
OWNER'S MANUAL

SpartaDOS
Construction Set
Advanced Disk Operating
Systems With Utilities for
Atari a-Bit Computers

The SpartaDOS
Construction Set

Advanced
Disk Operating Systems
with Utilities
for Atari Computers

bylCD

Note-throughout this manual:
SpartaDOS, Sparta DOS Construction Set, UltraSpeed, US Doubler, and R-Time 8, are
trademarks of lCD, Inc.
Atari 130 XE, 800XL, 400/800, 810, 850, 1050, AtariWriter, and AtariArtist, are trademarks of
Atari, Corp.

OSS version 4 is a trademark of OSS, Inc.
ATR8000 is a trademark of SWp, Inc.

Percom is a trademark of Percom Data Corp.

Axlon RAMPOWER 128 is a trademark of Axlon, Inc.

R:Unk is a trademark of Quantum Microsystems, Inc.

Published by lCD, Inc.
1220 Rock Street, Suite 310
Rockford, IL 61101-1437
U.S.A.

© 1985 lCD, Inc. All rights reserved. Printed in the United States of America. Reproduction
or translation of any part of this work (beyond that permitted by sections 107 and 108 of the
United States Copyright Act) without the permission of the copyright owner is unlawful.

PREFACE

The SpartaDOS Construction Set
What is a DOS? To some people a DOS is just for loading games. For
others it is the framework for programming. Some even believe it is a
silent manager that should never be seen. All of these are probably true.
Different people want different things from a DOS just as they have
different reasons for owning a computer. If you own an Atari 8 bit
computer you are in luck! ICD has created the SpartaDOS Construction
Set. This is one system, complete with useful utilities, choice of menu or
command operation, even special memory efficient XLIXE versions with
provisions for Ramdisk on the 130XE. Spar!aDOS is the DOS for the
future with support for any Atari compatible disk drive including future
add on hard disks. It is the only DOS for 8 bit Atari computers that: as of
this writing, supports single, dual and double density. SpartaDOS won't
become obsolete just because a new drive comes out. Learn to use
SpartaDOS now because it will last a long, long time.

What this Set will do for You
The SpartaDOS Construction Set is the cumulation of two major versions
and several SpartaDOS types with many powerful utilities. This provides
you, the computer user, with the building blocks for creating your own
DOS diskettes. By working through this manual, you will learn the uses
and requirements for: each DOS type, the commands, and the utility
files. This should leave you with the fundamental knowledge needed to
decide which DOS, if any, to use and which utilities are needed on which
diskettes. After mastering the easy sections, you are invited to move on to
the more technical chapters. There is enough meaty information in these
sections to satisfy even the most voracious appetite. To the more
experienced, we invite you to attempt writing some of your own
SpartaDOS commands or utilities. This manual contains an abundance
of new, useful information for everyone, from the beginner, to the most
experienced programmer.

Iii

TABLE OF CONTENTS

PREFACE ... iii

1-INTRODUCTION
What Is A DOS? .. 1
Where Is The DOS? .. 1
Power Up Sequence And Why .. 1
Different Uses Of A DOS .. 2

Storage. .. 2
File Management .. 2
Binary File Loader. .. 2
Install Handlers. .. 2
General Utilities 3
Miscellaneous Functions 3

What All This Means To You .. 3

2-AN OVERVIEW OF SPARTADOS 5
General Terms Used Throughout. .. 5
SpartaDOS Terms 7

Volume Names .. 7
Directories. .. 7

The Current Directory .. 8
The MAIN Directory. .. 8
Subdirectories. .. 8

Command Processor. .. 8
Menus .. 9
Handlers And Drivers. .. 9
On Formatting Options. .. 9

3-THE SYNTAX OF SPARTADOS .. 11
Files. .. 11

Filenames (fname.ext). .. 11
Wild Carding ... 12
Directory Names. .. 14
Path(s) .. 14

Command Types. .. 16
Default Drive. .. 17
Major SpartaDOS Version Differences. .. 17
Directory Display Formats 17

v

4-GETTING STARTED 19
The Master Diskettes .. 19
Beginning Diskette Initialization And Duplication. 19
Brief Overview Of A Few Commonly Used Commands 20
Primary Commands .. 22

DIR & DIRS Commands .. 22
CAR Command. .. 23
BASIC Command 23

5-DISKETTE INITIALIZATION .. 25
INIT & XINIT Commands .. 25
SpartaDOS 1.x Versions. .. 27

NOCP.DOS .. 27
NOWRITE.DOS 27
STANDARD.DOS 27
SPEED.DOS ... 28

SpartaDOS 2.x Versions 28
XD23B. DOS .. 28
XC23B. DOS .. 28

AINIT Command. .. 29
FORMAT Command .. 29
BOOT Command 30
Ramdisk Commands .. 31

6-SUBDIRECTORIES .. 35
?DIR Command .. 35
CREDIR Command 35
DELDIR Command. .. 36
CWO Command .. 36
TREE Command 37

7-DUPLICATION .. 39
COpy Command .. 39
SPCOPY Command. .. 42
XCOPY Command .. 43
DUPDSK Command. .. 44

a-MAINTENANCE. .. 47
ERASE Command 47
UNERASE Command 47
RENAME Command 48
CHVOL Command .. 49

vi

9-PROTECTION .. 51
File Protection ... 51

PROTECT Command 51
UNPROTECT Command 51

Diskette Protection .. 52
LOCK Command 52
UNLOCK Command. .. 53

10-LOGOMENU-STEP BY STEP 55
How To Create A Special Binary File Loader 55
Construction (for non-XLIXE Computers) .. 56
Construction (for XLIXE Computers Only) 58

11-MENU OPERATION 59
MENU Command. .. 59
The MENU Operation. .. 59
Other Notes About The MENU Program 63

12-TIME AND DATE SUPPORT. .. 65
To Activate Time/Date Clock. .. 65
To Set Time/Date Clock 65
TIME Command. .. 66
SET Command. .. 66
TD Command. .. 67
XTD Command. .. 68
TSET Command. .. 69
CHTD Command .. 70

13-COMMUNICATIONS SUPPORT 71
MODEM Or Terminal Program .. 71
Communicating Through Phone Lines 71
Two Modes Of RS232 Handler Operation 72
RS232 Commands. .. 72
PORT Command 73

vii

14-INPUT/OUTPUT REDIRECTION .. 75
Input Redirection 75

Batch Files .. 75
PAUSE Command 77
TYPE Command. .. 78

Output Redirection .. 78
PRINT Command .. 78

How 1/0 Redirection Works 80
Disabling 1/0 Redirection .. 80

DIS_BAT Command 80
XDIV Command 81

15-KEYBOARD BUFFERS .. 83
The Need For A Keyboard Buffer .. 83
KEY & XKEY Commands. .. 83

16-INFORMATION COMMANDS 85
Memory Related Commands .. 85

MEMLO & MEM Commands 85
BUFS Command. .. 86

Disk Drive Related Commands 87
CHKDSK Command. .. 87
RPM Command 88

17-MACHINE LANGUAGE SUPPORT. .. 89
Loading, Saving, And Running 89

Command Files. .. 89
LOAD Command. .. 90
RUN Command 91
SAVE Command. .. 91
APPEND Command. .. 92

Informational Commands. .. 93
DUMP Command 93
MDUMP Command 94
OFF_LOAD Command .. 94
PUTRUN Command. .. 95

18-DISK DRIVE 1/0 .. 97
Basic Operation Within The Disk Drive 97
SpartaDOS Buffer Management 98
Drive Access Vector .. 98
US Doubler-High Speed 1/0. .. 99
Write With Verify. .. 99
VERIFY Command. .. 99

viii

19-THE TECHNICAL STRUCTURE OF SPARTADOS 101
SpartaDOS Functions From BASIC 101

Open A File .. 101
Rename File(s) 102
Erase File(s) ... 102
Lock Diskette .. 103
Protect File(s) .. 103
Unprotect File(s) 103
Set File Position 103
Get Current File Position 104
Get File Length 105
Load Binary File 105
Save Binary File 105
Create Directory 106
Delete Directory 106
Change Working Directory 106
Set Boot File ... 107
Unlock Diskette 107
Format Diskette 107
Directory Listing 107

SpartaDOS User Accessible Data Table 108
Format of SpartaDOS Diskettes 111

Sector Maps ... 111
Bit Maps .. 112
Boot Sectors ... 112
The Directory Data Structure 113

More SpartaDOS Functions Accessible Through The CIO 114
Check Diskette Status 114
Get Current Directory Path 115

20-DIFFERENCES BETWEEN SPARTADOS 1.X AND 2.X 117

APPENDICES

A-Errors ... 122
B-Command Summary 125
C-Table Of All SpartaDOS Command Processor Commands 133
D-How To Access The Real Time Clock 135
E-Atari DOS 2 vs SpartaDOS 137
F -US Doubler Installation 139
G-US Doubler Interface 147
H-Diskettes .. 153
I -Glossary .. 155

ix

x

Chapter 1 - Introduction

CHAPTER 1 - INTRODUCTION

What is a DOS?
The Disk Operating System (DOS) is a special program which directs the
internal operation of your Atari computer and disk drive. A DOS ...

• manages the allocation and de-allocation of files
• provides a set of commands to interact with it
• provides a means of parameter passing to user programs
• provides a set of useful tools to aid in software development
• oversees the allocation of memory
• controls the flow of data in a system

Where is the DOS?
When your Atari computer is first turned on (booted), the computer's
Operating System (OS) checks to see what devices are present. If a
functioning Atari compatible disk drive is attached and set as '01:' (drive
number 1), the computer will recognize the drive and try to read in a
special program which should take control after it loads. This program is
usually the DOS, and becomes a part of the computer's lower memory
until the power is turned off. The DOS protects itself from being written
over by other programs with a marker (MEMLO) which is placed just
above its top of memory. Hopefully programs which then operate (run)
with the DOS will obey this MEMLO marker and stay above it. So, where
is the DOS? It was never in the disk drive. It is on a floppy disk and then
read into the computer's memory. This is where a resident DOS remains,
usually until the system is rebooted.

Power up Sequence and Why
It is important to power up your Atari computer system in the correct
sequence or the disk drives wi" not be recognized by the system. Always
turn drive 1 on before the computer, insert your DOS diskette into the
drive and then power up the computer. The computer's operating system
then recognizes the drive and starts loading the DOS. The other
components in your system don't have any special requirements in the
power up sequence, but generally the computer is powered up last. The
power down sequence doesn't really matter as long as you take the
diskettes out of the drives before turning their power off. Failure to due
this may write bad information on the diskettes.

Chapter 1 - Introduction

Different Uses of a DOS
Needs in a DOS vary from person to person. The following are some of
the various uses for a DOS.

Storage
One common use for a DOS is to act as the storage device for another
program. The AtariWriter and AtariArtist cartridges are good examples of
this kind of DOS use. The system is booted up as usual but after the
cartridge takes control, the DOS type commands are actually executed
through the cartridge menu. The DOS is almost invisible to the user but
still acts as the manager for disk storage.

File Management
File management becomes more important as system size increases.
Things like subdirectories and time/date stamping have become
invaluable in a well organized filing system. SpartaDOS is the only DOS
that allows time/date file stamping on the 8 bit Atari computers.
Subdirectories, like file folders, allow you to save different files under
different catagories. Time/date stamping (when the file is created or
rewritten) helps in maintaining constantly changing files and allows you
to determine when it is time to discard others (expiration dates).

Binary File Loader
Binary files are machine language programs in file form with no
protection built in. These normally can be executed (run) as command
files under SpartaDOS, or they can be run under Atari DOS 2 with the 'L
menu command. LOGOMENU, our special menu program, makes binary
file loading almost foolproof and provides a beautiful display (impress
your friends) as well. This is a common use for a DOS and it is a good
way to prevent the inexperienced user from damaging your valuable files
by accidentally entering the wrong command.

Install Handlers
Handlers are special programs written to handle a device. An example of
this would be a printer handler written for a specific printer, or a
communications handler that provides a link to the communications line.
The DOS is the most complex handler in the computer, but it will in turn,
install other handlers as needed.

2

Chapter 1 - Introduction

General Utilities
Utilities are included for housekeeping and programming functions.
Commands like ERASE or RENAME will delete or rename a file.
CHKDSK, RPM, and MEM are informational utilities which give important
information about the condition of the system. MDUMP and OFF_LOAD
are examples of informational utilities specifically for programmers.
SpartaDOS was written in a way so that utilities can later be added
without rewriting the DOS.

Miscellaneous Functions
SpartaDOS allows the rerouting of normal input and output of the system
(called redirection or diversion). It also provides a standard for
transferring information from one system to another.

What all this Means to You
We are providing all this information in the hope that some of you will
read ahead to gain a better understanding of computer systems and
someday, if not already, become the new computer literates.

3

Chapter 1 - Introduction

4

Chapter 2 - An Overview of Sparta DOS

CHAPTER 2 - AN OVERVIEW OF SPARTADOS

General Terms Used Throughout
The following is a list of standards used throughout the manual.

• The ESC key exits most of the external commands in SpartaDOS.
Commands such as DUMP require that you use the BREAK key.

• A '< return>' means to press the RETURN key in our early examples.
You may assume that a RETURN will terminate your input except in
special cases (such as in INIT when single letter or number responses
are required).

• The apostrophe or single quote mark is often shown at the beginning (')
and end (') of a command or filename when written into general text.
These are used as separators as in the example 'D3:INIT <return> '.
The quote marks are not to be typed; you would just enter D3:INIT and
then press RETURN.

• Many commands require that you enter an address or an offset. It is
safe to assume that hexadecimal (HEX) values should be entered.
Hexadecimal is a base 16 numbering system which uses the digits 'A'
through 'F' to represent decimal values of 10 through 15. If a number is
preceded by a '$' in this manual, it is a HEX number. Do not type the
'$' before a hexadecimal number with SpartaDOS commands.

• Many commands have restrictions as to what DOS and what format on
diskette is involved. In the following examples In' refers to the major
version number which will be 1 or 2. In these and all other descriptions,
'x' refers to the current revision level of that version. Here are some
sample phrases and what they mean:

CP version n.x
The 'CP' stands for command processor. For internal commands, this
indicates that the command processor understands the command. For
external commands, this indicates that the command will interface to
that version of SpartaDOS correctly. SpartaDOS version 1.x lacks many
of the internal functions that version 2.x has. Thus if a command (such
as MENU) uses a new internal function, it will not work with version 1.x.

5

Chapter 2 - An Overview of Sparta DOS

Version n.x diskettes
Some commands under CP version 2.x (like LOCK and BOOT) will only
operate on diskettes formatted by XINIT. The data table on sector 1 of
SpartaDOS diskettes is slightly different between versions, thus the
distinction is made (note that the major version is always in the table).
XINIT creates version 2.x diskettes, and INIT or FORMAT create
version 1.x diskettes!

Atari DOS 2 diskettes
This refers to any diskette formatted under Atari DOS 2 or by the AINIT
command. Commands such as CWO, CREDIR, BOOT, etc. don't have
meaning on this type of diskette since there are no subdirectories on
these diskettes. Also note that SpartaDOS 1.x does not directly handle
Atari DOS 2 at all, whereas SpartaDOS 2.x has an extended Atari DOS
2 handler built in. (SpartaDOS 2.x can read, write, and run Atari DOS 2
formatted diskettes in both single and double density).

• When the syntax of a command is given, several symbols are used to
represent certain parts of the command. The following is a list of these
symbols.

fname This is the filename without an extension, thus it is from 1 to
8 characters in length .

. ext This is the filename extension, thus it represents from 0 to 3
characters.

path This is the complete directory path from the current directory
to the desired directory. It does not include the filename.

[...] This indicates that whatever is inside the brackets is optional.
Do not type the brackets.

6

Chapter 2 - An Overview of Sparta DOS

Sparta DOS Terms
The following are terms that are often used to describe SpartaDOS
formatted diskettes.

Volume Names
When formatted, SpartaDOS diskettes are given a volume name. Each
diskette should be given a unique volume name such as 'Games_1',
'Games_2', 'WP _1', '000243', etc. Volume names can be from 1 to 8
characters long and may include any of the 256 possible numbers,
characters, or symbols, available on the Atari keyboard.

Version 1.x diskettes must have unique volume names, otherwise
severe problems may occur!

SpartaDOS uses a sector buffering system quite different from Atari DOS
2. Whenever a sector is to be read, SpartaDOS first checks to see if it is
in a buffer. When you change diskettes in a drive, there is no way for
SpartaDOS to gain knowledge of this, other than to read a particular
sector and compare a certain region to what it used to be. Thus,
whenever a file is opened, the first sector is read and volume names are
compared. If they are different, SpartaDOS will update its copy of the
volume name and abort all sector buffers containing information about
the previous diskette. If the old and the new diskettes have the same
volume name, Sparta DOS will not know there is a new diskette in the
drive and consequently the new diskette is in danger of being updated
with bad information. Even though version 2.x diskettes have extra
protection (random and sequence numbers), if they are used under
version 1.x SpartaDOS, the extra protection is not used.

Directories
The diskette is broken up into directories, which may contain up to 128
files. The root (base) directory is named MAIN. Other directories (which
are called subdirectories) can be created under MAIN. The same rules
apply to both sUbdirectory names and to filenames except that the
sUbdirectory names show up in the directory listing with' < DIR >' after
the name and have special commands to create and delete them.
Subdirectories may be nested under other directories with no limits
restricting the total number of directories other than practicality and disk
space. Paths are used to describe the connection from one directory to
another.

7

Chapter 2 - An Overview of Sparta DOS

The Current Directory
The current directory is the directory that you are presently in. If no
path is given with a command or filename, then the current directory
is used. The CWD (change working/current directory) command
selects a new directory to be the current directory.

The MAIN Directory
The root directory (MAIN) is a special directory. Unlike subdirectories,
it cannot be deleted. Whenever DOS is re-initialized (by RESET or by
a new diskette being placed in the disk drive), SpartaDOS forces
MAIN to be the current directory. It is good practice to keep any
external command files in the MAIN directory. When an external
command is used while you are in a subdirectory, SpartaDOS scans
the subdirectory for the file. If it is not found there, SpartaDOS then
checks the MAIN directory. Note that this is a process performed
internally by Sparta DOS and is not a function of the command
processor. The trigger for this action is simply the act of opening a
file in read-only mode. Thus, this will work from BASIC, external
commands, and any user application program.

Subdirectories
All directories other than MAIN can be thought of as subdirectories.
SpartaDOS uses the tree directory structure, where the MAIN
directory is the trunk and each subdirectory can be thought of as a
branch (which in turn may have branches).

The path can be used in various DOS commands to specify which
directories act as source and/or destination for the command. A '>'
at the beginning of the path forces a start at the MAIN (root) directory.
A '<' moves up the tree one directory (to the parent) and a directory
name within the path selects a branch using' >' as a place holder
between directory names.

Command Processor
Instead of a menu, commands are typed into a command processor
much in the way commands are typed into BASIC. The extension of
'.COM' is reserved for external command files. The general syntax of
an external command is:

[Dn:][path >]fname [parameters] < return >

Note that the '[Dn:][path >)' should not be used when entering an
internal command. Also internal commands should be in all upper case,
whereas external commands may be in upper or lower case.

8

Chapter 2 - An Overview of Sparta DOS

The extension of '.BAT' is reserved for Batch files. Batch files may be
invoked by typing !.fname < return> '. Do not type the extension in either
of these cases (although it is legal under CP version 2.x).

Menus
SpartaDOS provides two menu programs. One is a binary loader
(discussed in Chapter 10) and the other is a general command menu
(discussed in Chapter 11). The general menu is included for people who
are more comfortable with menu operation. Note that the general menu
(MENU.COM) is to be used under CP version 2.x only.

Handlers and Drivers
Many handlers or drivers are provided on your SpartaDOS diskettes.
These load into memory and become resident once loaded (by linking
into vectors and moving MEMLO up). Some examples of these are:
RS232, AT _RS232, KEY, MENU, and RD130.

On Formatting Options
SpartaDOS allows many format options but your drive must have the
specific hardware in order for the options to work, e.g. you cannot use
double density format with the standard 810 disk drive or double sided
format with any 810 or 1050 drive, etc. (These options may seem to write
a format on an incompatible drive with no errors, but the format will not
be fully functional). Once the format is written on a given diskette, the
drive will automatically configure for that format type when trying to read
or write to it. See Chapter 5 for more on formatting.

9

Chapter 2 - An Overview of Sparta DOS

10

Chapter 3 - The Syntax of Sparta DOS

CHAPTER 3 - THE SYNTAX OF SPARTADOS

This chapter contains the details that Chapter 2 left out. These two
chapters along with Appendix B are probably the most important in the
manual. The rest falls into one of two catagories: 1) technical and
programmer oriented information or, 2) detailed command descriptions. If
you feel comfortable with SpartaDOS after reading this chapter, go ahead
and try SpartaDOS; the best way to learn about a program is by
experience.

Files
Unlike other Atari compatible disk operating systems, SpartaDOS
supports subdirectories. This means that there are new rules for
specifying which file you want to access. Files are specified by a path
and a filename which taken together are considered a pathname and
specify the location and name of a file. The definition of a pathname
follows along with many examples to give you an idea of just how it
works.

Filename Conventions
Filenames consist of a name and an optional extension separated by a
period ('fname[.ext]'). Legal characters are as follows:

A .. Z (all letters of the alphabet)
0 .. 9 (all numbers)

(underscore character)

The 'fname' part consists of from 1 to 8 characters and the '.ext' part
consists of from 0 to 3 characters. Here are some examples of legal and
illegal filenames, and if illegal, why.

TEST1.123
A FILE.LST
ANOTHER.FIL
4TH.TRY
B_FILE.JN
PROG.BASIC
DATA#
B

Legal name.
Illegal name. No spaces allowed.
Legal name.
Legal name (numbers not restricted).
Legal name.
Legal name (the 'IC' will not be used).
Illegal name. The '#' is not alphanumeric.
Legal name.

11

Chapter 3 - The Syntax of SpartaDOS

Actually, any filename is legal under SpartaDOS version 2.x, but once an
offending character is encountered, no other characters are accepted.
Thus, the second example would have the name 'A'. SpartaDOS version
1.x is much more fussy about filenames.

It is important to develop a standard for naming files. The most common
method is to reserve specific extensions for certain types of files. The
following list contains some of the most common extensions used along
with the type of file it is used on.

.COM

.BAS

.TXT

.OBJ

.SYS

.EXE

.ASM

.BIN

. OAT

.PRN

. BAT

.HEX

.FNT

.LST

.SRC

.MUS

.DOS

Wild Carding

Command file (a load and go file)
BASIC SAVEd program
An ASCII text file
An object code file
A system file
An executable file (like .COM)
A machine language source file
A binary data file
A general data file
A listing to be printed
A batch file
A hexadecimal coded file
A font file (character set)
A LISTed BASIC program
A general source file
A music file
A SpartaDOS module for the INIT/XINIT program

Two wild card characters ('*' and '?') can be used to take the place of
characters in a filename in order to represent a range of filenames. The
question mark ('?') is a "don't care" character. This means that it will
match any character in its position. The asterisk ('*') is like a "repeat until
period" or a "repeat until end of filename" question mark. An asterisk
can help in the speed of entering external commands. For example, 'OF*'
can be specified instead of 'OFF_LOAD' as long as there are no other
files that begin with 'OF'. The following examples illustrate the use of the
wild card characters.

*.BAS

**

This represents the files in the directory that have
an extension of 'BAS'.

This represents all files in the directory.

12

Chapter 3 - The Syntax of Sparta DOS

DATA?? This represents all files that begin with 'DATA' and
have any combination of letters or numbers for
the last two characters.

GR*.BAS This represents all files that begin with 'GR' and
have an extension of 'BAS'.

TEST.?B This represents all files with the name 'TEST' and
have any letter or number followed by a 'B' as the
extension.

The internal commands DIR and COPY will supply a default filespec of
'*.*' if none is specified. All internal and most external commands supply
a device if none is entered. Wild cards are legal in filenames if the file
is to be read or matched, but are illegal if trying to save under the
filename. Examples of illegal usage when writing are:

SAVE FILE?DAT 2000 3000
PRINT OUTPUT.*
COPY E: TEXT*.FIL

(or APPEND)
(assumed D: device)
(E: is not a directory device
thus TEXT????FIL is the
name.)

Wild cards can be used with most commands that use a filename in the
command line. One of the most common and time saving uses of wild
cards is to execute external command files. Consider the following
example:

DONKEYCOM
SPACE_IN.COM
GI_JOE.COM
MISSION.COM
FILE_MGR.COM
TELEPHON.COM

Any of the above files in a directory could be run by simply typing the first
letter, and '* <return >'.

If 'DISMAL.COM' was included in the above example, then 'DI*
< return>' would execute it; you should use 'DO* < return>' for
'DONKEYCOM'.

13

Chapter 3 - The Syntax of Sparta DOS

Caution: Wild cards are great time savers but can be very dangerous;
read the warnings on using COpy and ERASE.

Directory Names
The same conventions apply to directory names that are used for
filenames, however the extension (.ext) is not generally used on a
directory name. In fact, most SpartaDOS utilities do not support
extensions on directory names, but they will show up when dOing a
standard directory (SpartaDOS format). You may also use wild cards in
directory names but the same restrictions still apply. That is, you may use
wild cards when referring to a directory, but when creating (CREDIR) a
directory, the name must be free of wild cards.

Path(s)

Since SpartaDOS can have more than one directory on each disk, it uses
a path to describe the route from one directory to another. For our use, a
path is the list of directories from the current directory to the destination
directory. The' >' is a delimiter (place holder) between each directory
name in the path. When you are not in the MAIN directory, you can also
use one' <' for each directory to move backwards (to the parent
directory). For ease of further explanation, directory names shall be
referred to as 'dname'. The' >', if used at the start of a path, moves the
reference directly to the MAIN directory. The general syntax of a path is:

[>][dname > .. dnamej

where the optional starting' >' indicates to start at the MAIN directory
and each 'dname' moves one directory along the path with ' . .' meaning
"repeat until". An optional syntax of a path, which starts moving
backwards (toward the parent directory), is:

< [< .. <][dname> .. dnamej

where each' <' moves backwards one directory in the path. The rest of
the syntax is the same as in the previous syntax. Suppose your diskette
had the following directories:

(1) Volume: TEST
Directory: MAIN

GAM'=S1
TESTPROG BAS
MODEM

<DIR>
23717
<DIR>

14

1-01-84 3:59p
4-05-85 2:45p
3-09-85 1 : 18p

(2)

(3)

(4)

Chapter 3 - The Syntax of Sparta DOS

Volume: TEST
Directory: GAMES1

ARCADE
BASIC

Volume: TEST
Directory: ARCADE

MY_OWN COM
FRIENDS COM
LONER DAT

Volume: TEST
Directory: MODEM

XFER
RS232

BAS
COM

< DIR > 4-06-85 12:01 p
< DIR > 4-06-85 12:04p

12623
8710
3499

23910
127

4-06-85 12:09p
4-06-85 1: 1 Op
4-09-85 3:59p

1-01-84 3:59p
1-01-84 3:59p

(Note that the directory BASIC is not shown.)

For the following set of filenames, suppose that you are currently in the
directory called GAMES1. The pathname given is how you would access
that file. Note: If you were going to execute the command files, you would
leave off the '.COM' extension.

RS232.COM pn = < MODEM> RS232.COM or
> MODEM> RS232.COM

FRIENDS.COM pn = ARCADE> FRIENDS.COM or
> GAMES1 > ARCADE> FRIENDS. COM

TESTPROG.BAS pn = <TESTPROG.BAS or
> TESTPROG.BAS

For the next set of filenames, assume that you are currently in the
directory called ARCADE. The pathname given is how you would access
that file.

RS232.COM pn = < < MODEM> RS232.COM or
> MODEM> RS232.COM

15

Chapter 3 - The Syntax of Sparta DOS

FRIENDS.COM pn = FRIENDS.COM or
>GAMES1 >ARCADE>FRIENDS.COM

TESTPROG.BAS pn = < <TESTPROG.BAS or
> TESTPROG.BAS

Note that the 'pn' in all the above examples is the full pathname. For the
rest of the manual, 'path' will refer to all but the filename and
proceeding' >' (if any) of the full pathname. Thus, the path refers to a
specific directory, not the file in it.

The best way to become comfortable with pathnames is to experiment.
Start creating subdirectories and keep trying new things until it becomes
natural.

Command Types
The commands in SpartciDOS are of two types; internal or external.

Internal commands are directly understood by the command processor.
They include commands such as DIR (directory), ERASE (delete file),
etc. Most internal commands do not affect the program area (for BASIC,
etc.). There are two exceptions: COPY uses the program area as a
buffer, and BUFS changes the low boundary of the program area.
Both of these commands cause the cartridge to do a cold start (and
thus wipe out any user program).

External commands need to be loaded from disk each time they're used.
They include commands such as TREE (list all directories), INIT (format
a diskette), etc. All external commands destroy the contents of the
program area. These commands cause the cartridge to do a cold
start (and thus wipe out any user program). External commands
interface to the command processor through a large data table.
Therefore, they are able to accept command lines (filenames, numbers,
and other parameters) for processing.

16

Chapter 3 - The Syntax of Sparta DOS

Default Drive
The default drive is the drive assumed when none is specified on a
filename. The default drive is only used when using the command
processor! To change the default drive, simply type the new device code
(i.e. '02:') followed by a RETURN. The '0' and the colon (':') are
required. In the following example, the user input is in bold:

01:03: <return>

03:01R < return >

In the first line, the user changes the default drive to drive 3. On the next
line, he/she does a directory of drive 3. Note that the normal syntax of the
OIR command is: 'OIR [On:][fname[.ext]]', but in the example the user
did not type the 'On:' (nor the 'fname.ext' - '*.*' was assumed).

Major Sparta DOS Version Differences
If you have booted SpartaDOS already, you have undoubtedly seen that
SpartaDOS version 2.x is almost twice as big as version 1.x, so you ask
why. Well, version 2.x contains everything in version 1.x plus the
following:

• An enhanced Atari DOS 2 handler (lots of extras)
• Supports 8 disk drives (as opposed to 4)
• High Speed built in both 2.x versions
• 14 new internal command processor commands
• 8 new XIO functions
• Provides the user with an extra 4K program area
• Much better user error prevention
• 16 new external commands (over original 1.1 master)
• An Atari logo binary file loader
• A sophisticated DOS command MENU

There is one and only one catch, you must use an XL or an XE Atari
computer to run version 2.x! (excluding the 600XL with only 16K
memory and XLIXE computers with a modified OS chip insta"ed.)

Directory Display Formats
The SpartaDOS file directory is revolutionary in the Atari world.
SpartaDOS is the only DOS that supports time/date stamping and
gives file sizes in bytes (characters). Only one other DOS for the Atari
supports subdirectories (as of this writing), but none are as elegant or
powerful as SpartaDOS.

17

Chapter 3 - The Syntax of Sparta DOS

The following is a typical directory listing:

Volume: WRK_2.3B
Directory: MAIN

AT RS232 COM 1863 2-12-85 6:38p
CHTD COM 899 3-10-85 11 :22a
UTIL <DIR> 4-11-85 2:06p
CHVOL COM 453 2-24-85 6:16p
DUMP COM 1033 2-13-85 12:07p
RPM COM 672 4-04-85 10:10p
XD23B DOS 10729 4-06-85 1 :17p

577 FREE SECTORS

Notice that the volume and directory name are included in the directory
header. This is an easy way to identify your diskettes. The time and date
each file is created follows each file's (or directory's) name. The file sizes
are expressed in bytes (rather than in sectors like Atari DOS 2).
Subdirectories (' < DIR > ') are easy to spot at a glance. This type of
listing is only given by the DIR command for SpartaDOS diskettes!
There is an alternate listing type that is as follows (for the same diskette):

* AT_RS232 COM 016
* CHTD COM 009
* UTIL DIR 002 (bold indicates inverse video)

CHVOL COM 005
* DUMP COM 010

RPM COM 007
XD23B DOS 086

577 FREE SECTORS

Notice that this format has asterisks in front of some of the entries. An
asterisk means that the entry is erase protected. That is, you can't erase
or modify the file until it is unprotected (see the PROTECT and
UNPROTECT commands). Also, the directory is indicated by an inverse
'DIR' as the file extension. The sector counts are derived from byte
counts on SpartaDOS diskettes and are actual on Atari DOS 2 diskettes.
This type of listing is given if using the DIRS command or you are
listing an Atari DOS 2 diskette directory! Note that version 1 .x does
not have a DIRS command nor does it recognize the PROTECTed and
UNPROTECTed status of files. Version 1.x does have a short form
directory, but it is inaccessible through the command processor and the
sector counts will show all zeros.

18

Chapter 4 - Getting Started

CHAPTER 4 - GETTING STARTED -
STEP BY STEP PROCEDURE

This chapter is primarily an orientation to SpartaDOS. You will be taken
step by step through formatting a diskette, displaying a directory, entering
a small BASIC program, returning to DOS and doing a few file
operations.

The Master Diskettes
The Spart<;lDOS Construction Set includes two 'MASTER' diskettes. Both
are formatted in single density (90K). The disk with the black label has
the version 2.x format along with the CP version 2.x DOS files, with
commands and utilities that apply to SpartaDOS 2.x. Side A is the only
side used on this diskette. The version 2.x DOS will only boot up on an
XLIXE type computer. If you are using one of these machines for the
following lessons, use the black labeled diskette. An error message will
result if you try to boot this disk up in a non XL/XE computer.

The disk with the grape label was formatted on side A with SPEED.DOS,
a CP version 1.x. This side also has the utility files which might be used
with a version 1.x DOS. Side B is a demonstration of our binary file loader
menu (LOGOMENU.SYS), running under NOCPDOS, with several public
domain games. Both sides of this diskette will boot up on any Atari 8 bit
computer with at least 24K of RAM. If you don't Ilave an XLIXE computer,
use the grape labeled diskette for the followinq lessons.

Beginning Diskette Initialization and Duplication
You will be using BASIC, so if your computer is not an XL or an XE type
computer, make sure you have a BASIC cartridge installed. XL/XE
owners use the internal BASIC option. Next, boot the Master Diskette and
wait for the '01:' prompt. Type 'XINIT <return>' if you are on an XL or XE
computer, or 'INIT <return>' for all others. Now type 'N' for no DOS. You
will be duplicating the Master Diskette, so all you are really doing is
formatting a new diskette and giving it a volume name. Now remove
your Master Diskette. Press a '1' as the drive to format, '1' for 40 tracks,
'1' for single density, and type 'TEST <return>' for the volume name. If
you have a US Doubler installed in drive 1, answer 'Y' in response to the
next question, otherwise answer 'N'. Now insert a blank diskette into
drive 1 and press RETURN. When the drive is done formatting the
diskette, press the ESC key and the '01:' prompt should appear.

19

Chapter 4 - Getting Started

The next step is to duplicate the Master Diskette onto the newly formatted
diskette. Re-insert the diskette you booted (the Master), and type
'DUPDSK < return> '. Answer '1' for the next two questions (source and
destination drive are drive 1). Now press RETURN. When asked to insert
the destination diskette, remove the Master Diskette and replace it with
the one you just formatted. Now press RETURN again. If asked to insert
the source diskette, replace the newly formatted diskette with the Master
Diskette and repeat. When the copy is complete, press ESC to return to
the command processor (a 'D1:' prompt should appear). You now have a
backup copy of SpartaDOS. Now put the Master away so that it will not
be damaged.

Brief Overview of a few Commonly Used Commands
Now that you have a backup, use it for the rest of this session. Type 'DIR
< return> '. You should now see a file directory. Quite different from other
Atari DOS's, isn't it. If you are using SpartaDOS 2.x, try the following:
'BASIC OFF < return>', 'CAR < return> '. Notice that it printed an error
message. The command 'BASIC OFF' disables the BASIC cartridge and
frees up that memory. Now type 'BASIC ON < return>' to re-install the
BASIC cartridge. (Note that this only works with the internal XLIXE
BASIC.)

Now type 'CAR < return>' (both versions) to enter the BASIC cartridge.
You should now have a 'READY' prompt. Now type in the following
BASIC program (end each line with a RETURN).

100 OPEN #1,8,0,"D:TEST.DAT"
110 FOR A = 1 TO 10
120 PRINT #1;RND(1)*100
130 NEXT A
140 CLOSE #1

Now type 'RUN < return>', you should notice that the drive starts
spinning and the computer makes its usual beeping sound. When you
get the 'READY' prompt, type 'SAVE "D:TEST.BAS" <return >'. This
saves the program onto the diskette in the commonly used tokenized
form. When you get the next 'READY' prompt, type 'LIST "D:TEST.LST"
< return>' to save a text (ASCII) version of your program. Now type
'DOS < return>' to return to the command processor. Type 'DIR TEST.*
<return >' to see the files you just created (notice the time and date
this is the default).

20

Chapter 4 - Getting Started

Now type 'TIME < return>' (this erases your memory version of the
BASIC program). You will notice the top line has a time and date (which is
rapidly ticking off the amount of time the computer has been on). When
the clock has caught up, type 'SET <return> '. Now enter the current
date and time as specified by the prompt, each followed by a RETURN.

Enter 'TYPE TEST.LST <return >'; you will now see a listing of the
program you just typed in. Type 'TYPE TEST. OAT <return >'; this is the
file your program just created. You can use the TYPE command to
display these files because they are ASCII (text) files.

Now re-enter BASIC (,CAR < return >') and type 'LOAD "D:TEST.BAS"
< return> '. List the program (,LIST <return> '), and resave it ('SAVE
"D:TEST.BAS" < return> '). Exit BASIC again (,DOS < return> ') and do
another directory of the test files ('DIR TEST.* <return >'). Notice that
'TEST.BAS' has the current time and date on its entry.

Now type the following series of commands (end each line with a
RETURN):

RENAME TEST. * RANDOM.*
ERASE RANDOM.DAT
CAR (you are now in BASIC)
LIST (the program is still there)
RUN
DOS
DIRTEST.*
DIR RANDOM.*
TYPE TEST. OAT

Notice that there is only one 'TEST' file; this is the result of running the
BASIC program. Also notice that it contains the current time. The BASIC
program is saved under the name of 'RANDOM' in two forms. Also notice
that the file 'RANDOM.DAT' does not exist (it was erased in the second
line.)

Feel free to try more experiments at this point. The rest of the manual
primarily describes the usage of the commands available in SpartaDOS.
It is very important to just try new things to get a feel for the DOS.

21

Chapter 4 - Getting Started

Primary Commands
The remainder of this chapter contains the detailed descriptions of the
DIR/DIRS, CAR, and BASIC commands. They are as follows:

DIR & DIRS Commands

Purpose
The DIR command displays the volume name and the specified directory
name, lists files and subdirectories in the directory, the file sizes in bytes,
the date and time the files were created, and the number of free sectors
left on the diskette. The DIRS command lists the directory in a format
similar to Atari DOS 2 (CP version 2.x only). The DIR and DIRS
commands may be used to list all files matching a file spec pattern by
using wild cards.

Syntax
DIR [Dn:J[path > J[fname[.extJ] or
DIRS [Dn:][path > J[fname[.extJ]

Type and Restrictions
DIR is internal under CP versions 1.x and 2.x
DIRS is internal under CP version 2.x

Remarks
If no file spec is specified, all files will be listed (i.e. a default file spec of
'*.*' is used). If no path is specified, the current directory is listed. Both
DIR and DIRS work with SpartaDOS 2.x, while only DIR works with
SpartaDOS 1.x. With version 2.x, DIRS displays a short form similar to
Atari DOS 2 including the protected status (which DIR does not return).
When reading an Atari DOS 2 directory with CP version 2.x, both DIR
and DIRS give the same short directory result.

Example
DIR

This command displays the entire current directory of the default drive.

DIR D2:MODEM>XM*.*

This displays the directory range of XM????????? under subdirectory
MODEM on drive 2.

22

Chapter 4 - Getting Started

CAR Command

Purpose
This command exits from DOS to a language cartridge.

Syntax
CAR

Type and Restrictions
Internal under CP versions 1.x and 2.x

Remarks
Since SpartaDOS is memory resident, any previously loaded cartridge
program will remain intact when moving from DOS back to the cartridge,
unless any external command or the COPY command was executed (or
BUFS under CP version 1.x). If the latter is true, the program will be
erased upon return to the cartridge.

Unlike other DOS's for the Atari, SpartaDOS gives immediate control to
the DOS after power up. If you want the cartridge to come up
automatically, create a STARTUP. BAT batch file on disk which contains
the CAR command. (NOCP.DOS and XC23B.DOS give immediate
control to the cartridge.)

SpartaDOS 2.x has built in error checking in the event no cartridge is
present. With SpartaDOS 1.x, the CAR command will cause a system
crash (lock up) if there is no cartridge present.

BASIC Command

Purpose
This command installs or removes the internal BASIC on the XLIXE
computers.

Syntax
BASIC ON or
BASIC OFF

Type and Restrictions
Internal under CP version 2.x

23

Chapter 4 - Getting Started

Remarks
When the XLIXE computer is booted up normally with no cartridge
plugged in, the internal BASIC is automatically installed taking up 8K of
RAM. Holding down the OPTION key when booting will keep the irternal
BASIC disabled. The BASIC command will install or disable the built in
BASIC and relocate the display memory as needed. This command can
be included as the last command in a STARTUP.BAT batch file so you
don't have to hold down the OPTION key. Note: the computer does a
RESET (warm start) operation while executing this command. This
causes the batch file to automatically close.

24

Chapter 5 - Diskette Initialization

CHAPTER 5 - DISKETTE INITIALIZATION

The format disk command was very simple when the Atari 810 was the
only disk drive available. The only choice was single density, single
sided, and 40 tracks; one command was sufficient. As third party vendors
developed more sophisticated drives, Atari owners suddenly had a
choice. Percom, a leader in new products introduced double density
drives, then double sided drives. SWP brought out the ATR8000 which
could use almost any drive on the market. No longer was Atari DOS 2
sufficient for all these drives. Many Atari DOS 2 clones evolved to offer
quick fixes but most just worked like Atari DOS 2 with a lot of patches.
ICD has developed standard disk initialization commands which should
eliminate disk format problems. These commands offer format menus
which work with all available drives and can be upgraded easily for future
drives without a major rewrite.

INIT & XINIT Commands

Purpose
These are the master formatting programs for SpartaDOS.

Syntax
INIT
XINIT

Type and Restrictions
XINIT & INIT are external under CP versions 1.x and 2.x
INIT will only create version 1.x diskettes
XINIT will only cr~ate version 2.x diskettes

Remarks
The INIT and XINIT programs are necessary since SpartaDOS can
support many different drive configurations. These programs load
SpartaDOS from '.DOS' modules which must also be on the diskette. The
FORMAT command is a stripped down version of the INIT command
which reads the DOS from an already existing version 1.x diskette with
SpartaDOS on it.

Example
INITor
XINIT

25

Chapter 5 - Diskette Initialization

This program will display a menu of the possible SpartaDOS versions
available on the disk along an 'N' option for no DOS; this is selected if
you don't want SpartaDOS on the diskette but want it formatted.
Assuming you selected a DOS, the correct module then loads into
memory.

If using INIT, you are then asked if you want to 'modify default
parameters', You may select to write with verify, the default drive, and the
number of buffers. These parameters are the defaults used when the
new diskette is booted.
Next you will be asked which drive you want to format; valid selections
are from 1 to 4 with INIT, and from 1 to 8 with XINIT.

INIT and XINIT then give a menu of tracks and sides. Normally you will
use option '1' (40 tracks/SS) unless you are using an ATR8000 interface
or Percom double sided drives.

The next choice, density, allows single density (128 byte sectors), double
density (256 byte sectors), and 1050 double density (128 byte sectors).

'Volume name?' is the next question. You must enter a volume name (this
should be unique to this particular diskette).

Next you will be asked if to use the UltraSpeed sector skew. Answer 'N'
unless your drive is equipped with the US Doubler and you are using a
high speed version of SpartaDOS. The US Doubler sector skew will be
read slowly by a standard drive but 2-3 times faster in a US Doubler
modified drive.

Now insert the diskette to be formatted and press RETURN. 'Diskette
initialized .. .' will appear when finished. To format more diskettes, press
RETURN; to leave this program, press the ESC key.

There are currently four versions of SpartaDOS 1.x and two versions of
SpartaDOS 2.x. The uses for each version are as follows.

26

Chapter 5 - Diskette Initialization

Sparta DOS 1.x Versions
There are presently two distinct SpartaDOS families. SpartaDOS 1.x was
the first DOS family released by ICD. The 1.x versions work with all Atari
8 bit computers with at least 24K of RAM. Versions of SpartaDOS 1.x are
generally limited to approximately 7K in size due to memory restrictions
in the 400/800 computers. SpartaDOS 1.x versions are not Atari DOS 2
compatible, though files may be copied between DOS's using SPCOPY.
All SpartaDOS versions now support UltraSpeed (high speed) I/O except
for STANDARD.DOS (a 1.x version). The SpartaDOS 1.x versions are
listed below.

NOCP.DOS
NOCP is a special high speed version of SpartaDOS to be used with
AUTORUN.SYS programs like our LOGOMENU.SYS. This version
functions much like Atari DOS 2; it has no command processor (NOCP
means NO Command Processor). NOCPDOS tries to load an
AUTORUN.SYS file before it passes control onto the cartridge. Note that
there is no equivalent of the DUPSYS which Atari DOS 2 loads after the
AUTORUN.SYS (if no cartridge was present). Some uses of this version
are to load our LOGOMENU.SYS program (binary file loader), a printer
handler for the AtariWriter cartridge, or the utilities disk with the Microsoft
BASIC II cartridge. The I/O redirection (Batch files and PRINT command)
is permanently disabled in NOCPDOS.

NOWRITE.DOS
NOWRITE is a stripped down DOS with a very low MEMLO and short
load time. Since it is a high speed version it will read in 2-3 times faster
than a non-high speed version when used with UltraSpeed hardware
such as the US Doubler. NOWRITE will run at normal speed when used
with non-UltraSpeed drives. Anytime you attempt to write with a
NOWRITE version you will get an error (usually 170). The main use of
NOWRITE is for loading game files.

STANDARD. DOS
This is a SpartaDOS 1.x version without any UltraSpeed features. The
MEMLO is about $300 bytes lower than the SPEED. DOS version. This is
a RAM resident full powered DOS. Use this version for your regular DOS
if you don't have a US Doubler modified 1050 disk drive and are not
using an XL or XE computer.

27

Chapter 5 - Diskette Initialization

SPEED. DOS
This is STANDARD 1.x version with the UltraSpeed code added. Use this
version for your regular DOS if you have the US Doubler in a 1050 disk
drive and don't have an XL or XE computer.

SpartaDOS 2.x Versions
These versions can be 11K or larger in size and use overlays beneath the
OS ROMs in the XLIXE computers; therefor they will only work with the
XLIXE computers. SpartaDOS 2.x versions are much more powerful than
the 1.x versions; there are many more internal commands and they both
support our UltraSpeed 1/0. If you own an Atari XLIXE computer, it is
advisable to use the 2.x versions for maximum benefit. They give you an
extra 4K of usable free memory from BASIC as well as compatibility with
most software. 2.x versions can also read, write and execute files directly
from Atari DOS 2 type diskettes. Both SpartaDOS 2.x versions have 12
buffers built in so there is no need for the BUFS command. Both are CP
versions; the only difference is whether priority is given to DOS or the
Cartridge upon boot. The SpartaDOS 2.x versions are listed below.

XD23B.DOS
This is the XD type SpartaDOS 2.x version and can only be used with XL
or XE Atari computers. It is the most powerful DOS available for any 6502
based computer. This version has an extended command set, gives more
free memory, and is more compatible than the SpartaDOS version 1.x.
XD23B. DOS can read and write directly to and from other Atari
compatible DOS's except Atari DOS 3 and OSS version 4. This version
recognizes the STARTUP. BAT file when booted and priority is given to
DOS (rather than the cartridge). For cartridge priority use the XC version
below.

XC23B.DOS
This is the same as XD23B.DOS except AUTORUN.SYS is recognized
when booted and control priority is given to the cartridge. All other
features are the same as the XD version. The XC version will give a logon
message before it starts loading the AUTORUN.SYS file. The BREAK key
or SYSTEM RESET will abort the AUTORUN.SYS file if pressed just after
the logon message is displayed. Control then goes to the cartridge (or
DOS if you pressed OPTION and no other cartridge was installed).
This version can be used just like NOCP.DOS with programs such as the
LOGOMENU program, AtariWriter, AtariArtist, etc. The XC version will
only work with XLIXE computers and it does not disable the I/O
diversion (Batch files and PRINT command). XC DOS does give you the
complete command processor as in the XD version.

28

Chapter 5 - Diskette Initialization

AINIT Command

Purpose
AINIT causes the drive to write an Atari DOS 2 style format. This
command is mainly for compatibility with existing software, since
SpartaDOS cannot be copied to and run under this format.

Syntax
AINIT [On:]

Type and Restrictions
Internal under CP version 2.x

Remarks
This will produce an Atari DOS 2 compatible format. The density is
dependent upon the configuration of the drive as is normal with all Atari
DOS 2 implementations. AINIT is the only internal format command and
is supported with XIO 254. (See technical notes in manual for details.)

NOTE: This command will not produce a format with US sector skew
which is needed for UltraSpeed I/O. SpartaDOS cannot boot from a
diskette formatted in this way either. Use INIT for SpartaDOS 1.x or XINIT
with SpartaDOS 2.x.

Example
AINIT

The display will show:

FORMAT: Are you sure? YIN

If you answer yes the drive will go ahead and format the disk with Atari
DOS 2 type format.

FORMAT Command

Purpose
This command is used to format the diskette, create the directory
structure, and optionally put DOS on the diskette.

29

Chapter 5 - Diskette Initialization

Syntax
FORMAT

Type and Restrictions
External under CP versions 1.x and 2.x
FORMAT will only create version 1.x diskettes

Remarks
The FORMAT program allows many format densities, gives the user the
option to put DOS on the diskette and to give the diskette a unique
volume name. Once a diskette has been formatted, DOS cannot be put
on the diskette without reformatting. The FORMAT program does not
allow you to change boot defaults or choose many different SpartaDOS
types; it reads the SpartaDOS with defaults from the diskette you use as
the SOURCE.

Example
FORMAT

The first question is whether to write DOS. If you answered 'V', then you
must insert a SpartaDOS source diskette of your choice into drive 1. After
pressing RETURN, SpartaDOS is read into memory. The source can be
any of the versions of SpartaDOS 1.x and the newly formatted diskette
will retain the same defaults as the source.

The rest of the prompts are the same as the latter part of the INIT
prompts.

Drive to format? (1-4 are valid)
Select number of tracks (usually #1)
Select Density?
Volume name? (1 to 8 characters)
UltraSpeed sector skew? (requires US hardware modification for high
speed)

BOOT Command

Purpose
This command tells a SpartaDOS 2.x formatted disk to boot a particular
program at startup.

Syntax
BOOT [Dn:][path >]fname[.ext]

30

Chapter 5 - Diskette Initialization

Type and Restrictions
Internal under CP version 2.x

Remarks
The DOS loader on the first three sectors of each SpartaDOS 2.x
formatted diskette, can load and run files in the same manner as a
command file. Normally DOS is loaded, but actually anything could be
loaded as long as it avoids the loader memory ($2EOO-$3180). To change
version 2.x DOS types on a diskette, first copy the new DOS file to the
diskette, then use the BOOT command to force the new DOS to execute
upon system boot. To create a binary boot diskette, use XINIT and select
no DOS, COpy your binary boot file to the disk, then use the BOOT
command which tells the loader the filename.

Example
BOOT STAR.BIN

When this diskette is booted, it will immediately try to load and run the file
STAR.BIN.

Ramdisk Commands
With the introduction of the 130 XE computer and the AXLON
RAMPOWER 128 for the 800, users have discovered new applications for
extra memory. One of the easiest to use is called a 'Ramdisk'. This is an
electronic simulation of a disk drive using the extra memory as storage.
The main advantages of this are great speed and two drive operations
using only one physical disk drive. The main disadvantage is that the
RAM memory is volatile which means that all memory is lost when the
power goes down.

Purpose
These commands install a ramdisk device (electronic disk) in the place of
a disk drive. Since these commands depend on specific hardware, the
correct device must be present or an error will result. Note: CP version
1.x allows up to 4 drives and CP version 2.x allows up to 8 drives.

Syntax
RDBASIC Dn:
RD130 Dn:
RDAXLON Dn:

(XL/XE computer with internal BASIC on required)
(Atari 130XE computer required)
(Axlon RAMPOWER 128 in Atari 800 required)

31

Chapter 5 - Diskette Initialization

Type and Restrictions
External under CP versions 1.x and 2.x
RDBASIC and RD130 must be installed under CP version 2.x only

Remarks
The Ramdisk is a simulation of a fast floppy disk. It is set up in 128 byte
sectors and works with all the standard disk drive commands. The
ramdisk handler is installed by entering the appropriate command along
with the desired drive number. Any drive from 1 through 8 is valid with CP
version 2.x ; drives 1 through 4 are the valid when using CP version 1.x. If
there is already a drive in the selected location, the disk drive will be
deselected (knocked out). Once installed, all standard drive commands
will work with the ramdisk. If a ramdisk command is given and the
required hardware is not in the system, an english error message will
occur. Note: Do not install anyone ramdisk to more than one drive
number.

The Atari 130XE computer has 128K of RAM. The upper 64K can be
accessed in 16K banks through an 'access window' between $4000 and
$7FFF. The RD130 command allows easy access to this RAM and sets it
up as a 64896 byte electronic disk (507 free sectors). This command
works with CP version 2.x only.

The BASIC ramdisk works on all XLIXE computers and provides an extra
8K (7552 bytes) of RAM that was not used before (59 free sectors). This is
only usable while the internal BASIC is installed. Holding down the
OPTION key when booting or using the BASIC OFF command will
destroy this ramdisk. The BASIC ramdisk area can be used as protected
memory, scratch pad storage, and other uses which users will discover
as SpartaDOS 2.x becomes familiar to the Atari community.

The AXLON RAMPOWER is a 128K board made for the Atari 800 which
adds 8 - 16K banks of RAM to the system. These are seen in a window
area from $4000 - $7FFF (similar to the 130XE but switched differently)
and are switched through machine language handlers. RDAXLON sets
the RAMPOWER board up as a 112K ramdisk. Since the RAMPOWER
only works with the Atari 800 computer, RDAXLON will only work with CP
version 1.x.

32

Chapter 5 - Diskette Initialization

Examples
RD130 D5:

This installs the ramdisk as drive #5. If the computer is not a 130XE, an
error message is generated.

RDBASIC D2:

The BASIC ramdisk is installed as drive #2.

RDAXLON D4:

You now have a 112K ramdisk as drive #4.

The RD130 Ramdisk may be setup as a utility disk under CP version 2.x
with up to 64K of special utility files. These could be files like:
MENU.COM, MENU.HLP, DUMPCOM, etc., which you may want to use
but not keep on every disk. A STARTUP BAT file could be created Vl(jth the
commands:

RD130 D2:
COpy *.COM D2:

When the computer boots this disk, the ramdisk is installed as drive #2
then all command files are copied to the drive #2 ramdisk where they will
remain until powered down. All the commands can then be used on any
SpartaDOS or Atari DOS 2.0 disk inserted into drive #1.

You may want to duplicate some files onto several disks. Copy the files to
the ramdisk installed as 'D2:' then use:

COpy D2:*.* D1:

33

Chapter 5 - Diskette Initialization

34

Chapter 6 - Subdirectories

CHAPTER 6 - SUBDIRECTORIES

Subdirectories are an important feature of SpartaOOS, in fact, they were
one of the major reasons for SpartaOOS in the first place. If you have
never had subdirectories available to you before, you may be somewhat
surprised at just how useful they are. This chapter describes that
commands that directly manipulate or modify the SpartaOOS directory
hierarchy.

?DIR Command

Purpose
To show the path to a specified directory. If no path is given as a
parameter, the current directory path is displayed.

Syntax
?DIR [Dn:][path]

Type and Restrictions
Internal under CP version 2.x

Remarks
This command is normally used to show the current directory path. The
path displayed is the path you would type after a CWO command to get
from the MAIN directory into the directory you are currently in.

CREDIR Command

Purpose
This command creates a subdirectory under a specified drive and
directory.

Syntax
CREOIR (On:]path

Type and Restrictions
Internal under CP versions 1.x and 2.x

Remarks
The directory to be created is the last directory in the path name. If no
path is given, an error will occur. The path IS In the format of
'NAME1 >NAME2 > NAME3' and indicates the route from the current
directory to the directory to be created.

35

Chapter 6 - Subdirectories

Example
CREDIR D2:UTILITY

This command creates a subdirectory on drive 2 called "UTILITY".

CREDIR GAMES >ARCADE

This command creates a subdirectory, ARCADE, on the default drive
under the pre-existing subdirectory, GAMES.

DELDIR Command

Purpose
This command deletes an empty subdirectory from the specified drive.

Syntax
DELDIR [Dn:]path

Type and Restrictions
Internal under CP versions 1.x and 2.x

Remarks
The directory to be deleted must be totally empty before it can be
deleted, and must be the last directory in the path name. Note that the
MAIN (root) directory may not be deleted.

Example
DELDIR GAMES >ARCADE

This command removes the sUbdirectory called ARCADE under directory
GAMES only if it is empty, otherwise an error results.

CWDCommand

Purpose
This command changes the current (working) directory on the specified
disk.

Syntax
CWD [Dn:]path

36

Chapter 6 - Subdirectories

Type and Restrictions
Internal under CP versions 1.x and 2.x

Remarks
The current directory is where DOS looks to find files whose names were
entered without specifying which directory they were in. Also, the current
directory is the base directory for relative pathnames.

Important: when a file is opened for read, the current directory is the first
to be scanned for the file, but if it is not there, the main (root) directory is
then scanned for the file. This is so that one may keep '.COM' files in the
main directory and be able to access them from a subdirectory.

During DOS initialization, the current directory is reset to point to the
main directory. Initialization occurs when the RESET key is pressed or
when some application causes an initialization when it loads.

Remember that the current directory is displayed in the header of the
expanded directory listing.

Note that the path can be substituted with' < ' to move backwards in the
path one directory (to the parent directory).

Examples
CWO <

This command takes you backwards to the previous directory in the path.

CWO 03:GAMES >ARCAOE

This command takes you to the subdirectory called arcade on drive 3
under the subdirectory of GAMES.

TREE Command

Purpose
This command displays all the directory paths found on the diskette or
under the specified directory. and optionally lists the files found in each
directory in alphabetical order.

Syntax
TREE [Dn:)[path] [IF]

37

Chapter 6 - Subdirectories

Type and Restrictions
External under CP versions 1.x and 2.x

Remarks
The TREE command displays all path names found on the diskette when
used from the main directory. If a path is specified, then all pathnames
under that directory will be displayed. When used from a subdirectory,
TREE will display all path names from that directory on. If the 'IF' is
specified, then all filenames in each directory will be displayed in
alphabetical order after the directory path they're in.

Example
TREE D1:MODEM IF

Subdirectory MODEM is displayed as the root directory and all filenames
under that are displayed; then any subdirectories under MODEM are
displayed along with the filenames under each of those. This continues
until the last subdirectory and filenames are displayed.

38

Chapter 7 - Duplication

CHAPTER 7 - DUPLICATION

This chapter describes most of the copy utilities that SpartaDOS
provides. There are quite a few commands because of the different
versions of DOS (XCOPY compared to SPCOPY) and drive
configurations. (COPY is much more useful to those who have two drives
or can use one of the Ramdisks provided.) Note that an XCOPY/SPCOPY
type of copier is included in the MENU.COM program.

COpy Command

Purpose
COpy is an extremely powerful utility with many uses as follows. Copy
one or more files from one device to another, and optionally give the new
file a different name.

COpy can also copy files to the same diskette, however, the new file
must have a different name or the destination directory must be different
than the source. Note that this command will not COpy a file between
two diskettes using the same disk drive. There is no provision to
switch diskettes in the middle of the copy process. If a single drive copy
is desired, use XCOPY, SPCOPY, DUPDSK, or the MENU program.

Under CP version 2.x, COpy with the 'lA' option allows appending of two
files (adding one file to the end of another).

You may also use COpy to transfer data between any of the other system
devices, i.e. the Screen Editor, Printer, Keyboard, etc. (see the examples
that follow).

Syntax
COPY d[n):[path >)[fname[.ext)) [dn:)[path >)[fname[.ext))[/A]

Type and Restrictions
Internal under CP versions 1.x and 2.x
Can be external in special cases under version 1.x
The 'lA' option is only allowed under CP version 2.x

39

Chapter 7 - Duplication

Remarks
The COPY command is the only command (aside from BUFS in CP
version 1.x) that destroys memory. Thus, if you are writing a BASIC
program, make sure that you save it before entering the command
processor and using the COpy command. (The Ramdisks are useful for
saving temporary information.)

The first file specified is the source file name. If none is given, a default
filespec of '*.*' is assumed which will copy all files. The device for the
source file must be given. The second file is the destination. If no
filename is specified, a default filespec of '*:' is assumed, which will
copy without changing names.

You may use wild cards in both the source and destination filenames as
well as in the extensions. If wild cards are used in the pathnames, the
first directory match will be used. Multiple directories cannot be copied
with one COPY command.

When using wild cards with the COpy command, the same renaming
conventior. as in the RENAME command is used. The source filespec is
used to find directory matches, and the destination filespec renames
them by overriding characters in the source name when the destination
name has characters other than'?, or '*' in it.

IMPORTANT: Only the device 10 of '0:' follows this convention since this
is the only device that has directories. If a device other than '0:' is used
with the source filespec, then only one file is copied and the source
filename is the source filespec, whereas if copying from the '0:' device,
the source filename is the filename from the directory that matches the
source filespec.

Warnings for CP version 1.x only. In the example:

COpy E:*" On:*: or COPY E:

The destination filename is '???????????' ('*.*' expanded out) since the
Editor is not a directory carrying device, therefore, both the source and
destination filespecs are the filenames. When saving a file named
'???????????', the first entry in the directory is matched and no
renaming process occurs on filenames written to the directory. The
end result is a file (called '???????????') that is not erasable and one
destroyed file (the first one).

40

Chapter 7 - Duplication

In SpartaDOS 1.x, the internal COpy command resides in page 6 of
memory. Occasionally another program might wipe this out and take
page 6 for its own use. If this has happened, an error 170 will result when
entering COpy To continue use of the COPY command without page 6,
an external file provision was built into SpartaDOS. Use the SAVE
command to write the file COPYCOM onto the diskette with the offending
programs. When the COPY command is called, a checksum is done to
determine whether COPY is still intact. If not, the external file will replace
it. The format to create this COPYCOM file is:

SAVE COPYCOM 600 6FF

CP version 2.x only.

When using CP version 2.x, the 'lA' option allows the COPY command to
append one file to another. The first file in the command line will be
copied onto the end of the second file in the command line. (The file
header from the second file will also be copied onto the end of the first
file.)

The COpy command, aside from the obvious ability to copy and append
disk files can also create batch files, print files on the printer, or allow
typing directly to the printer.

Examples
COPY D:*.PRN P:

This command copies all files from disk with an extension of .PRN to the
printer.

COPY E: D:INPUT.BAT

This command creates a batch file called INPUT. When this command is
entered, the screen will clear and you may begin typing lines of text.
When done, a CTRL 3 will signal the end of the file for the Editor and the
data will be saved to the disk file.

COpy E: P:

This example may be used for sending initialization sequences to the
printer. The data you type will get printed on the printer.

41

Chapter 7 - Duplication

COPY GAME2 GAME1/A

This example (only allowed under CP version 2.x) will append the file
'GAME2' onto the end of the file 'GAME1' on the default drive. If, before
the command was executed, 'GAME1' was a 4000 byte file and 'GAME2'
was a 2000 byte file, after execution 'GAME1' will be a 6000 byte file.

SPCOpy Command

Purpose
This command is used for single or dual drive file transfers between
Sparta DOS and/or Atari DOS 2 compatible formats with few restrictions
on density and number of tracks. This is the way to convert Atari DOS 2
files to SpartaDOS or the reverse of this (for CP version 1.x). Since
translation is already built into CP version 2.x, use the smaller XCOPY
with that version of SpartaDOS.

Syntax
SPCOPY

Type and Restrictions
External under CP versions 1.x and 2.x
XCOPY is suggested under CP version 2.x

Remarks
This utility program allows single or dual drive file transfers to or from
SpartaDOS. SPCOPY is menu driven and the screen format is easy to
follow. The screen is divided into four 'windows' as follows:

TOP This window displays your path and filespec for your
SOURCE filenames and the path of the destination
directory. NOTE: no file renaming is performed so the
'*.*' on the destination is unnecessary.

UPPER RT This window displays the drive numbers selected for
the source and destination diskettes.

LOWER RT This window displays the command keys (and their
function) along with the prompts used by this utility
program.

42

Chapter 7 - Duplication

LEFT This window displays the selected directory from the
diskette currently being read. You select files to copy
by tagging them in this window.

Example
SPCOpy

The menu appears on the screen. The default setting is a single drive
copy to and from the main directory. With the source disk in the drive,
press START to get the file list. The directory is then displayed at the
left with the arrow pointing to the current file. Press the SPACE BAR to
tag the file or SELECT to move on to the next. Once all the desired files
have been tagged, press START to copy the files. You will be prompted
to swap disks as necessary.

SpartaDOS 1.x Restriction: Have different or unique volume names for
each diskette since SPCOPY reads the volume name to determine if a
different diskette is in the drive.

SYSTEM 1/0 ERROR: This is a general purpose error message given by
SPCOPY when something goes wrong e.g. inserting the wrong disk
when swapping source and destination, copying between two disks with
the same volume name, etc.

XCOPY Command

Purpose
This command is used for single or dual drive file transfers between
SpartaDOS and/or Atari DOS 2 compatible formats (with few restrictions
on density and number of tracks). This is intended to be used with
SpartaDOS 2.x since Atari DOS 2 format is recognized by the DOS
(SPCOPY has Atari DOS 2 built in; XCOPY does not). If you are doing
Single or dual drive Sparta DOS to SpartaDOS copies, then this
command is better even for version 1.x usage.

Syntax
XCOPY

Type and Restrictions
External under CP versions 1.x and 2.x
SPCOPY is suggested under CP version 1.x

43

Chapter 7 - Duplication

Remarks
This command is identical to SPCOPY except for the following
differences:

1. The Atari DOS 2 handlers are not built in. XCOPY assumes that
the DOS can handle an Atari formatted diskette if necessary.

2. The file tagging has been improved so that you can see four files
ahead of where you are currently tagging. (It scrolls the files
before you reach the bottom.)

3. 100 files can be handled (SPCOPY can only hold 50 files).

4. SPCOPY re-initializes DOS at the beginning of each read and
write pass; XCOPY never re-initializes DOS. This means that
XCOPY is highly susceptible to volume names being the same
(on version 1.x diskettes in particular). PLEASE GIVE ALL
YOUR DISKETTES DIFFERENT VOLUME NAMES!!!

DUPDSK

Purpose
To duplicate an entire SpartaDOS diskette (except for volume name),
using one or two disk drives. Important: the number of tracks and the
density on the source and destination diskettes must be the same or
an error will result.

Syntax
DUPDSK

Type and Restrictions
External under CP versions 1.x and 2.x

Remarks
DUPDSK is a disk copy program which will duplicate an entire
SpartaDOS diskette including subdirectories while using one or two disk
drives. This command will not format or transfer the diskette volume
name. These must be created with a format program (INIT, XINIT, or
FORMAT) since there are many possible variations in format. Also, the
destination format must be the same format type as the source
format, and the destination diskette should not have any files on it as
they will be overwritten!

44

Example
DUPDSK

Chapter 7 - Duplication

This command comes up with prompts for source and destination drives
with 1 through 8 being valid drive numbers. You are then prompted to
'Insert Source diskette ?' if a single drive copy, or to 'Insert Source &
Dest. Diskettes?' if a two drive copy. Press any key (except ESC) to start
the duplication and repeat as necessary if swapping diskettes in a single
drive.

45

Chapter 7 - Duplication

46

Chapter 8 - Maintenance

CHAPTER 8 - MAINTENANCE

This chapter contains the descriptions of commands used for erasing
files, renaming files, and changing the volume name.

ERASE Command

Purpose
This command allows you to erase one or more files from a diskette and
the specified disk directory. If no path is specified, then the file is deleted
from the current directory. Wild cards can be used in the filespec.

Syntax
ERASE [On:][path >][fname[.extll

Type and Restrictions
Internal under CP versions 1.x and 2.x

Remarks
You may use wild cards in the file spec, however, use caution as one
command can erase many files. If no filespec is given, an error will occur.
Also, if a filespec of '*.*' is given, then all files will be erased and no
warning will be given. Note that only files will be erased; any
subdirectories will be left intact. To restore erased files, see the
UNERASE command.

Note: Do not be alarmed if the free sector count seems off by one sector
when copying, then erasing files. The directory and file maps are not
assigned to specific sectors and will grow and shrink as necessary - but
not always identically to a previous size or location.

UNERASE Command

Purpose
This command allows you to restore one or more files that were
previously erased. If no path is specified, then UNERASE restores the
files in the current directory. Wild cards can be used in the filespec. If a
file can't be restored, UNERASE will indicate why.

Syntax
UNERASE [Dn:][path >][fname[.extll

47

Chapter 8 - Maintenance

Type and Restrictions
External under CP versions 1.x and 2.x
Caution: use a 1985 or newer UNERASE.COM version only!

Remarks
This command will restore files that have been accidentally erased, but
only if they are still intact. If new files have been created since the
desired file was last erased, then part of the erased file may have been
overwritten and therefore lost fcrever!

Warning: UNERASE.COM files distributed before the release of
SpartaDOS 2.x (dated in 1984), will totally destroy a CP version 2.x
formatted diskette!

Example
UNERASE *.*

UNERASE will map the current directory and then display the names of
the files being restored as it encounters them.

NOTE: Occasionally the free sector count is decreased by one after an
UNERASE. The reason for this is that the UNERASE command will
increase the size of the directory file if the last sector is close to being
full.

RENAME Command

Purpose
This command allows you to change the name of one or more files.

Syntax
RENAME [Dn:](path >]fname[.ext] fname[.ext]

Type and Restrictions
Internal under CP versions 1.x and 2.x

Remarks
Wild cards may be used in both filespecs. A device and path may only be
specified on the first file name (the old name filespec). Filenames must
be specified for both source and destination names, otherwise an error
will occur. The rules for wild carding are described in detail in Chapter 4.

48

Chapter 8 - Maintenance

Example
RENAME FILEZ FILES

This command changes the name of the file on the default drive and
default directory from FILEZ to FILES.

CHVOL Command

Purpose
This command is used to change the volume name on a diskette.

Syntax
CHVOL [Dn:]vname

Type and Restrictions
External under CP versions 1.x and 2.x

Remarks
CHVOL is used to change the volume name on a diskette. This can be
useful if you change your mind on a volume label after it has been
initialized. Note that you may not include spaces in the volume name,
but any other character is legal. Only the first 8 characters will be used
for the new volume name.

49

Chapter 8 - Maintenance

50

Chapter 9 - Protection

CHAPTER 9 - PROTECTION

Protection is an important feature in any DOS. It is quite easy to erase
files using wild cards and not realize that a file you didn't want erased
was lost. To solve this problem, a file protect status may be set on any file.
If on, that file may not be erased until it is 'unprotected'. Also, a disk lock
feature has been added which acts much like a write protect tab (or notch
on 8 inch drives).

File Protection
File protection is accomplished by use of the PROTECT and
UNPROTECT commands. These commands set or clear a bit in the file
status. If set, that file may not be modified in any way. The following gives
the command descriptions.

PROTECT Command

Purpose
This command protects (locks) files from accidental erasure.

Syntax
PROTECT [Dn:][path > Jfname[.extJ

Type and Restrictions
Internal under CP version 2.x
SpartaDOS 1.x does not recognize the protect status

Remarks
PROTECT will help prevent accidental erasure of specified files. A write
or erase attempt to a protected file will result in the message 'File
protected' or error 164 from BASIC. Unlike Atari DOS 2, the RENAME
function is allowed on protected files. Protected files will have an asterisk
(*) before the file name when executing the DIRS command.

UNPROTECT Command

Purpose
This command unprotects files to allow you to erase of modify the files.

Syntax
UNPROTECT [Dn:][path >)fname[.ext)

51

Chapter 9 - Protection

Type and Restrictions
Internal under CP version 2.x
SpartaDOS 1.x does not recognize the protect status

Remarks
This is the reverse of the PROTECT command. Files must be
UNPROTECTED in order to be modified or erased.

Disk Protection
Sparta DOS version 2.x has two commands that allow you to protect or
unprotect on a whole diskette basis. This is similar to putting a write
protect sticker on the diskette. However, there is one major difference; a
write locked diskette may be written to by programs that do not use
SpartaDOS file handling. The XINIT, INIT, and FORMAT programs are
several examples.

LOCK Command

Purpose
This command locks the diskette to prevent accidental erasure. It is
similar to the physical write protect tab which is put on the disk, but is
strictly a software lock and only works when using SpartaDOS 2.x.

Syntax
LOCK [Dn:]

Type and Restrictions
Internal under CP version 2.x
SpartaDOS 1.x does not recognize the protect status

Remarks
The LOCK command has been added to SpartaDOS to allow write
protection of the SpartaDOS 2.x diskette. The lock byte is physically
written to the diskette where it will remain until the UNLOCK command is
given. The status of LOCK ON or OFF can be checked with the CHKDSK
command. When trying to write to a locked diskette while in SpartaDOS
2.x the message 'Disk write locked' will be displayed. Under BASIC it will
be an error 169 ($A9).

52

Chapter 9 - Protection

UNLOCK Command

Purpose
This command unlocks a SpartaOOS 2.x formatted disk (See LOCK).

Syntax
UNLOCK [On:)

Type and Restrictions
Internal under SpartaOOS 2.x
SpartaOOS 1.x does not recognize the protect status

Remarks
This command updates tne SpartaOOS 2.x diskette to allow writing to it.
UNLOCK is the reverse of the LOCK command. After executing the
UNLOCK command, CHKOSK will show 'Write lock: OFF'.

53

Chapter 9 - Protection

54

Chapter 10 - LOGOMENU - Step by Step

CHAPTER 10 - LOGOMENU - STEP BY STEP

How to Create a Special Binary File Loader
Many Atari users have a collection of binary files, many of which are
games. For this, special versions of DOS (NOCP and XC238) and a
menu program (LOGOMENU.SYS) have been created to load and run
these files. Here are some of the advantages of using the NOCP/XC238
DOS in conjunction with LOGOMENU.SYS:

a) File protection - since there is no command processor in NOCP
(similar to using DOS.SYS with no DUP.SYS in ATARI DOS 2) it
becomes difficult to accidentally erase or write over a file without first
booting up another version of SpartaDOS. Also, since
LOGOMENU.SYS is only a load/run type of menu that you can't exit
aside from rebooting; only reading from the diskette is performed.

b) UltraSpeed - both versions of DOS run in UltraSpeed mode as
long as your drive hardware supports it and you select US sector
skew when formatting. Otherwise, it will run at standard speed.

c) Size and Organization - LOGOMENU.SYS can handle up to 16
directories each with up to 64 files. It is arranged so that the SELECT
key toggles the page of files within a subdirectory to be displayed,
and the OPTION key toggles the subdirectory currently being
displayed. When you choose a file to load and run, simply press the
letter of the file.

d) Simple Operation - a double wide menu will display during
operation. You press the letter or letters that correspond to the file
and it loads and runs. To see more pages of files, use the
SELECT/OPTION keys as described in (c). Once a diskette of files
has been created (as to be described), no other steps need be taken
other than turning the system on and selecting the file to run.

e) Compatibility - NOCP has a MEMLO about 1/4K above that of Atari
DOS 2 and XC238 has a MEMLO about 4K below that of Atari DOS
2. All games that run under an Atari DOS 2 type menu should run
under this menu.

f) Hidden Files - if you 'protect' a file (by the PROTECT command),
that file will not show up in the menu. If you 'protect' a subdirectory,
that entire directory will not be included In the menu. This way you
may put several catagories (subdirectories) on one diskette, but only
allow certain catagories to be displayed when used.

55

Chapter 10 - LOGOMENU - Step by Step

h) Deselects BASIC - LOGOMENU automatically deselects the
internal BASIC on XUXE computers, so there is no need to hold
down the OPTION key when booting your LOGOMENU diskette.

Construction (for non-XL/XE Computers):

Initialize a disk with NOCP.DOS using INIT.

This is a version 1.x type SpartaDOS. Insert a diskette with the files
INIT.COM and NOCP.DOS into your drive and boot up. If a batch file runs
and pauses, press RESET to get the '01:' prompt. Type INIT and then
press RETURN. The DOS menu will come up. Press the corresponding
number for NOCP. After it reads the NOCP file it asks to 'Modify
defaults?', press 'N' for no.

Then, drive to format is usually drive 1, tracks will be 1 for Atari drives;
the other selections are for the ATR8000 and similar peripherals. The
density menu gives a choice of 1) single (90K), 2) double (180K), and 3)
1050 doubla (130K). 810s only get number 1, 1050s can choose 1 or 3,
and 1050s with the US Doubler can choose any of the densities.

The volume name should be unique to each diskette. You might want to
use numbers or letters or both, as it is intended to help you keep track of
your diskettes. US Doubler owners will type 'Y' (yes) for UltraSpeed
sector skew, everybody else will type 'N' (no).

Now insert the diskette to be formatted into the drive specified and press
any key to begin. After the diskette is formatted, it is a good time to repeat
the procedure on any other diskettes you might want to initialize as
games diskettes.

Copy LOGOMENU.SYS to the MAIN directory on each of your newly
initialized diskettes and RENAME it to AUTORUN.SYS.

Find a diskette with the file LOGOMENU.SYS on it. You can use
SPCOPY, XCOPY, or COPY if you have 2 drives. After the file has been
copied to the destination diskette, RENAME it to AUTORUN.SYS.
Example: 'RENAME LO".* AUTORUN.*'. Note: This will be the only file
(other than subdirectory names' <DIR > ') stored in the MAIN directory
on your games diskettes.

56

Chapter 10 - LOGOMENU - Step by Step

Create subdirectories for file storage on each of the destination
diskettes. All files must be stored in subdirectories; not the MAIN
directory.

Use the CREOIR command. You may only want to use one subdirectory
on the disk if there will only be a few files on it. Name subdirectories to
help organization (e.g. SPACE for space games, PACMAN for pacman
type maze games etc.). Example: 'CREOIR PACMAN'. This writes a
subdirectory called 'PACMAN' on the diskette under the MAIN directory.

Copy the files to your new diskettes under the desired
subdirectories.

Use SPCOPY or XCOPY to copy the files. Under the destination file
name you must put the subdirectory path in the proper format. Example:
'PACMAN > *.*'. This will only work if the sUbdirectory named 'PACMAN'
is on the destination disk. Note: Do not copy any of your game files to the
MAIN directory. 'AUTORUN.SYS' is the only file allowed under 'MAIN'.

Boot the new games disk and try it out!

SELECT scrolls the directory display up to show additional filenames if
any. OPTION changes subdirectories if more than one is on the diskette.
SYSTEM RESET reloads the directory. This is helpful in the event that
you change diskettes in the drive. There should not be any cartridges
installed although it is OK to leave the R-Tlme 8 Cartridge installed.
Internal BASIC will be automatically deselected in the XUXE computers.

Notice: The multicolor symbol displayed is the logo, trademark, and
property of the Atari Corporation.

Trouble shooting:
The display comes up with READY or MEMO PAO/OIAGNOSTICS
'NOCPDOS' needs a file called 'AUTORUN.SYS' in order to initialize
properly. Check the MAIN directory for the file 'AUTORUN.SYS' Also, the
BASIC cartridge must not be installed.

The display comes up with ERROR: NO SUBDIRECTORIES FOUND -
You must have at least one subdirectory on the diskette.

57

Chapter 10 - LOGOMENU - Step by Step

The display comes up but doesn't show any filenames - There are no
files stored under the subdirectory. Boot up a STANDARD or SPEED
version of DOS, then put the games disk in and check the directories.
'OIR' will show the MAIN directory and 'DIR PACMAN >' will show a
subdirectory called 'PACMAN'.

Construction (for XLIXE Computers Only):

Initialize a disk with XC23B.DOS using XINIT.

Insert a disk with XINIT and the 2.x versions of DOS into drive 1 and boot
up the system. Then follow the instructions for construction with 'NOCP'
except you must substitute select 'XC23B' instead of NOCP. Also the 2.x
versions show up as filenames under the MAIN directory; the 1.x
versions remain hidden from view. The rest of the instructions are the
same.

When trouble shooting 2.x version, you may also get the 01: prompt
when either SYSTEM RESET or BREAK is pressed; if there is no
'AUTORUN.SYS' file in the MAIN directory, then either 'READY' or the
'01:' prompt will appear.

58

Chapter 11 - MENU Operation

CHAPTER 11 - MENU OPERATION

Do you still prefer the Atari DOS 2 menu over a command processor
driven DOS? Well, SpartaDOS has a menu program too. But be warned,
don't expect it to even resemble that of Atari DOS 2's menu. I suggest
that you run MENU now and see what it looks like before you continue
reading the command description. The description should make more
sense once you know what the display looks like.

MENU Command

Purpose
This command gives you most of the features of the command processor
but in a menu form. It is capable of single and multiple file functions.

Syntax
MENU [RJ[n]

Type and Restrictions
External on CP version 2.x

Remarks
If you type 'R' on the command line, the MENU program will remain
resident. This means that you may go to BASIC and then type 'DOS' to
re-enter the menu program. If 'R' is not specified, MENU will not be able
to be re-entered once you exit it.

There is a help file ('MENU. HLP') the MENU uses when you ask for
online help. The 'n' parameter sets the drive that this help file will be on.
This gives you the ability to load the file into a Ramdisk and use it from
the menu program. If 'n' is not specified, drive 1 is assumed. Note: if you
specify both 'R' and an 'n', do not put a space between them (i.e. 'RS').
The operation of MENU follows in the next section.

The MENU Operation
Many of the MENU functions (e.g. copy, erase, protect, etc.) can do the
operation on many files at once. This is done by tagging the files you
want the operation to be performed on. The following key strokes are
used:

59

up arrow

Chapter 11- MENU Operation

- This moves the 'select' cursor to the file above the
current. If at the top, the cursor will move to the last
file in the list.

down arrow - This moves the 'select' cursor to the next file in the
list. If at the bottom, the cursor will move to the first
file.

space - This toggles the tagged status of the file. The file is
in inverse video if it is currently tagged.

The next step is to select the command or function you wish to perform.
For this you must get the command cursor (in the bottom boxes) on the
correct command. The commands are arranged in 5 banks of 5
commands. The following key strokes select the command:

OPTION - This selects the next bank of commands. The cursor
remains in the same position. There are 5 banks in
all.

SELECT - This moves the cursor to the next command (to the
right). If at the end, it moves to the first command in
that bank of commands.

right arrow - This is identical to the SELECT key.

left arrow - This moves the cursor to the last command (to the
left). If at the beginning, it moves to the last command
in that bank of commands.

1 .. 5 - The number keys 1 through 5 select a bank of
commands. This gives an alternative to the OPTION
key and allows you faster access to the row you want.

A .. Z - The letter keys move the cursor to a particular
command. This allows you to memorize letters for the
most used functions for faster access. An attempt has
been made to make the letters correspond to the
function.

HELP key - This gives you a small description of the command
the cursor is on. To restore the screen after HELP.
press the RETURN key (actually any key will work).

60

Chapter 11 - MENU Operation

Once you have selected a function, you may perform it by pressing the
RETURN or START keys (they are functionally identical). A description of
each command follows. The corresponding letter command is given in
parenthesis following the command name.

?Files (F) - This command does a directory of a drive that you
specify. This then becomes the source drive for copy
and all other functions (that pertain) operate on the
selected drive. When asked 'Which Drive?' answer
with a drive number or RETURN for Drive 1.

Copy (C) - This command will copy all tagged files, or the file
the cursor is on if no files are tagged. When asked
'Dest Drive?', enter the destination drive number of
the copy or RETURN for Drive 1. Next enter the path
name of the destination directory or RETURN for the
MAIN directory. When prompted to insert diskettes,
press RETURN for the copy to continue.

Erase (E) - This command will erase all tagged files, or the file
the cursor is on if no files are tagged. No prompts are
given so be careful.

Rename (R) - This command renames the file the cursor is on to a
n?me you specify. When asked 'Rename to?', enter
the new name and RETURN.

Exit (a) - This command exits the menu program and enters
the command processor. Caution must be taken
when a cartridge is also enabled. Read the 'Other
Notes' section at the end of this chapter carefully.

RunCar (8) - This command exits the menu program and enters a
cartridge if it is enabled. Caution must be taken when
a cartridge enabled. Read the 'Other Notes' section
at the end of this chapter carefully.

Load (L) - This command loads the file the cursor is currently
on. The file must be a binary file. The screen will be
cleared before the file is loaded. The standard Atari
DOS 2 INIT and RUN vectors are used. Once the file
has run. press RETURN to re-enter the menu
program (if the file doesn't take over).

61

Save (5)

Run (J)

Exec/P (G)

Xlnit (I)

Alnit (A)

Chapter 11 - MENU Operation

- This command saves a binary file. You must enter
the filename (and path), the start address, and the
end address as requested.

- This command jumps to a machine language
program. You may either specify an address, or press
RETURN. In the latter case, the beginning address of
the last file 'LOADed' will be used. The screen is
cleared before the machine language program is
entered. If that program allows, you may press
RETURN to re-enter the menu program.

- This command loads the file the cursor is currently
on. But before it loads, you can give a command line
to that file. This is how to use external commands
under the MENU program. The screen is cleared
before the file is run, and when done, you may press
RETURN to re-enter the menu program.

- This command loads the XINIT external command
and runs it. This is how to format SpartaDOS version
2.x diskettes. To exit the XINIT program and re-enter
MENU, press the ESCape key.

- This command formats a diskette in Atari DOS 2
format. Enter the drive number when asked
(RETURN for drive 1) and then any key when ready to
format.

?Mem (M) - This command displays the contents of MEMLO and
MEMHI. Press RETURN to restore the display.

ChkDsk (Z) - This command performs the CHKDSK command.
Press RETURN to restore the display.

Help (H) - This command provides help on the keys used to
move the cursor and select a command. Press
RETURN to restore the display.

Prot (P~ - This command will protect all tagged files, or the fi:e
the cursor is on if no files are tagged.

UnProt (U) - This command will unprotect all tagged files, or tre
file the cursor is on if no files are tagged.

62

lock (K)

Chapter 11 - MENU Operation

- This command write locks the diskette in the current
drive.

Unlock (0) - This command write unlocks the diskette in the
current drive.

Xfer (X)

?Dir (V)

~Dir (T)

< Dir (V)

CreDir (N)

OelOir (D)

- This command is much like the COPY command in
the command processor except it does not do
multiple files. You will be prompted for a source file
and a destination file. Make sure to include the device
names (i.e. '02:'). The screen is cleared before the
copy. After its done, press the RETURN key to restore
the display.

- This command displays the current directory path.
To restore the display, press RETURN.

- This command displays the directory pointed to by
the cursor. This is now the current directory.

- This command displays the parent directory. This is
now the current directory.

- This command creates a new subdirectory. Just
enter the name of the new directory.

- This command deletes the directory pointed at by
the cursor. No prompt is given (but the directory must
be empty anyway before it may be deleted).

Other Notes About the MENU Program
Some of the commands invalidate user memory (destroy BASIC
programs, etc.). They are as follows: Copy, Xlnit, load, Xfer, and
Exec/P.

While a cartridge is enabled, care must be taken to ensure that the
command processor will not interfere with the MENU program. When
you enter BASIC, a flag (called WARMFLG) indicates whether the
contents of memory is valid. Both the command processor and the
MENU program keep their own copies of this flag, but they may differ.
There is no problem if just using the command processor or the MENU
program, but there are some scenarios you must try to avoid when using
both.

63

Chapter 11 - MENU Operation

1. You load the menu ('MENU R'), enter BASIC (option 'RunCar'),
write a BASIC program (or load one), type 'DOS' (you are now in
the MENU), perform a memory destructive command (like
'Copy'), enter the command processor (option 'Exif), and type
'CAR'. In this example, the command processor never knew that
memory was destroyed.

2. You load the menu 'MENU R', enter BASIC (option 'RunCar'),
write a BASIC program (or load one), type 'DOS' (you are now in
the MENU), enter the command processor (option 'Exit'),
perform a memory destructive command (like 'COPY'), and
press RESET. In this example, the MENU program did not realize
that memory was destroyed and RESET used MENU's copy of
WARMFLG.

Important: If you enter a cartridge through a command, the program
that you entered from will update WARMFLG. If you enter because of
a RESET, MENU will update WARMFLG.

64

Chapter 12 - Time and Date Support

CHAPTER 12 - TIME AND DATE SUPPORT

Have you ever found yourself frustrated because you're not sure which
file is the latest version of a program you wrote the day before (or even
last year)? Well, for those who answered yes, SpartaDOS offers a
solution to this problem. All versions of SpartaDOS support file time/date
stamping, which allows you to know exactly when you saved a particular
file. You need to know some more commands in order to, display the
current time and date, to set a new time and date, and to update the time
and date in a file. In this chapter, all the commands necessary shall be
given.

To Activate Time/Date Clock
SpartaDOS has a few memory locations dedicated to holding the current
time and date. When you boot the system, these locations contain a
default time of 3:59:00pm and a date of 1/1/84. Unless something is done
to change this, all files that you save will be tagged with this default
value. (Try saving a file from BASIC before you install the clock.) There
are two types of clocks available with SpartaDOS; one is the A-Time 8
cartridge which does not need to be set (unless for Daylight Savings
etc.), the other type is a software clock that needs to be set every time
you boot the system. To install a clock simply type TD (for A-Time 8
cartridge), or TIME. This will link a small program into the Atari that
keeps the current time and date displayed. The display actually adds an
extra line at the top of the screen, which will remain even in BASIC, as
long as the BASIC programs do not modify the deferred VBLANK vector
used. The clock also updates the memory locations within SpartaDOS so
that when you save a file, the time and date displayed will appear in the
directory along with the new file. Note: TIME, TD, and XTD are all
relocatable, which means they load in above MEMLO, then move
MEMLO just above their program area.

To Set Time/Date Clock
Normally you will not need to set the A-Time 8 clock, since it keeps time
while the computer is off. But, if you don't have the A-Time 8 cartridge,
you will need to set the software clock (TIME) every time the system is
booted. TIME is a simple counter that uses the vertical blank interrupt to
keep time. Once the correct time has been set (by the SET command), it
will continue to operate like the A-Time cartridge (TD) until the computer
is turned off. For instructions on how to set the A-Time cartridge or the
software clock, refer to the SET and TSET command descriptions the
follow in this chapter.

65

Chapter 12 - Time and Date Support

Note: The R-Time 8 Cartridge is a very accurate, crystal based timing
device which works on both 60 Hz and 50 Hz systems. The software
clock installed with the TIME command is not very accurate and will
usually lose about 1 minute each day.

TIME Command

Purpose
To display the time and date at the top of the screen, and to install the
time function into DOS. The X parameter turns the time and date display
off. Similar to the TO Command but for use without the R-TIME 8
Cartridge.

Syntax
TIME [Xl

Type and Restrictions
External under CP versions 1.x and 2.x

Remarks
If only TIME is entered, the timeldate line will appear with the current
time according to DOS. If TIME is already on, then nothing happens. If
the 'X' parameter is entered, the time and date display is turned off but
the clock stays installed. To change the time and date see the SET
Command. To access this clock in your BASIC programs see Appendix
D.

NOTE: This command patches itself in the initialization vector and is re
initialized with every RESET. The timeldate routine stays in memory and
moves MEMLO up. IF 'TIME X' is entered, the display is turned off but
the module still resides in memory.

NOTE: TIME patches itself into the deferred VBLANK vector. During disk
1/0 the time will move sluggishly since it is doing CRITICAL 1/0, but the
time will quickly catch up when the disk operations are done.

SET Command

Purpose
This command allows the user to set the time and date after installing the
clock with the TIME command.

66

Chapter 12 - Time and Date Support

Syntax
SET [mm/dd/yy] [hh/mm/ss]

Type and Restrictions
External under CP versions 1.x and 2.x

Remarks
If no parameters are specified, then the program will ask for the time and
date, otherwise, the time and date specified on the command line will be
'",seJ. If using our R-Time 8 cartridge with battery backup, the TSET
c.;:TImand must be used.

Example
SET

Since no parameters were specified, the prompt showing the current
date and asking for a new date appears. Type in the new date using
slashes as delimiters (5/12/84). When asked to enter the time, repeat the
above steps using 24 hour time (13101 results in 1:01:xxpm , 1 results in
1 :xx:xxam).
NOTE: 'xx' in timeldate indicates the standard default that was in the
number location before SET.

SET 12110/84 21/12

This command line sets the date at 12/10/84 and the time to 9:12:xxpm.
Notice that we use slashes as delimiters in the command line. Do not
ever use colons in a SET or TSET command line or unpredictable things
will happen!

TDCommand

Purpose
Used with R-TIME 8 Cartridge to install the hardware clock and display
the time and date on the first line. The 'X' parameter will turn the time
and date display off but keep the clock installed.

Syntax
TO [X]

Type and Restrictions
External under CP versions 1.x and 2.x

61

Chapter 12 - Time and Date Support

Remarks
If TO is entered and the R-TIME Cartridge is present in the right (Atari 800
only) or left slot. the current time and date will appear on the top display
line. TO uses the interrupt vectors to read the R-TIME Cartridge 60 times
a second and update the display every second. If the R.:rIME Cartridge is
not installed then an error message is displayed. If the 'X' parameter is
entered. the time and date display is turned off. To change the time or
date in the R.:rIME 8 Cartridge use the TSET Command.

The R.:rIME 8 Cartridge is our real time clock calendar cartridge with
battery backup. It can be used in either cartridge slot with any 8 bit Atari
Computer including the new XE line. When using batch files with the TO
command. it will boot up with the correct time and date without operator
input. No cartridge memory is used by this device so it can be left in the
slot even when not used. The R.:rIME 8 Cartridge has an extension
socket in the top so you can use it with another cartridge in the XLIXE
computers.

NOTE: The TO command patches itself in the initialization vector and is
re-initialized with every RESET. The timeldate routine stays in memory
and moves MEMLO up. If 'TO X' is entered. the display is turned off but
the module still resides in memory.

NOTE: TO patches itself into the deferred VBLANK vector. During disk
1/0 the time will move sluggishly since it is doing CRITICAL 1/0. but the
time will catch up when the disk operations are done.

XTDCommand

Purpose
Used with R.:rIME 8 Cartridge to load the time and date into the system
when you do not what the timeldate display.

Syntax
XTO

Type and Restrictions
External under CP versions 1.x and 2.x

68

Chapter 12 - Time and Date Support

Remarks
If XTO is entered and the R-TIME 8 Cartridge is present in the right or left
slot, the current time and date will be loaded into the system but not
displayed. This command uses less memory than TO and is used with
programs which don't like TO displayed on the top line. /ls with TO, XTO
uses the interrupt vectors to read the R-TIME 8 Cartridge 60 times a
second and update the display every second. If the R-TIME 8 Cartridge is
not installed or not working then an error message will be displayed. To
change the time or date in the R-TIME 8 Cartridge use the TSET
Command.

NOTE: This command patches itself in the initialization vector and is re
initialized with every RESET. The time/date routine stays in memory and
moves MEMLO up.

TSET Command

Purpose
This command allows the user to set the time and date in the R-TIME 8
Cartridge (See TO command).

Format
TSET [mm/dd/yy) [hh/mm/ss)

Type and Restrictions
External under CP versions 1.x and 2.x

Remarks
If no parameters are specified, then the program will ask for the time and
date, otherwise, the time and date specified on the command line will be
used. Be sure to install the clock cartridge first with either TO or XTO.

Example
TSET

Since no parameters were specified, the prompt showing the current
date and asking for a new date appears. Type in the new date using
slashes as delimiters (5/12/84). When asked to enter the time, repeat the
above steps using 24 hour time (13/01 results in 1 :01 :xxpm , 1 results in
1 :xx:xxam).

69

Chapter 12 - Time and Date Support

NOTE: 'xx' in time/date indicates the standard default that was in the
number location before SET.

TSET 12/10/84 21/12

This command line sets the R.:rIME 8 Cartridge date to 12/10/84 and the
time to 9:12:xxpm. Notice we use slashes as delimiters in the command
line. Do not ever use colons in a SET or TSET command line or
unpredictable things will happen!

CHTD Command

Purpose
This utility command is used to change a file's time/date stamp.

Syntax
CHTD [Dn:][path >]fname[.ext]

Type and Restrictions
External under CP versions 1.x and 2.x

Remarks
CHTD is used to change or correct the time/date stamp on a file. This can
be useful for files which come from a DOS disk which doesn't support
time/date stamping or when using a program which won't allow one of the
clocks to be installed. This command takes the current system clock time
and date (changed with SET or TSET, installed with TIME, TO or XTD)
and writes it to the files which match the filespec. Wild cards are
supported.

Example
CHTD 0:*"

This takes the current time/date and writes it to all files within the current
directory on the default disk.

70

Chapter 13 - Communications Support

CHAPTER 13 - COMMUNICATIONS SUPPORT

SpartaDOS supports several RS232 interfaces; included in SpartaDOS
are the handlers for the ATR8000 serial port and the Atari 850 interface.
Though handlers for other serial interfaces (e.g. R:Link) are not included
in SpartaDOS, they should still work if used from SpartaDOS (as long as
they relocate properly). With any of these interfaces along with the
correct handler and MODEM program, you may dial up Bulletin Board
Systems (BBS), or use a direct interface to other computers, etc.

MODEM or Terminal Programs
The RS232 device handlers link themselves into the system much like
any Atari DOS does; but once it has linked itself in, there is no indication
that anything has happened - of course something has, or it wouldn't
exist. The point is, a terminal program (or MODEM program) is also
needed to communicate to external devices. A MODEM program is
basically a program that concurrently copies characters from K: to R:
(what you type gets send out the RS232 line), from R: to E: (what comes
in through the RS232 line gets displayed), and optionally echo K: to E:
(Echo keystrokes to your screen) or echo R: to R: (FULL DUPLEX mode).

Note: K:, E:, and R: are device identifiers on the Atari for the
KEYBOARD, the SCREEN EDITOR, and the RS232 device
respectively.

Communicating Through Phone Lines
A MODEM is required if you want to communicate with another computer
(or a BBS) through a phone line. In this case the MODEM translates the
RS232 signals (i.e. from the ATR8000, 850 interface, etc.) into sound that
passes through the phone lines and vice versa. The computer (or BBS)
at the other end of the phone line has a similar set up. Its MODEM
converts sound back into RS232 Signals, thus two modems at both ends
of a phone line act as though you ran a cable from your interface to the
other computer's interface.

71

Chapter 13 - Communications Support

Two Modes of RS232 Handler Operation
Most Atari RS232 handlers operate in two modes. The simplest is Block
Mode which stores data until a buffer fills. This results in normal SIO
(Serial Input and Output) operation, which means data is sent and
received much in the same manner as in the disk interface. The problem
with this method is that you can't send and receive at the same time. A
solution to this is called Concurrent 110, which directly links the RS232
lines to the Atari SIO lines. The Atari is interrupted when a character has
been received and places it in a buffer. When the Atari is ready to send a
character, it immediately sends it through the SIO line. Block Mode is
rarely used on the Atari since it does not allow smooth operation
(responses can be disjointed), but Concurrent Mode also has a major
drawback; operations that use the SIO can't be performed while in
Concurrent Mode. MODEM programs solve this problem by switching in
and out of Concurrent Mode when doing disk drive access. The ATR8000
handler also solves this problem by doing the same thing, but the
switching is invisible to even the MODEM program. Who cares, right?
Well, for those who have ATR8000s, try this:

AT_RS232
PRINTR:
-R: (Note: Make sure remote is at 300 baud)

This sequence allows a remote device to take control of your Atari! Of
course your MODEMS must first be communicating, but the remote
device actually has access to your disk files (and can type commands
just as you would). There are a few hitches with this that make it
unpractical (e.g. BASIC resets the Audio Registers if entered, there is no
remote RESET or BREAK ability, and direct screen access programs
won't work, etc.). One thing that might be useful is sending ASCII disk
files between computers without any special MODEM program.

RS232 Commands

Purpose
To load the RS232 Handler for communications.

Syntax
RS232 or
AT_RS232

Type and Restrictions
External under CP versions 1.x and 2.x

72

Chapter 13 - Communications Support

Remarks
The RS232 command is used with the Atari 850 interface module to boot
the RS232 Handler. This command can be used as part of a batch file for
automatic loading. Unlike Atari DOS 2 (without MEM.SAV), you can go to
BASIC then SpartaDOS and back to BASIC without rebooting RS232.

AT _RS232 is the handler for the ATR8000. No 850 interface is needed
with it. AT _RS232 is a concurrent only handler though it is intelligent in
that it enables and disables concurrent mode automatically as needed
for disk access.

Example
RS232

With the 850 Module connected properly and powered up, you will hear
the familiar beep over your monitor or TV speaker which tells you the
handler was successfully booted.

PORT Command

Purpose
To set speed, word size, stop bits, translation, input and output parity, and
EOl parameters for RS232 communications.

Syntax
PORT [path> Jfname[.extJ

Type and Restrictions
External under CP version 1.x and 2.x

Remarks
PORT sends a two byte configuration file to the RS232 port. The first byte
is for XIO 36, Aux1 and the second byte is for XIO 38, Aux1. The first byte
will set baud rate, word size, and number of stop bits to transmit. The
second byte will set parity checking on input and parity on output,
translation mode, and allow IF after CR.

These configuration files can be created with the COpy command but
first you must figure the Aux 1 code by adding the values in the following
tables. Then find the corresponding ATASCII keyboard code and create
the desired two byte file with the 'COpy K: D:fname' command. (See
COpy command for more detail).

73

Chapter 13 - Communications Support

To calculate XIO 36, Aux 1 - If you want:

110 baud add 5
300 baud add 0

1200 baud add 10
1800 baud add 11
2400 baud add 12
4800 baud add 13
9600 baud add 14

8 bit word
7 bit word
6 bit word
5 bit word

add 0
add 16
add 32
add 48

1 stop bit add 0
2 stop bits add 128

To calculate XIO 38, Aux 1 - If you want:

Translation:
Light add 0
Heavy add 16
None add 32

For Input Parity Check:
None add 0
Odd add 4
Even add 8
Ignore add 12

Example
PORT P _4800.RC

End of Line (EOl):
No IF append add 0
Append IF add 64

For Output Parity Set To:
None add 0
Odd add 1
Even add 2
Mark add 3

This will send the configuration file P _4800.RC to the RS232 port.
P _4800.RC is an example of a configuration file which is included on
the Master diskette. Its two bytes set the port at 4800 baud, no parity, 8
data bits, 1 stop bit, and send IF after CR on output.

74

Chapter 14 - InpuVOutput Redirection

CHAPTER 14 - INPUT/OUTPUT REDIRECTION

Input Redirection
Input redirection is the ability for a file (or device) to supply the input to
your computer as if you were typing it yourself. This means that a file
could "enter" commands you normally type for a certain process. Unlike
other Atari DOS's, all input (not just commands for the command
processor) is redirected. This is accomplished by using Batch Files.

Batch Files

Purpose
To retrieve and execute a file (fname.BAT) which instructs DOS to go
perform specific operations in a specific order. STARTUP.BAT is a special
batch file which is automatically executed when the diskette is booted.

Syntax
-fname

Type and Restrictions
Internal under CP versions 1.x and 2.x

Remarks
A batch file contains executable DOS instructions. It can be created with
a word processing program or with the Screen Editor using the COpy
command. You can use the TYPE command to view the contents of a
batch file. A typical example of a batch file could be to load an RS232
handler, go to the BASIC cartridge, and then RUN a communications
program. All batch files must end with the filename extension of . BAT
(except with versions 2.x). Comments can be added to your batch files by
typing a semicolon (;) at the beginning of the command line. The
maximum length of a command line is 64 characters. Each command
line is terminated by pressing the RETURN key. To execute a batch file
type a dash (-) then the filename and RETURN. (Do not type the
extension unless uSing CP version 2.x and then only if the batch file does
not end in '.BAT'.) Pressing SYSTEM RESET while a batch file is running
aborts the batch operation and goes directly to DOS or the cartridge if
present.

75

Chapter 14 - InpuVOutput Redirection

Generally a disk will have a STARTUP BAT file which will initialize things
the way you want them for that particular diskette. For instance you may
want the R-TIME 8 cartridge to be installed if it is present, the keyboard
buffer installed, and then the screen cleared. To create that batch file you
could use the following keystrokes:

COpy E: D:STARTUPBAT
TD
KEY
;<ESC> <CTRL + CLEAR>
<CTRL + 3>

In the above example, < ESC> means to press the ESC key, and
< CTRL + CLEAR> means to press the CTRL key and hold it down
while you press the CLEAR key.

There are some special command files for use in batch files.
PAUSE.COM (CP version 1.x) will stop execution of the batch file until
another key is pressed, and DIS_BAT.COM (CP version 1.x) will disable
batch file processing. PAUSE is internal with CP version 2.x and XDIV is
the internal command to disable batch files with CP version 2.x.

NOTE: While the command is in effect, IOCB #5 may not be used, since
this is the IOCB the input goes through. This IOCB acts as if it were
closed, meaning that it could be opened (this will have bad side effects
on the system and cause unpredictable results). The reason for making
the IOCB appear closed, is to prevent the system from closing the file;
e.g. BASIC when entered, closes aIlIOCBs.

SPCOPY, FORMAT, INIT, and other commands, may re-initialize the DOS
which will terminate batch execution. Batch files can not be used to call
up other batch files (linking) with CP version 1.x. CP version 2.x does
allow linking of batch files (i.e. the last command in a batch file can be
~fname').

Example
-MODEM

This command will execute the set of instructions saved under the
filename MODEM. BAT on the default drive under the current directory.
This file might look like the following eXnmple:

RS232
CAR
RUN "D:AMODEM4"

76

Chapter 14 - Input/Output Redirection

This batch file when executed will run a file called RS232.COM (link in
the RS232 handler), go to the BASIC cartridge, and then RUN the BASIC
program AMODEM4.

PAUSE Command

Purpose
To temporarily halt execution of a batch file and to prompt the user for a
response to continue.

Syntax
PAUSE

Type and Restrictions
External under CP version 1.x
Internal under CP version 2.x

Remarks
This is a convenient way to stop the screen while displaying instructions
from a batch file. Caution: when using PAUSE with SpartaDOS, do not
swap disks during a PAUSE command as this may destroy the second
disk! Abort the PAUSE with a SYSTEM RESET.

Example
Consider execution of the following batch file from drive 1:

RS232
; Please insert your communications
; program diskette into drive #2

PAUSE
CAR
RUN "D2:AMODEM4.2"

This batch file will first load the RS232 Handler from the 850 interface
then display the next 3 comment lines and stop with the display 'Press
any key to continue'. After the user follows the instructions and presses a
key, this program will go into the BASIC cartridge and run the modem
program specified.

77

Chapter 14 - Input/Output Redirection

TYPE Command

Purpose
To display the contents of an ASCII file. Commonly used to read a batch
file without executing it.

Syntax
TYPE [On:)[path >]fname[.ext]

Type and Restrictions
Internal under CP versions 1.x and 2.x

Remarks
The file is read, line by line, and printed to the screen editor. If a line is
longer than 64 characters, an error will occur (truncated record). This
command will only print one file. This same function could also be done
with the COPY command, however the COPY command will erase the
contents of program memory. Use TYPE with the PRINT Command
(redirect output) to 'type' a file to the printer.

Example
TYPE STARTUP.BAT

This command displays the contents of the batch file used for
initialization.

Output Redirection
Output redirection is the ability to echo everything that gets written on the
screen, to another output device (or disk file). This means that you can
get a hardcopy of everything that transpires on the computer. The only
exceptions (data that will not be echoed) are programs that write directly
to the screen (like MENU.COM and most binary games). The PRINT
command sets the device (or file) that output is to be echoed to.

PRINT Command

Purpose
To echo all output that is written to the screen editor (E: through IOCB #0)
to a specified output device.

78

Chapter 14 - Input/Output Redirection

Syntax
PRINT [dn:][path >)fname[.ext][/A) or
PRINT dIn): or
PRINT

Type and Restrictions
Internal under CP versions 1.x and 2.x
The '/A' option is only allowed under CP version 2.x

Remarks
This command is normally used to send everything that gets printed on
the screen to the printer. However, the output may go anywhere the user
desires, including a disk file. This feature is very useful if one wants to
have the output of a BASIC program, or an editing session, etc., go to the
printer.

In CP version 1.x, the PRINT command acts like a toggle; the first time
the output goes to the device/file specified; the second time, the
command closes the file and output returns to normal.

In CP version 2.x, the PRINT command can be chained. This means
that the last PRINT's file/device is closed, and output is echoed to the
new file/device. If no parameter is given after the PRINT command, the
file/device is closed and it does not open another. The '/A' option allows
the user to append the output to the end of an existing file.

NOTE: While the command is in effect, IOCS #4 may NOT be used, since
this is the IOCS the output goes through. This IOCS acts as if it were
closed, meaning that it could be opened (this will have bad side effects
on the system and cause unpredictable results). The reason for making
the IOCB appear closed, is to prevent the system from closing the file;
e.g. BASIC when entered, closes aIlIOCS's.

Example
PRINT P:

This command sends all future screen display to the printer until PRINT
toggles this off.

PRINT D1:SAVIT.NOW

Sends all future screen display to a file on drive #1 called SAVIT.NOW
until PRINT is entered.

79

Chapter 14 - Input/Output Redirection

How the 1/0 Redirection Works
On the Atari computers, 1/0 redirection is possible because of something
called the device table. This is a list of device letters (e.g. E K S P D ...)
followed by a handler table address. SpartaDOS patches itself into the
device table and saves a painter to its own handler table. The handler
table is a list of pOinters to routines such as Get character, Put character,
Open file, Close file, Status, and XIO. The SpartaDOS handlers then
check that the 10CB in use is #0. If so, the DOS will take appropriate
action to input from or output to the E: (Editor) device.

Disabling 1/0 Redirection
Sometimes the 110 redirection can get the system into trouble. The only
time it really happens is when trying to run a binary game (saved as a
DOS file). This is because a few games (not all!) tend to move
themselves on top of DOS, and then output data through the E: device
(crash ... Sparta DOS is no longer there to handle the Editor (E:) output).
Thus, there is a need to restore the operating system's (OS) handler
printer in the device table. The following commands perform this
function.

DIS_BAT Command

Purpose
The DIS_BAT command is used with CP version 1.x to disable batch
processing and the PRINT command (redirection of 110). This may be
necessary in order to run certain programs. If using CP version 2.x see
the XDIV command.

Syntax
DIS_BAT

'TYpe and Restrictions
External under CP versions 1.x and 2.x
XDIV is preferable under CP version 2.x

Remarks
Certain programs will not run under SpartaDOS unless the batch file
processing is removed. DIS_BAT will disable this and allow most of
those programs to run correctly. DIS_BAT can be run as the last
command of a batch file. SYSTEM RESET re-enables I/O redirection if
disabled with DIS_BAT.

80

Chapter 14 - Input/Output Redirection

XDIV Command

Purpose
The XDIV command is used with CP version 2.x to disable batch
processing and the PRINT command (redirection of I/O). This may be
necessary in order to run certain programs. If using CP version 1.x see
DIS_BAT.

Syntax
XDIV

Type and Restrictions
Internal under CP version 2.x

Remarks
Certain programs will not run under SpartaDOS unless the I/O
redirection is removed. XDIV will disable this and allow most of those
programs to run correctly. XDIV can be run as the last command of a
batch file. Unlike the DIS_BAT command, XDIV is permanent until the
computer is rebooted.

Chapter 14 -Input/Output Redirection

82

1-
Chapter 15 - Keyboard Buffers

CHAPTER 15 - KEYBOARD BUFFERS

The Need For a Keyboard Buffer
Do you ever find yourself trying to type ahead of the computer? For
example, you want to load the RS232 handler, go into BASIC, and then
run a MODEM program. No matter how fast the computer is, you still
want to type 'CAR' before the computer has even had time to figure out
the 'RS232' you just typed. Well, again SpartaDOS offers a solution to
this 'urge.' Two commands are available (KEY for non-XUXE's, XKEY for
XL/XE's) that give you a 'buffer' for keystrokes made ahead of the
computer. As an added feature, the key repeat rate as been increased to
double that of normal. The commands follow.

KEY & XKEY Commands

Purpose
To install a 32 character keyboard buffer.

Syntax
KEY or
XKEY

Type and Restrictions
External and CP versions 1.x and 2.x
XKEY works on XLIXE computers
KEY works on non-XL/XE computers

Remarks
One of the things we always miss after working on a larger computer is a
large keyboard buffer. The standard Atari 8-bit computer has a one
character buffer, but the KEY/XKEY keyboard buffers allow type ahead
while the computer is tied up with other functions (e.g. disk 110, printing,
etc.). After executing this command, you will have a 32 character
keyboard buffer that is functional even while in BASIC!

Example
KEY

The buffer is now installed. You can now do a 'TO', 'DIR', 'RS232', 'CAR',
and 'RUN "D:MODEM" " without waiting for the computer to catch up!

83

Chapter 15 - Keyboard Buffers

84

Chapter 16 - Information Commands

CHAPTER 16 - INFORMATIONAL COMMANDS

Memory Related Commands
The following are three commands relating to the allocation of memory.
The BUFS command sets the number of buffers for CP version 1.x
(which has a direct bearing on how fast the DOS performs). CP version
2.x has no BUFS command since it maintains 12 buffers at all times
(which are underneath the OS ROM's). The MEMLO and MEM
commands simply display the lower and upper bounds of memory
(MEMLO only displays lower bound). They are really only important if you
are doing machine language programming. The command descriptions
follow.

MEMLO and MEM Commands

Purpose
To display MEMLO (lower bound) and MEMHI (upper bound - only
MEM displays this).

Syntax
MEMor
MEMLO

Type and Restrictions
MEM is internal under CP version 2.x
MEMLO is external under CP versions 2.x and 1.x

Remarks
The MEM command displays MEMLO and MEMHI in hexadecimal
notation. These values can be useful since many of our files are
relocatable and can move MEMLO up in memory. With this command
you can see just how much memory one of these relocatable files takes.
MEM will also give you an idea of the free memory available. You can see
if the internal BASIC (XLlXE) is installed by noting the MEMHllocation.
The MEMLO command only displays MEMLO.

Example
MEM

This command displays the MEMLO and MEMHI values in the format:

Memlo = $xxxx Memhi = $xxxx

85

Chapter 16 - Information Commands

Where 'xxxx' is any hexadecimal number.

BUFS Command

Purpose
To set or check the number of buffers currently in use under CP version
1.x only.

Syntax
BUFS [n)

Type and Restrictions
Internal under CP version 1.x

Remarks
BUFS will display the number of 128 byte blocks of memory (buffers)
currently reserved for DOS use. This display is a DECIMAL value
between 2 and 16. 'BUFS n' will set the number of buffers to be reserved
for DOS use, where 'n' is a hexadecimal (HEX) value between $2 and
$10 (the '$' means HEX - $10 is 16 in decimal). The boot up default is 4
under STANDARD. DOS, and 6 under the other version 1.x DOS's. This
default can be changed when formatting a new version 1.x diskette by
using the INIT command.

NOTE: More buffers require more memory, which moves MEMLO up (the
lower memory boundary). The minimum requirement for single density
read and write is 2, and for double density read and write is 4. In general,
if the program requires reading and writing in random fashion, the more
buffers you have, the faster the operation will be, and the less wear on
your disk drive.

SpartaDOS version 2.x has 12 buffers built in so the BUFS command is
not needed.

Example
BUFSF

The above command sets the number of DOS buffers to decimal 15.

BUFS

This command results in the output of 'BUFS = n' where 'n' is the
current number of buffers in use (in decimal).

86

Chapter 16 - Information Commands

Disk Drive Related Commands
Two commands are included which allow you to check your drivEl speed,
and to determine the amount of free space on your diskettes. The .
number of 'free bytes' and 'total bytes' are an estimate based on the
number of 'free sectors' and 'total sectors' respectively. The commands
follow.

CHKDSK Command

Purpose
To display the volume name, random & sequence numbers (version 2.x
diskettes only), sector size, formatted bytes on disk, available bytes on
disk, and write lock status (version 2.x diskettes only).

Syntax
CHKDSK [On:]

Type and Restrictions
Internal under CP version 2.x

Remarks
This command is used for determining information about a diskette. If the
diskette was initialized with XINIT (version 2 format), CHKDSK will give a
volume name then random & sequence number. SpartaDOS 2.x uses a
random number (created when formatted) and a sequence number
(which increments when a file is opened for write) to identify the disk (in
addition to the volume name). The next line is the 'bytes/sector,' which
will be either 128 or 256 depending on the format. The next line is the
'total bytes,' which is the total formatted capacity before any data is
written. The 'Bytes free' is the amount of available space left on the
diskette. The 'Write lock' is a type of the software write protect ('ON'
indicates locked or protected).

If the diskette is not a version 2 format, the random & sequence numbers
and write lock status are omitted from the display. If the diskette is an
Atari DOS 2 type format then these plus the volume name are omitted
from the display.

Example
CHKDSK

87

Chapter 16 - Information Commands

A hypothetical double density, single sided, SpartaOOS 2.x disk might
display:

Volume: Games1 OA 25
Bytes/sector: 256

Total bytes: 184320
Bytes free: 123390
Write lock: ON

RPM Command

Purpose
To display the drive speed in RPM for user information.

Syntax
RPM [On:)

Type and Restrictions
External under CP versions 1.x and 2.x

Remarks
This command will start the drive spinning and read a sector
continuously while updating the display every second with the actual
speed your drive is turning in RPM (revolutions per minute). The correct
speed is 288 and can be adjusted by turning VR2 on a 1050 drive or R104
on an 810 drive. Note: a formatted disk must be in the drive under test
with the drive door closed. Pressing any key will stop the RPM test.

Example
RPM 02:

The display will show 'Orive RPM is XXX', where XXX is the actual speed
of drive 2.

88

Chapter 17 - Machine Language Support

CHAPTER 17 - MACHINE LANGUAGE SUPPORT

Loading, Saving, and Running
SpartaDOS provides several commands to allow you to load, save, and
run binary files (machine language). These tend to be for more
experienced programmers but it doesn't hurt to understand them also. All
the '.COM' files on the distribution diskette are called 'command files.'
Generally, when you write your own utilities, you will want to make them
into 'commands' also. Chapter 19 should be read to understand how to
interface with the command line (so that parameters may be used).

Command Files

Purpose
To load and run binary files. Also, it also provides a standard for you to
pass parameters to machine language programs.

Syntax
[Dn:)[path >]fname [parameters]

Type and Restrictions
Supported by CP versions 1.x and 2.x
(By definition of a CP - 'command processor')

Remarks
Command files are executable binary (machine language) files. If you try
to execute a non-binary file you will get an error 152 or a 'Not binary file'
message with CP version 2.x. All binary files begin with an $FF $FF
header. With CP version 1.x all command filenames must use the
extension '.COM'. To load and run these files, type the 'fname' portion of
the filename only (not the '.COM'). Wild cards are supported with both CP
versions.

CP version 2.x has the added capability of treating any binary file as a
command file. '.COM' is the assumed default extension. To load and run
a file with any.other extension, type the full filename including the
extension. If there is no extension on the filename, be sure to end the
command with a period (.).

Command files are run at the beginning of the first segment after they
are loaded. RUN and INIT addresses ($2EO and $2E2) are also
supported with the RUN address ($2EO) having priority over the run-at
beginning-of-first-segment address.

89

Chapter 17 - Machine Language Support

Example
TYPING

The above example will load and run a file under any SpartaDOS called
'TYPING.COM'.

TYPING.

This will load and run the binary file called TYPING' under CP version
2.x.

LOAD Command

Purpose
This command loads any binary file into memory and does not run the
file. The standard DOS RUN and INIT vectors are not used.

Syntax
LOAD (Dn:)[path >]fname(.ext]

Type and Restrictions
Internal under CP versions 1.x and 2.x

Remarks
This command is useful for loading character sets, binary data, or files
that should not be run. Note that a load can only be done from the 'D'
device, since load is now an XIO function of the 'D' handler.

Example
LOAD MYFILE.OBJ

This loads a file called MYFILE.OBJ into the memory locations specified
in its header(s) but does not RUN the file.

NOTE: Don't get this confused with the LOAD command in BASIC. This
LOAD is similar to the BASIC command but it loads only binary files (with
a header of $FF $FF). BASIC programs are relocatable while many
binary files are not and can cause system crashes (if they load over DOS
or other volatile areas).

90

Chapter 17 - Machine Language Support

RUN Command

Purpose
To re-execute the last '.COM' file or execute at a given address. (To load
and run a binary file see 'Command Files' or the 'MENU' section.)

Syntax
RUN [address]

Type and Restrictions
Internal under CP versions 1.x and 2. x

Remarks
If an address is not specified, then the last .COM file is executed.
RUNLOC contains the address of the last command (see technical
notes). If you specify an address, execution begins there, and RUNLOC
will be updated with that address. Note that 'address' is in HEX notation.

Example
RUN 4000

This command starts executing a program at memory location $4000.

RUN

This command runs the last file executed. If SPCOPY was run and you
use the OPTION key to get back to DOS, then typing RUN will take you
back into SPCOPY as long as the file was not destroyed in memory. (This
can be a great time saving feature).

NOTE: Don't get this confused with the RUN Command from BASIC. This
RUN command is meant to RUN binary (machine language) files, not
tokenized BASIC programs.

SAVE Command

Purpose
This command saves binary data from memory to disk. To append data,
see the APPEND command, or with CP version 2.x use the 'lA' option.

Syntax
SAVE [Dn:][path >]fname[.ext][/AJ address address

97

Chapter 17 - Machine Language Support

Type and Restrictions
Internal under CP versions 1.x and 2.x
The 'lA' option is only allowed under CP version 2.x

Remarks
This command saves a block of data with the first address being the start
memory address and the second address being the ending memory
address. The file is saved in the same format as all binary files on the
Atari. An $FF $FF header is written first, followed by the start/end
address, and then the data. Remember that 'address' is a number in
HEX notation.

When using CP version 2.x, the 'lA' option allows the SAVE command to
work exactly like the APPEND command; appending the block of data
onto the existing file specified (except APPEND does not write the $FF
$FF header).

Example
SAVE D1:CODE.OBJ 8000 9FFF

This command saves the memory from $8000 to $9FFF in a file called
CODE.OBJ.

APPEND Command

Purpose
This command saves a binary block of data at the end of an existing
binary file.

Syntax
APPEND [Dn:)[path >]fname[.ext] address address

Type and Restrictions
Internal under CP versions 1.x and 2.x

Remarks
The format is the same as in the SAVE command. The file specified
should already exist since the $FF $FF header is not written. Also the file
is opened for appendlwrite rather than just write as in the SAVE
command. Remember that 'address' is in HEX notation. APPEND can
also be accomplished with CP versions 2.x by using the 'lA' option with
the COPY, SAVE, or PRINT commands. Do not try to use the 'lA' option
with the APPEND command. Garbage will result.

92

Chapter 17 - Machine Language Support

Example
APPEND 01 :GAMES > GHOST.COM 4000 47FF

The above command appends the block of memory from $4000 to $47FF
onto the end of the file called 'GHOST.COM' on the disk in drive #1 under
the existing subdirectory called 'GAMES'. This is a command primarily
for advanced users working in assembly language.

Informational Commands
The next three commands are for the more experienced programmers.
The DUMP and MDUMP commands give straight HEX dumps of a file
and memory respectively. The OFF_LOAD command is a relocating
load command used for loading programs at locations other than their
native load addresses. Descriptions of these commands follow.

DUMP Command

Purpose
This utility will display a file or portion of a file in HEX and ATASCII or
ASCII format.

Syntax
DUMP [Dn:][path >]fname[.ext] [start [#bytesJ] [/P]

Type and Restrictions
External under CP versions 1.x and 2.x
The optional 'start' and '#bytes' parameters are not allowed when using
an Atari DOS 2 formatted diskette.

Remarks
The DUMP command is used to find valuable information about a file.
The 'start' parameter is the beginning offset (HEX) in the file that you
want to start dumping from (default is 0). If you try to point past the end of
the file you will get an error message 'Address range error'. The '#bytes'
parameter is the number of bytes (HEX) you would like to have displayed.
The screen will show the file position (in HEX) at the left, the values of
eight memory locations across the center, and the ATASCII
representation at the far right. The optional 'IP' parameter will replace the
control characters with periods (.) leaving only ASCII text at the far right.
This is useful if you want to redirect the output of DUMP to a printer V"

the PRINT command.

93

Chapter 17 - Machine Language Support

Example
DUMP TEST.OBJ 10005 IP

This command displays the hex values at file positions $1000 through
$1004 of the file TEST.OBJ and also displays the ASCII equivalents while
substituting any control characters with periods (.).

MDUMP Command

Purpose
This utility will display memory locations in HEX and ATASCII or ASCII
format. It is very similar to DUMP but works on blocks of memory rather
than files.

Syntax
MDUMP [address [#bytesJJ [/P]

Type and Restrictions
External uncer CP versions 1.x and 2.x

Remarks
The MDUMP command is used to display the contents of specific
memory locations. The screen will show file position (in HEX) at the left.
the values (in HEX) of eight memory locations across the center. and the
ATASCII representation at the far right. The optional 'fP' parameter will
replace the control characters with periods (.) leaving only ASCII text at
the far right. This is useful if you want to redirect the output of MDUMP to
a printer with the PRINT command.

Example
MDUMP 2E02

This command displays the values (in HEX) of bytes $2EO and $2E1
along with their ATASCII equivalents.

OFF_LOAD Command

Purpose
This utility command loads in files at an offset and optionally displays
segment addresses. file position for beginning of segment. and can
query whether to load a given segment. If may also be used to create
non-relocatable versions of OFF_LOAD.

94

Chapter 17 - Machine Language Support

Syntax
OFF ~_LOAD [Dn:][path >]fname[.ext] offset [/SNPQ] or
OFF __ LOAD -R address [Dn:][path >]fname[.ext]

Type and Restrictions
External under CP versions 1.x and 2.x
The 'N' and 'Q' parameters may not be used when 'OFF_LOADing'
from an Atari DOS 2 formatted diskette.

Remarks
OFF ~LOAD is a utility which is used to load segments of a file at given
addresses. The offset is a number from 0 to $FFFF (in HEX). The'S'
parameter displays the start and end addresses of each segment and the
new start address with offset. The 'N' parameter indicates that the
segments are not to be loaded. This can be used with the other
parameters to get address information without loading anything. The 'P'
parameter causes the file position of that segment to be displayed. The
'Q' parameter (Query) stops before it loads each segment and asks 'Load
this segment ?'. Answer with Y or N. The standard OFF ~LOAD is
relocatable and LOADs at $8400 then RUNs just above MEMLO. It
intentionally will not function with a language cartridge installed.

The second OFF ~LOAD format relocates the OFF ~LOAD file to LOAD
and RUN at 'address', and then writes it to the file specified by 'fname'.
The purpose of this is to move the OFF ~LOAD program out of the way of
the cartridge area if necessary.

Example
OFF ~LOAD TEST.COM 0 INS

The above command will display the segment addresses of the file
TEST.COM but not load the file.

PUTRUN Command

Purpose
This command appends the RUN vector containing the start address of
an external command file to the file. This is to make a command such as
MENU, able to run as an AUTORUN.SYS (when only RUNIINIT vectors
are used).

95

Chapter 17 - Machine Language Support

Syntax
PUTRUN [On:]fname[.ext]

Type and Restrictions
External under CP versions 1.x and 2.x

Remarks
This command is actually only useful for making command files into 'load
and run' files for running under Atari DOS 2.

96

Chapter 18 - Disk Drive liD

CHAPTER 18 - DISK DRIVE 1/0

This chapter describes the way the disk drive handles its reading and
writing of sectors, and a little about the SpartaDOS interface to the drive.
Toward the end of the chapter, the VERIFY command (CP version 2.x
only) is described in detail. The interface to US Doubler shall also be
commented upon (and its high speed interface). Hopefully, after reading
this chapter, any misconceptions you may have will be cleared up.

Basic Operation WITHIN the Disk Drive
All Atari disk drives are intelligent, meaning that the computer (800XL
etc.) doesn't have to worry about talking directly to the surface of the
diskette. Yet, it (the computer) must still be able to retrieve the information
from the diskette. This is accomplished by a three way interface within
the disk drive. These interfaces are as follows:

1) The computer and disk drive interface - This is commonly
referred to as the SIO (serial input/output). All Atari devices
(except the cassette) have a standard they abide by (which is
discussed at great length in the Atari Technical Notes for the
800). Basically the SIO operation is as follows (step by step):

a) The computer sets the COMMAND line low (to ground).
This is one of the SIO port's lines.

b) The computer sends a command frame. This consists of
four bytes. They are 1) device ID - each unit on the
serial port has a unique device 10, 2) command - such
as read, write, status, and format, 3) two bytes of
auxiliary information - such as the sector number high
and low bytes. The command frame is followed by a
checksum of the bytes of the command frame.

c) The computer releases the COMMAND line by bringing
it HIGH.

d) The device (disk drive) identified by the device 10,
answers by sending an ACK (if the command is valid) or
a NACK (if the command is invalid).

e) If the drive needs a data frame (as in the write sector
command), the computer will send a data frame (the
sector data) followed by a checksum.

f) If (e) occurred and the data is good, the drive will send
an ACK, if the data is bad a NACK is sent.

97

Chapter 18 - Disk Drive liD

g) The disk drive performs the requested operation. When
done, the drive sends either a COMPLETE or an
ERROR code.

h) If doing a read type of operation, the drive will send the
computer a data frame (the sector data) followed by a
checksum.

2) The drive CPU to controller interface - There is a special chip
in the disk drive called a controller. This device manages the
specifics of the diskette format, does the seeks for sectors, and
hand feeds the CPU the sector data. The CPU will simply supply
the controller with the command, sector, and track numbers. The
CPU sends data to the controller from its buffer (on a write) and
receives data into its buffer (on a read).

3) The drive CPU to drive hardware interface - This last interface
includes things like the drive motor, the stepper motor (moving
track to track), the door and write protect sensors and various
other controls.

Sparta DOS Buffer Management
SpartaDOS's sector buffer management is entirely different from the type
used with Atari DOS 2. SpartaDOS dynamically allocates blocks of
memory for sector buffering. This means SpartaDOS does not require a
buffer for each drive to be used and does not need buffers for each open
file. Theoretically, you may have 7 files open on 7 different drives using
only 1 buffer in single density or 2 if double density (however, don't
expect great speed).

Drive Access Vector
Did you ever wonder how the Ramdisks linked themselves into the
system, or how AT _RS232 was able to switch concurrent I/O mode on
and off? Well, this is done by providing a vector that all Drive accesses
through DOS use. The Ramdisk simply checks the device 10 and takes
over if there is a match with its 10. Also, all SpartaDOS commands (e.g.
DUPDSK, INIT, XINIT, etc.) use this vector so they can take advantage of
the high speed I/o. For more information on this vector, refer to Chapter
19.

98

Chapter 18 - Disk Drive I/O

US Doubler - High Speed I/O
The US Doubler has two sets of serial routines; one being the standard
set, and the other begin the high speed set. The routine that monitors the
COMMAND line reads the command frame in one speed, and if an error
(in checksum) occurs, the CPU switches modes and will try for a short
period of time to receive in the new mode. Once speeds have been
matched, that speed becomes the default. SpartaDOS, when it boots,
does a '?' command (refer to Appendix G) to determine just how fast the
US Doubler high speed I/O is. If that was successful, SpartaDOS
continues to operate that drive at the high speed mode. Note: utilities by
other software companies will normally use the $E459 SIO vector, so
they will run at the normal speed.

Write With Verify
Many people seem to have misconceptions about write with verify.
Verification occurs within the disk drive after it has written the sector. It is
often believed that the computer does the verification by re-reading the
sector. The reasons that Sparta DOS does not default to write with verify
are because, 1) most drives are extremely reliable and, 2) it is three times
slower than normal speed write without verify (even with the US
Doubler). The reason it is so slow is because of the sector skew. Sectors
are not in sequential order on Atari diskettes; they are optimized to allow
two sequential sectors to either be read or written in one revolution. Thus
10 sectors may be read in 5 revolutions (which is about 1 second). With
verify on, it takes 1.5 revolutions to write a sector (which is about 3
seconds to write 10 sectors). The US Doubler optimizes the skew so that
it can read 3.5 sectors in single density and 3 sectors in double density in
one revolution. (Normal double density drives can only read 1 sector per
revolution, thus the 3X speed factor in double density.) If you are having
trouble with your drive, you may want to have it serviced, or until then use
verify. The VERIFY command description follows.

VERIFY Command

Purpose
This command changes the write mode to write with verify or write
without verify.

Format
VERIFY ON or
VERIFY OFF

,99

Chapter 18 - Disk Drive 110

Type
Internal under CP version 2.x

Remarks
Verify means to write a sector, read it back, and compare it with memory
before going on to the next sector. This takes much more time than just
writing to disk, but it may be able to trap write errors. VERIFY ON sets
the write mode to verify whenever writing; VERIFY OFF turns verify off.
Most of us never use verify and have not had problems but it is nice to
have it available, especially if you're having drive problems.

Note: when you format a version 1.x diskette, you may select if you want
the DOS to verify by choosing to modify default parameters. If you select
to verify, the DOS (when booted) will do all its writes with verify.

100

Chapter 19 - The Technical Structure of SpartaDOS

CHAPTER 19 - THE TECHNICAL STRUCTURE
OF SPARTADOS

This chapter tends to be hard to grasp if you haven't been around
computers much. It gives as many details of the DOS as it can. It starts
out fairly easy with the BASIC XIO functions and then steps quickly into
the machine language world.

SpartaDOS Functions From BASIC
The following is a list of SpartaDOS functions and how to implement
them from BASIC through XIO statements. The DOS command, if
applicable, follows the function name in parenthesis.

Note: throughout these examples, 'IOCB' represents an Input/Output
Control Block number from 1 through 7. Atari Diskettes refers to Atari
DOS 2 type formatted diskettes in either single or full double density.

Open a File

Syntax
OPEN #IOCB,T,X,"Dn:fname.ext"

Notes
This command opens a disk file through SpartaDOS. 'T' is the mode to
open the file in (output, input, update, directory, etc.). The following are
legal values of 'T' and what they do.

4 Open the file in 'read only mode.
6 Open a formatted directory. This returns a directory listing as in

the DIR or DIRS command. 'X' indicates the style of directory. If
'X' is 128, then the directory is in the expanded format unless
you reading an Atari DOS 2 diskette. If 'X' is 0, then a short
directory format is given.

8 Open the file in write only mode. Note: any command that
operates on an OPEN in write only mode (8), can use the 'lA'
option (CP version 2.x only) to force the OPEN to an OPEN in
append mode (9).

9 Open file in append mode. Data is written to the end of an
existing file.

12 Open for update mode. This mode allows you to read or write a
file.

101

Chapter 19 - The Technical Structure of Sparta DOS

20 Open the current directory in read mode. This is the "raw" data
of the directory and can be read as any other file. This mode is
only available on SpartaDOS formatted diskettes.

24 Open the current directory in update mode. This is the "raw"
data of the directory and can be read or written as like any other
file. This mode is only available on SpartaDOS formatted
diskettes.

36 Open a subdirectory in read mode, but the subdirectory is to be
read as if it were a regular file. This mode is only available on
SpartaDOS formatted diskettes.

You must be careful of the read and update of unformatted directory and
subdirectory modes. If a mode like 40 (subdirectory + write) is used, you
may destroy the entire subdirectory. The above listed modes are the only
modes that are really useful to a user. Functions like CREDIR and
DELDIR are the only routines that are have legitimate use for a mode like
40.

Rename File(s) (RENAME)

Syntax
XIO 32,#IOCB,O,O,"Dn:[path]fname.ext fname.ext"

Notes
The IOCB must be closed for this operation to be used. Wild cards may
be used in the filenames. This function is valid for any format diskette.
Atari Diskettes may only be accessed with a version 2 Sparta DOS
loaded into the computer!

Erase File(s) (ERASE)

Syntax
XIO 33,#IOCB,0,O,"Dn:fname.ext"

Notes
The IOCB must be closed for this operation to be used. Wild cards may
be used in the filename. This function is valid for any format diskette.
Atari Diskettes may only be accessed with a version 2 Sparta DOS
loaded into the computerl

102

Chapter 19 - The Technical Structure of SpartaDOS

Lock Diskette (LOCK)

Syntax
XIO 34,#IOCB,O,O,"Dn:"

Notes
The IOCB must be closed for this operation to be used. This function is
valid for only Sparta DOS version 2.x diskettes and must be used
with a version 2.x SpartaDOS loaded into the computer!

Protect File(s) (PROTECT)

Syntax
XIO 35,#IOCB,O,O,"Dn:[path >]fname[.ext]"

Notes
The IOCB must be closed for this operation to be used. Wild cards may
be used in the filenames. This function is valid for any format diskette.
This function must be used with a version 2.x SpartaDOS loaded
into the computer!

Unprotect File(s) (UNPROTECT)

Syntax
XIO 36,#IOCB,O,O,"Dn:[path >]fname[.ext]"

Notes
The IOCB must be closed for this operation to be used. Wild cards may
be used in the filenames. This function is valid for any format diskette.
This function must be used with a version 2.x SpartaDOS loaded
into the computer!

Set File Position - POINT

Syntax
X = POS

Y = °
POINT #IOCB,X,Y or

103

Chapter 19 - The Technical Structure of SpartaDOS

Y = INT(POS/65536)
POKE 846+IOCB*16,Y
POS = POS-Y*65536
Y = INT(POS/256)
POKE 845+IOCB*16,Y
POKE 844+IOCB*16,POS-Y*256
XIO 37,#IOCB,0,0,"Dn:" or

POINT #IOCB,SECTOR,OFFSET

Notes
For SpartaDOS Diskettes: In the first method, position (POS) must be
from ° to 32767. The second method may take positions up to 8,388,607
($7FFFFF in HEX notation). You may position beyond the end of file if the
file is opened in read/write mode. The space between the EOF and
where you point is filled with zeros, but physically, no sectors are used to
hold the zero data. Thus, it is possible to have a file 32K in length but
only 5 sectors long. If the data in the gap is accessed in any way, a sector
will be created for the 128 or 256 byte area around the location accessed.

Note: POINT under SpartaDOS uses an absolute position relative to the
beginning of the file. This is different from the sector number and position
byte as in Atari DOS 2.

For Atari DOS 2 Diskettes: In the third method, the POINT command
gives a sector number and an offset within the sector. This is not a
relative file position as in SpartaDOS formatted diskettes. This works
identically like Atari DOS 2. Atari Diskettes may only be accessed with
a version 2 Sparta DOS loaded into the computer!

Get Current File Position - NOTE

Syntax
NOTE #IOCB,X,Y
POS = X or

XIO 38,#IOCB,0,0,"Dn:"
POS = PEEK(846+IOCB*16)*65536
POS = POS + PEEK(845+IOCB*16)*256
POS = POS + PEEK(844+IOCB*16) or

NOTE #IOCB,SECTOR,OFFSET

104

Chapter 19 - The Technical Structure of Sparta DOS

Notes
For SpartaDOS Diskettes: In the first method, position (POS) will be
from ° to 32767. The second method will give positions up to 8,388,607
($7FFFFF in HEX notation). Note that this is an absolute position relative
to the beginning of the file. This is different from the sector number and
position as in Atari DOS 2.

For Atari DOS 2 Diskettes: In the third method, the NOTE command
gives a sector number and an offset within the sector. This is not a
relative file position as in SpartaDOS formatted diskettes. This works the
same as Atari DOS 2. Atari Diskettes may only be accessed with a
version 2 SpartaDOS loaded into the computer!

Get File Length

Syntax
XIO 39,#IOCB,0,0,"Dn:"
POS = PEEK(846+IOCB*16)*65536
POS = POS + PEEK(845+IOCB*16)*256
POS = POS + PEEK(844+IOCB*16)

Notes
This returns the current file length (end-of-file pOinter) of the currently
open file. Note that this is only works for Sparta DOS formatted
diskettes. Atari formatted diskettes have no equivalent.

Load Binary File (LOAD)

Syntax
XIO 40,#IOCB,4,X,"Dn:[path]fname.ext"

Notes
This command will load a binary file. If X is less than 128, then the
INITIRUN vectors will be used, otherwise they will be ignored. Note that
the IOCB must not be open. Atari Diskettes may only be accessed
with a version 2 Sparta DOS loaded into the computer!

Save Binary File (SAVE and APPEND)

Syntax
XIO 41,#IOCB,R,X,"Dn:[path]fname.ext addr1 addr2"

105

Chapter 19 - The Technical Structure of SpartaDOS

Notes
This command will save a binary file between 'addr1' and 'addr2' where
'addr1' and 'addr2' are given in HEX. If R is 8 then the file will be
overwritten. If R is 9 then the file will be appended to (as in DOS's
APPEND command). If X is less than 128 then a binary file header of $FF
$FF will be written; otherwise, it will not be written (preferable for
APPENDing segments). Note that the IOCB must not be open. Atari
Diskettes may only be accessed with a version 2 SpartaDOS loaded
into the computer!

Create Directory (CREDIR)

Syntax
XIO 42,#IOCB,O,O,"Dn:path"

Notes
This command creates a new directory. The last name in the pathname is
the directory to be created. The path leading up to the name must be a
valid and existing path. Note that the IOCB must not be open. This will
not work on Atari DOS 2 diskettes!

Delete Directory (DELDIR)

Syntax
XIO 43,#IOCB,O,O,"Dn:path"

Notes
This command deletes a directory. The directory must contain no files in
order for it to be deleted. The last name in the pathname is the directory
to be deleted. The path leading up to the name must be a valid and
existing path. Note that the IOCB must not be open. This will not work
on Atari DOS 2 diskettes!

Change Working Directory (CWO)

Syntax
XIO 44,#IOCB,O,O,"Dn:path"

Notes
This changes the current default directory. The path name must be valid
and all directory names in the path must exist. Note that the IOCB must
not be open. This will not work on Atari DOS 2 diskettes!

106

Chapter 19 - The Technical Structure of SpartaDOS

Set Boot File (BOOT)

Syntax
XIO 45,#IOCB,0,0,"Dn:[path >]fname[.ext]"

Notes
The IOCB must be closed for this operation to be used. Wild cards may
be used in the filename. This function is valid for only Sparta DOS
version 2.x diskettes and must be used with a version 2.x SpartaDOS
loaded into the computer!

Unlock Diskette (UNLOCK)

Syntax
XIO 46,#IOCB,0,0,"Dn:"

Notes
The IOCB must be closed for this operation to be used. This function is
valid for only SpartaDOS version 2.x diskettes and must be used
with a version 2.x SpartaDOS loaded into the computer!

Format Diskette in Atari DOS 2 Format (AI NIT)

Syntax
XIO 254,#IOCB,0,0,"Dn:"

Notes
The IOCB must be closed for this operation to be used. This function
may be used only with a version 2.x SpartaDOS load into the
computer!

Directory Listing (DIR)

Syntax
10 DIM A$(40):TRAP 40
20 OPEN #IOCB,6,X,"Dn:[path >]fname[.ext]"
30 INPUT #IOCB,A$:PRINT A$:GOTO 30
40 CLOSE #IOCB

107

Chapter 19 - The Technical Structure of SpartaDOS

Notes
If 'X' is less than 128, then a standard Atari DOS 2 listing is given. If 'X' is
greater than 127, then the expanded (SpartaDOS) listing is given,
showing file size, date and time. For an explanation of the directory
format, refer to Chapter 3. Atari Diskettes may only be accessed with a
version 2 SpartaDOS loaded into the computer!

SpartaDOS User Accessible Data Table
Because Sparta DOS is mainly a command processor driven DOS, a
great number of variables have been made user accessible. These are
mainly for parameter passing on the command line, time/date interface,
addresses of important routines within the DOS, and a few other
miscellaneous datum. The data table is referred to as 'COMTAB' and is
pointed to by 'DOSVEC' (at location 10). A few assembly language
routines will follow as an aid. The user area at 'COMTAB' is as follows.

LSIO [COMTAB-10]
This location contains the address of the SIO routine SpartaDOS
uses. This is actually a vector, so you may replace this address
with your own. The Ramdisk patches in here to trap access to
the drive it is emulating. Many commands use this vector to run
the DOS's high speed SIO routine.

ECHOFLG [COMTAB-8]
This location contains the index into HATABS (table of handler
10's and addresses) of the file SpartaOOS is echoing output to. A
value of $FF indicates that echoing is inactive. This location is
valid only while running under SpartaDOS 2.x.

BATFLG [COMTAB-6]
This location contains the index into HATABS (table of handler
ID's and addresses) of the file Sparta DOS is receiving input
from. A value of $FF indicates that no batch file is active. This
location is valid only while running under SpartaDOS 2.x.

WRTCMD [COMTAB-2]
This location contains the SIO write command. A 'W' is the write
with verify command, and 'P' is the write with no verify
command. This location is valid only while running under
SpartaDOS 2.x.

108

Chapter 19 - The Technical Structure of SpartaDOS

WARMST [COMTAB-1]
This flag, if set, indicates that the command processor is dOing a
cold start. It is cleared (to 0) whenever the command processor
is entered. It is used to trap errors when trying to open
'STARTUPBAT' or 'AUTORUN.SYS'.

COMTAB [COMTAB]
This location contains a 6502 jump instruction to the command
processor. BASIC enters here on a "DOS" command.

ZCRNAME [COMTAB+3]
This location contains a 6502 jump instruction to the filename
crunch routine ('CRNAME'). This is used by most external DOS
commands to fetch the next filename on the command line. The
command line is at 'LBUF' and the crunched filename ends up
at 'COMFNAM'. This routine supplies the default drive number if
necessary. The zero flag on return is SET if no filename is on the
command line. Each call returns the next filename on the
command line.

ZDIVIO [COMTAB+6]
This location contains the address of the divert input/output
(redirection of I/O) routine. From an assembly language program,
you may call the routine through an indirect jump to 'ZDIVIO'
with the filename at 'COMFNAM' and the Y register equal to 0 if
output (PRINT), or 1 if input (-fname).

ZXDIVIO [COMTAB+8]
This location contains the address of the stop divert input/output
routine. From an assembly language program, you may call the
routine through an indirect jump to 'ZXDIVIO' with the Y register
equal to 0 if stopping output (PRINT), or 1 if stopping input (force
end of file).

BUFOFF [COMTAB+10]
This location contains the current offset into the command line.
'CRNAME' uses this pointer to fetch the next parameter on the
command line (at 'LBUF') and move it to 'COMFNAM'.

ZORIG [COMTAB+11]
This location contains the start address of SpartaDOS. $600 is
the start address of SPEED.DOS and STANDARD.DOS, and
$700 is the start address of all other versions.

109

Chapter 19 - The Technical Structure of SpartaDOS

DATER [COMTAB+13]
This location contains the current date in DD/MMIYY format (3
bytes). This is the date that SpartaDOS inserts in the directory
whenever a new file or directory is created. To override this, see
'TDOVER'.

TIMER [COMTAB+16]
This location contains the current time in HH/MM/SS format (3
bytes, Not in BCD format, therefore it can be read with no
conversion from BASIC). This is the time that SpartaDOS inserts
in the directory whenever a new file or directory is created. To
override this, see 'TDOVER'.

ODATER [COMTAB+19]
This location contains the alternate date in DD/MMIYY format (3
bytes). SpartaDOS uses this date instead of 'DATER' if the
'TDOVER' flag is set.

OTIMER [COMTAB+22]
This location contains the alternate time in HH/MM/SS format (3
bytes). SpartaDOS uses this time instead of 'TIMER' if the
'TDOVER' flag is set.

TOOVER [COMTAB+2S]
This location contains the time/date override flag. It is set to 0 if
to use 'DATER' and 'TIMER' when it creates new files, and set to
$FF if to use 'ODATER' and 'OTIMER'. This is used by file copy
programs (such as SPCOPY and MENU) to insure that the time
and date of each file is preserved.

TRUN [COMTAB+26]
This location contains the RUN address of a load file. This
location is updated during the internal load operation, so BASIC
or any other program may check what the load address was.
'RUNLOC' is updated from this location by the command
processor only.

[COMTAB+28]
This location always has a value of 128.

DDENT [COMTAB+29]
This location contains the density (sector size) of each drive (4 in
all - SpartaDOS 1.x only supports 4 drives). A value of 0
indicates 256 byte sectors, and a 128 indicates 128 byte sectors.
This table is valid only for version 1.x SpartaDOS. The
DDENT table is inaccessible if you are using SpartaDOS 2.x.

110

Chapter 19 - The Technical Structure of Sparta DOS

COMFNAM (COMTAB+33]
This is the buffer for the output of the ZCRNAME routine. It is a
28 byte long buffer and always begins in the form 'dn:' so if you
are only looking for parameters, you may start looking at
COMFNAM+3.

RUNLOC (COMTAB+61]
This location contains the run address of a '.COM' file when it is
loaded through the command processor (as a command). If no
address is specified after the RUN command, this is the address
to be run.

LBUF (COMTAB+63]
This location contains the input buffer. This is where the
command line is stored. 'LBUF' is 64 bytes in length.

Format of Sparta DOS Diskettes
Sectors are of four types in SpartaDOS; they are: 1) boot sectors, 2) bit
maps, 3) sector maps, or 4) data sectors. Data sectors may be divided
into two classes, directory sectors and user data sectors. The following is
a detailed description of each sector type and the structure of a
SpartaDOS directory.

Sector Maps
Sector maps are simply a list of sectors making up a file. The first two
entries are a link to the next sector map and a link to the last (previous)
sector map. The rest of the sector is just a list of up to 62 (if SD) or 126 (if
DD) data sector numbers.

next: This is the sector number of the next sector map. It will be a
zero if this is the last sector map.

last: This is the sector number of the last (previous) sector map. It
will be zero if this is the first sector map.

data: These are the sector numbers of the data sectors of the file.
If a data sector number is zero, then that portion of the file is
not allocated. This can happen if a file is written to at a low
file position and then written to at a high file position without
ever writing the middle data (see POINT).

111

Chapter 19 - The Technical Structure of SpartaDOS

Bit Maps
A bit map is a sequence of bits that determine whether a sector is in use
or not. Bit 7 represents the first sector in a group of 8 and Bit 0 represents
the eighth sector in the group. The first byte of the bit map corresponds to
sector numbers 0 through 7, the second corresponds to sector numbers
8 through 15, etc. (NOTE that sector number 0 does not exist). If more
than 1 bit map is required for the diskette, they will be sequential on the
diskette. A sector is 'free' if the corresponding bit map bit is SET (1).

Boot Sectors
The boot sectors are the first three sectors on all SpartaOOS diskettes.
They contain the program that loads in the DOS, links it into the system,
and enters the command processor. The first sector contains a large
table of data which: points to the first bit map sector, pOints to the main
directory sector map, holds the density and free sectors, and contains the
volume name, to name a few. Listed below is where each item of data is
kept. The numbers represent offsets into the sector.

9 This is the first sector map of the MAIN directory.
11 This is the total number of sectors on the diskette.
13 This is the number of free sectors on the diskette.
15 This is the number of bit map sectors used on the diskette.
16 This is the sector number of the first bit map sector.
18 This is the sector number to begin the file data sector allocation

search. This is the beginning sector number that is checked to
see if free when writing a standard file.

20 This is the sector number to begin the directory data sector
allocation search. This is the beginning sector number that is
checked to see if free when expanding a directory or creating a
new directory. This is used so that directory sectors are close
together (hopefully continuous) for faster operation.

22 This is the diskette volume name (8 characters). These must be
unique on SpartaOOS version 1.x diskettes or when using a
version 1.x SpartaOOS.

30 This is the number of tracks the diskette has. The most
significant bit is set if this is a double sided drive.

31 This is the size of the sectors on this diskette. A 0 indicates 256
byte sectors and a 128 indicates 128 byte sectors.

32 This is the major revision number of the DOS on this diskette.
Possible values are $11 (for 1.x versions) and $20 (for 2.x
versions).

33 This is the number of buffers reserved for sector storage (default
if booted). Not applicable to Sparta DOS version 2.x diskettes.

112

Chapter 19 - The Technical Structure of SpartaDOS

34 This is the default drive the command processor uses if this
diskette is booted.

35 RESERVED
36 RESERVED
37 This is the number of sectors in the main DOS boot (under

version 1.x diskettes only).
38 This is the volume sequence number. It is incremented every

time an open file for write occurs. It is used, in addition to the
volume name, to determine if the diskette has been changed.
Only applicable to SpartaDOS version 2.x diskettes.

39 This is the volume random number. This is simply a random
number generated when the diskette was formatted. Its function
is the same as the volume sequence number. Only applicable
to SpartaDOS version 2.x diskettes.

40 This is the first sector map of the file specified by the BOOT
command. This is how the boot program knows what file to load.
Only applicable to Sparta DOS version 2.x diskettes.

42 This is the write lock flag. A value of $FF indicates the diskette is
locked, and a 0 indicates that it is not. Only applicable to
SpartaDOS version 2.x diskettes.

The Directory Data Structure
The directory is a special file that gives information about each file and
each subdirectory it contains. Each entry in the directory is 23 bytes in
length and contains the filename, the time/date, the length, the first
sector map number, and the status of the entry. The first entry is special;
it contains the entry describing its directory as a file. The parent
directory's entry for a subdirectory maintains everything except the
length of the subdirectory. The first entry contains the following
information (the numbers are offsets into the entry):

This is the first sector map number of the parent directory. A
zero indicates that this is the base (or main) directory.

3 This is the length of the directory (3 bytes).
6 This is the directory name (8 bytes).

When a directory is opened (unformatted mode), the file position is
automatically set to the second entry. You must do a position if you want
to read the entry containing the above information (first entry). The rest of
the entries contain the following information (the numbers are offsets into
the entry):

113

Chapter 19 - The Technical Structure of SpartaDOS

o This is the file status byte. A zero indicates the end of the
directory file. The following describes the meaning of set bits:

BO - The entry is protected.
B3- The entry is in use.
B4 - The entry has been deleted.
B5 - The entry is a subdirectory.

1 This is the first sector map of the file.
3 This is the length of the file (3 bytes).
6 This is the filename (8 bytes .. space padded).

14 This is the filename extension (3 bytes .. space padded).
17 This is the date the file was created (OO/MMIYY - 3 bytes).
20 This is the time the file was created (HH/MM/SS - 3 bytes).

More SpartaDOS Functions Accessible Through the CIO
The following is a list of special CIO functions not included in the list of
BASIC XIO functions. These tend to be more difficult to use through
BASIC.

Check Diskette Status (CHKDSK)
This functions retrieves information about the diskette. The following are
the input and output parameters:

CIO Input Conditions
iccom = 47
icbal low byte of 'On:' address
icbah high byte of 'On:' address
icbll = low byte of buffer address
icblh = high byte of buffer address

CIO Output Results
buffer = result of CHKOSK operation (17 bytes)
+0 = version number of diskette: 0 if Atari DOS 2
+ 1 = number of bytes per sector: 0 implies 256
+2 = total sectors on diskette (Iow,high)
+4 free sectors on diskette (Iow,high)
+6 = volume name (8 bytes, SpartaOOS only)
+ 14 volume sequence number (1 byte, SpartaOOS 2.x)
+15 volume random number (1 byte, SpartaOOS 2.x)
+ 16 write lock flag (1 byte, O=false (unlocked), SpartaOOS

2.x)

114

Chapter 19 - The Technical Structure of Sparta 0 OS

Get Current Directory Path (?DIR)
This function returns the current directory path. The input and output
parameters are as follows:

CIO Input Conditions
iccom = 48
icbal low byte of 'Dn:[path]' address
icbah high byte of 'Dn:[path]' address
icbll low byte of buffer address
icblh high byte of buffer address

CIO Output Results
buffer result of ?DIR operation. This is a legal path describing

path to the directory specified in the command. If no
path is specified, then the function returns the current
default directory path. The path is ended with an EOL.

115

Chapter 19 - The Technical Structure of SpartaDOS

116

Chapter 20 - Differences Between SpartaDOS 1.x and 2.x

CHAPTER 20 - DIFFERENCES BETWEEN
SPARTADOS l.x AND 2.x

This chapter lists the enhancements written into the CP version 2.x of
SpartaDOS. It is intended mainly for those who have already been using
version 1.x that want to quickly know the differences. The new external
commands are not listed here. Use the table of contents or the command
summary to review those. The major differences between the two
versions are as follows:

1. SpartaDOS 2.x resides primarily in the RAM underneath the
OS ROM of the computer. Therefore, it will only work on the
XL/XE computers. (Since a standard 800 doesn't have RAM
under the OS). By using this method, you now have about 4K
more usable memory available.

2. SpartaDOS can now read and write all Atari DOS 2 diskettes
automatically. If an Atari DOS 2 diskette is in the disk drive, all
functions that work with Atari DOS 2 will work exactly as they
did while using Atari DOS 2. There are a few additions to the
Atari handler as follows:

a. A CHKDSK XIO function has been added to the Atari
handler (described in Chapter 19).

b. The Write capability has been enhanced. In UPDATE
mode, you may continue writing beyond the end of the
file. Before you could only write up to the end; an error
would result if you tried to write further. Now you
automatically enter an append mode when the
transition is made. In essence, file operations work the
same way as in the SpartaDOS handler with the
exception of NOTE/POINT. These preserve the Atari
DOS 2 interpretation (sector #/offset).

c. The disk initialization function (XIO 254) has also been
included. This will format exactly like Atari DOS 2
would. The density is dependent upon the
configuration of the drive as is normal with all Atari
DOS 2 implementations.

d. SpartaDOS will also work with double density Atari
DOS 2 diskettes.

117

Chapter 20 - Differences Between Sparta DOS 1.x and 2.x

e. You may now open files after the formatted directory
has been opened. Atari DOS 2 has a bug where it
loses its place in the directory when a file is opened.

3. All references to COpy being in page 6 should be ignored.
COpy is now completely internal and resides under the OS

·ROM.

4. The BUFS command has been eliminated. There are now
always 12 buffers which reside under the OS ROM.

5. Most errors that can occur with use of the command processor
have error messages displayed rather than error numbers.

6. Unique volume names are no longer required (as long as you
are using version 2.x). A random number is put on the boot
sector (sector 1) during format time. A sequence number is also
used, and is incremented every time a file is closed that was
open for writing, or whenever any disk modifying command is
performed (i.e. ERASE, CREDIR, etc.).

7. Batch files may now be linked (i.e. the last line in a batch file
may call another batch file). Also, PRINT is no longer a toggle.
Without any parameters, PRINT will just close the current file.
With a filename, it will close the current file (if one was open),
and then start a new PRINT file. NOTE: these changes are at
the XDIVIOIDIVIO level, so if using the assembly calls, this will
work.

8. The PAUSE and MEM commands are now internal.

9. A file with one or more wild cards cannot be written to the
diskette. Thus, the command 'COpy E:' will not be allowed.
This protects against accidental erasures of the first file.
(Before, this command would replace the first file and take on a
name of '???????????'. The only way to erase this file was to
'ERASE *.*'.)

10. PROTECT/UNPROTECT commands have been added. They
work identically to the Atari DOS 2 commands. The command
syntax is:

PROTECT [Dn:]fname[.ext]
UNPROTECT [Dn:]fname[.ext]

118

Chapter 20 - Differences Between SpartaDOS 1.x and 2.x

The XIO codes are the same as described by Atari DOS 2.
(protect=35, unprotect=36)

9. Diskettes may be software LOCKed and UNLOCKed. If a
diskette is locked, it will act just as though a write protect tab is
on the diskette, however a different error code is returned. The
command syntax is:

LOCK [On:)
UNLOCK [On:)

The XIO codes for these commands are: lock=34, unlock=46.

10. The following error codes and meanings have been added:

$95 = Not version 2.x diskette
$94 = Not a SpartaDOS diskette
$A3 = Illegal wild card in filename
$A4 = File protected (attempt to replace was made)
$A9 = Diskette is write locked

11. The VERIFY command has been added. This allows the user to
change between write with verify and write without verify. The
syntax of the command is:

VERIFY ON or
VERIFY OFF

12. The XDIV command has been added. This command
permanently disables the batch file and PRINT capability. This
is because some application programs will function incorrectly
while the EDITOR handler is patched. The command syntax is:

XDIV

13. The DIRS directory command has been added. This will list the
directory in Atari DOS 2 compatible mode. The sectors per file
field is a calculated number and may be 1 off but is unlikely with
files under BK. This type of directory listing was previously
available, but not under the command processor, nor did it have
correct sector counts; they were zero filled before.

119

Chapter 20 - Differences Between SpartaDOS 1.x and 2.x

14. An error will be given if SpartaDOS 2.x is read into a non-XL
Atari computer. RESET will reboot the computer. Also, an error
will be given if there is no DOS (as set by BOOT or XINIT) on
the diskette.

15. The BOOT command has been added. This command will
select a program (normally DOS) to load when the diskette is
booted. The file selected must be a standard binary load file.
The INITZ and RUN vectors are handled normally (as
described under Atari DOS 2 and SpartaDOS). The syntax of
the command is:

BOOT [Dn:]fname[.ext]

This is the XIO function number 45.

16. The DOS loader (on the first 3 sectors of each diskette) can now
load files in the same manner as the LOAD command.
Normally DOS is loaded, but actually anything could be loaded.
This makes a good way of creating binary boot programs.
NOTE: the loader resides from $3000-$3180 and uses
$2EOO-$3000 for data, so the booted program must not
overwrite these areas.

17. The MAIN directory is no longer scanned twice when OPENed
for READ, if the CURRENT directory is the MAIN directory.
Before, when trying to load a nonexistent file at the base (MAIN)
directory, the directory was scanned twice for the file.

18. From assembly language, the character immediately following
the filename does not have to be a $9B or less than $20. Now
any non-alphanumeric character can end a filename except
. >', which is reserved as a place holder in path names. This is
so a few more programs will work correctly. Also, a comma may
delimit filenames for the RENAME function. (MEDIT uses a
comma)

19. The CAR command now checks to make sure a cartridge is
present.

120

Chapter 20 - Differences Between SpartaDOS 1.x and 2.x

20. A CHKDSK command has been added. It states the volume
name, the random and sequence numbers, the total bytes/disk,
the free bytes/disk, the sector size, and the write lock status.
Only SpartaDOS 2.x diskettes will display the write lock status
and the sequence and random numbers. This is also an XIO
function (described in Chapter 19). The command syntax is:

CHKDSK [Dn:]

21. The following data structures and definitions have been
modified:

a. BIT[O] of the directory status byte is SET (1) if the entry
is PROTECTED, and CLEAR if not.

b. at +38 in sector 1 is the volume sequence number.
c. at +39 in sector 1 is the volume random number.
d. at +40 in sector 1 is the first sector map number of the

file to boot (i.e. XD23B.DOS etc).
e. at +42 in sector 1 is the write lock flag; $FF is locked.

22. The AINIT command has been added. This is the Atari DOS 2
format command, and is also an XIO function. A YeslNo prompt
will be given to make sure. The syntax is:

AINIT [Dn:]

The XIO function number of format is 254.

23. The following are new definitions of offsets within COMTAB
(numbers represent offsets): \

-2S10 command used to write a sector (,P' or 'W')
-7Flag indicating active DIVIN ($FF is false)
-8Flag indicating active DIVOUT ($FF is false)

24. An error message ('File not found') will be given if a RENAME,
ERASE, PROTECT, or UNPROTECT command is used and no
files match the filespec.

25. High Speed 1/0 routines are placed under the OS ROM. During
boot up of the diskette, the high speed routines are
automatically switched to as soon as they are loaded.

121

Chapter 20 - Differences Between SpartaDOS 1.x and 2.x

122

Appendix A - Errors

APPENDIX A - ERRORS

Atari Basic Error Messages
CODE # ERROR CODE MESSAGE

2 Insufficient Memory
3 Value Error
4 Too Many Variables
5 String Length Error
6 Out of Data Error
7 Number> 32767
8 Input Statement Error
9 Array or String DIM Error

11 Floating Point Overflow/Underflow Error
12 Line Not Found
13 No Matching FOR Statement
15 GOSUB or FOR Line Deleted
16 RETURN Error
17 Garbage Error
18 Invalid String Character
19 LOAD Program Too Long
20 Device Number >7 or =0
21 LOAD File Error

SpartaDOS Error Messages
CODE # ERROR CODE MESSAGE
128($80) BREAK Abort
129($81) IOCB Already Open (Input/Output Control Block)
130($82) Nonexistent Device Specified - You typed an undefined

131($83)
132($84)
133($85)
134($86)
135($87)
136($88)
137($89)
138($8A)
139($8B)

144($90)
146($92)

device. Legal devices are: D:,S:,C:,R:,P:,E:.
File/lOCB Not Open For Read
Invalid IOCB Command
Device or File/IOCB Not Open
Bad IOCB Number
File/lOCB Not Open For Write
End of File
Truncated Record
Device Timeout (No Drive Found)
Device NAK (Not Acknowledged) This is a message you'll
get when trying to read an incompatible DOS or disk not in
place.
Device Done Error (Bad SectorlDisk Write Protected)
Function Not Implemented in Handler

123

148($94)
149($95)
150($96)
151($97)

152($98)
160($AO)
162($A2)
163($A3)
164($A4)
165($A5)
166($A6)
167($A7)
168($A8)
169($A9)
170($AA)

Appendix A - Errors

Not a SpartaDOS Diskette
Diskette not SpartaDOS version 2.x
Directory Not Found
File Exists. May not replace or delete file. Can happen when
saving a file with a directory of the same name (dname =
fname.ext).
Not a Binary File
Drive Number Error
Disk Full (no free sectors)
Illegal Wild Card in Filename
File Erase Protected
File Name Error - Typed illegal characters in filename.
Position Range Error
Cannot Delete Directory
Illegal DOS Command I Not Implemented
Diskette is Write Locked
File Not Found - You've mistyped a file or command name or
tried a write operation with NOWRITE.DOS.

124

Appendix B - Command Summary

APPENDIX B - COMMAND SUMMARY

?olR [on:][path] Internal - 2.x
To show the path to a specified directory. If no path is given as a
parameter, the current directory path is displayed.

AINIT [On:] Internal - 2.x
This command is used to format a diskette in Atari DOS 2 style
format.

APPEND [on:][path >]fname[.ext] address address Internal - 1.x
and 2.x
This command saves a binary block of data at the end of an existing
binary file.

BASIC ON or BASIC OFF Internal - 2.x
This command installs or removes the internal BASIC with the XL/XE
computers.

Batch Files (syntax below)
-fname 1.x and 2.x

To retrieve and execute a file (fname.BAT) which instructs DOS to go
perform specific operations in a specific order. STARTUP. BAT is a
special batch file which is automatically executed when the diskette
is booted.

BOOT [on:][path >]fname[.ext] Internal- 2.x
This command tells a SpartaDOS 2.x formatted disk to boot a
particular program at startup.

BUFS In] Internal-1.x
To set or check the number of buffers currently in use under CP
version 1.x only.

CAR Internal- 1.x and 2.x
Exit from DOS to a language cartridge.

CHKoSK [On:] Internal - 2.x
To display the volume name, random & sequence numbers (version
2.x diskettes only), sector size, formatted bytes on disk, available
bytes on disk, and write lock status (version 2.x diskettes only).

CHTD [Dn:][path >]fname[.ext] External- 1.x and 2.x
This utility command is used to change a file's time/d;:o+

Appendix B - Command Summary

CHVOL [On:]vname External - 1.x and 2.x
This utility command is used to change the volume name on a
diskette.

Command Files (syntax below)
[On:][path >]fname [parameters]1.x and 2.x

To load and run binary files. Also, it also provides a standard for
passing parameters to machine language programs.

COpy d[n]:[path >][fname[.ext]] [dn:][path >][fname[.ext]][/A]
Internal - 1.x with exceptions and 2.x
Note: the 'fA" option is allowed under CP version 2.x only.

COpy one or more files from one device to another and if specified,
gives the copy a different name. COpy can also be used to append
one file to another under CP version 2.x only.

COpy can copy files to the same disk, however the copy must have a
different name unless the destination is another directory. Note that a
file may NOT be copied to the same disk drive with a different
diskette. There is no provision to switch diskettes in the middle of the
COPY process. If a single drive copy is desired, see the SPCOPY,
XCOPY, MENU or DUPDSK commands.

You may also use COpy to transfer data between any of the other
system devices, i.e. the Screen Editor, Printer, Keyboard, etc.

CREOIR [On:]path Internal - 1.x and 2.x
Creates a subdirectory on the specified disk.

CWO [On:]path Internal - 1.x and 2.x
Change the working (current) directory on the specified disk.

OELOIR [On:]path Internal-1.x and 2.x
Deletes an empty subdirectory from the specified disk.

OIR [On:][path >][fname[.ext]] or
OIRS [On:][path >][fname[.ext]] (optional with CP version 2.x)

Internal- 1.x and 2.x with exceptions

126

Appendix B - Command Summary

To display the volume name and the specified directory name, to list
files and subdirectories in the directory, the file size in bytes, the date
and time the files were created, and the number of free sectors left
on disk. DIR may be used to list all files matching a file spec pattern
by using wild cards. DIRS displays the short form directory as used
with Atari DOS 2.0 (CP version 2.x only)

DIS_BAT External- 1.x and 2.x (use XDIV with 2.x)
The DIS BAT command is used with CP version 1.x to disable batch
processing and the PRINT command (redirection of 1/0). This may
be necessary in order to run certain programs. If using CP version
2.x see the XDIV command.

DUMP [Dn:][path >]fname[.ext] [start [#bytes]] [/P]External- 1.x
dnd 2.x
This utility will display a file or portion of a file in HEX and ATASCII or
ASCII format.

DUPDSK External - 1.x and 2.x
To duplicate an entire SpartaDOS diskette (except for volume name)
using one or two disk drives. Note: Number of tracks and densities
must match on 'source' and 'destination' disks or an error will result.

ERASE [Dn:][path >][fname[.ext)) Internal- 1.x and 2.x
ERASE deletes the file or files from the specified file name from the
specified directory. If no path IS specified, the file is deleted from the
current directory.

FORMAT External- 1.x and 2.x
This command is used to format the diskette, create the directory
structure, and optionally put DOS on the diskette. (Only 1.x
diskettes.)

INIT External - 1.x and 2.x
This is the master formatting program for SpartaDOS 1.x versions
and allows selection of certain default parameters. (Will create 1.x
versions.)

KEY External - 1.x (for 400/800 computers)
XKEY External - 1.x and 2.x (for XLIXE computers)

To install a 32 character keyboard buffer.

LOAD [Dn:][path >]fname[.ext] Internal - 1.x and 2.x
This command loads any binary file into memory but does not run
the file. The standard DOS RUN and INIT vectors are not used.

127

Appendix B - Command Summary

LOCK [On:] and UNLOCK [On:] Internal - 2.x
The LOCK command locks the disk to prevent accidental erasure. It
is similar to the physical write protect tab which is put on the disk, but
is strictly a software lock and only works when using CP version 2
diskettes. UNLOCK disables the LOCK command. (Only affects 2.x
diskettes.)

MOUMP [address [#bytes]] [/P] External- 1.x and 2.x
ThiS utility will display memory locations in HEX and ATASCII or
ASCII format. It is very similar to DUMP but works on blocks of
memory rather than files.

MEM Internal - 2.x
MEMLO External - 1.x and 2.x (2.x should use MEM)

To display MEMLO (lower bound) and MEMHI (upper bound - only
MEM displays this).

MENU [R][n] External - 2.x
This command gives you most of the features of the command
processor but in a menu form. It is capable of single and multiple file
functions.

OFF LOAD [Dn:][path >]fname[.ext] offset [/SNPQ] or
OFF LOAO -R address [On:][path >]fname[.ext]

External- 1.x and 2.x

This utility command loads in files at an offset and optionally displays
segment addresses, file position of beginning of segment, and can
query whether to load a given segment. If may also be used to create
non-relocatable versions of OFF LOAD.

PAUSE External - 1.x, Internal 2.x
To temporarily halt execution of a batch file and to prompt the user for
a response to continue.

PORT [path>]fname[.ext] External - 1.x and 2.x
To set speed. word size, stop bits, translation, input and output parity,
and EOL parameters for RS232 communications.

PRINT [dn:][path >]fname[.ext][/A] or PRINT d[n]: or PRINT
Internal- 1.x and 2.x
Note the 'lA' option is allowed under CP version 2.x only.

To echo all output that is written to the screen editor (E: through
10CB #O) to a specified output device.

128

Appendix B - Command Summary

PROTECT [On:][path >]fname[.ext] or Internal - 2.x
UNPROTECT [On:][path >]fname[.ext]

These commands protect and unprotect (lock & unlock) files from
accidental erasure. (This only affects 2.x diskettes.)

PUTRUN [On:]fname[.ext] External - 1.x and 2.x
This command appends the RUN vector containing the start address
of an external command file to the file. This is to make a command
such as MENU be able to run as an AUTORUN.SYS (when only
RUN/INIT vectors are used).

ROBASIC On: (XLIXE computer with internal BASIC on required)
R0130 On: (Atari 130XE computer required)
ROAXLON On: (Axlon RAMPOWER 128 in Atari 800 required)

External- 1.x and 2.x with restrictions

These commands install a Ramdisk device (electronic disk) in the
place of a disk drive. Since these commands depend on specific
hardware, the correct device must be present or an error will result.
Note: CP version 1.x allows up to 4 drives and CP version 2.x allows
up to 8 drives.

RENAME [On:][path >]fname[.ext] fname[.ext] Internal - 1.x and 2.x
Change the name of an existing file or files.

RPM [On:] External- 1.x and 2.x
To display the drive speed in RPM for user information.

RS232 External- 1.x and 2.x (for the 850 interface)
AT _RS232 External- 1.x and 2.x (for the ATR8000)

To load the RS232 Handler for communications.

RUN [address] Internal - 1.x and 2.x
To re-execute the last '.COM' file or execute at a given address. (To
load and run a binary file see 'Command Files'.)

SAVE [On:][path >]fname[.ext][/A] address address Internal - 1.x
and 2.x the 'lA' option is allowed under CP version 2.x only.

This command saves binary data from memory to disk. To append
data, see the APPEND command, or with CP version 2.x use the 'lA'
option.

129

Appendix B - Command Summary

SET [mm/dd/yy] [hh/mm/ss] (for use with TIME command)
TSET [mm/dd/yy] [hh/mm/ss] (for use with TD or XTD commands)

External - 1.x and 2.x
These commands allow the user to set the time and date after
installing the clock with the TIME, TD or XTD commands.

SPCOPY or XCOPY External - 1.x and 2.x
These commands are used for single or dual drive file transfers
between Sparta DOS and/or Atari DOS 2 compatible formats with few
restrictions on density and number of tracks. This is the way to
convert Atari DOS 2 files to SpartaDOS or the reverse of this. Since
translation is already built into CP version 2.x, use the smaller
XCOpy with that version of DOS.

TO [X] (for use with R.:rIME 8 cartridge)
TIME [X] (for use with system clock)
XTO (for use with R-TIME 8)

External - 1.x and 2.x

TD and XTD are used with lCD's R-TIME 8 Cartridge to install the
hardware clock. XTD installs the R-TIME 8 without a display and TD
installs it with the date and time displayed at the top of the screen.
TIME installs the clock built into the Atari which is not very accurate
and must be set upon system boot. The 'X' parameter will turn the
time and date display off but keep the clock installed.

TREE [On:][path] [IF] External - 1.x and 2.x
To display all the directory paths found on the disk or under the
specified directory, and to optionally list the files found in each
directory in alphabetical order.

TYPE [On:][path >]fname[.ext] Internal - 1.x and 2.x
To display the contents of an ASCII file. Commonly used to read a
batch file without executing it. Does not disturb the contents of
memory like COpy to E:.

UNERASE [On:][path >][fname[.ext]] External - 1.x and 2.x
To restore a file that has been erased.

VERIFY ON or VERIFY OFF Internal - 2.x
This command changes the write mode to write with verify or write
without verify.

130

Appendix B - Command Summary

XDIV Internal- 2.x
The XDIV command is used with CP version 2.x to disable batch
processing and the PRINT command (redirection of I/O). This may
be necessary in order to run certain programs. If using CP version
1.x see DIS_BAT.

XINIT External-1.x and 2.x
This is the command to initialize (format) a SpartaDOS 2.x diskette.

131

Appendix A - Errors

132

Appendix C - Table of All SpartaDOS Command Processor Commands

APPENDIX C-Table of all SpartaDOS
Command Processor Commands

Works Command Function
Internal Internal with a External May use locates remains Initial

Command Command Command 0052 Sparta005 RUNto itself resident Load
Name in V1.x inV2.x disk Command re-enter atMEMLO atMEMLO Address

?DIR NO YES NO NO - - - -

AINIT NO YES - NO - - - -
APPEND YES YES YES NO - - - -
AT_RS232 NO NO - YES NO YES YES $5000
BASIC NO YES - NO - - - -

BDOT NO YES NO NO - - - -
BUFS YES NO - NO - - - -
CAR YES YES - NO - - - -
CHKDSK NO YES YES NO - - - -
CHTD NO NO NO YES NO NO NO $5000
CHVOL NO NO NO YES NO NO NO $5000
COPY YES YES YES NO - - - -
CREDIR YES YES NO NO - - - -
CWD YES YES NO NO - - - -
DELDIR YES YES NO NO - - - -

DIR YES YES YES NO - - - -
DIRS NO YES YES NO - - - -
DIS_BAT NO NO - YES YES NO NO $5000
DUMP NO NO (1) YES NO NO NO $5000
DUPDSK NO NO NO YES YES YES NO $5000

ERASE YES YES YES NO - - - -
FORMAT NO NO - YES YES NO NO $6000
INIT NO NO - YES YES NO NO $6000
KEY NO NO - YES NO YES YES $5000
LOAD YES YES YES NO - - - -

LOCK NO YES NO NO - - - -
MDUMP NO NO - YES NO NO NO $5000
MEM NO YES - NO - - - -
MEMLO NO NO - YES YES NO NO $5000
MENU NO NO YES YES NO YES (2) $5000

OFF_LOAD NO NO (3) YES NO YES NO $8400
PAUSE NO YES - YES YES NO NO $5000
PORT NO NO - YES NO NO NO $5000
PRINT YES YES YES NO - - - -
PROTECT NO YES YES NO - - - -

133

Appendix C - Table of All Sparta DOS Command Processor Commands

Table of all SpartaDOS Command Processor Commands
(continued)

Works Command Function
Internal Internal witha External May use locates remains Initial

Command Command Command DDS2 SpartaDDS RUNto itself resident Load
Name inVl.x inV2.x disk Command re·enter atMEMLD atMEMLD Address

PUTRUN NO NO YES YES NO NO NO $5000
R0130 NO NO - YES NO YES YES $3COO
ROAXLON NO NO - YES NO YES YES $3COO
ROBASIC NO NO - YES NO YES YES $5000
RENAME YES YES YES NO - - - -

RPM NO NO - YES NO NO NO $5000
RS232 NO NO - YES NO YES YES $5000
RUN YES YES - NO - - - -
SAVE YES YES YES NO - - - -
SET NO NO - YES YES NO NO $5000
SPCOPY NO NO YES YES YES NO NO $3000
TO NO NO - YES NO YES YES $5000
TIME NO NO - YES NO YES YES $5000
TREE NO NO NO YES NO NO NO $5000
TSET NO NO - YES YES NO NO $5000
TYPE YES YES YES NO - - - -
UNERASE NO NO NO YES NO NO NO $5000
UNLOCK NO YES NO NO - - - -
UNPROTECT NO YES YES NO - - - -
VERIFY NO YES - NO - - - -
XCOPY NO NO (4) YES YES YES NO $5000
XDiV NO YES - NO - - - -
XINIT NO NO - YES YES NO NO $4180
XKEY NO NO - YES NO YES YES $5000
XTO NO NO - YES NO YES YES $5000

1) Cannot use a start offset when dumping a file from an Atari DOS 2 type disk.
2) Remains resident when using the [RJ parameter.
3) Cannot use N or Q options with Atari DOS 2 type disk.
4) Only with version 2.x SpartaDOS in system.

134

Appendix D - How to Access the Real Time Clock

APPENDIX D - HOW TO ACCESS THE REAL TIME CLOCK

SpartaDOS keeps the internal time/date clock running and stores the
values in memory. These can be used in your applications programs
whenever access to time or date is desired. The values are stored in
COMTAB+13 to COMTAB+18. The pOinter to COMTAB is stored at
DOSVEC (locations 10 and 11).

COMTAB+ 13 = location of day
COMTAB+ 14 = location of month
COMTAB + 15 = location of year
COMTAB+ 16 = location of hours (24 hour format)
COMTAB+17 = location of minutes
COMTAB+ 18 = location of seconds

The BASIC program below will display these values. It was written as a
plain and simple example for those starting out in BASIC or new to
programming the Atari. To read the time/date values use PEEK and to
change the values use POKE.

10 CMTAB=PEEK(1O)+PEEK(11)*256
20 FOR T=13 TO 18
30? PEEK(CMTAB+T)
40 NEXT T

Note: A special SpartaDOS handler is used with the TD, XTD, and TSET
commands to access our optional R-TIME 8 Clock/Calendar Cartridge.
This automatically updates the internal real time clock used by DOS.
Since the cartridge is very difficult to read directly, we recommend you
read it with the proper handler installed through the DOS locations as
shown in the above example.

135

Appendix D - How to Access the Real Time Clock

136

Appendix E - Atari DOS 2 vs. SpartaDOS

APPENDIX E - ATARI DOS 2 VS SPARTADOS

Atari DOS 2 Menu and SpartaDOS Equivalents

ATARI DOS 2.0S
A. DISK DIRECTORY
B. RUN CARTRIDGE
C. COPY FILE
D. DELETE FILE
E. RENAME FILE
F. LOCK FILE
G. UNLOCK FILE
H. WRITE DOS FILES

I. FORMAT DISK
J. DUPLICATE DISK
K. BINARY SAVE
L. BINARY LOAD
M. RUN AT ADDRESS
N. CREATE MEM.SAV

O. DUPLICATE FILE

SpartaDOS Semi Equivalent
DIR
CAR
COPY
ERASE
RENAME
PROTECT(SEE UNERASE)
UNPROTECT
(SEE FORMATIINIT/XINIT)

FORMAT/XINITIINIT/AINIT
DUPDSK
SAVE/APPEND
LOAD/OFF _LOAD/fname
RUN
(NOT NEEDED WITH
RESIDENT DOS)
SPCOPY/XCOPY

SpartaDOS Commands With no Atari DOS 2 Equivalent

?DIR AT_RS232 BASIC Batch Files BOOT
BUFS CHKDSK CHTD CHVOL CREDIR
CWD DELDIR DIS_BAT DUMP FORMAT
INIT KEY LOCK MDUMP MEM
MEMLO OFF _LOAD PAUSE PORT PRINT
PUTRUN RD130 RDAXLON RDBASIC RPM
SET SPCOPY TD TIME TREE
TSET TYPE UNERASE UNLOCK VERIFY
XCOPY XDIV XINIT XKEY XTD

A Few Other Major Advantages
SpartaDOS supports a" densities and possible configurations for the
Atari Computer line. There is no need to configure your drive for a
particular density as it automatically checks format when reading.

Time and date stamping is available for a" files including support of our
hardware real time clock (R-Time 8).

137

Appendix E - Atari DOS 2 vs. SpartaDOS

UltraSpeed I/O is supported with appropriate drive hardware.

RS-232 Handlers are included for communications using the Atari 850
interface or the ATR8000 Computer interface.

The SPCOPY command allows file transfer in batches from any density
to any density using one or two drives and automatically translates in
both directions to or from SpartaDOS. SpartaDOS version 2.x even
includes the full Atari DOS 2 handler with several added features.

SpartaDOS has full subdirectory support.

... and much much more!

138

Appendix F - US Doubler Installation

APPENDIX F - US DOUBLER INSTALLATION

Brief Overview
The US Doubler consists of two plug in modules which are to be installed
in your Atari 1050 disk drive. One of these is a 24 pin chip (U10) and the
other is a hybrid 24 pin module (U8). These are to be installed into the
corresponding sockets on the 1050's Printed Circuit Board (PCB). Atari is
currently selling 1050s with two different types of U10 chips. The
replacement U10 supplied by lCD, is the most common type found. If it is
the wrong type for your drive, you can either move two jumpers (which
requires soldering), or send us your ICD - U10 for an exchange with the
other type.

Before Installing
Be sure to fill out your warranty card and mail it in. This is the only way
we will be able to notify you of changes and updates, and the only way
you will be eligible for upgrades. Please, take the time to fill in your Atari
dealer's name and address, so we can make him aware of our products
for the Atari.

If after reading these instructions you feel this installation is not for you,
then talk to your local dealer or service center about it, or send us the
drive. ICD will install this product for $15.00 including UPS ground
shipping one way. This low price is good only before you attempt to install
the US Doubler. For later services see our prices at the end of this
appendix. For installation by lCD, send and mark the box to:

lCD, Inc.
1220 Rock Street
Rockford, IL 61101-1437

Attn: 1050 Install

Please include a check for $15.00, the complete drive less cable and
power supply, and the ICD product. Our turnaround is generally 48
hours.

Do You Still want to install it?

139

Appendix F - US Doubler Installation

Tools needed
#2 Phillips head screwdriver
#1 Phillips head screwdriver (for some drives made in Hong Kong)
Medium or small flat blade screwdriver
A permanent ink marking pen for marking connectors during
disassembly
An empty dish for holding parts
A clean well lighted work surface
Small needlenose pliers
20-35 watt small tipped soldering iron (optional)

Let's Get Started!

Cover removal
Turn the 1050 on its back and remove the 6 phillips head screws. (4 are
recessed and 2 are on the front bezel.) Place the screws into your parts
dish.

Carefully turn the drive back onto its feet and set it down. Lift the rear of
the top cover about 1/2 inch then slide it towards the front and lift the
cover and bezel off as one piece. Set these aside.

Things to look for
Notice how the drive assembly sits in the case and note the four black
rubber washers under the drive frame. These usually fall out when
removing the drive. (Some Hong Kong drives have these glued down.)
There are also four steel pins at the center of these washers which fall
out during disassembly of the early 1050 drives (they are glued in on the
later drives). Notice the wires which connect the drive to its PCB towards
the rear. These should all be marked with J14, J10, etc. on the
connectors. The markings correspond with markings on the PCB but
they don't always indicate the proper polarity. Take your marker and draw
a line across the inside of each connector. We will then know when we
plug them back in that the side with the black line goes towards center.
Do the same on all other connectors (there is one under the front of the
drive frame). We are now ready for the heavy work.

Important: Some Hong Kong drives have connectors with no markings
and color coded wires. If this is your situation you willi need to make a
chart indicating the color pattern for each connector before you unplug
them.

140

Appendix F - US Doubler Installation

Here Goes Nothing ...

Remove the drive (optional)
Actually, it is not always necessary to unplug the wires from the PCB. You
can leave the drive plugged to the board as long as you are very careful
with the wires. They are small and will break if too much stress is applied.
If you choose to leave the drive plugged in (we usually do), then proceed
to remove the PCB, otherwise, read on.

Carefully unplug all seven connectors while noting their positioning.
Don't pull on the wires; Do pull on the plastic connectors. A small
needlenose pliers can make this easier for tight fitting connectors. After
removing the wires, lift the drive frame up and out of the case and set it
aside. Put the four rubber spacers and the four steel pins (if they're
loose) in your parts dish.

At last the PCB!

Remove the Printed Circuit Board (PCB)
You are now looking at the PCB. The Chips (ICs) to be replaced are
under that large tin cover (shield) which is fastened on the foil side (the
bottom side) of the PCB with twisted metal tabs. This shield was
designed to reduce RFI (interference with TVs, radios, etc.) The PCB is
held down to the case with either, four plastic tabs, or two plastic tabs, or
three small phillips head screws and three brown insulating washers. If
you have screws holding the board down (most Hong Kong drives do),
remove these first. If you have tabs, I find it easiest to lift the front of the
PCB while bending the tabs with my other hand. The PCB needs to go
slightly towards the front then out of the case! Place the PCB with its
component side down on your work area. (If the drive is still attached to
the PCB you begin your balancing act.)

Remove the metal shield
The bottom shield on the foil side of the PCB is symmetrical but the top
shield has a notched out area in one corner. This notch is for clearance of
the solder connections on components R43 and U14. Straighten the tabs
and remove the two shields. Turn the PCB over, component side up, and
get ready for fun. (If the drive is attached you are lifting it off the board
with one hand while working with the other.)

141

Appendix F - US Doubler Installation

Remove the old ICs
The two 24 pin ICs, U8 and U10, must be removed. Use the flat bladed
screwdriver and gently pry the chips out of their sockets and set them
aside. These two will not be used again.

* Check the jumpers *
This is the most important installation step and where most mistakes are
made, so pay attention! JP1 through JP7 are the jumper wires behind
U10 (See diagram). In most installations, only some of the JP Uumper)
numbers will be visible. The other numbers are usually hidden under the
jumpers themselves. These jumpers might be solid pieces of wire
soldered between two pads or a wire with a white ceramic covering
around the center or they might look just like resistors. It does not matter
which type is installed; they all serve the same purpose. The position of
the first four jumpers (JP1-JP4) determines which type of U10 chip you
will need. We're not really sure why Atari used the jumper system when
the 1050 drive was designed. Maybe it was so they could switch chip
types when one became more cost effective. There are many
manufacturers of both types of CHIPs and each works as well as the
other for this application. The only difference is pin configuration, which
is what the jumpers change.

If the replacement U10 has a paper label on it, then JP1 and JP3 should
be open (no connection) and JP2 and JP4 should be closed Uumpered).
If the replacement U10 does not have a paper label then JP2 and JP4
should be open (no connection); JP1 and JP3 should be closed
Uumpered). Every effort has been made by ICD to provide you with the
most common type of U10 chip. Recently (May 1985) we have found that
most drives 'Made in Singapore' need the U10 without the paper label,
and most 'Made in Hong Kong' need the U10 with the label. The U10
which comes with the drive will usually also either have a paper label or
not; this should match the corresponding ICD U10 needed. The only sure
way to tell is to check those jumpers!

If your replacement U10 is of the wrong type, you have two options. 1)
Send us the ICD U10 (in protective packing) along with $1.00 for shipping
and handling and mark on the outside 'Attn: U10'. When we receive this,
we will send the other type of U10 which you can then plug in. 2) Move
the jumpers to the correct locations for the ICD UlO chip in your
posession. Do not attempt this modification unless you feel confiejent
with a soldering iron. The other jumpers JP5 through JP7 should 2<lways
remain unmoved.

142

Appendix F - US Doubler Instal/ation

Plug in the chips
For correct positioning, the notches at the ends of the modules (chips) go
towards the front of the drive. Also, as a general rule, any labels or writing
on your ICD replacement chips will read from the front of the drive to the
rear. Now carefully plug the new U8 (the larger module) into the socket
for U8. Next, carefully plug the new U10 into its socket with the notch
towards the front of the PCB. Make sure all the pins went into the correct
holes in the sockets. Wasn't that easy?

REASSEMBLY

Put the shield back on
If you're unsure of what you are doing then you might want to leave the
metal shield off for testing. If you haven't had any problems following us
so far then it's all down hill from here. Be careful installing the shield and
make sure the notched end of the top piece is over R43 and U14. Also
make sure that no components or wires are pinched between the shield
and the PCB.

Put the PCB back into the case
Place the rear in first, then lower the front of the PCB. The PCB should
easily snap in place under the plastic tabs. (Install the three washers and
screws if your drive had them.)

Reinstall the rubber washers and steel pins (if removed)
Press the four rubber washers with the recessed side down, onto the
plastic posts in the front half of the drive's case. The four steel pins are
either still stuck in the plastic posts or if they were loose, (older drives)
take them from your parts dish and put one into each hole at the center of
the rubber washers.

Reinstall the drive frame
Plug the connector from the drive head onto J6 at the front of the PCB.
Carefully lower the drive frame onto the steel pins noting that the steel
pins fit into holes in the drive frame.

143

Appendix F - US Doubler Installation

Plug in the connectors (if unplugged)
Plug the rest of the connectors onto the corresponding pin locations. Be
sure to note the marking you made on the connectors during
disassembly. (If you did not unplug your drive from the PCB, you can skip
this instruction. That's your reward for being so brave and talented.)

Replace the top cover
To replace the top cover, first line up the bezel over the front of the drive
frame, then lower the cover. If the bezel becomes separated, put the top
cover on first, then hook the top of the bezel under the top cover front
edge, and gently snap it down into place. While holding the case together
turn the disk drive upside down and lay it on its back. Screw the six
phillips screws back into place and presto!

You're Done!

STARTUP AND TESTING

Plug the drive back into your system. If you're going to use UltraSpeed
(US), it is better to make this drive number one, so you can boot up from
this drive. Put a SpartaDOS Master disk into the drive, close the door,
and power up the computer. If you get an error message 'Not an XLIXE
computer' then use the other Master disk. Impressed? The MASTER
SpartaDOS diskettes are single density US format. The first few sectors
are read at normal speed upon boot; the software determines whether
the drive can handle UltraSpeed and then loads the high speed code into
your computer. Even though double density sounds slightly slower than
single density, the double density US format is even faster since it is
working with larger sectors. Refer to the rest of the manual for more
information about operation and formats.

If it doesn't work
Go over the instructions again and check your work. All of our products
are thoroughly tested before shipping for high reliability. There is
probably something you overlooked. If the U8 module is in backwards or
not making a good connection, or if the jumpers are in the wrong
position, the power light will come on but the drive will not spin. You can
use the new U8 with your old U10 but not visa versa. If your drive won't
boot the master DOS disk then try a standard boot disk of known quality.
If you still can't get it to work, send your complete drive along with the
MASTER SpartaDOS disk to us for repair.

144

Appendix F - US Doubler Installation

Our service turn around time is generally 48 hours. If there is a problem
with our parts there will be no charges. If there is a problem with your
installation you will be charged a $25.00 flat rate including shipping. If
there is a problem with the drive itself, our standard service rate is $40.00
plus parts and shipping. In any case we will send the repaired drive back
to you via UPS COD. For repairs, send the drive and mark the box to:

lCD, Inc.
1220 Rock Street
Rockford, IL 61101-1437

Attn: 1050 Service

warranty
Be sure to completely fill out and return your warranty card. This is the
only way you will be eligible for future updates or enhancements. The
warranty is not transferrable and is intended for you as the end user only.

Warning! The warranty will be considered null and void if the copyright
labels are removed from the ICs or if the hybrid module has been
tampered with. We do not support 'pirates' (a nice word for theives
dealing in computer software and hardware; we use other words). We
own the copyrights for all of our products including SpartaDOS. Any
users who are found to be selling or giving away copies of our products,
forfeit all rights to any support or service. Furthermore, we will take legal
action against those users if we feel it neccesary or justified.

SPECIAL CONSIDERATIONS

Format
Though the US Doubler is optimized for operation with SpartaDOS, any
'Atari Compatible' DOS should function with it properly. When changing
from SpartaDOS to another brand of DOS and using the format
command, first turn the drive power off, then back on (cold start) to
reinitialize the internal format settings. Failure to do this could create
format errors with the other DOS.

145

c:
~

~

.i!! C
I)

.s ~

.Q

::3
o
a C

/)
:::> I
I..l..

:g c: Q
)

~

n

~
'
~

co
",8

" '''~ 0;
O

 0 '"
u,

C
"

R

.1

D
e
l

.
"

c:::J
'

•
e
n

~.L.~
Crn " 0

c ..
R

1'
•

O
 D

c
" ."P~'rPIl

CrJi"
'W

l!lO

.
~((J

T
P

I4
C

70

B
 ~

oru~:
~ '''.

,C
1

1

Q
":';'

':;
.. I",

0
[ill] '®90 (P.r~b~

'rn~~o '
<

 .. ~
 .
.
 .,~ ~~r."

I···~···,I
JI

J
ill

H
I

t J
I'

110

:I~
"
u

r--

, c,;"OI
3 u"l

0
0"

~

) 0 c)~~Cll B
O
~

'"
 c
"
~

I
3

U
Il

00 a J i
0· .. :':8.,,~

~
 _

8

D uo I
1'i ~

 'E
 III ~
 DUll 0 nUll OCI

~
U

 0 I
'~U"18oa~

I ':'0
i DR"

_
V

I
C

I0

U

_
J

P
I-

_
c:::J

~

j,AOW
8J IOU 00

• 0
I,

~UI1
[1

-; ~ ~I
o

ll @J~C'~ "a
J" Ll

~

,
Aay J81Q

noo sn
ClO

..

®

-
ll'6

-
'.U

I'03IS
86W

)
"
. -c::J-

I
-

-oI!D
-

H
 "

-c::J-
c:::J

T
P

I. •
U

II
,

I
00 ~T:I

u
n

C

,
'f

Q

I
~

I
"<UII

~IJII,
~::J

-, 0 o· ": ~PI1
\

•
T

P
'

....
e
ll

,o'-c=
J-

t:=
!

I
l'

U

0'1
i

,,,I
~{~:Plig~, ~~ 8

Dcl·O· '·-----.
...

_
C

J

c:::Jc"
tJ ~~P'

0""
C
"
~

~

•
~

:T~.
,TP

7r;1
-cR

J2}
e

1
6

(1,

') 1.'~!6
,'.

'
•

c
::J

l,p,l!J
-P

1
rn

}
": 0

.,,(.j
) t'""I~~~'

f1
coo

~
e
ll

R'"
T

P
t. erP

Il
~

J
U

-

~

~

co
~

,...

Appendix G - US Doubler Interface

APPENDIX G - US DOUBLER INTERFACE

The following is a list of the SIO commands of the US Doubler and their
usage. For more information on how to perform Serial I/O operations you
should consult the Atari OS manual.

Read Sector
Command: R ($52)
AUX 1: Sector number to read (low byte)
AUX 2: Sector number to read (high byte)

Notes: The read (R) command operates exactly like any other Atari
compatible disk drive. The data frame (sector size)
received will depend upon the density/size of the diskette.
The US Doubler automatically adjusts to a new sector size
when a diskette is inserted into the drive. Sectors 1 through
3 will always be 128 bytes long. To determine the size, a
status command must be executed, or (as in SpartaDOS),
the size must be included somewhere within sectors 1
through 3.

Write Sector
Command: Verify: W ($57) - No Verify: P ($50)
AUX 1: Sector number to write (low byte)
AUX 2: Sector number to write (high byte)

Notes:

Status
Command:
AUX 1:
AUX2:

The write (Wand P) commands operate exactly like any
other Atari compatible disk drive. The data frame (sector
size) sent is dependent upon the density/size of the
diskette. The US Doubler automatically adjusts to a new
sector size when a diskette is inserted into the drive.
Sectors 1 through 3 will always be 128 bytes long. To
determine the size, a status command must be executed,
or (as in SpartaDOS), the size must be included
somewhere within sectors 1 through 3.

S ($53)
- not used-
- not used-

147

Appendix G - US Doubler Interface

Notes: The status (S) command returns the status of the last
operation (Controller status), the current operating status,
and the approximate timeout value for a format command.
A data frame of four bytes is returned by this command.
They are as follows:

Byte 0: This is the controller status after the last command. A $FF
indicates a good operation. (This is actually the 1 's
complement of the controller's status register - this is a bug
propagated down from the old 810 drives.) The bits have
the following meaning:

Bit 0: BUSY - Should always be 1 (high).
Bit 1: DRQ - Should always be 1 (high).
Bit 2: LOST DATA - Should always be 1 (high).
Bit 3: CRC ERROR - This indicates that there was

an error in the last sector read if 0 (low). If
combined with Bit 4 being low, the sector
header exists but is unreadable (this means
that the sector may not be written either).

Bit 4: RECORD NOT FOUND - The sector does not
exist if this bit is 0 (low).

Bit 5: RECORD TYPE - If 0 (low), a special write
command was given when the last sector was
written. A normal drive (unmodified) will not
create this type of sector. Note that the data is
correct; it is a method of protection some
publishers use.

Bit 6: WRITE PROTECT - If 0 (low), the diskette was
write protected. This should not happen since a
write is never issued to the controller if
protected. On reads, this bit is always 1.

Bit 7: NOT READY - Indicates that the drive door is
open if low (0).

Byte 1: This byte is the status the CPU generates indicating the
following things:

Bit 0: COMMAND FRAME - A 1 (high) indicates that
the last command frame was in error. NOT
USED BY THE US DOUBLER - always O.

Bit 1: CHECKSUM - A 1 (high) indicates that the last
commandldata frame checksum was in error.
NOT USED BY THE US DOUBLER - always
O.

148

Appendix G - US Doubler Interface

Bit 2: OPERATION - A 1 indicates the last operation
was in error (bad sector, etc.) NOT USED BY
THE US DOUBLER - always O.

Bit 3: WRITE PROTECT - The diskette is
CURRENTLY write protected if this bit is a 1.

Bit 4: MOTOR ON - The diskette is CURRENTLY
spinning if this bit is a 1.

Bit 5: SIZE - The sector size is 256 bytes (in double
density) if this bit is a 1.

Bit 6: - not used -
Bit 7: 1050 DD mode - This bit is 1 if in double

density. but the sectors are 128 bytes long
(,DUAL DENSITY').

Byte 2: This is the timeout value used when formatting by the
computer's SIO routine.

Byte 3: - unused - always zero -

Format Diskette (General Format Command)
Command: ! ($21)
AUX 1: - not used-
AUX 2: - not used -

Notes: This command formats a diskette in either double or single
density. (See the 'N' command for setting density.) A data
frame of 128 bytes (if 128 byte sector format) or of 256
bytes (if 256 byte sector format) is returned. The US
Doubler does not return the bad sector list. The first two
bytes in the data frame will be $FF $FF.

Format Diskette (1050 Dual Density)
Command: . ($22)
AUX 1: - not used-
AUX 2: - not used -

Notes: This command formats a diskette in 1050 'dual' density.
(See the 'N' command for setting density.) A data frame of
128 bytes is returned. The US Doubler does not return the
bad sector list. The first two bytes in the data frame will be
$FF $FF.

149

Appendix G - US Doubler Interface

Custom Format
Command: f ($66)
AUX 1: - not used-
AUX 2: - not used -

Notes: This command formats a diskette in single, double, 'dual'
density modes and allows the user to specify the sector
ordering. The computer sends a data frame of 128 bytes to
the disk drive. The first 12 bytes are the configuration bytes
(as described under the '0' command - set drive
configuration), and the next 18 or 26 bytes are the sector
numbers in order. The standard sequences are as follows:

single density: 17,15,13,11,9,7,5,3,1,18,16,14,12,
10,8,6,4,2.

double density: 18,17,16,15,14,13,12,11,10,9,8,7,6,
5,4,3,2,1.

dual density: 1,3,5,7,9,11,13,15,17,19,21,23,25,
2,4,6,8,10,12,14,16,18,20,22,24,
26.

The standard UltraSpeed sector skews are as follows:

single density: 4,8,12.16,1,5,9,13,17,2,6,10,14,18,
3,7,11,15.

double density: 1, 14,9, 4, 17, 12, 7, 2, 15, 10,5, 18, 13,8,
3, 16, 11,6

dual density: 4, 8, 12, 16, 20,24, 1, 5, 9, 13, 17, 21,25,
2,6,10,14,18,22,26, 3, ~ 11, 15, 19,23.

Return Configuration
Command: N ($4E)
AUX 1: - not used-
AUX 2: - not used -

Notes: This command returns a 12 byte configuration table. This
indicates the configuration the drive will format in next time
a 'I' format command is given. Refer to the '0' (set drive
configuration) command for definition of the 12 byte table.

150

Appendix G - US Doubler Interface

Set Drive Configuration
Command: 0 ($4F)
AUX 1: - not used-
AUX 2: - not used -

Notes: This command sets the configuration for the next format
command ('!' command only). The computer sends the
disk drive a 12 byte data frame which consists of the
following (numbers are offsets within the data frame):

+ 0 Number of tracks (not used) - returns a 40
+ 1 Step rate (not used) - returns a 1
+2 Sectors/track high byte (not used) - returns a 0
+3 Sectors/track low byte - returns an 18 or 26
+4 Max head number (not used) - returns a 0
+5 Density - 0 if single, 4 if double density
+6 Bytes/sector high byte - 1 if 256, 0 if 128
+ 7 Bytes/sector low byte - 0 if 256, 128 if 128
+8 Drive present flag (not used) - returns 255
+9 - not used - returns a 0
+ 10 - not used - returns a 0
+ 11 - not used - returns a 0

Return High Speed Index
Command: ? ($3F)
AUX 1: - not used-
AUX 2: - not used -

Notes: This command returns a 1 byte speed index. This is the
value which is used in the frequency register controlling
the high speed Sio. The US Doubler currently returns a 10.

151

Appendix G - US Doubler Interface

152

Appendix H - Diskettes

APPENDIX H - DISKETTES

Construction
The Atari disk drive uses 5114 inch floppy diskettes. These are made of
mylar with a magnetic coating and a dry surface lubricant much like
recording tape. A semi protective lined jacket covers the diskette. Data is
recorded in a digital format of Os and 1s. Generally if a floppy disk loses
just one of these bits your whole program is destroyed!

Storage and Handling
The general handling rules for diskettes are:

1. Never touch the actual recording surface of the disk. This is the
shiny part on each side through an elongated hole.

2. Do not bend the diskette.

3. Keep diskettes in their protective jackets when not in use.

4. Do not expose them to extreme temperatures. If this happens let
the disks sit at room temperature for at least 1 hour before use.

5. Keep the diskettes away from magnets or magnetic fields. This
includes TV sets, motors, transformers and power supplies, etc.

Quality (TPI and Density)
Diskettes are rated by the guaranteed quality of the recording surface.
Sometimes this is given in TPI or tracks per inch. A disk rated at 96 TPI
and will have fewer errors than a 48 TPI disk. A disk rated for single
density will probably have more errors than one rated for double density.
The higher quality disks will probably last longer and create less wear on
your disk drive head since they use better lubricants. Single sided disks
will work with double sided drives but they are not guaranteed like the
double sided variety.

Format Structure
Format on a single sided single density (SSSD) Atari drive consists of 40
tracks of 18 sectors each. Each sector holds 128 bytes but other DOS's
use 3 of these bytes for mapping. Some of these sectors are also
reserved for file management. SpartaDOS gives you 713 sectors of 128
bytes each for your use compared to 707 sectors of 125 bytes with Atari
DOS 2.0. The raw SSSD format yields 92160 bytes per disk (90 KB).

153

Appendix H - Diskettes

1050 'Double Density' (1050DD) consists of 40 tracks of 28 sectors each.
Each sector also has 128 bytes but is shorter in physical length. The raw
1050DD format yields 143360 bytes per disk (140 KB).

True Double Density' (SSDD) uses 40 tracks of 18 sectors each but each
sector stores 256 bytes. 184320 bytes (180 KB) is the total yield for a raw
SSDD format.

Write Protect
There is a squared off notch on the upper right side of each diskette. This
is the write protect notch. If this is covered with a protective tab, your
drive will not be able to write to that diskette.

Note: The above holds true for 5 1/4 diskettes only. 8 inch disks are the
opposite - cover the notch to write and uncover it to protect your data.

On Using Both Sides of the Diskette
A common practice seen mostly with home computers, is to cut a notch
on the side of the diskette opposite the write protect notch, which can be
done easily with a 1/4 inch paper punch. This allows the user to then flip
the disk over and use the back side for storage which effectively doubles
the amount of data that a single sided diskette can hold. This practice
works with most Atari compatible drives but can lead to eventual diskette
damage.

The problem begins when the disk is flipped to Side B; the drive spins
the disk the opposite direction it was turning while on Side A. Before
flipping, the felt fibers inside the jacket were always wiping one way
keeping the disk surface clean and lubricated. Dirt accumulated on the
bottom of the jacket as the fibers continuously cleaned the disk surface.
When the disk is flipped to side B, the fibers bend the other direction and
dump much of the dirt onto the top side of the spinning disk. The process
is repeated when the disk is flipped back to side A.

We hope this will help you to understand the problems associated with
using both sides of the disk. We don't discourage the practice because it
has its uses, such as media distribution or for disks that are not used very
often. However, we strongly recommend you only. use the front side of a
disk if you are using the diskette daily or when storing irreplaceable data!

154

------ ---------

Appendix I - Glossary

APPENDIX 1- GLOSSARY

The following is a list of terms and definitions which may appear
throughout this or other computer manuals.

ADDRESS

APPEND

ASCII

ATASCII

BANK

BATCH

BAUD RATE

BINARY

BIT

BOOTUP

a location in memory with the Atari from 0 to $FFFF

to add on to. To append two files is to add one file
onto the end of the other.

the American Standard Code for Information
Interchange which uses seven bits to define a one
byte code from 0 to 127 decimal (0 - $7F). This
standard was originated for early teletype machines
and data communications.

a superset version of ASCII used only with the Atari
computer. ATASCII defines a one byte (eight bit)
code from 0 to 255 decimal (0 - $FF) and therefor
can represent all possible codes on the Atari.

a predetermined size block of memory. Bank
selecting refers to the practice of swapping different
banks of memory in the same address space.

a batch file is a file containing a group of commands
to be executed consecutively.

the unit of speed for data transmission which is
equal to the number of code elements per second.
In practice it is often used interchangeably with 'bits
per second'.

the BASE 2 numbering system; only containing 2
numbers, either 1 or O. For ease of use Binary
numbers are usually represented in HEX notation. A
Binary file is one which is directly readable by the
computer without going through an interpreter.

a binary digit - either a 0 or 1

refers to system initialization which sets up the
computer when powering up. Also called BOOT.

155

BUFFER

BYTE

CIO

COLD START

COMMAND

CP

CPU

CRC

CURSOR

DATA

DEBUG

Appendix I - Glossary

any block of memory specifically set aside for use as
temporary storage.

the amount of information a computer can process
in one cycle - the Atari byte • = 8 bits. The byte
represents a number from 0 to 255 (0 to $FF HEX).

Centrallnput/Output. One part of the operating
system that handles 1/0.

to start up the computer as if just powered up.

communication given from the human to the
computer directing it to perform an action.

Command Processor. The software interface
between the keyboard handler and the DOS which
allows the user to communicate with the DOS when
entering a command line. When the command is
entered, the CP will translate the command into
information the DOS can understand and react upon
accordingly.

Central Processing Unit. The intelligence of a
computer system. The 6502 is the type of CPU used
with 8 bit Atari computers.

Cyclic Redundancy Check. A method of data
transfer error detection. As data bits are being
transferred, they are manipulated mathematically to
yield a highly sensitive error detection code that is
appended to the data.

the pointer on the screen that marks where the next
keystroke will appear or where the next action will
take affect.

information generally used or operated on by a
program.

to isolate and eliminate errors from a program.

156

DECIMAL

DEFAULT

DENSITY

DEVICE

DIRECTORY

DOS

DMA

DRIVER

FILE

FILESPEC

Appendix I - Glossary

the BASE 10 numbering system; not very useful to
computers unless translated to HEX or BINARY, but
easy for humans to understand - uses the digits 0-9.

the standard condition or value that exists upon
running a program.

generally the number of bytes per sector is the disk
density; single density being 128 bytes, double
density being 256 bytes per sector. Actually density
specifies the number of bytes per track on a disk.

the Atari defined devices are On:, E:, S:, R:, P:, C: ;
referring to Disk drive (n=drive number), Editor
portion of the screen display, the Screen, the RS232
device for communications, the Printer, and the
Cassette storage device.

the list of all files stored in a given area of the
diskette.

Disk Operating System; this is the program which
manages the 110 to and from the computer.

Direct Memory Access. DMA controls information
flow directly into or out of memory without the
intervention of the CPU. This causes data transfers
to take place at a much greater speed than is
possible with the CPU handling each byte of data.

same as HANDLER; a program written to
specifically handle one particular device or
operation.

a collection of information usually stored as a named
unit on a diskette.

FILE SPECification. The information required in a
command line to properly identify a particular file or
group of files.

157

FORMAT

HANDLER

HARDCOPY

HARDWARE

HEADER

HEX

I/O

ICD

10CB

K

KLUDGE

Appendix I - Glossary

the guidelines for the way in which the magnetic
structure of the disk is written; standard Atari format
is 40 tracks (complete circles around the disk) with
18 sectors per track (18 blocks of 128 bytes spaced
around each track like pie pieces).

a program written to handle a device.

printed on paper.

the computer, peripherals and their circuitry are
hardware. The programming and documentation are
generally called software.

the first few bytes of a program which tell it where it
should be located, what type of program it is and
how it should be used.

the BASE 16 numbering system; there are sixteen
unique single digits used for counting O-F. A HEX
number is usually proceeded by '$'.

Input/Output; this is what ties a computer to the
outside world. This includes all devices (D:, E:, R:,
P:, etc.) and peripherals.

Innovative Computer Design; the company which
wrote and designed SpartaDOS, the US Doubler, the
R-Time 8, and other fine products for the Atari
Computer.

Input/Output Control Block. A 16 byte block of
reserved memory which acts as a parameter passing
window for I/O functions. There are 8 10CBs
numbered 0 - 7 although 0 is generally reserved for
the screen editor (E:). One 10CB is needed for each
OPEN device/file.

in the computer world, one K or kilo is equal to two to
the tenth power or 1024.

a 'Rube Goldberg' of software. A very complicated
and confusing way of dOing something relatively
simple.

158

Appendix I - Glossary

LANGUAGE a program which makes it easier or faster in one way
or another for humans to program a computer.
BASIC, LOGO, PASCAL, Assembler are all
languages for the Atari.

MACHINE CODE the lowest level programming language but also the
fastest running.

MODEM MOdulatorlDEModulator. A device which converts
data from a form which is compatible with computers
(bytes) to a form which is compatible with telephone
systems (frequencies), and vice-versa.

NESTED

PATH

PARALLEL

PERIPHERAL

PORT

PROGRAM

PROMPT

RAM

fitted within similar things.

the trail or course taken from one place to another;
when using subdirectories a path specifies the trail
from where you are to where you want to go or
retrieve a file from.

the transfer, processing, or manipulation of all the
bits in a byte simultaneously by using separate lines
for each bit. Usually faster than serial which handles
one bit at a time (sequentially) using a single line.

an external device connected to your computer like a
disk drive, printer, modem, etc.

a place of access to a system i.e. the serial
communications port or the parallel joystick ports.

a set of instructions to tell the computer how to
accomplish some certain task. These instructions
must conform to a particular order and the
conventions of the language used.

a signal to the user that some action may be
needed.

Random Access Memory. The computer can read
and write to this but it is lost when power goes down.

159
J

REAL TIME

RELOCATABLE

ROM

RS-232

SECTOR

SERIAL

SOFTWARE

SPARTA

SYNTAX

TPI

TRACK

TRUNCATED

Appendix 1- Glossary

relating to 'real time' as on the standard clock; a real
time program uses a clock.

a program that can be moved to different areas in
memory and still function properly. Most SpartaDOS
handlers are self-relocating. This means that when
they are installed, they automatically relocate to
MEMLO and then move MEMLO just above their
code.

Read Only Memory. Permanent memory that can
only be read.

a communications interface standard designated by
the Electronic Industries Association (EIA).

the standard block of storage used on floppy diskette
media; can be 128 or 256 bytes with the Atari
formats.

data transfer occurring on one signal line. The data
bits are sent down the line sequentially.

the programming, documentation, and specified
sequences of operation that allow a computer to
function. Generally software refers to a program
where hardware refers to circuitry.

a powerful city in ancient Greece; POWER!

the organization or arrangement of elements as
parts of a command line.

Tracks Per Inch. This indicates how densely data can
be packed on a diskette. TPI tells how many tracks
cross a one inch segment of the radius of the
diskette.

a magnetic circle on the disk which contains the
pattern of sectors. There are 40 tracks on a standard
Atari formatted disk.

cut short.

160

- ---------------- ------------------------,

VARIABLE

WARM START

WILDCARD

WORD

XIO

Appendix I - Glossary

something that changes or has no fixed value.

a SYSTEM RESET without wiping out memory as in
cold start.

used when specifying filenames or pathnames to
ease operator entry or select a certain range of
names. * and? are the two valid wild cards.

an ordered set of characters which occupy one
memory location. Generally an 8 bit computer word
is 8 bits (1 byte), a 16 bit machine has a 16 bit word.

a general Input Output statement used in a program
for Disk 1/0 and in Graphics work.

161

IMPORTANT WARRANTY INFORMATION

LIMITED 30 DAY WARRANTY

lCD, INC. warrants to the original consumer purchaser that this lCD, Inc. Personal
Computer Product (not including computer programs) shall be free from any defects in
material or workmanship for a period of 30 days from the date of purchase. If any such
defect is discovered within the warranty period, lCD, Inc.'s sole obligation will be to repair
or replace,at its election, the Computer Product free of charge on receipt of the unit
(charges prepaid, if mailed or shipped) with proof of date of purchase satisfactory
to lCD, Inc.

Write to: lCD, Inc.
1220 Rock Street, Suite 310

Rockford, IL 61101-1437
Attn: Service Dept.

YOU MUST RETURN DEFECTIVE COMPUTER PRODUCT FOR IN-WARRANTY REPAIR.

This warranty shall not apply if the Computer Product: (i) has been misused or shows signs
of excessive wear, (ii) has been damaged by improper installation, or (iii) has been
damaged by being serviced or modified.

ANY APPLICABLE IMPLIED WARRANTIES, INCLUDING WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE HEREBY
LIMITED TO THIRTY DAYS FROM THE DATE OF PURCHASE. CONSEQUENTIAL OR
INCIDENTAL DAMAGES RESULTING FROM A BREACH OF ANY APPLICABLE
EXPRESS OR IMPLIED WARRANTIES ARE HEREBY EXCLUDED. Some states do not
allow limitations on how long an implied warranty lasts or do not allow the exclusion or
limitation of incidental or consequential damages, so the above limitations or exclusions
may not apply to you.

This warranty gives you specific legal rights and you may also have other rights which vary
from state to state.

DISCLAIMER OF WARRANTY ON lCD, INC. COMPUTER PROGRAMS: All lCD, INC.
computer programs are distributed on an "as is" basis without warranty of any kind. The
entire risk as to the quality and performance of such programs is with the purchase. Should
the programs prove defective following their purchase, the purchaser and not the
manufacturer, distributor, or retailer assumes the entire cost of all necessary servicing or
repair.

lCD, Inc. shall have no liability or responsibility to a purchaser, customer, or any other
person or entity with respect to any liability, loss, or damage caused directly or indirectly by
computer programs sold by lCD, Inc. This disclaimer includes but is not limited to any
interruption of service, loss of business or anticipatory profits or consequential damages
resulting from the use or operation of such computer programs.

REPAIR SERVICE: If your lCD, Inc. Personal Computer Product requires repair other than
under warranty, please write to lCD, Inc., Service Department for repair information.

IMPORTANT: If you ship your lCD, Inc. Personal Computer Product, package it securely
and ship it, charges prepaid and insured, by parcel post or United Parcel Service.

--

WARRANTY IUPDATE
REGISTRATION CARD

Please take the time to complete this card and return it
to us to allow us to provide you with more efficient service,
including updates, should your lCD, Inc. product require it.

(Please print)

Name __ __

Address __ __

City ___________________ State __________________ _

Country ____________________ ,ZIP __________________ __

Phone"",(---=--,-<-____ Item purchased_ =U=S --=DO=-=-U::...;B=-L_E_R_
(Area Code) 0 · '1'" "11 •. •

Date of Purchase _________ Serial Number ________ v __ ~ __ ,_.,_.i_'-_._

Where Purchased ____________________________________ _

What other products would you like to see us develop? ____________ _

Does you r local Atari dealer carry our product line? 0 Yes 0 No

Your Atari dealer's name, address ________________________ _

lC
D

, I
nc

.
12

20
 R

o
ck

 S
tr

e
e

t,
 S

ui
te

 3
10

R

o
ck

fo
rd

, I
lli

n
o

is
 6

11
01

-1
43

7

P
L

A
C

E

S
T

A
M

P

H
E

R
E

,
i

': .~ " -t., f • . . .

lCD, lilt: 1220 Rock Streflt. Suite 310, Rockford, Il61101-1437 8151229·2999

