

ASSEMBLY
LANGUAGE
PROGRAMMING
FOR THE ATARI
COMPUTERS

SOFTWARE AVAILABLE

All programs described in this book are available on disk,
fully documented and ready to run or modify. You can
order this disk by sending a check or money order for
$12.95*, along with your name and address, to:

MMG Micro Software
P.O. Box 131
Marlboro, NJ 07746

*New Jersey residents, please add 6070 sales tax. Please
allow 2 weeks for all personal checks to clear.

NOTE This software is a product of MMG Micro
Software and is not an offering of McGraw-Hill, Inc. We
include information concerning this product as a service
to our readers.

ASSEMBLY
LANGUAGE
PROGRAMMING
FOR THE ATARI
COMPUTERS
MARK CHASIN

McGraw-Hili Book Company

New York St . Louis San Francisco Auckland
Bogota Guatemala Hamburg Johannesburg
Lisbon London Madrid Mexico Montreal
New Delhi Panama Paris San Juan
Sao Paulo Singapore Sydney Tokyo Toronto

The author of the programs provided with this book has carefully reviewed
them to ensure their performance in accordance with the specifications
described in the book. Neither the author nor McGraw-Hill, however,
makes any warranties whatever concerning the programs. They assume no
responsibility or liability of any kind for errors in the programs or for the
consequences of any such errors.

ATARI is a registered trademark of Atari, Inc., Sunnyvale, CA.

ASSEMBLY LANGUAGE PROGRAMMING
FOR THE ATARI COMPUTERS

Copyright © 1984 by Mark Chasin. All rights reserved. Printed in the
United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or re
trieval system, without the prior written permission of the publisher.

A BYTE Book.

1 2 3 4 5 6 7 8 9 0 SEM SEM 8 9 3 2 I 0 9 8 7 6 5 4

ISBN 0-07-010679-7

LIBRARY OF CONGRESS CATALOGING IN PUBLICATION DATA

Chasin, Mark.
Assembly language programming for the Atari

computers .
(A Byte book)
Includes index.
1. Atari computer - Programming. 2. Assembler

language (Computer program language) I. Title .
II. Series.
QA76.8.A82C43 1984 001.64 ' .24 84-11214
ISBN 0-07-010679-7

The editor for this book was Barbara Brooks;
and the editing supervisor was Marthe Grice.
Book design by Sharkey Design.

CONTENTS

Preface vii

PART ONE BACKGROUND
1 Introduction 1
2 Getting Started 11
3 The ATARI Hardware 21

PART TWO LEARNING
ASSEMBLY LANGUAGE

4 Nomenclature and the Instruction Set 37
5 Addressing Techniques 52
6 Assemblers for the ATARI 66
7 Machine Language Subroutines

for Use with ATARI BASIC 79

PART TH RE E APPLICATIONS
8 The Display List and Using Interrupts 113
9 Input-Output on the ATARI 149

10 Graphics and Sound from Assembly
Language 185

PART FOUR APPENDIXES
1 The 6502 Instruction Set 215
2 The Three Character Sets Used in ATARI

Computers 279
3 The ATARI Memory Map 283

Index 287

-

PREFACE

Since you've picked this book up and started browsing through
it, you probably own or have access to an ATARI computer and are
interested in progressing beyond BASIC. As you already know, the
ATARI computers are among the most impressive of all home com
puters, but many of their special features are not available from
BASIC.

This book is designed to teach assembly language programming
to anyone who understands ATARI BASIC. Yes, anyone! You've
probably read other books and articles which create a mystical aura
around assembly language, or else use the phrase machine language
as if it were the secret code to unlock the door to the Thief of
Bagdad's treasure troves. Of course, only the privileged get to look
at this secret treasure.

Bunk! Anyone who has ·programmed in BASIC, or any other
language for that matter, can learn to program in assembly lan
guage, given the desire and the correct instruction in the language.
This book provides the tools you need. Each programming lan
guage - BASIC or PILOT or FORTH or, yes, even assembly lan
guage - has its own words which stand for certain operations. One
example is PRINT in BASIC, which directs information to your
TV screen. The combination of these words, and the way they must
be strung together to make the computer do what you want it to do,
is called the syntax of the language.

In this book, you will learn the syntax of assembly language, and
you will also learn, by frequent examples, how to use assembly
language to make your ATARI perform tasks which are either im
possible from BASIC or 200 times slower in BASIC. The examples
are fully documented both by frequent remarks and by a thorough
discussion of the purpose, programming techniques, and theory,
where appropriate, of each program. This discussion allows you to
progress beyond the examples and to write your own subroutines or

viii

even whole assembly language programs for the ATARI. Further
more, the routines in this book follow the "rules" established by
ATARI for assembly language programmers, so they will work with
any ATARI computer, from the earliest 400, to the most advanced
1450XLD, and everything in between.

Examples are given both in assembly language and, wherever
possible, also in BASIC programs which incorporate these assem
bly language routines to perform tasks from BASIC. These rou
tines can be used immediately in your own programs. In fact, you
can use the enclosed order form to obtain on disk all assembly
language and BASIC programs in this book. The disk is ready to
run or modify for your own uses. Included on disk and here are
such techniques as reading the joysticks, moving players and mis
siles, input or output to all possible devices such as printers, disk
drives, cassette recorders, the screen and more, vertical blank inter
rupt routines, display list interrupts, fine horizontal and vertical
scrolling, sound, graphics - in short, everything you've always
heard the ATARI computers were capable of but had no idea how
to program.

One entire chapter of the book is devoted to the use of as
semblers and how to use this book with any of the many fine as
semblers available for the ATARI computers. You'll need an as
sembler, just like you need BASIC to program in BASIC, and this
book will interact with any of them.

If you've reached the point where BASIC is no longer enough,
and you'd like to progress to a language which gives you absolute
control over all functions of your remarkable computer, then begin
with Chapter 1, and you'll see how easy it is. Who knows, maybe
you'll be the one to write the sequel to STAR RAIDERS!

Mark Chasin

-.

Welcome to the world of assembly language programming for
the ATARI computers. By now, you've no doubt tried your hand at
programming your ATARI in BASIC and found it to be a very
easy-to-use and powerful language. But you've also probably
found some things that just can't be done in BASIC, and you know
that all of the excellent real-time action games and the fast sorts
and searches are all programmed in some mysterious language
called machine language. The purpose of this book is to teach you
how to program your ATARI in the fastest, most powerful and
versatile language available, assembly language. By working your
way through this book, you will learn how to use all of the sophisti
cated and powerful resources of one of the most impressive home
computers, the ATARI.

Most of the examples in this book will be related to BASIC, so
an understanding of BASIC will be important to the understanding
of this book. However, many types of programs that can be written
in assembly language simply have no counterparts in BASIC, and
so for these no such examples will be possible. Problems will be
presented throughout the book and it is highly recommended that
you try to work them out for yourself. In each case the answers will
be presented and discussed, in order to help you if you are having
trouble.

2 Background

VARIETIES OF PROGRAMMING
LANGUAGES

At a very fundamental level , your ATARI really only under
stands one programming language, which is called machine lan
guage, the language of the computing machine. A typical machine
language program might look like this:

1011010110100101

Now, before you put this book down and go back to BASIC,
let's understand one thing right away: virtually no one programs
directly in machine language. Even the many programs advertised
as being written in "100% machine language" weren't; they were
written in assembly language and then translated into machine lan
guage. But all computer languages must at some time be translated
into machine language in order to be executed, even BASIC. That's
right, the central "brain" of your ATARI computer doesn't even
really understand BASIC.

BASIC:
AN INTERPRETED LANGUAGE

Let's spend a moment discussing how a BASIC program is ex
ecuted, in an effort to understand better what assembly and ma
chine language really are, and how they differ.

Let's first write a very simple BASIC program:

10 PRINT "HELLO"
20 FOR I = 1 TO 200
30 NEXT I
40 PRINT "GOODBYE"
50 END

If we now type RUN and hit the RETURN key, we know that
the word HELLO will appear on our TV or monitor screen and,
after a brief pause, the word GOODBYE will appear directly below

Introducfion 3

it, followed several lines later by the word READY. But exactly how
does this happen?

The cartridge containing ATARI BASIC is actually more pro
perly called the ATARI BASIC Interpreter. An interpreter, just like
the noncomputer use of the word, is someone or something that
translates information from one form into another, whether from
English into Russian, or from BASIC into some other language. In
our case, the BASIC cartridge contains a program that can trans
late BASIC keywords into a form understandable to our com
puter's "brain." Let's see how.

As we type line 10, the word PRINT is translated to a code for
the word PRINT, called a token. This process is called tokenizing
your BASIC program, and is done as you type each line into your
ATARI, and hit RETURN. It is this process that simultaneously
checks the syntax, or grammar rules, to be sure that you typed the
line correctly. If not, you'll see the familiar ERROR statement im
mediately after typing the line, and you then can correct your mis
takes before proceeding. This ensures that when the BASIC
cartridge begins interpreting your program, it may have logical er
rors to deal with, but at least each line is internally correct.

Having completely typed the above program, we would then
type RUN and press RETURN, which would begin the interpreta
tion of the program. The first thing this interpreter knows is that
the beginning of the program, the place it must start when the word
RUN is typed, is the lowest-numbered line of the BASIC program.
Actually, before it ever gets there, it does quite a bit of housekeep
ing, such as setting all variables used in your program to zero, can
celing out any previously used strings or arrays, and many other
functions. Then it turns its attention to line 10, which is converted
into machine language by means of something called a jump table,
about which we'll learn a great deal in Chapter 9. In any case, first
line 10 is translated, then it is executed, and then the machine lan
guage code is thrown away, to make room for the next line, line 20.
The process of translation, execution, and discarding is repeated
for line 20 and then again for line 30, and so on.

Having now executed the entire program, and seen the READY
prompt that tells us that BASIC is ready for new instructions, what

4 Background

do you suppose will happen if we type RUN again? Right! The
entire process of translating, executing, and discarding each line
will be repeated all over again . Then we'll see the READY prompt
again. In fact, this entire process will occur as many times as we
choose to type the word RUN. As you can no doubt see, this is a
very wasteful process . BASIC continues to repeat over and over
two of the three steps which are not actually needed to run the
program, translation and the discarding of information. If we
could only get away from the need for these two steps, imagine how
fast our program would execute. After all, if we get rid of these two
steps, the only one left is execution.

ASSEMBLY LANGUAGE:
AN ASSEMBLED LANGUAGE

Now you know the purpose of assembly language program
ming! When we program in assembly language, by using a transla
tor known as an assembler, we can produce the executable machine
language code which we can store, and which the computer can
execute directly. We translate it only once and we don't discard it at
all, so we get maximum efficiency, and therefore, maximum speed .
And that's the real benefit of assembly language programming,
speed. In fact, it is possible to write a program in assembly lan
guage which will execute over 1000 times faster than its BASIC
equivalent! For arcade games, and very time-consuming processes
like moving blocks of memory around, searches, sorts and other
such procedures, assembly language programming can be abso
lutely indispensable .

The other major advantage of assembly language is the abso
lute control it gives the programmer over the computer. In BASIC,
the programmer is often separated from the nuts-and-bolts hard
ware of the computer and doesn't have detailed control over many
of its functions. This control is available only through assembly
language programming.

Introduction

INTERPRETED VERSUS ASSEMBLED
LANGUAGES

5

These are the advantages of assembly language programming:
speed and control. How about the disadvantages? First, of course,
is the need to learn a new computer language. This book will enable
you to do that. Second, ATARI BASIC is an interpreted language,
while assembly language is not. This becomes important when you
need to make changes in a program. In BASIC, you simply make
the change and rerun the program. For example, to change the
above program, we might simply type:

40 PRINT "GOODBYE";
50 PRINT "Y'ALL"
60 END

Now when we run the program, it will say GOODBYE Y' ALL
instead of just GOODBYE, as above. The entire change in the pro
gram might take 15 seconds for a very slow typist. This flexibility is
a great advantage of interpreted languages. To make a similar
change in an assembly language program would require much more
typing, and then the program would have to be reassembled. This
assembly process, converting the assembly language program to
machine language, sometimes takes 15 minutes or more, depending
on the size of the program and the assembler used. Of course, our
example is very short and would not take this much time, but the
point is that making even a very simple change to an assembly lan
guage program might take quite a while, and if you make a mis
take, you'll need to repeat the process all over again!

A third disadvantage of assembly language is the amount of
programming you'll need to do to accomplish even the simplest
tasks. For instance, the PRINT statement in BASIC, which re
quires you to type only one word, might require 20 or 30 lines of
programming in assembly language. For this reason, assembly lan
guage programs are usually very long.

6 Background

The fourth, and last, disadvantage of assembly language is the
difficulty of understanding a printout of the program. Certainly
the PRINT statement in BASIC is far more understandable than a
series of instructions such as :

LDA #$01

STA CRSINH

or something equally obtuse. This problem can and should be over
come by all good assembly language programmers by the inclusion
of comments on virtually every line . Comments are the assembly
language equivalent of REM statements in BASIC: they help the
programmer to remember what it was he or she was trying to ac
complish with a given line. Certainly the above example makes
somewhat more sense when presented below with comments, even
to someone who doesn't understand assembly language at all.

LDA #$01

STA CRSINH
ito inhibit cursor
iPoke a 1 here

Now perhaps it's more understandable that when we see a pro
gram advertised as written in "100070 machine language," what is
really meant is that it was written in assembly language, and then
translated once from its final form into machine language, which is
the form in which it is being sold. Such programs generally are
much faster to execute than BASIC programs, and the additional.
control the programmer has over the computer allows special ef
fects not attainable from BASIC.

There is an additional distinction between BASIC and assem
bly language. BASIC belongs to a family of programming lan
guages which are referred to as high-level languages. This
nomenclature refers to the ability of one simple statement to per
form quite a complicated task, such as the PRINT example used
above. In a sense, this ease of programming also isolates the pro
grammer from the hardware, placing him or her at arm's length, so
to speak. ~t is from this view of languages such as BASIC that the
term high-level language arose. Among thousands of other high
level languages are Pascal, FORTRAN, PILOT and Ada. In con-

Introduction 7

trast to these, languages such as machine language or assembly
language are referred to as low-level languages, because to program
using them requires an understanding of the hardware and an abil
ity to get into the real guts of the machine for which you are pro
gramming.

WORKING WITH ASSEMBLY LANGUAGE

In order to convert an assembly language program to machine
language, we must use another program, called an assembler.
There are a number of excellent assemblers available for the ATARI
computers, and the techniques used in this book will work with any
of them. Chapter 6 is devoted to the syntax and special functions of
each assembler, but the assembly language programs listed in this
book were produced using the Assembler IEditor cartridge from
ATARI. Chapter 6 specifies all of the changes required to use these
programs with each of the other assemblers.

COMPILERS

There is another way to convert programs to machine lan
guage. A compiler is a program which converts a program written
in a high level language such as BASIC to machine language. These
compilers generally convert the entire program all at once, in con
trast to an interpreter, which translates each line one at a time. The
converted program created by the compiler can then be run without
a BASIC cartridge installed, and will generally be from five to ten
times faster than the original BASIC program. Why only five to ten
times? These compilers are very complex programs, which must
take into account every possible combination of BASIC commands
anyone might write. Therefore, they create machine language code
which performs all of the correct steps in the original program, but
they cannot optimize the code produced. Therefore, in general,
programs written in assembly language and assembled into ma
chine language will execute much faster than the same program
written in BASIC and compiled.

8 Background

The other major disadvantage of compiled code is its size. For
instance, some of the subroutines in Chapter 7 are about 100 bytes
long. The same routines written in BASIC and compiled could be
as long as 8000 bytes! It would be very hard to use these as subrou
tines in a BASIC program as we do in Chapter 7.

TERMINOLOGY

Before we go on, let's talk about a number of terms that are
frequently used by programmers. It's the jargon of their trade. Just
so we all are speaking the same language, then, let's briefly review
some of them. When we speak about computer memory, we fre
quently hear the terms ROM and RAM mentioned. ROM stands
for Read-Only Memory, and memory of this type can be read but
not written to. For instance, in the ATARI, all memory locations
higher than 49152 are ROM, and although in BASIC we can PEEK
them to see what is stored there, we cannot POKE new values into
them. "But what about player-missile graphics?" you may ask.
"We POKE memory locations higher than this all the time!"

True, but if you were to then PEEK at that location, you would
find that you hadn't really changed anything at all. The value
stored in that location is not changed by such POKEs. It is the act
of writing to that address which causes the changes you see in
player-missile graphics or other applications requiring writing to
memory locations above 49152.

This is in direct contrast to RAM, which stands for Random
Access Memory. Actually, both ROM and RAM are random-ac
cess, and RAM should more properly be called Read-Write
Memory; but since RWM is unpronounceable, RAM has become
the accepted term. The term random access refers to the method by
which information is accessed, and is to be contrasted with sequen
tial access, the other major method of storage. Sequential access
can best be envisioned by imagining an audio tape. In order to play
a song in the middle of the tape, you must somehow scan through
the entire first portion of the tape, either by playing it or by using
the fast-forward key. In contrast, think of a phonograph record. To

Introduction 9

play the middle song on a side, we simply lift up the tone arm and
bring it down on the song we want, which immediately begins play
ing. We have not had to go through any other songs to get to that
one. The audio tape is a sequential-access device, as is a computer
tape, such as the ATARI 410 program recorder, and the phono
graph record is a random-access device, as is a computer disk, such
as that used in the ATARI 810 disk drive.

The next terms, with which you mayor may not be familiar,
are OS and DOS. OS stands for Operating System, and your
ATARI has one of the best operating systems of any microcompu
ter. The operating system is contained in ROM (Remember? Read
Only Memory!) in your computer, and is responsible for
controlling almost everything that happens inside your ATARI.
Without the operating system, nothing would happen when you
turned on your computer. The operating system has complete con
trol over every facet of computing. We'll learn how to interact with
this fine operating system in considerable detail as we work our
way through this book.

Perhaps it should be said that the ATARI has several of the best
operating systems of the popular microcomputers, since the operat
ing system for the 400 and 800 is slightly different from that of the
1200XL, which in turn is slightly different from that of the 600XL,
the 800XL, and the 1450XLD. In fact, even the 400 and 800 had
two different versions of their operating systems, the so-called A
and B ROMs! How are we to begin programming for so many dif
ferent operating systems?

This is the nicest part about the operating system for the
ATARI computers. ATARI has guaranteed that certain vectors in
the operating system will never change. A vector is a signpost, a
directional indicator. It tells us how to find particular routines or
where to find a certain part of the operating system. With this in
formation, it is possible to write a program which will work not
only on our 400 or 800 or on an 800XL, but even on generations of
ATARI computers which ATARI themselves have not yet dreamed
of producing!

There are a number of shortcuts around these vectors available
in the ATARI computers, but there is no guarantee that programs
which use these shortcuts will work on all ATARIs. For this reason,

10 Background

they are strongly not recommended for general use. Of course, if
you're just writing a quick and dirty subroutine for your own pro
gram, to use on only your computer, these shortcuts are useful, but
many programs written in assembly language have failed as soon as
new operating systems were made available by ATARI. In one case,
such lack of foresight has even caused the untimely demise of a
third-party software house, so if you're contemplating selling what
you write, be sure to obey the rules.

The related term, DOS, stands for Disk Operating System.
This is the program that controls any disk drives which may be
connected to your ATARI. It actually consists of two parts, DOS.
SYS and DUP.SYS. The DOS.SYS portion of DOS is loaded into
your computer when you first turn it on, and is always present. The
DUP.SYS portion of DOS is only loaded when you type DOS from
the keyboard. It contains the familiar DOS menu allowing many of
the usual file manipulation commands, such as copying disks, sav
ing areas of memory, formatting disks, and many others. You
should note that there are no guaranteed vectors in DOS, although
so much software depends on certain locations that changes in
these would have to be considered unlikely. But you never can tell .

Now that you know the difference between languages, and be
tween interpreters, assemblers, and compilers, we'll next explore
the various numbering systems used by our computers.

NUMBERING SYSTEMS IN GENERAL
Before we can learn assembly language programming, we must

first review several different numbering systems used in such pro
gramming. Let's first review the decimal system, the one with which
we are most familiar. The decimal system is based on ten, most
likely because we have ten fingers, and counting using our fingers
was the simplest form of arithmetic for early peoples .

Think about the number 123 for a moment. Exactly what does
this number represent? If we think about what we learned in
school, we remember lone hundred, 2 tens, and 3 ones, which,
when added together, total 123. There is, however, another way of
looking at this number. It turns out that each digit in the decimal
system (base 10) is 1 power of 10 higher than the digit to its immedi
ate right. For those of you who don't clearly remember what a
power is, that term simply tells you how many times the base is
multiplied by itself. For instance, 10 to the power of 3 is 10 x 10 x
10 = 1000, or 10 multiplied by itself 3 times.

Now, to return to 123, we remember that in any numbering
system, the right-hand-most digit is always the ones column. Why
is this? Because that digit is always the base - in this case, 10 - to
the zero power. Anything to the zero power is always 1, so this digit
is always the ones digit. In our example we get 3 x 1 = 3. The next

11

12 Background

digit, the 2 in this case, represents the base 10 to the first power, or
10. Since 2 X 10 = 20, we get the correct middle digit for our
number. Finally, the left-most digit, 1, represents the base 10 to the
second power, or 100. Therefore, this digit represents 100 xl, or
100, and the whole number represents 100 + 20 + 3, or 123. If we
view the number schematically, this process becomes somewhat
easier to follow . fn'the-exampies below, we always start from the
right, and progressively move toward the left. For instance, we can
represent the decimal number 123 as:

The To the Times the Equals the
base power of Equals digit value

10 0 1 3 3
10 1 10 2 20
10 2 100 100

Total = 123

Let's pick a slightly more complicated number and go through
it one more time, using 53,798.

The To the Times the Equals the
base power of Equals digit value

10 0 1 8 8
10 1 10 9 90
10 2 100 7 700
10 3 1,000 3 3,000
10 4 10,000 5 50,000

Total = 53,798

THE BINARY NUMBERING SYSTEM

Now that we've seen how to take apart a decimal number, the
kind with which we're all so familiar, let's move on to a different
numbering system, the binary system. Why binary? Computers re
ally are relatively simple devices, and the fundamental piece of in
formation stored in them is called a bit, or binary digit. A bit is the
smallest amount of information; it can either be on or off, yes or
no, a 1 or a zero. In a sense, a bit is like a standard light switch.

Getting Started 13

Excluding dimmers for a moment, a light can either be on or
off; there is no in-between. A bit in a computer behaves exactly the
same way. This explains why the binary numbering system is such a
natural system for computers. The binary system consists of only
two digits, zero and I . Therefore, anything represented in the bi
nary system can immediately be understood by our computer,
which really can understand only these two digits.

Learning a new numbering system could be a real chore, but
we'll make it easy. In fact, all numbering systems work exactly the
same way. The only difference between them is the base used. The
decimal system, as we have seen, uses 10 as the base. The binary
system uses 2 as the base. Note that the largest digit in any num
bering system is always 1 less than the base. For example, 9 is the
largest digit in base 10, and 1 is the largest digit in base 2. Why?
Because we have to allow for the digit zero, and in every numbering
system the total number of different digits is equal to the base for
that numbering system.

To show you how easy it is to understand the binary system,
we'll take it apart just as we did the decimal system above, using
the binary number 10110110.

The To the Times the Equals the
base power of Equals digit value

2 0 1 0 0
2 1 2 1 2
2 2 4 1 4
2 3 8 0 0
2 4 16 16
2 5 32 1 32
2 6 64 0 0
2 7 128 128

Total = 182

Therefore, 10110110 in the binary numbering system is equal
to 182 in the decimal numbering system. Let's try one more, only
this time you try it by yourself first, before you look at the answer,
and then we'll work it out together below. The binary number to
convert is 01011101.

14 Background

The To the Times the Equals the
base power of Equals digit value

2 0 1 1 1
2 1 2 0 0
2 2 4 1 4
2 3 8 8
2 4 16 1 16
2 5 32 0 0
2 6 64 64
2 7 128 0 0

Total = 93

Did you get it by yourself? The binary number 01011101 is the
same as the decimal number 93.

Now we know how to get from a binary number to a decimal
number, but how do we reverse the process, in order to get from a
decimal number to a binary number? That's even easier. Just take
your decimal number and successively divide by the powers of 2,
starting with the highest power which will divide into your decimal
number with a result of 1. Each time, divide the remainder by the
next-lower power of 2. For instance, let's convert 124 to the binary
system.

124/128 = 0
124/64 = 1

60132 = 1
28/16 = 1

12/8 = 1
414 = 1
0/2 = 0
0/1 = 0

with a remainder of 124
with a remainder of 60
with a remainder of 28
with a remainder of 12
with a remainder of 4
with a remainder of 0
with a remainder of 0
with a remainder of 0

The number 124 in the decimal system equals 01111100 in the bi
nary system.

THE HEXADECIMAL NUMBERING SYSTEM

Now we're almost finished with numbering systems. One more
step to go, and we will be finished. There is a much easier way to
represent numbers than the binary system. This system is called the

Getting Started 15

hexadecimal system. Hexadecimal? Hexadecimal stands for 16,
and the base of the hexadecimal system is, not suprisingly, 16. We
already know that the largest single digit in this system must be 15.
Wait a minute! The number 15 is not a single digit. So we need
some new way of representing the numbers from 10 to 15. The
easiest symbols to remember are the first six letters of the alphabet.
Therefore, in the hexadecimal system, the number 10 is represented
by the letter A, 11 by B, and so on, up to 15, which is represented
by the letter F. Since the base of the hexadecimal system is 16, the
values of the digits increase by powers of 16. An example is in
order. Let's translate the number 6FC in hexadecimal nomenclature
into the decimal system.

The To the Times the Equals the
base power of Equals digit value

16 0 1 C 12
16 1 16 F 240
16 2 256 6 1536

Total = 1788

So hexadecimal 6FC represents decimal 1788. In most computer
articles and texts, hexadecimal numbers are preceded by a dollar
sign, so the proper way to represent the decimal number 1788 in
hexadecimal nomenclature is $6FC. To convert from decimal to
hexadecimal, divide as was shown above, but instead of dividing by
powers of 2, divide successively by powers of 16:

1788/256 = 6 with a remainder of 252
252116 = 15 (F) with a remainder of 12

1211 = 12 (C) with a remainder of 0

One more conversion to go, and this is by far the easiest of all.
Let's use the binary number 10110111. We already know that this is
equal to the decimal number 183, and we could convert this to its
hexadecimal equivalent. But this is the long way around. We will
frequently need to convert from binary to hexadecimal, so let's
learn how to do it directly, in one very easy step.

We first take the binary number, 10110111 in this case, and
break it into two parts, right down the middle. If the 8 bits are

16 Background

called a byte, then each set of 4 bits should be called ... a nibble.
And it is! The high-order nibble is 1011, and the low-order nibble is
0111. Each of these nibbles can easily be converted to a single hex
adecimal digit, since four bits represents a number from zero to 15.

1011 = 1 eight = 8 0111 = 0 eights = 0
o fours = 0 1 four =4
1 two 2 1 two = 2
1 one 1 one = 1

Total 11 (8) Total = 7

Thus, the hexadecimal equivalent of 10110111 is $B7, obtained
directly without going through a decimal number as an intermedi
ate (Fig. 2-1). You can work out for yourself that the number is the
same no matter how you obtain it.

Byte = 10110111 binary

High order nibble
1011 binary

or
$B hexidecimal

Low order nibble
0111 binary

or
$7 hexidecimal

Byte = $87 hexidecimal

Fig. 2-1

To translate from hexadecimal into binary, just reverse the above
process. Here's how the hexadecimal number $FA is represented in
binary nomenclature:

F = 1 eight
1 four
1 two
1 one

1111

C = 1 eight
1 four
o twos
1 one

1101
11111101

Getting Started 17

ORGANIZATION OF DATA

Now that you can easily convert numbers from one base to
another, let's talk for a moment about how data is organized in
your computer. You'll have noted already that in all of the above
examples, the binary numbers were organized into groups of eight
digits. In computer jargon, 8 bits form a byte. Each memory loca
tion in your ATARI stores 1 byte of information. It should be ap
parent that in the largest possible byte, all of the bits are equal to 1.
You can now calculate from this that the largest single byte any
computer can store is decimal 255. By the same logic, there are only
256 possible different bytes (remember zero). So how does the com
puter handle larger numbers, and how does it handle more than 256
different numbers?

Computers can handle larger numbers in two different ways.
One is to couple several bytes together to represent a single number.
Using this technique, a 2-byte number can be as large as 256 x 256,
or 65,536. Although 3-byte numbers are not normally used in your
ATARI, this system allows numbers as large as 256 x 256 x 256,
or 16,777,213. As you can see, this technique will allow storage of
very large numbers. The second method of large number storage is
to use floating point numbers. The numbers used so far in this
chapter have all been integers; that is, they have all been whole
numbers. No fractions or decimals can appear in an integer. How
ever, there are no such restrictions on floating point numbers.
Numbers such as l.237 or 153.2 are perfectly valid floating point
numbers, whereas they are not valid integers. The term floating
point comes from the concept that the decimal point can float from
place to place, as in the two decimal floating point numbers just
described . In both cases, there were four digits in the numbers, but
in the first case, three were to the right of the decimal point, and in
the second, only one was. How do we represent such numbers in a
computer?

In general, the numbers are coded so that 1 byte represents the
power of 10 by which the number is multiplied, 1 byte represents
the sign of this power (whether the number is greater than one, or
between zero and one) and several bytes represent the mantissa, or
the number itself. In other words, we could code 153.2 as the fol
lowing sequence of bytes:

18 Background

1,2,1, 5,3,2

In the coding scheme used here, the first digit represents the
sign of the exponent, with 1 being positive and zero being negative.
The second digit represents the power of 10 by which to multiply
the mantissa, or 100. The rest of the digits represent the number
itself, with the decimal point understood to be after the first digit.
Therefore, decoding this number according to these rules gives:

100 x 1.532 = 153.2

Of course, many other coding schemes are possible, but the main
idea is that by coding numbers, very large numbers can be repre
sented in a computer, even using no byte greater than 255.

In our discussion so far, we have concentrated entirely on posi
tive numbers. How do we handle negative numbers? By using
signed binary arithmetic. In this system, the left-hand-most bit,
called the most significant bit, doesn't represent a power of 2 at all,
but rather represents the sign of the number. That is, if the most
signficiant bit is 1, the number is negative, and if the most signifi
cant bit is zero, the number is positive (Fig. 2-2). One fallout of this
system is that the largest signed number we can represent in 1 byte
is + 128, or - 127, since we only have 7 arithmetic bits with which
to work .

Unsigned binar y numbers

11101111101110111 10101111101110111
181 53

Signed binary numbers

11101111101110111 10101111101110111
-53 +53

Fig . 2-2

Getting Started 19

One note of caution is warranted here. If you are using 2-byte
signed arithmetic (and the ATARI does this frequently) only the
most significant bit of the most significant byte (the byte represent
ing the highest digits of the number) is the sign bit. That is, a 2-byte
signed number contains 15 numeric bits and only I sign bit. This
will become very important later when we get into 2-byte math. Of
course, when we use floating point arithmetic, we need to add to
our code 1 byte which will represent the sign of the number - that
is, whether the final number represented is positive or negative, but
all coding schemes used do take this into account.

MEMORY ADDRESSING TECHNIQUES

In BASIC, making reference to a specific memory location is
fairly simple and straightforward. For instance,

POKE 752,1

is a direct command to place the value 1 into memory location 752.
Additionally, we know that the maximum random-access memory
available in a standard ATARI computer is 48K RAM. With the
10K ROM operating system, and other space taken for other spe
cific purposes, the maximum total memory allowable in a normal
ATARI is 64K, or 65 ,536 memory locations. This number should
sound somewhat familiar, since we have encountered it before. It is
the largest number which can be coded by 2 bytes.

The ATARI addresses memory by using a 2-byte system, which
allows it to address 65,536 different memory locations. Every com
puter based on the 6502 chip has the same built-in limitation on the
number of different memory locations which can be addressed. So,
how can some ATARls contain more than this amount of memory?
How can some 6502 computers boast of more than 64K of total
memory, ROM and RAM combined?

The secret to this increased memory addressing is to use a tech
nique called bank selecting memory. Using this procedure, another
byte is used to control which bank of memory the 2-byte addressor
will reference. Imagine a computer with 16 banks, or tiers, each of

20 Background

which contains 64K of total memory. Only 1 of these 16 banks
could be used at anyone time, but all might be available from time
to time . If the bank-selective byte is equal to 0, the first bank,
which contains the normal 48K of RAM and the ATARI operating
system, is selected. Under these conditions, if the addressor says

I that it wants information from location 752, it retrieves informa
tion from the normal location 752, just like an unmodified ATARI.
If, however, the bank-selective byte is equal to 1, the first 64K bank
of RAM is selected. Another PEEK at location 752 would now
choose a location in this bank of memory, which would probably
contain information totally different from that contained in the
previous example.

As you can probably imagine, some aspects of bank-selective
memory are particularly tricky to handle . For instance, imagine
running a BASIC program stored in the normal 48K. Halfway
through the program, we access a new bank of memory. All of a
sudden, the computer loses track of the BASIC program it was
running, since the program is no longer present in the addressable
space of the computer, at least until we reselect the appropriate
bank. This would result in a crash, and we would probably lose
both our program and the information we were trying to access.
These problems can be overcome to some extent, and third-party
software and hardware vendors already have products on the mar
ket which will allow expansion of your ATARI beyond the usual
maximum of 48K RAM. There is no theoretical reason why you
cannot have an ATARI in your home with a maximum addressable
memory of over 16 million bytes (yes - million!). In fact, don't be
suprised if sometime soon you see expansion systems available for
the ATARI that will take it well beyond the 192K maximum cur
rently available. Such products, along with mass storage devices
currently under development, will allow your ATARI to run pro
grams as yet undreamed of by even the most diehard ATARI user.
To take advantage of these systems, a thorough understanding of
assembly language programming and of the construction of your
ATARI will be necessary, and the remainder of this book is devoted
to these two needs.

We will now learn a little about the workhorse of our ATARI,
the 6502 family of microprocessors. All real computing in our
ATARI is done inside the chip known as the CPU (Central Process
ing Unit), sometimes called the MPU (Micro Processing Unit). Dif
ferent computers use different CPUs, the Z-80, the 8080, and the
6502 among them. The ATARI computers and many other popular
machines use the 6502, or a modification such as the 6502A or
6502B, as their CPU. When we speak of programming in machine
language or assembly language, we are really talking about pro
gramming the 6502 directly or indirectly.

In addition to the 6502 microprocessor, there are three addi
tional specialized chips in our ATARI, and these are found in no
other microcomputer. They are called ANTIC, POKEY, and GTIA
(or in some of the first ATARIs, CTIA). They work in concert with
the 6502 to produce the spectacular graphics and sounds that we
have all come to associate with the ATARI computers. Their pres
ence in only ATARI computers explains why frequently the same
program run on an ATARI and some other microcomputer looks
and sounds so much better on the ATARl. The uses for each of
these chips and the ways to access them in our programs will be
discussed later in this book.

Let's take a brief exploratory tour of the 6502, and learn a little
about the way it works. The first thing that we may be surprised to

21

22 Background

Data bus

t t t
Stack

Program cou n tef
X reg ister I

po inter Low I High
I

Processor
Y reg ister Acculll ulator stat us

register

I Me mory or th e co m put er I

Fig. 3-1 Block diagram of a 6502 computer

learn is that this powerful computer of ours really only knows how
to compare two numbers, or to add or subtract them! What hap
pened to square roots? Division and multiplication? All the com
plex math we can do so easi ly in BASIC? Since these functions are
really only combinations of comparisons, addition, and subtrac
tion, we can easily teach our ATARI how to perform complex
math, as we'll see later. Meanwhile, let's see how bur computer
works. There are six parts to each member of the 6502 family (Fig .
3-1), and we'll discuss each individually and then talk about how
they work together.

THE ACCUMULATOR

The first part of this complex chip is the accumulator, usually
called A in assembly language shorthand . This is the part that actu
ally does the computing - the comparisons, the addition or sub-

Th e ATARI Hardware 23

traction. One way to think about the accumulator is to picture it as
looking like the capital letter Y. You can stuff numbers into each of
the top arms and operate on the numbers (add or subtract) to
produce a result that can be pulled out of the bottom. The accumu
lator is unique in this respect, since it is the only place in the com
puter that can operate on two pieces of information at the same
time. Let's think about a simple analogy in BASIC for a moment.
If we

POKE 752,1

and then immediately follow that instruction with

POKE 752,0

we know that location 752 will now have the value of zero. That is,
it cannot have both values simultaneously. We also know that we
cannot add 12 to the value stored in memory location 752 directly.
In order to do this in BASIC, the following program would be
required:

10 1= PEEK(752)
20 1 = 1+12
30 POKE 752,1

What we did was pull out the value stored in memory location 752,
increase it by 12, and put the new value back into memory location
752. How did we increase the value by 12?

We used the accumulator to increase the value of I by 12 in line
20. How we did this, and the exact instructions required for this
manipulation, will be covered later. For now, it's enough to realize
that the only part of our ATARI that can actually perform mathe
matical operations is the accumulator. Whenever we need to per
form any math, we must follow the pattern shown above in the
BASIC example; that is, we must load the value to be changed into
the accumulator, change it, and store it back where we need it. This
is an operation fundamental in assembly language programming,
as we'll see shortly.

24 Background

THE X AND Y REGISTERS
Our tour of the 6502 continues with the next two parts of the

chip, the X and Y registers. These two storage locations are housed
directly in the 6502 CPU, unlike the many other memory locations
in our ATARI. They cannot be accessed directly from BASIC, but
they are addressed frequently from assembly language. The regis
ters can be used in either of two ways. The first is fairly simple and
is exactly analogous to the BASIC POKE command. That is, we
can use these two registers as simple storage locations to house in
formation that we know we will need shortly. This is a fairly simple
use of these two powerful registers. Their second use is as offset
counters, or index registers. For instance, suppose we want fint to
access location 752, then 753, and then 754. In BASIC, we could do
this in two ways :

or

10 A(l) = PEEK(752)
20 A(2) = PEEK(753)
30 A(J) =PEEK(754)

10 FOR X = 0 TO 2
20 A(X) =PEEK(752+X)
30 NEXT X

The first way is usually referred to as the "brute-force" approach.
It works all right as long as the number of items to be accessed is
low, bilt if we just change the problem to require the accessing of 30
locations instead of 3, our program grows to be 30 lines long in
stead of 3. In the second example, the only thing that changes is the
2 in line 10. This is a more general and much more versatile solution
to the problem posed. As you can see, we are using X as an offset
from location 752. That is, the first time through the loop, we ac
cess location 752 + 0, or 752. The second time through the loop, we
access location 752 + 1, or location 753. We are using the value of X
as an offset from the base address of 752.

The ATARI Hardware 25

The X and Y registers of the 6502 can be used in exactly the
same way, giving us a quick and easy way to access information
stored in consecutive memory locations. Since so much informa
tion can be stored this way - arrays, strings, tables, screens, and
the like - we have a very easy way of building information and of
finding out what we've built.

THE PROGRAM COUNTER

Continuing our tour, we next encounter the program counter,
or Pc. The first thing that we notice about the program counter is
that it's twice as big as the other registers in the 6502, 2 bytes wide
instead of just 1; this is the only place in the whole computer which
can act as a single 16-bit (2-byte) register. The program counter is
responsible for remembering what comes next in your program.
For instance, we have all learned that in a BASIC program, line 10
is executed before line 20, which in turn comes before line 30, and
so on, and that each line of BASIC is converted to machine lan
guage before execution. How does the computer remember where it
is and what machine language instruction comes next? The pro
gram counter tells it. The program counter is a 16-bit register be
cause it must be able to point to every memory location in the
computer. As we learned in Chapter 2, 16 bits are required in order
to address 65,536 memory locations, so the program counter must
be 16 bits wide. Remember, the program counter always points to
the next instruction to be executed .

THE STACK POINTER

Before we continue our tour of the 6502, how about stopping
for lunch? Here's a cafeteria - let's stop in here for a quick bite
(byte?). First let's get a tray and silverware. Let's see ... anything
else we need before going through the line? Oh yes, a plate. We ' ll

26 Background

just grab one from this stack here. Notice how when we grab a plate
from the top of the stack , the whole stack moves up one plate, so
the next plate is now in the position ours was in before we grabbed
it. It's a spring-loaded stack. We could keep taking plates off the
top, and there would still be a plate in the same top position . The
stack would be one plate shorter, and all of the plates in the stack
would be one position higher, but the top plate would always be in
the same position, until, of course, we ran out of plates.

Now that we've eaten, let's get back to our tour. The next regis
ter on the horizon is called the stack pointer. Sound familiar? Yes ,
it works just like the stack of plates we just saw in the cafeteria .
Let's use a BASIC example again . Look at the following BASIC
program:

10 GOSUB 40
20 PRINT "GOODBYE"
30 END
40 PRINT "HELLO"
50 RETURN

If we trace the flow of this program, we see that first we will print
the word HELLO to the screen, and then we will print the word
GOODBYE below it. The program will then end. How does this
happen?

First, we go to the subroutine at line 40, where we print out the
first word . Then we get to the RETURN in line 50, which causes
line 20 to be executed. How does the computer know that line 20
should have been the next line executed after coming back from the
subroutine? Aha! That's where the concept of a stack comes in.
BASIC uses a run-time stack , just like the stacks we have been
discussing. When the GOSUB statement in line 10 was executed,
the first thing BASIC did was to push the line number and offset
within that line onto its run-time stack. This stack is distinct from
the 6502 stack, since in all 6502-based computers, page 1, memory
locations 256 to 511 inclusive, is used as a stack. Both of these
stacks work just like the cafeteria; if we then push additional ad
dresses onto the stack, the first address will simply move down the
stack as additional numbers are added (Fig. 3-2).

24
18
B3
16

Stack before
the jump to
subroutine

The ATARI Hardware

06
08
24
18
B3
16

Stack during
subroutine

Fig . 3-2

24
18
B3
16

Stack after
return from
subroutine

27

The stack pointer, then, is the part of the 6502 which keeps
track of what is currently on the bottom of the page I stack . We
don't have to worry about how many values are on the stack, or
how to add a value to the stack. The 6502 handles all of that over
head for us, just like BASIC takes care of its own stack without our
worrying about it. The only thing we do have to worry about is that
we don't try to stuff more than 256 numbers onto the stack. Since
the maximum size of the stack is 256 numbers, if we put more num
bers onto it, the first numbers that we pushed on will fall off the
bottom and we ' ll lose them. Then , when we try to pull them back
off to use them in some way, they won ' t be accessible, and we'll
probably have a crash .

Now that we know how to get numbers onto the stack, how
about getting them off again? In our BASIC example, we finished
the subroutine with the RETURN statement in line 50. This state
ment tells BASIC to pull the top line number and offset off the
stack, and RETURN to that location . That's how we get back to
line 20, which is where we are supposed to be after the subroutine.
Notice that we don ' t have to know anything about stacks in order

28 Background

to use a subroutine in BASIC. It works pretty much the same way
in assembly language, although as we will see, knowing how the stack
works is important to its several other uses in assembly language.

THE PROCESSOR STATUS REGISTER
We will complete our tour of the 6502 by visiting the processor

status register, which is really just a I-byte collection of various
flags that the 6502 uses for certain conditions. For those of you
who have not encountered the term flag before, it is a variable
whose value indicates a certain condition. Let's use a BASIC
example:

10 1=0

20 IF FILE = 33 THEN 1 =1
30 ...

In this example, we could check in line 30 to see if FILE = 33 by
checking the value of I. If 1=0, then we know that FILE doesn't
equal 33, but if 1= 1, then we know that FILE = 33. In this exam
ple, I is a flag which gives us information about the value of FILE.
In much the same way the seven flags in the processor status regis
ter of the 6502 give us considerable information about what's hap
pening during our program. Each flag is a single bit in the single
byte of this register (Fig. 3-3). Flags are usually known by their
single-letter abbreviations, as follows:

Letter Flag Meaning

C Carry 1 = true
Z Zero = resu lt of zero
I IRQ disable = disable
D Decimal mode = true
B Break command
V Overflow = true
N Negative = negative

The ATARI Hardware

ti"~
flow

Nega
Over
Futur
Break
Decim
Inter
Zero
Carry

e use
command
al

rupt disable

Fig. 3-3 Processor status register

THE CARRY FLAG

29

The carry flag, C, tells us whether or not the previous opera
tion set the carry bit; that is, whether or not an addition summed to
greater than 255. As a simple example, let's add 250 + 250. We can
all easily calculate (perhaps with a little help from our ATARls) that
the answer is 500. However, this presents a bit of a problem in
assembly language programming. Since we know that 255 is the
largest I-byte number we can have, how do we possibly represent
the answer to this simple problem? Well, we can view the answer as
500 - 255 with a carry. That is, since the answer is larger than 255,
we carry I, and the answer is 245 with a carry of 1. But how can we
tell the difference between an answer of 245 and an answer of 245
with a carry? Since we first set the carry bit in the processor status
register to zero, and we add 250 plus 250 in the accumulator, we end
up with 245 remaining in the accumulator. The carry bit is now 1,
instead of zero, allowing us to calculate the true sum. If we add 240
+ 5, we would again find 245 as the answer in the accumulator, but
the carry bit remains zero, enabling us to distinguish between the
two situations. Note that since each of the two numbers we add
together must be less than 256, we will never run into the situation
where the carry will have to be 2, so a I-bit carry flag is sufficient
for our needs. As we shall see, the carry bit is used in virtually all
mathematical operations in assembly language .

30 Background

THE ZERO FLAG

The zero flag tells us whether or not the previous operation
yielded a result equal to zero. If it did, the Z flag equals 1. There
fore, if the Z flag starts out equal to zero, and we subtract 2 from
2, the accumulator will contain the value 0, and the Z flag will be 1.
To determine whether or not something is equal to zero, we just
have to operate on it in any of several possible ways and then look
at the Z flag. We will see how useful this is in later chapters.

THE IRQ FLAG

IRQ stands for interrupt request. If you have read articles on
any of the more advanced techniques possible on the ATARI com
puters, you are probably familiar with the term interrupt as in dis
play list interrupt or vertical blank interrupt. Before you finish this
book, these techniques will be easy for you to add to your own
programs. The 6502 can be interrupted from its normal operations
only if the I flag is equal to 0. If I is equal to 1, then normal inter
rupts are not possible. This fact will be important in later discus
sions of various interrupts used in the ATARI. For now, just
remember that in order for interrupts to occur normally, the I flag
in the processor status register must be equal to 0. If we set the I
flag to 1, interrupts will not be allowed. We call this masking the
interrupts.

THE DECIMAL FLAG

The 6502 has two modes in which it can operate, binary and
decimal. The value of the decimal flag, D, in the processor status
register determines which mode the processor is in. If this value is
1, all operations will be in the decimal mode, and if it is 0, they will
be binary. In general, most operations in assembly language use
binary math, but you have the ability to switch by toggling this
flag.

The ATARI Hardware 31

THE BREAK FLAG

The break flag, or B flag, can be set and cleared only by the
6502 itself. The B flag cannot be altered by the programmer. It is
used to determine whether an interrupt was caused by the 6502
instruction BRK, which stands for BReaK. Since it cannot be set or
reset by the programmer, the B flag has little function in a normal
program, and in general is used only to determine program flow.

THE OVERFLOW FLAG

Although each byte consists of 8 bits, as we discussed in Chap
ter 2, in signed binary math the most significant bit is used to indi
cate the sign of the number; therefore, the largest signed number
we can represent in 1 byte is 128. Here's a situation analogous to
that requiring the carry flag discussed above . What happens if we
try to add + 120 and + 120 together? The answer should be + 240,
but expressing this number requires the use of the most significant
bit, which, in signed math, represents the sign, not part of the num
ber. Therefore, if we are doing signed math, we somehow need a
way of determining whether the math has overflowed into the sign
bit. The overflow flag, V, is used to determine this . If the V flag is
1, overflow into the sign bit has occurred, and if it is 0, no overflow
has occurred. We can therefore test this flag to be sure the number
we have produced can safely be interpreted as a signed binary num
ber. It is important to note this bit when doing signed math, and to
allow a way for the program to deal correctly with such overflow,
so it can still correctly interpret signed numbers, regardless of
overflow.

THE NEGATIVE FLAG

The final flag in the processor status register is the negative
flag, N. If this flag is 1, the previous operation yielded a negative
result , and if the N flag is 0, the result was either positive or equal

32 Background

to zero. Note that we can then determine whether a number is zero
or positive by testing the Z flag. Tests of the N, C, and Z flags
represent the major methods for allowing for branching in an as
sembly language program, similar to IE .. THEN logic in BASIC
programs.

This concludes our brief tour of the 6502 chip, the heart of our
ATARI computer. Now that we know the layout of the hardware,
we can begin to learn the instructions necessary to program it.

MEMORY ALLO'CATION SYSTEM

We have already discussed one aspect of memory allocation in
computers using the 6502; that is, that the stack occupies a specific
place in memory. Memory in a 6502 computer is divided into pages,
each of which is 256 bytes long. You have probably already encoun
tered the term page, especially in connection with the area of mem
ory reserved for you, the programmer, by ATARI: page 6. Page 6 is
the area of memory from $600 to $6FF, or in decimal nomencla
ture, from 1536 to 1791, and ATARI states that none of their
software will ever require that space, so it is free for your use. Actu
ally, this is not quite true, so be very careful when using this space .
Page 6 is located, cleverly enough, directly above page 5; and the
high half of page 5 is used by the ATARI computers for several
purposes. There are certain conditions when you may overflow this
area, and the overflow will be stored at the beginning of page 6,
right on top of your carefully protected information. The moral:
use page 6 with care, and be aware of the potential pitfalls.

Other pages of memory also have specific uses in 6502-based
computers. The most important of these is page 0, the first 256
bytes of memory in the computer. Page 0 has particular signifi
cance to the assembly language programmer, since all access to this
page is faster than access to anywhere else in the computer, and
since certain operations can only be performed using page 0 loca
tions. However, here we run into a major snag. Since this area is so
important, you might expect to have it all for your use. Wrong!
Since it's so important, ATARI used almost all of page 0 for their

The ATARI Hardware 33

own use. In fact, if you have either the BASIC or the Assembler/
Editor cartridge in place, only 6 bytes of page 0 are available for
your use! That's right, six. So we're going to learn a few tricks to
make more of page 0 available, and we're going to make judicious
use of the locations at our disposal.

We'll learn a lot about pages 2 to 5 ($200 to $5FF, or decimal
512 to 1535), which contain information needed by the operating
system. The pages above page 6 are generally reserved for DOS.
Memory that the assembly language programmer can safely use
without running a risk of having programs overwritten by DUP.
SYS generally begins at $3200, or decimal 12800. Any cartridge
which may be present generally starts at $AOOO and continues up to
$BFFF; after this, memory for the operating system goes all the
way up to the top of memory, $FFFF. Many of these locations will
also be discussed in detail in later chapters, but this outline serves as
an introduction to the memory allocation system in your ATARI,
and, in broad strokes, paints a picture of what goes where. The
details will be filled in as we proceed.

-

A WORD ABOUT NUMBERS
Before we can discuss the 6502 instruction set itself, we need to

briefly discuss some shorthand used in all 6502 assemblers. This
will allow us to write numbers and abbreviations properly, and let
us understand one another.

Whenever a number is used in an assembly language instruc
tion, it must be preceded by a number sign, #. For example, if we
refer to the number 2, we need to write #2. Then the assembler can
distinguish between a number and a specific address inside the
computer. When the number is preceded by the # sign, the as
sembler knows that you mean a number, and when a number ap
pears alone, the understanding is that you mean an address. Take
the following examples, written in English, for instance:

add 2 to SUM
add the contents
of memory location 2
to SUM

SUM+#2

SUM+2

The single biggest mistake that beginning assembly language pro
grammers make is to use numbers for addresses and addresses for

37

38 Learning Assembly Language

numbers. This will completly destroy any program, and if you're
not familiar with assembly language programming, you can look at
a printout of the program for days without spotting the error.

The second convention used in assembly language program
ming involves number base. Whenever a number appears either
alone or preceded only by the # sign, the assembler knows that you
mean base 10, the decimal system; for example,

SUM + #1.1

The assembler interprets this to mean that the decimal number 11
should be added to the value of SUM. Similarly, we could write
this:

SUM+11

The assembler interprets this to mean that the contents of memory
location 11 (in the decimal numbering system) should be added to
the value of SUM.

When we want to use the hexadecimal numbering system, we
precede the number with a dollar sign; for example:

SUM+$l1

This instruction means to add the value of SUM to the contents of
memory location $11 (which is location 17 in the decimal system).
Things get somewhat more complicated when we refer to a hexade
cimal number. We must first tell the assembler that a number is
coming, and then tell it that this number is in the hexadecimal sys
tem. Our example now looks like this:

SUM+ #$11

This instruction means to add the hexadecimal number $11 (deci
mal. 17) to the value of SUM . It cannot be misinterpreted by the
assembler. Unfortunately, it certainly can be mistakenly written in a
wide variety of forms by the novice to assembly language program-

Nomenc lature and the Instruction Set 39

mingo So, to be forewarned is to be forearmed . These types of mis
takes in writing assembly language programs are very common,
and, if your first programs do not work, you should check for these
types of mistakes first, before looking for complicated errors of
logic.

A third type of number recognized by most assemblers is rarely
used, but when it 's needed , you'll be glad it's available. This is the
binary system, which is usually prefaced by a percent sign, 070 ; for
instance,

11%11010110

There can be no confusion about the interpretation of this number,
since the % sign clearly labels it as a binary number. Furthermore,
the decimal number 11 ,010,110 is much too large to be directly
addressed by the 6502-based computers.

To review, the # sign identifies the term following it as a num
ber, to distinguish it from an address . The $ sign identifies the term
following it as a hexadecimal term, and it follows the # sign, where
a hexadecimal number is meant. The % sign identifies the next
term as a binary term, and also follows the # sign in the case of a
binary number. When neither the $ sign nor the % sign precedes the
term, the decimal system is understood.

THE 6502 INSTRUCTION SET

Each instruction in the 6502 instruction set is described in detail
in Appendix 1. We will briefly discuss the instructions here to fa
miliarize you with the nomenclature and the use of the instructions.
Each instruction is a three-letter abbreviation of the full name of
the instruction . This abbreviation is called a mnemonic, and once
learned, is fairly easy to remember. We'll cover the way these in
structions address memory in Chapter 5.

In this section, we will discuss the instructions in groups, con
centrating on how the instructions can be used in programming.

40 Learning Assembly Language

THE LOAD INSTRUCTIONS

There are three instructions in this group:

LOA LoaD the Accumulator
LOX LoaD the X register
LOY LoaD the Y register

These instructions are in some respects similar to the PEEK
instruction in BASIC. The PEEK instruction retrieves the value
stored in a specific memory location. Any of the LOAD instruc
tions can also be used to retrieve a value from memory, as in the
following example:

LDA $0243

This command takes the value previously stored in the memory
location with the address $0243, and places a copy of that value
into the accumulator for further manipulation. Note particularly
the use of the word copy in this statement. Like the PEEK com
mand in BASIC, the LOAD instructions in assembly language pro
gramming do not change the value stored in the location from
which the load takes place . Location $0243 contains the same value
before and after the LDA instruction is executed; however, the
value contained in the accumulator changes as a result of this in
struction. We could have chosen to transfer this value from loca
tion $0243 to either the X or the Y register; in this case, the above
line would have read either LDX $0243 or LDY $0243 respectively.

Since we already know that all calculations such as addition
and subtraction are done in the accumulator, one use of the LDA
instruction becomes obvious . There are, of course, many other uses
for this instruction. The other two LOAD instructions, LDX and
LDY, are used to load either of the registers with a specific value,
usually prior to using the register in some other operation, such as
counting. Many examples of the LOAD instructions will be dis
cussed throughout the book.

Nomenclature and the Instruction Set 41

THE STORE INSTRUCTIONS

As we discussed, the BASIC PEEK command and the assembly
language LOAD instructions are somewhat similar. In assembly
language, we also have commands analogous to the BASIC POKE
command, the STORE commands. Since there are three LOAD
commands, it is not surprising to find that there are also three
STORE commands:

STA STore the Accumulator
STX STore the X Register
STY STore the Y Register

A typical line of assembly language code using these instruc
tions might appear as follows:

STX $0243

This instruction copies whatever value was previously stored in the
X register into memory location $0243. The analogy with the BA
SIC POKE command is obvious. As with the LOAD instructions,
the value stored in either the accumulator or the registers, depend
ing on which instruction is used, is not changed by the execution of
the instruction. Therefore, if you wanted to store the number 8 into
four different memory locations, the following code could be used:

LDX #8 i first, load it in
STX $CC ithe first location
STX $CD ithe 2nd location
STX $12 ithe 3rd location
STX $D5 iand we're done

Note especially that we don't have to reload the X register with
8 before each store command. The value remains there until we
change it. Of course, we could just as easily have used either the
accumulator or the Y register to accomplish the above goal in the
same fashion.

42 Learning Assembly Language

One very common use of the LOAD and STORE instructions is
to transfer the values stored in one or more memory locations into
different locations . For example,

LDA $5982 ;get the 1st value
STA $0243 ;transfer it
LDA $4903 ;get the 2nd
STA $82 ;and so on ...

In Chapter 7, we'll see how to use this type of routine to write
subroutines which can speed up your BASIC programs amazingly.

TRANSFER OF CONTROL INSTRUCTIONS

Two types of instructions cause program control to shift from
one place in the program to another. These are the JUMP instruc
tions and the BRANCH instructions.

THE JUMP INSTRUCTIONS

For the purposes of this discussion, we have grouped two in
structions into this category:

JMP JuMP to a specific address
JSR Jump to a SubRoutine

These two instructions are analogous to the BASIC commands
OOTO and OOSUB, respectively. Both instructions result in un
conditional transfer of program flow. Here's an example of the
JMP instruction:

JMP SUB1 ;GOTO SUB1
SUBO LDA 111 ito inhibit cursor

STA 752 ;store a 1 here
SUB1 LDA #0 ito reset cursor

STA 752 ;store a 0 here

Nomenclature and. the Instruction Set 43

In this example, the cursor will never be inhibited, since whenever
the program gets to the JMP instruction, the line labeled SUBl is
executed next. This transfer of control is unconditional; that is, it
will happen every time. The 2-line routine labeled SUBO will never
get executed.

In contrast, let's look at an example of the JSR instruction:

JSR SUBl iGOSUB SUBl
SUBO LDA 111 i to inhibit cursor

STA 752 istore a 1 here
JMP SUB2 i to avoid SUBl

SUBl LDA jjQ i to reset cursor
STA 752 istore a 0 here
RTS ilike BASIC' s RETURN

SUB2 imore code ...

In this routine, we JSR to the subroutine labeled SUBl. The
program then executes the lines in order, until an RTS (ReTurn
from Subroutine) instruction is encountered. Program control then
reverts to the line following the JSR that sent control to the subrou
tine in the first place. The RTS instruction is the assembly language
counterpart to the BASIC RETURN command, which also marks
the end of a subroutine. In the example, first SUBl will execute,
and then SUBO will execute. The JMP instruction following SUBO
simply prevents SUBl from executing a second time. There is an
other instruction in assembly language which is similar to the RTS
instruction, the RTI (ReTurn from Interrupt) . This instruction is
used at the end of an interrupt routine to return control to the main
program , like the RTS instruction. We' ll discuss interrupts at great
length in later chapters.

THE BRANCH INSTRUCTIONS

In contrast to the two unconditional transfer of control instruc
tions just discussed, the 6502 has an extensive set of conditional
transfer of control instructions. These can be compared to the
IE .. THEN construction of BASIC:

44 Learning Assembly Language

IF X = 5 THEN GOTO 710

This statement will transfer control to line 710 only if X is equal to
5. If it equals any other value, program control will shift to the next
line of code following the IF statement. In a sense, by coding this
line we have allowed the computer to decide what to do, depending
on conditions we have established; and we've set up a conditional
transfer of control. These are the branch instructions of the 6502
instruction set:

BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on result EQual to zero
BMI Branch on result Minus
BNE Branch on result Not Equal to zero
BPL Branch on result PLus
BVC Branch on oVerflow Clear
BVS Branch on oVerflow Set

Each of these instructions depends on the value of one of the
flags in the processor status register. Whether or not the branch is
taken depends on the value of that flag at that time, so these are
clearly conditional transfer of control instructions. Let's look at a
simple example to see how these instructions work:

LDA 110 ; ini tialize
BCC SUB4 ;branch if carry clear
LDA Ih ; if not

SUB4 STA $0243 ;store the value here

In this routine, the value stored into memory location $0243 de
pends on the condition of the carry flag in the processor status
register at the time the branch instruction is executed. If the carry
flag is set (equal to 1), then the branch is not taken, and the accu
mulator is loaded with the value 1 before the STA command. If the
carry flag is clear (equal to zero), the branch is taken, the accumu
lator is not changed, and the value 0 is stored into memory location
$0243. The BCS instruction is the opposite of the BCC instruction:
the branch is taken if the carry bit is set and is not taken if the carry
bit is clear.

Nomenclature and the Instruction Set 45

The BEQ and BNE instructions depend on the value of the zero
flag in the processor status register, rather than on the value of the
carry flag. If the zero flag is clear, the BEQ branch is not taken, but
the BNE branch is taken. If the zero flag is set, the BEQ branch is
taken, and the BNE is not. For instance, we do not take the branch
here:

LDA #D ;sets the zero flag
BNE SUB4 ;branch is not taken

but we would have branched to SUB4 if we had written this:

LDA #1 ;clears the zero flag
BNE SUB4 ;branch is taken

The overflow flag is used to determine the outcome of the BVe
and BVS instructions in an analogous fashion. Similarly, the nega
tive flag determines the outcome of the BMI and BPL instructions.
If previous instructions produce a negative answer, then a branch
based on the BMI instruction is taken. If this answer is either posi
tive or equal to zero, the BPL instruction is taken. Used appropri
ately, these eight instructions, which depend on the values of four
of the flags in the processor status register, can give extremely fine
control over program flow in assembly language programs, as we
shall see in subsequent chapters.

PROCESSOR STATUS REGISTER
INSTRUCTIONS

These instructions directly manipulate the flags in the proces
sor status register:

CLC CLear the Carry flag
CLD CLear the Decimal flag
CLI CLear the Interrupt flag
CLV CLear the oVerflow flag
SEC SEt the Carry flag
SED SEt the Decimal flag
SEI SEt the Interrupt flag

46 Learning Assembly Language

These instructions perform the indicated operations directly on
the flags of the processor status register, and their operation, which
is self-explanatory, is further described in Appendix 1.

ARITHMETIC AND LOGICAL INSTRUCTIONS

We will place all of the calculating instructions of the 6502 into
this group of instructions.

ADC ADd with Carry
AND the logical AND instruction
ASL Arithmetic Shift Left
BIT test BITs of memory with the accumulator
EOR Exclusive OR
LSR Logical Shift Right
ORA logically OR memory with the Accumulator
ROL ROtate Left
ROR ROtate Right
SBC SuBtract with Carry

These are all complex instructions; for a detailed explanation
of them, please see Appendix 1; for a brief discussion, read on.

The ADC instruction is the fundamental addition instruction
of the 6502. It takes the sum of the value stored in the accumulator,
plus the carry bit in the processor status register, plus the number
addressed by the ADC instruction itself. For instance, let's add the
contents of memory location $0434 to the contents of memory lo
cation $0435, and store the result in memory location $0436:

CLC ;clear carry bit first
LDA $0434 ;get 1st number
ADC $0435 ;add 2nd number
STA $0436 ;store the result

We'll be using ADC frequently throughout the remainder of
this book. Its counterpart is the subtraction instruction, SBC. SBC
subtracts the value addressed from the value stored in the accumu-

Nomenc lature a nd the Instruc tio n Set 47

lator, using the carry bit of the processor status register if a borrow
is needed to perform the subtraction. To subtract the same values
we added above, we would write this:

SEC j in case we need to borrow
LDA $0434 jget 1st number
SBC $0435 jsubtract 2nd one
STA $04]6 jstore the result

There are four SHIFT instructions in this group, ASL, LSR,
ROL, and ROR. These instructions all shift the bits of a number,
but in different ways. The two ROTATE instructions use the carry
bit of the processor status register, and literally rotate the 8 bits of
the number addressed through the 9 positions (8 in the number
itself, and I from the carry bit). Pictorially, this looks like the fol
lowing example:

ROR $0434 jrotate right contents of $04]4

START
in $0434 in C
10110100 1
END
in $0434 in C
11011010 0

As you can see, each bit rotated one position to the right, with bit 0
ending up in the carry bit and the former carry bit ending up in bit
7 of location $0434.

The ROL instruction simply reverses the rotation, to the left
instead of the right. The two SHIFT instructions ASL and LSR
work in almost the same way, except that although the end bit
winds up in the carry bit as above, zero, instead of whatever was in
the carry bit, is always rotated into the number.

These four SHIFT instructions are used to multiply or divide
by powers of 2, since by rotating bits to the left, we double a num
ber, and by rotating bits to the right, we effectively divide a number
by 2. There are cautions to observe when using these instructions
for this purpose, however, as will be described in Appendix I.

48 Learning Assembly Language

The three logical instructions, AND, EOR, and ORA, are sim
ply three ways of comparing two numbers bit by bit. They take the
binary forms of the two numbers being compared, and, depending
on whether both numbers contain a one or a zero in each bit,
produce different results. The AND instruction says "If both bits
are 1, the result will also have a 1 in that position. If not, the result
will have a zero in that position." The EOR instruction says "If
one, and only one, of the numbers has a 1 in that position, the
result will also have a I in that position. If both numbers have a 1
or both contain 0, the result will have a zero in that position."
Finally, the ORA instruction says "If either or both numbers have a
1 in this position, the result will also have a 1 in this position ."
These three logical instructions are used in a wide variety of ways.
ORA is most commonly used to set a specific bit in a number, EOR
to complement a number, and AND to clear a specific bit of a num
ber. If you are unfamiliar with these three logical operations, see
Appendix 1 for further details.

The final instruction of this group is BIT, which is a testing
instruction. BIT sets the negative flag of the processor status regis
ter equal to bit 7 of the number being tested, the overflow flag
equal to bit 6 of the number being tested. BIT also sets the zero
flag, depending on the result of ANDing the number being tested
with that stored in the accumulator. This instruction tests several
aspects of a number all at once. Note that the number in the accu
mulator is unchanged by the BIT instruction. By following this in
struction with one of the BRANCH instructions we have already
discussed, we can cause an appropriate branch in the execution of
the program.

6502 MANIPULATION INSTRUCTIONS

Like the LOAD and STORE instructions we discussed earlier,
the following instructions involve interchanging information from
one part of the computer to another:

PHA PusH the Accumulator onto the stack
PHP PusH the Processor status register onto the stack

Nomenc lature a nd the Instruc tion Set

PLA Pull from the stack into the Accumulator
PLP PuLl from the stack into the Processor status register
TAX Transfer the Accumulator to the X register
TAY Transfer the Accumulator to the Y register
TSX Transfer the Stack pointer to the X register
TXA Transfer the X register to the Accumulator
TXS Transfer the X register to the Stack pointer
TYA Transfer the Y register to the Accumulator

49

The functions of these instructions, too, are self-explanatory.
They are used to interchange information between the various reg
isters of the 6502, or to store in formation on the stack for later
retrieval. The PHA and PLA instructions are used frequently to
pass information between a BASIC program and a machine lan
guage subroutine, as we shall see .

INCREMENTING AND DECREMENTING
INSTRUCTIONS

Instructions in this group can increase or decrease by 1 the
value contained either in a specific memory location, or in one of
the 6502 registers:

DEC DECrement a memory location by one
DEX DEcrement the X register by one
DEY DEcrement the Y register by one
INC INCrement a memory location by one
INX INcrement the X register by one
INY INcrement the Y register by one

These instructions are straightforward. Here is an example of
their use:

LDA IIJ ; star t wi th 3
STA $0243 ; stored here
INC $0243 ;now it' s a 4
INC $0243 ;now it' s a 5
DEC $0243 ;now i t 's a 4 aga i n

50 Learning Assembly Language

Note that there is no incrementing or decremeting instruction
which operates on the accumulator. To increase or decrease a num
ber in the accumulator, we must use the ADC or SBC instruction.
Therefore, if a simple increment or decrement is required , it is
easier to load a number into either the X or Y register, rather than
into the accumulator, and then simply use the appropriate incre
ment or decrement instruction .

THE COMPARE INSTRUCTIONS

Three instructions allow comparisons to be made between two
values. These instructions condition various flags in the processor
status register, depending upon the outcome of the comparison:

CMP CoMPare the accumulator with memory
CPX ComPare the X register with memory
Cpy ComPare the Y register with memory

The way each of these affects the processor status register is
described fully in Appendix 1, but a simple example is given here to
demonstrate the use of the COMPARE instructions:

LDA $0243
CMP $0244
BNE SUB6
LDA 111

;get the 1st number
;compare i t to the 2nd
; go to SUB6 if $244)$243
;else, do this

THE REMAINING INSTRUCtiONS

Two final instructions do not easily fall into any grouping.
These are the BRK (BReaK) and the NOP (No OPeration) instruc
tions. The BRK instruction is used primarily in debugging your
program once you've written it. It causes the program being execu
ted to stop, and is somewhat simi liar in this regard to the BASIC
STOP instruction. The NOP instruction does nothing ; its primary
function is to reserve space in a program for future changes which
may need to be made . It may be necessary to reserve this space,
since frequently in an assembly language program, the exact mem-

Nomenclature and the Instruction Set 51

ory location occupied by an instruction may be critical, and NOP
instructions in the code can be replaced by functional commands
without changing the location in memory of the instructions that
follow it.

This completes our short introduction to the instruction set of
the 6502. As we have already stated, details on any of these instruc
tions can be found in Appendix 1. It is strongly advised that begin
ners to assembly language read Appendix 1 thoroughly. If you are
already familiar with the instruction set, this short discussion
should have refreshed the instructions in your mind, and you are
ready to proceed.

INTRODUCTION TO ADDRESSING
TECHNIQUES

To begin our discussion of addressing techniques, let's first de
fine the term. As used throughout this book, the term addressing
refers to the way we tell the 6502 what memory location we wish to
operate on. For example, BASIC has two addressing modes. The
first is a direct mode in which the memory location (address) in
question is specified directly, for example :

20 POKE 752,1
25 V=PEEK(764)

Line 20 tells the computer to put the value 1 into memory location
752. Line 25 tells the computer to look directly into memory loca
tion 764, get the value stored there, and then store this value into a
variable called V. This direct accessing of one particular memory
location is called direct addressing.

The second system used in BASIC is more subtle, and is also
implied by line 25 above. When we tell the computer to take the
value from memory location 764 and store it into a place called V,
we, as programmers, don't care where V actually is. It's enough

52

Addressing Techniques 53

that the computer knows where V is stored, and that it knows how
to retrieve the correct value when we refer to V from this point on.
We'll call this form indirect addressing.

Both of these BASIC modes have counterparts in assembly lan
guage, and we'll discuss them later in this chapter. Many other ad
dressing modes are also available from assembly language: let's
first use a nonprogramming example to see why it is advantageous
to be able to use more than one or two addressing modes.

Imagine a very large apartment building with thousands of
apartments, so large that it dwarfs anything else in the world. It has
256 floors, making it the world's tallest building by far, and each
floor has 256 apartments. In fact, this building is so large that it
has its own postal system . Now let's think for a moment about how
we tell the poor letter carrier how and where to deliver internal mail
to the residents of this huge building. By the way, this building is
named the 6502 Building, since it reminded the architects of a com
puter based on the 6502 chip, with 256 pages of memory each con
taining 256 memory locations.

We can, of course, give the letter carrier a specific letter with
instructions to deliver it to apartment 5-004. The carrier would then
take the elevator to the fifth floor and slide the letter into the slot in
the door marked 004. Since we gave an absolute address, which
didn't vary, or depend on any other information, we could refer to
this as absolute addressing .

The ground floor of our building is occupied by many of the
offices which are required to keep a building of this size running,
and of course they'll need to receive mail also. If the address we
specify on the letter is 0-032, we have a special case of the absolute
address. The letter carrier doesn't need to use the elevator to reach
a ground-floor address, so this letter can be delivered much more
quickly. In fact, it has even become standard for residents to omit
the first zero if the mail is destined for the ground floor, floor 0,
and simply put 032 on the envelope. Our letter carrier knows this is
a quick delivery and runs it right over. Letters to these offices are
very important and must be delivered immediately. Since this is a
special case of the absolute address, in which we don't even specify
the floor, we'll call it zero floor addressing.

These two addressing systems both specify the exact absolute
address on the envelope. Now suppose that we want to send a bulk

54 Learning Assembly Language

mailing to everyone on floor 123. We could, of course, address
each of the 256 letters individually, but this would take a long time.
Instead, we might simply hand the letter carrier 256 letters and a
note with instructions to deliver one of the enclosed letters to each
apartment on floor 123. The carrier would then take the elevator to
the 123d floor, and then walk along the halls, dropping letters in
the slots on the doors and counting 1,2,3 With any luck at all,
the carrier would get to apartment 123-256 with one letter left, and
deliver it. This type of address requires a count offset from the
floor address, in order to get the apartment number. For instance,
the 12th letter must go to apartment 123 plus 12, or number 123-
012. Our count is an index that tells us which apartment on this
floor we have reached; we'll refer to this type of addressing as in
dexed addressing. We shall see that several different indexed ad
dressing modes are used in the 6502 building.

If we lived in apartment 230-042, we could stop the letter car
rier who delivered our mail, and request that a letter be delivered to
an apartment five doors down from us. In this case, we don't have
to mention the apartment number; the letter carrier can figure it
out. The apartment to which this letter is delivered depends on the
apartment from which it was sent. In our example, the letter ends
up in apartment 230-047, but if the same message were given to the
letter carrier by the owner of apartment 024-128, then the letter
would be delivered to apartment 024-133. Therefore, this address
ing system is relative to the address of the originating apartment;
we'll call this mode relative addressing.

In addition to the addressing modes we have already discussed,
our letter carrier must understand a whole set of instructions. For
instance, the carrier must check to see if the postage has been put
on each envelope. We don't have to specify that the letter carrier
does this: this function is implied by the instruction. There are sev
eral implied addressing modes in the 6502 Building, as we shall see.

This example has shown what addressing modes are, and why
there are a number of different modes available to make the task of
addressing easier. Let's now leave our building, get back to our
ATARIs, and discuss the various addressing modes available in the
6502.

Addressing Techniques

MEMORY ADDRESSING MODES
OF THE 6502

55

The 6502 microprocessor can address memory in 13 different
ways, and we'll examine each of these now. For the first eight of
these addressing modes, we'll use the LDA instruction discussed in
Chapter 4, although many of the other instructions can also utilize
these addressing modes. See Appendix 1 for details.

IMMEDIATE MODE

The first addressing mode is called the immediate mode, and
specifies that we want to load the accumulator with the number
which follows. For example,

LDA #$4F

tells the computer to load the accumulator with the number $4F, or
decimal 79. The same instruction could be written like this:

LDA 1179

Having multiple numbering systems available doesn't make things
harder, just more versatile.

Note that any instruction written in the immediate addressing
mode will result in 2 bytes of machine language code, 1 for the
instruction and 1 for the number. Furthermore, we cannot specify a
number larger than 255, since this is the largest number that can be
coded in 1 byte . The 6502 is an 8-bit microcomputer, and now you
know what that means - only 1 byte (8 bits) can be operated on at
one time. A 16-bit microcomputer can load and operate on num
bers up to 65,536, since this is the largest number which can be
coded in 2 bytes (16 bits) .

One further concept which can be covered here is the length of
time it takes the computer to complete each instruction. We refer to
this in terms of the number of cycles the instruction takes to exe
cute. One cycle is the shortest time period the computer deals with,

56 Learning Assembly Language

and the 6502A in your ATARI has a cycle time of 560 nanoseconds.
That's 0.00000056 seconds! The immediate mode LDA instruction
we just discussed requires 2 cycles to execute, or 0.00000112 sec
onds. That's about one microsecond! Now you can begin to see
how fast your ATARI can really be.

ABSOLUTE MODE

The second addressing mode we'll discuss is the absolute mode,
used when you want to load the accumulator from a specific,
known memory address. The form of the command is:

LDA 315

which tells the computer to load the accumulator from memory
location decimal 315. As for the immediate mode discussed above,
the same instruction could have been written like this:

LDA $13B

If memory location 315 contains the value 243, for example, then
the accumulator will also contain the value 243 following the execu
tion of this statement. Note that LDA does not change the value
stored in memory location 315; it just copies what was there into
the accumulator. It's just like this BASIC statement:

10 A=PEEK(J15)

Here we copy the contents of memory location 315 into the variable
called A. Location 315 is unchanged following either the assembly
language or BASIC instruction.

The absolute addressing mode produces 3 bytes of machine
language code, since this instruction must be able to load the accu
mulator from anywhere in memory. That is, to code for any ad
dress above 255 requires 2 bytes, and we also need 1 byte for the
instruction. By the way, the 6502 family of microprocessors ad
dresses memory in low byte-high byte order, the reverse of some

Addressing Techniques 57

other popular microprocessors . For example, take the following
instruction:

LDA $2F3C

When this assembly language instruction is assembled - translated
into machine language by an assembler - the code for LDA in the
absolute addressing mode, $AD, comes first, and the address
comes next, in low-high order :

LDA $2F3C becomes AD3C2F

Reading printouts of assembler output can sometimes be confus
ing, but after a little practice, it will seem natural to you.

ZERO PAGE MODE

The next addressing mode that we'll discuss is called the zero
page mode. This mode is used to load the accumulator from an
address in the first 256 bytes of memory, page zero . Since no ad
dress on this page can be more than 1 byte long, the zero page
absolute addressing system requires only 2 bytes, 1 for the instruc
tion, and 1 for the address. For example,

LDA $2D

which could be written

LDA 45

tells the computer that the programmer wants to load the accumu
lator from an address which is on page zero. This instruction will be
coded appropriately by any assembler. It is of interest to learn that
the zero page addressing mode requires only 3 cycles to execute, in
contrast to 4 for the absolute addressing mode. Therefore, in a
program which requires maximum speed, assembly language pro
grammers use page zero whenever possible. But remember that

58 Learning Assembly Language

very few such locations are available under most conditions in your
ATARI. If either the BASIC or Assembler/Editor cartridges is in
place in your ATARI, only six page zero locations are available for
use by an assembly language program. Having only six page zero
locations sounds very hard to deal with, but some other popular
microcomputers leave only two available, so we have a virtual em
barassment of riches in the ATARI!

ZERO PAGE INDEXED MODE

The next addressing mode we'll discuss is called the zero page
indexed, or the zero page, X mode, and is the first addressing mode
to be discussed that uses the X register as an offset register for
addressing. In this addressing mode, the value the X register has at
the moment the instruction is encountered is added to the value of
the specified address in order to arrive at the final address to be
used. As an example, suppose the X register has the value 5 stored
in it, and we encounter this instruction:

LDA $4],x

We already know that the first part of this instruction, if seen by
itself, would mean to load the accumulator from the hexadecimal
address $43, on page zero . To arrive at the correct loading address
in this case, we simply add 5, the value contained in the X register,
to the base address $43 specified in the instruction, and arrive at the
hexadecimal address $48. Therefore, this instruction currently
means to load the accumulator from the hexadecimal address $43
+ 5, or $48.

Note the use of the word currently. This addressing mode is the
first we have encountered in which an instruction does not always
mean the same thing each time we see it. For instance, the X regis
ter might contain the value 2 when we encounter the same instruc
tion:

LDA $4],x

Now we would not load from hexadecimal address $48, but rather
from $45 ($43 + 2 = $45).

Addressing Techniques 59

It should be apparent that if we first retrieve a value from one
zero page address and then want to retrieve a value from the next
higher zero page address, by using this zero page, X addressing
mode we could increase either the base address or the X register.
That is, we could keep the value stored in the X register at 2 by
writing this:

LDA $44,x

Or we could increase the value stored in the X register to 3, by
writing this :

LDA $43,X

These two examples seem trivial, and you may well ask what differ
ence it could possibly make to prefer one mode over another; but
we shall see later that the second method, increasing the X register
and keeping the instruction constant, is vastly preferable for several
reasons. For now, it is enough to realize that there are several ways
to accomplish the same end, and that one may be the best way, even
if we are not yet sure why.

The zero page, X addressing mode requires only 2 bytes when
converted to machine language and requires 4 machine cycles to
execute. It is therefore slightly slower than the direct zero page ad
dressing mode, which requires only 3 machine cycles. This sacrifice
in speed is the price paid for the versatility and power gained . Of
course, in applications which require pure speed, it may be neces
sary to take this slightly slower execution time into account, or to
sacrifice the power of this instruction and use only zero page ad
dressing.

THE ABSOLUTE INDEXED MODES

The next two addressing modes are so similar that they will be
discussed together. They are relatives of the mode just discussed,
but they are applicable to any address in the computer, not just zero
page addresses. These are the absolute, X and absolute, Y address
ing modes, often referred to as absolute indexed addressing modes .
They work by adding the contents of the X or the Y register, respec-

60 Learning Assembly Language

tively, to the base address referred to in the instruction. For in
stance, if the X register contains the value 3, then the instruction

LDA $O]42,X

loads the accumulator from memory location $0345, since $0342 +
3 = $0345 . In an analogous fashion, if the Y register contains the
value 4, then the instruction

LDA $O]47,Y

loads the accumulator from memory location $034B, since $0347
+ 4 = $034B.

Since we need to address the entire memory space of the com
puter with these two instructions, they are both 3-byte instructions.
They each require 4 machine cycles to execute, which is very inter
esting to us, since an absolute LDA instruction also requires 4 ma
chine cycles to execute. Here's a case in which we're getting
something for nothing - increased power and versatility at no in
crease in execution speed! Well, almost no increase. You knew
there had to be a catch somewhere. Here's the problem. In the case
where the base address plus the offset add together to produce an
address on a page higher than that referred to by the base address,
the 6502 requires 1 more machine cycle to correct for this. For ex
ample, suppose the value in the X register is 4, and we encounter
this instruction:

LDA $05FF,X

The base address in this example is located on page 5; in fact, it is
the last address on page 5. The offset, 4, if added to this address,
results in the value $0603, so this instruction means to load the
accumulator from memory location $0603 . However, we can see
that this location is on page 6, and the base address is on page 5.
Although the 6502 can handle this problem, it takes somewhat
longer - in fact, 1 cycle longer - to correct for this crossing of a
page boundary. Any addressing modes in the 6502 which involve
crossing such a page boundary require 1 extra cycle to execute. In
general, this should not be a problem, and the computer will take

Addressing Techniques 61

care of it for us; but in cases where precise timing is critical, She
programmer should be aware of such situations and make provi
sions for the extra time these instructions will require .

TWO INDIRECT MODES

The last two methods of addressing which will be illustrated
using the LDA instruction are both indirect addressing systems .
These two systems are frequently confused because their names are
so similar, but their uses are quite distinct. We will find ourselves
using one quite frequently and the other hardly at all. The first is
called indirect indexed addressing , and here is the form of its oper
ation:

LDA ($43), Y

The parentheses in this instruction indicate that this is an indi
rect addressing mode . The instruction can be interpreted as fol
lows:

1. On page zero, in locations $43 and $44, find a 2-byte value
stored.

2. Interpret this 2-byte value as an address in memory.
3. To this address, add the offset value contained in the Y register.

This sum is the address to access for this operation.
4. Load the accumulator from this calculated address.

Whew! Seems pretty complicated, doesn't it? Let's take a simple
example and work our way through it slowly.

First, let's assume that we have stored the value #$53 (this is the
hexadecimal number 53, remember?) in memory location $43 and
the value #$E4 in memor y location $44. Furthermore, let's assume
that the Y register contains the value 6. Pictorially, this is the situa
tion:

Location
$43
$44

Y register

Contents
#$53
#$E4

#6

62 Learning Assembly Language

Now we encounter the instruction

LDA ($43),Y

The 6502 first looks at memory locations $43 and $44 and takes the
values stored there as an address. In this example, it finds the
values #$53 and #$E4, and, since it knows the first byte is the low
value of the address, and the second is the high value, it realizes
that the address referred to is $E453. The 6502 then adds the offset
value, 6, obtained from the Y register, to this address, and calcu
lates the address to be accessed to be $E453 + 6 = $E459. Finally,
it executes the LDA instruction, and loads the accumulator from
memory location $E459.

Although this seems like an extremely cumbersome and com
plicated way of calculating an address, we shall see how important
and versatile this instruction really is. In fact, many applications we
will use would not be easy without this addressing mode.

Since the indirect indexed addressing mode requires page zero,
it utilizes only 2 bytes for the instruction. However, the calculations
involved are fairly complicated, as we have seen, so this addressing
mode requires 5 machine cycles to execute.

The last addressing mode to be discussed here is called the in
dexed indirect mode, and we can immediately see why it is often
confused with the mode just discussed, the indirect indexed mode.
However, its use is completely different. A typical instruction writ
ten in this mode follows:

LDA ($43,X)

We can see that this mode uses the X, rather than the Y register, and
that the entire operand is enclosed within parentheses. This instruc
tion would be interpreted by the 6502 as follows:

1. Add the value stored in the X register to the base address, $43
(e.g., if X = 4, then this sum equals $47).

2. This sum is then interpreted as another zero page address (in
this example, the second zero page address is $47) .

Addressing Techniques 63

3. Find the 2-byte value stored at this calculated address ($47,$48)
and interpret it as a new address (see below for a discussion of
an example).

4. Load the accumulator from this new address.

Again, let's take an example. We'll assume that we have pre
viously stored the value #$E4 in memory location $48, the value
#$53 in memory location $47, and the value 4 in the X register.
Pictorially, we have this :

Location
$47
$48

X register

Then we encounter this instruction:

LDA ($43,X)

Contents
#$53
#$E4

#4

We add the contents of the X register to the base address specified
and obtain $43 + 4 = $47. We then look in memory locations $47
and $48, and interpret the 2 bytes there as a new address, $E453
(remember, low byte first and then high byte). Finally, we execute
the instruction , loading the accumulator from memory location
$E453 . This operation requires 6 machine cycles and is therefore
the slowest instruction we have yet encountered. Since it requires
zero page addressing, it needs only 2 bytes per instruction. As was
mentioned above, this instruction is seldom used. Its primary use is
for establishing a table on page zero and then accessing this table to
provide addresses elsewhere in memory. However, your ATARI has
limited zero page space available for your use, especially when ei
ther the BASIC or Assembler/ Editor cartridge is in place; we gen
erally don't have room to construct such a table on page zero, and
we use other addressing modes to construct such tables elsewhere.
This mode can be used, however, in applications not designed for
use with a cartridge. Arcade-type games are one example: the game
stands alone, and you are relatively free to use more of page zero
for your own use.

64 Learning Assembly Language

OTHER ADDRESSING MODES

We have now discussed 8 of the 13 available addressing modes
of the 6502. The remaining five modes cannot be demonstrated
using the LDA command, since it uses only these eight modes. We
will now discuss the others, using other commands in the instruc
tion set.

ACCUMULATOR MODE

The ROTATE and SHIFT instructions, ROR, ROL, ASL, and
LSR, can all use an addressing mode known as accumulator mode:

ROR A

or

ASL A

This simply means that the rotation or shift is to be performed on
the contents of the accumulator rather than the contents of some
memory location. Note that these instructions can also operate on
memory:

ROL $0523

IMPLIED MODE

Many of the instructions can use an implied mode of address
ing, where the addressing mode is obvious from the instruction.
For instance, DEX and CLD are both I-byte instructions whose
addressing target is obvious from the instruction itself.

RELATIVE MODE

The BRANCH instructions all use the relative addressing
mode. That is, one can read the branch as meaning either to branch

Addressing Techniques 65

forward 10 bytes, or to branch backward 4 bytes. The branch is
relative to the current position of the program counter.

INDIRECT MODE

The JMP instruction can use the indirect form of addressing.
For example, if we set up an address by storing #$53 in location
$CD and #$E4 in location $CC, we can jump indirectly to $E453:

JMP ($cc)

ZERO PAGE, Y MODE

The final form of addressing is called the zero page, Y form.
This second zero page indexed mode is used only by two instruc
tions, LDX and STX. That is, when the X register is used to load or
store a value, it may be indexed with the Y register from a zero page
base address. This is virtually identical to the zero page, X mode we
have already discussed.

This concludes our review of the addressing modes available
using the 6502. In later chapters, we will see how these modes can
be used to accomplish useful programming chores, and the benefits
of having more than just one or two addressing modes will become
obvious.

BACKGROUND
When we talk about assemblers, generally we are speaking

about software packages which allow us to write programs in as
sembly language and get them to run . Such software packages usu
ally contain three parts: an editor, used to actually write the source
code programs; an assembler, used to convert the source code pro
gram into machine language, which will actually run; and a debug
ger, used to find errors and correct them, so that your finished
product works the way you intended.

There are currently six assembler packages available for
ATARI computers:

1. The Assembler/Editor Cartridge, from ATARI, Inc.
2. ATARI Macro Assembler (AMAC) , MEDIT (an editor), and

DDT (a debugger), all from the APX, ATARI, Inc.
3. MAC/65, from Optimized Systems Software, Inc., 10379

Lansdale Avenue, Cupertino, California 95014.
4. The SYNASSEMBLER, from Synapse Software, 5327 Ja

cuzzi, Suite 1, Richmond, California 94804.
S. The Macro Assembler/Text Editor (MAE), from Eastern

House Software, 3239 Linda Drive, Winston-Salem, North
Carolina 27106.

66

Assemblers for the AlARI 67

6. Edit 6502, from LJK Enterprises, P.O. Box 10827, St. Louis,
Missouri 63129.

Since it is the most widely owned, although certainly not the
most powerful, assembler available for the ATARI computer line,
all of the examples in this book will be written using the ATARI
Assembler/Editor Cartridge. This chapter will describe the syntax
used in the Cartridge, and further explain how each of the other
five assemblers compare with it.

It is not the purpose of this book to endorse, either directly or
indirectly, any of these products . These assemblers, and particu
larly the differences between them, are described here to enable you
to work with the examples in this book and use the routines for
your own, no matter which of the products you have purchased .

THE ATARI ASSEMBLER/EDITOR
CARTRIDGE

First, let's discuss syntax. The Assembler/ Editor Cartridge re
quires that every line be prefaced with a line number, as do any
BASIC programs you have written. Using the Cartridge, these line
numbers must be integers between 0 and 65535. Each line number
must be followed by at least one blank space. The fields which are
present in a line of an assembly language program are:

line number label mnemonic operand comment

For an example, we'll look at one typical line of a such a program:

10 LOOP LDA $0]42 ;start by getting hi byte of variable X

Let's take one part of this line of assembly language code at a
time. The first field, the label field , mayor may not be present. If it
is present, you can tell the assembler to address this line by using its
label, in this case, LOOP. Therefore, we could subsequently write
another line of code which branched to LOOP, and the assembler
would know where we wanted to go. Generally, labels are used only

68 Learning Assembly Language

when we know we will later need to reference this line from another
portion of the program. As mentioned above, the label field, if
present, must have exactly one blank space between the last digit of
the line number and the first character of the label. The first char
acter of the label must be a letter from A to Z, and the other char
acters must be either letters or the digits 0 through 9. The label may
be as short as 1 character or as long as (106 minus the number of
digits in the line number). Since some of the assemblers for the
ATARI limit the number of characters which may be used in the
labels, all label names used in the programs in this book will con
tain six or fewer characters.

The mnemonic, often called the op code, is the 6502 instruction
that we wish the computer to execute at that point in the program.
In the example given above, we want the computer to load the accu
mulator, and the mnemonic for this is LDA, as we learned in Chap
ter 5. This instruction must appear either with one blank space
between itself and the label, if there is a label, or with two blank
spaces between the last digit of the line number and the first letter
of the mnemonic, if there is no label. For example:

10 LABEL LDA $0342 or 10 LDA $0342

The reason for this should be apparent: if only one such blank
space were left after the line number, the assembler would try to
apply the mnemonic as a label, and you'd end up with a label called
LDA. The assembler would then try to interpret the operand,
$0342, as a 6502 instruction, witQout any success whatsoever.

The operand is the conclusion of the 6502 instruction, and spe
cifies the address or number we would like to operate on. For in
stance, in this case the operand defines the absolute addressing
mode, in which the accumulator is to be loaded with the number
stored in memory location $0342. The operand could have been
#$24, in which case the addressing mode would have been immedi
ate, and the accumulator would have been loaded with the hexade
cimal number $24, instead of a number from someplace in the
computer's memory. The operand starts with at least one blank
space between its first character and the last character of the mne
monic, although more blank spaces are permitted . In fact, you can

Assemble rs for the ATARI 69

tab over to the operand field if you so desire. In this book, we'll use
one blank space.

With any mnemonic which uses the accumulator addressing
mode, the operand must be the capital letter A to be properly in
terpreted by the Cartridge . Therefore, an instruction to rotate the
contents of the accumulator to the right it must be written like this:

130 ROR A inote the A

The comment field is the final field of a line of assembly lan
guage code, and it should describe the operation being performed
in terms of program function . That is, the comment should not
describe the operation (that LDA $0342 means to load the accumu
lator from $0342); rather the comment should remind you what
that particular line of code is doing, so that you can go back to it 6
months later and not spend 10 hours wondering what in the Sam
Hill that stupid line was for. In our first example above, the com
ment tells us that we're getting the high byte of a variable we're
calling X, from memory location $0342.

Comments can be set off from code in two ways. First, if at
least one blank space follows the operand field, anything else fol
lowing on that line will be interpreted by the assembler as a com
ment. A second way is to denote an entire line as a comment. As we
shall see, this often makes your code much more readable and will
be a big help in keeping your sanity. To so designate a line, follow
the line number with one space and place a semicolon in the next
space. Anything else on that line will be interpreted as a comment
at assembly time. Examples of each of these methods are:

100 i This entire line is a comment line
100 LDA $0343 iThis is a comment also

For the purposes of this book, all comments, either full-line or not,
will be preceded by a semicolon, so if you see a semicolon before
some text, you'll know that you're reading a comment.

Now we know the structure of a line of assembly language code
and there are a few other conventions that we'll need to know as
well.

70 Learning Assembly Language

Directives

Most assemblers have available for the programmer's use a se
ries of instructions which can be interpreted by the assembler, es
sentially extending the instruction set of the 6502. These are called
directives, or, sometimes, pseudo-ops, since they are used just like
op codes but are not part of the 6502 instruction set. The most
important of these for the Assembler I Editor Cartridge are
described below, with a brief description of each.

One of the most important is the origin statement. Since the
assembler creates machine language code which will reside in a spe
cific place in memory, we need to tell the assembler where this place
is . To do this, we use the origin statement. With the Cartridge, the
format of this statement is as follows :

10 * = $0600 ; the beginning

Note that there are two spaces between the last digit of the line
number and the asterisk, no spaces between the asterisk and the
equal sign, and one space between the equal sign and the first char
acter of the address. This line tells the assembler that we want our
code to begin assembly at hexadecimal address $0600, or page 6.
Such an origin statement will usually be the first, or one of the first,
statements in our programs. When the assembler sees the * = direc
tive, it assigns the program counter the value of the expression fol
lowing this directive. It is perfectly feasible to have more than one
* = directive in any program if different regions of code are to be
assembled in different areas of memory.

Other pseudo-ops include:
.BYTE reserves at least one location in memory for future use.

The operand can place information into this space. For instance,
the instruction

110 .BYTE 34

opens one location in memory at the current position of the pro
gram counter, and stores the number #$22 (decimal 34) in that loca-

Assemblers for the ATARI 71

tion. It is also possible to store a series of bytes using one .BYTE
instruction, as shown below:

125 .BYTE "HELLO" , $9B

This will store the hexadecimal numbers $48, $45, $4C, $4C, $4F,
and $9B in consecutive locations . These numbers are the ATASCII
(ATari ASCII) codes for the letters of the word HELLO .

. DBYTE reserves two locations for each value in the operand.
This instruction is used for data in which the numbers are larger
than 256, and so require 2 bytes to be stored. The number is stored
with the high-order byte first, followed by the low-order byte. For
example,

115 .DBYTE 300

stores 2 hexadecimal numbers in consecutive memory locations.
The first is $01 and the second is $2C, since 300 decimal equals
$012C hexadecimal.

.WORD is identical to the .DBYTE directive, except that the
low-order byte is stored first, followed by the high-order byte.

LABEL = is used to assign a value to a label. For instance, if
we write a program which requires the frequent use of the address
$9F, we can assign this address to a named variable, as follows:

112 FREQ = $9F

Since the label in the LABEL = directive is a real label, it must
begin with exactly one blank space between the last digit of the line
number and the first character of the label. Now, whenever we
need the address, we can call the label instead; for instance,

245 LDA FREQ

The assembler now knows to load the accumulator from the ad
dress $9F.

72 Learning Assembly Language

.END tells the assembler that it has completed the assembly
and that it should stop right there. Obviously, it should be the last
line of your program. The Assembler/ Editor Cartridge assumes
that if there are no further lines of code and no .END directive is
included, the program is finished; this makes the .END directive
optional, much as the END statement in an ATARI BASIC pro
gram is optional.

There are many other directives available for the Cartridge, but
we have discussed the most important ones and for the moment
they are the only ones we'll discuss. Please refer to the Assembler/
Editor manual for a further discussion of all of the pseudo-ops
available.

OPERAND FIELD MATH

One further note on the Cartridge is that it supports addition,
subtraction, multiplication, and division in the operand field. For
instance, if we would like to break up the address of the label
LOOP into a high and a low byte, we can write the following sec
tion of code:

135 LDA #L00P&255 ;get low byte of LOOP
140 STA DEST ;store it in DEST
145 LDA #L00P/256 ;get high byte
150 STA DEST+ 1 ;and we're done.

Line 135 takes the address of LOOP and ANDs it with #$FF, giving
us the low-order byte. Line 145 divides this address by 256, giving
us the high-order byte of the address. Note that line 150 will store
this byte in the address DEST plus 1, or 1 byte higher in memory
than DE ST.

lHE AlARI MACRO ASSEMBLER

We will now discuss the differences between the other available
assemblers and the Assembler/Editor Cartridge.

Assemblers for the ATARI 73

A macro assembler allows you to write, cleverly enough,
macros, which are generally short segments of assembly language
code that you plan to use frequently within a program. An example
of a macro might be JMI, which would contain the code to imple
ment a Jump on Minus instruction, which, as we now know, is not
present in the 6502 instruction set. Using a macro assembler, we
could code this instruction, and then whenever we want to jump on
minus, we could use JMI very much like a normal instruction of the
6502 set. At assembly time, the assembler will find the right macro
and insert it properly everywhere the JMI instruction occurs.

The ATARI Macro Assembler is unique among the available
assemblers in its ability to assemble one single file many times
larger than the entire memory space of the ATARI! It does this by
reading code from your disk drive, assembling it, and writing the
assembled object code back to another disk file. It has another
powerful feature - the use of separate files, called SYSTEXT files.
These can include all label references, so that such a SYSTEXT file
can be constructed once, with all of the equates for the ATARI
contained in it. This file can then be used for all programs you'll
ever write, without the need for laboriously constructing this table
again.

This assembler is also different in one other respect - it uses
no line numbers. Lines are simply inserted or deleted in the appro
priate order, and your program scrolls through memory. To see the
beginning of your program, you scroll the text down until the be
ginning appears, and vice versa for the end of your code. When
using this assembler, you should take care to place the lines in the
correct order, or else you'll have trouble at run time.

The label begins in column 1, and the mnemonic is generally
tabbed over about eight spaces. The operand and comment fields
follow the operand. Labels may be of any length, but only the first
six characters are significant; longer labels are used at your own
risk. Octal numbers, in addition to binary, decimal, and hexideci
mal, are supported, and when used, are prefaced by the @ sign.
Strings, such as the HELLO used as a previous example, are en
closed in single, rather than double, quotation marks. The AMAC
assembler also supports addition, subtraction, multiplication, and
division, as well as a number of logical operations. An address may

74 Learning Assembly Language

be broken into its high- and low-order bytes simply by using the
words HIGH and LOW, without the need for division as in the
example above. Macros are, of course, allowed. For any instruc
tions which utilize the accumulator mode, the letter A should fol
low the mnemonic. The pseudo-ops are virtually all different from
those of the Cartridge. The ATARI Macro Assembler (AMAC) and
the Assembler/Editor Cartridge versions of the pseudo-ops are
outlined below:

AMAC Cartridge Comment
DB .BYTE (.BYTE also acceptable

for AMAC)
DW WORD (.WORD also acceptable

for AMAC)
END .END (.END also acceptable

for AMAC)
EQU
LOC sets location counter for

assembly
ORG *=

MAC/65
MAC/65 is also a macro assembler, with features similar to

those already described. This assembler is the only one which to
kenizes your source code, just as BASIC does . In addition, it
checks the syntax of your line as soon as you hit RETURN after
typing it. This feature is not quite as important in assembly lan
guage programming as it is in BASIC, since most assembly lan
guage errors are not a result of syntax errors, but rather logic
errors . However, for the beginning assembly language programmer,
this is a nice feature which may eliminate some simple, common
errors. Line numbers in the range of 0 to 65535 are required for
each line. As described for the Assembler/Editor Cartridge, the
line number must be followed by a single space before a label, and
by 2 spaces before the mnemonic in lines with no labels. Strings

Assemblers for the ATARI 75

within a program must be enclosed in double quotation marks, as
when using the Cartridge. Comments begin at least 1 space beyond
the operand field, and need not be prefaced by a semicolon. Com
ments which take an entire line must be prefaced by either a semico
lon or an asterisk. Any instructions using the accumulator mode of
addressing require the mnemonic to be followed by the capital let
ter A, as with the Cartridge. Labels may be up to 127 characters
long, with all characters significant.

MAC/65 supports addition, subtraction, multiplication, and
division. However, whereas the Cartridge has no operator prece
dence and simply evaluates a complex arithmetic expression from
left to right, this assembler has the usual multiplication > division
> addition > subtraction operator precedence. It also uses the >
and < symbols to designate the high and low bytes, respectively, of
an address.

This assembler can be used with files created by another as
sembler: an ENTER command will allow such files to be read into
the editor. In fact, unnumbered lines such as those produced by
AMAC can even be numbered automatically using the ENTER
command. Then minor changes in syntax will allow the program to
be modified and assembled using MAC/65 .

The pseudo-ops discussed above for the Cartridge are used in
exactly the same way for MAC/65, and the * = symbol for the
origin statement is also used in both assemblers. Macros are sup
ported, and the debugger which comes with MAC/65 is a separate
program which must be loaded separately, much as AMAC.

THE SYNASSEMBLER

The SYNASSEMBLER also requires line numbers, which must
be followed by a blank space before entering a label. The accepta
ble line number range is from 0 to 63999. Tab stops are built into
the editor to allow easy formatting of lines of code, and in fact, the
automatic line-numbering mode requires the use of the tab to print
the new line number to the screen. Labels may be up to 32 charac-

76 Learning Assembly Language

ters long, and all characters are significant. The accumulator ad
dressing mode does not use the letter A following the mnemonic.
Comments require semicolons only when whole lines are used for
comments.

The SYNASSEMBLER supports only addition and subtrac
tion. Therefore, you'll need to write code to support other opera
tions, or use calculated numbers rather than complex arithmetical
expressions. Operators are included, however, to separate a number
into high and low bytes - the # and / symbols, respectively. For
example,

124 LDA ~TOR1 ; indicates low byt e of STOR1
128 STA STOR3
132 LDA /STOR1 ;indicates hi gh byte

The pseudo-ops of the SYNASSEMBLER are considerably dif
ferent from those of the Cartridge, as you can see in the following
chart:

SYNASSEMBLER
.AS
.BS
.DA
.EN
.EQ
.OR

Cartridge
.BYTE
.BYTE
.wORD
.END

*=

Comment
for ASCII literals only

The SYNASSEMBLER also has an ENTER command, which
will allow you to use it to assemble code produced by one of the
other packages discussed in this chapter. One use you might make
of this feature is to have the SYNASSEMBLER assemble code
originally written using the Cartridge, since the SYNASSEMBLER
is from 50 to 100 times faster in assembling code than is the Car
tridge. For short programs this difference is relatively insignificant,
but for long programs , the time needed to assemble code is a sub
stantial portion of the debugging process. Cutting this time sub
stantially will yield a much more productive editing session.

Assemblers for the ATARI 77

Finally, strings may be surrounded by any delimiter, so either
single or double quotation marks can be used.

THE MACRO ASSEMBLERnEXT EDITOR
(MAE)

MAE is another macro assembler available for the ATARI
computers . It requires line numbers in the range of 0 to 9999. Any
label in a line must immediately follow the line number with no
intervening space! From the label on, fields are separated by
spaces. Semicolons are required at the beginning of full line com
ments only; comments at the end of a line need only be separated
from the operand by a space. The accumulator mode requires that
the letter A follows the mnemonic.

MAE supports only addition and subtraction, but two symbols
are included for calculating the high and low bytes of a number -
#H and #L, respectively. Labels may be up to 31 characters long,
with each character significant.

The pseudo-ops supported by MAE, with their Cartridge
equivalents, are charted below:

MAE
.BA
.BY
.EN

Cartridge

*=
.BYTE
.END

Single quotation marks are required around strings. One im
portant difference between MAE and all of the other assemblers is
that with MAE, any reference to zero page addressing must begin
with an asterisk . For instance, if STORI and STOR2 are both de
fined to reside on page zero, then the code to load the accumulator
from STORI and then to store this value in STOR2 would need to
be written like this:

105 LDA *STOR1
110 STA *STOR2

78 Learning Assembly Language

EDIT 6502

This assembler does not require line numbers for the assembler
code. It supports addition, subtraction, multiplication, and divi
sion, with no precedence; complex arithmetic expressions are eva
luated from left to right. The program counter can be referenced by
the use of the asterisk . Strings can be surrounded by either single or
double quotation marks. If single marks are used, the high bit of
each byte is cleared (set equal to zero), and if double marks are
used, the high bit of each byte is set (made equal to 1). The accumu
lator addressing mode does not use the letter A, just the mnemonic,
as here:

LDA $4235
ASL

The> symbol can be used to generate the high byte of a number,
and the symbol will generate the low byte.

Edit 6502 uses a number of pseudo-ops which are different
from those of the ATARI Assembler/Editor Cartridge, as
described below:

Edit 6502
EQU
ORG
DFB
DFW
END

Cartridge

*=
.BYTE
.wORD
.END

Now that we've explored some of the differences you'll need to
know about to use any of these assemblers for the ATARI com
puters, we can begin to write some useful assembly language pro
grams. The next chapter explores some subroutines which can be
used from BASIC to substantially speed up a program.

LOCATING MACHINE LANGUAGE
PROGRAMS IN MEMORY

When we begin writing subroutines, we must decide where we
want to locate them. There are two types of machine language pro
grams, relocatable and fixed. Fixed programs are those which use
specific addresses within the program; these addresses cannot
change. For instance, suppose our program contained these lines:

30 *= $600
45 LDA ADDRl
50 BNE NOZERO
55 JMP ZERO
60 NOZERO RTS
70 ZERO SBC 111
80 RTS
90 ADDRl .BYTE 4

In this excerpt, we use several references to addresses within the
program which are fixed: they cannot change without completely
messing up the program. These are more easily seen after we use the
assembler to assemble this program, producing output which looks
like this:

79

80 Learning Assembly Language

ADDR ML LN LABEL OP OPRND

0000 JO *= $600
0600 ADOC06 45 LDA ADDRl
060J DO OJ 50 BNE NOZERO
0605 4C0906 55 JMP ZERO
0608 60 60 NOZERO RTS
0609 E901 70 ZERO SBC 111
060B 60 80 RTS
060C 04 90 ADDRl . BYTE 4

This output is nicely formatted in columns. The first column
lists the hexadecimal addresses at which the machine language in
structions translated from the mnemonics are located. The second
column lists the machine language code which results from that
translation. For instance, the instruction RTS in line 80 generated
the machine language code 60, which was located in memory loca
tion $060B. The third column lists the line numbers of the assembly
language program. The fourth column contains any labels which
were present in the original program, and the fifth column contains
the mnemonics of the program. The sixth column contains the
operand. In this example, there is no seventh column, which would
have been present if the original program had contained any com
ments.

To return to the problem of the fixed addresses discussed
above, the first of the problem addresses, ADDR 1, can be found in
lines 45 and 90. Let's look for a moment at the machine language
code which the assembler produced for line 45. Three bytes were
produced; AD, ~C, and 06. AD is the machine language code for
the absolute addressing mode of the LOA instruction. Since we
know that the absolute addressing mode of the LDA instruction
requires 3 bytes, we know why 3 bytes were produced by the as
sembler. The second and third bytes, OC and 06, make up the ad
dress from which to load the accumulator, in the standard 6502
order of least significant byte-most significant byte. Therefore, the
address from which to load the accumulator is $060C, which is the
address of the line containing the label AODR I. When we wrote
LOA ADORl, the assembler translated this to mean LOA $060C,
since that was the address assigned to ADORI .

Machine Language Subroutines for Use with AlARI BASIC 81

Now we can understand why any attempt to run this program
somewhere else in memory is doomed to failure. When line 45 is
executed, the microprocessor will look at the original address,
$060C, in order to load the accumulator; it expects to find ADDRI
there, since this was the location which was assigned for ADDRI at
the time of assembly. However, the logic of the program was es
tablished to perform certain functions based on the value stored in
$060C only if $060C was equal to ADDRI . If we move the routine
in memory, ADDRI will be somewhere other than at $060C, and
the logic of the program will no longer be valid.

The second fixed address referred to in this program is in line
55. Every JMP instruction has as its destination a fixed address . We
can see this by examining the machine language code generated for
line 55: 4C, 09, 06. The byte 4C is the machine language code for an
absolute JMP instruction, a 3-byte instruction. The next 2 bytes are
the address to which to jump, $0609 (remember, least significant
byte first). We can now see that when line 55 is executed, the pro
gram will jump to $0609, regardless of where in memory we may
have moved this program. However, if we do move this program
elsewhere in memory, the instruction we intended to have executed
at $0609 (the SBC # 1 in line 70) will no longer be there. In fact,
there will probably be no valid instruction at all at $0609, so the
program will crash.

Look for a moment at line 50. Remember that all branch in
structions use the relative form of addressing. If we look at the
machine language code for this instruction, we'll find DO, 03. DO is
the machine language code meaning to branch on not equal to zero,
but that 3 doesn't look like an address . It's not. It simply tells the
6502 to branch forward 3 bytes in memory from the current loca
tion of the program counter. When line 50 is executed, the program
counter is pointing to the start of the next line. In this case, it points
to the 4C of the JMP instruction in line 55. Moving it forward 3
bytes will then point it to 60, the RTS instruction in line 60. That is,
when the BNE NOZERO is assembled and executed, this instruc
tion tells the 6502 to branch forward 3 bytes, past the JMP instruc
tion to the address NO ZERO ($0608) . Since the branch instruction
simply says "Branch forward three bytes," rather than "Branch
forward to $0608," it can be located anywhere in memory and the

82 Learning Assembly Language

branch will still wind up at NOZERO, regardless of where in mem
ory NO ZERO is. NOZERO will always be 3 bytes ahead of the
branch instruction, so all will be well.

PLEASE NOTE!!! This teaches us an important lesson: bran
ches can be included in relocatable code, but JMPs and specific
addresses within the program cannot be.

Why is so much written about relocatable code? For one very
simple reason: if code is not relocatable, then we need to find some
safe place in the computer's memory to store it. This may not al
ways be easy, since we're sharing the computer with BASIC, and we
can't always be sure what locations BASIC will be using. If our
code is relocatable, we can put it anywhere. But where?

Let's for a moment review how BASIC handles strings. When
you want to use a string in ATARI BASIC, it must be dimensioned.
When this is done, the computer reserves space for the string in
memory. If for some reason it needs part of that space, it simply
moves the string somewhere else, but BASIC is then responsible for
remembering where the string is, and is also responsible for protect
ing its space . Aha! Now we're out of the situation where we have to
protect some area of memory from BASIC, and into one in which
BASIC does the allocating and protecting for us! We can then store
our machine language program as a string in BASIC and access it
by using the USR(ADR(ourstring$)) form of command.

To be fair, there will usually be room for a short routine on
page 6. Remember that page 6 is guaranteed to always be kept free
for the programmer's use. Well, almost always. You should be
aware that there is a not infrequent condition under which page 6
may not be safe. As was mentioned in Chapter 3, the space from
$580 to $5FF (the top half of page 5) is used as a buffer (a place for
temporarily storing information) by your ATARI. If you're en
tering information from the keyboard, this input buffer may over
flow into the bottom of page 6. This overflow will then overwrite
anything stored between $600 and $6FF, depending on how much
overflow there is. For the purposes of this book, we will assume

Mac hine Language Subroutines fo r Use with ATARI BASIC 83

that such overflow will not occur, and programs which cannot be
written to be relocatable will generally have their origin at $600 . If
they don't work in some specific application you may have, check
to be sure that you're not overflowing the buffer from page 5.

Other places to locate non-relocatable programs are up high in
memory, or below LOMEM. Both places are generally safe from
interference with BASIC if care is taken in their use. Additionally,
if you have an application which will never use the tape recorder,
you may use the tape buffer, located between $480 and $4FF, for
program location. Very small routines may also be placed at the low
end of the stack, from $100 to about $160, since only rare applica
tions will ever use the stack to this depth. However, this is extremely
risky, and no guarantees about safe performance can be given for
programs using this space .

While we're on the subject of tape recorders, one final note
about the organization of this book. All programs are written as
suming the presence of a disk drive and a resident DOS. If you are
using a tape-based system, please refer to your assembler manual
for instructions on how to perform certain operations . For in
stance, loading machine language files from a disk drive may use
the L option of DOS, whereas the same operation using a tape
recorder will probably use some form of the LOAD or BLOAD
commands, depending on which assembler you are using .

A SIMPLE EXAMPLE
SUBROUTINE TO CLEAR MEMORY

Let's begin to build our library of subroutines with a very sim
ple example. Remember, if you don't want to type all of the pro
grams, they are available on disk from MMG Micro Software.

In BASIC, we frequently need to clear an area of memory to
zeros. This occurs, for instance, when using player-missile graphics
or when using memory as a scratch pad or even just when a screen
or drawing needs to be cleared. Remember that if we want to store

84 Learning Assembly Language

data near the top of memory, the display list and display memory
must be relocated below this area of memory, or else this routine
will wipe out the picture on our TV screen. This relocation can be
accomplished very easily, using the following code in BASIC:

10 ORIG=PEEK(106) : REM Save original top of memory
20 POKE 106,ORIG-B:REM Lower the top of memory by B pages
30 GRAPHICS O:REM Reset the display list and screen memory
40 POKE 106, ORIG:REM Restore the top of memory as before

We can, of course, perform the memory clearing operation in
BASIC. If we need to clear the top 8 pages of memory to all zeros,
we can do so with the following program :

10 TOP=PEEK(106) : REM Find the top of memory
20 START = (TOP-B)*256:REM Calculate where to start the clear
30 FOR I=START TO STARTt204B :REM Area to be cl eared
40 POKE I,O:REM Clear each location
50 NEXT I :REM All f i nished

This program works just the way we want it to, but takes approxi
mately 13 .5 seconds to execute. If we need to perform this opera
tion several times during the course of a program, or if we have a
program which cannot afford the 13.5 seconds required to do this
in BASIC, then we have a good candidate for a machine language
subroutine.

First we'll need to think about where we'll locate our subrou
tine . Page 6 is as good a place as any. Then we'll need to know how
to find the top of memory, so we'll know what part of memory we
want to clear. There is a memory location which always keeps track
of where the top of memory, in pages, is in an ATARI, location 106,
so that part is easy. Finally, this type of program is usually a good
candidate for indirect, Y addressing, so we'll need two page zero
locations to hold our indirect address. Let's write what we have so
far, in assembly language:

100 ; ***************************
110 ;set up initial conditions
120 ; ***************************

Machine Language Subroutines for Use with ATARI BASIC 85

130 * = $600 i He have to assemble it someHhere
140 TOP = 106 i here ' s Hhere He find the top stored
150 CURPAG = $CD i Hhere He store current page being cleared

Note that there are only four page zero memory locations, $CC to
$CF, which are secure from being changed by both BASIC and the
Assembler/Editor cartridge: we'll use two of them, $CC and $CD,
for this program. It is possible to find other page zero locations
safe from the cartridge, but these are guaranteed by ATARI always
to be safe, so we'll use these.

Now let's think about what we'd like the routine to do. First we
must remember the PLA required to pull the number of parame
ters, passed by BASIC in the USR call we'll write, off the stack.
After we've found the present top of memory, we'll need to start 8
pages below that, clearing all of memory to zero . The code to find
where in memory to start clearing is fairly straighforward, as
shown below:

160 i ***************************
170 ibegin Hith calculations

180 i ***************************
190 PLA iremove # of parameters from stack
200 LDA TOP ifind the top
210 SEC iget ready for subtraction
220 SBC #8 ifind first page to cl ear
230 STA CURPAG iwe'll need it
240 LDA #0 ito insert it in memory later
250 STA CURPAG-1 ithe low byte of a page # is always zero

Now we've set up the indirect address of the first place in mem
ory to clear, and we've stored it in CURPAG- I (low byte) and
CURPAG (high byte) . We've also loaded the accumulator with
zero, so we're all set to store a zero in each memory location we
need to clear.

Next, we need a counter to keep track of how many memory
locations have been cleared on each page. If we use the Y register
for this, it can act both as a counter and as an offset for the ad
dressing system we're using . All we have to do is set the counter,
store the zero in the accumulator into the first location, and decre-

86 Learning Assembly Language

ment the Y register by 1, looping back to perform the store again.
Since we began with the counter at zero and we are decrementing by
1 as we clear each location , as long as the Y register has not yet
reached zero again, we still have more to clear on this page, since
there are 256 locations per page of memory. Let's see what the code
will look like:

260 LDY #0 i for use as a counter
270 i ***************************
280 inow we 'll enter the clearing loop
290 i ***************************
300 LOOP STA (CURPAG-1),Yi the first byte is cleared
310 DEY ilower the counter
320 BNE LOOP i if)zero , page is not yet finished

Now that was pretty simple. We stored the zero that was in the
accumulator into the address pointed at by the indirect address
CURPAG-l, CURPAG (low byte, high byte) offset by Y, which was
zero the first time through the loop. Then we decreased the Y regis
ter by 1, and looped back to store a zero in the memory location
pointed to by the same indirect address, but this time offset by 255 ,
so we've cleared the top byte of the page. Next time through, Y
equals 254, so we clear the next-lower byte of memory, and so on ,
until when Y equals zero the whole page is cleared and our counter
is back to zero, ready for the next page.

All right, now we've cleared 1 page . How do we get it to clear
all of the other 7 pages? Remember that the indirect address we set
up on page zero has 1 byte for the low byte of the indirect address
pointing to the page to be cleared, and one byte for the high byte of
the address. If we simply increase the high byte by 1, this indirect
address will point at the next-higher page , like this :

330 INC CURPAG ito move on to next page

It really couldn't be much easier than that, could it? Now all we
need to do is find out when we're done.

In this case, we know that we're done when the page we're
clearing is higher than the top of memory. It is fairly easy to deter
mine if this condition is true , as follows:

Machine Language Subroutines for Use w ith ATARI BASIC 87

340 LDA CURPAG ineed to see if we're done
350 CMP TOP iis CURPAG)TOP?
360 BEQ LOOP ino, last page coming up!
370 BCC LOOP ino, keep c.learing
380 RTS igo back to BASIC

If CURPAG is equal to TOP, remember that we've still got that
last page to clear. Only if CURPAG is greater than TOP have we
finished.

Now that we've written our program, we need to convert it
from assembly language to machine language. To do this, we use
the assembler part of the cartridge, which can be accessed simply
by typing ASM followed by a RETURN. This will start the assem
bly process, and after a short pause, the following information will
appear on your screen:

ADDR ML LN LABEL OP OPRND COMMENT

0100 i*********************************
0110 iset up initial conditions
0120 i*********************************

0000 0130 * = $600 i place to assemble it
006A 0140 TOP 106 iwhere the top is stored
OOCD 0150 CURPAG = $CD i to store page being

cleared
0160 i**********************************
0170 ibegin with calculations
0180 i*********************************

0600 68 0190 PLA i # of parameters off stack
0601 A56A 0200 LDA TOP i find the top
0603 38 0210 SEC iget ready for subtraction
0604 E908 0220 SBC #8 ifind first page to clear
0606 85CD 02]0 STA CURPAG iwe ' U need it
0608 A900 0240 LDA #0 i to insert it in memory later
060A 85CC 0250 STA CURPAG-1 i low byte of page # is zero
060C AOOO 0260 LDY #0 i for use as a counter

0270 i**********************************
0280 inow we'll enter the clearing loop
0290 i**********************************

060E 91CC 0300 LOOP STA (CURPAG-1) ,Yithe first byte is cleared
0610 88 0]10 DEY i lower the counter
0611 DOFB 0320 BNE LOOP iif)zero, page not done yet

88 Learning Assembly Language

0613 E6CO 0330 INC CURPAG ;let's move on to next page
0615 A5CO 0340 LOA CURPAG ;need to see if we're done
0617 C56A 0350 CMP TOP ;is CURPAG)TOP?
0619 FOF3 0360 BEQ LOOP ;no, last page coming up!
061B 90F1 0370 BCC LOOP ;no, keep clearing
0610 60 0380 RTS ;go back to BASIC

Now we have assembled the program and stored it in memory.
The next task is to store it onto our disk so we can use it in our
BASIC program. This can be done in either of two ways. The first
is directly from the cartridge, using the SAVE command as follows:

SAVE#D:PROGRAM(0600,061F

This command creates a file on disk called PROGRAM, and stores
all of the contents of memory from $0600 to $061F in that file.
Note that we've stored a few extra bytes - generally a good idea.

The second way to store this information is to go to DOS and
save memory using the K option. This can be done as follows:

PROGRAM, 0600, 061F

Either method of storing the results of the assembly will be satisfac
tory.

Now you can switch cartridges, and replace the Assembler/
Editor with the BASIC cartridge. After booting up the computer,
type DOS, and when the DOS menu appears, use the L option to
load the file called PROGRAM that we just created. Then type B to
go back to BASIC.

Our program now resides on page 6, and we can access it if we
like. However, the next step should be to put it into a form that
doesn't require the use of DOS for loading. We could simply write
one line of BASIC code in the direct mode to pull this information
from page 6; for example,

FOR 1=1 TO 30: ?PEEK(1535+I); 1/ 1/; : NEXT I

However, since we're using a computer, why not write a general
purpose program that will pull the data out of memory and set it up

Machine Language Subroutines for Use with ATARI BASIC 89

in a form which we can convert easily to DATA statements III a
BASIC program? Such a program is given below:

10 FOR J = 1 TO 30 STEP 10: REM Length of data i n memory
20 FOR 1= J TO H9 : REM We r 11 get DATA statements 10 bytes long
30 PRINT PEEK(I +15J5) ; ", "; :REM Prir.t the data t o the screen
40 NEXT I :REM Finish the l i ne
50 PRINT: PRINT: REM Leave blank lines for easy working
60 NEXT J:REM All done !

If we now type this program in and RUN it , our screen will show
the following:

104,165 ,106 , 56 ,233 ,8,133 , 205 ,169 ,0,
133 ,204 ,160, 0,145, 204,136,208 ,251 ,230 ,
205 ,165,205 ,197 ,106 ,240 ,243 ,144,241 ,96 ,

It's now a simple matter to move the cursor up to these lines, re
move the trailing commas, and convert them to the following:

10000 DATA 104, 165 ,106,56,233,8 , 133 ,205 ,169 , 0
10010 DATA 133 ,204 ,160,0, 145 ,204,136 ,208,251 ,230
10020 DATA 205 ,165 , 205 ,197 , 106 ,240 ,243 ,144,241 ,96

Now we can erase lines 10 to 60, so that the program in memory
consists of just lines 10000 to 10020. At this point, we should save
the program to disk, so we don ' t have to go through this whole
procedure again if the power fails. We can incorporate this routine
into a short BASIC program to test it, as follows:

10 FOR 1= 1 TO 30: REM Number of bytes
20 READ A:REM Ge t each byte
30 POKE 1535 +I , A:REM POKE byte i n correct locat i on
40 NEXT I: REM Finish POKEing data
50 ORIG= PEEK (106) : REM Now re locate displ ay list, as above
60 POKE 106, ORIG-8
70 GRAPH ICS °
80 POKE 106,ORIG:REM Restore top of memory
90 POKE 20,0: REM Set timer to zero
100 X=USR(1536) : REM Call our machine language rout ine

90 Learning Assembly Language

110 ? PEEK(20)/60:REM How' many seconds did it take?
120 END :REM Separate DATA from program
10000 DATA 104,165 ,106,56,233 ,8,133,205,169,0
10010 DATA 133,204,160 , 0,145,205 ,136,208,251 ,230
10020 DATA 205,165 ,205 ,197 ,106,240 ,243 ,144 ,241,96

Line 90 first sets the internal real-time clock to zero, and then line
110 reads the time in jiffies (sixtieths of a second). This will mea
sure the elapsed time the USR call, our machine language routine,
took to clear 8 pages of memor y. It takes 0.0333 seconds, so this
machine language routine, which seems so long and time-consum
ing, is over 400 times faster than the BASIC program that did the
same job. Worth the effort, wasn't it?

Of course, all that time spent programming this routine was
not wasted, since we've now got a routine which we can use when
ever we need to clear the top of memory, such as for player-missile
graphics.

The program we wrote has one drawback: the code resides on
page 6 and therefore cannot be used in a program which needs page
6 for its own use. Now here 's where the relocatable nature of the
code comes in. Let's look again at the assembly language program
we wrote. Note that we didn't use any jumps, nor did we make
reference to any address within the program, except in branch in
structions. This program is not tied to any specific memory loca
tions; it can reside anywhere in memory and still work. Let's take
advantage of that and turn the program into a string. This process
is fairly simple. All we need to do is add a line 5 and change lines 30
and 100, as follows:

5 DIM CLEAR$(30):REM Set up the string
30 CLEAR$(I,I)=CHR$(A):REM Insert byte into string
100 X= USR(ADR(CLEAR$)) : REM New l ocation of the clearing routine

So now we have a relocatable routine to clear memory, which will
be far more versatile than the one tied to specific locations. In fact,
if the string which we create contains no control characters, we can
simply produce a I-line subroutine which will contain all of the
information we need . We can do this by running the program and
then printing CLEAR$ to the screen . We can then move the cursor

Machine Language Subroutines for Use with ATARI BASIC 91

up to the string of machine language and convert it to a single line
of BASIC, as follows:

20000 E=USR(ADR(" h~.j 8ru:co~~,(D&
~~.n) :F:ETURN

It can't be any simpler than this! Now whenever we need to
clear the top of memory, we can just include this line of code, and
access the subroutine to clear the memory.

Other, more sophisticated routines ex ist for producing BASIC
programs once you have created your machine language routine, or
you can write such programs yourself. One very nice routine for
producing such subroutines as str ings was published in the Septem
ber, 1983, issue of ANTIC magazine, by Jerry White. This routine
reads the machine language data directly from the disk and writes
the BASIC code back to disk. This avoids one problem with print
ing such st rings to the screen; if the string contains a non-printing
character, a fair amount of work is required to be sure the string is
correct. One way to check your routines quite easily for such prob
lems is to simply count th e number of characters printed to the
screen when you print your string, and compare that number to the
number of bytes contained in your machine language routine. If the
numbers differ, you 'd better find out which character has been
omitted and insert it in the appropriate place using th is key se
quence:

ESC CTRL-key

which will allow you to print normall y nonprinting characters.
Let's take a simple example of this. Suppose you have written a
machine language routine for so me purpose, and when you print
the st ring co ntaining thi s routine to the sc reen, it is 1 byte shorter
than it should be. Furthermore, you hear a bell so und every time
you print this string. In reviewing yo ur DATA statements, yo u find
that the 15th byte of your machine language routine is 253. When
you attempt to print the character corresponding to ATASCII 253,
the bell will sound , since this is the code for the keyboard buzzer,
but the character will not be printed to the screen. To solve this
problem, print the st ring to the screen and then position the cursor

92 Learning Assembly Language

over the 15th byte of the string. Press the CTRL key and the IN
SERT key simultaneously, and from the 15th character on the
string will move 1 position to the right , leaving space for the miss
ing character. Now press the ESC key, and next simultaneously de
press the CTRL key and the 2 key, and the correct character will be
inserted in the 15th byte of your string. A line number and the
other information required, as shown above, may then be added,
and you'll have your routine on a single line .

For short, single routines, the easiest way around this problem
is not to use strings in single lines, but rather to insert the characters
in a string using DATA statements, as already demonstrated. How
ever, where single-line strings are desirable - for example, where
space is at a premium - the more cautious the programmer, the
better the results will be.

SUBROUTINE TO RELOCATE THE
CHARACTER SET

One of the very nice features of the ATARI computers is the
ease with which the standard character set (normally the uppercase,
lowercase, and inverse letters, numbers, and symbols we use every
day) can be altered for any purpose we desire. For instance, one of
ATARI's most popular games, SPACE INVADERS, was pro
grammed using redefined characters for the attacking invaders.
These are then simply printed to the screen in the appropriate place.
By printing them all 1 position further right each loop of the game,
they appear to march across the screen, in their ominous fashion.

As we know, however, the normal ATARI character set resides
in ROM, beginning at location 57344 ($EOOO hexadecimal). In or
der to alter any of the standard characters, we need to move the
character set to RAM, where we can get at it. This can, of course,
be done in BASIC. A very simple BASIC program to accomplish
this is given below:

10 ORIGINAL = 57344:REM Where character set is in ROM
20 ORIG=PEEK(106) :REM Where top of RAM is located
30 CHSET = (ORIG-4) *256: REM Where relocated set will be

Machine Language Subroutines for Use with ATARI BASIC 93

40 POKE 106 ,ORIG-8:REM We'll make room for it
50 GRAPHICS 0: REM Set up neH display list
60 FOR 1=0 TO 1023 : Rn1 NOH He'll transfer the I'lhole set
70 POKE CHSETtI,PEEK(ORIGINALtI)
80 NEXT I
90 END :REM That ' s it

This program reserves 8 pages of memory near the top of
RAM, much like the previous example did. There is no need to
clear this area to all zeros in this case, however, since we fill up 4 of
the pages with the character set from ROM. The loop from lines 60
to 80 actually accomplishes the transfer of the character set, which
is 1024 bytes long (8 bytes per character times 128 characters). The
program works fine, and if we don't mind spending 14.7 seconds to
accomplish this transfer, we don't need assembly language at all.

If we'd like to go faster, however, we'll need a machine lan
guage subroutine to accomplish the transfer. The subroutine we
wrote to clear an area of memory to all zeros contains the tech
niques we will use in such a program. However, we'll need to add
two new features. The first will allow BASIC to pass to our subrou
tine the location at which we would like our character set to reside
in RAM, by using the parameter passing discussed in Appendix 1.
The second will store different values in each memory location,
rather than storing the same character in each location. To do this,
we'll need two indirect addresses set up on page zero. In addition,
in this routine we will employ the more usual nomenclature, defin
ing our label as being the lower of the two zero page locations and
referring to the higher location as label + 1, rather than defining the
higher and referring to the lower location as label- 1. Both
methods are presented, to demonstrate the flexibility of program
ming in assembly language. Now, let's begin with the setup:

0100 ;*******************************
0110 ;set up in i tial conditions
0120 ;*******************************

0000 0130 * = $600
OOCC 0140 FROM $CC
OOCE 0150 TO $CE

94 Learning Assembly Language

From this point on, we'll use the output from the assembler for
all of the programs shown. To type these programs for yourself,
just type the line number, label (if present), mnemonic, operand,
and comments, and assemble it for yourself. When displayed on
your screen, the output of your assembler should look like the out
put given here. By presenting the programs this way, we can refer to
the machine language code generated by the assembler as well as to
the assembly language code we write.

As you can see, we have now reserved two different areas of
page zero for our indirect addresses. We have defined the lower of
each pair of bytes, $CC and $CE, so that the indirect address for
the place from which we will get the character set will be stored in
$CC and $CD, and the indirect address for the place to which we
will move the character set will be stored in $CE and $CF. We have
cleverly named these locations FROM and TO. For both sets of
locations, the low byte of the indirect address will be stored in the
lower of the two locations, and the high byte will be stored in the
higher, using typical 6502 convention.

Now that we've reserved space for the indirect addresses, the
next task is to correctly fill them with the addresses we need. Re
member that we're going to pass the TO address from BASIC, but
the FROM address is fixed at $EOOO by the operating system. Let's
see how this part of the program looks.

0160 i*******************************
0170 iinitialize and set up indirect addresses
0180 i*******************************

0600 68 0190 PLA ;remove # of parameters from stack
0601 68 0200 PLA ;get high byte of destinat ion
0602 85CF 0210 STA TOn ;store it in high byte of TO
0604 68 0220 PLA ;get low byte of destination
0605 85CE 0230 STA TO istore it in low byte of TO
0607 A900 0240 LDA #0 i even page boundary LSB = 0
0609 85CC 0250 STA FROM ; low byte of indirect address
060B A9EO 0260 LDA #$EO ;page of character set in ROM
060D 85CD 0270 STA FROM +1 ;completes indirect addresses

Let's discuss lines 190 to 230 for a moment. Line 190 is our old
friend, used for pulling the number of parameters passed by BA
SIC off the stack, to keep the stack in order. Note that both lines

Mac hine Language Sub routines for Use with Al ARI BASIC 95

200 and 220 are PLA instructions. This is the method used when
passing parameters from BASIC. The number to be passed is bro
ken up by BASIC into high and low bytes and is placed on the stack
low byte first , then high byte. Therefore, the first number we pull
off the stack is the one on the top, the high byte . We store that
appropriately in TO + 1, the high byte of the indirect address we
have set up on page zero . Similarly, we store the low byte passed
from BASIC in TO, and we have completed setting up the first of
the two indirect addresses we will need.

Now we just have to do the easy part. We know that any page
boundary has an address with the low byte equal to 0, so we can
store a zero in FROM with no difficulty. We know the high byte is
$EO, and don't forget the # sign, to let the assembler know that we
want to store the number $EO into FROM + 1, and not whatever
number is in memory location $EO.

Now all we need to do is write the loop which will accomplish
the transfer for us. We know that we need to transfer 1024 bytes, 4
pages of information, so we'll need a counter to keep track of how
far we've progressed. For this purpose, we'll use the X register.
We'll also need a counter to keep track of where we are on each
page we're tranferring, and for this, we' ll use the Y register. Let's
see the rest of the program to accomplish this transfer:

0280 i*******************************
0290 inow let ' s trans fer the whol e set
0]00 i*******************************

060F A204 0]10 LOX #4 i4 pages in the character set
0611 AOOO 0]20 LOY 110 i ini t i alize counter
061] B1CC 0]]0 LOOP LDA (FROM) ,Y iget a byte
0615 91CE 0]40 STA (TO) ,Y iand rel ocate it
0617 88 0] 50 DEY iis page f inished?
0618 DOF9 0]60 BNE LOOP ino - keep rel ocating
061A E6CD 0]70 INC FROM +1 iyes -high byt e
061C E6CF 0]80 INC TO +1 ih i gh byte- for next page
061E CA 0]90 DEX ihave we done all 4 pages ?
061F DOF2 0400 BNE LOOP ino - keep going
0621 60 0410 RTS iyes , so re t urn t o BASIC

There are only two diffe rences between this part of the pro
gram and the corresponding part of the previous program we

96 Learning Assembly Language

wrote. The first is the use of the X register to determine when we
are done. Line 310 sets the X register for the number of pages to be
transferred . Lines 390 and 400 determine if we have finished, by
decrementing the X register and looping back to continue the trans
fer if the value of the X register has not yet reached zero .

The second difference, of course, is that we're not going to
store the same value in every location, so we need to load the accu
mulator using the same technique we use to store it, indexing the
zero page indirect location with the Y register. Note that when Y
equals 1, we'll load from the second location of the ROM character
set in line 330 and store it in the second location of the RAM set in
line 340, and so on. Remember that lines 370 and 380 raise both
indirect addresses by 1 page, since at that point in the program, we
will have finished a page, and we'll be ready to begin another.

All that remains is to convert this program into a machine lan
guage subroutine for BASIC. With the same technique we used for
the first program discussed, we save the machine language code,
put BASIC in, load our code back again, and produce DATA state
ments by PEEKing the values stored from 1536 to 1569. These
DATA statements can then be used in a program such as the one
given below:

10 GOSUB 20000 :REM Set up machine language routine
20 ORIG = PEEK(106) : REM Top of RAM
30 CHSET = (ORIG-4) *256 : RE~I Place for relocated character set
40 POKE 106 ,ORIG-8:REM Make room for it
50 GRAPHICS 0: Rnl Set up nel; display list
60 POKE 20 ,O:REM Set timer
70 X= USR(ADR(RELOCATE$) , CHSET) : RE~I Relocate the Hhole set
80 ? PEEK (20) ;60 : RElit HOH long did it take?
90 END :REM It took 0.03 seconds
20000 DIM RELOCATE$(34) :REM Set it up as a string
20010 FOR I = 1 TO 34 : REM Set up the string
20020 READ A:REM Get a byte
20030 RELOCATE$(I,I) =CHR$(A) :REM Stuff it into the string
20040 NEXT I :REM Repeat until string is done
20050 RETURN :REM All done , go back
20060 DATA 104 ,104,133 ,207 ,104,133 ,206 ,169 , 0,133

Machine Language Subroutines for Use with ATARI BASIC 97

20070 DATA 204,169,224 ,lJJ,205 ,162,4 ,160,0,177
20080 DATA 204,145,206,lJ6,208,249,2JO,205,2JO ,207
20090 DATA 202,208,242 ,96

The subroutine from line 20000 to line 20070 puts each byte of
the machine language routine into its appropriate place in a string
which we have called RELOCATE$. To access this routine, we use
line 70, which passes the parameter CHSET to our machine lan
guage routine. Remember that CHSET, defined in line 30, is the
address at which we would like to locate the character set in RAM.
This program executes almost 500 times faster than the all-BASIC
program described above, again demonstrating the speed of ma
chine language routines.

SUBROUTINE TO TRANSFER ANY AREA OF
MEMORY

With a few minor modifications to the program we just wrote,
we can make it much more versatile. Let's write it in such a way as
to allow the transfer of any area of memory to any other area.
Looking at the program above, we see that only two parts of the
code need to change . The first is the absolute address of FROM,
which is set at 57344, and the second is the number of pages stored
in the X register, which is set at 4. If we could use variables here
instead of constants, our routine would be far more versatile. It's
easy to convert the routine in this way; let's just pass the FROM
address and the number of pages to transfer as parameters from
BASIC. Here is the complete assembly language program for this
subroutine:

0100 ;*******************************
0110 ;set up initial conditions
0120 ;*******************************

0000 01JO * = $600
OOCC 0140 FROM $CC
OOCE 0150 TO $CE

0160 ;*******************************

98 Learning Assembly Language

0170 jinitialize and set up indirect addresses
0180 j*******************************

0600 68 0190 PLA jpull # of parameters off stack
0601 68 0200 PLA jget high byte of source
0602 85CD 0210 STA FROM +1 jstore it in high byte of FROM
0604 68 0220 PLA jget low byte of source
0605 85CC 02]0 STA FROM jstore it in low byte of FROM
0607 68 0240 PLA jget high byte of destination
0608 85CF 0250 STA TO+1 jstore it in high byte of TO
060A 68 0260 PLA jget low byte of destination
060B 85CE 0270 STA TO jstore it in low byte of TO
060D 68 0280 PLA j no high byte exists (= 0)
060E 68 0290 PLA jget low byte - number of pages
060F AA 0]00 TAX j put # of pages in X register

0]10 j*******************************
0]20 jnow let's transfer everything
0]]0 j*******************************

0610 AOOO 0]40 LDY #0 jinitialize counter
0612 B1CC 0]50 LOOP LDA (FROM),Y jget a byte
0614 91CE 0]60 STA (TO),Y jand relocate it
0616 88 0]70 DEY jis page finished?
0617 DOF9 0]80 BNE LOOP jno - keep relocating
0619 E6CD 0]90 INC FROM +1 jyes-high byte
061B E6CF 0400 INC TO +1 jhigh byte-now for next page
061D CA 0410 DEX jhave we done all pages?
061E DOF2 0420 BNE LOOP jno - keep going
0620 60 04]0 RTS jyes, so return to BASIC

We have now set up the routine to obtain first the FROM ad
dress in two bytes from the stack, and then the TO address in the
same way. Finally, we remove from the stack the number of pages
to be transferred . Note that there are only 256 pages of memory in
an ATARI, so there can never be a high byte to the number of pages
parameter. The low byte is pulled from the stack and transferred to
the X register to set up the counter for the number of pages to be
transferred.

With the exception of these few changes, the program is ident i
cal to our program for transferring the character set from ROM to
RAM. In fact, this new routine wi ll accomplish the same goal if we
so des ire . A BASIC program using this new routine to transfer the
character set is given below:

Machine Language Subroutines for Use with Al ARI BASIC 99

10 GOSUB 20000:REM Set up machine l anguage routine
20 ORIG = PEEK(106) : REM Top of RAM
]0 CHSET = (ORIG-4) *256: REM Place for relocated character set
40 POKE 106,ORIG-8:REM Make room for it
50 GRAPHICS O:REM Set up new display list
60 X = USR(ADR(TRANSFER$) , 57]44 ,CHSET,4) : REM Transfer the whole set
70 END
20000 DIM TRANSFER$(]]): REM Set it up as a string
20010 FOR 1=1 TO]]: REM Set up the string
20020 READ A:REM Get a byte
200]0 TRANSFER$(I , I)=CHR$(A):REM Stuff it i nto the string
20040 NEXT I:REM Repeat until string is done
20050 RETURN :REM All done, go back
20060 DATA 104, 104, 1]],205 ,104, 1]],204, 104, 1]],207
20070 DATA 104,1]],206 ,104,104 ,170,160,0,177,204
20080 DATA 145,206,1]6,208,249 , 2]0,205 , 2]0 ,207,202
20090 DATA 208 ,242,96

AN EXERCISE FOR THE READER

Using these techniques, it should be fairly simple to write your
own routine to fill a given number of pages of memory with a char
acter other than zero. To obtain the maximum benefit from this
exercise, don 't look back at the examples in this chapter, but rather
start from scratch, and see how you do.

READING THE JOYSTICK

We are all familiar with the complex code required in BASIC to
read the joysticks. Although there are some sophisticated ways of
speeding up this process in BASIC, the most common approach
used to determine the position of the joystick and change the X and
Y coordinates of a player (for example) is as follows in this subrou
tine for a BASIC program:

10000 IF STICK(O) =15 THEN 10050:REM straight up
10010 IF STICK(O) =10 OR STICK(O) =14 OR STICK(O)=6 THEN
Y=Y-1:REM 11,12 or 1 o'clock position-move player up
10020 IF STICK(O)=9 OR STICK(O) =1] OR STICK(O)=5 THEN Y=Y+1:REM

100 Learning Assembly Language

7,6 or 5 o ' clock position- move player down

100JO IF STICK(O) =10 OR STICK(O) =11 OR STICK(O) = 9 THEN

X= X-1 :REM 10, 9 or 8 o'clock position- move player left

10040 I F STICK(O) = 6 OR STICK(O) = 7 OR STICK(O) = 5 THEN X= Xt1:REM

2,J or 4 o ' clock position- move player right

10050 RETURN:REM no other possibilities

There are several ways of improving the speed of such a routine by
improved programming, as you already know. This routine is in
cluded here for simplicity; it is easy to follow its logic. In any case,
even excellent programming will not make this type of routine the
winner in a speed contest. Let's see if we can speed it up signifi
cantly by using assembly language.

We'll assume for the purpose of this example that the joystick
routine we shall write will be the only way the player can move, and
further, that we will be moving only one player. Since the player can
move in only two dimensions, we need only remember two coordi
nates, the X and Y positions of the player. Because of the way we
will be moving the player, we'll need only 1 byte of storage for the
X position, but we'll need 2 bytes, for an indirect address, for the Y
location . The routine needed for reading the joystick is very
straightforward and is given below:

0100 ; ******************************
0110 ;initialize locations

0120 ; ******************************
01JO * = $600 ; safe place for routine

0140 YLOC = $CC ; indirect addr. for Y

0150 XLOC = $CE i to remembe r X position
0160 STICK = $DJOO ;hardware STICK(O) location

0180 ; ******************************
0190 ;now read the joystick 111

0200 ; ******************************
0210 PLA ;keep the stack neat
0220 LDA STICK ; get joystick value

02JO AND 111 ; i s bit 0 = 1?
0240 BEQ UP ;llO - 11,12 or 1 o'clock

0250 LOA STICK ; get i t again

0260 AND 112 ; is bit 1 = 1?

0270 BEQ DOWN ;no - 5,6 or 7 o'clock

Machine Language Subroutines for Use with ATARI BASIC 101

0280 SIDE LDA STICK jget it again
0290 AND #4 jis bit 3 = 1?
0300 BEQ LEFT jno - 8,9 or 10 o'clock
0310 LDA STICK jget it again
0320 AND #8 jis bit 4 = 1?
0330 BEQ RIGHT jno - 2,3 or 4 o'clock
0340 RTS jjoystick straight up

As you can be see, after the mandatory PLA to keep BASIC
happy, reading the joystick is just a matter of loading the accumula
tor from the hardware location STICK ($DOOO) and then ANDing
it with 1, 2, 4, or 8. The ATARI joysticks set one or more of the
lower four bits in location $DOOO to zero if the stick is pressed in
that direction: bit zero for up, bit 1 for down, bit 2 for left, and bit
3 for right. If none of the 4 bits is set to zero, the joystick is in the
straight-up position. Note that the joystick may not be simultane
ously pressed right and left or up and down, but it may be right and
down simultaneously, or left and up.

This program won't work, as you've probably already noticed,
since there are 4 undefined labels, UP, DOWN, LEFT, and RIGHT.
We will add these routines shortly to produce a machine language
subroutine which will not only read the joystick, but also move a
player around the screen in response to the joystick direction .

First, note that each of the references to a label for the direc
tion of the joystick uses the BEQ instruction. This says, in effect,
that if the result of ANDing a bit forced to 1 with the value found
in STICK is a zero, the joystick is pressed in that direction. Think
about that. We know that for the result to be zero, in one or both of
the numbers each bit must be equal to zero. In the numbers 1, 2, 4,
and 8, every bit but one is equal to zero; so in the number stored in
STICK, that particular bit must be equal to zero if the result of the
AND operation equals zero. For a pictorial example, let's look at
the AND operation with 4, with the joystick pressed in different
directions:

Joystick STICK AND with 76543210

right 248
4

11110111
00000100

Result = 00000100

102 Learning Assembly Language

which is not equal to zero. Since the stick was pressed right and
ANDing with 4 tests for pressing the joystick left, this is a correct
result. Now, another example:

Joystick STICK AND with

left 244
4

76543210

11111011
00000100

Result = 00000000

which is equal to zero, showing that the test works correctly. It
should be emphasized that any of the three left positions of the
joystick would have worked, because they all have a zero as bit 2,
so all will AND with 4 to produce a result of zero. In fact, the three
joystick positions to the left have the following bit patterns:

8 o'clock 11111001
9 o'clock 11111011

10 o'clock 11111010

It's worth mentioning here that the upper 4 bits of this location
reflect the position of a joystick plugged into the second port on
your ATARI, in exactly the same way as the lower 4 bits reflect the
position of joystick o.

There are, of course, several other ways of writing the above
code. Perhaps one which has occurred to you is to use a subroutine
for each direction, as in this excerpt:

0210 PLA
0220 LDA STICK
02]0 AND #1.
0240 BNE D1
0250 JSR UP
0260 D1 LDA STICK
0270 AND #2
0280 BNE D2
0290 JSR DOWN

This type of construction would. work fine but for one problem: the
code is fixed . The locations UP, DOWN, LEFT, and RIGHT have
to be within the program, and if we use JSRs to access these rou-

Machine Language Subroutines for Use with ATARI BASIC 103

tines, we will end up with nonrelocatable code. If that creates no
problem for you, then write the routine using JSRs. However, since
one of our goals in this book is to make as many of the routines as
we can relocatable, we will use the demonstrated construction.

How do we move players around the screen using player-missile
graphics? Horizontal movement is easy. All we have to do is POKE
the desired horizontal position into the horizontal position register
for that particular player, who will appear there instantly. In the
case of the first player, player zero, the horizontal position register
is located at $DOOO. We'll call it HPOSPO, and we'll need to add
line 170 to the above code:

0170 HPOSPO = $DOOO

which will enable us to refer to this location using the label name.
What about vertical motion? To move a player vertically, we

actually have to move each byte of the player to a new location,
which is why we needed to set up the indirect address for the Y
position. We'll use a technique we've already we used to move the
character set. But in this case we can get by with only one indirect
address, since we're moving the player only 1 byte away from its
current address . We'll assume that the player is 8 bytes high and
appears as a hollow square. If we want to move the player up the
screen 1 byte, we'll need to begin by moving the top byte first, and
so on down the player. If we try to move the lower byte first, it will
overwrite the next higher byte and we'll lose that higher byte . Pic
torally, it will look like:

before move after move

.xxxxxxxx ..
xxxxxxxxx x ..
x xx x ..
x xx x ..
x x x x ..

x xx x ..
x xx x . .
x x xxxxxxxx ..
xxxxxxxx .. .

104 Learning Assembly Language

Conversely, to move the player down the screen 1 byte, we'll need
to begin by moving the bottom byte first, and we'll work our way
up the player.

There's one final problem. In the picture above, the bottom of
the player would really be 2 bytes high after being moved, since
although we have placed a copy of the bottom byte in the correct
position 1 byte higher, we have not moved anything into the space
originally occupied by this bottom byte. If we don't correct for this
problem, the new figure will look like this:

xxxxxxxx

x x
x • x
x x
x •....• x

x ..•..• x
x • • x

xxxxxxxx

xxxxxxxx

In fact, if we don't correct for this, as we move the figure up the
screen, we'll leave a tail dangling behind the figure, a clever effect,
but not what we intended at all!

Fortunately, there is an easy way to solve this problem; just
move 1 byte more than is in the player. Note that since the player is
8 bytes high, if we move 9 bytes, we'll be moving a zero byte into
the space formerly occupied by the bottom of the player; so the
new player will still have a single line at the bottom, instead of the
double line pictured above. Obviously, when we are moving the
player down the screen, we can also move 9 bytes instead of 8,
solving the problem there, as well. Now that we know how to move
the players both horizontally and vertically, let's look at the whole
routine, and then we'll describe it in detail.

0100 i ******************************
0110 iinitialize locations

0120 i ******************************

Machine Language Subroutines for Use with ATARI BASIC 105

0000
OOCC
OOCE
D]OO
DOOO

01]0 *= $600 jsafe place for routine
0140 YLOC $CC jindirect addr. for Y
0150 XLOC $CE jto remember X position
0160 STICK $D]OO jhardware STICK(O) location
0170 HPOSPO $DOOO jhorizontal pos.

0180 j ******************************
0190 jnow read the joystick #1
0200 ******************************

PO

0600 68 0210 PLA jkeep the stack neat
0601 ADOOD] 0220 LDA STICK jget joystick value
0604 2901 02]0 AND #1 jis bit 0 = 1?
0606 F016 0240 BEQ UP jno - 11,12 or 1 o'clock
0608 ADOOD] 0250
060B 2902 0260
060D F020 0270
060F ADOOD] 0280 SIDE
0612 2904 0290
0614 F02E 0300
0616 ADOOD] 0310
0619 2908 0320
0613 F02F 03]0
061D 60 0340

LDA
AND

BEQ
LDA
AND

BEQ
LDA
AND

BEQ
RTS

STICK
112
DOWN
STICK
#4
LEFT
STICK
#8
RIGHT

jget it again
j is bit 1 = 1?
jno - 5,6 or 7 o'clock
jget it again
jis bit] = 1?
jno - 8,9 or 10 o'clock
j get it again
j is bit 4 = 1?
jno - 2,] or 4 o'clock
jjoystick straight up

0350 ******************************
0360 jnow move player appropriately
0370 jstarting with upward movement
0380 j ******************************

061E A001 0390 UP LDY #1 jsetup for moving byte
0620 C6CC 0400 DEC HOC jnow 1 less than YLOC
0622 B1CC 0410 UP1 LDA (noc),Y j get 1st byte

1

0624 88 0420 DEY jto move it up one position
0625 91CC
0627 C8
0628 C8
0629 COOA
062B 90F5
062D BOEO

062F A007
06]1 B1CC
06]] C8

04]0 STA (noc),Y jmove it
0440 INY jnow original value
0450 INY inow set for next byte
0460 CPY #10 jare we done?
0470 BCC UP1 jno

0480 BCS SIDE jforced branch!!!
0490 ******************************
0500 jnow move player down
0510 j ******************************
0520 DOWN LDY #7 jmove top byte first
05]0 DOWN1 LDA (YLOC),y iget top byte
0540 INY i to move it down screen

106 Learning Assembly Language

0634 91CC 0550 STA (noc) , Y ;move it
0636 88 0560 OEY ;now back to starting value
0637 88 0570 OEY ;set for next lower byte
0638 10F7 0580 BPL OOWNl ; if 1) = 0 keep go ing
063A C8 0590 INY ;set to zero
063B A900 0600 LDA #0 i to clear top byte
0630 91CC 0610 STA (nOC), Y ;clear it
063F E6CC 0620 INC YLOC ;now is 1 higher
0641 18 0630 CLC ;setup for forced branch
0642 90CB 0640 BCC SIDE ;forced branch again

0650 ******************************
0660 ;now side- to-side left first

0670 ; ******************************
0644 C6CE 0680 LEFT OEC XLOC ito move it left
0646 A5CE 0690 LDA XLOC ; get it
0648 800000 0700 STA HPOSPO ;move it
064B 60 0710 RTS ; back to BASIC - we I r e done

0720 ******************************
0730 ;now r i ght movement

0740 ; ******************************
064c E6CE 0750 RIGHT INC XLOC ito move it r i ght
064E A5CE 0760 LOA XLOC ;get i t
0650 800000 0770 STA HPOSPO ;move it
0653 60 0780 RTS ;back to BASIC - we I r e done

Let's look at the construction of the program as a whole - the
program flow. We first test to see if the joystick is pressed up. If it
is up, we branch to UP. If not, we test for down, and if it 's down,
we branch to DOWN. In either of these cases, after moving the
player, we need to go back to test for side-to-side movement, since
it is possible to move both horizontally and vertically simultane
ously. This branch back to test for horizontal movement is accom
plished by forced branches in lines 480 and 640. In line 480, the
carry bit must be set, since if it were not, line 470 would have bran
ched away from line 480. In line 640, the forced branch is even
more obvious, since in line 470, we clear the carry bit and then
branch if the carry bit is clear, as we know it must be! Why not just
jump back to SIDE? Again, because we want the routine to be
relocatable, and if we use any JMP commands, it will not be. This
technique of the forced branch is common in relocatable code, and
is fairly easy to accomplish, now that you know how.

Machine Language Subroutines for Use with ATARI BASIC 107

Once we've tested for both horizontal and vertical movement,
we're done and can return to BASIC. Note that this routine con
tains three RTS instructions. There's no rule about a routine having
only one RTS; whatever works, do! In this case, we can return if
the stick is vertical (line 340) or if we've moved the player left (line
710) or right (line 780), since in any of these three cases, we've
exhausted the possibilities, testing for every combination of move
ments.

The specific code for moving right or left reads the current X
coordinate from its storage location , incrementing or decrementing
it as appropriate, and stores it in both its storage location again and
the horizontal position register for player zero, HPOSPO.

Now we' ll discuss vertical motion. Since moving the player up
the screen results in a Y position 1 unit less than its initial value (the
lower the Y coordinate, the higher the player appears on the
screen), we will need to eventually decrement the YLOC value . We
can take advantage of this decrementing if we do it near the begin
ning of the routine. When YLOC is decremented, it points to the
destination of the top byte of the player. Setting Y to 1 allows the
command labeled UPI to point initially to the top byte of the
player, in its original location . We then decrement Y, and the next
STA instruction puts that byte in its new, higher location on the
screen. We must then increment Y twice, once for the decrement we
went through and once to get the next byte. We're going to move 9
bytes, and we started with Y = 1, so when Y = 10, we're done. If we
are not done, we'll go back up to get the next byte, and if we are
done, we'll take the forced branch back up to check for horizontal
motion. The technique here is to use indirect addressing for both
the LDA and the STA, but changing the offset (Y register) by 1
between the LDA and the STA. That allows us to load from one
location and store into another, without a lot of fuss.

We'll use a slighly different algorithm to move a player down
the screen. As mentioned above, we begin with the bottom byte, so
we set Y equal to 7 (the bytes are 0 to 7 in this case). We LDA
indirect, then increment the Y register, and then STA indirect, like
we did above, but in this case, we store into a higher location than
we load from. We then decrement twice, once for the increment and
once to get the next byte, and if Y is still greater than or equal to
zero, we keep going . If not, we'll store a zero into the original

108 Learning Assembly Language

lowest byte, by incrementing Y to set it back to zero (it had reached
- 1, or $FF in hexidecimal) and storing a zero into YLOC, indirect.
Then we increment YLOC, since we've moved the player down 1
position on the screen, and force a branch back to check for hori
zontal movement. Note that when we moved up the screen, we ac
tually moved 9 bytes, but when we moved down the screen, we
moved 8 bytes, and then stuffed a zero to eliminate the tail of the
player. We used two methods in order to show that either works.

By the way, one concern you may have about this routine is
that it reads the joystick four separate times. "What happens," you
may ask, "if the position of the joystick changes between reads?"
If we calculate the time over which all four reads of the joystick
occur, we can see that all reading takes place in less than 25 micro
seconds. Little chance of a change in that time span!

Now that we have our machine language routine, all we need to
do is incorporate it into a BASIC program which can use it appro
priately. Such a program is given below:

10 TOP = PEEK (106) -8: REM Save 8 pages
20 POKE 106,TOP:REM Make room for PMG
30 GRAPHICS O:REM Reset display list
40 PMBASE = TOP*256: REM Set up PM area
50 POKE 54279,TOP :REM Tell ATARI where PMBASE is
60 INITX= 120:REM Initial X position
70 INITY = 50: REM Initial Y position
80 POKE 559,46:REM Double line resolution
90 POKE 53277,3:REM Enable PM
100 GOSUB 20000 :REM Set up our routine
110 FOR I=PMBASE+512 TO PMBASE+640:REM PM Memory
120 POKE I,O:REM Clear it out
130 NEXT I:REM Could use ERASE$ here!
140 RESTORE 25000:REM Player data is stored here
150 Q = PMBASE+ 512tINITY: REM Where player will be in memory
160 FOR I = Q TO Q+ 7: REM Player is 8 bytes high
170 READ A:REM Get player data
180 POKE I,A:REM Put it in proper place
190 NEXT I:REM And so on
200 POKE 53248,INITX:REM Setup X position
210 YHI = INT(Q/256) : REM High byte of initial Y position

Machine Language Subroutines for Use with ATARI BASIC 109

220 YLO= (PMBASE+512+INITY)-YHI*256:REM Low byte
2]0 POKE 204,YLO:REM Tell ML routine where Y is
240 POKE 205,YHI:REM Tell ML routine where Y is
250 POKE 206,INITX :REM Tell ML routine where X is
260 POKE 704,68:REM Make player red
270 Q=USR(ADR(JOYSTICK$)):REM Let's try it!
280 GOTO 270:REM Just loop
20000 DIM JOYSTICK$(87):REM Where to put routine
20010 FOR 1=1 TO 87: REM Length of routine
20020 READ A:REM Get a byte
200]0 JOYSTICK$(I,I) =CHR$(A) : REM Put it into string
20040 NEXT I:RETURN :REM All done
20050 DATA 104,17],0,211,41,1,240,22,17],0
20060 DATA 211,41,2,240,]2,17],0,211,41,4
20070 DATA 240,46,17],0,211,41,8,240,47,96
20080 DATA 160,1,198,204,177,204,1]6,145,204,200
20090 DATA 200,192,10,144,245,176,224,160,7,177
20100 DATA 204,200,145,204,136,136,16,247,200,169
20110 DATA 0,145,204,230,204,24,144,203,198,206
20120 DATA 165,206,141, 0,208 ,96,230,206,165,206
20130 DATA 141,0,208,96,0,208,96
25000 DATA 255,129,129,129,129,129,129,255

Line 100, which sets up the subroutine we just wrote, prepares
us to call the subroutine in line 270. Note that line 280 just loops
back to this subroutine call, so all that this program will do is move
the red, hollow square player around the screen. The program
could be expanded considerably by adding code from line 280 on,
as long as line 270 remains in the main loop of the game. Each time
line 270 is accessed, the joystick is read and the player is moved
appropriately. Try it! Notice how smooth and even the motion of
the player is. Then try a similar program all in BASIC, and watch
how the vertical movement turns the player into an inch-worm,
slowly crawling up or down the screen.

The bulk of this program sets up player-missile graphics in BA
SIC. Since virtually all parameters, from the color of the player to
its shape and size, are controlled from this BASIC program and not
from the machine language subroutine, this routine should merge
nicely with almost any program requiring joystick movement of

110 Learning Assembly Language

player zero. With simple modifications that you can now try, it will
handle other players, other joysticks, or even multiple players and
joysticks. You can even try adding missiles, perhaps when the joy
stick button (monitored by location $DOlO) is pressed! The only
way to really learn assembly language programming is through pro
gramming, and what better time to start than now?

-

-

THE ANTIC CHIP

In one very important regard, your ATARI computer is unique
when compared with most other availab le microcomputers. Most
microcomputers contain a single microprocessor, the 6502 or Z-80
or one of the many others available. Your ATARI, however, has
four microprocessors, three of which have been specifically de
signed by ATARI and are unique to their computers . In this chap
ter, we will discuss one of these, called ANTIC.

The ANTIC chip in your ATARI computer is responsible for
the video display which is such an important feature of ATARI
computers. In most other microcomputers, the microprocessor is
responsible not only for calculations and program flow, but also
for maintaining the video display. ATARI designed the ANTIC chip
to relieve the 6502 of this burden, allowing ANTIC to handle the
video display and the 6502 to handle the program which is running.

DISPLAY MEMORY

A specific area of RAM is set aside in your ATARI to house the
information which your program is to display on the TV or moni-

113

114 Applications

tor screen. We will call this area of RAM the display memory. As
with most parts of RAM used for specific purposes in the ATARI
computers, display memory has a specific pointer, which can al
ways tell us where display memory is, even if we move it around.
Since we may have as much as 48K RAM in a normal ATARI, we
need 2 bytes to hold the address of display memory; they are found
in locations 88 and 89. In general, whenever you use a GRAPHICS
X command, the operating system sets up di splay memory for
graphics mode X just below the top of memory. Since the amount
of RAM required for di sp lay memory can vary greatly, depending
on which graphics mode we have chosen, it is very important to be
able to know where in RAM the di splay memory sta rts; and these
two memory locations can tell us. To determine the beginning of
display memory, one line of BASIC is all that's req uired:

10 BECDM= PEEK(88) +256* PEEK(89)

This line converts the high and low bytes of the pointer to the be
ginning of display memory into a single add ress. Let's see how we
can use thi s information.

We know that if we iss ue a GRAPHICS 0 command in BASIC,
the sc reen will clear. What actually happens is that the operating
system looks in location 106, which we ' ve used before, to deter
mine vvhere the top of RAM memory is. It then determines how
large di sp lay memory must be for that particular graph ics mode
and automatically clears that space in memo ry, so th at when the
graphics mode is established, the screen will be clear, and not filled
with random ga rbage. F in a ll y, the display list, which we will di scuss
shortly, is set up, and cont rol is then passed back to BASIC.

Once we have a GRAPHICS 0 sc reen set up, we know that we
can get the let ter A to appea r in the upper left-ha nd corner of the
screen by typing

PRINT "A"

There is another way to accomplish thi s same end, however.
Now that we know where display memory is located in RAM, we

The Display List and Using Interrupts 115

can simply POKE the correct value for the letter A into the appro
priate part of display memory, and the letter wi ll appear on the
screen, just like it does when we PRINT it to the screen.

POKE BEGDM +2,JJ

The + 2 in this command allows fo r the left margin of 2 which is
the default left margin on ATARI computers . The 33 stands fo r the
character A in display code. Note that yo ur ATAR I actuall y keeps
three separate sets of codes for the meaning of the 256 possible
values of the ASCII codes . T he first is ATASC Il, or ATARI ASCII
code, which is used in BASIC; fo r example:

PRINT CHR$(65)

which will print the letter A to the screen. T he second set of codes is
the display set, in which the letter A corresponds to a code of 33, as
we saw above. This is the code set used when storing information
directly into display memory. The third set is called the internal
character set; it is used when yo ur ATARI reads the keys of your
keyboard, for instance . The most common use of the internal char
acter set is when you would like to know what key was last pressed.
Location 764 is a I-byte buffer which contains the internal code of
the last key pressed. If location 764 contains a 255, no key has been
pressed. To wait for a key to be pressed, we can write th is :

100 POKE 764,255
110 IF PEEK(764) =255 THEN 110

If we want to know which key was pressed, we have to refer to the
internal character set. For instance, if PEEK(764) = 127, then the
capital letter A was the last key pressed.

The three character sets used in your ATARI are listed for ref
erence in Appendix 2. We could do all PRINTing to the screen by
referring to this list and POKEing the appropriate display codes
into the proper place in display memory, as we did with the letter A
above.

116 Applications

Let's try an experiment. We'll POKE the same code, 33, into
display memory, but instead of using a GRAPHICS 0 screen, we'll
try other graphics modes.

10 FOR MODE = 0 TO 8 : REM The graphic modes

20 GRAPHICS MODE: REM Set the mode = MODE
30 BEGDM = PEEK(88) +256*PEEK(89) : REM Where is display memory?

40 POKE BEGDM+2,33: REM POKE display character A there
50 FOR DELAY = 1 TO 700 :NEXT DELAY:REM Gi ve a chance to see display

60 NEXT MODE:REM Now for the next mode

When we run this program, we see something very interesting hap
pen. First of all, in GRAPHICS 0, the expected letter A appears in
the upper left-hand corner of the screen. In GRAPHICS 1 and 2,
moderate- and large-sized yellow letter A:s appear in that position,
respectively. However, in the other graphics modes, no letter A ap
pears at all, and we just see dots of various colors!

THE DISPLAY LIST

The reason for these differences between the graphics modes
lies in the way display memory is interpreted by ANTIC. If ANTIC
just took whatever was in display memory and put it on the screen,
it wouldn't be saving the 6502 very much work at all. The 6502
would still have to figure out what the display should look like and
then arrange display memory appropriately, all of which would
take a great deal of time. Therefore, in the ATARI, the ANTIC
chip does this work for the 6502. All the 6502 has to do is set up a
short program which the ANTIC chip can understand, telling
ANTIC how the 6502 wants the display memory interpreted, and
ANTIC does the rest. This program is called the display list. To
fully understand the capabi lities this display list gives us as pro
grammers , we'll need to learn a new programming language. For
tunately, there aren't many instructions in this language, so it's
pretty easy to learn.

The Display Li st a nd Using Interrupts 117

We'll list the instructions here, in both decimal and hexadeci
mal notation for versatility, and then describe each instruction in
detail.

Hex. Decimal Instruction

0 0 Leave 1 blank display line
10 16 Leave 2 blank display lines
20 32 Leave 3 blank display lines
30 48 Leave 4 blank display lines
40 64 Leave 5 blank display lines
50 80 Leave 6 blank display lines
60 96 Leave 7 blank display lines
70 112 Leave 8 blank display lines

2 2 Display as GRAPHICS 0 text mode
3 3 Display as special text mode
4 4 Display as 4-color text mode
5 5 Display as large 4-color text mode
6 6 Display as GRAPHICS 1 text mode
7 7 Display as GRAPHICS 2 text mode
8 8 Display as GRAPHICS 3 4-color graphic mode
9 9 Display as GRAPHICS 4 2-color graphic mode
A 10 Display as GRAPHICS 54-color graphic mode
B 11 Display as GRAPHICS 6 2-color graphic mode
C 12 Display as special 160x20, 2-color graphic mode
D 13 Display as GRAPHICS 7 4-color graphic mode
E 14 Display as special 160x40, 4-color graphic mode
F 15 Display as GRAPHICS 8,1 1/2 color graphic

mode
1 Jump to location specified by next two bytes

41 65 Jump to location specified by next two bytes and
wait for vertical blank

Four more instructions can be included by setting 1 of 4 bits in the
instruction code to a 1. These are:

Bit Instruction

4 Enable fine vertical scrolling
5 Enable fine horizontal scrolling

118 Applications

6 Load memory scan from next two bytes
7 Set a display list interrupt for the next line

Whew! Seems like a lot, all at once, but if we take it one step at a
time, it will be fairly easy. We'll begin by looking at a simple display
li st. This can be done fairly easily, since, like display memory, the
display list has a pointer, found in memory locations 560 and 561,
which can always tell us where the display list is located. That
makes it easy to write a simple BASIC program to print the display
li st to the screen so we can have a look at it.

10 GRAPHICS O:REM Simple display list

20 DL=PEEK(560) t 256*PEEK(561) :REM Address of display list

30 FOR I = DL TO DL t 31: REM Length of display list

40 PRINT PEEK (I) ; " " ;: RHI Skip one space between bytes

50 NEXT I : REM Finished printing it

If we run this program, our screen should show something like the
fo llowing:

112 112 112 66 64 156 2

65 32 156

If you have less than 48K of memory in your computer, the last 2
bytes, and the fifth and sixth bytes may differ from those, as we' ll
see. Let's dissect this display list one byte at a time, remembering
that this display list is a computer program and that the computer
in t~is case is ANTIC. Looking at our list of instructions above, we
see that 112 means to leave 8 blank displ"ay lines. Since there are 3
112's, that would seem to mean that the beginning of this program
is telling ANTIC to leave 24 blank display lines on the screen . Can
this be right?

Most televisions are designed to overscan the visible screen.
You may have noticed that on some sets, the o utput from your
computer seems to start closer to the top or closer to the left or
right side of the screen than on others. To allow for this difference
between TV sets, most display li sts begin with these 24 blank dis
play lines. Of course, we need to remember that in GRAPH ICS 0,

The Display List and Using Interrupts 119

each character is 8 bytes high. Therefore, 24 blank display lines is
exactly the amount of space that three lines of GRAPHIC 0 text
would occupy. Similarly, the normal screen in GRAPHICS 0 con
tains 192 display lines (8 times 24). You are free to add another line
or two of text to customize a display list, but although it may work
fine on your own TV or monitor, it may not work as well on some
one else's set.

The next 3 bytes of the display list were 66,64, and 156. When
we look at the set of possible instructions for ANTIC given above,
we don't see 66 listed at all. This 66 is a sum of 64 and 2. The 64 is
derived from setting bit 6 of the ANTIC instruction 2. This byte
tells ANTIC that we want a line of GRAPHICS 0 displayed here,
and, since bit 6 is set, that we also want to load memory scan at this
point. Load memory scan means that the next 2 bytes of the display
list are a pointer to where ANTIC can find the display memory for
that line, and all succeeding lines, until a new load memory scan
instruction is encountered . The 2 bytes 64 and 156 are in typical
LSB, MSB 6502 order, and to translate them to an address, we add
the LSB to 256 times the MSB. Since 64 + 256 * 156 = 40000, we
know, as does ANTIC now, that display memory can be found at
40000 and above. The next 23 bytes of the display list are all 2's,
and simply tell ANTIC that we want all GRAPHICS 0 lines, con
sisting of 40 bytes of text per line, each byte 8 display lines high.
With the line specified by the load memory scan instruction, that
totals 24 lines of GRAPHICS 0, or a normal GRAPHICS 0 screen.
The next instruction of the display list is 65, which translates to
jump and wait for the vertical blank.

THE VERTICAL BLANK

To understand the vertical blank instruction, we must first dis
cuss the method by which the picture on your TV screen is pro
duced . The inner front surface of the picture tube is coated with
phosphors, chemicals which emit light when struck by an electron
beam. At the rear of the picture tube is an electron gun, which
shoots electrons toward the front surface to strike the phosphor
coated surface. The horizontal and vertical position at which this

120 Applications

beam of electrons hits the phosphors is controlled by deflecting the
beam in a precise way. From the point of view of the person watch
ing the TV, the beam begins in the upper left-hand corner of the
screen and traverses a single line across the screen until it reaches
the upper right-hand corner. It then jumps back to begin line 2, and
so on. The intensity of the beam varies as it scans, producing
darker or lighter spots and creating a picture . Devices of this type
are called raster-scan devices, and are by far the most common
system for producing electronic pictures. The other major type of
device is the vector device, in which the beam of electrons draws a
line by beginning at the point of origin of the line, and scanning in
any direction the line takes until its end is reached. Raster-scan de
vices draw a line by drawing the whole screen, on which the line
happens to be displayed; vector devices draw only the line.

When a raster-scan device has scanned the entire screen with
the electron beam, the position of the beam is returned to the upper
left-hand corner, and the device then waits for a synchronization
signal, telling it to begin the next screen, or frame . In fact, we can
see this pause by adjusting the vertical hold control on a TV set
until the picture begins to roll. The wide black horizontal bar which
appears to move vertically across the screen is created by the elec
tron beam waiting for the vertical synchronization signal. This in
terval, during which the electron beam is not scanning across the
screen, is called the vertical blank .'

Your ATARI computer produces 262 scan lines for each picture
produced on the screen, and the screen is completely redrawn 60
times every second. This seems very fast, but in relation to the
speed of the computer, the drawing of the screen is actually pro
ceeding at a snail's pace. The entire drawing of one screen of a
display takes 16,684 microseconds, and the vertical blank interval
is about 1400 microseconds. If we remember that 1 machine cycle
of the computer is less than 1 microsecond, the relative speeds of
the computer and the TV become obvious.

The instruction to jump and wait for the vertical blank, which
we encountered above, is actually a 3-byte instruction. It tells
ANTIC that its next instruction can be found at the place in mem
ory pointed to by the next 2 bytes, in this case, 32 and 156. This is,
in fact, the address of the display list - the same address, found in

The Display List and Using Interrupts 121

memory locations 560 and 561, which we discussed above. The in
struction to jump and wait for the vertica l blank furthermore tells
ANTIC not to begin executing the program found at that address
until the vertical blank interval is over. This wait accomplishes two
things. First, it synchronizes the computer and the TV, so the pic
ture is stable. Second, it gives the computer about 1400 microse
conds 60 times per second to use while nothing else is happening.
The ATARI uses this time for internal housekeeping, such as updat
ing all of the internal timers and a lot more. We'll discuss some uses
for this time later in this chapter.

PICTURE RESOLUTION

One final note about the TV picture produced: although 262
scan lines are produced per frame, only 192 of them are visible on
most sets, because of overscan, so the highest vertical resolution of
the ATARI is 192 pixels (picture elements) in the vertical dimen
sion . In the horizontal dimension, the highest usable resolution is
160 pixels, although GRAPHICS 8 screens actually use 320 pixels
of resolution in the horizontal direction. However, in GRAPHICS
8, we are all familiar with the color artifacting which results. If we
draw a diagonal line on the screen in GRAPHICS 8, the line ap
pears to be of different colors, depending on its location on the
screen. To produce a true color on the screen, two adjacent hori
zontal pixels should be turned on, or else only one of the primary
colors used for broadcast TV may appear when we intended a color
such as white to appear. When color rendition is important, our
horizontal resolution is limited to 160 pixels.

DIRECT MEMORY ACCESS

Now we are beginning to understand how the picture is pro
duced by an ATARI computer. In summary, a portion of memory is
used to store the information which is to be displayed (display
memory), and this is interpreted by ANTIC using the program
called the display list. One further note about this process: ANTIC
and the 6502 actually share the area of RAM called the display

122 Applications

memory. The 6502 produces and changes the information stored
there, and ANTIC reads it, interprets it, and puts it on the screen.
It should be apparent that both microprocessors cannot simultane
ously access the same memory. In fact, when the 6502 needs it,
ANTIC can't access it , and when ANTIC is reading display mem
ory, the 6502 is turned off. ANTIC accesses display memory by a
process called Direct Memory Access, or DMA. In doing so,
ANTIC actually steals time from the 6502, and during this time no
processing is done in the 6502. When ANTIC is finished reading
display memory, the 6502 begins processing again. This process of
DMA actually slows program execution somewhat; a BASIC pro
gram may be speeded up by 30 percent or so by disabling DMA. To
disable DMA from BASIC, all that is needed is to

POKE 559 ,0

To reenable DMA,

POKE 559,]4

One serious drawback offsets the increase in speed obtained: your
TV screen will turn blank and remain off until DMA is reenabled.
However, anything PRINTed to the screen during the time DMA is
disabled will appear when DMA is reenabled .

Now that we know how the TV picture is produced, we can
begin to modify it for our own purposes. Many articles have ap
peared describing how to create custom display lists, such as those
combining several different text modes and perhaps even several
lines of graphics as well. The remainder of this chapter will be de
voted to programs which cannot be written in BASIC, but which
can be accessed from BASIC using machine language subroutines;
they will perform some rather interesting tasks for us.

INTERRUPT PROCESSING
Used in the context of this book, an interrupt is a message

telling the 6502 to stop whatever was about to happen in your

The Display List and Using Interrupts 123

ATARI and instead do something else defined by the programmer.
When that task is finished, the 6502 may then continue with what
ever it had planned prior to the interrupt. Two types of interrupts
are normally used , both of which relate to the TV picture - display
list interrupts and vertical blank interrupts. Neither of these can be
used without machine language subroutines, since languages such
as BASIC are far too slow for these purposes.

DISPLAY LIST INTERRUPTS
First we'll cover display list interrupts. When we discussed the

display list , we noted that if bit 7, the most significant bit, of any
display list instruction is set (equal to 1), a display list interrupt is
enabled for the next scan line of the TV. What does this mean?

On page 2 of RAM, in locations $200 and $201 (decimal 512
and 513), is the display list interrupt vector. A vector, as we have
discussed before, is like a signpost, pointing somewhere. Normally,
location $200 contains $B3 and location $201 contains $E7, so this
signpost points to $E7B3. This location contains the byte $40,
which is the machine language code for RTI, Return from Inter
rupt. Another way of saying this is that the display list interrupt
vector normally points to an end to an interrupt routine. This is to
prevent you from setting a display list interrupt and having the
computer go off to some random address and try to execute the
code found there.

Timing considerations are important in the use of display list
interrupts. A normal display list interrupt consists of three parts.
Part 1 occurs during the time it takes the beam of electrons to finish
scanning the line which has bit 7 set. Part 2 occurs between the time
that the beam begins scanning the line on which the interrupt takes
effect and the time that the beam enters the visible portion of the
line. Part 3 begins when the beam enters the visible screen and con
cludes at the end of the display list interrupt routine.

The electron beam takes 114 machine cycles to scan each hori
zontal line. Although bit 7 is set at the beginning of the line, the
6502 is not informed about the interrupt until cycle 36. It is there
fore apparent that long machine language routines cannot be im-

124 Applications

plemented using display list interrupts; there is just not enough time
for them .

A SIMPLE EXAMPLE

Display list interrupts are commonly used to change the back
ground color of the screen in midscreen. Let's write such a routine,
and then implement it. Since we will be interrupting the 6502 while
it's executing instructions, one thing we must be sure of is that if we
plan to use either register or the accumulator, we need to save their
initial values and restore those values before returning from the
interrupt. Let's look at the program and then discuss it :

0100 ; ******************************
0110 ;setup of simple OL1 routine
0120 ; ******************************

0000 0130 * = $600 ; Safe place for routine
040A 0140 WSYNC $040A
0018 0150 COLPF2 = $0018 ;Background color

0160 ; ******************************
0170 ;now for the OL1 routine
0180 ******************************

0600 48 0190 PHA ;Save value in accumulator
0601 A942 0200
0603 800A04 0210
0606 801800 0220

LDA #$42 ;For a dark red color

0609 68
060A 40

STA \·ISYNC ;See discussion
STA COLPF2 ;Put new color

0230 ******************************
0240 ;let ' s restore the accumulator
0250 ******************************

;Restore it

in

0260
0270

PLA
RTI ;And we're finished

The first thing we should notice about this routine is that it
doesn't begin with a PLA instruction . In fact, the only PLA in
struction in the program is to restore from the stack the original
value which was in the accumulator; this value was placed on the
stack by line 190 for safekeeping during the execution of this rou
tine. Yet this routine is meant to interact with BASIC, and we know
that any USR ca!l from BASIC needs the PLA instruction to re
move the number of parameters from the stack.

The Display List and Using Interrupts 125

This apparent error is not going to get us in trouble, since this
routine is not meant to be called by a USR call, but rather is ac
cessed directly by the interrupt routine we will set up in our BASIC
program shortly. Interrupts need no PLA instruction, since they
pass no information to the machine language routine, and there
fore the stack remains tidy.

Let's go through this routine in detail. We first load the accu
mulator with the hexadecimal number $42, which specifies a dark
red color in the ATARI color selection system. This number arises
from the sum of 16 times the color, added to the luminance. Since
the 4 in $42 is 4 sixteens and the 2 is 2 ones, this represents a color
of 4 with a luminance of 2. We store this number in the hardware
register for the background color used in GRAPHICS 0, found at
address $DOI8, and called COLPF2 in the ATARI equates system.
It is important to understand why we use the hardware register and
not the normal color register, which is found at decimal address
710.

If we store a number (such as $42) representing a color into the
normal color register at location 710, the screen will turn red and
remain red until we change the number stored in that location.
However, this is not what we intended to do with this routine. We
wanted only the bottom portion of the screen to turn red while the
top portion remains its normal blue color. We need to know that
the hardware register, $DOI8, is updated from its shadow register,
710, 60 times per second. During each vertical blank interval, your
ATARI reads the value stored in location 710 and places this value
in the hardware register, $DOI8. Therefore, 60 times per second,
the screen is told to turn blue, since the number stored in 710,
which is 148, tells the computer a blue color is desired. Now look at
what our routine is doing.

Sixty times per second, between drawing frames of your TV
picture, your ATARI is told that the screen background color
should be blue . Our routine tells the same hardware register that
after a number of lines of the next frame are displayed, the back
ground color should now be red, so it draws the remaining scan
lines of that frame with a red background . Then look what happens
when that frame is completed and the next vertical blank interval
begins. Your ATARI takes 148 and stuffs it into the hardware regis
ter, turning the top of the next frame blue again, and our routine

126 Applications

turns the bottom of that frame red again, and so on. The net result
is that the top of the picture stays blue, and the bottom stays red. If
we had used location 710 in line 220 instead of $0018, the whole
screen would have remained red.

Between the loading of the accumulator with the color value
desired and the storing of this value into the hardware color regis
ter, we see line 210, referring to a WSYNC location at $040A. This
is a very important location for display list interrupts.

Picture the electron beam scanning over your TV screen from
left to right. Every time it gets to the right edge, it jumps back 1 line
lower and begins again at the left edge with the next line. If we are
doing something such as changing the color displayed for the back
ground, we want to be sure that the color change occurs at the
beginning of a line rather than somewhere in the middle. If we
simply stick the new color value into the hardware register, the
background color will change wherever the electron beam happens
to be when the new value is placed into $0018. To prevent this, line
210 stores a value (any value: the color is simply at hand, so we'll
use it) to location WSYNC. It doesn ' t matter what value is stored
here; it's the act of storing any value to this location which triggers
the resulting action. Whenever a value is POKEd to WSYNC, the
computer simply Waits for the horizontal SYNChronization before
proceeding. This horizontal synchronization occurs while the elec
tron beam is off the screen, waiting to begin the next line. After
synchronization, the computer executes line 220, which stores the
desired color into the hardware register. This method ensures that
the color change will always take place at the beginning of a scan
line and not sometimes in the middle of a line.

The remainder of this program simply restores the original
value which was in the accumulator and then returns to whatever
was going on before the interrupt, by means of the RTI (return
from interrupt) instruction in line 270.

Installation of a display list interrupt routine requires some
programming in BASIC, since the display list interrupt routine can
not, by itself, cause the desired color change. Let's look at the
BASIC program used to implement this particular routine:

10 GOSUB 20000:REM Setup simple DLI routine
20 HIBYTE=INT(ADR(SIMPDLI$)/256):REM Where is our DLI routine?

The Display List and Using Interrupts

30 LOBYTE=ADR(SIMPDLI$)-256*HIBYTE:REM Its low byte
40 POKE 512,LOBYTE:REM Set up low byte of new vector
50 POKE 51],HIBYTE:REM Set up high byte
60 DL=PEEK(560)+256*PEEK(561) :REM Where is display list?
70 POKE DL+12,PEEK(DL +12) +128 :REM Set display list bit 7
80 POKE 54286 ,192:REM Enable DLIs
90 END :REM But the color change stays
20000 DIM SIMPDLI$(13) : REM Relocatable code in string
20010 FOR 1=1 TO 13 : REM Length of simple DLI routine
20020 READ A: REl1 Get a byte
200]0 SIMPDLI$ (I , I) = CHR$(A) : REM Put it i nto string
20040 NEXT I:RETURN :REM Finished
20050 DATA 72,169 ,66,141 , 10, 212, 141,24, 208 , 104
20060 DATA 64,246,24]

127

As you can see, first we set up the routine we just wrote as a
string; this is accomplished in the subroutine at lines 20000 to
20060. We next have to calculate where BASIC has stored this
string and break down the address into its high and low bytes. We
then can tell the computer where the routine is located, so that
when it encounters the display list interrupt instruction, it knows
where to turn to find the program it must execute at that time. This
information can always be found in the ATARI in memory loca
tions 512 and 513, stored in the usual 6502 fashion oflow byte first.
Therefore, in lines 40 and 50 we place the 2 bytes of our calculated
address into memory locations 512 and 513 .

Line 60 finds the display list for us , and since we've used these
instructions before, we ' ll not further discuss them here. Line 70
sets the display list interrupt bit, bit 7, on the twelfth byte of the
display list. We could just as easily have set the color change further
down the screen by saying, for instance , DL + 20 instead of
DL + 12. Experiment, and look at the results for yourself. Just re
member that the display list interrupt enable bit must be set on a
valid instruction of the display list. Don't try to set it on one of the
2 bytes of address pointing to display memory (DL + 4 or DL + 5),
or one of the 2 bytes of address pointing to the beginning of the
display list (the last 2 bytes of the display list).

Line 80 is critical! Even though we have done everything re
quired to enable display list interrupts, we have not yet told our
ATARI that we would like them enabled. We do this in line 80. This

128 Applications

instruction is required before display list interrupts will work, and
if you have trouble getting display list interrupts to function, check
for this line before pulling your machine language code apart look
ing for a mistake.

A MORE COMPLICATED EXAMPLE:
A TABLE-DRIVEN Dli ROUTINE

There are many uses to which display list interrupts can be put.
Some of these are:

1. Change color of background.
2. Change color of the characters.
3. Change the character set entirely (by POKEing the address, in

pages, into the appropriate hardware register - $D409, not
into 756!).

4. Invert the character set - may be useful in drawing playing
cards to the screen: draw half, then invert the character set and
draw the bottom half (hardware register = $D401).

5. Simulate motion of a horizon via moving DUs.

Many other uses are possible, limited only by your imagination.
We'll give one more example here, simply to show how to imple
ment a more complicated display list interrupt routine. Just remem
ber that time is short, so keep your code as concise and quick as
possible.

This example will introduce table lookup techniques. We will
put a display list interrupt on every line of a GRAPHICS 0 display
and change the color of the background behind every line pro
duced. To do this, we will construct a table of colors, each of which
will be used for a single line of the display. Therefore, we need to
read each value in turn from the table and store it to the back
ground hardware color register at the appropriate time. The next
time through, we need to get the next value from the table for the
next line of the display. We'll construct our table on page 4, but it
could also have been placed on page 6 or elsewhere in protected

The Display List and Using Interrupts 129

memory, as we have already discussed. The assembly language dis
play list interrupt routine is shown below:

0100 ******************************
0110 set up initial conditions
0120 ******************************

0000 01]0 * = $600
D018 0140 COLPF2 $D018
D40A 0150 WSYNC $D40A
0400 0160 OFFSET $0400

0170 ******************************
0180 save registers!!
0190 ******************************

0600 48 0200 PHA jsave the accumulator
0601 98 0210 TYA jand the Y register
0602 48 0220 PHA jeasy way to save it

0230 ******************************
0240 the routine itself
0250 ******************************

060] AC0004 0260 10Y OFFSET jget initial offset
0606 B90204 0270 10A OFFSET+2,Y jget color from table
0609 8DOAD4 0280 STA WSYNC jwait for horiz. synch.
060C 8D18DO 0290 STA COLPF2 jchange color
060F EE0004 0300 INC OFFSET j for next color
0612 AD0004 0]10 10A OFFSET jare we done?
0615 CD0104 0320 CMP OFFSET +1 jstores # of colors
0618 9005 0]30 BCC SKIP jno-exit DLI routine
061A A900 0]40 LDA #0 jyes
061C 8D0004 0]50 STA OFFSET jreset offset counter

OJ60 ******************************
OJ70 remember to restore registers!
OJ80 ******************************

061F 68
0620 A8
0621 68
0622 40

0]90 SKIP PLA jset up to restore Y
jrestore Y 0400 TAY

0410 PLA
0420 RTI

jrestore accumulator
jexit from DLI routine

Note the differences between this routine and the previous dis
play list interrupt routine . Since this program uses both the accu
mulator and the Y register, we'll need to save both of these on the

130 Applications

stack. This is done by PHAing the accumulator value, then trans
ferring the Y register to the accumulator and PHAing it onto the
stack.

The major difference between the two display list interrupt
routines lies in lines 260 to 270 and 300 to 350. We first load the Y
register from OFFSET in line 260. The number thus loaded is an
offset into the color table, which begins at $402 and continues up
ward in memory from there. If OFFSET equals 5, then we'll pick
the sixth color in the table (remember: the first color is number
zero). This becomes the number stored in the hardware background
color register at that time. Lines 300 to 350 simply increment OFF
SET and determine whether all of the colors have been used. If they
have, we reset OFFSET to zero and exit. If not, we simply exit.
Note that location $401 (OFFSET + 1) stores the number of colors
in the table so that we can determine when we are done.

Since we saved both the Y register and the accumulator, we'll
need to restore them both. We do that in lines 390 to 420 just by
reversing the process that saved them.

Now let's look at the BASIC program that we can use to access
our table-driven display list interrupt routine:

10 GOSUB 20000:REM Set up DLI routine in a string
20 HI = INT(ADR(TABLEDLI$) / 256) : 10= ADR(TABLEDLI$) -HI*256:REM Get
addresses of DLI routine
30 GRAPHICS O:SETCOLOR 1,0,0:REM Start with black background
40 RESTORE 270:REM Be sure we're reading the right data
50 FOR 1=0 TO 27: REM Number of data in table
60 READ A:REM Get a byte
70 POKE 1026+I,A:REM Put the color into the page 4 table
80 NEXT I:REM Finish copying table
90 POKE 1024,0:REM Start with zero offset into table
100 POKE 1025,27:REM Put number of colors here
140 DL=PEEK(560)+256*PEEK(561)+6:REM Normal DL instructions start
with the seventh byte of the display list
150 DLBEG = DL-6: REM The beginning of the display list
160 FOR I = 0 TO 2: REM The first 3 bytes are skip 8 scan lines
170 POKE DLBEG+I,240:REM Set DLIs even on the skipped scan lines!!!
180 NEXT I:REM Finish these three

The Display List and Using Interrupts 131

190 POKE DLBEG+I,194:REM Set a DLI even on the "load memory scan"
instruction
200 FOR 1= DL TO DL+ 22: REM Change all of the 2s to 130s
210 POKE I,130:REM Set DLIs
220 NEXT I:REM Finished
230 POKE 512,LO:POKE 513,HI:REM Tell ATARI where our routine is
240 POKE 54286,192:REM Enable the interrupts
250 LIST :REM Gives us something to look at through the colors
260 END :REM All finished
270 DATA 6,22,38,54,70,86,102,118,134,150,166,182,198,214
280 DATA 230,246,246,230,214,198,182,166,150,134,118,102,86,70
290 DATA 54,38,22,6
20000 DIM TABLEDLI$(35):REM Set up string
20010 RESTORE 20060:REM Be sure we're reading correct data
20020 FOR 1=1 TO 35: REM Number of bytes in routine
20030 READ A:REM Get a byte
20040 TABLEDLI$(I,I)=CHR$(A):REM Put byte in place in string
20050 NEXT I:RETURN :REM Finish string
20060 DATA 72,152,72,172,0,4,185,2,4,141
20070 DATA 10,212,141,24,208 ,238,0,4,173,0
20080 DATA 4,205,1,4,144,5,169,0,141,0
20090 DATA 4,104,168,104,64

The subroutine at line 20000 sets up our routine in a string.
Next we find out where the string is stored, and break that address
into its high and low bytes . The GRAPHICS 0 command ensures
that the display list is set up the way we want it, and we make the
background color black initially. We then POKE the color values
we would like to see on the screen into place in the table on page 4,
one byte at a time. By altering the data in line 270, a different
pattern of colors can be obtained. Experiment with these numbers
- you'll find it quite easy to produce spectacular effects in your
programs. Location $400 (decimal 1024) is POKEd with a zero,
since we'd like our routine to begin with the first color in the table.
If we were to POKE another number here, say 10, the entire spec
trum of colors would be shifted up the screen; we'd start with the
eleventh color and end with the tenth.

Next we find both the beginning of the display list and the
beginning of the instructions for GRAPHICS 0 (a 2 as the display
list instruction), and we set the high bit on every instruction in the

132 Applications

display list, thereby setting a display list interrupt for every line.
Note that we can even set display list interrupts for the first three
instructions of the display list, which only tell ANTIC to leave 8
blank scan lines. By using this routine , we'll make each group of
eight blank scan lines a different color! In line 230, we tell the com
puter where our display list interrupt routine is, and then in the next
line, we enable the display list interrupts. The LIST command in
line 250 simply puts some text on the screen and scrolls it through
the colors created by the display list interrupt routine, giving quite a
nice effect.

One note about display list interrupt routines: the ATARI com
puters use WSYNC to create the click accompanying the depression
of each key of the keyboard. Therefore, programs which use dis
play list interrupts a great deal, like this one, may be disturbed by
pressing keys. The simplest solution to this problem is not to ask
for keystrokes in your program if you use display list interrupts
frequently. You might, for instance, choose from a menu by use of
the joystick, or use the START, SELECT or OPTION keys to make
choices. Another note to make is that SYSTEM RESET will, of
course, eliminate any display list interrupts which have been set up,
since this command sets up a new GRAPHICS ° display list.

VERTICAL BLANK INTERRUPTS

A second common type of interrupt used in your ATARI is the
vertical blank interrupt, discussed above. Using this system, it's
possible to perform multiprocessing on an ATARI computer. In
multiprocessing, two programs are being processed simultaneously.
Although the use of the vertical blank interrupt cannot produce
true multiprocessing, it is possible to set up two programs, so that
one is processed in normal time, and one is processed during the
vertical blank interval. It will appear that both are being executed
simultaneously.

One excellent example of a program utilizing such multi
processing is EASTERN FRONT, written by Chris Crawford and
available through ATARI. In this game, you take the part of the

The Display List and Using Interrupts 133

German Army during Operation Barbarossa, the German invasion
of Russia during World War II, and the computer takes the part of
the Russian Army. The computer "thinks" about its moves during
the vertical blank interval and handles your moves during real time .
The longer you think about your move, the more vertical blank
intervals pass, and so the more time the computer has to determine
its moves.

A second common use of the vertical blank interval for multi
processing shows up in a wide variety of programs currently availa
ble for the ATARI. Have you noticed the background music which
plays while the games are played? This music doesn't slow the game
down at all, because it's being played only in the vertical blank
interval. Our next program will show how this is done, with a fairly
simple example. Although this routine is relocatable, we will simply
POKE the routine onto page 6 to access it. By now, you already
know how to convert a routine to a string, and you can do so quite
easily with this one if you like.

Two parts are required in any vertical blank interrupt routine .
One, of course, is the routine itself. The other is a short routine for
installing the vertical blank interrupt routine.

Normally, as each vertical blank inteval occurs, your ATARI
vectors to a specific routine which is executed at every such inter
val. The routine actually is composed of two parts. The first is
called the immediate, and the second is called the deferred vertical
blank routine. The vector for the immediate routine is found at
$0222. This is a 2-byte address to which the computer jumps in
order to execute every immediate vertical blank interrupt routine; it
normally points to the service routine beginning at $E45F. This rou
tine terminates by vectoring through locations $0224 and $0225,
which contain the address of the deferred vertical blank interrupt
routine, normally found at $E462. Diagrammatically, this is as
follows:

VBI -> $0222 -> $E45F -> $0224 -> $E462 -> RTI

All we have to do to insert our own routine in place of ATARI's
normal routine is to direct the vector to our routine instead of
ATARI's . To do this, we must first decide which routine we want to

134 Applications

replace. As we'll discuss later, long vertical blank interrupt routines
have to replace the normal routines; there is not enough time to
execute both during one vertical blank interval. Since the immedi
ate routine pointed to by the vector at $0222 is responsible for a lot
of the upkeep of the computer, such as updating the system clocks,
copying the shadow registers, reading the joysticks and much more,
it's safer to keep it going normally, and replace the deferred vertical
blank routine; so for this example, we'll use the deferred routine.

Any time we change a vector, we have a potential problem.
With the vertical blank vector, which is used 60 times per second
and may be used at any time in relation to the execution of our
program, the potential for encountering this problem is magnified.
It can best be described by a simple example. vye know that the byte
stored at $0222 is $5F, and the byte at $0223 is $E4. Let's assume
that we'd like to change this vector to point to $0620 instead of
$E45F; first we change location $0222 to $20, and then we change
$0223 to 6. Simple, wasn't it? But suppose that between the time we
change location $0222 to $20 and the time we begin to change loca
tion $0223 , our computer hits a vertical blank interrupt. It will vec
tor through the address stored in these 2 locations, which is now
$E420 because we've changed I byte but not the other. Off goes the
computer into never-never land, since there is nothing executable at
address $E420. To get around this problem, ATARI has provided
its own routine to change the vertical blank vectors and prevent this
problem from occurring. To see how it works, let's look at the code
required:

LDY #$20 jlow byte of routine
LDX #$06 jhigh byte
LDA 1t07 jfor deferred vector
JSR SETVBV jset the vector
RTS jall done

If we wanted to set up our routine for the immediate vertical blank
routine, we would load the accumulator with 6 before JSRing to
SETVBV ($E45C). That's all there is to it. Remember that your
vertical blank interrupt routine must be in place before using this
installation routine. If it's not, the computer will crash within a
sixtieth of a second after this routine is executed.

The Display List and Using Interrupts 135

There is, of course, a finite length to each part of the vertical
blank interval. The deferred routine is about 20,000 machine cycles
long at maximum, and the immediate routine can't be longer than
about 2000 machine cycles. If your routine is longer than these
limits, the computer will crash, since the TV display and the com
puter will no longer be able to maintain synchronization.

Now that we've decided to use the deferred vector and we know
how to install our routine, let's look at the routine to play some
music in the vertical blank interval, and then we'll discuss it in
depth.

0000
OOCO
0224
00C2
E45C
0660
E462
D200
D201

0600 68

0601 A900
0603 85CO
0605 85C2

0607 A020
0609 A206
060B A907

0100 ******************************
0110 the equates we ' ll use
0120 ******************************
0130 *= $0600
0140 COUNTl $OOCO
0150 VVBLKD $0224
0160 COUNT2 $00C2
0170 SETVBV $E45C
0180 MUSIC $0660
0190 RETURN $E462
0200 SND $D200
0210 VOL $D201
0220 ******************************
0230 PLA to keep the stack clean
0240 ******************************
0250 PLA
0260 ******************************
0270 initialize counters to zero
0280 ******************************
0290 LDA #0
0300 STA COUNTl ; timing counter for notes
0310 STA COUNT2 ; which note is playing
0320 ******************************
0330 now reset deferred vector
0340 ******************************
0350 LDY #$20 ;low byte of routine
0360 LDX #$06 ;high byte of routine
0370 LDA #07 ;we want deferred vector

060D 205CE4 0380 JSR SETVBV ;set vector
0610 60 0390 RTS ;initialization complete

136 Applications

0400 ******************************
0410 VBI routine itself
0420 ******************************

0611 04)0 *= $0620
0620 E6CO 0440 INC COUNTl ifor timing note
0622 A6CO 0450 LOX COUNTl iis note fin ished?
0624 EOOC 0460 CPX #12 i if) = 12 it is done
0626 9005 0470 BCC NO inot yet finished
0628 A900 0480 LOA #0 i yes, so set volume = 0
062A 800102 0490 STA VOL inow note turned off
0620 EOOF 0500 NO CPX #15 i15/60 seconds gone?
062F BOO) 0510 BCS PLAY iyes, so play next note
0631 4C62E4 0520 JMP RETURN ino, let it ride
0634 A900 05)0 PLAY LOA #0 ireset counter
0636 85CO 0540 STA COUNTl ifor timing
06)8 A6C2 0550 LOX COUNT2 iget correct note
06)A B06006 0560 LOA MUSIC,X i from t able
0630 800002 0570 STA SNO iset its frequency
0640 A9A6 0580 LOA #$A6 idistortion=10 ($A)
0642 800102 0590 STA VOL ivolume = 6
0645 E6C2 0600 INC COUNT2 isetuP for next note
0647 A6C2 0610 LOX COUNT2 iare we done?
0649 E008 0620 CPX 118 i if = 8, we are done
064B 9004 06)0 BCC OONE ino
0640 A900 0640 LOA #0 iyes-reset counter to
064F 85C2 0650 STA COUNT2 start over again
0651 4C62E4 0660 DONE JMP RETURN i all finished

0670 ******************************
0680 TABLE OF MUSICAL NOTES
0690 ******************************

0654 0700 *= $0660
0660 F) 0710 .BYTE 243,24),217,24),204 ,24),217,24)
0661 F)
0662 09
066) F)
0664 CC
0665 F3
0666 D9
0667 FJ

The initialization routine sets two counters to zero, one for the
number of the note to be played and the other for determining the

The Display Li st a nd Using Interrupts 137

length of the note. It then installs the vector to our routine, in place
of the normal deferred vector. The routine itself begins at $0620
(line 430). We first increment the duration counter. If this equals
12, we turn off the note; otherwise, the note remains playing. The
note can be turned off by storing a zero into the hardware register
controlling the volume of that voice, in line 490 .

To leave a short pause between notes, we wait until the counter
reaches 15 before beginning the next note. To playa new note, we
store a zero into the duration counter and get the number of the
next note to be played from the note counter. We then use that
number as an offset into the table of notes found at $0660 (line
710). Therefore, if COUNT2 equals 2, the third note will be played .
The notes are looked up in the table in line 560 and are played by
the following three lines. We then increment COUNT2 for the next
note and determine if we're done in lines 610 to 630; if we are, we
begin the notes all over again by resetting COUNT2 to zero.

We leave this routine by jumping to RETURN, location $E462,
which ends our routine with the normal deferred routine. Had we
used the immediate vector for our routine, we would have pointed
our exit to $E45F, or, for a really long routine, to $E462, which
would have eliminated all of the normal ATARI vertical blank in
terval processing but gained us a lot of time for our own processing
in the vertical blank interval.

Setting up a vertical blank routine in BASIC is quite simple, as
we shall now see for our music-playing routine:

10 GOSUB 19000: REM Poke in initial ization routine
20 GOSUB 20000:REM Poke in VBl routine
30 GOSUB 21000 :REM POKE in table of notes to be played
40 X= USR(1536) : REM Turn on the music!
50 END :REM Will not turn off the music
19000 RESTORE 19050:REM Be sure to get the correct data
19010 FOR I = 1536 TO 1552: REM Length of initialization routine
19020 READ A:REM Get a byte
19030 POKE l,A :REM Put i t in place
19040 NEXT l:RETURN :REM All done
19050 DATA 104 ,169, 0,133,192 , 133 ,194,160,32 ,162
19060 DATA 6,169,7,32,92,228,96
20000 RESTORE 20050:REH Be sure to read the right data
20010 FOR I = 1568 TO 1619: REM Length of VBl rout ine

138 Applications

20020 READ A:REM Get a byte
200]0 POKE 1,A: REM Put i t in place
20040 NEXT 1:RETURN :REM Finished
20050 DATA 2]0,192,166,192,224,12,144,5,169,0
20060 DATA 141,1,210,224,15,176,],76,98,228
20070 DATA 169,0,1]],192,166,194,189 ,96,6,141
20080 DATA 0,210,169,166 ,141, 1,210,2]0, 194 ,166
20090 DATA 194,224,8,144 ,4, 169 ,0,1]] ,194 ,76 ,98 ,228
21000 RESTORE 21050:REM Read the right data
21010 FOR 1=16]2 TO 16]9 :REM Length of the music table
21020 READ A:REM Get a byte
210]0 POKE 1,A:REM Put it into the table
21040 NEXT 1:RETURN :REM All done
21050 DATA 24] ,24] ,217, 24],204 ,24] ,217, 243

This program simply accesses the three subroutines and then
USRs to initialize the routine and insert the vector appropriately.
The first subroutine POKEs the initialization routine onto page 6,
the second POKEs the vertical blank interrupt routine itself onto
page 6, and the third POKEs the color table into its proper place on
page 6. Line 40 activates the routine through the initialization rou
tine . Voila! You have music to help you through a long program
ming session . The music will continue to play until you hit
SYSTEM RESET, or until you reset the deferred vector to its origi
nal value.

The music played by this routine is actually quite limited. All
notes must be of the same length; for instance, all quarter notes or
all half notes. Furthermore , only one voice is used. Far more com
plicated routines are available for the ATARI, to allow you to put
intricate multivoiced music into your programs. But now you can
even write such a routine yourself.

One final note concerning the vertical blank interval: one ex
tremely powerful use of this feature is for reading the joysticks and
moving players around the screen. By putting this routine into the
vertical blank interval, we can remove one of the most time-con
suming parts of most BASIC programs, and allow the computer to
read the joysticks and update player positions 60 times per second,
without slowing down the real-time action at all . You might want to
try converting the joystick routine we wrote in Chapter 7 into one
utilized in the vertical blank interval, as an exercise for yourself.

The Display List and Using Interrupts 139

FINE SCROLLING

We have yet to cover the final two bits of the display list in
structions: the horizontal and vertical fine scroll enable bits (bits 4
and 5, respectively). The fine scrolling facility enables program
mers to produce some of the most interesting and exciting effects
on the ATARI - programs which scroll a seemingly endless screen
past the player. In fact, one of the nicest examples of fine scrolling
is found in EASTERN FRONT, already mentioned for its use of
multiprocessing. A detailed map of Eastern Europe can be scrolled
over many normal-sized screens; action takes place all over the
map, making for an exciting and challenging experience.

We will now cover an example of fine horizontal scrolling and
discuss fine vertical scrolling to enable you to write your own verti
cal fine scrolling routines. Horizontal fine scrolling has one diffi
culty we must first deal with. As you know by now, a normal
GRAPHICS 0 display list contains the ANTIC code 2 for each line,
telling ANTIC that we want the next 40 bytes of display memory to
be interpreted as text and placed on the screen accordingly. How
ever, a problem arises when we scroll the information on the screen
to the left. Let 's look at an example to see the problem graphically:

Screen Column Number

Line 5
Line 6
Line 7

111111111122222222223333333333
0123456789012345678901234567890123456789

aa
bb
cc

As long as we only have 40 characters to display, there is no prob
lem. However, how can we scroll the display window over this in
formation? For instance, if we try to scroll the screen to the right
(scroll the information to the left) , what will the last character on
each line be? Line 5 will now end with a b, line 6 with a c, and so
on. This is not true horizontal scrolling, but actually mixed hori
zontal and vertical scrolling.

140 Applications

In order to achieve true horizontal scrolling, we need a special
form of the display list. We need to build a custom display list
which has room for more than 40 characters per line, so that when
we scroll, we get to see information which was previously hidden
off-screen. Fortunately, we already know the techniques required
to build such a custom display li st. We'll need to have a separate
Load Memory Scan option on every line, and we'll need to reserve
enough memory for each line to be far more than 40 bytes long.
Let's design our display list with each line 250 bytes long, so our
display memory will be over 6 times wider than a normal
GRAPHICS 0 screen. That will give us plenty of room to scroll.
The display looks like this:

Screen Column Number
111111111122222222223333333333

0123456789012345678901234567890123456789

aaa
bbb
ccc

Diagrammatically, we can now see that the display memory for
each line of the display is wider than the screen itself. This now
gives us room to move the screen from side to side over the data,
without getting the artificial vertical scrolling of the b's into the a
line, and so on.

The second feature of our display list which we must consider is
that each LMS instruction must also have bit 4 set, so we must add
16 to the LMS instruction 64. Of course, we must also add the
ANTIC instruction for the interpretation of the data. In this case,
we'll use GRAPHICS 0 (ANTIC mode 2), so we'll need to add 2 to
this sum. The total of these is 64 + 16 + 2, or 82, which will be the
instruction for every line of our custom display list.

We could, of course, construct our modified display list from
BASIC, much as we saw above, but let's experiment and write an

The Display List and Using Interrupts 141

assembly language program to construct this display list for us .
We'll locate the new display list on page 6, where it will be safe.
Remember, each display list begins with 24 blank scan lines, then
continues with 24 lines of ANTIC codes before the lVB instruction
that terminates the list. Let's look at a program which can construct
such a display list for us:

0100 *****************************
0110 origin and equates

0120 *****************************
0000 0130 * = $600 i must be in string
0600 0140 DLIST $0600 iwhere DL will be
0058 0150 SAVMSC $58 idisp.mem.addr.
0230 0160 SDLSTL $230 iDL address
E45C 0170 SETVBV $E45C ito set VB vector

0180 *****************************
0190 initialization routine to set
0200 up new display list and
0210 insert the scrolling routine
0220 into the vertical blank
0230 interrupt
0240 *****************************

0600 68 0250 INIT PLA ikeep stack neat
0601 A970 0260 LDA #$70 i8 blank scan lines
0603 8D0006 0270 STA DLIST into the first
0606 8D0106 0280 STA DLIST+1 i 3 lines of the
0609 8D0206 0290 STA DLIST+2 display list
060C A018 0300 LDY #24 i # of lines in DL
060E A203 0310 LDX #3 iset counter
0610 A952 0320 LDA #82 iLMS+GRAPHICS O+scroll
0612 9D0006 0330 STA DLIST,X iinto display list
0615 E8 0340 INX ikeep counter going
0616 A558 0350 LDA SAVMSC iget disp.mem.addr.
0618 9D0006 0360 STA DLIST,X iinto display list
061B E8 0370 INX ikeep counter going
061C A559 0380 LDA SAVMSC+1 i get high byte
061E 38 0390 SEC iset up for subtract
061F E918 0400 SEC #24 imake room for display
0621 9D0006 0410 STA DLIST,X iinto display list
0624 E8 0420 INX ikeep counter going

142 Applications

0625 88 0430 DEY jone line finished
0626 A952 0440 LOOP LDA #82 jLMS+horiz.scroll
0628 9D0006 0450 STA DLIST ,x jinto display list
062B E8 0460 INX jkeep counter going
062C BDFD05 0470 LDA DLIST-3,X jget last memory
062F 18 0480 CLC jset up for addition
0630 69FA 0490 ADC 11250 jline is 250 bytes
0632 9D0006 0500 STA DLIST,X jinto display list
0635 E8 0510 INX jkeep counter going
0636 BDFD05 0520 LDA DLIST-3,X j get high byte
0639 6900 0530 ADC #0 jsee discussion
063B 9D0006 0540 STA DLIST,X jinto display list
063E E8 0550 INX jkeep counter going
063F 88 0560 DEY janother line done
0640 DOE4 0570 BNE LOOP jfinishel ? NO
0642 A941 0580 LDA #65 jYESjJVB instruct .
0644 9D0006 0590 STA DLIST,X jinto display list
0647 E8 0600 INX jkeep counter going
0648 A900 0610 LDA #0 jpage 6 low byte
064A 9D0006 0620 STA DLIST ,X jinto display list
064D 8D3002 0630 STA SDLSTL jtell ATARI also
0650 E8 0640 INX jkeep counter going
0651 A906 0650 LDA #6 jpage 6 high byte
0653 9D0006 0660 STA DLIST,X jinto display list
0656 8D3102 0670 STA SDLSTL+1 jtell ATARI

0680 *****************************
0690 insert scrolling routine into
0700 the deferred vertical blank
0710 *****************************

0659 68 0720 PLA jget routine's addr
065A AA 0730 TAX j to X register
065B 68 0740 PLA ;finish address
065C A8 0750 TAY ito Y register
065D A907 0760 LDA #$07 ;deferred vector
065F 205CE4 0770 JSR SETVBV ;set the vector
0662 60 0780 RTS ; all finished

We begin by putting the three lines that each mean to leave 8
blank scan lines, $70, at the top of our new display list. Next, we
load the Y register with 24; we'll use this to keep track of how many
lines of the display list we've constructed. The X register is set to 3,

The Display List and Using Interrupts 143

since we want to skip over the first three $70 instructions. The next
instruction we need in the display list is 82, so we store it appropri
ately in lines 320 and 330. We then increment our X counter, since
we have added a byte to the growing display list. We'll need to
increment this counter with each byte added.

Since each line is an LMS instruction, the next 2 bytes of the
line must be the address of display memory from which ANTIC
will get the information to display. The beginning of the display list
should point to the beginning of display memory, and this pointer is
always found at locations $58 and $59, SAVMSC. However, our
greatly expanded display memory, over 6 times larger than normal,
requires a place to reside. Therefore we'll subtract 24 pages from
the high byte of the normal location of screen memory, which will
give us the room we need for the display memory. The transfer of
the information from location $58 to the new display list is accom
plished in lines 350 to 370, and the transfer from $59 and enlarge
ment of display memory is done in lines 380 to 420. Since we've
now completed a line of the new display list, which contains an
LMS instruction and an address, we decrease our line counter, Y, in
line 430.

Now we'll enter a big loop, from line 440 to line 570. The loop
will be executed 23 times, and each time it will create one more line
of our new display list. The first instruction placed into it is 82, as
was mentioned above. Then we retrieve the low byte of the last
address and add 250 to it, in lines 470 to 510. Remember to use the
CLC instruction before any addition! This sets the low byte of the
second line of display memory 250 bytes higher than the former
line, so each line will be 250 bytes long instead of the normal 40
bytes.

Lines 520 to 540 don't seem to do anything, do they? They add
zero to a number, and replace it in memory. But remember, the
carry bit is added into each ADC instruction, and we have not
cleared the carry since the last addition. Therefore, if the previous
addition resulted in a number larger than 255, the low address
placed into the display list in line 500 will actually be the sum minus
256. However, the carry would then have been set, and it will in
crease the high byte of the address by 1 when we add zero. The
address will then point to the correct area of memory. There's an
other way to code this operation:

144

LDA ADDRl
CLC
ADC 11250
STA ADDRl
BCC PASS
INC ADDR2
PASS

Applications

In this case, if the carry isn't set by the first add, AOOR2 isn't
incremented; but if the first sum is greater than 255, AOOR2 will
be 1 higher than it was.

We conclude the loop by decrementing our line counter, Y,
again. If Y has not yet reached zero, we have more work to do, and
we loop back up to do it. If Y has reached zero, we're done with
this part, and we simply need to set up the JVB instruction to point
to our display list on page 6. We do this in lines 580 to 670. Note
lines 530 and 670. These insert the address of our new display list
into locations $230 and $231, the internal pointers to the display list
that the ATARI (and ANTIC) uses.

To make the scrolling fast and smooth, we'll place our routine
into the vertical blank interrupt. Our BASIC program will pass the
address of the scrolling routine to the set-up routine, and lines 720
to 770 pull this address off the stack and set up the scrolling routine
iri the deferred vertical blank. Finally, we'll return to BASIC in line
780.

Now that we have our display list constructed, all that we need
to do is write a short machine language routine which will handle
the scrolling itself. To better understand this routine, let's first dis
cuss the mechanism of fine scrolling. A character in GRAPHICS 0
is 8 bits wide. ' Coarse scrolling is accomplished one character at a
time; with each move, every letter on the screen appears to jump 1
position left or right. We want fine scrolling, in which each move
should ideally be only 1 pixel, or 1 bit, in either direction. The
ATARI lets us accomplish this fairly easily with a register called
HSCROL ($0404). The corresponding vertical scroll register,
which works in exactly the same way, is called VSCROL and is
located at $0405.

HSCROL can accomplish a bit-by-bit scroll of a character for 8
bits, but then it must be reset. If a zero is written to HSCROL, -the

The Display List and Using Interrupts 145

position of the character is normal. If we write a I to HSCROL, the
character shifts I pixel left. Writing a 2 shifts the image I more
pixel, and so on, up to 7. At this point, we write another 0 to
HSCROL, and we shift the whole character 1 whole position to the
left on the screen by changing the address in the LMS instruction
on each line. Pictorially, the characters shift like this:

Number written to HSCROL
0 1 2

.1 .r. .r.

.1 .r. .r.

.1 .r. .r.

.1 .r. .r.

.1 .r. .r.

.1 .r. .r.

.1 .r. .r.

.1 .r. .r.

After we have completed a full cycle from 0 to 7, shifting the
character by 1 full position, we can start a new cycle from 0 to 7,
and so on. By continuing this, we can scroll the full width of dis
play memory. In fact, the routine we'll write below won't even
check the width of memory, so it will continue to fine-scroll all the
way to the top of memory if you let it run long enough. You'll get a
look at the operating system of your ATARI in a new and complete
ly unique way!

Now that we know what we'll be doing, let's see the program:

0100 ******************************
0110 set up equates and origin
0120 ******************************

0000 0130 * = $600
0600 0140 DL1ST $600
D404 0150 HSCROL = $D404
E462 0160 X1TVBV = $E462

0170 ******************************
0180 save accumulator and X reg .

0600 48
0601 8A

0190 ******************************
0200
0210

PHA
TXA

;save accumulator
;transfer X register

146

0602 48 0220
0230
0240
0250

0603 A207 0260

Applications

PHA ; and save it

do the f ine scroll ing first

LOX #7 ; 8 bits per character
0605 8E04D4 0270 LOOP
0608 CA 0280

STX HSCROL ;scroll the 1st
OEX ;set up for next scroll

0609 10FA 0290 BPL LOOP ;loop until 8 are done
060B A207 0300 LOX #7 ;reset scroll register
060D 8E04D4 0310 STX HSCROL to beginn ing

0320 ******************************
0330 now we'll coarse scroll one
0340 ******************************

0610 A200 0350
0612 BD0406 0360 LOOP2
0615 18 0370
0616 6901 0380
0618 9D0406 0390
061B BD0506 0400
061E 6900 0410
0620 9D0506 0420
0623 E8 0430
0624 E8 0440
0625 E8 0450
0626 E048 0460
0628 90E8 0470

LOX 110 ; counter
LOA OLISTt4 ,X ;get disp .mem.
CLC ;before addition
AOC 111 ; raise it by 1
STA OLISTt4,X ;in display list
LOA OLISTt5,X ;get high byte
AOC 110 ; add carry in
STA OLISTt5,X ;in display list
INX
INX
INX
CPX #72
BCC LOOP2

;move forward in
display list
3 bytes

;24*3=72
;not finished

0480 ******************************
0490 now restore registers
0500 ******************************

062A 68 0510
062B AA 0520
062C 68 0530
0620 4C62E4 0540

PLA
TAX
PLA
JMP XITVBV

;first, X reg .
;restored
;then accumulator
jexit from VB

Since this will be in the vertical blank interrupt, in lines 200 to
220 we'll save both of the registers we'll be using, the accumulator
and the X register. Next, in lines 260 to 310 we'll quickly loop
through all 8 bits stored into HSCROL, resetting our counter to 7
before we leave. Then in lines 350 to 470 we enter another loop,
which simply goes through the display list and raises each address 1
byte, accomplishing the coarse horizontal scroll. If we were scroll-

The Display List and Using Interrupts 147

ing vertically, we would have to add 250 to each address, in order to
coarse-scroll up 1 line here (or add 40, if we were using a normal
width display memory). In this loop, we are using the X register as
a byte counter rather than as a line counter, so we must increment X
3 times for each loop (since there are 3 bytes per line of the display
list) .

Finally, in lines 510 to 530, we restore the registers we saved at
the beginning of the program , and in line 540 we exit to the exit
routine of the deferred vertical blank.

We can now write a very simple BASIC program to use the two
routines we have written:

10 GOSUB 20000:REM Sets up stri ng to form modified display list
20 GOSUB 30000:REM Sets up string with scrolling routine in it
30 FOR 1= 34000 TO 40000 STEP 5: POKE 1,86 : NEXT I : REM Puts lines
into display memory so lie can see the scroll
40 DUMMY = USR (ADR (DLSCROLL$) , ADR (SCROLL$))
50 GOTO 50
20000 DIM DLSCROLL$(99) :REM Length of routine to set up scrolling
display list
20010 FOR 1= 1 TO 99 : REM Length of string
20020 READ A:REM Get a byte
20030 DLSCROLL$(I, I) = CHR$ (A) : REM Insert it into string
20040 NEXT I :RETURN :REM All finished
20050 DATA 104,169,112,141,0 ,6,141,1,6,141
20060 DATA 2,6,160,2~ ,162 , 3 ,169 , 82,157 ,O

20070 DATA 6,232,165,88,157,0,6,232,165,89
20080 DATA 56,233,24,157,0,6,232,136,169,82
20090 DATA 157,0,6,232,189,253 ,5,24,105,250
20100 DATA 157,0,6 , 232,189,253,5 ,105,0,157
20110 DATA 0,6,232,136, 208 ,228,169,65,157,0
20120 DATA 6,232,169,0,157,0,6,141,48,2
20130 DATA 232,169,6,157,0,6,141,49,2,104
20140 DATA 170,104,168,169 ,7,32,92,228,96
30000 DIM SCROLL$(48) :REM Length of routine
30010 FOR 1=1 TO 48 : RDl Get it all
30020 READ A:REM Get a byte
30030 SCROLL$(I)=CHR$(A) : RE~l Put it into string
30040 NEXT I: RETURN : RE~I All done
30050 DATA 72 , 1)8,72,162,7,142,4,212 ,202,16
30060 DATA 250,162,7,142,4,212,162,0,189,4

148 Applications

30070 DATA 6, 24 ,105, 1, 157,4 , 6,189 , 5,6
30080 DATA 105 , 0,157, 5,6,2J2 ,2J2 ,2J2 ,224 ,72
J0090 DATA 144, 2J2 ,104 ,170 ,104,76 ,98 , 228

This program first inserts the display list-creating program and
the scrolling routine into strings, using the subroutines at 20000 and
30000, respectively. Line 30 simply POKEs some vertical lines into
our enlarged display memory so we ' ll have some information to
scroll . Line 40 sets up the new display list, using DLSCROLL$, and
passes the address of SCROLL$ to this routine so that it can be
inserted into the vertical blank. Since we're not going to do any
thing except watch the scrolling, line 50 just keeps the real-time
program running in a loop while the vertical blank interrupt pro
gram (our scrolling routine) continues to do its thing. If you watch
this program run for too long, we can't be responsible for your
actions - it's hypnotic!

This concludes our review of the display list, display memory,
interrupt handling and fine scrolling. You should now be able to
write some fairly sophisticated routines in assembly language and
use them in your BASIC programs with ease.

THE CENTRAL INPUT-OUTPUT SYSTEM IN
ATARI COMPUTERS

In any computer system, the terms input and output refer to
communication between the microprocessor and any external de
vice - a keyboard, the screen editor, a printer, a disk drive, a tape
recorder, or other similar peripheral. The ATARI operating system
contains the routines for interacting with any of these devices at
several levels, but many microcomputers have this ability. The as
pect of the ATARI system which makes it unique - and, from a
programmer's point of view, so easy to use - is that all external
devices are handled identically and are differentiated only by
changing minor aspects of the input-output routine.

Input is the passage of information from the outside world, for
example, from the keyboard, to the microprocessor. Output is the
reverse process, whereby information proceeds from the computer
to the outside, to a printer, for example. Throughout the remainder
of this book, we will refer to the Central Input-Output system as
CIO.

149

150 Applications

VECTORS IN AN ATARI COMPUTER

We mentioned earlier that the techniques and routines used in
this book will work with any ATARI computer because the vectors
to the routines in the operating system are guaranteed by ATARI
not to change. Located within the operating system of your ATARI
is a jump table, which contains the addresses of all of the key rou
tines needed for programming in assembly language. The table ex
tends from $E450 through $E47F, and in an ATARI 800 with the B
operating system, the table looks like this:

Contains the
Address Instruction

E450 JMP $EDEA
E453 JMP $EDFO
E456 JMP $E4C4
E459 JMP $E959
E45C JMP $E8ED
E45F JMP $E7AE
E462 JMP $E905
E465 JMP $E944
E468 JMP $EBF2
E46B JMP $E6D5
E46E JMP $E4A6
E471 JMP $F223
E474 JMP$F11B
E477 JMP $F125
E47A JMP $EFE9
E47D JMP $EF5D

It's easy to see why this is called a jump table, since it is a table
of addresses to which program control will jump when accessed.
"Why not jump directly to the given address?" you may ask. In the
answer lies the key to writing programs which will run on all
ATARI computers. Suppose that rather than accessing $E456, we
choose to jump directly to location $E4C4, bypassing the jump
table . Everything will work fine, and our program will run. But,
now suppose that ATARI produces some new computer, the 24800

Input-Output on the Atari 151

XLTVB, and the operating system needs to be somewhat altered to
accomodate several new features of this magnificent new machine.
Our program is in trouble. ATARI never guaranteed that location
$E4C4 would stay the same forever; they only guaranteed that the
jump table would always point to the right address . That is, if we
had accessed $E456 instead of $E4C4, our program would always
work, since location $E456 is guaranteed not to change. Let's look
at the various vectors in this jump table, with their ATARI equates
(the names we'll use for these addresses in any programs we write)
and their uses:

Equate

DISKIV
DSKINV
CIOV
SIOV
SETVBV
SYSVBV
XITVBV
SIOINV
SENDEV
INTINV
CIOINV
BLKBDV
WARMSV
COLDSV
RBLOKV
CSOPIV

Address Use

$E450 Disk handler initiation routine
$E453 Disk handler vector
$E456 Central Input/Output vector
$E459 Serial Input/Output vector
$E45C Set system timers routine vector
$E45F System vertical blank interrupt processing
$E462 Exit from vertical blank processing
$E465 Serial Input/Output initialization
$E468 Serial bus send enable routine
$E46B Interrupt handler routine
$E46E Central Input/Output initialization
$E471 Blackboard mode vector to memo pad mode
$E474 Warm start entry (follows SYSTEM RESET)
$E477 Cold start entry pOint (follows power-up)
$E47A Cassette read block routine vector
$E47D Cassette open for input vector

We'll be using some of these vectors in the programs we'll
write, and some we'll never use, but knowing where they are will
help you if you need to make use of them in your own programs.
Many are used by the operating system itelf.

To access any of these routines in the operating system, we sim
ply need to JSR to the appropriate address. All of these routines in
the operating system are written as subroutines, and therefore end
with RTS instructions, which will return control to your program.
For instance, to access CIO, we simply need to type

152 Applications

JSR CIOV

and the job is done. Of course, a considerable amount of setup is
required before this call can be made, which we'll be covering
shortly; but the actual call to CIO couldn't be simpler.

While we're discussing the available vectors in . the operating
system, let's briefly cover the RAM and ROM vectors. They are
summarized in the following table, with their equates, the informa
tion contained in them in the B operating system, and a brief
description of their use:

Equate Address Points to Use

CASINI $0002 varies Bootable cassette init. vector
DOSINI $OOOC varies Disk initialization vector
DOSVEC $OOOA varies Disk software run vector
VDSLST $0200 $E7B3 DLI NMI vector
VPRCED $0202 $E7B3 Proceed line IRQ vector *.
VINTER $0204 $E7B3 Interrupt line IRQ vector *.
VBREAK $0206 $E7B3 BRK instruction IRQ vector
VKEYBD $0208 $FFBE Keyboard IRQ vector
VSERIN $020A $EB11 Serial input ready IRQ vector
VSEROR $020C $EA90 Serial output ready IRQ vector
VSEROC $020E $EAD1 Serial output done IRQ vector
VTIMR1 $0210 $E7B3 POKEY timer 1 IRQ vector
VTIMR2 $0212 $E7B3 POKEY ti,ner 2 IRQ vector
VTIMR4 $0214 $E7B3 POKEY timer 4 IRQ vector
VIMIRQ $0216 $E6F6 Vector to IRQ handler
VVBLKI $0222 $E7D1 Immediate VBI NMI vector
VVBLKD $0224 $E93E Deferred VBI blank NMI vector
CDTMA1 $0226 varies System timer 1 JSR address
CDTMA2 $0228 varies System timer 2 JSR address
BRKKY $0236 $E754 BREAK key vector only on "B" OS
RUNVEC $02EO varies Load and go run vector
INIVEC $02E2 varies Load & go initialization vector

Those marked with "** ,, are unused at present. Notice that a
number of these vectors point to the same place in the operating
system, $E7B3. This is the address of the central interrupt process
ing routine, which determines the nature of the interrupt and di-

Input-Output on the Atarl 153

rects program control to the appropriate routines in the operating
system to handle that type of interrupt.

These vectors, unlike the ROM vectors, are not arranged in a
jump table, so they cannot be accessed by a simple JSR instruction.
However, they do point to operating system routines which end in
an RTS instruction, so we would like to access them using a JSR
instruction. The proper method is to set up a JSR to a location
which JMPs indirectly to the above vector. For instance, suppose
we want to vector through the DOSINI vector. This is done proper
ly with the following code:

40 JSR MYSPOT
45
50
55
60 MYSPOT JMP (DOSINI)

Following the JSR to MYSPOT, the RTS in the operating system
routine will return control to line 45, at which point your program
will resume.

Now that we've seen how to write programs which will work on
all ATARI computers, let's discuss the CIO philosophy and learn
how to write programs which interact with the real world.

THE INPUT-OUTPUT CONTROL BLOCK
(IOCB)

There are two parts to the CIO system in the ATARI. These are
the Input-Output Control Block, or IOCB, and the handler table.
Let's discuss these one at a time, and then we'll see how they work
together to form an operational CIO system.

The IOCB is a section of memory on page 3 which contains the
information that is set up by the programmer to tell the ATARI
which device is desired and what information is to be passed. Each
IOCB requires 16 bytes of information, and 8 IOCBs are available.
Their names and locations are as follows:

154

Name

IOCBO
IOCB1
IOCB2
IOCB3
IOCB4
IOCB5
IOCB6
IOCB7

Location

$340 to 34F
$350 to 35F
$360 to 36F
$370 to 37F
$380 to 38F
$390 to 39F
$3AO to 3AF
$3BO to 3BF

Applications

Several of these 10CBs are used by the system as defaults, al
though as programmers we are free either to use these as the system
defaults, or to change them to suit our own purposes . In fact, only
3 of them are normally used by the OS; there is generally no need to
redefine them, since we have five others from which to choose. The
three used by the OS are as follows:

1. 10CBO, the screen editor. By directing output to 10CBO, we
can have information passed to the screen editor. This 10CB
also controls the text window in any of the split-screen graphics
modes.

2. IOCB6, the screen display for graphics modes higher than
zero. This 10CB is used for all graphics commands, like PLOT,
DRAWTO, FILL, and others.

3. IOCB7, used to support the LPRINT command of BASIC,
which directs output to the printer when this command is used.
In practice, much output from BASIC directed to a printer
uses one of the 'other 10CBs, since LPRINTs are not fre
quently used; more formatting is available if a specific 10CB is
OPENed for use with a printer.

As you have probably already recognized, BASIC uses the
10CB numbers (0, 6, and 7) to direct output to these devices, as
when printing to a GRAPHICS 1 or 2 screen with this command:

PRINT 116; "HELLO"

The 16 bytes of the 10CB, and their offsets from the beginning
of the 10CB in use, are described below:

Input-Output on the Atari 155

Label Offset Length Description

ICHID
ICDNO
ICCOM

ICSTA
ICBAUH

ICPTUH
ICBLUH
ICAX1
ICAX2
ICAX3/4

ICAX5

ICAX6

o 1 Index into device name table for this IOCB
1 1 Device number
2 1 Command byte: determines action to be

taken
3 1 Status returned by device
4,5 2 Two-byte buffer address of stored

information
6,7 2 Address-1 of device's put character routine
8,9 2 Buffer length
10 1 First auxiliary byte
11 1 Second auxiliary byte
12,13 2 Auxil. bytes 3 & 4 - for BASIC NOTE and

POINT
14 Fifth auxil. byte - for NOTE and POINT

also
15 Spare auxilliary byte - unused at present

A SIMPLE 1/0 EXAMPLE USING AN 10CB

Before getting into the details of the various bytes required for
each possible function of an IOCB, an example program will help
in understanding their use . Let's take a simple BASIC example and
convert it to its assembly language equivalent. The line of BASIC
programming we want to duplicate is:

CLOSE #4:0PEN #4 ,6,0,ID:* .*"

For now, we need to know that the command byte stored in IC
COM must be $C for the CLOSE command or 3 for the OPEN
command, and OPENing the disk directory requires a 6 in ICAXI .
Let's look at the program required to OPEN such a file:

0100 ; ******************************
0110 ; first set up equates
0120 ; ******************************

0000 0130 * = $600
0341 0140 rCDNO $0341
0342 0150 rCCOM $0342
0344 0160 rCBAL $0344

156 Applications

0345 0170 ICBAH $0345
034A 0180 ICAXl $034A
E456 0190 CIOV $E456

0200 i ******************************
0210 now CLOSE #4 for insurance
0220 ******************************

06DO A240 0230 LDX 11$40 i 11$40 for IOCB #4
0602 A90C 0240 LDA II$c iCLOSE command byte
0604 9D4203 0250 STA ICCOM,X iX= IDCB #4
0607 2056E4 0260 JSR CIOV i let CIO do the CLOSE

0270 ******************************
0280 now we'll open the directory
0290 ******************************

060A A240 0300 LDX 11$40 i again, 11$40 = IOCB4
060C A901 0310 LDA 111 i disk drive 111
060E 9D4103 0320 STA ICDNO,X i put drive # here
0611 A903 0330 LDA #3 i for OPEN
0613 9D4203 0340 STA ICCOM,X i command byte
0616 A906 0350 LDA #6 ifor disk directory
0618 9D4A03 0360 STA ICAX1,X istore 6 here
061B A929 0370 LDA #FILE&255 isee discussion
061D 9D4403 0380 STA ICBAL,X ilow byte buf. addr .
0620 A906 0390 LDA #FILE/256 isee discussion
0622 9D4503 0400 STA ICBAH,X ihigh byte address
0625 2056E4 0410 JSR CIOV ilet CIO OPEN it
0628 60 0420 RTS i all done

0430 ******************************
0440 now we need the filename

0629 44
062A JA
062B 2A
062C 2E
062D 2A
062E 9B

0450 i ******************************
0460 FILE .BYTE "D:* .*",$9B

In both the CLOSE and OPEN parts of the program, we load
the X register with #$40, which will act as the offset into IOCB4. (If
we wanted to use IOCB3, we'd simply load the X register with
#$30, and so on for all of the other IOCBs.) We then store the

..

Input-Output on the Atari 157

command byte $C into ICCOM for that IOCB, and a JSR to CLOY
accomplishes the CLOSE for us. It's always a good idea to CLOSE
a file before OPENing it, just in case it was already open for some
other reason. If the file is already open, you'll get an error on the
return from CIO. You can check for an error on any call to the OS
by branching to some error-handling routine of your own if after
the JSR to CLOY, the minus flag in the processor status register is
set. Therefore, we should put a BMI ERROR instruction after the
JSR CLOY instruction; but for the purposes of this discussion, we'll
assume all is well. You should never make that assumption in your
own programs, however.

To OPEN the file, we put a 1 into ICDNO for IOCB4, for disk
drive 1, and then we put the command byte 3 into ICCOM for
IOCB4 and put a 6 into ICAXI. All we have left to do before the
call to CIO is to point the buffer address to the name of the file we
want to OPEN. This name is located in line 460, and we've given it
the label FILE. The $9B following the file name is the hexadecimal
code for a carriage return, which should always follow file or de
vice names, such as S: or P:.

To point the buffer to the file name, we need to break its ad
dress into low and high bytes. The low byte is the address AND
255, written #FILE&255. The ANDing with 255 ensures that we get
only the low byte of the address. The high byte can be obtained by
dividing the address by 256, as we did in line 390. The low and high
bytes are stored in ICBAL and ICBAH, respectively, and then a call
to CIO in line 410 completes the OPEN command for us.

This simple example demonstrates not only how to open a disk
directory, but it also shows exactly how every call to the CIO rou
tine in your ATARI is made. We first set up the appropriate bytes in
the IOCB and then simply JSR to CLOY to accomplish the task,
whether it is to OPEN a file, READ some information from a disk
or tape, or send in formation to a printer. All of these operations are
done using this same sequence of events, which makes input and
output in assembly language on your ATARI so simple, once you
understand the system. Note that not all of the 16 bytes in the
IOCB need to be altered to perform a call to CIO. In fact, we shall
see that for some commands, one or two of these bytes are all that
are necessary for implementation of the function .

158 Applications

DETAILS OF THE BYTES IN AN lOCB

Now that we've seen how to implement a simple call to the
central input-output system of the ATARI computers, we'll review
the full spectrum of information which needs to be stored in the
various locations of the 10CB in order to implement all possible
110 operations. We' ll examine each byte of the 10CB, in the order
in which they appear.

The first byte, ICHID, acts as an index into the device table, so
you can always tell which device an IOCB is accessing by looking at
the first byte. This is set by the OS, and you' ll not need to set it for
any use. The OS determines this index following the OPEN com
mand and stores the appropriate information here.

ICONO, the device number, is most often used when more than
one disk drive is connected to the system. A different 10CB is used
to communicate with each disk drive, and byte 2 of the 10CB dis
tinguishes between the drives in use. If a 1 is stored here, the 10CB
will access disk drive 1, and similarly for drives 2 through 4.

The command bytes for the various devices which can be con
nected to your ATARI computer are as follows:

Command Byte Description

Open 3 Open the device for operation
Get record 5 Input a line
Get character 7 Input one or more characters
Put record 9 Output a line
Put character 11 Output one or more characters
Close 12 Close the device
Status 13 Get device status
Draw line 17 Draw a line in GRAPHICS modes
Fill command 18 Fill part of GRAPHICS screen with color
Format disk 254 Format disk

The fourth byte of the 10CB is ICSTA, which is set by the OS
following the return from CIO. The status is also set in the Y regis-

,..

...

....

,..

,.

...

,..

Input-Output on the Atari 159

ter upon return from any call to CIO, so either the Y register or
ICSTA can be read by your program to determine the success or
failure of each I/ O operation. Any negative status (value greater
than 128 decimal, or $80 hexadecimal) indicates that an error oc
curred in the I/O operation.

The next 2 bytes of the IOCB act as a pointer to the buffer used
for either input or output, and are in the usual 6502 order, low byte
first. They are called ICBAL and ICBAH, respectively. A buffer is
an area of memory which contains the information you wish to
output, or into which you want the input information placed. For
instance, if you want to send text to a printer, ICBAL and ICBAH
are set up to point to the area of memory containing the text to be
printed. If you want to read a disk file into memory, these bytes of
the IOCB are set up to point to the area of memory where you want
the information placed from the disk .

ICPTL and ICPTH act as another 2-byte pointer, but in this
case, they point to the address of the put-byte routine of the device,
minus 1. Every device which can be opened for output must have a
put-byte routine written for it, telling the computer how to send
information to it. This will be covered more completely when we
discuss the handler table.

The next 2 bytes of the IOCB are ICBLL and ICBLH, which
contain the length of the I/O buffer, in bytes . As we shall see, there
is a special case of I/O in which we set the length of the buffer
equal to zero, by setting both ICBLL and ICBLH to zero. In this
special case, the information transferred is to or from the accumu
lator, rather than to or from memory.

Since many devices that can be connected to your ATARI have
several possible functions, you must be able to define in the 10CB
which function is to be implemented. This is done using the byte in
ICAXI, the next byte of the 10CB. The following table lists the
various possible bytes for ICAXI. TW refers to a separate text win
dow on the screen, such as that set up by the BASIC command
GRAPHICS 3; RE refers to a READ operation enabled from the
screen; and RD means that such a READ is not allowed, or
disabled.

160 Applications

ICAX1
Device Byte Function

Screen editor 8 Output to the screen
12 Input from the keyboard and output to

screen
13 Forced screen input and output

Screen display 8 Screen is cleared ; no TW; RD
12 Screen is cleared; no TW; RE
24 Screen is cleared; TW; RD
28 Screen is cleared; TW; RE
40 Screen is not cleared; no TW; RD
44 Screen is not cleared ; no TW; RE
56 Screen is not cleared; TW; RD
60 Screen is not cleared; TW; RE

Keyboard 4 Read - note:no output is possible
Printer 8 Write - note:no input is possible
Tape recorder 4 Read

8 Write
RS-232 port 5 Concurrent read

8 Block write
9 Concurrent write

13 Concurrent read and write
Disk drive 4 Read

6 Read disk directory
8 Write new file
9 Write - append

12 Read and write - update mode

The last byte of the IOCB we will discuss here is ICAX2, the
second auxiliary byte. ICAX2 is used in only a few special cases;
otherwise, it is set to zero. When using the cassette recorder, if a
value of 128 is stored in ICAX2, the short interrecord gaps, the
silent spaces between sections of information on the tape, are used,
which will allow faster loads of a tape written in this manner. A
value of zero in ICAX2 will produce the normal, longer interrecord
gaps.

Using the ATARI 820 printer, storing a value of 83 in ICAX2
will cause the printer to print sideways instead of in its normal
mode. Furthermore, values of 70 or 87 in ICAX2 will produce nor
mal or double-width characters on this printer.

,..

...

Input-Output on the Atari 161

Finally, graphics modes 0 to 11 are specified in the OPEN com
mand by placing the number of the desired mode in ICAX2. In
combination with the values described for ICAXI above, ICAX2
gives the assembly language programmer complete control over the
graphics mode, text window, screen clear, and read-write functions
of the screen. We'll learn more about this in Chapter 10.

THE HANDLER TABLE

Now that we've covered the various parts of an 10CB, we'll
briefly describe the handler table and how it works with the 10CBs
to form the I/O system with CIO. Then we'll look at a number of
examples which will show how to use this information to perform
many different types of I/O from assembly language. The simplest
way to examine the handler table is to view it as a short assembly
language program, such as this:

0100 PRINTV $E430
0110 CASETV $E440
0120 EDITRV $E400
0130 SCRENV $E410
0140 KEYBDV $E420
0150 i *******************************
0160 i Origin of HATABS = $031A
0170 i *******************************
0180 * = $031A
0190 .BYTE "P" iprinter
0200 .WORD PRINTV vector
0210 .BYTE "c" icassette recorder
0220 .WORD CASE TV vector
0230 .BYTE "E" ieditor
0240 .WORD EDITRV vector
0250 .BYTE "s" iscreen
0260 . WORD SCRENV vector
0270 .BYTE "K" ikeyboard
0280 . WORD KEYBDV vector
0290 .BYTE 0 i free entry #1(DOS)
0300 .WORD 0, 0
0310 .BYTE 0 ifree entry #2(850 interface)

162 Applications

0320 .WORD 0,0
0330 .BYTE ° ; free entry IIJ
0340 .WORD 0,0
0350 .BYTE ° ifree entry It4
0360 .BYTE 0,0
0370 .BYTE ° i free entry #5
0380 .WORD 0,0
0390 .BYTE ° ifree entry #6
0400 .WORD 0,0
0410 .BYTE ° ;free entry #7
0420 .WORD 0,0

Each entry in the handler table consists of the first letter of the
specified device, followed by the vector which points to the loca
tion in memory of the information needed to deal with that device.
As you can see, there are seven free places left in the handler table,
so the programmer is free to add whatever devices are necessary for
any purpose, and they'll be treated just like the devices already
specified. One other very important point about the handler table
should be noted here. Whenever the OS looks into the handler table
to find out where in memory it needs to look to take care of a
particular device, it reads the table from the bottom up! This is
intentional and allows you to insert your own printer handler near
the bottom of the table. As the table is searched, your vector will be
found first, and it is the one that will be used . Therefore, you can
write your own printer-handling routines and substitute these for
the normal routines easily, simply by placing another P: in one of
the lower free entries and following it by the 2-byte address vector
pointing to your new handling routines .

Let's briefly look at a typical handler entry point table, which
is the table to which the entry in the handler table points. For exam
ple, the vector PRINTY, used above, points to a second table, the
printer handler entry point table. In fact, all of the above vectors
point to their respective handler entry point tables, and all of these
tables are arranged identically. They contain the addresses minus 1
of the routines used for the following functions, in the following
order:

OPEN the device routine
CLOSE the device routine

....

...

...

READ routine
WRITE routine

Input-Output on the Atari

STATUS of the device routine
SPECIAL functions, where implemented

163

The handler entry point table is always terminated by a 3-byte JMP
instruction, which points to the initialization routine for that de
vice. Remember: the addresses found in the handler entry point
table do not point to the OPEN and CLOSE routines, but rather,
they point to the address 1 byte lower in memory than the begin
ning of each of these routines. It is obviously very important to
remember this when you are constructing your own handler entry
point table!

A SIMPLE I/O ROUTINE
Let's see how we can use CIO for a simple function - writing

to the screen. We know that in BASIC, if we want to write a line of
text to the screen, all that's required is a single line of code like this:

PRINT "A SUCCESSFUL WRITE!"

In assembly language, it's also fairly simple to print to the screen,
now that we understand the use of the IOCB and CIO. Just to
review, we don't have to open the screen as a device if we don't
want to, since IOCBO is already allocated by the OS for the screen.
Therefore, we can load the X register with zero and use that as an
offset into the IOCB. Alternatively, we can just use absolute ad
dressing, since we'll be using the first IOCB. In the example below,
we'll use the X register loaded with zero, just so we become familiar
with the normal procedure for inserting the required information
into the IOCB. Here's the routine to write the line to the screen:

0]40
0]41

0100 ******************************
0110 CIO equates
0120 ******************************
01]0 ICHID
0140 ICDNO =

$0]40
$0]41

164 Applications

0342 0150 lCCOM $0342
0343 0160 lCSTA $0343
0344 0170 l CBAL $0344
0345 0180 l CBAH $0345 ...
0346 0190 lCPTL $0346
0347 0200 lCPTH $0347
0348 0210 lCBLL $0348
0349 0220 lCBLH $0349
034A 0230 lCAX1 $034A
034B 0240 lCAX2 $034B
E456 0250 ClOV $E456
0000 0260 *= $600

0270 ; ******************************
0280 Now we load in required data
0290 ******************************

0600 A200 0300 LDX #0 ;Since it's lOCBO
0602 A909 0310 LDA #0 ;For put record
0604 9D4203 0320 STA lCCOM,X ;Comrnand byte
0607 A91F 0330 LDA IIMSG&255 ;Low byte of MSG
0609 9D4403 0340 STA lCBAL,X ; into lCBAL
060C A906 0350 LDA IIMSG/256 ;High byte of MSG
060E 9D4503 0360 STA lCBAH,X ; into lCBAH
0611 A900 0370 LDA #0 ;Length of MSG
0613 9D4903 0380 STA lCBLH,X ; high byte
0616 A9FF 0390 LDA II$FF ;) length of MSG
0618 9D4803 0400 STA lCBLL,X ; see discussion

0410 ******************************
0420 Now put it to the screen
0430 ******************************

061B 2056E4 0440 JSR CIOV ,..
061E 60 0450 RTS

0460 ******************************
0470 The message itself
0480 ******************************

061F 41 0490 MSG .BYTE "A SUCCESSFUL WRlTE!" , $9B
0620 20
0621 53
0622 55
0623 43
0624 43
0625 45 -0626 53

0627 53
0628 46
0629 55
062A 4C
062B 20
062C 57
062D 52
062E 49
062F 54
0630 45
0631 21
0632 9B

Input-Output on the Atari 165

Of course, writing to the screen is so simple in BASIC that
there would be no reason to write this program as a subroutine for
BASIC, so it doesn't contain the usual PLA instruction. Since you
will need to print to the screen to debug assembly language pro
grams, this routine may become one of your most frequently used
programs.

In order to test this program once you have entered it, simply
type ASM to assemble it, and when the assembly is complete, type
BUG to enter the DEBUG mode of the Assembler/Editor car
tridge. Then type G600 to begin execution at address $600. If the
program has been typed correctly, the phrase A SUCCESSFUL
WRITE! should appear, followed by the printing to the screen of
the 6502 registers. These are printed following every routine that
uses the cartridge. This same procedure should be used to test each
of the routines given in this book . If problems arise, check your
typing.

PLEASE NOTE!!! SAVE YOUR PROGRAMS BEFORE YOU
TRY TO RUN THEM!!! Then if they fail, or you have a com
puter crash, you won ' t have to retype the entire program

In this program, we write the entire message to the screen by
using the put-record command, storing a 9 into ICCOM. The ad
dress of the message we want to display on the screen is then stored

166 Applications

into ICBAL and ICBAH, as before. We store a zero into the high
byte of the length of the message, but $FF into the low byte.

Why $FF when the message is only 20 bytes long? When CIO is
used in the put-record mode, the record is output byte by byte, until
either the length of the buffer, set in ICBLL and ICBLH, has been
exceeded or until a RETURN is encountered in the record being
output. Note that the message which was set up in line 490 termi
nates with a byte of $9B, which is a RETURN. Therefore, the mes
sage will be sent to the screen, then a carriage return will be sent to
the screen, and then the routine will terminate. We set the length of
the record intentionally longer than the real message, because we
want the $9B in the message itself to terminate the output. This
way, we can't make a mistake and unintentionally cut the message
short by setting ICBLL or ICBLH smaller than we intended .

It is important to note that we didn 't set all of the bytes in the
10CB. In fact, we only needed to set the bytes that our particular
routine used. As you'll see below, this is always the case with the
central ATARI routines . The actual output to the screen is accom
plished by the call to the central 110 routine in line 440, and the
RTS in the next line returns control to the Assembler/Editor car
tridge. If this were part of a larger assembly language program, the
rest of the program would continue from line 450 without the RTS.

OTHER FORMS OF THE 1/0 ROUTINE
Let's look at another way to write a message to the screen,

using the CIO system. Instead of loading ICCOM with 9, for put
record, we can load it with 11, for put bytes. The other bytes of the
10CB are set as above, except for ICBLL, which is set to the exact
length of the message. When counting the bytes in the message,
don't forget to include the byte for the $9B, the RETURN. The
program will then look like this:

0340
0341

0100 ******************************
0110 CIO equates
0120 ******************************
0130 ICHID
0140 ICDNO =

$0340
$0341

-

-

...

...

...

..

Input-Output on the Atari

0342 0150 lCCOM $0342
0343 0160 lCSTA $0343
0344 0170 lCBAL $0344
0345 0180 lCBAH $0345
0346 0190 lCPTL $0346
0347 0200 lCPTH $0347
0348 0210 lCBLL $0348
0349 0220 lCBLH $0349
034A 0230 lCAX1 $034A
034B 0240 lCAX2 $034B
E456 0250 CIOV $E456
0000 0260 *= $600

0270 ******************************
0280 Now we load in required data
0290 ******************************

0600 A200 0300 LOX #0 ;Since it's lOCBO
0602 A90B 0310 LOA #11 ;For put bytes
0604 9D4203 0320 STA lCCOM ,X ;Command byte
0607 A91F 0330 LOA lIMSG&255 ;Low byte of MSG
0609 9D4403 0340 STA lCBAL,X ; into lCBAL
060C A906 0350 LOA lIMSG/256 ;High byte of MSG
060E 9D4503 0360 STA lCBAH,X into lCBAH
0611 A900 0370 LOA #0 ; Length of MSG
0613 9D4903 0380 STA lCBLH,X ; high byte
0616 A914 0390 LDA #20 ;length of MSG
0618 9D4803 0400 STA lCBLL,X ; low byte

0410 ******************************
0420 Now put it to the screen
0430 ******************************

061B 2056E4 0440 JSR ClOV
061E 60 0450 RTS

0460 ******************************
0470 The message itself
0480 ******************************

061F 41
0620 20
0621 53
0622 55
0623 43
0624 43
0625 45
0626 53

0490 MSG .BYTE "A SUCCESSFUL WRlTE !" , $9B

167

168

0627 53
0628 46

0629 55
062A 4C

062B 20

062C 57

062D 52

062E 49

062F 54

0630 45

0631 21

0632 9B

Applications

This program accomplishes exactly the same end that the pre
vious routine does, but in a different way. Both of these programs
write a message to the screen that ends in a carriage return. There is
a special case of writing to the screen in which we do not want the
text to be followed by a return, such as when we are prompting for
input, or when we would like to format the screen in a particular
way. In BASIC, this instruction simply is a PRINT statement fol
lowed by a semicolon, which inhibits the normal carriage return
following a PRINT command. If, for instance, we want to print a
> symbol to the screen to prompt the user for input, but we want
the cursor to remain on the same line as the symbol, in BASIC we
could write the following line to accomplish this task:

PRI NT ") " ;

In assembly language programming, the code is as follows :

0100 ; ******************************
0110 ; CIO equates

0120 ; ******************************
0340 0130 ICHID $0340
0341 0140 I CDNO $0341

0342 0150 IC COM $0342
0343 0160 ICSTA $0343

0344 0170 I CBAL $0344
0345 0180 I CBAH $0345

...

....

-
-
-

Input-Output on the Atari 169

0346 0190 lCPTL $0346
0347 0200 lCPTH $0347
0348 0210 lCBLL $0348
0349 0220 lCBLH $0349
034A 0230 lCAXl $034A
034B 0240 lCAX2 $034B
E456 0250 ClOV $E456
0000 0260 *= $600

0270 ******************************
0280 Now we load in required data
0290 for special 1-character case
0300 ******************************

0600 A200 0310 LOX IJO jSince it's lOCBO
0602 A90B 0320 LDA #1.1 ;For put bytes
0604 9D4203 0330 STA lCCOM,X ;Command byte
0607 A900 0340 LOA IJO ;Length of MSG
0609 9D4903 0350 STA ICBLH,X ; high byte
060C A900 0360 LOA IJO ;length of MSG
060E 9D4803 0370 STA lCBLL,X ; low byte

0380 ******************************
0390 Now put it to the screen
0400 ******************************

0611 A93E 0410 LDA #62 ;For ")"
0613 2056E4 0420 JSR CIOV
0616 60 0430 RTS

If we set the length of the buffer equal to zero (by setting both
the high and low bytes, ICBLL and ICBLH, to zero), then the char
acter contained in the accumulator when CIOV is accessed will be
printed to the output device without a following carriage return .
This applies to all devices, including disk drives, tape recorders,
printers and the screen, and it points out a very important feature
of the ATARI computers: input and output are largely device-inde
pendent. That is , the OS treats all devices similarly, so we don't
have to learn how to write a message to the screen, then learn a
different way to send information to the printer, and learn still an
other method for passing information to the disk drive. The
method is identical, once the IOCB has been opened for the device.
To demonstrate this, we ' ll look at a routine to send the same mes
sage to a printer.

170 Applications

OUTPUT TO A PRINTER
First we'll close IOCB2, just to be on the safe side; then we'll

open the printer as a device using IOCB2; and then we'll send our
message.

0100 ******************************
0110 cro equates
0120 ******************************

0340 0130 lCHID $0340
0341 0140 lCDNO $0341
0342 0150 lCCOM $0342
0343 0160 lCSTA $0343
0344 0170 lCBAL $0344
0345 0180 lCBAH $0345
0346 0190 lCPTL $0346
0347 0200 lCPTH $0347
0348 0210 lCBLL $0348
0349 0220 lCBLH $0349
034A 0230 lCAX1 $034A
034B 0240 lCAX2 $034B
E456 0250 crov $E456
0000 0260 *= $600

0270 ******************************
0280 First, close and open lOCB2
0290 ******************************

0600 A220 0300 LDX 11$20 i for lOCB2
0602 A90C 0310 LDA 1112 iclose command
0604 9D4203 0320 STA ICCOM,X into lCCOM
0607 2056E4 0330 JSR ClOV ido the CLOSE
060A A220 0340 LDX 11$20 iIOCB2 again
060C A903 0350 LDA IIJ iopen file
060E 9D4203 0360 STA lCCOM,X i is the command
0611 A908 0370 LDA #8 ioutput
0613 9D4A03 0380 STA ICAX1,X i open for output
0616 A94C 0390 LDA IINAM&255 ilow byte of device
0618 9D4403 0400 STA ICBAL,X ipoints to "P:"
061B A906 0410 LDA IINAM/256 ihigh byte
061D 9D4503 0420 STA lCBAH,X
0620 A900 0430 LDA IiO
0622 9D4903 0440 STA lCBLH,X ihigh byte length

...

-

-
,....

Input-Output on the Atari

0625 A9FF 0~50 LDA #$FF
0627 9D~803 0~60 STA ICBLL,X j)low byte length
062A 2056E~ 0~70 JSR CIOV jdo the OPEN

0~80 ******************************
0~90 Now we'll print the message
0500 ******************************

062D A220 0510 LDX #$20 jby us ing IOCB2
062F A909 0520 LDA #9 jput record
0631 9D~203 0530 STA ICCml,X command
063~ A9~F 05~0 LDA IIMSG&255 jaddress of MSG
0636 9D~~03 0550 STA ICBAL ,X j l ow byte
0639 A906 0560 LDA IIMSG/256 jaddress of MSG
063B 9D~503 0570 STA ICBAH ,X j high byte
063E A900 0580 LDA 110 jlength of MSG
06~0 9D4903 0590 STA ICBLH ,X j high byte
0643 A9FF 0600 LDA #$FF j) length of MSG
0645 9D~803 0610 STA ICBLL,X j low byte
0648 2056E~ 0620 JSR CIOV jput out the line
064B 60 0630 RTS jend of rout ine
064c 50 0640 NAM ,BYTE "P;" ,$9B
06~D 3A
064E 9B
06~F 41
0650 20
0651 53
0652 55
0653 43
065~ 43
0655 45
0656 53
0657 53
0658 46
0659 55
065A ~C
065B 20
065C 57
065D 52
065E ~9
065F 5~

0660 ~5
0661 21
0662 9B

0650 MSG ,BYTE "A SUCCESSFUL WRITE!",$9B

171

172 Applications

Of course, if you are using an ATARI printer and want to print
in expanded print, you'll have to set ICAXI and ICAX2 before the
final call to CIOV, but that's trivial. Note that we have not CLOSEd
IOCB2 following the printing of our message, so if we want to print
anything else, we can simply send it through IOCB2 without need
ing to OPEN it again. Of course, that also means that now we can't
use IOCB2 for anything else, such as disk access. If we need to
access the disk, we can use one of the other IOCBs, or we can
CLOSE IOCB2 first and then reOPEN it for our disk operation.

Note that if we want the printhead to stop after printing a sin
gle character, without a trailing carriage return, we can use the spe
cial case of zero-length buffer, exactly as we did above for the
screen.

OUTPUT TO A DISK

In order to show the versatility of the ATARI central I/O rou
tines, we won't even give the program here to write the same line to
a disk file. The method will be described, and you'll be able to send
information to your disk on the first try, all by yourself! The only
change needed in the program given above for the printer is this: to
use the disk drive, the NAMe of the device is the disk file you wish
to OPEN. Therefore, the program is identical to that given above,
but line 640 should read something like:

640 NAM .BYTE "Dl: MYFILE.l" , $9B

That's all there is to it. You can see the beauty of using identical
CIO routines for all devices, and you should now be able to output
information to any device of your choosing in assembly language.

INPUT USING CIOV

The method for input from a device to your ATARI computer
is exactly the same as that for output, but the device must be

-

-

Input-Output on the Atari 173

OPENed for input. We could, for instance, retrieve the above mes
sage from our disk file "Dl :MYFILE.I" by OPENing this file for
input, using a 3 in ICCOM and a 4 in ICAXI, and pointing ICBAL
and ICBAH to the location in memory to which we want the mes
sage transferred. For instance, if we want the message to begin at
memory location $680, we would set ICBAL to #$80 and ICBAH
to #6; after the call to ClOY, memory locations $680 through $694
will contain the bytes of the message, which can then be examined
by the remainder of our program.

The ease and simplicity of this I/O on an ATARI computer
should not be underestimated. Learning each device is a separate
chore with many other microcomputers; input and output may use
different routines, each with their own peculiarities. The central
I/O philosophy used in the ATARI greatly simplifies this process
for us. Now you can use this system to greatly enhance your assem
bly language programming abilities.

One final note on the I/O routines: if we OPENed one IOCB
for input from a file on the disk drive and a second IOCB for
output to a printer or to the screen, it would be an trivial task to
transfer information very quickly from one device to another by
pointing to the same buffer for both IOCBs. Printing hard copy
from and copying memory to a disk file is simple. We can even
transfer information from the disk drive to the screen, or to a tape
recorder.

NON-CIO INPUT AND OUTPUT

THREE DIFFERENT 1/0 SYSTEMS

Besides CIO, there are two other methods for using the disk
drive as an input-output device; both reside in the OS. They use
vectors called DSKINV and SIOV, at $E453 and $E459, respec
tively.

The three methods of disk I/O can be viewed as an onion, with
multiple layers of contro!' The outer layer, which does most of the
work for you, is the CIO system; the middle layer, which does some

174 Applications

of the work for you, is the DSKINV system; and the inner layer, in
which the programmer does all of the work, is the SIOV system. In
fact, SIOV, the serial input-output vector, is used for all communi
cations which take place over the serial bus, the 13-pronged connec
tor on the side of your ATARI computer. Even the CIO system
performs the actual input-output operations by calling SIO, after
using the information in the 10CB to set up everything for SIO.
DSKINV, about which we will learn more shortly, also calls SIO to
perform the actual I/O .

DISK FILE TYPES

A floppy disk for your ATARI disk drive contains 40 concen
tric tracks, somewhat like a phonograph record . On a record, how
ever, the tracks are actually one continuous spiral, whereas on a
floppy disk, each track is a separate circle. Each track is divided
into 18 sectors. To envision this, imagine cutting the disk like a
pizza, with 18 equal slices. Then cut the pizza into 40 concentric
circles, like a bullseye with 40 different colored rings. Each piece of
the pizza is one sector. We'll have 18 X 40, or 720 sectors. On each
of the sectors, the ATARI can store 128 bytes of information.

In the process of formatting a disk, not only are the 720 sectors
created, but a Volume Table Of Contents (VTOC) and a disk direc
tory are also created . The disk directory acts just like the table of
contents of a book, listing each file (chapter) contained on the disk
and the sector number where that file can be found (page). The
VTOC keeps track of which sectors have already been filled and
which remain empty, so that when we save a new file onto a par
tially full disk, we won't write over information already stored in
another file. When we delete a file, its sectors are freed in the
VTOC so that they can be used again. Note that when a file is
deleted, only 1 byte of the file is actually changed - the status, or
flag, byte. The first five bytes of the disk directory entry for each
file are:

1. The status byte, which contains the status of the file. Each of 4
bits of the status byte are used to store specific information
about that file:

,..

...

...

,..

Input-Output on the Atari

Bit 0 set if file is open for output
Bit 5 set if file is locked
Bit 6 set if file is in use
Bit 7 set if file was deleted

175

2,3. The length of the file , in sectors, in the usual low byte-high
byte order.

4, 5. The number of the first sector of the file in low-high order.

If you have any of the many disk utility programs available,
you can actually retrieve a deleted file, simply by changing the sta
tus byte from $80 to $40. However, if you write any information to
the disk prior to trying this procedure, it will not work. The VTOC
is changed when a file is deleted, freeing the sectors for use; if
you've written to the disk, you'll find that some of the sectors pre
viously used for the file you want to retrieve have been overwritten
by the new information.

For the purpose of this discussion, we'll describe two different
file types used by the ATARI computers. The first, and by far the
most common, is the linked file, such as that created by this BASIC
instruction:

SAVE "D:GAME"

First, the disk directory is searched. Since a maximum of 64 files
can be contained on a single disk, this check ensures that there is
room in the disk directory for another file, called GAME. If, when
checking the directory, a file called GAME is encountered, it is
deleted (unless it is locked) and the new file replaces the old one.
Assuming that this is the first GAME file to be SAVEd and that
there is room in the disk directory, the first 125 bytes of the new file
GAME are written to the first sector which the VTOC says is avail
able. Note that only 125 bytes of the file are written, even though
each sector can hold 128 bytes. This leaves room for the 3 bytes
added by CIO, which lead to the name linked file for this type of
file.

These 3 bytes contain the following information:

176

125
Byte Number

126

Applications

127

76543210 76543210 76543210
file # forward link S byte ct

The high 6 bits of byte 125 are the file number, taken from the
number of the file in the disk directory. For instance, if GAME is
the fourth file listed in the directory, then the fi le number contained
in the high 6 bits of byte 125 of every sector of GAME is 3, since
the numbering start s with file O. This number is checked when read
ing this file to ensure that each sector really belongs to the file
GAME. I f, when reading a fi le, a sector is encountered with a dif
ferent file number, an error message will be displayed on your
screen. This usually means that things have really been messed up
on your disk; trying to fix such a fi le is a major undertaking.

The low order 2 bits of byte 125 are combined with byte 126 to
produce a 10-bit number containing the number of the next sector
of the file . Therefore, after the first sector is read , the next sector to
be read can be determined from this forward link, and so on, until
the whole file is read. That is why we ca ll this a linked file . The last
sector of each file contains 00 as a forward link, so we can deter
mine when the entire file has been read .

Byte 127 of each sector of a linked file contains the number of
bytes stored into that sec tor. In every sector except the last of each
file, this wi ll equal 125 . If fewer than 125 bytes are contained in the
sector, the high bit of byte 127, the S bit, will be set, denoting a
Short sector of less than 125 bytes.

The second major type of di sk file is called the sequential file,
and is much simpler in structure. It uses neither the disk directory
nor the VTOC, and uses all 128 bytes of each sector for storage.
The sectors are read from such a fi le seq uentially: sector 3 is read
after sector 2, which was read afte r secto r I. The first sector of such
a file contains the load address (where in memory to load this file)
and the start address (where to begin execution of the program
once the load is complete). This type of file is usually found on
commercially available games. I f you attempt to look at the disk
directory of such a di sk, you' ll see only garbage, since no directory
was ever set up for that disk.

Input-Output on the Atari 177

USE OF THE DIFFERENT 1/0 SYSTEMS

CIO is generally used to read a linked fi le, such as a BASIC
program, or, for that matter, the source code for an assemb ly lan
guage program. However, when you want to read a specific sector
from th e disk , genera ll y DSKINV o r S IO is used . Let's examine
how we would accomplish th ese tas ks using the three different
types of I/O calls.

First, we'll open a di sk file a nd read it into memory. The seg
ment of the program that opens a fil e is very similar to the program
above which opened the disk director y:

0340
0341
0]42
0]43
0344
0345
0]46
0347
0348
0349
034A
034B
E456
0000

0600 A220
0602 A90C

0100 1*111*************************
0110 CIO equates
0120 ***1*****************.********
0130 ICHID $0]40
0140 ICONO $0]41
0150 ICCm! $0]42
0160 ICSTA $0]4]
0170 ICBAL $0]44
0180 ICBAH $0]45
0190 ICPTL $0]46
0200 ICPTH $0]47
0210 ICBLL $0]48
0220 ICBLH $0349
0230 ICAX1 $034A
0240 ICAX2 $0]4B
0250 crov $E456
0260 *= $600
0270 **1*******1*******************
0280 Open a file called OBJECT .COO
0290 , *****************************1
0300 LOX 11$20 ;use roCB2
0310 LOA 1112 ; to close roCB

0604 904203 0320 STA ICCOM ,X ;command byte
0607 2056E4 0330 JSR CIOV ; do the close

0340 1*****************************
060A A220 0350 LOX 11$20 ;use IOCB2 again
060C A90] 0]60 LOA IIJ ;open command
060E 904203 0370 STA ICCOM ,X ; command byte
0611 A904 0380 LOA IlL. ;open for read

178

0613 9D4A03 0390
0616 A900 0400
0618 9D4B03 04 10
061B A94F 0420
061D 9D4403 0430
0620 A906 0440
0622 9D4503 0450
0625 2056E4 0460

0470
0628 A220 0480
062A A900 0490
062C 9D4403 0500
062F A950 0510
0631 9D4503 0520
0634 A9FF 0530
0636 9D4803 0540
0639 9D4903 0550
063C A905 0560
063E 9D4203 0570
0641 2056E4 0580

0590
0644 A220 0600
0646 A90C 0610
0648 9D4203 0620
064B 2056E4 0630
064E 60 0640

Applications

STA ICAX1 ,X into ICAX1
LDA #0 i 0 into ICAX2 is
STA ICAX2 ,X ijust for insurance
LDA IINAME&255 i 1011 byte of file
STA ICBAL ,X i name address
LDA IINAME/256 ihigh byte - f i le
STA ICBAH ,X
JSR CIOV

i name address
i open the file

LDX #$20
LDA #0
STA ICBAL,X
LDA #$50
STA ICBAH ,X
LDA #$FF
STA ICBLL ,X
STA ICBLH,X
LDA #5
STA ICCOM,X
JSR CIOV

i IOCB2

i lol1 byte-address
ihigh byte-address

is then $5000
imake buffer length
i very long so the
i I1hole file loads
i get record
icommand byte
iread the I1hole f i le

LDX #$20 i IOCB2
LDA #12 i to close IOCB
STA ICCOM,X icommand byte
JSR CIOV ido the close
RTS i end of the routine

064F 44
0650 31
0651 3A
0652 4F
0653 42
0654 4A
0655 45
0656 43
0657 54
0658 2E
0659 43
065A 4F
065B 44
065C 9B

0650 ******************************
0660 NAME .BYTE "D1 :0BJECT.COD" , $9B

...

-

....

Input-Output on the Atari 179

This program makes use of a trick to load the entire file in one
operation . In lines 530 to 550, we set the length of the buffer to
$FFFF, or 65,535 bytes. The CIO routine then will load the entire
file, stopping either when 65,535 bytes have been loaded (an impos
sibility) or when an end-of-line byte is encountered. Therefore, if
our file contains any end-of-line bytes ($9B), the load will termi
nate, and we won't load the entire file . How can we get around this
problem?

Since we probably won't know for sure whether the file to be
loaded will contain any $9B bytes, we should play it safe and use a
method which will load any file. To do this, we load one sector (128
bytes) at a time, continuing until an error condition is achieved,
which will occur at the end of the file. Using CIO, we know when
an error occurs, since we will return from the call to CIO with the
negative flag set. Let's take a look at the program to perform this
type of load using CIO:

0100 ******************************
0110 CIO equates
0120 ******************************

0340 0130 ICHID $0340
0341 0140 ICDNO $0341
0342 0150 ICCOM $0342
0343 0160 ICSTA $0343
0344 0170 ICBAL $0344
0345 0180 ICBAH $0345
0346 0190 ICPTL $0346
0347 0200 ICPTH $0347
0348 0210 ICB11 $0348
0349 0220 ICBLH $0349
034A 0230 IeAXl $034A
034B 0240 ICAX2 $034B
E456 0250 CIOV $E456
0000 0260 *= $600

0270 ******************************
0280 Open a file called OBJECT . COD
0290 ******************************

0600 A220 0300 LDX #$20 ;use IOCB2
0602 A90C 0310 LDA 1112 ; to close lOCB

180 Applications

0604 9D4203 0320 STA ICCOM,X icommand byte
0607 2056E4 0330 JSR CIOV ido the close

0340 ******************************
060A A220 0350 LDX #$20 iuse IOCB2 again
060C A903 0360 LDA I/J iopen command
060E 9D4203 0370 STA ICCOM,X icommand byte
0611 A904 0380 LDA #4 i open for read
0613 9D4A03 0390 STA ICAXl,X ; i nto ICAXl
0616 A900 0400 LDA #0 iO i nto ICAX2 is
0618 9D4B03 0410 STA ICAX2,X ijust for insurance
061B A969 0420 LDA liNAME&255 i low byte of file
061D 9D4403 0430 STA ICBAL,X i name address
0620 A906 0440 LDA liNAME/256 ihigh byte - file
0622 9D4503 0450 STA ICBAH,X i name address
0625 2056E4 0460 JSR CIDV i open the f ile -0470 ******************************
0628 A220 0480 LDX #$20 iIOCB2
062A A900 0490 LDA #0
062C 9D4803 0500 STA ICBLL ,X i lo buffer length
062F A980 0510 LDA #$80 ito load one sector
0631 9D4903 0520 STA ICBLH,X i at a t ime
0634 A950 0530 LDA #$50 ihigh byte of
0636 9D4503 0540 STA ICBAH, X i buffer address
0639 A905 0550 LDA 115 iget record
063B 9D4203 0560 STA ICCOM,X i command byte
063E A220 0570 LOOP LDX #$20 ifor when looping -0640 A900 0580 LDA #0 ilo byte of buffer
0642 9D4403 0590 STA ICBAL,X i address aY start
0645 2056E4 0600 JSR CIOV iread 1st sector
0648 3014 0610 BMI FIN iif done, to FIN -064A A220 0620 LDX #$20 i IDCB2
064c A980 0630 LDA #$80 imove up 128 bytes
064E 9D4403 0640 STA ICBAL,X for buffer
0651 2056E4 0650 JSR CIOV iread next sector
0654 3008 0660 BMI FIN iif done, to FIN
0656 A220 0670 LDX #$20 iIOCB2
0658 FE4503 0680 INC ICBAH,X iraise buffer again
065B 4C3E06 0690 JMP LOOP inot done-read more

0700 ******************************
065E A220 0710 FIN LDX #$20 iIOCB2
0660 A90C 0720 LDA 1112 i to close IDCB
0662 9D4203 0730 STA ICCOM,X icommand byte

0665 2056E4 0740
0668 60 0750

Input-Output on the Atari

JSR CIOV

RTS

ido the close
iend of the routine

0669 44
066A 31
066B 3A
066C 4F
066D 42
066E 4A
066F 45
0670 43
0671 54
0672 2E
0673 43
0674 4F
0675 44
0676 9B

0760 ******************************
0770 NAME .BYTE 1D1:0BJECT.COD",$9B

181

We continue to loop until we encounter an error on I/O, at
which time we branch to FIN to close the file and finish the routine.
You must be careful that no errors other than the end-of-file error
occur, since this program will branch to FIN on any error. It would,
of course, be fairly easy to write a routine to first determine the
error code returned in the Y register after the call to CIOV and then
take appropriate action depending on the error code. Note that in
this routine, we have to take care of some of the housekeeping for
loading the file, such as incrementing the buffer address in lines
630, 640, and 680; we didn't have to worry about this in the first
example. We also have to build in routines that we didn't formerly
need to determine when we are done loading.

LOADING USING THE RESIDENT DISK
HANDLER

In order to utilize the resident disk handler, the programmer
must set up a Device Control Block (DCB), which is exactly analo
gous to the IOCB we need to set up when we use CIO. The equates
for this DCB are as follows:

182 Applications

0100 ******************************
0110 SIO equates
0120 ******************************
0130 DDEVIC = $0300 ;seria1 bus I .D.
0140 DUNIT = $0301 ;device number
0150 DCOMND $0302 ; command byte
0160 DSTATS $0303 ;status byte
0170 DBUFLO $0304 ; 10 buffer addr .
0180 DBUFHI $0305 ;hi buffer addr .
0190 DTIMLO $0306 ;disk timeout
0210 DBYTLO $0308 ;10 byte count
0220 DBYTHI $0309 ;hi byte count
0230 DAUX1 $030A ; auxiliary 111
0240 DAUX2 = $030B ; auxiliary #2
0250 SIOV = $E459
0260 DSKINV = $E4 5 3

The third byte of both the IOCB and DCB is the command
byte, although the command bytes themselves are different in the
two systems, and the fifth and sixth bytes of both systems are the
buffer address . Only the following 5 command bytes are allowed by
the resident disk handler:

$21 format a disk
$50 write a sector
$52 read a sector
$53 status request
$57 write a sector with write-verify

It is therefore apparent that the resident disk handler is a more
limited but a far simpler system than CIO . Let's look at how we can
use the DCB and the resident disk handler, through DSKINV, to
read information from the disk. Of course, we will not be reading
regular DOS files using this system; they are linked files, and the
resident disk handler is not designed to handle linked files, but
rather sequential ones. Let's therefore assume that we want to read
sectors $20 through $60, inclusive , rather than some disk file . The
program to do this using DSKINV follows:

....

-

-

....

Input-Output on the Atari 183

0100 ******************************
0110 SIO equates
0120 ******************************

0]00 01]0 DDEVIC $0]00 ;serial bus I.D.
0]01 0140 DUNIT $0]01 ;device number
0]02 0150 DCOMND $0]02 ;command byte
0]0] 0160 DSTATS $0]03 ;status byte
0]04 0170 DBUFLO $0]04 ;10 buffer addr.
0]05 0180 DBUFHI $0]05 ;hi buffer addr.
0]06 0190 DTIMLO $0]06 ;disk timeout
O]OB 0200 DBYTLO $O]OB ;10 byte count
0]09 0210 DBYTHI $0]09 ;hi byte count
O]OA 0220 DAUXl $O]OA ; auxiliary 111
O]OB 0230 DAUX2 $0]08 ; auxiliary 112
E459 0240 SIOV $E459
E45] 0250 DSKINV $E453
0000 0260 *= $600

0270 ******************************
0280 assume file begins at sector
0290 $20 and extends to sector $60
0]00 ******************************

0600 A900 0]10 LDA jj{)

0602 BDOBO] 0]20 STA DAUX2 ;hi sector number
0605 BDOBO] 0]30 STA DBYTLO ;10 buffer length
060B A9BO 0]40 LDA II$BO ;to load one sector
060A BD090] 0]50 STA DBYTHI at a time
060D A950 0]60 LDA 11$50 ;high byte of
060F BD050] 0]70 STA DBUFHI ; buffer address
0612 A952 O]BO LDA 11$52 ;get sector
0614 BD020] 0]90 STA DCOMND ; command byte
0617 A920 0400 LDA 11$20 ;10 sector number
0619 BDOAO] 0410 STA DAUX1 ; goes here
061C A900 0420 LOOP LDA jj{) ;10 byte of buffer
061E BD040] 0430 STA DBUFLO address @ start
0621 2053E4 0440 JSR DSKINV ;read 1st sector
0624 A9BO 0450 LDA II$BO ;move up 12B bytes
0626 BD040] 0460 STA DBUFLO for buffer
0629 EEOAO] 0470 INC DAUX1 ;next sector
062C ADOAO] 0480 LDA DAUX1 ;are we done?
062F C960 0490 CMF 11$60
06]1 BOlO 0500 BCS FIN ;yes

184 Applications

06JJ 205JE4 0510 JSR DSKINV ;no - read next sector
06J6 EE050J 0520 INC DBUFHI ;raise buffer page
06J9 EEOAOJ 05JO INC DAUX1 ;next sector
06JC ADOAOJ 0540 LDA DAUX1 ;are we done?
06JF C960 0550 CMP #$60
0641 90D9 0560 BCC LOOP ;no
064J 60 0570 FIN RTS ; all finished

As we saw above, the further we get from the initial CIO rou
tine, the more housekeeping we must take care of. In this program,
we must handle the incrementing of the disk sectors and the buffer
location after each read, and we must determine whether we are
done by constantly comparing the sector number to the final sector
desired, $60. This is what we meant when we compared the various
1/0 systems to the layers of an onion. The closer we get to the core,
the more work we have to do, and the less the system handles for
us.

At the very core is the Serial Input~Output system (SIO) itself.
We accessed DSKINV in this program, but we could have called
SIOV instead . However, before doing so, we would have had to set
up the entire DCB instead of just the pertinent bytes, as we did . For
instance, the serial bus ID would have had to be set to $31, in
DDEVIC, and the timeout value to some reasonable value, like 45 .
Then we could have accomplished exactly the same results by re
placing each call to DSKINV with a call to SIOV, but with the ex
pense of still more housekeeping .

Note that both CIOV and DSKINV themselves call SIOV to
actually accomplish the serial input and output, but they handle
their respective housekeeping tasks before these calls. The further
you get from CIO, the more precise your control of the system, but
the more work for yourself. This is a general rule in computing - a
high level language is the easiest to use, but gives you the least
control of the system. As you gain more control, you also need to
work harder. Well, you really didn't expect to get something for
nothing, did you?

This concludes our discussion of disk 110. You should now be
completely familiar with how to get information to and from a disk
drive, either using sequential or linked files . Experiment with these
systems until you feel comfortable, since they are basic to many
applications that you will want to try.

GRAPHICS

One of the most exciting and unique features of the ATARI
computers is their excellent graphics. When compared with other
popular microcomputers for quality of graphics, the ATARI is gen
erally the clear winner. In fact, most arcade-type games available
for several different computers look best on the ATARI, and adver
tising generally utilizes photographs taken from the screen genera
ted on an ATARI.

"But," you say, "that's only available from BASIC." There is
a common misconception among ATARI owners that the graphics
commands are in the BASIC cartridge, and that commands like
PLOT and DRAWTO can't be used without the BASIC cartridge in
place. In fact, all of the graphics routines are located in the OS, and
are therefore available from any language. We'll now see how to
use these routines from assembly language.

Any program which requires such commands as GRAPHICS
n, PLOT, or the other graphic commands, generally utilizes these
many times throughout the program . It is therefore easiest to
present these routines as a set of assembly language subroutines,
which can be called from any program. These routines can be saved
on a disk as a group and ENTERed into any program requiring
graphics routines. To utilize the routines in the program, you'll gen-

185

186 Applications

erally have to load the X and Y registers and the accumulator with
parameters that you'd like to implement, and then JSR to the ap
propriate routine. Note that this parameter passing is discussed in
the comments to each routine, to make its use clear. Detailed dis
cussion of the subroutines appears in the section following the pro
gram listings .

THE ASSEMBLY LANGUAGE GRAPHICS
SUBROUTINES

0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
034A
034B
E456

02C4
0055
0054
02FB
OOCC
OOCD
0000

0100 ******************************
0110 CIO equates
0120 ; ******************************
0130 ICHID $0340
0140 ICDNO $0341
0150 ICCOM $0342
0160 ICSTA $0343
0170 ICBAL $0344
0180 ICBAH $0345
0190 ICPTL $0346
0200 ICPTH $0347
0210 ICBLL $0348
0220 ICBLH $0349
0230 ICAXl $034A
0240 ICAX2 $034B
0250 CIOV $E456
0260 ; ******************************
0270 ; Other equates needed
0280 ; ******************************
0290 COLORO $02C4
0300 COLCRS $55
0310 ROWCRS $54
0320 ATACHR $02FB
0330 STORE1 $CC
0340 STOCOL $CD
0350 *= $600
0360 ; ******************************
0370 ; The SETCOLOR rout ine
0380 ; ******************************

Graphics and Sound From Assembly Language 187

0600 OA
0601 OA
0602 OA

0]90 Before calling this routine,
0400 the registers should be set
0410 just like the BASIC SETCOLOR :
0420 SETCOLOR color,hue,luminance
04]0 stored respectively in
0440 X reg.,accumulator,Y reg .
0450 SETCOL
0460
0470
0480

ASL A
ASL A
ASL A

;need to multiply
hue by 16, and
add it to lum .

060] OA 0490
0604 85CC 0500

ASL A
STA STOREl
TYA

;now hue is *16
; temporarily
;so we can add
;before adding

0606 98 0510
0607 18 0520 CLC
0608 65CC 05]0
060A 9DC402 0540
060D 60 0550

ADC STOREl ;now have sum
STA COLORO,X ;actual SETCOLOR
RTS ;all done

060E 85CD
0610 60

0611 48
0612 A260
0614 A90C

0560
0570
0580
0590
0600
0610
0620
06]0
0640

The COLOR command

For these routines, we will
simply store the current COLOR
in STOCOL, so the COLOR
command simply requires that
the accumulator hold the value
"n" in the command COLOR n

0650 COLOR
0660 STA STOCOL
0670 RTS

;that's it !
;all done

0680 ******************************
0690 The GRAPHICS command
0700 ******************************
0710 The "n" parameter of
0720 a GRAPHICS n command will be
07]0 passed to this routine in the
0740 accumulator
0750 GRAFIC
0760 PHA ;store on stack
0770 LDX #$60 ;IOCB6 for screen
0780 LDA #$C ; CLOSE command

0616 9D420] 0790 STA ICCOM,X ; in command byte
0619 2056E4 0800 JSR CIOV ;do the CLOSE

188

061C A260 0810
061E A903 0820
0620 9D4203 0830
0623 A9AD 0840
0625 9D4403 0850
0628 A906 0860
062A 9D4503 0870
062D 68 0880
062E 9D4B03 0890
0631 29FO 0900
0633 4910 0910
0635 090C 0920
0637 9D4A03 0930
063A 2056E4 0940
063D 60 0950

0960
0970
0980
0990
1000

Applications

LDX #$60
LDA IIJ

ithe screen again
iOPEN command

STA ICCOM,X i in command byte
LDA IINAME&255 i name i s /I S: /I

STA ICBAL,X low byte
LDA IINAME/256 i high byte
STA ICBAH,X
PLA
STA ICAX2,X
AND #$FO
EOR #$10
ORA #$C
STA ICAX1,X
JSR CIOV
RTS

iget GRAPHICS n
igraphics mode
iget high 4 bits
iflip high bit
iread or write
in+16,n+32 etc.
isetuP GRAPHICS n
iall done

The POSITION command

Identical to the BASIC
POSITION X,Y command

1010 since X may be greater than
1020 255 in GRAPHICS 8, we need to
1030 use the accumulator for the
1040 high byte of X

063E 8655
0640 8556
0642 8454
0644 60

1050 POSITN
1060
1070
1080
1090

STX COLCRS ilow byte of X
STA COLCRS+l ihigh byte of X
STY ROWCRS iY position
RTS iall done

1100 ******************************
1110 The PLOT command
1120 ******************************
1130 We'll use the X,Y, and A just
1140 like in the POSITION command
1150 PLOT

0645 203E06 1160
0648 A260 1170
064A A90B 1180
064C 9D4203 1190
064F A900 1200
0651 9D4803 1210

JSR POSITN
LDX #$60
LDA #$B
STA ICCOM,X
LDA #0
STA ICBLL,X

ito store info.
ifor the screen
iPut record
icommand byte
ispecial case of
i I/O using the

Graphics and Sound From Assembly Language

0654 9D4903 1220 STA ICBlli,X j accumulator
0657 A5CD 1230 LDA STOCOL jget COLOR to use
0659 2056E4 1240 JSR CIOV jplot the point
065C 60 1250 RTS jan done

1260 ******************************
1270 The DRAWTO command
1280 ******************************
1290 We'll use the X,Y, and A just
1300 like in the POSITION command
1310 DRAW TO

065D 203E06 1320 JSR POSITN jto store info
0660 A5CD 1330 LDA STOCOL jget COLOR
0662 8DFB02 1340 STA ATACHR jkeep CIO happy
0665 A260 1350 LDX #$60 jthe screen again
0667 A911 1360 LDA #$11 jfor DRAWTO
0669 9D4203 1370 STA ICCOM,X j command byte
066C A90C 1380 LDA #$C jas in XIO
066E 9D4A03 1390 STA ICAX1,X j auxiliary 1
0671 A900 1400 LDA liD jclear
0673 9D4B03 1410 STA ICAX2,X j auxiliary 2
0676 2056E4 1420 JSR CIOV jdraw the line
0679 60 1430 RTS jan done

1440 ******************************
1450 The FILL command
1460 ******************************
1470 We'll use the X,Y, and A just
1480 like in the POSITION command-
1490 this
1500 FILL

067A 203E06 1510
067D A5CD 1520
067F 8DFB02 1530
0682 A260 1540
0684 A912 1550
0686 9D4203 1560
0689 A90C 1570
068B 9D4A03 1580
068E A900 1590
0690 9D4B03 1600
0693 2056E4 1610
0696 60 1620

is similar to DRAWTO

JSR POSITN j to store info
LDA STOCOL jget COLOR
STA ATACHR jkeep CIO happy
LDX #$60 jthe screen again
LDA #$12 j for FILL
STA ICCO~!,X j command byte
LDA #$C j as in XIO
STA ICAX1,X j auxiliary 1
LDA liD jclear
STA ICAX2,X j auxiliary 2
JSR CIOV jFILL the area
RTS jan done

189

190 Applications

1630 ******************************
1640 The LOCATE command
1650 ******************************
1660 We ' ll use the X,Y, and A just
1670 l i ke in t he POSITION command
1680 and the accumulator will
1690 contain the LOCATEd color
1700 LOCATE

0697 203E06 1710
069A A260 1720
069C A907 1730
069E 9D4203 1740
06Al A900 1750
06A3 9D4803 1760
06A6 9D4903 1770
06A9 2056E4 1780
06AC 60 1790

JSR POSITN
LDX #$60
LDA II?
STA ICCOM ,X
LDA #0
STA ICBLL,X
STA ICBLH ,X
JSR CIOV
RTS

;to store i nfo.
; the screen again
;get record
;command byte
;spec ial case of
; data transfer
; in accumul ator
;do the LOCATE
;all done

06AD 53
06AE 3A
06AF 9B

1800 ******************************
1810 The screen ' s name
1820 ******************************
1830 NAME . BYTE "S :", $9B

DISCUSSION OF THE GRAPHICS
SUBROUTINES

The first point to note about these routines is that they simply
use the standard CIO equates , which we have seen so often before,
plus six new ones. We don't need a whole new set of equates, since
we're using the standard ATARI CIO routines for all of the
graphics commands. Of the six new equates, two are simply storage
locations: STOCOL is used to store the COLOR information used
in several of the routines, and STOREI is used for temporary stor
age of information. These are arbitrarily located at $CD and $CC
respectively, but you may feel free to locate them at any safe mem
ory location you choose. One such place would be $100 and $101,
which are the bottom two locations of the stack. Another of the
new equates is COLORO, which is the first of the 5 locations used

Graphics and Sound From Assembly Language 191

to store color information in the ATARI computers, found in deci
mal locations 708 to 712. The second is COLCRS, a 2-byte storage
location at $55 and $56, which always stores the current column
location of the cursor. Since in GRAPHICS 8 there are 320 possible
horizontal locations, and we know that each single byte can store
only 256 possible values, we need 2 bytes to store all possible hori
zontal positions of the cursor. However, in all graphics modes other
than GRAPHICS 8, it is obvious that location $56 will always be
equal to zero. The third new equate is ROWCRS, location $54,
which simply keeps track of the vertical position of the cursor. No
graphics mode has more than 192 possible vertical positions of the
cursor, so only 1 byte is required to store this information. The
final new equate is ATACHR, location $2FB, which is used to store
the color of the line being drawn in both the FILL and DRAWTO
routines.

These routines have been assembled using an origin of $600 for
convenience. If you plan to use these in a larger assembly language
program, just renumber these subroutines to some high line num
bers, such as 25000 and up, and merge these routines with your
program before assembling it. This way, you'll have all of the nor
mal graphics commands available from assembly language, with
out needing to laboriously enter them into each program you write.

The first routine is the assembly language equivalent of the
BASIC command SETCOLOR. We know that this is the standard
form of the command in BASIC:

SETCOLOR color register, hue, luminance

In the assembly language subroutine, we first need to load the 6502
registers with the equivalent information. A typical calling routine
to use this subroutine to simulate the BASIC command

SETCOLOR 2,4,10

would be as follows :

25 LDX #2
30 LDA #4
35 LDY #10
40 JSR SETCOL

192 Applications

We use the 6-letter form of the name SETCOL for SETCOLOR so
that this routine will be compatible with all of the available as
semblers for the ATARI. If the assembler you are using allows label
names longer than 6 characters, feel free to use the whole routine
name. This same convention will be used for all of the graphics
routines - for instance, POSITN for POSITION.

To perform the SETCOLOR command, we need to add the
luminance to 16 times the hue and store the result into the appropri
ate color register. To multiply the hue by 16, we'll simply use the
accumulator and perform four ASL A instructions. Since each
doubles the value contained in the accumulator, the result is 16
times the initial value. After the multiplication, we'll store the re
sult into our temporary storage location and get the luminance into
the accumulator with a TYA instruction, setting up for the addi
tion. We then clear the carry bit, as usual prior to addition, and add
the result of our previous multiplication to the luminance. Finally,
we use the value in the X register, which is the color register desired,
as an index into the five color register locations described above.
Since we want to SETCOLOR 2 in this example, we loaded the X
register with 2 before the call to the subroutine, and the color infor
mation is stored in $2C6.

The next routine, the COLOR command, is by far the easiest
of all the routines. To call the COLOR equivalent of the BASIC
command

COLOR 3

we simply need the following assembly language code:

25 LDA #J
30 JSR COLOR

The routine simply stores the color selected into our storage loca
tion for color, STOCOL, where it will be available for the other
graphics routines which require it.

The GRAPHICS command is implemented similiarly. To
mimic the BASIC command

GRAPHICS 2]

Graphics and Sound From Assembly Language 193

we simply use the following assembly language code:

25 LDA #23
30 JSR GRAFIC

The first thing we need to do is store the graphics mode required.
We could store it in STOREl, but pushing it onto the stack is
quicker in this case; we don't need to do addition or multiplication,
as we did in SETCOLOR. The next four lines of code simply close
the screen as a device. This is for insurance. If the screen is already
closed, we haven't hurt anything. However, if it's open and we try
to reopen it, we'll get an error, so we close it first for insurance.
Note that simply by using IOCB6 (loading the X register with $60),
we specify the screen, using the default device number assigned by
ATARI.

The remainder of the GRAPHICS command simply opens the
screen in the particular graphics mode we desire. We again use
IOCB6, storing the OPEN command in the command byte of the
IOCB in line 830. The name of the screen is S:, and we load the
address of this name into ICBAL and ICBAH. The graphics mode
is then retrieved from the stack and stored in the second auxiliary
byte. The only important bits of the graphics mode in ICAX2 are
the lower 4 bits, which specify the graphics mode itself; in this case,
GRAPHICS 7. The upper 4 bits control the clearing of the screen,
the presence of the text window, and so on, as described in Chapter
8. In this case, we have added 16 to the graphics mode, to eliminate
the text window. To isolate these bits, we AND the graphics mode
with $FO, which yields the high nibble of the graphics mode. The
OS requires that the high bit of this information be inverted, so
next we EOR this nibble with $10, to flip the high bit. Finally, we
set the low nibble of this byte to $C, to allow either reading or
writing to the screen, and we store the byte in ICAXI of the IOCB.
The call to CIO completes our graphics routine and sets up the
screen as we had wanted .

As we have already discussed, the POSITION command for
GRAPHICS 8 requires 320 possible X locations, so we need 2 bytes
to hold this large a number. Therefore, to simulate the command

POSITION 285,73

194 Applications

we will store the low byte of the X coordinate in the X register, the
high byte in the accumulator, and the Y coordinate in the Y register,
as follows:

25 LDX 1130
30 LDA #1
35 LDY 1173
40 JSR POSITN

Obviously, in any graphics mode other than GRAPHICS 8, the
accumulator is always loaded with a zero prior to calling POSITN,
and the X register simply contains the X coordinate. The routine
itself simply stores the appropriate information into the re
quired locations. The X coordinate is stored into COLCRS and
COLCRS+ 1, and the Y coordinate is stored into ROWCRS.

The PLOT command of

PLOT 258,13

in BASIC is simulated by the following code in assembly language:

25 LDX 113
30 LDA #1
35 LDY #13
40 JSR PLOT

This uses the same convention as the POSITN command above. In
fact, the PLOT routine begins with a JSR POSITN, which stores
the information passed to the routine into the correct locations for
use by the OS following the call to CIO. Since we want to output to
the screen, we use IOCB6, and the command byte is $B for put
record. In this case, we simply want to output a single byte of infor
mation, so we use the special case of accumulator 110 accessed by
setting the length of the output buffer to zero. Then we load the
accumulator with the color information we want to plot, and the
call to CIO plots the point for us.

The routines to DRAWTO and FILL are so similar that they
will be discussed together. The calling sequence is identical to

Graphics and Sound From Assembly Language 195

the PLOT and POSITION commands, so to mimic the BASIC
command

DRAj.ITO 42, 80

we use the sequence

25 LDX #42
30 LDA #0
35 LDY 1180
40 JSR DRAIoITO

To use the FILL command, simply change line 40 to JSR FILL.
The routine begins with a call to the POSITN routine to store

the required information. The color information is then stored in
ATACHR, and we use IOCB6 again, loading ICCOM with $11 for
DRAWTO and with $12 for FILL. ICAXI needs a $C, and we clear
ICAX2 before completing the routine by calling CIO. These rou
tines are absolutely analogous to the respective BASIC XIO com
mands which accomplish the same ends. For instance, to draw a
line, we can use this command:

XIO 17 , #6,12,0, "8 : "

In this command, the 17 is the $11 command byte, the #6 is the
10CB number, the 12 is stored in ICAXl, the zero in ICAX2, and
the device name is S:. Again, exactly the same XIO command can
be use to FILL an area, by simply changing the 17 to 18 ($12).

The final routine, the LOCATE command, is virtually identi
cal to the PLOT command, except that we use the get record com
mand, rather than the put record command. The same use is made
of the special single-byte accumulator 110 mode, by setting both
ICBLL and ICBLH to zero . The calling routine to duplicate the
BASIC command

LOCATE 10,12,A

is as follows:

196 Applications

25 LDX 11:1.0

30 LDA #0
35 LDY 11:1.2
40 JSR LOCATE

In this case, the accumulator will contain the color value found at
the coordinates 10,12 following the call to the LOCATE routine, so
a STA command could save this information, or it could be used
immediately, by comparing it to some desired value, or in other
ways.

This concludes the discussion of the assembly language coun
terparts to the BASIC graphics commands. Use them in some sim
ple programs, and you'll see how soon they become familiar and
how easy they are. In fact, they're almost as easy to use as the
BASIC commands. However, since both BASIC and assembly lan
guage use the same OS routines to accomplish such operations as
DRAWTO and FILL, don't expect that the assembly language rou
tines will be much faster than the BASIC routines you are used to.
They will be slightly faster, since you don't have to pay the over
head that BASIC requires in terms of time, but you will experience
nowhere near the difference in speed that you have now come to
expect when converting from BASIC to assembly language pro
gramming. To accomplish this kind of speedup, you'll have to write
your own DRAWTO and FILL routines, using a totally different
logic from that used by the ATARI OS. Such routines have been
written and are much faster than the OS routines, but they are not
in the public domain, and you'll have to write your own if speed is
critical.

Now that you are becoming proficient in assembly language,
you may want to change the ATARI central routines for your own
purposes. If you want to try this, purchasing the OS listings and
Technical User's Notes from ATARI is highly recommended. You
can then look at the commented source code for the OS routines,
and modify them for your own routines. Just include them as part
of your own programs, making the modifications you would like.
However, remember that the code for the OS belongs to ATARI.
You can use such modifications in programs for your own use, but
be sure to get permission from ATARI before trying to offer for
sale any programs containing parts of ATARI's OS. One easy

Graphics and Sound From Assembly Language 197

change to try is to allow plotting and drawing without checking for
cursor out of range, which slows things down quite a bit. Just be
sure that your program calculates the values correctly, or else

Remember that anything possible from BASIC is also possible
from assembly language. One frequently used example of this is
animation by means of rotation of the color registers, possible us
ing either the special GTIA modes, or the regular graphics modes.
A very simple routine can rotate the standard color registers virtu
ally instantaneously:

15 LDA $708
20 STA STOCOL
25 LDA $709
30 STA $708
35 LDA$710
40 STA $709
45 LDA $711
50 STA $710
55 LDA $712
60 STA $711
65 LDA STOCOL
70 STA $712

Now that you can draw detailed graphics from assembly language
programs, this trick can be used to animate pictures with virtually
no slowdown in program execution. For instance, implementation
of a down-the-trench type game is simple, by letting rotation of the
colors give the illusion of motion down the trench.

PLAYER-MISSILE GRAPHICS FROM
ASSEMBLY LANGUAGE

Another exciting feature of the ATARI computers is player
missile graphics. We've already seen an example using an assembly
language subroutine to move a player. But in that program, the
entire setup for player-missile graphics was in BASIC, and only the
routine to move the player was in assembly language. To show how

198 Applications

to perform these same operations in a purely assembly language
program, this BASIC program has been totally translated into as
sembly language and is presented below. In this program, decimal
addresses are used for the most part, since that is the way the
BASIC program was written; this assembly language program is as
similiar to that BASIC program as is feasible.

0100 ******************************
0110 CIO equates
0120 ******************************

0340 0130 ICHID $0340
0341 0140 ICDNO $0341
0342 0150 ICCOM $0342
0343 0160 ICSTA $0343
0344 0170 ICBAL $0344
0345 0180 ICBAH $0345
0346 0190 ICPTL $0346
0347 0200 ICPTH $0347
0348 0210 ICBLL $0348
0349 0220 ICBLH $0349
034A 0230 ICAX1 $034A
034B 0240 ICAX2 $034B
E456 0250 CIOV $E456

0260 ******************************
0270 ; Other equates needed
0280 ; ******************************

OOCC 0290 YLOC $CC ;indirect addr. for Y
OOCE 0300 XLOC $CE ;to remember X position
OODO 0310 INITX $DO ;initial X value
00D1 0320 INITY $D1 ;initial Y value
0100 0330 STOTOP $100 ;temporary storage
D300 0340 STICK $D300 ;hardware STICK(O) location
DOOO 0350 HPOSPO $DOOO ;horizontal pas . PO
0000 0360 *= $600

0370 ******************************
0380 First, lower top of RAM
0390 ******************************

0600 A56A 0400 LDA 106 ;get top of RAM
0602 8D0001 0410 STA STOTOP ;temporary storage
0605 38 0420 SEC ;setup for subtract
0606 E908 0430 SBC #8 ;save 8 pages for PMG

Graphics and Sound From Assembly Language 199

0608 856A 0440 STA 106 ;tell ATARI-new RAMTOP
060A 8D07D4 0450 STA 54279 ;PMBASE
060D 85CF 0460 STA XLOC+1 ;to erase PM RAM
060F A900 0470 LDA ItO ; put indirect
0611 85CE 0480 STA XLOC addr. here

0490 ******************************
0500 Next, reset GRAPHICS 0
0510 ******************************

0613 A900 0520 LDA ItO ;GRAPHICS 0
0615 48 0530 PHA ;store on stack
0616 A260 0540 LDX #$60 ;IOCB6 for screen
0618 A90C 0550 LDA #$C ;CLOSE command
061A 9D4203 0560 STA ICCOM,X ; in command byte
061D 2056E4 0570 JSR CIOV ;do the CLOSE
0620 A260 0580 LDX #$60 ;the screen again
0622 A903 0590 LDA #J ;OPEN command
0624 9D4203 0600 STA ICCOM,X ; in command byte
0627 A9ED 0610 LDA IINAME&255 ;name is "S:"
0629 9D4403 0620 STA ICBAL,X low byte
062C A906 0630 LDA IINAME/256 ; high byte
062E 9D4503 0640 STA ICBAH,X
0631 68 0650 PLA ;get GRAPHICS 0
0632 9D4B03 0660 STA ICAX2,X ;graphics mode
0635 29FO 0670 AND #$FO ;get high 4 bits
0637 4910 0680 EOR #$10 ;flip high bit
0639 090C 0690 ORA #$C ;read or write
063B 9D4A03 0700 STA ICAX1,X ;n+16,n+J2 etc .
063E 2056E4 0710 JSR crov ;set up GRAPHICS 0

0720 ******************************
0730 Now set up PMG
0740 ******************************

0641 A978 0750 LDA #120 ;initial X value
0643 85DO 0760 STA INITX ; put in place
0645 A932 0770 LDA 1150 ;initial Y value
0647 85D1 0780 STA INITY ; put in place
0649 A92E 0790 LDA #46 ;double line
064B 8D2F02 0800 STA 559 ; resolution

0810 ******************************
0820 Now clear out PM area of RAM
0830 ******************************

064E AOOO 0840 LDY ItO ;use as counter
0650 A900 0850 LDA ItO ;byte to be stored

200 Applications

0860 CLEAR
0652 91CE 0870 STA (XLOC) , Y iclear 1st byte
0654 88 0880 DEY iis page finished?
0655 DOFB 0890 BNE CLEAR ipage not done yet
0657 E6CF 0900 INC XLOC+1 ipage is done
0659 A5CF 0910 LDA XLOC+1 ion to next page
065B CDOOOl 0920 CMP STOTOP iare we done?
065E FOF2 0930 BEQ CLEAR ione more page
0660 90FO 0940 BCC CLEAR ikeep going

0950 ******************************
0960 Now we'll insert player into
0970 the appropriate place in the
0980 PMG RAM area
0990 ******************************

0662 A56A 1000 LDA 106 ilst, calculate
0664 18 1010 CLC i correct Y posit .
0665 6902 1020 ADC #2 iPMBASE+512(2 pages)
0667 85CD 1030 STA YLOC+1 ihigh byte of YLOC
0669 A5Dl 1040 LDA INITY iadd Y screen coordinate
066B 85CC 1050 STA YLOC ifor low byte
066D AOOO 1060 LDY IiO ias a counter

1070 INSERT
066F B9F006 1080 LDA PLAYER,Y iget byte of player
0672 91CC 1090 STA (YLOC) , Y iput it in place
0674 C8 1100 INY ifor next byte
0675 C008 1110 CPY #8 i are we done?
0677 DOF6 1120 BNE INSERT ino
0679 A5DO 1130 LDA INITX i get initial X
067B 8DOODO 1140 STA 53248 itell ATARI
067E 85CE 1150 STA XLOC ialso here
0680 A944 1160 LDA #68 imake player red
0682 8DC002 1170 STA 704 i as in BASIC
0685 A903 1180 LDA /IJ ito enable player-
0687 8D1DDO 1190 STA 53277 i missle graphics

1200 ******************************
1210 The main loop-very short
1220 ******************************
1230 MAIN

068A 209A06 1240 JSR RDSTK iread stick-move player
068D A205 1250 LDX 115 ito control the
068F AOOO 1260 LDY IiO i player, we

1270 DELAY

Graphics and Sound From Assembly Language 201

0691 88 1280 DEY have to add
0692 DOFD 1290 BNE DELAY a delay - this
0694 CA 1300 DEX routine slows
0695 DOFA 1310 BNE DELAY things down
0697 4C8A06 1320 JMP MAIN jand do it again

1330 ******************************
1340 jNow read the joystick #1
1350 j ******************************
1360 RDSTK

069A ADOOD3 1370
069D 2901 1380
069F F016 1390
06A1 ADOOD3 1400
06A4 2902 1410
06A6 F020 1420

LDA STICK
AND #1
BEQ UP
LDA
AND
BEQ

STICK
112
DOWN

jget joystick value
j is bit 0 = 1?
jno - 11,12 or 1 o'clock
jget it again
jis bit 1 = 1?
jno - 5,6 or 7 o'clock

06A8 ADOOD3 1430 SIDE LDA STICK jget it again
06AB 2904 1440 AND #4 jis bit 3 = 1?
06AD F02E 1450 BEQ LEFT jno - 8,9 or 10 o'clock
06AF ADOOD3 1460 LDA STICK jget it again
06B2 2908 1470 AND #8 jis bit 4 = 1?
06B4 F02F 1480 BEQ RIGHT jno - 2,3 or 4 o 'clock
06B6 60 1490 RTS jjoystick straight up

06B7 A001
06B9 C6CC
06BB B1CC
06BD 88

1500 ******************************
1510 jNow move player appropriately
1520 jstarting with upward movement
1530 j ******************************
1540 UP LDY #1 jsetup for moving byte 1
1550 DEC YLOC j now 1 less than noc
1560 UP1 LDA (YLOC),Y jget 1st byte
1570 DEY jto move it up one position

06BE 91CC 1580
06CO C8 1590

STA (YLOC),Y jmove it
INY j now original value

06Cl C8
06C2 COOA
06c4 90F5
06C6 BOEO

06C8 A007
06CA B1CC
06CC C8

INY
CPY #10
BCC UP1
BCS SIDE

;now set for next byte
jare we done?
;no
jforced branch!!!

1600
1610
1620
1630
1640 ******************************
1650 ;Now move player down
1660 j ******************************
1670 DOWN LDY #7 jmove top byte first
1680 DOWNl LDA (YLOC),Y ;get top byte
1690 INY ; to move it down screen

202 Applications

06CD 91CC 1700 STA (YLOC),y imove it
06CF 88 1710 DEY inow back to starting value
06DO 88 1720 DEY iset for next lower byte
06Dl 10F7 1730 BPL DOWN1 i if Y) = 0 keep going
06D3 C8 1740 INY iset to zero
06D4 A900 1750 LDA #0 ito clear top byte
06D6 91CC 1760 STA (YLOC),Y iclear it
06D8 E6CC 1770 INC YLOC inow is 1 higher
06DA 18 1780 CLC isetuP for forced branch
06DB 90CB 1790 BCC SIDE iforced branch again

1800 ******************************
1810 iNow side-to-side - left first
1820 i ******************************

06DD C6CE 1830 LEFT DEC XLOC ito move it left
06DF A5CE 1840 LDA XLOC iget it
06El 8DOODO 1850 STA HPOSPO imove it
06E4 60 1860 RTS iback to MAIN - we ' re done

1870 ******************************
1880 iNow right movement
1890 i ******************************

06E5 E6CE 1900 RIGHT INC XLOC ito move it right
06E7 A5CE 1910 LDA XLOC iget it
06E9 8DOODO 1920 STA HPOSPO imove it
06EC 60 1930 RTS iback to MAIN - we're done

1940 *****************************

06ED 53
06EE 3A
06EF 9B
06FO FF
06F1 81
06F2 81
06F3 81
06F4 81
06F5 81
06F6 81
06F7 FF

1950 DATA statements
1960 *****************************
1970 NAME .BYTE "S :",$9B

1980 PLAYER .BYTE 255,129,129,129,129,129,129,255

This program uses many of the routines we have already dis
cussed - an erasing routine to clear out the player-missile area of
memory, reading the joystick and moving the player, and the

Graphics and Sound From Assembly Language 203

GRAPHICS 0 command. Here, we simply put them all together
into one large program which performs all of the tasks necessary to
implement a simple example of player-missile graphics in assembly
language.

Since it is analogous to the BASIC program we have already
written, the assembly version begins by lowering RAMTOP by 8
pages to make room for player-missile memory. Lines 400 to 440
perform this function; line 410 stores the old value of RAMTOP
for the erasing routine later. Line 450 tells the ATARI the location
of PMBASE, the new value of RAMTOP. We'll use XLOC and
XLOC + 1 as a temporary indirect address location on page zero, to
help in the erase routine. Lines 520 to 710 then reset a GRAPHICS
o screen below the new location of RAMTOP. Lines 750 to 780
simply store the initial values of X and Y, the screen coordinates
where we want the player to appear. These values will be used later,
and these lines are here only to keep the analogy with the BASIC
program. There is no need to store these values; we could just as
easily have used the numbers directly later in the program. How
ever, either way works, and it is slightly easier to change the pro
gram later if it is written in this manner. Lines 790 and 800 set up
double-line resolution, and then we erase the entire player-missile
area in lines 840 to 940.

In the BASIC program, the place in memory where we insert
the player to achieve the correct Y positioning on the screen is:

PMBASE+512+INITY

We know that 512 bytes above PM BASE is 2 pages, since each page
contains 256 bytes. Therefore, we know that the high byte of this
address, in our assembly language program, must be 2 higher than
PMBASE. In lines 1000 to 1030, we get PMBASE, add 2, and store
the result in YLOC + 1, the high byte of the Y position in memory.
The low byte is simply INITY, the initial Y position. Remember, the
farther down the screen you want the player to appear, the higher in
memory the player must be stored .

To insert the player into the correct place in memory, we read
one byte at a time from the table of data called PLAYER, and store
it using indirect addressing into the memory location we just set up.
When Y, our counter, equals 8, we're done, since we started at zero

204 Applications

and have only 8 bytes to transfer. If our player had been larger, we
simply would have changed the single byte in line 1110 to 1 higher
than the number of bytes in the player. The initial X position of the
player is read from INITX and stored in the horizontal position
register for player zero, 53248 . It is also stored in XLOC for use by
the move-player routine .

We then make the player red by storing the number 68 into the
color register for player zero, 704, and enable player-missile
graphics by storing a 3 into 53277, GRACTL.

The main loop of this program is simplicity itself. We JSR to
the routine which reads the joystick and moves the player, and then
we enter a short delay loop . If we leave out this loop, the player
moves so quickly that we can't control it at all! Next, we simply
loop back to read the joystick and move the player again.

Obviously, if you want to add some interest to this program,
you can insert your own program logic into this main loop, to de
tect player-playfield collisions, or create obstacles, or anything else
you may want in your game. If you are going to lengthen the pro
gram, however, you should change the origin to somewhere higher
in memory. As it is, this program already occupies virtually all of
page 6, so if you make it any larger without changing the origin, it
will begin to overwrite DOS and you'll not be able to save or load
it. Just change the origin to $6000 or some other safe high memory
location. To test the program after assembling it, just type BUG to
enter the debugger, and then type G600 for the original version (or
G6000 if you change the origin).

Now that you've seen how to implement player-missile graphics
from assembly language, you should be able to write your own
programs utilizing these same techniques. By doing this, as we've
already seen from the need to insert a delay loop in the above pro
gram, you'll speed things up enormously and create smooth motion
of players to greatly enhance your games. Have fun!

CREATING SOUND ON ATARI
COMPUTERS

We will begin our discussion of sound by learning how the
ATARI produces sounds, and then we'll write an assembly lan
guage subroutine to mimic the BASIC SOUND command.

Graphics a nd Sound From Assembly Language 205

Let's first look at the equates used for sound generation. The
POKEY chip is responsible for the creation of all sounds in the
ATARI computers, and it resides in memory from $D200 to $D2FR
The sounds which add so much to enjoyment of games, and can
even add to the ease of use of business programs if used properly,
are divided into four voices. Each voice is controlled by two regis
ters, located in pairs from $D200 to $D207. The first of each pair is
the frequency control, and the second of each pair controls both
the volume and distortion of the sound produced by that channel.
These are:

100 AUOF1 = $0200 ;audio channel 1 frequency
110 AUOC1 = $0201 ;audio channel 1 control
120 AUOF2 = $0202 ;audio channel 2 frequency
130 AUOC2 = $0203 ;audio channel 2 control
140 AUOF3 = $0204 ;audio channel 3 frequency
150 AUOC3 = $0205 ;audio channel 3 control
160 AUOF4 = $0206 ;audio channel 4 frequency
170 AUDC4 = $0207 ;audio channel 4 control

The respective frequency registers control the pitch of the
sound or note being played . These registers actually divide the
sound frequency by the number stored here. That is, if we store a
12 here, then the frequency produced is one-twelfth of the input
frequency.

The input frequency is controlled by the initialization of
POKEY, by setting AUDCTL. The following chart describes the
use of each bit in AUDCTL:

Bit Use

o Set to switch main clock from 64 kHz to 15 kHz
1 Set. to insert high-pass filter into channel 2
2 Set to insert high-pass filter into channel 1
3 Set to join channels 4 and 3 for 16-bit resolution
4 Set to join channels 2 and 1 for 16-bit resolution
5 Set to clock channel 3 with 1.79 MHz
6 Set to clock channel 1 with 1.79 MHz
7 Set to convert the 17 bit poly-counter into 9 bits

What does all this mean? Let's take it one bit at a time. Sup
pose you store a 10 into the frequency register of voice 1. We al-

206 Applications

ready know that this will cause one pulse to come out of that voice
for each ten going in. Bit ° of AUDCTL can switch the frequency
of the incoming pulses between 64 kHz and 15 kHz. Kilohertz
(kHz) stands for thousands of cycles, or pulses, per second. Ob
viously, if AUDCTL is set with bit ° equal to zero, then the output
frequency of voice 1 is 6.4 kHz. However, if we store a one into
AUDCTL bit 0, then the output frequency of voice 1 will be 1.5
kHz, and a markedly lower tone will result. Bits 5 and 6 work ex
actly the same way, but if we set these to 1, the voices controlled by
them, channels 3 and 1 respectively, produce much higher pitches,
since they would be clocked at 1.79 MHz (millions of cycles per
second), many times faster than either of the above frequencies.

The two bits 1 and 2 of AUDCTL insert high-pass filters into
channels 2 and 1, respectively. These high-pass filters are clocked
by channels 4 and 3, respectively. That is, only sounds with a higher
frequency than those currently playing in channel 3 will be heard in
channell, and only sounds with a higher frequency than those cur
rently sounding in channel 4 will be heard in channel 2. Some spec
tacular special effects are possible using these high-pass filters, and
you'll certainly want to experiment to see what can be done.

Since the frequency is stored in a single byte, the ATARI voices
are limited to about a 5-octave range. However, using AUDCTL, it
is possible to pair together sets of two voices using bits 3 or 4. This
allows the two frequency registers for these voices to form a 16-bit
number, giving a nine-octave range . This decreases the number of
voices available, but it would be perfectly feasible to produce one 9-
octave voice and two 5-octave voices, or even two 9-octave voices.
When two frequency registers are combined into one, the higher of
the two frequency registers controls the high byte of the 2-byte
number and the lower of the two controls the lower byte.

The high bit of AUDCTL controls the polynomial counter.
This is perhaps the most difficult concept of sound generation on
the ATARI computers to grasp. Basically, the poly-counters
produce a random sequence of pulses which repeats after some
time. The higher the number of bits in the poly-counter, the longer
the random sequence will be before the pattern repeats. There are
three different poly-counters in the ATARI, and they all function as
follows.

Graphics a nd Sound From Assemb ly Lang uage 207

Suppose you want some noise to be produced. Music is regular
in tone, but noise is irregular and is harder to produce. The ATARI
generates noise by producing a random sequence of pulses from the
poly-counter and effectively ANDing these pulses together with the
output of the frequency registers discussed above. Only when both
pulses are ON is a sound produced. For example, if the frequency
register says a pulse, or sound, should be produced, but the random
pattern from the poly-counter is off at that time, no sound is pro
duced. Therefore, although the output of the frequency register's
divide-by-n system is a pure frequency, ANDing these pulses with
the random sequence generated by the poly-counters produces
noise. It should be apparent that different poly-counters produce
different noise sounds, and the poly-counter used can be selected
by bit 7 of AUDCTL, which is a 9-bit or 17 -bit poly-counter.

Furthermore, the distortion, or noise type, of the sound pro
duced can also be changed by the distortion setting, much as in
BASIC. The distortion is controlled by the upper 3 bits of the con
trol register for each voice, AUDCl-4. These bits essentially
choose how the sound is to be treated and which of the three poly
counters is to be used for the distortion, as follows:

Bits
765 Meaning

00 0 Select using 5-bit, then 17-bit poly, divide by 2
o E 1 Select using 5-bit poly, divide by 2
o 1 0 Select using 5-bit , then 4-bit poly, divide by 2
1 0 0 Select using 17-bit poly, divide by 2
1 E 1 No poly-counters used, just divide by 2
1 1 0 Select using 4-bit poly, divide by 2

E in the above table means that bit can be either a 1 or a o. First, of
course, the clock rate is divided by the frequency. Let's look at an
example of how the distortion system works. We'll assume that the
clock is running at 15 kHz, that we've stored 30 into the appropri
ate frequency register, and that the 3 high bits of the control register
for that voice are 010. First, the clock rate is divided by the fre
quency register, in this case, 15000/ 30 = 500 Hz. Next, since the
distortion bits are 010, the pulses at 500 Hz output from this opera
tion are effectively ANDed with the output of the 5-bit polynomial

208 Applications

counter. The output of this operation is then effectively ANDed
with the output of the 4-bit poly-counter, and the frequency of the
pulses successfully getting through this entire operation is divided
by 2 to produce the final distorted sound.

It should be obvious that with so many options to choose from,
the ATARI is capable of many, many, many different sound effects.
Some experimentation is clearly in order here. You may hear some
really far-out sounds being produced!

A SOUND SUBROUTINE

Creation of sounds on the ATARI computers is extremely easy
in BASIC, since the SOUND command allows us to turn any of the
four available voices on or off at any desired distortion, pitch, vol
ume, and frequency. Exactly the same functions are available from
assembly language. We can write a subroutine to mimic the effects
of the BASIC SOUND command, much as we did for the graphics
commands in the previous section.

D200
D201
D208
D20F
0101
0000

0100 ******************************
0110 SOUND equates

0120 ******************************
0130 AUDF1 $D200 ;audio 1 freq .
0140 AUDC1 $D201 ;audio 1 control
0150 AUDCTL $D208 ; audio control
0160 SKCTL $D20F ;serial port control
0170 STORE2 $101 ;temporary store
0180 *= $600
0190 ******************************
0200 The SOUND command

0210 ******************************
0220 Prior to calling this routine ,
0230 the X register should contain
0240 the voice desired, the accum.
0250 should contain the distortion,
0260 the Y register should
0270 contain the volume desired,
0280 and STORE2 should contain the
0290 desired frequency.
0300 SOUND

Graphics and Sound From Assembly Language 209

0600 48 0310 PHA istore distorti on
0601 8A 0320 TXA idouble vo i ce value
0602 OA 0330 ASL A ; for offset to
0603 AA 0340 TAX i vo i ce control
0604 A00101 0350 LOA STORE2 i frequency into
0607 900002 0360 STA AUDFl,X i right channel
060A 8C0101 0370 STY STORE2 ifor use later
060D A900 0380 LOA I!O ito in i t i al i ze the
060F 800802 0390 STA AUOCTL POKEY chip
0612 A903 0400 LOA #J i set these as
0614 8DOFD2 0410 STA SKCTL i nd i cated
0617 68 0420 PLA i re trieve di stor t i on
0618 OA 0430 ASL A inow multiply by
0619 OA 0440 ASL A 16 to get the
061A OA 0450 ASL A i dis t ort ion int o
061B OA 0460 ASL A i the hi gh ni bble
061C 18 0470 CLC isetuP for add
061D 600101 0480 AOC STORE2 i add the volume
0620 900102 0490 STA AUDC1,X iinto r i ght voice
0623 60 0500 RTS i that's all

In this program, we double the value originally stored in the X
register, which will select the particular voice to be used. This is
because the sound registers are arranged in pairs, so each of the
control registers and each of the frequency registers are two bytes
apart in memory. The frequency is then retrieved from STORE2,
which is used because we need four pieces of information for
sound, and between the X and Y registers and the accumulator, we
have only three storage locations at hand. The frequency is then
stored in the appropriate frequency register in line 360, and the
volume is temporarily stored until we need it. We then initialize
POKEY in lines 380 to 410 and convert the distortion to the upper
bits of the accumulator, adding the volume to obtain the number
which needs to be stored in the appropriate audio control register to
produce the sound desired. That's all there is to it!

However, sound generation in assembly language suffers from
the same problem it has in BASIC: no duration can be specified for
the sound produced. Either the SOUND command in BASIC, or
our equivalent routine in assembly language, simply starts the
sound. We must turn the sound off after some predetermined time

210 Applications

has elapsed, to create the note or sound effect we want. To turn off
the sound, just store a zero into the appropriate control register,
AUDCI-4. To measure the time elapsed, use either the timers al
ready discussed, at locations 18 to 20 decimal, or use a routine like
the one we used in the player-missile example for short delays:

LDX 1150
LDY #0

LOOP DEY
ENE LOOP
DEX
ENE LOOP

The time delay in this kind of routine is controlled by the initial
value loaded into the X register; the larger the number, the longer
the delay. These nested loops would take forever to execute if we
programmed the counterpart to this routine in BASIC, but after
assembly the delay is very short. Try it to see how fast 256 X 50, or
12,800 loops, can be.

COUNTDOWN TIMERS

The third way of keeping track of time on the ATARI com
puters involves the use of countdown timers. AUDFl, AUDF2,
and AUDF4 can act as countdown timers in the following way.
When any nonzero value is stored into STIMER ($D209), the
values stored in AUDFl, AUDF2, and AUDF4 begin to decrease.
Each of these three registers has an appropriate vector location, as
outlined below:

Timer Vector location

AUDF1 $210, $211 (VTIMR1)
AUDF2 $212, $213 (VTIMR2)
AUDF4 $214, $215 (VTIMR4)

If we place the address of a short routine to turn off sound into one
of these vector locations, an interrupt will be generated when the
appropriate timer has counted down to zero, and control will shift

Graphics and Sound From Assembly Language 211

to your routine to turn off the sound. Just remember to end this
routine with an RTI rather than an RTS. Before using this type of
timer, you must place the appropriate value into the interrupt re
quest enable byte, IRQEN ($D20E). To enable VTIMR 1, set bit 0
of IRQEN; to enable VTIMR2, set bit 1 of IRQEN; and to enable
VTIMR4, set bit 2 of IRQEN.

You should now be able to create any sounds available from
BASIC using assembly language, and here's one which can't be
produced from BASIC because of the speed required. If bit 4 of
any of the audio control registers is set to 1, a short "pop" can be
heard. This is caused by pushing the speaker cone out once, com
pressing the air in front of the speaker, which you hear as a "pop."
If we set and reset this bit quickly, we can produce a sound just by
compressing air in front of the speaker. Try this :

LOOP LDA #16

STA AUDC1
(insert delay for frequency)
LDA /lJ1
STA AUDC1
(i nsert delay for frequency)
JMP LOOP

The speaker on your TV or monitor will vibrate back and forth,
producing sound in a totally different way from that described
above. In this example, we are simply moving the speaker directly
in order to produce sound.

-

-

One caution must be mentioned with regard to the use of the
6502 instruction set. Every computer language has its own syntax,
the way each command must be written for the computer to under
stand it. Different assemblers for the ATARI require slightly differ
ent syntax, described in detail in Chapter 6.

In this Appendix, we shall learn the commands which the 6502
can execute. The complete set of commands for the 6502 is gener
ally referred to as the 6502 instruction set. Here the instructions are
described in alphabetical order for easy reference. Along with each
instruction you will find:

1. Examples of its use
2. Descriptions of the various addressing modes available for that

instruction (see Chapter 5)
3. The effect of each instruction upon the various flags in the

processor status register (see Chapter 3)

ADC Add with Carry
THE INSTRUCTION

As discussed in Chapter 4, each instruction for the 6502 is ab
breviated into a three-letter code called a mnemonic. The first in-

215

216 Appendixes

struction, Add with Carry, is the only instruction available for
carrying out addition of two numbers. Here's an example of its use:

;these rep!esent
;some previous
; instructions

ADC #2 ;add 2 to the contents of the accumulator

Let's examine what happens when we execute this instruction.
The 6502 takes whatever is already contained in the accumulator
and adds to it the decimal number 2. The resulting sum remains in
the accumulator, awaiting further instructions. However, there is a
complication. Remember, the name of this instruction is Add with
Carry. What about the carry? Remember that the Carry bit is one
of the flags in the processor status register. Whenever the ADC
instruction is encountered, the Carry bit is added to the sum in the
accumulator. Let's suppose that just before encountering this in
struction, we had stored a zero in the accumulator, and the Carry
bit w"as a zero, as well. The sum stored in the accumulator follow
ing the execution of this instruction would still be 2, as described.
However, if the Carry bit had been aI, then the sum would have
been 3. Schematically, this addition is as follows:

Accumulator Carry Bit Instruction = > Sum Carry Bit

o 0 ADC #2 = > 2 0
o ADC #2 = > 3 0

Note that if the Carry bit is initially 1, it is reset to zero after the
ADC instruction is executed. This makes sense, since we've already
used the carry. If it wasn't reset to zero by the 6502, we might use
the Carry bit twice without realizing it.

EFFECTS ON THE PROCESSOR STATUS
REGISTER

The 6502 also sets the Carry bit appropriately, as in the follow
ing examples:

The 6502 Instruction Set 217

Accumulator Carry Bit Instruction = > Sum Carry Bit

253 0 ADC #6 = > 3 1
253 ADC #6 = > 4

In the first example, 253 + 6 = 259, but we know that the largest
number the accumulator can hold is 255. The number 256 repre
sents zero, with a carry of one, so 259 is 3 with a carry of 1. The
number 3 is stored in the accumulator and the Carry bit is set.

In the second example, the Carry bit starts at 1, so when it is
added into the sum, the sum is 4. Remember, after the Carry bit is
used, the 6502 resets it to zero. So why does example 2 end up with
the Carry bit set? The sum was greater than 255, so the Carry bit
was set before execution of the instruction was completed.

We have already discussed the ability of the 6502 to operate in
decimal mode. Note here that the largest number the accumulator
can store in decimal mode is 99. The Carry bit is set following an
ADC instruction in decimal mode if the sum exceeds 99.

Several other flags in the processor status register are also con
ditioned by the ADC instruction. The Overflow bit, V, is set when
bit 7, the most significant bit, is changed because of the addition.
The Negative flag, N, is set if the addition produces a number
greater than 127; that is, when the most significant bit, bit 7, is a 1.
Remember, to the 6502, any number between 128 and 255 is a nega
tive number, because its most significant bit is a 1. Finally, the Zero
flag, Z, is set if the result of the addition is zero. Some examples of
these conditions are shown below:

A N Z C V Instruction => A N Z C V Comments

2 0 0 0 0 ADC#3 => 5 0 0 0 0 Straight
addition

2 0 0 0 ADC#3 => 6 0 0 0 0 Remember:
add the carry!

2 0 0 0 0 ADC #254 = > 0 0 0 C and Z flags
set

2 0 0 0 0 ADC #253 = > 255 0 0 0 N and V flags
set

253 0 0 0 ADC#6 = > 3 0 0 C and V set;
N reset

125 0 0 0 ADC#2 = > 128 0 0 N and V set;
C reset

218 Appendixes

It should now be apparent that by testing the various flags, we can
easily obtain a great deal of information about the results of an
addition. Instructions for testing these flags are provided and are
used frequently in most assembly language programs.

ADDRESSING MODES

The ADC instruction a llows any of the same eight addressing
modes discussed in Chapter 5 for the LDA instruction. They are
illustrated below , with the number of cycles and bytes used for each
instruction:

Mode Instruction Cycles Bytes Meaning

Immediate ADC #2 2 2 A+ #2
Absolute ADC $3420 4 3 A + contents of

memory $3420
Zero Page ADC $F6 3 2 A + contents of

memory $F6
Zero Page,X ADC $F6,X 4 2 A + contents of

memory $F6 + X
Absolute,X ADC

$3420,X 4 3 A + contents of
memory $3420 + X

Absolute ,Y ADC
$3420,Y 4 3 A + contents of

memory $3420 + Y
Ind . lndir. ADC

($F6,X) 6 2 A + contents of
addr. at $F6 + X

Indir. Ind. ADC
($F6),Y 5 2 A + contents of

(address at $F6)
+ offset Y

For more complete explanations of these addressing modes, please
see Chapter 5.

The 6502 Instructi on Set

AND The Logical AND Instruction
THE INSTRUCTION

219

The AND instruction performs a logical AND of the accumu
lator and the operand. A logical AND takes two numbers and com
pares them bit for bit. For each bit, if both numbers being
compared contain ai, the result contains a 1 as well; if either num
ber contains a zero, the result contains a zero in that bit. Let's look
at an example in which the accumulator contains the number 5:

AND #$OE

The easiest way to visualize the AND operation is to convert each
of the two numbers being compared to binary nomenclature, as
follows:

Hex. Binary

#5 #0/000000101
#$OE #0~00001110

result #%00000100 = #4

We can easily see that the only bits set to 1 in the result are those in
which both numbers being compared have aI, in this example, bit
2. Let's try another example. The accumulator contains 147, and
this is the instruction:

AND #$lD

As above, we convert to binary:

#147 #0~10010011

#$10 #%00011101

result #%00010001 = #17

This fairly straightforward instruction is used frequently, so you
should now try an exercise by yourself. We'll assume the accumula
tor contains the number #$BC, and this is the instruction:

220 Appendixes

AND 11234

See if you can work out the answer for yourself.
The AND instruction is used to mask a byte in a specific way.

For instance, suppose you want to know the value of the low nibble
of a number. To find out, you simply AND the number with #$OF.
Since the high nibble of this number is zero and the low nibble is all
ones, the result will be equal to the low nibble of the number you
started with . Similarly, to obtain the high nibble you only have to
AND with #$FO. Now let's present the answer to the above prob
lem:

#$BC #%10111100
#234 #o~11101010

result #$10101000 = #168

EFFECTS ON THE PROCESSOR STATUS REGISTER

The AND instruction sets the Zero flag if the result is equal to
zero, or resets the Zero flag if the result is not equal to zero . This
instruction also sets the Negative flag if the result is greater than
127, or resets this flag ifthe result is less than 128. Several examples
of this follow :

A Z N Instruction = > A Z N Mean ing
#5 0 0 AND #8 = > 0 1 0 Z set by resu lt = 0

#$FE 0 AND #$5F = > #$5E 0 0 N reset by resu lt< 127

ADDRESSING MODES

The AND instruction can also be written in any of the same
eight addressing modes discussed in Chapter 5 for the LDA
instruction.

Mode Instruction Cycles Bytes Meaning
Immediate AND#2 2 2 A
Absolute AND $3420 4 3 A&contents of

memory $3420
Zero Page AND $F6 3 2 A&contents of

memory $F6

The 6502 Instruction Set

Mode Instruction

Zero Page,X AND $F6,X

Absolute,X AND $3420,X

Absolute,Y AND $3420,Y

Ind.lndir. AND ($F6,X)

Indir. Ind. AND ($F6),Y

ASL Arithmetic Shift Left
THE INSTRUCTION

Cycles Bytes

4 2

4 3

4 3

6 2

5 2

221

Meaning

A&contents of
memory $F6 + X
A&contents of
memory
$3420+X
A&contents of
memory
$3420+ Y
A&contents of
addr. at $F6 + X
A&contents of
(address at $F6)
+ offset Y

The ASL instruction utilizes the carry bit in the processor sta
tus register as a ninth bit for a number, and pushes each bit in a
number one place to the left; thus, the name arithmetic shift left. A
zero is pushed into the least significant bit, and the most significant
bit of the original number ends up in the Carry bit. A picture is
worth a thousand words here:

C 76543210

o < = 10110101 < = 0
01101010

Let's look at another example:

C 76543210

o < = 01101101 < = 0
o 11011010

"What is the purpose of this instruction?" you may ask. Well, let's
look more closely at the last example. The original number,

222 Appendixes

#07001101101, is #109 in decimal form; following the ASL the resul
ting number is #07011011010, which is #218 in decimal form. We
have doubled the number with a single instruction! Since each posi
tion in a binary number is exactly twice the value of the position to
its immediate right, a shift to the left doubles the value of each bit.
This is an extremely easy way of multiplying numbers by powers of
2; just ASL once for each power of 2 required.

CAUTION: Although it seems fairly easy to multiply a num
ber by 2 using the ASL instruction, you must be extremely care
ful and correct for overflow into the Carry bit. An example of
this is the first set of numbers above. We started with
#07010110101, which is the decimal number 181, and following
our ASL we had #07001101010, which is the decimal number
106. Now we know that 106 is not 2 times 181. In fact, 2 times
181 is 362. Note. that this is exactly 106, the result we got, plus
256. Remember, in that example, we concluded with a carry of
1, which represents 256 when using the ASL instruction for
multiplication. You must take this carry into account whenever
you use the ASL instruction.

EFFECTS ON THE PROCESSOR STATUS REGISTER

As we have already seen, the Carry bit will contain the most
significant bit of the original number. The Negative flag will be set
equal to the most significant bit of the result (bit 6 of the original
number). The Zero flag will be set if the result is equal to zero, and
will be reset for any other result. In the examples shown below,
we'll use the accumulator addressing mode.

A N C Z Instruction = > A N C Z

#128 1 0 0 ASLA => #0 0 1 1
#64 0 0 0 ASLA = > #128 0 0

#192 1 0 0 ASLA = > #128 1 1 0
#8 0 0 0 ASLA => #16 0 0 0

ADDRESSING MODES

Examples using the five addressing modes for the ASL instruc-
tion are listed below:

The 6502 Instruction Set 223

Mode Instruction Cycles Bytes Meaning

Accumulator ASLA 2 ASL value in
accumulator

Absolute ASL $3420 6 3 ASL contents:
memory $3420

Zero Page ASL $F6 5 2 ASL contents:
memory $F6

Zero Page,X ASL $F6,X 6 2 ASL contents:
memory $F6 + X

Absolute,X ASL $3420,X 7 3 ASL contents:
memory $3420 + X

Note that this instruction takes quite a while to execute . In fact, the
Absolute,X addressing mode of the ASL instruction requires 7 ma
chine cycles to execute, the longest of any of the instructions in the
entire 6502 set. However, we need to think about speed in absolute
terms . Using this instruction allows us to perform a multiplication
by 2 in 3.92 microseconds, even in this slowest of modes . Still
pretty fast, especially when compared with BASIC!

BCC Branch on Carry Clear
THE INSTRUCTION

In BASIC, we can distinguish between two different types of
commands which both transfer the control of a program to a new
line number. The first is the straight OOTO command; we know
that the number of the next line to be executed will always follow
the command OOTO:

45 GOTO 90

50 .
60 .
90 ? "This line follows 45 . "

After line 45 is executed, line 90 is the next line under all condi
tions . This is called an unconditional transfer of control.

A second type of transfer in BASIC utilizes the comparison
and branching abilities of the computer :

224

45 IF X(J2 THEN 90
50

Appendixes

90 ? "This line sometimes follows 45."

In this example, if the value of the variable X is less than 32 in line
45, then a branch in the flow of the program is taken, and line 90 is
executed next. If X is equal to or greater than 32, then the branch is
not taken, and line 50 is executed next. Thus, the program flow
depends on certain conditions established within the program, and
for this reason, this type of transfer is called conditional transfer
of control. In this example, the condition is the value of the vari
able X.

The BCC instruction means that if the Carry bit is clear (equal
to zero), then program control must branch to a specific location.
As in BASIC, if the condition is not met - in this example, if the
carry bit is equal to 1 - the line next executed is not the line speci
fied in the instruction, but rather the next line in the program.

In virtually all cases, branches in assembly language are speci
fied by labels. A label can be almost any name you want to give to a
specific line in an assembly language program. Let's look at a short
example:

BCC SKIP
LDA $0345

SKIP LDA $4582

j other lines
jof the program

We'll take this one line at a time. First, we see the instruction BCC
SKIP. The Carry bit can either be a one or a zero at the time this
instruction is executed. Let's first assume that the Carry bit is set to
1. When this line is executed, the BCC test fails; that is, since the
Carry is not clear, the branch to SKIP is not taken. The next line
executed loads the accumulator from address $0345. The program
then proceeds with the next line and then the next, and so on.

The 6502 Instruction Set 225

Now let's assume that when the BCC is executed, the Carry bit
is zero. In this case, the branch is taken, since the Carry is clear, and
the next line executed loads the accumulator from memory location
$4582. Then the line immediately following the SKIP line will be
executed .

It should be obvious by now that in addition to the actual lines
of instructions in an assembly language program, the values of each
of the flags in the processor status register are an important factor
in understanding a program. Instructions provided in the instruc
tion set allow us to control these bits directly.

Still another similarity between the BCC instruction and a con
ditional branch in BASIC is that the branch can either be forward
or backward in the program. The example above is a forward
branch. To see what a backward branch looks like, let's look at the
following example:

SKIP LDA $0254

BCC SKIP

In this case, if the Carry bit is equal to zero, we branch backward
from the BCC to SKIP. If it is equal to 1, the line following the
BCC will be executed next.

There is an important limitation to such branches in assembly
language. The BCC instruction can transfer control no further than
127 bytes forward or backward in the program. Only 1 byte is used
to hold the value of the branch and any I-byte number greater than
127 is recognized as a negative number, so if we try to branch ahead
130 bytes, the 6502 recognizes this as a negative branch of 255 -
130 = 125 bytes . Instead of jumping ahead in our program, we'd
be back some considerable distance over ground we'd already trav
eled. Most assemblers will detect the error if we try to branch too
far, and report it as such at the time of assembly, but this may be
very time-consuming. It's a lot easier to try to avoid this problem
while writing our programs.

One caution about relative branches: most assemblers will al
Iowa branch of the form

226 Appendixes

Bee +7

which tells the program counter to branch forward 7 bytes if the
Carry is clear when this line is executed.

CAUTION: THIS IS VERY BAD PROGRAMMING
PRACTICE!!!

The problem comes when you try to read your program, or, heaven
forbid, try to change it. If you insert a line shortly after this, the
branch taken by this BCC will probably be wrong. The use of labels
for branch target points makes your program much easier for you
to read and lessens the chance of errors . Don't, under penalty of
long, long, long hours of debugging, write branches like the above!

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

The only addressing mode for the BCC instruction is the Rela
tive mode, and we have already seen how it works. Branches are
either taken or not, depending on the value of the Carry bit.
Branches are either forward or backward relative to the current
position of the program counter, which normally points to the start
of the line immediately following the BCC instruction. The BCC
instruction requires 2 bytes and takes 2 machine cycles to execute.

BCS Branch on Carry Set
THE INSTRUCTION

BCS is the exact opposite of the BCC instruction. The hranch is
taken when the Carry bit is equal to 1 and is not taken when the
Carry bit is equal to zero. In all other respects , BCS and BCC are
identical. Refer to the BCC instruction for further details.

The 6502 Instruction Set 227

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

The only addressing mode available for the BCS instruction is
the Relative mode. Its use was described above for the BCC instruc
tion. The BCS instruction uses 2 bytes and takes 2 machine cycles
to execute.

BEQ Branch on Equal to Zero
THE INSTRUCTION

The BEQ instruction is similar to the BCC and BCS instruc
tions, but differs in one important way. Instead of using the Carry
bit, the BEQ instruction uses the Zero bit as the determining factor
in evaluating whether or not to take a branch. If the Zero bit is
equal to 1, the branch is taken. Remember, the Zero bit will be
equal to 1 only if some operation resulted in an answer of zero; thus
the name Branch on Equal to Zero. If the Zero bit is equal to zero,
the previous result was not equal to zero, and the branch would not
be taken. This may be a little confusing at first. The best way to
remember it is to understand that the Zero bit is a flag, and the flag
is set when a certain condition is met. In the case of the Zero flag,
the condition is a result of zero, which sets the Zero flag. Remem
ber, we're testing for the flag being set, not for the flag being equal
to zero.

LDA #0
BEQ SKIP

SKIP LDA $2F

In this example, when we load the accumulator with zero, the Zero
bit is set in the processor status register. Therefore, the line execut-

228 Appendixes

ed after the Bee is SKIP, not the next line in the program. If in
stead we load the accumulator with I, the branch will not be taken,
and the program flow will be in order.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

The only available mode for the BEQ instruction is the Relative
mode, discussed in detail in the section on the Bee instruction. The
BEQ instruction needs 2 bytes of storage and requires 2 machine
cycles to execute.

BIT Test Bits in Memory with
Accumulator

THE INSTRUCTION

The BIT instruction performs an AND between the number
stored in the accumulator and the number stored in another mem
ory location addressed in the instruction, but it is different from
the usual AND instruction in one very important way. The AND
instruction performs the AND operation between the number in
the accumulator and a number in a memory location and stores the
result in the accumulator. The BIT instruction performs the AND,
but does not store the result in the accumulator. "So what good is
it?" you may ask.

Remember that the AND instruction does two things . First, it
performs the AND and stores the result in the accumulator. Sec
ond, it sets and resets various flags in the processor status register.
The BIT instruction performs the first function without storing the
number, but it also performs the second, discussed below.

EFFECTS ON THE PROCESSOR STATUS REGISTER

Three flags in the processor status register are conditioned by
the BIT instruction. The Negative flag is set to the value of bit 7,

The 6502 Instruction Set 229

the most significant bit, of the byte stored in the memory location
being tested, and the V (oVerflow) flag is set equal to the value of
bit 6 of the same byte. The Zero flag is set if the result of the AND
operation is equal to zero; it is reset if the result is not equal to zero.
Some examples of the BIT instruction are given below, along with
their effects on the processor status register flags. For the purpose
of these examples, let's assume that memory location $0345 con
tains the value #$F3.

A N V Z Instruction = > A N V Z

#128 1 0 0 BIT $0345 = > #128 0
#5 0 0 0 BIT $0345 = > #1 0
#4 0 0 0 BIT $0345 = > #0 1
#3 0 0 BIT $0345 => #3 0

This instruction is used primarily when you want to learn some
thing about a value stored somewhere in memory without disturb
ing the value stored in the accumulator. For instance, you can easily
learn whether the number in memory is negative, because after the
BIT operation, the N flag will be set if the number was negative.
Similarly, you can learn whether bit 6 of the number is a one or a
zero by looking at the V flag after the BIT operation. Finally, you
can determine whether an AND between the accumulator and the
number in memory results in a zero value by testing the Z flag.
Note that an AND operation between any number and zero will
produce a zero result; so any time the number addressed in memory
equals zero, the result of the BIT operation will be equal to zero
and the Z flag will be set. This is quite a lot of information for an
instruction which at first glance appeared to do nothing!

ADDRESSING MODES

Only two addressing modes are available for the BIT instruc
tion, Absolute and Zero Page.

Mode Instruction Cycles Bytes Meaning

Absolute BIT $3420 4 3 A&contents of memory
$3420

Zero Page BIT $F6 3 2 A&contents of memory $F6

230 Appendixes

Since the BIT instruction simply compares the values stored in the
accumulator and in a specific memory location, these two modes
are sufficient for any use of BIT you may require. Between them
they address the entire memory space of the computer.

BMI Branch on Minus

THE INSTRUCTION

BMI is another of the conditional branch instructions in the
6502 instruction set. It utilizes the Negative flag in the processor
status register; the branch is taken if the Negative flag is set and is
not taken if this flag is equal to zero. In all other respects, BMI is
similar to the Bee instruction already discussed. Please read that
discussion for details of conditional branch instructions, and read
the discussion below qf the BPL instruction for a caution concern
ing these two instructions.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

The only addressing mode for the BMI instruction is the Rela
tive mode, discussed for the Bee instruction. The BMI instruction
requires 2 bytes of memory and takes 2 machine cycles to execute.

BNE Branch on Not Equal to Zero

THE INSTRUCTION

BNE is the exact opposite of the BEQ instruction. With the
BNE instruction, the branch.is taken jf the Zero flag is . equal to

The 6502 Instruction Set 231

zero; that is, when the previous result was not equal to zero . The
branch is not taken when the Zero flag is equal to 1. Refer to the
discussion of the Bee instruction for details.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

Only the Relative addressing mode, discussed under the Bee
instruction, is available for the BNE instruction. The BNE instruc
tion requires 2 bytes of memory and takes 2 machine cycles to
execute.

BPL Branch on Plus

THE INSTRUCTION

This instruction is the exact opposite of BMI. The branch is
taken following the BPL instruction if the Negative flag is equal to
zero and is not taken if this flag is equal to 1. One caution should
be mentioned for this pair of instructions: in order for the branch
to be correctly determined, the Negative flag must, of course, have
been correctly conditioned prior to executing either the BMI or
BPL instruction. Since not all other instructions condition the Neg
ative flag, be sure that you use one which does correctly condition
this flag before utilizing either the 8MI or BPL instruction.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

Only the Relative addressing mode is available for the BPL
instruction. Please see. the discussion of the Bee instruction for

232 Appendixes

details. The BPL instruction requires 2 bytes of memory and takes
2 machine cycles to execute.

BRK Break

THE INSTRUCTION

The BRK instruction is somewhat analogous to the BASIC
STOP command. We know that the STOP command causes the
program being executed to stop; at that point control is returned to
the BASIC cartridge, which signals that it is back in command by
telling you what happened and printing READY to the screen.

The primary use of the BRK instruction is in debugging your
program after it has been written, but before it's working quite the
way you intended. In BASIC, we frequently go through this debug
ging process by inserting STOP instructions at various places in the
program and then running the program to see if we get to the vari
ous STOPs. In assembly language programming, BRKs can be used
in exactly the same way. You can insert a number of BRK instruc
tions throughout your program and then try to run it. If you don't
reach the BRK instructions, you know that your program is "hang
ing up" somewhere prior to that instruction. Most available debug
gers will print out the values of the 6502 registers whenever a BRK
instruction is encountered in a program; this makes the job of de
bugging-somewhat easier. Even with such aids, debugging a long
assembly language program should not be attempted by the faint of
heart, at least not unless there is a big slice of time available with
nothing else to do.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

Only one addressing mode is available for the BRK instruction,
the Implied mode . This is a single-byte mode, and for the BRK
instruction it requires 7 machine cycles to execute.

The 6502 Instruction Set

BVC Branch on Overflow Clear
THE INSTRUCTION

233

Bve is another of the conditional branch instructions in the
6502 instruction set; it utilizes the Overflow flag of the processor
status register. If the V flag is set, the branch is not taken, but if the
V flag is clear (equal to zero), the branch is taken. See the discus
sion of the Bee instruction for further details on conditional
branch instructions.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

The BVe instruction utilizes only the one addressing mode
common to all of the conditional branch instruction, the Relative
mode. The instruction requires 2 bytes and takes 2 machine cycles
to execute.

BVS Branch on Overflow Set
THE INSTRUCTION

The BVS instruction is the exact opposite of the Bve instruc
tion. If the Overflow flag in the processor status register is set
(equal to 1), the branch is taken, and if the V flag is clear (equal to
zero), the branch is not taken. You can find the details of relative
branching in the discussion of the Bee instruction.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

The BVS instruction utilizes only the Relative mode of
addressing.

234 Appendixes

CLC Clear the Carry Bit
THE INSTRUCTION

The CLC instruction has a direct and constant effect on a flag
in the processor status register. It clears the Carry bit - that is, sets
it equal to zero, whether it was initially zero or 1. It's most com
monly used prior to addition with the ADC instruction. Since the
ADC instruction always adds the Carry bit into the sum, we gener
ally need to be sure that this bit is equal to zero before addition.
This is the only way to be sure that 2 plus 1 will equal 3, and not 4 at
times. Almost universally, the typical set of instructions to add two
numbers will be:

LDA #2
CLC
ADe 111

We load the accumulator with the first number - in this case, 2.
Then we clear the Carry bit, because we have no way of knowing
for certain the value of this bit at any time without a lot more code.
By setting the Carry bit to zero, we know we'll get an accurate sum.
We complete the operation by adding with carry the number 1. Re
member that the sum, 3 in this case, will be stored in the accumula
tor at the completion of the addition; other lines will probably do
something with this sum, such as store it in memory or utilize it in
some further operation.

EFFECTS ON THE PROCESSOR STATUS REGISTER

The only effect CLC has on the processor status register is to
always set the Carry bit to zero.

ADDRESSING MODES

The sole addressing mode available for the CLC instruction is
the Implied mode. The instruction is only 1 byte long and requires
only 2 machine cycles to execute.

The 6502 Instruction Set

CLD Clear the Decimal Flag
THE INSTRUCTION

235

As we have already discussed, the 6502 can operate in either the
decimal mode or the binary mode. The CLD instruction clears the
decimal flag in the processor status register and resets the 6502 to
operate in binary rather than decimal mode. In this book, we'll use
the binary mode for most examples, but we'll briefly cover the dec
imal mode here. In this mode, each nibble of a byte represents a
single decimal digit. The coding scheme is referred to as binary
coded decimal and is given below:

Bits Represent

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9

The difference between binary and decimal coding shows up when
addition or subtraction takes place. For example, let's try the fol
lowing code:

LDA $0345
CLC
ADC $0302

; contains #$59
;put before an add instruction
; contains #$13

What number is contained in the accumulator after execution of
these lines? We would normally think that this number should be
#$6C, and if the addition were done in the binary mode we'd be
correct. But suppose that we had first put the 6502 into the decimal
mode. In that case, the number stored in the accumulator would be
72, because the 6502 would interpret the · bytes at locations $0345

236 Appendixes

and $0302 as binary-coded decimal numbers, and would add them
in decimal mode: 59 + 13 = 72.

As was mentioned before, the examples in this book are all in
binary form. The decimal mode may be used, however, when a
result needs to be displayed to the screen quickly. Since each nibble
of the number represents a decimal digit, by masking the appropri
ate digit using the AND instruction and then sending it to the
screen, we can display a number quickly, without the need to inter
convert between binary and decimal nomenclature.

EFFECTS ON THE PROCESSOR STATUS REGISTER

The CLD instruction directly sets the Decimal flag of the pro
cessor status register to zero, thus clearing it. No other effects
occur.

ADDRESSING MODES

As with all instructions operating directly on flags in the pro
cessor status register, the only addressing mode available for the
CLD instruction is the Implied mode . The instruction requires only
1 byte of memory and takes 2 machine cycles to execute.

CLI Clear the Interrupt Flag
THE INSTRUCTION

The CLI instruction operates directly on the processor status
register to clear the Interrupt flag; that is, to set the flag equal to
zero. This presumably follows some instruction which had set this
flag. Remember that when the Interrupt flag is set, maskable inter
rupts are disabled. This is important for ATARI programming be
cause several different types of interrupts are used routinely in
many programs, and if the I flag is set, they cannot occur. The
vertical blank interrupt and the display list interrupt are included in
this category. The CLI instruction allows these interrupts to occur.

The 6502 Instruction Set 237

EFFECTS ON THE PROCESSOR STATUS REGISTER

The CLI instruction operates directly to clear the I flag and has
no effect on any of the other flags in the processor status register.

ADDRESSING MODES

The CLI instruction utilizes only one addressing mode, the Im
plied mode, and takes J byte of memory and 2 machine cycles to
execute.

CLV Clear the Overflow Flag
THE INSTRUCTION

CLV is just like the two previous instructions, CLD and CLI,
which clear a flag in the processor status register. In the case of the
CLV instruction, the Overflow flag is cleared.

EFFECTS ON THE PROCESSOR STATUS REGISTER

The CLV instruction clears the Overflow flag, but has no effect
on any of the other flags in the processor status register.

ADDRESSING MODES

Like the other instructions operating directly on the processor
status register, CLV has only one mode of address, the Implied
mode.

CMP Compare Memory and the Accumulator
THE INSTRUCTION

In BASIC, we can compare two values and determine whether
they are equal, whether A is greater than B, or whether A is less
than B. Generally, this is done in an IF statement of this type:

238 Appendixes

35 IF A(B THEN

Using the 6502 instruction set, we can also compare two num
bers, although in a slightly different way. One of the numbers to be
compared must be in the accumulator, and the other may be any
where in the memory of the computer. The instruction CMP sub
tracts the contents of the specified memory location from the value
stored in the accumulator and sets the various processor status reg
ister flags appropriately after this subtraction. Note that the value
stored in the accumulator does not change following the eMP in
struction. The subtraction only sets the flags; it does not change the
value originally stored in the accumulator. Knowing the values of
the flags in the processor status register, we can deduce the results
of the comparison. Let's first discuss the changes in the processor
status register, and then we'll work on some CMP examples .

EFFECTS ON THE PROCESSOR STATUS REGISTER

The CMP instruction sets the Zero flag if the number in mem
ory and the number stored in the accumulator are equal. If they are
not equal, the Zero flag is reset to zero. The Negative flag is set
following the CMP instruction if the result of the subtraction is
greater than 127 (that is, the number has its most significant bit
equal to one). Otherwise, the Negative flag is reset to zero. The
Carry flag is set when the value stored in memory is less than or
equal to the number stored in the accumulator. C is reset when the
number stored in memory is less than that stored in the accumula
tor. Let's look at a few examples of the CMP instruction, assuming
that memory location $0345 contains #26:

A Z N C Instruction = > A Z N C Comment

#26 0 0 0 CMP $0345 = > #26 0 Z,C set by
A=$0345

#48 0 0 0 CMP $0345 = > #48 0 0 Z reset ;C set by
A>$0345

#130 0 0 CMP $0345 = > #192 0 0 N reset by
A-$0345 < 128

#8 0 0 0 CMP $0345 = > #8 0 0 N set by
A-$0345> 127

The 6502 Instruction Set 239

In the first example, the two numbers being compared were
equal, causing the subtraction to produce a result of zero. This
result set the Zero flag. Since the number in memory was equal to
the number in the accumulator, the Carry flag was also set. In the
second example, the Zero flag was not set, since the result did not
equal zero; the Negative flag was not set, since the result was posi
tive (+ 22); and the Carry bit was set, since the number in memory
was less than the number in the accumulator. In the third example,
the number began as a negative, with the Negative flag set. Since
the result was not equal to zero, the Zero bit was reset. The result of
the subtraction, 130 minus 26, was the positive number 104, so the
Negative flag was reset. Finally, since the value stored in $0345 was
less than the value of #130 stored in the accumulator, the Carry bit
was set.

This third example demonstrates an important point about the
CMP instruction. A negative number is clearly less than a positive
number, but the result of this comparison made it appear as if the
negative number was larger. The CMP instruction does not use
signed arithmetic; it simply compares two numbers between zero
and 255, treating both numbers as positive integers. If you use
signed arithmetic, you'll need to correct for this when comparing
two numbers .

In the fourth example, the Zero bit was not set, since the result
was not equal to zero. The Negative bit was set, since #8 - #26 =

#238, which is a negative number. Finally, since the number in the
accumulator was smaller than the number in memory, the Carry bit
was reset with zero.

We can also look at these effects to determine how to test for
the various results. The table below describes several values of the
accumulator and memory, along with branch instructions which
will be taken following a CMP instruction . The code looks like this:

LDA # .. .
CMP $
B .. destination

Now we'll see which branches will be taken using various values for
the two numbers.

240 Appendixes

A Mem. BCS, BPL, BNE

8 8 BEQ, BCS,BPL
9 8 BCS, BPL, BNE
8 9 BMI, BCC, BNE

Now we can see how to structure some code which will compare
two numbers and take appropriate action, depending on the results
obtained. Let's suppose that we want to duplicate the following
BASIC code in assembly language:

25 IF R(B THEN GOTO Q

In ATARI BASIC, this means that the branch to line Q will be
taken if the value of the variable R is less than the value of the
variable B at the time line 25 is executed . In assembly language, the
same code looks like this:

LDA R iload A from memory location R
CMP B icompare to memory location B
BCe Q itake branch if Carry reset

ADDRESSING MODES

CMP uses the same eight addressing modes discussed in Chap
ter 5 for the LDA instruction.

Mode Instruction Cycles Bytes Meaning

Immediate CMP#2 2 2 A-#2
Absolute CMP $3420 4 3 A-contents of

memory $3420
Zero Page CMP $F6 3 2 A-contents of

memory $F6
Zero Page,X CMP $F6,X 4 2 A-contents of

memory $F6 + X
Absolute,X CMP $3420,X 4 3 A-contents of

memory
$3420 +X

Absolute,Y CMP $3420,Y 4 3 A-contents of
memory
$3420+ Y

Mode

Ind. Indir.

The 6502 Instruction Set 241

Instruction Cycles Bytes Meaning

CMP ($F6,X) 6 2 A-contents of
addr. at $F6 + X

Indir. Ind. CMP ($F6),Y 5 2 A-contents of
(address at $F6)
+ offset Y

CPX Compare Index Register X with Memory
THE INSTRUCTION

This instruction compares the values in the X register and a
specific memory location, in contrast to the CMP instruction,
which compares the values in the accumulator and a memory loca
tion. In all other respects, the CPX and CMP instructions are iden
tical. CPX is used primarily to test the value in register X,
especially when it is being used as an index, in order to determine if
it has reached the final desired value. For example, when the X
register is being used as a loop counter and you wish to determine
when to branch out of the loop, the CPX instruction, followed by
an appropriate branch instruction, will give you the answer.

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the two numbers being compared are equal, the Zero flag
will be set (made equal to I); otherwise, it will be reset (made equal
to zero). If the result of the subtraction is greater than 127, the
Negative flag will be set; otherwise , ;t will be reset. Finally, if the
number in memory is less than or equal to the number stored in the
X register, the Carry flag will be set; otherwise, it will be reset.
Please refer to the CMP instruction for more details.

ADDRESSING MODES

The CPX instruction utilizes the three addressing modes out
lined below.

242 Appendixes

Mode Instruction Cycles Bytes Meaning

Immediate CPX#2 2 2 X-#2
Absolute CPX $3420 4 3 X-contents of memory

$3420
Zero Page CPX $F6 3 2 X-contents of memory $F6

Cpy Compare Index Register Y with Memory

THE INSTRUCTION

CPY is identical to CPX or CMP in all respects, except that it
uses the Y instead of the X register or the accumulator. As with the
CPX instruction for the X register, when you need to determine
whether the index register Y has reached a certain value, use the
CPY instruction. Refer to the CMP and CPX sections of this Ap
pendix for details.

EFFECTS ON THE PROCESSOR STATUS REGISTER

Please refer to the CMP instruction for a detailed description
of the effects of CPY on the processor status register.

ADDRESSING MODES

The CPX and CPY instructions are identical in their addressing
modes, examples of which are shown below:

Mode Instruction Cycles Bytes Meaning

Immediate CPY #2 2 2 Y-#2
Absolute CPY $3420 4 3 V-contents of memory

$3420
Zero Page CPY $F6 3 2 V-contents of memory $F6

Please refer to Chapter 5 for details of these addressing modes.

Th e 6502 Instruction Set

DEC Decrement Memory
THE INSTRUCTION

243

In order to decrement (decrease by 1) any memory location, the
DEC instruction may be used. There are actually two ways to
decrement a memory location . The first, and by far the easiest, is to
use DEC directly. The second, and by far the more cumbersome, is
to load the accumulator from that memory location, subtract 1,
and then store the resulting number back into the original memory
location . You can see why a DEC instruction was included in the
6502 instruction set.

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the decrementing process results in a number equal to zero in
the memory location addressed, the Zero flag in the processor sta
tus register will be set. If the result is any number but zero, the Zero
flag will be reset. If the number resulting from the DEC instruction
is negative (greater than 127), the Negative flag will be set; other
wise, it will be reset. It is therefore possible to determine when a
decrementing instruction has produced either a zero or negative re
sult without ever loading the number in question into the accumula
tor: simply check the status of either the Z or the N flag in the
processor status register.

ADDRESSING MODES

Four addressing modes are available for the DEC instruction,
as listed below:

Mode Instruction Cycles Bytes Meaning

Absolute DEC $3420 6 3 DEC Contents of
memory $3420

Zero Page DEC $F6 5 2 DEC Contents of
memory $F6

Zero Page,X DEC $F6 ,X 6 2 DEC Contents of
memory $F6 + X

Absolute ,X DEC $3420,X 7 3 DEC Contents of
memory $3420 + X

244 Appendixes

DEX Decrement the X Register
THE INSTRUCTION

DEX specifically decrements the X register and is used primar
ily when the X register is being used as the index of a loop. Each
time through the loop you decrement the register once. When the Z
flag is set following this decrementing, you can branch out of the
loop, knowing it has completed the predetermined number of
cycles.

EFFECTS ON THE PROCESSOR STATUS REGISTER

Like the DEC instruction, the DEX instruction will set or reset
both the Negative flag and the Zero flag in the processor status
register. By testing these flags, a programmer can determine the
state of the X register.

ADDRESSING MODES

Only one addressing mode is available for the DEX instruction,
and as you might expect, it is the Implied mode, since the address
in~ can be inferred by the nature of the instruction. The instruction
requires only 1 byte and takes 2 machine cycles to execute.

DEY Decrement the Y Register
THE INSTRUCTION

DEY is the Y-register counterpart to the DEX instruction. It
decrements the Y register by 1.

EFFECTS ON THE PROCESSOR STATUS REGISTER

The effects of the DEY instruction are the same as those of the
DEC and DEX instructions already discussed.

The 6502 Instruction Set 245

ADDRESSING MODES

Like the DEX instruction, the DEY instruction uses only the
Implied mode, requires 1 byte of memory, and takes 2 machine
cycles to execute.

EOR Exclusive Or

THE INSTRUCTION

The EOR instruction is most like the AND instruction . Re
member that AND performs a bit-by-bit AND: if a bit is set in both
of the numbers being compared, the bit will be set in the resulting
answer. The EOR instruction performs a bit-by-bit EOR. If a bit is
set in one, and only one , of the numbers addressed, it is set in the
answer. If the bit is set in. both or neither, there is a zero in that
position of the answer. The resulting number is stored in the accu
mulator. An example of this is shown below:

LDA 11133
EOR 11185

Again, the simplest way to determine the correct answer for the
EOR operation is to visualize the numbers in their binary form :

Dec. Binary

#133 = #o~10000101
#186 = #o~10111010

Result = #%00111111 = #63

Bit 7, which was set in both numbers, is equal to zero in the answer.
Similarly, bit 6, which is equal to zero in both numbers, is also
equal to zero in the answer. Only those bits which were set in only
one of the numbers are set in the answer - bits 0 through 5.

The most common use of the EOR instruction is in comple
menting a number. To do this, we EOR the number with #$FF, a

246 Appendixes

number in which each bit is set. For instance, to complement the
number 143, we EOR it with #$FF:

#143 = #Ok10001111
#$FF = #ok11111111

Result = #%01110000 = #112

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the resulting number, residing in the accumulator, is negative
(greater than 127), the Negative flag is set; otherwise, it is reset. If
the result of the EOR instruction is equal to zero, the Zero flag is
set; otherwise, it is reset.

ADDRESSING MODES

The EOR instruction utilizes the same 8 addressing modes as
does the LDA instruction; these are detailed in Chapter 5. Brief
examples are given below:

Mode Instruction Cycles Bytes Meaning

Immediate EaR #2 2 2 A EaR #2
Absolute EaR $3420 4 3 A EaR memory

$3420
Zero Page EaR $F6 3 2 A EaR memory $F6
Zero Page,X EaR $F6,X 4 2 A EaR memory

$F6+X
Absolute,X EaR $3420,X 4 3 A EaR memory

$3420+X
Absolute,Y EaR $3420,Y 4 3 A EaR memory

$3420+ Y
Ind.lndir. EaR ($F6,X) 6 2 A EaR addr. at

$F6+X
Indir. Ind. EaR ($F6),Y 5 2 A EaR (address at

$F6) + offset Y

The 6502 Ins!ruction Se!

INC Increment Memory
THE INSTRUCTION

247

The INC instruction is the exact opposite of the DEC instruc
tion, causing the value stored in any addressed memory location to
be increased by 1.

EFFECTS ON THE PROCESSOR STATUS REGISTER

The INC instruction sets the Negative flag if the resulting num
ber is greater than 127; otherwise, it resets the Negative flag. It also
sets the Zero flag if the resulting number is equal to zero; other
wise, it resets the Zero flag.

ADDRESSING MODES

INC utilizes the same four addressing modes utilized by the
DEC instruction. Consult the examples below:

Mode Instruction Cycles Bytes

Absolute INC $3420 6 3

Zero Page INC $F6 5 2

Zero Page,X INC $F6,X 6 2

Absolute,X INC $3420,X 7 3

INX Increment the X Register
THE INSTRUCTION

Meaning

INC contents of
memory $3420
INC contents of
memory $F6
INC contents of
memory $F6 + X
INC contents of
memory $3420 + X

The INX instruction is the exact opposite of the DEX instruc
tion. It increments the value stored in the X register by 1 and is used
to increase the value of the index register in loops, as shown in
Chapters 7 to 10.

248 Appendixes

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the increment causes the X register to be equal to zero, the
Zero flag is set; otherwise, it is reset. If the resulting number is
negative, the Negative flag is set; otherwise, it is reset.

ADDRESSING MODES

As with the other instructions of this type, the only addressing
mode available is the Implied mode, requiring 1 byte of memory
and 2 machine cycles to execute.

INY Increment the Y Register
THE INSTRUCTION

Similar to the INX instruction just discussed, and the exact
opposite of the DEY instruction, INY causes the Y register to be
increased by 1.

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the results of the increment cause the number stored in the Y
register to be negative, the Negative flag is set; otherwise, it is reset.
If the Y register equals zero following the increment, the Zero flag
is set; otherwise, it is reset.

ADDRESSING MODES

The only addressing mode available for the INY instruction is
the Implied mode, taking 1 byte of memory and 2 machine cycles to
execute.

JMP Jump to Address
THE INSTRUCTION

We have discussed several examples of conditional transfer of
control using branching instructions. These are the counterparts of

The 6502 Instruction Set 249

the BASIC IF statement. However, we know that BASIC also has
an unconditional transfer of control instruction, the GOTO
statement:

30 GOTO Q
40 .

We know that the line executed after line 30 will be line Q, not line
40. This does not depend on anything within the program; that is , it
is totally unconditional. Every time line 30 is executed, line Q will
be the next line executed.

Assembly language has its counterpart of the GOTO statement
- the JMP instruction. This is its form :

JMP Q

It works exactly like the BASIC example above. Every time the
JMP is executed, line Q will be the next line executed, regardless of
any conditions established while running the program. This is a
totally unconditional transfer of control.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

The JMP instruction has only two addressing modes . The first
is the Absolute mode, in which the jump takes place to a specific
memory location, as described in the example above. This mode
uses 3 bytes of memory and requires 3 maching cycles to execute.

The second addressing mode is the Indirect mode, which is
used only for the JMP instruction . To use this mode, we must first
set up an indirect memory location somewhere in memory. Let's
suppose that we would like to JMP indirectly to memory location
$0620. We must first decide where in memory we will store the
indirect address; here we'll use locations $0423 and $0424. We first
store the byte #$20 in memory location $0423 and the byte #$06 in
memory location $0424. Remember, for the 6502, the low byte
comes first, followed by the high byte of the address. The indirect
jump is then of this form:

250 Appendixes

JMP ($0423)

The parentheses indicate that it is an indirect jump; and the low
address of the indirect address is given in the instruction. It is also
possible to set an address label for $0423, in which case the instruc
tion could be written like this :

JMP (Q)

Figure A-I illustrates the indirect jump graphically. The indirect
JMP instruction requires 3 bytes and takes 5 machine cycles to
execute.

Location Contents

0421 A9
0422 83
0423 c:J = $~62~ 0424 ~6
0425 95
0426 DE

Fig . A-1 Indirect jump JMP (S\il423)

JSR Jump to Subroutine

THE INSTRUCTION

In BASIC, we can use subroutines to perform repetitive tasks,
and we can do the same thing in assembly language. The BASIC
command GOSUB has an exact counterpart in assembly language
- JSR. This instruction pushes the value of the program counter
onto the stack, where it remains until the subroutine is completed.
The value is then pulled off the stack so that the program may
continue execution in the appropriate place. In the program below,
first the LDA is executed, then the subroutine at Q, and then the
STA.

LDA 11124
JSR Q
STA $4657

The 6502 Instruc tion Set 251

One note about the use of subroutines in assembly language is ap
propriate here. In BASIC, programs run more rapidly if frequently
used subroutines are all located as close to the beginning of the
program as possible. Because the BASIC interpreter starts scanning
the program for the target line from the beginning, this practice
avoids the need to search the whole program to find the subroutine.
In assembly language, this is not the case. At the time of assembly,
the actual address of the subroutine is placed following the code for
the JSR instruction, so the subroutine can be located anywhere. In
practice, it's a good idea to group all your subroutines together,
usually at the end of your assembly language program, both for
readability and for ease of access for changes, but it's up to you.
The program will execute in exactly the same way no matter where
you locate the subroutines.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

The JSR instruction utilizes only the Absolute addressing
mode. It uses 3 bytes of memory and 6 machine cycles to execute.

LDA Load the Accumulator
THE INSTRUCTION

The LDA instruction loads the accumulator with a number,
either directly or by copying some value stored in one of the mem
ory locations of the computer. Along with the STA instruction, it is
probably the most frequently used instruction of the entire 6502

252 Appendixes

set. Its main uses are for placing specific values into memory; for
example,

LDA 112
STA $OJ44

and for transferring the contents of one memory location to an
other; for example,

LDA $0620

STA $OJ44

This instruction was thoroughly described in Chapter 4.

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the number loaded into the accumulator is greater than 127,
the Negative flag is set; otherwise, it is reset. If the number loaded
into the accumulator is equal to zero, the Zero flag is set; other
wise, it is reset.

ADDRESSING MODES

The eight addressing modes availabe for the LDA instruction
were thoroughly described in Chapter 5. The eight modes are
briefly listed below:

Mode Instruction Cycles Bytes Meaning

Immediate LOA #2 2 2 #2= > A
Absolute LOA $3420 4 3 contents of

memory
$3420= >A

Zero Page LOA $F6 3 2 contents of
memory $F6 = > A

Zero Page,X LOA $F6 ,X 4 2 contents of
memory
$F6+X= >A

Absolute ,X LOA $3420,X 4 3 contents of
memory
$3420+X= > A

-

Mode

Absolute ,Y

Ind. Ind ir.

Indir. Ind.

The 6502 Instruction Set 253

Instruction Cycles Bytes Meaning

LOA $3420,Y 4 3 contents of
memory
$3420+ Y= > A

LOA ($F6,X)

LOA ($F6),Y

6

5

2 contents of addr.
at $F6+X= > A

2 contents of
(address at $F6)
+ offset Y = > A

LOX Load the X Register
THE INSTRUCTION

The LDX instruction directly loads the X register, and is ex
actly analogous to the LDA instruction for the accumulator. It al
lows direct loading of the index register and is frequently used in
assembly language programs.

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the number loaded into the X register is greater than 127, the
Negative flag is set; otherwise, it is reset. If the number loaded into
the X register is equal to zero, the Zero flag is set; otherwise, it is
reset.

ADDRESSING MODES

LDX utilizes five addressing modes. A summary is given
below:

Mode Instruction Cycles Bytes Meaning

Immediate LOX #2 2 2 LOX #2
Absolute LOX $3420 4 3 LOX contents of

memory $3420
Zero Page LOX $F6 3 2 LOX contents of

memory $F6
Zero Page,Y LOX $F6,Y 4 2 LOX contents of

memory $F6 + Y
Absolute,Y LOX $3420,Y 4 3 LOX contents of

memory $3420 + Y

254 Appendixes

LDY Load the Y Register

THE INSTRUCTION

The LDY instruction, like the LDA and LDX instructions, al
lows direct loading of the 6502. In this case, the load is into the Y
register, but in all other respects LDY is identical to both the LDX
and LDA instructions.

EFFECTS ON THE PROCESSOR STATUS REGISTER

As with the LDX instruction, if the number loaded into the Y
register by LDY is greater than 127, the Negative flag is set; other
wise, it is reset. If the number loaded is equal to zero, the Zero flag
is set; otherwise, it is reset.

ADDRESSING MODES

Five addressing modes are available for the LDY instruction,
as outlined here:

Mode Instruction

Immediate LOY #2
Absolute LOY $3420

Zero Page LOY $F6

Zero Page,X LOY $F6,X

Absolute,X LOY $3420,X

LSR Logical Shift Right
THE INSTRUCTION

Cycles Bytes Meaning

2 2 LOY #2
4 3 LOY contents of

memory $3420
3 2 LOY contents of

memory $F6
4 2 LOY contents of

memory $F6 + X
4 3 LOY contents of

memory $3420 + X

This instruction is the exact opposite of ASL. The LSR instruc
tion forces the most significant bit (bit 7) of a number to zero and
rotates each bit down 1 position, with the least significant bit (bit 0)
ending up in the Carry bit.

The 6502 Instruction Set

76543210 Carry

before:O = > 10110101 = > 0
after: 01011010 1

255

We can see the shift in the bits within the number and the transfer
of the zero into the high bit, as well as the transfer of the low bit
into the Carry.

Remember that an ASL instruction causes a number to double
its value. Since each bit in a binary number is exactly one-half the
value of its left-hand neighbor, the LSR instruction divides a num
ber by 2, and the Carry bit represents the remainder of the division.
In the example above, these are the 2 bytes before and after the
LSR:

#%10110101
#%01011010

#181
#90 with C= 1

We can see that the division worked as we expected.

CAUTION: If we are using signed arithmetic, then the first
byte in the example is not 181, but rather - (255 -181) = -74,
and we all know that 90 is not half of -74. To divide a negative
number by 2, we have to remember that it is negative, then
convert it to its positive counterpart, divide it by 2, and then
convert it back to a negative number. Whew! Let's see how to
do this:

LDA #$FE i -2
EOR #$FF i compl ement it
CLC ibefor e add i ng
ADC 111 inow it ' s +2
LSR A i divide by t wo
EOR #$FF icomplement again
CLC ibefore adding
ADC 111 i as above
STA ithe answer, -1

From this example, we can see that to interconvert positive and
negative numbers, we need only to EOR the number with #$FF, and
add 1 to the result.

256 Appendixes

EFFECTS ON THE PROCESSOR STATUS REGISTER

Since the high bit of the number being addressed is always
forced to zero, the Negative flag is always reset by this operation. If
the result of the LSR instruction is equal to zero, the Zero flag is
set; otherwise, it is reset. Finally, the Carry flag is set if the least
significant bit of the original number was aI, and it is reset if this
bit was a zero.

ADDRESSING MODES

Five addressing modes are available for the LSR instruction:

Mode Instruction

Absolute LSR $3420

Zero Page LSR $F6

Zero Page,X LSR $F6,X

Absolute,X LSR $3420,X

Accumulator LSRA

NOP No Operation
THE INSTRUCTION

Cycles Bytes Meaning

6 3 LSR contents of
memory $3420

5 2 LSR contents of
memory $F6

6 2 LSR contents of
memory $F6 + X

7 3 LSR contents of
memory $3420 + X

2 LSR contents of
accumulator

The NOP instruction acts as you might expect from its name; it
does nothing! So why have it at all? The NOP instruction can be
used to hold space for modifying instructions in a program, or in
debugging a program, to eliminate an instruction without having to
change the location in memory of all succeeding instructions .

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

The 6502 Instruction Set 257

ADDRESSING MODES

As can be deduced from its operation, the only addressing
mode available for the NOP instruction is the implied mode. It
takes 1 byte of memory and requires 2 machine cycles to execute.

ORA Or Memory with the Accumulator
THE INSTRUCTION

The ORA instruction is the last of the three logical instructions
of the 6502. The first two are the AND and EOR instructions. The
ORA instruction compares two numbers bit by bit, and if a bit is set
to 1 in either or both numbers, that bit will also be set to 1 in the
resulting number. Let's look at an example:

Number 1:
Number 2:

ORA result:

#%10100101
#%01101100

#%11101101

The primary use of ORA is to set a particular bit of a number
to 1. For instance, if you have a number in memory location $4235
and you need to use it with the least significant bit (bit 0) set to 1,
you simply load the accumulator with the number 1 and ORA with
memory location $4235. The accumulator will then contain the
number which was in memory location $4235, with its least signifi
cant bit set equal to 1.

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the number residing in the accumulator following the ORA
instruction is equal to zero, the Zero flag will be set; otherwise, it
will be reset. If the resulting number is greater than 127, the Nega
tive flag will be set; otherwise, it will be reset.

258 Appendixes

ADDRESSING MODES

The ORA instruction utilizes the following eight addressing
modes:

Mode Instruction Cycles Bytes Meaning

Immediate ORA #2 2 2 AOR#2
Absolute ORA $3420 4 3 A OR contents of

memory $3420
Zero Page ORA $F6 3 2 A OR contents of

memory $F6
Zero Page,X ORA $F6,X 4 2 A OR contents of

memory $F6 + X
Absolute,X ORA $3420,X 4 3 A OR contents of

memory
$3420+X

Absolute,Y ORA $3420,Y 4 3 A OR contents of
memory
$3420+ Y

Ind.lndir. ORA ($F6,X) 6 2 A OR contents of
addr. at $F6 + X

Indir. Ind. ORA ($F6),Y 5 2 A OR contents
(address at $F6)
+ offset Y

PHA Push the Accumulator onto the Stack
THE INSTRUCTION

In assembly language programming, we generally have several
places in which to store a value temporarily. We can place it into
some reserved memory location or place it in the X or Y registers or
push it onto the stack. Of these methods, the only one which won't
disturb any other stored information (as the TAY or TAX instruc
tions might), is the PHA instruction, which will push the number
onto the stack. However, great caution must be exercised when us
ing the stack to store information. Remember that the stack is used
to hold return addresses so that the JSR instruction will know
where to return following the completion of the subroutine. Push-

The 6502 Instruction Set 259

ing extraneous numbers onto the stack can result in computer
crashes unless you take care not to interfere with the return ad
dresses, since the 6502 will try to return to a virtually random ad
dress; the odds of finding a valid instruction at such an address are
vanishingly small.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

The only addressing mode available for the PHA instruction is
the Implied mode. The instruction requires only 1 byte of memory
and 3 machine cycles to execute.

PHP Push the Processor Status Register
onto the Stack

THE INSTRUCTION

The PHP instruction takes the byte containing the flags of the
processor status register and pushes it onto the stack. Its purpose is
to save the contents of the processor status register for some future
operation while intermediate steps are being processed. The cau
tions for using PHP are similar to those for the PHA instruction:
be sure you don't interfere with information that would normally
be placed onto the stack, such as return addresses for subroutine
operations.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

As might be expected, the only addressing mode for the PHP
instruction is the Implied mode. The PHP instruction is a I-byte
instruction and requires 3 machine cycles to execute.

260 Appendixes

PLA Pull the Accumulator from the Stack
THE INSTRUCTION

This instruction is the counterpart to the PHA instruction. Ob
viously, if we have a way to push the value stored in the accumula
tor onto the stack, we should also have a way to get it back again.
The PLA instruction removes the top value from the stack and
places it into the accumulator for further use.

We will discuss one important use of PLA, but first we need to
know a little about machine language subroutines that are to be
used in BASIC. Let's suppose that since ATARI BASIC has no true
AND function, we want to write a machine language subroutine
that will AND two numbers together and return the answer to
BASIC. The first problem we face is how to get the two numbers to
our machine language routine. There are two ways to do this.

The first method is universal and can be used on most micro
computers. First, we calculate the high and low bytes of the two
numbers and then POKE each of these bytes into memory. The
machine language subroutine then accesses these memory locations
to obtain the numbers, and, after ANDing them together, places
the answer in memory, where it can be accessed by your BASIC
program. The BASIC program looks like this:

10 HIGHP= INT(P/256) : REM GETS HIGH BYTE OF P

20 LOWP = P-256*HIGHP : REM GETS LOW BYTE OF P
30 HIGHQ = INT (Q/256) : REM GETS HIGH BYTE OF Q

40 LOWQ = Q-256*HIGHQ: REM GETS LOW BYTE OF Q
50 POKE ADDR1,LOWP:REM PUTS LOWP INTO MEMORY
60 POKE ADDR2,HIGHP:REM PUTS HIGHP INTO MEMORY
70 POKE ADDR3,LOWQ:REM PUTS LOWQ INTO MEMORY
80 POKE ADDR4,HIGHQ:REM PUTS HIGHQ INTO MEMORY

90 X=USR(1536) : REM ACCESSES MACHINE LANGUAGE SUBROUTINE
100 LOWANS = PEEK (ADDR4) : REM GET LOW BYTE OF ANSWER
110 HIGHANS = PEEK(ADDR5) :REM GET HIGH BYTE OF ANSWER
120 ANSWER = LOANS + 256*HIGHANS: REM CONSTRUCT ANSWER

Although this method works, it's a bit clumsy. But for a number of
microcomputers on the market, this is the only method available.

The 6502 Instruction Set 261

However, your ATARI has a much more elegant and simple solu
tion to the problem.

The solution involves passing parameters from BASIC to ma
chine language and back again. These parameters can be numbers ,
addresses of strings, or virtually any type of constant or variable in
your BASIC program. The method for passing parameters to a ma
chine language program is simply to list the parameters to be passed
after the address of the machine language routine in the USR call,
separating the parameters by commas. Here is the program to do
this:

10 ANSWER=USR(1536, P, Q)

Yes! Only one line! How do we do this?
Your ATARI takes P and Q, breaks them down into high and

low bytes for you, and places them onto the stack, where they can
be retrieved by your machine language program using the PLA in
struction. It's also possible, by storing the answer obtained by your
machine language routine into $D4 and $D5 (low byte first), to
have the variable ANSWER automatically contain the right answer
after line 10 is executed.

There is one crucial detail concerning this use of parameter
passing. Since the ATARI allows parameters to be passed in a USR
call, it also tells the machine language routine how many parame
ters are being passed. It does this even if no parameters are being
passed! This information is automatically pushed onto the stack as
a single byte as soon as the BASIC line is executed. In the case of
line 10 above, therefore, the stack will have the number 2 pushed
onto it before the high and low bytes of P and Q are placed there.
This byte then fouls up the return address, so the machine language
program would fail to return to the right place in the BASIC pro
gram. Your computer will crash . In all likelihood, you'll have to
turn the power off and on again, losing your program. How can we
prevent this?

The answer is as simple as it is obvious. Just begin every ma
chine language subroutine you write for a BASIC program with a
PLA instruction. PLA will get rid of this extra byte on the stack,
and then you can proceed with the remainder of your machine lan-

262 Appendixes

guage routine. This byte that PLA pulled from the stack into the
accumulator can be used as a check on your BASIC program, if
you desire. For instance, we already know that the number in this
example should be 2. If it's not, someone made a mistake in the
BASIC program. We already know that our machine language rou
tine will fail if two parameters are not passed to it. Therefore, we
could build code into our machine language routine to check the
first byte pulled into the accumulator. If it is not a 2, the program
could branch to some routine which notifies the user of the error by
printing an error message or passing an error code back into
ANSWER or using another method.

In any case, it is critical to remember that when you write ma
chine language subroutines for use in BASIC programs, you must
include the extra PLA to remove the number of parameters from
the stack or your computer will crash.

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the number which the PLA instruction pulls from the stack is
greater than 127, the Negative flag will be set; otherwise, it will be
reset. If the number pulled from the stack is equal to zero, the Zero
flag will be set; otherwise, it will be reset.

ADDRESSING MODES

The only addressing mode available for the PLA instruction is
the Implied mode, requiring only 1 byte of memory and 4 machine
cycles to execute.

PLP Pull the Processor Status Register
from the Stack

THE INSTRUCTION

PLP reverses the PHP instruction by removing the top byte
from the stack and placing it into the processor status register. PLP
is used to restore things to the way they were at the time the PHP
instruction was executed.

The 6502 Instructi on Set 263

EFFECTS ON THE PROCESSOR STATUS REGISTER

The PLP instruction affects all of the flags in the processor
status register, since they will all be changed to the values contained
in the byte pulled from the stack.

ADDRESSING MODES

The only addressing mode available for the PLP instruction is
the Implied mode. PLP is a I-byte instruction and requires 4 ma
chine cycles to execute.

ROL Rotate Left
THE INSTRUCTION

ROL is similar to the ASL and LSR instructions, but with one
significant difference. When those two instructions are executed,
the rotation of the bits forces a zero into the high or low bit, respec
tively. The ROL instruction is a true rotation, in which the Carry
bit is placed into bit zero of the number, each bit of the number is
moved one position to the left , and the most significant bit of the
number is rotated into the Carry bit. This can be shown pictorially
as follows:

76543210 C

before: 10010101 < = 0
C 76543210

after: 00101010

Note that in contrast to the ASL and LSR instructions, ROL
doesn't change the actual bits themselves; it changes only their po
sitions within the number. For example, if we write a program
which has eight consecutive ROL instructions, we return to the
same number with which we began. Using eight consecutive ASL or
LSR instructions would give us an answer of zero, since for each of
the eight instructions, one more bit is set to zero.

264 Appendixes

Each bit of the original number is moved one position to the
left following a ROL instruction, so if the Carry bit is initially zero,
the original number is doubled each time this instruction is used.
The same cautions discussed in the section on the ASL instruction
also apply to the use of the ROL instruction.

EFFECTS ON THE PROCESSOR STATUS REGISTER

The ROL instruction sets the Carry bit equal to the value of the
most significant bit of the original number. If the answer is equal to
zero, the Zero bit will be set; otherwise, it will be reset. Finally, if
the answer is greater than 127 (which will happen if bit 6 of the
original number is a 1), the Negative flag will be set; otherwise, it
will be reset.

ADDRESSING MODES

The ROL instruction uses the same five addressing modes as do
the ASL and LSR instructions:

Mode Instruction

Absolute ROL $3420

Zero Page ROL $F6

Zero Page,X ROL $F6,X

Absolute,X ROL $3420,X

Accumulator ROLA

ROR Rotate Right
THE INSTRUCTION

Cycles Bytes Meaning

6 3 ROL contents of
memory $3420

5 2 ROL contents of
memory $F6

6 2 ROL contents of
memory $F6 + X

7 3 ROL contents of
memory $3420 + X

2 ROL contents of
accumulator

As you might guess, the ROR and ROL instructions are exact
opposites. ROR performs a rotation to the right, dividing a number
by 2 if the Carry bit was initially zero. Apply the same cautions that

The 6502 Instruction Set 265

were discussed for the LSR instruction. ROR can be represented
pictorially as follows:

C 76543210

before: = > 01101100
76543210 C

after: 10110110 0

Note that the rotation of the bits is to the right and the original
Carry bit is transferred into bit 7 of the answer. Bit 0 of the starting
number is transferred to the Carry bit following the operation.

EFFECTS ON THE PROCESSOR STATUS REGISTER

The Carry bit will be set to the value of the least significant bit
(bit 0) of the number being rotated. If the resulting number is equal
to zero, the Zero flag will be set; otherwise, it will be reset. If the
resulting number is greater than 127 (which will happen if the Carry
bit had been set prior to the ROR), the Negative flag will be set;
otherwise, it will be reset.

ADDRESSING MODES

The five addressing modes available for the ROR instruction
are the same as those just discussed for the ROL instruction and are
outlined below:

Mode Instruction Cycles Bytes Meaning

Absolute RDR $3420 6 3 RDR contents of
memory $3420

Zero Page RDR $F6 5 2 RDR contents of
memory $F6

Zero Page,X RDR $F6,X 6 2 RDR contents of
memory $F6 + X

Absolute,X RDR $3420,X 7 3 RDR contents of
memory $3420 + X

Accumulator RDR $3420,Y 2 RDR contents of
memory $3420 + Y

266 Appendixes

RTI Return from Interrupt

THE INSTRUCTION

As we have already discussed briefly, the ATARI makes fre
quent use of interrupt routines. These divert programs from their
normal flow to a new section which performs a particular funtion,
and then return the program flow back to the point at which the
interrupt occurred. The RTI instruction is provided in the 6502 in
struction set to accomplish this return to normal flow.

When an interrupt occurs, the 6502 transfers the contents of
the processor status register and the program counter onto the
stack. When an RTI instruction is encountered, the microprocessor
restores these registers from the stack, thus returning to the exact
state of the 6502 prior to the interrupt and allowing program flow
to resume.

EFFECTS ON THE PROCESSOR STATUS REGISTER

All flags in the processor status register may be changed by the
RTI instruction, since the entire register is renewed by pulling the
original value off the stack and returning it here.

ADDRESSING MODES

The RTI instruction uses only the Implied mode of addressing,
requiring 1 byte and 6 machine cycles to execute.

RTS Return from Subroutine
THE INSTRUCTION

The RTS instruction in assembly language programming is
analogous to the RETURN command of BASIC: it returns to the
next statement following the jump to the subroutine. The instruc
tion causes the program counter to be reloaded with the return ad
dress, which is taken from the stack where it was placed by the JSR
command. In the discussions of the PHA and PHP instructions, we
noted the problem which can arise if other numbers have inadver-

The 6502 Instruction Set 267

tently been placed on the stack: when the return address is taken, it
is wrong and the program dies.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

The RTS instruction uses only the Implied addressing mode,
requiring only I byte of memory and 6 machine cycles to execute.

sac Subtract with Carry
THE INSTRUCTION

SBC is the only subtraction instruction of the 6502. It allows
you to determine the difference between two numbers by loading
the first into the accumulator and subtracting the second. For in
stance, if we want to perform the subtraction

so:

8 - 6 = ?

we can write the following assembly language program to do

LDA 118
SBC 116

The answer, 2, remains in the accumulator until needed.
In decimal subtraction, we learned in school that if we don't

have a sufficiently large number in the ones column to perform the
subtraction, we can borrow 1 ten from the tens column, convert it
to 10 ones, add this to the number in the ones column, and perform
the subtraction. For instance, when we subtract

24 - 9 = ?

268 Appendixes

we know that we cannot subtract 9 from 4. We borrow 1 ten from
the tens column, which becomes 10 ones, and add this to the 4 we
began with, giving us 14 ones. Now we can subtract 9 from 14,
leaving 5 in the ones column and obtain the correct answer, 15 .

The 6502 performs subtraction in the same way, but it borrows
from the Carry bit. For this reason, we must always be certain that
the Carry bit is set (equal to 1) before doing a subtraction so that if
we need to borrow, we'll have something to borrow. We can be sure
that the Carry bit is set by using the SEC instruction which sets the
Carry bit. Now, to do a more complicated subtraction, the assem
bly language code might look like this:

SEC jbe sure C i s set
LDA #24 j 1st number
SBC #26 j 2nd number

janswer now i n accumulator

What is the answer at the "?"? We set the Carry bit before we
started, and it's obvious that we needed to borrow before we could
perform the subtraction. Therefore, it's apparent that the Carry bit
following this subtraction will be zero . When it is used for
borrowing, the Carry bit has a value of 256; we began with the
number 256 + 24 = 280 and we subtracted 26, leaving an answer
of 254.

Using the SBC instruction, we can subtract any number from
another. Note that here we have confined our examples to numbers
which can be expressed in a single byte. Double-precision arithme
tic was used in several examples in Chapters 7 to 10.

EFFECTS ON THE PROCESSOR STATUS REGISTER

As described above, the Carry bit will be reset if a borrow is
necessary to perform the subtraction. The Negative flag is set if the
answer is greater than 127; otherwise, it is reset. The Zero flag is set
if the answer is equal to zero; otherwise, it is reset. The Overflow
flag is set when the answer is larger than plus or minus 127; other
wise, it is reset.

The 6502 Instruction Set 269

ADDRESSING MODES

The SBC instruction uses the same eight addressing modes as
the LDA instruction . Please refer to Chapter 5 for details of these
modes.

Mode Instruction

Immediate SSC#2
Absolute SSC $3420

Zero Page SSC $F6

Zero Page,X SSC $F6,X

Absolute,X SSC $3420,X

Absolute,Y SSC $3420,Y

Ind. Indir. SSC ($F6,X)

Indir. Ind. SSC ($F6),Y

SEC Set the Carry Bit
THE INSTRUCTION

Cycles Sl!es Meaning

2 2 A+#2
4 3 A-contents of

memory $3420
3 2 A-contents of

memory $F6
4 2 A-contents of

memory $F6 + X
4 3 A-contents of

memory
$3420+X

4 3 A-contents of
memory
$3420+ Y

6 2 A-contents of
addr. at $F6 + X

5 2 A-contents of
(address at $F6)
+ offset Y

This instruction is used whenever it is necessary to set the Carry
bit to 1. The primary use of SEC is prior to subtractions, as
described for SBC. Another use of SEC is prior to a rotate com
mand, when you want to force the Carry bit to 1 before the
rotation.

270 Appendixes

EFFECTS ON THE PROCESSOR STATUS REGISTER

The only effect of the SEC instruction on the processor status
register is to set the Carry bit unconditionally.

ADDRESSING MODES

The only addressing mode for the SEC instruction is the Im
plied mode. It is a I-byte instruction and requires 2 machine cycles
to execute.

SED Set the Decimal Mode
THE INSTRUCTION

As discussed in the sections on the CLD and ADC instructions,
the 6502 can operate either in the binary or the decimal mode. To
set it in the binary mode, we use the CLD instruction, and to set it
in the decimal mode, we use the SED instruction. Note that all
additions and subtractions following SED will be in the decimal
mode, until cleared by the CLD instruction.

EFFECTS ON THE PROCESSOR STATUS REGISTER

The SED instruction unconditionally sets the Decimal flag
equal to 1. It has no other effects.

ADDRESSING MODES

The only addressing mode used by the SED instruction is the
Implied mode, using 1 byte of memory and 2 machine cycles to
execute.

SEI Set the Interrupt Flag
THE INSTRUCTION

As mentioned previously, setting the interrupt flag will prevent
maskable interrupts such as display list and vertical blank inter-

The 6502 Instruc tion Set 271

rupts from occurring. There are times when we would like to write
our own interrupt handler, a program which the computer will exe
cute whenever an interrupt occurs. Before we direct the computer
to our routine, it's good programming practice to set the interrupt
flag, direct the 6502 to our routine's location by setting the appro
priate vector (discussed in Chapter 8), and then clear the interrupt
flag to resume normal operations. This is how we prevent an inter
rupt from occurring while we are changing the address of the inter
rupt vector. If such an interrupt occurred when we were halfway
through the change, the computer would no doubt crash . The SEI
instruction prevents this from happening.

EFFECTS ON THE PROCESSOR STATUS REGISTER

The only effect of the SEI instruction is to unconditionally set
the Interrupt flag to 1.

ADDRESSING MODES

Like the two previous instructions, the SEI instruction uses
only the Implied addressing mode, and takes I byte of memory and
2 machine cycles to execute.

STA Store the Accumulator in Memory
THE INSTRUCTION

Just as the LDA instruction can load the accumulator from any
memory location, the STA instruction can store whatever value is
in the accumulator into any memory location. Note that this in
struction does not affect the value stored in the accumulator. It just
copies this value into some memory location for storage. We know
how to move a value from one place in memory to another, as
follows:

LDA $2468 j load from location 1
STA $1357 jand store in locat i on 2

272 Appendixes

In fact, we can now get fairly sophisticated and transfer a whole
block of memory from one place to another:

LOY #$50
LOOP LDA $5678 ,Y

STA $4567 ,Y
DEY
BNE LOOP

jset up number of bytes to move
jget fi rst byt e f rom $56C8
jdeposit it in $45B7
jdecrement counter
jif counter)O then loop
jgets here onl y when done

Look particularly at the LDA and STA instructions. Both use
the Absolute, Y addressing mode, which allows Y to act not only as
the loop counter, but also as the offset from the base addresses
from which to load, and to which to transfer. The first byte trans
ferred by this routine is the highest byte of the block, and the rou
tine moves down through memory until the last byte transferred is
the one from $5678 to $4567 . After that transfer, when we decre
ment the Y register again, it will equal zero. Therefore, the branch
back to LOOP will not be taken, since we loop to LOOP only if the
Zero flag is not equal to 1 at this point.

Let's look briefly at the speed of such a routine. We have
moved 80 bytes of memory (remember, #$50 = #80). First we
loaded the Y register using the Immediate mode, which takes 2 ma
chine cycles . Then we go through the loop 80 times. Each loop
consists of one LDA and one STA, both in the Absolute, Y address
ing mode, one DEY, and one BNE instruction. If we add the cycles
for the loop, we get

LOA = 4
STA = 4
DEY = 2
BNE 2

Total = 12

Multiplying by 80 loops yields 960 machine cycles, and adding the 2
for the LDY instruction gives a total time of 962 machine cycles .
Since each cycle in your ATARI takes 0.56 microseconds, the total
elapsed time to move 80 bytes of memory from one location to

The 6502 Instruction Set 273

another was 538.72 microseconds. In BASIC, using a program sim
ilar to this

10 FOR I = 1 TO 80
20 POKE ADDR1+I,PEEK(ADDR2 +I)
30 NEXT I

to accomplish the same end requires 1.25 seconds! Using a machine
language routine to accomplish this task increased the speed 2329-
fold! Other examples of transferring blocks of memory can be
found in Chapter 7.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

The STA instruction uses seven of the eight addressing modes
available to its counterpart, the LDA instruction. Addressing
modes are full y explained in Chapter 5 and are merely outlined
here:

Mode Instruction Cycles Bytes Meaning

Absolute STA $3420 4 3 STA A into memory
$3420

Zero Page STA $F6 3 2 STA A into memory
$F6

Zero Page,X STA $F6,X 4 2 STA A into memory
$F6+X

Absolute,X STA $3420,X 4 3 STA A into memory
$3420+X

Absolute ,Y STA $3420,Y 4 3 STA A into memory
$3420+ Y

Ind.lndir. STA ($F6,X) 6 2 STA A into addr. at
$F6+X

Indir. Ind. STA ($F6) ,Y 5 2 STA A into
(address at $F6)
+ offset Y

274 Appendixes

STX Store the X Register

THE INSTRUCTION

The STX instruction may be used exact ly like the STA instruc
tion, except that the value in the X register, rather than in the accu
mulator, is stored in memory.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None .

ADDRESSING MODES

The STX instruction uses three addressing modes as outlined
below:

Mode Instruction Cycles Bytes Mean ing

Absolute STX $3420 4 3 STX into memory
$3420

Zero Page STX $F6 3 2 STX into memory $F6
Zero Page ,Y STX $F6,Y 4 2 STX into memory

$F6+Y

STY Store the Y Register

THE INSTRUCTION
STY, just like the STA and STX instructions, stores the value

contained in a register (this time, the Y register) into memory.

EFFECTS ON THE PROCESSOR STATUS REGISTER

None.

ADDRESSING MODES

The three addressing modes used with the STY instruction are
outlined below:

The 6502 Instruction Set 275

Mode Instruction Cycles Bytes Meaning

Absolute STY $3420 4 3 STY into memory
$3420

Zero Page STY $F6 3 2 STY into memory $F6
Zero Page ,X STY $F6 ,X 4 2 STY into memory

$F6+X

TAX Transfer Accumulator to the X Register

THE INSTRUCTION

TAX is a transfer instruction which copies the va lue stored in
the accumulator into the X register, leav ing the accumulato r un
changed.

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the number transfe red is greater than 127, the Negative flag
is set ; otherwise, it is reset. If the number transfered is equal to
zero, the Zero flag is set; otherwise, it is reset.

ADDRESSING MODES

Only the Implied mode is availab le for the transfer instruc
tions, requiring I byte of memory and 2 machine cycles .

TAY Transfer Accumulator to the Y Register
THE INSTRUCTION

This instruction transfers the va lue in the accumulator into the
Y register.

276 Appendixes

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the number in the accumulator is greater than 127, the Nega
tive flag will be set; otherwise, it will be reset. If the number is
equal to zero, the Zero flag will be set; otherwise, it will be reset.

ADDRESSING MODES

Only the Implied mode, which takes 1 byte of memory and 2
machine cycles to execute, is available for the TAY instruction.

TSX Transfer the Stack Pointer to the X Register
THE INSTRUCTION

The transfer instruction TSX copies the stack pointer into the
X register, usually prior to storing it for future use.

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the stack pointer was greater than 127 (and it usually is), the
Negative flag will be set; otherwise, it will be reset. If the stack
pointer was equal to zero (almost never), then the Zero flag will be
set; otherwise, it will be reset.

ADDRESSING MODES

The TSX instruction uses only the Implied mode, taking 1 byte
of memory and 2 machine cycles.

TXA Transfer the X Register to the
Accumulator

THE INSTRUCTION

This is the counterpart to the TAX instruction and transfers a

The 6502 Instruction Set 277

value from the X register to the accumulator without changing the
value stored in the X register.

EFFECTS ON THE PROCESSOR STATUS REGISTER

The TXA instruction sets the Negative flag if the transfered
number was greater than 127; otherwise, it resets it. If the number
transfered was equal to zero, the Zero flag will be set; otherwise, it
will be reset.

ADDRESSING MODES

The only addressing mode for the TXA instruction is the Im
plied mode, using 1 byte of memory and 2 machine cycles to
execute.

TXS Transfer the X Register to the
Stack Pointer

THE INSTRUCTION

This instruction is most frequently used when you wish to set
the stack pointer to some predetermined number. Use TXS with
extreme caution! You know what can happen when the stack is
messed up. Nothing can upset the stack more than the incorrect use
of the TXS instruction, so be very careful in its use.

EFFECTS ON THE PROCESSOR STATUS REGISTER

The TXS instruction has no effect on any of the flags in the
processor status register.

ADDRESSING MODES

The only addressing mode for the TXS instruction is the Im
plied mode, using 1 byte of memory and 2 machine cycles to
execute.

278 Appendixes

TVA Transfer the Y Register to the
Accumulator

THE INSTRUCTION

TYA transfers the number stored in the Y register into the accu
mulator, leaving a copy of it in the Y register. It is the counterpart
of the TAY instruction already discussed.

EFFECTS ON THE PROCESSOR STATUS REGISTER

If the number transfered is greater than 127, the Negative flag
is set; otherwise, it is reset. If the number is equal to zero, the Zero
flag is set; otherwise, it is reset.

ADDRESSING MODES

Like the other transfer instructions, the TYA instruction uses
only the Implied addressing mode, requiring 1 byte of memory and
2 machine cycles to execute .

ATASCII INTERNAL DISPLAY CHARACTER

0 160 64 control-comma
1 191 65 control-A
2 149 66 control-B
3 146 67 control-C
4 186 68 control-D
5 170 69 control-E
6 184 70 control-F
7 189 71 control-G
8 185 72 control-H
9 141 73 control-I

10 129 74 control-J
11 133 75 control-K
12 128 76 control-L
13 165 77 control-M
14 163 78 control-N
15 136 79 control-O
16 138 80 control-P
17 175 81 control-Q
18 168 82 control-R
19 190 83 control-S
20 173 84 control-T
21 139 85 control-U
22 144 86 control-V

279

280 Appendixes

ATASCII INTERNAL DISPLAY CHARACTER

23 174 87 control-W
24 150 88 control-X
25 171 89 control-Y
26 151 90 control-Z
27 28 91 escape
28 142 92 control-minus
29 143 93 control-eq ual
30 134 94 control-plus
31 135 95 control-asterisk
32 33 0 space
33 95 1 !
34 94 2
35 90 3 #
36 88 4 $
37 93 5 %
38 91 6 &
39 115 7
40 112 8
41 114 9
42 7 10 *
43 6 11 +
44 32 12
45 14 13
46 34 14
47 38 15 /
48 50 16 0
49 31 17 1
50 30 18 2
51 26 19 3
52 24 20 4
53 29 21 5
54 27 22 6
55 51 23 7
56 53 24 8
57 48 25 9
58 66 26
59 2 27
60 54 28 <
61 15 29
62 55 30 >
63 102 31 ?

The Three Character Sets Used in ATARI Computers 281

ATASCII INTERNAL DISPLAY CHARACTER

64 117 32 @

65 127 33 A
66 85 34 B
67 82 35 C
68 122 36 D
69 106 37 E
70 120 38 F
71 125 39 G
72 121 40 H
73 77 41 I
74 65 42 J
75 69 43 K
76 64 44 L
77 101 45 M
78 99 46 N
79 72 47 0
80 74 48 P
81 111 49 Q
82 104 50 R
83 126 51 S
84 109 52 T
85 75 53 U
86 80 54 V
87 110 55 W
88 86 56 X
89 107 57 Y
90 87 58 Z
91 96 59 [
92 70 60 shift-plus
93 98 61 J
94 71 62 shift-asterisk
95 78 63 shift-minus
96 162 96 control-period
97 63 97 a
98 21 98 b
99 18 99 c

100 58 100 d
101 42 101 e
102 56 102 f
103 61 103 9
104 57 104 h

282 Appendixes

ATASCII INTERNAL DISPLAY CHARACTER

105 13 105
106 1 106 j
107 5 107 k
108 0 108 I
109 37 109 m
110 35 110 n
111 8 111 0

112 10 112 P
113 47 113 q
114 40 114
115 62 115 s
116 45 116 t
117 11 117 u
118 16 118 v
119 46 119 w
120 22 120 x
121 43 121 Y
122 23 122 z
123 130 123 control-semicolon
124 79 124 shift-equals
125 118 125 shift-clear
126 52 126 delete-backspace
127 44 127 tab
155 12 RETURN
156 116 shift-delete
157 119 shift-insert
253 158 control-2(bell)
254 180 control-delete
255 183 control-insert

60 CAPS/lowercase
39 ATARlkey

Dec. Hex. # Label Use of the Location(s)

2 2 2 CASINI Cassette initialization vector
6 6 TRAMSZ Equals 1 if A cartridge

present
7 7 TSTDAT Equals 1 if B cartridge

present
10 A 2 DOSVEC Disk software start vector
12 C 2 DOSINI Disk boot initialization

address
14 E 2 APPMHI Top of applications memory
16 10 1 POKMSK POKEY interrupts enabled
18 12 3 RTCLOK Real-time clock
48 30 STATUS Internal SIO status storage

location
54 36 CRETRY # of retries of commands
55 37 DRETRY # of device retries
66 42 CRITIC Critical I/O flag during VBI
73 49 ERRNO Disk I/O error number
77 4D ATRACT If > 127, screen colors rotate
82 52 LMARGN Left margin of screen
83 53 RMARGN Right margin of screen
84 54 ROWCRS Current cursor row
85 55 2 COLCRS Current cursor column

283

284 Appendixes

Dec. Hex. # Label Use of the Location(s)

87 57 1 DINDEX Current screen graphics
mode

88 58 2 SAVMSC Address of screen memory
106 6A 1 RAMTOP RAM size in pages
128 80 2 LOMEM BASIC's bottom of memory

pOinter
130 82 2 VNTP Address of variable name

table
132 84 2 VNTD End of variable name

table+ 1
134 86 2 VVTP Address of variable value

table
136 88 2 STMTAB Address of BASIC statement

table
140 8C 2 STARP String & array table pOinter
142 8E 2 RUNSTK Address of BASIC run-time

stack
144 90 2 MEMTOP Top of BASIC memory
186 BA 2 STOPLN Line # where program

stopped
195 C3 ERRSAV Error code #
201 C9 1 PTABW Columns between TABs
212 D4 6 FRO Floating point register 0
224 EO 6 FR1 Floating point register 1
237 ED EEXP Value of exponent
238 EE NSIGN Sign of floating point number
239 EF ESIGN Sign of exponent
241 F1 DIGRT # digits to right of decimal
251 FB DEGFLG For radians = O;for

degrees=6
512 200 2 VDSLST NMI DLI vector
528 210 2 VTIMR1 POKEY timer 1 interrupt

vector
530 212 2 VTIMR2 POKEY timer 2 interrupt

vector
532 214 2 VTIMR4 POKEY timer 4 interrupt

vector
534 216 2 VIMIRQ IRQ immediate vector
546 222 2 VVBLKI VBLANK immediate vector
548 224 2 VVBLKD VBLANK deferred vector

The ATARI Memory Map 285

Oec. Hex. # Label Use of the Location(s)
559 22F 2 SOMCTL Oirect Memory Access enable
560 230 2 SOLSTL Address of display list
580 244 1 COLDST If = O,warmstart;if = 1,coldstart
623 26F 1 GPRIOR Priority register shadows

$001B
624 270 8 PAOOLx Paddle values-shadow

$0200-0207
632 278 4 STICKx Joystick values-shadow

$0300-0301
636 27C 8 PTRIGx Paddle triggers-shadow

$0300-0301
644 284 4 STRIGx Stick triggers-shadow

$0010-0013
656 290 1 TXTROW Text window cursor row
657 291 2 TXTCOL Text window cursor column
660 294 2 TXTMSC Address of text window
694 2B6 INVFLG If = O,chars.

normal;if = 128,inverse
702 2BE SHFLOK If = O,lower case;if = 64,upper

case
703 2BF 1 BOTSCR # text rows in text window
704 2CO 4 PCOLRx Player-missile color
708 2C4 5 COLORx Playfield color
736 2EO 2 RUNAO Run address from disk
738 2E2 2 INITAO Initialization address from

disk
741 2E5 2 MEMTOP Top of free memory
743 2E7 2 MEMLO Bottom of free memory
752 2FO CRSINH If = O,cursor on;if> O,cursor

off
756 2F4 CHBAS Character set base register
763 2FB ATACHR Stores color for FILL and

ORAWTO
764 2FC 1 CH Stores last character pressed
768 300 16 misc. Oisk control block
794 31A 38 HATABS Handler table
832 340 128 IOCBx Input/Output Control Blocks

40954 9FFA 2 B cartridge start address
40958 9FFE 2 B cartridge initialization

address

286 Appendixes

Oec. Hex. # Label Use of the Location(s)

49146 BFFA 2 A cartridge start address
49150 BFFE 2 A cartridge initialization

address
53248 0000 4 HPOSPx Horizontal position of player x
53252 0004 4 HPOSMx Horizontal position of

missile x
53256 0008 4 SIZEPx Size of player x;O, 1 or 3
53260 OOOC 1 SIZEM Size of all missiles
53266 0012 4 COLPMx Hardware player color

registers
53270 0016 4 COLPFx Hardware playfield color

registers
53274 001A COLBK Hardware background color

register
53277 0010 GRACTL Graphics control register
53278 001E HITCLR Clears collision registers
53279 001F CONSOL 3 console buttons
53760 0200 8 AUOxx Audio frequency and control

registers
53768 0208 AUOCTL Audio control
53769 0209 STIMER Start the POKEY timers
53770 020A RANOOM Reads a random number

0-255
53774 020E IRQEN Interrupt request enable
54272 0400 DMACTL Direct Memory Access control
54276 0404 HSCROL Horizontal scroll enable
54277 0405 VSCROL Vertical scroll enable
54279 0407 PMBASE Address of PMBASE
54281 0409 CHBASE Address of character base
54282 D40A WSYNC Wait for horizontal

synchchronization
54283 040B VCOUNT Line being drawn/2
54286 D40E 1 NMIEN NMI enable
58460 E45C 3 SETVBV Set VBLANK vectors
58463 E45F 3 SYSVBV VBLANK stage 1 entry
58466 E462 3 XITVBV VBLANK exit

Notes : I. # refers to the length of the address, in bytes
2. x refers to several related addresses; e.g., STICKx

INDEX

A (accumulator), 22-23
Absolute addressing, 53
Absolute indexed modes, 59-61
Absolute mode, 56-57
Accumulator (A), 22-23
Accumulator mode, 64
ADC (add with carry) instruction,

215-218
Add with carry (ADC) instruction,

215-218
Addressing, defined, 52
Addressing techniques, 52-65
AMAC (ATARI Macro Assembler),

72-74
AND (logical AND) instruction,

219-221
AND operation, 228-229
ANTIC chip, 113, 116
Arithmetic, signed, 255
Arithmetic instructions, 46-47
Arithmetic shift left (ASL) instruction,

221-223
Arrow symbols, 75
ASL (arithmetic shift left) instruction,

221-223
Assember/ Editor Cartridge, 67-72
Assemblers, 4, 7, 66-78
Assembly language, I

graphics subroutines in, 186-197
Assembly language programming, 4-7
Assembly process,S
Asterisk (*), 70
At (@) sign, 73
ATACHR,I91
ATARI ASCII (see ATASCII)
ATARI BASIC Interpreter, 3
ATARI hardware, 21-33
ATARI Macro Assembler (AMAC),

72-74
ATASCII (ATARI ASCII), 71,115

character set, 279-282
AUDCTL, 205-207

B (break) flag, 31
Bank selecting of memory, 19-20
BASIC, 1-6
BCC (branch on carry clear)

instruction, 223-226
BCS (branch on carry set) instruction,

226-227
BEQ (branch on equal to zero)

instruction, 227-228
Binary-coded decimal, 235-236
Binary numbering system, 12-14
BIT (test bits in memory with

accumulator) instruction, 228-230
Bits, 12-14
Blank spaces, 69
BMI (branch on minus) instruction,

230
BNE (branch on not equal to zero)

instruction, 230-231
BPL (branch on plus) instruction,

231-232
BRANCH instructions, 43-45
Branch on carry clear (BCC)

instruction, 223-226
Branch on carry set (BCS) instruction,

226-227
Branch on equal to zero (BEQ)

instruction, 227-228
Branch on minus (BMI) instruction,

230
Branch on not equal to zero (BNE)

instruction, 230-231
Branch on overflow clear (BVC)

instruction, 233
Branch on overflow set (BVS)

instruction, 233
Branch on plus (BPL) instruction,

23 1-232
Break (B) flag, 31
Break (BRK) instruction, 50, 232
BRK (break) instruction, 50, 232
Buffers, 82-83, 159

287

288

BVC (branch on overflow clear)
instruction, 233

BVS (branch on overflow set)
instruction, 233

.BYTE,70-71
Byte(s), 16, 17

in IOCBs, 158-161
status, 174-175

C (carry) flag, 29, 44
Carry, overflow into, 222
Carry (C) flag, 29, 44
Central input-output (CIO) system,

149-173
using, 177-181

Central Processing Unit (CPU), 21
Character sets:

ATASCII, 279-282
display, 279-282
internal, 115,279-282
subroutine to relocate , 92-97

CIO (central input-output) system,
149-173

using, 177-181
ClOY, 156-157

input using, 172-173
CLC (clear carry bit) instruction, 234
CLD (clear decimal flag) instruction,

235-236
Clear carry bit (CLC) instruction, 234
Clear decimal flag (CLD) instruction ,

235-236
Clear interrupt flag (CLI) instruction,

236-237
Clear overflow flag (CLV) instruction,

237
CLI (clear interrupt flag) instruction,

236-237
Clicks accompanying keystrokes, 132
CLOSE command, 155-158
CLV (clear overflow flag) instruction,

237
CMP (compare memory and

accumulator) instruction, 237-241

Index

COLCRS, 191
COLOR command, 187, 192
COLORO, 190-191
Colors, 121 , 125-126
Comment field, 69
Comments, 6
Compare index register X with memory

(CPX) instruction, 241-242
Compare index register Y with memory

(CPY) instruction, 242
COMPARE instructions, 50
Compare memory and accumulator

(CMP) instruction, 237-241
Compilers, 7-8
Conditional transfer of control, 43-44,

224
Countdown timers, 210-211
CPU (Central Processing Unit), 21
CPX (compare index register X with

memory) instruction, 241-242
CPY (compare index register Y with

memory) instruction , 242
Cycles, 55-56

D (decimal) flag, 30
Data organization, 17-19
DCB (device control block), 181 - 182
Debuggers, 66
DEC (decrement memory) instruction,

243
Decimal addresses in memory map,

283-286
Decimal (D) flag, 30
Decimal numbering system, 11-12
Decrement memory (DEC) instruction,

243
Decrement X register (DEX)

instruction, 244
Decrement Y register (DEY)

instruction, 244-245
Decrementing instructions, 49- 50
Deferred vertical blank routine, 133
Delay, time, 210
Device control block (DCB), 181-182

Index 289

DEX (decrement X register)
instruction, 244

DEY (decrement Y register)
instruction, 244-245

Direct addressing, 52
Direct memory access (DMA), 121-122
Directives, 70-72
Disk drive, 83
Disk file types, 174-176
Disk handler, resident, loading using,

181-184
Disk Operating System (DOS), 10
Disks:

floppy, 174
formatting, 174
writing to, 172

Display character set, 279-282
Display li st, 116-119
Display list interrupts, 123-132
Display memory, 113-116
Display set, 115
DMA (direct memory access), 121-122
Dollar ($) sign, 15,38
DOS (Disk Operating System), 10
DOS.SYS,1O
DRAWTO command, 189, 195
DSKINV system, 173-174
DUP.SYS, 10

Edit 6502, 78
Editors, 66
.END,72
ENTER command, 76
EOR (exclusive OR) instruction,

245-246
Exclusive OR (EOR) instruction,

245-246

FILL command, 189, 195
Fine scrolling facility, 139-148
Fixed addresses, 79-81
Flags, 28
Floating point numbers, 17

Floppy disks, 174
Formatting disks, 174
Frequency registers, 205

Graphics, 185-204
assembly language subroutines for,

186-197
player-missile, 197-204

GRAPHICS commands, 114-116,
187-188,192- 193

Handler entry point table, 162-163
Handler table, 153, 161-163
Hexadecimal addresses in memory

map, 283-286
Hexadecimal numbering system, 14-16
High-level languages, 6
Horizontal fine scrolling, 139-140
Horizontal resolution, 121
Horizontal scroll register (HSCROL),

144-146
HSCROL (horizontal scroll register),

144-146

Immediate mode, 55-56
Immediate vertical blank routine, 133
Implied addressing, 54
Implied mode, 64
INC (increment memory) instruction,

247
Increment memory (INC) instruction,

247
Increment X register (INX) instruction,

247-248
Increment Y register (I NY) instruction ,

248
Incrementing instructions , 49-50
Index registers, 24
Indexed addressing, 54

indirect, 61-62
Indexed indirect mode, 62-63
I ndirect addressing, 53

290 Index

Indirect indexed addressing, 61-62
Indirect mode, 65

indexed, 62-63
Input:

defined, 149
using CIOV, 172-173

Input-output control block (I0CB),
153-161

Instruction set, 39-51, 215-278
Internal character set, 115, 279-282
Interpreters, 3
Interrupt , defined, 30
Interrupt handler, 271
Interrupt processing, 122-123
Interrupt request (IRQ) flag, 30
INX (increment X register) instruction ,

247-248
INY (increment Y register) instruction,

248
IOCB (input-ouput control block),

153- 161
IOCBO (screen editor) , 154
IOCB6 (screen display), 154
IOCB7 (LPRINT command support),

154
I RQ (interrupt request) flag, 30

JMP Uump to address) instruction,
248-250

Joysticks , reading, 99-110
JSR Uump to subroutine) instruction ,

250-251
JUMP instructions, 42-43
Jump table , 150
Jump to address (JMP) instruction,

248-250
Jump to subroutine (JSR) instruction,

250-251

Keystrokes, clicks accompanying, 132

LABEL = ,71
Label field, 67- 68

Labels, 224
in memory map, 283-286

LOA (load accumulator) instruction,
251-253

LOX (load X register) instruction, 253
LOY (load Y register) instruction, 254
Left-arrow «) symbol, 75
Line numbers , 67, 70, 73, 75
Linked file, 175-176
Load accumulator (LOA) instruction,

251-253
Load address, 176
LOAD instructions, 40
Load memory scan, 119
Load X register (LOX) instruction, 253
Load Y register (LOY) instruction, 254
Loading using resident disk handler,

181-184
LOCATE command, 190, 195-196
Logical AND (AND) instruction,

219-221
Logical instructions, 48
Logical shift right (LSR) instruction,

254-256
Low-level languages, 7
LPRINT command support (I0CB7),

154
LSR (logical shift right) instruction,

254-256

MAC/ 65,74-75
Machine language, I, 2
Machine language codes, 80
Machine language subroutines, 79-110
Macro Assembler/Text Editor (MAE),

77
Macro assemblers , 73-75, 77
MAE (Macro Assembler/Text Editor),

77
Manipulation instructions, 48-49
Math, operand field, 72
Memory :

bank selecting of, 19-20
display, 113 - 116
subroutine to clear, 83-92

Memory (conI.):

subroutine to transfer any area of,
97-99

Memory addressing modes, 55-65
Memory addressing techniques, 19-20
Memory allocation system , 32-33
Memory map, 283-286
Microprocessors, 113
Mnemonics, 39, 68-69, 215
Monitor display memory, 113-116
Most significant bit, 18-19
Multiprocessing, 132
Music-playing routine, 137-138

N (negative) flag, 31-32, 45
Negative (N) fl ag, 31-32, 45
Nibbles, 16
No operation (NOP) instruction,

50-51, 256-257

Index

Overflow (V) flag, 31, 45
Overflow into carry, 222

Page zero, 32-33
Pages, 32
PC (program counter), 25
PEEK,8
Percent (0/0) sign, 39

291

PHA (push accumulator onto stack)
instruction, 258-259

PHP (push processor status register
onto stack) instruction, 259

Picture elements (pixels), 121
Picture resolution, 121
Pixels (picture elements), 121
PLA (pull accumulator from stack)

NOP (no operation) instruct ion, 50-51,

instruction, 124-125, 260-262
Player-missile graphics, 197-204
PLOT command, 188- 189, 194
PLP (pull processor status register

from stack) instruction , 262-263
POKE,8

256-257
Number (#) sign, 37-38, 76
Numbering systems, 11-16
Numbers, 37-39

Octal numbers, 73
Offset counters, 24
Op codes, 68
OPEN command, 155-158
Operand field math, 72
Operands, 68-69
Operating System (OS), 9

listings , 196
OR memory with accumulator (ORA)

inst ruction , 257-258
ORA (OR memory with accumulator)

instruction, 257-258
Origin statement, 70
OS (Operating System), 9

listings, 196
Output:

defined, 149
(See also Writing)

POKEY chip, 205
Poly-counters, 206-207
POSITION command, 188, 193-194
Printer, writing to, 169- 172
Processor sta tus register, 28-29
Processor status register instructions,

45-46
Program counter (PC) , 25
Programming la nguages, 2-7
Programs, saving, 165
Pseudo-ops, 70-72
Pull accumulator from stack (PLA)

inst ruction, 124- 125,260-262
Pull processor sta tus register from

stack (PLP) instruction, 262-263
Push accumulator onto stack (PHA)

instruction, 258-259
Push processor status register onto

stack (PHP) instruction, 259
Put-byte routine , 159

Quotation marks, single ('), 73

292 Index

RAM (Random-Access Memory), 8
RAM vectors, 152
RAMTOP,203
Random-Access Memory (see RAM

entries)
Raster-scan devices, 120
Read-Only Memory (see ROM entries)
Reading joysticks, 99-110
Relative addresses, 54, 81-82
Relative addressing mode, 64-65
Relocatable code, 82-83
Resident disk handler, loading using,

181-184
Return from interrupt (RTI)

instruction, 266
Return from subroutine (RTS)

instruction, 43, 266-267
Right-arrow (» symbol, 75
ROL (rotate left) instruction, 263-264
ROM (Read-Only Memory) , 8
ROM vectors, 152
ROR (rotate right) instruction, 264-265
Rotate left (ROL) instruction, 263-264
Rotate right (ROR) instruction,

264-265
ROWCRS, 191
RTI (return from interrupt)

instruction, 266
RTS (return from subroutine)

instruction, 43, 266-267

SAVE command, 88
Saving programs, 165
SBC (subtract with carry) instruction,

267-269
Scan lines, 120
Screen:

TV, 119-121
writing to, 163- 169

Screen display (IOCB6), 154
Screen editor (I0CBO) , 154
Scrolling faci lit y, fine, 139- 148
SEC (set carry bit) instruction , 269-270
Sectors, 174

SED (set decimal mode) instruction,
270

SEI (set interrupt flag) instruction,
270-271

Semicolon (;), 69
Sequential access, 8-9
Sequential file, 176
Serial bus, 174
Serial input-output (SIO) system, 184
Set carry bit (SEC) instruction,

269-270
Set decimal mode (SED) instruction,

270
Set interrupt flag (SEI) instruction,

270-271
SETCOLOR routine, 186-187, 191-192
SHIFT instructions, 47
Sign bit, 18-19
Signed arithmetic, 255
Single quotat ion mark (,), 73
S10 (serial input-output) system, 184
S10V sys tem, 173- 174
Slash (I) symbol, 76
Sound, creating, 204-211
SOUND command, 208-209
Sound subroutine, 208-210
Spaces, blank, 69
STA (store accumulator in memory)

instruction, 271-273
Stack pointer, 25-28
Standard character set, 92
Start address, 176
Status byte, 174-175
STOCOL,190
STOP command, 232
Store accumulator in memory (STA)

instruction, 271-273
STORE instructions, 41-42
Store X register (STX) instruction, 274
Store Y register (STY) instruction,

274-275
STORE I, 190
Strings, 73, 82
STX (store X register) instruction, 274
STY (store Y register) instruction,

274-275

Index 293

Subroutines(s):
assembly language graphics, 186- 197
to clear memory, 83-92
machine language, 79-110
to read joysticks, 99-11 0
to relocate character set, 92- 97
sound ,208-2 10
to transfer any area of memory,

97-99
Subtract with carry (SBC) instruction ,

267-269
SYNASSEMBLER,75-77
Syntax, 67, 215
SYSTEXT fi les, 73

Tab stops, 75
Table lookup techniques, 128-132
Tape buffer, 83
Tape recorders, 83
TAX (transfer accumulator to X

register) instruction, 275
TAY (transfer accumulator to Y

register) instruction, 275-276
Technical User's Notes, 196
Terminology, 8-10
Test bits in memory with accumu lator

(BIT) instruction, 228- 230
Time delay, 210
Timers, countdown, 210-2 11
Timing considerations, 123-124
Transfer accumulator to X register

(TAX) instruction, 275
Transfer accumulator to Y register

(TAY) instruction, 275-276
Transfer of control:

conditional , 43-44, 224
unconditional, 43, 223

Transfer of control instructions, 42-45
Transfer stack pointer to X register

(TSX) instruction, 276
Transfer X register to accumulator

(TXA) instruction, 276-277
Transfer X register to stack pointer

(TXS) instruction, 277

Transfer Y register to accumulator
(TYA) instruction, 278

TSX (transfer stack pointer to X
register) instruction, 276

TV display memory, 113-116
TV screen, 119-1 21
TXA (transfer X register to

accumu lator) instruction, 276-277
TXS (transfer X register to stack

pointer) instruction, 277
TYA (transfer Y register to

accumulator) instruction, 278

Unconditional transfer of control, 43,
223

USR call, 261

V (overflow) flag, 31, 45
Vector devices, 120
Vectors, 9, 150-153
Vertical blank, 120
Vertical blank instruction, 119-121
Vertical blank interrupts, 132- 138
Vertical blank vector, 134
Ver tical fin e scrolling, 139-140
Vertical resolution, 121
Ver tical scroll register (VSCROL), 144
Volume Table of Contents (VTOC), 174
VSCROL (vertical scroll register), 144
VTOC (Volume Table of Contents), 174

Wait for horizontal synchronization
(WSYNC), 126, 132

.WORD,7 1
Writing:

to disk, 172
to printer, 169- 172
to screen, 163-169

WSYNC (wait for horizontal
synchronization), 126, 132

294

X addressing mode, absolute, 59-6 1
X register, 24-25

Y addressing mode, absolu te , 59-6 1
Y register, 24-25

Catalog

Index

Z (zero) flag, 30, 45
Zero (Z) flag, 30, 45
Zero floor addressing, 53
Zero page, Y mode, 65
Zero page indexed mode, 58-59
Zero page mode, 57-58

If you are interested in a list of fine Paperback
books, covering a wide range of subjects
and interests, send your name and address,
requesting your free cata log, to:

McGraw-Hili Paperbacks
1221 Avenue of Amer icas
New York, N. Y. 10020

Computers

ASSEMBLY LANGUAGE
PROGRAMMING FOR THE
ATARI COMPUTERS
MARK CHASIN

II Anyone who has programmed in BASIC, or any other language for
that matter, can learn to program in assembly language. The ATARI is
among the most impressive of all home computers, but many of its special
features are not available from BASIC. The examples in this book are given
both in assembly language and, wherever possible, also in BASIC programs
which incorporate these assembly language routines to perform tasks from
BASIC. You'll be able to use these routines immediately in your own pro
grams. Included are such techniques as reading the joysticks, moving players
and missiles; input or output to all possible devices such as printers, disk
drives, cassette recorders, the screen and more; vertical blank interrupt
routines, display list interrupts, fine horizontal and vertical scrolling, sound,
graphics; in short, everything you've always heard the ATARI computers
were capable of, but had no idea how to program.

lIThe routines in this book follow the 'rules' established by ATARI for
assembly language programmers, so they will work with any ATARI com
puter, from the earliest 400 to the most advanced 14S0XLD, and every
thing in between. If you've reached the point where BASIC is no longer
enough, and you'd like to progress to a language which gives you absolute
control over all functions of your remarkable computer, then begin with
Chapter 1, and you'll see how easy it is. Who knows, maybe you'll be the
one to write the sequel to STAR RAIDERS!"

- - from the Preface

MARK (HASIN, Ph.D. is a principal at MMG Micro Software and
president of Micros of Monmouth, a local computer club. His interest in
computers began 20 years ago when he first learned to program. Dr.
Chasin's professional affilations include the American Association for the
Advancement of Science, the New York Academy of Sciences, and the
Association for Computer Machinery, and he is among the experts included
in Who's Who in Computer Graphics.

AlARI and SlAR RAIDERS are trademarks of AlARI, Inc.,
Sunnyvale, (A.

ISBN 0-07-010679-7

	Cover
	Contents
	Preface
	Part One - Background
	1: Introduction
	2: Getting Started
	3: Atari Hardware

	Part Two - Learning Assembly Language
	4: Nomenclature and the instruction set
	5: Addressing Techniques
	6: Atari Assemblers
	7: BASIC Machine Language Subroutines

	Part Three - Applications
	8: Display List and other Interrupts
	9: I/O on the Atari
	10: Graphics and Sound from Assembly Language

	Part Four - Appendix
	One - The 6502 Instruction Set
	Two - The Three Character Sets used in Atari Computers
	Three - Memory Map

	Index

