
ADVANCED
PROGRAMMING TECHNIQUES

~:~R ATARI®
INCLUDING GRAPHICS " VOICE PROGRAMS

Also by Linda Schreiber from TAB BOOKS:

No. 1485 ATARI Programming . .. with 55 programs

ADVANCED
PROGRAMMING TECHNIQUES

~::R ATARI®
INCLUDING GRAPHICS " VOICE PROGRAMS

BY LINDA M. SCHREIBER

FIRST EDITION

FIRST PRINTING

Copyright © 1983 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to

the' use of the information herein.

Library of Congress Cataloging in Publication Data

Schreiber, Linda M.
Advanced programming techniques for your ATARI

including graphics and voice programs.

Includes index.
1. Atari computer-Programming. 2. Computer graphics.

3. Speech synthesis. I. Title .
QA76.8.A82S367 1983 001.64'2 82-19340

. ISBN 0-8306-0145-7
ISBN 0-8306-1545-8 (pbk.)

To my family for their continuing support.

Contents

1

2

Program Listings

Introduction

Working with Numbers
Binary System-Understanding Hex

Working with the Display List
The Purpose of ANTIC-Finding the Display List-ANTIC's Instruction Set- Combining Graphics
Modes-The Fourteen Modes-Text Modes-Color Text Modes.

3 Graphics
Character Set Make-Up-Restructuring the Set-The Invisible Modes

4 Principles of Animation
Characters with a Purpose-Scenes and Movement-Setting the Priorities

5 looking at BASIC
The Token Commands-File Structures-BASIC Tables-Speeding Up a Program

6 Tricks with Strings
Machine Language Subroutines-Relocating the Strings-Strings and Player/Missile Graphics

vii

ix

1

9

25

45

79

91

7 Display List Interrupts 107
Handling an Interrupt-Writing Service Routines-Precise Timing-Player/ Missile Enhancements

8 Scrolling 121
Course Scroll ing-Fine Vertical Scroll-Playfield Widths-Fine Horizontal Scroll -Player/Missi le
Graphics

9 Page Flipping 133
Displaying Two Screens-Creating Slides

10

11

12

13

Sound Generators
The Audio Channel Control-Direct Access

Interpreting the Keyboard
Keyboard Code-Reading the Keyboard

Understanding the Screen Editor
Get / Put Characters-Control Characters-Other Memory Locations

Disk Use
Disk File Manager-Special Functions-Disk Handler-File Management System-File Directory
Format-Booting Your Own Disk

14 Cassette Use
The Cassette Handler-Booting Your Own Cassettes-Using the Cassette with Sound

Index

153

161

171

177

195

205

Program Listings
I-I. Conversions 3 7-4A. Precise Timing-Second
2-I. Mixed Modes Program 13 Method 115
2-2. ANTIC 3 17 7-5. Moving Players 117
2-3. ANTIC 4 and 5 21 8-I. Course Vertical Scroll 121
2-4. Color Artifacting 23 8-2. Course Horizontal Scroll 123
3-I. Data for Exclamation Point 26 8-3. Fine Vertical Scroll 126
3-2. Character Set Editor 28 8-4. Fine Vertical Scroll: Down 127
3-3. Multicolor Characters 37 8-5. Fine Horizontal Scroll 129
4-I. Simple Animation 48 8-5A. Fine Horizontal Scroll-
4-2. Simple Animation - Second Second Method 131

Method 53 9-I. Screen Flipping 133
4-3. Animation in the Text Mode 55 9-2. Simple Page Flipping: Two
4-4. Carousel 60 Different Modes 135
4-5. Carousel-Animated 64 9-3. Simultaneous Page Flipping-in
4-6. The Bird 70 BASIC 137
5-I. BASIC Tables-Variable Name 9-4. Simultaneous Page Flipping-

Table 82 Two Modes 137
5-1A. BASIC Tables- Variable Value 9-5. Simultaneous Page Flipping:

Table 83 Machine Language Subroutine 138
5-1B. BASIC Tables-String-Array Area 84 9-5A. Simultaneous Page Flipping:
5-1C. BASIC Tables-Buffer 85 Machine Language
5-10. BASIC Tables-Statement Table 86 Subroutine-Horizontal Blank 138
6-I. The Farmer and the Duck, Fox 9-5B. Simultaneous Page Flipping:

and Grain Puzzle 91 Machine Language
6-2. Move Character Set 100 Subroutine- Vertical Blank 141
6-3. Move Player/Missile Up/Down 100 9-6. Slide Editor 145
6-4. Player/Missile Strings 102 9-7. Slide Show 148
7-I. Color Service Routine 109 lO-I. Sounds 154
7-2. Double Character Sets 112 10-2. Sounds with Attack and Decay 155
7-3. Mirror Images Routine 113 10-3. Sounds with Attack and
7-4. Precise Timing 114 Decay- Vibrations 155

ix

10-4. Variations on Tones 157 12-2. Printing Control Characters 174
10-5. Music: Machine Language 13-l. Directory Listing 178

Subroutine 157 13-2. Print from Disk 180
11-l. Read the Keyboard 161 13-3. Calendar 181
11-2. Tiles 163 13-4. Displaying Sectors 185
11-3. Keyboard Conversion 167 13-5. AUTORUN.SYS 190
11-4. Letter Attack 169 14-l. BASIC Boot Load 197
12-l. Locate, Poke, and Pee k 171 14-2 . Listen and Spell 201

x

I ntrod u eti 0 n
This book was written for the person who wants to get the most out of his or her ATARI computer.
If you have a good understanding of BASIC but want to know how to get more special effects, more
sounds, and more graphics from your computer, this book is for you. Every program is explained
in detail so that after you enter the program and understand how it works, you can use this
knowledge in writing your own programs.

All the programs will run on any ATARI personal computer. The AT ARI BASIC cartridge
CXL4002 and AT ARI DOS (for disk programs) were used in creating them.

Memory locations that are used by the Operating System are presented. Explanations are
given on how to change their values for different programming effects. The chapters on the disk
explain the file structure to give you control over the drive. Everything is included here to make
you an Advanced Programmer!

There is a chapter on creating your own character sets, mixing graphic modes, using the
player/missile graphics, and flipping screens. You will even learn how to enter a machine
language subroutine to play music while a BASIC program is running!

xi

Note: Because many of the listings in this book use graphics characters and/or reverse video, the
following codes have been used in the listings:
.:>- clear)- Press the escape key and the shift/clear key. This clears the screen .
• :>-characters or letters}- Press the control key and the letter indicated between the brackets. All
characters or letters between the brackets }-)- are graphic characters .
• Underlined characters or letters are in reverse video.

Chapter 1

Working
with Numbers

Ever since man had the need to know how many items he had in his possession, how much grain he
needed, or how many days since the last rain, he has had to devise counting systems. It is believed
that some ancient tribes used the base two, or three for counting. There is some evidence that
base twenty was used by a few early tribes, since their handiest counting device was their fingers
and toes.

With numbers came the need to do simple calculations. Soon the problems were no longer
simple, and man quickly learned that if he marked the numbers in the dirt or on a tablet he could
compute much faster. Stones were probably used much the way we use poker chips today with
each type of stone representing a different group of numbers-ones, fives, tens, etc. The figures
themselves evolved from crude lines and shapes to the forms we are familiar with today.

The abacus is the oldest, and yet the simplest, adding machine invented. The principle of
moving the beads on rods has survived the test of time. Many people consider the abacus to be the
first type of computer.

BINARY SYSTEM

As with the abacus, the computer uses its own number system-binary. If you think of alight
bulb, a candle, a lock, or a trap, each item has only two states. It can be either on or off, open or
closed, set or sprung. The computer operates in the same manner. Each memory location in the
computer can be either on or off.

The memory in your computer can hold a charge. This is represented by the number one .
When a location has no charge, it is represented by a zero. The computer, then, uses binary or
base 2 as its number system.

In our decimal system, each number position is a multiple of ten. The position to the left of
the decimal is the unit position. In the binary system, each position is a multiple of 2 with the
position to the left of the decimal the unit position. In the decimal system, there are ten numerals ,
o through 9. In the binary system, only the numerals 0 and 1 are used. The binary number 10110 is
22 in decimal. To convert a binary number to decimal, we add the places that contain a 1 and ignore
the place values where there is a zero.

1
263 1
8 4 2 6 842 1
000 101 1 0

In our example, 10ll0, there is a 1 in the 16's column, a 1 in the 4's column and a 1 in the 2's
column. If we add 16+4+2, we arrive at 22, the decimal equivalent of 10ll0. Most computers
have 8 positions in each memory location. This means that each location can contain a number
from 0 to 255.

The number that is stored in each memory location is called a byte. Each one or zero in the
byte is referred to as a bit. The ATARI computer is an 8-bit computer. There are some 4-bit and
16-bit computers also. Each byte can also be divided into two 4-bit nybbles.

Although it seems confusing at first, using the binary system in computers conserves on
space and increases speed. If a switch with ten different settings were used, the computer would
first have to determine whether or not the switch was set; and then determine which setting it was
pointing to. In binary, there are only two possibilities, a lor a o. It takes only 8 bits or switches to
count to 255. By adding 8 more, any number up to 65535 can be displayed. Work the following
examples to practice converting binary numbers to decimal.

1. 01100001
2. 10ll0lll
3. 11001000
4. 001l100l
5. 01ll00l0
6. 001l1l00
7. 0001l1l0
8. 1l01l000
9. 01111010

10. 1l1l0001

The decimal equivalents are: 1-97; 2-183; 3-200; 4-57; 5-ll4; 6-58; 7-30; 8-216; 9-122;
10-241

UNDERSTANDING HEX
Although the binary system increases the computer's speed, most of us cannot readi ly

convert a string of Is and Os into a number that we can understand. To help us, most programmers
and manuals reference the memory locations and the numbers stored in them in hex. The
hexadecimal system uses the base 16. The numbers after 9 are represented as the letters A-F. To
convert a binary number to hex, we first divide the byte into two nybbles. If, for example, we
needed to convert 1l001l01 into hex, we would divide it into two nybbles: 1100 and 1l01. Each
nybble consists offour bits. Now we treat each nybble as a separate number. By adding the place
values of the first nybble, 8+4, we get 12. Twelve is not a one digit number, so we use the letter
C. The next nybble is 8+4+1, or 13. One number higher than C is D. Our hex number for
1l001l0l is CD.

Let's try that again with another binary number: lOOlOlll . Divide this 8-bit number into 2
nybbles: 1001 and Olll. The first nybble is 8+ lor 9, the second is 4+2+ lor 7. The hex number
for 100101ll is '97'.

There are times when you will want the decimal equivalent to a hex number. When you are

2

working in BASIC and want to poke a location with a number, both the location and the number
that you are poking must be in decimal. Often the manual you are using will provide only the hex
addresses to be poked or the hex values that should be entered. To convert a hex number to
decimal is fairly easy. Since each number/letter represents a value from one to 15, each place
value in hex is a mUltiple of 16. If the hex number has only two place, for example, B3, you should
multiply the number in the second position from the end by 16 and add the value in the rightmost
position. B is equal to 11 decimal, 11 x 16 is 176. Add 3 and the decimal value of hex B3 is 179.
Since the computer can access over 64000 memory locations, the hex number will often contain
four places. To convert C253 hex to decimal we would multiply the C (decimal 12) by 4096, the 2
by 256, the 5 by 16 and add 3.

(12 x4096) + (2 x 256) +(5 x 16) +3=49747

To convert a decimal number to hex, you should divide the number by the largest place value
feasible; the quotient is the value for that place. Then divide the remainder by the next place
value, and continue until there is a remainder less than 16. That number is the last number of the
hex number. If, for example, the decimal number is 21013, we would divide the number by 4096.
The first or leftmost value of the hex number then is a 5. The remainder is 533. When this number
is divided by 256, the next quotient is a 2 with a remainder of 21. 21 divided by 16 is 1 with a
remainder of 5.

Therefore, the hex equivalent of 21013 is 5215.

------5
4096) 21013

-20480

533

---2
256)533

-512

21

--1 5
16)21
-16

5

The following program will convert a decimal number to hex or binary, and a binary or hex
number to decimal.

Listing 1-1. Conversions

10 REM LISTING 1.1
20 REM BY L.M.SCHREIBER FOR TAB BOOKS
30 REM CONVERSIONS
40 DIM A$(8):REM MOST POSITIONS IN A B
I Ni~F<Y i-..J UI'1 FlEF;:
50 GRAPHICS O:POKE 752,1:? "}CLEAR}":P
OKE 710,100:POKE 712,100:COLOR 18:PLOT

7v2:DRAWTO 33,2:P LOT 7,4:DRAWTO 34,4
60 REM PRINT c ntrl -R to make the top a
nd bottom of box.
70 POSITION 6,2:? ": ":POSITION 3
4,2:? ": ":REM cntrl-R,esc-cntrl
downarrowyesc-cntrl-backarrowyshift=
80 REM cntrl-R,shift=,cntrl-Z & cntrk
E , <;; h i 'f' t:::: , en t.. r :I. .-. C 1..,1 :i. t h (',10 W ' ''I a Y" r Ol-J &: () a c

3

Listing 1-1. Conversions (continued from page 3).

karrow to make left & ri~ht sides
90 POSITION 8y3:? "Please enter a sele
ct .. .i.Dn!"
100 '!:' :?
r'i (.:,' ~:; C T (1 B
110 '!' ::.? "
i"i (." ~:; c T (1 D
1:.~0 ?
<:;CT(:lB
130 ?

y "i~ II ..
~? II ..

1. Decim a l to Hex":RE

2. Decimal to Dinary":RE

4. Binary to Decimal":PO
KE 752,O:REM esc'fAB
140 TRAP 140:POSITION 19,14:?" "~:

INPUT N:REM TWO SPACES - 2 esc-cntrl b
Ack arrows - erase a previous answer
150 IF N(l OR N)4 THEN 140 :REM CHECK F
Cl F~ C 0 h: F~ E C TIN PUT
160 ON N GClSUB 200,500,700,900
:L /0 GOlD ~.:.:jO

190 REM ROUTINE TO CONVERT DECIMAL NUM

200 ? "}CLEAR}PLEASE ENTER THE DECIM
AL NUMBER TO BE CONVERTED TO HEX.":'!' "

NUMDER CANNOT EXCEED 65534."
205 REM CLEAR SCREEN, 2 esc-cntrl down

210 ? :? "TO EXIT THIS ROUTINE, SIMPLY
PRESS THE RETURN KEY,":? :?

220 TR(.:lP ~5()

::~30 INPUT N
250 IF N)65535 OR N(O THEN 200
260 Nl=N:REM STORE THE NUMBER ENTERED
FOR THE CONVERSIClN ROUTINE
270 P=1:D=4096:REM P IS THE HEX POSITI
ON II IS EC~UAI ... TO THE: V(.~LUE OF' THE HI:::
X PCl!:l I T I ON
280 GOSUB 390:REM USE THE SUBROUTINE T
HAT GETS THE FIRST POSITION
290 P=2:D=256:REM P IS THE NEXT POSITI
ON - D IS THE VALUE OF TH AT POSITION
3()O GO!:ll.JB 390
310 P=3:D=16:REM P IS THE THIRD rOSITI
ON - II IS THE VALUE OF THAT POSITION
3?O GCl!:;UB 390
330 F'~-::4: D:::: 1.

4

340 GOSUB 400
350 1 :1 "THE HEX EQUIVALENT OF "SN;"
IS ";A$
360 GOTO 210
380 REM THIS ROUTINE DOES THE ACTUAL C
ONVERSION
390 IF N1{D THEN A$(P,P)~STR$(O):RETUR
N
400 H=INT (Nl/D):REM DIVIDE THE NUMBER
BY THE VALUE OF THE POSITION
410 N1=Nl-H*D:REM STORE THE REMAINDER
FOR THE NEXT CONVERSION
420 IF H)9 THEN A$(PYP)~CHR$(H+55):RET
URN
430 A$(P,P)=STR$(H):RE "fURN
490 REM CONVERT A DECIMAL NUMBER INTO
A BINARY NUMBER - DIVIDE THE NUMBER BY

EACH PLACE VALUE
500 ? "}CLEAR}PLEASE ENTER THE DECIM
AL NUMBER TO BE CONVERTED TO BINARY.":
? " NUMBER CANNOT EXCEED 255."
505 REM CLEAR SCRE EN, 2 esc-cntrl down
5

510 ? :7 "TO EXIT "fHIS ROUTINE, SIMPLY
PRESS THE RETURN KEY.":? :7

520 TRAP 50
530 INPUT N
550 IF N)255 OR ~"(O THEN 500
560 Nl=N:REM STO RE THE NUMBER ENTERED
FOR THE CONVERSION ROUTINE
570 P=1:D=128:REM P I S THE BINARY POSl
TION - D IS EQUAL TO THE VALUE OF THE
BINARY POSITION
580 GOSUB 390:REM USE THE SUBROUTINE T
HAT GETS THE FIRST POSITION
590 P=2:D=64:REM P IS THE NEXT POSITIO
N - D IS THE VALUE OF THAT POSI "fION
600 GOSUB 390
610 P=3:D=32:00SUB 390
620 P=4:D=16:GOSUB 390
630 P=5:D=8:GOSUB 390
640 P=6:D=4:GOSUB 390
650 P=7:D=2:GOSUB 390
660 P=8:D=1:GOSUB 400

5

Listing 1-1. Conversions (continued from page 5).

670 1 :1 "THE BINARY EQIVALENT OF "~N :

1 "IS ";(.i~~(:l.v4);I" "YA~I;(::,:ivU)

6ElO (-lUTO ::,:i:l.O
'700 1 "}CLEAI:~} PLEf.lf:;E ENTEF~ THE HC X N
UMBER TO BE CONVERTED TO DECIMAL.":? "

NUMBER CANNOT EXCEED FFFF."
7:1.0 1 :1 "TO EXIT THIS ROUTINEv SI MPL Y

PRESS THE RETURN KCY." :? :1
720 N=O:INPUT A$
7JO IF A$= " " THEN 50
740 P=LEN(A$):REM FIND OUT HOW MANY PO
SIT I ClN~:;

750 IF P)4 THEN 700
760 FOR D=:I. TO P :C=ASCCA$(D,D» : IF C)7
o THCN 700:RCM INVALID LETTCR / CHARACTE

7'70 C=C-55:IF C(:l.O THEN C=UAL(A$(D,D»
:REM IF IT 'S NOT A LETTER THEN GCT THE

'JALUE
780 ON P- Dt:l. GOTO 820v8:1.0,800,790
790 N=C*4096:NEXT D
800 N=NtC*256:NEXT D
8:1.0 N=NtC*16:NEXT D
820 N::::NtC
830 1 :1 "THE DECIMAL EQUIVALCNT OF "~

('~~I;Y:1 " If:; ";IN
B40 GOTU 7:1.0
900 1 "}CLEAR}PLEASE ENTER THE DINAR
Y NUMBER TU BC CONVERTED TO DCCIMAL.":
1 " NUMBER CANNOT EXCECD 1111111:1. ."
910 ? :1 "TO EXIT THIS ROUTINE, SIMPLY
F'f~ESS THE F~ETUF;:N I, E:: Y,," ~? :?

920 N::::O: I NF'UT (.)$

930 IF A$="" THEN 50
940 P=LEN(A$)! REM FIND OUT HOW MANY PO
~3I T IONS
950 IF P)8 THEN 700
960 TRAP 900:FOR D=l TO P :C=UAL(A$(DyD
))

970 IF C)1 THEN 900:REM INCORRE CT ENTR
Y
9BO IF C=1 THEN ON P-Dt1 GOTO 1060,:1.05
O,1040vl030,1020,:l.Ol0yl000,990
('i8~5 NEXT It

6

990 N=C*128:NEXT D
1000 N=N+C*64:NE XT D
1010 N=NfC*32:NE XT D
1020 N=N+C*16:NE X'r D
1030 N=N+C*8:NE XT D
1040 N=NfC*4:NE XT D
1050 N=NfC*2:NE XT D
10(,)0 N"::NfC
10/0 ? :7 "THE DECIMAL. EQUIVALENT OF
;A~~: 'i) "IS "yN
:I.OBO GDlD 910
1 O("lO I~: ND

Line 40 sets the string space used for the binary or hex numbers.
Line 50 removes the cursor, clears the screen, changes the color of the background and

border to violet, and draws the top and bottom of the box. To use the plot and DRA WTO
commands, you must specify the graphics mode. The color 18 is a control R.

Line 70 draws the right and left side of the box for the on-screen display. Use a control Q,
shift =, and a control Z for the left side of the box; and a control E, shift =, and a control C for the
right side. Use a down arrow and a backspace between each character.

Lines 90-130 place the menu on the screen. Keep it neat by using an extra print and a tab in
each line.

Line 140 uses the trap command. If a letter or character is entered instead of a number, the
program will not crash. The two spaces and backspaces will clear any input that was incorrect.

Line 150 checks the input. If the number entered is incorrect, the program goes back to the
previous line and waits for the correct entry.

Line 160 directs the program to the correct routine. The program will return to the menu in
line 170.

Lines 200-210 clear the screen and place the directions on the screen.
Line 220 is another trap . If you enter a letter or simply press the return key, you will return

to the main menu. When writing a menu driven program, it is a good idea to give the user a way out
in case the wrong selection was made.

Lines 230-250 get the number to be converted and check to make sure that the number is
within the specified range . If it is not, the program will go back to the beginning of this routine.

Line 260 stores the number entered in another variable, Nl. The number in this variable will
be converted to a hex number.

Lines 270-340 convert the number into a hex number. The variable P is the position that is
being converted. When converting numbers from decimal to hex or binary, we start with the
leftmost position and work to the right. The value of the first hex position in a four digit hex
number is 4096. This number is stored in the variable D. The program then uses the subroutine
that begins with line 390 to convert the number. Each time we return from this subroutine, the
value in P is increased by one to reflect the next place in the number and the value of D changes to
the value of the p'lace. In line 340 we GOSUB to line 400 since this is the last or one's position and
the value here will most likely be larger than the value of D.

7

Lines 350-360 display the number entered and its hex equivalent. The program goes back to
line 210 and waits for another number or a re turn .

Lines 390-430 do the actual conversion of a decimal number to hex or binary. First the
number is compared to the place value . If the number is less than that value, a zero is stored there.
Next the number is divided by the place value. The integer or whole number is stored in the
variable H. To get the remainder, we multiply the place value by the whole number and subtract it
from the number. The new number or remainder is now stored in N1 and will be used when we
continue to convert the number. Line 420 is used for decimal to hex conversions. The number is
checked to see if it is greater than a 9. If it is, it must be converted into a letter (A-F). This is done
by adding 55 to the number. If the number is less than 10, that number is placed into the string. In
either case, the routine returns to continue the conversion.

Lines 500-680 convert a decimal number to binary. Again, we trap the input so that pressing
the return key will return you to the main menu. The number is tested and stored in Nl. Lines
570-660 keep track of which position is being converted and the value of that position. The same
subroutine that was used to convert the decimal number to hex is used to convert the decimal
number to binary.

Lines 670-680 display the results of the conversion and go back to the beginning of this
subroutine.

Lines 700-840 convert a hex number to decimal. This time we are using a string for the input.
If the string is empty, the program will go back to the main menu. The program checks the length
of A$. If more than 4 letters or numbers have been entered, the program will go back to the
beginning of thi s subroutine . The ASCII value for each number/letter is stored in C. If the value of
C is greater than 70, the letter entered is invalid and the program goes back to the beginning of
this subroutine. If it is a valid letter/number, 55 is subtracted from it. If C is less than 10, that
position contains a number and its value is placed in C. If the position contains a letter, the value of
that letter is obtained by subtracting 55 from its ASCII value. The value in C is multiplied by the
place value of it s position and added to any previous conversion value. The new conversion value
is stored in N. Once the hex number has been converted into its decimal equivalent, both numbers
are displayed on the screen. This subroutine continues until the return key is pressed.

Lines 900-1080 use the same principle to convert a binary number to decimal. Since the
program is expecting only Is and Os, a trap is placed in line 960 for any letter/character. The value
of each position is stored in C, one at a time. If this value is greater than 1, the program returns to
the beginning of this module. If C is 1, the value of that position is added to the value in N. This
number will be the decimal equivalent of the binary number.

8

Chapter 2

Working with
the Display List

All microcomputers have one thing in common-a CPU or central processing unit. It is the brains
or workhorse of the system depending on how you look at it. Whether it is a 6502, 8080, Z-80, or
some other processor, it is what keeps the machine going. The AT ARI, however, has three
special-purpose LSI (large-scale integrated) chips to take some of the burden off the 6502. They
are ca lled ANTIC, CTIA, and POKEY. This chapter will discuss the purpose of ANTIC and how to
make use of its capabilities.

THE PURPOSE OF ANTIC

ANTIC is a microprocessor that is dedicated to updating the screen display. It is a true
microprocessor because it has its own instruction set, a program, and data. It operates simultane
ously and in conjunction with the 6502. ANTIC uses the same bus and memory locations that the
6502 does. In order to operate, ANTIC must stop or halt the 6502, get its information, and then let
the 6502 continue its work. Both must operate without missing a step.

ANTIC's job is to keep the screen updated with the current information. A television screen
is normally updated 60 times a second. Since ANTIC must stop the 6502 each time it does its job,
the higher the resolution that is displayed on the screen, the more often the 6502 will be
interrupted. If you turn off the ANTIC chip complete ly, the 6502 will operate at maximum
efficiency.

The AT ARI computer and many other personal computers like the Apple and the TRS-80
have memory mapped screen displays. This means that the information that you see on the screen
is also stored in a specific portion of the computer's memory. The higher the graphics resolution,
the more memory is needed to store this information. The upper left corner of the screen is the
lowest memory address, and the lower right corner is the highest memory address . The address
of each location in between follows the first address sequentially. In most other computers, you
have a choice of one or two graphic modes, or text. It is not always possible to mix the types of
graphics modes. The ATARI offers 14 different modes with its CTIA graphics chip. Each mode
can be displayed individually or mixed with the others. This is the reason for the ANTIC chip. It
has its own program just above the memory set aside for the screen. This program is really a list of
the graphics modes that we are using in our program. ANTIC checks this list for the mode of the
line, and sends this information along with the data that will be displayed on this line to the CTIA

9

(or GTIA) chip. Thi s chip is the television interface chip . It in turn converts the information that it
receives into the signal that we see as a picture or text on the screen. If each line is a different
mode, ANTIC tell s this to the CTIA (GTIA) chip , and it translates the signal accordingly.

FINDING THE DISPLAY LIST
Just before the memory set aside for the screen display is the display list that ANTIC uses.

The address of the di splay list is stored at memory locations 560 and 561. To obtain the address of
the display list enter this command.

PRINT PEEK(560)+PEEK(561)*256

The number that appears on the screen is the start ing address of the di splay list. In graphics mode
0, the display list is 32 bytes long. To see the li st type:

10 DLIST=PEEK(560)+PEEK(561)*256
20 FOR X=DLIST TO DLIST+31:? PEEK(X):NEXT X

Your list should look like :

112

112
112
66
64 may

156 differ
2
2
2 (23 twos)
2
2

65
32 may

156 differ

Before interpre tting the di sp lay li st , you must understand your screen. If you look very

closely at the screen, you will see that each character is made up of tiny dots . The picture that you
see on the screen is actually many rows of dots stacked from the top of the screen to the bottom of
the screen. You do not actually see the complete picture on the screen. The parts of the picture
that are above, be low, or to the sides of the screen are ca lled overscan. The picture that is
transmitted from the networks contains information on the lines above the actual picture. You
never see this information because it is in the overscan area.

Now look at the di splay list again. The first three numbers tell ANTIC to display three blank
lines that are 8 rows high. This makes sure that the text or picture will be on the screen and not in
the overscan area.

The next number, 66, is a two part instruction. A 64 te lls ANTIC that the following two bytes
contain the address of the beginning of the screen display area. The 2 added to the 64 is the
ANTIC mode of the first line of the screen. Any number from 2 to 15 can be added to the 64. The
number added is always ANTIC's va lue for the graphics mode. We will discuss the fourteen

10

graphics modes and their ANTIC values later in this chapter. For now, your screen is in graphics
mode 0, which is ANTIC mode 2.

If you mUltiply the sixth number in the display list by 256 and add the fifth number of the
display list, you would know the exact memory location of the first location in the first line on the
screen, or position 0, O. If you poked this location or any location after this one with a value, you
would see characters on your screen. This is a memory mapped screen display. The contents of
the memory locations set aside for the screen are visible on the screen. When you use the locate
command in BASIC and you tell the computer LOCATE 5,6,8, the computer calculates the
memory location of the fifth column and the sixth row based on the mode that we are using and
sets the variable B to the value in that memory location. If your screen display begins at memory
location 40000 (40K system), and you are in graphics 0, you can use the locate command to find out
what is stored on the screen at any location . The command in this example is LOCATE 5,6,8. The
computer mUltiplies the row number by the number of characters in the row, in this case 40, and
adds the colunm number: 6 times 40 plus 5 equals 245. This number is added to the first memory
location for the screen. The computer examines that memory location and changes the value
found there to ATASCII. This value is stored in B, and the computer can tell you the value of
location. Now that you know how it's done, you can use either the locate command, or the peek
function for yourself.

Going back to the list of numbers that make up the display list, you see that there is a string of
23 twos before you come to any other numbers. In graphics mode 0, there are 24 rows on the
screen. ANTIC knows from the display list that the first row is in graphics mode O. It also knows
where the beginning of the screen display is. The next 23 numbers tell ANTIC that the next 23
rows will all be in graphics mode 0 or ANTIC mode 2. The next number after all the twos is a 65.
This again is a two part instruction. The 64 tells ANTIC that there is an address in the next two
bytes that it should jump to, and the 1 tells ANTIC to wait for a vertical blank before jumping.

When the last number in this list is mUltiplied by 256 and then the number just before it is
added to this product, the total is equal to the beginning address for this display list. Thus ANTIC
will repeat these same instructions over and over again until they are changed. It will start at the
beginning of the display list, look at the mode the first line is in, take the information from the
screen display area, and transfer this information to the (TIA chip for the actual screen display. It
goes to the next line, looks at the mode, gets the next lines information, and transfers it. The
process is repeated until it reaches the 66, where it waits for a signal called a vertical blank and
goes back to the beginning of the display list.

What's a vertical blank? The picture that you see on your television screen, whether it's
generated by a computer or comes from the main television station, is "painted" on your screen
line by line. A beam called a raster scan starts at the left side of the screen (as you look at it), and
paints a picture by turning on the correct color beams in that row. When it reaches the end of the
row, the beam shuts off, retraces the line, steps down a row, and turns itself back on to paint
another line on the screen. The line that has been painted is called a horizontal scan line . The time
that the beam is shut off to retrace the I ine is called a horizontal blank. When the beam reaches the
last rowan the screen, it not only has to come back to the left side of the screen, but also has to go
back to the top of the screen. This period of time, while the beam is shut off and going back to the
top side of the screen, is called the vertical blank. If the computer was not synchronized with the
television, the display would appear jittery and distorted. By waiting for the vertical blank before
beginning the display list again, ANTIC is sure that the display will appear correctly on the
screen.

11

ANTIC'S INSTRUCTION SET
Looking at the display list again, you see that ANTIC does have a set of instructions that it

follows. A blank line can be inserted anywhere in the di splay list. This blank line can be from one
to eight pixels tall. In the display list, the first three numbers were 112, 112, 112. In hex this
translates to 70, 70, 70. When you want to tell ANTIC to send a blank line, you use an instruction
that only uses the left nybble of the byte. Table 2-1 shows the values used to issue a blank line
from one to eight pixels high.

ANTIC is also capable of jumping. At the end of the display list, it has the instruction 65. In a
jump instruction, the second nybble of the byte is always set to 1. The first nybble can be either °
or 4 hex. If the instruction is 1, ANTIC will jump to the address indicated in the next two bytes,
and continue there. If the instruction is 65 or 41 hex, ANTIC will wait for the vertical blank before
jumping. The jump instruction, 1, is used when the display li st must cross a lK boundary in
memory . ANTIC cannot calculate past 255, so it must be told to jump to the next location. This
jump should be placed just before the boundary. The two bytes after the jump instruction should
contain the low order and then the high order address of the location that ANTIC should jump to.

ANTIC also has display instructions . This time the instruction byte is divided into its
individual bits. The last four bits of this byte tell ANTIC which display mode to use. ANTIC's
display modes are 2 - 15. If bit 4 is set to 1, then ANTIC can do a horizontal scroll. If it is 0, it
cannot. Bit 5 is set to enable the vertical scroll and when bit 6 is set, ANTIC will use the next two
bytes as the beginning of the screen memory. See Fig. 2-1.

COMBINING GRAPHICS MODES

Looking at the ATARI manual, you see that there are e ight graphics modes, one for normal
text, two for color text, and five for graphics. Yet, looking at ANTIC's instruction set, you can see
that there are fourteen different modes. Six of these modes cannot be accessed by BASIC with the
graphics command. They can, however, be used with BASIC when you create your own display
lists.

Combining the different graphics modes and creating your own display list takes a little
imagination and the ability to add to 192. Why 192? Think back to the television screen and the
horizontal scan. The beam that paints a picture on the screen does so row by row. Every row is the
same height. Therefore , every picture has the same number of scan lines. When you count the
number of pixels used in a character in graphics mode 0, you see that the character stands 8 pixels
or rows high. There are 24 rows in mode 0. 24 x 8 = 192. MUltiply the number of rows for any
other mode time the number of pixels used in one row. The answer will always be 192. The refore,

12

blank
lines

1
2
3
4
5
6
7
8

Table 2-1. Values to Issue Blank Lines.

hex
value

00
10
20
30
40
50
60
70

decimal
value

o
16
32
48
64
80
96

112

bit # 7 6 5 4 3 2 0

set bit
7
6
5
4

3-0

instruction
display list instruction interrupt
load memory scan with next two bytes
vertical scroll
horizontal scroll
display mode

Fig. 2-1. Set bits for display list.

when you create a new display li st, you want the number of rows used in each of the modes to total
192.

To create a multi-mode screen, you must first decide what you want your screen or display to
look like; which graphics modes are best suited for the display; and how you want to organize the
general layout of the screen. Once you decide how the screen should look, you are ready to create
a new display list. As an example you are writing a program that involves some text, some
prompting from the program, and a score that is kept on the screen. The main part of the program
will be done in graphics mode 7. The first thing that you have to decide is how many lines you need
for the text. This program will only need two lines for text: one line at the top and one line near the
bottom. This leaves the rest of the screen for the graphics. In a full screen (no text window),
graphics mode 7 has 96 rows, each 2 pixels high (96 x2 =192). For this program you will use
graphics mode 2 at the top and graphics mode 1 near the bottom. To calculate the number of rows
that will be in graphics mode 7, you must first determine the number of rows of pixels the other
two mo.des will use. The characters in graphics mode 2 are 16 rows high . The characters in
graphics mode 1 are only 8 rows high. This means that 24 rows of the screen will be used by these
two modes (8+ 16=24). By subtracting this number from 192, you can calculate that there are 168
rows left for graphics mode 7 (192- 24=168). Since each row of graphics mode 7 uses two rows of
pixels, there will be 84 rows of graphics mode 7 on the screen (168/2=84) . The following
program, which draws a baseball diamond, creates a new display li st for your program.

listing 2-1. Mixed Modes Program

10 REM LISTING 2.1
20 REM MIXED MODES
30 REM BY L.M.SCHREIBER FOR TAB BOOKS
19B:?
40 DIM MS(20):GRAPHICS 23: REM HAVE COM
PUTER SET DISPLAY LI ST FOR GRAPHICS 7
WITH NO TE XT WINDOW
50 DLI ST=PEEK (560)t PEEK(561)*256
60 ANTIC=PEEK(559):REM GET THE VALUE I
N THE SHADOW FOR ANTICS' S STATE
70 POKE 55 9vO:REM SHUT OFF ANTIC FOR D
ISPLAY LI ST CHANGES
BO POKE DLIST+ 3v7 1 :REM MAKE THE FIRST

13

Listing 2-1. Mixed Modes Program (continued from page 13).

I... I NE Dr<~lF'H I C~; 2
90 F'OKE DI...ISTt8 9y6:REM MAKE THE BOTTOM

r;:ol..<J [jf~AF'H I C~:) :I.
:1.00 F'OKE DI...ISTt 90y65:R EM MOVE THE JUMF'

:1.:1.0 POKE DI...ISTt9:1.,PEEK(560)
:1.20 F'OKE DI...ISTt 92, F'EEK(56:1.)
:1.30 POKE 559,ANTIC:REM TURN ANTIC BACK

ON TO IT 'S F'REVIOUS STATE t
:1.40 MEMORY=F'EEK(DI...ISTt4)t F'EEK(DI...ISTt5)
* ~.~~.:j6
:1.50 M$="02% 33@(@&/2 @()4":REM INVERSE 0
PEN F'ARENTHESIS - FIRST ONLY
:1.60 BOTTOM=MEMOR Yt2
:1.70 FOR X=BOTTOM TO BOTTOMtI...ENCM$)-:l.!F'
OKE X,ASCCM$«X-BOTTOM·~:I.)Y (X-BOTTOMt:l.)
)) : NEXT X
:1.80 M$="25.3@@@@@@ 25.3 ":REM LA ST FOUR
CHARACTERS ARE INVER SE
:1.90 BOTTOM=83*40tMEMORYt22
200 FOR X= BOTTOM TO BOTTOMtI...EN (M$)- :l. : P
OKE X,ASC(M$«X-BOTTOMt:l.),(X-BOTTOMt:l.)
)) ! NE XT X
210 COLOR :I.:PI...OT O?:I.:DRAWTO 60y40!DRAW
TO 0,80:F'1...0T 159yO:DRAWTO 99,39:DRAWTO

:l~:j(),/('J

250 GOlD 250

Line 40 sets M$ to 20. This string will be used to store the characters for the message that
will appear, on the screen. The graphics mode is set to 23, which is graphics mode 7 without the
text window. Of the three modes that will be used, graphics 7 mode uses the most memory, so it is
advantageous to set the mode to 7. The computer will calculate the amount of screen memory
needed and move the display list above it. This leaves you with less to figure out.

Line 50 finds the address for the beginning of the display list .
Line 60 stores ANTIC's state in the variable ANTIC. The value in this memory location

varies depending on what control the program will have. It determines the width of the playfield
and the resolution of players and missiles, and enables the use of Player/missile graphics.

Line 70 turns off ANTIC while the di splay li s t is changed. If ANTIC was left on, it would be
using the values in the di splay list while it was being changed. This could cause the program to
crash.

Line 80 changes the first row on the screen from graphics mode 7 to graphics mode 2.
Remember, you must add the display instruction to the graphics mode in this location.

Line 90 changes the last row on the screen to graphics mode 1. You must add 89 to the display

14

list to arrive at the position of the last row of the screen in the display list 89 is obtained in the
following manner:

1. The total number of rows on the screen, calculated in terms of graphics mode 7, are
tabulated. This number is 96. (Each row is two pixels high.)

2. The total number of rows, calculated in terms of graphics mode 7, done in modes 1 and 2 are
calculated. Row 1, which is in mode 2, is 16 pixels or 8 mode-7 rows high. The last row,
which is in mode 1, is 8 pixels or 4 mode- 7 rows high. The total (8+4) is 12.

3. The 12 from item number two is subtracted from the 96 obtained in item one: 96-12=84.
These are rows 0-83 in terms of graphics mode 7. We know that the first three bytes of the
display list (0-2) are for the overscan . The fourth byte (3) sets the first row on the screen,
and the next two bytes (4 and 5) indicate the memory location of the screen. 83+5=88-
therefore the 89th row in the display list is set for graphics mode 1.

Lines 100-120 move the jump and the address of the beginning of the display list into the
correct position.

Line 130 turns ANTIC back on to its previous state. Now it can execute the new display list.
Line 140 finds the location of the screen memory in the display list and stores it in the

variable MEMORY. We will use this value when we display the message on the screen.
Line 150 places the message in M$. The first open parenthesis is in inverse video . If you

have been replacing the character set in your AT ARI with a new character set in RAM, you have
probably discovered that the character set does not follow its AT ASCII or decimal values.
Because we have set the graphics mode to 7, the computer will not print a message as such on the
screen. Graphics mode 7 means: "use only two bits from every byte; add four 2-bit combinations
together and store them in a memory location on the screen." If we told the computer to
PRINT"PRESS" on the screen, it would use only the last two bits of each letter between the
quotation marks. The PRES would be combined for one character, the S would be the second.
The character on the screen would be the character that was in that location of the AT ARI
character set. In the next chapter we will redesign a character set.

Line 160 stores the value of MEMORY + 2 in the temporary variable BOTTOM.
Line 170 is a for . .. next loop that pokes each character of M$ into the memory that is

reserved for the screen. Now the AT ASCII value of each character of M$ is stored directly on the
screen.

Line 180 stores a new message in M$. This is the message that will appear on the bottom of
the screen. Once again, the message that appears on the screen is not the same as the characters
between the quotes.

Line 190 calculates the memory location of the last row on the screen.
Line 200 pokes this message directly into the screen memory.
Line 210 draws the diamond on the screen. This can be done with the simple plot and

DRA WTO commands. Notice that the position PLOT 0 ,1 is actually the center of the screen
rather than the left side. All the positions are shifted over by 80. This often happens when
different modes are mixed. Our first row on the screen is in graphics mode 2. ANTIC took the first
80 bytes for this row because it was set for graphics mode 7 which uses 4 bytes for every location
on the screen. It knew, though, that graphics mode 2 only needed 20 locations on the screen
(20x4 =80). Graphics mode 7 uses 160 bytes for every line. The next 160 bytes are displayed on
the next row on the screen. The computer thinks that the first 80 bytes belong to the previous
row. When the computer calculates the memory position for PLOT 0,1, though, it does not look at
the display list to see if any of the rows have more or less bytes in them than the present mode

15

calls for. It simply mUltiplies the row number by the number of bytes in a row. Because this is a
graphics mode, before it adds the column, it divides by the number of bytes used to display one
byte (in this mode, 4) and then adds the column divided by 4. Every row on the screen will be off
center because of this method of calculation.

Line 250 loops back on itself. You can stop this program by pressing the system reset key.

THE FOURTEEN MODES
One of the features of the AT ARI that has not been widely publicized is that the number of

graphics modes is not 9 but 14 with the CTIA chip. When we are working with BASIC, we have 9
choices, Graphics modes O-S. Graphics mode 9-11 are reserved for the GTIA chip. Any other
number will give us an error message . However, when we work directly with the display list, we
learn that ANTIC will set the screen for any graphics mode from ANTIC 2 to ANTIC 15. Table 2-2
shows us the different modes and the unique features of each mode. ANTIC modes 2-7 are all text
modes . ANTIC modes S-F are graphics modes . ANTIC gives you three additional text modes and
two additional graphic modes.

TEXT MODES
There are two 2-color text modes available: the standard text mode referred to as Graphics

mode 0, and ANTIC mode 3. ANTIC mode 3 has ten scan lines or rows for each character. This
feature allows for true descenders on the letters q, y, p, j and for subscripts and superscripts.
Because each line in this mode uses ten scan lines or rows on the screen, the display will be two
rows shorter than a normal display (lOxI9=190) or e ight rows longer (lOx20=200).

When you redefine a character set for use in this mode, you do not need to add two blank
bytes either before the character or after it. When the computer reads the bytes for the characters
from the character set, it will add the two blank bytes automatically to the character. For all the
characters, numbers, and uppercase letters, the two blank bytes will be added to the bottom of the
letter. Lowercase letters are treated differently. The computer takes the first and second byte of
the character and places it in the ninth and tenth row of the character on the screen. It places 2
blank lines in the first and second row and then places the rest of the bytes in the correct position.
This can cause some problems if you are using this mode with the character set in ROM.

In the following program, the di splay list will be changed to use ANTIC 3. A message will be
printed on the screen using the character set from ROM. Notice the distortion in the letters 1, j,
and k. There is no distortion in any of the capital letters, numbers, or graphics because they are
not the last 32 characters/letters of the character set.

value in two
bits of

graphic byte

00
01
10
11

color
register

o (background)
1
2
3

All four color registers are used in GRAPHICS 3, 5, 7.
Color registers 0 and 1 are used in GRAPHICS 4 and 6.

16

Fig. 2-2 . Color register codes.

Listing 2-2. ANTIC 3

10 REM LISTING 2.2
2 0 F< E r·1 (.1 N ·r I C : .. :~
30 REM BY L.M.SCHREIBER FOR TAB BOOKS
40 ? "}Aa Bb Cc Dd Ee Ff G~ Hh Ii Jj

Kk L1 Mm Nn Ou Pp Q~ Rr Ss Tt Uu Vv W
Inl X >(Y ':! Z :;.~ ,y I :11: ~I; % & '? U (!~ (:> 9 () "
50 DLIST=PEEK(560)tPEEK(561)*256:ANTIC
=PEEK(559):REM GET THE VALUE IN THE SH
ADOW FOR ANTICS'S STATE
60 POKE 559,O:REM SHUT orF ANTIC FOR D
ISPLAY LIST CHANGES
70 POKE DLISTt3,67:REM MAKE THE FIRST
I ... INL ANTIC :3
80 FOR X=6 TO 24:POKE DLISTtX,3:NEXT X
:RLM CHANGL LIST FOR ANTIC 3
90 POKL DLISTt25,65:REM MOVL THE JUMP
100 POKL DLISTt26,PEEK(560)
110 POKL DLISTt2'?,PLEK(561)
120 POKE 559,ANTIC : RLM TURN ANTIC BACK

ON TO IT ' S PRLVIOUS STATL
130 A=PLEK(106)-8:NB=A*256:RLM PLACE C
HARACTLR SLT 2K BLFORL LND OF MLMORY -

STORE VALUL IN NB
140 CB=PLLK(756)*256:TH=CB:X=TH:RLM CH
ARACTLR SET IN ROM
150 FOR LC=O TO 11:POKE NB,PEEK(Xt7)!N
B=NBtl:FOR X=TH TO THt6:POKL NB,PLEK(X
:>:NB=NBtl:NLXT X:TH=THt8:X=TH:NLXT LC
160 FOR X=TH TO THt7:POKE NB,PELK(X):N
B=NBfl:NEXT X:TH=X:RLM SAME
170 FOR LC=13 TO 26:POKL NB,PEEK(Xt7):
NB=NBtl:FOR X=TH TO THt6:POKE NB,PELK(
X):NB=NBtl:NLXT X:TH=THtU:X=TH:NEXT LC
180 FOR X=TH TO THf7:POKL NB,PLLK(X):N
B=NBtl:NLXT X:TH=X:REM SAME
190 FOR LC=28 TO 64:POKE NB,PEEK(Xt7):
NB=NBtl:FOR X=TH TO THt6:POKE NB,PLEK(
X):NB=NBfl:NEXT X:TH=THtU:X=TH:NEXT LC
200 FOR LC=65 TO ,? 9: FOR X=TH TO THt7:P
OKE NB,PELKeX):NB=NBtl : NEXT X:TH=X:NEX
T I...C: F~Ei"j ~~;I~r·1E

210 POKE NB,PEEK(Xt7):NB=NB+l:FOR X=TH
TO TH+6:POKE NB,PEEK(X):NB=NB+l:NEXT

X:TH=THtU:X=TH~REM F

17

Listing 2-2. ANTIC 3 (continued from page 17)

220 FOR LC=81 TO 90:FOR X=TH TO TH+7:P
OKE NB~PEEK(X):NB=NBt1:NEXT X:TH=X:NEX
T I...C: F.:El"i ~:;(l11E
230 FOR LC=91 TO 123:POKE NB~PEEK(Xt7)
:NB=NBtl:FOR X=TH TO THt6:POKE NB~PEEK
(X):NB=NB+1:NEXT X:TH=TH+8:X=TH
240 NEXT I...C
250 FOR X=TH TO TH+7:POKE NB,PEEK(X):N
B=NBtl:NEX'r X:TH=X:REM SAME
260 POKE NB~PEEK(X+7):NB=NB+1:FOR X=TH

TO THt6:POKE NBtPEEK(X):NB =NB+1:NEXT
X:TH=THt8:X=TH:REM F
270 CB=A*256t103*8:POKE ~B+1~PEEK(CB):
REM MOVE BYTE DOWN ONE
280 POKE CByPEEK(CBt7): REM REPEAT LAST

BYTE
290 CB=A*256t106*8:POKE CBt1~PEEK(CB):
REM MOVE BYTE DOWN ONE
300 POKE CB~PEEK(CBt7):REM REPEAT LAST

BYTE
310 CB=A*256tl12*8 : POKE CB+1~PEEK(CB):
REM MOVE BYTE DOWN ONE
320 POKE CB~PEEK(CBt7):REM REPEAT LAST

BYTE
330 CB=A*256tl13*8:POKE CBt1~PEEK(CB):
REM MOVE BYTE DOWN ONE
340 POKE CB~PEEK(CBt7):REM REPEAT LAST

BYTE
350 CB=A*256t121*8:POKE CBt1~PEEK(CB):
REM MOVE BYTE DOWN ONE
360 POKE CB~PEEK(CBt7):REM REPEAT LAST

BYTE
3 '.1' () F' D 1< E)' ~.:5 /) 9 (l

Line 40 is the line that will be printed on the screen. It clears the screen and prints each letter
of the alphabet in both upper and lowercase. It also prints some numbers, symbols, and graphics
on the screen.

Line 50 stores the beginning location of the ' display list in DUST and the display status in
ANTIC.

Line 60 shuts off ANTIC so that we can change the display li st.
Lines 70-110 change the display list from ANTIC mode 2 to ANTIC mode 3. The jump

command is moved up since there will be fewer display lines in this mode. The beginning address
of this display list is also moved up.

Line 120 turns ANTIC back on with the same value or status that it had before we changed
the display list.

18

Line 130 subtracts 8 from the amount of memory available in our computer. This value is 2K
less than the amount of memory in our computer. We will leave the top lK for the screen display
and the display list. The second lK will be used for the character set. We will store the actual
decimal address in NB.

Line 140 stores the address of the character base in ROM in the variable CB. We also want to
store this value in two more variables. Now we can manipulate the address without losing it.

Lines 150-260 move the character set from ROM into RAM. If you look at your screen while
the character set is being moved, you will see the distortion in several of the lower case letters.
You will also see that the letters with descenders are no different in this mode than they are in
mode O. Line 150 transfers the characters from the space to the plus sign from ROM into RAM.
When we transfer these characters, we want to take the last byte of the character and place it into
the first byte for the character in RAM. The rest of the character will remain the same. Now the
character will appear one scan line lower on the screen. The next character is the comma. We do
not want to move its last byte first because the comma uses its last byte for data. The other
characters that we just transferred do not. If we moved the comma the same way that we moved
the other characters, the character would be distorted on the screen when it was printed because
the data that it needs for the last row would be in the first row. The 13th through 26th characters
will move down one scan line when they are moved. What we are doing in these lines is lowering
all the characters one scan line so that the lower case characters that use the second byte for data
will not be distorted on the screen (l,j,k,d,b,f,i,t). The characters that use the 8th byte for data, the
graphic characters, the comma, and the semicolon are moved into RAM exactly the way they
appear in ROM.

Lines 270-330 move the data that is in the first byte for these letters into the second byte and
repeat the data from the eighth byte into the first byte. These are the letters that have
descenders. By adding one more byte of data to these letters, they will appear on the screen with
true descenders .

When the program is finished, move the cursor over some of the letters on the screen. You
will see that the uppercase letters are centered and the letters with descenders are aligned with
the last two rows of the cursor.

The only letters or characters that place the first two bytes in the last two rows on the screen
are the characters from the heart to the end of the character set. By replacing some of the
lowercase letters/characters with numbers , you could create superscripts and subscripts. If you
are not using any of the lowercase letters, you do not have to transfer the character set the way we
did in this program. As long as you are using uppercase letters, numbers, and graphics, you can do
a direct transfer of the characters, then create your own characters that would occupy the area
normally used for the lower case letters.

COLOR TEXT MODES

As you can see in Table 2-2, ANTIC modes 6 and 7 correspond to graphics modes 1 and 2.
These modes are capable of producing text in four different colors, plus a background color. The
difference between these two modes is the size of the characters . Graphics mode 1 characters are
just as high as graphics mode 0 characters, but they are twice as wide. Graphics mode 2 characters
are both twice as high and twice as wide as graphics mode 0 characters. If you are writing a
program where you need colorful letters, numbers, or characters of your own creation, it is much
wiser, in terms of memory use to use one of these modes with a redefined character set than to
use a higher resolution mode that uses more memory.

19

Table 2-2. All Display Modes Available with eTIA.

()I"--!TIC:
i'iO:O[

"')
,': ..

E·: (:'1 :::; J C:
j-" jUDE:

()

----------- :----- -
/1
"y

COL_ CJ F: ~::;

,-; ..

/ 1
'''j

C: H (-j F~ () C -r [F:
r'D J j\lr
::::;1 :/[

• ••••• 1
I

- ----:------------
I::'
.. ..1

:I.
- --------- -: ---- - - --- :--

')'
: : : .

:----------- :----------

:

c
: :

-----------:-------
1
_--
--

... I
I

1
-·-.-

I I
1 ••• I .

l~
.... I

I

/1
. I

I

,'-}, .' / 1
"',' " y

/ 1 / 1
" y .•... " y

.... I
I

'''j . .. : : ..
........ I.

I

. :
... 1

I I
........ I _ •• J

There are two more text modes between graphics mode 0 and graphics mode 1. These are
ANTIC 4 and ANTIC 5. Both of these modes are unique in that they support multicolored text.
They can also be used when you want to produce redefined characters that give the illusion of high
resolution graphics using only a fraction of the memory.

Normal text cannot be used in e ither of these modes because unlike graphics modes 1 and 2,
these modes produce both the color and the shape of the character from the data in the character
set. Normal text is illegible in these modes. The following program changes the di splay list to
illustrate these ANTIC modes.

20

Listing 2-3. ANTIC 4 and 5

10 REM LISTING 2.3
20 REM AN'fIC 4 & 5
30 REM BY L.M.SCHREIBER FOR TAB BOOKS
40 ? "}CLEAR}":REM CLEAR THE SCREEN
50 DLIST~PEEK(560)+PEEK(561)*256:REM F
IND THE BEGINNING OF THE DISPLAY LIST
60 X~PEEK(DLI S T+J):POKE DLIST+JyX+2:RE
M CHANGE THE FIST ROW TO ANTIC 4
70 FOR X~D LI S T+6 TO DLIST+28:POKE X~4:
NEXT X: REM CHANGE ALL THE ROWS EXCEPT
THE FIRST ONE TO ANTIC 4
80 LIST : REM LISf THIS PROGRAM ON THE
SCREEN TO SHOW THE MULTICOLOR MODE
90 FOR X~l TO 500:NEXT X:REM WASTE TIM
F
100 X~PEEK (DLIST+ J): POKE DLIST+3,X+l:R
EM CHANGE 'f HE FIST ROW TO ANTIC 4
110 FOR X~D LI S T+ 6 TO DLIST+28:POKE X~5
:NEX1' X:REM CHANGE ALL THE ROWS EXCEPT

THE FIR ST ONE TO AN'fIC 5
120 LIST :REM LIST THIS PROGRAM ON THE

SCREEN 'fO SHOW THE MULTICOLOR MODE

When this program is run , the listing is shown in vivid yellow and blue. It is nearly
impossible to read because the letters blur into each other. ANTIC 5 is nearly the same as ANTIC
4. The only difference is the letters/characters are larger.

If you look again at Table 2-2 you will see that there are four different modes that support four
colors, three character colors plus the background color, The fourth mode is sandwiched between
graphics modes 7 and 8, With thi s mode, ANTIC E, each point on the screen is only one scan line
high, but two pixels wide, It's height is half that of a point in graphics mode 7, but it isjust as wide.
To use this mode, you would set the screen for graphics mode 8, then change every row in the
display list from 15 to 14. This is the highest graphics resolution that is available with color.

In this table, you will also see an additional mode for two color graphics. It is located between
graphics modes 6 and 7. This ANTIC mode is identical to ANTIC E except for the number of
colors that it supports. With this mode, you can only set one color plus the background color.

Graphics mode 8 is listed as a two color mode, In actuality, it is like graphics mode O. The
second color depends on luminance or brightness rather than being a true second color.

Each of the modes from ANTIC 8-F uses more memory than the text modes , With the text
modes, each memory location is one character, If our screen display is 40 characters wide by 24
rows, we are using 960 bytes for the screen display , The size of each character is 8x8 pixels.
Which pixels are on and which are off is determined by the information in the character set. Each
character uses 8 bytes of information stored in the character set. If the ATASCII value of the
character is less that 128, the character will appear in normal video. If the ATASCII value is
greater than 127, that is, if the high order bit is set, the character will appear in inverse video on
the screen. The same holds true for ANTIC mode 3,

21

In graphics modes 1 and 2, which are both text modes, the character on the screen will be
either 8 x 16, or 16 x 16. Each row on the screen is 20 bytes long. Graphics mode 2 with no text
window uses 480 bytes of memory (24 x 20). Graphics mode uses 240 bytes of memory (12 x 20)
for the screen display. Both of these modes use only the last 6 bits of the intemal value of the
character on the screen. The first two bits determine which color is used. This is why only half of
the character set can be displayed at one time. (If you have redefined characters, you will know
that the order that the characters appear in the ROM character set is not according to their
ATASCII value.) By using the first two bits of each byte, the computer can choose one of four
colors for the character that will be displayed on the screen.

00 (character) = color 0
01 (character) = color 1
10(character) = color 2
11 (character) = color 3

The background color is set with color 4.
The nontext modes do not follow this pattem. Graphics modes 3, 5, 7, and ANTIC mode E

are four color modes. The character blocks on the screen can be one of three colors, the
background is the fourth color. Each point that appears on the screen is not a byte. It is, rather,
part of a byte. All the modes that are not text modes use only one or two bits per byte to determine
the color that will appear on the screen.

Graphics mode 3 displays 10 bytes in each row. With no text window there are 24 rows. 240
(10x24) bytes of memory are used for screen display in this mode. Let's say that we tell the
computer to plot a point on the screen in position 0,0. We want the point to appear orange, so we
will use COLOR1 . The computer will determine where in memory the first byte of the screen is
located. This address is found in the display list. When the computer looks at the value of this
byte, it should see 00000000 because there is nothing on the screen in this location or the next
three locations. After the orange point is on the screen, the value of this byte of memory will be
64. The binary value of this memory byte is 0100 0000. The first two bits now tell the computer to
use the color in color register 1. The next three positions are left empty. If we wanted to use
green, the color in the second color register, the value of this memory byte would be 128 decimal,
or 10000000 binary. When a color is plotted in the next position, the computer changes the values
in the next two bits of the memory byte . Refer to Fig. 2-2 for the color values and to Fig. 2-3 for a
sample point.

Graphics modes 5 and 7 are nearly the same. Graphics mode 5 uses 20 bytes in each row, and
graphics mode 7 uses 40. Because of the way that the AT ARI stores the color information, only
three colors plus a background color can be displayed in these modes. If the computer used 4 bits
per byte to display color, we could have 16 colors on the screen. Of course, the computer would
need twice as much memory for the screen display.

The number of pixel rows per graphic row wi ll depend on which mode we have chosen.
Graphics mode 3 is 8 pixels high, Graphics mode 5 is 4, and graphics mode 7 is 2. ANTIC E also
displays three colors plus the background color. It uses one row of pixels per row.

Graphics modes 4 and 6 can display only one color in addition to the background color. Each
bit in the byte of memory on the screen determines whether or not that point will be on. If there is
a 1, the color in color register 0 will appear on the screen. If there is a 0, that point wi ll appear
blank. Mode 4 is the same resolution as mode 5, but because each memory byte in mode 4

22

"./.
.... i ...

Fig. 2-3. Screen byte.

1
I .

1
... I

• The four points on the screen are one byte. The color of each point is determined by two bits. In graphics mode 3,
if the byte is 00 01 00 11 , then the four points would be: off (or background), orange, off (or background) ,
blue.

represents one point on the screen, it uses half as much memory for screen display as mode 5.
Graphics mode 4 displays 10 bytes in every row on the screen . Each point is 4 pixels high.
Graphics mode 6 uses 20 bytes in each row. Each point is 2 pixels high. The ANTIC mode C also
displays one color plus the background color. It displays 20 bytes in each row. Each row is one
pixel high.

Each of the graphics modes described above is as many pixels wide as it is high. Each point
appears as a square on the screen. The two ANTIC modes are both two pixels wide, but only one
pixel or scan line high .

Graphics mode 8 is the only mode where each pixel can be individually controlled. Each row
on the screen is 40 bytes . Each bit of each byte controls one pixel on the screen. If the bit is a 1, the
pixel will be on. If it is a 0, it will be off. Unfortunately, the color of the on pixel is set by the
luminance or brightness of the color in color register 1, but the actual color is the same as the
background color. Graphics 8 uses the same amount of memory as ANTIC E.

Remember the first program in this chapter where we poked values onto the screen? The
computer thought that we were in a graphics mode. Each character that it was given to print on the
screen was treated as a graphics character. That is, it took the last two bits of the character and
stored them in a byte for the screen display. It took the last two bits of the next character and
stored them in the next two bits of the memory byte. By poking the data directly into the screen
memory, we were able to trick the computer into printing the characters that we wanted on the
screen . The characters also had to be the hardware value for the characters that we wanted
displayed rather than the ATASCII value . We will go into the differences between the hardware
value of a character and its ATASCII values in Chapter 12.

Listing 2-4. Color Artifacting

10 REM LISTING 2 . 4
20 REM COLOR ARTIFACTING
30 REM BY L .• M.SCHREIBER FOR TAB BOOKS
40 GF~()r'H I Ch U
50 DLIST=PEEK(560)tPEEK(561)*256
60 C=PEEK(DLISTt3) : POKE DLISTt3.C-l

23

listing 2-4. Color Artifacting (continued from page 23).

'/ ())'~ ::::6

80 IF PEEKCDLISTtX)=15 THEN POKE DLIST
+><y14
90 IF PEEKCDLISTtX)=C THEN POKE DLIST+
X ~ ["-1
100 X=X+l:I F X>200 THEN 120
110 GOTO GO
120 COLOR 1:FOR R=O TO 9:FOR C=O TO 15
9:P LOT C,RtNEXT C:NEX 'r R
130 COLOR l:FOR R=10 TO 19 : FOR C=l TO
159 STEP 2:PLOT C~R:NEXT C:NEXT R
140 FOR R=20 TO 29:FOR C=O TO 158 STEP

2:PLOT CyR:NEXT C:NEXT R
1 !:.:jO STUF'

This program changes the display li st to ANTIC E. Using only one color register, it paints
different colors on the screen.

24

Chapter 3

Graphics
Once we have decided on which mode or modes we will be using for our program, we can decide
whether or not the standard character set will be suitable for our program. If it is, we can start
working on the program. More than likely, if we have a particular design to our program, we will
want to construct our own character set. We may want to redesign all the letters for special
effects, or we may just want to recreate a few of the graphics characters for our particular
application. Before we can redesign the characters, we must understand the size and structure of
the character set.

CHARACTER SET MAKE-UP
As we determined in the previous chapter, each character in graphics 0 is 8 pixels or one byte

wide and 8 rows or bytes high. The information to create one character on the screen occupies 8
bytes in the character set. The entire character set uses 1K or 1024 bytes of memory. This
information is stored in ROM beginning with location 57344.

The characters in the character set are not in AT ASCII order. In order to implement the
color text modes (graphics modes 2 and 3), ATARI chose to change the order of the characters. On
any computer, the ASCII value of A is 65. This is true on the ATARI computer. The change occurs
internally. '~en the character set is stored in ROM, the first character is the space. It is followed
by the exclamation point, quotation marks, etc. These hold the AT ASCII values 32, 33, 34. What
has happened is that the characters from 32 - 95 have been shifted up. These are the numbers,
symbols, and uppercase letters. The graphic characters which appear to occupy the first 32
positions in the character set are moved to the area just past the uppercase letters and just before
the lowercase letters as shown in Table 3-1. Now when you work in graphics modes lor 2, you
can select either uppercase letters with numbers and symbols, or lowercase letters with
graphics.

Each character in the character se t uses 8 bytes. To find the set of bytes for a particular
character, we multiply its place in the character set by 8 and add the product to 57344. Let's look
at the construction of the exclamation point. It is the second character in the character set, but
since the first character is in the zero position, the exclamation point's place is 1.
1 x8+57344=57352. The data to place an exclamation point on the screen begins in this memory
location. Use the following program to PEEK at this information.

25

listing 3-1. Data for Exclamation Point

10 REM LISTING 3.1
20 REM DATA FOR EXCLAMATION POINT
30 REM BY LINDA M. SCHREIBER FOR TAB B
U D I<~:;
40 CB=57344:REM BEGINNING ADDRESS FUR
CHARACTER SET IN RDM
50 EP=1*8+CB:REM MULTIPLY THE LOCATION

OF THE CHARACTER BY 8 AND ADD THE BEG
INNING ADDRESS UF CHARACTER SET
60 ? "}CLEAR}":REM CLEAR THE SCREEN
70 FOR X=EP TO EP+7:REM GET THE INFORM
(.1TIUN
80 ? PEEK (X):REM PRINT THE INFURMATION

90 NE)(T X

The following number should appear on your screen:

o
24
24
24
24
o

24
o

This information determines which pixels will be turned on to form the exclamation point as
shown in Fig. 3-1.

Because the character set is located in ROM, it is fixed. This character set cannot be
changed. But ... there is a pointer in RAM that tells the computer where the character set begins
(location 756 decimal). By changing the value of this location, we can point to a new character
set-one that we have created and stored in RAM. The only limitation we have is that the
character set must begin on an even 1K boundary if we are using 1024 bytes or the entire
character set. It must begin on an even Y2K boundary if we are using the color text modes. The
color text modes display only half of the character set at a time, so we do not need the entire
character set in RAM. The character set developed and stored in RAM can be placed in any
convenient location . Of course, it should not be in the way of the screen display, display list, or
BASIC program. The best place for it is just before the display list. This way it is high enough in
memory to be out of the way of our program, but it will not interfere with the screen in any way.

RESTRUCTURING THE SET
There are several programs on the market today to help you restructure or edit your

character set. What these programs essentially do is move the character set from ROM into
RAM, then display the character that you want to edit in a large form on the screen. You turn on or

26

decimal
code

32
33
34
35

65
66
67

o
1
2

97
98
99

character

space
I

A
B
C

(cnt l .)
(conti A)
(cntl B)

a
b
c

Table 3-1. Position of Characters in Character Set.

off the pixels that make up the character. When you are satisfied with the character, you can store
it in the character set. When you are finished creating new characters, you can store the new
character set on disk or cassette.

Another way to create a new character set is to move the character set into RAM, design
your new characters on graph paper, set the decimal va lue of each of the eight rows that make up
the character, and then poke these values over that character that you intend to replace.

Obviously, it is much easier to create new characters with the aid of a program than it is with
paper and pencil. If you are redesigning most of the characters in the set, you would want to use
the first method. To redesign a few characters, you could use the pencil method. The following
program will allow you to redesign the character set and save the new character set to disk or
cassette. This set can then be used by any BASIC program.

Fig. 3-1. The exclamation point.

I ~./ I \ I
I•. I / ... I

I \ ! \.,' [
1 \ I I

I ".,' I \/ I
I / ... I I

....... I \/ I

...... I I

. I
I

I \/ I ... / I
I :" ', I .:\ I

f.:·i c·:· c :i. l'iID 1
o

"',.,'i
.• : ••••• j

" 'j /) .. :•.

()

()

()

:i.E:
:1 H
:!.U
'I c.
.1. \."

o
o
o

27

listing 3-2. Character Set Editor

10 REM LISTING 3.2
20 REM CHARACTER SET EDITOR
30 REM BY L.M. SCHREIBER FOR TAB BOOKS

40 DIM BS(10)~CV(7~7),NAMES(8),NAM$(14
) yF'1!t>(20)
50 DATA !, , : : ~ y EDIT,LETTER
55 F~EM DATA !, CTF~I... ···· C~F~E, : : y CTF~L " " Z F~C

, EDIT,LETTER - CONTROL CHARACTERS FOR
M BOX
60 GRAF'HICS O:F'OKE 752,1!? "CTRL E -
TO EDIT A CHARACTER":? "CTRI... S - TO S
TOF' EDIT"
70 ? "CTRL D - SAVE SET TO DISK":? "
CTRL L - L.OAD SET FROM DISK":? "CTRL
(~ _ .. nUIT"
80 FOR X=16 TO 23:FOR C=6 TO 13: F'OSITI
ON X, C: '1' II II : NEXT C: NEXT :x:: F~Ef'i f1rll<E l'iN

8x8 DISF'I...AY WITH CTRL-T
90 READ B':FOR X=9 TO 13:READ BS:F'OSIT
ION 9~X:? B$:NEXT X
100 A=F'EEK(106)-8:NCB=A*256:REM F'LACE
NEW CHARACTER SET 2K BEFORE END OF MEM
()f~Y

110 F'OKE 204,A:F'OKE 206,224:REM STORE
THE NEW CHARACTER SET ADDRESS AND THE
FWM ADDI~Em;

120 FOR X=1 TO 20:READ B:P1$(X,X)=CHR$
(B):NEXT X:REM MACHINE LANGUAGE SUBROU
TINE TO MOVE CHARACTER SET
125 DATA 104,162,4,160,0,177,205,145,2
03,200,208,249,230,206,230,204,202,208
,242,96,
130 n=USR(ADR(P1S»:REM USE MACHINE I...A
NGUAGE PROGRAM WITH THE USR FUNCTION
140 POKE 756,A:REM NOW WE CAN USE THE
SET IN F~AM

150 F'OSITION 3,18:FOR x=o TO 26 :? CHR$
(X)P:NEXT X:FOR X=27 TO 31Z? CHR$(27);
cl·m~l; (X) , : NEXT X
160 POSITION 3,19!FOR X=32 TO 63:? CHR
!HXH :NEXT X
170 POSITION 3,20:FOR X=64 TO 95:1 CHR
$(X)v:NEXT X
180 F'OSITION 3,21:FOR X=96 TO 124 : ? CH

28

R$(X);:NE XT X:FOR X=125 TO 127 :? CHR$(
27);CHR$(X);:NEXT X
190 OPEN t4,4vO,"K :": REM OPEN KEYBOARD

FOR A READ
200 POSITION 3, 16: ? "READY FOR EDIT

":E=0:X=16:C=6:REM POSITIO
N OF FIRST CHARACTER EDIT LETTER .
210 GET *4vB:IF B=5 AND E=O THEN [=l:G
OTO 400:REM EDIT CHARACTER
220 IF B=19 AND E=l THEN E=O:GOSUB 800
:GOTO 500:REM DONE WITH THAT CHARACTER
230 IF B=4 AND E=O THEN 1640:REM SAVE
CHARACTER SET
240 IF B=17 AND E=O THEN POKE 756, 224 :
POKE 75 2,O: ? "}" ! END :REM DONE WITH CH
ARACTER SET
250 IF B=12 AND E=O THEN 1690:REM GET
NEW CHARACTER SET
260 REM USE THE NEXT 5 FOR TO EDIT A C
HARACTER
270 IF E=l AND B=42 THEN 65 0:REM GO RI
GHT
280 IF E= 1 AND B=43 THEN 670 • REM GOT L •
EFT
290 IF E= 1 AND B=4 5 THEN 690 • REM GO UP •

300 IF E= 1 AND B=6 1 THEN 7 1 0 • REM GO DO I •
WN
310 IF B= 32 AND [=1 THEN 750:REM CHANG
E BIT
320 GOTO 210
400 POSITION 3, 16:? "PRESS LETTER TO F
D1T":GET t4,B
410 IF (B}26 AND B(32) OR (B}1 24 AND B
(128) THEN PO SITION llvl0:? CHR$(27);C
HR$(B):G OTO 460
420 IF B}127 THEN 450
440 PO SITION 11,10 :? CHR$(B):GOTO 460
450 PO SITION 5,17 : ? "CANNOT EDIT THAT
CHARACTER":E=O : FOR TL=l TO 100 : NEXT TL
460 POSITION 3, 16: ? "

":POS ITION 5,17:? "
":IF E=O THEN 2 10

470 AS =B:I F B}31 AND B<96 THEN AS =B- 32

29

Listing 3-2. Character Set Editor (continued from page 29)

:GOTD 490
480 IF B<32 THEN AS~B+64

490 CP=NCB+AS*8 : REM POSITION OF CHARAC
TER IN CHARACTER SET
500 FOR Q=O TO 7:CV=PEEK(Q+CP) : REM GET

THE VALUES FOR THE CHARACTER
510 CV(O,Q)~O:IF CV>127 THEN CV(O,Q)=1
: Cl.)::::CV· .. ·12B
520 CV(l,Q)=O:IF CV>63 THEN CV(1,Q)=1:
C\,.' ::::CV····64
530 CV(2,Q)~0:IF CV>31 THEN CV(2,Q)~1:

CV::::CV····3~.l

540 CV(3,Q)=0:IF CV>15 THEN CV(3,Q)=1:
CV::::CV-·· :I. 6
550 CV(4,Q)=0:IF CV>7 THEN CV(4,Q)=1:C
V:::: CV····f:j
560 CV(5vQ)=0 : IF CV>3 THEN CV(5vQ)=1:C
V"CV-04
570 CV(6vQ)=0:IF CV>l THEN CV(6pO)~1:C

\,.':::: CV····2
!:.:iUO C,) (7 v Q) ::::Cl)

600 X=16:C=6:FOR 0=0 TO 7:FOR 01 =0 TO
7:POSITION X+01vC+Q:? "":IF CV(Q1,0)=
1 THEN POSITION X+01,C+0:1 " "
6 10 NEXT 01:NEXT Q:LOCATE X, C,CH:POSIT
ION X,C:IF CH<128 THEN? "*":GO'[O 630
6)() '!' "*"
630 IF E=:I. THEN POSITION 3.16:1 "USE A
RROW KEYS TO EDIT"
640 GOTD 2 10
650 POSITIDN XvC:1 CHR$(CH):X=X+ 1:IF X
>23 THEN X::::16
660 GOlD 7::.~()

670 PDSITIDN X, C:? CHR$(CH):X= X- 1 : IF X
<16 THEN X::::::.~3

6BO GOTD /::.l()
690 PDSITIDN X,C:? CHR$(CH) :C =C - 1:IF C
<t.l THEN C:::: 13
700 GDTD /20
/:1.0 PDSITION XvC:? CHR$(CH) : C=C+1:IF C
>:1.:3 THEN C::::t.l
720 LOCATE X,CvCH:PDSITION X,C : IF CH>1
2/ THEN? "*U:GDTD 740

30

730 ? "*"
740 GOTO 210
750 LOCATE XvC,C2:IF C2)128 THEN CH~20

:C2=C2-128:CV(X-16,C-6)~0:GOTO 770
760 CH=160:C2=C2t128:CV(X-16,C-6)=1
770 POSITION X,C:? CHR'(C2):GOTO 210
800 POSITION 3,16:? "EDIT FINISHED

":REM CHANGE MESSAGE
810 CV=0:B~128:FOR Q=O TO 7:FOR Q1=O T
o 7:REM CONVERT THE 1 & O'S TO DECIMAL

820 IF CV(Q1,Q)=1 THEN CV=CVtB
830 B=B/2:NEXT Q1:REM REDUCE B FOR EAC
H POSITION
840 POKE CPtQvCV:REM CHANGE THE BYTE I
N THE CHARACTER SET
850 CV=O:B=128:REM RESET THE VARIABLES

FOR NEXT BYTE
860 NEXT Q:REM FINISH THE CHARATER
870 CP=NCB:POSITION 11,10:? " ":RETURN

:REM RESET TO CLEAR THE CHARACTER FRO
M SCREEN
1640 NAM' = " ":POSITION 3,
16:7 "ENTER NAME FOR FILE"~:INPUT NAME
$:IF NAMES="" THEN 200
1650 NAMS(lv2)="D:":NAMS(3,10)=NAME':N
AM$(11v14)=".CHB":REM CODE FILE FOR CH
ARACTER BASE
1660 TRAP 1740:0PEN 12,8,O,NAM':FOR Q=
NCB TO NCB+l023:CV=PEEK(Q):REM GET THE

VALUES FOR THE CHARACTER bET
1670 PUT t2,CV:NEXT Q:REM PUT THE VALU
ES ONTO DISK
1680 CLOSE 12:GOTO 200
1690 NAM'=" ":POSITION 3,
16:7 "ENTER NAME FOR FILE"~:INPUT NAME
S:IF NAME'="" THEN 200
1700 NAM'(l,2)="D:":NAM'(3)=NAME$:NAMS
(LEN(NAMES)+3)=".CHB":REM CODE FILE FO
R CHARACTER BASE
1710 TRAP 1740:0PEN 12v4vOvNAM':FOR Q=
NCB TO NCB+l023:GET 12,CV:REM GET THE
VALUES FOR THE CHARACTER SET
1720 POKE Q,CV:NEXT Q:REM PUT THE VALU

31

Listing 3-2. Character Set Editor (continued from page 31)

ES ONTO DISI,
1730 CLOSE i2:GOTO 200
1740 ER=PEEK(195):CLOSE i2:REM GET THE

ERROR NUMBER & CLOSE FILE
1750 IF ER=170 THEN POSITION 3y16:? "F

ILE NOT FOUND ":GOTD ill
OO:REM GIVE ERROR MESSAGE
1760 IF ER=162 THEN POSITION 3y 16 : ? "D
ISK FULL " : GOTO 18
00
1770 IF ER=169 THEN POSITION 3,16:? "D
IRECTORY FULL - GET NEW DISK ":GOTo 18
00
1780 PDSITIoN 3y16:? "WE ' VE GOT A PROB
LEM
1800 FOR X=l TO 100 : NE XT X:GOTo 200

Line 50 is the data needed to draw the box on the screen to show what letter/character is
being edited. Be sure that this data line is entered exact ly as follows: an exclamation point, a
space cntrl-Q cntrl-R cntrl-C, s pace shift-equals space shift-equals, space cntrl-Z cntrl-R cntrl-Z,
space EDIT, LETTER.

Lines 60-70 set the graphics mode to 0, erase the cursor, and print the control codes on the
screen.

Lines SO-90 print the grid and box on the screen. Use the cntrl-T to make the S xS grid.
Line 100 finds the end of memory and calculates the address that would be 2K before the end

of memory. This leaves 1K for the character set and 1K for the screen display and display list.
Line 110 pokes the new character set address and the old character set address into RAM.

These two values will be used in the machine language subroutine that moves the character set
from ROM into RAM.

Line 120 contains the machine language subroutine to move the character set from ROM into
RAM. P1$ must be exact if the routine is to work correctly. The data for the subroutine is in line
125. Be sure that these numbers are entered correctly. If they are not, the program will crash.

Line 130 uses the USR function to call the machine language subroutine. The Q is a dummy
variable.

Line 140 changes the address of location 756 from the character set in ROM to the character
set in RAM.

Lines ISO-ISO print the entire character set on the screen. In order to print some codes, the
escape key must be entered first. When we are printing characters using the CHR$ command, we
can issue an escape code by printing CHR$(27) just before the character. In this way we can
display all the characters in the character set.

Line 190 opens the keyboard for reading. When editing the character set, we will use only
one key stroke commands.

32

Line 200 prints the prompt under the square and grid. There are 15 spaces after the T to clear
out any previous message. We will be returning to this line after several of the subroutines in this
program. The variable E will be our flag to let the computer know whether or not we are editing a
character. When it is set to 0, we can use the control codes to begin an edit, load a character set,
save a character set, or quit. When the E is set to 1, we can stop an edit or edit a character using
the arrow keys. The variable X is the row that the cursor is in on the screen, and C is the column.

Line 210 gets the keystroke from the keyboard and checks it for a control-E. If it is a
control-E and we are not in the edit mode, the variable E will change to 1 and the program will go
to line 400.

Line 220 checks the variable B for a control-S. If the program is in the edit mode, and the
control-S is pressed, the program will leave the edit mode and go to the routines that will restore
the grid and erase the character in the box. The variable E is also reset to o.

Line 230 checks for a control-D. When a control-D is pressed and the program is not in the
edit mode, the program will save the character set displayed on the screen. This program stores
the character set to disk. It can be changed to store the characters to cassette by opening the
cassette instead of the disk. You do not need a name for the file if you are using a cassette.

Line 240 will end the program when a control-Q is pressed. Before ending, the program will
restore the ROM character set, restore the cursor, and clear the screen. Whenever an alternate
character set is used in a program, it is good programming practice to reset the pointer to the
ROM character set. Loading a new program with an alternate character set could confuse the next
user.

Line 250 will direct the program to the routine that loads a new character set from disk or
cassette when a control-L is pressed.

Lines 270-310 will direct the program to the lines that alter the character set when the
variable E is set to 1 and an alTOW key or space bar is pressed.

Line 320 will loop back to line 210 if the key pressed is not one of the control keys used in this
program.

Line 400 begins the edit mode. The prompt under the grid is changed and the program waits
for a key to be pressed.

Lines 410-460 check the key that has been pressed. If it is one of the screen function keys,
clear screen, line up or down, etc., the program will not allow it to be edited, and will print a
message to that effect on the screen. If it is a character that can be edited, it will be printed in the
box on the screen.

Lines 470-480 check the value of B and store the actual location in the character set in
variable AS. B is stored in AS before it is checked. There is no else command in ATARI BASIC, so
we will store the actual value of B in AS. If it is not a character whose location needs to be
changed, AS will be set correctly . If the ATASCII value of the key pressed is greater than 31 and
less than 96, that is any key other than a graphics character or lowercase letter, the program will
subtract 32 from B and store it in AS. These are the characters that have been moved up in the
actual character set. If the value of B is less than 32, a graphics character has been entered and the
program adds 64 to the value of B and stores it in AS. Remember that the graphics characters are
located between the uppercase letters and the lowercase letters in the actual character set.

Line 490 calculates the position of the first byte of the character in the character set. The
position of the character that is stored in AS is multiplied by 8 (each character uses 8 bytes) and
this value is added to the location of the character set. The variable CP contains the location of the
first byte of the character that will be edited.

33

Lines 500-590 convert the decimal value of each byte into a binary value. Each bit is stored in
the array CV. This routine is similar to the routine used in Chapter 1. It takes the decimal value of
the byte and compares it to 127. If the number is greater than 127, then the fi rs t bit is a one. The
program subtracts 128 from the value in CV. The next line checks the remaining value to see if the
next bit should be set. Each line continues to check the value of CV against the value of that bit
less one. We use one less than the actual bit va lue because if that bit were set, and we subtracted
the bit value, the remainder would be zero. There would be no indication that we should get that
bit unless the decimal number was larger than the bit value. By using the bit value less one, we
will get a remainder of one if the decimal value is equal to or larger than that place value. Every
time the program sets a bit to one, it subtracts the value of that place or bit from the decimal value
of the byte. This routine is repeated 8 times; once for each byte that makes up the character set.

Lines 600-620 reset the row and column values for the 8x8 grid and using the values in the
array CV, draws the character onto the grid. A contro l-Ti s printed. Then the value of CV is
checked for a 1. If that element of the array does contain a 1, an inverse-video cursor will be
printed. Once the entire character has been drawn, the program will use the locate command to
find out what has been printed in the upper left corner of the grid. The AT ASCII value of this
character will be stored in the variable CH. The asteri sk wi ll be our cursor while editing. If the
character in the upper left corner is in inverse-video, an inverse-video asterisk will be printed
there.

Line 630 checks E to see if we are, in fact, in the editing mode. If we are, it prints the prompt
on the screen. This routine then goes back to line 210.

Lines 650-740 move the asterisk cursor in the grid. The character that is stored in CH is
printed in the grid where the asteri sk is. If we are moving the asterisk to the right (line 650), the
variable X is incremented. If we are moving it to the left (line 670), X is decremented. Moving the
asterisk up (line 690) decrements C and moving it down (line 710) increments C. After the
variable X or C is changed, the program checks it to make sure that it is not beyond the grid area. If
it is, the variable is reset to the other s ide of the grid, giving it a wrap-around feature. Once X or C
are correctly set, the program gets the ATASCII value of the character that the asterisk will be
replacing and stores it in CH. Once again , if the character was in normal text, an asterisk will be
printed. If the character was an inverse-video cursor, an inverse-video asterisk will be printed.

Lines 750-770 change the character in the grid from a ball (cntrl-T) to an inverse-video
cursor and back again. When the space bar is pressed, and the program is in the edit mode, it will
be directed to this routine. The locate command gets the ATASCII value of the cursor. If it is in
inverse-video, then the value of the character that was there will be change d to 20 (cntrl-T), and
the asterisk will be reprinted in normal video . Otherwise, the character that was the re will be
changed to the inverse-video cursor va lue, and the asterisk will be printed in inverse-video. When
the value of CH is changed to 160, indicating that we are se tting that bit, the value in the array CV
is changed to 1 for the corresponding bit. When we erase a bit from the screen, the value of the
corresponding bit is changed back to O.

Lines 800-870 are used when we are satisfied with the new character that we have just
created. The new prompt is printed on the screen, and the values stored in the array CV are
converted into decimal. This procedure is simpler than the convert from decimal to binary
routine. The variable CV is cleared. This variable contains the decimal value of the character. The
variable B is set to 128 - the bit value of the most significant bit in the byte . If the leftmost bit is set
to one, this value wi ll be added to CV. Since each bit is half the value of the preceding bit in a
byte, we divide B by 2 each time we check the next e lement of the array. Each time an e lement

34

contains a 1, we add the value of B to CV. After we have checked each of the 8 elements of the
array that represent the byte, we will have the decimal value of that byte. That value will be poked
into the position of that byte in the character set in RAM. The variables CV and B are reset after
each byte. Once the entire character has been moved into the character set, it is removed from the
box on the screen and the routine returns to the main part of the program. Since the entire
character set is displayed on the screen and it is being used for the prompts as well, it would not be
wise to change the uppercase letters or the characters that are being used in the editing modes,
especially the control-T, unless absolutely necessary.

Lines 1640-1680 save the character set that we edited to disk. The string variable NAM$ is
cleared ofthe last entry, or garbage that the string contains from the previous program. The name
that you want to call this set is placed in NAME$. If you press the return key without entering a
name, the program will return to the menu. All good programs have an abort code that returns you
to the menu should you enter a routine by mistake. When you enter the name of the character set,
you do not have to enter the D: before the name .

Line 1650 takes the name that you enter and adds the D: before the name. It also appends the
name with .CHB. This will separate the character sets from any other programs or files on the
disk. The program then opens the file and, using the peek command gets every byte of the
character set, and puts in on the disk. When the entire set has been stored on disk, the file is
closed. There is a trap set before the file is opened. If the disk or the directory is full, it will be
reported on the screen.

Lines 1690-1730 get the character sets that we previously stored on the disk. The string
variable NAM$ is cleared, and the program asks for the name of the character set that you would
like to bring in. If you press the return key without entering a name, the program will return to the
main menu. Once again, the program will add the D: to the beginning of the character set name,
and .CHB to the end of the name. The trap is set, and the program will bring in the character set.
This routine can be used in any program to bring in a character set that is stored on disk. Instead of
having the program ask for the name of the character set, you could specify it in the program lines.
This way, any character set that is designed with this program can be used with any other
program. Once the character set has been read in, the program will close the file and return to the
menu.

Lines 1740-1800 trap the disk errors. The error number is stored in decimal location 195. By
peeking at this location, we can get the number of the error. If the fi le was not found, the disk is
full, or the directory is full, this me~sage will appear on the screen. If any other error caused the
program to go to this routine, We've got a problem will be printed on the screen. Normally,
every possible error is tested for, but in this case, the error could be 144, which could be the
result of anything from a bad disk to the disk door being left open. In this program, we'll let the
user know that something has gone wrong, and then return to the menu.

The character sets created with this program can be used in any program that requires a
different character set. It can be used in text mode or the colored text modes. If you have a
cassette recorder, change the following lines.

70 change the word disk to cassette
1640 delete the INPUTs
1650 delete
1660 change the OPEN command to OPEN #7,8,0,"C:"

35

1680 CLOSE #7
1690 delete the INPUT
1700 delete
1710 change the OPEN command to OPEN #7.4,O,"C:"
1730 CLOSE #7

Lines 1740-1800 can be dele ted or changed for casse tte errors: error 143 and error 138.

When using the new character set in another program, calculate the location of the new
character set. This will be the first location that the first byte of the character set will be poked in.
Always begin the new character set at least 1K before the display list and the screen display.

THE INVISIBLE MODES

In the last chapter, we looked at all the modes that are available on the ATARI. Some of these
modes are available in BASIC, others can only be accessed by changing the display list. Using the
character editor in this chapter, we could reconstruct the lowercase le tters for ANTIC 3, save
them to disk, then read them in for the program. We would not have to move the character set
from ROM. We would have our new set on disk.

Two other modes between graphics mode 0 and graphics mode 1 are ANTIC 4 and ANTIC 5.
Both of these modes are text modes, but they support multicolored characters. Each character in
these modes is eight pixels wide, but the pixels are turned on or off in pairs. The net effect is that
the character is four bits wide.

The color of the character is determined by the bit combination of every pair of bits in the
byte. Look at Fig. 3-2. The first bit pair is 11. The pixels that would be turned on for this part of the
character would be in the color set by color register 3 (peek 711). The second pair of bits , 01, will
be the color of color register 1 (peek 709) . The third bit combination, 10, will be the color of color
register 2 (peek 710). The last bit combination is 00. This is the background color, the color of
register 0 (peek 708).

The characters designed using these modes can be one color, or several colors. In the
following program, we will design a screen that uses ANTIC mode 4. It gives the illusion of being
graphics mode 7 without the memory consumption.

This type of program is called a simulation. It simulates a s imple circuit. When the circuit is
complete, the light will light; when it is broken, the light will go out. The bottom of the light and
the wire is the same character. The top of the battery and the wire is also the same character. By
using two different bit patterns in each of these characters, we can create a two-color character.
By using three different bit patterns, we could crea te a three-color character.

36

f :I. I :I. () f :/. f I I :I. () : ,', I
r.) I () : Fig. 3-2. Bit pairs for color.

I I I I ! I I t
f I I f I I J ••••• ••• I

Eac h pair of bits represents a different color
rE) ~.l i st(·:" r.

Listing 3-3. Multicolor Characters

10 REM LISTING 3.3
20 REM ANTIC 4 - MULTICOLOR CHARACTERS
30 REM BY L.M. SCHRE IBER FOR TAB BOOKS
-4 0 D I ~'i F' :I. 'I; (:::.) 0)
50 A=PEEK(106)-8 : NCB =A*256:REM PLACE N
EW CHARACTER SE T 2K BEFORE END OF MEMO

60 POKE 204,A: POKE 206, 224 :REM STORE T
HE NEW CHARACTER SE T ADDRESS AND THE R
Ol"i (~DDF;:ESS

70 FOR X= :I. TO)O:READ B:P:I.'(X,X)=CHR$(
B):NEXT X: REM MACHINE LANGUAGE SUBROUT
INE TO MOVE CHARACTER SE T
75 DATA 104, 16),-4 ,1 60, 0,177,205,145,)0
3,)00,)08,249,230,206,230,204,202,208,

80 Q=USRCADRCP:I.$»:? "}CLEAR}":REM USE
MACHINE LANGUAGE PROGRAM WITH THE USR
FUN CT IUN

90 DLI ST=PEEK(560)tPEEKC561)*256:REM G
ET THE LOCATION OF THE DISPLAY LIST
10 () F' 0 1>(E :0 L I ~; T + 3 , C') 8 t F~ E Ivj C H (~N GET H E F I f~
ST LINE TO ANTIC 4
:1.:1.0 FOR X=D LIST+6 TO :OLIST+28:REM IN G
I ~: (1 F' H I C ~:; 0 THE D L I ~:; T I !:) :::~ 2 BY T E S LON G
:1.20 POKE X,-4:RE M CHANGE ALL THEN LINES

TU (~NTIC -4
:1. 30 NEXT :x:
:1.40 REM CONTROL A - UPPER LEFT CORNER
:1.50 DATA 85,64,64,64,64,64, 64,64
:1.60 REM CONTR UL. B - TUP LINE
:1. 70 DATA 85,0,0,0,0,0,0,0
:1. 80 REM CONTRUL C - TUP OF BATTERY
:1.90 DATA 8:1.,:1.7, 17 , :1. 7, :1.70,:1. 70, :1. 70, :1. 70
200 REM CoNfRO L D - UPPER RIGHT CORNER

.', "1 1
" .. :" .,,- \) REM CONTR UL E - LOWER RIGHT CORNER

230 DATA :I.,:I.,:I.,:l.v:l.,1,1,85
240 REM CUNTROL F - BOTTUM LINE
250 DATA 0,0,0,0,0,0,0,85
260 REM CONTROL G - BOTTOM OF BULB
27 0 DATA 51,51,51,51,12,12,12,85
280 REM CUNTRO L H - BOTTOM LEFT CORNER

•

37

Listing 3-3. Multicolor Characters (continued from page 37)

290 DATA 64.64.64.64.64.64.64.85
300 REM CONTROL I - LEVER UP
310 DATA 0.0.0.2.8.32,128.0
320 REM CONTROL J - LEVER PARTWAY DOWN
330 DATA 0,0,0.0,10.32.128pO
340 REM CONTROL K - LEVER NEARLY DOWN
360 DATA 0.0.0.0.0.10p160.0
370 REM CONTROL L - RIGHT SIDE
380 DATA 64.64.64.64.64.64.64.64
390 REM CONTROL M - LEFT SIDE
4 () ° D A T 1~1 1. 1 • :1. , :1. Y :1. • 1 • :1. • :1.
410 REM CONTROL N - LEVER DOWN
420 DATA 0.0.0,0.0.0.0.170
430 REM CONTROL 0 - BATTERY BOTTOM
440 DATA 170.170,170.170.170.170.170.1
)'0
450 REM CONTROL P - BULB TOP
460 DATA 0.0,0,0.12,5:1..51.51
470 FOR X=NCBt65*8 TO NCBt81*8-1!REM F
IRST BYTE OF CONTROL A
480 READ B:PoKE X,B:NEX'r X:REM REDESIG
N CONTROL CHARACTERS
490 POKE 756,A:REM USE THE NEW CHARACT

500 POSITION 15,10:? "}ABBBCBBD}":PoSI
}o} }M}":POSI'rION

15.1 2: 7 "}L} }P} }M}"
510 POSITION 15,13:1 "}HFIFFGFE}"
520 TL~30:GoSUB 600:TL=5
530 POSITION 17,13:? "}J}":GoSUB 6:1.0:R
EM BRING THE SWITCH DOWN
540 POSITION :1.7.13:1 "}K}":GoSUB 610
550 POSITION 17.13:1 "}N}":C=PEEK(710)
: POI,E /:1. 0 • :I. ~::.j

~:.:iCiO TL::::30: [iU~;UB c')O O: TI...::::~:.:j
5/0 POSITION 17 p:l.3:1 "}K}":POKE 710.C:
GCl~:)UB 6:1. °
580 POSITION :1.7.13:? "}J}":GClSUB 610
590 PClSITION :1.7.13:1 "}I}":GOTO 520
600 IF PEEK(53279)<>6 THEN 600
6:1.0 POKE 77.0:FoR T=l TO TL:NEXT T:RET
l.J F~ f'-J

Line 40 sets Pl$ for 20 characters. The machine language subroutine to move the character
set from ROM into RAM will be placed in this string.

38

Table 3-2. Machine Language Listing to Move Character Set From ROM to RAM.

Asse mbls L a n ~ u a~e Li s tin ~

:I. () .. :~:. ;P u l l th e a c c umul ator off

L .. U >:: 11 o'} ;Load t h o index X with 4 .

I. .. D \.. :II ()

()

:I. /.? Ii L D a c.i '1:, h E' d C c' 1 . .1 ' '11 U :I. a t . D r'

() :i. t. h t . h C·) C D n t . (.:., n t . '::; Cl f t ;'''1 (.:.~

mo mor s locati o n th at is

arr ived at bs a dd i n ~ th e

cor·lt.(-'n t .·:::. of i n C.i(·:·';'; Y t .. D

t he me mors loca ti o n

C C) ' ''I t (.:.~ ' ''I t . <;; :i. n I () C d t . :i. 0 1"1 ;;,:: 0 '.:5

" ,. ~ ," , " "

" ,,::: I.) .. :~I ..' ~J r ~S t oro th e num ber i n the

i:; C C U III U :I. a t .. D 'i' :i. '''I "1: .. h (.~

dd d:i.n ~ th e c ontent s of

CO I"I "l: .. (.:.' 1"1 t .. ·::; o'f' I Dca l .. :i. o n !:;

39

Table 3-2. Machine language listing to Move Character Set From ROM to RAM (continued from page 39).

'() ()

I:-:NL ;, I:·: (-.,,: 1'1 c' h :i. -r- t- h (-:-:' :i. n I.'.i (-:-:' ;-:: '{ :i. -:::.

I--j () 'I.., (> ,.::' d c:- 1--:_ [.-. .1 :,,: (. C:l -:_ () I:.i ':::! '1..- (-,:, -,,:-

1 (.! c: ::_::: (> (, '! [--) C:j C'j U 1--1 (.:-:, '1..- U '1..- h (-,:' 1--; unl j-:.-. (-:-:' (. 1 '--I

Dr:: >< ;:; :0 (-:-, c')"-(-:.! I'll (-:-:' j'-j -1:.- t. h (_:.1 :i. j"; I:.) (-:.:, ~:: .--'- .:.

I-:i-.lL ;Branch if the index Y IS

:I. :::) 1::: ':::' -1:.- (.:.; .:::- •

;:; F' (:-:' t 1 .. 1 (- '--11:.- uH (:'1 ~: :; 1 C

Line 50 subtracts 8 from the number of pages of RAM in your system. This is 2K of memory.
1K is set aside for the screen and di splay list. The other 1K is for the character set. We will move
it just before the display li st. The variable NCB wi ll contain the decimal location of the new
character base.

Line 60 stores the location of the new character base and the ROM character base in two
temporary locations. These locations will be used by the machine language subroutine.

Line 70 contains the machine language subroutine. The data for the machine language
subroutine is in line 75. Be sure that all the numbers are entered correctly.

Line 80 uses the USR command to execute the machine language subroutine. See Table 3-2
for the assembly language listing of this routine. -

Line 90 calculates the beginning address of the display list by mUltiplying the value of
decimal location 561 by 256 and adding it to 560. The address of the di splay list is always a 2-byte
figure.

Lines 100-130 change the display li st from graphics mode 0 (ANTIC 2) to ANTIC 4. The first
line of the screen is combined with a command that te lls the CTIA where the first memory
location of screen data is . To change this line to ANTIC 4, you must add 3 to the first address of the
display list and poke this memory location with 68. Since ANTIC 4 uses the same number of lines
on the screen as graphics mode 0, we know that there are 23 more locations to change from 2 to 4.
By adding 6 to 28 to the address of the display li st , we can change the entire screen from graphics
mode 0 to ANTIC 4.

Lines 140-460 contain the data to change the standard graphics characters to the ones that

40

\::: >< >< '-:.: ..

\::
':-:'

.•....

I .:.~.

><
"./

./
I

\/ .,:{ :~< I
I

'::<. I ..:';" I

I >< ><
>< .X: I

t :x: \ .'
I /\ ..-\ ... ~.

>< >< ><
\.:

>::: I ';-:" ~:<
.... ;.

){ .x. :x: .:.:.

,.:':

......
/ \ t

' ... /
.1".

I \,.
.'-\

><
\/
/\

\/
t .I".

'x: I \/

>< .:{
t /". t t

>< '::<. \/
/ ... ,.'\

>< i-:" ,,:';" :x.
l~ ./ \/ .. :':" ,i'" J' .•

'::-::" .,:':\ ,,:';" t >:'
,,:':" \/

/\

/~. ><
){. ."

/\

>< >< >::: .;':"

><

Fig. 3-3. Character set in circuit.

c- D
. j . (J :I. ! I , ..
()

c:- D r', t. (. C) :I.
("" .

C () 1", t 1" U :I.
roo "

c 0 ''', '/: ..)". () :I.
U

CC.ll"lt.i" U:I.
1

'v
i'

t

.>:'

><

><

\/
.1" ••

>:::
:;.:::

><
><
><
"./
... ...

><

\/ .•. . \

/~.

><

\/ ,,".

><

>< >~

X
/\

>:::

>:::

X
><
".1
.... ,
\/ ",
V
/ \

\." \
-" ",

\/ .}(
.~\.

, t
t

\l ,

c C) n t . r D :I.
:e

C D f"i t. y- D :I.
n

C- O 1"1 t 1" D :I.
" I'" ~

C D 1"1 t. 1" D :I.
H

CD''',,!: .. ro:l.
...I

41

I \:.,
I.··.

I ... ··.

I
><

I \/ x: I \.
I I \ I /\

I ,,:':" I \l I
><

"./
I I .. "- I

I
'>:::

I I
><

I ... I ...
I I I I .. \ I

l-.
I I :.- I .::<.

I "\/
I I I I ,

.x. I I I \::' ,:.{
I .," . I

I I
>< '::<. I i'·. I ,,'.

><
I ':..- I \::: I I :

/" .

: :x:
I \/
I .. · ...

1\ .. '
I /".

I \ ."
I ·.

: ><
I I
I /-'. I

I
I

... c:: r'l t " . C) J
1-: '
I'·.

CUI"I "!:, r'C) J
('i

:'un-i:, r'() J
CJ

><
I'
I

j \
!

>::: : .x.

I ····
f .:\.

..:':"

/" ><

\/ I
."\ I

! \ l , './ I
I ., .. ·. I I

! \l I "./ I
I .~", I /'" I

"/ I "./
.. ' \ I ..

C C) r', t .. r- c:: J
I
I .. .

c·unt .. '1'0 J
N

Fig . 3-3. continued from page 41.

will be used in this program. Each character can be one, two, or three colors depending on which
bits are set in each byte . See Fig. 3-3 for a detailed description of each character.

Lines 470-480 read the bytes for each character and poke them into the correct locations.
Line 490 changes the character set used from the one in ROM to the modified one in RAM.
Lines 500-510 print the diagram on the screen. Each letter in the quotation marks should be

entered as a graphics character. Use the control key to enter these characters into the program.
Lines 520-610 make up the body of the program. The variable TL is set to 30. This value will

be used in the timing loop. The program goes to the subroutine in line 600. Here it waits for the
start key to be pressed. The program will continue to loop until the start key is pressed. Once it is
pressed, the program will reset the attract mode, and enter the timing loop in line 610. This
timing loop is needed to· smooth the program. Without it, the computer would read that the start
key was pressed before you had a chance to take your finger off the key. After the timing loop, the
program returns to the line that it came from. The variable TL is reset to 5, and the program will
lower or raise the lever. Again, be sure that each letter in the quotation marks is entered as a
graphics character. We will use the timing loop after each time the lever is drawn. If the lever is
being lowered, the light will glow once the connection has been made. If the lever is being raised,
the light will go out as soon as the connection is broken.

42

ANTIC 5 could use the character set that we created in this program. The characters,
however, would be 16 scan lines tall instead of the 8 in ANTIC 4. The display list would be
shortened by 12 bytes. The characters drawn with ANTIC 5 would appear to be in graphics mode
5. Again, we can obtain higher resolution graphics without using large amounts of computer
memory.

43

Chapter 4

Principles
of Animation

Good use of graphics will enhance any program. But graphics alone are like cake without icing. We
all prefer movies to snapshots. Movies, cartoons, television, and most other forms of entertain
ment rely heavily on movement along with color, sound, and pictures.

In real life, people, animals, and objects move with a particular rhythm. Any movement that
differs from the norm appears unnatural and artificial. Artists try to imitate the natural move
ments of their characters when they create cartoons . Hundreds of drawings make up one feature
length film . Each drawing is slightly different than the last , so that when they are run together, the
characters move smoothly across the screen .

Using animation in programs is not difficult, but it does take extra planning to create
believable characters that move gracefully on the screen.

CHARACTERS WITH A PURPOSE

If we had a computer with block graphics, and no way to redefine the character set, we could
make a few stick figures and leave the rest to the user's imagination. But, we don't. We can change
the characters to create believable figures and characters. We can alter parts of the character so
that when it is printed on the screen, we have true animation.

Good graphics and good animation does not come easily. Each character that is drawn on the
screen must be carefully thought out. We have several different graphic modes available to us.
Before designing the character set, we must decide what type of program we are designing, how
much animation or movement will be involved, and how the screen will be laid out for good color
and movement.

Once we have decided on the type of program, we can begin to design the characters. By
using graph paper, we can set a good idea of what the character will look like on the screen.

The first program that follows uses a very simple form of animation. As the keys 1-8 are
pressed, a note floats up from the corresponding pipe and a tone sounds. The note does not appear
all at once. Figure 4-1 shows the parts of the note that appear on the screen. Once the entire note
is on the screen, it floats to the top of the screen. Four more characters are used to give the
illusion of movement on the screen. When the note reaches the top, it does not disappear from the
screen all at once. One row of the note is removed at a time until the entire note is gone. As you
can see from the drawings, several characters had to be redefined to give the notes the different

45

><
v \
>< ><
.... / .. '\

><
;{ v ><

\/ >< V V y
/\ ... \ .. \

\/ \ . :\

\/
/\

>::: ><
>< X

>< ><
}<){ "./ \ / I /',

Y \/
><

'\.,'1 \

)< ~<

:11:

>< ~:('v '
/\

\ .. , '\/
,'.\ /\

Y
><

):::
\/ >< / \

>< \ \-' .. '\ \

><)I .. \

"I
/11

>:::)<
\.' ... \

X
V >< X ."

V " X >< X .. '\)" ..
.. ,< ><

Fig. 4-1 . Character set for notes.

46

/ \
\./
/\ A .

>< ><
>:: \/ \l

/\ .. '\
\, ",,:
/\ .1',

+

\ / \/
/\

)::: ><
..- '.:

/\

V \/
i\ /' ..

~~~ 

>< y 
,. \ 

X >< \/ \/' 
i \ .,'\ 

>< V 
/ ... 

X 
\/ 
/\ 

\ / 
.r .• 

V ...•.. 

\/ 
/\ 

\.1 I 
...... I 

\/ 
i\ 

\/ 
/, 

:x: 
V 
/ \ 

\ . 
,.'\ 

X 
.... / 

\/ 
i ' 

>( 

>::: 

\/ 
/\ 

>::: 

"./ 
." 
....... 
/o,. 

\/ 
/\ 

V 
;" . 

>< I 

\/ 
.1 '., 

>-~ 



I 
I 

X X 
v X v X A A 

X V 
A 

V I X v A A I /\ 

V X ;' 

1 
I 

/ 

X 
v 
A 

v 
A 

X 

V' 
... ... I 

V 
A 

A X 
x 

v 
A 

V I X A I 

X v 
A 

X X 

X:X 

" 
, 

! 

o 

V 
A 

y 

x 

V 
A 

v 

x X 
V 
A 

X , 
x 

47 



\/ >::: .. '\ 
\/ 

/ " 
I ):., I .... \ I I 

I X I \.' '.I I 
I I .••.... •...•. I 

:x: \:' >< ... ... 
\/ \." 
/" .r'. 

I 
l·. 

I >: I I 

>< 
I 

..... ~. >< 
I 

I I 

.... / I X V .'''. I ... ~. 

>< 
I 

>< /:\ I 

>< 
I 

>< " ~" 
I 

I I 

1 

;::: 

:.':s 

\/ I ...... I 

>< 

\/ ...... 

'" ..... ~ 

\." 
/\ 

>( 

>< 
>< 
>< 

"./ I 
/\ I 

:( 

>< 
\:' .. '\ 

>< 
\~ 

\1 
/" . 
}{ 

)::. I 
I 

.~< 

\l . .. ~. 
:x: 
'::-::: 

)::: 

\/ ...... 
,/ 

''.1' .. '\ 

>< 

>< 
I 

>< I 

"~I .... : .. /~ . 
.:.:., 

\/ 
,1"\ 

\/ ',./ .. .... .. .... 

X >< 
)::: V' .. '\ 

>< :::< 

Fig. 4-1. continued from page 47. 

\1 
.'.\ 

'::-::: 

',. 
.'\ 

>< 
>:~ 

~< 
\/ 
:'~. 

;:/ 

.... ,' 

..-\ I 

1") 
.': .. 

/:" 
\/ I X ... \ I ... \ 

.,' >~: I \/ >< I /". 

>< \/ >< 
\./ 

,r' .• ... ~. 

X '.' >< 
••. .1 

..... • f" • 

>< >::: >< '::<. 

>< 
I ",j ";-::' '.,-
I ... ~. ':', 

>< X I \1 \/ 
I ,'\ 

\/ \/ I \i >< ,r~. .'\ I /\ 

... 1 
'''( 

I 
I 

>< : 
>< 
>< , 
>< 
,x, 

I \, 
I /\ 

.. ~/ ...... 

>< 
>< 
"v 
I' . 

.X. 
\ 1 
,"', 

.. :.; 

I 
I 

I 
I 

I 
I 

I 
I 

::< 
>< 
>< 
:x: 
}~. 

\v" 
.,'\ 

\/ 
,.'\ 

\l 
1\ 

\.' .... / 
1\ .'\ 

X 'v' 
/'~ 

\j ~./ 

/\ /. I 

\/ I 

>< .,'\ I 

>< 
I \/ 
I I'. 

I 
/:\ .. :':" I 

I I 

... / I 

>< /\ I 

I 
~:" 

I X I I 

forms that they need. Each note is just slightly different than the others. This keeps the 
movement of the notes smooth as they appear and disappear. If the notes were drastically 
different, their movement would be choppy and artificial looking. 

Listing 4-1. Simple Animation 

:to 
::~ 0 
30 

48 

/ :~EI1 
m::M 
/:;:EM 

LI ~1TI NG 4.:1. 
t; I M F' I... E (1 N I j\1 t~ T I (] N 
BY I....M. S CHREIBER 



40 DIM NTE$(8),P1$(20) 
50 A=PEEK(106 )- 8:CB~A*256:REM PLACE CH 
ARACTER SET 2K BEFORE END OF MEMORY 
60 POKE 204,A!POKE 206,224:REM STORE T 
HE NEW CHARACTER SET ADDRESS AND THE R 
OM ADDRESS 
70 FOR X=1 TO 20:READ B:P1$(X,X)~CHR$( 
B):NEXT X:REM MACHINE LANGUAGE SUBROUT 
INE TO MOVE CHARACTER SET 
75 DATA 104,162,4,160,0,177,205,145,20 
3,200,208,249,230,206,230,204,202,208, 
242,96 
80 Q=USRCADR(P1$»:REM USE MACHINE LAN 
GUAGE PROGRAM WITH THE USR FUNCTION 
90 FOR X~8 TO 175:READ C:POKE CB+X,C:N 
EXT X 
100 DATA 8,12,10,8,8,104,248,96 
110 DATA 4,6,5,9,8,104,248,96 
120 DATA 0,2,3,5,9,106,124,48 
130 DATA 8,12,10,8,4,52,124,48 
140 DATA 112,192,32,16,8,48,112,96 
150 DATA 12,10,8,8,104,248,96,0 
160 DATA 10,8,8,104,248,96,0,0 
170 DATA 8,8,104,248,96,0,0,0 
180 DATA 8,104,248,96,0,0,0,0 
190 DATA 104, 248 ,96,0,0,0,0,0 
200 DATA 248,96,0,0,0,0,0,0 
210 DATA 96,0,0,0,0,0,0,0 
220 DATA 0,0,0,0,0,0,0,8 
230 DATA 0,0,0,0,0,0,8, 12 
240 DATA 0,0,0,0,0,8, 12,1 0 
250 DATA 0,0,0,0,8,12,10,8 
260 DATA 0,0,0,8,12,10,8,8 
270 DATA 0,0,8,12,10,8,8,104 
280 DATA 0,8,12,10,8,8,104,248 
290 DATA 255,255,255,255,255,255,255,2 

340 GRAPHICS 17 : REM USE LARGE COLOR TE 
XT MODE 
350 POKE 756,A:REM NOW WE CAN USE THE 
SET IN RAM 
360 R2~9:FOR R~10 TO 20:FOR X= 2 TO 16 

49 



Lis~ng 4-1. Simple Animation (continued from page 49) 

STEP 2:POSITION XyR:REM MAKE THE PIPES 
370 IF R-X<>R2 THEN? 16;"4" :G OTO 390: 
REM MAKE THE PIPE SOLID 
380 ? 16;"5":R2=R2-1:REM MAKE THE AIR 
HOL.E 
390 NEXT X:NEXT R 
400 NTE$="~I\[QH@<":REM CHARACTER OF T 
HE NOTES-~l diamond left-br acke t QH@< 
410 OPEN 14y4yOy"K:":REM OPEN THE KEYB 
DMHt FOF.: A F.:Et-lD 
420 POKE 764y255:GET 14yC:IF C>127 THE 
N C=C-128:POKE 694yO:REM GET THE KEY P 
f~ES!;ED 

430 IF C<49 OR C>56 THEN 420 : REM NOT A 
NUMBEr~ 

440 CLOSE 14:REM GOT THE NOTE 
450 C=C-48:REM PLACE OF NOTE 
460 X=C*2:R=9:REM COLUMN FOR THE NOTE 
ON THE !:;CF~EEN 

470 SOUND OyASC(Nl"E$(C,C»yl0,10 : REM S 
OUND OF THE NOTE 
480 FOR Rl=l TO 7:POSITION XyR:? 16;CH 
R$(44tRl):REM PRINT PART OF THE NOTE 
490 GOSUB 800:REM TIMER ROUTINE 
500 NEXT Rl:REM GET THE WHOLE NOTE OUT 
510 POSITION X,R:? 16;" I ":GOSUB 800:X2 
=X:R2=R!Rl=R:REM LAST POSITION OF NOTE 
520 FOR R=Rl TO 0 STEP -l:REM MOVE UP 
THE !:;Cr~EEN 

530 Xl=INT(RND(0)*2):Xl=XtXl:REM USE 0 
NE OF TWO POSITIONS 
540 N=INT(RNDCO)*5):N=33tN:REM GET A N 
DTE DI!:;F'L(~Y 

550 POSITION Xi ,R:? 16;C HR$ (N):REM PRI 
NT THE NOTE 
560 POSITION X2,R2:? 16;" ":X2=Xl : R2=R 
:GOSUB 800:REM ERASE THE LAST NOTE & R 
[MEi'1BE: I~: THI!:; DNE 
570 NEXT R:REM ALL THE WAY UP THE SCRE 
EN 
580 POSITION Xl,O :1 16P" I " : REM RIGHT T 
HE NOTE 
590 FOR R=O TO 6:POSITIDN XivO :? 16;CH 

50 



R$(38fR>:GOSUB 800:REM MAKE THE NOTE D 
I ~:; () r' P E () r~ 
;soo NEXT r~ 

610 POSITION X1,O:? #6;" ":REM ERASE I 
T 
620 SOUND O,OvO,O:REM TURN OFF THE SOU 
NIl 
t,,30 GOTU 410 
c';40 [Nfl 

800 FUR T~lrO 10:NEXT T:REfURN 

Line 40 dimensions two strings. NTE$ wi ll contain the characters whose ATASCII values 
represent the tones C-C. P1$ will contain the machine language subroutine to move the character 
set from ROM to RAM. 

Line 50 subtracts 2K from the amount of RAM in the computer. The decimal address of the 
first location of the character set in RAM is stored in CB. 

Line 60 pokes the high order address of the memory location of the RAM character set into 
204 and the location of the ROM character set in 206. These addresses will be used in the machine 
language subroutine that moves the character set from ROM into RAM. 

Line 70 places the machine language subroutine into P1$. The data is read from line 75 and 
placed in P1$. Be sure that the numbers in the data line are correct. 

Line 80 calls the machine language subroutine. 
Line 90 reads the data from lines 100-300 and replaces the characters in the character set 

from the exclamation point to number five . The variable X is first set to 8. The first 8 locations in 
the character set (0-7) contain the data for the space. If the information is changed, the screen will 
not be clear. By adding the value of X to CB, we wi ll change the next 21 characters after the space. 

Line 340 begins the program. The graphics mode is set to 17 -large color print with no text 
window. 

Line 350 pokes 756 wi th the value of A. The variable A contains the high order address of the 
RAM based character set. By poking this location, you can change the character set. 

Lines 360-390 draw the pipes on the screen. To place the air hole in the correct position in 
each pipe, R2 is set to 9. When the difference between the pipe's row and its column is equal to R2, 
the air hole will be drawn instead of the solid pipe. After the air hole is drawn, R2 is decreased by 
1. Each air hole will therefore be slightly lower than the previous one. 

Line 400 places one character for each note into NTE$. Be sure that this line is entered 
correctly, or you will hear some strange tones. lt is-Y1 control period left bracket QH @ < 

Line 410 opens the keyboard with the read command. 
Line 420 clears location 764. By setting it to 255, you guarantee that the next key pressed 

will be the tone that you want. If you didn't clear it, the last key pressed would be stored in that 
location. It could be a key that you pressed by accident. Now the program will wait until a key is 
pressed. The AT ASCII va lue of the key wil l be stored in the variable C. If the value of C is greater 
than 127, it means that the inverse key was accidentally pressed. The program subtracts 128 from 
the value of C to get the correct value of the key pressed. By poking location 694 with a 0, the 
inverse flag is reset. The next key pressed will have a value less than 128. 

51 



Line 430 checks the value of C to make sure that it is a number between 1 and 8. If it is not, 
the program goes back to line 420 to wait for another key value . 

Line 440 closes the keyboard. 
Line 450 calculates the key that was pressed. Since the ATASCII value of 1 is 49, we can set 

the correct value of the number keys by subtracting 48 from C. 
Line 460 calculates the column of the pipe that the note wi ll appear above. The pipes are all 2 

columns apart. The value of C is mUltiplied by 2. R is the row that the note will be printe d in. 
Line 470 turns on the sound. We use the ASCII of the character located in position C of 

NTE$. Remember, C is the key pressed. If a 2 was pressed, the tone would be the ASCII value of a 
lowercase 1. This value corresponds to the tone of D. 

Lines 480-500 print the note above the correct pipe. Each time the note is printed, it is the 
next note in the sequence of characters that make up the notes. First the tip of the note shows, 
then a little of the stem, etc., until the entire note appears on the screen. The characters used for 
the notes come one after another in the character set. By adding the value of R1 to 44 (the 
character just before the first note), we can print the entire sequence of notes easily. 

Line 510 prints the entire note above the correct pipe . The position of this note is stored in 
the variables X2, R2, and R1. These locations will be used in the next routine. 

Lines 520-570 give the illusion that the note is fl oating to the top of the screen. Each note is 
printed either in the same column as the pipe, or one column to the right of the pipe. Line 530 
chooses either a 0 or a 1. Add this value to the va lue of the pipe column (X) in order to calculate the 
column for the next image of the note. Line 540 chooses one of the fi ve variations that the note can 
have. The value of N is added to 33 to arrive at the note that will be printed. Line 550 prints the 
chosen note in the correct column and row. The last note is erased, and the values of the new note 
are stored in X2 and R2. 

Line 580 prints the note one last time before it begins to disappear off the top of the screen. 
Lines 590-600 erase the note slowly from the screen. This time the characters that make the 

note disappear one row at a time will be used. These characters are also placed sequentially in the 
character set. By adding the value of R to 38, each character for the note will be printed. 

Line 610 erases the last row of the note . 
Line 620 turns off the sound. 
Line 630 sends the program back to 410 to open the keyboard and wai t fo r another key to be 

pressed. 
Line 800 is the timing routine . The program uses it every time a note is printed on the screen. 

Without it, the characters would be printed too fast on the screen. 

In the next two programs, the character set for an airplane is redesigned. The plane will 
travel from right to left across the screen. Listing 4-2 uses graphics mode 2 without the text 
window. Listing 4-3 uses the text mode. In both programs , the plane shows some hesitation. The 
movement is not as smooth as in the previous program. Thi s is because more than one character is 
moving on the screen at the same time. In the previous program, only one character was moving at 
any particular time . BASIC was fast enough to erase one character and replace it with a new one. 
In these programs, the five characters that create the plane are moving at the same time. There 
are three characters that must ~e erased while the plane is being drawn in the new position. 
BASIC is too slow to e rase and draw this many characters at one time. 

52 



Listing 4-2. Simple Animation-Second Method 

10 REM LISTING 4.2 
20 REM SIMPLE ANIMATION 
30 REM BY L.M . SCHREIBER FOR TAB BOOKS 
40 DIM PLN$(4),PN1$(3),PN2$(3),Pl$(20) 
50 A=PEEKCI06)-8:CB=A*256:REM PLACE CH 
ARACTER SET 2K BEFORE END OF MEMORY 
60 POKE 204,A:POKE 206,224:REM STORE T 
HE NEW CHARACTER SE"r ADDRESS AND THE R 
O~"i (.~DDF~[~:;~:) 

}O FOR X~ l TO 20:R[AD B:Pl$(X,X)=CHR$( 
B):NEXT X:R[M MACHINELANGUAG[ SUBROUT 
IN[ TO MOV[ CHARACTER S[T 
/~:) D(~T(.) 104 l' 162,4,1 ,l)(), 0,1//, 20 ~::j, 1 4~:5, 20 
3,200,)08,249,230,206,230,204,202,208, 

80 Q=USR(ADRCP1$»:R[M US[ MACHIN[ LAN 
GUAGE PROGRAM WITH TH[ USR FUNCTION 
90 FOR X=8 TO 63:R[AD C:POK[ CBtX,C:NE 
:X:T X 

100 DATA O,8,8,11, }, 11,8,8 
110 DA "'"A 0,0,8,1 1, / ,11,8,0 
120 DATA 0,0,0, 11,/,11,0,0 
130 DATA 0,0,0,0,12,30,30,30 
14 0 DATA 30,30,30,255,255,255 ,30,30 
150 DATA 30,30,30,30, 12,0,0,0 
160 DATA 0,6,/,254,255,254,/,6 
1}0 GRAPHICS 1/:REM LARGE COLOR T[XT 
1 H 0 F' 0/< [ -.;:' ~:":"; { , !) (~ 

1 (j.i 0 r:' L hi "'/; ::::" ! %.' ": P ~~ 1 'I:- ::::" ~/; " : F' N ~"~ ~I; :::: " & " 

200 FOR /= 15 "f O 0 ST[P -l:REM FROM RIG 
HT TO L[FT ACROSS TH[ SCR[EN 
210 IF X/4=I NT (X/4) THEN PLN$(l,l)=" I" 
:GOTO 230:R[M US[ LONG[ST PROP ONCE OU 
T DF =+ 
220 PLN$(1,1)=CHR$(34):IF X/4- INT(X /4 ) 
=0.5 lH[N PLN$(1,1)="i" : REM USE SHORTE 
ST PRDP ONCE OUl DF 4 
230 PDSITIDN X, 10 : 7 i6;PNl$:POSITION X 
,11:? i6 ;PL N$:PDSITION X,12:? i6;PN2$ 
240 FOR T=1 TO 25: N[ XTf 
250 NEXT X:R[M GO ALLfH[ WAY ACROSS 
:~:"~{,O UUTU 1""::'0 

53 



\ .. ' 
l\ 

>< 
V 
/". 

>< V >::: ">< / ... >< .. ... 

~:< >( >< 
\/ >< 

\1 
I '·. ."'. 

. x. V \l \/ >< /~ . ...... ...... ... ... 

::< 
>::: 

>< >( \' \/ 
/ ". 

.:':" 
",/ 

>< >< /\ 

/\ 
... ,/ "\l 

>::: .... \ 

>< \/ \/ 
."\ .' \ 

\. \ .... " \l >< \l , .. 
" l \ /\ .i\ /\ / ... t\ .. '\ 

\/ \,/ \l ...... l\ l··. 
\1 >< >< >< 

'\/ 

>< .}:~ ,.:<, I i\ ." \ 

V V >< /, l\ 
. ' \l \ . \ .... ·X: X >< .i·:, \ I ..... 

" 
/ . 

\,/ '\'. \.' ' ..... .. .... 

>::: >::: :::< >< 

:.~~.: 

>< >::: >< >::: 
I 
I 

>< \l /\ >< ... \ 
,/ 

>< 
\.' ... ... .'\ .\ 

\/ '.' >< /~ l~. 

>< >< .?\ 
\1 
i\ 

>< \/ >=~ V 
."'. J'" 

>< 
., .... V " /'\ "'''. .7 ... 

~< I \l >< >< I /\ 

~ I:· 

', .. ' X r 
\ .. ' 

>< 
'\/ :x: /\ ...... 

)< >< \1 >< \/ \l >< / \ ...... 
'v" V X >< >::: 

\/ \/ >< 1\ ."'. /\ /" 

V "./ \l )( >< 
\,' X I .'\ ...... /\ .'\ 

\i X V \ .. ' 
/\ /'. ...", 

'\/ V . '\ / ' . 

Fig. 4-2. Character set for airp lane. 

54 



Line 40 dimensions 4 strings . Pl$ will be used for the machine language subroutine that 
moves the character se t from ROM into RAM. The other three strings will store the characters 
for. the airplane . 

Line 50 subtracts 2K from the amount of RAM in the system. The variable CB will hold the 
decimal address of the first memory location of the new character set. 

Line 60 pokes the address of the new character set into location 204 and the address of the 
ROM character set into location 206. These two locations are used by the machine language 
subroutine . 

Line 70 places the machine language subroutine in Pl$. Be sure that the data line is entered 
correctly. 

Line 80 sends the program to the machine language subroutine. When the program returns to 
BASIC, the ROM character set will be in RAM. 

Line 90 reads the data in lines 100-160 to change seven characters in the RAM character set. 
See Fig. 4-2 for the characters that will be rep laced. 

Line 170 changes the graphics mode to 17 -large color letters with no text window. 
Line 180 tells the computer to use the new RAM character set. 
Line 190 sets each string so that it will form a particular part of the airplane. The plane uses 

three rows on the screen. The main body of the plane is stored in PLN$. This is the propeller, the 
body of the plane and the tail. PNl$ is the top wing; PN2$ the bottom. There is one space after the 
characters in each string. This space is needed to erase the character that was drawn in that 
position previous ly. 

Lines 200-250 move the airplane across the screen. The variable X is the column that the 
plane will be drawn in. By starting with 15 and counting backwards to 0 (step -1) , we will be 
moving the plane from right to left. Lines 210-220 will determine which propeller to use. One out 
of every four positions will use the longest prope ller. When the variable X divided by 4 is equal to 
the integer of X divided by 4, the computer will use the longest propeller, which is a redefined 
exclamation point. If this propeller is used, the program will be directed to line 230. In line 220, 
the middle size propeller is placed into the string. It is the redefined quotation mark. Since BASIC 
wi ll not allow a quotation mark within quotation marks, the ATASCII value must be used for this 
character. This propeller size will be used twice in every spin. Now the variable X is checked to 
see the shortest propeller. The longest propeller is used when X can be evenly divided by 4. The 
shortest propeller is used when the remainder of X divided by 4 is .5, or half-way between 
numbers. When the remainder is .5, the propeller will be changed to the character that replaces 
the pound sign. Otherwise, the propeller is already set to the correct length. Line 230 prints the 
plane in the three rows on the screen. The column is set by the value of X. Line 240 is a short 
timing loop . Without it, the plane would move too fast across the screen. 

Line 260 sends the program back to line 170 to repeat it again and again. To stop this 
program, press the system reset key. 

Listing 4-3. Animation in the Text Mode 

10 REM LI ST ING 4.3 
20 REM ANIMATION IN TE XT MODE 
30 REM BY L.M . SC HREIBER FOR TAB BOOKS 
40 DIM PLN$(20)yPN1$(3),PN2$(3)yPl$(20 

50 A=PEEK(106)-8:CB=A*256:REM PLACE CH 

55 



listing 4-3. Animation in the Text Mode (continued from page 55) 

ARACTER SET 2K BEFORE END OF MEMORY 
60 POKE 204,A:POKE 206,224:REM STORE T 
HE NEW CHARACTER SET ADDRESS AND THE R 
o M (.~ D D F~ E: S ~:) 
}O FOR X=l TO 20:READ B:Pl$(X,X)=CHR$( 
B):NEXT X:REM MACHINE LANGUAGE SUBROUT 
INE TO MOVE CHARACTER SET 
}5 DATA 104,162,4,160,O,1}},205,145,20 
3,200,208y249,230,206,230,204,202,208, 
)4::~, '?6 
80 Q=USR(ADR(Pl$»:REM USE MACHINE LAN 
GUAGE PROGRAM WITH THE USR FUNCTION 
90 FOR X=8 TO 63:READ C:POKE CB+X,C:NE 
XT X 
100 DATA O,8,8,11,},11,8,8 
110 DATA O,O,8,11,},11,8,O 
120 DATA O,O,O,ll,},ll,O,O 
130 DATA 0,0,0,0,12,30,30,30 
140 DATA 30,30,30,255,255,255,30,30 
150 DATA 30,30,30,30,12,0,0,0 
160 DATA 0,6,},254,)55,254,},6 
170 ? "}" :POKE }52,l:REM ERASE CURSOR 
:L n 0 F' 0 1< E 7 ~5 C) , (0 
:L 90 PLN~I;:::: "! :;~~I; & I " 

200 FOR X=35 TO 1 STEP -l:REM FROM RIG 
HT TO LEFT ACROSS THE SCREEN 
210 IF X/4=INT(X/4) THEN PLN$(l,l ) ="!" 
:GOTO 230:REM USE LONGEST PROP ONCE OU 
T OF -4 
220 PLN$(1,1)=CHR$(34) : IF X/4- INT(X / 4) 
=0.5 THEN PLN$(l,l)="t":REM USE SHORTE 
ST PROP ONCE OUT " OF 4 
230 POSITION X, 10 :? PL N$; : REM USING A 
SE MICOLON REDUCES FLICKERING 
240 FOR T=l TO 20:NEXT T 
2~:":j() NEXT X: h:Er'l UO (lLL THE:: WI~lY ACF~Cl~:)~:; 
260? "}":GOTO 2()() 

This program is essentially the same as the previous one. It is, however, done in the text 
mode. The two lines that are different are 40 and 190. 

Line 40 dimensions two strings. This time PLN$ is dimens ioned to 20 to accommodate the 
entire plane. 

Line 190 stores the entire plane in PLN$. This string should read-exclamation point, 
percent sign, escape up-arrow, escape back-arrow, dollar sign, space, escape down-arrow, escape 
down-arrow, escape back-arrow, escape back-arrow, and sign, space, escape up-arrow, escape 

56 



:I. 
1 
:I. 
'1 ... 

1 
1 
1 
1 
:I. 
1 
1 
1 

:I. 
:I. 
J 
J 

:I. 
:I. 
:I. 
:I. 
J 
1 
:I. 
1 

J • 1 
J 1 
J :I. 
1 
1 
J 

:I. 
:I. 
I 

:L I 

:I. 
J 
J 

1 
J 
1 
1 
:I. 
:I. 
:I. 

:I. 
1 

1 
'1 ... 
J 
:I. 

1 
J 
:I. 
J 
1 
J 
:I 

J 
'1 ... 

1 1 
J 1 
:L.l 

J 
'1 ... 
J 
J 
J 
.. 
.I . 

J 
J 
:I. 
:I. 
J 
J 
:I. 
:1. 

'1 
.1. 

1 
'1 ... 
1 

J 
'1 ... 
:I 
:I 
1 
J 

1 
1 
:I 
1 
1 
J 
J 
1 

:I. 
'1 
.1. 

:I. 
:I. 

:I J 

'1 ... 
() 

() 

'1 
.I. 

() I :I. 
o :I. 
J 0 
() 

() 

() 

:I. 
'1 
. 1. 

:I. 

1 
1 
1 

:I. 
'1 ... 
:I. 
J J 

J.:I. 
1 1 

:I 
:I 
J 
J 
J 
J 
1 

J 
:I. 
:I. 

() 

:I. 
() 

() 

() 

'1 ... 

() 

:I. 
J 
:I. 
:I 
1 
:I. 
'1 ... 

:I 

:I. 

o 
1 
1 
:I 
() 

:I 
:I 

Fig. 4-3. Character set for carousel. 

o 
"X 
' ... ' 

·· ··, 1::·;::· 
•• :: • ••• .' •••• 1 

····,1::·1::· 
.. ::.,..1 ... .1 

····,1::·1::· 
•• .-: ••.•• 1 ••• .1 

.. ··,1:: ·1::· 

.. : : ••••• 1 •• ..1 

····,1::·1::· 
.. ::.,..1 ... .1 
.... , I::' !::. 
.. ::. ,..1 .... 1 

.... , I::'!::' 
.. ::.,..1 .... 1 

····,1::·1::· 
•. :: . .. ..1 •. ..1 

::.:.:: 0":::· 

"', I::' r o
' 

.. : ..... .i •. . i 

·· ··,1::·'::· 
.• ·: . •... 1 ; .. 1 

"',\::-"" 
.: .... ..i .. ..1 

C) 

I::' 
•••• 1 

I::' 
•••. 1 

I·:·: :H 
fl E·: 
:c.: r-:: 

1", .:.\ 

r: 
r:·: 
t·: 
r: 
:c.: 

E·: 
B 

]'" .::' 
j " .. ' 
i", .::' 

r" ::. 
)'" .::' 

)'" . ::' 

E·: 
:n 
I: 

:r: E·: 
F{ I':l r: B 
E·: :f·: E·: n 
I·:·: E·: r: E·: 
I·:: :c.: :1-:.: E{ 

E·: 
Fi 
:c.: 
)": .. 
.\.' 

:c.: 

n 

I:·: f·: 
c{ n 

b 
r: 
H 
E·: 
r: 
:0 

:f{ 
:c 
H 
r: 
r:·: 
E·: 
E·: 
I·:·: 

c·: E{ 
:u n 
:u r: 
:c.: I·:{ 

B j.J 

f: :c.: 

:C: 

r' 
:c 
:u 
:c.: 

E·: 
E·: 

)"', r:, 

E·: 
)'" .::' 
(.:.: 

n. F{ 
F·:H 
:H :U 

:H 
I·:·: 

:f: 
F: 

:c.: )J 

H E{ 
f: E·: 

r: E·: 

"( I", "', 

F: F: "\ 
F~ h' F: 
r" I::': h: 
.. ( .. { 1""' 

I", '\ 

I", " " 

I", 'r.. 

I:;: 
-'.1 
! 

57 



, 
:I. 

, 
0 

, 
() 

, 
:I. 

, 
:I. ,/, .... , , \ .. , \ .. , F: , ,? , , , , , , ... , ... .,. , , , , I 

, 
0 

, 
:I. 

, 
:I. 

, 
0 

, 
(.~,) ( ') 

, ,? , F ~ , 'y' I '( 
, 

I , , I I I I I I , 
0 :I. " 0 

, 
:I. HO I r" , h' 

, F: , F;: I , I I I "" I I , I 

I 0 :I. 
, 

() I :I. HO I F;' I F~ 
, 

I '" ~ 
, I", I , , I I I ! -I., I , 'I., I , 

:I. 0 
, 
0 I :I. :I. /, /1 I ,/ I '( I I'" , 

I '" ~ I 
I I , "',' "y I 1 I , "'" , '\. , 
I 0 :I. I :I. I () I D (;':. , 

I'"~ I F: I Y I \( I 
I I I , ." I "" I I , I , 

Co :I. 
, 

0 I 1 no , 
F~ I ,? I F~ I 1'" 

I 
I , I I , I I ", , 
I () 1 I () 

, 
1 B() 

, 
h' I F ~ I 1'" I F~ I 

I I , I I I "" I , 

, 
:I. I 0 

, 
0 :I. :I. ·4l~. I \/ I \ .. ' , F' 

, 
I '" ~ 

, , I I I 1 I 1 I , ' 1., I , 
0 1 I :I. 0 I (.~.:' (::a 

, 
I'"~ 

, 
F: 

, 'y' I y' I 
I I I , ' \, I I I , 
I () :I I 0 :I UO , 

I::: 
, 

I '"~ I 
1'" 

, 
1'" 

, 
I , I I 

. , 
I '\ . I "" I 

I 0 '1 I 0 :I B() I h' I I'"~ I 1'" 
, 
h: I 

I .1. , I I 'I., I " I I , '1 () I 0 :I. :I ... , .... , , 'yO , 'y' I I'" ~ I ,? , I .1. I "'j"',' I I I " " I I , 
0 :I. :I. 0 I 0 (:') I h: 

, 
F~ I \( , \ .. , I I ! I I I I I 

:I. :I. :I. :I. :I. :I. :I. J ~? ~.:.~; ~.:.:,; I :c.: I r:l , E{ , F: I l'" I l'" I B I B , I I I I .. ,' , .,) , I 

'1 :I. :I. :I. '1 :I. :I. :I. ::? ~.:.:.i ~:.=.; I r:: I )J 
, 
f' I 1'" , E·: , l'" , :c·: I u • 1. .1 . , I I ,':. , .. ) I I .::' I I 

I :I. I 0 
, 

() I :I. .:;.:. , 'y' I '( I I'"~ I h' I 
I , , , I I , '1., I I , 
0 I :I. 

, 
:I. 

, 
() /:. , r' , 1'" 

, \( I Y 
, 

I , I I I ", I '\ I I I , 
() I :I. 

, 
0 

, 
:I. t: : ' I F;' , r' , v', , 

1'" I , I I , .. ..1 I I "" I r'.. I 
., 

I 

I () I :I 
, 

0 I '1 I::' I I '"~ 
, 

F~ I F: I F: 
, 

I I , I .1. •. ..1 I -", I I I I 

I :I I 0 
, 

0 I :I. C) , \. I Y I F' I 
1'" 

I 
I I I I I I I I " . I 

I () I :I :I I () , (:') 
, 

F: 
, 

I'"~ I V I \( I 
I , I I I I ' 1., , I I I 

:I. :I :I. :I :I :I. :I. :I ::.:.:: ~~:.; ~:.:.; U I E·: , E·: I l'" I )J , l'" I :c.: , f ' 
, 

I I I .::' I I .::' I I ,':, I 

:I. :I. :I :I. :I. :I. :I :I. ::,:.:: ~:.:.; ~:5 :C·: I :c.: I X" I :C·: I E·: I r: I f·: I :c.: I 
I I .) I I I I I I 

Fig. 4-3. continued from page 57. 

back-arrow, apostrophe, space. 
The new spaces must follow the upper and lower wings and the tail to erase the characters 

that were previously drawn in those locat ions. 

Both programs display some animation. If the for ... next loops are left in the program, but 
the position of the plane in line 230 is made constant, you can see the prope ller spin on the plane. It 
is very difficult to see it spin when the plane is moving across the screen. 

SCENES AND MOVEMENT 

Up to now, the programs that we created made very limited use of the character sets. The 
characters were simply created and the animation or movement was there, but there was very 
little in the way of a scene. 

58 



:I. 
:I. '1 

.1. 

'1 :I. ! :I. 1 1 I . 1. I 

:I. I 1 I :I. I :I. '1 
I I I .1 • 

-,.V ... '-

I () I 1 I , , I ...... 
I () I 1 

, 
() 

, 
1 

, 
() , , I , I 

, 
0 

, '1 , 
() , I . 1. , 

I. 1 
I. 1 '1 1 .!. 

1 I. I. 1 I. 
I. 1 :I. 1 1 

--}-

1 I 

1 I 
I 

'1 I 
I 

:I. I 
I 

:i :I. 
1 :I. 
1 1 
'1 1 . 1. 

I I. I () I 
I , , 
I I. , 
, 

1 
, 

0 I , , , 

1 
1 

() I 
I 

() I 
I 

() I 
I 

() I 
I 

:I. 
:!. 
1 
1 

1 

1 

,") 
,-: .. 

1 '.:.:.; 
.;', "X , .. .' .... , 

····. 1:: · '::· 
.. :: .•. ..1 •. ..1 

::.:'::1. 
o 

::.:.:: .,:~~ () 
"':"::;"') .......... , .. : .. 

I \/ I '",,' I 
I I I I I 

1\ .. ', ",:' I 
I I I I I 

: 'y' : \{ : 
: 'y' : 'yo' : 

: X-:': ! E·: : I·: : f-: : 
::B::C·::I{::C: 

:(-:{ : J.:.: : J:.: : F{ : E·: : r: : r·: : r:·: : 
X-:': : E·: : f-: : f: : E~ : :r-:.: : E·: : E·; : 

: F: : F;: : F< : F;: : I:;: : F: : 
: F: : F< : 1:< : h: : F;: : F: : 

: r:: r:: 
: E·: : B : r·: : E·:: 
: E·: : E·: : E·: : r: : n : E·: : 
: E·; : r: ; E{ : :c.: : t·: : E, : 

Scenes need two parts, the background or picture, and the characters that will move. The 
AT ARI uses the term background to indicate the color of the screen. This color will show through 
any character, letter, or number that has any bits that are not turned on . If you print the letter 0 on 
the screen in graphics 2, the 0 would appear orange. The center of the 0 would have the 
background color showing through . Try this in the direct mode: 

GR. 2:POSITION 2,2:? #6;"0" 

The background color in all modes except the text mode is s tored in decimal location 712. 
Playfield characters are e ither the characters that can be printed on the screen in graphics 

modes 0-2, or the lines that are drawn on the screen with the plot and drawto commands in the 
other graphics modes . In the last three programs, the playfield characters were notes , pipes, and 
pieces of an airplane. 

The playfield characters can be numbers, letters or graphic characters. The next program 
will draw a carousel on the screen using redefined characters. ANTIC mode 5, which will produce 
large multicolored characters, will be used in this program. 

In ANTIC modes 4 and 5, characters are colored by setting one or two bits in every two bit 
set to indicate the desired color. Both pixels are turned on to that color. The characters appear to 
be 4 x8. In contrast, in the text mode or in graphics modes 1 and 2, each bit that was set in the 
character turned on the corresponding pixel. An 8 x 8 grid contained one character. 

In Fig. 4-3, the characters that replace the ROM characters are drawn. Instead of an X in the 
location of a pixel that is turned on, a lor a 0 is in that bit position. Next to it is the decimal code 
that will be used in the program. Next to that is a drawing of how the character will look on the 
screen . The B pixels will appear blue on the screen, the R will be red and the Y yellow. 

59 



Listing 4-4. Carousel 

10 REM LISTING 4.4 
::.~O F~E~'l Cf~~F~UU~:;E:L 

30 REM BY L .M. SC HRE:IBER FOR TAB BOOKS 
40 DIf·1 Pl'li(20) 
50 A=PEE:K(106)-8:CB=A*256:REM PLACE CH 
ARACTE:R SET 2K BE:FURE E:ND OF MEMORY 
60 PUKE 204,A:PUKE 206,224:REM STURE T 
HE NEW CHARACTER SE:T ADDRESS AND THE R 
Orl tlDDF~E~:;t; 

70 FOR X=1 TU 20:RE:AD B: Pl$ (X,X)=CH R$( 
B):NEXT X:REM MACHINE LANGUAGE SUBROUT 
INE TU MOVE CHARACTER SET 
75 DATA 104,162,4,160,0,177,205,145,20 
3,200,208,249,230,206,230,204,202,208, 

80 U=USRCADRCP1$»:REM USE MACHINE LAN 
GUAGE PROGRAM WITH THE USR FUNCTION 
90 FOR X=24 TO 95:READ C:POKE CB+X,C:N 
EXT X 
100 DATA 0,3,15,63,255,255,255,204 
110 DATA 255,255,255,255,255,255,255,2 
04 
120 DATA 0,192,240,252,255,255,255,204 
130 DATA 9,6,5,5,9,6,5,5 
140 DATA 144,96 , 80,80, 144, 96,80,80 
150 DATA 144,96,80,80,144,96,255,255 
160 DATA 9,6,5,5,9,6,255,255 
180 DATA 2,2,2,2, 15, 63,255,255 
190 DATA 21,84,2 1,0,192,240,252 , 252 
20() G 1:<,') F'H I CS :I. / 
210 DLIST=PEEK(560)tPEEKC561)*256: REM 
FIND THE BEGINNING OF THE DISPLAY LI ST 
220 POKE DLIST+3,69 
230 FOR X=6 TO 28:PO KE DLI STt X,5: NEXT 
X:REM CHANGE ENTIRE DISPLAY LIST TO AN 
TIC ~:5 

:::.> -4 () P 01\ E / ~.::.i 6 , () 
250 POSITION 1 /,2: 7 # 6; "*+" :REM FLAG 0 
N TUP 
260 PO SIT ION 7,4 : 7 #6;"#$$$$$$$$$$$$$$ 
~I; ~ I i 'I; 'I; 'I; ':Ii :.~;: " 

270 FOR X=6 TO :1. 8 STE P 2:POS ITION "'J V • 
./ Y 1\ • 

' j' :11: .:f;. y" & ~~ " " :NE::XT X: F<E 
M PRINT THE POLES 

60 



280 POSITION ],X:? *6;"}N})}NNNNN})}NN 
NNNN}(}NNNNN}(}N}" 
:2 (? 0 U 0 ·r D ::? <? () 

Lines 40-190 are the same as in the last program. In this program only one string is 
dimensioned. Otherwise, the machine language subroutine to move the character set from ROM 
to RAM is the same. The data lines replace the characters from the pound sign to the plus sign. 
These characters will draw the carousel on the screen. 

Line 210 calculates the beginning of the display list. As mentioned before, this program will 
use ANTIC 5, which will produce multicolored characters. 

Line 220 changes the first row on the screen from graphics mode 0 to ANTIC 5. 
Line 230 changes the rest of the display list from graphics mode 0 to ANTIC 5. 
Line 240 tells the computer to use the RAM character set. 
Lines 250-280 print the new characters on the screen. The *+ is the flag on the top. The roof 

has 20 dollar signs ($) between the pound sign (#) and the percent sign (%). Line 270 draws the 
poles. There is one space, the and sign (&), five spaces, the and sign (&), six spaces, the 
apostrophe (,), five spaces, and another apostrophe ('). The last line prints the bottom. It uses the 
same spacing as the poles, CTRL N, close parentheses {)}, five CTRL Ns, close parenthesis {)}, 
six CTRL Ns, open parenthesi s {(}, fi ve more CTRL N s, one last open parenthesIs {(}, and a final 
CTRL N. 

Line 290 loops back to itse lf. 

To add animation to this scene, we will use the Player/missile graphics. Players and missiles 
are terms used by ATARI for special characters that can be created and stored in memory. They 
are unlike the character sets because each player is only 8 bits or 1 byte wide. The player is, 
however, as tall as the display screen-using 255 bytes in the single line resolution or 128 bytes 
in double line resolution. Each player can be thought of as a band that extends from the top of the 
screen to the bottom. The character is drawn on this band. It can be moved from side to side, and 
up or down. 

Because the players are stored in an area of memory other than the memory used for the 
screen display, their image seems to be superimposed onto the background and playfield 
characters. 

In this program, we will create a horse for the carousel. To make it look realistic, we will use 
two players side-by-side. The horse can move up and down while it is going around on the 
carousel. Figure 4-4 shows how the horse is created. 

Figure 4-5 shows the amount of memory needed for player/missile graphics. There are two 
different modes for player/missile graphics: single resolution and double resolution. In the single 
resolution mode, each byte is one row or pixel high on the screen. Each player and missile has 256 
bytes of memory set aside for it. The area of memory set aside for the players and missiles must 
begin on an even 2K boundary. This means that the first byte of the memory must be evenly 
divisible by 2048. An easy way to find the boundary is to subtract 4 from the end of memory for 
every lK. Memory location 106 contains the amount of memory available in the computer. In a 
40K system, the amount stored in this memory location is 160. Multiply 160 by 256 and you get 
40960-the amount of actual RAM available. Each time you subtract 1 from the number, you are 

61 



i ...... /\ I 

i< .~<. \. 

\:: .... / >< :\ /\ 

I ,;':, >< ,.:':~ 
., ...... 

/~. I 

>< 
, .. 

):, . .:< \/ .>::. .... / .. :':, . . ','" l\ /\ /\ 

>< >::: ">::: )( >< >< ./ \/ 
/-" /\ 

>:' I .X: >< \/ \ / \1 l·, 
I 

>::: 
.... ,' I 

I /\ ..•... ...... I .to... 

/~. 
I \:' \ / \.,' ' ..... .:.: l, I /\ /\ /', /', .''. 

l·, \/ >< ):' ,l, ...... 

X >< ':{ '>::' \ :' \! 
/', I .1\ 

>::: >< >< .. '\ >< 
\/ >< ,.\ /\ /'" 

'::<' \{ \:,- \ .. -... . , 

>< 

I::' :I. .:::: I::~ (.:.:, I ' t F' 
., 

~::: ::;: (.:.; r ''') 
I . 1. 

\. 

>< '.'" \/ 
...-... l\ 

/'" >< 
\/ \: \/ 
,r, / \ 

\/ X '?" 
"./ .... / \/ 

/ ... ... ... ...\ ,..\ 

\/ I X ' ... / \( I >{ >::: 
\/ .... \/ '::{ ,l l\ I ,r., I ': '" ,\. /\ /\ 

\/ \/ .. \/ 
:\ 

I ... / '/ \/ 
}." >< >< / " /\ / \ I .. 

/ \( \:" \/ \:'- ::<. l ·, 
\/ '::-:" \/ 

i \ !\ '\ "\ 

>< \ ' >< \/ \/ \/ \. \/ I \~ ,/ :< :/ ,r., ... ... .\ I ,'\ I l\ 

>< >< 
\.,-

::':" 
...... ".i 

/\ ...... ,' . 
...... ',/ >< \/ )::: I I 
/ \ /\ ... \ I 

\/ \/ ,>:: >::: X .... /\ 

\/ \/ \/ ,.. ){ /\ .'''', .r ... 

\/ \l \l \/ 
,1"\ /\ ,:\ .... \ 

I \/ 
I /\ 

F' J a ~: :~ (.:.~ r :::~; F' :I. a ':::! (.:., r / 1 ... , 

Fig. 4-4. Player graphics for carousel. 

actually subtracting 256 bytes. By subtracting 4, you wi ll subtract 1K from the amount of available 
RAM. Since the operating system uses 1K of RAM for the screen display and display list in mode 
O .. you cannot use the last 1K of RAM for the player/missile graphics. If you subtracted 8 from the 
amount in memory location 106, you would have an even 2K boundary, but you would be using the 
same memory that the screen and display list were using. When you are using single line 
resolution for our player/missile graphics, we subtract 16 from the amount of RAM available. 

62 



In :i. ~:; '::; :i. 1 (.:.~ ~:; 
-------------------: 

F .. l.::;':::!!':-' 1" 1 

:::··1 ';:;'::1(':" r : .. :~; 

F·' 1 ;:::'::1(" l'" .... 1· 

II, :i. ~:; '::; :i. 1 (.:.~ ':;; 

F .. 1 <:;\:;r~ 1" 1 

............................................................. : 

-------------------: 
::: .. :I. a '::! f·:' l" : .. :~; 

::: .. J d I:! (.:.~ r' ..:1 

11< i':.l 0 ' .. II", ij i:; r '::! .... 

double lIn e reso1ut:i.on 

be~:i.nn:i.n~ of p/ m ~1"aph:i.cs 

.J..()Ol. 
I ', .. ' / \.1 

}- 1 0:::'4 

~21< t:,\ Cl U 1"1 "".1 a 'i' '::! 
f ' Cl)", ':;:i. 1"1 ':.i :I. E·' 1 1 1"1 (.:.~ 

T'E'·:::·U 1 ut. :i. on 

be~:i.nl"l:i.n~ uf ~'i'dPh:i.cs 
.. t. '7..:', C) 

I 0" •••• , ~ •• ' 

+:1.0::;'::4 

Fig. 4-5. Memory map for player/ missile graphics. 

63 



This leaves 2K for the screen and di splay list and gives us an even 2K boundary to begin our 
graphics. 

The second mode for player/miss ile graphics is the double resolution mode. This mode 
draws each byte on the screen twice as high , or uses two rows for each byte. Since it draws each 
byte twice, it uses only 128 byte s for each player or missile. The enti re mode uses 1K of memory. 
To set aside memory for player/missile graphics that are double resolution, we need to start on an 
even 1K boundary. We can subtract 8 from the amount of RAM available . This will give us 1K for 
the player/missile graphics and 1K for the screen and display list in the text mode. 

In addition to the two lllodes, the players and mi ssiles can be in any of three sizes. When we 
set the mode to s ingle or double resolution, we do it for all the players and mi ssiles. Each player 
and/or missile can be in one of three sizes independent of each other. If the size is not set, the 
players and missiles will default to normal size . Each bit in the byte will be one pixel wide. Double 
size makes each bit two pixels wide and quadruple size makes the figure four times as wide as a 
normal one. Note: These figures refer to the width of the player. The resolution determines the 
height of the character. 

By adding a few lines to the previous program, we can add a horse to the carousel. The 
following program uses double width and double line resolution. 

Listing 4-5. Carousel-Animated 

10 REM LISTING 4.5 
:?O F~[,vi C(1F~OU ::; [I ... 
30 R[M BY L . M. SCHREIBER FOR TAB BOOKS 
40 DIM Pl$(20) , UP$ (20),D OWN$ (20) 
50 A=PEEK(106)-8:CB=A*256:REM PLACE CH 
ARACTER SET 2K B[FORE END OF MEMORY 
60 POKE 204,A:POKE 206,224:REM STORE T 
HE NEW CHARACT[R SET ADDRESS AND THE R 
o Ivj I~) Ii D F( E ~:; ~:; 

70 FOR X=1 TO 20:READ B:P1$(X,X)=CHR$( 
B):NEXT X: REM MACHINE LANGUAGE SS UBROU T 
INE TO MOUE CHARACT[R SET 
75 DATA 104,162,4,1 60, 0,17 7,205, 145, 20 
3,200,208,249,230,206,230,204,202,208, 

80 Q=USR(ADRCP1$»:R[M USE MACHINE LAN 
GUAGE PROGRAM WITH THE USR FUNCTION 
90 FOR X=24 TO 95:R[AD C: POKE CB+X,C:N 
EX'r X 
100 DATA 0,3, 15,63,255,255,255,204 
110 DATA 255,255,255 ,255,255,255,255, 2 
O,:';l 

120 DATA 0,192,240,252,255,255,255,204 
130 DATA 9 , 6,5 ,5,9,6,5 ,5 
140 DATA 144, 96,8 0 ,80, 144,96,80,80 
150 DATA 144,96,80,80,144,96,255,255 

64 



160 DATA 9,6,5,5,9,6,255,255 
180 DATA 2,2,2,2,15,63,255 ,255 
190 DATA 21,84,21,0,192,240,252,252 
200 REM DRAW CAROUSEL 
210 ? "}CLEAR}":DLIST~PEEK(560)tPEEK(5 

61)*256:REM FIND THE BEGINNING OF THE 
D T ~::; r' L () \( L, I ~::; T 
220 POKE DLISTt3,69 
230 FOR X~6 TO 28:POKE DLISTtX,5:NEXT 
X:REM CHANGE ENTIRE DISPLAY LIST TO AN 
'r I c: ~.'.) 

240 r'OI<E '?~:5(li~' () 
250 POSITION 11,1:? "*t":REM FLAG ON T 
(J r> 
260 POSITION 7,2:? "i$$$$$$$$$$$$$$$$$ 

270 FOR X~3 TO 9:POSITION 7,X:? " & 
& '":NEXT X:REM PRINT THE 

r'OLE~:; 
280 POSITION I,X:? "}N})}NNNNN})}NNNNN 
N} (}NNNNN) (}I~)" 
290 REM DRAW THE HORSE USING PLAYER/MI 

300 Al~A-4:REM PLAYER/MISSILE GRAPHICS 
A F~ F :I. 1< (.) nUl) I:: 'r H E C H {.i F,: (:1 c: T E F: ::::; [ T 

310 P1~Al*256t512:P2~P1+128:P3~P2+128: 
P4~P3+128:REM FIRST MEMORY LOCATION OF , 

F' L, () Y E F< ~:; 
320 FUR X~P1 TO A*256-1:POKE X,O:NEXT 
X:REM CLEAR ou'I' THE MEMORY 
330 FOR X~P1+70 TO P1+79:READ C:POKE X 
,C:NEXT X:REM GET DATA FOR THE HORSE 
340 FOR X~P2+39 TO P2+65:POKE X,128:NE 
XT X:FOR X=P2+66 TO P2+18:READ C:POKE 
X,C:NEXT X:REM OTHER HALF OF HORSE 
350 FOR X~P2+19 TO P2+102:POKE X, 128 :N 
EXT X:REM REST OF THE POLE 
360 FOR X~P3+58ro P3+70:READ C:POKE X 
,C:N[)(T X 
370 FOR X~P4+31 TO P4+61:POKE X,128:NE 
XT X:FOR X=P4+62 TO P4+11:READ C:POKE 
)(,C:NEXT :X 
380 FOR X=P4+71 TO P4+94:POKE X,128:NE 
XT X: F<Ei"j F<E~:;T OF THE F'OLE 
390 POKE 559,46:REM DOUBLE LINE RESOLU 
T I Cl N F' U h: F' ./ i"j Ci F~ () F' H I C ~:) 

65 



listing 4-5. Carousel-Animated (continued from page 65) 

400 POKE 53277,3:POKE 5427 9, A1 : REM ENA 
B I... E P I Ivj G r;: i0 F' HIe ~: :; 

410 POKE 623,4:REM SET PLAYFIELD CHARA 
C TE r~!:) pr;: I D r~ I T Y O\)E::F< F' ....... iVi C; h:(:·1 F'H I C ~:; .... EN 
ABLE FIFTH PLAYE::R 
420 POKE:: 704,11B:POKE:: 705,llB : POKE:: 706 
,l16:POKE 707,116:REM HORSE OF A DIFFE 
F<ENT COI.. . Clr~ 
430 POKE 53256,1:PClKE 5325),1 : POKE 532 
58,l:POKE 53259,l:REM MAKE HORSE LARGE:: 
F.: 
440 Hl=105:H2=121:POKE 5324B,H1 : POKE 5 
3249,H2:REM PUT HORSE ON THE SCREEN 
450 DATA 15 ,31,63,47,42,42,10,1B,36,8 
460 DATA 132,142,159,191,251,240,224,2 
40,168,16B,200,144,160 
470 DATA 32,112,24B,252 , 223,15,),31,20 
v20,1B,9,4 
480 DATA 252,254,255,253,149,149 , 14B,1 
46,1:'3/,4 
500 FOR X=1 TO 13:READ B:UP$( X, X)=CHR$ 
(B):NEXT X:REM MACHINE LANGUAGE SUBROU 
TINE F'or~ UF' 
510 DATA 104,160,0,200,177,205,136,145 
,205,200,20B,247,96 
520 FOR X=1 TO 13:READ B:DOWN$( X,X)=CH 
R$(B):NEXT X:REM MACHINE LANGUAGE SUBR 
(JUlINE FCJF< DClI . ..)N 

530 DATA 104,160,255,136,177, 205,200,1 

540 PCJ1=INT(P1/256):P02=(P1-IN 'f(P1/256 
)*256):P03=INT(P3/256):P04=(PJ -INT(P31 
256)*256):REM HI/LCl ADDRE SS OF HORSES 
550 TRAP 660:RESTORE 640:DIR=2 : HP1=532 
48JHP2 r 53249:POKE 206,P01:POKE 205,P02 
: F<Elvl i-lOVE TO THE r~IUHT .... FI...()YEr<~:; U~:)ED 

560 FOR X=1 TCl 9:M=USR(ADRCUP$» : GOSUB 
6/0:NEXT X:UClSUB 600 

5/0 POKE 206,F01:FOKE:: 205,P02:IF DIR=-
2 THEN FClKE 206,P03:POKE 205,P04 
580 FOR X=1 T09:M=USR(ADR(DOWN$):GOS 
UB 670:NEXT X:GOSUB 600:GOTO 560 
590 REM HORSE MOVING ROUTINE - DIR IS 
FOSITIVE - HORSE MOVES TO RIGHT - DIR 

66 



IS NEGATIVE HORSE MOVES LEFT 
600 H1=H1tDIR : H2=H2tDIR 
610 IF (DIR=2 AND H2>146) OR eDIR=-2 A 
ND H1<7 2) THEN POKE HP1,O:POKE HP2,O:H 
P1=HPltDIR : HP2=HP2tDIR:DIR=DIR*-1 
620 POKE HP1,H1 : POKE HP2,H2:RETURN 
630 REM MUSIC FOR THE CAROUSEL 
640 DA 'fA 121,121,108,108,96,81,96.121, 
162,121,121,108.108,96 , 121,162,121 
650 DATA 121 , 108,108,96,81,96,121,72,0 
,108,91,96.121,0,0 
660 TRAP 660:RESTORE 640:REM RESTORE M 
USIC ON OUT-OF-DA'fA ERROR 
670 IF (Xt2)/3=IN','«Xt2)/3) THEN READ 
S:SOUND 0,S,10,10 
680 IF X/3=INTeX!3) THEN SOUND 0,0,0,0 
/ .. 9 0 F~ E T l.J F~ N 

Line 300 subtracts lK from the beginning of the character set. The character set begins on an 
even boundary, so subtracting 4 (or lK) from its beginning yields an even boundary for our 
players, 

Line 310 calculates the beginning address for each player. The first player (PI) begins 512 
bytes after the beginning address for the player/missile graphics. The next player and each 
subsequent player begin 128 bytes after the previous player. We have already decided that these 
players will use double line resolution, so we know how much memory should be set aside for 
each player. 

Line 320 clears the memory that will be used for the players. When the computer is turned 
on, or after a program has been run, there can be garbage in the memory area that we will be using. 
This line removes any data that may have been left there. 

Lines 330-380 draw the horse in the player/missile area of memory. Player PI is the back 
portion of the horse going to the right. Player P2 is the front of the horse and the pole. Player P3 is 
the front portion of the horse going to the left and player P4 is the back and the pole. The data to 
draw the horse is read from lines 450-480. 

Line 390 pokes memory location 559 with 46. This sets the player/missile graphics to double 
line resolution . 

Line 400 enables the player/missiles by poking 53277 with a 3 and te ll s the computer where 
the player/missiles begin by poking 54279 with the value stored in AI. Now the computer knows 
where the graphics are stored , and what the resolution of the graphics should be. If location 53277 
is not poked with a 3, the player/missile graphics will not be enabled. Using player/missile 
graphics in a program requires both location 559 to be set and 53277 enabled. 

Line 410 sets the priority levels of the players and characters on the screen. In this program, 
the characters that are printed on the screen will have higher priority than the players. This will 
make the horse appear to go behind the poles of the carousel. 

Line 420 sets the colors used in the four players. The first two locations are for the first two 

67 



players. This is the horse as it is going from left to right. The next two locations are for the third 
and fourth players. This color is a little darker than the first color. The horse will be going from 
right to left. The darker color will give it the illusion of be ing further away. 

Line 430 sets the size of the horses. By poking each of these locations with a 1, we will make 
each of the four players double the normal size. 

Line 440 places the horse that is facing the r igh t on the screen. Locations 53248 and 53249 
set the first two players on the screen. To remove them from the screen, poke these locations 
with a O. 

Line 500 is the machine language subroutine that moves the horse up. Be sure that the data in 
line 510 is entered correctly. If it isn't, the horse will not move up correctly. 

Line 520 is the machine language subroutine that moves the horse down. The instructions for 
this machine language subroutine are in line 530. 

Line 540 calculates the beginning address of the first and third player. The machine language 
subroutines move 256 bytes up or down. The first horse uses the first two players, which add up to 
256 bytes . The second horse uses the third and fourth players or the next 256 bytes. This line 
stores the high and low order address of the players in the variables POl, P02, P03, and P04. 

Line 550 uses the trap command to test for the end of data. 
Lines 640-650 contain the melody that the computer will be playing while the horse is going 

around. This melody will be played over and over. When the computer runs out of data it will come 
up with an error. The trap will direct the computer to Line 660. This line will reset the t rap and 
restore the data. The DIR variable is the amount that will be added or subtracted from the position 
ofthe horse on the screen. When DIR is positive, the horse will move from left to right. When DIR 
is negative , the horse will move from right to left. HP1 and HP2 are the registers that are poked 
with the position of the horse on the screen. Memory locations 205 and 206 are poked with the 
memory location of the first player. Two bytes are needed for this location because the memory 
address is greater than 255. 

Line 560 moves the horse up nine rows. The music subroutine is accessed every time the 
horse moves up one row. After the horse is moved up, the subroutine that moves it to the right or 
left is accessed. 

Line 570 reinitializes the memory locations that are used in the machine language sub
routines to the player that is being moved. If DIR is positive, the location of the first player will be 
stored in locations 205 and 206. If DIR is negative, the positions of the third player will be stored 
in these locations . 

Line 580 uses the machine language subroutines to move the horse down. Again, the music 
subroutine will be accessed each time the horse is moved down one row. The subroutine to move 
the horse to the right or left will be used after the horse is moved down nine rows. These three 
lines will be repeated over and over again until the system reset key is pressed. 

Line 600-620 contain the subroutine that moves the horse to the left or right. The va lue of 
DIR is added to the position stored in H1 and H2. If DIR is positive, two wi ll be added to this value. 
If DIR is negative, two will be subtracted from this value. (Adding a negative number is the same 
as subtracting a positive number.) This line also checks the position of the horse on the screen. If 
the horse is at the end of the carousel, the value of DIR is reversed, the horse that is on the screen 
is removed, and the registers that control the position of the other horse are placed in variable 
HP1 and HP2. The other horse is then placed on the screen and the program returns. 

Line 660 re initializes the music routine. The program goes to this line when it runs out of 

68 



:::, :I. .::; ';;:~ (-' r- :I. 
~.:, :I. .:::: \:;~ (.:.:, r' ,,:: 
r:':I. <:3':;1(':':' f ' .. :':, 

:::, 1 <:3 ':::~ 'f" :i. (.:.~ 1 ("j () 

:::.- :I. .;::: ':::~ (.:: r' () 

:::, J <::: ':;1 c·~ j" :l. 
r:' 1 .:::~ ':::~ 'f'" :i . .::., 1 (':1 () 
:::·1.::::':;:!·(,· :i. (.:, 1 ('.1 

r:' 1.:::: ':;! 'f'" :i. (.:.:,:1. c.i ::.:? 

:.:., J .::~ '::! 'f" :i. (.::, 1 ('.i ':, ,::~ I", ;':.) :::, J d '::1 (.:.:, f ' '.:.:.; 

r:·· l .:;:: ':;:~ (,.:, l" .":, 

, .. :I. .:::: ':;:~ c':' f ' ';, 

i' . ..., i:i c·j . ::.;.:; ·i .. • .... ) l..i 1", 1.':1 

:::, :I. d ':; : ~ 'f:' :i (.:., :I. 1.'.1 1 
r: ' 1 .: ::: ': ::~ 'f: :i. (.:.\ :I. (':i " 
:::, :I. .:::: ': ::~ 'f'" i. (.:.:, :I. (':i '.::' d I"i ('.i : .... :!. .::;: '::;~ (.:,:, (. ::.:,: 

;::.- :L .: ::: ':: :~ co:' '('. ( ) 

:::, 1.::: '::;~ ;:.:., '['. 1 
, .. 1.:::: ':;:~ (.:., f' 
, .. ·1.:;: ,:::!(.:.:, (. :,':::; 

:::,1 d ';;:! ·f·':i. (·:,1 rj :I. 
,. :I. d '::1 (.:.:, r () 
:::, 1.:::; ':::~ c·, )" 1 
F' 1.::; ':;:!(.:.~ ( . . .... 

:::, J i::: '::! (.:.:, f ' ", 

:::, :I. .::~ ':;:~ 'f :i. C-:' 1 C:I ":, 
:::, :I. d ~ ;;! 'f'" :i , (':',l :I. C:I :.':::: ,::~ I", C:I F':I. ;::: ':;:~ c-:' r- ~.:.:.; 

j'::1 .:::: c 1::. ::.:.:; r' () 1..1 n 1.".1 

Fig . 4-6. Player/ missile priority order. 

F'DI<F 

:I. 

.. ; .. 

69 



data . The trap is reset, the pointer for the data is res tored to line 640. The program continues with 
the next line. 

Line 670 reads a note every third time that this routine is accessed. We can calculate every 
third time beginning with the first time by adding 2 to the value of X and dividing it by 3. If it is a 
whole number (a number without a remainder) a new note will be read and played. 

Line 680 turns the note off every third time that this routine is accessed. This time we simply 
divide X by 3. If it is a whole number, then the note will be turned off. The program will return to 
the main program. 

SETTING THE PRIORITIES 
In the last program, the horse seems to move behind the poles. The pole that the horse is on 

moves up behind the roof of the carousel and appears above it. 
When the player/missile graphics are initialized, we can set priorities for the players, 

missiles, and the characters. The players can appear to move in front of the characters, behind the 
characters, or in front of some and behind others. Figure 4-6 illustrates the order of priority and 
the value that must be poked into decimal location 623. The playfield refers to the playfield 
characters, the characters that are printed on the screen or drawn on the screen with the plot and 
drawto commands. Theplayers are the characters formed by the player/missile graphics. Player 5 
is the fifth player or the missiles as a group . Note: The missiles can be used as four characters, 
each two bits wide, or as a fifth character eight bits wide. To enable the fifth player, poke 623 with 
16 + the priority code. 

As shown in Fig. 4-6, the top player or playfie ld has the highest priority. This character will 
appear on the screen in front of any other. Player 0 always has the highest priority followed by 
players 1, 2, and 3. 

In the next program, which is a simple bird and fish game, we will set the priority code to 8. 
The players will move behind the playfield characters 0 and 1, but in front of playfield characters 2 
and 3. 

Some of the clouds are drawn using the color in playfield character 0, others use the color in 
playfield character 2. The water is made up of three different waves. Depending on the playfie ld 
color used, the fish will or will not be seen . 

Listing 4-6. The Birds 

10 REM LISTING 4.6 
:::.)() h:Ej'vj THE BIF;:n 
~u REM BY L.M. SCHREIBER FOR TAB BOOKS 
-4 () D I j\'j F' 1 ~I; ( :::' 0 ) , U F' ~I; ( ? () ) , D U kl N ~I; ( ::~ () ) 
50 A~PEEK(106)-8:CB~A*:::'56:REM PLACE CH 
ARACTER SET 2K BEFURE END OF MEMURY 
60 POKE 204,A:POKE 206,:::'24:REM STURE T 
HE NEW CHARACTER SET ADDRESS AND THE R 
Ol"j (lODF<E:!:;b 
70 FOR X~l TO 20:REAO B:Pl$(X,X)=CHR$( 
B):NEXT X:REM MACHINE LANGUAGE bUBRUUT 
INE TO MOVE CHARACTER SET 
75 DATA l04,l62,4,160yO,l7},205,145,2() 

70 



80 Q=USR(ADR(Pl$»:REM USE MACHINE LAN 
GUAGE PROGRAM WITH THE USR FUNCTION 
90 FOR X=24 TO 103:READ C:POKE CBtX,C: 
NEXT >=: 

100 DATA 63,12},255,255,127,63,7,0 
110 DATA 0,192,240,248,240,240,192,0 
120 DATA 0,60,126,255,255,127,63,12 
130 DATA 48,56,124,254,255,12},255,78 
140 DATA 5,79,127,63,127,255,99,0 
150 DATA 224,246,255,255,252,222,140,4 

180 DA1A 68,34,170,238,255,255,255,255 
190 DATA 255,255,255,255,255,255,255,2 
I::''::' 
•••• 1 .... 1 

200 GRAPHICS 17:POKE 756,A:REM COLOR T 
EXT MODE & USE NEW CHARACTERS 
::.:) :I. () F> U I·;; E·.? 0 U , 1 A :. P 0 1< E ·.? ° ':,.:, , 1 ::::: 0 : F:' (J 1< E :71 () , 
14:POKE 711,1UO:POKE 712,150 

220 FOR X~:I. TO 10:C=INfCRND(1)*19):R=I 
NT(RND(1)*10):POSITION C,R:C=IN·f(RND(1 
)*6) : IF X/2=INT(X/2) THEN C=C+128 
230 ? $6;CHR$(C+35);:IF C=O OR C=4 THE 
N '!' 
I') .', ,', 
,.; ... \y~} NE)(T )( 
250 FOR X=O TO 19:C=INT(RND(1)*3):POSI 
TION X,15:IF X/3=INT(X/3) THEN C=C+128 
260 ? $6;CHR$(9+C);:NEXT X 
270 FOR X=l TO 8:7 $6; "}LLLLLLLLLLLLLL 
L. L. 1...1._ L L.} " y ; ,\j E: X T >< 
2UO Al=A-8:Pl=A1*256tl024:P2=Plt256:P3 
=P2+256:REM FIRST MEMORY LOCATION OF P 
LAYERS-2K ABOVE CHARACTER SET 
290 FOR X=Pl ·fO Pltl023:POKE X,O:NEXT 
X:REM CLEAR OUT THE MEMORY 
300 REM SET UP PLAYERS - BIRD & FISH 
310 POKE 559,62:REM SINGLE LINE RESOLU 
TION FOR P/M GRAPHICS 
320 POKE 53277,3:POKE 54279,Al:REM ENA 
F·: L. I::: F' / 'v, G I:;: (~ F' H I C ~:) 
330 POKE 623,S:REM SET PLAYFIELD CHARA 
CTI:::RS PRIORITY OVER PIM GRAPHICS - I:::N 
ABLE FIFTH PLAYER 

71 



Listing 4-6. The Birds (continued from page 71) 

340 POKE 704,2:POKE 705,200: POKE 706,2 
OO:REM COLOR BIRD & FI SH 
360 RESTORE 380:FOR X=P2f152 TO P2t159 
:READ C: POKE X,C:NEXT X: REM DRAW FISH 
~:; [.\J I ,""j I"i I H G 
370 FOR X=P3f152 TO P3f159:READ C:POK E 

X,C:NEXT X: REM DRAW FISH S WIMMING 
380 DATA 0,48,121,255,255,121,48,0 
390 DATA 60,24,24,60,126,126,60,24 
400 C=INTCRND(1)*3):RESTORE 401+C:FOR 
X=P 1f60 TO P1f65 : READ C:POKE X, C:NEXT 
X:REM GET DATA FOR THE BIRD 
401 DATA 0,0,66,165,24,0 
402 DATA 0,129,66,36 ,24 ,0 
403 DATA 0,0,0,36,90,129 
460 FOR X=1 TO 13:READ B:UP$(X,X)=CHR$ 
(B>:NEXT X:R EM MACHINE LANGUAGE SUBROU 
T I i\~ E F U F< U F' 
470 DATA 104,1 60,Q,200,177,205 ,1 36v 145 

480 FOR X=1 TO 13:READ B:DOWN$(X,X)=CH 
R$(B>:NEXT X:REM MACHINE LAHGUAGE SUBR 
OUT I NE FOF: UF' 
490 DATA 104,160,255,1 36, 177,205 ,200,1 

500 P01=INT CP1 /256):P02=( P1 -INT(P1/256 
)*256):P U3 = INT(P 3/256):P04=(P3- INT(P 31 
256)*256):RE M HI / LO ADDRESS OF PLAYERS 

510 V=INT(RND(1)*100)t50:V1=200:U=60:P 
UKE 206,PU1:POKE 205,P02:GOSUB 720: REM 

~:; E T "I () I:;: I {-'I n L E ~:; F D F~ F' L 1:1 Y E F( ~:; 
520 POKE 53278,O:PUKE 53249,V1:V1=V1-1 
:I F V1=20 THEN V1=200 
'.:.:.; 3 0 U 0 ~:; U B (; :3 0 
540 PUKE 53248,V:C=INT(RND(1)*3):RESTO 
RE 400fC:FOR X=P1+U TO P1fUt5:READ C:P 
01< E X y C : N EXT X 
560 IF PEEK(53260) <>2 AND (V1=200 DR U 
=149) THEN IF V1/4=INT(V1/4) THEN FISH 
=FISHfl:GDSUB 720:GOTO 520 
570 IF PEEK(53260)<>2 THEN 520 
580 POKE 53249,O:POKE 53250,V:BIRD=BIR 
D+1 

72 



600 POKE 206,P03:POKE 205,P04:FOR X=1 
TO 10:Q=USR(ADR(UP$»):Q=USRCADR(DOWN$) 
>:NEXT X:REM BIRD EATS FISH 
610 POKE 53250,O:FOR X=P1+U TO P1+U+5: 
POKE X,O:NEXT X:REM ERASE BIRD 
620 GOSUB 720:GOTO 500 
630 IF SlICKCO)=14 AND U>40 THEN Q=USR 
(ADR(UP$»:U=U-l:RETURN :REM MOVE BIRD 

UF' 
640 IF STICK(O)=13 AND U<149 THEN Q=US 
R(ADR(DOWN$»:U=U+l:RETURN :REM MOVE B 
IRD DOWN 
650 IF SlICK(0)=7 AND V<190 THEN V=Vt1 
660 IF SlICK(0)=11 AND V>53 THEN V=V-1 
6 70 RETUF~N 
710 REM ROUTINE PUTS SCORE ON SCREEN 
720 POSITION 2,22:1 16;"BIRD":POSITION 

14,22:1 t6;HFISH"!POSIJION 3,23:1 16; 
BIRD;:POSITION 15123:1 16;FISH; 
730 IF FISH<100 AND BIRD<100 THEN RETU 
RN 
740 POSITION 2,10:1 16;"GAME OVER":POS 
ITION 1,12:1 t6;"PRESS START TO PLAY" 
750 IF PEEK(53279)<>6 THEN 740 
760 FISH=O!BIRD=O:POP :POKE 53248,O:PO 
KE 53249,O:POKE 53250,O:POP :GOTO 200: 
REM CLEAR VARIABLES 

Lines 40-190 are the same as the past few programs. In this program they will dimension the 
strings used for the three machine language subroutines. The machine language subroutine to 
move the character set from ROM to RAM is the same. The data lines replace the characters from 
the pound sign to the plus sign. These characters will draw the clouds and the water on the screen. 
See Fig. 4-7 for these characters. 

Line 200 sets the mode that will be used: large color characters with no text window. Poking 
756 with the value of A changes the character set. 

Line 210 changes the colors of the characters. There will be two colors used for all the 
characters: white and green. The background will be changed to light blue. 

Lines 220-240 place the clouds on the screen. The position for the clouds is chosen 
randomly. No two screens will look the same. If the first or fifth cloud is chosen, the program will 
add the second half of the cloud. Half of the clouds on the screen will be drawn with the characters 
in the normal character set. The other half of the characters will be drawn as if they were printed 
in inverse video. The color will be the same, white, but the priority will be different. 

Lines 250-260 print the top of the water on the screen. This time every third will be printed 
as a inverse video character. 

73 



74 

>< 
>< .\ 

>< >::: 

>< x 
\/ 
/ \ 

V 
,r .. 

,... \/ 
,..\ /\ 

\/ ....•. 

/" 
...... 
...... 

\ / .. ', 

>:" 

.:{ 

\, .. , 
...... 

>< 
>::: 

\1 
/ ... 

/ ... 

>::: >< 
.,:':\ 

.. '\ 
... / 
/\ 

):" 

/' .. 
\..-

>< 

".,... ...... 

>< >< >< 
"v' .... \ 
" .1 ... \ 
v ...... 

\/ 
l\ 

>< :x: 
>< >< 

>< \:" .... 

\:., 

/ ... 

>< 
\ .. ' \." ...... . ..... 

)< 

>/ I 

)< 

\/ . ..... 

x : >< X : X >< V' 

\,1 
,t". 

>< 

\ .. ' 
."" 

>< 

>::: 

>< 

>< 

>< 
.x. ! >< 

/ ... 

"./ 
/ ... 

...... 

l·. 

\,.' .... , 

V 
i \ 

\ .. ' ... ... 

>< 
.... ,. 

\/ 
/ ... 

>< 
\/ 
1\ 

Fig. 4-7. Character set for birds . 

\." 
/:" . 

>< 
>< 
>::: 
' .. / 
,I .... 

. ... 

':-:" 

"./ 

\/ 
/ ... 
\/ ...... 

>< 
>< 

v I 
."'. , 

.. \ I /... .::-:: 

... / 
.. \ 
\/ 

I ,,:':" I ./ 

.;':" I ...... 

>::: 

\,.' 
/ \ 

\/ 
/\ 

>< 

V 
/ ... 
\.1 ...... 

':/ 

... ... 

>< 
V 
,t ••• 

,,:':" 

>:" ! 

...... 

. ..... 

>< 

".'" /". 

...... 

.• :':" 

.,:-:,. 

\/ 
,t., 

.i\ 

><. 

\:' 
/ ... 

::.< 
,.:':, 

>< 

,'" . .r •. 

>::: 

"',:' 

/:" ,'.\ 

::< 

';-:" 

\ :' 
l\ 

>::: 

>< 

x >< : 



:\ 
I \/ 
1 / ... 

: >< 
, \/ 
I .. ···. 

I V' 
1 /\ I 

: ~{ : 
)<: :)< 

: x : >::: : >< :><: ><:x 
:x:x :x X:X : X:X X: 

: >< : >< : >< : x : >< : )< : ){ 

: >< : >< : >< : >< : >< : >< : >< 

.. : .. 

1 \:' I ""/ , 
I / ". I .. '\ I 

1 ' .. / 1 \/ 1 \/1 \ / 1 
1 ",', I .... , 1 :'\ I /". I 

\1 I 
/ ... I 

\ :' I 

" 1 

:x:x:x :x:x:x: x:x : 
:x:x:x:x:x:x:v:x: 

! ' ..... I \ / I \/ I \/ , 
, /\ I ...... I /\ I ... \ I 

1 \ / I V , 
I /\ , /, I 

: >< : 
: :/:::: : >< : 

\/ I \/ 
/\ I 

I ...... I 
1 /' .. I 

\ .... I ... ... , 

>< : 
... 1 
..... I 

I \/ I 
I / \ I 

1 \/ f 
! . 1 

"./ I 
.... ". I 

1\/1\/'\/1\/ 
, •• " .. 1 .... " I / ... ! ... \ 

, ··.f 1 \/ I 
1 /". I ...... I 

I \/ 1 \/ 1 
I.·· ... I ...... I 

1\.-"\,,,,1\/1\/1 
I ...... I ...... 1 /". I .... \ , 

\/ I \/ I \/ 1 \/ I \ / f \."' I 
/ \ I / '~ , /". I /\ I ...... I / ... I 

1 \/1 \1 I \/ I \/ '\ .... , ... / , 
, ...... 1 ...... I ., •••• 1 ...... 1 ...... I ...... , 

,\/ ' \/ 1 \ . ." 1\./ 1 
I ...... 1 / ... I .. '\ I /". I 

1 \/ I 
I / '. I 

: >< : >< : 

'./ ! 
..... , 1 

I \/ I 
I :'\ I 

I \/ I 
I .. "'·. I 

\ .. ' 1 
.. '\ I 

I \/ 
t /\ 

I ....... I 
I ... \ I 

Plascrs for bird 

Line 270 colors the bottom of the screen with water. 

I ' .... I 
! /\ I 

\ .... I \ •. , 1 
/\ I ...... I 

I ' .. / ! 
1/\ , 

I \ ... 
I / ... 

Line 280 calculates the beginning of the player/missile graphics area. In this program we are 
using the single resolution character set so the player/missile graphics must begin on an even 2K 
boundary. By subtracting 8 (2K) from the beginning of the character set, we know where to begin 
the player/missile graphics . The first player begins 1024 bytes from the beginning of the memory 
set aside . The second and thi rd players are 256 bytes apart. 

Line 290 clears the area of memory that will be used for player/missile graphics. This 
memory could contain data from a previous program or garbage . This would show up on the 
screen in the player/missile area. 

Line 310 pokes 559 with 62. This tells the computer that we are using single resolution for 
these players. 

Line 320 enables the player/missile graphics. If a 3 were not poked into 53277, the 
player/missile graphics would not be enabled. Poking 54279 with the value of A1 tells the 
computer where the player/missiles begin. 

Line 330 sets the priorities of the players and characters. The characters that would be 

75 



printed as normal characters have a higher priority than the player/missile graphics. The 
player/missiles have a higher priority than the characters that are printed in inverse video. 

Line 340 sets the color for the players. The bird will be black and the fish are green. 
Remember, there are two fish images as players, one that is swimming and one that is caught. 

Lines 360-390 first restore the pointer to line 380. This is the first line of data for the fish . 
The first time that the program is run, there is no problem having the computer read the correct 
data for the fish. If the program is played again, without rerunning it, the pointer will be pointing to 
one of the lines of bird data. After the pointer is set to line 380, the program reads the data into the 
player/missile graphics area that is set aside for the second and third players. 

Line 400 chooses a number from 0 to 2. There are three different ways that the bird can be 
drawn on the screen. The program chooses one, restores the pointer to that line, then reads the 
data into the area set aside for the first player. 

Line 460 places the machine language subroutine that will move the player up into UP$. Be 
sure that the data is entered correctly. 

Line 480 places the machine language subroutine that moves the players down into DOWN$. 
Line 500 finds the first memory location of the first player. This location is greater than 255, 

so it occupies two bytes. The high order address, that is, the whole number of the address, is 
stored in the variable POL The low order address, the remainder, is stored in P02. This address is 
used by the machine language subroutine. 

Line 510 chooses a random number for the vertical position of the bird. The bird will always 
be the same distance from the top of the screen, but it can appear in any column on the screen. 
This number is stored in V. VI is the vertical position of the fish on the screen. The beginning 
address of the first player is placed in memory locations 205 and 206. The program is then 
directed to the subroutine in lines 720-730. This places the words BI RD and FISH on the screen 
along with a score (0) for each. 

Line 520 clears the hit register. In the ATARI computer, there is one memory location that 
registers when a player hits a miss ile, characters, or another player. This register must be 
cleared before it can be read . By poking location 53249 with the value stored in VI , we place the 
fish on the screen . One is subtracted from VI. The next time the program executes this line, it will 
move the fish over one to the left. If the value in VI becomes equal to 20, the fish is nearly off the 
screen. The value of VI is reset to 200. _ 

Line 530 sends the computer to line 630. The computer will check the joystick to see if it has 
been moved. When the computer returns to this part of the program, the bird may have moved up 
or down, or the value in variable V may have changed indicating that the bird has moved either to 
the right or the left. 

Line 540 moves the bird to the right or left by poking the value of V into register 53248. The 
computer then chooses a random number to change the wings on the bird. The number is added to 
400 and the pointer for the data is restored to this line. The computer reads the new data for the 
bird and pokes it into the area of memory in the player/missile graphics area that the bird 
occupies. The variable PI is the beginning of the first player's area of memory. The variable U is 
the offset for the first byte of the bird. It increases and decreases as we move the bird up and down 
on the screen. 

Line 560 checks the register that will record whether or not the bird (player 1) has hit the fish 
(player 2). If the bird has not hit the fish (PEEK(53260) < > 2) and the fish has been placed back on 
the right side of the screen, (VI=200) or if the bird is resting on the water (U=149) and the fish 
has moved four places, the fish will be given a point. This keeps the player from landing the bird on 

76 



the water and waiting for the fish to come by. The subroutine in line 720 updates the score and the 
computer continues the program with line 520. 

Line 570 sends the computer back to line 520 if the bird has not hit the fish. 
Line 580 removes the swimming fish from the screen. The computer will execute this line if 

the value in register 53260 is 2. The swimming fish is replaced by the hanging fish. The score for 
the bird is increased by one. 

Line 600 pokes the beginning address for the third player, the hanging fish, into memory 
locations 206 and 205. The machine language subroutines to move the fish up and down are 
executed ten times. The fish never really moves up and down. This gives the effect of the fish 
wiggling while the bird tries to eat it. 

De·:·)c:i. lll i:; l 
Co (:.! f) 

104 
160 

o 
;.~ () () 

1'/,)' 
::> 0 :.i 

:I. :.:1 (~.) 
14:'.; 

:200 
200 
::.:.'4'/ 

9\~:. 

104 
I ()O 
2 ~5 ~:5 
:J. 3() 

1/7 

200 
:I. 4 ~:5 

20 ~:.:j 

:1. 36 
)on 
24'/ 

9() 

Table 4-1. Machine Language Listing to Move Players Up/Down. 

I::'L.(~ 

I...D '{IIO 

I N'{ 
1...[1(, ( ;.:.'O:'.'.i) ,y 

DE \( 
~:) T (I ( :2 () :'.'.i ) , 'yO 

INY 
DNE 

Asse mbl s I...an~ua~e I...i s tin ~ 

;Pu ll the accumu l ator off the stack 
Il...oad the index Y with ze ro 

; Incre ment the index Y 
; I...o ad the acc umulator with the value 

o·r the ael::.! 1" (':') <:;';:. :i. n 1 Dca t :i. on ?O :'.'i·· .. ;? O(, 
of·f;';f:·)t t1'::; Y 

; Decrement the inde x Y 
; Store the v a lue in the accumulator 
in th e me mors locat ions pointed to 
bs )OS-206 offset bs Y 

;; Inc rf)me·:·) nt. Y 
;If the index Y IS not zoro, ~o 

back. n t)~:~ tt)~:; 

;' F;:et.u 1" 1"1 1' .. 0 D (i~:) J C 

Routine to mo ve character UP 

PI...A 
L.DY 

DE '( 
LD(i (:20 :'.'.i) y Y 

INY 
~:; T(~ ( )O :'.'j), Y 

DEY 
BNE 

; I::'ull 
; I ... o ael 

the 
t.h,·:·l 

dCC Ur(lu 1 a to 1" 

:i. n .... .i f) ;.,: '( 1,. • .1 :i. t . h 

; Decre ment index Y 

off the 
,"\ 1::'1::' .,:. ,J • .,I 

; Lo ad the acc umulator with the 
va lu e of the address in l ocation 
20S-206 offset bs Y 

; InCi"e·:,' llI c-:·)nt Y 
;Sto re the va lu e in tho acc umul a tor 
in the·:·) rilf) 11'10 r~,! 1 0 ca t ion F'O :i. 1"1 t.c-:·:'el t.o 
bs 20 5-206 offset bs Y 

; Df)C re I11(-:·)nt. Y 
' If the ind ex Y is not zero, ~o 

b a c k. D t::r ~ : ~ t. r~ ~:; 
;' F(,·:·:,turn to B("~:;IC 

Ro utin e t o move c harac t er down 

77 



Line 610 erases the bird. The bird will be redrawn in the player area of memory. If we don't 
erase the bird, we will have two birds in that area when we only want one. 

Line 620 updates the score and sends the computer to line 500 where the bird is repositioned 
on the screen and you are given another chance to try to catch a fish. 

Lines 630-670 check the joystick to see if it has moved. If it has been moved up or down, the 
computer will use the correct machine language subroutine to move the bird. The variable U1 will 
be changed to reflect the new position of the bird on the screen. If the joystick has been moved to 
the left or right, the variable V will change. 

Line 720 updates the score on the bottom of the screen. 
Line 730 checks the score to see if either the bird or the fish has over 100 points. If neither 

does, the computer will return to the same. 
Line 740-760 ends the game when either the fish or the bird passes 100. The computer 

checks location 53279 to see if the start key has been pressed. When the value of this location is 6, 
the start key has been pressed, and the program can continue. The scores are cleared, the players 
are removed from the stage and the program goes to line 200 to begin the game again. Since this 
was entered as a subroutine, the return address is popped off the stack. If the return address for a 
subroutine is not popped off the stack, it will stay there. If more and more addresses are placed on 
the stack and never removed, the stack could run out of space, causing the program to crash. 

Table 4-1 contains explanations of the machine language subroutines that are used to move 
the players up and down. Each machine language subroutine that is to return to BASIC must pull 
the last byte off the stack. If it doesn't, the subroutine will not return. 

78 



Chapter 5 

Looking 
at BASIC 

By now, writing programs in BASIC is almost as natural as writing letters in English. But, did you 
ever wonder how the computer interprets the commands that you type in? Or how it knows that 
the line that was just entered contains an error? Just what does the computer do with a program? 

THE TOKEN COMMANDS 
Each time that you see a variable in a line or command, BASIC looks it up in its Variable 

Name Table. Each variable is assigned a number in the order that it was entered. This number is a 
token that represents the variable name in the line or command. If the variable appears in the 
table, BASIC assigns its token for the variable . If it doesn't appear in this table, it is added to the 
table. Up to 128 variables can be used in one BASIC program. 

The BASIC commands are converted into token commands. A number or token represents 
every command that BASIC knows. A one number token uses less memory than a four or five 
character word. As you enter a program line, BASIC converts the line into a string of numbers or 
tokens. This makes it easy for BASIC to execute the program. 

The line numbers that you enter are converted into two byte numbers and stored in the area 
that BASIC sets aside for the program. Why two bytes? BASIC will accept line numbers up to 
32767. When this number is converted to hex, it becomes 7FFF, the largest positive sign number 
possible. Any number in hex 8000 or larger is considered a negative number, BASIC does not 
allow negative line numbers. 

By changing the line number that we entered into a two byte number, every line in BASIC 
will have two bytes set aside for line numbers. This makes it easy for BASIC to manipulate the 
lines. 

Once the line number has been converted into a two byte number, a dummy number will be 
placed into the line. This number will contain the offset, or the number of bytes in this line. Right 
now, BASIC does not know how many bytes are needed for this line. The next number is how 
many bytes are in this statement. Since there can be more than one statement on each line, BASIC 
must keep track of both the line length and the statement length. This number will also be a 
dummy number until the entire line is checked . 

Now that BASIC knows that this is a program line, it looks for a command. The entire list of 

79 



Table 5-1. BASIC's for Tokens Commands. 

TDI<[i"! 
o 
:I. 

"'1 
,/ 

D 
\ .. ' 

10 

:I. /~. 

:I. ~:.'.i 

:I. <':' 
:I. ::.:! 

:I.E: 

~? () 

''')'''j 
,,',.:: .. 

"j "X 
,': .. \." 

'0 ) ,(. 
,\', , \.J 

C U I··l 1'1 i:~ i) :0 
F:Ci·· j 
:0(:'1"((:) 

I J-.1F:' I...!T 
CUI.UF: 
1.1 r:;T 
[(.I ·r[h: 

L[T 
IF" 
I::' UF;; 

(.I[ >< r 

[iUlD 
[ifJ TD 
C-:iUhl..J:U 
Th:tIF:' 
F:'([ 
CU i'~'r 

C:U j'-j 
CI. .. U~::;[ 
C: I.I? 
n[e-! 
n I iii 
F,.·.IO 
i ·~ [l..d 

CJF'[i') 
LU(iD 
~::;(il .. )[ 

~:; T(:lTI..Jr:; 

possible commands is in ROM. If the first command following the line number is not in this list , an 
error message will appear on the screen. 

If the command is found in the table, it will be converted into a code or token value. 
Depending on the command, BASIC will check the next part of the statement to make sure that it 
is accurate. For example, the print command must be followed by double quotes, a variable, or a 
s tring variable, FOR must be followed by a variable that is equal to a number, the next part of the 
command, TO, and another number, TRAP must be followed by a line number or a variable, etc. If 
any element of the statement is missing or otherwise incorrect, BASIC will stop checking the 
line, reprint it on the screen, with the word ERROR, and highlight the possible problem area. 
Once BASIC has determined that the statement is correct, it will replace the dummy numbers 
with the correct figures and wait for the next statement or line to be entered. 

A complete list of commands and their BASIC tokens are listed in Table 5-1. Each command 
has its own numerical token. When you enter a BASIC statement into the computer and you do not 
type the entire word out; for example, GR. 1 instead of GRAPHICS 1, and you list the program, 
BASIC will expand the command and print it correctly. When entering a BASIC program, you only 

80 



r:rD 
.': .. ~ .. ' 
r )D 
.': .. ... 
... ,,', 
.. :~I I.) 

",.'1::' 
":)",,1 

··x .. t . .... '\ .. , 

".';.'0 
\ . )\ .. ' 

/ , "X 
"y ... ,1 

/, ... , 
"y"y 

'.:.:.i1 
1:: · · .. \ 
... .1 .. ::. 

NUl[ 
Pc) I ('''r 
/ID 
DN 
F'UI':'[ 
F:'F: I \···1T 
I::': (:1 :0 

F:[(lfi 
F:Lh ·rUI::': L 
F;:L ·rUF:N 
F;:Uh! 
::;lU F:' 
F'UF' 
? .:: F:' F: I ( .. ' T ) 
Li[T 
F'II T 
Li I::': (:1 F' H J C ~: ; 
F>I..U·r 
F> U ~::; I l J U \\' 
DC)::::; 
fiF: (:1 [..,1 TD 
~:; L ·r C: D 1... D F~ 
I..U[(l ·rF 
~::;UI...INO 

I...F:'F: J NT 
[:::'.(,' .. ) [ 

CI...U{\,O 
I.. F l .:: J ('j F:' I.. 1 F D ) 
FI::':F:(Jh: 

save keystrokes, not bytes, when you use the abbreviated forms of the commands . The command 
will use the same amount of memory no matter which way it was entered. The same is true about 
spaces . On certain other computers, you can save memory by e liminating the spaces in the 
statements. ATARI BASIC will automatically place spaces between the commands when it li sts 
the program on the screen. 

FILE STRUCTURES 

When we store a value in a variable, string, or array, BASIC must be able to reference the 
variable and to store or retrieve the information. First, it must be able to identify the type of 
variable. Then, it must have memory set aside for it. 

Each time we use a new variable in our program, we use eight bytes of memory. A string and 
an array uses the eight bytes plus the size of the string or the array. The names of the variables are 
stored in a table. A second table stores the value of the variable or the location in memory that 
stores the string or array information . Because of the amount of memory that is used by variables, 
strings, and arrays, we try to reuse variable names whenever possible. 

81 



However, it is better to use variables than numbers in a program if you will be using the 
number often. For example, if you will be going to a line for a timing routine from different parts of 
the program, it saves me mory to make the line number for timing routine equal to a variable, and 
then GOSUB the variable. 

BASIC TABLES 

The first table that BASIC uses is called the Variable Name Table. Eve ry variable used in a 
program is assigned a number from 0 to 127. If you try to use more than 128 variables in a program 
you will set an error message. 

listing 5-1. BASIC Tables-Variable Name Table 

10 REM LISTING 5-1 
20 REM BASIC TABLES 
3 0 F;; E 1'1 :H Y L . 1"1" :::; C H F~ C I B E F~ F U F~ T f~ D B U 01< ~:; 

40 DIM A(10,),STRING$(10) 
50 TABLE=PCEK(130)tPECK(1 31)*2566 
60 FUR X=TABLE TO 'j'ADLEt20:? CHR$(PEEK 
ex» ~ ~NE:X:T x 

If you enter the program without any errors, your screen should display -

A(STRIN G$T ABLEX 

and some other characters. The underlined characters appear in inverse video on the screen. 
Look at the listing. Each variable appears in the order that it was entered into the program. If 

an error was made, for example, PRRK was typed in line 50 instead of PEEK, BASIC would have 
treated PRRK as a variable and placed it in the table even if you corrected it before the program 
was run! 

Each type of variable is stored differently in the table so that BASIC can tell which are 
variables, arrays, and strings. If it is a variable, its last character is stored with the most 
significant bit set. This makes the character appear in inverse on the screen. The E in the variable 
table is in inverse. The X is only one character long, so it is in inverse video. 

If the variable is an array, the character after the variable is an open parenthesis with the 
most s ignificant bit set. The first variable in our table is an array. 

If the variable is a string variable, the fir st character after the variable will be the $ with the 
most significant bit set. STRING$ has the most significant bit of the $ set. 

As new lines are typed in for a program, BASIC checks thi s table to see if each variable has 
been used before. If it has, BASIC ass igns its token for the variable . If it doesn't appear in this 
table, it is added to the table and its token is used in that line . 

Because each variable is stored in this table, shorter variable names will, of course, use less 
memory. But, because each variable has its own token in a BASIC line, you only save memory in 
the variable table. The program will use the same number of bytes whether the variable is one 
character long or 10 characters long. 

Once the variables have been stored in the Variable Name Table, BASIC has the token 
number for that variable . The first variable is 0, the second 1, etc. Information for each variable is 

82 



stored in the Variable Value Table. Each variable is listed in this table in the order that it is listed 
in the Variable Name Table . Let's add these lines to our program. 

Listing 5-1 A. BASIC Tables- Variable Value Table 

10 REM LISTING 5-1A 
20 REM BASIC TABLES 
30 REM BY L.M. SCHREIBER FOR TAB BOOKS 
40 DIM A(10,2),STRINGS(10) 
50 TABLE~PEEK(130)+PEEK(131)*256 
60 FOR X=TABLE TO TABLE+20:? CHRS(PEEK 
(X»;:NEXT X:? :REM SHOW THE VARIABLES 

I N THE T (~BLE:: 
70 VLUE=PEEK(134)+PEEK(135)*256:REM AD 
DRESS OF THE VARIABLE VALUE:: TABLE 
80 P=O:FOR X=VLUE:: TO VLUE+31:REM SHOW 
INFORMATION FOR FIRST 4 VARIABLES 
90 PRINT PEEKeX),:p=P+l:IF P=4 OR P=8 
THEN PRINT :IF P=8 THEN PRINT :p=o 
:I. O() NEXT )< 

The numbers that appear on your screen tell the computer what kind of variable each one is 
and supplies information on its contents . Your screen should look like this: 

65 0 0 0 
11 0 3 0 

129 1 198 0 
0 0 10 0 

0 2 65 118 
118 0 0 0 

0 3 65 119 
37 0 0 0 

The first eight bytes (numbers) contain information for the first variable A. The 65 indicates 
that it is a dimensioned array. The 0 is the variable number. A is the first variable entered in this 
program. The next two bytes are added to the beginning of the string/array area to find the 
beginning of the data for the array. In this case, A is the first variable dimensioned, so its data will 
not be offset from the beginning of the s tring/array area. It will be contained in the first 198 bytes. 
The next two numbers, the 11 and the 0 are a two byte value for the first dimension of the array. 
Our array is dimensioned to 10,2; the first dimension is 10. The first dimension of the array is 
always one greater than the value in the dimension statement. The last two numbers, the 3 and 0 
is the second value of the array . Again , this value is one greater than the value in the DIM 
statement. 

83 



Table 5-2. Variable Value Table. 

b ~:~ t (.:.~ :I. I r) 
I ..... 3 : 4 : 5 : 6 "/ : n 

: ................... : 
numeric variable () v:!l: 6 byt.e Binary Coded Decimal 
-------------------:----:----:._--:----:----:----:-

al' I'a~:1 : 6~:5 : v:U:: off~,;f~t : :I.~,; t. [111'1+:1.: ::.' ndDIM+:I. 
._ ..... ............ ... , ................ ....................... ................ : ............ .... : ........ .... .... : ... . ... : ..... ..... ...... . .. : . ... .. .... . .. , .. 
~,; t. r :i. n ~.:J off ~,; (.:.~ t , : 1 (.:.~ n !.:.l t. h : DIM 

: .... .......... .. 

The second group of numbers is the information for our string, STRING$. The first byte is 
129. This means that this variable is a dimensioned string. The next byte is the variable number. 
STRING$ is the second variable in the table. The next two bytes contain the offset that is added to 
the beginning of the string/ atray area to find out where the data for the string is stored. The 
contents of the first byte is added to the contents of the second byte after it is mUltiplied by 256. In 
this case, the second byte is zero. So we know that the information stored in STRING$ begins 198 
bytes after the beginning of the string/array area. The next two bytes contain the length of 
STRING$. We have not stored anything in this string, so its length at this time is zero. The last 
two bytes in this group tell the computer how many bytes to set aside for this string. We 
dimensioned STRING$ to 10, so the first of the two bytes is 10, the other is zero. 

The next group of bytes contain the information for the variable TABLE. This variable was 
not dimensioned. It was the next variable that was entered into the computer. The first byte for 
this variable is a zero. This means that it is a numeric variable. Only one number can be stored in 
this variable. The next byte is the variable number. This is the third variable in this program, so 
its number is 2. The next six bytes contain the value of TABLE. Since only one number can be 
stored in a numeric variable at a time, the computer stores this information right in this table. It 
uses six bytes because it stores the number as a Binary Coded Decimal. This format differs from 
the format used when the computer stores a number using two bytes. At this point it is not 
necessary to understand how or why the computer uses this format, just that it does. 

The last group of bytes contain the information for the variable X. Again, this is a numeric 
variable as indicated by the zero. It is the fourth variable used in this program so its number is 4. 
The value stored in X is represented in the next 6 bytes. Table 5-2 is a chart showing the different 
ways the variables can be represented in the Variable Value Table . 

The area set aside for the strings and arrays is called the String/Array area. The address for 
the beginning of this area is stored in memory locations 140 and 141. Let's add the following lines 
to our program. 

Listing 5-1 B. BASIC Tables- String-Array Area 

10 REM LI STING 5.1B 
20 REM BASIC TABLES 
30 REM BY L . M. SCHRE IBER FOR TAB BOOKS 
40 DIM A(10,2),STRING$(10) 
50 TABLE=PEEK(130)tPEEK(131)*256 
60 FOR X=TABLE TO TABLEt20 :? CHR$(PEEK 

84 



(X»;:NEXT X: 7 :7 : REM SHOW THE VARIAB 
I... E ~ :; I NTH E T (~B I... E 
70 VI...UE=PEEK(134)tPEEK(135)*256:REM AD 
DRE SS OF THE VARIABLE VALUE TABLE 
80 P ~O: FOR X=VI...UE 'fO VI...UEf31:REM SHOW 
INFORMATION FOR FIRST 4 VARIABLES 
90 PRINT PEEK(X),:P=Pt1:IF P=4 OR P=8 
THEN 7 "":IF P=8 THEN PRINT :P=O:REM 
PRINT ESC-CTRI...-UPARROW IF 4 OR 8 
lO O i\lE XT X 
ll O STRING$ = "HI THERE" 
l 20 FOR X=VI... UEt 8 TO VI...UEtl5 :? PEEK(X)¥ 
:NEXT X: 7 : REM SHOW THE CHANGE IN THE 
VARIABLE VALUE TABLE 
l3 0 STAREA=PEEK(l40)tPEEK(l4l)*256:REM 
Fli'~D "iHEHEr:!Ii"-~i'~Ii\!CJ OF THE ~:;'rF~ING/(~F~F~(~ 

l 40 MESSAGE=STAREAtl98:REM FIND THE ST 
h:li...JCi 
l50 FOR X=MESSAG E TO MESSAGEtI...EN(STRIN 
G$)-1:REM STAR T TO END OF STRING S 
160 7 CHR$ ( PEEK (X»;: REM PRINT THE CHA 
I::': (1 C T F h: U F T H F I,) () L, U I~ : I NTH I ~:; I':) F~ E (~ 
1/0 NEXT X 
l80 ? :7 "STRING = " ;S TRING$ 

The fifth group of bytes is nearly identical to the second group. This is the information for 
STRING$. The only byte that is different is the fifth byte. It contains an eight because the 
message in STRING$ is eight characters long. The next line prints the contents of STRING$ by 
peeking at the area in memory where STRING$ is stored. Finally, STRING$ is printed to show 
that the message is the same. 

By knowing this information, it is possible to trick the computer into looking at memory that 
was not originally set aside as a string by the computer. In the next.chapter you will learn how to 
manipulate this information. 

Another area of memory that BASIC uses is the Output Buffer. When a BASIC line is entered 
into the computer, the entry must be s tored somewhere while it is being tokenized and checked 
for the proper structure. The area set aside for this is s tored in memory locations 128 and 129. 
This area or buffer is 256 bytes long. 

Listing 5-1 C. BASIC Tables-Buffer 

lO REM LISTING 5.lC 
20 REM BASIC TABLE S 
30 REM BY I....M. SCHREIBER FOR TAB BOOKS 
40 DIM A(10¥2)¥STRING$(lO) 
50 TABLE=PEEK(130)tPEEK(13l)*256 
60 FOR X='fABLE TO TABLEf20:? CHR$(PEEK 

85 



Listing 5-1 C. BASIC Tables- Buffer (continued from page 85) 

( X»;:NEXT X:7 :7 :REM SHOW THE VARIAB 
I ... E~: ; IN THE TABI ... E 
70 VLUE =PEEK ( 134)tPEEK(135)*256:REM AD 
DRESS OF THE VARIABLE VALUE TABLE 
80 P=O:FOR X=VLUE TO VLUE+31 : REM SHOW 
INFORMATION FOR FIRST 4 VARIABLE S 
90 PRINT PEEK(X),:P=P+l:IF P=4 OR P=8 
THEN 7 "":IF P=8 THEN PRINT :P=O:REM 
PRINT ESC-CTRL-UPARROW IF 4 OR 8 
100 NEXT X 
110 STRING$ ="HI THERE" 
120 FOR X=VLUEt8 TO VLUEt15:7 PEEK(X), 
:NEXT X:7 :REM SHOW THE CHANGE IN THE 
VARIABLE VALUE TABLE 
130 STAREA =PEEK(140)tPEEK(141)*256:REM 

FIND THE BEGINNING OF THE STRING/ARRA 
Y I~F~EA 

140 ME SSAGE =STAREAt1 98 : REM FIND THE ST 
I:;: I NG 
150 FOR X=MES SAGE TO MESSAGEtLEN(STRIN 
G$) - l:REM START TO END OF STRINGS 
160 7 CHR$(PEEK(X »;: REM PRINT THE CHA 
RACTER OF THE VALUE IN THIS AREA 
1/0 NE::XT X 
180 7 :7 "STRING="; STRING$ 
190 BUFFER =PEEK ( 128 ) tPEEK(12 9) *256: REM 

BEGINNING OF THE BUFFER 
200 FOR X=BUFFER TO BUFFERf150 :? CHR$( 
PEEK( X»;:REM PRINT THE CONTENTS OF TH 
E BUF' F:'EF~ 

2 10 NE XT X 

The contents of this buffer will vary from program to program depending on what has been 
entered into the computer. 

Once the lines of the program have been tokenized and placed in the program, BASI C has to 
know where in memory the program begins . The address of the beginning of the BASIC program 
is s tored in the Statement Table in memory locations 136 and 137. By adding a few more lines to 
the program you can see the tokenized BASIC program. 

Listing 5-1 D. BASIC Tables-Statement Table 

10 REM LI STING 5 . 1D 
20 REM BA SI C TABLES 
30 REM BY L. M. SCHREIBER FOR TAB BOOKS 

86 



40 DIM A(10,2),STRING$(10) 
50 TABLE~PEEK(130)tPEEK(lJ1)*256 
60 FOR x~ rABLE TO TABLE+20:? CHR$(PEEK 
(X»;:NEXT x:? :? :REM SHOW THE VARIAB 
L E ~:; I NTH E T (:l fl I. .. E 
70 VLUE~PEEK(134)+PEEK(135)*256:REM AD 
DRESS OF l·HE VARIAflLE VALUE TABLE 
80 P~O:FOR X~VLUE TO VL.UE+31:REM SHOW 
INFORMATION FOR FIRST 4 VARIAflLES 
90 PRINT PEEK(X) ,:P~P+ 1 : IF P~4 OR P~8 

THEN ? "":IF P~8 THEN PRINT :P~O:REM 

PRINT ESC-CTRL-UPARROW IF 4 OR 8 
:I. 00 j\!E X T X 

:1.:1.0 STRING$~"HI THERE" 
120 FOR X~VLUEt8 TO VLUEt:l.5:? PEEK(X), 
:NEXT x:? :REM SHOW THE CHANGE IN THE 
VARIAflLE VALUE TABLE 
:1.30 STAREA=PEEK(:l.40)tPEEK(:l.41)*256:REM 

FIND THE BEGINNING OF THE STRING/ARRA 
Y {1F:E(:l 
:1.40 MESSAGE~S TAREAt:l.98:REM FIND THE ST 
F~ I 1'>!U 
150 FOR X~MESSAUE ·ro MESSAGEtLEN(STRIN 
G$)-l:REM START TO END OF STRING$ 
:1.6 0 ? CHR$(PEEK(X»G:REM PRINT ·rHE CHA 
RACTER OF THE VALUE IN THIS AREA 
:I. ·/0 NL><T X 
:l.80? :? "STRING~";STRING$ 

:1. 90 BUFFER~PELK(:l.28)tPLEK(:l.29)*256:REM 

BLGINNING OF THE BUFFER 
200 FOR X~B UFFER TO BUFFER+:l.50:? CHR$( 
PELK(X»;:RLM PRINT THL CONTENTS OF TH 
E: J3UFF:·LF: 
2:1. 0 NLx·r >; 
220 PROGRAM=PLLK(:l.36)tPLLK(:l.37)*256:RE 
j"j T H F I::' F;: 0 C-:i h: (:) jvj 

230 FOR X~PROGRAM TO PROGRAMt:l.:l.OO:? CH 
R$(PEEK(X»);:NEXT X:REM PRINT THL TOKL 
I··~ 1.( L n F:' F;: (J (3 h: (I j' .j 

The remarks are perfectly readable. The rest of the li sting should look like code. It is. Every 
command is converted to one of the token values (Table 5-1). The variables have their own 
tokens. It would be very hard for you to try to read this li sting. 

In order for BASIC to keep track of where it is when executing the program, it sets aside two 
bytes of memory to use as a pointer. Memory locations 138 and 139 contain the address of the 
current statement. When BASIC is not executing a program, this buffer points to the beginning of 

87 



the immediate line mode, which is the area that the next command will be placed if it is not a 
BASIC line, but an immediate command. 

When BASIC is executing a program, it also needs an area set aside for return statements 
and for ~ .. next loops. This is called the Run Time Stack. When BASIC executes a GOSUB, it 
must know where to return to. Four bytes are used for every GOSUB. One byte indicates that the 
next address is a return address for a GOSUB. The next two bytes contain the line number to 
return to. The fourth byte is the offse t in the line, so that BASIC will continue with the next 
statement on that line. 

A for . .. next loop uses 16 bytes of memory in the stack: the last number that the variable can 
count to (6 bytes), the step of the for . .. next loop (6 bytes), the variable name of the variable that 
is counting, the line number (2 bytes), and the offset of the for statement. The first two numbers 
use the Binary Coded Decimal format. 

Incorrect use of the for ... next loop or GOSUBs without RETURNs and/or POPs can cause 
a program to crash. Table 5-3 is a chart that shows the addresses that BASIC uses to store this 
information. 

SPEEDING UP A PROGRAM 

Now that we have an understanding of how BASIC stores a program and the pointers that it 
uses to keep track of the program as it runs it , we can use different techniques to speed up a 
program and to use memory effectively. A well wri tten program should run smoothly and use only 
as much memory as necessary. Having a computer with 48K in it does not mean that you should 
not try to conserve memory. If your short programs are written loosely, and you do not get into 
the habit of trying to write the program as tightly as poss ible, you will run out of memory very 
quickly when you try to write a large program. 

Sometimes the only way to shorten a program is to recode it. If the program was not flow 
charted or modifications were added to the program afte r it was written, you may find that the 

88 

Table 5-3. Table of Addresses for BASIC Tables. 

;:.l C·:"c:i, ln dJ 

:I. .i{, () ~; :I. .. ::: :I. 

:I. .. :':~. ::.:.:: ~I :1.·4 : .. :~: 

t, df:.\ 1 c:,~ 
1"1 ,:,~ Il'I c':':' 

U 1..1 -1.", :::" 1..1 t, ,'J 1..1 'j" f' c':" r 

Vdriab l e Nd ll'l e Table 

Vd riable Vdll..le Table 

~::: t , a t (-' 1)'1 (:., 1"1 t , T a f:.l 1 (,:,' 

Stri l"l ~/ar r as area 

F ~ 1..1 n t. :i, In (,:> ',:; t d C k 



program has several routines that are the same. These routines can be made into subroutines, and 
several lines of code can be removed from the program. You may also find a subroutine that is only 
called once. Move that routine to the main program. GOSUBs and RETURNs waste bytes if the 
routine is only used once. 

Use a variable instead of a number if the number is used more than once. Each time a number 
is placed in a BASIC line, it uses 7 bytes . If the same number is used twice, that's 14 bytes. 
Assigning a number to a variable uses 10 bytes. Each time the variable is used in a line, the 
variable's token is placed in the line. This is one byte. Assigning a number to a variable, then using 
that variable twice uses only 12 bytes. Obviously, the more frequently the number will be used in 
the program, the more bytes will be saved. 

Place the most frequently called subroutines at the beginning of the program. BASIC begins 
at the beginning of the program and works its way down looking for lines. If the line is at the 
beginning, BASIC doesn't have to look very far. 

If one subroutine ca ll s another subroutine and then retUl11S to the main program, have the 
first subroutine GOTO the second subroutine so that it wi ll return to the main program from the 
second subroutine . 

100 GOSUB 500 
no 
120 
490 

Example 1 

500 TL=10:PRINT"Let's try that again":GOSUB 600 
510 RETURN:REM this return is unnecessary -

Example 2 
100 GOSUB 500:REM the correct way 
no 
120 
490 
500 TL=lO:PRINT"Let's try it again.":GOTO 600 

In the first example, line 500 contains a GOSUB. BASIC will go to that subroutine, then 
return to line 510. Line 510 contains a retUl11. So, in effect, the computer is returning to a return. 
In the second example, the GOSUB is replaced with a GOTO. Line 600 is still a subroutine, it still 
has a RETURN at the end of it, but because the program went to the subroutine as a GOTO, when 
it comes to the RETURN, the address on the stack wi ll be the next line in the main program. This 
method saves both time and memory. 

Use POKEs instead of SETCOLOR. This will save about 8 bytes. POKEs can also be used 
for the sound command. 

Use logic instead of comparison if possible. One way is to set a variable to 0 if the condition is 
false and to 1 if it is true. Then instead of an IF X= statement, you can use an IF X THEN . For 
example, you may have a program that has a printer option. The prompt DO YOU WANT A 
HARD COPY? appears. If the user answers yes, a variable is set to 1 (PRTR=1) . If the user 
answers no, the variable is set to 0 (PRTR=O). Now, when you get to the part of the program that 
will print either to the screen or the printer, instead of a line that reads: 

89 



1200 IF PRTR$="YES" THEN LPRINT "REPORTS" 

your line will read: 

1200 IF PRTR THEN LPRINT "REPORTS" 

If PRTR is one, the statement is true and the word REPORTS will be printed on the printer. 
If the variable PRTR is 0, the statement is fal se and the computer will go on to the next line. 

Use assembly language subroutines when possible. The assembly language subroutine to 
move the character set from ROM to RAM is shorter and faster than the BASIC routine. 

Place short lines together on one line. Each new BASIC line uses three more bytes than the 
same statement placed in an existing line. Be careful here with GOSUBs, and if ... next 
statements. 

Many of the programming techniques used in commercial programs are not programming 
tricks, but good programming practices. 

90 



Chapter 6 

Tricks 
with Stri ngs 

In the past few chapters, we have created animated scenes with various graphics modes and the 
player/missile graphics. In most of the programs, we printed the characters on the screen. With 
the player/missile graphics, we were able to move the character to the left or right by poking a 
register; we used a machine language subroutine to move the character up or down. Sometimes 
the movement was smooth, at other times it wasn't. 

By placing the characters that form the graphics into strings, the animation that we are trying 
to create on the screen can often be simplified. The following program uses strings to move the 
graphics on the screen. It is an animated version of the classic puzzle of the farmer with a fox, a bag 
of wheat, and a duck. He must take all three across the river, but his boat can only carry one item in 
addition to himself at a time . Ifne leaves the duck with the fox, the fox will eat the duck. If the duck 
is left with the wheat, the duck will eat the wheat. To place the fox in the boat, press the f; press 
the w for the wheat, and the d for the duck . If you want the farmer to row alone,just press the space 
bar. 

Listing 6-1. The Farmer and the Duck, Fox, and Grain Puzzle 

10 REM LI S TING 6.1 
20 REM FARMER AND THE DUCK, FOX, AND GR 
(~IN F'UZZI...E 
30 REM BY L . M.SCHREIBER FOR TAB BOOKS 
40 DIM W$(28),W1$(28),C$(20),TEMF'$(28) 
50 A=F'EEK(106)-8:POKE 204,A:POKE 206,2 
24:REM S TORE THE BEGINNING OF THE NEW 
& OLD CHARACTER SETS 
60 FOR X=l TO 20:READ B:C$(X,X)=CHR$(B 
):NEXT X:REM MACHINE LANGUAGE SUBROUTI 
NE TO MOVE THE CHARACTER SET TO RAM 
70 DATA 104,162,4,160,0,177,205, 145,20 
3,200,208,249,230,206,230,204,202,208, 
242,96 

91 



Listing 6-1. The Farmer and the Duck, Fox, and Grain Puzzle (continued from page 91) 

90 Q=USRCADRCCS»:REM MOVE THE CHAR ACT 
ER SET 
100 CB=A*256:FOR Q=24 TO 175:READ C: PO 
KE Q+CB,C:NEXT Q:REM MOVE THE NEW CHAR 
ACTEr~f3 INTD r~(~I°'i 

110 DATA 255,255,255,255,255,255,255,2 

111 DATA 0,0,192,240,252,255,255 , 255 
112 DATA 0,0,0,0,0,19 2 ,240,170 
113 DATA 0,0,0,0,0,8,130,170 
114 DATA 0,0,0,0,255,63,15,170 
115 DATA 0,0,0,0,255,255,245,215 
116 DATA 20,20,16,20,223,127,255,170 
117 DATA 0,0,0,0,255,255,255,170 
118 DATA 0,0,0,0,255,252,240,170 
119 DATA 0,0,0,0,0,3,15,255 
120 DATA 0,0,63, 63,255,255,255,255 
121 DATA 4,84,5,5,255,255,255,170 
122 DATA 0,20,20,20,255,255,255,1 70 
123 DATA 0,1,5,1,255,255,255,1 70 
124 DATA 80,80,64,64,127,223, 245 , 165 
125 DATA 170,170,170,170,170,170,170,1 
O?O 
126 DATA 0,0,0,0,20,20,20,20 
1~:7 D(~T(:1 0, 0,0,0,0,1, ~o:o:j, 1 
128 DATA 0,0,0,0,4,84,5,5 
130 DLIST=PEEK(560)+PEEK(561)*256 
140 POKE DLIST+3,69:REM ANTIC MODE 5 
lS0 FOR Q=7 TO 28:PDKE DLIST+Q,5:NE XT 
Q:POKE DLIST+6,6:REM CHANGE THE DISPLA 
Y LIST TO ANTIC MODE 5 
160 POKE 709,152:POKE 710,198:POKE 711 
y ::o~ () : P 0 1< E n ::o~ , 0 
170 POKE 756,A:? "}":POSlofION 20,8:? " 
1111$%&&&&&&&&&&&&&&&&&&&&&&&&&&&&,-11 
:It. :11: " 
180 FOR Q=9 TO 12:POSITION 20,Q:? "222 
2222222222222222222222222222222222222" 
! NEXT C~ 

190 W$="&&&&&&&&&&&&&&&&&&&&&& ' ()*+&": 
REM FARMER UPRIGHT 
200 W1S="&&&&&&&&&&&&&&&&&&& 8 8'*1*+&&" 
:REM LEANING FORWARD 
::~ 1. 0 r:' Cl !:) I T J D NO, :I. : T "l (11< E (oi U C 1< f U )( (AJ H E (.1 

92 



T":REM SHOW OPTIONS 
220 C$=" 534":F=1:F1=0:W=1:W1=0:D=1: 
D1=O:PO S ITION 26,8:? W$:REM PRINT FARM 

230 POSITION 21,7:? C$(1,3):POSITION 1 
6,8:? C$(4,6):OPEN i1,4,0,"K:":REM PRI 
NT POSITIONS OF DUCK-WHEAT-FOX 
240 GE'r #1,B:IF B)127 THEN B=B-128:POK 
E 694,O:REM RESTORE FROM INVERSE 
250 IF D AND (B=68 OR B=100) THEN C$(6 
,6)=" ":W$(26,26) ="0":C$(3 ,3)="4": D1=1 
:D=O: GOTO 290:REM DUCK 
260 IF F AND (B=70 OR B=102) THEN C$(4 
,4)=" ":W$(26, 26)=". " : F=O:F1=1:C$(1,1) 
="5":GOrO 290:REM FOX 
270 IF WAND (B=87 OR B=119) THEN C$(5 
,5)=" ":W$(26,26)="/":W=0:W1=1:C$(2,2) 
::::":3" ~ I::-!C)TU :::,~90 

275 IF B=32 THEN 290 
2BO GUTU :240 
290 POSITION 16,8:? C$(4,6):CLOSE #1:W 
1$(25,25)=W$(26~26):REM PUT IN Ol'HER S 
TF~ING 

300 FUR Q=1 TO 11:PUSITION 26,S:? W1$: 
REM MOVE THE BUA'r 
3 10 TEMP$=W$(1,2):W$=W$(:3,28):W$(27,28 
)=TEMP$:REM MOVE THE BOAT TO THE LEFT 
320 PO S ITIUN 26,8:? W$ 
330 TEMP$=W1$(1,2):W1$=W1$(3,2S):W1$(} 
'7 , ::,~ u ) :::: T E lv1 F:' ~ I; 

340 NEXT Q:IF F1 AND D1 AND W1 THEN PO 
SITION O,1:?" YOU GOT IT I! ":GO 
TO ::540 
350 IF F AND D THEN POSITION 0,1:? " 
F Cl X EAT !3 D LJ C 1\ I I " : Ci Cl T (j ::,) 4 0 
360 IF D AND W THEN POSITION O,1:? " 
DUCK EATS WHEAT ":GClTCl 540 
370 W$ (4,4)="* ":W1$(3.3) ="* ":PClSITION 
26,S:? W$:POSITIClN 21,7:? C$(1,3):ClPEN 

:jj::I. , 4 , 0, "1<: " 
380 GET i:l.,B:IF B):l.27 THEN B=B-:l.28:POK 
E 694,O:REM RESTClRE FRClM INVERSE 
390 IF D:I. AND (B=68 OR B=:l.OO) THEN C$( 
3,3)=" ":W$(4,4)="0":C$(6v6)="4":D:I.=0: 

93 



Listing 6-1. The Farmer and the Duck, Fox, and Grain Puzzle (continued from page 93) 

D=l:G OTO 430:REM DUCK 
400 IF F1 AND (B ~ 70 OR B~102) THEN C$( 
1 y :I. ) ::" " " : c ~I; ( 4 v -4 ) :::: " ::,) H 1. W <I; ( 4 , -4 ) ::::" • " t F 1 :::: 0 ~ 
F=:I. : GOTO 430:REM IT 'S THE FOX 
4:1.0 IF W1 AND (B=8 7 OR B=11 9) THEN C$( 
::: y 2 ) :::: " n: C ~ I ; ( ~.'.) ~' ::,:j ) :::: n J " : W ':1; ( -4 , ,4 ) :::: n / n : l.J 1 :::: 0 ~ 
W::::1 :UCiT D 430 
415 IF B=32 THEN 430 
4::,~O GClTO 3DO 
430 POSITION 21,7:7 C$(l,3):CLClSE t1:W 
1$(3,])=W$(4,4):REM PUT IN OTHER STRIN 
(J 

440 FOR 0=1 TO 11:POSI'fION 26,8:? W$:R 
Elvi MO',)E THE BOr,T 

450 TEMP$(1,2)=W1$(27, 2S) :T EMP$(3,2S)= 
W1$(1,26):W1$=TEMP$:REM MOVE BOAT TO R 
IUHT 
460 POSITIO N 26,S:? W1$ 
470 TEMP$(1,2)=W$(2},2S):fEMP$(3,2S)=W 
+, ( 1 !' 2 6 ;. : W ~I; :::: T E 1"1 F' ~I; 
4DO NEX'r D 
490 IF F1 AND D1 THEN POSITION 0,1:? " 

F' Cl )( E (:\ T ~:; :0 U C I< ! I " ~! [; U "I' 0 ',:,:,i 4 0 
500 IF :01 AN:O W1 THEN POSITION 0, 1 : 7 

DUCK EAT S WHEAT " : GOTO 540 
510 POSITION 16yS:? C$(4,6):W$(26,26)~ 
nt" :W 1$( 25,25)="t":POSITION 26,S:? W$ 
~:j :~) 0 CJ D T D :~,:: :3 0 
540 FOR Q=1 TO 1000 :NEXr U:G OTD 170 

Line 40 dimensions four strings. The W$ s wi ll be the boat in the water. C$ is the machine 
language subroutine to move the character set from ROM to RAM. TEMP$ contains temporary 
information for the strings. 

Line 50 finds the top of memory avai lable on your sys tem and subtracts 2K from it. This is 
where the RAM character set will begin. This location is poked into memory location 204, The 
beginning of the ROM character set is poked into location 206, These two memory locations will 
be in the machine language subroutine. 

Line 60 is the machine language subroutine that moves the character se t from ROM to RAM. 
Be sure that the data in line 70 is entered correctly, It must be typed in exactly or it won't work, 

Line 90 uses the machine language subroutine to move the character set from ROM to RAM, 
Line 100 reads new characters into the character set. We will be replacing the characters 

from the pound sign (#) to number 5, See Fig. 6-1 for the new characters. To get the decimal 
location of the first byte in the RAM character set, we mUltiply the value of A by 256, Since we 
want to begin the new characters with the fourth character, we multiply 8 (bytes per character) by 

94 



3 (characters to skip). We will begin replacing the characters with byte 24. 
Lines 110-128 contain the data used to change the characters. Each line is a different 

character. 
Line 130 finds the beginning of the display list. We will be changing the display list to work in 

ANTIC 5. 
Line 140 changes the fourth byte of the display list to 69. This is the instruction that tells the 

computer that the next two bytes indicate where the screen memory begins , and the mode of the 
first line on the screen. 

Line 150 changes the rest of the lines in the di splay list to ANTIC mode 5. The seventh line of 
the display list is changed to ANTIC 6 (graphics mode 1). This line will contain text. 

Line 160 changes the colors that will be used in the program. Location 82 is poked with a zero 
to change the left margin on the screen. All the lines on the screen are 40 characters wide except 
the second line. This line is 20 characters wide. This places the margin in the center of the screen. 
If we don't change the left margin to zero, the computer will skip the screen area that would 
normally be the left margin. Because it is now in the middle of the screen, there would be a 
strange empty line down the middle of the screen. 

Line 170 pokes location 756 with the new character set location. The screen is cleared and 
the shore lines and water are printed on the screen. Notice that the shore begins on the left side of 
the screen and extends to the right margin, but the program tells the computer to begin the print 
with position 20. All the lines after the second one are 20 characters off. 

Line 180 fills the bottom of the screen with blue. 
Lines 190-200 place the waves and the farmer in the boat into the two strings. In W$, the 

farmer will be upright; in W1$, the farmer will appear to be leaning forward . 
Line 210 prints the options on the screen. The D in duck, the F in fox and the W in wheat are 

different colors; these are the keys that wi ll be pressed to place that object into the boat and row it 
across. 

Line 220 places three spaces and the numbers 534 into C$. C$ will not be used any more in 
the program, so rather than use a different variable, we are reusing C$. The 5, 3, and 4 are the new 
characters for the fox, the wheat, and the duck. The next six variables will indicate where the fox, 
the duck, and the wheat are. F, W, and D wi ll be set to 1 when the fox, the wheat, and the duck are 
on the right side of the screen. The F1, WI, and D1 will be set to one when the fox, the wheat, and 
the duck are on the left side of the screen. The farmer in the boat is printed on the screen. 

Line 230 prints the items on both sides of the screen. When the program begins, the first 
three e lements of C$ will be empty. The fourth through sixth will contain the fox, the wheat, and 
the duck. The keyboard is opened for input. 

Line 240 gets a value from the keyboard. This value will be an ATASCII value for the key 
pressed. If the value of B is greater than 127, the inverse key has been accidentally pressed. By 
subtracting 128 from this value, it will be restored to the correct value. By poking location 694 
with a zero, the fl ag is reset for normal characters . 

Lines 250-270 check the key that has been entered for one of the three characters. If the 
variable for that character is a one, the first part of the if .. . then statement is true. We do not have 
to enter IF D=1, IF D serves the same purpose. If the D is one, the computer will go on the second 
part of the statement and check to see if the D or d key has been pressed. If it has, the duck is 
placed into the boat. The redefined character for 0 is the duck . When the boat is on the right side of 
the screen, that part of the boat is the 26th position in the string. The third character in C$ will be 
the duck. This element is replaced with the 4, the duck on the ground. The variable for the left side 

95 



>< >< 

\/ 
'. 

"./ 
/\ 

....... >< 

\/ 
/\ 

\/ ...... 

:11: 

... / 
:'\ 

><><><x 
\/ 
/". 

\l ....... 
l ·'. .r .• 

V 
.r •• 

\:' 
/ \ 

>< >< 

x >< 

){ >< )( 

>< >::: . >< 
'vl 

:"\ 

>< 
>< 

>< 

V 
/ ... 

/ ... 

/ ... 

/" 

>< 
>< 1 

\/ 
/\ 

Fig. 6-1 . Character set for farmer, duck, fox and grain. 

96 

~ ..... 
...... 

\.1 
.r .. 

. .: 

...... 

\ ... 
/\ 

\/ I 
... \ I 

.../ 

V 
..'\ 

'./ 
: .... . 
:\ : .\ 
....... 
/\ 

}" 

x >::: I >< \ .... . ..... 

\ ... 
/\ 

...... 

>< : >< 

.,:-:,. 

\( >< 

.. :':" 

... / 
!\ 

~./ I .. '\ , 

\/ 
/ \ 

...... :;{ .. :':" >< >< }( \l 
/\ 

V 
/\ 

\l 
/\ 

>< 

\/ 
1\ 

... .l 

.~ ". 

\/ 
/\ 

\.,' 
/\ 

~:< 

....... 
/\ 

:x: 
\.1' 
I'. 

>< 

' • .1..' 
"I" 

V 
.'\ 

\i 
l\ 

>< >< 

.i\ 

\,l 
/\ 

V 
/\ 

\/ 
.... 10, 

>( 
V r, 

\/ 
/". 

\i 
/\ 

v ... , 
V 
,:\ 



x x x x x 
x 
V 
n 

x 

V 
A 

x 
x 
V 
A 

V 
A 

V 
A 

x X A 
x x 
x X 
x 

x 

V 
A 

V 
A 

x X 
" I AI 

V 
A 

V 
A 

V 
A 

V 
n 

x 
x 
V 
A 

X 

x 

X X 
X V 

A 

v 
A 

x 

~ 
I 

x 
V 
A 

x 
x 
x 

x 
V 
A 

V 
A 

V 
n 

x x 
x x 
x x 
V 
A 

v 
A 

x 

/ 

V 
A 

V 
A 

v 
A 
V n 

x 
V 
A 

x 
x 

x 
x 

X X X X 
X: V 

A 

1 

v V 
A A 

x 

x 
v 

x 

x 
v 
A 

V 
A 

V 
A 

V 
A 

V n 
V 
A 

x 
V 
A 

x 

v 
n 

V n 
0./ 

v 

X 
X 
x 

V 
A 

V 
A 

x 

x 
X 

X 

v 

X 
V 
A 

X 

V 
A 

v 
A 

X 
X 

• I 
I 

x x y 

x 
V 
A 

V 
A 

x 

x 

x 

x 

V 
A 

V 
A 

V 
A 

V 
A x x 

V n 

~,X 
V 
A 

V 
A 

V 
A 

x 
V 
A 

V 
A 

x 
V 
A 
v 
A 

x 
V 
A 

V 
AI 

x 
V 
A 

V 
A 

V 
A 

x 
V 
A 

V 
A 

x 

v X 

X 

X 
X 
X 

x 
V 
A 

o 

2 

X 
V 
A 

X 
V 
A 

V 
A 

V 
A 

x 
y 

V 
A 

y ., 
x 
V 
A 

V 
A 

x 
y 

V 
A 

X 
V 
A 

V 
A 

X X 

X 
X 
X 
X 

x 
X 
V 
A 

V 
A 

V 
A 

V 
A X X 
X 
x 

y ., 

x 
X 
y ., 

X 
V 
A 

x 

V 
A 

x 
x 
V 
A 

X 
X 
X 
V 
A 

y ., 
X 

,X 
V n 

X 
X 

V 
A 

V 
A 

VI 
A I 

V n 

V 
A 

x 

97 



: ;<: : >< : 
: ><: :)(: 
I ... / I I ...... I 
I ... \, I ....... I 

I \.1 I I 'v' I 
I ... ··. I I.····. I 

I •. ~... ! 
I ... ··. I 

I ...... I I ...... ' 1 ..... ·1 
1 /\\ 1 /\ 1 1 .1\ 1 

I::' 
... .1 

I "'." I I \/ I 
1 .... \ I I ...... I 

I ...... I I ...... I 
I ....... I 1 .1 ... I 

Fig. 6-1. continued from page 97. 

: >< : 
: x : : >< : 

I \1 I 
I ."\ I 

of the screen is changed to a I and the variable for the right side of the screen is set to zero. The 
program goes on to line 290. The other two lines are the same. They use the redefined characters 
for the fox and wheat. 

Line 275 checks for the space bar. If the space bar is pressed, the program will go on to the 
next part of the routine and row the boat across the screen. Only press the space bar when you 
want the farmer to row the boat with nothing in it. 

Line 280 sends the computer back to line 240. The key that has been pressed is not one of the 
four correct keys, or the character that you are trying to take across the river is already on the 
other side. 

Line 290 reprints the fourth through sixth characters of C$ on the screen. The character that 
is in the boat will be removed from the shore. The keyboard is closed and the character that is in 
the boat in W$ is placed in WI$. The boat is one character to the left in WI$. 

Lines 300-340 form a for. .. next loop to move the boat from the right to the left. WI$ is printed 
on the screen. This is the string with the farmer leaning forward in his boat. The oar is in a slightly 
different position also. The first two characters of W$ is stored in TEMP$. These two characters 
will end up at the end of W$ . The rest of W$, from the third position to the end is placed in W$. 
This, in effect, moves the characters up two places. The characters stored in TEMP$ is placed in 
the last two places of W$. W$ is printed on the screen. The same procedure is repeated with WI, 
except it is not printed on the screen. WI$ is printed when the routine is repeated. When the loop 

98 



ends, W$ will be on the screen. The computer will check the values of F1, D1, and WI. If they are 
all 1, all three characters are on the left and the game is over. The winning message is printed on 
the screen. 

Line 350 checks the variables F and D. If both of these are a 1, then the fox and duck are 
together. Since they cannot be together , the message FOX EATS DUCK appears on the screen. 

Line 360 checks the values of D and W. If both of these are a 1, the duck and the wheat are 
together. The message DUCK EATS WHEAT appears on the screen. 

Line 370 restores the boat to normal in both strings, prints the empty boat on the screen, and 
prints the first three characters of C$ on the shore. The character that has been brought over on 
the boat will now appear on the land. 

Line 380 gets a new key from the keyboard. Again, the value is checked to see if the inverse 
key has been set. If it has, 128 will be subtracted and the flag reset. 

Lines 390-410 check the key that has been pressed against the values in the variables. If the 
correct key has been pressed, but the corresponding variable is a zero, then that character is on 
the other side of the river and the boat must be rowed back before the character can be placed in it. 

Line 415 checks for the space bar. If it has been pressed, the program will go on the routine 
that moves the boat back across the water. 

Line 420 sends the computer back to line 380 for a new input. The key pressed was not an F, 
D, or W or the space bar. 

Line 430 prints C$ on the shore. The character placed in the boat will be removed. The 
character is placed into W1$. Again, because W1$ is offset by one character, the character that 
was placed in the boat is placed one position to the left in WI. 

Lines 440-480 move the boat back across the screen. The lines are similar to the ones that 
moved the boat across the screen the first time. This time the last two characters are placed in the 
fir st two positions of TEMP$. The first through 26th characters of W1$ are placed in the 3rd 
through 28th elements of TEMP$. Then the contents of TEMP$ are placed in W1$. The same 
procedure is used to move the boat in W$. 

Lines 490-500 check to see if the fox is left with the duck, or the duck is left with the wheat. 
Line 510 prints the fourth through sixth characters of C$ onto the shore. The new character 

will appear here now. The boat will be restored, and the empty boat will be printed on the screen. 
The program continues until the characters are all on the left side of the screen . 

Line 540 is a timing subroutine . It is used to give you a chance to read the message on the 
screen. 

To restore the screen, press the system reset key. 

MACHINE LANGUAGE SUBROUTINES 

Until now, you have placed machine language subroutines into a string by setting a position 
of the string equal to the characte r string of a number. Every program that moves the character 
set to RAM, or moves a player/miss ile up or down used the same machine language subroutine. 

The following two programs place a machine language subroutine in a string. The program 
then prints the string on the screen with a line number in front of it. By moving the cursor over the 
line and pressing re turn, we place the new line with the subroutine into the program. This line can 
then be stored on disk for future use . When you want this subroutine in a program, you do not have 
to use a for . .. next loop with the data lines. The line with the characters already in the string can 
be used. 

99 



Listing 6-2. Move Character Set 

10 REM LISTING 6.2 
20 REM MOVE CHARACTER SET 
30 REM BY L.M.SCHREIBER FOR TAB BOOKS 
·40 DIi"i C~I; (20:> 
50 FOR X=l TO 20:READ B:C$(X,X)=CHR$(B 
) ~NE:X:T )( 
60 DATA 104,162,4,160,0,177,205,145,20 
3,200,208,249,230,206,230,204,202,208, 

70 PRINT "}";50;" C$=";CHR$(34);C$~CHR 
~~(34)!'i' (~·)O:'!' /0 

Line 40 sets aside 20 bytes for the machine language subroutine. 
Line 50 reads the data into the string. When it finishes, each byte of the string will be an 

instruction of the subroutine. 
Line 70 clears the screen. The number 50 and the string will be printed on the screen. The 

numbers 60 and 70 will also be printed on the screen. 
Now move the cursor to the top of the screen and press the return key three times. Line 50 

will be replaced with the string that contains the subroutine. Lines 60 and 70 will be erased. To 
use this subroutine, subtract 2K from the amount of memory available in your system 
(A=PEEK(106)-8). Store the value of A in location 204 (POKE 204,A). Store the beginning 
address of the ROM character set in location 206 (POKE 206,224) . To execute the subroutine 
use the USR command-Q = USR(ADR(C$)) . This subroutine will move the ROM character 
set into RAM. 

Listing 6-3. Move Player/Missile Up/Down 

10 REM LISTING 6.3 
20 REM MOVE PLAYER/MISSILE UP/DOWN 
30 REM BY L I M.SCHREIBER FOR TAB BOOKS 
40 DIM UP$(13),DOWN$(13) 
50 FOR X=1 TO 13:READ B:UP$(X,X)=CHR$( 
:e) :NEX''j' \ 
60 DATA 104,160,0,200,1 77 ,205,136,145, 
205,200,208,247,96 
70 FOR )(=1 TO 13:READ B:DOWN$(X,X)=CHR 
~ I:·( B) : r~EXT >< 
80 DATA 104,160,255,1 36 ,177, 205,200, 14 

90 '!' "}CLEAR}";50;" UP$=";CHR$(34);:FO 
R X=l TO 13: 7 CHR$(ASC(UP$( X,X»);:N EX 
T X: 'j' C H r;.: ~I; ( :3 -4 ) 
100 '!' 60;" DOWN$=";CHR$(34);:FOR X=1 T 
o 13:IF ASC(DOWN$(X,X»)252 THEN? CHR 

100 



:J. :J. 0 ? C; H F: ~I; ( (, ~:; c:: ( n U W N ~I; ( :x: y X) ;, ;, y t N L X T X ~ ? 

C H I~ 'I; ( 34) ;'i' '/ 0 ~? H 0 ~ T i) 0 ; 'j' 1 0 () ~ 'i' :I. 1 () 

Line 40 sets aside 13 bytes each for the two machine language subroutines. 
Line 50 reads the data from line 60 into UP$. UP$ will contain the machine language 

subroutine to move the players up . 
Line 70 reads the data from line 80 into DOWN$. This is the machine language subroutine to 

move the players down. 
Line 90 clears the screen and prints the two strings on the screen with line numbers before 

them. The numbers 70, 80, 90, 100, and 110 also appear on the screen. Move the cursor to the top 
of the screen and press the return key 7 times. Lines 50 and 60 will be replaced with the new lines 
that contain the machine language subroutines. Lines 70, 80, 90, 100, and no will be erased from 
the program. 

To use these subroutines, store the high order address of the player to be moved in location 
206 and the low order in location 205. Executing either subroutine with the USR command will 
move the player up or down. 

When storing a machine language subroutine in a string, make sure that the subroutine 
contains relative branches. That is jumps that depend on a byte count instead of a firm address. 
The string can be placed anywhere in memory. The location of the string will vary from program 
to program. If the machine language subroutine contained a set jump, for example, jump to address 
2048, the program would always jump to that address. If the correct instruction was there, the 
routine would work properly. If it wasn't. the program would crash. By using a relative jump, for 
example, Branch Not Equal, the program will be directed to a location by bytes (forward 8 bytes, 
backwards 3 bytes, etc.). This routine could be located anywhere since the same instruction will 
always appear 8 bytes after or 3 bytes before the current instruction. 

RElOCATING THE STRINGS 

In the last chapter, tables for the variables, their names, and the string/array area were 
listed. Knowing where the computer looks to find out where a string is located enables us to be 
able to relocate strings to areas that are more suitable for our program needs. 

The two tables that we will be using in the next program are the variable value table and the 
string/array area . By changing the offset va lues in the variable value table, we can make the 
computer "think" that the string is located e lsewhere in memory. By changing the values in the 
fifth and sixth locations in the variable value table, we can change the length of the string. 

In effect, we can make the screen one string. and manipulate it as such. We could even store a 
program in a string if we had reason to. One example of relocating the strings is in the next 
program. 

STRINGS AND PLAYER/MISSILE GRAPHICS 

The player/missile graphics have provisions for moving the player/missiles to the right or 
left with a simple poke command. But, in order to move the players up or down, we have to rely on 
machine language subroutines. If the player was extremely long (tall), the movement could look a 
little jumpy. In the next program, which simulates a slot machine, we will move the players up by 
manipulating a string. 

101 



Listing 6-4. Player/Missile Strings 

10 REM LISTING 6.4 
20 REM PLAYER/MISSILE STRINGS 
30 REM BY L.M.SCHREIBER FOR TAB BOOKS 
40 DIM PL1$(1),PL2$(1),PL3$(1),TEMP$(1 
) , J C 1< F:' T ~I; ( H ) 
50 GRAPHICS 4:DLIST=PEEK(560)tPEEK(561 
)*256:REM GET THE DISPLAY LIST 
60 POKE DLISTt45,70:POKE DLISTt48v6:PO 
KE DLIST+49,6:POKE DLISTt50,6:REM CHAN 
GE TEXT WINDOW TO GR. 1 
70 COLOR 1:PLOT 50,37: DRAWTO 50,5:DRAW 
TO 24,5:POSITION 24,37:POKE 765,l:XIO 
18,i6,O,O,"S:":REM DRAW SLOT MACHINE 
SO COLOR O:FOR X=10 TO 13:PLOT 26,X:DR 
AWTO 32,X:PLOT 34,X:DRAWTO 40,X:PLOT 4 
2,X:DRAWTO 48,X:NEXT X: REM MAKE WINDOW 
90 VART=PEEK(134)tPEEK(135)*256:STTAB = 
PEEK(140)tPEEK(141)*256:REM GET THE VA 
RIABLE & STRING TABLES 
100 POKE 559,46:REM SET FOR DOUBLE LIN 
E F'./fv1 I:<ESOLUT 1 UN 
110 PMBASE=PEEK(106)-S:POKE 54 279 ,PMBA 
SE:REM SET P/M GRAPHICS 2K ABOVE END 0 
F 1"1Ef1UF~Y 

120 PMBASE=PMBASE*256:REM FULL ADDRESS 
o F P./ f1 G h: (.1 F' HIe ~:; 

130 X=O:FUR Z=512 TO 768 STEP 128:REM 
BEGINNING UF EACH PLAYER 
140 STROFFSET=PMBASEtZ-STTAB:REM CHANG 
E THE OFFSET VALUE FUR THE STRINGS 
150 STRVAL3=INTCSTROFFSET/256):REM HIG 
H ORDER ADDRESS OF OFFSET 
160 STRVAL4=STROFFSE'f -256*STRUAL3:REM 
LOW ORDER ADDRESS OF OFFSET 
170 POKE VART+2+X,STRVAL4:REM THIRD BY 
TE FOR STRING VARIABLE IN VARIABLE TAB 
I...E 
180 POKE VART+3+X,STRVAL3:REM FUURTH B 
YTE FOR STRING VARIABLE IN VARIABLE TA 
DLE 
190 POKE VARTt4tX,128:REM MAKE STRING 
120 BYTE~; I ... ONG 
200 PUKE VART+5+X,0 
210 POKE VART+6+X,128.REM SET LENGTH T 

102 



o 128 
220 POKE VARTf7fX,O:X=Xf8:NEXT 7:REM I 
NCREMENT X FOR NEXT STRING 
230 PL1$(1)="},}":PL1$(128)="},}":PL1$ 
(2)=PL1$:REM CLEAR THE STRING 
240 X=36:FOR 7=1 TO 54 : READ B:PL1$(X,X 
)=CHR$(B):X=Xf1:NEXT 7:JCKPT$=PL1$(73, 
80):REM GET SYMBOLS 
250 DATA 255,0,32,16,16,40,108,108,0 
260 DATA 255~0,0,24,60v126,60,24,O 
270 DATA 255,0,0,0,60,126,60,0,0 
280 DATA 255,0,48,8,24,60,126,60,0 
290 DATA 255,0,0,0,126,126,0,0,0 
300 DATA 255,0,16,16,56,124,124,124,0 

320 POKE 53277,3:POKE 623,4:REM ENABLE 
P/M GRAPHICS - ESTABLISH PRIORITIES 

330 POKE 704,90:POKE 705,120:POKE 706, 
30:POKE 708,150:REM SET COLORS 
340 MONEY=100:POKE 53248,104:POKE 5324 
9,119:POKE 53250,135:REM FILL THE WIND 
OWS - MOVE THE PLAYERS ON THE SCREEN 
350? "}CLEAR}YOU HAVE $";MONEY:? "PRE 
SS 2n~ KEY";:REM PRINT THE MESSAGE 
360 IF PEEK(764)=255fHEN 360:REM WAI "r 

FOR A KEY TO BE PRESSED 
370 MONEY=MONEY-1 : PDKE 764,255:T=INTCR 
ND(1)*15)f5 :R EM PICK NlJMBER OF SPINS F 
ROM 5 - 14 
380 FOR X=1 TO T*9:TEMP$=PL3$(J6):PL3$ 
(36,88)=PL3$(37,89):PL3$(89)=TEMP$:REM 

ROTATE THE STRINGS 
390 FOR 7=1 TO 2:TEMP$=PL2$(36):PL2$(3 
6,88)=PL2$(37,89):PL2$(89)=TEMP$:NEXT 

400 FOR /=1 TO 3: TEMP$ =PL1$(~ 6 ):PL1$(3 

6,88)=PL1$(37,89):PL1$(89)=TEMP$:NEXT 
Z:NEXT X 
410 T=INT(RND(1)*6)f6:REM PICK NUMBER 
OF TURNS FROM 1 - 6 
420 FOR X=1 TO T*9:TEMP$=PL2$(36) : PL2$ 
(36,88)=PL2$(3 7,89): PL2$(89)=TEMP$ : REM 

ROTATE THE FIRST TWO STRINGS 
430 FOR Z=1 TO 2:TEMP$=PL1$(36):PL1$(3 

103 



Listing 6-4. Player/Missile Strings (continued from page 103) 

550? "PRESS ANY KEY TO PLAY AGAIN";:R 
Fr1 NE XT F'I...(')YEF~ 

560 IF PEEK( 764)=255 THEN 560:REM WAIT 
FOF;: (.1 I\E "{ 

570 GOTO 340:REM PRESS SYS'fEM RESE 'r TO 
END DAr'/iE 

6,88)=PL1$(37,89):PL1$(89) =TEMP$:NEXT 
z! m::XT X 
440 T=INT(RND(1)* 6) '~6:REM PICK NUMBER 
OF TURNS FROM 1 - 6 
450 FOR X=1 TO T*9 :TEM P$=PL1$( 36):PL1$ 
(36y88)= PI...1$( 37,89):PL1$ (8 9)=TEMP$:N EX 
T X:REM LAST STRIND 
455 REM CHECK FOR PAYOFF 
460 IF PL3$(37y44)=PL2$(37,44) AND PL3 
$ ( 37 , 4 4 ) :::: F' L 1 ~; ( 3 '/ , 4 -4) AND F' I ... 3 ~I ; :::: ,J C 1< F' T ~Ii T 
HEN MONEY =M ONEY+500: S=75:GOTO 510 
470 IF PL1$(37,44) =PL 2$( 37 ,44) AND PL3 
$(37,44)=PL1$(37v44) THEN MONEY=MONEY+ 
100:S=100:GOTO 510 
480 IF PL1$(37v44 )=PL2$(37,44) THEN MO 
NEY=MONEY+50:S=125 :GOTO 510 
490 IF PL1$(37v44 )=P I... 3$(37,44) THEN MO 
NEY=MONEY+5 :S= 150:DOTO 51 0 
500 S=200:REM NO WIN 
510 SOUND O,Sy10,10:FOR X~1 TO MONEY:N 
EXT X:SOUND OvOvO,O:REM MAKE SOUND TO 
INDICATE WINNIN(:! 
520 IF MONEY>O AND MONEY<1000 THEN 350 
: REM CHECK FOR END OF GAME 
530? "}CLEAR}":IF MONEY=O 'rHEN ? "sou 

:I. Cl S (7~ " : G Cl TO::,) ::-i 0 : F< E 11 I... 0 ~:; T Y U U h: ~:; H J F< T 
540 IF MONEY =1000 THEN ? "YOU WIN":REM 

Hf<DKE THE BANK 
550? 'PRESS ANY KEY TO PLAY AGAIN";:R 
[,1 NEXT PL.AYEI:;: 
560 IF PEEK(764)=255 THEN 560:REM WAIT 
F()f~ A KEY 

570 GOTO 340:REM PRESS SYSTEM RESET TO 
END GAME 

Line 40 sets aside one byte for the strings that will be used for the players. TEMP$ will hold 
one byte during the string manipulation, ]CKPT$ is the jackpot character. In order for this 
procedure to work correctly, PL1$, PL2$, and PL3$ must be the first three variables in the 

104 



variable name table. Before typing this program in, turn off the computer; then tum it back on. 
Begin typing in this program. If the computer is given a variable before the PL strings, it will store 
that variable in the table. This will set the PL strings off and the program will not work correctly. 

Line 50 sets the graphics to 4. We will only need two colors for the slot machine, the 
background color and the machine 's color. The beginning of the display list is stored in DLIST. 

Line 60 changes the text window from graphics mode 0 to graphics mode 1. When we are 
using a graphics mode with a text window, the display list will have another load command after 
the proper number of mode commands. This command tells the computer to start a new screen 
display in graphics mode O. We will change that to graphics mode 1 by poking it with a 70. The 
three lines that would di splay graphics mode 0 are changed to graphics mode 1 by poking three 
more locations in the display li st with a 6. (Graphics mode 1 is ANTIC 6.) Now the text window in 
the program will have large print. 

Line 70 uses the XIO command to draw a slot machine on the screen. 
Line 80 uses color 0 (black) to erase part of the slot machine for the windows. 
Line 90 stores the location of the variable table in VART and the address of the string/array 

are in STTAB. These two values will be used to relocate the strings. 
Line 100 sets the player/missile for double line resolution. 
Line llO sets the player/miss ile graphics 2K before the end of memory. The top of memory 

is stored in location 106. By subtracting 8 from it, we are subtracting 2K of memory. The 
beginning of the player/missile area is stored in 54279. 

Line 120 mUltiplies the beginning address by 256 to arrive at the decimal location of the 
player/missiles. The number that is stored in PMBASE before it is multiplied is the high order 
address. 

Lines 130-220 relocate the three strings that will be used for the player/missile graphics. 
The variable X is set to 0 (zero). This is the variable number or location in the variable table. The 
first player is 512 bytes past the address of the beginning of the player/missile area. Each player 
is 128 bytes apart, so the for .. . next loop uses a step 128. The string offset is stored in the 
variable STROFFSET. This is the value that the computer will add to the address of the 
string/array area to arrive at the location of the string. When the strings are not being relocated, 
the first string will have zeros as the offset since the first string will begin at the first byte of the 
string/array area. The second string's offset will be one more than the length of the first string. 
The string should begin wi th the first byte of the player. The value of Z will be added to PMBASE. 
This is where the player begins in the player/missile graphics area. The value of STTAB must be 
subtracted because the computer will "add" this value back when it is looking at the string. The 
value that you arrive at is the new offset for the string. This value is greater than 255, so it will 
have to be divided into two bytes. The high order address is the integer (whole number) of the 
offset divided by 256. The low order address is arrived at by subtracting the high order integer 
times 256 from the address . These two bytes are s tored in the third and fourth bytes of the 
variable table for that s tring. The next two bytes in the variable table indicate the amount of 
memory set aside for the string. We want 128 bytes for each string, so the low order is poked with 
128 and the high order with a 0 (zero). The last two bytes set the length of the string. We want the 
string to be 128 bytes long, so these two locations will be poked with a 18 and 0 (zero). The 
variable X is incremented by 8 because the information for the next string will begin 8 bytes down 
from the beginning of the information for this string. This routine is repeated two more times. 
When it is finished, the first three strings in the variable table will be 128 bytes long and their 
location will be the player/missile graphics area. 

105 



Line 230 clears the first string. 
Line 240 reads the data in the next 6 lines and stores it in the string. This data will draw the 

cherry, orange, lemon, app le, gold bar, and bell into the player/missile graphics are. The string 
KKPT is set to the 5th character in the string. 

Line 310 sets the other two strings. 
Line 320 pokes location 53277 with a 3 to enable the players, and location 623 is poked with a 

4. This establishes the priorities of the players and the graphics on the screen. If the priorities 
were not set, some of the players would appear over the machine instead of inside it. 

Line 330 sets the colors of the slot machine and the three wheels. 
Line 340 sets the variable MONEY to 100. This is the amount of money you have to start the 

game. The three players are moved on the screen by poking their locations into the correct 
registers. 

Line 350 prints a message in the text window. 
Line 360 checks location 764 for a value other than 255. When the value of this location 

changes, then a key has been pressed. 
Line 370 subtracts one dollar from the amount of money left. The key location is cleared, and 

a random number from 5 to 19 is chosen. This number determines the number of times the 
rightmost wheel will spin. 

Lines 380-400 make the wheels spin . This works on the same principle as the boat in the first 
program of this chapter. The top character of the string (in this case it' s in the 36th location) is 
removed from the string and stored in a temporary location . The rest of the string is moved up one 
byte. The character that is being stored in the temporary location is moved to the end of the 
string. Each of these strings is a different playe r. The rightmost whee l is rotated once, the middle 
one twice and the leftmost three times each time the program executes the loop. This gives the 
illusion of the wheels spinning at different speeds . 

Lines 410-450 spin the middle and leftmost wheel after the right wheel stops. Each wheel is 
spun a few more times after one whee l stops. 

Lines 460-500 check for a payoff. If all three characters shown on the machine are the same 
and they are the bars, the jackpot is won. 500 is added to the amount stored in MONEY. If the 
three are the same, but not the jackpot, 100 is added to the amount stored in MONEY. If the first 
two characters are a match, 5 is added. If there are no matches, nothing is added to the amount in 
MONEY. 

Line 510 makes a sound to indicate the win. The variable S is set to a different value 
depending on the amount of MONEY won. This line generates the sound. 

Line 520 checks the variab le MONEY to see if you can still play.If there is no MONEY, or 
the value of MONEY is greater than 1000, the game ends . 

Line 530 clears the screen and prints you lose if you have no money left. 
Line 540 prints you win if the amount in MONEY is greater than 1000. 
Line 550 prints the message on the screen. 
Line 560 waits for a key to be pressed . The program wi ll loop here until a key is pressed, if 

the system reset key is pressed , the program will end . 
Line 570 sends the program back to line 340 to play again. 

106 



Chapter 7 

Display 
list Interrupts 

An interrupt is a subtle way to get the computer to do a task while it appears to be doing something 
else. When you are working on a program with your AT ARI, the computer looks like it is just 
sitting there waiting for you to enter your new line or command. What is actually happening is the 
computer is very busy maintaining several areas. The ANTIC chip keeps the information on the 
screen; the clock keeps time; and the computer keeps checking to see if it's time to start the active 
mode. When you press a key, you are interrupting the 6502. It now checks which key was pressed, 
and sends that information over to the ANTIC chip so that it can be displayed on the screen. 
Because of the speed at which the computer works , this appears to be done instantaneously. The 
computer is capable of handling more functions if it is interrupted at the proper times. 

HANDLING AN INTERRUPT 

One of the best times to interrupt the computer is when it is drawing on the screen. To draw 
an image on the screen, the computer must be synchronized with the raster scan of the television 
set. This happens within the computer and we do not have to be concerned with it. When the 
raster scan begins to draw a picture on the screen, it begins with the upper left corner and goes 
across the screen to the upper right corner. When it is finished with the line, it shuts itself off, 
retraces its line, then drops down one line and turns itself back on. It continues to draw lines, turn 
itself off, retrace, drop down, and turn itself back on until it reaches the bottom of the screen. 
There it will shut itself off and return to the top of the screen, where it will begin to draw all over 
agam. 

The period of time during which the raster is turned off and is retracing the line is called a 
horizontal blank. The period of time needed for the raster to go back to the top of the screen is 
called the vertical blank. During this time we can interrupt the computer and have it do something 
that we want it to do: something that may not be possible in BASIC or machine language alone. 

There are certain registers or memory locations in your ATARI that seem to have a double in 
ROM. The color registers are one set of these registers. There are 9 different locations to store 
the color values in RAM. There are also 9 color locations in the ROM or Operating System. If you 
poked a value into the RAM locations, you would change the color of the character on the screen. 
If you poked a value into the corresponding ROM location, nothing would happen. 

ANTIC draws characters on the screen based on the colors in the ROM locations (these 

107 



Table 7-1. Hardware Registers and Shadows. 

I:;': (':';:'.'.~ :i .. :;,. t.l':·l r 
..... j p ',; C '('. :i. F" t .. :i. D n 

CCJ 1 C) )'" (.'.1 <::: c' k :'.'.l r' D UI"I(:i 

C D 1 Dr)'" c·: :'.'.~ :i. ':;. t. (.:.,),,' () '.?() H 

c:: () lor- '('. (.:.:, :'.'.'; :i. ':;'. '1: .. c·:)'" 1 '.'.'.i3::.:'::·.:':':I. 

C () 1 () 'j" r' (.:.:, '.';; :i .. :;; t. (.:.:,),' .") ')'10 

Color' )". (.:., ;'.'.;; :i. .:;;. t .. (.:., r ?; /11 

Color- re~/pl<:::spr- 0 /04 

Color r' p~/plaspr' 1 

Color rp~/plaspr' 2 

D:i.splas l:i.st h:i.~h 

D:i.sp l as l:i. st low 

locations are also called the hardware registers). Each time the vertical blank occurs, 60 times 
every second, the computer looks at the colors in the RAM locations and stores them in the 
hardware registers. If you poked a color value into a hardware register, it will be replaced within a 
60th of a second! Table 7-1 shows a list of hardware registers. The second location is called the 
shadow register. This is the register that contains the value that will be placed in the hardware 
register by the computer during the vertical blank. 

There is a way to change a value in the hardware register without interference from the 
shadow register: interrupt the display list and change the value during a horizontal blank. 

WRITING SERVICE ROUTINES 

During the period of time that the raster scan is retracing itself, the computer is free to do 
other things, like change colors, character sets, or other images on the screen. To do this, 
however, the computer must be told to watch for an interrupt. In the following program, the 

108 



computer is told that there will be a display list interrupt. The correct bit is set for an interrupt at 
the end of a line, and the colors in color registers . are changed. 

The only problem with using a display list interrupt to change the color value is that the 
character will always be one color above the line and the other color below the line . If the 
character travels above the line it will be changed to the original color. 

Listing 7-1. Color Service Routine 

10 REM LIS1'ING 7.1 
20 REM COLOR SERVICE ROUTINE 
30 REM BY L.M.SCHREIBER FOR TAB BOOKS 
::.:j 0 U F< (1 F' HIe !:; 1 tl 
60 DL~PEEk(560)+PEEK(561)*256:DL=DL+10 
:REM THE 5TH LINE ON THE se EEN 
70 POKE DL,PEEKCDL)t128:REM set the tlt 
h Ll:i. t. t D 1 b '::J .::~ d d :i. i"J <J :I. :::.) fl t CJ t h (:.~ F' (':' (7~ k () 
f t. hat. 1 C) C i:l t. :i. C) I"J 

80 FOR ML=:l.536 TO :l.564:READ Q:POKE ML, 
Q:NEXT ML:REM POKE THE MACHINE LANUUAG 
E SUBROUTINE INTO FREE RAM 
90 POKE 5:1.2,O:POKE 513,6:POKE 542fl6,19 
2:REM ADDRESS OF MACHINE LANGUAGE SUBR 
OUTINE - ACTIVATE INTERRUPT 
100 DATA 72, 138y]2,152,72y :l.62y:l.OO,:l.60, 
8,:l.69,88,14:1.,:l.O,2:1.2y:l.4:1.y24,)Ofl,14)y23y 
208,140,22,208,:l.04,16tl,:l.04,:l.70,:l.04,64 
:1.20 POSITION 2,:I.:? 16;"BLUE","green" 
130 POSITION ),3:1 16~"red","YELLOW" 
:1.60 POSITION 2,7:? 16;"PINK","purple": 
F' U !:) I T I Cl N '/, (.:.:0 ~ 'i" :11: 6 y "G F< E Y " 
:I. /0 I::lUlU 170 

Line 50 changes the graphics mode to 18-mode 2 without the text window. 
Line 60 stores the beginning of the display list in variable DL. The address of the beginning 

of the display list is stored in locations 560 and 561. To arrive at this address, the contents of 
memory location 561 must be multiplied by 256 and the contents of memory location 560 must be 
added to this product. Add 10 to this address to point to the middle of the display list. 

Line 70 changes the display list. By setting the high order bit of a display list value to 1, we 
tell ANTIC that after it draws or writes this line onto the screen, there will be an interrupt. Since 
we may not be sure what the value might be at this particular location, the simplest way to set the 
bit is to add 128 to the value of this location. 

Line 80 reads the data from line 100 and pokes it into the free RAM beginning at location 
1536. See Table 7-2 for the assembly language listing of the subroutine. 

Line 90 stores the address of the beginning of the interrupt routine at memory locations 
512-513. The address, in this case 1536 is divided by 256. The high order address is the integer 
part of the quotient. 1536/256=6. There is no remainder. The 6 is stored in memory location 513. 

109 



Table 7-2. Service Routine to Change Colors. 

n ' '" • •• ' ••• 

1 .• :1, .,11 . .1;::.' 

IPu sh acc umulator on the stac k . 

; T ra n sfer index X t o a cc umul a tor 

;Pu sh acc umulat or on stack 

;T ra n sfer index Y to accumul a tor. 

"') r) 

.I ,-::. ;Pu s h acc umul at or on stack 

(contents transferred from ind ex Yl 

LDX #10 0 ; Load index X wi t h 100 . 

:LO() 

1 (iO ; Lo a d index Y with 8. 

!:::: 

141 

10 acc umul a tor at this address and 

If there was a remainder, it would be stored in location 512. Since there is none, a zero is stored 
there. Memory location 54286 is poked with 192. This is a hardware address that can enable the 
interrupt for the display list interrupt and the vertical blank interrupt. If it is not enabled, ANTIC 
would ignore the code in the display lis t that tells it that this is the place where it should execute 
the interrupt routine. 

Lines 120-160 print on the screen. The first four words-blue, green, red, and yellow use the 
colors that are prese t by the operating system. Be sure that BLUE is in uppercase and inverse, 
and red is lowercase inverse. Each word will appear in its color. The three words on the bottom 
will appear in new colors. PINK is uppercase inverse , and appears pink on the screen. Purple and 
GREY were previously green and YELLOW. The interrupt routine changed the color code in the 

110 



wait for the horizontal ssnc. 

STX 53271 ;Store inde x X in color re~ister . 

") ",. .. : ..... .. 

140 STY 53270 ;Store ind ex Y i n co lor resister 

104 ;Remove value fro m stac k 

T(j '/ ; Transfer it to index Y. 

1 ',70 Tt l >< 

;Remove v 2 1uc fro m ~t~ ck . 

F:,:T J 

hardware register during a vertical blank. The operating system replaced the color with the color 
code from the RAM shadow address during the horizontal blank. Every time something is printed 
on the top half of the screen, it will appear in the color set by the operating system, or the color 
that was placed in the shadow registers under program control. The colors on the bottom half of 
the screen will be the colors forced into the hardware registers during the interrupt. 

End this program by pressing the system reset key. 
Changing the colors in a program is only one possible use of interrupts. Any feature that has 

both a shadow or RAM address and a hardware address can have multiple uses with the interrupt. 
In the next program we will use two character se ts in the same program. The standard character 
set will be displayed at the top of the screen, and the new characters will be used at the bottom. 

111 



Listing 7-2. Double Character Sets 

10 REM LISTING 7.2 
20 REM DOUBLE CHARACTER SETS 
30 REM BY L . M.SCHREIBER FOR TAB BOOKS 
4 0 [} F~ (1 F' H I C b ° 
50 CB=PEEK ( 106) -8: POKE 204,CB:POKE 206 
,224:REM PLACE NEW CHARACTERS 2K ABOVE 

[ND OF t1Ei\1DF~Y 

60 FOR ML=1536 TO 1555:READ O: POKE ML, 
O:NEXT ML:REM MOVE THE MACHINE CODE IN 
TO F<t1i"i 
70 O=USR(1536):REM NOW RUN IT 
80 DATA 104,162, 2, 160,0,177,205 , 145,20 
3,200,208,249,230,206,230,204,202,208, 
242,9/; 
90 Cl=CB*256t263:FOR X= Cl TO Cl+207:RE 
AD O:POKE X,O:NE XT X 
100 DATA 0,126,102,102,126 , 102,102,102 
101 DATA 0,124,102,102,124,10),102,124 
102 DATA 0,124,100,96,96,100,100,124 
103 DA 'fA 0,124,10),102,102,102,102,124 
104 DATA 0,124,100,96,120,96,100,124 
105 DATA 0,124,100,96,120,96,96,112 
106 DATA 0,124,100,96,108,100,1 00 ,124 
107 DATA 0,102,102,102,126,102,102,102 
108 DATA 0,60,24,24,2 4,24,24,60 
109 DATA 0,30,12,12,12,76,76,124 
110 DATA 0.102,100,104,124,102,102,102 
111 DATA 0,120,48,48,48,50,50,126 
112 DATA 0,55,90,90,90,90,90,90 
113 DATA 0,94,102,102,102,102,102,102 
114 DATA 0,60,102,102,102,10 2, 102,60 
115 DATA 0,124,102,102, 124,96,96,96 
116 DATA 0,60,102,10),102,118,110,102 
117 DATA 0,124,102,102,124,102,102,102 
118 DATA 0,124,100,96, 124 , 12,76,124 
119 DATA 0,124,90,90,24,24,24,60 
120 DATA 0,102,102, 10),102,102,10),126 
121 DATA 0,102,102,10), 102,100,1 04, 11 2 
122 DATA 0,90,90,90,90,90,90,108 
123 DATA 0,122,90,92,24,58,90,94 
1 ~2 -4 D ( 1 'r (i o~, 1 0 ::,) , :I. () ::.:,; !,' :I. () ~? , 1 0:/ , 1 2 -4 , ('l , 1 24 
125 DATA 0,124,70,76,24,5(),98,124 
160 DL=PEEK(560)tPEEK(561)* 256:D L=DLt1 

112 



5:REM ADD SERVICE ROUTINE IN MIDDLE OF 

170 POKE DL,PEEKCDL)t128:REM SET BIT F 
o h: I 1') T E F~ F~ U r' T 
180 FOR ML~1536 TO 1546:READ U:POKE ML 
,U:NEXT ML:POKE 1538,CB:REM POKE THE M 
ACHINE LANGUAGE SUBROUTINE INTO RAM 
190 POKE 512,O:POKE 513,6:POKE 54286,1 
92:REM ADDRESS OF MACHINE LANGUAGE SUB 
ROUTINE - ACTIVATE INTERRUPT 
200 DATA 72, 169,152, 141,10 ,2 12,141, 9,2 
12,104, 64 
210 POSITION 9,2:7 "STANDARD CHARACTER 
elf ,.J 

220 POSITION 13,15:? "BOLD FACE" 
300 GOTU 300 

One of the first tricks that everyone learns is how to turn the screen upside-down by poking 
755 with a 4. (If you've never tried it , do it now with the direct command: 

POKE 755,4 

(If you have a program listed on the screen, it will look most impressive!) 
This is fine if you want everything to be upside down . But, maybe , you want just one or two 

lines in the middle of the screen turned for a mirror effect. Again, the interrupt routines can be 
used to do it right on cue! 

Listing 7-3. Mirror Images Routine 

1 0 F: I:: j"j I.. I ~::: 'f II~ Ci "~I .ox 
! ~ " .. J 

20 REM MIRROR IMAGI::S ROUTINE 
30 RI::M BY L.M . SC HRI::IBER FOR TAB BOUKS 
/} () () I: (:, r' HIe ~ ::: () 
50 DL~PEI::K(560)+PEEK(561)*256:DL~DLt15 
:REM THE 5 'I'H I..INE ON THE SC EEN 
70 POKE DLtX,PEEK(DL)t128:REM s et the 
U t. h r:.1 :i. t. '1:, C) 1 1.'.1 \:1 d (.1 c.i :i. 1"1 ::.:.i 1 :? D 
uo FOR ML ~ 15 36 TO 154 6:REA D U:POKE ML, 
U ;: f-.! E ><f i 'j L. : F ~ E (j r ' C) 1< E THE ivi (1 CHI N E I... (.~ i\! C) U (1 G 
E SUBROUTINE INTU FREE RAM 
() () I:' CII·,:.: I::: ~.:.:.i 1 :~:.:: , 0 ;: r' U 1< E ~:.:j 1 : .. ~; , (t) ~; P U 1-:': E ~:.:i -4 2 H (I) , 1 (? 
:::.:: :: I? Ei"i (:lnDI~E~::::::; UF j"'i(,',CH:r NL I...I:li···!GU(~GE ~:;UBI~ 

OUTINE- ACTIV A'[L INTLRRUPT 
100 DAT A 72, 169,4,141, 10 ,212,14 1 , 1, 212 

113 



Line 40 sets the graphics mode to O. This command will make the computer reset the entire 
display li st. By having the display list reset, we can run this program several times. If the display 
list was not reset, line 70 would produce an error message. 

Line 50 finds the beginning of the display li st and stores this address in the variable DL. We 
add 15 to this address so that we wil l be working with the middle of the display li st. 

Line 70 sets the eighth bit of the byte in the display list. By adding 128 to the value found at 
this location, we set only one bit without disturbing the original value. 

Line 80 reads the machine language subroutine that inverts the letters . 
Line 90 pokes the address of the machine language subroutine into memory locations 512 and 

513. 192 is poked into location 54286 to tell the computer that an interrupt will be generated . 

Run the program. Now list the program. The listing on the top half of the screen will be 
correct. The listing on the bottom half of the screen wi ll be inverted. Press the system reset key 
to turn the screen back to normal. 

PRECISE TIMING 

Another use for a service routine is for precise t iming. The routing will be executed every 
time the computer comes to that line in the display li st. Since the display list is synchronized with 
the raster scan on the television, the routine will be executed every 1/60th of a second. By placing 
a counter in the routine, a character can be moved, a sound can be made, or a color changed 
precisely on schedule. 

In the following program, the neon sign is kept flashing with an interrupt service routine. 

Listing 7-4. Precise Timing 

10 REM LISTING 7.4 
~o REM PRECISE TIMING 
30 REM BY L.M.SCHREIBER FOR TAB BOOKS 
40 GRAPHICS O:POKE 752,1 
50 DL~PEEK(560)tPEEK(561)*256:DL~DL+6: 
h E (.j ·r II C ::.:.i i'~ D L. I i\! E () (lr HEr; C C L N 
70 POKE DL.,PECK(Dl)t12S:RCM set the St 
h t.., i t. -I., u :L h '::! .::>. l-.j,j :i. n ::.:.~ 1 ~:.i C: 
80 FOR ML.~1536 TO 155S:READ Q: POKE Ml, 
Q:NEXT ML. :REM POKC THC MACHINE L.ANGUAG 
L SUBROUTINE INTO FREE hAM 
90 POKE 206,O:REM SCT COUN1ER AND DATA 

TU () 
100 PO SI TION O,O:? " " :CO lOR 42:PL.OT 3 
3.5:DRAWTO 33,lS:DRAWTU 5,lS:DRAWTO 5, 
~.::.i :; :0 F: (:1l.<.1 'r 0 :::) :. :~ ~' ~:.:j 

110 CUlOR 170:PlOT 34,4:DRAWTO 34,19:D 
RAWTO 4,19:DRAWTO 4,4:DRAWTO 34,4 
120 CUL.OR 42:PL.OT 35,3:DRAWTO 35,20:DR 
AWTU 3,20:DRAW'ro 3,3:DRAW'ro 36,3 
1 :3 0 F' 0 :::; I 'r I U N 1 :.:~; l' 1 () : "j . ":0 E D D Y .... B Y I'i Cl TEL " 

114 



140 POSITION 10,12: 7 "COLOR TV - WATER 
BE::D" 

150 POSITION 15,14: 7 "LOW PRICE::" 
190 POKE:: 512,0:POKE:: 513,6:POKE 54286,1 
92:RE::M ADDRE::SS OF MACHINE:: LANGUAGE:: SUB 
F~ CJ UTI I',! E:: .... (:1 C T I \J (1 ''1' I::: I NT I::: F< F~ U P T 
200 DATA 72, 165,19,)40,16, 169,255,133, 
19,165,206,9,1,133,)06,141,10,212,141, 
1~' 2:1.::? y 104, .:i:.4 

:?:I. 0 CiIJrC) :? 1 0 

Line 40 sets the grapics mode to O. This must be done at the beginning of the program 
because you will be adding a value to an existing value in the display list. By setting the graphics 
mode at the beginning of the program, the computer reinstates the original value into the display 
li st. If this wasn't done, and the program was rerun, the computer would be adding a value to the 
value that was changed in the previous run. Poking 752 with a 1 removes the cursor from the 
screen. 

Line 50 finds the beginning of the disp lay list and sets the variable DL to the 2nd line or the 
7th value in the display list. 

Line 70 gets the value from the display list and adds 128 to it. The new value is poked back 
into the display list. This is the line that the graphics were set back to zero for. 

Line 80 reads the machine language subroutine into memory. This is the routine that the 
computer wi ll execute during the interrupt. 

Line 90 pokes the memory location 206 with a zero. We will be using this location as a 
counter for this program. 

Line 100 and 120 use the position command to erase the cursor that was left there by the 
graphic 0 command. The plot and DRA WTO commands draw a rectangle on the screen. The 42 
after COLOR is the character that will be drawn. In this case, it will be an asterisk (*). 
. Line 110 draws another rectangle between the first and second rectangle. 

Lines 130-150 print the message inside the sign. The words COLOR; WATER, and LOW 
PRICE are in inverse video. 

Line 190 tells the computer where in memory the service routine is located and tells the 
computer that there will be an interrupt. 

Line 200 contains the data for the machine language subroutine. This subroutine uses the 
clock to find out when the words should be turned on and off. See Table 7-3 for the assembly 
language listing for this program. 

To end this program, press the system reset key. 

Listing 7-4A. Precise Timing-Second Method 

10 REM LISTING 7.4A 
20 RE::M PRECISE:: TIMING 
3 0 F~ E i"i n y L. < n ., r; C H r;: E I n E F: F U F: "r (:1 :H r{ 0 CJ /'\ ~::; 
40 GRAPHICS O:POKE 752,1 
50 DL~PE::E::K(560)·0PE::E::K(561)*256:DL=DL.t6: 
RE::M THE 2ND L.INE ON THE:: SCEEN 
70 PUKE DL.,PEEKCDL)t:l.28:REM set th e 8t 

115 



116 

1 { , 

r\ 1::'1::' 
,.;:.".1"..1 

:1. 33 

1 ') 

1 

:::.'0<':, 

141 

1 0 

1 41 

1 

:::.~ 1 ;:) 

:1.04 

Table 7-3. Service Interrupt to Flash Inverse Characters. 

I ... V"::) 1 C) 

1 ... Dtl ::?()(:. 

;Push contents of accu mul ator on 

;; 1... 0;:;(", to' h i':' aCC UlilU I d "i:o'O I' V! i to'h to' hE' 

contents of memors location 19 . 

IBr a n c h if it is z ero ahedd 16 

;I...oad the ac cumul a tor with 

;Store it a t location 19. 

1"\1::' 1::' 
,.::.,..1 •. .1 {I 

;I...o;:;d the a ccum ul ator with the 

co ntents of l ocatio n 206. 

lOR the conl e nts of th e acc umul ato r 

1,.l i. th 1., 

; ~::; t.o l ' f~ thE'~ ac cu rn u 1a t.o r <'1 t . I ocat. :i. 0 n 

STA 54282 ;Store the acc umul ator a t this 

l ocation a nd wait for horizontal 

S TA 54273 IStore is at thi s location 

h ardware address for charac ter 

; Pull the v a lu e for the acc umul ator 

!'IT I ; Retur n from interrupt. 



Listing 7-4A. Precise Timing-Second Method (continued from page 115) 
h bit to 1 bs addind 128 
80 FOR ML~1536 TO 1558:READ U:POKE ML, 
U:NEXT ML:REM POKE THE MACHINE LANGUAG 
E SUBROUTINE IN'fO FREE RAM 
!) 0 P 0 1< I::: ::? () (. y () i: h: E 1'1 ::; I::: 'f CUl..l j .... / T E h: (:11"') U D (~ T () 

fU 0 
100 POSITION O,O;? " ":COL.OR 42:PLUT 3 
3,5:DRAWTO 33,18:URAWTO 5,18:URAWTO 5, 
~:.:.j :; D F;: () 1.4.1 TO::'; J '! ~:.j 

110 COLOR I70:PLOT 34,4:DRAWTO 34, 19:U 
RAWTO 4,19:URAWfO 4,4:DRAWTO 34,4 
:/. ::? 0 C U L. U F< 4 ::) :; F> L U 'f 3 ~::j ~. :.::; : D F< () ( .. J 'f 0 J ~:.:j !' ::.? 0 :~ D h: 
AWTO 3,20:URAWTU 3,3:DRA W'fU 36,3 
130 POSITION 13,10:? "BI:::DDY-BY MOTI:::L" 
140 POSIfION 10,:/.2:? "COLOR TV - WATER 

F·:ED" 
150 PUSITION 15,14:? "LOW PRICE" 
190 POKE 512,0:POKE 513,6: POKE 54286,:/. 
92:RI:::M ADDRESS OF MACHINE LANGUAGI::: SUB 
ROU 'fINI::: - AC'fIVATE INTERRUPT 
200 DATA 72,165,19,240, 16,169 ,255,133, 
19,165,206,9,0,:/.33 , 206,:/.4:/.,10,2 12, 141, 
1 , ::.::: 1 :.:? , 1 0 ":l ;' (. ,:::. 

::? 1 0 c; ur C) ::: 1 () 

This listing is nearly identical to the previous one. The difference is in the data line. In the 
first program, the value in location 206 was "or'cl" with 1. The value was stored in 54273. By 
alternating this value between a 1 and a 0, we turn on the characters that were printed in inverse 
video. In the second program a zero is stored in this location. Now the computer will print the 
same characters in inverse video, then normal video. 

PLAYER/MISSILE ENHANCEMENTS 
In a previous chapter, the player/missile graphics were described as a band that fit over the 

screen. This band could be moved to the right or left by poking a location with a value. In the next 
program we will use the service routine to continually move a player on the screen. 

Listing 7-5. Moving Players 

10 REM LISfING 7.5 
20 REM MOVING PL AYERS 
30 REM BY L.M.SCHREIBER FUR TAB BUOKS 
~.:.:.; () [i F: (1 F' HIe :~:; 0 
60 DL~PEEK(560)+PEI:::K(561)*256:DL=DL+6: 
RI:::M THE 2ND LINE UN THI::: seEEN 
./ () r:' U 1< I::: :CI L. !' F' [ E 1\ ( D L. ) + :/. ::.:.) H : F;: E j'1 ~:; ~:.\ t. t h ('.\ U t 

117 



Listing Listing 7-5. Moving Players (continued from page 117) 

h bit to 1 by addin~ 128 to the peek 0 

·r that. luc .::it. :i.un 
90 A=PEEK(106)-16tREM 2K ABOVE DISPLAY 

I... I ~:)T 
100 POKE 54279,A:PMBASE=A*256:REM TEl...l... 

ANTIC WHERE PI...AYERS WILL BEGIN 
110 POKE 559,62:POKE 53277,3:REM SINGI... 
E LINE RESOLUTION 
120 FOR X=PMBASE+l024 TO PMBASE+1280:P 
OKE X,O:NEXT X:REM CLEAR OUT THE GARDA 
GE 
130 RESTORE 140:FOR X=O TO 10:READ U:P 
OKE PMBASE+l104+X,U:NEXT X 
140 DATA 64,120,94,95,94,120,64,64,255 

150 POKE 704,60 : POKE 53248,O:POKE 205, 
o ~ f' 0 I': E? 1 0 , 0 
170 FOR MI...=1536 TO 1548:READ U!POKE MI... 
,a:NEXT MI...:REM POKE THE MACHINE I...ANGUA 
GE SUBROUTINE INTO FREE RAM 
190 POKE 512,0:POKE 513,6:POKE 54286,1 
92:REM ADDRESS OF MACHINE LANGUAGE SUD 
ROUTINE - ACTIVATE INTERRUPT 
200 DATA 72,230,205,165,205,141,10,212 
,141,0,208,104,64 
:?10 GOTD :::)10 

Line 50 sets the graphics mode to O. This is done at the beginning of the program because a 
value will be added to an existing value in the display list. By setting the graphics mode at the 
beginning of the program, the computer reinstates the original value into the display list. If this 
wasn't done and the program was rerun, the computer would be adding a value to the value that 
was changed in the previous run. 

Line 60 finds the beginning of the display list and sets the variable DL to the 2nd line or the 
7th value in the display list . 

Line 70 gets the value from the display list and adds 128 to it. The new value is poked back 
into the display list. This is the line that the graphics were set back to zero for. 

Line 90 finds out how much memory is in the system and subtracts 2K from it. This places the 
player/missile graphics before the display list. 

Line 100 pokes the beginning location of the player/missile area into 54279. That amount is 
multiplied by 256 to get the actual location of the beginning of the player/missile area. 

Line no sets the resolution to single line resolution and tells the computer to enable the 
players/missiles. 

Line 130 clears out the memory area that will be used by the player. If this memory is not 

118 



cleared, the player could contain random bits or the data from a previous program. This clutter 
would appear on the screen when the player is moved onto the screen. 

Line 130 reads the data that makes up the boat into the player/missile graphics area. 
Line 140 is the data for the boat. 
Line 150 sets the color of the boat, the background color of the screen, and sets the location 

of the boat on the screen to zero. Memory location 205 will be used as a shadow location for 53248. 
The value in 205 will be changed by one each time the computer executes this subroutine. This 
value will then be stored in location 53248 by the service routine. Every time this value changes, 
the boat will move on the screen. 

Line 170 reads the values for the machine language routine and stores them in RAM. 
Line 190 tells the computer where in memory the service routine is located and tells the 

computer that it will have an interrupt. 
Line 200 is the data for the machine language subroutine. 
To end this program press SYSTEM RESET. 

When you use any service routine in program, keep in mind that the computer will execute 
the routine continually until the system reset key is pressed. If it is used with a BASIC program, 
the program can be processing information, waiting for an input , or drawing on the screen while 
the service routine performs its functions. In effect, you are running two programs at the same 
time. 

119 





Chapter 8 

Scrolling 
Scrolling is a technique that moves the contents of a screen up, down, left, or right. When the 
screen appears to move up or down, the movement is referred to as vertical scrolling. When it 
moves left or right, the movement is referred to as horizontal scrolling. Either the entire screen 
or selected lines can move. 

Text adventure games usually scro ll the bottom part of the screen, while the top part 
remains the same. The text appears to disappear just under the dotted line. Space games often use 
both horizontal and vertical scrolling. The entire galaxy moves to the left or right, up or down, 
depending on the direction of the joystick. This gives the illusion of a larger playfield and adds 
realism to the game. 

There are two methods of scrolling on the ATARI computer. The course vertical scroll 
moves information up or down one line at a time. The entire screen moves up or down. If there is a 
lot of information on the screen, the movement could appear jumpy. The course horizontal scroll 
moves every line to the left or right one byte . Again, moving the entire screen could make it 
appear to roll. It does not look smooth. 

Fine vertical scrolling moves the line up or down by one pixel. As each line moves up, the 
line beneath it also moves up. The movement is much smoother than the course scroll. The fine 
horizontal scroll moves the line to the left or right by one pixel. 

COURSE SCROLLING 
In a previous chapter we looked at the display list. The fifth and sixth bytes of the display list 

tell the computer where the screen memory begins. If this value were changed, the screen display 
would be different. In the next program, you will print a message on the screen. The message is 
too long to be displayed on the screen all at one time. You could print part of it, have a timing loop 
in the program, and then print the rest of it, but in this program the entire message is printed on 
the screen slowly. The message scrolls from the bottom of the screen to the top. It is not difficult 
to read, although it is a bit jumpy. 

Listing 8-1. Course Vertical Scroll 

10 REM LIS1ING 8.1 
20 REM COURSE VER'fICAL SCROLL 

121 



listing 8-1. Course Vertical Scroll (continued from page 121) 

30 REM BY L.M.SCHREIBER FOR TAB BOOKS 
40 ur;:(.~PHICb 0 
50 DLIST=PEEK(560)tPEEK(561)* 256: REM G 
ET THE BEGINNING OF THE DISPLAY LIST 
60 POKE DLISTt3,PEEK C DLIS ·r~·3)t5 

70 FOR X=6 TO 28:POKE DLISTt X,7:N EXT X 

80 ? "THIS MESSAGE WILL" 
90 ? "SCROLL ON THE " 
100 ? "SCREEN. IT IS" 
110 ? "MUCH TOO LONG TO" 
120 ? "BE bHOWN ALL AT" 
130? ONCE -- SO YOU" 
140? ONLY SEE PART OF" 
150? THE MESSAGE AT A" 
160 'i' Tlr·iE." 
170? WHAT YOU DON ' T" 
180? SEE IS IN THE PART" 
190? OF MEMORY THAT IS" 
200? NOT DISPLAYED ON" 
210? THE SCREEN." 
220 'i' THE COURSE SCROLL" 
230? MAKES THE ENTIRE" 
240? MESSAGE SHOW!" 
300 SCRLOW=PEEKCD L.IST t4):SCR HI =PEEKCD L 
I !:;T+!:) 
310 FOR X=l TO 11:SCRLOW=SCRLOW+40 : REM 

ADD TO THE VALUE TO MOVE TWO LINES UP 
UN THE ~:)Cr~EEN 

320 FOR Y=1 TO 500:NE XT Y:REM TIMING L 
OOP FOR READABILll·Y 
330 I F !::;cr~I ... Dt-J >2 !::i{; THE N !:;C r;: L 0[...1 :::: !:; C h: L Dl,J .... ::.~ 

56:SCRHI =SCRHI+l:REM GU TO THE NEXT PA 
DE OF iv;E ~:;~:;(~GE 

340 POKE DLI ST+4,SCRLOW:POKE DLIST ·~5,S 

CRHI:REM DISPLAY NEW SCREEN 
350 NEXT X:REM SHOW ENTIRE MtSSAGE 

Line 40 sets the graphics mode to O. This is done because you will be poking a value based on 
the peek of a location in the display li st. If the value has already been changed and the program is 
run again, the results on the second run may not be the same as on the first run. 

Line 50 finds the beginning of the display list . 
Line 60 changes the value of the fourth byte of the display list (the first byte is DLIST +0). It 

will now be graphics mode 2. 
Line 70 changes the rest of the display list to graphics mode 2. This mode uses 16-pixel rows 

122 



instead of 8-pixel rows like modes 0 and 1. Since only 12 rows will be displayed on the screen at 
one time, half of the display list will not be seen. 

Lines 80 - 240 print the message on the screen. There are 17 rows of text. Since we changed 
the mode by changing the display list, the computer wi ll try to place 40 characters on a line. Each 
line that we are printing is less than 20 characters. The text will appear double spaced on the 
screen. Al117 rows of text will be placed in the area of memory set aside for the screen display. 

Line 300 finds the beginning of the memory set aside for the screen. The two bytes are 
stored in variables SCRLOW and SCRHI 

Lines 310 - 350 scro ll the message on the screen. Line 310 begins the for ... next loop that 
will move the beginning byte of the screen display area 11 times. 40 is added to the value in 
SCRLOW. This is the low order byte of the beginning of the screen display area. We add 40 so that 
we can move 2 screen rows at the same time . Line 320 contains a timing loop . If we did not slow 
down this routine, the lines would be printed so fast that we could not read them! Line 330 checks 
the value of SCRLOW. If it is greater than 255, it wi ll be reduced by that amount, and SCRHI will 
be increased by 1. If we didn't increase SCRHI by 1 every time SCRLOW reached 255, the 
computer would stay on the same page of memory. Line 340 changes the beginning of the screen 
memory by changing the contents of the memory locations that ANTIC looks at to start displaying 
information on the screen. Line 350 continues the for . .. next loop. 

To return to the text mode, press the system reset key. 

The next program prints every character that the computer is capable of printing in the color 
text mode. Every line contains all 256 characters, but only 20 characters can be displayed on the 
screen at one time. How can every line contain 256 characters? Remember that the fourth 
instruction in the display list tells ANTIC the mode of the top line and that the next two bytes 
contain the beginning of the screen memory. If we change the display list so that every line starts 
its own screen memory, we can make the lines as long or as short as we need. Each line can be in a 
different mode, or they can all be in the same mode. The next li sting prints all the characters in the 
same mode. The one fo llowing it uses mixed modes. 

Listing 8-2. Course Horizontal Scroll 

10 REM LISfING 8.2 
20 REM COURSE HORIZONTAL SCR OLL 
30 REM BY L.M.SCHREIBER FOR TAB BOOKS 
40 POKE 559,0:REM TURN OFF ANTIC 
50 SCREEN=PEEK( 106)-12:REM THE SCREEN 
WILL BEGIN 12 PAGES FROM THE END OF ME 
f"1UI:~Y 

60 DLIST=SCREEN*256-50:REM STAR 'r THE D 
ISPLAY LIST 50 BYTES BEFURE THE SCREEN 
70 FUR X~O TU 2:POKE DLIST+X,112:NEXT 
X:REM FIRST THREE BYTES OF DISPLAY LIS 
T 
80 FOR X~l TO 12: REM TWELVE LINES DISP 
LAYED UN THE SCREEN 
90 POKE DLIST+3*X,71:REM MUDE 2 

123 



Listing 8-2. Course Horizontal Scroll (continued from page 123) 

100 POKE DLIST+3*X+l, 0: REM LOW ORDE R A 
DDRESS OF SCREEN LINE 
110 POKE DLI ST+ 3*X+2,SCRE EN+ (X- l) : REM 
HIGH ORDER ADDRESS OF SC REEN LINE 
1 ~.'O i'-.jE XT X 
130 POKE DLIST+X*3 ,65 : REM JUMP INSTRUC 
TION TO BEGINNING OF DISPLAY LI ST 
140 DLHI=INTCDLIST /2 56):DLLO=DLIS1-(DL 
HI*;?~:56) 

150 POKE DLIST+X*3+1,DLLO 
160 POKE DLIST+X*3+2,DLHI 
170 POKE 560,DLLO : POKE 561,DLHI:REM PU 
T THE 1'1 E tAl D I ~:; F' L (.:l 'y I... I ::) T () :0 Dr;: E ~::; ~:; I i'~ T D I "I' 
~:; F< E Ci I ~:; T E F~ S 
180 POKE 88,O:POKE 89,SCREEN:REM TELl... 
THE OPERATING SYSTEM WHERE THE SCREEN 

190 POKE 559,34:REM lURN ANTIC BACK ON 
;,:,~ 00 F:' DI<E 8::':';!, () ;: F~ Ei', S T (:l h: 'I' (l T THE En U I::: DF 

'fHE ~:;Ch:[: [(,1 

::? :? 0 D I i"'j tIl ( :,:,:: ',:,:,; () ) 
:2 :3 0 F: U F~ X::::I. T 0 ~,:,> ~ , ; /) : I:) 'Ii ( ;< !' >=: ) :::: C H F~ ~ I: ( >< "' :I. ) : N 
EXT X 
240 FUR Z=0 TO l:1.:nI SPLAY =(SCR EEN+Z)* 2 
~::; 6 ~ F D I ~ X:::: 0 T U? ~:; ~:,,; : F' U 1\ E li I ~:; f' L (1 'y' + X , I) r; c ( (1 

$( X+ l ,X +l» : NE x r X:NE>=:T Z 
250 FDR Z~O TU 235:FUR X= l TU :l.2 : RI:::M I... 
EAVE 20 CHARACTER S ON THE SC REEN - :1. 2 

260 PUKE DI...IST+ X*3 +1 ,Z:R EM PUKE THE I...E 
FT MARUIN IN'fO THI::: I...UW URDER SCREEN Ali 
DRESS FDR EACH ROW 
270 NEXT X:NEXT Z: REM DU ENTIRE SC REEN 
280 FOR 7=235 TU 0 STEP -l:FOR X= l TO 
12:REM DD IT BACKWARD S 
290 POKE DLIST+X*3+:I. ,7: REM POKE THI::: LE 
FT MARGIN INTO THE LOW ORDER SCREEN Ali 
DRESS FOR EACH ROW 
300 NEXT X:NEXT Z:REM DO ENTIRE SCR EEN 
310 GOTU 250:REM KEEP DOING IT 

Line 40 turns off ANTIC. Since we are making major changes to the display list, it is a good 
idea to turn off ANTIC. Otherwise we could confuse or lock up the computer. 

124 



Line 50 finds the amount of memory available in the system and subtracts 12 from it. This 
will give us 12 pages or 3K of memory for the screen display. 

Line 60 subtracts 50 bytes from the beginning of the screen area. That should be enough for 
the display list. 

Lines 70 - 160 set up the new display list. Line 70 pokes in the values for the first three bytes 
of the display list. Lines 80 - 120 set up the main body of the display list. There will be 12 lines on 
the screen. Instead of poking in the value for that line of the display list, we need to do more. 
First, we will offset the value of X by mUltiplying it by 3. Three is used because there are 3 values 
that must be poked in for every line . The first value is 71; this is the same value that would 
normally be placed in a display list for mode 2. It means that the line is in mode 2. The next 2 bytes 
indicate the beginning of the screen display area. The next value to be poked in is a zero. Every 
line will begin on an even page of memory. The next value is the high order byte for the screen 
display area. The line number minus one is added to the value of screen. The jump instruction for 
ANTIC is poked into the end of the display list along with the two byte address for the beginning of 
the display list. Now ANTIC will know where to jump when it gets to the end of the display list. 
The new values for the location of the display list are placed in memory locations 560 and 56l. 
ANTIC is turned back on and the left margin of the screen is changed to O. 

Line 210 clears the screen. 
Line 220 sets aside 256 bytes for A$. This string will be displayed in every line on the screen. 
Line 230 places the character for every value from 0 to 255 into A$. 
Line 240 calculates the beginning of the screen display area for the line by multiplying the 

value of SCREEN plus Z by 256. The ASC (AT ASCII) value of every character in A$ is poked into 
this memory area . 

Lines 250 - 270 change the value in the low order byte of the screen display area for every 
line. This makes the rows on the screen appear to move to the left. 

Lines 280- 300 reverse the process. By subtracting one from the low order byte of every row 
displayed, the screen will shift to the right. 

FINE VERTICAL SCROLL 

The fine vertical scroll is achieved by moving the characters on a line up or down one pixel at 
a time . After the first line has been scrolled as far as possible, the scrolling to the next line is done 
the same way it was done in the course scroll program. 

Once again, the display list plays an important part in the fine scroll. The sixth bit of the byte 
that tells ANTIC what mode the line is must be set in order to scroll that line. An easier way is to 

XX xx 
xx xx xx xx 

xx xx xx xx xxxxxxx 
xx xx xxxxxxx xxxxxxx 
xxxxxxx xxxxxxx xx xx 
xxxxxxx xx xx xv xx 
xx xx xx xx 
xx xx 

o 
Fig. 8-1 . Scroll values. 

v xx xx xx 
x xx x x ~<x x xx 
)(XXX XX xx xxxxx 
XX XX XX xx xx 
\.1 .x x xx xx 
X xx 

4 

xv xx 
xx xx xx xx 

x xx xx xx xxxxxxx 
x xx xxxxxxx xxxxxxx 
xxx xxx xxxxxxx xx xx 
xxxxxx xx xx xx xx 
x xx xx xx 
)( )()( 

l 

125 



add 32 to the mode. If the screen is mode 0, the display list has 2 for the mode. Change the 2 to 34 
and that line can scroll vertically. 

Of course, the line will not scroll all by itself. The computer must be told when to scroll that 
line and how far to scroll it. 54277 is poked with a value from ° to 7. A zero holds the character in 
the position that it would be in if there was no scroll. A seven moves the character up seven pixels. 
It is almost in line with the correct position for the line just above it. Figure 8-1 shows the 
character position from ° to 7. 

The following program uses the fine scroll with the course scroll to move a message up on 
the screen. 

Listing 8-3. Fine Vertical Scroll 

10 REM LISTING 8.3 
20 REM FINE VERTICAL SCROLL 
30 REM BY L.M.SCHREIBER FOR TAB BOOKS 
,.l~ () C F: (.:i F' HIe S 0 
50 DLIST=PEEK(560)tPEEK(561)*256:REM G 
ET THE BEGINNINC OF THE DISPLAY LIST 
60 POKE DLISTt3,102 
70 FOR 1=6 TO 28:POKE DLISTtX,38:NEXT 

H 0 F:' 0 ~::; I T ION :::~, B 
170 ? "THIS SCROLLING" 
lHO ? "IS EASIER TO READ" 
190 ? "THAN THE COARSE" 
;~) 0 0 ? "ivi E T H CJ D • " 
210 ? "YOU CAN MAKEH 
220 ? "IT SCROLL FAST" 
230 ? "OR SLCJW WITH" 
240? "A TIMING LOOP." 
290 SCRLOW=PEEKCDLISTt4):SCRHI=PEEKCDL 
J ~:; T + ~:.:.i ) 

300 FOR 1=1 TO H:SCRLOW=SCRLOWt20:REM 
ADD TO THE VALUE TO MOVE TWO LINES UP 
ON THE ~:;CF~EEN 

310 IF SCRLOW>256 THEN SCRLDW=SCRLDW-2 
56:SCRHI=SCRHI+1:REM GO TO THE NEXT PA 
GE OF' i"iE~:;~;(iGE 

3?O LN::::L.i\1+10 
3 :':::; 0 F 0 F: :? :::: 0 T U )' : F:' ClI-;: E ~:,:j 4 :,:,! '7 '7 , Z ~ F' 0 F~ Y :::: 1 
TO 25:NEXT Y:NEXT Z:POKE 5427},0 
340 POKE 559,O:POKE 54?7'7,O : POKE DL.IST 
t4,SCRLOW:POKE DLIST+5,SCRHI:PDKE 559, 
34:REM DISPLAY NEW SCREEN 
350 FOR Y=l TO 10:NEXT V:NE XT X:REM SH 
OW ENTIRE MESSAGE 

126 



Line 40 resets the display list every time the program is run. 
Line 50 finds the beginning of the display list. Every byte that tells ANTIC the mode of the 

line must be changed. The 6th bit of the byte must be set to 1. 
Line 60 sets the top line of the screen for the scroll. This byte also tells ANTIC that the next 

two bytes are where the screen memory begins . 
Line 70 sets the rest of the bytes in the display list for the vertical scrolL 
Line 80 sets the position on the screen where the message will begin to be printed. 
Lines 170 - 240 print the message on the screen. The entire message will not be printed on 

the screen since this is graphics mode 2. The display list is as long as it would be in mode 0, so part 
of the message will be printed out of the screen area. 

Line 290 sets the variable SCRLOW to the low order address of the screen and SCRHI to the 
high order address of the screen. 

Lines 300 - 350 scroll the message on the screen. Line 300 begins the for ... next loop. 20 is 
added to the value in SCRLOW because there are only 20 characters displayed in a line on the 
screen. If the value of SCRLOW exceeds 255, the value is reset by subtracting 255 from it, and 1 is 
added to the value of SCRHI. This will give ANTIC a new page to display on the screen. If SCRHI 
was not incremented, ANTIC would only display 1 page of screen memory over and over again. 
Line 330 begins the fine vertical scroll. A value from 0 to 7 is poked in memory location 54277. 
After each poke, there is a timing loop. This will slow down the process of scrolling and make the 
text more readable. Once the lines are scrolled up as high as they can go, we shut off ANTIC, poke 
54277 with 0 to reset the scroll or put the line back to normal, and poke the display list with the 
new screen values. This is the course scroll. Because ANTIC is shut off, it will be a smooth scroll. 
ANTIC is turned back on and after another timing loop, the program continues with the original 
for.. .. next loop. 

When the entire message has scrolled up the screen, the program will end. Press the system 
reset key to return to the text mode . 

When you want a message or characters to move down on the screen, the process must be 
reversed. The characters must be brought down one line by the course scroll, scrolled all the way 
up to the top of that line, then slowly scrolled down on the screen. A downward scroll is not always 
as smooth as an upward scroll. 

Listing 8-4. Fine Vertical Scroll: Down 

10 REM LIS 'rING 8.4 
20 REM FINE VERTICAL SCROLL - DOWN 
:'; () h: E (j r:'{ 1... ,. (I • h C H h: E I :0 E h: F 0 F~ T (; B B 0 0/< t) 

·:l· () C:i h: ti r:' H I C ~:; () 
50 DLIST~PEEK(560)tPEEK(561)*256:REM G 
ET THE BEGINNING OF THE DISPLAY LIST 
60 POKE DLISTt3yl02 
70 FOR X=6 TO 28:POKE DLISTtX,38:NEXT 
>< 
:3 () F:' D ~:, I T I U I"~ ::.:>. y n 
90 SCR LUW =244:hCR HI=PEEKCDLISTt5):POKE 

DI...I~)T+4 Y SCF:I...Ul<.1 

127 



listing 8-4. Fine Vertical Scroll: Down (continued from page 127) 

:I. )' 0 
:I. ~JO 
:I. ?() 
"\ (' ,., 
"::. \) '\) 

"'J :I. 0 ,,',. 

I", .", () .\': ... ;:. 
"') jO ,\',. 

-'ji 

"i:' 

? 

? 

"j: 

? 

? 

"TH 1 b ~:;CF~OI...I...I N()" 
"Ib EASIER TO READ" 
"'fHAN THE COARbE" 
"1'iETHUD . " 
"Y'Ol.J C(:lj"~ hi~I\I:::" 

"IT bCROl...1... FAbT" 
"OF: HI...Ol,j [".I ITH" 

240? "A 'flhING I...OOP . " 
300 FOR X=:I. TO 8:HCRI...OW=SCRI...OW-20:REM 
~: :: U F: T F:~ (~ C 'f T U j\j C) t,) E T [',1 (J 1.., 1 N E ~:; D U tJ N Cll'~ THE 

bCh:EEN 
330 POKE 559,O:POKE DI...IHT+4,bCRI...OW:POK 
E DI...IST+5,bCRHI:POKE 559,34:REM DISPI...A 
,,( 1'.1 E t,,I ~:; C: r:: E E N 
340 FOR Z=7 TO 0 STEP -:l.:POKE 54277,Z: 
FOR Y~:I. TO 20:NEXl Y:NEXT Z 
:,:\ ~:,:,i () F (J h:Y :::: :I. ''I' U :,:,:: 0 i. N E X Tf : N F \ T >(: F~ L 1"1 ~:; H 
UW ENTIRE MESHAGF 

Line 40 resets the graphics to mode 0, This restores the display li st to its original contents, 
Line 50 finds the beginning of the display list. 
Line 60 sets the fourth byte of the display list for the vertical scroll and graphics mode l. 
Line 70 sets the rest of the lines in the display list for graphics mode 1 with the bit set for the 

vertical scroll. 
Line 80 begins printing the message on this line, 
Line 90 sets the variable SCRLOW to 244, This figure was calculated by printing the value of 

SCRLOW at the end of the last program. The variab le SCRHI should remain the same value as the 
high byte address in the display li st. Change the di splay li st low order byte for the screen address. 

Lines 170 - 240 print the message on the screen . Thi s time the entire message will be visible 
on the screen. 

Lines 300 - 350 scroll the message down on the screen. This time 20 is subtracted from the 
beginning of the screen memory, By subtracting 20, ANTIC starts to display the screen area 20 
bytes before the point where the message begins, Thi s pushes the message down one line on the 
screen. 

Line 330 shuts off ANTIC while the new screen memory values are poked into the display 
list. ANTIC is turned on and the screen displays the message one line lower. By poking memory 
location 54277 with 7 to 0, we start the scro ll with the lines scrolled up as high as possible. They 
are then slowly lowered on the screen, The timing loops keep the scrolling smooth. Every time 
the line is in the correct position, ANTIC is shut off, and the line is moved down one with a course 
scroll , but it is immediate ly scrolled up after ANTIC is turned on. A scroll down is not always as 
smooth as a scroll up, 

PLAYFIELD WIDTHS 
The width of the playfield is the number of columns that you can place information in. Up until 

128 



now, no matter which mode we worked in, the width of the screen was always the same - 40 
columns or 320 pixels. The width of the playfie ld does not have to re main constant. There are 
three different playfie ld widths that you can choose from. Try this in the direct mode: 

POKE 559,33 
Look at the screen! It is much smaller now. It is only 32 columns, or 256 pixels wide. 

Everything that is on the screen looks like it is in the wrong place. ANTIC doesn't look to see how 
wide the screen is. It will still try to put 40 characters in a line . If the line is too short, it will put the 
rest in the next line. 

Now try this - POKE 559,35 
There is no margin on the left and right sides of the screen. Again, the information on the 

screen is not in the right place. This is the wide playfie ld. It is 48 characters or 384 pixels wide. 
The screen information will not be in the right place , because the information appears on the 
screen sequentially. If the line is longer than 40 characters, the information from the next line is 
placed on this line. To get back to the normal width, poke 559,34 or press the system reset key. 

These playfie lds can be used to create special effects. The wide playfield is used with the fine 
horizontal scroll . 

FINE HORIZONTAL SCROll 
The fine horizontal scroll is very similar to the fine verti cal scroll. Every character in the line 

that is to be scrolled is moved to the right approximately 2 pixe ls. Clear the screen and try this in 
the direct mode: 

X = PEEK(560) + PEEK(561) * 256 + 7:POKE X,18 
This sets one line of the display list for the horizontal scroll. When you press the return key, 

the 'X=' will move to the left and seem to disappear off the screen. READY will appear under the 
8 and the left margin will seem to be on the right side of the screen. Now enter this: 

FOR Y=O TO 15:POKE 54276,Y:NEXT Y 

The third line moves to the right and the entire line can be read. If you reverse the command: 

FOR Y=15 TO 0 STEP -1 :POKE 54276,Y:NEXT Y 

the line will move back to the left. The rest of the screen is offset because this line is 8 characters 
or bytes longer than the other lines on the screen. READY is on the next line because the first 8 
bytes of the fifth line are now on the fourth line . Every line after that is offset by 8 bytes. If enough 
lines are set for the horizontal scro ll , the offset will work itse lf back to the left margin. 

The next two programs are variations on a ticker tape routine. The first program performs 
the horizontal scroll using the same technique as was used with the vertical scroll. Notice that in 
addition to scrolling to the left, the message is also scrolling up the screen! Press the system 
reset key before the message goes too far . The second program shows a solution to this program. 

listing 8-5. Fine Horizontal Scroll 

10 REM LI STING 8.5 
::.' 0 I::': E i····j I:' 1 (~L HOI;: I Z 0 (! 'r (i I... ~::; C 1:< D 1...1... 
:-50 F< E: ('j . r:"( 1.... iY'j • :;;) C H 1:< E:: I Ii L 1:< I:' CJ I~ T (1 f: Ii 0 U 1< ~;; 
40 :Oll~j (l 'l(4U) 

50 GRA PH ICS O:POKL 82~ O : POKL 752,1:REM 
SET LLF'T 11(::11;:[; I N 

129 



Listing 8-5. Fine Horizontal Scroll (continued from page 129) 

60 DLIST=PEEK(560)tPEEK(561)*256 :SC RLO 
W =PEEK(DLIS 'rt4) :SCR HI ~PEEK(DLIST+5):R E 

M DISPLAY L.IST AND SCREEN MEMORY 
70 POKE DLISTtl0,PEEK(DLIST+1 0)+16:RE M 

:::; E T If U F:' F U F.: H D F ;~ 17 D I'~ T (i L !:; c:: F~ Cl L L. 
80 A$~"STAY TUNE FOR AN IMPClRTANT MESS 
FlUE UN CUjvjF'U 'r Eh:::::; " 
90 POKE 54276, 15:REM SET SCROLL TO THE 

F:IUHT 
100 PDSITION O,5 :? At 
110 FOR X~15 TO 0 SfEP -l:PUKE 54276,X 
; r U F: yo: :I T U it 0 ;. () E /.. T Y ~ (1 E >< 'r )<;: F~ I • j"j r'. c: F ;~ U L 
LTC) THE L.EFT 
1 ? 0 ': :; C h: L. U 1/) ::: ~:; C: F: L. U Ii) + 4 ~ IF':; C F;: L. U l,J >:? ' .. :j ' .. j THE ,'.j 

S C h: H I:: :::; C F: H I + 1 ;, ':; C F: LUI;;::: ': ; C I? L. U If) ' . ;:.i ~ .. ; ~~; 
130 F' UI< E 01 .1 :: ; T·:· 4 !' h C:h:L. Ull ) ;. F> U I· E VI .1 '::; 1 + ~.:.; ~' ':::; 
CF~H T 
140 FUR Y~l TO 10:NEXT Y:GUTU 110 

Line 40 sets aside 48 bytes for the message. This is the number of characters that will fit on 
one line when the screen is set for the wide playfield . 

Line 50 clears the screen, sets the left margin to 0, and removes the cursor from the screen. 
If we did not set the left margin to 0, the computer would leave two bytes blank on the screen in 
the line that the message is printed in. These two bytes are where the left margin is for a normal 
playfield width. 

Line 60 finds the beginning of the display list and places the screen memory address in 
variables SCRLOW and SCRHI. 

Line 70 sets the sixth row of the screen for the fine horizontal scroll. The fine horizontal 
scroll is set by adding 16 to the value in the di splay list. 

Line 80 places the message into A$. Be sure to add the space after the last word, computers. 
Line 90 pokes 15 into memory location 54276. This wi ll scroll the line all the way to the right. 
Line 100 prints the message on the sixth line of the screen. (The first line is 0.) 
Line 110 begins the horizontal scroll. The for ... next loop decreases from 15 to 0, moving the 

message from the right to the left. 
Line 120 adds 4 to the low byte of the screen memory area. Scrolling from 15 to 0 moves 4 

characters off the screen. 
Line 130 pokes the new values into the display list and completes the scroll. 

Notice that the message spirals on the screen. Four characters at a time appear on the line 
above the scrolling line. This line is not set to scroll, so the characters stay there until the next 
course scroll. We are moving the screen display area, so even though we are moving the 
characters across on the line, we are also moving them up in the screen memory. 

The next program tries to correct this situation. When the words are scrolled to the left , the 
letters are removed and placed at the end of the line . The screen is sti ll spiralling up the display, 

130 



but because the letters are constantly being removed from the beginning of the line and added to 
the end, it gives the illusion of remaining on the same line . 

Listing 8-5A. Fine Horizontal Scroll-Second Method 

10 REM LISTING 8.5A 
20 REM FINE HORIZONTAL SCROLL 
.. :':.1) F:: F I'j r: '( 1... ,. (1 ,. 3CH F:E 1:0 E F: F' UI:: T (.:1 r: BUol",!:; 
,:). () :0 I i'j (1:1; ( ·4 U ) 
50 GRAPHICS O:POKE 82,0:PoKE 752,1:REM 

~::: [: r L. [ I:f (j (i h: GIN 
h () :u L. I ::::: 'f:: I> E [1< ( ~.:5 ,S 0 ) + F' E [1< ( ::.:j (:. J ) * :~:.~ ::.:.i 6 ; ~:; C; r~ L CJ 

[",.1::; i:> e F I:: ( n L I ~::: T +:~. ); ~::: C h: HI:::: r:- E E 1< ( Ii 1... I ~::, T + ::.:i ) 
70 POKE DLISI+10,PEEK(DLIST+JO)+J6:REM 

SEI' IT UP FOR HORIZONfAL SCROLL 
80 A$~"SIAY TUN[ FOR AN IMPORTANT MESS 
(.{ C-:i [: U j·· .. 1 C: Cli"j F' U 'r [: F: ::::: II 

90 POKE 54276,J5:POSITION 0,5:? At 
J 0 0 I.. I i\11 : ;.:j:: :3 C F: H 1 ;{< :~:.:: ::.:.i (, -7- ~:) C:: F: !... U 1".1 + :I. ':;.:. ') ;. r~ E ,...1 F 1 F~ 
~::f I: '(1 E (J F THE F 1 F '1' II 1.. . 1 (! E 
110 POKe LINE5 '~47,PEeK(LINE5):r:-UKE LIN 
E5yO:LINE5~LINE5+1 

J : .. " () ":! C I:.: I.. II kl :::: :::: C: h: 1... i:II.,J·::I : I F' . ~::; C:: F" L. U 1,,1 >~:.:: ::5 ~::.i THE N 
~:; c: r:.: L .. II i.J : : : :: c: h: L U 1 .. \./ .... ~.: '.: .. i '.:) :; ::::; C I::: H 1::: ~:; C r~ H I + :I 

130 FOR X~:l510 12 STer:- -:l:PUKE 54276, 
:FOR )~ 1 TO 30:NEXT Y:NEXT x 

!: () J> Ii I. 1: '. i '::: ':, ".' () :: I:' fJ I' .: [0 L. I :::::f +.':~ ;' ~:; C I::: I. .. u tiJ :; F' 01< 
i. )i i. .. J "::f + ' .. i " : ; c: j:.: HI': I' (11< 1::: ':.i :::i:) o! :.-:'; 4 i Ci U T U J J 0 

PLAYER/MISSILE GRAPHICS 

Many applications for using horizontal and vertical scrolling come to mind when you consider 
adding player/missile graphics. A map of the United States or the world could be drawn on the 
screen. To keep it at a reasonable size, you would not have to fit the entire map on the screen. A 
player could be used as a cursor. Moving the joystick would move the cursor up, down, left , or 
right on the map. When the red button on the joystick is pressed, the screen would scroll in the 
direction indicated by the joystick, exposing other parts of the map. 

131 





Chapter 9 

Page Flipping 
In the display list there are two bytes set aside to tell ANTIC where the beginning of the screen 
memory is. If we were to change these bytes, we would get some strange displays on the screen. 
It could be garbage, or it could be a clear screen. It all depends on what is in the memory area that 
ANTIC is trying to display. Try this in the direct mode: 

DLlST =PEEK(560) +PEEK(561) *256:POKE DLlST +5,6 

What do you see on your screen? This is the area of memory that we usually store machine 
language subroutines in because the operating system doesn't use it. 

DISPLAYING TWO SCREENS 
By adjusting the memory that will be used by the screen, we can set aside memory for more 

than one screen display. We can then flip back and forth between the two screens. The new 
picture or message will immediately appear on the screen. If speed is critical, or you do not want 
the user to see the image being drawn, screen flipping is the answer. It does, however, use up a lot 
of memory. In the text mode, figure another lK of memory for each additional screen that you 
want displayed. If you are using a high resolution graphics mode, the memory cost is even more! 

The following program shows two messages that are displayed on two different screens . 

Listing 9-1. Screen Flipping 

10 REM LISTING 9.1 
20 REM SIMPLE PAGE FLIPPING 
30 REM BY L . M.SCHREIBER FOR TAB BOOKS 
40 GRAPHICS O:POKE 752,1:? "}CLEAR}" 
50 DLL1~PEEK(560):DLH1~PEEK(561):DL1=D 
L 1... 1 + n 1... H :I if; :;:.:: ~.:.:j o:'j <~ ~::; C h: 1 :::: F' E E 1< ( 0 L 1 + -4 ) : S C F~ ) :::: PEE 
K(DL:I+5):SCR~SCR:I+SCR2*256 

60 POKE :l06,PEEK(106)-4:REM MOVE SCREE 
;--.~ U r:' :11< 
.. :? 0 C-:i F~ (:i F' H I C: S (); F: [: ('j F< E H [: T T H [: D I ~; F' L. (~ Y L I 

133 



listing 9-1. Screen Flipping (continued from page 133) 

~:;T 

80 DLL2=PEEK(560):DLH2=PEEK(561):D~2=D 
LL 2+DLH2*256 :SC 1=PEEK ( DL2+4 ):SC2=PEEKC 
DL2+5):SC=SClfSC2*256 
90 POKE 752,1:? "THI S MESSAGE IS ON 
PAGE 2":7 "WHILE YOU ARE READING IT":? 

"I'M WRITING ON SCREEN 2" 
100 POKE 88,SCR1:POKE 89,SCR2:REM LET 
THE COMPUTER WRITE ON THE OTHER SCREEN 
110 . ? " GOOD WORD! ":REM 2 ESC-DO 
WN ARROWS - FIVE SPACES 
120 POKE 88,SC1:POKE 89,SC2:C=0:7 " 

I'm reads press ans kes! ":REM 2 DOWN 
(:'1 F;: h: OW b··.. 3 ~:) F:' (~C E 
130 IF PEEK(764)=255 THEN 130 
140 POKE 764,255:REM CLEAR THE REGISTE 
h: 
150 POKE DL2f4,SCR1:POKE DL2f5,SCR2:RE 
r"i ~;; H U [,J :;;) C I :~E E (.j 1 
160 FOR Y= l TO 200:NEXT V:REM TIMING L 
OUF:' 
165 7 "}CLEAR}":IF C THEN 180 
170 ? "l'his was printed while so u 
were watchins the other screen." 
:C=l:REM 4 DUWNARRUWS 
:I. D () ? "F" I' ~:.) ';:; .: ;; an'::! k (::.) ':::! " : F< E ('I D Ul,,) 1'1 (1 F< F< CJ 1,,) 
:.~ l(:lD 
190 PUKE DL2f4,SC1:POKE DL2f5,SC2:REM 
RESET THE SCREEN 
:?()() UDlO 130 

Line 40 sets the graphics mode to O. This line also removes the cursor and clears the screen. 
This will be considered page 1. It is ready for something to be written on it. 

Line 50 finds the beginning of the display list. The location of the screen memory is stored in 
the fifth and sixth bytes of the display li st. These values are stored in the variables SCI and SC2. 
The first byte of the screen is stored in the variable SCR. 

Line 60 subtracts 4 from the value in memory location 106. This memory location tells the 
computer how much memory (RAM) is avai lable for it to use. It will count backwards from this 
location when setting aside screen space and the di splay list. By poking 4 less than the total 
number of pages of memory available, we are saving lK of memory of the screen and display li st 
that we just initialized. 

Line 70 resets the display list and screen. Because we changed the amount of memory that 
the computer thinks it has , the first display li st and screen display memory is intact. The screen 
memory and display list that the computer set in this line are lower in memory than those 

134 



established for the preceding screen. We now have two display lists and screen memories in the 
computer's RAM. 

Line 80 calculates the new display list and the location of the new screen memory. This is the 
second display list and screen in RAM. 

Line 90 removes the cursor and prints a message on the screen. This message appears on the 
screen that you are looking at. 

Line 100 pokes the memory location of the first screen into memory locations 88 and 89. This 
is where the computer looks to see where the screen display area is. If we change these bytes to 
the location on the first screen, the computer will print or draw in that memory area. This will not 
affect the display that we are looking at. 

Line 110 is the message that the computer will print on the screen. This message will not 
appear on the screen that we are looking at because locations 88 and 89 have been changed. 

Line 120 sets the variable C to O. C is used as a flag in this program. When it is 0, a second 
message will be printed on the second screen. When it is 1, the message will not be printed. The 
message between the quotes will be printed after C is set to O. Before printing any message, 
memory locations 88 and 89 must be changed . If they were not changed back to the screen 
memory of the screen that we are looking at ," we would not see this message. 

Line 130 checks memory location 764. When its value is not 255, a key has been pressed. The 
program wi ll loop here until a key is pressed. 

Line 140 clears memory location 764 by resetting it to 255. If this location was not reset 
when the program looped back to line 130, it would think that a key had been pressed whether one 
was or not. 

Line 150 pokes the values for the first screen memory into the display li st. Now the message 
that was poked into that memory area will be disp layed on the screen. 

Line 160 is a timing loop to give you a chance to read the message. 
Line 165 clears this screen. This will not clear the screen that you are looking at! This will 

clear screen 2. If C is set, the program will go on to line 180. 
Line 170 prints a message on the screen and sets C to 1. This message is not printed on the 

screen that you are looking at, but at the other screen. 
Line 180 prints the rest of the message. 
Line 190 resets the screen by poking' the screen memory area for the second screen into the 

display list. 
Line 200 sends the computer back to line 130 to repeat the program. 
To end the program press the system reset key. This will reset the display list and all the 

registers. If you press the break key, you will only stop the program but not reset any of the 
registers. 

This method of screen flipping can be used with other modes as well. In the next program, 
the screen will flip between mode 0 and mode 1. 

Listing 9-2. Simple Page Flipping: Two Different Modes 

10 REM LISTING 9 . 2 
20 REM SIMPLE PAGE FLIPPING TWO DIFF 
EF~ENT hUDE:::) 
30 REh BY L.M.SCHREIBER FUR TAB BOOKS 
-4 () U F~ (1 F:' HIe ~::: 1./ 

135 



Listing 9-2. Simple Page Flipping: Two Different Modes (continued from page 135) 

50 DLL1=PEEK(560) : DLH1=PEEK(561):DL1=D 
LLltDLH1*256:SCR1=PEEK(DLlt4) :SCR2= PEE 
KCDLlt5):SCR=SCRltSCR 2*256 
60 POKE 106,PEEK(106)-4:REM MOVE SCREE 
N UP 11< 
70 GRAPHIC S O:REM RE SET THE DISPLAY LI 
GT 
80 DLL2=PEEI«560):DLH2=PEEK(561):DL2=D 
LL2tDLH2*25 6:S C1=PEEI< CD L2t4) : SC2=PEEK( 
DL2t5):SC=SC1+SC2*256 
90 POKE 752,1:? "THIS MESSAGE IS ON 
PAGE 2":7 "WHILE YOU ARE READING I'r":? 

"I'M WRITING ON SCREEN 1" 
100 POKE 88,SCR1:POKE 89,SCR2:POKE 87, 
1 
110 7 i6;"GOOD WORI<" 
120 POKE 88,SC1 : POKE 89,SC2:POKE 87,0: 
[::::0: "i' " I ... 1'iI r' (.:.> a i,j '::! F' l" (:, ' ,:. ',:; a 1"1 \:; k f> '::! I " 

130 IF PEEK (764)=25 5 THEN 130 
140 POKE 764,255:REM CLEAR THE REGISTE 
F: 
150 POI<E 560, DLL1:POKE 561,DLH1 : REM SH 
O[JJ !:;C F<EEN ::,::: 
160 FOR Y=l TO 200:NEXT V:REM TIMING L' 
DUF' 
165 7 "}CLEAR}":IF C THEN 180 
170 7 "This was printed while sou 
l-,I E·! 1" (.:.! 1,\1 d t. c h :i. 1"1 ~.:j t h ,,:.! 0 t h f·' r ',; c r (.> e 1"1 (. " 

: C:::::I. 
180 ? "p1"ess ans kes" 
190 PUKE 560,DLL2:POKE 561,DLH2 : REM RE 
!:;ET THE !:;CF\:EEi"'~ 
200 [iOTO :I. :':<;0 

Line 40 sets the display list for mode 1 without the text window. The rest of the listing is 
identical to the previous one with one exception. 

Line 150 changes the display list that the computer is using for the second screen to the 
display list for the first screen. 

Line 190 resets the display li st for the second screen. 
By changing memory locations 560 and 561 for the different display lists, you can flip 

between screens that are in different modes. 

What if you want to display two screens simultaneously? It can be done. But with all the 
capabilities of the ATARI with one screen display, is there really a need to display two screens at 

136 



once? The next four programs illustrate different approaches that can be taken to display two 
screens at the same time. In all cases, there will be some flickering. 

Listing 9-3. Simultaneous Page Flipping-in BASIC 

10 REM L.IS TING 9.3 
20 REM SIMULTANEOUS PAGE FLIPPING 
30 REM BY L.M.SC HREIBER FOR TAB BOOKS 
40 GRAPHICS O:POKE 752,1:1 "}CLEAR}" 
50 DLL1~PEEK(560):DLH1~PEEK(561):DL1=D 
LLltDLH1 *256:SCR 1 ~ PEEK(DLlt4):SCR2 = PEE 

K(DL1+5):SCR~SCR1 '~SCR2t256 

60 POKE 106, PEEK( 106)-4: REM MOVE SCREE 
(~ UF' 1.1< 
70 GR AP HI CS O:REM SE T THE DISPLAY LIST 

TD (:ll)UTHEr;: i'jUDE 
80 DLL2~PEEK(560):DLH2~PEEK(561.):DL2~D 
LL2tDLH2*256:SCI.=PEEK(DL2t4):SC2=PEEK( 
DL2t5):SC=SCl.tSC2t256 
90 PUKE 752, 1 :POS I1IDN 2,9: 7 "THIS CAN 

CI?E(i TI: " 
1 0 0 F' ell< I:: H H ~' ~; C: r;: 1 ; F' U 1< I: H ') y :) C I( :2 
1 1 () ? ":I NT E r;: E ~::;r I i\1 [i E F F E CT ::) " : r~ E i"i :::) .. -
r: ~:) C ... (1 C) [,,1 () (:1 r( r;: U l,1 ~::. I' ::) .... E ::) C .... T () B ~:; 
:I ; .. ) 0 1::0 IJ 1\ I: Ii L :: .. : + ,':) , ::; c I ~ I. ~; F' U 1< L D L::) t ~:.:.i , ~:) c F~ 2 : F' U 
KE DL2t4,SC:I:PUKE DL2t5,SC2:G UTU 120 

Listing 9-4. Simultaneous Page Flipping-Two Modes 

10 REM L.I S1 ING 9.4 
:.' 0 h: E ('I ~:; I I"i U L T ( I N E U U ::) r:' ( I c-! E F L. I F' F' I N G 
30 REM BY L.M .SC HREIBER FOR TAB BOOKS 
··l·O [ih:(lF'H I C~:; :I '/ 
50 DLL:I~PEEK(560):DLH:I~PEEK(561):DL1=D 
LL:ltDLH1* 256:SC RI. ~ PEEK(DL1+4):SCR2=PEE 
K(DLlt5):SCR~SCR1+ SCR2t256 

60 PUKE 106,PEEKC1(6)-4:REM MOVE SCREE 
i) UF' 11< 
70 GRAPHICS 18 :REM SE T THE DISPLAY LIS 
T TU ANOT HER MUDE 
HO DLL2~PEEK(560):DLH2~PEEK(56:1):DL2=D 
LL 2tDLH2*256:SC1= PEEK(DL 2t4): SC2= PEEK( 
DL2t5):SC=SC:ltSC2*256 
90 PUSITIUN 2,3: 7 #6; "THIS CAN CREATE" 
100 PUKE 88,SCR 1 :PO KE 89,SCR2:POKE 87, 
1 
110 7 #6 ;"INTER ESTING EFFECTS" 

137 



Listing 9-4. Simultaneous Page Flipping-Two Modes (continued from page 137) 

130 IF· PEEK (}64)=255 THEN 130 
140 POKE 560,DLL1:POKE 561,DLH1 
160 POKE 560,DLL2:POKE 561,DLH2!GOTO 1 
30 

Listing 9-5. Simultaneous Page Flipping: Machine Language Subroutine 

10 REM LIS ·rING 9.5 
20 REM SIMULTANEOUS PAGE FLIPPING - MA 
CHINE LANGUAGE SUBROU1INE 
30 REM BY L.M.SCHREIBER FOR TAB BOOKS 
40 GRAPHICS O:POKE 752,1:7 "fCLEAR}" 
50 DLL1=PEEK(560) :DLH1=PEEK(561):DL1=D 
1... L 1 t D 1... H 1 r,; :2 ~ .. :.j 6 :~ ~:; C h: 1 :::: F' E E 1< C D L :l t 4) ~ i:; C F:? :::: F' [: E 
KCDL1+5):SCR=SCR1tSCR2*256 
60 POKE 106,PEEK(106)-4:REM MOVE SCREE 
N I...IF:' 11< 
}O GRAPHICS O:REM SET THE DISPLAY LIST 

·ru (INUTHEF;: j·"jOLiE 
80 DLL2=PEEK(560) :DLH2=PEEK(561):DL2=D 
LL2+DLH2*256:SC1=PEEKCDL2t4':SC2=PEEK( 
DL2t5):SC=SC1+SC2*256 
90 POKE 752,1:POSITION 2,9: 7 "1HIS CAN 
CF~E{~T[ " 

100 POKE 88,SCR1:POKE 89,SCR2 
110 7 "INTERESTING EFF[CTS" 
1 ~!. 0 P (11< [: 203!1 i:l C F~ 1 : F:' 0 1< E ~,:.j () 4 , ~:; C F~? t F' U 1< E ~? 

05,SC1:POKE 206,SC2:REM ADDRESS OF BOT 
H ~lCF~EEj·-"!~:; 

130 PUKE 208,DLH2:POKE 20},DLL2t4:REM 
WHERE SCRE[N ADDRESS IS STORED 
140 FUR X=O TO 30:R[AD C:POK[ 1536tX,C 
:NEXT X 
150 DATA 104,160,0,165,)03,145,)0},200 
,165,204,145,)0},136,165,)05,145,)02,2 
00,165,)06,145,20},136,1}3,252,2 
160 DATA 201,?55,240,229,96 
1}() n::::u~:;I:~ ( 1 ::53/» 

Listing 9-5A. Simultaneous Page Flipping: Machine Language Subroutine-Horizontal Blank 

10 REM LISTING 9.5A 
20 REM SIMULTANEOUS PAGE FLIPPING - MA 

138 



CHINE LANGUAGE SUBROUTINE 
30 REM BY L.M.SCHREIBER FOR TAB BOOKS 
il, () G F: () F' 1"1 1 c: ~:::: 0:; F' 0 1< E 7 ~::j :::,> !' J ~ ,oj:' ")-" 

~:; () U L.l... J :::: F' E E 1< ( ',:,:j 6 0 ) ~ D 1.., H J :::: F' E E 1< ( ~,:.'.i () 1 > :; D L 1 :::::0 
LL1+ULHJ*256 : SCRJ=PEEK(DL1+4):SCR2~PEE 
K(DLJ+5):SCR~SCR1+SCR2*256 
60 POKE J06,PEEK(106)-4:REM MOVE SCREE 
j\) 1...1 F:' 11< 
70 GRAPHICS O:REM SE'r 'r HE DISPLAY LIST 

T 0 (, j\1 Cl T 1"1 F: F: i'i C) :0 I::: 
H () D L 1.., ::,>, :::: F' E F: 1< ( ~,:5 ,S 0 ) i::O 1.., H::,:: :::: F' E E 1< ( ',:,:; (,:I. ) ::: :o!..,;? :::: D 

LL2+DLH2*256:SC:I.~PI:::EK(DL2+4):SC2~PEEK( 

DL2,t5):SC~SC1,tSC2*256 

90 POKE 752,1:POSITION 2,5:? "THIS CAN 
C!?Et, TE" 

:I. 0 () P CI I< E ::::::3 !,' ~:::: C: F:: 1" F:' (J i< E ::::: (? ~' ~::: C F~ :::.:: 
:I. :I. ();: "T j\!f E F: I::: :::: 'j' I ("I U E F:' F:' E C "I' ~::: " 
:1.20 POKE 206,S C2:REM ADDRESS OF ONE SC 
F::EEj"! 
130 rOR x~o TO 19:READ C:POKE :l.536+\ ,C 
; i'lE/ 'r \ 
:i. l~ () F' U 1< E :i. ~:,,; '_:,:,; :'::; , IiI.., H ::? :; F' U 1< E 1 '5 ',::,; ::;,~ !' D I" , L ::,:':: -{- ~,:,:,i :; F'I:I 
KE 209,4:REM WHERE SCREEN ADDRESS IS S 

06,24,101,209,141,10,2]2,14J,0,0,J04,6 
il .", 
170 POKE DL2+28,130 
:I. HOI:' C) 1< [: ~:,:,i :L ::::: !,' () :; F'II 1< E ~,:,:j:l. :,::;: ~' (;) :; F' U 1< E ~:,:,i <, :::,:: :3 (;:' !,' :J. 

These four listings are nearly identical. 
Line 40 sets the mode to 0 (except in li sting 9-4 where it is set to 17, which is mode 1 

without a text window), removes the cursor, and clears the screen, The display list is now set for 
the first screen. 

Line 50 finds the beginning of the display li st, and the location of the screen memory for this 
mode. These values will be used later in the program. 

Line 60 moves the end of RAM lK. This protects the display list when we reset the graphics 
mode. 

Line 70 sets a new display list by setting the graphics mode. This new display list will be 
located before the old one. The screen display area for this mode will also be located before the 
other screen. The other display list is protected because 106 was poked with a number that was 
lK less than the actual amount of memory in the system. 

Line 80 finds the new display list and the screen memory locations for the second screen. 

139 



Table 9-1. Machine Language Subroutine to Flip Screen. 

.... .lE·~cim") 1 cod(·:·~ assembls l a n ~ua~e listins 

:1.04 1"'1. .. ,:1 ;Pul l a number from the stack. 

:1.60 I ... DY :11:0 I Lo ad index Y with O. 

() 

1. .. Dtl :.:.'0:::\ I Load the accumulator with the 

val u e in locat ion 203. 

STA (20!),Y;Store it in memors locati on 

20/ 20/ pl us the value of index Y. 

200 INY IIncrement index Y. 

1. .. D(.:l :::.'()4 ILoad the accumu l ator with the 

204 va lu e in location 204. 

:I. l) ~:.:; STA (20}l,YIStore it in memor s location 

~O) p lu s the value of inde x Y. 

DE Y IDecrement index Y. 

:I. 6~:.:.i ILoad the acc umul ator with the 

va lu e in location 205. 

Line 90 prints a message on the screen that we are looking at. 
Line 100 sets locations 88 and 89 for the first screen memory. In listing 9-4, location 87 is set 

for mode 1. This will place the message in the correct position on the screen. 
Line no prints the message on the screen. This message will appear on the first screen, not 

the screen that we are looking at. 
Line 120 is a loop in listing 9-3. The screen memory location in the display list is constantly 

changed between the first and second screen. Although both messages appear on the screen, 
there is noticeable flickering. 

In listing 9-4, line 130 waits for a key to be pressed . Each time one is pressed, the address of 
the display list is changed back and forth between the first display list and the second. This 
program flips the screens by changing the entire display lists because they are in two different 
modes. 

Listing 9-5 uses a machine language subroutine to flip the screens. See Table 9-1 for the 
assembly language listing of this subroutine. Once the machine language subroutine is poked into 
memory, the computer uses a USR command to access it. The screen will continue to flip until a 
key is pressed. There is less flickering with this method than the previous one, but it is still 

140 



207 

;:)00 

20c) 

J 45 

207 

J 36 

J 73 

2~'.';3 

r) 
A:. 

240 

STA (207) , Y;Store it i n memoru lo ca tion 

207 pl u s the va lu e of index Y. 

INY PIncre ment index Y. 

1 ... Dt) 206 I Load the acc umul a tor with the 

value in l ocat ion 206. 

STA (207), Y;S tore it in me moru l ocation 

207 pl u s th e va lue of index Y. 

DEY ;Decre ment index Y. 

1 ... Df~ 764 ILoad the acc umul ator with th e 

va lu e from l ocat ion 764 

CMP 1 255 ;See if a ke u was F re sse d . 

IBra n ch if no ke u was presse o 

backw a rds 27 but es. 

;Return to BASIC if kes was 

noticeable. Lines 120 and 130 poke the addresses of both screens and the address of the display 
list where the screen memory should be placed-in memory locations that are not used by BASIC 
or the operating system. 

Listing 9-5A uses a display list interrupt to change the screens. Table 9-2 shows the 
assembly language listing for this routine . By using a display list interrupt , the screen is flipped 
every time ANTIC comes to that line in the display li st. Thi s method causes the least amount of 
flickering. 

Listing 9-5B. Simultaneous Page Flipping: Machine language Subroutine-Vertical Blank 

:i 0 I? E i"i L I ::::: T I i··~ C·} () ,. ~.::j:H 
20 REM SIMULfANEOUS PAGE FLIPPING - MA 
CHIi\!E 1.(:lNCiU(lUF ~:;UnF:UUTINE 

30 REM BY L.M.SC HREIBER FOR TAB BOOKS 
.. ::. 0 [oj F ~ (1 F:' HIe ~::: 0 ~ F' U 1< I::: ./ ::.:j ? ~J :I. ~? ")-" 
50 DL L:I. =P FI:::K(560) : DLH:I.=PEI:::K(56:1.):DL:I. =D 
1... 1... :I. + :U L H :I. ¥ ::;.:: ::.:j 6 ~ ~:; C h: :I. ::: F:' E E 1< ( :0 I ... :I. + -4 ) ~ !:) c F~ :2 :::: F' E [ 

141 



Listing 9-5B. Simultaneous Page Flipping: Machine Language Subroutine-Vertical Blank (con
tinued from page 141) 

K(DL1+5):SCR~SCR1+SCR2*256 

60 POKE 106,PEEK(106)-4:REM MOVE SCREE 
(.1 UI' 11< 
)' () Ci I;; (:) F' H 1 C: ~ : ; (); I~ E ([ ~:) E Tf HEn 1 ~:) F' I... (.) Y I... 1 ~ :; T 

'f U (i j".~ C)f H E I~ ,.j U :0 E 
80 DLI...2~PEEK(560):DI...H2=PEEK(561):nI...2=D 

L.1... 2+DI...H2*256 :S C1=PEEK CDI...2+4): SC2= PEEK( 
DI...2+5):SC=SC1+SC2*256 . 
90 POKE 752,1:POSITION 2,5:? "THIS CAN 

CI?E(l TE" 
1 0 0 P I) 1< E i::: H ~' :::; C I~: 1 i: P U 1< En'? I' ~:; C I~ :~:.~ 
J.10 ? "INTERESTING EFFECTS" 
120 phKE 206,SC2:REM AnnRESS UF ONE SC 
hEEi··j 
130 FUR X=O TU 21:READ C:POKE 1536tX, C 
; I)E:\'f >< 
140 PUKE 1553,DI...H2 : POKE 1552,D1...1...2t5:PO 
KE 209,4:REM WHERE SCREEN ADDRESS I S S 
TDF.:E D 
150 DATA 72,169,4,69,209,133,209,165,2 
06,24,101,209,141,10,212,141,0,0,104,7 

:I () 0 F U I;: >< :::: 1 !:.:; () () T CJ :I. !:.) -.;:' :I. ;: F~ E (:', n C: F:' CJ 1\ E X, C 
:~ (IEX'f )( 
:I. )' 0 D (, T (, 1 (),;) !J 1 0 /~ !J :I. () ··:1· !J :I. (, H !J :I. 0 4 !J :I. 0 -4 , :I. "/ () , :I. 

180 Q=USR(:l.560 ,O,6,6) 
:L ()() C!i)'fU 1 '/0 

Listing 9-5B uses a slightly different method of screen flipping. The machine language 
subroutine is accessed on the vertical blank. Every 60th of a second, the raster scan reaches the 
bottom right corner of the screen. When it shuts itse lf off to go back to the top-left corner, there is 
a vertical blank. By flipping the screen at this time, each screen is displayed for 1/60th of a second 
30 times in one second. Theoretically, you should not see any flickering here because the eye 
detects movement at 1/20th of a second. This is the most reliable way to display two screens at 
the same time. 

The machine language subroutine used here is executed during the vertical blank. The 
computer has certain routines that it must perform during this period. There is time, though, to 
insert your own code for the computer to execute in addition to its own. The trick is to steal the 
vector or address location for your own use. In this program we are using the immediate vertical 
blank vector for our routine . Any time that a machine language subroutine is executed during an 
immediate vertical blank, it should end with ajump to 58463. A machine language subroutine can 
also be used during the deferred vertical blank. This routine should end with a jump to 58466. 
These addresses contain the routines that the computer needs to perform during the vertical 

142 



Table 9-2. Machine Language Subroutine-Horizontal Blank. 

dc·:!c :i. ma 1 c Dele 

:1.6'1 

4 

209 

;:~ () (;. 

:1.0:1. 

:1.4:1 

:1.0 

:14:1. 

() 

o 

J04 

64 

assembl~ lan~ua~e listins 

PHA 

LDI~ :U:4 

EDf( 20';> 

LIlA 206 

CLC 

I~DC ;:'0') 

PPush the value in the 

accumulator on the stack. 

PLoad the accumulator with 4. 

;Exclusive OR it with the 

contents of location 209. 

;Store the result in location 

;Load the accumulator with the 

valu(·:·~ in 206. 

;Clear the carrs. 

;Add with carr~ the value in 

location 20'.1. 

S TA 54282 ;Store it - wa it for 

h C) r' :i. ::.~ C) n t a :I. ~:> ~:~ 1"1 C ~ 

;Store it in location O. 

I::' LA ;Get the value back from the 

stack. + 

PReturn from the interrupt. 

143 



blank. As the name implies, an immediate vertical blank routine is performed as soon as the 
blanking period begins. A deferred vertical blank is executed after other routines are completed. 

The routines that you want executed should be fast and to the point. There is a time limit for 
these routines. If they are too long they could cause problems with the display by changing 
registers while the scan is turned on. Routines performed during the immediate vertical blank 
should not exceed 300 machine cycles. Routines using the deferred vertical blank can be about 
25,000 machine cycles. Remember, a machine language instruction is not a machine cycle long. 
Some instruction can use up to 7 machine cycles. 

The USR routine passes the address of the machine language subroutine that the vertical 
blank will use to another machine language subroutine. ATARI has a routine in its operating 
system to set up immediate and deferred vertical blank routines. To set the address for the 
routine, you must call a routine at location 58460. When this routine is called, the address of y'0ur 
machine language subroutine must be stored in the Y (low order address) and X (high order 
address). A 6 must be in the accumulator if it' s an immediate vertical blank routine; a 7 if it's a 
deferred. The machine language subroutine at location 1560 accomplishes this. See Fig. 9-3 for 
the assembly language listings for these routines . 

CREATING SLIDES 
With some screen flipping and a disk drive, an entire presentation can be displayed. Slides, 

pictures, or graphs can be prepared ahead of time and stored on disk. Then, under program 
control, the slide could be loaded into the computer's memory. While one picture is on the screen, 
another could be loaded into another part of memory. By pressing a key, the computer would 'flip' 
to the other picture and load a new picture into the screen memory that is not being shown any 
longer. The following program will allow you to create slides that will be stored on disk. The 
program after it will retrieve those slides in any order than you want. 

Table 9-3. Machine Language Subroutine for Vertical Blank. 

76 JMP 58463 ;Jump to this address to 
95 computer's routines. 

228 

replace the return from interrupt with this jump to complete the vertical interrupt routines. 

decimal code 
104 
104 
104 
168 
104 
104 
170 
104 
104 
76 

92 
228 

assembly 
PLA 
PLA 
PLA 
TAY 
PLA 
PLA 
TAX 
PLA 
PLA 
JMP 58460 

language instructions 
;Get value from stack (?) 
;Get value from stack (0) 
;Get value from stack (0) 
;Transfer it to index Y. 
;Get value from stack. (0) 
;Get value from stack. (6) 
;Transfer it to index X. 
;Get value from stack (0) 
;Get value from stack (6) 
;Jump to address to set up 
subrouti ne to run during 
vertical blank. 

- change for machine language subroutine Boot routine to set up subroutine during vertical blank. 

144 



Listing 9-6. Slide Editor 

10 REM lIS1ING 9.6 
20 REM SLIDE EDITOR 
~u REM BY l .M.S CHREIBER FOR TAB BOOKS 
32 FOR X= 1536 TO 154S:READ B:POKE X9B: 

. NEXT X: UP=1536 :REM ROUTINE TO MOVE UP 
34 DATA 104,160,0,200,177,2059136,1459 

36 FOR X=1552 1·0 1564:READ B:POKE X,B: 
NEXT X:DOWN=1552:REM ROUTINE TO MOVE D 
OVJN 

5,205,136,208,247,96 
40 DIM NAME$(14),N$(S) 
50 NAME$(l)=" " :NAME$( 12)=" ":NAMES(2) 
:::: N I~~ jvj E ~ I :· t N ()I"iE $ :::: " D : " : F;: E I-I C I ... E ()I:;: THE !:) T F~ I N (J 

60 ? "}CLEAR}PLEASE ENTER THE NAME 0 
F THE PICTURE":INPUT NS:NAMES(3)=NS:NA 
ME$(11,14)=".DRW":IF N$ = "" THEN 50 
70 GRAPHICS 21:REM SE T DISPLAY FOR GRA 
PHICS MODE 5 - NO TEXT WINDOW 
80 PM=PEEK ( 106)-8: POKE 54279,PM:POKE 2 
05,0:POKE 206, PMf 2:PM= PM*256:REM BEGIN 
N lUG 0 F F:' L. {~ Y E F~ 
85 DlIST=PEEK(560)fPEEK(561)*256 
90 POKE 559,46:REM 2- lINE RESOLUTION F 
OF;: F' l (~I '{ E:: F;: 
1 0 0 F' D 1< E :5 3 ::? '/ .. :.:., , 3 : F~: E hEN I:~ B l E P I... (~ Y E F~ / I-j I!:) 
::) I I... E G F~ (:) PHI C: ~:; 
110 FOR X=PMf512 TO PMf640:POKE X,O:NE 
Xl X:REM CLEAR MEMORY FOR PLAYER 
120 RESTDRE 130:FOR X=PMf525 TO PMf532 
:READ B:POKE X,B:NEXT X:REM MAKE CURSO 

130 DATA 24,24,24,231,231924,24,24 
140 POKE 704, 12 :RE M COLOR PLAYER WHITE 
150 H!=47:VT=0:X= 1 :V=0:C=2 
160 POKE 53248,H7 
170 IF PEEK(764)=255 THEN 220 
ISO B=PEEK(764)-30:IF B=l THEN C=B:GOT 
D :::.>20 
190 IF B=O THEN C=2:GOTO 220 
200 IF B=-4 THEN C=3:GOTO 220 
210 IF B=-6 THEN C=4 
220 POKE 764,255:IF PEEK(53 279 )=6 THEN 

145 



Listing 9-6. Slide Editor (continued from page 145) 

3~:.:jO 

230 IF STRIG(O)=O THEN COLOR C:PLOT X, 
y 
?40 IF STICKCO)=15 THEN 170 
250 IF STICK(0)=7 AND X<79 THEN X=X tl : 
HZ= HZt2:POKE 53248,HZ:G OTO 170 
260 IF STICK(O)=ll AND X>l THEN X=X- l : 
HZ :":HZ ····): F'ClI, E !.'.):-324B, HZ.: (30TCl :1. /0 
270 IF STICK(0)=13 AND Y<4/ THEN Y=Ytl 
:Q=USR(DOWN):Q=USR(DOWN):GClTO 170 
280 IF STICKCO)=14 AND Y>O THEN Y=Y-l: 
Q=USRCUP):Q=USRCUP ):GO TO 170 
290 IF Sl'ICK(0)=6 AND X</9 AND Y>O THE 
N X=X+1:HZ=HZ+2:POKE 53248,HZ:Y=Y-l:Q= 
USRCUP):Q=USRCUP) : GOTO 170 
300 IF STICK(0)=5 AND X<79 AND Y<4/ TH 
EN X=Xt1:HZ =HZ+2:POKE 53248,H Z:Y=Ytl :Q 
=USRCDOWN):Q=USR(DOWN):GOTO 170 
310 IF STICK(0)=9 AND X>1 AND Y<47 THE 
N X=X-1:HZ=Hl-2:POKE 53248,HZ:Y=Yi·l!Q= 
USRCDOWN)!Q =USRCDOWN) : GOTO 170 
:-320 IF STICKCO)=10 AND X>1 AND Y>O l 'HE 
N X=X-l:HZ=HZ-2:POKE 53248,HZ:Y=Y-1:Q= 
USRCUP ) :Q=USR(UP) 
330 GOTO :l.iO 
:-340 REM SAVE SCREEN TO DISK 
350 SCRB=PEEK(DLISTt4)tPEEK(DLISTt5)*2 
~:.: i 6 : ~:; C F< E :::: ~:) C F< B + <) ~:.) <) 

360 OPEN t2,8,O,NAMEt 
:-370 FOR X= SC RB TO SCRE:PUT i2 , PEEK(X) : 
NEXT X: CI ... U~:; E :II::? 
380 PUKE 53248,0:G010 50 

Line 32 places into memory the machine language subroutine that moves the cursor up . This 
subroutine will be located on the 6th page of memory. This page is left blank by ATARI for 
program routines or other uses that you may have for particular memory locations. The contents 
of this memory will not be changed by pressing the system reset key. The variable UP is set to the 
first address of this routine. 

Line 36 moves the machine language subroutine from line 38 into the memory locations that 
follow the up routine . This machine language subroutine will move the cursor down . The variable 
DOWN is set to the address of this routine. It is important that the numbers in these data lines are 
copied exactly as listed here. The wrong number could cause the program to crash. 

Line 40 sets aside string space for the name of the picture that will be drawn on the screen. 

146 



Line 50 clears the string and sets the first two bytes of the string to D: . This will be the string 
that will place the name of the screen into the disk directory. 

Line 60 clears the screen and asks you to enter the name of the picture. This name is stored 
in N$. It is then transferred to NAME$ beginning with the 3rd position. The string will end with 
the extender .DRW. If you tag an extender to all files created by a particular program, you can 
retrieve them just by looking at the extenders. This line also checks to see that a name was 
actually entered. If one hasn't been, it will repeat itself until one has. 

Line 70 sets the graphics mode to 5 with no text window. We could actually use any mode for 
this program. However, since 5 is neither the highest nor lowest resolution, we will use it in this 
program. 

Line 80 sets the beginning of the player/missile graphics area 2K below the end of memory. 
This value is poked into 54279. Now the computer knows where the player/missile area begins. 
Memory location 205 is poked with a 0, and location 206 with the beginning of the player/missile 
area plus 2. We will be using the first player for this program. We will also be using the 2-line 
resolution for the player. This means that the first player will begin 512 bytes after the beginning 
of the player/missile area. 512 is 2 pages of memory (512/256=2). This is the value placed in 206. 
The memory locations 205-206 are used by the machine language subroutine to move the player 
up and down. It needs to know where in memory the player begins. The value PM is then 
multiplied by 256 to get the actual decimal value for the beginning for the player/missile area. 

Line 85 stores the beginning address of the display list in the variable DUST. 
Line 90 pokes memory location 559 with 46. This enables the player/missile graphics for 

2-line resolution. 
Line 100 pokes 53277 with 3. This enables the player/missile graphics. If this location is not 

poked, the players will not be displayed. 
Line no clears the memory for the first player . This is done because there could be data in 

those bytes from a previous program or garbage from power-up. This would be displayed on the 
screen along with our cursor. 

Line 120 tells the computer where the information to draw the cursor will begin. The data 
from the next line is read and stored in the first player area. 

Line 140 places the color in the color register for the first player. We will be using white. 
This number can be changed for any color. 

Line 150 sets the variables that will be used in moving the cursor and drawing the colors on 
the screen. The variable HZ is the horizontal position of the cursor. Position 47 places the cursor 
along the left side of the screen. It is equivalent to the graphics position for the first column. The 
variab le X is the column for the plot command; the Y is the row. The variable C is used for the 
color. The program begins with the color set to 2. 

Line 160 pokes the value of HZ into location 53248. Now the cursor will appear on the screen. 
Line 170 checks location 764 to see if a key has been pressed. When a key has been pressed, 

the value of this location will not be 255. The computer will move directly to line 220 if no key has 
been pressed. 

Line 180 t~kes the value in location 764, subtracts 30 from it, and stores it in the variable B. 
The value at location 764 will not be the ATASCII value of the key pressed. It is a hardware value 
for that key. If B is 1 (the hardware value was 31), then the 1 key was pressed, and the variable C 
will be 1. The color in color register 1 will be drawn on the screen. 

Line 190 will set the value of C to 2 if key number 2 was pressed. The color in color register 2 
will now be used to draw on the screen. 

147 



Line 200 sets the value of C to 3 if key 3 was pressed. The color in color register 3 will be 
used. 

Line 210 sets the color value to 4. There is no color value 4 since mode 5 uses three colors 
plus the background color. This value will have no color value and can be used to erase the lines 
that were drawn. 

Line 220 resets the value in location 764 go 255. This clears the location for a new input. 
Whenever the keyboard is read this way, the program must reset that register. Then the 
computer checks to see if the s tart button has been pressed. If this button has been pressed, the 
computer will be directed to the part of the program that saves the screen onto disk. 

Line 230 checks to see if the red button on the joystick is pressed. This is the only way to 
draw on the screen. If the red button is not pressed, the cursor may be moved without drawing 
lines on the screen. 

Lines 240-320 check the position of the joystick. If it has not moved, the program repeats 
itself with line 170. If the joystick has been moved, the program checks to see if the cursor can 
move. The highest numbered column on the right side of the screen is 79. If the variable X is less 
than 79, then the cursor can move to the right. The lowest va lue that X can be is 1. The Oth column 
does not show up on all screens . Only when the value of X is greater than 1 can the cursor be 
moved to the left. The top of the screen is row O. If the variable Y is greater than 0 then the cursor 
can move up. The bottom row on the screen is 47. The cursor can move down as long as Y is less 
than 47. Even though the variables X and Y have only 1 added to them whenever the cursor moves, 
the horizontal and vertical pos itions must be moved by 2. One row or column in mode 5 is two 
rows or columns for the player. Every time the horizontal variable (HZ) is changed, the new value 
must be poked into 53248. To move the cursor up or down, execute the machine language 
subroutine to move the cursor twice. To move the cursor on a diagonal, both the machine 
language subroutine and the horizontal register must be used. The lines to move the cursor 
diagonally (290-320) check two edges of the screen before moving the cursor. The routine ends by 
sending the computer back to line 170. It continues this loop until the start button or the system 
reset key has been pressed. 

Lines 350-380 save the screen to disk. The variable SCRB is set to the first byte of the 
screen. The ending byte is calculated by adding 959 to the firs t byte. (The screen only uses 960 
bytes of memory in mode 5.) Line 360 opens the buffer to write a file to the disk. The name of the 
file is contained in NAME$. The for.. .. next loop in line 370 peeks at every screen memory 
location from the first byte to the last and stores the bytes on the disk . When the entire screen has 
been saved to di sk, the buffer is closed. The player is moved off the screen and the program 
returns to line 50. If you want to draw another screen, you can ente r its name. If you want to quit, 
you can press the system reset key. 

Listing 9-7. Slide Show 

10 REM LISTING 9.7 
20 REM SL IDE SHOW 
30 F;: E r·j J:{'( 1.. .• i··j , b C: H F: E J :U E I :~ F C) F;: T ( 1 :U r: U U I',:.: ~:; 
40 SC R1=(PEEK ( 106)-4'*256:S2=SCR 1/256: 
S l =SCRI-S2*256: REM FIRST SCREEN MEMORY 
50 POKE 106,PEEK(106)-4:REM SAVE THAT 
AF~[(:l OF HEhUF~ 't" 

148 



60 GRAPHICS O:REM RESET NEW SCREEN AND 

70 DIM NAME$(140),N$(S),SCR$(14):REM R 
OOM FOR 10 SCREENS 
75 NAM E$ (l)= " " :N AME$(1 40)= " " : NAME$(2 
)=NAMEt:SCRt=NAMEt:Nt=SCR$ 
SO 1 "HOW MAN Y SCREENS ";:INPUT S 
:REM THREE SPACE AND BACKSPACES 
90 IF S>10 THEN SO:REM NO MORE THAN 10 

~:; C F~E E N ~::; 
100 FOR X=l TO S: 1 "ENTER "; X; " SCREEN 
"; : INPUT Nt:REM GET THE NAMES OF THE S 
CF~EEN ~:; 

110 SP= X*14-1 3 :NAME$(SP)="D:" : NAME$(SP 
t2, SPt 9)=N$: NAME$(SPtl0 )= ".DRW":REM EN 
TIF:E N(ll"jE 
120 1···1E XT X 
130 GRAPHICS 21:REM SE'r 2ND SCREEN 
140 DLI ST=PE EK(560)tPEEK(56 1,*256 :SCR2 
=PEEK(SS)tPEEK(S9)*256:REM SECOND SCRE 
EN ()F~Etl 

150 F=O : FOR /= 1 TO S:REM NOW GET THE S 
CF~ EEN ~:; 
16 0 SP=Xt14-13:SCR$=NAME$(SP,SPt1 3 ):RE 
M NAME OF SCREEN TO BE DISPLAYED 
170 SCR EE N=SCR2: IF X/2= INT(X/2) THEN S 
CREEN=SCR1:REM GET THE RIGHT SCREEN 

190 FOR Z=SCREEN TO SCR EENt959 :G ET 12, 
S:POKE Z,S:NEX'r Z: CLOSE 1 2:REM GET SCR 
EEN FROM DISK AND PUT IN MEMORY 
200 IF X=2 THEN F=l 
2 10 IF F THEN GO SUB 300: REM WAIl FOR S 

:~? ;? () i··J [: X 'r ::< 
::?30 GUTU ::? ~:')O 

300 IF P[:[:K(53279)=7 THEN 300 
3 10 IF PEEK(SS)<> PEEK(DLISTt4) THEN PO 
KE DLISlt4 , PEEK (S 8):POKE DLISTt5,PEEK( 

320 PUKE DLISTt4,Sl : POKE DLISTt5,S2 
330 F~ETl.JF;:N 

Line 40 subtracts 4 from the amount of RAM shown in location 106. This 1K of memory wi ll 
be set aside for one screen. The variable S2 is the high order byte of the screen memory, Sl is the 
low order byte. 

149 



Line 50 changes the value in 106 by poking it with the value that was there less 4 (lK) . Now 
the computer thinks that it has 1K less of memory and will not touch the memory past this 
address. 

Line 60 resets the display list and screen. Since there is less memory for the computer to 
use, the display list and screen are relocated. 

Line 70 sets aside string space for the names of the screens that will be shown. NAME$ will 
contain the names of all the screens that will be shown. Each screen name needs 14 bytes or 
character spaces. There is room for 10 titles as the program stands. Increase the amount of string 
space by adding multiples of 14 to 140. 

Line 75 clears all the strings. There can be data in the strings that can interfere with the 
program. The easiest solution is to clear out strings that have been fielded. 

Line 80 asks for the number of screens that you are planning to display. After the word 
SCREENS come three spaces and three backarrows. This wi ll clear out a previous entry if it was 
more than 10. The number of screens that you plan to show are stored in variable S. 

Line 90 checks S to see if it is greater than 10. If it is, line 80 will repeat. If you changed 
NAME$ for more than 10 titles, change the 10 in this line to reflect the number of screens that can 
be entered. . 

Lines 100-120 allow you to enter the titles of the screens that you want displayed. Be sure to 
enter the names correctly. There is no trap in this program for wrong titles. The titles should be 
entered exactly as you entered them when you saved them in the previous program. The 
computer will add the D: to the beginning of the name and the .DRW to the end. 

Line 130 sets the screen for mode 5 with no text window. This is the mode that the pictures 
were drawn in, so this is the mode that they must be shown in. 

Line 140 finds the beginning of the display list and the beginning of the screen memory for 
this display list. In addition to the fifth and sixth locations in the display list, the beginning location 
of the screen memory area is also stored in decimal locations 88 and 89. 

Line 150 starts the loop that loads the screens into memory. The loop will be repeated the 
number of times that S is set for. 

Line 160 extracts the name of the first screen from NAME$. The variable SP will be the first 
byte for the name of the screen. The value of X wi ll be multiplied by 14 (there are 14 bytes for each 
name) and 13 will be subtracted from that answer. That points SP to the first letter of the name of 
the screen. Since D: was added to every name, SP should be pointing to a D. The string SCR$ will 
hold the name of the screen. The next 13 bytes after and including the byte that SB is pointing to 
will be stored in SCR$. 

Line 170 stores the value of SCR2 in SCREEN. SCR2 is the first byte of the second screen. 
Then the variable X is checked to see if it is even or odd. If X is even, X/2 will be equal to the 
INT(x/2). The even screens are displayed on the first screen. The variable SCREEN will be 
changed to the first byte of the first screen . Now the screens will load, alternating between the 
first and second screen. 

Line 180 opens the buffer to read the file from the disk. If SCR$ contains the wrong 
information, the program will crash. 

Line 190 gets the bytes from the disk and stores them in memory from the first byte of the 
screen to the last. After the entire file is read to the screen, the buffer is closed. You will be able to 
watch the first picture being drawn on the screen. 

Line 200 checks the value of X. If it is greater than 1, then the computer will go to the 
subroutine that waits for the start button to be pressed. 

150 



Line 210 finishes the loop. If there are more screens to be loaded, the computer will loop 
back and load the next screen. This time, the picture will be loaded on the screen that is not being 
displayed. 

Line 220 loops until the system reset key is pressed. 
Lines 300-330 changes the screen that is being viewed. While one screen is displayed, the 

computer loads in another screen. When the start button is pressed, the computer compares the 
value of location 88 with the value of the screen in the display li st. If these are not the same, the 
first screen is being displayed and the computer loads the values of locations 88 and 89 into the 
screen display in the display list. Now the second screen is displayed, and the routine returns to 
the main program. If the second screen is being displayed, the computer places the first screen 
address into the display list. 

This method of page flipping can be used for any number of screens. The only thing to 
remember is- DO NOT PRESS START UNTIL THE DRIVE HAS SHUT OFF. The program can 
also be designed to show a series of slides without any human intervention. Every slide ends with 
a .DRW. The program can load in the files by checking every entry on the disk for the .DRW. Use 
the * for the name of the program and .DRW for the extender. The computer will only choose 
those files that end in .DRW. A timing loop will leave the pictures on the screen long enough to be 
viewed without getting monotonous. 

With a little ingenuity, the program can load entire display lists as well as the pictures so that 
the slides can use multimode resolutions and alternate character sets. 

151 





Chapter 10 

Sound 
Generators 

All sounds are generated by the same mechanism-the movement of air. How fast, how long, and 
with how much force this vibration occurs wi ll govern the sound that we hear. A kitten's purr is 
quite distinguishable from a lion's roar! 

By careful manipulation of the sound registers, a variety of sounds and effects can be created. 
The four sound or voice channels that the ATARI 'has can be used alone or in combination with 
each other. Each channel can be set for a different distortion. This can be used to create strange 
sound effects for programs. 

THE AUDIO CHANNEL CONTROL 
Every sound has the same characteri st ics - attack, decay, sustain, and re lease. The actual 

tone depends on the frequency or number of pulses generated in a given time period. The higher 
the frequency, the higher the note or tone. 

In the sound command four different options must be set: SOUND v,p,d,1. 
v=voice. There are four different voices or sound channels that can be used. Each is set by 

using the numbers 0-3. Each voice must be set with a separate sound statement. 
p=pitch. This is the frequency of the tone. Any number from 0-255 can be used. The higher 

the number, the lower the tone. A zero wi ll produce no tone-just a clock from the speaker. The 
actual sound of the tone will depend on which distortion setting is used . 

d=distortion. The distortion here means the noise content of the sound that will be 
generated. The distortion value will tell the computer how to generate the pulses that will 
become sound. Only values of 10 or 14 will produce pure tones. 

l=loudness or volume. The tones can be loud or soft. Each voice channel can be set 
independently. The only restriction is that the sum of the volume of the voices used cannot exceed 
32. 

The following program demonstrates how the tone (p) can vary depending on the level of 
distortion (d). The number of the pitch as we ll as the distortion will be printed on the screen while 
you li sten to the tone. 

153 



Listing 10-1. Sounds 

10 REM LISTING 10.1 
::!. 0 r;: E j'-'I ~:; 0 U N D ~:; 
30 REM BY LIM.SCHREIBER FOR TAB BOOKS 
40 FOR P=5 TO 255 STEP 5: 7 P,:REM STEP 

THE NOTEU E·:Y ~::j 

50 FOR D=O TO 14 STEP 2: ? D,:REM CHANG 
E T H I::: Ii I ~:; T U Fi: T I UN .. ·· tJ ~:; EON 1...'( E l) E N N U ri D E 
Fi: ~:) 

60 SUUND O,P,D,10:FOR Y=l TO 200:NEXT 
\' ~ Fi: E I"! LI~:)TEr·1 TD THE:: ~:;UI...II'1D 

70 NE XT D:? :REM GO THRUUGH ALL THE SU 
UNDS - THE PRINT LETS THE NEXT PITCH S 
TART UN A NEW LINE 
E: 0 ,\1 I::: )( T F' 

Line 40 begins the for ... next loop to change the pitch that the sound register will use. The 
number of the pitch will be printed on the screen. 

Line 50 begins the for ... next loop to change the di stortion of the sound register. Only the 
even numbers from 0-14 can be used for the di stortion. Each pitch or tone will be heard in all 8 
distortions. 

Line 60 plays the sound. The value of the pitch and/or distortion will be different each time 
this line is executed. The for ... next loop here gives you time to li sten to the sound created. , 

Lines 70-80 complete the loops. 

As you can hear, some of the distortions of a pitch are very similar to others in the same pitch . 
Others have no sound at all. The only pure tones are generated by distortions 10 and 14. 

The volume of the sound can be used to enhance the sound created. Too often the sound is a 
"set it and forget it" function. Listen again to the sounds generated by the last program. Each 
sound came on and went off. True sounds do not occur this way. Listen to a piano key being struck, 
then a drum, and finally a horn (wind instrument) being blown. Each instrument produces its own 
unique sounds. Although both an organ and a piano are keyboard instruments , they have their own 
sound qualities. The time that a tone takes to reach its ampli tude (height of sound) is called attack 
time. The decay time is the time it takes for the sound to start to fade, the sustain time is the length 
of time that the tone is heard (still vibrating). At the release time, the tone has faded away 
completely. The piano is the best example of these four factors. When you strike the key, you 
immediately hear the tone. It is loud and clear. This is the attack time. That loudness does not 
continue for an extended period of time. Very quickly the tone starts to fade. This is the decay 
time. The tone does not die away compJetely. The length of time that you can s till hear the tone is 
the sustain level. When the tone finally fades completely, it is the release time. 

The following program creates an interesting effect when attack, delay, sustain, and release 
time are inserted into the program. 

154 



Listing 10-2. Sounds with Attack and Decay 

10 REM LISTING 10.2 
20 REM SOUNDS-WITH ATTACK & DECAY 
30 REM BV L.M.SC HREIBER FOR TAB BOOKS 
40 FOR X~l TO 14:READ P:REM GET THE TO 
I'~E ')()I...UE 
50 FOR V~O TO 14 STEP 2:S0UND OvP,10vV 
:FOR Y~l TO 10:NEXT V:NEXT V:RLM ATTAC 
I" 
60 FOR V=14 TO 8 STEP -2:S0 UND OyPvl0y 
v:rOR V~l TO 20:NEXT V:NEXT V:REM DECA 
"f 

70 FOR V=l TO 100 :N EXT V:REM SUSTAIN 
80 FOR V~6 TO 0 STEP -2:S0UND O,Py10,V 
:N EXT V:FOR V~l TO 10:NEXT V:REM RELLA 
~::;[ 

90 N[Xl" X:R[M DO [NTIR[ SONG 
100 DATA 121,121,81,81,72,72,81y91,91v 
96,96,108p l08,121 

Line 40 reads the pitch values from the data line. These are the tones that the computer will 
play. 

Line 50 simulates an attack. The vo lume begins at 0 and gradually works its way up to 14. At 
each level , a timing loop holds the tone and vo lume leve l. 

Line 60 is the decay. The vo lume gradually decreases. The timing loop is longer here so that 
it will take a longer time for the sound to fade. 

Line 70 is the sustain. This is the length of time that you will hear the sound. The volume will 
remain the same. 

Line 80 reduces the volume of the sound to O. This is the release time. The timing loop here 
gives each tone generated its own time. If there was not a clean break between the tones, the tone 
would appear to run into each other. 

Line 90 completes the loop. 

The sound created by this program gives the effect of an accordian. You can almost hear the 
bellow opening and closing with each attack and decay. The next program uses a slightly different 
technique to create attack and decay. There is a very definite vibrato to the melody. 

Listing 10-3. Sounds with Attack and Decay-Vibrations 

10 R[M LISTING 10 .3 
20 REM VIBRATIONS 
30 REM BV L.M.SCHREIB[R FOR TAB BOOKS 
40 fiJI'/j I')~I:" (12) 

155 



listing 10-3. Sounds with Attack and Decay-Vibrations (continued from page 155) 

50 A$="678987654345" 
60 FOR X=l TO 14 : READ P : REM GET THE TO 
NE: '.)(lI...UE 
70 FOR T=l TO 3:FOR 1=1 TO 12:V=VAI... CA$ 
(Z,Z):SOUND 0,P,10,V:NEXT Z: NE XT T 
80 FOR Y=l TO 10:NE XT Y:SOUND 0,0, 0,0 
'.:.:00 NEX'r X 
100 DATA 12 1 , 121,81,81 ,72,72,8 1 ,9 1 ,9 1, 
96,96,108,108,121 

Line 40 dimensions A$ for the vo lume se ttings. 
Line 50 sets the volume sequence in A$ . 
Line 60 reads the pitch from the data line at the end of the program. 
Line 70 contains the timing loop and the sound statement. This time the entire range of 

volumes will be changed rapidly a number of times rathe r than changing the volume and holding it 
for a period of time. The volume sequence will be used three times. The variable V will contain 
the volume. As Z is increased from 1 to 12, the correct volume will be removed from A$. 

Line 80 holds the last volume of the sound for a few seconds, then turns it off. 
Line 90 completes the loop. 

DIRECT ACCESS 

Like most commands in AT ARI BASIC, there are hardware registers for the sound 
generators that can be set by poke commands. For each voice that you want to set, there are two 
addresses that must be poked. 

Voice Frequency Audio 
# Register Control 
0 53760 53761 
1 53762 53763 
2 53764 53765 
3 53766 53767 

The frequency regis ter can be poked with any value from 0-255. This has the same effect as 
the P variable in the sound command. 

The audio control register is a combination of the volume variable (V) and the distortion 
variable (D) . To find the number that should be poked here, multiply the distortion value by 16 and 
add the volume. 

By knowing where these register are, it is possible to use only the register that you need in a 
program. This will make it execute the sound changes faster because the one register will be set 
directly, and BASIC will not have to reset regis ters that are already set; for example, if the 
volume and distortion are set , and you have no reason to change them, you can poke the frequency 
register with the pitch or tones. If you use the sound s tatement, BASIC will recompute the 
distortion and volume each time it executes the sound command. 

There is one more control register for the audio. This register can change the way that the 
tones are generated. In the previous examples, we used one sound generator. We could easily 

156 



'. 

change the program to use two, three, or all four generators. For an actual tune, this would 
generate some harmony. For sound effects, a second or third sound register will add to the 
realism of the sound. It is also possible to use two registers together to form a 2-byte tone 
generator. This will increase the range of sounds that the computer can generate. 

In the next program, address 53768 is poked with 16. This will couple sound register 0 with 
1. Register 0 is the low order byte and register 1 is the high order byte. As the tones begin, you 
will notice that as long as register 1 is set to 0, the tones sound the same as those generated with a 
single sound register. Once the value of register 1 changes, the tones become deeper, until they 
become so very deep that they do not seem to change their pitch. 

Listing 10-4. Variations on Tones 

10 REM LISTING 10 .4 
20 REM VARIATIONS ON TONES 
30 REM BY L.M .SC HREIBER FOR TAB BOOKS 
40 POKE 53768,16:REM LINK VOICES 0 & 1 
50 POKE 53761,170 
60 FOR P=O TO 255:POKE 53762,P:? "SOUN 
D REGISTER 1=" ; P, 
:7 () F:' Cl F< P:I. ":: 0 'r 0 ? ~~;j ~,;,',; h 'r E F' ~,;,;j ~ F' C) 1< E ~.;,;j?; ',? 6 () !' F' 
:I. : 'i' F':I. " 
80 FOR Y~:I. TO :l.OO:NEXT Y:REM TIMER 
90 NEXT P1:? :NEXT P 

Line 40 pokes location 53768 with 16. This joins sound registers 0 and 1 into one register. 
Line 50 pokes location 53761 with 170. This is equivalent to a distortion of 10 and a volume of 

10. 
Line 60 begins the for .. . next loop that changes the pitch content of register 1. This register 

will increase in value once every time the register 0 reaches 255. 
Line 70 begins the for . .. next loop to change the pitch value in register O. Every time this 

register cycles from 0 to 255, register 1 will be increased by 1. 
Line 80 is a timing loop to give you a chance to hear the tones being generated. 
Line 90 continues the loop until all the tones have been generated. 

Knowing where the tone generator registers are located is very helpful if you want to wri te a 
machine language subroutine for the sounds and/or music that you need for your program. Some 
of the arcade games play music while the program is running. It is possible to write a machine 
language subroutine that uses the vertical blank to produce music. The procedure is very similar 
to the one used in the last chapter to display two screens at the same time. 

Listing 10-5. Music: Machine Language Subroutine 

10 REM LISTING :1.0.5 
20 REM MUSIC - MACHINE LANGUAGE SUBROU 
TINE 
30 REM BY L.M.SCHREIBER FOR TAB BClClKS 

157 



Listing 10-5. Music: Machine Language Subroutine (continued from page 157) 

40 A=PEEK(106)-1:REM SAVE 256 BYTES 
50 POKE 106,A:REM MOVE EVER YT HIN G UP 2 
~::;6 BYTEb 
60 GRAPHICS O:REM RE SET THE SCREEN AND 
DI~:;PI ... (1Y l...I~:; T 

}O POKE 206,l:POKE O,20:REM SET THE LE 
NGTH OF THE NOTE PLA Y 
80 POKE 20},O:REM OFFSET FOR THE NOTE 
BUFFEF~: 

90 POKE 203,O:POKE 204,A:REM ADDRESS 0 
F BUFFER FOR NO'rES 
100 BUF=A*256:0FF =191:REM BEGINNING OF 

BUFFER AND LENGTH 
110 FOR X=B UF TO BUFtOFF:READ C:POKE X 
,C:NEXT X:POKE 205,OFF:REM READ IN THE 

NClTES 
111 DATA 0,60,64,60,81,60,64,60,96,121 
,128,121,162,121,128,121 
112 DATA 162,60,64,60,81,60,64,60,72,9 
1,96,91,121,91,96,91 
113 DATA 108,53, 60,53,72,53,60,53,64,8 
1,85,81,108,81,85,81 
114 DATA 96,47,53,47,64 ,4}, 53,47,60,72 
,76,72,96,72,76,72 
115 DATA 60,85,96,85,60,85,96,85,64,81 
,85,81,64,81,85,81 

117 DATA 72, 108,121,108,72,108,121,108 
,8 1,96,108, 96,8 1, 96,108,96 
118 DATA 81,114,128,114,81,114,128,114 
,85,108, 11 4, 108,85,108, 11 4,108 
119 DATA 81,85,81,108,72,81,72,108,64, 
72,64,108,60,64,60,108 
120 DATA 53,85,81,72,64,64,53,53,47,40 
,53,40,60,40,64,40 

,64,60,72,68,72,81 
122 DATA 81,81,81,81,81,81,81,81,81,81 
,O,O,O,(),O,O 
130 FOR x=o TO 33:READ C:POKE 1536 t X,C 
: p·1E XT X 
140 DATA 72,169,170,141,1,210,198,206, 
208,20,165,0,133,206,164,207,177,203,1 

158 



150 DA'fA 141,0,210,104v76,95,228 
160 FOR X~1570 'ro 1581:READ C:POKE XvC 
! ~·!EXT >< 
170 DATA 104,104,104,168,104,104,170,1 
o -4 !) :I. 0 -4 !' ./ () ~, ':? ;.? !) :::.i :::.) n 
:1.80 Q~USR(1570,0,6,6) 
:l.90? PEEK(207);"OFFSET",PEEK(206);"CO 
I . ..INTEF~ " 
::.?OO ('IUlU 1 <;)() 

Line 40 moves the end of memory down by 256 bytes. This is the area that will be our buffer 
for the music. The music buffer can be as large or small as needed. This program will restrict the 
length of the melody to 256 bytes. 

Line 50 pokes this new end of memory va lue into location 106. Now the computer will not use 
the last page of memory. 

Line 60 resets the screen and the display Jist using the value in 106 as the end of memory. 
Line 70 pokes a 1 into location 206. This location will be used as the timer or duration of the 

note being played. We set it to a 1 to begin with as a dummy va lue . Location 0 will hold the 
duration value. Location 206 will change while the program is being executed. Every time it 
counts down to 0, the computer will have to restore the duration value for the next note. Location 
o will not change when the program is executed. 

Line 80 uses location 207 as the offset for the buffer. This location will increment every time 
a note is played. By adding the number in this location to the beginning address of the buffer, the 
computer will always know where the next note is. 

Line 90 sets locations 203 and 204 to the buffer address. Location 203 is set to 0 because we 
know that the music buffer begins on an even page . Location 204 is set to the high order byte of 
the beginning of the music buffer. Since we set the last page of memory aside for the music buffer, 
this value is poked into location 204. 

Line 100 computes the decimal address of the first byte of the music buffer by multiplying the 
value of A by 256. The variable OFF is set to one less than the number of notes that will be played. 

Line 110 is the for ... next loop that moves the data on the next 12 lines into the music buffer. 
Each number in the data lines represents one note. 

Line 130 reads the machine language subroutine into page 6 of the computer's memory. This 
is the routine that will be executed every time the vertical blank is executed. Be sure that the data 
in Jines 150 and 160 are entered correctly. If there is an incorrect number in the routine the 
system will crash or lock up. 

Line 160 places into memory the machine language subroutine that will initialize the routine 
that runs during the vertical blank. Again, it is important that the line of data is entered correctly. 

Line 180 executes the second machine language subroutine. The beginning address of the 
vertical blank routine and the type of routine is passed to the machine language subroutine with 
the USR command. 

Line 190 simply prints the offset value from location 207 and the counter or duration value 
from location 206. Every time the number in 207 changes, the note will also change. Once it 

159 



reaches the 191st note of the melody, it will reset to o. The counter shows how long the note is 
being he ld . Every time it reaches 0, a new note is pointed to by location 207. 

To stop this program, you must press the system reset key. If you press only the break key, 
you will only stop the BASIC program. The machine language subroutine running in the vertical 
blank will not be affected. 

By experimenting with different di stortions , durations, and frequencies, you can change the 
entire effect of the melody. 

160 



Chapter 11 

Interpreting 
the Keyboard 

There are times when a simple input statement is not the best way to get information from the 
keyboard: the program may not lend itse lf to question marks on the screen; you may want single 
key input; or you may want the program to continue with its task and the keyboard to be read only 
when a key is actually pressed. (This is sometimes called reading it on the fly .) 

When you use the input command to retrieve information from the keyboard the program 
stops and a question mark appears on the screen. The entry is placed in either a string or a 
variable. If letters or other characters are entered into a numeric variable instead of riumbers, an 
error will result. This can be resolved by using strings for all inputs. The input can be checked 
only after the return key has been pressed. Using this command is the simplest way to get 
information. It is used most often . 

The second method of getting an entry is with the get command. Although the program must 
still stop to get the input, this method is much faster than the previous way. The characters 
entered can be screened immediate ly. If the character is not correct, the program can disregard it 
and wait for another entry to be made. The buffer length can be se t for any length, and when full, 
the program can continue without waiting for the return key. The keys pressed do not have to 
appear on the screen. 

The following program is a useful routine that can be used in any program that needs a 
read-keyboard routine . 

Listing 11-1. Read the Keyboard 

10 RE M LIS "' ING 11 . 1 
20 REM READ THE KEYBOARD 
30 REM BY L . M.SCHREIBER FOR TAB BOOKS 
·/}O DJI"i E:LIFl-(10) 
50 POKE 75 2,1: 7 "}" : OPEN 12,4,O,"K:":R 
EM CLEAR SCREEN - OPEN KEYBOARD FOR A 
F~F:(:lD 

60 FOR X=l TO 10: RF:M BUFFER IS 10 CHAR 
(lCTEh: ~:; LUi)[i 

161 



Listing 11-1. Read the Keyboard (continued from page 161) 

70 GET 42vB:REM WAIT FOR A KEY 'ro BE P 
RESSED - STORE ATASCII VALUE IN B 
D () I F' :U > :I. :? ')' THE N B :::: F: "" :I. :::.> U ; P 0 1< E 6~' -4 y () ; F: E 
M IF ATARI KEY HAS BEEN PRESSED RESET 
90 IF B>90 THEN B=B-32:POKE 702v64:REM 

MAKE IT UPPER CASE 
100 IF B{65 THEN 70 :REM IT 'S NOT A LET 
'f EF~ 
110 BUF$(X)~CHR$(B):REM PUT IT IN THE 
~:;'f i? I j\) Ci 
:1.20 POSITIO N X,5: 7 CHR$(B):NEXT X 
:I. :.':) () ,'i:' t ·: U r:' $ 

:I. ..:'} 0 C I ... (J ~:; E: :112 

Line 40 sets the buffer length-(BUF$) to 10 characters . 
Line 50 removes the cursor, clears the screen, and opens the keyboard for a read . 
Line 60 begins the for ... next loop that will accept keyboard input .without using a return 

key . 

Line 70 waits for a key to be pressed. The keyboard must be opened before the get command 
will work. The ATASCII va lue of the key pressed will be placed in the variable B. 

Line 80 checks the va lue of B. If it is greater than 127, the ATARI or inverse key was 
accidentally pressed. Correct this by poking 0 into location 694. Subtract 128 from the value of B 
to get the normal code for the key pressed . 

Line 90 checks the value to see if it is upper or lowercase . If the caps/lower key was pressed, 
all the inputs would be in lowercase. Rather than check each key aga inst 2 values, it is easier to 
subtract 32 from the value in B and reset the keyboard for uppercase by poking location 702 with 
64. 

Line 100 now checks the value of B to make sure that it is a letter. If the ATASCII value is 
less than 32, it is not a letter, and the program goes back to line 70 to wait for another input. The 
key that was pressed is disregarded completely. It is not displayed on the screen and it is not 
stored in the buffer. 

Line 110 places the letter for the key pressed into BUF$. As each correct key is pressed and 
entered, the value of X will increase. This will point to the next vacant position in BUF$. 

Line 120 places the letter on the screen. The row is set, the column position will increase 
with X. 

Line 130 prints BUF$ on the screen under the letters that were printed as they were 
pressed. BUF$ contains exactly what was printed on the screen. If any numbers or control 
characters were pressed, they were ignored by the program. 

Line 140 closes the keyboard. 

In the next program, we will use this input routine for a tile game. This game is based on the 
5 x5 letter tile game. Each tile can only slide to a vacant spot. Try to arrange the letters correct ly. 

162 



Listing 11-2. Tiles 

10 REM LISTING 11.2 
:2 0 I? E "if 11. .. E ~:; 
30 REM BY L.oM.SCHREIBER FOR TAB BOOKS 
40 DIM BUF$(25),TEMP$(1) 
50 BUF$="ABCDEFGHIJKLMNOPQRSTUVWX ":RE 
M PL.ACE ALL THE TILES IN A STRING 
60 FOR 1'=1 TO 5:FOR X=l TO 2S:R=INT(RN 
D(1)*25)tl:REM PICK A LETTER 
70fEMP$=BUF$(R,R):BUF$(R.R)=BUF$(26-X 
,26-X):BUF$(26-X,26-X)=TEMP$:REM MOVE 
THE LETTERS AROUND 
80 NEXT X:NEXT T:REM DO IT SEVERAL TIM 
F ~:) 

90 GRAPHICS 18:REM MODE 2 WITHOUT TEXT 
LdINDOl,J 

100 X=l:FOR R=4 TO S:FOR C=7 TO 11:POS 
ITION C,R:? #6;BUF$(X,X):REM PRINT THE 
LETTEF~ 

110 X=Xtl:NEXT C:NEXT R:REM PRINT THE 
{AlHOI. .. !:: ~:)TF~ 1 NU 
120 REM READ THE KEYBOARD 
130 POSITION 1,1:? #6;"press a letter" 
:OPEN #2,4,O,"K:":REM OPEN THE KEYBOAR 
U F (J F~ () F~ E () D 
140 GET #2,B:CLOSE #2:REM UET A KEYSTR 
OI<E 
150 IF B)127 THEN B=B-127:POKE 694yO:R 
EM RESE'r THE INVERSE FLAG 
160 IF B)90 THEN B=B-32:POKE 702,64:RE 
M SET FOR UPPER CASE ONLY 
170 IF B<65 OR B)88 THEN 130:REM TRY A 
GAIN - NOT A GOOD LETTER 
180 FOR X=l TO 25:IF ASC(BUF$(X,X»=B 
THE;"-! :200 
190 NEXT X:UOTO 130:REM NOT THERE?? 
200 R=INT«X-l)/5)t4:REM COMPUTE THE R 
Ul.<.1 

210 C=(X-(R-4l*5)t6:REM THIS IS THE CO 
LUi"jl"~ 

220 OPEN #2,4,O,"K:":FUR T=l TO 2:SUUN 
D O,50,10,10:FOR V=l TO 10:NEXT V:SOUN 
D O,O,O,O:NEXT T:REM GET KEY 

163 



Listing 11-2. Tiles (continued from page 163) 

:GET 12,B:CLoSE 12:REM GET THE KEYSTRo 
1<[ 
240 IF B=42 TH[N 300:R[M RIGHT ARROW 
250 IF B=43 TH[N 320 :R EM L[FT ARROW 
260 IF B=45 THEN 340:REM UP ARROW 
270 IF B=61 THEN 360:REM DOWN ARROW 
280 GOTO 220:REM NOT A ' MOVE ' K[Y 
290 REM NOW SEE IF THE LETTER CAN MOVE 
300 IF X=25 THEN 130 
305 IF BUF$(X+l,X+l)<>" " OR X/5= INT(X 
/~:.:!) THEN 130 
310 POSITION C,R:? 16;" " : POSITIoN C+1 
,R:? 16;BUF$( X,X):B UF$( X+ l,X+l)=BUF$(X 
,X):BUF$(X,X)=" ":GoTO 130 
320 I F X:::: 1 THEN 1 3 0 
325 IF (X-1)/5=INT«X-1)/5) OR BUF$(X-
1,X-1)<>" " THEN 130 
330 POSITION C,R :? 16;" ":POSITION C-1 
,R:? 16;BUF$( X,X) :BUF$(X-1,X-1)=BUF$(X 
,X) :B UF$(X ,X)= " ":GOTO 130 
340 IF R=4 THEN 130 
345 IF BUF$(X-5,X-5)<>" " THEN 130 
350 POSITION C,R:? 16;" ":POSITIoN C,R 
-1:? 16;BUF$( X,X ) :BUF$(X-5,X-5)=BUF$(X 
,X ):BUF$(X,X)=" ":GOTO 130 
360 IF R=8 THEN 130 
36~:5 IF' Bl.JF·~I;(X+~.:.'.i,X+~.:.:!)<>" " TH[N l ~':l;O 

370 POSITION C,R:? 16;" " : PO S ITION C,R 
+1:? 16;BUF$ (X,X):B UF$(X+5 ,X+S) =BUF$ (X 
,X):BUF$(X,X)=" ":GOTO 130 

Line 40 sets aside 25 bytes for the letters (BUF$) and one byte for a temporary storage 
(TEMP$). 

Line 50 places the first twenty-four letters of the alphabet into BUF$. The twenty-fifth letter 
is the space. 

Lines 60-80 shuffle the letters . A random letter (R) is picked. That letter is placed in TMP$. 
The last letter minus the value of X is placed in the random position . The letter in TEMP$ is 
moved to the position that was just vacated. The loop continues until all the letters have moved 
five times. This method ensures that all the letters in the string will be thoroughly mixed. 

Line 90 sets the screen for graphics mode 2 with no text window. 
Line 100 places all the letters in BUF$ in a 5 x 5 grid on the screen . The variable X will point 

to the letter in the string. R is the row and C is the column. To center it on the screen we begin 
with the 4th row and 7th column. 

Line 110 increments X each time a letter is printed . This moves the pointer up one letter. 

164 



The loop continues until all the letters have been printed. 
Line 130 prints the direction on the screen. First a letter must be pressed. The keyboard is 

opened for a read. 
Line 140 sets the value of the key pressed and closes the keyboard. 
Line 150 checks the va lue of B. If it is greater than 127, then the inverse or ATARI key has 

been pressed. 127 must be subtracted from this va lue and location 694 must be poked with a zero 
to set it back to normal. 

Line 160 checks to see if the value is for a lowercase letter. If it is, 32 is subtracted from the 
value and location 702 is poked with a 64. The keys pressed now wi ll be returned as upper case. 

Line 170 checks the value of B. If it is not a letter between A and X the program will return to 
line 130 for another input. 

Line 180finds the position of the letter pressed in BUF$. The value of X will be its position. 
Line 190 sends the program back to line 130 for another input if the letter is not found. 
Line 200 calculates the row of the letter. The value of X minus 1 is divided by 5. The integer 

of the result is added to 4. Since there are 5 letters in each row, dividing X by 5 will give the row 
number. However, the fifth letter in each row would be put in the wrong row. By subtracting one 
from X, the resulting integer is the correct row (the first row is counted as row 0). Since we began 
printing the letters in position 4, this number is added to the result. Now we know which row on 
the screen the letter is in. 

Line 210 calculates the column. 4 is subtracted from the value of X to give the true row. This 
answer is multiplied by 5 (there are 5 letters in each row) and the result is subtracted from the 
position that X is pointing to. This answer is added to 6 because it will be in the range of 1-5. The 
columns on the screen begin with position 7. Now that we know where the letter is located on the 
screen, we can get a keystroke for the direction that the letter should be moved. 

Line 220 opens the keyboard for a read. A short tone wil l indicate that the program is ready 
for another input. 

Line 230 prints the new message on the screen . This time the program wants an arrow key to 
be pressed. When a key has been pressed, the computer will close the keyboard. 

Lines 240-270 wi ll send the computer to the correct routine depending on whether the up 
arrow, down arrow, right arrow, or left arrow was pressed. Actually, the code that the program is 
comparing the inputs to are for the asterisk, the minus sign, the equals sign, and the plus sign. By 
using these codes instead of the control-arrow codes, the program is truly a one keystroke 
program. 

Line 280 sends the program back to line 220 if an arrow key was not pressed. 
Line 300 checks to see if X is pointing to 25. If it is, then it is at the end of the buffer and the 

letter cannot be moved to the right. The program will send the computer back to line 130 for 
another letter input. 

Line 305 checks to see if the next place in the buffer is empty. It also checks to see if this 
letter is in the fifth column on the screen. If either of these conditions are true, then the letter 
cannot move to the right, and the computer wi ll go back to line 130 for a new letter. 

Line 310 erases the letter from its position on the grid and moves it over one to the right. 
Then it moves the letter up one space in the buffer. The position that the letter was occupying 
becomes a space. The program continues with line 130. 

Line 320 checks to see if X is the first position. This routine moves the letters to the left. If 
the letter to be moved to the left occupies the first position in the string, it cannot be moved to the 
left. The program returns for another letter input. 

165 



Line 325 checks to see if the letter occupies the first column of the grid . It also checks the 
position just before it in the buffer. If this position is full the letter cannot be moved to the left. If 
the letter cannot be moved because of e ither of these conditions, the program waits for another 
input at line 130. 

Line 330 uses the same procedure, but in reverse, to move the letter to the left. The letter is 
first erased from the screen, and then reprinted in the new position. The letter is moved down one 
position in the buffer and the old position becomes a space. 

Line 340 checks to see if the row (R) is 4. If it is, then the letter is in the top row. This routine 
moves the letter up one row. A letter in the first row cannot be moved up. 

Line 345 checks the buffer five positions before the position of the letter that will be moved. 
The letter will move up one row. The square that it is moving to is five positions before its 
position. If that position is not empty, the program wi ll go back and wait for a new command. 

Line 350 erases the letter from the grid and reprints it one row up. It then moves the letter up 
five positions in the buffer and rep laces it with a space. 

Line 360 checks the value of the row (R) to see if it is the last row of the grid. This routine 
moves the letter down one row. The letters cannot be moved past the last row. 

Line 365 checks the buffer five positions past the letters position to make sure that it is a 
space. If it is not, the program will go back to line 130 for another entry. 

Line 370 erases the letter and prints it one row down. It then moves the letter over five 
positions in the buffer. The letter's original position becomes a space. 

This entire game is played with single keystroke entries . There are actually two entries for 
each move, but each is treated separately. If the first entry is correct, the program will ask for the 
second. Inputs that are not considered legal are ignored. 

KEYBOARD CODE 
The third method of entry from the keyboard is to read the keyboard on the fly. This means 

that the computer is busy running the program, but it keeps checking to see if a key was pressed. If 
it was, then it will process that information. If no key was pressed, it wi ll continue with the main 
program. 

This method could be used in a game where the computer is working out some possible 
moves. If the player had to wait for the computer to make its move after the player made his/her 
move, the game could be excessively long. If, however, the computer could do its thinking while 
the player did, the time that the computer needed for its moves would appear to be shortened. A 
chess game is a good example of a siruation where you would want the computer to think while the 
player did. 

The keyboard code is not ATASCII. It does not seem to follow any pattern. The only 
exception is that there is one bit set in the code if it' s an uppercase letter, or if the control key has 
been pressed. Table 11-1 shows the hardware key code and the corresponding key. Try the 
following one line program: 

10 ? PEEK(764) ,:GOTO 10 

There will be a stream of 255s on the screen until a key is pressed. Once a key has been 
pressed, that value will be printed on the screen until another key has been pressed. This is the 
hardware code for the keys. To convert the keycode into ATASCII so that you would know which 
key was actually pressed could be done with all the possible characters in a string buffer. There is 

166 



no need to do duplicate work. Beginning with memory location 65278, all the ATASCII codes are 
li sted according to keycode. 

The following program will show you the internal or hardward code of the key and the 
character. 

Listing 11-3. Keyboard Conversion 

10 REM LISTING 11.3 
20 REM KEYBOARD CONVERSION 
30 REM BY L.M.SCHREIBER FOR TAB BOOKS 
40 CONVERSION~65278 
50 ? "}CLEAR}":POKE 752,1:REM CLEAR SC 
F~ E F "'"1,,, I::': E lij U I) E C 1...1 F~ :::; 0 i? 
60 POSIfIUN 3,5:? 
E 1< E Y :0 0 () h' :U 
EY]" 

"PRESS ANY KEY ON 'fH 
[EXCEPT THE BREAK K 

70 IF PEEK(764)=255 THEN 70:REM NO KEY 
H ('I ~;) :U E E i'-~ F' h: E ~:;; ::;:; E II 

H 0 1< C ::: F' E E I'~: ( ',? (),:,~, ) ; F' 0 1< E;:.? (I),:~ !! ::::: ',::.; ',~:; : F~ E ('j :;;:; ()I.) E 
THE CD:O EeL. E (IF: 'f H E L" (j(: (:1 'f J 01,.1 
90 POSITION 3,10:? "INTERNAL CODE OF K 
E Y F:' F: E ::;:; :;:; ED" ;; I:: C :; F;: E (,-j :;;; H 0 l.<1 H (:'1 F: 
D kl () F~ E I) (i /.., 1...1 E" i':, ::;) F' (:'1 ( E ~:; "" ~,:j E ~:; C .... I< 1"< (:'1 F: F< 0 ki 

100 POSITION 3,15:? "KEY PRESSEII -
" ;; C HF: ':/> ( F' FE I'':': ( C Dr--,II,) E F: ::;; I U j'j --}-I< C) ) :; F: [('j 

6 SPACES-5 ESC-BKARROW 
:I. 1 () c-; or (I (I) 0 

Line 40 sets the variable CONVERSION to the first byte of the ATASCII values. This 
location is the ROM or the operating system. 

Line 50 clears the screen and removes the cursor. 
Line 60 asks you to press any key with the exception of the break key. 
Line 70 loops until a key has been pressed. When a key has been pressed, the value of 

location 764 will not be 255. 
Line 80 stores the value of location 764 in variable KC. Location 764 is poked with 255. This 

clears it for another input. 
Line 90 prints the internal or hardware code for the key that was pressed. Be sure to enter 

six spaces and five escape control-backarrows in the print line. This will erase the previous code 
from the screen. 

Line 100 adds the keycode to the first byte of the table in ROM. The program then prints the 
character of the peek of that location . This character will be in lowercase unless the shift key or 
control key was pressed for the input. 

Line 110 loops back to line 60 for another entry. 

Because of this table in ROM, it is very easy to convert keycode into the actual ATASCII 
values for a program. 

167 



168 

ur' 
e:- j"'] .::~ r' .:::: c· 1:.. c·:: f' 

'" / " 

+ 

() 

J 

.. ':~. 

.... ; 

:j J 

!:: ...... 
. ... r .:: 

" " ; 

CD ' . :i(·:·~ 

J J :;> 

J JOf 

Table 11-1. ATASCII and Hardware Values. 

:1 . .. ::~ 

05 J 

.. :··. t".1 

.·::.G 



READING THE KEYBOARD 

The following program is an example of how the keyboard can be read while the computer is 
executing a main program. This s imple keyboard program will keep letters flying across the 
screen. If you press the correct letter, the letter will stop and you will be awarded points. The 
entire time that the lette rs are moving across the screen, the computer is checking location 764 to 
see if a key has been pressed. 

Listing 11-4. Letter Attack 

10 REM LISTING 11.4 
20 REM LETTER ATTACK 
30 REM BY L.M.SC HREIBER FOR TAB BOOKS 
40 CONVERSION=65278 
50 GRAPHICS 17: TL=30 : REM MODE 2 NO TEX 
T t..IINDUl.J. 
60 K=INT(RND(1)*26)t65:REM GET ATASCII 

VALUE FOR CHARACTER - DON'T USE A SPA 
CE . 
70 POSITION 2,0:? $6; "score";SC 
80 R=INTCRND(1'*22)t1:REM PICK A RANDO 
M ROW FOR THE LETTER 
90 FOR X= 1 TO 19 : POSITION X- 1,R:? $6;" 

" y C H f~ 'I; C 1< ) 
1 () 0 F U f;~ T :::: 1 T D T L 
11 0 IF PEEK( 764)=255 THEN 140:REM NO K 
EY HA S BEEN PRES SED 
1 ::.lO· I{ C :::: r:' E E 1'< ( "/6-4 ) ~ F' (j 1< E'.? {)·4 y :? ~:.:; ::.:; : F~ E (-1 ~:; (:) t) E 

THE CODE - CLEAR THE LOCATION 
130 IF PEEK(CONVERSIUNtKC)-32=K l'HEN S 
C=SCt20-X:T='fL:X=19 
140 NE XT T 
150 NEXT X: POSITIDN 19yR:? $6;" " 
160 IF SC<1000 THEN ov 
170 IF SC)=1000 THEN GRAPHICS 17:PUSIT 
IUN 4,4:? $6 ; "YDU MADE IT" : PUSITIUN 4, 
6:? $6 ;"score - ";SC 
1 8 0 ? :11: (~'i!J " F' 1... (1 Y (1 U (~ IN" : 0 r:' E N :11: ~.~ ~J -4 , 0 y "I{ ~ " 
190 GET #2,B:CLOSE $2:IF B=89 OR B=121 

THEN TL=TL-5:GRAPHICS 17:GOTO 60 

Line 40 sets the variable CONVERSION to 65278. This is the first byte of the ROM table to 
convert the intemal or hardware code into AT ASCII. 

Line 50 sets the screen to mode 2 with no text window. The variable TL will be used in the 
timing loop. It can be changed to any number to make the letters move faster or s lower. 

Line 60 chooses a number for the letter that will fly across the screen. It chooses a number 

169 



from 0-25 because there are 26 letters in the alphabet. This number is added to 65. The letter A is 
ATASCII 65. 

Line 70 prints the current score on the screen. This line will update the score after every 
lette r. 

Line 80 picks a random row for the letter to travel on . The letter cannot be on the Oth line 
because that' s where the score is printed. 

Line 90 begins the for . .. next loop that moves the letter across the screen. The letter begins 
on the left side of the screen and continues across to the right. 

Line 100 begins the timing loop. If there was no timing loop , the letter would trave l across 
the screen too fast to be read. 

Line 110 checks location 764 for a va lue other than 255 . If no key has been pressed, the 
computer is directed to line 140 to continue the timing loop. 

Line 120 stores the va lue of location 764 in the variable KC . The location is cleared by poking 
it with 255. 

Line 130 checks the key pressed with the letter that is being displayed. The program looks at 
the peek of the keycode added to the first byte of the ROM table. Since thi s is the lowercase 
ATASCII code for the letter , 32 must be subtracted from the code. If thi s result is equal to the 
value of KC, the correct key has been pressed. A new score is calculated by add ing 20 (20-X) to 
the old score . X is the horizontal position of the letter at the time the correct response key was 
pressed. The variables T and X are set to their highest values and the for .. . next loop continues. 
Since T and X are at their limi t, the program wi ll continue with line 160. If the letter reaches the 
edge of the screen, it wi ll be erased from the screen. If the correct key has been pressed, the 
letter will stop on the screen and remain there until another letter erases it. 

Line 160 sends the computer back to line 60 for another letter if the score is less than 1000. 
Line 170 wi ll end the game if the score reaches or surpasses 1000. The screen wi ll clear and a 

message will appear. The ending score will also be printed. 
Line 180 asks if you want to play again. The keyboard is opened for a read. 
Line 190 gets an input from the keyboard and closes it. If the letter Y has been pressed, the 

program will subtract 5 from the counter and go to line 60 for another game. Each time a new game 
is played, the letters wi ll fly faster on the screen. If any other key is pressed , the program will end . 

170 



Chapter 12 

Underst~nding 
the Screen Editor 

Everything that you see on your screen is processed by the screen editor. It keeps track of where 
the cursor is, where the screen memory begins, whether or not there is a text window, the tab 
locations, the mode the screen is in, the right and left margins, etc. This chapter will list most of 
the memory locations that the screen editor uses and the function of each location. These 
locations can be changed by the program. If they are changed correctly, they can add features to 
your program. If they are not, the program cou ld crash or produce results that are less than 
desirable. 

GET/PUT CHARACTERS 
When the program contains the locate command, it is getting a character from the screen. 

This command contains the row and column that you want looked at. It returns the ATASCII value 
of the character at that location. 

Listing 12-1. locate, Poke, and Peek 

]n REM LISTING 12 . 1 
20 REM LOCAlE, POKE AND PEEK 
30 REM BY L.M .SCHREIBER FOR TAB BOOKS 
40 GRAPHICS O:REM CLEAR THE SCREEN 
50 ? "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
bU LOCATE 2,O,B:POSITION 2,O:? CHR$(B) 
:REM GET 'fHE ATASCII VALUE AND PUT CHA 
F~ (1 C T [ h: :U (:1 c; 1< 
70 POSITION 5,5:? "THE ATASCII OF ";CH 
R$(B ); " IS ";B:REM SHOW ATASCII VALU[ 
80 M[M=P[[K(88)tP[[K(89)*256!R[M B[GIN 
NING OF SCREEN M[MORY 
90 Bl~P[[K(M[Mt2):R[M SAME LOCATION 
100 POSITION 5 , 6 : ? "POSITION IN CHARAC 
T[R SET " ;Bl:R[M SHOW VALUE 
110 POK[ M[Mt4 2,B l:R[M MOV[ IT DOWN ON 
[ LIN!::: 

171 



Line 40 sets the graphics mode and clears the screen. The graphics command must before 
using the locate command. 

Line 50 prints the le tters of the alphabet across the screen. 
Line 60 uses the locate command to get the ATASCII value of the character in location 2,0. 

The value will be stored in variable B. Immediate ly after using the locate command, the character 
must be printed back into that location. When the location is examined for its contents, the 
location becomes blank. To reinstate the character, the print command must be used. 

Line 70 shows the AT ASCII value of the character at the location 2,0. 
Line 80 calculates the beginning address of the screen. This address is s tored in locations 88 

and 89. 
Line 90 uses the peek command to look at that memory location. This time the result is not 

the AT ASCII value, but the position of the character in the character se t. 
Line 100 prints this value on the screen. 
Line llO pokes this value back into memory. The location that will be poked is 40 more than 

the address that was peeked at. This will move the character down one line. 

As you can see , you can get different results depending on which commands you use to look 
at a character on the screen. The locate command is the easiest to use since it calculates the 
screen position, and returns the ATASCII value of the character. There may be times, though, 
when the program that you are writing will work better with pokes and peeks. 

CONTROL CHARACTERS 
There are sixteen control codes for the ATARI computer. Each of these codes has its own 

ATASCII value. They can be printed to the screen within a string, within quotes, or with the 
CHR$ command. The following list gives the ATASCII code for the control codes and their 
function. 

ATASCII code Command and function 
(decimal) 

27 Escape: The character following this code will be treated as data . This means 
that if the next character you want is a control character (for example, clear 
screen), pressing the escape key first will di splay the character rather than 
clearing the screen. Use the escape key when there are control characters in a 

172 

28 

29 

string or line that will be printed on the screen. 
Cursor up. The cursor is moved up one line on the screen. If the cursor is on 
the top line, it will appear on the bottom of the screen. This key is used in 
editing. Under program control it could space messages that are printed on the 
screen without using the posit ion command. 
Cursor down. This code moves the cursor down one line on the screen. If the 
cursor is on the bottom line, it will move to the top of the screen. Again , this can 
be used instead of the position command, when you are printing text on the 
screen. 

30 Cursor Left. Thi s code moves the cursor one position to the left. If the cursor 
is at the left side of the screen, it will move to the right s ide of the screen, but 
remain in the same screen line . This character is often used to clear a previous 
input to the same prompt. If the previous line prints three or four spaces , then 



ATASCII code 
(decimal) 

Command and function 

printing one fewer cursor-left character will clear any information that was on 
the line, and the question mark will appear in the correct position for the next 
entry. 

31 Cursor Right. This code moves the cursor one position to the right in the 
same line. If the cursor is at the right edge of the screen, it will move to the left 
edge in the same line. 

125 Clear. This code represents one of the most frequently used control charac
ters. It clears everything from the screen and homes the cursor. The home 
position of the cursor is the upper left corner of the screen. 

126 Backspace. This code moves the cursor back one space. If the cursor is at the 
left margin, and this line is the beginning of a logical line, the cursor will not 
move any further. If this line is the continuation of a previous line, the cursor 
Will move to the right edge of the screen one line higher. (There are three 
screen lines to one logical line .) When the cursor moves to the left, it removes 
or deletes the characters on the screen. 

127 Tab. This code moves the cursor several positions to the right. The tab 
positions are set when the computer is turned on. They can be reset under 
program control. The computer considers three screen lines to be one logical 
line for the tab function. 

155 End of Line. This code ends the logical line for the computer. It is also used to 
indicate that the return key has been pressed to enter an input. When the 
screen editor receives an end-of-line (EOL) it returns the cursor to the left side 
of the screen, one line down. Printers usually use this code to issue a carriage 
return and line feed. Disks and cassettes use it to indicate the end of a record. 

156 Delete Line. This code removes all the information that is on the line that the 
cursor is on. This line is cleared on the screen. If there is text printed below the 
line, all the lines move up one line. 

157 Insert Line. This code adds a blank line in the line that the cursor is in. If there 
is information in this line, it and any text below it are moved down one line. Any 
information on the last line of the screen will be moved off the screen. 

158 Clear Tab. This code removes the tab indicator from the point that the cursor 
is at. If the tab was not set at this location, nothing happens . There is no 
clear-all-tabs command, but this function can be accomplished with pokes . 

159 Set Tab. This code places a tab indicator at the location of the cursor. Since the 
tabs can be set for three screen lines, it is important to know exactly where the 
cursor is. 

253 Bell. This code makes a tone using the speaker on the computer. This sound is 
more like a squawk than an actual bell. This character has no effect on the 
display. 

254 Delete Character. This code removes the character "under" the cursor. If 
there are characters in the line to the right of the cursor, they will move one 
position to the left. If the logical line is longer than one screen line, the contents 
of the lines below the line with the character that is being deleted will move up 
also. 

173 



ATASCII code 
(decimal) Command and function 

255 Insert Character. This code adds one position to the line. A space is inserted 
at the posi tion of the cursor. The character under the cursor and any characters 
to the right of the cursor are moved one position to the right. 

In some programs, it is possible to place machine language subroutines into strings . Ifit is a 
relocatable subroutine, this is a good place to store it since it can be accessed by using the 
USR(ADR(STRING$)) command. But, very often, some of the codes for the subroutine are the 
control codes listed above. If you try to print the string, you may find that you cannot see all the 
characters in it because the control characters don't print! The next program shows you which 
location to poke to make control characters visible on the screen. 

Listing 12-2. Printing Control Characters 

10 REM LISTING 12.2 
20 REM PRINTING CON'rROL CHARACTERS 
30 REM BY L. M.SCHREIBER FOR TAB BOOKS 
-4 () 0 I I'j (1 ~I; ( ;? 0 ) 
::.:;0 i~~~:::: " }}h'" ~: F~[(j F'Ur CUi\~ · fh:UI... CH 
ARACTERS IN THIS STRING 
6 () F' U 1< I::: "/.;') (, " 1 
70 ? "At CONTROL CHARACfERS ";At 
DO r:ool'':':1::: 76,S y 0 

Line 40 sets aside 20 places for characters in A$. 
Line 50 places an assortment of control characters into A$ . These are - bell, clear, insert 

character, delete character, cursor down, cursor up, cursor right, cursor left, tab, insert line, and 
delete line . To print these characters within the quotes, use the escape control keys for all but the 
last two; use the escape shift keys for those . 

Line 60 pokes location 766 with a 1. Anytime this location is not zero, the control characters 
will be printed on the screen as characters. 

Line 70 prints the contents of A$ on the screen. If you do not clear the screen before running 
this program, you will see that A$ is printed exactly as it is set in line 50. 

Line 80 resets location 766 with a O. Now if you try to print A$, you will get the bell, the 
screen cleared and all the other control characters executed. 

OTHER MEMORY LOCATIONS 

The following list of memory locations are used by the screen editor, display handler, etc, to 
display information on the screen. They are all located in RAM, so they can be changed under 
program control. Some values may be immediately reset by the operating system; others will be 
ignored; and changing some can cause strange results , or make the system crash. 

Memory 
Location 

88,89 

174 

Function 

This is the beginning of the screen memory. When the contents of these locations 
are changed, the computer will print in memory other than that being displayed on 



Memory 
Location 

675 

Function 

the screen . This location was changed in the program Slide Shows (Chapter 9). 
This byte and the next 14 bytes make up the bit map for the tab. Every bit that is 
set is a tab. For example, input POKE 675,17. Now press the tab key. The cursor 
will stop under the E in READY -the fourth screen position, and under the space 
after the Y -the eighth screen position . All tabs can be cleared by this statement. 

FOR X= 675 TO 689:POKE X,O:NEXT X 

694 This location sets or clears the inverse fl ag. If this location is 128, all the 
characters wi ll be treated as inverse characters. It must be set to 0 for normal 
characters. This location was used in Chapter II. 

702 This location is set for lower or uppercase letters. If this location is 64, the 
shift- lock has been set and the characters are uppercase . If it is 0, the characters 
are lowercase . This location was also used in Chapter II. 

703 This location can only be 4 or 24. If it is 24, it sets the normal screen size. A 4 sets 
the text window at the bottom of the screen. Poke this location with a 4; then list a 
program. The entire program wi ll scro ll in the bottom four lines of the screen. 

By experimenting with these locations, you will learn how to create the effects that you need 
or want for your programs . 

175 





Chapter 13 

Disk Use 
Convenient program and data storage is provided by the floppy disk system available with the 
AT ARI. By understanding how the computer handles the disks and how the disks themselves are 
organized, you can better control and utilize the system. 

DISK FILE MANAGER 
The file manager provides the commands that allow BASIC to access the disk drive. Up to 

four drives can be accessed with the manager that comes with the AT ARI Disk Operating System 
(DOS). Throughout this chapter and the next, the AT ARI DOS wi ll be used for the examples. If 
you are using a different DOS on your system, some of the commands or formats may differ. 

IOCBs 

The AT ARI computer has a portion of memory set aside for input and output control. This 
area of memory is called the input/output control buffer (IOCB) . The memory locations in this 
area are set for the device(s) that will be handled. This area is not exclusively for the disk drives. 
It can also be used by the screen editor, cassette, or any other device that can access it. It can also 
be used under program control. 

The IOCB stores information concerning the device that is being used, the process that will 
be performed (writing to the device or reading from it) the length of the buffer that will be written 
from or read into, and location of the buffer. 

CID Functions 

The central input/output (CIO) functions control most of the disk operations. Each disk 
operation has its own specific function . Some operations have options that can be accessed by 
using the correct auxiliary code . 

Open. The open command can be used to create a new file, append an existing file, or update 
an existing file. The file can also be opened for a read. To use the open command, you must specify 
which drive, the name of the file and the option, for example, OPEN #2,8,O,"D:NAMES". The 
file NAMES would be opened using buffer #2. It is opened for a write only. If a file already exists 
with that name, it will be written over. If it does not exist, it will be created. Its name will be added 
to the directory. 

Using the format OPEN #2,9,O,"D:NAMES" opens the file for an append. The file will not 

177 



be destroyed. The information sent t.o it will be placed immediate ly following the data that is 
already there. 

If you use the format OPEN #2,12,0, "D:NAMES", the file will be opened for update. Any 
part of it can be changed without affecting the rest of the file if the file was created properly. 

You can also use the open command to read the directory from BASIC by using OPEN 
# 2 ,6 ,0,"D:*. *" . In the next program, you can read the directory from BASIC and run any program 
by entering that program's number. 

Listing 13-1. Directory Listing 

10 REM LISTING 13.1 
20 REM DIRECTORY LISTING 
30 REM BY L. M.SCHREIBER FOR TAB BOOKS 
40 DIM DIR$(768),BUF$(14) 
45 DIR$(l)=" ":DIR$(768)=" ":DIR$(2)=D 
I F~ ~!; 
50 ? "}CLEAR}":REM CLEAR THE SCREEN 
60 OPEN i2,6,0,"D:* .*":N= 1: X= 1:REM OPE 
N THE FILE FOR THE DIRECTORY 
70 INPUT i2,BUF$:REM GET AN ENTRY 
80 DIR$(X ,X tl1)=BUF$C3,13 ):REM PLACE I 
T IN THE DIRECTORY BUFFER 
90 IF ASCCBUF$(1,1»<58 AND ASCCBUF$(l 
,1»)47 THEN N=N-l:CLOSE i 2:GO TO 110 
100 X=X+ 12 :N= Ntl :GOTO 70 
110 R=1:C=2:FOR X=l TO N:POSITION C+( 
NOT INT(X/l0»,R:? X; " ." ~DIR$(X*1 2- 11Y 

X*12):REM PRINT THE FILE 
120 C=24-C:IF C=2 THEN R=Rt1:REM NEXT 
COL,UMN, NE XT ROW 
130 NEXT X:REM FINISH DIRECTORY 
1 ,"} () T h: (:1 F:' 1 4 ° :: F' 0:3 I '( I Cl I",j :::.) , :::) ::~ : '"!" "E N T [ F~ N U 
MB[R OF PROGRAM ";:INPUT P 
150 IF P)N OR P<l TH[N 140 
160 BUF$(1)=" " :B UF$(14)=" ":BUF$(2)=B 
UF$:BUF$="":BUF$="D:":FClR X=P*12-11 TO 
P*12-1:IF DIR$( X,X)=" " THEN 180 

170 NEXT X:X=P*12-3 
180 X=X-1:BUF$(3)=DIR$( P*1 2-11,X):X=LE 
I\J (BI...IF'!;;' 
:J. (? 0 >< :::: ::< -1-:J. ~; r:!.J F <J:. ( X , >< ) :::: " • " : X :::: X -I- 1 : r: U F ~I; ( X , X 
-1-2)=DIR<J:.<P*12-3,P*:J.2) 
:?OO F:UN F':UF:'~!; 

Line 40 sets aside 768 bytes for the directory and 14 for the buffer. There is a maximum of 64 
files that can be stored on disk. There are 12 bytes fielded for each file. 

Line 45 clears the garbage from the string. 

178 



Line 50 clears the screen. 
Line 60 opens buffer #2 to read the directory. The number 6 indicates a directory read. The 

asterisks (*) are used for the file name so that all the file names will be read. The variable N will 
record the number of files read. X wi ll point to the position in DIR$ that the file name will begin at. 

Line 70 gets an input from buffer #2. The contents of this input is stored in BUF$. The 
program is reading the entry from the buffer, not from the disk. 

Line 80 places the contents of BUF$ into DIR$. All the file names will be stored this way. 
Line 90 checks the first character of BUF$. If it is a number, there are no more files in the 

directory. One is subtracted from N so that N wi ll be the number of files listed in the directory. 
Line 100 adds 12 to the value of X. This moves the pointer up 12 bytes to point to the 

beginning of the next field. The variable N is incremented by 1. and the program continues with 
line 70. 

Line no uses the variable R to indicate the row that the file information will be printed on 
and the variable C for the column. The for .... next loop accesses DIR$ to print the names of the 
files on the screen. The column position is calculated to keep them straight. When X is greater 
than 10, the number (X) must be printed one column to the left to keep the numbers in a straight 
line. The logical operation NOT returns a 1 when the integer of ClIO is O. It returns a 0 when it is a 
number greater than O. By add ing this value to the variable C, we can keep the numbers in a 
straight column . The number (X) of the file and the file name are printed on the screen. Again, X is 
used to calculate the beginning and ending positions of the file name. 

Line 120 recalculates the value of C. The two positions that the column can be are 2 and 22. 
By subtracting the value of C from 24, the variable C will be 2 and 22 alternately. Every time C is 2, 
the variable R is incremented so that the next file name can be printed in the next row on the 
screen. 

Line 130 continues the loop. 
Line 140 asks for the number of the program that you want to run. The line ends with five 

spaces and three backarrows. The trap keeps the program from crashing if a letter or other 
character is entered instead of a number. The number of the program is stored in the variable P. 

Line 150 checks the value P. If it is larger than the number of the last program on the screen, 
or less than 1. the program returns to line 140. 

Lines 160-180 place the name of the program into BUF$. The first two characters of the 
string are set to D:. This is the code that the computer needs to access the disk. The program 
looks for the first space. The part of the name from the first character to the character before the 
first space is placed in BUF$. 

Line 190 places the. after the name of the program. The extender is added to the name. 

Disk Buffer 
Located in the IOCB is the address of the disk buffer. When the computer inputs information 

from the disk, it moves the data into the buffer. When the program uses the get command or put 
command, it goes into this buffer to retrieve or place information. The get and put commands 
work with only one byte at a time. 

The input command also gets its information from the buffer. All the data up to the end-of-line 
code is placed into the string. If the string is not long enough for the information, it will be lost. 

The following program will print a hard copy of a program that has been listed to the disk. 
The length of the line can be specified. The program uses the data in the disk buffer to print the 
listing. 

179 



Listing 13-2. Print from Disk 

10 REM LIST 13.2 
20 REM PRINT FROM DISK 
30 REM BY LIM.SCHREIBER FOR TAB BOOKS 
40 ? "}CLEAR}ENTER THE LENG1H OF A LIN 
E " Y ; J N P l..I T F' L 
50 ? "ENTER THE NUMBER OF LINE S TO A P 
(lUE" ; : INPUT I...r~ 

,1> 0 0 F' E N :11: 2 v U y 0 v "F< lj. ; " 

70 OPEN tl,4vO,"D:I...JSTINU" 
DO 1 ... :::::1. 
90 TRAP 300:FOR C=l TO PI... 
:1.00 GET :I~:I. y B 
110 ? t2;CHR$(B); 
120 IF B=155 l'HEN 140 
:1.30 NEXT C:? t2;CHR$(155); 
140 L=l...t:l.:IF I...<I...N THEN YO 
150 FOR 1...=1 TO lOt? t 2: NEXT I... :GO TO 80 
300 CI...OSE tl:CI...OSE t2:END 

Line 40 clears the screen and asks for the length of the line. This value is stored in variable 
PL. It can be any va lue. Of course, if your printer can only print 40 characters on a line, a number 
larger than 40 would not work. 

Line 50 asks for the number of lines to a page. This is the number of lines that you want 
printed at one time. After every page, the program will print ten line feeds to separate the pages. 

Line 60 opens buffer #2 for the printer. The printer that I use is a serial printer out of port #4 
of the interface. 

Line 70 opens buffer #1 to the disk drive. The program that you want printed should be listed 
to the disk with the LIST "D:L1STING" command instead of being saved. Use the name LISTING 
for the program. By listing the program to the disk, it is not saved in the token form, but byte for 
byte the way it appears on the screen when it is li sted. 

Line 80 sets the variable L to 1. This variable will count the number of lines that are printed . 
Line 90 sets a trap for line 300. We don't know how long the program is , so when an error 

occurs, we will end the program. The for .... next loop to print the program begins here . 
Line 100 uses the get command to retrieve a byte from the buffer. The disk will turn on and 

256 bytes will be read into the buffer. This command wil l ge t each byte from the buffer one at a 
time. It keeps track of which byte it got last, so it always gets the next byte. When the end of the 
buffer is reached, the next 256 bytes will be read in off the di sk. 

Line 110 prints the CHR$ of the byte to the printer. The semicolon after the CHR$ keeps 
every character on the same line until the carriage return and line feed (EOL) is issued to the 
printer. 

Line 120 checks the value of B. If it is 155, the EOL has been sent to the printer, and the 
printer has returned to the beginning of the line and fed the paper up one line. The program is 
directed to line 140 since there will be no more characters printed on this line. 

Line 130 continues the loop. After the number of characters specified by PL is sent to the 

180 



printer, the program sends an EOL to the printer. If there are more characters for this program 
line, they will be printed on the next line. 

Line 140 adds one to the value of L. This is the number of lines that have been printed. If the 
number of lines required for one page have not been printed, the program will go back to line 90. 
This will start the for. ... next loop again . 

Line 150 will separate one page from the next. Ten prints will be sent to the printer. This 
number can be changed if you want more or less spacing between the pages. 

Line 300 closes the buffers and ends the program. 

SPECIAL FUNCTIONS 
There are some functions that can be accessed both from the DOS and BASIC. Although they 

are not supported by one word commands, they can be executed with the XIO command. They 
are: lock, unlock, delete , rename, and format. The XIO commands are: 

Operation 
LOCK 
UNLOCK 
DELETE 
RENAME 
FORMAT 

Command 
XIO 35,#1,0,0,"D:name" 
XIO 36,#1,0,0," D:name" 
XIO 33,#1,0,0,"D:name" 
XIO 32,#1,0,0,"D:name newname" 
XIO 254,#1,0,0,"Dl:" 

These commands can be used within a program to access the disk. The following program 
includes some of these commands and the note and point functions. 

Listing 13-3. Calendar 

l 0 
:::.)0 

F:EM 
F~ LI" i 

1... I ~ :; T I i"'~ U 1 3 • ::5 
C(lL.LND[F~ 

:-:<;0 
40 

F~ Lr'j 
DII"j 

BY L. . M.SCHRLIBLR FOR TAB BOOKS 
DAY$(30),BUF$(20),MT$(S),TEMPS( 

50 7 "}CL.LAR}" : PO SI TION 
CHOOSL:":POSI1'ION 5,4!? 
v.J D I ~:jl< II 

60 POSITION 5,6:? 

~:) , :::!.: ? II PL.EA!:lE 
":1. • F'DF~MAT NE 

70 TRAP 70:POSITION lO,S:? II ";!INP 
UT C:REM 2 SPACES & 2 L.EFT ARROWS TD C 
L E (:1 h: F N 'r F~ y 
SO IF C<l OR C)2 THEN 70:RFM ONL.Y ACCE 
F' ''r 1 UF~ :::,; 
90 ON C UOTO :1.00,250 
100 POKE 752,1: 7 "}CLEAR}" : POSITION 2, 
10:? "THIS SELECTION WILL FORMAT A DIS 
K FOR THE CALENDER PROURAM. PLACE A" 
110 ? "NEW DI SK INTO THE DRIVE AND PRE 

181 



Listing 13-3. Calendar (continued from page 181) 

SS RETURN ANY OTHER KEY WILL RETUR 
N YOU TO THE j'iEN U" 
120 IF PEEK(764)=255 THEN 120 
130 LN=50:IF PEEK(764 )~ 12 THEN LN~150 

140 POKE 764,255:GOTO LN 
1 ~.'5 0 X I 0 2 ~.:5 -4 , :11: 1 y 0 y () y " D 1 ~ " ! F~ E:: 1'1 F 0 F< M f.l T T H 
F: DI~:)I\ 

160 FOR X~ 1 TO 12:RF:AD BUF$ : DAY$(l)=" 
":DAY$(30)=" ":DAY$(2)=DAYt:OPEN 12,S, 
(), FlUF~I; 

170 FOR D=1 TO 31:DAY$(1)=STR$(D):DAY$ 
( 30 ) :::: " ": F' F~ I N 'f :11: 2 iI D (I Y ~I; :; 'N F: X T D 
lS0 CLOSF: 12: NEXT X: REM CRF:ATF: THE MON 
'fH F I LF:~:; 
190 DATA D:JANUARY , D:FEBR UAR Y,D:MARC H, 
D:APRIL , D: MAY,D : JUNE,D : JUL.Y,D : AUGU ST 
200 DATA D:S EPTEMBF:R , D: OCTO BER,D :N OVEM 
BF:F: ~J D: DECEI"jE:EF~ 
2 10 POKE 752,O:GOTO 50 
250 1 "}CLEAR}":POSITION 5,10: 7 "ENTER 

THE MONTH";:INPUT MT$ 
260 TRAP 270:RESTORE 190: FOR X= 1 TO 12 
:READ BUF$ : IF LEN(MT$ ) t 2<=LENCB UF $) TH 
EN IF BUF$(3,LEN(Mf$ )t2)= MT$ THEN 280 
270 NE XT X: GOTO 50 
2S0 TRAP 280:1 :7 " 
I NF'UT 1:1 

ENTER THE DAY";: 

290 TRAP 40000:0PF:N #2,4 ,O ,B UF$ : FOR X= 
1 T Cl ;:) :1, : N D T E :11: :~) ~, ~:) , :U : I N F' U T :11: ;,:,~ , :0 (.~ y ~ I ) 

300 IF VAL CDAY$(1,2» <> D THF:N NE XT X:C 
L Cl ~:) E :11: 2 : (3 0 T Cl ~,:,:j 0 
3 1 0 C L. CJ ~:; E :11: ~) 
320 1 "}CLEAR}":7 "DATE RE QUE STED - "; 
~1T!I;v " llyn 

330 'i' :? Dt1 Y$ 
340 ? :? "PRESS K-TCJ KEEP INFORMATION 
& RETURN TO MENU" 
350 7 :1 "PRESS U-TO UPDATE INFORMATIO 
N" 
360 ? :7 "PRESS D- TO REVIEW ANOTHER DA 
TE" 
370 CJPEN 12,4,O,"K:" :G ET 12,C: CLO SE 12 
380 IF C)127 THEN C=C-12S:POKE 694,0 
390 IF [=75 DR [=107 THEN 50 

182 



400 IF C=85 OR C=117 THEN 450 
410 IF C=68 OR C=100 THEN 250 
420 COTO : .. :~?() 
450 1 :1 "PLEASE ENTER NEW INFORMATION 

460 TEMP$(l)=" ":TEMP$(25)=" ":TEMP$(2 
)=TEMP$:INPUT TEMP$:IF LENCTEMP$)<>25 
THE N T E I"i F' ~I; <: ::.) ~:) ) :::: " 

470 1 "VERIFY - THIS IS CORRECT (Y I N)" 
480 OPEN 12v4,O,"K:":GET 12,C:CLOSE 12 
490 IF C>127 ·fHEN C=C-128:POKE 694,0 
500 IF C=89 OR C=121 THEN 530 
510 IF C=78 OR C=110 THEN 450 
!;5::.~ O GUTO {I/O 
530 DAY$(4)=TEMP$ : DAY$(30)= " ":REM STO 
RE THE NEW INFORMATION 
540 OPEN 12,12,O,BUF$:POINT 12,S,B:REM 

RE-OPEN THE BUFFER AND POINT TU THE S 
FCTCJF~ 

550 7 1 2;DA Y$:CLOSE 12 : GOTO 50:REM STO 
RE THE INFORMATION ON DISK 

Line 40 sets aside space for the strings. DAY$ will hold the day's activity. BUF$ is used as a 
buffer for the disk file name. MT$ is the month and TEMP$ holds information temporarily. 

Line 50 clears the screen and places the first menu option on the screen. 
Line 60 places the second menu option on the screen. 
Line 70 places a question mark on the screen and waits for an entry. The trap will keep the 

program from crashing as a letter or other character is entered. Two spaces and two left arrows 
are printed before the input. This will erase the entry if the program does not accept it. 

Line 80 checks the value of C. If it is not a 1 or 2, the program will return to line 70. 
Line 90 branches to the correct routine. 
Line 100 removes the cursor and clears the screen. It prints part of the message on the 

screen. 
Line 110 prints the rest of the message on the screen. 
Line 120 waits until a key has been pressed. 
Line 130 sets the variable LN to 50. This is one of the two lines that the program can be 

directed to . If the return key was pressed, the value of LN cpanges to 150, the other line number. 
Line 140 clears the key input and sends the computer to the correct line. 
Line 150 formats the disk. It is very important that the disk in the drive does not have 

programs that you want to keep on it. When the disk is formatted, all the information on the disk 
will be erased. 

Lines 160-180 place the files for the months on disk. The X loop goes from 1 to 12. The month 
is read into BUF$. The contents of nAYS are cleared, and the file is opened with the name that is 
in BUF$. Line 170 begins the second loop . This loop places a buffer for each day of the month on 

183 



the disk. The first byte(s) of the DAY$ contains the number of that day. The last byte is set to a 
blank space. The entire buffer is printed to the disk . After all the days have been printed to the 
disk, the file is closed and the X loop continues. 

Lines 190-200 contain the months in the format needed to open files on the disk. 
Line 210 puts the cursor back on the screen and returns to the main menu. The di sk is now 

set up as a calendar. 
Line 250 begins the calendar routine. The screen is cleared, and the message to enter a 

month is placed on the screen . 
Line 260 restores the data line and begins the for .... next loop to look for a match between the 

month entered, and the months on file. The contents of BUF$ beginning with the third byte is 
compared to the contents of MT$ (the month entered) . If a match is found, the computer goes on to 
line 280. 

Line 270 continues the loop if no match is found. If the month cannot be found because of a 
spelling error, the program goes back to the main menu. 

Line 280 waits for a day to be entered. All the files are set up for 31 days. The entry here is 
not checked for a correct day. If you need more days in your year, here's your chance to lengthen 
February! 

Line 290 clears the trap. The file for the month spec ified by BUF$ is opened for a read. The 
loop gets every day from 1 to 31. The program has no way of knowing where in the fil e the day is 
located . The note command places the sector number of the day be ing read into the variable S. 
The first byte of the day is placed in B. 

Line 300 checks the day in the buffer against the day entered. The loop continues until the 
days match. If no match is made, the file is closed and the program returns to the main menu. 

Line 310 closes the fil e if the days match. 
Line 320 clears the screen and prints the month and day entered on the screen. 
Line 330 places a blank line on the screen, then prints the contents of DA Y$. 
Lines 340-360 print a mini-menu. If you want to keep the information that is on the screen and 

return to the main menu, press K. If you want to change the information, press the U. Press D if 
you want to check another date . 

Line 370 opens the keyboard for a read. When a key is pressed, the keyboard wi ll be closed. 
Line 380 checks the va lue of C. If it is greater than 127, the inverse or ATARI key has been 

pressed. 128 must be subtracted from the value of C. A zero is poked into memory location 694 to 
reset the flag for normal text. 

Lines 390-410 check the value of C. If it is a K, the program will return to the main menu. If it 
is a U, the program wi ll continue with line 450. Entering a D will send the computer back to line 
250 for another entry . 

Line 420 will send the computer back for another entry because the key that was pressed was 
invalid. 

Line 450 issues a blank line , anct then asks for the new information to be entered. 
Line 460 clears any previous information or garbage from TEMP$. It then waits for a new 

input. If the length of the input is less than 25, the last character of the string will be set to a space. 
Line 470 asks you to verify what you typed. 
Line 480 opens the keyboard for a read . Once a key has been pressed, the keyboard wi ll be 

closed. 
Lines 490-520 check the value of C. If a Y or an N was not entered, the program will loop back 

for another entry. If an N was pressed, the program will go back to line 450 for a new input. If the 

184 



entry is correct, the program will continue with line 530. 
Line 530 places the information from TEMP$ into DAY$. The last byte of DAY$ is set to a 

space . The disk is fielded for 30 bytes per record. If fewer bytes are sent back to the disk, the 
pointers would be changed, and we could not retrieve information from the disk. 

Line 540 opens the file in BUF$ for read/write or append. The point command is used to set 
the pointer to the correct sector and byte . The information in DAY$ must be placed back on the 
disk in the exact spot that it was taken from. 

Line 550 prints DA Y$ to the disk and closes the buffer. After each update, the routine will 
return to the main menu. 

DISK HANDLER 

Another way to access the information on the disk is by using the disk handler. The disk 
handler is twelve bytes long and can transfer one sector (128 bytes) of data to or from the disk. In 
order to transfer the information, the disk handler must be set up by the program. The disk 
handler begins at memory location 768. It must contain the number of the disk drive that will be 
accessed, the command byte (get sector, put sector, format, or status request), the buffer 
address, and the number of the sector to be accessed. 

The next program will load in .a specified track from a disk and display it as characters on the 
screen. The characters can be changed, and resaved onto the disk. This program wi ll not allow 
you to change the data on the disk, just to look at it. It will te ll you the status of the track. If the 
status is not OK, it is a bad tracle Either the information on it got scrambled, or it was made into a 
bad track for copy protection purposes . 

Listing 13-4. Displaying Sectors 

10 REM LIS1ING 13.4 
20 REM DISPLAYING SEC TO RS 
30 REM BY L.M.SC HREIBER FOR TAB BOOKS 
40 DIM BUFFER$(128),DROUT$(5) 
'.:5 0 n u r:· F E F~ ~ I :· ( 1 ) :::: " "~E·: U F:· F:· E F< !I; ( :1. 2 U ) :::: " ": B U F 
FER$(2)~BUFFER$:REM CLEAR THE BUFFER 
60 FOR X~1 TO 5:READ B:DROUT$(XvX)=CHR 
! I;(I:~) ~NEX T X 
65 DATA 104,32,83,22U,96 
70 ADDR~ADR(BUFFER$):REM DECIMAL ADDRE 
~::; :::; U F :H U F F E I:: <]; 

80 nUF H I~IN·r(ADDR/256):REM HIGH URDER 
F·:YfE 
90 BUFLO=ADDR-(BUFHI*256):REM LOW ORDE 
h: :n··(TE 
1 0 0 DeB :::: "/ () U ~ F< E (1 D I:::; F' L. (1 '( CON T F< 0 1... C H (~ R A C 
TERS - SE·r DEVICE CONTRO L BLOCK 
110 POKE DCB+1,1:REM DRIVE #1 
120 POKE DCB+2,82:REM GET SECTOR 
130 POKE DCB+4,BUFL.0:REM BEGINNING OF 
BUFFER - L.OW ORDER ADDRESS 

185 



Listing 13-4. Displaying Sectors (continued from page 185) 

140 POKE DCB+5yBUFHI :REM BEGINNING OF 
r: U I::· F E F~ .... H I U H 0 F< Ii 1::: F;: () fi Ii F< E ~:; !::) 
150 POKE 766yO : TRAP 150: 7 "INPUT SEC TO 
R NUMBER"~:INPUT SECTOR:POKE 766yl:REM 

GEl· A SECTOR NUMBER 
160 SECTORHI=IN·f(SECTOR/256):REM UET H 
IUH ORfiER BYTE OF SECTOR 
170 SECTORLO=SECTOR-(SECTORHI*256):REM 

GET LOW ORDER BY1·E OF SECTOR 
180 POKE DCBtl0ySECTORLO :REM STORE IT 
190 POKE DCBt11y SEC TORHI 
200 X=USR(AfiR(fiROUT$»:REM CALL THE O. 
~::;., h: D 1...1 T I i···! E T CI h: E (i D D I ~:; 1< 
210 DSTAT=PEEK(DCBt3):REM GET THE STA T 
Lib 
220 7 "DISK bTATUS=";fiSTAT;:IF DSTAT=l 

THEN 7 " - DK" :UOTO 240 
230 PRINT :REM PRINT SECTOR INFORMATIO 
N Dj\1 I) C 1".1 I... I i\!E 
240 7 "SECTOR DATA :":7 BUFFER$ 
:? ;::.; () C) (J ·r u 1 ~::; () 
·:.:.::(.0 Ei···iD 

Line 40 sets aside space for two strings. BUFFER$ will contain the data in the sector. 
DROUT will contain the address of the machine language subroutine in the operating system that 
will use the disk handler. 

Line 50 clears the buffer. 
Line 60 reads the machine language subroutine into DROUT$. This subroutine is a jump to a 

subroutine in the operating system. We need this subroutine to access the operating system 
subroutine because we are accessing this subroutine through BASIC. The first thing that the 
subroutine must do is pull a byte off the s tack. If we accessed the routine directly, it would not 
return properly since the byte would not be pulled off the stacie 

Line 70 places the decimal address of the first byte of the buffer into the variable ADDR. 
Line 80 divides this number by 256. This integer is the high order address of the s tring 

location. 
Line 90 subtracts this number from the address . This gives the low order address. 
Line 100 sets the variable DCB to 768. the beginning of the device control block, and pokes 

location 766 with a 1. Now if there are any control codes in the sector, they will be printed on the 
screen. 

Line 110 pokes the second byte of the device control block with the number of the drive that 
will be read. 

Line 120 pokes the next byte with the command byte. 82 is the command to get a sector from 
the disk. 

Lines 130-140 place the low order and high order byte of the address into the device control 

186 



block. This address is the beginning of BUFFER$. 
Line 150 asks for a sector number. The trap is set for inputs that are not numbers . The sector 

number will be stored in the variable SECTOR. 
Lines 160-170 divide this number for the low order and high order bytes. 
Lines 180-190 place these bytes into the correct addresses of the device control block. 
Line 200 calls the machine language subroutine that calls the operating system's disk 

interface routine. 
Line 210 checks the status of the sector read. 
Line 220 prints the status of that sector. If it is a 1, the sector was read incorrectly. 
Line 230 forces a line feed to the screen. There is a semicolon after the status value in line 

220. If the status was not OK, the line feed would not occur. 
Line 240 prints the sector on the screen. Some sectors look like they are displaying garbage 

on the screen. Others are a string of hearts, and still others are petiectly readable. 
Line 250 sends the program back to line 150 to get another sector to be displayed. 

Press the break key when you are finished displaying sectors. The following list shows 
which bytes are used for the DCB and which commands could be used. 

Address 
769 
770 

771 
772-773 

778-779 

Function 
This byte is set to the number of the drive that will be accessed 0-4). 
This is the command byte. The commands are: 82-get sector; 87-put sector 
with verify; 83-status request; 33-format disk. 
This is the status byte. After a successful read, this byte will be a l. 
This is the buffer address that indicates where the data will be placed or taken 
from. 
This is the number of the sector that the routine will access. The sector could 
be written to or read from. 

FILE MANAGEMENT SYSTEM 

In add ition to the disk file manager, there is also a file management system. This governs the 
format of the disk, the location of the boot record, the file directory, the volume table of contents, 
and any other information needed to keep files on a di sk. If any or all of the files that the file 
management system (FMS) uses are destroyed, the disk may not boot, copy correctly, or read in 
the files. By understanding how the fil es are structured on the disk, bad sectors can be fixed; the 
table of contents can be altered; and files can be deleted or restored without using the disk file 
manager. 

Track Format 
When a disk is formatted, all the data on the disk is erased. There are 720 sectors on the disk. 

Every byte in every sector is set to O. The first sector of the di sk is reserved for the boot record. If 
there is no boot record, the disk will not load from a cold start . When DOS is written to the 
formatted disk, the boot record is written to the disk along with the DOS and DUP files. When the 
disk boots, it brings DOS into the computer. 

When a file or record is sent to the disk, it may require one or more tracks. The FMS begins 
with the first available sector and stores the program on subsequent available sector. The key 
word here is available. If, for example, a program used two sectors for storage; the next program 

187 



used four; and the third used five . Now, you dele te the second program from the disk. Those four 
sectors are available for another program. The next program that you write needs 10 sectors. The 
FMS uses the first four sectors from the de leted program and the six sectors after the third 
program. How does it know where the rest of the program is??? 

Every sector of every program has its own lin/ling bytes. There are 128 bytes in every 
sector. Bytes 1-125 contain the data for that sector. It could be a program listing, a file, or 
whatever e lse was saved to the disk. The 126th byte conta ins the fil e number. Every sector that 
pertains to this program will have the same fi le number. If there is a mismatch between file 
numbers, an error 164, fil e number mi smatch, wi ll occur. 

Byte 127 is the forward pointe r. It contains the sector number for the next sector that has 
more data for this fil e. It usually is, but does not have to be, the following sector. This is how the 
computer knows where the rest of the program is . If sectors 4-8 are used for a program and the 
next avai lable sector is 14, the number 14 will be stored in byte 127 on sector 8. When the 
computer finishes reading in the data from sector 8 it will continue on to sector 14 and skip sectors 
9- 13. If th is is the last sector for the fil e, this byte will be O. 

Byte 128 is the byte count. It contains the number of bytes that should be read in from this 
sector. A full sector contains 125 bytes. Anything less than 125 is considered a short sector. 

If you use the Displaying Sectors program from thi s chapte r, you can examine the sectors of 
the disk and see how the sectors are linked. 

Volume Table of Contents 
When you want to save a program onto the di sk, the computer has to know where there is 

room to save it. It can't sit there and examine every sector on the di sk to decide whether or not the 
program should be placed the re . Sector 360 is the volume table of contents (VTOC). Use the 
Displaying Sectors program to examine this sector. Now examine a new ly formatted disk . 

The VTOC for the disk that has been used should have a string of hearts, with some inverse 
insert characters . The disk that was just formatted is almost filled with the inverse insert 
characters. This is a bit map that tell s the computer which sectors have been used and which ones 
are empty. The fourth and fifth bytes of this sector indicate how many sectors are available. On a 
new disk these two characters should be an inverse C and a control B. This is a two byte 
number: 2*256+ 195=707 free sectors. On a used disk, thi s number will vary. If the 4th and 5th 
bytes are set to 0, the computer would th ink that the di sk is full. The bit map begins with the 11th 
byte or character. On the new disk, this byte wi ll be 15, the character will be a control O. The next 
44 bytes are inverse insert characters (AT ASCII 255). The 45th and 46th bytes are a heart and 
insert character. The next 43 bytes are inverse insert characters (AT ASCII 255). Every time 
something is stored on the di sk, this sector is checked. If the bit is a I, then the sector is free and 
the information can be placed in that sector. The bit in the bit map is then se t to O. The 45th and 
46th bytes are sectors 360-368. These sectors are reserved for this VTOC and the directory. If 
the directory sectors are changed to ones, they could be written on. The computer would not be 
able to li st a directory or load or store programs. 

FILE DIRECTORY FORMAT 

Beginning with sector 361, the computer keeps the names of the programs on the di sk. There 
are sixteen bytes used for each entry. Up to eight names can be s tored on each sector. There are 
eight sectors set aside for the directory. Up to 64 fil es or names can be stored on a disk. This 

188 



means that even if there are free sectors on the disk, the disk will not hold more than '64 programs 
or files. 

Look at sector 361 using the Displaying Sectors program. You should see up to eight file 
names. Before each name, there are some characters. The first byte of the fi le name is the fl ag 
byte. If this character is a B, the file is available . If it is a b, the fi le is locked. If it is an inverse 
heart, the file has been deleted. 

The next two bytes contain the sector count. The second byte is the low byte, the third, the 
high byte. Multiply the ATASCII value of the third byte by 256, and add the ATASCII value of the 
second byte to find out how many sectors are used for the file. 

The fourth and fifth bytes contain the sector number at which this file starts. Again, this is a 
two byte number with the low byte first and the high byte second. Use the ATASCII' values of 
these characters to find out which sector the file begins in. 

The next e ight bytes are the name of the file. The last three are the extender. There is no 
period separating the name from the extender. When the directory is read into the computer, the 
period is added by the program. If the file name or extender contains more characters than there is 
space for in the directory, the extra characters wi ll be ignored. Table 13-1 shows the format of the 
file directory. 

BOOTING YOUR OWN DISK 
When you place a disk into the drive, and turn on the computer, the drive turns on and a 

program boots. This program could be the DOS or another program. Most commercially avai lable 
machine language programs will boot themselves when you turn the computer on. BASIC 
programs are usually loaded into the computer. 

AUTORUN.SYS 

You may have noticed a program on your AT ARI disk called AUTO RUN .SYS. If you examine 
the disk directory from various software firms, you may find the AUTORUN.SYS is anywhere 
from one to three or more sectors long. You may have also found that when you write DOS to a 
new disk, the AUTORUN.SYS does not get written to the new disk. It has to be copied. 

Table 13-1. File Directory Format. 

1 D 
I .• ,' 10 11 12 13 14 15 16 

1-:.1 '::1 t (." 1 ·1'·1 d::.:.i /:.i'::it.(·:·, 

~:; f~ C t. C) reD 1..1 n t 

.:". t. a r' t. :i. n ~.:.{ ~ : ; (.:'.' c t . D )" 

rJ '::1 t. (.:.~ /:' " .. 1 3 

(:.1 '::1 t . (.:., 1 -4 .... 1 (, 

189 



The purpose of the AUTORUN.SYS is to give the programmer a way to boot a program or 
load a machine language program into the computer during the boot process. Let's say that you 
have a machine language program that will disable the break key. You want this program executed 
immediately when the system is turned on. If the program had to be loaded by the user and 
executed, chances are it wouldn't be done . A short routine could be inserted into your BASIC 
program to load and execute this routine, but this would take up memory space and time. 

When you turn your computer on and DOS is loaded in, it checks to see if there is a program 
on the disk called AUTORUN.SYS. If there is, it loads this program and executes it before it turns 
control over to the user. The AUTORUN.SYS program must be written in machine language. It 
cannot be a BASIC program. 

In the following program, you will create your own AUTORUN.SYS. It will change the right 
and left margins on the screen, and the background color before BASIC takes over. 

Listing 13-5. AUTORUN.SYS 

10 REM LISTING 13.5 
20 REM AUTORUN.SYS 
30 REM BY L IM.S CHREIBER FOR TAB BOOKS 
40 OPEN t2,8,0,"D:AUTORUN.SY S":REM OPE 
N THE BUFFER TO WRITE 'rHE NEW AUTOR UN 
50 PUT t2,255:PUT t2,255:REM LEADING B 
y"j'E~:) 

60 PUT t2 ,0: PUT t2 , 6 : REM STARrING AD DR 
E ~:;~:; 
70 PUT t2,13:PUT t 2,6:R EM ENDING ADDRE 

80 FOR B~1 TO 14:READ D:REM GET THE DA 
TA FOR THE ROUTINE 
90 PUT t2,D : REM PUT IT IN THE BUFFER 
100 NEXT B:R EM CONTINUE THE LOOP 
110 PUT #2, 226: PU'r #2, 2:REM AUTO ADDRE 
c~ c· 
•• • 1 ••• ' 

120 PUT #2 ,227:P U'r #2,2:REM START FROM 
T HI:;:) () D D Fl' E b ~:; 

130 PUT #2,0:PU T t 2,6:REM STARTING ADD 
h:EhS 
140 CLOSE #2 : REM CLOSE THE BUFFER - PR 
OGRAM GOEb TO DISK 
:I. !::iO E(\ID 
200 DATA 169,5, 133,82,1 69,30, 133,83,16 
9,208,141,198,2,96 

Line 40 opens the disk buffer to write to the disk. The name of the program is AUTO
RUN .SYS. If there is a program by that name on the disk, it will be replaced by this one. 

Line 50 puts the first two bytes of this program into the disk buffer. The first two bytes of any 
machine language program is 255. 

190 



Line 60 places the beginning address of the program into the buffer. The machine language 
program will begin at memory location 1536 (600 hex). 

Line 7,0 places the ending address of the program into the buffer. The machine language 
program is 14 bytes long, so the ending address wi ll be 1549 (60D hex). 

Line 80 begins the for .... next loop that reads the machine language program into the disk 
buffer. There are 14 bytes in this program. 

Line 90 puts each byte into the buffer. 
Line 100 continues the loop until all the bytes have been read and placed into the buffer. 
Line no puts the low order address of the autorun routine into the disk buffer. 
Line 120 puts the high order address of the autorun routine into the buffer. 
Line 130 puts the beginning address of the machine language program into the buffer. This is 

the address that will be put into the preceding addresses. For a program to load and run, the 
running address must be stored in memory locations 738 and 739. 

Line 140 closes the di sk buffer. When the buffer is closed, its contents will be sent to the 
disk. 

Line 200 contains the machine language program that will be run when the disk is booted in. 
After you enter this program, run it. Be sure that the disk that is in your drive does not have 

an AUTORUN.SYS on it or it will be destroyed. It is best to have a new initialized disk in the 
drive. The DOS must be on the disk . When you run the program, the disk will turn on and you can 
hear the program being saved to the disk. After it is saved, turn the computer off and then turn it 
back on. You will hear the disk boot in. The cursor will move to the right and the screen will turn 
black. The word READY will appear in green . If you load in a program and list it, you will see that 
your margins have moved. See Table 13-2 for the machine language listing of the program. 

Boot Record 
The AUTORUN.SYS is one way to load and execute programs . But, what if you are writing 

programs in machine language, and you do not want a directory on the disk, but do want the 
program to load and run when the disk is turned on? 

In the last chapter, we discussed how the disk was structured. The first sector is called the 
boot sector. This is the sector that the computer will look at to bring in a program from the disk. If 
you copied the DOS on the di sk, you have the AT ARI boot on this sector. It will bring in the DOS. 
If you placed your own boot on this sector, it will bring in whatever program you want it to. This is 
not something that can be easily accomplished from BASIC, but that's not to say that it can't be 
done . If you are ready to place your own boot records on the disks, you must have a good 
understanding of assembly language and how the boot process works. In this chapter, we will only 
describe the boot process. 

The boot sector has its own specific format. The first byte is stored in memory location 576. 
It is not used by the boot and should be set to a zero. The second byte tells the computer how many 
sectors are in the boot. It should include this sector. This number can be any number from 1 to 
255. If it is 256, it will be set to zero. The third and fourth bytes tell the computer where to start 
loading the program. This does not have to be where the program begins, just where to start 
loading the file. The fifth and sixth bytes tell the computer where the program begins. After all the 
sectors for the boot have been loaded, the computer has to know where it should transfer control 
to. This address will be the beginning of the program. The third and fourth bytes and the fifth and 
sixth bytes are two byte addresses. Be sure that the third and fifth bytes contain the low order 
address and the fourth and sixth bytes contain the high order address. 

191 



192 

Table 13-2. Machine Language Routine for AUTORUN.SYS. 

d[~c:i.mal cocJe asse mbl ~ lan~u a~e l:i. st:i. n~ 

I ... DA : 1I:~5 ;Load the accumulator with 5. 

J33 ;Store :i.t :i.n locat:i.on 82. 

LDAII:30 ;Load the accumulator w:i.th 30. 

30 

J33 ;Store :i.t :i.n loc a t:i.on 83. 

J6'Y I ... D(~ :11 200 ; Load the accumulator w:i.th 208. 

:'()O 

J4J. ~:;TA /:10 ;Store :i.t :i.n locat:i.on 7 :10. 

" #0', . 

elf.> ;Return rrom the routine. 

The following is an example of the structure of a boot record. It is not the complete record. 

o Ignore 
3 number of sectors in boot 
o low order address 
7 high order address-place boot here 

low order address 64 
21 
76 
20 
7 
3 
3 
0 

124 
26 
1 

24 

high order address for initialization 
jump to following address 
low order byte 
high order byte 
?? 
?? 

?? 
?? 
?? 
data-loads into the Y register 



o 
125 
203 data 

7 
172 load the Y index use-next address 

14 low order byte for addre ss 
7 high order byte for address 

240 branch if it's 0 
54 ahead 54 bytes 

This portion of a disk boot shows how the information in the first sector is used. The first 
byte (0) is ignored. The second byte indicates how many sectors are in this boot. This number is 
stored at location 577. The next two bytes are stored at locations 578 and 579. They tell the 
computer where this boot should begin. The first s ix bytes and all the byte following will be 
moved to the location in memory beginning with the address specified here. The next two bytes 
are the initialization byte s. After the boot is executed, the address in this memory location will be 
jumped through. The next instruction in the boot is a jump. Once the three sectors have been 
moved into memory the computer will perform a jump subroutine. The address that it will jump to 
is the s ixth address after the beginning address. In this case it is location 1798 (706 hex) . The 
instruction at this address is to jump to memory location 1824 (720 hex). At this location, the 
computer will load the Y index with the value stored at 1812 (714 hex) . If the value is zero, the 
computer will move ahead 54 bytes. If we count 15 bytes down in the tab le, we will see that the 
va lue at that location is a one. The computer will proceed to the next instruction. 

The boot process the n cons ists of: 
1. Reading the first sector and storing the first six bytes, which indicate the number of 

sectors, the load address, and the initialization address. 
2. Placing the boot sectors into memory beginning with the location specified in the third 

and fourth bytes of the boot sector. 
3. Jumping to the subroutine that begins in the seventh location after the beginning of the 

boot. 
4. Jumping through the subroutine whose address is stored in locations 12 and 13 (fifth and 

sixth bytes of the boot record) . . 
5. Transferring contro l to the program by jumping to the address in locations 14 and 15. 
The machine language program loaded into the computer will now be fully operational. If the 

addresses are set correctly when system reset key is pressed, the program will restart itself. If 
they are not, the drive may turn on and the computer may try to boot the program again , or the 
computer wi ll go to BASIC or the memo pad. 

193 



• 



Chapter 14 

Cassette Use 
Like the disk, the cassette is a convenient form of storage that can be utilized more effectively 
when the way the computer handles it, and its physical structure are understood. 

THE CASSETTE HANDLER 

The cassette handler is similar to the disk manager. Files can be written to or read from the 
cassette. The buffer can be opened for get and put commands. Programs can be loaded using 
BASIC or using an autoload command. However, there are some important differences between 
the disk and cassette. The cassette can only read and/or write data to the portion of tape under the 
recorder head. Files cannot be stored or retrieved from just any position. When a program is 
saved to the cassette, it is saved in one continuous stream. There is no positioning of the head. 
You cannot specify tracks like you can point to sectors and bytes on the disk. Likewise, you can 
only read what is passing under the cassette head. You cannot point to only one section of tape like 
you can read in one sector from the disk. The cassette is, however, a fairly reliable way to store 
and retrieve information. 

Format of Data 

If you have a recorder, save a program to it. It doesn't have to be very long-four or five lines 
will do. After the program is saved, rewind the tape and enter these commands in the direct mode: 

OPEN #7,4,O,"C:":FOR X=l TO 128:GET #7,B:? B;" ";:NEXT X:CLOSE #7 

This opens the cassette for a read . Now press the play button on the recorder and the return 
key on the keyboard. You will hear one tone. Press the return key again. After you hear a record of 
data being read in, you will see numbers being printed on the screen. This is the code for the 
program that was saved. The computer is printing it from the cassette buffer, in the same manner 
as it was printed from the disk buffer. 

Now enter this without clearing the screen: 

FOR x=o TO 130:?PEEK(1021+X);" ";:NEXT X 

195 



The first three bytes that are printed on the screen are different from the first three bytes 
that were printed from the buffer. But, if you compare the first byte of the buffer with the fourth 
byte, you will see that both number patterns are identical. Memory location 1021 begins the 
cassette buffer. The buffer is 131 bytes long. 

The first two bytes in the buffer are 85. These two bytes are fixed and are used by the 
computer to measure the speed of the cassette. The third byte is the control byte. If this byte is 
252, the record is full-128 bytes. A 250 in this position indicates a partially full record and a 254 
is an end of file record. 

The first bytes after the speed and control bytes for the first record consist of the table 
entries. This includes the variable table, the value table, etc. The values are adjusted by the 
amount of memory in your machine. This is why a program that requires more storage memory 
than your machine has will produce an error message immediately when you try loading it rather 
than half way through the load . 

The last byte that the computer reads from the cassette is a checksum. When the program 
was saved to the cassette, every byte that was sent to the cassette in the 128 byte record was 
added to the previous bytes. The two markers are also included in the addition. After the two 
markers, the control byte, and the record were sent to the cassette, the sum ofthe bytes were also 
sent. When the records are read in, the bytes are added together again. If the sum of the bytes 
match the checksum byte that is read in , then the record is assumed to be correct and the 
computer will continue with the loading process. If the two bytes do not match, the load will stop 
and an error message will appear on the screen. 

Cassette Frames 
Each record of 128 bytes is considered a frame . The speed at which the data is sent or 

received is called the baud rate. The ATARI uses the baud rate of 600. This means that 600 bits 
are sent per second. (Each byte is 8 bits). The two marker bytes are read in by the computer. The 
computer determines how long it took to read them in and calculates the correct baud rate for the 
tape. It does this with every frame of data that is read in. The input baud rates can be adjusted to 
read faster or slower. This adjustment process allows for variations in motor speeds, stretched 
tape, etc. It does not, however, allow for alignment problems between the recorder that the 
program was originally saved on and the one that it is being read on. 

You may have noticed that when you CSAVE a program to cassette, the records seem to be 
sent faster than when you use the list command. There are two different modes that the computer 
can use when sending records to the cassette. One is called the normal IRG (Inter-Record Gap), 
and the other is the short IRG. The computer uses the short IRG for the CSAVE and CLOAD 
commands. The computer reads in the record, checks the checksum, places it in RAM, and goes 
back for another record. The recorder is running the entire time. The computer must do its work 
quickly so that it won't miss the next record. 

When the computer uses the normal IRG for saving records to the tape, the recorder stops 
after every record is read into the computer. The information can be processed; then next record 
can be read in. The baud rate for saving and reading the data is the same for both modes. It is the 
time between records that varies . In the normal mode there is about 3 seconds of tone between 
records. In the short mode there is about Ij4 of a second of tone time between records. 

The IRG is set up by the computer when the save or load command is entered. If the wrong 
command is entered for the tape, the program will not load and an error message will be displayed 
on the screen. 

196 



BOOTING YOUR OWN CASSETTES 

There are two different ways to make your cassettes load and run automatically. The first 
way is with a BASIC program. A short boot program is saved to the tape. Then, without moving 
the tape, the second program is saved to the cassette. By using the RUN "C:" command, the boot 
program will load, run, and load in the second program. The following program is a short boot 
program that will load and run a second program. 

Listing 14-1. BASIC Boot Load 

10 REM LISTING 14. 1 
20 REM BASIC BOOT LOAD 
30 REM BY L . M.SCHREIBER FOR TAB BOOKS 
40 GRAPHICS O:POKE 710,114:POKE 712,11 
-4 
50 POKE 65,O:POKE 752,1 
60 POSITION 23,2:1 "copsrisht 1983" 
70 POSITION 13 , 10 : ? "Now loadins":POSI 
TION 15,12:1 "proSra ms" : POSITION 14,15 
:.? II tJ ~::! II 

80 PO S ITION 15,16 : ? "sour name" 
90 COLOR 35: PLOT 10,7: DRAWTO 27,7:DRAW 
TO 27,18:DRAWTO 10 , 18 : DRAWTO 10,7 :C OLO 
F,: 32 ~ F'I...UT :?, :::.~o 
100 POKE 752,O : POKE 764,12 
:1.10 F;:UN "C~" 

Line 40 sets the graphics mode to O. The graphics mode must be set before plots and 
drawtos. The background color and border colors are changed . 

Line 50 pokes 65 with a O. This will turn off the noise channel and you won't be able to hear 
the program loading. This line also removes the cursor from the screen. 

Line 60 prints the copyright notice on the screen. 
Lines 70-80 prints your message on the screen. 
Line 90 sets the color to 35. This is the AT ASCII value of the pound sign. Using the plot and 

drawto commands, a border is drawn around your message. 
Line 100 turns the cursor back on and places a carriage return in the location that holds the 

last key entered. 
Line 110 executes the RUN "C :" command. You won't have to press the return key because 

the code is already poked into location 764. 

The program that is saved on the tape after this boot program had to be saved using the 
SAVE "C:" command. If it was CSA VEd, this procedure won't work. If you want the next program 
to load in only, and not run, change line 110 to CLOAD, and be sure that the program that you want 
to load was CSA VEd to the cassette . 

The noise location was set to zero in this program so that music or instructions could be 
heard over the television speaker. Thi s command is not needed if you will not be using the second 
track on the cassette. 

197 



Boot Record 
If you wrote a machine language program that you want to load in from cassette without using 

the editor/assembler, you need to write a boot record as the first record of the cassette program. 
The boot record for the cassette is almost identical to that for the disk . 

There are six bytes for the first record of the boot. The first byte is ignored. The second byte 
contains the number of records that should be initially read. The third and fourth bytes contain the 
address where the boot records should be stored . The fifth and sixth bytes contain the address 
that should take control of the program after the boot is completed. 

The following is the partial coding of a machine language program's boot record. 

o Ignore 
32 number of records 

191 low order memory load address 
11 high order memory load address 

184 low order initialize address 
27 high order initialize address 

169 load the accumulator with next byte 
60 

141 store it in the next address 
2 low order address 

211 high order address 
169 load the accumulator with next byte 

3 
141 store it in the next address 
15 low order address 

210 high order address 

The computer will ignore the leading zero. The next number, 32, is the number of records 
that will be read in. This value will be saved. The computer will begin storing these records at 
location 3007. The fifth and sixth bytes will be stored at memory locations 2 and 3. After all the 
records are read in, the computer will issue ajump to the subroutine at the seventh byte loaded in. 
This byte wi ll load the accumulator with 60 and store thi s value at location 54018. This shuts off 
the cassette recorder. The program continues. When it has returned, the computer will jump 
through the initialization routine . The address for this routine was stored in locations 2 and 3. 
Once the initialization is complete, the computer will jump through the address at location 14-15 
and begin the program. 

Although it is possible to write a BASIC program that will load and automatically run a 
machine language program, it really should be done using the editor/assembler. The procedure to 
load a cassette with a machine language boot on it is: 

198 

Turn off the computer. 
Hold down the start key and turn the computer on . 
When you hear the single tone , press the play button on the recorder and press the return key 

on the computer. 

The records on the tape must be created using the short mode for it to load properly. 



USING THE CASSETTE WITH SOUND 

In the last program, we used a BASIC boot program to bring in the program. Using the RUN 
"C:" command, the computer loaded in the first program and ran it. This program contained the 
instruction to either CLOAD or RUN "C:" the next program on the tape. It also poked the 
memory location that directed the sound of the data so that the program loaded silently. 

The AT ARI recorder is a stereo recorder. Most other computers use a monaurial recorder. 
With a monaurial recorder, the computer places two tracks of data on the tape, one track on one 
half and one on the other. With a stereo recorder, the computer only uses half of the track for data. 
A stereo recorder places four tracks on each tape, two on one half of the tape and two on the other. 
See Fig. 14-1 for the data tracks. 

The other two tracks on the tape are left blank. They can have sound or spoken instructions 
on them if you have the facilitie s to record and duplicate stereo tapes . The procedure is fairly 
simple, but it does require some planning and timing. 

First , load the BASIC boot program into the computer. Save it to a new cassette using the 
SAVE "C:" command. After the BASIC boot program has been saved to the cassette, load in the 
program that you want to save . If you have a di sk drive, you can load the program in from the disk. 
If you have only a cassette recorder, carefull y remove the new cassette from the recorder and 
place the cassette with the program on it in the recorder and load it into the computer. You want to 
handle the cassette with the new program on it carefully because the tape is in position for the 
second program. If you rewind the tape, you will be saving the program over the BASIC boot 
program. If the tape advances too far, there could be a loading problem. 

Once the second program is loaded into the computer, it can be saved to the new tape with 
either the SAVE "C:" command or the CSAVE command. If your boot program is using the RUN 
"C:" command, then use the SAVE "C:" command and the second program will run immediately 
after it is loaded in. If your BASIC boot program uses the CLOAD command, CSAVE your 
program to the cassette. 

After the second program has been saved, rewind the cassette, type RUN "C:", press the 
play button on the recorder and the return key on the computer twice . If you have not poked 

left track - audio 

ri~ht track - data 

ri~ht track - data 

left track - audio 

Fig. 14-1. Track formats on cassette. 

199 



location 65 with a 0, you will hear the BASIC boot program load in. The screen will change colors 
and di splay your message on the screen. The tone will sound and the computer will begin to load 
in the second program. You don't even have to press the return key. The BASIC boot program did 
it all. Now li sten to the program load . If you can hear it, you e ither didn't have a POKE 65,0 in the 
boot program, have a problem with separation in the cassette recorder, or have very good ears. 
The only sounds that should come through the televi sion speaker are the sounds recorded on the 
left track. Since we did not place any sounds there, you shouldn't hear any. 

Adding Sounds or Instructions 
In order to record sounds, music, or instructions on the left track, you need a s tereo cassette 

recorder/duplicator. Place the cassette into the recorder and listen to it. First you will hear a pure 
tone. Then you will hear the date . Each record is separated by the pure tone . The BASIC boot 
program will be about four or five records long. The last record of this program will have a s lightly 
different sound. After listening to the records several times, you will be able to te ll the difference 
between the program records and the ending record . After the last record for the first program, 
you will hear the pure tone aga in for a longer period of time before you hear the first record. This 
is the tone that the computer sends out before it starts to send the program. It seems longer here 
because there is no leader tape between the first and second program. This is where you should 
start the music, sound, or instructions on the left tracle 

Place a new tape into deck B of the recorder/duplicator. Place the tape that you have just 
saved the two programs on into deck A. Press the play and record buttons for cassette B and the 
play button for cassette A. If you are using a microphone, be sure that it is connected to the left 
track. If you will be recording music directly, be sure that your patch cord is plugged in for the left 
channe l. Listen to the cassette as it is being duplicated from deck A to deck B. When you hear the 
tone for the beginning of the second program, you can begin speaking, playing the music, etc. Be 
sure to stop recording on the left track just before the last record. Otherwise, the recorder will 
stop loading in the program and you will not hear the remaining words or music. 

Rewind both cassettes, remove the newly created cassette from deck B and place it in your 
program recorder. Type RUN "C:" and press the return key. This time when the second program 
loads into the machine, you should hear your music, instructions, or whatever you recorded on the 
left track coming through the television speaker. 

Because of the speed variances between recording machines, head alignments, and the 
nature of cassettes, you may have to repeat the duplication process before you create a tape that 
wi ll load. Thi s process cannot be used with a high speed tape duplicator. 

Voice Synchronization 

Another use for the cassette recorder is for voice synchronization. Poking memory location 
54018 with 52, turns on the motor on the recorder. Poking that location with a 60 turns the motor 
off. 

The fo llowing program turns the recorder on and off at the correct time. It is a spelling 
program. To use this program, you wi ll need a recorder with a microphone . First enter thi s 
program into the computer and save it on tape. Either turn the tape over and rewind it so that you 
are at the beginning of the back side, or just remove the tape from the program recorder and place 
it in the other recorder. Now record the words in the data line onto the tape. Space the words at 
five second intervals. Now rewind the cassette to the beginning of the words and run the program. 

200 



Listing 14-2. Listen and Spell 

10 F;:[I"'1 I...I~3TI(!U 14.,2 
;.:,::0 F< L: 1'1 1... I ~:) 'r E: N (I N II ~3 F:' E: 1...1... 
3() F~[M BY I....M . SCHRE:IBE:R FOR TAB BOOKS 
40 fiT ~"1 WORD$(15),ANS$(15) 
50 N=Ntl: 7 "}CI...E:AR}":IF N>10 THE:N 170: 
RE:M CLE:AR 'rHE: SCRE:E:N 
60 POSITION 3,5: 7 "LI STE:N TO THE: WORD" 

70 POKE: 54018,52:RE:M TURN ON THE: RE:COR 
OLF< 
so FOR T~lro 2000:NE:XT T:REM LET IT R 
UN 
90 POKE 54018,60:REM TURN IT OFF 
100 W~O:READ WORO$ 
110 7 :7 "WHAT WAS THE WORO":RE:M ASK F 
o F< l~1 (J F,: 0 
120 I j'.IF:'U T J:)N~3~1; 

130 IF WORD$=ANS$ THE:N POSITION 3,20:? 
"VE:RY GOOD":FOR T~l TO 500:NE:XT T:GOT 

o ~:.:.iO 

140 W~Wtl:IF W<>3 THEN 110 
150 POSITION 3,20: 7 "THE: WORD WAS 
Y l,JUF<D~I; 

160 FOR T~l TO 500:NEXT T:GOTO 50 
170 POSI1ION 3,10: 7 "YOU HAVE: FINISHE:D 

Y U l.J F( ~:; F' ELI... INC; F' U F,: TOO PI \' ! ! I " 

tHO END 
200 DA 'rA BUUKS,FAVORITE,FOOTBA I...I...,HOBBI 
ES,CARNIVAI...,MO UNTAIN ,BIONIC,FAII...URE:,A T 
T I 'rUDE, ~:;ECI.JF:E 

Line 40 sets aside the string space for the word (WORD$) and the answer (ANS$). 
Line 50 adds one to the value in N. This counts the words as they are being given. If the value 

is greater than 10, then all the words have been given and the program will go to the end at line 170 
after the screen is cleared. 

Line 60 instructs the user to listen to the word. 
Line 70 turns on the cassette recorder by poking location 54018 with a 52. The play button on 

the recorder must be pressed down for this program to work. If that button is not down, you will 
hear a click from the television speaker, but no word. 

Line 80 is a timing loop. Thi s is se t for about five seconds. You may have to adjust this 
number for your own program recorder. 

Line 90 turns the recorder back off. 
Line 100 sets the variable W to zero. This variable will count the number of times the user 

tries to spell the word. It also reads the word from the data line. This is the word that was just 
spoken on the tape. 

201 



Line no asks the user for the word. 
Line 120 waits for an entry to be made. 
Line 130 checks the answer entered against the word. If it is correct, a message will be 

printed on the screen; the program will pause and then go on to line 50 for another word. 
Line 140 adds one to the variable Wand checks to see is this was the third try. If it wasn' t , the 

program goes to line no and asks for the word to be ente red again. 
Line 150 prints the correct word if the user tried to spe ll it three times and couldn't. 
Line 160 is a timing loop to give the user time to study the word. Then the program continues 

at line 50. 
Line 170 tells the use r that all the words have been spelled. 
Line 200 contains the words used in thi s program. 

This program can be a very effective way to learn, but it does have its drawbacks . In thi s 
case, the words must be asked in the same order every time. After a while, the user will know the 
order of the words . Since the tape cannot be rewound or fastforwarded from the computer, the 
information will always be presented in the same order. If the word was entered wrong, or if you 
want to hear it again, the tape cannot be rewound to that word. 

On the other hand, if you are presenting a very structured lesson or a story with animation, 
there would be no need to rewind or repeat parts of the tape. 

202 



Index 





Abacus, 1 
Animation, 45 

A 

Animation in the Text Mode program, 
55 

Animation programs, 48, 53 
Animation with strings, 91 
ANTIC chip, 9 
ANTIC instruction set, 12 
ANTIC 3 mode, 17 
ANTIC 3 program, 17 
Assembly language listing to move 

character set from ROM to RAM, 
39 

AUTORUN/ SYS, 189 
AUTORUN/ SYS, machine language 

routine for, 192 
AUTORUN/ SYS program, 190 

B 
BASIC, 79 
BASIC Boot Load program, 197 
BASIC Table programs, 82-86 
BASIC token commands, 79, 80 
Binary number system, 1 
Blank, horizontal , 11 , 107 
Blank, vertical , 11-107 
Boot, cassette, 197 
Boot, disk, 189 
Boot record, cassette, 198 
Boot sector, 191 
Buffer, disk, 179 

C 
Calendar program, 181 
Carousel program, 60, 64 
Cassette boot, 197 
Cassette handler, 195 
Characters, hardware values of, 23 
Central processing unit, 9 
Character set, 16 

Character set, editing, 26 
Character set construction, 25 
Character Set Editor program, 28 
Character set moved from ROM to 

RAM, 39 
Chip, ANTIC, 9 
Chip, CTIA, 9, 16 
Chip, GTIA, 10, 16 
Chip, POKEY, 9 
Chips, large-scale integrated, 9 
Code, hardware, 168 
Code, keyboard , 166 
Color Artifacting program, 23 
Color Service Routine, 109 
Color text modes, 19 
Command, DRAWTO, 15 
Command, input, 161 
Command, locate, 11 , 171 
Command, open, 177 
Commands, BASIC token, 79, 80 
Commands, XIO, 181 
Control codes, ATASCII , 172 
Conversions program, numbers, 3 
Counting systems, 1 
Course Horizontal Scroll program, 123 
Course Vertical Scroll program, 121 
CTIA chip , 10, 16 

D 
Data for Exclamation Point program, 

26 
Data format, cassette, 195 
Decay, 153 
Directory, file , 187 
Directory Listing program, 178 
Disk boot, 189 
Disk buffer, 179 
Disk file manager, 177 
Disk handler, 185 
Displaying Sectors program, 185 
Display list, 10 

Index 
Display list interrupts, 107 
Display modes, 20 
Distortion, 153 
Double Character Sets program, 112 
DRAWTO command, 15 

E 
Editing the character set, 26 
Exclamation point, 26 

F 
Farmer, and the Duck, Fox and Grain 

Puzzle program, 91 
File directory, 187 
File management system, 187 
File manager, disk, 177 
File structures, 81 
Fine Horizontal Scroll programs, 129, 

131 
Fine Vertical Scroll : Down program, 

127 
Fine Vertical Scroll program, 126 
Frames, cassette, 196 

G 
Gap, inter-record, 196 
Graphic modes, 16 
Graphics modes program, mixed, 13 
GTIA chip, 10, 16 

H 
Handler, disk, 185 
Hardware code, 168 
Hardware registers, 108 
Hexadecimal number system , 2 
Horizontal blank, 11 , 107 
Horizontal Blank, Machine Language 

Subroutine, 143 

Input command , 161 

205 



Input/output, central, 177 
Input/output control buffer, 177 
Instruction set, ANTIC, 12 
Interrupt routine to flash inverse 

characters, 116 
Interrupts, display list, 107 
Invisible graphic modes, 36 

K 
Keyboard code, 166 
Keyboard Conversion program, 167 
Keyboard interpretation, 161 

L 
Large-scale integrated chips, 9 
Letter Attack program, 169 
List, display, 10 
Listen and Spell program, 201 
Locate, Poke, and Peek program, 171 
Locate command, 11, 171 
Loudness, 153 

M 
Machine language listing, moving 

players up and down, 77 
Machine language subroutine, Hori

zontal Blank, 143 
Machine language subroutine for ver-

tical blank, 144 
Machine language subroutines, 99 
Memory addresses, screen, 9, 11 
Memory locations, screen, 174 
Mirror Images Routine, 113 
Missiles, 14, 61 
Mixed Modes program, 13 
Modes, display, 20 
Modes, graphic, 16 
Modes, invisible graphic, 36 
Modes, non text, 22 
Modes, text, 16 
Move Player/M issile Up/ Down pro

gram, 100 
Moving Players program, 117 
Moving players up and down, machine 

language listing, 77 
Multicolor Characters program, 37 
Music: Machine Language Subrou

tine, 157 

N 
Nontext modes, 22 
Number system, binary, 1 
Number system, hexadecimal, 2 

o 
Open command, 177 
Output buffer, 85 
Overscan, 10 

p 
Page flipping, 133 
Pitch, 153 

206 

Pixels, 12 
Player/ missile graphics, 14, 61 
Player/ missile priority order, 69 
Player/ Missile Strings program , 102 
Players, 14, 61 
Playfield , 14, 128 
Pointer, 87 
POKEY chip, 9 
Precise Timing Programs, 114, 115 
Print form Disk program, 180 
Printing Control Characters program, 

174 
Priority order, player/ missile, 69 
Program, Animation in the Text Mode, 

55 
Program, ANTIC 3, 17 
Program, AUTORUN/ SYS, 190 
Program, BASIC Boot Load , 197 
Program, BASIC Tables, 82-86 
Program, Calendar, 181 
Program, Carousel, 60, 64 
Program, Character Set Editor, 28 
Program, Color Artifacting, 23 
Program, Color Service Routine, 109 
Program, Conversions, 3 
Program, Course Horizontal Scroll , 

123 
Program, Course Vertical Scroll , 121 
Program, Data for Exclamation pOint, 

26 
Program, Directory Listing, 178 
Program, displaying Sectors, 185 
Program, Double Character Sets, 112 
Program, Fine Horizontal Scroll, 129, 

131 
Program, Fine Vertical Scroll, 126 
Program, Fine Vertical Scroll:Down, 

127 
Program, Keyboard Conversion , 167 
Program, Letter Attack, 169 
Program, Listen and Spell , 201 
Program, Locate, Poke, and Peek, 

171 
Program, Mirror Images Routine, 113 
Program, Mixed Modes, 13 
Program, Move Character Set, 100 
Program, Move Player/ Missile Up/ 

Down, 100 
Program, Moving Players, 11 7 
Program, Multicolor Characters, 37 
Program, Music: Machine Language 

Subroutine, 157 
Program, Precise Timing, 114, 115 
Program, Print from Disk, 180 
Program, Printing Control Characters, 

174 
Program, Read the Keyboard, 161 
Program, Simple Page Flipping: Two 

Different Modes, 135 
Program, Simultaneous Page Flip

ping: Machine Language Sub
routine, 141 

Program, Slide Editor, 145 
Program, Slide Show, 148 
Program, Sounds, 154 
Program, Sounds with Attack and 

Decay, 155 
Program, The Birds, 70 
Program, The Farmer and the Duck, 

Fox, and Grain Puzzle, 91 
Program, Tiles, 163 
Program, Variations on Tones, 157 
Programs, Simultaneous Page Flip-

ping, 137-139 

R 
Raster scan, 11, 107 
Read the Keyboard Program, 161 
Register, shadow, 108 
Registers, hardware, 108 
Registers, sound, 156 
Relocating strings, 101 
ROM,16 
ROM to RAM, character set moved 

from, 39 
Routine, deferred vertical blank, 144 
Routine, immediate vertical blank, 144 
Runtime stack, 88 

S 
Screen displays, memory mapped, 9 
Screen flipping, 133 
Screen flipping , machine language 

subroutine for, 140 
Screen Flipping program, 133 
Screen memory locations, 174 
Scrolling, course, 121, 123 
Scrolling, fine, 125, 129 
Scrolling, horizontal , 121 , 123, 129 
Scrolling, vertical , 121 , 125 
Service interrupt to flash inverse 

characters, 116 
Shadow register, 108 
Simple Animation program, 48, 53 
Simple Page Flipping: Two Different 

Modes program, 135 
Simultaneous Page Flipping: Machine 

Language Subroutine program, 
141 

Simultaneous Page Flipping pro-
grams, 137-139 

Slide Editor program, 145 
Slides, creating , 144 
Slide Show program, 148 
Sound, 153 
Sound, direct access too, 156 
Sound characteristics, attack, 153 
Sound characteristics, decay, 153 
Sound characteristics, release, 153 
Sound characteristics, sustain , 153 
Sounds on tape, 200 
Sounds program, 154 
Sounds with Attack and Decay pro

gram, 155 



Speeding up a program, 88 
Statement table, 86 
String/ array area, 84 
Strings, animation using, 91 
Strings, relocating, 101 
Subroutines, 89 
Subroutines, machine language, 99 

T 
Text modes, 16 

The Birds program, 70 
Tiles program, 163 
Token commands, 79, 80 
Tone generator registers, 157 
Track format , disk, 187 

V 
Variable name table , 79 
Variables, 81 
Variations on Tones program, 157 

Vertical blank, 11 , 107 
Vertical blank, machine language sub-

routine for, 144 
Voice, 153 
Voice synchronization , 200 
Volume, 153 
Volume table of contents, disk, 187 

X 
XIO commands, 181 

207 





Advanced Programming Techniques for 
Your ATARI ® , including Graphics and Voice Programs 

If you are intrigued with the possibilities of the programs included in Advanced 
Programming Techniques for Your ATARI ®, including Graphics and Voice Pro
grams (TAB Book No. 1545), you should definitely consider having the ready-to-run 
disk containing the software applications. This software is guaranteed free of man
ufacturer's defects. (If you have any problems, return the disk within 30 days and 
we'll send you a new one.) Not only will you save the time and effort of typing the 
programs, the disk eliminates the possibility of errors that can prevent the pro
grams from functioning. Interested? 

Available on disk for the ATARI 400 or 800, 32K at $29.95 for each disk plus $1.00 
each shipping and handling . 

1--------------------------------, 
II'm interested. Send me: 

--- disk for Advanced Programming Techniques for Your ATARI ® , includ
ing Graphics and Voice Programs (6313S). 

---Check/ Money Order enclosed for $ ($29.95 plus $1 .00 each 
for shipping and handling) 

- -- VISA MasterCard 

Acct. No. ---- - - - - - --_ _ _ _____ Expires ___ _ 

Name _______ _ ___________ _______ _ 

Address ___ _ _ _ _ _ _ ____ _________ _ _ _ ___ 

City - ---- - - ---------State _____ Zip-_ 

Signature __________________________________________________ _ 

Mail To: TAB BOOKS Inc. 
Blue Ridge Summit, PA 17214 

(pa. add 6% sales tax . Orders outside U.S. must be prepaid with international money orders in U.S. dollars.) 

L TAB 1545 .1 --------------------------------








	Cover
	Contents
	Program Listings
	1: Working with Numbers
	2: Working with the Display List
	3: Graphics
	4: Principles of Animation
	5: Looking at BASIC
	6: Tricks with Strings
	7: Display List Interrupts 
	8: Scrolling
	9: Page Flipping
	10: Sound Generators
	11: Interpreting the Keyboard
	12: Understanding the Screen Editor
	13: Disk Use
	14: Cassette Use
	Index

