BAR[400/800"

ATARI HOME COMPUTER SYSTEM

TECHNICAL
REFERENCE NOTES

includes:

Operating System User’s Manual
Operating System Source Listing
and

Hardware Manual

TO ALL PERSONS RECEIVING THIS DOCUMENT

Reproduction is forbidden without the specific written permission of
ATARI, INC. Sunnyvale, CA 94086. No right to reproduce this document,
nor the subject matter thereof, is granted unless by written agreement with,
or written permission from the Corporation.

N\

® 5
AR o

AAR["400/800"

ATARI HOME COMPUTER SYSTEM

OPERATING SYSTEM
USER’S MANUAL

COPYRIGHT 1982, ATARI, INC.
ALL RIGHTS RESERVED

TO ALL PERSONS RECEIVING THIS DOCUMENT

Reproduction is forbidden without the specific written permission of
ATARI, INC. Sunnyvale, CA 94086. No right to reproduce this document,
nor the subject matter thereof, is granted unless by written agreement with,
or written permission from the Corporation.

Every effort has been made to ensure that this manual accurately
documents this product of the ATARI Home Computer Division.
However, due to the ongoing improvement and update of the computer
software and hardware, ATARI, INC. cannot guarantee the accuracy
of printed material after the date of publication and disclaims
liability for changes, errors, or omissions.

ATARI Home Computer
Operating System USER 'S MANUAL

PREFACE

1 INTRODUCTION

GENERAL DESCRIPTION
OF THE ATARI COMPUTER SYSTEM

Conventions Used in This Manval

HEXADEC IMAL NUMBERS

MEMORY ADDRESSES

KILOBYTES OF MEMORY

PASCAL AS AN ALGORITHM-SPECIFICATION LANGUAGE
MEMORY LAYOUTS

BACKUS—-NAUR FORM (BNF)

O0S-EQUATE FILENAMES

17

i8

i8

20

20
20
20
20
20
21
21

OPERATING SYSTEM FUNCTIONAL ORGANIZATION

Input/Output Subsystem
Interrupt Processing
Initialization

Power-Up
System Reset

Floating Point Arithmetic Package

CONF IGURATIONS
Program Environments

Blackboard Mode
Cartridge
Diskette—Boot
Cassette—Boot

RAM Expansion
Peripheral Devices

Game Controllers
Program Recorder
Serial Bus Devices

SYSTEM MEMORY UTILIZATION
RAM Region

Page ©

Page 1

0S Data Base

User Workspace

Boot Region

Screen Display List and Data
Free Memory Region

22

22
22
22

22
23

24

25

25

25
26
26
26

27
27

27
27
28

29

29

30
30
30
31
31
31
31

Cartridges A and B

Mapped

1/0

Resident OS and Floating Point Package ROM
Central Data Base Description

Memory

Dynamics

System Initialization Process
Changing Screen Modes

I/0 SUBSYSTEM

Central I/0 Utility

CIO

CIo

Design Philosophy

DEVICE INDEPENDENCE

DATA ACCESS METHODS

MULTIPLE DEVICE/FILE CONCURRENCY
UNIFIED ERROR HANDLING

DEVICE EXPANSION

CALLING MECHANISM

HANDLER ID -- ICHID [03401
DEVICE NUMBER -- ICDNO [03411
COMMAND BYTE -- ICCMD [03421
STATUS —- ICSTA [03431]
BUFFER ADDRESS

ICBALLO3441 AND ICBAH [03451
PUT ADDRESS -——

ICPTL C£03461 AND ICPTH [03471
BUFFER LENGTH/BYTE COUNT -—-

ICBLL £03481 and ICBLH [034%]
AUXILIARY INFORMATION -—-—

ICAX1 E£0O34A1 and ICAX2 [034B1
REMAINING BYTES (ICAX3-ICAX&)

31
32
32
32
32

33

33

34

36
37

37
37
38
38
38

38
39
39
40
40
40
40
40

40
41

CIO Functions

OPEN -- Assign Device/Filename to IOCB
and Ready for Access

CLOSE -~ Terminate Access to Device/File
and Release IOCB

GET CHARACTERS -- Read n Characters
(Byte—Aligned Access)

PUT CHARACTERS —-—- Write n Characters
(Byte—Aligned Access)

GET RECORD -- Read Up To n Characters
(Record—Aligned Access)

PUT RECORD -- Write Up To n Characters
(Record—-Aligned Access)

GET STATUS -- Return Device-Dependent
Status Bytes

SPECIAL -- Special Function

Device/Filename Specification
I1/0 Example

Device Specific Information
Keyboard Handler

CIO Function Descriptions
Theory of Operation
Display Handler (S:)
Screen Modes
TEXT MODE ©
TEXT MODES 1 AND 2
GRAPHICS MODES (Modes 3 Through 11}
SPLIT-SCREEN CONFIGURATIONS
CIO Function Descriptions
User—Alterable Data Base Variables
Theory of Operation
Screen Editor (E:)
CIO Function Descriptions
User—Alterable Data Base Variables
Cassette Handler (C:)

CI0 Function Descriptions

Theory of Operation
File Structure

41

41

42

43

43

44

44

45
45

44
47

50
50

51
51
54
54
54
55
56
56
57
61
62
b6
&7
70
72
72

74
75

Printer Handler (P:) 76

CIO Function Descriptions 74

Theory of Operation 78

Disk File Manager (D:) 78

CIO Function Descriptions 79
Device/Filename Specification 81

Filename Wildcarding 82

Special CI0O functions 84

Theory of Operation 87

FMS Diskette Utilization 89

FMS BOOT RECORD FORMAT 0

BOOT PROCESS MEMORY MAP 92

VOLUME TABLE OF CONTENTS 93

FILE DIRECTORY FORMAT 4

FMS FILE SECTOR FORMAT ?5

Non—-CIO I/0 6
Resident Device Handler Vectors 26
Resident Diskette Handler 7

Diskette Handler Commands 99

Sevrial Bus I/0 101
INTERRUPT PROCESSING 102
Chip—Reset 103
Nonmaskable Interrupts 103
Stage 1 VBLANK Process 104
Stage 2 VBLANK Process 105
Maskable Interrupts 107
Interrupt Initialization 108
System Timers 109
Usage Notes 109
POKEY Interrupt Mask 110
Setting Interrupt and Timer Vectors 110

Stack Content at Interrupt Vector Points 111
Miscellaneous Considerations 112

Flowcharts 113

7 SYSTEM INITIALIZATION

Power—-Up Initialization (Coldstart) Procedure
System Reset Initialization {Warmstart) Procedure

8 FLOATING POINT ARITHMETIC PACKAGE
Functions/Calling Sequences

ASCII to Floating Point Conversion (AFP}
Floating Point to ASCII Conversion (FASC)
Integer to Floating Point Conversion (IFP}
Floating Point to Integer Conversion (FPI}
Floating Point Addition (FADD)
Floating Point Subtraction (FSUB)
Floating Point Multiplication (FMUL)
Floating Point Division (FDIV)
Floating Point Logarithms (LOG and LOG10O)
Floating Point Exponentiation (EXP and EXP10)
Floating Point Polynomial Evaluation (PLYEWVL)
Clear FRO (ZFRO)
Clear Page-Zero Floating Point Number (ZF1)}
Load Floating Point Number to FRO
(FLDOR and FLDOP)
Load Floating Point Number to FR1
(FLDIR and FLD1P)
Store Floating Point Number From FRO
(FSTOR and FSTOP)
Move Floating Point Number From FRO to FR1
(FMOVE)

Resource Utilization
Implementation Details

9 ADDING NEW DEVICE HANDLERS/PERIPHERALS

Device Table
CID/Handler Interface

Calling Mechanism
Handler Initialization
Functions Supported
Error Handling
Resource Allocation

ZERO-PAGE RAM
NONZERO-PAGE RAM
STACK SPACE

Handler/SI0O Interface

116

116
119

121
122

i22
122
123
123
124
124
124
125
125
126
126
127
127

127
128
128
i28

128
129

131

134
134

135
136
136
140
140

141
141
142

142

10

Calling Mechanism
Functions Supported
Error Handling

Serial I/0 Bus Characteristics and Protocol

Hardware/Electrical Characteristics
Serial Port Electrical Specifications
Bus Commands

COMMAND FRAME

COMMAND FRAME ACKNOWLEDGE
DATA FRAME

OPERATION COMPLETE

Bus Timing
Handler Environment
Bootable Handler

Cartridge Resident Handler
Flowcharts

PROGRAM ENVIRONMENT AND INITIALIZATION
Cartridge

Cartridge Without Booted Support Package
Cartridge With Booted Support Package

Diskette—Booted Software

Diskette—-Boot File Format

Diskette—-Boot Process

Sample Diskette—Bootable Program Listing
Program to Create Diskette-Boot Files

Cassette—Booted Software

Cassette-Boot File Format

Cassette-Boot Process

Sample Cassette—-Bootable Program Listing
Program to Create Cassette—Boot Files

142
144
144

145

145
147
147

148
148
149
149

150
152
153
153
153
157
157

158
158

159

159
160
161
162

1&4

1465
165
167
168

11

10

ADVANCED TECHNIGUES AND APPLICATION NOTES
Sound Generation

Capabilities
Conflicts With 0S8

Screen Graphics

Hardware Capabilities

0S Capabilities

Cursor Control

Color Coantrol

Alternate Character Sets
Player/Missile Graphics

Hardware Capabilities
Conflicts With 0S8

Reading Game Controllers

Keyboard Controller Sensing
Front Panel Connectors as I/0 Ports

Hardware Information:
Software Information:

Other Miscellaneous Software Information:

170
i70

170
170

171

171
171
171
171
172

174

174
i74

174

174
176

176
177
179

APPENDICES

Appendix A —— CIO COMMAND BYTE VALUES 180
Appendix B —— CI0O STATUS BYTE VALUES. igi
Appendix C —— SI0 STATUS BYTE VALUES i82
Appendix D -— ATASCII CODES 183
Appendix E —— DISPLAY CODES (ATASCII) 184
Appendix F —— KEYBOARD CODES (ATASCII) 185
Appendix G —— PRINTER CODES (ATASCII) 1846
Appendix H —— SCREEN MODE CHARACTERISTICS 188
Appendix I -- SERIAL BUS ID AND COMMAND SUMMARY i?1
Appendix J —— ROM VECTORS 192
Appendix K —— DEVICE CHARACTERISTICS i94
Keyboard 194
Display 194
ATARI 410LTMI Program Recorder 194
ATARI B820LTM] 40-Column Impact Printer 195
ATARI 810{TM] Disk Drive 197

Appendix L —— 0S DATA BASE VARIABLE
FUNCTIONAL DESCRIPTIONS 200
Central Data Base Description 200

FUNCTIONAL INDEX TO DATA BASE VARIABLE DESCRIPTIONS 201

A. MEMORY CONFIGURATION 211

12

TEXT/GRAPHICS SCREEN

Cursor Control

Screen Margins

Text Scrolling

Attract Mode

Tabbing

lLogical Text Lines

Split Screen

Displaying Control Characters
Escape (Display Following Control Character}
Display Control Characters Mode
Bit-Mapped Graphics

Internal Working Variables
Internal Character Code Conversion

DISKETTE HANDLER

CASSETTE

Baud Rate Determination
Cassette Mode

Cassette Buffer

Internal Working Variables

KEYBOARD

Key Reading and Debouncing

Special Functions

Start/Stop

Autorepeat

Inverse Video Control

Console Keys: [SELECT1, [START1, and [OPTION]

PRINTER

Printer—-Buffer
Internal Working Variables

212

212
213
215
215
216
217
218
220
221
221
221
222
224

225

225

226
227
227
228

229

229
230
230
231
232
232

232

233
233

CENTRAL I/0 ROUTINE (CIOQ)

User Call Parameters

I1/0 Control Block

Pevice Status

Device Table

Ci0/Handler Interface Parameters
Zero-Page I0OCB

Internal Working Variables

SERIAL I/0 ROUTINE (SIO)

tUser Call Parameters

Device Control Block

Bus Sound Control

Serial Bus Control

Retry Logic

Checksum

Data Buffering

General Buftfer Control
Command Frame Output Buffer
Receive/Transmit Data Buffering
SI0 Timeout

Internal Working Variables

ATARI CONTROLLERS
Joysticks

Paddles

Light Pen

Driving Controllers

DISK FILE MANAGER

DISK UTILITY POINTER
FLOATING POINT PACKAGE
Power~Up and System Reset
RAM Sizing

Diskette/Cassette—Boot
Environment Control

233

233
233
234
235
235
235
236

237

237
237
238
238
238
239
240
240
240
241
241
242

243
243
244
245
246
247
248
248
249
249

250
251

i3

INDEX

14

INTERRUPTS

System Timers

Real Time Clock

System Timer 1

System Timer 2

System Timers 3, 4 and S
RAM Interrupt Vectors

NMI Interrupt Vectors

IRG Interrupt Vectors
Hardware Register Updates
Internal Working Variables

USER AREAS

Alphabetical List of Data Base Variables

Memory Address Ordered List of Data Base
Variables

Floating Point Package Variables

252

253
253
253
254
254
255
255
255
256
2958

258
259

26646
270

271

TABLE OF ILLUSTRATIONS

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Utilization

Figure
Figure

S5-1.
S5-2.
5-3.
S5-4.
5-5.
S5-6.
°=7.
S5-8.
S5-9.
5-10.
S5-11.

S5-12.
°-13.

Memory Map

Figure

of Contents

Figure
Figure
Figure
Figure
Figure

S5—-14.

5-15.
S-16.
5-17.
S-18.
5-19.

ATARI Home Computer Block Diagram
Memory Layout Chart

6502 System Memovry Map
Mapped I/0

I/0 Subsystem Structure Flow Diagram

CIO Calling Mechanism

An I/0 Example

Keycode to ATASCII Conversion Table

Text Modes 1 and 2 Data Form

Graphics Modes 3-11 GET Data Form
Graphics Modes 3-11 PUT Data Form

Screen Display Block Diagram

Cassette Handler Record Format
Device/Filename Syntax

File Management Subsystem Diskette Sector
Map

File Management Subsystem Boot Record Format
File Management Subsystem Boot Process

File Management Subsystem Volume Table

File Management Subsystem Volume Bit Map
File Directory Format

File Management Subsystem File Sector Format
Resident Device Handler Vectors

DVSTAT 4-Byte Operation Status Format

19
20

29
32

35
ag
49
53
56
58
59
64
74
81

89
2?0

o2

3
3
?4
2?5
96
100

15

Figure
Figure
Figure
Figure

Content Table

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure

16

6-1,
6-2.
6-3.
b-4.

9-1.
9-2.
9-3.
9-4,
9-5.
9-6.

10~1.
10-2.
10-3.
10-4.

11-1.
11-2.
11-3.
11-4.
11-5.

11-6.

List of System Interrupt Events
Interrupt RAM Vector Initialization
POKEY Interrupt Mask Example
Interrupt and Timer Vector RAM Stack

I/0 Subsystem Flow Diagram

Device Table Format

Handler Vector Table

Serial Bus Connector Pin Descriptions
Serial Bus Command Frame Format
Serial Bus Timing Diagram

Cartridge Header Format

Diskette Boot File Format
Diskette-Bootable Program Listing Example
Sample Cassette—Bootable Program

User—Defined Character Set Bit Memory Address
User—-Defined 8 x B8 Character Matrix Bit Table
Character Base Diagram

Reading Data From an ATARI Keyboard Controller
ATARI Keyboard Controller Variable/Register
Value Table

Using Front Panel Connectors As I/0 Ports: Pin
Function Tables

102
108
110

112

133
134
135
1446
148
151

157
159
162
168

172
173
173
176

176

179

PREFACE

This manual describes the resident Operating System (0S) for the
ATARI® Home Computer, for readers who are familiar with the
internal behavior of the system. It discusses:

o System functions and vuvtilization techniques
o Subsystem relationships and organization

o Characteristics of the ATARI peripheral devices that can
be attached to the ATARI40CLTMI and ATARI 800LTM] Home
Computer

o Advanced techniques for going beyond the basic 08
capabilities

o The general features of the computer system hardware used
by the 0OS.

It would be helpful to have a familiarity with programming concepts
and terminology. assembly language programming in general, the
Synertek 6502 in particular, and digital hardware concepts and
terminology. you will be provided with the information you need to
use the 0S5 resources, without resorting to trial-and-error techniques
or the OS5 listing. Supporting information for tasks that involve 0S
listing references is also provided.

This manual does not present a comprehensive description of the
hardware used to provide OS capabilites. The programmer who needs to
go beyond the capabilities described should consult the ATARI Home
Computer Hardware Manual.

OPERATING SYSTEM C016555 —-—- Section 1
17

1 INTRODUCTION
GENERAL DESCRIPTION OF THE ATARI HOME COMPUTER SYSTEM

Operating systems in the ATARI@ 400LTM] and ATARI B80C0LTM] Home
Computer are identical. The primary differences between the two are:

o Physical packaging

o The ATARI 400 Computer console has one cartridge slot, the
ATARI 800 Computer console has two cartridge slots

o] The ATARI 400 Home Computer contains 14K RAM and cannot be
expanded. The ATARI 800 Home Computer can be expanded to a
maximum of 48K RAM.

0 The ATARI 800 Computer has a monitor jack: the ATARI 400
Computer does not.

The Hardware Circuitry

o Produces both character and point graphics for black and
white (B/W) or color television.

o Produces four independent audio channels (fregquency
controlled) which use the television sound system.

0 Provides one bi-level audio output in the base unit.

o Interfaces with up to four Joysticks and eight Paddle
Controllers.

o Interfaces with a serial I/0 bus for expansion.
o Contains a built—in keyboard

Figure 1-1 presents a simplified block diagram of the hardware.
See the hardware manual for supporting documentation.

OPERATING SYSTEM CD16555 ~— Section 1
18

o e e e

ROM

o e e
as

€

1

]

t
]
'

P ——— e}
&502
iprocessor
P
]
L
P e

1
¢

L BRI 4 - -4 L R R SR LIEC IS ¢ t o4 +
! wn] | w i | @ | { |] I
R ! | v > | | o u i | | @ i {
| —~ i I = o< | i ¥ © [o I i — @ i bo-
| 00 i f oMo | [| MmO w | | O { i
I + o | i © i | @& & | B B S I | | nwa] (I + 4
|+ | |l om@a |« | oo | 0 | | c o I i <
e | | > P4 | v | o i |l o | [
fowe | lenm+ | ol | w i vw | i w
I uo | | o SN owew | | ! | 1
+ -4 -+ LRI B I ~E 3R LR B B LR B + -+ -+ + --
- o e G | | o i 1 i i 1
! I I | I |]
4 -4 | 4 == e om e v oo v we w4] | | Ed
i I 11 | i i { o
[IR | | 4 = v ve oo vn ve v we e ee e en i & b~
P »x | 1 tt i | % O
[»x | 1 1 B . &
[x | [| |
[»x | [| [} L LI B LI LI I ALl S di it
1 1 < |1 w i i1l It i {
— — R o — - + - - e ww W + - e W~ ww e + - e e v e +
[| Qo ! (X T i { i i i]
+ | Q| -]] I 1 | 1 i
I O | $ 111 | I O W] 4 v ov e @ | ovve v oe + -
LRI S, w il w | f w1 ol | | a i | |
] >0 1| | l o1 =111 | | |
{ o 11 o! 11 91 &1ttt] 1 {
1 =i 1 al | 1 @l 4§ | 1 ~ | | 1
I | [1 {1 o] | + - -+
~ 4 I 4=t + 4+ 4+ 4+ 4+ ++++ I+ttt !
w i | f sl | { (TO I wit 1t wiwl | o l
(VU | el L | - | 1 - | |1 -t] oo | - o |
it |l o€l | i M1 P> ottt | ot >1 0o <« ¢ o 1
| i~ m 1€ Qi 1w ot 11 < Qo | = P - +
11 f = 0w} | I] 1 X 1 + + + = | 4+ == 4 i1 - >
< | | O | la O 10 © 1 [O | | Z O | 0w\
o | |l - 00Q | 1 o | 1 o o i | O o i 1<« O oo
12 O] | I Q| | M| i o i O i | < | Q.
ai f Oowm | ! Q| t ai [a 1 o Ev
-~ 4 + -~ + + -+ -+ + -+ -+ 4+ -4+ -+ + -4 -4 o2
i i . | - ! | um
| I l } |
i] 1 I i
| |] | A | < 1 -
| | v | +4 i z 1 x
I 1 —] - 1 Q | Z
i 1 | | !
| i | 1 }
1 i ! 1 ! i
e e I IR L. J e d IR TR R I iR E i
-
O~
w Qg
w o
o -~
uaw
o n
b %X 2
ae.o

OPTION !
it S
i9

#————m—e— SELECT,

TV
o e e

- we w-

OPERATING SYSTEM C016555 -- Section 1

ATARI Home Computer Block Diagram

Figure 1-1.

CONVENTIONS USED IN THIS MANUAL
This manuval uses the following special notations:

Hexadecimal Numbers

All two-digit numbers preceded by a dollar sign ($) designate
hexadecimal numbers. All other numbers (except memory addresses)

are in decimal form unless otherwise specified in the supporting
text.

Memory Addresses

All references to computer memory and mapped I/0 locations are in
hexadecimal notation. Memory addresses may or may not be contained

in square brackets. (Example: [D20F] and D20F are the same
address.)

Kilobytes of Memory

Memory sizes are frequently expressed in units of kilobytes, such
as 32K, where a kilobyte is 1024 bytes of memory.

PASCAL As an Algorithm-Specification Language

The PASCAL language (procedure block only) is used as the
specification language in the few places where an algorithm is
specified in detail. PASCAL syntax is similar ¢o any number of
other block-structured languages, and you should have no
difficulty following the code presented.

Memory Layouts

Diagrams similar to Figure 1-2 are used whenever pictures of bytes
or tables are presented:

76543210
B e s st (o o TS

{ =——— This is a single byte.
e at TEL T TR U

——— This is a word (2 bytes).

FR AT

s LT L S S ST O

R S R,

—=—— This is a block of memory
of unspecified length.

e e e N et TP L Y

Figure 1-2. Memory Layout Chart

OPERATING SYSTEM C016555 —- Section 1
20

Bit 7 is the most significant bit (MSB) of the byte, and Bit O
is the least significant bit (LSB).

In tables and figures, memory addresses always increase toward the
bottom of the figure.

Backus—-Naur Form

A modified version of Backus—-Naur Form (BNF) is used to express some

syntactic forms:, where the following metalinguistic symbols are used:

D= is the substitution (assignment) operator.
< 2 a metasyntactic variable.

H separates alternative substitutions.

L 3 an optional construct.

Anything else is a syntactic literal constant, which stands for
itself.

For Example:
{device specification> ::= <{device name>f<{device number>]:
<device name> ::= CIDIEIKIPIR!IS
<device number> ::= 112i3i4i516!7:!8

A "device specification" consists of a mandatory “device name,

followed by an optional “device number," followed by the mandatory
colon character. The device name in turn must be one af the

characters shown as alternatives. The device number (if it is present)

must be a digit 1 through 8.

0S Equate Filenames

Operating System ROM (Read Only Memory?! and RAM (Random Access
Memory} vector names, RAM database variable names and hardware
register names are all referred to by the names assigned in the 0S
program equate list. When one of these names is used. the memory
address is wsually provided, such as BOOTAD [0242].

OPERATING SYSTEM C016555 -~ Section 1

21

2 OPERATING SYSTEM FUNCTIONAL ORGANIZATIDN

This section describes the various subsystems of the resident OS in
general terms.

Input/Output Subsystem

The Input/Output (I/0) subsystem provides a high—level interface
between the programs and the hardware. Most functions are
device—independent, such as the reading and writing of character data;
yet provisions have been made for device-—dependent functions as well.
All peripheral devices capable of dealing with character data have
individual symbolic names (such as K,D,P, etc). and can be accessed
using a Central I/70 (CIO) routine.

A RAM data base provides access to controllers (joysticks and paddle
controllers), which do not deal with character data. This RAM data
base is periodically updated to show the states of these devices.

INTERRUPT PROCESSING

The interrupt system handles all hardware interrupts in a common
and consistent manner. By default, all interrupts are fielded by
the 0S. At your discretion, individval interrupts (or

groups of interrupts) can be fielded by the application program.

INITIALIZATION

The system provides two levels of initialization: power up and
system reset. The 0S performs power-up initialization each time
the system power is switched to ON. and system reset
initialization is performed each time the [SYSTEM. RESET] key is
pressed.

Power~-Up

The 0S examines and notes the configuration of the unit whenever
the system power is switched to ON. The system performs the following
tasks at power up:

OPERATING SYSTEM CO16555 -~ Section 2
22

Determines the highest RAM address.
Clears all of RAM to zeros.
Establishes all RAM interrupt vectors.
Formats the device table.

Initializes the cartridge(s).

Sets up the screen for 24 x 40 text mode.
Boots the cassette if directed.
Checks cartridge slot(s) for diskette-boot instructions.

Boots the diskette if directed to do so and a disk drive unit
is attached,

Transfers control to the cartridge, diskette—~booted program
cassette—-booted program, or blackboard program.

[SYSTEM. RESET]

Pressing the [SYSTEM. RESET] key causes the 0S to perform these
following tasks:

0

Clears the 0OS portion of RAM.

Rechecks top of RAM.

Reestablishes all RAM interrupt vectors.
Formats the device table.

Initializes the cartridge(s).

Sets up the screen for 24 x 40 text mode.

Transfers control to the cartridge, a diskette—booted program,
a4 cassette-booted program, or the blackboard program.

Note that [SYSTEM. RESET] does not perform all the power-up
tasks listed in the power-up section.

OPERATING SYSTEM C0146555 —- Section 2
23

FLOATING POINT ARITHMETIC PACKAGE

The OS ROM contains a Floating Point (FP) package that is available
to nonresident programs such as ATARI BASIC.

The package is not used by the other parts of the 0S itsel#f.

The

floating point numbers are stored as 10 BCD digits of mantissa.
1-byte exponent. The package contains these routines:

24

0

0

ASCII-to-FP and FP-to-ASCII conversion.
Integer—to-FP and FP-to-integer conversion.
FP add, subtract, multiply and divide.

FP log. exp: and polynomial evaluation.

FP number clear, load, store:. and move.

OPERATING SYSTEM C016555 -— Section 2

plus a

3 CONFIGURATIONS

The ATARI 400 and ATARI 800 Home Computers support a
wide variety of configurations, each with a unique operating
environment:

o Cartridge(s) may or may not be inserted

0 Memory can be optionally added to the ATARI 800 Computer
console in 16K increments

o Many different peripheral devices can be attached to the
serial 1/0 bus.

The 0OS accounts for all of these variables without requiring a
change in the resident DS itself (see Section 2). The machine
configuration is checked when power is first turned on and then
is not checked again, unless system reset is used. A general
discussion of some of the valid configurations follows.

PROGRAM ENVIRONMENTS

The 0S allows one of four program types to be in control at any
point in time:

o The 0OS blackboard (ATARI Memo Pad) program

o A cartridge-resident program

o A diskette—-booted program

0 A cassette-booted program
Control choice is based upon information in the cartridge(s), upon
whether or not a disk drive is attached, and upon operator keyboard
inputs. The exact algorithms are discussed in detail in Section 7.
Blackboard Mode
In blackboard mode, the screen is established as a 24 x 40 text
screen. Anything entered from the keyboard goes to the screen
without being examined, although all of the screen editing
functions are supported. Blackboard mode is the lowest priority

environment. You go there only by command from a higher

OPERATING SYSTEM CO14555 —— Section 3
25

priority environment, or by default, if there is no other
reasonable environment for the 0S to enter. For example., typing BYE
in BASIC causes the 0S5 to enter the blackboard mode. The blackboard
mode can be exited by pressing the [SYSTEM. RESET] key if it was
entered from a higher environment.

Cartridge

An inserted cartridge normally provides the main control after
initialization is complete (for example: ATARI BASIC, SUPER
BREAKOUTLTM], BASKETBALL, COMPUTER CHESS, and others. All these
cartridge programs interface directly with you in some way). Although
a cartridge can provide a supporting function for some other program
environment., this has not yet been done. Some cartridges (particularly
keyboard-oriented ones) can change environments by entering special
commands (such as “BYE") to go to blackboard mode or “DOS" to enter
the disk utility. Other cartridges cannot change environments. Note
that a hardware interlock prevents the removal or insertion of a
cartridge with the power on; this feature causes the entire system to
reinitialize with every cartridge change.

Diskette Boot

The diskette may or may not be booted when the system powers up
with diskette-bootable software. This paragraph assumes that a
diskette boot did occur. See Section 7 for boot condition
explanations.

The diskette—-booted software can take control as the Disk Utility
Program (DUP) does under certain conditions, or can provide a
supporting function as the File Management System (FMS) does. This
environment is so flexible that it is difficult to generalize on its
capabilities and restrictions. The only machine requirement (other
than the disk drive} is that sufficient RAM be installed to support
the program being booted.

Cassette—Boot

The cassette-boot environment is similar to the diskette—-boot
environment, although the cassette is limited as an I/0 device. It
is slow and can access only one file at a time in sequence. Note
that the cassette-boot facility has no relation to the use of
cassettes to store high—-level language programs (e.g., programs
written in ATARI BASIC): nor to the use of cassettes to store data.

OPERATING SYSTEM CO14555 ~—— Section 3
26

RAM EXPANSION

Although you can expand RAM noncontiguously in the

ATARI 800 Home Computer, the OS5 will only recognize RAM

that is contiguous starting from location O. Installation
directions are provided with the purchased RAM modules. RAM can be
added until it totals 48K. After 32K, additional RAM overlays first
the right—cartridge addresses (32K to 40K} and then the
left—-cartridge addresses (40K to 48K). Note that in cases of
conflict, the inserted cartridge has higher priority and disables
the conflicting RAM in BK increments. See Section 4 for a detailed
discussion of system memory.

As a result of power—up, the 05 will generate two pointers that
define the lowest available RAM location and the highest available
RAM location. The 0S8 and diskette or cassette—booted software will
determine the location of the lowest available RAM, while the
number of RAM modules and the current screen mode will determine
the highest available RAM.

PERIPHERAL DEVICES

Peripheral devices of several types can be added to the system
using standard cables to either the serial bus or the connectors at
the front of the computer console. The most common types deal with
either transmission of bytes of data (usually serial bus) or
transmission of sense information (usuvally game controllers).

Game Controllers

The 0S periodically senses (50 or 60 times per second} the standard
game controllers (Paddles and Joysticks) and the values read are
stored in RAM. You can plug in, remove, and rearrange these
controllers at will without affecting system operation: because the
system will always try to read all of these controllers.

The Driving Controllers are read, but not decoded, by the 0S. Special

instructions are required to read the keyboard controller (see
Section 11},

Program Recoarder

The ATARI 410{TM]1 Program Recorder is a special peripheral. It uses
the serial bus to send and receive data, but does not conform to
the protocol of the other peripherals that use the serial bus. The
Program Recorder must also be the last device on the serial bus,
because it does not have a serial bus extender connector as the
other peripherals do. There can never be more than one Program
Recorder connected to any system for the same reason. The system
cannot sense the presence or absence of the Program Recorder, so it
can be connected and disconnected at will.

OPERATING SYSTEM C016555 —-— Section 3

27

Serial Bus Devices

A serial bus device conforms to the serial I/0 bus protocol as
defined in Section 9, but this does not include the Program
Recorder. Each serial bus device has two identical connectors: a
serial bus input, and a serial bus extender. Either connector can
be used for either purpose. Peripherals can be “daisychained" by
cabling them together in a sequential fashion. There are usually no
restrictions on the cabling order because each device has a unique

identifier. Where restrictions exist, they will be mentioned in
Section 5.

OPERATING SYSTEM C016555 —— Section 4
28

4 SYSTEM MEMORY UTILIZATION

Memory in the system is decoded in the full 64K range of the 6502
microcomputer and there are no provisions for additional mapping to
extend memory. Memory is divided into four basic regions (with some
overlap possible}: RAM, cartridge area:; I/0 region and the resident
0S5 ROM. The regions and their address boundaries are listed below
(all addresses are in hexadecimal):

OCCO0-1FFF = RAM (minimum required for operation)

2000-7FFF = RAM expansion area

8000-9FFF = Cartridge B, Cartridge A (half of 16K size) or RAM
AQCO-BFFF = Cartridge A or RaAM

COO0-CFFF = Unused

DOOO-D7FF = Hardware I/0 decodes

DB8OO-DFFF = Floating Point Package (0S)

EQOO=FFFF = Resident Operating System ROM

Figure 4—-1 4502 System Memory Map

This section will break these regions into even smaller functional
divisions and provide detailed explanations of their usage.

RAM REGION

The 0OS and the control program share the RAM region. The RAM region
can be further subdivided into the following sub regions for
discussion purposes:

Page O = 6502 page zero address mode region.
Page 1 = 4502 stack region.

Pages 2-4 = 0S database and user workspace.

Pages 5-& = User program workspace.

Pages 7-XX = Bootable software area/free RaAM. #

Pages XX—-top of RAM = Screen display list and data. #

Note that XX is a function of the screen graphics mode and the
amount of RAM installed.

The paragraphs that follow describe how the OS5 uses RAM subregions,
and presents user program recomendations.

OPERATING SYSTEM C016555 —— Section 4
29

Page ©

The architecture of the 6502 microcomputer instruction set and
addressing modes gives page O special significance. References to
addresses in that page (0000 to OOFF) are faster, require fewer
instruction bytes, and provide the only mechanism for hardware
indirect addressing. Page O should be used sparingly so that all
possible users can have a portion of it. The 0OS permanently takes the
lower half of page O (0000 to OO7F). This portion can never be used by
any outer environment unless the 0S is completely disabled and all
interrupts to the OS are eliminated.

The upper half of page O (0080 to OOFF) is available to outer
environments with the following restriction: the floating point
package, if used, requires OOD4 through OOFF.

Page 1

Page 1 is the 6502 hardware stack region; JSR instructions, PHA
instructions, and interrupts all cause data bytes to be written to
page 1. Conversely RTS, PLA, and RTI instructions all cause data bytes
to be read from page 1. The 256 byte stack is adequate for normal
subroutine calls plus interrupt process nesting, so no restrictions
have been made on page 1 usage. It is obvious that a stack of this
size is totally inadequate for deeply recursive processes or for
nested processes with large local environments to be saved. So, for
sophisticated applications, software maintained stacks must be
implemented.

The 6502 stack pointer is initialized at power—up or system reset to
point to locaftion OIFF. The stack then pushes downward toward 0100.
The stack will wrap around from 0100 to OIFF if a stack overflow
condition occurs, because of the nature of the 6502‘s B-bit stack
pointer register.

0S Data Base

Locations 0200 through 047F are allocated by the 0OS for working
variables, tables and data buffers. Portions of this region can be
used only after you determine that nonconflict with the OS

is guaranteed. For example, the printer and cassette buffers could be
vused if I/0 operations to these devices are impossible within the
controlling environment. The amount of work involved in determining
nonconflict seems to be completely out of line with the benefits to be
gained (except for a few trivial cases) and it is recommended that
pages 2 through 4 not be used except by the 0S.

OPERATING SYSTEM C016555 —- Section 4
30

User Workspace

Locations 0480 through O&6FF are dedicated for outer environment use

except when the floating point package is used. The floating point
package uses locations O57E through OSFF.

Boot Region

Page 7 is the start of the "boot region. " When software is booted from
either the diskette or the cassette, it can start at the lowest free
memory address (that is 0700) and proceed upward (although it can also
start at any address above 0700 and below the screen display list).
The top of this region defines the start of the "free memary" region.
When the boot process is complete, a pointer in the data base contains
the address of the next available location above the software just

booted. When no software has been booted, this pointer contains the
value 0700.

Screen Display List and Data

When the 0S5 is handling the screen display, the display list that
defines the screen characteristics and the current data that is
contained on the screen are placed at the high address end of RAM. The
bottom of this region defines the end of the free memory region and
its location is a function of the screen mode currently in effect. A

pointer in the data base contains the address of the last available
location below the screen region.

Free Memory Region

The free memory region is all the RAM between the end of the boot
region and the start of the screen region. The outer level application
is responsible for managing the free memory region.

CARTRIDGES A AND B

There are two BK regions reserved for plug—in cartridges. Cartridge B,
that is the right-hand cartridge slot found only in the ATARI 800
Home Computer. has been allocated memory addresses 8000

through 9FFF. Cartridge A (the left—-hand cartridge slot in the ATARI
800 Computer console, and the only slot in the ATARI 400 Computer
console) has been allocated memory addresses AQCOO through BFFF and
optionally 8000 through BFFF, for 16K cartridges. If a RAM module is
plugged into the last slot such as to overlay any of these addresses,
the RAM takes precedence as long as a cartridge is not inserted.
However, if a cartridge is inserted, it will disable the entire
conflicting RAM module in the last slot in BK increments.

OPERATING SYSTEM C014555 —-— Section 4
31

MAPPED 1/0

The 6502 performs input/output operations by addressing the external
support chips as memory; some chip registers are read/write while
others are read-only or write-only (the ATARI Home Computer

Hardware Manual gives descriptions of all of the external registers).
While the entire address space from DOOO to D7FF has been allocated
for I/0 decoding, only the following subregions are used:

DOOO-DOLIF = CTIA
D200-D21F = POKEY
D300-D31F = PIA

D400-D41F = ANTIC

Figure 4-2. Mapped 1/0

RESIDENT 0S AND FLOATING POINT PACKAGE ROM

The region from DBOO through FFFF always contains the 0S and the
floating point package. Care should be taken to avoid using any entry
points that are not guaranteed not to move, to allow for the
possibility that another, but functionally compatible, 0OS can be
generated in the future. The 0SS contains many vectored entry points at
the end of the ROM and in RAM that will not move. The floating point
package is not vectored, but all documented entry points will be
fixed: Do not use undocumented routines found by scanning the listing.
A list of the fixed ROM vectors can be found in Appendix J.

CENTRAL DATA BASE DESCRIPTION

See Appendix L.

MEMORY DYNAMICS

The free memory region is the area between the end of the boot region
and the start of the screen region. As such, its limits are variable.
MEMLO CO2E7] defines the bottom of the free region, and MEMTOP [O2ES]
defines the top of the region. This section presents the conditions
that cause the setup or alteration of these variables.

OPERATING SYSTEM C0O16555 —— Section 4
a2

System Initialization Process

The 0S5 determines the extent of the lowest block of contiguous RAM,
and saves the limits. The Screen Editor is then opened, thus setting a
new (and lower) value in MEMTOP. Diskette or cassette-booted software
might be brought into memory, that would probably set a new (and
higher}) value in MEMLDO (see Section 7). MEMLO and MEMTOP will define
the maximum amount of free memory available when the application

program finally gets control. That amount of free memory can later
decrease, as described in the next paragraph.

Changing Screen Modes

The Display Handler interprets the variable APPMHI ‘COOOEl’ to contain
the address below which MEMTOP cannot extend. This allows you to
protect the portion of free memory space that you are using from being
overwritten as a result of screen mode change. The display handler
will set the screen for mode O, update MEMTOP, and return an error
status to you, if it determines that the screen memory will

extend below APPMHI as a result of a screen mode change. In other

cases the Display Handler effects the desired mode change and updates
MEMTOP.

OPERATING SYSTEM C016555 -— Section 4
33

S I/0 SUBSYSTEM

This section discusses the I/0 subsystem of the Operating System. The
I/0 subsystem comprises a collection of routines that allow you

to access peripheral and local devices at three different levels. The
CIO (Central I/0 Utility), provides the highest level, device
independent access to devices. The second level allows communication
with the device handlers. The lowest level is the SIO (Serial I/0 bus
Utility) routine. Any lower level access to a device involves the
direct reading and writing of the hardware registers associated with
the device.

The data byte is the basic unit of input/output. A data byte can
contain either “binary” (non text) information, or encoded text
information. The text encoding scheme supported by the OS is called
ATASCII, derived from the words "ATARI ASCII." Most ATASCII codes are
the same as ASCII, with the primary deviations being the control
codes. Appendix D shows the ATASCII character set, and Appendices E,
F. and G show device-specific implementations for the display,
keyboard, and printer.

Thegstructure of the I/0 subsystem is shown on the following page.

OPERATING SYSTEM CO016555 —— Section S
34

it wuser H
From e —————————— i program - e +
H Fmm i e + H
S mtatadatattty + H H
H i IOCB‘s {3s#sdssesats! i
| e + } !
Fhm——————————— + Fm e ——— + H
! Resident ! H cIO H Rt + H
! Handler H { Utility | H BCB {33836 30 303038 |
i Vector Table! Fo e + P ———— + % i
Fr———— + ! * i
H H #* H
H P ———— e + P e + R + # H
H i ZIOCB ¢ { Device | iDisk File! H
ettt + i Table ! +===-1 Manager {—-———- +
: * Fo e + H Fm e ———— + HE
H * H H HE
Form e ————————— Fomm——— o e F——p—— —— HE
i i i H HE
P —————— + m————— + e + bm—————— + +
i Printer { | Cassette! HEE H | Keyboard! { Disk H
{ Handler | i Handler | ! Handler | { Handler | { Handler |
et + em—————— + oo e e + Femmm————— + e ————— +
H H H !
o + ——r————— + o e e —— —— +
H
e ——— + !
H DCB § 336330363636 30 3¢ |
P ——— + !
o e e e e +
| SI0 H
P Utility |
e e e e +

Where: ~——-- shows a control path. ###% shows the data structure
required for a path.

Note the following:
o The Keyboard/Display/Screen Editor Handlers don’t use SIO.
0 The Diskette handler cannot be called directly from CIO.
0 The DCB is shown twice in the diagram.

Figure 5-1 I/0 Subsystem Structure Flow Diagram

OPERATING SYSTEM C016555 -- Section 5

35

CENTRAL I/O UTILITY

The Central I/0 Utility provides you with a single interface in which
to access all of the system peripheral devices in a device-independent
manner. The minimum unit of data transfer is the data byte. The CID
also supports multiple byte transfers. All I/0 operations are
performed on a “"return-to-user-when-complete" basis: there is no way
to initiate concurrent “overlapped" I/0 processes.

I/0 is organized by "files," where a file is a sequential
collection of data bytes. A file can or may not contain textual
data and it can or may not be organized by “records, " where a
record is a contiguous group of bytes terminated by an EOL (End of
Line) character. Some files are synonymous with a device (as with
the printer and the Screen Editor), while other devices can contain
multiple files, each with a unique name (as with the disk drive).

CIO allows you to access up to eight independent device/files
at one time, because there are eight I/0 Control Blocks (IOCB‘s) in
the system. Each of the IOCB‘s can be assigned to control any
device/file because there are no preferred assignments, except that

IOCB #0 is assigned to the Screen Editor at power—-up and
system reset.

To access a peripheral, you first set up an IOCB for the OPEN
command, that supplies the system name for the device to bhe
accessed (e.g. K:, for the keyboard, P:, for the printer, D:STARS
for a diskette file named ‘STARS’, etc). You then call the CIOD,
telling it to examine the IOCB to find the OPEN information. CIO
attempts to find the specified device/file and returns a status
byte indicating the success of the search. If the specified
device/file can be found by CIO, then CIOD stores control

information in the IOCB. The IOCB is now used for as long as that
file is apen.

Once a file is open, it can then be accessed using data-read or
data-write types of commands: in general, reading can proceed until
there is no more data to read (End of File) and writing can proceed
until there is no more medium to store data on (End of Medium),
although neither reading nor writing need proceed to that point.
The reading and writing of data generally occurs into and out of
user—supplied data buffers (although a special case allowing single
byte transfers using the 4502 A register is provided).

When there are no more accesses to be performed on an open
device/file, you perform the close operation. This
accomplishes two functions:

o It terminates and makes permanent an output file (essential
for diskette and cassette).

0 It releases that IOCB to be used for another I/0 operation.

OPERATING SYSTEM C016555 —- Section S
36

CIO Design Philosophy

The CIO utility was designed specifically to meet the following
design criteria.

o The transfer of data is device independent.

0 Byte-at—a-time, multiple byte and record-aligned accesses are
supported.

o Multiple device/files can be accessed concurrently.

o Error handling is largely device independent.

o New device handlers can be added without altering the system
ROM.

Device Independence

CIO provides device independence by having a single entry point for
all devices (and for all operations) and by having a
device—independent calling sequence. Once a device/file is opened,
data transfers occur with no regard to the actual device involved.
Uniform rules for handling byte— and record-oriented data transfers
allow the actual device storage block sizes to be transparent to you.

Data Access Methods

The CIO supports two file access methods: byte—aligned and
record—aligned.

Byte—aligned accesses allow you to treat the device/file as a
sequential byte stream; any number of bytes can be read or written
and the following opevation will continue where the prior one left
off. Records are of no consequence in this mode, and reads or
writes can encompass multiple records if desired.

Record~aligned accesses allow you to deal with the data stream

at a higher level, that of the data record or "line of text." Each
and every write operation creates a single record (by definition).
Each read operation assures that the following read operation

will start at the beginning of a record. Record—aligned accesses
cannot deal with portions of more than one record at a time.
Record—aligned accesses are useful only with text data or with
binary data guaranteed not to contain the EOL character ($9B) as
data.

Note that any file can be accessed using the byte—-aligned access
method, regardless of how the file was created. But not all files
can be successfully read using record—aligned accesses; the file

OPERATING SYSTEM C016555 —— Section 5
37

must contain EOL characters at the end of each record and at no
other place.

Multiple Device/File Concurrency

Up to eight device/files can be accessed concurrently using CIO,
each operating independently of the others.

Unified Error Handling

All error detection and recovery occurs within the CIO subsystem.
The status information that reaches you is in the form of a
status byte for each device/file. Error codes are device
independent as much as possible (see Appendix B).

Device Expansion

Devices are known by single character names such as K or P, and a
number of device handlers are part of the resident system ROM.
However, additional device handlers can be added to the system
using the RAM-resident device table; this is normally done at
power—up time as with the diskette boot process, but can be done at
any point in time.

CIO Calling Mechanism

The input/output control block (IOCB) is the primary parameter
passing structure between you and CIO. There are eight IOCB‘s
in the system, arranged linearly in RAM as shown below:

o + low address [0340]

O — + high address

Figure 5-2 CIO Calling Mechanism

OPERATING SYSTEM CD146555 ——- Section S
38

One IOCB is required for each open device/file. any IOCB can be used
to control any device/file, although IOCB O is normally assigned to
the Screen Editor (E:). You perform a typical I/0 operation by:

o Inserting appropriate parameters into an IOCB of your choosing
o Putting the IOCB number times 16 into the 6502 X register
o Performing a JUSR to the CID entry point CIOV C[E456].

CIO returns to you when the operation is complete or if an

error was encountered. The operation status is in the IOCB used, as
well as in the 6502 Y register. The 6502 condition codes will also
reflect the value in the Y register. In some cases a data byte will
be in the 46502 A register. The X register will remain unchanged for

all operations and conditions. An example is shown below:
I10CB2X = %20 i INDEX FOR IOCB #2.
DX #I0CB2X
JSR cIoVv
CcPY #0 i (optional)
BMI ERROR

This sector describes each IOCB byte, with its file name and
address. Each IOCB is 16 bytes long. Some bytes can be altered by

you and some are reserved for use by CIO and/or the device
handlers.

Handler ID —-- ICHID (03401

The handler ID is an index into the system device table (see
Section ?) and is not user-alterable. This byte is set by CIO as
the result of an OPEN command and is left unchanged until the
device/file is closed, at that time CID will set the byte to $FF.

Device Number —-— ICDNO [0341]

The device number is provided by CIO as the result of an OPEN
command and is not user—alterable. This byte is used to

distinguish between multiple devices of the same type, such as
Di: and D2:.

OPERATING SYSTEM C0146555 —-— Section 5
3%

Command Byte -- ICCMD [03421]

You set the command byte. It specifies the command to be
performed by the CIO. This byte is not altered by CIOD.

Status —— ICSTA [0343]

The CIO conveys operation status to you with the command

status byte as a result of each and every CID call. Each and
every CIO call updates the command status byte. The most
significant (sign) bit is a one for ervor conditions and zero for
non-error conditions, and the remaining bits represent an error
number. See Appendix B for a list of status codes.

Buffer Address —— ICBAL [03441 and ICBAH {0345}

You set this 2-byte pointer; it is not altered by CIO. The

pointer contains the address of the beginning (low address) of a
buffer that:

o Contains data for read and write operations

o Contains the device/filename specification for the OPEN
command.

You can alter the pointer at any time.

PUT Address —-- ICPTL [03441 and ICPTH [03471

The CIO sets this 2-byte pointer at OPEN time to the handler’s
PUT CHARACTER entry point (- 1). The pointer was provided ¢to
accommodate the people writing the ATARI BASIC cartridge, and has
no legitimate use in the system. This variable is set to point to

CI0’s "IOCB not OPEN" rvoutine on CLOSE, Power—-up and
[SYSTEM. RESET].

Buffer Length/Byte Count —- ICBLL [0348] and ICBLH [034%91

You set this 2-byte count to indicate the size of the data

buffer pointed to by ICBAL and ICBAH for read and write
operations. It is not required for OPEN. After each read or write
operation, CIO will set this parameter to the number of bytes
actually transferred into or out of the data buffer. For
record—-aligned access, the record length can well be less than
the buffer length. Also an end of file condition or an error can
cause the byte count to be less than the buffer length.

Auxiliary Information —-- ICAX1 [034A] and ICAX2 [O034B]

OPERATING SYSTEM C016555 —- Section S
40

You set these 2-bytes. They contain information that is
used by the OPEN command process and/or is device-dependent.

For OPEN, two bits of ICAX1 are always used to specify the OPEN
direction as shown below, where R is set to 1 for input (read)
enable and W is set to 1 for output (write) enable.

e cam e s o i o ove e e e wonn

3
Y
ICAX1 is not altered by CIO. You should not alter ICAX1
once the device/file is open.

The remaining bits of ICAX1 and all of ICAX2 contain only
device-dependent data and are explained later in this section.

Remaining Bytes (ICAX3-ICAX&)

The handler reserves the four remaining bytes for processing the
1/0 command for CIO. There is no fixed use for these bytes. They
are not user—alterable except as specified by the particular
device descriptions. These bytes will be referved to as ICAX3,
ICAX4, ICAXS and ICAX6, although there are no equates for those
names in the 085 equate file.

CI0 Functions

The CID supports records and blocks and the handlers support
single bytes. All of the system handlers support one or more
of the eight basic functions sub ject to restrictions based
upon the direction of data transfer (e.g. one cannot read data
from the printer). The basic functions are: OPEN, CLOSE, GET
CHARACTERS, PUT CHARACTERS, GET RECORD. PUT RECORD, GET STATUS,
and SPECIAL.

OPEN -—- Assign Device/Filename to IOCB and Ready for Access

A device/file must be opened before it can be accessed. This
process links a specific IOCB to the appropriate device
handler., initializes the device/file, initializes all CIOD
control variables, and passes device-specific options to the
device handler.

OPERATING SYSTEM C016555 —— Section S5
41

You set up the following IOCB parameters prior to calling CIO for an
OPEN operation:

COMMAND BYTE = %03

BUFFER ADDRESS = pointer to a device/filename specification.
AUX1

OPEN dirvection bits, plus device-dependent information.

AUX2 = device-~dependent information.

After an OPEN operation, CIO will have altered the following IOCB
parameters:

HANDLER ID = index to the system device table; this is
used only by CIO and must not be altered

DEVICE NUMBER = device number taken from the device/filename
specification and must not be altered.

STATUS = result of OPEN operation; see Appendix B for a list
of the possible status codes. In general., a negative status
will indicate a failure to open properly.

PUT ADDRESS = pointer to the PUT CHARACTERS routine for the
device handler just opened.

It is recommended that this pointer not be used.

CLOSE —-- Terminate Access to Device/File and Release IOCB.

You issue a CLOSE command after you are through accessing a
given device/file. The CLOSE process completes any pending data
writes, goes to the device handler for any device—specific
actions, and then releases the IOCB.

You set the following IOCB parameter prior to calling
CIOD:

COMMAND BYTE = %0C

The CIO alters the following IOCB parameters as a result of the
CLOSE operation:

HANDLER ID = $FF
STATUS = Result of CLOSE operation.

PUT ADDRESS = pointer to "IOCB not OPEN" routine.

OPERATING SYSTEM C016555 ~- Section 5
42

GET CHARACTERS -- Read n Characters (Byte-Aligned Access)

The specified number of characters are read from the device/file
to the user-supplied buffer. EOL characters have no termination
features when using this function; there can be no EOL, or many
EOL ‘s, in the buffer after operation completion. There is a
special case provided that passes a single byte of data in the
6502 A register when the buffer length is set to zero.

You set the following IOCB parameters prior to calling CID:
COMMAND BYTE = $07
BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = number of bytes to read; if this is zero,
the data will be returned in the 6502 A register only.

The CIO alters the following IOCB parameters as a result of the
GET CHARACTERS operation:

STATUS = result of GET CHARACTERS operation.
BYTE COUNT/BUFFER LENGTH = number of bytes read to the

buffer. The BYTE COUNT will always equal the BUFFER LENGTH
except when an error or an end-of-file condition occurs.

PUT CHARACTERS —- Write n Characters (Byte—Aligned Access)

The specified number of characters are written from the user—supplied
buffer to the devices/file. EOL characters have no buffer

terminating properties, although they have their standard meaning

to the device/file receiving them; no EOL‘s are generated by CIO.
There is a special case that allows a single character to be

passed to CIO in the 6502 A register if the buffer length is
zero.

You set the following IOCB parameters prior to initiating the PUT
CHARACTERS operation:

COMMAND BYTE = #%0B
BUFFER ADDRESS = pointer to data buffer.
BUFFER LENGTH = number of bytes of data in buffer.

The CIO alters the following IOCB parameter as a result of the
PUT CHARACTERS operation:

STATUS = result of PUT CHARACTERS operation.

OPERATING SYSTEM C014555 -- Section S
43

GET RECORD -- Read Up To n Characters (Record-Aligned Access)

Characters are read from the device/file to the user—supplied
buffer until either the buffer is full or an EOL character is
read and put into the buffer. If the buffer fills before an EOL
is read, then the CIO continues reading characters from the
device/file until an EOL is read,, and sets the status to

indicate that a truncated record was read. No EOL will be put at
the end of the buffer.

You set the following IOCB parameters prior to calling CIO:
COMMAND BYTE = %095
BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = maximum number of bytes to read (including
the EOL character).

The CIO alters the following IOCB parameters as a result of the
GET RECORD operation:

STATUS = result of GET RECORD operation.

BYTE COUNT/BUFFER LENGTH = number of bytes read to data
buffer; this can be less than the maximum buffer length.

PUT RECORD —- Write Up To n Characters (Record—-Aligned Access)

Characters are written from the user-supplied buffer to the
device/file until either the buffer is empty or an EOL character
is written. If the buffer is emptied without writing an EOL

character to the device/file, then CID will send an EOL after the
last user—supplied character.

You set the following IOCB parameters prior to calling CIO:
COMMAND BYTE = $09

BUFFER ADDRESS = pointer to data buffer.
BUFFER LENGTH = maximum number of bytes in buffer.

The CIO alters the following IOCB parameter as a result of the
PUT RECORD operation:

STATUS = result of PUT RECORD operation.

OPERATING SYSTEM C016555 —— Section 5
44

GET STATUS -~ Return Device-Dependent Status Bytes

The device controller is sent a STATUS command, and the
controller returns four bytes of status information that are
stored in DVSTAT [O2EA].

You set the following IOCB parameters prior to calling CIO:

COMMAND BYTE = $0D

BUFFER ADDRESS = pointer to a device/filename specification
if the IOCB is not already OPEN;, see the discussion of the
implied OPEN option below.

After a GET STATUS operation, CIO will have altered the following
parameters:

STATUS = result of GET STATUS operation; see Appendix B for
a list of the possible status codes.

DVSTAT = the four-byte response from the device controller.

SPECIAL -- Special Function

Any command byte value greater than $0D is treated by CIO as a

special case. Since CIO does not know what the function is, CIO
transfers control to the device handler for complete processing
of the operation.

The user sets the following IOCB parameters prior to
calling CIO:

COMMAND BYTE > $0OD
BUFFER ADDRESS = pointer to a device/filename specification
if the IOCB is not already open; see the discussion of the

implied OPEN option below.

Dther IOCB bytes can be set up, depending upon the specific
SPECIAL command being performed.

After a SPECIAL operation, CIO will have altered the following
parameters:

STATUS = result of SPECIAL operation; see Appendix B for a
list of the possible status codes.

Other bytes can be altered, depending upon the specific
SPECIAL command.

OPERATING SYSTEM C016555 —— Section S

45

Implied OPEN Option

The GET STATUS and SPECIAL commands are treated specially by CIO;
they can use an already open IOCB to initiate the process or they
can use an unopened IOCB. I+ the IOCB is unopened, then the
buffer address must contain a pointer to a device/filename
specification, just as for the OPEN command; CIO will then open
that IOCB, perform the specified command and then close the IOCB
again.

Device/Filename Specification

As part of the OPEN command, the IOCB buffer address parameter
points to a device/filename specification, that is a string o#f
ATASCII characters in the following format:

<specification> ::= {device>[<number>]: [<filename>I<eol>
<devicel> ::= CIDIEIKIPIR!S

<number> = 112i1314!51617!8

<filename> has device-dependent characteristics.

<eol> .= %9B

The following devices are supported at this writing:

L]

C Cassette drive

D1 through DB = Floppy diskette drives #
E Screen Editor

K Keyboard

P 40-column printer

P2 = BO—column printer

R1 through R4 = RS-232-C interfaces #

S Screen display

W uwun

Devices flagged by asterisks (#) are supported by nonresident
handlers.

If <number> is not specified, it is assumed to be 1.

The following examples show valid device/filename specifications:

C: Cassette
D2: BDAT File "“BDAT" on disk drive #2
D: HOLD File "HOLD" on disk drive #1
K: Keyboard

OPERATING SYSTEM C016555 —— Section 5
46

I/0 Example

The example provided in this section illustrates a simple example of

an I/0 operation using the CID routine.

drive

. w we we

- e me wme w

1.

This code segment illustrates the simple example of reading
text lines (records) from a diskette file named TESTER on disk

#1. All symbols used are equated within the program

Opens the file

i I/0 EQUATES

although many of the symbols are in the 0S equate file.
The program performs the following steps:
‘Di: TESTER’ using IOCB #3.

2. Reads records until an error or EOF is vreached.
3. Closes the $file.

EOL= $9B i END OF LINE CHARACTER.
IOCB3= %30 i I10CB #3 OFFSET (FROM IOCB #0).
ICHID= %0340 i (HANDLER ID -- SET BY CIO).
ICDNO= ICHID+1 i (DEVICE # —— SET BY CIO).
ICCOM= ICDNO+1 i COMMAND BYTE.

ICSTA= ICCOM+1 i STATUS BYTE -- SET BY CIOD.
ICBAL= ICSTA+1 i BUFFER ADDRESS (LOW).
ICBAH= ICBAL+1 i BUFFER ADDRESS (HIGH).
ICPTL= ICBAH+1

ICPTH= ICPTL+1

ICBLL= ICPTH+1 i BUFFER LENGTH (LOW).
ICBLH= ICBLL+1 i BUFFER LENGTH (HIGH).
ICAX1= ICBLH+1 i AUX 1.

ICAX2= ICAX1+1 i AUX 2.

OPEN= $03 i OPEN COMMAND.

GETREC= %05 i GET RECORD COMMAND.

CLOSE= 0C i CLOSE COMMAND.

OREAD= %04 i OPEN DIRECTION = READ.
OWRIT= $08 i OPEN DIRECTION = WRITE.
EOF= +88 i END OF FILE STATUS VALUE.
Cilov= $E4546 i CID ENTRY VECTOR ADDRESS.

i FIRST INITIALIZE THE IOCB FOR FILE “OPEN"“.

LDX #10CB3 i SETUP TO ACCESS IOCB #3.

OPERATING SYSTEM C0O16555 —-- Section S

47

LDA
STA

LDA
STaA
LDaA
STA

LDaA
8TAa

LDaA
STA

JSR
BPL

JMP

i SETUP TO READ

TP10 LDA
STaA

LDaA
5TA
LDA
STA

i READ RECORDS.

i

Loop L.DA
STA
L.DA
STA

JER
BMI

i

i A RECORD IS NOW IN THE DATA BUFFER "BUFF"., IT IS TERMINATED BY

a8

#OPEN
ICCOM, X

#NAME
ICBAL., X
#NAME /256
ICBAH, X

#OREAD
ICAXL, X

#0
ICAX2, X

“"OPEN" THE FILE.

cIov
TP1O

ERROR

A RECORD.

#GETREC
ICCOM, X

#BUFF
ICBAL, X
#DUFF /256
ICBAH, X

#BUFFSZ
ICBLL, X

#BUFFSZ/256

ICBLH, X

cIiov
TP20

SETUP OPEN COMMAND.

SETUP BUFFER POINTER TO ...

POINT TO FILENAME.

SETUP FOR OPEN READ.

CLEAR AUX 2.

PERFORM “OPEN" OPERATION.
STATUS WAS POSITIVE -- OK.

NO -- “OPEN" PROBLEM.

SETUP “GET RECORD" COMMAND.

SETUP DATA BUFFER POINTER.

SETUP MAX RECORD SIZE ...
PRIOR TO EVERY READ.

READ A RECORD.
MAY BE END OF FILE.

OPERATING SYSTEM C016555 —— Section 5

i AN EOL CHARACTER, AND THE RECORD LENGTH IS IN “ICBLL" and "ICBLH".
i THIS EXAMPLE WILL DO NOTHING WITH THE RECORD JUST READ.

i

JMP LOooP i READ NEXT RECORD.

i NEGATIVE STATUS ON READ ——- CHECK FOR END OF FILE.

TP20 CPY #EOF i END OF FILE STATUS?
BNE ERROR i NO -- ERROR.
L.DA #CLOSE i YES -— CLOSE FILE.
STA ICCOM, X
JSR ciav i CLOSE THE FILE.
JMP # i ##% END OF PROGRAM st

i DATA REGION OF EXAMPLE PROGRAM

i

NAME . BYTE “D1: TESTER", EOL
BUFFSZ= 80 i 80 CHARACTER RECORD MAX
(INCLUDES EOL).
BUFF= * i READ BUFFER.
= #+BUFFSZ
. END

Figure 5-3 An I/0 Example

OPERATING SYSTEM C016555 ~- Section 5

Device-Specific Information

This section provides device-specific information regarding the
device handlers that interface to CIO.

Keyboard Handler (K:)

The keyboard device is a read only device with a handler that
supports the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

GET STATUS (null function)

The Keyboard Handler can produce the following error statuses:

$80 —— [BREAK] key abort.
$88 —- end-of-file (produced by pressing [CTRL] 3).

The Keyboard Handler is one of the resident handlers. It has a
set of device vectors starting at location E420.

The keyboard can produce any of the 256 codes in the ATASCII
character set (see Appendix F). Note that a few of the keyboard

keys do not generate data at the Keyboard Handler level. These
keys are described below:

L/iN\]1 — The ATARI key toggles a flag that enables/disables the
inversion of bit 7 of each data character read. The

Screen Editor editing keys are exempted from such
inversion:, however.

CAPS - The [CAPS/LOWR1 key provides three functions:

[SHIFTICCAPS/LOWR] -—- Alpha caps lock.
CCNTRLICCAPS/LOWR] —— Alpha ECTRL]I lock.
[CAPS/LOWR] == Alpha unlock.
OPERATING SYSTEM C0146555 —— Section S

50

The system powers up and will system reset to the alpha
caps lock option.

Some key combinations are ignored by the handler. such as
LCTRLY 4 through [CTRL] 9, [CTRLI O, {CTRL] 1, ECTRL] /, and
all key combinations in that the [SHIFT] and [CTRL] keys are
depressed simultaneously.

The [CTRL] 3 key generates an EOL character and returns EOF status.

The [BREAK] key generates an EDOL character and returns BREAK status.

CIO Function Descriptions

The device-specific characteristics of the standard CIO functions
(described earlier in this section) are detailed below:

OPEN

The device name is K, and the handler ignores any device number
and filename specification, if included.

There are no device-dependent option bits in AUX1 or AUXZ2.

CLOSE

No special handler actions.

GET CHARACTERS and GET RECORD

The handler returns the ATASCII key codes to CID as they are
entered, with no facility for editing.

GET STATUS

The handler does nothing but set the status to $01.

Theory of Operation

Pressing a keyboard key generates an IRQ interrupt and vectors to
the Keyboard Handler‘s interrupt service routine (see Section 6&).

The key code for the key pressed is then read and stored in data
base variable CH [O2FC]. This occurs whether or not there is an

active read request to the Keyboard Handler, and effects a one-byte

FIFO for keyboard entry. See Appendix L (EB) for a discussion of
the auto repeat feature.

OPERATING SYSTEM C016555 ~- Section 5
51

The Keyboard Handler monitors the CH variable for not containing
the value $FF (empty state) whenever there is an active read
request for the handler. When CH shows nonempty, the handler
takes the key code from CH and sets CH to $FF again. The key code
byte obtained from CH is not an ATASCII code and has the
following form:

7)
Bt Sl L S S WS
{CiS{ key code |
B s St T S S G

Where: C 1 if the L[CTRL] key is pressed.

1 if the [SHIFT] key is pressed.

n
W

The remaining six bits are the hardware key code.

The key code obtained is then converted to ATASCII using the
first of the following rules that applies:

Ignore the code if the C and S bits are both set.

If the C bit is set, process the key as a [CTRL] code.

If the S bit is set, process the key as a [SHIFT] code.

If CCTRL] lock is in effect, process alpha characters as CTRL
codes, all others as lowercase.

IF CSHIFT] lock is in effect, process alpha characters as SHIFT
codes, all others as lowercase.

Else, process as lowercase character.

e o AL

Then: If the resultant code is not a Screen Editor control code.
and if the video inverse flag is set, then set bit 7 of the
ATASCII code (will cause inverse video when displayed).

OPERATING SYSTEM C016555 —-- Section 5
92

KEY CODE TO ATASCII CONVERSION TABLE

Key Key
Code Cap
00 L
c1 J
o2 i
03 -
04 -
035 K
0é +
o7 *
o8 o
0% -
OA P
OB U
ocC RET
oD I
OE -
OF =
10 Vv
11 e
12 c
13 —
14 -
15 B
146 X
17 z
18 4
ie -
1A 3
iB &
iC LESC]
iD S
i1E 2
iF 1

[CTRL1Y 3 returns EOF status.

Lwr.
Case

&6C
&A
3B
&B
2B

24
&F

70
75
9B
69
2D
3D
76

63

&2
78
74
34
33
36
1B
35

32
31

[SHIFT]

4C
44A
34

4B
SC
SE
aF
50
55
9B
49
SF
7C
56
43

42
58
SA
24
23
26
iB
295
22
21

ECTRL.]

oC
oA
78

oB
1E
iF
OoF
10
15
9B
0%
ic
1D
16

03

Key
Code

20
21
22
23
24
25
26
27
28
29
24
2B
2C
2D
2k
2F
30
31
32
33
34
35
36
37
a8
39
3A
3B
3C
3D
3E
3F

Key
Cap

SPACE

ACKS

oDITMVADRNO

PO
>
0
n

Lwr,
Case

2C
20
2E
&E
&b
2F

72
&5
79
7F
74
77
71
39
30
37
7E
38
3C
3E
&6
&8
&4

A complement of this table (ATASCII to keystroke)

Appendix F.

Figure 5-4

Keycode to ATASCII Conversion Table

SHIFT

o8B
20
SD
4E

4D
3F

52
45
59
9F
54
57
51
28
29
27
9C
40
7D
9D
44
48
44

OPERATING SYSTEM C016555 —~— Section 5

CTRL

is given in

23

Display Handler (S:)

The display device is a read/write device with a handler
that supports the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD

GET STATUS (null function)
DRAW

FILL

The Display Handler can produce the following error statuses:

$84 ~— Invalid special command.

$8D —-- Cursor out—-of-range.

$?1 -- Screen mode > 11.

$93 —— Not enough memory for screen mode selected.

The Display Handler is one of the resident handlers, and
therefore has a set of device vectors starting at location E410.

Screen Modes

You can operate the display screen in any of 20

configurations (modes 1 through B, with or without split
screen; plus mode O, and modes 9@ through 11 without split
screen). Mode O is the text displaying mode. Modes 1 through
11 are all graphics modes (although modes 2 and 3 do display a
subset of the ATASCII character set). Modes 9 through 11
require a GTIA chip to be installed in place of the standard
CTIA chip.

TEXT MODE ©

In text mode O the screen is comprised of 24 lines of 40
characters per line. Program alterable left and right margins
limit the display area. They default to 2 and 39 (of a possible O
and 39).

OPERATING SYSTEM C0O16555 ——- Section 5
54

A program-controllable cursor shows the destination of the next

character to be output onto the screen. The cursor is visible as
the inverse video representation of the current character at the
destination position.

The text screen data is internally organized as variable length
logical lines. The internal representation is 24 lines when the
screen is cleared. Each EOL marks the end of a logical line as
text is sent to the screen. If more than 3 physical lines of text
are sent, a logical line will be formed every 3 physical lines.
The number of physical lines used to comprise a logical line (1
to 3) is always the minimum required to hold the data for that
logical line.

The text screen "scrolls"” upward whenever a text line at the
bottom row of the screen extends past the right margin, or a text
line at the bottom row is terminated by an EOL. Scrolling removes
the entire logical line that starts at the top of the screen. and
then moves all subsequent lines upward to fill in the void. The
cursor also moves upward, if the logical line deleted exceeds one
physical line.

All data going to or coming from the text screen is represented
in B-bit ATASCII code as shown in Appendix E.

TEXT MODES 1 AND 2

In text modes 1 and 2 the screen comprises either 24 lines of 20
characters (mode 1), or 12 lines of 20 characters (mode 2). The
left and right margins are of no consequence in these modes and
there is no visible cursor. There are no logical lines associated
with the data and in all regards these modes are treated as
graphics modes by the handler.

Data going to or coming from the screen is in the form shown
below:

7 0

s et T S S SRS
it C i D H
s R T T G S Y

Where:C is the colar/character—set select field

OPERATING SYSTEM CD16555 -- Section S
55

C Color Color Character

Value (default) Register Set

(see CHBAS=%EQ
Appendix
H)

0 green (PF1) bo- 7
1 gold (PFO) -
2 gold (PFO) e - _
3 green (PF1) e - _
4 red (PF3) Fo- 2
S blue (PF2) -2
& blue (PF2) e - _
7 red (PF3) e -

Character
Set
CHBAS=%E2

CHEART]1 C[ARROW]
(HEART] [ARROW1
(DIAMONDILTRIANGLE]
{DIAMONDILTRIANGLE]
[(HEART1 C[ARROW]
{HEART] CLARROW]
C(DIAMONDICTRIANGLE]
{DIAMONDIETRIANGLE]

D is a 5-bit truncated ATASCII code that selects the specific
character within the set selected by the C field. See Appendix E
for the graphics representations of the characters.

Data base variable CHBAS [02F4] allows for the selection of
either of fwo data sets. The default value of $EQC provides the
capital letters, numbers and punctuation characters; the
alternate value of $E2 provides lowercase letters and the special

character graphics set.

Figure 5-5 Text Modes 1 and 2 Data Form

GRAPHICS MODES (Modes 3 Through 11)

The screen has varying physical characteristics for each of the
graphics modes as shown in Appendix H. Depending upon the mode, a
1 to 16 color selection is available for each pixel and the
screen size varies from 20 by 12 (lowest resolution) to 320 by

192 (highest resolution) pixels.

There is no visible cursor for the graphics mode output.

Data going to or coming from the graphics screen is represented
as 1 to B8-bit codes as shown in Appendix H and in the GET/PUT

diagrams following.

SPLIT-SCREEN CONFIGURATIONS

In split-screen configurations, the bottom of the screen is

reserved for four lines of mode O text.

The text region is

controlled by the Screen Editor, and the graphics region is
controlled by the Display handler. Two cursors are maintained in
this configuration so that the screen segments can be managed

independently.

OPERATING SYSTEM C016555 —- Section 5

56

To operate in split-screen mode:, the Screen Editor must first be
opened and then the Display Handler must be opened using a
separate IOCB (with the split—screen option bit set in AUX1).

CIO Function Descriptions
The device-specific characteristics of the standard CIO functions
(described earlier in this section) are detailed below:
OPEN
The device name is S, and the handler ignores any device number ani

filename specification, if included.

The handler supports the following options:

7 o
B s et Tt Tt e S
AUX1 H ICISIWIR! i
s L e e s s st 2
Where: C = 1 indicates to inhibit screen clear on OPEN.
§ = 1 indicates to set up a split-screen configuration (for

modes 1 through 8 only}.
R and W are the direction bits (read and write).

7 0

o o o e o e e —

AUX2 H { mode H
s ST S G NS Sy S S

Where: mode is the screen mode (O through 11}.

Note: If the screen mode selected is O, then the AUX1I C and
S options are assumed to be O.

You share memory utilization with the Display Handler
information. Sharing is necessary because the Display Handler
dynamically allocates high address memory for use in generating
the screen display, and because different amounts of memory are
needed for the different screen modes. Prior to initiating an
OPEN command the variable APPMHI [OOOEJ] should contain the
highest address of RAM you need. The Screen handler

will open the screen only if no RAM is needed at or below that

address.

Upon return from a screen OPEN, the variable MEMTOP [O2ES] will
contain the address of the last free byte at the end of RAM
memory prior to the screen-required memory.

OPERATING SYSTEM C016555 —— Section 5

As a resul{ of every OPEN command, the following screen variables
are altered:

The text cursor is enabled (CRSINH = 0). The tabs are set to
the default settings (2 and 39). The color registers are set
to the default values (shown in Appendix H).
Tabs are set at positions 7,15,23, 31, 39,
47,955,63,71,79,87,95,103, 111, 119.

CLOSE

No special handler actions,

GET CHARACTERS and GET RECORD

Returns data in the following screen mode dependent forms, where
each byte contains the data for one cursor position (pixel); there
is no facility for having the handler return packed graphics data.

7 0
D s Dl T BT S T R S

H ATASCII H Mode O
L et T e T R SRS
s sl ST T S SR ST SRS
i C H D H Modes 1,2 —— C = colar/data
B D T S ST SHIP G e set.

D = truncated ATASCII.

B R an ks T L S ST SN GRS

H Zero t D | Modes 3,5,7 -——- D = color.
R s St S R S R SR SRS
L i ot S P T R SIS

H zero D! Modes 4, 46,8 —— D = color.
R s ks Sl LT S R SR SR

B s s sts Lt SHNE GRS
{ zero H D H Modes 9,10,11 -~— D = data.
R s st S T SR ST WU W ¥

Figure 5-6 Graphics Mode 3-11 GET Data Form
The cursor moves to the next position as each data byte is

returned. For mode O, the cursor will stay within the specified
margins; for all other modes, the cursor ignores the margins

OPERATING SYSTEM CO16555 ~— Section S
58

PUT CHARACTERS and PUT RECORD

The handler accepts display data in the following screen mode
dependent forms; there is no facility for the handler to receive
graphics data in packed form.

7 (o]
B, L ST SRR WA W S S
! ATASCII ! Mode ©
L K W W S S
B ey T GUNY S R S S)
t C H D H Modes 1,2 —— C = color/data
Enh Dol Dol Tol Tt Sl Tl Lot 2 set,

D = truncated ATASCII.
N LT TuuF R RN Y
H ? i D | Modes 3:,5,7 — D = color.
s At o T G SR R
B s st T S SRS S S
{ ? iD1! Modes 4, 464,8 —— D = color.
s T D e e s s sats o
Tl Lt T G SRR SR Y
! ? ! D ! Modes 9,10,11 —— D = data.
Sl Dl e e e At 3

Figure 5-7 Graphics Mode 3-11 PUT Data Form

NOTE: For all modes, if the output data byte equals $9B (EOL), that
byte will be treated as an EOL character; and if the output

data byte equals $7D (CLEAR) that byte will be treated as a
screen—-clear character.

The cursor moves to the next cursor position as each data byte is
written. For mode O, the cursor will stay within the specified
margins; for all other modes, the cursor ignores the margins.

While outputting, the Display Handler monitors the keyboard to
detect the pressing of the [CTRL] 1 key combination. When this
occurs, the handler loops internally until that key combination
is pressed again: This effects a stop/start function that
freezes the screen display. Note that there is no ATASCII code
associated with either the [CTRL] 1 key combination or the
start/stop function. The stop/start function can be controlled
only from the keyboard (or by altering database variable CH as
discussed in Appendix L, E4).

OPERATING SYSTEM C016555 —- Section 5

GET STATUS

No handler action except to set the status to %01.

DRAW

This special command draws a simulated “"straight" line from the
current cursor position to the location specified in ROWCRS
[00541 and COLCRS [0055]. The color of the line is taken from the
last character processed by the Display Handler or Screen Editor.
To force the color, store the desired value in ATACHR [0O2FB]. At
the completion of the command, the cursor will be at the location
specified by ROWCRS and COLCRS.

The value for the command byte for DRAW is $11.

FILL

This special command fills an area of the screen defined by two
lines with a specified color. The command is set up the same as
in DRAW, but as each point of the line is drawn, the routine

scans to the right performing the procedure shown below (in
PASCAL notation):

WHILE PIXEL C[ROW.COL1 = O DO
BEGIN
PIXEL [ROW,COL]1 := FILDAT;
COL := COL + 1,
IF COL > Screen right edge THEN COL := O
END;

An example of a FILL operation is shown below:

Where: ‘~’ represents the £ill operation.
‘+7 are the line points, with ‘+‘ for the endpoints.

-- set cursor and plot point.

—-— set cursor and DRAW line.

set cursor and plot point.

-— set fill data value, set cursor, and FILL.

P WUR -
1
|

OPERATING SYSTEM C016555 —- Section S
&0

FILDAT [O2FD] contains the fill data, and ROWCRS and COLCRS
contain the cursor coordinates of the line endpoint. The value
in ATACHR [O2FB] will be used to draw the line; ATACHR always
contains the last data read or written, so if the steps above
are followed exactly, ATACHR will not have to be modified.

The value for the command byte for FILL is $12.

User—~Alterable Data Base Variables

Certain functions of the Display Handler require you to

examine and/or alter variables in the 0S database. The following
describes some of the more commonly used handler variables. (see
Appendix L, B1-55, for additional descriptions).

Cursor Position

Two variables maintain the cursor position for the graphics
screen or mode O text screen. ROWCRS [00S54]1 maintains the display
row numberi; and COLCRS [Q055]1 maintains the display column
number. Both numbers range from O to the maximum number of
rows/columns, ~ 1. The cursor can be set outside of the defined
text margins with no ill effect. You can read and write this
region. The home position (0,0) for both text and graphics is the
upper left corner of the screen.

ROWCRS is a single byte. COLCRS is maintained at 2-bytes, with
the least significant byte being at the lower address.

When you alter these variables, the screen representation
of the cursor will not move until the next I/0 operation
involving the display is performed.

Inhibit/Enable Visible Cursor Display

You can inhibit the display of the text cursor on the screen
by setting the variable CRSINH [02F0] to any nonzero value.
Subsequent I/0 will not generate a visible cursor.

You can enable the display of the text cursor by setting
CRSINH to zero. Subsequent I/0 will then generate a visible
cursor.

Text Margins

The text screen has user—alterable left and right margins. The 0S8
sets these margins to 2 and 39. The variable LMARGN [00521
defines the left margin, and the variable RMARGN [00531 defines
the right margin. The leftmost margin value is 0 and the

OPERATING SYSTEM C0163555% —— Section 5

61

rightmost margin value is 39.

The margin values inclusively define the useable portion of the
screen for all operations in that you do not explicitly

alter the cursor location variables as described prior to this
paragraph.

Color Control

The OS5 updates hardware color registers using data from the 0OS
data base as part of normal Stage 2 VBLANK processing (see Section
4). Shown below are the data base variable names, the hardware
register names. and the function of each register. See Appendix H
for the mode dependent uses for the registers.

Data Base Hardware Function

COLORO COLPFO PFO -—- Playfield O

COLOR1 COLPF1 PF1 —— Playtield 1.

COLOR2 COLPF2 PF2 ~— Playfield 2.

COLOR3 COLPF3 PF3 —— Playfield 3.

COLOR4 COLBK BAK —— Playfield background.
PCOLRO CcoLPMO PMO —— Player/missile O.
PCOLR1 coLrPMl PM1 —— Player/missile 1.
PCOLR2 coLprmz PM2 —— Player/missile 2.
PCOLR3 coLPM3 PM3 —— Player/missile 3

Theory of Operation

The Display Handler automatically sets up all memory resources
required to create and maintain the screen display at OPEN time.
The screen generation hardware requires that two distinct data
areas exist for graphics modes: 1) a display list and 2) a
screen data region. A third data area must exist for text modes.
This data area defines the screen representation for each of the
text characters. Consult the ATARI Home Computer

Hardware Manual for a complete understanding of the material that
is to follow.

OPERATING SYSTEM CD16555 —~— Section S
&2

The simplified block diagram below shows the relationships
between the memory and hardware registers used to set up a screen
display (without player/missile graphics) by the 0S5 Note that

the hardware registers allow for many other possibilities.

DATA BASE HARDWARE
VARIABLE REGISTER
(Updated every
VBLANK)
B +
{ MEMTOP '
+ +
e +
+— = -+
b e e e e e e e e e e e e +
et e + Fmm———————— + o +
H Display | { SDLSTL | { DLISTL | ¢
! List R o >+ +-+
= = { 8SDLSTH | { DLISTH !
P + e ——————— + + o o e e +
H ittt +
i Screen Data (<-- SAVMSC ‘
= = 4+ +
! Graphics b ! !
{ and/or I e +
i Text !
e +
End of RAM memory
e s — —_— -+
: . + ¥ R —— + :
H { CHBAS=EQ {-——->! CHBASE +————- +
H o e e e e + e —— +
P ——— Fm———— +
{ Specials and! EQOO
{ Numbers !
o ——————— +
{ Capital i E100
i Letters H
+ — -
{ Special { E200
{ Graphics !
S e -+
i Lowercase i E300
{ Letters !
o —————— +

OPERATING SYSTEM C016555 —— Section S

Tt T e + e +
t COLOR O | i COLPFO ¢
= =—-2! COLPF1 !
{ COLOR 1 | i COLPF2 !
i COLOR 2 | t COLPF3 |
{ COLOR 3 | i COLBK H
i COLOR 4 | o +
P e +

Figure 5-8 Screen Display Block Diagram

The following relationships are present in the preceding diagram:

1.

&4

Data base variables SDLSTL/SDLSTH contain the address of
the current display list. This address is stored in the

hardware display list address registers DLISTL and DLISTH
as part of the VBLANK process

The display list itself defines the characteristics of the
screen to be displayed and points to the memory containing
the data to be displayed.

Data base variable CHBAS contains the MSB of the base address

of the character representations for the character data (text
modes only).

The default value for this variable is $EO. This variable
declares that the character representations start at memory
address EQOC (the character set provided by the OS in ROM).
Each character is defined as an B8X8 bit matvrix, requiring 8
bytes per character. 1024 bytes are required to define the
largest set, since a character code contains up to 7
significant bits (set of 128 characters). The 0S ROM contains
the default set in the region from EOOO to E3FF.

All character codes are converted by the handler from ATASCII
to an internal code (and vice versa), as shown below:

ATASCII INTERNAL
CODE CODE
O0—-1F 40-5F
20-3F 00-1F
40-5F 20-3F
L0-7F &0~-7F
80-9F CO-DF
AO—-BF 80-9F
CO~DF AO-BF
EO-FF EO-FF

OPERATING SYSTEM C0O16555 -— Section 5

—

The character set in ROM is ordered by internal code order. Three
considerations differentiate the internal code from the external
(ATASCII) code:

ATASCII codes for all but the special graphics characters were to
be similar to ASCII. The alphabetic, numeric, and punctuation
character codes are identical to ASCII.

In text modes 1 and 2 it was desired that one character subset
include capital letters, numbers, and punctuation and the ather

character subset include lowercase letters and special graphics
characters.

The codes for the capital and lowercase letters were to be
identical in text modes 1 and 2.

Database variables COLORO through COLOR4 contain the current
color register assignments. Hardware color registers receive
these values as part of the stage 1 VBLANK process: thus
providing synchronized color changes (see Appendix H).

Database variable SAVMSC points to the lowest memory address of
the screen data region. It corresponds to the data displayed at
the upper left corner of the display.

When the Display Handler receives an open command, it first
determines the screen mode from the OPEN IOCB. Then it allocates
memory from the end of RAM downward (as specified by data base
variable RAMTOP), first for the screen data and then for the
display list. The screen data region is cleared and the display
list is created if sufficient memory is available. The display
list address is stored to the database.

OPERATING SYSTEM C016555 —— Section 5

[-}]

Screen Editor (E:)

The Screen Editor is a read/write handler that uses the Keyboard
Handler and the Display Handler to provide "line-at-a—time" input
with interactive editing functions:, as well as formatted output.

The Screen Editor supports the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD

GET STATUS (null function)

See Keyboard Handler and Display Handler Sections for a
discussion of Screen Editor error statuses.

The Screen Editor is one of the resident handlers, and

therefore has a set of device vectors starting at location
E400.

The Screen Editor is a program that reads key data from the
Keyboard Handler and sends each character to the Display Handler
for immediate display. The Screen Editor also accepts data from
you to send to the Display Handler, and reads data from the
Display Handler (not the Keyboard Handler) for you. In fact,

the Keyboard Handler, Display Handler, and the Screen Editor are
all contained in one monolithic hunk of code.

Most of the behaviors already defined for the Keyboard Handler
and the Display Handler apply as well to the Screen Editor: The
discussions in this Section will be limited to deviations from
those behaviors: or to additional features that are part of the
Screen Editor only. The Screen Editor deals only with text data
(screen mode O). This Section also explains the split-screen
configuration feature.

The Screen Editor uses the Display Handler to read data from
graphics and text screens on demand. You use the Screen

Editor to determine when the program will read Screen data, and
where upon the screen the data will be read from. VYou

first locates the cursor on the screen to determine the screen
area to be readi you then press the [RETURN] key to determine
when the program will begin to read the data indicated.

OPERATING SYSTEM CO146555 -— Section S
bb

When the [RETURN] key is pressed, the entire logical line within
that the cursor resides is then made available to the calling
program: Trailing blanks in a logical line are never returned as
data, however. After all of the data in the line has been sent to
the caller (this can entail multiple READ CHARACTERS functions if
desired), an EOL character is returned and the cursor is

positioned to the beginning of the logical line following the one
Just read.

CIO Function Descriptions

The device-specific characteristics of the standard CIO
functions are detailed below:

OPEN

The device name is E, and the Screen Editor ignores any
device number and filename specification, if included.

The Screen Editor supports the following option:

+
AUX1 :
<3

Where: R and W are the direction bits (read and write).
F = 1 indicates that a “"forced read" is desired (see GET
CHARACTER and GET RECORD for more information).

CLOSE

No special handler actions.

GET CHARACTER and GET RECORD

Normally the Screen Editor will return data only when you press the
[RETURN] key at the keyboard. However, the “forced read" OPEN option
allows you to read text data without intervention. When you command a
READ operation, the Screen Editor will return data from the start of
the logical line in which the text cursor is located, and then

move the cursor to the beginning of the following logical line. A

read of the last logical line on the screen will cause the screen
data to scroll.

A special case occurs when characters are output without a
terminating EOL, and then additional characters are appended to

OPERATING SYSTEM C016555 ~- Section 5
&7

that logical line from the keyboard. When the [RETURNI] key is
pressed, only the keyboard entered characters are sent to the
caller, unless the cursor has been moved out of and then back

into the logical line, in that case all of the logical line will
be sent.

PUT CHARACTER and PUT RECORD

The Handler accepts ATASCII characters as one character per byte.
Sixteen of the 256 ATASCII characters are control codes: the EOL
code has universal meaning, but most of the other control codes
have special meaning only to a display or print device. The
Screen Editor processing of the ATASCII control codes is
explained below:

CLEAR (47D} -— The Screen Editor clears the current display of
all data and the cursor is placed at the home position (upper
left corner of the screen).

CURSOR UP ($1C) —— The cursor moves up by one physical line. The

cursor will wrap from the top line of the display to the bottom
line.

CURSOR DOWN (%1D) -- The cursor moves down by one physical line.

The cursor will wrap from the bottom line of the display to the
top line.

CURSOR LEFT ($1E) —— The cursor moves left by one column. The
cursor will wrap from the left margin of a line to the right
margin of the same line.

CURSOR RIGHT (%$1F) —— The cursor moves right by one column. The

cursor will wrap from the vight margin of a line to the left
margin of the same line.

BACKSPACE ($7E) -— The cursor moves left by one column (but never
past the beginning of a logical line), and the character at that
new position is changed to a blank (%$20).

OPERATING SYSTEM C016555 ~— Section 5
68

BET TAB ($9F) ——- The Screen Editor establishes a tab point at the
logical line posiftion at that the cursor is residing. The logical
line tab position is not synonymous with the physical line column
position since the logical line can be up to 3 physical lines in
length. For example, tabs can be set at the 15th, 30th, 45th,

60th and 75th character positions of a logical line as shown
below:

02 ? 19 29 39 Screen column #.
-l ———— Fom—————— e it Fom e ————— R L/R = margins.
e B e To——————— A logical line.
X x————== T T T- x = inaccesible
KX e e e e e e e e e e e columns.

Note the effect of the left margin in defining the limits of the
logical line.

The Handler default tab settings are shown below:

o2 9 19 29 39 Screen column #
==l ————— e e it Fom—————— R L/R = margins.
B R e T Toem————— T T A logical line.
L T————— T T e Temm———— T x = inaccesible
X x———== T ————— T-—————- T ———— T e T columns.
CLEAR TAB ($9E}) —— The Screen Editor clears the current cursor

position within the logical line from being a tab point. There is
no “clear all tab points" facility provided by the Handler.

TAB ($7F) —— The cursor moves to the next tab point in the
current logical line, or to the beginning of the next line if no
tab point is found. This function will not increase the logical
line length to accommodate a tab point outside the current length
(e.g. the logical line length is 38 characters and there is a tab
point at position 50},

INSERT LINE ($9D} —— All physical lines at and below the physical
line in that the cursor resides, are moved down by one physical
line. The last logical line on the display can be truncated as a
result. The blank physical line at the insert point becomes the
beginning of a new logical line. A logical line can be split into
two logical lines by this process, the last half of the original
logical line being concatenated with the blank physical line
formed at the insert point.

OPERATING SYSTEM C0D16555 —- Section 5

&9

DELETE LINE ($9C) -—- The logical line in that the cursor resides
is deleted and all data below that line is moved upward to fill

the void. Empty logical lines are created at the bottom of the
display.

INSERT CHARACTER ($FF) -- All physical characters at and behind
the cursor position on a logical line are moved one position to
the right. The character at the cursor position is set to blank.
The last character of the logical line will be lost when the

logical line is full and a character is inserted. The number of

physical lines comprising a logical line can increase as a result
of this function.

DELETE CHARACTER ($FE} —— The character on which the cursor
resides is removed, and the remainder of the logical line to the
right of the deleted character is moved to the left by one
position. The number of physical lines composing a logical line
can decrease as a result of this function.

ESCAPE ($1B) —-- The next non—-EOL character following this code is
displayed as data, even if it would normally be treated as a
control code. The sequence [ESCILESC] will cause the second [ESC]
character to be displayed.

BELL ($FD) -- An audible tone is generated; the display is not
modified.
END OF LINE (%9B) —— In addition to its record termination

function, the EOL causes the cursor to advance to the beginning
of the next logical line. When the cursor reaches the bottom line
of the screen, the receipt of an EOL will cause the screen data
to scroll uvpward by one logical line.

GET STATUS

The Handler takes no action other than to set the status to $01.

User—~Alterable Data Base Variables

Also see the Display Handler data base variable discussion.

OPERATING SYSTEM CD14555 —- Section 5
70

Cursor Position

When in a split-screen configuration, ROWCRS and COLCRS are associated
with the graphics portion of the display and two other variables,
TXTROW [0290] and TXTCOL [0291], are associated with the text window.
TXTROW is a single byte, and TXTCOL is 2-bytes with the least
significant byte being at the lower address. Note that the most
significant byte of TXTCOL should always be zero.

The home position (0,0) for the text window is the upper left corner
of the window.

Enable/Inhibit of Control Caodes in Text

Normally all text mode control codes are operated upon as rveceived,
but sometimes it is desirable to have the control codes displayed as
if they were data characters. This is done by setting the variable
DSPFLG [O2FE]l to any nonzero value before outputting the data
containing control codes. Setting DSPFLG to zero restores normal
processing of text control codes.

OPERATING SYSTEM C016555 —- Section S
71

Cassette Handler (C:)

The Cassette device is a read or write device with a Handler
that supports the following CI0O functions:

OPEN

CLOSE

GET
GET
PUT
PUT
GET

CHARACTERS

RECORD

CHARACTERS

RECORD

STATUS (null function)

The Cassette Handler can produce the following error statuses:

%80
$84
$88

$BA-

—— [BREAK] key abort.

—-= Invalid AUX1 byte on OPEN.

~— end-of-file.

?0 —— SIO error set (see Appendix C).

The Cassette Handler is one of the resident handlers, and therefore
has a set of device vectors starting at location E440.

€CI0 Function Descriptions

The device-specific characteristics of the standard CIO functions are
detailed below:

OPEN

The device name is C, and the Handler ignores any device number and
filename specification, if included.

The Handler supports the following option:

72

OPERATING SYSTEM C016555 —— Section 5

7 0

s ot S S SRR SR

AUX2 iCi ¢
s s S SN

Where: C = 1 indicates that the cassette is to be read/written without
stop/start between records (continuous mode).

Opening the cassette for input generates a single audible tone, as a
prompt for you to verify that the cassette player is set up

for reading (power on; Serial Bus cable connected: tape cued to start
of file; and PLAY button depressed). When the cassette is ready,

you can press any keyboard key (except [BREAK]) to initiate tape
reading.

Opening the cassette for output generates two closely spaced audible
tones, as a prompt for you to verify that the cassette player

is set up for writing (as above, plus RECORD button depressed). When
the cassette is ready, you can press any keyboard key (except

[LBREAK]1}) to begin tape writing. There is no way for the computer to
verify that the RECORD or PLAY button is depressed. It is possible for
the file not to be written, with no immediate indication of this fact.

There is a potential problem with the cassette in that when the
cassette is opened for writing, the motor keeps running until the
first record (128 data bytes) is written. If 128 data bytes are
written or the cassette is closed within about 30 seconds of the OPEN,
and no other serial bus I/0 is performed, then there is no problem.
However, if those conditions are not met, some noise will be written
to the tape prior to the first record and an error will occur when
that tape file is read later. If lengthy delays are anticipated
between the time the cassette file is opened and the time that the
first cassette record (128 data bytes) is written, then a dummy record
should be written as part of the file; typically 128 bytes of some
innocuous data would be written, such as all zeros, all %$FFs, or all
blanks ($20}.

The system sometimes emits whistling noises after cassette I/0 has
occurred. The sound can be eliminated by storing $03 to SKCTL (D20F1,
thus bring POKEY out of the two—tone (FSK} mode.
CLOSE
The CLOSE of a tape read stops the cassette motor.
The CLOSE of a tape write does the following:
Writes any remaining user data in the buffer to tape.

Writes an end—-of~file record.
Stops the cassette motor.

OPERATING SYSTEM C016555 -— Section 5
73

GET CHARACTERS and GET RECORD
The Handler returns data in the following format:

7 0
St el e e st T T e
{ data byte {
e e e &

PUT CHARACTERS and PUT RECORD
The Handler accepts data in the following format:

7 o
Lt el e s et T o
H data byte H
S e S et T T

The Handler attaches no significance to the data bytes
written, a value of $9B (EDOL) causes no special action.

GET STATUS

The Handler does no more than set the status to $01.

Theory of Operation

The Cassette Handler writes and reads all data in fixed-length records
of the format shown below:

B R et T DT neae

i1 0101011 Speed measurement bytes
et L Bt Tt Rt SRR SRS

01 01 01O 11

s T T s

{ control byte
e L .
H 128

= data

H bytes

B D R e s St SR SR
H checksum H (Managed by SI0O, not the
R ant gt st st Sl Sl el 2 Handler.)

R I

Figure 5-9 Cassette Handler Record Format

OPERATING SYSTEM C0146555 —- Section S
74

The control byte contains one of three values:
o %FC indicates the record is a full data record (128 bytes).

o $FA indicates the record is a partially full data record; you
supplied fewer than 128 bytes to the record. This case can
occur only in the record prior to the end—of-file. The number
of user—supplied data bytes in the record is contained in the
byte prior to the checksum.

o ®$FE indicates the record is an End—-of file record; the data
portion is all zeroes for an end—of—-file record.

The SIO routine generates and checks the checksum. It is part of the

tape record, but it is not contained in the Handler’s record buffer
CASBUF ([O3FD1.

The processing of the speed-measurement bytes during cassette reading
is discussed in Appendix L, D1-D7.

File Structure

The Cassette Handler writes a file to the cassette device with a file
structure that is totally imposed by the Handler (soft format). A file
consists of the following three elements:

© A 20-second leader of mark tone.

o Any number of data-record frames.

o An end—-of~file frame.

The cassette-data record frames are formatted as shown below:

frame = pre-record write tone (PRWT},
+ data record,
+ post record gap (PRG)

The nondata portions of a frame have characteristics that are

dependent upon the write OPEN mode, i.e. continuous or
start/stop.

Stop/start PRWT = 3 seconds of mark tone.
Continuous PRWT = .25 second of mark tone.

Stop/start PRG
Continuous PRG

up to 1 second of unknown tones.
from O to n seconds of unknown tones, where
n is dependent upon your program timing.

The inter-record gap (IRG) between any two records consists of

the PRG of the first record followed by the PRWT of the second
record.

OPERATING SYSTEM C0O16555 -— Section S
75

Printer Handler (P:)

The Printer device is a write-only device with a Handler that
supports the following CI0O functions:

OPEN
CLOSE
PUT CHARACTERS
PUT RECORD
GET STATUS
The Printer Handler can produce the following error statuses:

$8A-90 —-— SI0 error set (see Appendix C).

The Printer Handler is one of the resident handlers, and
therefore has a set of device vectors starting at location E430.

CID Function Descriptions

The device-specific characteristics of the standard CIO functions
are detailed below:

OPEN

The device name is P. The Handler ignores any device number and
filename specification, if included.

CLOSE

The Handler writes any data remaining in its buffer to the
printer device, with trailing blanks to fill out the line.

PUT CHARACTERS and PUT RECORD

The Handler accepts print data in the following format:

7 (o)
s ek e R S e
H ATASCII !
Bk e S Tt ©

The only ATASCII control code of any significance to the Handler
is the EOL character. The printer device ignores bit 7 of every

data byte and prints a sub set of the remaining 128 codes. (see

Appendix G for the printer character set).

The Handler supports the following print option:

OPERATING SYSTEM C014555 ——- Section S
76

7 o
D N et ok ot ¥
AUX2 { print mode H
ek Dt A e s 4

Where: $4E (N) selects normal printing (40 characters per line).
$53 (S8) selects sideways printing (29 characters per line).
$57 (W) selects wide printing (not supported by printer

device).

Any other value (including 00) is treated as a normal (N)
print select, without producing an error status.
GET STATUS
The Handler obtains a 4-byte status from the printer

controller and puts it in system location DVSTAT [O2EA]. The
format of the status bytes is shown below:

Pt e —

{ command stat. | DVSTAT + O
D Sl LT TR G SRR T S
i AUX2 of prev. | + 1
ks ks TN SR ST WY W Y Y
' timeout H + 2
R s et T SR S R S Y
{ (unused? i + 3
s st T ST ST RS I S-S

The command status contains the following status bits and
condition indications:

bit O: an invalid command frame was received.
bit 1: an invalid data frame was received.
bit 7: an intelligent controller (normally = 0O).

The next byte contains the AUX2 value from the previous operation.

The timeout byte contains a controller provided maximum timeout
value (in seconds).

Theory of Operation

The ATARI 820LTM] 40-Column Printer is a line-at—-a—-time printer rather
than a character—at-a-time printer, so your data must be buffered by
the Handler and sent to the device in records corresponding to one
print line (40 characters for normal, 29 characters for sideways).

OPERATING SYSTEM C0146555 —— Section 5
77

The printer device does not attach any significance to the EOL
character, so the Handler does the appropriate blank fill
whenever it sees an EOL.

Disk File Manager (D:)

The OS supports four unique File Management Subsystems at the
time of this writing. Version IA is the original version.

Version IB is a slightly modified version of IA and is the one
described in this document. Most of this discussion applies as
well to Version II, that handles a double-density diskette (720
256-byte sectors) in addition to the single-density diskette (720
128-byte sectors). Version III has all new file/directory/map

structures and can possibly contain changes to your interface
as well,

The File Management Subsystem includes a disk—bootable
(RAM-resident} Disk File Manager (DFM)} that maintains a
collection of named files on diskettes. Up to 4 disk drives

(D1: through D4:) can be accessed, and up to 64 files per
diskette can be accessed. The system diskettes supplied by ATARI
allow a single disk drive (D1) and up to 3 OPEN files, but

you can alter these numbers as described later in

this section.

The Disk File Manager supports the following CIO functions:

OPEN FILE

OPEN DIRECTORY
CLOSE

GET CHARACTERS
GET RECORD

PUT CHARACTERS
PUT RECORD

GET STATUS

NOTE
POINT
LOCK
UNLOCK
DELETE
RENAME
FORMAT

OPERATING SYSTEM C0O16555 —— Section 5
78

The Disk File Manager can produce the following error statuses:

$03 -- Last data from file (EOF on next read).
$88 —- end-of-file.

$8A-90 —-— SIO error set (see Appendix C).

$A0 —— Drive number specification error.

$A1 -— No sector buffer available (too many open files).
$A2 —— Disk full.

$A3 —- Fatal 1I/0 error in directory or bitmap.

$A4 -~ Internal file # mismatch (structural problem).
$A5 ~— File name specification error.

$A6 —— Point information in error.

$A7 -— File locked to this operation.

$A8 —— Special command invalid.

$A? —-— Directory full (&4 files).
$AA —— File not found.

$AB ——- Point invalid (file not OPENed for update).

CIO Function Descriptions

The device-specific characteristics of the standard CIO functions
are detailed below:

OPEN FILE

The device name is D. Up to four disk drives can be accessed (Dt
through D4). The disk filename can be from I to B8 characters in
length with an optional 1- to 3-character extension.

The OPEN FILE command supports the following options:

+
AUX1 H
+

Where: W and R are the direction bits.
WR = 00 is invalid
O1 indicates OPEN for read only.
10 indicates OPEN for write only.
11 indicates OPEN for read/write (update).

A =1 indicates appended output when W = 1.

You may use these following valid AUX1 options:

OPERATING SYSTEM C016555 -- Section 5
79

OPEN Input (AUX1 = %04)

The indicated file is opened for input. Any wild-card characters
are used to search for the first match. If the file is not found,
an error status is returned, and no file will be opened.

OPEN Output (AUX1 = $08)

The indicated file is opened for output starting with the first
byte of the file, if the file is not locked. Any wild-card
characters are used to search for the first match. If the file
already exists, the existing file will be deleted before opening

the named file as a new file. If the file does not already exist,
it will be created.

A file opened for output will not appear in the directory until
it has been closed. If an output file is not properly closed,
some or all of the sectors that were acquired for it can be lost
until the disk is reformatted.

A file that is opened for output can not be opened concurrently
for any other access.

OPEN Append (AUX1 = %09)

The indicated file is opened for output starting with the byte
after the last byte of the existing file (that must already
exist), if the file is not locked. Any wild-card characters are
used to search for the first match.

I+ a file opened for append is not properly closed, the appended
data will be lost. The existing file will remain unmodified and
some or all of the sectors that were acquired for the appended
portion can be lost until the diskette is reformatted.

OPEN Update (AUX1 = %0C)

The indicated file (that must already exist) will be opened for
update provided it is not locked. Any wild-card characters are
vused to search for the first match.

The GET, PUT, NOTE and POINT operations are all valid, and can be
intermixed as desired.

I# a file opened for update is not properly closed, a sector’s

worth of information can be lost to the file. A file opened for
update can not be extended.

OPERATING SYSTEM C016555 —— Section 5
80

Device/Filename Specification

The Handler expects to find a device/filename specification of
the following form:

Di<{number>]: <filename><EOL>

where:

<number> .= 1121314

<filename> = [<primary2>lL. [Cextension>ll< terminator>

<primary> ::= an uppercase alpha character followed by O to 7
alphanumeric characters. I+ the primary name is
less than 8 characters, it will be padded with
blanks:; if it is greater than B characters, the
extra characters will be ignored.

“extension> ::= Zero to 3 alphanumeric characters. If the
extension name is missing or less than 3
characters, it will be padded with blanks; i+t
it is greater than 3 characters, the extra
characters will be ignored.

<terminatory ::= CEDOL>{<blank>

Figure 5-10 Device/Filename Syntax

The following are all valid device/filenames for the diskette:

Di: GAME. SRC

D: MANUALS
D: . WHY
D3: FILE.

D4: BRIDGE. 002

Filename Wildcarding

The filename specification can be further generalized to include
the use of the "wild-card" characters % and ?. These wildcard
characters allow portions of the primary and/or extension to be
abbreviated as follows:

The ? character in the specification allows any filename
character at that position to produce a "match. " For example, WH?
will match files named WHO, WHY. WH4, etc.., but not a file named
WHAT.

OPERATING SYSTEM C016555 —— Section §

B1

The * character causes the remainder of the primary or extension
field in that it is used to be effectively padded with 7
characters. For example, WH# will match WHO, WHEN, WHATEVER, etc.

Some valid uses of wild-card specifications are shown below:

#. SRC Files having an extension of SRC.

BASIC. Files named BASIC with any extension.

*, 3 All files.

H*. ? Files beginning with H and having a 0 or 1

character extension.

If wildcarding is used with an OPEN FILE command. the first file
found (if any) that meets the specification will be the one (and
only one) opened.

OPEN DIRECTORY

The OPEN DIRECTORY command allows you read directory

information for the selected filemame(s), using normal GET
CHARACTERS or GET RECORD commands. The information read will be
formatted as ATASCII records, suitable for printing:, as shouwn
below. Wildcarding can be used to obtain information for multiple
files or the entire diskette.

The OPEN DIRECTORY command uses the same CIO parameters as a standard
OPEN FILE command:

COMMAND BYTE = 303
BUFFER ADDRESS = pointer to device/filename specification.
AUX1 = 306

After the dirvectory is opened, a record will be returned to the
caller for each file that matches the OPEN specification. The
record, that contains only ATASCII characters, is formatted as
shown below:

1
123456789201 23465678

+ +—+
primary name | ext ibicountie!
+ +—+

+ ™
|
+
i
+
i
+
I
+
I
+
i
+
i

OPERATING SYSTEM C0O16555 —— Section 5
82

Where: s = # or ‘ ‘, with # indicating file locked.
b = blank.
primary name = left—justified name with blank fill.
ext = left—justified extension with blank fill
b = blank.
count = number of sectors comprising the file.

e = EOL ($9B).

After the last filename match record is returned, an additional
record is returned. This record indicates the number of uvnused

sectors available on the diskette. The format for this record is shown
below:

i
123456789201 23454¢67
R s s St TS SO SNRY G S ST GRE ST QU S SIS
icount! F R E E SECTOR Ste!
s s T e s o, ST GNir Qiyr U U W W S S

Where: count = the number of unused sectors on the diskette.
e = EOL ($9B).

The EOF statuses ($03 and $88) are returned as in a normal data
file when the last divrectory record is read.

The opening of another diskette file while the directory read is

open will cause subsequent directory reads to malfunction, so
care must be taken to avoid this situation.

CLOSE

Upon closing a file read, the Handler releases all internal
resources being used to support that file.

Upon closing a file write, the Handler:

o writes any residual data from its file buffer for that file
to the diskette.

o0 updates the directory and allocation map for the associated
diskette.

0 releases all internal resources being utilized to support
that +ile

GET CHARACTERS and GET RECORD

Characters are read from the diskette and passed to CID as a raw
data stream. None of the ATASCII control characters have any

special significance. A status of $88 is returned if an attempt
is made to read past the last byte of a file.

OPERATING SYSTEM C016555 -- Section S
83

PUT CHARACTERS and PUT RECORD

Characters are obtained from CID and written to the diskette as a raw

data stream. None of the ATASCII control characters have any special
significance.

GET STATUS

The indicated file is checked and one of the following status
byte values is returned in ICSTA and register Y:

$01 —— File found and unlocked.
$A7 —— File locked.
$AA —— File not found.

Special CID Functions

The DFM supports a number of SPECIAL commands, that are device
specific. These are explained in the paragraphs that follow:

NOTE (COMMAND BYTE = $25)

This command returns to the caller the exact diskette location of

the next byte to be read or written, in the variables shown
below:

ICAX3 = LSB of the diskette sector number.
ICAX4 = MSB of the diskette sector number.
ICAXS5 =

relative sector displacement to byte (0-124).

POINT (COMMAND BYTE = $26)

This command allows you to specify the exact diskette location of
the next byte to be read or written. In order %o use this commmand,
the file must have been opened with the “update" option.

ICAX3 = LSB of the diskette sector number.
ICAX4 = MSB of the diskette sector number.
ICAXS =

relative sector displacement to byte (0-124).

OPERATING SYSTEM C016555 —— Section 5
84

LOCK

This command allows you to prevent write access to any

number of named files. Locked files can not be deleted, renamed,
nor opened for output unless they are first unlocked. Locking a
file that is already locked is a valid operation. The Handler
expects a device/filename specification; then all occurrences of
the filename specified will be locked, using the wild-card rules.

You set up these following IOCB parameters prior to
calling CIO:

COMMAND BYTE = %23
BUFFER ADDRESS = pointer to device/filename specification.

After a LOCK operation, the following IOCB parameter will have
been altered:

STATUS = result of LOCK operation; see Appendix B for a list
of possible status codes.

UNLOCK

This command allows you to remove the lock status of any

number of named files. Unlocking a file that is not locked is a
valid operation. The Handler expects a device/filename
specification; then all occurrences of the filename specified
will be unlocked, using the wild-card rules.

You set up these following IOCB parameters prior to
calling CIO:

COMMAND BYTE = %24
BUFFER ADDRESS = pointer to device/filename specification.

After an UNLOCK operation, the following IOCB parameter will have been
altered:

STATUS = result of UNLOCK operation; see Appendix B for a
list of possible status codes.

DELETE

This command allows you to delete any number of unlocked

named files from the directory of the selected diskette and to
deallocate the diskette space used by the files involved. The
Handler expects a device/filename specification; then all
occurences of the filename specified will be deleted, using the
wild-card rules.

OPERATING SYSTEM C016555 ~~ Section 5
85

You set up these following IOCB parameters prior to
calling CIO:

COMMAND BYTE = %21
BUFFER ADDRESS = pointer to device/filename specification.

After a DELETE operation, the following IOCB parameter will have
been altered:

STATUS = result of DELETE operationi see Appendix B for a list of
possible status codes

RENAME

This command allows you to change the filenames of any
number of unlocked files on a single diskette. The Handler
expects to find a device/filename specification that follows:

{device spec>:{filename spec>,<filename spec>CEOL>

All occurrences of the first filename will be replaced with the
second filename, using the wild—-card rules. No protection is
provided against forming duplicate names. Once formed, duplicate
names cannot be separately renamed or deleted; however, an OPEN
FILE command will always select the first file found that matches
the filename specification, so that file will always be
accessible. The RENAME command does not alter the content of the
files involved, merely the name in the directory.

Examples of some valid RENAME name specifications are shown
below:

D1:3. SRC, . TXT
D: TEMP. FDATA
D2:Fx*, F% OLD

You set up these following IOCB parameters prior to
calling CIO:

COMMAND BYTE = %20
BUFFER ADDRESS = pointer to device/filename specification.

After a RENAME operation, the following IOCB parameter will have
been altered:

STATUS = result of RENAME operation; see Appendix B for a
list of possible status codes.

OPERATING SYSTEM C016559% —- Section S
86

FORMAT

Soft-sector diskettes must be formatted before they can store
data. The FORMAT command allows you to physically format a
diskette. The physical formatting process writes a new copy of
every sector on the soft-sectored diskette, with the data portion
of each sector containing all zeros. The FORMAT process creates
an “"empty" non system diskette. When the formatting process is
complete, the FMS creates an initial Volume Table of Contents
(VTOC} and an initial File Directory. The boot sector (#1) is
permanently reserved as part of this process.

You set up these following IOCB parameters prior to
calling CIO:

COMMAND BYTE = S$FE
BUFFER ADDRESS = pointer to device specification.

After a FORMAT operation, the following IOCB parameter will have
been altered:

STATUS = result of FORMAT operation: see Appendix B for a
list of possible status codes.

To create a system diskette, a copy of the boot file must then be
written to sectors #2-n. This is accomplished by writing the file
named DOS.SYS. This is a name that is recognized by the FMS even
though it is not in the directory initially.

Theory of Operation

The resident 0OS initiates the disk-boot process (see Section 10).
The 0S reads diskette sector #1 to memory and then transfers
control to the "boot continuation address" (boot address + 6).
The boot-continuation program contained in sector #1 then
continues to load the remainder of the File Management Subsystem
to memory using additional information contained in sector #1.
The File Management Subsystem loaded, will contain a Disk File
Manager ,and optionally, a Disk Utilities (DOS) package.

When the boot process is complete, the Disk File Manager will
allocate additional RAM for the creation of sector buffers.

Sector buffers are allocated based upon information in the boot
record as shown below:

Byte 9 = maximum number of open files: one buffer per (the
maximum value is 8).

Byte 10 = drive select bits; one buffer per (1-4 only).

OPERATING SYSTEM C016555 —- Section S
87

The Disk File Manager will then insert the name D and the Handler
vector table address in the device table.

NOTE: There is a discrepancy between the Disk File Manager’s
numbering of diskette sectors (0-719) and the disk controller’s
numbering of diskette sectors (1-720); as a result, only sectors
1- 719 are used by the Disk File Manager.

The Disk File Manager uses the Disk Handler to perform all
diskette reads and writes; the DFM’s function is to support and

maintain the directory/filesbitmap structures as described in the
following pages:

OPERATING SYSTEM C016555 —- Section 5
88

FMS Diskette Utilization

The map below shows the diskette sector utilization for a
standard 720 sector diskette.

o e o e e e +
{ BOOT record H Sector 1

e e e e e e +

H FMS BOOT H Sector 2 -+

= file = H

H DOS. SYS H Sector n +— Note 1
v o e i e e s e + H

H User H Sector n+l -+

= File =

- Area H Sector 359 ($1&67)
e e e e e e e v +

! VTOC(note 2} | Sector 360 ($168)
e e e e i e e e +

H File H Sector 361 ($169)
= Directory =

H H Sector 368 (%$170)
o e e e +

t User H

= File =

H Area H Sector 719 ($2CF)
B +

H unused H Sector 720 ($2D0)
o e e e +

Figure S5-11 File Management Subsystem Diskette Sector Utilization
Map

NOTE 1 — If the diskette is not a system diskette, then your

File Area starts at sector 2 and no space is reserved for the FMS
BOOT file. However, “DOS" (D0S.SYS and DUP. SYS) may still be
written to a diskette that has already used sectors "“2-M. “

NOTE 2 -- VTOC stands for Volume Table of Contents.

OPERATING SYSTEM C016555 -— Section 5
89

FMS Boot Record Format

The FMS BOOT record (sector #1) is a special case of diskette—-booted
software (see Section 10). The format for the FMS BOOT record is
shown below:

e e e e e +

{ boot flag = 0 | Byte O

o e e e e +

{ # sectors = 1 ! i

Fom e +

{ boot address H 2

+ +

| = 0700 H

e ———— e +

H init address H 4

+ +

H H

o e o e e +

H JMP = $4B H &

+ +

H boot read H

+ continuvation <+

H address :

e e e e e e e + ———

{ max files = 3 | H ? Note 1
B i T ——— + !

{ drive bits = 1 | H 10 Note 2
o ——————— + !

t alloc dive = O | H 11 Note 3
e e o e e e e e + !

{ boot image end | H

+ + H FMS
{ address + 1 H Fom e — configuration
o — e e + { data
{ boot flag <> O | : 14 Note 4
e + !

{ sector count H i 15 Note 5
P e + H

H DOS. 8YS i H

+ starting + :

i sector number } :
e e e e e + ———

code for second!

1

{ phase of boot |
Figure 5-12 File Management Subsystem Boot Record Format

OPERATING SYSTEM C016555 —-— Section S5
70

NOTE 1

NOTE 2

NOTE 3

NOTE 4

NOTE S

Byte ? specifies the maximum number of concurrently open
files to be supported. This value can range from 1| to B.

Byte 10 specifies the specific disk drive numbers to be
supported using a bit encoding scheme as shown below:

76543210
Rk o S S I S

H 14131211! where a 1 indicates a selected drive.
D s o SRl ST SR ST W WY

Byte 11 specifies the buffer allocation direction, this
byte should equal O.

Byte 14 must be nonzero for the second phase of the boot
process to initiate. This flag indicates that the file
DOS. SYS has been written to the diskette.

This byte is assigned as being the sector count for the
DOS. 8YS file. It is actually an unused byte.

OPERATING SYSTEM C016555 —-- Section S

21

Boot Process Memory Map

The diagram below shows how the boot sector (part of file
DOS. 8YS) and following sectors are loaded to memory as part of
the boot process.

o e e e e e e + Memory address 0700
{ data from boot | H

= sector read hy = H

{ resident 0S H 077C
B e —— +

i data from rest | 077D
i of DOS. SYS H H

{ read by the ! H

= program in the = b

{ boot sector. H H

o e e e e e e + end of boot

Figure 5-13 File Management Subsystem Boot Process Memory Map

OPERATING SYSTEM C016555 —— Section S5
P2

Volume Table of Contents

The format for the FMS volume table of contents (VTOC, sector

360} is shown in the diagram below:

directory type
maximum (lo)
sector #

= 02C95 (hi)

o o s ot o S dotin ot T Spee ey O e s

number of (lo)
sectors
available (hi)

oo e o . e " o e Gty SR $Sewn Seain S S e

———— " (e s o So0TS T o S Wt ety SO S Sre

—— o ats 1 oot Goere G40 v St Sovte S i G o S (e

Byte 0O Note 1

1 Note 2
3 Note 3
i0

Figure 5-14 File‘Management Subsystem Volume Table of Contents

The volume bit map organization location follows:

7

c

R s kT e T
i1 2345 6 7
i s S e S s

1
1

8 9 .

et b

Byte 10 of VTOC
i1

99

Figure S5-15 File Management Subsystem Volume Bit Map

At each map bit
is in use and a

NOTE 1 - The dir

NOTE 2 — The max
incorre

position, a O indicates the corresponding sector
i indicates that the sector is available.

ectory type byte must equal O.

imum sector number is not used because it is
ctly set to 709 decimal. The true maximum sector
number is actually 719 for the DFM.

OPERATING SYSTEM C016555 —— Section 5

3

NOTE 3 - The number of sectors available is initially set to 709
after a diskette is freshly formatted; this number is
ad justed as files are created and deleted to show the
number of sectors available. The sectors that are
initially reserved are 1 and 360-3648.

File Directory Format

The FMS reserves eight sectors (361-348) for a file directory.
Each sector containing directory information for up to eight
files, thus providing for a maximum of 44 files for any volume.
The format of a single 1&~-byte file entry is shown below:

P —————— e +

H flag byte H Byte O
B T U, +

| sector (lo) | i
+ count +

i (hi) |

B T +

t starting (lo) | 3
+ sector +

{ number (hi) |

e Ty —— +

{ (1) | 5]
+ +

H (2) !

+ +

H (3 |

+ +

H file (4) |

+ +

H name (5) |

+ +

H primary (6) |

+ +

H (7) |

+ +

H (8) 1|

P ————— e e +

H file (1) ¢ 13
+ +

H name (2) |

+ +

H extension (3) |

P ————— +

Figure 5-16é File Directory Format

Where the flag byte has the following bits assigned:

OPERATING SYSTEM CO16555 —- Section 5
94

bit 7 = 1 if the file has been deleted.
bit & = 1 if the file is in use.

bit S =1 if the file is locked.

bit O =1 if OPEN output.

The flag byte can take on the following values:

$00 = entry not yet used (no file).

$40 = entry in use (normal CLOSEd file).
$41 = entry in use (OPEN output file).

$60 = entry in use (locked file).

$80 = entry available (prior file deleted).

Sector count is the number of sectors comprising the file.

FMS File Sector Format

The format of a sector in your data file is shown below:

7 o

Bt D e e e s

H data i +0

f :

Lt DL T St DT L et T

t file # thi §© +125
s s it T SR S +
iforward pointer! +124
s el e

{S! byte count | +127
e et L T S

Figure S5-17 File Management Subsystem File Sector Format

The FMS uses the file # to verify file integrity. The file #

is a redundant piece of information. The file number field
contains the value of the directory position of that file. If a
mismatch occurs between the file’s directory position, and the
file number as contained in each sector, then the DFM will
generate the error $A4.

The forward pointer field contains the 10-bit value for the
diskette sector number of the next sector of the file. The
pointer equals zero for the last sector of a file.

The S bit indicates whether or not the sector is a “short sector"
(a sector containing fewer than 125 data bytes). S is equal to
1 when the sector is short.

OPERATING SYSTEM C014555 —- Section 5
5

The byte—count field contains the number of data bytes in the
sector.

Non—-CIO 1/0

Some portions of the I/0 subsystem are accessed independently of

the Central I/0 Utility (CIO); this section discusses those
areas.

Resident Device Handler Vectors

All of the 0OS ROM resident device handlers can be accessed via
sets of vectors that are part of the 0OS ROM. These vectors
increase the speed of I/0 operations that utilize fixed device
assignments, such as output to the Display Handler. For each

resident Handler there is a set of vectors ordered as shown
below:

P e +

+- OPEN -+ +0
e i e +

+~ CLOSE -+ +2
F o ————————— +

+- GET BYTE -+ +4
o e et e +

+- PUT BYTE -+ +6
e e e e e +

+~ GET STATUS -+ +8
e ————————— +

+- SPECIAL -+ +10
e e TS p—— +

+- JMP -+ +12
+= INIT -+

e e —— +

+~ SPARE -+

+- BYTE -+

P ————————— +

Figure 5-18 Resident Device Handler Vectors

See Section ? for a detailed description of the data interface
for each of these Handler entry points.

Each of the vectors contains the address (lo,hi) of the Handler
entry point minus 1. A technique similar to the ane shown below
is required to access the desired routines:

OPERATING SYSTEM C016555 —- Section S
6

VTBASE=%E400 i BASE OF VECTOR TABLE.

{.DX #xx i OFFSET TO DESIRED ROUTINE.
L DA data
JBR GOVEC i SEND DATA TO ROUTINE.
LDX #yy i OFFSET TO DIFFERENT ROUTINE.
JSR GOVEC i GET DATA FROM ROUTINE.
STA data
GOVEC TAY i SAVE REGISTER A.
LDA VTBASE+1, X i ADDRESS MSB TO STACK.
PHA
LDA VTBASE, X i ADDRESS LSB TO STACK.
PHA
TYA i RESTORE REGISTER A.
RTS i JUMP TO ROUTINE.

The JMP INIT slot in each set of vectors Jumps to the Handler
initialization entry (not minus 1).

The base address of the vector set for each of the resident
handlers is shown below:

Screen Editor (E:) E400.
Display Handler (S:) E410.
Keyboard Handler (K:) E420.
Printer Handler (P:) E430.
Cassette Handler (C:) E440.

The resident diskette Handler is not CIO-compatible, so its
interface does not use a vector set.

Resident Diskette Handler

The resident Diskette Handler (not to be confused with the Disk
File Manager} is responsible for all physical accesses to the
diskette. The unit of data transfer for this Handler is a single
diskette sector containing 128 data bytes.

Communication between you and the Diskette Handler is

effected using the system’s Device Control Block (DCB), that is

also used for Handler/SIO communication (see Section 9). The DCB
is 12 bytes long. Some bytes are user—alterable and some are for
use by the Diskette Handler and/or the Serial I/0 Utility (SIO).
You supply the required DCB parameters and then do a JSR

DSKINY [E4531.

OPERATING SYSTEM C016555 —— Section 5
97

Each of the DCB bytes will now be described, and the
system—equate file name for each will be given.

SERIAL BUS ID ~-- DDEVIC [03001]

The Diskette Handler sets up this byte to contain the Serial Bus ID
for the drive to be accessed. It is not user—alterable.

DEVICE NUMBER —- DUNIT (03011

You set up this byte to contain the disk drive number to be
accessed (1 - 4).

COMMAND BYTE —- DCOMND [03021

You set up this byte to contain the disk device command to

be performed.

STATUS BYTE —- DSTATS [03031

This byte contains the status of the command upon return to the
caller. See Appendix C for a list of the possible status codes.
BUFFER ADDRESS —-- DBUFLO {03041 and DBUFHI [03051]

This 2~-byte pointer contains the address of the source or
destination of the diskette sector data. You need not supply

an address for the disk status command. The Disk Handler will
obtain the status and insert the address of the status buffer
into this field.

DISK TIMEDUT VALUE —— DTIMLO LCLO306&1

The Handler supplies this timeout value (in whole seconds) for
use by SIO.

BYTE COUNT -- DBYTLO [03081 and DBYTHI [030%91

This 2-byte counter indicates the number of bytes transferred to
or from the disk as a result of the most recent command, and is
set up by the Handler.

SECTOR NUMBER —-- DAUX1 [030Al1 and DAUX2 [0O30B1]

This 2-byte number specifies the diskette sector number (1 - 720}
to read or write. DAUX1 contains the least significant byte, and

OPERATING SYSTEM C0O16555 —— Section S
?8

DAUX2 contains the most significant byte.

Diskette Handler Commands

There are five commands supported by the Diskette Handler:

GET SECTOR (PUT SECTOR —-##% not supported by current handler ##%)

PUT SECTOR WITH VERIFY
STATUS REQUEST
FORMAT DISK

GET SECTOR (Command byte = $52)

The Handler reads the specified sector to your buffer and returns the
operation status. You set the following DCB parameters prior to
calling the Diskette Handler:

COMMAND BYTE = $52.
DEVICE NUMBER = disk drive number (1-4).
BUFFER ADDRESS = pointer to your 128-byte buffer.

SECTOR NUMBER = sector number to read.

Upon return from the sector, several of the other DCB parameters
will have been altered. The STATUS BYTE will be the only
parameter of interest to you, however.

PUT

3343

The
the

SECTOR (Command byte = $50)

Not supported by current Handler s
(But can be accessed through SIO directly.)

Handler writes the specified sector from your buffer and returns
operation status. You set the following DCB parameters prior to

calling the Diskette Handler:

COMMAND BYTE = $50.
DEVICE NUMBER = disk drive number (1-4).

BUFFER ADDRESS = pointer to your 128 byte buffer.

SECTOR NUMBER = sector number to write.

Upon return from the operation, several of the other DCB parameters
will have been altered. The STATUS BYTE will be the only one of
interest you, however.

OPERATING SYSTEM C016555 —- Section S

99

PUT SECTOR WITH VERIFY (Command Byte = $57)

The Handler writes the specified sector from your buffer

and returns the operation status. This command differs from PUT
SECTOR in that the diskette controller reads the sector data after
writing to verify the write operation. Aside from the COMMAND

BYTE value, the calling sequence is identical to PUT SECTOR.

STATUS REQUEST (Command byte = $53)

The Handler obtains a 4-byte status from the diskette controller and

puts it in system location DVSTAT [O2EA]. The operation status
format is shown below:

7 0
B s ot S S ORI G RS
{ command stat. | DVSTAT + O
s Lt T S PR W W S
{ hardware stat. |
B R e T '

!
EY
1

1]
+

]

H timeout
e R s o, v una .
{ (unused)

S St T Ll e e S anh se
Figure 5-19. DVSTAT 40-Byte Operation Status Format

The command status contains the following status bits:

Bit 0 = 1 indicates an invalid command frame was received.
Bit 1 = 1 indicates an invalid data frame was received.
Bit 2 = 1 indicates that a PUT operation was unsuccessful.
Bit 3 = 1 indicates that the diskette is write protected.
Bit 4 = 1 indicates active/standby.

The hardware status byte contains the status register of the
INS1771~1 Floppy Diskette Controller chip used in the diskette
controller. See the documentation for that chip to obtain
information relating to the meaning of each bit in the byte.

The timeout byte contains a controller—-provided maximum timeout
value (in seconds) to be used by the Handler.

You set the following DCB parameters prior to calling
the Diskette Handler:

COMMAND BYTE = $53.
DEVICE NUMBER = disk drive number (1-4).

Upon return from the operation, several of the other DCB parameters
will have been altered. The STATUS BYTE will be the only one of

OPERATING SYSTEM C0O16555 -~ Section 9
100

interest to you. however.

FORMAT DISK (Command Byte = $21)

The Handler commands the diskette controller to format the entire
diskette and then to verify it. All bad sector numbers (up to a
maximum of &63) are returned and put in the supplied buffer,
followed by two bytes of all 1‘s ($FFFF). You set up the
following DCB parameters prior to calling the Diskette Handler:

COMMAND BYTE = $21.
DEVICE NUMBER = disk drive number (1-4).

BUFFER ADDRESS = pointer to your 128-byte buffer.

Upon return, you might be interested in the following DCB parameters:

STATUS BYTE = status of operation.

BYTE COUNT = number of bytes of bad sector information in
your buffer, not including the $FFFF terminator. If there
are no bad sectors, the count will equal zero.

Serial Bus I/0

Input/Output to devices other than the keyboard, the screen, and
the ATARI Computer controller port devices, must utilize the
Serial I/0 bus. This bus contains data, control, and clock lines
to be used to allow the computer to communicate with external
devices on this “daisychained" bus. Every device on the bus has
4 unique identifier and will respond only when directly
addressed.

The resident system provides a Serial I/0 Utility (SI0O), that
provides a standardized high—level program interface to the bus.
SI0 is utilized by the resident Diskette, Printer, and Cassette
handlers, and is intended to be used by nonresident handlers (see
Section 9), or by applications: as well. For a detailed
description of the program/SI0O interface and for a detailed bus
specification refer to Section 9.

OPERATING SYSTEM C016555 ~- Section 5

101

& INTERRUPT PROCESSING

Section 6 describes system actions for the various interrupt
causing events, defines the many RAM vectors and provides
recommended procedures for dealing with interrupts.

The 6302 microcomputer processes three general interrupt types:
chip-reset, nonmaskable interrupts (NMI) and maskable interrupts
(IRG). The IRG interrupt type can be enabled and disabled using
the 6302 CLI and SEI instructions. The NMI type cannot be
disabled at the processor level; but the NMI interrupts other
than [SYSTEM. RESET] key can be disabled at the ANTIC chip.

The system events that can cause interrupts are listed below:
chip-reset - power-up

NMI - Display list interrupt (unused by 0OS)
vertical-blank (S50/60 Hz)
{SYSTEM. RESET] key

IRG - Serial bus output ready
Serial bus output complete
Serial bus input ready
Serial bus proceed line (unused by system}
Serial bus interrupt line (unused by system)
POKEY timers 1, 2 and 4
Keyboard key
EBREAK] key
6502 BRK instruction (unused by 0OS)

Figure 6~1 List of System—Interrupt Events

OPERATING SYSTEM CO14555 ~~ Section &
102

The chip-reset interrupt is vectored via location FFFC to E477,
where a JMP vector to the power—up routine is located. All NMI
interrupts are vectored via location FFFA to the NMI interrupt
service routine at E7B4, and all IRQ interrupts are vectored
via location FFFE to the IRQ interrupt service routine at E&F3;
at that point the cause of the interrupt must be determined by
a series of tests. For some of the events there are built in
monitor actions and for other events the corresponding
interrupts are disabled or ignored. The system provides RAM
vectors so that you can intercept interrupts when

necessary.

CHIP-RESET

The 0S generates chip-reset in response to a power—up condition.
The system is completely initialized (see Section 7).

NONMASKABLE INTERRUPTS

When an NMI interrupt occurs, control is transferred through

the ROM vector directly to the system NMI interrupt service
routine. A cause for the interrupt is determined by examining
hardware register NMIST [D4OF]. The NMI makes a jump through the
global RAM vector VDSLST [0200] if a display list interrupt is
pending. The 0S does not use display list interrupts, so VDSLST
is initialized to point to an RTI instruction, and you must not
cthange it before VDSLST generates a display interrupt.

If the interrupt is not a display-list interrupt, then a test is
made to see if it is a [SYSTEM RESET] key interrupt. If so. then a
Jump is made to the system reset initialization routine (see Section
7 for details of system reset initialization}.

If the interrupt is neither a display list interrupt nor a
[SYSTEM. RESET] key interrupt; then it is assumed to be a
vertical-blank (VBLANK) interrupt. and the following actions
occur:

Registers A, X and Y are pushed to the stack.

The interrupt request is cleared (NMIRES C[D40OF1).

A jump is made through the "immediate" vertical-blank global
RAM vector VVBLKI [0222]1 that normally points to the Stage 1
VBLANK processor.

The following actions occur assuming that you have not changed VYVBLKI.

OPERATING SYSTEM CD146555 -- Section &
103

The stage 1 VBLANK processor is executed.

The 0S5 tests to see if a critical code section has been
interrupted. If so; then all registers are restored, and an
RTI instruction returns from the interrupt to the critical
section. A critical section is determined by examining the
CRITIC flag [0042], and the processor I bit. If either are
set, then the interrupted section is assumed to be critical.

If the interrupt was not from a critical section, then tha
stage 2 VBLANK processor is executed.

The 0S ¢then jumps through the “"deferred" vertical-blank
global RAM vector VBLKD [02241, that normally points to the
VBLANK exit routine.

The following actions occur assuming that you have not changed VVBLKD.
o The 6502 A/ X and Y registers are restored.

o An RTI instruction is executed.

NOTE: VYou can alter the deferred and immediate

VBLANK RAM vectors, but still enable normal system processes; or
restore original vectors without having to save them. The
instruction at E4SF is a JUMP to the stage 1 VBLANK processor; the
address at [E460,2] is the value normally found in VBLKI. The
instruction at E462 is a JMP to the V3LANK exit routine; the
address at [E4463.2] is the value normally found in VVBLKD. These
ROM vectors to stage 1 VBLANK processor and to the VBLANK exit
routine will accomplish your goal.

NOTE: Every VBLANK interrupt jumps through vector VWBLKI. Only
VBLANK interrupts from noncritical code sections Jump through
vector VWVBLKD.

Stsge 1 VBLANK Process

The following stage 1 VBLANK processing is performed at every
VBLANK interrupt:

The stage 1 VBLANK process increments the 3-byte frame
counter RTCLOK [0012-00141; RTCLOK+0O is the MSB and RTCLOK+2
is the LSB. This counter wraps to zero when it overflows
(every 77 hours or so), and continues counting.

The Attract mode variables are processed (see Appendix L,
B10-123}.

The stage 1 VBLANK process decrements the System Timer 1
CDTMViI [0218,21 if it is nonzero; if the timer goes from

OPERATING SYSTEM C016555 —-— Section &
104

nonzero to zero then an indirect JUSR is performed via CDTMAL
£0226,21.

Stage 2 VBLANK Process

The stage 2 VBLANK processing performs the following for those
VBLANK interrupts that do not interrupt critical sections:

The stage 2 VBLANK process clears the 6502 processor I bit.
This enables the IRG interrupts.

The stage 2 VBLANK process updates various hardware
registers with data from the 0S data base, as shown below:

Data Base Hardware Reason for Update
Item Register

SDLSTH {02311 DLISTH [D4031 Display list start
SDLSTL [02301 DLISTL [D402)]

SDMCTL [O022F] DMACTL L[D4001]

CHBAS [02F41] CHBASE - LD4091

CHACT ([O02F31 CHACTL [D4011

GPRIOR L[026F1] PRIOR ([DO1B1

COLORO f£02C41 COLPFO L{DO161 Attract mode.
COLOR1 £02C51 COLPF1 [DO171

COLOR2 [02C61 COLPF2 (DO18]

COLOR3 LO2C71 COLPF3 [DO191

COLOR4 [02C81] COLBK [DO1A1]

PCOLRO [02C01 COLPMO L[DO121]

PCOLR1 [O2C11 COLPMY L[DO131]

PCOLR2 f[02C21 COLPM2 [DO141

PCOLR3 £02C31 COLPM3 L[DO15]

Constant = 8 CONSOL. [DO1F] Console speaker off.

The stage 2 VBLANK process decrements the System Timer 2
ChTMV2 [021A,21 if it is nonzero; if the timer goes from
nonzero to zero, then an indirect JSR is performed
through CDTMAZ [0228, 21.

The stage 2 VBLAMK process decrements System Timers 3, 4 and
S if they are nonzero; the corresponding flags are set to
tero for each timer that changes from nonzero to zero.

OPERATING SYSTEM C016555 —— Section 6
105

106

Timer Timer Value Timer Flag

3 CDTMV3 [021C, 21 CDTMF3 [022A,11]
4 CDTMV4 [O21E, 21 CDTMF4 [022C, 11
5 CDTMVS L0220, 21 CDTMFS [022E, 11

A character is read from the POKEY keyboard register and
stored in CH [O2FC]1, if auto repeat is active.

The stage 2 VBLANK process decrements the keyboard debounce
counter if it is not equal to zero, and if no key is
pressed.

The stage 2 VBLANK process processes the kayboard auto
Tepeat (see Appendix L, EB).

The stage 2 VBLLANK process reads game controller data from
the hardware to the RAM data base, as shown below:

Hardware Data Base Function
Register Item
PORTA ([D3001 STICKO (02781 Joysticks and

STICKI [0279)]
PTRIGO [027C1 Paddle Controllers
PTRIGL [027D1]
PTRIG2 [0O27E]
PTRIG3 [027F1
PORTB ([D3011 STICK2 [027A]
STICK3 [027B1
PTRIG4 [02801
PTRIGS [02811]
PTRIGS [02B2]
PTRIG7 (02831

POT O (D2001 PADDLO [0270] Paddle Controllers
POT 1 [D2011 PADDL1L [02711
POT 2 ([D2021 PADDL2 [02721]
POT 3 ([D2031 PADDL3 [02731
POT 4 (D2041 PADDL4 [02741
POT S ([D2051 PADDLS [0275]
POT & ([D206&1 PADDLS [0276]
POT 7 LD2071 PADDL7 [0277)
TRIGO L[DOO11] STRIGO [02841] Joystick triggers.
TRIG1 [DOO21 STRIG1 [0285]
TRIG2 ([DO031] STRIG2 [02861
TRIG3 ([DOO41] STRIG3 [02871

OPERATING SYSTEM C016555 ~- Section 6

MASKABLE INTERRUPTS

An IRQ@ interrupt causes control to be transferred through the
immediate IRG global RAM vector VIMIRG [0216]. Ordinarily this

vector points to the system IRQ Handler. The Handler performs
these following actions:

The IRG Handler determines a cause for the interrupt by

examining the IRGST [{D20E] register and the PIA status

registers PACTL [D3021 and PBCTL [D303]. The interrupt status bit
is cleared when it is found. One interrupt event is cleared and
processed for each interrupt-service entry. If multiple IRG@s are
pending, then a separate interrupt will be generated for each
pending IRG, until all are serviced.

The system IRG interrupt service routine deals with each of the
possible IRQ causing events, in the following ways:

o The 6502 A register is pushed to the stack.

o If the interrupt is due to serial I/0 bus output ready,
then clear the interrupt and jump through global RAM
vector VSEROR [020C1.

o If the interrupt is due to serial I/0 bus input ready.

then clear the interrupt and jump through global RAM
vector VSERIN [020A1].

o If the interrupt is due to serial I/0 bus output
complete, then clear the interrupt and jump through
global RAM vector VSEROC C[O20E1].

0 If the interrupt is due to PDKEY timer #1, then clear the
interrupt and jump through global RAM vector VTIMR1 [02101].

0 If the interrupt is due to POKEY timer #2, then clear the
interrupt and jump thraugh global RAM vector VTIMR2 [0212].

0 If the interrupt is due to PDKEY timer #4, then clear the
interrupt. The service routine contains a bug, and falls
into the following test.

o If pressing a keyboard key caused the interrupt (other
than [BREAK], [START], [OPTION], or [SELECTI); then clear the
interrupt and jump through global RAM vector VKEYBD [02081.

o If pressing the [BREAKI key caused the interrupt: then
clear the interrupt. Set the BREAK flag BRKKEY [0011] to
zero, proceed to clear the following:

Start/staop +flag SSFLAG [O2FF]

Cursor inhibit flag CRSINH [O2FO01
Attract mode flag ATRACT [004D1]

OPERATING SYSTEM C016559 —- Section 6

107

Return from the interrupt after restoring the &502 A
register from the stack.

o If the interrupt is due to the serial I/0 bus proceed line;

then clear the interrupt, and jump through global RAM vector
VPRCED [02021].

) If the interrupt is due to the serial I/0 bus interrupt
line, then clear the interrupt and jump through global RAM
vector VINTER [02041].

o If the interrupt is due to a &502 BRK instruction, then Jump
through global RAM vector VBREAK [020&1].

o If none of the above, restore the 6502 A register and return
from the interrupt (RTI).

INTERRUPT INITIALIZATION

The interrupt subsystem completely reinitializes itself whenever
the system is powered up or the [SYSTEM. RESET] key is pressed.
The 0OS clears the hardware registers, and sets the intervupt
global RAM vectors to the following configurations:

Vector Type Function
VDSLST [02001 NMI RTI —-— ignore interrupt
VVBLKI [02221 u System stage 1 VBLANK.
CDTMAL (02261 " SI0 timeout timer.
CDTMA2 [0228] b No system function.
VVBLKD [02241 " System return from interrupt.
VIMIRQ {02161 IRG System IRQ processor.
VSERDOR L[020C] " SI0.
VSERIN [O020A] " SIO.
VSEROC [020E1 “ SIO0.
VTIMR1I £02101] " PLA, RTI -~ ignore interrupt.
VTIMR2 [0212] " PLA, RTI —-- ignore interrupt.
VTIMR4 [0214] " ##% doesn’t matter wu#x
VKEYBD (02081 " System keyboard

interrupt handler.
VPRCED (02021 u PLA, RTI -- ignore interrupt.
VINTER [02041 u PLA:, RTI —- ignore interrupt.
VBREAK [0206] BRK PLA,RTI —-- ignore interrupt.

Figure 6-2 Interrupt RAM Vector Initialization

OPERATING SYSTEM CO016555 —— Section 6
108

System initialization sets the interrupt enable status
as follows:

NMI VBLANK enabled, display list disabled.
IRG {BREAK] key and data key interrupts enabled, all others
disabled.

SYSTEM TIMERS

The 0S contains five general purpose software timers, plus an
OS~supported frame counter. The timers are 2 bytes in length
(lo.hi} and the frame counter RTCLOK [0012] is three bytes in
length (hi,mid, lo}). The timers count downward from any
nonzero value to zero. Upon reaching zero, they either clear
an associated flag:, or JSR through a RAM wvector. The frame
counter counts vupward, wrapping to zero when it overflows.

The following table shows the timers and the frame counter
characteristics:

Timer Name Flag/Vector Use

CDTMV1 £02181 (CDTMAL [0226] 2-byte vector -— SI0 timeout.
CDTMV2 £021A1 CDTMA2 [02281 2-byte vector
CDTMV3 £021C1 CDTMF3 [022A]1 1-byte flag
CDTMV4 [O21E] CDTMF4 [022C] 1-byte flag
CDTMVS [02201 CDTMFS [0OR22E]1 1-byte flag
RTCLOK [00121] 3-byte frame counter.

* These two timers are maintained as part of every VBLANK
interrupt (stage 1 process). The other timers are subject to
the critical section test (stage-2 process), that can defer
their updating to a later VBLANK interrupt.

USAGE NOTES

This subsection describes the techniques you need to know in

order to utilize interrupts in conjunction with the operating
system.

OPERATING SYSTEM C0146555 —- Section 6
109

POKEY Interrupt Mask

ANTIC (display—list and vertical-blank) and PIA (interrupt and
proceed lines) interrupts can be masked directly (see the
Hardware Manual). However, eight bits of a single byte IRGEN
[D20E]) mask the POKEY interrupts ([BREAK] key, data key.,

serial input ready, serial output ready, serial output done
and timers 1,2 and 4).

IRGEN is a write-only register. Thus, we must maintain a
current value of that register in RAM in order to update
individual mask bits selectively, while not changing other bits.
The name of the variable used is POKMSK [0010], and it is used
as shown in the examples below:

i EXAMPLE OF INTERRUPT ENABLE

SEI i TO AVOID CONFLICT WITH IRG ...
LDA POKMSK i ... PROCESSOR WHICH ALTERS VAR.
ORA #bxx i ENABLE BIT(S).

STaA POKMSK

STA IRGEN i TO HARDWARE REG TOO.

CLI

i EXAMPLE OF INTERRUPT DISABLE

SEl i TO AVOID CONFLICT WITH IRG ...
L.ba POKMSK i ... PROCESSOR WHICH ALTERS VAR.
AND #$FF-xx i DISABLE BIT(S).

STA POKMSK

STA IRQEN i TO HARDWARE REGISTER TOO.

CLI ’

Figure 6-3 POKEY Interrupt Mask Example

Note that the 0S IRG service routine uses and alters POKMSK, so
alterations to the variable must be done with interrupts
inhibited. If done at the interrupt level there is no problem, as
the I bit is already set; if done at a background level then the
SEI and CLI instructions should be used as shown in the examples.

Setting Interrupt and Timer Vectors

Because vertical-blank interrupts are generally kept enabled so that
the frame counter RTCLOK is maintained accurately, there is a
problem with setting the VBLANK vectors (VWBLKI and VWBLKD) or

the timer values (CDTMV1 through CDTMV5) directly. A VBLANK
interrupt could occur when only one byte of the two-byte value had
been updated, leading to undesired consequences. For this reason.

OPERATING SYSTEM CO16555 —— Section &
110

the SETVBV

LE45F1 routine is provided to perform the desired

update in safe manner. The calling sequence is shown below:

X
Y

JER

The
The

= update item indicator

1 - 5 for timers 1 -~ 5.
6 for immediate VBLANK vector VVBLKI.
7 for deferred VBLANK vector VWVBLKD.
MSB of value to store.
LSB of value to store.

SETVBV

A, X and Y registers can be altered.
display list interrupt will always be disabled on

return, even if enabled upon entry.

It is possible to fully process a vertical-blank interrupt
during a call to this routine.

When working with the System Timers, the vectors for timers 1 and
2 and the flags for timers 3,4 and 5 should be set while the

associated

timer is equal to zero, then the timer should be set

to its (nonzero}) value.

Stack Content at Interrupt Vector Points

The following table shows the stack content at every one of the
RAM interrupt vector points:

OPERATING SYSTEM CO016555 —— Section &

111

RAM STACK CONTENT

INTERRUPT VECTOR DESCRIPTION 0S RETURN CONTROL

VDSLST [02001 Display list return, P

VWWBLKI [0222] * VBLANK immediate return, P, A X:. Y

CDTMAL [02261 System Timer 1 return, P, A, X, Y, return
CDTMA2 £02281 System Timer 2 return, P, A, X, Y. return
VVBLKD [02241 VBLANK defer. return, P, A, X, Y

VIMIRG [0216] =+ IRG immediate return, P, A

VSEROR £020C1 = Serial out ready return, P, A

VSERIN {020A1 Serial in ready return, P, A

VSEROC [0O20E£1 % Serial out compare return, P, A

VTIMRLI £02101 POKEY timer 1 return, P, A

VTIMR2 [0212] POKEY timer 2 return, P, A

VTIMR4 [02141] POKEY timer 4 return, P, A

VKEYBD [02081] Keyboard data return, P, A

VPRSED [02021] Serial proceed return, P, A

VINTER {02041 Serial interrupt return, P, A

VBREAK [0206] BRK instruction return, P, A

Figure 6—-4 Interrupt and Timer Vector RAM Stack Content Table

¥ The 0S initializes these entries at power-—up. Improperly
changing these vectors will alter system performance.

Miscellaneous Considerations

The following paragraphs list a set of miscellaneous
considerations for the writer of an interrupt service routine.

Restrictions on Clearing of “I" Bit

Display list, immediate vertical—-blank and System Timer #1
routines should not clear the 6502 I bit. If the NMI leading ¢o
one of these routines occurred while an IRQ was being processed,

then clearing the I bif will cause the IRQ to re-interrupt with
an unknown result.

The 0OS VBLANK processor carefully checks this condition after the
stage 1 process and before the stage 2 process

Interrupt Process Time Restrictions

You should not write an interrupt routine that exceeds 400 msec.
when added to the stage 1 VBLANK, if the serial I/0 is being
used. The SI0 sets the CRITIC flag while serial bus I/0 is in
progress

OPERATING SYSTEM C016555 -- Section &
112

Interrupt Delay Due to "WAIT FOR SYNC"

Whenever a key is read from the keyboard, the Keyboard Handler
sets WSYNC [D40OA] repeatedly while generating the audible click
on the console speaker. A problem occurs when interrupts are
generated during the wait-for—-sync period;, the processing of such
interrupts will be delayed by ane horizontal scan line. This
ctondition cannot be prevented. You can work around the condition
by examining the line count VCOUNT [D40B] and delaying interrupt
processing by one line when no WSYNC delay has occurred.

FLOWCHARTS

The following pages contain process flowcharts showing the main
events that occur in the NMI and IRG intervupt processes.

IRQ INTERRUPT PROCESS
VIMIRQ

PUSH REG A
TO STACK

v
SERIAL CLEAR
OUT RDY? sTatus [VSEROR e
N
SERIAL Y CLEAR
IN RDY? STATUS » VSERIN
N
Y
SERIAL CLEAR
OUT COMPL? STATUS SVEROC e
N
Y
POKEY CLEAR
TIMER 17 STATUS » VTIMR1
N
POKEY Y CLEAR
TIMER 27 STATUS » VTIMR2 > » @

N

POKEY Y CLEAR
TIMER 4? STATUS VTIMR4

-
N
Y CLEAR KBD
KET(BE(%’\RD STATUS VKEYBD HANDLER

N

OPERATING SYSTEM CO16555 —— Section &
113

CLEAR STATUS,
SET BREAK FLG
CLEAR SIS

-

PULL A

SERIAL
PROCEED?

CLEAR

STATUS ’

SERIAL
INTERR.?

CLEAR

STATUS 3

BRK
INSTRUCT?

PULL REG A
FROM STACK

VBREAK

VPRCED

VINTER

OPERATING SYSTEM CO16555 —-— Section 6

114

NMI INTERRUPT PROCESS

DISPLAY

LIST? VDSLST

PUSH REG A
TO STACK

VERTICAL
BLANK?

PUSH X & Y,
CLEAR STATUS [™ VVBLKI

CRITICAL
SECTION?

STAGE 2 VVBLKD

XITVBL

\

RESTORE
REGISTERS

OPERATING SYSTEM C016555 -- Section 6
115

7 SYSTEM INITIALIZATION

Section 7 discusses the details of the power-up and
system reset processes. The power—up process will be explained
first, and then the system reset process will be explained in
terms of its differences from the power-up process.

Both power-up (also ctalled coldstart) and pressing [SYSTEM. RESET]
(warmstart) will cause system initialization: In addition, there
are vectors for these processes at E474 (system reset) and E477
{(power—up) so that they can be user—initiated.

The power-up initialization process is a superset of the

system reset initialization process. Power—-up initializes both
the OS and user RAM regions, whereas system reset initializes
only the 0OS RAM region. In both cases, the 0S calls the outer
level software initialization entry points allow the application
to initialize its own variables.

Pressing the [SYSTEM. RESET] key produces an NMI interrupt. It
does not perform a 6502 chip~reset. If the processor is locked

up: the L[SYSTEM. RESET] key cannot be sufficient to unlock it, and the
system must have power cycled to clear the problem.

POWER-UP INITIALIZATION (COLDSTART) PROCEDURE

The OS5 performs the following functions in the order shown, as
part of the power—up initialization process:

1. The following 6502 processor states are set:

o IRG interrupts are disabled using the SEI instruction.
0 The decimal flag is cleared using the CLD instruction.
o The stack pointer is set to $FF.

2. The 0OS sets the warmstart flag WARMST [00081 to O (false).

OPERATING SYSTEM C0146555 —~- Section 7
116

10.

11.

The 0S tests to see if a diagnostic cartridge is in the A slot:
Cartridge address BFFC = 007
The memory at BFFC is not RAM?

Bit 7 of the byte at BFFD = 1?

If all of the above tests are true, then control is passed to

the diagnostic cartridge via the vector at BFFE. No return is
expected.

The 0S8 determines the lowest memory address containing
non—-RAM, by testing the first byte of every 4K “block"” to see
if the content can be complemented. If it can be complemented,
then the original value is restored and testing continues. If
it can’t be complemented; then the content is assumed to be
the first non—-RAM address in the system. The MSB of the
address is stored temporarily in TRAMSZ [00061.

Zero is stored to all of the hardware register addresses shown
below (most of that aren‘t decoded by the hardware):

DOOO through DOFF
D200 through D2FF
D300 through D3FF
D400 through D4FF

The OS clears RAM from location 0008, to the address
determined in step 4, above.

The default value for the "noncartridge" control vector
DOSVEC [000Al is set to point to the blackboard routine. At
the end of initialization, control is passed through this
vector if a cartridge does not take control.

The coldstart flag COLDST [02441 is set to -1 (local use).

The screen margins are set: left margin = 2, right margin =
39, for a 3B character physical line. The maximum line size of
40 characters can be obtained by setting the margins to O and
39. The 0OS insets the left margin because the two leftmost
columns of the video picture on many television sets are not
entirely visible on the screen.

The interrupt RAM vectors VDSLST [0200] through VVBLKD [02241
are initialized. See Section & for the initialization values.

Portions of the 0S RAM are set to their required nonzero values

as shown below:

DOPERATING SYSTEM C016555 -~ Section 7
117

12.

13.

14.

15.

16.

17.

118

The [BREAK] key flag BRKKEY [0011] = -1 (false).

The top of memory pointer MEMTOP [0Q2ES] = the lowest
non—-RAM address (from step 4); MEMTOP will be altered
later when the Screen Editor is opened in step 15.

The bottom of memory pointer MEMLO [O2E7] = 0700; MEMLOD
can be changed later if there is either a diskette- or
cassette—-boot operation.

The following resident routines are called for initialization:

Screen Editor

Display Handler

Keyboard Handler

Printer Handler

Cassette Handler

Central I/0 Monitor (CID)
Serial I/0 Monitor (SIO)
Interrupt processor

The [START] key is checked, and if pressed, the cassette-boot
request flag CKEY [0Q04A] is set.

6502 IRG interrupts are enabled using the CLI instruction.

The device table HATABS [031Al is initialized to point to the
resident handlers. See Section 9 for information relating to
the Device Handler table.

The cartridge slot addresses for cartridges B and A are
examined to determine if cartridges are inserted, if RAM does
not extend into the cartridge address space.

If the content of location 9FFC is zero, then a JSR is
executed through the vector at 9FFE, thus initializing
cartridge “B". The cartridge is expected to return.

If the content of location BFFC is zero, then a JSR is
executed through the vector at BFFE, thus initializing
cartridge "A". The cartridge is expected to return.

IOCB #0 is set up for an OPEN of the Screen Editor (E) and
the OPEN is performed. The Screen Editor will use the highest
portion of RAM for the screen and will adjust MEMTOP
accordingly. If this operation should fail, the entire
initialization process is repeated.

A delay is effected to assure that a VBLANK intervrupt has

occurred. This is done so that the screen will be established
before continuing.

If the cassette—boot request flag is set (see step 11 above),
then a cassette-boot operation is attempted. See Section 10

OPERATING SYSTEM CO14555 —-- Section 7

18.

19.

for details of the cassette—boot operation.

If any of the three conditions stated below exists, an
attempt is made ¢to boot from the disk.

There are no cartridges in the slots.
Cartridge B is inserted and bit O of 9FFD is 1.
Cartridge A is inserted and bit O of BFFD is 1.

See Section 10 for details of the diskette-boot operation.

The coldstart flag COLDST is reset to indicate that the
coldstart process went to completion.

The initialization process is now complete, and the

controlling application is now determined via the remaining

steps.

If there is an A cartridge inserted and bit-2 of BFFD is 1,

then a UMP is executed through the vector at BFFA.

Or, if there is a B cartridge inserted and bit—-2 of 9FFD is

1, then a UMP is executed through the vector at 9FFA.

Or, a jump is executed through the vector DOSVEC that can
point to the blackboard routine (default case), cassette

booted software or diskette booted software. DOSVEC can be
altered by the booted software as explained in Section 10.

SYSTEM RESET INITIALIZATION (WARMSTART) PROCEDURE

The functions listed below are performed, in the order shown,
part of the system reset initialization process:

Al

B.

nom o o

Same as power-up step 1.

The warmstart flag WARMST [00081 is set to -1 (true).

Same as power-up steps 3 through 5.

0S RAM is zeroed from locations 0200-03FF and 0010-007F.
Same as power—up steps 9 through 16.

If a cassette-boot was successfully completed during the
power—up initialization, then a JUSR is executed through the

vector CASINI [0002]. See Section 10 for details of the
cassette-boot process. :

OPERATING SYSTEM C016555 —- Section 7

119

G. Same as power-up step 18, except instead of booting the
diskette software, a JSR is executed through the vector DOSINI
LOO0C] if the diskette—boot was successfully completed during the
Power-up initialization. See Section 10 for details of the
diskette—~boot process

H. Same as power-up steps 19 and 20.

Note that the initialization procedures and main entries for all
software entities are executed at every system reset as well as
at power up (see steps 14, 17, 18, 20, F and G}. If the
user—supplied initialization/startup code must behave differently
in response to system reset than it does to power—up, then the
warmstart flag WARMST [000C8] should be interrogated; WARMST = O
means power—up entry, else system reset entry.

OPERATING SYSTEM C016555 —— Section 7
120

8 FLOATING POINT ARITHMETIC PACKAGE

This section describes the BCD floating point (FP) package that
is resident in the 0S ROM in both the models 400 and 800.

The floating point package maintains numbers internally as b—-byte
quantities: a S-byte (10 BCD digit) mantissa with a 1-byte
exponent. BCD internal representation was chosen so that decimal
division would not lead to the rounding errors typically found in
binary representation implementations.

The package provides the following operations:

ASCII to FP conversion.

FP to ASCII conversion.

Integer to FP conversion.

FP to integer conversion.

FP add, subtract, multiply,and divide.

FP logarithm, exponentiation, and polynomial evaluation.
FP zero. load, store, and move. ‘

A floating point operation is performed by calling one of the
provided routines (each at a fixed address in ROM) after having
set one or more floating point pseudo registers in RAM. The
result of the desired operation will also involve floating point
pseudo registers. The primary pseudo registers are described
below and their addresses given within the square brackets:

DPERATING SYSTEM C014555 —- Section 8

FRO [0O0OD41
FR1 [OOEO1

6-byte internal form of FP number.
6-byte internal form of FP number.

w0

FLPTR [OOFC] = 2-byte pointer (lo.hi) to a FP.
number.

INBUFF [OOF3] = 2-byte pointer (lo,hi) to an ASCII text
butfer.

CIX LOOF2]1 = I-byte index: used as offset to buffer
pointed to by INBUFF.

LBUFF [0S801 = result buffer for the FASC routine.

FUNCTIONS/CALLING SEQUENCES

Descriptions of these floating point routines assume that
a pseudo register is not altered by a given routine. The

numbers in square brackets [xxxx]l are the ROM addresses of the
Troutines.

ASCII to Floating Point Conversion (AFP)

Function: This routine takes an ASCII string as input and
produces a floating point number in internal form.

Calling sequence:

INBUFF = pointer to buffer containing the ASCII
representation of the number.

CIX = the buffer offset to the first byte of the ASCII
number.

JSR AFP [DBOO]

BCS first byte of ASCII number is invalid

FRO = floating point number.

CIX = the buffer offset to the first byte after the ASCII

number.

Algorithm: The routine takes bytes from the buffer until it
encounters a byte that cannot be part of the number. The bytes
scanned to that point are then converted to a tfloating point

number. If the first byte encountered is invalid, the carry bit
is set as a flag.

Floating Point to ASCII Conversion (FASC)

Function: This routine converts a floating point number from
internal form to its ASCII representation.

OPERATING SYSTEM C014555 ——- Section B
122

Calling sequence:
FRQ = floating point number.
JSR FASC [DBE&]
INBUFF = pointer to the first byte of the ASCII number.
The last byte of the ASCII representation has the most
significant bit (sign bit) seti no EOL follows.
Algorithm: The routine converts the number from its internal

floating point representation to a printable form (ATASCII). The

pointer INBUFF will point to part of LBUFF, where the result is
stored.

Integer to Floating Point Conversion (IFP}

Function: This routine converts a 2-byte unsigned integer (O to
65535} to floating point internal representation.

Calling sequence:
FRO = integer (FRO+0 = LSB, FRO+1 = MSB}.
JSR IFP LD2AA1]

FRC = floating point representation of integer.

Floating Point to Integer Conversion (FPI}

Function: This routine converts a positive floating point number
from its internal representation to the nearest 2-byte integer.

Calling sequence:

FRC = floating point number.
JER FPI (D9D21
BCS FP number is negative or >»= 65535.5

FRO = 2-byte integer (FRO+0Q = LSB, FRO+1 = MSB).

Algorithm: The routine performs ¢true roumnding, not truncation,
during the conversion process.

OPERATING SYSTEM C016555 ~—- Section B8
123

Floating

Function:

Point Addition (FADD)

This routine adds two floating point numbers and checks

the result for out-of-range.

Calling sequence:

FRO
FR1

JSR
BCS

FRO
FR1

Floating

Function:

floating point number.
floating point number.

BN

FADD [DA&6]
out—of-range result.

= result of FRO + FR1.
is altered.

Point Subtraction (FSUB)

This routine subtracts two floating point numbers and

checks the result for out-of-range.

Calling sequence:

FRO
FR1

JSR
BCS

FRO
FR1

Floating

Function:

= floating point minuend.
= floating point subtrahend.

FSUB [DA&O1]
out—-of-range result.

= resuylt of FRO - FR1.
iz altered.

Point Multiplication (FMUL)

This routine multiplies two floating point numbers and

checks the result for out-of-range.

Calling sequence:

FRO
FR1

JER
BCS

FRO
FR1

124

floating point multiplier.
floating point multiplicand.

FMUL ©{DADB]
out—-of-range result

i

result of FRO # FR1.
is altered.

OPERATING SYSTEM C016555 —— Section 8

Floating Point Division (FDIV)

Function: This routine divides two floating point numbers and
checks for division by zero and for result out—-of-range.

Calling sequence:

FRC = floating point dividend.

FR1 = floating point divisor.

JSR FDIV CDB281

BCS out—-of-range result or divisor is zero.

FRC = result of FRO / FR1.
FR1 is altered.

Floating Point Logarithms (LDG and LDOG10)

Function: These routines take the natural or base 10 logarithms
of a floating point number.

Calling sequence:

FRO = floating point number.

JSR £.0G CDECD] for natural logarithm
or

JSR LOG10 [DED11 for base 10 logarithm

BCS negative number or overflow.

FRC = floating point logarithm.
FR1 is altered.

Algorithm: Both logarithms are first computed as base 10
logarithms using a 10 term polynomial approximation: the natural
logarithm is computed by dividing the base 10 result by the
constant LOG10(e).

The logarithm of a number Z is computed as follows:

F # (10 #% Y) = 7 where 1 <= F < 10 (normalization).
L = LOGIO(F) by 10 term polynomial approximation.
LOGIO(Z) = Y + L. LOG(Z) = LOGI0O(Z) 7/ LOG1O(e}.

NOTE: This routine does not return an error if the number input
is zeroi the LOGIO result in this case is approximately -129. 5,
which is not useful.

OPERATING SYSTEM C0146555 —— Section 8
125

Floating Point Exponentiation (EXP and EXP10)
Function: This routine exponentiates.
Calling sequence:

FRO = floating point exponent (Z).

WSR EXP [DDCO] for e ## Z

or
JSR EXP10 [DDCC1 for 10 #x 7
BCS overflow.

FRO = floating point result
FR1 is altered.

Algorithm: Both exponentials are computed internally as base 10,
with the base e exponential using the identity:
e #% X = 10 ## (X # LOGI10(e)).

The base 10 exponential is evaluated in two parts using the identity:

10 ## X = 10 ## (I + F) = (10 #% I) # (10 #% F) —— where I is the
integer portion of X and F is the fraction.

The term 10 %% F is evaluated using a polynomial approximation,

and 10 ## [is a straightforward modification to the floating
point exponent.

Floating Point Polynomial Evaluation (PLYEVL)

Function: This routine performs an n degree polynomial
evalvation.

Calling sequence:

X: Y = pointer (X = LSB) to list of FP coefficients (A(i))
ordered from high order to low order (six bytes per
coefficient).

A = number of coefficients in list
FRO = floating point independent variable (Z}.

JSR PLYEVL [DD401

BCS overflow or other error.

FRO = result of A(nm)#Z##n + A(n—1)#Z#s#n~1 ... + A(1)%7Z +
ACO).

FR1 is altered.

Algorithm: The polynomial P(Z) = SUM(i=0 to n) (A(i)#Z##i) is
computed using the standard method shown below:

POZ) = (... (A(n)#Z + A(n~1))#%#Z + .. . + A(1))%Z + A(O)

OPERATING SYSTEM C016555 —— Section B
126

Clear FRO (ZFRO)

Function: This routine sets the contents of pseudo register FRO

to all zeros.
Calling sequence:
JSR ZFRO [DA44]

FRO = zero.

Clear Page Zero Floating Point Number (ZF1)

Function: This routine sets the contents of a zero—-page floating

point number to all zeroes.

Calling segquence:

X = Zero—-page address of FP number to clear.
JER ZF1 [DA4&1
Zero—page FP number(X) = zero.

Load Floating Point Number to FRO (FLDOR and FLDOP)

Function: These routines load pseudo register FRO with the
floating point number specified by the calling sequence.

Calling sequences:
X.Y = pointer (X = LSB) to FP number.
JSR FLDOR [DD8%91
or
FLPTR = pointer to FP number.
JSR FLDOP EDD8DI1

FRO = floating point number (in either case).
FLPTR = pointer to FP number (in either case).

OPERATING SYSTEM C0146555 -- Section 8

127

Load Floating Point Number to FR1 (FLDIR and FLDIP)

Function: These routines load pseudo register FR1 with the
floating point number specified by the calling sequence.

Calling sequences:

As in prior description, except the result goes to FR1
instead of FRO. FLDIR [DD981 and FLDIP C[DD9C].

Store Floating Point Mumber From FRO (FSTOR and FSTCP)

Function: These routines store the contents of pseudo register
FRO to the address specified by the calling sequence:

Calling sequence:
As in prior descriptions, except the floating point number

is stored from FRO rather than loaded to FRO. FSTOR [DDA71]
and FSTOP (DDABJ].

Move Floating Point Number From FRO to FR1 (FMOVE)

Function: This routine moves the floating point number in FRO to
pseudo register FRI1.

Calling seguence:
JSR FMOVE [DDB61

FR1 = FRO (FRO remains unchanged).

RESOURCE UTILIZATION

The floating point package uses the following RAM locations in
the course of performing the functions described in this section:

00D4 through OOFF
O57E through OSFF

All of these locations are available for program ctoding
if your program does not call the floating point package.

OPERATING SYSTEM C016555 —- Section 8
128

IMPLEMENTATION DETAILS

Floating point numbers are maintained internally as &6-byte
quantities, with 5 bytes (10 BCD digits) of mantissa and 1 byte
of exponent. The mantissa is always normalized such that the

most significant byte is nonzero (note “byte" and not "“BCD
digit"“).

The most significant bit of the exponent byte provides the sign
for the mantissai O for positive and 1 for negative. The
remaining 7 bits of the exponent byte provide the exponent in
excess &4 notation. The resulting number represents powers of 100
decimal (not powers of 10). This storage format allows the
mantissa to hold 10 BCD digits when the value of the exponent is
an even power of 10, and ? BCD digits when the value of the
exponent is an odd power of 10.

The implied decimal point is always to the immediate right of the
first byte. An exponent less than &4 indicates a number less than

1. An exponent equal to or greater than &4 represents a number
equal to or greater than 1.

Zero is represented by a zero mantissa and a zero exponent. To
test for a result from any of the standard routines; test either
the exponent or the first mantissa byte for zero.

The absolute value of floating point numbers must be greater than
10#%~98, and less than 10##+98, or be equal to zero. There is
perfect symmetry between positive and negative numbers with the
exception that negative zero is never generated.

The precision of all computations is maintained at 9 or 10
decimal digits, but accuracy is somewhat less for those functions
involving polynomial approximations (logarithm and
exponentiation). Also, the problems inherent in all floating
point systems are present here; for example: subtracting two very
nearly equal numbers, adding numbers of disparate magnitude, or
successions of any operation, will all result in a loss of
significant digits. An analysis of the data range and the order
of evaluation of expressions may be required for some types of
applications.

The examples below compare floating point numbers with their
internal representations, as an aid to understanding storage
format. All numbers prior to this point have been expressed in
decimal notation, but these examples will use hexadecimal
notation. Note that 44 decimal (the excess number of the
exponent) is 40 when expressed in hexadecimal:

Number: +0.02 = 2 # 10##-2 = 2 % 100#%-1
Stored: 3F 02 00 00 00 00 (FP exponent = 40 - 1)

Number: ~0.02 = -2 # 10##-2 = -2 % 100%##-1
Stored: BF 02 00 00 00 00 (FP exponent = B0 + 40 — 1}

OPERATING SYSTEM C016555 —-— Section 8
129

Number: +37.0 = 3.7 % 10##1 = 37 # 100##0
Stored: 40 37 00 00 00 OO0 (FP exponent = 40 + ()

Number: -4 460312486 # 10##11 = —46.03. .. # 100##5
Stored: CS 446 03 01 24 86 (FP exponent = 80 + 40 + 35)

Number: 0.0
Stored: OO0 OO OO0 OO OO0 00 (special case)

OPERATING SYSTEM C016555 —— Section 8
130

2 ADDING NEW DEVICE HANDLERS/PERIPHERALS

This section describes the interface requirements for a
nonresident Device Handler that is to be accessed via the Central
I/0 utility (CIO). The Serial bus I/0 utility (SI0) interface is
defined for those handlers that utilize the Serial 1/0 bus.

The I/0 subsystem is organized with three levels of software
between you and your hardware: The CIO, the individual device
handlers, and the SIO.

The CID performs the following functions:

Logical device name to Device Handler mapping (on OPEN).
I1/0 Control Block (IOCB) maintenance.

Logical record handling.

User buffer handling.

The device handlers are below CIO. They perform the
following functions:

Device initialization on power-up and system reset.
Device-dependent support of OPEN and CLOSE commands.
Byte—at-a-time data input and output.
Device-dependent special operations.
Device—-dependent command support.

Device data buffer management.

The SI0 is at the bottom level (for Serial I/0D bus peripheral
handlers). It performs the following functions:

Control of all Serial bus I/D, conforming to the bus
protocol.

Bus operation retries on errors.

Return of unified error statuses on error conditions.

OPERATING SYSTEM CO16555 —— Section 9
131

A separate control structure is used for communication at each
interface, as follows:

User/CIO I/0 Control Block (IOCB)
CI0/Handler Zero-page I0CB (ZIOCB)
Handler/SI0 Device Control Block (DCB)

OPERATING SYSTEM CD14555 —— Section 9
132

{ user H
i program |——m e e e +
T v e e e + H
o —————— + H i
i IOCB‘s (s#sssssis] !
o ———— + ¢ ‘
F————————— + H
H CIO i Fm——————— + H
{ utility | H DCB {3k 33 |
B et T + e e o e e e e + H
H #* H
i +#* H
e + P ———— + P + % H
i ZI0CB | { Device | iDisk File!{ H
P ————— + i Table ! +——-—=1 Manager {(—-——=—-— +
3% o e o e e e e + { o e e e e e + HE
* H : HE
S +m————— e o e e e et LT ——— I
i i i H HE
P ——— + tem—————— + o ————— I + e +
{ Printer | i Cassette! H H it Keyboard! { Disk H
{ Handler | i Handler | { Handler | { Handler | ! Handler |
e 4+ e ———— + B + Femmm————— + m—e—————— +
: H H H
e o ——— o o o e omm—— e +
H
R + s
- DCB ST
o e + i
o e e +
H SI0 H
v Utility |
o e e e +

Where: ———— shows a control path.
###% shows the data structure required for a path.

Note the following:
1. The Keyboard/Display/Screen Editor handlers don’t use
2. iig'Diskette Handler cannot be called divectly from CIO.
3. The DCB is shown twice in the diagram.

Figure 9-1 I1/0 Subsystem Flow Diagram

OPERATING SYSTEM C0146555 —- Section 9
133

DEVICE TABLE

The device table is a RAM-resident table that contains the
single-~character device name (e.g. K, D, C, etc). and the

handler address for each of the handlers known to CIO. The

table is initialized to contain entries for the following

resident handlers: Keyboard (K), Display (S), Screen Editor

(E), Cassette (C), and Printer (P) at power-up and system reset. To
install a new handler, some procedure must insert a device table entry
after the table is initialized.

The table format is shown below:

HATABS L[O031iAl

+~ one entry

+
[
'
+
|
[
+
'
1}
———————————————— + et
1
'
'
t
+
i
i
-+

Figure 9-2 Device Table Format

This 38-byte table will hold a maximum of 12 entries, with the
last 2 bytes being zero. CID scans the table from the end to
the beginning (high to low address); so the entry nearest the
end of the table will take precedence in case of multiple
occurrences of a device name..

The device name for each entry is a single ATASCII character, and
the handler address points to the handler‘s vector table, that
will be described in the following section.

CIO/HANDLER INTERFACE

This section describes the interface between the Central I1/0
utility and the individual device handlers that are represented
in the Device Table (as described in the preceding section).

OPERATING SYSTEM C016555 —— Section 9
134 :

Calling Mechanism

Each handler has a vector table as shown below:

B +

+ OPEN vector + (low address)
Lt SRS — +

+ CLOSE wvector +

o e e e e e +

+ GETBYTE vector +
it —— +

+ PUTBYTE wvector +

o e i e +

+ GETSTAT vector +

+——— — —+

+ SPECIAL vector +

e ————————— +

+ JMP init code +

+ + (high address)
o e e e e e +

Figure -3 Handler Vector Table

The device table entry for the handler points to the first
byte of the vector table.

The first six entries in the table are vectors (lo,hi) that
contain the address — 1 of the handler routine that handles
the indicated function. The seventh entry is a 6502 JUMP
instruction to the handler initialization routine. CIO uses
only the addresses contained in this table for handler entry.
Each user/CIO command translates to one or more calls to one
of the handler entries defined in the vector table.

The vector table provides the handler addresses for certain
fixed functions to be performed to CIO. In addition. operation
parameters also must be passed for most functions. Parameter
passing is accomplished using the 4502 A, X, and Y registers
and an IOCB in page O named ZIDCB [00201. In general, register
A is used to pass data, register X contains the index to the
originating IOCB, and register Y is used to pass status
information to CIO. The zevo-page IOCB, is a copy of the
originating IOCB; but in the course of processing some
commands, CI0O can alter the buffer address and buffer length
parameters in ZIOCB, but not in the originating IOCB (see
Section S5 for information relating to the originating IOCB).

See Appendix B for the standard status byte values to be
returned to CIO in register Y.

OPERATING SYSTEM CD146555 -~ Section 9
135

The following sections describe the CIO/handler interface for
each of the vectors in the handler vector table.

Handler Initialization

NOTE: This entry doesn’t appear to have any function for
.nonresident handlers due to a bug in the current 0SS -~ the
device table is cleared in response to system reset as
well as power—up. This prevents this entry point from ever
being called. The rest of this section discusses the
intended use of this entry point. Conformation would be in
order to allow compatibility with possible corrected
versions of the 0S in the future,

The entry was to have been called on all occurrences of
power—up and system reset; the handler is to perform
initialization of its hardware and RAM data using a routine
that assures proper processing of all CIO commands that follow.

Functions Supported

This section describes the functions associated with the first
six vectors from the handler vector table. This section also
presents a brief, device—independent description of the
CIO/handler interface and recommended actions for each function
vector.

OPEN

This entry is called in response to an OPEN command to CIO. The
handler is expected to validate the OPEN parameters and perform
any required device initialization associated with a device OPEN.

At handler entry, the following parameters can be of interest:

X
Y

index to originating IOCB.
$72 (status = function not implemented by handler).

[

ICDNDZ £00211 = device number (1-4, for multiple device
handlers).
ICBALZ/ICBAHZ [0024/00251

address of device/filename
specification.
ICAX1Z/1ICAX2Z [O02A/002B] = device-specific information.

The handler attempts to perform the indicated OPEN and
indicates the status of the operation by the value of the VY
register. The responsibility for checking for multiple OPENs to

OPERATING SYSTEM CO16555 —- Section 9
136

the same device or file, where it is illegal, lies with the
handler.

CLOSE

This vector table entry is called in response to a CLOSE command
to CIO. The handler is expected to release any held resources

that relate specifically to that device/filename, and for output
files to:

1} send any data remaining in handler buffers to the device,

2 mark the end of file

3) update any associated directories, allocation maps. etc.

At handler entry, the following parameters can be of interest:

X
Y

index to oviginating IOCB.
$92 (status = function not implemented by handler).

ICDNOZ [0021] = device number (1-4, for multiple device
handlers).
ICAX1Z/ICAX2Z [002A/002B]1 = device—specific information.

The handler attempts to perform the indicated CLOSE and

indicates the status of the operation by the value of the Y
register.

CID releases the associated IOCB after the handler returns,
regardless of the operation status value.

GETBYTE

This vector table entry is called in response to a GET
CHARACTERS or GET RECORD command to CIO. The handler is

expected to return a single byte in the A register, or return an
error status in the Y register.

At handler entry, the following parameters can be of interest:

X = index to originating IOCB.
Y = $92 (status = function not implemented by handler).

ICDNOZ [0021] = device number (1-4, for multiple device handlers).
ICAX1Z/ICAX2Z [002A/002B]1 = device-specific information.

The handler will obtain a data byte directly from the device or from a
handler-maintained buffer and return to CID with the byte in the
A register and the operation status in the Y register.

OPERATING SYSTEM CD016555 —— Section 9
137

Handlers that do not have short timeouts associated with the
reading of data (such as the Keyboard and Cassette Handlers),
must monitor the [BREAK] key flag BRKKEY {00111 and return with a
status of #80 when a [BREAK] condition occurs. See Appendix L.,

ES5; and Section 12 for a discussion of [BREAK] key monitoring.

CIO checks for reads from device/files that have not been opened

or have been opened for output only; the handler will not be called in
those cases.

PUTBYTE

This entry is called in response to a PUT CHARACTERS or PUT
RECORD command to CIO. The handler is expected to accept a single

byte in the A register or return an error status in the Y
register.

At handler entry, the following parameters can be of interest:

X = index to originating IOCB.
Y = $92 (status = function not implemented by handler).
A = data byte.

ICDNOZ 00211 = device number (1-4, for multiple device
handlers).
ICAX1Z/ICAX2Z [002A/002B] = device—specific information.

The handler sends the data byte directly to the device, or to a
handler—-maintained buffer, and returns to CIO with the operation
status in the Y register. If a handler-maintained buffer fills,

the handler will send the buffered data to the device before
returning to CIO.

CIO checks for WRITEs to device/files that have not been opened,

or have been opened for input only. The handler will not be called in
those cases.

Now that the normal operation of PUTBYTE has been defined, a
special case must be added. Any handler that will operate within
the environment of the ATARI 8K BASIC language interpreter has a
different set of rules. Because BASIC can call the handler
PUTBYTE entry directly. without going through CIO, the zero-page
IOCB (ZIOCB) can or may not have a relation to the PUTBYTE call.
Therefore, the handler must use the outer level IOCB to obtain
any information that would normally be obtained from ZIOCB. Note
also that the OPEN protection normally provided by CIO is

bypassed (i.e. PUTBYTE to a non-OPEN device/file and PUTBYTE to a
read-only OPEN).

OPERATING SYSTEM COD14555 —- Section 9
138

GETSTAT

This entry is called in response to a GET STATUS command teo CIO.
The handler is expected to return four bytes of status to memory
or return an error status in the Y register.

At handler entry. the following parameters can be of interest:

X = index to originating IOCB. Y = $92 (status = function not
implemented by handler}.

ICDNOZ (00211 = device number (1—-4, for multiple device handlers).
ICBALZ/ICBAHZ [0024/0025]1 = address of
device/filename specification.
ICAX1Z/1CAX2Z
£002A/002B) = device-specific information.

The handler gets device status information from the device
controller and puts the status bytes in DVSTAT [O2EA] through

DVSTAT+3, and finally returns to CIO with the operation status
in register V.

The IOCB need not be opened nor closed in order for you

to request CIO to perform a GET STATUS operation; the handler
must check where there are restrictions. See Section 5 for a
discussion of the CID actions involved with a GET STATUS
operation using both open and closed IOCB‘s, and note the impact
of this operation on the use of the buffer address parameter.

SPECIAL

This handler entry is used to support all functions not handled
by the other entry points, such as diskette file RENAME, display
DRAW, etc. Specifically, i# the IOCB command byte value is
greater than $0D, then CIO will use the SPECIAL entry point. The
handler must interrogate the command byte to determine if the
requested operation is supported.

At handler entry., the following parameters can be of interest:

X
Y

index to originating IOCB.
$92 (status = function not implemented by handler).

ICDNOZ [00211 = device number (1-4, for multiple device
handlers).

ICCOMZ (00221 = command byte.

ICBALZ/ICBALH [0024/0025] buffer address.

ICBLLZ/ICBLHZ [0028/00291] buffer length.

ICAX1Z/7ICAX2Z [002A/002B1 device—specific information.

OPERATING SYSTEM C016555 —— Section 9
139

The handler will perform the indicated operation, if possible,
and return to CIO with the operation status in register Y.

The IOCB need not be opened nor closed in order for you

to request CIO to perform a SPECIAL operation:; the handler
must check where there are restrictions. See Section 5 for a
discussion of the CID actions involved with a SPECIAL
operation using both open and closed IOCB’s. and note the
impact of this on the use of the buffer address parameter.

Error Handling

Error handling has been simplified somewhat by having CIO handle
outer level errors and having SIO handle Serial bus errors,

leaving the handler to process the remaining errors. These
errors include:

out—of-range parameters.
[BREAK] key abort.
Invalid command.

Read after end of file.

The current handlers respond to errors using the following
guidelines:

They keep the recovery simple (and therefore predictable and
repeatable).

They Do not interact directly with you for recovery
instructions.

They lose as little data as possible.

They make all attempts to maintain the integrity of file

oriented device storage -— this involves the initial design
of the structural elements as well as error recovery
techniques.

Resource Allocation

Nonresident handlers needing code and/or data space in RAM should
use the techniques listed below, to assure nonconflict with other
parts of the 0S, including other nonresident handlers.

OPERATING SYSTEM C016555 ~- Section 9
140

Zero—-Page RAM

Zero-page RAM has no spare bytes, and even if there were, there
is no allocation scheme to support multiple program assignment of
the spares. Therefore, the nonresident handler must save and
restore the bytes of zero-page RAM it is going to use. The bytes

to use must be chosen carefully, according to the following
criteria:

The bytes cannot be accessed by an intervupt routine.

The bytes cannot be accessed by any noninterrupt code
between the time the handler modifies the bytes and then
restores the original values.

A simple save/restore technique would utilize the stack in a
manner similar to that shown below:

LDA COLCRS i (for example)

PHA i SAVE ON STACK.

LDaA ‘COLCRS+1

PHA

L.DA HPOINT i HANDLER ‘S POINTER.

STA COLCRS
LDA HPOINT+1
STA COLCRS+1

XXX (COLCRS) ., Y i DO YOUR POINTER THING.
PLA i RESTORE OLD DATA.

STA COLCRS+1

PLA

STA COLCRS

Note that the Display Handler or Screen Editor should not be
called before restoring the original value of COLCRS, because
COLCRS is a variable used by those routines.

Nonzero—Page RAM

There is no allocation scheme to support the assignment of
fixed regions of nonzero—page RAM to any specific process, so the
handler has three choices:

1. Make a dynamic allocation at initialization time by
altering MEMLO [O2E71.

2. Include the variables with the handler for RAM-resident
handlers. This still involves altering MEMLO at the time
the handler is booted.

3. If the handler replaces one of the resident handlers (by
removing the resident handler ‘s entry in the device
table}, then the new handler can use any RAM that the

OPERATING SYSTEM C016555 —— Section 9

141

formerly resident handler would have used.

Stack Space

In most cases, there are no restrictions on the use of the stack
by a handler. However, if the handler plans to push more than a
couple dozen bytes to the stack:; then it should do a stack

overflow test, and always leave stack space for interrupt
processing.

HANDLER/SIO INTERFACE

This section describes the interface between serial bus device
handlers and the serial bus I/0 utility (SIO). SIO completely
handles all bus transactions following the device—-independent bus
protocol. SI0 is responsible for the following functions:

Bus data format and timing from computer end.
Error detection, retries and statuses.

Bus timeout.

Transfer of data between the bus and the caller‘s buffer.

Calling Mechanism

SI0 has a single entry point SIOV [E459] for all operations. The
device control block (DCB) [03001 contains all parameters passed
to SI0. The DCB contains the following bytes:

DEVICE BUS ID -- DDEVIC [0300)

The bus ID of the device is set by the handler prior to calling
SI0 (see Appendix I}.

DEVICE UNIT # —— DUNIT [03011

This byte indicates that of n units of a given device type to
access, and is set by the handler prior to calling SI0O. This
value usuvally comes from ICDNOZ. SID accesses the bus device

whose address is equal to the value of DDEVIC plus DUNIT minus 1
(the lowest unit number is normally equal to 1}.

DEVICE COMMAND —-- DCOMND (03021

The handler sets this byte prior to calling SIO. It will be sent

to the bus device as part of the command frame. See Appendix I
for device command byte values.

OPERATING SYSTEM CD16555 —- Section 9
142

DEVICE STATUS -- DSTATS [03031]

This byte is bidirectional. The handler will use DSTATS to
indicate to SI0O what to do after the command frame is sent and
acknowledged. SI0O will use it to indicate to the handler the
status of the requested operation.

Prior to an SI0O call:

Where: W/,R = 0,0 indicates no data transfer is associated with the
operation.

1 indicates a data frame is expected from the device.
: 0 indicates a data frame is to be sent to the device.
i 1

is invalid.

After an SI0O call:

7 0
il et S SR R S S P

H status code H

Bt e e e e St 3
See Appendix C for the possible SIO operation status codes.
HANDLER BUFFER ADDRESS ~-- DBUFLO/DBUFHI [0304/03051]

The handler sets this 2-byte pointer. It indicates the source
or destination buffer for device data or status information.

DEVICE TIMEOUT -- DTIMLO [03061

The handler sets this byte. It specifies the device timeout time
in units of 64/60 of a second. For example, a count of &
specifies a timeout of 6.4 seconds.

BUFFER LENGTH/BYTE COUNT —- DBYTLO/DBYTHI L[0308/0309]

The handler sets this 2-byte count for the current

operation, and indicates the number of data bytes to be
transferred into or out of the buffer. This parameter is not
required if the STATUS byte W and R bits are both zero. These
values indicate that no data transfer is to take place.

WARNING: There is a bug in SI0O that causes incorrect
actions when the last byte of a buffer is in a memory
address ending in $FF, such as 13FF, 42FF, etc.

OPERATING SYSTEM C016555 —— Section 9
143

AUXILIARY INFORMATION —-- DAUX1/DAUX2 [030A/030B1

The handler sets these 2-bytes. The SIO includes them in the bus
command frame; they have device-specific meanings.

Functions Supported

SI0 does not examine the COMMAND byte it sends to the device,
because all bus transactions are expected to conform to a
universal protocol. The protocol includes three forms, stated
below (as seen from the computer):

Send command frame.
Send command frame and send data frame.
Send command frame and receive data frame.

The values of the W and R bits in the status byte select the
command form,

Error Handling

SI0 handles most of the serial bus errors for the handler,
as indicated below:

Bus timeout -- SIO provides a uniform command frame and data
frame ACK byte timeout of 1/40 of a second — O / + 1/40.

The handler specifies the maximum COMPLETE byte timeout
value in DTIMLO.

Bus errors -- SID detects and reports UART overrun and
framing errors. The sensing of these errors in any received

byte will cause the entire associated frame to be considered
bad.

Data frame checksum error —-- SIO validates the checksum on
all received data frames and generates a checksum for all
transmitted frames.

Invalid response from device —- In addition to the error
conditions stated above, SIO checks that the ACK and
COMPLETE responses are proper (ACK = $41 and COMPLETE =
$43). ACK stands for acknowledge.

Bus operation retries —— SIO will attempt one complete command
retry if the first attempt is not error free, where a complete
command try consists of up to 14 attempts to send (and

acknowledge) a command frame. followed by @ single attempt to

OPERATING SYSTEM C016555 —— Section 9
144

receive the COMPLETE code and possibly a data frame.
NOTE: There is a bug in the retry logic for data writes,
such that if the command frame is acknowledged by the
confroller, but the data frame is not acknowledged, then SID
will retry indefinitely.

Unified error status codes —- SIO provides device-independent error
codes (see Appendix C).

SERIAL I/0 BUS CHARACTERISTICS AND PROTOCOL

This section describes:

o The electrical characteristics of the ATARI 400
and ATARI 800 Home Computers serial bus
o The use of the bus to send bytes of data,
o The organization of the bytes as "frames" (records).
o The overall command sequences that utilize frames

and response bytes to provide computer/peripheral communication.

Hardware/Electrical Characteristics

The ATARI 400 and the ATARI 800 Home Computers

communicate with peripheral devices over a 19,200 baud
asynchronous serial port. The serial port consists of a serial
DATA OUT (transmission) line, a serial DATA IN (receiver) line
and other miscellaneous control lines.

Data is ¢transmitted and received as 8 bits of serial data (LSB
sent first) preceded by a logic zero start bit and succeeded
by a logic one stop bit. The serial DATA DUT is transmitted as
positive logic (+4v = one/true/high, Ov = zevro/false/low). The
serial DATA OUT line always assumes its new state when the
serial CLOCK QUT line goes high; CLOCK OUT then goes low in
the center of the DATA OUT bit time.

An end view of the Serial bus connector at the computer or
peripheral is shown below (the cable connectors would of
course be a mirror image):

OPERATING SYSTEM C016555 ~- Section 9
145

where: computer CLOCK IN.
computer CLOCK OUT.
computer DATA IN.
GND.

computer DATA QUT.
GND.

COMMAND-.

MOTOR CONTROL..
PROCEED-.
+Sv/READY.
computer AUDIOD IN.
+12v.

INTERRUPT—.

VONOCUPdWUN~

Figure 9-4 Serial Bus Connector Pin Descriptions
CLOCK IN is not used by the present OS and peripherals. This
line can be used in future synchronous communications schemes.

CLOCK OUT is the serial bus clock. CLOCK OUT goes high at the

start of each DATA OUT bit and returns to low in the middle of
each bit.

DATA IN is the serial bus data line to the computer.
Pin 4 GND is the signal/shield ground line.

DATA OUT is the serial bus data line from the computer.
Pin &6 GND is the signal/shield ground line.

COMMAND—- is normally high and goes low when a command frame is
being sent from the computer.

MOTOR CONTROL is the cassette motor control line (high=on,
low= ofé#).

PROCEED- is not used by the present 0S and peripherals: this line

is pulled high.

+3v/READY indicates that the computer is turned on and ready. This

line can also be used as a +5 volt supply of SOma current rating
for ATARI peripherals only.

AUDIO IN accepts an audio signal from the cassette.

OPERATING SYSTEM CD16555 —- Section 9
1446

+12V is a +12 volt supply of unknown current rating for ATARI
peripherals only.

INTERRUPT- is not used by the present OS5 and peripherals; this
line is pulled high.

There are no pin reassignments made in the Serial bus cable,

s0o pin 3, the computer’‘s DATA IN line, is the peripheral’s
data output line; and similarly for pin 5.

Serial Port Electrical Specifications

Peripheral input:

ViH = 2. Ov min.

ViL = 0. 4v max.

IiH = 20ua. max. @ ViIH = 2. 0Ov
IiL = Sua. max. @ VIL = . 4v

Peripheral output (open collector bipolar}:

VoL
VOH

0. 4v max. @ 1.6 ma.
4. 5v min. with external 100Kohm pull-up.

Vec/READY input:
ViH = 2. 0v min. @ I1H = 1ma. max.

Vit = 0. 4v max.
Input goes to logic zero when open.

Bus Commands

The bus protocol specifies that all commands must originate from the
computer, and that peripherals will present data on the bus only when
commanded to. Every bus operation will go to completion before
another bus operation is initiated (no overlap). An error detected at
any point in the command sequence will abort the entire sequence.
A bus operation consists of the following elements:

Command frame from the computer.

Acknowledgement (ACK) from the peripheral.

Optional data frame to or from the computer.

Operation complete (COMPLETE) from the peripheral.

OPERATING SYSTEM C016555 —— Section 9
147

Command Frame

The serial bus protocol provides for three types of commands: 1) data
send, 2) data receive and 3) immediate (no data —— command only).
There is a common element in all three types, a command frame
consisting of five bytes of information sent from the computer

while the COMMAND- line is held low. The format of the command

frame is

shown below:

B i L — +
t device ID i
e ————————— +
H command i
o e e e +
t auxiliary #1 H
e e +
t auvxiliary #2 H
B T ——— +
H checksum i
S —— +

Figure 9-5 Serial Bus Command Frame Format

The device ID specifies that of the serial bus devices is being
addressed (see Appendix I for a list of device IDs).

The command byte contains a device-dependent command (see
Appendix I for a list of device commands).

The auxiliary bytes contain more device-dependent information.
The checksum byte contains the arithmetic sum of the first four
bytes (with the carry added back after every addition).

Command Frame Acknowledge
The peripheral being addressed would normally respond to a
command frame by sending an ACK byte ($41) to the computer; if

there is a problem with the command frame, the peripheral should
not respond.

Data Frame

OPERATING SYSTEM C016555 —— Section 9
148

Following the command frame (and ACK) can be an optional data
frame that is formatted as shouwn belouw:

S s +
1 L4
] 1]
] [
] 1
H data H
! bytes H
[} [
1 1
o o e e e +
H checksum i
o o e e e +

This data frame can originate at the computer or at the device
controller, depending upon the command. Current device
controllers expect fixed—length data frames as does the computer,
where the data frame length is a fixed function of the device
type and command.

The checksum value in the data frame is the arithmetic sum of all
of the frame data preceding the checksum, with the carry from
each addition being added back (the same as for the command
frame}.

In the case of the computer sending a data frame to a peripheral,
the peripheral is expected to send an ACK if the data frame is
acceptable, and send a NAK ($4E), or do nothing if the data frame
is unacceptable. See the first flowchart in Section 9.

Dperation Complete

A peripheral is also expected to send an operation—-COMPLETE byte
($43) at the time the commanded operation is complete. The
location of this byte in the command sequence for each command
type is shown in the timing diagrams in Section 9. If the
operation cannot go to normal, error—free completion, the
peripheral should respond with an ERROR byte ($45) instead of
COMPLETE.

OPERATING SYSTEM C016555 -- Section 9
149

150

Bus Timing

This section provides timing diagrams for the three types of
command sequences: data send.

data receive,

and immediate.
DATA SEND sequence:

-—— e et e i s o e i S s et S s S 14 i P S e S O S S S S L F fok e S
COMMAND~— H H
P e +
$————— + e
DATA OUT { emnd | i data |
—-———+frame +-————- //-—+ frame F-———————————————
+—+ +—+ +—+
DATA IN I N HE
——————————————— F e —————e e} e f b
ACK ACK CMPL
to ti1 ¢t2 t3 t4 t5
DATA RECEIVE sequence:
o e e o e e e o s s Gt o s e S O o S . S St . e e Pt St e o o e S S e
COMMAND-— H H
o ——— +
F—m————— +
DATA OUT { cmnd |
et rame e e e e e e
+—+ +—F Fm———f e}
DATA IN HE HE B data H
——————————————— + F==f/ ==+ +—+ frame e e e
ACK CMPL
t0 t1 ¢2 t5

OPERATING SYSTEM C016555% -- Section 9

IMMEDIATE sequence:

- o e o e o St e e it e . e . e e s i e o S i e e 2 o i i S e s s
COMMAND- : H
e e e e +
o e e +
DATA DUT i cmnd |
———=+frame +—————- —_ e e e o e e
+—+ +—4
DATA IN HE L
——————————————— + b [e e ——————
ACK CMPL
HH H I :
t0 t1 t2 ts
Figure 9-6 Serial Bus Timing Diagram

The computer generates a delay (t0) between the lowering of COMMAND-

and the transmission of

computer t0 (min} =
computer t0O (max) =

peripheral t0 (min)
peripheral tC (max)

The computer generates a delay (tl) between the transmission of
the last bit of the command frame and the raising of the COMMAND-

line.

computer t1 (min)
computer ti (max)

peripheral t1 (min)
peripheral t1 (max)

The peripheral generates a delay (t2) between the raising of
COMMAND- and the transmission of the ACK byte by the peripheral.

computer t2 (min) =
computer t2 (max) =
peripheral t2 (min)
peripheral t2 (max)

the first byte of the command frame.

750 microsec.
1600 microsec.

?7?
—~

&30 microsec.
950 microsec.

= ?7?
= ??

O microsec.
16 msec.

= 77
= 7?7

OPERATING SYSTEM C016555 —— Section 9

151

The computer generates a delay (t3) between the receipt of the
last bit of the ACK byte and the transmission of the first bit of
the data frame by the computer.

1000 microsec.
1800 microsec.

computer t3 (min}
computer £3 (max)

. ,,_:|
~J

3
.

peripheral ¢3 (min)
peripheral ¢3 (max)

The peripheral generates a delay (t4) between the transmission of
the last bit of the data frame and the receipt of the first bit
of the ACK byte by the computer.

computer t4 (min) 850 microsec.

computer t4 (max) 16 msec.
peripheral t4 (min) = ?7?
peripheral t4 (max) = 27

The Peripheral generates a delay (t5) between the the receipt of
the last bit of the ACK byte and the first bit of the COMPLETE
byte by the computer.

250 microsec.
255 sec. (handler—dependent}

computer €5 (min)
computer t5 (max)

peripheral t5 (min) = 27
peripheral t5 (max) = N/A

HANDLER ENVIRONMENT

Nonresident handlers can be installed in at least three different
manners:

1. As booted software from diskette or cassette.

2. Resident in a cartridge (A or B).

3. Downloaded from a serial bus device.
This section will discuss the basic mechanisms for handler
installation for these environments. In order to fully utilize the

information in this section, you must have read and understood the
following sections:

Program environments Section 3
RAM region Section 4
Memory dynamics. . . . -« SBection 4
System 1n1txallzat1on .. . Section 7
Adding new device handlers/perlpherals . Section 9
Program environment and initialization . Section 10

OPERATING SYSTEM CO16555 ~-~ Section 9
152

Bootable Handler

The diskette— o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>