width

46 minimum character height

47 maximum character width

48 maximum character height

49 minimum visible line width

50 reserved (always zero)

51 maximum line width in X axis

52 reserved (always zero)

53 mimimum marker width

54 minimum marker height

55 maximum marker width

56 maximum marker height

See Afso
TOS, VDI, v_opuywk

Nates)
This routine uses the VDI's GDOS in its operation. It should not be used

GDOS is not present in your edition of VDI, To open the screen device, usi
related function v_opnvwk,

As of this writing, a virtual device cannot have its attributes set throu
work _in array. work_inf0] through work _inf9] should be set to o

work_inf 11| should be set to two. Any other settings will either be ignori
will cause system errors,

v_output window—V DI function (libvdi.a/v_output window)
Dump a portion of a virtual device to a printer
#include <aeshind. h>
#include <vdibind.h>
void v_output window(handle, xyvarray) int handle, xyarrayid];

v_output_window is a VDI routine that dumps a portion of a virtual de
the printer. handle is the virtual device’s VDI handle. xyarray gives th
corners of the area to be dumped. On devices set to normalized devic

dinates (NDC), xyarray/0] and xyarrayf1] give, respectively, the X &
coordinates of the lower left-hand comer, and xyarray/ 2] and xyvarrayf3.
the coordinates of the upper right-hand cormer. On devices set to raster €0

510 Mark Willias

[exicol
S

v_pieslice-v_pline

dinates (RC), the first two array elements give the coordinates for the upper
left-hand corner, and the latter two elements the coordinates of the lower
right-hand corner,

Seg Also
TOS, VDI
Nides

The printer must be correctly described to TOS before this routine will work.

v_pieslice—VDI function (libvdi.a/v_pieslice)

Draw a circular pie slice

#include <aesbind.h>

ginclude <vdibind.h>

void v_ pleslice(handle. xcoord, yeoord, radius, beginangle, endangle)
int handle, xcoord, yeoord, radius, beginangle, endangle;

v_pieslice is a VDI routine that draws a circular pie slice. hand{e is the virtual
device's VDI handle. ‘xcoord and ycoord give, respectively, the X and Y coor-
dinates for the imaginary circle of which the pie slice is a part, radius gives the
imaginary circle’s radius. Note that these measurements vary, depending on
whether the device uses normalized device coordinates (NDC) or raster coor-
dinates (RC). Finally, beginangle and endangle represent the beginning and
end angles of the pie slice, given in tenths of a degree. Counting on an imagi-
nary clock, zero degrees is at 3 o'clock; 90 degrees at noon; 180 degrees at 9
o'clock; and 270 degrees at 6 o'clock.

See Also
TOS, v_circle, VDI

v pline—%DI function (libvdi.a/v_pline)

Draw a line

#include <aeshind.h>

#include <vdibind.h>

void v pline(handle, howmany, xyarray)
int handle, howmany, xyarray|a]:

v__pline is 2 VDI routine that draws a line. Note that for VDI, a line is built out
of one or more line segments, each end of which has its own pair of X and Y
coordinates. Thus, it is possible to use v_pline to draw polygons or other
(1gures on the screen.

handle 15 the virtual device's VDI handle. count is the number of line segments
to be drawn. xyarray 15 an array of integers that holds the X and Y coordinates
for the ends of the line segments; nn 1% exactly double the value of counr. Note
that each even value in the array encodes an X coordinate, and each odd value a
Y coordinate.

Mark Williams C 511

v_pline

51

Example
The following example allows you draw lines on the screen while using
mouse. Click the left button to draw a line; holding down the left hut‘tnn

vou draw a continuous squiggle. Exit by typing any key. i

The program i5 called line.c. Compile it with the following command line:
cc =¥ line.c -laes -lwdi

This program should not be compiled with the -VGEM hecause it uses arg
arge.

The command line takes four arguments: the width of the line being
{from one to 99); the type of line being draw (from one to six); and the :
endpoints (from zero to two). For example, to invoke the program from ms
draw solid lines three rasters wide, with arrowheads at each end, type:

gem line 3111

This will allow you to experiment with various widths and styles of lines;
sing an incorrect value or an incorrect number of variables causes it to exit
an error message that, unfortunately, fashes very briefly on the screen,

#include <aesbind.h»
dinclude <gemdefs. h>
#include <vdibind.h>

/* global Line A varfobles used by wdi; WUST be included =/
int contrl[12), intin{128), ptsin[128), intout{128), ptascut(128];

/* arrey used by v_pline() */
int xyareayl) = € 1, 1, 1, 1 3

/® array used by vi clip{) */f
int cliparray() = { 1, 1, 439, 399);

/* arrays used by v opaak() =/
int wark T3 = ¢ 1, 1, 1,1, 1,1, %, 1,4, 1, 2%
int work_out[57];

/¥ throw-awsy declarations, to keep system from scribbling over itself */

int nowhere = 0;
Rect norect = (0, 0, 0, 0);

Mark Willia

meinfarge, argv)

int argc; char *ergvl; {

j* declarations used by ewnt_multi() */
int selection; /* code for event that occurred */
unsigned int which = (MU _KEYBD | M) BUTTON);
int clicks = 1; /* no. of clicks expected on mouse button */f
int button = 1; /* which button; 1 = leftmost */
int buttonstate = 1; /* button state expected; 1 = down =/
int bufferf11]; /* plece to write AES messages */
int mousex; /* mouse X coordinate *f
int moUseY; /* mouse Y coordinate */f

/* misc declarations */
int wdihandlie;
int width;
int type;
int end];
int end2;

/* check if command |ine arguments are OK */
Bf CCarge-1) 1= &) {
quit (“Usage: Lime [uwidth, type, endl, enclZ]®);

¥

width = stoi(argv(i]};

type = atol{argvi2l);

end] = atoiCargv(3l);

end? = atol{argviil);

it {width < 1 || width > $%) (

quit ("Width [ergv(1]] has incorrect value®);
b

if (type <1 || type » & 3 (
quit ("Type [argv[2]1} has incorrect waluwe®);
¥

if (endl <0 || endl » 23 (
quit {“First line end f{argv[3]1] has incorrect value");
b

if (end2 <0 || endl > 2) (
quit (“Second line end [argvwI41) has incorrect value");
}

Mark Williams C

v_pmarker Les

J* 0, here we go ... =f
appl_init{};
graf_mouse{ARROM, Enowhere);
viihandle = graf_hendle(bnowhere, Enowhere, Enowhers, &nowhere);
v_oprvwk{work_in, Swdihandle, work_out);
vs_clip{vdihandle, 1, cliparray);
wvel_width(wdihandie, width};
vsl_type(vdihandle, type);
vel_ends{vdihendle, endl, end2);

for{z;:} €
selection = evnt_sulti(which, clicks, button, buttonstate,
0, norect, 0, norect, buffer, 0, O, Emousex, Emousey,
inovhere, Enowhere, Lnowhere, Enowhere);

ewitchiselection) {

cose MU KEYBD:
v_clavwk({vdihandle);
sppl _exit();
exitiD);

case MU _BUTTON:
xyarray[0] = xyarray(2);
xyarray[1] = xyerray(3);
xyarray (2] = mousex;
xyarray (3] = mousey;

graf_mouse(M_OFF, Lnowhere);
v_pline(vdihandle, 2, xyarray);
graf_mouse(M OM, Lnowhere);
break ;

defoult:
break;
b

¥

quitimessage)
char "message;

{
printf{"Xs\n", message):
exit(0});

}

See Also

TOS, VDI, vql_atiributes, vsl_color, vsl_ends, vsl_type, vsl_udsty, vsl_w

v_pmarker—VDI function (libvdi.a/v_pmarker)
Draw a marker
#loclude <aeshind.h>
#include <vdibind.h>

514 Mark Willia

Lexicon v_rbox

yoid v pmarker{handle. count, array) int handle, count, arrayinl;

v pmarker is a YDI routine that draws one or more markers on a virtual device.
hrandle is the virtual device's VDI handle. cowtt is the number of markers yvou
want to draw. array is an array of X and Y coordinates that locate each marker
on the screen; n, therefore, must be exactly double the size of count. Every even
number in this array indicates an X coordinate, and every odd number a2 ¥
coordinate. Mote that the values for each coordinate will differ, depending on
whether the device is set to normalized device coordinates (NDC) or raster
coordinates (RC).

Example
For an example of this routine, see the entry for v_clrcle.

Seo Afso
TOS, VDI, vqm_attributes, vsm_ color, vsm__height, vsm_ type

v _rbhox—VDI function (libvdl.a/v_rbox)

Diraw a rounded rectangle

#include <aesbind.h>

#include <vdibind.h>

vold v_rbox(handle, xyarray) int handle, xyarraydl;

v_rbox is a VDI routine that draws a rectangle with rounded corners. handle is,
as always, the virtual device's VDI handle. xyarray gives the X and Y coor-
dinates of the two corners that define the rectangle: the even entries in the ar-
ray give the X coordinates, and the odd entries the Y coordinates. Note that
these values will change, depending on whether the virtual device is defined as
using normalized device coordinates (NDC) or raster coordinates (RC). On an
NDC device, xyarray(0] and xyarrayfl] encode the lower left-hand corner,
where on an RC device they encode the upper left-hand corner: likewise, on an
NDC device xyarray{ 2] and xyarray/ 3] represent the upper right-hand corner,
whereas on an RC device they represent the lower right-hand corner.

Example
The following example draws [illed, rounded rectangles on the screen. Use
mouse to draw rubberboxs on the screen. Pressing any key exits,

#include <gemdefs.h>
#include <assbind.h>
#include <vdibind.h>

/* global Line A variables used by wdi; MUST be included */
int contrl[12], intin[128], ptsin(i28], intout{128], ptsoutf128]:

Mark Williams C 515

¥ rhox Le;

/¥ arrey used by v _rfboa() ¥/

int xyarray[J = {1, 1, 1, 1 ¥

/™ erray used by vs_clip() */

int cliparray(l = € 1, 1, £39, 399 };

/™ arrays used by v_opwak() */f

int work_in} = £ 1, 1,1, %, 1,1, 1,1, %, 1, 2 >:

int work out [571:

/* throw-swsy declerations, to keep system from scribbling over itself *f

int npowhere = 0O;

Rect norect w { O, D, @, 0 3;

maing) {

/* declarations used by ewnt_multif) */
int selection; /* code for event that occurred */
ungigned int which = (MJ_KEYBD | MU_BUTTON);
int clicks = 13 f* no. of clicks expected on mouse button
int button = 1; /* vhich button; 1 = leftmost */
int buttonstate = 1; F* button state expected; 1 = down %/
fnt buffer(11]; /* place to write AES messages %/
int mousesx; /* mouse X coordinate */f
int mousey; /* mxme Y coordinate *f
unsigred key: I* key typed by user */

/* mise declarations %/
int vdihandle; /* virtusl device's handie %/
fnt width; /* width of rubberbox user draws */
int depth; /* depth of rubberbox user drows */

jl6

oK,

here we go ... */

sppl_init();

graf_mouse(ARRDM, Enowhere);

vdihandle = graf_handle(inowhere, Lnowhere, Enowhere, Snowhere);
v_oprivdk {work_in, &vdihandle, work out);

vi_clip{wdihandle, 1, ctiparray);

vif_perimeter(vdihandle, 13;

forl;:) {
selection = evnt_multi(which, clicks, button, buttonstate,
0, norect, O, norect, buffer, 0, 0, Smousex, Smousey,
Enowhere, Bnowhere, Bkey, Enowhere);

switchiselection) {

cate MU KEYED:
v_clswvwi{wdihandle);
appl_exitl);
exit(0);
break:

Mark Willia

Lexicon v_rfhox

case MU BUTTON:
graf_rubbox{mousex, mousey, 3, 3, fwidth, &depth);:

syarrey 0] = mousex;
kyarray[1]l = mousey;
syarray[2] = (meusexswidth);

xyarray[31 = (mousey+depth);
graf_mouse{M_OFF, &nowhere);
v_rfbox{vdihandle, xyarray);
graf_mouse(H ON, Lnowhere);
break;

default:
break;
3

b

See Also
TOS, VDI, v_rfbox

v _ribox—¥DI function (libvdi.a/v_ rfbox)

Draw a filled, rounded rectangle

#include <aesbind. h>

#include <vdibind.h>

void v_ rfbox(handle, xyarray) Int handle, xyarrav4l:

v_rfbox is a VDI routine that draws a rectangle with rounded corners. It uses
the functions vsf_ Interior and vsl_style, which set, respectively, the type and
style of the interior fill,

handle is, as always, the virtual device's VDI handle. xyarray gives the X and
Y c¢oordinates of the two corners that define the rectangle; the even entries in
the array give the X coordinates, and the odd entries the Y coordinates. Note
that these values will change, depending on whether the virtual device is
defined as using normalized device coordinates (NDC) or raster coordinates
{RC). On an NDC device, xyarray/0] and xyarray/!] encode the lower lefi-
hand corner, where on an RC device they encode the upper left-hand corner:
likewise, on an NDC device xyarray/2] and xyarray[3] represent the upper
right-hand corner, whereas on an RC device they represent the lawer right-
hand corner.

Example
The following example draws filled, rounded rectangles on screen. Use mouse
to draw a rubberbox on screen. Pressing any key exits.

Mark Williams C 517

v_ribox Lexico,

#include <gesdefs.hs
#include <sesbind.h>
#include evdibind.h>
#define RETURM Ox1C00

/* global Line A varisbles used by wdi; MUST be included *f
int contrl [12), intin[128), ptesini12B], intout(128], ptsout(128];

/% array used by v_ribox() */
int xyarrayll = { 1; 1, 1, 1 };

/* arrey used by vs clipl) */
int cliparrayll = €1, 1, 639, 399 };

/* arreys used by v opvwk() */
fot work_in0 = € %, 1, 08, %, 0, 0,080, 1, 1, 2
int work_out [S7];

/*® throw-ousy declerations, to keep system from scribbling over itself */
int nowhere = 0
Rect norect = { 0, 0, 0, 0);

mainf) {

/% declarations used by ewnt_multi() =/
fnt selection; /* code for event that occurred */
unsigned int which = (MU_KEYBD | MU_BUTTON);
int elicke = 1; /* no. of clicks expected on mouse button *F
int button = 1; J* which butten; 1 = Leftmost */
int buttonstate = 1; /* button state expected: 1 = down ¥/
int buffer(iil; /* place to write AES mesaages */
int mousex; /* mouse X coordinate */
int mousey; /* moume Y coordinate *J
unsigned key; 7* key typed by user */

/* misc declarations */
int vdihandle: /* wirtual device's handle */
int width; /* width of rubberbox user draws */
int depth; /* depth of rubberbox user drows *f

/" 0K, here we go ... "/
sppl_init();
graf_mouse{ARROW, Lnowhere);
vdihendle = graf_handle(inowhers, Enowhere, Snowhere, Enowhere);
v_oprvikiwork_in, Bwdihandle, work_out);
v&_clip{wdihandle, 1, cliparray);
vif perimeter({wdihandle, 1);

for{::)
gelection = evnt_multi(which, clicks, button, buttonstate,
0, morect, O, norect, buffer, 0O, 0, Emousex, &mousey,
Enocwhere, Bnowhere, Bkey, Bnowhere);

518 Mark Williams

xicom ¥_rmcur-v rvofl
exicon

guitchiselection)

caze MU KEYBD:
v_clevwk({vdihandle);
appl_emin(};
exit(0y;

cage MU _BUTTOM:
graf_rubbox(mousex, mousey, 3, 3, Ewidth, &depth};

xynrray (0] = mousex;
xyarray(l] = mousey;
xyarray[Z] = (mousex+width);
syarray[3] = {(sousey+depth);

graf mouse(M OFF, Enowhere);
w_rfbox(vdihandie, xyarray);
graf_soiuco(H DN, inowhere);
break;

defoult:
break;
b

i

See Also
TOS, VDI, v_rbox

v_rmeur—YDI function (libvdi.a/y_rmcur)

Remove last mouse pointer from the screen
#include <aeshind.h>

#include <vdibind.h>

void \'__rmtur{handa’f:l int handle;

v_rmecur is 8 YDI routine that removes the last mouse pointer from the screen,
Mote that this routine removes only the [asf mouse pointer to have been in-
voked. If the mouse pointer has been invoked several times, this routine must
be called as many times before the mouse pointer finally disappears,

See Also
TOS, VDI

v ryvaff—%DI function (libvdl.a/v rvoff)

End reverse video for alphabetic text
#include <aesbind.h>

#include <vdibind.h>

vold v_rvoff{handle) int handle;

v_rvolf is a VDI routine that turns off reverse-videa display for all alphabetic
text written subsequently. handle is the virtual device’s VDI handle.

Mark Williams C 519

v rvon-v opdwk L

v_rvon—Y DI function (libvdi.a/¥_rvon)

v_show_e—VDIfunction (libvdl.a/v_show_c)

v_updwk—YDI function (libvdi.a/v_updwk)

520

See Also
TOS, ¥_rvon, YDI

Display alphabetic text in reverse video
#include <aesbind.h>

#include <vdibind.h>

void ¥_rvon(handle) int handle;

v_ryon isa YDI routine that causes all subsequen