

ANALOG Computing

An Atari a-bit
Extra

from

The publishers of

1987

Worceste r, Massachusetts

This volume, from the publishers of ANALOG
Computing, is dedicated to 8-bit Atari
users everywhere, and to the readers who have
contributed so much to our success and to the
Atari Adventure.

Copyright -© 1987 ANALOG 400/800 Corp
All rights reserved.
No portion of this book may be reproduced in any form without the written permission of ttle
publishers. Most programs are copyrighted and are not public domain.

Printed in the United States of America.
ISBN #0-914177-01 -X

ANALOG Computing magazine (ANALOG 400/800 Corp.) is in no way affiliated with Atari . Atari is a trademark of Atari Corp.

CONTENTS

4 MIL Editor Clayton Walnum
The machine language typing checker for use with programs in this volume.

7 Hi-Score Display .. Kevin Peck
Here's a handy program to record your scores for posterity.

15 Create-a-base C. F. Fogarty, III
The perfect "groundwork" for you to design databases to fit your own needs.

27 Squeeze ... David Plotkin
Keep the advancing bricks from taking over in this fast Action l game.

31 Surface Run . David Plotkin
This tutorial-and-game will help you see what Action! can do for your programs.

37 Spy Plane III Mark Comeau
Takes our original one step further. Can you save the world this time?

43 Reversi Paul T. Sprague
This Action l strategy game lets you choose from three modes of play.

49 Lawn Mower Paul Tupaczewski
Keeping Atariville neat isn't easy. You 'll need land mines just to keep ahead .

53 Trivia Jan Iverson
This how-much-esoterica-do-you-know? game lets you design your own versions.

63 Invasion III Jerry Lemaitre
As an Anthort, you 'll use mystic Fyreballs to keep your planet from alien destruction.

65 Dragon Chase David Huff
Quick reflexes won't be enough to win your lady; dig into your inner resources .

69 Krebs removal . . . Chuck Rosko
You must scrub the reactors clean of fission-inhibiting krebs. in time to avoid meltdown.

75 Integer BASIC Barry Green
This program teaches your XL BASIC integer math, for more speed.

81 Tactics Dave Pettit
The compleat resource: how to become a Star Commander Class 1.

91 Pastels ... David Plotkin
This Actionl program will mesmerize you with its ever-changing pastel tints .

93 CGM. David Castell
Castell's Graphic Manager-windows, icons and trackers in a GEM-like interface.

107 Display List Mod Mark Andrews
How to use more than one graphics mode on-screen, plus a demo title screen.

113 A Pointed Note Barbara Donovan
Tai lored file management programs are easy, with this POINT and NOTE tutorial.

121 PassWord Jim Ehninger
Here's a simple-to-use way to bar most unwelcome visitors from your files .

125 Dump 1020 Donald E. Glover
A screen dump routine for the Atari 1020 printer and examples of its use.

129 Easy Type Gary Heitz
Programmable and programmed keys, to make typed-in listings more accurate.

UTILITY

MIL Editor
For use in machine language entry

by Clayton Walnum

MiL Editor provides an easy method to en
ter our machine language listings. It won't al
low you to skip lines or enter bad data. For
convenience, you may enter listings in mul
tiple sittings. When you're through typing a
listing with MIL Editor, you'll have a com
plete, rUIUlable object file on your disk.

There is one hitch: it's for disk users only.
My apologies to those wi th cassette systems.

Listing 1 is MIL Editor's BASIC list ing.
Type it in and, when it 's free of typos, save
a copy to disk , then run it.

On a first run, you 'll be asked if you're
starting a new list ing or continuing from a
previously saved point. Press 5 to start , or
C to continue.

You'lllhen be asked for a filename. If you're
starting a new li sting, type in the filename
you want to save the program under, then
press RETURN. If there's already a file by that
name on the disk , you'll be asked if you wish
to delete it. Press Y to delete the file, 01' N
to enter a new filename.

If you're continuing a file, type in the name
you gave the file when you started it. If the
program can't find the file, you'll get an er
ror message and be prompted for another file
name. Otherwise, MIL Editor will calculate
where you left off. then go on to the data en
try screen .

Each machine language program in ANA
LOG Computing is represented by a list of
BASIC data statements. Every line contains
16 bytes, plus a checksum. Only the numbers
following the word DATA need be con
sidered.

MIL Editor will display, at the top of the
screen, the number of the line you're current
ly working on. As you go through the line,
you 'll be prompted for each entry. Simply
type the number and press RETURN. If you
press RETURN wi thout a number, the default
is the last value entered.

Tills feature provides a quick way to type
in lines with repet itions of the same number.
As an added convenience, the editor will not
respond to the letter keys (except Q, for
"quit"). You must either enter a number or
press RETURN.

4 ANALOG COMPUTING

When you finish a line, MIL Editor will
compare the entries' checksum with the
magazine's checksum. If they match, the
screen will clear, and you may go on to the
next line.

If the checksums don't match, you'll hear
a buzzing sound. The screen will tum red ,
and the cUJ'sor will be placed back at the first
byte of data . Compare the magazine listing
byte by byte with your entries. If a number's
correct, press RETURN.

If you find an error, make the correction.
When all data's valid, the screen will return
to grey, and you 'll be allowed begin the next
line.

Make sUJ'e you leave your disk in the drive
while typing. The data is saved continuously.

You may stop at any lime (except when you
have a red screen) by entering the letter Q for
byte #1. The file will be closed, and the pro
gram will return you to BASIC. When you've
completed a fil e, exit MIL Editor in the same
way.

When you've finished typ ing a program,
the file you've created will be ready to run.
In most cases, it should be loaded from DOS
via the L option . Some programs may have
special loading instructions; be sure to check
the program's article.

If you want the program to run automati
cally when you boot the disk, simply name
the file AUTORUN.SYS (make sure you have
DOS on the disk).

That's MIL Editor. Use it in good health. IIf:I

The two-letter checksum code preced
ing the line numbers here is not a part
of the BASIC program. For further in
formation, see the BASIC Editor II, in
issue 47.

Listing 1.
BASIC listing.

AZ 18 DIH Bf(16),IIS(4),A$(IJ,B$(IJ,f$(15)
,f1$(5)

~~ ~~ ~~:E~~~~~~ETRII=155IBACKSP=126ICHKS
U1I=8: EDIT=8

GO 31 GOSUB 458:P05ITIOII 18,6:1 '~1ar1 or
~n1inue? ";:GOSUB 580.? CHRS(A)

ZG 48 POSITIOII 18,8:? "fIlEIIAHE";:IIIPUT f
$:POKE 752,1:? '1 I'

fE 58 If lEII(f$)(3 THEil POSIT 1011 Z8,18:?

IIf ~8 ~iGn~I~~) O"D:" THEil fl$="D:":f1$(
3)=f$:GOTO 88

kl 78 fl$=f$

~: ;: ~~A~H:~m~~r.J~~~8~~~$:TRAP 118
HO 188 fOR K=l TO 16:GET U2,A:IIEKT K:LIIIE

~ ~~~N~~~~iGg~~o~~: U2,',8,fl$:GOTO 178
UT 128 TRAP 168:0PEII U2,4,8,fl$:GOSUB 448

: POSITIOII 18,18:? "fILE ALREADY EXISTS
!!":POkE 752,8

ZU 138 POSITIOII 18,12:? "ERASE IT? "; :GOS
UB 588:POKE 752,1:? CHR$(A)

UH 148 If CHR$ (A) ="11" OR CHRS (A) ="n" THEil

OG 1~~0~~ ~~~~~~~(~~Y" AIID CHR$(A)()"'l" T

BH ~~: ~~~SE U2:0PEII U2 8,8 fl$
IE 178 GOSUB 458:POSIT1611 16,1:? ,~
~: ";LIIIE:CHKSUH=8

GH 188 Ll=3:fOR X=1 TO 16:POSITIOII 13M(K(
18)+12M(X)'),X+Z:POKE 752,8:? "BYTE U"

KH gr if" t~~~S~:D 3t~8 THEil BYTE=Bf (X) : GO
TO 218

~~ ~:~ ~~~~~~~L(N$)
BU 218 POSITION 22,K+2:? BYTE;" ..
YZ 228 Bf(X)=BYTE:CHKSUH=CHKSUH+8YTEMK:lf

CHK5UH)"" THEN CHK5UH=CHK5UH-18008
H5 ~~~,~~K~H~~C~~~~~~~~~~~~~~:~i~F CHKSU
IG 240 POSITIOII 12,X+2:POKE 752,8:? "CHEe

K5UH: "; :Ll=4:GOSUB 110
EM 258 If EDIT AND l=8 THEil 278
OH 268 C=UAL (N$)

i~ m ~~sgm5~~'~~~~\~r ..
DI 2'8 GOSUB 440:EDIT=1:CHKSUH=0:GOTO 188
LM l88 fOR K=1 TO 16:PUT U2,Bf(K):MEKT X:

LI"E=lIIIE+18:EDIT=8:GOTO 178

r~ u: ~~~UB 580:If A=ASC("O") AIID X=1 AN

PO ~l8N~: ~~~~E~~~IIA~~8A(>BACKSP AIID (A<4
8 OR A)57) THEil 328

DX 311 If A=RETRII AND "$= TlIEII N$=HOD$
TO 315 If A=RETRN AIID L=8 AIID X)l THEil l5

JR ~48 If ((A=RETRII AIID 1I0T EDIT) OR A=B

DM msn ~~M~: ~~~: ~~~E 752,1:? .. ":R
ETURN

GG 360 If A<)BACK5P THEil 488
SA 378 If L)1 THEil 1I$=N$(I,L-l):GOTO 3'8

~~ ~g: ~S~~~$(BACKSP);:l=L-l:GOTO 328
BB 480 L=l+I:If l)Ll THEil A=RETRII:GOTO 35

MK :18 II$(L)=CHR$(A):? CHR$(A);:GOTO 328

~~ m ~~~~=I~l8~~mTIOII 18,18:? "110 SUC
H fIlE!":fOR K=1 TO 1888:IIEXT K:CLOSE

FD ~~~Gg~~El~18,48:50UND 0.180.12,8:FOR X

HY ~~8T2R~~~~~~T2~;~g~~Dl::~1~;~6:~T~~'74
XR 4~~2~r~~~E~~~6:;:g~~*~~~K~561)+4:POKE
HM ~~;lf~g::~~ET~l;~'~TEP 2:POKE DL+X,2:N

EXT X:fOR X=4 TO 48 STEP Z:POKE DL+X,8

ZM ~:~K~O~E Dl+41,65:POKE Dl+42,PEEK(568)

AC mK~0~~m.p~~~~~6~!~:m :r':ditor":

HZ ~g:Eo~~~'M;:~~~~~:":GET Ul,A:ClDSE U1
:RETURII

•

ATARI 8-BIT EXTRA

by Kevin Peck

I playa lot of games on my Atari. I used to keep a sheet
of paper at the computer desk , to jot down my high scores.
When things got crowded, I would write the cmrent high
scores on a new paper and keep that one, until it too be
came nearly impossible to read. Not anymore. I stopped
playing games long enough to write a custom database for
my high scores, one that will print out a clean list any time
I wish. It's a lot easier to read now.

To use Hi-Score Display, you'll need to type in Listing
1, then check it with the BASIC Editor II (see ANALOG
Computing issue 47). Listing 1 will create fom strings con
taining the machine language routines used in the pro
gram. Save the program to disk before running it , because
it will erase itself from memory, leaving the newly creat
ed lines . These will be the only lines in memory. Enter
BASIC Editor II into memory and type in Listing 2. After
you've finished, you 'll have the complete Hi-Score pro
gram. Save it to disk at this time.

You'll need nineteen free sectors in single density, or
ten in double density, to run the program. These sectors
are necessary for the actual game data . The size of the data
file, GAME.DAT, will never change. It's set up to hold a
maximum of forty-two games, with three scores per game.
You'll never have to worry about booting the program
without enough disk space to add new scores.

When you first run the program, it will create the blank
file GAME.DAT on the disk. This will take a few moments,
and will only occm the first time you run the program.
After the data file is created, the main menu will appear.

N ext to the words OPEN and USED are two numbers.

ATARI 8-BIT EXTRA

The number beside OPEN will be 42, and the number next
to USED will be D. This means that no scores have been
entered; all forty-two are unused. The number next to
OPEN will decrease as you add games to the list; the num
ber next to USED will increase. These two numbers ad
ded together will always equal 42, the maximum number
of games per disk that the program can handle.

At this point , you're presented with six options. Right
now, we have no games in am list, so we need to add
some. We press the 1 key, for '1\dd New Games and
Scores."

After pressing 1, you'll see the score entry screen. You'll
be asked to enter the program name, which may be up to
fomteen characters long. If you accidentally pressed 1
while in the main menu, and you really don't want to add
any games to the list, then press RETURN to get back to
the main menu.

Back to adding games and scores ... enter the program
name, then press RETURN. You may use any characters
you want, but the name must fit between the two arrows
above yom typing area. If you try to type beyond the
fomteen-character limit, the program will ignore all ex
tras. Of comse, the name can be less than fomteen
characters .

After typing the program name, you'll be asked for the
score. You're allowed three scores per game, and you may
enter them in any order. The program will sort them after
you've entered all three. Scores may be up to six digits
long, which allows for scores in the hundred-thousands.
I know of few games that go into millions of points, so
this should be more than adequate. The program will al
low no more than six numbers for this entry, ignoring non-

ANALOG COMPUTING 7

r--' •

~ HI-Score continued

numeric characters and commas, which it places automa
tically.

The next data item is the game level at which you ob
tained the score. Not all games have levels, so you may
just press RETURN to leave this field blank. You're allowed
two characters for the level, and only numbers are allowed.

Next, you'll be asked to enter the name of the person
who attained this score. The name is limited to five charac
ters , but they may be whatever you wi.sh. Five characters
allows for two initials, the ampersand (&) and two more
initials, for those times when two players cooperated to
get the score (five also happens to be the length of my first
name). You don't need to enter all five characters. You may
want to stick to three, as most arcade games do.

You must enter at least one score per game. Hi-Score
will then prompt you to enter the second score. If you don't
wish to enter a second, press RETURN. If you do enter
the second score, you'll be prompted for the third.

Now that you've entered all the data for this game, you
have three choices. You may press the 0 key if all infor
mation is okay. You may press A to abort this game. When
you hit A, you'll be asked if you're sme you want to abort.
If you press Y, this game won't be added to the list , and
you 'll be asked if you have other games to add .

If you decide some of the information is incorrect , press
the C key, to correct the errors. The numbers 1-4 will ap
pear on the ri.ght edge of the screen , indicating various
pieces of information. If you don't wish to correct any of
the information, press the 0 key; otherwise, press the
number (1-4) that corresponds to the area you want to cor
rec t. If you do correct one of the scores, you 'll have to en
ter all three pieces of data for that score. Press the 0 when
fi nished, and the scores will be sorted.

After pressing either the A or the 0 , you'll be asked if
you have more entries. If you do, press the Y, and the
screen will clear for yom next entry. If you're done enter
ing games, press the N key. All games will be sorted by
game name, then saved to disk. When this is done, you'll
retmn to the main menu.

Now that we have some games in our data file , we can
explore some ofthe other options on the main menu. Let's
go through the rest of the options, in the order they ap
pear on the screen.

Option 2 allows you to update the scores of any games
on file. After pressing 2, you'll be presented with the game
selection screen. All games cmrently on file will be list
ed to the screen. If you have more than twenty-one games,
they' ll appear in two columns. Valid keystrokes are shown
al the bottom of the screen. Press the X key if you wish
to retmn to the main menu without making any changes.

To select a game to update, move the arrow to the prop
er name by pressing the arrow keys without holding down
the CTRL key.

When you've selected the game you wish to update,
press RETURN. The game selected will appear at the bot
tom of the screen, and you'll be asked to verify your
choice. Remember, you may press X at any time dming
the selection process, to abort the operation and retmn
to the main menu.

8 ANALOG COMPUTING

Once you 've verified yom choice, a new screen will ap
pear, showing the game's cmrent scores. You'll be asked
for the new score. If you decide not to update the scores
after a ll , press RETURN. The new score doesn't have to
be a new high score, but it must be greater than the third
score on the list. If there is no third score, any score will
be accepted .

After entering the new score, the Hi-Score program will
check to be sme it's eligible. If not, you'll be asked if you
want to re-enter the score or abort the update process.
Press the letter of your choice.

If the score is valid , you must enter the level and the
name of the person who obtained the score.

After entering the information, you'll have three op
tions: 0 for okay, R for re-enter and A for abort. If you
abort, you'll be asked to confirm with a Y or an N.

When the new score is correct, press 0 for okay. Hi
Score will ask if you have more scores to update. 1£ you
do, press Y. If not, press N. The new information will be
written to disk, then you'll return to the main menu.

Option 3 allows you to delete a game from the list. Af
ter selecting the game to delete, you'll be shown the scores
on the screen. Type the word DELETE at the prompt. Any
other entry, including a RETURN alone, will abort the de
letion process. If you delete the game, you'll be asked if
you have more to delete. If not, the disk file w ill be up
dated, and you'll retmn to the main menu.

Option 4 on the main menu allows you to view your
scores, six games at a time. The game names will be in
inverse video, to set them apart from the scores. There aTe
three valid keystrokes at this point. They are: M for menu ,
P for previous screen and N for next screen.

If you're viewing the first screen of data and have more
than six games on file, the N will appear on-screen , in
forming you that there's more data in the file . You may
press the N key to view the next screen of scores.

The P key option will never appear on the first screen
of data-there's no previous screen. It will appear on the
second screen of data and beyond . The N will disappear
on the last screen. Press the M key at any time to retmn
to the main menu.

Option 5 on the main menu presents you with a new
menu of fom options. All options from this menu will send
output to the printer.

The program will ask if you're using a 40- or 80-colunm
printer. I added this option for ease of use with the Atari
1020 plotter. Most users will press E, to select 80-column
print. All printed reports will fit on a single 8 tlz xll-inch
sheet of paper.

The next screen will show you the function selected and
ask you to check the printer. To cancel the option, hit A
for abort . If you 're ready to print, press P. After the print
is complete, you'll be returned to the print menu. You may
choose another print function, or retmn to the main menu .
where the final option is "Exit Program."

Technical notes.
I wrote four machine language routines for use in Hi

Score Display. One changes a string of characters to in
verse video. One fills lines on the screen wi th a chosen

ATARI 8-BIT EXTRA

character. The third pulls game names from the main data
string for fast display on the select game screen. The fi
nal routine is a general-purpose, multi-key sort program.
I used the CIO routines presented in ANALOG Comput
ing 's issue 13 for the high-speed disk reads and writes.
1 also wrote a custom input routine for use throughout this
program.

The only place the screen colors are altered is in Line
10, so you may use any colors you like by changing the
POKE values. Since Hi-Score has custom input routines ,
there's no keyclick on any of the inputs . If this bothers you,
you' ll have to add some SOUND statements to the input
routines in Lines 20-200.

I've been using Hi-Score for over a year, making im
provement as I went along. I hope you 'll enjoy it. ~

Kevin Peck is currently in studying Computer Science.
He's been working on Ataris for four years, and is in the
process of reading every book on Atari machine language
he can get his hands on , in the hope of writing an all
machine-language game.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

........ " 2100 GRAPHIC5 O:POKE 82,2:POKE 710,145
? :? :? IINEW··:? :?

30 ? "3730 LF$=";CHR$(34);
40 FOR 1=1 TO 59:READ A:? CHR$(27)iCHR
$(A)i:NEXT I:? CHR$(34)
50 ? "3740 5P$="iCHR$(34)i
60 FOR 1=1 TO 80:READ A:? CHR$(27)iCHR
$(A)i:NEXT I:? CHR$(34)

. 70? "3750 5P$ (81) =" i CHR$ (34) i
•.•....) 80 FOR 1=81 TO 105: READ A:? CHR$ (27) i C
k HR$ (A) i : NEXT I:? CHR$ (34)

90 ? "3760 RU$="iCHR$(34)i
.. 100 FOR 1=1 TO 21:READ A:? CHR$(27)iCH

' R$(A)i:NEXT I:? CHR$(34)
110? "3770 MK5$="iCHR$(34)i

1')5 115 FOR 1=1 TO 80:READ A:? CHR$(27)iCH

.~~ ~~~A~ i ,:,~~~! ~~~$ ~~~~ ~~~~HR$ (34) i
~~ 130 FOR 1=81 TO 160:READ A:? CHR$(27)i

ii: ~~~$ ~A~,g~~x~K~~ 11~~~~'~;~~R$ (34) i
Jif; 150 FOR 1=161 TO 192:READ A:? CHR$(27)

iCHR$(A)i:NEXT I:? CHR$(34)
liB: 160 ? "POKE 842,12:GR.0:L."
M.l> 170 POSITION 0,0: POKE 842,13: 5 TOP

fidf 2000 DATA 104,104,101,89,133,207,24,10
4,101,88,133,206,144,2,230,207
2010 DATA 104,104,170,104,104,133,203,
104,104,133,204,104,104,133,205,160
2020 DATA 0,165,205,145,206,200,196,20

W~C\ ~o~g8b~n' ~g~~ ~gt ~o~~l~~~ ~~t 144, 232,
/' 230,207,208,228
[N 2040 REM * 59 BVTE5

ATARI 8-BIT EXTRA

•

3000 DATA 104,104,133,206,104,133,205,
104,104,133,208,104,101,89,133,204
3010 DATA 24,104,101,88,133,203,144,2,
230,204,104,104,133,207,104,104
3020 DATA 133,209,104,104,170,160,0,24
,177,205,201,244,176,24,201,160
3030 DATA 176,17,201,128,176,8,201,96,
176,12,201,32,176,5,24,105
3040 DATA 64,144,3,56,233,32,145,203,2
00,196,209,208,218,202,208,1
3050 DATA 96,24,165,205,101,208,133,20
5,144,2,230,206,24,165,203,101
3060 DATA 207,133,203,144,192,230,204,
208,188
3070 REM * 105 BYTE5
4000 DATA 104,104,133,213,104,133,212,
160,0,177,212,9,128,145,212,200
4010 DATA 192,16,208,245,96
4020 REM * 21 BYTE5
5000 DATA 216,104,104,133,206,104,133,
205,104,133,215,104,133,214,104,104
5010 DATA 133,203,104,104,133,207,24,1
01,203,133,216,104,104,133,208,104
5020 DATA 104,133,224,24,101,208,133,2
09,104,104,133,204,104,104,133,225
5030 DATA 165,215,133,1,56,165,214,229
,204,133,0,176,2,198,1,24
5040 DATA 165,206,133,213,165,205,101,
204,133,212,144,2,230,213,164,207
5050 DATA 177,205,209,212,240,4,144,53
,176,28,200,196,216,208,241,165
5060 DATA 208,240,46,164,224,177,205,2
09,212,240,4,144,32,176,7,200
5070 DATA 196,209,208,241,240,27,165,2
25,208,23,160,0,177,205,72,177
5080 DATA 212,145,205,104,145,212,200,
196,204,208,241,240,4,165,225,208
5090 DATA 233,24,165,212,101,204,133,2
12,165,213,105,0,133,213,197,215
5100 DATA 208,172,165,212,197,214,208,
166,24,165,205,101,204,133,205,165
5110 DATA 206,105,0,133,206,197,1,208,
134,165,205,197,0,208,128,96
5120 REM * 192 BYTE5

Listing 2.
BASIC listing .

10 GOSUB 3700:POKE 709,CO:POKE 710,156
:POKE 82,C2:POKE C752,Cl:POKE 712,144:
GOTO 340
20 PP=Cl:A$=" I:A$(14)=" ":A$(C2)=A$:?

II} t-".
30 POKE 702,C64:POKE 694,CO:GET UC1,A:
IF A}90 AND A<}126 AND A<}155 THEN 30
40 IF A<32 OR (A=32 AND PP=Cl) THEN 30
50 IF A=155 THEN? II ":A$=A$(Cl,PP):RE
TURN
60 IF A=126 AND PP{}Cl THEN? II t-t-_t-" i
:PP=PP-Cl:A$(PP,PP)=" ":GOTO 30
70 PRINT CHR$(A)i"_t-lIi:A$(PP,PP)=CHR$(
A):PP=PP+Cl:IF PP}L THEN 90
80 GO TO 30
90 GET UCl,A:IF A<}126 AND A<}155 THEN

90
100 IF A=126 THEN 60
110 AS=A$(Cl,L):RETURN
120 PP=Cl:N$=" ":? "}_t- l i:D$=II":
D=UAL CD$)
130 GET UCl,A:IF A=155 THEN N$=N$(Cl,P
P):? II ":RETURN
140 IF A=126 AND PP{}Cl THEN? II t-t-_t-II
;:PP=PP-Cl:N$(PP PP)=" ":GOTO 130
150 IF A<48 OR AS57 THEN POKE 694,CO:P
OKE 702,C64:GOTO 130

ANALOG COMPUTING 9

r---" •
~ HI-Score continued

160 PRINT CHRS(A);"_f-";:NS(PP,PP)=CHRS
(A):PP=PP+Cl:IF PP}L THEN 180
170 GOTO 130
180 GET nCl,A:IF A{}126 AND A{}155 THE
N 180
1~0 IF A=126 THEN 140
200 RETURN
210 IO=16*IO:IOCB=832+IO:POKE IOCB+2,l
1:ADRHI=INT(ADDRESS/256):ADRLO=ADDRESS
-ADRHI*256
220 POKE IOCB+4,ADRLO:POKE IOCB+5,ADRH
I:HI=INT(BVTES/256):LO=BVTES-256*HI
230 POKE IOCB+8,LO:POKE IOCB+~,HI:I=US
R(ADR("hhh\:lLVrn"),IO):CLOSE nIO/16:RETU
RN
240 IO=16*IO:TRAP 270:IOCB=832+IO:POKE

IOCB+2,7:ADRHI=INT(ADDRESS/256):ADRLO
=ADDRESS-ADRHI*256
250 POKE IOCB+4,ADRLO:POKE IOCB+5,ADRH
I:HI=INT(BVTES/256):LO=BVTES-256*HI
260 POKE IOCB+8,LO:POKE IOCB+~,HI:I=US
R(ADR("hhh\:lLVrn"),IO)
270 CLOSE nIO/16:RETURN
280 NS=NS(Cl PP-Cl):TEMPS=N$
2~0 IF LEN(Nk)}C3 THEN TEMP$=NS(Cl,LEN
(NS) -C3) : TEMPS (LEN (TEMPS) +1) =",": TEMP$
(LEN(TEMPS)+Cl)=NS(LEN(NS)-C2,LEN(NS))
300 RETURN
310 ZZ=USR(LF,C40*VP+XP,LC,C40,C40,FB)
:RETURN
320 ZZ=USR(LF,C40*VP+XP,LC,C40,BL,FB):
RETURN
330 ZZ=USR(SP,TP,C56,VP*C40+XP,C40,14,
21) : RETURN
340 FILES="D:GAME,DAT"
350 SCRSS=" ":SCRSS(2352)=" ":SCRSS(C2
)=SCRS$:IO=2:BVTES=2352:ADDRESS=ADR(SC
RSSl
360 ? "1Ii"'·U.Reading Data File", ,":OPEN
nCl,C4,CO,"K:"

370 TRAP 380:0PEN nC2,C4,CO,FILES:GOSU
B 240:CLOSE nC2:TRAP 40000:GOTO 400
380 ? ""'''''''Data File does not exist,":?
""'Creating new Data File,"

3~0 CLOSE nC2:TRAP 40000:0PEN nC2,C8,C
O,FILES:GOSUB 210:CLOSE nC2
400 FOR I=Cl TO 2352 STEP C56:IF SCRSS
(!, n =" .. THEN NXGM=I: POP : GO TO 420
410 NEXT I:NXGM=I
420 NXGM=INT(NXGM/C56)
430 ? "iii HIGH SCORES
___ ~": 1 "I USED I

I OPEN I": TRAP 3610
440 1 " ·.~;r.ri)~4:~.rn;I~~~:lml.-

":POSITION C3+(NXGM<CI0l,l:? NXG
M:POSITION 31+(42-NXGM{10),l:? 42-NXGM
450 ? .. "'''''''''' l1li Add New GaMes and Sc
ores"''':?'' IE)I-Update Scores"''':POKE
16,l12:POKE 53774,112
460 ?.. ~ Delete GaMe frOM File"''':
?" II[JI View Scores on Screen"''':? ..
~ Print File Menu"'''

470 ? II ~ Exit PrograM":POSITION 2
,20:? "Enter nUMber of !lour choice >1"
480 POKE 6~4,CO:GET nCl,A:IF A{48 OR A
}54 THEN 480
4~0 ON A-48 GOTO 510,2200,2770,1540,30
30,500
500 ? "IIiReMove disk and store in a saf
e place,":POKE C752,CO:POKE 16,l~2:POK
E 53774,247:CLR :END
510 IF NXGM{42 THEN 580
520 ? "1Ii"''''Unable to add an!.! More GaMes
to list, There are no open areas,"'''

530 ? "Vou have two options open to !lo
u now, 1, COP!I the Main PrograM onto a
nother disk and start a new";

10 ANALOG COMPUTING

540 ? "list or 2, DeletesoMe of the Ga
Mes that !IOU know longerplay or care a
bout frOM this list to ";
550 ? " free up space,"'''''''''''':? "Press I
~ to return to Main Menu,"
560 IF PEEK(C764){}18 THEN 560
570 POKE C764,C255:GOTO 430
580 ? "iii .-N'I~~:!ft~-HH~I'''l.
": POSITION H, 5:? 'Crr'l < =~ ": A (C
1) =CO : A (C2) =CO: A (C3l -CO: TLEVEL -" "
5~0 POSITION 6, ~:? 111');1. .II#(IJ~.

.:rilil.": SLEVELS=" ": TNAMES-" ": SNAH
ES-" ":TSCORES=" ":SSCORES=" ..
600 VP=18:XP=0:FB=0:LC=6:GOSUB 310:POS
ITION 15,18:? "Ii:+ li:f-"
605 POSITION 2,22:? "Press RETURN only
to Exit ..

610 POSITION 2,1~:? "PrograM NaMe "i:L
=14:GOSUB 20:GAMES=AS:IF AS=" .. AND UP
FLAG=O THEN 1240
620 IF AS=" II THEN POP :GOTO 1240
630 POSITION C20-(LENCASl/C2l,C7:? AS
640 FOR 1=1 TO NXGH*C56 STEP C56:IF AS
=SCRSS(I,I+LEN(AS)-Cl) THEN POP :GOTO
660
650 NEXT I:GOTO 730
660 GOSUB 310:POSITION O,16:? "This ga
Me exists on file,":? "If !IOU wish to
update the ";
670 ? "scores, use option 2 frOM the M
ain Menu,"''':? "Press ~ to Abort":? "
'" ~ to Re-enter with new naMe,"
680 IF PEEK(C764){}63 AND PEEK(C764){}
40 THEN 680
6~0 IF PEEK(C764)=63 AND UPFLAG=Cl THE
N POP
700 IF PEEKCC764)=63 AND DOWRITE=CO TH
EN POKE C764,C255:GOTO 430
710 IF PEEK(C764)=63 THEN POKE C764,C2
55:GOTO 1300
720 POKE C764,C255:GOTO 510
730 IF UPFLAG=Cl THEN RETURN
740 GOSUB 310:POSITION 2,22:? "Enter N
UMbers onl!l, No COMMas,"
750 POSITION 14,18:? "Ii:+ li:f-":POSI
TION 2,1~:? "Enter Score "j:L=6:GOSUB
120:SCORES=NS:IF NS=" " THEN 750
760 A(l)=VAL(NS):GOSUB 280:SCORES=TEMP
$
770 POSITION 13-LENCSCORESl,ll:? SCORE
S
780 GOSUB 310:POSITION 2,22:? "Press R
ETURN onl!l if none,":POSITION 14,18:1
"Ii:+ li:f-"
7~0 POSITION 2,1~:? "Enter Level "i:L=
2:GOSUB 120:LEVELS=NS:IF NS=" II THEN L
EVELS=" ..
800 POSITION 21-LEN(LEVELS),ll:? LEVEL
$
810 GOSUB 310:POSITION 13,18:? "Ii:+

li:f-":POSITION 2 1~:? "Enter NaMe "j:L=
5:GOSUB 20:IF Ak= THEN 810
820 NAMES=AS:POSITION 27,11:? NAMES:IF

UPFLAG=l THEN RETURN
830 GOSUB 310:POSITION 2,22:? "Optiona
I InforMation":? "RETURN onl!l to leave
blank";

840 POSITION 14,18:? "Ii:+ li:f-":POSI
TION 2,1~:? "Enter Score ";:L=6:G05UB
120:SSCORES=NS
850 IF NS=" .. THEN SLEVELS=" ":SNAHE$=
.. ":A(C21=CO:IF UPFLAG=Cl THEN RETURN
860 IF N$=" " THEN 1070
870 A(C2)=VAL(NS):GOSUB 280:SSCORE$=TE
MP$
880 POSITION 13-LEN(SSCORES),13:? 55CO
RE$

.. 8~0 GOSUB 310: POSITION 14,18:?"H li:f-

ATARI 8-BIT EXTRA

U:POSITION 2,23:? "RETURN onl!.' to leav
e blank";
~OO POSITION 2,1~:? "Enter Level ";:L=
2:GOSUB 120:SLEUELS=NS:lf NS=" " THEN
SLEUELS=" "
~10 POSITION 21-LENCSLEUELS),13:? SLEU
ELS
~20 GOSUB 310:POSITION 13,18:? ,,~~
~+":POSITION 2,1~:? "Enter NaMe ";:L=

5:GOSUB 20
~30 If AS=" " THEN ~20
~40 SNAMES=AS:POSITION 27,13:? SNAMES:
IF UPFLAG=l THEN RETURN
~50 GOSUB 310:POSITION 2,22:? "Optiona
1 InforMation":? "RETURN onl!.' to leave
blank";

~60 POSITION 14,18:? ,,~~ ~+":POSI
TION 2,1~:? "Enter Score "i:L=6:GOSUB
120:TSCORES=NS
~70 If NS=" " THEN TLEUELS=" ":TNAMES=
" ":ACC3)=CO:If UPfLAG=Cl THEN RETURN
~80 If NS=" " THEN 1070
~90 ACC3)=UALCNS):GOSUB 280:TSCORES=TE
MPS
1000 POSITION 13-LENCTSCORES),15:? TSC
ORES
1010 GOSUB 310:POSITION 14,18:? ,,~~ ~
+":POSITION 2,23:? "RETURN onl!.' to lea
ve blank";
1020 POSITION 2,1~:? "Enter Level ";:L
=2:GOSUB 120:TLEUELS=NS:If NS=" " THEN

TLEUELS=" "
1030 POSITION 21-LENCTLEUELS),15:? TLE
UELS
1040 GOSUB 310:POSITION 13,18:? ,,~~

~+":POSITION 2,1~:? "Enter NaMe ";:L
=5:GOSUB 20
1050 If AS=" " THEN 1040
1060 TNAMES=AS:POSITION 27,15:? TNAMES
:IF UPFLAG=l THEN RETURN
1070 GOSUB 310:IF A(Cl»ACC2) AND ACC2
»A(C3) THEN 1210
1080 If A(Cl»A(C3) THEN 1110
1090 T=A(Cl) :A(Cl)=A(C3) :A(C3)=T:TEMPS
=TNAMES:TNAMES=NAMES:NAMES=TEMPS
1100 TEMPS=SCORES:SCORES=TSCORE$:TSCOR
E$=TEMP$:TEMP$=LEUELS:LEUEL$=TLEUEL$:T
LEVEL$=TEMP$
1110 IF A(Cl»A(C2) THEN 1140
1120 T=A(Cl):A(Cl)=A(C2) :A(C2)=T:TEMPS
=SMAME$:SNAME$=NAME$:NAME$=TEMP$
1130 TEMP$=SLEVELS:SLEUEL$=LEUEL$:LEUE
L$=SLEVELS:TEMPS=SSCORE$:SSCORE$=SCORE
$:SCORE$=TEMP$
1140 If A(C2»A(C3) THEN 1170
1150 T=A(C2):A(C2)=A(C3):A(C3)=T:TEMP$
=SNAME$:SNAME$=TMAME$:TNAME$=TEMP$
1160 TEMP$=SLEVEL$:SLEVEL$=TLEVEL$:TLE
VEL$=TEMPS:TEMP$=SSCORE$:SSCORE$=TSCOR
E$:TSCORE$=TEMP$
1170 VP=ll:GOSUB 310:VP=18:POSITION 13
-LEN(SCORE$),11:? SCORES:POSITION 21- L
EN(LEVELS),ll:? LEVELS
1180 POSITION 27 , 11:? NAMES:POSITION 1
3-LEN(SSCORES),13:? SSCORE$:POSITION 2
l-LEN(SLEVELS),13:? SLEUELS
1190 POSITION 27,13:? SNAHE$:POSITION
13-LEN(TSCORES),15:? TSCORES:POSITION
21-LEN(TLEVEL$),15:? TLEVELS
1200 POSITION 27,15:? TNAMES
1210 POSITION 2,1~:? "~ all Ok lIB
• Correct Errors":? :? "~ Abort"
1220 POKE C702,C64:POKE C6~4,CO:GET UC
l,A:IF A<>C65 AND A<)7~ AND A<>67 THEN
122~

1230 IF A<>C65 THEN 12~0
1240 GOSUB 310:POSITION 2,18:? "Read!.'
to ABORT":? :? "Are !.'ou sure (Ves/No)

ATARI 8-BIT EXTRA

? "j
1250 POKE C702,C64:POKE C6~4,CO:GET UC
l,A:If A<)C8~ AND A<)C78 THEN 1250
1260 If A=C78 THEN VP=18:HP=0:LC=6:fB=
O:GOSUB 310:GOTO 1210
1270 If DOWRITE=CO THEN 430
1280 POSITION 2,18:? "This entr!.' Abort
ed.":GOTO 1400
1290 If A<)7~ THEN 1430
1300 VP=1~:LC=5:GOSUB 310:VP=18:LC=6:P
OSITION 2,20:?" An!.' More entries CVe
siNO)? ";
1310 POKE C702,C64:POKE C6~4,CO:GET UC
l,A:If A<)C8~ AND A<)C78 THEN 1310
1320 I=NHGH*C56+Cl:SCRSSCI,I+13)=GAMES
:SCRSS(I+21-LENCSCORES),I+20)=SCORES:S
CRSS(I+23-LENCLEUELS),I+22)=LEUELS
1330 SCRSS(I+23,I+27)=NAMES:SCRSSCI+35
-LENCSSCORES),I+34)=SSCORES:SCRSSCI+37
-LEN(SLEUELS),I+36)=SLEUELS
1340 SCRS$CI+37,I+(1)=SNAMES
1350 SCRS$CI+4~-LENCTSCORES),I+48)=TSC
ORES:SCRS$CI+51-LENCTLEVELS),I+50)=TLE
VELS:SCRS$CI+51,I+55)=TNAMES
1360 NHGM=NXGM+Cl:DOWRITE=Cl
1370 If A()C8~ THEN 1400
1380 If NHGM<42 THEN 510
13~0 VP=1~:LC=5:GOSUB 310:VP=18:LC=6:P
OSITION 2 , 17:? "All 42 spaces filled."
1400 POSITION 2,1~:? "Saving all Chang
es to Disk ••••. ":? "rJ])":DOWRITE=O
1410 ZZ=USRCMKS,ADR(SCRSS),ADR(SCRSS)+
NXGH*56,14,O,O,O,56,O)
1420 OPEN U2 t 8,O,fILES:BVTES=2352:ADDR
ESS=ADRCSCRS~):IO=2:GOSUB 210:TRAP 400
OO:GOTO 430
1430 GOSUB 310:POSITION 2,18:? "Which
to Correct? ":? :? "Press ~ if all
are correct."i
1440 POSITION 33,7:? ,,~+ l":POSITION 3
3,11:? ,,~+ 2":POSITION 33,13:? ,,~+ 3":
POSITION 33,15:? ,,~+ 4"
1450 POKE C694,CO:GET UC1,A:If A<48 OR

A>52 THEN 1450
1460 A=A-48:If A=CO THEN 1070
1470 fB=0:VP=18:fB=0:GOSUB 310
1480 UPfLAG=Cl:XP=O:LC=l:fB=O:ON A GOS
UB 1500,1510,1520,1530
14~0 UPfLAG=CO:GOTO 1430
1500 VP=7:GOSUB 310:VP=18:LC=6:GOTO 60
o
1510 VP=11:GOSUB 310:VP=18:LC=6:GOTO 7
40
1520 VP=13:GOSUB 310:VP=18:LC=6:GOTO 8
30
1530 VP=15:GOSUB 310:VP=18:LC=6:GOTO ~
50
1540 ? "~": POSITION 10,O:? "a.J.j_IJail
11II_1If I J:I:JO-W": If NXGM<>CO THEN 1580
1550 ? "!!No gaMes on file to see.":?
"!Press ~ to Continue"
1560 If PEEKCC764)<)18 THEN 1560
1570 POKE C764,C255:GOTO 430
1580 NX=C6:PR=CO
15~0 N=CO:POSITION 16,22:? ".:rIenu"i:I
F NX(NXGM THEN POSITION 2,22:? ".:JIext
":N=Cl
1600 PS=CO:If PR)CO THEN POSITION 2~,2
2:? "':::'revious":PS=Cl
1610 IF NX>NXGM THEN NX=NHGM
1620 X=C2:V=C3:fOR I=PR TO NX-Cl:P=I*5
6+Cl
1630 TEMPS="
RS$(P,P+13):fOR Z=14 TO
1640 IF GAMES (Z, Z) <>" "

1660
1650 NEXT Z

":GAMES=SC
Cl STEP -Cl
THEN POP :GOTO

1660 Q=C~-INT(Z/C2):TEMPS(Q,Q+Z-Cl)=GA

ANALOG COMPUTING 11

r---'" •

~ HI-Score continued

ME$:U=USR(RV,ADR(TEMP$))
1670 POSITION X,V:? TEMPS:POSITION X,V
+2:? SCRSS(P+14,P+20);" ";SCRS$(P+21,P
+22);" ";SCRSS(P+23,P+27l
1680 POSITION X,V+3:? SCRSS(P+28,P+34)
;" ";SCRSS(P+35,P+36);" ";SCRSS(P+37,P
+41)
16'0 POSITION X,V+4:? SCRSS(P+42,P+48)
;" ";SCRSS(P+4',P+50);" ";SCRSS(P+51,P
+55)
1700 IF X=C2 THEN X=21:GOTO 1720
1710 V=V+C6:X=C2
1720 NEXT I
1730 POKE C702,C64:POKE C6'4,CO:GET nc
l,A
1740 IF N=CO AND A=C78 THEN 1730
1750 IF PS=CO AND A=80 THEN 1730
1760 IF A=77 THEN 430
1770 IF N=Cl AND A=C78 THEN PR=NX:NX=P
R+C6:GOTO 17'0
1780 IF PS=Cl AND A=80 THEN NX=PR:PR=P
R-C6:GOTO 17'0
17'0 ? "~": POSITION 10,O:? "e,,,,eIJ_i1
1!_1.iIIiIOf"ll": GOTO 15'0
1800 ? "~":POKE C752 Cl:POSITION O,O:?
"_ nl:;ti-ttbAit'i"W"; TEMPS; "_ _ ..

1810 XP=CO:VP=CO:lC=23:FB=C128:Bl=Cl:G
OSUB 320:XP=3':GOSUB 320
1820 IF NXGM<>CO THEN 1870
1830 ? """",,No GaMes on file. Use Option

1 on the Main Menu to add gaMes and s
cores to file."
1840 ? """",,Press 1131 to Continue"
1850 POKE C702,C64:POKE C6'4,CO:GET nc
l,A:IF A<>67 THEN 1850
1860 GN=CO:RETURN
1870 XP=C4:VP=Cl:TP=ADR(SCRSS):GOSUB 3
30
1880 XP=22:TP=ADRCSCRSS)+1176:GOSUB 33
o
18'0 XP=0:VP=22:lC=2:GOSUB 310:POSITIO
N 8,22:? "rili11i1I":.:(l't";[.lit.~iB'
1'00 POSITION 6,23:? "RETURN __ uUil
~X "tHl"; : X=C2: V=Cl: DX-C2: DV-Cl
1'10 POSITION X,V:? "=>"
1'20 POKE C702,C64:POKE C6'4,CO:GET nc
l,A:IF A=88 THEN GN=CO:RETURN
1'30 IF A=155 THEN 20'0
1'40 IF A=45 THEN DV=V-Cl:GOTO 2020
1'50 IF A=61 THEN DV=V+Cl:GOTO 2050
1'60 IF A=42 THEN DX=C20:GOTO 1"0
1'70 IF A=43 THEN DX=C2:GOTO 1"0
1'80 GOTO 1'20
1"0 IF DX=C20 AND NXGM<22 THEN DX=C2
2000 IF DX=C20 AND V>NXGM-C20 THEN DV=
NXGM-21
2010 GOTO 2080
2020 IF DV<Cl AND X=C20 THEN DV=NXGM-2
1
2030 IF DV<Cl AND X=C2 AND NXGM>21 THE
N DV=21
2040 IF DV<Cl AND X=C2 THEN DV=NXGM
2050 IF DV>21 THEN DV=Cl
2060 IF DV>NXGM THEN DV=Cl
2070 IF X=C20 AND DV>NXGM-21 THEN DV=C
1
2080 POSITION X,V:?" ":X=DX:V=DV:GOT
o 1910
20'0 GN=V:IF X=C20 THEN GN=GN+21
2100 TEMP$=SCRS$((GN-Cl)*C56+Cl,(GN-Cl
) *C56+ 14) : TEMP$ (15) =" " : U=USR (RV, ADR (
TEMP$))
2110 XP=0:VP=22:lC=2:GOSUB 310:POSITIO
N 3,22:?" nUine";TEMP$'
2120 POSITION O,23:? " I iJ3Illtwl'l'lil1i1I4

";:POSITION 10,10:?
2130 POKE C702,C64:POKE C6'4,CO:GET nc

12 ANALOG COMPUTING

l,A:IF A<>C78 AND A<>C8' THEN 2130
2140 IF A=C8' THEN RETURN
2150 VP=22:lC=2:XP=0:FB=128:GOSUB 310:
POSITION 0, 23:? '. S '-ttJ:t. ~ _i1ttl]; .. i
2160 POSITION 10,10:?

Selec1: Differen

2170 POKE C702,C64:POKE C6'4,CO:GET nc
1,A:IF A<>C65 AND A<>83 THEN 2170
2180 IF A=C65 THEN GN=CO:RETURN
21'0 POSITION X V:?" ":GOTO 18'30
2200 TEMP$="w:tnrw": GOSUB 1800: IF GN=
CO AND DOHRITE=CO THEN 430
2210 IF GN=CO THEN 1400
2220 GN=CGN-Cl)*C56+Cl
2230 GAME$=SCRSSCGN,GN+13):SCORE$=SCRS
S(GN+14 t GN+20):lEVEl$=SCRSSCGN+21,GH+2
2) :NAME~=SCRS$(GN+23,GN+27)
2240 SSCORES=SCRSS(GN+28,GN+34):SlEVEl
$=SCRS$(GN+35,GN+36):SNAME$=SCRS$CGN+3
7,GN+41) :TSCORES=SCRS$(GN+42,GN+48)
2250 TlEVElS=SCRSS(GN+4' GN+50):TNAME$
=SCRS$(GN+51,GN+55):TEMPS=SCORES(1 t 3) :
TEMPS(4)=SCORE$(5 7):A(1)=VAL(TEMP~)
2260 TEMP$=SSCORES(l,3):TEMP$(4)=SSCOR
ES(5,7) :IF TEMPS=" " THEN TEMPS="
0"
2270 ACC2)=VAlCTEMPS):TEMPS=TSCORESCCl
,C3) :TEMP$(C4)=TSCORESCC5,C7):IF TEMP$
=" " THEN TEMP$="O"
2280 A CC3) =VAL (TEMP$) :? "~": POSITION 1
3,O:? "Update Scores"
22'0 TEMP$=" ":FOR Z=14

TO Cl STEP -Cl: IF GAME$ (Z, Zl <>" " THE
N POP :GOTO 2310
2300 NEXT Z
23100=C'-INTCZ/C2):TEMP$(O,O+Z-Cl)=GA
ME$:U=USR(RV,ADR(TEMP$))
2320 POSITION 12,2:? TEMP$:POSITION 12
,4:? SCORE$;" ";lEVELS;" ";NAME$
2330 POSITION 12,6:? SSCORES;" ";SLEVE
L$;" ";SNAMES
2340 POSITION 12,8:? TSCORES;" ";TLEVE
LS;" ";TNAMES
2350 POSITION 3 12:? "e:lif: .. 1i{IJiI4 .:J
lif:e!=lW4. e:~"14"
2360 XP-0:VP-20:FB-0:lC=4:GOSUB 310:PO
SITION 2,22:? "Press eiPullil:e onl!,! to
exit"
2370 POSITION 2,20:? "Enter Score ";:l
=6:GOSUB 120:IF PP=Cl AND DOHRITE=CO T
HEN 430
2380 IF PP=Cl THEN 2760
23'0 ACC4)=VAl(N$):IF A(C4»A(C3) THEN

2460
2400 VP=20:lC=4:GOSUB 310:POSITION 2,2
o:? "Score ";N$;" to low to be entered

"
2410 POSITION 2,22:? ".::::. Re-enter
ri:. Abort"; •
2420 POKE C702,C64:POKE C6'4,CO:GET nc
l,A:IF A<>C65 AND A<>S2 THEN 2420
2430 IF A=C65 AND DOHRITE=CO THEN 430
2440 IF A=C65 THEN 2760
2450 GOTO 2360
2460 GOSUB 280:USCORE$=TEMP$:POSITION
6,14:? USCORE$
2470 GOSUB 310:POSITION 2,22:? "Press
e;lOUllil:e onl!,! to leave blank"
2480 POSITION 2,20:? "Enter level "i:L
=2:GOSUB 120:UlEVELS=N$:IF N$=" " THEN

ULEVEL$=" "
24'0 POSITION 22,14:? ULEVEL$
2500 POSITION 2,20:GOSUB 310:? "Enter
NaMe ";:L=5:GOSUB 20:IF A$=" " THEN 25
00
2510
2520
1 Ok

UNAMES=AS:POSITION 32,14:? UNAME$
GOSUB 310:POSITION 2,20:? "~ al

.::::. Re-enter":? :? "KiW Abort"

ATARI 8-BIT EXTRA

. ,
2530 POKE 702,64:POKE 694,0:GET Ul,A:I
F A=65 AND DOWRITE=O THEN 430
2540 IF A=C65 THEN 2760

TD 2550 IF A=82 THEN 2230
CK , 2560 IF A=79 THEN 2580
5~ 2570 GOTO 2530

. ~J,L 2580 DOWRITE=Cl: IF A (C4) <A (Cl) THEN 26

b!r ~g90 T'.lCORE$='.l'.lCORE$: TLEVELS='.lLEVEL$: T
... / .. H~MES='.lN~MES: '.l'.lCORES='.lCORES: '.lLEVELS=LE

?'" VELS: SNAMES=NAMES
,8R >2600 SCORE$=USCORES:LEVELS=ULEVELS:NAM

~8 ~~f~N~~Eg~g~J~A~g~~ THEN 2630
PE 2620 TSCORE$=S'.lCORES:TLEVEL$=SLEVELS:T
= NAMES=SNAME$:'.lSCORES=U'.lCORE$:SLEVELS=U

LEVELS:SNAMES=UNAME$:GOTO 2640
2630 T'.lCORE$=U'.lCORES:TLEVELS=ULEVELS:T
N~ME$=UNAME$
2640 I=GN:'.lCRS$(I,I+13)=GAMES:'.lCR'.l$(I+
21-LEN('.lCORE$l,I+20)=SCORE$:SCR'.l$(I+23
-LEN(LEVELSl,I+22l=LEVELS
2650 SCRS$CI+23,I+27l=NAME$:'.lCR'.l$(I+35
-LENCSSCORE$l,I+34l='.l'.lCORES:'.lCR'.lS(I+37

~ -LENCSLEVEL$l,I+36l=SLEVEL$
MN 2660 SCRS$ C1+37, I+41l =SNAME$

2670 '.lCRS$CI+49-LENCTSCORES),I+48)=TSC
ORE$:SCR'.lSCI+51-LENCTLEVELS),I+50l=TLE
VEL$:SCRSSCI+51,I+55)=TNAME$
2680 HP=0:VP=4:LC=19:FB=0:GOSUB 310
2690 POSITION 12,4:? '.lCRSSCI+14,I+20)j
II IjSCR'.l$CI+21,I+22)j" "j'.lCRS$CI+23,I+
27)
2700 POSITION 12,6:? '.lCRSSCI+28,I+34lj
II ";SCRS$(I+35,I+36);" ";'.lCRS$CI+37,I+
41l
2710 POSITION 12,8:? '.lCR'.l$CI+42,I+48l;
II ";SCR'.lSCI+49,I+50);" ";'.lCRS$CI+51,I+
55)
2720 P0'.lITION 2,20:? "Other GaMes to U
pdate (Ves/Nol "j

LH t 2730 POKE C702,C64:POKE C694,CO:GET UC
0' l,~:IF A<>C89 AND A<>C78 THEN 2730

WI 2740 IF A=C89 THEN 2200

'.~'~ .•• '. g~g ~g~g: ~~~~8: LC=6: G0'.lUB 310: POSITIO

)cll ~7~O 1~~~p~~~I~n\;driil:,~g6gu~7fgoo: IF GN=

,, ~n .;. ~~~r~~:~~~~g:r~~~:!gfo 430
J~' ~i 2800 GAME$='.lCRS$ CGN, GN+ 13) : '.lCORE$=SCRS

:~it i~l~~H~~i~~!i~~~;~~~~~:~~!~:::~~~::::
? $=SCRS$CGN+35,GN+36l :'.lNAME$=SCRS$CGN+3

. 7,GN+41):TSCORE$=SCR'.lSCGN+42,GN+48)
HP ' 2820 TLEVEL$=SCRS$CGN+49,GN+50l:TNAMES

¥ =SCRS$CGN+51,GN+55)
Z4/ 2830 ? "I'I":POSITION 13,O:? "Delete GaM

:;}:~ ell

2840 TEMP$=" ":FOR Z=14
TO Cl 5 TEP -Cl: IF GAME$ (Z, Zl 0" II THE

H~\ ~8~gPN~~~T~ 2860
LC: 2860 0=C9-INT CZ/C2l : TEMPS CO, O+Z-Cll =GA

. ME$:U=USRCRV,ADRCTEMPS)) SK 2870 P0'.lITION 12,2:? TEMPS:P0'.lITION 12
,4:? SCORE$i" "iLEVEL$;" ";NAMES

WE 2880 POSITION 12,6:? '.l'.lCORES;" ";SLEVE
··"l L$j" "iSNAMES

BP 2890 POSITION 12,8:? TSCORE$;" "iTLEVE
>. L $ i" II i TN A ME $

BZ2900 POSITION 2,17:? "T!,Ipe full word D

wt ~;~~E?t~g~:~ei~o!h~~~ list. An!,lthing e
lse willAbort the proces'.l."

ATARI 8-BIT EXTRA

2910 POSITION 2,21:L=6:GOSUB 20:IF A$<
>"DELETE" AND DOWRITE=CO THEN 430
2920 IF ASO"DELETE" THEN 3020
2930 IF GN=2297 THEN 2950
2940 SCR'.lSCGN,2296)=SCRS$(GN+56,2352)
2950 TEMPS=" ":SCRS$C2297
,2310)=TEMPS
2960 SCR'.l$C2311,2324)=TEMPS:SCRS$C2325
,2338)=TEMP$:'.lCR'.l$C2339,2352)=TEMP$:NX
GM=NXGM-l:DOWRITE=l
2970 VP=17:LC=C7:FB=0:GOSUB 310:POSITI
ON 2,17:? "GaMe Deleted."
2980 PO '.lIT ION 2,21:? "An!,l More gaMes t
o Delete (Ves/No) ? "j
2990 POKE C702,C64:POKE C694,CO:GET UC
l,A:IF A<>C78 AND A<>C89 THEN 2990
3000 IF A=C89 THEN 2770
3010 DOWRITE=CO:POSITION 2,21:? "CUpda
ting Disk File ... ":GOTO 1420
3020 VP=17:LC=C7:FB=CO:GOSUB 310:POSIT
ION 2,17:? ""'-Process Aborted.":GOTO 29
80
3030 ? "I'I":POSITION 15,e:? "HIGH SCORE
": POSITION 14,2:? "_:,JiH: •• ;Pi4:!I_U",-"
3040 ? "_ All GaMes with Scores",-",-":?

".:II All GaMes with Top '.lcore Onl!,l",-~"
3050 ? "III(JI List of GaMe NaMes Onl!,l",-~"
:? "~ Return to Main Menu"
3060 POSITION 2,21:? "Press nUMber of
!,lour choice >1";
3070 POKE C694,CO:GET UC1,A:IF A<49 OR

A>52 THEN 3070
3080 F=A-48:IF A=52 THEN 430
3090 POSITION 2,21:? "[Jllllourt!,l or .:111
ight!,l ColuMn Printer"j
3100 POKE C702,C64:POKE C694,CO:GET UC
l,A:IF A<>70 AND A<>69 THEN 3100
3110 CLM=80:IF A=70 THEN CLM=40
3120 ? "I'I":POSITION 12,O:? "Function S
elected":ON F GOTO 3130,3140,3150
3130 POSITION 7,2:? "Print All GaMes w
ith Scores":GOTO 3160
3140 POSITION 3,2:? "Print All GaMes w
ith Top Score Onl!,l":GOTO 3160
3150 POSITION 4,2:? "Print List of GaM
e NaMes On File"

. ", 3160 POSITION 2,6:? "Please be sure pr
inter is ON-LINE and read!,l to print."
3170 POSITION 8,11:? "l1::li Print":POSIT
ION 8,13:? "~ Abort print"
3180 POSITION 2,17:? "Press Letter of
C hoi c e > I" ;
3190 POKE C702,C64:POKE C694,CO:GET UC
l,A:IF A<>C65 AND A<>80 THEN 3190
3200 IF A=C65 THEN 3030
3210 TRtlP 3520:0PEN UC4,C8,CO,"P:":TEM
p$=" ":POSITION 2,17:?
"Cprinting "
3220 ON F GOTO 3230,3370,3470
3230 S=112:S1=Cl:? UC4jTEMP$(Cl,C6)j:I
F CLM=80 THEN? UC4;TEMPS;TEMPS(Cl,C4)
j:S=224:S1=C3
3240 ? UC4j"LIST OF ALL GAMES WITH '.lCO
RES":? UC4:? UC4
3250 FOR I=Cl TO NXGH*C56 STEP '.l:FOR W
=CO TO '.l1:P=W*C56+I:IF P>2352 THEN POP

:? UC4:GOTO 3290
3260 GAMES='.lCR'.l$(P t P+13):FOR Z=14 TO C
1 STEP -Cl:IF GAME~(Z,ZlO" " THEN POP

:GOTO 3280
3270 NEXT Z:POP :? UC4:GOTO 3290
3280 TEMP$=" ":0=C9-INT
CZ/C2) : TEMP$ (0, O+Z-Cll =GAME$:? UC4;"
"iTEMP$;:NEXT W:? UC4

3290 FOR W=CO TO '.l1:P=W*C56+I:IF P>235
2 THEN POP :? UC4:GOTO 3310
3300 ? UC4;" "j'.lCRS$(P+14,P+C20)j""
i'.lCRS$(P+21,P+22)i" ";'.lCR'.l$(P+23,P+27l

ANALOG COMPUTING 13

~ .
~ HI-Score continued

;:NEHT W:? UC4
3310 FOR W=CO TO S1:P=W*C56+I:IF P>235
2 THEN POP :? UC4:GOTO 3330
3320 ? UC4;" ";SCRS$(P+28,P+34);"";
SCRS$ (P+35, P+36) i" "i SCRS$ (P+37, P+41) i
:NEHT W:? UC4
3330 FOR W=CO TO S1:P=W*C56+I:IF P>235
2 THEN POP :? UC4:GOTO 3350
3340 ? UC4;" "iSCRS$(P+42,P+48);"";
SCRS$(P+4~,P+50);" "iSCRS$(P+51,P+55)i
:NEHT W
3350 ? UC4:? UC4:NEHT I:? UC4

. 3360 CLOSE UC4:GOTO 3030
3370 S=112:S1=C1:? UC4i"
80 THEN? UC4i"
S=224:S1=C3

.. ; : IF CLM=
III I , .

3380 ? UC4i"LIST OF ALL GAMES WITH TOP
SCORE":? UC4:? UC4

33~0 FOR I=C1 TO NHGH*C56 STEP S:FOR W
=CO TO S1:P=W*C56+I:IF P>2352 THEN POP

:? UC4:GOTO 3430
3400 GAME$=SCRS$(P t P+13):FOR Z=14 TO C
1 STEP -C1:IF GAME~(Z,Z)<>" " THEN POP

:GOTO 3420
3410 NEHT Z:? UC4:POP :GOTO 3430
3420 TEMP$=" ":O=~-INT(
Z/C2) : TEMP$ (a, O+Z-Cl) =GAME$:? UC4;"
"iTEMP$i:NEHT W:? UC4
3430 FOR W=CO TO S1:P=W*C56+I:IF P>235
2 THEN POP :GOTO 3450
3440 ? UC4;" "iSCRS$(P+14,P+C20)i""
;SCRS$CP+21,P+22);" ";SCRS$CP+23,P+27)
; : NEHT W
3450 ? UC4:? UC4:NEHT I:? UC4
3460 CLOSE UC4:GOTO 3030
3470 S=112:S1=C1:? UC4i"
LM=80 THEN? UC4i"
";:S=224:S1=C3

";:IF C

3480 ? UC4;"LIST OF GAME NAMES ON FILE
":? UC4:? UC4
34~0 FOR I=C1 TO NHGH*C56 STEP S:FOR W
=CO TO S1:P=W*C56+I:IF P>2352 THEN POP

:GOTO 3510
3500 ? UC4i" ";SCRS$(P,P+13);:NEHT W
:? UC4:? UC4:NEHT I:? UC4:CLOSE UC4:GO
TO 3030
3510 ? UC4:? UC4:NEHT I:? UC4:CLOSE UC
4:GOTO 3030
3520 A=PEEK U~5) :? "1'i~~~ERROR ~~ "i A:?

:? :CLOSE UC4
3530 ? "The Printer is not responding.

Be sureit is on and in an on-line sta
te . "
3540 IF A<>130 AND A<>138 AND A<>13~ T
HEN? :? "This error Might not be the
printers fault. Check prograM."
3550 ? : ? "Error occured in line "iPEE
K(186)+PEEK(187)*C256
3560 ? :? "~ Main Menu
enu"

..:::. Print M

3570 ? :? "Press letter of choice >I"i
: POKE C764,C255
3580 IF PEEK(C764)=C10 THEN POKE C764,
C255:GOTO 3030
3530 IF PEEK(C764)=37 THEN POKE C764,C
255:GOTO 430
3600 GOTO 3580
3610 A=PEEK U ~5) :? "1'i~~ERROR ~~"; A;" I
N LINE "jPEEK(86)+PEEKU871*C256:? :?

: POKE C752,CO:POKE 16,1~2
3620 POKE 53774,247:IF A<>130 AND A<>1
38 AND A<>13~ AND A<>140 AND A<>142 AN
D A<>143 AND A<>144 THEN 3640

· 3630 ? "The probleM seeMS to be with t
he disk drive. It is not responding pr
operly. Check drive.":END
36 40 IF A=163 THEN ? "The directory on
the disk is full. No rOOM for the dat

14 ANALOG COMPUTING

•

a file.":END
3650 IF A<>162 THEN 3680
3660 ? "There is not enough rOOM on th
e disk for the data file. You need at
least 1~ free sectors in Single ";

3670 ? "or 10 free sectors in Double
Density.":END
3680 IF A=167 THEN? "The data file is

locked. I aM unable to update the inf
orMation.":END
36~0 ? "Please Check Manual for explai
nation of error.":END
3700 DIM USCORE$(7),ULEUEL$(2),UNAME$(
51,D$(1)tSCRS$(2352),SCORE$(7)tGAME$(1
4) ,LEUEL~ (2) , NAME$ (5) A$ (4) , N~ (6)
3710 DIM FILE$(10),RU~(22),TNAME$C5),T
EMP$(16),A(4),SSCORE$(7),TSCORE$(7),SL
EUEL$(2),TLEUEL$(2),SNAME$(5)
3720 DIM SP$(105),LF$(61),MKS$(1~2)
3800 RU=ADR(RU$):SP=ADR(SP$):LF=ADR(LF
$) :MKS=ADR(MKS$)
3810 CO=0:C1=1:C2=2:C3=3:C4=4:C5=5:C6=
6:C7=7:C8=8:C~=~:C10=10:C255=255:C256=
256:C42=42:C6~4=6~4:C702=702
3820 C16=16:C20=20:C764=764:C56=56:C65
=65:C82=82:C8~=8~:C78=78:C64=64:C40=40
:C752=752:C128=128
3830 RETURN

ATARI 8-BIT EXTRA

by C.F. Fogarty, III

Create-a-base is a versatile file and retrieve program that
allows you to easily define your own personal databases.
It has facilities for creating databases, adding new records
to a database, updating records already on your database,
searching on multiple key fields, and simple reporting.

Before we go into explanations of how to use Create-a
base, here's a quick overview of some common database
buzzwords.

A byte or character, is the smallest piece of data that
Create-a-base deals with . It's a single character, like the
letter A.

A field is a collection of bytes and usually contains data
pertaining to a single subject or item, like a name or ad
dress.

A record is a logical collection of fields. For instance,
a record in a database called Phone Book, might contain
the following fields: name, street, city, state, zip code and
phone number.

A f ile (in this case, the database) is a collection of
records.

A database is merely a collection of related data, usually
in multiple files. Large mainframe databases can share
data between files, avoiding the need to enter all the fields
for each record or entity. However, this type of data shar
ing is beyond the scope of Create-a-base. Remember, most
of us (I have an Atari 800) have only 48K of RAM built
into our computers. It's this fixed amount of memory that's
the main limitation when working with a database.

ATARI 8-BIT EXTRA

Limitations_
The input area for each record is limited to a single

graphics 0 screen. You can enter up to sixteen fields per
record, and each field can be up to 31 bytes long. This
gives you a maximum record size of 496 bytes.

31 bytes

field
x 16 fields

record

496 bytes

record

The size of each database is limited only by the capaci
ty of your disk drive and a single disk . A 1050 drive using
DOS 2.5 will hold a database one and one-half times the
size that an 850 drive will hold. It's also important to note
that, the smaller you define your records, the more records
you can fit on a disk.

Typing Create-a-base_
The instructions below should be followed exactly to cre

ate your copy of Create-a-base.
Type in Listing 1, using the BASIC Editor II (in issue

47 of ANALOG Computing) to verify your work. Be sure
to save a backup copy.

Place a disk containing DOS in drive 1, and run the pro
gram created from Listing 1. Two files, MLl.LST and ML2.
LST, will be written to your disk. Leave this disk in drive
1 until all the steps below have been completed.

After clearing your computer's memory, type in Listing
2 using the BASIC Editor II to verify your work. Be sure
to save a backup copy. Run the program created from List
ing 2. Two files, AUTORUN.SYS and CHSET.PMG, will
be written to your disk.

After clearing your computer's memory, type in Listing

ANALOG COMPUTING 15

",---.

~ Create-a-base continued

3 using the BASIC Editor II to verify your work. Save a
copy to disk.

Load the program created from Listing 3 into memory
and merge the file MLl.LST by typing ENTER "D:MLl .
LST" and pressing RETURN. Save the resultant program
to disk under the filename CREATEAB.ASE.

After clearing your computer's memory, type in Listing
4 using BASIC Editor II to verify. Save a copy to disk.

Load the program created from Listing 4 into memory
and merge the file ML2.LST by typing ENTER "D:ML2.
LST" and pressing RETURN. Save the resultant program
to disk under the filename SORT.

Getting started.
Once you've typed in all the listings (no simple task)

and created a master disk, boot your system with the
Create-a-base master disk in drive 1. The main program
loads automatically and prompts you to insert your data
base disk. Since this is your first time using Create-a-base,
remove the master disk and insert a blank disk (no need
to format it first). Once you've done this, press START,
and Create-a-base will inform you that this isn't a valid
database disk. Press Y to format it.

Now you can define your first database. Here's an exam
ple everyone can use. At the prompt for Database Name,
type Phone Book and press RETURN. Note: remember to
press RETURN after all entries, or Create-a-base will ig
nore that input. Next, it will ask you for a LABEL; enter
NAME. Now Create-a-base will ask you to define the size
of the field for NAME, enter 25. This gives you an input
area of 25 bytes for NAME. When you press RETURN
Create-a-base does some processing on your input and
prints the label NAME to the screen, followed by twenty
five underline characters. Meanwhile, you're prompted in
the status window. Press OPTION to define the next field,
or press START when the whole record is defined. This
time, press OPTION and use the following list to complete
ly define your Phone Book record:

LABEL FIELD SIZE CONSOLE KEY
STREET 25 OPTION
CITY 25 OPTION
STATE 2 OPTION
ZIP CODE 5 OPTION
PHONE# 16 START

Once you've pressed START, Create-a-base does some
processing and writes to the disk. When it's done, you'll
have a database disk called Phone Book and Create-a-base
will go into the "add records" mode.

The next time you boot the Create-a-base master disk,
insert this database disk at the prompt, and Create-a-base
will go directly to the add records mode.

Using the edit screen.
To add records to the database, simply type in the per

son's name and press RETURN. The cursor automatically
moves down to the street field and so on ... When you've
entered all the data for the first record, press START and
you've written the first record to your Phone Book!

Advanced editing.
Pressing RETURN alone, without typing any text, moves

the cursor down to the next field and leaves that field

16 ANALOG COMPUTING

blank. However, if any text was on that line (as in update
mode), it will be erased. Pressing SELECT allows you to
move the cursor to the next field without erasing any texl.

The OPTION key changes modes. There are five modes
-add, search, update, report and create. By pressing OP
TION five times , you can cycle through each mode. In all
modes except create, the screen looks exactly the same,
except for the "mode" in the status window. In create
mode, pressing OPTION will bring you back to the add
mode, while pressing START takes you to where you de
fined your database. If you accidentally press START,
when you meant to press OPTION in create mode, press
ESCape to return to the edit screen. Normally, while edit
ing , you press START only when you're done editing the
record on the screen. It tells Create-a-base to process your
input.

Searching a database.
To search the database for a certain record, press OP

TION until you're in search mode. Then type in the in
formation you want to search for. Remember to press
RETURN after each field you enter, and press START to
begin the search. For example, if you wanted to search for
Charles Fogarty, you could enter Charles Fogarty, Fogarty,
or even F.

Create-a-base will search the database until it finds a
match or comes to the end-of-file. If it finds a match, the
record prints to the screen and prompts you to Continue
(YIN). Pressing Y continues the search , and any other key
brings you back to the edit screen (still in search mode).
You can then search for different records. By the way, if
you don't type in any information for Create-a-base to
search with before you press START, it defaults to all
records, so everything's a match.

You can also search on rimltiple fields. So, if you want
ed to find everyone with a last name of Fogarty, who lives
in Hartford, with a zip code of 06118, you could enter that
information in the appropriate fields (name, city and zip
code), and then press START. Only those records match
ing all three fields will show up on the screen.

Reporting.
Report mode works exactly like search mode, except all

the output goes to the printer.

Updating records.
Update mode also works like search mode, until it finds

a matching record . Once it finds a match, you can make
any changes to that record displayed on the screen. Press
START and the new, updated record is written to the data
base. The old record is written over by the new one. To
delete a record completely, press CTRL-D.

Creating new databases.
Create mode was used to create your Phone Book data

base. You define labels and fields to create new and differ
ent databases. Remember, you can only put one database
on a disk. If you try to create a new database on the same
disk as Phone Book, it will erase the old Phone Book data
base and start a new one. You may, however, create as
many different databases as you want, as long as they're
on separate disks.

ATARI 8-BIT EXTRA

Other functions.
Pressing CTRL-P with a printer attached will print out

the data currently displayed on the screen. This is some
times called a "screen dump."

Pressing CTRL-S (for Sort) will prompt you to press op
TION to resume editing, or press START to sort the data
base. Remember to insert the Create-a-base master disk
before pressing START, because the sort program is sepa
rate from the editor.

Once the sort program's rUlUling, it will read the whole
database, sort it, and write it out to a new disk. So, after
the sort, you'll have two copies of that particular database,
the original and the sorted version. This gives you a back
up copy, in case of any problems during the sort (like a
power outage) . The sort also gets rid of any "deleted"
records and recovers lost disk space. These "deleted"
records are still taking up space on the disk , even though
they don't show up when you search.

A small database (one that can be sorted completely in
RAM), takes a minute or two. The disk I/O takes consider
ably longer than the sort itself. Sometimes a large data
base won't fit into RAM all at once (only 48K), so I tried
to use the available memory as efficiently as possible.

After reading and writing the database in blocks (ap
proximately 25K on my system), Create-a-base reads the
database a second time. This time it notes the position
of eacb record on the disk and keeps only the sort field
a nd pointers. Then it sorts the pointers and reorganizes
the file on the disk. This pointer sort allows you to sort
files much larger than yom main memory could possibly
hold. The sort program will also scale down the length
of the sort field , to accommodate a very large database.
What this means is, if the number of records multipled
by the sort field length is greater than the number of
records that will fit in RAM , the sort will systematically
make the sort field 1 byte smaller, until all the records fit
into RAM. A worst case would be that the sort field was
only 1 byte long. The records would still be sorted in al
phabetical order, only with less precision .

The following is a list of possible databases:
Phone Book Bowler Stats Sports Stats
NAME 25 TEAM 25 TEAM 25
STREET 25 NAME 25 NAME 25
CITY 25 DATE 8 NUMBER 3
STATE 2 SCORE#1 3 etc .
ZIP CODE 5 SCORE#2 3
PHONE# 16 SCORE#3 3

Articles Disk Catalog Home Inventory
MAGAZINE 25 DISKNAME 25 LOCATION 25
TITLE 31 FILENAME 12 SERIAL# 25
AUTHOR 25 TYPE 10 DATE 8
MONTH 9 AUTHOR 25 DESCRIPT 31
YEAR 4 COMMENTS 31 VALUE 7
PAGE# 4
DESCRIPT 31

Subroutines.
Create-a-base has a number of relocatable machine lan

guage routines which can be used in other BASIC pro
grams.

MATCH$ checks if two BASIC string variables are equal.
Ca ll it with: X = USR(ADR(MATCH$),ADR(the firs t vari
oble),ADR(second variable),LENGTH(to compare). It com-

ATARI 8-BIT EXTRA

(1-51)

(52-64)

(52-91)

(92-106)

(107-108)

(109-140)

1

1 A

9 E

17 L

25 L

33 L

41 L

49 L

57 L

65 L

73 L

81 L

89 L

97 L

105 L

113 L

121 L

SCHEMA$ SECTOR #1

1 2 3 4 5 6 7 8
boot program.

1

to check for valid 9
cb disk.

17 boot
display 25 program
for accidental
boot. 33

41
database name
15 characters 49

number of
57

fields in 65
use. 73
MAX. 16

81
length of corresponding
field.

89

MAX. 31 97

105

113 2 2 3 3 4 4 5 5

121 6 6 7 7 8 8 9 9

SECTOR #2

2 3 4 5 6 7 8

A B B C C D D

E F F (141-143) record size
A B E L # 0 1 MAX. 496 bytes

A B E L # 0 2 (145-272) label for each field
A B E L # 0 3 8 bytes each.

A B E L
MAX. of 16 labels

0 4

A B E L # 0 5

A B E L # 0 6

A B E L # 0 7

A B E L # 0 8

A B E L # 0 9

A B E L # 1 0

A B E L # 1 1

A B E L # 1 2

A B E L # 1 3

A B E L # 1 4

SECTOR #3

1 2 3 4 5 6 7 8

1 L A B E L # 1 5

9 L A B E L # 1 6

17

25

33 reserved

41 for
future

49 expansions.

57

65

73

81

89

97

105

113

121

ANALOG COMPUTING 17

~ Create-a-base continued

pares from left to right and returns a if they're equal, or
1 if they don't match .

Note: it considers underline characters as wildcards (al
ways a match) .

MOVEMEM$ moves memory. Call with: X=USR(ADR
(MOVEMEM$) ,FROM,TO, number of bytes to move,ADR
(CONVERT$)). ADR(CONVERT$) is optional-if used, it
converts ATASCII to screen display code (what you see on
the screen).

PARSE$ checks for valid input. Call with: X= USR
(ADR(PARSE$) ,IN,TYPE) ,where : IN is an ATASCII value
(like GET #l ,IN); TYPE = ASC(''l\'') checks for alpha
numeric; or TYPE = ASC("N") checks for numeric . The
values returned in X are : a = invalid input; 1 = backspace
was pressed; 2 = RETURN was pressed; and 3 = valid
input.

SCANKB$ scans the keyboard and console keys. Call
with: X=USR(ADR(SCANKB$)). It exits to BASIC when
a key is pressed. The values returned in X are: 1 = a key
was pressed; 2 = OPTION was pressed; 3 = SELECT was
pressed; and 4 = START was pressed.

SECTORIO$ reads/writes disk sectors. Call with: X=USR
(ADR(SECTORIO$),sector nwnber,operation ,ADR (buffer)),
where sector number is any valid sector, and operation is
ASC("R") for read or ASC("W") for write; the buffer must
be at least 128 bytes long.

SORT$ is a bubble sort in machine language. It's not the
best sort in the world, but it will sort 25K in about one
minute. It sorts on one key field, which can be a maxi
mum of 255 bytes long. The records can be any size. Call
with: X=USR(ADR(SORT$),ADR(file),number of records
to sort, record length ,sort-field length ,starting position of
the sort-fi eld within a record). It returns a for success, or
non zero when invalid parameters are passed to it.

STRIP$ strips trailing underline characters from a string
variable. Call with : X= USR(ADR(STRIP$) ,ADR(string) ,
LEN(string)-l)). The string must be at least 2 bytes long.
It returns the position of the last nonunderline character
in X.

Well, that's it. Go forth and Create-a-base. ~

C. F. Fogarty worked in OP operations at Aetna for six
years and is now a software programmer trainee. He
bought his Atari 800 in 1982, and his CompuServe I.D. is
74206,3453. He's married, has a son and enjoys trout fish
ing and trail riding.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

10 DIM MS(120),LS{120)
20 GRAPHICS O:POKE 710,0:? "PLACE fORM
ATTED DISK IN DRIVE":? "THEN PRESS RET

18 ANALOG COMPUTING

URN": INPUT LS: OPEN IU,8 0, "D: MLI. LST"
30 LS="780 CONVERTS=":L!{LEN{LS)+1)=CH
RS(34):N=2~:GOSUB 210:GOSUB 220
40 LS="7~0 DLIS=": LS (LEN (LS) + 1) =CHRS {3
4):N=24:GOSUB 210:GOSUB 220
50 LS="7~5 MATCHS=":LS{LEN(LS)+1)=CHRS
(34):N=42:GOSUB 210:GOSUB 220
60 LS="800 MOVEMEMS=": LS (LEN (LS) + 1) =CH
RS(34):N=~~:GOSUB 210:GOSUB 220
70 LS="805 MOVEMEMS ClOO) =": LS (LEN (LS) +
1)=CHRS{34):N=I~:GOSUB 210:GOSUB 220
80 LS="820 PARSES=":LS(LEN(LS)+I)=CHRS
(34):N=57:GOSUB 210:GOSUB 220
~O LS="850 5CANKBS=":LS(LENCLS)+.1)=CHR
S(34):N=35:GOSUB 210:GOSUB 220
100 LS="855 SECTORIOS=":LS(LEN{LS)+I)=
CHRS(34):N=31:GOSUB 210:GOSUB 220
1.10 LS="860 STRIPS=":L${LEN(L$)+I)=CHR
$(34):N=30:G05UB 210:G05UB 220
120 L$="1050 SCHEMA$=": L$ (LEN (L$) +1) =C
HRS(34):N=74:GOSUB 210:GOSUB 220
130 CL05E IU:OPEN Ul,8,0,"D:ML2.LST"
140 L$="505 50RT$=":L${LEN(L$)+1)=CHR$
(34):N=74:GOSUB 210:GOSUB 220
150 LS="510 SORT$(75)=":L$CLEN(LS)+1)=
CHR$(34):N=75:G05UB 210:GOSUB 220
160 L$="515 SORTS (50) =": L$ (LEN (LS) +1)
=CHR$(34):N=75:GOSUB 210:GOSUB 220
170 LS="520 SORT$(225)=":L$(LEN(L$)+I)
=CHRS(34):N=75:GOSUB 210:GOSUB 220
180 LS="525 50RT$(300)=":L$(LEN(L$)+1)
=CHR$(34):N=2~:GOSUB 210:GOSUB 220
1 '10 L$="535 SEARCH$=": L$ (LEN (L$) + 1) =CH
R$(34) :N=77:GOSUB 210:G05UB 220
200 RESTORE 440:L$="500 SECTORIOS=":L$
(LEN(L$)+I)=CHR${34):N=31:GOSUB 210:GO
SUB 220:END
210 fOR X=1 TO N:READ A:M$(X)=CHRS(A):
NEXT X:RETURN
220 L$(LEN(L$)+I)=M$:L$(LEN(L$)+I)=CHR
$(34):? Ul;L$:M$="":RETURN
230 REM XXX XXX CONVERT$ XXXXXX
240 DATA 24,201,32,144,12,201,'16,144,1
6,201,128,144,15,201,160,176,4,105,64,
208,7,201,224,176,3,56,233,32,96
250 REM XXXXXX DLIS XXXXXX
260 DATA 72,138,72,16~,176,162,44,236,
11,212,144,2,169,161,141,10,212,141,24
,208,104,170,104,64
270 REM XXXXXX MATCHS XXXXXX
280 DATA 104,104,133,204,104,133,203,1
04,133,206,104,133,205,160,0,132,212,1
32,213,162,1,104,104,240,14
290 DATA 133,207,177,203,209,205,208,6
,200,196,207,208,245,202,134,212,96
300 REM XXX XXX MOVEMEM$ XXXXXX
310 DATA 104,133,214,201,4,240,4,201,3
,208,93,104,133,204,104,133,203,104,13
3,206,104,133,205,104,133
320 DATA 208,104,133,207,165,214,201,4
,208,13,169,76,133,214,104,133,216,104
,133,215,24,144,4,16~,96
330 DATA 133,214,160,0,166,207,240,24,
132,207,177,203,32,214,0,145,205,230,2
03,208,2,230,204,230,205
340 DATA 208,2,230,206,202,208,234,166
,208,240,9,202,134,208,162,255,230,207
,208,221,166,207,208,209,134
350 DATA 212,134,213,96,170,240,5,104,
104,202,208,251,134,213,232,134,212,96
360 REM XXXXXX PARSE$ XXXXXK
370 DATA 104,104,104,133,203,104,104,1
33,204,162,0,134,212,134,213,232,16'1,1
26,1~7,203,240,32,232,16~,32
380 DATA 197,203,240,25,232,169,78,197
,204,240,6,169,31,160,123,208,4,169,32
,160,5~,197,203,176,6
390 DATA 196,203,144,2,134,212,96

ATARI 8-BIT EXTRA

•

·. 400 REM XXXXXX SCANKB$ XXXXXX
· 410 DATA 104,160,0,132,213,162,1,173,2
52,2,201,255,208,18,232,173,31,208,201
,3,240,10,232,201,5
420 DATA 240,5,232,201,6,208,229,134,2
12,96
430 REM XXX XXX SECTORIOS XXXXXX
440 DATA 104,104,141,11,3,104,141,10,3
,104,104,141,2,3,104,141,5,3,104,141,4
,3,169,1,141,1,3,32,83,228,96
450 REM XXXXXX STRIPS XXXXXX
460 DATA 104,104,133,204,104,133,203,1
04,104,133,205,169,0,133,213,164,205,1
77,203,201,95,208,3,136,208
470 DATA 247,200,132,212,96
480 REM XXXXXX SCHEMAS XXXXXX
4~0 DATA 0,3,0,7,6,7,162,0,160,120,189
,50,7,201,32,144,12,201,96,144,16,201,
128,144,15
500 DATA 201,160,176,4,105,64,208,7,20
1,224,176,3,56,233,32,145,88,200,232,2
24,56,208,218,24,0
510 DATA 32,195,242,229,225,244,229,17
3,225,173,226,225,243,229,32,40,99,41,
32,49,57,56,53,32
520 REM XXXXXX SORTS XXXXXX
530 DATA 216,162,1,134,231,202,134,232
,134,209,104,201,5,240,12,170,240,5,10
4,104,202,208,251,232,134
540 DATA 212,96,104,133,204,133,208,10
4,133,203,133,207,104,133,225,104,133,
224,104,133,227,104,133,226,104
550 DATA 104,133,230,104,133,229,104,5
6,233,1,133,228,165,229,233,0,133,229,
165,225,208,6,165,224,201
560 DATA 2,144,201,165,227,208,6,165,2
26,201,1,144,191,165,230,201,1,144,185
,24,165,228,101,230,133
570 DATA 214,165,229,105,0,133,215,165
,227,197,215,144,166,165,226,197,214,1
44,160,165,207,133,205,165,208
580 DATA 133,206,24,165,205,101,226,13
3,207,165,206,101,227,133,208,24,165,2
05,101,228,133,214,165,206,101
5~0 DATA 229,133,215,24,165,207,101,22
8,133,216,165,208,101,229,133,217,160,
0,177,216,209,214,144,75,208
600 DATA 5,200,196,230,208,243,24,165,
231,105,1,133,231,165,232,105,0,133,23
2,165,231,197,224,208,175
610 DATA 165,232,197,225,208,169,166,2
09,240,36,134,231,202,134,232,134,209,
165,203,133,207,165,204,133,208
620 DATA 56,165,224,233,1,133,224,165,
225,233,0,133,225,208,135,165,224,201,
1,208,129,96,208,18~,165
630 DATA 226,133,212,165,227,133,213,1
65,205,133,214,165,206,133,215,165,207
,133,216,165,208,133,217,160,0
640 DATA 166,212,240,27,132,212,177,21
4,72,177,216,145,214,104,145,216,230,2
14,208,2,230,215,230,216,208
650 DATA 2,230,217,202,208,231,166,213
,240,9,202,134,213,162,255,230,212,208
, 218,166,212,208,206,232,134
660 DATA 209,208,175
670 REM XXXXXM SEARCHS MMMMMX
680 DATA 104,104,133,204,104,133,203,1
04,133,206,104,133,205,104,104,133,207
,16~,O,133,212,133,213,162,1
6~0 DATA 24,165,203,101,207,133,203,16
5,204,105,0,133,204,24,165,212,105,1,1
33,212,165,213,105,0,133
700 DATA 213,224,1,208,8,202,24,165,20
7,105,3,133,207,160,O,177,203,20~,205,
2a81210,200,192,3,208,245,~6

ATARI 8-BIT EXTRA

Listing 2.
BASIC listing.

(> 10 GRAPHICS 0
··· ·· 20 ? "CREATE-A-BASE MASTER DISK MAKER"

30 ? :? "USE A FORMATTED DISKETTE HITH
DOS.SYS AND DUP.SYS"

40 ? :? "PRESS [S TARTl TO CONTINUE ... "
50 IF PEEK(532791<>6 THEN 50
60 ? :? "HRITING AUTORUN.SYS
70 OPEN IU,8, O,"D: AUTORUN. SYS": RESTORE

100
80 READ A:IF A=-9~9 THEN 200
~o PUT Ul,A:GOTO 80
100 DATA 255,255,160,6,162,6
101 DATA 76,175,6,175,6,251
102 DATA 6,160,11,185,0,228
103 DATA 153,163,6,136,16,247
104 DATA 169,222,141,167,6,169
105 DATA 6,141,168,6,172,170
106 DATA 6,174,169,6,232,208
107 DATA 1,200,142,246,6,140
108 DATA 247,6,16~,163,141,33
10~ DATA 3,169,6,141,34,3
110 DATA ~6,172,O,6,208,10
111 DATA 16~,O,141,33,3,16~
112 DATA 228,141,34,3,185,1
113 DATA 6,206,0,6,72,32
114 DATA 251,6,104,160,1,96
115 DATA 253,6,255,6,108,250
116 DATA 1~l,68,2,68,2,O
117 DATA ~,O,9,O,l,226
118 DATA 2,227,2,160,6,224
119 DATA 2,225,2,253,6,0
120 DATA 6,1~,6,18,155,6~
121 DATA 83,65,46,66,65,6~
122 DATA 84,65,6~,82,67,58
123 DATA 68,34,78,85,82
124 DATA -99~
200 CLOSE Ul:0PEN Ul,8,O,"D:CHSET.PMG"
:RESTORE 1000
210? :? "HRITING CHSET.PMG ... "
220 READ A:IF A=-9~~ THEN 240
230 PUT Ul,A:GOTO 220
240 FOR X=l TO 510:PUT Ul,O:NEXT X:PUT
Ul,155

250 ? :? "DON'T FORGET TO PUT FILES:":
? "CREATEAB.ASE & SORT.":? "ON THIS DI
SK."
1000
1001
1002
1003
1004

·· 1005
1006
1007
1008
100~
1010
1011
1012
1013
1014
1015
1016
1017
1018
101~
1020
1021
1022
1023
1024
1025
1026
1027

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

0,0,0,0,0,0
0,0,0,24,24,24
24,0,24,0,0,102
102,102,0,0,0,0
0,102,255,102,102,255
102,0,24,62,96,60
6,124,24,0,0,102
108,24,48,102,70,0
28,54,28,56,111,102
5~,O,O,24,24,24
0,0,0,0,0,14
28,24,24,28,14,0
0,112,56,24,24,56
112,0,0,102,60,255
60,102,0,0,0,24
24,126,24,24,0,0
0,0,0,0,0,24
24,48,0,0,0,126
0,0,0,0,0,0
0,0,0,24,24,0
0,6,12,24,48,96
64,0,0,60,102,110
118,102,60,0,0,24
56,24,24,24,126,0
0,60,102,12,24,48
126,0,0,126,12,24
12,102,60,0,0,12
28,60,108,126,12,0

ANALOG COMPUTING 19

~

~ Create-a-base continued

1028
102~
1030
1031
1032
1033
1034
1035
1036
1037
1038
103~
1040
1041
1042

· 1043
1044
1045

..•.. ... •. 1046

.•.....••.... 1047
·. 1048
104~
1050
1051
1052
1053
1054
1055
1056
1057
1058
105~
1060
1061
1062
1063
1064

·· 1065
.•...... 1066

) 1067
1068
106~
1070

.... .. . 1071
•.. .••...•• 1072
... ··· 1073

·· 1074
1075

·. 1076
.. · •• 1077

• 1078 ..) f:~:
.· 1081
·. 1082

1083
·· 1084
· 1085

1086
1087
1088
108~
10~0
10~1
10~2
1093
10~4
10~5
1096
10~7
10~8
1099
1100
1101
1102
1103
1104
1105

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

0,126,~6,124,6,102
60,0,0,60,~6,124
102,102,60,0,0,126
6,12,24,48,48,0
0,60,102,60,102,102
60,0,0,60,102,62
6,12,56,0,0,0
24,24,0,24,24,0
0,0,24,24,0,24
24,48,6,12,24,48
24,12,6,0,0,0
126,0,0,126,0,0
~6,48,24,12,24,48
~6,0,0,60,102,12
24,0,24,0,0,60
102,110,110,~6,62,0
0,24,60,102,102,126
102,0,0,124,102,124
102,102,124,0,0,60
102,~6,~6,102,60,0
0,120,108,102,102,108
120,0,0,126,~6,124
~6,~6,126,0,0,126
~6,124,~6,~6,~6,0
0,62,~6,~6,110,102
62,0,0,102,102,126
102,102,102,0,0,126
24,24,24,24,126,0
0,6,6,6,6,102
60,0,0,102,108,120
120,108,102,0,0,~6
~6,~6,96,~6,126,0
0,99,11~,127,107,~~
~~,0,0,102,118,126
126,110,102,0,0,60
102,102,102,102,60,0
0,124,102,102,124,~6
~6,0,0,60,102,102
102,108,54,0,0,124
102,102,124,108,102,0
0,60,96,60,6,6
60,0,0,126,24,24
24,24,24,0,0,102
102,102,102,102,126,0
0,102,102,102,102,60
24,0,0,~~,9~,107
127,11~,~~,0,0,102
102,60,60,102,102,0
0,102,102,60,24,24
24,0,0,126,12,24
48,96,126,0,0,30
24,24,24,24,30,0
0,64,96,48,24,12
6,0,0,120,24,24
24,24,120,0,0,8
28,54,9~,0,0,0
0,0,0,0,0,0
255,0,127,1~2,135,132
132,135,1~2,127,255,0
11~,37,38,37,0,255
254,3,65,65,65,113
3,254,24,24,24,248
248,0,0,0,24,24
24,248,248,24,24,24
0,0,0,248,248,24
24,24,127,192,135,133
133,135,1~2,127,255,0
11~,82,114,66,0,255
255,0,~3,85,85,~3
0,255,254,3,33,161
~7,33,3,254,127,1~2
135,132,12~,135,1~2,127
255,0,116,100,68,11~
0,255,255,0,11~,100
68,11~,0,255,254,3
113,33,33,33,3,254
127,1~2,135,134,132,135
192,127,255,0,119,68

20 ANALOG COMPUTING

I ~mm~
I m~m~
ill U~: g~~~

1121 DATA
1122 DATA
1123 DATA
1124 DATA
1125 DATA
1126 DATA
1127 DATA
1128 DATA
112~ DATA
1130 DATA

iii llH gH~
II Ui~ g~~~

. AJ~i 1136 DATA

)i·l; tg~ g~~~

I~mm~
Jl.W 11.43 DATA
Btl 1144 DATA

i~OC 1145 DATA
1146 DATA
1147 DATA
1148 DATA
114~ DATA
1150 DATA
1151 DATA
1152 DATA
1153 DATA
1154 DATA
1155 DATA
1156 DATA .• '11; •.. 1157 DATA

iiI U~~ g~~~
Ti; 1160 DATA
gj.1 1161 DATA
JD 1162 DATA

~I U~~ g~~~
YP 1165 DATA

II. U~~ g~~~
I Hnm~
•

20,119,0,255,255,0
3~,85,11~,84,0,255
0,0,0,31,31,24
24,24,0,0,0,255
255,0,0,0,254,3
113,~7,65,113,3,254
0,0,60,126,126,126
60,0,0,0,0,0
255,255,255,255,127,1~2
131,130,128,131,1~2,127
255,0,185,18,147,146
0,255,255,0,5~,16~
177,16~,0,255,254,3
12~,1,1,1,3,254
24,24,24,31,31,0
0,0,120,~6,120,~6
126,24,30,0,0,24
60,126,24,24,24,0
0,24,24,24,126,60
24,0,0,24,48,126
48,24,0,0,0,24
12,126,12,24,0,0
0,24,60,126,126,60
24,0,0,0,60,6
62 ,1 02,62,0,0,~6
~6,124,102,102,124,0
0,0,60,~6,~6,~6
60,0,0,6,6,62
102,102,62,0,0,0
60,102,126,96,60,0
0,14,24,62,24,24
24,0,0,0,62,102
102,62,6,124,0,~6
~6,124,102,102,102,0
0,24,0,56,24,24
60,0,0,6,0,6
6,6,6,60,0,96
~6,108,120,108,102,0
0,56,24,24,24,24
60,0,0,0,102,127
127,107,9~,0,0,0
124,102,102,102,102,0
0,0,60,102,102,102
60,0,0,0,124,102
102,124,~6,~6,0,0
62,102,102,62,6,6
0,0,124,102,96,~6
~6,0,0,0,62,~6
60,6,124,0,0,24
126,24,24,24,14,0
0,0,102,102,102,102
62,0,0,0,102,102
102,60,24,0,0,0
9~,107,127,62,54,0
0,0,102,60,24,60
102,0,0,0,102,102
102,62,12,120,0,0
126,12,24,48,126,0
0,24,60,126,126,24
60,0,24,24,24,24
24,24,24,24,0,126
120,124,110,102,6,0
8,24,56,120,56,24
8,0,16,24,28,30
28,24,16,0,0,0
-9~~

Listing 3.
BASIC listing.

Create-a-base
(c) ~'85 C.F.Fogart~ III
uersion 3.~ Nov. 02 ~'85

ATARI 8-BIT EXTRA

itUi 10 POKE 1664,104: POKE 1665,64 : POKE 566
;:. :'::c';:':' ,128: POKE 567 , 6

'8 ig~ ~g~0Ill~I~:t01"1
R~ 110 TRAP ERRORHANDLER
PI> 115 KBIP$="_":KBIP$(RECSIZE)="_":KBIP$

P (l+(RECSIZE}l))=KBIP$:DISKIP$=KBIP$:fI
..•••.• ELD=NUMfIELDS

.......... 120 X=USR (MOVEMEM, ADR (KSCRN$) , SCREEN, ~
.•••• 60, CONVERT)

• .~ 125 GOSUB SELECT:GOSUB 200
'. ···· .• ·.·. 130 KBIP$ (fX (fIELD-1) +1 , fX (fIELD)) =TMP
t» 2$
· . .•• 135 GOT 0,.,.:::;1,;::;2,.r.5--=1Fr.'I
· •..• 140 REM I.) il"1:0 lUI]
' .. ···. 145 If START -640 THEN POINT U2, SECT, CH

< AR:GOTO 155
l 150 If 10=12 THEN NOTE U2,SECT,CHAR
' 155 ICBLH=INT(RECSIZE/256):ICBLL=RECSI

.....•. ZE-ICBLH*256
; .. , 160 POKE 866,ICCOM:POKE 872,ICBLL:POKE w+ 873,ICBLH:POKE 868,ICBAL:POKE 86~,ICB
........ \\ •. AH
(i 165 X=USR(CIO,32):If PEEK(867) =136 THE
....•.• N 180

. 170 If PEEK(867)}3 THEN POP :GOTO ERRO
.··f) RHANDLER

.····. 175 RETURN
j 180 SOUND 0,50,10,10
'; 185 X=USR(MOVEMEM,ADR(PROMPT$(161)),SC

REEN+720,40,CONVERT):CLOSE U2:0K=0
1~0 fOR X=l TO 50:NEXT X:SOUND 0,0,0,0
:fOR X=l TO 200:NEXT X
1~5 POP :GOTO PROCESS
200 REM [fjOiAiJ;-4;IO'l
205 TEMP$-""
210 POKE KEYBD,255:X=USR(SCANKB)
215 ON X GOSUB KEYPRESS, OPTION, SELECT,
START
220 GOTO 210
225 REM IT.I :tr.;Jrr.·.r..:Jl'":'iir::J;r:l;J;r:I;J
230 GET Ul,IN:lf IN=27 THEN POP :POP :
CLOSE U2:0K=0:GOTO PROCESS
235 X=USR(PARSE,IN,TYPE):ON X GOTO BAC
KSPACE,EOL,LEGALIP
240 If IN=l~ THEN GOSUB 1325
245 If IN=16 THEN GOSUB 650:REM SCREEN

DUMP
250 If NOT (IN=4 AND START=640) THEN
280
255 KBIP$="i ": KBIP$ CRECSIZEl ="i II : KBIP$
(l+(RECSIZE}l))=KBIP$
260 SOUND 0,100,10,10

j. , 265 X=USR(MOVEMEM,ADRCPROMPT$(201)),SC
.••• \ REEN+720,40, CONVERTl
·.· ... • ·· 270 fOR X=1 TO 50:NEXT X:SOUNI> 0,0,0,0
}(:fOR X=l TO 200:NEXT X

~ii :~~~,}ti~;~~t~~OKE 6~4, 0: RETURN
. 2~0 TEMP-LEN(TEMP$):If TEMP(2 THEN TEM

p$="I:GOTO PRTTOSCREEN
2~5 TEMP$=TEMP$(l,TEMP-l):GOTO PRTTOSC
REEN
300 REM 00l]

• ' .. '. 305 POP : GOTO PRTTOSCREEN
. '.' 310 REM IOl1'illQlf.lil:l

; 315 TEMP-LEN(TEMP$):If TEMP=MAX THEN R
• .. n ETURN
')] 320 TEMP$CTEMP+l)=CHR$(IN)

.' .. ' •.•. g~ ~~~2~~·h~'t;f,!I!L!::iITEMP$) (MAX THEN
Y TMP2$ (LEN CTMP2$) + I, MAX) =UNDERLINE$
\ 335 X=USR(MOVEMEM,ADR(TMP2$),SCREEN+LO
'.' C, MAX, CONVERTl

340 RETURN
. 345 REM r..\.1r:,04 r:: .. ""It""'i
350 X=USR(MOVEMEM,ADR(Off$),PMBASE,256

ATARI a-BIT EXTRA

)

355 fIELD=fIELD+l:If fIELD}NUMfIELDS T
HEN fIELD=l
360 X=USRCMOVEMEM,PLAYER,PMBASE+40+fIE
LD*8 , 8):POKE 53277,3
365 LOC=4~+fIELD*40:TEHP$="1
370 HAX=fLCfIELDl

.... 375 RETURN
' •..... ' 380 R E H [;-:'1];-:':.11""11:":(""'1]"': I
.•..•.•. 385 CLOSE U2: OK=O
'l 3~0 OX=OX+l:If OX}4 THEN OX=O

',i 3~5 X=USR(MOVEMEM,ADR(OPTABLE$(OX*6+1)
...........•) , ADR (KSCRN$ (767) 1,6) : DSCRN$=KSCRN$
.i 400 X=USR (MOVEMEM, ADR (KSCRN$), SCREEN, ~

> 60, CONVERT)
< 405 fIELD=NUHfIELDS:GOSUB SELECT

410 If OX=4 THEN X=USR(MOVEMEM,WINDOW,
H./ SCREEN+680, 280, CONVERT) : OK=l

.. 420 RETURN
• 425 REM I:'Ilila]

430 POP :POP :If OK THEN 455
. 435 IO=4:If OX=O THEN IO=~

.. , 440 If OX=2 THEN 10=12
..•.. ;. 445 CLOSE U2: OPEN U2, 10, O,"D1: DATABASE

:,:: :: .~.:::~ I I

..... 450 OK=1
455 ON OX GOTO 4~5,4~5 , 4~5,~55

. '. '" 460 REM rJ}E
.. 465 ICCO M=11:ICBAH=INT(ADRCKBIP$)/256)
H :ICBAL=ADRCKBIP$)-ICBAH*256:If KBIP$O

« DISKIP$ THEN 480
, 470 SOUND O,200,10,10:X=USRCMOVEMEM,AD
\. R CPROMPT$ (241)), SCREEN+720,40, CONVERT)

475 fOR X=1 TO 50:NEXT X:SOUNI> 0,0,0,0
:GOTO 485

.•. '" 480 GOSUB 140
.\ . 485 OK=O: CLOSE U2: GOTO PROCESS

.... 4~0 REM 1-1 Ofil illi i .. 1I:J·Ii" •• iI04:J 1]ili
. 4~5 ICCOM-7:ICBAH-INTCADRCDISKIP$)/256

):ICBAL=ADRCDISKIP$)-ICBAH*256
500 GOSUB 140
505 REM [1'I1]i!:liNil
510 If DISKIP$ (1,1) = "i II THEN 500
515 NG=O:AMATCH=l
520 fOR 1=0 TO NUMfIELDS-1:TEMP$=KBIP$
CfX CD +1, fX CI+1)) : If TEMP$ (1,1) ="_" TH
EN 545
525 If LEN(TEMP$)=1 THEN PTR=l:GOTO 53
5
530 PTR=USRCSTRIP,ADRCTEMP$),fLCI+11-1
):If PEEK(764)=28 THEN POP :GOTO PROCE
SS
535 fOR J=1 TO fLCI+1)-PTR+1:NG=USRCMA
TCH,ADRCDISKIP$(fXCI)+J)),AI>R(TEMP$),P
TR):If NG=O THEN J=fL(I+1)+1
540 NEXT J:lf NG THEN I=NUMfIELDS:AMAT
CH=O
545 NEXT I:1f NOT AMATCH THEN 500
550 REM (i-iriUliil
555 X=USRCMOVEMEH,SCREEN,ADRCTSCRN$),~
60):REH SAVE SCREEN
560 fOR 1=0 TO NUMf1ELDS-1:X=I*40:DSCR
N$(~0+X,8~+X+fL(I+1))=DISKIP$CfX(I)+1,
fX CI+1)) : NEXT I
565 X=USR(MOVEMEM,ADR(DSCRN$),SCREEN,~
60 , CONVERT)
570 If OX=2 THEN 605:REM UPDATE-CONT
575 If OX=3 THEN GOSUB 650:GOTO 4~5:RE
M REPORT-CONT
580 X=USRCMOVEHEH,ADRCPROHPT$),SCREEN+
720,40,CONVERT):REM CONTY/N
585 POKE 702,64:POKE 6~4,O:GET Ul,IN
5~0 If 1N=ASCCIY") THEN X=USRCMOVEMEM,
ADRCTSCRN$),SCREEN,~60):GOTO 4~5
5~5 If IN=16 THEN IN=O:GOSUB 650:GOTO
585
600 OK=O:CLOSE U2:GOTO PROCESS
605 REM 1I1:;j,Ii ... ;C;I'II]:U

ANALOG COMPUTING 21

~

~ Create-a-base continued

.' •. 610 X=USR (MOVEMEM, tlDR (PROMPTS (41), SCR
EEN+720,40,CONVERT):REM CHANGE IT V/N
615 POKE 702,64:POKE 6~4,O:GET nl,IN
620 If INOASC("V") THEN 580
625 REM (!fiti1:W •• i
630 X=USR(MOVEMEM,tlDR(PROMPT$(81»,SCR
EEN+720,40,CONVERT):REM CHANGE OR CTRL
ID
635 TIP$=KBIP$:KBIP$=DISKIP$:fIELD=NUM
fIELDS:START=640:0PTION=340:GOTO PROCE
SS+20
640 POP :POP :ICCOM=ll:ICBAH=INT(ADR(K
BIP$)/256):ICBAL=ADR(KBIP$)-ICBAH*256:
GOSUB 140:START=425:KBIP$=TIP$
645 OPTION=385:GOTO 580
650 REM Ijl .. :J']jUjll;I']:ii
655 TRAP 6~0
660 CLOSE n7:0PEN n7,8,O,"P:"
665 fOR 1=0 TO NUMfIELDS-l:If PEEK(KEV
BD)=28 THEN POP :GOTO PROCESS
670 If IN=16 THEN? n7;SCHEMA$(145+I*8
,152+1*8) ; II} "; KBIP$ (fX (1) + 1, fX U+ 1) : G
OTO 680
675 ? n7;SCHEMA$(145+I*8,152+I*8) ;"}";
DISKIP$(FX(I)+l,fX(I+l»
680 NEXT I:? n7:CLOSE n7 : TRAP ERRORHAN
DLER
685 RETURN
6 ~ 0 REM "'I :Jr.jJ"' : r.: .. "j.-" .. "jlr.jr.t,r.1] jl
6~5 X=USR(MOVEMEM,ADR(PROMPT$(121»,SC
REEN+720 40,CONVERT)
700 REM 1~1'ljt']jliri':1111I"jl
705 SH$-"

II Error n occurred on Ii
ne n I"
710 SH$(81)="1

II Press I Ti to Rec over
I"

715 TEMP=PEEK(1~5):TEMP$=STR$(TEMP):SH
$(50,4~+LEN(TEMP$»=TEMP$
720 TEMP=PEEK(186)+PEEK(187)*256:TEMP$
=STRS(TEMP):SHS(72,71+LEN(TEMP$»=TEMP
$
725 X=USR(MOVEMEM,ADR (SH$),SCREEN+760,

~~ ~~:,~~N~~~~~5327~)<}6 THEN 730
LOl 735 CLOSE n2:CLOSE n7:0K=0
O~ 740 GOTO PROCESS au 745 REM pUlUitllllifH
FiO j~gI~~~P~~~~~f~~~~$~~~~~~~cg~~~;~~~(2~
E~; ~~~ g~~ ~~~~~)(4 ~~:~~~CRN$ (960) ,MATCH$ (

42),MOVEMEM$(118),Off$(256),OPTABLE$(3
0) , PARSE$ (57) ,PLAVER$ (8), PROMPTS (280)

"~ 765 DIM SCANKB$(35) ,SCHEMA$(384) ,SECTO
RIO$(31),STRIP$(30),SH$(160),TEMP$(40)
TIP$(4~6),TMP2$(40),TSCRN$(~60)

MGr 770 DIM UNDERLINES (40) ,HINDOH$ (280)
EM 775 BLANK$=" I:BLANKS(40) =" " :BLANK$(2

)=BLANK$:CIO$=lhhhI:lLV~"
785 DISKIP$="_" :DISKIP$ (4 ~6) = "_":DISKI
P$(2)=DISKIPS
810 OfF$=I.I:Off$(256) =I ." :0Ff$(2)=Off
$
8 1 5 OP TA BLE$="t;"t!r: j =tll1t'l;1 II'!tOO;tH!liiJ
lli.@ 1Q"
825 PARSE$(25,25)=CHR$(155) :PARSE$(44,
44)=CHR$(34)
830 PLAVER$=CHR$(255):PLAVER$(8)=CHR$(
255):PLAVER$(2)=PLAYER$
835 PROMPT$=" 1 lot Cont i nue? (Y
IN) xx II xx Change it?
(YIN) xx ."
840 PROMPTS (81) =" r-* Make changes or •
~I&D to delete. ~ 1 xx Printer
not onI ine xx I"
845 PROMPTS (161) =" 1 xxx End-o f

22 ANALOG COMPUTING

-file xxx 1 ~I------------~x~x DE
LETED. xx I"
846 PROMPTS (241) =" 1 xxx EMpty
Rec ord X)(X 1 II
865 UNDERLINE$="_":UNDERLINE$(40)="_":
UNDERLINE$(2)=UNDERLINE$
870 HIN D 0 H$= II 1"'1 ;1;:=======::;-;::==

-II I """--II

875 HINDOH$ (81) ~1I11 Press I Ti to II
Press /\..4. to use I create a NEH -or
- the CURRENT II

880 HINDOH$ (161) =" I database. II
database. I ~I--------------~

I .1"
885 HINDOH$(241)="LI -.;....--------
------------------~' ..
8~0 CIO=ADR(CIO$):CONVERT=ADR(CONVERT$
):MATCH=ADR(MATCH$):MOVEMEM=ADR(MOVEME
M$):PARSE=ADR(PARSE$)
8~5 PLAYER=ADRCPLAVER$):SCANKB=ADR(SCA
NKB$) :SECTORIO=ADR(SECTORIO$):STRIP=AD
RCSTRIP$):HINDOH=ADR(HINDOH$)
~OO KEVBD=764:KEYPRESS=230:BACKSPACE=2
~0:EOL=305:LEGALIP=315:PROCESS=105:PRT
TOSCREEN=330
~05 OPTION=380:SELECT=350:START=425:ER
RORHANDLER=705 ,
no REM ~O.lIlii'"V4i.:~
~15 PM=PEEK(106) 8:CHSET-PM*256:POKE 1
06,PM:GRAPHICS O:POKE 756,PM
~20 CLOSE nl:0PEN nl,4,O,"D:CHSET.PMG"
~25 POKE 853,PM:POKE 852,O:POKE 857,6:
POKE 856,O:POKE 850,7:X=USR(CIO,16)
~30 CLOSE nl:0PEN nl,4,O,"K:"
~35 PMBASE=CHSET+l024:POKE 704,212:POK
E 55~,62:POKE 623,l:POKE 53256,3:POKE
5427~,PM:POKE 53248,48

BH ~40 X=USR(MOVEMEM,ADR(DLI$),1536,24):D
L=PEEK(560)+256x PEEKC561):POKE DL+6,13
O:POKE DL+22,130:POKE 512,0

'HN ~45 POKE 513,6: POKE 54286,1~2: POKE 710

~.~ ' 9~~6REM (~jl:(iU.;I']I13
IU ~55 GOSUB 1225:X-USR(MOVEMEM,tlDR(KSCRN

$),SCREEN1~6o,CONVERT) :POKE 53277,0
BM ~60 SH$=" Insert database diskette i

nto I I Disk Drive nl,
I" HT ~65 SH$ (81) ="1

II and press I ri to c
ontinue... I"

HT ~70 X=USRCMOVEMEM,ADR(SH$),SCREEN+760,
160, CONVERT>

OH ~75 If PEEKC5327~)<}6 THEN ~75
L~ ~80 TRAP 1025
tlO ~85 SCHEMA$= :SCHEMtI$(384)= :SCHEH

A$(2)=SCHEMA$
SH ~~o REM r..ljlr.;O(;';ilr.;'.~:1r.lilTir-;I"I"";~rJ
XZ ~~5 fOR 1-0 TO 2:X-USR(SECTORIO,I+l,82

,ADR(SCHEMA$(I*128+1») :NEXT I
EE 1000 If S C H E MA $ (52, 64) 0 .. (r.,Ii;';'iIt':"=t""· 1;;("'A~· = ;y:"". 1'''''1''''4

.. THEN 1025
UP 1005 IF NOT RESTART THEN RESTART=l:GO

SUB 1285:0X=5:GOSUB OPTION:GOTO PROCES
' S

ZIJ 1010 SH$="I This is a Create-a-base di
skette. I"
1015 SH$(41)="1 The database naMe is _

.1"
-1-0-2-0--X---U~S~R~(-M~O~VEMEM,ADR(SCHEMA$(~2»,AD
R(SH$(64» 15):GOTO 1030
1025 SHS="! Not a Create-a-base dis
kette. II

I"
1030 SH$ (81) ="1

II forMat it?
(V/N) I"

ATARI 8-81T EXTRA

1035 X=USRCMOVEMEM,ADRCSWS),SCREEN+760
,160,CONVERT):GET Ul,IN:IF IN=27 AND R
ESTART THEN GOSUB 1285:GOTO PROCESS
1040 IF IN <> ASC C"V") THEN ~60
1045 CLOSE U2:XIO 254,U2,O,O,IDl:*.*"
1055 SCHEMAS(75)="C.F.Fogart!J III 012
345678~ABCDE16001122334455667788~~AABB
CCDDEEFF4~6."
1060 SCHEMAS (384) =".": SCHEMAS (145) =SCH
EMAS (144)
1065 SWS="I Enter !Jour database naMe

II CUp to 15 Characters) __
---------:------1"
1070 swS (81) =" I

II
I"

1075 X=USRCMOVEMEM,ADRCSWS),SCREEN+760
,160, CONVERT)
1080 NUM=0:RECSIZE=0:OPTION=340:SELECT
=OPTION:START=OPTION:TVPE=ASCC"A") :MAX
=15:LOC=824:GOSUB 200
1085 SCHEMASC~2,106)=TMP2S
10~0 SWS="I Enter a label:

II (Up to 8 characters)
--_. I"
10~5 SWS (81) =" I

II
I"

1100 X=USRCMOVEMEM,ADRCSWS),SCREEN+760
,160, CONVERT)
1105 TVPE=ASCC I A"):MAX=8:LOC=823:GOSUB

200:TEMP=LENCTEMPS)
1110 IF TEMP{MAX THEN TEMPS(TEMP+l,MAX
)=BLANKS
1115 SCHEMAS(145+NUM*8,144+(NUM+l)*8)=
TEMPS:NUM=NUM+l:TEMPS=STRS(NUM)
1120 IF LEN(TEMPS)=l THEN TEMPS(2)=TEM
PS: TEMPS (1, 1) ="0"
1125 SCHEMASCI07,108)=TEMPS
1130 swS="1 Enter size of field for

__ .11 (MaxiMuM size is 31
bytes) I"

1135 SWS(27,41)=TMP2S:X=USR(MOVEMEM,AD
RCSWS),SCREEN+760,160,CONVERT)
1140 TVPE=ASC(IN"):LOC=7~6:MAX=2:GOSUB

200:TRAP 1130:TEMP=VAL(TEMPS):IF TEMP
>31 OR TEMP{l THEN TEMPS=131":TEMP=31
1145 TRAP ~55:RECSIZE=RECSIZE+TEMP:IF
TEMP{10 THEN TMP2S=TEMPS:TEMPS=10":TEM
PS(2)=TMP2S
1150 TEMP=10~+(NUM-l)*2:SCHEMAS(TEMP,T
EMP+1) =TEMPS

. 1155 TEMPS=STRS(RECSIZE)
' 1160 IF LEN(TEMPS){3 THEN TMP2S=TEMPS:

\\ TEMP$="O": TEMPS (2) =TMP2S: GOTO 1160
. , 1165 SCHEMA$(141,143)=TEMP$

1170 GOSUB 1285:IF NUM=16 THEN 1200
1175 SW$="I Press ~. to define anoth

•• "'.'. er fie I d II -OR-
I"

1180 SWS(81)="1 Press I T""I after defin
ing !Jour LAST II field (Ma

. Xil<lUM 16 fields).l"
\ 1185 X=USR(MOVEMEM,ADR(SW$),SCREEN+760
. ,160, CONVERT)
11~0 IF PEEK(5327~)=3 THEN 10~0
11~5 IF PEEK(5327~){>6 THEN 11~0
1200 REM 1:I :U'_1>J004MtJ
1205 FOR 1-0 TO 2:X-USRCSECTOR10,I+l,8

b~) r2~~R~cg~~M~~~5;~~8~~~~~~~~~I:~ATABASE
tu;; ": CLOSE U2
UQ1 12150PT10N=380:SELECT=350:START=425:R
.i:i' ESTART=O: TVPE=ASC ("A")
i4iti 1220 GOTO ~85
,f; U : 12 25 REM <-::1 4"".;Jr.jr.Cj!-"':J;r:>;jr.>Jr.: t"': I
9 W) 1230 K';)CRKS-" Create-a-base (c) 1~85 C

..... . . F. Fogart!J III II

ATARI 8-BIT EXTRA

•

1235 K SCRNS (41) ="_---:-::-___ -"'-___ __
II

1240 KSCRNS(720)=" ":KSCRNS(82)=KSCRNS
(81)
1245 KSCRNS (721) =" ,.., ----------__________ ... , II

1250 KSCRNS(761)="I~.
• ~ I&S-Sort db. I"

1255 KSCRNS (801) ="1 ... ·-
• ~ I&P-Pr i ntout. I"

1260 KSCRNS (841) =" II T""I
ing.{DATABASE NAME} I"
1265 KSCRNS (881) =" I 'I"'! ~
on. (II
1270 KSCRNS (~21) -II' __________ ..J'II

[ijilifiG Mode.

Field to EDIT.

When DONE Edit

CANCEL Operati

1275 SCREEN=PEEK(88)+256*PEEK(8~)
1280 RETURN
1285 GOSUB 1225:NUMFIELDS=VAL(SCHEMAS(
107,108)) : FL (0) =0: FX (0) =0
12~0 FOR 1=0 TO NUMFIELDS-l
12~5 X=I*40:KSCRN$(81+K,88+X)=SCHEMAS(
145+1*8,152+1*8) :KSCRN$(8~+X,8~+X)=I>"
1300 IN=10~+I*2:IN=VAL(SCHEMAS(IN IN+l
» :KSCRNS(~0+X,8~+X+IN)=UNDERLINE~:FL(
I+l)=1N:FX(I+l)=FX(I)+1N
1305 NEXT I:KSCRNS(~05,~1~)=SCHEMAS(~2
,106) :DSCRNS=KSCRNS:TSCRNS=KSCRNS
1310 RECS1ZE=VAL(SCHEMAS(141 1(3»
1315 X=USR(MOVEMEM,ADR(KSCRN~),SCREEN,
~60, CONVERT)
1320 RETURN
1325 REM ~
1330 swS="1 Insert Create-a-base Maste
r disk and II Press I T""I to SORT datab
ase. I"
1335 SW$ (81) =" I - OR -

I I Press ~. to use CU
RRENT database. I"
1340 X=USR(MOVEMEM,ADR(SWS),SCREEN+760

, .. ,160, CONVERT)
. " 1345 IF PEEK (5327~)::3 THEN RETURN

· 1350 IF PEEK(5327~){>6 THEN 1345
.. '. 1355 POP : RUN liD: SORT"

Listing 4.
BASIC listing.

1 REM ~~.n~~~~~~~~

2 REM Mj:H~lHt1IM~tK)tj~ 3 REM 0:.1
4 REM
100 POKE 106,PEEK(1061+8:POKE 53277,0
105 GOSUB 475:GOTO 215
110 REM '~)"1:.Ull
115 ICBAH-1NT(ICBAL/K2561:ICBAL=ICBAL
ICBAH*K256:POKE 850,ICCOM:POKE 852,ICB
AL : POKE 853,ICBAH:POKE 856,ICBLL
120 POKE 857,ICBLH:X=USR(CIO,K161:IF P
EEK(851»K3 AND PEEK(851){>136 THEN ST
OP
125 RETURN
130 REM ITIEml
135 ? U6 : ? U6i"llireorg in progress ... ":
CLOSE Ul:0PEN Ul,K12,KO,IDl:DATABASE":
PTR=LENGTH+Kl:PTR2=FX+K1:EOF=CTR:K=Kl
140 S=ASC(BUFRS(PTR»+ASC(BUFRS(PTR+Kl
»*K256:C=ASC(BUFRS(PTR+K2»:POINT UK1
,S,C:ICCOM=K7:ICBAL=TEMP:GOSUB 115
145 POSITION KO,4:? UK6i I COUNTDOWN ... "
iEOfjll II

150 IF BUFRS(PTR,PTR+K2)=BUFRS(PTR2,PT
R2+K2) THEN 185
155 S2=ASC(BUFRS(PTR2»+ASC(BUFRS(PTR2
+Kl»*256:C2=ASC(BUFRSCPTR2+2»:POINT

ANALOG COMPUTING 23

r--
~ Create-a-base continued

Ul,S2,C2:ICCOM=K7:ICBAL=TMP2:GOSUB 115
160 IF BUFR$ C:PTR-Kl, PTR-Kl) =":1" THEN 1
85
165 POINT UK1,S2,C2:ICCOM=Kl1:ICBAL=TE
MP: GOSUB 11.5: BUFR$ CPTR-Kl, PTR-Kll =":1":
EOF=EOF-l
170 I=USRCSEARCH,ADRCBUFR$),ADRCBUFR$C
PTR2»,LENGTH):PTR=I*CLENGTH+K3)-K2:TE
MP$=TMP2$:PTR2=FX+Kl+CI-Kl)*K3
175 GOTO 145
180 REM l""j';::;4rT: .;1 •• ----:,.-:1 ft:n:Ti'"'.rj ... Z jl· ... :74""" •• IIIE":>',..jl'"";I r::.--=~:n:"I:"u:r.t.....,~
185 OK=KO:IF BUFR$CPTR-Kl,PTR-Kl)\}'~r'

THEN BUFR$ CPTR-Kl, PTR-Kll =":1": EOF=EOF
-Kl
1~0 FOR I=K TO CTR:J=I*CLENGTH+K3)-K2:
IF BUFR$ CJ-Kl, J-Kll 0":1" THEN PTR=J: PT
R2=FX+Kl+CI-Kl)*K3:K=I:I=CTR+Kl:0K=Kl
1~5 NEXT I:IF OK THEN 140
200 CLOSE UKl
205 FX=41:GOSUB 440:TRAP 205:RUN "Dl:C
REATEAB.ASE"
210 END
215 REM (!;i!1.1IJil.j4~""
220 FX=Kl:GOSUB 440:IO=82:GOSUB 425:IF

SCHEMA$ C52, 64) 0 "'l'JiIIiUUitQottii' THEN
? CHR$(253) :GOTO 215
225 J=VAL CSCHEMA$ (107,108» :? UK6i "l'iso
rt on which field?"
230 FOR I=KO TO J-Kl:? UK6iIi" "iSCHEM
A$C145+I*8,152+I*8):NEXT I
235 TRAP 235:? "What is !lour choice"i:
INPUT K:TRAP 40000:IF K}J-Kl OR K<O TH
EN ? CHR$(253):GOTO 235
240 TOO=KO:FOR I=KO TO K:TEMP=10~+I*K2
:LENGTH=VALCSCHEMA$CTEMP,TEMP+Kl»:TOO
=TOO+LENGTH:NEXT I
245 FROM=TOO-LENGTH+Kl:RECSIZE=VALCSCH
EMA$ (141,143»
250 DIM TEMP$CRECSIZE),TMP2$CRECSIZE):
ICBLH=INTCRECSIZE/K256):ICBLL=RECSIZE
ICBLH*K256
255 TEMP$= : TEMP$ CRECSIZEl = : TEMP$
(K2)=TEMP$:TMP2$=TEMP$:TEMP=ADRCTEMP$)
:TMP2=ADR(TMP2$)
260 I=INTCCFRECKOl-5121/RECSIZE) :BUFSI
ZE=I*RECSIZE:DIM BUFR$CBUFSIZE):BUFR$=
'''': K=KO : EOF=KO
265 REM [1'J:'J:P):U.1:j
270 CLOSE UK1:0PEN UK1,K12,KO,"Dl:DATA
BASE":? UK6i"I'iCondensing database":CTR
=KO
275 ICCOM=K7:ICBAL=TEMP:GOSUB 115:IF P
EEK(851)=136 THEN CLOSE UK1:EOF=Kl:GOT
o 300
280 IF TEMP$ CK1, Kll ="i" THEN 275
285 BUFR$CLEN(BUFR$)+Kl)=TEMP$:CTR=CTR
+Kl:P05ITION KO,K3:? UK6i"READING RECO
RD U"iCTR
2~0 IF LEN(BUFR$)=BUFSIZE THEN K=K+l:G
OSUB 3GG
2~5 GOTO 275
300 REM Irr: r.1 iJj';';,,,".r.:.---:r.1 ~:n:"'."."'tJ-.:· ""tJ : ""'; [iJ "''''';jr:::l:j
305 ? UK6:? UK6i .. go(1i[Jnfl rrncmr!!ls ... ": X
=USR(ADR(SORT$),ADR(BUFR$),LENCBUFR$)I
RECSIZE,RECSIZE,LENGTH,FROMl
310 FX=21:IF LENCBUFR$)=KO THEN GOSUB
450:GOTO 350
315 IF FORMATTED THEN GOSUB 445:GOTO 3
35
320 ? UK6!"I'i»}» warning! ««<r:m:wn
G1tWt,jill:hin:I!»}» «« <"
325 GOSUB 450:? UK6i"FORMATTING ... ":CL
OSE UK2:XIO 254,UK2,KG,KO,IDl:*.*":LET

FORMATTED=1:IO=87:GOSUB 425
330 CLOSE UK2:0PEN UK2,8,KO,"Dl:0UTPUT
II

335 ? UK6i"l'iwriting new database":IF
NOT EOF THEN? UK6i"BLOCK U"iK

24 ANALOG COMPUTING

•

340 ICBAL=ADR(BUFR$):ICBAH=INTCICBAL/K
256):ICBAL=ICBAL-ICBAH*K256:POKE 866,K
11:POKE 868,ICBAL:POKE 86~,ICBAH
345 POKE 873(INT(LENCBUFR$)/K256):POKE

872,LEN(BUFR$)-PEEKC873)*K256:X=USRCC
IO,32):IF PEEK(867)}Kl THEN STOP
350 BUFR$= :IF NOT EOF THEN FX=Kl:GO
TO 445
355 CLOSE UK2:XIO 32,UK2,KO,KO,"Dl:0UT
PUT, DATABASE"
360 IF NOT K THEN 200
365 REM lil;(jl •• :!1:'U:U~i'"1
370 FX=CTR*CLENGTH+K3) :J=CTR*K3:IF BUF
SIZE}=FX+J THEN 385
375 LENGTH=LENGTH-Kl:TOO=TOO-Kl:IF NO
T LENGTH THEN STOP
380 GOTO 37G
385 PTR=Kl:PTR2=FX+Kl:8UFR$=".":BUFR$(
FX+J)= :BUFR$CK2)=BUFR$:CLOSE UK1:0P
EN UK1,K12,KO,"Dl:DATABASE"
3~0 ? UK6i"l'ireading pOinters ... "
3~5 FOR I=Kl TO CTR:POSITION KO,K3:? U
K6i"RECORDS TO GO iCTR-li" II

400 NOTE UKl S,C:X=INTCS/K256):P$=CHR$
CS-X*K256):P!CK2)=CHR$CX):P$CK3)=CHR$C
Cl:ICCOM=K7:ICBAL=TEMP:GOSUB 115
405 BUFR$CPTR,PTR+LENGTH-Kl)=TEMP$(FRO
M,TOO):BUFR$CPTR+LENGTH,PTR+LENGTH+K2)
=P$:BUFR$CPTR2,PTR2+K2)=P$
410 PTR=PTR+LENGTH+K3:PTR2=PTR2+K3:NEX
T I:? UK6:? UK6i"~o~ttJnm pmimtrnr~ . •. "
415 X=USRCADRCSORT$),ADR(BUFR$),FX/CLE
NGTH+K3),LENGTH+K3,LENGTH,Kl)
420 GOTO 130
4 25 REM "'I il'=:;(:";;j'-=.-7 ... "":"'1 i'""""',""" "".---;X~I'J~:r~~~;-rj1-1
430 FOR I-KG TO K2:X-USRCADR(SECTORIO$
),I+Kl,IO,ADRCSCHEMA$(I*128+Kl»):NEXT

I
435 RETURN
4 4 0 REM .;-,;. 4r<-: ~"";jr:;~r.il"'.~.)"'f;r:l;j""3
445 GRAPHICS Kl:POKE 710,KO
450 POSITION 7,5:? UK6i"insert .. :? UK6:
? UK6iTABLE$CFX,FX+l~) :? UK6i"
disk":? UK6:? UK6
455 ? UK6i"into disk drive Ul":? UK6:?
~K6i"an~ press [3l]j[31 to":? UK6i"con

t 1 nue .•.
460 IF PEEKC5327~)<}K6 THEN 460
465 ? UK6i"I'i"i
470 RETURN
475 REM rr::rn
480 KO=0:Kl=1:K2=2:K3=3:K6=6:K7=7:Kll=
11:K12=12:K16=16:K256=256
485 DIM CIO$(K7),P$(K3),SECTORIO$(31),
SCHEMA$(384),SORT$C328),TABLE$C60),SEA
RCH$ (77)
4~0 SCHEMA$=".":SCHEMA$(384)=".":SCHEH
A$CK2)=SCHEMA
4~5 CIO$="hh
530 TABLE$="

ATARI 8-BIT EXTRA

by David Plotkin

Squeeze is a fast-action game written in Action! Your
objective is to control the gun in the center of the screen
and keep the advancing rows of multicolored bricks from
mee ting in the middle.

The bricks grow faster and the action speeds up in the
upper levels . You can choose your own level of diffi culty
and which score will end the game (your goal).

The gun moves up and down w1der joystick control.
Pushing the stick left and right aims the gun in the ap
propriate direction. And, of course, pressing the fire but
ton unleashes a stream of bullets to obliterate the bricks .

If two lines of bricks in the same row manage to meet
in the center of the screen, the game is over. So keep the
lines of bricks from reaching the center-especially tough
because the line from the opposi te side will grow faster
to try and meet its partner!

Each PROCedure is commented to tell what it does. Each
level is 1000 points.

Good luck! ~

David Plotkin has his Masters in Chemical Engineering
and works as a Design Engineer for Chevron U.S .A . He
owns a 130XE and a 520ST, and is currently a heavy Pas
cal user on the ST. His interests (on computers) li e in
programming, games and tutorials.

ATAR I 8-BIT EXTRA

Listing 1.
Action! listing .

MODULE; SQUEEZE by David Plotkin

;
; [9D

40
; 04
; OA
; B6

CHECKSUM DATA
B7 4C F7 52 58 31 F9
38 55 8D C3 54 96 2B
40 20 7F 1B 2A 55 57
61 51 8F 9F 58 F4 4B
B4 B5 E9 1

•

BYTE ChrBase=756,Max,Bkgrnd=710,
Fate=53770,Level=[11,CursIn=752,
Gunx=[191,Guny=[121,Ps=[11,
Loud=[01,Dly=[31,Hard=[11

CARD Scrn=88,RaMSet,HiMeM=S2E5,
Score=[Ol,Target

CARD ARRAY Linept(24),LI(30)

BYTE ARRAY Charset,Shotstatus(30),
Shotx(30),ShotyC30),EndLC241,
EndR(24),
ShapeTableCO)=

[104 208 208 213 213 208 208 104
10 8 7 87 87 7 7 10
255 255 255 255 255 255 255 255
170 170 170 170 170 170 170 170
85 85 85 85 85 85 85 85
87 87 87 87 87 87 87 87
175 175 175 175 175 175 175 175
170 255 170 255 170 255 170 255
85 255 85 255 85 255 85 255
85 171) 85 171) 85 170 85 1701

ANALOG COMPUTING 27

• Squeeze continued

PROC Down load ()
jStep back HiMeM and Move the
jcharacter set into R~M
RaMSet=(HiMeM-$400)&$FCOOjlK boundar~
ChrBase=RaMSet RSH 8
HiMeM=RaMSet
MOVEBLOCK(RaMSet,57344,1024)
Charset=RaMSet
RETURN

PROC GrOIni t ()
jSet up the address of each screen
jline and initialize
C~RD xx
GR~PHICS(O) CursIn=l PRINT(" ")
FOR xx=O TO 23
DO

Linept(xx)=Scrn+(40*xx)
EndL(xx)=O EndR(xx)=39

OD
FOR xx=o TO 29
DO Shotstatus(xx)=O Shotx(xx)=O

Shot~(xx)=o LI(xx)=xx*1000
OD Bkgrnd=O
RETURN

PROC PlotO(BYTE X,!,I,ch)
jPlot a char at location X,!,I
BYTE ~RR~V line
line=Linept(!,I) line(x)=ch
RETURN

PROC Modi f!,l ()
jModif!,l the R~M character set
C~RD xx
FOR xx=o TO 7~
DO

Charsetcxx+8)=ShapeTable(xx)
OD
RETURN

PROC UpdateScore()
jPrint the score and Level
POSITION (1, 23) PRINT (111-11:1;'] il '11")
POSITION(8,23) PRINTC(Score)
POSITION (16, 23) PRINT (11";(IJ::t"")
POSITION(23,23) PRINTB(Level)
POSITION(27,23) PRINTC"Targ: ")
POSITION(33,23) PRINTC(Target)
RETURN

PROC Noise ()
jthe explosions when a block is hit
IF Loud=O THEN RETURN FI
Loud==-2 SOUND(1,~0,8,Loud)
RETURN

PROC NewLevel ()
jset up a More difficult level
BVTE tiMe=20,lp
SOUNDC1,O,O,0) PUT(125) Level==+l
POSITION(~,12)
PRINT (IlNew Ir..':'l';',x ... ,nm"") POSITION (20,12)
PRINTB(Level) tiMe=O

DO SOUND(0,tiMe,10,4)
UNTIL tiMe}100

OD
PUT(125) SOUND(O,O,O,O)
Updatescore ()
FOR Ip=O TO 2'
DO shotstatus(lp)=O OD
FOR Ip=O to 23
DO EndL(lp)=O EndR(lp)=3~ OD
IF Level}8 THEN DI!,l=l ELSEIF level}3

THEN DI!J=2 ELSE DI!,l=3
FI Loud=O
RETURN

28 ANALOG COMPUTING

PROC Choice ()
jChoose the difficult~ level
BYTE Ip=rl],tiMe=20,trig=644,stick=632
POSITION(2,13)
PRINT("Select Difficult~ with Jo~stick")
POSITION(2,14)
PRINT C"Then press -HilA")
POSITION(7 16)
PRINT("l. ~ - Goal 8000 pOints")
POSITION(7 17)
PRINT (112. 1~r;r:ttTt' - Goa I 12000 po i nts")
POSITIONC7 18)
PRINT("3. ITiiiil - Goal 14000 pOints")
DO PlotO(5,lp+15,0)

IF stick=14 ~ND Ip}l THEN Ip==-l
ELSEIF stick=13 ~ND Ip<3 THEN
Ip==+l

FI PlotO(5,lp+15,84)
tiMe=O DO UNTIL tiMe=20 OD
UNTIL trig=O

OD Hard=lp
IF Ip=l THEN Target=8000 ELSEIF

Ip=2 THEN Target=12000 ELSE
Target=14000

FI
RETURN

PROC Intro ()
jThe introduction
BYTE tiMe=20,lp,xx
BYTE ~RR~Y hello(0)=[51 49 53 37 37
37 37 58 37 1 1 1]
POSITION(7 5)
P R I N T (IItil:tilit;.xrW:oJ il"'1::t:. 101")
FOR I p-o TO. 11
DO PlotO(lp+9,8,hello(lp»

SOUND(O,hello(lp) LSH 1,10,4)
tiMe=O DO UNTIL tiMe=9 OD

OD SOUND(O,O,O,O) POSITION(7,9)
PRINT("written in ~CTION")
POSITION(7,10)
PRINT(lIb~ David Plotkin")
Choice()
FOR Ip=O TO 11
DO XX=lp+9

DO PlotO(xx,8,O) xx==-l
IF xX<l THEN EMIT FI
PlotO(xx,8,hello(lp»
SOUNDCO,xx LSH 3,10,4)
tiMe=O DO UNTIL tiMe=l OD

OD
OD SOUNDCO,O,O,O) PUT(125)
RETURN

PROC EndGaMe ()
jthe gaMe over routines
BYTE tiMe=20,lp,trig=644,xx,~~
BYTE ~RR~Y gaMeover(0)=r39 97 10~ 101 ° 47 118 101 114]
PUT(125) SOUND(l,O,O,O)
FOR Ip=O TO 8
DO PlotO(lp+7,12,gaMeOVer(lp» OD
IF Score}=Target THEN POSITIONC5,7)

PRINT (llyou Met !,lour I!I!IJ]!! ! II)
FI Updatescore ()
tiMe=O
DO SOUND(0,tiMe,10,8)UNTIL tiMe=60 OD
SOUND (0, 0, 0, 0) Choice () Level=O
FOR Ip=O TO 8
DO xx=lp+7 !,I!,I=12

DO PlotO(xx,!,I!,I,O) xx==+l !,I!,I==-l
IF (xx}3~ or !,I!,I<l) THEN EMIT FI
PlotOCXx,!,I!,I,gaMeover(lp»
SOUND(O,Xx LSH 3,10,4)
tiMe=O DO UNTIL tiMe=l OD

OD
OD Score=O NewLevel()
RETURN

ATARI 8-BIT EXTRA

PROC Movegun ()
jRead joystick and Move the gun
BYTE stick=632
PlotOCGunx,GunY,O)jerase the gun
IF stick=14 THENjthis is a stick up

Guny==-1 ELSEIF stiek=13jstiek down
THEN Guny==+1

FI
IF stiek=7 THEN Ps=1 ELSEIF stiek=11

THEN pS=2jstick right(1) or left(2)
FI
IF GUny(1 THEN Guny=1 ELSEIFjout of

Guny)21 THEN Guny=21j Bounds
FI
PlotOCGunx,GunY,Ps)jredraw the gun
RETURH

PROC TesteolCBYTE wh)
isee if bullet wh hit anything
BYTE qq
qq=ShotyCwh)
IF ShotstatusCwh)=1 THEN

IF EndRCqq) (=ShotXCwh) THEN
PlotOCShotxCwh),ShotyCwh),O)
ShotstatusCwh)=O
EndRCqq)==+1 Loud=6 Score==+2

FI ELSE
IF EndLcqq»=ShotXCWh) THEN

PlotOCShotxCwh),ShotyCwh),O)
ShotstatusCwh)=O

FI
FI

EndL(qq)==-1 Loud=6 Seore==+2

IF Score)LlCLevel) THEN NewLevelC) FI
RETURN

PROC Shoot ()
icheek the trigger and fire if pushed
BYTE trig=644,lp
IF trig=1 THEN RETURN FI
FOR Ip=O to 2~;find an eMpty shot
DO

IF ShotstatusClp)=O THEN;got one
IF Ps=1 THENjgun facing right

ShotstatusClp)=1
ShotxClp)=Gunx+1 ELSE
ShotstatusClp)=2
Shotx 0 p) =Gunx-1

FI ShotyClp)=Guny
PlotOCShotxClp),ShotyClp),84)
TesteolOp) EXIT

FI
OD
RETURN

PROC MoveShotsC)
iMove the fired bullets
BYTE lp
FOR Ip=O TO 2~;for each shot
DO

IF Shotstatus(lp)=1 THEN;going right
PlotOCShotxClp),ShotyClp),O)
Shot x Op) ==+1

ATARI 8-BIT EXTRA

IF ShotxClp)=3~ THEN
ShotstatuS(lp)=O ELSE
PlotO(Shotx(lp),Shoty(lp),84)
Testeol Up)

FI
FI
IF Shotstatus(lp)=2 THEN;going left

PlotO(Shotx(lp),ShotyClp),O)
Shotx 0 p) ==-1
IF ShotxClp)=O THEN

Shotstatus(lp)=O ELSE
PlotO(ShotX(lp),Shoty(lp),84)
TesteolOp)

FI
FI

OD
RETURN

PROC GrowWa 11 s ()
;grow squares frOM both sides
BYTE Ivl,lp,duM,y
BYTE ARRAV IMore(24),rMoreC24)
FOR Ip=O TO 23
DO IMoreClp)=O rMore(lp)=O OD
IF Level)10 THEN

Ivl=10 ELSE Ivl=Level
FI
FOR Ip=1 to Ivl+Hard
DO
IF Fate}210-lvl LSH 2 THEN;grow

dUM=RAND(8)+3 y=RAND(21)+1
IF Fate}128 AND EndRCy)}ZO AND

rMoreCy)=O THEN rMoreCy)=1
EndRCy)==-1 PlotO(EndRCy),y,duM)
ELSEIF EndLCy)(18 AND
IMoreCy)=O THEN IMoreCy)=1
EndL(y)==+l PlotO(EndLCy),y,duM)

FI
FI
OD
FOR Ip=1 to 22
DO IF EndLClp)=18 AND EndRClp)=20

THEN EndGaMeC) EXIT FI
OD
IF seore}=Target THEN EndGaMe() FI
RETURN

PROC Main ()
BYTE tiMe=20
GrOInitC) IntroC)
Download ()
ModifyC) UpdateSeore()
DO Movegun() GrowWalls()
Shoot() MoveShotsC) NoiseC)
tiMe=O POSITIONC8,23) PRINTCCSeore)
DO UNTIL tiMe=Dly OD OD
RETURN

•

ANALOG COMPUTING 29

$7.95

THE
ANALO.G

computing

POC\{E1
REfERENCE

C~RO
1965

THE
COMPLETE POCKET
PROGRAMMING AID

ONLY $7.95 ea.

[~~~LIl'Ei]
COMPUTING-

PO BOX 23, WORCESTER, MA 01603

;-1, :

Un~qckYQur
· ' Atari

16
Pages

ERROR CODES
INTERNAL CODES

PEEK & POKE LOCATIONS
MACHINE LANGUAGE AIDS

GRAPHIC MODE SPECIFICATIONS
BASIC COMMANDS WITH ABBREVIATIONS

ANALOG COMPUTING
PO BOX 23, WORCESTER , MA 01603

(617) 892-3488 • (617) 892-9230

YES! Please send me ANALOG
Computing Pocket Reference Cards.
I am enclosing $7.95 per copy.

o CASH 0 CHECK 0 CH ARGE

Name _ _ _ _ _____ ~ ___ _ Card # ______ _

Address ___________ _ Exp. date _ _ ____ _

City _______ State _ Zip __ Signature ______ _

by David Plotkin

Action! , the high-speed, high-level language from OSS,
is a really excellent tool for game writing. In fact , once
you've learned its structured approach (and some of its
idiosyncracies) and tasted its dazzling speed, you may
never go back to the (normally) slow crawl of BASIC.

Surface Run, included at the end of this article, is a sam
ple of what Action! can do. It's also the first game I've ever
written where too much speed was a significant problem.
Of course, it's a lot easier to get rid of excess speed than
to add it.

I've found that there are two ways to program in Action!.
The first way can be thought of as "high level," using the
many functions and keywords that Action! provides. While
this is straightfoward, and even allows for pseudo-trans
lation of BASIC programs (many of the commands or key
words are the same in both Atari BASIC and Action!), it
suffers from some loss in speed. An example is found in
hi gh-resolution graphics.

PLOT and DRAWTO are available in Action! , but use
the Atari 's CIO routines , the same ones BASIC uses. This
is not to say that even "high level" Action! isn't fast . ..
compared to BASIC, it's fast indeed . Still , there are ways
to considerably increase the speed of slower Action! func
tions, to a point approaching true machine speed . This
is what I refer to as "low level" Action!. What you do is
write yom own special routines to do the job. This gener-

ATARI 8-BIT EXTRA

•

ally involves direct byte manipulation to the screen, use
of shifts instead of multiply/divide, and construction of
tables in the program initialization phase, so that results
of complex calculations can simply be looked up.

An example is seen in the graphics routines in Surface
Run . To fill a graphics 7 screen with color using PLOT
takes about 27 seconds. Use of my procedure PLOT7,
which does some complex direct byte manipulation (bit
twiddling?), takes about 4.25 seconds.

The reason that even this procedure still takes so long
is that there's a fair amount of math going on before each
2-bit pair is modified. If you can define your picture ahead
of time and just place the bytes on-screen using a proce
dure like FASTDRAW, the process takes about two jiffies
(or 1/,0 second) . In the latter part of this article, we'll talk
about some of the more interesting procedures included
in Surface Run, and what purposes they serve.

Surface Running.
To play Surface Run, punch in the listing that follows.

Before you run it, save it to disk or cassette (SHIFT CTRL
W, followed by the filename or C: for cassette), then enter
the monitor (SHIFT CTRL-M) and compile (C) . When the
computer beeps at you, plug your joystick into port 1 and
run the program by pressing R.

You're in control of a space fighter, zooming Iowan pa
trol over the scrolling surface of Stripes, your home plan
et. Pulling back on your joystick causes you to climb;
pushing foward makes you dive toward the planet's sur-

ANALOG COMPUTING 31

• Surface Run continued

face, although your flight computer won't let you crash (at
least, not into the surface).

Pressing the joystick left and right will cause the fight
er to respond in the appropriate direction. It will also re
spond to diagonals, for added maneuvering.

And you're not defenseless. Pressing the fire button Lill

leashes missiles which emerge from your wingtips and
converge in the distance. You may have up to four mis
siles on the screen at anyone time.

The enemy is a massive "mother ship," which emerges
from hyperspace with a roar and moves rather unpredict
ably about the screen, launching tracking fireballs at you.
You must neutralize all these fireballs with your missiles,
while destroying the mother ship - by first shooting out
the left engine, then the right , and , finally, the main cen
ter one.

Strategy is something of a problem: to destroy the moth
er ship, you must move in close, but the fireballs are more
dangerous if you do. You start out with four ships. The
number of ships left and your score are kept in the win
dow at the bottom of the screen. My high score is about
7000, so good luck and good hunting!

The real Action!
Some of the PROCedures used in Surface Run are quite

interesting, and they enhance the speed of the program
considerably. Let's touch on some of these programming
techniques .

(1) The use of the DEFINE statement to equate assem
bly code statements (such as RTI or PHA) to the actual hex
codes that represent these instructions make the listing
more readable and understandable.

(2) SAVETEMPS and GETTEMPS are found whenever
an interrupt (such as VEl or System Timer) is used, to save
and retrieve the temporary math variables needed by the
main program. Thus, the interrupt doesn't change these
variables, which could cause some unpredictable results
in the main program. The line of hex codes is two short
machine language routines to do the job.

(3) PROC DLINT is a display list interrupt (DLI) rou
tine written in Action! Note the use of the assembly code
blocks DEFINEd earlier to save the accumulator, and the
X- and V-registers during the interrupt. We did not use
SAVETEMPS and GETTEMPS, because there isn't enough
time, but it seems to work okay. The DLI changes the back
ground color by displaying a hue taken from the byte ar
ray CLRS.

(4) PROC INIT7 does the program initialization. The
real purpose is do some drawn out math to find screen
addresses, then store the results in an array - because it's
much faster to look those results up than to calculate them,
which would slow down program execution. Thus, the low
byle of the address of each screen line is stored in array
YLOCL, and the high byte in array YLOCH. The array
RSH2 holds which of the 40 bytes on the line is actually
referred to by the X-coordinate range from 0 to 159. There's
a little trickiness going on here, to break up the 2-byte ad
dress held in SCREEN into the two l-byte numbers need
ed by YLOCL and YLOCH. By making CARD SCREEN
have the same address as BYTE LOWl, each time SCREEN

32 ANALOG COMPUTING

is changed, LOW1 and HIGH1 are also automatically
changed. This is sneaky, but very fast.

(5) PROC DLSETUP modifies the display list , to tum
on the high byte of each instruction on each line where
a DLI is required . The instruction VDSLST=DLINT in
stalls the DLI.

(6) PROC ROTATE is a routine executed each time the
system timer interrupt is called (more on this later). It ro
tates the elements of the array CLRS, so that the colors d is
played by the DLI appear to move down the screen.

(7) INT FUNCs HSTICK and VSTICK are used to read
the joystick. They're taken directly from the Programmer's
Aid Disk (PAD).

(8) PROC DRAW7 allows you to plot a point on the
screen in any of the graphics 7 colors. This is much quicker
than using the PLOT function . You pass the x- and y
coordinates, and the color number to the procedure.
There's some major speed enhancement here. First, note
the BYTE variable declarations. When byte variables are
passed to a procedure, they are passed on page 0 in loca
tions $AO to $AF. So, declaring byte variable Xl to reside
at location $Al equates it to the passed variable X. But,
because it's a 0 page quantity, operations using Xl will
be faster. Note also that the variables LOW and HIGH are
equated to the proper element of YLOCL and YLOCH .
This automatically moves byte array LINE to the proper
line on the screen, because the variables LOW and HIGH
reside in the memory location that defines where byte ar
ray LINE will be (see the MODULE statement at the be
ginning of the program). The last line of this procedure
looks pretty horrendous, but what it does is directly
manipulate the proper screen byte by punching a 2-bit hole
in the byte with a bit mask (array BM), then filling in the
hole with the proper color via a color mask (array CM).

(9) PROC FASTDRAW is the fastest of the drawing rou
tines. It takes data contained in a byte array and places
it directly on-screen, byte by byte. The variables WIDTH
and HEIGHT determine the limits for picture drawing , and
XX and YY are the position to draw the picture on lhe
screen. The drawback to using this procedure is that you
have to figure out how to draw a picture and convert it
to a string of bytes. FASTDRAW is set up to use a pictme
drawn with DrawPic, from Artworx. When you construct
a picture with DrawPic , you can save the image to disk
as BASIC program lines containing a string of bytes. Draw
Pic also automatically saves the width and height. lL is
then simple to enter these program lines into an Action!
program and modify them to the proper format. The byte
arrays SHIP, NOLEFT and NOENG declared at the begin
ning of the program are constructed in just this manner.

The rest of the procedures are fairly straightforward ,
PMGRAPHICS, PMCLEAR, and PMADR are frol11 the
PAD, although PMGRAPHICS is a cut-dO\\Tn version of the
general routine provided on PAD.

ERASESHIP removes the mother ship from the screen
and increments the difficulty each time you triumph over
one. WINDOW draws the text window at the bottom of
the screen. UPDATE prints the new score, while UPDATE
SHIP keeps track of the number of ships you have left.

ATARI 8-BIT EXTRA

TESTHIT checks to see if your missiles have hit the
proper spot on the mother ship. SHIPFLY moves your lit
tle space fi ghter in response to the joystick . MISSILEFIRE
fires off a missile (don't you just l ove descriptive names?)
when yo u press the fire button, provided there aren't four
miss iles on-screen already. MISSILEMOVE converges the
missiles in the distance. The distance the missile has trav
eled from its original Y-coordinate is used to determine
the X-coordinate.

SHIPDRAW places the mother ship on the screen, while
SHIPMOVE bOlU1ces it around. DARKEN checks to see if
the background is lit up from an explosion. It progressively
darkens the area, so the explosions can continue while oth
er things happen.

SHOOTBACK causes the mothership to launch any un
used fireballs at your fighter. ALIGN determines the direc
tion the fireballs have to move to reach your ship and how
far they will move each time (based on the difficulty lev
el). BALLMOVE moves fireballs in the appropriate direc
tion . f-IITBALL figures out which fireball was hit and
removes it from the screen, making an explosion and light
ing up the background .

ENDGAME displays the end-of-game message and
restarts the game when you hit the fire button . BLOWNA
WAY checks to see if a fireball has hit your fighter and
blows it apart if one has.

Finally, MAIN does the initial setup and calls each of
the other procedures as needed . One popular misconcep
tion is that the "driving" PROC must be called MAIN. This
is not true; the procedure may be called any thing. What's
different about MAIN is that it is the PROCedure which
call s all the others.

Action! is a very nice midpoint be tween BASIC and
assembly-and , as you can probably tell, I'm a big fan.
Programming in Action! is more fW1 than in BASIC, with
far better results. And it's much easier than learning as
sembly language. ~

Listing 1.
Action! listing.

; rE,)
co
40
11
47
D6
D,)
F6
54
5A

CHECKSUH DATA
50 2') 34 E5 OE ED
7') 81 OC ')7 C2 3')
OB 36 lC 52 FF 63
AE 88 3A 75 2B EO
BD 52 23 D2 71 86
D5 ID El 65 60 86
64 A') 70 Al 2F BC
')0 64 7D 8B 76 C')
32 ')7 68 20 lA 37
5') 1

HODULEj SURFACE,RUN
DEFINE RTI=I$40",

PHA=I$48",
PLA=I$68",
THA=I$8A",
TAH="SAA",
TVA=IS')8",
TAV=I$A8",

')8
01
')1
7D
,)A
47
')7
EO
FB

SAVETEHPS="[SA2 7 $B5 SA8 S48
$CA S10 $FA1",

ATARI 8-BIT EXTRA

GETTEHPS ="[$A2 0 S68 S,)5 SA8
SE8 SEO 8 SDO SF81"

CARD OLD,SDLST=560,VDSLST=512,
SCRLOC=88,CDTHV2=S21A,
CDTHA2=S228,HIHEH=S2E5,
PH-BASEADR,ADRES,ADRESB,
SCORE=[Ol

INT SH=[11,SY=[11

INT ARRAY BHDR=[O 0 0 01,
BYDR=[O 0 0 01

BVTE NHIEN=SD40E,COLBK=SD01A,T=SDA,
VCOUNT=SD40B,HSYNC=SD40A,
COUNT=[Ol
PHHITCLR=SD01E,DHACTl=S22F,
GRACTl=SDOID,PHBASE=SD407,
PRIORITV=S26F,HO,YO,COlHND=SD018,
SHIPH,SHIPY,SHIPSTAT=rOl,
PClRO=704,PClRH=711,COlRO=708,
COLR1=70'),COlR2=710,COlR4=712,
FATE=53770,NUHSHIP=[41,CURSH=752,
THTROH=656,THTCOl=657,lVl=[101,
LVL1=[101,SND1=SD20F,SND2=SD208

BVTE ARRAY DlIST,YlOCl(80),
VLOCH(80),RSH2C160),
PHHPOS(8)=SDOOO,
PHVPOS(8)=rO 0 0 0 0 0 0 01,
PH-HIDTH(5)=SD008,PlPTR
PH-HISHASK(4)=[SFC SF3 SCF S3Fl,

BALll=rO 0 0 0 165 ')0 36 ')0 ')0 36
')0 165 0 0 0 01,

PCOLR(4)=704,
BALL2=[0 0 0 0 ')0 165 21') 165 165

21') 165 ')0 0 0 0 01,
BSTAT=[O 0 0 01,
BH=rO 0 0 Ol,BY=[O 0001,
BlANK=rO 0 0 0 0 0 0 0 0 0 0 0 0

o 0 01
BYTE ARRAY ClRSCO)=[64 66 68 70 72 74

64 66 68 70 72 74 64 66 68 70 72
74 64 66 68 70 72 74 64 66 681

BVTE ARRAY BHCO)=[SCO S30 Sc S31,
CHCO)=[SO S55 SAA SFF1,

SHIPSHAPECO)=rO 0 0 0 66 36 24 165
231 165 24 36 66 0 0
o 0],

HSTATUSCO)=[O 0 0 01,
HHCO)=[O 0001,
HVCO)=ro 0 0 01,
HHOLDCO)=[O 0 0 01,
HYOLDCO)=[O 0 0 01,

SHIP ClOO) =

r '.'.'.'.'.'.'.'.'.'.'.' e '.' 1':"1' H '.'. '~'.'.'e'p'.'D'~'~',' ~'.'.'A'~'U'}'~
' U'~'A'.'.'H'~'j'~'~'~'~'m'.'.'H'~'j
'~'~'~'~'m'.'.'A'~'U'}'9'U'~'A'.'.'e
'p'.'D'~'~',' ~'.'.'e'.' ':"I'H'.'.' ~'. '.'.'.'.'.'.'.'.'.'.], jBVT=10:lIN=10

HOlEFT ClOO) =

['.'.'.'.'.'.'.'.'.'.'.'.'.' 1':"1')("'. '~'.'.'.'.'.'D'~'(1' '~'.'.'.'i 'U' '~ 'U'~'A'.'.'.'~' j'}'~' '~'m'.'.'.'i' j
'~'~'~' ~'m'.'.'.' I"'U' ·9·U'~'A'.'.'.
'.·.·D·~·~·,· ~ .•.•.• ' •. ·:"I·H·.'.· ~ •• '.·.·.'.'.'.·.·.·.·.1, jBVT=10 : lIN=10

HOEHG ClOO) =
['.' ••••• ' ••• ' ••••••• '.'.'.' 1':"1')('.'.
'.'.'.'.'.'.·D'~'(1'.'.'.'.'.'i 'U'}'~
'U'D'·'···'·'~'j'},~'~'~,.,.'.'.'i'j
'~'~·~'~ •• '.'.'.'I"'U'}'9'U'D'.'.'.'.
, •.• ,~,~'(1'~, •.• , •.• ,., ':"1')('1'.'.'.

ANALOG COMPUTING 33

• Surface Run continued

'.'.'.'.'.'.'.'.'.'.]
BVTE ARRAV LINE
BYTE LOW=LINE.HIGH=LINE+~

PROC OLINT ()
BYTE OUH
[PHA THA PHA TVA PHA]
IF VCOUNT}~4 THEN

WSYNC=l
COLBK=O COLWNO=O
ELSE OUH=CLRS(COUNT)
WSYNC=1
COLBK=OUH

FI
COUNT=COUNT+l
IF COUNT=27
THEN COUNT=O
FI
[PLA TAY PLA TAH PLA RTI]

PROC INIT7 ()
BYTE LOW1.HIGH1.I
CI'lRO SCREEN=LOW1
GRI'lPHICS(7)
COLRO=44 COLR1=102
COLR2=52 COLR4=0
SCREEN=SCRLOC
1=0
WHILE 1(80 00
YLOCL (D =LOW1
YLOCH (D =HIGH1
SCREEN=SCREEN+40
1=1+1
00
1=0
WHILE 1(160 00
RSH2 (D =1 RSH 2
1=1+1
00
RETURN

PROC OL SETUP ()
BYTE I
INIT7 ()
NHIEN=$40
DLIST=SDLST
VOSLST=OLINT
FOR 1=30 TO 40
DO OLIST(I)=141 00
FOR 1=42 TO 54 STEP 2
DO OLIST(I)=141 00
FOR 1=57 TO 72 STEP 3
DO DLIST(I)=141 00
FOR 1=76 TO 84 STEP 4
00 OLIST(I}=141 00
NHIEN=SCO
RETURN

PROC ROTATE ()
BYTE HOLO.CTR.CNTR
[PHI'l TXI'l PHA TVA PHA]
SI'lVETEHPS
HOLO=CLRS(26)
FOR CTR=O TO 25
DO CNTR=25-CTR
CLRS(CNTR+1)=CLRS(CNTR} 00
CLRS(O}=HOLO
CDTHV2=2
GETTEHPS
[PLI'l TAY PLI'l TI'lH PLA]
RETURN

INT FUNC HSTICK(BYTE PORT)
BYTE ARRAY PORTS(4)=S278
INT ARRI'lY UI'lLUE(4)=[0 1 SFFFF 0]
RETURN (VALUE((PORTS(PORT)&SC) RSH 2»
INT FUNC USTICK(BVTE PORT)

34 ANALOG COMPUTING

BYTE ARRAY PORTS(4)=$278
INT ARRAY UALUE(4)=[0 ~ $FFFF 0]
RETURN (UALUE(PORTSCPORT)&3»

PROC ORAW7(BYTE H.V.CLR)
BYTE H1=$AO.V1=$A1.CLR~=$A2
LOW=VLOCL (Y 1)
HIGH=YLOCH (Y 1)
T=RSH20U)
LINECT)=(((BHCH1&3)!$FF)&LINECT»X

(BH(H1&3)&CH(CLR1»)
RETURN

PROC FASTORAW(BVTE ARRAV PICTURE
BYTE WIOTH.HEIGHT.HH.YY)

BYTE LCTR1.LCTR2
CARO LCTR3
FOR LCTR1=0 TO HEIGHT-l
DO LOW=YLOCL(YY+LCTR1) HIGH=YLOCHeyy+

LCTR1)
LCTR2=XH+WIOTH
LCTR3=(LCTR1+1)*WIOTH-l
00
LINECLCTR2)=PICTURE(LCTR3)
LCTR3==-1
LCTR2==-1
UNTIL LCTR2=HX
OD

00 RETURN

PROC PHGRI'lPHICS()
ZERO(PHHPOS.8) ZEROCPHVPOS,8)
ZERO(PH-WIOTH.5}
DHI'lCTL=S3E
PH-BASEI'lDR=(HIHEH-S800}&SF800
PHBASE=PH-BASEI'lOR RSH 8
HIHEH=PH-BASEAOR+768
PRIORITY==&SCOX17 GRACTL=3
RETURN

CI'lRO FUNC PMAOR(BYTE N}
IF N}=4 THEN N=O ELSE N==+1 FI
RETURN(PH-BASEAOR+768+(N*S100»

PROC PHCLEAR(BVTE N)
CARO CTR
BYTE ARRI'lY PLI'lYAOR
PLI'lYI'lDR=PHI'lORCN)
IF N(4 THEN ZEROCPLAYAOR.S100}

ELSE N==-4
FOR CTR=O TO $100-1
DO PLI'lYAOR(CTR}==&PH-MISHASK(N} 00
FI
RETURN

PROC ERI'lSESHIP ()
BYTE LOOPH,LOOPY.LL
LL=SHIPX LSH 2
FOR LOOPY=SHIPY TO SHIPY+10

00
FOR LOOPH=LL TO LL+3~
00 ORAW7(LOOPH.LOOPV.0) 00

00
LVL==+2 IF LVL}20 THEN LVL=20 FI
LVL1==+5 IF LVL1}200 THEN LUL1=200 FI
RETURN

PROC WINOOW ()
BYTE LOOP5
TXTROW=O THTCOL=O CURSH=l
PRINT(", ")
PRINT (" , II)
FOR LOOP5=1 TO 2 00
TXTROW=LOOP5 TXTCOL=O PRINT("I")
TXTCOL=38 PRINT e" I")
00 TXTROW=3 TXTCOL=O
PRINT (" , ")
PRINT(" '")

ATARI 8-BIT EXTRA

TlHROW=1 THTCOL=5 PRINT C"SCORE: II)
THTCOL=12 PRINTCCSCORE)
THTCOL=20 PRINTC"SHIPS LEFT: ")
FOR LOOP5=1 TO 5 DO THTCOL=31+LOOP5
If HUHSHIP}=LOOP5 THEN PRINTC"+")

ELSE PRINTC" ")
fI DD
RETURN

PROC UPDtiTE ()
BYTE LOOP5
THTROW=1 THTCOL=12 PRINTCCSCORE)
RETURN

PROC UPDtiTESHIPC)
BYTE LOOP5
THTROW=1
FOR LOOP5=1 TO 5 DO THTCOL=31+LOOP5
If NUHSHIP}=LOOP5 THEN PRINTC"+")

ELSE PRINTC" ")
FI OD
RETURN

PROC TESTHITCBYTE HISSUL)
BYTE HISSLV,HISSLH,HSHIP
IF SHIPSTtlT=O THEN RETURN FI
HISSLV=CHVCHISSUL)-30) RSH 1
HISSLH=HHCHISSUL)-46
HSHIP=SHIPH LSH 2
IF HISSLV(SHIPV+4 OR

HISSLY}SHIPV+7 THEN RETURN FI
IF SHIPSTtlT=1 THEN

IF MISSLH}HSHIP+~ tlND
MISSLH(HSHIP+15
THEN SHIPSTtlT=2 COLR4=14
SCORE==+20
UPDtiTE ()

FI
RETURN

FI
IF SHIPSTtlT=2 THEN

IF MISSLX}XSHIP+31 tlND
MISSLX(XSHIP+37
THEN SHIPSTtlT=3 COLR4=14
SCORE==+20
UPDtiTE ()

FI
RETURN

FI
IF MISSLX}XSHIP+ZO tlND

MISSLX(XSHIP+26 THEN
SHIPSTtlT=O SCORE==+50
COLR4=14 SOUNDC1,COLR4 LSH 4,8,4)
SOUND C2, 0, 0, 0) ERtlSE5HIP ()
UPDtiTE ()

FI
RETURN

PROC SHIPFL V ()
BVTE STCK=632
SOUND (0, VO, 6, 2)
IF STCK=15 THEN RETURN FI
HO=HO+HSTICK(O) LSH 1
YO=YO+V5TICKCO) LSH 1
IF HO}130 THEN XO=1~0 FI
IF XO(50 THEN XO=50 FI
IF VO}170 THEN YO=170 FI
IF YO(50 THEN YO=50 FI
tlDRES=PHtlDRCO)+YO
HOVEBLOCKCtlDRES,SHIPSHtlPE,17)
PMHPOSCO)=XO
RETURN

PROC MISSILEFIREC)
BVTE TRIGGER=644,INDX,Htl5K
IF TRIGGER=1 THEN RETURN FI
iTRIGGER IS NOT 1, 50 ~!
FOR INDH=O TO 3 DO

ATARI 8-BIT EXTRA

IF HSTtiTUSCINDH)=O THEN
MSTtiTUSCINDH)=1 HVCINDH)=VO+6
HVOLDCINDH)=HVCINDH)
MH CINDH) =HO
IF INDH=1 OR INDH=3 THEN

HHCINDH)=HO+15 FI
MHOLDCINDH)=MHCINDHl
HtlSK=PH-MISHtlSKCINDH) !$FF
PLPTRCMYCINDH»==XHtlSK
PHHPOSCINDH+4)=HXCINDX)
EXIT

FI OD RETURN

PROC HISSILEHOVEC)
BVTE INDX,HtlSK,DELTtI
FOR INDX=O TO 3 DO
IF MSTtiTUSCINDX1=1 THEN

PLPTRCHVCINDX»==&PH-HISHtlSKCINDX)
MV CINDX) ==-2
MtlSK=PH-HISMtlSKCINDX)!$FF

IF HVOLDCINDX)-HVCINDX)}44 THEN
MSTtiTUSCINDX)=O SOUND C2,0,0,0)
ELSE PLPTRCHVCINDX»==XHtlSK;REDRtlW
DELTtI=CMVOLDCINDX)-MVCINDX»/6
IF INDX=O OR INDX=2 THEN

MXCINDX)=HXOLDCINDX)+DELTtI
ELSE HX(INDX)=HXOLDCINDX)-DELTtI

FI
PMHPOSCINDX+4)=HX(INDX)
SOUNDCZ,DELTtI LSH Z,10,4)
TESTHIT CINDX)

FI
FI OD RETURN
PROC SHIPDRtlW ()
BYTE TIME=ZO
IF SHIPSTtlT(}O OR FATE(250
THEN RETURN FI
SHIPSTtlT=1
COLRO=14 COLR1=14 COLRZ=14 COLR4=14
SHIPX=RtlNDCZ4)+Z SHIPV=RtlND(30)+Z
FtiSTDRtlWCSHIP,10,10,SHIPX,SHIPV)
TIME=O DO SOUNDC1,100,6,1Z-TIME RSH 1)
IF TIME=4 OR TIHE=6 OR TIME=1Z THEN

SHIPFLVC) HISSILEHOVE()
FI
UNTIL TIHE=16 OD
WHILE COLR4}0
DO COLR4==-1 COLRZ=RtlND(250)

COLRO=RtlNDCZ50) COLR1=RtlNDCZ50)
TIHE=O DO UNTIL TIME=Z OD
SOUND(1,COLR4 LSH 4,6,4)
5HIPFLVC) HISSILEHOVEC)

OD
COLRO=44 COLR1=10Z COLR2=52
SOUNDCl,O,O,O)
RETURN

PROC SHIPHOVE ()
IF SHIP5TtlT=0 THEN RETURN FI
5HIPX==+SX 5HIPV==+5V
IF 5HIPX(2 OR 5HIPX}26 THEN SX=-5X

EL5EIF FtlTE}C255-LVL) THEN SX=-SX FI
IF 5HIPY(2 OR 5HIPV}55 THEN SV=-SV

ELSEIF FtlTE(LVL THEN 5V=-SV FI
IF SHIPSTtlT=1 THEN
FtiSTDRtlWCSHIP,10,10,SHIPX,SHIPV)
ELSEIF SHIPSTtlT=2 THEN
FtiSTDRtlW(NOLEFT,10,10,SHIPX,SHIPV)
ELSE FtiSTDRtlWCNOENG,10 ,lO,SHIPX,SHIPV)
FI
RETURN

PROC DtiRKEN ()
IF COLR4=0 THEN RETURN FI
COLR4==-l SOUNDC1,COLR4 L5H 4,6,4)
IF COLR4=0 THEN SOUNDCl,O,O,O) FI
RETURN

ANALOG COMPUTING 35

• Surface Run continued

PROC SHOOTBACK ()
BYTE LLP
If SHIPSTAT=O OR fATE}LVL1

THEN RETURN fI
fOR LLP=1 TO 3 DO
If BSTAT(LLP)=O THEN

fI

BSTAT(LLP)=1
BH(LLP)=(SHIPH LSH 2)+68
BV(LLP)=(SHIPV LSH 1)+34
PCOLR(LLP)=RAND(1S) LSH 4iRND COLOR
PCOLR(LLP)==+10i LIGHTEN COLOR
ADRESB=PMADR(LLP)+BV(LLP)
MOVEBLOCK(ADRES8,BALL1,16)
PMHPOS(LLP)=BH(LLP)
EHIT

OD
RETURN

PROC ALIGN ()
BVTE LLL,CLUNK=[Ol
If LVL1}SO THEN CLUNK=1

ELSElf LVL1}1S0 THEN CLUNK=2
fI
fOR LLL=1 TO 3 DO
If BSTAT(LLL)(}O THEN

If BH(LLL)}(HO+4) THEN
BHDR(LLL)=-2-CLUNK

ELSElf BH(LLL)«(HO+4) THEN
BHDR(LLL)=2+CLUNK

ELSE BHDR(LLL)=O
fI
If BV(LLL)}(VO+4) THEN

BVDR(LLL)=-2-CLUNK
ELSElf BV(LLL)«(VO+4) THEN
BVDR(LLL)=2+CLUNK
ELSE BVDR(LLL)=O

fI
fI
OD
RETURN

PROC BALLMOVE ()
BVTE LLP
fOR LLP=O TO 3 DO
If BSTAT(LLP)(}O THEN
If BSTAT(LLP)=1 THEN BSTAT(LLP)=2

ELSE BSTAT(LLP)=1
FI
BX(LLP)==+BHDR(LLP)
BV(LLP)==+BVDR(LLP)
ADRESB=PMADR(LLP)+BV(LLP)
IF BH(LLP)(SO OR BH(LLP)}1~0 OR

BV(LLP)(34 OR BV(LLP)}1S2 THEN
BSTAT(LLP)=O
MOUEBLOCK(ADRES8,BLANK,16)

fI
PMHPOS(LLP)=BH(LLP)
If BSTAT(LLP)=1 THEN

FI
fI

MOVEBLOCK(ADRESB,BALL1,16)
ELSElf BSTAT(LLP)=2 THEN
MOVEBLOCK(ADRESB,BALL2,16)

OD
RETURN

PROC HITBALL ()
BVTE ARRAV HISCOL(3)=$D008
BVTE IND,PLV,DUMMI
fOR IND=O TO 3 DO
IF MISCOL(IND)}1 THEN HSTATUS(IND)=O

PLPTR(MV(IND»==&PILMISHASK(IND)
DUMMI=MISCOL(IND)

fI

If (DUHHI&2)=2 THEN PLV=1
ELSElf CDUMMI&4)=4 THEN PLV=2
ELSE PLV=3

fI
ADRESB=PMADRCPLV)+BVCPLV)
MOVEBLOCKCADRESB,BLANK,16)
COLR4=10 SOUNDC1,COLR4 LSH 4,8,4)
BSTATCPLV)=O PMHITCLR=1
SCORE==+10 UPDATE C)

36 ANALOG COMPUTING

OD RETURN

PROC ENDGAME ()
BVTE TRIGGER=644
ERASESHIP ()
THTROH=2 THTCOL=2
PRINT("GAME OVER .. PRESS [j]ill TO PLAV")
PRINT(" AGAIN")
DO UNTIL TRIGGER=O OD
NUMSHIP=4 SCORE=O THTROH=2 THTCOL=2
LVL=10 LVL1=10 SHIPSTAT=O
PRINT (" II)
PRINT (" II)

THTROH=1 THTCOL=12 PRINT (" ")
UPDATE() UPDATESHIP()
RETURN

PROC BLOHNAHAV ()
BVTE ARRAV SHIPH(0)=S3260
BVTE LO,TIMER=20
If SHIPH(O)=O THEN RETURN fI
PILHIDTH(O)=O
fOR LO=O TO 3 DO
If MSTATUS(LO)=1 THEN MSTATUS(LO)=O

PLPTR(MV(LO»==&PILMISMASK(LO)
SOUND (2,0,0,0)

fI
PMCLEAR(LO) BSTAT(LO)=1 BH(LO)=HO
BV(LO)=VO ADRESB=PMADR(LO)+BV(LO)
MOVEBLOCK(ADRESB,BALL1,16)
PMHPOS(LO)=BH(LO)
PCOLR(LO)=RAND(1S) LSH 4+10
OD .
COLR4=14 SOUND(1,COLR4 LSH 4,S,S)
BHDR(0)=2 BVDR(0)=2 BHDR(1)=2
BVDR(1)=-2 BHDR(2)=-2 BVDR(2)=2
BHDR(3)=-2 BVDR(3)=-2
DO
If 8STAT(0)=0 AND BSTAT(1)=0 AND

BSTAT(2)=0 AND BSTAT(3)=0 THEN
EHIT

fI
BALLMOVE ()
TIMER=O DO UNTIL TIMER=3 OD
OD
COLR4=0
SOUND(1,0,0,0) PMHITCLR=1 NUMSHIP==-1
UPDATES HIP ()
If NUMSHIP=O THEN ENDGAME() fI
HO=120 VO=170
PILHIDTH(0)=1 PCOLR(0)=170
ADRES=PMADR(O)+VO
MOUEBLOCK(ADRES,SHIPSHAPE,17)
PMHPOS(O)=HO
RETURN

PROC MAIN 0
BVTE HH,COUNT,TIMER=20
SND1=3 SND2=0
DLSETUP ()
PMGRAPHICS ()
fOR HH=O TO 7 DO PMClEAR(HK) OD
VO=120 HO=120 PCOLR(0)=170 PCLRH=14
ADRES=PHADR(O)+VO PLPTR=PHADR(4)
MOVEBLOCK(ADRES,SHIPSHAPE,17)
PMHPOS(O)=HO PILHIDTH(0)=1
HINDOHO
CDTMA2=ROTATE
CDTMV2=2
DO
SHIPDRAHO
SHIPMOVE() SHOOTBACK()
ALIGN() BALLMOVE()
fOR COUNT=1 TO 3

DO
TIMER=O DO UNTIL TIMER=1 OD
SHIPfLV() MISSILEfIRE() MISSILEHOVE()
DARKEN() HITBALL() BLOHNAHAV()
OD

OD
RETURN

•

ATARI 8-BIT EXTRA

by Mark Comeau

Mission #2, should you choose to accept it, is to stop
the production of the enemy's killer satellites. They're be
ing manufactured at this moment, in the secret enemy base
in the Commodore mountains. If production doesn't stop,
they'll be launched-and demolish the Earth for sure. The
coordinates for the base are listed in your secret agent
handbook. Land your Spy Plane immediately and get to
work!

On your last mission, the enemy had somehow managed
to photocopy plans to your top-secret satellites. Cases and
cases of the plans will be found now in the caverns of the
base. Confiscate as many as you can, but don't let that deter
you from your main mission.

Once inside the caverns, look for some small portals.
Inside are the factories producing the enemy satellites.
Drop a radio-controlled robot into them and maneuver it
with your hand-held spy computer. To disable the factory's
machines, just unplug them and turn off the water sup
ply. After all the machines have been sabotaged, an exit
will appear in the lower right-hand corner.

As part of their protective system, the factories have
tubes which emit radioactive mist. The mist is dispersed
in straight lines, at irregular intervals. The caverns also
contain mist portals, but , here, once the mist hits the
ground it spreads out a little. The mist causes death on
contact . Avoid it at all costs!

ATARI 8-BIT EXTRA

•

In the caverns are empty tubes which you can use to
travel up and down. Do not travel off the top of the tubes.

On the first level of Spy Plane II, you can use your spy
jump boots. These will let you "fall" down to lower sur
faces without injury. After the first level, though, the boots
will become useless. Any fall will result in death.

There are two factories on each cavern screen. When
you've sabotaged the first, it will blow up and disappear.
Both of the factories must be destroyed before an exit
appears.

Each level of the game has four cavern screens, all of
which must be completed before the satellites are pro
duced. On the first level, there's a 500-second time limit.
In every succeeding level, the time it takes to produce
satellites is decreased by 50 seconds. If the factories are
not destroyed and your exit accomplished in time, you'll
see the satellites launch and destroy the Earth. When the
Earth is destroyed, you lose a life.

The fate of the world rests heavily upon your shoulders.
You have only four lives in which to complete your mis
sion, so live them with care.

Running and playing the game.
Type in Listing 1 exactly as it appears. Be careful with

the data statements.
Type RUN, and the screen will go blank for about 30

seconds. Then the Spy Plane will land , and your man will
get out. After that, the familiar Spy Plane logo will ap
pear. Press the fire button to start the game.

ANALOG COMPUTING 37

• Spy Plane II continued

After you press the fire button, the score display will
appear. Press the fire button again to get to the first screen.
During the score display, if you press START, the computer
will end the game.

On the first screen, your man will automatically climb
out of the plane and down a tube. Cases of plans (worth
10 points) are located all around him. Each screen is worth
100 points. The destruction of a factory will win you 100
points, while the sabotage of each plug or faucet inside
is good for 20 points.

Programming tips.
When the program is run, it turns the screen display

off, reading and initializing all the necessary stuff. "Why
in the world would you want to turn the Atari's superb
graphics display ofn" you may ask. Because the initiali
zation process takes a while-anything that can make it
speed up is A-OK. When the screen is turned off, the com
puter is freed from graphics-everything else speeds up.

To do this, just POKE 559,0. I even use it to turn the
screen off when displaying screens. Instead of a flicker,
you get a split-second of black, then a quick display.

If you look at the Spy Plane II program, you'll see that
every number from 0 to 20 has a C in front of it. This is
done to conserve memory. The computer has an easier time
handling variables than numbers. I saved 2263 bytes by
using constants on this program. The variables are defined
with an unusually large read-data combination. Look at
Lines 2510 and 2520.

With the kind of character-set/player-missile graphics
used in this game, everything is displayed in 8 * 8 squares,
in order to make things manageable enough for BASIC.
But you'll notice that the man moves around pretty
smoothly. If moved in steps of 8, he would skip around
and wouldn't look too good . Instead, he moves in steps
of 2 until he gets to the 8th pixel, because he has to match
the character set graphics display.

The trick is to set two variables to the joystick position
to determine the direction of the player. Each direction has
a variable X- and Y-step, which is either 2 or - 2. A
FOR ... NEXT loop from 1 to 4 displays the player/mis
sile character each time, adding the X- and Y-step values.
Whoa! Did you catch all that?

Each direction the spy may go must have a bit-mapped
graphic stored in a string array. This is so that the play
er/missile graphics routine can display it nice and quick
ly. The only drawback is that each graphic has to have a
different string. "But that's a little too slow for BASIC,"
you say. Fear not.

The way to get around it is to put all your player/mis
sile graphics into one string. Use a variable for the string
pointer of your intended graphic. It goes in steps of 8, be
cause each character should take up 8 bytes. The pointer
is set to whichever graphic you want. All of the data for
your player/missile can be read in with one FOR . .. NEXT
loop, as in Line 2580.

If you were to have an IF ... THEN statement for every
joystick position, your player/missile wouldn't go very fast
at all. I use what's called Boolean algebra. What the heck
is that? Well, it's really simple. Here's an example ...

38 ANALOG COMPUTING

100 S=STICK(0):SX=(S=7 AND X<456)*2-(S=11 AND X> 304)*2

If the conditions inside the parentheses are met (5 = 7
and X < 456). then the value will be a 1. If the conditions
are not met, the value will be a O. If the stick position is
a 7 and X is not too high, then it will be multiplied by
2. This particular expression will give a result of either
a2or-2.

The other Boolean expression used is in Line 110. It's
only purpose is to determine what the pointer for the play
er/missile array will be.

Program breakdown.
Lines 10-70 - A little credit , please!.
Line 80 - Branch to initialization.
Lines 90-230 - Main loop. Movement, etc.
Lines 240-270 - Vaporize case. Make it blow up!
Lines 280-400 - Fall down and/or figure out if it is a

fatal fall.
Lines 410-430 - Death. Figure out if it is the last man.
Lines 440-510 - Emit radiation.
Lines 520-530 - Next screen and see if it is the last.
Lines 540-700 - Display score, then display screen and

go to main loop.
Lines 710-770 - Walk out of plane.
Lines 780-940 - Small init for factory.
Lines 950-1020 - Main loop for factory.
Lines 1030-1180 - Display factory radiation.
Lines 1190-1200 - Check to see if RC robot is stepping

on something harmful.
Lines 1210-1250 - Make RC robot die.
Lines 1260-1290 - Unplug machines.
Lines 1300-1330 - Go back to main loop.
Lines 1340-1510 - Launch satellites and destroy Earth.
Lines 1520-2070 - PRINT #6 values for your graph-

ics screens.
Lines 2080-2230 - Display title screen.
Lines 2240-2350 - Land the Spy Plane, and then dis

play the logo.
Lines 2360-2470 - GAME OVER message wi.th hi.gh

score and last score.
Lines 2480-2520 - Start initializing.
Lines 2530-2560 - P/M mover - by Tom Hudson.
Lines 2570-2590 - Set up data for radiation and exits.
Lines 2600-2660 - Character set initializer - created

by Steven Pogatch.
Lines 2670-2690 - Character set init DATA.
Lines 2700-3010 - Character set graphics DATA.
Lines 3020-3060 - P/M mover DATA.
Lines 3070-3120 - P/M graphics DATA.
Lines 3130-3180 - Radiation DATA.
Lines 3190-3200 - Exit DATA .

Okay, the game's up. I hope you get hours of fun from
Spy Plane II. ~

Mark Comeau is a self-taught BASIC programmer from
Piscataway, New Jersey. This is his fourth program pub
lished by ANALOG Computing. The original Spy Plane
appeared in issue 21. His interests include graffiti art, rock
& roll music, Atari and video games.

ATARI 8-BIT EXTRA

Variables used.
A For P/M mover.
C ATASCII value of the character that the player is on .
D . ATASCII value of the character the player is

stepping on.
OF . . Flag for death fall.
GTM .. Time limit.
GX GR. 2 horizontal position of player.
GY GR. 2 verticle position of player.
IT . . For READing IT.
L(T) All the DATA for the rad iation.
MEN Number of men left .
MN$ Graphics data for player/missile.
PMD . . . Position of MN$ in memory.
S . . . STICK value.
SC Current screen number.
SCQ Score.
T Counter for radiation .
TM Time left to complete screen .
WX Horizontal position of factory portal.
X Horizontal position of player.
Y Vertical position of player.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II ,
in issue 47 of ANALOG Computing.

wE. 10 REM
ij~ 20 REM
UH 30 REM

.,~;~ ~g ~~~
CU 60 REM
WK 70 REM

Listing 1.
BASIC listing.

." ~'~ .• ~g g~~°.ii~~IN LOOP_
100 S=STICK(CO):SX=(S=C7 AND X<456)*C2

X. -(S=Cll AND X>304)*C2
.. 110 PS=(S=C7)*CO+(S=Cll)*C8+(S=C15)*PS
... •.••.. 120 SV=CO: If C=230 THEN SV= (S=C13 AND
:0 V(104 AND D<>71 AND D<>72)*C2-(S=C14 A
\) ND V>C16)*C2: PS=C16
'. 130 fOR IT=Cl TO C4

............ 140 K=K+SX: V=V+SV: A=USR (MOVE, CO, PMB, PM
YL\ D+PS, X, V, C8)
" 150 NEXT IT
~ ; ~ 160 TM=TM+Cl:GX=(X-304)/C8:GV=(V-C16)1

'. C8:LOCATE GX,GY,C
.. ' 170 If C=217 THEN GOSUB 250
"•. 180 If C=71 OR C=72 THEN 370

.• 190 If C=122 THEN 530
... i. 200 If C=105 THEN 790
.. , 210 LOCATE GX,GV+Cl,D:If D=32 AND C<>2
\\ 30 THEN 290

• 220 T=T+RND(CO)*C2:If T>CI0 THEN GOSUB
450

230 GOTO 100
240 REM _VAPORIZE CASE_
250 SCO=SCO+CI0:COLOR 203:PLOT GX,GY
260 fOR IT=C14 TO CO STEP -Cl:S0UND CO
,IT,CO,IT:NEHT IT
270 COLOR 32:PLOT GX,GY:SOUND CO,CO,CO
,CO:RETURN

.. ' 280 REM _fALL_

. 290 If Df=Cl THEN 370
. " ~00 fOR IT=GY TO Cll: LOCATE GX, IT, C

' 310 If C<}32 AND C<>217 THEN 330
" •• 320 NEXT IT: GOTO 370

'. 330 IT=IT-Cl:fOR Y=Y TO IT*C8+C16:S0UN
D CO,V,C14,C4:S0UND Cl,Y+Cl,C14,C4

ATARI 8-BIT EXTRA

\) 340 A=USR (MOVE, CO, PMB, PMD+C16, X, Y, C8)
'\ 350 NEXT Y:Y=V-Cl:S0UND CO,CO,CO,CO:SO

UND Cl,CO,CO,CO
360 GOTO 100
370 fOR Y=V TO 134
380 A=USR(MOVE,CO,PMB,PMD+C16,X,Y,C81
390 SOUND CO,Y+121,C14,C14

, 400 NEXT Y:SOUND CO,CO,CO,CO
.•. 410 REM _DEATH_
'; 420 HX=-Cl:HX2=-Cl:TM=CO:MEN=MEN-Cl:If

MEN<CO THEN 2370
• 430 GOTO 550

) 440 REM _fIRE LAZER_
· 450 If TMYGTM THEN 1350
· 460 T=((INT(RND(CO)*L(SC)))*C3)+L(SC+C

4)
470 LX=L(T):LY=L(T+Cl):LN=L(T+C2):T=CO
480 COLOR 107:GOSUB 510:S0UND CO,C2,C4
,C14

·. 490 LOCATE GX,GY,C:If C=107 THEN 370
, 500 COLOR C20+C12:GOSUB 510:S0UND CO,C

\U\ O,CO,CO:T=CO:RETURN
. j 510 PLOT LX,LY-LN:DRAHTO LX,LY:DRAHTO

'Ft ~~;C~E~ V ~~~~~ ~~~HNWlRETURN
O~530 TM=CO:HH=-Cl:HH2=-C1:SC=SC+Cl:If S

' C=C5 THEN SC=Cl:SCO=SCO+100:Df=Cl:fL=C
1:GTM=GTM-50:GOSUB 550:GOTO 720
540 REM _GOTO SCREEN'"

lL: 550 POKE 77,CO:? UC6;C~(125):POSITIO
ii N C7,C3:? UC6;SCO:COLOR 108:PLOT C7,C5

~~,; ~~~A~;3s~~~~5~: g~! ~~~~~~g~ C~? c~? CO)

~~;; ~~g i ~g~i ::~~~~~~~~~iS~~~~~~~~~::i
zo 590 POSITION CO CI0
g~) ~ ~ g i ~g ~ i : :Ifmj 'i

mi
, i , ir.+.'1tI 'Tnili e';;"'-'M"""ff'lTT':i jrnT' j, i ' i ,""""i, j ,""""i, i I:: i

~I620 If PEEK(53279)-C6 THEN 2370
8BI 630 POKE 708,RND(CO)*255:POKE 710,RND(

~ CO)*255:If STRIG(CO)=Cl THEN 620
ON 640 POKE 708,52:POKE 710,164:POKE 559,

iT CO: POSITION CO, CO: ON SC GOSUB 1530,167
O,1810,1950:COLOR 32

, 650 If HX>-Cl THEN PLOT HX,HY
. 660 If HX2)-Cl THEN PLOT HX,HY
· 670 HHX=HX:HHX2=HX2

1 680 If HX<CO OR HH2<CO THEN PLOT D((SC
-Cl)*C2),D((SC-Cl)*C2+Cl)

· 690 If Sf=Cl THEN Sf=CO:RETURN
. 700 POKE 559,46:GOTO 100

.. ' 710 REM _HALK OUT Of PLANE_
' 720 POKE 559,46:Y=32:fOR X=368 TO 383
; 730 A=USR(MOVE,CO,PMB,PMD,X,Y,C8)

".; 740 NEXT X
; 750 fOR Y=32 TO 55
· 760 A=USR(MOVE,CO,PMB,PMD+C16,X,Y,C8)
770 NEXT Y:GOTO 100
780 REM _fACTORY_
790 POKE 559,CO:POSITION CO,CO
800 ? UC6;leeeeeeeeeeeeeeeeeeee";

·. 810 ? UC6;lIeG II e";
.... " 820 ? UC6; lie :~~~~ e";

(830 ? UC6;"e _~~~~_ e";
840 ? UC6;"e: : e";
850 ? UC6;"ew e";
860 ? UC6; "ew e";

870 ? UC6;"e II":" II":' e"; 880 ? UC6' "em dillill... e":
890 ? UC6; lIem~";jJ.~ e";
900 ? UC6;"e e";
910 ? UC6;leeeeeeeeeeeeeeeeeeee";
920 POKE 559,46
930 fOR I=CO TO C3:S0UND I, (RND(CO)*C5
)+CI0,C8,C2:NEXT I
940 RH=448:RV=96:P=CO:IT=CO
950 REM _RC ROBOT MOVEMENT_
960 S=STICKCCOl :RH=RX+CS=C7)*C8-(S=Cll

ANALOG COMPUTING 39

• Spy plane II continued

)*C8:RV=RV+(S=CI3)*C8-(S=CI4)*C8
~70 A=USR(MOVE,CO,PMB,PMD+24,RH,RY,C8)
~80 GM= CRM-304) IC8: GV= (RY-CI6) /C8: LOCA
TE GM,GY,C
~~O If C=105 THEN 1310
1000 If C=243 THEN COLOR 23~:PLOT GM,G
Y:GOSUB 1270

. 1010 If C=248 THEN COLOR 237:PLOT GX,G
Y:SOUND IT,CO,CO,CO:IT=IT+Cl:GOSUB 127
o
1020 TM=TM+Cl:If C<>32 THEN 1200
1030 REM IIIRADIATIONIll
1040 B=B+RND(CO)*Cl:If B<CI0 THEN ~60
1050 B=CO:T=INT(RND(CO)*C6)+Cl:S0UND C
0,CI4,C2,CI4
1060 If T=Cl THEN LX=C2:MX=CI8:LY=C5:M
Y=C5
1070 If T=C2 THEN LX=C2:MX=CI8:LY=C6:M
V=C6
1080 IF T=C3 THEN B=Cl:LX=C3
10~0 IF T=C4 THEN B=Cl:LM=C6
1100 IF T=C5 THEN B=Cl:LM=CI2
1110 IF T=C6 THEN B=Cl:LM=CI5
1120 COLOR 107:IF B=CO THEN PLOT LM,LV
:DRAHTO MM,MV
1130 If B=Cl THEN PLOT LX,C5:DRAHTO LX
,C6:DRAHTO LX+Cl,C6:DRAHTO LM+Cl,C5
1140 LOCATE GM,GY,C:If C=107 THEN 1220
1150 COLOR 32:IF B=CO THEN PLOT LX, LV:
DRAHTO MM,MY
1160 If B=1 THEN PLOT LX,C5:DRAHTO LX,
C6:DRAHTO LX+Cl,C6:DRAHTO LX+Cl,C5
1170 SOUND CO,CO,CO,CO:IF IT=CO THEN S
OUND CO,C4,C8,C2
1180 GOTO ~60
11~0 REM IIIDEATH?III
1200 If C=243 OR C=248 OR C=237 OR C=2
3~ OR C=242 THEN ~60
1210 REM IIIDEATHIll
1220 fOR IT=Cl TO C3:S0UND IT,CO,CO,CO
:NEMT IT:Sf=CO
1230 fOR IT=C8 TO CO STEP -1:POKE 712,
RND(CO)*255:POKE 707,RND(CO)*255:S0UND

CO,RND(CO)*255,C4,CI4
1240 A=USR(MOVE,CO,PMB,PMD+24,RX,RY+C8
-IT, In
1250 NEXT IT:SOUND CO,CO,CO,CO:POKE 71
2,CO:POKE 707,CI4:HM=-Cl:HM2=-Cl:GOTO
420
1260 REM IIIPLUGS OR fAUCETS'"
1270 fOR V=CO TO CI0:S0UND CO,V,CO,V+C
4:NEXT V:SOUND CO,CO,CO,CO
1280 SCO=SCO+C20:P=P+Cl:IF P=C8 THEN C
OLOR 105:PLOT CI8,CI0
12~0 RETURN
1300 REM IIIGO BACKIII
1310 RM=X:RY=Y
1320 M=RX:Y=RY:HM2=HX:WY2=WY:SF=Cl:GOS
UB 550:M=RX:Y=RV : HM=(M-304)/C8:HY=(V-C
16)/C8
1330 COLOR 217:PLOT HM,HY:POKE 55~,46:
SCO=SCO+I00 : GOTO 100
1340 REM IIIDESTROY EARTHIII
1350 ? UC6i"IIi":POSITION CO,C~
1360 ? UC6; "B AB "i
1370 ? UC6i"CB AB ABABI"lCCBAB"i
1380 ? UC6i"CCBACCBABACCCCCCCCCC"i
13~0 A=USR(MOVE,CO,PMB,PMD,CO,CO,CO)
1400 fOR IT=CO TO CI5:S0UND CO,RND(CO)
*255,C8,IT
1410 FOR X=200 TO 100 STEP -CI0:S0UND
Cl,X,CI4,IT:NEXT M
1420 NEMT IT:SOUND Cl,CO,CO,CO
1430 FOR IT=CO TO Cl~:M=RND(CO)*Cl~:CO
LOR 107:PLOT M,C~:PLOT M,C8
1440 FOR V=C8 TO CO STEP -Cl:COLOR 240
:PLOT M,Y:COLOR 32:PLOT X,Y+Cl:S0UND C
0,Y+C4,CO,Y+C4

40 ANALOG COMPUTING

1450 NEXT Y:NEXT IT
1460 FOR IT=CO TO 50:H=RND(CO)*Cl~:SOU
ND CO,CO,CO,CO:LOCATE X,CO,C
1470 IF C=240 THEN SOUND CO,C~,C4,CI4:
COLOR 107:PLOT X,Cl:DRAHTO M,Cll:COLOR

32:PLOT H,Cl:DRAWTO H,Cll
1480 NEXT IT
14~0 SOUND CO,CO,CO,CO:fOR I=CI4 TO CO

STEP -Cl:M=RND(CO)*255:POKE 712,X:POK
E 710,I:SOUND CO,M,C8,CI4
1500 NEMT I
1510 POKE 712,CO:SOUND CO,CO,CO,CO:GOT
o 420
1520 REM IIISCREEN ul111
1530 ? UC6;"B ABAB I"l";
1540 ? UC6;"CB AB ACCCCBAC"i
1550 ? UC6i"CCBACCBd ~ACCCCCCCC"i
1560 ? UC6i"CCCCCCCeee CCCCCCCCC"j
1570 ? UC6i"HGHGJHGHGH HGHGHGHGH";
1580 ? UC6;"f i ~~ ~ ~ ~ ~";
15~0 ? UC6j" GHG GHGHGHGHGJHG "i

. .. 1600? UC6;" ~ i~ , "i
••...... : .. : : ..•. 1610 ? UC6;" HJGHGHG GG G "; ••.. : .. 1620 ? UC6;" HGHGH";
·: .. · .• :. 1630 ? UC6;" ~ ~ ~ ~ ~z" j
·•·.·•··.· .. · .••. 1640 ? UC6; "GHGHGHGHGHGHG GHGHGH" i
..•.) 1650 M=384: V=56 : RETURN

.. .• 1660 REM IIISCREEN U2,
1670 ? UC6;" ~ i ~ ~ ~ ~";
1680 ? UC6;"GHGH GJH HGJHGH "i
16~0 ? UC6; "I "i 1700 ? UC6;" G HGH GJHGHGHGHGHGH";

...... ·tm ! :~t:: HGH mG~G~Jl::j

.:•• 1740 ? UC6; "HGHG ~ ~ ~i "i

: .. :•..... :•...•. :• 1750 ? UC6 j" ~ GHGHGHGHGH GHG "i .• : .. 1760 ? UC6 j "GHGH "i
•. ·.·: .. ·. 1770 ? UC6j"~ ~ ~ ~ z~ ~ ";

.) 1780 ? UC6;"HGHGHGHGHGHGHGHGHGHG"i
i < 17~0 M=304: Y=CI6: RETURN

< .). 1800 REM IIISCREEN U31
.\ 1810 ? UC6; ~ ~ 't~ ~ ~";

· ...••. · •..•.••..•.•.••.•.. :a:ni ~ ~Ul ::~~J~,::GJHG H:J~!!j
..•. :. : .• 1870 ? UC6' HHHGHG §'"

) 1880 ? UC6; i~ ~ G HGHGHG ,,;
: :.: ::::. 18~0 ? UC6 i G G GGGGGG J i "i < 1~00 ? UC6j" Z[] GHGH";

1~10 ? UC6j" GW ~ ~ ~";
.... \ 1 ~20 ? UC6 j "HGHGH GHGHGHGHGHGHGH" i

.. 1 ~30 X=328: Y=CI6: RETURN
> \ IHO REM IIISCREEN u4111

> 1950 ? UC6 j " ~i~ ~ ~~ Z ~ "i
.. 1 ~60 ? UC6 j" GGGG GGGGG GGGG" i

i . i 1 ~70 ? UC6 i" ~ ~ ~ ~ "i .• : un ! i~F :JG G~G:G~p:~:~ G: ::1
2020 ? UC6i" GGG GGGGGGG G "i
2030 ? UC6i" G ~ ~i~ ~ ~ "i
2040 ? UC6i" GJGG GGJGGG GG ";
2050 ? UC6i" ~ ~ ~ ";
2060 ? UC6j"GGGGGGGG GGGGGGGGGGG";
2070 X=312:V=CI6:RETURN
2080 REM IIITITLE SCREENIII
20~0 GRAPHICS CI8:POKE 55~,CO:POKE 756
,PEEK(106)+Cl:POKE 704,CI4:POKE 708,CO
:POKE 70~,CI5:POKE 710,CO:POKE 711,52
2100 ? UC6i"NNNNNNN=>?~VNNNNNNNN"i

.. 2110 ? UC6 i "UUUUUUUUUTUUUUUUUUUU" i

.•••• ~g: i :g~ ~ ::Iilililililili'mfl*:iilililililililil:: i
•. 2140 ? UC6 i "NNNNNNN- ?~VNNNNNNNN" i

ATARI 8-81T EXTRA

... \ 2150 ? nC6 i "UUUUUUUUUTUUUUUUUUUU"

'Ill: f ~Jmlllii~:;II::
2220 POKE 55~,46:B-C10:V-CO
2230 IF STRIGCCOl=CO OR S=0.1 THEN 227
o
2240 REH IIILANDIll
2250 FOR I=CO TO 33:B=B*0.~1:V=V+B:A=U
SRCHOVE,CO,PHB,PMD+32,360,V,C8)
2260 SOUND CO,V*2.6,C14,C14:S0UND C1,V
*2.6,C14,C14:S0UND C1,V , C8,C14:NEXT I
2270 COLOR 100:PLOT C7,C10:A=USRCHOVE,
CO,PHB,PHD,CO,CO,COl
2280 SOUND C1,CO,CO,CO:SOUND CO,CO,CO,
CO
22~0 FOR I=CO TO 100:NEXT I
2300 SOUND CO,100,C13,C14:S0UND CO,CO,
CO,CO:COLOR 108:PLOT C8,C10
2310 FOR I=CO TO C14:POKE 708,I:POKE 7
10,I:FOR B=CO TO C10:NEXT B:NEXT I:IT=
CO:5=0.1
2320 POKE 708,RNDCOl*255:POKE 710,RNDC
COl*255
2330 IF STRIGCCOl=CO THEN 2440
2340 IT=IT+C1:IF IT}250 AND SC}CO THEN

2370
2350 GOTO 2320
2360 REH "'GAHE OVERIII
2370 IF H!\sCO THEN HI=SCO
2380 A=USRCHOVE,CO,PHB,PHD,CO CO COl
23~0 GRAPHICS 18:? nC6i" ,ft';lMl «'IIJ 04 i!"
:? nC6:? nC6i" score":? nC6i"

"iSCO:? nC6:? nC6i" high score"
2400 ? nC6i" "iHI:IT=CO:POKE 70~,
C14:POKE 708,100
2410 IT=IT+C1:POKE 710,RNDCCOl*255
2420 IF STRIGCCOl=CO OR IT}100 THEN 20
~O
2430
2440
2450
,70

GOTO 2410
IF STRIGCCO)=CO THEN 2440
POKE 708,52:POKE 710,164:POKE 711

2460 SC=C1:WX=-C1:WX2=WX:SCO=CO:HEN=C3
:DF=CO:SF=C1:TH=CO:GTH=500
2470 GOSUB 550:GOTO 720
2480 REH IIIINITALIZATIONIll
2490 REH
2500 REH IIIP/H HOVERIII
2510 READ CO,C1,C2,C3,C4,C5,C6,C7,C8,C
~,C10,C11,C12,C13,C14,C15,C16,C17,C18,
C1~,C20
2520 DATA O,l,2,3,4,5,6,7,8,~,10,11,12
,13,14,15,16,17,18,1~,20
2530 DIH PHHOV$(100l,HN$(40l,XFR$(38l,
L (50) , D CC7l
2540 POKE 55~,CO:POKE 712,52:HOVE=ADR(
PHHOV$) :RESTORE 3030:FOR B=C1 TO 100:R
EAD IT:PHHOV$CB)=CHR$CIT):NEXT B
2550 FOR B=C1 TO 40:READ IT:HN$CB)=CHR
$ CIT) : NEXT B
2560 PHBASE=INTCCPEEKC1(5)+C3l/C4l*4:P
OKE 5427~,PHBASE:PHB=PHBASE*256:PHD=AD
RCMN$):POKE 53277,C3
2570 REM "'DATA SETUplll
2580 RESTORE 3140:FOR B=C1 TO 50:READ
IT:LCB)=IT:NEXT B
25~0 FOR B=CO TO C7:READ IT:DCBl=IT:NE
XT B
2600 REM IIIChar.Set INITIII
2610 POKE 712,1~0:POKE 106,PEEKC1(6)-C
5:START=CPEEKC1(6)+C1)*256:POKE 756,ST
ART/256
2620 RESTORE 2680:FOR B=C1 TO 38:READ
IT:XFR$CB)=CHR$CIT) :NEXT B

ATARI 8-BIT EXTRA

2630 A=USRCADRCXFR$» :B=232:READ IT
2640 IF IT=-Cl THEN 20~0
2650 FOR V=CO TO C7:POKE B+V+START,IT:
READ IT:NEXT V
2660 B=B+C8:GOTO 2640
2670 REH IIIDATA~Char.Set Initlll
2680 DATA 104,16~,O,133,203,133,205,16
~,224 , 133,206,165,106,24,105,1,133,204
,160,0,177,205,145,203,200,208
26~0 DATA 24~,230,204,230,206,165,206,
201,228,208 237,~6
2700 REH _Char,Set SHAPE DATAIII
2710 DATA 120,248,1~5,242,122,27,251,2
43
2720
2730
2740
2750
2760
2770
255

DATA
DATA
DATA
DATA
DATA
DATA

0,0,172,172,172,188,24,24
120,108,10~,109,121,~7,~7,~7
O,O,157,14~,14~,157,213,213
O,5,5,23,23,~5,~5,255
O,64,1~2,208,248,250,254,255
255,255,255,255,255,255,255,

2780 DATA O,O,O,1~2,118,63,112,l~2
27~0 DATA 255,17,255,136,255,17,255,13
6
2800 DATA 12~,12~,1~5,1~5,12~,12~,1~5,
1~5
2810
2820
2830
2840
26

DATA
DATA
DATA
DATA

255,153,255,255,23~,170,34,O
255,153,255,255,221,213,6~,O
0,0,24,60,52,60,60,60
255,153,255,255,21~,24,126,1

•.....•.• ~g~g
·.· 2870

.. .. ·. ·· .• · 2880
..•...•..•••..•• 28~0
.. ...••. 2~00
. .. 2~10

DATA
DATA
DATA
DATA
DATA
DATA
DATA

84,130,37,74,145,36,80,~
24,52,24,58,~2,24,100,70
~6,32,112,255,255,112,O,O
0,0,0,0,0,0,255,255
0,56,252,63,63,252,56,0
12~,~O,60,126,126,60,~O,12~
126,126,24,21~,255,255,153,2 ····· 55

2920
2~30
2~40
2~50
2~60
2~70
128

DATA
DATA
DATA
DATA
DATA
DATA

0,0,0,255,255,0,0,0
0,224,240,255,255,240,224,0
0,126,126,36,36,36,126,126
0,255,255,0,0,0,0,0
O,O,215,214,215,246,11~,11~
128,240,131,255,255,131,240,

2~80 DATA 48,32,112,255,255,112,0,0
2~~0 DATA 0,0,0,60,36,126,126,126
3000 DATA 60,231,66,1~5,66,1~5,66,1~5
3010 DATA -1
3020 REH IIIDATA FOR P/H HOVERIII
3030 DATA 216,104,104,104,133,213,104,
24,105,2,133,206,104,133,205,104,133,2
04,104,133,203,104,104,133,208
3040 DATA 104,104,133,209,104,104,24,1
01,20~,133,207,166,213,240,16,165,205,
24,105,128,133,205,165,206,105
3050 DATA 0,133,206,202,208,240,160,0,
162,O,l~6,20~,144,1~,1~6,207,176,15,13
2,212,138,168,177,203,164
3060 DATA 212,145,205,232,16~,O,240,4,
16~,O,145,205,200,1~2,128,208,224,166,
213,165,2~157,O,208,~6
3070 REH ... P/H SHAPE DATAIII
3080 DATA 24,52,24,58,~2,24,100,70
30~0 DATA 24,44,24,~2,58,24,38,~8
3100 DATA 24,36,24,60,~O,24,36,102
3110 DATA 4,132,100,164,60,126,165,126
3120 DATA-2L0,1~2,118,63,112,1~2,O
3130 REM ... LAZER DATA
3140 DATA 3,4,3,4,~,18,30,3~

•· ... i 3150 DATA 2,10,1,4,7,2,16,8,1
<) 3160 DATA 8,2,0,15,2,0,8,7,3,15,10,4

3170 DATA 8,5,3,12,10,6,17,6,4
· .•• 3180 DATA...1.10,6,4,10&11,10,O,13,4,O

.. / 31~0 REM ... EXIT DATA ...
' 3200 DATA 1~,10,10,10,5,~,15,O

•
ANALOG COMPUTING 41

ANA~' CompUtJng; -:
the #1 magazine for ' Ata:ri -
owners, brings you the Atari
Users' Group on . Delphi. We after ,

. ',',' , . ~;. ' " .). ." . ",
a message forum and an extensive
database for up- or downloading-all from
as little as 10 cents per minute from most U.S.
cities, with no additional telephohe charges and no
extra charge for 1200 or 2400 bps. We'll use the group's
conference feature for electronic meetings with well known
Atarians and, of course, ANALOG staff. Bring on your toughest
questions!

by Paul T. Sprague

Reversi is a strategy game written in Action!, a won
derfullanguage from OSS. It's not only very fast in com
pilation and execution, but also has the best editor I've
ever seen. Action! makes it possible to write games such
as this one in a high-level language-and yet still be able
to realize the speed of assembly language (or very close
to it).

The rules of Reversi are quite easy to grasp. The board
starts out with two white pieces and two black pieces in
the center (as you'll see when you start up the program).
White moves first, then black , then white, etc until all
squares are taken up, or neither player can move.

A move consists of placing your piece on an empty
square, thereby capturing all your opponent's pieces be
tween your played piece and another piece of your color.
Your pieces must be flanking those of the opponent, with
no squares left empty between the pieces.

These captures may take place horizontally, vertically,
or diagonally. Also, you may capture pieces in more than
one direction in a single move (even in all eight direc
tions).

The pieces thus taken become your color; so ends your
turn.

One important point: you must capture at least one
piece in order to make a legal move. If you can't do this,
you must pass and allow your opponent to move again.

ATARI a-BIT EXTRA

•

The winner is the player with the most pieces of their
color on the board when the game ends.

That's all you need to know to play Reversi. The rules
may seem quite simple, but , the more you play, the more
strategies you find which are important for good play.

The fine points.
This Reversi program allows for three different modes

of operation. A menu of these appears after the board has
been drawn at the beginning of the game.

The computer will ask you to choose a playing mode:
1 for computer vs computer, 2 for human vs computer and
3 for human vs human . Pressing either 1, 2, or 3 at this
point will select the appropriate mode. Note that you don't
need to (nor should you) press RETURN after entering the
number.

In mode 1 (computer vs computer), you'll be asked to
select the strategy level for the white and black sides. The
game will then begin, and you'll see white and black ex
changing moves on-screen until the game's over. This prob
ably isn't really helpful in learning game strategies, but
it is quite interesting to watch.

Mode 2 (human vs computer) first prompts you to se
lect the color (white or black) you wish to play. To do this,
simply press W for white or B for black. (The computer
automatically plays the opposite color; it never argues
well, almost never.) Once colors are selected and you
choose the skill level of the computer (more on this later) ,
play begins. If you're white, you'll go first. Otherwise, the

ANALOG COMPUTING 43

• Reversi continued

computer will make the first move. Regardless of which
color you pick, you'll always use joystick 1 in this mode.

Mode 3 (human vs human) allows you to play against
a friend. In this mode, joystick 1 is the white player and
joystick 2 is the black.

To move, you must have a joystick plugged into the cor
rect port. The cursor appears on-screen and may be moved
around via joystick. Place the cursor on the square to
which you wish to move and press the fire button. If the
square is a legal one for your move, a piece of your color
will appear there, while all pieces which your move cap
tured will be changed by the computer. If you have no le
gal move, then you must forfeit your turn by pressing P
(Pass) on the keyboard.

At the end of each game, the computer will ask wheth
er or not you'd like to play another game. If you want to
play again , press the Y key. This will cause the game board
to be reinitialized and the starting menu to appear.

As mentioned above, in each case where the computer
plays one or both sides, it will ask you to select a skill level
for each color. Here are the basic strategies for each level.

Good: The second level, using the least strategy of
the three, plays simply for capture of the most pieces.
This is the way most beginners play. Soon , however,
it becomes evident that more thought is necessary.

Better: The second level combines the previous
method with a knowledge of w hich squares are bet
ter to hold . The map of numbers you see at the be
ginning of the program (Listing 1) accomplishes this.
However, in this level the map is static (it doesn't
change as the game progresses).

Best: Our third level also uses the map, but has map
updates in special cases, to account for possible
changes in the strategic value of a square. Although,
in play against humans, this level seems quite a bit
better than the second, when the two levels are played
head-to-head, the difference is not particularly evi
dent. The third level seems to win a majority of the
time-but not a large majority, by any means. Another
interesting change in this level's strategy is that, for
the first part of the game, it doesn't try to capture the
most pieces, but the least! This may seem backwards,
but usually plays well . See if you can fi gure out why.

Here's a quick summary of each function and procedure
in the program.

SET_CHIP: Places a piece of the current color into
the board array at XC,YC.

TEST _SQR: Returns the value of the square XC,YC
in the board array.

PLACE_CHIP: Places a piece of the current color
into the board array at XC,YC and draws it on the
screen board .

PSCORE : Switches inverse lettering to the current
player color and prints the score.

GET_LEVE L: Inputs strategy level.
INITI ALIZE: Sets up screen and array board , gets

mode and levels, sets initial score and prints it.
FLIPPER: If FLIP _ FLAG=O, then count the num

ber of chips captured by the move XC,YC. If FLIP _

44 ANALOG COMPUTING

FLAG = 1, then actually capture the chips for the move
XC,YC.

UPDATE_VALUES: If a move is made to a corner,
then make the squares adjacent to the move valuable.

COMPUTER: Get a computer move.
PLAYER: Get a human player move.
MAKE_MOVE: As the name implies ...
MAIN : The primary game loop, with end-of-game

checking.
I hope that some of you will look at the code, figure out

how the strategies work and try to come up with stronger
ones. It really is fun to program a strategy, then pit it
against one of the other strategies. If you come up with
a really good one, or you have any questions or comments,
please write to Reader Comment in the pages of ANALOG
Computing.

Good luck . Hope your life is filled with lots of Action! 5=!

Paul T. Sprague has his bachelor of science degree in
Electrical Engineering and works a s an Associate Engineer
of Design and Development fo r Raytheon. He's had his
Atari 800 for seven years and Action! for two and one-half
They make a great pair!

Listing 1.
Action! listing.

REVERSI in Action!
Written by Paul T. Sprague

j
j [A8

6D
C1
30
<J7
DA

B ... TE

CHECKSUH DATA
A8 F6 7E 6B 8B CA
02 1D FO F3 4<J A6
E1 E3 44 20 <J<J F5
D8 B3 E<J B<J 83 64
61 DA 34 AD OE 84
61 EB]

8A
<JA
50
6D
5B

WHITE_SCORE,BLACK_SCORE,
KE ... =S2FC,CURSOR=S2FO / ATTRACT=77 ,
PRO_COLOR,OPP_COLOR,
HOVEH,HOVE ... , HOVE,JO ... H,JO

B ... TE ARRA ... FRESH_BOARD(128) =

[15 0 6 6 6 6 0 15
0 0 1 1 1 1 0 0
6 1 4 2 2 4 1 6
6 1 2 0 0 2 1 6
6 1 2 0 0 2 1 6
6 l ' 4 2 2 4 1 6
0 0 1 1 1 1 0 0

15 0 6 6 6 6 0 15

15 0 6 6 6 6 0 15
0 0 1 1 1 1 0 0
6 1 4 2 2 4 1 6
6 1 2 0 0 2 1 6
6 1 2 0 0 2 1 6
6 1 4 2 2 4 1 6
0 0 1 1 1 1 0 0

15 0 6 6 6 6 0 15]

VALUE_BOARD (128) ,
BOARD C6~WB (2) , LEVEL (2) I

WHITE=" ,. , BLACK="~"

PROC SET_CHIPCB ... TE HC/"'C)
BOARD CHC+ ... C*8) =PRO_COLOR

RETURN

,

ATARI 8-BIT EXTRA

BVTE FUNC TEST_SQRCBYTE XC,VC)
RETURN CBOARDCXC+YC*8»

PROC PLACE_CHIPCBVTE XC,VC)
SET_CHIP CXC, VC)
XC=CXC+2)*4+17 VC=CYC+1)*4
COLOR=PRO_COLOR+l
PLOTCXC,VC)
DRAWTO(XC+2,VC+2)
PLOT (XC, YC+1)

DRAWTOCXC+2,VC)
DRAWTOCXC,VC+2)
PLOT CXC+l, VC+1)

RETURN

PROC PSCORE ()
PRINTC"tt")
IF PRO_COLOR=1 THEN

PRINTC" [ffiIill
PRINTEC"BLACK")

ELSE
PRINTC" WHITE
PRINTE C"m:m::l")

FI
PRIHTF(" XB

,WHITE_SCORE,BLACK_SCORE)
RETURN

")

II)

XB XE"

PROC GET_LEVEL C CHAR ARRAV
COLOR_STR , BVTE TEMP1)

BVTE CHOICE
DO

PRINTC"IliPRESS NUMBER TO SELECT")
PRINTFC" XS LEVEL:XE",COLOR_STR)

PRINTEC" ~ - GOOD")
PRINTEC" - BETTER")
PRINT C" - BEST")
CHOICE=GETD (7)

UNTIL CCHOICE)$30)ANDCCHOICE{$34)
OD

LEVELCTEMP1)=CHOICE-$30
RETURN
PROC INITIALIZE C)

CHAR TEMP
BVTE I,J,CHOICE
JOVX=38 JOVV=17 KEV=255
CLOSE(7) OPENC7,"K:",4,O)
GRAPHICS(5) SETCOLORC4,12,5)
SETCOLORC2,O,O) SETCOLORC1,O,12)
SETCOLORCO,O,8)
FOR I=O TO 63 DO

BOARD CIl =0
OD
FOR I=O TO 127 DO

VALUE_BOARDCI)=FRESH_BOARDCI)
OD
COLOR=1
FOR I=24 TO 56 STEP 4 DO

PLOTCI,3) DRAWTOCI,35)
PLOTC25,I-21) DRAWTOC55,I-21)

OD
PRO_COLOR=1

PLACE_CHIPC3,3) PLACE_CHIPC4,4)
PRO_COLOR=2

DO
PLACE_CHIPC3,4) PLACE_CHIPC4,3)

PRINTEC"IliPRESS NUMBER TO SELECT:")
PRINTC" [! - COMputer vs. ")
PRINTEC"COMputer")
PRINT(" ~ - HUMan vs. ")
PRINTEC"COMputer")
PRINT C" ~ - HUMan vs. ")
PRINTC"HuMan ")
CHOICE=GETD(7)

UNTIL CCHOICE)$30)ANDCCHOICE{$34) OD
IF CHOICE=$31 THEN

HBCO)=2 WB(1)=2
GET_LEVEL C WHITE , 0)
GET_LEVEL C BLACK , 1)

ELSEIF CHOICE=$33 THEN
HBCO)=O HB(1)=1

ATARI 8-BIT EXTRA

ELSE
DO

PRINTC"1Ii WHICH COLOR DO VOU")
PRINTC" WANT [W/B1 1")
TEMP=GETD(7)

UNTIL CTEMP='W)ORCTEMP='B) OD
IF TEMP='W THEN

WBCO)=O WB(1)=2
GET_LEVEL C BLACK , 1)

ELSE

FI
FI

HBCO)=2 WB(1)=0
GET_LEVEL (WHITE , 0)

PRINTC"IIi") CURSOR=1
HHITE_SCORE=2 BLACK_SCORE=2
PRO_COLOR=1 OPP_COLOR=2
PSCORE ()

RETURN

BVTE FUNC FLIPPERCBVTE XC,VC,
FLIP_FLAG)

BVTE TMPX,TMPV,FLIPS,COUNT,FLAG,TEMP
INT I,J
FLIPS=O
IF TEST_SQRCXC,VC)=O THEN

FOR J=-1 TO 1 DO FOR I=-1 TO 1 DO

FI

IF CIUO)ORCJUO) THEN
TMPX=XC TMPV=VC
COUNT=O FLAG=O
DO

TMPX==+I TMPV==+J
IF CTMPX(8)ANDCTMPV{8) THEN

TEMP=TEST_SQR(TMPX,TMPV)
IF TEMP=O THEN

FLAG=2
ELSEIF TEMP=OPP_COLOR

THEN
COUNT==+1

ELSE
FLAG=1

FI
ELSE FLAG=2

FI
UNTIL FLAGUO OD
IF FLAG=1 THEN

FLIPS==+COUNT
IF FLIP_FLAG=1 THEN

TMPX=XC TMPV=VC
FLAG=O
DO

TMPX==+I TMPV==+J
TEMP=TEST_SQRCTMPX,TMPV)
IF TEMP=OPP_COLOR THEN

PLACE_CHIPCTMPX.TMPV}
ELSE

FLAG=1
FI

UNTIL FLAGUO OD
FI

FI
FI

OD OD

RETURN CFLIPS)

PROC UPDATE_VALUES C)
IF CMOVEXXMOVEV)=O THEN

VALUE_BOARDCCPRO_COLOR-1)*64+1)=8
VALUE_BOARDCCPRO_COLOR-l)*64+8)=8
VALUE_BOARD(CPRO_COLOR-1)*64+~)=8

ELSEIF CMOVEX=0)ANDCMOVEV=7) THEN
VALUE_BOARDCCPRO_COLOR-1)*64+48)=8
VALUE_BOARDCCPRO_COLOR-l)*64+4~)=8
VALUE_BOARDC(PRO_COLOR-l)*64+57)=8

ELSEIF CMOVEX=7)ANDCMOVEV=0) THEN
VALUE_BOARDCCPRO_COLOR-l)*64+6)=8
VALUE_BOARDCCPRO_COLOR-l)*64+14)=8

ANALOG COMPUTING 45

• Reversi continued

UALUE_BOARD((PRO_COLOR-1)*64+151=S
ELSEIf (HOUEH=71AND(HOUEV=71 THEN

UALUE_BOARD((PRO_COLOR-1)*64+54) S
UALUE_BOARD((PRO_COLOR-1)*64+55) S
UALUE_BOARD((PRO_COLOR-1)*64+62) S

fI
RETURN

PROC COHPUTER ()
BVTE BEST,SCORE,COUNT,HC,VC,TEHP
BVTE ARRAV CHOICEH(1')
BVTE ARRAV CHOICEV(1')
BEST=O COUNT=O
fOR VC=O TO 7 DO fOR HC=O TO 7 DO

SCORE=fLIPPER(HC,VC,O)
If SCORE>O THEN

IF LEUEL(PRO_COLOR-1)=2 THEN
SCORE==+UALUE_BOARD(

(PRO_COLOR-1)*64+VC*S+HC)
ELSEIf LEUEL(PRO_COLOR-1)=3

THEN

FI

If HHITE_SCORE+BLACK_SCORE(30
THEN

SCORE=(25-SCORE)/3+
UALUE_BOARD((PRO_COLOR-
1) *64+VC*S+HC)

ELSE
SCORE==+UALUE_BOARD(

(PRO_COLOR-1)*64+VC*S+HC)
fI
IF UALUE_BOARD((PRO_COLOR-1)*

64+S*VC+HC)=0 THEN
SCORE=1

fI

If SCORE=BEST THEN
CHOICEH(COUNT)=HC
CHOICEV(COUNT)=VC
COUNT==+1

ELSEIf SCORE)BEST THEN
COUNT=1
CHOICEH(O)=HC
CHOICEV(Ol=VC
BEST=SCORE

FI
fI

OD OD
If BEST=O THEN

HOUEH=S HOUEV=S
ELSE

fI

TEHP=RAND (COUNT)
HOUEH=CHOICEH(TEHPl
JOVH=(HOUEH+21*4+1S
HOUEV=CHOICEV(TEHPl
JOVV=(HOUEV+1)*4+1
If LEUEL(PRO_COLOR-11=3 THEN

UPDATE_UALUES ()
fI

RETURN

PROC PLAVER(BVTE STICK_NUH)
BVTE TEHP,SH,SV,FLAG,R,I,J
KEV=255 TEMP=LOCATE(JOVH,JOVV)
IF TEHP=O THEN

COLOR=1
ELSE

COLOR=5-TEHP
FI
PLOT(JOVH,JOVVl SH=JOVH SV=JOVV
DO

R=STICK(STICK_NUH)
If (R&SS)=O THEN JOVH =+4 fI
If (R&S4)=0 THEN JOVH =-4 fI
If (R&S21=0 THEN JOVV =+4 FI
If (R&S11=0 THEN JOVV =-4 fI
IF R~15 THEN

IF JOVX(26 THEN JOVX=54

46 ANALOG COMPUTING

ELSEIF JOVH)54 THEN JOVH=26
fI
IF JOVV(5 THEN JOVV=33

ELSEIF JOVV)33 THEN JOVV=5
fI
POSITION(SX,SV) PUTD(6,TEHP)
SH=JOVH SV=JOVV
TEHP=LOCATE(JOVX,JOVVl
If TEHP=O THEN

COLOR=1
ELSE

COLOR=5-TEHP
FI
PLOT(JOVX,JOVV)
SOUND(O,200,10,S)
fOR 1=0 TO 200 DO fOR J=O TO 10

DO OD OD
SNDRST ()
fOR 1=0 TO 200 DO fOR J=O TO 50

DO OD OD
fI
fLAG=O
IF STRIG(STICK_NUH1=0 THEN

HOUEX=(JOVH-1S)/4-2
HOUEV=(JOVV-l)/4-1
If FLIPPER(HOUEX,HOUEV,Ol)O THEN

fLAG=1
FI

fI
IF KEV=10 THEN

fLAG=2
fOR 1=0 TO 7 DO FOR J=O TO 7 DO

If fLIPPER(I,J,Ol)O THEN
fLAG=O .

FI

1=7 J=7
fI

OD OD
KEV=255
HOUEX=S
HOUEV=S

UNTIL (FLAG~O) OD
POSITION(SH,SV) PUTD(6,TEHP)
KEV=255

RETURN

PROC HAKE_HOUE(BVTE XC,VC)
BVTE Nf
CARD I
NF=FLIPPER(XC,VC,O)
IF PRO_COLOR=1 THEN

HHITE_SCORE==+NF+1
BLACK_SCORE==-Nf

ELSE
BLACK_SCORE==+Nf+1
HHITE_SCORE==-Nf

fI
NF=fLIPPERCHC,VC,l)
PLACE_CHIPCHC,VCl
SOUNDCO,SO,10,Sl
fOR 1=0 TO SOO DO OD
SOUNDCO,O,O,Ol
ATTRACT=O

RETURN

PROC HAIN ()
BVTE PASS
CHAR TEHP
DO

INITIALIZE ()
PSCORE ()
DO

If HBCPRO_COLOR-11=2 THEN
COHPUTER ()

ELSE
PLAVERCHBCPRO_COLOR-l11

fI
If HOUEH=S THEN

ATARI 8-BIT EXTRA

PASS==+l
ELSE

PASS=O
MAKE_MOVECMOVEX,MOVEV)

FI
PRO_COLOR=OPP_COLOR
OPP_COLOR=3-0PP_COLOR
PSCORE ()

UNTIL CHHITE_SCORE+BLACK_SCORE=64)
ORCPASS=Z) 00

PRINTEC" ")
IF HHITE_SCORE>BLACK_SCORE THEN

PRINTC"Hhite wins! •.. ")
ELSEIF BLACK_SCORE>HHITE_SCORE

THEN
PRINTC"Black wins! ... ")

ELSE
PRINTC I Tie! .. . ")

FI
PRIHT("pla!,l again?")
TEMP=GETO(7)

UNTIL TEMP='N 00
RETURN

•

ATARI 8-BIT EXTRA ANALOG COMPUTING 47

. Back Issues.

Issues
are priced

at $4.00 each.

Send your check or money order to
ANALOG Computing Back Issues,
po. Box 625, Holmes, PA 19043.
MasterCard and VISA orders,
call 1-800-345-8112
(in Pennsylvania, 1-800-662-2444).

Back issues on 5V4-inch disk
$12.95 each, plus $3.00 shipping and handling.

Issues 35 and up are available in this format.

ISSUE 30 0 Loan Shark 0 Z-Plotter 0 BASIC Burger 0 ANALOG TCS Guide
• Boulder Bombers

ISSUE 31 0 Unicheck 0 R.oTo. 0 Lunar Patrol 0 ATASCII Animation 0 Lazer Type
• Atari Clock. Personal Planning Calendar

ISSUE 32 0 Supereversion 0 DOS III to DOS 2 conversion 0 Color Ihe Shapes
• Home-made Translator. Cosmic Defender. 5208T

ISSUE 33 0 An Intro to MIDI 0 Note Master 0 Syntron 0 BASIC Bug Exterminator
o Assemble Some Sound 0 C.COM 0 Mince (ST)

ISSUE 34 0 Dragon's Breath 0 Multiple Choice Vocabulary Quiz 0 Elevator Repairman
o Assemble Some Sound Part 2

ISSUE 35 (also on disk) 0 Hide and Seek 0 Printers Revisited 0 Bonk 0 Turtle 1020 0 G:

ISSUE 36 (also on disk) 0 Sneak Attack 0 Maze War 0 Nightshade 0 Solid Gold
Input Routine 0 Rafferty Run

ISSUE 37 (also on disk) 0 Speedski 0 Index to ANALOG Computing (15-36) 0 Masler
Disk Directory 0 Halley Hunler 0 Bank Swilching for Ihe 130XE

ISSUE 38 (also on disk) • Color Alignment Generator. Incoming! • OLi Maker. Air
Hockey 0 ST Color Palette

ISSUE 39 (also on disk) 0 Super Pong 0 Unicheck (updaled) 0 C-Manship Part 1
• Program Helper • Adventurous Programming Part 1 • 8T Software Guide

ISSUE 40 (also on disk) 0 Clash of Kings 0 Micro-Mail 0 Koala Slideshow Program
• Adventurous Programming Part 2 • Mouser

ISSUE 44 0 RAMcopy! 0 The 8-Bil Parallel Inlerface 0 Arm your Alari 0 BiasI'
o D:CHECK in Aclion' 0 ST-Log 4

ISSUE 45 0 Slencil Graphics 0 Roll 'Em' 0 RAM DOS XL 0 LBASIC
o Using BASIC XL.:s Hidden Memory 0 Sl'Log 5

ISSUE 46 0 Magic Spell 0 Moonlord 0 Sofl Touch 0 La Machine 0 June CES
o Launch Code 0 Sl'Log 6

ISSUE 47 0 DUs: A minute 10 learn 0 Dealhzone 0 BASIC Edilor II 0

o The ANALOG Dalabase 0 DiskFile 0 ST-Log 7

ISSUE 48 0 M-Windows 0 Cosmic Glob 0 DUs - Pari 2 0 Modem Chess
• Status Report. ST-Log 8

ISSUE 49 0 The Alari 8-bil Gitt Guide 0 Brickworks 0 TechPop
• Fortune-Wheel • Smiles and other facial wrink les. ST-Log 9

ISSUE 50 • Krazy Katerpillars • Atari Picture Storage Techniques. Trails in Action!
• Scroll-It. Screen Scroller

Issues 12, 14, 15, 16, 17, 18. 19, 20. 21 and 22 are also still available.

PO BOX 23 WORCESTER, MASSACHUSETTS 01603

by Paul Tupaczewski

tn the game of Lawn Mower, you're Tommy, a boy hired
to mow lawns all around the town of Atariville. Since you
have signed contracts with the people you're going to mow
for, you can't escape the dangers that crop up while trim
ming the greens.

The object of Lawn Mower is to clear the screen of grass.
Whenever you go over a strip of grass, it turns darker to
show it's been cut. There are also trees impeding your way.
If you hit a tree, you'll bounce back .

On board 1, the Joneses' house, you must avoid Hi
Leggers. These creatures move from side to side. while ran
dom ly bouncing up and down. If they hit you , you lose
one of yo ur three lives. When you 've lost all of your lives ,
the game ends.

On board 2 , Cursor Park, holes suddenly appear! These
are made by gophers who are afraid to show themselves.
If you fall into one of the holes, you lose a life.

Board 3, the golf course, introduces the Mad Planter.
He's a little orange man who plants grass where you've
already mowed. The only way to get rid of him is either
to run him over, or to plant a land mine-and make him
rW1 into it. This will make him disappear ... for a while.

To plant a land mine, you simply press your joystick but
ton . An explosive which you've buried in the ground will
look just like a piece of mowed lawn. The number of land
mines is shown at the bottom of the screen. You get an
extra mine every time you clear a board , with a maximum
of five. If you run into a mine, you won't be killed, but

ATARI a-BIT EXTRA

•

you will destroy the charge, rendering that mine useless
against the enemy.

In the final board, John's orchard , the Mad Planter reap
pears. And there's also a new problem. The orchard is
separated into two parts by a superhighway. You must get
across this road to travel from one side of the orchard to
the other.

If you run into a car while crossing, you 'll lose a life.
Also, you can't plant land mines on the road. If you mow
all of this board, you' ll go back to board 1, but at a harder
level.

Scoring is as fo llows : mowing a piece of lawn=250
points; making the Mad Planter run into a land mine=250
points; rW1ning over the Mad Planter=500 points; and
mowing all of a board=500 points times the level at which
you played.

Your score is shown in the upper left on the screen. The
level is in the upper right , and your number of lives re
maining is shown by the nwnber of circles next to the level
number. The number of mines can be seen at the bottom
of the screen .

I used Tom Hudson's excellent player mover subroutine
from issue 10 and fow1d it very easy and fast. I hope you
have as much fW1 w ith Lawn Mower as I did. ~

Paul Tupaczewski attends school in Boonton, New Jer
sey. He's had his Atari 400 for three years, with an Indus
disk drive and an Epson RX-80 printer, which he received
as a Christmus present.

(Listing starts on next page)

ANALOG COMPUTING 49

• Lawn Mower continued

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

REM MMMMMMMMMMMMMMMMMMMMMMM
REM * Lawn Mower *
REM * b~ Paul Tupaczewski *
REM * ANALOG COMputing *
REM MMMMMMMMMMKMMMMMMMKMMMM
DIM LOC(5)

-- ~ 7 KO=0:Kl=I:K2=Kl+Kl:K3=K2+Kl:K4=K2+K2
:K5=K2+K3:K6=K3+K3:K7=K4+K3:K8=K4+K4
10 GOSUB 815:GOSUB 720:GOSUB 875
15 LIV=K3:SC=KO:LEV=Kl:LEV2=Kl:HIN=K5:
HARD=KO
20 GRAPHICS K3*K6:DL=PEEK(560)+PEEKC56
1)*256+K4:POKE DL-Kl,70:POKE DL+12,6:P
OKE DL+K2,6:POKE 70~,216:POKE 623,Kl
25 PHBASE=INTCCPEEKCI45)+K3)/K4)*K4:PO
KE 5427~,PHBASE:PHB=PHBASE*256:POKE 55

. ~,46:POKE 53277,K3:POKE 756,ST/256
30 POKE 708,1~4
35 POKE 704,148:MIN=MIN+Kl:If HIN>K5 T
HEN HIN=K5
40 POKE 705,252:POKE 706,160:POKE 707,
54
45 POSITION Kl, KO:? U6 i "~" i CHR$ U5
4)iSC:POSITION 13,KO:fOR R=Kl TO LIV:?

U6iCHR$CI38)i:NEXT R
50 POSITION 1~~0 : ? U6iLEV:POSITION K6
,11:? U6i"lm:l~="iHIN
55 fOR R=K2 TO K3*K3:COLOR K3:PLOT K2,
R:DRAHTO 17,R:NEXT R
60 POSITION K5*K2,K5:? U6i"U":GRA=KO
65 ON LEV2 GOSUB 430,450,475,500
67 GOSUB ~10
70 X=128:V=K3*K8*K2:Xl=K5+K5:Vl=K5:H=K
I:THHT=KO:X3=K5+K5:V3=K2:HV3=K3*K8:HX3
=128
75 A=USRCHOVE,KO,PHB,ADRCH$CH*K8-K7,H*
K8)),X,V,K8)
80 OX=X:OV=V:OXl=Xl:0Vl=Vl
85 POKE 53278,Kl
~O ON LEV2 GOSUB 1~5,205,240,250
~5 If PEEK(764){>33 THEN 115
100 POKE 764,255
105 If PEEK(764){>33 THEN 105
110 POKE 764,255
115 If STRIGCO)=KO AND HIN>KO AND LEV2
>K2 AND LEV2{K5 THEN GOSUB 565
120S=STICKCKO):XAD=CS=K7)-CS=II):VAD=
CS=13) - CS=14)
125 X=X+XAO*K8:V=V+VAO*K8:Xl=Xl+XAO:Vl
=Vl+VAD
130 If XAD=-Kl THEN H=K2
135 If XAD=Kl THEN H=Kl
140 If VAD=-Kl THEN H=K3
145 If VAD=Kl THEN H=K4
150 If Xl{K2 OR Xl>17 OR Vl{K2 OR Vl>~

THEN Xl=OXl:Vl=OVl:X=OX:V=OV
155 LOCATE Xl,Vl,LOC
160 If OXl{>Xl OR OVl{>Vl THEN If LOC=
K3 THEN POSITION Xl,Vl:? U6i"U":SC=SC+
10:GOSUB 585:GRA=GRA+Kl
165 If OXl{>Xl OR OVl{>Vl THEN If LOC=
36 THEN POSITION Xl,Vl:? U6i"U":GOSUB
580
170 If OXl{>Xl OR OVl{>Vl THEN If LOC=
K7 THEN Xl=OXl:Vl=OVl:X=OX:V=OV:GOSUB
575

50 ANALOG COMPUTING

175 If GRA=GRS THEN 685
180 If LOC=32 AND LEV2{>K4 THEN 525
185 GOTO 75
1~5 GOSUB 310
200 RETURN
205 THHT=THHT+Kl:If THHT=25 AND HARD{>
Kl THEN 220
210 If THHT=18 AND HARD=Kl THEN 220
215 RETURN
220 THHT=KO:R=INTCRNDCO)*14)+K3:T=INTC
RNDCO)*K5)+K3:LOCATE R,T,Z:GOSUB ~30:I
f fG=1 THEN 220
225 If Z=32 THEN 220
230 If Z=K3 THEN GRS=GRS-Kl
235 POSITION R,T:? U6i" ":SOUND KO,KO,
K8,K6:fOR R=Kl TO K5:NEXT R:SOUND KO,K
O,KO,KO:RETURN
240 THHT=TMHT+Kl:If TMHT>55 THEN GOSUB
3~0

245 RETURN
250 A=USRCMOVE,Kl,PHB,ADRCCL$),CXl,56,
K8):A=USRCMOVE,K2,PHB,ADRCCR$),CX2,70,
K8)
255 CXl=CXI-K4-HARD*K4:If CXl{65 THEN
CXl=184
260 CX2=CX2+K6+HARD*K4:If CX2>184 THEN

CX2=65
265 If PEEK(53260)=K2 OR PEEKC532601=K
4 THEN 280
270 THHT=TMHT+Kl:If TMHT>60 THEN GOSUB
3~0

275 RETURN
280 fOR R=15 TO KO STEP -O.2:POKE 704,
R:SOUND KO,100,KO,R:NEXT R
285 fOR R=Kl TO 100:NEXT R
2~0 POSITION 12+LIV,KO:? U6i" ":LIV=LI
V-Kl
2~5 fOR R=15 TO KO STEP -Kl:S0UND KO,1
21,10,R:NEXT R
300 If LIV=KO THEN 5~5
305 fOR R=Kl TO 100:NEXT R:CXl=120:CX2
=65:POKE 704,148:GOTO 70
310 A=USRCMOVE,Kl,PHB,ADRCGT$),MXl,HVI
,K8):A=USRCHOVE,K2,PHB,ADRCGT$),HX2,HV
2,K8):OHVl=HVl:0HV2=HV2
315 HXl=HXl+K4+HARD*K4:If HXl>184 THEN

HXl=64
320 HX2=HX2-K4-HARD*K4:If HX2{64 THEN
HX2=184
325 ADD=INTCRNDCO)*K31-Kl:ADD=ADD*CK3+
HARD1:HVl=HVl+ADD:If MVl{24 THEN HVl=2
4
330 If HVl>80 THEN HVl=80
335 ADD=INTCRNDC01*K3)-Kl:ADD=ADD*CK3+
HARD):HV2=HV2+ADD:If HV2{24 THEN HV2=2
4
340 If HV2>80 THEN MV2=80
345 If PEEK(53260)=K2 OR PEEK(53260)=K
4 THEN 355
350 RETURN
355 fOR R=15 TO KO STEP -0.2:S0UND KO,
100,KO,R:POKE 704,R:NEXT R
360 fOR R=Kl TO 100:NEXT R
365 POSITION 12+LIV,KO:? U6i" ":LIV=LI
V-Kl
370 fOR R=15 TO KO STEP -1:S0UND KO,12
1,10,R:NEXT R
375 If LIV=KO THEN 5~5
380 fOR R=Kl TO 100:NEXT R:POKE 704,14
8:GOSUB 680:POKE 53278,Kl
385 HXl=64:HX2=184:HVl=48:HV2=48:GOTO
70
3~0 A=USRCHOVE,K3,PHB,ADRCPL$1,MX3,HV3
,K8):OX3=X3:0HX3=HX3:LOCATE X3,V3,ZZ
3~5 If ZZ=36 THEN SC=SC+250:GOSUB 5~O:
GOTO 425
400 If ZZ=35 THEN POSITION X3,V3:? U6i
CHR$CK31:GRA=GRA-Kl

ATARI 8·BIT EXTRA

405 V3=V3+Kl:MV3=MV3+K8:IF MV3)80 THEN
TMWT=KO:A=USR(MOVE,3,PMB,ADR(I¥"),0,0

,1):X3=10:V3=K2:MX3=128:MV3=24:RETURN
410 ADD=INT(RND(0)*K3)-Kl:X3=X3+ADD:MX
3=MX3+ADD*K8:IF X3{K2 OR X3)17 THEN X3
=OX3:MX3=OMX3
415 IF PEEK(53260)=K8 THEN SC=SC+500:G
OSUB 5~0:FOR R=15 TO KO STEP -K3:S0UND

KO,200,10,R:NEXT R:MY3=~0:GOTO 405
420 RETURN
425 POSITION X3,V3:? U6i"U":FOR R=15 T
o KO STEP -1.5:S0UND KO,200,K8,R:NEXT
R:MY3=~0:GOTO 405
430 GRS=115:COLOR K7:PLOT K3,K3:PLOT K
3,K4:PLOT K4,K3:PLOT K3,K8:PLOT K3,K7:
PLOT K4,K8:MX1=64:MX2=184
435 PLOT 15,K3:PLOT 16,K3:PLOT 16,K4:P
LOT 15,K8:PLOT 16,K8:PLOT 16,K7:MY1=48
:MY2=48
440 POSITION K4, Kl:? U6i "!r.J:1iJ.1/Wj[1]1"1;j"
445 RETURN
450 GRS=10~:COLOR K7
455 PLOT K3,K8:DRAWTO K8,K3:PLOT 11,K3
:DRAWTO 16,K8
460 PLOT K8,K8:PLOT ~,K7:PLOT 10,K7:PL
OT 11,K8:PLOT K3,K3:PLOT 16 K3

MV 465 POSITION K5, Kl:? U6 i "(1:1 IIl"j'] iW:ri1 i!:j"
ZO; 470 RETURN 'SA 475 POSITION K5,Kl:? U6i"(tlwlliMl:t']lIi"1;j" :

X3=10:Y3=K2:MY3=24:MX3=128:COLOR K7
ni 480 FOR R=Kl TO 15
S.O 485 A=INT (RND (0) *16) +K2: B=INT (RND (0) *K

l~,l ~~:KH~:~::E 0:' :~~~:O:~: :::~:F T:::14:
.·~ .. e.· ••• ·.·.) 5!0~05 PLOT A, B: NEXT R: GRS=112: RETURN 1<.. POSITION K3, Kl:? U6i "!r.JiI;fao"l]jll:1iti1jl
il;:. m"
;(~E:i 505 COLOR K7: FOR R=K3 TO 17 STEP 2: FOR
";%2 T=K3 TO ~ STEP K2: PLOT R, T
GC 510 NEXT T:NEXT R:GRS=55:CX1=120:CX2=6

5 B' 515 COLOR 32:PLOT K2,K8:DRAWTO 17,K8:P
LOT K2,K6:DRAWTO 17,K6:COLOR 45:PLOT K
2,K7:DRAWTO 17,K7

ZF 520 RETURN
TE 525 A=USR(MOVE,KO,PMB,ADRCM$(Kl,K8)),X

, Y, K8)
NV 530 FOR R=15 TO KO STEP -0.I:S0UND KO,

60-(R*K2),10,R:POKE 704,R:NEXT R
PV 535 FOR R=Kl TO 100:NEXT R
VP 540 POSITION 12+LIV,KO:? U6i" ":LIV=LI

!~'~~ ~~~\OR R=15 TO KO STEP -Kl: SOUND KO, 1
~~ 21,10,R:NEXT R
N~ 550 IF LIV=KO THEN 5~5
PX 555 FOR R=Kl TO 100:NEXT R:POKE 704 , 14

~.~ ~60 GOTO 70
Itf 565 POSITION Xl, Vl:? U6i "$" : MI N=MIN-K l

:POSITION 12,11:? U6iMIN:FOR R=15 TO K
o STEP -Kl

si 570 SOUND KO,25,10,R:NEXT R:RETURN
EE 575 SOUND KO,200,8,6:FOR R=Kl TO K3:NE

XT R:SOUND KO,KO,KO,KO:RETURN
Q~ 580 SOUND KO,100,KO,10:FOR R=Kl TO K3:

- NEXT R:SOUND KO,KO,KO,KO:RETURN
TV; 585 FOR R=10 TO KO STEP -2.5: SOUND KO,

;~!l1 ~9~8 P~;~g~N R ~~~~=~? Kg6 ~~C ~~E~~RN
" 5~5 GOSUB 680: POSITION K6, K5:? U6 i"~
(MII't];-·
600 RESTORE 670
605 READ O,P,DLY:IF O=-Kl THEN 615
610 FOR R=15 TO KO STEP -DLY:SOUND KO,

:a~ . gi~Of~~ sg~~~ ~~' ~O!~ N:~~E~T? R ~~~~~" ~~~

ATARI 8·BIT EXTRA

SITION K2, K3:? U6i "Dlolll-ill·lil4" i CHR$ (15
4) i SC
620 POSITION K2,K5:? U6i"high score"iC
HR$(26)iHS:FOR R=Kl TO 400:NEXT R
625 IF SC{=HS THEN 655
630 FOR R=Kl TO K4:POSITION K2,K3:? U6
i"!Jour Score"jCHR$(26):POSITION K2,K5:
? U6 i "LiIJ!l¥iII·lil4" i CHR$ (154)
635 FOR T-15 TO KO STEP -1.5:S0UND KO
6~10, T : NEXT T: POSITION K2, K3:? U6 i"~
(I 0"':"111.1 il4" i CHR$ (154)
640 POSITION K2,K5:? U6i"high score"iC
HR$(26):FOR T=15 TO KO STEP -1.5:S0UND

KO,121,10,T:NEXT T:NEXT R
Vf 645 FOR R=Kl TO 200:NEXT R:FOR R=HS TO

SC STEP 50
KG 650 POSITION 13,K5:? U6iR:POKE 5327~,K

ci~; ~~~E~~s~+~6~S~~~~~gIg~i ~~R~~;? S~~~~~:
i~i ~~~If~O~E~~ (~g;~~~$ ~~O T~~~Y 6~gAIN"
1M 665 LIV=K3:SC=KO:LEV=Kl:LEV2=Kl:MIN=K5

:HARD=KO:? U6i"IIjj":GOTO 30
HU 670 DATA 121,~6,1,~6,81,1,108,~1,1,~1,

72,1,~6,81,1,72,60,1,72,60,5,81,64,5
HR 675 DATA ~1,72,5,~6,81,5,108,~1,5,121,

~6,1,-l,O,O
S6 680 FOR R=KO TO K3:A=USR(MOVE,R,PMB,AD

R("¥"),KO,KO,Kl):NEXT R:RETURN
YO 685 RESTORE 715
SJ 6~0 READ O,P,DLV:IF O=-Kl THEN 700
HA 6~5 FOR R=15 TO KO STEP -DLV:SOUND KO,

0,10,R:SOUND Kl,P,10,R:NEXT R:GOTO 6~0
E~ 700 LEV2=LEV2+Kl:IF LEV2)K4 THEN LEV2=

~~; ~!~H~~~~~!500*LEV:LEV=LEV+Kl
DP 710 FOR R=KO TO K3:A=USRCMOVE,R,PMB,AD

ij~;j ~ l~¥~~T~O 8~? 6~~i; ~~~~2 ~ j ~g~~ 8i? 1,108, ~
l,3,121,~6,l,60,47,l,-l,O,O

PI 720 DIM PMMOV$(100):MOVE=ADRCPMMOV$):R
ESTORE 755

p~ 725 FOR X=Kl TO 100:READ N:PMMOV$(X)=C
..... HR$ CN) : NEXT X H& 730 DIM M$(32),PL$CK8),CL$CK8),CR$(K8)

, GT$ (K8)
OK 735 FOR R=Kl TO K8:READ D:CL$CR)=CHR$C

D) :NEXT R:FOR R=Kl TO K8:READ D:CR$CR)
....... =CHR$ (D) : NEI<T R

TO 740 FOR R=Kl TO K8: READ D: GT$ (R) =CHR$ C
~ D):NEXT R:FOR R=Kl TO K8:READ D:PL$CR)
. =CHR$(D):NEI<T R

N~ 745 FOR R=Kl TO 32:READ D:M$(R)=CHR$(D

~11 Hr~h~R~16'104' 104,104,133,213,104,2
_ 4,105,2,133,206,104,133,205,104,133,20
- 4,104,133,203,104,104,133,208

760 DATA 104,104,133,20~,104,104,24,10
1,20~,133,207,166,213,240,16,165,205,2
4,105,128,133,205,165,206,105

I Z 765 DATA 0,133,206,202,208,240,160,0,1
62,O,l~6,20~,144,l~,l~6,207,176,15,132
,212,138,168,177,203,164

l E 770 DATA 212,145,205,232,16~,O,240,4,l
6~,O,145,205,200,l~2,128,208,224,166,2
13,165,208,157,0,208,~6

au 775 DATA 0,14,18,34,127,127,54,54

I HI HH mmmm:mm!W~i:8
;;til! iH gg~~ ~g~;H~~~~~!t~~~;~h~~t:: KO:
t) ~~~:P~~~:~:6)+Kl)*256:POKE 756,ST/256:

ANALOG COMPUTING 51

• Lawn Mower continued

or 820 RESTORE ~40:DIH HFRSC381:FOR R=K1
TO 38:READ D:HFRSCR,Rl=CHRSCD1:NEHT R
825 Z=USRCADRCHFRS)):RESTORE 845

•

830 POSITION 14,12:? "Initializing"
835 READ H:IF H=-K1 THEN RETURN
840 FOR V=KO TO K7:READ Z:POKE H+V+ST,
Z:NEHT V:GOTO 835
845 DATA 24,255,255,255,255,255,255,25
5,255
850 DATA 32,255,255,255,255,255,255,25
5,255
855 DATA 56,255,1~~,163,21,65,171,1~~,
255
860 DATA 40,0,24,24,24,0,0,0,0
865 DATA 80,0,0,28,62,62,62,28,0
870 DATA -1
875 GRAPHICS 17:DL=PEEK(560)+PEEKC5611
*256+K4:POKE DL-K1,71:POKE DL+K2,K7:PO
KE DL+K3,K7
880 COLOR 138:PLOT K4,KO:DRAWTO 15,KO:
PLOT K4,K2:DRAWTO 15,K2
885 POSITION K4,K1:? "6;CHRS(1381;"£rn
i,-:WGI;"; CHRS (1381
8~0 POSITION ~,12:? "6;"BV":POSITION K
3,14:? "6;"PAUL TUPACZEWSKI"
8~5 POSITION K5,18:? "6;"~ start"
~oo IF PEEKC5327~)<}K6 THEN ~OO
~05 RETURN
~10 FOR I=K8 TO 12:LOCATE I,K5,Z:LOCCI
-K71=Z:NEKT I:POSITION K8,K5:? "6;"REA
DV"
~15 FOR I=K1 TO 200:NEKT I:FOR I=K8 TO

12:POSITION I,K5:? "6;CHR$CLOCCI-K711
:NEKT I:RETURN
920 FG=O:FOR I=A-K1 TO A+K1 STEP K2:FO
R J=B-K1 TO B+K1 STEP K2:LOCATE I,J,Z:
IF Z=K7 THEN FG=1
925 NEKT J:NEHT I:RETURN
930 FG=O:FOR I=R-K1 TO R+K1 STEP K2:FO
R J=T-K1 TO T+K1 STEP K2:LOCATE I,J,P:
IF P=32 THEN FG=1
~35 NEKT J:NEKT I:RETURN
940 DATA 104,169,0,133,203,133,205,169
,224,133,206,165,106,24,105,1,133,204,
160,0,177,205,145,203,200,208,249
945 DATA 230,204,230,206,165,206,201,2
28,208,237,~6

52 ANALOG COMPUTING ATARI 8-BIT EXTRA

by Jan Iverson

Trivia seems to be a "hot" item nowadays. There are
board games on the market shelves and even some games
on the more popular computers.

With the program in Trivia, you can generate a ques
tion and four possible answers. Use the second listing as
a sample of a game you may create. If you wish to create
your own game, do so; the generator will assist you in set
ting up your trivia database.

The uses are only limited by your imagination. You
could reserve a disk each for sports, TV, movies, science,
history, the Bible, etc.; the list can go on and on.

Question-and-answer generator.
The main menu contains four options: "create," "edit ,"

"play" and "print."
The create menu has four options: "continue," "edit,"

"print" and "menu ."
After typing in your question , four answers and the cor

rect number corresponding to the answer, press RETURN
if you wish to continue entering. This will clear the screen,
and you may enter a further trivia question with its an
swers. If you need to correct any of the data just entered,
use the ARROW keys and page over to the edit option.
Hit RETURN, and you may change any line.

If you're finished and want to print what you have in
the database, you need not go back to the main menu. Just
page over to the print option and press RETURN. This will

ATARI 8-BIT EXTRA

•

save all the data you've entered thus far, so you'll be able
to view it. Paging over to the menu option and pressing
RETURN will take you back to the main menu, after
you've saved the database just entered.

Our Trivia game is limited to 200 items. A count at the
top of the screen indicates how many items you're enter
ing and how many remain.

If you need to edit any item in your trivia database, use
the second option from the main menu .

You'll be allowed to enter the question as a search item,
or, if you wish to step through the file, use the asterisk
(*), and each item on the database will be displayed.

The edit section has four options: "change," "delete,"
"next" and "menu."

When the item in question appears on-screen, press RE
TURN if you want to change any line. This routine will
allow you to alter a line as many times as you wish . When
finished , press OPTION to return to the edit menu. If you
used the asterisk option to step through your database and
want to see additional items, use the ARROW key to page
over to the "next" option. The next item on the database
will appear on-screen. The delete option will allow you
to remove a single item from the database if you typed
in the question name as a search message. If you used the
asterisk option, it will delete the item and await your next
request. When you're finished, page over to the menu op
tion. All changes will be saved and you'll return to the
main menu.

If you have enough questions to run the Trivia game,

ANALOG COMPUTING 53

• Trivia continued

use the play option. The screen will inform you that the
game is loading.

The print menu has four of its own options: "screen,"
"printer," "both" and "menu."

Using the screen option allows you to view two com
plete items on your database at a time, with record num
bers. Press START to continue viewing. Press ESC to
terminate the operation. When yo u've looked at the com
plete database, you'll be prompted to press SELECT to re
turn to the main menu.

You also may send the database to a printer. Page over
to the printer option and press RETURN. A hard copy of
yom database will be printed . If you wish to see the data
base on-screen as it's printing, use the "both" option .

Paging over to the menu option will retmn you to the
main menu.

The Trivia game.
When saving Listing 2, use the name 0 :TRlv' BAS. The

game question generator looks for this name when you use
the play option from the main menu.

The game program reads your database into an array
with a limit of 200 items. When complete d , the game wi ll
begin.

Questions are selected through a random number al
gorithm beginning on Line 1110. The same questions and
answers will not be used again in yom session. When the
questions are exhausted, a session will terminate, and
you' ll be asked if you wish to play again. Pressing START
will allow the database to be loaded for another session.
The program has some sowlds built into it, but, because
we want enough questions and answers loaded into the
array, the program is much simplified.

If you select an incorrect answer, a buzz will sOlUld
while the correct number flashes for a few seconds. If you
choose the correct number, a nice "beep-beep" sound w ill
play. At the end of each question and answer, you'll be
asked to either press START to continue, or OPTION to
finish.

A timer at the top left will COWlt down from 10 to O.
If you don't answer the question in 10 seconds, the bu zz
will sound and a wrong answer will result. If the correct
answer is given, the remaining seconds are transfered to
the right-hand score. The screen will clear, and the rWl
ning total of right and wrong responses will be printed
at the top. The rurming total will always print at the end
of each question/answer routine.

When the OPTION key is pressed , results will be print
ed at the top of the screen, an appropr iate message will
be printed , and a few bars of "The Entertainer" will play.
If your current score is higher than the high score, it will
be transfered to the HI-SCORE area. This way, you may
compete against another person- or aga inst yom previ
ous best score. You'll then be given the option to either
end the session or play again.

Use the question-and-answer generator to update your
database. My family has played the game a number of
times, and-just when they think they're getting good at
it-I put some new questions in and take out some old
ones. It keeps them on their toes.

54 ANALOG COMPUTING

J have a number of trivia databases I've developed , in
cluding sports, TV, movies, commerc ials and ads, and
genera l trivi a . Have a happy Trivia hunt. ~

Jan Iverson is an applications programmer w ith Chev
I'On Corp. He's been working w ith computers for e ighteen
years and is program chairman for his loca l user's group
(DACE). He lives in Antioch , Cali fornia with hi s w ife and
three children.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

HV 10 REM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
ZR 20 REM * *
TO 30 REM * GAME GENERATOR *
SK 40 REM * b~ *
MQ 50 REM * Jan Iverson *
ZV 60 REM * *
IE 70 REM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
Bf 80 REM
UK ~O KO=0:Kl=1:K2=2:K3=3:K4=4:K5=5:K6=6:

K7=7:K8=8:K9=9:Kl0=10:Kll=11:K12=12:Kl
3=13:K14=14:K15=15

MV 100 K16=16:K17=17:K18=18:K19=19:K20=20
:K21=21:K22=22:K23=23:K24=24:K25=25:K2
6=26:K28=28:K2~=29:K30=30:K31=31

fI 110 K708=708:K709=70~:K710=710:K711=71
1:K712=712:K764=764:K752=752:K15S=155:
K255=255:K54286=54286:K64=64:K1S2=1~2

EL 120 K53761=53761:K45=45:K126=126:K5327
9=53279:K125=125:K132=132:K196=1~6

nz 130 K1729=1729:K1730=1730:K1731=1731:K
1732=1732:K1733=1733:K152=152:K132=132
:K32=32:K52=52:K198=198

RH 140 INIT=KO:COUNT=KO:PR=KO:MAK=200:CNT
=KO:RMAIN=KO

DK 150 DIM AN(201,Q(301,A$(201,CR(21,C$(2
) , QS$ (301

LL 160 DIM QUEST$(301,ANS1$(201,ANS2$(201
,ANS3$(201,ANS4$(201,IT$(1),ARR$(111),
fILE1$(151,fILE2$(151,Q$(301

VD 170 fILE1$=" ":fILE2$="
"

NR 180 fILE1$="Dl:GAME.DAT":fILE2$="Dl:GA
ME.TMP"

BA 190 OPEN stK4,K4,KO,"K:"
DV 200 GOSUB 4~20:POKE 39976,K6:POKE 39~7

7,Kll:POKE K752,Kl:POKE 53774,K64:POKE
112,K64

VN 210 POSITION K7,KO:? "Use {ESC} to exi
t prograM"

PD 220 POKE 172~,4:fOR 1=1 TO 10:HEHT I:P
OKE 1730,4:fOR I=l TO 10:NEHT I

eN 230 POKE 1731,4:fOR I=l TO 10:NEHT I:P
OKE 1732,4

XS 240 POKE 1733,132
ME 250 POKE K708,218
J5 260 POSITION Kl,K3:? "A TRIVIA QUIZ GA

ME"
A.V 270 POSITION K13, K6:? liB!.' Jan Iverson"
ND 280 POSITION Kl0,K8:? "for Analog COMP

uting"
BO 290 POSITION K2, Kl0:? "--------------______ "
ZC' 300 POSITION Kll,K14:? "Use the ~{- ~+
"":\ ke!.'s··

ATARI 8-BIT EXTRA

HI ~10 POSITION K8,K16:? lito Make !lour se
lection"

SH ~20 POSITION Kll,K18:? "then press aI3]
[!ITl;]"

MY :no POSITION Kl, K22:? "alii!!!j) •• "
OM 340 POSITION Kll,K22:? II EDIT II

GA 350 POSITION K21,K22:? II PLAY II

KG 360 POSITION K31,K22:? II PRINT II

KH 370 POKE K764,K255
VI 380 POSITION Kl, K22:? "alii!!!j) •• "
SK 3~0 IF PEEK(K764)=K6 THEN POSITION Kl,

K22:? II CREATE ":GOSUB 650:GOTO 580
ES 400 IF PEEK(K764)=K7 THEN POSITION Kl,

K22:? II CREATE ":GOSUB 650:GOTO 440
EO 410 IF PEEK(K764)=K28 THEN GRAPHICS 0:

END
RT 420 IF PEEK(K764)=K12 THEN 660
OE 430 GOTO 3~0
KS 440 POKE K764,K255
TB 450 POSITION Kll, K22:? "_*),."
MP 460 IF PEEK(K764)=K6 THEN POSITION Kll

,K22:? II EDIT ":GOSUB 650:GOTO 370
CD 470 IF PEEK(K764)=K7 THEN POSITION Kll

,K22:?" EDIT ":GOSUB 650:GOTO 510
FC 480 IF PEEK(K764)=K28 THEN GRAPHICS 0:

END
UM 4~0 IF PEEKCK764)=K12 THEN 1530
PC 500 GOTO 460
KN 510 POKE K764,K255
KI. 520 POSITION K21, K22:? "_:J';\'_"
MP 530 IF PEEKCK764)=K6 THEN POSITION K21

,K22:?" PLAY ":GOSUB 650:GOTO 440
B.L 540 IF PEEK CK764) =K7 THEN POSITION K21

,K22:? II PLAY ":GOSUB 650:GOTO 580
EM 550 IF PEEK(K764)=K28 THEN GRAPHICS 0:

END
EI 560 IF PEEKCK764)=K12 THEN 4860
OT 570 GOTO 530
LB 580 POKE K764,K255
PA 5~0 POSITION K31, K22:? "M:JiB:_."
GH 600 IF PEEKCK764)=K6 THEN POSITION K31

,K22:? "PRINT ":GOSUB 650:GOTO 510
51; 610 IF PEEKCK764)=K7 THEN POSITION K31

,K22:? "PRINT ":GOSUB 650:GOTO 370
E~ 620 IF PEEKCK764)=K28 THEN GRAPHICS 0:

END
OI 630 IF PEEKCK764)=K12 THEN 3100
NR640 GOTO 600
UU650 SOUND O,45,10,8:FOR I=Kl TO K3:NEX

-;:.:; T I: SOUND 0 .. 0, 0, (): RETURN
Ei660 POKE K1733,K4:? CHR$CK125)
WA 670 POKE K708,K152:POSITION K6,K3:? "C

REATE"
~]~i 680 POSITION K2, Kl:? "Max = II j MAX: POSI
\\ TION K15,Kl:? "Curr = ":POSITION K2~,K

'o' 1:? "ReM = ":CNT=KO:RMAIN=KO
KF 6~0 POKE K1733,l~6:CH=1
ZH 700 POKE K54286,K64
HI 710 POSITION KI0,KI0:? "Reading file ..

II .
00 720 CLOSE UK1:CL05E UK2
EW 730 TRAP 760:0PEN UK1,K4,KO,FILE1$:TRA

....... , P 40000
2i~r 740 OPEN UK2, K8, KO, FILE2$
00 750 GOTO 800
1it5 760 CLOSE UK1:0PEN UKl K8 KO FILE1$
EC 77 0 0 U EST $ = "f'f'f'f'f'f'f'f'f'fij;;tii-'tii'f'f'f'f'f'f'f'fA
... "' ~"

JO 780 ? UKljOUEST$:? UKljANS1$:? UKljANS
Z/ 2$:? UKljANS3$:? UKljANS4$:? UKljIT$
J~ 7~0 CLOSE UK1:GOTO 720
WZ 800 INPUT UK1,OUEST$,ANS1$,ANS2$,ANS3$

,AN54$,IT$
o p 81 0 IF QUE 5 T $ = "f'f-'t'fA

f'f!!!!!.'!" THEN 850 sr 820 ? UK2jOUE5T$:? UK2jANS1$:? UK2jAN5
2$:? UK2jAN53$:? UK2jANS4$:? UK2jIT$

IH 825 POSITION K22.Kl:?" ":POSITION l

ATARI 8-BIT EXTRA

5,Kl:? II II

FT 830 CNT=CNT+l:POSITION K22,Kl:? CNT:RM
AIN=MAX-CNT:POSITION l5,Kl:? RMAIN

ON 840 GOTO 800
MO 850 POKE K54286,Kl~2
QQ 860 POSITION KI0,KI0:? II

II

WB 870 POSITION Kl,KO:? "Create !lour own
questions and answers"

UI 880 GOSUB 4400
JS 8~0 POKE K1732,K52:FOR I=Kl TO KI0:NEX

T I:POKE K1731,K52:FOR I=Kl TO KI0:NEX
T I

WO ~OO POKE K1730,K52:FOR I=Kl TO KI0:NEX
T I:POKE K172~,K52

OZ ~10 GOSUB 4470:GOSUB 4760
NZ ~20 POKE K764,K255:X=K8:V=K6:POSITION

X,V:? "." UK ~30 GOSUB 3800
IX ~40 IF LENCO$)<K30 THEN O$CLENCO$)+l)=

.. ":GOTO ~40
XT ~50 IF 0$="

II THEN '20
MG ~60 QUEST$=O$
XA ~70 0$(30)=I.I:0$C2)=" ":0$=" ..
00 ~80 POKE K764,K255:X=KI0:V=K8:POSITION

x,V:? " ...
VV ~~O GOSUB 3~50
OG 1000 IF LENCA$)<K20 THEN A$(LEN(A$)+l)

=" ":GOTO 1000
FN 1010 IF A$=" .. THEN

~80
JB 1020 ANS1$=A$
UH 1030 A$(20)=".":A$C2)=" ":A$=" ..
ZQ 1040 POKE K764,K255:X=KI0:V=KI0:POSITI

ON X,V:? "." FB 1050 GOSUB 3~50
CS 1060 IF LENCA$)<K20 THEN A$(LENCA$)+l)

=" ":GOTO 1060
PD 1070 IF A$=" II THEN

1040
KC 1080 ANS2$=A$
UZ 10'0 A$(20)=".I:A$C2)=" ":A$=" II

BO 1100 POKE K764,K255:X=KI0:V=K12:POSITI
ON X,V:? " ...

ER 1110 GOSUB 3~50
HK 1120 IF LENCA$) <K20 THEN A$(LEN(A$)+l)

=" ":GOTO 1120
JW 1130 IF A$=" .. THEN

1100
KB 1140 ANS3$=A$
UP 1150 A$(20)=".":A$C2)=" ":A$=" ..
ES 1160 POKE K764,K255:X=KI0:V=K14:POSITI

ON X,V:?
Fj 1170 GOSUB 3~50
IW 1180 IF LENCA$)<K20 THEN A$(LEN(A$)+l)

=" ":GOTO 1180
UG 11~0 IF A$=" .. THEN

1160
KA 1200 ANS4$=A$
UF 1210 A$(20)= :A$C2)=., ":A$=" ..
MM 1220 POKE K764,K255:X=K16:V=K16:POSITI

ON X,V:? " ...
t~ 1230 GOSUB 4110 G« 1240 IF LENCC$)<Kl THEN C$CLENCC$)+l)=
.... \ .. ": GOTO 1240
CV 1250 IF C$=" .. THEN 1220
VI 1260 IT$=C$Cl,l)
WV 1270 C$(2)=".":C$C2)=" ":C$=" ..
AN . 1280 POKE K764,K255
OW 1285 POSITION K22,Kl:?" ":POSITION

35,Kl:? II ..

IX 12~0 CNT=CNT+1:POSITION K22,Kl:? CNT:R
MAIN=MAX-CNT:POSITION 35,Kl:? RMAIN
1300 POKE K764,K255:POSITION K1,K22:?
"[I:IIl: •• 4: III ;j ..
1310 IF PEEKCK764)=K6 THEN POSITION Kl
.K22:? "CONTINUE":GOSUB 650:GOTO 1470

ANALOG COMPUTING 55

• 'Irivia continued

1320 IF PEEK(K764)=K7 THEN POSITION K1
,K22:? "CONTINUE":GOSUB 650:GOTO 1350
1330 IF PEEK(K764)=K12 THEN POKE K5428
6,K64:GOSUB 4260:POKE K54266,K192:GOSU
B 4400:GOTO 920

PO 1340 GOTO 1310
~G 1350 POKE K764,K255
C5 1360 POSITION Kll, K22:? "_i4,)IM"
PR 1370 IF PEEK(K764)=K6 THEN POSITION Kl

1,K22:?" EDIT ":GOSUB 650:GOTO 1260
C~1360 IF PEEK(K764)=K7 THEN POSITION Kl

'.' 1, K22:?" EDIT ": GOSUB 650: GOTO 1410
Pc 1390 IF PEEK(K764)=K12 THEN 2180
RT1400 GOTO 1370
z~ 1410 POKE K764,K255
JG 1420 POSITION K21, K22:? "_:Jiu:.M"
ZI 1430 IF PEEK(K764)=K6 THEN POSITION K2
.. ii 1, K22:?" PRINT": GOSUB 650: GOTO 1350
IH 1440 IF PEEK(K764)=K7 THEN POSITION K2

1,K22:?" PRINT ":GOSUB 650:GOTO 1470
BA 1450 IF PEEK(K764)=K12 THEN POKE K5428

6,K64:GOSUB 4260:GOSUB 4260:POKE K5428
6,K192:GOTO 3100

·OH 1460 GOTO 1430
AO 1470 POKE K764,K255
UV 1460 POSITION K31, K22:? "_;114:11_"
HU 1490 IF PEEK(K764)=K6 THEN POSITION K3

..... 1, K22:?" MENU ": GOSUB 650: GOTO 1410
k~1500 IF PEEK(K764)=K7 THEN POSITION K3

i 1, K22:?" MENU ": GOSUB 650: GOTO 1280
AN 1510 IF PEEK(K764)=K12 THEN POKE K5428

6,K64:GOSUB 4260:GOSUB 4280:POKE K5428
6,K192:? CHR$(125):GOTO 210

T~ 1520 GOTO 1490
T~1530 POKE K1733,K4:? CHR$(K125)
HQ 1540 POKE K708,70:POSITION K7,K3:? "ED

IT"
ZH 1550 FOUND=KO:CH=2
VL 1560 POKE K1733,K32
VH 1570 POSITION K2 ';jKO :? "Use the ~'" ~t k

eys then press liL'lIil:I"
g~1560 GOSUB 4400
)o/~ 1590 POKE Kl732,K132:FOR I=Kl TO KI0:N

~1 ~ihI~:::EK:~:::~:~:~;::RI~::lT:OK:~~~

I m: I m~~~~~:~~:mt~m=K6 ,pa,ma.
X,V:? 11111

CF 1640 GOSUB 3600
FO 1650 IF LEN(0$){K30 THEN O$(LEN(O$)+l)

=" ":GOTO 1650
til, 1660 IF 0$="

" THEN 1630

~g i~~g g~~~~f =".": 0$ (2) =" ": 0$=''''
nZ1690 POKE K54286,K64

;~I g~g g~~~E U~~~ ~~~~~~F~~~1$: OPEN UK2, K6

ill 1.~~{~~~5~ UK1,OUEST$,ANSl$,ANS2$,ANS3
$,ANS4$,IT$
1730 IF 0 U EST $ = "P'tA
f't't't't't't'tA" THE N 2120
1740 IF OS$ (1, 1) ="*" THEN FOUND=1: GOTO

1760
1750 IF QS$=QUEST$ THEN FOUND=1:GOTO 1
760
1760 ? UK2iQUEST$:? UK2iANS1$:? UK2iAN
S2$:? UK2iANS3$:? UK2iANS4$:? UK2iIT$
1770 GOTO 1720
1760 POSITION K8,K6:? QUEST$:POSITION
KI0,K8:? ANS1$:POSITION KI0,KI0:? ANS2
$
1790 POSITION KI0,K12:? ANS3$:POSITION

K10,K14:? ANS4$:POSITION K16,K16:? IT

56 ANALOG COMPUTING

II ~600 POKE K54266,Kl92

.. ~.~ •• i~~g ~g~~T~~~4 K~~~~2:? "MIf:t;1:WII"
CO 1630 IF PEEK(K764)=K6 THEN POSITION K1

,K22:? II CHANGE ":GOSUB 650:GOTO 2000
AC 1640 IF PEEK(K764)=K7 THEN POSITION Kl

,K22:? II CHANGE ":GOSUB 650:GOTO 1870
XM 1850 IF PEEK(K764)=K12 THEN CH=2:GOTO

~S H~g ~g~~ ~n:, K255
HO 1680 POSITION K11, K22:? ".,nt

~i ±:~~2 ~~ ~:!~~~~~:~I~~~S¥~:~5~~~~H:~8~~
d~ i~~~2 i~ ~E~~~g~4;'~~~~u~Ng5g~~n? 1}~~~
~! 1~2~H~~ ~~~~(~~:~~~K~~4~~gTgS~~~~1)="*

i " THEN POKE K54286,K64:POSITION Kll,K2
...•• 2:? .. DELETE ": GOTO 1720

.!,Ill InO GOTO 1890
AP 1940 POKE K764,K255
fIiJ. 1950 POSITION K21, K22:? "_: 101:1 Mil tv 1960 IF PEEK(K764)=K6 THEN POSITION K2

ri.~ i ~~~2 i~ ~EE~~~~64;' ~~~S¥~E~5gb~~i~0~6~~
II, h~~2 i~ ~EE~~~~64;'~~~~u~Ng5g;~n? 1~~~!
~I ~~i:~~~~~~~~!rG~~~BK~~~~:~OT~Eg20":P

.T,~. MH •• ·.' .••• 2000 POKE K764, K255
2010 POSITION K31, K22:? "_;Ptll_"

jp 2020 IF PEEK(K764)=K6 THEN POSITION K3
l,K22:? II MENU ":GOSUB 650:GOTO 1940

TA 2030 IF PEEK(K764)=K7 THEN POSITION K3
l,K22:? II MENU ":GOSUB 650:GOTO 1810
2040 IF PEEK(K764)=K12 THEN POKE K5426
6,K64:GOSUB 2060:GOTO 2080
2050 GOTO 2020
2060 ? UK2iQUEST$:? UK2iANSl$:? UK2iAN
S2$:? UK2iANS3$:? UK2iANS4$:? UK2iIT$
2070 RETURN
2060 INPUT UKl,QUEST$,ANS1$,ANS2$,ANS3
$,ANS4$,IT$
209 0 IF 0 U EST $ = "f't't't't't't't't't't't't't't'f't't't't't'tA
f't't't't't't'tA" THE N 2120
2100 ? UK2iOUEST$:? UK2iANSl$:? UK2iAN
S2$:? UK2iANS3$:? UK2iANS4$:? UK2iIT$
2110 GOTO 2060
2120 IF FOUND=KO THEN GOSUB 4360
2130 ? UK2iOUEST$:? UK2iANSl$:? UK2iAN
S2$:? UK2iANS3$:? UK2iANS4$:? UK2;IT$
2140 CLOSE UKl:CLOSE UK2
2150 HIO 33,UK1,KO,KO,FILEl$
2160 HIO 32,UK1,KO,KIl,"D:GAME.TMP,GAME
.DAT"
2170 POKE K54266,K192:? CHR$(K125):GOT
o 210
2160 POKE K1733,K4
2190 GOSUB 4810:POKE KI729,K4:GOSUB 46
20:POKE K1730,K4
2200 GOSUB 4830:POKE K1731,K4:GOSUB 46
40:POKE K1732,K4
2210 GOSUB 4650
2220 POKE 1757,K6:POKE K1733,K2:POSITI
ON K12,K22:? "OPTION=RETURN"
2230 POKE K1732,K198:FOR I=Kl TO K5:NE
XT I:POKE K1731,K198:FOR I=Kl TO K5:NE
XT I
2240 POKE K1730,K198:FOR I=Kl TO K5:NE
XT I:POKE K1729,K198
2250 GOSUB 4550
2260 POKE K764,255
2270 POSITION KO,K6:? II~~II
2280 IF PEEK(K764)=K14 THEN POSITION K

ATARI a-BIT EXTRA

i 0, K6:? " ": GOSUB 650: GOTO 2~60
16 22~0 IF PEEK(K764)=K15 THEN POSITION K
................. 0,1<6:? " ": GOSUB 650: GOTO 2400
~6 2300 IF PEEK(K5327~)=K3 ANI> CH=K2 THEN

GOSUB 4710:POKE 1757,12:POKE K1733,K3
... 2: GOTO 1810

BP 2310 IF PEEK(K5327~)=K3 ANI> CH=Kl THEN
GOSUB 4660:POKE 1757,12:POKE K1733,Kl

~6:GOTO 1300
OW 2320 IF PEEK(K764)=K12 THEN GO TO 2340
sM 2330 GOTO 2280
BK 2340 POKE K764,K255:X=K8:V=K6:POSITION

K8,K6:? "1 11

.. ":GOSUB 3800
B~ 2350 IF LEN(0$)(K30 THEN O$(LEN(O$)+l)

... =" ": GOTO 2350
PV 2360 IF 0$="

" THEN GOTO 2340
SW 2370 OUEST$=O$
FA 2380 0$(30)=" ":0$(2)=" ":0$=""
SF 23~0 GOTO 2260
ZQ. 2400 POKE K764,255
TR 2410 POSITION KO, K8:? "~~I.
U~ 2420 IF PEEK(K764)=K14 THEN POSITION K

~k ~4~g:iF"P~i~~~~~4~~~1~0~~E~2~gSITION K
..•... 0, K8:? " ": GOSUB 650: GOTO 2540

XP 2440 IF PEEK(1<5327~)=K3 ANI> CH=K2 THEN
GOSUB 4710:POKE 1757,12:POKE K1733,K3

2~GOTO 1810
CD 2450 IF PEEK(K5327~)=K3 ANI> CH=Kl THEN

GOSUB 4660:POKE 1757,12:POKE K1733,Kl

.4ij ~:~go~~ ~~~~ (K764) =K12 THEN GOTO 2480

.0. 2470 GO TO 2420
P~2480 POKE K764,K255:X=KI0:V=K8:POSITIO

. N K10,K8:? ":GOSU
B 3~50

SW 24~0 IF LEN(A$)(K20 THEN A$(LEN(A$)+l)
=" ":GOTO 24~0

VZ 2500 IF A$=" .. THEN

JJ! 2~~~OA~~~:=A$
ZJ·. 2520 A$ (20) =" ": AS (2) =" ": AS=""
PP 2530 GOTO 2400
~E ' 2540 POKE K764,255
ot 2550 POSITION KO,KI0:? "~~,,
FL 2560 IF PEEKCK764)=K14 THEN POSITION K

O,KI0:? .. ":GOSUB 650:GOTO 2400
GH 2570 IF PEEK(K764)=K15 THEN POSITION K

O,K10:? " ":GOSUB 650:GOTO 2680
VD 2580 IF PEEK(K5327~)=K3 ANI> CH=K2 THEN

GOSUB 4710:POKE 1757,12:POKE K1733,K3
< 2: GO TO 1810

C~25~0 IF PEEK(K5327~)=K3 ANI> CH=Kl THEN
GOSUB 4660:POKE 1757,12:POKE K1733,Kl

~6:GOTO 1300
SD 2600 IF PEEK(K764)=K12 THEN GOTO 2620
5X 2610 GO TO 2560
5P 2620 POKE K764.K255:X=KI0:V=KI0:POSITI

ON KI0,KI0:? ":GO
SUB 3~50
2630 IF LENCA$)(K20 THEN A$(LEN(AS)+l)
=" ":GOTO 2630
2640 IF A$=" " THEN

GO TO 2620
KG 2650 ANS2$=A$
ZX 2660 A$(20)=" ":A$(2)=" ":A$=""
SP 2670 GOTO 2540
AS 2680 POKE K764,255
ON . 26~0 POSITION KO, K12:? .. ~~ ..
VG 2700 IF PEEK(K764)=K14 THEN POSITION K

; 0, K12:? .. ": GOSUB 650: GOTO 2540 :Y5 2710 IF PEEK (K764) =K15 THEN POSITION K
... ,' 0, K12:? .. ": GOSUB 650: GOTO 2820
i~ 2720 IF PEEK(K5327~)=K3 ANI> CH=K2 THEN

GOSUB 4710:POKE 1757,12:POKE K1733,K3
2:GOTO 1810

ATARI 8-BIT EXTRA

elf 2730 IF PEEK (K532n) =K3 AND CH=Kl THEN

11 ~~r~~I~4~!h::;:4~:::;1~~::K:O~~7:~~:1
..• ~.~ ••• g~g ~g~~ g~:.K255: X=KI0: V=K12: POSITI

ON KI0 I K12:? I : GO
SUB 3~50

US 2770 IF LEN(A$) (K20 THEN A$(LEN(A$)+l)
=" ":GOTO 2770

Sf 2780 IF A$=" .. THEN
GOTO 2760

LI> 27~0 ANS3$=A$

g~ . ~gig gHr~~~::' ~:: (2) =" ": A$=""

RN 2830 POSITION KO,K14:? "~~,,
HI> 2840 IF PEEK(K764)=K14 THEN POSITION K

O,K14:? " ":GOSUB 650:GOTO 2680
PP 2850 IF PEEK(K764)=K15 THEN POSITION K

O,1<14:? " ":GOSUB 650:GOTO 2~60
VI) 2860 IF PEEK(K5327~)=K3 ANI> CH=K2 THEN

GOSUB 4710:POKE 1757,12:POKE K1733,K3
2:GOTO 1810

UH
UJ
ET

2870 IF PEEK(K5327~)=K3 AND CH=Kl THEN
GOSUB 4660:POKE 1757,12:POKE K1733,Kl

~6:GOTO 1300
2880 IF PEEK(K764)=K12 THEN GOTO 2~00
28~0 GOTO 2840
2~00 POKE K764.K255:X=K10:V=K14:POSITI
ON KI0,K14:? 1 •• _ •••••••• I ••• I •• I I ,":GO
SUB 3~50
2~10 IF LEN(A$)(K20 THEN A$(LEN(A$)+l)
=" ":GOTO 2910

TN 2~20 IF AS=" " THEN

g.;
ZX
SZ
A.S
TP
F.L

GO TO 2~00
2nO ANS4$=A$
2~40 A$(20)=" ":A$(2)=" ":A$=""
2~50 GOTO 2820
2~60 POKE K764,255
2~70 POSITION KO,K16:? "~~,,
2~80 IF PEEKCK764)=K14 THEN POSITION K
O,K16:? " ":GOSUB 650:GOTO 2820
2~~0 IF PEEK(K764)=K15 THEN POSITION K
O,K16:? " ":GOSUB 650:GOTO 2260
3000 IF PEEK(K5327~)=K3 ANI> CH=K2 THEN

GOSUB 4710:POKE 1757,12:POKE K1733,K3
2:GOTO 1810

B.K 3010 IF PEEK (K5327~) =K3 AND CH=Kl THEN
GOSUB 4660:POKE 1757,12:POKE K1733,Kl

<J6:GOTO 1300 NY 3020 IF PEEK(K764)=K12 THEN GOTO 3040
110 3030 GOTO 2~80 Jz 3040 POKE K764.K255:X=K16:V=K16:POSITI

E~ ~=5~1~F Kt~~ 1C~) ~~~Oi~~N 4g~LEN (C$) +1) =

£~ ~O~~G~~OC~~~O " THEN GOTO 3040
IF 3070 IT$=C$

..
~ .. GT. 3080 C$ (2) =" ": C$ (2) =" ": C$=
y 30<J0 GOTO 2<J60
S.~ 3100 POKE Kl733, K4:? CHR$ (K125)
I'tJ~ 3110 COUNT=O 01: 3120 POSITION K4, KO:? "Use (CTL) & 1 k

~I ~~3!Op~~~PK~~~~~~52:POSITION K7,K3:? "

ti~ ~~!=T~OSITION K12,K6:? "Printer Option

.• ~.~ .. ~~50 POSITION K2, KI0:? ,,------

~.1 3160 POSITION Kl1, K14: ~ "Use the t+ U

16 3~j~S~OSITION K8,K16:? "to Make !lour s

il ~l~~t~g~~TION K11,K18:? "then press rn
~I ~'i'~I~'" POKE Kln'}, K4 : FOR I=Kl TO KI0: HEX

ANALOG COMPUTING 57

• ~ivia continued

ii T I:POKE K.1730,K4:FOR I=K.1 TO KI0:NEHT

il 3~00 POKE Kl731,K4:FOR I=Kl TO KI0:NEH

••• ~.~ ••. h~r~g~~:H~~~~~~22:? ".1~;IH:."
~G 3230 POSITION Kl.1,K22:? "PRINTER ..
~B~ 3240 POSITION K2.1, K22:?" BOTH "
CR. 3250 POSITION K3.1, K22:?" MENU ..
tlQ 3260 POKE K764,K255
VI 3270 POSITION Kl, K22:? 1~;I;u:."
1(1 3280 IF PEEK(K7641=K6 THEN POSITION K.1

,K22:? " SCREEN ":GOSUB 650:GOTO 3440
86 3290 IF PEEK(K7641=K7 THEN POSITION K.1

.......• , K22:? " SCREEN ": GOSUB 650: GOTO 3320
K~ 3300 IF PEEK(K7641=K12 THEN 3500
~T 3310 GO TO 3280

ii ~Hg ~~~~~i~~:~H~~~~: iH~19:'Jb·J:+'~N K.1

1~1· ~3~~2 i; ~~~~~~~~4;' ;~~S~~E~5g~~~~~0~2~~
i~1 ~3~~2 i; ~~~~~g~4;' ;~~~U~H~~O ~~~~~: ~~~g
~1i 3~~~0 GOTO 3340
~R 3380 POKE K764,K255
LE 3390 POSITION K2.1, K22:? "_;110:_"
UZ 3400 IF PEEK(K7641=K6 THEN POSITION K2
•..... \. 1, K22:?" BOTH ": GOSUB 650: GOTO 3320
EN 3410 IF PEEK(K7641=K7 THEN POSITION K2

~I ~4~~2 i; ~EE~~~~64;' ;~~~U~H~~O ~~~~g: ~~~g
'ZH·······.·· 3~~~0 GOTO 3400 H 3440 POKE K764,K255
UR 3450 POSITION K31, K22:? "-:li4:1I-"
~A 3460 IF PEEK(K7641=K6 THEN POSITION K3

~il· h ~~2 i; ~EE~~~~64;' ;~~s~~E~5g~~~~~0~3~g
ii·1 1, K22:?" MENU ": GOSUB 650: GO TO 3260
tJ;Q 3480 IF PEEK(K7641=K.12 THEN POKE .1733, n; 4:? CHR$ (1251 : GOTO 2.10
(1'8 3490 GO TO 3460
lOt 3500 GOSUB 4340: POKE K54286, K64
JV 3510 H.1=K3:Vl=K5
~1. 3520 OPEN UK1, K4, KO I FILEl$
!:f;J 3530 INPUT UK.1,QUEST$,ANS1$,ANS2$,ANS3
r $,ANS4$,IT$
MU 3540 IF QUE S T $ = "f.ttA
~I \ Wtt:.ttt!J~T~~~~N~n°
.\-Ul 3560 IF PR=K.1 THEN GOSUB 3650: GOTO 353

r!i\ h~~ ~~S~~~~~ ~~;~1 ~~S~B 3650 Record NUMber:
.. ,. ..•. ";COUNT

l:g ~~~~ ~~~g~~N Hl, V1:? QUEST$: V1=Vl+l: P

~~I :H~~~ ~~:*~~~~ rr ~~rH 1 :~::~: ~ ::::~:~::
\~)\{~::;~;~:; SITION)(1, V 1:? ANS4$: V l=V 1 + 1: POSITION

ill ~~2~1~I=~U.1
8tlI 3630 IF V 1> K16 THEN POSITION K2, V 1:? "

%F Press t'IliI:Ij to continue, ITI:lB to end":P
t OKE K54286,K192:GOTO 3770
Sf' 3640 GOTO 3530
,NZ 3650 LPRINT "Record NUMber: "; COUNT
KU; 3660 LPRINT QUEST$
HZ! 3670 LPRINT ANS1$
I~' 3680 LPRINT ANS2$
J.Ill! 3690 LPRINT ANS3$
nJe. 3700 LPRINT ANS4$ lilu 3710 LPRINT IT$
1M; 3720 RETURN
~it 3730 CLOSE UK.1:POKE K54286,K192

58 ANALOG COMPUTING

RI> 3740 POSITION K4, V 1+ 1:? "Press i01!4!;(lii
to return to MENU"

JU 3750 IF PEEK (K532791 =K5 THEN ? CHR$ (12
51:GOTO 210

OU 3760 GOTO 3750
~Z 3770 IF PEEK(532791=K6 THEN GOSUB 4340

iiI g~~5i~0~~E~~g~:;~~~~G~~~N3~~gSE UK1:

~3 ~7~~R~~g5~~~gTO 210
NR 3800 El=KO
GI 3810 FOR I=Kl TO K3.1
S~ 3820 IF I)K30 THEN I=I-Kl:POSITION H,V

:? " ":H=H-Kl:El=K.1
PE 3830 IF I(Kl THEN I=I+K.1:POSITION H,V:

i~~; h~~"~~~:;~~~:0~:::0:8~~: ~:=~:"
HM 3860 IF Q=K155 THEN 3no
MY 3870 IF Q=K126 THEN POSITION H,V:? ","

~I ~:::-:~::~::T~::NH~:~: "1":I=I-Kl:E1=K

P4 3890 IF Q=K.126 ANI> I> KO THEN Q$ (1) =" ..
:GOTO 3830

. 3900 POSITION H,V:? CHR$(Q1
3910 IF I)KO THEN Q$(I1=CHR$(Q)
3920 H=H+Kl:POSITION H,V:? "I":NEHT I

.•.••..•.••• ~~~~ ~~sB~~~ ~~~~? R~~~~~ETURN
. i ... 3950 El=KO

•.. •.•.... • 3960 FOR I=Kl TO K21
···. 3970 IF I)K20 THEN I=I-K.1:POSITION H,V

:? " ":H=H-Kl:El=Kl
...... 3980 IF I (Kl THEN I=I+Kl: POSITION X, V: .! ? " ": H=H+K.1: POSITION H, V:? "I"
•. .•• 3990 GET U4, AN

'. 4000 IF AN=K126 THEN 4030:El=KO
.• ' 4010 IF AN=K155 THEN 4090

• 4020 IF I=K21 THEN I=I-Kl:POSITION H,V
:? " ":H=H-Kl:POSITION H,V:? "I":GOTO
3990

' 4030 IF AN=K126 THEN POSITION H,V:? ",
... "'H-H-K.1'POSITION H V'? "1"'I-I-K.1'El-:Hr ::ll K () -. , •. • - .-

•••... •...•• 4040 IF I(K.1 THEN 3980
•. , .• 4050 IF AN=K.126 AND I>KO THEN A$ (1) ="
rd ": GOTO 3980

'. 4060 POSITION X,V:? CHR$(AN1
4070 IF I)KO THEN A$(I1=CHR$(AN)

.' 4080 H=H+K.1: POSITION H I V:? "I": NEHT I
..•• 4090 If El=Kl THEN RETURN

< J 4100 POSITION H, V:? ", ": RETURN
f 4110 FOR I=Kl TO K2

· 4.120 IF I)K2 THEN I=I-K.1:POSITION H,V:
HU ? " ": H=H-K.1

·' 4130 IF I(Kl THEN I=I+Kl:POSITION H,V:
? " ":H=H+Kl:POSITION H,V:? "I"
4140 GET U4,CR

.. ". 4150 IF CR=K126 THEN 4180
> 4160 IF CR=K155 THEN 4240

; 4165 IF CR(49 OR CR)52 THEN POSITION H
,V:? "I":GOTO 4140
4170 IF I=K2 THEN I=I-Kl:POSITION H,V:
? " ":H=H-K.1:POSITION H,V:? "I":GOTO 4
.140
4180 IF CR=K126 THEN POSITION X,V:? "
":H=H-Kl:POSITION H,V:? "1":I=I-Kl:GOT
o 4130
4190 IF I(Kl THEN 4.130
4200 IF CR=K126 AND I) KO THEN C$ (1) ="
":GOTO 4130
4210 POSITION X,V:? CHR$(CR1
4220 IF I)KO THEN C$(I1=CHR$(CR1
4230 H=H+K.1:POSITION H,V:? "I":NEHT I
4240 IF I(K3 THEN POSITION X,V:? " "
4250 RETURN
4260 ? UK2;OUEST$:? UK2;ANS1$:? UK2;AN

ATARI 8-BIT EXTRA

S2S:? UK2iANS3S:? UK2iANS4S:? UK2ilTS
88 4270 RETURN
tfM <\ 2. tH~ (\ U EST S = "f4'A
~"

BU 42~0 ? UK2iOUESTS:? UK2iANS1S:? UK2jAN
S2S:? UK2iANS3$:? UK2iANS4$:? UK2jIT$

SH 4300 CLOSE UK1:CLOSE UK2
~J 4310 XIO 33,UKl,KO,KO,fILE1$
fD 4320 XIO 32,UK1,KO,KO,"D:GAME.TMP,GAME

.DAT"
AR 4330 RETURN
VP 4340 fOR I=K5 TO K20:POSITION Kl,I:? "

":NEXT I:RETURN
'1'5 4350 POKE K1730,K52:fOR I=Kl TO KI0:NE

XT I:POKE K172~,K52
OU 4360 fOR I=Kl TO KI0:POSITION KO,KO:?

"
":fOR J=Kl TO

Xf 4370 POSITION
e:[I)."11II:l 1]

KI0:NEXT J
KO,KO:? " IjlilIiIJ:II]

":fOR K=Kl TO KI0:NEXT
K

f'W 4380 NEXT I
BJ 43~0 RETURN
II 4400 POSITION Kl, K6:? "Ouest? .•••.. . .

"
DH 4410 POSITION Kl,K8:? "Answer 1

"
i;:W 4420 POSITION Kl,K10:? "Answer 2
jUt! · . . "

4430 POSITION Kl,K12:? "Answer 3
" · KQ 4440 POSITION Kl,K14:? "Answer 4
" · UI 4450 POSITION Kl,K16:? "Correct nUMber

."
4460 RETURN
4470 POSITION K2,K18:? "Input Ouestion
, Answers & Correct No."
4480 POSITION K6,K20:? "Use li:t- Ii:~ ke!,ls

- press Ijl:ti,I!jl:I"
44~0 RETURN

•. 4500 POSITION KO, K18:? "Input the Ques
tion to locate the record"
4510 POSITION KO,Kl~:? "or use an '*'
to step through the file."

' 4520 POSITION KO,K20:? "Use the OPTION
5 below when the record"

) 4530 POSITION KO, K21:? "is found. Pres
........... s Ijl:ti'lIjl:1 when changed."

4540 RETURN
.......... 4550 POSITION Kl, K18:? "Use the Ii:~ li:t
'/ ke!,ls to page up and down"

.•.• 4560 POSITION Kl,Kl~:? "until !,IOU find
the line !,IOU wish to"

4570 POSITION Kl,K20:? "change. Make
the change and press the"
4580 POSITION Kl, K21:? """ljl"":ti<":,rTl!'""jJ"':1 ke!,l. P
ress <OPTION} when done"

• • 45~0 RETURN
.•..•..• 4600 POSITION Kl, K22:? " CHANGE"
······ 4610 POSITION Kl1, K22:? " DELETE"

4620 POSITION K21,K22:?" NEXT "
· 4630 POSITION K31,K22:?" MENU "
• 4640 fOR I=K6 TO K16:POSITION KO,I:? "

":NEXT I:RETURN
4650 POSITION KO,K22:? "

• 4660 GOSUB 4810:POKE
c 20:POKE K1730,K4

":RETURN
K172~,K4:GOSUB 48

4670 GOSUB 4830:POKE K1731,K4:GOSUB 48
40:POKE K1732,K4
4680 POKE K1732,K52:fOR I=Kl TO K5:NEX
T I:POKE K1731,K52:fOR I=Kl TO K5:NEXT

I
46~O POKE K1730,K52:fOR I=Kl TO K5:NEX
T I:POKE K172~,K52
4700 GOSUB 4470:GOSUB 4650:GOSUB 4760:

ATARI 8-BIT EXTRA

RETURN
IW 4710 GOSUB 4810:POKE K172~,K4:GOSUB 48

20:POKE K1730,K4
JV 4720 GOSUB 4830:POKE K1731,K4:GOSUB 48

40:POKE K1732,K4
TO 4730 POKE K1732,K132:fOR I=Kl TO K5:NE

XT I:POKE K1731,K132:fOR I=Kl TO K5:NE
XT I

HZ 4740 POKE K1730,K132:fOR I=Kl TO K5:NE
XT I:POKE K172~,K132

AB 4750 GOSUB 4500:GOSUB 4650:GOSUB 4600:
RETURN

ZD. 4760 POSITION Kl, K22:? "CONTINUE"
LK 4770 POSITION Kll,K22:? II EDIT "
SLY 4780 POSITION K21, K22:?" PRINT"
DO 47~0 POSITION K31,K22:?" MENU "
UN 4800 fOR I=K6 TO K16:POSITION KO,I:? "

":NEXT I:RETURN
fW 4810 POSITION KO,K18:? "

GT

AR

80

'I'D

i>L
PV
co
KK

UW
ow
TT

":RETURN
4820 POSITION KO,Kl~:? " ":RETURN
4830 POSITION KO,K20:? "

":RETURN
4840 POSITION KO,K21:? " ":RETURN
4850 fOR I=K18 TO K21:POSITION KO,I:?
"

":NEXT I:RETURN
4860 GRAPHICS Kl:POKE K710,KO:POKE K75
2,Kl:POKE K708,148:POKE K764,K255
4870 POSITION ~,4:? U6i"A"
4880 POSITION K7,K8:? U6i"trivia"
48~0 POSITION K8,K12:? U6i"~"
4~00 ?" Please wait - prograM is loa
ding"
4~10 RUN "D:TRIV.BAS"
4~20 INIT=INIT+Kl:lf INIT}Kl THEN 5010
4~30 GRAPHICS O:POKE K752,Kl:POKE K710
,KO:POSITION KI0,KI0:? "10 Seconds pIe
ase

M~ 4~40 RESTORE 5150:fOR N=O TO ~~:READ X
:POKE 1664+N,X:NEXT N

Vi;:· 4 ~50 COL TAB=1712: LUMTAB=COL TA8+24
til' 4~60 REM START COUNTER AND RESET EVERY
~ .. ~ ••• 4~~~
AA 4~80
Olf 4~~0
PI" 5000
MS 5010
JF 5020
AU 5030
XG 5040
flL 5050
VN 5060

X=USR (16~3)
REM TELL ANTIC WHERE DLI CODE 15
POKE 512,128
POKE 513,6
REM NOW SET INTERRUPT BITS
DSTART=PEEK(560)+256*PEEK(561)
fOR N=DSTART+6 TO DSTART+28
POKE N,130
NEXT N
REM SET INTERRUPT BIT ON FIRST LI

il ~~70 POKE DSTART+3,H4
Q~5080 REM ENABLE DLI
CS50~0 POKE 54286,1~2
fill> 5100 PRINT CHR$ (125)
FT 5110 REM HANDLE LINE 0 AS BACKGROUND
Ttl 5120 POKE 710,PEEKCCOLTAB)
JU 5130 POKE 70~,PEEK(LUMTAB)
AR 5140 RETURN
NZ 5150 DATA 72,138,72,174,156,6,18~,176,

6,141
HK 5160 DATA 10,212,141,24,208,18~,200,6,

141,23
HS 5170 DATA 208,238,156,6,104,170,104,64

.. ,1,104
Mit 5180 DATA 16~,7,160,168,162,6,32,~2,22

ill ~l;g DATA 16~,1,141,156,6,76,~8,228,8,

l im
ANALOG COMPUTING 59

• ~ivia continued

•

5230 DATA 12,12,12,12,12,12,12,12,12,1
2
5240 DATA 12,12,12,14,14,14,0,0,0,0

Listing 2.
BASIC listing.

10 REM A TRIVIA GAME BY Jan Iverson
20 REM
30 KO=0:Kl=1:K2=2:K3=3:K4=4:K5=5:K6=6:
K7=7:K8=8:K~=~:Kl0=10:Kll=11:K12=12:Kl
3=13:K14=14:K15=15:K16=16:K17=17
40 K18=18:Kl~=1~:K20=20:K21=21:K22=22:
K2~=2~:K30=30:K34=34:K4~=4~:K50=50:K52
=52:K60=60:K~1=~1:Kl00=100:K200=200
50 K752=752:K35=35:K45=45:K53=53:K64=6
4:K81=81:K~6=~6:K128=128:K540=540:K532
7~=5327~:K764=764:K255=255
60 DIM A$(30),B$(20),C$(20),D$(20),E$(
20),F$(1) H$(1),R(3)
70 DIM Al~(6000),Bl$(4000),Cl$(4000),D
1$(4000)tE1$(4000),Fl$(200),FILE1$(15)
80 FILE1~=" ":FILE1$="D:
GAME.DAT":SCORE=KO:HSCORE=KO
~O A=KO:B=KO:C=KO:D=KO:Al=KO:p=Ko:a=KO
:R=KO:CNT=KO:CT=KO:HH=KO:HHH=KO
100 CLOSE UK1:0PEN UK1,K4,KO,FILE1$:OP
EN UK4,K4,KO,"K:":GOSUB 1350:POKE 5377
4,K64:POKE K16,K64
110 GOSUB 1500:POKE K752,Kl:GOSUB 760
120 POSITION K2,K22:? "START=PLAY AGAI
N OPTION=END SESSION":POKE 53774,K64:
POKE K16,K64:SS=45:Ll=K~
130 POKE 54286,l~2:GOSUB 1150:GOSUB 11
70:GOSUB 11~0
140 POSITION K5,K3:? A$:SOUND KO,K45,K
10,K8:FOR I=Kl TO K15:NEHT I
150 POSITION Kl0,K~:? B$:SOUND KO,K53,
Kl0,K8:FOR I=Kl TO K15:NEHT I
160 POSITION Kl0,Kll:? C$:SOUND KO,K64
,Kl0,K8:FOR I=Kl TO K15:NEHT I
170 POSITION Kl0,K13:? D$:SOUND KO,K81
,Kl0,K8:FOR I=Kl TO K15:NEHT I
180 POSITION Kl0,K15:? E$:SOUND KO,K~6
,Kl0,K8:FOR I=Kl TO K15:NEHT I:SOUND K
O,KO,KO,KO
1~0 POSITION K6,Kl~:? " Select 1

- 4 "
200 TM=Kl0:POKE K764,K255
210 GOSUB 1~20
220 GET UK4,ANS
230 IF ANS<K4~ OR ANS)K52 THEN POKE K7
64,K255:GOSUB 1~20:GOTO 220
240 H$=CHR$CANS)
250 IF H$=F$ THEN SOUND KO,K45,Kl0,K12
:FOR I=Kl TO K30:NEHT I:SOUND KO,K52,K
10,K12:FOR I=Kl TO K30:NEHT I
260 IF H$=F$ THEN GOSUB 700:GOTO 420
270 GOSUB 710:GOTO 440
280 GOSUB 730
2~0 POSITION Kl0,K3:? "RIGHT IjBj" W
RONG "jC
300 POSITION K6,Kl~:? "Choose one of t
he options 'i:~ "
310 POSITION K2,K22:? "tlliTII]":POSITION

K20, K22:? "[IJ:lI(IJ:I"
320 FOR I=Kl TO K30
330 IF PEEKCK5327~)=K3 THEN POSITION K
2,K22:? "START":POSITION K20,K22:? "OP
TION":GOTO 8~0
340 IF PEEK(K5327~)=K6 THEN POSITION K
2,K22:? "START":POSITION K20,K22:? "0P
TION":GOSUB 730:GOTO 130
350 NEHT I
360 POSITION K2,K22:? "START":POSITION

60 ANALOG COMPUTING

K20,K22:? "OPTION"
370 FOR I=Kl TO K30
380 IF PEEK(K5327~)=K3 THEN POSITION K
2,K22:? "START":POSITION K20,K22:? "OP
TION":GOTO 8~0
3~0 IF PEEK(K5327~)=K6 THEN POSITION K
2,K22:? "START":POSITION K20,K22:? "0P
TION":GOSUB 730:GOTO 130
400 NEHT I
410 GOTO 310
420 B=B+Kl:S0UND KO,KO,KO,KO
430 GOSUB 2050:GOTO 280
440 C=C+Kl:S0UND KO,K~l,K12,Kl0:FOR DE
LAY=Kl TO K200:NEHT DELAY:SOUND KO,KO,
KO,KO
450 IF F$="l" THEN GOSUB 500
460 IF F$="2" THEN GOSUB 550
470 IF F$="3" THEN GOSUB 600
480 IF F$="4" THEN GOSUB 650
4~0 GOTO 280
500 FOR I=Kl TO K4
510 POSITION K7,K~:? "[I!I":SOUND KO,K~6
,Kl0,K8:FOR DELAY=Kl TO K50:NEHT DELAY
520 POSITION K7,K~:? "l.":SOUND KO,KO,
KO,KO:FOR DELAY=Kl TO K50:NEHT DELAY
530 NEHT I
540 RETURN
550 FOR I=Kl TO K4
560 POSITION K7,Kll:? "rIII":SOUND KO,K~
6,Kl0,K8:FOR DELAY=Kl TO K50:NEHT DELA
Y
570 POSITION K7,Kll:? "2.":SOUND KO,KO
,KO,KO:FOR DELAY=Kl TO K50:NEHT DELAY
580 NEHT I
5~0 RETURN
600 FOR I=Kl TO K4
610 POSITION K7,K13:? "~":SOUNO KO,K~
6,Kl0,K8:FOR DELAY=Kl TO K50:NEHT DELA
Y
620 POSITION K7,K13:? "3.":SOUNO KO,KO
,KO,KO:FOR DELAY=Kl TO K50:NEHT DELAY
630 NEHT I
640 RETURN
650 FOR I=Kl TO K4
660 POSITION K7,K15:? "~":SOUNO KO,K~
6,Kl0,K8:FOR DELAY=Kl TO K50:NEHT OELA
Y
670 POSITION K7,K15:? 14.":S0UNO KO,KO
,KO,KO:FOR DELAY=Kl TO K50:NEHT DELAY
680 NEHT I
6~0 RETURN
700 POSITION 36,K15:? lIulI:RETURN
710 POSITION 36, K15:? II nil: RETURN
720 POSITION K5,K~:? II

":POSITION K7,K13:?
II ": RETURN
730 POSITION K3,K3:? II

":POSITION Kl0,K~:?
740 POSITION Kl0,Kll:? II

":POSITION Kl0,K13:? II

"
750 POSITION Kl0,K15:? "

":RETURN
760 FOR I=KO TO K21:POSITION KO,I:? "I

I":NEHT I
770 POSITION KO,K5:? "I

POSITION I" 780 KO,K17:? II:
I"

7~0 POSITION KO,K21:? II'

'II

800 POSITION KO,KO:? II
I

II

810 POSITION K12,Kl:? "
820 POSITION Kll,K6:? II

II

ATARI a-BIT EXTRA

~iee ~!:
DB 850
DeW 860
lie 870
ZU 880
OX 8~0

POSITION
POSITION
POSITION
POSITION
POSITION
RETURN

35,K12
35,K13
35,K14
35,K15
35,K16

"0" I. •• II
.. II

70
~OO

POKE 54286,l~2:GOSUB

POSITION K3,K3:? "
"

1180:GOSUB 11

':HO POSITION KI0, K3:? "RIGHT "; B;" H
RONG ";C
~20 P=B+C:0=B/P:0=0*100
~30 IF SCO~E)HSCORE THEN HSCORE=SCORE:
POSITION 34,K7:? HSCORE

BN ~40 IF 0(K50 THEN POSITION K7,K9:? "'1'0
U NEEI> A TRIVIA CLASS":GOTO 1000

UG ~50 IF 0)=75 THEN 970
JI 960 IF 0)=K50 THEN POSITION K9,K9:? "P

RETTV GOOD, STUDY HORE ":GOTO 1000
UH970 IF O)=~O THEN ~~O
VAi 980 IF 0)=75 THEN POSITION K9,K9:? "GR

'fili ~~! IF A~~~~~ ~~~~Eg~SITI~~ G~~? K~~~O "GR

~E ~g~~!bo~8BT~7~~AD OF CLASS"
AG 1010 POSITION K7,K13:? "DO YOU HISH TO

Z~ l~~gYP~~~~~~N K2,K22:? "tIl'Jaj":POSITIO
............. N K20,K22:? "[II:.IUII:I"
GO 1030 FOR I=Kl TO K50
SLI040 IF PEEK(K53279)=K3 THEN GRAPHICS

O:END
G~ 1050 IF PEEK(K53279)=K6 THEN GOSUB 113

i ;m~~h~~[~~::: ~::~: G~:~:~!~~:~~:!::
I~;.: ~O~~O f~~2 gK~o~~I~~~
5)(1090 IF PEEK(K53279)=K3 THEN GRAPHICS

•. ~ .. ~ .••• ~i~~D IF PEEK (K53279) =K6 THEN GOSUB 113
O:GOSUB 730:B=KO:C=KO:GOSUB 1180:GOSUB

i 1330:GOSUB 1490:GOSUB 1350:GOTO 130
5U: 1110 NEXT I
""'1120 GOTO 1020
.Yl> 1130 POSITION K2, K22:? "START": POSITIO

!I ii~r ggH~h~g::~::I:": R~:~~: POSITION K7

bl i~~~:~o~iT~ON K7,K13:? "3.":POSITION K

~~; r1.~~5~~R"~~~~RgU~~5:POSITION K9,I:? "

~~ 1180 FOR I=K9 TO K151:"~~~~¥~~N K3, I:? "

~i g~g i~=~~~~:N~~~~)1~~i~EXT I:RETURN

"4 1210 IF XXX=CNT THEN 890

'I. Ui: ~~ ~1$~~t~h ~~~~ n~~Nrg~X=CNT
PV" 1240 A$=Al$ (CT*K30-K29)
q:el\ 1250 8$=81$ (CT*K20-K19)
eli" 1260 C$=Cl$ (CT*K20-K19)
6 d1270 1>$=1>1$(CT*K20-K19)

1280 E$=El$(CT*K20-K19)
12~0 F$=Fl$(CT,CT)
1300 Fl$(CT,CT)=")O!"

'. 1310 XX=XX+Kl
..... 1320 RETURN
, 133a ~=KO:8=KO:C=KO:D=KO:Al=KO:P=KO:0=
. KO: R=KO : CT=KO
1340 RETURN
1350 INPUT UKl A$ B$ C$ D$ E$ F$
1360 IF A$="lf!iit#!#!#!#!#~!!!ff!A
~" THEN 1460

ATARI 8-BIT EXTRA

1370 CNT=CNT+Kl
1380 IF CNT=200 THEN 1460
1390 Al$(CNT*K30-K29)=A$
1400 Bl$(CNT*K20-K19)=B$
1410 Cl$(CNT*K20-K19)=C$
1420 Dl$(CNT*K20-K19)=D$
1430 El$(CNT*K20-K19)=E$
1440 Fl$(CNT,CNT)=F$
1450 GOTO 1350
1460 SCORE=KO:POSITION K34,K6:? "
":POSITION K34,K6:? "0"
1470 CLOSE UKl
1480 RETURN
1490 POKE 54286,64:CT=0:CNT=0:XX=KO:XX
X=KO:CLOSE UK1:0PEN UK1,K4,KO,FILE1$:R
ETURN
1500 GRAPHICS KO:POKE 752,Kl:POKE 710,
KO:POSITION KI0,KI0:? "20 Seconds plea
se I •• II

1510 FOR N=KO TO 99:READ X:POKE 1664+N
,X:NEXT N
1520 COLTAB=1712:LUHTAB=COLTAB+24
1530 X=USR (1693)
1540 POKE 512,128
1550 POKE 513,K6
1560 DSTART=PEEK(560)+256*PEEKC561)
1570 FOR N=DSTART+K6 TO I>START+28
1580 POKE N,130
1590 NEXT N
1600 POKE I>START+3,194
1610 POKE 54286,192
1620 PRINT CHR$(125)
1630 POKE 710,PEEKCCOLTAB)
1640 POKE 709,PEEKCLUHTAB)
1650 RETURN
1660 DATA 72,138,72,174,156,6,189,176,
6,141
1670 DATA 10,212,141,24,208,189,200,6,
141,23
1680 DATA 208,238,156,6,104,170,104,64
,18,104
1690 DATA 169,7,160,168,162,6,32,92,22
8,96
1700 DATA 169,1,141,156,6,76,98,228,14
4,144
1710 I>ATA 144,144,144,144,196,196,196,
196,196,196
1720 DATA 196,196,196,196,196,64,64,64
,64,64
1730 DATA 2,0,12,12,12,12,12,12,12,12
1740 DATA 12,12,12,12,12,12,12,12,12,1
2
1750 DATA 12,12,12,12,6,6,0,0,0,0
1760 RESTORE 1880
1770 FOR I=Kl TO 24
1780 READ PO,Pl,P2,P3,DUR
1790 POKE K540,DUR
1800 SOUND KO,PO,KI0,K12
1810 SOUND Kl,Pl,K10,K12
1820 SOUND K2,P2,KI0,K12
1830 SOUND K3,P3,KI0,K12
1840 IF PEEKCK540)()KO THEN 1840
1850 NEXT I
1860 SOUND KO,KO,KO,KO:SOUND Kl,KO,KO,
KO:SOUNI> K2,KO,KO,KO:SOUND K3,KO,KO,KO
1870 RETURN
1880 DATA 108,0,0,0,10,102,0,0,0,10,96
,243,O,O,10,60,121,162,O,20,~6,O,O,O,l
O,60,162,O,O,20,~6,121,136,O,20
1890 DATA 60,0,0,0,20,60,182,0,0,20,60
,121 , 144,0,20,60,193,0,0,10,60,193,0,0
,10,53,121,162,0,10,50,121,162,0,10
1900 DATA 47,162,0,0,10,60,162,0,0,10,
53,96,121,O,10,47,~6,121,O,10,47,162,O
,0,10,64,162,0,0,10,53,91,128,0,20
1910 DATA 60,96,121,0,20,60,162,0,0,20
,0,243,0,0,30
1920 POSITION K3,K6:? "TIHE=":POSITION

ANALOG COMPUTING 61

• 1rivia continued

•

28,K6:? "SCORE=":POSITION 25,K7:? "HI
-SCORE=":POSITION K8,K6:? TM
1~30 POKE K540,K60
1~40 IF PEEKCK5401=KO THEN TM=TM-K1:PO
SITION K8,K6:?" ":POSITION K8,K6:? T
M:SOUND KO,K128,K10 I K10:GOTO 1~80
1~50 IF PEEKCK7641(JK255 THEN l~~O
1~60 IF TM=KO THEN 2010
1~70 GOTO 1~40
1~80 FOR J=K1 TO K2:NEXT J:SOUND KO,KO
,KO,KO
1~~0 IF PEEKCK7641(>K255 THEN ANS=PEEK
(764):RETURN
2000 GOTO 1~30
2010 SOUND KO,K~6,K10,K12:GOSUB 2030:A
NS=53:POSITION K8,K6:?" ":POP :GOTO
240
2020 RETURN
2030 FOR K=K1 TO K30:NEXT K
2040 SOUND KO,KO,KO,KO:RETURN
2050 IF TM=KO THEN RETURN
2060 TM=TM-K1:POSITION K8,K6:?" ":PO
SITION K8,K6:? TM:SOUND KO,K128,K10,K6
:FOR I=K1 TO K3:NEXT I
2070 SOUND KO,KO,KO,KO
2080 FOR I=K1 TO K10:NEXT I
20~0 SCORE=SCORE+K1:POSITION K34,K6:?
SCORE:SOUND KO,162,K10,K6:FOR I=K1 TO
K3:NEXT I:SOUND KO,KO,KO,KO
2100 FOR I=K2 TO K10:NEXT I
2110 GOTO 2050
2120 RETURN

62 ANALOG COMPUTING ATARI a-BIT EXTRA

by Jerry Lemaitre

In this game, you're the lowly Anthort, struggling to de
fend your planet against the evil Zorcron empire. If the
rock-eating Zorcrons manage to penetrate your defenses,
they'll gobble up your entire planet. To prevent this, you're
armed with the mystical Fyreballs, which ignite anything
in their path. You may have three of these flying at one
time, but shoot carefully!

You're not the only one with weapons, though. The Zor
crans have discovered machinery! There are three types
of machines that they build with the iron ore they can't
digest.

Their Eggbarge is a bulky space vessel which incubates
Zorcron eggs during flight. When it reaches its destina
tion, the newly hatched Zorcrons help to replenish the
fighting troops.

A Whizzer is a warp-speed vessel which transports and
launches the most deadly Zorcron offense of all-the Zing
bomb. You'll know the Zingbombs when you see them .
These menaces head straight for your planet at incredible
speeds. On impact , they create a shock wave that will pul
verize your delicate Anthortian insides.

ATARI 8-SIT EXTRA

..

Now, don't get me wrong. This isn't just another one
dimensional shoot-'em-up. Constantly changing colors and
totally animated characters add to the visual appeal. You
can move your Anthort in eight (count 'em, eight) direc
tions. There's also horizontal wraparound, so you're not
confined by the sides of the screen.

Even though Invasion III is written in BASIC, there can
be as many as twenty-three characters on-screen at a
time-at speeds that'll make you sweat! Enjoy! rI

Jerry Lamaitre has owned his Atari 400 for four years.
He's very interested in robotics and artificial intelligence,
and sells his own programs and accessories as a small
mail-order business.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

QK130 GOSUB 570
.i.H!'! ~ 110 SC=KO: MEN=K2: GOSUB 720

ANALOG COMPUTING 63

• Invasion III continued

120 POKE P+SCR,K2:If STICK(KO)=K15 AND
STRIG(KO) THEN 120

130 fOR Z=KO TO K15:Pl=P:S=H(STICK(KO)
):P=P+S:P=P-S*(P)43~ OR P(40)
140 C=INT(K5*RND(KO»:SETCOLOR C,Z,K8*
(C(K4)
150 CH= NOT CH:POKE 756,CH(CH):L=PEEK(
P+SCR) :POKE Pl+SCR,KO:POKE P+SCR,K2:If

LAND L()K2 THEN 410
160 L=KO:If NOT STRIG(KO) THEN GOSUB
330
170 fOR A=KO TO K2:fl=f(A)
180 If fl THEN POKE fl+SCR,KO:fl=fl-K2
O:fL=PEEK(fl+SCR):If fL THEN f=fl:fl=K
O:GOSUB 350
1~0 If fl THEN POKE fl+SCR,132
200 F(A)=fl:NEHT A
210 IF ZP(Z) THEN ZP1=ZP(Z):ZP(Z)=ZP(Z
)+INT(K3*RND(KO)+1~):L=PEEK(ZP(Z)+SCR)
:POKE ZP1+SCR,KO:POKE ZP(Z)+SCR,1~5
220 If L THEN GOSUB 460
230 If NOT E THEN If RND(KO)(O.Ol THE
N E=K20:EH=Kl:S0UND Kl,E,12,K8:If RND(
KO)(0.5 THEN E=3~:EH=-Kl
240 If E THEN E=E+EH:POKE E+SCR,K6:POK
E E-EH+SCR,KO:If E=K20 OR E=3~ THEN PO
KE E+SCR,KO:E=KO:SOUND Kl,KO,KO,KO
250 If E THEN If E)21 AND E(38 THEN If

NOT ZP(E-22) THEN ZP(E-22)=E+K20:POK
E ZP(E-22)+SCR,1~5:S0UND Kl,E,12,K8
260 If H=KO THEN If RND(KO)(O.Ol THEN
H=K20:HH=Kl:S0UND K2,H,10,10:POKE 77,K
O:If RND(KO)(0.5 THEN H=3~:HH=-Kl
270 If H THEN H=H+HH:POKE H+SCR,133:PO
KE H-HH+SCR,KO:If H=K20 OR H=3~ THEN P
OKE H+SCR,KO:H=KO:SOUND K2,KO,KO,KO
280 If H THEN If NOT BAND RND(KO)(O.
06 THEN B=H+K20:S0UND K3,B,K4,12
2~0 IF B THEN SOUND K3,B,K4,12:B=B+K20
:BL=PEEK(SCR+B):POKE SCR+B,71:POKE SCR
+B-K20,KO
300 If B THEN If BL=K2 OR B)43~ THEN S
OUND K3,KO,KO,KO:POKE SCR+B,KO:B=KO:GO
TO 410
310 If B THEN If BL=132 THEN fL=71:GOS
UB 3~0
320 NEHT Z:GOTO 130
330 fOR J=KO TO K2:If NOT f(J) THEN f
OR I=KO TO 31:POKE 53761,I:NEHT I:F(J)
=P-K20:RETURN
340 NEHT J:RETURN
350 If fL=1~5 THEN fOR I=KO TO K15:IF
ZP(I)=f THEN SC=SC+25:GOSUB 530:Z=I:GO
SUB 460
360 If fL=1~5 THEN NEHT I:RETURN
370 If fL=133 THEN SC=SC+l000:GOSUB 53
O:Q=H:H=KO:SOUND K2,KO,KO,KO:GOTO 550
380 If fL=K6 THEN SC=SC+l000:GOSUB 530
:Q=E:E=KO:SOUND Kl,KO,KO,KO:GOTO 550
3~0 If fL=71 THEN SC=SC+500:GOSUB 530:
Q=B:B=KO:SOUND K3,KO,KO,KO:GOTO 550
400 RETURN
410 POKE P+SCR,K8:fOR I=Kl TO K20:S0UN
D K3*RND(KO),200*RND(KO),12,K8:NEHT I
420 HEN=HEN-Kl:POKE P+SCR,~:FOR I=Kl T
o K20
430 SOUND K2*RND(KO),200*RND(KO),12,K8
: NEXT I:fOR I=KO TO K3:S0UND I,KO,KO,K
O:NEHT I
440 POKE P+SCR,KO:FOR I=KO TO 100:SETC
OLOR K4*RND(KO),K15*RND(KO),K15*RND(KO
) :NEHT I:IF HEN(KO THEN 500

CV 450 GOSUB 720:GOTO 120
~ VL ; 460 IF ZP(Z)=KO OR L=1~5 THEN RETURN
N~ 470 If L=74 OR L=75 OR L=K2 THEN 410
... 480 POKE ZP(Z)+SCR,200:FOR I=KO TO K15

:SOUND KO,KO,K4,I:NEHT I:POKE ZP(Z)+SC
R,201

64 ANALOG COMPUTING

4~0 fOR I=KO TO K15:S0UND KO,KO,K5,I:N
EHT I:POKE ZP(Z)+SCR,KO:ZP(Z)=KO:RETUR
N
500 GOSUB 720:POSITION K5,K6:? ttK6'''Ga
~OV~!":POSITION K5,K8:? ttK6;IIPaEsS

. (jJrE": POKE 17+SCR, KO
510 IF STRIG(KO) THEN 510
520 GOTO 110

. . •• 530 POSITION K4, 23:? ttK6; SC: If SC) HSC
./ THEN HSC=SC: POSITION 14,23:? ttK6; HSC
........ 540 RETURN

·•.· •. ·.·. 550 SOUND K2,34,10,10:fOR I=KO TO 16:f
< OR J=KO TO Kl:POKE SCR+Q,K8+J:SOUND Kl
.... ,I+J,10,11+J:NEHT J:NEHT I

! 560 POKE SCR+Q,KO:SOUND Kl,KO,KO,KO:SO
UND K2,KO,KO,KO:RETURN
570 Kl=1:K2=2:K3=3:K4=4:K5=5:K6=6:K8=8
:K15=15:K20=20
580 GRAPHICS 18:POSITION K4,K2:? ttK6;"
In~S H;IJ] il]" : POSITION ~,K5:? ttK6; "b!.'''
:POSITION K3,7
5~0 ? ttK6j"JERRV LEHAITRE":COLOR 138:P
LOT KO,KO:DRAHTO l~,KO:DRAHTO l~,ll:DR
AHTO KO,11:DRAHTO KO,KO
600 DIH CH(Kl),M(K15),ZP(K15),F(K2),J$
(3~):M(K5)=21:H(K6)=-1~:H(7)=Kl:H(~)=1
~:H(10)=-21:HCll)=-Kl:H(13)=K20
610 H(14)=-K20:HCK15)=KO:fOR I=Kl TO 3
~:READ A:J$CI)=CHR$CA):NEHT I
615 DATA 104,104,133,215,104,133,214,1
04,133,217,104,133
620 DATA 216,104,133,218,104,170,160,0
,177,214,145,216,200,208,4,230,215,230
,217,202,208,242,1~8,218,16,238,~6
630 CH(KO)=PEEKC106)-K8:CHCK1)=CHCKO)
K8:I=USR(ADRCJ$),57344,CH(KO)*256,511)
640 A=CH(KO)*256:fOR I=KO TO ~5:READ B
:POKE A+I,B:fOR J=KO TO K3:SETCOLOR J,
K15*RNDCKO),J+J+K4:NEHT J:NEHT I
650 I=USRCADRCJ$),CHCKO)*256,CHCK1)*25
6,511)

HY 660 A=CH(Kl)*256:FOR 1=16 TO 63:READ B
:POKE A+I,B:NEHT I:RETURN

•

670 DATA 0,0,0,0,0,0,0,0,7,15,30,56 , 48
,O,l~2,l~2,12~,~O,60,21~,126,36,72,144
,12~,12~,165,21~,126,60,36,36
680 DATA O,20,8,20,8,0,8,O,255,12~,18~
,181,181,181,133,253,60,102,255,24,255
,171,255,126
6~0 DATA 0,14,24,24,24,60,60,24,0,34,2
O,104,22,40,68,O,65,34,0,1~2,3,O,68,13
0,0,16,60,127,255,255,255,0
700 DATA 0,0,65,225,251,255,255,0,66,~
O,60,21~,126,36,18,~,O,O,36,~0,255,18~
,153,153,0,8,20,8,0,8,0,8
710 DATA 1~1,161,173,173,173,18~,12~,2
55,60,102,255,24,255,213,255,126,0,112
,24,24,24,60,60,24
720 GRAPHICS 17:POSITION KO,KO:? ttK6j"

tR(,I:.n ": POSITION Kl, 23:?
ttK6j" ";SC:POSITION 10,23

730 ? ttK6;"~"jHSC:POKE 756,CHCKO):F
OR I=KO TO l~:COLOR INTCK2*RND{KO)+10)
740 PLOT I,22:S0UND KO,I+I+I,10,10:NEH
T I
750 SOUND KO,KO,KO,KO:SCR=PEEK(88)+256
*PEEKC8~):P=350:fOR I=KO TO K15:ZPCI)=
KO:NEHT I:If HEN THEN POKE 17+SCR,130
760 If HEN=K2 THEN POKE 18+SCR,130
770 B=KO:H=KO:E=K20:EH=Kl:f(KO)=KO:fCK
1)=KO:F(K2)=KO:RETURN

ATARI 8-BIT EXTRA

by David Huff

The game of Dragon Chase depends more on a sharp
mind than on quick reflexes. The object here is to rescue
the princess before an evil dragon can reach her.

In order to save the princess, you must remove the black
castle which surrounds her. To accomplish this feat, you
must find certain objects-such as diamonds, swords and
rings. Unfortunately, these items are hidden from view un
til you move over them. And, if the dragon reaches your
fair lady, the game is over.

The game rules.
You begin each level in the lower left corner, marked

by a square pink cursor. As you move with the joystick,
objects hidden below become visible. A row of the things
you must find is seen at the upper left , and you must un
cover the objects in the order shown. When you locate one,
stay over it until its color changes, then move on to find
the next one. After you've retrieved all the required items,
the castle is automatically removed. To rescue the prin
cess and advance to the next level, move your pink cur
sor over her.

Also hidden are various objects which can help or hin
der you. The squares can make the whole field visible for
a few seconds, giving you time to locate other needed
items.

Wild cards are also randomly hidden. These are marked

ATARI 8-SIT EXTRA

•

with a W. Finding one is the same as locating the next
object you were searching for.

Also hidden are dragons. If you hover above one, your
movement is stopped-and the dragon takes another step
toward the princess. A tombstone marks this event. Some
times the dragon may be sleeping, in which case you can
step right over him.

For help in finding things, a scanner is provided. Press
the fire button to activate it, and a portion of the screen
around you becomes visible. Using the scanner costs you
10 points and advances the dragon one step.

Each round of Dragon Chase has five levels. On higher
levels, the dragon moves faster- while you must find more
objects.

Scores are tallied as follows. You receive 200 points for
saving the princess, or 100 points for finding an object.
You lose points in this way: 50 off for finding a dragon,
5 are subtracted for advancing the dragon, and using the
scanner eats up 10.

About the program.
Dragon Chase takes advantage of Atari's character col

or assignment in graphics mode 2. The same character is
easily displayed in different colors, and there are sixty
four characters in the graphics 2 character set. You have
a choice of four colors. In choosing one, a specific num
ber is added to the character number, as shown in Figure 1.

To display a character, POKE its number into the dis-

ANALOG COMPUTING 65

• Dragon Chase continued

play memory, -adding the indicated amount to choose a col
or register. Character numbers are shown on page 55 of
Atari's BASIC Reference Manual.

Figure 1.

COLOR REGISTER
Character No. 708 709 710 711
0·63 +0 +64 +128 +192

Dragon Chase uses a redefined character set at Line
1000. Line 340 pokes random characters into display mem
ory. Their number has 192 added to it , specifying color
register 711.

Similarly, Line 280 randomly selects the characters for
you to find; by adding 128 to them, color register 710 is
chosen.

The princess awaits your help. iii

David Huff, a D.D.S. , is currently studying for a specialty
degree in Orthodontics. He's had his Atari 1200XL for
three years and is currently working on a program for or
thodontic x-ray analysis.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II ,
in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

.10 REM DRAGON CHASE
15 REM DAVID E. HUff
20 GRAPHICS 18:PMBASE=PEEK(106)-16:CHS
ET=256*(PMBASE+8)
25 DIM E$ (50)
30 DM=PEEK(88)+256*PEEK(89) :DL=PEEK(56
0) +256*PEEK (56.1)
40 PO=PMBASE*256+512:Pl=PO+128:P2=Pl+l
28:P3=P2+.128
50 POKE 54279,PMBASE:POKE 53277,3:POKE

559,46
60 POKE 53257,l:POKE 53258,l:POKE 5325
9,3
70 POKE 712,20:POKE 709,12:POKE 708,20
o
80 POSITION 4,5:? U6;"dragon chase"
90 GOSUB 1000:GOSUB 1500
100 REM SET UP DISPLAV LIST INTERRUPT
110 POKE DL+15,135:POKE DL+.16,160:POKE

DL+17,7:POKE DL+18,65
120 POKE DL+19,PEEK(560):POKE DL+20,PE
EK (56.1)
130 POKE 512,197:POKE 513,6:POKE 54286
,192
140 REM INITIAL VALUES
150 DIf=50:SCORE=0:LEVEL=0:fIELD=2:R=1
160 REM START NEW LEVEL HERE
170 CLEAR=USR(ADR(E$),PMBASE*256)
180 LEVEL=LEVEL+l:fIELD=fIELD+l:If fIE
LD=8 THEN GOSUB 2400
190 POSITION O,O:? U6;"IIi"
200 POSITION 1,11:? U6;"ROUND ";R;"
LEVEL ";LEVEL
210 REM COLORS
220 POKE 623,O:POKE 705,O:POKE 706,88:
POKE 707,34:POKE 708,12

66 ANALOG COMPUTING

230 POKE 709,200:POKE 710,120:POKE 711
,20:POKE 712,12
250 REM SET UP fIELD
260 fOR 1=20 TO 219:POKE DM+I,l+192:NE
!<T I
270 fOR 1=0 TO fIELD-l
280 POKE DM+I*2,INT(RND(0)*10)+2+128
290 NE!<T I
300 fOR 1=0 TO 60
310 RP=INT(RND(0)*200)+20
320 RC=INT(RND(0)*12)+2+192
330 SOUND 2,RP,10,4
340 POKE RP+DM,RC
350 NE!<T I
360 SOUND 2,0,0,0
370 fOR 1=1 TO 10:RPD=INT(RND(0)*200)+
20:POKE DM+RPD,15+192:NE!<T I
380 fOR 1=1 TO 3:RPW=INT(RND(0)*200)+2
O:POKE DM+RPW,20+192:NE!<T I
390 POKE 712,20:REM HIDE CHARACTERS
400 GOSUB .1900
410 GOSUB .1700
450 COUNT=0:CHR=PEEK{DM+COUNT)-128
460 DRAGON=O:HID=O
470 GOSUB 2500
500 REM START MAIN PROGRAM LOOP
505 POKE 53278,1
510 POKE 1790,1
515 If PEEK(53261)=4 THEN 2000
520 MEM=DM+20+20/8*(PEEK(203)-23)+(PEE
K(205)-48),18
525 CHR1=PEEK(MEM)-192
530 If CHR.1=CHR THEN GOSUB 700
535 If CHR.1=20 THEN GOSUB 700
540 If CHR.1=15 THEN GOSUB 800
545 If CHR.1=-174 THEN GOTO 900
550 If CHR1=12 THEN POKE 712,16:fOR 1=
o TO 350:S0UND O,350-I,10,10:NE!<T I:PO
KE 712,20:POKE MEM,12+128
555 If STRIG(O)=O THEN GOSUB 2100
560 LOOP=LOOP+l:POKE 77,0
570 If LOOP(DIf THEN 515
580 LOOP=O:GOSUB 600
590 GOTO 5.15
600 REM MOVE DRAGON
610 fOR 1=.15 TO 17:POKE DM+20+DRAGON,I
:fOR J=O TO 15:S0UND 2,100,12,10:NE!<T
J:SOUND 2,100+I,12,20-I:NE!<T I
620 fOR 1=16 TO 15 STEP -l:POKE DM+20+
DRAGON,I:fOR J=O TO 15:S0UND 2,100,12,
10:NE!<T J:SOUND 2,100+1,12,20-1
630 NE!<T I
640 fOR 1=0 TO 15:NEXT I
650 SCORE=SCORE-5:GOSUB 2500:S0UND 2,0
,0,0
660 POKE DM+20+DRAGON,19:POKE DM+21+DR
AGON,15
670 DRAGON=DRAGON+l
680 If DRAGON=18 THEN POP :GOTO 2200
690 RETURN
700 REM YOU fOUND ONE
710 If CHR+64(0 THEN RETURN
720 SOUND 0,10,10,.10
730 POKE DM+COUNT,CHR+64:POKE MEM,CHR+
64
740 COUNT=COUNT+2
750 CHR=PEEK(DM+COUNT)-128
755 GOSUB 2500
760 fOR 1=0 TO 20:NEXT I
770 SCORE=SCORE+I00:GOSUB 2500:S0UND 0
,0,0,0
780 HID=HID+l:If HID=fIELD THEN GOSUB
1800
790 RETURN
800 REM YOU fOUND A DRAGON
810 POKE 1790,0
820 fOR 1=15 TO 17:POKE MEM,I:fOR J=O
TO 15:S0UND 2,100,12,10:NEXT J:SOUND 2

ATARI 8·BIT EXTRA

TP'
NA

SA
VI
OG
NL
ZW
lolA
HJ
OD
IR
RU
GC
ZN
XW

EE
OU
JB
II

,100+I,12,20-I:NEHT I
825 GOSUB 600
830 fOR 1=16 TO 15 STEP -l:POKE MEM,I:
fOR J=O TO 15:S0UND 2,100,12,10:NEHT J
:SOUND 2,100+I,12,20-I:NEHT I
850 fOR 1=0 TO 15:NEHT I
860 SCORE=SCORE-50:GOSUB 2500
870 POKE MEM,14:S0UND 2,0,0,0
880 POKE 17~O,l
8~0 RETURN
900 REM YOU SAVED PRINCESS
~10 POKE 17~O,O
920 fOR 1=1 TO 10:S0UND 0,10*1,10,1
~30 fOR K=l TO 5:NEHT K:POKE 712,20
~40 fOR J=14 TO a STEP -1
~50 SOUND O,10,10,J
~60 SOUND l,14,10,J+2:NEHT J
~70 POKE 712,12:SCORE=SCORE+20:GOSUB 2
500:NEHT I
~80 SOUND O,O,O,O:SOUND 1,0,0 , 0
~90 GOTO 160
995 REM REDEfINED CHRACTER SET
1000 fOR 1=0 TO 511:POKE CHSET+I,PEEK(
57344+I) : NEHT I

NT 1010 POKE 756,CHSET/256
VG 1020 READ N:If N=-l THEN RETURN
DZ 1030 fOR 1=0 TO 7:READ D:POKE CHSET+N*

8+I,D:NEHT I:GOTO 1020
00 1035 DATA 0,0,0,0,0,0,0,0,0
AG 1040 DATA 1,0,0,0,24,24,0,0,0
TO 1050 DATA 2,0,126,90,126,126 , 36,60,0
NY' 1060 DATA 3,73,42,28,119,28,42,73,0
Gr l070 DATA 4,165,66,165,24,24,165,66,16

5
.;flt 1080
L P 10~0
ZG 1100
YN 1110
OB 1120

5

DATA
DATA
DATA
DATA
DATA

5,0,24,60,126,126,60,24,0
6,0,24,36,66,66,36,24,0
7,0,2,4,8,80,32,80,0
8,0,54,127,127,62,28,8,0
~,1~5,1~5,36,24,24,36,1~5,1~

ZR 1130 DATA 10,0,224,160,255,255,170,234
,0

ZG 1140 DATA 11,60,126,21~,255,~O,102,60,
o

IB 1150 DATA 14,60,66,153,18~,153,153,12~
,255

RE 1160 DATA 15,112,208,255,170,213,127,0
,0

fR 1170 DATA 16,112,208,255,234,128,213,1
27,0
1180 DATA 17,112,208,255,234,128,208,1
17,31
1200 DATA 18,60,60,24,126,24,24,36,66
1210 DATA 1~,24,60,127,255,255,254,68,
68
1220 DATA 12,126,12~,153,165,165,153,1
2~,126

DD 1230 DATA 13,~O,18~,~O,231,231,~O,18~,
~O
1240 DATA 20,O,l~5,l~5,21~,255,231,l~5
,0

DV 1250
GN 1260
HI 1270
RR . 1280
GS 12~0

8
.EK 1300
ZQ : 14~5

i~E 1500
,D

DATA
DATA
DATA
DATA
DATA

21,0,0,0,240,152,240,176,152
22,0,0,0,234,170,234,138,142
23,0,0,0,138,200,170,154,138
24,0,0,0,0,0,0,0,0
25,0,0,134,135,126,126,100,6

DATA -1
REM VBLANK ROUTINE
fOR 1=0 TO 250:READ D:POKE 1536+1

OR ' 1510 SOUND 2,D,10,4:NEHT I
;I"J(1515 fOR 1=1 TO 42: READ D: E$ cr, D =CHR$

'>: CD) : NEHT I
~~ 1520 FOR 1=3 TO 15
,[,1(1 1530 SOUND 2,100,12, I
V'll 1540 fOR J=15 TO 17
B~ 1550 POKE DM+I00+I,J:FOR N=O TO 10:S0U

ATARI 8-BIT EXTRA

" ND l,200,12,8:NEHT N
~'B9 1560 POKE DM+I0!HI,l~:SOUND 1,0,0,0
n , 1570 NEHT J:NEHT I
J~ 1580 SOUND 2,0,0,0
13K 15~0 RETURN
OK 1600 DATA 216,16~,O,141,3,210,173,13,2
(>fi 08,208,8,173,255,6,240 16,206,255,6,76,

O~ !~i~2g&*:~i~~:~~f73,254,6,240,243,174,
120,2,224,7,240,14,224,11,240,24,224,1
4,240,37,224,13,240

sS 1620 DATA 50,208,222,165,205,201,200,2
40,216,24,165,205,105,8,76,76,6,165,20
5,201,48,240,202,56,233

BL 1630 DATA 8,133,205,141,2,208,76,138,6
,165,203,201,15,240,185,32,123,6,56,16
5,203,233,8,76,115

LI 1640 DATA 6,165,203,201,~5,240,168,32,
123,6,24,165,203,105,8,133,203,32,128,
6,76,138,6,16~,O

PR 1650 DATA 76,130,6,16~,240,160,8,145,2
03,136,208,251,~6,16~,168,141,3,210,16
~,~6,141,2,210,76,1~

fH 1660 DATA 6,104,104,133,204,104,133,20
3,104,104,133,205,104,133,207,104,133,
206,230,208,165,208,201,13,208

SH 1670 DATA 12,16~,213,160,5,145,206,24,
105,l,136,208,248,160,O,162,6,16~,7,76
,~2,228,72,16~,26
1680 DATA 141,10,212,141,26,208,16~,21
8,141,O,2,16~,6,141,l,2,104,64,72,138,
72,16~,224,162,200
16~0 DATA 141,10,212,141,~,212,142,24,
208,142,26,208,16~,l~7,141,O,2,16~,6,l
41,1,2,104,170,104,64
16~5 DATA 104,104,133,207,104,133,206,
162,4,16~,O,168,145,206,136,208,251,23
O,207,202,208,246,~6

PL 16~6 DATA 104,104,133,204,104,133,203,
104,104,160,O,145,203,200,l~2,220,208,
24~,~6

MI 1700 REM CASTLE DATA
RZ 1710 Yl=17:FOR 1=0 TO 16:READ D:POKE P

l+I+Yl,D:NEHT I
NJ 1720 RESTORE 1730
~~ 1730 DATA 24,153,153,153,255,1~5,12~,1

2~,12~,12~,12~,12~,12~,12~,12~,255,255
no 1740 POKE DM+38,18:POKE 5324~,188
Be 1750 RETURN

*~fg~g ~~~ ~~:O¥~ ~~~~~~T I
HG 1820 FOR 1=16 TO 0 STEP -1
DB 1830 POKE Pl+I+Vl,O
V}t 1840 SOUND 0,10,10, I
VV 1850 SOUND 1,12,10,1+1
Y~ 1860 SOUND 2,14,10,1+2
WG 1870 FOR J=O TO 5:NEHT J:NEHT I
z~ 1880 FOR 1=0 TO 2:S0UND I,O,O,O:NEHT I B.n 18~0 RETURN
FA 1~00 REM INITIAL PLAYER POSITION
R~ 1~10 V=~5:H2=48:POKE 53250,H2
A~ i 1~20 FOR 1=1 TO 8
OA 1~30 POKE P2+I+Y,240:NEHT I
PI 1~40 D=USR (1687, P2+V, H2, DM+210)
BG 1~50 RETURN
DU 2000 REM PLAYER TOUCHES CASTLE
TF 2010 POKE 17~O,O
TV 2020 FOR 1=0 TO 80:S0UND 2,127-1,8,6
OG 2030 POKE P2+I,O:NEHT I
OJ 2040 GOSUB 1~00
UN 2050 SOUND 2,O,O,O:GOTO 500
UP 2100 REM SCANNER "V 2110 POKE 53251,PEEK(205)-12:V3=PEEK(2

(3)-10
10 2120 fOR 1=0 TO 30:POKE P3+I+Y3,255:S0

UND O,I,10,8:NEHT I
HI 2130 SOUND 0,0,0,0
MO 2140 GOSUB 600

ANALOG COMPUTING 67

• Dragon Chase continued

2150 FOR 1=0 TO ~5:NEXT I:SCORE=SCORE-
5:GOSUB 2500
2160 FOR 1=0 TO 30:POKE P3+I+V3,O:SOUN
D O,30-I,10,~0:NEXT I
2165 POKE 53278,~:RETURN
2200 REM DRAGON GETS PRINCESS
2210 POKE 17~O,O:CLEAR=USRCADRCE$),PMB
ASE*256) DM 2220 GOSUB 2300:POSITION ~,11:? U6i"

ij~ 22~:EnRFg~ TO ~5:IF STRIGCO)=O THEN

~d ~g~O:~~~~ ~40
JT 2260 GOSUB 2300:GOSUB 2500
HH 2270 FOR 1=0 TO 35:IF STRIGCO)=O THEN

POP :GOTO 140
FS 2280 NEXT I
(II) 22~0 GOTO 2220
VK 2300 FOR J=15 TO 17
yu 2310 SOUND 3,186+J,10,6:S0UND 2,185+J,

;~ ~~i: X=USRCADRCE$)+23,DM,J)
PH 2340 FOR 1=0 TO 25:NEXT I:NEXT J
HZ 2350 SOUND 3,O,O,O:SOUND 2,0,0,0
AY. 2360 RETURN
RN! 2400 REM NEXT ROUND
PI 2410 DIF=DIF-I0:IF DIF{10 THEN DIF=10
GT 2420 FIELD=3:LEUEL=1

.CD 2430 POSITION O,~l:? U6i"~11 sa· 2440 POSITION 2,11:? U6i"ROUND "iRi" C

~I . g~~~E~~~~~O:,~~:_~?1~?g:~~5~D21,252_I,
(r. l0,8

. 2460 SOUND 2,250-I,10,8:S0UND 3,248-1,
10,8
2470 NEXT I

AB 2480 FOR 1=0 TO 3:S0UND I,O,O,O:NEXT I
Hi 24~0 R=R+l:RETURN
PU 2500 REM PRINT SCORE
DB 2510 IF SCORE{O THEN SCORE=O
MM 2520 POSITION I,ll:? U6i"

":REM 17 SPACES
)(K 2530 POSITION 4,11:? U6i"SCORE "iSCORE
AW 2540 RETURN

•

68 ANALOG COMPUTING ATARI 8-BIT EXTRA

by Chuck Rosko

The nuclear industry is looking for an adventurous in
dividual who's willing to tackle a high-risk job. Surprise!
That's you. Your task is to remove the krebs located in the
reactor cores of the Nittany Memorial Power Plant. A kreb,
of course, is a uranium pellet which is no longer radioac
tive. The krebs inhibit fission, so they must be removed
and replaced with new radioactive uranium .

Your joystick (port 1) controls your atomic core scrub
ber. Move over each kreb (in green), and your scrubber
will remove it, replacing it with a radioactive uranium pel
let (in red). If you run into any of the radioactive pellets,
your scrubber will be destroyed . The big spenders of the
industry are paying you $5.00 for every kreb removed .

At the bottom right-hand side of the screen is a readout
of the amount of energy in your scrubber. You must re
place all the krebs before your energy runs out, or
again-your scrubber will be annihilated.

You'll start work on each successive core with less ener
gy. After you've restored two cores, you'll have to avoid
the deadly hudnall. This creature, who's trapped inside
the core, is attracted to the noise of your scrubber and will
attack it whenever possible. Avoid the hudnall at all costs.

Whenever your scrubber is destroyed , a chain reaction
takes place-causing a reactor meltdown. The game (or
rather, your job) is over after three meltdowns.

ATARI 8-BIT EXTRA

•

How it works.
Here's a description of the Krebs removal program.

Lines 78-85 - update your energy usage.
Lines 98-100 - the sound routine, heard when you

hit the core wall.
Lines 108-120 - scoring routine.
Lines 198-285 - moves the hudnall . The logic rou

tine is a modified version, adapted from the Basic
Training series (this one was in issue 18) .

Lines 288-640 - reads the joystick and moves the
scrubber, first checking what the scrubber will hit ,
then going to the appropriate subroutine.

Lines 748-770 - the scrubber is destroyed; the core
melts down; and the number of scrubbers decreases.

Lines 773-795 - game-over message. Returns you
to the title page.

Lines 798-820 - core-is-secured routine. Allotted
energy decreases , so the difficulty level increases.

Lines 848-860 - plot the scrubber's initial position
(random) .

Lines 998-1040 - plot 30 krebs (random).
Lines 1098-1150 - plot 10 uranium pellets (ran-

dom).
Lines 10000-10030 - initialize, then start game.
Lines 29098-30060 - draw main screen.
Lines 30198-30260 - draw title screen and initial

ize variables.

ANALOG COMPUTING 69

• Krebs removal continued

Lines 31098-32239 - redefines two character sets.
Lines 32000-32040 - move character set from ROM

to two different locations in RAM.
Lines 32050-32230 - read in data for the first

character set.
Lines 32231-32239 - read in data for the second

character se t.
Table 1.

LIST OF VARIABLES

BX, BY .

BUG

CLOCK .

EN
LEVEL .

PC

SC
SCRUB .

XV,YV

X,Y ..

Hudnall 's X- and V-position

. Flag; if less than 5, hudnall moves.

. Timer; used to determine when to decrease
energy level.

Scrubber's energy level.
Amount of energy you initially enter the core
with .

· ... Flag ; indicates the number of krebs cleared.

Score.

· .. . Number of scrubbers or lives .

Holds direction hudnall is to move.

· ... Scrubbers X- and V-position.

Krebs removal was written w ithout player/missile
graphi cs , and with only two short machine language rou
ti nes. One routine is used to move the character set from
ROM to RAM; the other produces the rainbow effect when
the core me lts down.

I did this in order to show that you can make a relati ve
ly fast game primarily out of BASIC. I'm not say ing that
playerlm issi Ie graphics and machine language routines
aren' t helpful. In fact , they're very useful, and can enhance
a game tremendously. I just wanted to write a game with
oul them .

Listing 1 .
BASIC listing .

v ~ ~~~ ftWiJ:!~i;t:t1.
. \ 10 Kl-l: K2-2 : K3-3: K5-5: K6=6: Kl0=10: K15 i\ ~~~+~l~~~g~ K50=50: K255=255: POKE 55~, KO

. ". 78 REM 11!:J 1liU_:t:!:tilfS'M'iOlilfEW
....... 80 EN=EN K5: P05ITION 16,23:? UK6 i EN i"
'0 .. ": IF EN (=KO THEN 750

85 CLOCK=Kl0:GOTO 2~0
. ~8 REM .aou:!tw:ri' 11]1!:".

~ 0 100 POKE 710,K15:50UND KO,125,12,K6:FO
R C=Kl TO K50:NEXT C:50UND KO,KO,KO,KO
:POKE 710 148:GOTO 2~0
108 REM wtJl{l)il;Wil l)IU4:pe
110 5C=5C+K5:P05ITION Kl,23:? UK6i5C:5
OUND KO,75,Kl0,Kl0:50UND KO,KO,KO,KO:P
C=PC+Kl:ZeK2)=ZeKl) :IF PC=30 THEN 800
120 GOTO 2~0
1~8 REM .~ir.['lnIJr.;W~i~I"II~,]~:rni,~ .. n .. -
200 COLOR ~4:PLOT X,V:50UND KO,25,Kl0,
K6:50UND KO,KO,KO,KO:M=Kl-M
210 CLOCK=CLOCK-0.2:IF CLOCK<=KO THEN
80
220 IF LEVEL}44 THEN 2~0
240 BUG=INTeRNDCK01*LEVEL) :IF BUG}4 TH
EN 2~0
260 XV=5GN(X-BX) :VV=5GNeV-BVl
265 LOCATE BX+XV,BV+VV,Zl:TEMP1=Zl

70 ANALOG COMPUTING

I did, of course, redefine the character set. In fact, I rede
fined two character sets. Each contains a different view
of the scrubber, krebs, radioactive pellets and hudnall. All
you have to do to animate them is quickly flip be tween
the two character sets. This technique is useful when yo u
want to animate a large number of the same objects (i.e.,
krebs and radioactive pellets), regardless of where they
are on-screen.

Since I was using the technique for krebs and pellets ,
I also used it for the scrubber, hudnall and title page. To
see what Krebs removal would be like without this tech
nique, change Line 290 to read J = STICK (0) . One note, if
you redefined a character but don't want it animated (like
the core walls), you must put the same view in each
character set.

The routine which moves the hudnall towards the scrub
ber was taken (and slightly modified) from issue 18's Ba
sic Training . I hi ghly reconmlend that you read these
articles. They contain m any valuable progranuning tips.

Another way to pick up some knowledge is to ana lyze
other people's games. So take a look at Krebs removal .
Maybe you 'll find something you can use in your next
ga me. ~

Chuck Rosko is a microbiologist from Pittsburgh. Penn
sy lvania , the proud father of a baby boy. His interests in
clude his wife and son, hockey, and writing educa tional
programs.

The two-letter checksum code preceding the line
numbers here is not a part of the BASIC program.
For further information, see the BASIC Editor II,
in issue 47 of ANALOG Computing.

DA 270 COLOR TEMP2:PLOT BX,BV:BX=BX+XV:BV

!\~i ~~rH~::~~:M:~O: PLOT BX, BV: IF Zl=~4 T

MW 288 REM .:lifi".X" '''lUij:W
JG 2~0 J=5TICKeKO):POKE 756,PEEK(106)+Kl+

M+M:C=XDCJ):IF C=K5 THEN 200
LJ 300 LOCATE X+XMeC),V+VMeC),Z:IF Z>185

AND Z<1~2 THEN 100
ML 310 COLOR Z(K2):PLOT X,V:X=X+XMCC):V=V

+VMeC) :COLOR ~4:PLOT X,V:M=Kl-H
5U 320 IF Z=14 THEN ZeKl)=255:GOTO 110
N~ 330 IF Z<>255 THEN ZeK2)=160:GOTO 210

R~ ~~g ~~~I'l3~11l~1~1~~';'f1J~I~i?.1'. Iii .. ''''I 1 1:1: I
":FOR Z=KO TO K3:50UND Z,255 Z,14,K5

:NEXT Z
U~ 752 U=U5ReADReRBS)) :p=PEEK(560) :FOR Z=

KO TO K3:50UND Z,KO,KO,KO:NEXT Z
KV 753 FOR C=Kl TO K15:FOR Z=KO TO K3:R=I

NTeRNDeO)*30) :POKE 712,PEEK(53770):POK
E 560,P+Z:50UND KO,R,8,14:NEXT Z
754 NEXT C:POKE 560,P:BX=Kl0:BV=Kl0:TE
MP2=1~1
760 5CRUB=5CRUB-Kl:COLOR 160:PLOT 7+5C
RUB+5CRUB,22:POKE 55~,KO:POKE 712,14
762 FOR Z=Kl TO Kl0:50UND KO,Kl0*Z,Kl0
-Z,Kl0-Z

ATARI 8-BIT EXTRA

765 FOR C=Kl TO KI0:NEHT C:NEHT Z:POKE
712,KO:POKE 55~,46:GOSUB 30001

770 IF SCRUB THEN CLOCK=KI0:EN=LEVEL:P
C=KO:GOSUB 1000:GOSUB 850:GOTO 2~0
773 REM _11,;];18 1111!4:.
775 POSITION K3,K6:? UK6i"JOB TERMINAT
ED": POSITION K3,14:? UK6i "Wlla;rjN;e$" i
SC
780 FOR Z=KO TO K3:S0UND Z,K255-Z,14,K
5:NEHT Z:U=USR(ADR(RB$))
7~0 FOR Z=KO TO K3:S0UND Z,KO,KO,KO:NE
HT Z:? UK6iCHR$(125):GOSUB 30200
7~5 GOSUB 30000:GOSUB 1000:GOSUB 850:G
OTO 2~0

n8 REM -iill.I:JM;jJ~IiIJilfti~'B1! 800 p$=" r-: . ;, . ' I] ~
ore is secured ":BH
=KI0:BV=KI0:TEMP2=1~1
805 FOR Z=Kl TO K5:S0UND KO,75,KI0,KI0
:POKE 712,14:FOR C=Kl TO K50:NEHT C:SO
UND KO,150,KI0,KI0:POKE 712,KO
807 FOR C=Kl TO K50:NEHT C
810 NEHT Z:FOR F=Kl TO 45:POSITION Kl
~:? UK6iP$(KltK18) :Q$=P$(K2) :Q$(LEN(Q$
)+Kl)=P~:P$=Q~:SOUND KO,200,ll,14
815 FOR Z=Kl TO KI0:NEHT Z:SOUND KO,KO
,KO,KO:NEHT F:PC=KO:LEVEL=LEVEL-K5:IF
LEVEL{30 THEN LEVEL=30
820 EN=LEVEL:Z(Kl)=160:Z(K2)=160:GOSUB

30005:GOSUB 1000:CLOCK=KI0:GOSUB 850:
GOTO 2~0
848 REM •• ~.ro:';-_~'~'''(':'Ijl''''':-:It''4r:;_--=;1r.ii:r.:;TllrTl:-r;J-=1;J-=l!4r.'j.-
850 H=INTCRNDCKO)*K18)+Kl:V-INT(RND(KO
)*K18)+K2:LOCATE H,V,Z
852 IF (Z>185 AND Z{1~2) OR Z=14 OR Z=
64 OR Z=K255 THEN 850

.•.. 860 COLOR ~4: PLOTliL V: RETURN
.. ~~8 REM .UI(I._:4jl!4;!'1I!!!
'. 1000 FOR CC-Kl TO 30

1005 A=INT(RND(KO)*K18)+Kl:B=INT(RND(K
. 0)*K18)+K2:LOCATE A,B,Z
1010 IF (Z>185 AND Z{1~2) OR Z=14 OR Z

........ ; =64 THEN 1005
HK 1040 COLOR 14:PLOT A B:NEHT CC
5B 10~8 REM .UM;'._l/jfj];_.!I ••
~. 1100 FOR CC-Kl TO KI0
WT 1105 A=INT(RNDCKO)*K18)+Kl:B=INT(RND(K

0)*K18)+K2:LOCATE A,B,Z
GS 1110 IF (Z>185 AND Z{1~2) OR Z=14 OR Z

, =64 OR Z=K255 THEN 1105
3~1150 COLOR K255:PLOT A,B:NEHT CC:POSIT
····· ... " ION 16,23:? UK6iENi" ":RETURN

' 10000 DIM ZZ$(32),Z(K2) :GOSUB 32000:GR
APHICS 17:POKE 756,PEEK(106)+Kl:GOSUB
30200:GOSUB 30000
10010 DIM HD(K15),P$C65),Q$(65):FOR H=
K5 TO K15:HD(H)=K5:NEHT H:HD(7)=K2:HD(
11)=4:HD(14)=Kl:HDC13)=K3
10020 DIM HM(4),VM(4):RESTORE 10030:FO
R I=Kl TO 4:READ H,V:HM(I)=H:VMCI)=V:N

."'" EHT I
SH 10030 DATA 0t-1,l,O,O,l,-l,O
PV 10040 DIM RB~(21):RESTORE 10050:FOR I=

Kl TO 21:READ H:RB$CI)=CHR$(H):HEHT I
ZV 10050 DATA 104,16~,O,133,20,133,l~,105

,1,232,142,22,208,142,10,212,1~7,1~,20
8/245/~6

;~5 ' ~!:!g ~~~~I~lg!~~e!lt}i, ::: ~ ~::;:'t
,.,'.' .. energ!,l$"
.9K 30001 POSITION K3, KO:? UK6i"~ [;]lG:
<V·,...· .• , t!llm"
'GU= POSITION KO,Kl:? UK6i" IIJ:III

eeee~ ~eeeeeee~
~eee";

ATARI 8·BIT EXTRA

•

30010 ? UK6i"e~~
30020 ? UK6i"

30030 ? UK6i"
W

30040 ? UK6i"

30050 ? UK6i"e
~eeeee~

30060 ? UK6i"eeee~
11111111111 ": RETURN
301 ~8 REM .1]jljl:_OUfjl_liijl#4#4:.
30200 SC=KO:SCRUB-K3:EN-K50:CLOCK=KI0:
PC=KO:LEVEL=K50:BH=KI0:BV=KI0:TEMP2=1~
1:Z(Kl)=160:Z(K2)=160:POKE 55~,34
30205 POKE 710,148:POKE 70~,202:POKE 7
08,54:POKE 711,70
30210 POSITION KO,4:? UK6i"Z Z ZZZ ZZZ

ZZZ ZZZ Z Z Z Z Z Z Z Z Z Z Z Z Z
Z Z Z "i

30212 ? UK6i"ZZ
Z Z Z Z Z Z
30214 ? UK6i"Z Z

REMOVAL "

ZZZ ZZZ ZZ ZZZ ZZ Z
Z Z Z Z Z Z Z "i
Z Z ZZZ ZZZ ZZZ

30240 POSITION K3,14:? UK6i"[lr1 chuck r
osko":POSITION KO,21:? UK6i"to appl!,l P
ress ~"
30250 IF PEEK(5327~)=K6 THEN? UK6iCHR
$ (125) : RETURN
30260 POKE 756,PEEK(106)+Kl+M+M:M=Kl-M
:SOUND KO,200,KI0,KI0:S0UND KO,KO,KO,K
O:GOTO 30250
31 ° ~ 8 REM ... r.;I]r:!4T.j:r74:"I'::I.""'W--=-ii"jT[j'"'l j""fj t""fj""'.-::::O!4"'j&--=;jr:;jr7'" .. -
32000 RESTORE 32010:FOR I-Kl TO 32:REA
D A:ZZ$CI)=CHR$CA):NEHT I
32010 DATA 104,104,133,204,104,133,203
,104,133,206,104,133,205,162,4,160,0
32020 DATA 177,203,145,205,136,208,24~
,230,204,230,206,202,208,240, ~6
32030 POKE 106,PEEKCI06)-K5:GRAPHICS 1
7:START=(PEEKCI06)+Kl)*256:POKE 752,Kl
32035 POSITION 4,KI0:? UK6i"PLEASE WA
IT"
32040 A=USRCADR(ZZ$),57344,START):A=US
RCADR(ZZ$),57344,START+512)
32050 READ H:IF H=-Kl THEN 32300
32060 FOR V=KO TO 7:READ Z:POKE H+V+ST
ART,Z:NEHT V:GOTO 32050
32200 DATA 208,0,0,0,0,0,0,0,255,216,2
55,0,0,0,0,0,0,0,224,1,1,1,1,1,1,1,1,2
32,128,128,128,128,128,128,128,128
32210 DATA 240,1,2,4,8,16,32,64,128,24
8,128,64,32,16,8,4,2,1
32220 DATA 4~6,24,60,102,1~5,1~5,102,6
0,24,504,0,60,126,126,126,126,60,0
32225 DATA 112,60,126,15,252,63,240,12
6,60,256,255,12~,12~,12~,12~,12~,12~,2
55
32230 DATA 464,255,1~5,1~5,1~5,1~5,1~5
,1~5,255,480,36,24,165,126,126,126,18~
,24,-1
32300 READ H:IF H=-Kl THEN RETURN
32310 FOR Y=KO TO 7:READ Z:POKE H+Y+ST
ART+512,Z:NEHT Y:GOTO 32300
32320 DATA 208,0,0,0,0,0,0,0,255,216,2
55,0,0,0,0,0,0,0,224,1,1,1,1,1,1,1,1,2
32,128,128,128,128,128,128,128,128
32330 DATA 240,1,2,4,8,16,32,64,128,24
8,128,64,32,16,8,4,2,1
32340 DATA 4~6,O,O,24,60,60,24,O,O,504
,60,126,255,255,255,255,126,60
32350 DATA 112,60,126,240,63,252,15,12
6,60,256,255,12~,12~,12~,12~,12~,12~,2
55
32360 DATA 464,255,255,255,255,255,255
,255,255,480,102,24,165,126,126,126,18
~,153,-1

ANALOG COMPUTING 71

by Barry Green

This program was developed quite unintentionally. I was
busy hacking away on a new machine-language animation
system for the Atari, that works with BASIC. One evening,
I actually got around to testing it with Atari BASIC. The
program worked flawlessly and made animation feasible
from BASIC. but it was still pitifully slow.

After hours of poring over the code, trying to trim and
streamline it to make it run faster, I realized the fault was
not with my program at all. It was working as fast as it
could . Still , I thought , there has to be a better way! One
evening when I was reading through my Atari BASIC
Sourcebook, the dim light in my brain flickered on for a
moment.

The incredible slothfulness of BASIC-from a game
programmer's point of view-could be traced to the fact
that no provision for integers had been made. Only
floating-point math was supported, and it's very slow. In
teger math is very fast , so somehow my Atari had to be
made to understand integer math . This was, of course.
much easier said than done.

And how?
One very underexplored feature of the Atari 800XL and

1200XL (and the expanded 600XL) is that the operating
systems can be placed in the upper 16K bank of memory
and modified to no end.

ATARI 8·BIT EXTRA

This was my chance. I could load the OS into RAM, then
replace the old floating-point math package with a much
faster integer package. Every operation BASIC did , from
POKE to FOR-NEXT, would run faster.

That's what I did. The following program places the OS
in RAM, then replaces the old math package with a much
more efficient integer math package. I've run some BA
SIC test programs, to show the speed gained by using in
teger math instead of floating point.

Typing it in.
Listings 1 and 2 are the BASIC data to create your co

pies of Integer BASIC. Please refer to the MIL Editor on
page 4 for typing instructions. You should create the pro
gram in Listing 1 under the filename INTBASIC.OB]. Cre
a te the program in Listing 2 under the filename INT
BASI2.0B}.

The test.
Is Integer BASIC that much faster? To prove that it is ,

I devised three very simple BASIC programs to test the
speed difference. Each was run in both languages, and the
jiffy-count was printed next to each.

Floating-Point Integer %Faster
FOR-NEXT 1459 1044 30%
MATH TEST 947 510 46%
SCREEN FILL 3754 1869 51%

The source listings for Integer BASIC follow this arti
cle. As you can see, the Integer BASIC can be up to 50%

ANALOG COMPUTING 75

",...........

~ Integer BASIC continued

faster. That's a serious improvement for something so eas
ily accessible.

The side benefit: those of you using an Integer BASIC
compiler might consider how handy it would be to be able
to interactively debug your own programs.

How to integrate it.
Here are instructions for using the INTBASIC integer

math package for 64K Atari XL computers.
To use this package, just load the INTBASIC.OBJ file

from DOS menu item L, or from OS/A+ type in LOAD INT
BASIC.GB]. Your computer will now be in Integer BASIC.
Do this only if no BASIC program is in memory at the time.

The INTBASIC package has been tested, with no bugs
fow1d. However, some knowledge of integer math is re
quired to use the package effectively. Since the numbers
being dealt with are integers, BASIC will no longer recog
ni ze a decimal point as valid . Only numbers in the range
of 0-65535 or, in version 2, - 32768 to +32767 will be ac
cepted. This also means that division is treated slightly
differently. In integer math, the expression 1013 evaluates
into 3, not 3.3333 ... All numbers are rounded down; the
digits past the decimal point are simply dropped.

This means that special care must be taken in using the
built-in functions such as COS(X) and RNO(O) . Math func
tions like COS (X) will simply not work correctly. RNO(O)
should not be used, because it now only returns a value
between a and 3. It's a better idea to use PEEK(53770) to
get a random number.

Negative numbers in version 1 are different. They are
now expressed in 65536-X terms. This means thal a nega
live number is subtracted from 65536 and the result is
printed. Therefore, when printing a negative 1 (-1) on the
sc reen , you will get 65535 (65536-1). Negative numbers
are fully usable; they just print differently from what you'd
expect.

One last restriction: BASIC programs developed Lmder
the integer math package cannot be loaded into the float
ing-point BASIC; nor can floating point programs be load
ed into Integer BASIC.

The solution to transferring programs from one format
to the other is simply to LIST them onto disk or cassette,
then ENTER them into the other version of BASIC. When
transferring programs from floating-point BASIC to in
teger, remember that decimal points will be flagged as er
rors, and you must fix all RNO(O) usage.

Have fun with Integer BASIC and enjoy its refreshing
speed . 5=1

Barry Green of Out of the Blue Associates bought his
firs t Atari (an 800) in 1982 and taught himself BASIC and
assembly language. Since then, he's worked on many con
versions and originals for various companies. His main in
terest li es in system software and utilities.

Listing 1.

1000 DATA 255,255,0,6,101,6,32,70,6,17
7,203,145,205,200,208,24~,1480
1010 DATA 230,204,230,206,202,224,48,2

76 ANALOG COMPUTING

08,3,32,~1,6,224,0,208,233,86~6
1020 DATA 120,16~,0,141,14,212,16~,254
,141,1,211,32,70,6,177,205,7512
1030 DATA 145,203,200,208,24~,230,204,
230,206,202,224,48,208,3,32,~1,502
1040 DATA 6,224,O,208,233,88,16~,64,14
1,14,212,~6,16~,0,133,203,8047
1050 DATA 16~,1~2,133,204,16~,0,133,20
5,16~,64,133,206,162,64,160,0,7732
1060 DATA ~6,160,8,230,204,230,206,202
,136,208,248,~6,226,2,228,2,1480
1070 DATA 0,6,~6,0,216,78,216,32,161,2
1~,16~,64,133,212,16~,0,8184
1080 DATA 133,213,133,214,133,215,56,8
,164,242,177,243,201,48,144,52,341
10~0 DATA 201,58,176,48,40,24,8,41,15,
72,165,214,133,215,165,213,8715
1100 DATA 10,38,215,10,38,215,24,101,2
13,133,213,165,215,101,214,133,1444
1110 DATA 214,6,213,38,214,104,24,101,
213,133,213,144,2,230,214,230,2251
1120 DATA 242,76,17,216,40,~6,230,216,
~1,217,32,81,218,165,213,133,1323
1130 DATA 220,165,214,133,221,160,0,16
2,0,165,213,217,87,217,165,214,2880
1140 DATA 24~,82,217,144,1~,165,213,56
,24~,87,217,133,213,165,214,24~,5171
1150 DATA 82,217,133,214,232,76,245,21
6,138,~,48,145,243,200,1~2,5,4~~
1160 DATA 208,213,136,177,243,~,128,14
5,243,160,0,177,243,201,48,208,2167
1170 DATA 4,200,76,3~,217,132,222,165,
243,56,22~,222,133,218,165,244,57~~
1180 DATA 233,O,133,21~,177,243,145,21
8,200,1~2,5,208,247,165,220,133,5010
11~0 DATA 213,165,221,133,214,~6,3~,3,
O,O,O,16,232,100,10,l,~645
1200 DATA 170,217,183,217,166,212,164,
213,16~,64,133,212,134,213,132,214,447
1
1210 DATA 24,~6,210,217,21~,217,165,21
3,133,212,165,214,133,213,24,~6,2487
1220 DATA ~6,218,~8,218,76,117,218,102
,218,146,218,165,213,24,101,225,2362
1230 DATA 133,213,165,214,101,226,133,
214,24,~6,165,213,56,22~,225,133,2628
1240 DATA 213,165,214,22~,226,133,214,
6,212,165,214,10,102,212,165,213,3024
1250 DATA 5,214,208,2,133,212,24,96,21
9,218,2,219,16~,O,133,219,~685
1260 DATA 133,218,162,16,208,13,24,165
,21~,101,225,133,21~,165,218,101,2080
1270 DATA 226,133,218,70,218,102,219,1
02,214,102,213,202,48,4,144,243,1188
1280 DATA 176,228,24,~6,40,21~,86,21~,
165,225,5,226,240,3~,169,0,893~
12~0 DATA 133,21~,133,218,160,16,6,213
,38,214,38,21~,38,218,56,165,8328
1300 DATA 21~,22~,225,170,165,218,22~,
226,144,6,134,21~,133,218,230,213,5~73
1310 DATA 136,208,227,24,96,56,~6,137,
221,151,221,134,252,132,253,160,4240
1320 DATA 2,177,252,153,212,0,136,16,2
48,~6,152,221,166,221,134,252,3~~4
1330 DATA 132,253,160,2,177,252,153,22
4,O,136,16,248,~6,167,221,181,2025
1340 DATA 221,134,252,132,253,160,2,18
5,212,O,145,252,136,16,248,~6,607
1350 DATA 182,221,1~3,221,160,2,185,21
2,O,153,224,0,136,16,247,~6,8467
1360 DATA 224,2,225,2,228,2,0,0,0,0,0,
0,0,0,0,0,3423

•
Listing 2.

1000 DATA 255,255,0,6,101,6,32,70,6,17

ATARI 8-BIT EXTRA

7,203~145,205~20U,208,24~,1480
1010 DATA 230,204,230,206,202,224,48,2
08,3,32,~I,6,224,O,208,233,86~6
1020 DATA 120,16~,O,141,14,212,16~,254
,141,1,211,32,70,6,177,205,7512
1030 DATA 145,203,200,208,24~,230,204,
230,206,202,224,48,208,3,32,~1,502
1040 DATA 6,224,O,208,233,88,16~,64,14
1,14,212,~6,16~,O,133,203,8047
1050 DATA 16~,1~2,133,204,16~,O,133,20
5,16~,64,133,206,162,64,160,O,7732
1060 DATA ~6,160,8,230,204,230,206,202
,136,208,248,~6,226,2,228,2,1480
1070 DATA O,6,~6,O,216,78,216,32,161,2
1~,16~,64,133,212,16~,O,8184
1080 DATA 133,213,133,214,133,215,56,8
,164,242,177,243,201,48,144,52,341
1090 DATA 201,58,176,48,40,24,8,41,15,
72,165,214,133,215,165,213,8715
1100 DATA 10,38,215,10,38,215,24,101,2
13,133,213,165,215,101,214,133,1444
1110 DATA 214,6,213,38,214,104,24,101,
213,133,213,144,2,230,214,230,2251
1120 DATA 242,76,17,216,40,~6,230,216,
132,217,32,81,218,165,213,133,16~2
1130 DATA 220,165,214,133,221,16,2~,16
5,213,73,255,24,105,1,133,213,8100
1140 DATA 165,214,73,255,105,0,133,214
,160,O,16~,45,145,243,230,243,2604
1150 DATA 208,2,230,244,160,0,162,0,16
5,213,217,128,217,165,214,24~,4825
1160 DATA 123,217,144,1~,165,213,56,24
9,128,217,133,213,165,214,249,123,4897
1170 DATA 217,133,214,232,76,20,217,13
8,~,48,145,243,200,192,5,208,109
1180 DATA 213,136,177,243,9,128,145,24
3,160,0,177,243,201,48,208,4,9712
11~0 DATA 200,76,70,217,132,222,165,24
3,56,229,222,133,218,165,244,233,7075
1200 DATA 0,133,219,177,243,145,218,20
O,1~2,5,208,247,165,220,133,213,5700
1210 DATA 165,221,133,214,16,8,165,243
,208,2,1~8,244,198,243,96,39,1337
1220 DATA 3,0,0,0,16,232,100,10,1,170,
217,183,217,166,212,164,716
1230 DATA 213,169,64,133,212,134,213,1
32,214,24,96,210,217,219,217,165,4440
1240 DATA 213,133,212,165,214,133,213,
24,~6,96,218,98,218,76,117,218,1105
1250 DATA 102,218,146,218,165,213,24,1
01,225,133,213,165,214,101,226,133,356
9
1260 DATA 214,24,96,165,213,56,22~,225
,133,213,165,214,229,226,133,214,6544
1270 DATA 6,212,165,214,Lo,102,212,165
,213,5,214,208,2,133,212,24,8786
1280 DATA ~6,21~,218,2,219,169,O,133,2
19,111,218,162,16,208,13,24,69~1
12~0 DATA 165,219,101,225,133,219,165,
218,101,226,133,218,79,218,102,219,421
8
1308 DATA 102,214,182,213,202,48,4,144
,243,176,228,24,96,49,21~,86,8678
1310 DATA 21~,165,225,5,226,248,19,169
,0,133,21',133,218,169,16,6,7494
1328 DATA 213,38,214,38,21',38,218,56,
165,219,22',225,170,165,218,22',6048
1330 DATA 226,144,6,134,21',133,218,23
8,211,136,208,227,24,'6,56,'6,"78
1349 DATA 137,221,151,221,134,252,112,
253,168,2,177,252,153,212,9,136,1'59
1359 DATA 16,248,'6,152,221,166,221,13
4,252,132,253,168,2,177,252,153,4501
ll68 DATA 224,8,ll6,16L2.8t~6,167,221,
181,221,13.,252,132,25~,168,2L28l6
1378 DATA 185,21Z,.,1.5,Z5Z,I~6t16,Z.8
,~6,18Z,ZZI,l~3,ZZI,16.,Z,185,Zz6S
1388 DATA ZIZ,.,153,Z2.;';136,16,Z.7,~
6,226,2,227,2,ZZ8,Z,.,. 6
•

ATARI 8-BIT EXTRA

•

•

•

Listing 3.
BASIC listing.

5 POKE 1',9:POKE 20,0
10 FOR X=1 TO 10000
20 NEXT X
30 PRINT PEEK(19)*256+PEEK(20)

Listing 4.
BASIC listing.

10 POKE 1',O:POKE 29,0
20 J=5
30 FOR X=1 TO 1000
40 J=J*2:J=J/2
50 NEXT X
60 PRINT PEEK(lj)*256+PEEK(20)

Listing 5.
BASIC listing.

10 GRAPHICS 8+16:5CREEN=PEEK(88)+256*P
EEK (89)
20 POKE 1',9:POKE 20,0
30 FOR X=O TO 767':POKE SCREEN+X,255:N
EXT X
40 UU=PEEK(I')*256+PEEK(20)
50 GRAPHICS O:PRINT UU

Listing 6.
Assembly listing.

,-------------------------------, SAVE 'D.INTBABIC.AS"
, AB" ••• D.INTBABIC.DBJ ,-------------------------------: g~tB~~rrh:r;~~. A •• oci.t ••
,-------------------------------
• Thi. 1 •••• th packag_ d •• igned

: ~~c~::!·~~ ~~: :~~~~l~iKP~tnt
• co_put.,.. •• Thi. package t.
• entirely tnteoar-b ••• d aD it
• t •• uch f •• t.r. It. internal
• repr ••• ntation of nueber. 1.
, attll referred to •• Floattng-

: ~~i~t~.~~~:~~t:~~o~o~r~~;~~c •.
• fro •• tandard 6~02 tnteg_"'. 1n
• that the,..e t. an exponent byte
, of .~O added to it. lntege,..s can
• atill b. u •• d in F~I and IF~
• b.cau •• the •• routin •• r •• tore

: ~~r.n~:~:~~nt~ir~O~:~dr;d~~~b.r.
• in th. ran;. of 0-6SS3S. Any
• nu~b.r above 32767 Mill b.
• tr •• ted ••• n.~.t1ve "ueber i"
: :~t ~:t~:~~~1~: .c~::~;~t~~~.
• .uch thinQ ••• ~O~-N~XT loop.
• and ao forth. Any nUMber that
• 1. IN~UTted or .0 forth Mtth a
• ainu •• 1;n 1n front of 1t M111
• b. converted to th1. for •• t,
, which i •• i.ply 6~~36-X. ,-------------------------------.OPT NO LIST
pr~O - .D4
P"I! eDA
P"l el!O
INIIUPP .P::5
CIX - ep2
SKIP.IILANKS - eDBAI
INTLIIP - eDA~1
LIIUFP eO~80
FLPT" - epc ,-------------------------------,- e0600
STA"T ,-------------------------------, "OVI!8 THI! XL OS TO "A"
, THIS CODE IS IIASI!D ON THE
, OPFICIAL "I!LI!ABI! F"O" ATA"I INC.
, AND WAB W"ITTI!N IIV THI!". ,-------------------------------
"0" - eCIl "A" "0"+2
08"0" -COOO

ANALOG COMPUTING 77

r---'

~ Integer BASIC continued

OSRAM
NMIEN
PORTB

MOVI

.MI

JSR
LDA
eTA
INY

'4000
'D40E
.0301
INIT
(ROM») Y
(RArU , Y

BNE MOVI
INC ROM"I
INC RAM+I
DEX
CPX .'30
BNE .MI
JBR SKIP
CPX •• 00
liNE MOVI

SET POINTERS
MOVE THE ROM
INTO RAM

SKIP 110

,-------------------------------
BEl
LDA .'00
STA NMIEN
LOA .'FE

DISABLE THE
INTERRUPTS

STA PORTB FLIP ROM OUT ,-------------------------------
MOV2

.M2

JBR INIT
LDA (RAM),Y MOVE THE os
BTA (ROM),Y BACK INTO THE
INY ~IGHT ADDREBSES
liNE MOV2
INC ROM"I
INC RAM"I
DEX
CPX •• 30
liNE .M2
JBR BKIP
CPX .'00
BNE MOV2 ,-------------------------------
CLI
LDA •• 40 RE-ENABLE THE
STA NMIEN INTERRUPTB AND
RTS RETURN. ,-------------------------------

, INITIALIZE ~AGE ZERO VARIABLEB
, FOR ADDRESSEB OF RAM AND ROM
, UBED FOR INDEXING
,-------------------------------
INIT LOA. <OBROM

BTA RO,..
LDA • >OBROM
BTA RO"'''I
LOA • <OBRAM
BTA RA,..
LDA • >OBRAM
BTA RAM"I
LDX •• 40
LOY •• 00
RTB ,-------------------------------

, BET PAGE ZERO VARIABLES TO
, BKIP THE HARDWARE REGIBTERS
,-------------------------------BKIP LOY •• oa
aKI~1 INC ROM"I

INC RAM"I
DEX
DEY
8NE BKIPI
RTS ,-------------------------------, BET THE INIT ADDRESS TO 008 SO

, ALL THE PREVIOUS CODE WILL BE
, EXECUTED AND THE REST OF THE
, ~ROGRAM WILL LOAD INTO THE TOP
, IbK AND REPLACE THE OLD ,..ATH
, "ACKAGE.
,-------------------------------,- .02E2

.WORD START ,-------------------------------, THIS JUST RETURN8 CONTROL TO
, DOS AFTER THE INTEGER MATH
, ,.ACKAGE HAS 8EEN LOADED IN. ,-------------------------------CONTINUE

RTB ,-------------------------------, FOLLOWINB ARE THE ACTUAL MATH
, ROUTINES WHICH LOAD RIGHT ON
, TOP OF THE OLD ONE8. ,-------------------------------,- .D800
AI''' ,-------------------------------, CONVERTS ASCII TO NUMBER VALUE ,-------------------------------

.0

JBR SKIP,8LANKII
LDA •• 40
IITA 1'110
LDA "00
BTA FRO"I
eTA Jl'RO+2
eTA ~ftO+3
8EC
PH,.
LDY
LDA C,..,.
BCC C,..,.
BCB ,.L,.
CLC ,.H,.

ClX
~!~BUFF)i~ IT A DIBIT?
.2 IF NOT, THEN
"9"1 BRANCH TO
.2 THE RETURN,

AND "01"
"HA BAVE THE DIBIT. ,-------------------------------LDA 1"110"2 "'ULTIPLY THE
IITA 1'110"3 NUMBER 8Y 10
LDA 1'110"1 BEFORE ADDING
A8L A IN THE NEW
RDL "'110"3 DISIT.
AIIL A
IIOL "'110"3

78 ANALOG COMPUTING

CLC
ADC FRO"I
STA FRO"I
LDA FRO+3
ADC FRO"2
STA FRO+2
ASL FRO+I
ROL FRO+2 ,-------------------------------
PLA
CLC
ADC FRO"I
STA FRO+I
BCC .B
INC FRO"2

.B INC CIX
Jr1P 10

.2 PLP
RTB ,-------------------------------
0- .DSE6

FABC
,-------------------------------
, CONVERTS INTEGERB INTO ASCII
, CHARACTER STRINGS.
,-------------------------------

JBR INTLBF
LDA FRO+I
STA FRE+2
LDA FRO+2
BTA FRE+3
LDY .'00

.02 LDX '.00

.01 LDA FRO+I
C,",P LO,BYTES, Y
LOA FRO+2

g~g ~~x~;~~~lf
LDA FRO+I
BEC
BSC LO.S YTES,Y
STA 1'1'10+1
LDA FRO+2
SBC HI.SYTES,Y
STA FRO+2
INX
JM~ .01

NEXT. DIGIT
TXA
ORA •• 30
STA (INBUFF), Y
INY
CPY '.0:5
SNE .02
DEY
LDA (INBUFF), Y
ORA .'BO
STA (INBUFF), Y ,-------------------------------

, NOW REMOVE THE LEADING ZEROEII ,-------------------------------
LDY •• 00

.03 LDA (INBUFF), Y
CMP "0
SNE .04
INY
J,..P .03

.04 BTY FRE+4
LDA INBUFF
SEC
SSC FRE+4
BTA FilE
LDA INBUFF+I
SBC "00
BTA FRE+I

.0:5 LDA (INBUFF),Y
BTA (FRE),Y
INY
CPY •• 0:5
BNE .0:5
LDA FRE+2
STA FRO+I
LDA FRE+3
STA 1'1'10+2
IITS ,-------------------------------, THE FOLLOWING ARE TABLES USED

, IN CONYERTING NUMSER8 TO
, ASCII CHARACTER STRINGB. ,-------------------------------
HI.BYTES .BYTE >10000

::~i~ ~lgOO~I> IOO
LO.BYTES .BYTE <Ioboo

.BYTE <1000, <100

.BYTE < 10, <I ,-------------------------------,- .D9AA
IFP ,-------------------------------, THIS ROUTINE WILL CONYERT AN
• INTEGER TO FLOATING POINT,
, WHICH IB SIMPLY LOW BYTE-HISH
, BYTE FORMAT WITH AN EXPONENT. ,-------------------------------LDX FRO

LDY 1'110+1
LDA "40 ,EXPONENT
BTA FRO
IITX FRO+I
BTY FRO+2
CLC
RTa ,-------------------------------
.- .09D2

"'''1 ,-------------------------------, THEilE ROUTINES WILL CONYERT A
, FLOATING ~OINT NUMBER BACK TO
, INTEGER FORMAT. ,-------------------------------

LDA 1"1'10+1
IITA FRO

LDA 1'1'10+2
BTA FRO+I
CLC
RTS ,-------------------------------
,. eOA60

FSUB
JMP FSUB2 ,-------------------------------,- .DA66

FADD ,-------------------------------, THESE ROUTINES WILL ADD AND
, SU~TRACT INTEGERS.
,-------------------------------

LDA FRO+l
CLC
ADC
STA
LDA
ADC
STA
CLC
RTB

FRI+1
FRO+1
FRO+2
FR1+2
FRO+2

0-------------------------------
FSUB2
,-------------------------------

.1

.LOCAL
LDA FRO+I
BEC
BSC
eTA
LDA
BBC
BTA
ASL
LDA
ASL
ROR
LDA
ORA
SNE
BTA
CLC
RTS

FR1+1
FRO+!
FRO+2
FR1+2
FRO+2
FRO
FRO+2
A
FRO
FRO+l
FRO+2
.1
FRO

THIS 6ET6 THE
SIGN BIT IN THE
EXPONENT FOR
SASIC 'S COMPARE.
IF RESULT
IS ZERO THEN
ZERO OUT THE
EXPONENT.

,-------------------------------,. _DADe
FMUL ,-------------------------------o THIS ROUTINE WILL MULTIPLY
, THE CONTENTS OF FRO BY THE
, CONTENTB OF FRI AND STORE THE
, PRODUCT BACK INTO FRO. ,-------------------------------

.LOCAL
LDA '0
BTA FRE+I
STA FRE
LDX .16
BNE .1

.2 CLC
LDA FRE+I
ADC FRI+I
BTA FRE+l
LDA FRE
ADC 1'1'11+2
BTA FRE

, I LSR FRE
ROR FRE+I
ROR FRO+2
ROR FRO+I
DEX
BMI .3
BCC .1
BCB .2

.3 CLC
RTS ,-------------------------------
,. eOB28

FDIY ,-------------------------------, THIS ROUTINE WILL DIVIDE THE
, CONTENTS OF FRO BY FRI AND
, STORE THE RESULT INTO FRO. ,-------------------------------. LOCAL

LDA FRI+I CANNOT
ORA FRI+2 DIYIDE
SEg .ERROR BY ZERO
LOA .0
IITA FRE+I
STA FRE
LDY .Ib

.2 ASL FRO+I
ROL FRO+2
ROL FRE"I
ROL FRE
SEC
LDA FRE+I
SBC FRI"I
TAX
LDA FRE
SBC FR1+2
Bec 11
STX FRE+l
6"tA FilE
INC 1"1'10+1

• I DEY

.ERIIOR

BNE .2
CLC
RTS

IIEC
II Til ,-------------------------------
,. .0089

FLDOII ,-------------------------------, THIS IIOUTINE WILL LOAD 1"110
, FROM THE ADDRESS POINTED TO
, BY THE bS02 X,V IIE61I1TEIIII.
, 011 FLDOP WILL LOAD IT FROM THE
, CURRENT ADDREIIII OF FLPTR. ,-------------------------------

ATARI 8-BIT EXTRA

FLDOP

eTX FLPTft
eTY FLPTR+l

LDY •• 02
.Fl LDA (FLPTR),Y

aTA FRO.V
DEY
IIPL .Fl
ftTII ,-------------------------------,- .DD9S

~:~:~--------------------------, THIS ROUTINE WILL LOAD FRI
, FRDM THE ADDRESS POINTED TO
, BY THE 6S02 X,Y REGISTERII.
, Oft FLDIP WILL LOAD IT FROM THE
, CURRENT ADDREse OF FLPTR. , -------------------------------
FLDIP

STX FLPTR
eTY FLPTR+l

LDY •• 02
• F3 LOA (FLPTR) f Y

eTA FR1. Y
DEY
IIPL .F3
IHS ,-------------------------------,- eODA7

FSTOR
,-------------------------------, THIll ROUTINE WILL BTORE FRO
, INTO THE ADDRESS POINTED TO
, BY THE 6S02 X,Y REGISTERII.
, OR FSTOP WILL STORE IT INTO THE
, CURRENT ADDRESS OF FLPTR. ,-------------------------------
FSTOP

.F4

STX FLPTR
IITY FLPTR+l

LOY •• 02

;~: ~~~piR),y
DEY
IIPL • F4
RTB ,-------------------------------,. .D086

FMOIIE ,-------------------------------
, THIS ROUTINE WILL MOllE THE
, CONTENTS OF FRO INTO FRI. ,-------------------------------

LDY •• 02
,F~ LOA FRO,Y

eTA FR1,Y
DEY
BPL .FS
RTB ,----------------------------- --

•

,- .02EO
.WORD CONTINUE

Listing 7.
Assembly listing.

,-------------------------------, SAllE .D. INTBASI2. ASM
, ABM".D.INTBASIC.OBJ ,-------------------------------
, by earry 6,.. •• n
• Out of the Slue A •• oct.t •• ,-------------------------------
, Thi. 1 •• ~.th packaQ. d •• iQned

~ ~~c~:~~·~~ i~: ~~~~~t~iKP~tnt
• compute,.. •• Thi. package 1.
• entir.ly inteQ_,..-b ••• d .0 it
, i. much fa.ter . It. internal
• repr ••• ntation of number. 1.
f still r.ferred to •• Floattng -

: ~~t~t;.~~;:!~t!~~o~O~1:~~~~c •.
• f,..o~ .tandard 6~02 integer. in
• that the,..e ie an exponent byte
, of .~o added to it. Integer. c an
, .till b. u •• d in FPI and IFP
, becau •• th ••• routin •• re.tor.
I the nu~b.r. to proper order.

: I~i~h;e~:~~~ ~~c~~~~6~n~~O~2767.
, Any number entered which i.
, or •• ter th.n 32767 will be
, converted to • neo.tive number.
• The •• neo.tive. are fully
• u •• ble .nd ha v e the •• me v.lue
, •• what w •• entered, they ju.t

: ~~~n;K~~~l:~ ~:g~~! V~~er enter.d
• FOR X-JOOOO to 6~~J~ and then

: ~6~T~~3g~~g i~n~i. i}tm~~~i :~~k
• exactly •• y ou wanted, it Ju.t
• print. out •• a neoati v ••
I Statement. such •• POKE ~324e,0

: ~~:t·;~~ll~~~f~~;!~r;~~·~h.~h.Y
:-~~~:-!~~-~~~~::~~:--------- -- -
FRO
FRE
FR1
INBUFF
CI X

.OPT NO LIST
.04
.DA
.EO
.F3
.F2

ATARI 8-81T EXTRA

eKIP.BLANKS - 'DBAI
INTLBF - .OASI
LBUF~ .OSBO
FLPTR .FC ,-------------------------------,- .0bOO
START ,-------------------------------, MOIIES THE XL OB TO RAM
, THIB CODE IS IIASED ON THE
, OFFICIAL RELEASE FROM ATARI INC.
,.AND WAB WRITTEN BY THEM. ,-------------------------------
~OM .CB
RAM ROM+2
OBftOM .COOO
08ftAM .4000
NMIEN .D40E
PORTS .0301

JSR INIT BET POINTERS
MOlll LOA (R OM),Y MOllE THE ROM

BTA (RAM),Y INTO RAM
INY
liNE MOVI
INC ROM+l
INC RAM+1
OEX
CPX •• 30
BNE .111
JBR BKIP SKIP 1/0

.Ml CPX •• 00
liNE MOlll ,-------------------------------
SEI
LOA •• 00 DISABLE THE
BTA NMIEN INTEftRU~T8
LDA •• FE
8TA PORTS FLI~ ROM OUT ,-------------------------------
JSR INIT

110V2 LOA (RAM) ,Y MOllE THE OS
BTA (ROM),Y BACK INTO THE
INY RIGHT ADDRESSES
BNE MOll2
INC ~OM+l
INC RAM+l
OEX
CPX •• 30
liNE • M2
JSR BKIP

.M2 CPX •• 00
BNE MOll2 ,-------------------------------
CLI
LOA '.40 RE-ENABLE THE
BTA NMIEN INTERRUPTS AND
RT8 RETURN. ,-------------------------------

, INITIALIZE PAGE ZERO VARIABLES
, FOR ADDRESSES OF RAM AND ROM
, USED FOR INDEXING ,-------------------------------
INIT LOA. <OBROM

BTA ROM
LDA • >OSROM
STA ROM+l
LOA • < OSRAM
STA RAM
LOA • >OBRAM
BTA RAI'1+1
LOX •• 40
LOY .'00
RTS ,-------------------------------

, 8ET PAGE ZERD IIARIABLES TO
, SKIP THE HARDWARE REGISTERS
,-------------------------------
SKIP LOY .tOS
SKIPl INC ROM+l

INC RAM+l
DEX
DEY
BNE SKIPl
RT8 ,-------------------------------

, SET THE INIT ADDRESS TO DOB BO
, ALL THE PREVIOUS CODE WILL BE
, E XECUTED AND THE REBT OF THE
, ~ROGRAI1 WILL LOAD INTO THE TOP
, 16K AND REPLACE THE OLD MATH
, PACKAGE.
,-------------------------------

,- .02E2
.WORD START ,-------------------------------

, THIS JUBT RETURNS CONTROL TO
, DOB AFTER THE INTEGER MATH
, PACKAGE HAS SEEN LOADED IN. ,-------------------------------
CONTINUE

RTB ,------------------------- ------
, FOLLOWING ARE THE ACTUAL MATH
, ROUTINES WHICH LOAD RIGHT ON
• TOP OF THE OLD ONES. .-------------------------------

.- _0800
AFP ,-------------------------------
, CONVERTS ABCII TO NUMBER VALUE ,-------------------------------

JSR SKIP . BLANKB
LDA •• 40
STA FRO
LDA •• 00
eTA FRO+l
STA FRO+2
STA FRO+3
BEC
PHP

.0 LOY CIX

~g~ ~!~SUFF)i~ IT A DIGIT~

BCC .2
C,",P .'9+1
BCS .2
PLP
CLC
PHP
AND •• O~

IF NOT, THEN
IIRANCH TO
THE RETURN.

PHA SAllE THE 0161T.
,-------------------------------LDA FRO+2 MULTIPLY THE

BTA FRO+3 NUMBER BY 10
LOA ~RO+l BEFORE AODIN6
ABL A IN THE NEW
ftOL FRO+3 DI6IT.
AIIL A
ftOL ~RO+3
CLC
ADC FRO+l
STA FRO+l
LDA FRO+3
ADC FftO+2
8TA f'AO+2
ABL FRO+l
ftOL FRO+2 ,-------------------------------

• B

.2

PLA
CLC
ADC
IITA
BCC
INC
INC
JI1P
PLP
RTII

FRO+1
FRO+l
.S
FRO+2
CIX
.0

,-------------------------------
,- tOSE6

FASC ,-------------------------------, CONIIERTB INTEGERS INTO A8CII
, CHARACTER STRINGB. ,-------------------------------

.00

.02

.01

JBR INTLBF
LDA FRO+l
STA f'RE+2
LDA FRO+2
BTA FRE+3
SPL .00
LDA FRO+l
EOI'! •• FF
CLC

.. , , .. ,
ADC
BTA
LDA
EOR
ADC
STA
LOY
LDA
BTA
INC
BNE
INC
LDY
LDX
LOA
CMP
LOA
BBC
BCC
LDA
BEC
BBC
BTA
LOA
SBC
STA
INX

.to 1 .. ,
FRO+ 1 •••
FFlO+2 '" •• FF ...
•• 00 .. ,
FRO+2 , ..
•• 00 , - ...
(INBUFF) Y I'"
INBUFF I'"
.00 I'"
INBUFF+l • '"
•• 00
•• 00
FRO+l
LO.BYTES,Y
FRO+2

~ix~;~~~li
FRO+1

LO.B YT ES,Y
FRO+l
FRO+2
HI.B YTEB ,Y
FRO+2

JMP .01
NEXT. DIGIT

TXA
ORA •• 30
STA (INBUFF), Y
INY
CPY '.0:5
BNE .02
DEY
LOA (INSUFF) , Y
ORA •• eo

,--------~:~-~~~~~~~ ~~~ ---------
, NOW REMOIIE THE LEADING ZEROEB ,-------------------------------
.03

.04

.OS

LDY .tOO
LOA (INBUFF),Y
CMP .'0
SNE .04'
INY
JMP .03
BTY FRE+4
LDA INBUFF
SEC
BBC
STA
LDA
SBC
BTA
LOA
BTA
INY

FRE+4
FRE
INBUFF+l
•• 00
FRE+l
(INBUFF), Y
(FRE), Y

CPY •• 0:5
BNE .OS
LDA FRE+2
8TA FRO+1
LDA FRE+3
eTA FRO+2
BPL .06 ••••
LOA INBUFF I'"
SNE .07 " ••
DEC INBUFF+l " ••

.07 DEC INBUFF 1'"
106 RTS ,-------------------------------
• THE F OLLOWIN G ARE TABLES USED

ANALOG COMPUTING 79

r--'

~ Integer BASIC continued

, IN CONVERTING NU"BERS TO
, ASCII CHARACTER STRINGS. ,-------------------------------
HI.BYTES .BYTE)10000

::~i~ ~:gOO>I)IOO
LO.BYTES .BYTE ~Ioboo

• BYTE (1000, (100
• BYTE <10, (I ,-------------------------------
,- 'D~AA

IFP
,-------------------------------
, THIS ROUTINE WILL CONVERT AN
, INTEGER TO FLOATING POINT,
, WHICH IS SI"PLY LOW BYTE-HIGH
, BYTE FOR"AT WITH AN EXPONENT. ,-------------------------------LDX FRO

LOY FRO+I
LOA "40 ,EXPONENT
STA FRO
STX FRO+I
STY FRO+2
CLC
RTS ,-------------------------------
,- 'D~D2

"PI ,-------------------------------
, THESE ROUTINES WILL CONVERT A
, FLOATING POINT NU"BER BACK TO
, INTE6ER FOR"AT. ,-------------------------------LDA FRO+I

STA FRO
LDA FRO+2
STA FRO+I
CLC
RTS ,-------------------------------.- .OAbO

FSUB
Jr1P FSUB2 ,-------------------------------
• - .OAbo

"ADD ,-------------------------------, THESE ROUTINES WILL ADD AND
, SUBTRACT INTE6ERS. ,-------------------------------LDA "RO+I

CLC
AOC
STA
LOA
ADC
STA
CLC
IHS

FRl+1
""0+1
FRO+2
FRI+2
FRO+2

,-------------------------------
FSUB2 ,-------------------------------

.LOCAL
LOA FRO+I
SEC
SBC
STA
LOA
SBC
aTA
ASL
LDA
ABL
ROR

FRl+1
1'110+1
FRO+2
FRI+2
FRO+2
""0 FRO+2
A
FRO

80 ANALOG COMPUTING

THIS SETS THE
SI6N BIT IN THE
EXPONENT FOR
BASIC'S CO"PARE.

.1

LDA
ORA
BNE
STA
CLC
RTS

FRO+}
FRO+2
.1
FRO

IF RESULT
IS ZERO THEN
ZERO OUT THE
EXPONENT.

,-------------------------------
,- 'DADB

F"UL ,-------------------------------, THIS ROUTINE WILL "ULTIPLY
, THE CONTENTS OF FRO BY THE
, CONTENTS OF FRI AND STORE THE
, PRODUCT BACK INTO FRO.
,-------------------------------

.LOCAL
LOA '0
STA FRE+I
STA FR!
LOX '16
BNE 11

.2 CLC
LOA FRE+I
ADC FRI+I
STA FRE+I
LDA FRE
AOC FIH+2
STA FRE

.1 LSR "RE
ROR FRE+I
ROil FIIO+2
ROR FRO+I
DEX
Br1I .3
BCC .1
BCS .2

.3 CLC
RTS ,-------------------------------
,. .D828

"DIV ,-------------------------------
, THIS ROUTINE WILL DIVIDE THE
, CONTENTS OF FRO BY FRI AND
, STORE THE RESULT INTO FRO. ,-------------------------------.LOCAL

LDA FRI+I
ORA 1'111+2
IIEg .ERROR
LDA .0
eTA FRE+I
STA FRE
LDY .16

.2 ASL ""0+1
IIOL "RO+2
ROL FRE+I
ROL "RE
SEC
LOA FIIE+I
SBC ""1+1
TAX
LDA FR!
eBC FRI+2
IICC .1
STX ""E+I
STA FR!
INC FRO+I

.1 DI!:Y

.ERROR

liNE .2
CLC
RTS

SEC
RTS ,-------------------------------

FLDOR ,-------------------------------, THIS ROUTINE WILL LOAD FRO
, FRO" THE ADDRESS POINTED TO
, BY THE b~02 X,Y REGISTERS.
, OR FLDOP WILL LOAD IT FRO" THE
, CURR!NT ADDRESS 0" FLPTR • ,-------------------------------
FLOOP

STX FLPTR
STY FLPTR+l

LOY "02
1Ft LOA (FLPTR),Y

eTA FRO,Y
DEY
IIPL .1'"1
RTS ,-------------------------------,- 'DD'rll

FLDIII ,-------------------------------, THIS ROUTINE WILL LOAD FRI
, FRO" THE ADDRESS POINTED TO
, BY THE 6~02 X,Y REGISTERS.
, OR FLDIP WILL LOAD IT FRO" THE
, CURRENT ADDRESS OF FLPTR.
,-------------------------------
FLDIP

STX FLPTR
STY FLPTR+I

LDY "02
.1'3 LDA (FLPTII), Y

STA FRI,Y
DEY
8PL .1'3
RTS ,-------------------------------
,- 'DDA7

FSTOII ,-------------------------------, THIS ROUTINE WILL STORE FRO
, INTO THE ADDRESS POINTED TO
, BY THE b~02 X,Y RE6IST!RS.
, OR FSTOP WILL STOR! IT INTO THE
, CURR!NT ADDRESS OF FLPTR • ,-------------------------------
FSTOP

.1'4

STx FLPTR
STY FLPTR+I

LDY "02

~~~ ~~~"~R),y 
D!Y 
IIPL .F4 
RT!! ,-------------------------------
,. _0086 

F"OV! ,-------------------------------, THIS ROUTINE WILL "OV! THE 
, CONTENTS OF FRO INTO FRI. ,-------------------------------

LDY "02 
.F~ LDA FRO,Y 

STA FRI,Y 
DEY 
IIPL .F:5 
RT!! ,-------------------------------

• 

,- '02EO 
.WORD CONTINUE 

ATARI 8-BIT EXTRA 



by Dave Pettit 

I-laving played Atari's Star Raiders for 
years, I've learned a few interesting ways 
to play it faster and more accurately. Some 
of my strategies are extensions of what the 
instruction manual says; some are applica
ti ons of other people's strategies; and still 
others are unwritten facts of how the game 
progresses. I hope these ideas will help all 
players, from Novice to Commander. 

The facts here have been grouped by 
topics, arranged in alphabetical order
except for "Miscellaneous Strategies" and 
specifics about the Commander Mission , 
which are placed at the end. Ideas are ar
ranged w ithin a category so that practical
ly anyone can use the beginning sugges
tions, whi le more able navigators will see 
uses for the later concepts. When an idea 
involving damaged or destroyed equipment 
is given, it's placed at the section's end. 

You can read this article through or use 
it as a reference. Say you want to find out 
what you can do to locate a starbase when 
both your Tracking Computer and Long
Range Scan are damaged. You should look 
under each section-Starbase, Tracking 
Computer and Long-Range Scan. You'll 
probably find just what you need in one. 

Aft view. 
1. When in aft view, the joyst ick direc

tions are reversed from those of the front 

ATARI 8-BIT EXTRA 

view. An easier way to learn this : the con
trols are the same as for hyperwarp in PI
LOT and higher missions (push left and go 
right; pull back and go down). 

2. Don't use the strategy that some take 
- turning your starship around to get a pur
suing enemy. That takes too much time, and 
you may get hit in the process. 

3. If you must turn around (say, to pur
sue a distant enemy behind you). turn to 
the left or right, up or down, so the horizon
tal or vertical direction indicators (theta and 
phi) become larger in absolute value. For ex
ample, if you turn so the indicator changes 
from - 350 to 0 and then from 0 to + 475 
(at which time, the Tracking Computer goes 
to front view). you'll have wasted a lot of 
time. It's better to go from - 350 to - 475 
first. Keep turning to 0, once in front view, 
to center the enemy. 

4. When turning around from aft to front 
view, an enemy can be as much as 40 me
trans farther away. 

5. If an enemy is pmsuing you in aft view 
and your engines are on, you can slow way 
down (say, from 6 to 4) and keep firing as 
they approach. If they don't get hit , they' ll 
probably pass you by. But , as they pass and 
your screen changes to the front view, you 
can speed back up to 6 or 7 to match thei r 
speed . This keeps them close to you, so you 
can shoot them when they least expect it. 
A very effective strategy, this does use a lot 
of energy (see "Engin es," #1, below). 

Engines. 
1. Don't rely on your engines too much 

in finding the enemy; if they go out , you're 
practical ly stranded . Conserve fuel as much 
as possible and wait for the enemy to come 
to you. 

2. William Colsher wrote in the Novem
ber/December 1980 issue of Compute! that 
saving energy is one of the most important 
ways to increase your rating. He's r ight. But 
new players should chase and shoot at the 
same time, so they can practice aiming . 
TIllS will keep most of the enemy in close 
range, where they'll be larger and easier to 
hit. Speeds of 5 or 6 are recommended 
here. In lime, players will learn when to 
shoot and when to wait, based on where 
the enemy is on the screen . 

3. Mr. Colsher does not emphasize 
enough that some enemy ships do not at
tack you-you have to go after them . The 
need for tillS can be determined by center
ing them in the Attack Computer Display 
and observing the range indicator. If the 
range is getting larger or staying constant, 
you'll have to chase them down with a 
speed of 6 or 7. If the range is getting smal
ler, wait them out. 

4. Most enemies travel at 0 or 6. If you're 
chasing one at 6 and the range doesn't 
change (or if you don't catch them soon), 
they're playing cat and mouse with you . in
crease your speed to 7 if you real ly want 
to catch them. 

5. Sometimes you notice in the Long-

ANALOG COM PU TING 81 



".---. 

~ Tactics continued 

Range Scan (or with the Tracking Compu
ter) that one enemy is pursuing you from 
the back, while another is standing still, 
dead ahead. By pressing a 4 or 5, you can 
head for the forward enemy and allow the 
other one to catch you. Then blast the one 
you see first and the other soon after. That 
saves a little time and , probably, some 
energy. 

6. Practice moving at speeds of 7, 8 and 
9. Try going this fast and shooting meteors. 
It's tough, but will improve your steering 
and aiming abilities. 

7. Sometimes-at high speeds- it's im
possible to turn around and face in anoth
er direction with the Tracking Computer 
on . You must stop all your engines, turn 
around, then turn on the engines again. 

8. If you need to destroy your starbase 
or an enemy starship quickly, don't hesitate 
to use a speed of 8 or 9. The loss of energy 
is small when weighed against the loss of 
a starbase to Zylon ships. 

9. A speed of 9 with damaged engines 
is the same as a speed of 7 with normal en
gines. Use this factor to catch a fieeing 
enemy. 

10. If your engines do get destroyed while 
your enemy is 300 metrons away and not 
approaching you, you can catch the ship 
using your Long-Range Scan and hyper
warp. Simply set up the enemy directly in 
front of you with the Long-Range Scan (see 
"Long-Range Scan," #6). Then press the H 
key and steer toward that ship, so that it re
mains in front of you till it's in the first 
third of the screen in front of your location 
(you're still in Long-Range Scan). Now 
press any number key and the F' key. The 
enemy should be within visual ran ge. This 
w ill cost you only about 100 mergs (wlits 
of energy). the same amount you'd use with 
your engines working to take out an ene
my at the same distance-but this method 
is considerably faster. You 'll have to experi
ment with this to get it to work for you . 

11. Use the above technique, but, instead 
of pressing a number key to coast toward 
the enemy, time the pressing of the num
ber key so that the enemy will pass by you 
a bit and have to catch up later. This may 
avo id your getting blasted from the front. 

12. If your engines and Long-Range Scan 
are both destroyed , you can use hyperwarp 
in short bursts to catch an enemy or to get 
closer to a starbase. Be sure to keep an eye 
peeled for a passing Zylon starship or star
base. Be careful, or this can waste a lot of 
time and energy. 

13. Destroyed engines operate at a nor
mal speed of about 5 when any key from 
5 to 9 is pressed . Keys from 1 to 4 produce 
speeds just smaller than your normal 1 to 
4 speeds. 

Galactic Chart. 
1. The enemy will move on Star Dates in 

x.OO and x .50, except 0.50 and for 100 cen
tons after surrounding a starbase. It 's help
ful to know tllis when you're starting a new 

82 ANALOG COMPUTING 

game or wiping out the enemy around a 
starbase - they (and all other Zylon star
ships) sit and wait for 100 centons, even if 
the starbase is no longer surrounded! 

2. Normally, when beginning a hyper
jump, it takes about 8 centons to complete. 
Thus, the Star Date should not be in the 
ranges of x.42 to x.49 or x.92 to x.99. How
ever, it's possible to speed up your travel 
time by remaining with the Galactic Chart 
on-screen for a few seconds. This can re
duce travel time by 1 or 2 centons, but be 
careful in missions above Novice-you may 
not be able to recenter the target marker 
quickly enough to get to the proper sector. 

3. Enemy starsllips line themselves up 
horizontally and vertically, with a starbase 
first. They then move in a straight line to
ward the base to surround it. They seldom 
move diagonally (see "Galactic Chart:' #11). 

4. Enemy ships do move diagonally when 
traveling around a starbase. 

5. Zylon starship sectors of 1 or 2 enemy 
ships (patrol groups) usually move every 50 
cenlons. Use this to predict their travels. 
You decide if you 'll have time to destroy a 
4-Zylon sector. You might decide to aim for 
a blind sector if your Sub-Space Radio is 
out , or if you didn't watch the clock well 
(refer to "Galactic Chart," #2 , above). 

6. If the enemy seems to be converging 
on a starbase on the left and the Zylon star
ships are on the right , most patrol groups 
will move toward the base in a horizontal 
or vertical line. Thus, you can predict the 
enemy's next sector. Use this information 
to plaJ1 your next move when tile Star Date's 
about to change ("Galactic Chart ," #2, a
bove). or while waiting for a distant Zylon 
starshi p in your sector (see "Galactic Chart ," 
#8, below; also see #11 for the reason why 
and the movement of Zylon starships in the 
other direction). 

7. The enemy will most often move to
ward a group of star'bases, rather tharl a lone 
one. But that doesn' t meaJ1 that they never 
go for the lone bases. 

8. If you're wailing for the final Zylon 
ship in a sector to approach and attack , use 
the Galactic Chart to plarl and position your 
next move. After destroyiJ1g the Zylon star
ship - and if the S tar' Date permits (see 
"Galactic Chart," #2)-you carl hyperjump 
witll0Ut looking at tile chart again. This carl 
save time and energy. 

9. When you've been in a sector for a 
considerable amount of time, consider up
dating the Galactic Chart. You can do this 
quickly by typing GF The fraction of a sec
ond that the chart is on will be enough to 
update it. You won't miss too much action , 
arld you'll be able to avoid problems should 
yoW' Sub-Space Radio go out. 

10. Also, type a quick GF' when a star
base is first sW'rowlded and you choose to 
filli sh clearing the sector you're already in . 

n. The Zylon starships in the Galactic 
Chart ar'e positioned from the left side of 
the top row. Each sector is placed or left 

alone, through to the last sector in that row. 
Each row is positioned in this way, with the 
sector in the lower right located last. If a 
series of enemies is traveling toward a star
base on the right , the leftmost Zylon star
ship sectors will move diagonally. If the 
Zylon starships are clwnped to the right , 
moving toward a starbase on the left , all 
sectors could move as a group. 

12. When you've eliminated most enemy 
sectors and enemy ships are grouped , use 
the rook-mate strategy of chess-don't al
low any enemy to pass a chosen horizontal 
or vertical line in the chart. Slowly elimi
nate the closest enemy first, eventually 
moving through all enemy sectors. 

13. Groups of four enemy starships are 
slower and don't move often. They're good 
bets for remaining stationary when your 
Sub-Space Radio is out, or when you've for
gotten to check the Star Date before select
ing hyperwarp. 

Hyperwarp. 
1. When in hyperwarp, the directions say 

that it's necessary to keep the target mar'k
er in the center of the cross hairs. This is 
true only at the critical moment of enter
ing hyperspace-that is , when the veloci
ty reaches 99 metrons/second. KJ10wing 
this will allow you to scratch yo W' nose, 
make a quick check of the Galactic Char·t 
or do practically whatever you waJ1t-and 
still reach the sector you aimed for. 

2. Use as many of your senses as you 
can. Listen to the sowld of your engines at 
the moment before entering hyperwarp. If 
you can learn what that volwne is, keep
ing the target mar'ker in the right place at 
the right time w ill be easier. 

3. Using jerky wiggles of the joystick is 
the easiest way to steer. Also, better con
trol can be obtained by holding the top of 
the stick , rather than the midclle. 

4. Mr. Colsher is generally correct in his 
rule about not jwnping more than four sec
tors at one time. The cutoff point actually 
occurs when the hyperwar'p energy requir
ed changes from 260 to 500 mergs. Use two 
jumps, rather than a single energy-wast ing 
one, to get to the desired sector. 

5. If you must use 260 mergs in a hyper
jwnp, be sure to steer car-efuJiy, or you may 
go off cow-se by enough to use 500 mergs. 
If in doubt , either set up 250 mergs wllile 
on the Galactic Chart, or aim back from tl1e 
center of the cross hair a little bit (see 
"Hyperwar-p," #8). 

6. Mr. Colsher's rule ("l-lyperwar-p," #4, 
above) ought to be arllended furt11er - don't 
hyperjlUnp too faJ' except in an emergency. 
The emergency might be a sW'roLU1c!ec! star
base or a lack of photons or shields. Just 
don't do it often in a ganle. 

7. Be extra caJ'eful when hyperjumping 
to a sector on tile edge of the Galactic Char-t. 
A small error in navigation may put you on 
the wrong sicle of the galaxy, not to men
tion causing a huge energy loss. 

8. A little experinlentation w ill show that 

ATARI 8-BIT EXTRA 



the book is right: if you position the hyper
warp target marker a little off center, you 
can hyperjump to a neighboring sector from 
the one set in the Galactic Chart. This might 
be helpful if your shields go down, or if the 
enemy moves just as you press H. It can 
also be used when you know (or can bet) 
that the enemy w ill move from where you 
last saw them. Simply aim the target marker 
off center by one or more widths of the 
marker for each sector that you wish to 
move (see Figure 1). You should be able to 
move up to four sectors away with only a 
modicum of experimenting. You could , for 
example, display the Galactic Chart, find a 
nearby enemy or starbase, and hyperjump 
there without doing any positioning on the 
chart. This real ly speeds up the game. You 
should try this in Novice level first; it's 
much easier there. 

+ 
+-

A B 

Figure 1. 
[fno aim is given, the target marker (+) is posi

tioned off of a normal Galactic Chart aim, or away 
from your present sector-either by two sectors 
to the left (A) or by three sectors to the right and 
one up (ll). 

9. Not only can't you shoot in hyperwarp, 
but you can 't be shot at. At least , you can't 
be shot at as long as you've reached a mini
mum speed. 

10. When entering an enemy or starbase 
sector, or when seeking out a distant Zy
Ion ship, use the Attack Computer Display 
and your own hyperjump momentum to 
help steer the ship to the desired location . 
If the target is right or left of center in the 
d isplay, push the joystick in that direction . 
If the target is high , pull back (called "nose 
up"); if low, push forward (cal led "nose 
doV\rn"). It's possible to steer yourself to 
wi thin sight range of a starbase more often 
than not by using this method. 

11. Use hyperwarp within a starbase sec
tor to get to your goal fa ster. This is espe
cia lly handy w ith distant starbases and/or 
des troyed engines. Use your engines for 
docking maneuvers as needed. 

12. In hyperwarp, the range indicator will 
work for distance to a starbase in your sec
tor, but not fo r distance to an enemy. 

13. DW'ing hyperwarp, the Sub-Space Ra
dio doesn' t update the Galactic Chart. If a 
starbase is surrounded because of poor tim
ing, you will have to change course (see 
"I-!yperwarp," #8), do a quick check of the 
Galactic Chart (see "Pause Key," #2), or can
cel the hyperwarp. 

14. If your Tracking Computer goes out. 
steering to another sector in hyperwarp can 
be difficult. The center of the screen
where the tarket marker is supposed to be 
- is the point at which no stars appear. You 

ATARI 8-BIT EXTRA 

can see this easily in Novice level by start
ing hyperwarp and turning your Tracking 
Computer off. The target marker will be 
positioned correctly. 

Long-Range Scan. 
1. Another way of centering an enemy, in

stead of the Attack Computer Display, is the 
use of the horizontal and vertical displays 
on the Long-Range Scan screen. By adjust
ing them both to o. you'll find the target 
is straight ah ead (see "Long-Range Scan ," 
#6. below) . 

2. On the Long-Range Scan , little orange 
rectangles represent the Zylon starships and 
a "dwnmy starship." Which is whi ch? The 
one that disappears and reappears occasion
ally is the dummy, so go after tile other one. 

3. The orange rectangles that shoot or 
move rapidly are the enemy. 

4. When in a starbase sector, the rectan
gle changes to a starbase shape. 

5. When you 've no better clues as to 
which rectangle is the dummy (and your 
Tracking Computer is out) go from L to G 
or P, and then back to L. If one of the rec
tangles moved drastically and isn't moving 
much now (or has disappeared), it is prob
ably the dummy. 

6. If your Tracking Computer is destroy
ed , it 's st ill possible for you to ge t closer 
to a starbase or the enemy. As soon as 
you've entered the sector, press L. What
ever you're searching for w ill come into 
view on the Long-Range Scan sc reen . Po
sition it in the top half of the screen , direct
ly in front of your ship by pushing the joy
stick left or right. Then move the stick for
ward and backward to "stretch out" the 
target-to get it to its maximum distance 
from you. (This is the same as being in the 
center of the Attack Computer Display in the 
front view.) As soon as the target is close 
to the center of the Long-Range Scan, go 
to the front view and dock or shoot, what
ever is appropriate. 

Z Apparently, it 's not possible for both the 
Tracking Computer and Long-Range Scan 
to be destroyed together. At least one will 
be usable to locate an enemy or a starbase. 

8. Of course, a destroyed Long-Range 
Scan won't tell you where the enemy ships 
are, but it will tell if there are none, one, 
or (at least) two of them in your sector. Just 
COWlt the little orange rectangles. One is a 
dWllmy; any others are Zylon starships. 

Manual Target Selector. 
1. In a sector w ith more than one Zylon 

ship, don't be tricked, while waiting for one 
enemy, into ignoring another. Use tile M key 
and the range indi cator to see if another 
enemy is approaching- and to find out 
which one w ill get to you first. 

2. When entering an enemy sector where 
a large distance must be traveled to catch 
an enemy, use the Manual Target Selector 
to see if a second enemy is closer. If less 
than 400 metrons away, an enemy can 
usual ly be caught with hyperw81'p momen-

tum (mentioned e81'lier; "see Long-Range 
Scan," #6). 

3. Sometimes you can cause an enemy 
to approach you by using the M key. It's as 
if they realize that tlley're being "sc81U1ed :' 
so they decide to attack. 

4 . When all Zylon starships in a sector 
are killed, the Manual Target Selector will 
switch to two different values. Don't be con
fused and start looking for non-existent 
enen1ies. 

Pause Key. 
1. You can use the pause key (P) to tem

porarily stop the game action and plan an 
attack strategy. However, some purists may 
find this a form of cheating. 

2 . Use this key if you've just entered 
hyperwarp, then received notice of a sur
rounded or destroyed starbase. To do this. 
type GP quickly and don't touch the joy
stick. Determine what your move should be, 
realizing that the Galactic Chart hasn't been 
updated since you saw it last (see "Hyper
warp," #13). Plan on using offset navigation 
of the target marker (see "Hyperwarp," #8), 
then press the F key before moving the 
stick, so you can start steering as soon as 
you disengage the pause. Of course, if you 
dec ide to cancel hyperwarp, press a num
ber key and move the joystick. 

3. If you pause long enough, the enemy's 
strategy may change. Many times a Zylon 
ship that won't pursue you when yoW' en
gines are out will pursue you after several 
minutes on pause. This may only be a coin
c idence (it doesn't happen every time), but 
it's been observed after many w1pl8l1I1ed in
terrupti ons. 

Photons-yours and theirs. 
1. You can't hit an enemy often by just 

shooting. You need to steer with the joy
sti ck, then fire. It takes a coordinated ef
fort , frustrat ing many beginning players. 

2. Zylon starships can shoot only one 
photon at you at a time. You , however, can 
shoot photons two at a time. 

3. It's best to shoot in bW'sts of two. With 
the photons coming out of alternate tubes. 
you may forget which one wil l fire next. 
By shooting twice, you c,U1 guarantee that 
the tube you want to fire will. 

4. M811Y tin18S an enemy is destroyed just 
after they've shot at you . Don't get caught 
by that last shot. Either get out of the pho
ton's way or shoot it doWll , too. 

5. The cross hai rs in the front and aft 
v iews are set for distant shots. The c loser 
the enemy. the lower the shi p must be in 
the view screen for you to hit it directly 
w ith a photon. Seldom ca n an enemy be 
hit above the horizontal c ross hair (but see 
"Photon s," #12 ) . You can check this by fir
ing two shots very qui ckly and freezing 
them with the P key. You can con tinue to 
release and freeze them by alternately mov
ing the joystick a small amount and then 
pressing P again. 

6. When an enemy keeps matching you 

ANALOG COMPUTING 83 



,......---. 
~ Tactics continued 

with photon after photon, only to have them 
both explode, there are two ways to hit that 
ship. First, wait for the enemy's photon to 
come very close to you - but low enough 
so that it will pass without damage. Then 
fire away. The photons will pass each oth
er, with yours striking the enemy. 

7. The second way to get around this pro
blem is to turn your ship to the left or right, 
so the other photon tube can be used to hit 
the enemy ship. It's as if the enemy keeps 
blocking your right jabs, then gets punched 
with your left hook! 

8. A long, distant shot coming toward you 
(especially in Command level) can be hard 
to avoid or destroy. Normal reaction for a 
high photon is to pull back on the joystick, 
going nose up. Instead, do the reverse: push 
forward after shooting your photon. If you 
time it right, your shot will float up and 
strike the enemy's photon. 

9 . The only time a photon of yours will 
curve up by itself is when the enemy is dead 
center and very close, called "lock-on" in 
the manual. Both photons fire in this con
dition. Don't try to create this condition. In
stead, learn how to kill an enemy with 
single shots when you're ready, rather than 
waiting for the ship to reach the right po
sition. 

10. One time that lock-on is effective and 
frequent is in combatting an enemy at point
blank range. Usually, each single shot blocks 
one of the enemy's. When double shots are 
sent out, one usually blocks an opponent's 
shot, while the other takes out the starship. 
Sometimes, when a shot misses the enemy, 
tlus process requires three or more pairs 
of shots. 

11. When shooting the enemy at long 
range, give your photons enough time to 
reach the Zylon starships before shooting 
again. With the game only being able to 
keep track of two photons-one from each 
photon tube-at a time, you don't want to 
waste a perfect shot by shooting again. You 
can see this in the Long-Range Scan by fir
ing twice, waiting a few seconds and fir
ing again . The farthest photon will dis
appear first. 

12. It is even possible to steer a photon 
after it has been fired! You can prove this 
by firing a photon and then moving the 
joystick to the right or left . If you hold the 
stick this way long enough, you'll see the 
photon cross to the opposite side of the 
screen! By causing a nose-down action in 
front view (joystick forward), you can make 
a photon go above the horizontal cross hair. 
With practice, you can direct shots to hit 
enemy starships at great distances-and on 
opposite sides of the screen. Using tillS will 
save time and energy by destroying the ene
my more quickly. 

13. Here's how to shoot and steer upon 
entering a sector. First, use the Attack Com
puter Display for initial steering (see "Hy
perwarp," #10). Then, watch the range to 
the enemy. When it is less than 200 me-

84 ANALOG COM PUTING 

trons, shoot two shots. If you can see the 
enemy, steer one of the shots toward them. 
But don't waste your time and energy fir
ing ten or twenty times at nothing. 

14. Don't try to hit an enemy in Long
Range Scan. You won't be successful often 
enough to make it worth your while. 

15. Shooting at an enemy farther away 
than 120 metrons may put them into attack 
mode. They will then come to get you. Try 
this in front view and in Long-Range Scan, 
too. 

16. If a Zylon starship shoots and is de
stroyed, but your Tracking Computer chan
ges views, you may need to avoid the 
enemy photon. To do this, turn away from 
the photon hard! After you're sure the pho
ton has passed you , you may continue your 
attack on the next starship. 

17. If you listen carefully, you may notice 
a slightly different sound when you fire a 
photon after your photons have been dam
aged. The sound has a slightly deeper pitch. 

18. If in a heavy battle, where new dam
age to your ship has just occurred, fire one 
or two photons to make sure they're still 
working. Don't wait for the damage report 
and a Zylon ship to start attacking. 

19. If your photons are damaged, it can 
be difficult to destroy a close Zylon star
ship on the same side as the damaged pho
ton tube. What you need to do is keep the 
enemy Iowan the screen, as you move your 
ship to position enemies on the other half 
of the screen . Usually, they'll still be shoot
ing in the same direction as they have been. 
As soon as they shoot , and when they're 
right in front of the working photon tube, 
blast away! 

Shields. 
1. You're always two shots or less from 

death : one for your shields and one for you. 
Be prepared to go into hyperwarp quickly 
when your shields go out, or you may die 
trying. 

2 . If your shields go out, press H as 
quickly as possible. Don't worry about view
ing the Galactic Chart. Just get out of there! 
When you have more time to think, move 
to a starbase with the help of the chart, and 
get your shields repaired. (Also, see "Pause 
Key," #2.) 

3. If your shields are destroyed and you're 
not being blasted by a close enemy, you 
might want to stay put and clear the sec
tor. When that's been done, or if a more haz
ardous situation develops, by all means get 
out fast. 

4. If your shields are destroyed and you 
choose to play more, turn them off. It makes 
the screen easier to read and stops wast
ing valuable energy. Getting hit with no 
shields is the same as getting lllt with de
stroyed shields. Just remember to turn them 
on when docking is over. 

5. If your shields are out, don't use your 
engines unless you're in front view. A me
teor may destroy you. 

6. Before leaving a sector with no shields, 

type F and the H, rather than the other way 
around. You may be able to avoid a meteor 
on your move. If the aft view appears, your 
forward path should be clear. 

Starbases. 
1. Games in which all the starbases are 

grouped together are easier to win than 
those in which they're spread out. After try
ing to surround one starbase and failing, the 
enemy will move to another that is, in this 
case, close by. Some players may consider 
this cheating, but it's a good temporary 
strategy. 

2. You need to get close to a starbase to 
dock, but how close? When you see three 
windows on each side of the starbase, stop 
your engines and move the joystick until tile 
Docking Completed message appears. 

3. It takes 16 centrons to complete repairs 
after docking. Use this and the time to en
ter and exit (8 centrons each) to decide 
when to destroy a surrounded starbase 
yourself, when to stay docked , or when to 
attempt a docking. There's also a varying 
amount of time to locate a starbase and 
dock with it. 

4 . Docking too often wastes time and 
energy. Use the following priority list for de
cisions on docking: (1) photons destroyed; 
(2) shields destroyed ; (3) Sub-Space Radio 
destroyed; and (4) other problems. (See 
"Shields;' all paragraphs, and "Sub-Space 
Radio;' #7, for more details and suggestions. 

5. While waiting for repairs at a starbase, 
use the Galactic Chart to plan your next 
move. Then hyperwarp as soon as docking 
is completed. 

6. There are no meteors in a starbase sec
tor, so turn your shields off when in these 
sectors to save energy. After docking, re
member to turn them back on. 

7. To save energy when docking, turn off 
the Tracking Computer, as there's no need 
for it once the starbase is in sight. After 
docking is over, be sure to turn it back on. 

8. It's possible to steer your ship with the 
momentum of hyperwarp directly to your 
starbase. If your range to the starbase upon 
entering the sector is 300 to 400 metrons, 
you can usually do it (see "Hyperwarp," 
#10) . Practice. 

9. If your hyperwarp momentum appears 
to be too fast and the starbase too close to 
dock, you can add some traveling distance 
by porpoising. This is done by making your 
ship go up and down several times very 
quickly. Do this by pusl1ing forward and 
back on the joystick, quickly. In Figure 2 , 
you can see that your starsh.ip will climb 
and drive to add the needed distance and 
avoid passing the starbase. 

10. If a starbase is about to be totally sur
rounded, you can attack early. By entering 
a sector next to that starbase, you can be 
destroying the enemy before the starbase 
is surrounded. You will then have a little 
less than 100 me trans to destroy the now 
stationary Zylon sectors. 

11. When a starbase is surrounded , go 

ATARI 8-BIT EXTRA 



STAR BASE 

PATH 2 

Figure 2. 
The side view of your entering the sector from 

the left demonstrates two paths: Path 1 shows nor
mal entry and passing the starbase; Path 2 shows 
porpoising action to shorten overall travel dis
tance, to keep the starbase in front of your ship 
and, possibly, to complete docking maneuvers. 

after the groups of three or less Zylon star
ships. You need to be very skilled and have 
a lot of time to take out a group of four. 

12. If you have just barely cleared a sec
tor arowld a surrounded starbase and need 
to dock for repairs , it may be to your ad
vantage to wait for the next Zylon starship 
movement at star date x.50 or x.OO. By your 
staying there, the Zylon starships can't 
completely surround that starbase on that 
move. This will give you at least 150 me
trons to hyperwarp, dock, hyperwarp 
again, and destroy another enemy sector 
before the starbase could be surrounded 
again and destroyed. 

13. If a starbase has been surrounded for 
too long and its destruction is inevitable, 
do it yourself. 

14. It 's possible for more than one star
base to be surrounded at one time. This 
can happen when the two starbases are 
close together and several enemy have con
verged on the area . To prevent a double 
loss, destroy the Zylon starships in an in
tersecting sector as in Figure 3, below. 

Figure 3. 
Two starhases (S) are surrounded. To save them, 
attack either common sector with three Zylon 
starships. 

15. Suppose your starship is badly 
damaged: your Long-Range Scanner and 
Tracking Computer are out, so navigation 
is difficult. You decide to go to a starbase, 
but have always had trouble finding them. 
Don't worry! Most of the time you'll come 
within visual range of a starbase after a 
hyperjump. 

16. When all starbases have been de
s troyed , the enemy stop moving. Use your 
las t Galactic Chart as a guide. All will not 
be lost now if your radio goes out , but you 
won't make Star Commander this way. 

ATARI 8-BIT EXTRA 

Sub-Space Radio. 
1. If a starbase is surrounded or destroy

ed just before you receive some damage 
or hyperjump into an enemy sector, the 
sound (and, sometimes, the word mes
sages) about the starbase will be bypassed 
for the new message. 

2. If your Sub-Space Radio is damaged, 
it still functions but doesn't update the 
Galactic Chart . Simply move through the 
chart with the joystick and watch the num
ber of targets indicator. As long as it's zero, 
keep searching. 

3. Although you can find enemy sectors 
with a damaged radio by using the targets 
indicator, a lot of time can be wasted. Also, 
you don't get the big picture of enemy 
movement. 

4. With a damaged radio, you must be 
careful. You won't be able to see if any star
base is about to be surrounded or de
stroyed. Of course, you will be notified by 
word message and beeps, when one is af
fected. 

5. If a starbase is surrounded while your 
radio is damaged , you can use the Galac
tic Chart and st ill find which one. Watch 
the targets indicator while searching the 
sectors around each starbase. If any sec
tor has no enemy, look around another star
base. And if the starbase is adjacent to a 
second starbase, make sure the second 
one's not sWTowlded, as well (see "Star
bases," #14). If it is , attack any sector of 
common enemy Zylon starships, no mat
ter how many there are, or you'll lose one 
or both starbases. 

6. With a damaged radio, you won't 
know of starbases that have moved since 
the last chart update. Otherwise, assume 
that they're as shown on the chart. 

7. If your radio gets blasted, go ahead 
and get some more enemy before docking. 
But don't wait too long or get too greedy
you may discover that one or more star
bases have been surrounded or destroyed 
while you were fighting! 

Tracking Computer. 
1. Turning on your Tracking Computer 

will help in shooting and in locating ene
my Zylon starships. Use the crosshairs as 
a guide in aiming your shots. 

2. The instruction book does not recom
mend the use of the Tracking Computer in 
Novice level , probably to reduce player 
confusion and because the enemy won't at
tack from behind you . When used at this 
level , however, you can shoot at the ene
my in the aft view whenever possible. This 
can be helpful, as they can't block your 
shots in this view. (See "Zylon Starships," 
#2 and #4). 

3. The automatic tracking system of the 
Tracking Computer doesn't use any extra 
energy. It will change the screen to front 
or aft view, to show the direction of the 
enemy who fired last. The only shortcom
ings occur in a crossfire (see "Zylon Star
ships," #19, #20, and #21) or when one 

enemy shoots and gets killed , but their 
shot still hits after your view switches (see 
"Photons," #16). 

4. You don't need to center an oncom
ing enemy with the Attack Computer Dis
play. For the most part, Zylon starships are 
"self-centering" on the attack -they sel
dom go for your blind sides. 

5. Don't look at the Attack Computer Dis
play when the enemy is in visual range; 
look at the enemy directly. The display 
should be used when searching out distant 
enemies (see "Tracking Computer," #6, 
below). 

6. If a distant enemy or your starbase 
goes off the screen, steer in the direction 
of the Attack Computer Display. If the im
age is in the lower left, for example, push 
the joystick to the front and left. Your ship 
will start pointing toward its object and , 
eventually, face the centered and/or visi
ble target. 

7. Don't pursue a distant enemy totally 
through the use of the Attack Computer 
Display. You may ignore a meteor or a sur
prise attack by a second Zylon starship. 

8. By using the Attack Computer Display 
wi th a damaged Tracking Computer, you 
can still get to a target, but you won't be 
able to use the number displays at the bot
tom of the screen. Instead , try to get the 
target centered in the Attack Computer 
Display. Then (or even while centering) use 
your engines to get to the target (see "En
gines," #4 and #9). Practice helps. 

9. When your Long-Range Scan is de
stroyed, you can still find an enemy or 
your starbase with a partly or fully func
tional Tracking Computer (see "Tracking 
Computer," #10, below). If the Tracking 
Computer is working, posi tion the target 
in front of you (front view screen and a 
positive distance away). Then position it 
to the center of the Attack Computer Dis
play and, with the horizontal and vertical 
indicators on the screen set to about 0, en
gage your engines (or Hyperwarp as 
described in "Engines," #12). and steer 
with the target centered. 

10. When your Tracking Computer is de
stroyed and you're waiting for an enemy 
to attack, be sure to occasionally flip back 
and forth between front and aft views, or 
you might be surprised by another Zylon. 

11. If your Tracking Computer is destroy
ed, it has to be turned on again after be
ing repaired at a starbase. This is the only 
device that needs action when destroyed 
and repaired. 

Zylon Starships. 
1. Know how many Zylon starships are 

in a sector when you enter and count them 
as they're killed, so you won't get hit by 
surprise or exit too soon . 

2 . If you're playing at Novice level. you 
don't have to pursue the enemy in the sec
tors-they'll come to you all of the time. 

3. Most of the enemy will come to you 
in the other missions, too, if you give them 

ANALOG COMPUTING 85 



"............ 

~ Tactics continued 

a chance. If the numbers are getting closer 
to 0 in the range indicator, then sit back 
and wait. 

4. If the enemy were visible on-screen 
at one time in Novice level (and sometimes 
in other missions), but can't be seen now, 
do not move to find them. Stop all move
ment with the joystick and engines (press 
o to stop engines), and let the enemy come 
into view. They'll become visible again in 
e ither front or aft view, wlless you've out
rWl them. 

5. Some enemy will seem to be coming 
toward you and ready to attack. At a range 
indicator value of about 150 and 450 me
trons, they stop and reverse directions. 
Now you must pursue them at a speed of 
7 or more. 

6. When an enemy is centered in the At
tack Computer Display, it w ill be visible in 
the view screen at about 120 metrons, us
ing the range indicator. 

7. When an enemy first appears on the 
screen, it will show up as a yellow dot (just 
smaller than a white star) that usually 
moves aga inst the background of stars. 
This is most evident when you're not mov
ing, but it can be detected at any speed or 
time (including Hyperwarp deceleration, 
even if the screen is flashing red and blue 
-watch carefully). Many players don't 
concentrate enough to see this. 

8. Before some ships appear on the 
screen, a meteor is seen. This is like a de
coy. Don't attack it; you may be caught by 
surprise by the Zylons. Instead , just sit 
tight and get ready to shoot at the correct 
target. 

9. Don't always shoot at the meteors. 
They can indicate that an enemy's near
by; when a Zylon starship shoots a pho
ton, all meteors disappear. 

10. Many of your distant shots can get 
blocked by an enemy shot, and a cloud of 
debris hides the enemy. Don't le t these fool 
you. The enemy will stay hidden as long 
as possible, attacking when (and from 
where) you least expect it. This cloud can 
also be created by blasting one enemy, only 
to have another hide in the dust. If you 
have the Tracking Computer on, there' ll be 
little doubt of killing the enemy-the 
Tracking Computer will automatically 
sw itch to the opposite view screen if the 
enemy was blasted and a second enemy is 
in the other direction . 

11. With practice, you can predict a Zy
Ion starship's path before he makes it! 
Many times they'll move right into your 
shots after you've made them . For exam
ple, if a Zylon starship is hovering for a 
long time in the top half of the screen, his 
next move has to be down . By shooting 
first (before he crosses the middle of the 
screen), most times you 'll destroy him 
through his own navigation . 

12. Some Zylon starships enter high on 
the screen and shoot before crossing the 
horizontal line in the crosshairs of the 

86 ANALOG COMPUTING 

Tracking Computer. The solution? Let 
them cross that point when off of center 
so that their shot w ill miss you. Then, re
position them below the horizontal line 
and blas t away. Or go after the shot first, 
then the enemy. 

13. Basestars ca n be destroyed at close 
range, usually with one shot. Getting them 
into position is hazardous at times, as well 
as difficult. A conservative way of destroy
ing them is to keep firing and hitting them , 
even though they're too far away. It 's as if 
their shields weaken with repeated attacks, 
until they're fi nally destroyed with what 
seems the weakest of hits . 

14. Another time that lock-on is effective 
(see "Photons," #9 and #10) is on first ap
proach of a Basestar in Nov ice through 
Warrior miss ions. Their first attack is 
straight down the center. That wi ll be their 
las t attack, if you wa it patiently to time it 
right. In Commander level, they fire soon
er, making it a little more complicated 
you may get them or the ir shot , but sel
dom both. 

15. Basestars ca n also be positioned for 
destruction very ni cely. Shoot while chas
ing them at speeds of 6 or 7. It does take 
some practice to steer while moving at 
such speeds. Try working up to those 
speeds and hi gher by practicing with 4 
and 5. (However, see "Engines," #1 and 
#2.) 

16. Another way of blasting a Basestar 
is by hitting the ir photon just as they fire 
it. The combination of both photons ex
ploding so close is too much for thei r 
shields. However, this is a st rategy of coin
c idence and luck. 

17. Shoot at enemy Basestars at long 
range, even if there's little chance of kill
ing them . You will at least keep them "in 
your sights" and also be blocking their 
shots , when made. 

18. Enemy ships have var ious strategies, 
including the following: 

(a) Pursue you at all cost (see "Zy
Lon Starships," #3 and #4); 

(b) Avoid you at all cost (see "En
gines," #3 and #4); 

(c) Rem ain stationary and out of 
range (see "Engines," #3); 

(d) Travel back and forth at a dis
tance from you (see "Engines," #3 and 
#4) ; 

(e) Attack when centered with the 
Attack Computer Display or when 
scanned using the M key (see "Manual 
Target Selector," #3); 

(f) Sit under your nose at about 15 
metrons distance and wait fm .1 sneak 
attack; 

(g) Always attack in front view; 
(h) Always attack in the aft view; 

and 
(i) Two enemy in a crossfire (see the 

next three entries) . 
19. The Tracking Computer can be dis

asterous in a crossfire, if you aren't care-

ful. There are several things that you can 
do to get out of a crossfi re. Firs t, turn off 
the Tracking Computer and concentrate on 
one enemy. When they've been blasted. 
turn the Track ing Computer back on and 
blast the other one. 

20. Second, press 8 or 9 and get out of 
there! After a few seconds, press O. Sit and 
wait for them to catch you in aft view 
they almost always will-and blast them 
as they show up. 

21. Third , concentrate on one of the pair 
of enemy, but leave the Tracking Computer 
on . Avoid getting hit by the other Zylon 
starship, but don't attack them. Whenever 
facing the chosen enemy, concentrate on 
its destruction . The problem in a crossfi re 
is that so much time is wasted in reposi
tioning for each player that it's too late 
when the enemy's finally in your sights. At 
that time, the other enemy usually fires, 
causing the Tracking Computer to change 
views and mess up your aim . 

22. If a mass of enemy is moving toward 
a distant starbase on the opposite side of 
the Galactic Chart, you can use one of two 
strategies. The first is to attack the slowest 
sectors and gradually destroy al l of them. 

23. The second is to attack the fastest 
and forward-most sectors. By always de
stroying the leaders , you keep the enemy 
nearer to you and avoid a surrowlded stal'
base. This method works best with e ither 
a slow-moving or smal l group of enemy. 

24. If a sta rbase is sUITowlded and 
you 're on the other side of the galaxy, you 
need to get there fast-but efficiently. Us
ing the small-jump method (see "Hyper
warp," #4 alld "Zylon Starships," #25) with 
the shoot-and-fly method (see "Hyper
warp," #10 and "Miscellaneous Stra tegies," 
#2 ), you can reduce (and sometimes elim
inate) the enemy in other sectors as you 
go, and still have time to save your star
base. 

25. Use checkerboard-type jumping to 
move across the galaxy (see Figure 4 , be
low). This will work in destroying isolat
ed sectors of Zylon starships and in hlU'ry
ing to save a distant starbase (see "Zylon 
Starships," #24). 

26. Sometimes an enemy on one edge 
of the Galactic Chart moves to the other 
edge. This is a problem if all of the enemy 
are on one side of the Galactic Chart
you'll eventually have to travel the length 
of the galaxy to gel them. (Too bad you 
can't just go over the edge for as little ener
gy as a single sector.) The solution is to get 
them before they can move. When you 
have a choice, get the enemy on the edge 
of the galaxy rather than the enemy one 
or two sectors in from the edge. 

27. If you're having a hard time catch
ing or blasting an enemy, it's possible to 
get a different enemy (or enemy strategy) 
by leaving the sector and coming back im
mediately, or later in the game. Some PlU'
ists may find this a form of cheating. Use 

ATARI a-BIT EXTRA 



it at your own discretion, and realize that 
you will use extra energy to do it. 

28. Don't get blasted with less than three 
sectors of Zylon starships. Sure, no star
bases can be destroyed, but you can be! 
You 're always two shots or less away from 
destruction-one for your shields, and one 
for you. 

2 4 you 

S 3 2 

2 2 3 

S 2 3 

S 4 S 

S 

Figure 4. 

Using checkerboard jumping, you can get to the 
other side of the galaxy and clear several sectors, 
too. Do it in this example by traveling left to right 
(toward the starbase in the upper left) , through the 
nearby sectors with 4, 3, 2, 4, and 3 Zylon star
ships. 

Miscellaneous Strategies 
and Variations. 

1. Various strategies for destroying al I 
enemy sectors on the Galactic Chart can be 
used. General ly, start in one area and try 
to eliminate all sectors. Then, gradually 
move through other enemy sectors while 
travelling toward the starbase that will ap
parently be surrounded. Of course, if the 
base is surrounded, a more defensive strate
gy is needed to save it (see "Commander 
Mission:' #1 for a specific application.) 

2. Change a 4-enemy sector to a 3- or 2-
enemy sector, to help them move together 
faster if you don't have time to clear the sec
tor. General ly, kill only the one or two Zy
Ion starships that first appear. Don't wait too 
long for them to get to you. 

3. Learn the keyboard positions by feel, 
rather than by sight. Do this at least for the 
F, G and H keys, as they're used most often. 

4. Learn to steer with the joystick using 
one halld , so your other hand Call work the 
keyboard. This will help in positioning in 
the Galactic Chart, Long-Range Scan, and, 
sometimes, in front and aft views. It 
shouldn't be necessary to do this for very 

ATARI 8-BIT EXTRA 

much of a grune-just some parts of it. 
5. If the Galactic Chart is poorly arranged 

or your ship is drunaged very quickly, you 
can always press START. This may be con
sidered a form of cheating, but we all tend 
to do better with positive feedback and 
success. 

6. If a series of consecutive grunes is quite 
hard to win, little change in enemy strate
gies or destructive resistance w ill occur 
upon pressing START or SYSTEM RESET. 
You may have to turn off the computer for 
a few seconds and try again that way. 

7. If you get tired of regular play, try some 
variations in grune play and goals. Can you 
complete a Novice grune without any 
shields? Can you earn more than a Lieu
tenant Class 1 this way? And how many 
enemy can you destroy in the other levels 
without dying? 

8. Once you've made Star Commander 
Class 1, you can try for the most grunes in 
a row with that rating. Can you triumph 
in fourteen consecutive grunes without quit
ting in the middle or getting destroy
ed? 

9. The grune can be made into a 2-play
er grune. One player uses the joystick and 
calls out commands for the other to carry 
out on the keyboard. The commands could 
be "Galactic Chart," followed soon by "Hy
perwarp-front view." This is good train
ing for an inexperienced player, who can 
control the keyboard while watching and 
learning . 

10. Reread the instruction manual. You'll 
probably learn many more details that you 
missed in your first reading. 

Commander Mission. 
1. In Commander level, an effective 

strategy is to destroy all the four-Zylon
starship sectors you can before a starbase 
is surrounded. This works well because 
the other enemy wi ll move more easily to 
surround the starbases. But fom-Zylon
starship sectors move so seldom that they'll 
almost always be in the same general area 
where they started . By eliminating them 
early, you 'll make many parts of the gal
axy free and clear, and the enemy will be 
grouped for easy travel from sector to sec
tor on little energy. 

2. It's possible to earn Star COImnander 
Class 1 and have a starbase destroyed by 

you or the enemy. Don't give up after one 
is lost, but don't plan on the top rank after 
the loss of two! 

3. It's also possible to complete a game 
without docking. Your energy level can get 
very low, so be careful. You're almost as
sured a top ranking this way. 

4. It is possible to be destroyed and earn 
a Star Commander Class 1 rating. Very few 
enemy are usually left alive, and your 
shooting during the game was otherwise 
superb. 

5. The last sector is usually the most dif
ficult to clear. It may take several attempts 
at Commander level just to complete. 
Sometimes there will only be one ship left 
to destroy before your own demise. 

Conclusion. 
If you seem to be in a rut in an advanced 

mission and can't get any high scores, try 
an easier mission! By practicing in the low
er games, you can improve some of your 
skills. On returning to the harder levels, 
you'll probably do better. And don't think 
that you'll still be as good next month as 
you are now. You're going to have to warm 
up or keep practicing to maintain your 
skills and ratings. 

Don't be afraid to experiment. After all, 
Star Raiders is only a grune. And, unless 
you have a winning streak going, it's okay 
to try some of these ideas and incorporate 
them into your overall game play. Or, per
haps you want to see if you can improve 
your aim in aft view, or make some im
provements in docking by going back and 
forth between starbases. If you get blown 
up or run out of energy, press START and 
keep flying! ~ 

ANALOG COMPUTING 87 



Attention 
Programmers! 

ANALOG Computing is interested in programs, articles, and software review sub
missions dealing with the Atari home computers. If you feel that you can write as well 
as you can program, then submit those articles and reviews that have been floating 
around in your head , awaiting publication. This is your opportunity to share your knowl
edge with the growing family of Atari computer owners. 

All submissions for publication , both program listings and text, shou ld be provided 
in printed and magnetic form . Typed or printed copy of text is mandatory and should 
be in upper and lower case with double spacing. By submitting articles to ANALOG 
Computing , authors acknowledge that such materials, upon acceptance for publica
tion, become the exclusive property of ANALOG Computing . If not accepted for pub
lication, the articles and/or programs will remain the property of the author. If submissions 
are to be returned, please supply a self -addressed, stamped envelope. All submissions 
of any kind must be accompanied by the author's full address and telephone number. 

For those of you who are sincerely interested in the rules and regulations for publica
tion, we've taken this opportunity to print our guidelines for authors. See page 128 of 
this book for everything you'll need to know. 

Send your programs and articles to: 
Editor, ANALOG Computing 

PO. Box 23, Worcester, MA 01603. 







by David Plotkin 

Pastels is fun to look at . It's relaxing, putting fifteen pas
tel colors on-screen at once, in ever-changing patterns. 

As detailed below, several special PROCedures were 
used to speed up the graphics. Action! has become the 
language of choice for many serious programmers, being 
considerably easier than machine language, and outstrip
ping BASIC's performance. 

Pastels is written in graphics 11, the I5-color mode avail
able only with the GTlA chip. To understand how the spe
cial routines work to speed up the display, you must know 
something about how colors are displayed in graphics 11. 
Each byte on the screen is broken up into two halves (or 
nibbles), with one half containing the lower 4 bits (0 
through 3), and the other half containing the upper 4 bits 
(4 through 7). 

The 4 bits in each nibble can make up a total of sixteen 
different on/off combinations, thus creating the sixteen 
colors. Further, since each byte is broken into halves, the 
first byte on each line corresponds to the screen's x-coor
dinates 0 and 1, with the second byte holding 2 and 3, 
and so forth. 

Byte array colors contains sixteen numbers, which cor
respond to the sixteen bit-patterns available in each nib
ble, from all bits off (0) to all bits on (255) . Seventeen , for 
exa mple, is the smallest bit in each nibble (0 and 4) on ; 
all others off. 

ATARI 8-BIT EXTRA 

PROC Gr11Init reads the starting address of each screen 
line into an array of cardinal numbers (CARD), for later 
reference. 

PROC Plot11 actually plots points on the screen much 
faster than does the system PLOT. This is because the first 
is a specialized routine, which will essentially only work 
in graphics 11. Three byte arrays are declared, and they're 
all important. 

The first , tline, will be equated to the y-element of CARD 
array Line, thus pointing tline to the on-screen line we 
wish to change. 

We have mask and mask2 as bitmasks. The first element 
of mask corresponds to all the lower nibble bits being on, 
and the higher nibble bits off. The second element is just 
the reverse (all high nibble bits on, all lower nibble bits 
off). 

The bitmask mask2 just reverses the order of mask's ele
ments. In the equation at the end of this PROCedure, the 
tline(x RSH 1) term determines which byte on the chosen 
line corresponds to the chosen x-coordinate. Remember: 
each byte contains two x-coordinates, so it's necessary to 
divide x by 2 , to see which byte to modify. 

The RSH operation divides by 2 much faster than does 
the built-in divide routine. The first term-(= =&mask 
(x&1))- takes the byte in question and turns off all bits 
on the half of the byte to be modified, by ANDing the byte 
against the mask element. 

The element of array colors containing the color you 

ANALOG COMPUTING 91 



tit Pastels continued 

wish is then ANDed against the mask2 element , to turn 
off all bits in the color byte in the half of the byte which 
is not being modified . 

Finally, these 2 bytes (each with an empty half) are ORed 
together, to produce the modifed byte. 

The balance of the PROCedures don't do anything par
ticularly remarkable, so I won't expand on them . But look 
over this short demonstration of Action! 's power for your
self. A 

David Plotkin, with his Master's degree in Chemical En
gineering, is a Project Engineer for Chevron U. S.A. He pur
chased his Atari in 1980 and is interested in programming 
and game design, as well as word processing. 

Listing 1. 
Action! listing. 

CHECKSUM DATA 
;[4D D7 45 F1 31 EC ] 

MODULE; PASTELS by David Plotkin 

; written in ACTION! froM OSS 
BYTE ARRAY Colors=[O 17 34 51 68 85 

102 11' 136 153 170 187 
204 221 238 255] 

CARD ARRAY LineC1'2) 

PROC Gr 11In itO 
jInitialize Graphics 11 
CARD loop,scrn=88 
GRAPHICS (11) 
FOR loop=O to 1'1 
DO 

LineCloop)=scrn+40*loOP 
OD 
RETURN 

PROC Plot11CBYTE x,~,clr) 
jPlot a point using color Masks and 
jarrays 
BYTE ARRAY tline,Mask=[15 240], 

Mask2=[240 15] 
tline=LineCy) 
tlineCx RSH 1)==&MaskCx&1)X 

CColorsCclr)&Mask2Cx&1)) 
RETURN 

PROC Draw11CBYTE x1,~1,x2,clr) 
jDraw a line in Graphics 11 
BYTE Il,xx1,xx2 
IF x1}x2 then xx2=x1 xx1=x2 

ELSE xx1=x1 xx2=x2 
FI 
FOR II=xx1 to xx2 
DO 

Plot11CII,~1,clr) 
OD 
RETURN 

PROC MainO 
iThe Main driver 
BVTE z=[0],i,~=[0],atrct=77 
Gr11InitO 
DO atrct=O 

FOR i=1 TO 7' 
DO z=z+1 

IF z}15 THEN z=1 FI 
Draw11Ci,~,7'-I,z) 
Draw11Ci,1'O-~,7'-i,z) 
~=~+1 
IF y}1'0 THEN y=O FI 

92 ANALOG COMPUTING 

OD 
FOR i=1 TO 7' 
DO z=z+1 

IF Z}15 THEN z=1 FI 
COLOR=z 
PLOT Ci,y) DRAWTO C7'-i,1'0-y) 
y=y+1 
IF y}1'0 THEN y=O FI 

OD 
OD 
RETURN 

• 

ATARI 8-BIT EXTRA 



by David Castell 

CGM-Castell's Graphic Manager-is similar to the 
ST's GEM, in that it acts as an interface between the 
programmer and the operating system (OS), enabling the 
programmer to access such features as windows, icons and 
trackers. One of the many differences is that GEM works 
w ith a bit-mapped screen (similar to graphics 8), but CGM 
is designed to work with the standard graphics 0 screen. 

Typing it in. 
Listing 1 is the BASIC data used to create your copy of 

CGM. See the MIL Editor on page 4 for typing instruc
tions. You should create the CGM file under the name AU
TORUN.SYS. 

To load CGM, insert the disk containing the AUTO
RUN.SYS file into drive 1. Turn your computer off and then 
back on again. After CGM loads in, a message indicating 
it's in memory appears at the top of the screen. 

Listings 2 , 3, 4 and 5 are examples of BASIC programs 
using the features of CGM. Listing 2 demonstrates the use 
of windows and overlaying. 

Listing 3 is an icon editor. Move the hand tracker within 
the large rectangle and press the joystick button to turn 
a blank square white, or vice versa. Two icons, one nor
mal and one reversed, are displayed to the right of the edit
ing square. Press the START key at any time to display data 
that can be used to create an icon or tracker. When you 
retW'n to the editor, the editing square will be blank again . 

ATARI 8-BIT EXTRA 

Listing 4 is actually a subroutine that starts at Line 
30000. It can be incorporated into any of your own pro
grams that use a graphic 0 screen. This subroutine is ac
tually a mini-DOS that will let you: get a directory, delete 
files , lock/unlock files, rename files and format disks. This 
program shows how windows and trackers can be integrat
ed to make menu selection a lot easier. 

Listing 5 is an advanced memo pad. The features of 
CGM make using it enjoyable and easy. The icons have 
been placed in windows, so they can be moved around 
or removed without disrupting the contents of the screen 
(memo pad). All these icons were created with the icon 
editor (Listing 2). The first is a clock. If you select this 
option, a menu will pop up, giving you the option of set
ting the clock or displaying it. If you display it, all activi
ty stops so you can see the time. When you're finished 
with the clock, press the joystick button to go on . 

The second icon is a calculator. If you select this, a cal
culator pops up. It's very simple and performs calculations 
in the order they're entered, not the order they "should" 
be in (i. e. , multiplication before addition). Just move the 
hand over the keys and press the joystick button to hit a 
key. 

Most of the keys are self-explanatory. The X is the OFF 
key. When you're finished with the calculator, press OFF 
to remove it . The R is the square root key; the C clears 
the number currently displayed on the calculator's screen; 
and the A is All Clear. This clears the display, operation 
and memory. The % key is designed to work a special way. 

ANALOG COMPUTING 93 



tfti CGM continued 

If you enter 5 + 7%, the answer will be 5.35. It's useful for 
figuring sales tax . If you enter 7%, the answer will be 0.07. 

The third icon is a disk , for a disk loader routine. When 
you select this option, a large window is displayed , show
ing the names of all files on the disk. Move the hand over 
the one you want to load and press the button. It will be 
loaded and run automatically. This routine will only load 
programs that have been saved to disk. 

In the fourth window is the word MEMO (I honestly 
couldn't think of an icon to represent this function). If you 
select this option, a menu will pop up. You may choose 
to edit, load , save or print the memo. The editing func
tion removes all icons, leaving you the whole screen to 
edit with normal editing keys. 

To exit the editing function, simply press the ESC key. 
The memo print function is not very advanced. It doesn't 
support any of Atari's special graphics characters (which 
is just as well, because most of them are redefined as icons 
and trackers) . 

At any time during the operation of the last two pro
grams, you may point the tracker to the top corner of the 
window you're currently selecting from and press the but
ton . The border of that window will turn to a color. Now, 
move your tracker to any spot on-screen and press the but
ton again. The window will instantly be moved to this new 
position, and the border will appear white again. 

The MAC/65 source code of CGM is available on the disk 
version of this book . 

Windows. 
A window is an area of the screen with a border around 

it, that you can print and input information to and from. 
CGM supports up to five independent windows, which can 
overlap to maximize space. When you print to a window, 
it automatically overlaps the other windows. 

Creating a window. 
When you first create a window, it will appear as a thick 

white border around a blank area. The contents of the 
screen underneath the window are stored in memory and 
restored when the window is removed. To create a win
dow, type in A = USR(39936,N,X,Y,C, R)-where: N is the 
number of the window (from 1 to 5); X is the column of 
the top corner of the window; Y is the row of the top cor
ner of the window; C is the number of columns in the win
dow; and R is the number of rows in the window. 

Removing a window. 
Always be sure to remove a window before you create 

another with the same number. To remove a window, type 
A = USR(39939,N)-where: N is the number of the win
dow you wish to remove. 

Moving a window. 
At some point, you may want to move a window and 

its contents to another position on-screen . Instead of re
moving the window, creating it at another position and 
reprinting the contents, you can use this special window
moving routine. A = USR(39942,N,X,Y)- where: N is the 
number of the window you wish to move ; and X ,Y is the 
new position of the top corner of the window. 

Overlapping. 
Creating, removing, or moving a window does not af-

94 ANALOG COMPUTING 

fect the position or contents of other windows, but does 
affect the order in which they overlap. After executing one 
of these three commands, the windows will now overlap 
in the order of their creation, with the first window on 
the bottom of the stack and the last on the top. The ex
ception is the move function, in which the window moved 
always appears on top. 

Using a window. 
After creating the window, you 're faced with using it. 

It's actually very easy: after creating a window, you have 
a new device Wn:, where n is the number of the window 
(1 to 5). As with all other devices, you must use the OPEN 
command to read or write. OPEN #aexp,aexp2,0,"Wn :"
where : aexp is IOCB number (1-4) and aexp2 is a code 
number to determine input or output operation (4 =input , 
8=output, and 12=input and output) . 

The OPEN command sets the window input/output po
sition to the top corner. After input or output you should 
use the CLOSE command (CLOSE #aexp) . 

As normal, your input/output commands are: 
PRINT #aexp - e.g., PRINT #1; "OPTION 1 ". This 

prints "OPTION 1" at the current window I/O po
sition. 

INPUT #aexp - e.g., INPUT #1;A$. This inputs all 
characters from the current window I/O position to 
the end of the row. 

PUT #aexp - e.g. , PUT #1,65. This sends charac
ter 65 (A) to the current window I/O position. 

GET #aexp - e.g., GET #l,A . This gets the num
ber of the character at the current window lIO posi
tion and stores it in the variable A. 
Note that PRINT causes the window to be instantly 

redrawn to show the change in its contents, but this is not 
the case with the PUT command. With PUT, the window 
is redrawn when the RETURN character (155) is sent to 
the window. 

If you print more rows than are available in a window, 
the contents will scroll up one line. If you INPUT past 
the end of the window, you will get an error 136 (End of 
File). Each line sent to the window should end with a RE
TURN, because it won't wrap around to the next line with
out one. For example, if you send a 15-character line to 
a 5-character wide window, only the first 5 characters are 
displayed; the rest are ignored. Therefore, if you INPUT 
that row, only the 5 characters actually displayed will be 
entered. 

If you want to have the contents of a window in a string , 
so you can send it all with one print statement, you 'd run 
into the problem. There's no way you can put the RETURN 
character in the middle of the string, without going into 
complex string manipulation. Here, you can use CTRL
PERIOD instead of RETURN in the string. 

WIN$="ROW ItROW 2tROW 3" 
PRINT UljWIN$ 

CGM keeps track of what row and column within the 
window the next character will be read from or w ritten 
to. I've referred to this as the "current window I/O posi
tion." Since INPUT reads from the current character to the 
end of a row, you'll need a way to position this pointer 

ATARI 8-BIT EXTRA 



to the spot you want to read from (or, in the case of PRINT, 
write to). You're able to do this, and more, through the 
XIO command. It can be used like the Position X,Y state
ment in BASIC. The difference is that, in the case of the 
XIO command, positioning to point 0,0 would be the top 
corner of the window, not the screen. 

There are actually three different XIO functions. All of 
them change the window I/O pointer, but two perform ex
tra functions. 

X/O C, #D,X,Y,"Wn: "-where: D is the channel number 
(1-4). 

(1) Position for next I/O to window-where: C < 
100 and C ~ 12; X",column of window; Y=row of 
window; and N=number of window (1-5) . 

As an example, XIO SO,#l,O,O,"W:" indicates that the 
next string of characters sent to window 1 (no n means 
1) will start at the top corner of the window. 

(2) Position for next I/O with window and redisplay 
the contents of window. Normally, the only way to 
cause an overlapped window to overlap the other win
dows is to send data to it. Unfortw1ately, this may 
cause wlwanted scrolling of text in the window. How
ever, this XIO command is similar to the first, except 
this one will redisplay the contents of window n , caus
i ng it to overlap the others. 

Where: C ~ 100 and C < 200; X=column of win
dow; Y = row of window; and N = number of window 
(1-5) . So, if window 2 is overlapped by other windows, 
X I 0 100, #1,0,1," W2:" will cause window 2 to over lap 
other windows. The next I/O with window 2 will start 
at the second row, first character. 

(3) Redisplay contents of a window, position for next 
JlO with window (see 2 , above) and reverse (black 
pri nt on white square) all of the characters in a desired 
row - where : C ~ 200 and C < 256; X=column of 
window (reversing always starts from the beginning 
of a row, regardless of the value of X); Y =row of win
dow; and N=number of window (1-5). 

X IO 200,#1 ,1,1,"W2:" - the characters in row 2 of 
window 2 are reversed. The next I/O with window 
2 will start at the second row, second character. 
Note that the characters are reversed only on the screen 

display. Therefore, when the window is redrawn (by 
PRINT, Create Window, Remove Window, Move Window, 
XIO 100-199, XIO 200-255), the row is returned to nor
mal. Also, if you INPUT a row that's reversed on-screen , 
the string input is not reversed. 

Also, PUT, GET, INPUT, OPEN, CLOSE, XIO 12-99 do 
not erase the reversed row. 

Take the following window as an example : 

ABC 123 
DEF 456 
GHI 789 

(1) OPEN #1 , 12,0,"W:" - Sets up for input/output 
to window 1. The window I/O position is set to top 
corner. 

(2) XIO 2S0,#2,4,1,"W:" - Reverses the second row, 
sets wimlGw 110 position to column 5, row 2. 

ATARI 8-BIT EXTRA 

(3) INPUT #1,A$ - Inputs from window I/O posi
tion to end of row. A$ now contains 4S6. 

(4) XIO 1S0,#2,0,2,"W:" - Redraws the window, 
causing the second row (which was highlighted in the 
second step) to be returned to normal. The window 
110 position is set to the column 1, row 3. 

(5) PRINT #1; "XYZ" - The "XYZ" prints over top 
of "GHI". 

(6) PRINT #1 - The top row ABC 123 scrolls off 
the top of the window, and the last row of the win
dow is blank. 

(7) CLOSE #1 - You should always close a channel 
when you're done with it. 

Note: XIO commands cannot use a channel already open 
for I/O. That's why the XIO commands in steps 2 and 4 
use channel #2. 

Icons. 
To CGM, an icon is just a picture two characters wide 

by two characters high . A call to CGM will put the data 
of the four characters of the icon into the RAM character 
set used by CGM, starting at the character you select 
(ATASCII character value). You should probably choose to 
put your picture where the Atari special graphics charac
ters normally are (characters 0-31), leaving the letters and 
nwnbers alone. However, the tracker uses characters 0-8, 
so you should also avoid these if you're using the tracker 
routines . 

For example, if you chose character 9, your icon will be 
made up of characters 9-12 . Characters 9 and 10 will be 
the top half of the icon, and characters 11 and 12 will be 
the bottom half. Therefore, to print your icon on the 
screen, print characters 9 and 10 (CTRL-I and Jl on one 
row, and characters 11 and 12 (CTRL-K and L) on the line 
below. 

The data for each character of the icon consists of eight 
numbers, the binary representations of each row of the 
character. The data is set up the same way as the icon is 
drawn - the top two characters, followed by the bottom two 
characters. If you're familiar with creating character sets, 
this set-up isn't new. But, even if you don't understand how 
to set up character data for the character set , you can use 
the icon editor program (Listing 3) to automatically cre
ate data statements (or strings) that can be used with calls 
requiring icon or tracker data. 

To put an icon into the character set, enter A = USR 
(399S1,N,ADDRJ, where ADDR is the address of the icon 
data. If your icon data was in a string (such as ICON$), 
ADDR would be ADR(ICON$). 

N is the number (ATASCII character value) of the first 
of the foW' characters whose character data will be replaced 
by the icon data. 

Tracker. 
/\. tracker is actually a movable icon, used mostly as a 

pointer. You're probably most familiar with the arrow 
tracker moved by a mouse on both the ST and the Macin
tosh , or maybe the hand moving around in the "Construc
tion Set" series from Electronic Arts. 

The default tracker built into CGM is a hand , but you 

ANALOG COMPUTING 95 



® CGM continued 

can change this if you want. The pointer that points to the 
location of the default tracker can be found at 39962 and 
39963. For example, add the following line to the Memo 
Pad program (Listing 5): 

85 TR~CKHI=INTC~DRCCLOCK$)/256):TR~CKL 
O=~DRCCLOCK$)-TR~CKHI*256:POKE 3~~62,T 
R~CKLO:POKE 3~~63,TR~CKHI 

This causes the clock to be used as the pointer, instead of 
the hand. 

Built-in tracker routine. 
The built-in tracker routine works independently of the 

BASIC program. This routine reads joystick 1 and moves 
the tracker in the corresponding direction on-screen. To 
start the tracker, enter A= USR(39954). 

After you start the tracker routine, your program really 
doesn't have to do anything but wait. If you wish to check 
where the tracker is at any given time, try: X=PEEK (4) , 
then ¥=PEEK (5). 

If you wish to disable joystick control of the tracker, lo
cation 39960 is the tracker mask. POKE 39960,1 disables 
joystick control , and POKE 39960,0 enables control. 

If you're finished with the tracker routine and wish to 
stop it: A=USR(39957). This will stop the routine and re
move the tracker. If you wish to put it back, you can just 
do another A=USR(39954), and it will appear at the same 
spot it was removed from. 

The following program is a sample implementation of the 
tracker routine: 

10 GR~PHICS O:POKE 752,1:? CHR$(125) 
20 ~=USRC3~~54) 
30 IF STRIGCO) THEN 30 
40 ~=USR(3~'57):X=PEEKC4) :Y=PEEK(5) 
50 COLOR 160:PLOT X,V 
60 GOTO 20 

This routine will allow you to use the joystick to move 
the tracker around . Line 30 waits until the joystick button 
is pressed. When it is, the tracker's removed and a reverse 
square is placed at the spot where the tracker was point
ing. You must remove the tracker before altering the screen 
under it. Otherwise, when the tracker moves again, the 
screen beneath the tracker will return to the way it was 
before the tracker was moved over it . 

Your own tracker. 
As mentioned above, if you wish to use this same track

er routine with your own tracker, just change the pointer 
at location 39962 and 39963 to point to your tracker. 

However, if you wish to create your own tracker 
routine-or use the tracker for something else (such as a 
controlled cursor, like the RENAME function of Listing 4, 
or the SET CLOCK function of Listing 5)-here are a few 
calls you can use. 

To position a tracker: A=USR(39945,addr,x,y), where 
addr is the address of the tracker data (set up in the same 
manner as icon data); x is the horizontal position of the 
tracker (0 to 318); and y is the vertical position of the tracker 
(0 to 190). 

Note that CGM has built-in roll-around routines. If the 
tracker goes off the screen , it appears on the other side. 

Also, the tracker automatically removes itself from its 
old position before locating itself to a new position. There 

96 ANALOG COMPUTING 

fore, this is the only call you need to make inside a loop 
that moves the tracker. 

A void altering the contents of the screen near the tracker. 
If characters are printed over the tracker, these will dis
appear when the tracker is moved. 

If you wish to use the built-in hand tracker, just don't 
include addr within the USR call. For example: A=USR 
(39942,x,y) will position the hand at coordinates x,y. 

You can also use this Move Tracker routine to position 
the tracker being run by the built-in tracker routine called 
by A = USR(39954) within your program. For example, in 
the mini-DOS example (Listing 4), when entering the new 
name of a file to rename, the tracker mask is set (POKE 
39960,1) and A= USR(39942,x,y) is being used to control 
the movement of the hand, so it can be used as a cursor. 
When the name is entered, the tracker mask is cleared 
(POKE 39960,0), and the joystick once again takes con
trol of the tracker. 

If you don't enter any x- or y-coordinates with the 
USR(399 42), the tracker will be printed at the last x,y
coordinates (for example, A= USR(39942) will display the 
icon at the last x ,y-coordinates) . So, if you need to alter 
the text below the tracker in your own tracker routine, just 
remove the tracker, alter the text and use A= USR(39942) 
to return the tracker to where it was before removal. 

Removing a tracker. 
When you're finished with the tracker, you'll probably 

want to remove it from the screen. To do so, enter 
A = USR (39948) . 

This is not to be confused with A = USR(39957) men
tioned earlier, which removes the tracker and stops the 
built-in joystick tracker routine. 

The only integration between the windows and tracker 
consists of the tracker "getting out of the way" while the 
window is updated . However, as mentioned earlier, if you 
wish to alter the text beneath the tracker, you must first 
remove the tracker, alter the text and place the tracker back 
on-screen . 

Reading tracker position. 
Anytime you use the above tracker routines, locations 

4 and 5 will contain the tracker's position on the screen. 
Location 4 is the column reading (0-39), and location 5 
is the row reading (0-23). 

Whatever shape your tracker is, if it's to be used as a 
pointer, its point should be at the top left of the icon, be
cause the built-in roll around and the values in locations 
4 and 5 assume that this is the case. 

Here's the same application of the tracker routine shown 
earlier. This time, it doesn't use the built-in tracker rou
tine, but a custom tracker routine for the Atari Touch 
Tablet. 

10 GR~PHICS 10:POKE 752 / 1:? CHR$(125) 
20 IF PADDLE(0)=228 ~ND PADDLE(1)=228 
THEN 20 
30 TX=PADDLE(0)*(320/228):TV=1~2-PADDL 
E (1) * (1 ~2/228) 
40 A=USR(3~~45/TX/TV) 
50 IF STICK(0)=15 THEN 20 
60 A=USR(3~~48):X=PEEK(4):V=PEEK(5) 
70 COLOR 128:PLOT X,V 
80 GOTO 20 

ATARI 8-BIT EXTRA 



To use it with the Koala Pad , just delete the 192 - in 
Line 30. 

Special notes. 
Location 39961 contains the character (internal character 

set) with which window borders are drawn . The default 
is 128, a solid white square. You can change this by POKE
ing 39961 with any character. 

For this very reason, character 123 of the RAM charac
ter set used by CGM is changed from a "spade" to a solid , 
colored square, using artifacting. This color will proba
bly appear green or blue, but the color varies between sys
tems. Whichever it is, the reverse of this character (251) 
will appear as the other color (blue or green). 

Since this character is only in the RAM set, you must 
make sure this is the character set being used . The first 
tracker or icon routine called automatically selects the 
RAM set. However, if you want colored borders before you 
make one of these calls (or if your program doesn't use 
trackers), you must perform a POKE . 756,152 to use the 
RAM character set. 

Another special character is character 255. If you POKE 
location 39961 with 255, no border will be placed around 
the window, causing the contents of the screen around the 
w indow (where the border normally is) to be left "as is." 
Changing location 39961 means that all borders drawn 
from that point on will appear with the new character. The 
Window Create, Remove and Move routines will cause the 
borders of all windows to be redrawn with the new bor
der character. 

If none of these routines are used, only the windows 
you PRINT to-or use an XIO (above 100) command on
will be redrawn with the new character. In the mini-DOS 
and Memo Pad programs, when you press the button with 
the tracker pointing to the top corner of the window, lo
cation 39961 is POKEd with a 123 and an XIO 150 is per
formed. 

This only changes the color of the border of the one win
dow. If the subsequent move window routine was execut
ed before location 39961 was changed back to 128, all the 
windows on the screen would be redrawn with a colored 
border, instead of the usual white one. 

Il should be noted that this same technique cannot be 
used with the no border (character 255) option. For the 
no border option to be invoked, it must be placed before 
a Window Create, Remove or Move command. These three 
comma nds cause the contents of the screen behind the 
borders to be res tored and then the new borders are 
redrawn-or in this case, not drawn. 

Whenever a window is created, the contents of the 
screen behind the window and the contents of the win
dow are stored just below the top of memory pointer (lo
ca tions 741 and 742). When CGM initializes (after it loads, 
or any time SYSTEM RESET is pressed) these pointers are 
set to the first free location below CGM. 

However, whenever a graphics command or a channel 
is opened to device E: or S:, this pointer is set to just be
low the display lis t , which is also the end of CGM. This 
mea ns that-if you use a graphics command or open to 
E: or S:, then create a window - the contents of the win-

ATARI 8-BIT EXTRA 

dow and the screen behind the window are stored right 
over CGM, causing the computer to lock up. 

You'll probably notice that the two sample tracker rou
tines shown earlier use a graphics command . Also, the 
icon editor opens a channel to S:, so the graphic charac
ters display properly. 

These programs get away with this, because they don't 
use any windows. However, if you ran any of these pro
grams and then ran a program that did use windows, the 
computer would lock up. To get around this problem, press 
the SYSTEM RESET key when you run a program with 
windows. If you wish to use the graphics statement in a 
program with windows, just reset the top of memory point
er after the graphics statement. For example: 

10 MEMTOPLO=PEEK(741):MEMTOPHI=PEEK(74 
2) 
20 GRAPHICS 0 (01'" OPEN U1,12,O,IE:" 01'" 

OPEN U1,12,O,IS:") 
30 POKE 741,MEMTOPLO:POKE 742,MEMTOPHI 

This will solve any problems you might encounter. 
Since there's no real integration between windows and 

trackers, the task of integrating these two features in a pro
gram is yours. However, I've induded several all-purpose 
subroutines that integrate windows and trackers, to per
form specific tasks. 

The first can be found in the mini-DOS program (list
ing 4) at Line 31000, and in the Memo Pad program (list
ing 5) at Line 25000. This subroutine is designed for menu 
selection . Before entering the subroutine, you must cre
ate a window, print the different options to the window, 
start the tracker routine and set the following variables: 
N = number of the window ; X,Y=top corner of the win
dow; DX = Delta X (number of columns) ; and DY=Delta 
Y (number of rows). 

Lines 25030-25050 are the heart of this subroutine. This 
loop waits for the user to press the joystick button and 
reverses the window row the tracker is on, or erases this 
highlight if the tracker is outside the window's border. 

Line 25070 checks to see if the button was pressed at 
the top corner of the window. If it was, Lines 25080-25140, 
(the Move Window routine) are executed. 

When the subroutine is finished, the variables X and 
Y will hold the top corner of the window (if the window 
was moved, your program might need to know), and the 
variable CHOICE will contain the number of the option 
selected . This result can be used in statements like : ON 
CHOICE GO TO OPTION1, OPTION2, OPTION3, ... 01' ON 
CHOICE GOSUB OPTION1, OPTION2, OPTION3, . .. 

Another subroutine is the Input String subroutine start
ing at 30000 in the Memo Pad program. This routine uses 
the tracker as a cursor to enter a string inside a window. 
The routine is used to set the clock and enter the filename 
in the save memo option. 

The routine needs IOCB #2 to be opened for input/out
put (OPEN #2,12,O,"Wn :") to the proper window. It also 
requires that the variables N, X and Y to be set in the same 
manner they were in the above subroutine, as well as the 
var iable LEFT, which should contain the column of the 
window the entry should start in . 

For example, if the prompt in the window was File-

ANALOG COMPUTING 97 



-it CGM continued 

name?, entry should start in colunm 9, which is the first 
colunm to the right of the question mark; therefore, LEFT 
should equal 9. 

This subroutine returns the string that was entered in 
the variable NAME$, which should be dimensioned at the 
start of your program. If you were to enter a number, you 
would use the VAL command (NUM = VAL (NAME$)) , to 
get the number into a numeric variable. 

Another subroutine worth mentioning starts at Line 
10000 of the Memo Pad program. This routine creates a 
window the height of the screen, and reads all the names 
of files on the disk in drive 1, printing them to the win
dow. It then uses the subroutine at Line 25000 to allow 
the user to select one of the filenames . 

It proceeds to get the name into the proper format for 
disk I/O (D:FILENAME.EXT) and returns the final name 
in FNAME$. This subroutine requires that the strings 
FNAME$ and EXT$ be dimensioned at the beginning of 
the program. 

All these subroutines require certain entry point varia
bles (CL, OP, TRACKER, etc.) See the first couple lines 
of the Memo Pad program for these variables . 

Your first step in learning how to use CGM should be 
to run the four sample programs, so you can see exactly 
what CGM can do. Then look at the listings, to see exact
ly how we're using CGM to do it . 

When you start programming with CGM, use as many 
routines from these four samples as possible, as well as 
creating your own subroutines to incorporate into other 
programs. You'll never run out of uses for CGM in your 
programs, because it has the ability to make any program 
user-friendly. &=I 

David Castell is currently attending the University of 
Waterloo in Ontario. Although this is David's first program 
published in a magazine, he's also written "P S. Interface" 
and "The First XLent Word Processor" for the 8-bits and 
"PM. Interface" for the ST. All three are available from 
XLent Software. 

The two-letter checksum code preceding the line 
numbers in Listings 2 through 5 is not a part of the 
BASIC program. For more information, see BASIC 
Editor II, in ANALOG Computing's issue 47. 

Listing 1. 

1000 DATA 255,255,133,142,128,143,104, 
216,160,O,104,104,153,10~,144,200,~3~3 
1010 DATA 1~2,5,144,246,32,235,150,32, 
73,143,76,251,150,104,216,104,~74~ 
1020 DATA 104,141,10~,144,32,235,150,3 
2,10,146,76,251,150,216,104,32,762~ 

98 ANALOG COMPUTING 

1030 DATA 235,150,16~,O,141,233,145,32 
,162,144,104,104,141,10~,144,141,8511 
1040 DATA 210,142,32,137,145,104,104,1 
53,47,145,104,104,153,48,145,32,50~2 
1050 DATA 1~6,144,16~,O,141,10~,144,32 
,137,145,32,212,143,76,251,150,~331 
1060 DATA 36,33,54,41,36,0,35,33,51,52 
,37,44,44,7,51,0,5526 
1070 DATA 167,178,161,176,168,16~,163, 
128,173,161,174,161,167,165,178,165,36 
03 
1080 DATA 12,141,23,143,165,13,141,24, 
143,160,4,185,21~,142,145,88,7666 
1090 DATA 200,1~2,35,144,246,176,3,32, 
255,255,16~,22,133,12,169,143,8606 
1100 DATA 133,13,32,165,150,16~,O,160, 
4,153,84,148,136,16,250,160,7627 
1110 DATA 44,153,55,145,136,16,250,32, 
104,148,16~,132,141,229,2,169,8619 
1120 DATA 142,141,230,2,169,0,141,118, 
144,~6,173,118,144,201,45,176,8770 
1130 DATA 248,32,58,144,32,8,145,32,71 
,144,173,229,2,56,22~,208,7974 
1140 DATA 141,114,144,173,230,2,229,20 
~,141,115,144,32,8,145,173,114,8010 
1150 DATA 144,56,22~,208,141,116,144,1 
73,115,144,229,20~,141,117,144,173,261 
~ 
1160 DATA 116,144,12~,143,124,144,56,2 
33,l,141,22~,2,173,117,144,233,0 
1170 DATA 0,141,230,2,32,34,145,173,1~ 
8,146,240,3,76,226,144,173,9~11 
1180 DATA 10~,144,141,233,145,32,100,1 
45,32,162,144,76,1~6,144,32,58,6085 
1190 DATA 144,32,25,144,173,114,144,13 
3,210,173,115,144,133,211,174,113,1384 
1200 DATA 144,160,0,177,208,145,210,20 
0,204,112,144,144,246,32,84,144,830 
1210 DATA 32,~6,144,202,208,235,76,71, 
144,32,58,144,32,25,144,160,56~2 
1220 DATA 0,173,25,156,201,255,240,48, 
145,208,200,204,112,144,144,248,4497 
1230 DATA 174,113,144,202,202,32,84,14 
4,160,0,173,25,156,145,208,172,9385 
1240 DATA 112,144,136,145,208,202,208, 
237,32,84,144,160,0,173,25,156,8157 
1250 DATA 145,208,200,204,112,144,144, 
245,32,71,144,76,192,145,174,111,25 
1260 DATA 144,165,88,24,10~,110,144,13 
3,208,165,8~,105,0,133,20~,202,9361 
1270 DATA 48,25,165,208,24,105,40,133, 
208,144,244,230,209,208,240,238,0582 
1280 DATA 112,144,238,112,144,238,113, 
144,238,113,144,96,206,112,144,206,264 
3 
1290 DATA 112,144,206,113,144,206,113, 
144,~6,165,208,24,105,40,133,208,8~~7 
1300 DATA 144,2,230,20~,~6,165,210,24, 
10~,112,144,133,210,144,245,230,3488 
1310 DATA 211,~6,O,0,O,O,0,0,0,0,0,0,3 
2,58,144,32,5613 
1320 DATA 25,144,125,144,120,145,173,1 
14,144,133,210,173,115,144,133,211,207 
1 
1330 DATA 174,113,144,160,0,177,210,14 
5,208,200,204,112,144,144,246,32,2044 
1340 DATA a4,144,32,~6,144,202,208,235 
,76,71,144,160,0,185,55,145,80~3 

ATARI 8-BIT EXTRA 



1350 DATA 205,233,145,240,23,140,1,145 
,141,10~,144,32,137,145,32,11~,6060 
1360 DATA 144,172,1,145,32,2,145,204,1 
18,144,144,225,~6,160,0,185,8484 
1370 D~TA 55,145,240,23,140,1,145,141, 
10~,144,32,137,145,32,16~,143,6~4~ 
1380 DATA 172,1,145,32,2,145,204,118,1 
44,144,228,160,0,185,55,145,8268 
13~0 DATA 240,23,140,1,145,141,10~,144 
,32,137,145,32,212,143,172,1,6577 
1400 DATA 145,32,2,145,204,118,144,144 
,228,~6,0,152,24,105,~,168,5524 
1410 DATA ~6,174,113,144,16~,O,133,208 
,133,20~,202,48,243,165,208,24,1267 
1420 DATA 10~,112,144,133,208,144,243, 
230,20~,208,23~,172,118,144,162,0,27~6 
1430 DATA 18~,10~,144,153,55,145,200,2 
32,224,~,144,244,140,118,144,~6,1068 
1440 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,1440 
1450 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,1450 
1460 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,16 
0,0,173,6468 
1470 DATA 116,144,133,208,173,117,144, 
133,20~,16~,32,145,208,230,208,208,477 
~ 
1480 DATA 2,230,121,145,116,146,20~,16 
5,208,205,114,144,208,23~,165,20~,58~7 
14~O DATA 205,115,144,208,232,~6,160,0 
,204,118,144,176,13,185,55,145,8661 
1500 D~TA 205,10~,144,240,8,32,2,145,2 
08,238,160,255,~6,162,0,185,26~ 
1510 DATA 55,145,157,10~,144,200,232,2 
24,~,144,244,~6,32,25,144,165,~021 
1520 D~TA 208,24,105,41,133,208,165,20 
~,105,O,133,20~,~6,32,175,145,8552 
1530 DATA 173,116,144,133,210,173,117, 
144,133,211,174,113,144,160,0,177,47~ 
1540 DATA 210,32,234,145,145,208,200,2 
04,112,144,144,243,32,84,144,32,~313 
1550 DATA ~6,144,202,208,232,~6,0,141, 
1~7,146,41,128,141,8,146,173,835~ 
1560 DATA 1~7,146,41,127,201,~6,176,12 
,201,32,144,5,233,32,76,7,40~1 
1570 DATA 146,24,105,64,9,0,96,32,137, 
145,1~2,255,240,21,32,119,6961 
1580 DATA 144,160,0,185,55,145,205,10~ 
,144,240,9,32,2,145,204,118,7419 
15~0 DATA 144,144,240,~6,173,118,144,5 
6,233,9,141,118,144,208,6,32,66~5 
1600 DATA 57,143,76,1~1,146,140,1~8,14 
6,204,118,144,240,87,1~2,0,208,1686 
1610 DATA 15,173,118,144,201,9,16~,132 
,133,210,16~,142,133,211,208,15,1102 
1620 DATA 185,53,145,56,233,1,133,210, 
185,54,145,233,0,133,211,185,~35 
1630 DAT~ 62,145,56,233,1,133,208,185, 
63,145,233,0,133,20~,160,0,8456 
1640 DATA 177,208,117,146,112,147,145, 
210,1~8,210,165,210,201,255,208,2,4857 
1650 DATA 1~8,211,1~8,208,165,208,201, 
255,208,2,1~8,20~,205,22~,2,208,5023 
1660 DATA 225,165,20~,205,230,2,208,21 
8,172,1~8,146,204,118,144,176,~,1~40 
1670 DATA 185,64,145,153,55,145,200,20 
8,242,140,1~8,146,32,57,143,172,858 
1680 DATA 118,144,32,160,145,32,80,143 
,173,118,144,205,1~8,146,208,23~,3786 
16~0 DATA 16~,0,141,l~8,146,~6,0,0,165 
,33,141,10~,144,201,6,144,6134 
1700 DATA 4,104,104,160,164,~6,32,1~~, 
146,32,137,145,1~2,255,208,3,1~1 
1710 DATA 160,170,~6,173,10~,144,10,16 
8,16~,0,153,70,148,153,71,148,7556 
1720 D~T~ 160,1,~6,18~,65,3,133,33,168 
,185,83,148,240,10,16~,0,6310 
1730 O~T~ 153,83,148,16~,155,160,1,~6, 

ATARI 8-BIT EXTRA 

32,140,147,173,83,148,205,113,~0~4 
1740 DATA 144,144,3,160,136,~6,160,0,1 
77,210,72,238,82,148,173,82,~583 
1750 DATA 148,205,112,144,144,15,238,8 
3,148,16~,0,141,82,148,164,33,7200 
1760 DATA 16~,1,153,83,148,32,120,147, 
104,~6,72,18~,65,3,133,33,4036 
1770 DATA 32,140,147,173,83,148,205,11 
3,144,144,3,32,18~,147,104,201,9301 
1780 DAT~ 155,240,4,201,~6,208,1~,32,2 
35,150,32,212,143,32,251,150,331 
17~0 DATA 238,83,148,169,0,141,82,148, 
240,15,174,82,148,236,112,144,338 
1800 D~TA 176,7,113,147,108,148,160,0, 
145,210,238,82,148,173,10~,144,757 
1810 DATA 10,168,173,82,148,153,70,148 
,173,83,148,153,71,148,160,1,75~7 
1820 DATA ~6,165,33,141,10~,144,10,168 
,185,70,148,141,82,148,185,71,8466 
1830 DATA 148,141,83,148,32,137,145,17 
3,116,144,24,10~,82,148,133,210,~031 
1840 D~TA 173,117,144,105,0,133,211,17 
4,83,148,202,48,65,32,96,144,6828 
1850 DATA 208,248,173,116,144,133,208, 
173,117,144,133,20~,160,0,140,82,9851 
1860 DATA 148,206,83,148,32,162,147,16 
5,208,1~7,210,208,6,165,20~,1~7,4065 
1870 DATA 211,240,17,172,112,144,177,2 
08,160,0,145,208,230,208,208,231,5876 
1880 DATA 230,20~,208,227,16~,32,145,2 
10,200,204,112,144,144,246,~6,32,1860 
18~0 DATA 1~~,146,32,137,145,165,42,20 
5,112,144,176,3,141,82,148,165,8~35 
l~OO D~TA 43,205,113,144,176,52,141,83 
,148,165,34,201,100,144,43,32,6352 
1~10 DATA 235,150,32,212,143,165,34,20 
1,200,144,28,32,175,145,174,83,~115 
1~20 D~TA 148,202,48,5,32,84,144,208,2 
48,160,0,177,208,73,128,145,~8~4 
1~30 DATA 208,200,204,112,144,144,244, 
32,251,150,76,120,147,0,0,0,50~2 
1~40 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
212,146,7456 
1~50 DATA 238,146,241,146,56,147,238,1 
46,24~,147,76,104,148,160,0,185,702 
1~60 DATA 26,3,10~,148,104,14~,240,5,2 
00,200,200,208,246,16~,87,153,3858 
1~70 DATA 26,3,16~,8~,153,27,3,16~,148 
,153,28,3,~6,216,104,170,6~23 
1~80 D~TA 41,1,208,14,173,26,156,141,1 
34,14~,173,27,156,141,145,14~,~428 
1~~0 DATA 208,8,104,141,145,14~,104,14 
1,134,14~,224,2,144,13,104,141,761~ 
2000 DATA 20,151,104,141,1~,151,104,10 
4,141,18,151,173,18,151,201,1~2,~380 
2010 DATA 144,13,201,240,144,4,16~,1~0 
,208,2,16~,0,141,18,151,173,805~ 
2020 DATA 20,151,16,12,16~,61,141,1~,1 
51,16~,1,141,20,151,208,21,5370 
2030 D~TA 201,1,144,17,208,7,173,1~,15 
1,201,64,144,8,16~,0,141,5705 
2040 DATA 1~,151,141,20,151,173,12,151 
,240,3,32,0,149,16~,1,141,5065 
2050 DATA 23,151,141,12,151,208,23,104 
,216,16~,0,141,23,151,141,12,5888 
2060 DATA 151,173,13,151,133,0,173,14, 
151,133,1,76,67,150,16~,152,6738 
2070 DATA 141,244,2,173,18,151,141,17, 
151,173,19,151,133,0,173,20,5270 
2080 DATA 151,133,1,162,3,70,1,102,0,7 
8,17,151,202,208,246,165,~053 
20~0 DATA 0,141,122,150,16~,40,56,229, 
0,141,154,150,174,17,151,142,8588 
2100 DATA 126,150,202,48,13,165,0,24,1 
05,40,133,0,144,244,230,1,6133 
2110 DATA 208,240,165,0,24,101,88,133, 
0,141,13,151,165,1,101,8~,4162 
2120 DATA 133,1,105,14~,100,150,141,14 

ANALOG COMPUTING 99 



aft! CGM continued 

,151,173,1~,151,41,7,141,21,3857 
2130 D~T~ 151,173,18,151,41,7,141,22,1 
51,32,133,14~,32,206,14~,76,6376 
2140 D~T~ 67,150,16~,O,141,171,14~,24, 
105,8,141,177,14~,16~,O,141,723~ 
2150 D~T~ 172,14~,105,O,141,178,14~,16 
O,O,152,153,O,154,200,l~2,72,~068 
2160 D~T~ 144,248,162,O,172,22,151,18~ 
,255,255,153,O,154,18~,255,255,5~28 
2170 D~T~ 153,8,154,232,224,24,176,~O, 
224,8,208,2,162,16,200,152,~115 
2180 DATA 41,7,208,227,152,24,105,16,1 
68,208,220,172,21,151,136,48,8805 
21~0 D~T~ 65,162,O,~4,O,154,126,8,154, 
126,16,154,232,138,41,7,5170 
2200 DAT~ 208,241,138,24,105,16,170,22 
4,72,144,232,176,225,141,15,151,12~5 
2210 D~T~ 41,127,133,4,16~,O,133,5,160 
,3,6,4,38,5,136,208,2252 
2220 DAT~ 24~,165,5,24,105,152,133,5,1 
73,15,151,48,6,16~,O,141,3~62 
2230 D~T~ 43,150,~6,16~,255,208,248,14 
2,16,151,140,17,151,32,240,14~,725 
2240 DAT~ 160,0,174,66,150,177,4,73,0, 
93,0,154,157,0,154,232,6451 
2250 D~T~ 200,1~2,8,144,240,142,66,150 
,174,16,151,172,17,151,~6,O,6374 
2260 DAT~ 16~,64,141,158,150,160,O,140 
,66,150,162,O,177,O,32,130,517~ 
2270 DATA 150,232,200,1~2,3,144,245,16 
O,40,16~,O,141,22,151,177,O,6~23 
2281 D~T~ 32,130,101,150,55,151,150,23 
2,200,1~2,43,144,245,160,80,177,2~40 
2290 DATA O,32,130,150,232,200,l~2,83, 
144,245,16~,O,133,4,16~,O,7637 
2300 DAT~ 133,5,~6,72,173,23,151,208,7 
,104,18~,56,151,145,O,~6,6126 
2310 DAT~ 104,157,56,151,32,26,150,152 
,41,3,201,O,176,4,16~,O,3571 
2320 DAT~ 145,O,238,158,150,~6,160,O,l 
40,12,151,140,24,156,140,18,5862 
2330 DATA 151,140,1~,151,140,20,151,18 
5,0,224,153,0,152,185,0,225,8868 
2340 D~T~ 153,0,153,185,0,226,153,0,15 
4,185,O,227,153,O,155,200,~5~3 
2350 D~TA 208,22~,160,7,16~,170,153,21 
6,155,136,16,248,16~,128,141,25,5~~ 
2360 D~T~ 156,16~,24,141,26,156,16~,15 
1,141,27,156,~6,238,24,156,160,~684 
2370 DAT~ 0,140,23,151,173,12,151,240, 
242,76,8,14~,160,1,140,23,6613 
2380 DATA 151,173,12,151,240,3,32,21,1 
4~,206,24,156,~6,O,O,O,l~12 
23~0 DATA 0,0,0,0,0,0,0,0,0,224,112,56 
,28,14,15,31,7815 
2400 DAT~ 63,O,O,48,112,~6,224,224,224 
,63,31,15,0,0,0,0,318 
2410 DATA O,232,216,176,~6,l~2,O,O,O,6 
5,151,255,151,104,216,32,8400 
2420 DAT~ 235,150,104,104,32,234,145,3 
2,240,14~,104,133,l,104,133,O,6372 
2430 DATA 160,31,177,0,145,4,136,16,24 
~,16~,152,141,244,2,32,251,3 
2440 DATA 150,76,121,150,104,216,32,23 
O,151,162,151,160,118,16~,7,76,~366 
2450 DATA ~2,228,216,173,24,156,208,10 
3,238,128,151,16~,O,201,2,144,~~33 
2460 DATA ~4,16~,O,141,128,151,173,120 
,2,201,15,240,82,41,12,201,7282 
2470 D~T~ 4,208,14,173,1~,151,24,105,4 
,141,l~,151,144,3,238,20,4~04 
2480 DATA 151,173,120,2,41,12,201,8,20 
8,14,173,1~,151,56,233,4,5542 
24~0 DATA 141,1~,151,176,3,206,20,151, 
173,120,2,41,3,201,1,208,5892 
2500 DAT~ ~,173,18,151,24,105,4,141,18 
,151,173,120,2,41,3,201,42~5 
2510 DATA 2,208,~,173,18,151,56,233,4, 
141,18,151,32,230,151,76,7472 

100 ANALOG COMPUTING 

2520 DATA ~8,228,16~,O,72,76,132,148,l 
04,216,16~,7,162,228,160,~8,810 
2530 DATA 32,~2,228,173,12,151,240,3,7 
6,O,14~,~6,O,156,27,156,5352 
2540 DATA 76,133,142,76,156,142,76,172 
,142,76,132,148,76,254,148,76,3~8 
2550 DAT~ 65,151,76,104,151,76,236,151 
,O,128,24,151,226,2,227,2,73~1 
2560 DATA 254,142,0,0,0,0,0,0,0,0,0,0, 
O,O,O,O,30~8 

• 

Listing 2. 
BASIC listing. 

···········.· 10 LIST: POSITION 2,15 
20 OP=3~~36:CL=3~~3~ 
30 A=USR(OP,l,8,10,20,10):GOSUB 200 

> ... 40 ~=USR(OP,2,2,2,10,10) :GOSUB 200 
•. ·.· ........ 50 A=USR(OP,3,5,5,12,12) :GOSUB 200 

• 

, 60 A=USR(OP,4,24,7,7,5):GOSUB 200 
70 A=USR(OP,5,28,O,10,10):GOSUB 200 
80 LIST "W:":GOSUB 200 
~O LIST "W2:":GOSUB 200 
100 LIST "W3:":GOSUB 200 
110 LIST "W4:":GOSUB 200 
120 LIST "W5:":GOSUB 200 
130 GOSUB 210 
140 A=USRCCL,3):GOSUB 200 
150 A=USR(CL,2):GOSUB 200 
160 A=USRCCL,4):GOSUB 200 
170 A=USRCCL,5):GOSUB 200 
180 ~=USRCCL,l):GOSUB 200 
1~0 END 
200 fOR N=l TO 500:NEKT N:RETURN 
210 REM 20 RANDOM OVERLAPS 
220 DIM N$ (3) 
230 fOR C=l TO 20 
240 N=INT(RND(0)*5)+1 
250 N$="W :":N$(2,2)=CHR$(N+48) 
260 KIO 150,Ul,O,O,N$ 
270 GOSUB 200 
280 NEKT C 

..•• 2~0 RETURN 

Listing 3. 
BASIC listing. 

10 TRACKER=3~954:DATTOSET=39951:STPTRA 
CKER=3~~57:DIM ICON$(32) 
20 POKE 752,1:? CHR$(125) 
30 fOR N=1 TO 32:ICON$(N,N)=CHR$(0):NE 
KT N 
40 GOSUB 130:A=USRCDATTOSET,~,ADR(ICON 
$)) 
50 A=USRCTRACKER) 
60 If PEEK(5327~)=6 THEN 350 
70 If STRIG(O) THEN 60 
80 K=PEEK(4):V=PEEKC5) 
90 If K=O OR K}16 OR V=O OR V}16 THEN 
60 
100 GOSUB 200 
110 A=USRCDATTOSET,9,ADRCICON$)) 
120 GOTO 60 
130 REM SET UP SCREEN 
140 MEM=PEEK(88)+256*PEEK(89) 
150 fOR N=MEM TO MEM+17:POKE N,138:POK 
E N+17*40,138:NEKT N 
160 fOR N=MEM TO MEM+17*40 STEP 40:POK 

ATARI a-BIT EXTRA 



E N,138:POKE N+17,138:NEXT N 
JB 170 POKE MEM+25,73:POKE MEM+26,74:POKE 

. MEM+65,75:POKE MEM+66,76 
'CJ 180 POKE MEM+30,201:POKE MEM+31,202:PO 

KE MEM+70,203:POKE MEM+71,204 
ZP 190 RETURN 
SM 200 REM PLOT AND UPDATE · 
Z5210 A=USR(STPTRACKER) 
Dvi 220 MEM=PEEK (88) +256*PEEK C8~n +X+40*V : Z 
:-:-.",",~ .:' =PEEK (HEM) 

'~g ~~: ~~ g~2~H~~E~0~~K~E~E~;= 
CV 250 A=USRCTRACKER) 
RK 260 If X<=8 AND '1'<=8 THEN CV=V:CX=8-X 
WI 270 If X)8 AND '1'<=8 THEN CV=V+8:CX=16-

X 
eN 280 If X<=8 AND '1')8 THEN CV=V+8:CX=8-X 
GA290 If X)8 AND '1')8 THEN CV=V+16:CX=16-

:~S h: i~Ai~~I¥~~~ (gi~n )(T+2 A CX) +0.5) 
$f:) 320 If Z=128 THEN T=INT C (T-2 A CX) +0.5) 

"le; 330 ICON$ CCV, CV) =CHR$ cn 
rZH340 RETURN 

I>C 350 REM SHOW DATA 

• 

360 A=USRCSTPTRACKER):OPEN Ul,12,0,"S: 
":POKE 752,1 
370 PRINT Uli"A=USRC39945,ADR("iCHR$C3 
4) i ICON$ (1,32) i CHR$ (34) i ") , X, V) " : ? 
380 PRINT "DATA "i:fOR N=l TO 32:? ASC 
(ICON$ CN, N» i", "i : NEXT N:? CHR$ (126) 
390 CLOSE Ul 
400 OPEN Ul,4,0,"K:":GET Ul,X:CLOSE Ul 
410 GRAPHICS O:GOTO 20 

Listing 4. 
BASIC listing. 

10 OP=39936:CL=39939:MOUETRACKER=39945 
:TRACKER=39954:STPTRACKER=39957:TRMASK 
=39960 

1 20 BORDERCHAR=39961:MOUEWINI>OW=39942 

;;g~ ~g ~~~u~I~~~5~ 
AI> 50 STOP 
£6' 30000 Xl=0:Vl=0:DXl=11:I>Vl=6:A=USRCOP, 

' l,Kl,Vl,DXl,I>Vl) 
XU 30010 OPEN U5,12,0,"W:" 
QF,' 30020 PRINT U5 i "DIRECTORV" 

...• , 30030 PRINT U5 j "DELETE" 
30040 PRINT U5j"LOCK/UNLOCK" 
"3~050 PRINT U5j"RENAME" 
30060 PRINT U5j"fORMAT" 
30070 PRINT U5i"** EXIT **" 
30080 MAIN=30110:DIRECTORV=30490:NAME= 
30590:SURE=30750:DIM NAME$(18),REN$C31 
) , T$ (10) , X$ (3) 
30090 DIR=30160:LOCK=30220:DEL=30180:f 
RMAT=30440:REN=30260 
30100 A=USRCTRACKER) 
30110 If NOT STRIGCO) THEN 30110 
30120 N=l:X=Xl:V=Vl:DX=DXl:DV=DVl:GOSU 
B 31000:Xl=X:Vl=V:INDEX=CHOICE 
30130 If INDEX=6 THEN A=USRCCL,l):A=US 
RCSTPTRACKER):RETURN :REM EXIT fROM MI 
NI-DOS 
30140 If INDEX<)5 THEN GOSUB DIRECTORV 
:GOSUB NAME:CLOSE U3 

eH 30150 ON INDEX GOTO DIR,DEL,LOCK,REN,f 
RMAT 

NZ30160 REM DIR 
TE 30170 GOTO MAIN 
JL 30180 REM DEL 
XH 30190 GOSUB SURE 

. I>M 30200 XIO 33,U4,0,0,NAME$ 
'SJ 30210 GOTO MAIN 

ATARI 8-SIT EXTRA 

AN 30220 REM LOCK zR 30230 If LCK THEN XIO 36,U4,O,O,NAME$ 
OL) 30240 If NOT LCK THEN XIO 35,U4,0,O,N 

""'.' AME$ 
SZ30250 GO TO MAIN 
0&30260 REM REN 
H~i 30265 fOR X=LENCNAME$) TO 1 STEP -l:If 
iI NAME$ CX, X) =" " OR NAME$ CX, X) =CHR$ (155 
.. '. ) THEN NEXT X 

RO 30270 REN$=NAME$ (1, X) : A=USR COP ,2,12,0, 
22,1):L=LENCREN$):POKE TRMASK,l 

MB 30280 OPEN U3,12,O,"W2:":OPEN U4,4,O," 
." K : " : X=9 

OL30290 PRINT U3i"NEW NAME?" 
C,(30300 XIO 100,U2,X,0,"W2:":A=USRCMOUET 

, RACKER, CX+ 13) *8,14) 
M~30310 GET U4,N 
Uft 30320 If N <> 126 THEN 30360 

~,I i:n: ~~~-~~~~2~~~0~~~~:~~~UT U3,32 
VZ 30350 GOTO 30300 
B~30360 PUT U3,N:X=X+l:If N<)155 THEN 30 

300 
HZ 30370 XIO 50,U2,9,0 "W2:" 
PK 30380 INPUT U3,NAME6 
RR. 30390 REN$ CL + 11 =", ": REN$ CL +2) =NAME$ 
V~30400 POKE TRMASK,O:CLOSE U3:CLOSE U4 
~y30410 XIO 32,U4,O,O,REN$ 
GD. 30420 A=USRCCL,2) 
5&\ 30430 GOTO MAIN 
SHi 30440 REM fORMAT 
B~30450 If NOT STRIGCO) THEN 30450 
X,E. 30460 GOSUB SURE 
Nl,l i 30470 XIO 254,U4,O,O,"D:" 

~,~ ••.• i::~: g~~o D~~~~TORV 
KW' 30500 A=U5RCOP,2,12,O,17,22) 
I"f30510 OPEN U4,6,0,"I>:*.*" 
R;;.r30520 OPEN U3,12,O,"W2:" 

~Ii:~~: ¥~~~030550:INPUT U4,NAME$:PRINT 

!i ihirgg~i:~~:~:~~:~~:2~~540 
IHt 30570 PRINT U3j ".lfi1:lI:1i4WIII];I;Ci1:1,." 
EU30580 RETURN 
VC30590 REM NAME 
VE, 30600 If INDEX <> 1 THEN 30630 
~.30610 If 5TRIGCO) THEN 30610 
UR} 30620 A=U5RCCL,2):CL05E U3:RETURN 
I~30630 N=2:X=12:V=0:DX=17:DV=22 
I'1P30640 G05UB 31000 
Rl\ 30650 If (TV-V) )=CNT THEN A=U5R CCL, 2) : 

~ijt i~i~gC~~g:*~~~~~~~~~e~~)-1'''W2:'' 
liN> 30680 LCK=O: If NAMES (1,11 ="*" THEN LCK 

Sij~~690 TS="D:":T$(3)=NAME$C3,10):XS=NAM 
E$ (11, 13) 

N(1 30700 fOR N=l TO 10: If T$ CN, N) =" " THE 

J~~o~~=::~~i N:If N=l1 THEN L=l1 
]}fl 30720 NAME$=TS: NAME$ CL, U =".,,: NAMES CL+ 

~\I ~HH: ~~3H :~~:::~:::~::5) 
L030750 REM SURE 
NZ} 30760 A=U5RCOP,2,12,7,3,2) 
cu 30770 OPEN U4,8,0,"W2:" 
oll, 30780 PRINT U4j "VE5" 
~.,~ ..... i:~~: ~E~~~ ~: j "NO" 

I nm ~~!i~~I~~iL;::' :::::. 
ANALOG COMPUTING 101 



® CGM continued 

GF . 31000 REM *** ALL-PURPOSE WINDOW/TRACK 
ER INTEGRATER (INCLUDES WINDOW MOVE OP 

~Ang~~ ~$="W":WIN$(2,2)=STR$(N) :OLDV= 
-1 
31020 TH=PEEK(4):TV=PEEK(5) 
31030 IF TV<}OLDV AND TV}V AND TV«V+D 
V+l) AND TH}H AND TH«H+DH+l) THEN HIO 

250,Ul,O,TV-(V+l),WIN$:OLDV=TV 
31040 IF OLDV<}-l AND (TV<=V OR TV}(V+ 
DV) OR TH<=H OR TH}(H+DH» THEN HIO 15 
O,Ul,O,O,WIN$:OLDV=-l 

VO 31050 IF STRIG(O) THEN 31020 
VH 31060 IF NOT STRIG(O) THEN 31060 
TW 31070 IF TH<}H OR TV<}V THEN 31150 
I N 31080 POKE BORDERCHAR,123:XIO 150,Ul,O 

11 3~O~~NiF STRIG(O) THEN HO<JO 
·R\if 31100 IF NOT STRIG (0) THEN 31100 
Mil; 31110 POKE BORDERCHAR ,128 

.EU: 31120 H=PEEK (4) : V=PEEK (5) 
Vk) 31130 A=USR(MOVEWINDOW,N,H,V) 
.VI> 31140 GOTO 31010 
DC? 31150 IF TV<=V OR TV} (V+DV) OR TH<=X 0 

:::. i>; R TH} (H+DH) THEN 31010 
RC H160 CHOICE=TV-V 

tf;f,j 31170 RETURN 

• 
Lis ting 5. 

BASIC listing . 

10 POKE 82,O:? CHR$(125) 
20 OP=39936:CL=3<J939:COPV=39951:BCHAR= 
39961:MOVEWINDOW=39942:STPTRACK=39957: 
TRACKER=39954:MOVETRACKER=39945 
30 ERASETRACK=39948 
40 DIM CLOCK$(32),CALC$(~DISK$(32), 
NUM$(8),FUNC$(4) :FUNC$="~" 
50 DIM WIN$(2),WIN1$(20),H(4),V(4),DH( 
4)tDV (4),H$(2),M$(2) , S$(2),NAME$(18),E 
HT~(4),FNAME$(14) :IOCB=848 
60 GOSUB 1590 
70 WIN 1$= "r:'."'" : WIN1$ (6) 1;llrn.~": WINl 
$ (11) = "r: •. :r::l" : WIN1$ (16) =" I" 

80 A=USR(COPV,ASC("."),ADR(CLOCK$»:A= 
USR(COPV,ASC("-II),ADR(CALC$»:A=USR(CO 
PV, ASC (" r") , ADR (DISK$) ) 
90 FOR N=l TO 4 
100 GOSUB 30150 
110 A=USR(OP,N,H(N),V(N),DX(N),DV(N»: 
OPEN Ul,8,O,WIN$:T=N*5-4:PRINT UliWINl 
$(T,T+4):CLOSE Ul 
120 NEHT N 
130 A=USR(TRACKER) 
140 IF STRIG(O) THEN 140 
150 IF NOT STRIG(O) THEN 150 
160 X=PEEK(4):V=PEEK(5) 
170 FOR N=l TO 4:IF X<}X(N) OR V<}V(N) 

THEN 220 
180 GOSUB 30150:POKE BCHAR,123:HIO 150 
,Ul,O,O,WIN$ 
190 IF 5TRIG(0) THEN 190 
200 IF NOT STRIG(O) THEN 200 
210 POKE BCHAR,128:HIO 150,Ul,O,O,WIN$ 
:X(N)=PEEK(4):V(N)=PEEK(5):A=USR(MOVEW 
INDOW, N, X (N) , V (N» : POP : GOTO 140 
220 NEHT N 
230 FOR N=l TO 4 
240 IF V}V(N) AND V<=V(N)+DV(N) AND X} 
H(N) AND X<=X(N)+DX(N) THEN POP :GOTO 
270 

: ..••. 250 NEXT N 
.. : 260 GOTO 140 

.... ··· 270 ON N GOTO 600,880,1560,280 
280 REM MEMO PAD 
290 N=5:X=X(4):V=V(4):DX=10:DV=4:A=USR 

102 ANALOG COMPUTING 

(OP,N,X,V,DX,DV) 
300 OPEN Ul,8,O,"W5:":PRINT Uli"EDIT M 
EMO":PRINT Uli"LOAD MEMO":PRINT Uli"SA 
VE MEMO":PRINT Uli"PRINT MEMO" 
310 CLOSE Ul:GOSUB 25000 
320 FOR N=l TO 5:A=USR(CL,N):NEXT N 
330 ON CHOICE GOTO 340,380,430,490 
3 40 OPEN Ul,4,O,"K:" 
350 GET Ul,X:IF X=27 THEN 370 
360 ? CHR$(X)i:GOTO 350 
370 CLOSE Ul:GOTO 90 
380 REM LOAD MEMO 
390 A=USR(TRACKER) :GOSUB 10000:IF CHOI cn CNT THEN 90 
4 00 TRAP 420:0PEN Ul,4,O,FNAME$ 
41 0 POKE IOCB+2,7:GOSUB 590 
420 TRAP 40000:CLOSE Ul:GOTO 90 
4 30 REM SAVE MEMO 
4 40 N=5:X=8:V=10:A=USR(OP,N,X,V,24,l) : 
OPEN U2,12,O,"W5:" : PRINT U2i"FilenaMe? 
":LEFT=9 
450 GOSUB 30000:A=USR(CL,5):CL05E U2 
460 TRAP 480:0PEN Ul,8,O,NAME$ 
470 POKE IOCB+2,ll:GOSUB 590 
480 TRAP 40000:CLOSE Ul:GOTO 90 
490 REM PRINT MEMO 
500 DD=PEEK(89)*256+PEEK(88) 
510 TRAP 580:0PEN Ul,8,O,"P:" 
520 FOR N=l TO 24 
530 FOR X=DD TO DD+39:CHAR=PEEK(X):IF 
CHAR}127 THEN CHAR=CHAR-128 
540 IF CHAR}=96 THEN 570 
550 IF CHAR}=64 THEN CHAR=CHAR-64:GOTO 

570 
560 CHAR=CHAR+32 
570 PUT Ul,CHAR:NEXT X:DD=DD+40:PUT Ul 
, 155:NEXT N 
580 TRAP 40000:CLOSE Ul:GOTO 90 
590 POKE IOCB+4,PEEK(88):POKE IOCB+5,P 
EEK(89):POKE IOCB+9,3:POKE IOCB+8,192: 
A=USR(ADR("hhh~LV~"),16):RETURN 
600 REM CLOCK 
610 N=5:X=X(1) :V=V(l) :DX=13:DV=2 
620 A=USR(OP,N,X,V,DX,DV) 
630 OPEN U2,12,O,"W5:" 
640 PRINT U2i"SET CLOCK.DISPLAV CLOCK" 
650 GOSUB 25000:A=USR(CL,N) 
660 IF CHOICE=2 THEN 760 
670 A=USR(OP,N,X,V,12,l):LEFT=6 
680 PRINT U2i"HOURS?":GOSUB 30000:HRS= 
VAL(NAME$):LEFT=8 
690 XIO 50,U3,O,O,"W5:" 
700 PRINT U2i"MINUTES?":G05UB 30000:MI 
N=VAL(NAME$) 
710 XIO 50,U3,O,O,IW5:" 
720 PRINT U2i"SECONDS?":GOSUB 30000:SE 
C=VAL(NAME$) 
730 POKE 18,O:POKE l<J,O:POKE 20,0 
740 A=USR(CL,5) 
750 CLOSE U2:GOTO 130 
760 REM DISPLAV 
770 A=USR(OP,5,X(1),V(1),8,l) 
780 OPEN Ul,8,O,"W5:" 
790 T=(PEEK(18)*65536+PEEKC19)*256+PEE 
K(20»/60+HRS*3600+MIN*60+SEC 
800 H=INTCT/3600):M=INT((T-H*3600)/60) 
:S=INT(T-(H*3600+M*60» 
810 H$=STR$(H):IF H<10 THEN H$="O":H$( 
2)=STR$(H) 
820 M$=STR$(M):IF M<10 THEN M$="O":M$( 
2) =STR$ (M) 
830 S$=STR$(S):IF 5<10 THEN 5$="0":5$( 
2)=STR$(S) 
840 XIO 50 U3,O,O,"W5:":PRINT UliH$i": 
IIjM$jll:lliS~ 
850 IF STRIG(O) THEN 790 
860 IF NOT STRIG(O) THEN 860 
870 CLOSE Ul:CLOSE U2:A=USR(CL,5):GOTO 

ATARI 8·BIT EXTRA 



,; dr ~~[~m~~~~~~~ ~~~~~i~UNC=. 
. 910 OPEN U2,12,0,"W5:" 

...•. no GOSUB 10150: PRINT U2: PRINT U2; "_ 

-~" PRINT U2;"E:J m1l rr; 1" 
PRINT U2:PRINT U2;" ~ I' ; ~ " PRINT U2: PRINT U2;"' , , ~ " 
PRINT U2:PRINT U2;" " 
PRINT U2: PRINT U2;"· : " 
CNT=l 

~ 990 If STRIGCO) THEN ~~o 
\ 1000 If NOT STRIGCO) THEN 1000 

(\. 1010 TX=PEEK (4) : TV=PEEK (5) 
\ 1020 If TXOX OR nOv THEN 1070 

1030 POKE BCHAR,123:XIO 150,Ul,0,0,"W5 
:11 

If STRIGCO) THEN 1040 
If NOT STRIGCO) THEN 1050 

1060 POKE BCHAR,128:X=PEEK(4):V=PEEKC5 
1 :A=USRCMOVEWINDOW,5,X,Vl :GOTO ~90 
1070 If TX(=X OR TX)X+I0 OR TV(V+3 OR 
TV)V+l1 THEN ~90 
1080 CX=TX-X-l:CV=TV-V-3 
1090 If CCV AND INTCCX/21()CX/2) OR IN 
TCCV/2)()CV/2 THEN ~90 
1100 If CNT=2 AND NUM$="," THEN NUM$C2 
1 ="0" 
1110 If CV=O THEN 1220 
1120 NX=CCX-21/2:NV=CCV-21/2 
1130 If NX=O AND NV=3 THEN NUM=O:GOTO 
1180 
1140 If NX=l AND NV=3 THEN NUMSCCNT,CN 

i1 Tl=",":GOTO 11~0 
~ 1150 If NX(O OR NX)2 OR NV(O OR NV)2 T 

HEN 1300 
1160 NUM=7-3*NV+NX 

\ 1170 If CNT=~ THEN ~~o 
( 1180 NUMS CCNT, CNT) =STR$ CNUM) 
···. 1190 If CNT=l THEN GOSUB 10150: NUM$ (2) 

1200 XIO 50,Ul,1,0,"W5:":PRINT U2;NUM$ 
1210 CNT=CNT+l:GOTO 990 
1220 REM MEMORV 

{ 1230 If CX=O THEN A=USRCCL,5):CLOSE U2 
(. : GOTO 140 
1 1240 If CX=2 OR CX=3 THEN GOSUB 10150: 
< PRINT U2 j MEM: NUMS=S TRS CMEM) : GOTO ~80 
.: 1250 If NUM$="" THEN ~90 

i : ~ 1260 If CX=5 OR CX=6 THEN MEM=MEM-VALC 
in NUMS) : GOTO 1290 
": 1270 If CX=8 OR CX=~ THEN MEM=MEM+VALC 
>\ NUMS) : GOTO 1290 
• .· •. 1280 GOTO ~90 

.. /. 1290 fUNC=O: XIO 50, Ul, 0, 0, "W5:" : PRINT 
" UZjl[":GOSUB 10150:GOTO ~80 

1300 C=CCV-Z)/2+1 
1310 If CX=O AND C)2 THEN ON C-Z GOTO 
14~0,1510 
1320 If NUM$="" THEN ~~o 
1330 If fUNC=O THEN SUM=VALCNUMS) 

· .. . 1340 If CX=O THEN ON C GOTO 1430,1460 
, ( 1350 If fUNC THEN ON fUNC GOSUB 1390,1 
h0 400,1410,1420:GOSUB 10150:PRINT U2jSUM 
~ 1360 If CV=8 AND CX=6 THEN fUNC=O:NUMS 

=STRSCSUM}:GOTO 980 

! '~ f~~~ ~~~~~CI0150:PRINT U2jSUM:GOSUB 15 
·. 30: GOTO ~80 
· ·.·. 1390 SUM=SUM/VAL CNUM$) : RETURN 

····· 1400 SUM=SUM*VAL (NUM$) : RETURN 
' 1410 SUM=SUM-VAL(NUM$} :RETURN 
' 1420 SUM=SUM+VAL(NUM$}:RETURN 

,) 1430 REM PERCENT 
, .... i.) ~~~~ i~8~ut~C=0 THEN SUM=VAL (NUM$) 1100: 

ATARI 8-BIT EXTRA 

HZ . 1450 NUM=SUM*CVAL(NUM$)/I00):CV=8:CX=6 

• ••• ~·~.". l~~~$~~~R~~~~~~: ~g~~ 1350 
SU ' 1470 SUM=SOR(VAL(NUM$)) 
ZS . 1480 fUNC=O:NUM$=STR$eSUM):GOTO 1380 
ES. 1490 REM CLEAR 
VG 1500 GOSUB 10150: GOSUB 1530: NUM$="II": GO 

· TO ~80 

141: . 1510 REM ALL CLEAR 
Z51520 GOSUB 10150:XIO 50,Ul,0,0,"W5:":P 

' RINT U2j" ":fUNC=O:SUM=O:MEM=O:NUM$="" 

Igl~~~OR~~ODISPLAV OPERATION 
TO· 1540 If fUNC THEN XIO 50,Ul,~,0,"W5:": 

.~ij i~~=T X~~; ~~~~t~~=~:I~~~f.~ RETURN 
)Itt 1560 REM 1>l5K LOADER 
UR/ 1570 fOR N=l TO 4:A=USRCCL,N):NEXT N:G 

=~H~i ~~~o~~~~~~:OICE)CNT THEN ~O 
CW 1600 CLOCK$="_.I \J.ccrHmo· ·ID •• ~ J.o." 
iii • OOOJ. •• "" 
UH 1610 CALC$="?p. ~UUr:l8~.UIU.?~ 
.. , ,.~" 
~p' , 1620 DISK$=" •• ~ ~ ~ H 1.¥tU:n.I~ ~ ~ H ~ ~ ~ ~ /. , .• , ... .,.. tlllI.I." 
OA1 1630 fOR N=l TO 4:READ H,Y,DH,DY:HCN)= 

X:VCN)=V:DX(N)=DX:DY(N)=DY:NEXT N 

~Pf~~g ~~~U~~NDOW DATA 
PL 1660 DATA 0,0,2,2,10,0,2,2,20,0,2,2,30 
.. ". ,0,4,1 

10000 REM DISK SELECTION 
10010 X=13:V=0:DX=11:DV=22:N=5 
10020 A=USR(OP,N,X,Y,DX,DY) 

. ,.·' 10030 OPEN Ul,6,0,"D:*,*" 
< 10040 OPEN U2,12,0,"W5:":CNT=0 

.· 10050 INPUT Ul, NAME$: If NAME$ (2, 2) =" " 
.,' " THEN PRINT U2;NAME$C3,13}:CNT=CNT+l:G 
Ld OTO 10050 

. "' .. '. 10060 CLOSE Ul 
10070 GOSUB 25000 

. ·" •• ' 10080 XIO 50,Ul,O,CHOICE-l,"W5:":INPUT 
\H U2, NAME$: CLOSE U2 

·'.· 10090 EXT$=",": EXT$ (2) =NAME$ (9) 
10100 fOR N=l TO 8 

••• 10110 If NAMES (N, N) =" " THEN 10130 
•• · 10120 NEXT N 

.. .. 10130 NAME$ (N) =EXTS: fNAMES="D:": fNAMES 
« (3) =NAMES 
.• '··.··. 10140 CLOSE U2: A=USR (CL, 5) : RETURN 

~ 10150 REM CLEAR DISPLAY 
'·'. 10160 XIO 50,Ul,l,O,"W5:":PRINT U2;" 

" XIO 50,Ul,1,0,"W5:":RETURN 
. "'. 25000 REM *** ALL-PURPOSE WINDOW/TRACK 

ER INTEGRATER (INCLUDES WINDOW MOVE OP 
TION) *** 
25010 G05UB 30150:0LDY=-1 
25020 TX=PEEK(4} :TV=PEEKe5} 
25030 If TV{)OLDY AND TV)V AND TV{(V+D 
V+l) AND TX)X AND TX{(X+DX+l) THEN HIO 

250,Ul,0,TV-(V+l),WIN$:OLDV=TV 
25040 If OLDV{)-l AND eTV{=V OR Tv)ev+ 
DV} OR TX{=X OR Tx)eX+DX)) THEN XIO 15 
O,Ul,O,O,WINS:OLDV=-l 
25050 If 5TRIGCO} THEN 25020 
25060 If NOT STRIGeO) THEN 25060 
25070 If TX{)X OR TV{)V THEN 25150 
25080 POKE BCHAR,123:XIO 150,Ul,O,O,WI 
NS 
250~0 If STRIGeO) THEN 250~0 

25100 If NOT STRIGCO) THEN 25100 
25110 POKE BCHAR,128 
25120 X=PEEK(4):V=PEEK(5) 
25130 A=USR(MOVEWINDOW,N,X,V) 
25140 GOTO 25010 

ANALOG COMPUTING 103 



tftt CGM continued 

• 

25150 If TV{=V OR TV)CV+DVl OR TX{=X 0 
R TX)CX+DXl THEN 25010 
25160 A=USRCSTPTRACKl 
25170 CHOICE=TV-V 
25180 RETURN 
30000 REM INPUT STRING CNEEDS: LEfT,N, 
OPENED IOCBU2,X,V) 
30010 GOSUB 30170 
30020 C=LEfT:OPEN U1,4,O "K:" 
30030 XIO 100,U3,C,O,HIN~:A=USRCMOVETR 
ACKER, CCC+X+11*81, CV*8+1(1) 
30040 GET U1,CHAR 
30050 If CHAR{)126 THEN 30090 
30060 C=C-1:If C{LEfT THEN C=LEfT 
30070 XIO 50,U3,C,O,HIN$:PUT U2,32 
30080 GOTO 30030 
30090 If C=4 THEN 30030 
30100 PUT U2,CHAR:C=C+1 : If CHAR{)155 T 
HEN 30030 
30110 XIO 50,U3,LEFT , O,HIN$ 
30120 INPUT U2,NAME$:PRINT U2 
30130 CLOSE U1:A=USRCERASETRACKl 
30140 RETURN 
30150 REM fIND NAME 
30160 HIN$="H":HIN$C2,21=STR$CNl 
30170 RETURN 

104 ANALOG COMPUTING ATARI 8-BIT EXTRA 







by Mark Andrews 

Your Atari computer has a large selection of text and 
graphics modes, and it isn't difficult to switch from one 
mode to another in the middle of a program . But using 
more than one graphics mode on the same screen at the 
same time-well , that's a little harder. To mix graphics 
modes on a screen di sp lay, it 's necessary to W1dersland 
a programming technique called display-list modification . 
And that's our topic. 

In a type-and-run program listed at the end of this arti
cle, I'll demonstrate how to create a screen display that 
includes three different modes: graphics 0, graphics 1 and 
graphics 2. There'll be one line of text in each mode, and 
each line will be displayed in a different color. The result 
will be a good-looking title screen that you can use with 
any homemade BASIC or assembly language program. 
Once you W1derstand the principles used to design the 
display, you can create many kinds of mixed-mode 
screens. 

The program used for this demonstration was written 
in assembly language on a MAC/55 assembler-editor pack
age from OSS. It's a type-and-run program I've named 
HELLO. If you own a MAC/55 assembler, you can type, 
assemble and run the program as written . If you own an
other assembler, you may have to make some modifica
tions in the program. And, if all of this talk about as
semblers and assembly language is a complete mystery to 

ATARI 8-BIT EXTRA 

you, you can learn assembly language by reading my book, 
Atari Roots: A Guide to Atari Assembly Language , pub
lished by Datamost in 1983. 

Your Atari's graphics modes. 
Before I list the HELLO program and explain how it 

works, here's some background information on how yom 
Atari generates its screen display. 

When you turn on your Atari, it automatically goes into 
a screen mode called graphics O-a standard 40-colunm 
text mode. &t if you type the statement GRAPHICS 1, or 
include it in a BASIC program, your computer will switch 
to a special text mode that displays "fat" characters
characters twice as wide as normal text. The command 
GRAPHICS 2 will give you giant characters, twice as high 
and twice as wide as ordinary characters. And there are 
several other graphics instructions you can use to create 
high-resolution graphics displays. 

That's an extraordinarily powerful set of graphics modes. 
And, if you know how to program in assembly language, 
you can make it even more powerful. With assembly, you 
can mix your Atari's graphics modes in any combination 
you like. You can print normal characters, fat characters, 
giant characters and even high-resolution graphics-all 
on the same screen. Then , you can add fine-scrolling to 
any part of the screen you want, for an even more eye
catching display! 

Along with their many graphics modes, Atari computers 
also have some other graphics-generating capabilities that 

ANALOG COMPUTING 107 



ifj Display List 
~ Mod continued 

are quite sophisticated. In computers less advanced than 
your Atari, one block of RAM is usually dedicated to 
screen memory. Within that block of memory-often 
known as "screen memory" - there's usually one memo
ry location for each text character on the screen. When 
a certain text character is to be printed in a particular 
screen location , a code number representing that charac
ter is placed in the memory register that corresponds to 
its screen location. A character which equates to what
ever code number was used then appears in the desired 
location on-screen. 

Atari graphics are a bit more sophisticated than that
and just a bit more complicated, too. Your Atari uses two 
special chips to generate its graphics display: one called 
an ANTIC chip and one ca lled a CTIA/GTIA chip. (The 
ea rly Ataris were built with a CTIA chip; newer models 
use a GTIA .) 

The CTIA/GTIA is a nonprogrammable chip that con
trols colors and performs various other functions . But your 
computer's other graphics chip, the ANTIC, is a real 
microprocessor. It has its own miniature instruction set, 
and its operations can be controlled with a special kind 
of program called a "display list ." So, to create graphics 
using the ANTIC chip, you have to know how to use the 
ANTIC chip's instruction set and how to write display-list 
programs for the ANTIC microprocessor. And , to under
stand how ANTIC works, it's necessary to know some fun
damental facts about the operation of a video display. 

Scan lines and mode lines. 
The pic ture on a TV screen is made up of tiny horizon

tallines-262, to be exact . Each of these is called a "scan 
li ne." 

These scan lines are produced by an electron gun be
hind your TV monitor's picture tube. This electronic pis
tol fires electrons at the TV picture tube in what's known 
as a "raster scan" pattern-a zigzag pattern that begins 
at the upper left-hand corner of the screen and ends in 
the bottom right-hand corner. 

There are 262 horizontal scan lines on a video tube, and 
the whole 262-line display is replaced by a completely new 
display sixty times each second. Between each of these 
li ghtning-fast scenery changes, there's an extremely brief 
interval-called a "vertical blank" period-in which the 
whole screen goes blank. 

Dot-matrix characters. 
Look closely at a computer-generated text display on a 

TV screen, and you may be able to see that each charac
ter on the screen is made up of tiny dots. If you could look 
closely enough at the screen text graphics generated by 
your Atari-while your computer is in its normal 40-
column by 24-line text mode-you'd be able to see that 
each letter is made up of sixty-four dots, arranged in a ma
trix eight dots wide and eight dots high. 

Because of a picture-tube design technique called "over
scan," however, not all of the 262 scan lines available for 
a TV picture appear on-screen; some fall off the edges and 
are never seen. So computer programs that generate vid
eo displays don't usually make use of all of those lines. 

108 ANALOG COMPUTING 

Your Atari , for example, uses only 192 of the 262 scan lines 
available. 

Atari BASIC supports four text modes, each of which 
produces letters of a different size. But, no matter what 
text mode you're in , and no matter how large the le tters 
on your screen are, each line of text in an Atari display 
is always called a "mode line." In your Atari 's normal 
40-column by 24-line text mode-the mode referred to in 
Atari BASIC as "graphics 0" -each letter in a mode line 
is e ight dots high , and each of those dots equates to one 
scan line. 

In BASIC's graphics 0 mode, therefore, one mode line 
is equal to eight scan lines. 

There are two other text modes in Atari BASIC
graphics 1, in which the characters on-screen are the same 
height as graphics 0 characters but twice as wide; and 
graphics 2, in which the characters are twice as high and 
twice as wide as standard graphics 0 characters. When 
your computer is in its graphics 1 mode, each mode line 
is made up of eight scan lines-the same number of scan 
lines used in a mode line in graphics O. When your Atari 
is in its graphics 2 mode, however, each mode line equates 
10 sixteen sca n lines. 

Antic mode 3. 
There's another text mode, called '~TIC mode 3," that's 

not supported by BASIC. In ANTIC mode 3, each mode 
line is made up of ten scan lines. You can find out more 
about ANTIC mode 3 by reading the Atari programmer's 
manual De He Atari, or by consulting the Atari 400/800 
Techni ca l Reference Notes published by Atari. 

In addition to the ir four text modes, Atari computers 
have numerous graphics modes - e ither ten or thirteen of 
them , depend on what kind of graphics hardware came 
installed in your model. (The number of graphics modes 
offered by Atari computers varies, with which chip is in
cluded, CTIA or GTIA) . 

In the non-text graphics modes, the nwnber of scan lines 
per mode line can range from one (in high-resolution 
graphics) to eight (in low-resolution). The nwnbe'i: Gt c.Glms 
available also differs from graphics mode to graphics mode. 

Table 1 shows the graphics modes ava ilable to Atari 
programmers. You may notice that there are differences 
between the ANTIC and the BASIC designa tions of these 
modes, and that ANTIC supports more modes than Atari 
BASIC does . And this table doesn't include the spec ial 
modes available to owners of GTIA chips, since programs 
using those modes won't work properly on all A1ari com
puters. If you want to use them anyway, you can find out 
how in De He Atari. 

Customizing your Atari's screen display. 
Two steps are needed to custom design an Atari screen 

di splay. First, you have a special kind of program called 
a "display list." Then you have to te ll your computer how 
to use the display list you've designed. 

A display list is made up of a series of I-byte instruc
tions that can be placed almost anywhere in your com
puter's available RAM . Anytime you want to see what a 
di splay list looks like, you can find one by using yo ur as-

ATARI 8-BIT EXTRA 



Table 1. 

Atari Text and Graphics Modes 

ANTIC BASIC Scan lines No. of 
mode mode per mode line colors 

2 0 8 2 

3 None 10 2 

4 None 8 4 

5 None 16 4 

6 8 5 

7 2 16 5 

8 3 8 4 

9 4 4 2 

A 5 4 4 

B 6 2 2 

C None 2 

0 7 2 4 

E None 4 

F 8 2 

sembler's debugging utility to peek into your computer's 
memory. 

When you turn on your computer, it automatically goes 
into its graphics 0 mode, and the address of the display list 
it uses to generate that mode is always stored in two loca
tions - specifically, memory addresses $230 and $231. 
Memory register $230 always holds the low byte of the start
ing address of your computer's display list , and memory 
register $231 always holds the high byte of the display list's 
starting address. So, once you know the contents of mem
ory registers $230 and $231, you'll be able to locate the dis
play list your computer's currently using. 

Once you locate your computer's graphics 0 display list , 
you'll find that it looks something like this: 

70 70 70 42 20 7C 02 02 
02 02 02 02 02 02 02 02 
02 02 02 02 02 02 02 02 
02 02 02 02 02 41 EO 7B 

As you can see, a display list is a pretty strange-looking 
program. Let's examine it , byte by byte, right now: 

BYTES 1 - 3 
S70 S70 S70 

Each byte in a display list has a specific meaning to the 
ANTIC chip. Within each byte, each nybble-that is, each 
hexadeci mal digit-also has a specific meaning. For ex
ample, this display begins with three bytes that hold the 
same hexadecimal value: $70. In the programming language 
of the ANTIC chip, the value $70 tells ANTIC to display 
one blank mode line-which in BASIC graphics 0, equates 
to eight blank scan lines. 

This, as it turns out, is the standard way to start a dis
play lis t for a graphics 0 display. Because of the overscan 
characteristic of a TV screen, it's standard practice to kick 
off a graphics 0 display with three blank mode lines - or, 
in ANTIC language, with three $70s. That will pull the be
girming of your graphics 0 display down to the top of your 
TV's picture tube, where you can be pretty sure your com
plete display will be visible on-screen . 

ATAR I 8-BIT EXTRA 

BYTES 4 - 6 
S42 S20 $7C 

After three blank mode lines have been displayed, we 
get to the first actual display byte on our sample display 
list: the hexadecimal number $42. In ANTIC language, the 
value $42 is what's known as a "load memory scan" (LMS) 
command. After all necessary blank lines have been taken 
care of, the first display byte in a display list is always a 
load memory scan command, and an LMS command is al
ways a 3-byte instruction. In the display list we're examin
ing, the load memory scan instruction is made up of the 
3 bytes $42, $20 and $7C. 

The first nybble in this instruction-the digit 4-alerts 
ANTIC that this is an LMS instruction. 

The second nybble in the LMS instruction-the digit 
2 - tells ANTIC to display an ANTIC mode 2 line. Consult 
the table on graphics modes presented a few paragraphs 
back, and you'll see that, in ANTIC language, mode 2 is 
the same as BASIC mode O. 

The next 2 bytes of the LMS command-the bytes $20 
and $7C-provide ANTIC with the address at which screen 
memory will begin . ANTIC interprets these 2 bytes low
byte first, in standard 6502 fashion. When ANTIC encoun
ters the LMS instruction $42 $20 $7C, therefore, the first 
byte displayed on your Atari's video screen will be what
ever byte is stored in memory location $7C20. 

When you write a display list, you can put your screen 
memory in just about any convenient, available block of 
RAM. And you can fill that RAM up with whatever you 
like-codes that equate to text, display screens drawn with 
the help of a graphics program, or character graphics creat
ed with a graphics-generator program. Once you have a dis
play created, you can tell your display list where to find 
it , by placing its starting address in the 2 bytes that follow 
your display list's LMS command. 

BYTE S 7 - 2~ 
The byte S02, repeated 22 tiMes 

As explained above, the first LMS command in a dis
play list tells ANTIC two things: the address at which 
screen memory begins, and the graphics mode to use to 
display the first mode line of text or data that will be found 
starting at that address. 

After ANTIC has been presented with this information, 
it must be told what graphics mode to use to generate each 
subsequent mode line that will displayed on-screen . 

In the display list we're examining, every mode line on 
the screen is an ANTIC mode 2 line. Therefore, the next 
twenty-three instructions in this display list are all the 
same; each will tell ANTIC that the next line on the screen 
will be an ANTIC mode 2 line. 

What would happen, you may ask, if all these instruc
tions were not the same? Well, if they wererit, then more 
than one graphics mode could be displayed on-screen 
simultaneously. Text of various sizes could be displayed on 
the same screen, and text and graphics modes could be in
termixed as desired. This is a very powerful-and quite 
unusual-capability of Atari computers. You'll get a chance 
to see exactly how it works before you finish this article. 

BYTES 3 0 - 32 
S41 SEO $7B 

ANALOG COMPUTI NG 109 



ill Display List 
~ Mod continued 

Every display list must end with a 3-byte command 
called a JVB (jump on vertical blank) instruction. The first 
byte in a JVB instruction is always the value $41. The next 
2 bytes always combine to form a jump address. The des
tination of the jump is always the beginning of the dis
play list in which the jump is contained. 

As it happens, the display list we're looking at starts at 
memory address $7BEO. So that's the address that follows 
(low byte first) the JVB instruction $41 . 

When ANTIC encounters the JVB instruction $41 in a 
display list, it jumps back to the beginning of the display 
list , waits for the next vertical blank period between raster 
scan displays, then jumps to the address that follows the 
JVB instruction. And, since this address is the address of 
the beginning of the display list , what the JVB instruction 
really does is run the display list again . 

Running a display list. 
As I've pointed out, a display list can be placed in al

most any convenient spot available in your computer's 
memory. Screen memory can be placed just about any
where in RAM, too. Once you've created a display list and 
a block of data to be used as screen memory, all you have 
to do to put your custom-designed display on your TV 
screen is write a simple program that tells your computer's 
operating system (OS) where your display list is. 

To direct your computer to your custom display list, you 
simply store new values into a pair of OS memory loca
tions known as "shadow" locations. Shadow addresses are 
used often in Atari progranuning, so I might as well ex
plain what they are right now. 

In your computer's memory, there are some very useful 
hardware registers not normally accessed by user-written 
programs. But sixty times per second , the data in each 
of these memory locations is updated. During this updat
ing process, the value stored in each register is replaced 
by data that's been stored in a corresponding shadow reg
ister. And shadow registers are in user-accessible RAM. 
So, by changing the value in a shadow register, you can 
also change the value of its corresponding hardware reg
ister. For most intents and purposes, therefore , a shadow 
register works just about like any other OS register situat
ed in RAM . 

Three shadow addresses that are often used in display
list programs are $22F, $230 and $231 . Address $22F is 
an Atari OS memory location called SDMCTL (Shadow 
Di rect Memory Access Control). Addresses $230 and $231 
are OS locations called SDLSTH (Shadow Display List 
Pointer - Low) and SDLSTL (Shadow Display List Pointer 
- High). 

To write a program that will put a cllstom display list 
on your Atari 's screen , all you have to do is follow these 
three steps: 

(1) Turn your computer's ANTIC chip off by stor
ing a 0 in $22F (SDMCTL). 

(2) Store the starting address of your custom dis
play list in $230 and $231 (SDLSTL and SDLSTH). 

(3) Turn your computer's ANTIC chip on again by 
storing the value $22 in $22F (SDMCTL). 

110 ANALOG COMPUTING 

Doing it. 
Now that you know how to do all of this, we're ready 

for action. The following program, together with the arti
cle you've just read , should provide you with all of the 
information you 'll need to start designing your own cus
tomized display lists and creating your own mixed-mode 
screen displays. &=I 

Mark Andrews is the author of Atari Roots (Datamost: 
1984), the top-selling book on Atari assembly language 
programming. He is also a frequent contributor to many 
computer magazines. This is the first article he's written 
for ANALOG Computing. 

Listing 1. 
Assembly listing. 

i 
i'HELLO': MIKED MODE SCREEN DISPLAV 

, 
SDMCTL 
i 
SDLSTL 
SDLSTH 
i 
COL ORO 
COLOR! 
COLOR2 
COLOR3 
COLOR4 
i 

.OPT OBJ 
*= $3000 
JMP INIT 

= 
= 
= 
= = 
= = 
= 

$022F 

$0230 
$023! 

$02C4 
$02CS 
$02C6 
$02C7 
$02C8 

iOS COLOR REGS 

iDISPLAV LIST DATA 
i 
START 
i 
LINE! 

LINE2 

LINE3 

LINE4 

i 

.SBVTE II FROM" 

.SBVTE "A.N.A.L.O.G.:" 

.SBVTE" a 'ti'tle II 

.SBVTE "screen " 

. SBVTE II " 

.SBVTE " B!,I (Vour NaMe)" 

. SBVTE " II 

.SBVTE" PLEASE" 

.SBVTE "STAND BV " 

iDISPLAV LIST 
i 
HLST 

LINES i3 BLANK 
.BVTE $70,$70,$70 

iMORE BLANK LINES 
.BVTE $70,$70,$70,$70,$70 

iLMS, ANTIC MODE 6 (BASIC MODE 2) 
.BVTE $46 

iTEKT LINE: "FROM A.N.A.L.O.G.:" 
.HORD LINE! 

iMORE BLANK LINES 
.BVTE $70,$70,$70,$70 

iLMS, ANTIC MODE 7 
.BVTE $47 

iTEKT LINE: "A 'ti'tle screen" 
.HORD LINE2 

iANOTHER BLANK LINE 

ATARI 8-BIT EXTRA 



·BYTE $70 
iLMS, ~NTIC MODE 2 (GR~PHICS 0) 

.BYTE $42 
iTEHT LINE: "B!,! [Your- NaMel" 

.HORD LINE3 
; BL~NK LINES 

.BYTE $70,$70,$70,$70 
;LMS, ~NTIC MODE 6 

.BYTE $46 
iTEHT LINE: "PLE~SE ST~ND BY" 

.HORD LINE4 
i5 BL~NK LINES 

.BYTE $70,$70,$70,$70,$70 
iJVB INSTRUCTION 

.BYTE $41 
i~DDRESS Of DISPL~Y LIST 

.HORD HLST 
; 
;RUN PROGR~M 
; 
iSHITCHING COLOR REGISTERS 
if OR NICELY COLORED DISPL~Y 
INIT 

LD~ COLOR3 
ST~ COLOR1 
LD~ COLOR4 
ST~ COLOR2 

iNOW HE'LL RUN THE PROGR~M 
LD~ UO 

iTURN Off ~NTIC HHILE HE STORE 
iOUR NEW LIST'S ~DDRESS IN THE 
; OS DISPL~Y LIST POINTER. 

ST~ SDMCTL 
LD~ UHLST&255 
ST~ SDLSTL 
LD~ UHLST/256 
ST~ SDLSTH 

iTURN ~NTIC B~CK ON 
LD~ U$22 
ST~ SDMCTL 

i 
fINI 

• 
RTS 

ATARI 8-BIT EXTRA ANALOG COMPUTING 111 



J Check 
Us Out 

WANT TO 
SUBSCRIBE? 

CALL TOLL FREE 1-800-345-8112 
IN PENNSYLVANIA 1-800-662-2444 

OR USE THE POSTAGE-PAID CARDS IN THE BACK OF THIS BOOK 

For the #1 magazine for 
Atari computer owners! 



by Barbara Donovan 

Have you ever wanted a tailor-made file management 
program that will allow you to choose exactly the infor
mation you want to include-and how you want to mani
pulate it? Have I got a program for you! 

The inspiration for this came while I was on a diet. Be
cause I'm a bit of a health food nut, I wanted to know how 
many calories and nutrients various recipes would have. 
This seemed like an excellent application for a computer. 
After all , they're supposed to be good at numbers-multi
plying and dividing, and stuff like that. I realized I need
ed a fil e with the information I wanted, which could be 
accessed selectively. 

Sounds simple, doesn't it? Well, I had a database pro
gram on which I could have set up records for each item 
needed. But that meant, every time I wanted to add up 
a recipe, I would have to go through all those records and, 
by editing them , put a key to indicate which to include. 
I would also have to change the multiple for each item 
desired. Doing it with pencil and paper would be faster. 

After a little thought , I decided what was needed was 
a way tG choose which items I wanted to include in a par
ticular calculation (in computerese, that's an "indexed
sequential" file) . This put me off my stride a little. I had 
read that the technique was really complicated . Guess 
what? It's not so bad. 

ATARI 8-BIT EXTRA 

Using the Atari's NOTE and POINT functions , the pro
gram became relatively simple to write. Pointed Note is 
written in a top-down way (this just means everything pos
sible is in subroutines), so it could be debugged more eas
ily. Now, if you don't care how many calories things have, 
don't despair. Pointed Note will work for any type of data 
you wish to store, recall, organize and/or manipulate
calories are just one example. Also, if you save the vari
ous subroutines by LISTing them, you can easily build an
other program without a lot of retyping. 

There are a few things you should know about data
bases. Picture a file cabinet with several drawers. That's 
the "database." Each drawer has a bunch of file folders 
relating to the same sort of thing (like bills to be paid). 
That's a "file." Each file folder has a sheet of paper with 
information about a particular member of the file (like the 
electric bill). That's a "record." And, finally, each sheet 
of paper has various entries on it (like your account num
ber). Those are "fields." Fields are made up of alphanu
meric characters. 

So, what I want to set up is a file of foods , containing 
records for each food with fields of pertinent information. 
For the sake of this discussion, we'll consider the fields 
to be: (1) the name of the food; (2) and (3) the number of 
base units (Le., 1 cup-to be treated as 1 and cup-two 
fields); and (4) the calories. Please note that the number 
and type of fields can easily be modified for any appli
cation. 

ANALOG COMPUTING 113 



• Pointed Note continued 

This is a simple matter. I decided the name of the food 
could be a maximum of twenty-five characters, number of 
units a maximum of three characters, the unit itself fif
teen characters, and the calories three characters. Why is 
it important to decide on this information in advance? Two 
reasons: you need to know how large to dimension the 
variables; and each record must take up exactly the same 
amount of disk space. 

That last needs some explanation. When your computer 
writes data to the disk, it puts one character after another 
until it comes to an end-of-line character (EOL), which it 
also puts on the disk to demarcate the end of that field. 
When your computer inputs data from the disk, it reads 
each characater until it comes to the EOL , then stops. 
Therefore, if we want to be able to make any later changes 
to our data , each field must always be printed with exact
ly the right number of characters-or the updates and 
previous data may become confused with each other in 
the overwriting. 

In order to make sure of field length, we must pad any 
items less than the set field length with blanks. This is 
done in the PADDATA and PADITEM subroutines, before 
the data is written to disk . 

Now, getting back to that indexed-sequential stuff, we 
want to be able to find any record, read its information, 
manipulate that information and get results . However, we 
don't want to have to read through every record to find 
the one we want. In our sample program this wouldn't be 
a big deal, but if each record had, in addition to calories, 
Vitamin A , Vitamin B-1, Vitamin E, Calcium, Sodium .. . 
well , you get the idea. It would take forever to go through 
all of them every time. With this program , we only have 
to go through all of them when adding new records. 

When we add new records, we'll find out at which sec
tor and character on disk the record begins and go direct
ly to that location. This is done by having a separate file 
(another drawer in our cabinet), containing a record with 
only the name of the item, sector and character. Neat, huh? 

Basically, we need two functions to accomplish this. 
NOTE tells us where on disk the read/write head is lo
cated. The form is: 

NOTE #(channel no.),SECT,CHAR 

Channel number refers to the line you've opened to the 
disk drive, as in: OPEN #l,4,O,"D:DATA.FIL". SECT and 
CHAR are variable names which will contain, respectively, 
the sector number and character position of the drive head. 
Each sector has 128 character positions. 

POINT tells the read/write head to move to a specified 
position and start operations there. The form is: 

POINT #(channel no.) ,SECT,CHAR 

As you see, it's similar to the NOTE statement. The sec
tor and character positions must be given as variables. 
(Also, keep in mind that you can only POINT to a posi
tion in a file which exists and has been OPENed). 

The OPEN statement allows you to communicate direct
ly with peripheral devices, such as disk drives, cassettes, 
printers, keyboard, etc . Each device has a letter specifi
cation. We're only concerned with the disk drive, which 
is indicated by "D: (the colon is necessary) , and must be 

114 ANALOG COMPUTING 

followed by an existing filename (with one exception, dis
cussed below) . 

In examining the OPEN statement, we're most con
cerned with the second specification (i.e., the #4 in OPEN 
#1,4,O,"D:DATA.FIL"). There are four modes of communi
cation available when OPENing to the disk drive: (1) in
put (mode 4) allows you to read only the data in your file ; 
(2) output (mode 8) allows you to write only to the data 
file - when OPENing in this mode, the drive head will be 
at the beginning of the file; (3) append (mode 9) allows 
you to add data to the end ofthe file-the drive head upon 
OPENing will point to the end of the file and automati
cally allot another 128 characters, minimum, of disk space 
to that file; and (4) update (mode 12), which allows both 
reading and writing to the file-upon OPENing, the drive 
head will be at the beginning of the file. 

Mode 8 is the only way to create a file. If mode 8 is speci
fied (write only), DOS will open a file with the name 
specified and write data to it, if desired. Modes 8 and 12 
will write over and destroy any previous data. 

Now we get to the simple part. All we have to do to add 
data to our file is specify mode 9 (append), give the data 
to the computer, and have it added to the end of our file. 
Then , to find out where it is on the disk so that we can 
index it , we OPEN for a read (mode 4), NOTE the posi
tion of the head , read a record , write the name of the rec
ord and its position to the index, NOTE the position of 
the head again , read the next record, etc . .. until the end 
of the file. 

Now, when we want the info back, all we have to do 
is search our shorter index file, find the location of the 
item we're looking for, and have the read/write head 
POINT there and start inputting. 

Let's look at the program-a lot easier than trying to ex
plain all this. The beginning merely dimensions the string 
variables needed, fills BLANK$ with spaces and assigns 
line numbers to variables. This way, when I call a subrou
tine, I have an idea what it does (instead of seeing a 
meaningless number) . 

And, if! renumber a subroutine, I just change one vari
able to point to that subroutine from any part of the pro
gram. Also, Line 82 identifies an end character, so the 
computer knows when we're finished adding, updating, 
or using data . 

Lines 100-260 are the main menu. 
Lines 300-391 form the routine to find a particular rec

ord , show you the basic unit, ask for a multiple, and print 
the number of calories for that food item. As you can see, 
most all it does is callan subroutines. This simplifies writ
ing the program since the same procedures are used in 
the other main routines. For example, lTEMIN, merely asks 
for the name of the food you want, has it padded with 
spaces in the PADITEM subroutine so it's the reQuhed 
twenty-five characters long, and returns. 

Data is padded by converting all nonstring variables to 
string variables, checking variable lengths, and adding 
blanks if necessary to fill the allotted space. 

FINDITEM locates the item in the index file and reports 
back. Next, the data is read-RDDATA subroutine-by 

ATARI 8-BIT EXTRA 



POINTing to the correct position on the disk file and read
ing the information. 

The UNITIN subroutine gets the multiple (i.e. , you 're 
using two apples in a recipe and the base Wlit is 1). 

Then FIGCAL and CALPRNT, as their names imply, fig
ure ou t the calories , print them out, and re turn. 

Once the last item is indicated by a CTRL-E entry, the 
program calls subroutine TOTPRNT, to print out the to
ta l number of calories for all items and qua ntiti es spec i
fi ed, then returns and wa its for yo u to hit RETURN, to 
go back to the main menu. 

Lines 400-450 are the main routine to add new records 
to the fil e. Notice that this opens a channel to mode 9 (ap
pend). This routine calls subroutines already found , such 
as ITEMIN. 

WRITEDATA prints on di sk a ll the data fi e ld s (i.e .. 
name, number, wlit and ca lories ) and waits a t the en d of 
the fil e for any more add iti ons. 

If CTRL-E is entered , signalling no more add i tions , the 
chan nel to the data file is closed, and the program calls 
the INDEX subroutine. It OPENs two channels, one to read 
the data fi Ie and NOTE the posi tion of each reco rd , and 
one to wr ite a new index file (mode 8) over any old one 
s till there. When fini shed, it return s to the mai n menu . 

Lines 500-570 al'e the update main routine, to easily alter 
a reco rd (old record:Banana ,1,medium ,101/new rccord:Ba
llollo.Uorge. 116). This is the reason we've been padd ing 
our data fields. Even though a new fie ld may have more 
or less characters than the old, it won't change the disk 
position of the record . 

The on ly new subrout ines are : NWDATA, w hich gets 
the changes you want to make; and WRITNW, w hi ch then 
POINTs to the begil1Jling of the old record a nd writes over 
it w ith the new data. 

Fina lly, the TRAP statements send the program to 
ERRORI. This is an easy way to handle end-oF-file. W hen 
the end is reached and the computer's asked to read more. 
an error occurs , and program execution halts. By using an 
error hand ler routine to check which error had occurred, 
the program may cont inue-even though an item is not 
found. Control is returned to the correct portion of the 
program by assigning each main routine a number con
ta ined in the variable TEST. 

A II that's left is to c reate the fi les to be used . This is 
done in immediate mode (when the screen says READY). 
Just key OPEN IIl,8,0," D:DATA.FIL" and press RETURN. 
Then CLOSE 111 and RETURN. The same shou ld be done 
to c reate the index file: OPEN IIl,8 ,0,"D:INDEX.FIL". To 
stal't your file, rWl the program and hit 2 to enter the ADD 
ro utin e. Now, key the information asked for, and it will 
be wr itten to the data file and index fil e, appropria tely. 

Th ree useful expansions of this type of program would 
be a directory, a multiple file routine and a hard-copy 
subroutine. 

The directory could print out either all names of the 
records or all the records in their entirety, by accessing 
the index file or the data file, respectively, and sequen
tia lly listing their contents. 

A multiple file would be used to remember a certain 

ATARI 8-BIT EXTRA 

combina tion of records, such as a recipe. By putting in 
the name of a food item a nd its Wlit multiple, another fil e 
ca n be added to, with records containing: (1) rec ipe name, 
(2) number of items, (3) list of sector/character locations 
wi th a HOWMANY unit multiplier. By setting up a 
FOR/NEXT loop based on field (2), you could quickly 
PO IN T to each item included and figure the multiple for 
that pa rticular recipe. 

You' ll notice that I've used arrays for SECT and CHAR 
to fac ilita te this type of applica tion. The arrays will con
tain sector/character pos itions for each item. When the 
FOR/NEXT loop is entered, the loop index is used as the 
array index, and the correct data will be written or read 
for the assigned number of items. 

S im plest of a ll, to obta in barel-copy, insert a question 
al the beginning of a routine-such as, Do yo u want a print 
oll l ? T hen , based on the INPUT answer, a variable (i.e. , 
PO$) is set. If the a nswer is yes, a ha rd-copy subroutine 
is ca ll ed from a main routine. 

As I mentioned, this program is easily adapted to other 
uses: inventories , student test data , bills paid and pay
able. etc. I would be interested in hearing of other appli
ca ti ons. 1&=1 

13arboro Donovan , a native New Yorker, li ves in Virginia 
w ith her wr iter- hu sband and their three children. She is 
now laking courses and plans 10 seek a Ph.D. in Computer 
Science in th e near future. She's been a computer hobbyist 
s in ce '1979 (starting on a TRS-80, which was destroyed in 
a Fire) a nd , s ince 1983, has been a loyal Atari owner. 

The two-letter checksum code preceding the line 
numbers here is not a part of the BASIC program. 
For further information, see the BASIC Editor II, 
in issue 47 of ANALOG Computing . 

Listing 1 . 
BASIC listing. 

AE 10 REM xxx xxx xxx xxx xxx xxx xxx xxx xxx xx 
MF 11 REM * fILE MANAGER * 
MB 12 REM * BV * 
OK 13 REM * BARBARA DONOVAN * 
AM 14 REM xxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
BI 15 REM 
1M 17 REM ***** DIMENSION AND xxxxxxxxx 
RJ 18 REM *** INITIALIZE VARIABLES **** 
NR 20 DIM ITEM$(251,UNIT$(151,NAME$(251,C 

$(31,LA5TITEM$(251,SECT$(31,CHAR$(31,N 
UM$(31,CAL$(31,BLANK$(251,TEMP$(3) 
25 DIM CHAR(151,SECT(151 
26 BLANK$=" ":BLANK$(25)=BLANK$:BLANK$ 
(21=BLANK$ 
30 ADDITEM=400:CALPRNT=1350:CLEARSCR=1 
400:COUNTCAL=300:ERRORl=1500:fIGCAL=13 
00:FINDITEM=1050:INDEH=1600 

Wv 63 PADITEM=1'50:PADSECT=1'80:PADDATA=2 
' 040:ITEMIN=1000:IUPDATE=500:MENU=100:N 
HDATA=1800:RDDATA=1150:TOTPRNT=1450 

HM74 UNITIN=1250:HRITEDATA=1700:HRITNH=1 
850 

HZ 82 LASTITEM$(l,I)=I~I':LASTITEM$(2,251= 
BLANK$ 
'7 REM XXXXXXXXX MAIN MENU XXXXXXXXXX 
100 PRINT "iii" 
110 POSITION Z,Z:PRINT "TO":POSITION 2 
O,Z:PRINT "PRESS:" 

ANALOG COMPUTING 115 



• Pointed Note continued 

. · •. · 120 POSITION 2,4: PRINT "COUNT CALORIES 
":POSITION 20,4:PRINT "I (RETURN)" 
130 POSITION 2,6:PRINT "ADD AN ITEM":P 
OSITION 20,6:PRINT "2 (RETURN)" 
140 POSITION 2,8:PRINT "UPDATE ITEM":P 
OSITION 20,8:PRINT "3 (RETURN)" 
180 TRAP 270:REM 10NLV TAKE NUMBERSI 
1'J0 POSITION 2,22:PRINT "WHICH"j:INPUT 

C 
200 ON C GOTO COUNTCAL,ADDITEM,IUPDATE 
260 GOTO l'JO:REM INO.BETWEEN 1-6 ONLY 
2'J7 REM ~M~MM~ CALORIES FOR 1 MMMMMM~ 
2'J8 REM ~~M~MM OR MORE ITEMS MMMMMMMM 
300 PRINT "1Ii":TOTAL=0:P=8:TEST=310:1=1 
305 TRAP ERRORI 
310 GOSUB ITEMIN 
320 IF ITEM$=LASTITEM$ THEN 3'J0 

•• 330 GOSUB FINDITEM 
····. 340 GOSUB RDDATA 
0350 GOSUB UNITIN 

............. ~~g gg~~~ ~~Eg~~T 
•.•.• < 380 GOSUB CLEARSCR: GOTO 310 
... ••• 3'J0 GOSUB TOTPRNT 

3'Jl POSITION 2,23:PRINT "PRESS RETURN 
FOR MENU"j:INPUT C$:GOTO MENU 
3'J7 REM M~MMMM ADD NEW ITEM MMMMMMM 
400 PRINT "1Ii":TEST=410:TRAP ERRORl 
402 OPEN Ul,'J,O,"D:DATA.FIL" 
410 GOSUB ITEMIN 
420 IF ITEM$=LASTITEM$ THEN CLOSE Ul:G 
OSUB INDEX:GOTO MENU 
430 GOSUB WRITEDATA 
450 GOSUB CLEARSCR:GOTO 410 
4'J7 REM ***** UPDATE DATA FILE ***** 
500 PRINT "iii" 
510 TEST=510:TRAP ERRORI 
520 GOSUB ITEMIN 
525 IF ITEM$=LASTITEM$ THEN GOTO MENU 
530 GOSUB FINDITEM 
540 GOSUB RDDATA 
550 GOSUB NWDATA 
560 GOSUB WRITNW 
570 GOSUB CLEARSCR:GOTO 510 
'J'J7 REM ~MM~~~ ENTER ITEM/NAME MMMM~~ 
1000 POSITION 2,2 
1010 PRINT "(CTRL}'E'(RET}=STOP)"j 
1020 PRINT "ENTER ITEM:":INPUT ITEMS:L 
I=LEN (lTEM$) 
1025 GOSUB PAD ITEM 
1030 RETURN 
1047 REM **** FIND ITEM LOCATION **** 
1050 OPEN Ul,4,0,"D:INDEX.FIL" 
1060 TRAP ERRORI 
1070 INPUT UljNAMES 
1080 INPUT UljSECTS:SECTCI)=VAL(SECT$) 
10'JO INPUT UljCHARS:CHARCI)=VAL(CHAR$) 
1100 IF NAME$=ITEM$ THEN CLOSE Ul:RETU 
RN 
1110 GOTO 1070 
1147 REM *** READ IN DATA FOR ITEM *** 
1150 OPEN Ul,4,0,"D:DATA.FIL" 
1160 POINT Ul,SECT(I),CHAR(I) 
1170 INPUT UljNAME$ 
1180 INPUT UljNUM$ 
11'JO INPUT UljUNIT$ 
1200 INPUT UljCAL$ 
1210 CLOSE Ul 
1220 RETURN 
1247 REM *** GET NUMBER OF UNITS **** 
1250 POSITION 2,4:PRINT "UNIT:"jVAL(NU 
M$)j" "jUNIT$ 
1260 POSITION 2,6:PRINT "HOW MANV UNIT 
S"j:INPUT HOWMANV 
1270 RETURN 
12'J7 REM ** FIGURE NUMBER CALORIES ** 
1300 ICAL=VAL(CALS) 
1305 ICAL=ICAL*HOWMANV 

116 ANALOG COMPUTING 

RVi 1310 TOTAL=TOTAL+ICAL 

e~H~~ ~~~~!NpRINT NUMBER OF CALORIES * 
~M1360 POSITION RP,P:PRINT ITEMSCl,LI):R 

P=RP+LI+2 
C~ 1365 NUM=VAL(NUMS) 
HI 1370 POSITION RP,P:PRINT NUM*HOWMANVj" 

"iUNIT$ 
F~ 1380 POSITION 32,P:PRINT ICAL 

:VU 13'J0 P=P+l:RETURN 
.A.A 1337 REM ***** CLEAR INPUT AREA ***** 
ttl 1400 POSITION 2,2:PRINT " 

50 

NG 

5)( 

AA 

UZ 

" 
1405 POSITION 2,3:PRINT " 

" 
1410 POSITION 2,4:PRINT " 

" 
1412 POSITION 2,5:PRINT " 

" 
1415 POSITION 2,6:PRINT " 

" 
1417 POSITION 2,7:PRINT " 

" 
1420 RETURN 
1447 REM *** PRINT TOTAL CALORIES *** 
1450 POSITION 2,21:PRINT "TOTAL CALORI 
ES:",TOTAL 
1460 RETURN 
14'J7 REM ***** ERROR HANDLER Ul ***** 
1500 ERR=PEEK(1'J5) :CLOSE Ul:POP 

. 1505 GOSUB CLEARSCR 
1510 IF ERR=136 THEN POSITION 2,2:PRIN 

..•....••...• T "ITEM NOT FOUND": GOTO 1530 
•.... ) 1511 IF ERR=8 AND TEST=310 THEN POSITI 

• ON 2,2: PRINT "NUMERIC INPUT ONLV": GOTO 
1530 

1512 IF ERR=8 AND TEST=410 OR TEST=510 
THEN POSITION 2,2:PRINT "SEPARATE NUM 

BER AND UNIT BV A COMMA":GOTO 1530 
1520 POSITION 2,2:PRINT "UNEXPECTED ER 
ROR U"iERR 
1530 POSITION 2,3:PRINT "ANVKEV=CONTIN 
UE" 
1535 POSITION 2,4:PRINT "(CTRL}'E'=MEN 
U" 
1540 OPEN U2,4,0,"K:":GET U2,C:CLOSE U 
2 
1550 IF C=5 THEN GOTO MENU 
1560 GOSUB CLEARSCR:GOTO TEST 
15'J7 REM *** RECORD INDEH LISTING *** 
1600 TRAP 1675 
1605 GOSUB PADSECT 
1610 OPEN Ul,8,0,"D:INDEX.FIL" 
1620 OPEN U2,4,0,"D:DATA.FIL" 
1630 NOTE U2,SECT,CHAR 
1635 INPUT U2jNAME$ 
1640 INPUT U2jNUMS 
1645 INPUT U2jUNIT$ 
1650 INPUT U2jCAL$ 
1655 PRINT UljNAME$ 
1660 PRINT UljSECT 
1665 PRINT UliCHAR 
1670 GO TO 1630 
1675 IF PEEK(1'J5)=1~6 THEN CLOSE Ul:CL 
OSE U2 
1680 RETURN 
16'J7 REM *** RECORD DATA FOR ITEM *** 
1700 POSITION 2,3:PRINT "NUMBER,UNIT:" 
j:INPUT NUM,UNIT$:NUM$=STR$(NUM) 
1710 POSITION 2,4:PRINT "CAL:"i:IMPUl 
CAL:CAL$=STR$(CAL) 
1720 PRINT UliITEM$ 
1725 GOSUB PADDATA 
1730 PRINT UljNUM$ 
1740 PRINT UliUNIT$ 
1750 PRINT UliCAL$ 
1755 NOTE Ul,SECT,CHAR 

ATARI a-BIT EXTRA 



'gij], ~ ~~~ ~~~U~ GET NEW DATA FOR ITEM *** 
lltf)/ 1800 POSITION 2,4: PRINT "NUMBER, UNIT= 
{. . ••• "j VtlL (NUM$) j" "j UNIT$ 
05 ' 1810 POSITION 2,5:PRINT "CHANGE TO:"j: 

INPUT NUM,UNIT$:NUM$=STR$(NUM) 
ZA 1820 POSITION 2,6:PRINT "CALORIES= "jV 

AL (CAL$) 
1.11.11825 POSITION 2,7:PRINT "CHANGE TO: "j 

:~~. l~~~U~E~fl~~ CAL$=S TR$ CCAl) 
HJ E1847 REM **** WRITE REVISED DATA **** 
( (1)1850 OPEN Ul,12,O,"D:DATA.FIL" 
~ UH ' 1860 POINT Ul,SECT(I),CHARCI) 
' K~ 1870 PRINT UljITEM$ 
?8P 1875 GOSUB PADDATti 

RB ' 1880 PRINT UljNUM$ 
. VV 18~0 PRINT Ulj UNIT$ 
HX1~00 PRINT UljCAL$ 
DW1~10 CLOSE Ul:RETURN 
D)(1'347 REM ***** PAD ITEM FIELD ***** 
RB) 1'350 LI=LEN CITEM$) 
QK\ 1'355 ITEM$(LI+l,25)=BLANK$ 

. B.J ;1 1<J60 RETURN 
? I)B / l~77 REM *** PAD SECT/CHAR FIELDS *** 
t8R 1<J80 L TH=LEN (SECT$) 
i l~\ 1~85 IF LTH=2 THEN SECT$(2,3)=SECT$:SE 

ATARI 8-BIT EXTRA 

., .. CT$ Cl,l) ="0" 

• 

1'3'30 IF LTH=l THEN SECT$C3,3)=SECT$:SE 
CT$Cl,2)="00" 
1'3'35 LTH=LEN(CHAR$) 
2000 IF LTH=2 THEN CHAR$C2,3)=CHAR$:CH 
AR$(l,l)="O" 
2005 IF LTH=l THEN CHAR$C3,3)=CHAR$:CH 
AR$Cl,2)="00" 
2010 RETURN 
2037 REM ***** PAD DATA FIELDS KKKKKK 
2040 LU=LEN(UNIT$) 
2045 UNIT$(LU+l,15)=BLANK$ 
2050 LTH=LENCNUM$) 
2055 IF VALCNUM$){l THEN GOTO 2070 
2060 IF LTH=2 THEN NUM$C2,3)=NUM$:NUM$ 
(1,1) ="0" 
2065 IF LTH=l THEN NUM$C3,3)=NUM$:NUM$ 
(1,2) ="00" 
2070 LTH=LEN(CAL$) 
2075 TEMP$=CAL$:CAL$="OOO" 
2080 IF LTH=2 THEN CAL$(2,3)=TEMP$ 
2085 IF LTH=l THEN CAL$(3,3)=TEMP$ 
20'30 CAL$=TEMP$ 
20'35 RETURN 

ANALOG COMPUTING 117 



ULTIMATE STORAGE 
Here's the perfect way to organize your ANALOG Computing library-sturdy, custom-made binders 
and files in deep blue leatherette with embossed silver lettering. Silver labels are included to index 
by volume and year. One binder or a box-style file is all you'll need to accommodate 12 issues (1 
year) of ANALOG Computing-all the games, programs, tutorials and utilities that you want handy. 

The ANALOG Computing binder opens flat for easy reading and reference. They're economically 
priced at only $9.95 each-3 binders for $27.95 or 6 binders for $52.95. 

The ANALOG Computing file is attractive and compact, holding 12 issues for easy access. Files 
are available for only $7.95 each -3 files for $21.95 or 6 files for $39.95. 

Add $1 .00 (outside US, add $2.50) per case/binder for postage and handling - Us. funds only. 

Call Toll Free 1-800-972-5858 Charge orders only, minimum $15.00 

Enclosed is my check or money order in the amount of $ ___ _ 
Please send me: __ ANALOG Computing files __ ANALOG Computing binders. 

PLEASE PRINT 

Name __________________________________ __ 

Address: (No PO Boxes) ________ ____________________ __ 

City ___________________ _ State: __ _ Zip Code _____ _ 

Send your order to: Jesse Jones Industries 
DEPT. ACOM, 499 East Erie Ave., Philadelphia, PA 19134 

PA residents, add 6% sales tax Satisfaction guaranteed or money refunded. II 







by Jim Ehninger 

A month ago, a friend of mine was having problems 
with his disks. His little brother was playing his games 
without permission; his sister was reading his AtariWriter 
files, and his dad replaced one of his BASIC files with a 
program that said, "Happy April Fool's Day." He came to 
me for help. 

I created a short AUTORUN.SYS file that required a cer
tian keypress before you could run DUP.SYS. But they 
could still get in by booting another disk, then reading 
the directory from there. "Give me time," I said. A week 
la ter, PassWord was created. 

So what will it do? 
Type in Listing 1 (the BASIC listing). Do not type in 

the assembly language source code; this is for advanced 
programmers to look over. Save the program. Insert a blank 
disk (or a disk that may be formatted) and execute the pro
gram, using item P at the first prompt. The current DOS 
in memory will be written to the disk, then the program 
will ask you for a password. A hint : use a short, one-word 
password that's easy to type in, easy to remember, and isn't 
too obvious. 

After the program is through, it will reboot and let you 
tryout your new, protected disk. I won't guarantee it will 
work for people like Tom Hudson or Kyle Peacock, but it 
will probably keep your family and friends out. 

ATARI 8-BIT EXTRA 

Any questions? 
The following are some questions you may have about 

PassWord. First, how does it work? The program works 
by moving the disk directory (normally sector 361) to a 
different location. When you try to boot another disk and 
read the directory, you don't see a list of the files on that 
disk. Therefore, we have the protection we want. 

Can someone else boot their PassWord disk and "get 
into" my disk? No, I thought of that, too. On almost all disks 
the directory is in a different place. The odds of two Pass
Word programs being the same are about 1 in 256. 

Sounds good . How can I transfer DOS files to my Pass
Word disk? There are two methods I've found: (1) use the 
COpy + 4.0 program supplied in Listing 1; or (2) type 
POKE 1955,89:POKE 1956,228 to toggle DOS access, load 
the file , then POKE 1955,O:POKE 1956,4 to return to Pass
Word access, and save the program. 

Great! You've just given away the secret. No, they still 
have to boot up your disk before those POKEs will work. 
And please be careful when using these POKEs. 

COPY+ 4.0. 
The subroutine at the end of Listing 1 is a utility that 

enables you to copy any DOS file to your PassWord disk, 
and vice versa. You must boot your PassWord disk up to 
run this program. Otherwise, your computer will lock up 
and take a short trip to the Twilight Zone. 

The COpy + 4.0 program (yes, there were four versions) 

ANALOG COMPUTING 121 



(EJ PassW"ord continued 

and the PassWord program should be saved as one pro
gram. It's best to copy this program onto your PassWord 
disk if you're going to be doing a lot of copying (say, us
ing it as a programming disk). Please specify this at the 
prompt. 

If you have any questions about PassWord or COpy + 
4.0, or if you make up some new utilities for PassWord, 
write to the Reader Comment section. Users with 300-
baud modems can leave me a message on StarGate Earth 
Bulletin Board System: (801) 272-1518,10 p.m. to 7 a.m. , 
seven days a week , ATASCII and full duplex. Have fun 
with your PassWord. ~ 

Jim Ehninger has owned an Atari 800 since 1982 . Jim 
enjoys telecommunications and programming 6502 ma
chine language and BASIC. He enjoys more cerebral gam es 
and is a remote SYSOP of Wally World BBS, 801-255-9345. 

The two-letter checksum code preceding the line 
numbers here is not a part of the BASIC program. 
For further information, see the BASIC Editor II 
in issue 47 of ANALOG Computing. ' 

Listing 1. 
BASIC listing. 

~g ~~~ i~i~MiM:'!l!fM~~~iU:IEl 
30 OPEN U2,12,O,"E:" 
40 GRAPHICS O:SETCOLOR 2,0,0 
50 OPEN U3,4,O,"K:":DIM DOS$(128) PW$( 
301,D$(10001{DSKINV$(5),B$(128),A$(255 
) ,NO$ (128) , P~ (2) , ME$ (10) 
55 ? "(P)/W prograM, or (G)o to COPV+ 
4.0 :"i:INPUT U2,P$:If P$="G" THEN GOS 
UB 1000:END 
60 K1=PEEK(58404)+1:K2=PEEK(58405):Pl= 
PEEK(58374)+1:P2=PEEK(58375):P$=CHR$(P 
1):P$(2)=CHR$(P2) 
70 fOR A=l TO 128:NO$(A)=CHR$(0):NEHT 
A 
80 ? "P/H DISK BOOT MAKER - BV JIM EHN 
INGER" 
90 ? "CC) 1985 ANALOG COMPUTING","" 
100 ? "INSERT A DISK INTO DRIVE 1.","" 
110 ? "1:tjljl:U:lH-THIS WILL ERASE ALL CON 
TENTS" 
120 ? "ON THAT DISK!","" 
130? "PRESS RETURN:"i 
140 GET U3,D:If D{}155 THEN 140 
150? "Of OR MATTING DISK ... "i 
160 HIO 254,Ul,O,O,"D:" 
170? "OCREATING SPACE ... "; 
180 OPEN U1,8,O,"D:SPACE.PW" 
190 fOR A=1 TO 380:PUT U1,O:NEHT A:CLO 
SE U1 
200? "OWRITING DOS.SVS ... "i 
210 OPEN U1,8,O,"D:DOS.SYS":CLOSE U1:? 
211 ? "WOULD VOU LIKE OTHER fILES ON T 
HE":? "THE DISK BESIDES DOS? (i.e. DUP 
.SYS,":? "AUTORUN.SVS, etc.1 {V/N}"i 
212 INPUT U2,PW$:If PW$="N" THEN 220 
213 SGE=1:GOSUB 1000:SGE=0 
220 ? "OWHAT WOULD VOU LIKE VOUR PASSW 
ORD":? "TO BE?":? "20 CHARACTERS MAH." 
230 ? "NO CONTROL CHARACTERS OR INVERS 
E!","" 
240? "PASSWORD:"i:INPUT U2 PW$ 
250 If LEN (PW$)} 20 THEN ? "~i;.6itjlj[jltU3 
1:,,"m:U": GOTO 240 
260 fOR A=1 TO LEN(PW$) 

122 ANALOG COMPUTING 

PO 

HE 

QA 

HL 

270 If ASC(PW$(A,A11}31 AND ASC(PW$(~, 
A11{125 THEN NEHT A:GOTO 290 
280 ? "1:!la!llla.:111_6itj]:[jltU04:"W11:_4:L1j;4i'-1 
[IIIIJ":GOTO 240 
290 ? "YOUR PASSWORD IS:"'PW$:? "IS TH 
IS CORRECT? ";: INPUT U2, AS: If A$ (1,11 { 
}"Y" THEN 220 
300 ? "~PLEASE STAND BV - INITIALIZING 

DATA .. ":RESTORE :SE=O 
310 fOR A=l TO 442 
320 READ D:SE=SE+D:D$CA1=CHR$(D1:NEHT 
A:fOR A=1 TO 70:D$(442+A1=CHR$C01:NEHT 

A 
330 D$(14,151=P$:D$(191,1921=P$:D$(206 
,2071=P$:D$(225,2261=P$:D$(259,2601=P$ 
:D$(313,3141=P$:D$(352,3531=P$ 
340 D$(158,1581=CHR$(K11:D$(159,1591=C 
HR$ (K21 
350 If SE042148 THEN? "ERROR IN DATA 

STATEMENTS.":END 
360 fOR A=l TO LENCPH$1:D$(229+A,229+A 
1=CHR$(ASC(PW$CA,A11*21 :NEHT A 
370 NS=INT(RND(11*2451+8:D$(427,4271=C 
HR$(NS1 
380? "","WRITING PROGRAM ... " 
390 DSK=768:SE=4:TT=1:RW=87 
400 DSKINV$="h s1!l." 
410 POKE DSK+1,1 
420 B$=D$(TT,TT+127):GOSUB 440:TT=TT+1 
28:SE=SE+1:If SE{8 THEN 420 
430 GOTO 660 
440 AD=ADR(B$):POKE DSK+2,RW 
450 HIGH=INT(AD/256):LOW=AD-CHIGH*2561 
460 POKE DSK+4,LOW:POKE DSK+5,HIGH 
470 SHI=INT(SE/256):SLO=SE-(SHI*256) 
480 POKE DSK+10,SLO:POKE DSK+11,SHI 
490 A=USR(ADR(DSKINV$l):If PEEK(DSK+31 
01 THEN ? "~S TATUS ERROR- "i PEEK CDSK+ 
31:GOTO 440 
500 RETURN 
510 DATA 162,0,142,198,2,189,162,8,240 
,21,134,255,32,164,246,162,16,160,0,13 
6,208,253,202,208,248,166,255 
520 DATA 232,76,133,8,76,23,9,125,80,4 
7,87,32,45,32,40,99,41,32,49,57,56,53, 
32,65,78,65,76,79,71,32,67,79 
530 DATA 77,80,85,84,73,78,71,155,80,8 
2,79,71,82,65,77,32,66,89,58,32,74,73, 
77,32,69,72,78,73,78,71,69,82 
540 DATA 155,80,65,83,83,87,79,82,68,5 
8,30,30,30,30,30,30,30,30,30,255,255,2 
55,255,255,157,157,157,157,157 
550 DATA 157,157,157,157,157,29,29,29, 
29,29,29,29,29,29,29,31,31,31,31,31,31 
,31,31,31,31,31,31,31,31,0,0 
560 DATA 169,0,141,22,9,32,226,246,201 
,155,240,86,201,126,240,46,24,201,32,1 
44,240,201,125,176,236,141,21 
570 DATA 9,24,173,22,9,201,20,144,8,16 
9,253,32,164,246,76,28,9,173,21,9,174, 
22,9,157,2,1,32,164,246,238,22 
580 DATA 9,76,28,9,173,22,9,240,194,20 
6,22,9,169,126,32,164,246,76,28,9,32,3 
2,32,32,32,32,32,32,32 
590 DATA 32,32,32,32,32,32,32,32,32,32 
,32,169,155,174,22,9,157,2,1,32,164,24 
6,162,0,24,126,101,9,232 
600 DATA 224,21,208,247,162,0,139,101, 
9,221,2,1,208,4,232,76,145,9,183,101,9 
,201,16,208,10,189,2,1,201,155 
610 DATA 208,3,76,213,9,162,0,189,192, 
9,240,249,134,255,32,164,246,165,255,2 
32,76,176,9,155,253,126,80,65 
620 DATA 83,83,87,79,82,68,32,63,09,78 
,73,69,68,33,155,0,162,0,189,231,3,240 
,28,134,255,32,164,246,166,255 
630 DATA 232,76,215,9,155.66.111,111.1 

ATARI 8-BIT EXTRA 



16,105,110,103,32,68,7~,83,46,46,46,15 
5,O,16~,4,141,164,7,16~,O,141 
640 DATA 163,7,162,O,18~,18,10,157,O,4 
,232,224,40,208,245,76,20,7,24,173,10, 
3,201,105,144,28,201,112,176 
650 DATA 24,173,11,3,201,1,208,17,24,1 
73,10,3,105,0,141,10,3,173,11,3,105,0, 
141,11,3,32,8~,228,~6 
660 SE=361:RW=82:GOSUB 440:LET DOS$=B$ 
:RW=87 
670 B$=NO$:SE=361:GOSUB 440 
680 FOR J=361+NS TO 368+NS:SE=J:B$=NO$ 
:G05UB 440 
6~0 NEKT J 
700 5E=361+5N:B$=DOS$:G05UB 440 
710 B$=NO$:FOR A=l TO 128 5TEP 16:B$(A 
,A)="B":NEKT A 
720 B$(6,16)="ThiS Disk ":B$(22,32)=" 
has been ": B$ (38,48) ="llJ:llu;C.u 04 I] ": B 
$(54,64)="B!,I: P/W!!! " 
730 B$(70,80)=" ":B$(86,~6)= 
"(c) 1~85 ":B$(102,l12)="B!I: ANALOG 

":B$(118)="COMPUTING " 
740 SE=361:G05UB 440 
750 B$(6,16)="~ 1":B$(22,32)=" 
PrograM b!l:":B$(38,48)="J. Ehninger":B 
$(54,64)=" " 
760 B$(70,80)=" IlJ.ot\.jlfl ":B$(86,~6)= 
.. 1:I;04;Illlii ": B$ (102,128) =" .................. 
770 SE=362:GOSUB 440 
780 B$=DOS$: B$ (1,11 ="(;": SE=361+NS: GOSU 
B 440 
7~0 SE=1:RW=82:GOSUB 440:RW=87:B$(2,2) 
=CHR$(7):B$(8,~)="~":GOSUB 440:GOSUB 
830 
800 ? "OK! YOU ARE ALL READY! REMEMB 
ER":? "YOUR PASSWORD: "iPW$:? 
810 ? "PRESS RETURN TO BOOT P/W DISK:" 
i:GET U3,D:IF D<}155 THEN 810 
820 ANALOG=USR(58487) 
830 SE=360:RW=82:GOSUB 440 
840 A=56+ (N5/8) : ME$= ...... : B$ (A, A+ 11 =ME$ 
850 B$(4,4)=CHR$(ASC(B$(4,4))-16) 
860 SE=360:RW=87:GOSUB 440:RETURN 

i:~: ~~~ Ei1'W"~t;~,,;utliie:!i3 
1020 Dl=PEEK(1~55):D2-PEEK(1~56) 
1040 GRAPHICS O:SETCOLOR 2,0 O:DIM BUF 
FER$(FRE(0)-500),WOWS(30),FN!(30),KITE 
S (10) 
1050 ? "IIiP/W COPY+ 4.0 - BY JIM EHNING 
ER":TRAP 12~0 
1060 ? "Cc) 1~85 ANALOG COMPUTING":? 
1070 ? "~A. DOS to P/W" 
1080 ? "~B. P/W to DOS" 
1085 ? ".C. EKIT TO P/W":? 
10~0 ? "~SELECT:"i:INPUT U2,KITE$ 

• 1100 IF KITES<"A" OR KITES}"C" THEN ? 
".tiJIlM1)'.IIJ": GOTO 10~0 
1110 ? .. n~ILE:"i :INPUT U2,WOW$:FNS="Dl 
:":fN$(4)=WOWS 
1120 ? "INSERT SOURCE DISK, HIT RETURN 
":INPUT U2,WOW$ 
1125 IF SGE THEN 1150 
1130 IF KITE$="A" THEN POKE 1~55,8~:PO 
KE 1~56,228 

.... 1140 IF KITE$="B" THEN POKE 1~55, 0: POK 
E 1~56,4 
1150 OPEN Ul,4,O,FN$ 
1160 AS(255)=" ":BUFFER$="" 

DH 1170 TRAP 1175:KIO 7,Ul,4,O,A$:BUFFERS 
(LEN(BUfFERS)+l)=A$:GOTO 1170 

E!I 1175 IF PEEK (1~5) =5 THEN ? "PROGRAM TO 
() LARGE."!EMD tlH 1180 IF PEEK (1 ~5) <> 136 THEN 12~0 

~C 11~0 TRAP 12~0:IF PEEK(856) THEN BUFfE 
-~ R$CLENCBUFFER$)+1)=AS(l,PEEKC856)) 

ATARI 8-SIT EXTRA 

.... 1200 CLOSE Ul 
1210 ? "INSERT DESTINATION, HIT RETURN 
":INPUT U2,WOW$ 

......•. 1215 IF SGE THEN 1240 
...• 1220 IF KITE$="B" THEN POKE 1~55,8~: PO 

i KE 1~56,228 
• 1230 IF KITE$="A" THEN POKE 1~55,O:POK 

<.i E 1~56,4 
•...•.. 1240 OPEN Ul,8,O FN$ 
........ 1250 ? Ul i BUFFER! i : CLOSE Ul 
.. 1260 ? "COPY+ COMPLETE!":? "(A)nother 

. cOP!I or (E)xit:"i:INPUT U2,WOW$:IF WOW 

I m~ '~g~[:i~~i!!m~;; ~::: :::5) : END 
• 

0100 
0110 
0120 
0130 
0140 
0150 
0160 
0170 
0180 
0190 
0200 
0210 
0220 
0230 
0240 
0250 
0260 
0270 
0280 
02~0 
0300 
0310 
0320 
0330 
0340 
0350 
0360 
0370 
0380 
03~0 
0400 
0410 
0420 
0430 
0440 
0450 
0460 
0470 
0480 
04~0 
0500 
0510 
0520 
0530 
0540 
0550 
0560 
0570 
0580 
05~0 
0600 
0610 
0620 
0630 

Listing 2. 
Assembly listing. 

,OPT NOLIST 
*=S880 

+--------------------+ 

I

P/W ASSEMBLV LISTINGI 
B!I: JiM Ehninger 

USES ASM/EDITOR (tM) 
+--------------------+ 

05 EQUATES! 

GETKEY =$F6E2 
COLOR2 =$02C6 
PRINTCHR=SF6A4 
DOSVEC =$07A2 
CHARS =S0102 
BOOTDOS =$0714 
i 

LDX uSOO iGet rid of 
STX COLOR2 ithat color! 

PRINT iRead the 
LDA DATA,X iwelcoMe 
BEQ STARGATE iMessage, and 
STX SFF iprint it to 
JSR PRINTCHR ithe screen. 
LDX USI0 iPut in a dela!l 

WHX iSO it looks 
LDY uSOO ineat. 

WHY jIsn't this 
DEY jjust like 
BNE WHY jWarGaMes? 
DEX jAre we through 
BNE WHX jdill!l-dall!ling 
LDX SFF jaround? 
INX jcheck ... 
JMP PRINT jno, keep going 

STARGATE j YES! lets get 
JMP OTAY jstarted ... 

DATA jData for MSG 
.BYTE 125,"P/W - " 
.BYTE "(c) 1~85 ANALOG" 
.BYTE "COMPUTING",155 
.BYTE "PROGRAM BY: " 
.BYTE "JIM EHNINGER",155 
.BYTE "PASSWORD:" 
. BYTE " " 
. BYTE " " 

TEMP BRK iTeMp location 
NUMS BRK jU of chars. 
, 
OTAY 

LDA uSOO 
STA NUMS 

JIMCO 

j 
jPut zip into 
jthe nUMber 
jcount location 

ANALOG COMPUTING 123 



(EJ Pass "Word continued 

0640 
0650 
0660 
0670 
0680 
06';10 
0700 
0710 
0720 
0730 
0740 
0750 
0760 
0770 
0780 
07';10 
0800 
0810 
0820 
0830 
0840 
0850 
0860 
0870 
0880 
08';10 
0';100 
OHO 
0';120 
ono 
0';140 
0~50 
0';160 
0';170 
0';180 
0';1';10 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
10';10 
1100 
1110 
1120 

JSR GETKEY 
CMP US';IB 
BEQ HEOONE 
CMP US7E 
BEQ GETOOWN 
CLC 
CMP US20 
BCC JIMCO 
CMP US70 
BCS JIMCO 
STA TEMP 
CLC 
LOA NUMS 
CMP US14 
BCC LESS20 
LOA USfO 
JSR PRINTCHR 
JMP JIMCO 

LESS20 
LOA TEMP 
LOX NUMS 
STA CHARS,X 
JSR PRINTCHR 
INC NUMS 
JMP JIMCO 

GETOOWN 
LOA NUMS 
BEQ JIMCO 
OEC NUMS 
LOA US7E 
JSR PRINTCHR 
JMP JIMCO 

HISPW 
.BYTE " 

HEOONE 
LOA US';IB 
LOX NUMS 
STA CHARS,X 
JSR PRINTCHR 
LOX uSOO 

CHANGE 
CLC 
ROR HISPW,X 
INX 
CPX US15 
BNE CHANGE 
LOX uSOO 

OUTTA 
LOA HISPW,X 

124 ANALOG COMPUTING 

iGet a ke!,l. 
iis it RETURN? 
iYES-Check P/W 
;is it BACK S? 
;YES-OecreMent! 
;Clear the wa!,l! 
;is it < 32? 
; YES! Branch! 
;is it }124? 
; YES! Leave! 
;It's OK. 
;Kill the fLAG! 
;Get the aMount 
;is it over 20? 
; if not, branch 
; YES! ScreaM 
;at hiM! CTRL-2 
; Another ke!,l ... 
;It is ok, add 
;the ke!,l onto 
;the list of 
;ke!,ls alread!,l 
i entered, pr i nt 
;it, and INC! 
;get another ... 
iPressed BACK 5 
;Is he < O? 
iYES! get ke!,l .. 
iOown bab!,l! 
iErase the 
;Mistake. 
i get ke!,l ..... . 
iHis Password! 

" 
;Pressed RETURN 
iErase all the 
iold entries 
ihe wanted 
ierased. 
iOecode the 
iMessage so we 
ican decipher 
; what is tr!,ling 
ito sa!,l! 
iWe through? 
;No-keep gOing! 
;Now let's see 
;if the Man 
iat the ke!,ls 

1130 
1140 
1150 
1160 
1170 
1180 
11';10 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
12';10 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
13';10 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 
1480 
14';10 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
15';10 

• 

CMP CHARS,X iwon the prize! 
BNE LATER ; if not, later. 
INX ;keep going ... 
JMP OUTTA iCheck it! 

LATER iLet's see 
LOA HISPW,X ;where we ended 
CMP USff iUP. Is it ff? 
BNE YELL iNO! A fAKE! 
LOA CHARS,X iMabye so .. 
CMP US';IB iThe RETURN! 
BNE YELL ;IMpersonator! 
JMP ITS HIM ;YES! WelcoMe! 

YELL i Allright, so 
LOX uSOO ;!,IOU are the 

SCREAM iintruder? 
LOA BALLOUT,X iScreaM at hiM! 
BEQ YELL iShoot hiM at 
STX Sff i dawn! Attack 
JSR PRINTCHR iMen! Two ARMS, 
LOX Sff iTwo Legs! 
INX ;SCREAM AT HIM! 
JMP SCREAM ;Oon't let hiM 

BALLOUT iescape!!! 
.BYTE 155,253,126 
.BYTE "PASSWORO " 
.BYTE "OENIEO!",155,O 

ITSHIM ;He!,l gu!,l! 
LOX uSOO ;Let's insure 

HELLO ;hiM b!,l telling 
LOA WELCOME,X ihiM we are 
BEQ BOOTOOS ;booting up the 
STX Sff ;Oisk. 
JSR PRINTCHR ;He is waiting 
LOX Sff ;for the 
INX ;REAOY proMpt •. 
JMP HELLO ;Keep printing! 

WELCOME ;The data: 
.BYTE 155,"Booting " 
.BYTE "005 ... ",155,0 

BOOTOOS ;Change 005 to 
LOA uSOO ijUMP to our 
STA OOSVEC+l iroutine ever!,l 
LOA US04 ;tiMe! 
STA OOSVEC ;And we boot! 
JMP BOOT005 ;L8R da!,ls .•. 

iModeMs call: 
ENO. i(801) 272-1518 

ATARI 8-BIT EXTRA 



by Donald E. Glover 

When I purchased my Atari 1020 printer/plotter, I was 
disappointed that no program was provided to plot on pa
per screens drawn in the standard Atari graphics modes. 
The Dumpl020 gives you such a screen dump routine 
(DUMP1020), written in BASIC. This article includes in
structions for the program and examples of its use with 
programs published in ANALOG Computing. 

Program logic. 
(1) The graphics mode is determined by a variable 

set by the user. 
(2) The user is given the option of just outlining 

(fast) or completely filling (slower) pixels not set to 
background color (color 0). 

(3) An appropriate frame is drawn. 
(4) Each pixel of each row on the screen is tested 

for a non-background color. If a non-background col
or is found, the pixel is outlined or filled on paper, 
depending on the decision made in (2), above. Note 
that the screen is completely scanned once for each 
color. This is more efficient than scanning the screen 
once and checking for all three colors, because of the 
length of time required to change pens. 

A BASIC screen dump. 
After entering Dumpl020 (Listing 1), it should be LISTed 

to disk or tape. It can then be merged with a main pro
gram by using the BASIC command, ENTER. Durnpl020, 
by starting at Line 32000 and using variable names which 

ATARI 8-BIT EXTRA 

begin with ZZ, is designed to be merged into most BA
SIC programs without conflict. (Durnpl020 can be easily 
renumbered by a renumber utility, or the RENUM com
mand in BASIC XL, if the main program has line num
bers within its range.) 

The picture on the TV screen is plotted on paper by call
ing the plotting subroutine (GOSUB 32013) from the ap
propriate part of the main program. Before you make this 
call, the variable ZZFILL must be set to 1 if you desire 
to fill the pixels, or 0 if you do not. Next ZZMODE should 
be set to a legal BASIC screen mode (3-8, 19-24, 15 or 31). 
Note that mode 15(7+) is supported, even on non-XL com
puters (see the example below). 

Finally, the initialization subroutine (GOSUB 32087) 
must be called prior to the plotting subroutine. This call 
should be made at the beginning of the main program. 
If the initialization routine is called at some other point, 
it may move BASIC arrays which the main program as
sumes are fixed. This could cause problems, if the main 
program is to continue running after the plot has finished. 

Examples. 
The BASIC version of Dumpl020 is demonstrated us

ing the program Space Assault, found in issue 13. After 
you've loaded Space Assault, add the following lines: 

1050 GOSUB 32087 
13~5 ZZHODE=7+16:ZZFILL=1:GOSUB 32013 

Now, merge Dumpl020 with the Space Assault program 
by using the ENTER command, then run the program. 
When the joystick trigger is pressed to shoot an enemy 
ship, the screen (including the "fission beam") will be fro-

ANALOG COMPUTING 125 



(El DUIllp1020 continued 

zen and dumped to the 1020 plotter. The player shapes 
will, of course, not be plotted. 

The program from the article Graphics 7+ Handler 
(from issue 11 of ANALOG Computing is used to demon
strate Dump1020 in graphics mode 15. After loading that 
program , add the following lines : 

10 GOSUB 32087 
410 If PEEK(764)<>255 THEN ZZfILL=l:ZZ 
MODE=15+16:GOSUB 32013:END 

Again, merge Dump1020 with this program and run it. 
When you wish to plot the display on paper, hit the SPACE 
BAR. 

Speeding things up. 
BASIC is slow. For example, it will take four to five 

minutes before the first pixel is plotted for Space Assault. 
However, if the main program doesn't use Lines 0 through 
8 (or if Lines 0-8 are just comments and can be deleted). 
the following modifications to Dump1020 will make the 
plotting subroutine run much faster. 

(1) Renumber Lines 32024 to 32030 of the plotting 
subroutine to 1 through 7. 

(2) Change the new Line 2 to: 

2 If If ZZMODE=15 THEN GOSUB 32073 
:GOTO 4 

(3) Add the following lines: 

o GOTO (first line of Main prograM 
-1000 for SPACE ASSAULT) 
8 RETURN 
32024 GOSUB 1 

(4) Delete Lines 32025 through 32030. 
The program, as modified here, works in a way identi

cal to the original. However, the modification moves the 
most often executed inner loop of Dump1020's three nest
ed FOR loops to the beginning, which greatly speeds up 
execution. (With BASIC XL from OSS, the above modifi
cations are unnecessary. Simply run the program in the 
FAST mode.) 

Program enhancements. 
These routines can be added to any program using stan

dard graphics modes, but beware of programs that start 
with a standard display list, then change it. An interest
ing modification would have to be Dumpl020 switch 
graphics modes and screen memory locations as dictated 
by the commands in such nonstandard display lists. 

Also, if more pen colors were available, the program 
could easily be modified to work in graphics modes 9, 10 
and 11. The program would have to stop every four colors, 
to allow the pens to be changed . 

Finally, Dump1020 could be expanded to work in graph
ics modes 1 and 2. This would require using the data in 
screen memory as pointers into the character memory. 
With these modifications, the program could be turned 
into a generalized plotting routine, which would plot vir
tually any display created on the Atari. ~ 

126 ANALOG COMPUTING 

The two-letter checksum code preceding the line 
numbers here is not a part of the BASIC program. 
For further information, see the BASIC Editor II, 
in issue 47 of ANALOG Computing. 

Listing 1. 
BASIC listing. 

32000 REM XMMMMMMMMMMMMMMMMMMMMMMMMMM 
32001 REM * * 
32002 REM * DUMPI020 * 
32003 REM * BY DONALD GLOVER * 
32004 REM * * 
32005 REM XMMMMMMMMMMMMMMMMMMMMMMMMMM 
32006 REM ZZFILL=l--FILL PIXELS 
32007 REM ZZFILL=O--NO FILL 
32008 REM ZZMODE=3,4,5,6,7,8,15 OR THE 
SE MODES+16 
3200~ REM MUST INITIALIZE BEfORE CALLI 
NG MAIN PROGRAM USING GOSUB 32082 
32010 REM ZZO,ZZN AND ZZS ARE THE SAME 

AS OLDCOLOR,NEWCOLOR AND SCREENCOLOR 
IN ACTION! PROGRAM 
32011 REM ALL OTHER VARIABLES ARE THE 
SAME AS THE ACTION! VARIABLES PREfIXED 

BY ZZ 
32012 REM EXCEPT fOR ZZA-ZZf,ZZYINCYPO 
5 AND ZZXINCXPOS WHICH WERE NEEDED TO 
HOLD INTERMEDIATE CALCULATIONS 
32013 REM MXXMXXMAIN PROGRAM--CALL AS 
A SUBROUTINE MMMMMXMMXXXXXXX 
32014 GOSUB 32105:REM SET UP SCREEN PA 
RAMETERS 
32015 GOSUB 32080:REM INITIALIZE PLOTT 
ER 
32016 If ZZMODE=15 THEN GOSUB 32118:RE 
M GRAPHICS 15(7+) ONLY 
32017 GOSUB 32113:REH DRAW fRAHE 
32018 fOR ZZS=l TO ZZNUHCOLORSCZZHODE) 
-1:REM fOR ALL COLORS 
3201~ If ZZHODE=15 THEN POKE 8~,INT(ZZ 
SCREENADD/256) :POKE 88,ZZSCREENADD-256 
*PEEK(8~) :REM GRAPHICS 15(7+) ONLY 
32020 PRINT U2i"C"iZZS:REM PICK PROPER 

COLOR PEN 
32021 fOR ZZYPOS=O TO ZZYMAX:REH fOR A 
LL ROWS 
32022 If ZZMODE=15 THEN GOSUB 32077:GO 
TO 32024:REM GRAPHICS 15(7+) 
32023 LOCATE O,ZZYPOS,ZZO 
32024 fOR ZZXPOS=O TO ZZXMAX-l:REM fOR 

ALL COLUMNS EXCEPT LAST 
32025 If ZZMODE=15 THEN GOSUB 32073:GO 
TO 32027:REM GRAPHICS 15(7+) 
32026 LOCATE ZZXPOS,ZZYPOS,ZZN 
32027 If ZZN=ZZS THEN GOSUB 32041:REM 
THIS IS CURRENT COLOR 
32028 If (ZZN<>ZZO) AND (ZZO=ZZS) THEN 

GOSUB 32046:REM WE NEED TO DRAW A BOX 
3202~ ZZO=ZZN 
32030 NEXT ZZXPOS 
32031 REM NOW DO LAST COLUMN WHICH IS 
SPECIAL 
32032 If ZZHODE=15 THEN GOSUB 32073:GO 
TO 32034:REH GRAPHICS 15(7+) 
32033 LOCATE ZZXMAX,ZZYPOS,ZZN 
32034 If ZZN=ZZS THEN GOSUB 32041:REM 
THIS IS CURRENT COLOR 
32035 If ZZO=ZZS OR ZZN=ZZS THEN G05UB 

32046:REM WE NEED TO DRAW A BOX 
32036 ZZO=ZZN 
32037 NEXT ZZYPOS 
32038 NEXT ZZS 
3203~ If ZZMODE=15 THEN POKE 89,INTCZl 
SCREENADD/256):POKE 88,ZZSCREENADD-256 
*PEEK(89):REH GRAPHICS 15(7+) ONLY 

ATARI 8-BIT EXTRA 



32040 RETURN 
32041 REM ~~~~~~~~~SUBROUTINE EXECUTED 
If PIXEL COLOR IS CURRENT COLOR~~~~~~ 

** 32042 ZZXINCXPOS=ZZXINC*ZZXPOS:ZZVINCV 
POS=ZZVINC*ZZVPOS 
32043 If ZZXPOS=O THEN PRINT U2i"M"iO, 
","i-ZZVINCVPOS:ZZXSTART=O 
32044 If ZZO <> ZZS THEN PRINT U2 i "M" i ZZ 
XINCXPOSi","i-ZZVINCVPOS:ZZXSTART=ZZXI 
NC*ZZXPOS 
32045 RETURN 
32046 REM ~~~~~~~~~~~SUBROUTINE TO DRA 
W BOX~~~~~~~~~~~~~~ 
32047 ZZXINCXPOS=ZZXINC*ZZXPOS:ZZVINCV 
POS=ZZVINC*ZZVPOS:ZZA=CZZN=ZZS):ZZB=CZ 
ZXPOS=ZZXMAX) 
32048 If ZZB AND ZZA THEN GOTO 32053 
3204~ REM NOT LAST COLUMN SO DRAW NORM 
AL BOX 
32050 PRINT U2i"D"iZZXINCXPOSi","i-ZZV 
INCVPOS 
32051 PRINT U2i"D"iZZXINCXPOSi","i-ZZV 
INCVPOS-ZZVLENGTH 
32052 GO TO 32056 
32053 REM LAST COLUMN 50 DRAW SPECIAL 
BOX 
32054 PRINT U2i"D"iZZXINCXPOS+ZZXLENGT 
H+li","i-ZZVINCVPOS 
32055 PRINT U2i"D"iZZXINCXPOS+ZZXLENGT 
H+li","i-ZZVINCVPOS-ZZVLENGTH 
32056 PRINT U2i"D"iZZXSTARTi","i-ZZVIN 
CVPOS-ZZVLENGTH 
32057 PRINT U2i"D"iZZXSTARTi","i-ZZVIN 
CVPOS 
32058 If ZZfILL=1 THEN GOSUB 32062:REM 

fILL PIXEL If fLAG SET 
3205~ PRINT U2i"M"jZZXSTARTj","j-ZZVIN 
CVPOS 
32060 RETURN 
32061 REM ~~~~~~~~~SUBROUTINE TO fILL 
PIXEL~~~~~~~~~~ 

32062 fOR ZZLINE=O TO ZZXINC 
32063 PRINT U2jID"iZZXSTARTj","i-ZZVIN 
CVPOS-ZZLINE 
32064 If ZZB AND ZZA THEN GOTO 32068 
32065 REM NOT LAST COLUMN 
32066 PRINT U2iIDliZZXINCXPOSi","i-ZZV 
INCVPOS-ZZLINE 
32067 GO TO 32070 
32068 REM LAST COLUMN 
3206~ PRINT U2i I D"jZZXINCXPOS+ZZXLENGT 
H+li","i-ZZVINCVPOS-ZZLINE 
32070 NEXT ZZLINE 
32071 RETURN 
32072 REM ~~~~~~~~~SPECIAL LOCATE ROUT 
INE fOR GRAPHICS 15C7+)~~~~~~~~~~~ 
32073 If ZZVPOS=ZZCHANGE THEN POKE 88, 
ZZLOMOD:POKE 8~,ZZHIMOD 
32074 LOCATE ZZXPOS,ZZVPOS-ZZCHANGE*CZ 
ZVPOS>=ZZCHANGE),ZZN 
32075 RETURN 
32076 REM *****SPECIAL LOCATE ROUTINE 
fOR GRAPHICS 15C7+)--ZZXPOS=0 ONLV**** 
32077 If ZZVPOS=ZZCHANGE THEN POKE 88, 
ZZLOMOD:POKE 8~,ZZHIMOD 
32078 LOCATE O,ZZVPOS-ZZCHANGE*CZZVPOS 
>=ZZCHANGE1,ZZO 
32073 RETURN 
32080 REM ~~~~~~~~SUBROUTINE TO INITIA 
LIZE PLOTTER IN GRAPHICS MODE~~~~~~~~ 
32081 CLOSE U2:REM JUST TO MAKE SURE 
32082 OPEN U2,8,0,IP:":REM OPEN CHANNE 
L TO 1020 
32083 PRINT U2iCHR$(27)iCHR$C71:REM PR 
INTER IN GRAPHICS MODE 
32084 PRINT U2i"H":PRINT U2i I I":REM HO 
ME AND INIT PLOTTER 

ATARI 8-BIT EXTRA 

32085 PRINT U2jIMl jOi l ,"iO:REM MOVE PE 
N TO 0,0 
32086 RETURN 
32087 REM ~~~~~~~~~~~~~SUBROUTINE TO I 
NITIALIZE ARRAVS~~~~~~~~~~~~~~~~~~ 
32088 DIM ZZMODEXMAXC151,ZZMODEVMAXCI5 
1 ,ZZMODEVINC(15),ZZMODEXINCCI51,ZZNUMC 
OLORS (151 
3208~ DIM ZZADDfORfUlLCI5) 
320~0 REM fIll ARRAVS 
320~1 RESTORE 320~8 
320~2 fOR ZZTMODE=O TO 15 
320~3 READ ZZA,ZZB,ZZC,ZZD,ZZE,ZZf 
320~4 ZZMODEXMAXCZZTMODE1=ZZA:ZZMODEVI 
NCCZZTMODE1=ZZB 
320~5 ZZMODEVMAX{ZZTMODE)=ZZC:ZZMODEXI 
NCCZZTMODE)=ZZD 
320~6 ZZNUMCOlORS{ZZTMODE)=ZZE:ZZADDfO 
RfULl{ZZTMODE)=ZZf 
320~7 NEXT ZZTMODE 
320~8 REM DATA FOR ARRAVS 
320~~ DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0 
,0,0,0,0 
32100 DATA 3~,12,1~,12,4,4,7~,6,3~,6,2 
,8,7~,6,3~,6,4,8,15~,3,7~,3,2,16 
32101 DATA 15~,3,7~,3,4,16,31~,1,15~,1 
,2,32 
32102 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0 
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 
,0,0, ° . 
32103 DATA 15~,2,15~,3,4,32 
32104 RESTORE :RETURN 
32105 REM ~*********SUBROUTINE TO SET 
UP SCREEN PARAMETERS*~**~***~***** 
32106 IF ZZMODE}15 THEN ZZMODE=ZZMODE-
16:ZZFULL=1:REM CHECK FOR FUll SCREEN 
MODE 
32107 ZZXMAX=ZZMODEXMAX{ZZMODE) 
32108 ZZVMAX=ZZMODEVMAXCZZMODE)+ZZFUll 
*ZZADDFORFUllCZZMODE) 
3210~ ZZCHANGE={ZZVMAX+l)/2:REM USED T 
o FIND MIDDLE OF SCREEN FOR GRAPHICS 7 
+ 
32110 ZZXINC=ZZMODEXINCCZZMODE):ZZVINC 
=ZZMODEVINC{ZZMODE) 

MR 32111 ZZXLENGTH=ZZXINC-l:ZZVlENGTH=ZZV 
INC-l:REM lENGTH OF BOX SIDES 

DU 32112 RETURN 
DB 32113 REM ~*~*****~**SUBROUTINE TO DRA 

W FRAME ************* 
32114 PRINT U2i"C"jO:REM BLACK PEN FOR 

FRAME 
32115 PRINT U2i"M"iOi","iO:PRINT U2j"1) 
IjZZXMAX*ZZXINC+ZZXINCj","iO 
32116 PRINT U2i"D"iZZXMAX*ZZXINC+ZZXIN 
Ci","i-ZZVMAX*ZZVINC-ZZVINC:PRINT U2i" 
D"iOi","i-ZZVMAX*ZZVINC-ZZVINC 

lX 32117 PRINT U2i I Dl iOi","iO:RETURN 
KJ 32118 REM ****~****SUBROUTINE USED TO 

FOOL BASIC LOCATE COMMAND FOR GRAPHICS 
15C7+) **~***~*~*~~* 

va 3211~ ZZSCREENADD=PEEK{881+256*PEEKC8~ 
1 

RS 32120 ZZMODADD=ZZSCREENADD+ZZCHANGE*40 
SB 32121 ZZHIMOD=INT{ZZMODADD/2561 
BK 32122 ZZLOMOD=ZZMODADD-ZZHIMOD*256 
ZS 32123 If ZZMODE=15 THEN POKE 87,7:REM 

fOOL BASIC €il 32124 RETURN 

• 

ANALOG COMPUTING 127 



ANALOG Computing 
Writers' Guidelines 

Make sure your submission 
gets the attention it deserves. 

Many of the following suggestions are applicable to all computer magazines. They assist us in the typesetting ac
curacy of your submission and in the speed of publication . ANALOG Computing, a monthly magazine, publishes 
new articles, programs and reviews concerning only Atari home computers and their related hardware and soft
ware. We have published many first-time authors, so by following these guidelines, you may soon find your article 
and byline in the pages of ANALOG Computing. 

1. The upper left-hand corner of the first page should con
tain your name, address, telephone number and the date 
of your submission. Important: when you submit an article 
to us, you must indicate whether or not it is a simultaneous 
submission . A simultaneous submission is a photocopied 
manuscript submitted to more than one magazine at a time. 
Many magazines do not appreciate this practice (we are 
among them) and view any photocopied manuscripts wari
ly. We do accept manuscripts text printed on a word proces
sor. Your article should also be submitted on disk, along with 
any programs which the article requires. 

2. The title of the article should be underlined, starting half
way down the first page. 

3. If your article is a product review, please include the fol
lowing information, in lieu of a title: the product's official 
name; the product's author (if avai lable); the company pro
ducing and/or distributing it ; the company's address and 
phone; memory or hardware requirements ; and suggested 
retail price. 

4. The following pages should be typed normally (double 
spaced), except that, in the upper right-hand corner, the ti
tle of the article should be prominent, along with your last 
name and the page number (e.g., OiskIJonesI3). 

5. If your article has program listings of between five and 
twenty lines, you may include them within the text. Longer 
programs should be included with your article, but it is not 
essential. However, it is imperative that we have a copy of 
the program on disk. The disk should be labeled with the 
author's name and the tit le of the article or program. 

6. It is much easier for our readers to type in your program 
if you use CHR$(X) values instead of cursor manipulators 
to format your output. In some cases, it may be necessary 
to include special control characters to create special dis
plays. In these cases, control characters are allowable. 

7. The printers used for ANALOG's program listings will ac
cept all Atari control, escape and inverse video characters. 
BASIC programs containing machine language subroutines 
in string variab les should use DATA statements to contain 
the machine language numeric values. Authors should avoid 
using the assignment of a string variable to a complex ma
chine language string literal. For example, (ML$= "mj+7") 
could confuse readers. Authors should provide commented 
assembly source code li st ings for any machine language 
subroutines used in their programs. Any machine language 
game programs should be located in the lowest possible 
amount of memory. 

8. Standard manuscript format-rules such as double spac
ing , one-inch margins all around the text, standard typing 
paper and typing only on one side of the paper-should be 
followed when submitting an article or review to ANALOG 
Computing . The pages of your submission should be pa
per clipped together, not stapled. 

9. The best way to write for us is by studying previous is
sues. For instance, reviews of hardware and software shou ld 
list the information requested in paragraph 3. Your article 
should be written in continuity with ANALOG's style-the 
acronym BASIC is always all caps, as are keys like RETURN 
and BREAK, while names of other languages are spelled 
in var ious ways (Pascal , FORTH, assembly). 

10. ANALOG Computing pays between $25 and $390 for 
published articles. The standard rate of pay is $65 per type
set page, up to six pages total (not including space taken 
for advertisements, art and photos). Articles over that length 
will be paid the flat maximum fee. If we do determine that 
an article may be over eight magazine pages, it may be spYit 
into two parts or sent back to the author for editing. 

Send all articles, reviews or program submissions to: ANALOG Computing Magazine, Submissions Department, 
PO. Box 23, Worcester, MA 01603. 



by Gary Heitz 

Some time ago, I was typing in a magazine program. 
Upon checking my typing , I found several mistakes. There 
had been many variables used which were quite long and 
cryptic. Most of the typing errors occurred on these 
variables. 

I decided I needed a program that would allow for 
programmable keys, to help me accurately type these list
ings. Easy Type is just that-with a few extras . 

Easy Type has nine programmable keys and four pro
grammed keys. The programmable keys are available to 
you, to hold a string of any characters you desire, up to 
17 characters in length . 

When typing, you can access the string you want by 
pressing the ESCAPE key and a nwnber. The correct nwn
ber is displayed on-screen, along with the contents of the 
string. For example, if you programmed key 1 to contain 
X=U SR(THR32DFP), then hit ESC 1, Easy Type would 
print your string on the screen at the current cursor posi
tion . This only takes two keystrokes, and you don't have 
to worry about your accuracy. 

Because the key nwnber to press is displayed on-screen 
along with the string, all you have to remember is to type 
the ESC key first. If you forget, don't go hunting for this 
article. The screen reminds you that you should hit the 
ESC key and then the number. 

As mentioned above, there are four programmed keys. 

ATARI 8-BIT EXTRA 

They are ESC-O (zero). ESC-A, ESC-I and ESC-D. The in
structions for each of these are also shown on the screen. 

Pressing ESC and a will clear the screen and display 
Easy Type's menu . 

In the menu, choice number one is "Start DATA state
ments ." The word DATA will be printed after each suc
ceeding line number entered if you select this option. 
You'll be asked which type of data you're going to enter: 
decimal, hexadecimal, or other. If you answer decimal , 
what you type will be checked by a machine language 
subroutine. It will see that you didn't accidentally type 
a letter, or any other key not appropriate to a decimal data 
statement. The editing keys will still function properly. 

If you choose hexadecimal, the subroutine will make 
sure you're typing only characters acceptable to a hexa
decimal data statement. 

Choosing "other" will result in no checking. The word 
DATA will simply be added after each new line number. 

Option number two is "Stop DATA statements." It does 
just that. The word DATA will no longer be printed after 
each new line number. 

The third choice is "Start/Alter line numbering." If you 
pick this option, Easy Type will ask for the starting line 
nwnber and the increment used between lines. Type these 
in , and all succeeding lines will be automatically num
bered for you. 

Option number four is "Stop line numbering ." Choos
ing this will cancel the automatic line-numbering feature. 

ANALOG COMPUTING 129 



(E) Easy Type continued 

Choice number five is "Make a programmable key." 
You'll be asked to input the characters you desire for the 
next available programmable key. You don't have to enter 
all nine programmable keys at once. You may come back 
later and enter more. 

Option number six is "Save program." By using this fea
ture, you can save the entire program onto tape or disk 
without having to BREAK away from the program. 

Menu selection number seven is "Exit menu ." Use this 
option to leave the menu and continue typing your pro
gram. 

This leaves us with three more programmed keys: ESC
A , ESC-I and ESC-D. 

Let's say you type in a line and hit RETURN. You then 
see that you made a syntax error, or you want to change 
or copy part of that line. Press ESC and A, and the last 
line will be displayed. Alter the line and/or line number, 
then hit RETURN. 

The next programmed key is ESC-I. Some magazine 
programs are numbered in an orderly fashion , with even 
increments between line numbers. Many aren't. If you've 
chosen menu item three (automatic line numbering) and 
need to skip some line numbers, type ESC-I and the next 
line number will appear. 

In the same vein, if your increment is ten, and the pro
gram you're entering has a line number whose last digi t 
is a five, use ESC-D. Your line number will be decrement
ed. Hit the BACKSPACE a couple of times, hit the num
ber 5, and be on your way. 

That's about all there is. I hope you find Easy Type not 
only easy, but also a time-saving aid to accuracy. There 
may be several things you'd like to see added to Easy Type. 
Please alter it to your needs. The program is made to work 
for you-not you for it . ~ 

Gary Heitz bought his first Atari computer in 1982. 
Through ANALOG Computing, he has learned to program 
in BASIC and assembly language. 

The two-letter checksum code preceding the line 
numbers here is not a part of the BASIC program. 
For further information, see the BASIC Editor II, 
in issue 47 of ANALOG Computing. 

Listing 1. 
BASIC listing. 

~2000 CLR :CO=O:DIM D$C1~$(180),TEM 
P$(17),L(11),F$(15):P$="LiliL.1.!.I":P$(5)=CH 
R$(155):FOR I=CO TO ~ 
~2010 LCI)=CO:NEXT I:L(1)=5:D$=CHR$C15 
6):D$C15)=D$:D$(2)=D$:GRAPHICS CO:POKE 
55~,CO:POKE 710,178:POKE 712,178 

~2020 RESTORE ~25~1:FOR 1=1 TO 1~~:REA 
D IN:POKE 1535+I,IN:NEXT 1:IN=~21~0:ME 
NU=32370:GOTO ~2080 
~2030 REM p:;:WI:1:u;I;a:j:j:j 
~2040 INPUT TEMP$:IF TEMP$="MENU" THEN 

POP :PKEVS=PKEVS-1:GOTO MENU 
32050 P$(LENCP$)+1)=TEMP$:P$CLENCP$)+1 
)=CHR$C155):LCPKEVS+1)=LENCP$):RETURN 
~2060 PKEVS=PKEVS+1:IF PKEVS>~ THEN PK 
EVS=~:GOTO MENU 

130 ANALOG COMPUTING 

~2070 ? "ESC-"iPKEVSi" "i:GOSUB ~20~0: 
GOTO ~2060 
~ 2 0 8 0 REM ~"":j"':j":-wr.tI""."i(""'il"";.~:j"':j"':l 
320~0 ? CHR$(125):POKE 82,CO:POSITION 
CO 5:? " " i CHR$ C271 i CHR$ (156) i "GE!IIIfl 

", CHR$ (27) , CHR$ (156) i 
~2100 ? " ": POSITIO 
N CO,CO 
~2110 TRAP ~2140:X=PKEVS:IF PKEVS}4 TH 
EN X=4 
~2120 FOR I=CO TO X: 1 Ii" "i p$ (L (I) +1, 
L (1+1) -1) : NEXT I 
~2130 IF PKEVS}X THEN POKE 82,20:POSIT 
ION 20,CO:FOR 1=5 TO PKEVS:? Ii" "iP$( 
L(I)+1,LCI+1)-1):NEXT I 
~2140 TRAP 40000:POKE 82,2:X=USRC15~0) 
:LINE=PEEK(1021)+PEEK(1022)*256 
~2150 CLOSE U1:0PEN U1,4,CO,"K":POSITI 
ON 2,6:LIST LINE:POSITION CO,11:L=CO 
32160 ? "I" i CHR$ (271 i CHR$ (156) i "-!!Iiu_ 
_'" CHR$ (27) i CHR$ (156) i" li_ll 
Lnm,1 PIA !I01«j.' , 
32170 POSITION 2,12:1 :IF NUM THEN? 5 
TARTi" "i:START=START+INC 
~2180 IF TVPE AND NUM THEN? "DATA "i 
32190 REM ::j:j:W.:w:;;q 
~2200 POKE 559,34:GET U1,KEV:IF KEV=27 

THEN ~2290 
~2210 IF TVPE AND NUM=CO AND L=CO AND 
KEV=32 THEN? " DATA "i:L=1:GOTO IN 
32220 IF KEV=155 THEN POKE 55~,CO:GOTO 
~2260 

~22~0 IF KEV=28 AND PEEK(84){14 THEN G 
OTO IN 
32240 IF TVPE=1 OR TVPE=2 THEN ~2580 
~2250 ? CHR$(KEV)':GOTO IN 
32260 REM P:j:A1t1iI4=4: W:j:j:, 
32270 POSITION 2,20:? "CONT":POSITION 
CO,11:POKE 842,1~:STOP 
32280 POKE 842,12:POSITION CO,7:? D$:G 
OTO ~2140 
~22~0 REM ~:n:W!lOll{j':,J.:::j:' 
32300 GET U1,KEV:IF KEV-27 THEN? CHR$ 
(27) i CHR$ (271 i : GOTO IN 
32310 IF KEV=48 THEN START=START-INC:G 
OTO MENU 
32320 IF KEV=7~ THEN ~2170 
32330 IF KEV=68 THEN START=START-INC-I 
NC:GOTO ~2170 
32340 IF KEV=65 THEN POSITION 2,12:LIS 
T LINE:POSITION 2,12:? :START=LINE+INC 
:GOTO IN 
32350 IF KEV{4~ OR KEV}PKEVS+57 THEN ? 

CHR$(27}i :GOTO ~2250 
~2360 TRAP IN:KEV=KEV-48:? P$CLCKEV)+1 
,LCKEV+1)-1)i:TRAP 40000:GOTO IN 
32370 REM ::p:w;I=4:IIW:j:j:j 
32380 POKE 752,1:POKE 201,7:? CHR$C125 
)':IF NUH THEN POSITION CO co:? "[!Ill1 
I ;t1* am 4.10111'1 :El!i.~ it.,. OOlw:rn" \ 
32390 IF MUM THEN ?" I~~~!!U;I!N~III; 

" eMent the line nUMber 
32400 POSITION 17,2:? "a;I=4:III":? :? ," 
[] Start DATA stateMents" 
32410 ? :? ,"~ Stop DATA stateMents":? 

:? ,"~ Start/Alter line nUMbering":? 
:? ,"(I Stop line nUMbering" 
~2420 ? :? ,"0 Make a prograMMable key 
":? :? ,"0 Save prograM":? :? ,"~ Exit 

. Menu":POSITION 14,18 

. 32430 ? "Vour choice?":? :GET tU,KEV:K 
EV=KEV-48:IF KEV{}1 AND KEV{>2 AND KEV 
{>4 THEN POKE 752,CO 
~2440 IF KEV=1 THEN 32540 
~2450 IF KEV=2 THEN TVPE=CO 
~2460 IF KEV=3 THEN? "Enter START,IHC 
REMENT"i:TRAP ~2460:INPUT START,INC:TR 
AP 40000:NUM=1 

ATARI 8·81T EXTRA 



32470 If KEV=4 THEN NUM=CO 
32480 If KEV=5 THEN ? CHR$ (125) :? :? " 

Type ~ to go to the MENU.":? : 
GOTO 32060 
324~0 If KEV=6 THEN GOSUB 32520:CLOSE 
ttl:SAVE f$:OPEN tt1,4,CO,"K" 
32500 If KEV=7 THEN POKE 55~,CO:GOTO 3 
2080 
32510 GOTO MENU 
32520 If LEN(f$) THEN RETURN 
32530 POSITION 2,21:? "DU:filenaMe.Ext 
"i:INPUT f$:RETURN 

Qij 32540 REM :;j;j;.~IiJjti.:P;; 
ZP? 32550 POSITION 2,20:? "Is the data in: 
{ii ":? "[1 DeciMall,"~ HexadeciMal g] Oth .... : er" 
Ci) ' 32560 GET U1,KEV:TVPE=KEV-48:If TVPE(l 

OR TVPE}3 THEN? CHR$(253):GOTO 32550 
QH 32570 H=18+(TVPE=2)*6:GOTO MENU 
~~32580 X=USR(1536,KEV,H) :If PEEK(204) T 

~!,j i~i;r~:~~R~~~;i~i! ~g!? 1~~, 203,104,104 
• ,168,16~,O,133,204,185,2,,6,l'7,203,24 
0,5,136,208,246,240,4,16',255,133 

f ·H 325~2 DATA 204,'6,O,28,2~,30,31,126,25 
4,255,44,48,4',50,51,52,53,54,55,56,57 
,65,66,67,68,6~,70 
325~3 DATA 16',0,170,141,0,4,141,1,4,1 
41,253,3,141,254,3,165,136,133,203,165 
,137,133,204,160,1,177,203 

eM 325'4 DATA 201,125,240,46,160,0,177,20 
5 3,141,253,3,200,177,203,141,254,3,238, 
" 0,4,173,0,4,208,3,238,1 
XV325~5 DATA 4,200,177,203,141,255,3,165 

,203,24,10',255,3,133,203,144,208,230, 
204,224,0,240,202,104,'6 

• 

ATARI a-BIT EXTRA ANALOG COMPUTING 131 



Get the Extra on disk! 

A special offer 
for Extra 
owners ... 

2 DISKS 
for 
only 
$24.95 

Use the convenient card at the back of this book 
to order your disk version. 

Send for it now! 

All 
of the 

programs 
from 

An Atari 
8·Bit Extra 

from ANALOG 
Computing. 

Ready ~ run, on two 
double-sided disks. 

From the magazine that 
always gives you something 

Extra. 

Po. BOX 23, WORCESTER, MA 01603 
(617) 892 -9230 



Get the Extra on disk! 
A SPECIAL OFFER FOR EXTRA OWNERS 

2 DISKS - ONLY $24.95 
.. ~ 

,e. 
All the programs from An Atari 
a-Bit Extra from ANALOG 
Computing, ready to run , on 
two double-sided disks. 

Yesl Please send me the disk version. 

Name 

Street 

~. MasterCard 

Q VISA 

No. _____ _ 

City, State _____________ Zip Code _____ _ 
Exp. date ___ _ 

I 0 Payment enclosed. 0 Bill my Master Card or VISA (right). Sign _____ _ 

-r~--~----------------------------MAGAZINE SUBSCRIPTIONS 
ANALOG ONLY ST-LOG ONLY ANALOG and ST-LOG 

L 1 yr. (12 ISS.). 

o 2 yrs. (24 iss.) 
C 3 yrs. (36 ISS.) 

· . $28.00 C 1 yr (12 iss.) . $28.00 [ 1 yr (12 ISS. each). $42.00 

$52.00 2 yrs. (24 iss.) ...... $52.00 [, 2 yrs. (24 iss. each) $78.00 
$7600 3 yrs. (36 iss.) .... $76.00 l 3 yrs. (36 ISS. each) $114.00 

--------- CANADIAN & MEXICAN RATES (First Class) ---------
-c 1 yr (12 ISS.) 

L 2 yrs. (24 ISS.) 

C 3 yrs (36 ISS.) 

$36.00 l 1 yr. (12 iss.). . $36.00 0 1 yr. (12 iss. each). $54.00 

. $68.00 [J 2 yrs. (24 iss.) ...... $68.00 0 2 yrs. (24 iss. each) $102.00 

. $99.00 ' , 3 yrs. (36 ISS.) . .... $99.00 - 3 yrs. (36 ISS. each) $14900 

------------ FOREIGN RATES (Surface) ------------
C 1 yr. (12ss.) 

L.. 2 yrs. (24 ISS.) 

L 3 yrs. (36 ISS.) 

Check# ___ _ 

.. . $39.00 

$72.00 

$104.00 

Bill me. 

1 Money Order # __ _ 

MasterCard VISA 

Exp. date ________ _ 

Card No. 

L 1 yr. (12 iss.) . . .... $39.00 

2 yrs. (24 iss.) . .... $72.00 

[" • 3 yrs. (36 iss.) ..... $104.00 

Name __ 

Address 

C 1 yr. (12 ISS) . $59.00 

2 yrs. (24 ISS. each) $112.00 
C 3 yrs. (36 ISS. each) . $165.00 

City __ __ State __ Zip 

PLEASE ALLOW 4 to 6 WEEKS FOR DELIVERY OF FIRST ISSUE. ---------------------------------.. 
DISK/MAGAZINE SUBSCRIPTIONS 

ANALOG DISK 

~ 1/2 yr. (6 ISS.) 

C 1 yr. (12 iss.) 
· . $5900 

· $105.00 

ST· LOG DISK 

::-' 112 yr. (6 ISS.) 

1 yr. (12 iss.) 

· .. $59.00 

..... $105.00 

ANALOG and ST ·LOG 

:- 112 yr. (6 ISS. each) 

L 1 yr (12 ISS. each) 
595.00 

$159.00 

--------- CANADIAN & MEXICAN RATES (First Class) ---------

[J 1/2 yr. (6 iss.) 

0 1 yr. (12 ISS.) 

$69.00 
$11900 

1/2 yr. (6 iss.) 
1 yr (12 ISS.) 

· .. $69.00 
$119.00 

" 1/2 yr. (6 iss. each) . 5109.00 
[ 1 yr. (12 ISS each) 5179.00 

------------ FOREIGN RATES (Surface) ------------

L I 1/2 yr. (6 ISS.) 

I 1 yr. (12 ISS.) 

Check # __ 

Money Order # 

574.00 

· $126.00 

Bill me. 

MasterCard VISA 

Exp date __ 

Card No. _ 

1/2 yr. (6 ISS.) . 

1 yr (12 ISS.) . 

Name __ _ 

Address 

City _ _ _ 

· .. $74.00 
... $126.00 

L 1/2 yr (6 ISS. each) 

[ 1 yr. (12 ISS) 

State __ Zip 

$11 4.00 

$189.00 

PLEASE ALLOW 4 to 6 WEEKS FOR DELIVERY OF FIRST ISSUE. 



15=ll':ffJ~P E; I 
PO. Box 23 
Worcester, MA 01603 

PLACE STAMP HERE 

THE POST 0 , :=I(.,E 
WILL NOT m ,NER 

MAIL WITHOUT 
POSTAGE 

__________ :.111 _____ .... _____________ ..... ___ 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 31 WORCESTER, MA 

[~rij!f~p'i; l 
PO. Box 625 
Holmes, 'PA 19043 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

---~-----------------------------I 

BUSINESS REPLY MAIL 
FIRST CLASS PERM IT NO. 31 WORCESTER, MA 

·1 ~riji3bP'i; l 
po. Box 625 
Holmes, PA 19043 

I 
I 

NO POSTAGE I NECESSARY 
IF MAILED I 

IN THE I UNITED STATES 

I 
I 
I 
I 
I 

.~. 






	Cover
	Contents
	M/L Editor
	Hi-Score Display
	Create-a-base
	Squeeze
	Surface Run
	Spy Plane II
	Reversi
	Lawn Mower
	Trivia
	Invasion III
	Dragon Chase
	Krebs Removal
	Integer BASIC
	Tactics
	Pastels
	CGM
	Display List Mod 
	A Pointed Note
	Password
	Dump1020
	Easy Type

