ITOH111

ATARI $600 \times$:

Esc $\quad \vdots \quad 1 \quad 2$
ATARI $800 \times \mathrm{XL}$

130X

THE ATANI WORKFORCE

PAPERCLIP

"The \# 1 Best Selling Word Processing Package"

- BILLBOARD'S computer software chart
"... by far the best word processor ever available for the Atari" - ANTIC
- Editing features include Block Move, Copy and Delete, Global Search and Replace
- Enter repetitive words, sentences, or paragraphs instantly with Macro Command - Edit two files simultaneously and transfer text between documents using Dual Text Windows
- Automatic Page Numbering, Table of Contents, Headers and Footers
- Editing screen extends up to 130 columns wide and scrolls in any direction
- Print Preview displays formatted text exactly as it will be printed
- Automatically saves files as you write NEW! SPELL PACK FOR THE 130XE WITH A 36,000 WORD DICTIONARY WITH ON SCREEN WORD SEARCH.

B/GRAPH

"Graph-generating and statistical analysis we recommend B/Graph! - INFOWORLD

- graph up to three factors with 100 data points each
- choose pie charts, line and area graphs, 2 and 3 dimensional bar charts and more - convert instantly between graph types without re-entering data
- full screen editor, multiple grid and graph scaling, automatic labelling, overlays, "slide show" capability - statistical analysis functions include standard deviation, variance, Chi-square, regressions, plotting and many more - reads and writes to VisiCalc DIF - use VisiCalc files with B/Graph and vice-versa - compatibile with most popular printers, printer cards, interfaces

HOMEPAK

inexpensive, powerful, integrated software. As such, HomePak is the winner of InfoWorld's Best Buy Award."

- INFOWORLD MAGAZINE
". . quite simply, the best ... the highest rating possible." - ANALOG COMPUTING

Three easy-to-use programs on one disk:

1. HOMETERM TELECOMMUNICATIONS

- Puts you in touch with bulletin boards, public databases and on-line services
- Powerful user-defined Macro facility \log on to your favorite service or bulletin board with just one command
- Store up to 10 macros per document
- X-Modem protocol, the virtual on-line standard
- Download files of any virtually any length
- Flexible data handling - save incoming text to disk, edit it, print it

2. HOMETEXT WORD-PROCESSOR

- Over 20 full-screen editing and formatting features: move \& copy, word-wrap, justification, automatic paging and many more
- What You See Is What You Get (WYSIWYG) - screen is an exact representation of the printed page - Supports most major printer functions including boldface, underlining and extended characters

3. HOMEFIND DATABASE MANAGER

- Natural English-language data entry/retrieval system for simplified electronic filing
- Includes the key search/sort functions, flexible queries, easy output commands and sophisticated Report Composer
All three HomePak programs reside in memory together - it's easy to transfer data between them and perform integrated tasks.

BATIERIES included

BATTERIES INCLUDED, an ITM company, 30 Mural Street, Richmond Hill, Ontario, Canada, L4B 1B5 (416)881-9941, Customer Information (416)881.9816. If you can't find this product at your local retailer, you may order it direct from us at the full suggested list price plus $\$ 5.00$ for postage and handling. For product orders please call 1-800-387-5707 (U.S. only). For most Batteries Included products you can always have the latest version of your program by returning the original disk and $\$ 10.00$. Write to us for our full color catalog of products for the APPLE, APPLE MACINTOSH, ATARI, ATARI ST, COMMODORE, COMMODORE AMIGA, AND IBM SYSTEMS.
C 1986 Batteries Included. APPLE, APPLE MACINTOSH, ATARI, ATARI ST, COMMODORE, COMMODORE AMIGA, AND IBM are registered trademarks respectively of APPLE COMPUTERS INC., ATARI CORPORATION, COMMODORE BUSINESS MACHINES INC., AND INTERNATIONAL BUSINESS MACHINES INC. Some features may vary with computer system used.

An Atari 8-bit Extra

from

This volume, from the publishers of ANALOG
Computing, is dedicated to 8 -bit Atari
users everywhere, and to the readers who have contributed so much to our success and to the Atari Adventure.

Copyright•© 1987 ANALOG 400/800 Corp.
All rights reserved.
No portion of this book may be reproduced in any form without the written permission of the publishers. Most programs are copyrighted and are not public domain.

Printed in the United States of America.
ISBN \#0-914177-01-X
ANALOG Computing magazine (ANALOG 400/800 Corp.) is in no way affiliated with Atari. Atari is a trademark of Atari Corp.

CONTENTS

APPLICATIONS

GAMES

4 M/L Editor Clayton Walnum
The machine language typing checker for use with programs in this volume.
7 Hi-Score Display Kevin Peck
Here's a handy program to record your scores for posterity.
15 Create-a-base C.F. Fogarty, IIIThe perfect "groundwork" for you to design databases to fit your own needs.
27 Squeeze David PlotkinKeep the advancing bricks from taking over in this fast Action! game.
31 Surface Run David PlotkinThis tutorial-and-game will help you see what Action! can do for your programs.
37 Spy Plane III Mark Comeau
Takes our original one step further. Can you save the world this time?
43 Reversi .Paul T. Sprague
This Action! strategy game lets you choose from three modes of play.
49 Lawn Mower .Paul TupaczewskiKeeping Atariville neat isn't easy. You'll need land mines just to keep ahead.
53 Trivia Jan IversonThis how-much-esoterica-do-you-know? game lets you design your own versions.
63 Invasion III Jerry Lemaitre As an Anthort, you'll use mystic Fyreballs to keep your planet from alien destruction.
65 Dragon Chase David Huff
Quick reflexes won't be enough to win your lady; dig into your inner resources.
69 Krebs removal Chuck RoskoYou must scrub the reactors clean of fission-inhibiting krebs in time to avoid meltdown.
75 Integer BASIC Barry Green
This program teaches your XL BASIC integer math, for more speed.
81 Tactics Dave PettitThe compleat resource: how to become a Star Commander Class 1.
91 Pastels David Plotkin
This Action! program will mesmerize you with its ever-changing pastel tints.
93 CGM David Castell
Castell's Graphic Manager - windows, icons and trackers in a GEM-like interface.
107 Display List Mod Mark Andrews
How to use more than one graphics mode on-screen, plus a demo title screen.
113 A Pointed Note Barbara Donovan Tailored file management programs are easy, with this POINT and NOTE tutorial.
UTILITIES.Jim Ehninger
Here's a simple-to-use way to bar most unwelcome visitors from your files.
125 Dump 1020 Donald E. Glover
A screen dump routine for the Atari 1020 printer and examples of its use.
129 Easy Type Gary Heitz
Programmable and programmed keys, to make typed-in listings more accurate.

M／L Editor

For use in machine language entry

by Clayton Walnum

M／L Editor provides an easy method to en－ ter our machine language listings．It won＇t al－ low you to skip lines or enter bad data．For convenience，you may enter listings in mul－ tiple sittings．When you＇re through typing a listing with M／L Editor，you＇ll have a com－ plete，runnable object file on your disk．
There is one hitch：it＇s for disk users only． My apologies to those with cassette systems．
Listing 1 is M／L Editor＇s BASIC listing． Type it in and，when it＇s free of typos，save a copy to disk，then run it．
On a first run，you＇ll be asked if you＇re starting a new listing or continuing from a previously saved point．Press S to start，or C to continue．
You＇ll then be asked for a filename．If you＇re starting a new listing，type in the filename you want to save the program under，then press RETURN．If there＇s already a file by that name on the disk，you＇ll be asked if you wish to delete it．Press Y to delete the file，or N to enter a new filename．
If you＇re continuing a file，type in the name you gave the file when you started it．If the program can＇t find the file，you＇ll get an er－ ror message and be prompted for another file－ name．Otherwise，M／L Editor will calculate where you left off，then go on to the data en－ try screen．
Each machine language program in ANA－ LOG Computing is represented by a list of BASIC data statements．Every line contains 16 bytes，plus a checksum．Only the numbers following the word DATA need be con－ sidered．
M／L Editor will display，at the top of the screen，the number of the line you＇re current－ ly working on．As you go through the line， you＇ll be prompted for each entry．Simply type the number and press RETURN．If you press RETURN without a number，the default is the last value entered．
This feature provides a quick way to type in lines with repetitions of the same number． As an added convenience，the editor will not respond to the letter keys（except Q，for ＂quit＂）．You must either enter a number or press RETURN．

When you finish a line，M／L Editor will compare the entries＇checksum with the magazine＇s checksum．If they match，the screen will clear，and you may go on to the next line．

If the checksums don＇t match，you＇ll hear a buzzing sound．The screen will turn red， and the cursor will be placed back at the first byte of data．Compare the magazine listing byte by byte with your entries．If a number＇s correct，press RETURN．
If you find an error，make the correction． When all data＇s valid，the screen will return to grey，and you＇ll be allowed begin the next line．
Make sure you leave your disk in the drive while typing．The data is saved continuously．

You may stop at any time（except when you have a red screen）by entering the letter Q for byte \＃1．The file will be closed，and the pro－ gram will return you to BASIC．When you＇ve completed a file，exit M／L Editor in the same way．

When you＇ve finished typing a program， the file you＇ve created will be ready to run． In most cases，it should be loaded from DOS via the L option．Some programs may have special loading instructions；be sure to check the program＇s article．
If you want the program to run automati－ cally when you boot the disk，simply name the file AUTORUN．SYS（make sure you have DOS on the disk）．

That＇s M／L Editor．Use it in good health．\quad－

The two－letter checksum code preced－ ing the line numbers here is not a part of the BASIC program．For further in－ formation，see the BASIC Editor II，in issue 47.

Listing 1. BASIC listing．

[^0]ZG 40 POSITION 10， $8: ?$＂FILEMAME＂；：INPUT F
 NF 69 IF FS（1，2）＜＞＂D：＂THEM F15＝＂D：＂：Fis KL 76 FiSGFs
TN 88 IF CHRS（A）$=\circ{ }^{\circ} \mathrm{S}^{\prime \prime}$ THEN 120
FD 90 TRAP 430：0PEN t2， $4,0, F 15:$ TRAP 118 HQ 180 FOR X＝1 TO 16：GET H2，A：NEXT X：LINE
HT 116 CLOSE H2：OPEN $42,9,6, F 15: G 0 T 0 ~ 170$ 120 TRAP 160：0PEN H2，4，8，F1S：G05UB 446 ：POSITIOM 18，10：？＂FILE ALREADY EXISTS ！！＂：POKE 752，6
ZU iJopposition＇ $10,12: ?$＂ERASE $1 T ?$＂；： 605
UH 140 IF CHRS（ A ）＝＂N＂OR CHRS $(A)=" n$＂THEM
aG 156 IF CHRS（A）〈〉＂゙Y＂AND CHRS（A）〈〉＂y＂T

GH 180 Li二⿰丿㇅心 1日）＋12\＃（x）9），X＋2：POKE 752， 0 ：？＂BYTE ${ }^{\prime \prime}$
FY 200^{210} CDIT AND

$\begin{array}{ll}\text { FY } 200 & \text { BYTE＝UQL（NS）} \\ 0 Z & 281 \\ \text { MODS }\end{array}$
日U 210 POSITIOM 22， $8+2: ?$ BYTE；＂
 CHK SUM 9999 THEN CHKSUM＝CHKSUM－160日8
238 WEXT X：CHKSUM＝CHKSUH LINE：IF CHKSU
23日 WEXT X:CHKSUM=CHKSUH+LINE:IF CHKSU
240 POSITION 12, $8+2$:POKE 752, 日:? "CHEC
KSUM: ";:LI=4:G0SUB 310
250 IF EDIT AND L=0 THEM 270
OM 269 C=UAL (NS)
278 P0SITIOM $22, \mathrm{~K}+2: ? \mathrm{C} \mathrm{i}^{\prime \prime} \quad$ "
299 GOSUB 449:EDIT=1:CHKSUM=0:G0TO 18

LINE=LINE+10:EDIT=0:GOTO 170

D NOT EDIT THEN $\mathbf{4 2 0}^{20}$ IF $A\rangle$ RETRN AMD $A<>B A C K S P$ AND ($A<4$
8 OR A>57) THEN 328 AS

JR
35日if $A=R E T R N$ THEN POKE 752,1:? " ":R
369 TF $A\rangle$ BACK $5 P$ THEM 480

390 ? CHRS (BACKSP); :L=L-1:G0T0 320
4e8 L=L+1:IF L>Li THEN A=RETRN:GOTO 35
410 NS (L) $=\operatorname{CHRS}(A): ?$ CHRS (A); : G0T0 320
42θ GRAPHICS $0: E N D$
439 GOSHB $44 \theta:$ POST

42:G0T0 30 POKE $710,48:$ SOUND $0,100,12,8:$ FOR

450 6RAPHICS 23:POKE 16,112
466 DL=PEEK (569) +256*PEEK (56.) +4: POKE
DL-1,78:P0KE DL $+2,6$

: RETURN

by Kevin Peck

I play a lot of games on my Atari. I used to keep a sheet of paper at the computer desk, to jot down my high scores. When things got crowded, I would write the current high scores on a new paper and keep that one, until it too became nearly impossible to read. Not anymore. I stopped playing games long enough to write a custom database for my high scores, one that will print out a clean list any time I wish. It's a lot easier to read now.

To use Hi-Score Display, you'll need to type in Listing 1, then check it with the BASIC Editor II (see ANALOG Computing issue 47). Listing 1 will create four strings containing the machine language routines used in the program. Save the program to disk before running it, because it will erase itself from memory, leaving the newly created lines. These will be the only lines in memory. Enter BASIC Editor II into memory and type in Listing 2. After you've finished, you'll have the complete Hi-Score program. Save it to disk at this time.

You'll need nineteen free sectors in single density, or ten in double density, to run the program. These sectors are necessary for the actual game data. The size of the data file, GAME.DAT, will never change. It's set up to hold a maximum of forty-two games, with three scores per game. You'll never have to worry about booting the program without enough disk space to add new scores.

When you first run the program, it will create the blank file GAME.DAT on the disk. This will take a few moments, and will only occur the first time you run the program. After the data file is created, the main menu will appear.

Next to the words OPEN and USED are two numbers.

The number beside OPEN will be 42 , and the number next to USED will be 0 . This means that no scores have been entered; all forty-two are unused. The number next to OPEN will decrease as you add games to the list; the number next to USED will increase. These two numbers added together will always equal 42 , the maximum number of games per disk that the program can handle.

At this point, you're presented with six options. Right now, we have no games in our list, so we need to add some. We press the 1 key, for "Add New Games and Scores."

After pressing 1, you'll see the score entry screen. You'll be asked to enter the program name, which may be up to fourteen characters long. If you accidentally pressed 1 while in the main menu, and you really don't want to add any games to the list, then press RETURN to get back to the main menu.

Back to adding games and scores. . .enter the program name, then press RETURN. You may use any characters you want, but the name must fit between the two arrows above your typing area. If you try to type beyond the fourteen-character limit, the program will ignore all extras. Of course, the name can be less than fourteen characters.

After typing the program name, you'll be asked for the score. You're allowed three scores per game, and you may enter them in any order. The program will sort them after you've entered all three. Scores may be up to six digits long, which allows for scores in the hundred-thousands. I know of few games that go into millions of points, so this should be more than adequate. The program will allow no more than six numbers for this entry, ignoring non-
numeric characters and commas, which it places automatically.

The next data item is the game level at which you obtained the score. Not all games have levels, so you may just press RETURN to leave this field blank. You're allowed two characters for the level, and only numbers are allowed.

Next, you'll be asked to enter the name of the person who attained this score. The name is limited to five characters, but they may be whatever you wish. Five characters allows for two initials, the ampersand (\&) and two more initials, for those times when two players cooperated to get the score (five also happens to be the length of my first name). You don't need to enter all five characters. You may want to stick to three, as most arcade games do.

You must enter at least one score per game. Hi-Score will then prompt you to enter the second score. If you don't wish to enter a second, press RETURN. If you do enter the second score, you'll be prompted for the third.

Now that you've entered all the data for this game, you have three choices. You may press the O key if all information is okay. You may press A to abort this game. When you hit A, you'll be asked if you're sure you want to abort. If you press Y, this game won't be added to the list, and you'll be asked if you have other games to add.

If you decide some of the information is incorrect, press the C key, to correct the errors. The numbers 1-4 will appear on the right edge of the screen, indicating various pieces of information. If you don't wish to correct any of the information, press the 0 key; otherwise, press the number (1-4) that corresponds to the area you want to correct. If you do correct one of the scores, you'll have to enter all three pieces of data for that score. Press the 0 when finished, and the scores will be sorted.

After pressing either the A or the O, you'll be asked if you have more entries. If you do, press the Y, and the screen will clear for your next entry. If you're done entering games, press the N key. All games will be sorted by game name, then saved to disk. When this is done, you'll return to the main menu.

Now that we have some games in our data file, we can explore some of the other options on the main menu. Let's go through the rest of the options, in the order they appear on the screen.

Option 2 allows you to update the scores of any games on file. After pressing 2, you'll be presented with the game selection screen. All games currently on file will be listed to the screen. If you have more than twenty-one games, they'll appear in two columns. Valid keystrokes are shown at the bottom of the screen. Press the X key if you wish to return to the main menu without making any changes.

To select a game to update, move the arrow to the proper name by pressing the arrow keys without holding down the CTRL key.

When you've selected the game you wish to update, press RETURN. The game selected will appear at the bottom of the screen, and you'll be asked to verify your choice. Remember, you may press X at any time during the selection process, to abort the operation and return to the main menu.

Once you've verified your choice, a new screen will appear, showing the game's current scores. You'll be asked for the new score. If you decide not to update the scores after all, press RETURN. The new score doesn't have to be a new high score, but it must be greater than the third score on the list. If there is no third score, any score will be accepted.

After entering the new score, the Hi-Score program will check to be sure it's eligible. If not, you'll be asked if you want to re-enter the score or abort the update process. Press the letter of your choice.

If the score is valid, you must enter the level and the name of the person who obtained the score.

After entering the information, you'll have three options: O for okay, R for re-enter and A for abort. If you abort, you'll be asked to confirm with a Y or an N.

When the new score is correct, press O for okay. HiScore will ask if you have more scores to update. If you do, press Y. If not, press N. The new information will be written to disk, then you'll return to the main menu.

Option 3 allows you to delete a game from the list. After selecting the game to delete, you'll be shown the scores on the screen. Type the word DELETE at the prompt. Any other entry, including a RETURN alone, will abort the deletion process. If you delete the game, you'll be asked if you have more to delete. If not, the disk file will be updated, and you'll return to the main menu.

Option 4 on the main menu allows you to view your scores, six games at a time. The game names will be in inverse video, to set them apart from the scores. There are three valid keystrokes at this point. They are: M for menu, P for previous screen and N for next screen.

If you're viewing the first screen of data and have more than six games on file, the N will appear on-screen, informing you that there's more data in the file. You may press the N key to view the next screen of scores.

The P key option will never appear on the first screen of data-there's no previous screen. It will appear on the second screen of data and beyond. The N will disappear on the last screen. Press the M key at any time to return to the main menu.

Option 5 on the main menu presents you with a new menu of four options. All options from this menu will send output to the printer.

The program will ask if you're using a 40- or 80-column printer. I added this option for ease of use with the Atari 1020 plotter. Most users will press E, to select 80 -column print. All printed reports will fit on a single $81 / 2 \times 11$-inch sheet of paper.

The next screen will show you the function selected and ask you to check the printer. To cancel the option, hit A for abort. If you're ready to print, press P. After the print is complete, you'll be returned to the print menu. You may choose another print function, or return to the main menu, where the final option is "Exit Program."

Technical notes.

I wrote four machine language routines for use in Hi Score Display. One changes a string of characters to inverse video. One fills lines on the screen with a chosen
character．The third pulls game names from the main data string for fast display on the select game screen．The fi－ nal routine is a general－purpose，multi－key sort program． I used the CIO routines presented in ANALOG Comput－ ing＇s issue 13 for the high－speed disk reads and writes． I also wrote a custom input routine for use throughout this program．
The only place the screen colors are altered is in Line 10 ，so you may use any colors you like by changing the POKE values．Since Hi－Score has custom input routines， there＇s no keyclick on any of the inputs．If this bothers you， you＇ll have to add some SOUND statements to the input routines in Lines 20－200．

I＇ve been using Hi－Score for over a year，making im－ provement as I went along．I hope you＇ll enjoy it． $\boldsymbol{-}$

Kevin Peck is currently in studying Computer Science． He＇s been working on Ataris for four years，and is in the process of reading every book on Atari machine language he can get his hands on，in the hope of writing an all－ machine－language game．

The two－letter checksum code preceding the line numbers here is not a part of the BASIC program． For further information，see the BASIC Editor II， in issue 47 of ANALOG Computing．

Listing 1.
BASIC listing．

[^1]PZ 3000 DATA $104,104,133,206,104,133,205$ ， $164,104,133,268,164,101,89,133,204$
I2 3019 DATA $24,104,101,88,133,203,144,2$ ， $236,204,104,164,133,207,104,164$
$K 53029$ DATA $133,209,104,164,176,160,0,24$ ，177，205，261，244，176，24，261，160
AF 3036 DATA $176,17,201,128,176,8,291,96$ ， $176,12,201,32,176,5,24,165$
HH 364日 DATA $64,144,3,56,233,32,145,203,2$ $00,196,299,208,218,202,208,1$
KI 3050 DATA $96,24,165,205,101,208,133,20$ $5,144,2,236,266,24,165,263,161$
LE 3060 DATA $207,133,203,144,192,230,264$, 208，188
YJ 3076 REM＊ 105 BYTES
2K 4006 DATA $104,104,133,213,164,133,212$ ， $160,0,177,212,9,128,145,212,260$
RR 4910 DATA $192,16,208,245,96$
FZ 4020 REM＊ 21 BYTE5
20 5000 DATA $216,104,164,133,206,164,133$ ， $205,104,133,215,104,133,214,104,104$
WL． 5610 DATA $133,203,164,164,133,267,24,1$ 01，203，133，216，104，164，133，208，164
DP 5020 DATA $104,133,224,24,101,208,133,2$ 09，104，164，133，204，164，164，133，225
НT 5030 DÁTA $165,215,133,1,56,165,214,229$ ，204，133，0，176，2，198，1，24
HT 5040 DATA $165,206,133,213,165,205,101$ ， $204,133,212,144,2,230,213,164,207$
TU 5056 DATA $177,265,209,212,246,4,144,53$ ， $176,28,206,196,216,208,241,165$
DH 5066 DATA $268,240,46,164,224,177,205,2$ 69，212，246，4，144，32，176，7，206
TY 5070 DATA $196,209,208,241,240,27,165,2$ $25,208,23,160,0,177,205,72,177$
LY 5086 DATA $212,145,205,104,145,212,206$ ， $196,204,208,241,246,4,165,225,208$
PT 5090 DATA $233,24,165,212,101,204,133,2$ $12,165,213,105,0,133,213,197,215$
$2 \mathrm{~K} 5166 \mathrm{DATA} 268,172,165,212,197,214,208$ ， $166,24,165,265,161,204,133,205,165$
UX 5116 DÁTA $206,165,0,133,206,197,1,208$ ， $134,165,205,197,0,208,128,96$
AU 5120 REM＊ 192 BYTES
－

Listing 2.
BASIC listing．
M11 10 G05UB 3700：POKE 709，C0：POKE 710，156 ：POKE 82，C2：POKE C752，C1：POKE 712，144： GOTO 348 M）${ }^{11}$ \＆
IF A>9日
IF $A>90$ AND $A\rangle 126$ AND $A\rangle 155$ THEN 30
BT 40 IF Á(32 OR ($\mathrm{A}=32$ AND PP=C1) THEN 30
co 56 IF $A=155$ THEN ？＂＂：As＝A $5(C 1, P P): R E$ TURN
IW 66 IF $A=126$ AND PP〈〉C1 THEN ？＂ $4+\ldots+1$ ；

 a）$: P P=P P+C 1: I F P P>\bar{L}$ THEN 90
SH 80 GOTO 30
OU 90 GET HCi，A：IF $\hat{A}\langle>126$ AND Aく〉155 THEN 90
NR 100 IF $A=126$ THEN 60
KU 110 AS＝AS（C1，L）：RETURN
 $\mathrm{D}=\mathrm{UAL}$（D）
YG 136 GET \＃C1，A：IF A＝155 THEN NS＝NS CC1，P P）：？＂HRETURN
FQ 146 IF $A=126$ AND PP〈〉Ci THEN ？$" \notin \notin \notin "$

OC 150 IF $A<48$ OR A 557 THEN POKE 694，C0：P OKE 762，C64：GOTO 130

5B 160 PRINT CHR $5(A) ; "{ }^{* 1 H: N S(P P, P P)=C H R S ~}$ （A）：PP＝PP＋C1：IF PP＞L THEN 180
NB 176 GOTO 136
DJ 186 GET $\# C 1, A: I F$ Aく＞ 126 AND $A\langle>155$ THE N 180
AO 190 IF $A=126$ THEN 140
YY 200 RETURN
YP 210 I0 $16 * 10: I 0 C B=832+I 0: P O K E$ IOCB $+2,1$ 1：ADRHI＝INT（ADDRE55／256）：ADRLO＝ADDRE55 －ADRHI＊256
NZ 229 POKE IOCB＋ 4 ，ADRLO：POKE IOCB +5 ，ADRH I：HI＝INT（BYTE5／256）：LO＝BYTES－256＊HI
GU 230 POKE IOCB＋8，LO：POKE IOCB＋9，HI：I＝U5 R（ADR（＂hhhim Ubl＂），I0）：CLOSE \＃IO／16：RETU RN
TA 240 IO＝16＊I0：TRAP 270：IOCB＝832＋I0：POKE IOCB＋2，7：ADRHI＝INT（ADDRE55／256）：ADRLO ＝ADDRE55－ADRHI＊256
OF 256 POKE IOCB 4 ，ADRLO：POKE TOCB＋5，ADRH I：HI＝INT（BYTES／256）：LO＝BYTES－256\％HI
wh 266 POKE IOCB＋8，LO：POKE IOCB +9 ， $\mathrm{HI}: \mathrm{I}=\mathrm{US}$ R（ADR（＂hhh ${ }^{3} \mathrm{LU}$（1＂），I0）
T0 270 CLOSE HIO／16：RETURN
Y8 $280 \mathrm{NS}=\mathrm{N} \$(\mathrm{C} 1, \mathrm{PP}-\mathrm{C} 1): \mathrm{TEMP} \mathrm{F}=\mathrm{N} \$$
YR 296 IF LEN（HS） CO THEN TEMPS＝NS（C1，LEN （Nち）－C3）：TEMP $5(L E N(T E M P \$)+1)=1, ": T E M P \$$ （LEN（TEMP 5 ）+ C1）$=\mathrm{N}$（LEEN（NS）－C2，LEN（NS））
YZ 306 RETURN
PC 316 ZZ $=45 R(L F, C 40 \# Y P+8 P, L C, C 46, C 46, F B)$ ：RETURN
EL． 326 ZZ $=15 R(L F, C 46 \% Y P+B P, L C, C 4 \theta, B L, F B):$ RETURN
WY 336 ZZ＝U5R $65 P, T P, C 56, Y P \neq C 40+8 P, C 40,14$ ， 21）：RETURN
XH 346 FILES＝יD：GAME．DAT＂
 J＝5CRS $: 10=2$ ：BYTES＝2352：ADDRES5＝ADR C5C R55）
2I 360 ？＂Kłt 2 Reading Data File．．．．＂：OPEN \＃C1，C4，C0，＂K：＂
AB 370 TRAP 380：0PEN \＃C2，C4，C0，FILEF：G05U B 240：CLOSE HC2：TRAP 40000：G0T0 400
EH 380 ？＂$\downarrow \nmid \downarrow$ Data $\mathrm{Fil}^{2} \mathrm{e}$ does not exist．＂：？ ＂łCreating new Data File．＂
日I 390 CLOSE HC2：TRAP 40006：0PEN HC2，C8，C 6，FILES：G05UB 210：CLOSE \＃C2
IM 400 FOR I＝C1 TO 2352 STEP C56：IF 5CRS $\$$ （I，I）＝＂＂＂THEN NBGM＝I：POP ：GOTO 420
5I 410 NERT I：NXGM＝I
YI 426 NKGM＝INT（NXGM／C56）
LU 430 ？＂K HIGH 5CORES

ZW
$446 ?$
＂PEN＂TRAP 3610 OSITION CJ（NXGM（C16），1：？NKG 450 ？＂$\downarrow \downarrow \downarrow \downarrow$ A Add New Games and 5 C orest＂：？＂ 2 update 5corest＂：POKE 16，112：POKE 53774，112
BN 469 ？＂ 3 Delete Game from File ${ }^{\prime \prime}$＂： ？ 4 U Uiew scores on screent＂：？＂ 5 Print File Menut＂
oc 470 ？＂ 6 Exit Program＂：POSITION＿2 ，20：？＂Enter number of your choice＞ ？ >54 THEN 489
AH 490 ON A－48 GOTO $516,2206,2770,1540,30$ 30，500
KM 506 ？＂KRemove disk and store in a saf e place．＂：POKE C752，C0：POKE 16，192：P0K E 53774，247：CLR ：END
FX 519 IF NSGM＜42 THEN 580
GC 520 ？＂Ft＋Unable to add any more Games to list．There are no open areas． t＂$^{\prime \prime}$
YM 530 ？＂You have two options open to yo u now．1．Copy the Main Program onto a nother disk and start a new＇＂；

JH 546 ？＂list or 2．Deletesome of the Ga mes that you know longerplay or care a bout from this list to＂；
T0 550 ？＂free up space，$\downarrow+\downarrow \nmid ": ?$＂press C to return to Main Menu．＂
HR 560 IF PEEK（C764）〈〉18 THEN 560
RL 570 POKE C764，C255：GOTO 430
D5 580 ？＂K ＂：P05ITION 13，5：？＂PROTRAM MAME＂：ACC 1）＝C日：A（C2）＝C0：A（C3）＝C0：TLEUELS＝＂＂
DF 590 POSITION 6，9：？＂SMORE

KU 605 P0SITION 2，22：？＂Press RETURN only to Exit＂
MI 616 POSITION 2，19：？＂Program Name＂；：L ＝14：G05UB 20：GáMES＝AS：IF AS＝＂＂AND UP FLAG＝0 THEN 1246
WA 620 IF A S $="$＂THEN POP $\operatorname{GOTO} 1246$
XH 630 POSITION C20－（LEN（A5）／C2），C7：？AS
FU 649 FOR I＝1 TO NKGM＊C56 STEP C56：IF AS ＝5CR5S（I，I＋LEN（AS）－CI）THEN POP ：GOTO 660
114650 NEHT I：GOTO 730
2M 660 G05UB 310：P0SITION 0，16：？＂This ga me exists on file．＂：？＂If you wish to update the＂；
CM 670 ？＂scores，use option 2 from the m

ER $\frac{t}{680}$ IF PEEK（C764）＜＞63 AND PEEK（C764）＜ 40 THEN 689
L1． 690 IF PEEK（C764）$=63$ AND UPFLAG＝C1 THE n POP
PD 700 IF PEEK（C764）$=63$ AND DOWRTTE＝C 0 TH EN POKE C764，C255：G0T0 430
aJ 716 IF PEEK（C764）$=63$ THEN POKE C764，C2 55：GOTO 1360
0C 726 POKE C764，C255：GOTO 510
PK 736 IF UPFLAG＝Ci THEN RETURN
GC 746 GOSUB 310：POSITION 2，22：？＂Enter N umbers only．No commas，＂
UD 750 POSITION 14，18：？＂Ég E世1：P05I TION 2，19：？＂Enter Score＂；：L＝6：G0sub 120：5CORES＝NS：IF NS＝＂＂THEN 750
NH 760 A（1）$=U A L(N 5): G 05 U B$ 280：5CORE5＝TEMP 5
AI 770 POSITION 13－LEN（SCORE $\%$ ），11：？5CORE
MF 780 G05UB 310：P05ITION 2，22：？＂Press R ETERN Only if none．＂：POSITION 14，18：？ ＂ $\mathrm{F}_{\mathrm{c}} \rightarrow \mathrm{E}_{\mathrm{f}} \mathrm{H}$
BT 796 POSITION 2，19：？＂Enter Level＂；：L＝ 2：G0SUB 120：LEUEL\＄＝N5：IF N今＝＂＂THEN L
RD 806 POSITION 21－LEN（LEVEL乡，11：？LEUEL 5
WY 810 G05UB 310：P05ITION 13，18：？＂E． Ef＂：POSITION 2，19：？＂Enter Name＂；：L＝ 5：G0SUB 26：IF AS＝＂THEN 816
Ha 820 NAMES＝AS：P05ITION 27，11：？NAMEち：IF UPFLAG＝1 THEN RETURN
GH 830 GOSUB 316：POSITION 2，22：？＂Optiona 1 Information＂：？＂RETURN only to leave blank＂；
 TION 2，19：？＂Enter Score＂；：L＝6：G05UB 120：55CORES＝NS
S4 850 IF NS＝＂＂THEN SLEUEL今ニ＂＂：5NAMES＝ ＂＂：Á（CZ）C0：IF UPFLAG＝C1 THEN RETURN
N0 860 IF NS＝＂＂THEN 1670
CB 870 A（C2）＝UAL（N5）：G05UB 280：55CORE5＝TE MP 5
IN 886 POSITION 13－LEN（5SCOREち），13：？55C0 RE5
KD 890 GOSUB 310：POSITION 14，18：？坒t E\＆

[^2] 1256 POKE C702，C64：POKE C694，CO：GET HC 1，A：IF A〈〉C89 AND A〈〉C78 THEN 1256
0G 1266 IF $A=C 78$ THEN YP＝18： $8 P=6: L C=6: F B=$ 0：G05UB 310：G0T0 1216
FU 1276 IF DOWRITE＝C日 THEN 430
Be 128日 POSITION 2，18：？＂This entry Abort ed．＂：GOTO 1406
WH 1290 IF Aく＞79 THEN 1430
Jl． 1300 YP＝19：LC＝5；G05UB 310：YP＝18：LC＝6：P 0SITION 2，20：？＂Any more entries cYe 5／NOD？＂；
RU 1316 POKE C702，C64：POKE C694，C0：GET \＃C 1，A：IF A〈〉C89 AND A〈〉C78 THEN 1316
Na 1320 I＝NRGM＊C56＋C1：5CR5S（I，I＋13）＝GAMES ：5CRS5（I＋21－LEN（5CORE5），I＋26）＝5CORES： 5 CRS5（I＋23－LEN（LEUEL5），I＋22）＝LEUEL5
IU 1330 5CR55（I＋23，I＋27）＝NAME $5: 5 C R 55(I+35$
 －LEN（5LEUEL5），I＋36）＝5LEUEL 5
HA 1349 SCRS $5(I+37, I+413=5 N A M E 5$
PD 1350 5CR5（ $4+49$－LEN（TSCORE5），I＋48）＝T5C
 VELS：5CR5 $5(I+51, I+55)=$ TNAME 5
D2． 1369 NKGM＝NXGM＋C1：DOWRITE＝Ci
Z4 137日 IF A $\langle>C 89$ THEN 1469
EM 1386 IF NHGM＜42 THEN 516
GT 139 YP＝19：LC＝5：G05UB 310：YP＝18：LC＝6：P 0SITION 2，17：？＂All 42 spaces filled．＂
KP 1496 P05ITION 2，19：？1＂5aving all Chang

KA $1410 \mathrm{ZZ}=\mathrm{L} 5 \mathrm{R}$（MK5，ADR（5CR55），ADR（SCR55）＋ NHGMF56，14， $0, B, 0,56,01$
TB 1420 OPEN \＃2，8， 0 ，FILE ES5＝ADR（SCRS5）：I0＝2：G05UB 210：TRAP 409日0：G0T0 430
EO 1430 G05UB 310；P05ITION 2，18：？＂Which to correct ？＂：？：？＂Press G if all are correct．＂＇
HF 144日 P05ITION 33，7：？＂Et 1＂：POSITION 3
 POSITION 33，15：？＂Et 4＂
NU 1450 POKE C694，CG：GET \＃Ci，A：IF A＜48 OR A） 52 THEN 1450
JF 1469 AニA－48：IF A＝CO THEN 1979
YE 1479 FB＝6：YP＝18：FB＝0：G05UB 316
MR 1480 UPFLAGニC1： $8 P=0: L C=1: F B=B: 0 N$ A G05 UB 1506，1516，1520，1536
KN 1490 LPFLAG＝C日：GOTO 1430
IC 1509 YP＝7：G05山B 319：YP＝18：LC＝6：G0T0 60 0
AN 1510 YP＝11：G05UB 310：YP＝18：LC＝6：G0T0 7 46
E\％1529 YP＝13：G05UB उ10：YP＝18：LC＝6：G0T0 8 36
HC 1536 YP＝15：G05UB उ16：YP＝18：LC＝6：G0T0 9 50
0C 1540 ？＂K＂；POSTTION 10，0；？＂LT5T DF i LL SMDRES＂：IF NKGM〈〉C6 THEN 1586
KB 1559 ？＂t +No games on file to see．＂：？ ＂ゅPress C to continue＂
GA 156 IF PEEK（C764）〈 18 THEN 1569
日11 1570 POKE C764，C255：G0T0 43
US 1586 NH＝C6；PR＝C 9

 ＂＇ $\mathrm{N}=\mathrm{C} 1$
T0 1600 PS＝C0：IF PR 160 THEN POSITION 29， 2 2：？＂＇Previous＂：PS＝C1
Ji． 1616 IF $N B>N X G M$ THEN $N X=N K G M$
YH 1629 KニC2：YニC3：FOR I＝PR TO NK－C1：P＝I＊5 $6+C 1$
MH 1636 TEMPS＝＂＂＇GAME5＝5C R5（（P，P＋13）：F0R Z＝14 T0 C1 5TEP－C1
ZG 1649 IF GAMES $(Z, Z)\rangle "$＂THEN POP ：GOTO 1669
MV 1650 NERT Z
KH 1669 Q＝C9－INT（Z／C2）：TEMPS（0， $\mathrm{Q}+\mathrm{Z}-\mathrm{C} 1)=\mathrm{GA}$

MES：U＝USR（RU，ADR（TEMPS））

1676 POSITION $\mathcal{K , Y : ? ~ T E M P S : P O S I T I O N ~ K , ~} Y$
 $+223: 11: 5 C R 55(P+23, P+27)$
ZJ 1686 P0SITION $\mathcal{K}, \mathrm{Y}+3: ? 5 \mathrm{CR} 55(\mathrm{P}+28, \mathrm{P}+34)$ ：41；SCR $55(P+35, P+36): 111: 5 C R 55(P+37, P$ ＋41）
HD 1696 P05ITION $X, Y+4: 75 C R 55(P+42, P+48)$ $j^{11}{ }^{11}$ ； 5 CR 5 S $(P+49, P+50) ; " 1 " 5 C R 55 C P+51, P$ ＋55y
UR 1790 IF $K=C 2$ THEN $K=21: G 0 T 01720$
OF $1716 \mathrm{Y}=\mathrm{Y}+\mathrm{C} 6: \mathrm{H}=\mathrm{C} 2$
FJ 1720 NERT I
IR 1736 POKE C702，C64：POKE C694，C6：GET \＃C 1， A
RN 1749 IF $N=C 6$ AND $A=C 78$ THEN 1736
0U． 1750 IF PS＝C日 AND A＝89 THEN 1739
G1 1769 IF $A=77$ THEN 436
GE 1770 IF $N=C 1$ AND $A=C 78$ THEN $P R=N X: N X=P$ R＋C6：G0T0 1790
AO 1789 IF P5＝C1 AND A＝89 THEN NH＝PR：PR＝P R－C6：G0T0 1796
YD 1790 ？＂K＂＇POSITION 10，0：？＂LLTST OF i LL SHiDES ：GOTO 1596
太H 1800？＂K＂；POKE C752，C1：POSITION 日，日：？ \square
50．1810 KP＝C0：YP＝C $5: L C=23: F B=C 128: B L=C 1: G$ 05山B 320：8P＝39：G05UB 320
TU 1826 IF NKGH《〉C日 THEN 1876
Ha 1830 ？＂$\ddagger+$ Ho Games on file．Use Option 1 on the Main Menu to add games and 5 cores to file：＂
Wh 1849 ？＂t＋Press \quad to tontinuell
CH 1850 POKE C762，C64：POKE C694，C0：GET HC 1．A：IF A〈〉67 THEN 1856
aK 186．GN＝C日：RETURN
GN 1876 $\mathrm{KP}=\mathrm{C4}$ ：YP＝C1：TP＝ADR（5CRS5）：G05UB 3 30
H11 1880 KP＝22：TP＝ADR（5CR55）＋1176：G054B 33 9
B5 189日 KP＝0：YP＝22：LC＝2：G05山B 310：P05ITI0

HN 1960 POSITION 6，23：？＂RETURN－EBLECH S K－EXIT＂： $\mathrm{K}=\mathrm{C2:Y=C1:DH=C2:DY=C1}$
I』 1910 POSITION K，Y：？＂ニン＂
HW 1929 POKE C762，C64：POKE C654，C日：GET \＃C 1，A：IF A＝88 THEN GN＝CG：RETURN
RT． 1936 IF $A=155$ THEN 2090
JY 1949 IF $A=45$ THEN $D Y=Y-C 1: G 0 T 02020$
1．F 1950 IF Aニ61 THEN DYニY＋Ci：GOTO 2650
CX 1969 IF A＝42 THEN DH＝C20：G0T0 1996
NO 1976 IF $A=43$ THEN DH＝C2：GOTO 1596
TI 1980 GOTO 1920
CR 1996 IF DH＝C29 AND NHGM＜22 THEN DH＝C2
RY 2069 IF DKニC2 AND Y＞NHGM－C2日 THEN DYニ NHGM－21
FD 2010 GOTO 2080
 1
aR 2030 IF DY＜C1 AND $H=C 2$ AND NHGM〉 21 THE H DY＝21
PH 2046 IF DY $C C 1$ AND $H=C 2$ THEN DY $=N H G M$
UIF 2050 IF $D Y>21$ THEN $D Y=C 1$
AI 206 IF DY \boldsymbol{I} NKGM THEN DYニCi
0T． 2679 IF $K=C 26$ AND DY＞NRGM－21 THEN DYニC 1
Hi． 2080 POSITION $X, Y: ? ~ " ~ ": ~ X=D K: Y=D Y: G O T ~$ 01910
80 $2096 \mathrm{GN}=\mathrm{Y}: I F \quad \mathrm{H}=\mathrm{C} 20$ THEN $\mathrm{GN}=\mathrm{GN}+21$
ER 2169 TEMPSニSCRSSGGGN－C1）$\# C 56+C 1$ ，GGN－C1
 TEMP5y
T0 2110 RP＝0：YP＝22：LC＝2：G05山B 310：P05ITIO N 3，22：？＂Gelactad＂TEMPS：
0P 2120 POSTTION 0，23：？＂IG ThiE MOPRE Et GRGMCD G＂；：P0SITION 19，10：？
UH 2136 POKE C762，C64：POKE C694，CG：GET \＃C

	1，A：IF Aく
Ps	2140 IF A＝C89 THEN RETURN
50	2150 YP＝22：LC＝2： $\mathrm{PP}=0: \mathrm{FB}=128: G 05 \mathrm{LB} 310$
	POSITION 0，23：？＂ 5 ESiget Differan
	［t Cowi a mibur
cz	2169 P05ITION
ME	2170 P0KE C762，C64：P0KE C6
cP	2180 IF A＝C65 THEN GN＝C日：RETURN
IIC	2190 P0SITION K，Y：？＂＂：G0T0 1890
4 P	2200 TEMPS＝＂DPREATE＇＇：G05UB 180日：IF
	CO AND DOHRITE＝C0 THEN 430
DC	2210 IF GN＝C日 THEN 1460
L．t	$2220 \mathrm{GN}=(\mathrm{GN}-\mathrm{C} 1) * \mathrm{C} 56+\mathrm{Cl}$
	2230 GAMES＝5CR5（GN，GN＋13）
	与（GN＋14，GN＋20）：LEUELS $=5 \mathrm{CR} 55$
	2）： $\mathrm{A} A M E 5=5 C R 55(G N+23, G N+27)$
DE	$224655 C 0 R E 5=5 C R 5 今 6 G+28, G N+$
	5＝5CR5 5（GN＋35，GN＋36）： $5 \mathrm{NaME} 5=$
	7，GN＋41）：TSCORES＝5CR55（GN＋42，GN＋48）
EE	
	＝5CR5 $5(\mathrm{GN}+51, \mathrm{GN}+55):$ TE
ZG	2260 TEMP $=55 \operatorname{coRE} 5(1,3):$ TEMP $5(4)=5$
	E $5(5,7): I F$ TEMP $5=1 "$＂THEN TEMP ${ }^{(1)}$
AK	2270
	203）：TEMPS（C4）
	THEN
B	2280 A（C3）$=$ UAL（TEMP5）：
	3，0：？＂Update scores＂
G1．	2290 TEMPち＝＂＂＇F0R Z＝14
	T0 Ci STEP－Ci：IF GAME今（Z，Z）＜＞＂＂THE
	N POP ：GOTO 2310
K1	2300 NEMT Z
	2310 0＝C9－INT（Z／C2）：TEMP
	ME¢ ：U＝U5R（RU，ADR（TEMP ${ }^{\text {c }}$
	2329 P05ITION 12，2：？TEM
ur	2330 POSITION
	L与：＂＂：5NAME
A	2340 POSITION 12，8：？
	LS；＂＂＇TNAMES
	2350 POSITION
	G\％LIESEL
IF	2360 8P＝0：YP＝20：FB＝0：LC＝4：G05UB 310：P
	SITION 2，22：？＂Press bilimid
	exit＂
	2376 POSITION 2，20：？＇Enter 5core＇י；L
	＝6：G05UB 120：IF PP＝Ci AND Do
	HEN 439
Lo	2386 IF PP＝C1 THEN 2760
	2460
E	2400 YP＝29：LC＝4：G05UB
	日：？＂Score＂；Ns；＂to low to
	［1 ${ }^{\text {1／}}$ abort＂）
D	2420 POKE C792， 064 POKE C694
Uz	2430 IF A＝C65 AND DOWRITE＝C0 THEN
CH	2446 IF A＝C65 THEN
5 H	2450 G0T0 2360
T	2469 G05UB 280：U5COREち＝TEMPち：P0SITION
	6，14：？USCORES
1	2470 G05UB 310：P05I
	Catildi only to leave bla
FI	2480 P05ITION 2，20：？＂Enter Level＂；L
	＝2：G05UBi 120：ULEUELS＝N5：IF N5＝
	ULEUEL5＝＂
65	2490 POSITION 22，14：？ULEUELS
11	2509 P0SITION 2，20：G05ub 310：？＂Ente
	Name＂＇：L＝5：G05UB 20：IF A¢＝＂＂THEN 25
	09
50	2516 UNAMES＝AS：POSITION 32，14：？UNAMES
5	2520 G05UB 310：P0SITION 2，20：？＂10 al

5C． 2156 YP＝22：LC＝2： $\mathrm{AP}=0: \mathrm{FB}=128: G 05 \mathrm{UB} 310$ ：

2160 P0SITION 10, 16:?

ME 2170 POKE C702，C64：POKE C694，C0：GET \＃C 1，A：IF A〈〉C65 AND A〈〉83 THEN 2170
KP 2180 IF $A=C 65$ THEN GN＝C0：RETURN
IIC 2190 POSITION X，Y：？＂＂：GOTO 1890
2200 TEMPS＝＂णPditg＇＂：G05UB 180日：IF GN＝ CO AND DOWRITE＝C日 THEN 430
DC 2210 IF GN＝CG THEN 1460
1．T 2230 GAMES＝5CRS5（GN，GN＋13）：5C0RE5＝5CR5 5（GN＋14，GN＋20）：LEUELS＝5CR55（GN＋21，GN＋2 2）： $\operatorname{NAME}=5 \mathrm{CRS} 5 \mathrm{GGN}+23, G N+27)$
2240 55C0RE $5=5$ CR 5 （ $(G N+28, G N+34): 5 L E U E L$ ＝5CR5 5 （GN＋35，GN＋36）：5NAME $5=5$ CR5 $5(G N+3$ 2250 TLEUELS＝5CR5SGGN＋49，GN＋5日）：TNAME $=5$ CR5 $5(G N+51, G N+55):$ TEMP $5=5 C 0 R E 5(1,3):$ TEMPS（4）$=5 \operatorname{CORE} 5(5,7): A(1)=U A L(T E M P \xi)$

2260 TEMPち＝55CORE $3(1,3):$ TEMP $(4)=55 \mathrm{COR}$ | E 5 |
| :--- |
| 6 |
| 1 |

 ，C3）：TEMP（C4）$=$ TSCORE（ $(C 5, \mathrm{C} 7): I F$ TEMP
＂1 THEN TEMP ${ }^{11}{ }^{11}$
017＂UPdata 5 Cores＂ ，
 M POP ：GOTO 2316
HB 2300 HEHT Z
K0 2310 a＝C9－INT $(Z / C 2)$ ：TEMPS $(0,0+Z-C 1)=G A$ MEs： $\mathrm{U}=\mathrm{U} 5 \mathrm{R}$（RU，ADR（TEMP \ddagger ）
RY 2320 POSITION 12，2：？TEMP5：POSITION 12 4：？5CORE5：＂＂＇LEUELS：＂＂JNAME
2339 POSITION 12，6：？55CORES；＂＂；5LEUE
2349 POSITION 12，8：？TSCORE与；＂＂；TLEUE L5；＂＂；TNAME 5
chan scole
2366 KP＝0：YP＝20：FB＝6：LC＝4：G05UB 310：P0 SITION 2，22：？＂Press RETMRS only to新
2370 POSITION 2，20：？Enter score ；： HEN 436
002389 IF PP＝Ci THEN 2760
EU 2400^{2460} YP＝20：LC＝4：G05UB 310：POSITION 2，2 a：？＂Score＂；Ns；＂to low to be entered
2410 POSITION 2，22：？＂R R Re－enter
G abort＂

UZ 2439 IF $A=C 65$ AND DOWRITE＝C日 THEN 430
CH 244 IF $A=C 65$ THEN 2760
SH 2450 GOTO 2360
2460 G0SUB 280：USCORES＝TEMP5：P0SITION 6，14：？U5CORES
14 2470 G05UB 310：POSITION 2，22：？＂Press路
2486 POSITION 2，20：？Enter Level us 2：G05LBi 120：LLEUELS＝NS：IF NS＝＂＂THEN

2490 P05ITION 22，14：？ULEUEL5
 06
So 2510 UNAMES＝AS：POSITION 32，14：？UNAMES 1 ok \quad ：Re－enter＂：？：？＂＇i

BF 253 POKE 702，64：POKE 694，日：GET \＃1，A：I $F A=65$ AND DOWRITE＝ 0 THEN 439
CJ 2549 IF A＝C65 THEN 2760
TD 2550 IF $\AA=82$ THEN 2230
CK 256 IF $A=79$ THEN 2580
SA 2576 G0TO 2530
All 2589 DOWRITE＝CI：IF A（C4）（ACC1）THEN 26 10
OJ 2590 TSCORE $5=55 C O R E 5: T L E U E L 5=5 L E U E L 5: T$ NAME $5=5$ NAME 5 ；55CORE $5=5 C O R E 与$ ：SLEUELSニLE UEL与：5NAMEちニNAME
BR 2609 5COREรニリSCORE5：LEUELรニULEUEL与：NAM Eち＝UNAHES：GOTO 2646
GC 2610 IF $\hat{C}(C 4)$（A（C2）THEN 2630
PE 2626 T5COREち＝55CORES：TLEVELSニ5LEUELS：T
 LEUELS：SNAME $=$ UNAME 5 ：GOT0 2646
 NAMESニUNAMES
Aの $2640 \quad I=G N: 5 C R S 5(I, I+13)=G A M E \zeta ; 5 C R 55(I+$ 21－LEN（5CORE5），I＋20）＝5C0RE5：5CR55（I＋23 －LEN（LEUELS），I＋22）＝LEUEL 5
WI $26595 C R 55(I+23, I+27)=N A M E 5: 5 C R 55(I+35$
 －LEN（SLEUELS），I＋36）＝SLEUEL 5
MN 2666 SCRS $5(I+37, I+41)=5$ NAME 5
P＠ 2670 SCRS $5(I+49$－LEN（TSCORE5），$I+48)=T 5 C$ ORES：5CR5s（I＋51－LEN（TLEUEL5），I＋5日）＝TLE UELS：SCRS S（I＋51，$I+55)=T$ NAME 5
IN 2689 KP＝6；YP＝4；LC＝19：FB＝6：G05UB 319
Jl． 2696 POSITION 12，4；？5CR5S（I＋14，I＋20）； ＂＂；5CR 5（ $(I+21, I+22) ; " 1 ": 5 C R 55(I+23, I+$ 27）
TM 270日 P0SITION 12，6：？5CRS5《I＋28，I＋34）； ＂＂；5CR5 $5(I+35, I+36) ; " 11 ; 5 C R 55(I+37, I+$ 41）
B1 2716 P05ITION 12，8： 7 5CR55（I＋42，I＋48）； ＂＂；SCRS $5(I+49, I+50) ; " 1 "$ SCRSS（I＋51，I＋ 55）
OT 2720 POSITION 2，26：？＂0ther Games to 4 Pdate（Yes／Noy is；
LH 2730 POKE C702，C64：POKE C694，C0：GET \＃C 1，A：IF A〈〉C89 AND A〈〉C78 THEN 2730
WI 2746 IF $A=C 89$ THEN 2209
P0 2750 GOT0 1490
EI 2760 KP＝0：YP＝18：LC＝6：G05UB उ10：P05ITI0 M 2，18：？＂Aborted，＂：GOT0 2720
GL 2770 TEMP $=$＂DRIGTG＂＇G05UB 1899：IF GN＝ CG AND DOWRITE＝C日 THEN 430
EH 2789 IF GN＝CG THEN 3626
PJ $2790 \mathrm{GN}=(\mathrm{GH}-\mathrm{C} 1) \operatorname{HC} 56+\mathrm{C} 1$
LH 2806 GAME $5=5 C R 55(G N, G N+13): 5 C 0 R E 5=5 C R 5$与（GN＋14，GN＋29）：LEUEL5＝5CR55（GN＋21，GN＋2 2）：NAME $5=5 C R 55(G N+23, G N+27)$
DH 2816 55CORESニ5CR5S（GN＋28，GN＋34）：SLEUEL $5=5$ CRS $5(G H+35, G N+36): 5$ NAME $5=5 C R 55(G N+3$ 7，GN＋41）：T5CORE5＝5CR55（GN＋42，GN＋48）
HP 2829 TLEUEL与ニ5CR55（GN＋49，GN＋50）：THAME $=5 C R 55(G N+51, G N+55)$
ZA 2830？＂K＂：POSITION 13，0：？＂Delete Gam e＂
PD 2840 TEMPちニ＂＂！FOR Z＝14 T0 Ci 5TEP－C1：IF GAMES $Z, Z,\langle\searrow " \|$ THE N POP ：GOTO 2860
HA 2856 NEKT Z
LC $2860 \quad 0=C 9-I N T(Z / C 2): T E M P S(0, Q+Z-C 1)=G A$ MES：U＝USR（RU，ADR（TEMPS））
5月 2870 P0SITION 12，2：？TEMP与：POSITION 12 4：？5CORES；＂＂；LEUEL与：＂＂；NAME
WE 2880 POSITION 12，6：？5SCORE广；＂11；SLEUE L5；＂＂；5NAMES
BP 2890 POSITION 12，8：？TSCOREڭ；＂＂＇：TLEUE L与；＂＂；TNAMES
BZ 2906 POSITION 2，17：？＂TYPe full word D ELETE to delete this＂
WT 2905 ？＂game from the list，Anything e 1se willabort the process．＂

1H 2910 P05ITION 2，21：L＝6：G05UB 20：IF ASく ＞＂DELETE＂AND DOWRITE＝C日 THEN 430
OR 2926 IF AS 〈〉＂DELETE＂THEN 3020
I5 2930 IF GN＝2297 THEN 2956
I． 32946 5CRSS（GN，2296） $250 R 55(G N+56,2352)$
00 2950 TEMPS＝＂
1：5CR55（2297 ，2316）＝TEMP 5
PN 2966 5CR55（2311，2324）＝TEMP5：5CR55（2325 ，2З383＝TEMP5：5CRS\＄（2339，2352）＝TEMP5：N GM＝NKGM－1：DOWRITE＝1
YJ 2976 YP＝17：LC＝C7：FB＝0：G0SUB 310：P0SITI 0N 2，17：？＂Game Deleted．＂
JT 2980 POSITION 2,$21 ; ?$＂Ang more games t o Delete（Yes／moy ？＂！
IT 2996 POKE C762，C64：P0KE C694，C0：GET \＃C 1，A：IF A〈〉C78 AND A〈〉C89 THEN 2990
FI 306 IF $A=C 89$ THEN 2770
ZT 3016 DOWRITE＝C日：POSITION 2，21：？＂TUPda ting Disk File．．．＂：GOTO 1420
FC． 3 ＠2 9 YP＝17：LC＝C7：FB＝C日：G05UB 316：P05IT ION 2，17：？＂申Process Aborted．＂：GOT0 29 89
UT 3日3 ？＂मK＂POSITION 15，0：？＂HIGH SCORE ＂：POSITION 14，2：？＂PRPNT NGNU $\downarrow \downarrow \downarrow$＂
NO 3046 ？＂ 1 All Games with Scorest ${ }^{\prime \prime}$ ：？ ＂F2 All Games with Top score onlytұ＂
co 3050 ？＂ 3 List of Game Names only 4 ＂ ：？＂ 4 Return to Main Menu＂
UU 3066 P0STTION＿2，21：？＂Press number of your choice＞${ }^{\prime \prime}$ ；
OE 3079 POKE C694，C0：GET \＃C1，A：IF Aく49 OR A＞52 THEN 3076
74． 3689 FニA－48：IF A＝52 THEN 439
2Y 369日 POSITION 2，21：7＂FF ourty or E ighty Column Printer＂；
EU 3169 POKE C702，C64：POKE C694，C0：GET \＃C 1，A：IF A〈〉70 AND A〈〉69 THEN 3100
HH 3119 CLM＝86：IF \quad＝79 THEN CLM＝49
01． 3129 ？＂K＂：POSITION 12，0：？＂Function 5 elected＂：ON F G0T0 3130， 3146,3150
KL 3i3g POSITION 7，2：？＂Print All Games w ith scores＂：GOT0 3169
EH 3149 POSTTION 3，2：？＂Print All Games W ith Top score only＂：GOT0 3160
TF 3150 POSITION 4，2：？＂Print List of Gan e Names On Fileit
20 3160 P0SITION 2，6：？＂Please be sure pr inter is ON－LINE and ready to print，it
日A 3176 POSITION 8，11：？＂DP Print＂：P05IT ION 8，13：＂＂V Abort print＂
GC 3180 P0sITION $2,17: ?$＂Press Letter of Choice $>$＇＇；
NK 3190 POKE C702，C64：POKE C694，C0：GET \＃C 1，A：IF A $\rangle C 65$ AND A〈〉86 THEN 3196
UH 3206 IF A＝C65 THEN 3030
PC 3216 TRAP $3526: 0 P E N$ \＃C4，C8，C0，＂P：＂：TEM P\＄＝1
＂：POSITION 2，17：？
＂Mिएinting．．．＂
BY 3220 ON F GOTO $3230,3370,3470$
PT 3230 5＝112：51＝C1：？\＃C4；TEMP 5 （C1，C6）；： F CLM＝8日 THEN ？HC4；TEMP与；TEMPS（C1，C4） ；：5ニ224：51ニC3
5H 3249 ？\＃C4；＂LIST OF ALL GAMES WITH 5C0 RE5＂：？\＃C4：？\＃C4
55 3256 FOR I＝Ci TO NRGM 3 CS6 STEP 5：FOR W
 $: ?$ \＃C $4: G 0 T 03296$
IR 3260 GAMES＝5CRSS（P，P＋13）：FOR $Z=14$ TO C 1 5TEP－Ci：IF GAMES $(Z, Z)\rangle " 11$ THEN POP ：GOTO 3280
MH 3270 NEKT Z：POP ：？\＃C4：GOTO 3290
EA 3286 TEMPちニ＂${ }^{12}$ ： $0=C 9-I N T$ （Z／C2）：TEMPS（0， $0+Z-C 1)=G A M E 5: ? ~ \# C 4 ; "$ ＂；TEMP5：：NERT W：？\＃C4
 2 THEN POP：？\＃C4：GOTO 3इ1G
 ；SCR5 $5(P+21, P+22) ; 11 ; 5 C R 55(P+23, P+27)$

```
        ;:NERT W:? #C4
BK 3310 FOR W=C0 TO 51:P=W*C56+I:IF P>235
    2 THEN POP :? #C4:G0TO 3330
M4 3326? ##4;" ";5CR55(P+28,P+34);" ";
        5CR55(P+35,P+36);" '';5CR55(P+37,P+41);
        :NEHT W:? #C4
G0 3336 FOR W=C0 TO 51:P=W*C56+I:IF P>235
    2 THEN POP :? #C4:GOTO 3350
HK 334日? #C4;" ";5CR55(P+42,P+48);" ";
    5CR55(P+49,P+50);" ";5CR5S(P+51,P+55);
    :NEKT W
HY 3350 ? #C4:? #C4:NEKT I:? #C4
W% 3360 CLOSE #C4:G0T0 3030
NH 3370 5=112:51=C1:? #C4;" ";':IF CLM=
    5=224:51=C3
2L. 3386 ? #C4;"LI5T OF ALL GAMES WITH TOP
        5CORE":? #C4:? #C4
FA 3390 FOR I=C1 TO NKGM*C56 5TEP 5:FOR W
        =C6 T0 51:P=W*C56+I:IF P>2352 THEN POP
        :? #C4:G0T0 3430
UU 3400 GAMES=5CR5S(P,P+13):FOR Z=14 T0 C
        1 STEP -Ci:IF GAMES(Z,Z)<>" " THEN POP
        :GOTO 3426
YJ 3410 NERT Z:? #C4:POP :GOTO 3430
FA 3420 TEMP5=" ":0=9-INTC
    Z/C2):TEMP5(0,Q+Z-C1)=GAMES:? #C4;"
    ";TEMPS;:NEKT W:? #C4
DJ 343日 FOR W=C0 T0 51:P=W*C56+I:IF P>235
    2 THEN POP :GOTO 3450
MF 3440 ? #C4;" ";5CR55(P+14,P+C20);" "
        ;5CR55(P+21,P+22);" ";5CR55(P+23,P+27)
        ;:NEKT W
TA 3450? #C4:? #C4:NERT I:? #C4
WZ 3460 CLOSE HC4:G0T0 3036
MT 3470 5=112:51=C1:? #C4;" '":IF C
    LM=80 THEN ? #C4;"
    ";:5=224:51=c3
PO 3480 ? #C4;"LI5T 0F GAME NAME5 ON FILE
    ":? #C4:? #C4
DH 3490 FOR I=C1 TO NHGM*C56 STEP S:FOR W
        =C0 T0 51:P=W#C56+I:IF P>2352 THEN POP
        :GOT0 3510
DH 3500 ? #C4;" ";5CR55(P,P+13);:NERT W
        :? #C4:? #C4:NERT I:? #C4:CLO5E #C4:G0
        T0 3036
50 3510? #C4:? HC4:NERT I:? HC4:CLO5E #C
        4:G0T0 3030
TU 3520 A=PEEK(195):? "K\downarrow\downarrow\downarrowERROR E` ";A:?
        :? :CLO5E #C4
CT 3530 ? "The Printer is not responding.
        Be sureit is on and in an on-line sta
        te."
RH 3540 IF A<>136 AND A<>138 AND A<>139 T
        HEN ? :? "This error might not be the
        printers fault. Check program."
EC 3550 ? :? "Error occured in line ";PEE
        K(186) +PEEK(187) *C256
WF 3560 ? :? "NM}\mathrm{ Main Menu P Print M
    enu'
UI 3570 ? :? "Press letter of choice >茴';
        :POKE C764,C255
TJ 3580 IF PEEK(C764)=C10 THEN POKE C764,
    C255:GOTO 3030
RU 3590 IF PEEK(C764)=37 THEN POKE C764,C
    255:G0T0 430
UG 3600 GOTO 3580
W0 3619 A=PEEK(195):? "K\$ERROR EF'";A;" I
        N LINE ";PEEK(186)+PEEK(187)*C256:? :?
        :POKE C752,C0:POKE 16,192
CH 3620 POKE 53774,247:IF A\langle>130 AND A<>1
        38 AND A}\langle>139 AND A<>140 AND A<>142 AN
        D A<>143 AND A<>144 THEN 3640
UN 3630 ? "The problem seems to be with t
        he disk drive. It is not responding pr
        operly. Check drive.":END
WK 3640 IF A=169 THEN ? "The directory on
        the disk is full. No room for the dat
```

a file．＂：END
KA 3650 IF $\dot{\text { A }}$ 〈 162 THEN 3680
HP 3660 ？＂There is not enough room on th e disk for the data file．You need at least 19 free sectors in single＇＇；
GY 3670 ？＂or 10 free sectors in Double Density．＂：END
JH 3680 IF $A=167$ THEN ？＂The data file is locked．I am unable to update the inf ormation．＂：END
So 3690 ？＂Please Check manual for explai nation of error．＂：END
PD 3700 DIM U5CORE $5(7)$ ，ULEUEL $\$(2)$ ，UNAME $5($ 5），DS（1），5CRS $5(2352), 5$ CORE $5(7), G A M E S(1$ 4），LEUEL $5(2)$, NAME（ 5 ）， $\mathrm{A} 5(14), \mathrm{N}\{(6)$
DS 3710 DIM FILE $5(10)$, RUS（22），TNAME $5(5), T$ EMP 5 （16），A（4）， 55 CORES（ 7 ），T5CORE $5(7), 5 L$ EUEL $\$(2), T L E U E L \$(2), 5 N A M E 5(5)$
MM 3720 DIM 5P5（105），LF5（61），MK55（192）
OY $3800 \mathrm{RU}=\mathrm{ADR}(\mathrm{RU} 5): 5 \mathrm{P}=\mathrm{ADR}(5 \mathrm{P} 5): L F=A D R(L F$ ち）：MK 5＝ADR（MK5 5）
IB 3816 C0＝0：C1＝1：C2＝2：C3＝3：C4＝4：C5＝5：C6＝ 6：C7ニ7：C8＝8：C9＝9：C10＝10：C255＝255：C256＝ 256：C42＝42：C694＝694：C702＝702
0U 3820 C16＝16：C20＝20：C764＝764：C56＝56：C65 $=65: C 82=82: C 89=89: C 78=78: C 64=64: C 40=40$ ：C752＝752：C128＝128
BA 3830 RETURN

by C.F. Fogarty, III

Create-a-base is a versatile file and retrieve program that allows you to easily define your own personal databases. It has facilities for creating databases, adding new records to a database, updating records already on your database, searching on multiple key fields, and simple reporting.

Before we go into explanations of how to use Create-abase, here's a quick overview of some common database buzzwords.

A byte or character, is the smallest piece of data that Create-a-base deals with. It's a single character, like the letter A.

A field is a collection of bytes and usually contains data pertaining to a single subject or item, like a name or address.

A record is a logical collection of fields. For instance, a record in a database called Phone Book, might contain the following fields: name, street, city, state, zip code and phone number.
A file (in this case, the database) is a collection of records.
A database is merely a collection of related data, usually in multiple files. Large mainframe databases can share data between files, avoiding the need to enter all the fields for each record or entity. However, this type of data sharing is beyond the scope of Create-a-base. Remember, most of us (I have an Atari 800) have only 48 K of RAM built into our computers. It's this fixed amount of memory that's the main limitation when working with a database.

Limitations.

The input area for each record is limited to a single graphics 0 screen. You can enter up to sixteen fields per record, and each field can be up to 31 bytes long. This gives you a maximum record size of 496 bytes.

$$
\frac{31 \text { bytes }}{\text { field }} \quad \times \quad \frac{16 \text { fields }}{\text { record }}=\frac{496 \text { bytes }}{\text { record }}
$$

The size of each database is limited only by the capacity of your disk drive and a single disk. A 1050 drive using DOS 2.5 will hold a database one and one-half times the size that an 850 drive will hold. It's also important to note that, the smaller you define your records, the more records you can fit on a disk.

Typing Create-a-base.

The instructions below should be followed exactly to create your copy of Create-a-base.

Type in Listing 1, using the BASIC Editor II (in issue 47 of ANALOG Computing) to verify your work. Be sure to save a backup copy.

Place a disk containing DOS in drive 1 , and run the program created from Listing 1. Two files, ML1.LST and ML2. LST, will be written to your disk. Leave this disk in drive 1 until all the steps below have been completed.

After clearing your computer's memory, type in Listing 2 using the BASIC Editor II to verify your work. Be sure to save a backup copy. Run the program created from Listing 2. Two files, AUTORUN.SYS and CHSET.PMG, will be written to your disk.

After clearing your computer's memory, type in Listing

F Create-a-base continued

3 using the BASIC Editor II to verify your work. Save a copy to disk.

Load the program created from Listing 3 into memory and merge the file ML1.LST by typing ENTER "D:ML1. LST"' and pressing RETURN. Save the resultant program to disk under the filename CREATEAB.ASE.

After clearing your computer's memory, type in Listing 4 using BASIC Editor II to verify. Save a copy to disk.

Load the program created from Listing 4 into memory and merge the file ML2.LST by typing ENTER "D:ML2. LST"' and pressing RETURN. Save the resultant program to disk under the filename SORT.

Getting started.

Once you've typed in all the listings (no simple task) and created a master disk, boot your system with the Create-a-base master disk in drive 1. The main program loads automatically and prompts you to insert your database disk. Since this is your first time using Create-a-base, remove the master disk and insert a blank disk (no need to format it first). Once you've done this, press START, and Create-a-base will inform you that this isn't a valid database disk. Press Y to format it.

Now you can define your first database. Here's an example everyone can use. At the prompt for Database Name, type Phone Book and press RETURN. Note: remember to press RETURN after all entries, or Create-a-base will ignore that input. Next, it will ask you for a LABEL; enter NAME. Now Create-a-base will ask you to define the size of the field for NAME, enter 25. This gives you an input area of 25 bytes for NAME. When you press RETURN Create-a-base does some processing on your input and prints the label NAME to the screen, followed by twentyfive underline characters. Meanwhile, you're prompted in the status window. Press OPTION to define the next field, or press START when the whole record is defined. This time, press OPTION and use the following list to completely define your Phone Book record:

LABEL	FIELD SIZE	CONSOLE KEY
STREET	25	OPTION
CITY	25	OPTION
STATE	2	OPTION
ZIP CODE	5	OPTON
PHONE\#	16	START

Once you've pressed START, Create-a-base does some processing and writes to the disk. When it's done, you'll have a database disk called Phone Book and Create-a-base will go into the "add records" mode.

The next time you boot the Create-a-base master disk, insert this database disk at the prompt, and Create-a-base will go directly to the add records mode.

Using the edit screen.

To add records to the database, simply type in the person's name and press RETURN. The cursor automatically moves down to the street field and so on . . When you've entered all the data for the first record, press START and you've written the first record to your Phone Book!

Advanced editing.

Pressing RETURN alone, without typing any text, moves the cursor down to the next field and leaves that field
blank. However, if any text was on that line (as in update mode), it will be erased. Pressing SELECT allows you to move the cursor to the next field without erasing any text.
The OPTION key changes modes. There are five modes -add, search, update, report and create. By pressing OPTION five times, you can cycle through each mode. In all modes except create, the screen looks exactly the same, except for the "mode" in the status window. In create mode, pressing OPTION will bring you back to the add mode, while pressing START takes you to where you defined your database. If you accidentally press START, when you meant to press OPTION in create mode, press ESCape to return to the edit screen. Normally, while editing, you press START only when you're done editing the record on the screen. It tells Create-a-base to process your input.

Searching a database.

To search the database for a certain record, press OPTION until you're in search mode. Then type in the information you want to search for. Remember to press RETURN after each field you enter, and press START to begin the search. For example, if you wanted to search for Charles Fogarty, you could enter Charles Fogarty, Fogarty, or even F.

Create-a-base will search the database until it finds a match or comes to the end-of-file. If it finds a match, the record prints to the screen and prompts you to Continue (Y / N). Pressing Y continues the search, and any other key brings you back to the edit screen (still in search mode). You can then search for different records. By the way, if you don't type in any information for Create-a-base to search with before you press START, it defaults to all records, so everything's a match.

You can also search on multiple fields. So, if you wanted to find everyone with a last name of Fogarty, who lives in Hartford, with a zip code of 06118, you could enter that information in the appropriate fields (name, city and zip code), and then press START. Only those records matching all three fields will show up on the screen.

Reporting.

Report mode works exactly like search mode, except all the output goes to the printer.

Updating records.

Update mode also works like search mode, until it finds a matching record. Once it finds a match, you can make any changes to that record displayed on the screen. Press START and the new, updated record is written to the database. The old record is written over by the new one. To delete a record completely, press CTRL-D.

Creating new databases.

Create mode was used to create your Phone Book database. You define labels and fields to create new and different databases. Remember, you can only put one database on a disk. If you try to create a new database on the same disk as Phone Book, it will erase the old Phone Book database and start a new one. You may, however, create as many different databases as you want, as long as they're on separate disks.

Other functions.

Pressing CTRL-P with a printer attached will print out the data currently displayed on the screen. This is sometimes called a "screen dump."

Pressing CTRL-S (for Sort) will prompt you to press OPTION to resume editing, or press START to sort the database. Remember to insert the Create-a-base master disk before pressing START, because the sort program is separate from the editor.

Once the sort program's running, it will read the whole database, sort it, and write it out to a new disk. So, after the sort, you'll have two copies of that particular database, the original and the sorted version. This gives you a backup copy, in case of any problems during the sort (like a power outage). The sort also gets rid of any "deleted" records and recovers lost disk space. These "deleted" records are still taking up space on the disk, even though they don't show up when you search.

A small database (one that can be sorted completely in RAM), takes a minute or two. The disk I/O takes considerably longer than the sort itself. Sometimes a large database won't fit into RAM all at once (only 48 K), so I tried to use the available memory as efficiently as possible.

After reading and writing the database in blocks (approximately 25 K on my system), Create-a-base reads the database a second time. This time it notes the position of each record on the disk and keeps only the sort field and pointers. Then it sorts the pointers and reorganizes the file on the disk. This pointer sort allows you to sort files much larger than your main memory could possibly hold. The sort program will also scale down the length of the sort field, to accommodate a very large database. What this means is, if the number of records multipled by the sort field length is greater than the number of records that will fit in RAM, the sort will systematically make the sort field 1 byte smaller, until all the records fit into RAM. A worst case would be that the sort field was only 1 byte long. The records would still be sorted in alphabetical order, only with less precision.

The following is a list of possible databases:

Phone Book		Bowler Stats		Sports Stats	
NAME	25	TEAM	25	TEAM	25
STREET	25	NAME	25	NAME	25
CITY	25	DATE	8	NUMBER	3
STATE	2	SCORE\#1	3	etc.	
ZIP CODE	5	SCORE\#2	3		
PHONE\#	16	SCORE\#3	3		
Articles		Disk Catalog		Home Inventory	
MAGAZINE	25	DISKNAME	25	LOCATION	25
TITLE	31	FILENAME	12	SERIAL\#	25
AUTHOR	25	TYPE	10	DATE	8
MONTH	9	AUTHOR	25	DESCRIPT	31
YEAR	4	COMMENTS	31	VALUE	7
PAGE\#	4				

PAGE\#
DESCRIPT

Create-a-base has a number of relocatable machine language routines which can be used in other BASIC programs.

MATCH\$ checks if two BASIC string variables are equal. Call it with: $X=U S R(A D R(M A T C H \$), A D R(t h e ~ f i r s t ~ v a r i-~$ able), ADR(second variable),LENGTH(to compare). It com-

SCHEMAS

(1-51) boot program.
$\begin{array}{cl}(52-64) & \begin{array}{l}\text { to check for valid } \\ \text { cb disk. }\end{array} \\ (52-91) & \begin{array}{l}\text { display } \\ \text { for accidental } \\ \text { boot. }\end{array} \\ (92-106) & \begin{array}{l}\text { database name } \\ 15 \text { characters }\end{array} \\ (107-108) & \begin{array}{l}\text { number of } \\ \text { fields in } \\ \text { use. } \\ \text { MAX. } 16\end{array} \\ (109-140) & \begin{array}{l}\text { length of corresponding } \\ \text { field. } \\ \text { MAX. } 31\end{array}\end{array}$

SECTOR \#2

(145-272) label for each field 8 bytes each. MAX. of 16 labels

Fireate－a－base continued

pares from left to right and returns 0 if they＇re equal，or 1 if they don＇t match．

Note：it considers underline characters as wildcards（al－ ways a match）．

MOVEMEM $\$$ moves memory．Call with：$X=U S R(A D R$ （MOVEMEM\＄），FROM，TO，number of bytes to move，ADR （CONVERT\＄））．ADR（CONVERT\＄）is optional－if used，it converts ATASCII to screen display code（what you see on the screen）．

PARSE\＄checks for valid input．Call with：$X=U S R$ （ADR（PARSE $\$$ ），IN，TYPE），where：IN is an ATASCII value （like GET \＃1，IN）；TYPE＝ASC（＂A＂）checks for alpha－ numeric；or TYPE＝ASC（＂N＂）checks for numeric．The values returned in X are： $0=$ invalid input； $1=$ backspace was pressed； $2=$ RETURN was pressed；and $3=$ valid input．

SCANKB\＄scans the keyboard and console keys．Call with：$X=U S R(A D R(S C A N K B \$))$ ．It exits to BASIC when a key is pressed．The values returned in X are： $1=$ a key was pressed； $2=$ OPTION was pressed； $3=$ SELECT was pressed；and $4=$ START was pressed．

SECTORIO\＄reads／writes disk sectors．Call with：$X=U S R$ （ADR（SECTORIO\＄），sector number，operation，ADR（buffer））， where sector number is any valid sector，and operation is ASC（＂R＂）for read or ASC（＂W＂）for write；the buffer must be at least 128 bytes long．

SORT\＄is a bubble sort in machine language．It＇s not the best sort in the world，but it will sort 25 K in about one minute．It sorts on one key field，which can be a maxi－ mum of 255 bytes long．The records can be any size．Call with：$X=U S R(A D R(S O R T \$), A D R(f i l e)$, number of records to sort，record length，sort－field length，starting position of the sort－field within a record）．It returns 0 for success，or nonzero when invalid parameters are passed to it．

STRIP\＄strips trailing underline characters from a string variable．Call with：$X=U S R(A D R(S T R I P \$), A D R(s t r i n g)$, LEN（string）－1））．The string must be at least 2 bytes long． It returns the position of the last nonunderline character in X ．
Well，that＇s it．Go forth and Create－a－base．ra
C．F．Fogarty worked in OP operations at Aetna for six years and is now a software programmer trainee．He bought his Atari 800 in 1982，and his CompuServe I．D．is 74206,3453 ．He＇s married，has a son and enjoys trout fish－ ing and trail riding．

The two－letter checksum code preceding the line numbers here is not a part of the BASIC program． For further information，see the BASIC Editor II， in issue 47 of ANALOG Computing．

Listing 1.
BASIC listing．

Fa
Fa 30 L $5=1780$ CONUERT $5="!(\xi(L E N(L \xi)+1)=C H$ R5（34）：N＝29：G05UB 210：G05UB 220
 4）：$N=24$ ：G05山B 210：G05UB 220
OT 50 L5＝＂795 MATCHら＝＂：Lち（LEN（L5）＋1）＝CHR （34）：N＝42：G05UB 216：G05山B 220
 RS（34）：N＝99：G054B 210：G05UB 220
 13 $=$ CHR 5 （ 34 ）： $\mathrm{N}=19: G 05 \mathrm{DB}$ 210：G054B 220
 （34）：M＝57：G05UB 210：G05UB 220
TH 96 L5＝＂ 850 5CANKB $5=1 " L 5(L E N(L 5)+1)=C H R$ §（34）：N＝35：G05UB 210：G05UB 220
EN 106 L5二＂ 855 5ECTORIOS＝＂：LS（LEN（LS）＋1）＝ CHR5（34）：N＝31：G05UB 210：G05UB 220
W1． 119 LS＝＂ 866 STRIP $5=1 ":(5(L E N(L 5)+1)=C H R$与（34）：N＝30：G05UB 210：G05UB 220
 HR（34）： $\mathrm{N}=74$ ：G05UB 210：G05UB 226
IF 130 CLOSE \＃1：OPEN \＃1， 8 ， 0, ＂D：ML2．L5T＂

（34）：N＝74：G05UB 210：G05UB 220
UH 150 L $5=1516$ 50RT $5(75)=11: L 5(L E N(L 5)+1)=$ CHR（34）： $\mathrm{N}=75: G 05 \mathrm{LB}$ 210：G05UB 220
 ＝CHRS（34）：N＝75：G05UB 210：G05UB 220
 ＝CHRS（34）：N＝75：G05UB 210：G05UB 220
LR 180 L5＝＂525 50RT\＄（300）＝＂：LS（LEN（L5）＋1） $=$ CHR $5(34):$ ：$=29$ ：G05UB 210：G05UB 220
 R与（34）：N＝77：G05UB 210：G05UB 220
YS 200 RESTORE $440: L 5=" 506$ SECTORIOS＝＂：L与 （LEN（L5）＋1）＝CHRS（34）：N＝31：G05UB 210：G0 5UB 220：END
 NEKT H：RETURN
UK 226 L $5(L E N(L \$)+1)=M 5: L 5(L E N(L 5)+1)=C H R$ \＄（34）：？\＃1：L§：M与二＂H：RETURN

DC 246 DATA $24,201,32,144,12,201,96,144,1$ $6,261,128,144,15,261,160,176,4,165,64$ ， $268,7,201,224,176,3,56,233,32,96$

VA 260 DATA $72,138,72,169,176,162,44,236$ ， $11,212,144,2,169,161,141,10,212,141,24$ ，208，104，170，104， 64
LS 280 DATA $104,104,133,204,164,133,203,1$ $04,133,206,104,133,205,160,0,132,212,1$ $32,213,162,1,164,164,246,14$
wn 290 DATA $133,207,177,203,209,205,208,6$ ，200，196，207，208，245，202，134，212，96

CD 316 DATA $104,133,214,201,4,240,4,201,3$ ，208，93，164，133，204，164，133，263，164，13 3，206，164，133，265，104，133 ，208，13，169，76，13\},214,164,133,216,164 ，133，215，24，144，4，169，96
330 DATA $133,214,160,16,166,207,240,24$, $132,267,177,203,32,214,6,145,205,236,2$ 103，208，2，236，204，230，265
RL 340 DATA $208,2,230,266,202,208,234,166$ ，208，246，9，262，134，206，162，255，230，207 ，208，221，166，207，208，209，134
UJ 356 DATA $212,134,213,96,170,240,5,164$ ， $164,202,298,251,134,213,232,134,212,96$
11． 360 REM $* * * * * *$ PARSES $* * * * * *$
XY 370 DATA $104,104,164,133,203,104,104,1$ $33,204,162,0,134,212,134,213,232,169,1$ $26,197,203,246,32,232,169,32$
NU 380 DATA $197,203,240,25,232,169,78,197$ ，204，240， $6,169,31,160,123,268,4,169,32$ ，160，59，197，203，176，6
PG 390 DATA $196,203,144,2,134,212,96$

Mi 410 DATA $164,160,6,132,213,162,1,173,2$ $52,2,261,255,268,18,232,173,31,268,261$,3,246,16,232,201,5
SF 420 DATA $240,5,232,201,6,268,229,134,2$ 12,96

IM 446 DATA $104,164,141,11,3,104,141,10,3$ $, 164,164,141,2,3,164,141,5,3,164,141,4$,3,169,1,141,1,3,32,83,228,96

1.F 46 DATA $164,104,133,204,104,133,203,1$ $64,104,133,265,169,6,133,213,164,265,1$ $77,203,201,95,268,3,136,268$
EK 479 DATA $247,260,132,212,96$

IT 496 DATA $0,3,6,7,6,7,162,6,166,120,189$, 50, 7, 201,32,144,12,201,96,144,16,201, $128,144,15$
II 560 DATA $201,160,176,4,105,64,208,7,20$ $1,224,176,3,56,233,32,145,88,266,232,2$ $24,56,208,218,24,6$
OT 516 DATA $32,195,242,229,225,244,229,17$ $3,225,173,226,225,243,229,32,46,99,41$, $32,49,57,56,53,32$
S1. 529 REM *
UR 536 DATA $216,162,1,134,231,262,134,232$, 134, 209, 164,201,5,246,12,176,249,5,16 $4,164,262,268,251,232,134$
YF 540 DATA $212,96,164,133,204,133,268,16$ $4,133,263,133,267,164,133,225,194,133$, $224,164,133,227,164,133,226,164$
02. 556 DATA $164,133,239,164,133,229,104,5$ $6,233,1,133,228,165,229,233,6,133,229$, $165,225,268,6,165,224,261$
HA 569 DATA $2,144,291,165,227,268,6,165,2$ $26,261,1,144,191,165,236,261,1,144,185$,24,165,228,101,230,133
DT 579 DATÁ $214,165,229,165,6,133,215,165$ $, 227,197,215,144,166,165,226,197,214,1$ $44,166,165,267,133,295,165,268$

1. 580 DATA $133,206,24,165,205,101,226,13$ $3,267,165,266,161,227,133,268,24,165,2$ $05,161,228,133,214,165,206,101$
CU 596 DATA $229,133,215,24,165,207,161,22$ $8,133,216,165,268,161,229,133,217,160$, $0,177,216,299,214,144,75,268$
LT 609 DATA $5,206,196,230,208,243,24,165$, $231,165,1,133,231,165,232,165,6,133,23$ $2,165,231,197,224,208,175$
J 616 DATA $165,232,197,225,208,169,166,2$ 09,246,36,134,231,202,134,232,134,209, $165,203,133,267,165,264,133,268$
HG 626 DATA $56,165,224,233,1,133,224,165$, $225,233,6,133,225,268,135,165,224,261$, $1,208,129,96,208,188,165$
IH 630 DATA $226,133,212,165,227,133,213,1$ $65,295,133,214,165,296,133,215,165,267$,133, 216, 165, 208, 133, 217, 166, 0
PU 640 DATA $166,212,246,27,132,212,177,21$ $4,72,177,216,145,214,164,145,216,239,2$ $14,268,2,230,215,230,216,298$
DD 650 DATA $2,230,217,202,208,231,166,213$ $, 246,9,262,134,213,162,255,236,212,208$, 218,166,212,208,266,232,134
D8 660 DATA $209,208,175$
DK 679 REM स
SR 686 DATA $164,104,133,264,164,133,203,1$ $64,133,266,164,133,265,164,164,133,267$, 169, $0,133,212,133,213,162,1$
SM 696 DATA $24,165,203,101,207,133,263,16$ $5,204,165,0,133,264,24,165,212,165,1,1$ $33,212,165,213,165,6,133$
2. 706 DATA $213,224,1,298,8,202,24,165,26$ $7,165,3,133,267,166,6,177,263,269,295$, $208,210,269,192,3,298,245,96$

-

Listing 2.
BASIC listing.

cr	1028	data	0，126，96，124，6，102
CY	1029	data	60，0，0，60，96，124
00	1030	data	102，102，60，0，0，126
10	1031	DATa	6，12，24， 48,48
PY	1032	data	0，60，102，66，192，102
1 D	1033	DATA	60，0，0，60，102，62
FF	1034	data	6，12，56，0，6
v11	1035	DATA	24，24，0，24，24，0
AK	1036	data	0，0，24，24，6， 24
12	1037	DATA	24，48，6，12，24，48
cs	1038	DATA	24，12，6，0，6， 0
R5	1839	DATa	126，0，0，126，0，0
kG	1040	DATA	96，48，24，12，24，48
SE	1941	DATA	96，0，0，60，102，12
48	1942	DATA	24，0，24，0，6，60
YF	1643	DATA	102，110，116，96，62，0
45	1044	DATa	0，24，60，102，102，126
RK．	1645	Datá	162， $0,0,124,192,124$
MY	1046	DATA	192，102，124，6，0， 60
80	1647	Data	102，96，96，102，60，0
HI	1048	DATA	6，120，108，162，102，108
DC	1049	Data	120， $0,6126,96,124$
DH	1059	DATA	96，96，126， $0,6,126$
UC．	1951	Datá	96，124，96，96，96， 0
Da	1052	DATA	0，62，96，96，110，102
RTM	1053	Data	62，0，6，102，162，126
00	1054	DATA	102，102，102， $0,0,126$
wu	1055	Data	24，24，24，24，126， 0
NB	1056	data	0，6，6，6，6，102
0 G	1057	Data	60，0，0，102，108，120
80	1058	data	120，108，102， $0,6,96$
TF	1059	DATá	96，96，96，96，126
6U	1860	DATA	0，99，119，127，107，99
CF	1061	data	99， $0,6,162,118,126$
4.0	1062	DATa	126，110，102， $0,0,60$
ON	1063	data	102，102，102，102，60，0
KA	1064	DATA	6，124，162，192，124，96
ay	1065	DATA	96，0，0，60，102，102
TY	1966	data	102，108，54， $9,0,124$
CE	1067	data	102，102，124，108，162， 0
On	1968	Data	6，60，96，60，6，6
4月	1069	Data	60，0，0，126， 24,24
05	1070	DÁTÁ	24，24，24，6，0，102
2B	1971	Data	$162,102,102,102,126,0$
16	1072	data	6，162，162，162，162，60
Pa	1073	DATA	24，0，0，99，99，107
az	1074	data	127，119，99， $0,0,162$
01.	1075	DATa	102，60，60，102，102，0
UA	1076	DATÁ	6，162，102，60，24，24
Ua	1077	data	24，0，0，126，12， 24
zK	1078	DATá	48，96，126，0，0，30
10	1679	DATA	24，24，24，24，36， 6
HY	1080	data	6，64，96，48，24，12
WG	1081	DATA	6，0，0，120，24，24
UK	1082	DATA	24，24，126， $0,6,8$
H5	1083	DATA	28，54，99， $0,0,6$
OR	1084	Data	0，0，0，0，0，0
U1	1085	DATA	255，0，127，192，135，132
Un	1986	DATA	132，135，192，127，255，0
No	1987	Data	119，37，38，37，0，255
Ha	1988	DATA	$254,3,65,65,65,113$
K5	1089	Data	3，254，24，24，24， 248
\％K	1690	DATA	248，0，0，0，24，24
HII	1691	Data	24，248，248，24，24，24
FA	1692	data	6，0，0，248，248，24
4.5	1693	DATA	24，24，127，192，135，133
WE	1694	DATA	133，135，192，127，255，0
NI．	1095	DATA	119，82，114，66，0，255
vo	1096	DATA	255，0，93，85，85，93
EL	1697	DATA	0，255，254，3，33，161
T¢	1998	Data	97，33，3，254，127，192
4S	1999	data	$135,132,129,135,192,127$
OH	1190	data	255，0，116，100，68，119
AA	1101	Data	0，255，255，0，119，160
1 E	1102	dATA	68，119，0，255， 254,3
BH．	1103	DATA	113，33，33， $33,3,254$
ค	1104	DATA	127，192，135，134，132，135
4N	1105	DATA	192，127，255， $0,119,68$

B6	1196	DATA	2
P5．	1107	DATA	39，85，119，84，0，255
YP	1198	DATA	6， $0,0,31,31,24$
49	1109	DATA	24，24，日，0，0，255
WY	1116	DATA	255，6，0，0，254，3
1.1	1111	DATA	113，97，65，113，3，254
BE．	1112	DATA	0，0，60，126，126，126
GE．	1113	DATA	60， $0,0,0,0,0$
E．${ }^{\text {B }}$	1114	DATA	255，255，255，255，127，192
01	1115	DATA	$131,130,128,131,192,127$
YM	1116	DATA	255， $0,185,18,147,146$
RU	1117	DATA	6，255，255，0，59，169
PM	1118	data	177，169，6，255，254，3
BE	1119	DATA	129，1，1，1，3，254
RH1	1126	data	$24,24,24,31,31,0$
EH	1121	DATA	0，0，129，96，129，96
41	1122	DATA	$126,24,36,0,9,24$
411	1123	DATA	$64,126,24,24,24,0$
21.	1124	data	0，24，24，24，126，66
C．J	1125	Data	$24,0,6,24,48,126$
AP．	1126	DATA	$48,24,0,0,6,24$
PL．	1127	DATA	12，126，12，24， 0,6
Cl．	1128	data	0，24，60，126，126，60
HP．	1129	DATA	24，9，0，9，60，6
AD．	1130	DATA	62，102，62， $0,0,96$
Y \％	1131	DATA	96，124，162，162，124， 9
U12．	1132	DATA	日，0，60， $96,96,96$
M／	1133	DATA	66， $9,0,6,6,62$
J 5	1134	data	102，102，62，0，6，0
BU．	1135	DATA	60，102，126，96，60， 9
910	1136	DATA	日，14，24，62，24，24
52	1137	data	24， $0,6,6,62,162$
E．${ }^{\text {r }}$	1136	DATA	$102,62,6,124,0,96$
UH	1139	DATA	96，124，192，102，102， 0
1814	1146	Data	6，24，日，56， 24,24
P1．	1141	datá	60， $0,0,6,6,6$
UP．	1142	data	6，6， $5,60,6,96$
814	1143	DATÁ	96，108，120，108，102， 0
B0．	1144	DATA	0，56，24，24，24， 24
RT．	1145	data	6，9， $9,10,9,162,127$
WK	1146	DATA	127，107，99，0，0，0
UR	1147	data	$124,162,162,162,102,0$
M1．	1148	DATA	0，19，69，102，102，102
01	1149	DATA	60， $10,9,6,124,162$
8F．	1159	DATA	162，124，96，96， 0,0
\％1．	1151	DATA	$62,102,102,62,6,6$
JH．	1152	DATA	0，6，124，102，96，96
Ma．	1153	DATA	96， $6,0,6,62,96$
414．	1154	Datá	$60,6,124,6,6,24$
14.	1155	DATA	126，24，24，24，14， 6
1．14	1156	DATA	6，10，102，162，162，102
UF．	1157	DATA	62， $0,0,0,102,102$
P\％	1158	DATA	$102,60,24,0,6,6$
14	1159	DATA	99，107，127，62，54， 6
TIT	1169	DATA	0，6，102，60，24，69
ET	1161	DATA	102，0，0，0，102，102
J0．	1162	DATA	102，62，12，120，0， 0
BH．	1163	DATA	$126,12,24,48,126,6$
CL．	1164	DATA	0，24，60，126，126，24
YP．	1165	DATA	60， $1,24,24,24,24$
YE．	1166	DATA	$24,24,24,24,6,126$
PP．	1167	DATA	$126,124,110,102,6,0$
59．	1168	DATA	8，24，56，129，56，24
F9	1169	DATA	8， $6,16,24,28,36$
Y11	1179	DATA	28，24，16， $9,0,0$
0 C ．	1171	DATA	－599

Listing 3. BASIC listing．

CU 19 POKE 1664，104：POKE 1665，64：P0KE 566 ，128：POKE 567，6
R0 169 G0T0 745
PC 165 REM PRIUCE5
RP 110 TRAP ERRORHANDLER
PD 115 KBIPち＝＂－＂：KBIP 5 （RECSIZE）＝＂ （1＋（RECSIZE〉1））＝KBIPS：DI5KIPS＝KBIPS：FI ELD＝NUMFIELDS
KZ 126 K＝USR（MOUEMEM，ADR（KSCRNS），SCREEN， 9 6日，CONUERT）
10． 125 G05UB 5ELECT：GOSUB 26G
 25
PF 135 G0TO 125
Kv 149 REM DTSKK T／O
IT 145 IF 5 TART＝649 THEN POINT \＃2，SECT，CH AR：GOTO 155
Hf 159 IF IO＝12 THEN NOTE $\# 2,5 E C T, C H A R$
ac． 155 ICBLH＝INT GRECSIZE／256）：ICBLL＝RECSI ZE－ICBLH $\% 256$
TU 169 POKE 866，TCCOM：POKE 872，ICBLL：POKE 873，ICBLH：POKE 868，ICBAL：POKE 869，ICB AH
T0． 165 K＝U5R（CIO，32）：IF PEEK（867）＝136 THE N 186
FU 179 IF PEEK（867）>3 THEN POP ：G0TO ERRO RHANDLER
AA 175 RETURN
AR 189 50UND 6，50，10，16
FD 185 K＝USR（MÓUEMEM，ADR（PROMPT与（161）），5C REEN＋729，46，CONUERT）：CLOSE \＃2：0K＝
AA 190 FOR K＝1 TO 50：NERT K：SOUND 0，0，0， 0 ：FOR $K=1$ T0 200：NEXT K
KP 195 POP ：GOTO PROCES5
CR 296 REM＂FT－A－LTN
EC 205 TEMP $5=111$
40． 216 POKE KEYBD，255： $8=山 5 R(5 C A N K B)$
TH 215 ON X GOSLB KEYPRESS，OPTION，SELECT， START
HG 226 GOTO 210
RP 225 REM REYPRESS
PK 230 GET \＃1，IN：IF IN＝27 THEN POP ：POP ： CLOSE H2：0K＝6：GOTO PROCESS
NG 235 K＝USR（PARSE，IN，TYPED：ON X GOTO BAC KSPACE，EOL，LEGALIP
EF 240 IF IN＝19 THEN G05UB 1325
OF 245 IF IN＝16 THEN G0SDB 650：REM SCREEN DUMP
Yた 256 IF NOT（IN＝4 AND START＝64日）THEN 286
 $(1+(R E C 5 I Z E) 1))=K B I P \$$
L） 260 SOUND $0,190,10,16$
YM 265 K＝U5R（MOUEMEM，ADR（PROMPT $5(201)$ ），5C REEN $+720,46$, CONUERT）
2H 276 FOR X＝1 T0 56：NERT K：50UND 6，0，0， 0 ：FOR $\mathrm{K}=1$ T0 200：NEKT H
ELI 275 GOTO START
Ez 280 POKE 792，64：POKE 694，0：RETURN
MIU 285 REM BiCRXPGCE
UH 296 TEMP＝LEN（TEMP5》：IF TEMP〈2 THEN TEM Pちニ＂い：G0T0 PRTT05CREEN
TA 295 TEMP $=$ TEMPS（1，TEMP－1）：G0T0 PRTT05C REEN
AN 300 REM E［D
CN 365 POP IGOTO PRTTOSCREEN
0Y 310 REM［EGFiL－I／P
If उ15 TEMP＝LEN（TEMPち】：IF TEMP＝MÁK THEN R ETURN
IT 326 TEMP 5 （TEMP＋1）$=$ CHR 5 （IN）
ID 325 REM PRPNT TITHMRAGM
SM 330 TMP 2 与ニTEMP 5 ：IF LEN（TEMP 5 〉 〈MAK THEN TMP 25 （LEN（TMP25）＋1，MAB）＝UNDERLINE 5
52． 335 K＝山5R（MOUEMEM，ADR（TMP25），SCREEN＋LO C，MAX，CONUERTJ
2H 340 RETURN
52． 345 REM EERECT
0R 350 X＝USR（MOVEMEM，ADR（OFF5），PMBASE， 256
）
FP 355 FIELD＝FIELD＋1：IF FIELD F NUMFIELDS T HEN FIELD＝1
B11 366 K＝Ш5R GMOUEMEM，PLAYER，PMBASE＋4日＋FIE LD＊8，8）：POKE 53277，3
FH 365 LOC＝49＋FIELDN4 ：TEMPちニ＂！
NU 379 MÁK＝FL（FIELD）
AC 375 RETURN
D0 386 REM DPI而D
D． 385 CLO5E $\# 2: 0 \mathrm{~K}=6$
If 396 0K＝ $08+1:$ IF $0 K>4$ THEN $0 K=0$
MB 395 K＝U5R（HOUEMEM，ADR（OPTABLES（0H2 $6+1$ ） y，ADR（KSCRNS（767），6）：DSCRNS＝KSCRN5
KY 400 K＝USR（MOUEMEM，ADR（KSCRN5），5CREEN， 9 6日，CONUERTJ
IIT 465 FIELD＝NUMFIELD5：G05UB 5ELECT
PW 410 IF $0 \mathrm{~K}=4$ THEN $\mathrm{K}=\mathrm{USR}$ CMOUEMEM，WINDOW， 5CREEN＋680，280，CONUERT3：OK＝1
ZE 426 RETURN
YT 425 REM START
KT 436 POP ：POP ：IF OK THEN 455
UU 435 IOニ4：IF OX＝ 6 THEN IO＝9
YA 449 IF $0 X=2$ THEN IO＝12
BH 445 CLOSE \＃2：OPEN \＃2，IO， 0, ＂DI：DATTABASE
c0 $450 \quad 0 \mathrm{~K}=1$
YP 455 ON OK GOTO 495，495，495， 955
SA 469 REM EDD
CK 465 ICCOM二11：ICBAH＝INT（ADR（KBIP5）／256）
 DISKIPS THEN 480
RM 470 50UMD $9,200,10,10: K=U 5 R$ CMOUEMEM，AD R（PROMPT $5(241) 3,5 C R E E N+720,46$, CONUERT）
RO 475 FOR $K=1$ TO 50：NERT K：50UND 0， $0,0,0$ ：G0T0 485
T5 489 G05LB 149
EP 485 0K＝0：CLOSE \＃2：G0TO PROCESS
Ky 490 REM EEGRCE DPDATE RJPDDT
FU 495 ICCOM＝7：ICBAH＝INTGADRCDISKIP5）／256 ）：ICBAL＝ADR（DI5KIPち）－ICBAH＊256
SM 500 GOSUB 149
ED 505 REM Golipidid

MH 515 NG＝0：AMATCH＝1
WM 529 FOR I＝TO NUMFIELDS－1：TEMPSニKBIPS $(F X(I)+1, F K(I+1)): I F$ TEMPS（1，1）＝＂—＂TH EN 545
JH 525 IF LEN（TEMP 5 ） 1 THEN PTR＝1：G0T0 53 5
TR 530 PTR＝USR（5TRIP，ADR（TEMPS），FL（I＋1）－1 ）：IF PEEK（764）＝28 THEN POP ：GOTO PROCE 55
5R 535 FOR J＝1 TO FL（I＋1）－PTR＋1：NG＝U5R（MA TCH，ADR（DISKIPS（FX（I）＋J）），ADR（TEMP与），P TR）：IF NG＝G THEN J＝FL（I＋1）＋1
RR 540 NEXT J：IF NG THEN I＝NUMFIELDS：AMAT CH＝0
GF 545 NERT I：IF NOT AMATCH THEN 506
IK 559 REM G HETCH
JA 555 H＝USR（MOUEMEM，SCREEN，ADR（TSCRN5）， 9 60）：REM 5AUE 5CREEN
 NS（90＋K， $89+8+F L(I+1)=D I S K I P S(F X(I)+1$ ， FK（I＋1））：NEXT I
FU 565 K＝USR（MOUEMEM，ADR（DSCRNS），SCREEN， 9 6日，CONUERT
TP 576 IF OK＝2 THEN 605：REM UPDATE－CONT
NI 575 IF 0\＆＝3 THEN G0SUB 659：G0T0 495：RE M REPORT－CONT
DF 58 G K＝USR（MOUEMEM，ADR（PROMPTS），SCREEN＋ 720，40，CONUERT）：REM CONTY／N
U1） 585 POKE 762，64：POKE 694，6：GET \＃1，IN
KH 590 TF IN二ASC（＂Y＂）THEN $\mathcal{X}=U S R$（MOUEMEM， ADR（TSCRN5），SCREEN， 966 ）：GOTO 495
UL． 595 IF IN＝16 THEN IN＝0：GOSUB 656：GOTO 585
DH 60日 0K＝0：CLOSE \＃2：GOTO PROCESS
UP 605 REM 凹PDATERGDNT

Create－a－base continued

H2 $610 \mathrm{~K}=\mathrm{USR}$（MOUEMEM，ADR（PROMPT 5（41）），5CR EEN＋720， 40, CONUERT ：REM CHANGE IT Y／N
UH 615 POKE 702，64：POKE 694，0：GET H1，IN
NH 620 IF IN $\left\rangle\right.$ ASC（＂Y＂＇${ }^{\prime \prime}$ THEN 580
YP 625 REM CHHILITE IT
Ja $630 \mathrm{~K}=\mathrm{USR}$（MOUEMEM，ADR（PROMPT与（81）），5CR EEN＋720，46，CONUERT）：REM CHANGE OR CTRL 1D
ER 635 TIP与＝KBIP与：KBIPち＝DI5KIP FIELDS：START＝640：0PTION＝340：GOTO PROCE $55+20$
DU1 640 POP ：POP ：ICCOM＝11：ICBAH＝INT CADR（K BIPち）／256）：ICBAL＝ADR（KBIPち）－ICBAH＊256： G05UB 140：5TART＝425：KBIPち＝TIP与
1．B 645 OPTION $=385$ ：G0TO 586
IT 650 REM REPDRT－GDNU
ON 655 TRAP 690
NL． 666 CLOSE \＃7：OPEN \＃7，8，0，＂＇P：＂
UN 665 FOR I＝ 9 TO NUMFIELD5－1：IF PEEK CKEY BD $=28$ THEN POP ：GOTO PROCES5
W0 670 IF IN $=16$ THEN $?$ \＃7； 5 CHEMAS $(145+I * 8$
 $0 T 0680$
 DISKIP $5(F \mathrm{~F}(\mathrm{I})+1, \mathrm{FH}(I+1))$
KI 680 NEKT I：？\＃7：CLOSE \＃7：TRAP ERRORHAN DLER
AH 685 RETURN
OH 690 REM REPTITER ERROUR
AD $695 \mathrm{~K}=\mathrm{USR}$（MOUEMEM，ADR（PROMPTS（121）），5C REEN $+720,46$ ，CONUERT）

k． 705 5W5＝＂
II Error $\#$ occurred on 1 i
ne＂t 710 5W5（81）＝＂1
｜｜Press｜ \mid H to Recover ［＇
LY 715 TEMP＝PEEK（195）：TEMPち＝5TR（TEMP）：5W $\$(50,49+$ LEN $(T E M P \$)=$ TEMP 5
Y 720 TEMP＝PEEK（186）＋PEEK（187） 256 ：TEMP 5 $=5$ TR $5(T E M P): 5 W 5(72,71+L E N(T E M P §))=T E M P$ 5
Wh 725 K＝U5R（MOUEMEM，ADR（ 5 W5），SCREEN＋760， 160，CONUERT）
AY 730 IF PEEK（53279）《 6 THEN 730
Lo 735 CLOSE \＃2：CLOSE \＃7：0K＝0
OA 740 GOTO PROCESS

FU 750 DIM BLANK5（40）CTO（7），CONUERTS（29 3，DISKIP $5(496)$, DLIS（24），DSCRN 5 （960）
PZ 755 DIM FL（16），FK（16）
RK 760 DIM KBIP $5(496), K 5 C R N \$(960)$ ，MATCHS $($ 423，MOUEMEMS（118），OFF $5(256)$ ，OPTABLE（ 3 0），PARSE 5 （57），PLAYER 5 （ 8 ），PROMPT $\$(280)$
NG 765 DIM SCANKB（ 35 ），5CHEMAS（384），SECT0 RIO $5(31), 5$ TRIP $5(30), 5 W \$(160)$, TEMP $5(40)$ TIP 5 （496），TMP 25 （40），T5CRN 5 （ 960 ）
MC 770 DIM UNDERLINE $5(40)$ ，WINDOWS（280）
EM 775 BLANK

 PS（2）$=\mathrm{DI} 5 \mathrm{KIP}$ ．
与
 Mrgete＂
FW 825 PARSE $(25,25)=C H R 5(155): P A R 5 E 〕(44$, 44）＝CHR 5 （34）
PR 830 PLAYER $5=C H R S(255): P L A Y E R S(8)=C H R 56$ 255）：PLAYER（2）＝PLAYER 5
AL 835 PROMPT5二י＂ $(\mathrm{N}) * * *$ Change it？
54840 PROMPT $5(81)=" \sim$ Make changes or F lid to delete．\because＂ not online＊＊
SU 845 PROMPTS（161）$={ }^{\prime \prime} \square \ldots$ End－of

	－File＊＊＊
UR	
	Record $\#$（\％）
	865 UND
PL	87
YF	875 WINDOW5（81）${ }^{\text {a }}$
	Press curnto usel｜｜create a NEW
AN	880 WINDOWS $(161)="\| \|$ database．｜｜ database．
	885 WINDOW
W	890 CIO＝ADR（CIO5）：CONUERT＝ADR（CONUERT 5
	）：MATCH＝ADR（MATCH\＄）：MOVEMEM＝ADR（MOVEME
	）PARSE＝ADR（PARS
00	895 PLAYER＝ADR（PLAYERS）：5CANKB＝ADR（5CA
	NKB§）：SECTORIO＝ADR（SECTORIOS）：STRIP＝AD R（5TRIP§）：WINDOW＝ADR（WINDOW5）
UK	
	90：E0L＝305：LEGALIP＝315：PR0CE
	T05CREEN＝330
UZ	$9050 \mathrm{PTION}=380: 5 \mathrm{ELECT}=350: 5 \mathrm{TART}=425$ ：ER
	RORHANDLER $=765$
	919 REM MCHI CHESET \％PNF，
	915 PM＝PEEK（106）－8：CHSET＝PM＊2
	06，PM：GRAPHIC5 0：POKE 756，PM
TP	920 CLOSE \＃1：0PEN \＃1，4，0，＂D：CHSET．PMG＂
	925 POKE 853，PM：POKE 852，0：POKE 857，6：
	POKE 856，0：POKE 850，7：
$\begin{aligned} & \text { KJ } \\ & \text { EO } \end{aligned}$	930 CLOSE \＃1：0PEN \＃1，4，0，＇K：
	935 PMBA5E＝CH5ET＋1024：POKE 704，212：P0K
	E 559，62：POKE 623，1：POKE 53256，3：POKE 54279 PMPPOKE 53248
BH	946 K＝USR CMOUEMEM，ADR CDL
	L＝PEEK（560）＋256世PEEK（561）：P0K
	9：POKE DL＋22，130：POKE 512，
WN	945 POKE 513，6：POKE 54286，19
	， 176 REM HRECT
	950 REM CREGALE MODE
	5），5CREEN， 969 ，CONUERT）：POKE 53277，0
BM	960 5W5＝＇｜Insert database diskette
	nto II Disk Drive \＃1，
WT	$9655 W 5(81)={ }^{\prime \prime}$
	ontinu
W	976 \％$=15 \mathrm{STMOUE}$
	160，CONUERT）
OH	975 IF PEEK（53279）＜ 6
Lz	980 TRAP 1025
AO	985 5CHEMA5＝＇
	9 ${ }^{\text {a }}$
$\begin{array}{ll} 51 \\ 47 \end{array}$	995 F0R $\mathrm{I}=0$ T0 $2: 8=\mathrm{USR}$（5ECTORIO
EE	1000 IF SCHEMÁs（52，64）＜＞＂GRGET
	＂THEN 1025
UP	1005 IF NOT RESTART THEN RESTART＝1：G0
	1010 5Ns＝＇｜This is a Create－a－base di
0	1015 5 W5（41）$=$＇ 1
	$\mathrm{R}(5 W 5(64)$ ，15）：G0T0 10
	1025 5W5＝＇1 Not a create－a－base di
c	
	10305 W （81）$=$＇
	$\left\\|\\|_{\text {｜r }}\right.$ Format it

895 PLAYER＝ADR（PLAYERS）：5CANKB＝ADR（5CA NKB5）：SECTORIO＝ADR（SECTORIOS）：STRIP＝AD R（5TRIPS）：WINDOW＝ADR（WINDOWF）
960 KEYBD $=764$ ：KEYPRES5＝230：BACKSPACE 2 T05CREEN＝336
z 905 OPTION＝380：5ELECT＝350：5TART＝425：ER RORHANDLER $=705$
UK 910 REM MND MHETM

920 CLOSE \＃1：OPEN \＃1，4，0，＂D：CH5ET．PMG＂
E 925 POKE 853，PM：POKE 852，0：POKE 857，6： POKE 856， $0:$ POKE 850， $7: \mathrm{x}=\mathrm{USR}(\mathrm{CIO}, 16)$
KJ 930 CLOSE \＃1：0PEN \＃1，4，0，＂K：＂
0 935 PMBASE＝CH5ET＋1024：POKE 704，212：POK 54279，PM：POKE 53248，48
BH 946 \quad K $=\mathrm{USR}(M 0 \mathrm{CEMEM}, \mathrm{ADR}(D L I 5), 1536,24): \mathrm{D}$ L＝PEEK（560）＋256）PEEK（561）：POKE DL＋6，13
N 945 POKE 513，6：POKE 54286，192：POKE 710 176
KG 950 REM GREGITE MDDDE
II 955 G05UB 1225 ： $8=U 5 R$（MOUEMEM，ADR（KSCRN 5），5CREEN， 960 ，CONUERT）：POKE 53277，0 M 969 5W5＝＂Insert database diskette i $9655 W 5(81)={ }^{\prime \prime} \mid$ ontinue．：${ }^{\prime \prime}$
WT $970 \mathrm{~K}=\mathrm{USR}$（MOUEMEM，ADR（SW\％），SCREEN＋760， 160，CONVERT）
OH 975 IF PEEK（53279）〈〉6 THEN 975
12989 TRAP 1025
 AS（2）$=5 \mathrm{CHEMA} 5$
SH 990 REM READ FIHElWiH
（1） ，ADR（5CHEMAS（I\＃128＋1））：NEKT I
 ＂1 THEN 1025
1005 IF NOT RESTART THEN RESTART＝1：GO SUB 1285：0R＝5：G0SLB OPTION：GOTO PROCES
1010 5W5＝＂I This is a Create－a－base di skette．｜＂

SI $1020 \mathrm{~K}=\mathrm{USR}(\mathrm{MOU} \cdot \mathrm{MEM}$, ADR（SCHEMAS（92）），AD R（5W5（64）），15）：GOT0 1030

cu $10305 \mathrm{~W} 5(81)=" 1$
（Y／N） ｜＂

Format it？

ER	$1035 \mathrm{~K}=\mathrm{USR}$（M0UEMEM，ADR（5W5），5CREEN＋760 ，160，CONUERT）：GET \＃1，IN：IF IN＝27 AND R ESTART THEN GOSUB 1285：G0TO PROCES5
QU	1040 IF IN（）ASC（＂Y＂）THEN 960
5 W	
CG	1055 SCHEMAS（75）＝＇C，F，Fogarty III 012
	3456789 ABCDE1606112233445566778899AABB
	CCDDEEFF496
A	1060 5CHEMAS（384）＝＂＇\％＇： 5 CHEMAS（145）$=5 \mathrm{CH}$
	EMA 5 （144）
K0	1065 5W5＝＇｜Enter your database name
at	1070 SW5（81）＝＇＇
54	1075 K＝USR（MOUEMEM，ADR（5W5），5CREEN＋760
	，160，CONUERT）
PK	1080 NUM＝0：REC5IZE＝0：0PTION＝340：5ELECT
	＝OPTION：START＝OPTION：TYPE＝ASC（＇A＇）：MAX
	＝15：LOC＝824：G05UB 200
5 P	1085 SCHEMA $5(92,106)=$ TMP2 5
1 P	1690 SW与＝＇l Enter a label：
	\｜｜¢UP to 8 ch
RT	10
R	1100 \％$=$ USR（MOUEMEH，ADR（5W5），5CREEN＋760
	，160，CONUERT
1.	1105 TYPE＝ASC（＂Aי＇）：MAK＝8：LOC＝823：G05UB
MJ	
	）＝BLANK
AP	1115 SCHEMAS（145＋NUP＊＊8， $144+($ NUM +1$) * 8)=$
	TEMP 5 ：NLM $=$ NUM $1:$ TEMP $5=5$ TR $\$$（NUM
¢0	
No	1125 SCHEMAS（107，108）＝TEMP 5
YP	1130 SWF＝＇｜Enter size of field for
	bytes）－．ll ${ }^{\prime \prime} \quad$ Maximum size is 31
IT	
	R（SW5），SCREEN＋760， 160, CONUERT）
15	1140 TYPE＝A5C（י＇י＇）：LOC＝796：MAX＝2：G05UB
	200：TRAP 1130：TEMP＝UAL（TEMPS）：IF TEMP
	＞31 0R TEMP〈1 THEN TEMPS＝יउ1י：TEMP＝31
DF	1145 TRAP 955：RECSIZE＝REC5IZE＋TEMP：IF
	TEMP＜10 THEN TMP2 $5=$ TEMPS：TEMPS＝＇＠＇＇：TEM
	P ¢ $(2)=$ TMP 2 S
KH	1156 TEMP＝109＋（NUM－1）＊2：5CHEMAS（TEMP，T
	EMP＋1）$=$ TEMP 5
	1155 TEMPち二5TRS（REC5IZE）
KM	
	TEMPS＝＂9＂：TEMP（ 2 ）＝TMP25：G0T0 1160
1.4	1165 SCHEMAS（ 141,143 ）$=$ TEMP 5
OR	1170 G05UB 1285：IF NUM＝16 THEN 1200
Ua	1175 5W5＝י｜press Ni to define anoth
	er field l｜－0R－
AB	1186 SWs（81）＝1｜press｜ 4 after defin
	ximum 16 fields
TB	$1185 \mathrm{x}=\mathrm{USR}$（MOUEMEM，ADR
	160，CONUERT）
AI	1196 IF PEEK（53279）＝3 THEN 1090
zy	1195 IF PEEK（53279）＜＞6 THEN 1190
L	1200 REM ERPITE FMHIE：
K	1205 F0R I＝0 T0 2： $\mathrm{H}=\mathrm{USR}$（5ECTORIO
CN	1210 CLO5E \＃2：OPEN \＃2，8，0，＇D1：DATABASE
	＂：CL05E \＃2
10	1215 OPTION
	ESTART＝0：TYPE＝A5C（＂A＂）
	1226 G0T0 985
CW	1225 REM T W1－KFICED
	1230 KSCRNS＝＂Create－a－base（c） 1985

aU 1046 IF IN \langle ）ASC（＂Yי＂）THEN 966
5W 1045 CLOSE \＃2：XIO 254，\＃2，0，0，＇יD1：＊．＊＇י 3 5 S CCDDEEFF496＂＇
1．A 1068 5CHEMAS（384）＝＂ EMA5（144）
Ko 1065 5W5＝＇｜Enter your database name （UP to 15 Characters）－ II｜＂
1675 K＝USR（MOUEMEM，ADR（SWS），5CREEN＋760 ，160，CONUERT）
PK 198日 NLM＝0：RECSIZE＝0：OPTION＝34日：5ELECT $=15: L O C=824: G 05 \mathrm{LB} 200$
5P 1085 SCHEMA $5(92,106)=T M P 25$
TP 1090 5W5＝＂｜Enter a label： 11 （UP to 8 characters） II
R．） $1100 \mathrm{~K}=\mathrm{USR}$（MOUEMEM，ADR（SW5），SCREEN＋760 ，160，CONUERT）
Y1．1105 TYPE＝ASC（＂А＇＇）：MAK＝8：LOC＝823：G05UB 200：TEMP＝LEN（TEMP与）
1110 IF TEMP （MAK THEN TEMP与（TEMP +1 ，MA ）$=$ BL ANK 5
AP 1115 5CHEMAS（ $145+$ NUM $4 * 8,144+(N U M+1) * 8)=$ TEMP 5 ：NUM $=$ NUM $+1:$ TEMP $5=5 T R$ S（NUM）
xo 1120 IF LEN（TEMP5） 1 THEN TEMPS（2）＝TEM P5：TEMP $5(1,1)={ }^{\circ} 0$
No 1125 SCHEMÁ $5(107,108)=T E M P \$$
YP 1130 SWS＝＇I Enter size of field for bytes）｜＇
T 1135 SW $5(27,41)=T M P 25: 8=U 5 R(M O U E M E M, A D$ （ 5 SS ），SCREEN $+760,160$, CONUERT）
051140 TYPE＝A5C（＇N＇）：LOC＝796：MAK＝2：G05UB

1145 TRAP 955：REC5TZE＝REC5IZF＋TEMP：IF
TEMP＜10 THEN TMP2ち＝TEMPS：TEMPS＝＂＠＂：TEM －
KH 1156 TEMP＝109＋（NUM－1）＊2：5CHEMAS（TEMP，T EMP＋1）$=$ TEMP 5
TD 1155 TEMP $\ddagger=5 T R$（（RECSIZE）
KM 1160 IF LEN（TEMPS）＜3 THEN TMP2与＝TEMP $\$$
TEMPS＝＂g＂：TEMP5（2）＝TMP25：G0T0 1160
1.41165 SCHEMAS $(141,143)=$ TEMP 5

OR 1170 G05UB 1285：IF NUM＝16 THEN 1200
1175 sWร゙＂ er field l｜，－0R－

180 SWF（81）＝＇｜press｜TH af ing your tasids）．｜＂
TB $1185 \mathrm{x}=\mathrm{USR}$（MOUEMEM，ADR（5W\％），5CREEN＋760 160，CONUERT）
AI 1196 IF PEEK（53279）$=3$ THEN 1090
ZY 1195 IF PEEK（53279）＜${ }^{2} 6$ THEN 1196
1200 REM
7，ADR（5CHEMAS（I＊ $128+1$ ）））：NEKT I
CN 1210 CLOSE \＃2：OPEN \＃2，8， 0, DD1：DATABASE －CLOSE \＃2
uv 1215 0PTION＝380：5ELECT＝350：5TART＝425：R ESTART＝0：TYPE＝A5C（＂A＂）
1226 G0T0 985
1225 REM
．F．Fogarty III＂

PK 1235 KSCRN5（41）＝＇
 （81）
HI 1245 KSCRNS（721）＝＇r
Y 1250 KSCRN $5(761)=" 1 /$ Mrgate mode．

ZE 1255 KSCRNS（891）＝＂Il －PRP－printout．Tי＂
ou 1260 KSCRNS（841）＝יIl 4 When DONE Edit ing．＜DATABASE NAME＞${ }^{\prime \prime}$
G． 1265 KSCRNS（881）＝＂14 CANCEL Operati 1270 KSCRNS（921）＝＂

L．1 1275 5CREEN＝PEEK（88）＋256＊PEEK（89）
BE 1280 RETURN
IF 1285 G05UB 1225：NUMFIELD5＝VAL（SCHEMASく 107，108））：FL（0）＝0：FB（0）＝0
JD 1290 FOR I＝6 TO NUMFIELDS－1
EF $1295 \mathrm{~K}=\mathrm{I}$＊ 4 日： $\mathrm{K} 5 \mathrm{CRN} 5(81+\mathrm{X}, 88+8)=5 \mathrm{CHEMA}(6$

ON 1300 IN＝169＋I＊2：IN＝UAL（5CHEMASCIN，IN＋1 3）：K5CRN $5(90+8,89+\mathrm{K}+\mathrm{IN})=\mathrm{UNDERLINE} 5:$ FL $($ $I+1)=I N: F X(I+1)=F X(I)+I N$
HJ 1305 NEKT I：KSCRN $5(905,919)=5 C H E M A 5(92$ ，106）：D5CRN $5=K 5 C R N \$: T 5 C R N 5=K 5 C R N 5$
A 11 1316 RECSIZE＝UAL（5CHEMAS（141，143））
IF $1315 \mathrm{~K}=\mathrm{US} 5$（MOUEMEM，ADR（K5CRNS），5CREEN， 960，CONUERT）
AL 1326 RETURN
EU 1325 REM EDRT
Za 1330 5W与＝＂｜Insert Create－a－base Maste r disk and｜l press \｜ 4 to sort datab ase．

Il press へito use cu RRENT database．｜י
RZ 1340 K＝USR（MOUEMEM，ADR（5W\％），5CREEN＋760 ，160，CONUERT
WU 1345 IF PEEK（53279）$二 3$ THEN RETURN
B．） 1350 IF PEEK（53279）〈〉6 THEN 1345
EK 1355 POP ：RUN＂D：SORT＂
－

Listing 4.
BASIC listing．

Wa 1 REM 50rt for create－a－base
AR 2 REM（C） 1985 C．F．FOgarty IIT
523 REM
AJ 4 REM
AE 106 POKE 106，PEEK（106）＋8：POKE 53277， 0
KT 165 GOSUB 475：G0T0 215
RC 110 REM DISK $1 / 0$
L1． 115 ICBAH＝INT（ICBAL／K256）：ICBAL＝ICBAL－ TCBAH＊K256：POKE 850，ICCOM：POKE 852，ICB AL：POKE 853，ICBAH：POKE 856，ICBLL
RZ 120 POKE 857，ICBLH： $\mathrm{K}=\mathrm{U} 5 \mathrm{R}(\mathrm{CIO}, \mathrm{K} 16): I F \mathrm{P}$ EEK（851）〉K3 AND PEEK（851）〈〉136 THEN 5T 0P
Z1． 125 RETURN
RA 130 REM REDRT
 CLOSE \＃1：OPEN \＃1，K12，K日，＂D1：DATABASE＂： PTR＝LENGTH＋K1：PTR2＝FK＋K1：E0F＝CTR：K＝K1
A1． 140 5＝A5C（BUFR 5 （PTR）$)+$ ASC（BUFRS（PTR＋K1 ））\＃K256：C＝A5C（BUFRS（PTR＋K2））：POINT \＃K1 ，5，C：ICCOM＝K7：ICBAL＝TEMP：G05UB 115
TH 145 POSITION K日，4：？\＃K6；＂COUNTDOWN．．．＂ EOF：＂＂
B1． 150 IF BUFR $5(P T R, P T R+K 2)=B L F R 与(P T R 2, P T$ R2＋K2）THEN 185
J5 155 52＝A5C（BUFR与（PTR2））＋A5C（BUFR 5 （PTR2 ＋K1））＊256：C2＝A5C（BUFRS（PTR2＋2））：POINT

Ficeate－a－base continued

\＃1，52，C2：ICCOM＝K7：ICBAL＝TMP2：G05UB 115

8

165 POINT \＃K1，52，C2：ICCOM＝K11：ICBAL＝TE MP：G0SUB 115：BUFRS（PTR－K1，PTR－K1）＝＂11＇： EOF＝EOF－1
 PTR2）$)$ LENGTH）：PTR＝I＊（LENGTH＋K3）－K2：TE MP $=$＝TMP2 $5:$ PTR2 $=F \mathbf{K}+K 1+(I-K 1) \neq K 3$

aJ 175 GOTO 145

 －Ki
SR 190 FOR I＝K TO CTR：J＝I＊（LENGTH＋K3）－K2： IF BUFRS（J－Ki，J－Ki）〈〉י口I THEN PTR＝J：PT R2 $=F$ K＋K1＋（I－K1）$\# \mathrm{~K} 3: K=I: I=C T R+K 1: 0 K=K 1$
YM 195 NEST I：IF OK THEN 140
UL． 200 CL05E $\# K 1$
GL 205 FK＝41：G05UB 440：TRAP 205：RUN＂D1：C REATEAB．ASE＂
NT 216 END
KN 215 REM GET GIDST FIELD
NE $220 \mathrm{FX}=\mathrm{K1:G05UB}$ 440：I0＝82：G05UB 425：IF
 ？CHR 5 （253）：GOTO 215
Nu $225 \mathrm{~J}=\mathrm{UAL}(5 \mathrm{CHEMAS}(167,108):$ ：\＃K6；＂K50 rt on which field？＂
DZ 230 FOR I＝K日 T0 J－K1：？\＃K6；I；＂＂；5CHEM A5（145＋I＊8，152＋I＊8）：NEKT I
ELI 235 TRAP 235：？＂What is your choice＂； INPUT K：TRAP 4000日：IF K〉J－Ki OR K〈0 TH EN ？CHRS（253）：GOT0 235
KH 240 TOO＝K日：FOR I＝K日 TO K：TEMP＝109＋I\＃K2 ：LENGTH＝UAL（SCHEMAS（TEMP，TEMP＋K1））：T00 $=T 00+$ LENGTH：NEKT I
JA 245 FROM＝TOO－LENGTH＋K1：RECSIZE＝UAL 65 CH EMAS（141，143））
CI 250 DIM TEMP $5(R E C S I Z E)$ ，TMP2S（RECSIZE）： ICBLH＝INT（REC5IZE／K256）：ICBLL＝REC5IZE－ ICBLH
255 TEMP $5=1$＂＇：TEMP $\ddagger(R E C S I Z E)=" \% ": T E M P \$$
 ：TMP2＝ADR（TMP25）
Y 260 I＝INT（ $(F R E(K 6)-512) / R E C S I Z E): B U F S I$ ZE＝I＊RECSIZE：DIM BUFRS（BLFSIZE）：BLFR与＝ ＂，1：K＝K
YN 265 REM EDNDEISE
MB 276 CLOSE \＃K1：0PEN \＃K1，K12，K日，＂D1：DATA Ba5E＂：？\＃K6；＂Kcondensing database＂：CTR ＝K 0
275 ICCOM＝K7：ICBAL＝TEMP：G05UB 115：IF P EEK（851）$=136$ THEN CLOSE \＃K1：EOF＝K1：GOT 0300
R2 280 IF TEMP $(K 1, K 1)=$＇リ＇${ }^{\prime}$ THEN 275
 ＋K1：P0SITION K日，K3：？\＃K6；＂READING RECO RD \＃＂＇隹
DD 290 IF LEN（BUFR 5 ）＝BUF5IZE THEN K＝K＋1：G 054B 309
SF 295 G0TO 275
YL 300 REM WमP
PC 305 ？\＃K $5: ?$ \＃K ＝U5R（ADR（50RT5），ADR（BLFR 5），LEN（BLFRS）／ RECSIZE，RECSIZE，LENGTH，FROM
ZC 310 F 450：G0T0 350
aL． 315 IF FORMATTED THEN GOSUB 445：GOTO 3 35
 BtE finnlitad！＞＞＞＞＞

くくくく《＂
Ho 325 G05UB 450：？\＃K6；＂FORMATTING．：＂：CL 05E \＃K2：KIO 254，\＃K2，K日，K日，＂D1：＊，＊＂：LET FORMATTED＝1：I0＝87：G05UB 425
 ${ }^{\prime}$
oz 335 ？\＃K6；＇Kwriting new database＇：IF NOT EOF THEN ？\＃K6；＂BLOCK \＃＇；K

DD 346 ICBAL＝ADR（BUFR5）：ICBAH＝INT（ICBAL／K 256）：ICBAL＝ICBAL－ICBAH＊K256：POKE 866，K 11：POKE 868，ICBAL：POKE 869，ICBAH
SK 345 POKE 873，INT（LEN（BUFRS）／K256）：POKE 872，LEN（BUFRS）－PEEK（873）＊K256：X＝U5R（C I0，32）：IF PEEK（867）$>$ K1 THEN STOP
MII 350 BUFR $=1 ": I F$ NOT EOF THEN FK＝KI：GO TO 445
WII 355 CLOSE \＃K2： 8 IO 32，\＃K2，K0，K0，＂D1：0UT PUT，DATABASE＂＇
OU 360 IF NOT K THEN 200
GM 365 REM REGD ROTITERS
W0 376 FK＝CTR＊（LENGTH＋KЗ）：J＝CTR＊K ：IF BUF SIZE $=F$ K +J THEN 385
He 375 LENGTH＝LENGTH－K1：T00＝TOO－K1：IF NO T LENGTH THEN STOP
PR 389 GOTO 370
 FK＋J）＝＂ष＇יBUFRS（K2）＝BUFRS：CLOSE \＃K1：0P EN \＃K1，K12，K6，पD1：DATABASE＂
AN 390 ？\＃K6；＂Kreading pointers．，．＂
ZG 395 FOR I＝K1 TO CTR：POSITION KO，KJ：？\＃ K6；＂RECORDS TO GO：＇＂；CTR－I；＂＂
PN 406 NOTE \＃K1， $5, \mathrm{C}: \mathrm{B}=\mathrm{INT}(5 / \mathrm{K} 256): \mathrm{P} 5=\mathrm{CHR}$ \＄ （5－X＊K256）：PS（K2）＝CHRS（K）：PS（K3）＝CHRS（ C）：ICCOM＝K7：ICBAL＝TEMP：G05UB 115
 M，T00）：BUFR 5 （PTR＋LENGTH，PTR＋LENGTH＋KZ） ＝P\＄：BUFRS（PTR2，PTR2＋K2）＝PS
Ca 419 PTR＝PTR＋LENGTH＋K3：PTR2＝PTR2＋K3：NEX

PA $415 \mathrm{~K}=\mathrm{US} 5 \mathrm{CADR}$（50RT5），ADR（BUFR5），FK／CLE NGTH＋K3），LENGTH $+K 3$ ，LENGTH，K1）
M1 420 GOTO 136

SH 430 FOR $I=K 6$ TO K2： $8=\mathrm{USR}$ CADR（SECTORIO ）， $1+K 1$, TO，ADR（5CHEMAS（I＊128＋K1）））：NEKT ${ }_{1}$
ZU 435 RETURN
RK 449 REM TISERT DIESK
PU 445 GRAPHICS K1：POKE 710，KB
P5 450 P0SITION 7，5：？\＃K6；＂insert＂：？\＃K6： ？\＃K6；TABLES（FX，FX＋19）：？\＃K6；＂ disk＂：？\＃K6：？\＃K6
PII 455 ？\＃K6；＂into disk drive \＃1＂：？\＃K6：？ \＃K6；＂and press［Etarit］to＂：？\＃K6；＂con tinue．．．＂
FW 460 IF PEEK（53279）《＞K6 THEN 460
ML 465 ？\＃K6；＂К＇；
20479 RETURN
UG 475 REM FIT直
$\mathrm{CH} 480 \mathrm{~K} 日=0: \mathrm{K} 1=1: \mathrm{K} 2=2: \mathrm{K}=3: \mathrm{K} 6=6: \mathrm{K7=7:K11=}$ $11: K 12=12: K 16=16: K 256=256$
Su 485 DIM CIO $5(K 7), \mathrm{P} 5(\mathrm{~K} 3), 5 \mathrm{ECTORIO}(31)$ ， 5CHEMA今（384），50RTS（328），TABLE（60），5EÂ RCH5（77）
 म与（K2）＝5CHEMA 5
U0 495 CIO $=$＂hhh
WH 530 TABLE $5={ }^{\prime}$ databers dintilt create－a－base master＂
Hz 540 CIO＝ADR（CI05）：SEARCH＝ADR（5EARCHS） 545 RETURN

Listing 1.
Action! listing.
MODULE; 5QUEEZE by David Plotkin


```
PROC DownloadG
    step back HiMem and move the
;character set into RAM
Ram5et=(HiMem-$400)&$FC0日;1K boundary
ChrBase=Ram5et R5H 8
HiMem=Ram5et
MOUEBLOCK(Ram5et,57344,1924)
Charset=Ram5et
RETURN
PROC GraInitO
    ; set up the address of each screen
    ;line and initialize
CARD xX
GRAPHIC5(6) Cursin=1 PRINT(" ")
FOR xx=0 T0 23
D0
    Linept(xx)=5crn+(40*xx)
    EndL (xx)=0 EndR (xx)=39
OD
FOR xy=0 TO 29
D0 5hotstatus(xx)=0 5hotx(xx)=0
    5hoty(xx)=6 Ll(xx)=xx*1000
0D Bkgrnd=0
RETURN
PROC Plota(BYTE x,y,ch)
;Plot a char at location x,y
BYTE aRRAY line
line=Linept(y) line(x)=ch
RETURN
PROC ModifyO
;Modify the RAM character set
CARD xx
FOR xx=0 TO 79
DO
    Charset(xx+8)=5hapeTable(xx)
0D
RETURN
PROC UPdatescore\
;Print the score and Level
P05ITION(1,23) PRINT ("EMDREF")
POSITION(8,23) PRINTC(Score)
POSITION(16,23) PRINT("LEDDELG')
POSITION(23,23) PRINTB (Level)
POSITION(27,23) PRINT("Targ: ")
P0SITION(33,23) PRINTC[Target)
RETURN
```

```
PROC Noise()
```

PROC Noise()
; the explosions when a block is hit
; the explosions when a block is hit
IF Loud=0 THEN RETURN FI
IF Loud=0 THEN RETURN FI
Loud==-2 50UND(1,90,8,Loud)
Loud==-2 50UND(1,90,8,Loud)
RETURN
RETURN
PROC NewLevel\
PROC NewLevel\
;set up a more difficult level
;set up a more difficult level
BYTE time=20,1P
BYTE time=20,1P
50UND (1,0,0,0) PUT (125) Level==+1
50UND (1,0,0,0) PUT (125) Level==+1
POSITION(9,12)
POSITION(9,12)
PRINT("New LeURI⿴"') POSITION(20,12)
PRINT("New LeURI⿴"') POSITION(20,12)
PRINTB (Level) time=0
PRINTB (Level) time=0
DO 50UND (6, time, 19,4)
DO 50UND (6, time, 19,4)
UNTIL time>100
UNTIL time>100
0D
0D
PUT(125) SOUND (0,0,0,0)
PUT(125) SOUND (0,0,0,0)
Updatescore()
Updatescore()
FOR 1P=0 T0 29
FOR 1P=0 T0 29
D0 5hotstatus(1P)=0 0D
D0 5hotstatus(1P)=0 0D
FOR 1P=6 to 23
FOR 1P=6 to 23
D0 EndL(1p)=6 EndR(1p)=39 0D
D0 EndL(1p)=6 EndR(1p)=39 0D
IF Level>8 thEN Dly=1 ELSEIF Level>3
IF Level>8 thEN Dly=1 ELSEIF Level>3
THEN D1y=2 EL5E Dly=3
THEN D1y=2 EL5E Dly=3
FI Loud=0
FI Loud=0
RETURN

```
RETURN
```

PROC Choice
；choose the difficulty level
BYTE 1P＝［1］，time＝20，trig＝644，stick＝632
POSITION（2，13）
PRINT（＂Select Difficulty with Joystick＂）
P05ITION（2，14）
PRINT（＂Then press Firisir
POSITION（7，16）
PRIHT（＂i．Egaj－Goal 8000 points＂）
P0SITION（7，17）

POSITION（7，18）
PRINT（＂J．HRPR－Goal 14909 points＂）
D0 Plote（5，1P＋15，6）
IF 5tick＝14 AND 1p＞1 THEN 1p＝＝－1
EL5EIF stick＝13 AND IPく3 THEN $1 \mathrm{P}==+1$
FI Plote（5，1p＋15，84）
time＝6 DO UNTIL time＝20 OD
UNTIL trig＝
0D Hard＝1p
IF 1p＝1 THEN Target＝8000 ELSEIF
$1 \mathrm{p}=2$ THEN Target＝12006 EL5E
Target＝14000
FI
RETURN
PROC Intro
；The introduction
BYTE time＝20，1p，xx
BYTE ARRAY hello（ 0 ）$=\left[\begin{array}{lllll}51 & 49 & 53 & 37 & 37\end{array}\right.$
$\begin{array}{lllllll}37 & 37 & 58 & 37 & 1 & 1 & 11\end{array}$
POSITION（7，5）
PRINT（＂CDillut PRESENTS＂）
FOR 1P＝T0． 11
Do Ploto（1p＋9，B，hello（1p））
SOUND（ 9, hello（1P）L5H 1，10，4）
time $=9$ D 0 UNTIL time $=9$ OD
OD SOUND（ $0,0,0,6$ ，POSITION $(7,9)$
PRINT（＂written in ACTION＂）
POSITION（7，16）
PRINT（＂by David Plotkin＂）
Choice $)$
FOR 1p＝0 TO 11
D0 $x x=1 p+9$
Do Plote（xx，8，θ ）$x x==-1$
IF $x \times 1$ THEN EHIT FI
Plote（ $x \mathrm{x}, 8$ ，hello（1p） SOUND（ $6, \mathrm{XX}$ L5H $3,19,4$ ） time＝6 DO UNTIL time＝i OD
0D
OD SOUND（0，0，0，0）PUT（125）
RETURN
PROC EndGame ©
；the game over routines
BYTE time $=20,1 p, \operatorname{trig=644,xx,yy}$
BYTE ARRAY gameover（ 0 ）$=\mathrm{L}\} 997109101$
047118161 114］
PUT（125）50UND（1，0，0，0）
FOR $1 P=0$ TO 8
Do Plote（1p＋7，12，gameover（1p）0D
IF 5core）＝Target THEN POSITION（5，7）
PRINT（＂You met your hoal！！！＂）
FI UPdatescored
time＝0
DO SOUND（ 0, time， 10,8 ）UNTIL time＝60 OD
$50 \mathrm{UND}(0, \theta, \theta, \theta)$ Choice（）Level＝
FOR $1 \mathrm{P}=6$ TO 8
D0 $x \mathrm{x}=1 \mathrm{P}+7 \mathrm{yy}=12$
Doplota $(x x, y y, 0) x x==+1, y y==-1$ IF（xx＞39 Or yy（i）THEN EKIT FI Plota（xx，yy，gameover（1p）） 50UND（0，xX L5H 3，10，4） time＝6 DO UNTIL time＝1 OD
0D
0D 5core＝0 NewLeveld
RETURN

```
PROC Movegund
;Read joystick and move the gun
BYTE stick=632
Ploto(Gunx,Guny, 0);erase the gun
IF stick=14 THEN;this is a stick up
    Guny==-1 ELSEIF stick=13;stick down
    THEN Guny==+1
FI
IF stick=7 THEN Ps=1 ELSEIF stick=11
    THEN PS=2;stick right(1) or left(2)
FI
IF Guny<1 THEN Guny=1 ELSEIF;out of
    Guny>21 THEN Guny=21; Bounds
FI
Plot0(Gunx,Guny,Ps);redraw the gun
RETURN
PROC Testcol(BYTE wh)
;see if bullet wh hit anything
BYTE qq
qq=5hoty(wh)
IF shotstatus(wh)=1 THEN
    IF EndR(qq) (=5hotx(wh) THEN
        Plote(5hotx(wh), 5hoty(wh),0)
        Shotstatus(wh)=0
        EndR(qq)==+1 Loud=6 5core==+2
    FI EL5E
        IF EndL(qq)>=5hotx(wh) THEN
            Plot0(5hotx(wh), 5hoty(wh),0)
            Shotstatus(wh)=0
            EndL(qq)==-1 Loud=6 5core==+2
        FI
FI score>LI(Level) then NewLevel@ FI
RETURN
PROC Shoot6
;check the trigger and fire if pushed
BYTE trig=644,lp
IF trig=1 THEN RETURN FI
FOR 1p=0 to 29; find an empty shot
D0
    IF Shotstatus(lp)=0 THEN;got one
                IF PS=1 THEN;gun facing right
                    5hotstatus(1p)=1
                        5hotx(1p)=Gunx+1 EL5E
                        Shotstatus(1p)=2
            Shotx(1p)=Gunx-1
        FI Shoty(1p)=Guny
        Plote(5hotx(1p),5hoty(1p),84)
        Testcol(1P) EKIT
        FI
0D
RETURN
```

```
PROC MoveShots0
```

PROC MoveShots0
;move the fired bullets
;move the fired bullets
BYTE 1P
BYTE 1P
FOR 1P=0 T0 29; for each shot
FOR 1P=0 T0 29; for each shot
DO
DO
IF Snotstatus(1p)=1 THEN;going right
IF Snotstatus(1p)=1 THEN;going right
Plote(5hotx(1P),5hoty(1P),0)
Plote(5hotx(1P),5hoty(1P),0)
Shotx(1p)==+1

```
        Shotx(1p)==+1
```

ANALOG
Computing POCKET
REFERENCE
CARD

THE

COMPLETE POCKET PROGRAMMING AID

ONLY \$7.95 ea.

ERROR CODES
INTERNAL CODES
PEEK \& POKE LOCATIONS MACHINE LANGUAGE AIDS GRAPHIC MODE SPECIFICATIONS BASIC COMMANDS WITH ABBREVIATIONS

ANALOG COMPUTING

P.O. BOX 23, WORCESTER, MA 01603 (617) 892-3488 • (617) 892-9230

P.O. BOX 23, WORCESTER, MA 01603

Please send me \qquad ANALOG Computing Pocket Reference Cards. I am enclosing $\$ 7.95$ per copy.

Name \qquad
Address
City \qquad State \square Zip

Card \#
Exp. date \qquad
Signature

by David Plotkin

Action!, the high-speed, high-level language from OSS, is a really excellent tool for game writing. In fact, once you've learned its structured approach (and some of its idiosyncracies) and tasted its dazzling speed, you may never go back to the (normally) slow crawl of BASIC.

Surface Run, included at the end of this article, is a sample of what Action! can do. It's also the first game I've ever written where too much speed was a significant problem. Of course, it's a lot easier to get rid of excess speed than to add it.

I've found that there are two ways to program in Action!. The first way can be thought of as "high level," using the many functions and keywords that Action! provides. While this is straightfoward, and even allows for pseudo-translation of BASIC programs (many of the commands or keywords are the same in both Atari BASIC and Action!), it suffers from some loss in speed. An example is found in high-resolution graphics.
PLOT and DRAWTO are available in Action!, but use the Atari's CIO routines, the same ones BASIC uses. This is not to say that even "high level" Action! isn't fast . . . compared to BASIC, it's fast indeed. Still, there are ways to considerably increase the speed of slower Action! functions, to a point approaching true machine speed. This is what I refer to as "low level" Action!. What you do is write your own special routines to do the job. This gener-
ally involves direct byte manipulation to the screen, use of shifts instead of multiply/divide, and construction of tables in the program initialization phase, so that results of complex calculations can simply be looked up.

An example is seen in the graphics routines in Surface Run. To fill a graphics 7 screen with color using PLOT takes about 27 seconds. Use of my procedure PLOT7, which does some complex direct byte manipulation (bit twiddling?), takes about 4.25 seconds.

The reason that even this procedure still takes so long is that there's a fair amount of math going on before each 2-bit pair is modified. If you can define your picture ahead of time and just place the bytes on-screen using a procedure like FASTDRAW, the process takes about two jiffies (or ${ }^{1 / 30}$ second). In the latter part of this article, we'll talk about some of the more interesting procedures included in Surface Run, and what purposes they serve.

Surface Running.

To play Surface Run, punch in the listing that follows. Before you run it, save it to disk or cassette (SHIFT CTRLW , followed by the filename or C : for cassette), then enter the monitor (SHIFT CTRL-M) and compile (C). When the computer beeps at you, plug your joystick into port 1 and run the program by pressing R.

You're in control of a space fighter, zooming low on patrol over the scrolling surface of Stripes, your home planet. Pulling back on your joystick causes you to climb; pushing foward makes you dive toward the planet's sur-
face, although your flight computer won't let you crash (at least, not into the surface).

Pressing the joystick left and right will cause the fighter to respond in the appropriate direction. It will also respond to diagonals, for added maneuvering.

And you're not defenseless. Pressing the fire button unleashes missiles which emerge from your wingtips and converge in the distance. You may have up to four missiles on the screen at any one time.

The enemy is a massive "mother ship," which emerges from hyperspace with a roar and moves rather unpredictably about the screen, launching tracking fireballs at you. You must neutralize all these fireballs with your missiles, while destroying the mother ship-by first shooting out the left engine, then the right, and, finally, the main center one.

Strategy is something of a problem: to destroy the mother ship, you must move in close, but the fireballs are more dangerous if you do. You start out with four ships. The number of ships left and your score are kept in the window at the bottom of the screen. My high score is about 7000, so good luck and good hunting!

The real Action!

Some of the PROCedures used in Surface Run are quite interesting, and they enhance the speed of the program considerably. Let's touch on some of these programming techniques.
(1) The use of the DEFINE statement to equate assembly code statements (such as RTI or PHA) to the actual hex codes that represent these instructions make the listing more readable and understandable.
(2) SAVETEMPS and GETTEMPS are found whenever an interrupt (such as VBI or System Timer) is used, to save and retrieve the temporary math variables needed by the main program. Thus, the interrupt doesn't change these variables, which could cause some unpredictable results in the main program. The line of hex codes is two short machine language routines to do the job.
(3) PROC DLINT is a display list interrupt (DLI) routine written in Action! Note the use of the assembly code blocks DEFINEd earlier to save the accumulator, and the X- and Y-registers during the interrupt. We did not use SAVETEMPS and GETTEMPS, because there isn't enough time, but it seems to work okay. The DLI changes the background color by displaying a hue taken from the byte array CLRS.
(4) PROC INIT7 does the program initialization. The real purpose is do some drawn out math to find screen addresses, then store the results in an array - because it's much faster to look those results up than to calculate them, which would slow down program execution. Thus, the low byte of the address of each screen line is stored in array YLOCL, and the high byte in array YLOCH. The array RSH2 holds which of the 40 bytes on the line is actually referred to by the X-coordinate range from 0 to 159. There's a little trickiness going on here, to break up the 2-byte address held in SCREEN into the two 1-byte numbers needed by YLOCL and YLOCH. By making CARD SCREEN have the same address as BYTE LOW1, each time SCREEN
is changed, LOW1 and HIGH1 are also automatically changed. This is sneaky, but very fast.
(5) PROC DLSETUP modifies the display list, to turn on the high byte of each instruction on each line where a DLI is required. The instruction VDSLST $=$ DLINT installs the DLI.
(6) PROC ROTATE is a routine executed each time the system timer interrupt is called (more on this later). It rotates the elements of the array CLRS, so that the colors displayed by the DLI appear to move down the screen.
(7) INT FUNCs HSTICK and VSTICK are used to read the joystick. They're taken directly from the Programmer's Aid Disk (PAD).
(8) PROC DRAW7 allows you to plot a point on the screen in any of the graphics 7 colors. This is much quicker than using the PLOT function. You pass the x - and y coordinates, and the color number to the procedure. There's some major speed enhancement here. First, note the BYTE variable declarations. When byte variables are passed to a procedure, they are passed on page 0 in locations \$A0 to \$AF. So, declaring byte variable X1 to reside at location \$A1 equates it to the passed variable X. But, because it's a 0 page quantity, operations using X1 will be faster. Note also that the variables LOW and HIGH are equated to the proper element of YLOCL and YLOCH. This automatically moves byte array LINE to the proper line on the screen, because the variables LOW and HIGH reside in the memory location that defines where byte array LINE will be (see the MODULE statement at the beginning of the program). The last line of this procedure looks pretty horrendous, but what it does is directly manipulate the proper screen byte by punching a 2 -bit hole in the byte with a bit mask (array BM), then filling in the hole with the proper color via a color mask (array CM).
(9) PROC FASTDRAW is the fastest of the drawing routines. It takes data contained in a byte array and places it directly on-screen, byte by byte. The variables WIDTH and HEIGHT determine the limits for picture drawing, and XX and YY are the position to draw the picture on the screen. The drawback to using this procedure is that you have to figure out how to draw a picture and convert it to a string of bytes. FASTDRAW is set up to use a picture drawn with DrawPic, from Artworx. When you construct a picture with DrawPic, you can save the image to disk as BASIC program lines containing a string of bytes. DrawPic also automatically saves the width and height. It is then simple to enter these program lines into an Action! program and modify them to the proper format. The byte arrays SHIP, NOLEFT and NOENG declared at the beginning of the program are constructed in just this manner.

The rest of the procedures are fairly straightforward, PMGRAPHICS, PMCLEAR, and PMADR are from the PAD, although PMGRAPHICS is a cut-down version of the general routine provided on PAD.

ERASESHIP removes the mother ship from the screen and increments the difficulty each time you triumph over one. WINDOW draws the text window at the bottom of the screen. UPDATE prints the new score, while UPDATESHIP keeps track of the number of ships you have left.

TESTHIT checks to see if your missiles have hit the proper spot on the mother ship．SHIPFLY moves your lit－ tle space fighter in response to the joystick．MISSILEFIRE fires off a missile（don＇t you just love descriptive names？） when you press the fire button，provided there aren＇t four missiles on－screen already．MISSILEMOVE converges the missiles in the distance．The distance the missile has trav－ eled from its original Y－coordinate is used to determine the X－coordinate．

SHIPDRAW places the mother ship on the screen，while SHIPMOVE bounces it around．DARKEN checks to see if the background is lit up from an explosion．It progressively darkens the area，so the explosions can continue while oth－ er things happen．

SHOOTBACK causes the mothership to launch any un－ used fireballs at your fighter．ALIGN determines the direc－ tion the fireballs have to move to reach your ship and how far they will move each time（based on the difficulty lev－ el）．BALLMOVE moves fireballs in the appropriate direc－ tion．HITBALL figures out which fireball was hit and removes it from the screen，making an explosion and light－ ing up the background．

ENDGAME displays the end－of－game message and restarts the game when you hit the fire button．BLOWNA－ WAY checks to see if a fireball has hit your fighter and blows it apart if one has．

Finally，MAIN does the initial setup and calls each of the other procedures as needed．One popular misconcep－ tion is that the＂driving＂PROC must be called MAIN．This is not true；the procedure may be called anything．What＇s different about MAIN is that it is the PROCedure which calls all the others．

Action！is a very nice midpoint between BASIC and assembly－and，as you can probably tell，I＇m a big fan． Programming in Action！is more fun than in BASIC，with far better results．And it＇s much easier than learning as－ sembly language． $\boldsymbol{\square}$

Listing 1.
Action！listing．

	CHECKSUM DATA						
［E9	56	29	34	E5	9E	ED	8
C0	79	81	6 C	97	C2	39	01
49	6 B	36	10	52	FF	63	91
11	AE	88	了 ${ }^{1}$	75	2B	E6	7 D
47	BD	52	23	D2	71	86	9A
D6	D 5	1D	E1	65	66	86	47
D9	64	A9	79	A1	2F	BC	97
F6	96	64	7 D	8 B	76	C9	E9
54	32	97	68	20	1月	37	F
5 A	59	］					

```
MODULE: SURFACE.RUN
DEFINE'RTI="$4@",
    PHA="$48'',
    PLG="568",
    T&A="$8A",
    T人行与名",
    TY訊"今98",
    TAY="今名"',
    SAUETEMPS="[$&2 7 $B5 $A8 $48
```


CARD OLD, 5DL5T=56日, UDSL5T=512,
5CRLOC=88, CDTMU2=521A,
CDTMA2=5228, HIMEM=52E5,
PMLBASEADR, ADRES, ADRESB,
SCORE=[日]
INT $5 \mathrm{~K}=[11,5 \mathrm{Y}=[1]$
INT ARRAY BKDR=[$\left.\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$,
$B Y D R=\left[\begin{array}{llll}6 & 0 & 0 & 0\end{array}\right]$
BYTE NMIEN=\$D49E, COLBK=\$D日1A, T=\$DA,
UCOUNT=5D40B, W5YNC=SD46A,
COUNT=[6]
PMHITCLR= 5 DG1E, DMACTL= 522 F ,
GRACTL=5D日1D, PMBASE=5D467,
PRIORITY二 $\$ 26 \mathrm{~F}, \mathrm{KG}, \mathrm{YG}, \mathrm{COLWND}=5 \mathrm{D}$ 日18,
5HIPK, 5HIPY,5HIPSTAT=[日],
PCLRG=794, PCLRM=711, COLRG=708,
COLR1=709, COLR2=710, COLR4=712,
FATE $=5377$, NLMSHIP $=$ [4], CUR5H=752,
THTROW=656, THTCOL=657,LUL=[10],

BYTE ARRAY DLIST,YLOCL(80),
YLOCH (80), RSH2(16日),
PMHPO5(8) 二5D日6日,
PMUP05 (8) $\left.=\begin{array}{llllllll}0 & 0 & 6 & 0 & 6 & 6 & 6\end{array}\right]$,
PMLWIDTH (5) = $=$ D日 08 , PLPTR

90165000101 ,
$\operatorname{PCOLR}(4)=764$,

$\begin{array}{llll}219 & 16590 & 9 & 0 \\ 0 & 61\end{array}$,
BSTAT $=\left[\begin{array}{lll}0 & 0 & 6\end{array}\right]$,
$\mathrm{BK}=\left[\begin{array}{lll}6 & 0 & 0\end{array}\right], \mathrm{BY} \mathrm{S}^{\prime}\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$,

BYTE ARRAY CLRS (0) $=\begin{array}{llllllll}64 & 66 & 68 & 70 & 72 & 74\end{array}$
$\begin{array}{llllllllll}64 & 66 & 68 & 76 & 72 & 74 & 64 & 66 & 68 & 76 \\ 7 & 72\end{array}$
$\begin{array}{lllllllllll}74 & 64 & 66 & 68 & 70 & 72 & 74 & 64 & 66 & 681\end{array}$
BYTE ARRAY BM(0) $=[\$ C 0$ \$30 5 C \$3],
$C M(0)=[50 \quad \$ 55$ \$A $\quad \$ F F j$
SHIPSHAPE (8) $=\begin{array}{llllllll}0 & 0 & 6 & 0 & 66 & 36 & 24 & 165\end{array}$
$\begin{array}{lllllll}231 & 165 & 24 & 36 & 66 & 6 & 0\end{array}$
- 0],
M5TATU5 0 日 $=\left[\begin{array}{lll}0 & 0 & 0 \\ 0\end{array}\right]$,
MK (θ) $=\left[\begin{array}{lll}6 & 0 & 0\end{array}\right]$,

MYOLD (θ) $=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$,
$5 \mathrm{HIP}(109)=$

; $\mathrm{BYT}=10: L I N=10$
NOLEFT(19日) =

; BYT=1日:LIN=1日
NOENG(169)=


```
```

BYTE ARRAY LINE

```
```

BYTE ARRAY LINE
BYTE LOW=LINE,HIGH=LINE+1
BYTE LOW=LINE,HIGH=LINE+1
PROC DLINT\
PROC DLINT\
BYTE DUM
BYTE DUM
[PHA THA PHA TYA PHA]
[PHA THA PHA TYA PHA]
IF UCOUNT>94 THEN
IF UCOUNT>94 THEN
WSYNC=1
WSYNC=1
COLBK=6 COLWND=0
COLBK=6 COLWND=0
ELSE DUM=CLRS (COLNT)
ELSE DUM=CLRS (COLNT)
W5YNC=1
W5YNC=1
COLBK=DUM
COLBK=DUM
FI
FI
COLNT=COUNT+1
COLNT=COUNT+1
IF COUNT=27
IF COUNT=27
THEN COUNT=0
THEN COUNT=0
FI
FI
[PLA TAY PLA TAK PLA RTI]
[PLA TAY PLA TAK PLA RTI]
PROC INIT7()
PROC INIT7()
BYTE LOW1,HIGH1,I
BYTE LOW1,HIGH1,I
CARD SCREEN=LOWi
CARD SCREEN=LOWi
GRAPHIC5(7)
GRAPHIC5(7)
COLRG=44 COLR1=162
COLRG=44 COLR1=162
COLR2=52 COLR4=0
COLR2=52 COLR4=0
5CREEN=5CRLOC
5CREEN=5CRLOC
I=9
I=9
WHILE I<8G DO
WHILE I<8G DO
YLOCL(I)=LOW1
YLOCL(I)=LOW1
YLOCL(I)=LOW1
YLOCL(I)=LOW1
5CREEN=5CREEN+40
5CREEN=5CREEN+40
I=I+1
I=I+1
0D
0D
I=0
I=0
WHILE I<160 DO
WHILE I<160 DO
R5H2(I)=I R5H 2
R5H2(I)=I R5H 2
I=I+1
I=I+1
OD
OD
RETURN
RETURN
PROC DLSETUP(\
PROC DLSETUP(\
BYTE I
BYTE I
INIT76)
INIT76)
NMIEN=\$40
NMIEN=\$40
DLI5T=5DL5T
DLI5T=5DL5T
UDSL5T=DLIMT
UDSL5T=DLIMT
FOR I=30 T0 40
FOR I=30 T0 40
D0 DLIST(I)=141,0D
D0 DLIST(I)=141,0D
FOR I=42 TO 54 5TEP 2
FOR I=42 TO 54 5TEP 2
D0 DLIST(I)=141 0D
D0 DLIST(I)=141 0D
FOR I=57 T0 72 5TEP 3
FOR I=57 T0 72 5TEP 3
DO DLIST(I)=141 OD
DO DLIST(I)=141 OD
FOR I=76 TO 84 5TEP 4
FOR I=76 TO 84 5TEP 4
D0 DLIST(I)=141 0D
D0 DLIST(I)=141 0D
NHIEN=5C6
NHIEN=5C6
RETURN
RETURN
PROC ROTATEG
PROC ROTATEG
BYTE HOLD,CTR, CNTR
BYTE HOLD,CTR, CNTR
[PHÁ THÁ PHA TYA PHÁ]
[PHÁ THÁ PHA TYA PHÁ]
SAUETEMPS
SAUETEMPS
HOLD=CLRS(26)
HOLD=CLRS(26)
FOR CTR=0 TO 25
FOR CTR=0 TO 25
DO CNTR=25-CTR
DO CNTR=25-CTR
CLRS(CNTR+1)=CLR5(CNTR) OD
CLRS(CNTR+1)=CLR5(CNTR) OD
CLRS(0)=HOLD
CLRS(0)=HOLD
CDTMUZ=2
CDTMUZ=2
GETTEMPS
GETTEMPS
[PLA
[PLA
RETURN
RETURN
INT FUNC HSTICKCBYTE PORT\
INT FUNC HSTICKCBYTE PORT\
BYTE ARRAY PORTS(4)=5278
BYTE ARRAY PORTS(4)=5278
INT ARRAY UALUE (4)=[0 1 %FFFF 0]
INT ARRAY UALUE (4)=[0 1 %FFFF 0]
RETURN (UALUE(CPORTS(PORT)\&5C) RSH 2))
RETURN (UALUE(CPORTS(PORT)\&5C) RSH 2))
INT FUNC USTICK(BYTE PORT)

```
```

INT FUNC USTICK(BYTE PORT)

```
```

BYTE ARRAY PORT5 (4) = $\mathbf{~} 278$
INT ARRAY UALUE (4) = [0 1 \$FFFF 0]
RETURN 【UALUE (PORTS (PORT) \&3)
PROC DRAW7 (BYTE $K, Y, C L R)$
BYTE K1=ちAB, Y1=ちA1, CLR1=ちA2
LOW=YLOCL(Yi)
HIGH=YLOCH (Y1)
T=R5H2(41)
LINE (T) $=(\mathrm{C}(\mathrm{BM}(\mathrm{Ki} \& 3)!\$ F F) \& L I N E(T) \geqslant \%$
(BM(K1ぬふ)\&CM(CLRi)
RETURN
PROC FASTDRAWCBYTE ARRAY PICTURE
BYTE WIDTH, HEIGHT, KH,YY)
BYTE LCTR1,LCTR2
CARD LCTR3
FOR LCTR1=0 TO HEIGHT-1
DO LOW=YLOCL(YY+LCTRI) HIGH=YLOCH(YY+
LCTR1)
LCTR2 $=$ HK + WIDTH
LCTRJ = (LCTR1+1) \#WIDTH-1
D0
LINE (LCTRZ) =PICTURE (LCTR3)
LCTRふニニー1
LCTR2==-1
UNTIL LCTR2= 8 K
OD
OD RETURN
PROC PMGRAPHICSO
ZERO (PMHP05,8) ZERO (PMUP05, 8)
ZERO (PMLWIDTH,5)
DMACTL=\$3E
PM LBASEADR $=(H I M E M-5800) \& 5 F 800$
PMBASE=PMLBASEADR RSH 8
HIMEM=PMLBASEADR+768
HIMEM=PMLBA5EADR+768
PRIORITY= $\& 5 \mathrm{C}=1717$ GRACTL=3
RETURN
CARD FUNC PMÁDR (BYTE N)
IF $N>=4$ THEN $N=0$ ELSE N==+1 FI
RETURN (PMLBASEADR+768+(N*5106))
PROC PMCLEAR (BYTE N)
CARD CTR
BYTE ARRAY PLAYADR
BYTE ARRAY PLAYADR
PLAYADR=PMADR(N)
PLAYADR =PMADR (N)
IF $N(4$ THEN ZERO (PLAYADR, 5106$)$
EL5E N==-4
FOR CTR=0 TO \$100-1
D 0 PLAYADR (CTR) $==\&$ PMLMI $5 M A 5 K(N) O D$
FI
RETURN
PROC ERASE5HIP ()
BYTE LOOPK, LOOPY,LL
BYTE LOOPY, LOOP
LL=5HIPK L5H 2
FOR LOOPY 5 SIPY T0 SHIPY+10
D 0
FOR LOOPH=LL TO LL+39
DO DRAW7 (LOOPK, LOOPY, 0) OD
OD
LUL==+2 IF LUL>20 THEN LUL=20 FI
LULi==+5 IF LULi>20日 THEN LULi=20日 FI
LULニニ+2 IF LUL>20 THEN LUL=20 FI
LULi=ニ+5 IF LULi>20 THEN LULi=20日 FI
RETURN
PROC WINDOWO
BYTE LOOP5

PRINT ("
PRINT ("
FOR LOOPS=1 TO 2 D
TKTRON=LOOPS TKTCOL=0 PRINT (י" \mid)
THTRON=LOOPS TKTCOL=0
THTCOL=38 PRINT
TKTCOL=38 PRINT ("I")
PRINT
("ROW
PRINT ${ }^{\prime \prime}$
PRINT

TKTROW＝1 TKTCOL＝5 PRINT（＂5CORE：＂） THTCOL＝12 PRINTC（SCORE）
TKTCOL＝20 PRINT（＂SHIPS LEFT：＂
FOR LOOP 5＝1 TO 5 D0 TKTCOL＝31＋LOOP5
IF NUMSHIP $=$ LOOP5 THEN PRINT（＂\ddagger＇${ }^{\prime}$ ） ELSE PRINT（＂＂
FI OD
RETURN
PROC UPDATEG
BYTE LOOP5
TKTROW＝1 TKTCOL＝12 PRINTC（SCORE）
RETURN
PROC UPDATESHIP ©
BYTE LOOP5
TKTROW＝1
FOR LOOP5＝1 T0 5 D0 TKTCOL＝31＋LOOP5
IF NUMSHIP）＝LOOP5 THEN PRINT（＂き＇）
EL5E PRINT（＂）
FI OD
RETURN
PROC TESTHITGBYTE MISSULD
BYTE MI55LY，MI55LK，XSHIP
IF SHIPSTAT＝0 THEN RETURN FI
MIS5LY＝（MY（MIS5UL）－36）R5H 1
MI55LK＝MX（MI55UL）－48
KSHIP＝5HIPK L5H 2
IF MIS5LY〈5HIPY＋4 0R MISSLY）SHIPY＋7 THEN RETURN FI
IF SHIPSTAT＝1 THEN
IF MIS5LK＞85HIP＋9 AND MIS5LX＜ $\mathrm{KSHIP}+15$ THEN SHIPSTAT＝2 COLR4＝14 $5 \mathrm{CORE}==+20$ UPDATE
FI
RETURN
FI
IF SHIPSTAT＝Z THEN
IF MIS5LK＞K5HIP＋31 AND MI55LK＜K5HIP＋37 THEN 5HIP5TAT＝3 COLR4＝14 5CORE＝ニ＋20 UPDATE $)$
FI
RETURN
FI
IF MI55LH＞R5HIP＋29 AND MI55LKく 45 HIP +26 THEN SHIPSTAT＝6 5CORE＝ニ＋50 COLR4＝14 50UND（1，COLR4 L5H 4，8，4） SOUND（2，0，0，0）ERASESHIP（） UPDATE ©
FI
RETURN
PROC 5HIPFLY（
BYTE 5TCK＝632
SOLND（ $0, Y 0,8,2$ ）
IF 5TCK＝15 THEN RETURN FI
$8 \theta=40+\mathrm{HSTICK}(\theta) \mathrm{LSH} 1$
Y $0=Y$ Y 0 U5TICK 6 ）L5H 1
IF KO＞19日 THEN K日＝19日 FI
IF $80<50$ THEN $80=50 \mathrm{FI}$
IF Y $9>170$ THEN Y $9=179$ FI
IF Y $0<50$ THEN $Y 9=56$ FI
ADRES＝PMADR（0）＋YG
MOUEBLOCK（ADRE5，5HIP5HAPE，17）
PMHPOS（ 6 ）$=\mathrm{KO}$
RETURN

PROC MISSILEFIREC

BYTE TRIGGER＝644，INDR，MA5K
IF TRIGGER＝1 THEN RETURN FI

FOR INDX＝0 TO 3 DÓ

```
IF MSTATUS(INDK)=0 THEN
    M5TATUS(INDK)=1 MY(INDK)=Y0+6
    MYOLD (INDH)=MY (INDK)
    MK (INDH) = 80
    IF INDK=1 OR INDH=3 THEN
        MK(INDH)= 80+15 FI
    MKOLD (INDR)=MK (INDK)
    MÁ5K=PMLMISMA5K(INDW)!5FF
    PLPTR (MY (INDK) ) ==%MA5K
    PMHPOS(INDH+4)=MK(INDH)
    EKIT
FI OD RETURN
```

PROC MIS5ILEMOUE ()
BYTE INDK, MASK, DELTA
FOR IHD $=0$ TO 3 DO
IF MSTATUS (IND K) $=1$ THEN
PLPTR(MY(INDK)) $==$ \&PMLMI5MÁ5K (IND $K)$
MY (INDK) $=-2$
MÁ5K=PMLMI5MA5K (INDH)! 5FF
IF MYOLD (IND)-MY (IND) >44 THEN
MSTATUS (IND K) $=0$ SOUND $(2,0,6,0)$
ELSE PLPTR(MY(IND $X)==\%$ MÁSK;REDRAN
DELTA=(MYOLD (INDK)-MY(INDK)
IF INDK=0 OR INDK=Z THEN
MX (IND 8$)=M X O L D(I N D K)+D E L T A ́$
ELSE MK (IND 8) $=$ M $80 L D(I N D K)-D E L T A$
FI
PMHP05(INDK+4) $=$ MR (IND $)$
50UND (2, DELTA LSH 2,16,4)
TESTHIT(INDX)
FI
FI OD RETURN
PROC 5HIPDRAWC
BYTE TIME $=20$
IF 5HIPSTATく〉0 OR FATE〈250
THEN RETURN FI
5HIPSTAT=1
COLR $0=14$ cOLR1=14 COLR2=14 C0LR4=14
5 HIP $=$ RAND $(24)+2 \quad 5$ HIPY=RAND $(30)+2$
FASTDRAW(SHIP, $10,10,5 \mathrm{HIPK}, 5 \mathrm{HIPY})$
TIME=0 DO 5OUND (1, 16日, 8, 12-TIME R5H 1)
IF TIME $=4$ OR TIME $=8$ OR TIME $=12$ THEN
5HIPFLY() MIS5ILEMOUE ${ }^{\circ}$
FI
UNTIL TIME=16 OD
WHILE COLR4) 0
D0 COLR4 $=-1 \quad$ COLR2=RAND (250)
COLRG=RAND (256) COLR1=RAND (250)
TIME $=6$ D 0 UNTIL TIME 20 D
$50 \mathrm{LHD}(1, \mathrm{COLR} 4 \mathrm{~L} 5 \mathrm{H} 4,8,4$)
SHIPFLY() MISSILEMOUEG
0D
COLR $=44 \operatorname{COLR1}=162 \operatorname{COLRZ}=52$
SOUND ($1,0,0,0)$
RETURN
PROC SHIPMOUE ©
IF 5HIPSTAT=0 THEN RETURN FI
$5 \mathrm{HIPH}==+5 \mathrm{~K} \quad 5 \mathrm{HIPY}==+5 \mathrm{Y}$
IF 5 HIP $\langle\langle 2$ OR 5 HIP $K\rangle 28$ THEN $5 K=-5 K$
ELSEIF FATE) (255-LUL) THEN 5K=-5 F FI
IF SHIPY〈2 0R 5HIPY〉55 THEN SY=-5Y
ELSEIF FÂTE
IF SHIPSTAT=1 THEN
FASTDRAW(5HIP, 16, 10,5HIPK,5HIPY)
ELSEIF SHIPSTAT $=2$ THEN
FASTDRAW(NOLEFT,16,16,5HIPY, 5HIPY)
ELSE FASTDRAW(NOENG,19,10,5HIPS,5HIPY)
FI
RETURN
PROC DARKEN ${ }^{\text {O }}$
IF COLR4 $=6$ THEN RETURN FI
COLR4=- 1 SOUND (1, COLR4 L5H 4, 8, 4)
IF COLR $4=0$ THEN SOUND $(1,0,0,0)$ FI
RETURN

IF COLR4 $=0$ THEN RETURN FI
IF COLR $4=0$ THEN SOUND（1， $0,0,0$ ）FI
RETURN

Surface Run continued

```
PROC 5HOOTBACK\
BYTE LLP
IF SHIPSTAT=0 OR FATE>LULI
    THEN RETURN FI
FOR LLP=1 T0 3 DO
IF BSTAT(LLP)=0 THEN
    BSTAT (LLP) =1
    BY(LLP) = (5HIPY LSH 2)+68
    BY(LLP)= (SHIPY LSH 1)+34
    PCOLR(LLP)=RAND (15) LSH 4;RND COLOR
    PCOLR(LLP)==+10; LIGHTEN COLOR
    ADRE5B=PMADR(LLP) +BY(LLP)
    MOUEBLOCK(ADRESB,BALL1,16)
    PMHPOS(LLP)=BK(LLP)
    EXIT
FI
RETURN
PROC ALIGN()
BYTE LLL,CLUNK=[0]
IF LUL1>50 THEN CLUNK=1
        ELSEIF LUL1>150 THEN CLUNK=2
FI
FOR LLL=1 TO 3 DO
IF BSTAT(LLL)<>O THEN
    IF BK(LLL)> (K0+4) THEN
        BMDR(LLL)=-2-CLUNK
        EL5EIF BK(LLL) (CM0+4) THEN
        BYDR(LLL)=2+CLUNK
        ELSE BYDR(LLL)=0
    FI
    IF BY(LLL)>(Y0+4) THEN
        BYDR(LLL)=-2-CLUNK
        ELSEIF BY(LLL)((Y0+4) THEN
        BYDR(LLL)=2+CLUNK
        ELSE BYDR(LLL)=0
    FI
FI
RETURN
proc ballmoved)
BYTE LLP
FOR LLP=0 TO 3 DO
IF BSTAT(LLP) <>0 THEN
    IF BSTAT(LLP)=1 THEN BSTAT(LLP) =2
        ELSE BSTAT(LLP)=1
    FI
    BK(LLP)==+BYDR(LLP)
    BY(LLP)==+BYYDR(LLP)
    ADRESB=\tilde{P}MADR(LLP)+BY(LLP)
    IF BX(LLP)<50 OR BX(LLP)>190 OR
        BY(LLP)<34 0R BY(LLP)>182 THEN
        B5TAT(LLP)=0
        MOUEBLOCK(ADRE5B,BLANK,16)
    FI
    PMHP05 (LLP) = B (LLP)
    IF BSTAT(LLP)=1 THEN
        MOUEBLOCK(ADRESB,BALLI,16)
        ELSEIF BSTAT (LLP) =2 THEN
        MOUEBLOCK(ADRESB,BALL2,16)
    FI
FI
RETURN
PROC HITBALL()
BYTE ARRAY MISCOL(3)=$D008
BYTE IND,PLY,DUMMMI
FOR IND=0 TO 3 DO
IF MI5C0L(IND) >1 THEN MSTATUS(IND)=0
    PLPTR(MY(IND))==&PMLMI5MASK(IND)
    DUMMI=MISCOL(IND)
    IF (DUMMI&2)=2 THEN PLY=1
        ELSEIF (DUMMI&4)=4 THEN PLY=2
        ELSE PLY=3
    FI
    ADRE5B=PMADR(PLY) +BY(PLY)
    MOUEBLOCK (ADRESB,BLANK,16)
    COLR4=10 SOUND (1,COLR4 L5H 4,8,4)
    BSTAT(PLY)=0 PMHITCLR=1
    5CORE==+10 UPDATE@
FI

\section*{OD RETURN}

\section*{PROC ENDGAME ()}

BYTE TRIGGER=644
ERASESHIPO
TKTROW=2 THTCOL=2
PRINT ("GAME OUER..PRES5 固IRE TO PLAYי'
PRINT (" AGAIN")
DO UNTIL TRIGGER=0 OD
NLMSHIP \(=4\) 5CORE \(=0\) TKTROW \(=2\) TKTCOL \(=2\)
LUL=10 LUL1=10 5HIPSTAT=0
PRINT \({ }^{[1}\)
PRINT (" TYTROW=1 TYTCOL \(=12\) PRTNT \({ }^{\prime \prime}\)
TKTROW=1 TYTCOL=12 PRINT ("
י)
UPDATE@ UPDATE5HIP ()
RETURN
PROC BLOWNAWAYO
BYTE ARRAY SHIPH(0)=53260
BYTE LQ, TIMER=20
IF SHIPH(0)=0 THEN RETURN FI
PMLWIDTH (0) \(=0\)
FOR LQ=0 TO 3 DO
IF MSTATUS (La) \(=1\) THEN MSTATUS (LQ) \(=0\)
PLPTR(MY (LQ) \()==\& P M L M I S M A 5 K(L Q)\) 50UND ( \(2,0,0,0\) )
FI
PMCLEAR (LO) BSTAT (LQ) \(=1 \quad B X(L a)=K 0\)
\(B Y(L Q)=Y 0\) ADRE5B \(=\) PMADR (LQ) \(+B Y(L Q)\)
MOUEBLOCK (ADRESB, BALLI,16)
PMHPOS(LO)=BK(LQ)
PCOLR (LQ) \(=\) RAND (15) L5H \(4+10\)
OD
COLR4 \(=14\) SOUND ( 1, COLR 4 L5H 4, 8,8)
BYDR \((\theta)=2\) BYDR \((\theta)=2 \operatorname{BKDR}(1)=2\)
\(B Y D R(1)=-2 \quad B K D R(2)=-2 \quad B Y D R(2)=2\)
\(B Y D R(3)=-2 \quad B Y D R(3)=-2\)
D0
IF BSTAT (0) \(=0\) AND BSTAT (1) \(=0\) AND BSTAT(2) \(=0\) AND BSTAT (3) \(=0\) THEN EKIT
FI
ballmove ()
TIMER \(=0\) DO UNTIL TIMER \(=3\) OD
OD
COLR4=0
SOUND (1,0,0,0) PMHITCLR=1 NUMSHIP==-1
UPDATESHIP \({ }^{\circ}\)
IF NUMSHIP=0 THEN ENDGAME () FI
\(\mathrm{K} 0=120 \quad \mathrm{Y} 0=170\)
PMLWIDTH ( 0 ) \(=1\) PCOLR ( 0\()=170\)
ADRE \(5=\) PMADR ( \(\theta\) ) \(+\mathrm{Y} \theta\)
MOUEBLOCK (ADRES, SHIPSHAPE,17)
PMHPOS (0) \(=80\)
RETURN
PROC MATN(S
BYTE YK, COUNT, TIMER \(=20\)
5ND1=3 5ND2=0
DL5ETUP ()
PMGRAPHICSCl
FOR \(Y K=0\) TO 7 DO PMCLEAR (KK) OD
\(Y \theta=120 \quad \mathrm{Y} \theta=120 \quad \mathrm{PCOLR}(\theta)=170 \quad \mathrm{PCLRM}=14\)
ADRE5=PMADR(0) + 0 O PLPTR=PMADR(4)
MOUEBLOCK (ADRE5, 5HIPSHAPE, 17)
PMHP05 ( 0 ) \(=\mathrm{K} 0\) PMLWIDTH ( 0 ) \(=1\)
WINDOW()
CDTMAZ \(=\) ROTATE
CDTMUZ \(=2\)
DO
5HIPDRAWC
SHIPMOUE S SHOOTBACK ()
aLIGNO
FOR COUNT=1 TO 3
D 0
TIMER=0 DO UNTIL TIMER=1 OD
5HIPFLY() MIS5ILEFIRE © MIS5ILEMOUE ()
DARKEN S) HITBALL (S BLOWNAWAY ()
\({ }_{0}^{0 \mathrm{D}}\)
RETURN
-


\section*{by Mark Comeau}

Mission \#2, should you choose to accept it, is to stop the production of the enemy's killer satellites. They're being manufactured at this moment, in the secret enemy base in the Commodore mountains. If production doesn't stop, they'll be launched - and demolish the Earth for sure. The coordinates for the base are listed in your secret agent handbook. Land your Spy Plane immediately and get to work!

On your last mission, the enemy had somehow managed to photocopy plans to your top-secret satellites. Cases and cases of the plans will be found now in the caverns of the base. Confiscate as many as you can, but don't let that deter you from your main mission.

Once inside the caverns, look for some small portals. Inside are the factories producing the enemy satellites. Drop a radio-controlled robot into them and maneuver it with your hand-held spy computer. To disable the factory's machines, just unplug them and turn off the water supply. After all the machines have been sabotaged, an exit will appear in the lower right-hand corner.

As part of their protective system, the factories have tubes which emit radioactive mist. The mist is dispersed in straight lines, at irregular intervals. The caverns also contain mist portals, but, here, once the mist hits the ground it spreads out a little. The mist causes death on contact. Avoid it at all costs!

In the caverns are empty tubes which you can use to travel up and down. Do not travel off the top of the tubes.

On the first level of Spy Plane II, you can use your spy jump boots. These will let you "fall" down to lower surfaces without injury. After the first level, though, the boots will become useless. Any fall will result in death.

There are two factories on each cavern screen. When you've sabotaged the first, it will blow up and disappear. Both of the factories must be destroyed before an exit appears.

Each level of the game has four cavern screens, all of which must be completed before the satellites are produced. On the first level, there's a 500 -second time limit. In every succeeding level, the time it takes to produce satellites is decreased by 50 seconds. If the factories are not destroyed and your exit accomplished in time, you'll see the satellites launch and destroy the Earth. When the Earth is destroyed, you lose a life.

The fate of the world rests heavily upon your shoulders. You have only four lives in which to complete your mission, so live them with care.

\section*{Running and playing the game.}

Type in Listing 1 exactly as it appears. Be careful with the data statements.

Type RUN, and the screen will go blank for about 30 seconds. Then the Spy Plane will land, and your man will get out. After that, the familiar Spy Plane logo will appear. Press the fire button to start the game.

\title{
Spy Plane II continued
}

After you press the fire button, the score display will appear. Press the fire button again to get to the first screen. During the score display, if you press START, the computer will end the game.

On the first screen, your man will automatically climb out of the plane and down a tube. Cases of plans (worth 10 points) are located all around him. Each screen is worth 100 points. The destruction of a factory will win you 100 points, while the sabotage of each plug or faucet inside is good for 20 points.

\section*{Programming tips.}

When the program is run, it turns the screen display off, reading and initializing all the necessary stuff. "Why in the world would you want to turn the Atari's superb graphics display off?" you may ask. Because the initialization process takes a while-anything that can make it speed up is A-OK. When the screen is turned off, the computer is freed from graphics-everything else speeds up.

To do this, just POKE 559,0. I even use it to turn the screen off when displaying screens. Instead of a flicker, you get a split-second of black, then a quick display.

If you look at the Spy Plane II program, you'll see that every number from 0 to 20 has a \(C\) in front of it. This is done to conserve memory. The computer has an easier time handling variables than numbers. I saved 2263 bytes by using constants on this program. The variables are defined with an unusually large read-data combination. Look at Lines 2510 and 2520.

With the kind of character-set/player-missile graphics used in this game, everything is displayed in \(8 * 8\) squares, in order to make things manageable enough for BASIC. But you'll notice that the man moves around pretty smoothly. If moved in steps of 8 , he would skip around and wouldn't look too good. Instead, he moves in steps of 2 until he gets to the 8th pixel, because he has to match the character set graphics display.

The trick is to set two variables to the joystick position to determine the direction of the player. Each direction has a variable X - and Y-step, which is either 2 or -2 . A FOR. . NEXT loop from 1 to 4 displays the player/missile character each time, adding the X - and Y-step values. Whoa! Did you catch all that?

Each direction the spy may go must have a bit-mapped graphic stored in a string array. This is so that the player/missile graphics routine can display it nice and quickly. The only drawback is that each graphic has to have a different string. "But that's a little too slow for BASIC," you say. Fear not.

The way to get around it is to put all your player/missile graphics into one string. Use a variable for the string pointer of your intended graphic. It goes in steps of 8 , because each character should take up 8 bytes. The pointer is set to whichever graphic you want. All of the data for your player/missile can be read in with one FOR . . .NEXT loop, as in Line 2580.

If you were to have an IF. . .THEN statement for every joystick position, your player/missile wouldn't go very fast at all. I use what's called Boolean algebra. What the heck is that? Well, it's really simple. Here's an example. .
\(100 \mathrm{~S}=\mathrm{STICK}(0):\) SX=(S=7 AND \(\mathrm{X}<456)^{*}\) 2-(S=11 AND \(\left.\mathrm{X}>304\right)^{*}{ }^{2}\)
If the conditions inside the parentheses are met ( \(S=7\) and \(X<456\) ), then the value will be a 1 . If the conditions are not met, the value will be a 0 . If the stick position is a 7 and X is not too high, then it will be multiplied by 2. This particular expression will give a result of either a 2 or -2 .

The other Boolean expression used is in Line 110. It's only purpose is to determine what the pointer for the player/missile array will be.

\section*{Program breakdown.}

Lines 10-70 - A little credit, please!.
Line 80 - Branch to initialization.
Lines 90-230 - Main loop. Movement, etc.
Lines 240-270 - Vaporize case. Make it blow up!
Lines 280-400 - Fall down and/or figure out if it is a fatal fall.

Lines 410-430 - Death. Figure out if it is the last man. Lines 440-510 - Emit radiation.
Lines 520-530 - Next screen and see if it is the last.
Lines 540-700 - Display score, then display screen and go to main loop.

Lines 710-770 - Walk out of plane.
Lines 780-940 - Small init for factory.
Lines 950-1020 - Main loop for factory.
Lines 1030-1180 - Display factory radiation.
Lines 1190-1200 - Check to see if RC robot is stepping on something harmful.

Lines 1210-1250 - Make RC robot die.
Lines 1260-1290 - Unplug machines.
Lines 1300-1330 - Go back to main loop.
Lines 1340-1510 - Launch satellites and destroy Earth.
Lines 1520-2070 - PRINT \#6 values for your graphics screens.

Lines 2080-2230 - Display title screen.
Lines 2240-2350 - Land the Spy Plane, and then display the logo.

Lines 2360-2470 - GAME OVER message with high score and last score.

Lines 2480-2520 - Start initializing.
Lines 2530-2560 - P/M mover - by Tom Hudson.
Lines 2570-2590 - Set up data for radiation and exits.
Lines 2600-2660 - Character set initializer - created
by Steven Pogatch.
Lines 2670-2690 - Character set init DATA.
Lines 2700-3010 - Character set graphics DATA.
Lines 3020-3060 - P/M mover DATA.
Lines 3070-3120 - P/M graphics DATA.
Lines 3130-3180 - Radiation DATA.
Lines 3190-3200 - Exit DATA.
Okay, the game's up. I hope you get hours of fun from Spy Plane II. \(\boldsymbol{A}\)

Mark Comeau is a self-taught BASIC programmer from Piscataway, New Jersey. This is his fourth program published by ANALOG Computing. The original Spy Plane appeared in issue 21. His interests include graffiti art, rock \& roll music, Atari and video games.

Variables used．
For P／M mover．
ATASCII value of the character that the player is on． ATASCII value of the character the player is stepping on．
Flag for death fall．
GTM ．．．．．．．．．．．．Time limit．

GY ．．．．．．．．．．．GR． 2 verticle position of player．
For READing IT．
L（T）．．．．．．．．．．All the DATA for the radiation．
MEN ．．．．．．．．．Number of men left．
MN\＄．．．．．．．．Graphics data for player／missile．
PMD ．．．．．．．．Position of MN\＄in memory．
S．．．．．．．．．．．．．STICK value．
SC ．．．．．．．．．．．．Current screen number．
SCO
T．
TM ．．．．．．．．．Counter for radiation
X ．．．．．．．．．．．．．．．．．．．．．．．
Y ．．．．．．．．．．．．．．．．．．．．．．．．．．．Verizontal position of player．

The two－letter checksum code preceding the line numbers here is not a part of the BASIC program． For further information，see the BASIC Editor II， in issue 47 of ANALOG Computing．

Listing 1.
BASIC listing．


WI 346 A \(=\mathrm{USR}(\mathrm{MOUE}, \mathrm{C} 0, \mathrm{PMB}, \mathrm{PMD}+\mathrm{C} 16, \mathrm{~K}, \mathrm{Y}, \mathrm{C} 8)\)
Q0 350 NEKT Y：Y＝Y－C1：50UND CO，CO，CG，CQ：50 UND C1，CO，CO，C0
114369 GOTO 169
ZM 370 FOR \(Y=Y\) TO 134
Wh \(389 \mathrm{~A}=\mathrm{LSR}(\mathrm{MOUE}, \mathrm{CO}, \mathrm{PMB}, \mathrm{PMD}+\mathrm{C} 16, \mathrm{~K}, \mathrm{Y}, \mathrm{C} 8)\)
\(0439650 \mathrm{LND} \mathrm{C} 0, \mathrm{Y}+121, \mathrm{C} 14, \mathrm{C} 14\)
KB 406 NERT Y：SOUND CO，C0，CO，C0
JC 416 REM 420 DEATH
 MEN＜CO THEN 2370
PG 430 GOTO 550
WF 446 REM FIRE LaZER
NS 456 IF TM \(/\) GTM THEN 1350
KY \(460 \mathrm{~T}=(\)（INT（RND（CO）\(\because \mathrm{L}(5 \mathrm{C}) \mathrm{J}) * \mathrm{C} 3)+\mathrm{L}(5 \mathrm{C}+\mathrm{C}\) 4）
EG \(470 \mathrm{LK}=\mathrm{L}(\mathrm{T}): \mathrm{LY}=\mathrm{L}(\mathrm{T}+\mathrm{C} 1): \mathrm{LN}=\mathrm{L}(\mathrm{T}+\mathrm{C} 2): \mathrm{T}=\mathrm{C} 0\)
52 480 COLOR 107：G05UB 510：50UND C0，C2，C4 ，C14
HM 496 LOCATE GK，GY，C：IF C＝107 THEN 370
TI 50日 COLOR C20＋C12：G05UB 510：50UND CB，C 0，C日，CQ：T＝C日：RETURN
MS 516 PLOT LK，LY－LN：DRAWTO LK，LY：DRANTO LK－C1，LY：DRANTO LK＋C1，LY：RETURN
FT 520 REM NEST SCREEN
UN 530 TM＝C \(\mathrm{C}=\mathrm{C} 5\) THEN \(5 \mathrm{C}=\mathrm{C} 1: 5 \mathrm{CO}=5 \mathrm{CO}+100: \mathrm{DF}=\mathrm{C} 1: \mathrm{FL}=\mathrm{C}\) 1：GTM＝GTM－50：G05UB 550：G0T0 720
CQ 540 REM GOTO SCREEN
IL．550 POKE 77，C0：？\＃C6；CHR（125）：P05ITIO N C7，CJ：？\＃C6；5CO：COLOR 198：PLOT C7，C5 ：DRAWTO C7＋MEN，C5：P05ITION CG，CO
EP \(560 \mathrm{~A}=\mathrm{USR} \mathrm{CMOUE}, \mathrm{CO}, \mathrm{PMB}, \mathrm{PMD}, \mathrm{CO}, \mathrm{CO}, \mathrm{CO})\)

ZO 590 POSITION CO C1

0G 619 ？
NI 620 IF PEEK（53279）＝C6 THEN 2376
BB 630 POKE 708，RND（C0）\＃255：POKE 710，RND © C0）\(* 255:\) IF 5 TRIG（C 0 ）\(=\mathrm{C} 1\) THEN 626
ON 640 POKE 708，52：POKE 710，164：POKE 559， C0：POSITION CO，CO：ON 5C GOSUB 1530，167 0，1819，1950：COLOR 32
DK 650 IF WK＞－C1 THEN PLOT WK，WY
WC 669 IF WHZ - Ci THEN PLOT WK，WY
GN 670 HWK＝WK：HWK2＝WK2
OT 689 IF WH \(-C 1) *(2), D(5(5-C 1) *(2+C 1)\)
AW 69 IF \(5 F=C 1\) THEN \(5 F=C G: R E T U R N\)
P5 700 POKE 559，46：G0TO 100
55716 REM WALK OUT OF PLANE
u® 720 POKE 559，46：Y＝32：FOR \(\mathrm{K}=368\) T0 383
KB 730 A \(=U 5 \mathrm{R}(\mathrm{MOUE}, \mathrm{C} 0, \mathrm{PMB}, \mathrm{PMD}, \mathrm{K}, \mathrm{Y}, \mathrm{C} 8)\)
12740 NEHT \(\mathbf{K}\)
NB 750 FOR Y＝32 TO 55
Wh 760 A＝USR（MOUE，C6，PMB，PMD \(+C 16, K, Y, C 8)\)
IG 776 NEHT Y：GOTO 106
\(\begin{array}{ll}\text { KF } 789 & \text { REM FACTORY } \\ \text { WC } \\ 790 & \text { POKE } 59, \text { CO：P0SITION C0，C0 }\end{array}\)
KT 800 ？\＃C6；＂eepeeepeeeepeepeeepe＂；
TR 810 ？\＃C6；＇e Gocgu GGGOt e＂＇
AM 826 ？\＃C6；＂exrchroxprocrac e＂；
NA 846 ？\＃C6；＂e JJRjJ JNR
PP 850 ？\＃С6；＇ew
PR 869 ？

op 880 ？\＃C6；＂esrcc CGsprich

54 920 POKE 559，46
RE 930 FOR I＝C0 TO C3：50UND I，KRND（CO）＊C5

PL \(940 \mathrm{RH}=448: \mathrm{RY}=96: \mathrm{P}=\mathrm{C} 0: \mathrm{IT}=\mathrm{C} 0\)
BD 956 REM RC ROBOT MOUEMENT
ZR 960 5＝5TICK（C0）：R \(\mathrm{K}=\mathrm{RX}+(5=\mathrm{C} 7) * \mathrm{CB}-\mathrm{C}=\mathrm{C} 11\)

\section*{Spy Plane II \\ continued}
\begin{tabular}{|c|c|}
\hline & \\
\hline aO &  \\
\hline \multirow[t]{2}{*}{} & \(986 \mathrm{GK}=6 \mathrm{RH}-3\) \\
\hline & \\
\hline ou & 996 IF C＝165 THEN 1310 \\
\hline \multirow[t]{2}{*}{OP．} & 1006 IF C＝243 THEN COLOR 239：PLOT GK，G \\
\hline & Y：G05UB 1270 \\
\hline \multirow[t]{2}{*}{54} & 1016 IF C＝248 THEN COLOR 237：PLOT GK， \\
\hline & Y：50UND IT，C0，Co，Co：IT＝IT＋C1：G05UB 127 \\
\hline 18 & 1020 TM＝TM＋C1：IF C \(<>32\) \\
\hline 3． & 1036 REM RADIATION \\
\hline P &  \\
\hline \multirow[t]{2}{*}{EL} &  \\
\hline & 0，C14，C2，C14 \\
\hline \multirow[t]{2}{*}{1 H} & 1060 IF T＝Ci THEN LX \\
\hline & \[
Y=C 5
\] \\
\hline KU & Y \(=\mathrm{C} 6\) \\
\hline 0 O &  \\
\hline 58 &  \\
\hline PY & 1100 IF T＝C5 THEN B＝Ci：LK＝C12 \\
\hline TW & 1110 IF T＝C6 THEN B＝C1：LX＝C15 \\
\hline \multirow[t]{2}{*}{} & 1120 COLOR 197：IF B＝C0 THEN PLOT LK， \\
\hline & ：DRAWTO MK，MY \\
\hline \multirow[t]{2}{*}{as} & 1130 IF B＝C1 THEN PLOT \\
\hline & ，C6：DRANT0 LK＋C1，C6：DRAWTO LY＋C1，C5 \\
\hline \multirow[t]{2}{*}{WH} & 1150 COLOR 32：IF B＝C日 THEN PLOT LK，LY： \\
\hline & DRANTO MX，MY \\
\hline \multirow[t]{2}{*}{NH} & 1169 IF \(\mathrm{B}=1\) THEN PLOT LH，C5：DRAWTO LH， \\
\hline & C6：DRAWTO LH＋C1，C6：DRANTO LH＋C1，C5 \\
\hline \multirow[t]{2}{*}{J} & 1170 50UND CO，CQ，CQ，C0：IF IT＝CG THE \\
\hline & OUND C6，C4，C8，C2 \\
\hline T4 & 1180 GOT0 960 \\
\hline \multirow[t]{3}{*}{\[
\frac{16}{56}
\]} & 1190 REM DEAT \\
\hline & 1290 IF C＝243 OR C＝248 OR C＝237 OR C＝2 \\
\hline & 390 C C＝242 THEN 969 \\
\hline \multirow[t]{3}{*}{B1} & 1210 REM DEATH \\
\hline & 1220 FOR IT＝C1 TO C3：50UND \\
\hline & ： HEXT IT：5F＝CO \\
\hline \multirow[t]{3}{*}{AI} & 1236 FOR IT＝C8 T0 C6 5T \\
\hline & RHD（C0）\(* 255:\) P0KE 707，RN \\
\hline & C0，RND（C0） \(2255, \mathrm{C} 4\) \\
\hline \multirow[t]{2}{*}{UA} & 1240 d＝U5R（MOUE， \(\mathrm{CO}, \mathrm{PMB}, \mathrm{PMD}+24, \mathrm{RK}, \mathrm{RY}+\mathrm{C} 8\) \\
\hline & －IT，IT） \\
\hline \multirow[t]{3}{*}{If} & 1250 NEKT IT：50UND C0，C0，C0，C0：POKE 71 \\
\hline & 2，C0：P0KE 707，C14：W8＝－C1：WR2＝－C1：G0T0 \\
\hline & 426 \\
\hline & 1260 REM PLUG5 0R FÁUCET5 \\
\hline \multirow[t]{2}{*}{DB} & 1270 FOR U＝C6 TO C10：50UND CO，U，CO，U＋C \\
\hline & 4：NERT U：SOUND C0，C0，C0，Cb \\
\hline \multirow[t]{2}{*}{Dt} & 1280 5C0＝5C0＋C20：P＝P＋C1：IF P＝C8 \\
\hline & OLOR 105：PLOT C18， Cl \\
\hline \multirow[t]{3}{*}{\(\stackrel{8}{6}\)} & 1290 RETURN \\
\hline & \(1309 \mathrm{REM} \mathrm{G0}\) \\
\hline & \(1310 \mathrm{RK}=\mathrm{K}: \mathrm{RY}=\mathrm{Y}\) \\
\hline \multirow[t]{2}{*}{ac} & 1320 \(\mathrm{H}=\mathrm{RY}: Y=\mathrm{RY}\) ：WYZ＝WK：WY \(2=W Y: 5 F=C 1: G 05\) \\
\hline & UB 55日： \(\mathrm{H}=\mathrm{RK}: \mathrm{Y}=\mathrm{RY}: \mathrm{WK}=(\mathrm{K}-304) / \mathrm{CB}\) ： \(\mathrm{WY}=\mathrm{CY}-\mathrm{C}\) \\
\hline \multirow[t]{2}{*}{} & 16）／C8 \\
\hline & 1330 COLOR 217：PLOT WK，WY：POKE 559，46 \\
\hline P\％ & 1346 REM DESTROY EARTH \\
\hline HII &  \\
\hline Y 1 &  \\
\hline JB &  \\
\hline H5 & 13807 \＃C6；＂CCBACCBABACCCCCCCCCC＇ \\
\hline Ar &  \\
\hline \multirow[t]{2}{*}{T} & 1496 FOR IT＝CG T0 C15：50UND CO，RND © \\
\hline & ＊255， 68, IT \\
\hline \multirow[t]{2}{*}{OB} & 1416 FOR \(\mathrm{H}=200\) T0 100 5TEP－C10：50UND \\
\hline & C1， \(\mathrm{K}, \mathrm{C14}, \mathrm{IT}: \mathrm{NEST} \mathrm{K}\) \\
\hline & 1420 NEST IT：50UMD Ci，Cb \\
\hline \multirow{2}{*}{U} & 1430 F0R IT＝C0 T0 C19： \(\mathrm{H}=\mathrm{RND}\)（C0）\(\# C 19: C 0\) \\
\hline & LOR 197：PLOT K，C9：PLOT K ，С8 \\
\hline 6c． & \(1440 \mathrm{FOR} \mathrm{Y}=\mathrm{C}\)（ T0 C0 5TEP－C1：C0LOR 240 \\
\hline & ：PLOT \(\mathrm{K}, \mathrm{Y}: \mathrm{COLOR}\) 32：PLOT \(\mathrm{K}, \mathrm{Y}+\mathrm{Ci}: 50 \mathrm{LND}\) \(\mathrm{B}, \mathrm{Y}+\mathrm{C} 4, \mathrm{CB}, \mathrm{Y}+\mathrm{C} 4\) \\
\hline
\end{tabular} 979 A＝USR（MOUE，C6，PMB，PMD＋24，RH，RY，C8）
SA 989 GH＝（RX－304）／C8：GY＝（RY－C16），C8：LOCA TE GK，GY，C

0P 196日 IF C＝243 THEN COLOR 239：PLOT GH，G Y：G05UB 1276
5ش 1016 IF C＝248 THEN COLOR 237：PLOT GK，G Y：50UND IT，C0，C0，CO：IT＝IT＋C1：G05UB 127

18 1020 TM二TM＋C1：IF Cく〉32 THEN 1206
P\％ 1046 B＝B＋RND（CG）＊C1：IF B＜C1日 THEN 960
 0，C14，C2，C14
HE 196日 IF T＝C1 THEN LK＝C2：MX＝C18：LY＝C5：M \(Y=C 5\)

IF T＝C2 THEN LK＝C2：MX＝C18：LY＝C6：M
（3）1086 IF T＝C3 THEN B＝C1：LH＝C3
38． 1090 IF T＝C4 THEN B＝C1：LR＝C6
1166 IF T－CS THEN B＝C1：
OH 1126 COLOR 197：IF B＝C6 THEN PLOT LK，LY DRAWTO MK，MY
（E） 1136 IF B＝C1 THEN PLOT LY，C5：DRAWTO LK C6：DRAWTO LK＋C1，C6：DRAWTO LK＋C1，C5

32：IF BニC日 THEN PLOT LK L DRANTO MK，MY

110 IFTB THEN PLOT LRPLS：DRANTG 1170 50UND CO，CG，C日，CO：IF IT＝C日 THEN 5 OUND CG，C4，C8，C2
＊ 1180 G0T0 960
5A 1269 IF \(C=243\) OR \(C=248\) OR \(C=237\) OR \(C=2\) 390 C C＝242 THEN 966

BN 1226 FOR IT＝C1 TO C3：50UND IT，C0，C0，C0 ：NEXT IT：SF＝CO
AN 1236 FOR IT＝C8 TO C6 5TEP－1：POKE 712， CG，RND（CG） \(2 \mathrm{H} 25, \mathrm{C} 4, \mathrm{C} 14\) －IT，IT
IF 1250 NERT TT：50UND CG，CO，CQ，CO：POKE 71 2，C0：POKE 797，C14：WKニーC1：WK2ニーC1：G0T0

OR 126 REM PLUGS OR FAUCETS
DR 1270 FOR U＝C日 TO C1日：50UND C0，U，CO，U＋C 4：NEHT U：SOLND C0，C0，C0，C0
H 1280 5CO＝5CO＋C20：PニP＋C1：IF P＝C8 THEN C OLOR 195：PLOT C18，C16
BE 1296 RETURN
9． 1309 REM GO BACK
HJ 1310 RK＝K：RY＝Y
1320 KR ：\(: Y=R Y: W R Z=W K: W Y Z=W Y: S F=C 1: G 05\) 16）／C8

13 GOLOR 217：PLOT WR，WY：POKE 559，46： 5C0＝5C0＋100：G0T0 190
PN 13 135 ？\＃C6；＂KiIPOSITION CG，CS

4s 1389 ？\(\ddagger C 6 ; " C C B A C C B A B A C C C C C C C C C C " ;\)
KH 1390 A＝U5R（MOUE，CG，PMB，PMD，CG，CO，CO）
11 1496 FOR IT＝CB TO C15：50UND CO，RND（CO） H255，C8，IT

 LOR 197：PLOT K，C9：PLOT K，C8
144 FOR Y＝C8 T0 CG 5TEP－C1：COLOR 248 \(B, Y+C 4, C B, Y+C 4\)

MM 1450 NEKT Y：NEKT IT
 ND CB，CB，CO，CB：LOCATE K，CO，C
IY 1476 IF C＝246 THEN 50UND CG，C9，C4，C14： COLOR 197：PLOT \(\mathcal{K}, \mathrm{C} 1: D R A W T O ~ K, C 11: C O L O R\) 32：PLOT K，C1：DRANTO K，Ci1
5P 1489 NEXT IT
HJ 1490 SOUND CO，C0，CO，C日：FOR I＝C14 TO C0 STEP－C1：K＝RND（C0）＊255：POKE 712， \(\mathrm{K}:\) POK E 71日，I：50UND C0， \(\mathrm{K}, \mathrm{C8}, \mathrm{Ci4}\)
EZ 1596 NE \(2 T\) I
CP 1516 POKE \(712, C 0: 50 U N D\) C日，CG，C日，C日：GOT 0420

9M 1539 ？\＃C6；＂B ABAB AB A＂；
\％ 1550 ？ \(156 ;\)＂CCBACCBd fACCCCCCCC＇：
f11 1560 ？\＃C6；＂CCCCCCCEeefCCCCCCCCC＂；

प1 151599 ？
© 1619
44 1629
UM 1630
T\％ 1640 ？\＃C6；＂GHGHGHGHGHGHG GHGHGH＂；
1\％ 1650 \＆
91 1669 REM 5 CREEN \＃2

4） 1690 ？
48 1709 ？\＃C6：＂fG HGHFGJHGHGHGHGHGH＂；
IH 17729 ？
Ki 1730


E 1750 ？\＃C6；＂RGFGHGHGHGHGH GHGf：
Rम 1779 ？

RF 1896 REM 5 CREEN \＃3
10 1819 ？\＃C6：＂fing fin
\％ 1826 ？
Aम 1846 ？
up 1866
4

（1） 1889 ？
UT 1996
HN 1910 ？
IA 1926 ？\＃C6；＂HGHGH GHGHGHGHGHGHGH＂；
21． 1936 H二328：Y二C16：RETLRN
14 19
TH 1960
F\％ 1970
0M 1999
F\％ 2909 ？
4\％ 2019 ？
iv 2036
cif 2050

HP 207日 \(\mathrm{H}=312: Y=C 16: R E T U R N\)
00 2086 REM TITLE SCREEN
IF 2096 GRAPHIC5 C18：POKE 559，CO：POKE 756 ，PEEK（196）＋C1：POKE 764，C14：POKE 708，C6
：POKE 7日9，C15：POKE 710，C0：POKE 711，52


Fo \(2129 \begin{gathered}7 \\ 7\end{gathered}\)



\section*{Make the connection!}

\section*{ANALOG Computing on Delpht puts you on-line with the world.}

\section*{ANALOG Computing,}
the \#1 magazine for Atari owners, brings you the Atari Users' Group on Delphi. We offer a message forum and an extensive database for up- or downloading-all from as little as 10 cents per minute from most U.S. cities, with no additional telephone charges and no extra charge for 1200 or 2400 bps. We'll use the group's conference feature for electronic meetings with well known Atarians and, of course, ANALOG staff. Bring on your toughest questions!

\section*{Special rates}

Subscribers to ANALOG Computing or STLog may join without charge, and will receive a free lifetime Delphi membership, a Delphi Command Card and \(\$ 5.00\) of line-time credit applicable to their account. If you purchase the Delphi Handbook-the highly detailed manual on using the whole Delphi system-for \(\$ 29.95\), you will get an additional \(\$ 20.00\) of line-time credit. And you can subscribe to either ANALOG Computing or STLog directly, while on-line, to be eligible for these bonuses.

\section*{How to connect}

First, select a data communications network: Telenet or Tymnet (in the U.S.), or DataPac (in Canada). In the Boston area, dial Delphi direct (617-576-0862). To determine your local Telenet number, dial 800-TELENET or 703-689-5700 (in Alaska, 907-264-7391). To obtain a Tymnet number, call 800-386-0149. If you have difficulty, call Delphi at 800-544-4005 (in Massachusetts, 617-491-3393). Current subscribers to ANALOc computing or ST1 ag should type JOINATARI when asked for user name. When asked for a password, type ANALOG. Those who wish to subseribe to eiher magazine on ine should, hisiead ype SUSSCFIBE at the passwod pompe onge on Detphivul tho out joup on the terous \&




\section*{by Paul T. Sprague}

Reversi is a strategy game written in Action!, a wonderful language from OSS. It's not only very fast in compilation and execution, but also has the best editor I've ever seen. Action! makes it possible to write games such as this one in a high-level language - and yet still be able to realize the speed of assembly language (or very close to it ).

The rules of Reversi are quite easy to grasp. The board starts out with two white pieces and two black pieces in the center (as you'll see when you start up the program). White moves first, then black, then white, etc. . . . until all squares are taken up, or neither player can move.

A move consists of placing your piece on an empty square, thereby capturing all your opponent's pieces between your played piece and another piece of your color. Your pieces must be flanking those of the opponent, with no squares left empty between the pieces.

These captures may take place horizontally, vertically, or diagonally. Also, you may capture pieces in more than one direction in a single move (even in all eight directions).

The pieces thus taken become your color; so ends your turn.

One important point: you must capture at least one piece in order to make a legal move. If you can't do this, you must pass and allow your opponent to move again.

The winner is the player with the most pieces of their color on the board when the game ends.

That's all you need to know to play Reversi. The rules may seem quite simple, but, the more you play, the more strategies you find which are important for good play.

\section*{The fine points.}

This Reversi program allows for three different modes of operation. A menu of these appears after the board has been drawn at the beginning of the game.

The computer will ask you to choose a playing mode: 1 for computer vs computer, 2 for human vs computer and 3 for human vs human. Pressing either 1, 2, or 3 at this point will select the appropriate mode. Note that you don't need to (nor should you) press RETURN after entering the number.

In mode 1 (computer vs computer), you'll be asked to select the strategy level for the white and black sides. The game will then begin, and you'll see white and black exchanging moves on-screen until the game's over. This probably isn't really helpful in learning game strategies, but it is quite interesting to watch.

Mode 2 (human vs computer) first prompts you to select the color (white or black) you wish to play. To do this, simply press \(W\) for white or B for black. (The computer automatically plays the opposite color; it never argueswell, almost never.) Once colors are selected and you choose the skill level of the computer (more on this later), play begins. If you're white, you'll go first. Otherwise, the
computer will make the first move. Regardless of which color you pick, you'll always use joystick 1 in this mode.
Mode 3 (human vs human) allows you to play against a friend. In this mode, joystick 1 is the white player and joystick 2 is the black.

To move, you must have a joystick plugged into the correct port. The cursor appears on-screen and may be moved around via joystick. Place the cursor on the square to which you wish to move and press the fire button. If the square is a legal one for your move, a piece of your color will appear there, while all pieces which your move captured will be changed by the computer. If you have no legal move, then you must forfeit your turn by pressing \(P\) (Pass) on the keyboard.

At the end of each game, the computer will ask whether or not you'd like to play another game. If you want to play again, press the \(Y\) key. This will cause the game board to be reinitialized and the starting menu to appear.

As mentioned above, in each case where the computer plays one or both sides, it will ask you to select a skill level for each color. Here are the basic strategies for each level.

Good: The second level, using the least strategy of the three, plays simply for capture of the most pieces. This is the way most beginners play. Soon, however, it becomes evident that more thought is necessary.

Better: The second level combines the previous method with a knowledge of which squares are better to hold. The map of numbers you see at the beginning of the program (Listing 1) accomplishes this. However, in this level the map is static (it doesn't change as the game progresses).

Best: Our third level also uses the map, but has map updates in special cases, to account for possible changes in the strategic value of a square. Although, in play against humans, this level seems quite a bit better than the second, when the two levels are played head-to-head, the difference is not particularly evident. The third level seems to win a majority of the time-but not a large majority, by any means. Another interesting change in this level's strategy is that, for the first part of the game, it doesn't try to capture the most pieces, but the least! This may seem backwards, but usually plays well. See if you can figure out why.
Here's a quick summary of each function and procedure in the program.

SET__CHIP: Places a piece of the current color into the board array at XC,YC.

TEST__SQR: Returns the value of the square XC,YC in the board array.

PLACE__CHIP: Places a piece of the current color into the board array at XC,YC and draws it on the screen board.

PSCORE: Switches inverse lettering to the current player color and prints the score.

GET__LEVEL: Inputs strategy level.
INITIALIZE: Sets up screen and array board, gets mode and levels, sets initial score and prints it.

FLIPPER: If FLIP__FLAG \(=0\), then count the number of chips captured by the move XC,YC. If FLIP_

FLAG=1, then actually capture the chips for the move XC,YC.

UPDATE__VALUES: If a move is made to a corner, then make the squares adjacent to the move valuable. COMPUTER: Get a computer move.
PLAYER: Get a human player move.
MAKE__MOVE: As the name implies...
MAIN: The primary game loop, with end-of-game checking.
I hope that some of you will look at the code, figure out how the strategies work and try to come up with stronger ones. It really is fun to program a strategy, then pit it against one of the other strategies. If you come up with a really good one, or you have any questions or comments, please write to Reader Comment in the pages of ANALOG Computing.

Good luck. Hope your life is filled with lots of Action! !
Paul T. Sprague has his bachelor of science degree in Electrical Engineering and works as an Associate Engineer of Design and Development for Raytheon. He's had his Atari 800 for seven years and Action! for two and one-half. They make a great pair!

\section*{Listing 1. \\ Action! listing.}

```

BYTE FUNC TEST_5QRGBYTE KC,YCD
RETURN (BOARD (KC+YC*8))
MROC PLACE_CHIP(BYTE KC,YC)
,WHITE_5CORE,BLACK_5CORE)
RETURN
PROC GET_LEUEL \& CHAR ARRAY
COLOR_STR , BYTE TEMP1 J
BYTE CHOICE
DO
PRINT("KPRESS NUMBER TO SELECTי')
PRINTF(" %S LEUEL:%E'',COLOR_5TR)
PRINTE{" 1/ - GOOD'י\
PRINTE(", 1 - GOOD"')
PRINT (" - BEST'')
CHOICE=GETD(7)
UNTIL (CHOICE`53日)AND (CHOICE〈与S4)
0D
LEUEL (TEMP1)=CHOICE-\$30
RETURN
PROC INITIALIZEO
CHAR TEMP
BYTE I,J,CHOICE
JOYR=38 JOYY=17 KEY=255
CLOSE(7) OPEN(7,'K:''4,0)
GRAPHICS(5)
GRAPHICS(5), SETCOLOR(4,12,5)
5ETCOLOR (0,0,8)
FOR I=6 T0 63 DO
BOARD(I)=0
OD
FOR I=6 TO 127 D0
VALUE_BOARD(I)=FRESH_BOARD(I)
OD
COLOR=1
FOR I=24 TO 56 5TEP 4 DO
PLOT(I,3) DRANTO (I,35)
PLOT(25,I-21) DRAWTO(55,I-21)
0D
PRO_COLOR=1
PLACE_CHIP (3,3) PLACE_CHIP (4, 4)
PRO_COLOR=2
PLACE_CHIP (3,4) PLACE_CHIP (4,3)
DO
PRINTE("'KPRESS NUMBER TO SELECT:'י)
PRINT(" 1 - Computer us. ")
PRINTE("Computer")
PRINT(" Z- Human vs. ")
PRINTE ("Computer")
PRINT ("Human 'י)
CHOICE=GETD (7)
UNTIL (CHOICE>530)AND (CHOICE〈\$34) OD
IF CHOICE=531 THEN
WB(0)=2 WB(1)=2
GET_LEUEL (WHITE , 0)
GET-LEUEL (BLACK; 1)
GGET-LEUEL C BLACK
WB (0) =0 WB (1)=1
MROC PLACE_CHIP(BYTE KC,YC)
MROC PLACE_CHIP(BYTE KC,YC)
DO
PLACE_CHIP (4,3)

```
    EL5E
    EO
        DO PRINT (יK WHICH COLOR DO YOUי')
        PRINT (" WANT [W/B] ?")
        TEMP=GETD (7)
    UNTIL (TEMP='W) OR(TEMP='B) OD
    IF TEMP=1W THEN
        WB ( 0 ) \(=0 \quad\) WB \((1)=2\)
            GET-LEUEL (BLACK, 1 )
        ELSE
            WB ( 0 ) \(=2\) WB (1) \(=0\)
            GET-LEUEL (WHITE, 0 )
        FI
\(\mathrm{FI}^{\mathrm{F}}\)
PRINT ("K") CURSOR=1
WHITE-5CORE=2 BLACK_5CORE=2
PRO_COLOR=1 OPP_COLOR=2
PSCORE ()
RETURN
BYTE FUNC FLIPPER CBYTE KC,YC,
    BYTE TMPK, TMPY,FLIP5, COUNT, FLAG, TEMP
    INT I, J
    FLIPS \(=0\)
    IF TEST_5QR (HC, YC) \(=0\) THEN
    FOR J=-1 T0 1 DO FOR I=-1 TO 1 DO
        IF (I\#9)OR(J\#日) THEN
        IF TMPK=YC TMPY=YC
            \(\begin{array}{ll}\mathrm{TMPK}=\mathrm{BC} & \text { TMPY=YC } \\ \text { COUNT }=0 & \text { FLAG=0 }\end{array}\)
                DO
                    TMPK= \(=+\mathrm{I} \quad\) TMPY \(==+\mathrm{J}\)
                    IF (TMPY(8) AND (TMPY(8) THEN
                    TEMP =TEST-5QR (TMPK, TMPY)
                    IF TEMP \(=0\) THEN
                    FLAG=2
                    ELSAGIF TEMP=0PP_COLOR
                        THEN
                        THEN
COUNT=
                    EL5E
                    FLAG=1
                    FI
                ELSE FLAG=2
                FI
            UNTIL FLAG\#G OD
            UNTIL FLAGH0 OD
            FLIP5ニニ + COUNT
                IF FLIP_FLAG=1 THEN
                    TMPK= \(\bar{K} C \quad\) TMPY \(=Y C\)
                    FLAG=0
                    F F
                    TMPK=ニ+I TMPY==+J
                    TEMP=TEST_SQR (TMPK, TMPY)
                    IF TEMP =0PP_COLOR THEN
                                    TEMP \(=0 \mathrm{PP}\)-COLOR THEN
                                    PLACE_CHIP CTMPK.TMPYS
                                    ELSE
                    ELSE
                    FI
                    UNTIL FLAG\#G OD
                FI
                FI
                FI
        FI
        \({ }_{0 D}{ }^{\mathrm{FI}}{ }_{\mathrm{OD}}^{\mathrm{D}}\)
    FI
RETURN (FLIPS)
PROC UPDATE_UALUES \()\)
    IF (MOUERYMOUEY) \(=9\) THEN
        UALUE-BOARD ( \((P R O-C O L O R-1) * 64+1)=8\)
        UALUE-B0ARD ( \((\mathrm{PRO}-\mathrm{COLOR}-1) * 64+8)=8\)

    ELSEIF (MOUEK=6) AND (MOUEY=7) THEN
    UALUE-BOARD ( (PRO-COLOR-1)*64+48)=8
        UALUE-BOARD ( \((\operatorname{PRO} 0-\operatorname{coLOR}-1) * 64+48)=8\)
        UALUE-B0ARD ( \((\) PRO-COLOR-1)*64+49)=8
    ELSEIF (MOUER=7) AND (MOUEY二6) THEN
    UALUE-BOARD ( (PRO-COLOR-1) \(364+6)=8\)
    UALUE_BOARD ( (PRO_COLOR-1)*64+14)=8
```

 VALUE_B0ARD ((PRO_COLOR-1) *64+15)=8
 ELSEIF (MOUEK=7)AND (MOUEY=7) THEN
 UALUE-BOARD ((PRO-COLOR-1)*64+54)=8
 UALUE-B0ARD ((PRO_COLOR-1)*64+55)=8
 VALUE_BOARD ((PRO_COLOR-1)*64+62)=8
 FI
 RETURN
PROC COMPUTER()
BYTE BEST,SCORE,COUNT,KC,YC,TEMP
BYTE ARRAY CHOICEK(19)
BYTE ARRAY CHOICEY(19)
BEST=0 COUNT=0
FOR YC=0 TO 7 DO FOR YC=0 TO 7 DO
SCORE=FLIPPER (HC,YC,0)
IF 5CORE>O THEN
IF LEUEL (PRO_COLOR-1)=2 THEN
SCORE==+UALUE_BOARDE
(PRO_COLOR-1)*64+YC*8+YC)
ELSEIF LEUEL (PR0_COLOR-1)=3
THEN
IF WHITE_5CORE+BLACK_5CORE<30
THEN
SCORE=(25-5CORE)/3+
UALUE_BOARD C(PRO_COLOR-
1) \#64+YC*8+8C3
ELSE
5CORE==+UALUE_B0ARD C
(PRO_COLOR-1)*64+YC\#8+YC)
FI UALUE_BOARD((PRO_COLOR-1)*
64+8*YC+8C)=0 THEN
5CORE=1
FI
FI
IF SCORE=BEST THEN
CHOICEK (COUNT)=\&C
CHOICEY (COUNT)=YC
COUNT==+1
ELSEIF 5COREDBEST THEN
COUNT=1
CHOICEK(0)=%C
CHOICEY(0)=YC
BEST=5CORE
FI
FI
OD OD
IF BEST=0 THEN
MOUEK=8 MOUEY=8
EL5E
TEMP=RAND (COUNT)
MOUEK=CHOICER(TEMP)
JOYX= (MOUEX+2)*4+18
MOUEY=CHOICEY(TEMP)
JOYY=(MOUEY+1)*4+1
IF LEUEL(PRO_COLOR-1)=3 THEN
UPDATE_UALUES\
FI
FI
RETURN
PROC PLAYER (BYTE STICK_NUM)
BYTE TEMP,5K,5Y,FLAG,R,I,J
KEY=255 TEMP=LOCATE GOYK, JOYY)
IF TEMP=0 THEN
COLOR=1
ELSE
COLOR=5-TEMP
FI
PLOT (JOYK,JOYY) 5%=JOYK 5Y=JOYY
DO
R=5TICK(5TICK_NUM)

```

```

 IF R#15 THEN
 IF TH15 JOY%<26 THEN JOYK=54
 | IF | （R258）$=0$ | THEN | J0YK＝ニ＋4 | FI |
| :---: | :---: | :---: | :---: | :---: |
| IF | （R254）$=0$ | THEN | Ј0YKニニー4 | FI |
| IF | （R252）$=0$ | THEN | J0YYニニサ4 | FI |
| IF | （R\＆51）$=0$ | THEN | 」0YYニニー4 | FI |
| IF | R\＃15 THEN | | | |
| | F Jo | YRく26 | THEN JOY | 54 |

```
```

 ELSEIF JOYK>54 THEN JOYK=26
 FI JOYYく5 THEN JOYY=3S
 ELSEIF JOYY〉SZ THEN JOYY=5
 FI
 POSITION(5R,5Y) PUTD(6,TEMP)
 5K=JOYM 5Y=JOYY
 TEMP=LOCATE(JOYK, JOYY)
 IF TEMP=0 THEN
 COLOR=1
 ELSE
 COLOR=5-TEMP
 FI
 PLOT (JOYX, JOYY)
 \(50 \operatorname{LND}(0,200,19,8)\)
 FOR I=0 TO 260 DO FOR J=0 TO 10
 DO OD OD
 5NDRSTG
 FOR I=0 TO 200 DO FOR J=0 TO 50
 DO OD OD
 FI
 FLAG=0
 IF STRIG(STICK_NUM) \(=0\) THEN
 MOUEK= (JOYK-18)/4-2
 MOUEY \(=(J O Y Y-1) / 4-1\)
 IF FLIPPER (MOUEK, MOUEY, 0) >0 THEN
 FLAG=1
 FI
 FI
IF KEY=10 THEN
FLAG=2
FOR I=0 TO 7 DO FOR J=0 TO 7 DO
IF FLIPPER(I, J, Ө) >G THEN
FLAG=0
I=7 J=7
FI
OD OD
KEY=255
MOUEK=8
MOUEY=8
FI
UNTIL (FLAGH0) OD
POSITION(5\%, SY) PUTD (6, TEMP)
$K E Y=255$
RETURN
PROC MAKE_MOUE (BYTE KC,YC)
BYTE NF
CARD I
CARD I
$N F=F L I P P E R(B C, Y C, O)$
$\mathrm{NF}=\mathrm{FLIPPER}\left(\mathrm{KC}, \mathrm{YC},{ }^{03}\right.$
IF PRO_COLOR=1 THEN
WHITE-5CORE $=+N F+1$
BLACK—5CORE==-NF
EL5E
BLACK_5CORE==+NF+1
WHITE_SCORE==-NF
FI
NF=FLIPPER (HC, YC, 1)
PLACE_CHIP (KC,YCS
PLACE-CHIP (KC, YC
$50 \mathrm{UND}(6,80,16,8)$
FOR I=6 TO 80日 DO OD
SOUND $(0,0,0,0)$
ATTRACT=0
RETURN
PROC MAIN()
BYTE PAS5
CHAR TEMP
D0
INITIALIZE (
PSCORE ${ }^{\text {S }}$
DO
IF WB (PRO_COLOR-1)=2 THEN
COMPUTER ${ }^{\text {O }}$
EL5E
PLAYER (WB (PRO_COLOR-1))
FI MOUEK=8 THEN
IF MOUEK=8 THEN

```
```

 PA55==+1
 EL5E
 PA5S=0
 MÁKE_MOUE (MOUEK, MOUEY)
 FI
 PRO_COLOR=OPP_COLOR
 OPP_COLOR=3-0PP_COLOR
 PSCOREO
 UNTIL (WHITE_5CORE+BLACK_5CORE=64)
 OR(PAS5=2) OD
 PRINTE(" ")
 IF WHITE_SCORE\BLACK_5CORE THEN
 PRINT("White wins!.:"')
 ELSEIF BLACK_5CORE\ WHITE_5CORE
 THEN
 PRINT('Black wins!..,"')
 EL5E
 PRINT ("Tie!..."')
 FI
PRINT("Play again?")
TEMP=GETD (7)
UNTIL TEMP='N OD
RETURN

```

\section*{Back Issues}


Send your check or money order to ANALOG Computing Back Issues,
P.O. Box 625, Holmes, PA 19043.

MasterCard and VISA orders, call 1-800-345-8112
(in Pennsylvania, 1-800-662-2444).


Back issues on \(51 / 4\)-inch disk
\(\$ 12.95\) each, plus \(\$ 3.00\) shipping and handling. Issues 35 and up are available in this format.

ISSUE 30 • Loan Shark • Z-Plotter • BASIC Burger • ANALOG TCS Guide - Boulder Bombers

ISSUE 31 - Unicheck • R.OT.O. - Lunar Patrol - ATASCII Animation - Lazer Type - Atari Clock - Personal Planning Calendar

ISSUE 32 - Supereversion - DOS III to DOS 2 conversion - Color the Shapes - Home-made Translator - Cosmic Defender - 520ST

ISSUE 33 - An Intro to MIDI - Note Master - Syntron - BASIC Bug Exterminator - Assemble Some Sound • C.COM - Mince (ST)

ISSUE 34 - Dragon's Breath - Multiple Choice Vocabulary Quiz - Elevator Repairman - Assemble Some Sound Part 2

ISSUE 35 (also on disk) • Hide and Seek • Printers Revisited • Bonk • Turtle 1020 • G:
ISSUE 36 (also on disk) - Sneak Attack - Maze War - Nightshade - Solid Gold Input Routine - Rafferty Run
ISSUE 37 (also on disk) • Speedski - Index to ANALOG Computing (15-36) - Master Disk Directory - Halley Hunter - Bank Switching for the 130XE
ISSUE 38 (also on disk) • Color Alignment Generator • Incoming! - DLI Maker - Air Hockey - ST Color Palette
ISSUE 39 (also on disk) - Super Pong - Unicheck (updated) - C-Manship Part 1 - Program Helper - Adventurous Programming Part 1 - ST Software Guide

ISsue 40 (also on disk) - Clash of Kings - Micro-Mail - Koala Slideshow Program - Adventurous Programming Part 2 - Mouser

ISSUE 44 - RAMcopy! - The 8-Bit Parallel Interface - Arm your Atari - Blast! - D:CHECK in Action! - ST-Log 4

ISSUE 45 - Stencil Graphics - Roll 'Em! • RAM DOS XL • LBASIC - Using BASIC XL's Hidden Memory - ST-Log 5

ISSUE 46 - Magic Spell •Moonlord • Soft Touch •La Machine • June CES - Launch Code - ST-Log 6

ISSUE 47 - DLIs: A minute to learn - Deathzone - BASIC Editor II -- The ANALOG Database - DiskFile - ST-Log 7

ISSUE \(48 \bullet\) M-Windows - Cosmic Glob • DLIs - Part 2 • Modem Chess - Status Report - ST-Log 8

ISSUE 49 - The Atari 8-bit Gift Guide - Brickworks - TechPop - Fortune-Wheel - Smiles and other facial wrinkles - ST-Log 9

ISSUE 50 - Krazy Katerpillars - Atari Picture Storage Techniques - Trails in Action! - Scroll-lt - Screen Scroller

Issues 12, 14, 15, 16, 17, 18, 19, 20, 21 and 22 are also still available.
P.O. BOX 23

WORCESTER, MASSACHUSETTS 01603


\section*{by Paul Tupaczewski}

In the game of Lawn Mower, you're Tommy, a boy hired to mow lawns all around the town of Atariville. Since you have signed contracts with the people you're going to mow for, you can't escape the dangers that crop up while trimming the greens.

The object of Lawn Mower is to clear the screen of grass. Whenever you go over a strip of grass, it turns darker to show it's been cut. There are also trees impeding your way. If you hit a tree, you'll bounce back.

On board 1, the Joneses' house, you must avoid HiLeggers. These creatures move from side to side, while randomly bouncing up and down. If they hit you, you lose one of your three lives. When you've lost all of your lives, the game ends.

On board 2, Cursor Park, holes suddenly appear! These are made by gophers who are afraid to show themselves. If you fall into one of the holes, you lose a life.

Board 3, the golf course, introduces the Mad Planter. He's a little orange man who plants grass where you've already mowed. The only way to get rid of him is either to run him over, or to plant a land mine - and make him run into it. This will make him disappear. . . for a while.

To plant a land mine, you simply press your joystick button. An explosive which you've buried in the ground will look just like a piece of mowed lawn. The number of land mines is shown at the bottom of the screen. You get an extra mine every time you clear a board, with a maximum of five. If you run into a mine, you won't be killed, but
you will destroy the charge, rendering that mine useless against the enemy.

In the final board, John's orchard, the Mad Planter reappears. And there's also a new problem. The orchard is separated into two parts by a superhighway. You must get across this road to travel from one side of the orchard to the other.

If you run into a car while crossing, you'll lose a life. Also, you can't plant land mines on the road. If you mow all of this board, you'll go back to board 1, but at a harder level.

Scoring is as follows: mowing a piece of lawn=250 points; making the Mad Planter run into a land mine=250 points; running over the Mad Planter=500 points; and mowing all of a board=500 points times the level at which you played.

Your score is shown in the upper left on the screen. The level is in the upper right, and your number of lives remaining is shown by the number of circles next to the level number. The number of mines can be seen at the bottom of the screen.

I used Tom Hudson's excellent player mover subroutine from issue 10 and found it very easy and fast. I hope you have as much fun with Lawn Mower as I did.

Paul Tupaczewski attends school in Boonton, New Jersey. He's had his Atari 400 for three years, with an Indus disk drive and an Epson RX-80 printer, which he received as a Christmas present.
(Listing starts on next page)

The two－letter checksum code preceding the line numbers here is not a part of the BASIC program． For further information，see the BASIC Editor II， in issue 47 of ANALOG Computing．

\section*{Listing 1. \\ BASIC listing．}

IP 1 REM 湖 Lawn Mower 湯
yif 2 REM \(\boldsymbol{z}\) by Paul Tupaczewski

011 5 DIM LOC［5．）
NL． 7 K \(6=6: K 1=1: K 2=K 1+K 1: K 3=K 2+K 1: K 4=K 2+K 2\)

FR 16 G05UB 815：G054B 729：G05UB 875
TH 15 LIUニK3：SC＝K日：LEV＝K1：LEVZニK1：MIN＝K5： HARD＝K 0
 1）\(\times 256+K 4: P O K E\) DL－K1，79：POKE DL＋12，6：P OKE DL＋K2，6：POKE 709，216：POKE 623，K1
2T 25 PMEA5E＝INT（CPEEK（145）＋K3）／K4）\＃K4：PO KE 54279，PMBASE：PMB＝PMBASE扬256：POKE 55 9，46：POKE 53277，K3：POKE 756，5T／256
PH 3G POKE 708，194
ERE 35 POKE 764；148：MIN＝MIN＋K1：IF MIN＞K5 T HEN MIN \(=K 5\)
110 46 POKE 765，252：POKE 766，169：POKE 797，
 4）：5C：POSITION 13，K0：FOR R＝K1 TO LIU：？ \＃6；CHRS［138）：AERT R
SIS 50 POSITION 17，KG：？\＃6：LEU：POSITION KG 11：？\＃6；＂FIMESH＂；MIM
WN 55 FOR R＝K2 TO K3 欺 ：COLOR K3：PLOT K2， R：DRANTO 17，R：NEKT R

TD 65 ON LEU2 GO5UB \(430,456,475,590\)
S． 67 G05UB 910

 \(=128\)
 K8）\({ }^{\prime}, \mathcal{K}, \mathrm{Y}, \mathrm{KB}\)

41 85 POKE 53278，K1
4N 90 ON LEUZ GO5UB 195，205，249，250
15 95 IF PEEK（764）〈〉 33 THEN 115
W1 196 POKE 764，255
IV 195 IF PEEK（764）《〉33 THEN 105
W）116 POKE 764，255
 ＞K2 AND LEUZKKS THEN GOSUB 565
 （5＝13）－（5＝14）
 \(=Y 1+Y A D\)
IF 139 IF KAD＝－K1 THEN MEK2
010 135 IF \(\mathcal{A D D}=K 1\) THEN M＝K1
1N 140 IF YAD＝－Ki THEN MEK 3
RE 145 IF YAD＝K1 THEN M＝K4
T0 150 IF \(H 1\langle K 2\) OR \(H 1\rangle 17\) OR Y1〈K2 OR Y1〉9 THEN K1ニ0K1：Y1＝0Y1：\(X=0 K: Y=0 Y\)
YA 155 LOCATE K1，Y1，LOC
0s 166 IF \(041\rangle H 1\) OR \(0 Y 1\rangle Y 1\) THEN IF LOC＝ K3 THEN POSITION \(\mathcal{H 1}, Y 1: ? ~ \# 6 ; " 4 ": 5 C=5 C+\) 10：G05UB 585：GRA＝GRA＋K1
 36 THEN POSITION X1，Y1：？\＃6；＂み＂＇G05UB 589
WT 179 IF \(0 \% 1\rangle H 1\) OR OY1 0\(\rangle Y 1\) THEN IF LOC＝ K7 THEN H1＝0K1：Y1＝0Y1： 575


J2 175 IF GRA＝GR5 THEN 685
18日 IF LOC－32 AND LEU2く K 4 THEN 525
185 GOTO 75
5UB 31
RA 205 TMWT＝TMNT＋Ki：IF THNT＝25 AND HARD \(\langle\) K1 THEN 220
HY 210 IF TMNT＝18 AND HARD＝K1 THEN 220
U5． 220 TMNT＝K日：R＝INT（RND（9）＊14）＋K3：T＝INT RND（6）\＃K5）＋K3：LOCATE R，T，Z：G05山B 930：I F FG＝1 THEN 220
225 IF Z＝32 THEN 220
XF 23＠IF ZニK3 THEN GR5ニGR5－K1
2ふS POSITION R，：？46；：SOLND K日，K日 6，KG，K日：RETURN
DG． 249 TMNT＝TMNT＋K1：IF TMNT＞55 THEN GOSUB 396
2U 245 RETURN
K8，A＝USRYMOUE，K2，PMB，ADRCCRS），CH2，70 K83
YK 255 CH1二CH1－K4－HARD \(\because K 4: I F\) CHi 655 THEN CH1＝184
H2 26日 CH2＝CH2＋K6＋HARD＊K4：IF CH2＞184 THEN CR2＝65 4 THEN 286
2H 276 THNT＝TMNT＋K1：IF TMNT 2 6日 THEN G05UB 396

H1 280 FOR R＝15 T0 K日 5TEP－ \(0.2: P O K E 704\), R：50UND K日，160，K日，R：MERT R
aG 285 FOR R＝KI TO 16日：NERT R
H2 29 P05ITION 12＋LIU，K日： 7 \＃6；＂ \(1:\) ：LIU＝LI U－K1
\(21,16, R: N E H T R\)
NG 306 IF LIU＝K THEN 595
－65：POKE 794 148：GOTO 70
310 A＝U5R（MOUE，K1，PMB，ADR（GT5），MR1，MY1 ，K83：A＝U5R ©MOUE，K2，PMB，ADRGGT 5 ，MKZ，MY ，K8ン：OMY－MY1：OMYZ＝MYZ
 MR1＝64
 HARD ：MY1ニMY1＋ADD：IF MY1〈24 THEN MY1＝2 4

 4

I11 34日 IF MY2＞8日 THEN MYZ＝8G
as 4 THEN 355
TO 355 FOR R＝15 TO KG 5TEP－0．2：50UND K日 109，KO，R：POKE 704，R：NEHT R
PK 360 FOR R＝K1 TO 1G9；NEHT R
NK 365 POSITION 12＋LIU，K日：？\＃6；＂＂H：LIU＝LI U－Ki
FH 370 FOR R＝15 TO K日 5TEP－1：50UND K日， 12 1，1日，R：NERT R
01． 375 IF LIU＝K日 THEN 595
3BGFOR R＝K1 Ta 10日fNENT R：POKE 704,14
1 385 M \(1=64: M R 2=184: M Y 1=48: M Y 2=48: G 0 T 0\) 76
Hi 396 A＝U5R CMOUE，K3，PMB，ADR（PLち》，MM3，MY 3

IR 395 IF ZZ＝36 THEN 5C＝5C＋250：G05UB 590： G0T0 425
सF 496 IF ZZ＝35 THEN POSITION H3，Y3：？\＃6： CHRS（K3）：GRA＝GRA－K1

J月 415 IF PEEK（53260）＝K8 THEN 5C＝5C＋500：G 05UB 590：FOR R＝15 T0 K日 5TEP－K3：50UND K日，200，10，R：NEKT R：MY3＝96：G0T0 465

50 425 POSITION R3，Y3：？\＃6；＇H＂＇F0R R＝15 T 0 K日 STEP－1．5：50UND K0，200，K8，R：NEXT R：MY3 \(=96: G 0 T 0405\)
MH 430 GRS＝115：COLOR K7：PLOT K3，K3：PLOT K 3，K4：PLOT K4，K3：PLOT K3，K8：PLOT K3，K7： PLOT K4，K8：M81＝64：M82＝184
FU 435 PLOT 15，K3：PLOT 16，K3：PLOT 16，K4：P LOT 15，K8：PLOT 16，K8：PL0T 16，K7：MY1＝48 ：MY \(2=48\)
0G 449 POSITION K4，K1：？ \(46 ; "\) DDNESY HOMF回＂
ZH 445 RETURN
SY 450 GRSニ199：COLOR K7
KI 455 PLOT KЗ，K8：DRANTO K8，K3：PLOT 11，K3 ：DRAWTO 16，K8
TR 460 PLOT K8，K8：PLOT 9，K7：PLOT 19，K7：PL \(0 T 11, \mathrm{~K} 8: \mathrm{PLOT} K 3, \mathrm{~K} 3: P L 0 T 16, \mathrm{~K} 3\)
MU 465 POSITION K5，K1：？\＃6；＂HIRSOR PKRX＂
20470 RETURN
 KЗニ10：Y＝K2：MYラ＝24：MRJ＝128：C0LOR K7
RU 480 FOR R＝K1 T0 15
So 485 A＝INT（RND（9）＊16）＋K2：B＝INT（RND（日）＊K 7）＋K2：LOCATE A，B，C：G05UB 520：IF FG＝1 T HEN 485
AF 496 IF C＝K7 OR 【A＝10 AND B＝K5》 THEN 48 5
5t 495 PLOT A，B：NE 4 R R：GRS＝112：RETURN
RY 596 POSITION K3，Ki：？\＃6；＂MDHVZS DRCHER ．D＂＇COLOR K7：FOR R＝K3 T0 17 5TEP 2：FOR T＝K3 T0 9 STEP K2：PLOT R，T
GG 510 NEXT T：NEXT R：GR5＝55：CK1＝120：CX2＝6 5
B1． 515 COLOR 32：PLOT K2，K8：DRAWT0 17，K8：P LOT K2，K6：DRAHTO 17，K6：COLOR 45：PLOT K 2，K7：DRAWT0 17，K7
ZF 520 RETURN
TE 525 A＝USR（MOUE，K8，PMB，ADR（MF（K1，K8））， \(\mathcal{X}\) ，Y，K8）
NU 536 FOR R＝15 T0 K0 5TEP－0．1：50UND K0， 60－（R＊K2），16，R：POKE 764，R：NE KT R
PU 535 FOR R＝K1 T0 100：NEHT R
UP 549 POSITION 12＋LIU，KG：？\＃6；＂＂：LIU＝LI \(\mathrm{V}-\mathrm{K} 1\)
Ma 545 FOR R＝15 T0 K0 5TEP－K1：50UND K日， 1 21，19，R：NEST R
NS 550 IF LIU＝KG THEN 595
P4 555 FOR R＝K1 T0 100：NERT R：POKE 704，14 8
5A 560 GOTO 70
IA 565 POSITION Ki，Y1：？\＃6；＂广＂：MIN＝MIN－K1 ：P0SITION 12，11：？\＃6；MIN：FOR R＝15 T0 K 9 STEP－K1
51570 SOUND K0，25，10，R：NE 5 T R：RETURN
EE 575 50UND K0，20日，8，6：FOR R＝K1 TO K3：NE KT R：50UND K \(6, K 6, K 6, K 日: R E T U R N\)
aK 580 SOUND K日，1日日，K日，10：FOR R＝K1 TO K ： NEKT R：SOUND K \(0, K 0, K 0, K G: R E T U R N\)
TU 585 F0R R＝10 T0 K日 5TEP－2．5：50UND K日， R，K8，R：NEHT R：SOUND KG，K日，KG，K日
IK 596 POSITION K7，K日：？\＃6；SC：RETURN
Rv 595 G05UB 689：P0SITION K6，K5：？\＃6；＂REN Q ounin＇
HH 609 RESTORE 670
YU 605 READ 0，P，DLY：IF 0＝ーK1 THEN 615
JH 610 FOR R＝15 TO K日 5TEP－DLY：50UND K0， \(0,10, R: S 0 U N D K 1, P, 16, R: N E H T\) R：GOTO 605


SITION K2，KЗ： 7 \＃6；＂MODR SCOFG＂；CHRSG15 4）； 5 C
P2 62 P05ITION K2，K5：？\＃6；＂high score＂；C HRS（26）；HS：FOR R＝K1 T0 \(400: N E X T\) R
RU 625 IF 5CくニHS THEN 655
BE 630 FOR R＝K1 T0 K4：P05ITION K2，K3：？\＃6 ；＂Your scorer＇；CHRS（26）：POSITION K2，K5： ？\＃6；＂bigh scorg＂；CHR（154）
MO 635 FOR T＝15 TO KG 5TEP－1．5：50UND K日， 69，10，T：HEST T：P0SITION K2，K3：？\＃6；יHO गि SCOPE \(1 ;\) CHR 5154 ） 64 POSITION K2，K5：？\＃6；＂high score＇；C HR（26）：F0R T＝15 T0 K日 5TEP－1．5：50UND K日，121，10，T：NEHT T：NE
645 FOR R＝K1 TO 20日：NE KT R：FOR R＝HS TO SC STEP 50
KG 650 POSITION 13，K5：？\＃6；R：POKE 53279，K 9：NEKT R：HS＝5C：P0SITION 13，K5：？\＃6：H5 POS POSITION K5，K日：？\＃6；＂PRESS start＂： POSITION K4，K1：？\＃6；＂TO PLAY AGAIN＂
IE 660 IF PEEK（53279）〈 3 K6 THEN 669
IW 665 LIU＝K3：5C＝K日：LEU＝K1：LEU2＝K1：MIN＝K5 ：HARD＝K日： 7 \＃6；＂K＇：GOTO 30
H6 670 DATA \(121,96,1,96,81,1,168,91,1,91\), \(72,1,96,81,1,72,66,1,72,66,5,81,64,5\)
\(96,1,-1,6,6,72,56,81,5,168,71,5,121\) ， \(96,1,-1,6,6\)
5B \(686 \mathrm{FOR} R=K G\) TO KJ：A＝USR CMOUE，R，PMB，AD R（＂\％＇），K日，K日，K1）：NERT R：RETURN
YO 685 RESTORE 715
5J 690 READ 0，P，DLY：IF 0＝－K1 THEN 709
WA 695 FOR R＝15 T0 K0 5TEP－DLY：50UND K日， 0，10，R：SOUND K1，P，16，R：NEKT R：G0T0 696
EJ 709 LEU2ニLEUZ＋Ki：IF LEUZ＞K4 THEN LEVZ＝ K1：HARD＝K1
GU 795 5C＝5C＋506基LEU：LEU＝LEU＋K1
DP 710 FOR R＝K日 TO KS：AニUSR CMOUE，R，PMB，AD

HU 715 DATA \(81,64,1,91,72,3,96,81,1,108,9\) \(1,3,121,96,1,60,47,1,-1,6,0\)
FI 720 DIM PMMOUSC1日G）：MOUE＝ADR（PMMOUS〕：R ESTORE 755
PC 725 FOR K＝K1 TO 100：READ N：PMMOUS \(K\) K \(=C\) HRS（N）：NE HT K
MU 730 DIM MS（32），PLS（K8），CLS（K8），CR5（K8） ，GTS（K8） D）：NERT R：FOR R＝K1 T0 K8：READ D：CRS（R） ＝CHRS（D）：NE CH R 740 FOR R＝K1 TO K8：READ D：GTS（R）＝CHRS
\(D J: N E X T ~ R: F O R ~ R=K 1 ~ T 0 ~ K 8: R E A D ~ D: P L S(R) ~\) ＝CHRS CD）：NE CT R
15 745 FOR R＝K1 TO 32：READ D：MS（R）＝CHRS（D 3：NERT R
ZM 75日 RETURN
115755 DATA \(216,164,164,164,133,213,164,2\) \(4,105,2,133,206,164,133,265,164,133,26\) \(4,194,133,263,164,164,133,268\)
IF 760 DATA \(164,164,133,269,104,104,24,16\) \(1,269,133,267,166,213,240,16,165,205,2\) \(4,105,128,133,205,165,206,165\)
12． 765 DATA \(9,133,206,202,268,240,160,0,1\) \(62,6,196,269,144,19,196,267,176,15,132\) ，212，138，168，177，263，164
LE
（7ATA \(212,145,265,232,169,0,240,4,1\) \(69,6,145,265,260,192,128,268,224,166,2\) \(13,165,298,157,0,208,96\)
0H 775 DATA \(9,14,18,34,127,127,54,54\)
KA 789 DATA \(6,112,72,68,254,254,168,108\)
RN 785 DATA \(28,42,54,28,20,20,20,54\)
UL 796 DATA \(130,68,56,84,198,56,40,108\)
IS 795 DATA \(9,96,96,249,236,226,71,98\)
L10 896 DATA \(0,6,6,15,55,71,226,79\)
JT 865 DATA \(64,224,89,16,8,196,254,56\)
1．A 810 DATA \(28,127,125,16,8,10,7,2\)
az 815 POKE 106，PEEK（196）－K5：GRAPHICS K日： \(5 \mathrm{~T}=\)（PEEK（196）＋K1）\(\because 256:\) POKE 756，5T／256： POKE 752，K1
```

HJ 820 RESTORE 940:DIM XFRS(38):FOR R=K1
T0 38:READ D:RFRS(R,R)=CHRS(D):NENT R
WP 825 Z=USR(ADR(KFRS)):RESTORE 845
0C 830 POSITION 14,12:? "Initializing"
RU 835 READ K:IF K=-K1 THEN RETURN
OR 840 FOR Y=KG TO K7:READ Z:POKE K+Y+5T,
Z:NEXT Y:GOTO 835
RD 845 DATA 24, 255,255,255, 255,255,255,25
5,255
aE 850 DATA 32,255,255,255,255,255,255,25
5,255
OW 855 DATA 56,255,199,163,21,65,171,199,
255
860 DATA 40,0,24,24,24,0,0,0,0
12 865 DATA 80,0,6,28,62,62,62,28,0
fR 870 DATA -1
OR 875 GRAPHIC5 17:DL=PEEK (560) +PEEK(561)
*256+K4:P0KE DL-K1,71:POKE DL+K2,K7:P0
KE DL+K3,K7
WG 880 COLOR 138:PLOT K4,K6:DRANTO 15,K0:
PLOT K4,K2:DRANTO 15,K2
10 885 P0SITION K4,K1:? \#6;CHRS(138);"LIaw
| nower';CHRS(138)
P5 890 P0SITION 9,12:? H6;"BY":POSITION K
3,14:? \#6;"PAUL TUPACZEW5KI"
uY 895 POSITION K5,18:? \#6;"PRESS start"
EG 900 IF PEEK (53279) <>K6 THEN 900
ZU 905 RETURN
EW 910 FOR I=K8 TO 12:LOCATE I,K5, Z:LOC(I
-K7)=Z:NEXT I:POSITION K8,K5:? \#6;"REA
DY"
SD 915 F0R I=K1 TO 200:NERT I:FOR I=K8 TO
12:POSITION I,K5:? \#6;CHRS(LOC(I-K7))
:NEKT I:RETURN
920 FG=0:FOR I=A-Ki T0 A+Ki 5TEP K2:F0
R J=B-K1 TO B+K1 5TEP K2:LOCATE I,J,Z:
IF Z=K7 THEN FG=1
AN 925 NEHT J:NEKT I:RETURN
KH 930 FG=0:FOR I=R-K1 TO R+K1 STEP K2:F0
R J=T-K1 TO T+K1 STEP K2:LOCATE I,J,P:
IF P=32 THEN FG=1
aY 935 NEHT J:NEKT I:RETURN
EA 946 DATA 104,169,0,133, 203,133,205,169
,224,133,206,165,106,24,105,1,133,204,
160,0,177,205,145,203,200,208,249
W4 945 DATA 230,204,230,206,165,206,201,2
28,208,237,96

```


\section*{by Jan Iverson}

Trivia seems to be a "hot" item nowadays. There are board games on the market shelves and even some games on the more popular computers.

With the program in Trivia, you can generate a question and four possible answers. Use the second listing as a sample of a game you may create. If you wish to create your own game, do so; the generator will assist you in setting up your trivia database.

The uses are only limited by your imagination. You could reserve a disk each for sports, TV, movies, science, history, the Bible, etc.; the list can go on and on.

\section*{Question-and-answer generator.}

The main menu contains four options: "create," "edit," "play" and "print."

The create menu has four options: "continue," "edit," "print" and "menu."
After typing in your question, four answers and the correct number corresponding to the answer, press RETURN if you wish to continue entering. This will clear the screen, and you may enter a further trivia question with its answers. If you need to correct any of the data just entered, use the ARROW keys and page over to the edit option. Hit RETURN, and you may change any line.

If you're finished and want to print what you have in the database, you need not go back to the main menu. Just page over to the print option and press RETURN. This will
save all the data you've entered thus far, so you'll be able to view it. Paging over to the menu option and pressing RETURN will take you back to the main menu, after you've saved the database just entered.

Our Trivia game is limited to 200 items. A count at the top of the screen indicates how many items you're entering and how many remain.

If you need to edit any item in your trivia database, use the second option from the main menu.

You'll be allowed to enter the question as a search item, or, if you wish to step through the file, use the asterisk (*), and each item on the database will be displayed.

The edit section has four options: "change," "delete," "next" and "menu."

When the item in question appears on-screen, press RETURN if you want to change any line. This routine will allow you to alter a line as many times as you wish. When finished, press OPTION to return to the edit menu. If you used the asterisk option to step through your database and want to see additional items, use the ARROW key to page over to the "next" option. The next item on the database will appear on-screen. The delete option will allow you to remove a single item from the database if you typed in the question name as a search message. If you used the asterisk option, it will delete the item and await your next request. When you're finished, page over to the menu option. All changes will be saved and you'll return to the main menu.

If you have enough questions to run the Trivia game,
use the play option. The screen will inform you that the game is loading.

The print menu has four of its own options: "screen," "printer," "both" and "menu."
Using the screen option allows you to view two complete items on your database at a time, with record numbers. Press START to continue viewing. Press ESC to terminate the operation. When you've looked at the complete database, you'll be prompted to press SELECT to return to the main menu.

You also may send the database to a printer. Page over to the printer option and press RETURN. A hard copy of your database will be printed. If you wish to see the database on-screen as it's printing, use the "both" option.

Paging over to the menu option will return you to the main menu.

\section*{The Trivia game.}

When saving Listing 2 , use the name D:TRIV.BAS. The game question generator looks for this name when you use the play option from the main menu.

The game program reads your database into an array with a limit of 200 items. When completed, the game will begin.

Questions are selected through a random number algorithm beginning on Line 1110. The same questions and answers will not be used again in your session. When the questions are exhausted, a session will terminate, and you'll be asked if you wish to play again. Pressing START will allow the database to be loaded for another session. The program has some sounds built into it, but, because we want enough questions and answers loaded into the array, the program is much simplified.
If you select an incorrect answer, a buzz will sound while the correct number flashes for a few seconds. If you choose the correct number, a nice "beep-beep" sound will play. At the end of each question and answer, you'll be asked to either press START to continue, or OPTION to finish.

A timer at the top left will count down from 10 to 0 . If you don't answer the question in 10 seconds, the buzz will sound and a wrong answer will result. If the correct answer is given, the remaining seconds are transfered to the right-hand score. The screen will clear, and the running total of right and wrong responses will be printed at the top. The running total will always print at the end of each question/answer routine.

When the OPTION key is pressed, results will be printed at the top of the screen, an appropriate message will be printed, and a few bars of "The Entertainer" will play. If your current score is higher than the high score, it will be transfered to the HI-SCORE area. This way, you may compete against another person-or against your previous best score. You'll then be given the option to either end the session or play again.

Use the question-and-answer generator to update your database. My family has played the game a number of times, and - just when they think they're getting good at it-I put some new questions in and take out some old ones. It keeps them on their toes.

I have a number of trivia databases I've developed, including sports, TV, movies, commercials and ads, and general trivia. Have a happy Trivia hunt. \(\boldsymbol{\square}\)

Jan Iverson is an applications programmer with Chevron Corp. He's been working with computers for eighteen years and is program chairman for his local user's group (DACE). He lives in Antioch, California with his wife and three children.

The two-letter checksum code preceding the line numbers here is not a part of the BASIC program. For further information, see the BASIC Editor II, in issue 47 of ANALOG Computing.

\author{
Listing 1. \\ BASIC listing.
}


MI 318 POSITION K8，Ki6：？＂to make your se lection＂
5H 320 P05ITION K11，K18：？＂then press Reil पहल＇＂
KY 330 POSITION K1，K22：？＂CREATE＂
OM 346 POSITION K11，K22：？＂EDIT
GA 356 POSITION K21，K22：？＂PLAY＂
KG 360 POSITION K31，K22：？＂PRINT＂
K 8370 POKE K764，K255
YI 389 P0SITION K1，K22：？＂MRIATE＂
5K 390 IF PEEK（K764）＝K6 THEN PO5ITION K1， K22：？＂CREATE＂：G05UB 650：G0T0 580
E5 406 IF PEEK（K764）\(=\mathrm{K} 7\) THEN POSITION KI， K22：？＂CREATE＂：G05UB 650：G0T0 440
E0 410 IF PEEK（K764）＝K28 THEN GRAPHIC5 0： END
RT 420 IF PEEK（K764）＝Ki2 THEN 660
QE 430 GOTO 390
K5 446 POKE K764，K255
TB 456 POSITION K11，K22：？＂EDIT
MP 460 IF PEEK（K764）＝K6 THEN POSITION K11 ，K22：？＂EDIT＂：G05UB 650：G0T0 370
Cb 470 IF PEEK（K764）\(=K 7\) THEN POSITION K11 ，K22：？＂EDIT＂：G05UB 650：G0T0 510
FC 480 IF PEEK（K764）\(=\) K28 THEN GRAPHICS 0： END
UM 490 IF PEEK（K764）＝K12 THEN 1530
PC 500 GOTO 460
KN 519 POKE K764，K255
KI 528 POSITION K21，K22：？＂PLGY
MP 536 IF PEEK（K764）\(=\) K6 THEN P05ITION K21 ，K22：？＂PLAY＂：G05UB 650：G0T0 449
BL． 546 IF PEEK（K764）\(=\mathrm{K} 7\) THEN POSITION K21 ，K22：？＂PPAY＂：G05UB 650：G0T0 586
ER 559 IF PEEK（K764）\(=\) K28 THEN GRAPHIC5 \(8:\) END
EI 560 IF PEEK（K764）＝K12 THEN 4860
OT 570 GOTO 530
L． 586 POKE K764，K255
PA 590 POSITION K31，K22：？＂PRTMT
GH 600 IF PEEK（K764）＝K6 THEN P0SITION KЗ1 ，K22：？＂PRINT＂：G05UB 650：G0T0 516
SL 619 IF PEEK（K764）\(=K 7\) THEN POSITION K31 ，K22：？＂PRINT＂：G05UB 650：G0T0 370
E5 620 IF PEEK（K764）\(=\) K28 THEN GRAPHIC5 0： END
OI 636 IF PEEK（K764）＝K12 THEN 3100
NR 640 GOTO 606
UU 659 SOUND \(0,45,16,8: F O R\) I＝Ki TO K3：NEK T I：50UND 0，0，0，0：RETURN
EN 660 POKE K1733，K4：？CHRS（K125）
WA 670 POKE K708，K152：P05ITION K6，K3：？＂C REATE＂
AR 68G POSITION K2，K1：？＂Max＝＂；MAK：P05I TION K15，K1：？＂Curr＝＂：P05ITİON K29，K 1：？＂Rem＝＂：CNT＝K日：RMAIN＝K
KF 690 POKE K1733，196：CH＝1
ZM 700 POKE K54286，K64
NI 716 POSITION K10，K10：？＂Reading file．．
00 720 CLOSE \＃K1：CLOSE \＃K2
EW 730 TRAP 760：OPEN \＃K1，K4，K0，FILE15：TRA P 40000
ZH 740 OPEN \＃KZ，K8，K0，FILE2 5
00750 GOTO 800
KS 769 CLOSE \＃K1：OPEN \＃K1，K8，K日，FILE1 5
EC 77日 QUE5T5二＂， 272＂•
Jo 786？\＃K1；QUEST与：？\＃K1；AN51与：？\＃K1；QN5 2与：？\＃K1；AN5 S ：？？\＃K1；AN545：？\＃K1；IT与
JL 790 CLOSE \＃KI：GOTO 726
WZ 806 INPUT \＃K1，QUESTS，AN51与，AN52 5, AN53 ，AN545，ITS


SI 820 ？\＃K2；QUE5T与：？\＃K2；AN51与：？\＃K2；AN5 25：？\＃K2；ANS 5 ：？\＃K2；AN545：？\＃K2；IT
IH 825 POSITION K22，K1：？＂\(\because\) ：POSITION 3

5，K1：？＂＂
FT 830 CNT＝CNT＋1：POSITION K22，K1：？CNT：RM AIN＝MAX－CNT：POSITION 35，K1：？RMAIN
ON 840 GOTO 806
MO 850 POKE K54286，K192
QQ 860 POSITION K10，Ki日：？＂
WB 870 POSITION K1，K0：？＂Create your own questions and answers＇
UI 889 G05UB 4460
J5 896 POKE K1732，K52：FOR I＝K1 T0 K10：NE T I：POKE K1731，K52：FOR I＝K1 T0 K10：NEX TI
W0 900 POKE K1730，K52：FOR I＝Ki T0 K10：NEX T I：P0KE K1729，K52
QZ 910 G05UB 4470：G05UB 4760
NZ 926 POKE K764，K255： \(\mathrm{K}=\mathrm{K} 8: Y=\mathrm{K} 6: \mathrm{POSITION}\) K，Y：？＂
UK 930 G05UB 3896
 ＂＂：GOTO 946
KT 950 IF 0 行＂
＂THEN 920
MG 960 QUESTS＝R

00980 POKE K764，K255： \(\mathrm{K}=\mathrm{K} 10: Y=\mathrm{K} 8: \mathrm{POSITION}\) K，Y：？＂ワ＂
YU 990 G05UB 3950
 ＝＂い：G0TO 1000
FN 1010 IF \(\mathrm{A}={ }^{\prime \prime}\)＂\({ }^{\prime}\) THEN 980
JB 1026 ANS \(15=\) A 5
UH 1030 AS（20）＝＂ゅ＂：AS（2）＝＂＂：AS＝＂＂
Z0 1040 POKE K764，K255： \(\mathrm{K}=\mathrm{K} 10: \mathrm{Y}=\mathrm{K} 10: \mathrm{P} 05 \mathrm{ITI}\) \(0 \mathrm{OX} X, Y: ?\)＂＇＂
FB 1050 G05UB 3950
C5 1060 IF LEN（AS）（K20 THEN AS（LEN（AS）＋1） ＝＂＂：GOTO 1060
PD 1070 IF \(\dot{\text { 内 }}\)＝＂\("\) THEN 1040
KC 1080 AN525＝日
UZ 1690 AS（20）＝＂＂＇＂： \(05(2)="\)＂：AS＝＂＂
Bo 1100 POKE K764，K255： \(\mathrm{K}=\mathrm{K} 10: \mathrm{Y}=\mathrm{K} 12\) ：P05ITI ON \(X, Y:\) ？＂＇＂
ER 1110 G05UB 3950
WK 1120 IF LEN（AS）（K20 THEN AS（LEN（A5）＋1） ＝＂＂：GOTO 1120
JW 1130 IF AS＝＂＂THEN 1100
KB 1140 AN535＝A5
UP 1150 的（29）＝＂申＂：AS（2）＝＂＂：AS＝＂＂
E5 116日 POKE K764，K255：K＝K10：Y＝K14：P05ITI ON K，Y：？＂י
FJ 1170 G05UB 3950
IW 1189 IF LEN（A5）＜K20 THEN AS（LEN（A5）＋1） ＝11：GOTO 1189
UG 1190 IF AS＝＂＂THEN 1160
KA 1206 AN545二の 5

MM 1220 POKE K764，K255： \(\mathrm{K=K16:Y=K16:P05ITI}\) \(0 \mathrm{~N} K, \mathrm{Y}: ?\)＇＂＇
2H 1230 GOSUB 4110
GP 1249 IF LEN（C5）（Ki THEN CS（LEN（C5）＋1）＝ ＂＂：GOTO 1248
CU 1250 IF C \(5=1{ }^{\prime \prime}\)＂THEN 1220
YI 126 ITs＝c5（1，1）

AN 1280 POKE K764，K255
ON 1285 POSITION K22，K1：？＂＂：POSITION
IK 1299 CNT＝CNT＋1：P0SITION K22，K1：？CNT：R MAIN＝MAK－CNT：POSITION 35，K1：？RMAIN
J\＆1300 POKE K764，K255：P05ITION K1，K22：？ ＂GDITITIIIB＂
AG 1310 IF PEEK（K764）＝K6 THEN POSITION K1 ，K22：？＂CONTINUE＂：G05UB 650：GOTO 1470

5R 1320 IF PEEK（K764）\(=K 7\) THEN POSITION Ki ，K22：？＂CONTINUE＇：GOSUB 650：G0T0 1350
KG 1330 IF PEEK（K764）\(=\) K12 THEN POKE K5428 6，K64：G05UB 4260：P0KE K54286，K192：G05U B 4400：GOTO 920
PD 1346 GOTO 1310
AG 1350 POKE K764，K255
CS 1360 POSITION K11，K22：？＂EDIT
PR 1370 IF PEEK（K764）＝K6 THEN POSITION K1 1，K22：？＂EDIT＂：G05UB 650：G0T0 1286
CC 1380 IF PEEK（K764）\(=K 7\) THEN POSITION K1 1，K22：？＂EDIT＂：G05UB 650：G0T0 1410
PC 1390 IF PEEK（K764）\(=\) K12 THEN 2180
RT 1406 GOTO 1370
ZW 1410 POKE K764，K255
JG 1420 POSITION K21，K2Z：？＂＇PRENTT
2I 1430 IF PEEK（K764）＝K6 THEN POSITION K2 1，K22：？＂PRINT＂：G05UB 650：G0T0 1350
IW 1446 IF PEEK（K764）\(=K 7\) THEN P05ITION K2 1，K22：？＂PRINT＂：G05UB 650：G0T0 1476
BA 1450 IF PEEK（K764）\(=\) K 12 THEN POKE K5428 6，K64：G05UB 4260：G05UB 4280：POKE K5428 6，K192：G0TO 3100
OK 1469 GOTO 1430
A0 1470 POKE K764，K255
II 1480 POSITION K \(31, K 22:\) ？＂Fincll＂
HU 1499 IF PEEK（K764）＝K6 THEN POSITION KJ 1，K22：？＂MENU＂：G05UB 650：G0T0 1410
WD 1506 IF PEEK（K764）\(=K 7\) THEN POSITION KS 1，K22：？＂MENU＂：G05UB 659：G0T0 1280
aN 1516 IF PEEK（K764）\(=\) K12 THEN POKE K5428 6，K64：G05UB 4260：G05UB 4286：POKE K5428 6，K192：？CHRS（125）：GOT0 210
TM 1520 G0T0 1490
TC 1536 POKE K1733，K4：？CHR \(5(K 125)\)
W0 1540 POKE K708，70：P05ITION K7，K3：？＂ED IT＂
ZM 1550 FOUND＝K0：CH＝2
UL 156 POKE K1733，K32
UW 1576 POSITION KZ，K日：？＂Use the \(E \neq E+k\) eys then press Rallidd＂
BB 1589 GOSUB 4490
SH 1590 POKE K1732，K132：FOR I＝K1 TO K10：N EKT I：POKE K1731，K132：FOR I＝K1 T0 K10： NEXT I
YK 1606 POKE K1730，K132：FOR I＝K1 TO K10：N EKT I：POKE K1729，K132
OB 1610 G05UB 4500：G05UB 4600
5L 1620 POSITION K \(0, K 6: ? ~ " E: " ~\)
CG 1630 POKE K764，K255： \(8=K 8: Y=K 6: P 05 I T I O N\) X，Y：？＂י＂
CF 1640 G05UB 3800
FO 1659 IF LEN \((0 \varsigma)(K 30\) THEN \(0 与(L E N(Q \xi)+1)\) ＝＂＂：GOTO 1650
1660 IF Q今三＂
＂THEN 1630
P0 1670 055 0.5

RZ 1690 POKE K54286，K64
T8 1700 CLOSE \＃K1：CLOSE \＃K2
MG 1716 OPEN \(\# K 1, K 4, K 6, F I L E 15:\) OPEN \(\# K 2, K 8\) ，K日，FILE2 5
HI 1726 INPUT \＃K1，OUEST与，ANS15，AN525，ANS3 5，ANS 4 S，ITS


Qu 1746 IF \(055(1,1)="\)＂ 1 THEN FOUND＝1：GOT0 1780
AT 1750 IF \(055=0 U E 5 T S\) THEN FOUND＝1：GOTO 1 789
B5 1760 ？\＃K2；QUESTち：？\＃K2；AN51ち：？\＃K2；AN 525：？\＃K2；AN535：？\＃K2；AN545：？\＃K2；IT今
5D 1770 GOTO 1720
KY 178 P POSITION K8，K6：？QUEST今：POSITION K19，K8：？ANS15：POSITION K10，K16：？AN52 \begin{tabular}{l}
k \\
k \\
\hline 17
\end{tabular} 1790 P05ITION K10，K12：？ANS35：P05ITION

\section*{5}

FR 1800 POKE K54286，K192
AE 1816 POKE K764，K255
T0 1820 P0SITION K1，K22：？＂CHANTE＂
101836 IF PEEK（K764） 10 K6 THEN P0SITION K1 K22：？＂CHANGE＂：G05UB 650：G0T0 2008
AC 1846 IF PEEK（K764）\(=\mathrm{K} 7\) THEN POSITION K1
K22：？＂CHANGE＂：G05UB 650：G0T0 1870
SH 1856 IF PEEK（K764）＝Ki2 THEN CH＝2：GOTO 2180
TB 1860 GOTO 1830
AW 1876 POKE K764，K255
MO 1880 POSITION K11，K22：？＂DELETE＂
J0 1890 IF PEEK（K764）＝K6 THEN POSITION K1 1，K22：？＂DELETE＂：G0SUB 650：G0TO 1810
UR 1906 IF PEEK（K764）\(=K 7\) THEN POSITION K1 1，K22：？＂DELETE＂：GOSUB 650：G0T0 1949
c5 1916 IF PEEK（K764）\(=K 12\) AND \(055(1,1)\langle>"\) ＊11 THEN POKE K54286，K64：G0TO 2080
OZ 1920 IF PEEK \((K 764)=K 12\) AND \(055(1,1)={ }^{\prime \prime} *\) 11 THEN POKE K54286，K64：P0SITION K11，K2 2：？＂DELETE＂：GOTO 1720
UU 1930 GOTO 1890
AP 1940 POKE K764，K255
FU 1950 POSITION K21，K22：？＂CJERT \({ }^{-1}\)
CY 1960 IF PEEK（K764）＝K6 THEN POSITION K2 1，K22：？＂NEKT H：GOSUB 65 ：G0T0 1870 PS 1976 IF PEEK（K764）\(=K 7\) THEN POSITION K2 1，K22：？＂NERT＂：G0SUB 650：G0T0 2000
PF 1980 IF PEEK（K764）\(=\mathrm{K} 12\) AND \(055(1,1)=1\) \＃ ＂THEN POSITION K21，K22：？＂NEKT＂：P OKE K54286，K64：G05UB 2060：GOTO 1720
U1． 1996 GOTO 1960
ZM 2009 POKE K764，K255
TH 2016 POSITION K31，K22：？＂MEND＂
DP 2020 IF PEEK（K764）＝K6 THEN POSITION K3 1，K22：？＂MENU＂：GOSUB 650：G0T0 1940
TA 2036 IF PEEK（K764）\(=\mathrm{K} 7\) THEN POSITION K3 1，K22：？＂MENU＂：G05UB 650：G0TO 1810
YP 2046 IF PEEK（K764）\(=\mathrm{K} 12\) THEN POKE K5428 6，K64：G05UB 2066：G0T0 2080
OP 2050 GOTO 2020
BF 2060 ？\＃K2；OUESTS：？\＃K2；ANS15：？\＃K2；AN 525：？\＃K2；AN5 S ：？\＃K2；AN54与：？\＃K2；IT与
AU 2076 RETURN
HN 2086 INPUT \＃HK1，QUESTS，AN515，AN525，AN53 S，ANS 4 S，ITS


AP 2100？\＃K2；QUE5TS：？\＃K2；AN515：？\＃K2；AN 525：？\＃K2；AN5 35：？\＃K2；AN545：？\＃K2；IT今
RF 2110 G0T0 2680
HM 2120 IF FOUND 2 K 0 THEN G05UB 436.
AY 2136 ？\＃K2；QUE5T与：？\＃K2；ANS15：？\＃K2；AN 525：？\＃K2；ANS \(35: ?\) \＃K2；AN545：？\＃K2；ITF
TC 2146 CLOSE \＃K1：CLOSE \＃K2
AF 2150 KIO 33 ，\(\# K 1, K 0, K B, F I L E 15\)
FJ 2160 HIO 32，\＃K1，K \(0, K 9\) ，＂D：GAME．TMP，GAME －DAT＂
D．J 2170 POKE K54286，K192：？CHRS（K125）：G0T 0210
102189 POKE K1733，K4
JG 2196 G05UB 4810 ：POKE K1729，K4：G05UB 48 20：POKE K173日，K4
JG 2200 G05UB \(4830:\) POKE K1731，K4：G05UB 48 40：POKE K1732，K4
DT 2210 G05UB 4650
IJ 2226 POKE 1757，K6：POKE K1733，K2：P05ITI ON K12，K22：？＂OPTION＝RETURN＂
C0 2236 POKE Ki \(732, K 198: F 0 R\) I二K1 TO K5：NE RT I：POKE K1731；K198：FOR I＝K1 T0 K5：NE KT I
WB 2249 POKE K1736，K198：FOR I＝K1 TO K5：NE KT I：POKE K1729，K198
D5 225 G05UB 4550
AE 2266 POKE K764， 255
5 T 2270 POSITION K日，K6：？＂E．F＂
JG 2289 IF PEEK（K764）＝Ki4 THEN POSITION K
\begin{tabular}{|c|c|}
\hline & 6，K6：？＂＂：G05UB 650：G0T0 2960 2290 IF PEEK（K764）＝K15 THEN POSITION 0，K6：？＂＂：G05UB 650：G0T0 2400 \\
\hline \multirow[t]{3}{*}{8B} & 2300 IF PEEK（K53279）＝K3 AND CH＝K2 THEN \\
\hline & G05ub 4710：P0KE 1757，12：P0KE Ki733，K3 \\
\hline & 2：G0T0 1816 \\
\hline \multirow[t]{3}{*}{BP} & 2316 IF PEEK（K53279）＝K3 AND CH＝K1 THEN \\
\hline & G05UB 4660：POKE 1757，12：POKE K1733，K1 \\
\hline & 96：G0T0 1306 \\
\hline 01 & 2320 IF PEEK（K764）＝K12 THEN G0T0 2340 \\
\hline SH & 2330 GOT0 2280 \\
\hline \multirow[t]{3}{*}{BK} & 2340 P0KE K764， \\
\hline & K8， \\
\hline & G0 \\
\hline \multirow[t]{2}{*}{B0} & 2350 IF LEN（0¢）＜K30 THEN QS（LEN（0§）＋1） \\
\hline & ＝＇＂：G0T0 2350 \\
\hline \multirow[t]{2}{*}{} & 2360 IF \(05=1\) \\
\hline & \(1{ }^{1}\) THEN GOTO 2340 \\
\hline 5W & 2370 QUEST今二05 \\
\hline F & 2380 05（30）＝＂＇＇05（2）＝＂ \\
\hline 5 F & 2390 G0T0 2260 \\
\hline 20 & 2496 P0KE K764，255 \\
\hline TR & 2410 POSITION K6，K8：？＂E． \\
\hline \multirow[t]{2}{*}{UE} & 2420 IF PEEK（K764）＝K14 THEN P05ITION \\
\hline & 6，K8：？＂＂igosub 650：G0T0 2260 \\
\hline \multirow[t]{2}{*}{RP} & 2436 IF PEEK（K764）＝K15 THEN PO5ITION \\
\hline & 0，K8：？＂＂：G05UB 650：G0T0 2540 \\
\hline \multirow[t]{3}{*}{RP} & 2446 IF PEEK（K53279）＝K3 AND CHEK2 THEN \\
\hline & G05UB 4710：P0KE 1757，12：POKE K1733，K3 \\
\hline & 2：GOTO 1810 \\
\hline \multirow[t]{3}{*}{D} & 2450 IF PEEK（K53279）＝K3 AND CH＝K1 THEN \\
\hline & G05UB 4660：P0KE 1757，12：POKE K1733，K1 \\
\hline & 96：G0T0 1300 \\
\hline YH & 2460 IF PEEK（K764）＝K12 THEN G0T0 2480 \\
\hline \multirow[t]{3}{*}{Pz} & 2479 G0T0 2420 \\
\hline & 2480 POKE K764，K255：X＝K10：Y＝K8：P05ITIO \\
\hline & N K10，K8：？＇י．．．．．．．．．．．．．．．．．．＇י＇：G05U \\
\hline \multirow[b]{2}{*}{54} &  \\
\hline & \[
\begin{aligned}
& 2490 \text { IF LENCAS } \\
& =1 " G O T O \\
& \hline 1490
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Yz} &  \\
\hline & GOT0 2480 \\
\hline JJ & 2510 ANS \(15=\) ¢ \\
\hline z．J &  \\
\hline PP & 2530 G0T0 2409 \\
\hline AE & 2540 P0KE K764，255 \\
\hline OL． & 2550 POSITION K0，K10：？＂E户＂ \\
\hline \multirow[t]{2}{*}{FL} & 2560 IF PEEK（K764）＝K14 THEN POSITION \\
\hline & 0，K10：？＂＂：G05UB 650：G0T0 2400 \\
\hline \multirow[t]{2}{*}{GM} & 2570 IF PEEK（K764）\(=\) K15 THEN P05ITION \\
\hline & 6，K10：？＂＂：G05UB 650：G0T0 2680 \\
\hline \multirow[t]{3}{*}{D} & 2580 IF PEEK（K53279）＝K3 AND CH＝K2 THEN \\
\hline & G05UB 4710：P0KE 1757，12：POKE K1733，K3 \\
\hline & 2：G0T0 1810 \\
\hline \multirow[t]{3}{*}{CR} & 2590 IF PEEK（K53279）＝K3 AND CH＝K1 THEN \\
\hline & G05UB 4660：POKE 1757，12：POKE K1733，K1 \\
\hline & 96：G0T0 1300 \\
\hline 50 & 2600 IF PEEK（K764）＝K12 THEN G0T0 2620 \\
\hline 5H & 2619 G0T0 2560 \\
\hline \multirow[t]{3}{*}{5 P} & 2620 P0KE K764，K255： \(\mathrm{X=K10} \mathrm{Y}=\mathrm{Y} 10: \mathrm{P} 05 \mathrm{ITI}\) \\
\hline & ON K10，K10：？＇1稟．．．．．．．．．．．．．．．．．．＇＂：G0 \\
\hline & SUB 3956 \\
\hline \multirow[t]{4}{*}{KI} & 2630 IF LEN（A5）＜K20 THEN ¢ 5 （LEN（A¢）＋1） \\
\hline & ＝＂＂：G0T0 2630 \\
\hline &  \\
\hline & GOT0 2620 \\
\hline \multirow[t]{3}{*}{K} & 2650 AN525＝日 \\
\hline &  \\
\hline & 2670 G0T0 2540 \\
\hline AS & 2680 POKE K764， 255 \\
\hline \multirow[t]{2}{*}{OV} &  \\
\hline & 2706 IF PEEK（K764）＝K14 THEN POSITION \\
\hline & 0，K12：？＂＂：G05UB 650：G0T0 2540 \\
\hline YS & 2716 IF PEEK（K764）\(=\) K15 THEN P05ITION K \\
\hline & 0，K12：？＂＂：G05UB 650：G0T0 2820 \\
\hline KP & 2720 IF PEEK（K53279）\(=\) KS AND CH＝K2 THEN \\
\hline & G05UB 4710：POKE 1757，12：P0KE K1733，K3 \\
\hline & 2：G0T0 1810 \\
\hline
\end{tabular}
    0,K6:? " ":G05UB 650:G0T0 2960
IB 2290 IF PEEK (K764)=K15 THEN POSITION K
        0,K6:? "י:G05UB 650:G0T0 2400
XB 2300 IF PEEK (K53279) \(=K 3\) AND CH=K2 THEN
        GOSUB 4710:POKE 1757,12:POKE K1733, K3
        , 1816
        G05UB 4666:POKE 1757,12:POKE K1733,K1
        96:G0T0 1306
    SN 2330 GOTO 2286
    BK 2340 POKE K764,K255: \(8=K 8: Y=K 6: P 05 I T I O N\)
        K8,K6:? "

        =" ":G0T0 2350
pu 2360 IF \(05=1\)
SW 2370 QUEST5=05

5F 2390 G0TO 2260
202496 POKE K764,255
TR 2410 POSITION K日, K8:? "E타
UE 2420 IF PEEK (K764) =K14 THEN POSITION K
    0, K8:? " ":G05UB 650:G0T0 2260
    2436 IF PEEK (K764) \(=K 15\) THEN POSITION K
    0,K8:? " ":G05UB 650:G0T0 2549
KP 2440 IF PEEK (K53279) \(=\mathrm{K} 3\) AND CH=K2 THEN
    G05UB 4716:POKE 1757, 12:POKE K1733,K3
    2:GOTO 1818
CD 2450 IF PEEK (K53279)=K3 AND CH=K1 THEN
        G05UB 4660:POKE 1757,12:POKE K1733,K1
    96:G0T0 1300
YH 2469 IF PEEK (K764) =K12 THEN GOTO 2480
oz 2470 GOTO 2420
PY 2480 POKE K764,K255: \(\mathrm{K}=\mathrm{K10:Y=K8:P05ITI0}\)
    N K10,K8:? " ......................'י':G05U
    B 3956
5W 2490 IF LEN(AS) (K20 THEN AS(LEN(A5) +1)
- IGOTO 2496
1.
' THEN
JJ 2516 ANS 1 与=A 5

PP 2530 GOTO 2400
AE 2540 POKE K764, 255
OL 2550 POSITION K6,K10:? "E゙户"
FL 2560 IF PEEK (K764) =K14 THEN POSITION K
    0,K10:? " ":G05UB 650:G0T0 2406
GM 2570 IF PEEK (K764) \(=\) K 15 THEN POSITION K
    6,K10:? "":G05UB 650:GOT0 268 -
YD 2580 IF PEEK (K53279)=K3 AND CH=K2 THEN
        G05UB 4716:POKE 1757, 12:POKE K1733,K3
        2:G0T0 1810
CR 2590 IF PEEK (K53279)=K3 AND CH=K1 THEN
        G05UB 4660:POKE 1757,12:POKE K1733,K1
        96:G0T0 1300
50 260日 IF PEEK (K764)=K12 THEN GOTO 2620
5 SK 2610 GOTO 2560
5P 2620 POKE K764,K255: \(\mathrm{X}=\mathrm{K} 10: \mathrm{Y}=\mathrm{K} 10: \mathrm{P} 05 \mathrm{ITI}\)
        ON K10,K10:? "
        . "1: G0
        5山B 3950
KK 2630 IF LEN(AS) (K20 THEN AS(LEN(AS) +1)
        =" ":G0T0 2630
SF 2640 IF 0 S='
                            " THEN
        G0TO 2620
KG 2650 AN525=0 5

SP 2670 G0T0 2540
AS 2680 POKE K764, 255
ON 269 POSITION KG, K12:? "Eр"
UG 2706 IF PEEK (K764) \(=\) K14 THEN POSITION K
    0,K12:? " ":G05UB 650:G0T0 2540
YS 2716 IF PEEK (K764) \(=\) Ki5 THEN POSITION K
    0,K12:? "प:G05UB 650:G0T0 2829
KP 2720 IF PEEK (K53279) =K3 AND CH=K2 THEN
        G05UB 4710:POKE 1757,12:POKE K1733,K3
        2:G0T0 1816
\begin{tabular}{|c|c|}
\hline & \\
\hline \multirow[t]{2}{*}{} & 3200 \\
\hline & I：POKE K173 \\
\hline & 3210 \\
\hline UT & 3220 Position Ki，K2 \\
\hline & 3230 Position K11，K22：？＂PRINTER＂ \\
\hline & 3246 P0sITION K21，K22：？＂Both＂ \\
\hline CR & 3250 P05ITION K31，K22：？MENU＂ \\
\hline AJ & 3269 POKE K764，K255 \\
\hline & 3270 P05ITION K1，K22：？＂ShRESN＂ \\
\hline 10 & 3280 IF PEEK（K764）\(=\) K6 THEN P05ITION K1 \\
\hline & ，K22：？＂5CREEN＂：G05UB 650：G0T0 3440 \\
\hline B8 & 3298 IF PEEK（K764）＝K7 THEN P0SITION K1 \\
\hline & \\
\hline & 3306 IF PEEK（K764）\(=\) K12 THEN \\
\hline & GOTO 3286 \\
\hline & POKE \\
\hline SE & 3336 P0SITION K11，K22 \\
\hline IR & \multirow[t]{2}{*}{3340 IF PEEK（K764）＝K6 THEN P05ITION K1} \\
\hline & \\
\hline & 3350 IF PEEK（K764）＝K7 THEN POSITION K1 \\
\hline & 1，K22：？＂PRINTER＂：G05UB 650：G0T0 3380 \\
\hline EN & 3＇60 IF PEEK（K764）＝K12 THEN PR＝K1：G0T0 \\
\hline & 3500 \\
\hline & 3376 G0T0 \\
\hline AR & 3380 P0KE K764，K255 \\
\hline &  \\
\hline uz & \multirow[b]{2}{*}{1，K22：？B0TH＂：G05UB 650：G0T0 3320} \\
\hline & \\
\hline EM & 3410 IF PEEK（K764）\(=\mathrm{K} 7\) THEN POSITION K2 \\
\hline & 1429 IF PEEK（K764）＝K12 THEN PR＝K2：G010 \\
\hline FK & 3420 IF PEEK（K764）＝K12 THEN PR＝K2：G0 \\
\hline & 3509 \\
\hline & 3430 GOTO 3400 \\
\hline & 3440 POKE K764，K255 \\
\hline UR & 3450 P05ITION K31，K22：？ \\
\hline EM & 3460 IF PEEK（K764）＝K6 THEN POSITION K3 \\
\hline & 1，K22：？＂MENU＂igosub 650：G0T0 3380 \\
\hline WII & 3476 IF PEEK（K764）＝K7 THEN POSITION K3 \\
\hline & 1，K22：？＂MENU＂：G05UB 650：G0T0 3260 \\
\hline ED & \multirow[t]{2}{*}{3480 IF PEEK（K764）＝K12 THEN POKE 1733， 4：7 CHRS（125）：GOTO 210} \\
\hline & \\
\hline TR & 3490 G0T0 3460 \\
\hline U1 & 3506 G05UB 4340：POKE K54286，K64 \\
\hline JY & 3510 K1＝K3：Y1＝K5 \\
\hline A & 3520 OPEN \＃K1，K4，K0，FTLE15 \\
\hline & \multirow[t]{2}{*}{3536 INPUT \＃K1，OUESTS，ANS15，AN525，AN5 5 5，AN54 5，ITS} \\
\hline & \\
\hline NO &  \\
\hline & 2272tzaz＇THEN 3730 \\
\hline G0 & \multirow[t]{2}{*}{3560 IF PR＝K1 THEN G0sub 3650：g0to} \\
\hline vo & \\
\hline & \\
\hline HW & 3570 IF PR＝K2 THEN G05UB 3650 \\
\hline 0 & \multirow[t]{2}{*}{3586 POSITION K1，Y1：？＂RECOR NOMESN ＂；COUNT} \\
\hline & \\
\hline ND & 3590 Y1＝Y1＋1 \\
\hline HD & \multirow[t]{2}{*}{3606 P0SITION R1，Yi：？QUESTS：Y1＝Yi＋1：P OSITION X1，Yi：？AN5i与：Yi＝Yi＋1：P05ITION} \\
\hline & \\
\hline & K1，Y1：？AN525：Y1ニY1＋1 \\
\hline II & 3610 P0SITION Ki，Y1：？ANS35：Y1＝Y1＋1：P0 \\
\hline & \multirow[t]{2}{*}{5ITION K1，Y1：？ANS45：Y1＝Y1＋1：P0SITION K1，Y1：？ITS} \\
\hline & \\
\hline & 3620 Y1＝Y1＋1 \\
\hline M0 & \multirow[t]{2}{*}{3636 IF Y1＞K16 THEN P05ITION K2，Y1：？＂1
Press} \\
\hline & \\
\hline & OKE K54286，K192：G0T0 3770 \\
\hline 5 F & 3646 G0T0 3530 \\
\hline Nz & \multirow[t]{2}{*}{3656 LPRINT＇יR} \\
\hline KH & \\
\hline Hz & 3670 LPRINT ANS 15 \\
\hline IS & 3680 LPRINT ANS2 \({ }^{5}\) \\
\hline JL & 3690 LPRINT ANS 5 \\
\hline JC & 3700 LPRINT ANS 45 \\
\hline 11 & 3710 LPRINT ITS \\
\hline & \multirow[t]{2}{*}{3720 RETURN 373 CLOSE \＃Ki：POKE K54286，K192} \\
\hline & \\
\hline
\end{tabular}
    T I:POKE K1730,K4:FOR I=K1 TO K10: NERT
    15 3200 POKE K1731,K4:FOR I=Ki TO K10: NE
    1:POKE K1732,K4
UT 3220 POSITION Ki, K22:? "SCREDM \({ }^{\prime \prime}\)
AG 3230 POSITION K11,K22:? "PRINTER :
SR 3246 POSITION K21,K22:? " BOTH
CR 3250 POSITION K K1, K22:? " MENU "
UI 3278 POSITION K1,K22:? " SCREED
I0 3280 IF PEEK (K764) \(=K 6\) THEN P05ITION K1
    ,K22:?"5CREEN ":G05UB 650:G0T0 3440
    , K22:? " 5CREEN ":G0sUB 650:G0TO 3320
KI 3306 IF PEEK (K764) \(=K 12\) THEN 3506
3T10 GOTO 3280
Z2 3320 POKE K764,K255
SE 3330 POSITION K11,K22:? "PRPITIER"
IR 3340 IF PEEK (K764) =K6 THEN POSITION K1
    1,K22:? "PRINTER ":G05UB 650:G0T0 3260
    SF 3350 IF PEEK (K764) \(=K 7\) THEN POSITION K1
    1,K22:? "PRINTER ":G05UB 650:G0T0 3380
    3360 IF PEEK (K764)=K12 THEN PR=K1:G0T0
        3500
RK 3376 GOTO 3346
AR 3380 POKE K764,K255
LE 3390 POSITION K21,K22:? " BOTH "
    1,K22:? " BOTH H:GO5UB 650:G0T0 3326
    M 3410 IF PEEK (K764) \(=K\) ( THEN POSITION K2

        3506
PZ 3430 GOTO 3400
AH 3440 POKE K764, K255
UR 3450 POSITION K31, K22:? " NTEND "
EM 3460 IF PEEK (K764) \(=\) K6 THEN P05ITION K3
3476 IF PEEK (K764) =K7 THEN POSITION K3
1,K22:? " MENU ":G05UB 650:G0TO 3266
3480 IF PEEK (K764) \(=\) K12 THEN POKE 1733,
: CHRS(125):G0T0 218
TR 3490 GOTO 3460
ub 3506 G05LB 4346 :POKE K54286, K64
JY 3519 81=K3:Y1=K5
AH 3520 OPEN \#K1,K4,K日, FTLE1S
HJ 3530 INPUT \#Ki, OUESTS, ANSIS, ANS2年, AN53


Ga 3550 COUNT=COUNT+1
vo 3560 IF PR=Ki THEN G05UB 3650:G0T0 353
N 3570 IF PR=K2 THEN G05UB 3650
0I 3589 POSITION K1,Y1:? "Record NOWbiER
    "; COUNT
ND 3596 Y1=Y1+1
HD 3600 POSITION R1,Yi:? QUESTS:Yi=Yi+1:P
    05ITION K1,Y1:? AN5iS:Y1=Yi+1:P0SITION
    81,Y1:? AN525:Y1二Y1+1
    3610 P05ITION Ki, Y1:? AN535:Y1=Y1+1:P0
    SITION K1,Y1:? AMS4S:Y1=Y1+1:P0SITION

M 3636 IF Y1>K16 THEN POSITION K2,Y1:? "
    press gifili to continue, EsC to end":
    OKE K54286,K192:GOTO 3778
5F 3646 GOTO 3530
NZ 3656 LPRINT "Record Number: "; COUNT
KI 3666 LPRINT QUESTS
HZ 3670 LPRINT ANS1 5
JL 3690 LPRINT ANS3 5
LII 3710 LPRINT ITS
PY 3736 CLOSE \#Ki:POKE K54286,K192

RD 3746 POSITION K4，Yi＋1：？יPress GELECT to return to MENíי
JU 3750 IF PEEK（K53279）＝K5 THEN ？CHR \(\$ 12\) 5）：GOTO 216
UL． 3760 GOTO 3759
EZ 3770 IF PEEK（53279）＝K6 THEN G05UB 4340 ：Y1＝5：POKE K54286，K64：G0T0 3640
OK 3780 IF PEEK（K764）＝K28 THEN CLOSE \＃K1： ？CHR \(5(125): G 0 T 0\) 216
uU 3790 G0T0 3770
NR 3806 E1＝K6
GI 3816 FOR I＝K1 TO K31
5 J 3829 IF I＞K3G THEN I＝I－K1：POSITION \(X, Y\) ：？＂＂： \(\mathrm{K=}=\mathrm{K}-\mathrm{K} 1: E 1=K 1\)
PE 3836 IF I＜K1 THEN I＝I＋K1：POSITION \(X, Y:\) ？＂＂： \(\mathrm{K}=\mathrm{K}+\mathrm{K} 1: P O S I T I O N X, Y: ?\)＂ B ＂
Lz 3840 GET \＃4，0
ZY 3850 IF \(0=K 126\) THEN \(3870: E 1=K 0\)
HY 3860 IF \(0=K 155\) THEN 3930
MY 3876 IF \(0=K 126\) THEN POSITION \(K, Y: ? ~ ", "\)
 6
JB 3880 IF I＜K1 THEN 3830
PJ 3896 IF \(0=K 126\) AND \(I>K 0\) THEN \(0 \leqslant(I)=" \quad "\) ：GOTO 3830
RO 3960 POSITION \(\mathrm{H}, \mathrm{Y}: ?\) CHRS（R）
UI 3916 IF I＞K THEN \(05(I)=C H R S(0)\)
OA 3920 K＝K＋K1：POSITION K，Y：？＂㽞＇：NERT I
PG 3936 IF EI＝Ki THEN RETURN
HG 3946 POSITION \(\mathrm{K}, \mathrm{Y}:\) ？＂，＂：RETURN 3956 E1＝K0
GG 3960 FOR I＝K1 TO K21
503979 IF I＞K2 THEN I＝I－K1：POSITION \(K, Y\) ：？＂＂： \(\mathrm{K}=\mathrm{K}-\mathrm{K1}: E 1=\mathrm{K} 1\)
PU 3980 IF I＜K1 THEN I＝I＋K1：POSITION \(\mathcal{K}, \mathcal{Y}:\) ？＂＂： \(\mathrm{X}=\mathrm{X}+\mathrm{KI}: \operatorname{POSITION} \mathrm{K}, \mathrm{Y}:\) ？＂㽞＂
u0 3990 GET \(\# 4, A N\)
IH 4000 IF AN＝K126 THEN 4030：Ei＝K0
KY 4010 IF AN＝K155 THEN 4090
504020 IF I＝K21 THEN I＝I－K1：P0SITION K，Y ：？＂＂： \(\mathrm{K}=\mathrm{K}-\mathrm{K} 1:\) POSITION K，Y：？＂ C ＂：G0T0 3996
12 4036 IF \(A N=K 126\) THEN POSITION \(K, Y: ?{ }^{\prime \prime}\) ． ＂：K＝K－Ki：POSITION K，Y：？＂Пי＇：I＝I－Ki：Ei＝ K
MU 4046 IF I〈K1 THEN 3989
MN 4050 IF AN＝K126 AND I＞K日 THEN AS（I）＝＂ ＂：GOTO 3980
GE 4060 POSITION \(Y, Y: ?\) CHRS（AN）


PH 4096 IF EI＝Ki THEN RETURN
GF 4109 POSITION \(\mathrm{K}, \mathrm{Y}:\) ？＂\({ }^{\text {？}}\)＂：RETURN
TK 4116 FOR I＝K1 TO K2
CR 4120 IF I＞K2 THEN I＝I－K1：POSITION \(\mathcal{K}, \mathrm{Y}:\) ？＂＂： \(8=\mathrm{K}-\mathrm{K1}\)
4136 IF I＜K1 THEN I＝I＋K1：POSITION \(\mathrm{K}, \mathrm{Y}:\)

फ० 4146 GET \(\# 4, \mathrm{CR}\)
Mi 4156 IF CR＝K126 THEN 4180
KZ 4160 IF CR＝K155 THEN 4246
4165 IF CR〈49 OR CR＞52 THEN POSITION X ，Y：？＂1＇：GOTO 4146
d． 4179 IF \(\mathrm{I}=\mathrm{K} 2\) THEN I＝I－K1：P0SITION \(\mathrm{K}, \mathrm{Y}:\)
 146
HYOMF CR＝K126 THEN POSITION X，Y：？ 04130
EA 4190 IF I＜K1 THEN 4130
1044206 IF CR＝K126 AND I＞K日 THEN Cร（I）＝＂ ＂：GOTO 4130
LY 4216 POSITION \(\mathrm{K}, \mathrm{Y}:\) ？CHRS（CR）
PX 422 IF I）K日 THEN CS（I）＝CHRS（CR）
Pa \(4230 \mathrm{~K}=\mathrm{K}+\mathrm{K} 1: \mathrm{POSITION} \mathrm{K}, \mathrm{Y}:\) ？＂听：NEKT I
EI 4246 IF IKK THEN POSITION \(X, Y: ? ~ " ~ " ~\)
aU 4250 RETURN
BL． 4260 ？\＃K2；QUEST与：？\＃K2；AN51与：？\＃K2；AN

525：？\＃K2；AN535：？\＃K2；AN545：？\＃K2；ITS
BB 4270 RETURN
 27227＂
BU 4290？\＃K2；QUEST \(5:\) ？\＃K2；ANS1与：？\＃K2；AN 525：？\＃K2；AN535：？\＃K2；AN545：？\＃K2；IT今
SW 4300 CLOSE \＃K1：CLOSE \＃K2
AJ 4310 KIO 33, \＃K1，K日，K日，FILE15
FD 4329 KIO 32 ，\＃K1，K日，K日，＂D：GAME．TMP，GAME －DAT＂
AR 4330 RETURN
YP 4340 FOR I＝K5 TO K20：POSITION K1，I：？＂
＇：\(:\) NERT I：RETURN
Y5 4350 POKE K1730，K52：FOR I＝K1 T0 K10：NE KT I：POKE K1729，K52
OU 4360 FOR I＝Ki TO Kib：P0SITION K0，K0：？
＂：F0R J＝Ki TO K10：NEKT J
8F
4370 POSITION KG，K0：？＂I REMORD CIOT FOMSD＂：FOR K＝K1 TO Ki0：NEXT

FW 4380 NEKT I
BJ 4390 RETURN
II 4409 POSITION K1，K6：？＂Quest？．．．．．．．．
 4420＇POSİİON＇K1，K10：？＂Answer \(2 \ldots .\).

 4＇今＇日＇PÓs＇íión＇Ki，K16：？＂Correct number －＂
BC 4460 RETURN
SY 4470 POSITION K2，K18：？＂Input Question ，Answers \＆correct No．＂
MB 4480 POSITION K6，K20：？＂Use Et \(\mathrm{E}_{\mathrm{F}} \rightarrow\) keys －press RETMED＂
BL 4490 RETURN
YY 4500 POSITION K0，K18：？יInPut the Ques tion to locate the record＂
EY 4510 POSITION K0，K19：？＂or use an＇＊＂ to step through the file．＂
PN 4520 POSITION K0，K20：？＂Use the OPTION 5 below when the record＂
054530 P05ITION K0，K21：？＂is found．Pres 5 BETMRD when changed．＂
AY 4540 RETURN
JC 4550 POSITION K1，K18：？＂Use the \(\mathrm{E}_{\mathrm{y}} \downarrow \mathrm{E}+\) keys to page up and down＂
HL 4560 POSITION Ki，Ki9：？＂until you find the line you wish to＂
UP 4570 P05ITION K1，K20：？＂change．Make the change and press the＂
zo 4580 POSITION Ki，K21：？＂RETDRE key．P ress 〈OPTION〉 when done＂
BN 4590 RETURN
OX 4600 P0SITION K1，K22：？＂CHANGE＂
TW 4610 POSITION K11，K22：？＂DELETE＂
NM 4620 POSITION K21，K22：？＂NEKT＂
CI 4630 POSITION K31，K22：？＂MENU＂
UW 4640 FOR I＝K6 TO K16：POSITION KO，I：？＂ ＂：NERT I：RETURN
GT 4650 POSITION K \(0, K 22:\) ？
＇：RETURN
JJ 4660 G05UB \(4810: P 0 K E\) K1729，K4：G05UB 48 20：POKE K1730，K4
KL． 4670 G0SUB \(4830: P 0 K E\) K1731，K4：GO5UB 48 46：POKE K1732，K4
ST 4680 POKE K1732，K52：FOR I＝K1 TO K5：NEK TIIPOKE K1731，K52：F0R I＝K1 TO K5：NEKT I
ou 4690 POKE K1730，K52：FOR I＝K1 TO K5：NEK T I：P0KE K1729，K52
MK 4700 G05UB 4470：G05UB 4650：G05UB 4760：

RETURN
IM 4716 G05UB 4810：POKE K1729，K4：G05UB 48 20：POKE K1730，K4
JY 4720 G05UB 4830：POKE K1731，K4：G05UB 48 40：POKE K1732，K4
TO 4730 POKE K1732，K132：FOR I＝K1 TO K5：NE KT I：POKE K1731，K132：FOR I＝K1 TO K5：NE HT I
MZ 4749 POKE K1730，K132：FOR I＝Ki T0 K5：NE KT I：POKE K1729，K132
AB 4750 G05UB 4506：G05UB 4650：G05UB 4600： RETURN
ZD 4760 POSITION K1，K22：？＂CONTINLE＂
LK 4779 POSITION K1i，K22：？＂EDIT＂
SL 4780 POSITION K21，K22：？＂PRINT＂
DO 4790 POSITION KSi，K22：？＂MENL＂
UN 4806 FOR I＝K6 TO Ki6：POSITION KO，I：？＂ ＂：NERT I：RETURN
FH 4810 POSITION K日，K18：？＂
＂：RETURN
GT 4820 POSITION K6，K19：？＂＂：RETURN
aR 4830 POSITION K日，K20：？＂＂：RETURN
BO 4846 POSITION K \(0, K 21: ?\)
＂：RETURN
YD 4850 FOR I＝K18 TO K21：POSITION K日，I：？
＂：NEMT I：RETURN
ZF 4860 GRAPHICS K1：POKE K716，K0：POKE K75 2，K1：POKE K708，148：P0KE K764，K255
DL 4870 POSITION 9，4：？\＃6；＂中＂
PU 4880 POSITION K7，K8：？\＃6；＂trivia＂
CO 4890 POSITION K8，K12：？\＃6；＂REME＂
KK 4906 ？ 11 Please wait－program is loa ding＂
UH 4910 RUN＂D：TRIU．BAS＂
OH 4920 INIT＝INIT＋K1：IF INIT \(>\) KI THEN 5010
TT 4930 GRAPHIC5 0：POKE K752，K1：POKE K710 ，KO：POSITION Kib，Ki6：？＂16 Seconds Ple ase．．．＂
NH 4940 RESTORE 5150：FOR N＝0 T0 99：READ \(K\) ：POKE 1664＋N，K：NERT N
UE 4959 COLTAB＝1712：LUMTAB＝COLTAB＋24
JH 4960 REM 5 TART COUNTER AND RESET EUERY UBI
PI \(4976 \mathrm{H}=\mathrm{U} 5 \mathrm{R}(1693)\)
AA 4980 REM TELL ANTIC WHERE DLI CODE IS
CK 4990 POKE 512， 128
PF 5009 POKE 513,6
MS 5010 REM NOW SET INTERRUPT BITS
JF 5020 DSTART＝PEEK（560）\(+256 *\) PEEK（561）
AII 5036 FOR N＝DSTART＋6 TO DSTART＋28
4G 5040 POKE N，130
HL 5050 NEKT N
UN 5060 REM SET INTERRUPT BIT ON FIRST LI NE
TA 5076 POKE DSTART＋3，194
DK 5080 REM ENABLE DLÍ
C5 5090 POKE 54286,192
MD 5100 PRINT CHR \(\$(125)\)
FT 5110 REM HANDLE LINE 0 AS BACKGROUND
TA 5120 POKE 716，PEEK（COLTAB）
JU 5130 POKE 709，PEEK（LUMTAB）
AR 5149 RETURN
NZ 5150 DATA \(72,138,72,174,156,6,189,176\) ， 6，141
HK 5160 DATA \(10,212,141,24,208,189,260,6\) ， 141，23
H5 5176 DATA \(208,238,156,6,104,176,104,64\) 1，164
NN 5186 DATA \(169,7,160,168,162,6,32,92,22\) 8，96
JP 5190 DATA \(169,1,141,156,6,76,98,228,8\) ，
． 4
RL 5200 DATA \(4,4,4,4,4,4,4,4,4,4\)
RO 5210 DATA \(4,4,4,4,4,4,4,4,4,4\)
TJ 5220 DATA \(4,4,0,12,12,12,12,12,12,12\)

HR 5230 DATA \(12,12,12,12,12,12,12,12,12,1\) 2
UY 5240 DATÁ \(12,12,12,14,14,14,0,0,6,0\)
－
Listing 2.
BASIC listing．

Hथ 16 REM A TRIUIA GAME BY Jan IUERSOn
Az 26 REM
BL 30 K 0 ＝ \(0: K 1=1: K 2=2: K 3=3: K 4=4: K 5=5: K 6=6:\) K7ニ7：K8ニ8：K9ニ9：K1日ニ1G：K11ニ11：K12ニ12：K1 3＝13：K14＝14：K15＝15：K16＝16：K17＝17
KN 4日 K18＝18：K19＝19：K2日＝29：K21＝21：K22＝22： K29＝29：K30＝36：K34＝34：K49＝49：K50＝50：K52 ＝52：K69ニ6日：K91ニ91：K19日ニ199：K299二299
KI． \(56 \mathrm{~K} 752=752: K 35=35: K 45=45: K 53=53: K 64=6\) 4：K81＝81：K96ニ96：K128＝128：K549＝549：K532 \(79=53279: K 764=764: K 255=255\)
 20），F\％（1），H5（1），R（3）
UT 79 DIM A1F（609日），B15（4000），C15（4990），D

AJ 89 FILE15ニI
1：FILEIF＝＂D：
GAME，DAT＇： \(5 C O R E=K B: H 5 C O R E=K B\)
 ：R＝K日：CNTニK日：CTニK日： H ：
10106 CLOSE \(\# K 1: O P E N\) \＃K1，K4，KG，FILE15：0P EN \＃K4，K4，K日，＂K：＂＇G05LB 1350：POKE 5377 4，K64：POKE K16，K64
SH 119 G05山B 156日：POKE K752，K1：G05山B 76日
00 129 POSITION K2，K2Z：？＂START＝PLAY AGAI N OPTION＝END SES5ION＇IPOKE 53774，K64： POKEK16，K64：55＝45：Li＝K9
AN 136 POKE 54286，192：G05UB 1150：G05UB 11 70：G05山B 1190
UA 146 POSITION KS，K3：？AS：SOUND KG，K45，K 16，K8：FOR T＝K1 TOK15：NEHT I
OT 156 POSITION K1日，K9： K16，K8：FOR I＝K1 TO Ki5：NE KT I
HO 160 POSITION K10，K11：？C5：50UND KO，K64 ，K16，KB：FOR I＝K1 T0 K15：NERT I
IO 176 POSITIONK1日，K13：？DS：SOUND KO，K81 ，K16，K8：F0R I＝K1 T0 K15：NERT I
Tf 189 POSITION K19，K15：7 ES：SOUND K日，K96 ，K19，K8：F0R I＝K1 T0 K15：NEKT I：50UND K的，K日，KG，K日
af 190 P0SITION K6，K19：？＂Select 1
HH 209 TH＝K19：POKE K764，K255
UP 219 G05UB 1920
HY 229 GET \＃K4，AN5
fis 230 IF ANS 〈K49 OR AN5＞K52 THEN POKE K7 64，K255：G05UB 1920：G0T0 220
B． 24 HS＝CHRS（ANS）
UK 250 IF HFニF 5 THEN 50UND K日，K45，K19，K12
 1日，K12：F0R I＝K1 T0 KЗ日：NEST I
GX 260 IF HSニF THEN G05山B 79日：GOT0 420
CH 279 GOSUB 716：G0T0 449
U8． 289 G0SUB 736
PZ 290 POSITION K10，K3：？＂RIGHT＂＇；B；＂W RONG＂；
PI 369 POSITION K6，Ki9：？＂Choose one of \(t\) he options Et
1H 310 POSITION K2，K22：？＂STilit＂：POSITION K20，K22：？＂DPTIDM＂
MH 329 FOR I＝K1 TO KJ
DV 330 IF PEEKCK532793＝K THEN POSITION K 2，K22：7＂START＂：P05ITION K20，K22：？＂OP TION：GOTO 89
RK 346 IF PEEKCK53279） 4 KG THEN POSTTION K 2，K22：？＂START＂：POSITION K20，K22：？＂OP TION＂：G05UB 7J0：GOTO 13日
GO 350 NEHT I
C． 369 POSITION K2，KZ2：？＂START＂：POSITION

MH K2日，K22：\({ }^{110 P T I O N " ~}\)
NH 370 FOR I＝K1 TO KJ
EF 386 IF PEEK（K53279）＝K3 THEN POSITION K 2，K22：？＂START＂：POSITION K20，K22：？＂OP TION＂：GOTO 890
R1 396 IF PEEK（K53279）＝K6 THEN POSITION K 2，K22：7＂5TART＂：POSITION K20，K22：？＂OP TION＇：G05UB 730：GOTO 130
FII 400 NERT I
MO 416 GOTO 310

DD 430 GOSUB 2050：G0T0 28日
EF 446 C二C＋K1：50UND K日，K91，K12，K16：FOR DE LAY゙二K1 TO K2日G：NEHT DELAY：SOUND K日，K日，

\section*{KB，KB}


HF 489 IF FS＝144＂THEN G05LB 659
PU 496 GOTO 286
EL． 500 FOR IニK1 TO K4
HP 510 P0SITION K7，K9：？＂TG＂：50UND K0，K96 ，K1日，K8：FOR DELAY＝Ki TO K5日：NEXT DELAY
RH 520 POSITION K7，K9：？＂1．＂：50UND K6，K日，
KG，K日：FOR DELAY＝K1 TO K5日：NE KT DELAY
C8 53 NEHT I
2．J 549 RETURN
EU 550 FOR I＝K1 TO K4
K1 56 POSITION K7，K11：？＂Z月＂：50UND K日，K9 6，K1日，K8：FOR DELAY＝K1 T0 K5日：NEKT DELA \(\stackrel{9}{9}\)
AS 57日 POSITION K7，K11：？＂12：＂： 50 UND K日，K0 ，K0，K日：FOR DELAYニK1 T0 K50：NEHT DELAY
G1． 589 NEHT I
ZT 590 RETURN
EM 606 FOR IニK1 TO K4
 6，K1日，K8：FOR DELAY゙ニK1 T0 K50：NEXT DELA Y
620 POSITION K7，K13：？＂3，＂：SOUND K日，K日
，K日，KG：FOR DELAY＝K1 TO K50：NEKT DELAY
4O 630 NEHT I
2II 649 RETURN
EM 650 FOR IニK1 TG K4
PA 669 PO5ITION K7，K15： 7 ＂GH：50UND K日，K9 6，K10，K8：FOR DELAYニKi TO K5G：NEKT DELA \(Y\)
FA 670 P05ITION K7，Ki5：？＂＇4，＂：50UND K0，K日 ，K日，K日：FOR DELAYニK1 TO K50：NEXT DELAY
GM 689 NEKT I
2 II 696 RETURN
H\＆ 700 P05ITION 36，K15： 7 ＂-1 ：RETURN
BP 716 POSITION 36，K15：7＂M＂＇RETURN
AJ 729 POSITION K5，K9：\(? 11\)
＂：P05ITION K7，K13：？
1＇：RETURN
CA 730 POSITION KJ，KJ：？＂＂
＂
05 746 POSITION K1日，K11：？＂
＂：POSITIONKIG，K13：？＂
FT 750 P05ITION K10，K15：？ 1
M：RETURN
DH 760 FOR I＝K日 T0 K21：P0SITION K日，I：？＂I
4A｜＇inNEHT I

SP 796 POSITION K日，K21：？＂4
Tथ 800 POSITION K日，K日：？＂

NU 820 P05ITION K11，K6：？＂H1工TIPLE AHOTME
\begin{tabular}{|c|c|}
\hline 10 & 830 Position 35，K12：？ \\
\hline DS & 840 P05ITION 35，K13：？＂ \\
\hline DB & 850 P05ITION 35，K14：？ \\
\hline DW & 860 P05ITION 35，K15：？ \\
\hline vc & 876 POSITION 35 \\
\hline z & 880 RETURN \\
\hline OX & \({ }_{76}^{89}\) POKE 54286，192：G05UB 1180：G05UB 11 \\
\hline Wz & 900 POSITION KЗ，KЗ：？ \\
\hline PQ & 910 POSITION K10，K3：？＂RIGHT＂；B；＂ \\
\hline KK & \(920 \mathrm{P}=\mathrm{B}+\mathrm{C}: \mathrm{Q}=\mathrm{B} / \mathrm{P}: \mathrm{Q}=\mathrm{Q} \% 100\) \\
\hline PD &  \\
\hline & P0SITION 34，K7：？H5CORE \\
\hline BN & 940 IF Q＜K50 THEN P0SITION K7，K9：？＂Y0 \\
\hline & U NEED à TRIUİ CLA55＇：GOT0 \\
\hline UG & 950 IF 0\(\rangle=75\) THEN 970 \\
\hline JI & 960 IF 0）\(=K 50\) THEN P05ITION K9，K9：？＇P \\
\hline & RETTY GOOD，STLDY MORE U：GOT0 1000 \\
\hline HM1 & 976 IF Q \(=96\) THEN 990 \\
\hline UA &  \\
\hline IN & 996 IF 0＞\(=90\) THEN P05ITION K5，K9：？＂GR \\
\hline & EAT！！！go T0 HEAD OF CLAS5 \\
\hline DC & 1096 G05UB 1760 \\
\hline AG & 1810 POSITION K7，K13：？＂DO YOU WI5H T0 \\
\hline & PLAY AGAI \\
\hline Za & 1020 P0SITION K2，K22：？＂巨TiRTi＇：P05ITI0 \\
\hline & N K20，K22：？＂OPTIOL＇ \\
\hline co & 1030 FOR I＝K1 T0 K50 \\
\hline 5 I & 1046 IF PEEK（K53279）＝K3 THEN GRápHICS \\
\hline & 6：END \\
\hline GG & 1056 IF PEEK（K53279）＝K6 THEN G05UB 113 \\
\hline & 0：G05UB 720：B＝K0：C＝K0：G05UB 1180：G05UB \\
\hline & 1330：G05UB 1490：G05UB 1350：G0T0 130 \\
\hline FH & 1060 NEHT I \\
\hline ND & 1070 P0SITION KZ，K22：？＂START＂：POSITIO \\
\hline & N K20，K22：？＂OPTION＂ \\
\hline & 1080 FOR I＝K1 T0 K50 \\
\hline 5H & 1690 IF PEEK（K53279）＝K3 THEN GRAPHICS \\
\hline & 6：EMD \\
\hline HP & 1106 IF PEEK（K53279）＝K6 THEN G05UB 113 \\
\hline & 0：G05UB 730：B＝K0：C＝K0：G05UB 1180：G05UB \\
\hline & 1330：G05UB 1490：G05UB 1350：G0T0 130 \\
\hline EU & 1110 NEST I \\
\hline NH & 1120 G0T0 1020 \\
\hline YP & 1136 P0SITION K2，K22：？＂START＂：P0SITIO \\
\hline & N K20，K22：？＂OPTION＂： \\
\hline P & 1146 G0T0 1130 \\
\hline RR & 1150 P0SITION K7，K9：？＂1．＂：POSITION K7 \\
\hline BB & 1166 P0SITION K7，K13：？＂З．＂：P05ITION \\
\hline & 7，K15：？＂4，＂：RETURN \\
\hline Ha & 1170 For I＝K9 T0 K15：P05ITION K9，\(:\) ？ \\
\hline AL & 1180 F0R I＝K9 T0 K15：P05ITI \\
\hline & ＂＇：NEXT I：RETURN \\
\hline Ho & 1190 CT＝INT（RND（K0）\＃CNT） \\
\hline MT & 1290 IF CT＝K9 THEN 1199 \\
\hline Yz & 1210 IF \(888=\) CNT THEN 890 \\
\hline 1 F & 1220 IF \(4 K=C N T-K 1\) THEN CT＝CNT： \(888=C N T\) \\
\hline AM & 1230 IF F15（CT，CT）\({ }^{\prime \prime} \mathrm{H}^{\prime \prime}\) THEN 1190 \\
\hline CY & 1240 － \(5=\) ¢15（CT＊K30－K29） \\
\hline CE & 1250 B \(5=\mathrm{B} 15\)（CT＊K20－K19） \\
\hline ch & 1260 C5＝C15（CT＊K20－K19） \\
\hline Do & 1270 D \(5=\) D15（CT＊K20－K19） \\
\hline EG & 1280 Es＝E15（CT＊K20－K19） \\
\hline LK & 1290 F与＝Fis（CT，CT） \\
\hline 55 & 1300 Fis（CT，CT）\({ }^{\text {＇}}\)＇\({ }^{\prime \prime}\) \\
\hline 0 & \(1310 \quad 8 K=8 K+K 1\) \\
\hline AL． & 1320 RETURN \\
\hline zo &  \\
\hline & K0：R＝K0：CT＝K0 \\
\hline & 1346 RETURN \\
\hline DI & 1350 INPUT \＃K1 \\
\hline 00 &  \\
\hline & ［272＂THEN 1460 \\
\hline
\end{tabular}

KU 1376 CNT＝CNT＋K1
IZ 1380 IF CNT＝206 THEN 1460
KD 1396 A15（CNT＊K30－K29）＝の
IZ 1406 B15（CNT \(\#\) K20－K19）\(=\) B \(\$\)
KF 1410 C15（CNT \(* K 20-K 19)=C 5\)
LL． \(1429 \mathrm{D} 15(\mathrm{CNT} * \mathrm{~K} 20-\mathrm{K} 19)=\mathrm{D} 5\)
MR 1430 E1S（CNTHK20－K19）\(=5 \%\)
L． 1449 Fif（CNT，CNT） 145
RI 1450 G0TO 1350
OP 1469 5CORE＝K日：POSITION K34，K6：？＂ 11：POSITION K34，K6：？＂G口＂
OW 1470 CLOSE \＃K1
BF 1480 RETURN
GY 1490 POKE 54286，64：CT＝0：CNT＝0： \(\mathrm{HK}=\mathrm{KO}: \mathrm{KX}\) K＝K日：CLOSE \＃Ki：OPEN \＃K1，K4，KG，FILE15：R ETURN
YH 1506 GRAPHIC5 K日：POKE 752，K1：POKE 710， K0：P0SITION K16，K16：？＂20 5econds plea 5e．．．＂
CF 1516 FOR N＝K日 TO 99：READ K：POKE 1664＋N ，H：NEHT N
UK 1520 COLTAB＝1712：LUMTAB＝COLTAB＋24
OL \(1530 \quad \mathrm{H}=\mathrm{LSR}(1693)\)
вн 1546 POKE 512，128
JJ 1550 POKE 513，K6
JK 156 D 5 TART＝PEEK（566）＋256＊PEEK（561）
MT 1579 FOR \(\mathrm{N}=\mathrm{DSTART}+\mathrm{K} 6\) TO DSTART＋28
sY 1580 POKE N， 130
ID 1590 NEHT N
SN 1606 POKE DSTART＋3，194
cc 1610 POKE 54286，192
MP 1620 PRINT CHRS（125）
TJ 1630 POKE 716 ，PEEK（COLTAB）
KD 1640 POKE 799，PEEK（LUMTAB）
BA 1659 RETURN
OT 1669 DATA \(72,138,72,174,156,6,189,176\) ， 6，141
TG 1670 DATA \(10,212,141,24,208,189,209,6\) ， 141，23
2U 1680 DATA \(208,238,156,6,164,170,104,64\) ，18，104
NH 1690 DATA \(169,7,160,168,162,6,32,92,22\) 8，96
NO 1700 DATA \(169,1,141,156,6,76,98,228,14\) 4，144
MM 1716 DATA \(144,144,144,144,196,196,196\) ， 196，196，196
PW 1726 DATA \(196,196,196,196,196,64,64,64\) ，64，64
I5 173 © DATA \(2,0,12,12,12,12,12,12,12,12\)
WK 1746 DATA \(12,12,12,12,12,12,12,12,12,1\) 2
AA 1750 DATA \(12,12,12,12,6,6,0,0,0,0\)
RM 1760 RESTORE 1886
EP 1770 FOR I＝K1 TO 24
SK 1786 READ PG，P1，P2，P3，DUR
WW 1790 POKE K540，DUR
IM 1806 50UND K 9, PG，K10，K12
J5 1810 50UND K1，P1，K10，K12
KY 1820 50UND K2，P2，K10，K12
ME \(183650 \mathrm{HND} \mathrm{K} 3, \mathrm{P} 3, \mathrm{~K} 19, \mathrm{~K} 12\)
UR 1849 IF PEEK（K549）（＞KG THEN 1840
FU 1856 NERT I
PF 1860 50UND K日，K日，K日，K日：50UND Ki，K日，K日，

BK 1876 RETURN
AN 1880 DATA \(108,0,0,0,10,102,0,0,0,10,96\) \(, 243,0,0,10,66,121,162,0,20,96,0,0,0,1\) 9，60，162，0， \(0,20,96,121,136,0,20\)
1896 DATÁ \(60,6,0,6,26,60,182,6,0,20,60\) \(, 121,144,0,20,60,193,0,0,10,60,193,0,0\) \(, 10,53,121,162,0,10,50,121,162,0,16\)
Wh 1900 DATA \(47,162,0,0,10,60,162,0,0,10\) ， \(53,96,121,0,16,47,96,121,0,16,47,162,6\) \(, 0,16,64,162,0,0,10,53,91,128,0,20\)
IJ 1916 DATÁ \(69,96,121,0,20,60,162,0,0,20\) ，10，243，0，0，36
GC 1920 POSITION KJ，K6：？＂TIME＝＂：POSITION
```

 28,K6:? "5CORE=":P05ITION 25,K7:? יHI
 -5CORE=":POSITION K8,K6:? TM
 IU 1930 POKE K540,K60
RU 1940 IF PEEK (K540)=K0 THEN TM=TM-K1:PO
SITION K8,K6:? " ":POSITION K8,K6:? T
M:50UND KG,K128,K10,K16:G0TO 1980
5% 1950 IF PEEK(K764) < K255 THEN 1990
KJ 1960 IF TM=KG THEN 2016
IF 1970 GOTO 1940
KH 1980 FOR J=K1 TO K2:NEKT J:50UND KG,K0
, K0, K0
KK 1990 IF PEEK(K764)〈\K255 THEN AN5=PEEK
(764):RETURN
G 2000 G0T0 1930
5B 2010 50UND K0,K96,K10,K12:G05UB 2030:A
N5=53:P05ITION K8,K6:? " ":POP :GOTO
248
AG 2020 RETURN
JR 2030 FOR K=K1 TO KJ0:NERT K
NH 2040 50UND KG,KG,KG,KG:RETURN
EF 2050 IF TM=K0' THEN RETURM
ZY 2060 TM=TM-K1:P05ITION K8,K6:? " "':P0
5ITION K8,K6:? TM:50UND KG,K128,K10,K6
:FOR I=K1 TO K3:NEHT I
2070 50UND KG,KG,KG,KG
FY 2080 FOR I=K1 T0 K1G:NEHT I
4B 2090 5CORE=5CORE+K1:POSITION K34,K6:?
SCORE:50UND KG,162,K10,K6:FOR I=K1 T0
K3:NEKT I: 50UND KG,KG,KG,KG
P 2100 FOR I=K2 TO KIG:NEHT I
P5 2119 G0T0 2050
AI 2120 RETURN

```


\section*{by Jerry Lemaitre}

In this game, you're the lowly Anthort, struggling to defend your planet against the evil Zorcron empire. If the rock-eating Zorcrons manage to penetrate your defenses, they'll gobble up your entire planet. To prevent this, you're armed with the mystical Fyreballs, which ignite anything in their path. You may have three of these flying at one time, but shoot carefully!
You're not the only one with weapons, though. The Zorcrons have discovered machinery! There are three types of machines that they build with the iron ore they can't digest.
Their Eggbarge is a bulky space vessel which incubates Zorcron eggs during flight. When it reaches its destination, the newly hatched Zorcrons help to replenish the fighting troops.

A Whizzer is a warp-speed vessel which transports and launches the most deadly Zorcron offense of all-the Zingbomb. You'll know the Zingbombs when you see them. These menaces head straight for your planet at incredible speeds. On impact, they create a shock wave that will pulverize your delicate Anthortian insides.

Now, don't get me wrong. This isn't just another onedimensional shoot-em-up. Constantly changing colors and totally animated characters add to the visual appeal. You can move your Anthort in eight (count 'em, eight) directions. There's also horizontal wraparound, so you're not confined by the sides of the screen.
Even though Invasion III is written in BASIC, there can be as many as twenty-three characters on-screen at a time - at speeds that'll make you sweat! Enjoy! \(\boldsymbol{\square}\)

Jerry Lamaitre has owned his Atari 400 for four years. He's very interested in robotics and artificial intelligence, and sells his own programs and accessories as a small mail-order business.

The two-letter checksum code preceding the line numbers here is not a part of the BASIC program. For further information, see the BASIC Editor II, in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.

AE 120 POKE \(P+5 C R, K 2: I F\) STICK CK日J \(=K 15\) AND STRIG（K日）THEN 120
OD 130 FOR Z＝K日 T0 K15：P1＝P：5ニMC5TICKCK日） ）：\(P=P+5: P=P-5 *(P>439\) 0R \(P\)（40）
00． 146 C＝INT GK5\％RND KKGD \(: 5 E T C O L O R \quad C, Z, K 8 *\) （C（K4）
PN \(159 \mathrm{CH}=\mathrm{NOT} \mathrm{CH}: P O K E\) 756，CH（CH）：L＝PEEKC P＋5CR）：POKE P1＋5CR，K日：POKE P＋5CR，K2：IF L AND Lく〉KZ THEN 416
XU 160 L＝K日：IF NOT STRIG（KG）THEN GOSUB 339
2\％ 179 FOR A＝K日 TO KZ：F1＝F（A）
RJ 180 IF Fi THEN POKE Fi＋5CR，K日：Fi＝Fi－K2 0：FL＝PEEK（Fi＋SCR）：IF FL THEN F＝F1：Fi＝K 9：G05UB 356
ER 190 IF Fi THEN POKE FI＋5CR， 132
5z 200 F（A）＝Fi：NEXT A
5В 210 IF \(Z P(Z)\) THEN \(Z P 1=Z P(Z): Z P(Z)=Z P(Z\) ）＋INT（K3＊RND（K日）＋19）：L＝PEEK（ZP（Z）＋5CR） ：POKE ZPI＋5CR，K日：POKE ZP（Z）＋5CR， 195
WB 226 IF L THEN G0SUB 469
28 236 IF NOT E THEN IF RND（K 0 ）《6， 01 THE N E＝K2 \(0: E M=K 1: 50 \amalg N D K 1, E, 12, K 8: I F\) RND 6 K6）〈0．5 THEN E＝39：EMニーK1
0G 249 IF E THEN E＝E＋EM：POKE E＋5CR，K6：POK E E－EM＋5CR，K0：IF E＝K20 0R E＝39 THEN P0 KE E＋5CR，K日：E＝K日：50UND K1，K 0 ，K \(0, K 0\)
ZN 256 IF E THEN IF E〉 21 AND E〈З 8 THEN IF NOT ZP（E－22）THEN ZP（E－2Z）＝E＋K20：POK E ZP（E－22）＋5CR，195：50UND Ki，E，12，K8
 W＝K29：WM＝K1：50UND K2，W，16，16：P0KE 77，K 0：IF RND（K日）《 0.5 THEN W＝39：WM＝－K1
KN 276 IF W THEN W＝W＋WM：POKE W＋5CR，13J：P0 KE \(W-W M+5 C R, K 0: I F \quad W=K 29\) OR \(W=39\) THEN P OKE W＋5CR，K日：W＝K日：50LND K2，K \(0, K 0, K 0\) 280 IF \(W\) THEN IF NOT B AND RND【K日〉〈0． 06 THEN B＝N＋K20；50UND K3，B，K4，12
ML 296 IF B THEN 50LND K3，B，K4，12：B＝B＋K26 ：BL＝PEEK（5CR＋B）：POKE 5CR＋B，71：POKE 5CR ＋B－K20，K0
XN 30日 IF B THEN IF BL＝K2 OR B 7439 THEN 5 OUND KЗ，K日，K0，K日：POKE 5CR＋B，K日：B＝K日：G0 TO 416
310 IF \(B\) THEN IF BL＝132 THEN FL＝71：G05 UB 390
KE 32G NEKT Z：G0T0 130
2K 330 FOR J＝K日 TO K2：IF NOT F（J）THEN F OR I＝K日 T0 31：POKE 53761，I：NEHT I：FGJ】 ＝PーK2日：RETURN
MB 346 NERT J：RETURN
DC 350 IF \(F L=195\) THEN FQR I＝K日 T0 K15：IF ZP（I）＝F THEN 5C＝5C＋25：G05UB 530：Z＝I：G0 5山B 460
UZ 360 IF FL＝195 THEN NEKT I：RETURN
UN 370 IF FL＝133 THEN 5C＝5C＋1000：G05UB 53 0：Q＝W：W＝K日：50UND KZ，K 0 ，K日，K 0 ：GOT0 550
FH 380 IF FL＝K6 THEN 5C＝5C＋1000：G05UB 530 ：Q＝E：EニK日：50UND K1，K日，K日，K日：G0T0 550
390 IF FL＝71 THEN 5C＝5C＋506：G05LB 530： Q＝B：B＝K日：50UND KJ，K日，K日，K日：GOTO 550
ZA 496 RETURN
EH 416 POKE P＋5CR，K8：FOR I＝K1 T0 K20：50UN
 0 K2 9
 ：NE Q：NEXT I

 ）：NEKT I：IF MEN
CY 459 G05UB 729：G0T0 120
YL 460 IF \(Z P(Z)=K B\) OR \(L=195\) THEN RETURN
N8 479 IF L＝74 0R L＝75 0R L＝K2 THEN 410
GII 489 POKE ZP（Z）＋5CR，200：FOR I＝K日 T0 K15 ：50UND KG，KG，K4，I：NEHT I：POKE ZP（Z）＋5C R，201

490 FOR I＝K0 TO K15：50UND K日，KG，K5，I：N EKT I：POKE ZP（Z）＋5CR，K0：ZP（Z）＝K日：RETUR N
                                    \(, I+J, 16,11+J: N E K T\) JiNEKT I
    UND K2, K \(6, K 0, K Q: R E T U R N\)

EL． \(570 \mathrm{~K} 1=1: K 2=2: K 3=3: K 4=4: K 5=5: K 6=6: K 8=8\) ：K15＝15：K20＝20
YM 580 GRAPHIC5 18：POSITION K4，K2：？\＃K6；＂ Indisian ］i［＂：POSITION 9，K5：？\＃K6；＂by＂ ：P05ITION K3， 7
599 ？\＃K6；＂JERRY LEMAITRE＂：COLOR 138：P LOT K6，K日：DRAWTO 19，K日：DRAWTO 19，11：DR AWTO KG，11：DRAWTO K \(0, K 0\)
606 DIM CH（K1），M（K15），ZP（K15），F（K2），J （39）：M（K5）＝21：M（K6）＝－19：M（7）＝K1：M（9）＝1 \(9: M(10)=-21: M(11)=-K 1: M(13)=K 26\)
AB \(610 \mathrm{M}(14)=-K 20: M(K 15)=K 0: F 0 R \quad \mathrm{I}=\mathrm{Ki}\) T0 3 9：READ A：Jち（I）＝CHRS（A）：NERT I
TK 615 DATA \(164,104,133,215,164,133,214,1\) 64，133，217，164，133
LU 629 DATA \(216,164,133,218,164,170,160,0\) \(, 177,214,145,216,206,208,4,230,215,230\) ，217，202，208，242，198，218，16，238，96
\＆ \(630 \mathrm{CH}(\mathrm{K} 0)=\operatorname{PEEK}(106)-\mathrm{K} 8: \mathrm{CH}(\mathrm{K} 1)=\mathrm{CH}(\mathrm{K} 0)-\) K8：I＝U5R（ADR（Jラ）， \(57344, \mathrm{CH}(\mathrm{K} 0) * 256,511)\)
XW 640 A＝CH（K0）＊256：FOR I＝K日 T0 95：READ B ：POKE A＋I，B：FOR J＝K日 TO KS：SETCOLOR J， K15＊RND（K0），J＋J＋K4：NERT J：NEKT I
HA 650 I＝USR（ADR（Jラ），CH（K0）＊256，CH（K1） 25 6，511）
HY 660 A＝CH（K1）\(\because 256: F 0 R\) I＝16 T0 63：READ B ：POKE A＋I，B：NEST I：RETURN
OW 670 DATA \(0,0,0,0,0,0,0,0,7,15,30,56,48\) ，0，192，192，129，90，60，219，126，36，72，144 ，129，129，165，219，126，60，36，36 T I
20 750 SOUND K \(0, K 0, K 0, K 0: 5 C R=P E E K(88)+256\) ＊PEEK（89）：P＝350：F0R I＝K0 T0 K15：ZP（I）＝ K日：NERT I：IF MEN THEN POKE 17＋5CR，130
ZF 760 IF MEN＝K2 THEN POKE 18＋5CR， 136
C0 \(770 \mathrm{~B}=\mathrm{K} 0: \mathrm{W}=\mathrm{K} 0: \mathrm{E}=\mathrm{K} 20: \mathrm{EM}=\mathrm{K} 1: \mathrm{F}(\mathrm{K} 0)=\mathrm{K} 9: \mathrm{F}(\mathrm{K}\) 1）\(=\mathrm{K} 0: F(K 2)=\mathrm{K} 9:\) RETURN


\section*{by David Huff}

The game of Dragon Chase depends more on a sharp mind than on quick reflexes. The object here is to rescue the princess before an evil dragon can reach her.

In order to save the princess, you must remove the black castle which surrounds her. To accomplish this feat, you must find certain objects-such as diamonds, swords and rings. Unfortunately, these items are hidden from view until you move over them. And, if the dragon reaches your fair lady, the game is over.

\section*{The game rules.}

You begin each level in the lower left corner, marked by a square pink cursor. As you move with the joystick, objects hidden below become visible. A row of the things you must find is seen at the upper left, and you must uncover the objects in the order shown. When you locate one, stay over it until its color changes, then move on to find the next one. After you've retrieved all the required items, the castle is automatically removed. To rescue the princess and advance to the next level, move your pink cursor over her.

Also hidden are various objects which can help or hinder you. The squares can make the whole field visible for a few seconds, giving you time to locate other needed items.

Wild cards are also randomly hidden. These are marked
with a \(W\). Finding one is the same as locating the next object you were searching for.

Also hidden are dragons. If you hover above one, your movement is stopped-and the dragon takes another step toward the princess. A tombstone marks this event. Sometimes the dragon may be sleeping, in which case you can step right over him.

For help in finding things, a scanner is provided. Press the fire button to activate it, and a portion of the screen around you becomes visible. Using the scanner costs you 10 points and advances the dragon one step.

Each round of Dragon Chase has five levels. On higher levels, the dragon moves faster-while you must find more objects.

Scores are tallied as follows. You receive 200 points for saving the princess, or 100 points for finding an object. You lose points in this way: 50 off for finding a dragon, 5 are subtracted for advancing the dragon, and using the scanner eats up 10.

\section*{About the program.}

Dragon Chase takes advantage of Atari's character color assignment in graphics mode 2. The same character is easily displayed in different colors, and there are sixtyfour characters in the graphics 2 character set. You have a choice of four colors. In choosing one, a specific number is added to the character number, as shown in Figure 1.
To display a character, POKE its number into the dis-
play memory, \(\cdot\) adding the indicated amount to choose a color register. Character numbers are shown on page 55 of Atari's BASIC Reference Manual.

Figure 1.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Character No.} & \multirow[t]{2}{*}{COLOR} & \multicolumn{4}{|l|}{REGISTER} \\
\hline & & 708 & 709 & 710 & 711 \\
\hline 0-63 & & +0 & +64 & +128 & +192 \\
\hline
\end{tabular}

Dragon Chase uses a redefined character set at Line 1000. Line 340 pokes random characters into display memory. Their number has 192 added to it, specifying color register 711.

Similarly, Line 280 randomly selects the characters for you to find; by adding 128 to them, color register 710 is chosen.

The princess awaits your help. -1
David Huff, a D.D.S., is currently studying for a specialty degree in Orthodontics. He's had his Atari 1200XL for three years and is currently working on a program for orthodontic x-ray analysis.

The two-letter checksum code preceding the line numbers here is not a part of the BASIC program. For further information, see the BASIC Editor II, in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.
```

Yy 19 REM DRAGON CHASE
RA 15 REM DAUID E : HUFF
LF 20 GRAPHIC5 18:PMBA5E=PEEK(106)-16:CH5
$\mathrm{ET}=256 *(\mathrm{PMBA} \mathrm{SE}+8)$
ST 25 DIM E $5(50)$
Hs 30 DM=PEEK (88) +256\#PEEK (89): DL=PEEK (56
6) +256 \% PEEK (561)
a1. $40 \mathrm{PQ}=\mathrm{PMBA} 5 \mathrm{E} * 256+512: \mathrm{P} 1=\mathrm{P}$ 6+128: $\mathrm{P} 2=\mathrm{P} 1+1$
28:P3=P2+128
AT 50 POKE 54279, PMBASE:POKE 53277,3:POKE
559,46
ov 60 POKE 53257,1:POKE 53258,1:POKE 5325
9,3
IT 70 POKE 712, 20:POKE 709,12:POKE 708,20
8
WII 80 POSITION 4,5:? \#6;"dragon chase"
WK 90 G05UB 1000:G05UB 1500
PP 100 REM 5ET UP DI5PLÂY LIST INTERRUPT
co 116 POKE DL+15,135:POKE DL+16,160:POKE
DL+17,7:POKE DL+18,65
BP 126 POKE DL+19, PEEK (560) : POKE DL+20, PE
EK (561)
BM 136 POKE 512,197:POKE 513,6:POKE 54286
, 192
KS 146 REM INITIAL UALUES
Ho 150 DIF=50:5C0RE=0:LEUEL=0:FIELD=2:R=1
UU 160 REM 5 TART NEW LEUEL HERE
AR 170 CLEAR=USR(ADR(ES), PMBA5E*256)
Mo 180 LEUEL=LEUEL+1:FIELD=FIELD+1:IF FIE
LD=8 THEN G05UB 2406
U8. 190 POSITION 0,0:? \#6;"「"
PZ 209 POSITION 1,11:? \#6;"ROUND ";R;"
LEUEL "; LEUEL
aI 210 REM COLOR5
6G 220 POKE 623, $9:$ POKE 705,0:POKE 706,88:
POKE 707,34:POKE 768,12

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{23 230 POKE 709,200:POKE 710,120:POKE 711 20:POKE 712,12} \\
\hline ou & 250 REM 5ET UPP FIELD \\
\hline BM & 260 FOR I=20 T0 219:POKE DM+I, 1+192: \\
\hline & HT I \\
\hline TH & 270 FOR I=9 T0 FIEL \\
\hline er &  \\
\hline GK & 296 NEST I \\
\hline TE & 300 FOR I=9 T0 60 \\
\hline 04 & \(310 \mathrm{RP}=\mathrm{THT}\) (RND (9) 3209 ) +20 \\
\hline 01 & \(329 \mathrm{RC}=\mathrm{INT}(\mathrm{RHD}(0) * 12)+2+192\) \\
\hline YF & 336 50UND 2,RP, 10,4 \\
\hline 54 & 340 POKE RP+D \\
\hline 60 & 350 NEXT I \\
\hline Wv & 360 50UND 2, \(0,0,0\) \\
\hline NE & 370 FOR I=1 T0 10:RPD=INT \({ }^{\text {PRND }}\) \\
\hline & 20:POKE DM+RPD, 15+192:NEKT T \\
\hline R & 6:POKE DM+RPW, 20+192: NE \({ }^{\text {a }}\) I \\
\hline TB & 390 POKE 712,20:REM HIDE CHARACTER5 \\
\hline UP & 409 G05UB 1909 \\
\hline \(T\) & 410 G05UB 1700 \\
\hline IM & 450 COUNT \(=0:\) CHR=PEEK (DM+COUNT)-128 \\
\hline co & 460 DRAGON=0:HID=0 \\
\hline Ts & 470 G05UB 2500 \\
\hline J2 & 509 REM START MAIN PROGRAM LOOP \\
\hline Ub & 505 POKE 53278, 1 \\
\hline MuI & 510 POKE 1790,1 \\
\hline SII & 515 IF PEEK (53261) = 4 THEN 2000 \\
\hline 1 & 520 MEM=DM+20+20/8*(PEEK (203)-23) \\
\hline IC & 525 CHR1=PEEK (MEM)-192 \\
\hline 2 F & 530 IF CHR1=CHR THEN G05UB 700 \\
\hline 20 & 535 IF CHR1=29 THEN G05UB 700 \\
\hline B4 & 540 IF CHR \(1=15\) THEN G05UB 806 \\
\hline cJ & 545 IF CHR1=-174 THEN GOT0 900 \\
\hline \multirow[t]{3}{*}{Ez} & 550 IF CHR1=12 THEN POKE 712, 16:FOR I= \\
\hline & 0 T0 350:50UND 0,350-I, 10, 10:NEHT I:P0 \\
\hline & KE 712, 20:POKE MEM, 12+128 \\
\hline 00 & 555 IF STRIG(0) \(=6\) THEN G05UB 2100 \\
\hline 1. & 560 L00P=LOOP+1:POKE 77,0 \\
\hline HT & 570 IF LOOP <DIF THEN 515 \\
\hline CP & 589 LOOP=0:G05UB 600 \\
\hline 0.1 & 599 G0T0 515 \\
\hline Hu & 609 REM MOUE DRAGON \\
\hline \multirow[t]{3}{*}{Y} & 616 FOR I=15 T0 17:POKE DM+20+DRAGON, I \\
\hline & :FOR J=6 TO 15:50UND 2, 100, 12,10: NEXT \\
\hline & J:50UND 2,109+1, 12,20-I:NERT \\
\hline \multirow[t]{3}{*}{YR} & 620 FOR I=16 T0 15 STEP -1:POKE DM+20+ \\
\hline & DRAGON, I:FOR J=6 TO 15:50UND 2,106,12, \\
\hline & 10:NEHT J:50UND 2,106+I,12,20-I \\
\hline Gc & 630 NEHT I \\
\hline RH & 649 FOR I=0 TO 15:NEXT I \\
\hline BC & 650 5CORE=5CORE-5:G05UB 2500:50UND 2, \\
\hline & , 0,0 \\
\hline \multirow[t]{2}{*}{RM} & 666 POKE DM+20+DRAGON, 19:POKE D \\
\hline & AGON, 15 \\
\hline nu & 679 DRAGON=DRAGON+1 \\
\hline NT & 689 IF DRAGON=18 THEN POP : G0T0 2200 \\
\hline 21 & 696 RETURN \\
\hline H0 & 760 REM YOU FOUND ONE \\
\hline 14 & 716 IF CHR +64 <6 THEN RETURN \\
\hline Y1. & 720 50UND 0,10,10,10 \\
\hline PH & 736 POKE DM+COUNT, CHR+64:POKE MEM, CHR \\
\hline 08 & 64 \\
\hline Mu. & 749 COUNT=COLN \\
\hline Hu. & 756 CHR=PEEK (DM+COUNT)-128 \\
\hline UG & 755 G05UB 2500 \\
\hline PK & 760 FOR I=0 T0 20:NEHT I \\
\hline 10 & 770 SCORE=5CORE+100:G05UB 2500:50UND \\
\hline \multirow[t]{2}{*}{} &  \\
\hline & \(786 \mathrm{HID}=\mathrm{HID}+1:\) IF HID \(=\) FIELD THEN G05UB \\
\hline 20 & 796 RETURN \\
\hline U & 800 REM YOU FOUND A DRAGON \\
\hline MT & 816 POKE 1790, \\
\hline JI & 820 FOR I=15 T0 17:POKE MEM, I:FOR J=0 \\
\hline & T0 15:50UND 2,100,12,10:NEKT J:50UND \\
\hline
\end{tabular}
，106＋I，12，20－I：NEKT I
TP 825 G05UB 600
NA 830 FOR \(T=16\) TO 15 STEP－ \(1:\) POKE MEM，I： FOR J＝0 T0 15：50UND 2，100，12，10：NEKT J ：SOUND \(2,106+I, 12,20-\mathrm{I}\) ：NEHT I
54850 FOR I＝0 TO 15：NERT I
UI 860 SCORE \(=5\) CORE－50：G05UB 2506
0G 876 POKE MEM，14：50UND 2，0，0，0
NL 880 POKE 1790，1
ZW 896 RETURN
Wh 906 REM YOU SAUED PRINCESS
MJ 910 POKE 1790，0
QD 920 FOR I＝1 TO 10：50UND 6，10\＃I，16，I
IR 930 FOR K＝1 TO 5：NERT K：POKE 712，20
RU 940 FOR J＝14 TO 0 STEP－ 1
GC 950 SOUND \(0,10,16, \mathrm{~J}\)
ZM 960 SOUND 1，14，10，J＋2：NEKT J
KH 970 POKE 712，12：5CORE＝5CORE＋20：G0SUB 2 500：NERT I
EE 980 SOUND \(0,0,0,0: 50 U N D\) 1， \(0,0,0\)
0 L 996 GOTO 166
JB 995 REM REDEFINED CHRACTER SET
II 1006 FOR I＝0 TO 511：POKE CHSET＋I，PEEK \(57344+\) I）：NEST I
NT 1010 POKE 756，CH5ET／256
UG 1020 READ N：IF N＝－1 THEN RETURN
\(D Z 1036\) FOR I＝0 TO 7：READ D：POKE CHSET＋N＊ 8＋I，D：NEKT I：GOTO 1020
001035 DATA \(0,0,0,0,0,0,0,0,0\)
AG 1040 DATA \(1,0,0,0,24,24,0,0,0\)
T0 1650 DATA \(2,0,126,90,126,126,36,60,0\)
NT 1060 DATA \(3,73,42,28,119,28,42,73,6\)
GI 1076 DATA \(4,165,66,165,24,24,165,66,16\) 5
YK 1680 DATA \(5,0,24,60,126,126,60,24,0\)
LP 1090 DATA \(6,0,24,36,66,66,36,24,0\)
ZG 1109 DATA \(7,0,2,4,8,80,32,86,0\)
YN 1110 DATA \(8,0,54,127,127,62,28,8,0\)
OB 1128 DATA \(9,195,195,36,24,24,36,195,19\) 5
ZR 1130 DATA \(10,0,224,160,255,255,170,234\) í140 DATA 11，60，126，219，255，90，162，60， 0
IB 1150 DATA \(14,60,66,153,189,153,153,129\) ， 255
RE 1160 DATA \(15,112,208,255,170,213,127,0\) ， 0
FR 1170 DATA \(16,112,208,255,234,128,213,1\) 27， 0
SF 1186 DATA \(17,112,208,255,234,128,208,1\) 17，31
ZY 1206 DATA \(18,60,60,24,126,24,24,36,66\)
OK 1210 DATA \(19,24,60,127,255,255,254,68\) ， 68
KI 1220 DATA \(12,126,129,153,165,165,153,1\) 29，126
DD 1230 DATA \(13,96,189,96,231,231,90,189\) ， 90
RU 1246 DATA \(20,0,195,195,219,255,231,195\) ， 0
DU 1250 DATA \(21,0,0,0,240,152,240,176,152\)
GN 1260 DATA \(22,0,0,0,234,170,234,138,142\)
HI 1270 DATA \(23,0,0,0,138,200,170,154,138\)
RR 1280 DATA \(24,0,0,0,0,0,0,0,0\)
GS 1290 DATA \(25,0,0,134,135,126,126,106,6\)
\(K^{8} 1300\) DATA -1
za 1495 REM UBLANK ROUTINE
EE 1500 FOR I＝0 TO 250：READ D：POKE 1536＋I D
OR 1510 50UND 2，D，10， 4 ：NEKT I
FK 1515 FOR I＝1 TO 42：READ D：ES（I，I）＝CHR （D）：NEXT I
HR 1520 FOR I＝3 TO 15
LK 1530 SOUND 2，100，12，I
UZ 1546 FOR J＝15 TO 17
WK 1550 POKE DM＋10日＋I，J：FOR N＝0 TO 10：50U

ND 1，206，12，8：NERT N
WU 156日 POKE DM \(+160+\mathrm{I}, 19: 50 \mathrm{NND} 1,0,0,0\)
XB 1576 NERT J：NERT I
JC 1589 50UND 2，0，0， 0
BK 1596 RETURN
OK 1600 DATA \(216,169,0,141,3,210,173,13,2\) \(68,206,6,173,255,6,240,6,206,255,6,76\) ， 98，228，169，15，141
ap 1616 DATA \(255,6,173,254,6,240,243,174\) ， \(129,2,224,7,246,14,224,11,240,24,224,1\) 4，246，37，224，13，246
551620 DATÁ \(50,208,222,165,205,201,200,2\) \(46,216,24,165,205,105,8,76,76,6,165,20\) \(5,291,48,246,202,56,233\)
BL 1630 DATÁ \(8,133,205,141,2,208,76,138,6\) \(, 165,203,201,15,246,185,32,123,6,56,16\) 5，203，233，8，76，115
LI 1649 DATA \(6,165,203,291,95,240,168,32\) ， \(123,6,24,165,203,105,8,133,203,32,128\) ， 6，76，138，6，169，0
PR 1650 DATA \(76,130,6,169,240,160,8,145,2\) 93，136，208，251， \(96,169,168,141,3,210,16\) \(9,96,141,2,216,76,19\)
FK \(1666^{\prime}\) DATÁ \(6,104,104,133,204,104,133,20\) \(3,164,164,133,265,164,133,267,164,133\) ， \(266,230,208,165,208,201,13,208\)
5K 1676 DATA \(12,169,213,160,5,145,206,24\) ， \(105,1,136,208,248,166,0,162,6,169,7,76\) ，92，228，72，169，26
CB 1686 DATA \(141,16,212,141,26,208,169,21\) \(8,141,0,2,169,6,141,1,2,164,64,72,138\) ， 72，169，224，162，200
WY 1690 DATA \(141,16,212,141,9,212,142,24\) ， \(208,142,26,268,169,197,141,0,2,169,6,1\) \(41,1,2,164,170,164,64\)
SM 1695 DATA \(104,164,133,207,104,133,206\) ， \(162,4,169,0,168,145,266,136,268,251,23\) 0，267，262，268，246，96
PL 1696 DATA \(104,164,133,264,104,133,203\) ， \(164,104,160,0,145,203,200,192,220,206\) ， 249，96
MI 1790 REM CASTLE DATA
RZ 1716 Y1＝17：FOR I＝0 T0 16：READ D：POKE P \(1+I+Y 1, D: N E X T I\)
HJ 1720 RESTORE 1730
HJ 1736 DATA \(24,153,153,153,255,195,129,1\) \(29,129,129,129,129,129,129,129,255,255\)
00 1749 POKE DM＋38，18：POKE 53249， 188
BC 1750 RETURN
WZ 1806 REM REMOUE CA5TLE
UH 1816 FOR \(I=6\) TO 4 A：NERT I
XG 1826 FOR I＝16 TO 6 STEP－1
DB 1836 POKE PI＋I＋Y1， 0
UH 1846 SOUND \(0,16,16, T\)
UU 1850 SOUND \(1,12,10, I+1\)
YK 1866 50UND \(2,14,16,1+2\)
WG 1870 FOR J＝G TO 5 ： \(\mathrm{NE} E \mathrm{~T}\) J：NERT I
ZR 1886 FOR I＝\(\quad\) TO \(2: 50 \mathrm{UND} \mathrm{I}, 0,0,0: \mathrm{NEST}\) I
BA 1896 RETURN
FÁ 1906 REM INITIAL PLAYER POSITION
RM 1916 Y＝95： \(82=48:\) POKE 53250， K 2
AY 1926 FOR I＝1 TO 8
UA 1939 POKE P2＋I＋Y， 240 ：NEKT I
PI \(1946 \mathrm{D}=\mathrm{USR}(1687, \mathrm{P} 2+\mathrm{Y}, \mathrm{XZ}, \mathrm{DM}+216)\)
BG 1950 RETURN
DU 2006 REM PLAYER TOUCHES CASTLE
IF 2616 POKE 179日， 0
TU 2020 FOR I＝0 TO 80：50UND 2，127－I，8， 6
QG 2030 POKE P2＋I， \(0: N E K T\) I
BJ 2046 G05UB 1900
UN 2050 SOUND 2，0，0，0：GOTO 500
UP 2100 REM SCANNER
HY 2110 POKE 53251，PEEK（205）－12：Y \(=\) PEEK（2 03）－16
TO 2120 FOR I＝0 TO 30：POKE PS＋I＋Y3，255：50 UND 6，I，16，8：NEKT I
HI 2130 SOLND \(0,0,0,0\)
yo 2146 Gosub 669
```

UM 2150 FOR I=G T0 15:NEKT I:SCORE=5CORE-
5:G05UB 250日
OM 2160 FOR I=0 TO 30:POKE P3+I+YS,0:50UN
D 0,30-I,10,10:NEHT I
2165 POKE 53278,1:RETURN
2206 REM DRAGON GETS PRINCES5
2216 POKE 1790,0:CLEAR=U5RGADR【ES\,PMB
A5EN256)
DN 2220 G05UB 2300:P05ITION 1,11:? \#6;"
\ 2%3GESOR I=B TO 35:IF 5TRIG(0)=0 THEN
POP :GOTO 140
FG 2246 NERT I
JT 2260 G05LB 2300:G05UB 250日
WH 2270 FOR I=0 T0 35:IF 5TRIG(0)=0 THEN
POP :GOT0 140
F5 2289 NEXT I
OD 2290 G0T0 2220
UK 230日 FOR J=15 T0 17
UU 2310 50UND 3,186+J,10,6:50山ND 2,185+J,
10,6
2320 R=U5R(ADR(ES)+23,DM, Jy
H 2340 FOR I=0 T0 25:NEKT I:NEKT J
2 2356 50UND 3,0,0,0:50UND 2, 6,0,0
AY 2360 RETURN
RN 240日 REM NEHT ROUND
PT 2410 DIF=DIF-10;IF DIF<10 THEN DIF=10
GT 2420 FIELD=3:LEUEL=1
CB 2430 P05ITION 0,11:? \#6,"K!"
SJ 244G POSITION 2,11:? \#6;"ROUND ";R;"" C
OMPLETE":FOR I=0 TO 20@ STEP 2
245日 50山ND 0,254-I,10,8:50山ND 1,252-I,
10,8
2460 50UND 2,250-I,10,8:50UND 3,248-I,
10,8
2470 NEKT I
B 2480 FOR I=0 T0 3:50UND I, 0, 0, 0:NEHT I
WZ 2496 R=R+1:RETURN
PII 2500 REM PRINT SCORE
DE 2510 IF SCORE<6 THEN SCORE=0
MM 2520 POSITION 1,11:? \#6;"
H:REM 17 5PACES
KK 2530 POSITION 4;11:? \#6;"SCORE ";5CORE
AW 2546 RETURN

```


\section*{by Chuck Rosko}

The nuclear industry is looking for an adventurous individual who's willing to tackle a high-risk job. Surprise! That's you. Your task is to remove the krebs located in the reactor cores of the Nittany Memorial Power Plant. A kreb, of course, is a uranium pellet which is no longer radioactive. The krebs inhibit fission, so they must be removed and replaced with new radioactive uranium.

Your joystick (port 1) controls your atomic core scrubber. Move over each kreb (in green), and your scrubber will remove it, replacing it with a radioactive uranium pellet (in red). If you run into any of the radioactive pellets, your scrubber will be destroyed. The big spenders of the industry are paying you \(\$ 5.00\) for every kreb removed.

At the bottom right-hand side of the screen is a readout of the amount of energy in your scrubber. You must replace all the krebs before your energy runs out, or-again-your scrubber will be annihilated.

You'll start work on each successive core with less energy. After you've restored two cores, you'll have to avoid the deadly hudnall. This creature, who's trapped inside the core, is attracted to the noise of your scrubber and will attack it whenever possible. Avoid the hudnall at all costs.

Whenever your scrubber is destroyed, a chain reaction takes place-causing a reactor meltdown. The game (or rather, your job) is over after three meltdowns.

\section*{How it works.}

Here's a description of the Krebs removal program.
Lines 78-85 - update your energy usage.
Lines 98-100 - the sound routine, heard when you hit the core wall.

Lines 108-120 - scoring routine.
Lines 198-285 - moves the hudnall. The logic routine is a modified version, adapted from the Basic Training series (this one was in issue 18).

Lines 288-640 - reads the joystick and moves the scrubber, first checking what the scrubber will hit, then going to the appropriate subroutine.

Lines 748-770 - the scrubber is destroyed; the core melts down; and the number of scrubbers decreases.
Lines 773-795 - game-over message. Returns you to the title page.

Lines 798-820 - core-is-secured routine. Allotted energy decreases, so the difficulty level increases.

Lines 848-860 - plot the scrubber's initial position (random).

Lines 998-1040 - plot 30 krebs (random).
Lines 1098-1150 - plot 10 uranium pellets (random).

Lines 10000-10030 - initialize, then start game.
Lines 29098-30060 - draw main screen.
Lines 30198-30260 - draw title screen and initialize variables.

Lines 31098－32239－redefines two character sets． Lines 32000－32040－move character set from ROM to two different locations in RAM．

Lines 32050－32230－read in data for the first character set．

Lines 32231－32239－read in data for the second character set．

Table 1.

\section*{LIST OF VARIABLES}
\begin{tabular}{|c|c|}
\hline \(B X, B Y\) & Hudnall＇s X－and Y－position \\
\hline BUG & ．Flag；if less than 5，hudnall moves． \\
\hline CLOCK & Timer；used to determine when to decrease energy level． \\
\hline EN & Scrubber＇s energy level． \\
\hline LEVEL & Amount of energy you initially enter the core with． \\
\hline PC & Flag；indicates the number of krebs cleared． \\
\hline SC & Score． \\
\hline SCRUB & Number of scrubbers or lives． \\
\hline XV，YV & Holds direction hudnall is to move． \\
\hline & Scrubbers X －and Y －position． \\
\hline
\end{tabular}

Krebs removal was written without player／missile graphics，and with only two short machine language rou－ tines．One routine is used to move the character set from ROM to RAM；the other produces the rainbow effect when the core melts down．

I did this in order to show that you can make a relative－ ly fast game primarily out of BASIC．I＇m not saying that player／missile graphics and machine language routines aren＇t helpful．In fact，they＇re very useful，and can enhance a game tremendously．I just wanted to write a game with－ out them．

I did，of course，redefine the character set．In fact，I rede－ fined two character sets．Each contains a different view of the scrubber，krebs，radioactive pellets and hudnall．All you have to do to animate them is quickly flip between the two character sets．This technique is useful when you want to animate a large number of the same objects（i．e．， krebs and radioactive pellets），regardless of where they are on－screen．

Since I was using the technique for krebs and pellets， I also used it for the scrubber，hudnall and title page．To see what Krebs removal would be like without this tech－ nique，change Line 290 to read \(J=\operatorname{STICK}(0)\) ．One note，if you redefined a character but don＇t want it animated（like the core walls），you must put the same view in each character set．

The routine which moves the hudnall towards the scrub－ ber was taken（and slightly modified）from issue 18＇s Ba－ sic Training．I highly recommend that you read these articles．They contain many valuable programming tips．

Another way to pick up some knowledge is to analyze other people＇s games．So take a look at Krebs removal． Maybe you＇ll find something you can use in your next game． \(\boldsymbol{-}\)

Chuck Rosko is a microbiologist from Pittsburgh，Penn－ sylvania，the proud father of a baby boy．His interests in－ clude his wife and son，hockey，and writing educational programs．

The two－letter checksum code preceding the line numbers here is not a part of the BASIC program． For further information，see the BASIC Editor II， in issue 47 of ANALOG Computing．

Listing 1.
BASIC listing．

OA 270 COLOR TEMP2：PLOT BK，BY：BK二BK＋KU：BY ＝BY＋YU：COLOR 220：PLOT BH，BY：IF Z1＝94 T HEN 750
A5 285 TEMP2 2 TEMP1
MW 288 REM REGiD JOTSTICK
JG 296 J二5TICK（K0）：POKE 756，PEEK（196）＋K1＋ M＋M：C＝KD（J）：IF C＝K5 THEN 20G
LJ 306 LOCATE \(\mathrm{H}+\mathrm{KM}(\mathrm{CD}, \mathrm{Y}+\mathrm{YMCCD}, \mathrm{Z}: I F \quad Z>185\) AND Z＜192 THEN 109
ML उ16 COLOR Z（K2）：PLOT \(K, Y: K=K+K M(C): Y=Y\) ＋YM（C）：COLOR 94：PLOT K，Y：M＝K1－M
54329 IF \(Z=14\) THEN \(Z(K 1)=255: G 0 T 0110\)
YJ उ3 IF \(Z\rangle 255\) THEN \(Z(K 2)=166: G 0 T 0 \quad 210\)

MD 750 POSITION K3，K日：？\＃K6；＂
［GITDDNTM ＂：FOR Z＝KG TO KJ： \(50 \mathrm{LND}{ }^{2} \mathrm{Z}, 255-Z, 14, \mathrm{~K} 5\) ：NEKT Z
 KG TO K3：50UND \(Z, K G, K G, K G: N E X T ~ Z\)
KY 753 FOR C＝K1 TO K15：FOR Z＝K日 TO KЗ：R＝I NT（RND（0）＊ 30 ）：POKE 712，PEEK（53776）：P0K E 560，P＋Z：50UND K6，R，8，14：NEKT \(Z\)
UR 754 NEKT C：POKE 56日，P：BK＝K1日：BY二K1日：TE MP2＝191
UK 769 5CRUB＝5CRUB－K1：COLOR 169：PLOT 7＋5C RUB＋5CRUB，22：POKE 559，K日：POKE 712，14
 \(-Z, K 16-Z\)

DJ 765 FOR C＝Ki TO Ki日：NEYT C：NEHT Z：POKE 712，K0：POKE 559，46：G05UB 30001
JM 776 IF SCRUB THEN CLOCK＝K10：EN＝LEUEL：P C＝K0：G05UB 1000：G05UB 850：G0T0 290
5N 773 REM Gilie ouen
PN 775 P05ITION K3，K6：？\＃K6；＂JOB TERMINAT ED＇：P0SITION K3，14：？\＃K6；＇ROIL MiDE S＇＇ 5 C
NF 780 FOR \(Z=K 0\) TO K3：50UND \(Z, K 255-Z, 14, K\) 5：NEKT Z：U＝U5R（ADR（RBら）
RA 790 FOR \(Z=K 0\) TO K3：50UND Z，K日，K日，K日：NE KT Z：？\＃K6；CHRS（125）：G05UB 30200
or 795 G05UB 3000日：G05UB 1006：G05UB 850：G OTO 298
FC 798 REM COFPLETED GORE ROITITNE
LC \(800 \mathrm{P} 5=י\)
ore is securad
＝K10：BY＝K10：TEMP2＝191
CQ 805 FOR Z＝Ki TO K5：50UND K \(0,75, \mathrm{~K} 10, \mathrm{~K} 10\) ：POKE 712，14：FOR C＝K1 TO K50：NEKT C：50 UND K日，150，K10，K10：P0KE 712，K0
OF 807 FOR C＝K1 TO K50：NEXT C
ap 810 NERT \(Z\) ：FOR F＝K1 TO 45：POSITION K1， 9：？\＃K6；P \(5(K 1, K 18): 05=P 5(K 2): 05(L E N(05\)

HC 815 FOR \(Z=K 1\) TO K10：NEKT \(Z: 50 U N D\) K日，K日 ，KO，K日：NERT F：PC＝K日：LEUEL＝LEUEL－K5：IF LEUEL＜30 THEN LEUEL＝30
DD 820 EN＝LEUEL：Z（K1）＝160：Z（K2）＝160：G05UB 30065：G05UB 1000：CLOCK＝K10：G05UB 850： GOTO 290

LJ \(850 \mathrm{~K}=\mathrm{INT}\)（RND（K 0 ）\(\because \mathrm{K} 18\) ）\(+\mathrm{K} 1: Y=I N T\)（RND \((K 0\)

IO 852 IF（ \(Z>185\) AND \(Z\langle 192\) ）OR \(Z=140 R \quad Z=\) 64 0R \(Z=\mathrm{K} 255\) THEN 859
UJ 860 COLOR 94：PLOT K，Y：RETURN
YJ 998 REM PLOT KREB3
US 1000 FOR CC＝K1 T0 30
Wh \(1065 \mathrm{a}=\mathrm{INT}\)（RND（K6）＊K18）＋K1：B＝INT（RND（K 6）\(\because K(8)+K 2: L O C A T E\) A，B，Z
CM 1016 IF（ \(Z\rangle 185\) AND \(Z\langle 192\) ）OR \(Z=14\) or \(Z\) \(=64\) THEN 1005
MK 1046 COLOR 14：PLOT A，B：NERT CC
BB 1098 REM PLOT MRANTIN
2W 1109 FOR CC＝K1 T0 K10
WT 1105 A＝INT（RND（K 0 ）＊K 18 ）＋K1：B＝INT（RND（K 6）＊K18）＋K2：LOCATE A，B，Z
G5 1110 IF（Z〉185 AND Z \(\langle 192\) ）OR Z＝14 0R Z \(=640 \mathrm{R} \quad Z=\mathrm{K} 255\) THEN 1105
YP 1150 COLOR K255：PLOT A，B：NEXT CC：POSIT ION 16，23：？\＃K6；EN；＂＂：RETURN
UI 1000日 DIM ZZS（32），Z（K2）：G05UB 320日0：GR APHIC5 17：POKE 756，PEEK（196）＋K1：G05UB 30200：G05UB 30000
IS 10010 DIM \(\mathrm{XD}(\mathrm{K} 15)\) ， \(\mathrm{P} 5(65)\) ， 0 （ 65 ）：F0R \(\mathrm{K}=\)
 11）\(=4: \mathrm{KD}(14)=\mathrm{K} 1: \mathrm{XD}(13)=\mathrm{K} 3\)
WZ 10020 DIM KM（4），YM（4）：RESTORE 10030：F0 R I＝Ki TO 4：READ \(\mathrm{K}, \mathrm{Y}: \mathrm{KM}(I)=\mathrm{X}: Y \mathrm{Y}(\mathrm{I})=\mathrm{Y}: \mathrm{N}\) ERT I
SH 10030 DATA \(0,-1,1,0,0,1,-1,0\)
PU 10046 DIM RB（21）：RESTORE 10050：FOR I＝ K1 T0 21：READ \(\mathrm{H}: \mathrm{RB}\)（ I ）\(=\) CHR \((\mathrm{K}):\) NEKT I
ZU 10050 DATA \(104,169,6,133,20,133,19,105\) \(, 1,232,142,22,208,142,10,212,197,19,20\) 8，245，96
FF 1606日 G05UB 100日：G05UB 850：G0T0 290

YY 30日0日 P0SITION K0，22：？\＃K6；＂ROncr A A a energys＂
UK 30001 POSITION KЗ，K0：？\＃K6；＂四REB R REL

G1 30005
POSITION K \(0, K 1: ?\) \＃K6；＇＂ R日B ecem Geececes


он 30060 ？\＃к6；＂eceeg

\section*{PHPHFHFIF＂：RETURN}

5F 30198 REM DRGIN ICITITAL GCREEN
5K 30200 5C＝K0：5CRUB＝K3：EN＝K50：CLOCK＝K10：
 \(1: Z(K 1)=160: Z(K 2)=160:\) POKE 559，34
6D 30205 POKE 710，148：POKE 709，202：POKE 7 08，54：POKE 711，70
 Z Z Z い！

WK 30214 ？\＃K6；＇יZ Z Z Z Z zZZ zZZ zzZ ，
GZ 3024日 POSITION K3，14：？\＃K6；＇四 chuck r osko＇；POSITION K日，21：？\＃K6；＂to aPPly P ress ghrit＂
AK 30250 IF PEEK（53279）＝K6 THEN ？\＃K6；CHR 5（125）：RETURN
Ja 30260 POKE 756，PEEK（106）＋K1＋M＋M：M＝K1－M ：50UND K6，209，K10，K10：50UND K0，K0，K0，K －：GOTO 30250
CR 31098 REM DEFTDE 2 CHFRLGTER SETS
KA 32006 RE5TORE 32010：F0R I＝K1 T0 32：REA D A：ZZS（I）＝CHRS（A）：NERT I
BR 32010 DATA \(104,104,133,204,104,133,203\) ，104，133，206，104，133，205，162，4，160， 0
QU 32020 DATA \(177,203,145,205,136,208,249\) ，236，204，230，206，202，208，246，96
OH 32030 POKE 106，PEEK（106）－K5：GRAPHIC5 1 7：5TART＝（PEEK（106）＋K1）＊256：P0KE 752，K1
KD 32035 POSITION 4，K10：？\＃K6；＂PLEASE WA IT＂
FD 32046 A＝U5R（ADR（ZZ5），57344，5TART）：A＝U5 R（ADR（ZZ5），57344，5TART＋512）
BU 32050 READ \(\mathrm{K}: \mathrm{IF}\) \％ \(\mathrm{B}=-\mathrm{K} 1\) THEN 32300
NY 32060 FOR Y＝K日 TO 7：READ Z：POKE K＋Y＋5T ART，Z：NERT Y：GOTO 32650
EZ 32206 DATA \(208,0,0,0,6,0,0,0,255,216,2\) \(55,0,0,0,0,0,0,0,224,1,1,1,1,1,1,1,1,2\) \(32,128,128,128,128,128,128,128,128\)
IZ 32210 DATA \(246,1,2,4,8,16,32,64,128,24\) 8，128， \(64,32,16,8,4,2,1\)
KG 32220 DATA \(496,24,60,162,195,195,162,6\) \(0,24,504,0,66,126,126,126,126,60,0\)
RZ 32225 DATA \(112,60,126,15,252,63,240,12\) \(6,60,256,255,129,129,129,129,129,129,2\) 55
C5 32230 DATA \(464,255,195,195,195,195,195\) ，195，255，480，36，24，165，126，126，126，189 ，24，－1
TA 32300 READ \(\mathrm{K}: I F \mathrm{~K}=-\mathrm{KI}\) THEN RETURN
MT З2310 FOR Y＝K日 TO 7：READ Z：POKE K＋Y＋5T ART＋512，Z：NERT Y：G0TO 32300
FK 32320 DATA \(208,0,0,0,0,0,0,0,255,216,2\) \(55,0,0,0,0,0,0,0,224,1,1,1,1,1,1,1,1,2\) \(32,128,128,128,128,128,128,128,128\)
JK 32330 DATA \(246,1,2,4,8,16,32,64,128,24\) \(8,128,64,32,16,8,4,2,1\)
OP 32346 DATA \(496,0,0,24,60,60,24,0,0,504\) ，60，126，255，255，255，255，126，60
RH 32356 DATA \(112,60,126,246,63,252,15,12\) \(6,60,256,255,129,129,129,129,129,129,2\) 55
CI 32360 DATA \(464,255,255,255,255,255,255\) ，255，255，480，102，24，165，126，126，126，18 9，153，－1


Since issue 1, ANALog Computing's
disk subscriptions have eliminated the need for you to spend hours typing in programs from the magazine.
All of the programs in the magazine are on the disk version.
A 1 -year subscription ( 12 issues) is \(\$ 105.00\); a \(1 / 2\)-year ( 6 issues) is \(\$ 59.00\). To subscribe on disk, send your check or money order to:

DISK SUBSCRIPTION, PO. BOX 625, HOLMES, PA 19043.
For fast service, call our tollfree U.S. order line: 800-345-8112 (in PA, call 800-662-2444).



\section*{by Barry Green}

This program was developed quite unintentionally. I was busy hacking away on a new machine-language animation system for the Atari, that works with BASIC. One evening, I actually got around to testing it with Atari BASIC. The program worked flawlessly and made animation feasible from BASIC, but it was still pitifully slow.

After hours of poring over the code, trying to trim and streamline it to make it run faster, I realized the fault was not with my program at all. It was working as fast as it could. Still, I thought, there has to be a better way! One evening when I was reading through my Atari BASIC Sourcebook, the dim light in my brain flickered on for a moment.
The incredible slothfulness of BASIC-from a game programmer's point of view-could be traced to the fact that no provision for integers had been made. Only floating-point math was supported, and it's very slow. Integer math is very fast, so somehow my Atari had to be made to understand integer math. This was, of course, much easier said than done.

\section*{And how?}

One very underexplored feature of the Atari 800XL and 1200XL (and the expanded 600XL) is that the operating systems can be placed in the upper 16 K bank of memory and modified to no end.

This was my chance. I could load the OS into RAM, then replace the old floating-point math package with a much faster integer package. Every operation BASIC did, from POKE to FOR-NEXT, would run faster.
That's what I did. The following program places the OS in RAM, then replaces the old math package with a much more efficient integer math package. I've run some BASIC test programs, to show the speed gained by using integer math instead of floating point.

\section*{Typing it in.}

Listings 1 and 2 are the BASIC data to create your copies of Integer BASIC. Please refer to the M/L Editor on page 4 for typing instructions. You should create the program in Listing 1 under the filename INTBASIC.OBJ. Create the program in Listing 2 under the filename INTBASI2.OBJ.

\section*{The test.}

Is Integer BASIC that much faster? To prove that it is, I devised three very simple BASIC programs to test the speed difference. Each was run in both languages, and the jiffy-count was printed next to each
\begin{tabular}{lccc} 
& Floating-Point & Integer & \%Faster \\
FOR-NEXT & 1459 & 1044 & \(30 \%\) \\
MATH TEST & 947 & 510 & \(46 \%\) \\
SCREEN FILL & 3754 & 1869 & \(51 \%\)
\end{tabular}

The source listings for Integer BASIC follow this article. As you can see, the Integer BASIC can be up to 50\%

\section*{FInteger BASIC continued}
faster．That＇s a serious improvement for something so eas－ ily accessible．

The side benefit：those of you using an Integer BASIC compiler might consider how handy it would be to be able to interactively debug your own programs．

\section*{How to integrate it．}

Here are instructions for using the INTBASIC integer math package for 64 K Atari XL computers．

To use this package，just load the INTBASIC．OBJ file from DOS menu item L，or from OS／A＋type in LOAD INT－ BASIC．OBJ．Your computer will now be in Integer BASIC． Do this only if no BASIC program is in memory at the time．

The INTBASIC package has been tested，with no bugs found．However，some knowledge of integer math is re－ quired to use the package effectively．Since the numbers being dealt with are integers，BASIC will no longer recog－ nize a decimal point as valid．Only numbers in the range of 0－65535 or，in version \(2,-32768\) to +32767 will be ac－ cepted．This also means that division is treated slightly differently．In integer math，the expression 10／3 evaluates into 3，not 3.3333 ．．All numbers are rounded down；the digits past the decimal point are simply dropped．

This means that special care must be taken in using the built－in functions such as \(\operatorname{COS}(X)\) and \(\operatorname{RND}(0)\) ．Math func－ tions like \(\operatorname{COS}(X)\) will simply not work correctly．RND（0） should not be used，because it now only returns a value between 0 and 3．It＇s a better idea to use \(\operatorname{PEEK}(53770)\) to get a random number．

Negative numbers in version 1 are different．They are now expressed in 65536－X terms．This means that a nega－ tive number is subtracted from 65536 and the result is printed．Therefore，when printing a negative \(1(-1)\) on the screen，you will get 65535 （65536－1）．Negative numbers are fully usable；they just print differently from what you＇d expect．

One last restriction：BASIC programs developed under the integer math package cannot be loaded into the float－ ing－point BASIC；nor can floating point programs be load－ ed into Integer BASIC．

The solution to transferring programs from one format to the other is simply to LIST them onto disk or cassette， then ENTER them into the other version of BASIC．When transferring programs from floating－point BASIC to in－ teger，remember that decimal points will be flagged as er－ rors，and you must fix all \(\mathrm{RND}(0)\) usage．

Have fun with Integer BASIC and enjoy its refreshing speed．

Barry Green of Out of the Blue Associates bought his first Atari（an 800）in 1982 and taught himself BASIC and assembly language．Since then，he＇s worked on many con－ versions and originals for various companies．His main in－ terest lies in system software and utilities．

\section*{Listing 1.}

1090 DATA \(255,255,0,6,191,6,32,79,6,17\)
\(7,293,145,295,290,298,249,1480\)
1610 DATA \(230,204,230,266,202,224,48,2\)
```

08,3,32,91,6,224,0,208,233,8696
1020 DATA 129,169,6,141,14,212,169,254
,141,1,211,32,76,6,177,295,7512
1036 DATA 145,203,206,208,249,230,204,
230,266,202,224,48,208,3,32,91,502
1040 DATA 6, 224,6,208,233,88,169,64,14
1,14,212,96,169,0,133,203,8047
1050 DATA 169,192,133,204,169,0,133,20
5,169,64,133,266,162,64,166,0,7732
1066 DATA 96,166,8,230,264,236,266,262
136,268,248,96,226,2,228,2,1486
1070 DATA 0,6,96,6,216,78,216,32,161,2
19,169,64,133,212,169,6,8184
1086 DATA 133,213,133, 214,133, 215,56,8
,164,242,177,243,261,48,144,52,341
1090 DATAि 201,58,176,48,40,24,8,41,15,
72,165,214,133,215,165,213,8715
110日 DATA 10, 38,215,10, 38,215,24,101,2
13,133,213,165,215,161,214,133,1444
1116 DATA 214,6,213,38, 214,104, 24,101,
213,133,213,144,2,230,214,230,2251
1120 DATA 242,76,17,216,46,96,230,216,
91,217,32,81,218,165,213,133,1323
1130 DATA 220,165,214,133,221,160,0,16
2,0,165,213,217,87,217,165,214,2889
114G DATA 249,82,217,144,19,165,213,56
,249,87,217,133,213,165,214,249,5171
1150 DATA 82,217,133,214, 232,76,245,21
6,138,9,48,145,243,266,192,5,499
116日 DATA 208,213,136,177,243,9,128,14
5,243,160,6,177,243,261,48,208,2167
1170 DATA 4,260,76,39,217,132,222,165,
243,56,229,222,133,218,165,244,5799
1180 DATA 233,0,133,219,177,243,145,21
6,200,192,5,208,247,165,220,133,5010
1190 DATA 213,165,221,1}3,214,96,39,3,
9, 6,0,16,232,106,16,1,9645
1200 DATA 176,217,183,217,166,212,164,
213,169,64,133,212,134,213,132,214,447
1
1210 DÁTA 24,56,210,217,219,217,165,21
3,133,212,165,214,133,213,24,96,2487
1220 DATA 96,218,98,218,76,117,218,162
,218,146,218,165,213,24,101,225,2362
1230 DATA 133,213,165,214,1日1,226,13了,
214,24,96,165,213,56,229,225,133,2628
1246 DATA 213,165,214,229,226,133,214,
6,212,165,214,10,102,212,165,213,3624
1250 DATA 5,214,268,2,1了},212,24,96,21
9,218,2,219,169,6,133,219,9685
126G DATA 133,218,162,16,208,13,24,165
,219,101,225,133,219,165,218,101,2080
1270 DATA 226,133,218,70,218,162,219,1
02,214,162,213, 202,48,4,144,243,1188
1280 DATA 176,228,24,96,40,219,86,219,
165,225,5,226,246,39,169,0,8939
1290 DATA 13J,219,133,218,160,16,6,213
,38,214,38,219,38,218,56,165,8328
130日 DATA 219,229,225,170,165,218,229,
226,144,6,134,219,133,218,230,213,5973
1310 DATA 136,208,227,24,96,56,96,137,
221,151,221,134,252,132,253,166,424日
1320 DATA 2,177,252,153,212,0,136,16,2
48,96,152,221,166,221,134,252,3994
1330 DATA 132,253,166,2,177,252,153,22
4,0,136,16,248,96,167,221,181,2625
134@ DATA 221, 134,252,132,253,166,2,18
5,212,0,145,252,136,16,248,96,667
1350 DATA 182,221,193,221,160,2,185,21
2,6,153,224,6,136,16,247,96,8467
1360 DATA 224,2,225,2,228,2,0,0,0,0,0,
0,0,0,0,0,3423

```

Listing 2.
1090 DATA \(255,255,6,6,101,6,32,76,6,17\)
```

7,203,145,205,200,208,249,1480
1810 DATG 230,204,230,206,202,224,48,2
08,3,32,91,6,224,0,208,233,8696
1020 DATA 120,169,0,141,14,212,169,254
,141,1,211,32,70,6,177,205,7512
1030 DATA 145,203,200,208,249,230,204,
230,206,202,224,48,208,3,32,91,502
1040 DATA 6, 224;0,268,233,88,169,64,14
1,14,212,96,169,0,133,203,8047
1050 DATA 169,192,133,204,169,0,133,20
5,169,64,133,206,162,64,160,0,7732
1060 DATA 96,160,8,230,264,230,206,202
,136,208,248,96,226,2,228,2,1480
1070 DATA 0,6,96,0,216,78,216,32,161,2
19,169,64,133,212,169,0,8184
1080 DATA 133,213,133,214,133,215,56,8
,164,242,177,243,201,48,144,52,341
1090 DATÁ 201,58,176,48,40,24,8,41,15,
72,165,214,133,215,165,213,8715
1100 DATA 10,38,215,10,38,215,24,101,2
13,133,213,165,215,101,214,133,1444
1116 DATA 214,6,213,38,214,104,24,101,
213,133,213,144,2,230,214,230,2251
1120 DATA 242,76,17,216,40,96,230,216,
132,217,32,81,218,165,213,133,1692
1136 DATA 220,165,214,133,221,16,29,16
5,213,73,255,24,105,1,133,213,8100
1140 DATA 165,214,73,255,105,0,133,214
,160,0,169,45,145,243,230,243,2604
1150 DATA 208, 2, 230,244,160,0,162,0,16
5,213,217,128,217,165,214,249,4825
1160 DATA 123,217,144,19,165,213,56,24
9,128,217,133,213,165,214,249,123,4897
1170 DATA 217,133,214,232,76,20,217,13
8,9,48,145,243,206,192,5,208,109
1180 DATA 213,136,177,243,9,128,145,24
3,160,0,177,243,201,48,208,4,9712
1190 DATA 200,76,70,217,132,222,165,24
3,56,229,222,133,218,165,244,233,7075
1200 DATA 0,133,219,177,243,145,218,20
0,192,5,208,247,165,220,133,213,5700
1210 DATA 165,221,133,214,16,8,165,243
,208,2,198,244,198,243,96,39,1337
1226 DATA 3,0,0,0,16,232,100,10,1,170,
217,183,217,166;212,164,716
1230ं DATA 213,169,64,133,212,134,213,1
32,214,24,96,210,217,219,217,165,4440
1248 DATA 213,133,212,165,214,133,213,
24,96,96,218,98,218,76,117,218,1105
1250 DATÁ 102,218,146,218,165,213,24,1
01,225,133,213,165,214,101,226,133,356
9
1260 DATA 214,24,96,165,213,56,229,225
,133,213,165,214,229,226,133,214,6544
1270 DATA 6,212,165,214,10,102,212,165
,213,5,214,208,2,133,212,24,8786
1280 DATA 96,219,218,2,219,169,0,133,2
19,133,218,162,16,208,13,24,6991
1290 DATA 165,219,101,225,133,219,165,
218,101,226,133,218,70,218,102,219,421
8
1300 DATA 102,214,102,213,202,48,4,144
,243,176,228,24,96,40,219,86,8678
1310 DATÁ 219,165,225,5,226,240,39,169
,0,133,219,133,218,160,16,6,7494
1320 DATA 213,38,214,38,219,38,218,56,
165,219,229,225,170,165,218,229,6048
1330 DATA 226,144,6,134,219,133,218,23
0,213,136,208,227,24,96,56,96,9978
1340 DATA 137,221,151,221,134,252,132,
253,160,2,177,252,153,212,0,136,1950
1350 DATA 16,248,96,152,221,166,221,13
1350
1360 DATA 224,0,136,16,248,96,167,221,
181,221,134,252,132,253,160, 2,2836
1370 DATA 185,212,0,145,252,136,16,248
,96,182,221,193,221,160,2,185,2265
1380 DATA 212,0,153,224,0,136,16,247,9
6,226,2,227,2,228,2,0,496%

```

\section*{F Integer BASIC continued}



Listing 7.
Assembly listing.




by Dave Pettit

Having played Atari's Star Raiders for years, I've learned a few interesting ways to play it faster and more accurately. Some of my strategies are extensions of what the instruction manual says; some are applications of other people's strategies; and still others are unwritten facts of how the game progresses. I hope these ideas will help all players, from Novice to Commander.

The facts here have been grouped by topics, arranged in alphabetical orderexcept for "Miscellaneous Strategies" and specifics about the Commander Mission, which are placed at the end. Ideas are arranged within a category so that practically anyone can use the beginning suggestions, while more able navigators will see uses for the later concepts. When an idea involving damaged or destroyed equipment is given, it's placed at the section's end.

You can read this article through or use it as a reference. Say you want to find out what you can do to locate a starbase when both your Tracking Computer and LongRange Scan are damaged. You should look under each section-Starbase, Tracking Computer and Long-Range Scan. You'll probably find just what you need in one.

Aft view.
1. When in aft view, the joystick directions are reversed from those of the front
view. An easier way to learn this: the controls are the same as for hyperwarp in PILOT and higher missions (push left and go right; pull back and go down).
2. Don't use the strategy that some take -turning your starship around to get a pursuing enemy. That takes too much time, and you may get hit in the process.
3. If you must turn around (say, to pursue a distant enemy behind you), turn to the left or right, up or down, so the horizontal or vertical direction indicators (theta and phi) become larger in absolute value. For example, if you turn so the indicator changes from -350 to 0 and then from 0 to +475 (at which time, the Tracking Computer goes to front view), you'll have wasted a lot of time. It's better to go from -350 to -475 first. Keep turning to 0 , once in front view, to center the enemy.
4. When turning around from aft to front view, an enemy can be as much as 40 metrons farther away.
5. If an enemy is pursuing you in aft view and your engines are on, you can slow way down (say, from 6 to 4 ) and keep firing as they approach. If they don't get hit, they'll probably pass you by. But, as they pass and your screen changes to the front view, you can speed back up to 6 or 7 to match their speed. This keeps them close to you, so you can shoot them when they least expect it. A very effective strategy, this does use a lot of energy (see "Engines," \#1, below).

Engines.
1. Don't rely on your engines too much in finding the enemy; if they go out, you're practically stranded. Conserve fuel as much as possible and wait for the enemy to come to you.
2. William Colsher wrote in the November/December 1980 issue of Compute! that saving energy is one of the most important ways to increase your rating. He's right. But new players should chase and shoot at the same time, so they can practice aiming. This will keep most of the enemy in close range, where they'll be larger and easier to hit. Speeds of 5 or 6 are recommended here. In time, players will learn when to shoot and when to wait, based on where the enemy is on the screen.
3. Mr. Colsher does not emphasize enough that some enemy ships do not attack you - you have to go after them. The need for this can be determined by centering them in the Attack Computer Display and observing the range indicator. If the range is getting larger or staying constant, you'll have to chase them down with a speed of 6 or 7 . If the range is getting smaller, wait them out.
4. Most enemies travel at 0 or 6 . If you're chasing one at 6 and the range doesn't change (or if you don't catch them soon), they're playing cat and mouse with you. Increase your speed to 7 if you really want to catch them.
5. Sometimes you notice in the Long-

Range Scan (or with the Tracking Computer) that one enemy is pursuing you from the back, while another is standing still, dead ahead. By pressing a 4 or 5 , you can head for the forward enemy and allow the other one to catch you. Then blast the one you see first and the other soon after. That saves a little time and, probably, some energy.
6. Practice moving at speeds of 7,8 and 9 . Try going this fast and shooting meteors. It's tough, but will improve your steering and aiming abilities.
7. Sometimes-at high speeds-it's impossible to turn around and face in another direction with the Tracking Computer on. You must stop all your engines, turn around, then turn on the engines again.
8. If you need to destroy your starbase or an enemy starship quickly, don't hesitate to use a speed of 8 or 9 . The loss of energy is small when weighed against the loss of a starbase to Zylon ships.
9. A speed of 9 with damaged engines is the same as a speed of 7 with normal engines. Use this factor to catch a fleeing enemy.
10. If your engines do get destroyed while your enemy is 300 metrons away and not approaching you, you can catch the ship using your Long-Range Scan and hyperwarp. Simply set up the enemy directly in front of you with the Long-Range Scan (see "Long-Range Scan," \#6). Then press the H key and steer toward that ship, so that it remains in front of you till it's in the first third of the screen in front of your location (you're still in Long-Range Scan). Now press any number key and the F key. The enemy should be within visual range. This will cost you only about 100 mergs (units of energy), the same amount you'd use with your engines working to take out an enemy at the same distance-but this method is considerably faster. You'll have to experiment with this to get it to work for you.
11. Use the above technique, but, instead of pressing a number key to coast toward the enemy, time the pressing of the number key so that the enemy will pass by you a bit and have to catch up later. This may avoid your getting blasted from the front.
12. If your engines and Long-Range Scan are both destroyed, you can use hyperwarp in short bursts to catch an enemy or to get closer to a starbase. Be sure to keep an eye peeled for a passing Zylon starship or starbase. Be careful, or this can waste a lot of time and energy.
13. Destroyed engines operate at a normal speed of about 5 when any key from 5 to 9 is pressed. Keys from 1 to 4 produce speeds just smaller than your normal 1 to 4 speeds.

\section*{Galactic Chart.}
1. The enemy will move on Star Dates in \(x .00\) and \(x .50\), except 0.50 and for 100 centons after surrounding a starbase. It's helpful to know this when you're starting a new
game or wiping out the enemy around a starbase - they (and all other Zylon starships) sit and wait for 100 centons, even if the starbase is no longer surrounded!
2. Normally, when beginning a hyperjump, it takes about 8 centons to complete. Thus, the Star Date should not be in the ranges of \(x .42\) to \(x .49\) or \(x .92\) to \(x .99\). However, it's possible to speed up your travel time by remaining with the Galactic Chart on-screen for a few seconds. This can reduce travel time by 1 or 2 centons, but be careful in missions above Novice-you may not be able to recenter the target marker quickly enough to get to the proper sector.
3. Enemy starships line themselves up horizontally and vertically, with a starbase first. They then move in a straight line toward the base to surround it. They seldom move diagonally (see "Galactic Chart," \#11).
4. Enemy ships do move diagonally when traveling around a starbase.
5. Zylon starship sectors of 1 or 2 enemy ships (patrol groups) usually move every 50 centons. Use this to predict their travels. You decide if you'll have time to destroy a 4-Zylon sector. You might decide to aim for a blind sector if your Sub-Space Radio is out, or if you didn't watch the clock well (refer to "Galactic Chart," \#2, above).
6. If the enemy seems to be converging on a starbase on the left and the Zylon starships are on the right, most patrol groups will move toward the base in a horizontal or vertical line. Thus, you can predict the enemy's next sector. Use this information to plan your next move when the Star Date's about to change ("Galactic Chart," \#2, above), or while waiting for a distant Zylon starship in your sector (see "Galactic Chart," \#8, below; also see \#11 for the reason why and the movement of Zylon starships in the other direction).
7. The enemy will most often move toward a group of starbases, rather than a lone one. But that doesn't mean that they never go for the lone bases.
8. If you're waiting for the final Zylon ship in a sector to approach and attack, use the Galactic Chart to plan and position your next move. After destroying the Zylon star-ship-and if the Star Date permits (see "Galactic Chart," \#2) - you can hyperjump without looking at the chart again. This can save time and energy.
9. When you've been in a sector for a considerable amount of time, consider updating the Galactic Chart. You can do this quickly by typing GF. The fraction of a second that the chart is on will be enough to update it. You won't miss too much action, and you'll be able to avoid problems should your Sub-Space Radio go out.
10. Also, type a quick GF when a starbase is first surrounded and you choose to finish clearing the sector you're already in.
11. The Zylon starships in the Galactic Chart are positioned from the left side of the top row. Each sector is placed or left
alone, through to the last sector in that row. Each row is positioned in this way, with the sector in the lower right located last. If a series of enemies is traveling toward a starbase on the right, the leftmost Zylon starship sectors will move diagonally. If the Zylon starships are clumped to the right, moving toward a starbase on the left, all sectors could move as a group.
12. When you've eliminated most enemy sectors and enemy ships are grouped, use the rook-mate strategy of chess - don't allow any enemy to pass a chosen horizontal or vertical line in the chart. Slowly eliminate the closest enemy first, eventually moving through all enemy sectors.
13. Groups of four enemy starships are slower and don't move often. They're good bets for remaining stationary when your Sub-Space Radio is out, or when you've forgotten to check the Star Date before selecting hyperwarp.

\section*{Hyperwarp.}
1. When in hyperwarp, the directions say that it's necessary to keep the target marker in the center of the cross hairs. This is true only at the critical moment of entering hyperspace-that is, when the velocity reaches 99 metrons/second. Knowing this will allow you to scratch your nose, make a quick check of the Galactic Chart or do practically whatever you want-and still reach the sector you aimed for.
2. Use as many of your senses as you can. Listen to the sound of your engines at the moment before entering hyperwarp. If you can learn what that volume is, keeping the target marker in the right place at the right time will be easier.
3. Using jerky wiggles of the joystick is the easiest way to steer. Also, better control can be obtained by holding the top of the stick, rather than the middle.
4. Mr. Colsher is generally correct in his rule about not jumping more than four sectors at one time. The cutoff point actually occurs when the hyperwarp energy required changes from 260 to 500 mergs. Use two jumps, rather than a single energy-wasting one, to get to the desired sector.
5. If you must use 260 mergs in a hyperjump, be sure to steer carefully, or you may go off course by enough to use 500 mergs. If in doubt, either set up 250 mergs while on the Galactic Chart, or aim back from the center of the cross hair a little bit (see "Hyperwarp," \#8).
6. Mr. Colsher's rule ("Hyperwarp," \#4, above) ought to be amended further - don't hyperjump too far except in an emergency The emergency might be a surrounded starbase or a lack of photons or shields. Just don't do it often in a game.
7. Be extra careful when hyperjumping to a sector on the edge of the Galactic Chart. A small error in navigation may put you on the wrong side of the galaxy, not to mention causing a huge energy loss.
8. A little experimentation will show that
the book is right: if you position the hyperwarp target marker a little off center, you can hyperjump to a neighboring sector from the one set in the Galactic Chart. This might be helpful if your shields go down, or if the enemy moves just as you press \(H\). It can also be used when you know (or can bet) that the enemy will move from where you last saw them. Simply aim the target marker off center by one or more widths of the marker for each sector that you wish to move (see Figure 1). You should be able to move up to four sectors away with only a modicum of experimenting. You could, for example, display the Galactic Chart, find a nearby enemy or starbase, and hyperjump there without doing any positioning on the chart. This really speeds up the game. You should try this in Novice level first; it's much easier there.


Figure 1.
If no aim is given, the target marker ( + ) is positioned off of a normal Galactic Chart aim, or away from your present sector-either by two sectors to the left ( A ) or by three sectors to the right and one up (B).
9. Not only can't you shoot in hyperwarp, but you can't be shot at. At least, you can't be shot at as long as you've reached a minimum speed.
10. When entering an enemy or starbase sector, or when seeking out a distant Zylon ship, use the Attack Computer Display and your own hyperjump momentum to help steer the ship to the desired location. If the target is right or left of center in the display, push the joystick in that direction. If the target is high, pull back (called "nose up"); if low, push forward (called "nose down"). It's possible to steer yourself to within sight range of a starbase more often than not by using this method.
11. Use hyperwarp within a starbase sector to get to your goal faster. This is especially handy with distant starbases and/or destroyed engines. Use your engines for docking maneuvers as needed.
12. In hyperwarp, the range indicator will work for distance to a starbase in your sector, but not for distance to an enemy.
13. During hyperwarp, the Sub-Space Radio doesn't update the Galactic Chart. If a starbase is surrounded because of poor timing, you will have to change course (see "Hyperwarp," \#8), do a quick check of the Galactic Chart (see "Pause Key," \#2), or cancel the hyperwarp.
14. If your Tracking Computer goes out, steering to another sector in hyperwarp can be difficult. The center of the screenwhere the tarket marker is supposed to be - is the point at which no stars appear. You
can see this easily in Novice level by starting hyperwarp and turning your Tracking Computer off. The target marker will be positioned correctly.

\section*{Long-Range Scan.}
1. Another way of centering an enemy, instead of the Attack Computer Display, is the use of the horizontal and vertical displays on the Long-Range Scan screen. By adjusting them both to 0 , you'll find the target is straight ahead (see "Long-Range Scan," \#6, below)
2. On the Long-Range Scan, little orange rectangles represent the Zylon starships and a "dummy starship." Which is which? The one that disappears and reappears occasionally is the dummy, so go after the other one.
3. The orange rectangles that shoot or move rapidly are the enemy.
4. When in a starbase sector, the rectangle changes to a starbase shape.
5. When you've no better clues as to which rectangle is the dummy (and your Tracking Computer is out) go from \(L\) to \(G\) or \(F\), and then back to \(L\). If one of the rectangles moved drastically and isn't moving much now (or has disappeared), it is probably the dummy.
6. If your Tracking Computer is destroyed, it's still possible for you to get closer to a starbase or the enemy. As soon as you've entered the sector, press \(L\). Whatever you're searching for will come into view on the Long-Range Scan screen. Position it in the top half of the screen, directly in front of your ship by pushing the joystick left or right. Then move the stick forward and backward to "stretch out" the target - to get it to its maximum distance from you. (This is the same as being in the center of the Attack Computer Display in the front view.) As soon as the target is close to the center of the Long-Range Scan, go to the front view and dock or shoot, whatever is appropriate.
7. Apparently, it's not possible for both the Tracking Computer and Long-Range Scan to be destroyed together. At least one will be usable to locate an enemy or a starbase.
8. Of course, a destroyed Long-Range Scan won't tell you where the enemy ships are, but it will tell if there are none, one, or (at least) two of them in your sector. Just count the little orange rectangles. One is a dummy; any others are Zylon starships.

\section*{Manual Target Selector.}
1. In a sector with more than one Zylon ship, don't be tricked, while waiting for one enemy, into ignoring another. Use the \(M\) key and the range indicator to see if another enemy is approaching - and to find out which one will get to you first.
2. When entering an enemy sector where a large distance must be traveled to catch an enemy, use the Manual Target Selector to see if a second enemy is closer. If less than 400 metrons away, an enemy can usually be caught with hyperwarp momen-
tum (mentioned earlier; "see Long-Range Scan," \#6).
3. Sometimes you can cause an enemy to approach you by using the \(M\) key. It's as if they realize that they're being "scanned," so they decide to attack.
4. When all Zylon starships in a sector are killed, the Manual Target Selector will switch to two different values. Don't be confused and start looking for non-existent enemies.

\section*{Pause Key.}
1. You can use the pause key \((P)\) to temporarily stop the game action and plan an attack strategy. However, some purists may find this a form of cheating.
2. Use this key if you've just entered hyperwarp, then received notice of a surrounded or destroyed starbase. To do this, type GP quickly and don't touch the joystick. Determine what your move should be, realizing that the Galactic Chart hasn't been updated since you saw it last (see "Hyperwarp," \#13). Plan on using offset navigation of the target marker (see "Hyperwarp," \#8), then press the \(F\) key before moving the stick, so you can start steering as soon as you disengage the pause. Of course, if you decide to cancel hyperwarp, press a number key and move the joystick.
3. If you pause long enough, the enemy's strategy may change. Many times a Zylon ship that won't pursue you when your engines are out will pursue you after several minutes on pause. This may only be a coincidence (it doesn't happen every time), but it's been observed after many unplanned interruptions.

\section*{Photons-yours and theirs.}
1. You can't hit an enemy often by just shooting. You need to steer with the joystick, then fire. It takes a coordinated effort, frustrating many beginning players.
2. Zylon starships can shoot only one photon at you at a time. You, however, can shoot photons two at a time.
3. It's best to shoot in bursts of two. With the photons coming out of alternate tubes, you may forget which one will fire next. By shooting twice, you can guarantee that the tube you want to fire will.
4. Many times an enemy is destroyed just after they've shot at you. Don't get caught by that last shot. Either get out of the photon's way or shoot it down, too.
5. The cross hairs in the front and aft views are set for distant shots. The closer the enemy, the lower the ship must be in the view screen for you to hit it directly with a photon. Seldom can an enemy be hit above the horizontal cross hair (but see "Photons," \#12). You can check this by firing two shots very quickly and freezing them with the \(P\) key. You can continue to release and freeze them by alternately moving the joystick a small amount and then pressing \(P\) again.
6. When an enemy keeps matching you
with photon after photon, only to have them both explode, there are two ways to hit that ship. First, wait for the enemy's photon to come very close to you-but low enough so that it will pass without damage. Then fire away. The photons will pass each other, with yours striking the enemy.
7. The second way to get around this problem is to turn your ship to the left or right, so the other photon tube can be used to hit the enemy ship. It's as if the enemy keeps blocking your right jabs, then gets punched with your left hook!
8. A long, distant shot coming toward you (especially in Command level) can be hard to avoid or destroy. Normal reaction for a high photon is to pull back on the joystick, going nose up. Instead, do the reverse: push forward after shooting your photon. If you time it right, your shot will float up and strike the enemy's photon.
9. The only time a photon of yours will curve up by itself is when the enemy is dead center and very close, called "lock-on" in the manual. Both photons fire in this condition. Don't try to create this condition. Instead, learn how to kill an enemy with single shots when you're ready, rather than waiting for the ship to reach the right position.
10. One time that lock-on is effective and frequent is in combatting an enemy at pointblank range. Usually, each single shot blocks one of the enemy's. When double shots are sent out, one usually blocks an opponent's shot, while the other takes out the starship. Sometimes, when a shot misses the enemy, this process requires three or more pairs of shots.
11. When shooting the enemy at long range, give your photons enough time to reach the Zylon starships before shooting again. With the game only being able to keep track of two photons-one from each photon tube-at a time, you don't want to waste a perfect shot by shooting again. You can see this in the Long-Range Scan by firing twice, waiting a few seconds and firing again. The farthest photon will disappear first.
12. It is even possible to steer a photon after it has been fired! You can prove this by firing a photon and then moving the joystick to the right or left. If you hold the stick this way long enough, you'll see the photon cross to the opposite side of the screen! By causing a nose-down action in front view (joystick forward), you can make a photon go above the horizontal cross hair. With practice, you can direct shots to hit enemy starships at great distances-and on opposite sides of the screen. Using this will save time and energy by destroying the enemy more quickly.
13. Here's how to shoot and steer upon entering a sector. First, use the Attack Computer Display for initial steering (see "Hyperwarp," \#10). Then, watch the range to the enemy. When it is less than 200 me-
trons, shoot two shots. If you can see the enemy, steer one of the shots toward them. But don't waste your time and energy firing ten or twenty times at nothing.
14. Don't try to hit an enemy in LongRange Scan. You won't be successful often enough to make it worth your while.
15. Shooting at an enemy farther away than 120 metrons may put them into attack mode. They will then come to get you. Try this in front view and in Long-Range Scan, too.
16. If a Zylon starship shoots and is destroyed, but your Tracking Computer changes views, you may need to avoid the enemy photon. To do this, turn away from the photon hard! After you're sure the photon has passed you, you may continue your attack on the next starship.
17. If you listen carefully, you may notice a slightly different sound when you fire a photon after your photons have been damaged. The sound has a slightly deeper pitch.
18. If in a heavy battle, where new damage to your ship has just occurred, fire one or two photons to make sure they're still working. Don't wait for the damage report and a Zylon ship to start attacking.
19. If your photons are damaged, it can be difficult to destroy a close Zylon starship on the same side as the damaged photon tube. What you need to do is keep the enemy low on the screen, as you move your ship to position enemies on the other half of the screen. Usually, they'll still be shooting in the same direction as they have been. As soon as they shoot, and when they're right in front of the working photon tube, blast away!

\section*{Shields.}
1. You're always two shots or less from death: one for your shields and one for you. Be prepared to go into hyperwarp quickly when your shields go out, or you may die trying.
2. If your shields go out, press \(H\) as quickly as possible. Don't worry about viewing the Galactic Chart. Just get out of there! When you have more time to think, move to a starbase with the help of the chart, and get your shields repaired. (Also, see "Pause Key," \#2.)
3. If your shields are destroyed and you're not being blasted by a close enemy, you might want to stay put and clear the sector. When that's been done, or if a more hazardous situation develops, by all means get out fast.
4. If your shields are destroyed and you choose to play more, turn them off. It makes the screen easier to read and stops wasting valuable energy. Getting hit with no shields is the same as getting hit with destroyed shields. Just remember to turn them on when docking is over.
5. If your shields are out, don't use your engines unless you're in front view. A meteor may destroy you.
6. Before leaving a sector with no shields,
type \(F\) and the \(H\), rather than the other way around. You may be able to avoid a meteor on your move. If the aft view appears, your forward path should be clear.

\section*{Starbases.}
1. Games in which all the starbases are grouped together are easier to win than those in which they're spread out. After trying to surround one starbase and failing, the enemy will move to another that is, in this case, close by. Some players may consider this cheating, but it's a good temporary strategy.
2. You need to get close to a starbase to dock, but how close? When you see three windows on each side of the starbase, stop your engines and move the joystick until the Docking Completed message appears.
3. It takes 16 centrons to complete repairs after docking. Use this and the time to enter and exit ( 8 centrons each) to decide when to destroy a surrounded starbase yourself, when to stay docked, or when to attempt a docking. There's also a varying amount of time to locate a starbase and dock with it.
4. Docking too often wastes time and energy. Use the following priority list for decisions on docking: (1) photons destroyed; (2) shields destroyed; (3) Sub-Space Radio destroyed; and (4) other problems. (See "Shields," all paragraphs, and "Sub-Space Radio," \#7, for more details and suggestions.
5. While waiting for repairs at a starbase, use the Galactic Chart to plan your next move. Then hyperwarp as soon as docking is completed.
6. There are no meteors in a starbase sector, so turn your shields off when in these sectors to save energy. After docking, remember to turn them back on.
7. To save energy when docking, turn off the Tracking Computer, as there's no need for it once the starbase is in sight. After docking is over, be sure to turn it back on.
8. It's possible to steer your ship with the momentum of hyperwarp directly to your starbase. If your range to the starbase upon entering the sector is 300 to 400 metrons, you can usually do it (see "Hyperwarp," \#10). Practice.
9. If your hyperwarp momentum appears to be too fast and the starbase too close to dock, you can add some traveling distance by porpoising. This is done by making your ship go up and down several times very quickly. Do this by pushing forward and back on the joystick, quickly. In Figure 2, you can see that your starship will climb and drive to add the needed distance and avoid passing the starbase.
10. If a starbase is about to be totally surrounded, you can attack early. By entering a sector next to that starbase, you can be destroying the enemy before the starbase is surrounded. You will then have a little less than 100 metrons to destroy the now stationary Zylon sectors.
11. When a starbase is surrounded, go


Figure 2.
The side view of your entering the sector from the left demonstrates two paths: Path 1 shows normal entry and passing the starbase; Path 2 shows porpoising action to shorten overall travel distance, to keep the starbase in front of your ship and, possibly, to complete docking maneuvers.
after the groups of three or less Zylon starships. You need to be very skilled and have a lot of time to take out a group of four.
12. If you have just barely cleared a sector around a surrounded starbase and need to dock for repairs, it may be to your advantage to wait for the next Zylon starship movement at star date \(x .50\) or x.00. By your staying there, the Zylon starships can't completely surround that starbase on that move. This will give you at least 150 metrons to hyperwarp, dock, hyperwarp again, and destroy another enemy sector before the starbase could be surrounded again and destroyed.
13. If a starbase has been surrounded for too long and its destruction is inevitable, do it yourself.
14. It's possible for more than one starbase to be surrounded at one time. This can happen when the two starbases are close together and several enemy have converged on the area. To prevent a double loss, destroy the Zylon starships in an intersecting sector as in Figure 3, below.


Figure 3.
Two starbases ( S ) are surrounded. To save them, attack either common sector with three Zylon starships.
15. Suppose your starship is badly damaged: your Long-Range Scanner and Tracking Computer are out, so navigation is difficult. You decide to go to a starbase, but have always had trouble finding them. Don't worry! Most of the time you'll come within visual range of a starbase after a hyperjump.
16. When all starbases have been destroyed, the enemy stop moving. Use your last Galactic Chart as a guide. All will not be lost now if your radio goes out, but you won't make Star Commander this way.

\section*{Sub-Space Radio.}
1. If a starbase is surrounded or destroyed just before you receive some damage or hyperjump into an enemy sector, the sound (and, sometimes, the word messages) about the starbase will be bypassed for the new message.
2. If your Sub-Space Radio is damaged, it still functions but doesn't update the Galactic Chart. Simply move through the chart with the joystick and watch the number of targets indicator. As long as it's zero, keep searching.
3. Although you can find enemy sectors with a damaged radio by using the targets indicator, a lot of time can be wasted. Also, you don't get the big picture of enemy movement.
4. With a damaged radio, you must be careful. You won't be able to see if any starbase is about to be surrounded or destroyed. Of course, you will be notified by word message and beeps, when one is affected.
5. If a starbase is surrounded while your radio is damaged, you can use the Galactic Chart and still find which one. Watch the targets indicator while searching the sectors around each starbase. If any sector has no enemy, look around another starbase. And if the starbase is adjacent to a second starbase, make sure the second one's not surrounded, as well (see "Starbases," \#14). If it is, attack any sector of common enemy Zylon starships, no matter how many there are, or you'll lose one or both starbases.
6. With a damaged radio, you won't know of starbases that have moved since the last chart update. Otherwise, assume that they're as shown on the chart.
7. If your radio gets blasted, go ahead and get some more enemy before docking. But don't wait too long or get too greedy you may discover that one or more starbases have been surrounded or destroyed while you were fighting!

\section*{Tracking Computer.}
1. Turning on your Tracking Computer will help in shooting and in locating enemy Zylon starships. Use the crosshairs as a guide in aiming your shots.
2. The instruction book does not recommend the use of the Tracking Computer in Novice level, probably to reduce player confusion and because the enemy won't attack from behind you. When used at this level, however, you can shoot at the enemy in the aft view whenever possible. This can be helpful, as they can't block your shots in this view. (See "Zylon Starships," \#2 and \#4).
3. The automatic tracking system of the Tracking Computer doesn't use any extra energy. It will change the screen to front or aft view, to show the direction of the enemy who fired last. The only shortcomings occur in a crossfire (see "Zylon Starships," \#19, \#20, and \#21) or when one
enemy shoots and gets killed, but their shot still hits after your view switches (see "Photons," \#16).
4. You don't need to center an oncoming enemy with the Attack Computer Display. For the most part, Zylon starships are "self-centering" on the attack - they seldom go for your blind sides.
5. Don't look at the Attack Computer Display when the enemy is in visual range; look at the enemy directly. The display should be used when searching out distant enemies (see "Tracking Computer," \#6, below).
6. If a distant enemy or your starbase goes off the screen, steer in the direction of the Attack Computer Display. If the image is in the lower left, for example, push the joystick to the front and left. Your ship will start pointing toward its object and, eventually, face the centered and/or visible target.
7. Don't pursue a distant enemy totally through the use of the Attack Computer Display. You may ignore a meteor or a surprise attack by a second Zylon starship.
8. By using the Attack Computer Display with a damaged Tracking Computer, you can still get to a target, but you won't be able to use the number displays at the bottom of the screen. Instead, try to get the target centered in the Attack Computer Display. Then (or even while centering) use your engines to get to the target (see "Engines," \#4 and \#9). Practice helps.
9. When your Long-Range Scan is destroyed, you can still find an enemy or your starbase with a partly or fully functional Tracking Computer (see "Tracking Computer," \#10, below). If the Tracking Computer is working, position the target in front of you (front view screen and a positive distance away). Then position it to the center of the Attack Computer Display and, with the horizontal and vertical indicators on the screen set to about 0 , engage your engines (or Hyperwarp as described in "Engines," \#12), and steer with the target centered.
10. When your Tracking Computer is destroyed and you're waiting for an enemy to attack, be sure to occasionally flip back and forth between front and aft views, or you might be surprised by another Zylon.
11. If your Tracking Computer is destroyed, it has to be turned on again after being repaired at a starbase. This is the only device that needs action when destroyed and repaired.

Zylon Starships.
1. Know how many Zylon starships are in a sector when you enter and count them as they're killed, so you won't get hit by surprise or exit too soon.
2. If you're playing at Novice level, you don't have to pursue the enemy in the sec-tors-they'll come to you all of the time. 3. Most of the enemy will come to you in the other missions, too, if you give them
a chance. If the numbers are getting closer to 0 in the range indicator, then sit back and wait.
4. If the enemy were visible on-screen at one time in Novice level (and sometimes in other missions), but can't be seen now, do not move to find them. Stop all movement with the joystick and engines (press 0 to stop engines), and let the enemy come into view. They'll become visible again in either front or aft view, unless you've outrun them.
5. Some enemy will seem to be coming toward you and ready to attack. At a range indicator value of about 150 and 450 metrons, they stop and reverse directions. Now you must pursue them at a speed of 7 or more.
6. When an enemy is centered in the Attack Computer Display, it will be visible in the view screen at about 120 metrons, using the range indicator.
7. When an enemy first appears on the screen, it will show up as a yellow dot (just smaller than a white star) that usually moves against the background of stars. This is most evident when you're not moving, but it can be detected at any speed or time (including Hyperwarp deceleration, even if the screen is flashing red and blue -watch carefully). Many players don't concentrate enough to see this.
8. Before some ships appear on the screen, a meteor is seen. This is like a decoy. Don't attack it; you may be caught by surprise by the Zylons. Instead, just sit tight and get ready to shoot at the correct target.
9. Don't always shoot at the meteors. They can indicate that an enemy's nearby; when a Zylon starship shoots a photon, all meteors disappear.
10. Many of your distant shots can get blocked by an enemy shot, and a cloud of debris hides the enemy. Don't let these fool you. The enemy will stay hidden as long as possible, attacking when (and from where) you least expect it. This cloud can also be created by blasting one enemy, only to have another hide in the dust. If you have the Tracking Computer on, there'll be little doubt of killing the enemy-the Tracking Computer will automatically switch to the opposite view screen if the enemy was blasted and a second enemy is in the other direction.
11. With practice, you can predict a Zy lon starship's path before he makes it! Many times they'll move right into your shots after you've made them. For example, if a Zylon starship is hovering for a long time in the top half of the screen, his next move has to be down. By shooting first (before he crosses the middle of the screen), most times you'll destroy him through his own navigation.
12. Some Zylon starships enter high on the screen and shoot before crossing the horizontal line in the crosshairs of the

Tracking Computer. The solution? Let them cross that point when off of center so that their shot will miss you. Then, reposition them below the horizontal line and blast away. Or go after the shot first, then the enemy.
13. Basestars can be destroyed at close range, usually with one shot. Getting them into position is hazardous at times, as well as difficult. A conservative way of destroying them is to keep firing and hitting them, even though they're too far away. It's as if their shields weaken with repeated attacks, until they're finally destroyed with what seems the weakest of hits.
14. Another time that lock-on is effective (see "Photons," \#9 and \#10) is on first approach of a Basestar in Novice through Warrior missions. Their first attack is straight down the center. That will be their last attack, if you wait patiently to time it right. In Commander level, they fire sooner, making it a little more complicatedyou may get them or their shot, but seldom both.
15. Basestars can also be positioned for destruction very nicely. Shoot while chasing them at speeds of 6 or 7. It does take some practice to steer while moving at such speeds. Try working up to those speeds and higher by practicing with 4 and 5. (However, see "Engines," \#1 and \#2.)
16. Another way of blasting a Basestar is by hitting their photon just as they fire it. The combination of both photons exploding so close is too much for their shields. However, this is a strategy of coincidence and luck.
17. Shoot at enemy Basestars at long range, even if there's little chance of killing them. You will at least keep them "in your sights" and also be blocking their shots, when made.
18. Enemy ships have various strategies, including the following:
(a) Pursue you at all cost (see "Zylon Starships," \#3 and \#4);
(b) Avoid you at all cost (see "Engines," \#3 and \#4);
(c) Remain stationary and out of range (see "Engines," \#3);
(d) Travel back and forth at a distance from you (see "Engines," \#3 and \#4);
(e) Attack when centered with the Attack Computer Display or when scanned using the \(M\) key (see "Manual Target Selector," \#3);
(f) Sit under your nose at about 15 metrons distance and wait for a sneak attack;
(g) Always attack in front view;
(h) Always attack in the aft view; and
(i) Two enemy in a crossfire (see the next three entries).
19. The Tracking Computer can be disasterous in a crossfire, if you aren't care-
ful. There are several things that you can do to get out of a crossfire. First, turn off the Tracking Computer and concentrate on one enemy. When they've been blasted, turn the Tracking Computer back on and blast the other one.
20. Second, press 8 or 9 and get out of there! After a few seconds, press 0 . Sit and wait for them to catch you in aft view they almost always will-and blast them as they show up.
21. Third, concentrate on one of the pair of enemy, but leave the Tracking Computer on. Avoid getting hit by the other Zylon starship, but don't attack them. Whenever facing the chosen enemy, concentrate on its destruction. The problem in a crossfire is that so much time is wasted in repositioning for each player that it's too late when the enemy's finally in your sights. At that time, the other enemy usually fires, causing the Tracking Computer to change views and mess up your aim.
22. If a mass of enemy is moving toward a distant starbase on the opposite side of the Galactic Chart, you can use one of two strategies. The first is to attack the slowest sectors and gradually destroy all of them.
23. The second is to attack the fastest and forward-most sectors. By always destroying the leaders, you keep the enemy nearer to you and avoid a surrounded starbase. This method works best with either a slow-moving or small group of enemy.
24. If a starbase is surrounded and you're on the other side of the galaxy, you need to get there fast-but efficiently. Using the small-jump method (see "Hyperwarp," \#4 and "Zylon Starships," \#25) with the shoot-and-fly method (see "Hyperwarp," \#10 and "Miscellaneous Strategies," \#2), you can reduce (and sometimes eliminate) the enemy in other sectors as you go, and still have time to save your starbase.
25. Use checkerboard-type jumping to move across the galaxy (see Figure 4, below). This will work in destroying isolated sectors of Zylon starships and in hurrying to save a distant starbase (see "Zylon Starships," \#24).
26. Sometimes an enemy on one edge of the Galactic Chart moves to the other edge. This is a problem if all of the enemy are on one side of the Galactic Chart you'll eventually have to travel the length of the galaxy to get them. (Too bad you can't just go over the edge for as little energy as a single sector.) The solution is to get them before they can move. When you have a choice, get the enemy on the edge of the galaxy rather than the enemy one or two sectors in from the edge.
27. If you're having a hard time catching or blasting an enemy, it's possible to get a different enemy (or enemy strategy) by leaving the sector and coming back immediately, or later in the game. Some purists may find this a form of cheating. Use
it at your own discretion, and realize that you will use extra energy to do it.
28. Don't get blasted with less than three sectors of Zylon starships. Sure, no starbases can be destroyed, but you can be! You're always two shots or less away from destruction-one for your shields, and one for you.


Figure 4.
Using checkerboard jumping, you can get to the other side of the galaxy and clear several sectors, too. Do it in this example by traveling left to right (toward the starbase in the upper left), through the nearby sectors with 4, 3, 2, 4, and 3 Zylon starships.

\section*{Miscellaneous Strategies and Variations.}
1. Various strategies for destroying all enemy sectors on the Galactic Chart can be used. Generally, start in one area and try to eliminate all sectors. Then, gradually move through other enemy sectors while travelling toward the starbase that will apparently be surrounded. Of course, if the base is surrounded, a more defensive strategy is needed to save it (see "Commander Mission," \#1 for a specific application.)
2. Change a 4 -enemy sector to a 3 - or 2 enemy sector, to help them move together faster if you don't have time to clear the sector. Generally, kill only the one or two Zy lon starships that first appear. Don't wait too long for them to get to you.
3. Learn the keyboard positions by feel, rather than by sight. Do this at least for the \(F, G\) and \(H\) keys, as they're used most often.
4. Learn to steer with the joystick using one hand, so your other hand can work the keyboard. This will help in positioning in the Galactic Chart, Long-Range Scan, and, sometimes, in front and aft views. It shouldn't be necessary to do this for very
much of a game-just some parts of it.
5. If the Galactic Chart is poorly arranged or your ship is damaged very quickly, you can always press START. This may be considered a form of cheating, but we all tend to do better with positive feedback and success.
6. If a series of consecutive games is quite hard to win, little change in enemy strategies or destructive resistance will occur upon pressing START or SYSTEM RESET. You may have to turn off the computer for a few seconds and try again that way.
7. If you get tired of regular play, try some variations in game play and goals. Can you complete a Novice game without any shields? Can you earn more than a Lieutenant Class 1 this way? And how many enemy can you destroy in the other levels without dying?
8. Once you've made Star Commander Class 1, you can try for the most games in a row with that rating. Can you triumph in fourteen consecutive games without quitting in the middle or getting destroyed?
9. The game can be made into a 2-player game. One player uses the joystick and calls out commands for the other to carry out on the keyboard. The commands could be "Galactic Chart," followed soon by "Hy-perwarp-front view." This is good training for an inexperienced player, who can control the keyboard while watching and learning.
10. Reread the instruction manual. You'll probably learn many more details that you missed in your first reading.

\section*{Commander Mission.}
1. In Commander level, an effective strategy is to destroy all the four-Zylonstarship sectors you can before a starbase is surrounded. This works well because the other enemy will move more easily to surround the starbases. But four-Zylonstarship sectors move so seldom that they'll almost always be in the same general area where they started. By eliminating them early, you'll make many parts of the galaxy free and clear, and the enemy will be grouped for easy travel from sector to sector on little energy.
2. It's possible to earn Star Commander Class 1 and have a starbase destroyed by
you or the enemy. Don't give up after one is lost, but don't plan on the top rank after the loss of two!
3. It's also possible to complete a game without docking. Your energy level can get very low, so be careful. You're almost assured a top ranking this way.
4. It is possible to be destroyed and earn a Star Commander Class 1 rating. Very few enemy are usually left alive, and your shooting during the game was otherwise superb.

5 . The last sector is usually the most difficult to clear. It may take several attempts at Commander level just to complete. Sometimes there will only be one ship left to destroy before your own demise.

\section*{Conclusion.}

If you seem to be in a rut in an advanced mission and can't get any high scores, try an easier mission! By practicing in the lower games, you can improve some of your skills. On returning to the harder levels, you'll probably do better. And don't think that you'll still be as good next month as you are now. You're going to have to warm up or keep practicing to maintain your skills and ratings.

Don't be afraid to experiment. After all, Star Raiders is only a game. And, unless you have a winning streak going, it's okay to try some of these ideas and incorporate them into your overall game play. Or, perhaps you want to see if you can improve your aim in aft view, or make some improvements in docking by going back and forth between starbases. If you get blown up or run out of energy, press START and keep flying!

\title{
Attention Programmers!
}

ANALOG Computing is interested in programs, articles, and software review submissions dealing with the Atari home computers. If you feel that you can write as well as you can program, then submit those articles and reviews that have been floating around in your head, awaiting publication. This is your opportunity to share your knowledge with the growing family of Atari computer owners.

All submissions for publication, both program listings and text, should be provided in printed and magnetic form. Typed or printed copy of text is mandatory and should be in upper and lower case with double spacing. By submitting articles to ANALOG Computing, authors acknowledge that such materials, upon acceptance for publication, become the exclusive property of ANALOG Computing. If not accepted for publication, the articles and/or programs will remain the property of the author. If submissions are to be returned, please supply a self-addressed, stamped envelope. All submissions of any kind must be accompanied by the author's full address and telephone number.

For those of you who are sincerely interested in the rules and regulations for publication, we've taken this opportunity to print our guidelines for authors. See page 128 of this book for everything you'll need to know.

Send your programs and articles to: Editor, ANALOG Computing P.O. Box 23, Worcester, MA 01603.



\section*{by David Plotkin}

Pastels is fun to look at. It's relaxing, putting fifteen pastel colors on-screen at once, in ever-changing patterns.

As detailed below, several special PROCedures were used to speed up the graphics. Action! has become the language of choice for many serious programmers, being considerably easier than machine language, and outstripping BASIC's performance.

Pastels is written in graphics 11, the 15 -color mode available only with the GTIA chip. To understand how the special routines work to speed up the display, you must know something about how colors are displayed in graphics 11. Each byte on the screen is broken up into two halves (or nibbles), with one half containing the lower 4 bits ( 0 through 3), and the other half containing the upper 4 bits (4 through 7).
The 4 bits in each nibble can make up a total of sixteen different on/off combinations, thus creating the sixteen colors. Further, since each byte is broken into halves, the first byte on each line corresponds to the screen's x-coordinates 0 and 1, with the second byte holding 2 and 3 , and so forth.

Byte array colors contains sixteen numbers, which correspond to the sixteen bit-patterns available in each nibble, from all bits off \((0)\) to all bits on (255). Seventeen, for example, is the smallest bit in each nibble ( 0 and 4) on; all others off.

PROC Gr11Init reads the starting address of each screen line into an array of cardinal numbers (CARD), for later reference.

PROC Plot11 actually plots points on the screen much faster than does the system PLOT. This is because the first is a specialized routine, which will essentially only work in graphics 11. Three byte arrays are declared, and they're all important.

The first, tline, will be equated to the \(y\)-element of CARD array Line, thus pointing tline to the on-screen line we wish to change.

We have mask and mask2 as bitmasks. The first element of mask corresponds to all the lower nibble bits being on, and the higher nibble bits off. The second element is just the reverse (all high nibble bits on, all lower nibble bits off).

The bitmask mask2 just reverses the order of mask's elements. In the equation at the end of this PROCedure, the tline(x RSH 1) term determines which byte on the chosen line corresponds to the chosen \(x\)-coordinate. Remember: each byte contains two x-coordinates, so it's necessary to divide \(x\) by 2 , to see which byte to modify.

The RSH operation divides by 2 much faster than does the built-in divide routine. The first term-( \(==\mathcal{E}\) mask ( \(x \& 1\) )) - takes the byte in question and turns off all bits on the half of the byte to be modified, by ANDing the byte against the mask element.

The element of array colors containing the color you
wish is then ANDed against the mask2 element, to turn off all bits in the color byte in the half of the byte which is not being modified.

Finally, these 2 bytes (each with an empty half) are ORed together, to produce the modifed byte.

The balance of the PROCedures don't do anything particularly remarkable, so I won't expand on them. But look over this short demonstration of Action!'s power for yourself. \(\boldsymbol{\square}\)

> David Plotkin, with his Master's degree in Chemical Engineering, is a Project Engineer for Chevron U.S.A. He purchased his Atari in 1980 and is interested in programming and game design, as well as word processing.

\section*{Listing 1. \\ Action! listing.}
```

```
C CHECK5UM DATA
```

```
C CHECK5UM DATA
;[4D D7 45 Fi 3i EC ]
;[4D D7 45 Fi 3i EC ]
MODULE; PASTELS by David Plotkin
MODULE; PASTELS by David Plotkin
    ; written in ACTION! from 055
    ; written in ACTION! from 055
BYTE ARRAY COIORS=[0,17 34 51 68 85
BYTE ARRAY COIORS=[0,17 34 51 68 85
    102 119 136 153 176 187
    102 119 136 153 176 187
    204 221 238 255]
    204 221 238 255]
CARD ARRAY Line(192)
CARD ARRAY Line(192)
PROC Gri1InitG
PROC Gri1InitG
;Initialize Graphics 11
;Initialize Graphics 11
CARD loop,scrn=88
CARD loop,scrn=88
GRAPHIC5(ii)
GRAPHIC5(ii)
FOR loop=8 to 191
FOR loop=8 to 191
DO
DO
    Line(100p)=5crn+40*100p
    Line(100p)=5crn+40*100p
OD
OD
RETURN
RETURN
PROC Plotil(BYTE x,y,clr)
PROC Plotil(BYTE x,y,clr)
;Plot a point using color masks and
;Plot a point using color masks and
;arrays
;arrays
BYTE ARRAY tline,mask=[15 240],
BYTE ARRAY tline,mask=[15 240],
                        mask2=[246 15]
                        mask2=[246 15]
tline=Line(y)
tline=Line(y)
tline(x R5H 1)==&mask(x&1)%
tline(x R5H 1)==&mask(x&1)%
                            (Colors(c1r)&mask2(x&1))
                            (Colors(c1r)&mask2(x&1))
RETURN
RETURN
PROC Drawil(BYTE X1,y1,x2,C1r)
PROC Drawil(BYTE X1,y1,x2,C1r)
;Draw a line in Graphics il
;Draw a line in Graphics il
BYTE 11,x\times1, xx2
BYTE 11,x\times1, xx2
IF x1> <2 then x\times2=x1 x\times1=x2
IF x1> <2 then x\times2=x1 x\times1=x2
        EL5E xxi=x1 x x2=x2
        EL5E xxi=x1 x x2=x2
FI
FI
FOR 11=xx1 to xx2
FOR 11=xx1 to xx2
DO
DO
    Ploti1(11,y1,clr)
    Ploti1(11,y1,clr)
OD
OD
RETURN
RETURN
```

Proc Maincs

```
Proc Maincs
```

Proc Maincs
;The main driver

```
```

```
;The main driver 
```

```
```

;The main driver

```
```

```



```

```
```

GrilInit()

```
```

```
GrilInit()
```

```
```

GrilInit()
D0 atrct=0
D0 atrct=0
D0 atrct=0
FOR i=1 T0 79
FOR i=1 T0 79
FOR i=1 T0 79
D0 z=z+1
D0 z=z+1
D0 z=z+1
IF z>15 THEN z=1 FI
IF z>15 THEN z=1 FI
IF z>15 THEN z=1 FI
IF z>15 THEN z=1 FI
IF z>15 THEN z=1 FI
IF z>15 THEN z=1 FI
Draw11(i,y;(9-Y,7%-i,z)
Draw11(i,y;(9-Y,7%-i,z)
Draw11(i,y;(9-Y,7%-i,z)
y=y+1
y=y+1
y=y+1
IF}y>190 THEN y=0 FI

```
```

```
            IF}y>190 THEN y=0 FI
```

```
```

 IF}y>190 THEN y=0 FI
    ```
```

```

\section*{by David Castell}

CGM-Castell's Graphic Manager-is similar to the ST's GEM, in that it acts as an interface between the programmer and the operating system (OS), enabling the programmer to access such features as windows, icons and trackers. One of the many differences is that GEM works with a bit-mapped screen (similar to graphics 8), but CGM is designed to work with the standard graphics 0 screen.

\section*{Typing it in.}

Listing 1 is the BASIC data used to create your copy of CGM. See the M/L Editor on page 4 for typing instructions. You should create the CGM file under the name AUTORUN.SYS.

To load CGM, insert the disk containing the AUTORUN.SYS file into drive 1. Turn your computer off and then back on again. After CGM loads in, a message indicating it's in memory appears at the top of the screen.

Listings 2, 3, 4 and 5 are examples of BASIC programs using the features of CGM. Listing 2 demonstrates the use of windows and overlaying.

Listing 3 is an icon editor. Move the hand tracker within the large rectangle and press the joystick button to turn a blank square white, or vice versa. Two icons, one normal and one reversed, are displayed to the right of the editing square. Press the START key at any time to display data that can be used to create an icon or tracker. When you return to the editor, the editing square will be blank again.

Listing 4 is actually a subroutine that starts at Line 30000. It can be incorporated into any of your own programs that use a graphic 0 screen. This subroutine is actually a mini-DOS that will let you: get a directory, delete files, lock/unlock files, rename files and format disks. This program shows how windows and trackers can be integrated to make menu selection a lot easier.

Listing 5 is an advanced memo pad. The features of CGM make using it enjoyable and easy. The icons have been placed in windows, so they can be moved around or removed without disrupting the contents of the screen (memo pad). All these icons were created with the icon editor (Listing 2). The first is a clock. If you select this option, a menu will pop up, giving you the option of setting the clock or displaying it. If you display it, all activity stops so you can see the time. When you're finished with the clock, press the joystick button to go on.

The second icon is a calculator. If you select this, a calculator pops up. It's very simple and performs calculations in the order they're entered, not the order they "should" be in (i.e., multiplication before addition). Just move the hand over the keys and press the joystick button to hit a key.

Most of the keys are self-explanatory. The \(X\) is the OFF key. When you're finished with the calculator, press OFF to remove it. The \(R\) is the square root key; the \(C\) clears the number currently displayed on the calculator's screen; and the \(A\) is All Clear. This clears the display, operation and memory. The \% key is designed to work a special way.

If you enter \(5+7 \%\), the answer will be 5.35 . It's useful for figuring sales tax. If you enter \(7 \%\), the answer will be 0.07 .

The third icon is a disk, for a disk loader routine. When you select this option, a large window is displayed, showing the names of all files on the disk. Move the hand over the one you want to load and press the button. It will be loaded and run automatically. This routine will only load programs that have been saved to disk.

In the fourth window is the word MEMO (I honestly couldn't think of an icon to represent this function). If you select this option, a menu will pop up. You may choose to edit, load, save or print the memo. The editing function removes all icons, leaving you the whole screen to edit with normal editing keys.

To exit the editing function, simply press the ESC key. The memo print function is not very advanced. It doesn't support any of Atari's special graphics characters (which is just as well, because most of them are redefined as icons and trackers).

At any time during the operation of the last two programs, you may point the tracker to the top corner of the window you're currently selecting from and press the button. The border of that window will turn to a color. Now, move your tracker to any spot on-screen and press the button again. The window will instantly be moved to this new position, and the border will appear white again.

The MAC/65 source code of CGM is available on the disk version of this book.

\section*{Windows.}

A window is an area of the screen with a border around it, that you can print and input information to and from. CGM supports up to five independent windows, which can overlap to maximize space. When you print to a window, it automatically overlaps the other windows.

Creating a window.
When you first create a window, it will appear as a thick white border around a blank area. The contents of the screen underneath the window are stored in memory and restored when the window is removed. To create a window, type in \(A=\operatorname{USR}(39936, N, X, Y, C, R)\) - where: \(N\) is the number of the window (from 1 to 5 ); \(X\) is the column of the top corner of the window; \(Y\) is the row of the top corner of the window; \(C\) is the number of columns in the window; and \(R\) is the number of rows in the window.

Removing a window.
Always be sure to remove a window before you create another with the same number. To remove a window, type \(A=\operatorname{USR}(39939, N)\) - where: \(N\) is the number of the window you wish to remove.

Moving a window.
At some point, you may want to move a window and its contents to another position on-screen. Instead of removing the window, creating it at another position and reprinting the contents, you can use this special windowmoving routine. \(A=\operatorname{USR}(39942, N, X, Y)-\) where: \(N\) is the number of the window you wish to move; and \(X, Y\) is the new position of the top corner of the window.

Overlapping.
Creating, removing, or moving a window does not af-
fect the position or contents of other windows, but does affect the order in which they overlap. After executing one of these three commands, the windows will now overlap in the order of their creation, with the first window on the bottom of the stack and the last on the top. The exception is the move function, in which the window moved always appears on top.

Using a window.
After creating the window, you're faced with using it. It's actually very easy: after creating a window, you have a new device \(W n\) :, where \(n\) is the number of the window ( 1 to 5 ). As with all other devices, you must use the OPEN command to read or write. OPEN \#aexp,aexp \(2,0, " W n: "-\) where: \(a \exp\) is IOCB number (1-4) and \(a \exp 2\) is a code number to determine input or output operation ( \(4=\) input, \(8=\) output, and \(12=\) input and output).

The OPEN command sets the window input/output position to the top corner. After input or output you should use the CLOSE command (CLOSE \#aexp).

As normal, your input/output commands are:
PRINT \#aexp - e.g., PRINT \#1;"OPTION 1". This
prints "OPTION 1" at the current window I/O position.

INPUT \#aexp - e.g., INPUT \#1;A\$. This inputs all characters from the current window I/O position to the end of the row.

PUT \#aexp - e.g., PUT \#1,65. This sends charac-
ter \(65(A)\) to the current window I/O position.
GET \#aexp - e.g., GET \#1, A. This gets the num-
ber of the character at the current window I/O posi-
tion and stores it in the variable A .
Note that PRINT causes the window to be instantly redrawn to show the change in its contents, but this is not the case with the PUT command. With PUT, the window is redrawn when the RETURN character (155) is sent to the window.

If you print more rows than are available in a window, the contents will scroll up one line. If you INPUT past the end of the window, you will get an error 136 (End of File). Each line sent to the window should end with a RETURN, because it won't wrap around to the next line without one. For example, if you send a 15 -character line to a 5 -character wide window, only the first 5 characters are displayed; the rest are ignored. Therefore, if you INPUT that row, only the 5 characters actually displayed will be entered.

If you want to have the contents of a window in a string, so you can send it all with one print statement, you'd run into the problem. There's no way you can put the RETURN character in the middle of the string, without going into complex string manipulation. Here, you can use CTRLPERIOD instead of RETURN in the string.

\section*{WIN5='יROW 1*ROW 2*ROW 3י' PRINT \#1; WINS}

CGM keeps track of what row and column within the window the next character will be read from or written to. I've referred to this as the "current window I/O position." Since INPUT reads from the current character to the end of a row, you'll need a way to position this pointer
to the spot you want to read from (or, in the case of PRINT, write to). You're able to do this, and more, through the XIO command. It can be used like the Position X,Y statement in BASIC. The difference is that, in the case of the XIO command, positioning to point 0,0 would be the top corner of the window, not the screen.

There are actually three different XIO functions. All of them change the window I/O pointer, but two perform extra functions.

XIO C, \#D, X,Y,"Wn:"-where: D is the channel number (1-4).
(1) Position for next I/O to window-where: \(\mathrm{C}<\) 100 and \(C \geq 12 ; X=\) column of window; \(Y=\) row of window; and \(N=\) number of window (1-5).

As an example, XIO 50, \#1,0,0," \(W\) :" indicates that the next string of characters sent to window 1 (no \(n\) means 1) will start at the top corner of the window.
(2) Position for next I/O with window and redisplay the contents of window. Normally, the only way to cause an overlapped window to overlap the other windows is to send data to it. Unfortunately, this may cause unwanted scrolling of text in the window. However, this XIO command is similar to the first, except this one will redisplay the contents of window \(n\), causing it to overlap the others.

Where: \(C \geq 100\) and \(C<200\); \(X=\) column of window; \(Y\) =row of window; and \(N=\) number of window (1-5). So, if window 2 is overlapped by other windows, XIO 100,\#1,0,1,"W2:" will cause window 2 to overlap other windows. The next I/O with window 2 will start at the second row, first character.
(3) Redisplay contents of a window, position for next I/O with window (see 2, above) and reverse (black print on white square) all of the characters in a desired row-where: \(C \geq 200\) and \(C<256\); \(X=\) column of window (reversing always starts from the beginning of a row, regardless of the value of \(X\) ); \(Y=\) row of window; and \(N=\) number of window (1-5).

XIO 200, \#1,1,1,"W2:" - the characters in row 2 of window 2 are reversed. The next I/O with window 2 will start at the second row, second character.
Note that the characters are reversed only on the screen display. Therefore, when the window is redrawn (by PRINT, Create Window, Remove Window, Move Window, XIO 100-199, XIO 200-255), the row is returned to normal. Also, if you INPUT a row that's reversed on-screen, the string input is not reversed.
Also, PUT, GET, INPUT, OPEN, CLOSE, XIO 12-99 do not erase the reversed row.
Take the following window as an example:
\begin{tabular}{|cc|}
\hline ABC & 123 \\
DEF & 456 \\
GHI & 789 \\
\hline
\end{tabular}
(1) OPEN \#1,12,0,"W:" - Sets up for input/output to window 1. The window I/O position is set to top corner.
(2) XIO 250,\#2,4,1," \(W\) :" - Reverses the second row, sets window I/O position to column 5, row 2 .
(3) INPUT \#1, A\$ - Inputs from window I/O position to end of row. A\$ now contains 456.
(4) XIO 150,\#2,0,2,"W:" - Redraws the window, causing the second row (which was highlighted in the second step) to be returned to normal. The window I/O position is set to the column 1, row 3.
(5) PRINT \#1;"XYZ" - The "XYZ" prints over top of "GHI".
(6) PRINT \#1 - The top row ABC 123 scrolls off the top of the window, and the last row of the window is blank.
(7) CLOSE \#1 - You should always close a channel when you're done with it.
Note: XIO commands cannot use a channel already open for I/O. That's why the XIO commands in steps 2 and 4 use channel \#2.

\section*{Icons.}

To CGM, an icon is just a picture two characters wide by two characters high. A call to CGM will put the data of the four characters of the icon into the RAM character set used by CGM, starting at the character you select (ATASCII character value). You should probably choose to put your picture where the Atari special graphics characters normally are (characters 0-31), leaving the letters and numbers alone. However, the tracker uses characters 0-8, so you should also avoid these if you're using the tracker routines.
For example, if you chose character 9, your icon will be made up of characters 9-12. Characters 9 and 10 will be the top half of the icon, and characters 11 and 12 will be the bottom half. Therefore, to print your icon on the screen, print characters 9 and 10 (CTRL-I and J) on one row, and characters 11 and 12 (CTRL-K and L) on the line below.

The data for each character of the icon consists of eight numbers, the binary representations of each row of the character. The data is set up the same way as the icon is drawn - the top two characters, followed by the bottom two characters. If you're familiar with creating character sets, this set-up isn't new. But, even if you don't understand how to set up character data for the character set, you can use the icon editor program (Listing 3) to automatically create data statements (or strings) that can be used with calls requiring icon or tracker data.

To put an icon into the character set, enter \(A=U S R\) (39951, N, ADDR), where ADDR is the address of the icon data. If your icon data was in a string (such as ICON\$), \(A D D R\) would be \(A D R(I C O N \$)\).
\(N\) is the number (ATASCII character value) of the first of the four characters whose character data will be replaced by the icon data.

\section*{Tracker.}

A tracker is actually a movable icon, used mostly as a pointer. You're probably most familiar with the arrow tracker moved by a mouse on both the ST and the Macintosh, or maybe the hand moving around in the "Construction Set" series from Electronic Arts.

The default tracker built into CGM is a hand, but you
can change this if you want. The pointer that points to the location of the default tracker can be found at 39962 and 39963. For example, add the following line to the Memo Pad program (Listing 5):

\section*{85 TRACKHI=INT (ADR (CLOCK 5 )/256):TRACKL 0=ADR(CLOCK 5 )-TRACKHI*256:POKE 39962, T RACKLO:POKE 39963, TRACKHI}

This causes the clock to be used as the pointer, instead of the hand.

\section*{Built-in tracker routine.}

The built-in tracker routine works independently of the BASIC program. This routine reads joystick 1 and moves the tracker in the corresponding direction on-screen. To start the tracker, enter \(A=\operatorname{USR}(39954)\).

After you start the tracker routine, your program really doesn't have to do anything but wait. If you wish to check where the tracker is at any given time, try: \(X=\) PEEK (4), then \(Y=\) PEEK (5).

If you wish to disable joystick control of the tracker, location 39960 is the tracker mask. POKE 39960,1 disables joystick control, and POKE 39960,0 enables control.

If you're finished with the tracker routine and wish to stop it: \(A=U S R(39957)\). This will stop the routine and remove the tracker. If you wish to put it back, you can just do another \(A=\operatorname{USR}\) (39954), and it will appear at the same spot it was removed from.

The following program is a sample implementation of the tracker routine:
```

19 GRAPHIC5 0:POKE 752,1:? CHR5(125)
20 A=U5R(35554)
30 IF STRIG(0) THEN 3@
49 A=U5R(35957): K=PEEK(4):Y=PEEK(5)
50 COLOR 16G:PLOT H,Y
6@ GOT0 20

```

This routine will allow you to use the joystick to move the tracker around. Line 30 waits until the joystick button is pressed. When it is, the tracker's removed and a reverse square is placed at the spot where the tracker was pointing. You must remove the tracker before altering the screen under it. Otherwise, when the tracker moves again, the screen beneath the tracker will return to the way it was before the tracker was moved over it.

\section*{Your own tracker.}

As mentioned above, if you wish to use this same tracker routine with your own tracker, just change the pointer at location 39962 and 39963 to point to your tracker.

However, if you wish to create your own tracker routine - or use the tracker for something else (such as a controlled cursor, like the RENAME function of Listing 4, or the SET CLOCK function of Listing 5) - here are a few calls you can use.

To position a tracker: \(A=\operatorname{USR}(39945, a d d r, x, y)\), where addr is the address of the tracker data (set up in the same manner as icon data); \(x\) is the horizontal position of the tracker ( 0 to 318); and \(y\) is the vertical position of the tracker (0 to 190).

Note that CGM has built-in roll-around routines. If the tracker goes off the screen, it appears on the other side.

Also, the tracker automatically removes itself from its old position before locating itself to a new position. There
fore, this is the only call you need to make inside a loop that moves the tracker.

Avoid altering the contents of the screen near the tracker. If characters are printed over the tracker, these will disappear when the tracker is moved.

If you wish to use the built-in hand tracker, just don't include addr within the USR call. For example: \(A=U S R\) (39942, x,y) will position the hand at coordinates \(x, y\).

You can also use this Move Tracker routine to position the tracker being run by the built-in tracker routine called by \(A=U S R(39954)\) within your program. For example, in the mini-DOS example (Listing 4), when entering the new name of a file to rename, the tracker mask is set (POKE \(39960,1)\) and \(A=\operatorname{USR}(39942, x, y)\) is being used to control the movement of the hand, so it can be used as a cursor. When the name is entered, the tracker mask is cleared (POKE 39960,0), and the joystick once again takes control of the tracker.

If you don't enter any \(x\) - or \(y\)-coordinates with the USR(39942), the tracker will be printed at the last \(x, y\) coordinates (for example, \(A=U S R(39942)\) will display the icon at the last \(x, y\)-coordinates). So, if you need to alter the text below the tracker in your own tracker routine, just remove the tracker, alter the text and use A=USR(39942) to return the tracker to where it was before removal.

\section*{Removing a tracker.}

When you're finished with the tracker, you'll probably want to remove it from the screen. To do so, enter A = USR (39948).

This is not to be confused with \(A=\operatorname{USR}(39957)\) mentioned earlier, which removes the tracker and stops the built-in joystick tracker routine.

The only integration between the windows and tracker consists of the tracker "getting out of the way" while the window is updated. However, as mentioned earlier, if you wish to alter the text beneath the tracker, you must first remove the tracker, alter the text and place the tracker back on-screen.

\section*{Reading tracker position.}

Anytime you use the above tracker routines, locations 4 and 5 will contain the tracker's position on the screen. Location 4 is the column reading ( \(0-39\) ), and location 5 is the row reading ( \(0-23\) ).

Whatever shape your tracker is, if it's to be used as a pointer, its point should be at the top left of the icon, because the built-in roll around and the values in locations 4 and 5 assume that this is the case.

Here's the same application of the tracker routine shown earlier. This time, it doesn't use the built-in tracker routine, but a custom tracker routine for the Atari Touch Tablet.

\footnotetext{
10 GRAPHIC5 10:POKE 752,1:? CHR (125)
29 IF PADDLE \((9)=228\) AND PADDLE \((1)=228\)
THEN 29
36 TK=PADDLE (6) \(\because(320 / 228): T Y=192-P A D D L\)
E(1) \(\begin{gathered}\text { (192/228) }\end{gathered}\)
49 A=U5R (39945, TK, TY)
50 IF STICK ( 0 ) \(=15\) THEN 20
60 A=U5R(39948): \(K=\) PEEK (4): \(Y=\) PEEK (5)
70 COLOR 128:PLOT \(\mathrm{K}, \mathrm{Y}\)
80 GOTO 29
}

To use it with the Koala Pad, just delete the 192- in Line 30.

\section*{Special notes.}

Location 39961 contains the character (internal character set) with which window borders are drawn. The default is 128 , a solid white square. You can change this by POKEing 39961 with any character.

For this very reason, character 123 of the RAM character set used by CGM is changed from a "spade" to a solid, colored square, using artifacting. This color will probably appear green or blue, but the color varies between systems. Whichever it is, the reverse of this character (251) will appear as the other color (blue or green).

Since this character is only in the RAM set, you must make sure this is the character set being used. The first tracker or icon routine called automatically selects the RAM set. However, if you want colored borders before you make one of these calls (or if your program doesn't use trackers), you must perform a POKE 756,152 to use the RAM character set.
Another special character is character 255. If you POKE location 39961 with 255 , no border will be placed around the window, causing the contents of the screen around the window (where the border normally is) to be left "as is." Changing location 39961 means that all borders drawn from that point on will appear with the new character. The Window Create, Remove and Move routines will cause the borders of all windows to be redrawn with the new border character.

If none of these routines are used, only the windows you PRINT to-or use an XIO (above 100) command onwill be redrawn with the new character. In the mini-DOS and Memo Pad programs, when you press the button with the tracker pointing to the top corner of the window, location 39961 is POKEd with a 123 and an XIO 150 is performed.

This only changes the color of the border of the one window. If the subsequent move window routine was executed before location 39961 was changed back to 128, all the windows on the screen would be redrawn with a colored border, instead of the usual white one.

It should be noted that this same technique cannot be used with the no border (character 255) option. For the no border option to be invoked, it must be placed before a Window Create, Remove or Move command. These three commands cause the contents of the screen behind the borders to be restored and then the new borders are redrawn-or in this case, not drawn.

Whenever a window is created, the contents of the screen behind the window and the contents of the window are stored just below the top of memory pointer (locations 741 and 742). When CGM initializes (after it loads, or any time SYSTEM RESET is pressed) these pointers are set to the first free location below CGM.

However, whenever a graphics command or a channel is opened to device E : or S :, this pointer is set to just below the display list, which is also the end of CGM. This means that-if you use a graphics command or open to E: or \(S\) :, then create a window - the contents of the win-
dow and the screen behind the window are stored right over CGM, causing the computer to lock up.

You'll probably notice that the two sample tracker routines shown earlier use a graphics command. Also, the icon editor opens a channel to \(S\) :, so the graphic characters display properly.

These programs get away with this, because they don't use any windows. However, if you ran any of these programs and then ran a program that did use windows, the computer would lock up. To get around this problem, press the SYSTEM RESET key when you run a program with windows. If you wish to use the graphics statement in a program with windows, just reset the top of memory pointer after the graphics statement. For example:

\section*{10 MEMTOPLO=PEEK (741): MEMTOPHI=PEEK © 74 \(2)\) \\ 20 GRAPHICS 8 COR OPEN \#1, 12, 0, "E:" Or OPEN \#1,12, 9,"5;") \\ 3@ POKE 741 , MEMTOPLO:POKE 742, MEMTOPHI}

This will solve any problems you might encounter.
Since there's no real integration between windows and trackers, the task of integrating these two features in a program is yours. However, I've included several all-purpose subroutines that integrate windows and trackers, to perform specific tasks.

The first can be found in the mini-DOS program (Listing 4) at Line 31000, and in the Memo Pad program (Listing 5) at Line 25000. This subroutine is designed for menu selection. Before entering the subroutine, you must create a window, print the different options to the window, start the tracker routine and set the following variables: \(N=\) number of the window; \(X, Y=\) top corner of the window; \(D X=\) Delta X (number of columns); and \(D Y=\) Delta Y (number of rows).

Lines 25030-25050 are the heart of this subroutine. This loop waits for the user to press the joystick button and reverses the window row the tracker is on, or erases this highlight if the tracker is outside the window's border.

Line 25070 checks to see if the button was pressed at the top corner of the window. If it was, Lines 25080-25140, (the Move Window routine) are executed.

When the subroutine is finished, the variables \(X\) and \(Y\) will hold the top corner of the window (if the window was moved, your program might need to know), and the variable CHOICE will contain the number of the option selected. This result can be used in statements like: ON CHOICE GOTO OPTION1, OPTION2, OPTION3, . . . or ON CHOICE GOSUB OPTION1, OPTION2, OPTION3, . . .

Another subroutine is the Input String subroutine starting at 30000 in the Memo Pad program. This routine uses the tracker as a cursor to enter a string inside a window. The routine is used to set the clock and enter the filename in the save memo option.

The routine needs IOCB \#2 to be opened for input/output (OPEN \#2,12,0,"Wn:") to the proper window. It also requires that the variables \(N, X\) and \(Y\) to be set in the same manner they were in the above subroutine, as well as the variable LEFT, which should contain the column of the window the entry should start in.

For example, if the prompt in the window was File-
name?, entry should start in column 9, which is the first column to the right of the question mark; therefore, LEFT should equal 9.

This subroutine returns the string that was entered in the variable NAME\$, which should be dimensioned at the start of your program. If you were to enter a number, you would use the VAL command (NUM = VAL(NAME\$)), to get the number into a numeric variable.

Another subroutine worth mentioning starts at Line 10000 of the Memo Pad program. This routine creates a window the height of the screen, and reads all the names of files on the disk in drive 1, printing them to the window. It then uses the subroutine at Line 25000 to allow the user to select one of the filenames.

It proceeds to get the name into the proper format for disk I/O (D:FILENAME.EXT) and returns the final name in FNAME\$. This subroutine requires that the strings FNAME \(\$\) and EXT\$ be dimensioned at the beginning of the program.

All these subroutines require certain entry point variables (CL, OP, TRACKER, etc.) See the first couple lines of the Memo Pad program for these variables.

Your first step in learning how to use CGM should be to run the four sample programs, so you can see exactly what CGM can do. Then look at the listings, to see exactly how we're using CGM to do it.

When you start programming with CGM, use as many routines from these four samples as possible, as well as creating your own subroutines to incorporate into other programs. You'll never run out of uses for CGM in your programs, because it has the ability to make any program user-friendly. \(\boldsymbol{-}\)

David Castell is currently attending the University of Waterloo in Ontario. Although this is David's first program published in a magazine, he's also written "P.S. Interface" and "The First XLent Word Processor" for the 8-bits and "P.M. Interface" for the ST. All three are available from XLent Software.

The two-letter checksum code preceding the line numbers in Listings 2 through 5 is not a part of the BASIC program. For more information, see BASIC Editor II, in ANALOG Computing's issue 47.

\section*{Listing 1.}

1000 DATA \(255,255,133,142,128,143,104\), \(216,160,0,164,164,153,169,144,200,9393\) 1016 DATA \(192,5,144,246,32,235,156,32\), \(73,143,76,251,156,164,216,164,9749\) 1620 DATA \(164,141,169,144,32,235,150,3\) \(2,16,146,76,251,156,216,164,32,7629\)

1630 DATA \(235,150,169,0,141,233,145,32\) , 162, 144, 104, 164, 141, 169, 144, 141, 8511 1646 DATA \(216,142,32,137,145,164,164,1\) \(53,47,145,164,164,153,48,145,32,5992\)
1650 DATA \(196,144,169,6,141,169,144,32\) \(, 137,145,32,212,143,76,251,150,9331\)
1666 DATA \(36,33,54,41,36,6,35,33,51,52\) ,37,44,44,7,51, 6,5526
1679 DÁTA \(167,178,161,176,168,169,163\), \(128,173,161,174,161,167,165,178,165,36\) 03
1080 DATA \(12,141,23,143,165,13,141,24\),
\(143,169,4,185,219,142,145,88,7666\)
1090 DATA \(206,192,35,144,246,176,3,32\),
\(255,255,169,22,133,12,169,143,8666\)
1190 DATA \(133,13,32,165,156,169,6,166\),
\(4,153,84,148,136,16,250,160,7627\)
1110 DATA \(44,153,55,145,136,16,250,32\),
\(164,148,169,132,141,229,2,169,8619\)
1120 DATA \(142,141,236,2,169,0,141,118\),
\(144,96,173,118,144,261,45,176,8776\)
1136 DATA \(248,32,58,144,32,8,145,32,71\)
,144,173,229,2,56,229,208,7974
1149 DÁTÁ \(141,114,144,173,230,2,229,20\)
\(9,141,115,144,32,8,145,173,114,8010\)
1150 DATA \(144,56,229,268,141,116,144,1\)
\(73,115,144,229,269,141,117,144,173,261\)
9
1169 DATA \(116,144,129,143,124,144,56,2\)
\(33,1,141,229,2,173,117,144,233,6\)
1179 DATÁ \(0,141,236,2,32,34,145,173,19\)
\(8,146,246,3,76,226,144,173,9911\)
1189 DATA \(169,144,141,233,145,32,169,1\)
\(45,32,162,144,76,196,144,32,58,6685\)
1196 DATA \(144,32,25,144,173,114,144,13\)
\(3,216,173,115,144,133,211,174,113,1384\) 1296 DATA \(144,160,0,177,268,145,216,26\) \(0,204,112,144,144,246,32,84,144,830\)
1210 DATA \(32,96,144,262,268,235,76,71\), \(144,32,58,144,32,25,144,166,5692\)
1220 DÁTA \(0,173,25,156,261,255,246,48\), \(145,298,269,264,112,144,144,248,4497\)
1230 DATA \(174,113,144,262,202,32,84,14\)
\(4,160,6,173,25,156,145,268,172,9385\)
1246 DATA \(112,144,136,145,268,262,268\), \(237,32,84,144,166,6,173,25,156,8157\)
1259 DATA \(145,208,269,204,112,144,144\),
\(245,32,71,144,76,192,145,174,111,25\)
1260 DATA \(144,165,88,24,169,116,144,13\)
\(3,208,165,89,165,0,133,209,202,9361\)
1276 DATA \(48,25,165,268,24,165,49,133\), \(298,144,244,236,269,268,246,238,6582\)
1280 DATA \(112,144,238,112,144,238,113\),
\(144,238,113,144,96,266,112,144,266,264\) 3
1296 DATA \(112,144,266,113,144,206,113\),
\(144,96,165,268,24,165,40,133,268,8997\)
1306 DÁTA \(144,2,236,269,96,165,210,24\),
\(169,112,144,133,216,144,245,230,3488\)
1316 DATA \(211,96,0,0,0,0,0,0,0,0,0,0,3\)
\(2,58,144,32,5613\)
1326 DATÁ \(25,144,125,144,126,145,173,1\)
\(14,144,133,216,173,115,144,133,211,267\) 1
1339 DATA \(174,113,144,160,6,177,210,14\)
\(5,298,209,204,112,144,144,246,32,2044\)
1349 DATA \(84,144,32,96,144,262,268,235\)
\(, 76,71,144,166,0,185,55,145,8693\)

1350 DATA \(265,233,145,246,23,146,1,145\) \(141,199,144,32,137,145,32,119,6060\) 1366 DATA \(144,172,1,145,32,2,145,264,1\) \(18,144,144,225,96,166,6,185,8484\) 1376 DATA \(55,145,240,23,146,1,145,141\), \(169,144,32,137,145,32,169,143,6949\)
1389 DATA \(172,1,145,32,2,145,264,118,1\) \(44,144,228,160,6,185,55,145,8268\)
1390 DATA \(246,23,149,1,145,141,169,144\) \(, 37,137,145,32,212,143,172,1,6577\)
1490 DATA \(145,32,2,145,294,118,144,144\) \(, 228,96,0,152,24,165,9,168,5524\)
1410 DATA \(96,174,113,144,169,6,133,208\) \(, 133,269,262,48,243,165,268,24,1267\) 1429 DATÁ 169, 112, 144, 133, 268, 144, 243, \(230,269,268,239,172,118,144,162,6,2796\) 1436 DATA \(189,169,144,153,55,145,269,2\) \(32,224,9,144,244,149,118,144,96,1668\) 1446 DATA \(\theta, \theta, , 0, 0,1446
145 D DTA \(0,0,0,6,0,0,0,0,0,0,0,0, \theta, \theta\),日, 6, 1456
 6, 0,173, 6468
1479 DATA \(116,144,133,268,173,117,144\), \(133,269,169,32,145,208,236,298,268,477\) 9

1489 DATA \(2,230,121,145,116,146,269,16\) \(5,268,265,114,144,268,239,165,269,5897\) 1490 DATA \(265,115,144,208,232,96,166,6\) \(, 264,118,144,176,13,185,55,145,8661\)
1506 DATA \(265,169,144,246,8,32,2,145,2\) 68,238, 166, 255,96,162, 6, 185, 269
1519 DATA \(55,145,157,109,144,206,232,2\) \(24,9,144,244,96,32,25,144,165,9621\)
1526 DATA \(268,24,165,41,133,268,165,20\) \(9,165,0,133,269,96,32,175,145,8552\) 1536 DATA \(173,116,144,133,216,173,117\), \(144,133,211,174,113,144,166,6,177,479\) 1546 DATA \(216,32,234,145,145,268,206,2\) \(04,112,144,144,243,32,84,144,32,9313\) 1550 DATA \(96,144,262,268,232,96,0,141\), \(197,146,41,128,141,8,146,173,8359\)
1569 DATA \(197,146,41,127,261,96,176,12\) \(, 201,32,144,5,233,32,76,7,4691\)
1570 DATA \(146,24,105,64,9,6,96,32,137\), \(145,192,255,246,21,32,119,6961\)
1586 DATA \(144,166,0,185,55,145,265,169\) ,144,246,9,32,2,145,264,118, 7419
1590 DATA \(144,144,246,96,173,118,144,5\) \(6,233,9,141,118,144,268,6,32,6695\)
1600 DATA \(57,143,76,191,146,146,198,14\) \(6,264,118,144,240,87,192,0,268,1686\) 1616 DATA \(15,173,118,144,261,9,169,132\) ,133,216, 169,142,133,211,208,15,1162 1620 DATA \(185,53,145,56,233,1,133,210\), \(185,54,145,233,0,133,211,185,935\)
163 DATA \(62,145,56,233,1,133,268,185\), \(63,145,233,6,133,299,169,6,8456\)
1646 DATA \(177,208,117,146,112,147,145\), \(216,198,216,165,216,261,255,268,2,4857\) 1650 DATA \(198,211,198,268,165,268,261\), \(255,268,2,198,209,265,229,2,268,5623\) 1660 DATA \(225,165,269,265,236,2,208,21\) \(8,172,198,146,264,118,144,176,9,1946\) 1670 DATA \(185,64,145,153,55,145,269,26\) \(8,242,146,198,146,32,57,143,172,858\) 1689 DATA \(118,144,32,166,145,32,80,143\) \(, 173,118,144,265,198,146,268,239,3786\) 1690 DATA \(169,0,141,198,146,96,6,0,165\) \(, 33,141,169,144,261,6,144,6134\)
1706 DATA \(4,104,164,160,164,96,32,199\), \(146,32,137,145,192,255,208,3,191\)
1716 DATA \(169,179,96,173,169,144,16,16\) \(8,169,6,153,76,148,153,71,148,7556\)
1720 DATA \(166,1,96,189,65,3,133,33,168\) \(185,83,148,246,16,169,6,6316\)
1730 DATA \(153,83,148,169,155,166,1,96\),
\(32,146,147,173,83,148,265,113,9694\) 1740 DATA \(144,144,3,166,136,96,166,0,1\) \(77,210,72,238,82,148,173,82,9583\) 1750 DATA \(148,265,112,144,144,15,238,8\) \(3,148,169,6,141,82,148,164,33,7296\)
1769 DATA \(169,1,153,83,148,32,126,147\), \(164,96,72,189,65,3,133,33,4036\)
1779 DATA \(32,146,147,173,83,148,265,11\) \(3,144,144,3,32,189,147,164,261,9361\) 1789 DATA \(155,246,4,201,96,268,19,32,2\) \(35,156,32,212,143,32,251,156,331\) 1796 DATA \(238,83,148,169,6,141,82,148\), \(246,15,174,82,148,236,112,144,338\) \(1869 \mathrm{DATA} 176,7,113,147,198,148,160,6\), \(145,216,238,82,148,173,169,144,757\)
1816 DÁtA \(16,168,173,82,148,153,76,148\) ,173, 83, 148,153,71,148,166,1,7597
1829 DATA \(96,165,33,141,169,144,16,168\) \(185,79,148,141,82,148,185,71,8466\) 1830 DATA \(148,141,83,148,32,137,145,17\) \(3,116,144,24,169,82,148,133,216,9031\) 1846 DÁTA \(173,117,144,165,6,133,211,17\) \(4,83,148,262,48,65,32,96,144,6828\)
1850 DATA \(268,248,173,116,144,133,208\), \(173,117,144,133,269,166,0,146,82,9851\) 1869 DATA \(148,206,83,148,32,162,147,16\) \(5,208,197,210,208,6,165,209,197,4065\) 1876 DATA \(211,246,17,172,112,144,177,2\) 08, 166, \(9,145,268,236,268,208,231,5876\) 1880 DÁTA \(230,299,208,227,169,32,145,2\) \(16,269,294,112,144,144,246,96,32,1866\) 1890 DATA \(199,146,32,137,145,165,42,26\) \(5,112,144,176,3,141,82,148,165,8935\)
1969 DATA \(43,205,113,144,176,52,141,83\) , 148, 165, \(34,201,160,144,43,32,6352\)
1910 DATA \(235,156,32,212,143,165,34,26\) \(1,206,144,28,32,175,145,174,83,9115\) 1926 DATA \(148,262,48,5,32,84,144,268,2\) \(48,169,0,177,208,73,128,145,9894\)
1936 DATA \(298,206,264,112,144,144,244\), \(32,251,156,76,120,147,0,0,6,5692\)
1940 DATA \(0,0,0,0,0,0,0,0,0,0,0,0,0,0\), 212,146,7456
195 DATA \(238,146,241,146,56,147,238,1\) \(46,249,147,76,164,148,160,6,185,762\)
1960 DÁTA \(26,3,169,148,164,149,246,5,2\) 00, 209, 209, 208, 246, 169,87,153, 3858
1976 DÁA \(26,3,169,89,153,27,3,169,148\) ,153,28,3,96,216,164,179,6923
1980 DATA \(41,1,208,14,173,26,156,141,1\) \(34,149,173,27,156,141,145,149,9428\) 1996 DATA \(298,8,164,141,145,149,164,14\) \(1,134,149,224,2,144,13,164,141,7619\)
2006 DATA \(20,151,104,141,19,151,164,16\) \(4,141,18,151,173,18,151,261,192,9386\) 2010 DATA \(144,13,261,246,144,4,169,196\) \(, 268,2,169,6,141,18,151,173,6659\)
2020 DÁTA \(20,151,16,12,169,61,141,19,1\) \(51,169,1,141,20,151,298,21,5376\)
2030 DATA \(201,1,144,17,268,7,173,19,15\) \(1,201,64,144,8,169,0,141,5765\)
2040 DATA \(19,151,141,20,151,173,12,151\) \(, 240,3,32,6,149,169,1,141,5665\)
2950 DATA \(23,151,141,12,151,268,23,164\) , 216, 169, \(0,141,23,151,141,12,5888\) 2060 DATA \(151,173,13,151,133,0,173,14\), \(151,133,1,76,67,150,169,152,6738\)
2676 DATA \(141,244,2,173,18,151,141,17\), \(151,173,19,151,133,6,173,26,5276\)
2086 DATA \(151,133,1,162,3,76,1,162,0,7\) \(8,17,151,262,268,246,165,9053\)
2690 DATA \(0,141,122,150,169,46,56,229\), 0, 141, 154, 156, 174, 17,151, 142, 8588
2106 DATA \(126,150,262,48,13,165,6,24,1\) \(05,46,133,0,144,244,230,1,6133\)
2110 DATA \(268,246,165,6,24,161,88,133\), 6, 141, 13, 151, 165, 1, 161, 89, 4162
2120 DÁA \(133,1,165,149,100,150,141,14\)
```

,151,173,19,151,41,7,141,21,3857
2130 DATA 151,173,18,151,41,7,141,22,1
51,32,133,149,32,206,149,76,6376
2146 DATA 67,150,169,0,141,171,149,24,
105,8,141,177,149,169,6,141,7239
2150 DATA 172,149,105,0,141,178,149,16
0,0,152,153,0,154,200,192,72,9068
216@ DATA 144,248,162,0,172,22,151,189
,255,255,153,0,154,189,255,255,5928
2170 DATA 153,8,154,232,224,24,176,90,
224,8,208,2,162,16,200,152,9115
2180 DATa 41,7,208,227,152,24,105,16,1
68,208,220,172,21,151,136,48,8805
2190 DATA 65,162,0,94,0,154,126,8,154,
126,16,154,232,138,41,7,5170
2200 DATA 208,241,138,24,105,16,170,22
4,72,144,232,176,225,141,15,151,1295
2210 DATÁ 41, 127,133,4,169,0,133,5,160
,3,6,4,38,5,136,208,2252
2220.DATA 249,165,5,24,105,152,133,5,1
73,15,151,48,6,169,0,141,3962
2230 DATA 43,150,96,169,255,208,248,14
2,16,151,146,17,151,32,246,149,725
224日 DATÁ 160,0,174,66,150,177,4,73,0,
93,0,154,157,0,154,232,6451
2250 DATA 200,192,8,144,240,142,66,150
,174,16,151,172,17,151,96,0,6374
2260 DATA 169,64,141,158,150,160,0,140
,66,150,162,0,177,0,32,130,5179
2270 DATA 150, 232,200,192,3,144,245,16
0,40,169,0,141,22,151,177,0,6923
2280' DATA }32,1}6,101,150,55,151,150,2
2,206,192,43,144,245,160,80,177,2940
2290 DATA 0,32,130,150,232,200,192,83,
144,245,169,0,133,4,169,0,7637
2300 DATA 133,5,96,72,173,23,151,208,7
,104,189,56,151,145,0,96,6126
2310' DATA 194,157,56,151,32,26,150,152
,41,3,201,0,176,4,169,0,3571
2320 DATA 145,0,238,158,150,96,160,0,1
40,12,151,140,24,156,140,18,5862
2330 DATA 151,140,19,151,140,20,151,18
5,0,224,153,0,152,185,0,225,8868
2340 DATA 153,0,153,185,0,226,153,0,15
4,185,0,227,153,0,155,200,9593
2350 DATA 208,229,160,7,169,170,153,21
6,155,136,16,248,169,128,141,25,599
2360 DATA 156,169,24,141,26,156,169,15
1,141,27,156,96, 238,24,156,160,9684
2370 DATA 0,146, 23,151,173,12,151,240,
242,76,8,149,160,1,140,23,6613
2389 DATA 151,173,12,151,246,3,32,21,1
49,206,24,156,96,0,0,0,1912
2390 DATA 0,0,0,0,0,0,0,0,0,224,112,56
,28,14,15,31,7815
2400 DATA 63,0,0,48,112,96,224,224,224
,63,31,15,0,0,0,0,318
2410 DATA 0,232,216,176,96,192,0,0,0,6
5,151,255,151,104,216,32,8406
2420 DATA 235,156,104,164,32,234,145,3
2,240,149,164,133,1,104,133,0,6372
2430 DATA 160,31,177,0,145,4,136,16,24
9,169,152,141,244,2,32,251,3
2440 DATA 150,76,121,150,104,216,32,23
0,151,162,151,160,118,169,7,76,9366
2450 DATA 92,228,216,173,24,156,208,10
3,238,128,151,169,0,201,2,144,9933
2466 DATA 94,169,0,141,128,15i,173,120
,2,201,15,240,82,41,12,261,7282
2470 DETA 4,208,14,173,19,151,24,105,4
,141,19,151,144,3,238,20,4904
2480 DATA 151,173,120,2,41,12,201,8,20
8,14,173,19,151,56,233,4,5542
2490 DATA 141,19,151,176,3,206,20,151,
173,120,2,41,3,201,1,208,5892
2500 DATÁ 9,173,18,151,24,105,4,141,18
,151,173,120,2,41,3,201,4295
2516'DATÁ 2,208,9,173,18,151,56,233,4,
141,18,151,32,230,151,76,7472

```

2520 DATA \(98,228,169,0,72,76,132,148,1\) 04，216，169，7，162，228，160，98，816
2530 DATA \(32,92,228,173,12,151,240,3,7\) \(6,0,149,96,0,156,27,156,5352\)
2549 DATA \(76,133,142,76,156,142,76,172\) \(, 142,76,132,148,76,254,148,76,398\)
2550 DATA \(65,151,76,164,151,76,236,151\)
，0，128，24，151，226，2，227，2，7391
2560 DÁTA \(254,142,0,0,0,0,0,0,0,0,0,0\) ， 0，0，0，0，3098

Listing 2.
BASIC listing．
\begin{tabular}{|c|c|c|}
\hline 1.4 & 10 & LIST ：POSITION 2，15 \\
\hline Ca & & OP＝39936：CL＝39939 \\
\hline HP & & A＝USR（0P，1，8，10，20，10）：G05UB 200 \\
\hline NB & & A＝U5R（0P，2，2，2，10，10）： 6054 B 200 \\
\hline UP & & A＝U5R（0P，3，5，5，12，12）：G05UB 200 \\
\hline 12 & & A＝U5R（0P，4，24，7，7，5）：G05UB 200 \\
\hline J0 & 70 & A＝U5R（0P，5，28， \(0,16,10): G 05 \mathrm{LB} 200\) \\
\hline GT & 80 & LI5T＂W：＂：G05UB 200 \\
\hline DI & 90 & LI5T＂W2：＂：G05UB 200 \\
\hline FP & 160 & LI5T＂W3：＂：G05UB 200 \\
\hline GD & 110 & LI5T＂W4：＂：G05UB 206 \\
\hline GR & 120 & LI5T＂W5：＂：G05UB 200 \\
\hline RP & 130 & G05UB 210 \\
\hline UP & 140 & \(A=U 5 R(C L, 3): G 05 U B 200\) \\
\hline UD & 150 & A＝U5R（CL，2）：G05UB 200 \\
\hline WH & 160 & A＝U5R（CL，4）：G05UB 200 \\
\hline H8 & 179 & A＝U5R（CL，5）：G05UB 200 \\
\hline u & 189 & A＝U5R（CL，1）：G05UB 206 \\
\hline 01 & 190 & END \\
\hline CI & 200 & FOR N＝i TO 509：NERT N：RETURN \\
\hline AP & 210 & REM 20 Random overláps \\
\hline W0 & 220 & DIM N5（3） \\
\hline PG & 230 & FOR C＝1 T0 20 \\
\hline L．\({ }^{\text {H }}\) & 246 & N＝INT（RND（0）＊5）＋1 \\
\hline B5 & 250 & NS＝＇W ：＇י＇NS（2，2）＝CHRS（N＋48） \\
\hline 21. & 260 & 8IO 150，\(\# 1,0,0, \mathrm{~N} ⿳ 亠 丷 厂 彡\) \\
\hline FM & 270 & G0sUB 200 \\
\hline Ea & 280 & NEST C \\
\hline 20. & 290 & RETURN \\
\hline
\end{tabular}

Listing 3.
BASIC listing．
```

日D 16 TRACKER＝39954：DATTOSET＝39951：5TPTRA CKER＝39957：DIM ICON5（32）
w） 29 POKE 752，1：？CHR $5(125)$
ab 30 FOR $N=1$ T0 32：ICONS（N，N）＝CHRS（0）：NE HT N
UY 46 G05UB 130：A＝USRCDATTOSET，9，ADRCICON 5）
KE 59 A＝USR（TRACKER）
KC 60 IF PEEK（53279）＝6 THEN 350
ZR 70 IF 5TRIG（G）THEN 60
IIR $80 \mathrm{~K}=$ PEEK（4）：$Y=$ PEEK（5）
ZY 96 IF $\mathrm{K}=0$ OR $\mathrm{K}>16$ OR $Y=0$ OR Y＞16 THEN 60
0X 100 G05UB 200
DF 110 A＝U5R（DATTOSET，9，ADR（ICONS））
RE 129 GOTO 69
IT 130 REM 5ET UP SCREEN
KB 149 MEM＝PEEK（88）＋256＊PEEK（89）
JG 150 FOR N＝MEM TO MEM＋17：POKE N，138：POK E $\mathrm{N}+17 * 46,138$ ： $\mathrm{NEST} \mathbf{N}$
ou 160 FOR N＝MEM TO MEM＋17＊4日 5TEP 40：POK

```
    E N, 138:P0KE N+17,138:NERT N
        176 POKE MEM+25, 73:POKE MEM+26, 74:POKE
        MEM+65, 75: POKE MEM+66,76
C. 186 POKE MEM+3日, 261:P0KE MEM+31,202:P0
    KE MEM+70, 263:POKE MEM+71, 204
ZP 190 RETURN
SM 260 REM PLOT AND UPDATE
ZS 210 A二山5R(5TPTRACKER)

    =PEEK (MEM)
5c 230 IF \(Z=0\) THEN POKE HEM, 128
EO 240 IF \(Z=128\) THEN POKE MEM, 0
CY 250 A=USR(TRACKER)
RK 266 IF \(K<=8\) AND \(Y<=8\) THEN \(C Y=Y: C H=8-K\)
WI 276 IF \(X>8\) AND \(Y\langle=8\) THEN CYニY+8:CXニ16-
    K
CN 286 IF \(\mathrm{K}<=8\) AND Y>8 THEN CYニY+8:CX=8-
GA 296 IF \(K>8\) AND Y>8 THEN CYニY+16:CRニ16-
    H
Y 3 3日 T=ASC(ICONS (CY, CY)
HJ 31日 IF \(Z=0\) THEN T=INT( \((T+2\) AC \(\mathcal{C})+6.5)\)
sf 326 IF \(Z=128\) THEN T=INT \(((T-2 \wedge C K)+\theta .5)\)
YC उ30 ICONS (CY, CY)=CHRS (T)
ZH 346 RETURN
DC 350 REM 5 HOW DATA
EE 369 A=USR (STPTRACKER): OPEN \(\# 1,12,6, " 5\) :
    1":POKE 752,1
Z1. 370 PRINT \#1;"A=U5R(39945, ADR("; CHRSC3
    4); ICON \((1,32) ; \operatorname{CHR}(34) ; " 15, X, Y) " ?\)
CQ 380 PRINT "DATA "';FOR N=1 T0 32:? ASC

1R 390 CLOSE \#1
IP 496 OPEN \#1, \(4,6, \quad\) 'K:":GET \#i, X:CLOSE \#1
ET 410 GRAPHICS G:GOTO 20

Listing 4.
BASIC listing．

16 0P＝39936：CL＝39939：MOUETRACKER＝39945 ：TRACKER＝39954：5TPTRACKER＝39957：TRMASK \(=39960\)
AZ 20 BORDERCHAR＝39961：MOUENINDOW＝39942
PB 30 DIM NINS（2）
MN 49 G05UB 36960
AD 505 TOP
 \(1, X 1, Y 1, D K 1, D Y 1)\)
रU 30016 0PEN \＃5，12， 0, ＂W：＂
DF 30020 PRINT \＃5；＂DIRECTORY＂
WE 30030 PRINT \＃5；＂DELETE＂
5530046 PRINT \＃5；＂LOCK／UNLOCK＂
Y） 38956 PRINT \＃5；＂RENAME＂
MT 3066 PRINT \＃5；＂FORMAT＂

BD 30080 MAIN二З 0116 ：DIRECTORY＝30490：NAME＝ 36590：5URE＝30750：DIM NAME5（18），RENS（31 ），TS（10），85（3）
LF 30096 DIR＝30160：LOCK＝30220：DEL＝30180：F RMAT＝30440；REN＝36260
TG 30109 A＝U5R（TRACKER）
5B 30116 IF NOT STRIG（6）THEN 30116
PU 30129 N＝1： \(3=81: Y=Y 1: D K=D X 1: D Y=D Y 1: G 05 \mathrm{~J}\) B \(31000: 81=K: Y 1=Y: I N D E K=C H O I C E\)
GC 30130 IF INDEX＝6 THEN A＝USR（CL，1）：A＝U5 R（STPTRACKER）：RETURN ：REM EKIT FROM MI NI－D0S
TI 30146 IF INDEX〈〉5 THEN GOSUB DIRECTORY ：GOSUB NAME：CLOSE \＃3
CH 30150 ON INDEX GOTO DIR，DEL，LOCK，REN，F RMAT
Hz 30160 REM DIR
TE 30170 GOTO MAIN
JL 30189 REM DEL
KH 30190 G05UB SURE
DM 30206 KIO \(33,44,0,0\), NAMES
5 J 30216 GOTO MÁIN

AN 30220 REM LOCK
ZW 30230 IF LCK THEN \(\mathrm{KIO} 36, \sharp 4,0,0\) ，NAME 5
OL 30240 IF NOT LCK THEN 8 IO \(35,74,0,0, N\) AME 5
5230250 GOTO MAIN
OE 30260 REM REN
HZ 30265 FOR \(\mathrm{K}=\mathrm{LEN}\)（NAME \(\mathrm{H}^{\prime}\) TO 1 5TEP－ \(1:\) IF
 ）THEN NEKT \(H\)
RO 3027日 RENS＝NAMES（1， 8 ）：\(A=U 5 R(0 P, 2,12,0\) ， 22，1）：L＝LEN（REN\＄）：POKE TRMA5K， 1
MB 30286 OPEN \＃3，12，0，＂W2：＂：OPEN \(\# 4,4,0, "\) K：＂： \(8=9\)
OL． 30290 PRINT \＃3；＂NEW NAME？＂
CY \(30306 \mathrm{KIO} 100, \mathrm{H} 2, \mathrm{H}, 0, \mathrm{~W} 2: \mathrm{H}: \mathrm{A}=\mathrm{USR}\) CMOVET RACKER，\((8+13) * 8,14)\)
MG 30316 GET \(\# 4, N\)
UB 30326 IF N＜＞ 126 THEN 30360
XD \(30330 \quad 8=\mathrm{K}-1:\) IF \(\mathrm{K}<9\) THEN \(\mathrm{K}=9\)
JJ 30346 KIO \(50, \sharp 2,8,0\) ，＂W2：＂ \(\mathrm{H}: \mathrm{PUT}\) \＃3， 32
Yz 30350 G0T0 36360
BE 30366 PUT \＃3，N： \(\mathrm{K}=\mathrm{K}+1:\) IF \(\mathrm{N}\langle>155\) THEN 30 300
Hz 30370 KIO 50，\＃2， \(9,0, " W 2: "\)
PK 30386 INPUT \＃3，NAME 5

YB 30400 POKE TRMASK， \(0: C L 05 E\) \＃3：CLOSE \＃4
KU \(30416 \mathrm{KIO} 32, \# 4,6,0\), RENS
GD 30420 A \(=U 5 \mathrm{R}(\mathrm{CL}, 2\) ）
5月 30430 GOTO MAIN
5H 30446 REM FORMAT
BN 30450 IF NOT STRIG（0）THEN 30450
HE 30460 GOSUB 5URE
NU 30476 KIO \(254, \# 4,0,0, " \mathrm{D}: "\)
TR 36486 GOTO MÁIN
DT 30496 REM DIRECTORY
KW 30506 \(\mathrm{A}=\mathrm{USR}(0 \mathrm{P}, 2,12,0,17,22)\)
IW 30516 OPEN \(\# 4,6,0, " D: \%, * "\)
RJ 30526 OPEN \＃3，12， 0, ＂W2：＂
vo 30530 CNT＝0
IP 30546 TRAP \(30550:\) INPUT \＃4，NAME \(5:\) PRINT \＃3；NAMES：CNT＝CNT＋1：G0T0 30540
5530550 CLOSE \＃4
BA 30566 KIO 20， \(44,0,21\), ＂W2：＂
HW 30579 PRINT \＃3；＂CANCEL CDNTHESD＂
EU 30589 RETURN
YC 30590 REM NAME
YE 30609 IF INDEK \(\langle>1\) THEN 30630
CO 30616 IF STRIG（G）THEN 30616
UK 30620 A＝USR（CL，2）：CLOSE \(\# 3: R E T U R N\)
IT \(30630 \quad \mathrm{~N}=2: \mathrm{X=12}: Y=0: \mathrm{DK}=17: \mathrm{DY}=22\)
Mo 30646 GOSUB 31600
RT 30650 IF（TY－Y）\(\rangle=C N T\) THEN \(A=U 5 R(C L, 2):\) POP ：CLOSE \＃3：GOTO MAIN
WH 30660 หIO \(15,+14,0,(T Y-Y)-1, " W 2: "\)
PP 30670 INPUT \＃3，NAME 5
HN 30680 LCK＝0：IF NAMES \((1,1)=1 \% "\) THEN LCK \(=1\)
SR 30696 TS＝＂D：＂：T与（3）＝NAME（3，10）： \(85=\) NAM EF（11，13）
N0 3070日 FOR N＝1 T0 16：IF T与（N，N）＝＂＂THE N L＝N： \(\mathrm{N}=12\)
GY 30710 NEKT N：IF N＝11 THEN L＝11
DH 30720 NAME \(5=T 与:\) NAME \(5(L, L)=" . ": N A M E 5(L+\) 1）\(=\) K 5 ：NAME \(5(L+4)=\) CHRS（155）
50 30730 CL05E \＃4
CG 3074 © \(A=U 5 R(C L, 2): R E T U R N\)
1030750 REM SURE
NZ 3076 © \(\mathrm{A}=\mathrm{U} 5 \mathrm{R}(6 \mathrm{P}, 2,12,7,3,2)\)
CU 30770 OPEN \(44,8,0\), ＂W2：＂
OU 36786 PRINT \(\# 4\) ；＂YES＂
ET 30790 PRINT \(44 ;\)＇NO＂
SH 30806 CLO5E \(\# 4\)
YH \(30816 \quad \mathrm{~N}=2: \mathrm{X}=12: \mathrm{Y}=7: \mathrm{DH}=3: \mathrm{DY}=2\)
MM 30820 G05UB 31000
GT 30830 A＝U5R（CL，2）
YG 30849 IF CHOICE＝1 THEN RETURN
5 T 36859 POP ：GOTO MAIN
```

GF 3100日 REM *** ALL-PURP05E WINDOW/TRACK
ER INTEGRATER GINCLUDES WINDOW MOUE OP
TION) (A)A
MA 31010 WIN%='W'':WIN与(2,2)=5TRS(N):OLDY=
-1
KU 31020 TK=PEEK(4):TY=PEEK (5)
LK 31030 IF TY<>OLDY AND TY>Y AND TY〈CY+D
Y+1) AND TH>K AND TK<(KH+DK+1) THEN KIO
250,\#1,0,TY-(Y+1),WINS:0LDY=TY
IP 31040 IF OLDY<>-1 AND CTY<=Y OR TY\ (Y+
DY) OR TH<< K OR TK> (K+D K)) THEN KIO 15
0, \#1,0,0,WIN5:OLDY=-1
Y0 31050 IF 5TRIG(0) THEN 31020
YX 31060 IF NOT STRIG(0) THEN 31060
TH }31076\mathrm{ IF TK<\Y OR TY<\Y THEN }3115
IN 31080 POKE BORDERCHAR,123:XIO 150,\#1,0
,0,WIN5
GL. S1090 IF 5TRIG(0) THEN 31090
RK उ110日 IF NOT STRIG(0) THEN उ110日
MR 31110 POKE BORDERCHAR,128
EL 31120 K=PEEK(4):Y=PEEK(5)
YK S113@ G=USR (MOUEWINDOW, N, K,Y)
YD 31140 G0T0 31010
DL 31150 IF TY<=Y OR TY\(Y+DY) OR TH〈=, 0
R TH) (K+DH) THEN 31010
PC 31169 CHOICE=TY-Y
EG 31179 RETURN

```

\section*{Listing 5.}

BASIC listing．
OB 10 POKE 82，0：？CHR \(5(125)\)
MG 20 0P＝39936：CL＝39939：COPY＝39951：BCHAR＝ 39961：MOUEWINDOW＝39942：5TPTRACK＝39957： TRACKER＝39954：MOUETRACKER＝39945
UK 30 ERASETRACK \(=39948\)
MF 46 DIM CLOCK \(5(32)\), CALC \(5(32), D I 5 K 5(32)\) ， NUMS（8），FUNCS（4）：FUNC \(5=1\) Find

 KTS（4），FNAME \(5(14): I 0 C B=848\)
5P 60 G05UB 1596
 \＄（11）＝＂
SU \(80 \quad A=U 5 R(C O P Y, A 5 C(1 " n), A D R(C L O C K 5)): A=\) USR（COPY，ASC（＂一＂ 1 ），ADR（CALCS））：\(A=U 5 R(C 0\)

GC 90 FOR N＝1 TO 4
WB 160 G054B 30159
XH 116 A＝USR（OP，N， \(\mathrm{H}(\mathrm{N}), Y(N), D H(N), D Y(N)):\) OPEN \＃1， 8,0, WIN \(5: T=N * 5-4:\) PRINT \＃1；WIN1 \＄（T，T＋4）：CLOSE \＃1
HT 129 NEKT N
CT 130 A＝USR（TRACKER）
QZ 146 IF STRIG（9）THEN 140
KH 159 IF NOT STRIG（6）THEN 150
WE \(160 \mathrm{~K}=\mathrm{PEEK}(4)\) ： \(\mathrm{Y}=\mathrm{PEEK}(5)\)
 THEN 220
LK 189 G05UB З0150：POKE BCHAR，123： KIO 150 ，\＃1，0， 0, WINS
vu 190 IF STRIG（0）THEN 190
5P 206 IF NOT STRIG（6）THEN 200
SU 210 POKE BCHAR，128： 8 IO 150，\＃1，0，0，WIN 5 \(: X(N)=\operatorname{PEEK}(4): Y(N)=P E E K(5): A=U 5 R(M O U E W\) INDOW， \(\mathrm{N}, \mathrm{X}(\mathrm{N}), \mathrm{Y}(\mathrm{N}) \mathrm{S}: \mathrm{POP}\) ：GOTO 146
HU 220 NEST N
ON 230 FOR \(\mathrm{N}=1\) TO 4
NF 240 IF \(Y\rangle Y(N)\) AND \(Y\langle=Y(N)+D Y(N)\) AND \(K\rangle\) \(\mathrm{K}(\mathrm{N})\) AND \(\mathrm{K}(=\mathrm{K}(\mathrm{N})+\mathrm{D}(\mathrm{N})\) THEN POP ：GOTO 270
IA 250 NERT N
HL 260 GOTO 149
FW 270 ON N GOTO 60日，880，1560，280
BO 280 REM MEMO PAD
YP \(290 \mathrm{~N}=5: \mathrm{K}=\mathrm{K}(4): Y=Y(4): \mathrm{DK}=10: \mathrm{DY}=4: \mathrm{A}=\mathrm{U} 5 \mathrm{R}\)
```

 (OP, \(\mathrm{N}, \mathrm{K}, \mathrm{Y}, \mathrm{DH}, \mathrm{DY}\))
 QT 300 OPEN \#1,8, 0 ,"W5:":PRINT \#1;"EDIT M
EMO":PRINT \#1;"LOAD MEMO":PRINT \#1;"5A
UE MEMO": PRINT \#1;"PRINT MEMO"
$0 G 310$ CLOSE \#1:G05UB 25000
IZ 320 FOR N=1 TO 5: $A=U 5 R(C L, N): N E K T N$
H. 330 ON CHOICE GOTO $340,380,430,490$
PK 340 OPEN \#1, 4,0, "K:"
KU 359 GET H1, $\mathfrak{x}: 1$ IF $^{\prime} \mathrm{K}=27$ THEN 370
CD 360 ? CHR $5(8) ;: G 0 T 0350$
OK 370 CLOSE \#1:GOTO 90
AK 380 REM LOAD MEMO
JB 390 A=USR (TRACKER): GOSUB 10000:IF CHOI
CEDCNT THEN 90
GU 400 TRAP 420:OPEN $\# 1,4$, 0 , FNAMME
HI 410 POKE IOCB+2,7:G05UB 590
WI 420 TRAP 4000日:CLOSE \#1:G0T0 90
GY 430 REM SAUE MEMO
GA $440 \quad \mathrm{~N}=5: \mathrm{K}=8: \mathrm{Y}=10: \mathrm{A}=\mathrm{U} 5 \mathrm{R}(0 \mathrm{P}, \mathrm{N}, \mathrm{K}, \mathrm{Y}, 24,1)$:
0PEN \#2,12,0,"W5:":PRINT \#2;"Filename?
":LEFT=9
AD 450 G0SUB 30000: $A=U 5 R(C L, 5): C L O 5 E \# 2$
I5 460 TRAP 480:0PEN \#1, 8,0 , NAME $\$$
ZC 470 POKE IOCB+2,11:G05UB 590
WI 489 TRAP 490日0:CLOSE \#1:GOTO 90
OK 490 REM PRINT MEMO
CU 500 DD=PEEK (89) $256+$ PEEK (88)
JH 510 TRAP 580:OPEN $\# 1,8,0, " \mathrm{P}: "$
U5 520 FOR N=1 T0 24
BK 530 FOR $\mathrm{K}=\mathrm{DD}$ TO DD+39:CHAR=PEEK (K): IF
CHAR 127 THEN CHAR $=$ CHAR-128
EB 546 IF CHAR $\rangle=96$ THEN 570
LT 550 IF CHAR $=64$ THEN CHAR=CHAR-64:GOTO
570
IP 560 CHAR=CHAR+32
50570 PUT \#1, CHAR:NEKT K:DD=DD+40:PUT \#1
, 155: NEXT N
WU 580 TRAP 40000:CLOSE \#1:GOTO 90
EC 590 POKE IOCB +4 , PEEK (88): POKE IOCB +5 , P
EEK (89):POKE IOCB $+9,3:$ POKE IOCB $+8,192$:

```

```

YU 600 REM CLOCK
BU $610 \mathrm{~N}=5: \mathrm{K}=\mathrm{K}(1): \mathrm{Y}=\mathrm{Y}(1): \mathrm{DK=13:DY=2}$
HY $620 \mathrm{~A}=\mathrm{USR}(\mathrm{OP}, \mathrm{N}, \mathrm{K}, \mathrm{Y}, \mathrm{DH}, \mathrm{DY})$
DI 630 OPEN H2, 12,0, ,W5:

```

```

KC 650 G05UB 2500日: $A=U 5 R(C L, N)$
MII 669 IF CHOICE $=2$ THEN 760
FT 670 A=U5R(OP, $N, X, Y, 12,1): L E F T=6$
WL. 680 PRINT \#2;'HOURS?'igosub 30000:HRS=
UAL (NáME 5): LEFT=8
MY 690 KIO 50, $43,0,0,1$ W5:"
TJ 700 PRINT \#2;"MINUTE5?':G05UB 30000:MI
N=UAL (NAMES)
MJ 710 KIO 50, \#3, 0,0 , "W5:"
QF 720 PRINT \#2;'SÉCONDS?":G0SUB 30000:5E
$\mathrm{C}=\mathrm{UAL}$ (NAMES)
EL. 730 POKE 18, 0:POKE 19,0:POKE 20,0
MZ 746 A=U5R (CL, 5)
AC 750 CLOSE \#2:GOTO 130
PA 760 REM DISPLAY
FI 770 A=USR (0P, $5, K(1), Y(1), 8,1)$
OL 780 OPEN \#1,8,0,"W5:"
L. 790 T= (PEEK (18) $665536+$ PEEK (19) $\# 256+$ PEE
$\mathrm{K}(20)$) $/ 60+\mathrm{HR} 5 * 3606+\mathrm{MIN} * 60+5 \mathrm{EC}$
Y0 $806 \mathrm{H}=$ INT (T/3600) : M=INT ($(T-H * 3606) / 60)$

```


```

 2) \(=5\) TRS \((\mathrm{H})\)
 MR 820 MS=5TRS(M):IF M<10 THEN MS=" 0 ': MS
2) $=5$ TR $5(\mathrm{M})$

```

```

 2) \(=5\) TRS (5)
    ```

```

 い; MS;":י'5多
 aU 858 IF 5 TRIG(0) THEN 790
FZ 860 IF NOT STRIG(6) THEN 860
4D 870 CLOSE \#1:CLOSE \#2: A=USR(CL,5):G0T0

```
```

 130
 DN 880 REM CALCULATOR
CR 890 K=K(2):Y=Y(2):5UM=0:FUNC=0
XU 900 A=USR (0P, 5, X,Y,10,11)
DH 910 OPEN \#2,12,0,"W5:"
JT 920 G05LB 10150:PRINT \#2:PRINT \#2;"\square
ND 930 PRINT H2;"'M [N [F [iF"

```

```

CF 970 PRINT H2:PRINT H2; CNT=1
CH 990 IF STRIG (0) THEN 990
LP 1000 IF NOT STRIG(0) THEN 1000
MA 1010 TK=PEEK(4):TY=PEEK (5)
GN 1020 IF TH\langle\S OR TY<\Y THEN 1070
PA 1030 POKE BCHAR,123:\&IO 150,\#1,0,0,"W5
:"
00 1040 IF STRIG(0) THEN 1040
RY 1050 IF NOT STRIG(0) THEN 1050
PH 1060 POKE BCHAR,128: K=PEEK(4):Y=PEEK (5
):A=USR (MOUEWINDOW, 5, }H,Y):GOTO 990
WS 1070 IF TK<=K OR TK\K+10 OR TY<Y+3 OR
TY>Y+11 THEN }99
EM 1080 CX=TK-K-1:CY=TY-Y-3
0J 1090 IF (CY AND INT (CX/2) <>CX/2) OR IN
T(CY/2)<>CY/2 THEN }99
KN 110日 IF CNT=2 AND NLMS='."' THEN NUMS(2
)="0"
DL 1110 IF CY=0 THEN 1220
IX 1120 NK=(CX-2)/2;NY=(CY-2)/2
UH 1130 IF NK=0 AND NY=3 THEN NUM=0:GOTO
1180
HR 1140 IF NK=1 GND NY=3 THEN NUMS(CNT,CN
T)=".":GOTO 1190
BU 1150 IF NK<0 OR NX>2 OR NY<0 OR NY>2 T
HEN 1300
LP 1160 NUM=7-3*NY+NK
HM 1170 IF CNT=9 THEN 990
ca 1180 NLMS (CNT, CNT)=5TRS(NUM)
AY 1190 IF CNT=1 THEN GOSUB 10150:NUMS(2)
=171 M, "W5:":PRTMT H2:MUM%
E4 1200 XIO 50,\#1,1,0,"W5:":PRINT \#2;NUMS
JV 1210 CNT=CNT+1:GOTO 990
OR 1226 REM MEMORY
NK 1230 IF C\&=0 THEN A=U5R(CL,5):CLOSE \#2
:GOTO 140
AO 1240 IF CX=2 OR CY=3 THEN GO5UB 10150:
PRINT \#2;MEM:NLMS=STRS(MEM):GOTO 980
BY 1250 IF NUMS=\", THEN 990
CK 1260 IF CX=5 OR CX=6 THEN MEM=MEM-UALC
NUMS):GOTO 1290
DP 1270 IF CX=8 OR CX=9 THEN MEM=MEM+UAL\&
NUMF3:GOTO 1290
UI 1280 GOTO 990
NH 1290 FUNC=0:8IO 50,H1,0,0,"W5:":PRINT
\#2;"㢄:G05UB 10150:G0T0 980
PU 130日 C=(CY-2)/2+1
DD 1310 IF CX=0 AND C>2 THEN ON C-2 GOTO
1490,1516
BR 1320 IF NUMS='י" THEN }99
W4 1330 IF FUNC=0 THEN 5UM=UAL (NUM5)
YK 1340 IF CK=6 THEN ON C GOTO 1430,1460
DR 1350 IF FUNC THEN ON FUNC GO5UB 1390,1
400,1410,1420:G05UB 10150:PRINT \#2;5UM
DL. 1360 IF CY=8 AND CX=6 THEN FUNC=0:NUMS
=5TRS (5UM):GOT0 980
HT 1370 FUNC=C
5L. 1380 G05UB 10150:PRINT \#2;5UM:G05UB 15
30:G0T0 980
GM 1390 5UM=5UM/UAL (NUM5):RETURN
DA 1409 5UM=5UMFUGL (NUM5):RETURN
E@ 1410 5UM=SUM-UAL (NUM5):RETURN
DT 1420 5UM=5UM+UAL (NUMS):RETURN
YT 1430 REM PERCENT
UW 1446 IF FUNC=0 THEN SUM=UAL(NUMS)/100:
GOTO 148G

```

HZ 1450 NUM＝5UM＊（UAL（NUMS）／100）：CY＝8：CK＝6 ：NUMF＝5TRS（NLM）：GOT0 1356
YE 1460 REM SQUARE ROOT
541476 SUM＝50R（UAL（NUMS））
Z5 1489 FUNC＝0：NLM \(=5\) TRS（SUM）：GOTO 1380
ES 1490 REM CLEAR
YG 1509 G05UB 16150：G05UB 1530：NUMF＝＇＂＇：G0 T0 980
LI 1519 REM ALL CLEAR
251529 G05UB 10150：8IO 50，\＃1，0，0，＂W5：＂：P RINT \＃2；＂＂：FUNC＝0：5UM＝0：MEM＝0：NUMS＝＂＇＂ ：GOTO 980
TG 1536 REM DISPLAY OPERATION
T0 1546 IF FUNC THEN KIO 50， \(\mathbf{H 1}, 9,0, " W 5: ":\) PRINT \＃2；FUNCS（FUNC，FUNC）
RU 1550 KIO 50，\＃1，1，0，＂W5：＂：RETURN
YQ 1566 REM DISK LOADER
UR 1570 FOR \(N=1\) TO 4：\(A=U 5 R(C L, N): N E K T\) N：G 05UB 10000：IF CHOICEDCNT THEN 90
OF 1580 RUN FNAMES
NC 1590 REM GETDATÁ


UM 1619 CALC5＝＇？ 4
 CKKK\％＂
0A 1630 FOR \(N=1\) T0 4：READ \(K, Y, D K, D Y: K(N)=\) K：Y（N）＝Y：DK（N）＝DK：DY（N）＝DY：NEXT N
AK 1640 RETURN
ZP 1650 REM WINDOW DATA
PL 1660 DATA \(0,0,2,2,10,0,2,2,20,0,2,2,30\) ， \(0,4,1\)
WM 10000 REM DISK SELECTION
DA \(10010 \mathrm{~K}=13: \mathrm{Y}=0: \mathrm{DK}=11: \mathrm{DY}=22: \mathrm{N}=5\)
EZ 10020 A＝USR（OP，N， \(\mathrm{K}, \mathrm{Y}, \mathrm{DK}, \mathrm{DY})\)

U5 10046 OPEN \(\# 2,12,0, " W 5: ": C N T=0\)
vo 10050 INPUT \＃1，NAMES：IF NAME \((2,2)=1 "\) THEN PRINT \＃2；NAMES（3，13）：CNT＝CNT＋1：G OTO 10056
op 10060 CLOSE \＃1
NX 10070 G05LB 25000
KH 10080 KIO 50，\＃1， 0, CHOICE－1，＂＇W5：＂：INPUT \＃2，NAMES：CLOSE \＃2
AU 10096 EKTS＝＂．＂：EKTS（2）＝NAME（9）
OT 19190 FOR N＝1 TO 8
DE 10110 IF NAMES \((N, N)="\)＂THEN 10130
IC 19129 MEKT N
 （3）＝NAMES
DJ 1014日 CLOSE \＃2：A＝U5R（CL，5）：RETURN
CN 10150 REM CLEAR DISPLAY
BG 10160 KIO \(50, \sharp 1,1,0,1\) W5：＂：PRINT \＃2；＂
JH 10170 KIO 50，41，1，0，＂W5：＂＇RETURN
GM 25060 REM＊＊＊ALL－PURPOSE WINDOW／TRACK ER INTEGRATER GINCLUDES WINDOW MOUE OP TION）＊
CB 25010 G05UB 30150：0LDY＝－1
YC 25026 T \(\mathrm{C}=\mathrm{PEEK}(4): T Y=\mathrm{PEEK}(5)\)
ME 25036 IF TY〈〉OLDY AND TY〉Y AND TY〈（Y＋D \(Y+1)\) AND \(T H>K\) AND TK〈 \(K+D X+1)\) THEN XIO 250，\＃1， \(0, T Y-(Y+1), W I N S: 0 L D Y=T Y\)
IW 25040 IF OLDY〈〉－1 AND GTY〈＝Y OR TY〉CY＋ DY） \(0 R\) TK〈＝K OR TK〉（K＋DK）THEN KIO 15 \(0, \# 1,0,0\), WINS：OLDY \(=-1\)
BT 25056 IF STRIG（0）THEN 25020
CR 2506 IF NOT STRIG（6）THEN 25060
\＆T 25076 IF TX〈〉\＆OR TYく〉Y THEN 25150
EB 25080 POKE BCHAR，123：KIO 150，म1，0，0，WI N 5
Ja 25090 IF STRIG（0）THEN 25090
UR 25100 IF NOT STRIG（0）THEN 25100
MS 25110 POKE BCHAR， 128
E5 \(25120 \quad \mathrm{X}=\mathrm{PEEK}(4): Y=\) PEEK（5）
YR 2513 G \(\mathrm{A}=\mathrm{LSR}\)（MOUEWINDOW， \(\mathrm{N}, \mathrm{K}, \mathrm{Y}\) ）
ZY 25146 GOTO 25016

\footnotetext{
KT 25i56 IF TY〈ニY OR TY〉CY＋DY】 OR TX〈ニ 0 R TK＞（ \(8+D K\) THEN 25016
MI． 25166 A＝U5R（5TPTRACK）
PN 25170 CHOICE＝TY－Y
ER 25180 RETURN
TI 30969 REM INPUT STRING CNEEDS：LEFT，N， OPENED IOCB\＃2， \(\mathrm{K}, \mathrm{Y}\)
30619 G05UB 36179

P 3003 KIO 106，\＃3，C，W，WINs：\(A=U 5 R\) GMOUETR
ACKER，\(((C+K+1) * 8),(Y * 8+14) 3\)
F 36046 GET \＃1，CHAR
MR 30950 IF CHAR \(\rangle 126\) THEN 30990
DD 30060 C＝C－1：IF C＜LEFT THEN C＝LEFT
है 30679 KIO \(50, \sharp 3, C, 0\), WIN \(5:\) PUT \＃2， 32
zF 36986 GOTO 36930
IK 3699 IF C＝4 THEN 30936
ZT 30109 PUT \(\# 2\), CHAR：CニC＋1：IF CHARく〉155 T HEN 36030
ZK 30110 KIO 50，\＃3，LEFT， 0 ，WINS
HW 36120 INPUT \＃2，NAMES：PRINT \＃2
FN 3013 CLOSE \＃i：A＝USR（ERASETRACK）
D） 30149 RETURN
EL 30150 REM FIND NAME

EE 30176 RETURN
}



\section*{by Mark Andrews}

Your Atari computer has a large selection of text and graphics modes, and it isn't difficult to switch from one mode to another in the middle of a program. But using more than one graphics mode on the same screen at the same time - well, that's a little harder. To mix graphics modes on a screen display, it's necessary to understand a programming technique called display-list modification. And that's our topic.

In a type-and-run program listed at the end of this article, I'll demonstrate how to create a screen display that includes three different modes: graphics 0 , graphics 1 and graphics 2. There'll be one line of text in each mode, and each line will be displayed in a different color. The result will be a good-looking title screen that you can use with any homemade BASIC or assembly language program. Once you understand the principles used to design the display, you can create many kinds of mixed-mode screens.

The program used for this demonstration was written in assembly language on a MAC/65 assembler-editor package from OSS. It's a type-and-run program I've named HELLO. If you own a MAC/65 assembler, you can type, assemble and run the program as written. If you own another assembler, you may have to make some modifications in the program. And, if all of this talk about assemblers and assembly language is a complete mystery to
you, you can learn assembly language by reading my book, Atari Roots: A Guide to Atari Assembly Language, published by Datamost in 1983.

\section*{Your Atari's graphics modes.}

Before I list the HELLO program and explain how it works, here's some background information on how your Atari generates its screen display.

When you turn on your Atari, it automatically goes into a screen mode called graphics 0-a standard 40-column text mode. Bat if you type the statement GRAPHICS 1, or include it in a BASIC program, your computer will switch to a special text mode that displays "fat" characterscharacters twice as wide as normal text. The command GRAPHICS 2 will give you giant characters, twice as high and twice as wide as ordinary characters. And there are several other graphics instructions you can use to create high-resolution graphics displays.

That's an extraordinarily powerful set of graphics modes. And, if you know how to program in assembly language, you can make it even more powerful. With assembly, you can mix your Atari's graphics modes in any combination you like. You can print normal characters, fat characters, giant characters and even high-resolution graphics-all on the same screen. Then, you can add fine-scrolling to any part of the screen you want, for an even more eyecatching display!

Along with their many graphics modes, Atari computers also have some other graphics-generating capabilities that
are quite sophisticated. In computers less advanced than your Atari, one block of RAM is usually dedicated to screen memory. Within that block of memory-often known as "screen memory" -there's usually one memory location for each text character on the screen. When a certain text character is to be printed in a particular screen location, a code number representing that character is placed in the memory register that corresponds to its screen location. A character which equates to whatever code number was used then appears in the desired location on-screen.

Atari graphics are a bit more sophisticated than thatand just a bit more complicated, too. Your Atari uses two special chips to generate its graphics display: one called an ANTIC chip and one called a CTIA/GTIA chip. (The early Ataris were built with a CTIA chip; newer models use a GTIA.)
The CTIA/GTIA is a nonprogrammable chip that controls colors and performs various other functions. But your computer's other graphics chip, the ANTIC, is a real microprocessor. It has its own miniature instruction set, and its operations can be controlled with a special kind of program called a "display list." So, to create graphics using the ANTIC chip, you have to know how to use the ANTIC chip's instruction set and how to write display-list programs for the ANTIC microprocessor. And, to understand how ANTIC works, it's necessary to know some fundamental facts about the operation of a video display.

\section*{Scan lines and mode lines.}

The picture on a TV screen is made up of tiny horizontal lines-262, to be exact. Each of these is called a "scan line."

These scan lines are produced by an electron gun behind your TV monitor's picture tube. This electronic pistol fires electrons at the TV picture tube in what's known as a "raster scan" pattern-a zigzag pattern that begins at the upper left-hand corner of the screen and ends in the bottom right-hand corner.

There are 262 horizontal scan lines on a video tube, and the whole 262-line display is replaced by a completely new display sixty times each second. Between each of these lightning-fast scenery changes, there's an extremely brief interval-called a "vertical blank" period-in which the whole screen goes blank.

\section*{Dot-matrix characters.}

Look closely at a computer-generated text display on a TV screen, and you may be able to see that each character on the screen is made up of tiny dots. If you could look closely enough at the screen text graphics generated by your Atari-while your computer is in its normal 40column by 24 -line text mode-you'd be able to see that each letter is made up of sixty-four dots, arranged in a matrix eight dots wide and eight dots high.

Because of a picture-tube design technique called "overscan," however, not all of the 262 scan lines available for a TV picture appear on-screen; some fall off the edges and are never seen. So computer programs that generate video displays don't usually make use of all of those lines.

Your Atari, for example, uses only 192 of the 262 scan lines available.

Atari BASIC supports four text modes, each of which produces letters of a different size. But, no matter what text mode you're in, and no matter how large the letters on your screen are, each line of text in an Atari display is always called a "mode line." In your Atari's normal 40 -column by 24 -line text mode-the mode referred to in Atari BASIC as "graphics 0"-each letter in a mode line is eight dots high, and each of those dots equates to one scan line.
In BASIC's graphics 0 mode, therefore, one mode line is equal to eight scan lines.

There are two other text modes in Atari BASICgraphics 1 , in which the characters on-screen are the same height as graphics 0 characters but twice as wide; and graphics 2 , in which the characters are twice as high and twice as wide as standard graphics 0 characters. When your computer is in its graphics 1 mode, each mode line is made up of eight scan lines - the same number of scan lines used in a mode line in graphics 0. When your Atari is in its graphics 2 mode, however, each mode line equates to sixteen scan lines.

\section*{Antic mode 3.}

There's another text mode, called "ANTIC mode 3," that's not supported by BASIC. In ANTIC mode 3, each mode line is made up of ten scan lines. You can find out more about ANTIC mode 3 by reading the Atari programmer's manual De Re Atari, or by consulting the Atari 400/800 Technical Reference Notes published by Atari.

In addition to their four text modes, Atari computers have numerous graphics modes - either ten or thirteen of them, depend on what kind of graphics hardware came installed in your model. (The number of graphics modes offered by Atari computers varies, with which chip is included, CTIA or GTIA).

In the non-text graphics modes, the number of scan lines per mode line can range from one (in high-resolution graphics) to eight (in low-resolution). The number of colors available also differs from graphics mode to graphics mode.
Table 1 shows the graphics modes available to Atari programmers. You may notice that there are differences between the ANTIC and the BASIC designations of these modes, and that ANTIC supports more modes than Atari BASIC does. And this table doesn't include the special modes available to owners of GTIA chips, since programs using those modes won't work properly on all Atari computers. If you want to use them anyway, you can find out how in De Re Atari.

\section*{Customizing your Atari's screen display.}

Two steps are needed to custom design an Atari screen display. First, you have a special kind of program called a "display list." Then you have to tell your computer how to use the display list you've designed.

A display list is made up of a series of 1-byte instructions that can be placed almost anywhere in your computer's available RAM. Anytime you want to see what a display list looks like, you can find one by using your as-

Table 1.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Atari Text and Graphics Modes} \\
\hline ANTIC mode & BASIC mode & Scan lines per mode line & No. of colors \\
\hline 2 & 0 & 8 & 2 \\
\hline 3 & None & 10 & 2 \\
\hline 4 & None & 8 & 4 \\
\hline 5 & None & 16 & 4 \\
\hline 6 & 1 & 8 & 5 \\
\hline 7 & 2 & 16 & 5 \\
\hline 8 & 3 & 8 & 4 \\
\hline 9 & 4 & 4 & 2 \\
\hline A & 5 & 4 & 4 \\
\hline B & 6 & 2 & 2 \\
\hline C & None & 1 & 2 \\
\hline D & 7 & 2 & 4 \\
\hline E & None & 1 & 4 \\
\hline F & 8 & 1 & 2 \\
\hline
\end{tabular}
sembler's debugging utility to peek into your computer's memory.

When you turn on your computer, it automatically goes into its graphics 0 mode, and the address of the display list it uses to generate that mode is always stored in two loca-tions-specifically, memory addresses \$230 and \$231. Memory register \$230 always holds the low byte of the starting address of your computer's display list, and memory register \$231 always holds the high byte of the display list's starting address. So, once you know the contents of memory registers \(\$ 230\) and \(\$ 231\), you'll be able to locate the display list your computer's currently using.

Once you locate your computer's graphics 0 display list, you'll find that it looks something like this:
\[
\begin{array}{llllllll}
70 & 70 & 76 & 42 & 20 & 70 & 62 & 62 \\
02 & 62 & 02 & 02 & 02 & 02 & 02 & 02 \\
02 & 02 & 62 & 62 & 02 & 02 & 02 & 02 \\
02 & 02 & 02 & 02 & 02 & 41 & E 6 & 7 B
\end{array}
\]

As you can see, a display list is a pretty strange-looking program. Let's examine it, byte by byte, right now:

\section*{BYTES \(1-3\) \\ \(\$ 79 \quad 576 \quad 570\)}

Each byte in a display list has a specific meaning to the ANTIC chip. Within each byte, each nybble-that is, each hexadecimal digit - also has a specific meaning. For example, this display begins with three bytes that hold the same hexadecimal value: \(\$ 70\). In the programming language of the ANTIC chip, the value \(\$ 70\) tells ANTIC to display one blank mode line-which in BASIC graphics 0, equates to eight blank scan lines.

This, as it turns out, is the standard way to start a display list for a graphics 0 display. Because of the overscan characteristic of a TV screen, it's standard practice to kick off a graphics 0 display with three blank mode lines-or, in ANTIC language, with three \(\$ 70 \mathrm{~s}\). That will pull the beginning of your graphics 0 display down to the top of your TV's picture tube, where you can be pretty sure your complete display will be visible on-screen.

\section*{BYTES 4-6 \\ 542 な20 570}

After three blank mode lines have been displayed, we get to the first actual display byte on our sample display list: the hexadecimal number \$42. In ANTIC language, the value \(\$ 42\) is what's known as a "load memory scan" (LMS) command. After all necessary blank lines have been taken care of, the first display byte in a display list is always a load memory scan command, and an LMS command is always a 3 -byte instruction. In the display list we're examining, the load memory scan instruction is made up of the 3 bytes \$42, \$20 and \$7C.
The first nybble in this instruction-the digit 4-alerts ANTIC that this is an LMS instruction.

The second nybble in the LMS instruction-the digit 2 -tells ANTIC to display an ANTIC mode 2 line. Consult the table on graphics modes presented a few paragraphs back, and you'll see that, in ANTIC language, mode 2 is the same as BASIC mode 0 .

The next 2 bytes of the LMS command-the bytes \(\$ 20\) and \(\$ 7 \mathrm{C}\)-provide ANTIC with the address at which screen memory will begin. ANTIC interprets these 2 bytes lowbyte first, in standard 6502 fashion. When ANTIC encounters the LMS instruction \$42 \$20 \$7C, therefore, the first byte displayed on your Atari's video screen will be whatever byte is stored in memory location \$7C20.

When you write a display list, you can put your screen memory in just about any convenient, available block of RAM. And you can fill that RAM up with whatever you like-codes that equate to text, display screens drawn with the help of a graphics program, or character graphics created with a graphics-generator program. Once you have a display created, you can tell your display list where to find it, by placing its starting address in the 2 bytes that follow your display list's LMS command.

\section*{BYTES 7-29}

\section*{The byte 502 , repeated 22 times}

As explained above, the first LMS command in a display list tells ANTIC two things: the address at which screen memory begins, and the graphics mode to use to display the first mode line of text or data that will be found starting at that address.

After ANTIC has been presented with this information, it must be told what graphics mode to use to generate each subsequent mode line that will displayed on-screen.

In the display list we're examining, every mode line on the screen is an ANTIC mode 2 line. Therefore, the next twenty-three instructions in this display list are all the same; each will tell ANTIC that the next line on the screen will be an ANTIC mode 2 line.

What would happen, you may ask, if all these instructions were not the same? Well, if they weren't, then more than one graphics mode could be displayed on-screen simultaneously. Text of various sizes could be displayed on the same screen, and text and graphics modes could be intermixed as desired. This is a very powerful-and quite unusual-capability of Atari computers. You'll get a chance to see exactly how it works before you finish this article.

Every display list must end with a 3-byte command called a JVB (jump on vertical blank) instruction. The first byte in a JVB instruction is always the value \(\$ 41\). The next 2 bytes always combine to form a jump address. The destination of the jump is always the beginning of the display list in which the jump is contained.

As it happens, the display list we're looking at starts at memory address \$7BEO. So that's the address that follows (low byte first) the JVB instruction \(\$ 41\).

When ANTIC encounters the JVB instruction \(\$ 41\) in a display list, it jumps back to the beginning of the display list, waits for the next vertical blank period between raster scan displays, then jumps to the address that follows the JVB instruction. And, since this address is the address of the beginning of the display list, what the JVB instruction really does is run the display list again.

\section*{Running a display list.}

As I've pointed out, a display list can be placed in almost any convenient spot available in your computer's memory. Screen memory can be placed just about anywhere in RAM, too. Once you've created a display list and a block of data to be used as screen memory, all you have to do to put your custom-designed display on your TV screen is write a simple program that tells your computer's operating system (OS) where your display list is.

To direct your computer to your custom display list, you simply store new values into a pair of OS memory locations known as "shadow" locations. Shadow addresses are used often in Atari programming, so I might as well explain what they are right now.

In your computer's memory, there are some very useful hardware registers not normally accessed by user-written programs. But sixty times per second, the data in each of these memory locations is updated. During this updating process, the value stored in each register is replaced by data that's been stored in a corresponding shadow register. And shadow registers are in user-accessible RAM. So, by changing the value in a shadow register, you can also change the value of its corresponding hardware register. For most intents and purposes, therefore, a shadow register works just about like any other OS register situated in RAM.

Three shadow addresses that are often used in displaylist programs are \(\$ 22 \mathrm{~F}, \$ 230\) and \(\$ 231\). Address \(\$ 22 F\) is an Atari OS memory location called SDMCTL (Shadow Direct Memory Access Control). Addresses \$230 and \$231 are OS locations called SDLSTH (Shadow Display List Pointer - Low) and SDLSTL (Shadow Display List Pointer - High).

To write a program that will put a custom display list on your Atari's screen, all you have to do is follow these three steps:
(1) Turn your computer's ANTIC chip off by stor-
ing a 0 in \(\$ 22 \mathrm{~F}\) (SDMCTL).
(2) Store the starting address of your custom display list in \(\$ 230\) and \(\$ 231\) (SDLSTL and SDLSTH).
(3) Turn your computer's ANTIC chip on again by storing the value \(\$ 22\) in \(\$ 22 \mathrm{~F}\) (SDMCTL).

\section*{Doing it.}

Now that you know how to do all of this, we're ready for action. The following program, together with the article you've just read, should provide you with all of the information you'll need to start designing your own customized display lists and creating your own mixed-mode screen displays.

> Mark Andrews is the author of Atari Roots (Datamost: 1984), the top-selling book on Atari assembly language programming. He is also a frequent contributor to many computer magazines. This is the first article he's written for ANALOG Computing.

Listing 1. Assembly listing.

```

 .BYTE $70
 ;LMS, ANTIC MODE 2 (GRAPHIC5 0)
.BYTE \$42
;TEKT LINE: "By [Your Name]"
,WORD LINE3
; BLANK LINES
, BYTE \$70,570,570,570
;LM5, ANTIC MODE 6
BYTE \$46
;TEKT LINE: "PLEASE STAND BY"
SNONOD LINE4
;5 BLANK LINES
,BYTE \$70,570,\$70,570,\$70
; JUB INSTRUCTION
.BYTE \$41
;ADDRES5 OF DISPLAGY LIST
.WORD HLST
;'RUN PROGRAM
;
;5WITCHING COLOR REGISTERS
;FOR NICELY COLORED DI5PLAY
INIT
LDA COLORS
STA COLOR1
LDA COLOR4
STA COLOR2
;NOW WE'LL RUN THE PROGRAM
LDA \#O
; TURN OFF ANTIC WHILE WE STORE
;OUR NEW LIST'S ADDRES5 IN THE
; 05 DI5PLAY LI5T POINTER.
STA SDMCTL
LDA \#HLST\&255
5TA 5DLSTL
LDA \#HLST/256
STA SDLSTH
;TURN ANTIC BACK ON
LDA \#522
5TÁ 5DMCTL
F
RTS

```


CALL TOLL FREE 1-800-345-8112
IN PENNSYLVANIA 1-800-662-2444
OR USE THE POSTAGE-PAID CARDS IN THE BACK OF THIS BOOK

\section*{For the \#1 magazine for Atari computer owners!}


\section*{by Barbara Donovan}

Have you ever wanted a tailor-made file management program that will allow you to choose exactly the information you want to include-and how you want to manipulate it? Have I got a program for you!

The inspiration for this came while I was on a diet. Because I'm a bit of a health food nut, I wanted to know how many calories and nutrients various recipes would have. This seemed like an excellent application for a computer. After all, they're supposed to be good at numbers - multiplying and dividing, and stuff like that. I realized I needed a file with the information I wanted, which could be accessed selectively.

Sounds simple, doesn't it? Well, I had a database program on which I could have set up records for each item needed. But that meant, every time I wanted to add up a recipe, I would have to go through all those records and, by editing them, put a key to indicate which to include. I would also have to change the multiple for each item desired. Doing it with pencil and paper would be faster.

After a little thought, I decided what was needed was a way to choose which items I wanted to include in a particular calculation (in computerese, that's an "indexedsequential" file). This put me off my stride a little. I had read that the technique was really complicated. Guess what? It's not so bad.

Using the Atari's NOTE and POINT functions, the program became relatively simple to write. Pointed Note is written in a top-down way (this just means everything possible is in subroutines), so it could be debugged more easily. Now, if you don't care how many calories things have, don't despair. Pointed Note will work for any type of data you wish to store, recall, organize and/or manipulatecalories are just one example. Also, if you save the various subroutines by LISTing them, you can easily build another program without a lot of retyping.

There are a few things you should know about databases. Picture a file cabinet with several drawers. That's the "database." Each drawer has a bunch of file folders relating to the same sort of thing (like bills to be paid). That's a "file." Each file folder has a sheet of paper with information about a particular member of the file (like the electric bill). That's a "record." And, finally, each sheet of paper has various entries on it (like your account number). Those are "fields." Fields are made up of alphanumeric characters.

So, what I want to set up is a file of foods, containing records for each food with fields of pertinent information. For the sake of this discussion, we'll consider the fields to be: (1) the name of the food; (2) and (3) the number of base units (i.e., 1 cup-to be treated as 1 and cup-two fields); and (4) the calories. Please note that the number and type of fields can easily be modified for any application.

This is a simple matter. I decided the name of the food could be a maximum of twenty-five characters, number of units a maximum of three characters, the unit itself fifteen characters, and the calories three characters. Why is it important to decide on this information in advance? Two reasons: you need to know how large to dimension the variables; and each record must take up exactly the same amount of disk space.
That last needs some explanation. When your computer writes data to the disk, it puts one character after another until it comes to an end-of-line character (EOL), which it also puts on the disk to demarcate the end of that field. When your computer inputs data from the disk, it reads each characater until it comes to the EOL, then stops. Therefore, if we want to be able to make any later changes to our data, each field must always be printed with exactly the right number of characters-or the updates and previous data may become confused with each other in the overwriting.

In order to make sure of field length, we must pad any items less than the set field length with blanks. This is done in the PADDATA and PADITEM subroutines, before the data is written to disk.

Now, getting back to that indexed-sequential stuff, we want to be able to find any record, read its information, manipulate that information and get results. However, we don't want to have to read through every record to find the one we want. In our sample program this wouldn't be a big deal, but if each record had, in addition to calories, Vitamin A, Vitamin B-1, Vitamin E, Calcium, Sodium. . . well, you get the idea. It would take forever to go through all of them every time. With this program, we only have to go through all of them when adding new records.

When we add new records, we'll find out at which sector and character on disk the record begins and go directly to that location. This is done by having a separate file (another drawer in our cabinet), containing a record with only the name of the item, sector and character. Neat, huh?
Basically, we need two functions to accomplish this. NOTE tells us where on disk the read/write head is located. The form is:

> NOTE \#(channel no.),SECT,CHAR

Channel number refers to the line you've opened to the disk drive, as in: OPEN \#1,4,0,"D:DATA.FIL". SECT and CHAR are variable names which will contain, respectively, the sector number and character position of the drive head. Each sector has 128 character positions.

POINT tells the read/write head to move to a specified position and start operations there. The form is:

> POINT \#(channel no.),SECT,CHAR

As you see, it's similar to the NOTE statement. The sector and character positions must be given as variables. (Also, keep in mind that you can only POINT to a position in a file which exists and has been OPENed).

The OPEN statement allows you to communicate directly with peripheral devices, such as disk drives, cassettes, printers, keyboard, etc. Each device has a letter specification. We're only concerned with the disk drive, which is indicated by "D: (the colon is necessary), and must be
followed by an existing filename (with one exception, discussed below).

In examining the OPEN statement, we're most concerned with the second specification (i.e., the \#4 in OPEN \#1,4,0,"D:DATA.FIL"). There are four modes of communication available when OPENing to the disk drive: (1) input (mode 4) allows you to read only the data in your file; (2) output (mode 8) allows you to write only to the data file-when OPENing in this mode, the drive head will be at the beginning of the file; (3) append (mode 9) allows you to add data to the end of the file-the drive head upon OPENing will point to the end of the file and automatically allot another 128 characters, minimum, of disk space to that file; and (4) update (mode 12), which allows both reading and writing to the file-upon OPENing, the drive head will be at the beginning of the file.
Mode 8 is the only way to create a file. If mode 8 is specified (write only), DOS will open a file with the name specified and write data to it, if desired. Modes 8 and 12 will write over and destroy any previous data.
Now we get to the simple part. All we have to do to add data to our file is specify mode 9 (append), give the data to the computer, and have it added to the end of our file. Then, to find out where it is on the disk so that we can index it, we OPEN for a read (mode 4), NOTE the position of the head, read a record, write the name of the record and its position to the index, NOTE the position of the head again, read the next record, etc. . . until the end of the file.
Now, when we want the info back, all we have to do is search our shorter index file, find the location of the item we're looking for, and have the read/write head POINT there and start inputting.

Let's look at the program - a lot easier than trying to explain all this. The beginning merely dimensions the string variables needed, fills BLANK\$ with spaces and assigns line numbers to variables. This way, when I call a subroutine, I have an idea what it does (instead of seeing a meaningless number).

And, if I renumber a subroutine, I just change one variable to point to that subroutine from any part of the program. Also, Line 82 identifies an end character, so the computer knows when we're finished adding, updating, or using data.
Lines 100-260 are the main menu.
Lines 300-391 form the routine to find a particular record, show you the basic unit, ask for a multiple, and print the number of calories for that food item. As you can see, most all it does is call on subroutines. This simplifies writing the program since the same procedures are used in the other main routines. For example, ITEMIN, merely asks for the name of the food you want, has it padded with spaces in the PADITEM subroutine so it's the required twenty-five characters long, and returns.

Data is padded by converting all nonstring variables to string variables, checking variable lengths, and adding blanks if necessary to fill the allotted space.

FINDITEM locates the item in the index file and reports back. Next, the data is read-RDDATA subroutine-by

POINTing to the correct position on the disk file and read－ ing the information．

The UNITIN subroutine gets the multiple（i．e．，you＇re using two apples in a recipe and the base unit is 1）．

Then FIGCAL and CALPRNT，as their names imply，fig－ ure out the calories，print them out，and return．

Once the last item is indicated by a CTRL－E entry，the program calls subroutine TOTPRNT，to print out the to－ tal number of calories for all items and quantities speci－ fied，then returns and waits for you to hit RETURN，to go back to the main menu．

Lines 400－450 are the main routine to add new records to the file．Notice that this opens a channel to mode 9 （ap－ pend）．This routine calls subroutines already found，such as ITEMIN．

WRITEDATA prints on disk all the data fields（i．e．， name，number，unit and calories）and waits at the end of the file for any more additions．

If CTRL－E is entered，signalling no more additions，the channel to the data file is closed，and the program calls the INDEX subroutine．It OPENs two channels，one to read the data file and NOTE the position of each record，and one to write a new index file（mode 8）over any old one still there．When finished，it returns to the main menu．

Lines 500－570 are the update main routine，to easily alter a record（old record：Banana，1，medium，101／new record：Ba－ nana，1，large，116）．This is the reason we＇ve been padding our data fields．Even though a new field may have more or less characters than the old，it won＇t change the disk position of the record．

The only new subroutines are：NWDATA，which gets the changes you want to make；and WRITNW，which then POINTs to the beginning of the old record and writes over it with the new data．

Finally，the TRAP statements send the program to ERROR1．This is an easy way to handle end－of－file．When the end is reached and the computer＇s asked to read more， an error occurs，and program execution halts．By using an error handler routine to check which error had occurred， the program may continue－even though an item is not found．Control is returned to the correct portion of the program by assigning each main routine a number con－ tained in the variable TEST．

All that＇s left is to create the files to be used．This is done in immediate mode（when the screen says READY）． Just key OPEN \＃1，8，0，＂D：DATA．FIL＂and press RETURN． Then CLOSE \＃1 and RETURN．The same should be done to create the index file：OPEN \＃1，8，0，＂D：INDEX．FIL＂．To start your file，run the program and hit 2 to enter the ADD routine．Now，key the information asked for，and it will be written to the data file and index file，appropriately．

Three useful expansions of this type of program would be a directory，a multiple file routine and a hard－copy subroutine．

The directory could print out either all names of the records or all the records in their entirety，by accessing the index file or the data file，respectively，and sequen－ tially listing their contents．

A multiple file would be used to remember a certain
combination of records，such as a recipe．By putting in the name of a food item and its unit multiple，another file can be added to，with records containing：（1）recipe name， （2）number of items，（3）list of sector／character locations with a HOWMANY unit multiplier．By setting up a FOR／NEXT loop based on field（2），you could quickly POINT to each item included and figure the multiple for that particular recipe．

You＇ll notice that I＇ve used arrays for SECT and CHAR to facilitate this type of application．The arrays will con－ tain sector／character positions for each item．When the FOR／NEXT loop is entered，the loop index is used as the array index，and the correct data will be written or read for the assigned number of items．

Simplest of all，to obtain hard－copy，insert a question at the beginning of a routine－such as，Do you want a print out？Then，based on the INPUT answer，a variable（i．e．， \(P(\$)\) is set．If the answer is yes，a hard－copy subroutine is called from a main routine．

As I mentioned，this program is easily adapted to other uses：inventories，student test data，bills paid and pay－ able，etc．I would be interested in hearing of other appli－ cations．

Barbara Donovan，a native New Yorker，lives in Virginia with her writer－husband and their three children．She is now taking courses and plans to seek a Ph．D．in Computer Science in the near future．She＇s been a computer hobbyist since 1979 （starting on a TRS－80，which was destroyed in a fire）and，since 1983，has been a loyal Atari owner．

The two－letter checksum code preceding the line numbers here is not a part of the BASIC program． For further information，see the BASIC Editor II， in issue 47 of \(A N A L O G\) Computing．

Listing 1.
BASIC listing．


MB 12 REM FILE MANAGER
OK 13 REM \(\because \quad\) BARBARA DONOUAN
AM 14 REM स स
BI 15 REM
TH 17 REM
NR 20 DIM ITEMS（25），UNIT 5 （15），NAME 5 （25），C 5（3），LASTITEMS（25），5ECT \(5(3)\) ，CHARS（3），N UMS（3），CAL与（3），BLANK（25），TEMP（3）
ME 25 DIM CHAR（15），SECT（15）
 （2）＝BLANK5
ZB3日 ADDITEM＝409：CALPRNT＝1350：CLEAR5CR＝1 409：COUNTCAL＝309：ERROR1＝1509：FIGCAL＝13 08：INDITEM－1056：INDEKー1606
6S PADITEM＝1950；PAD5ECT＝1986：PADDATA＝2 WDATA＝18日G：RDDATA＝1159：T0TPRNT＝1450
HM 74 UNITIN＝1250：WRITEDATA＝170日；WRITNW＝1 856
Hz 82 LASTITEMS（1，1）＝＂7＂：LASTITEMS（2，25）＝ BLANKS

OH 190 PRINT＂K＂
TR 110 POSITION 2，2：PRINT＂TO＂：POSITION 2 6，2：PRINT＂PRES5：＂
\begin{tabular}{|c|c|}
\hline PA & 120 POSITION 2，4：PRINT＂COUNT CALOR \\
\hline 12 & 13POSITION 20， 4 ：PRINT 1 \\
\hline & OSITION 29， \(6: P R I N T\)＂2＜RETU \\
\hline az & 146 POSITION 2，8：PRINT＂UPDATE ITEM＇：P \\
\hline & 05ITION 20，8：PRINT י＇3＜RETURN＞＇ \\
\hline BA & 186 TRAP 270：REM／ONLY TAKE NUMBERS／ \\
\hline 5 & 190 POSITION 2，22：PRINT＂WHICH＇； \\
\hline & C \\
\hline PM & 209 ON C GOTO COUNTCAL，ADDITEM，IUPDATE \\
\hline UE & 269 GOTO 190：REM／NO．BETWEEN 1－6 ONLY \\
\hline 2 & 297 REM＊＊＊＊＊CALORIE5 FOR 1 \＃ \\
\hline D． &  \\
\hline LC & 309 PRINT＂反＂：T0TAL＝0：P＝8：TE5T＝310： \\
\hline bz & 305 TRAP ERROR1 \\
\hline DH & 316 G05UB ITEMIN \\
\hline Y．J & 320 IF ITEMS＝LASTITEMS THEN 390 \\
\hline UB & 330 G05UB FINDITEM \\
\hline RN & 346 gosub rddata \\
\hline 1.4 & 350 G05UB UNITIN \\
\hline NH & 360 G05UB FIGCAL \\
\hline FW & 370 G05UB CALPRNT \\
\hline HJ & 380 G05UB CLEAR5CR：G0T0 310 \\
\hline 4R & 390 G0SUB TOTPRNT \\
\hline 46 & 391 P0SITION 2，23：PRINT＂PRES5 RETURN \\
\hline & FOR MENU＇；：INPUT CS：GOTO MENU \\
\hline Bu &  \\
\hline O\％ & 400 PRINT＂K＂：TEST＝410：TRAP ERROR1 \\
\hline Y0 & 402 OPEN \＃1，9，\({ }^{\text {a }}\) ，＇D：DATA．FIL＇ \\
\hline DN & 410 G05UB ITEMIN \\
\hline GF & 420 IF ITEMS＝LASTITEMS THEN CLOSE \＃1：G \\
\hline & OSUB INDEX：GOTO MENU \\
\hline yd & 430 G05UB NRITEDATA \\
\hline ID & 459 G0SUB CLEARSCR：G0T0 419 \\
\hline 2 P &  \\
\hline 00 & 500 PRINT＂K＂ \\
\hline BH & 510 TEST＝510：TRAP ERROR1 \\
\hline Do & 520 G05UB ITEMIN \\
\hline AA & 525 IF ITEMS＝LASTITEMS THEN GOTO MENU \\
\hline UD & 530 G05UB FINDITEM \\
\hline RP & 540 gosub RDDATa \\
\hline YT & 559 gosub NWDATA \\
\hline \％D & 560 G0SUB WRITNW \\
\hline JH & 579 G05UB CLEARSCR：G0T0 510 \\
\hline CW & 997 REM ENE＊ENTER ITEM／NAME＊＊＊ \\
\hline Us & 1000 POSITION 2 \\
\hline WH & 1010 PRINT＂\({ }^{\text {c }}\)（CTRL〉＇E＇〈RET〉＝5TOP \\
\hline WR & 1020 PRINT＂ENTER ITEM：＂：INPUT ITEMS：L \\
\hline & I＝LEN（ITEMS） \\
\hline NM & 1025 G05UB PADITEM \\
\hline at & 1930 RETURN \\
\hline IP & 1047 REM \(* * *\) FIND ITEM LOCATION \(*\)（ \\
\hline DG & 1850 OPEN \＃1，4， 0, ＂D：INDEK．FIL＂ \\
\hline OH & 1060 TRAP ERROR1 \\
\hline D8 & 1676 INPUT \＃1；NaME \\
\hline KY & 1080 INPUT \＃1； 5 ECT \(: 5 E C T(T)=\) UAL（SECT与） \\
\hline RD & 1090 INPUT \＃1；CHAR \({ }^{\text {a }}\)（CHAR（I）\(=\) UAL（CHARS） \\
\hline 11. & 1100 IF NAMES＝ITEMS THEN CLOSE \＃1：RETU \\
\hline & RN \\
\hline aG & 1116 GOT0 1076 \\
\hline HY & 1147 REM＊＊＊READ IN DATA FOR ITEM＊＊＊ \\
\hline 60 & 1150 OPEN \＃1，4，0，＂D：DATA．FIL＂ \\
\hline Iz & 1160 POINT \＃1，SECT（I），CHAR（I） \\
\hline DD & 1176 INPUT \＃1；NAME 5 \\
\hline Sk & 1189 INPUT \＃1；NUM \\
\hline SE & 1199 INPUT \＃1；UNIT \\
\hline 46 & 1290 INPUT \＃1；CALS \\
\hline Mo & 1210 CL05E \＃1 \\
\hline AJ & 1220 RETURN \\
\hline 12 &  \\
\hline 0 ac &  \\
\hline &  \\
\hline He & 126日 POSITION 2，6：PRINT＇HOW MANY UNIT \\
\hline & 5＂；：INPUT HOWMANY \\
\hline AY & 1276 RETURN \\
\hline LF & 1297 REM＊＊FIGURE NUMBER CALORIES＊＊ \\
\hline WS & 1309 ICAL＝UAL（CAL5） \\
\hline 10 & 1305 ICAL \(=\) ICAL＊HOWMANY \\
\hline
\end{tabular}

RU 1310 TOTAL＝TOTAL＋ICAL
AL 1329 RETURN
PS 1347 REM＊PRINT NUMBER OF CALORIES＊
YA \(1350 \mathrm{RP}=2\)
BM 136G P0SITION RP，P：PRINT ITEMS（1，LI）：R \(P=R P+L I+2\)
CB 1365 NUM＝UAL（NUM5）
XI 1379 POSITION RP，P：PRINT NUM ＂\({ }^{1}\) ；UNIT 5
FE 1380 PO5ITION 32，P：PRINT ICAL
UU \(1396 \mathrm{P}=\mathrm{P}+1\) ：RETURN
AA 1397 REM
L．H 1400 POSITION 2，2：PRINT＂
501405 POSITION 2，3：PRINT＂
NG 1410 POSITION 2，4：PRINT＂
SK 1412 POSITION 2，5：PRINT＂
AA 1415 POSITION 2，6：PRINT \({ }^{1}\)
UZ 1417 POSITION 2，7：PRINT＂
AN 1420 RETURN

HN 1450 POSITION 2，21：PRINT＂TOTAL CALORI E5：＂，TOTAL
AZ \(1460^{\circ}\) RETURN

EU 1500 ERR＝PEEK（195）：CLOSE \＃1：POP
RZ 1505 GOSLB CLEARSCR
JT 1519 IF ERR＝136 THEN POSITION 2，2：PRIN T＂ITEM NOT FOUND＂：GOTO 1530
OP 1511 IF ERR＝8 AND TESTニउ10 THEN POSITI ON 2，2：PRINT＂NUMERIC INPUT ONLY＂：GOTO 1530
MY 1512 IF ERR＝8 AND TEST＝416 0R TE5T＝516 THEN P0SITION 2，2：PRINT＂SEPARATE NUM BER AND UNIT BY A COMMA＇：GOTO 1536
EN 1520 P05ITION 2，2：PRINT＂UNEXPECTED ER ROR \＃＂；ERR
HK 1530 POSITION 2，3：PRINT＂ANYKEY＝CONTIN UE＇
YD 1535 POSITION 2，4：PRINT＂〈CTRL〉＇E＇＝MEN い＇
TG 1546 OPEN \(\# 2,4,0, " K: ": G E T H 2, C: C L O S E ~ \# ~\) 2
051550 IF C＝5 THEN GOTO MENL
01． 1569 GOSLB CLEARSCR：GOTO TEST

IH 1699 TRAP 1675
W11 1695 G05UB PADSECT
Fi 1616 OPEN \(\# 1,8,6, " D: I N D E X, F I L "\)
ID 1620 OPEN \(\# 2,4,0\), ＂D：DATA．FIL＂
A月 1636 NOTE \＃2，SECT，CHAR
EI 1635 INPUT \＃2；NAME 5
5U 1649 INPUT \＃2；NUMS
YG 1645 INPUT \＃2；UNITS
Za 1650 INPUT \＃2；CAL与
CE 1655 PRINT \＃1；NAME
KK 1668 PRINT \＃1：SECT
BC 1665 PRINT \＃1；CHAR
Sc 1670 GOTO 1630
TH 1675 IF PEEK（195）＝136 THEN CLOSE \＃1：CL 05 E \＃2
8．s 1680 RETURN

NH 1709 P05ITION 2，3：PRINT＂NUMBER，UNIT：＂ ；：INPUT NUM，UNITS：NUMS＝5TRS（NUM）
001710 POSITION 2，4：PRINT＂CAL：＂；：INPUT CAL：CALS＝5TRS（CAL）
KG 1720 PRINT Hi；ITEMS
AY 1725 G05UB PADDATA
QK 1730 PRINT \＃1；NUMS
UE 1746 PRINT \＃1；LNITS
RI 1750 PRINT \＃1；CALS
AO 1755 NOTE \＃i，SECT，CHAR

```

 CT5(1,1)="@"
 01/ 1990 IF LTH=1 THEN SECT5(3,3)=5ECT5:5E
CTS(1,2)="@日"'
10. 1995 LTH=LEN (CHARS)
1%. 2000 IF LTH=2 THEN CHARS(2,3)=CHARS:CH
ARS(1,1)="G"'
IP 2005 IF LTH=1 THEN CHAR5(3,3)=CHARS:CH
ARS(1,2)="00"
AD 2010 RETURN

```

```

C* 2@4日 LU=LEN(UNITS)
Z\# 2045 UNITS(LU+1,15)=BLANKS
HM 2950 LTH=LEN(NUMS)
AH 2055 IF UALL\NUMS\ <1 THEN GOTO 2070
AF 2066 IF LTH=2 THEN NUMS (2,3)=NUMS:NUMF
(1,1)="g"
H\# 2065 IF LTH=1 THEN NUMS (3, 3)=NUMS:NUMF
(1,2)="9@"
2070 LTH=LENCCAL与%
F% 2075 TEMPS=CALS:CALS=1'0日日"!
IU 2@8G IF LTH=2 THEN GALS(2,3)=TEMPS
H1: 2685 IF LTH=1 THEN CALS(3,3)=TEMP5
BT 2090 CALS=TEMPS
GU 2095 RETURN
2075 TEMP5=CALS:CALS='1068'

```

\section*{ULTIMATE STORAGE}

Here's the perfect way to organize your ANALOG Computing library—sturdy, custom-made binders and files in deep blue leatherette with embossed silver lettering. Silver labels are included to index by volume and year. One binder or a box-style file is all you'll need to accommodate 12 issues ( 1 year) of ANALOG Computing - all the games, programs, tutorials and utilities that you want handy.


The ANALOG Computing binder opens flat for easy reading and reference. They're economically priced at only \(\$ 9.95\) each -3 binders for \(\$ 27.95\) or 6 binders for \(\$ 52.95\).
The ANALOG Computing file is attractive and compact, holding 12 issues for easy access. Files are available for only \(\$ 7.95\) each-3 files for \(\$ 21.95\) or 6 files for \(\$ 39.95\).

Add \(\$ 1.00\) (outside U.S., add \(\$ 2.50\) ) per case/binder for postage and handling - U.S. funds only.
\(\overline{\text { Call Toll Free } 1-800-972-5858-\quad \text { Charge orders only, minimum } \$ 15.00}\)
Enclosed is my check or money order in the amount of \$ \(\qquad\) -
Please send me: ANALOG Computing files ANALOG Computing binders.

PLEASE PRINT.
Name:
Address: (No P.O. Boxes)
City:
State:
Zip Code: \(\qquad\)
Send your order to: Jesse Jones Industries
DEPT. ACOM, 499 East Erie Ave., Philadelphia, PA 19134



\section*{by Jim Ehninger}

A month ago, a friend of mine was having problems with his disks. His little brother was playing his games without permission; his sister was reading his AtariWriter files, and his dad replaced one of his BASIC files with a program that said, "Happy April Fool's Day." He came to me for help.

I created a short AUTORUN.SYS file that required a certian keypress before you could run DUP.SYS. But they could still get in by booting another disk, then reading the directory from there. "Give me time," I said. A week later, PassWord was created.

\section*{So what will it do?}

Type in Listing 1 (the BASIC listing). Do not type in the assembly language source code; this is for advanced programmers to look over. Save the program. Insert a blank disk (or a disk that may be formatted) and execute the program, using item \(P\) at the first prompt. The current DOS in memory will be written to the disk, then the program will ask you for a password. A hint: use a short, one-word password that's easy to type in, easy to remember, and isn't too obvious.

After the program is through, it will reboot and let you try out your new, protected disk. I won't guarantee it will work for people like Tom Hudson or Kyle Peacock, but it will probably keep your family and friends out.

\section*{Any questions?}

The following are some questions you may have about PassWord. First, how does it work? The program works by moving the disk directory (normally sector 361) to a different location. When you try to boot another disk and read the directory, you don't see a list of the files on that disk. Therefore, we have the protection we want.

Can someone else boot their PassWord disk and "get into" my disk? No, I thought of that, too. On almost all disks the directory is in a different place. The odds of two PassWord programs being the same are about 1 in 256.

Sounds good. How can I transfer DOS files to my PassWord disk? There are two methods I've found: (1) use the COPY + 4.0 program supplied in Listing 1; or (2) type POKE 1955,89:POKE 1956, 228 to toggle DOS access, load the file, then POKE 1955,0:POKE 1956,4 to return to PassWord access, and save the program.

Great! You've just given away the secret. No, they still have to boot up your disk before those POKEs will work. And please be careful when using these POKEs.

COPY+ 4.0.
The subroutine at the end of Listing 1 is a utility that enables you to copy any DOS file to your PassWord disk, and vice versa. You must boot your PassWord disk up to run this program. Otherwise, your computer will lock up and take a short trip to the Twilight Zone.

The COPY +4.0 program (yes, there were four versions)
and the PassWord program should be saved as one pro－ gram．It＇s best to copy this program onto your PassWord disk if you＇re going to be doing a lot of copying（say，us－ ing it as a programming disk）．Please specify this at the prompt．

If you have any questions about PassWord or COPY＋ 4．0，or if you make up some new utilities for PassWord， write to the Reader Comment section．Users with 300－ baud modems can leave me a message on StarGate Earth Bulletin Board System：（801）272－1518， 10 p．m．to 7 a．m．， seven days a week，ATASCII and full duplex．Have fun with your PassWord． \(\boldsymbol{F}\)

Jim Ehninger has owned an Atari 800 since 1982．Jim enjoys telecommunications and programming 6502 ma－ chine language and BASIC．He enjoys more cerebral games and is a remote SYSOP of Wally World BBS，801－255－9345．

The two－letter checksum code preceding the line numbers here is not a part of the BASIC program． For further information，see the BASIC Editor II， in issue 47 of \(A N A L O G\) Computing．

Listing 1.
BASIC listing．

TG 39 OPEN \(\# 2,12,0,1\) E：＂
5040 GRAPHIC5 0：SETCOLOR 2，0， 9
TB 50 OPEN \＃3， \(4,0, " K: ": D I M\) D055（128），PW5 30），DS（1000），DSKINUS（5），B \(5(128)\), AS（255

Y0 55？＂（P）／W program，or（G）o to copY＋ 4．6 ：＇；：INPUT \＃2，PS：IF PS＝＇G＂THEN G05 UB 100日：END
EK 69K1＝PEEK（58464）＋1：K2＝PEEK（58405）：P1＝ PEEK（58374）＋1：P2＝PEEK（58375）：P与＝CHR 5 （ 1）：Ps（2）\(=\) CHR \(5(P 2)\)
MT 76 FOR \(A=1\) TO 128：NOF（A）\(=\) CHR（ 0 ）：NEKT A
CT 86 ？＇＇P／W DISK BOOT MAKER－BY JIM EHN INGER \({ }^{\prime \prime}\)
HR 90 ？＂（C） 1985 ANALOG COMPUTING \(\ddagger\)
as 100 ？＂INSERT A DISK INTO DRIUE 1．\({ }^{\circ}\)＂
DF 110 ？＂WhanTIST－THIS WILL ERASE ALL CON TENT5＂
GW 126 ？＂ON THAT DISK！\(\downarrow\)＂
OH 130 ？＂＇PRE55 RETURN：＂；
KP 149 GET \＃3，D：IF D \(\rangle 155\) THEN 149
EZ 150 ？＂WFORMATTING DISK．．．＂＇；
UP 169 KIO 254，\＃1，0，0，＂D：＂
PE 170 ？＂ACREATING SPACE．：＂＇
YG 189 OPEN \＃1，8， 0, ＂D：5PACE．PW＂
DL 190 FOR A＝1 TO \(380: P U T\) \＃1， \(0: N E K T\) A：CLO 5E \＃1
RS 200 ？＇＂
HK 216 OPEN \＃1，8， 0 ，＂D：D05．5Y5י＇iCLOSE \＃1：？
CP 211 ？＂WOULD YOU LIKE OTHER FILES ON T HE＂：？＂THE DI5K BESIDE5 D05？Gi．e．DUP ：5Y5，＂：？＂AUTORUN：SYS，Etc．\({ }^{\text {S }}\) 〈Y／N〉＂；
WS 212 INPUT \＃2，PW与：IF PWS＝＂N＂THEN 220
5M 213 5GE＝1：G05UB 1060：5GE＝0
UW 220 ？＂WWHAT WOULD YOU LIKE YOUR PA5SN ORD＂：？＂TO BE？＂：？＂26 CHARACTER5 MAK．＂
WF 230 ？＇NO CONTROL CHARACTERS OR INUERS E！！＂
EP 240 ？＂PASSWORD：＂；：INPUT H2，PW与
 RS MaKB＇：G0T0 240
OH 260 FOR \(\quad\) a＝1 TO LEN（PWS）
 a）（125 THEN NEHT A：GOTO 290
WE
 EDD日＇：G0T0 240
 IS CORRECT？＂；：INPUT \＃2，AS：IF AS（1，1）（ ＞יY＂THEN 220
AW 300 ？＂FFPLEASE STAND BY－INITIALIZING DATA．，＂：RESTORE ：5E＝
A 316 FOR \(A=1\) TO 442
JN 32日 READ D：5E＝5E＋D：DS（A）＝CHRS（D）：NERT
 A
 ，207）＝PS：DS（225，226）＝PS：D \((259,266)=P 5\) ：D \(5(313,314)=P 5: D 5(352,353)=P 5\)
PH 340 D \(5(158,158)=C H R 5(K 1): D 5(159,159)=C\) HRS（K2）
HE 350 IF \(5 E\rangle 42148\) THEN ？＂ERROR IN DATA 5TATEMENT5．＇：END
PH 36日 FOR A＝1 TO LEN（PWS）：DS（229＋A，229＋A \(3=\operatorname{CHRS}(A 5 C(P W S(\hat{a}, \hat{\prime})) * 2): N E K T\) á
EU 376 NS \(=\) INT（RND（1）\(* 245)+8: \mathrm{D} 5(427,427)=\mathrm{C}\) HRS（N5）
T0 389 ？＂\(\downarrow\) WRITING PROGRAM．．．＂
FU 390 D5K＝768：5E＝4：TT＝1：RW＝87
FL 400 DSKINUS＝＇h 5回＂
PR 410 POKE DSK＋1， 1
 28：5E＝5E＋1：IF 5E＜8 THEN 420
П8 430 GOTO 666
2A 449 AD＝ADR（B5）：POKE DSK＋2，RW
MZ \(450 \mathrm{HIGH}=\mathrm{INT}(\mathrm{AD} / 256\) ）：LOW＝AD－（HIGH＊256）
0J 466 POKE D5K＋4，LOW：POKE D5K＋5，HIGH
S\＆ 470 SHI＝INT（5E／256）：5LO 5 SE－（5HI＊256）
ST 486 POKE D5K＋16，5LO：POKE D5K＋11， 5 HI
U0 490 A＝USR（ADR（DSKINUS））：IF PEEK（DSK＋3）〈〉1 THEN ？＂\({ }^{\text {S }} 5\) TATUS ERROR－＂；PEEKCDSK＋ 3）：GOTO 446
ZB 509 RETURN
JT 516 DATA \(162,0,142,198,2,189,162,8,240\) \(, 21,134,255,32,164,246,162,16,160,0,13\) \(6,268,253,262,268,248,166,255\)
FM 520 DATA \(232,76,133,8,76,23,9,125,80,4\) \(7,87,32,45,32,46,99,41,32,49,57,56,53\), \(32,65,78,65,76,79,71,32,67,79\)
T0 53 DATA \(77,80,85,84,73,78,71,155,86,8\) \(2,79,71,82,65,77,32,66,89,58,32,74,73\) ， \(77,32,69,72,78,73,78,71,69,82\)
B0 546 DATA \(155,86,65,83,83,87,79,82,68,5\) \(8,30,30,30,30,30,30,30,30,30,255,255,2\) \(55,255,255,157,157,157,157,157\)
HR 556 DATA \(157,157,157,157,157,29,29,29\) ， \(29,29,29,29,29,29,29,31,31,31,31,31,31\) ，3i，3i，3i，3i，3i，3i，3i，3i， 0,0
JU 569 DATA \(169,0,141,22,9,32,226,246,261\) ，155，240， \(66,201,126,240,46,24,201,32,1\) \(44,246,261,125,176,236,141,21\)
CA 576 DATA \(9,24,173,22,9,201,20,144,8,16\) 9，253，32，164，246，76，28，9，173，21，9，174， \(22,9,157,2,1,32,164,246,238,22\)
GK 580 DATA \(9,76,28,9,173,22,9,240,194,20\) \(6,22,9,169,126,32,164,246,76,28,9,32,3\) \(2,32,32,32,32,32,32,32\)
G1． 590 DATA \(32,32,32,32,32,32,32,32,32,32\) ， \(32,169,155,174,22,9,157,2,1,32,164,24\) \(6,162,0,24,126,161,9,232\)
UL 600 DATA \(224,21,208,247,162,0,139,101\) ， \(9,221,2,1,208,4,232,76,145,9,189,191,9\) ，261，16，208，16，189，2，1，201，155
QA 610 DATÁ \(268,3,76,213,9,162,0,189,192\) ， \(9,246,249,134,255,32,164,246,165,255,2\) \(32,76,176,9,155,253,126,80,65\)
HL 620 DATA \(83,83,87,79,82,68,32,68,69,78\) ，73， \(69,68,33,155,0,162,0,189,231,9,240\) \(, 28,134,255,32,164,246,166,255\)
5T 630 DATA \(232,76,215,9,155,66.111,141,4\)

Mil：
\(16,105,116,103,32,68,79,83,46,46,46,15\) \(5,6,169,4,141,164,7,169,0,141\) 640 DATA \(163,7,162,0,189,18,10,157,0,4\) \(, 232,224,46,268,245,76,20,7,24,173,10\), \(3,201,165,144,28,261,112,176\)
GN 650 DATA \(24,173,11,3,201,1,208,17,24,1\) \(73,16,3,165,6,141,16,3,173,11,3,105,0\), \(141,11,3,32,89,228,96\)
HF 660 5E＝361：RW＝82：G05UB 440：LET D055＝B5 ：RW＝87
RU 670 BS＝N0S：5E＝361；G05UB 446
NB 680 FOR J＝361＋NS T0 \(368+N 5: 5 E=J: B 5=N 05\) ：G05UB 440
EY 690 NEXT J
AG 700 SE＝361＋5N：B与＝D05与：G05UB 446
EM 710 BS二N05：FOR A＝1 TO 128 STEP 16：B与 CA ，А）＝＇B＂：NEKT A
SY 720 BS（6，16）\(=\)＂This Disk＂： \(5(22,32)=1\) has been＂＇： \(5(38,48)=" P R O T E G T E D ~ ": ~ B ~\)与（54，64）＝＇By：P／W！！！！
FI． 730 B \(5(76,80)=11\) ＂（C）1985＂：B \(5(102,112)=" B y: ~ A N A L O G\) ＂：B与（118）＝＂COMPUTING＂
ND 740 5E＝З6i：G05UB 440
KY 750 BS \((6,16)="\)＇＂： \(5(22,32)=1 "\) Program by：＂：B5（38，48）＝＂J．Ehninger＂： \(5(54,64)=1\)
U． 766 B \(5(79,89)=11\) PLEASE \(": B 5(86,96)=\) \("\) REBiIIT＂：B \((162,128)="\)

NT 770 5E＝362：G05UB 440
KI 786 B5＝D055：B5（1，1）＝＂M＇＂：5E＝361＋N5：G05L B 440
LU 790 5E＝1：RW＝82：G05UB 449：RW＝87：B5（2，2） ＝CHRS（7）：B5（8，9）＝＇＂（＂：G05LB 44日：G05UB 830
HZ 890 ？＂OK！YOU ARE ALL READY！REMEMB ER＂：？＂YOUR PASSWORD：＂；PWS：？
2P 810 ？＂PRE5S RETURN TO B00T P／W DISK：＂ ；：GET \＃3，D：IF D〈〉155 THEN 810
RH 826 ANALOG＝U5R（58487）
12 830 5E＝360；RN＝82：G0SUB 449
AD 840 A＝56＋（N5／8）：ME5＝1＂ \(4 \psi^{\prime \prime}: B 5(A, A+1)=M E 5\)
BY 850 B \(5(4,4)=\) CHRS（ASC（B5（4，4）） 16\()\)
H2． 860 5E＝360：RN＝87：G05UB 446：RETURN


 FER（FRE（日）－509），NOWS（30），FNS（30），KITE 5（10）
KZ 1050 ？י＇KP／W COPY＋ 4.0 －BY JIM EHNING ER＂：TRAP 1290
CU 1060 ？＂（C） 1985 ANALOG COMPUTING＂：？
J及 1070 ？＂BA．D0S to P／W＂
OM 1680 ？＂ 16 B．\(P / W\) to DOS＂
AO 1685 ？＂ H C．EHIT TO P／W＇：？
KZ 1090 ？＂ 5 SELECT：＂；：INPUT \＃2，KITE
KC 1106 IF KITES〈＂A＂OR KITES〉＂C＂THEN ？ ＂）B3 DR CDi＇：G0T0 1690
H0 111日 ？＂FFILE；＂；iNPPUT \＃2，WOW广：FNS＝＇D1 ：＂：FN5（4）＝WOW5
R．J 1120？＂INSERT SOURCE DISK，HIT RETURN ＂：INPUT \＃2，NOWS
QB 1125 IF 5GE THEN 1150
WR 1130 IF KITEち＝＂А＂THEN POKE 1955，89：P0 KE 1956， 228
AZ 1140 IF KITEらニ＂B＂THEN POKE 1955，0：POK E 1956，4
NX 1150 OPEN \(\# 1,4,6\) ，FN 5

DH 1170 TRAP 1175：XI0 7，\＃1，4，0，A5：BUFFER （LEN（BUFFER5）＋1）＝A与：G0T0 1170
EE 1175 IF PEEK（195） 5 THEN ？＂PROGRAM TO 0 LARGE，＂：END
UH 1180 IF PEEK（195）〈〉136 THEN 1290
RC 1190 TRAP 1296：IF PEEK（856）THEN BUFFE R与（LEN（BUFFER与）＋1）＝ \(\boldsymbol{\beta}\)（ \((1\), PEEK（856））

MN 1206 CLOSE \＃1
CT 1210 ？＂INSERT DESTINATION，HIT RETURN ＂：INPUT \＃2，WOW5
PZ 1215 IF 5GE THEN 1246
XG 1220 IF KITE5＝＂B＂THEN POKE 1955，89：P0 KE 1956， 228
AT．1230 IF KITES＝＂A＂THEN POKE 1955，0：POK E 1956，4
0A 1249 OPEN \＃1， 8,0, FN 5
LK 1250 ？\＃1；BUFFERS；：CLOSE \＃1
UN 1260 ？＂COPYt COMPLETE！＂：？＂CA）nother copy or（E）xit：＂；：INPUT \＃2，NOWS：IF WOW \(\$(1,1)={ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}\) THEN 1650
IR 1276 POKE 1955，D1：POKE 1956，D2
UZ 1280 TRAP \(4960 日:\) RETURN
Th 1290 ？＂COPY＋ERROR－＂；PEEK（195）：END

Listing 2.
Assembly listing．

\begin{tabular}{|c|c|c|}
\hline 0640 & J5R GETKEY & ; Get \\
\hline 9650 & CMP \#59B & ;is it RETU \\
\hline 0660 & BEQ HEDONE & ; YES-Check P/W \\
\hline 0670 & CMP \#57E & ; is it BACK 5? \\
\hline 0680 & BEQ GETDOWN & ;YES-Decrement! \\
\hline 0690 & CLC & ; Clear the way! \\
\hline 0760 & CMP \#\$20 & ;is it < 32? \\
\hline 0710 & BCC JIMCO & ;YEs! Branch! \\
\hline 0720 & CMP \#57D & ;is it >124? \\
\hline 0730 & BCS JIMCO & ;YES! Le \\
\hline 9746 & 5TA TEMP & ; It's 0K. \\
\hline 0750 & cLC & ; Kill the FLag! \\
\hline 0760 & LDA NUMS & ; Get the amount \\
\hline 0770 & CMP \#\$14 & ; is it over 29 ? \\
\hline 0780 & BCC LES520 & ; if not, branch \\
\hline 0790 & LDA \#5FD & Y'YS! Scream \\
\hline 0800 & J5R PRIMTCHR & ;at him! CTRL-2 \\
\hline 0819 & JMP JIMCO & ; Another key \\
\hline 0829 & LE5529 & ilt is ok, add \\
\hline 0830 & LDA TEMP & ; the key onto \\
\hline 0840 & LDX NUMS & ; the list of \\
\hline 0850 & STA CHARS, H & ;keys already \\
\hline 0860 & J5R PRINTCHR & ;entered, prin \\
\hline 0870 & IHC NUMS & ;it, and INC! \\
\hline 0889 & JMP JIMCO & iget another \\
\hline 0890 & GETDOWN & ;Pressed BAC \\
\hline 0909 & LDA NUMS & ; Is he < 0? \\
\hline 6919 & BEO JIMCO & ; YE5! get ke \\
\hline 0920 & DEC HUMS & ; Down baby! \\
\hline 0930 & LDA \#57E & ; Erase the \\
\hline 0946 & J5R PRINTCHR & ; mistake. \\
\hline 0950 & JMP JIMCO & ;get key \\
\hline 0960 & HISPW & His Password! \\
\hline 0976 & : BYTE & \\
\hline 9989 & HEDONE & ; Pressed RETURN \\
\hline 9996 & LDA \#59B & ; Erase all the \\
\hline 1009 & LDH NUMS & ;old entries \\
\hline 1016 & STA CHAR 5 , K & ;he wanted \\
\hline 1020 & J5R PRINTCHR & ; erased. \\
\hline 1030 & LDK \#506 & ; Decode the \\
\hline 1640 & CHANGE & ; message 50 we \\
\hline 1050 & CLC & ;can decipher \\
\hline 1069 & R0R HI5PW, K & ; what is trying \\
\hline 1076 & INK & ; to 5ay! \\
\hline 1086 & CPH \#\$15 & ; We through? \\
\hline 1996 & BNE CHANGE & :No-keep going! \\
\hline 1100 &  & ; Now let's see \\
\hline 1110 & OUTTA & ;if the man \\
\hline 1120 & LDA HI5PW, \({ }^{\text {H }}\) & ;at the keys \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1130 & CMP CHAR \(5, \mathrm{X}\) & ; won the prize! \\
\hline 1149 & BNE LATER & ;if not, later. \\
\hline 1150 & INY & ;keep going..: \\
\hline 1169 & JMP OUTTA & ; Check it! \\
\hline 1170 & LATER & ; Let's see \\
\hline 1189 & LDA HISPW, K & ; where we ended \\
\hline 1196 & CMP \#FFF & ; \(\mathrm{up}^{\text {d }}\) Is it FF? \\
\hline 1200 & BNE YELL & ; NO! Á Fake! \\
\hline 1210 & LDA CHARS, X & ; mabye 50. \\
\hline 1220 & CMP \#ち9B & ; The RETURN! \\
\hline 1230 & BHE YELL & ; Impersonator! \\
\hline 1240 & JMP ITSHIM & ; YE5! Welcome! \\
\hline 1256 & YELL & ; Allright, 50 \\
\hline 1260 & LDA \#560 & ;you are the \\
\hline 1270 & 5CREAM & ;intruder? \\
\hline 1280 & LDá BaLlout, H & ; Scream at him! \\
\hline 1290 & BEO YELL & ; 5hoot him at \\
\hline 1300 & ST\% SFF & ;dawn! ottack \\
\hline 1310 & J5R PRINTCHR & ; men! Two arms, \\
\hline 1320 & LDH 5FF & ; Two Legs! \\
\hline 1330 & INX & ; 5CREAM AT HIM! \\
\hline 1340 & JMP SCREAM & ; Don't let him \\
\hline 1350 & Ballout & ;escape!!! \\
\hline 1360 & - BYTE 155,253 & 126 \\
\hline 1370 & .BYTE "PAS5N0R & \\
\hline 1380 & :BYTE "DENIED! & '1,155,0 \\
\hline 1390 & IT 5HIM & ; Hey guy! \\
\hline 1400 & LDS \#500 & Let's insure \\
\hline 1410 & HELLO & ;him by telling \\
\hline 1420 & LDA WELCOME, H & ;him we are \\
\hline 1430 & BEQ BOOTDOS & ;booting up the \\
\hline 1440 & 5 TH SFF & ; Disk. \\
\hline 1450 & J5R PRINTCHR & ; He is waiting \\
\hline 1460 & LDH SFF & ; for the \\
\hline 1470 & INX & ;READY Promp \\
\hline 1480 & JMP HELLO & ; Keep printing! \\
\hline 1496 & WELCOME & ; The data: \\
\hline 1500 & . BYTE 155,'Во & ting " \\
\hline 1510 & .BYTE "DO5..." & , 155,0 \\
\hline 1520 & B00TD05 & ; Change D05 to \\
\hline 1530 & LDA \#\$06 & ; jump to our \\
\hline 1540 & \(5 \mathrm{Sá}\) dosuecti & ;routine every \\
\hline 1550 & LDA \#504 & ; time! \\
\hline 1560 & \(5 \mathrm{Tá} \mathrm{dOSUEC}\) & ; And we boot! \\
\hline 1570 & JMP B00TD05 & ;L8R days.: \\
\hline 1586 & & ; Modems call: \\
\hline 1590 & END. & ; (801) 272-1518 \\
\hline
\end{tabular}

\section*{by Donald E. Glover}

When I purchased my Atari 1020 printer/plotter, I was disappointed that no program was provided to plot on paper screens drawn in the standard Atari graphics modes. The Dump1020 gives you such a screen dump routine (DUMP1020), written in BASIC. This article includes instructions for the program and examples of its use with programs published in ANALOG Computing.

\section*{Program logic.}
(1) The graphics mode is determined by a variable set by the user.
(2) The user is given the option of just outlining (fast) or completely filling (slower) pixels not set to background color (color 0).
(3) An appropriate frame is drawn.
(4) Each pixel of each row on the screen is tested for a non-background color. If a non-background color is found, the pixel is outlined or filled on paper, depending on the decision made in (2), above. Note that the screen is completely scanned once for each color. This is more efficient than scanning the screen once and checking for all three colors, because of the length of time required to change pens.

\section*{A BASIC screen dump.}

After entering Dump1020 (Listing 1), it should be LISTed to disk or tape. It can then be merged with a main program by using the BASIC command, ENTER. Dump1020, by starting at Line 32000 and using variable names which
begin with \(Z Z\), is designed to be merged into most BASIC programs without conflict. (Dump1020 can be easily renumbered by a renumber utility, or the RENUM command in BASIC XL, if the main program has line numbers within its range.)

The picture on the TV screen is plotted on paper by calling the plotting subroutine (GOSUB 32013) from the appropriate part of the main program. Before you make this call, the variable ZZFILL must be set to 1 if you desire to fill the pixels, or 0 if you do not. Next ZZMODE should be set to a legal BASIC screen mode (3-8, 19-24, 15 or 31). Note that mode \(15(7+\) ) is supported, even on non-XL computers (see the example below).

Finally, the initialization subroutine (GOSUB 32087) must be called prior to the plotting subroutine. This call should be made at the beginning of the main program. If the initialization routine is called at some other point, it may move BASIC arrays which the main program assumes are fixed. This could cause problems, if the main program is to continue running after the plot has finished.

\section*{Examples.}

The BASIC version of Dump1020 is demonstrated using the program Space Assault, found in issue 13. After you've loaded Space Assault, add the following lines:

\section*{1050 G05UB 32087 \\ 1395 ZZMODE=7+16:ZZFILL=1:G05UB 32013}

Now, merge Dump1020 with the Space Assault program by using the ENTER command, then run the program. When the joystick trigger is pressed to shoot an enemy ship, the screen (including the "fission beam") will be fro-
zen and dumped to the 1020 plotter. The player shapes will, of course, not be plotted.

The program from the article Graphics 7+ Handler (from issue 11 of ANALOG Computing is used to demonstrate Dump1020 in graphics mode 15. After loading that program, add the following lines:
```

10 G05UB 32087
410 IF PEEK(764)<>255 THEN ZZFILL=1:ZZ
MODE=15+16:G05UB 32013:END

```

Again, merge Dump1020 with this program and run it. When you wish to plot the display on paper, hit the SPACE BAR.

\section*{Speeding things up.}

BASIC is slow. For example, it will take four to five minutes before the first pixel is plotted for Space Assault. However, if the main program doesn't use Lines 0 through 8 (or if Lines 0-8 are just comments and can be deleted), the following modifications to Dump1020 will make the plotting subroutine run much faster.
(1) Renumber Lines 32024 to 32030 of the plotting subroutine to 1 through 7 .
(2) Change the new Line 2 to:

\section*{2 IF IF ZZMODE 15 THEN GO5UB 32073 :GOTO 4}
(3) Add the following lines:
```

g GOT0 cfirst line of main program
-100日 for 5PACE ASSALLT)
8 RETURN
32024 G05UB 1

```
(4) Delete Lines 32025 through 32030.

The program, as modified here, works in a way identical to the original. However, the modification moves the most often executed inner loop of Dump1020's three nested FOR loops to the beginning, which greatly speeds up execution. (With BASIC XL from OSS, the above modifications are unnecessary. Simply run the program in the FAST mode.)

\section*{Program enhancements.}

These routines can be added to any program using standard graphics modes, but beware of programs that start with a standard display list, then change it. An interesting modification would have to be Dump1020 switch graphics modes and screen memory locations as dictated by the commands in such nonstandard display lists.

Also, if more pen colors were available, the program could easily be modified to work in graphics modes 9, 10 and 11. The program would have to stop every four colors, to allow the pens to be changed.

Finally, Dump1020 could be expanded to work in graphics modes 1 and 2. This would require using the data in screen memory as pointers into the character memory. With these modifications, the program could be turned into a generalized plotting routine, which would plot virtually any display created on the Atari. -

The two-letter checksum code preceding the line numbers here is not a part of the BASIC program. For further information, see the BASIC Editor II, in issue 47 of ANALOG Computing.

Listing 1.
BASIC listing.


DT 32046 RETURN
नA 32641 REM＊
 H
IU 32042 ZZKINCRP05ニZZ IINC＊ZZKP05：ZZYINCY P05ニZZYINCHZZYP0S
MY 32043 IF ZZHP05＝6 THEN PRINT \＃2；＇M＇；0， ＂，＂：－ZZYINCYPOS：ZZKSTART＝日
GH 32044 IF \(Z Z O\rangle Z Z 5\) THEN PRINT \＃2；＂M＇；ZZ KINCHP05；＂，＂＇，－ZZYINCYP05：ZZH5TART＝ZZHI NCHZZKPOS
ES 32045 RETURN


MS 32647 ZZRINCKP05ニZZHINC＊ZZRP05：ZZYINCY P05＝ZZYINC＊ZZYP05：ZZA＝（ZZN＝ZZ5）：ZZB＝（Z Z 2 P05＝ZZ
NW 32948 IF ZZB AND ZZA THEN GOTO 32053
LK 32049 REM NOT LAST COLUMN 50 DRAN NORM AL BOH
YC． 32056 PRINT \＃2；＂D＂；ZZKINCKP05；＂，＂； INCYPOS
BM 32651 PRINT \＃2；＂D＂；ZZKINCKP05；＂，＂；－ZZY INCYP05－ZZYLENGTH
FV 32952 G0T0 32056
AP 32653 REM LAST COLUHN 50 DRAN SPECIAL BOH
IIF 32954 PRINT \＃2；＂D＂；ZZRINCKP05＋ZZKLENGT H＋1；＂，＂；－ZZYINCYP0S
MF 32055 PRINT \＃2；＂D＇；ZZ H＋1；＂，＂；－ZZYINCYP0S－ZZYLENGTH
E0 32956 PRINT \＃2；＂D＂；ZZ 5 START；＂，＂；－ZZYIN CYPOS－ZZYLENGTH
II． 32957 PRINT H2；＂D＇；ZZ\＆5TART；＂；＂；－ZZYIN CYP05
AR 32958 IF ZZFILL＝1 THEN G05UB 32062：REM FILL PI\＆EL IF FLAG 5ET
OP 32659 PRINT \＃2；＂M＂；ZZ 3 START：＂，＂；－ZZYIN CYP0S
EA 3206 RETURN
 PIXEL N
YJ 32062 FOR ZZLINE＝TO ZZHINO
0532963 PRINT \＃2；＂D＂；ZZ CYP05－ZZLINE
UR 32064 IF ZZB AND ZZA THEN GOTO 32068
KU 32665 REM NOT LAST COLUMN
UM З2066．PRINT \＃Z；＂D＂；ZZKINCXP05；＂，＂＇ INCYPOS－ZZLINE
05 32067 GOTO 32970
TH 32968 REM LAST COLUMM
WH 32669 PRINT \＃Z：＂D＂；ZZRINCHPOS＋ZZKLENGT H＋1；＂，＂＇－ZZYIHCYPOS－ZZLINE
BR 32676 NERT ZZLINE
EK 32971 RETURN


YO 32073 IF ZZYP0SニZZCHANGE THEN POKE 88， ZZLOMOD：POKE 89，ZZHIMOD
KI 了2074 LOCATE ZZKPOS，ZZYPOS－ZZCHANGE＊ZZ ZYPOS＝ZZCHANGEJ，ZZN
FE 32075 RETURN
Of 32976 REM＊＊SAPECIAL LOCATE ROUTINE FOR GRAPHICS 15（7＋）－ーZZ ZZLOMOD：POKE 89，ZZHIMOD
LF 32678 LOCATE \(0, Z Z Y P O S-Z Z C H A N G E * ~ C Z Z Y P O S ~\) \(\rangle=Z Z C H A N G E J, Z Z 0 ́\)
FY 32079 RETURN
MO 32986 REM

IH 32081 CLOSE \＃2：REM JUST TO MAKE SURE
SG 32882 OPEN \(\# 2,8,0, " P: ": R E M\) OPEN CHANNE LT0 1929
YK 32683 PRINT \＃2；CHR 5 （27）；CHRS（7）：REM PR INTER IN GRAPHICS MODE
FN 32084 PRINT \＃2；＂H＂＇PRINT \＃2；＂I＇：REM H0 ME AND INIT PLOTTER

K．32985 PRINT \＃2；＂M＂； \(0 ; 1 " ; 1 ; 9: R E M\) MOUE PE N TO 9,0
FM 32986 RETURN



DIM ZZMODEKMAK（15），ZZMODEYMAK（15 ），ZZMODEYINC（15），ZZMODEKINC（15），ZZNUMC 0LORS（15）
0I． 32689 DIM ZZADDFORFULL（15）
PC 32996 REM FILL ARRAY＇S
UG 32091 RESTORE 32998
HS 32992 FOR ZZTMODE＝G T0 15
KP 32993 READ ZZÂ，ZZB，ZZC，ZZD，ZZE，ZZF
YG 32994 ZZMODE HMÁ甘（ZZTMODE」 \(=Z Z A: Z Z M O D E Y I\) NC（ZZTMODE）＝ZZB
D） 32095 ZZMODEYMAK（ZZTMODEJ＝ZZC：ZZMODE NC（ZZTMODE）＝ZZD
OY 32996 ZZNUMCOLORS（ZZTMODED＝ZZE：ZZADDFO RFULL（ZZTHODE）\(=Z Z F\)
FH 32697 NEHT ZZTMODE
WT 32998 REM DATA FOR ARRAYS
5K उ2 399 DATA \(0,0,0, \theta, 0,0,0,0,0,0,0,0,0,0\) ， \(0,6,6,6\)
（1の 32109 DATA \(39,12,19,12,4,4,79,6,39,6,2\)
\(4,8,79,6,39,6,4,8,159,3,79,3,2,16\)
1H 321 1日 DÁTA \(159,3,79,3,4,16,319,1,159,1\) ，2，32
RI 32102 DATA \(0,0,0, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta\) \(, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta, \theta\) ， \(0,0,0\)
GB 32103 DATA \(159,2,159,3,4,32\)
O2 32104 RESTORE ：RETURN


TM 32106 IF ZZMODE〉15．THEN ZZMODE＝ZZMODE－ 16：ZZFULL＝1：REM CHECK FOR FULL SCREEN MODE
1Y 32107 ZZHMÁK＝ZZMODE HMÁX（ZZMODE）
OL उ2108 ZZYMAK＝ZZMODEYMAX（ZZMODEJ＋ZZFULL HZZ ÁDDFORFULL（ZZMODE）
MI उ2169 ZZCHANGE＝（ZZYMAK＋1）／2：REM USED T 0 FIND MIDDLE OF SCREEN FOR GRAPHICS 7 \(+\)
JH उZ116 ZZKINC＝ZZMODEKINC（ZZMODE）：ZZYINC ＝ZZMODEYINC（ZZMODE
MR 32111 ZZHLENGTH＝ZZKINC－1：ZZYLENGTH＝ZZY IMC－1：REM LENGTH OF BOH SIDES
DII 32112 RETURN


FK 32114 PRIHT \＃2；＂C＂； FRAME


KZ 32116 PRINT \＃2；＂D＂！ZZ C；＂，＂


 FOOL BÁSIC LOCATE COMMAND FOR GRAPHIC5

Y0 32119 ZZ5CREENADD＝PEEK（88）＋256浚PEEK（89 ）
R5 32129 ZZMODADD＝ZZ5CREENADD＋ZZCHANGE＊4日
5B उ2121 ZZHIMOD＝INT（ZZMODADD／256）
EK 32122 ZZLOMOD＝ZZMODADD－ZZHIMOD＊256
Z5 32123 IF ZZMODE＝15 THEN POKE 87，7：REM F00L BASIC
EI． 32124 RETURN

\title{
ANALOG Computing Writers' Guidelines
}

\section*{Make sure your submission gets the attention it deserves.}

Many of the following suggestions are applicable to all computer magazines. They assist us in the typesetting accuracy of your submission and in the speed of publication. ANALOG Computing, a monthly magazine, publishes new articles, programs and reviews concerning only Atari home computers and their related hardware and software. We have published many first-time authors, so by following these guidelines, you may soon find your article and byline in the pages of ANALOG Computing.
1. The upper left-hand corner of the first page should contain your name, address, telephone number and the date of your submission. Important: when you submit an article to us, you must indicate whether or not it is a simultaneous submission. A simultaneous submission is a photocopied manuscript submitted to more than one magazine at a time. Many magazines do not appreciate this practice (we are among them) and view any photocopied manuscripts warily. We do accept manuscripts text printed on a word processor. Your article should also be submitted on disk, along with any programs which the article requires.
2. The title of the article should be underlined, starting halfway down the first page.
3. If your article is a product review, please include the following information, in lieu of a title: the product's official name; the product's author (if available); the company producing and/or distributing it; the company's address and phone; memory or hardware requirements; and suggested retail price.
4. The following pages should be typed normally (double spaced), except that, in the upper right-hand corner, the title of the article should be prominent, along with your last name and the page number (e.g., Disk/Jones/3).
5. If your article has program listings of between five and twenty lines, you may include them within the text. Longer programs should be included with your article, but it is not essential. However, it is imperative that we have a copy of the program on disk. The disk should be labeled with the author's name and the title of the article or program.
6. It is much easier for our readers to type in your program if you use CHR \(\$(X)\) values instead of cursor manipulators to format your output. In some cases, it may be necessary to include special control characters to create special displays. In these cases, control characters are allowable.
7. The printers used for ANALOG's program listings will accept all Atari control, escape and inverse video characters. BASIC programs containing machine language subroutines in string variables should use DATA statements to contain the machine language numeric values. Authors should avoid using the assignment of a string variable to a complex machine language string literal. For example, ( \(M L \$=\) " \(m j+7\) ") could confuse readers. Authors should provide commented assembly source code listings for any machine language subroutines used in their programs. Any machine language game programs should be located in the lowest possible amount of memory.
8. Standard manuscript format—rules such as double spacing, one-inch margins all around the text, standard typing paper and typing only on one side of the paper-should be followed when submitting an article or review to ANALOG Computing. The pages of your submission should be paper clipped together, not stapled.
9. The best way to write for us is by studying previous issues. For instance, reviews of hardware and software should list the information requested in paragraph 3. Your article should be written in continuity with ANALOG's style-the acronym BASIC is always all caps, as are keys like RETURN and BREAK, while names of other languages are spelled in various ways (Pascal, FORTH, assembly).
10. ANALOG Computing pays between \(\$ 25\) and \(\$ 390\) for published articles. The standard rate of pay is \(\$ 65\) per typeset page, up to six pages total (not including space taken for advertisements, art and photos). Articles over that length will be paid the flat maximum fee. If we do determine that an article may be over eight magazine pages, it may be split into two parts or sent back to the author for editing.


\section*{by Gary Heitz}

Some time ago, I was typing in a magazine program. Upon checking my typing, I found several mistakes. There had been many variables used which were quite long and cryptic. Most of the typing errors occurred on these variables.

I decided I needed a program that would allow for programmable keys, to help me accurately type these listings. Easy Type is just that-with a few extras.

Easy Type has nine programmable keys and four programmed keys. The programmable keys are available to you, to hold a string of any characters you desire, up to 17 characters in length.

When typing, you can access the string you want by pressing the ESCAPE key and a number. The correct number is displayed on-screen, along with the contents of the string. For example, if you programmed key 1 to contain \(X=U S R(T H R 32 D F P)\), then hit ESC 1, Easy Type would print your string on the screen at the current cursor position. This only takes two keystrokes, and you don't have to worry about your accuracy.

Because the key number to press is displayed on-screen along with the string, all you have to remember is to type the ESC key first. If you forget, don't go hunting for this article. The screen reminds you that you should hit the ESC key and then the number.

As mentioned above, there are four programmed keys.

They are ESC-0 (zero), ESC-A, ESC-I and ESC-D. The instructions for each of these are also shown on the screen.

Pressing ESC and 0 will clear the screen and display Easy Type's menu.

In the menu, choice number one is "Start DATA statements." The word DATA will be printed after each succeeding line number entered if you select this option. You'll be asked which type of data you're going to enter: decimal, hexadecimal, or other. If you answer decimal, what you type will be checked by a machine language subroutine. It will see that you didn't accidentally type a letter, or any other key not appropriate to a decimal data statement. The editing keys will still function properly.

If you choose hexadecimal, the subroutine will make sure you're typing only characters acceptable to a hexadecimal data statement.

Choosing "other" will result in no checking. The word DATA will simply be added after each new line number.

Option number two is "Stop DATA statements." It does just that. The word DATA will no longer be printed after each new line number.

The third choice is "Start/Alter line numbering." If you pick this option, Easy Type will ask for the starting line number and the increment used between lines. Type these in, and all succeeding lines will be automatically numbered for you.

Option number four is "Stop line numbering." Choosing this will cancel the automatic line-numbering feature.

\section*{Easy Type continued}

Choice number five is＂Make a programmable key．＂ You＇ll be asked to input the characters you desire for the next available programmable key．You don＇t have to enter all nine programmable keys at once．You may come back later and enter more．

Option number six is＂Save program．＂By using this fea－ ture，you can save the entire program onto tape or disk without having to BREAK away from the program．

Menu selection number seven is＂Exit menu．＂Use this option to leave the menu and continue typing your pro－ gram．

This leaves us with three more programmed keys：ESC－ A，ESC－I and ESC－D．

Let＇s say you type in a line and hit RETURN．You then see that you made a syntax error，or you want to change or copy part of that line．Press ESC and A，and the last line will be displayed．Alter the line and／or line number， then hit RETURN．

The next programmed key is ESC－I．Some magazine programs are numbered in an orderly fashion，with even increments between line numbers．Many aren＇t．If you＇ve chosen menu item three（automatic line numbering）and need to skip some line numbers，type ESC－I and the next line number will appear．

In the same vein，if your increment is ten，and the pro－ gram you＇re entering has a line number whose last digit is a five，use ESC－D．Your line number will be decrement－ ed．Hit the BACKSPACE a couple of times，hit the num－ ber 5 ，and be on your way．

That＇s about all there is．I hope you find Easy Type not only easy，but also a time－saving aid to accuracy．There may be several things you＇d like to see added to Easy Type． Please alter it to your needs．The program is made to work for you－not you for it．

Gary Heitz bought his first Atari computer in 1982. Through ANALOG Computing，he has learned to program in BASIC and assembly language．

The two－letter checksum code preceding the line numbers here is not a part of the BASIC program． For further information，see the BASIC Editor II， in issue 47 of ANALOG Computing．

Listing 1.
BASIC listing．

\footnotetext{
NK
32000 CLR ：C0＝0：DIM D \(5(15), \mathrm{P} 5\)（180），TEM
 RS（155）：FOR I＝C日 T0 9
HM 32016 L（I）＝C日：MEHT I：L（1）＝5：D5＝CHR \(5(15\) 6）：D \(5(15)=D 5: D 5(2)=D 5: G R A P H I C 5\) CQ：POKE 559，C6：POKE 716，178：POKE 712，178
LP 32026 RESTORE 32591：FOR I＝1 TO 133：REA D IN：POKE 1535＋I，TN：NEKT I：IN＝32190：ME NU＝32370：G0TO 32080

 POP ：PKEY5＝PKEY5－1：GOTO MENL
Ho 32650 P \(5(L E N(P S)+1)=T E M P \$: P S(L E N(P 5)+1\) \(3=C H R 5(155): L(P K E Y 5+1)=L E N(P 5): R E T U R N\)
PL 32069 PKEY5＝PKEY5＋1：IF PKEY5＞9 THEN PK EY5＝9：GOTO MENU
}

HF 32070 ？＂E5c－＂；PKEY5；＂＂；：G05UB 32030： G0T0 32069
KY 32080 REM［ CHEFAR
KZ 32090 ？CHRS（125）：POKE 82，C0：POSITION
 \(\frac{\text { whed Kg }}{32106 \text { ？}}\) ：CHRS（27）；CHRS（156）： \begin{tabular}{c}
\(32190 ?\) \\
\(\mathbf{N} \quad \mathrm{Ca}, \mathrm{c}\) \\
\hline
\end{tabular}
CA 32116 TRAP 32146： \(\mathrm{H}=\mathrm{PKEY5:IF}\) PKEY5＞4 TH EN \(\mathrm{H}=4\)
NH 32120 FOR I＝C0 TO K：？I；＂＂；PS（L（I）＋1， L（I＋1）－1）：NERT I
 ION 20，CQ：FOR I＝5 TO PKEY5：？I；＂＂；P与C L（I）＋1，L（I＋1）－1）：NEKT I
FD 32140 TRAP 40000：P0KE 82，2：K＝U5R（1590） ：LINE＝PEEK \((1621)+\) PEEK \((1622) * 256\)
B5 32150 CL05E \＃1：0PEN \＃1，4，C日，＂K＇H：P05ITI OH 2，6：LIST LINE：POSITION C0，11：L＝C日
5K 32166？＂D＇יCHRS（27）；CHRS（156）；＂Last

ter use Eft a
B2 32170 P05ITION 2，12：？：IF NUM THEN ？ 5 TART；＂＂；：START＝5TART＋INC
NH 32180 IF TYPE AND NLM THEN ？＂DÁTA＇；
0532190 REM NOE MD
AD 32209 POKE 559，34：GET \＃1，KEY：IF KEY＝27 THEN 32296
PK 32210 IF TYPE AND NUM＝C日 AND L＝C \(A\) AND KEY＝32 THEN ？＂DATA＂；：L＝1：GOTO IN
0432220 IF KEY＝155 THEN POKE 559，CO：GOTO 32260
AC． 32230 IF KEY＝28 AND PEEK（84）（14 THEN G \(0 T 0\) IN
RJ 32246 IF TYPE＝1 OR TYPE＝2 THEN 32580
JH 32250 ？CHRS（KEY）；：GOTO IN

CC 32270 POSITION 2，26：？＂CONT＂：POSITION C0，11：POKE 842，13：5T0P
EG 32286 POKE 842，12：POSITION C0，7：？D与：G \(0 T 032146\)

DZ 32306 GET \＃1，KEY：IF KEY＝27 THEN ？CHRS （27）；CHR（ 27 ）；：GOTO IN
GK 32310 IF KEY＝48 THEN START＝5TART－INC：G OTO MENU
RE 32320 IF KEY＝73 THEN 32170
5 J 3233 IF KEY＝68 THEN START＝5TART－INC－I NC：GOTO 32176
Ro 32346 IF KEY＝65 THEN POSITION 2，12：LI5 TLINE：POSITION 2，12：？：START＝LINE＋INC ：GOTO IN
HII 32350 IF KEY 449 OR KEY \(\langle\) PKEY5 557 THEN ？ CHRS（27）：：GOTO 32250
YL 32360 TRAP IN：KEY＝KEY－48：？PS（L（KEY）＋1 L（KEY＋1）－1）；：TRAP 40日00：GOTO IN
Jc 32376 REM
Hi 32389 POKE 752，1：POKE 201，7：？CHR5（125 J：IF NUM THEN POSITION CO，CQ：？＂पFSE
as
errent the line nimber
32496 POSITION 17，2：？＂Findll＂：？：？＂
10 5tart DATA statements＂
л 32416 ？\(:\) ？＂Q 5 stop DATA statements＂：？ ：？，＂图 Start／alter line numbering＂：？ ：？＂U stop line numbering＂
IG 32420？：？＂國 Make a programmable key ＂：？：？，＂G 5ave prograw＂：？：？＂ 7 Exit menu＇：POSITION 14，18
ZH 3243日？＂Your choice？＂：？：GET \＃1，KEY：K EY＝KEY－48：IF KEY〈＞1 AND KEY〈〉Z AND KEY （） 4 THEN POKE 752， 06
NH 32440 IF KEY＝1 THEN 32540
JD 32450 IF KEY＝2 THEN TYPE＝C0
RE 32466 IF KEY＝3 THEN ？＂Enter START，INC REMENT＂；：TRAP \(32460: I N P U T\) START，INC：TR AP 40 日白： \(\mathrm{NLM}=1\)

HE 32479 IF KEY＝4 THEN NUM＝C
UF 32489 IF KEY＝5 THEN ？CHRS（125）：？？ TYPE［ENTD to go to the MENU．＂：？： G0T0 32060
KJ 32490 IF KEY＝6 THEN G05UB 32520：CLO5E
\＃1：5AUE F5：0PEN \＃1，4，C0，＂K＂
HK 32506 IF KEY＝7 THEN POKE 559，C0：GOTO 3 2986
BP 32516 G0TO MENU
50 32529 IF LEN（F 5 ）THEN RETURN
GP 32530 P05ITION 2，21：？＂DH：Filename．Ext ＂；INPUT F5：RETURN

2P 32550 P05ITION 2，20：？＂Is the data in： ＂：？＂四 Decimal＂，＂四 Hexadecimal 因 oth ег＂
CD 3256 GET \＃1，KEY：TYPE＝KEY－48：IF TYPE＜1 OR TYPE〉S THEN ？CHR（253）GGOTO 32550
QH \(32576 \mathrm{H}=18+\left(T Y P E=2\right.\) ） \(\mathrm{E}_{6} 6: G 0 T 0\) MENU
AR 32589 K＝U5R（1536，KEY，H）：IF PEEK（204）T HEN \(3225 \Leftrightarrow\)
QJ 32596 ？CHRS（253）：：GOTO IN
RM 32591 DATA \(164,104,164,133,203,104,104\) ，168，169， \(0,133,294,185,29,6,197,263,24\) \(6,5,136,268,246,249,4,169,255,133\)
FH 32592 DATA \(204,96,0,28,29,36,31,126,25\) \(4,255,44,48,49,50,51,52,53,54,55,56,57\) ，65，66，67，68，69，79
CH 32593 DATÁ \(169,0,170,141,0,4,141,1,4,1\) \(41,253,3,141,254,3,165,136,133,263,165\) \(1137,133,204,169,1,177,203\)
CH 32594 DATA \(261,125,246,46,160,6,177,20\) 3，141，253，3，209，177，203，141，254，3，238， \(0,4,173,6,4,208,3,238,1\)
XU 32595 DATA \(4,200,177,203,141,255,3,165\) ，263，24，169，255，3，133，203，144，208，236， \(264,224,6,249,262,104,96\)

\section*{Get the Extra on disk!}

A special offer for Extra owners... 2 DISKS for only \$24.95

Use the convenient card at the back of this book to order your disk version.

\section*{Get the Extra on disk!}

\section*{A SPECIAL OFFER FOR EXTRA OWNERS} 2 DISKS - ONLY \$24.95
All the programs from An Atari 8-Bit Extra from ANALOG Computing, ready to run, on two double-sided disks.
Yes! Please send me the disk version.
Name \(\qquad\) \(\square\) MasterCard \(\square\) VISA Street No.
City, State Zip Code \(\qquad\) Exp. date \(\qquad\)

Payment enclosed. \(\square\) Bill my Master Card or VISA (right).
Sign \(\qquad\)

\section*{MAGAZINE SUBSCRIPTIONS}
\begin{tabular}{|c|c|c|}
\hline ANALOG ONLY & ST-LOG ONLY & ANALOG and STILOC \\
\hline \(\square 1\) yr. (12 iss.) . . . . . . \(\$ 28.00\) & \(\square 1\) yr. (12 iss.) . . . . . . \(\$ 28.00\) & \(\square 1 \mathrm{yr}\). (12 iss. each) \\
\hline \(\square 2\) yrs. (24 iss.) . . . . . \$52.00 & \(\square 2\) yrs. (24 iss.) ...... \$52.00 & \(\square 2\) yrs. (24 iss. each) . . \(\$ 78\) \\
\hline \(\square 3\) yrs. (36 iss.) . ..... \$76.00 & \(\square 3\) yrs. (36 iss.) ...... \$76.00 & \(\square 3 \mathrm{yrs}\). (36 iss. each) . \$114.00 \\
\hline \multicolumn{3}{|l|}{- CANADIAN \& MEXICAN RATES (First Class)} \\
\hline \(\square 1\) yr. (12 iss.) . . . . . . \(\$ 36.00\) & \(\square 1 \mathrm{yr}\) (12 iss.) . . . . . . \(\$ 36.00\) & \(\square 1 \mathrm{yr}\) ( 12 iss. each) ... \$54 \\
\hline \(\square 2\) yrs. (24 iss.) . . . . . \$68.00 & \(\square 2\) yrs. (24 iss.) . . . . . \$68.00 & \(\square 2\) yrs. (24 iss, each) . \$102.00 \\
\hline \(\square 3 \mathrm{yrs}\). (36 iss.) ...... \$999.00 & \(\square 3\) yrs. (36 iss.) ...... \$99.00 & \(\square 3 \mathrm{yrs}\) ( 36 iss. each) . \(\$ 149.0\) \\
\hline \multicolumn{3}{|c|}{NATE (Surace)} \\
\hline \(\square 1\) yr. (12 iss.) . . . . . . \$39.00 & \(\square 1\) yr. (12 iss.) . . . . . . . \(\$ 39.00\) & \(\square 1 \mathrm{yr}\) ( 12 iss.) . . . . . . \(\$ 599.00\) \\
\hline \(\square 2\) yrs. (24 iss.) ..... \(\$ 72.00\) & \(\square 2\) yrs. (24 iss.) ...... \$72.00 & \(\square 2\) yrs. (24 iss. each) . \$112.00 \\
\hline \(\square 3\) yrs. (36 iss.) . . . . \$104.00 & \(\square 3 \mathrm{yrs}\). ( 36 iss.) . . . . \(\$ 104.00\) & \(\square 3 \mathrm{yrs}\). ( 36 iss. each) . \(\$ 165.0\) \\
\hline
\end{tabular}
\(\square\) Check \# \(\qquad\) \(\square\) Bill me.

Name
\(\square\) Money Order \# \(\qquad\) \(\square\) VISA
(- MasterCard
Exp. date \(\qquad\)

\section*{Address}
City

PLEASE ALLOW 4 to 6 WEEKS FOR DELIVERY OF FIRST ISSUE.

\section*{DISK/MAGAZINE SUBSCRIPTIONS}

\section*{Card No.}

\section*{ANALOG DISK}

\section*{ST-LOG DISK}

\section*{ANALOG and STLOG}
\(\square 1 / 2\) yr. ( 6 iss.) ....... \(\$ 59.00\)
\(\square 1\) yr. ( 12 iss.) ...... \(\$ 105.00\)
\(\square 1 / 2 \mathrm{yr}\) ( 6 iss.) ....... \(\$ 59.00\)
\(\square 1 \mathrm{yr} .(12\) iss.) ...... \(\$ 105.00\)
\(\square 1 / 2 \mathrm{yr}\). ( 6 iss. each) ... \$95.00
\(\square 1\) yr. (12 iss. each) . \$159.00
CANADIAN \& MEXICAN RATES (First Class)


CNTMIT
P.O. Box 23

Worcester, MA 01603

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 31 WORCESTER, MA
FINGITI
P.O. Box 625

Holmes, PA 19043
\begin{tabular}{|c|}
\hline NO POSTAGE \\
NECESSARY \\
IF MAILED \\
IN THE \\
UNITED STATES \\
\hline
\end{tabular}

BUSINESS REPLY MAIL
P.O. Box 625 Holmes, PA 19043
\begin{tabular}{|c|}
\hline  \\
\hline \(\underline{\square}\) \\
\hline \\
\hline - \\
\hline = \\
\hline [ \\
\hline \\
\hline
\end{tabular}

\section*{Whean it comestoflying fighterplanes} IT"STHEMAN NOT THE MACHINE that makes the difference

\section*{5[0]}

MIG Alley Ace: Thrilling head-to-head Sabre Jet aerial dog fighting includes single player flying mode, as well as two player competition.
Hellcat Ace: Exciting 3-dimensional aerial combat over the Pacific in World War II. For one to four players.
Air Réscue: Sensational assault chopper rescue raids for daring pilots in solo or team configuration. For one to eight players.
\(D_{a}\) Winine:
(e) Guts
4) Stamina
C) Intense concentration
(4) Fast reflexes
W. Willingness to take risks
2. Good eye-hand coordination

\section*{Ifso}

Pअ्या
Tibit
Fly solo or in team configuration
(4). Maneuver in 3-D space
"See and avoid" techniques
(9. Advanced aerobatics: loops, rolls, G's, split S's Outfly the enemy
> "You'll experience the wind in your face and the intense dog fighting action of some of the world's most honored and respected combat aviators: the original stick-and-rudder fighter pilots!"

> MAJOR BILL STEALEY,
> US.A. Reserve
> President, Micoroprose
> (over 3,000 flying hours)```


[^0]:    AZ 10 DTM BF（16），MS（4），AS（1），BS（1），FS（15） LF ii 1 DIN（15）
    LF II DIN MODS（4）
    BN 20 LTME＝1080：RETRM＝155：BACKSP＝126：CHKS
    60 36 GOSUB $450:$ POSITION 10， $6: ?$＂${ }^{\circ}$ Start or Continue？：；G0SUB 50e：？CHRS（a）

[^1]:    OI 10 GRAPHICS 0：POKE 82，2：POKE 710，145
    SP 20 ？：？：？＂NEW＇：？：？
    MB 30 ？י＂3730 LFS二＂；CHRS（34）；
    BC 40 FOR I＝1 T0 59；READ A：？CHR（27）；CHR 5（A）；：NEKT I：？CHRS（34）
    US 56 ？＂3740 5P与＝＂＇CHRS（34）：
    KJ 60 FOR $I=1$ TO 80：READ A：？CHR 5 （27）；CHR与（A）；：NEHT I：？CHR $\$(34)$
    F5 70？＂3750 5P5（81）＝＂；CHR5（34）；
    IL $80 \mathrm{FOR} I=81$ T0 105：READ A：？CHRS（27）；C HRS（A）；：NEXT I：？CHR $\$(34)$
    YC 90？＂З366 RUSニ；CHRS（34）；
    CA 100 FOR I＝1 TO 21：READ A：？CHRS（27）；CH
    
    of 116 ？＂3776 MKS5＝＂；CHRS（34）；
    FS 115 FOR I＝1 TO 80：READ A：？CHR $5(27) ; C H$ R与（A）；：NE KT I：？CHR（ 34 ）
    No 126 ？${ }^{12} 388$ MKS5（ 81 ）$=1 ;$ CHR $5(34)$ ；
    U5 130 FOR $I=81$ T0 160：READ A：？CHR与（27）； CHRS（A）；：NE KT I：？CHRS（34）
    
    IF 150 FOR I＝161 TO 192：REÁD A：？CHRS（27） ；CHR $5(A) ;: N E X T$ I：？CHR $5(34)$
    UB 160 ？＂POKE 842，12：GR．0：L．＂
    M5 176 POSITION 0， 0 ：POKE 842，13：5TOP
    N月 2600 DATA $104,164,101,89,133,267,24,10$ $4,101,88,133,206,144,2,236,207$
    TJ 2010 DATÁ $104,164,170,164,104,133,203$ ， $164,164,133,264,164,164,133,265,166$
    DU 2020 DATA $0,165,205,145,206,206,196,20$ $4,208,249,202,208,1,96,24,165$
    RE 2630 DATA $206,161,263,133,266,144,232$ ， 230，207，208，228
    LH 2046 REM＊ 59 BYTES

[^2]:    ＂：POSITION 2，23：？＂RETURN only to leav e blank＂；
    5N 906 P0SITION 2，19：？＂Enter Level＂；：L＝ 2：G05UB 120：5LEUELSニNS：IF NSニ＂＂THEN 5LEUEL5ニ＂＂
    YW 910 POSITION 21－LEN（SLEUELS），13：？5LEU EL5
    UH 920 GOSUB 310：POSITION 13，18：？＂E．
    Ef＂：P0SITION 2，19：？＂Enter Name＂；：L＝ 5：G05UB 20
    I13． 936 IF AS二＂II THEN 920
    CE 946 5NAMES＝AS：P0SITION 27，13：？5NAMES： IF UPFLAG＝1 THEN RETURN
    GR 950 G0SUB 310；P05ITION 2，22：？＂Optiona 1 Information＂：？＂RETURN only to leave blank＂；
    KL 969 POSITION 14，18：？＂EE EGH：POSI TION 2，19：？＂Enter 5core＂；：L＝6：G05UB 120：T5C0RE5ニN5
    H4 976 IF Nรニ＂＂THEN TLEUEL今ニ＂＂：TMAMEちニ ＂＂：A（Cふ）＝C6：IF UPFLAG＝C1 THEN RETURN
    NU 989 IF Nちニ＂＂THEN 1876
    DR 996 A（CJ）＝UAL（N5）：G0SUB 280：T5CORE5＝TE MP $\ddagger$
    11．1696 POSITION 13－LEN（TSCORE5），15：？T5C ORE
    TU 1016 G0SUB 310；P05ITION 14，18：？＂Ét E世＂：POSITION 2，23：？＂RETURN only to lea ve blank＇；
    EU 1626 POSITION 2，19：？＂Enter Level＂；：L ＝2：G05UB 120；TLEUELSニNS：IF NSニ＂＂THEN TLEUELちニ＂
    AH 1030 P0SITION 21－LENGTLEUEL5】，15：？TLE VELS
    01．1040 G0SUB 310：POSITION 13，18：？＂É？ Ét＂：P0SITION 2，19：？＂Enter Name＂；： ＝5：G05UB 20
    CB 1056 IF Aよデ＂THEN 1046
    CH 1066 TNAME $5=A 5: P 05 I T I O N 27,15: ?$ TNAMES ：IF UPFLAG＝1 THEN RETURN
    UP 1670 G0SUB $310: I F$ A（C1）A（C2）AND A（C2 3＞A（C3）THEN 1216
    YL 1086 IF A（C1） $\boldsymbol{A}(C 3)$ THEN 1116
    GT $1090 \mathrm{~T}=\mathrm{A}(\mathrm{C} 1): \hat{A}(\mathrm{C} 1)=\mathrm{A}(\mathrm{C} 3): \hat{A}(\mathrm{C} 3)=\mathrm{T}:$ TEMP ＝TNAMES：TNAME $=$ NAME 5 ；NAME $5=T E M P \$$
    PD 1100 TEMP与ニ5CORES：SCORES＝TSCOREF：T5COR E§ニTEMP与：TEMPちニLEUEL§：LEUELち＝TLEVEL与：T LEVEL $\ddagger$ TEMP 5
    AG 1116 IF A（C1）$\rangle$ A（C2）THEN 1140
     ＝5NAME $5: 5$ NAMES＝NAME 5 ：NAME $5=T E M P S$
    WH 1130 TEMP $5=5 L E U E L 与: 5 L E U E L \$=L E U E L 5: L E U E$ L与ニ5LEUELS：TEMPち＝55CORE5：55CORE5＝5CORE与：5CORE与ニTEMP与
    E2 1146 IF A（C2） $\boldsymbol{1}$ A（C3）THEN 1170
    ER $1150 \mathrm{~T}=\mathrm{A}(\mathrm{C} 2): \hat{A}(\mathrm{C} 2)=\mathrm{A}(\mathrm{C} 3): \hat{A}(\mathrm{C} 3)=T: T E M P 与$ ＝5NAME 5 ： 5 NAME $5=T N A M E 5: T N A M E 5=T E M P 5$
    OR 1160 TEMP $5=5 L E U E L 与: 5 L E U E L 今=T L E V E L 5 ; T L E$ UELS＝TEMP E与：T5COREちニTEMPS
    IM 1176 YP＝11：G05UB 319：YP＝18：P05ITION 13 －LEN（SCORES），11：？SCORES：POSITION 21－L EN（LEUEL5），1i：？LEUELS
    MN 1180 POSITION 27，11：？NAMES：POSITION 1 3－LEN（S5CORE ），13：？5SCORES：POSITION 2 1－LEN（5LEUEL\＄），13：？5LEUEL 5
    ZT 1190 POSITION 27，13：？5NAMES：P0SITION 13－LEN（TSCORES），15：？TSCORE 5 ：POSITION 21－LEN（TLEUEL5），15： 7 TLEUEL $\$$
    SE 1206 POSITION 27，15：？TNAMES
    RU 1216 POSITION 2，i9：？＂ 1 （ all 0k C Correct Errors＂：？：？＂A Abort＂
    YM 1220 POKE C702，C64：POKE C694，C0：GET \＃C 1，A：IF A $\rangle C 65$ AND A $\rangle 79$ AND Á $\rangle 67$ THEN 1229
    CF 1236 IF Aく〉C65 THEN 1290
    YO 1246 G0SUB 316 ；P0SITION 2，18：？＂Ready to ABORT＂：？：？＂Are you sure（Yes／No〕

