

USER'S HANDBOOK
TO THE

ATARI 400/800® COMPUTERS

by:
Jeffrey R. Weber

Stephen J. Szczecinski

Weber Systems, Inc.
Cleveland , Ohio

Published by :
Weber Systems, Inc.
8437 Mayfield Road
Cleveland, Ohio 44026

For information on translations and book distributors outside of
the United States, please contact WSI at the above address .

User's Handbook To The Atari 400j800® Computers
First Edition

Copyright© 1983 by Weber Systems, Inc.. All rights reserved .
Printed in the United States of America. No part of this
publication may be reproduced , stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical,
photocopy, recording, or otherwise without the prior written
permission of the publisher.

Library of Congress Catalog Card Number 82-051088
ISBN 0-938862-15-4

Typesetting: Chell ey Hoffman
Production & Design: Beth Cammarn

CONTENTS

1. INTRODUCTION TO THE ATARI COMPUTERS
AND PERIPHERALS

Atari 400 and 800 7. Atari 800 Specifications 9.
Atari 400 Specifications 10. Atari Keyboard 11.
Atari Video Display 11. Plug-In Cartridge
Hatches 13. Computer Memory 13. Atari 410
Program Recorder 14. Atari 810 Disk Drive 15.
Atari Printers 16. Atari 850 Interface Module 16.
Game Controls 17. Software 17. Operating
Systems 17. Languages 18. Applications
Programs 18.

2. INSTALLATION AND OPERATION OF ATARI
COMPUTERS

Introduction 19. Installing the Atari 400 21.
Installing the Atari 410 Recorder 21 . Installing
the Atari 810 Disk Drive 21 . Installing the Atari
820 Printer 23. Installing the Atari 822 Printer 24.
Installing the Atari 825 Printer 24. Installing a
ROM Cartridge 25. Power On 26. Keyboard 30.
System Reset Key 31 . Select Key 31 . Option Key
31. Start Key 31. Return Key 32. Break Key 32.
Shift Key 32. Ctr! Key 33. Caps/Lowr Key 33. .II\..
Key 34. Arrow Keys 34. Back S Key 35. Clear
Key 35. Insert & Delete Keys 35. Tab Key 35. ESC
Key 36. Auto Repeat 36. Display Line Length 36.

7.

19.

3. INTRODUCTION TO AT ARI BASIC

Immediate & Program Modes 37. Line Numbers
38. NEW 40. END 40. Program Execution 40.
Program Lines & Display Lines 41. Multiple
Statement Program Lines 41. Abbreviating
Keywords 42. Listing a Program 42. Error
Messages 43. BASIC Data Types 44. Floating
Point Numbers 44. Scientific Notation 45. Tables
& Arrays 49. Expressions & Operators 51 .
Compound Expressions & Order of Evaluation
52. Arithmetic Operations 53 . Relational
Operators 55 . Logical Operators 56. Atari
BASIC Statements 59. Remark Statements 59.
Assignment Statements 60. DATA, READ 60.
Outputting DATA 62. INPUT Statements
64. Loops 66. Nested Loops 67. Conditional
Statements 68. Branching Statements 68. ON,
GOTO 70. Subroutines & GOSUB Statements
70. ON, GOSUB 72. Break Key & CONT 72.
System Reset Key 72. STOP 73. END 73. Atari
BASIC Functions 74.

4. ADVANCED AT ARI BASIC

Atari ASCII 75. String Handling 76. Substrings
76. String Concatenation 77. CHR$ & ASC
Functions 78. Escape Sequences in Strings
79. Graphics Characters in Strings 80. Variable
Storage 82. PEEK & POKE 83. Screen Output
Programming 84. Using the Carriage Return in
Cursor Positioning 84. TAB 85 . Moving the
Cursor With Escape Sequences 86 . Home
Cursor 87. POSITION 87. Changing the Display
Screen Margins 88. Screen Input Programming
88. Prompt Messages 88. Input Response
Checks 89.

5. ATARI BASIC REFERENCE GUIDE

ABS 92. ADR 92. AN D 92 . ASC 94. A TN
94. BYE 95. CLOAD 95. CHR$ 96. CLOG 96.
CLOSE 97. CLR 97. COLOR 98. COM 102.

37.

75.

91.

CO NT 103. COS 104. CSAVE 104. DATA 105.
DEG 106. DIM 107. DOS 110. DRAWTO 112.
END 114. ENTER 114. EXP 115. FOR 116. FRE
118 . GET 119 . GOSUB 123. GOTO 125.
GRAPHICS 126. IF 126. INPUT 129. INT 132.
LEN 133. LET 133. LIST 134. LOAD 136. LOCATE
137. LOG 139. LPRINT 139. NEW 140. NEXT
141 . NOT 142. NOTE 143. ON 144. OPEN 145.
OR 153. PADDLE 154. PEEK 155. PLOT 156.
POINT 157. POKE 158. POP 159. POSITION
160. PRINT 161 . PTRIG 166. PUT 166. RAD 169.
READ 170. REM 171 . RESTORE 171 . RETURN
172. RND 172. RUN 173. SAVE 174. SETCOLOR
175. SGN 175. SIN 175. SOUND 176. SQR 177.
STATUS 177. STICK 178. STRIG 179. STOP 180.
STR$ 181 . TRAP 181 . USR 182. VAL 183. XIO
184.

6. ATARI 410 PROGRAM RECORDER

Introduction 189. Data Files 189. Program Files
190. Saving Programs 190. Program Recording
Formats 191. Loading a Program 192. RUN C :
195. Reading and Writing Data 197. Opening
Data Files198. Closing Data Files200. Writing to
a Data File 200. Reading From Data Files 202.

7. AT ARI 810 DISK DRIVE

Types of Disks 205. Hard Disks 205. Winchester
Disk Drives 206. Floppy Diskettes 207. Tracks &
Sectors 208. Hard & Soft Sectors 209. Single &
Doubl e Sided Diskettes 211. Diskette Density
211 . Write Prot e ction 212 . Disk Files
213. Filename Match Characters 213. Atari DOS
215. Disk Buffer 21 7. Booting DOS 217. DOS
Menu 218. Disk Directory 220. Run Cartridge
222. Copy File 223. Delete File 227. Rename
File 228. Lock File 230. Unlock File 231. Write
DOS File 231 . Format Diskette 232. Duplicate
Disk 233. Binary Save 234. Binary Load 236. Run
At Address 237. Create MEM.SAV 238.
Duplicate File 239. Saving BASIC Programs 240.

189.

205.

Loading a Program 242. Chaining Prog rams
243. Opening a DiskFil e 244. Clos ing a Data File
246. Writing to a Data File 247. Reading Fro m a
Data File 248. NOTE and POINT 250.

8. Al ARI PRINTERS

LIST P: 253. LPRINT 254. PRINT# & PUT 255.
Print e r Buffe r 255. Print e r C haracter Sets
255. Atari 825 Contro l Characters 256. Line Feed
258. Reverse Lin e Feed 258. Hald-Line Feed &
Reverse Half-Line Feed 259. Car riage Return
259. Underlining 259. Standard, Cond ensed , &
Proportionall y Spa ce d Charact e r Sets 260.
Backspace & 1-6 Dot Spaces 260.

9. AlARI GRAPHICS & SOUND

GRAPHICS 263. GRAPHICS 0 263. Color
Registers & SETCOLOR 265. GRAPHICS 1 & 2
267. COLOR 272. PLOT 277. ORA WTO 278.
GRAPHICS 3 thru 8 278. POSITION 281.
LOCATE 282. PUT 283. XIO 283. Atari Sound
285.

APPENDIX A. Atari Error Messages

APPENDIX B. Atari BASIC Reserved Words

APPENDIX C. Atari ASCII Code Set

APPENDIX D. Atari 400/800 Memory Map

APPENDIX E. Atari PEEK & POKE Locations

Index

253.

263.

287.

294.

295.

301.

306.

315.

CHAPTER 1.
INTRODUCATION TO THE ATARI
COMPUTER AND PERIPHERALS

Introduction

In this book, we will describe the Atari home computers as well
as the peripherals that can be attached to them such as disk
drives, cassette recorders, and printers.

In the first chapter of this book, we will discuss the features of the
Atari 400 and 800 computers, the 410 Program Recorder, the 810
disk drive, game controls, and the various Atari printers. In the
second chapter, we will discuss the installation and operation of
the Atari 400 or 800 and its various peripherals.

In the third and fourth chapters, we will discuss programming
the Atari in Atari's version of the BASIC programming language.
The fifth chapter contains a reference guide to the various Atari
BASIC commands, statements, and functions.

In Chapters 6, 7, and 8, we will discuss the Atari Cassette
Recorder, Atari Disk Drive, and Atari printers in greater detail. In
Chapter 9, we will discuss the usage of graphics and sound on the
Atari 400 and 800.

Atari 400 and 800

There are two Atari computer models; the Atari 400 and the Atari
800 (pictured in Illustration 1-1).

The Atari 400 and 800 are very similar. Both models function the
same and follow the same set of instructions. The difference
between the Atari 400 and 800 lies in the fact that the 800 has
features that the 400 does not.

For instance, the Atari 800 's memory can be expanded, while the

8 User's Handbook to the Atari 400/ 800 Computers

memory of the Atari 400 is more or less fixed. Also, with the Atari
800, a video monitor can be used for video output as well as a
regular television set. With the Atari 400, only a regular television
set can be used for video output. A video monitor offers a more
detailed picture than a regular television set. Also, the Atari 800
has a typewriter style keyboard while the Atari 400 has a flat panel
with the keys outlined on it. Finally, the Atari 800 allows two
accessory cartridges to be plugged in, while the Atari 400 allows
only one.

However, the Atari 400 does have one major advantage--it costs
less than the Atari 800.

From hereon, we will refer to both the Atari 400 and 800
collectively as the Atari, unless a distincion between the two is
necessary. Whenever we refer to one model, the reader can
assume that the concept applies to the other model as well,
unless we specify otherwise.

Illustration 1-1. Atari 800 Computer

Introduction to the Atari Computers and Peripherals 9

Atari 800 Specifications

The Atari 800 consists of a group of components which include
the following :

• Computer Console
• TV Switch Box
• AC Power Adapter
• Atari 800 Operator's Manual
• Atari BASIC Manual
• Atari BASIC Language
• Atari Educational System

The Atari 800 Console contains the central processing unit or
CPU, the operating system in ROM, 8K or 16K of RAM, and two
expansion slots for additional RAM. The Atari 800 console also
contains the keyboard, 2 cartridge slots, controller jacks, and a
serial I/ O port.

The TV switch box allows a regularTV set to be used as the Atari's
video display. The AC power adapter converts regular AC
current to a low voltage that can be used by your Atari. The AC
power adapter can be plugged into any normal household
outlet.

The Atari Educational System and Atari BASIC language are
contained in two cartridges. Operator's in struct ions are
included with each of these .

The Atari 410 program recorder allows the use of programs
which have been stored on cassette tape. The Atari 410 also
allows the user to save his programs from RAM onto cassette
tape for later use.

The Atari 800's software is known as the operating system and is
contained on a 10K ROM cartridge. The operating system
controls the entire flow of information within the computer.

As shown in Illustration 1-2, the side panel of the Atari 800
contains several switches and jacks. The monitor jack can be
used to connect a video display monitor or a video tape

10 User's Handbook to the Atari 400/ 800 Computers

Illustration 1-2. Atari 800 Side Panel

recorder to your Atari 800.

The Atari 410 Program Recorder, Atari 810 disk drive, and Atari
820 printer are all installed by plugging into the peripheral jack.
More than one device can be connected through the peripheral
jack via a daisy chain configuration, where all devices to be used
are connected together. This is explained in more detail in
Chapter 2.

The 2-3 channel switch should be set to the same channel as the
television set being used for video output. Use channel 2 or 3,
whichever has the poorer reception.

The Atari 800 contains four controller jacks located in the front of
the console beneath the keyboard. These can be used for
connecting game controllers or a light pen.

Atari 400 Specifications

Your Atari 400 includes the Atari 400 console, as well as a TV
switch box, operator's manual, and an AC Power Adapter.

Introduction to the Atari Computers and Peripherals 11

The Atari 400 console contains the CPU, operating system in
ROM , 8K or 16K of RAM, one cartridge slot, controller jacks, and
one I/ O connector.

The TV switch box allows a regular TV set to be used for video
output for the Atari 400. The AC power adapter converts
household current to a low voltage that can be used by the Atari.

Atari Keyboard

The Atari keyboard allows the user to interact with the
computer. The inst ru ct ions entered at the keyboard are
transfered to the computer. The keys on both the Atari 400 and
800 are arranged in the same order as on a regular typewriter.
However, the Atari keyboard contains several special keys not
found on a standard typewriter keyboard. These keys will be
discussed in Chapter 2.

As mentioned in the previous section, the Atari 800's keyboard
features a typewriter style keyboard with raised keys. The Atari
400 keys are identified on a flat panel on the front of the unit.

Atari Video Display

Generally, a home color television set is used as the video display
screen for the Atari. A black and white television set can also be
used, in which case, the different colors will appear as various
shades of gray.

The Atari 800 allows the use of a video monitor as well as a
television set as its video display unit. A video monitor (either
color or black & white) tends to ca use images to be displayed in
greater detail than a television set.

A television set is connected to the Atari computer with a switch
box that is itse lf connected to the television's antenna terminal.
This is shown in Illustration 1-3. The switch box has two
positions. One position allows the set to be used with the Atari,
while the other allows the set to function as a televison.

If a video display monitor is being connected to the Atari 800, a

12 User's Handbook to the Atari 400/800 Computers

switch box is not necessary. This connection can be
accomplished by attaching the 5-pin plug into the socket on the
side of the Atari 800. This is shown in Illustration 1-4.

Regardless of whether a television set or a monitor is being
connected to the Atari, several different modes of display are
available. One of these is the monochromatic text mode. This
mode is used to display one color plus white (ex. black and
white, blue and white, etc.). In the monochromatic text mode,
the screen is divided into 24 lines of 40 characters each. Two
other modes are available for displaying text in up to four
different colors. Other modes are available for displaying
graphics. These will be discussed in detail in Chapter 9.

Illustration 1-3. Atari/Television Set Hook-Up

Introduction to the Atari Computers and Peripherals 13

Illustration 1-4. Atari 800/Video Display Monitor Hook-Up

Plug-In Cartridge Hatches

Both the Atari 400 and 800 have a hatch on the top of the unit
which can be opened for th e purpose of inserting a plug-in
cartridge (see Illustration 1-1). These cartridges contain ROM
memory (discussed later) on which programs are stored. These
programs may be games, applications programs, or even a BASIC
language interprete r.

The Atari 400 allows the insertion of a single cart ridge while the
800 allows two cart ridges to be inserted.

Computer Memory

Computer memory is measured in units known as bytes. A byte
is used to store a single character in the computer's memory.
Bytes are represented in units of measurement known as

14 User's Handbook to the Atari 400/ 800 Computers

kilobytes or K. 1 K is the equivalent of 1024 bytes. Your Atari may
contain from 18 to 60K of memory (or 18,432 to 61,440 bytes) .

Computer memory can be one of two different types; ROM or
RAM . ROM stands for read-only memory. ROM will hold the
data stored in it permanently. If the power to the Atari is shut off,
the information stored in ROM will remain there. ROM conta ins
the programs that are used to operate the Atari , and allow it to
interact with the user.

RAM stands for random-access memory*. The data stored in
RAM can be changed. Applications programs are often
transferred from diskettes or cassette to RAM . Any data stored in
RAM is lost when the Atari's power is turned off.

The Atari 400 includes 16K of RAM. Generally, it is not advisable
to attempt to expand the RAM capacity of an Atari 400.

The Atari 800 allows RAM to be expanded from 16K to as much as
48K. RAM is expanded on the Atari 800 by inserting additional
RAM plug-in modules underneath the unit 's top cover.
Expanding the Atari 's RAM is exp lained in more detail in
Chapter 2.

Atari 410 Program Recorder

Cassette tape can be used to store programs in RAM and then
transfer these programs back into RAM at some later date. The
Atari 410 Program Recorder (as shown in Illustration 1-5) is
designed for use with the Atari computer . Approximately SDK or
51 ,200 bytes of data can be stored on a 30 minute cassette.

*Random access memory is a somewhat misleading term to
describe, RAM, as most memory (including ROM), is randomly
accessed.

Introduction to the Atari Computers and Peripherals 15

Illustration 1-5. Atari 410 Program Recorder

Atari 810 Disk Drive

A disk drive is a much more efficient device for storing data than
a cassette recorder. A disk drive allows greater storage capacity,
quicker access to data, as well as fewer errors in data transfers.

The Atari 810 disk drive (as shown in Illustration 1-6) is designed
to be used with Atari computers. The Atari 810 uses single-sided
single density diskettes.

Diskettes which are designed to be written on only one side are
known as single sided (55) diskettes. Diskettes designed to be
written on both sides are known as double sided (OS) diskettes.

Density refers to a diskette's recording format, which in turn
affects its capacity. Single-sided single density diskettes (as used
with the Atari 810) have a capacity of approximately 94K.

16 User's Handbook to the Atari 400/ 800 Computers

Illustration 1-6. Atari 810 Disk Drive

The Atari 810 disk drive can only be used with the Atari 800
computer with a minimum of 16K of RAM.

Atari Printers

Atari produces three different printers; the 820 Printer, 822
Thermal Printer, and 825 Wide Carriage Printer.

The 820 and 822 Printers are connected to the Atari computer via
the I/ O Data Channel. The 825 Printer is connected to the Atari
computer with the 850 Interface Module. The 850 Interface
Module can be used to connect printers other than the 825 to the
Atari.

Atari 850 Interface Module

The Atari 850 Interface Module allows communications between

Introduction to the Ata ri Computers and Peripherals 17

the Atari computer and RS-232-C peripherals. We already
discussed the fact that the Atari 825 printer should be connected
via the Atari 850 Interface Module.

Another Atari peripheral that must be connected via the Atari
850 Interface Module is the Atari 830 Modem. The Atari 830
Modem allows you r Atari to communicate with another terminal
also equipped with a modem over telephone lines.

The Atari 850 Interface Module is connected to the Atari
console. I n turn, the peripherals are connected to the 850
Interface Module. The 850 Interface Module has 4 serial ports
and 1 parallel port, known as the printer port. The 850 Interface
Module has its own memory and processor and is programmed
from the Atari computer.

Game Controls

Three types of game control devices can be used with the Atari ;
joysticks, paddl es, and keyboard controllers.

Software

Software can be described as the in struct ions or programs that
cause the computer to operate. Several different classifications
of software exist for the performance of different functions.
These ca n be classified as operat ing systems, languages, and
applications programs.

Operating Systems

An operating system can be defined as a group of programs
which manage the overa ll operatio n of the computer. The
operating system performs system operations such as the
loading and unloading of data from cassette or diskette into
RAM and the display of operator keyboard entries on the video
screen.

18 User's Handbook to the Atari 400 / 800 Computers

The Atari's operating system is stored permanently in ROM. The
operating system is contained in a plug-in module in the .A.tari
800.

Languages

Programs are generally written in a high-level language that is
different from the instructions the computer uses. A program
known as an interpreter must be used to translate the high-level
language into a form that the computer can comprehend.

BASIC is the high-level language generally used with the Atari.
The Atari BASIC interpreter is contained on a ROM cartridge
which can be plugged in under the hatch of either the Atari 400
or 800.

Applications Programs

Appl ications programs are those written to accompl ish a specific
task. Examples of applications programs are games, word
processing programs, financial forecasting programs, and
accounting programs. Generally, applications programs are
stored on cassette or diskette and are transferred into RAM,
where the program is available to the computer.

Applications programs for the Atari can also be stored in a
permanent form on a ROM cartridge. This ROM cartridge can
be plugged in underneath the hatch on the Atari. Examples of
ROM plug-in cartridges are shown in Illustration 2-4.

CHAPTER 2.
INSTALLATION AND OPERATION OF

ATARI COMPUTERS

Introduction

If you are a first-time computer user, your Atari may seem a little
confusing at first. However, using a computer is really very
simple. In this chapter, we hope to show you exactly how simple
your Atari is by showing you step-by-step how to install and
operate it.

Installing the Atari 800

First of all , when you unpack your Atari 800, save the carton and
packing material. These should be used if the Atari is to be
moved or stored.

The Atari 800 is easy to install. First of al l, install eit her a video
monitor via the monitor jack on the side of the console or a TV
set using the TV sw itch box.

The TV switch box has been designed so that it can be
permanently installed on your TV set, as it allows regular TV
reception as well as video output for the Atari. The TV switch box
has an adhesive backing that can be used to attach it to the back
of your TV set.

The TV switch box contains a switch marked Computer/ TV.
When this switch is at the Computer position, the TV set receives
its signals from the Atari 800. When the switch is set to the TV
position , the TV set receives its signals from your television
antenna.

To install the TV switch box, first of all, disconnect your television
antenna from the VHF terminals at the back of your TV set. The
antenna should be either of the fo llowing :

20 User's Handbook to the Atari 400/ 800 Computers

• 75 OHM with screw-on connector
• 300 OHM with two flat leads

Attach either the 75 OHM or 300 OHM connector to the
matching connector on the side of the TV switch box.

Next, attach the 300 OHM connector (with the two flat leads)
leading from the bottom of the TV switch box and labeled TV, to
the VHF terminals on your TV set.

If your television antenna is a 300 OHM model, the TV switch box
installation is finished. If your antenna is a 75 OHM model, you
must convert your television to accept a 300 OHM signal from
the TV switch box.

Refer to Illustration 2-1 . If the antenna box contains a switch as
shown in the top drawing, just push the switch to the 300 OHM
position . If the antenna box resembles that shown in the middle
drawing, loosen the screws holding the U-shaped slider, and
move it to the 300 OHM position. If the antenna box resembles
the last drawing, screw the round wire into the connector as
pictured.

Illustration 2-1. Television Set Conversion to 300 OHM

If your TV set resembles this
drawing, push the switch to the
300 SL position.

If your TV set resembles this
drawing, loosen the screws and
move the slider to the 300 SL
position.

If your TV set resembles this
drawing, screw the rounded
wire into the connector.

Installation and Operation of Atari Computers 21

Once the TV switch box has been connected , plug the AC power
adapter into anyordinary 115V household outlet. Plug the end of
the AC power adapter into the power jack on the side of the
Atari console. Then, follow the power-on procedures as
described later in this chapter.

Installing The Atari 400

The installation procedures for the Atari 400 are virtually
identical to those for the Atari 800. Follow the steps just outlined
for Atari 800 installation if you are installing an Atari 400.

Installing The Atari 410 Program Recorder

The Atari 410 Program Recorder is packaged with a power card
and a peripheral data card, which is permanently attached to the
recorder.

Use caution when using the Atari 410. Do not use the Atari 410
outdoors. Also, do not allow liquids to be spilled on the Atari 410,
or allow it to be dropped in water.

The first step in installing the Atari 410 is to plug the data card
(which is permanently attached to the 410) to the peripheral jack
on the side of the Atari 's console. Next, plug the recorder's
power card into the AC jack on the side of the recorder, and plug
it into a household outlet.

Installing The Atari 810 Disk Drive

The Atari 810 will include the following :

810 Disk Drive
Data Cord (round card with

identical end plugs)
AC Power Adapter
Owner's Manual
DOS Diskette

22 User's Handbook to the Atari 400/800 Computers

Save the 810's carton and packing material, should the unit need
to be moved or stored.

Before installing the Atari 810 disk drive, be certain that the
power switches on both the Atari 810 and the computer are off.

The first step in installing the Atari 810 is to plug one end of the
AC power adapter into a household outlet, and the other to the
Atari 810 console. This is shown in Illustration 2-2.

Illustration 2-2. Installing the Atari 810

Installation and Operation of Atari Computers 23

Next, plug one end of the data cord to the peripheral plug on the
Atari console, and the other to one of the I/ O connectors on the
rear of the Atari 810. This is shown in Illustration 2-2. Additional
peripherals can be connected via the unused I/ O connector.

If just one disk drive is being installed, the device code switch in
the back of the Atari 810 should be set to 1. If 2, 3, or 4 drives are
to be installed, the swtiches should be set as indicated on the
drive code diagram on the back of the Atari 810. This is shown in
Illustration 2-5 . Use a pen or screwdriver to move the switches to
the appropriate setting. Be certain that the power to the Atari 800
and 810 is off when setting the drive code switch.

Installing the Atari 820 Printer

The Atari 820 Printer includes the following items :

• Pri nter
• Roll of Paper
• Paper Mandrell
• Ribbon
• Data Cord
• User's Manual
• Attached Power Card

Never operate a printer without the ribbon and paper installed.
Doing so may cause damage to the printing head solenoids. The
instructions for loading the ribbon and the paper in the Atari 820
are given in the operator's manual.

Once the Atari 820 has been loaded with paper and a ribbon has
been installed, plug the power cord attached to the unit into a
household outlet.

Next, plug one end of the data cord into the port labeled
' peripheral' on the Atari computer console. If another
peripheral such as the Atari 810 Disk Drive has already been
installed via the peripheral port, the Atari 820 can be connected
via the I/ O CONNECTOR port on the Atari 810 disk drive. Plug
the other end of the data cord into either of the I/O
CONNECTOR ports on the printer.

24 User's Handbook to the Atari 400/ 800 Computers

The printer is now installed. Turn the printer 's power switch on
and press the paper advance button once. The printer is now
ready for paper to be loaded.

Installing the Atari 822 Printer

The installation procedure for the Atari 822 printer is essentially
the same as for the Atari 820 printer.

Installing the Atari 825 Printer

The Atari 850 Interface Module is required to install the Atari 825
printer to either the Atari 400 or 800. The Interface Module
converts serial data from the computer into parallel data used by
the Atari 825.

The installation procedure for the Atari 825 is depicted in
Illustration 2-3. A few words of caution are in order before
beginning installation. First of all, the Atari 825 should be
installed at a distance of at least 2 feet from your television set.
Secondly, be certain that all of the power switches on both the
Atari 825 and Atari 400 or 800 are turned off prior to installation .
Finally, note that the Atari 825 is delivered with a ribbon
installed. During installation, try to keep the Atari 825 level.
Otherwise, the ribbon may fallout of its tray.

Illustration 2-3. Installing the Atari 825 Printer

•
ATARI 400 o r 800

Interface Module
Cau li on: Be ce rlain 10 inslall Ihe
Alari B25 al a dislance o f al leas l 2
feel from Ihe TV sel or monilOr.

ATARI 825 Printer

Installation and Operation of Atari Computers 25

Once these precautions have been taken, use an Atari I/O Data
Cord to connect the Atari 400 or800 to the850 Interface Module.
Connect an AC adapter to the Power I n jack on the 850 Interface
Module. Connect the other end to a regular household AC
outlet.

Connect the 3 prong power cord on the Atar i 825 printer to an
outlet. The Edge-on connector of the Atari printer cable should
be connected to the printed circuit card connector on the back
of the printer. The side of the connector marked 'This side up'
shou ld be facing up when the connection is made. Do not
attempt to force this connector, as this cou ld damage the cable
connector. Connect the other end of the printer cab le to the
parallel bit printer interface connection on the 850 Interface
Modules.

The 850 I nterface Module must be turned on before the Atari 825
can be used. Programming procedures for the Atari 825 will be
covered in Chapter 8.

Installing a ROM Cartridge

As discussed in Chapter 1, the ROM cartridges are insta lled
under the hatch cover on the top of the Atari. The Atari 400 has
one socket, while the Atari 800 has two.

Generally, cartridges are installed in the left slot. When inserting
a cartridge, hold it so that its label is facing towards you . Plug the
cartridge into the socket and press it all the way into the socket.
Finally, close the hatch. This is shown in Illustration 2-4.

When the Atari is operated without a cartridge installed, it wi ll be
operating in the memo pad mode. In this mode, all the Atari can
do is display what has been entered at the keyboard. Obviously,
the memo pad mode is not very useful.

In our discussions in this book, we will assume that the BASIC
Computing Language ROM cartridge is installed.

26 User's Handbook to the Atari 400/ 800 Computers

Illustration 2-4. Installing a ROM Cartridge

Turning on the Power

Once your Atari system has been properly installed, you may
turn on its power. Use the following procedure in turning on the
various components of your Atari system.

1. Turn on the television or monitor. If you are using a
television set, be certain both the set and the Atari are both
turned to the same channel. The switch connected to the
television set should be placed on computer.

2. If you are using the Atari 810 disk drive, turn on drive 1 and
insert a diskette with the Atari disk operating system (DOS)
on it. Close the drive door once the diskette has been
inserted.

3. If a serial device that has been connected to the 850
I nterface Module is to be used, turn on the 850. Otherwise,
leave it turned off.

Installation and Operation of Atari Computers 27

4. Turn on the Atari 400 or 800 console unit.

5. Turn on the printer when you wish to use it. Remember, if
you are using the 825 printer, the 850 Interface module
must also be turned on .

Unless the preceding power-on procedure is followed, the Atari
may not be able to interact with some of the system components.

Step 1. Turning on the Television

First of all, turn on the television set or monitor, whichever your
system is using. If you are using a monitor, you can skip the
remainder of Step 1 and proceed to Step 2.

If you are using a television set, first of all be certain that the
switch that is connected to your television 's antenna terminal is
set to computer. Tune in your set to channel2 or 3, whichever is
weaker in your area.

The Atari computer must be set to broadcast on the same
channe l that the television is tuned to. This is accomplished with
the switch on the side of the Atari (see Illustration 1-2). Set this
switch so that it corresponds to the television channe l used (2 or
3).

Step 2. Turning on the Disk Drive

If your system does not include a disk drive or if the disk drive
will not be used, you need not turn it on and can skip to Step 3.

If the disk drive is to be used, turn on drive 1. When turned on
the drive will emit whirring and clicking sounds for a few
seconds, and the lights on its front panel will light. The sounds
wi ll soon stop, and al l lamps except for the power lamp will go
off.

If your Atari system contains more than 1 drive, on ly drive 1
needs to be turned on atthis point. Byexaminingtheaccess hole
in the back of the 810 drive (see Illustration 2-5), the user can
determine which is drive 1.

28 User's Handbook to the Atari 400/ 800 Computers

The access hole will contain one or two switch levers. The
position of these levers determines the drive number. Drive 1's
levers are both positioned to the left. Only the black lever in
front may be visible, at it may be hiding the white lever which is
situated behind it.

Illustration 2-5. Determining the Disk Drive Number

Once you have determined which drive is drive 1, insert either
the 'Disk File Manager Master Copy', a 'Disk File Manager II
Master Copy', or a copy of one of these in that drive. The label
side of the diskette should be facing up. Slide the diskette all the
way in and close the door behind it.

Step 3. Turning on the 850 Interface Module

The 850 Interface Module only needs to be turned on if a device
is attached to it. If not, you can leave it off.

Step 4. Turning on the Atari 400/800

You now are ready to turn on the heart of your Atari system--the
Atari 400 or 800 computer. First of all, be certain that the correct
ROM cartridge has been installed, and that all system

Installation and Operation of Atari Computers 29

components have been properly connected.

Now, locate the power-on switch on the side of the console as
shown in Illustration 1-2. Turn the switch to the on position, and
turn up the volume on your television set a little.

The power lamp on the keyboard should come on . Also, your
television set will begin making noises, and a blue field with a
black border will be displayed. If the disk drive is on , it will begin
to whirl.

Finally, the message, READY, will be displayed in white letters on
the screen, and the disk drive will stop whirling.

If the READY message is not displayed within 3 seconds, a
problem exists somewhere in the system . Be certain the
components of your system are properly connected, and that
the proper ROM cartridge is in place. Repeat the start-up
procedure. If the Atari still does not start, call your dealer for
assistance.

If the following message appears on the display :

BOOT ERROR

the problem probably lies with the disk drive. Be certain that a
DOS diskette has been installed label side up, and that the disk
drive door is closed.

Step 5. Turn on the Printer

Once Steps 1 through 4 have been accomplished, the printer
may be turned on as desired . Of course, printing operations can
not be undertaken unless the printer is on. Remember, the 825
printer requires that the 850 Interface module be on .

The Ready Message

Once the Ready message appears on the display, the Atari
computer is ready to accept commands entered by the user via
the keyboard. Just beneath the READY message, a white square

30 User's Handbook to the Atari 400/ 800 Computers

known as the cursor will be displayed. The cursor indicates the
position where the next character typed in will appear on the
display.

Atari Keyboard

As mentioned in Chapter 1, the Atari 400 and 800 keyboards are
virtually identical, except that the Atari 800 keyboard contains a
typewriter style keyboard with raised keys while the Atari 400
keyboard is depicted on a flat panel. The keyboard layout of the
Atari keyboard is shown in Illustration 2-6.

The Atari keyboard contains many of the same keys arranged in
the same order as a regular typewriter keyboard. The Atari
keyboard also contains several additional keys not found on a
typewriter keyboard. Two of these, ESC and CTRL, are
located on the left side of the keyboard. Three other keys,
BREAK, CAPS/ LOWR, and /rI.. , are located on the right side of the
keyboard. Also, to the far right of the keyboard are four yellow
special function keys. Finally, some of the standard typewriter
keys contain special words or special symbols.

Illustration 2-6. Atari Keyboard

Installation and Operation of Atar i Computers 31

In the next 17 sections, we will discuss the usage of all of the keys
on the Atari keyboard . We recommend that you exper iment
with these keys as you read these sections. Do not worry about
damaging the computer. Any error situation caused by keyboard
entries can be corrected by merel y turning the Atari off and then
on aga in .

System Reset Key

each of the four keys located to the right of the keyboa rd allows
the user to select a different starting position within a cartr idge.

The System Reset key is located at the top of the ye llow function
keypad at the far right of the keyboard. When the System Reset
key is pressed, all computer operations stop, and cont rol is
restarted from the beginning of a cartridge.

Be carefu l not to press System Reset accidenta ll y. Doing so ca n
cause the loss of data--especia ll y if the disk drive is in use when
System Reset is pressed.

Select Key

Pressing the select key allows the user to view the initial screen at
the start of the next game or program. In other words, the initial
screen is 'se lected'.

Option Key

The option key is pressed to record the user 's choice of one of a
number of options within an app li cat ion program or game.

Start Key

The Select and Option keys are genera ll y used to display a screen
and record the user's cho ice. The next step is for the user to press
the start key. This begins the action se lected.

32 User's Handbook to the Atari 400/800 Computers

Return Key

As characters are entered via the keyboard, these characters are
displayed on the video screen and also saved in memory.
However, these characters are not actually interpreted by the
computer until the Return key has been pressed . The Return key
tells the Atari that the line into which characters are being typed
has been finished.

When Return is pressed, the Atari will review the line just
entered for errors. If any errors are found, an error message will
be displayed.

Break Key

The Break key will stop any action being undertaken by the
computer. For example, if you press Break while entering a
BASIC command line, the computer will ignore all data entered
on the current line.

Pressing Break mayor may not affect a program depending upon
how that program is written. Some programs are written so that
pressing Break has no effect, while other programs may stop if
Break is pressed. Generally , if a program is interrupted by
pressing Break, it can be continued by typing in the BASIC
command CO NT and then pressing Return. However, the
display screen will most likely be erased if Break is pressed
during program execution.

Shift Key

Upon start-up, the keys for the letters (A-Z) always produce
upper case letters on the Atari, regardless of whether the Shift
key is depressed or released . However, the position of the Shift
key does have an effect on many of the other keys on the Atari
keyboard.

The keys affected by the position of the Shift key include two
characters. The bottom character is output when the Shift is off
(Unshift), and the top character is output when the Shift is on
(Shift).

Installation and Operation of Atari Computers 33

In this book, we will denote a key produced in the Shift mode by
using the word Shift followed by the symbol or name of the
character produced in Unshift. For instance, Shift 9 would
denote the symbol (. The characters produced in the Shift mode
are listed in Appendix C.

Clrl Key

Ctrl is an abbreviation for the word 'control'. We will use Ctrl and
Control interchangeably in this text.

The Control key is used in combination with another key much
as the Shift key is. The Control key must be held down at the
same time as the other key.

The use of the Control key with another key will be symbolized
by prefixing the name of that key with Ctrl-. For example, Ctrl-C
designates pressing the Control and C keys simultaneously.

Like the shift key, the Control key gives the key it is used with a
different interpretation . Control is used with the letter keys to
output the graphics characters. Control is used with many of the
other keys to instruct the computer to undertake a particular
function. For example, Ctrl-+ results in the cursor being moved
one space to the right. The various control key functions are
listed in Appendix C.

Caps/Lowr Key

As mentioned earlier, upon start-up, the keys for the letters (A
Z) always produce upper case or capital letters, regardless of
whether the Shift key is depressed or released . The Caps/ Lowr
key allows both capital and lower case letters to be output.

To output both capitals and lower case letters, press the
Caps/Lowr key. When the Shift key is released, lowercase letters
will be output. When the Shift key is depressed, upper case
letters will be output.

By pressing the Shift key and the Caps key simultaneously, the
Atari will again output upper case letters.

34 User's Handbook to the Atari 400/ 800 Computers

The keyboard can be placed in the graphics character mode by
pressing the Control and Caps/Lowr keys together. The graphics
characters are pictured in Appendix C.

A Key

The.,l\\.. key is used to switch the keyboard between the normal
and the reverse video modes. In the reverse video mode,
characters are displayed in blue on a white background.

Arrow Keys

The arrows keys wi ll be referred to as follows in this text.

Up Arrow - Orl
Down Arrow- Orl =
Left Arrow - Orl +
Right Arrow - Orl*

As you can see, the arrow keys are actually Control key
combi nations.

The arrow keys are genera lly used to move the cursor on the
screen, so that keyboard entries can be corrected where
necessary.

The Right and Left Arrow keys move the cu rsor to the ri ght or left
by one position along the same display line. These do not erase
the characters that they pass over from the display. When the
Right Arrow key is pressed with the cursor at the far right edge of
a display line, the cursor will move to the left edge of the same
line. When the left Arrow key is pressed with the cursor at the far
left side of the display, the cursor will move to the far right side.

The Up and Down Arrow keys move the cursor up or down by
one line. If the cursor is at the top of the screen, Up Arrow places
the cursor at the bottom of the screen. If the cursor is at the
bottom line of the screen, Down Arrow places it at the screen's
top.

Installation and Operation of Atari Computers 35

Back S Key

The Back S key moves the cursor one position to the left each
time it is pressed. The character beneath the cursor is erased
when Back S is pressed .

When the cursor is at the left edge of the screen and Back S is
pressed, the cursor will not move.

Clear Key

Either the Shift< or Ctr!< key combination can be used to clear
the display screen and move the cursor to the home position.
The home position is the upper left-hand corner of the screen.

Insert and Delete Keys

Characters can be inserted or deleted by using the Control or
Shift keys in combination with the > / lnsert and Back SI Delete
keys. Ctrl> results in a blank space being inserted to the right of
the cursor. Ctr! Back S results in the character to the immediate
right of the cursor being deleted. The cursor does not move
when either Ctrl> or Ctrl Back S are pressed.

Shift> results in a blank line being inserted above the line that
the cursor currently is in. The remainder of the display below the
line the cursor is in moves down by one line.

Shift Back S causes the line that the cursor is currently in to be
erased from the screen. The lines beneath that line are shifted
upward in the display by one position.

Tab Key

When the Tab key is pressed, the cursor will move forward to the
next tab position on the screen. Standard tab positions occur
after every eight positions. The left margin on the Atari is
indented two columns from the screen's edge. Because of this,
the first tab stop occurs at the sixth position from the left margin.

Additional tab positions can be set by pressing Shift Tab at the

36 User's Handbook to the Atari 400/800 Computers

position desired. Pressing Ctr! Tab clears the tab stop at the
cursor's current position.

ESC Key

ESC is an abbreviation for Escape, a term originally used with
teletypes. The ESC key allows a key sequence to be entered in a
program, without that sequence being executed as a function.
ESC is always pressed and released prior to the entry of the key
sequence whose effect is to be negated . This entry of ESC
followed by the key sequence is known as an escape sequence.

For example, the following escape sequence,

ESC Ctr/<:

would cause the display not to be cleared when Ctr! <: is
entered.

Other Atari Keys

The remaining Atari keys are used like those on a standard
typewriter.

Auto Repeat

Atari's auto repeat feature functions with every key except Shift,
Break, and System Reset. Auto repeat means that when a key is
continously pressed, that character will be repeated. For
example, if the A key is pressed , a single A will be displayed on
the screen. After a few seconds, the A will be repeated on the
display as long as the A key is depressed .

Display Line Length

The Atari's display width is 40 characters. As mentioned earlier,
the leftmost 2 characters comprise the left margin. Therefore,
only 38 character positions are usable per display line.

CHAPTER 3.
INTRODUCTION TO ATARI BASIC

Introduction

BASIC is probably the most widely used language in
microcomputers, with the Atari being no exception. Atari BASIC
is available in the ROM cartridge labeled "BASIC Computing
Language".

To use Atari BASIC, you must have the Atari BASIC ROM
cartridge. Also, you must have followed the correct start-up
procedure as outlined in Chapter 2. The READY message will be
displayed on the video screen when the Atari is ready to accept
BASIC commands .

Immediate & Program Modes

The immediate mode is also known as the direct or the calculator
mode. In the immediate mode, any BASIC command entry
results in the instructions being executed without delay. For
example, if the following immediate mode line was entered,

PRINT "Jim Smith"

the following would be displayed on the video screen.

Jim Smith

In the program or indirect mode, the computer accepts
program lines into memory, where they are stored for later
execution . This stored program is executed when the
appropriate command (generally RUN) is entered.

38 User's Handbook to the Atari 400/ 800 Computers

Illustration 3-1 contains an exa mple of the ent ry of a program in
the program mode and its execution .

Illustration 3-1. Program Mode Entry & Execution

READY
NEW

READY
10 PRINT "Jim Smith"
20 PRINT "1220 Euclid Ave"
30 PRINT "Cleveland , OH 44122"
40 END
RUN

Jim Smith
1220 Euclid Ave
Cleveland, OH 44122

READY

•

Line Numbers

In the program mode, program lines must beg in with a line
number. A line number is a one through five digit number
entered at the beginning of a program line. The line number at
the beg inning of a progra m line is the on ly difference between it
and an immed iate mode line.

Introduction to Atari BASIC 39

No two line numbers can be the same. If the same line number is
used more than once in a program, the line most recently
entered will replace the original. Line numbers can range from 0
to 32767.

The execution sequence of a BASIC program is determined by
the value of its line number. The lowest line numbers will be
executed first, followed by program lines with higher line
numbers. Even if program lines are not arranged in sequential
order, the Atari interpreter will place the lines in the correct
order.

Adding program lines to a program stored in the Atari's RAM is
very easy. Just type in the line number followed by the program
line. The line will be inserted in the program in the position
indicated by its line number. For example, by adding the
following line,

35 PRINT "216-777-5579"

to the program in Illustration 3-1 , the phone number for Jim
Smith will be displayed on the line following his city, state, and
zip.

Program lines can be deleted by typing the line number to be
deleted followed by Return . For example, the following entry,

30 ,

would result in line 30 being deleted.

Program lines can be changed by merely retyping the new line.
The existing line in the Atari 's memory will be replaced with the
new line. For example, the following entry,

10 PRINT "Thomas Hill"

would result in "Thomas Hill" being output rather than "Jim
Smith" in the program in Illustration 3-1 .

Program lines also can be changed by displaying them on the

40 User's Handbook to the Atari 400/ 800 Computers

screen with the LIST statement. Once that line has been listed to
the screen, it can be edited using the cursor control keys as
described in Chapter 2.

Once the desired changes have been made, these must be made
permanent. This is accomplished by pressing the Return key
while the cursor is within that line. Unless the Return key is
pressed somewhere within the line being edited, any changes
made effect only the video display. The cursor can be positioned
anywhere within the program line when Return is pressed.

NEW Command

You may have noticed the execution of the NEW command in
Illustration 3-1 . The NEW command is used to erase an old
program from memory before a new one is typed in .

The Atari can only store one program in RAM at anyone time. If
you attempt to enter a new program while another program is
already stored in RAM, the new program will be merged with the
existing program.

END Statement

Notice the last line in the program in Illustration 3-1. That line
consists only of the line number plus the BASIC reserved word
END.

The END statement identifies the end of a program, and instructs
Atari BASIC to return to the immed iate mode. Obviously, the
END statement should be the last line in your program.

Actually, Atari BASIC does not require an END statement. When
the program's final statement isexecuted, it will end. However, it
is good programming practice to end a BASIC program with the
END statement.

Executing a Program

A program is executed in the program mode by entering the
RUN command. This is shown in Illustration 3-1. Every time RUN

Introduction to Atari BASIC 41

is executed, the program is re-executed. As previously
discussed, in the immediate mode, each program line is
executed when the Return key is pressed .

Program Lines & Display Lines

A display line can be defined as one row on the video display. A
program line is regarded by the BASIC interpreter as one line,
regardless of the number of display lines it occupies on the
screen. The end of a program line is signaled when the Return
key is pressed.

Program lines generally are limited to 114 characters. If you are
entering a lengthy program line, the Atari will beep when the
107th character has been input. This is intended as a warning to
the operator that he is approaching the limit of the program line.

Multiple Statement Program Lines

A statement can be defined as an instruction to the computer.
The terms statement and command are often used interchange
ably. Most programs consist of a large number of statements. The
following are examples of statements.

PRINT "Tim Gregory"
070 DIM A(lS)
100 C = 2*B

Every statement in Atari BASIC must contai n at least one key or
reserved word. A keyword identifies the ca lcu lat ion , decision,
input, or output function to be performed. The keywords are
described individually in Chapter 5 and are listed in alphabetica l
order in Appendix B.

In addition to keywords, numeric constants, string constants,
variab les, and specia l symbols may appear in a BASIC statement.
These are known as the statement parameters.

Atari BASIC allows the user to place more than one statement on
a single program line. Multiple statements must be separated
with a colon (:). The following is an example of a multiple

42 User's Handbook to the Atari 400/ 800 Computers

statement program line.

100 A = B * 7:PRINT A:PRINT B

Abbreviating Keywords

Many of the Atari BASIC keywords ca n be abbreviated. For
example, the keyword PRINT can be abbreviated with the
symbol "?". Generally however, keywords are abbreviated with a
single letter or several letters followed by a period. For exa mple,
the keyword GOTO can be abbreviated as follows .

G.

The various abbreviations for the keywords are contained in
Appendix B.

Listing a Program

As mentioned earlier, the LIST command can be used to display
program lines currently stored in RAM . Remember, if the NEW
command is issued or if the Atari is turned off, the program in
RAM will have been erased, and can no longer be displayed by
LIST.

LIST is used with the following configuration,

LIST (lin e 7, lin e 2)*

where line 7 is the line number of th e fir st line to be listed , and
line 2 is the line number of the last line to be listed.

LIST can be used without any parameters to list the entire
program. LIST can also be used with a single line number to list
just that program line .

* In this chapter, a standard format will be used to describe BASIC
keyword configurations. The keyword will be d isplayed in our
regular type style in upper case. Parameters will be displayed in
our italic type style in lower case . Optional parameters will be
enclosed in parentheses.

Introduction to Atari BASIC 43

Error Messages

When the Atari encounters a statement with an error, an error
message will be displayed . The error message consists of the
following .

ERROR- message

message can be the statement causing the error or a diagnostic
error message number. These error numbers are
listed in Appendix A.

BASIC Data Types

Data can be classified under two major categories: text and
numeric. Text data consists of characters. These characters are
generally used within strings.

Examples of numeric data include:

Integers
Floating Point Numbers
Scientific Notation

Each of these data types will be discussed in the following
sections.

Strings

A string consists of one or more characters enclosed within
double quotation marks. The following are examples of strings :

"F. Scott Fitzgera ld"
"149 Lexington Ave"

"New York, NY 10017"
"212-349-9879"

Notice that a string can contain both letters, numbers, and
symbols. Any string containing numbers can not be used in a
mathematical operation, unless it is first converted into numeric
data. String to numeric data conversion is covered in Chapter 4.

44 User's Handbook to the Atari 400/ 800 Computers

Numeric Data

Atari BASIC stores all numbers in memory in floating decimal
point form . With floating decimal point numbers, a decimal
point is always assumed. Any number of digits can be placed on
either sid e of this decimal point. Even w ith numbers with no
decimal position , a decimal point always is assumed following
the number's last digit.

Commas may not be included within numeric data . For examp le,
109000 would be a valid number in Atari BASIC, while 109,000
would be invalid .

Integer

An integer is a number without a decimal position. In tegers can
either be positive or negat ive. The following are examp les of
integers:

-1134
o
1
-1

17945
+32

Negative integers are preceded with the (-) sign. Positive
integers can be preceded with the (+) sign, although integers
without a (+) sign are assumed to be positi ve.

In Atari BASIC, integers are processed exactly as are any other
floating point numbers . Atari BASIC does not process integers as
a separate form of numeric data.

Floating Point · Numbers

Floating point numbers include both integers, as well as decimal
functions and numbers with decimal positions. The following
are examples of floating point numbers.

-.0789
5

77.39
o

+.000001
67.98

Introduction to Atari BASIC 45

Again , negative floating point numbers should be preceded with
the minus sign (-). Positive floating numbers can optionally be
preceded with the plus sign (+), however, a floating point
number is assumed positive if it doesn 't have a sign.

Scientific Notation

Atari BASIC uses scientific notation to express either extremely
large or extremely small numbers. A number in scientific
notation takes the following format :

± x E yy

Where ;

± is an optional plus or minus sign.

x can either be an integer or a floating point number. This
position of the number is known as the coefficient or
mantissa.

E stands for exponent

yy is a one or two digit exponent. The exponent gives the
number of places that the decimal point must be moved to
give its true location. The decimal point is moved to the
right with positive exponents. The decimal point is moved
to the left with negative exponents.

The following examples specify a number in both standard
floating point and scientific notation:

1000000 -1 E6
.000001 -1 E-6

57500000-5.75 E+07
- .00000479-4.79 E-06

46 User's Handbook to the Atari 400 / 800 Computers

Any numbers containing more than 10digits will be expressed in
scientific notation. Also, any decimal number which contains
more than two digits to the right of the decimal point will be
expressed in scientific notation.

Atari BASIC can only handle floating point numbers expressed in
scientific notation in the range between -9.99999999 E+97 and -
9.99999999 E+97. Any decimal numbers that are closer to zero
than +9.99999999 E-98 or -9.99999999 E-98 will be converted to O.

Rounding

In Atari BASIC, floating point numbers can have at most 9
significant digits. Any digits beyond 9 are replaced with zeros,
beginning with the least significant digit.

The following examples give the values used by Atari BASIC for
floating point numbers containing more than 9 digits.

17898743214798 --1.78987432 E+ 13
-879836341832--8.79836341 E+11

7005.32144587931-- 7005.32144

Fractional numbers in the range between 1 and -1 also may
contain a maximum of nine digits. However, with numbers in
th is range, the nine significant digits are counted begin n ing with
the first non-zero digit to the right of the decimal point.

The following examples give the values used by Atari BASIC for
floating point numbers in the range between 1 and -1 which
contain more than 9 digits .

. 87547983621-- 0.874579836
.12789478987432187-- 0.127894789
-.478947821765789-- 0.478947821

.000000001407936579463--1.40793657 E-09

Introduction to Atari BASIC 47

BASIC Variables

So far, we have only discussed data constants. A constant can be
defined as a fixed val ue. The following are examples of string and
numeric constants.

"Jack Novet"
"375"
27.59
o
100000

A name can be used to express data as well as a constant.
Variables are used to express data as a name.

A variable can be defined as a quantity that can assume anyone
of a group of values. Variables are represented by variable
names. These consist of a letter followed optionally by additional
letters and / or numbers. The value assumed by a variable is
subject to change, depending upon the program statement
being executed . For example, in the following,

100 LET A = 5.0
200 LET B = 7.0
300 LET A = A + B

the variable A is initially assigned a value of 5.0and B is assigned a
value of 7.0. In line 300, the variable A is assigned a new value
equal to the sum of variables A and B, which is 12.0. The previous
value of A is erased.

Note the use of the LETstatement in the preceding example. The
LET statement is used to assign a value to a variable. Whenever a
LET statement is used in a program, the value of the variable on
the left side of the equation is to be replaced with the value
appearing on the right.

The reserved word , LET need not actually be included in a LET
statement. Both of the following statements have the same

48 User's Handbook to the Atari 400/ 800 Computers

meaning.

100 LET A = 5
200 A = 5

BASIC Variable Names

Atari Basic allows any group of up to 114 characte rs to be used as
a variable name--as long as the first character of the group is a
capital letter of the alphabet, and as long as the variable name
does not duplicate a reserved word (see Appendix B). Examples
of reserved words are :

LET, GOTO, IF, READ, DATA

The following are examples of va lid BASIC variable names,

A
B23456
TOTAL.DATA
A2

JOHN
N4N
B%
N

while the following are invalid variable names:

2BB7
lA
PRINT

END
FOR
COS

All of the preceding examp les of valid var iable names should be
used to represent numeric data. Variable names can also be used
to represent string data . These are known as string variables.
String variable names con sist of a va lid var iable name followed
by the dollar sign ($). The following are examp les of val id string
variable names.

A$
B1P$
A7$

Introduction to Atari BASIC 49

Before a string variable can be used in a program, it must first be
dimensioned with th e DIM statement. If a string variable is not
dimensioned before it is used in a program, the error 9 will occur.

A string variable is dimensioned by giving its name and its
maximum size after the reserved word DIM. The maximum size
must be enclosed in parentheses. The following DIM statement,

100 DIM A$(5)

dimensions a five character string. More than one string variable
can be dimensioned in a single DIM statement. For example, the
following DIM statement,

100 DIM A$(10), B$(5), C$(7)

would dimension 3 string variables.

Tables & Arrays

Earlier in thi s chapter, we introduced the concept of variables. A
variable is designed to hold a single data item--either string or
numeric. However, some programs req uire that hundreds or
even thousands of variable names be used .

Obviously, the use of thousands of individual variable names
could prove extremely cumbersome. To overcome this
problem, BASIC allows the use of subscripted variables.
Subscripted variables are identified with a subscript, a number
appearing within parentheses immediately after the variable
name. An example of a group of subscripted variables is given
below:

A(O), A(l), A(2), A(3), A(4), ... , A(100)

Note that each subscripted variable is a unique variable. In other
words, A(O) differs from A(l), A(2), A(3) , A(4), etc.

Subscripted variables should be visualized as an array (or table).
In our previous example, the data contained in the array defined
by A would consist of one row with 101 columns in it. Such an
array is a single-dimension array.

50 User's Handbook to the Atari 400/800 Computers

An array can also consist of two dimensions. Such an array is
known as a two-dimensional array (or table) . An example of an
array of 4 rows and 3 columns is shown in Illustration 3-2.

A two-dimensional array contains two subscripts. The first
subscript contains the row location , while the second subscript
contains the column location . The subscripted variable A(l ,O)
identifies the darkened area in the array shown in Illustration 3-
2.

Illustration 3-2. Two-Dimensional Array

Columns

° 1 2

°
1

Rows
2

3

I n the Atari BASIC, arrays can be used to represent numeric data.
String arrays cannot be used in Atari BASIC.

Before any array variable can be used in a program , the size of
that array must have been defined so that BASIC can reserve a
memory area for it. This is also accomplished with the DIM
statement. A single dimension numeric array with 11 variables
could be defined with the following DIM statement:

DIM A(10)

Remember that array subscripts beg in with 0. Therefore, the
numeric array A which was dimensioned in the preceding
statement, would have space reserved for the 11 array elements,
not 10.

I ntroduction to Atari BASIC 51

More than one array can be defined with a single DIM
statement. This is shown in the example below:

100 DIM Z(5 ,2), B(100), C(2,3)

A DIM statement must appear in a program before the array
variable it is dimensioning appears. If an array variable is used in
a program before it is dimensioned, error 9 will occur .

Expressions and Operators

The values of variables and constants are combined to form a
new value through the use of expressions. The following are
examples of expressions.

4+7
A$ + B$
31\2
14 < 21
X AND Y

Atari BASIC includes several types of expressions including
arithmetic, relational, and Boolean. In our previous examples,
the first three examples are arithmetic expressions, while the
fourth and fifth are examples of relational and Boolean
expressions respectively. Each of these types of expressions will
be discussed in detail in the following sections.

The sign or phrase describing the operation to be undertaken is
known as the operator. The operators in our previous example
were as follows:

+
+
1\

.::::
AND

The constants or variables which are affected by the operator are
known as operands.

52 User's Handbook to the Atari 4001800 Computers

Compound Expressions and Order of Evaluation

All of our preceding examp les were simple expressions. A simple
expression is one which conta ins just one operator and one or
two operands. Simple expressions can be combined to form
compound expressions. The following are examples of
compound expressions.

(A + B) * 7- 4
(A + B) AND (C +D)
IF A = 1 AND B = 1 THEN C = 1

With compound expressions, it is necessary that the computer
knows which operat ion should be undertaken first. Atari BASIC
follows a standard order or eva luation within compound
expressions. This order is out lined in Table 3-1.

Note that parentheses have the highest precedence level. In
other words, any express ion enclosed within parentheses will be
evaluated first. If more than one set of parentheses appears in an
expression, these will be evaluated from left to right.

One pair of parentheses can be used to enclose an operator
enclosed within another set. In such an instance, Atari BASIC will
eva luate the expression within the innermost set of parentheses
first, followed by the next innermost set, etc.

When expressions have the same order of evaluation , they wil l
be evaluated in order from left to right w ithin the compound
expression .

Introduction to Atari BASIC 53

Table 3-1. Order of Evaluation

Operator Description

Parentheses () Used to alter order
of evaluation.

A Exponentiation
- Unary Minus

Arithmetic * Multiplication
Operators / Division

+ Addition
- Subtraction

= Equal To
-<> Not Equa l To

Relational -< Less Than
Operators > Greater Than

-<= Less Than or Equa l To
>= Greater Than or Equa l To

Boolean NOT Logical Complement
Operators AND Logi ca l AND

OR Logical OR

Arithmetic Operations

The symbols used fo r add iti o n , subtraction, multiplication ,
d ivision, and exponen ti atio n are known as arithmetic operators
in BASIC. Th e symbo ls + and - are used for addition and
subtraction respecti ve ly. Th e asterik (*) is used to indica te
multiplicat ion , while the slash (/) is used to indicate division .

Wh en a + or - sig n precedes a number, th e symbol is used to
specify that number's sign. When + or - is used to change a

54 User's Handbook to the Atari 400/ 800 Computers

number's sign, that usage is known as a unary operation. Unary
operators can be used to change the sign of a numeric constant
or variable as shown below:

100 LET A = -A

When unary operators are used in the manner shown above, the
unary operation is regarded as an arithmetic operation .

The term arithmetic expression is used to describe the use of an
arithmetic operator with numeric consta nts and / or variables .
The following are examples of ar ithmetic expressions.

x + Y + 70
100/ A + B
3000 * 10 + 1

Exponentiation is the process of raising a number to a specified
power. For example, in the following,

the numeric variable A would be eva luated as:

A*A*A*A*A

In BASIC, exponentiation is indicated with the caret symbo l, 1\

Exponentiation can be used in an arithmetic expression as shown
below:

8*3+71\2

The preced ing expression would eva luate to 73.

In troduct ion to Atar i BAS IC 55

Relational Operators

Th e follow ing relational operato rs are used in Atari BASIC.

<
<=

>
>=

-------~~ I ess than
------....,.~ less than o r eq ual to
------....,~~ greater than
------....,.~ greater than or equal to
-------l.~ eq u a I to

<> ------....,.~ not equal

A relational opera ti on evaluates to either true or false. For
exa mple, if the constant 1.0 was compared to the constant 2.0 to
see whether th ey we re eq ual , the express ion would eva luate to
false. In Atari BASIC, a va lu e of 1 represe nts a condition of true,
while a va lue of 0 represents fa lse.

Th e only values returned by a comparison in BASIC are 1 (true)
o r 0 (false). Th ese va lues ca n be used as any other integer would
be used . The following resu lts are generated by the following
relational expressions.

5>7 0 (false)
3 = 3 - 1 (true)

2<>2 - 0 (false)
(2=2)*4-4
(1)7)+7 -7

The first three exa mples are easy enough to understa nd . In the
fourth example , the relation al express ion (2=2) is eva luated first
as tru e or 1. This result is th en multiplied by 4 with a product of 4
as th e result. In the fifth exa mple, the relat io nal expression (1 >
7) eva lu ates as false o r O. Thi s res ult is added to 7, with the result
being 7.

Relational operat io ns using numeric opera ti o ns are fairly
straightforward. However, relat ional operatio ns using string
values may prove co nfus ing to the first-time computer user.

56 User's Handbook to the Atari 400/ 800 Computers

Strings are compared by taking the ASCII value for each
character in the string one at a time and comparing the codes.

If the strings are of the same length, then the string containing
the first character with a lower code number is the lesser. If the
length of the strings are unequal , then the shorter string is the
lesser. Blank spaces are counted and have an ASCII value of 32.

The following comparisons between strings would all evaluate as
true .

"ABC"="ABC"
"ABC "> "ABC"
"aAA" > "AAA"
"Alfred" < "Zachary"
A$ < Z$ where A$
"Zachary"

"Alfred" and Z$

Note that all string constants must be enclosed in quotation
marks when used as constants.

Logical Operators

Logical or Boolean operations are generally used in Atari BASIC
to compare the outcomes of two relational operations. Logical
operations themselves return a true or false value which will be
used to determine program flow.

The logical operators are NOT (logical complement), AND
(conjunction) , and OR (disjunction). These are best explained
with a simple analogy. Suppose that Steve and Sherry were
shopping in the produce department of their grocery store. If
they decided to collectively purchase an item if either of them
individually wanted that item, they would be acting under the
OR logical operator.

Now, suppose that Steve and Sherry decided that they would
only purchase an item if they both wanted that item. They would
then be acting under the AND logical operation.

Now, suppose that Sherry was angry with Steve. If Sherry

Introduction to Atari BASIC 57

decided not to purchase the items that Steve wanted, she would
be acting under the NOT logical operation. The NOT, AND, and
OR logical operators are summarized in Illustration 3-3.

A logical operator evaluates an input of one or more operands
with true or false values. The logical operator evaluates these
true or false values and returns a value of true or false itself. An
operand of a logical operator is evaluated as true if it has a non
zero value. (Remember, relational operators return a value of 1
for a true value .). An operand of a logical operator is evaluated as
false if it is equal to zero .

The result of a logical operation is also a number, which if non
zero is considered true, and false if it is zero.

The following are examples of the use of logical operators in
combination with relational operators in decision making.

IF X > 10 OR Y < 0 THEN 900
IF A > 0 AND B > 0 THEN 200 ELSE GOTO 300
B = -l:PRINT NOT B

In the first example, the result of the logical operation will be
true if variable X has a value greater than 10 or if variable Y has a
value less than o. Otherwise, it will be false. If the result of the
logical operation is true, the program will branch to line 900.
Otherwise, it will continue to the next statement.

In the second example, the result of the logical operation will be
true only if the value of both variables A and B are greater than
zero . If the result of the logical operation is true, program
control will branch to line 200. Otherwise, program control will
branch to line 300.

In the third example, B is set to a value of -1 (true). The value of
NOT B is then printed. This will be 0 or false.

Illustration 3-3 contains tables that may prove of help when
evaluating program statements using logical operators in
combination with relational operators.

58 User's Handbook to the Atari 400/ 800 Computers

Illustration 3-3. logical Operators

NOT Operation

T F A Operand

F T NOT A

AND Operation

I T I T I F I F I A Operand

I T I F I T I F I B Operand

I T I F I F I F I A AND B

OR Operator

I T I T I F I F I A Operand

I T I F I T I F I B Operand

I T I T I T I F I A OR B

Introduction to Atari BASIC 59

Atari BASIC Statements

In the next several sections, we will discuss many of the more
commonly used statements in Atari BASIC. These include the
following :

Remark Statements
Assignment Statements
Output Statements
Input Statements
Loops
Conditional Statements
Branching Statements
Subroutines
STOP, END Statements
Atari BASIC Functions

Remark Statements

Remark statements are used to include a programmer's
comments within a program . It is good programming practice to
include numerous Remark statements in your programs. Not
only do Remark statements make your programs easier for
others to understand, they also help you remember your
program 's logic.

Remark statements consist of a line number, the reserved word
REM, and the programmer's comment. An example of a Remark
statement is given below.

100 REM Initiali ze I to 0

Remark statements are ignored by the Atari BASIC interpreter,
but are included in program li stings.

60 User's Handbook to the Atari 400/ 800 Computers

In multiple line statements, the REM statement must be the final
statement. The Atari BASIC interpreter ignores all text following
the keyword REM.

REM can be abbreviated as R. or with the period (.) .

Assignment Statements

Assignment statements were discussed briefly earlier in this
chapter. Assignment statements are used to assign values to
variables. The following are examples of assignment statements.

100 LET A = 7
200 B = 42
300 NAME$ = "phil"
400 X=1 :Y=2:Z=3

Notice that the keyword LET is optional. Generally, LET is
assumed. Both string and numeric variables can be assigned
values with an assignment statement. Also, multiple assignment
statements can be included in a single line, as longaseach of the
individual statements is separated by a colon .

DATA, READ Assignment Statements

Assigning values to a large number of variables with individual
assignment statements could prove very cumbersome. The
DATA, READ statements can be used to assign values to a large
number of variables. The following is an example of a DATA,
READ statement.

100 DATA 100,500,1000, "Jack"
200 READ A, B, C, D$

The DATA statement creates a list of constant values known as a
DATA list.The items in the DATA list are assigned sequentially to
the variables in the READ statement. A OAT A list is depicted in
Illustration 3-4.

Introduction to Atari BASIC 61

Illustration 3-4. DATA List

190 DATA 100,200,300,400,500

400 DATA Monday, Tuesday, Wednesday,
Thursday, Friday

500 READ A, B, C, D, E _________ 400
600 RESTORE ------.... A

,600-

/F 700 READ F, G, H, I, J------

B G

C H

D I

J
900 READ A$, B$, C$, D$, E$ ~ ~~~ _

,700 ~
400 .600-----DATA li st pointer
position after the execution of lines
400 and 600.

500,700-----DATA li st pointer
position after the execution of lines
500 and 700.

900---+-DAT A list pointer position
after execution of line 900.

900

A$

B$

C$

D$

E$

DATA List

100

200

300

400

500

Monday

Tuesday

Wednesday

Thursday

Friday

DATA statements may contain numeric or string values. These
values must be separated or delimited with commas. DATA
statements may appear at any point in the program. No other
statements can appear in the same program line with a DATA
statement.

The DATA list uses a pointer to indicate which value within the
list is to be assigned to the next variable in a READ statement.
Before the first READ statement is encountered, the DATA list

62 User's Handbook to the Atari 400/ 800 Computers

pointer will point at the first value in the DATA list. As values
from the DATA list are assigned to variables in the READ
statement, the pointer will move sequentially to each successive
item in the DATA list.

The values from the DATA list must match the type of variable to
which they are assigned in the READ statement. In other words, a
string value can not be assigned to a numeric or vice versa.

The RESTORE statement is used to reset the DATA list. In
Illustration 3-4, note the use of the RESTORE statement. After
DATA list values have been read into A, B, C, D, and E in line 500,
a RESTORE statement is executed. This causes the DATA list
pointer to be reset to the beginning of the DATA list.

Outputting Data

In some of our preceding examples, we touched upon the use of
the PRI NT statement to display data. The PRI NT statement can be
used to display both numeric and string data.

The following program statement,

100 PRINT "Vendor List"

would display the following at the current cursor position.

Vendor List

The first item in a PRINT statement is displayed at the cursor's
current location.

Several strings can be displayed on the same line with a single
PRINT statement by separating the string constants or variables
in the PRINT statement with commas. The following statements,

050 DIM A$(10)
100 LET A$ = "John"
200 PRINT A$, "Bill", "Peter"

Introduction to Atari BASIC 63

would result in the display shown below:

John Bill Peter

Atari BASIC divides the spacing on a line into a series of print
zones. Each print zone contains 10 spaces. When a comma
appears in a PRINT statement, the computer is instructed to
begin printing the next parameter in the PRINT statement at the
beginning of the next print zone. In our example above, John
would begin in column 1 (print zone 1); Bill in column 11 (print
zone 2) ; and Peter in column 21 (print zone 3).

A semicolon can also be used to separate the items in a PRINT
statement. A semicolon causes the next item in the PRINT
statement to be displayed immediately after the preceding item.
Unlike the use of the commas in a PRINT statement, when
semicolons are used to separate items, no blank spaces appear
between the items when they are displayed.

When a PRINT statement has finished execution, the cursor
moves to the left margin of the following line. This is known as a
carriage return/line feed.

If a com ma or sem icolon occu rs at the end of a PR I NT statement,
the carriage return / line feed will be suppressed . If a comma is
placed at the end of the PRINT statement, the next PRINT
statement will begin output at the next print zone after the last
item is displayed. If a semicolon is placed at the end of the PRINT
statement, the next PRI NT statement will begin output
immediately following the last item displayed.

In this section , we have only discussed sending output to the
video display. Output can also be sent to the printer. This is
accomplished by using the LPRINT statement in place of PRINT.
The LPRINT statement is used exactly as the PRINT statement in
Atari BASIC.

However, the LPRINT statement does have some variatIons
when it is used with the Atari 825 Printer. These variations occur
when a comma or semicolon is used to end the PRI NT statement.
If an LPRINT statement is used to print more than 40 characters,

64 User's Handbook to the Atari 400/ 800 Computers

any subsequent LPRINT statements will be started on a new line
on the Atari 825.

However, if an LPRINT statement prints 38 characte rs or less and
ends with a comma, output from any subsequent LPRINT
statement will be begun on the same line at print position 41.
Printing also begins at this position, if LPRINT is used to print 40
characters or less and ends with a semicolon.

INPUT Statements

Data can be input into the computer wh ile a program is being
executed. This is accomplished with the INPUT statement. For
example, when the following statement is executed,

100 INPUT A

the computer will display a question mark and wait for the
operator to enter a response. That entry wil l be assigned to the
variable A. The entry must be ended by pressing the Enter key.
Program execution will then resume.

The values of severa l numeric variables can be input with a single
INPUT statement as shown in the example below.

200 INPUT X, Y, Z

When the preceding INPUT statement is executed , the INPUT
prompt (?) will be displayed . The operator should then enter the
data items for X, Y, and Z. Each input should be separated by a
comma. The Return key should be pressed after all input entries
have been made. An example of a valid entry for the preceding
INPUT statement is given below.

100, 200, 300 I

The INPUT statement in Atari BASIC functions somewhat
differently with string inputs than with numeric inputs.

First of all, the string variable used with INPUT must have been
dimensioned earlier in the program.

Introduction to Atari BASIC 65

Secondly, the number of characters entered in response to t~e
INPUT prompt cannot exceed the number of characters that the
string variable specified in INPUT was dimensioned for. For
example, in the following,

100 DIM A$(5)
200 INPUT A$

the string variable A$ is only dimensioned for 5 characters in line
100. If the operator attempts to enter a string greater than 5
characters in response to the INPUT prompt in line 200, Atari
BASIC will ignore any additional characters.

Finally, if string variables are included as one of a number of
variables in an INPUT statement, the value for each string
variable must be entered on a separate line. In the following
INPUT statement,

500 INPUT A, B, C$, D$

the operator might respond to the INPUT prompt as follows:

100,200, JOHN I
MARY I

The reason for the entry of string data on separate lines is that
Atari BASIC allows a comma to be input as part of a string.
Therefore, the comma cannot be used as a delimiter. You can
test this by entering the following,

SMITH, JOHN'

for one of the string variables in our preceding example.

It is good programming practice to include a prompt message in
conjunction with an INPUT statement to let the operator know
what data the computer is expecting. This is accomplished by
preceding the INPUT statement with a PRINT statement. If the
PRINT statement is ended with a semicolon, the prompt message
will be di~played on the same line with the INPUT prompt.

66 User's Handbook to the Atari 400/ 800 Computers

100 PRINT "ENTER YOUR AGE";
200 INPUT AGE

In the preceding example, the prompt, "ENTER YOUR AGE", will
appear on the same line as the INPUT prompt.

Loops

Suppose th at you needed to compute the squares of the integers
from 1 to 20. One way of doing this is by calculating the squa re
for each individual integer as shown below.

100 A = 1 "2
200 PRINT A
300 B = 2 "2
400 PRINT B
500 C = 3 "2
600 PRINT C

However, this method is very cumbersome. This problem
could be solved mu ch more effic ient ly through the use of a
FOR, NEXT loop as shown below.

100 FOR A = 1 TO 20
200 X = A "2
300 PRINT X
400 NEXT A
500 END

The sequence of statements from 100 to 400 is known as a loop.
When th e computer encounters the FOR statement in line 100,
the variable A is set to 1. X is then calculated and displayed in
lines 200 and 300.

The NEXT statement in line 400 will request the next value for A.
Execution returns to line 100 where the value of A is increme nted
by 1 (to 2) and then compa red to the value appearing after TO.
Since the value of A is less than that value, the loop will be
executed again with the va lue of A set at 2.

Introduction to Atar i BASIC 67

The loop will continue to be executed until r\ atta ins a value
greater than 20. When this occu rs , the statement following the
NEXT statement will be executed.

In our preceding example, A is known as an index variable. If the
optional keyword STEP is not in cluded w ith the FOR statement,
the index variable will be incremented by 1 every time the NEXT
statement is executed.

STEP can be included at the end of a FOR statement to change
the value by which th e index variable is incremented. The
integer appearing after STEP is the new increme nt. For example,
if our preceding exa mple were changed as follows,

100 FOR A = 1 TO 20 STEP 2
200 X = A A 2
300 PRINT X
400 NEXT A
500 END

the index variable A would be incremented by 2 every time the
NEXT statement was executed.

Nested Loops

One loop can be placed inside of another loop. The innermost
loop is known as a nested loop. The following program contains
a nested loop.

100 P = 1000
200 FOR Y = 1 TO 10
300 FOR Q = 1 TO 4
400 P = P + P * .02
500 NEXT Q
600 NEXT Y
650 PRINT P
700 END

Our preceding examp le is used to calculate the value of 1000
after 10 years with an interest rate of 8% compounded quarterly.

One error that you should take care to avoid when using nested

68 User's Handbook to the Atari 400/ 800 Computers

loops is to end an outer loop before an inner loop is ended. Also,
be certain that that every NEXT statement has a matching FOR
statement. If the Atari BASIC interpreter cannot match every
NEXT statement with a preceding FOR statement, an error will
result.

Conditional Statements

One of the most important features of a computer is its ability to
make a decision. BASIC uses the IF, THEN, ELSE statement to take
advantage of the computer's decision making ability. The IF,
THEN , ELSE statement takes the following form:

IF expression THEN statement ELSE statement

The IF statement sets up a question or a condition. If the answer
to that question is true, the statement following THEN is
executed . If the answer is false, the statement following ELSE will
be executed.

In the following example, if X is equal to 0, then Y will be set to 1.
If X is not equal to 0, Y will be set to O.

100 IF X = 0 THEN Y = 1 ELSE Y = 0

The IF, THEN, ELSE statement may be shortened to just IF, THEN
as shown below.

050 Y = 0
100 IF X = 1 THEN Y = 1

In this example, if X is equal to 1, the statement following THEN
will be executed . If X is not equal to 1, program execut ion will
continue with the next program statement (in our example--line
200).

Branching Statements

Branching statements change the execution pattern of programs
from their usual line by line execut ion in ascending line number
order. A branching statement allows program control to be

I ntroduction to Atari BASIC 69

altered to any line number desired. The most commonly used
branching statements in BASIC are GOTO and GOSUB.

GOTO takes the following format:

GOTO line number

For example, th e following program statement:

500 GOTO 999

999 END

would branch program control at line 500 to line 999.

Branching statements are often used in conjunction with
conditional statements. In such a situation , the normal execution
of the program is altered depending upon the outcome of the
condition set up in the IF statement. This is shown in the
following example.

050 DIM A$(99)
100 PRINT "ENTER THE AMOUNT"
150 INPUT A
200 IF A == 0 THEN GOTO 900
900 PRINT "ARE YOU FINISHED (YIN)": INPUT A$
910 IF A$ == "N" THEN 100
999 END

In our preceding example, if the value input for A has a zero
value, then the program will branch to line 900 where the
operator will be prompted whether he has finished entering
data. In line 910, the program will set up a condition where if the
input was 'N', the program will branch to line 100. If the entry was
not equal to 'N', the program will continue to line 999.

70 User's Handbook to the Atari 400/800 Computers

Note in line 910 that a GOTO statement is not used to precede
the line number being branched to. When a line number is
indicated following a THEN or ELSE statement, the computer
does not require the presence of GOTO, which is assumed.

ON, COlO Statement

The ON, GOTO statement is a combination of a conditional
statement and a branching statement. The use of the ON, GOTO
statement is illustrated in the following program.

100 INPUT A
200 ON A GOTO 250,260
210 GOTO 999
250 PRINT A: GOTO 100
260 PRINT A 1\ 2:GOTO 100
999 END

If the variable or expression following ON evaluates to 1,
program control branches to the first line number specified after
GOTO; if 2, to the second; if 3, to the third, etc.

If the variable or expression evaluates to a number greater than
the number of line numbers following GOTO, program control
will branch to the statement immediately following the ON,
GOTO statement. This is also the case if the variable or
expression following ON evaluates to zero.

Subroutines & COSUB Statements

Many times you will find that the same set of program
instructions are used more than once in a program. Re-entering
these instructions throughout the program can be very time
consuming. By using subroutines, these additional entries will be
unnecessary.

A subroutine can be defined as a program which appears within
another larger program. The subroutine may be executed as
many times as desired .

Introd uct ion to Atari BASIC 71

The execution of subroutines is controlled by the COSUB and
RETURN statements. The format for the COSUB statement is as
follows.

COSUB line number

The computer will begin execution of the subroutine beginning
at the lin e number indicated . Statements will continue to be
executed in order, until a RETURN statement is encountered.
Upon execution of the RETURN statement, the computer will
branch out of the subroutine back to the first line following the
original COSUB statement. This is illustrated in the following
example.

Illustration 3-5. BASIC Program With a Subroutine

Subroutine

050 DIM ER$(50) , B$(50)
100 PRINT "ENTER CHECK AMOUNT"
200 INPUT A
300 COSUB 900
400 PRINT " ENTER PAYEE'S NAME"
500 INPUT B$
600 PRINT B$, A
700 COTO 100
900 REM ERROR SUBROUTINE
910 ER$ = "NOT ALLOWED"
920 IF A < 0 THEN COTO 100
930 IF A>1000 THEN PRINT ER$
940 IF A = 0 THEN 999
950 RETURN
999 END

Subroutines can help the programmer organize his program
more efficiently. Subroutines also can make writing a program
easier. By dividing a lengthy program into a number of smaller
subroutines, the complexity of the program will be reduced.
Individual subroutines are smaller and therefore more easily
written. Subroutines are also more easily debugged than a
longer program.

72 User's Handbook to the Atari 400/ 800 Computers

ON, GOSUB Statement

The ON , GOSUB statement is very simil ar in nature to the ON ,
GOTO statement. The following stateme nt is an example of an
ON, GOSUB statement.

100 ON X GOSUB 1000, 2000, 3000

If the va lue of X is 1, the subro utine at line 1000 is executed. If X is
2, the subroutine at line 2000 is executed . I f X is 3, the subro utin e
at line 3000 is executed. If X eva luates to 0 o r to a number greater
than 3, th e statement immediate ly following th e ON, GOSUB
statement will be executed.

If ON, GOSUB causes a branch to a subroutine, program control
will revert to the line immediate ly following the ON, GOSUB
statement, once the subrout ine has been executed.

Break Key and CONT

Generally, Atari BASIC programs can be stopped by pressing the
Break key. When the Break key is used to stop program
execution, a message similar to the following w ill be displayed.

STOPPED AT LINE XXX

In actua l practice, the XXX will be replaced by the line number
where program execut ion stopped .

Once program execut ion has been stopped by pressing the
Break key, the computer will return to the immediate mode. If
you wish program execut ion to resume, enter the CO NT
command at the keyboard. Program contro l w ill resume with the
line following the one where the program break occurred.

System Reset Key

Program executio n can also be stopped at any time by pressing
the System Reset key . H owever, System Reset functions
somewhat differently than Break.

Introduction to Atari BASIC 73

When System Reset is pressed, the program will stop executing,
the display screen will be erased, and the AT ARI will return to
the immediate mode. You may be able to resume program
execution by entering CONT. However, this is not assured. With
complex programs, chances are slim that program execution can
be resu med once System Reset has been pressed.

STOP STATEMENT

The STOP statement functions in much the same manner as
pressing the Break key . The following is an example of a program
line containing a STOP statement.

500 STOP

When the statement is executed, program execution will be
halted, and the following message will be displayed.

STOPPED AT LINE 500

The program wil l return to the immediate mode, where
execution can be resumed by entering CONT.

END Statement

The END statement also causes program execut ion to halt. An
example of an END statement is given below.

999 END

When an END statement is executed, program execution will
halt, the message READY will be displayed on the screen, and the
computer will return to the immediate mode.

Execution can be resumed with the line following the END
statement by entering CO NT.

Unlike the STOP statement, the END statement closes any open
input/ output channe ls, sets the screen to graphics mode 0, and
turns off all sound voices.

74 User's Handbook to the Atari 400/ 800 Computers

When the Atari runs out of BASIC program statements, an END
statement is automatically executed.

Atari BASIC Functions

Functions are used in Atari BASIC to perform predefined
calculations or operations on their arguments. All functions use
the following format.

function (argument)

function is the keyword for the function . argument is a variable,
constant, or expression which is to be used in the operation
defined by the function.

The following statement is an example of the use of the SQR
function.

100 A = SQR(49)

In this example, Awould evaluateat 7. SQR is the keyword which
describes the square root function . The square root of 49 is, of
course, equal to 7.

Functions can be used with arithmetic, relational, and Boolean
expressions, as shown in the following statement.

100 X = 100 - 7 * SQR(49)

In an expression containing functions as well as arithmetic,
relational, and/or Boolean operators, the function's value is
calculated first. In our preceding example, the square root of 49
would be calculated, that value would be multiplied by 7, and
the product subtracted from 100.

The various Atari BASIC functions are described in Chapter 5.

CHAPTER 4.
ADVANCED ATARI BASIC

Introduction

In this chapter, we will expand on the concepts of BASIC
programming that were introduced in Chapter 3. The following
topics will be covered.

Atari ASCII

String Handling
Variable Storage
PEEK
POKE
Screen Output Programming
Input Programming
Prompt Messages
INPUT Response Checks
CHR$
ASC
TAB

The Atari can not store characters; it can only store numbers.
Before characters can be stored, they must be converted to
numbers. Computers use special numeric codes to store
characters. Most microcomputers use a code known as ASCII
(American Standard Code for Information Interchange) .

The Atari uses a special version of ASCII known as Atari ASCII.
When we refer to ASCII in this book, we will be referring to Atari
ASCII. The Atari ASCII code set is outlined in Appendix C.

76 User's Handbook to the Atari 400/ 800 Computers

String Handling

As a programmer, you w ill encou nter a number of situ ati ons
where you may need to work w ith strin g data. For example, you
might want to comb ine severa l strings, compare two st rin gs,
sepa rate portions of a string, or even conve rt st ring data to its
numeric eq ui va lent. Atar i BAS IC allows for all of these.

Substrings

Atari BASIC allows the programmer to extract a portion of a
str ing, known as a substring. However, Atari BAS IC accomplishes
this ext raction in a mann er whi ch is very different from other
versions of BASIC, which use MID$, RIGHT$, and LEFT$ to
accomplish this task.

Atari BASIC uses the following configurat ion to extract a
substring.

NAME$ (first, last)

Where NAME$ is the name of th e str ing from which the substr ing
is to be extracted, first is the pos iti on of the first character from
NAME$ to be included in the substr ing, and las t is the pos ition of
the last character from NAME$ to be included in the substr ing.

For examp le, if X$ consisted of the following ,

"JOHN JOHNSON"

the substr ing defined by X$ (1,4) wou ld cons ist of "JO HN ", and
X$ (6,12) would consist of "JOH NSON". Notice that the blank
space in X$ is counted as one character position.

The first and last character posit ion in a substr ing spec ifi cation
can be specif ied with a variable or an ex pression as well as a
constant. A lso, the last character position need not be specified .
If it is not, the entire right hand portion of the string will be
returned beginning with the specif ied first character.

Substrings ca n be used to replace characters in larger str ings. In

Advanced Atari BASIC 77

the following program , a subst ring is used to change X$ from
"JOHN JOH NSON" to "JOH N JACKSON".

100 DIM X$(15)
200 X$ = "JOHN JOHNSON"
300 X$(6,12) = "JACKSON"
400 PRINT X$
500 END
RUN
JOHN JACKSO N

If an error occurs with a substring specifi cation, error number 5
will be disp layed.

String Concatenation

The process of joining together one o r more strings is known as
concatenation . The LEN function is used in conjunct ion with
substrings in concatenat io n. The LEN function is used to return
th e length of its str ing argumen t. LEN uses t he following
configurat io n.

LEN (string)

The following program illu strates st ring conca tenati on in Atari
BASIC.

100 DIM X$(15), Y$ (15)
150 X$ = '''':Y$ = ""
200 X$ = "JOHN"
300 Y$ = "JOHN SON"
400 X$(LEN (X$) + 1) = Y$
500 PRINT X$
600 END
RUN
JOHNJOHNSON

The actual concatenat ion takes place in line 400. Here, Y$ is
added onto the end of X$ to form a new X$. Notice that 1 was
added to the result of LEN(X$) . Thi s ca uses Y$ to be added
beginning at the first blank space following the end of the
original X$.

78 User's Handbook to the Atari 400/ 800 Computers

If line 200 was revised as follows,

200 X$ = "JOHN"

the following could be output:

JOHN JOHNSON

The addition of a blank space in X$ results in one additional
blank space being output.

CHR$ & ASC Functions

As mentioned earlier, characters are represented with the Atari
as ASCII codes. Atari BASIC's CHR$ function can be used to
translate an ASCII code to its equivalent character. The following
short program illustrates the use of the CHR$ function.

100 PRINT CHR$ (54)
200 PRINT CHR$ (55)
300 END
RUN
6
7

The CHR$ function is often used to represent characters in a
statement, when that character can not be represented in its text
form. For example, in the following program,

100 PRINT CHR$(34); "JOHN JOHNSON"; CHR$(34)
200 END
RUN
"JOHN JOHNSON"

quotation marks are specified in th e PRINT statement using their
ASCII code and the CHR$ function .

The ASC function returns the ASCII code equivalent for its string
argument. If this string is longer than one character, the ASC
function returns the ASCII code for just the first character in the
stri ng.

Advanced Atari BASIC 79

The following program illustrates the use of the ASC function:

050 DIM A$(20)
100 A$ = "JOHN JOHNSON"
200 PRINT ASC(A$)
300 END
RUN
74

Escape Sequences in Strings

Generally, the cursor movement characters may not be included
within a string. They may, however, be included if they are
preceded by the operator pressing the Escape key.

When the Escape key prefixes a cursor movement key, the
combination is known as an escape sequence.

The following program will illustrate the use of an escape
sequence.

100 PRINT "JOHN-N-JOHNSON"
200 END
RUN
JOHN JOHNSON

In our example, the symbol- denotes pressing ESC followed by
CTRL-+. The symbol - denotes pressing ESC followed by
CTRL-*.

In our previous example, the cursor movement itself was
accomplished by using an escape sequence. Each cursor
movement is also associated with a character as shown in Table4-
1. By pressing the Escape key twice before the cursor movement
key sequence, this character will be output. This is shown in the
following program.

100 PRINT" Ed Ed Ed "
200 END
RUN
i t i

80 User's Handbook to the Atari 400/ 800 Computers

In this example, E E represents pressing the Escape key twice, and
t represents pressing Escape Ctrl--.

The various escape sequences are given in Table 4-1.

Table 4-1. Escape Sequences

ASCII Echoed
Keyboard Entry Code Character String Character

ESC/ESC 27 ~ Escape Code

ESc/CTRL-- 28 II] Cursor Up

ESC/CTRL-= 29 [!] Cursor Down
ESC/ CTRL-* 30 ~ Cursor Right
ESC/CTRL-+ 31 ~ Cursor Left
ESC/ CTRL-< 125 ~ Clear Screen

ESC/SHIFT-< 125 ~ Clear Screen

ESC/BACK S 126 ~ Cursor left , replace with
blank space

ESC/TAB 127 ~ Cursor right to next
tab stop

ESc/SHIFT-BACK S 156 0 Delete Line

ESC/SHIFT-> 157 U Insert Line

ESC/CTRL-TAB 158 C Clear Tab Stop

ESC/SHIFT-TAB 159 = Set Tab Stop

ESC/CTRL-2 253 13 Sound Built-in Speaker

ESC/CTRL-BACK S 254 D Delete Character

ESC/ CTRL-> 255 D In sert Character

Graphics Characters in Strings

The Atari has 29 graphic characters. These are output by using
the Control key in combination with another key. Tab le 4-2
contains a list of the graphics characters.

The graphics characters can be included in a string with a PRINT
statement to output graphics to the screen. For example, the
following program,

Advanced Atari BASIC 81

Decimal
Code

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Table 4-2. Atari Graphics Characters

ASCII Decimal ASCII
Character Keystrokes Code Character

!tJ CTRL-, 15 [;]
[J] CTRL-A 16 ~
01 CTRL-B 17 GI
~ CTRL-C 18 8
[{] CTRL-D 19 I±l
~ CTRL-E 20 Ii]
~ CTRL-F 21 [;J
IS] CTRL-G 22 ID
[j] CTRL-H 23 I;]
~ CTRL-I 24 ~
[i] CTRL-J 25 [j]
~ CTRL-K 26 ~
~ CTRL-L 96 [t]
!::l CTRL-M 123 [t]
[;] CTRL-N

100 DIM A$(20)
200 A$ = "1--. --1"*
300 PRINT A$:PRINT A$:PRINT A$
400 END

Keystrokes

CTRL-O

CTRL-P

CTRL-Q

CTRL-R

CTRL-S

CTRL-T

CTRL-U

CTRL-V

CTRL-W

CTRL-X

CTRL-Y

CTRL-Z

CTRL-.

CTRL- ;

would result in a display similar to that shown in Illustration 4-1
when it is run .

* • --is generated by pressing Ctrl-,

82 User's Handbook to the Atari 400/800 Computers

Illustration 4-1. Graphics Example Program Ouput

1--. --1
1-- • --1
1-- • --1

Variable Storage

Atari BASIC keeps a list of the variable names used in a program
in its variable name table. A max imum of 128 variable names can
be stored in the variable name table. Therefore, an Atari BASIC
program is effectively limited to a maximum of 128 variables.
These include numeric, string, and array variables. An array
variable name counts as only 1 name in the variable name table,
regardless of the number of elements within that array.

Every time a new variable is entered in the immediate mode, that
name is added to the variable name table. In the program mode,
variables are added to the variable name table as they are
encountered in the program.

Advanced Atari BASIC 83

Variable names are stored in the variable name table until a NEW
command is issued . NEW causes the entire variable name table
to be cleared.

When a program is saved on cassette with the CSAVE statement,
the variable name table is saved on tape along with the program
itself. If the program is later loaded back into memory with the
CLOAD statement, the variable name table saved on tape will be
read into memory and will take the place of the existing variable
name table.

PEEK & POKE

The PEEK and POKE statements allow direct access to the Atari's
RAM . The Atari can include as many as 65,536 individual
addressable RAM memory locations. Each location is assigned a
number sequentially as its address, from 0 to 65,536.

Every memory location can store a number in the range 0
through 255. As mentioned earlier, all data to be stored in
memory must be converted to a number in this range. The Atari
uses various coding strategies for converting BASIC keywords,
text data, numeric data, graphics displays, and machine language
into a form that can be stored in memory. The Atari knows how
to translate the contents in memory (numbers ranging from 0 to
255) by the context in which that data is used.

The PEEK function allows the user to examine the va lue stored in
the memory location named as its argument. For example, in the
following statement,

100 N = PEEK(1000)

the value stored at memory location 1000 will be assigned to the
variable N.

The POKE statement is used to place a value in a specified
memory location . POKE uses the following configuration ,

84 User's Handbook to the Atari 400/800 Computers

POKE address , value

where the value specified is placed in the location given in
address. value and address can either be constants or variables.
For example, in the following statement,

100 POKE 2000, X

the value stored in variable X will be POKE'd into memory
location 2000.

The POKE statement cannot be used to change ROM. ROM is by
definition read-only memory, and cannot be altered with the
POKE statement.

Screen Output Programming

The PRINT statement is used to display data on the screen. PRINT
statement output begins at the cursor's location. Therefore,
cursor positioning is the primary factor in sending output to the
screen.

As characters are output to the screen, the cursor position is
affected. Generally, the cursor moves one column to the right
after it has displayed a character. However, if a PRINT statement
ends with a carriage return, the cursor will move to the
beginning of the next display line. Also, escape sequences can
be used to move the cursor in a direction other than towards the
right hand side of the screen . Finally, the POSITION statement
can be used to move the cursor to any point on the screen. We
will cover each of these methods of cursor positioning as well as
other concepts of screen output programming in the next few
sections.

Using the Carriage Return in Cursor Positioning

The carriage return is generated by pressing the Atari 's Return
key. The Return key generates the ASCII end-of-lin~ (EOL)
character. This character causes the cursor to advance to the
beginning of the next display line. The EOL character can also be
generated by using the CHR$ function with 155 (the ASCII code

Advanced Atari BASIC 85

for EOL).

Tab Function

Tabbing on the Atari is very similar to tabbing on a normal
typewriter. Tabs are preset along the entire length of a logical
line. The first tab position is the left margin (column 2), followed
by columns 7, 15, 23, and every eighth column to the end of the
logical line.

Tabs work much like commas do when they are used as
formatting characters in PRINT statements . However, tabs and
commas function completely separately. The column positions
set up by commas have no effect on the tab positions, and vice
versa .

In the immediate mode, the tab key is used to move the cursor to
the next tab position . When the tab key is pressed, the cursor will
move to the next tab position without any of the characters it
passes over being erased. If the tab key is pressed with the cursor
at the last tab stop, the cursor will move to the start of the next
logical line.

In the program mode, the cursor is tabbed by using the ASCII
code for tab, 127. This can either be accomplished by using the
CHR$ function or by using ESC/ TAB within a string.

In addition to the pre-defined tab stops already mentioned ,
more tab stops can be set in any column desired. In the
immediate mode, a tab stop can be set by moving to the desired
column and pressing the SHIFT-TAB keys.

Tab stops can also be set with the PRINT statement. The PRINT
statement must display a string whi ch causes the cursor to move
to the desired position. The tab set character, CHR$(159) or
ESC/ SHIFT-TAB, must then occur in the string. For example, in
the following statement,

100 PRINT "JOHN"; CHR$(159)

a tab stop is set in the fourth column .

86 User's Handbook to the Atari 400/800 Computers

A tab stop ca n be cleared in the immed iate mode by moving the
cu rsor to the position des ired and then pressing CTRL-TAB. In
the program mode, a tab stop can be cleared by moving to the
des ired co lumn and displaying ASCI I 158. This code can be be
displayed either w ith the CHR$ funct ion or w ith ESC/ CTRL-T AB.

One final point to keep in mind about tabstops is that w henever
a character is output in the space immediate ly preced ing a tab
stop, th at tab stop no longer has any effect.

Moving the Cursor with Escape Sequences

As mentioned ear li er in this chapter, th e cursor can be moved by
using th e escape seq uences for cursor control key sequence
within a PRINT statement string. For example, in th e following
statement,

100 PRINT" - - JOHN JOHNSON"

the symbo l - represents press ing the fo llowi ng key seq uence:

ESC/ CTRL-*

This key seq uence causes the cursor to move o ne position to the
le ft each t ime it is pressed.

Cursor contro l escape seq uences can also be included in a
PRINT statement string by using th e ASCI I code for that
sequence w it h the ASC$ function. For exa mple, in the following
stateme nts,

100 D IM A$(10)
200 A$ = CHR$(29)
300 PRINT A$:PR INT A$:PR INT A$

the st ri ng var iab le A$ is set to the ASCI I code for curso r down. In
line 300, the three PRINT statements ca use the cursor to be
moved down 3 lines.

These curso r contro l sequences do not erase any of the
characters that they pass over.

Advanced Atari BASIC 87

Home Cursor

Th e home position can be defined as the upper left -hand corner
of the vid eo display. Th e home cursor co ntrol sequence moves
the cursor to th e position and erases all ex isting data on the
screen as well.

Home cursor is frequently used to position th e cursor and erase
the screen in Atari BASI C. Hom e cursor ca n either be
acco mpli shed by using the ASCII code for home cursor, 125,
with the CHR$ function , or by using either of the following
escape sequences :

ES CI CTRL- <
ESC/ SHIFT-<

with the PRINT statements.

POSITION Statement

Th e POSITION statement can be used to place th e cursor at any
locat ion on the screen. The POSITION state ment is used with the
following configu rat ion,

POSITION column , row

where column is the number of the column to be moved to, and
row is the number of the row to be moved to.

In actuality, the POSITION state ment does not cause the cursor
to be moved . POSITION merely changes the values in the Atari's
memory where the cursor locat io n is stored. When data is
subsequent ly displayed on the screen, that data will be displayed
at these new display coordinates.

The display row number is sto red in memory address 84, and the
co lumn number is displayed in address 85. Th e contents of these
locat ions ca n be exam ined w ith the PEEK function. For example,
the following statements,

PEEK (84)
PEEK (85)

88 User's Handbook to the Atari 400/ 800 Computers

will return the row and column numbers respectively.

When PRINT is used to output data to the screen, the previous
cu rsor position is stored in memory. Memory add ress 90
contains the last row number, and memory address 91 contains
the last column number. Again , the PEEK function can be used to
examine the contents of these memory addresses.

Remember, rows are numbered from 0 to 23, and columns are
numbered from 0 to 39.

Changing the Display Screen Margins

The standard left margin on the display screen is column 2. The
standard right margin is column 39. The Atari uses memory
address 82 to store the column number of the left margin, and
location 83 to store the column number of the right margin .

The POKE statement can be used to change either the left or
right margins. The following statements would reset the left
margin to column 5, and the right margin to column 30.

POKE 82, 5
POKE 83, 30

Screen Input Programming

Input programming is a vital part of BASIC programming. Nearly
every BASIC program requires some form of operator input. In
the following few sections, we will discuss programming
practices that are designed to make operator input efficient and
as error-free as possible.

Prompt Messages

One programming principle that should nearly always be
followed in input programming is to include a prompt message
with the INPUT statement. An example is given below.

100 PRINT "ENTER YOUR AGE";
200 INPUT AGE

Advanced Atari BASIC 89

In general, it is advisable to keep prompt messages as brief as
possible--as long as the message is clear to the user. Avoid
prompt messages which are overly wordy .

When long prompt messages are being used, it is a good practice
to place the prompt message on one line, and the input response
on the next line. For example, the following statement,

100 PRINT "ENTER OPERATION CODE (1 = ADD; 2 = DEL)"
200 INPUT X

would result in the following display:

ENTER OPERATION CODE (1 = ADD; 2 = DEL)
?

Input Response Checks

A well-designed program should check the user's response to an
Input statement to be certain that no obvious input errors have
been made. If such an error was made, the program should
detect the error and force the user to re-enter the data.

Examples of input errors that can occur are numeric entries that
are outside of the allowed range, string entries that are longer
than allowed for by the Input statement's variable, and an input

90 User's Handbook to the Atari 400/ 800 Computers

response other than that prompted for.

The very nature of the Input statement prevents certain errors
from occurring as these are detected by the BASIC interpreter .
For example, if a numeric entry is made when a string variable is
specified with the I nput statement, an error will occur. Li kewise,
if a string entry is made when a numeric variable is specified with
the Input statement, an error will occur.

However, many Input entry errors will not be detected by the
BASIC interpreter. Serious errors can occur when the wrong
data is entered in response to an Input statement. It is a good
programming practice to check the operator's response to an
Input statement. This can either be accomplished with one or
more IF-THEN statements, or with ON-GOTO or ON-GOSUB
statements.

For example, in the following program, the operator's input is
checked with two IF-THEN statements. If the response is neither
of the following,

Y, N, y, n

the program will branch back to line 1200 for a new entry.

1000 DIM A$(20)
1100 PRINT
1200 PRINT " Enter Your Response (YI N)"
1300 INPUT A$
1400 A$ = A$(1 ,1)
1500 IF A$ = " Y" OR A$ = "y" THEN 1800
1600 IF A$ = "N" OR A$ = "n" THEN 9999
1700 GOTO 1300
1800 REM Subroutine For 'Yes' Response
1900 PRINT "YES"
9999 END

CHAPTER 5.
AlARI BASIC REFERENCE GUIDE

This chapter provides descriptions and examples of the correct
syntax for Atari BASIC.

Each of the reserved words are li sted in alphabetical order, along
with an appropriate abbreviation , if applicable.

The following notation will be used to describe the
configuration of each of the commands, statements, or
functions.

1. Capitalized words are keywords.

2. Items enclosed in brackets [1 are optional.

3. Ellipsis (...) represents repetition.

4. Punctuation (except brackets) must be included as shown .

5. The following symbols will be used :

LN Line number
EX Algebraic or logical expression (i.e. X>5, 3 + X,

X = 7)
X, Y, Z Numeric variable name

X$, Y$, Z$ String variable name
a, b, c Any number or numeric expression

a$, b$, c$ String value

92 User's Handbook to the Atari 400/ 800 Computers

ABS

The ABS function returns the absolute value of its argument.

ADR

Configuration

x = ABS(a)

Example

PRINT ABS(-81)
81

The ADR fu nction returns the memory add ress of the argument.
The argument must be a string variable or a string constant.

In BASIC, a machine language program can be put in a string
variable. However, the operating system moves variables around
to efficiently use memory. As a result, to call a machine language
routine, the ADR function is used to locate the string.

Configuration

x = ADR(a$)

Example

x = ADR(B$)

AND

AND is used between two expressions, and returns the value 1 if
they are both true, and 0 if either one is false.

CONFIGURATION

EX AND EX

Atari BASIC Reference Guide 93

The conditions of true and false are represented in the computer
by the logical values 1 and O. As a result, the logical operators
(AND, OR, and NOT) generate only the values 1 and o. The AND
operation can be explained by the following truth table.

EX1

1
1
o
o

EX2

1
o
1
o

RESULT

1
o
o
o

AND is generally used in an IF/ THEN statement with relational
expressions. For example:

10 X = 10
20 Y = 30
30 IF X = 10 AND Y>100 THEN END
40 PRINT "CONDITIONS WERE NOT MET"
RUN
CONDITIONS WERE NOT MET

In this example, AND is used in an IF/ THEN statement which
ends the program if both conditions are true. The first expression
of the AND statement is X =10. This is true because X is assigned
the value 10 in line 10. The second expression, Y>100, is false
because Y is assigned the value 30 in line 20. As a result , EX1 is true
and EX2 is false. This corresponds to the truth table where EX1 = 1
and EX2 = O. The resu It from the table is 0 (fa Ise) , so the cond ition
of the IF/ THEN statement is false, and the next line is executed.

The AND operator can also be used with algebraic expressions
like 5 * Y, 3 + X, X II 2, etc. However, these must also be converted
to logical 0 or 1. The computer does this by assigning the logical
value 0 to any expression that equals O. Any expression that does
not equal 0 is assigned the logical value 1. For example, the
logical value of 5 * 0 is O. The logica l values of 3 + 1, 2 II 2,3 and
COS (45) are all 1.

94 User's Handbook to the Atari 400/800 Computers

Example

10 X = 3
20 IF X 1\ 2 AND 3 - X THEN END
30 PRINT "X IS EITHER 3 OR 0"
RUN
X IS EITHER 3 OR 0

This example uses AND in an IF/THEN statement that ends the
program if X squared and 3 - X both are not equal to zero. Since X
is assigned the value 3, the first part of the AND statement eq uals
3 squared. This is a logica l 1 because 3 squared is non-zero.
However, the second express ion , 3 - X, is equa l to zero, which is
the logical O. Since EX1 =1 and EX2 =0, the AND statement is false,
and the next statement is executed (line 30).

ASC

The ASC function returns the ASCII code for the first character of
a string. The argument of ASC ca n be a string variable or
constant.

ATN

CONFIGURATION

X = ASC(a$)

EXAMPLE

10 DIM B$(10)
20 B$ = "ZEBRA"
30 PRINT ASC(B$)
RUN
90

The ATN function returns the arcta ngent of the argument. The
result will be in radians unless degrees are specified.

BYE

Atari BASIC Reference Guide 95

CONFIGURA TION

X = ATN(a)

EXAMPLE

PRINT ATN(.576)
0.5225854816

BYE switches the system to the Memo Pad mode. The system has
no computing ability, and only the keyboard and display are
functional. The operator can experiment with the keyboard
without affecting the system. The system will return to BASIC
when the SYSTEM RESET key is pressed.

The operations of the computer and other devices (disk drive,
modem, etc.) are not at all affected by the Memo Pad. For
example, if a program is in memory, and a disk and modem are
being used, a BYE command will switch to Memo Pad. However,
SYSTEM RESET will restore the computer to BASIC, and all other
devices will still be ready to operate. The program in memory
will be unchanged.

ClOAD (ClOA.)

CONFIGURATION

BYE

EXAMPLE

BYE

The CLOAD com mand is used to load a previously recorded
program into the computer's memory. Th e program must have
been stored on a cassette with a CSA VE or SAVE command.

At the sound of the tone, press PLAY on the program recorder,

96 User's Handbook to the Atari 400/ 800 Computers

then press RETURN on the keyboard. The tape must be correctly
positioned before CLOAD is executed.

The CLOAD command clears the memory before the program is
loaded from the tape.

CHR$

CONFIGURA TlON

CLOAD

EXAMPLE

CLOAD

The CHR$ function returns the character with the ASCII code
specified by the argument. Although argument values ca n range
from 0 to 65535, the ASCII code corresponds to the numbers
from 0 to 255.

CLOG

CONFIGURATION

X$ = CHR$(a)

EXAMPLE

PRINT CHR$(65)
A

The CLOG function returns the base 10 logarithm of the
argument.

CONFIGURATION

X = CLOG(a)

EXAMPLE

PRINT CLOG(4)
0.6020599914

Atari BASIC Reference Guide 97

CLOSE (CL.)

The CLOSE statement closes a channel that has been opened for
input, output, or both. However, closing a channel that has not
been opened will not cause an error.

The argument of a CLOSE statement must be the same as in the
corresponding OPEN statement. A channel that has been
opened for the use of a particular I/O device must be closed
before it is used for another device.

CLR

CONFIGURATION

CLOSE #a

EXAMPLE

CLOSE #3

The CLR command clea rs the values of the variables in the
memory. However, the variable name table remains unchanged .
As a result, the CLR command does not reduce the number of
variable names. After using CLR, all strings, arrays, and matrices
must be dimensioned again.

CONFIGURA TION

CLR

EXAMPLE

CLR

98 User's Handbook to the Atari 400/ 800 Computers

COLOR (C)

In graphics modes 0 through 2, the COLOR statement is used to
choose the character that will be placed on the screen with a
PLOT statement.

CONFIGURATION

COLOR a

In all graphics modes, the argument of the COLOR statement
must be positive, and if it is not an integer, it will be rounded off.

In mode 0, the text is printed in the same color as the
background. Only the luminance of the color can be chosen. For
example, if the background is chosen to be green, the text must
be green, but it can be any brightness. The COLOR statement
indicates the character that is to be printed with the next PLOT
statement. In graphics mode 0, the COLOR statement has no
effect on the color of the character. Table 9-7 lists the characters
that correspond to the COLOR statement in graphics mode o.

EXAMPLE

10 GRAPHICS 0
20 FOR I = 1 TO 5
30 READ X
40 COLOR X
50 PLOT 10 + I, 10
60 NEXT I
70 DATA 65, 84, 65, 82, 73

I n the previous example, the word AT ARI is printed at the center
of the display. Each data item is read individually at line 30, and
becomes the argument of the COLOR statement in line 40. The
loop is repeated 5 times, and each time the COLOR statement
has a different value as its argument. It can be seen from Table 9-
7 that in graphics mode 0, COLOR 65 indicates the character A.

After the COLOR 65 statement has been executed , any PLOT or

Atari BASIC Reference Guide 99

DRAWTO statement will be executed with the character A until
another COLOR statement has been executed.

EXAMPLE

10 GRAPHICS °
20 COLOR 65
30 PLOT 0,0
40 DRAWTO 10,10

The preceding program would print the character A in the upper
left-hand corner of the screen because of the PLOT 0,0
statement. The DRAWTO 10,10 would cause a diagonal line
consisting of the character A to appear on the display. A
character would appear at the positions (0,0), (1,1), (2,2) ... (10,10).

The display looks like white characters on a blue background.
Actually, the "white" is very bright blue. The intensity of the
characters can be chosen with a SETCOLOR statement.

The COLOR statement has a different function in graphics
modes 1 and 2. Modes 1 and 2 have fewer characters available
than Mode 0, but each character can be printed in 4 colors.

The difference between modes 1 and 2 is the size of the
character. The characters in mode 2 are twice the height of mode
1, but are the same width.

Table 9-4 lists the values of the COLOR statement arguments for
each character in 4 colors. The columns of the table correspond
to the 4 color registers. The standard character set will be used
unless the alternate character set is specified with the statement
POKE 756, 226. To return to standard characters, POKE 756, 224.

100 User's Handbook to the Atar i 400 / 800 Computers

EXAMPLE

10 GRAPHICS 1
20 FOR I = 1 TO 5
30 READ X
40 COLOR X
50 PLOT 6 + I, 0
60 NEXT I
70 DATA 65,116,193,114,73

The previous example displays the word AT AR I at the top of the
display in three colors. The data is read at line 30 and becomes
the argument of the COLOR statement at line 40.

The COLOR statement chooses the cha racte r and the color
register to be used in the display. From Table 9-4, COLOR 65
indicates the character A in color register O. COLOR 116
indicates the character T in co lor register 1.

The color registers are assigned specific information about the
color to be used. Color registers can be changed with a
SETCOLOR statement, but if no SETCOLOR statement is
executed, a standard set of default co lors are used . The default
colors for graphics mode 1 and 2 are as follows:

COLOR REGISTER
o
1
2
3
4

DEFAULT COLOR
ORANGE
GREEN
BLUE
RED
BLACK

Color register 0-3 can be chosen for any character, but color
register 4 is used for the background and border.

In the previous example, the first character displayed was an A in
color register O. Since no SETCOLOR was executed, the A will be
orange. The T will be green because COLOR 116 is in color
register 1.

Atar i BASIC Reference Guide 101

If the sa me program was executed in the alternate cha racter set,
by executing POKE 756, 226 after the GRAPHICS statement, the
word ATARI would appear in lower case letters. A lso, in the
alt ernate character set, a "heart" character will appear in every
blank space. This occurs because the standard character set puts
a space (COLOR 32) in areas where no character has been
ass igned. When the conversion to the alternate cha racter set
occu rs, COLOR 32 is interpreted as a "heart" in co lo r register 0
(Table 9-4). As a result , an o range "heart" will appear in every
space except whe re the word ATARI appears.

In grap hics modes 3 through 7, the CO LOR statement is used to
choose the co lor register that will be used to plot points and
draw lin es .

Graphics modes 3 through 7 are different from modes 0 through
2 because modes 0, 1 and 2 are used to place characters on the
screen. Graphics modes 3 through 7 are used to place picture
elements (pixels) on the screen . A pixel is a rectangle that is
refe rred to by its coord inates (co lumn and row) on the display. In
modes 3 through 7, the COLOR statement actually chooses a
co lor register , not a characte r.

EXAMPLE

10 GRAPH ICS 3
20 FOR T = 0 TO 3
30 CO LOR T
40 PLOT T,O
50 NEXT T

The previous examp le displays the 4 co lors of graphics mode 3.
Line 40 plots a pixel at column T, row O. The color of the pixel is
determined by the last COLOR statement. The first time through
th e program, T is set equa l to 0 at line 20. Line 30 indicates that
co lor T is used. Since no SETCOLOR statement was executed, the
d efault co lors are used.

102 User's Handbook to the Atari 400/ 800 Computers

GRAPHICS MODES 3, 5, and 7
COLOR NUMBER DEFAULT COLOR

o ORANGE
1 GREEN
2 BLUE
3 BLACK

As a result, when T=O, the color is orange. The PLOT statement at
line 50 colors the pixel at column 0, rowO orange. The next pixel ,
at column 1, row 0 is colored green. The pixel at column 2, row 0
is blue and the next one is black.

In graphics modes 4 and 6, the COLOR statement is used in the
same fashion as in graphics modes 3, 5, and 7. However, modes4
and 6 have only two colors, and the default colors are as follows.

GRAPHICS MODES 4 and 6
COLOR NUMBER DEFAULT COLOR

o BLACK
1 ORANGE

Graphics mode 8 has only one color, with two brightness levels.
As a result , the COLOR statement is used to select the brightness
of a pixel. I n other words, COLOR 1 causes the next plotted pixel
to be visible. COLOR 0 causes the next plotted pixel to be the
same as the background .

In graphics mode 8, the pixels are very small , and the graphics are
slow. It sometimes is useful to draw an entire area, then "erase"
what is not wanted. This is often faster than drawing only what is
wanted. This can be done by drawing an area using COLOR 1,
then "erasing" by using COLOR O.

COM

COM is used interchangeably with DIM in dimensioning strings,
arrays, and matrices.

CaNT (CON.)

Atari BASIC Reference Guide 103

CONFIGURATION

COM X(a[b]) [Y(C[d,])]
X$(a) Y(c)

EXAMPLE

COM B$(50), A(10,10)

The CONT command causes a program which had been stopped
to continue execution at the next numbered line. A program will
be stopped because of an error, SYSTEM RESET, BREAK, END, or
STOP.

In any situation, the use of CONT will cause the rest of the
current line of code to be ignored. As a result, executing BREAK
and CONT during a program may cause serious problems. When
a program is stopped using BREAK, there is no way to be sure the
program will resume where it was stopped. Important steps may
be interrupted or skipped , and loops may be improperly exited.

A program can be continued after an error, but the entire line of
the error will be skipped .

A program can be continued after a SYSTEM RESET, but this will
generally have negative results. All I/ O channels will be closed ,
the computer will return to the immediate mode, the screen will
be cleared , graphics mode 0 will resume, etc.

CONFIGURATION

CONT

EXAMPLE

CONT

104 User's Handbook to the Atari 400/ 800 Computers

cos

The COS function returns the cosine of its argument. The
argument wi ll be assumed in radians unless a DEG statement
precedes the COS statement.

CSAVE (CS.)

CONFIGURATION

X = COSta)

EXAMPLE

10 DEG
20 X = COS(180)
30 PRINT X
RUN
-1

The CSAVE command is used to copy the program in the
computer's memory on cassette tape. Only CLOAD can be used
to read a program that was stored using CSAVE.

When the tape is properly positioned, enter CSA VE . The tone
will sound twice as a signa l to press the cassette recorder's PLAY
and RECORD keys, followed by pressing RETURN on the Atari
keyboard .

If channe l 7 is open for another device, an error will occur, but
the channel will be closed. A repeat of CSAVE wil l then be
successful.

CONFIGURATION

CSAVE

EXAMPLE

CSAVE

Atari BASIC Reference Gu ide 105

DATA (D.)

The DATA statement supplies a list of information that is used in
a program through READ statements. A DATA statement can
include numeric values, string values , or both. String variables
must have been dimensioned before being read.

Data items are separated by commas. Therefore, string values
that contain commas will be read as separate data items. For
example , DATA DOE, JOHN is a DATA statement with two data
items. However, DATA DOE. JOHN has only one item.

CONFIGURATION

DATA a[b 1...
a$,b$J

Data must be read into the correct type of variable. A string
variable can accept data in any form.

EXAMPLE

10 DIM A$(20)
20 FOR I = 1 TO 5
30 READ A$:? A$
40 NEXT I
50 DATA TOM c., 25,,3 + 4 * %,247
RUN
TOM C.
25

3 + 4 * %
247

The preceding example shows correct data for a string variable.
Notice the blank line in the output that corresponds to the two
commas in a row. This is read as a string value with no characters
and length equal to zero.

If only 4 data items had been supplied with this program, the
message: ERROR-6 AT LINE 30 would have been displayed to

106 User's Handbook to the Atari 400/ 800 Computers

notify the user that not enough data was supp lied.

Numeric variables can only accept numbers as input. Standard
notation and scientific notation are both acceptab le. For
example, 3.14159266, 2.85E-l0, .0001, 35 and -45 are all
acceptable data items. Expressions will not be eva luated . They
will cause an Input Statement Error (#8). Numeric data must not
include commas.

10 DIM A$(10)
20 FOR I = 0 TO 4
30 READ A$, A
40 PRINT A$, A
50 NEXT I

EXAMPLE

60 DATA PENCILS, 20,PENS,25,RULERS,40,ERASERS,50,
PAPER,200,GLUE,5

The preceding example shows a correct sequence for reading
string and numeric data into correct variables. However, the
READ statement is only ca ll ed 5 times, and there are 6 sets of
data. Th is wi II not ca use an error, but the last set of data (G LU E,5)
will never be read.

DATA statements can appear anywhere in a program, even after
an END statement, However, any statement that follows a DATA
statement on the same line will not be executed.

Data can only be read once unless a RESTORE statement is
executed . The correct use of RESTORE is also exp lain ed in this
chapter.

DEG (DE.)

The DEG statement causes the trigonometric functions to be
performed in degrees instead of radians . The functions will be
performed in radians until degrees are specif ied. Also, radians
will be used after a SYSTEM RESET, NEW, or RUN command.

Atari BASIC Reference Guide 107

CONFIGURATION

DEG

EXAMPLE

10 DEG
20 PRINT SIN(90)
RUN
1

The example shows that the sine of 90° is 1. If the DEG statement
was not present, the result would be 0.8939970243.

DIM (DI.)

The DIM statement is used to set aside memory space for strings
and 1 or 2 dimensional arrays. Two dimensional arrays, or
matrices, can be used to make tables of values.

CONFIGURATION

X(a[,b]) r Y(c[,d]~
DIM X$(a) lY$(C) J '

A DIM statement can include any combination of numeric and
string variable dimension statements. For example, DIM
A(10,10), 8(9), A$(90) , 8$(90) dimensions all four variables in one
statement.

A string variable can contain only one string. The dimension of a
string variable indicates the maximum number of characters that
the string variable can contain.

108 User's Handbook to the Atari 400/ 800 Computers

EXAMPLE

10 DIM A$(10)
20 READ A$
30 PRINT A$
40 DATA I N DEPENDENCE DAY
RUN
INDEPENDEN

The preceding example shows that the string variable A$ is
dimensioned to 10 characters at line 10. However, during the
program, A$ is assigned a 16 character string with the READ
statement at line 20. Since room for only 10 characters was set
aside in memory, only the first 10 characters of the DATA item
are assigned to A$. The PRINT statement in line 30 displays the
contents of A$. It can be seen from the output that A$ only has 10
characters.

The DIM statement must be executed before an INPUTor READ
occurs. If the DIM statement of the previous example was
deleted, the following message would occur.

ERROR-9 AT LINE 20

If a variable is dimensioned twice in the same program (without
CLR), ERROR-9 occurs.

The maximum size of string variables depends on the amount of
available memory at the time of the DIM statement.

Dimensioning numeric variables determines the number of
elements that the variable can contain, not the length. A
subscript is the number that follows a variable name (in
parentheses) and indicates which element of that variable is
considered. The following example shows how to assign 4 values
to a subscripted variable.

Atari BASIC Reference Guide 109

EXAMPLE

10 DIM X(3)
20 FOR I = 0 TO 3
30 READ X:X(I) = X
40 PRINT X(I),
50 NEXT I
60 DATA 12, 14, 13, 15
RUN
12 14 13 15

Noti ce that 4 values ca n be ass igned to a vari ab le that has a
dimension of 3. Thi s is possible because each array's initial
element has a subscript of o. The array can be represe nted as a
table of values as shown in the following illustrat ion .

o 1 2 3

X 12 14 13 15

The number in the DIM statement ind icates the largest subscr ipt
that can be used.

It should be noted from the exa mple (line 30) that subscripted
variables can not be used in a READ statement. As a result, a
separate statement is needed to ass ign the subscri pted variable.
The ass ignment statement can be on the sa me line (as shown
here) or on a separate line.

Numeric variables can also be used with two subscripts. This
results in a two dimensional array, or mat ri x. For exampl e, if X is
dimensioned in the statement DIM X(3,2) the following table
would result.

X

o
1

2

3

o 1 2

110 User's Handbook to the Atari 400/ 800 Computers

DOS (DO.)

CONFICURATION

DOS

EXAMPLE

DOS

The DOS command is used to display the DOS utilities Menu.
DOS must be present if the DOS command is to be used. If DOS
is not present, the system will be put into the Memo Pad mode.
To return to BASIC from Memo Pad, press SYSTEM RESET.

When the DOS command is executed, all I/ O channels will be
closed except channel 0. The display is cleared and the sound
voices are shut off. Also, the color registers resume their default
values.

The Disk Operating System Menu is a list of 15 disk functions.
There are two versions of the Disk Operating System, version 1.0
and version 2.0S. The DOS command has a different effect in
each of the two versions .

In version 1.0, the DOS Menu appears on the display as soon as
DOS is executed .

r DISK OPERATING SYSTEM
COPYRIGHT 1979 ATARI

9/24/79

A. DISK DIRECTORY I. FORMAT DISK
B. RUN CARTRIDGE J. DUPLICATE DISK
C. COPY FILE K. BINARY SAVE
D. DELETE FILE(S) L. BINARY LOAD
E. RENAME FILE M . RUN AT ADDRESS
F. LOCK FILE N. DEFINE DEVICE
G. UNLOCK FILE O . DUPLICATE FILE

'" H. WRITE DOS FILE

Atari BASIC Reference Guide 111

A program that is in memory will not be affected by a DOS
statement in version 1.0. However, disk operations J or 0 will
erase the contents of the memory. For examp le, if a program is in
memory, and a DOS command is executed, followed by
DUPLICATE DISK or DUPLICATE FILE, the program will be gone
when the system returns to BASIC.

IblSK OPERATING SYSTEM II
COPYRIGHT 1980 ATAR I

VERS ION 2.0S ""

A . DISK DIRECTORY I. FORMAT DISK
B. RUN CARTRIDGE J. DUPLICATE DISK
C. COpy FILE K. BINARY SAVE
D. DELETE FILE(S) L. BINARY LOAD
E. RENAME FILE M. RUN AT ADDRESS
F. LOCK FILE N. CREATE MEM.SAV
G. UNLOCK FILE O . DUPLICATE FILE
H. WRITE DOS FILES

'"

In DOS 2.0, DOS consists of 2 files, DOS.SYS and DUP.SYS.
DUP.SYS must be present on the diskette in drive 1 or the Atari
will return to BASIC. DUP.SYS was a portion of memory where
BASIC programs normally reside. In order to save any BASIC
program residing in this area of memory, the Atari will save that
program onto the MEM.SAV file on drive l--if that file exists.

Once these operations have been completed , the DOS utilities
menu will appear. You ca n return to BASIC by choosing menu
item B or by pressing the System Reset key.

112 User's Handbook to the Atari 400/ 800 Computers

DRAWTO (DR.)

The DRAWTO statement is used in the graphics modes to draw a
line. The arguments of the DRAWTO statement indicate the
column and row where that line ends.

CONFIGURATION

DRAWTO a,b

Both arguments of a DRAWTO statement must be positive, and if
they are not integers, they will be rounded off. The arguments
must also lie within the range of the display. For examp le,
GRAPHICS 3 has 40 columns and 20 rows. DRAWT040,20 wou ld
result in ERROR-141. Since the co lumns are numbered 0 to 39
and the rows are numbered 0 to 19, DRAWTO 40, 20 contains
arguments which lie outside the range of display.

A DRAWTO statement must occur after a PLOT statement. PLOT
determines the start ing point of the line, and DRAWTO
determines the end point. A DRAWTO statement can follow
another DRAWTO statement, if the first DRA WTO is preceded
by a PLOT statement.

EXAMPLE

10 GRAPHICS 3
20 COLOR 1
30 PLOT 5,5
40 DRAWTO 10,5
50 DRAWTO 10,10
60 DRAWTO 5,10
70 DRAWTO 5,5

A DRAWTO statement thatfollows another DRAWTO statement
wi ll use the end of the last line to start the new line. The previous
example began by plotting a point at line 30, then proceeded to

Atari BASIC Reference Guide 113

draw the 4 sides of a square in Lines 40,50,60, and 70.

The DRAWTO statement can also be used in graphics modesO, 1,
and 2. However, the PLOT statement in the text modes (0, 1 and
2) places a character on the display. The COLOR statement
determines the character that is printed (Tables 9-7 and 9-4). As a
result, the DRAWTO statement in the text mode creates a line of
characters.

EXAMPLE

10 GRAPHICS 2
20 COLOR 65
30 PLOT 0,0
40 DRAWTO 9,9

The previous example specifies graphics mode 2 in line 10. Line
20 indicates the character that appears on the display (Tab le 9-4) .
The PLOT statement in line 30 places an orange, uppercase A at
column 0, row 0. The DRAWTO statement makes a diagonal
line, consisting of the character A. The characters appear at the
positions (0,0), (1 ,1) ,(2,2)' .. . (9,9) .

The line drawn with a DRAWTO statement is either composed of
picture elements or characters . When a diagonal line is drawn
using PLOT and DRAWTO, the line appears in steps. This occurs
because the line is drawn with characters or picture elements
that are relatively large.

A "line" drawn with PLOT and DRAWTO.

114 User's Handbook to the Atari 400/ 800 Computers

END

An END statement ends the execution of the program. An END is
not necessary at the end of a program because execution stops
automatically after the last line of code. However, it is good
programming technique to end BASIC programs with an END
statement.

CONFIGURA TlON

END

When an END statement is executed, all I/ O channe ls will be
closed except 0, the display will be set to graph ics mode 0, and all
sound will be turned off.

EXAMPLE

10 INPUT X
20 IF X<= 10 THEN END
30 PRINT "X IS LARGER THAN 10"
40 GOTO 10

The previous example will end only if a value of X is entered
which is less than or equa l to 10.

ENTER

ENTER is used to recover programs th at have been saved on a
cassette or disk. ENTER can only be used to load programs that
were saved with the LIST statement.

CONFIGURATION

ENTER device[: fi lespec 1

When an ENTER statement is executed , the computer's memory
is not erased . As a result, the new program being loaded wi ll be
put into memory together with any existing program lines. For

Atari BASIC Reference Guide 115

example, if the program in memory contained line numbers 10,
20,30 ... , and the program being loaded (using ENTER) contained
line numbers 5, 15, 25, 35, ... , the resulting program in RAM
would include the line numbers from each of the two programs.

ENTER does not alter th e program in memory unless the
program being entered has the same line numbers as the
program being load ed . For example, if th e program in memory
contains line numbers 10, 20, 30,40, 50, and 60 and th e program
being entered contains 10, 20, 30 ,45, 55,70, 80, and 100, the new
program in memory will contain all of the newly entered
program , but only lines 40, 50, and 60 of the original program.
The original lines 10, 20, and 30 in RAM will be replaced with
lines 10, 20, and 30 being loaded from cassette or disk. Lines 40,
50, and 60 of the original program remain unchanged.

ENTER is the only Atari BASIC statement that can recover a
program without clearing the memory first.

When ENTER is used with th e program recorder, the tape must
be in the correct position prior to execution . When the ENTER
statement is executed, th e tone will sound once to remind the
operator to press PLAY on th e record er. The recorder will be
activated after th e RETURN key on the keyboard has been
pressed.

When ENTER is used with a disk , the DOS must have been
booted first. If more th an one disk is being used, the number of
the disk must be spec ified.

EXP

EXAMPLES

ENTER "C'
ENTER " D2 :jONES"

The EXP function returns the exponential of th e argument. The
exponential is th e value of e(2.71828179 ...) raised to the power of
the argument.

116 User's Handbook to the Atari 400/800 Computers

FOR (F.)

CONFIGURATION

X = EXP(a)

EXAMPLE

PRINT EXP(5)
148.413155

A FOR statement is used with a NEXT statement to form a
repetitive loop within a program.

CONFIGURATION

FOR A = a TO b [STEP c]

Every FOR statement must have a corresponding NEXT
statement.

EXAMPLE

10 FOR I = 1 TO 5
20 PRINT I;
30 NEXT I
RUN
12345

In the previous example, the FOR/ NEXT loop is repeated five
ti meso Line 20 is the on Iy statement inside the loop, however, any
number of program lines can be placed within a loop.

In line 10, I is assigned the value 1. I is referred to as a counter.
The value of I is incremented where a NEXT I statement is
executed. Here, the program returns to the FOR statement,
where I is incremented by one. This loop is repeated until I is set
equal to 5. When the counter (I) has been set equal to the value
(5), the loop has been executed, the program will proceed with
the statement following NEXT I.

Alari BASIC Reference Guide 117

A FOR/NEXT loop can use a STEP statement to increment the
counter by a value other than 1.

EXAMPLE

10 FOR J = 1 TO 2 STEP .5
20 PRINT L
30 NEXT J
RUN
1 1.5 2

The preceding example contains a FOR/ NEXT loop which
increments the value of J by .5 each time the loop is executed.

A FOR/ NEXT loop can also be used to decrease the value of the
counter. This can be accomplished by using the optional STEP
statement within the FOR statement. If the STEP statement has a
negative argument, the counter is decreased each time the loop
is executed. The following example illustrates a FOR/NEXT loop
where the counter is decremented rather than incremented .

EXAMPLE

10 FOR K = 10 TO 5 STEP -2
20 PRINTK,
30 NEXT K
RUN
10 8 6

This loop begins at line 10 by assigning the counter (K) the value
10. At line 20 the value of K is printed. When line 30 is
encountered, execution continues at line 10, because the NEXT
statement returns the program to the preceding FOR statement.
The value of the counter is changed by the argument of STEP.
Since the STEP value is -2, the counter is decreased by 2. The
value of the counter is changed to 8. At line 20, the new value of
K is printed. Line 30 is executed again, so the program returns to
the FOR statement at line 10. The counter is again decremented
by 2. The new value of K is 6. At line 20, this K value is printed.

When line 30 is executed again, the program does not return to

118 User's Handbook to the Atari 400/ 800 Computers

line 10. The current value of the counter is 6, and if the counter
was to be decremented again ,the counter would be4. However,
4 is less than the fin al value which is specified in the FOR
statement (the argument of TO) . As a result , the loop does not
continue after K =6 because another decrement would make the
counter less than the final value (5) .

If the counter of a loop is being incremented, the loop will be
executed until the cou nter would exceed the final value if it
were incremented again . For exa mple : FOR J = 1 TO 4 STEP 2
would be executed with J equal to 1 and 3. The counter (J) would
exceed the final value (4) if it were incremented again .

A FOR/ NEXT loop should be executed as if it were a single
statement. An attempt to branch into a FOR/ NEXT loop will
cause an error.

EXAMPLE

10 GOTO 30
20 FOR I = 1 TO 10
30 PRINT I
40 NEXT I
RUN
ERROR- 13 AT LINE 40

In general , branching out of a FOR/ NEXT loop will not cause an
error. However, exiting a loop before it has comp leted shou ld be
avoided.

FRE

The FRE function returns the number of bytes of memory
available. The FRE function requires an argument, but that
argument has no effect on the value returned.

CONFIGURATION

X = FRE (a)

EXAMPLE

PRINT FRE(O)

Alari BASIC Reference Guide 119

GET (CE.)

The GET function reads 1 byte from a channel that has been
opened for input. GET is used with the keyboard, display,
Program Recorder, or disk .

CONFIGURATION

GET #a, X

The first argument of a GET statement indicates the 1/ 0 channel
that will be used . If the first argument is not an integer, it is
rounded off. The second argu ment names the variable that will
be assigned the va lue read from the channel. This value will be
an integer between 0 and 255.

For example , if data is being accepted from the Progra m
Record er, the GET stat emen t must be p receded by an OPEN
state ment . The OPEN stateme nt must include th e number o f the
I/ O chann el, th e device name, dnd an input opera ti on code.
Numbers that are not intege rs are rounded off.

EXAMPLE

10 OPEN #3,4,0, "C"
20 FOR J = 1 TO 100
30 GET #3, X
40 PRINT CHR$(X)
50 NEXT J
60 CLOSE #3

The previous example shows the co rrect format for using a GET
statement. Line 10 opens the I/ O channel and specifies channel
#3 for input with the Program Recorder. The channel number
can be any number from 1 through 7, but the channel must not
be open for another device. The second argument of the OPEN
statement (4) in dicates that the device wi ll be used for input.

Line 20 is the first line of a FORI NEXT loop. The loop ends with
th e NEXT statement at lin e 50. The initi al va lue of th e co unter (J)

120 User's Handbook to the Atari 400/800 Computers

is 1, and the final value is 100. The counter is incremented by 1
each time the loop is executed, so the loop will be executed 100
times. Lines 30 and 40 both appear inside the loop (between FOR
and NEXT). As a result , lines 30 and 40 are repeated 100 times.
Each time line 30 is executed, an integer between 0 and 255 is
assigned to the variable X. Line 40 prints the character that has
the ASCII code specified by X. Line 60 closes the I/ O channel.

GET is used with the disk in the same fashion as it is used with the
Program Recorder. However the OPEN statement must include a
file specification. The first argument of the OPEN statement is a
channel number. Any channel from 1 to 7 can be used if it is not
already open . The second argument is the operation being
performed. GET can be used with the disk if the OPEN statement
has a second argument of 4 (input) or 12 (input and output). For
example, OPEN #2, 12, O,"D:BUDGET" is a correct OPEN
statement for using GET with a disk. GET assigns the next byte
read from the disk to the variable specified in the GET statement.

The GET statement can also be used with the keyboard. An OPEN
statement must be executed before the GET statement is
encountered. The first argument of the OPEN statement is the
number of a channel that is not already OPEN. The channel
number must be a number from 1 to 7. The second argument of
the OPEN statement must be 4 (input). The third argument is
generally O. The device code "K" is the fourth argument.

With the keyboard, a GET statement causes the program to wait
for one keystroke. When a key (or combination of keys) is
pressed, the ASCII code of the character is assigned to the
variable in the GET statement.

EXAMPLE

10 OPEN #2, 4, 0, "K"
20 GET #2, X
30 PRINT X
40 CLOSE #2
RUN
(PRESS "S")
83

Atari BASIC Reference Guide 121

The previous exa mple consists of a program that uses the GET
statement with the keyboard . Line 10 opens channel ;;2 for the
keyboard input. In line 20 , the GET statement assigns the ASCII
code of a character to th e variable X. Line 30 displays the ASCII
code on the screen. When the program is executed, line 10
opens the I/ O channel , but the program waits at line 20. When
the next keystroke occurs , the program continues. In this
example, the keystroke is the S key. The ASCII code of Sis 83, so X
is assigned the value 83. Line 30 causes 83 to be printed on the
display, and line 40 closes the I/ O channel.

The GET statement can also be used with th e display. An OPEN
statement mu st precede the GET state ment. Th e OPEN
statement specifies an I/ O channel that is not currently open.
The channel number must be from 1 to 7. Th e second argument
must be 4 (input) or 12 (input and output) , and the device must
be "5". With the display, the position of the cursor determines
the character or picture element to whi ch the GET statement
applies. The GET statement retrieves the COLOR information at
that point.

In graphics modes 0, 1, and 2, the COLOR information indicates
a character (and color register). Tables 9-4 and 9-7 list the
COLOR values for graphics modes 0, 1, and 2. In graphics modes
3 through 8, the GET statement indicates the color of the picture
element where the cursor is located. The value that a GET
statement retrieves is assigned to the variable in the GET
statement. The cursor advances to the next position after a GET
statement has been executed . An attempt to execute a GET
statement when the cursor is at the last column of the last row
results in an error.

EXAMPLE

10 OPEN #3,4,0, "5"
20 GRAPHICS 2
30 COLOR 65
40 PLOT 0,0
50 POSITION 0,0
60 GET #3, X
70 PRINT X
80 CLOSE #3

122 User's Handbook to the Atari 400/ 800 Computers

The previous example consists of a program that uses GET with
the display. Line 10 opens 1/ 0 channe l #3 for input from the
display (device "5"). Line 20 specifies graphics mode 2. Line 30
indicates the character and color that is displayed. Table 9-4 lists
the COLOR codes for graphics mode 2. COLOR 65 indicates an
upper case A in color register O. Since SETCOLOR is not used in
this program, the character is orange, the default co lor. The
PLOT statement at line 40 places the character at the upper left
corner of the display. Line 50 moves the cursor to the same
position as the character (0,0). The GET statement at line 60
assigns the COLOR information to the variable X. The channel
number in the GET statement must be the same as the channel
number in the OPEN statement. Line 70 displays the COLOR
information (65) on the display, and line 80 closes the 1/ 0
channel.

GET can also be used w ith the screen ed itor (device "E"). The
OPEN statement must includ e an unused 1/0 channel number.
Also, the OPEN statement must have operation code 4 (input) or
12 (input and output) . Since the screen ed itor uses the keyboard
for input, the GET statement has nearly the same function with
devices "K" and 'T'. The GET statement assigns the ASCII code of
a keystroke to the var iab le specif ied in the statement. The
program waits for input from the keyboard before it contin ues.
However, when a GET statement is executed, the character from
the keyboard must be followed by RETURN.

EXAMPLE

10 OPEN #3, 4, 0, "E"
20 GET #3, X
30 PRINT X
40 CLOSE #3
RUN
(press "5" followed by RETURN)
83

In the previous example, line 10 opens channe l #3 for input from
the screen ed itor. Wh en the screen ed itor is accessed, the screen
is cleared. The program wi ll wait at lin e 20 for input from the
keyboard . If more than one character is entered, an error results.

Atari BASIC Reference Guide 123

The GET statement only accepts one character, followed by
RETURN. If only one character is entered , the GET statement
assigns the ASCII code of that character to the variable X. Line 30
displays the value of X which is 83, since the ASCII code of Sis 83.
Line 40 closes the 1/ 0 channel.

COSUB (COS.)

GOSUB branches program control to the subroutine beginning
at the line number specified by its argument.

CONFIGURA TlON

GOSUB LN

Subroutines can be called from any part of a program. A RETURN
statement, at the end of a subroutine, causes the program to
resume execution with the statement directly after the GOSUB
statement.

Subroutines are convenient to use when the same set of
operations need to be repeated at different parts of a program.

EXAMPLE

10 FOR J =OTO 2
20 GOSUB 100
30 NEXT J
40 J = 5
50 GOSUB 100
60 END

100 PRINT j;
110 RETURN
RUN
0125

The previous example illustrates a subroutine that is called 4
times, from 2 different parts of the program. In this example,
only one statement is included in the subroutine. However,
many statements can be included in a subroutine.

124 User's Handbook to the Atari 400/800 Computers

Line 10 begins a FOR/ NEXT loop. The counter (J) is set eq ual to 0
the first time through the loop. Line 20 calls the subroutine at line
100. As a result, line 100 is executed next. The subroutine prints
the value of J and proceeds to line 110. At line 110, the program is
returned to the point where the subroutine was called (line 20).

The statement at line 30 is then executed. The NEXT statement
causes the loop to be incremented and repeated. The counter (J)
is set equal to 1, and the subroutine is called again from line 20.
At line 100, the value of J is printed. Line 110 returns the program
to line 20.

These steps are also repeated for J = 2. When the loop has been
executed 3 times, the program will proceed to line 40. J is
assigned the value 5, and the subroutine is cal led again at line 50.
The subroutine prints the value of J. The program then returns to
line 60 where it ends.

GOSUB can also be used with ON to branch a program to one of
several subroutines.

CONFIGURATION

ON EX GOSUB LN [,LN] [,LN] ...

The expression after the ON statement indicates which line
number the program proceeds to. This is ca lled the control
expression . The control is eva luated and rounded off. If the
value is negative or greater than 255, an error occurs. Ifthe value
of the contro l is 1, the program continues at the first line number
after GOSUB. If the contro l is equal to 2, the program continues
at the second line number after GOSUB, etc.

If the value of the control is 0 or greater than the number of line
numbers, the line after the ON/ GOSUB statement is executed.

EXAMPLE

ON X GOSUB 100, 200, 300,400

This statement executes the subroutine at line 100 if X = 1. If X = 2,

Atari BASIC Reference Guide 125

the subroutine at line 200 is executed . If X =3, the subroutine at
line 300 is executed. If X = 4, the subroutine at line 400 is
executed. If X = 0 or X is greater than 4, the next line is executed.

GOlO

The GOTO statement causes the program to proceed at the
indicated line number.

CONFIGURA TlON

GOTO LN

EXAMPLE

10 X = X + 1
20 IF X /\ 2>50 THEN END
30 PRINT X;
40 GOTO 10
RUN
1234567

The previous example demonstrates the use of GOTO. Line 10
increases the value of X by 1. Line 20 ends the program when X
squared is greater than 50. When line 40 is executed, the
program returns to line 10. This program repeats lines 10 through
40 until the program is ended or branched out of the loop. The
program ends when X = 8 because 8 squared is greater than 50.

GOTO is also used with an ON statement to branch a program to
one of several lines.

CONFIGURATION

ON EX GOTO LN [,LNj [,LNj ...

The expression after the ON statement indicates which line
number the program proceeds to. This is called the control
expression. The control is evaluated and rounded off. If the
value is negative or greater than 255, an error occurs. If the value
of the control is 1, the program continues at the first line number

126 User's Handbook to the Atari 400/ 800 Computers

after GOTO. If the va lue is 2, the program continues at the
second line number after GOTO, etc.

GRAPHICS

EXAMPLE

10 FOR I = 1 TO 3
20 ON I GOTO 40, 50, 60
40 PRI NT " I = 1" :GOTO 70
50 PRINT "I = 2":GOTO 70
60 PRINT "I = 3"
70 NEXT I

GRAPHICS sets one of the graphics modes.

CONFIGURATION

GRAPHIC a

The GRAPHICS statement generally clears the screen display
upon execution. By adding 32 to the GRAPHICS statement
argument, this feature is suppressed .

In graphics modes 1 through B, a four line text window appears in
the bottom of the display. By adding 16 to the GRAPHICS
statement argument, the text window will be suppressed.

EXAMPLE

GRAPHICS 49

The preceding GRAPHICS statement sets graphics mode 1 with
the screen clearing and text window features suppressed.

IF

The IF statement is used with a THEN statement to branch a
program if a particular condition is true.

CONFIGURA TlON
statement

IF EX THEN LN [:statement] ...

Atari BASIC Reference Guide 127

The expression (EX) that follows IF can be logical or algebraic.
Any algebraic expression that does not equal zero is considered
true. The logical operators (AND, NOT and OR) can be used in
the IF expression.

10 X = 15
20 Y = 30

EXAMPLE

30 IF X>10 AND Y>20 THEN 50
40 PRINT "CONDITIONS NOT MET":END
50 PRINT "CONDITIONS HAVE BEEN MET"
RUN
CONDITIONS HAVE BEEN MET

The previous example shows two logical expressions and a
logical operator in the IF/ THEN statement (line 30). The AND will
only be true when both conditions have been met. Since X = 15
(line 10) and Y = 30 (line 20), both of the conditions of line 30 are
true. As a result, the program branches to line 50. At line 50, the
message CONDITIONS HAVE BEEN MET is printed.

An END statement is used in line 40 to prevent both messages
from being printed when the IF statement is false.

An IF/THEN statement can also be followed by statements
instead of a line number.

10 Y = 5
20 X = 10

EXAMPLE

30 IF X<100 THEN PRINT X:PRINT Y
RUN
10
5

The previous example shows that statements can follow a THEN
statement, separated by colons. If the condition is true, the
statements are executed . If the condition is false, the program
will continue at the next line, and the statements after the THEN
statement are ignored. Si nce X = 10 (line 20), the condition at line

128 User's Handbook to the Atari 400/ 800 Computers

30 (X<100) is true. As a result, the statements after THEN are
executed, and the values of X and Yare printed.

The following example illustrates the use of algebraic
expressions. An algebraic expression is true when it does not
equal zero.

EXAMPLE

10 FOR I =-2TO 2
20 IF NOT I THEN END
30 PRINT I
40 NEXT I
RUN
-2
-1

The previous example contains a program that ends when a
condition is true. The condition is NOT I. NOT I is true when I is
false, and I is false when I is set equal to zero. When I has any
value other than zero, it is true.

Line 10 begins a FOR/ NEXT loop. The first time the loop is
executed, I is set equal to -2. Line 20 is an IF/ THEN statement
with the condition NOT I. When I is set equal to -2, it is
considered true because it is not equal to zero. Since I is true,
NOT I is false.

The condition at line 20 is false, so the program does not end .
Line 30 is executed next, so the value of I is printed. Line 40
returns the program to line 10, where the counter (I) is
incremented by 1. I is set equal to -1 , so I is still true. Since I is
true, NOT I is false. The condition of line 20 fails, so the value of I
is printed.

When the loop is executed the third time, I is set equal to zero. I
is false, so NOT I is true. Since NOT I is true, the program is ended
at line 20.

Atari BASIC Reference Guide 129

INPUT (I.)

The INPUT statement causes data to be assigned to variables.

CONFIGURATION

INPUT [#a,] x~ [~$J ..
The INPUT statement is generally used with the keyboard,
editor, disk, or Program Recorder. The INPUT statement
requires an I/ O channel number as well as a previous OPEN
statement if any device other than the editor is used.

The correct format for numeric data is standard notation or
scientific notation. Spaces can appear before or after a numeric
value, but spaces within a numeric value cause an error. Numeric
data can be entered on the same line, separated by commas.

EXAMPLES

54, 4E5, -10
-3.45E-10
0,1,1 ,5,3,10

Expressions cannot be used as numeric data with INPUT. Any
format other than standard floating point decimal or scientific
notation causes an error.

Each line of numeric data must be followed by an end-of-line
character (RETURN) .

String data must also be followed by an end-of-line character.
Only one string data item can occur on a line. Also, a string data
can be read only into dimensioned string variables. If the length
of a data item is more than the dimensioned length of the
variable, the excess characters are eliminated, but no error
occurs. Any character can be a part of a string data item for
INPUT (including commas and special graphics characters).

130 User's Handbook to the Atari 400/ 800 Computers

When INPUT is used with the screen editor, no OPEN statement
is necessary. The program waits for input from the keyboard
when an INPUT statement is executed. A question mark (?)
appears on the screen to remind the operator to enter data.

EXAMPLE

10 DIM X$(10)
20 INPUT X, X$
30 PRINT X$, X
RUN
? 45, JONES, BILL
JONES, BILL 45

In the previous example, line 10 dimensions the string variab le
for 10 characters. Line 20 is an INPUT statement that requests a
numeric value to assign to X, and a string value to assign to X$.
When the program is executed, the INPUT statement causes the
program to wait at line 20 for input.

Since no I/ O channel is specified, the input is accepted from the
keyboard, and the prompt (?) is displayed. The user responds
with two data items. The value 45 is entered for a value of X. The
string value JONES, BILL is entered for a value of X$. These two
data items could be entered on separate lines. Notice that the
comma in the string value does not separate data items.

When each variable in the INPUT statement is assigned a value,
the program executes the NEXT statement (line 30) . At line 30 the
values of X$ and X are displayed on the screen.

The INPUT statement can also be used with the Program
Recorder to recover data. When the Program Recorder is used,
an OPEN statement must be executed before an INPUT
statement is encountered. The OPEN statement must include an
I/ O channel number, the operation code for input (4) , and the
device code ("C). The third argument of the OPEN statement is
a special function code, and must be zero. If any of the
arguments of an OPEN statement are not integers, they are
rounded off.

Atari BASIC Reference Guide 131

The INPUT statement recovers data that was stored with the
PRINT statement.

EXAMPLE

10 DIM A$(100)
20 OPEN #1, 4, 0, lie"
30 INPUT #1 , A$
40 PRINT A$
50 CLOSE #1

The previous example contains a program that reads and displays
one string value. Line 10 dimensions the variable A$. Line 20
opens I/O channel #1 for input from the Program Recorder.
When line 20 is executed, the tone sounds to remind the
operator to find the correct position on the tape, press PLAY on
the Program Recorder then press RETURN on the keyboard .

When line 30 is executed, one string value is read from the
cassette and assigned to the variable A$. Line 40 causes the value
of A$ to be displayed on the screen . Line 50 closes the I/O
channel.

Before an INPUT statement can be used with the Program
Recorder, the data must have been put on the cassette with a
PRINT statement.

The INPUT statement can also be used to recover data that was
saved on a disk . The INPUT statement has the same configuration
with the disk and cassette. The INPUT statement must includean
I/O channel number and variable names.

The OPEN statement for the I/ O channel must include the
channel number and the operation code 4 (input) or 12 (input
and output) . The third argument of the OPEN statement is zero,
and fourth argument is the device and filename.

132 User's Handbook to the Atari 400/ 800 Computers

EXAMPLES

OPEN #2,4,0, "D2:BUDGET.BAS"
OPEN #3, 12, 0, "D:NAMES"

If only one disk is in use, the device name is simp le "D:" . If 2 or
more disks are being used, the number of the disk must be
specified .

The INPUT statement can also be used with the keyboard. The
OPEN statement must include an I/ O channel number,
operation code 4, special operation code 0, and the device "K".

EXAMPLE

10 DIM Y$(10)
20 OPEN #2, 4, 0, "K"
30 INPUT #2, X, Y$
40 PRINT X, Y$
50 CLOSE #2

The previous example contains a program that uses the
keyboard for input. Line 10 dimensions the variable Y$. Line 20
opens I/ O chann el #2 for input from the keyboard. When line 30
is executed, the program waits for input. However, no prompt
symbol appears, and the data is not displayed when it is entered.

The first variable in the I NPUT statement is X. Since X is a numeric
variable, a numeric data item must be entered first. The second
variable in the I NPUT statement is Y$. Si nce Y$ is a stri ng variable,
a string data item must be entered next. A comma can be used to
separate the data items, or each data item can be followed by
RETURN.

Line 40 displays the values of the two variab les, and line 50 closes
the I/ O channel.

INT

The INT function returns the largest integer that is less than or
eq ual to the argument.

LEN

Alari BASIC Referen ce Guide 133

CONFIGURATION

X = INT (a)

EXAMPLES

PRINT INT (13.9)
13
PRINT INT (-4.7)
-5

The LEN function returns the number of characters in a string
value or variable, including spaces and punctuation.

CONFIGURATION

X = LEN (string)

EXAMPLE

10 DIM A$(20)
20 A$ = "JONES, BILL"
30 PRINT LEN(A$)
40 PRINT LEN{"BILL JONES")
RUN
10
10

Line 10 dimensions the variable A$, and line 20 assigns A$ a string
value. Line 30 displays the number of characters in the variable
A$. Line 40 displays the number of characters in the string "BILL
JONES".

LET (LE.)

The LET statement is optional. It is used to assign a value to a
variable.

134 User's Handbook to the Atari 400/ 800 Computers

LIST (L.)

CONFIGURATION

[LET] X = a
X$ a$

EXAMPLES

LET X = 250
X = Y + 25

The LIST statement is used to display or record information in the
computer's memory.

CONFIGURATION

LIST [device:filespec,][LN][,LN]

The LIST statement can be used to save a program, or part of a
program, on a disk or cassette. The ENTER statement is the only
Atari BASIC statement that can recover a program saved with
LIST. The optional line numbers (LN) indicate the section of the
program that is to be saved . If no line numbers are specified, the
entire program will be saved. If only one line number is specifed,
only that line of the program is saved. If two line numbers are
specified, those two lines are saved along with all the code
between those line numbers. If either or both of the specified
line numbers do not appear, the section of the program between
those line numbers is saved.

A program is saved on a cassette tape with the statement LIST
"C". Before saving the program, the tape must be properly
positioned. When a LIST "c" statement is executed, the tone
sounds twice to remind the operator to press PLA Yand RECORD
on the Program Recorder, followed by RETURN on the
keyboard.

DOS must be booted before a LIST statement can be used with a
disk. A program is saved on a disk with a statement of the form
LIST "device:filespec" followed by the appropriate line numbers
(if any).

Atari BASIC Reference Guide 135

EXAMPLE

10 DIM A$(10)
20 FOR A = 1 TO 100
30 PRINT A$, A 1\ 2
40 IF A 1\ 2>500 THEN END
50 NEXT A
LIST "D :PROGR.BAS", 5, 45

In the previous example, the LIST statement saves lines 10
through 40 on the disk . The line numbers that are specified (5
and 45) do not exist in the program, so the section of the program
with line numbers between those values is saved .

The device code "0: can be used only if one disk is in use . If more
than one disk is available, the number of the disk must also be
specified.

The LIST statement can also be used to display a program on the
monitor. The LIST command displays the entire program on the
screen unless the LIST statement is followed by line numbers.

If one line number follows the LIST statement, the line of the
program with that line number is displayed . If the program does
not have a line with the line number specified in the LIST
statement, the LIST statement has no results.

EXAMPLE

LIST 20

20 FOR A = 1 TO 100

READY

If two line numbers are specified, those two lines are displayed
along with all the code between those line numbers. If either or
both of the specified line numbers do not appear in the
program , the section of the program between those line
numbers is displayed.

The LIST statement can also be used with a printer. The statement

136 User's Handbook to the Atari 400/ 800 Computers

LIST "P:" causes the program in the computer's memory to be
listed on the printer. The interface module and the printer must
both be turned on. Also , the printer must be on line.

The computer's character set is slightly different from the
printer 's, so certain characters appear diffe rently when printed.
Also, the printer interprets some of the contro l characters as
commands. As a result , when contro l characters are printed, the
printer may have an unusual response. To avoid this problem , do
not use control characters with in quotat ion marks. Instead, use
the CHR$ function to generate specia l characters.

EXAMPLE .

PRINT "--" (escape, contro l - *)
PRINT CHR$(31) (preferred)

The computer can only accommodate 128variables. If the limit is
exceeded, ERROR-4 occurs. The computer maintains a variable
name table with the names of all variables used since the NEW
command was executed. As a result , the variable name table can
accumulate variable names that are no longer being used. The
LIST statement is the on ly Atari BASIC statement that saves a
program without saving the variable name table. As a result, the
LIST and ENTER statements can be used to eliminate unused
variables from the variable name tab le.

EXAMPLE

Save the program on cassette or d isk using LIST.
Execute a NEW statement to clear the memory.
Put the program back into memory using ENTER.

LOAD (LO.)

The LOAD statement is used to recover programs that were
recorded with the SAVE statement.

CONFIGURATION

LOAD" device: fi lespec"

Atari BASIC Reference Guide 137

The LOAD statement is used with the Program Recorder or a
disk. The LOAD statement can only be used to recover programs
that were previously saved with a SAVE statement.

When a LOAD statement is executed, the computer's memory is
cleared before the new program is loaded. Also, the I/O
channels are closed (except 0), and the sound voices are shut off.

With the Program Recorder, the LOAD statement does not use a
filename. The cassette tape must be correctly positioned before
the LOAD statement is executed. Only the device name "C" is
necessary. When the LOAD "C" statement is executed, the tone
sounds once to remind the operator to press PLAY on the
Program Recorder, followed by RETURN on the keyboard.

With a disk, the LOAD statement must include a device name
along with a filename. If more than one disk is in use, the device
name must also include the number of the disk. If only one disk is
in use, the device name "D :" is sufficient.

LOCATE (LOC.)

EXAMPLE

LOAD "D2:GRADES"

The LOCATE statement is used to place the cursor at the
specified position , and assign the COLOR data at that point to
the specified numeric variable.

CONFIGURATION

LOCATE a, b, X

The first argument (a) indicates the column that the cursor is
moved to. The second argument (b) indicates the row. The third
argument is the numeric variable that is assigned the COLOR
data at the cursor position . A LOCATE statement can only be
used if a GRAPHICS statement has been executed.

The COLOR data in graphics mode 0 corresponds to the

13B User's Handbook to the Atari 400/ 800 Computers

character graphics mode 1 and 2, the COLOR data indicates the
character and color register of a PLOT statement.

In graphics modes 3 through 8, the COLOR data actually
corresponds to the color register of a picture element.

EXAMPLE

10 GRAPHICS 3
20 COLOR 2
30 PLOT 0,0
40 DRAWTO 35,0
50 LOCATE 5, 0, X
60 PRINT X

The previous example consists of a program that uses the
LOCATE statement. Line 10 chooses graphics mode 3. Line 20
indicates that color register 2 is used in the PLOT and DRAWTO
statements. Since no SETCOLOR statement was executed, the
default color (green) is used . The PLOT statement at line 30
illuminates a green picture element at the upper left corner of
the screen . The DRAWTO statement at line 40 illuminates the
top row of the display in the same color. Line 50 is a LOCATE
statement that places the cursor at position 5,0. Since the line was
drawn from 0,0 to 35,0, the position 5,0 is an illuminated picture
element. The value of the color register at that position is 2. The
LOCATE statement assigns the color register value (2) to the
variable X. Line 60 is a PRINT statement that displays the value of
X.

The DRAWTO and XIO statements have separate memory
locations for the cursor position. As a result, a LOCATE statement
has no effect on the cursor position of a DRAWTO or XIO
statement.

When LOCATE is used to read a code from the screen, the cursor
will move one location to the right. If the cursor was on that last
column of a row when LOCATE was executed, the cursor may
attempt to advance to the first column of the next row resulting
in Error 141 (Cursor Out of Range).

Atari BASIC Reference Guide 139

LOCATE moves the cursor by altering the values stored in
memory address 84 (current cursor row number) and memory
addresses 85 and 86 (current cursor column number). The cursor
position change as a result of the execution of LOCATE will have
no effect on DRAWTO and XIO statements, as they use memory
addresses 90,91 , and 92 to determine the next cursor address.

LOG

The LOG function returns the natural logarithm of the
argument. The natural log function is undefined for arguments
less than or equal to zero.

CONFIGURA TlON

X = LOG(a)

EXAMPLES

PRINT LOG(2.71828183)
1
PRINT LOG (-1)
ERROR-3

A value error results from a zero or negative argument.

LPRINT (LP.)

The LPRINT statement sends a line of output to a printer.

CONFIGURATION

LPRINT [data] ; [data] .. . ,

The LPRINT statement can include numeric variable names and
string variable names, as well as string constants. String constants
must appear in quotation marks.

The items in an LPRINTstatement must be separated by a comma

140 User's Handbook to the Atari 400/ 800 Computers

or a semicolon. A semicolon causes the values to be printed on
the same line without any spaces. A comma causes the next item
to be printed at the next column stop location. A comma or
semicolon is optional at the end of a LPRINT statement. If a
semicolon is used at the end of a LPRINT statement, the next
output will be adjacent to the last output. If a comma is used at
the end of an LPRINT statement, the next output occurs at the
next column stop after the last output. If neither a comma nor a
semicolon is used at the end of an LPRINT statement, the next
output occurs on the next line.

When an LPRI NT statement is executed, an error occurs if the
printer is not ready to operate .

The LPRINT statement uses I/ O channel 7. If channel 7 is open
when an LPRINT statement is executed, an error will occur.

EXAMPLE

10 DIM A$(5)
20 A$ = "GREEN"
30 X = 25
40 LPRINT "INVENTORY: " ; X,A$

In the previous example, LPRINT is used to print a string
constant, a string variable, and a numeric variable . The LPRINT
statement at line 40 prints the word INVENTORY followed by a
colon and a space . Any characters that appear in quotation
marks are reproduced as they appear. A semicolon separates the
items, so the value of X (25) follows the string.

A comma separates the variable names X and A$, so the value of
A$ is printed in the next display column.

NEW

The NEW command eliminates the current program in the
computer's memory. The NEW command erases all variables,
turns off all voices, and closes all I/ O channels except channel o.

NEXT (N.)

Atari BASIC Reference Guide 141

CONFIGURA TION

NEW

EXAMPLE

NEW

The NEXT statement is used with a FOR statement to form a
repetitive section of a program.

CONFIGURATION

NEXT X

A FOR statement begins a loop, and a NEXT statement ends it.
The FOR statement sets an initial value and a final value for the
counter. The optional STEP statement specifies the amount that
the counter is increased or decreased each time the loop is
executed .

EXAMPLE

10 FOR I = 1 TO 10 STEP 2
20 PRINT I
30 NEXT I

In the previous example, the variable I is the counter. The initial
value of the counter is 1, and the final value is 10. The value of the
counter is incremented by 2 each time the loop is executed.

The section of the program between the FOR and NEXT
statements is repeated for each different value of the counter.
Each time the NEXT statement is executed, the value of the
counter is changed by the STEP argument value . The loop is
repeated for each value of the counter. In the previous example,
the loop is repeated 5 times, with the counter equal to 1, 3, 5, 7,
and 9. The initial value of the counter (I) is 1, and it is increased by
2 each ti me the loop is executed because of the STEP 2 statement.

142 User's Handbook to the Atari 400/800 Computers

If no STEP statement is used, the counter value increases by 1
each time a NEXT statement is executed.

A FOR/NEXT loop can also have a decreasing counter. If the STEP
argument is negative, the value of the counter decreases each
time the loop is executed .

An increasing counter will repeat th e loop until one more
increase would make the counter greater than the final value. A
decreasing counter will repeat the loop until one more decrease
would make the counter less than th e final va lue.

When a loop has been comp leted, the statement after the NEXT
statement is executed .

NOT

NOT is a logical operator that returns the value 1 if its argument is
false. If its argument is true, the NOT statement returns the value
o.

CONFIGURATION

X = NOT EX

The following truth tab le describes the NOT operator .

A NOT A

0 1

1 0

The computer represents the condit ion of true with the number
1. The false condition is represented by o.

Numbers and expressions are considered true if they equa l any
number other than o. Only numbers that equal 0 are false . The
following examples are true .

Atari BASIC Reference Guide 143

EXAMPLES

5>3
4
NOT 0
NOT 3>5

The following exa mples are false.

EXAMPLES

"DOG" = "CAT"
3>5
NOT 5
NOT 1

The NOT operato r is genera lly used in IF/ THEN statements.

EXAMPLE

If X>Y AND NOT Z THEN 250

NOTE (NO.)

The NOTE function return s the location of th e file pointer for a
specified disk file. The NOTE function is not available in DOS
version 1.0.

CONFIGURA TlON

NOTE #a, X, Y

The NOTE fun ct ion must specify a channel number (#a) that is
open for a disk file.

The second argument is a numeric vari ab le that is assigned the
sector number of the fil e pointer. The third argument is a
numeric variable that is assigned th e byte number of the file
pointer within the specified sector.

EXAMPLE

NOTE #2, SEC, BYT

144 User's Handbook to the Atari 400/ 800 Computers

ON

The ON statement is used to branch program control. When
used with a GOTO statement, the ON statement branches
program control to one of several lines. An ON statement is also
used with GOSUB to branch a program to one of several
subroutines.

CONFIGURA TION

fGosuBj
ON X LGOTO}N[,LN] .. .

The argument of ON is the control expression . When a GOSUB
statement is used, the program proceeds to a subroutine. When
a GOTO statement is used, the program branches to a line
number.

The control expression determines to which line number the
program will proceed . If the control expression equals 1, the
program branches to the first line number after the GOTO or
GOSUB. If the control expression equals 2, the program
branches to the second line number after GOTO or GOSUB, etc.

If the control expression does not equal an integer, it is rounded .
If the control expression eval uates to 0 or a number greater than
the number of choices of line numbers, the statement following
the ON statement is executed.

If the control expression is less than 0 or greater than 255, an
error results.

EXAMPLE

10 X = 2
20 ON X GOTO 30, 40, 50
30 PRINT "FIRST" :END
40 PRINT "SECOND": END
50 PRINT "THIRD" :END
RUN
SECOND

Atari BASIC Reference Guide 145

The previous example consists of a program that uses an
ON/ GOTO branch. At line 20, the ON/ GOTO statement
branches to line 30, 40, or 50 depending on the valueof X. Since X
is assigned the value 2, the ON/ GOTO statement causes a
branch to the second line number. The second choice is line 40,
so the message SECOND is printed .

OPEN (0.)

The OPEN statement is used to open an input/ output channel
for an input or output device. The computer cannot receive
input from or send output to a device unless an I/ O channel has
been opened for that purpose.

CONFIGURATION

OPEN #a , b, c, "device [:filespec]"

The first argument of an OPEN statement is the channel number.
The channels are numbered from ° through 7. Channel number ° is always reserved for the editor. Channel number 6 is used for
graphics, and channel number 7 is used to save and load
programs. Channel number 7 is also used with the LPRINT
statement.

As a result, channels 1 through 5 are available for use with BASIC
programs. Channels 6 and 7 are available only on a limited basis
for use with BASIC programs. Channel 6 is available if no
graphics are used. Channel 7 is available unless programs are
being loaded or saved. Also, channel 7 is unavailable if an
LPRI NT statement is executed .

The second argum e nt indicates the operation of the
input/ output device. In general , the second argument is 4 if the
computer is accepting information (input) . The second
argument is generally 8 if the computer is sending information
(output) to a device. Table 5-1 contains a complete list of I/ O
operations with their associated devices and operation numbers.

146 User's Handbook to the Atari 400/ 800 Computers

Table 5-1. I/O Operations

Operation
Device Number Operation Type

Program Recorder 4 input
8 output

Keyboard 4 input

Printer 8 output

Editor 8 output :screen
input: keyboard

12 output :screen
input:screen

13 output :screen

Disk 4 Input
6 read disk directory
8 output, new file
9 output, append

12 input and output, update

Interface 5 concurrent input
8 block output
9 concurrent output

13 concurrent input and output

The third argument of an OPEN statement indicates a special
operation. The special operation code is usually O. Generally, the
third argument is only used when opening th e screen display for
a graphics mode.

If any of the first three arguments of an OPEN statement are not
integers, they are rounded off.

The fourth argument of an OPEN statement is the device name.
The device names used by Atari computers are listed below. The
device name and file specification (if present) must be enclosed
in quotation marks.

Atari BASIC Reference Guide 147

Program Recorder C:
Screen Editor E:
Keyboard K:
Printer P:
Display S:
Disk D:

Program Recorder

An I/ O channel can be opened for the Program Recorder for
either input or output, but not both at the same time. When the
OPEN statement is executed, the tape must be at the correct
location before proceding.

When an OPEN statement is executed for output to the Program
Recorder, the tone sounds twice. This is a reminder for the
operator to press Play and Record on the Program Recorder,
followed by Return on the keyboard. For input, the tone sounds
once to remind the operator to press Play on the Program
Recorder, followed by Return on the keyboard.

The third argument of an OPEN statement for the Program
Recorder ca n be either 0 or 128. The fi les are recorded with
shorter gaps between the records when the third argument is
128.

When an OPEN statement is executed, and the correct levers on
the Program Recorder are pressed, the Program Recorder
begins operating as soon as the Return key on the keyboard is
pressed. The tape keeps moving until a set of data (128 bytes) is
accumulated for output. While data is being accumulated,
nothing is recorded on the tape. As a result, if a long delay occurs
from the period when the OPEN statement is executed to when
the information is recorded , a long gap appears on the tape.

When a long section of blank tape (30 sec. or more) is
encountered during input, a Device Timeout error occurs. To
avoid these errors, the I/ O channel should be closed whenever a
delay in the output procedure occurs.

14B User's Handbook to the Atari 400/ 800 Computers

Keyboard

The OPEN statement for the keyboard can be for input only.
When the keyboard is used for input, the question mark does
not appear as a prompt for an INPUT statement. Also, the
response to an I N PUT statement does not appear on the display.
The third argument of an OPEN statement for the keyboard is
ignored.

EXAMPLE

10 DIM A$(1)
20 OPEN #2, 4, 0, "K :"
30 GRAPHICS 3 + 16
40 INPUT #2, A$
50 PRINT
60 END

The previous example contains a program that maintains a
graphics display until input is received from the keyboard. Line
10 dimensions the string variable A$. Line 20 opens the keyboard
for input. Line 30 selects graphics mode 19, which is the same as
graphics mode 3, but without a text window.

In order to maintain a full screen graphics display, the program
must pause, but not end. When a character is displayed, the
display returns to graphics mode O.

When the INPUT statement is executed at line 40, the program
waits for input, but does not ruin the display by printing the
prompt (?) or the response. As a result, the display is preserved
until the operator enters a suitable input for A$. The easiest
response to the INPUT statement is the Return key.

Disk

An 1/ 0 channel can be opened for a disk for any of the 1/ 0
operations li sted in Tab le 5-1. When an OPEN statement for the
disk is executed, DOS must have been booted and ready to
operate .

An OPEN statement for a disk file must inlcude the filename and

Atari BASIC Reference Guide 149

optional filename extension. The filename extension must be
separated from the filename by a period.

The following examples are correct OPEN statements for a disk .

Printer

EXAMPLE

OPEN #1 , 4, 0, "D2:GRADES.BAS"
OPEN #3, 12, 0, "D:JONES"

An I/ O channel for the printer can be for output only. The
printer must be turned on before the OPEN statement is
executed. If the printer is used with the Atari 850 interface, this
also must be ready to operate. The printer must be in the Online
mode if it has Local/ Online switch .

The third argument of an OPEN statement for the printer is
generally O. However, the Atari 820 printer outputs sideways
characters if the third argument is 83.

Editor

An OPEN statement for the editor allows the screen and
keyboard to be used for input and output. When an OPEN
statement is executed for the editor, the display resumes
graphics mode 0, the screen is cleared , the cursor is reset, and
the color registers are set to the default values.

The editor can be used in one of three modes. The mode is
determined by the second argument of the OPEN statement
(Table 5-1). The display is always used for output, but the display
or the keyboard can be used for input.

The third argument of an OPEN statement for the editor is
ignored. Even though this value has no effect, it must always be
included in the OPEN statement.

150 User's Handbook to the Atari 400/ 800 Computers

EXAMPLE

10 OPEN #1, 13,0, "E:"
20 T = 3.14
30 PRINTT
40 POSITION 0,0
50 INPUT #1, X
60 PRINT X
70 END

The previous example contains a program that uses the display
screen as an input dev ice . Line 10 opens I/ O channel number
one for the editor (device "E:") . The second argument of the
OPEN statement (13) indicates that the display is used for input
and output. The second line of the program assigns the value
3.14 to the variable T. Line 30 causes the value of T to be displayed
on the screen . Since the OPEN statement clears the screen and
resets the cursor, the value 3.14 is displayed at the upper left
hand corner of the screen.

The POSITION statement at line 40 returns the cursor to the
upper left hand corner of the screen. The INPUT statement at
line 50 chooses the device on I/ O channel 1. As a result, the
screen is used to input a value for the variable X.

When an I N PUT statement is used with the screen, the value that
follows the cursor is used for input. Since the value 3.14 appears
at the top of the screen , and the cursor is also at the top of the
screen, the value 3.14 is assigned to X. Line 60 displays the value
of the variable X.

The output of this program is the va lue 3.14 displayed twice. The
number is repeated because it is printed at lines 30 and 60.

Screen

The OPEN statement for the screen (device "S:") is used to
choose a graphics mode. The third argument of the OPEN
statement indicates the graphics mode (Othrough 8) . Thesecond
argument indicates if the screen is used for input or output, or
both. Also, the second argument determines if the display has a
text window and if the display is cl ea red when the OPEN
statement is executed.

Atari BASIC Reference Guide 151

Table 5-2. Screen I/O Operations

OPERATION
NUMBER

8
12
24

OUTPUT INPUT TEXT CLEAR
WINDOW SCREEN

NOTE: The screen is always clear in grap hi cs mode O.
Graphics mode 0 has no separate text window.

When the screen is used w ith an OPEN statement instead of a
GRAPHICS statement, the PLOT and DRAWTO statements
cannot be used. Input and output is performed with PRINT, PUT,
and GET statements. Each of these statements require an 110
channe l number that corresponds to the OPEN statement
channel number.

EXAMPLE

10 GRAPHICS 8
20 COLOR 1
30 PLOT 0,0
40 DRAWTO 10,10
50 OPEN #1, 60, 8, "S :"
60 POSITION 5,5
70 GET #1, X
80 PRINT X
90 END

The previous example contains a program that uses the screen as
an input device. Line 10 has a GRAPHICS statement that indicates
graph ics mode 8. Line 20 chooses color number 1. Lines 30 and 40
draw a sma ll diagonal line in the upper left of the display.

152 User's Handbook to the Atari 400/ 800 Computers

At line 50, the display is opened as an I/ O device. The first
argument of the OPEN statement indicates the I/ O channel
number. The second argument indicates that the screen is used
for input and output. Also, a text window is present, and the
screen is not cleared (Table 5-2). The third argument of the OPEN
statement indicates graphics mode 8.

At line 60, the cursor is positioned at the location of 5,5. The GET
statement at line 70 assigns the color number at the cursor
postion to the variable X. Since the cursor is at location 5,5, the
color number at that location is 1 (5,5 is one of the points on the
line between 0,0 and 10,10). The PRINT statement at line 80
displays the value of the variable X in the display window.

Atari 850 Interface Module

An OPEN statement for a serial port of an Atari 850 Interface
module requires the device name "R:". The number of the port
is also necessary for ports 2 through 4. The first argument of the
OPEN statement is the I/ O channel. The second argument
determines the I/ O operation, as listed in Table 5-1. The third
argument is ignored. Although the third argument has no effect,
it must appear in the OPEN statement.

The interface module must be ready to operate when the OPEN
statement is executed. It will not operate unless it was turned on
before the computer console was turned on . Also, the interface
module may not operate properly until the appropriate XIO
statements have been executed.

The following examples are correct OPEN statements for the
interface module.

EXAMPLES

OPEN #1 , 5, 0, "R2 :"
OPEN #2, 13, 0, "R :"
OPEN #4, 8, 0, "R4:"

Atari BASIC Reference Guide 153

OR

The OR statement is a logical operator that returns the value 1 if
either One of its arguments are true. An OR statement returns
the value 0 only if both of its arguments are false.

CONFIGURA liON

EX OR EX

The conditions of true and false are represented by the values 1
and 0 respectively. The results of the OR operation are
represented by the following truth table.

A B A OR B

o 0 0
o 1 1
1 0 1
1 1 1

An OR statement can have either relational or algebraic
expressions for arguments. Any algebraic expression that does
not equal zero is true. An expression that equals zero is
considered false.

EXAMPLES

5 (true)
3-7 (true)
"DOG" = "CAT" (false)
8<2 (false)

In the previous examples, 5 is considered true because it does
not equal zero. The expression 3-7 is also true because it does not
evaluate to zero. The relational expression "DOG" = "CAT" is
false because the stri ng constants are not equal. The expression 8
<2 is also false.

154 User's Handbook to the Atari 400/ 800 Computers

EXAMPLE

10 X = 5
20 Y = 10
30 IF X = 10 OR Y THEN PRINT Y
40 END
RUN
10

The previous example consists of a program that uses an OR
statement within an IF/THEN statement. Line 10sets Xequal to 5.
Line 20 sets Y equal to 10. Line 30 displays the value of Y if either
(or both) of the arguments of the OR statement are true . The first
argument of the OR statement is the relational expression X=10.
Since X is set equal to 5 in line 10, this expression is false. The
second argument of the OR statement is the algebraic
expression Y. The expression (Y) is considered false only when it
equals zero. Si nce Y is set equal to 10 at line 20, the expression is
considered true.

As a result , the OR statement is true because one of the
arguments is true. The value of Y is displayed because the
condition of the IF/ THEN statement is true.

PADDLE

The PADDLE function returns an integer between 1 and 228 that
depends on the rotation of a particular paddle.

CONFIGURA TlON

X = PADDLE (a)

A total of 8 paddle game controllers can be used at one time. The
value of the argument (a) indicates the number of the paddle. If
the argument of the PADDLE statement is not an integer, it is
rounded off. The paddles are numbered 0 through 7. If the
PADDLE statement has an argument greater than 7, the results
are unpredictable. If a paddle is not present when a PADDLE
statement is executed, the value 228 is returned .

Atari BASIC Reference Guide 155

The paddle controllers are used only in pairs. A pair of
controllers is plugged into one of the controller jacks on the
front of the computer. The first jack accepts paddles 0 and 1. The
second jack accepts paddles 2 and 3, etc.

If a paddle is rotated fully clockwise, the value 1 is returned. The
value increases as the paddle is rotated counter-clockwise. The
maximum value returned is 228.

EXAMPLE

10 IF PADDLE (1)=150 THEN END
20 GOTO 10

The previous example consists of a program that executes line 10
repeatedly until the paddle is rotated more than halfway
counter-clockwise. Since PADDLE (1) specified, the paddles
must be plugged into controller jack 1.

PEEK

The PEEK function is used to recover the value in a memory
location.

CONFIGURATION

X = PEEK (a)

A memory location contains an integer value between 0 and 255.
The argument of a PEEK statement refers to the memory
location. A value error occurs if the argument is negative or
greater than 65535. If the argument (a) is not an integer, it is
rounded off.

Many memory locations are of general interest. The contents of
a memory location can be changed with a POKE statement.
Appendix E contains information about commonly used
memory locations.

EXAMPLE

PRINT PEEK (83)
39

156 User's Handbook to the Atari 400/ 800 Computers

The previous example displays the current value for the right
margin of the screen. The default value is 39.

PLOT (PL.)

The PLOT statement is used to display a character or picture
element on the display.

CONFIGURATION

PLOT a,b

The arguments of a PLOT statement determine the position on
the screen where the character or picture element appears. The
first argument (a) indicates the column, and the second
argument (b) indicates the row. The graphics mode specified
determines the number of rows and columns of the display. If
either of the arguments is not an integer, it is rounded off. If
either argument is negative or greater than the dimension of the
screen an error resu Its.

In graphics mode 0, the COLOR statement indicates the
character that will appear at the next PLOT location. However,
the COLOR statement has nothing to do with the color of the
character. Table 9-7 indicates the COLOR value for each
character.

In graphics modes 1 and 2, the COLOR statement indicates the
character and location register used in the next PLOT location .
Table 9-4 indicates the COLOR value for each character in each
color register. In graphics modes 1 and 2, color registers are
available for each character. As a result , each character can be
displayed in any of 4 colors.

In graphics modes 3 through 8, the PLOT statement illuminatesa
picture element at the screen position indicated by the
arguments of the PLOT statement. The dimensions of the display
depend on the graphics mode. The number of possible colors
also depends on the graphics mode.

Atari BASIC Referen ce Guide 157

EXAMPLE

10 GRAPHICS 3
20 COLOR 2
30 FOR I = 0 TO 35 STEP 5
40 PLOT 1,0
50 NEXT I

The previous example contains a program that uses a PLOT
statement. Line 10 indicates graphics mode 3. Line 20 chooses the
color register 2. Since no SETCOLOR statement was executed,
color register 2 defaults to green. Line 30 begins a FORI NEXT
loop that is executed 8 times. The value of the counter (I) is set to
equal 0, 5, 10, 15 ... 35. As a resuic line 40 causes green picture
elements to appear evenly spaced across the top of the display.
The PLOT statement indicates positions (O,OL (5,OL (10,0) ... (35,0) .
The fi rst argument is the col u mn , and the second argu ment is the
row. The second value indicates the top line (zero row) of the
display.

POINT (P.)

The POI NT statement is used only in disk operations to move the
file pointer to a given location .

CONFIGURATION

POI NT #a , b, c

The first argument of a POINT statement indicates an 1/0
channel. The ch annel must be open to a disk for inpuc update,
or append . The second argument is the sector value. The sector
value must li e within the limits of the fil e. The third argument is
the number of the byte within the sector. The third argument
must be between 0 and 125. If any of the arguments are not
integers, they are rounded off.

The POINT command is not valid in version 1.0 of the disk
operating system.

158 User's Handbook to the Atari 400/ 800 Computers

EXAMPLE

POINT #3, SECT, BYTE

In the preceding example, the file pointer for the disk file
opened through channel #3 is moved to the sector specified by
the variable, SECT, and byte within that sector specified by the
variable, BYTE.

POKE (pOK.)

The POKE statement is used to store one byte of information in a
particular memory location.

CONFIGURATION

POKE a, b

The first argument of a POKE statement is the memory location.
If a POKE statement specifies a memory location that does not
exist, the POKE statement has no effect. Also, if a POKE
statement specifies a memory location that is part of the ROM,
the POKE statement has no effect.

The second argument of a POKE statement is the value that is to
be stored at the specified memory location. The value of the
second argument represents one byte. As a result, the value must
be an integer between 0 and 255.

If either of the arguments of a POKE statement is not an integer,
it is rounded off. A value error occurs if the memory location
specified is greater than 65535 or the value of the second
argument exceeds 255. A value error also results if either of these
arguments are negative.

If the POKE statement is not used carefully, it can seriously
disrupt the operation of the computer.

Appendix E contains information regarding commonly used
memory locations.

Atari BASIC Reference Guide 159

EXAMPLE

POKE 83,20

The previous example consists of a statement that changes the
right margin of the screen to column 20. The value of the right
margin is stored in memory location 83.

POP

The POP statement causes a program to ignore the GOSUB or
ON/ GOSUB statement that was executed last.

CONFIGURA liON

POP

In effect, a GOSUB or ON/ GOSUB statement is converted to a
GOTO or ON/ GOTO statement when POP is executed. The
program "forgets" that it is in a subroutine. As a result , when a
POP statement is executed , the next RETURN statement
branches the program control to the line after the GOSUB
statement before the previous GOSUB statement. In other
words, the program "forgets" where the subroutine was called
from, so it returns to a previous GOSUB statement.

A POP statement is used , in general, to exit a subroutine.

10 X = 5
20 Y = 10

EXAMPLE

30 GOSUB 100
40 END

100 PRINT X
110 IF X>O THEN POP:GOTO 130
120 RETURN
130 PRINT Y
140 END
RUN
5
10

160 User's Handbook to the Atari 400/ 800 Computers

The previous example contains a program that uses a POP
statement to exit a subroutine. At line 10, X is assigned the value
5. At line 20, Y is assigned the value 10. At line 30, the subroutine
at line 100 is called .

At line 100, the value of X is displayed. Line 110 is an IF/ THEN
statement that tests the condition X>O. Since the value of X is
greater than zero, the condition is true. As a result, the POP
statement is executed, and the program control branches to line
130. At line no, the value of Y is displayed.

Since the POP statement was executed , the program is no longer
in the subroutine. If another RETURN statement is executed, the
program will not return to line 30, where the subroutine was
called. The program will return to the line of the previous
GOSUB statement. Since there is no other GOSUB statement in
this program, a RETURN statement would cause an error.

A POP statement can also be used to make the program ignore
the previous FOR statement. When a POP statement is executed
within a FOR/ NEXT loop, the loop will not be repeated .
However, an error occurs if a NEXT statement is executed for that
loop.

POSITION (POS.)

The POSITION statement moves the cursor to the specified
column and row.

CONFIGURATION

POSITION a, b

The first argument of the POSITION statement determines the
column, and the second argument determines the row. The
cursor does not actually move when the POSITION statement is
executed. The cursor takes on the new position when the next
PUT, GET, PRINT, I NPUT, or LOCATE statement is executed.

If a POSITION statement specifies a location that is outside the
range of the display, no error occurs until another statement that

Atari BASIC Reference Guide 161

uses the display is executed .

A POSITION statement does not affect the DRAWTO, PLOT, or
XIO functions. These operations maintain a separate cursor
location .

EXAMPLE

10 GRAPHICS 0
20 POSITION 5, 4
30 PRINT EXP(1)

The previous example contains a program that uses a POSITION
statement. The GRAPHICS 0 statement causes the display to be
cleared. Line 20 moves the cursor to column number 5 and row
number 4. Line 30 prints the output on the screen at the position
of the cursor. As a result, the value 2.71828179 is displayed four
lines from the top of the display and 5 columns from the left
margin.

PRINT (PR. or ?)

The PRINT statement is generally used to display characters on
the screen, but a PRINT statement can be used to output
characters to any output device.

CONFIGURATION

PRINT[#a;) [expressionJ[~) ... ,
The PRINT statement can include numeric variable names and
string variable names, as well as string and numeric
constants. String constants must appear in quotation marks.

Items within a PRINT statement must be separated by a comma
or a semicolon. A semicolon causes the values to be printed on
the same line, without any spaces between items. A comma
causes the next item to be printed at the next column stop
location.

162 User's Handbook to the Atari 400/ 800 Computers

If a semico lon is used at the end of a PRI NT statement, the next
PRINT statement output will be adjacent to the last output. If a
comma is used at the end of a PRINT statement, the next output
occurs at the next column stop after the last output. If neither a
comma nor a semicolon is used at the end of a PRI NT statement,
the next output occurs on the next line.

Column stops occur at intervals of 10 spaces. However, if the last
character that was printed is within two spaces of the next
column stop, that column stop will be ignored. As a result, items
in a PRINT statement that are separated by commas will have at
least two spaces between them.

EXAMPLE

10 DIM A$(1S)
20 A$ = "THOMAS R SMITH"
30 X = 27
40 PRINT "NAME:"; A$, "AGE:"; X
50 END

The previous example contains a program that uses a PRINT
statement. At line 10, the variab le A$ is dimensioned. At line 20,
the variable A$ is assigned the str ing value "THOMAS R SMITH".
At line 30, the variable X is assigned the value 27.

Line 40 contains a PRINT statement. The string constant
"NAME:" is printed first, followed immediately by the value of
the variable A$. Since a comma follows the var iable A$, the string
constant "AGE:" is printed in the next available column.
However, the last character was printed in column 19, so the
column stop at column 20 is ignored. As a result, the string
constant "AGE :" and the value of the variab le X are displayed in
the last co lumn.

A PRINT statement requires an I/ O channe l number for any
output device other than the display. The I/ O channel must be
open for an appropriate output operation .

Alari BASIC Reference Guide 163

Program Recorder

A PRINT statement that is used with the Program Recorder is
generally used to store data that will be recovered with an INPUT
statement.

If the OPEN statement for the Program Recorder specifies short
gaps between the records (special operation code 128), the tape
does not stop moving. The data is not recorded correctly if the
program does not supply data fast enough to keep up with the
tape.

EXAMPLE

10 OPEN #1 , 8, 0, "C"
20 FOR I = 1 TO 100
30 X = INT (RND (9) * 100)
40 PRINT #1, X
50 NEXT I
60 CLOSE #1
70 END

The previous example contains a program that records 100
random numbers on tape. Line 10 opens I/ O channel number 1
for output to the Program Recorder. At line 20, a FOR/NEXT loop
is set up to be repeated 100 times. Line 30 assigns a random
number between 0 and 99 to the variable X. At line 40, the value
of X is printed on tape, using the Program Recorder. Line 50 is the
NEXT statement that completes the FOR/ NEXT loop. Line 60
closes the I/ O channel , and line 70 ends the program .

Disk

A PRINT statement that is used with a disk is generally used to
store data that will be recovered with an INPUT statement.

The format for using a PRINT statement with a disk is the same as
with the Program Recorder. The appropriate OPEN statement
must precede the PRINT statement. The I/ O channel must be
open for update, append , or output to the disk file.

164 User's Handbook to th e Atari 400/ 800 Computers

Printer

A PRINT statement for a printer also requires a previous OPEN
statement. Some of the characters may not be printed exact ly as
they are displayed on the screen . Different types of printers have
different character sets, so the actual results depend on the type
of printer being used.

Display

The use of a PRINT statement in the graphics mode is
complicated but not difficult. In graphics modes 1 and 2, the
PRINT statement displays characters on the screen . In graphics
modes 3 through 8, the PRINT statement displays a picture
element on the screen.

A PRINT statement can be used in a graphics mode if an OPEN
statement has bee n executed for output to device "5:". Also, a
PRINT statement can be used in a graphics mode if a GRAPHICS
statement has been executed.

The PRINT statement must include an I/ O channel number if a
corresponding OPEN statement has been executed. The PRINT
statement must include I/ O channel number 6 if a GRAPHICS
statement was executed. When a PRINT statement is used with
graphics, the I/ O channel number should be followed by a
semicolon instead of a comma.

In graphics modes 1 and 2, the characters are displayed as they
appear in Table 9-4. There are two se ts of characters availab le by
executing appropriate POKE statements. Each of these
characters can be displayed in anyone of four colors.

In Table 9-4, each character has four numbers associated with it.
These four numbers correspond to the four co lor registers. In
order to display one of the characters from Table 9-4 with a
PRINT statement, th e PRINT statement must include the
character from Table 9-7 that has th e same nu mber as th e desired
character from Table 9-4.

Atari BAS IC Reference Gu ide 165

EXAMPLE

10 GRAPHICS 2
20 PRINT #6; "ATAR I"
30 PRINT #6; "atari"
40 END

The previous examp le contains a program that uses two PRINT
statement in graph ics mode 2. At lin e 20, the PRINT statement
indicates I/O channe l number 6, w hi ch is used for graphics . To
determine which characters are to be printed, it is necessary to
consult Table 9-7 first. The upper case letters "ATARI" are
represented on Table 9-7 by the va lues 65, 84, 65, 82, and 73. The
characters that correspond to these va lu es, on Table 9-4, are the
characters that wi ll be disp layed. These values indicate the
characters" AT ARI" in color register 0 from Table 9-4.

Simi larly, the second PRI NT statement has the lower case letters
"atari". These characters have the va lu es 97, 116,97, 114, and 105.
On Table 9-4, these va lu es correspond to the upper case letters
"ATARI" in color register 1. As a res ult of this program, the
message "ATAR I" appears in orange and in light green.

In graphics modes 3 throu gh 8, a PRINT statement illuminates
one picture element for each character in the PRINT statement.
The co lor of the picture element is derived from the ASCII code
of the character. In the four-co lor grap hi cs modes (3 , 5, and 7),
the ASCI I codes is reduced modulo 4 to a number from 0 to 3.
This value corresponds to the color value of the picture eleme nt.
In the two-color graph ics modes (4, 6, and 8), the ASCI I code is
reduced modulo 2 to in dicate co lor va lu e 0 or 1.

Atari 850 Interface

A PRINT statement for a ser ial port of an Atari 850 Interface
module must be preceded by an appropriate OPEN stateme nt.
A lso, the interface module must be ready to operate. The
interface module will not operate unless it was turned on before
the computer conso le was turned on.

166 User's Handbook to the A tari 400/ 800 Computers

PTRIG

The PTRIG fun ction returns th e va lue of 0 if the specified paddle
contro ll er butto n is depressed. A 1 is re turned if th e button is
released.

CONFIGURATION

X = PTRIG(a)

The va lue of the argument (a) indi ca tes the number of the
paddle . A pair o f controllers can be plugged into eac h of the
controller jacks on th e compu ter. Th e first jack accepts paddlesO
and 1. The second jack accepts paddl es 2 and 3, e tc. A total of 8
paddle contro ll ers can be used at one time.

EXAMPLE

IF PTRIG(3) = 0 THEN END

The statement in the preced in g example ends the program if the
button on paddle 3 is being pressed.

PUT (PU.)

The PUT statement is used to send one byte to an output device.
One byte represents an integer between 0 and 255.

CONFIGURATION

PUT #a , b

The first argument of a PUT statement is the I/ O channel
number. The second argument is the va lue that is sent to an
output device. If either of the arguments are not integers, they
are rounded off.

An OPEN statement must precede the PUT statement except
when the PUT statement is used with graphics displays. The first
argument of the PUT statement must correspond to the I/ O

Atari BASIC Reference Guide 167

channel number in the OPEN statement. When a PUT statement
is used for the display following a GRAPHICS statement, the I/ O
channel number must be 6.

The I/ O channel must be open for output to an appropriate
output device.

The second argument can be any non-negative value, but the
value that is sent to the output device will always be an integer
between 0 and 255. Larger values are reduced modulo 256.

With the Program Recorder, an OPEN statement is needed to
open an I/ O channel for device "C". When the Program
Recorder is used for short gaps between records, the tape keeps
moving until the I/ O channel is closed. As a result, the program
must keep up with the tape or the information will not be
recorded proper/yo

EXAMPLE

10 OPEN #1, 8, 0, "c"
20 FOR I = 1 TO 100
30 X = INT(RND(9) * 100)
40 PUT #1, X
50 NEXT I
60 END

The previous example contains a program that records 100
random numbers. Line 10 is an OPEN statement that opens I/ O
channel number 1 for output to the Program Recorder. Line 20is
a FOR statement that begins a FOR/ NEXT loop that is repeated
100 times. Line 30 sets X equ al to a random integer between 0 and
100.

Line 40 contains a PUT statement that sends the value of the
variable X to the output device on I/ O channel number 1. Since
th e I/ O channel is open for output to the Program Recorder, the
values of the variable X are recorded on the cassette tape. When
the FOR/ NEXT loop has been executed 100 times, the END
statement at line 60 closes the I/O channel and ends the
program.

166 User's Handbook to the Atari 400/ 800 Computers

The same format of the PUT statement is used with the Atari disk
drive. The I/ O channel for the disk file must be opened for an
appropriate output option. Only a GET statement can be used to
recover the va lues that were recorded with a PUT statement.

When the display is used as an output device (S: or E:), a PUT
statement is used to place one character or illuminate one
picture element on the screen. The PUT statement causes the
output to appear at the current position of the cursor.

In the text modes, the value of the PUT statement corresponds to
the COLOR value of each character (Tables 9-4 and 9-7) . As a
result, a POSITION and PUT statement have the same result as a
COLOR and PLOT statement.

EXAMPLE

10 GRAPHICS 2
20 POSITION 9,3
30 PUT #6,65

The previous example contains a program that uses a PUT
statement in graphics mode 2. Line 20 positions the cursor near
the center of the screen. The graphics modes always use I/O
channel number 6. As a result, the PUT statement at Line 30
displays the character "A" at the current cursor position. The
characters that correspond to the PUT statement values are listed
in Tables 9-4 and 9-7.

When a PUT statement sends the value 125 to the screen, the
display is cleared. Also, when the value 155 is sent to the screen,
the cursor returns to the beginning of the next line.

Atari BASIC Reference Guide 169

In the four-color graphics modes (3, 5, and 7), the value that a
PUT statement sends to the screen is reduced modulo 4 to a
value between 0 and 3. The PUT statement illuminates the
picture element at the current position of the cursor.

The color of the picture element is determined by the value
between 0 and 3 in the same way that a COLOR statement value
determines the color.

In the two-color graphics modes (4, 6, and 8), the value of the
PUT statement is reduced modulo 2 to the numbers 0 or 1. The
color of the picture element is determined by the values 0 and 1
in the same way that a COLOR statement determines the color.

A PUT statement can also be used to send output to a printer. The
printer must be ready to operate when the corresponding OPEN
statement is executed.

PUT can also be used to send data to an open RS-232 serial port
on the Atari 850 Interface Module.

RAD

The RAD statement causes the trigonometric functions to be
performed in radians.

CONFIGURA liON

RAD

EXAMPLE

RAD

The trigonometric functions are performed in radians until a
DEG statement is executed. Also, radians are used following a
NEW or RUN statement or following a System Reset.

170 User's Handbook to the Atari 400/ 800 Computers

READ (REA.)

A READ statement is used to assign values to variables. The values
are taken individually from DATA statements in the order they
appear in the program.

CONFIGURATION

READ

Data items are assigned to variables in the order in which they
appear in the program unless a RESTORE statement has been
executed.

The type of variable in the READ statement must correspond to
the type specified in DATA. A numeric variable can only be
assigned a numeric value . However, a string variable can accept
any type of characters or none at all.

String variables must be correctly dimensioned before the READ
statement for that variable is executed.

A program must include at least as many data items as the
number of variables in its READ statements unless a RESTORE
statement is executed.

EXAMPLE

10 DIM X$(10)
20 READ X,X$
30 PRINT X$,X
40 END
50 DATA 12, JONES
RUN
JONES 12

The preceding example contains a program that has a READ
statement. First, the string variable X$ is dimensioned . Next, at
line 20, the variables X and X$ are assigned the values from the
DATA statement at line 50. At line 30, the values of the two
variables are displayed .

Atari BASIC Reference Guide 171

A READ statement can accept data from a DATA statement that
appears anywhere in a program. A DATA statement does not
have to precede the READ statement in order to be effective.

REM (R. or .)

A REM statement is used to insert comments in a program. The
REM statement is ignored by the Atari BASIC interpreter.

CONFIGURATION

REM remarks

EXAMPLE

REM INPUT ROUTINE

Any statements that follow a REM statement, on the same line,
are also ignored by the computer. As a result, a REM statement is
generally used on its own line or at the end of a multiple
statement line.

RESTORE (RES.)

A RESTORE statement is used to move the data pointer.

CONFIGURATION

RESTORE [LN]

The data in a program is read in order, starting with the first
DATA statement item. In order to reread a section of data, a
RESTORE statement is necessary.

When a RESTORE statement is executed without an argument,
the next READ statement will assign to its first variable the first
data value that appears in the program.

When a RESTORE statement is executed with an argument, the
next READ statement will assign to its first variable the first data
value that appears at the line number specified by the argument.

172 User's Handbook to the Atari 4001800 Computers

EXAMPLE

RESTORE 100

The previous example contains a statement that moves the data
pointer to the DATA statement at line 100. If line 100 is not a
DATA statement, the data pointer is moved to the next DATA
statement after line 100.

RETURN (RET.)

A RETURN statement is used to branch a program back to the
line where the last subroutine was called.

CONFIGURATION

RETURN

A subroutine is called with a GOSUB or ON/ GOSUB statement.
When the subroutine has been completed, a RETURN statement
causes the program control to return to the statement following
the most recently executed GOSUB or ON/ GOSUB statement.

EXAMPLE

RETURN

When a POP statement is executed before a RETURN statement,
the most recent GOSUB statement is ignored , and the program
control is branched to the next most recent GOSUB statement.

RND

The RND function is used to generate random numbers.

CONFIGURATION

X = RND(a)

The argument of a RND statement has no effect on the results ,
but it is necessary. The value of the random number is less than 1
and greater than or equal to zero.

Atari BASIC Reference Guide 173

EXAMPLE

X = INT(RND(9) * 100)

The previous example contains a statement that generates
random integers between 0 and 99 inclusive.

RUN (RU.)

The RUN statement is used to execute the program that is
currently in the computer's memory. A RUN statement is also
used to load and execute a program from an input device.

CONFIGURATION

RUN ["device:filespec"]

A RUN statement closes the I/ O channels and turns off the
sound voices before executing or loading the program.

When a RUN statement is used with an input device, the
contents of the computer's memory are erased before the
program is loaded. Only BASIC programs that were recorded
with the SAVE statement can be loaded and executed with a RUN
statement.

The Program Recorder is activated with a RUN "C:" statement.
The tone sounds once to remind the operator to position the
tape and press the Play lever on the Program Recorder followed
by Return on the computer's keyboard.

A RUN statement can load and execute a program from a disk file
if the disk operating system has been booted . An error results if
the specified fi Ie does not exist.

EXAMPLES

RUN "C:"
RUN "D2:JONES.BAS"

174 User's Handbook to the Atari 400/ 800 Computers

SAVE

The SA VE command is used to send a BASIC program in RAM to
an output device.

CONFIGURATION

SAVE device

where device is a device name such as the program recorder (C:)
or disk drive (D :). In the case of the disk drive, a filename may be
specified with the dev ice name. The program will be saved
under the filename specified.

Files saved via SAVE are transferred in tokenized format. These
files can only be subsequently loaded using LOAD or RUN.
CLOAD and ENTER will not load a program saved with SAVE.

SA VE With The Program Recorder

The SAVE C: command is used to transfer a program to the
program recorder. When SAVE C: is executed, the Atari's
speaker will sound twice to indicate that the tape is to be
positioned correctly to receive the fil e. Once the tape has been
positioned, press the Record and Play buttons on the recorder.
Then, press any key on the Atari's keyboard. The program will
then be transferred from RAM to the program recorder.

SA VE With The Disk Drive

Before SAVE can be used to transfer a program to the disk drive,
DOS must have first been booted . An error will result if an
attempt is made to execute SAVE when DOS has not been
booted . If a file with the same filename as the file specified with
SAVE already exists on the diskette to which the program is being
transferred, the file being transferred will replace the file on
diskette with the same name.

Atari BASIC Reference Guide 175

SETCOLOR (SE.)

The SETCOLOR statement is used to assign a color and
luminance value to the color register specified.

CONFIGURATION

SETCOLOR register #, color, luminance

The color register must range from 0 to 4 inclusive. The color
must range from 0 to 15 inclusive. These values and their
corresponding colors are listed in Table 9-3 . The luminance can
range from 0 (darkest) to 14 (brightest) .

Each of the 5 color regi sters has a default color and luminance
value. These default values are listed in Table 9-2.

SGN

The SGN function returns a +1 if its argument is positive , a -1 if
negative, and a 0 if zero.

SIN

CONFIGURA TlON

SGN (a)

EXAMPLE

100 A = 100
200 X = SGN (A)
300 PRINT X
RUN
1

The SIN function returns the sine of the angle specified as its
argument. The argument will be assumed in radians unless a DEG
statement precedes the SIN statement.

176 User's Handbook to the Atari 400/ 800 Computers

SOUND

CONFIGURATION

X = SIN (a)

EXAMPLE
10 DEG
20 X = SIN (90)
30 PRINT X
RUN
1

The SOUND statement is used to output sound via the television
set or monitor's speaker.

The SOUND statement is used with the following configuration.

SOUND voice, pitch, distortion, volume

Together these four arguments determine the sound produced.
voice sets one of four voices available with the Atari. These are
numbered from 0 to 3. These four voices are independent of
each other. In other words, as many as four voices can be
sounded at the same time.

pitch sets the pitch of the sound produced by the SOUND
statement. The pitch can range from 0 to 255. The highest pitch
begins at 0 and the lowest at 255.

The SOUND statement can produce either pure or distorted
tones. distortion can range between 0 and 15. A distortion value
of 10 or 14 will produce a pure tone. Any of the other even
distortion values (0, 2,4,6,8, 10, and 12) will generate a different
amount of noise into the tone produced. The amount of this
noise will depend upon the distortion and pitch values specified.

The odd numbered distortion values (1 , 3, 5, 7, 9, 11, 13) cause
the voice indicated in the SOUND statement to be silenced. If
the voice is on, an odd-numbered distortion value will result in
its bei ng sh ut off.

Atari BASIC Reference Guide 177

The volume controls the loudness of the voice indicated in
SOUND. volume ranges from 0 (no sound) to 15 (highest
volume) .

An Atari BASIC statement with a volume of 0 will turn off the
sound. Sound can also be turned off by executing an END, RUN,
NEW, DOS, CSAVE, or CLOAD. If the System Reset key is
pressed , sound will be turned off . However, if the Break key is
pressed , sound will not be turned off.

SQR

SQR returns the square root of its argument.

STATUS

CONFIGURA TlON

SQR (a)

EXAMPLE

10 X = 49
20 PRINT SQR (X)
RUN
7

STATUS returns a code which identifies the last input/ output
operation undertaken on the channel specified.

CONFIGURA TlON

STATUS #channel, X

The status code will be returned via the numeric variable
indicated. The status codes are listed in Table 5-3.

EXAMPLE

100STATUS#5,ST4
200 PRINT ST4
RUN
130

17B User's Handbook to the Atari 400/ 800 Computers

In the preceding example, the status code for the last
input/output activity undertaken on the device opened as
channel 5 is displayed .

Table 5-3. STATUS Code Values

STATUS Code Reference

1 Operation completed with no problem.
3 Approaching end of file, Next READ

receives last data in file.
128-171 Reference Error Messages 128-171

in Appendix A.

STICK

The STICK function returns the position of the joystick indicated
as its argument.

CONFIGURATION

STICK (a)

"a" indicates the joystick number (0-3). The value returned can
range from 0 to 15 and corresponds to the positions indicated in
Ill ustration 5-1.

EXAMPLE

IF STICK (1) = 7 THEN GOTO 700

Atari BASI C Reference Guide 179

Illustration 5-1. STICK Joystick Positions

14

("J

I I
10/""' I I ./'-,\6

<- ~'~--I---f---~) , // , ,
'\.

/
/

/

,---- -- - ---\
11 I

'------

(
9 '-/

STRIG

13

'\. , ,
, , ,

----_/

, ,
I

',- / 5

J 7

The STRIG fun ction return s a value of a if th e specifi ed joystick's
button is depressed . A 1 is returned if th e button is released .

CONFIGURATION

STRIG (a)

"a" indicates th e joysti ck number (0-3).

EXAMPLE

100 IF STRIG (2) = a THEN GOTO 700

180 User's Handbook to the Atari 400/ 800 Computers

STOP

The STOP statement causes a halt in the execution of a BASIC
program.

CONFIGURATION

STOP

When a STOP statement is executed, the computer will return to
graphics mode o. If STOP is executed in the program mode, the
following screen message will be displayed;

STOPPED AT LINE XXX

where XXX is line number where STOP was executed. If STOP is
executed in the immediate mode, this message will not appear.

CaNT can be used to rescue program execution after it was
halted by executing STOP.

EXAMPLE

100 INPUT A
105 IF SGN (A) = -1 THEN 150
110 B = SQR (A)
120 IF SGN (B)<>l THEN STOP
130 PRINT B
140 GOTO 100
150 END

In the preceding example, if a value of 0 is input for A in line 100,
program execution will stop and the following message will be
displayed.

STOPPED AT LINE 120

By entering CONT, program execution will resume with line 130.

Atari BASIC Reference Guide 181

STR$

STR$ returns the string representation of its argument.

CONFIGURAITON

a$ = STR$(a)

In the following example , A$ would consist of the string "40". In
this case, "40" is a string--not a number. In other words, "40" (in
its string equivalent) would not be used in ca lcu lations.

TRAP

EXAMPLE

050 DIM A$(50)
150 A$ = STR$(40)
200 PRINT A$
RUN
40

The TRAP statement causes program execution to branch to the
line number indicated when an error is encountered.

CONFIGURA TlON

TRAP LN

TRAP must have been executed prior to the occurrence of the
error. Otherwise, a branch to the indicated program line will not
take place.

TRAP will invalidate the Atari's automatic error handling routine
which halts program execution.

182 User's Handbook to the Atari 400/ 800 Computers

100 TRAP 700
200 INPUT A

EXAMPLE

300 IF A = 0 THEN 999
400 PRINT A
500 GOTO 200
700 PRINT PEEK (195)
800 PRINT 256 * PEEK (187) + PEEK (186)
999 END
RUN
?A
8
200
READY

In the preceding example, the TRAP statement in line 100 will
cause the program to branch to line 700 if an error is
encountered . In line 700, the error code is displayed. (Address
195 is used to store the error code.). In line 800, the line number
where the error occurred is displayed . The following expression,

256 * PEEK(187) + PEEK(186)

returns the line number where the error occurred.

In our example, the data input in response to the INPUT
statement in line 200 was string. Since a numeric variable was
specified in line 200, error code 8 was generated. This was
displayed along with the line number where the error occurred
(200).

USR

USR is used to branch program control to a machine language
program.

CONFIGURATION

USR(address[, argument ... J)

Atari BASIC Reference Guide 183

The address indicated is that of the machine language
subroutine to be branched to . Function arguments between 0
and 65535 can be optionally included with the USR command as
indicated in the Configuration.

Beginning with the last argument, each argument is evaluated
and converted to a 2-byte hexadecimal integer. This integer is
placed on the hardware stack, and a count of the USR arguments
is also pushed on the stack. The hardware stack configuration is
depicted in Illustration 5-2.

Returning To BASIC

When BASIC executes a USR function, the BASIC program's
current location is pushed onto the hardware stack (see
Illustration 5-2). The machine language program can return to
BASIC by executing the assembly language RTS instruction . RTS
will pull the return location within the BASIC program from the
hardware stack.

However, before RTS can be used to pull the return location off
the stack, all data on the stack related to function arguments
must have been pulled off the stack . This includes both the
arguments themselves as well as the argument count. Even if
there are not arguments, the machine language program must
pull the argument count off the stack before returning to the
BASIC program.

VAL

The VAL function converts its string argument to a numeric
value. The first character of the string argument must be a
numeric character. Otherwise, an error will occur. The numeric
characters in the string argument will be converted to their
numeric equivalents until a non-numeric string character is
encountered .

CONFIGURATION

VAL (a$)

184 User's Handbook to the Atari 400/ 800 Computers

Illustration 5-2. USR Hardware Stack

Top of Stack

Bottom of Stack

XIO

USR Argument Count

First USR Argument

Second USR Argument

Final USR Argument

BASIC Program's
Return Address

Stack Contents Prior
to USR

EXAMPLE

050 DIM A$(50)
100 A$ = "57 A72B"
200 PRINT VAL(A$)
300 PRINT VAL(A$) + 2
RUN
57
59

The XIO statement is a genera li zed input/output statement
which can perform a wide range of input and output operations.
These operations are summarized in Table 5-4.

Atari BASIC Reference Guide 185

CONFIGURA TlON

XIO command, #chan nel , a, b, device

The command value (as specified in Table 5-4) indicates the
operation to be performed. The channel specified must have
been previously opened for input or output (with the exception
of XIO 3).

The numeric expressions (a, b) are not always used by XIO,
however, they must always be present as parameters. The
applicable numeric expression values are given in Tables 5-4, 5-5,
5-6, and 5-7.

The final parameter, device , specifies the device to be used for
the input/ output operat ion.

Table 5-4. XIO Command Summary

DOS or BASIC

Operation Command Counterpart Numeric Exp1 Numeric Exp2

General I/O Operations:

Open a channel 3 OPEN See Table 5-1 0-8

Read a line 5 INPUT 0 0

Get a character 7 GET 0 0

Write a line 9 PRI NT 0 0

Put a character 11 PUT 0 0

Close channel 12 ClOSE 0 0

Statu s of channel STATUS 0 0

Screen Graphics:

Draw a line 17 DRAWTO 0 0

FiJI an area 18 None 0 0

Disk':

Rename a fil e 32 DOS Menu E 0 0

Delete a fil e 33 DOS Menu 0 0 0

Lock a file 35 DOS M enu F 0 0

Unlock a fil e 36 DOS Menu G 0 0

Move file po in te r 37 PO INT 0 0

Find file pointer 38 NOTE 0 0

Format diskette 254 DOS Menu I 0 0

' 005 must have been boo ted .

185 User's Handbook to the Atari 400/ 800 Computers

RS-232 Serial PorI :

Output Port of a Block 32 None 0 0

Control DTR, RTS, XMI 34 None See Table 5-5 0

Baud rate , word si ze, 36 None See Table 5-6 ~ee Table 5-6

stop bits, & ready

monitoring

Translation mode 38 None See Table 5-7 ASCI I Code

Concurrent mode 40 None 0 0

Table 5-5. Numeric Expression 1 Values for XIO 34

Function* DTR RTS XMT

No change 0 0 0
Turn Off (XMT to 0) 128 32 2
Turn On (XMT to 1) 192 48 3

*Add value for DTR, RTS, & XMT to obtain Numeric Expression 1

Example Values DTR RTS XMT
of Numeric Expression 1

162 Off Off 0
163 Off Off 1
178 Off On 0
179 Off On 1
226 On Off 0
227 On Off 1
242 On On 0
243 On On 1

Ata ri BASIC Reference Guide 187

Table 5-6. Numeric Expression 1 and 2 Values
For XID 36

Numeric Expression 1 Value*

Stop Bits Value Word Size Value Baud Rate

1 0 8 bits 0 300
2 128 7 b its 16 45.5

6 bits 32 50
5 bits 48 56.875

75
110

134.5
150
300
600

1200
1800
2400
4800
9600
9600

Value

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

*Add va lue from each co lumn to determ ine Numeric Expressio n
1.

Numeric Expression 2 Value

DSR CTS CRX Value

No No No 0
No No Yes 1
No Yes No 2
No Yes Yes 3
Yes No No 4
Yes No Yes 5
Yes Yes No 6
Yes Yes Yes 7

188 User's Handbook to the Atari 400/800 Computers

Table 5-7. Numeric Expression 1 Value for X/O 38

Numeric Expression 1·

Translate Atari
Line Feed ASCII to ASCII Input Parity Output Parity

Append Value Mode Value Mode Value Mode Value

No 0 Light 0 Disregard 0 No change 0
Yes·· 64 Heavy 16 Odd 4 Odd 1

None 32 Even 8 Even 2
Disregard 12 Bit On 3

·Add one value from each co lumn to determin e Numeric Expression 1.

··The line feed character is appended after a car riage return (EOL).

EXAMPLE

X/O Example Program

100 GRAPHICS 5
200 COLOR 1
300 PLOT 50,20
400 DRAWTO 50 ,10
500 DRAWTO 10,10
600 POSITION 20,20
700 POKE 765,1
800 XIO 18,#6,O,O,"S:"

The preceding example illustrates the use of the XIO command
to fill an area in graphics. The command, 18, specifies the
graphics fill area action. Channel #6 is the graphics channel. The
numeric parameters are both specified as 0, and the device is the
screen (S :).

CHAPTER 6.
ATARI 410 PROGRAM RECORDER

Introduction

The Atari 410 Program Recorder is used for storing BASIC
programs or data on cassette tape. BASIC programs or data can
be transferred from RAM onto cassette via anyone of several
Atari BASIC statements.

The process of transferring a program from RAM onto cassette
tape (or any other storage device) is known as saving that
program. Once a program has been saved, it can later be
transferred back from the storage device into RAM. This process
is known as loading.

Data can also be transferred back and forth between RAM and
cassette tape. The process of sending data to cassette tape is
known as writing the data. The retrieval of that data from cassette
tape back into RAM is known as reading the data.

In this chapter, we will discuss the BASIC statements used to read
and write data and to save and load programs. However, first we
will discuss the concepts of data and program storage.

Data Files-Files, Records, & Fields

Data files can be visualized as being organized as files, records,
or fields.

If we visualized the Atari 410 Program Recorder as a filing
cabinet, a data file would be analogous to one file within that
filing cabinet. For instance, if you kept a file filled with slips of
paper containing the names and addresses of all of your cousins,
that physical file would be analogous to a computer's data file.

190 User's Handbook to the Atari 400/800 Computers

Your data file could contain any number of slips of paper-
depending upon how many cousins you had . Each slip of paper
containing the name and address of one of your cousins would
be analogous to a record with a data file .

Each individual data item within a record is known as a field. In
our example, the name of each cousin might be considered a
field as well as the street address, city, state, zip code, and
telephone number.

Program Files

Programs are also stored as fil es. However, unlike data files,
program files are not divided into records and fields.

We will discuss loading and saving program files in the following
several sections. The reading and writing of information to data
files will be discussed later in this chapter.

Saving Programs on the Atari 410

Atari BASIC contains three statements that are used to store
programs on cassette tape. These are:

CSAVE
SAVE
LIST

Each of these three statements has a corresponding Atari BASIC
statement which is used to load a program into memory from the
cassette ta pe. These are:

CLOAD
LOAD
ENTER

The CSAVE statement is used only for saving programs on
cassette. LIST and SAVE can be used to send a program to devices
other than the Atari 410 Program Recorder. LIST and SAVE must

Atari 410 Program Recorder 191

be used with the Program Record er's device name (C) as shown
below,

LIST "c"
SAVE "c"

to save programs on the Program Recorder.

Either the CSAVE or SAVE "c" statements will save the complete
program when executed. The LIST "c" statement can be used to
save either all or part of a program. The following LIST statement
would save line numbers between 500 and 1000 to the 410
Program Recorder when executed.

LIST "c" 500, 1000

When either the CSAVE, LIST "C", or SAVE "C N statements are
executed, th e Atari's speaker will sound twice. This is a signal for
the operator to place a cassette tape in the 410 Program
Recorder. The tape should then be forwarded to the position
when recording is to begin . The rewind and fast forward keys can
be used to position the tape.

Once the tape is in the proper position, press the record and play
keys . When the tape is ready, press Return on the Atari keyboard
and the recording process will begin.

By turning up the sound on your television set or monitor, you
ca n actually hear the recording process. A high pitched tone will
be sounded followed by a number of short eruptions of sound.
Each sound indicates that a block of program information has
been saved on the cassette. When the program has been
recorded, the sounds will stop and the tape will stop. The user
should then press the stop key on the Atari 410 Program
Reco rder.

Program Recording Formats

Each of the three Atari BASIC statements used to record
programs do so using a different format. These different formats
are not discernable to the user. However, the user must keep in

192 User's Handbook to the Atari 400/800 Computers

mind the format used to save an Atari program if he wishes to
successfully load that program.

The CSAVE and SAVE statements record programs in tokenized
format. In this format, Atari BASIC keywords are abbreviated
with one character tokens. The computer automatically encodes
the keywords as tokens.

Although both the SAVE and CSAVE statements record programs
in tokenized format, differences remain in the exact format
used . Programs are recorded in groups of data known as blocks.
The difference between SAVE and CSAVE lies in the amount of
space allowed to remain between the b locks of data.

The CSAVE stateme nt allows less space between these blocks of
data than does th e SAVE statement. Therefore, saving or loading
a program with CSAVE and CLOAD will be accompli shed in less
time than with SAVE "c" and LOAD "C:" .

CLOAD will load programs saved with either the CSAVE or SAVE
statements, while the LOAD statement will only load those
programs recorded with a SAVE statement.

The LIST statement saves programs in Atari ASCII format. An
ASCII code is saved for every character in the Atari BASIC
program. Keywords are not abbreviated as tokens. The ENTER
statement must be used to load programs saved with the LIST
statement.

Loading a Program on the Atari 410

As previously mentioned , the CLOAD statement is used to load
programs from cassette tape into RAM that had been
previously saved with the SAVE or CSAVE statements. Li kewise,
the LOAD statement is used to load those programs previously
saved with the SAVE statement, and the ENTER statement is used
to load programs saved with the LIST statement.

The reason why certain statements must be used to load files
saved with corresponding statements li es in the format in which
the program was recorded. The LIST statement saves a BASIC
program file in Atari ASCII format, while SAVE and CSAVE

Atari 410 Program Recorder 193

transfer BASIC programs in tokeni zed format.

The ENTER statement can only load a BASIC file stored in ASCII
format. ENTER will not load BASIC files stored in tokenized
format.

LOAD and CLOAD can only load BASIC files stored in tokenized
format. CLOAD wi ll load files saved with either SAVE or CSAVE,
but neither will load files saved with LIST.

LOAD can only load files saved with the SAVE statement in
tokenized format. LOAD cannot be used to load files saved with
CSAVE even though CSAVE stores BASIC files in tokenized
format, because CSAVE uses a timing pattern which is
uncompatible with LOAD. LOAD cannot be used with BASIC
programs saved with the LIST statement as these were saved in
ASCII format.

Both ENTER and LOAD can be used to transfer a program from a
device other than the Atari 410 program recorder. The CLOAD
statement can only be used to load a program from the Atari 410
into RAM .

Wh en either LOAD or CLOAD are used to load a program, a
NEW statement wil l be automatically executed before the
program is loaded . This causes any existing programs or variables
to be erased from memory.

If the ENTER statement is used to load a program from the Atari
410, any existing program lines will not be erased from memory.
ENTER adds the program lines from the cassette file to any
existing program lines in memory. If a program line in the
program being transferred from cassette has the same line
number as a program line in memory, the program line being
transferred from cassette will replace the program line in
memory.

Also, when ENTER is used to load a program, any variables in the
variable name table (VNT) w ill not be erased. Any new variab le
names encountered in the program being loaded will be added
to the existing variable names in the VNT.

194 User's Handbook to the Atari 400/800 Computers

The variable name table is a table kept by Atari BASIC of all
variable and array names used in a program regardless of
whether the program was entered in the immediate or the
program mode.

When the CSAVE or SAVE statements are used to save a BASIC
program, the variable name table is recorded with the program
lines. When CLOAD and LOAD are executed to load the
program lines back into RAM, the variable name table will also
be loaded and will replace any existing variable name table in
RAM .

Conversely, when the LIST statement is executed to save a BASIC
program, the variab le name table will not be saved. Therefore,
when the ENTER statement is executed to load the program
saved by LIST back into memory, no variable name table wil l be
loaded and the variable name table currently held in RAM will
remain. When the BASIC program loaded with ENTER is
executed, any variable and array names used in that program will
be added to the variable name table.

If programs are continually saved and loaded with LIST and
ENTER statements, the variable name table may eventually
become overcrowded with unused variable and array names. It
may become necessary to clear the variable name table.

This can be accomplished by first saving the existing program in
RAM using the LIST statement. Next, by executing the NEW
statement, the variable name table (as wel l as the existing
program in RAM) will be erased. The program can then be
loaded back into RAM using the ENTER statement . As the
program is executed, variable and array names will be added to
the variable name table .

When either of the following statements,

CLOAD
ENTER "c:"
LOAD "c:"

are executed, the following series of events will occur.

Atari 410 Program Recorder 195

1. The computer's built-in speake r will so und one time. This is
a sig nal to th e operator to place th e casse tt e containing th e
program to be loaded in th e Atari 410 Program Recorder.

2. Use th e rewind and fast forward keys to position th e tape to
th e area o n the tape near th e beginning of the progra m . It is
a good practice to save a program at th e beginning point of
a tape as it is th en easy to loca te.

For programs no t recorded at the beginning of a tape, the
410's tape cou nt er can be used to loca te a program's
beginning position.

3. Once the beginning position of th e program on the tape is
located, the play button on th e 410 Program Recorder
shou ld be pressed. Also, the Return key on th e Atari
co mput er's keyboard must be pressed to signal the
comput er that th e casset te is ready.

4. Th e casse tt e tape w ill then begin moving as the program is
loaded into memory. By turning up th e volume on your
monitor or te lev ision se t , you ca n actually hea r th e
program being loaded. You w ill hea r short eruption s of
so und followed by lo ng periods o f sil ence. Ea ch sound
erupti o n is em itted as a block of data is loaded from th e
casse tt e .

When th e so und er uptions stop, the tape will stop as well.
The en tire program has now been loaded into RAM. Th e
stop key on th e 410 Program Record er should th en be
pressed to stop the tape.

RUN "e:" Statement

Th e RUN "C" statement is a variation of th e RUN stat ement
which all ows th e user to both load and run a program from th e
410 Program Recorder in a single step .

Th e RUN "c" statement is in fact a comb ination of th e LOAD
"c" and RUN statemen ts. Th erefo re , RUN "c" ca n only be used
to load programs saved with the SAVE "c" statement.

196 User's Handbook to the Atari 400/800 Computers

Th e RUN "c:" stat ement can be used in th e program mod e as
well as the immediate mode to loa d and execute a prog ram . Fo r
example. suppose th e fo ll ow ing pr-ogram was input and saved o n
cassette:

NEW
READY
100 PRI NT "ONE. TWO, THREE"
200 PRI NT " PRE SS RETURN TO LOAD"
300 RU N "C:"
SAVE "c:"
RE ADY

•

A second prog ram co uld th en be input and saved as shown in th e
following exa mple :

NEW
READY
100 PRI NT " FO UR, FIVE , SIX"
SAVE "c:"
READY

•

The cassette tape now contains two consecutive programs. By
rewinding the tape , entering "NEW", and executing the RUN
"c" statement, the first program will be loaded and executed.

Wh en line 300 is exec uted , th e RU N "c" stateme nt wi ll cause

Alari 410 Program Recorder 197

th e Atari's speake r to bee p. When th e ope rato r presses the
Return key on th e Atari\ keyboard, the seco nd program will be
automatically loaded and exec uted.

Notice th e inclusio n of th e prompt statement in line 200 of the
first program to remind th e operator to press th e Ret urn key. The
output from th e loading and execu tion of our exa mples should
appear as in th e following:

RUN "C:"
ONE, TWO , THREE
PRESS RETURN TO LOAD
FOUR, FI VE, SIX
READY

•

Thi s procedure of loading th e program from another is known as
chaining. Wh en chaining programs using th e RUN statement,
remember th at a NEW statement is au to matically executed
ca using th e ex ist ing program in memory as well as th e variable
name table to be erased. Thi s prevents a program from using the
sa me variable values th at were used in a prev ious program from
which it was chained.

Reading and Writing Data

Atari BASIC uses th e PRI NT# and PUT statements to write data to
th e 410 Prog ram Record er. Th e INPUT# and GET statements are
u ~ed to read data stored o n casse lle back into RAM .

When data is be ing tran sfe rred be tween RAM and the 410
Prog ram Reco rd er , it is transfe rred in b locks o f 128 chara cters. A
po rtion of memory is rese rved to ho ld o ne 128 chara cter bl ock of
udta that is to be read from or written to the 410 Program

198 User's Handbook to the Atari 400/800 Computers

Recorde r. Thi s area o f memory is known as th e cassette buffer.

As mentioned ea rli er in thi s chapter, data is organized into fil es,
reco rds, and fields . The notion of file s, reco rd s, and fields relate
to a programmer's concep tion of how a data fi le is organized.

In ac tualit y, a cassette data fi le ph ys ica lly cons ists of three
separate parts: th e leade r, data block s, and an end-of-file
reco rd.

Th e 20 second data fil e leade r all ows th e Atari computer and 410
Program Reco rd er to synchroni ze their timing so that data may
be transferred. Th e ac tu al data is sto red in blocks of 128
characters eac h.

Th e las t block (k nown as the end-of-f il e b lock) can consist of
fewer than 128 characters of data. This b lock holds the final
characters of the data fil e (i.e. Those characters still remaining
after the last comp lete block has been utilized.).

Records can co nsist o f more th an one block, less than one block,
or exactly one b lock. The co mputer wil l ass ign reco rds to data
blocks automatica ll y. The programmer need not concern
himse lf with thi s process.

Opening Data Files

Before information can be read from or written to a data file, that
file must first be opened. This is accomplished with the OPEN
statement.

Th e data file can be rea d from or wr itten to as long as it is ope n.
To prevent access to the file, it must be closed. This is
accomplished with the CLOSE statement.

The OPEN statement uses the following configu ration:

OPEN #channe/, task, value, device

OPEN can be used with external devices other than the 410
Program Recorder including the disk, screen, keyboard, printer,

Atari 410 Program Recorder 199

and RS-232 port.

The following is an example of an OPEN statement used to open
a data file for access by the 410 Program Recorder.

OPEN #1,4,0, "c:"

The first parameter in the OPEN statement indicates the
channel. Before an external device can be accessed either for
input or output, a cha nnel to the device must have been opened.

The OPEN statement assigns a channel to an external device.
Once a channel is assigned , the device can subsequently be
accessed via its channel number. Only one channel can be open
at anyone time. If an OPEN channel attempts to open a channel
which is already open, an error will occur.

The second parameter in the OPEN statement indicates the
activity for which the channel is being opened . For th e 410
Program Recorder, a value of 4 indicates the channel is being
opened to read data while a value of 8 indicates the channel is
being opened to write data . A cassette file cannot be
simultaneously open for both input and output.

The third parameter in the OPEN statement is 0 for standard data
files. The final parameter, device , must be specified as "C:" for
input or output to the 410 Program Recorder.

When a cassette data file is opened for input or output, the
Atari's speaker will be sounded once for input or twice for
output to signal the operator to properly position the tape. Once
the tape has been properly positioned, th e user should press the
410's play button, and then press any key on the Atari.

If the file was opened for output, th e computer will write the
leader. If the file as opened for output, it will read the leader.
This process req uires approximately 20 seconds.

Once the leader has been read or written, the program must
read or write data to th e open file. If the file was opened for
output, data must be written to the file. If the program fails to

200 User's Handbook to the Atari 400/ 800 Computers

immediately write data to a newly opened file , an error may
result if an attempt is later made to read the file .

If the file was opened for input, the program must read data from
the file with a GET or INPUT# statement. If the program fails to
read data from the open file, an error may occur if the program
subsequently attempts to read data in the program.

Closing Data Files

Once an open file has been accessed, it is important to close that
file so that the file's channel can be assigned elsewhere.

Also, if the channel is open for output, closing it causes any
remaining data in the cassette bufferto be output followed by an
end-of-file record . If the open file is not closed , any remaining
data in the cassette buffer may be lost.

The following CLOSE statement,

CLOSE #4

will close channel 4.

All open files are closed automatically when an END or RUN
statement is executed, or when a program's last statement is
executed (only in the program mode) .

Writing to a Data File

As mentioned previously, the PRINT# and PUT statements can be
used to send data from RAM to the cassette data file. Both
PRI NT# and PUT specify a n open channel as thei r fi rst parameter.
The data being output will be sent via the channel indicated.
That channel must be open.

The PRINT# statement uses the following configuration when
used to output data to a cassette file.

PRINT #channe/; expression ...

Atari 410 Program Recorder 201

channel indicates the channel to be used to send the output.
Semicolons should be used rather than commas to separate the
channel from the first expression, as well as to separate any
subsequent optional expressions. The use of commas is allowed,
but this practice would cause additional blank spaces to be
inserted in the file . Each separate expression should end with an
EOL character. This can be accomplished by using one PRINT#
statement for each expression or by using CHR$(155).

The expressions consist of one or more string or numeric values
to be output. These values are output as ASCII values.

Always be sure that a PRINT# statement being used to output
data to a cassette file outputs an end-of-line (EOL) character
after each expression. The PRINT# statement sends data to the
cassette buffer where it is stored until it is filled. The entire block
of data (128 bytes) is then sent to the Atari 410.

If an EOL character is output at the end of the PRI NT# statement,
the data in the cassette buffer will be output to the cassette file ,
regardless of whether the buffer is full or not. In these situations,
the 128th character in the buffer will contain the actual number
of bytes in the buffer. This value is stored in the hex form.

PRINT# statements automatically output an EOL character after
outputting the expressions unless a comma or semicolon is
placed at the end of the expression list. For this reason, never
end a PRINT# statement with a comma or semicolon, when it is
being used to output data to a cassette file. An example of the
use of PRINT# is given below.

400 OPEN #2, 8,0, "c:"
500 PRINT#2; " JOHN"
550 PRI NT#2; "JACK"
600 CLOSE #2

The PUT statement ca n be used to output a single numeric value
to the cassette file via an open channel. PUT uses the following
configu ration :

PUT #cha nne l, numeric expression

202 User's Handbook to the Atari 400/ 800 Computers

As with PRINT#, the chan ne l specif ied must be open for output.
The value given in numeric expression is output to the data file.
Th e value output will li e between 0 and 255. If the value is not an
integer, it will be rounded to the nearest integer.

If the value specified does not lie between 0 and 255, it will be
output modulo 256. In other words, 256would be sentas 0, 257as
1,258 as 2, 259 as 3, etc.

An example of a PUT statement is given below.

150 OPEN #2,8,0, "c:"
160 PUT #2,123
170 CLOSE #2

Reading from Data Files

The INPUT# and GET statements are used to read data from
cassette data files. INPUT# will accept data from the cassette data
file, interpret that data, and assign the data to the variable or
variables names in its parameter li st.

Th e following configuration is used with INPUT#:

INPUT #channe l { ~} variable, ...

The channel must have been opened previously for input. The
variables will accept the data values input.

INPUT# will retrieve data from the input device specifi ed. This
data will cons ist of ASCII characters followed by the ASCII end
of-line character. The EOL character will end input to the
variable specified.

INPUT# will interpret the data being read as either numeric or
string--depending on the type of variables used as parameters.
When a numeric variable is specified , the data being input will
be interpreted as numeric data.

The data read via INPUT# will be assigned to the numeric
variable indicated until a comma or an EOL character is

Atari 410 Program Recorder 203

encountered. Numeric values can be ended either with the EOL
character or the comma. Commas can not be used to end string
values, as they are regarded as part of the string.

If no data is available to be read into the numeric variable, or if
the data is invalid, an error will result.

When a string variable is specified , the data being input will be
interpreted as string data . If no characters are read, the string
variable will be assigned the null value. If more characters are
read than allowed for in the string variable's DIM statement, the
INPUT# statement will disregard the excess characters. The EOL
character will end the string input.

The GET statement is used to read a single numeric value via the
open channel specified . GET uses the following configuration.

GET #channe/, numeric variable

The channel specified must be open for input. The numeric
variable indicated will accept the value returned by GET. This
value will lie between 0 and 255.

When GET is used with the 410 Program Recorder and the buffer
is empty, the initial GET statement will result in a block of data
being read into the cassette buffer. The first value in the buffer
will be assigned to the numeric variable specified with the first
GET statement.

Each successive GET statement will read a valu e from the cassette
buffer. When the buffer has been emptied , another block of
data will be read into the cassette buffer from the cassette tape.

CHAPTER 7.
AlARI 810 DISK DRIVE

Introduction

The Atari 810 Disk Drive is used for storing BASIC programs or
data files on floppy diskettes.

A disk stores data in a magnetic form, much like data is stored on
magnetic tape. The main difference between storage on a
magnetic tape and storage on a disk is that the disk surface is
round--much like a record 's surface.

The disk drive contains a device known as a read/write head,
which is used to read and write information. The computer can
move the head to any position desired on the disk surface. This is
in contrast to magnetic tape, where data is read from or written
onto the tape in consecutive order.

This capacity to read or write data at a particular position is
known as random access. Disk drives are known as random
access storage devices. On the other hand , in cases where data
must be read or written in a consecutive order, the accessing is
known as sequential access. A cassette tape recorder is known as
a sequential access drive.

Types of Disks

There are three primary types of disks used by microcomputers;
hard disk, Winchester disks, and floppy diskettes. These will be
described in the following sections.

Hard Disks

Microcomputer hard disk systems generally allow storage of 5 to
30 megabytes of data . One megabyte is the equivalent of one

206 User's Handbook to the Atari 400/ 800 Computers

million bytes. The hard disk itse lf is made of a rigid material with
a magnetic coating. The disk drive and the hard disk are separate
units. The operator can remove one hard disk and replace it with
another.

Winchester Disk Drives

Winchester disk drives are designed so that from 6 to 10 times
more data can be stored on their surface than on a standard
floppy diskette. Winchester disks must be kept very clean as they
are extremely vulnerable to dust, dirt, and smoke.

Since they must be kept so clean , Winchester disks must be
sealed inside of the disk drive. This means that Winchester disks
cannot be changed.

Since Winchester disks cannot be removed , floppy disk systems
often are used in conju nction w ith Wi nchester disks to allow for
back-up storage. Winchester disk systems are genera lly used
with microcomputers rather than ha rd disk systems . A
Winchester drive is shown in Illustrat ion 7-1.

Illustration 7-1. Winchester Disk System

Atari 810 Disk Drive 207

Floppy Diskettes

The most widely used type of disk storage with microcomputers
is floppy disk storage . A floppy diskette consists of a round vinyl
disk which is enclosed within a plastic cover. The diskette is
generally stored in a diskette enve lope.

This cover protects the diskette from damage while it is being
handled by the operator. The diskette should never be removed
from its cover. A 5114 inch diskette with its protective envelope is
shown in Illustration 7-2.

The diskette is allowed to rotate within the protective envelope.
The round hole in the middle of the diskette allows the disk drive
to hold the diskette and spin it. The oblong shaped opening on
the protective envelope provides an area where the head can
read from or write to the diskette surface.

Illustration 7-2. Mini-Floppy Diskette

Temporary Label

Permanent
Label

Diskette in
Protective Cover

Exposed Read / Write
Head Slot Diskette

Envelope

Write Protect Notch
(Some diskettes do

not have this notch)

Index Hole

208 User's Handbook to the Atari 400/800 Computers

Floppy diskettes come in two sizes: 8 inch and 5114 inch. The 5114
inch diskettes are also known as mini-floppy diskettes. The Atari
810 Disk Drive uses mini-floppy diskettes.

Tracks & Sectors

To facilitate th e process of searching for data on the diskette
surface, that surface is divided into tracks and sectors.

Tracks may be visualized as a series of concentric circles on the
diskette surface, as shown in illustration 7-3. Atari's DOS divides
a diskette into 40 tracks.

To further reduce the time necessary to search for a particular
data item , Atari's DOS divides each track into 18 sectors, which
are also shown in illust ration 7-3.

With 40 tracks available and 18 sectors per track, Atari DOS
divides each diskette into 720 sectors . However, 18 of these 720
sectors are used by Atari DOS, and cannot be used to store
programs or data.

One
Sector of

Track

Illustration 7-3. Tracks and Sectors

~--'
.," ---- ' " ,' // --- , //,. "' \ 1/ // ,---... "

/ ' I /' " '
1/1 \\\\ "/' 0 \\\ "~: 'II' '\' }'I'
\ \ I'll \\ \' B / '/1 \ \ ,,'.../ // / / ,'-/ / / '" - _// ,,, ,..

...... '----,.../ --.-~

Track

Alari 810 Disk Drive 209

Ea ch individual sector ho ld s 128 byt es of data. Wh en DOS has
access to th e track and sector where a particular data item is
being stored, it wi ll on ly have to sea rch 128 bytes to find that
item. Th e result of dividing th e diskette surface into tracks and
sectors is that access tim e is greatly dec reased.

Hard and Soft Sectors

Locating a particular track on the disk surface is a relatively
uncompli ca ted matter. Th e drive merely moves th e head to th e
position on th e d iskette where the specified track is located,
much like th e need le on a phonograph is pos iti oned to the
loca tion of a spec ific so ng on a record album.

However, locat ing a particular sector is a more diffi cu lt process .
Two di ffe rent methods are used to loca te secto rs on a disk; hard
sectoring and soft sectoring.

Both th e hard and soft secto r methods invo lve th e use of an
index ho le. Th e index hole is shown in Illustration 7-2. It is
located just to the right of th e large hole in th e middle of the 5114
inch diskette.

The index hole , as shown in Illustration 7-2, is a hole on ly in the
di skette's protect ive cove ring. Another index hole is located on
th e actua l di skette surface insid e th e envelope. As the diskette
spins, th e index hole (or holes) o n the diskette surface passes
underneath the hole in the protective enve lope.

A light source inside the disk dri ve shines li ght onto th e area of
the diskette contai ning th e ind ex ho le. When an index hole on
the disk surface is aligned with th e index hole on the protective
envelope, the li ght will shin e throu gh to a sensor. The sensor wi ll
relay information on th e location of th e index hol es, which can
be used to ca lculate th e various secto r loca tions .

Now that we have discussed the co ncepts of loca ting secto rs, we
wil l di scuss th e difference between hard and soft sectored
diskettes. A hard sectored d iskette contains a number of holes,
each of which indicates th e loca ti o n of a sector. An extra hole is
used to indicate the locat io n of the first sector. The location of

210 User's Handbook to the Atari 400 / 800 Computers

the various sectors is determined by counting the number of
holes occuring afte r the first sector. A hard sectored d iskette is
depicted in Illustrati on 7-4.

Soft sectored diskettes have on ly one index ho le as shown in
Illust ration 7-5 . Thi s so litary index hole marks the loca tion of the
first sector . By timin g the ro tat ion speed of th e fl oppy di skette,
the location of the other sectors ca n be determ ined. The Atari
810 uses soft-sectored diskettes.

Illustration 7-4. Hard Sectored Diskette

2 Index
Ho les

Sector

Atari 810 Disk Drive 211

Illustration 7-5. Soft Sectored Diskette

,- --.......
/ " Index Hole

I 0
\

\ / Sector

" /
""""'- -'

Single and Double Sided Diskettes

Some floppy diskettes are designed to be written on on ly one
side. These are known as single sided (55) diskettes.

Diskettes which are designed to be written on both sides are
known as double sided (OS) diskettes.

Single, Double and Quad Density Diskettes

Density refers to a diskette's recording format, which in turn
affects its capacity. Single density 5'1f.1 inch diskettes have rough ly
94K of capacity, double dens ity 5'1f.1 inch diskettes have a capacity
of about 140-160K, and quad density 5'1f.1 inch diskettes have a
capacity of up to 370K.

The Atari 810 uses single sided single density diskettes. The Atari
810 has a total storage capacity of 88,375 bytes. This figure is
calculated by mu ltip lying the 707 sectors available for data
storage by 125 bytes per sector. Three bytes per sector are
allocated for the File Management Subsystem.

212 User's Handbook to the Atari 400/ 800 Computers

Diskette Write Protection

Diskettes have a notch on the side of their protective envelope
which determines whether or not data can be written onto that
diskette. On 8 inch diskettes, this notch is known as a write
protect notch . On 5114 inch diskettes, it is known as a write
enable notch.

On an 8 inch diskette, information cannot be written onto the
diskette unless this notch has been covered. On 5114 inch
diskettes, information cannot be written onto the diskette unless
the notch is left uncovered .

Some 5114 inch diskettes (especially system diskettes) may be
permanently write protected if their protective envelope does
not contain a notch. Any 5114 inch diskette with a notch can be
write protected by merely covering the notch with a piece of
tape as shown in Illustration 7-6.

Illustration 7-6. Write Protecting a 5114 Inch Diskette

Atari 810 Disk Dri ve 213

Disk Files

The Atar i 810 sto res data in files . A disk fil e ca n contain eit her a
BAS IC program , a machin e language prog ram , or d ata . An Atari
diskette can contain as many as 64 fil es.

Files are ass igned uniqu e filenames of up to e ight characters. The
first character o f a filename must be a capita l letter . Subsequent
filename characte rs ca n eit he r be cap ital lette rs or numbers.
Blank spaces , punctuation marks, and special characters (# , $,@)
are not all owed in f il enames.

Filenames can also con tain a filename extension of three or
fewer charac te rs. Th e fil ename and f il enam e ex tension must be
separated with a period. Fil ena me ex tensi o ns ca n conta in either
letters or numbers.

Filename ex tensio ns are o ften used to indicate the type of file.
The imp li ed mea nings of co mmo nl y used fil ename exten sions
are listed in Tab le 7-1.

Filename Match Characters

Atari DOS all ows the use of the fi lena me m atch characters,? and
*. Th ese characters ca n be used to sta nd for any sing le characte r
(?) or group of c haracte rs (*). For exa mple, FILE?.DAT wou ld
match the following filenam es .

FILE1.DAT
FILEZ.DAT

FILE?DAT wou ld not match th e following filenames:

FILE.DAT
FILE1 .BAS

FILE. * would match any of the fo llowi ng fil enames.

FILE.BAS
FILE.TXT
FILE.DAT

214 Use r's Ha nd boo k to th e Ata ri 400/ 800 Com pu te rs

Fil ename match characters are no t allowed in A tari DO S ve rsio n
1.0, and ca n o nl y be used w ith th e fo ll ow ing DOS menu op ti ons
in DOS versio n 2.0.

A. Di sk Directo ry
B. Cop y File
D. Delete Fil e
E. Rename File
F. Lock File

G. Unlock File
O . Duplica te File

Table 7-1. Filename Extensions & Type of File

Filename
Extension File Type

ASM Assembl y language source fil e.

BAK Backup Fil e.

BAS File containing a Ba sic p rogra m
in tokeni zed fo rmat.

DAT Data Fi le.

OB] Asse mb ly language p rogram
asse mbled into machine language.
A lso kn own as an object fil e.

TXT Text Fil e.

SYS Sys tem fil e. Used with sys tem pro-
grams such as DOS prog rams o r th e
BAS IC language interpreter .

Atari 810 Disk Drive 215

AT ARt DOS (Disk Operating System)

An operating system can be defined as a group of programs
which manage the computer's operation. A disk operating
system can be defined as a group of programs that manage the
transfer of data to and from a storage device such as disk or
magnetic tape.

Two d ifferent versions of Atari DOS currently exist, DOS 1.0and
DOS 2.0. The version your system uses should be marked on your
system diskette.

The major differences between DOS 1.0 and 2.0 are listed in
Table 7-2.

Table 7-2. DOS Version 1.0 & 2.0 Differences

DOS 1.0 DOS 2.0

11 second boot time 7 second boot time

No filename match char- Filename match characters
acters allowed during certain DOS

operations

MEM.SA V not availab le MEM.SAV allows additional
memory space

No AUTORUN.SYS AUTORUN.SYS allows a f il e
to be loaded and executed
upon boot

No appending of files SAVE BINARY FILE "/A"
option allows appending of
two files

Bad diskette sectors A diskette with bad sectors
not indicated during cannot be formatted
formatting

216 User's Handboo k to the Atari 400/ 800 Computers

Menu must be di splayed
before a new com mand
ca n be entered

DOS files ca n o nl y be
written to Drive 1

NOTE/ POINT not avail
ab le for ran dom access

A max imum of 3 files
ca n be open at any
o ne time

Two Parts of Atari DOS

Menu need not be re
displayed to ente r a
new com mand

DOS files ca n be written
to any drive

NOTE/ POINT sta tements
ava il ab le for random access

Up to 8 files ca n be
ope n at anyone time

Atari DOS consi sts of two different parts . One part is used to save
and load BASIC progra ms and to read and write data files. The
other part o f Atari DOS cons ists of a group of utility programs
used in performing operations w ith disk fi les as well as reading
and writing machine language fil es.

In DOS version 1.0, both parts o f DOS are sto red as a single file
on disk. This fil e is named DOS.SYS.

In DOS version 2.0, the two parts of DOS are sto red on disk as
two separate program files. Th e first pa rt (DOS.SYS) is needed
whenever the disk drive is bei ng used . The second part
(DUP.SYS) is only req uired wh en the di sk uti liti es are being used.

By separating DOS in version 2.0, better use ca n be made of the
Atari 's memo ry. Onl y the part of DOS req uired need be loaded
into memo ry. Th e portion of memory normally used by th e
other part of DOS is freed for use.

Atari 810 Disk Drive 217

Disk Buffer

Atari DOS controls the transfer of information between the Atari
computer and the disk drive. Information is transferred in 128
cha racter blocks.

Four separate portions of Atari RAM are set aside to hold data
being transferred to a di sk from a disk drive.These are known as
disk buffers. The reason why there are four disk buffers is that as
many as four disk drives can be attached to the Atari at anyone
time .

When Atari DOS is instructed to supply data , it will first attempt
to supply this data from the disk buffer. When the buffer runs out
of data, another block of data will be read into the buffer from
the diskette .

Data is also written to diskette from the disk buffer one block at a
time. Information that is to be transferred to disk is first sent to
the disk buffer. When the disk buffer has been filled , Atari DOS
writes the data in the buffer to the diskette.

Booting DOS

Before Atari DOS is available for usage, it must be loaded into
memory from a diskette. This process is known as booting DOS.
The procedure for booting DOS is as follows:

1. Power on Drive 1. If your sys tem includes more than one
drive, Drive 1 can be determined by examining the access
hole on the back of each drive. On Drive 1, both the black
and white switches are located to the far left.

2. Insert a diskette containing a copy of DOS into Drive 1.

3. Turn the Atari 400 or 800's power off (if necessary) and on.

4. If you are booting DOS version 1.0 or if you are booting
DOS version 2.0 on a system without a BASIC ROM
cartridge installed , the DOS Menu will appear on the video
display.

218 User's Handbook to the Atar i 400/ 800 Computers

5. If you are booting DOSvers ion 2.0on a system with a BASIC
ROM ca rtridge insta lled , th e BASIC prompt READY will
appear on the video display. By enteri ng the following
command at the keyboard,

the DOS Menu w ill be loaded.

In step 5, DOS.SYS is loaded during the initial part of the loading
process. When the DOS statement is executed , DUP.SYS will be
loaded in to memory.

In DOS version 2.0, DUP.SYS is loaded into an area of memory
where BASIC programs are stored. When DUP.SYS is loaded, any
existing BASIC program in memory will be erased .

In DOS ve rsion 1.0 the disk utility package is conta ined in th e
DOS.SYS file . DOS.SYS does no t overwrite the area in RAM
where BASIC programs are stored . Therefore , load ing DOS
version 1.0 will not affect a BASIC program in memory.

DOS Menu

The DOS M enu loaded depends on the version of DOS used .
The DOS Menu loaded by DOS vers ion 1.0 is depicted in
Illustration 7-7. The DOS Menu loaded by DOS version 2.0 is
pictured in Illustration 7-8.

Atari 810 Disk Drive 219

Illustration 7-7. DOS Version 1.0 Menu

DISK OPERATING SYSTEM
COPYRIGHT 1979 ATARI

A . DISK DIRECTORY
B. RUN CARTRIDGE
C. COPY FILE
D . DELETE FILE(S)
E. RENAME FILE
F. LOCK FILE
G. UNLOCK FILE
H. WRITE DOS FILE
SELECT ITEM

•

9/24/79

I. FORMAT DISK
J. DUPLICATE DISK
K. BINARY SAVE
L. BINARY LOAD
M . RUN AT ADDRESS
N. DEFINE DEVICE*
O . DUPLICATE FILE

*N--DEFINE DEVI CE is not used.

Illustration 7-8. DOS Version 2.0 Menu

DISK OPERATING SYSTEM II VERS ION 2.0S
COPYRIGHT 1980 ATARI

A . DISK DIRECTORY I. FORMAT DISK
B. RUN CARTRIDGE J. DUPLICATE DISK
C. COpy FILE K. BINARY LOAD
D. DELETE FI LE(S) L. BINARY LOAD
E. RENAME FILE M . RUN AT ADDRESS
F. LOCK FILE N. CREATE MEM.SA V
G. UNLOCK FILE O. DUPLICATE FILE
H. WRITE DOS FILES
SELECT ITEM OR [RETURN] FOR MENU

•

220 User's Handbook to the Atari 400/ 800 Comp uters

As shown in Illustration s 7-7 and 7-8, a number of different disk
operations are available on the DOS Menu. To choose an
operation from the DOS Menu , enter the letter corresponding
to that operation and press Return.

Once the disk operation has been chosen, a prompt message for
that operation will appear on the screen . Generally, this prompt
message specifies some additional information required by the
disk operation.

Once the disk operation has been chosen, the prompt ,

SELECT ITEM (DOS 1.0)

or

SELECT ITEM OR [RETURN] FOR MENU

will once again appear on th e bottom of the video display.

If another item is specif ied, that disk operation's prompt will be
displayed . If Return is pressed , th e DOS Menu will be
redisplayed.

DOS MENU OPERA liONS

In the following sections, we will discuss the various DOS Menu
Operations.

A. Disk Directory

The Disk Directory operation lists the files present on a diskette.

When the Disk Directo ry operation has been specified by
entering A and pressing Return , the following prompt will
appear on the video display:

DIRECTORY-SEARCH SPEC, LIST FILE

If the Return key is pressed in response to this prompt, the names

Atari 810 Disk Drive 221

of each file on the diskette in drive 1 wi ll be displayed on the
screen followed by the size of the file (in sectors) . The last line of
the directory listing will contain th e number of unused sectors
on the diskette. A samp le directory li sting is pictured in
Illustration 7-9.

As previously mentioned , pressing Return in response to the
SEARCH SPEC, LIST FILE prompt w ill cause all fileson the diskette
in drive 1 to be listed. When Return is pressed in response to this
prompt , DOS will assume th e defau lt values for the SEARCH
SPEC and LIST FILE parameters.

SEARCH SPEC indicates the file specification of any specific files
to be listed by the Directory operation. This file specification
consists of the capita l letter D followed by the number of the disk
drive whose diskette is to be searched, followed by the name of
the file or files to be searched for. The drive ident ifier and
filename should be separated by a semicolon.

Illustration 7-9. Directory Listing

*DOS SYS 039

*DUP SYS 042

DISP OB] 001

PROGRAM2 BAS 012

PROGRAM3 BAS 013

600 FREE SECTORS

222 User's Handbook to the Atari 400/ 800 Computers

If the drive number is omitted, DOS will assume drive 1 is to be
searched. In other words D1 is the default value for the drive
identifier.

Filename match characters can be used in the filename portion
of the SEARCH SPEC parameter. For instance, the following
entry,

D2:*.DAT

would cause all files on drive 2 with the filename exte nsion DAT
to be listed . The default va lue for the filename portion of the
SEARCH SPEC parameter is *.* . This value causes all files to be
listed, as *.* matches all filenames.

The second disk directory parameter, LIST FILE, spec ifies the
device where the directory output is to be listed. The default
value for the output device is E:, which indicates the video
screen .

If you wish to have th e directory list ing sent to the printer, use P:
as the LIST FILE parameter. For example, the following entry,

D2:*.DAT,P:

would cause all files on drive 2 with the extension DAT to be
listed by the printer.

When using the LIST FILE option, be certain to sepa rate you r
entry from the SEARCH SPEC entry with a comma .

B. Run Cartridge

When the Run Cartridge operation is chosen from the DOS
Menu, DOS will return contro l of the Atari compute r to the
cartridge inserted in the unit. If the BASIC cartridge is inserted,
the BASIC prompt,

READY

will be displayed on the screen . If the Assembler Editor cartridge

Atari 810 Disk Drive 223

is inserted, the prompt,

EDIT

will be displayed.

If a cartridge is not inserted in the Atari , the following message,

NO CARTRIDGE

will appear on the screen when the Run Cartridge operation is
chosen . Another operation must then be chosen from the DOS
Menu.

If you are using DOS version 2.0, the Run Cartridge operation
shou ld not be used to return to BASIC when the MEM.SAV file
exists on the diskette . Instead , the System Reset key should be
pressed to return to BASIC. By following this procedure, data will
be correct ly returned into memory from MEM.SAV. MEM.5AV
will be discussed in more detai l later in this chapter.

c. Copy File

The Copy File disk operation is used on Atari systems with two or
more disk drives to copy a file from the diskette in one drive to a
diskette in another drive. Copy File can also be used to create a
back-up copy of a file on the same diskette with a different
filename.

When Copy File is executed, the following prompt will appear
on the video display:

COPY-FROM, TO?

The FROM parameter spec ifi es the fil e or files to be cop ied. The
FROM parameter generally consists of a file specificat ion, but
can also be a device name such as the video screen (E:) .

Filename match characters can be used in the file specification
used for the FROM parameter.

224 Use r's Handbook to the Atar i 400 / 800 Computers

The TO parameter spec ifies th e destination of the file or files
being copied. Aga in , th e TO parameter genera ll y consi sts of a
fil e spec ifi cat ion, but can also be a device such as th e printer (P:),
screen (E:), or disk drive (D:).

The Copy File operation can not be used to copy the DOS.SYS
fil e. Any attempt to do so will res ult in an error message. The
DOS.SYS fil e can be cop ied using the Write DOS.SYS ope rat ion
(H .) .

If th e so urce fil e specifi ed does not ex ist, error 170 (FILE NOT
FOUND) wi ll appear on th e screen. If th e destinati on di skette 's
directory already contains 64 f ilenames, error 169 (D IRECTORY
FULL) will appea r. If th ere are not enough free secto rs on the
destinat ion diskette fo r the copy operat ion to take p lace, error
162 (DISK FULL) will appear.

If you are using the Copy Fil e operat ion in DOS version 2.0 and a
MEM.SAV fil e ex ists on th e system diskette, a second prompt
message (as shown be low) wi ll appear before th e Copy Fil e
operation is executed.*

TYPE "Y" IF OK TO USE PROGRAM AREA
CAUTION : A " Y" INVALIDATESMEM.SAV

If the user 's response to the preceding prompt is Y, Copy File wi ll
use the entire user program area for the copyi ng process which
invalidates the MEM.SAV file.

A response of N instructs DOS to use a smaller internal buffer for
th e Copy Files operation. The MEM.SAV file will be reta ined.
Howeve r, th e copying process will be slowe r.

The Copy File operation can be used with the Append option
(I A) to add o ne file to th e end of anot her file. This process is
known as merging.

For example, the fo llowing parameter entry would ca use
FILEA.TXT to be merged with FILEB.TXT.

'This prompl may nOI appea r in some sys lems.

Atari 810 Disk Drive 225

COPY--FROM, TO?
01 :FILEA.TXT, 02 :FILEB.TXT / A

The Append option should not be used with BASIC program files
stored in tokeni zed format.

Illustration 7-10 contains examples of the usage of the Copy File
operation .

Illustration 7-10. Copy Files Example

Example 1

SELECT ITEM OR [RETURN] FOR MENU
~,
COPY--FROM, TO?
01 :FILEA.TXT, 02:FILEA.TXT ,

SELECT ITEM OR [RETURN] FOR MENU

In the preceding example, FILEA.TXT is copied from the diskette
in drive 1 to the diskette in drive 2, using the same filename .

Example 2
~-----------------------------

SELECT ITEM OR [RETURN] FOR MENU
~,
COPY--FROM, TO?
01 :FILEA.TXT, 01 :FILEB.TXT I

SELECT ITEM OR [RETURN] FOR MENU

226 User's Handbook to the Atari 400/ 800 Compute rs

In Example 2, a copy of FILEA.TXT is created on the diskette in
drive 1 and is assigned a new filename FILEB.TXT.

Example 3

SELECT ITEM OR [RETURN] FOR MENU

cI
COPY-FROM, TO?
01: PROGA.BAS,P: I

SELECT ITEM OR [RETURN] FOR MENU

In Example 3, PROGA.BAS is li sted on the printer.

Example 4

SELECT ITEM OR [RETURN] FOR MENU
~,
COPY-FROM, TO?
E:,Ol:TEXTC.OAT,
PEAR,
APPLE,
BANANA,
GRAPES,
Control-3

SELECT ITEM OR [RETURN] FOR MENU

In Example 4, the data displayed on the screen wi ll be copied into
TEXTC.OAT on drive 1. When Control-3 is pressed , the entry will
be ended .

Alari 810 Disk Drive 227

D. Delete File

The Delete File operation allows the user to delete unneeded
files from the diskette and the disk directory.

When the Delete File operation is chosen, the following prompt
will appear on the video display.

DELETE FILESPEC

The file specification should be entered. Filename match
characters may be used in the file specification.

Once the file specification has been entered, a second prompt
will be displayed.

TYPE "Y" TO DELETE ...
FILENAME

FILENAME will be replaced with the filename of the file to be
deleted. If the user enters Y followed by Return, the file will be
deleted . If N or any other letter is entered followed by Return,
the file will not be deleted.

If the file specification entered in response to the DELETE
FILESPEC prompt matches more than one filename on the
diskette, each matching filename will be displayed. The user
must enter Y following each filename for the deletion to occur,

If the No verification option (I N) is specified in response to the
DELETE FILESPEC prompt, the second prompt will not appear,
The files specified will automatically be deleted.

A file which has been locked cannot be deleted using the Delete
File operation. Any attempt to do so will result in error 167,

Examples of the use of the Delete File operation are given in
Illustration 7-11 .

228 User's Handbook to the Atari 400 / 800 Computers

Illustration 7-11. Delete File Example

Example 1
~------------------------~

SELECT ITEM OR [RETURN] FOR MENU

QI
DELETE FILESPEC
D1 :*.TXT I
TYPE "Y" TO DELETE ...
D1 :FILEA.TXT l' D1 :FILEB.TXT
YI
SELECT ITEM OR [RETURN] FOR MENU

In the preceding example, any files w ith an extension of .TXTwill
be prompted for deletion . FILEA.TXT and FILEB.TXT will both be
deleted from the diskette in drive 1.

Example 2

SELECT ITEM OR [RETURN] FOR MENU
DI
DELETE FILESPEC
./N,

SELECT ITEM OR [RETURN] FOR MENU

In Example 2, all files on the diskette in drive 1 will be deleted.
Note the use of the No Verification option to suppress the
second prompt.

E. Rename File

The Rename File operation can be used to change the name of
any file on the diskette. Be carefu l not be use Rename File to

Atari 810 Disk Drive 229

change the name of DOS.SYS. If DOS.SYS is renamed, the DOS
menu will no longe r load .

When Rename File is specified, the following prompt will
appear.

RENAME, GIVE OLD NAME, NEW

OLD NAME will cons ist of the file specification of th e fil e to be
renam ed. If a drive id entifier is not included in the file
specification, dri ve 1 w ill be assu med .

The NEW NAME will cons ist of the new fil ename for the fil e
specified in OLD NAME. Filename match characters ca n be used
with both the OLD NAME and NEW NAME parameters.

A locked fil e ca nnot be renamed . Any attempt to do so will result
in error 167 (File Locked).

A file on a diskette that has been write-protected cannot be
renamed . Any attempt to do so will result in error 144 (Device
Done Error) .

Also, if the use r atte mpts to rena me a file that does not ex ist on
th e diskette, error 170 will occur (F ile Not Found) .

Exa mples of th e use of the Rename Fil e operation are given in
Illustration 7-12.

230 User's Handbook to the Atari 400/ 800 Computers

Illustration 7-12. Rename File Examples

Example 1

SELECT ITEM OR [RETURN] FOR MENU

I-I
RENAME-GIVE OLD NAME, NEW
TEXTA.DAT, TEXTB.DAT I

SELECT ITEM OR [RETURN] FOR MENU

In Example 1, TEXTA.DAT on drive 1 is renamed to TEXTB.DAT.

Example 2

SELECT ITEM OR [RETURN] FOR MENU i.,
RENAME--GIVE OLD NAME, NEW
D2:* .BAS,* .BAK,

SELECT ITEM OR [RETURN] FOR MENU

In Example 2, all files on drive 2 with the extension .BAS will be
renamed with the extension .BAK.

F. Lock File

The Lock File operation write protects a file. When a file is
locked, it can not be written to, renamed , deleted, or appended
to. If an attempt is made to do so, error 167 (File Locked) will
appear.

Atari 810 Disk Drive 231

Locked files appear in the Disk Directory with an asterisk before
the filename.

When the Lock File operation is specified , the following prompt
will appear.

WHAT FILE TO LOCK?

Enter the fil e specification of the file to be locked . Filename
match cha racters may be used to lock multiple files with a single
file specification.

It is good practice to lock the DOS.SYS and DUP.SYS files.

G. Unlock File

The Unlock File operation is used to unlock one or more disk
fil es previously locked with Lock File. When the Unlock File
operation is specified, the following prompt will appear:

WHAT FILE TO UNLOCK?

The fil e specification of the file to be unlocked should be
entered. Filename match characters ca n be used to specify more
than one file .

H. Write DOS File

The Write DOS File operation allows the user to copy DOS 1.0 or
2.0 o nto a diskette. In DOS version 1.0, the DOS.SYS file is
cop ied . In DOS version 2.0, the DOS.SYS and DUP.SYS files are
cop ied.

DOS is copied from the computer's memory, not directly from a
diskette during th e Write DOS Fil e operation.

In DOS 1.0, the following prompt appears when Write DOS File
is specified.

TYPE "Y" TO WRITE NEW DOS FILE

232 User's Handbook to the Atari 400/ 800 Computers

DOS.SYS will be written to the diskette in drive 1.

In DOS 2.0, the following prompt will appear.

DRIVE TO WRITE FILES TO?

Here, the operator should enter the drive number where DOS
should be copied . This can be either drive 1, 2, 3, or 4. Once the
drive number has been entered, the following prompt will
appear.

TYPE " Y" TO WRITE NEW DOS FILE

If a Y is entered, DOS will be written to the diskette in the
specified drive. Any other entry aborts the Write DOS File
operation .

I. Format Diskette

All blank diskettes must be formatted before they can be used by
DOS. Formatting is a process where a pattern is recorded on the
diskette which allows data to be written to or read from its
surface. The Atari 810 Disk Drive requires approximately two
minutes to format a diskette.

When the Format Diskette operation is specified , the following
prompt wit! appear.

WHICH DRIVE TO FORMAT?

The user should specify the number of the drive containing the
diskette to be formatted . A second prompt will then appear.

TYPE "Y" TO FORMAT DRIVE 1*

If the user responds to this prompt with a Y, the diskette in the
drive specified will be formatted. Any other entry will abort the
Format Diskette operation.

*assuming drive 1 was specified in the first prompt.

\

Atari 810 Disk Drive 233

If a diskette contains bad sectors, DOS will not format it. After
the initial discovery that the diskette contains bad sectors, DOS
will attempt to format the diskette two more times . Upon the
third unsuccessful attempt, error 173 (Bad Sectors at Format
Time) will be displayed.

Be certain that you do not format a diskette that contains data
you wish to retain. Formatting a diskette destroys any existing
data on that diskette.

J. Duplicate Disk

The Duplicate Disk operation allows an entire diskette to be
copied. This operation can be used with Atari systems with either
one or two disk drives.

When Duplicate Disk is specified , the following prompt will
appear.

DUP DISK--SOURCE, DEST DRIVES?

The user should respond with the drive number containing the
diskette to be copied , and the drive number which will contain
the diskette in which the copy is to be made.

If your Atari system has only one drive, you should respond to
this prompt with an entry of 1,1.

The following prompt will then be displayed.

INSERT SOURCE DISK, TYPE RETURN

The user should then insert the diskette to be copied in the sole
disk drive and press Return. A portion of the data stored on the
diskette will then be read into the Atari's memory. The following
prompt will then be displayed.

INSERT DESTINATION DISK, TYPE RETURN

The user should then replace the diskette being copied with a
blank formatted diskette and press Return.

234 User's Handbook to the Ata ri 400/800 Computers

The data held in the Atar i 's RAM will be written to the
destination diskette, afte r which the Insert Source Disk prompt
will reappea r. Continue this process un til the entire diskette has
been copied.

If your Atari system conta in s multiple drives, the duplication
process is much more simp le. Wh en different source and
destination drives are specifi ed (ex . 1,2), the fo ll owi ng prompt
will be displayed.

INSERT BOTH DISKETTES, TYPE RETURN

After insert ing the diskette to be cop ied in the source drive and
the blank diskette on which the copy is to be made in th e
destination drive, press Return and the d upli cat ion process will
begin. Th e duplication process can take several minutes if the
source file is filled.

It is a good practice to write protect the source diskette to
preve nt it from bei ng accidentall y overwritten if an error is
made.

With DOS version 2.0 systems, the fo llowing prompt is
displa yed.*

TYPE "Y" IF OK TO USE PROGRAM AREA?
CAUTION: A "Y" IN VALIDATES MEM.SAV

If Y is entered, the user program area wi ll be used for the copying
process, and ex isti ng programs in memory w ill be erased. An
entry other than Y ca uses Duplicate Disk to be aborted. If a
program is sto red in RAM that you w ish to save, it should be
cop ied to cassette or diskette before the Duplicate Disk
operation is begun .

K. Binary Save

The Binary Save operat ion is used to save the contents of RAM
on disk in object file format. Thi s format is a Iso used for programs
written using the Assembler Editor cartr idge.

When th e Binary Save operati on is specif ied in DOS 2.0, th e
"Thi s prompt may not appear in some sys te ms.

Atari 810 Disk Drive 235

following prompt will be displayed.

SAVE--GIVE FILE, START, END (,INIT, RUN)

FILE is the name of the file to be saved. A drive specifier may be
included.

The START and END parameters are req uired fo r either a binary
fil e o r a program. Th ese specify the starting and endin g
addresses in hexadeci mal of the port io n of the memory to be
saved.

The INIT and RUN addresses are opt iona l parameters. Th ese
allow a program to be executed upon load ing. The INIT add ress
gives the sta rtin g address of an initi ali zat io n rout ine. Th e RUN
address gives the start ing locat ion of the main program. The INIT
and RUN add resses are used by the Binary Load operat io n to
automatically execute a program after it has been loaded . Th e
INIT and RUN addresses must be spec ifi ed in hexadec imal
notat ion .

When the Binary Save ope ration is spec ifi ed in DOS 1.0, th e
following prompt w ill appear .

SAVE--GIVE FILE, START, END

Again , FILE gives the name of the object file to be created. A
dri ve specifier can be used preceding the filename.

START and END give the beginning and end ing add resses in
hexadecima l of the block of data to be saved.

A file can be saved in DOS 1.0 so that it wi ll be automatica ll y
executed when it is load ed by Bina ry Load. To accomp li sh this ,
the program start ing address shou ld be placed in memory
add resses 736 and 737 (2EO and 2El in hexadecima l). The low byte
of the program starting address shoul d be placed in address 736
and the high byte in 737. The POKE statement ca n be used to
place the proper va lues in these locatio ns.

Illustration 7-13 gives an examp le of the use of the Bi nary Save

236 User's Handbook to the Atari 400/ 800 Computers

operation.

Illustration 7-13. Binary Save Example

SELECT ITEM OR [RETURN] FOR MENU K,
SAVE-GIVE FILE, START, END (,INIT, RUN)
FILEA.OB], 2BOO, 4COF ,

SELECT ITEM OR [RETURN] FOR MENU

In the preceding example, the contents of memory locations
beginning at 2BOO and ending at 4COF will be saved in a file
named FILEA.OBJ on drive 1.

L. Binary Load

The Binary Load operation is used to load a file created with
Binary Save or an assembly language object file into RAM. If the
RUN and INIT addresses were appended to the file, the file will
execute upon loading.

If the I N option is specified , the INIT and RUN addresses will be
disregarded, and the file must be run using the DOS Menu's Run
At Address operation . Also, files without an INIT or RUN address
must be run using the Run At Address operation.

An example of a Binary Load operation is given in Illustration 7-
14.

Atari 810 Disk Drive 237

Illustration 7-14. Binary Load Example

SELECT ITEM OR [RETURN] FOR MENU

~I
LOAD FROM WHAT FILE?
FILEA.OB) ,

SELECT ITEM OR [RETURN] FOR MENU

In some situations in DOS 2.0, the binary file may require a
portion of the memory area used by DUP.SYS. If this occurs, the
portion of the binary file that requires memory used by DUP.SYS
will be saved on th e MEM.SAV file until the binary file has been
executed. If the MEM.SAV file is not present, the following
message will appear.

NEED MEM.SAV TO LOAD FILE

M. Run At Address

The Run At Address operation is used to execute a machine
language program in memory by entering its hexadecimal
starting address. An example of the use of the Run At Address
operation is given in Illustration 7-15.

238 User's Handbook to the Atari 400 /800 Computers

Illustration 7-15. Run At Address Example

SELECT ITEM OR [RETURN] FOR MENU
MI
RUN FROM WHAT ADDRESS
2BOO I

N. Create MEM.SAV*

The Create MEM.SAV operati on is used to create a MEM.SAV file
on the diskette in drive 1.

Whenever DOS version 2.0 is booted, the DUP.SYS disk file will
overwrite an area in memory where BASIC programs are sto red.
When a MEM.SAV file is present on the diskette in drive 1, the
computer will transfer all data present in the memory area used
by DUP.5YS into the MEM.SAV file. Afterwards, DUP.SYS will be
loaded, and the DOS menu will appear.

When you have finished using DOS, by ente rin g the
Run Cartridge operation, the program in MEM.5AV will be
automatically loaded from MEM.SAV into RAM.

When a MEM.SAV file is used , more time will be required to load
the DOS menu. Illustrat ion 7-16 depicts the use of Create
MEM.5AV.

*Define Dev ice (Item N. in DOS version 1.0) is not utili zed.

Atari 810 Disk Drive 239

Illustration 7-17. Create MEM.SAV Example

SELECT ITEM OR [RETURN) FOR MENU

!:il
TYPE "Y" TO CREATE MEM.SAV

YI

SELECT ITEM OR [RETURN) FOR MENU

If the user attempts to create a MEM.SAV file on a diskette which
already contains a MEM.SAV file, the following will be displayed
on the video screen.

MEM.SAV FILE ALREADY EXISTS
SELECT ITEM OR RETURN FOR MENU

O. Duplicate File

The Duplicate File operation is used to copy file from one
diskette to another in systems with only one drive.

When the Duplicate File operation is specified, the following
prompt will appear.

NAME OF FILE TO MOVE?

Since the source and destination files will be the same, only one
filename need be entered . Also, since the system includes only
one disk drive, a drive identifier is not necessary. Filename match
characters may be used in the filename entry.

In DOS version 2.0, the following prompt will then appear.*

TYPE "y" IF OK TO USE PROGRAM AREA
CAUTION : A "Y" INVALIDATES MEM.SAV

'This prompl may nol appea r in some syslems,

240 User's Handbook to the Atari 400/ 800 Computers

If a Y is entered, the entire program area of memory will be used
for the file duplication process. This will speed the duplication
process. However, by allowing the program area to be used for
duplication, the contents of MEM.SAV cannot be rewritten into
RAM. Any BASIC program that you intended to save using
MEM.SAV will be lost when the system returns to BASIC.

Any response other than Y disallows the use of the program area
of memory for the Duplicate File operation. This allows the
contents of MEM.SAV to be later rewritten into RAM . However,
by disallowing the use of the program area of memory, the time
necessary to duplicate the file will increase.

Be extremely careful when using the Duplicate File operation
with DOS 1.0. When this operation is specified in DOS 1.0, the
program area of memory will be erased. Any existing files will be
lost after the duplication process has been completed.

An example of the use of the Duplicate File option is given in
Illustration 7-18. Notice that the diskettes may have to be
swapped several times in order to complete the duplication
process.

USING BASIC PROGRAMS ON DISKETTE

In the following sections, we will discuss the BASIC statements
used to save programs on diskette and then reload these
programs back into memory.

Saving BASIC Programs On Diskette

Once a BASIC program has been entered into RAM via the
keyboard , it must be stored on diskette or it will be lost when the
Atari 's power is turned off or when a NEW statement is executed.
The SAVE and LIST statements are used to save a BASIC program
on diskette.

The SAVE statement uses the followng configuration when used
with the Atari 810 Disk Drive.

Atari 810 Disk Drive 241

Illustration 7-18. Duplicate File Example

SELECT ITEM OR [RETURN] FOR MENU 0,
NAME OF FILE TO MOVE?
TEXT?DAT'
TYPE "Y" IF OK TO USE PROGRAM AREA
CAUTION: A "Y" INVALIDATES MEM .SAV X,
INSERT SOURCE DISK, TYPE RETURN ,

COPYING--Dl :TEXTA.DAT*
INSERT DESTINATION DISK, TYPE RETURN ,
INSERT SOURCE DISK, TYPE RETURN ,

COPYING--Dl :TEXTB.DAT*
INSERT DESTINATION DISK, TYPE RETURN ,
INSERT SOURCE DISK, TYPE RETURN

I
SELECT ITEM OR [RETURN] FOR MENU

*This message appears only if more than one file is copied ,

SAVE "D#:filename"

where 0 is the device name for the Atari 810 disk drive. This
parameter is required . # indicates the drive number (1 , 2, 3, or 4) .
If # is omitted, drive 1 is assumed . The BASIC program filename is
separated by a colon from the device name and drive number.

The SAVE statement stores BASIC programs in tokenized format,
keywords are abbreviated as one character tokens.

242 User's Handbook to the Atari 400/ 800 Computers

The LIST statement uses the following configuration ,

LIST "D# :filename"[,beginline] [endline]*

where 0 specifies the device name. # is an optional parameter
which specifies the drive number. The filename assigned to the
file is specified in filename.

beginline and endline are optional parameters which specify the
first and last line numbers to be stored by LIST. Ailline numbers
with values between beginline and endline will be stored as well.
For example, the following LIST statement would save all
program lines between 100 and 500 inclusive on the diskette in
drive 2 with the filename PROGA.BAS:

LIST "D2:PROGA.BAS", 100, 500

The LIST statement saves programs in Atari ASCII format. In this
format, every character is assigned an ASCII code.

Loading a Program

The LOAD statement is used to load programs into memory from
diskette which were previously saved in tokenized format by the
SAVE statement.

The LOAD statement uses the same format as the SAVE
statement. The following LOAD statement would load
PROGA.BAS from drive 1:

LOAD "D:PROGA.BAS"

The ENTER statement is used to load a program previously saved
in ASCII format with a LIST statement. The following ENTER
statement would load PROGB.BAS from drive 1:

ENTER "D:PROGB.BAS"

*Brackets [] indicate an optional entry.

Atari 810 Disk Drive 243

If the program file specified by ENTER or LOAD is present on the
specified drive , it will be loaded into memory. When the loading
process has been completed, the READY prompt will be
displayed.

If the program specified by ENTER or LOAD is not present on the
drive indicated, error 170 (File Not Found) will occur.

The LOAD statement will erase any existing program in memory
when the new program is loaded. The ENTER statement merges
the program being loaded with any existing program lines in
memory. If the program being loaded contains line numbers
which duplicate those of the program in memory, the incoming
program lines will replace the duplicate lines in memory. Any
existing program lines in memory can be erased by entering the
NEW statement before executing an ENTER statement.

LOADing and Executing a Program

In the following series of statements, a BASIC program is loaded
with the LOAD statement, and then executed with the RUN
statement.

LOAD "D:PROGA.BAS"
READY
RUN

This process can be shortened to a single step by including the
LOAD statement's parameter with the RUN statement. An
example of this usage of the RUN statement is given below.

RUN "D:PROGA.BAS"

In the preceding example, PROGA.BAS will be executed as soon
as it is loaded.

Chaining Programs

The RUN statement can be included as a program line in one
program in order to load and execute another program. This
process is known as chaining.

244 User's Handbook to the Atari 400/ 800 Computers

For example, when the following program is executed, line 500
will cause a second program (PROGB.BAS) to be executed.

100 REM PROGA.BAS
200 A = 9: B = 10
300 C = A * B
400 PRINT C
500 RUN "0: PROGB.BAS"

When the new program is loaded in line 500, all variable values
will be cleared before PROGB.BAS is loaded. This is due to the
fact that the RUN statement as used in line 500 executes a LOAD
statement. The LOAD statement in turn executes a NEW
statement which erases any ex ist ing programs in memory and
clears all variables.

USING DATA FILES ON DISKETTE

The BASIC statements PRINT# and PUT are used to store data on
a diskette. INPUT# and GET are used to read data into RAM from
a diskette.

Opening a Disk File

Before a disk file can be used, it must first be opened with the
OPEN statement. The OPEN statement will open an
input/ o utput channel to the file specified as its parameter. Th e
OPEN statement uses the following configurat ion :

OPEN #channe/, task , va lue, D#:filename

Th e first parameter in the OPEN statement indicates the channel.
Before an external device can be accessed either for input or
output, a channel to the device must have been opened .

The OPEN statement ass igns a channe l to an externa l device.
Once a channel is assigned, the device can subsequent ly be
accessed via its channel number. If an OPEN statement attempts
to open a channe l which is already open, an error will occur.

Atari 810 Disk Drive 245

The second parameter in the OPEN statement indicates the
activity for which the channel is being opened. The activities
which can be specified for the Atari 810 Disk Drive are listed in
Table 7-1.

The third parameter in the OPEN statement is ignored when the
Atari 810 is specified as the device. A value of ° should be used.

The final parameter in the OPEN statement consists of the device
name for the Atari 810 Disk Drive (D), followed by an optional
drive specifier, and the name of the file to be opened .

Table 7-1. OPEN Statement Task Parameter Values
(Atari 810 Disk Drive)

Task Parameter Task Description
Number

4 Disk read operation. The file pointer is
positioned to the beginning of the file.

6 Disk directory read operation . This
operation allows the user to read the
disk directory as if it was a data file . The
file pointer will be set to the first
filename in the directory that matches
the specified filename.

When the disk directory file is read, the
fields containing filenames which match
the filename specified in the OPEN
statement will be returned . Filenames
that do not match will be skipped. The
last value that is returned is the number
of free sectors.

If the following OPEN statement was
specified;

OPEN #1 ,6,0,"D:*.BAS"

246 User's Handbook to the Atari 400/ 800 Computers

all files with an extension of .BAS would
be returned during a read operation.

8 Disk write operation. The file pointer is
positioned to the beginning of the file.
Any existing data in the file is erased.

9 Disk write append operation . The file
pointer is positioned to the end of the
file . The file must already exist or error
170 will occur. The append operation
allows data to be added to an existing
file .

12 Disk read and write operation. The file
pointer is positioned to the beginning of
the file , and existing data in the file is
not altered. The file must already exist
before it can be opened for updating. As
data is read or written , the file pointer
will be moved forward in the file. Data
written to the file will replace existing
data .

A file must be opened via the OPEN statement before that file
can be referenced in a program. Once a file has been opened , it
is referenced with its channel number, not with its filename.

Channels 1 to 5 are always available for use in Atari BASIC
programs. Channel 0 is reserved for the editor (E :). The BASIC
graphics statements use channel 6. The CLOAD, CSAVE, and
LPRINT statements use channel 7. As long as the BASIC program
does not use the graphics statements, channel 6 will be available
for use. If CLOAD, CSAVE, and LPRI NT are not used, channel 7
will be available.

Closing a Data File

Once a program has finished accessing an open file, that file
should be closed with the CLOSE statement. This allows that file's

Atari 810 Disk Drive 247

channel number to be assigned elsewhere.

Also, if a file that was open for output is not properly closed, data
may be lost. Closing an output file causes any remaining data in
the disk drive buffer to be output followed by an end-of-file
record. If the open file is not properly closed, the data in the disk
drive buffer may be lost.

The following CLOSE statement,

CLOSE #4

will close channel 4.

All open files are closed automatically when an END or RUN
statement is executed, or when a program's last statement is
executed (only in the program mode). However, it is good
programming practice to close any open files with the CLOSE
statement.

Writing to a Data File

Once a file has been opened, data can be written to that file
using the PRINT# or PUT statements.

The PRINT# statement uses the following configuration when
used to output data to a disk file.

PRINT #channe/; expression

channel indicates the channel to be used to send the output.
Use the channel assigned to the file in the OPEN statement.
expression consist of one or more string or numeric values to be
output. These values are output as ASCII values.

Data is output to the disk drive via the disk drive buffer. The disk
drive buffer stores data output from PRINT# statements until the
buffer fills or an end-of-line character is encountered.

The disk drive buffer has a capacity of 125 characters. Therefore,
data will be output from the buffer to the diskette in 125

248 User's Handbook to the Atari 400/ 800 Computers

character blocks. If an EOL character is output, the disk buffer
contents will be sent to the diskette rega rd less of whether or not
the buffer is filled. If a PRI NT# statement contains more than one
expression, these will be concatenated unless separated with an
EOL character.

PRINT# statements automatically output an EOL character after
outputting the expressions. However, a comma or semicolon at
the end of a PRI NT# statement suppresses the EOL character.

If the previous PRINT# statement expression list ended with a
semicolon, the current PRINT# statement would output its first
character immediatel y after the final character that was output
by the preceding PRINT# statement. If the previous PRINT#
statement e xpression list ended with a comma, the current
PRINT# statement would begin output at the next column tab
stop.

Blank spaces will be placed in the area between the last character
output via PRINT# and the first character output at the next tab
stop by the current PRINT# statement. Because of the insertion
of these blank spaces, it is advisable not to insert commas in
PRINT# statements used for disk output.

The PUT statement can also be used to output data to a disk file.
PUT takes the following configuration:

PUT #channe/, numeric expression

As with PRINT#, the channel specified must be open for output.
The value given in numeric expression is output to the data file.
The value output will lie between 0 and 255. If the value is not an
integer, it will be rounded to the nearest integer.

If the value specified does not lie between 0 and 255, it will be
output module 256. In other words, 256 would be sent as 0, 257 as
1, 258 as 2, 259 as 3, etc.

Reading From a Data File

The INPUT# and GET statements are used to read data from files

Atari 810 Disk Drive 249

and assign that data to the variables specified in the statement.

IN PUT# uses the followi ng configu ration:

INPUT #channel { ; J variable, ...

The channel must have been previously opened for input. The
variables will accept the data values input.

INPUT# will retrieve data from the input device specified . This
data will consist of ASCII characters followed by the ASCII end
of-line character . The EOL character will end input to the
variable specified .

INPUT# will interpret the data being read as either numeric or
string--depending on the type of variables used as parameters.
When a numeric variable is specified , the data being input will
be interpreted as numeric data.

The data read via INPUT# will be assigned to the numeric
variable indicated until a comma or an EOL character is
encountered. Numeric values can be ended either with the EOL
character or comma . Commas can not be used to end string
values, as they are regarded as part of the string.

If no data is available to be read into the numeric variable, or if
the data is invalid, an error will result.

When a string variable is specified, the data being input will be
interpreted as string data . If no characters are read, the string
variable will be assigned the null value. If more characters are
read than allowed for in the string variable's DIM statement, the
INPUT# statement will disregard the excess characters. The EOL
character will end the string input.

The INPUT# statement transfers data from the diskette in 125
character blocks. A single block might contain values which will
be assigned to several variables. The variables specified in the
INPUT# statement will be assigned the values in the disk buffer in
a sequential manner.

250 User's Handbook to the Atari 400/ 800 Computers

If an INPUT# statement attempts to read beyond the end of a disk
file, an error will result.

The GET statement is used to read a single numeric value via the
opel"] channel specified . GET uses the following configuration:

GET #channe/, numeric variable

The channel specified must be open for input. The numeric
variable indicated will accept the value returned by GET. This
value will lie between 0 and 255.

When GET is used with the 810 Disk Drive and the buffer is
empty, the initial GET statement will result in a block of data
being read into the disk buffer. The first value in the buffer will
be assigned to the numeric variable specified with the first GET
statement.

Each successive GET statement will read a value from the buffer.
When the buffer has been emptied , another block of data will be
read into the buffer from the diskette.

NOTE and POINT

NOTE and POINT are BASIC statements that aid the user in
random access of Atari disk files . Random access is only possible
with DOS version 2.0.

The NOTE statement will return the position of the file pointer.
The file pointer will be referenced using two separate data items.
One data item is the number of the last sector accessed. The
other data item is the number of the last character referenced
within that sector.

The NOTE statement uses the following configuration:

NOTE #channe/ , sector, character

The NOTE statement will reference the file opened with the
specified channel number. The number of the last sector
accessed will be assigned to the variable given in sector. The

Atari 810 Disk Drive 251

number of the last character accessed within that sector will be
assigned to the variable named in character .

The sector number returned is the absolute sector number on
the diskette. It can be any number from 1 to 719. Remember, a
file's sector numbers need not necessarily be sequential. For
example, the first sector for a file might be sector 57, the second
147, the third 32, etc.

The POINT statement moves the file pointer to the sector and
character number specified. Any subsequent file access will
begin at the new file pointer location specified by POINT.

POINT uses the following configuration:

POI NT #channel, sector, character

The file open under the channel number specified will have its
file pointer moved . The file pointer will be moved to the sector
number indicated in sector, and the character within that sector
indicated by character. Both sector and character must be
numeric variables. Constants may not be used .

If the fi Ie poi nter is moved to a sector not assigned to the file
opened under the channel number specified in channel, one of
the following errors will result when an attempt is made to read
from or write to that file .

Error 170 (End of File)--Attempted read .
Error 171 (Point Invalid)--Attempted write.

CHAPTER 8.
AJARI PRINTERS

Introduction

In this chapter, we will concentrate on sending output to the
three Atari printers; the Atari 820 Printer, the Atari 822 Printer,
and the Atari 825 Printer.

The process of outputting numbers and text differs only slightly
between these three printers. However, the Atari 825 has several
programmable features not available on the Atari 820 and 822.
These will be described at the end of this chapter.

Another difference between the three Atari printers lies in the
width of the lines they output. The Atari 820 and 822 output 40
column lines. This is the same output width as the video display.
On the other hand, the Atari 825 generally uses a line width of 80
columns.

One final difference lies in the way in which these three printers
are connected to the Atari computer. The Atari 820 and 822 are
connected to the Atari computer via the serial 1/ 0 port. The
Atari 825 printer is connected to the Atari 400 or 800 via the Atari
850 Interface module.

BASIC STATEMENTS FOR PRINTER OUTPUT

Sending output to the printer is generally much the same as
sending output to the screen. In the following sections, we will
discuss the procedures to output data to the printer.

LIST "P:"

When used with the printer 's device name (P:) , the LIST
statement will output the BASIC program currently in memory

254 User's Handbook to the Atari 400/ 800 Computers

to the printer. One or two optional line numbers may also be
used as parameters to output only a portion of the program.

When a program is listed to the Atari 820 or 822, the individual
lines will have a maximum width of 40 columns. Program lines
greater than 40 characters in length will be continued on the
next line. Since the Atari 825 has an 80 column width, only
program lines greater than 80 characters will be continued on
the next line.

None of the Atari printers can output the graphics characters.
On the Atari 820and 822, graphics characters will appear as blank
spaces. On the Atari 825, certain graphics characters cause
abnormal output while other graphics characters do not print at
all.

The Atari 825 uses certain Atari ASCII codes as printer control
characters. If the printer encounters these control characters in a
program, peculiar printer output can result. For this reason,
control codes should be specified in Atari BASIC programs using
the CHR$ function.

LPRINT

LPRI NT outputs data to the printer much as the PRI NT statement
outputs data to the video display.

LPRINT is designed for use with printers using 40column output.
This presents difficulties in situations where LPRINT is used with
the Atari 825. For example, if an LPRINT statement outputs 40
characters or less and ends with a semicolon, or 38 characters or
less and ends with a comma, the output from the next LPRINT
statement will begin on column 41 of the same line. If a third
LPRINT statement follows, output from that statement will begin
at the beginning of the next printer line.

If an LPRINT statement outputs over 40 characters on an Atari
825, the next LPRINT statement causes output to begin on a new
line--even if the statement ends with a comma or semicolon.

Atari Printers 255

On either the Atari 820,822, or 825, if an LPRI NT statement does
not end with either a comma or semicolon, output from the next
LPRINT statement will begin at the beginning of the next line.

LPRINT uses channel 7 for printer output. If channel 7 has
already been opened for another device, an error will occur
when LPRINT is executed. This error will automatically close
channel 7, after which LPRINT can be executed.

PRINT# and PUT

Either the PRINT# or PUT statements can be used to send output
to the printer. PRINT# and PUT direct output to a channel
previously opened via an OPEN statement. If the channel was
opened for the printer (device P:) , the output for that channel
will be directed to the printer .

Characters are output to the printer via PRINT# and PUT in the
same manner as they are output to the display screen.

The printer must be powered on when a PRINT# or PUT
statement outputs data to the printer . If not, an error will occur.

PRINTER BUFFER

The Atari printers contain enough RAM to hold one line of
output. This memory is known as the printer buffer. As
characters are output to the printer, these are not automatically
printed but are instead sent to the printer buffer.

When either an EOL character is encountered or when the
buffer fills, an entire line will be output. The buffer will be
cleared , and the printer will advance to the next line.

PRINTER CHARACTERS SETS

The Atari printers use a character set that is somewhat different
than the character set used by the video display. The Atari
printers use the standard ASCII code set to define their character
set. The display screen uses the Atari ASCII code set. Both code
sets are listed in Appendix C.

256 User 's Handbook to th e Atari 400/ 800 Computers

Remember that none of the Atari printers are capable of
outputting the graphics characters. Also, the Atari 820 and 822
recognize ASCII codes 0 to 31 as a blank space, while the Atari
825 recognizes these as control codes.

Atari 825 Control Characters

The Atari 825 has a number of special printing features such as
underlining, double-wide character printing, and condensed
character printing. These features are summarized in Table 8-1 .
These features are activated and deactivated with control
characters. These control characters are also listed in Table 8-1.

A control character can be sent to the Atari 825 printer with the
LPRINT, PRINT#, or PUT statements just as any other character
would be sent.

Control codes can be generated either with the CHR$ function
or via the keyboard. The following program lines would cause a
reverse line feed.

100 LPRINT CHR$(27);CHR$(10)

Control characters can also be generated with the keystrokes
listed in Table 8-1. When these keystrokes are entered, the
graphics characters given in Table 8-1 will be echoed on the
screen. The screen interprets the keyboard entry as an Atari
ASCII code and displays the corresponding character on the
screen.

The Atari 825 interprets the keyboard entry as a control
character. For example, if the following line was entered,

100 LPRINT" CTRL-J " Control-J is
entered at the
keyboard

the paper would advance 1 line in the Atari 825. The graphics
character ~ would be displayed on the video screen.

Atari Printers 257

Table 8-1. Atari 825 Printer Control Characters

Screen Keystrokes Decimal ASCII Atari 825
Character Code Mnemonic Control Functions

~ CTRL-J 10 LF Line Feed

~~ ESC/ESC & CTRL-J 27 & 10 ESC LF Reverse line feed

~[I] ESC/ ESC & ESC/ CTR L- t 27 & 28 ESC FS Half-line feed

~B ESC/ ESC & ESC/ CTRL- 27 & 30 ESC RS Reverse half- line feed

El CTR L-M 13 CR Carriage return

Q CTRL-N 14 SO End unde rline

~ CTRL-O 15 SI Begin underline

~[B ESC/ESC & CTRL-A 27 & 01 ESC SO H 1 dot space

~OI ESC/ESC & CTRL-B 27 & 02 ESC STX 2 dot spaces

&I~ ESC/ESC & CTRL-C 27 & 03 ESC ETX 3 dot spaces

~[] ESC/ESC & CTRL-D 27 & 04 ESC EOT 4 dot spaces

[g@ ESC/ESC & CTRL-E 27 & 05 ESC ENQ 5 dot spaces

~IZI ESC/ESC & CTRL-F 27 & 06 ESC ACK 6 dot spaces

[4] CTR L-H 08 BS Backspace. Code
must be fo ll owed
with a characte r.

IS;)Q ESC/ESC & CTRL-N 27 & 14 ESC SO Begin extended char-
acter printing.

~1iJ ESC/ESC & CTRL-O 27 & 15 ESC SI End extended char-
acter pr inting .

~I±I ESC/ESC & CTRL-S 27 & 19 ESC DC3 Standard character
spacing. 10 character
per square inch.

~~ ESC/ESC & CTRL-T 27 & 20 ESC DC4 Condensed c harac-
ter spacing. 16.7 char-
acters per sq uare
inch.

~~ ESC/ESC & CTRL-Q 27 & 17 ESC DCl Proportiona lly spaced
character set.

258 User's Handbook to the Atari 400/ 800 Computers

The preferred method of sending control codes to the Atari 825
is via the CHR$ function. If a program is listed conta ining control
codes specified by the CHR$ function, the listing of that program
will not affect the printer. However, if a program containing
control characters surrounded by quotation marks is listed,
those contro l characters wil l be heeded by th e Atar i 825, and the
program li sting wil l be affected accordingly.

Line Feed

The I ine feed code wi II adva nce the pa per in the Ata ri 825 by one
line or 1/ 6 of an inch .

Any data received prior to the line feed code will be printed
before the paper is advanced. The following statement,

100 LPRINT "John" ; CHR$(10) ; "Wiliiam"

would generate the following :

Reverse Line Feed

John
William

The reverse line feed code causes the paper in the printer to be
reversed by 1/6 of an inch . The fo llowing statement,

100 LPRINT "John";CHR$(27) ; CHR$(10);"William"

would result in the following output:

William
John

Atari Printers 259

Half-line Feed & Reverse Half-Line Feed

The half-line feed control code causes the paper in the printer to
be advanced by 1/ 12 inch.

These control codes are very useful when printing subscripts. For
example , the following program lin e,

100 LPRINT "8";CHR$(27);CHR$(28);"10";
CHR$(27) ;CHR$(30);"Base Ten"

would output:

810 Base Ten

Carriage Return

When the carriage return code is received , th e printerwill return
to the left margin, and an automatic lin e feed will be generated.
For example, the following program line,

100 LPRINT "JOHN";CHR$(13) ; "WILLIAM"

would generate the following output:

Underlining

JOHN
WILLIAM

The 51 code causes the underlinin g of characters to begin. When
an SO code is received , the underlining is discontinued . For
example, the following program line,

100 LPRINT CHR$(lS) ; "UNDERLlNE";CHR$(14);" STOP"

would generate the following output:

UNDERLINE STOP

260 User's Handbook to the Atari 400 / 800 Computers

Standard, Condensed, and Proportionally Spaced Character Sets

The default character set used on the Atari 825 is the standard
character set--where 10 characters per inch are output. By
sending the condensed character control code , the condensed
character set will be active. In the condensed character set, 16.7
characters per inch are output. Th e character width is the
uniform for all characters within either the standard (10 dot
spaces per character) or the condensed (9 dot spaces per
character) character set.

In the proportionally spaced character set, characters are
assigned different widths. For example , an I would be assigned a
more narrow width than a W. However, all digits are assigned
uniform widths. Digits will be printed at 12.5 characters per inch .
Approximately 14 non-digit characters are output per inch in the
proportionally spaced character set.

Condensed and proportionally spaced characters can be mixed
in the same output line. However, characters printed with the
standard character set cannot be mixed on the same line with
condensed or proportionally spaced characters.

The maximum line length on the Atari 825 printer is 8 inches.
Therefore, a full line of standard characters would contain 80
characters. A full line of condensed characters would contain
132 cha racters.

The ESC SO Code causes characters to be printed by the Atari 825
as extended or double width characters. The ESC SI code will end
extended character printing. Extended character printing also
will end when a carriage return code is encountered .

If double wide characters are being output, 40 standard
character set double wide characters would fill a line. 66
condensed double wide characters would fill a line.

Backspace & 1-6 Dot Spaces

The Backspace character code consists of the code BS followed
by the number of dot spaces (nn) to be backspaced. The BScode

Atari Printers 261

can appear as either control-H or CHR$(8) . The number of
spaces can appear as a CHR$ function or as a print character or
control code. For example ,

LPRINT CHR$(8) ; CHR$(100)

would backspace by 100 dots.

If nn (number of dot spaces) is specified as a print character or
control code , that character code's ASCII decimal equivalent
will be used as the number of dots to be backspaced. This
number can be from 0 to 127 inclusive.

If d (with an ASCII decimal equivalent of 100) was substituted for
CHR$(100) in our previous example,

LPRINT CHR$(8);"d"

the result would still be backspacing of 100 dots.

In the standard character set, each character is considered to be
10 dot spaces wide. In the condensed character set, each
character is considered to be 9 dot spaces wide. Therefore, BS 10
would backspace one character in the standard character set,
and BS 9 would backspace one character in the condensed
character set.

In the proportionally spaced character set, the number of dot
spaces per character varies from 6 to 18. The number of dot
spaces for the width of the 96 ASCII print characters is given in
Table 8-2.

The dot spacing control characters as listed in Table 8-1 can be
used to add or delete dot spaces between words and/or
characters. If dot spaces are added, the line will be extended. By
replacing the current number of dot spaces between words
and/ or characters with a lesser number, the line will be
condensed .

Dot spacing can be useful in printing characters in a bold
typeface.

262 User's Handbook to the Atari 400/800 Computers

Table 8-2. Dot Space Width of Proportionally Spaced
ASCII Print Character Set

ASCII Print Decimal No. of ASCII Print Decimal No. of
Cha racter Code Dot Spaces Cha racte r Code Dot Spaces

SP 32 7 0 79 16
! 33 7 P 80 14
" 34 10 Q 81 14
35 15 R 82 15
$ 36 12 5 83 12
% 37 16 T 84 14
& 38 14 U 85 15

39 7 V 86 16
(40 7 W 87 18

I 41 7 X 88 16 . 42 12 Y 89 16
+ 43 12 Z 90 10

44 7 I 91 12
45 12 A 92 12
46 7 I 93 12

/ 47 12 \ 94 12
0 48 12 - 95 12
1 49 12

,
96 7

2 50 12 a 97 12
3 51 12 b 98 12
4 52 12 c 99 10
5 53 12 d 100 12
6 54 12 e 101 12
7 55 12 f 102 10
8 56 12 g 103 12
9 57 12 h 104 12

58 7 i 105 8
59 7 j 106 6

< 60 12 k 107 12
; 61 12 I 108 8
> 62 12 m 109 16
? 63 12 n 110 12

@ 64 14 0 111 12
A 65 16 P 11 2 12
B 66 15 q 113 12
C 67 14 r 114 10
0 68 16 s 11 5 12
E 69 14 I 116 10
F 70 14 u 117 12
G 71 16 v 118 12
H 72 16 w 119 16
I 73 10 x 120 12
J 74 14 Y 121 12
K 75 16 z 122 10
L 76 14 ~ 123 10
M 77 18 I 124 7
N 78 16 ~ 125 10 - 126 12

CHAPTER 9.
AlARI GRAPHICS & SOUND

Introduction

In this chapter, we will provide an overview of the various
graphics and sound capabilities that are available in Atari BASIC.

The following commands are used to create graphics in Atari
BASIC:

GRAPHICS
COLOR
DRAWTO

LOCATE
PLOT
POSITION

PUT/GET
SETCOLOR
XIO

These commands will be discussed in the following sections.

GRAPHICS

The GRAPHICS command is used to select one of the 9 graphics
modes available in Atari BASIC. GRAPHICS is used with the
following configuration,

GRAPHICS X

where X is a real numeric constant, variable, or expression which
when rounded evaluates to a positive integer.

Generally, the GRAPHICS statement will clear the video display
upon execution. However, by adding 32 to the value of X, this
display clearing function will be disregarded .

GRAPHICS 0

The characteristics of the various Atari graphics modes are given
in Table 9-1.

264 User's Handbook to the Atari 400/ 800 Computers

Table 9-1. Atari Graphics Modes

Graphic No. of No. of

Mode Mode No. o f Rows Rows No. of RAM

Number Type Columns (Split Screen) (Full Screen) Colors Requirement

0 TEXT 40 24 l' 993
1 TE XT 20 20 24 5 513
2 TEXT 20 10 12 5 261
3 GRAPH ICS 40 20 24 4 273
4 GRAPH ICS 80 40 48 2 537
5 GRAPH ICS 80 40 48 4 1017
6 GRAPH ICS 160 80 96 2 2025
7 GRAPH ICS 160 80 96 4 3945
8 GRAPH ICS 320 160 192 l ' 7900

'1 co lor; 2 lu mi nances

Mode 0 is the text mode. This is the standard mode that is
encountered upon power-on.

Modes 0 conta ins a 24 by 40 character screen. The left margi n is
set by default to column 2, and the right margin is set to co lumn
39. Th ese sett ings allow 38 characters per line. The left and right
margins can be altered by POKEing a new location to the
memory locations which specify these margins.

The left margin memory address is known as LMARGN and is
address 82. The ri ght margin memory add ress is know n as
RMARGN and is address 83 .

In Graphics Mode 0, on ly one color is ava ilab le in the display
area. However, 2 different leve ls of luminance (b ri ghtness) are
available. The color of the characte rs wi ll be th e same as that o f
the background. However, the luminance of the characte rs can
differ, mak ing them readable.

Atari Graphics & Sound 265

Upon start-up in Graphics 0, the display area color is blue (color
register 2), and the border area color is black (color register 4) .
However, by changing the default values of these color registers,
the border area and display area color can be altered. This
changing of the color registers can be accomplished with the
SETCOLOR statement. For example, the following SETCOLOR
statement would change the display area from blue to orange.

SETCOLOR 2, 2, 4

The SETCOLOR statement can also be used as shown in the
following example to alter the background from black to green.

SETCOLOR 4, 12, 0

The concepts of color registers and the use of SETCOLOR to
change color registers will be discussed in the next section.

Color Registers & SETCOLOR

Color registers are memory locations within the Atari which set
the foreground , background, and border colors. The Atari
contains 5 color registers. These are numbered from 0 through 4
inclusive. The Atari's operating system uses the following RAM
addresses to store the current color in each register .

Address Name

COLORO
COLOR1
COLOR2
COLOR3
COLOR4

Address Location Color Register No.

Address 708 Color Register 0
Address 709 Color Register 1
Address 710 Color Register 2
Address 711 Color Register 3
Address 712 Color Register 4

Each of the 5 color regi sters has a default color defined. These
default values are listed in Table 9-2.

The default color values for the 5 color registers can be changed
with the SETCOLOR command. SETCOLOR uses the following
configuration:

SETCOLOR register#, color#, luminance#

266 User's Handbook to the Atari 400/ 800 Computers

Table 9-2. SETCOLOR Register Default Values

SETCOLOR Default Luminance Actual
Register No. Color No. Value Color

0 2 8 Orange
1 12 10 Green
2 9 4 Dark Blue
3 4 6 Pink
4 0 0 Black

The register# indicates the number of the reg ister whose defau lt
values are to be altered. The color# indicates the color to which
the register indicated is to be set. The sixteen available colors are
li sted in Table 9-3 with their associated SETCOLOR numbers.

The luminance indicates the brightness value of the color.
Luminance can range from 0 (darkest) to 14 (brightest). Odd
luminance va lues give the same lum inance as the next lowest
even value. By combining the different co lor and luminance
va lues, as many as 128 different shades of color can be created.

Table 9-3. Atari Colors and Color Numbers

Color Color
Color Number Color Number

Gray 0 Blue 8
Gold 1 Light Blue 9
Orange 2 Turquoise Blue 10
Red 3 Green Blue 11
Pink 4 Green 12
Vio let 5 Yellow-Green 13
Blue Purp l e 6 Orange-Green 14
Blue 7 Orange 15

Atari Graphics & Sound 267

GRAPHICS 1 & 2

Graphics Modes 1 and 2 are both text modes. The items available
for display can be chosen from either of two 64 character sets.
The standard character set consists of the upper case letters,
digits, and punctuation symbols. The alternate character set
consists of the lower case letters and special graphics characters.

The standard character set will be active whenver the Atari is
powered on, the System Reset key is pressed, or when a
GRAPHICS statement is executed . By executing the following
statement,

POKE 756,226

the alternative character set can be selected. If the statement,

POKE 756,224

is subsequently executed , the standard character set will again
be active. Table 9-4 lists the characters in the standard and
alternative character sets along with their COLOR statement
color register values (explained later in this chapter).

In Graphics mode 1, the characters are printed at the same
height as those specified in Graphics mode O. However, they are
printed at twice the width as the characters in Graphics O. In
Graphics mode 2, the characters are printed at both twice the
length and twice the height as the characters in Graphics mode O.

Graphics modes 1 and 2 use what is known as a split screen
display (see Illustration 9-1) . The split screen consists primarily of
a graphics window with 41ines of text displayed at the bottom of
the display.

In the split screen mode, a PRINT statement will cause data to be
displayed in the text window. A PRINT #6 statement causes data
to be output to the graphics window.

The split screen can be changed to a full graphics screen by
adding 16 to the graphics mode number.

268 User's Handbook to the Atari 400/ 800 Computers

Table 9-4. Standard & Alternative Character Sets in
Graphics Modes 1 and 2 and Color Register Values

Value for
Character Color Register

Std. Alt. 0 1 2 3

D ~ 32* 0 160 128
OJ [J] 33 1 161 129
CJ OJ 34 2 162 130
00 ~ 35 3 163 131

~ II] 36 4 164 132
!;] 37 5 165 133

00 fZI 38 6 166 134
CJ IS] 39 7 167 135
rn ~ 40 8 168 136

qJ [!] 41 9 169 137

~ 42 10 170 138
'+

~
43 11 171 139 - 44 12 172 140 ..:.

- 45 13 173 141 - 46 14 174 142
S 47 15 175 143
[Q]

~ 48 16 176 144
OJ 49 17 177 145

rn ~
50 18 178 146
51 19 179 147
52 20 180 148

~ ~
53 21 181 149
54 22 182 150 m 55 23 183 151

[§J ~ 56 24 184 152
[2] I[] 57 25 185 153
0 ~ 58 26 186 154
CJ ~ 59 27 187 **
[S ffi 60 28 188 156
GJ 61 29 189 157
~ EJ 62 30 190 158

!II EI 63 31 191 159

*155 will designate the same character and co lor register as 32.
**No va lue is avai lab le to se lect this color register/ character.

Atari Graphics & Sound 269

Table 9-4 (Cont.). Standard & Alternative Character Sets
in Graphics Modes 1 and 2 and Color Register Values

Value for
Character Color Register

Std. Alt. 0 1 2 3

I@] [!] 64 96 192 224

~ ~
65 97 193 225
66 98 194 226

[] ~
67 99 195 227

[ill 68 100 196 228
[I] ~ 69 101 197 229

[E [[] 70 102 198 230

~
71 103 199 231

[ill 72 104 200 232
IT] 73 105 201 233
IT] fE

74 106 202 234

~
75 107 203 235

~
76 108 204 236
77 109 205 237

~ [OJ 78 110 206 238

~ ~ 79 111 207 239

~
80 112 208 240

~
81 113 209 241

.r. 82 114 210 242

~ 83 115 211 243

m =L. 84 116 212 244

~ .k!: 85 117 213 245

GJ 86 118 214 246
~ 87 119 215 247

~ GJ 88 120 216 248

~
89 121 217 249

[lJ 90 122 218 250

fE ~
91 123 219 251
92 124 220 252

OJ 93 ** 221 253

Ej ~
94 126 222 254
95 127 223 255

**No va lue is available to select thi s color register/character.

270 User's Handbook to the Atari 400/ 800 Computers

Illustration 9-1. Split Screen Display

(Row = 0)

(Column = 0)

Row
Position

Column Position

5: (device)
Graphi cs Window
(graphics or text)

E: (device)
Text Window
(4 lines)

Five different default colors are available in graphics modes 1
and 2. These correspond to color registers 0 through 4 (see Table
9-2).

Color register 4 controls the background and border colors. The
default color is color 0 with a luminance of O. This sets the
background and border colors to black . The following
SETCOLOR statement,

SETCOLOR 4,0,4

would set the border and background colors to grey in graphics
modes 1 and 2. SETCOLOR 4,2,4 would set the background and
border colors to orange.

In graphics modes 1 and 2, the color of the characters output in
the graphics window depends on the type of character. The
color registers and default colors used for each type of character
are summarized in Table 9-5.

Atari Graphics & Sound 271

Table 9-5. Default Color Registers For Characters
Entered in Graphics Modes 1 and 2

Color
Type of Character Register Default Color

Upper Case Alphabetic 0 2 - Orange
Inverse Upper Case Alphabetic 2 9 - Dark Blue
Lower Case Alphabetic 1 12 - Green
Inverse Lower Case Alphabetic 3 4 - Red
Numbers 0 2 - Orange
Inverse Numbers 2 9 - Dark Blue

By executing a SETCOLOR statement, the characters will be
output using the colors specified in SETCOLOR. For instance, if
the following statement was executer in graphics modes 1 or 2,

READY
GRAPH ICS I press --1'- key
PRINT #6; 19~r" __ _

L press 4-key a second time

the number 9 would be displayed in dark blue in the graphics
window.

If the following SETCOLOR statement was subsequently
executed ,

READY
SETCOLOR 2, 1, 6

the number 9 would be changed from dark blue to gold .
Subsequent inverse number entries also would be output in
gold.

In graphics mode 0, it is not possib le to draw lines or plot points.
In graphics modes 1 and 2, Iines can be drawn with the DRAWTO
statement and points plotted with the PLOT statement. The use
of these statements will be discussed later in this chapter. First,
however, the use of the COLOR statement will be discussed.

272 User's Handbook to the Atari 400/ 800 Computers

COLOR Statement in Graphics Modes 0, 1, and 2

The COLOR statement determines the color register to be used
with subsequent PLOT or DRAWTO statements. In graphics
modes 0, 1, and 2, COLOR also specifies the character which will
be output by subsequent PLOT or DRAWTO statements.
COLOR is used with the following configuration,

COLOR numericexp

The value of numericexp along with the current graphics mode
will determine the color register number used.

Table 9-6 can be used to determine the color register number
from the COLOR statements numericexp value and the current
graphics mode. For example, if a COLOR 3 statement was
executed in graphics mode 7, SETCOLOR register number 2
would be used for by subsequent PLOT and DRAWTO
statements.

In graphics mode 0, the items displayed are characters--not
points. In graphics mode 0, the COLOR statement will specify
the character to be displayed by subsequent DRAWTO and
PLOT statements. Table 9-7 includes the values to be used with
the COLOR statement to generate the character desired in
graphics mode o.

For example, the following statement,

GRAPHICS 0
COLOR ASC("Y")
PLOT 10,10

will display a "Y" in screen position 10,10 in graphics mode O.

Atari Graphics & Sound 273

Table 9-6. Determination of SETCOLOR Register
From COLOR Statement in Graphics Modes 3 Through 8*

Graphics Modes 3, 5, 7

SETCOLOR COLOR numericexp
Register Number Value

0 1
1 2
2 3
3 -
4 0

Graphics Modes 4, 6

SETCOLOR COLOR numericexp
Register Number Value

0 1
1 -
2 -
3 -

4 0

*In graphics modes 0, 1, and 2, the argument of COLOR
determines the character to be displayed by PLOT or DRAWTO.

274 User's Handbook to the Atari 400/ 800 Computers

Graphics Mode 8**

SETCOLOR COLOR numericexp
Register Number Value

0 -
1 1
2 0
3 -

4 -

**In graphics mode 8, the color used will always be specified by
SETCOLOR register 2. Only the luminance can be altered in
graphics mode 8. (See Page 292) .

Atari Graphics & Sound 275

Table 9-7. Characters Displayed by COLOR
Statement Values in Graphics Mode 0

COLOR Value COLOR Value COLOR VALUE
Character Normal/Inverse Character Normal/Inverse Character Normal/Inverse

~
0/ 128 [;J 35/163 fE

70/198

11129 tB
36/164 71/199

21130 37/ 165 El 721200
iT

3/131 ITI 38/ 166 ~ 73 1201

[D I-=-
4/ 132 39/167 ~ 74 / 202

5/ 133 § 40/ 168 K 751203
~

~ 61134 41 / 169 ~ 76/204

~
71 135 421170 M 77/ 205

§
~

8/ 136 43/171 N 781206

GI F=
9/ 137 44/ 172 ~ 79/ 207

~ 10/ 138 45 / 173 ~ 801208

~ 11 1139 46 / 174 p£ 811209

~
12/ 140 D 47/ 175 ~ 82/ 210

13/ 141 [2J 48/ 176 ~ 83/2 11

14/ 142 ~ 49/ 177 ~ 84/ 212

15/ 143

~
50/ 178 ~ 85 / 213

~ 16/ 144 51/179

~
86/214

17/ 145 52/ 180 87/215

~ 18/ 146 Ii] 53/ 181 881216

19/ 147 [II 54/ 182 0 89/ 217

00 20/ 148 12] 55/ 183 IT] 901218

~
21/ 149 [8J 56/ 184 ~ 91 /219

22/ 150 [I] 57/ 185 ~ 92/ 220

23 / 151 B 58/ 186

~
93/ 221

24/ 152 59/ 187 94 / 222

[[] ~
25/ 153

I
60/ 188

1"
95/ 223

~ 26/ 154 61 / 189 96/ 224

~
~

271--- 62 / 190 ~
97/225

[II 28/ 156 63 / 191 iii 98/ 226

rn 29/ 157 64 / 192 [J 99/227

EI 30/ 158 0 65/ 193

ffi
100/ 228

EI 31/ 159

~
66 / 194 101 / 229

§ 321160 67/195 1021230

33/ 161 68/ 196 [i] 103/ 231

34/ 162 III 69/ 197 ~ 1041232

276 User's Handbook to the Atari 400/ 800 Computers

Table 9-7 (cont.) Characters Displayed by COLOR
Statement Values in Graphics Mode 0

COLOR Value COLOR Value COLOR Value
Character Normal/Inverse Character Normal/Inverse Character Normal/Inverse

IT] 105/233 GJ 11 4/ 242 00 1231251

OJ 106/23 4 GJ 11 5/ 243 OJ 1241252

CO 107123 5 IT] 11 6/ 244 el r scrn 1251---

m 108/236 GJ 11 7/ 245 ![] 126/ 254

B 1091237 0 118/ 246 [i] 127/ 255

0 110/238 EI 119/ 247 EOL --- / 155

0 111 / 239 GJ 1201248 ~ ---/ 253

0 112/ 240 II] 1211249

EQ 11 31241 0 122/250

The COLOR statement works in much the sa me fashion in
graphics modes 1 and 2. However, there are two important
differences in the use of the COLOR statement in graphics
modes 1 and 2 as opposed to graph ics mode O.

First of all, two different character sets can be displayed--the
standard character set and alternat ive character set. These are
depicted in Table 9-4. The standard character set is active upon
power-on, w hen the System Reset key is pressed, or when a
GRAPHICS statemen t is executed . POKE 756,226 w ill se lect the
alternate cha racter set, w hile POKE 756,224 wi ll return to the
standard character set.

Th e second major difference between the use o f the COLOR
statement in graphics mode 1 and 2 and graphics mode 0 is that in
graphics mode 1 and 2, the characters can be produced using
SETCOLOR reg iste rs 0, 1, 2, or 3. This makes it possible to
prod uce each characte r using anyone of four different co lors.

Notice in Tab le 9-4 that different COLOR statement parameters
are used to select th e SETCOLOR register.

Atari Graphics & Sound 277

For example, if the following statements were executed,

GRAPHICS 2
COLOR 159: PLOT 5,5
DRAWTO 5,0

a question mark would be displayed in row 5, column 5 of the
graphics window when the PLOT statement is executed. Upon
execution of the DRAWTO statement, a column of six question
marks will be output from row 5, column 5 on the screen to row
0, column 5.

PLOT

The PLOT statement is used in graphics modes 3 through B to
display a point on the graphics window. PLOT uses the following
configuration,

PLOT column, row

where column gives the column position and row gives the row
number. The color of the point being plotted will be determined
by the color register specified by the most recent COLOR
statement. If no COLOR statement had been executed since the
computer was powered on , the point will be displayed by the
PLOT statement in the background color register.

Although PLOT is generally used in graphics modes 3 through B,
it can also be used in graphics modes 0,1, and 2. In modes 0, 1,
and 2, a character rather than a point is plotted on the screen.

In graphics mode 0, the numeric expression specified with the
last COLOR statement will determine the character displayed by
PLOT. In graphics modes 1 and 2, the last COLOR statement will
choose both the character displayed by PLOT and the color
register to display that character. The numeric expression used
with COLOR will be 0, if a COLOR statement had not been
executed prior to the PLOT statement.

278 User's Handbook to the Atari 400/800 Computers

DRAWTO

The ORAWTO statement is used to draw a straight line from the
last point displayed by a PLOT statement or another ORAWTO
statement to the point given as its argument.

ORAWTO uses the following configuration,

ORA WTO column, row

where column and row specify the screen position where the
line is to be drawn to.

The line will be drawn in the color register specified by the last
COLOR statement. If no COLOR statement had been previously
executed, the background color will be used .

Although ORAWTO is generally used in graphics modes 3
through 8, the statement can also be used in graphics modesO, 1,
and 2. In these modes, the line drawn will consist of characters
rather than points.

In graphics modes 1 and 2, the numeric expression specified with
the last COLOR statement will determine the character used to
compose the line as well as the color register used for the line
color. In graphics modeO, the numeric expression specified with
the last COLOR statement will determine just the character used
to compose the line.

COLOR Owill be used by default to determine the character (and
color) if a COLOR statement had not been executed since the
computer had been turned on .

Graphics Modes 3 Through 8

In graphics modes 3 through 8, points, lines, and solid areas are
displayed as opposed to characters. The number of lines on the
display screen, number of points per line, point size, and
number of color registers available differs among modes 3
through 8. These differences are summarized in Table 9-8.

Atari Graphics & Sound 279

Graphics modes 3, 5, and 7 normally have split screen displays.
However, the display can be changed from split-screen to full
screen by adding 16 to the graphic mode number when the
GRAPHICS statement is executed.

Graphics modes 3, 5, and 7 each have 4 color registers available
(registers 0, 1, 2, and 4). Color register4 controls the background
and border colors. The foreground colors are controlled by
registers 0,1 , or 2. Color register 3 is unused in graphics modes3,
5, and 7.

In graphics mode 3, the split-screen is divided into 20 rows of 40
columns each. In graphics mode 5, the screen is divided into 40
rows of 80 columns each. In graphics mode 7, the screen is
divided into 80 rows of 160 columns each .

Table 9-8. Summary of Graphics Modes Features

No. of Rows

Mode No. of No. of RAM
No. Columns Split Screen Full Screen Color Registers Required

0 40 24 1 993

1 20 20 24 5 513

2 20 10 12 5 261

3 40 20 24 4 273

4 80 40 48 2 537

5 80 40 48 4 1017

6 160 80 96 2 2025

7 160 80 96 4 3945

8 320 160 192 1 7900

Graphics modes 4 and 6 have one foreground color register and
one background and border color register. Even though modes
4 and 6 have the same number of rows and columns as modes 5
and 7 respectively, less RAM is required for modes 4 and 6.

280 User's Handbook to the Atari 400/ 800 Computers

This is due to the fact that modes 4 and 6 are two-color modes,
while modes 5 and 7 are four-color modes. One bit per graphics
point is required in a two-color mode, while two bits per point
are required in a four-color mode . For this reason,
approximately one-half as much memory is required in graphics
modes 4 and 6 as in modes 5 and 7 respectively.

Graphics mode B results in a screen of 160 rows by 320 columns in
split screen and 192 rows by 320 columns in full screen. This is the
highest resolution available in Atari graphics.

In graphics mode B, the background/border color register
controls the color the graphics points displayed on the screen.
Although the foreground color cannot be selected, the
luminance of the foreground color register can be set.

Using the COLOR Statement in Graphics Mode 8

In graphics mode B, the background color as well as all points
and lines plotted on it use color register 2 to determine the color.
Color 9 (light blue) is the default value in color register 2. The
default color can be altered by executing a SETCOLOR
statement as shown in the following example.

READY
GRAPHICS B
SETCOLOR 2,2,B

By executing the preceding SETCOLOR statements, the
background color in graphics mode B is changed from light blue
to orange.

When used in graphics mode B, the COLOR statement does not
determine the color of any points or lines plotted on the
screen . Only the luminance of the lines and points is affected .

With a COLOR value of 0, any points or lines will be displayed in
color register 2. The color and luminance of the points and lines
plotted will match the color and luminance of the background.
Therefore, these points and lines will not be visible when they
are plotted.

Atari Graphics & Sound 281

With a color va lue of 1, any points or lines will be displayed with
the luminance value specified in co lor register 1 and the color in
color register 2. In other words, the luminance of the points and
lines is affected by the execution of a COLOR 1 statement, but
the color used remains the same as the background color.

The following series of statements illustrate the use of the
COLOR statement in graphics mode 8.

100 GRAPHICS 8
110 COLOR 1
120 PLOT SO,SO : DRAWTO 100,100
RUN

When the preceding statements are executed, a series of points
will be plotted from position SO,SO to 100,100 with a luminance
va lue of 10. These points will be discernable to the naked eye
on the video display.

If the following program lines were then added,

NEW
100 COLOR 0
110 DRAWTO 60,60
RUN

a series of points wou ld be plotted from position 100,100 to
60,60 with a luminance va lue of 4. Since this is the same
luminance as that of co lor register 2 (which was set by the
COLOR 0 statement) , the points plotted would be invisible to
the naked eye.

POSITION

Although the graphics cursor is invisible in graphi cs modes 3
through 8, it can sti ll be moved with the POSITION statement.
POSITION is used with the following configuration,

POSITION column, row

where column and row specify the screen co lumn and row

282 User's Handbook to the Atari 400/ 800 Computers

numbers to which the cursor is to be moved. The next PRINT,
PUT, GET, INPUT, or LOCATE statements will use this cursor
position. However, DRAWTO, PLOT, and XIO will not use the
new cursor position specified by POSITION.

The cursor will not actually move until a subsequent input or
output command to the screen has been issued.

LOCATE

The LOCATE command positIOns the graphics cursor to the
position specified and returns the code corresponding to the
character or point displayed at that position. LOCATE is used
with the following configuration.

LOCATE column, row, code

row and column specify the screen location. code must be a
numeric variable. The value returned from the position specified
is assigned to the numeric variable named in code.

The code returned by LOCATE is interpreted in the same
manner as the codes used with the COLOR statement. In
graphics mode 0, this code specifies the character being
displayed. Use Table 9-7 to interpret the code returned by
LOCATE in graphics mode O.

In graphics modes 1 and 2, the code indicates both the character
and the color register used to display that character. Use Table 9-
4 to interpret the code returned by LOCATE in graphics modes 1
and 2.

In graphics modes 3 through 8, the code returned by LOCATE
identifies the color registe r in use at the position specified. Use
Table 9-6 to interpret the code returned by LOCATE in graphics
modes 3 through 8.

When LOCATE is used to read a code from the screen, the cursor
will move one location to the right. If the cursor was on the last
column of a row when LOCATE was executed, the cursor may

Atari Graphics & Sound 283

attempt to advance to the first column of the next row resulting
in Error 141 (Cursor Out of Range).

LOCATE moves the cursor by altering the values stored in
memory address 84 (current cursor row number) and memory
addresses 85 and 86 (current cursor column number). The cursor
position change as a result of the execution of LOCATE will have
no effect on DRAWTO and XIO statements, as they use memory
addresses 90, 91 , and 92 to determine the next cursor address.

PUT (Graphics)

The PUT statement can be used in the graphics modes to display
a character or point. PUT uses the following configuration in
graphics.

PUT #6, code

code specifies a character in graphics modes ° through 2. In
graphics modes 3 through 8, code specifies a color register .

When PUT outputs data to the screen, memory addresses 84
(next cursor row number) and addresses 85 and 86 (next cursor
column number) are incremented. When a subsequent
statement that outputs data to the screen or sends data to it is
executed, the cursor will advance by one position .

PUT's updating of the next cursor addresses will not affect
subsequent DRAWTO or XIO statements as these use different
cursor position memory addresses (90, 91, and 92).

If PUT is executed with the cursor in the last column of a row, the
cursor will attempt to advance to the first position of the next
row. If this occurs, error 141 (Cursor Out of Range) may appear.

XIO (Graphics)

XIO is used in graphics to fill an area of the screen. XIO uses the
following configuration .

XIO command, channel #, numexpl, numexp 2, device

2B4 User's Handbook to the Atari 400/800 Computers

command specifies the type of XIO command to be executed.
The XIO commands are listed in Table 5-4. Thecommand for XIO
fill area is 18. The channe/# specified must be opened for input or
output. In graphics, channel 6 is used. numexpl and numexp 2
are given dummy values (0) unless XIO is used in conjunction
with an RS-232 operation or to open a channel. device refers to
the input or output device used with the XIO command. The
device specified for XIO when used as a fill area command in
graphics will be "S:".

The following example illustrates the use of the XIO command to
fill an area in graphics.

XIO Example Program

100 GRAPHICS 5
200 COLOR 1
300 PLOT 50,20
400 DRAWTO 50,10
500 DRAWTO 10,10
600 POSITION 20,20
700 POKE 765,1
800 XIO 18,#6,0,0,"S:"

The following steps must be followed in the order specified in
order to fill an area on the graphics display.

1. PLOT the point at the bottom right-hand corner of the
figure to be filled . (Reference line 300 in the XIO Example
Program) .

2. Execute a DRAWTO to the upper right-hand co rner of the
figure. (Reference line 400 in the XIO Example Program) .

3. Execute a DRAWTO to the upper left-hand corner of the
figure (Reference line 500 in the XIO Example Program).

4. Execute a POSITION statement to move the cursor to the
lower left-hand corner of the figure (Reference line 600 in
XIO Example Program).

Atari Graphics & Sound 285

5. Execute a POKE to address 765. The argument specified
with POKE should be set equal to the COLOR statement
that was used to plot the points and lines. (Reference line
700 in XIO Example Program) .

6. Execute XIO 18,#6,0,0,"S :" and the figure will be filled.
(Reference line 800 in the XIO Example Program).

Atari Sound

The Atari's built-in speaker is controlled via memory address
53279. When a a is stored at that address, an oscillation is sent to
the speaker. By causing the speaker to oscillate a number of
times, the speaker will emit a sound . The following program will
result in the Atari 's speaker emitting sounds.

READY
100 FOR I = 1 TO 100
200 POKE 53279,0
300 NEXT I
400 END
RUN

Generally , the television set 's speaker is used to produce sound
rather than the Atari 's built-in speaker. In Atari BASIC, the
SOUND statement is used to output sound via the television set's
speaker.

The SOUND statement is used with the following configuration.

SOUND voice, pitch, distortion, volume

Together these four arguments determine the sound produced .
voice sets one of four voices available with the Atari . These are
numbered from a to 3. These four voices are independent of
each other. In other words, as many as four voices can be
sounded at the same time.

pitch sets the pitch of the sound produced by the SOUND
statement. The pitch can range from a to 255. The highest pitch
begins at a and the lowest at 255.

286 User's Handbook to the Atar i 400/800 Computers

The SOUND statement can produce either pure or distorted
tones. distortion can range between 0 and 15. A distortion value
of 10 or 14 will produce a pure tone. Any of the other even
distortion values (0, 2, 4, 6, 8, 10, and 12) will generate a different
amount of noise into the tone produced. The amount of this
noise will depend upon the distortion and pitch va lues specified.

The odd numbered distortion values (1,3,5,7,9,11,13) cause the
voice indicated in the SOUND statement to be si lenced. If the
voice is on, an odd-numbered distortion va lue will result in its
being shut off.

The volume controls the loudness of the voice indicated in
SOUND. volume ranges from 0 (no sound) to 15 (highest
volume).

An Atari BASIC statement with a volume of 0 will turn off the
sound. Sou nd can also be turned off by executing an END, RUN,
NEW, DOS, CSAVE, or CLOAD. If the System Reset key is
pressed, sound wi ll be turned off. However, if the Break key is
pressed, sound wi ll not be turned off.

Appendix A. 287

Appendix A. Atari Error Messages

This appendix describes the error numbers used by the Atari .
Error numbers 2 through 21 should only occur when a BASIC
program is being run. Error numbers 128 through 173 result from
errors in the usage of input/ output devices such as disk drives or
pri nters.

Error

2

3

4

5

6

Error Name

Insuffi cien t Memory

Value Error

Too Man y Variables

String Length Error

Out of Data Error

Cause & Recovery

Additional memory is required to
sto re the statement or to dimension
the new string variable. By adding
more RAM or by deleting any
unused variables, this error can be
avoided . This error can also be
caused by including a FOR-NEXT
statement with too many levels of

nesting .

A numeri c value was enco untered
that was outside of the allowed
range i.e. too large ortoo small. This
error ca n also occur when a nega
tive value is returned when the
va lue sho uld be positive.

Over 128 variable names have been
specified. Any unu se d n am es
should be deleted .

The program attempted to read or
write outside of the range for which
the string was dimensioned. This
also occurs when zero is used as the
index. This error can be co rrected
by increasing the DIM index size.

Th e DATA statements did not con
tain enough data items for the vari
ables in the corresponding READ
statements.

288 User's Handbook to the Atari 400/ 800 Computers

Error

7

8

9

Error Name

Line Number Creater
Than 32767

INPUT Statement Error

Array or String
DIM Error

10 Argument Stack
Overflow

11 Floating Point
Overflow/ Underflow

12 Line Not Found

13 No Matching FOR

14 Line Too Long

15 COSUB or FOR
Line Deleted

Cause & Recovery

The line number is negative or
greater than 32767.

An attempt was made to input a
non-numeric va lue into a numeric
variable. Be certain that the type of
data being entered corresponds to
the INPUT variable type.

This error occurs when the program
references an array or string which
has not been dimensioned. This
error also occurs when a DIM state
ment includes a string or array that
was previously dimensioned.

An expression is too large or there
too many COSUB statements.

The program encountered a num
ber with an abso lute value less than
1E-99 or greater than 1E+98. This
error also occurs when an attempt is
made to divide by zero.

An IF-THEN, ON-COSUB, ON
COTO, COSUB, or COTO state
ment referenced a line number that
does not exist.

A NEXT statement was encountered
that did not have a corresponding
FOR statement.

The line entered is greater than the
length of the BASIC line processing
buffer length .

A NEXT or FOR statement was en
countered for which the corres-

Error

Error Name

16 RETURN Error

17 Garbage Error

18 Invalid String
Character

19 LOAD Program Too
Long

20 Device Number Error

21 LOAD File Error

128 BREAK Abort

129 10CB* Already Open

130 Nonexistent Device

Appendix A. 289

Cause & Recovery

pond ing FOR or GOSUB statement
had been deleted.

A RETURN statement was en
countered without a corresponding
GOSUB statement.

This error can be caused by faulty
RAM or the incorrect use of a POKE
statement.

A string does not begin with a valid
character or the argument of a VAL
statement is not a numeric string.

The program being loaded will not
fit in the available RAM.

A device number outside of the
range 0 to 7 was entered .

The LOAD statement was incor
rectly used to load a program saved
by CSAVE or ENTER.

The Break key was pressed during
an 1/ 0 operation causing execution
to stop.

This error occurs when an attempt is
made to use a channel currently in
use. Often, the channel causing the
error is automatically closed .

This error occurs when a program
attempts to access a device which is
undefined. This error can occur
when a filename is given without a
required device name (ex. "FILE.
BAS" instead of "D:FILE.BAS").

*IOCB--lnput/Output Control Block

290 User's Handbook to the Atari 400/ 800 Computers

Error

131

132

133

134

135

136

137

Error Name

IOCB Write Only

Invalid Command

Device/File
Not Open

Bad IOCB
Number

IOCB Read
Onl y Error

End of File

Trunca ted Reco rd

138 Device Timeout

139 Device NAK

Cause & Recovery

An attempt was made to read from a
file opened on ly for write oper
ations. The fil e must be reopen ed
for a read or read / write ope rati on.

This error is genera ll y ca used by an
illega l comma nd code being used
with an XIO or IOCB co mmand.

A channel was referenced before it
was opened.

An att empt was made to use an il
lega llOCB index. A BASIC program
ca n on ly use chann els 1-7.

An attempt was made to write to a
dev ice o r fi le that is opened on ly for
read operati o ns.

The end -of-f il e record was reached .

Thi s erro r occurs when an attempt is
made to read a record whose record
size is larger than th e all owed ma xi
mum. This erro r also occurs when
an INPUT statement is used to read
from a fi le crea ted with a PUT
command.

Th e ex ternal dev ice spec ified does
not respond within the time al
lowed by th e Atari operating sys
tem. Be certain the proper device
was spec ified , the device is properly
con nected, an d that the dev ice's
power is on.

The device does not respond, as it
rece ived an inco rrect parameter.
Check th e input/output command

Error

Error Message

140 Serial Frame Error

141 Cursor Out of Range

142 Serial Bus Overrun

143 Checksum Erro r

144 Device Done Error

145 Read. After-write
compa re Error or
Bad Screen Mode
Handler

146 Function Not
Implemented

Appendix A. 291

Cause & Recovery

for any illega l parameters. Also, be
certa in all cab les are proper ly
connected . Thi s erro r ca n also result
whe n the A tari 850 Int e rf ace
Modu Ie is un able to accept five , six,
o r seven bit input at an excessive

baud rate.

Thi s is a very rare error . If this error

reoccurs, have the comp uter and/
or devices checked.

Th e curso r is o utside the defined
limits for the curre nt graphics
mode. This error ca n be corrected

by using lega l cursor positioning

parameters.

This erro r is due to se rial bus data

problems. If the error reoccurs, the
disk unit , cassette unit , or computer
may require servi ce.

The com muni cat io ns o n th e seria l
bus are in error. Th e problem may
be due to eith er defect ive hardware

or faulty softwa re.

This er ror is generall y due to an

attempt to wr ite to a write-pro

tected diskette o r device.

The disk drive identified a differ
ence between what was written and
w hat sho uld have been written.

Al so, thi s error ca n res ult from a
problem with the screen handler.

An attempt was made to use a de
vice in a man ner not allowed (ex.
write to the keyboa rd).

292 User's Handbook to the Atari 400/ 800 Computers

Error

147

150

151

Error Message

Insufficient RAM

Port A lready
Open

Concurrent Mode
I/O Not Enabled

152 Illegal User
Supplied Buffer

153 Active Concurrent
Mode I/ O Error

154 Concurrent Mode
I/ O Not Active

160 Drive Number
Error

161 Too Many Open
Files

162 Disk Full

163 Unrecoverable
System I/ O Error

Cause & Recovery

More RAM is required for the
graphics mode chosen. Either add
RAM or change graphics modes.

An attempt was made to open a
seria l port already open .

Before current mode input/ output
is enab led with the XIO 40 state
ment, the serial port must have
been opened for concurrent mode.

Upon the initialization of the con
current input/output, an incorrect
buffer length and address was used.

An attempt was made to access a
seria l port whi le another seria l port
was open and active in the con
current mode.

The concurrent mode must be
active for the input/output oper
ation to be executed.

The specified dr ive must be D:, D1: ,
D2: , D3 :, or D4 :. This error can also
be caused if the drive was not
powered on or if a drive buffer was
not specified .

Another file may not be opened, as
the limit of open files has been
reached. General ly, only 3 disk files
can be open at the sa me time.

All diskette sectors are in use.

Either the DOS or the diskette con
tains an error. Try using a different
DOS diskette.

Error

164

Error Message

File Number
Mismatch

165 File Name Error

166 POINT Data
Length Error

167 File Locked

168 Device Command
Invalid

169 Directory Full

170 File Not Found

171 POINT Invalid

172 Ill ega l Append

173 Bad Sectors at
Format Time

Appendix A. 293

Cause & Recovery

The POINT statement moved the
file pointer to a sector which was
not included in the open file. This
error can also occur when the file's
intra-sector links are incorrect.

The filename is illegal. Check the
file specification.

The POINT statement attempted to
move to a byte number that did not
ex ist within the specified sector.

An attempt was made to write to, re
name, or erase a locked file.

An attempt was made to use an il
lega l device command .

A diskette directory's maximum
capacity is 64 fi lenames.

An attempt was made to access a file
not present in the disk directory.

The POINT statement was used with
a disk sector in a file not opened for
Update.

An attempt was made to open a
DOS I file for append using the DOS
II operating system. Try copying the
DOS I file to a DOS II diskette using
DOS II. It is illega l for DOS II to
append to DOS I files.

Bad sectors were found while the
disk dri ve attempted to format the
diskette. A diskette with bad sectors
cannot be formatted. Use another
diskette.

294 User's Handbook to the Atari 400/ 800 Computers

Appendix B. Atari BASIC Reserved Words

Reserved Reserved
Word Abbrev. Word Abbrev.

ABS NEXT N.
ADR NOT
AND NOTE NO.
ASC ON
ATN OPEN O.
BYE B. OR
CLOAD CLOA. PADDLE
CHR$ PEEK
CLOG PLOT PL.
CLOSE CL. POINT P.
CLR POKE POK.
COLOR C. POP
COM POSITION POS.
CONT CON. PRINT PRo or ?
COS PTRIG
CSAVE CS. PUT PU.
DATA D. RAD
DEG DE. READ REA.
DIM 01. REM R. or .
DOS DO. RESTORE RES.
DRAWTO DR. RETURN RET.
END RND
ENTER E. RUN RU.
EXP SAVE S.
FOR F. SETCOLOR SE.
FRE SGN
GET GE. SIN
GOSUB GOS. SOUND SO.
GOTO G. SQR
GRAPHICS GR. STATUS ST.
IF STEP
INPUT I. STICK
INT STRIG
LEN STOP STO.
LET LE. STR$
LIST L. THEN
LOAD LO. TO
LOCATE LOC. TRAP T.
LOG USR
LPRINT LP. VAL
NEW XIO X.

Appendix C. 295

Appendix C. Atari ASCII Code Set

In this appendix, the 256 characters in the standard character set
of graphics mode 0 are listed along with the Atari ASCII codes for
each character. The keystrokes used to produce the characters
are also listed along with the associated standard ASCII character
(if any). Remember, in graphics modes other than graphics
mode 0, an entirely different character may be output.

Some of the Atari ASCII codes produce control characters.
When control characters are output using a PRINT statement,
nothing is actually displayed on the screen. When control
characters are output with a PRI NT statement, a control process
of some kind will be executed or the cursor will be moved.

Control characters can be included in PRINT statements by
supplying the CHR$ function with the Atari ASCII code of the
control character. Control characters can also be output by using
an escape sequence enclosed within quotation marks.

To produce an escape sequence, first press the Escape key, and
then press the keys which will produce the desired control
character. For example, if the Escape key is pressed prior to
pressing the Control key and the = key, the Atari ASC code 29 for
cursor down is produced.

When an escape sequence is used with a control character, the
control process does not actually take place during keyboard
entry. However, the control character does appear on the
screen. When the PRINT statement containing the escape
sequence and control character is executed,the control process
will take place.

For example, if the following statement was entered,

READY ,......---- ESC \ CTRL-+
PRINT "NNNl..A" pressed here

296 User's Handbook to the Atari 400/ 800 Computers

The output produced would be;

NNA

Notice that when the ESC \ CTRL-+ keyboard entry was made,
the control process specified (cursor left) did not actually occur .
However, the screen character for cursor left (-) was displayed
on the screen.

When the PRINT statement was subsequently executed, the
cursor left control process did take place. The result of this
control process was the movement of the cursor one position to
the left (over the third N entry) and the display of the A in place
of the previous character entered (N).

If the Atari ASCII code 27 (keyboard entry ESC \ ESC) is included
in the PRINT statement just before the control character, that
control process will not occur. However, the control character
will be displayed.

For example, if the following statement was entered,

~ ESC \ ESC pressed here
PRINT "NNN -A"

~ ESC \CTRL-+ pressed here

the following output would be displayed on the screen;

NNN-A

Notice that while th e control process did not occur, the control
character was displayed.

A great number of the Atari characters can only be entered via
the keyboard when the keyboard is in th e lower case mode. By
pressing the LOWR key once, the keyboard will be in the lower
case mode. If the CAPS key is pressed (SHIFT-LOWR keys), the
keyboard ' is returned to the upper case mode.

Appendi x C. 297

u - ~ u - ~ "'~ ;; "'~ ;;
< " " E '"

Keystrokes < " " .§ '"
Keystrokes ... - = ~ -... U ~ '0 "'C For O utputtin g .- - For O utputting -... U ... ,,"t>

!S ..c ",..c '" 0 Characte r
!S..c ",..c

'" 0 Characte r <u <u ou <u <u ou

~
NULL 0 CTRL- . 0 # 35 SH IFT-3

SOH 1 CTRL -A ill $ 36 SH IFT-4

[J] STX 2 CTRL-B bJ % 37 SH IFT-5

~ ETX 3 CTRL-C !II & 38 SH IFT-6

Iil EOT 4 CTRL-D 0 39 SH IFT-7

Ii] ENQ 5 CTRL-E m (40 SH IFT-9

[Z] ACK 6 CTRL-F OJ) 41 SHIFT-O

IS] BEL 7 CTRL-G c:J . 42 .
[4] BS 8 CTRL-H ~ + 43 +

Gl HT 9 CTRL- I 0 44

~ LF 10 CTRL-J D - 45 -

~ VT 11 CTR L-K 0 46

~ FF 12 CTRL-L [2] / 47 /

El CR 13 CTRL-M ~ 0 48 0

Q SO 14 CTRL-N (I] 1 49 1

Ii] SI 15 CTRL-O [I] 2 50 2

~ DLE 16 CTRL-P [I] 3 51 3

~ DCl 17 CTRL-Q II] 4 52 4

El DC2 18 CTRL-R III 5 53 5

l±l DC3 19 CTRL-S IT] 6 54 6

~ DC4 20 CTRL -T 0 7 55 7

~ NAK 21 CTRL-U [IJ 8 56 8

10 SYN 22 CTRL-V I2J 9 57 9

iii ETB 23 CTRL-W 0 58 SH IFT- ;

EI CAN 24 CTRL-X 0 59

[j] EM 25 CTRL-Y ~ < 60 <
[B SUB 26 CTRL-Z 0 = 61 =

~ ESC 27 ESC/ ESC [g > 62 >
rn FS 28 ESClCTRL-- OJ ? 63 SH IFT- /

IT] GS 29 ESC/ CTRL-= ~ @ 64 SH IFT-8

B RS 30 ESC CTR L-+ [3] A 65 A

EI US 31 ESC CTRL- ' [[] B 66 B

0 Space 32 SPACE BAR [rJ C 67 C

IT! ! 33 SHIFT-l [Q] D 68 D

[J .. 34 SH IFT-2 ITJ E 69 E

29B User's Handbook to the Atari 400/800 Computers

u - ~ u - -"'~ t;; ;:; "'~ ~ ;:;
< '" .5'" Keystrokes < '" '" .5'" Keystrokes ,.

=~
,. = t! .- - .- - For Outputting -,. U" ","t) For Outputting -,. u" ~"8 .'! ... ", ...

'" 0
.'! ... "' ... <U <U QU Character <U <U QU Character

IT] F 70 F [IJ i 105 (LOWR) I

[9J G 71 G !II j 106 (LOWR) J

[8] H 72 H [] k 107 (LOWR) K

OJ- I 73 I [JJ I 108 (LOWR) L

III J 74 J §J m 109 (LOWR) M

[] K 75 K 0 n 110 (LOWR) N

[] L 76 L @] 0 111 (LOWR) 0

IBI M 77 M ~ P 11 2 (LOWR) P

lEI N 78 N @] q 113 (LOWR) Q

[Q) 0 79 0 0 r 114 (LOWR) R

m P 80 P [I] 5 115 (LOWR) S

IQ] Q 81 Q III t 116 (LOWR) T

[KJ R 82 R ~ u 117 (LOWR) U

m S 83 S G v 118 (LOWR) V

ill T 84 T B w 119 (LOWR) W

llil U 85 U 0 x 120 (LOWR) X

[Y] V 86 V III y 121 (LOWR) Y

~ W 87 W 0 z 122 (LOWR) Z

0 X 88 X [l] { 123 CTRL-;

[lJ Y 89 Y OJ I 124 SHIFT-=

III Z 90 Z ~ } 125 ESC/CTRL- <
ESCISH IFT-<

rn [91 SHIFT-; 00 126 ESCIBACK S

IS] 92 SH IFT-, rE DEL 127 ESCITAB

rn I 93 SH IFT-+ CI 128 (1)\) CTRL-,

[:J t '14 SH IFT-* G 129 (JI\) CTRL-A

[d - 95 SH IFT-- I] 130 (11\) CTRL-B

~ 96 CTR L- . ;II 131 VI\) CTRL-C

0 a 97 (LOWR) A D 132 IA\) CTRL-D

~ b 98 ILOWR) B I!I 133 (}~) CTRL-E

0 c 99 (LOWR) C ,.. 134 11'1\) CTRL-F

III d 100 ILOWR) D ~ 135 11'1\) CTRL-G

ill e 101 ILOWR) E ~ 136 IA\) CTRL- H

ITl f 102 ILOWR) F ~ 137 (JII) CTRL- I

m g 103 ILOWR) G ~ 138 !JII) CTRL-J

lliJ h 104 ILOWR) H ~ 139 (}I\) CTRL-K

Appendix C. 299

o - ~ o - £ "'~ tj ~ "'~ ~
..: '" .§ .. Keystrokes ..: '" '" .§ .. Keystrokes .- ~ = ::! '" - '" -'" U '" "'~ For Outputting .- - u ;; "'~ For Outputting -'" ~..c ",..c .. 0 ~..c ",..c .. 0
..:u ":U cu Character ..:u ..:u cu Character

iii 140 Iii\) CTRL-L 8 171 (II\) +

iii 141 v i\) CTR L-M D 172 (II\) ,

~ 142 ~\) CTRL-N [] 173 (II\) -

rI 143' v i\) CTRL-O 0 174 (II\) .

D 144 (II\) CTR L-P [2] 175 (Ii\) /

~ 145 vi\) CTRL-Q ~ 176 (11\)0

= 146 (II\) CTRL-R [!] 177 III~) 1

=:= 147 III\) CTRL-S [2] 178 (l1~) 2

C 148 Iii\) CTR L-T III 179 (l1~) 3

~ 149 (II\) CTRL-U m 180 (II\) 4

~ 150 (II\) CTR L-V III 181 (II\) 5

I!I 151 v i\) CTRL-W [II 182 vI\) 6

== 152 (II\) CTRL-X [Z] 183 v i\) 7

[II 153 Vi\) CTRL-Y []] 184 v i\) 8

I; 154 v i\) CTRL-Z rn 185 (II\) 9

155 RETURN 0 186 vi\) SHIFT- ;

IJ 156 ESC/ SH IFT- 0 187 (II\) ;
BACK S

U 157 ESc/SH IFT- > ~ 188 IJI\)<

CI 158 ESC/CTRL- 0 189 v i\) =

TAB

III 159 ESc/S HIFT- [g 190 Vl~»
TAB

• 160 ViI.) OJ 191 II I\) SHI FT-/
SPACE BAR

III ' 161 ViI.) SHIFT· l ~ 192 VI\'I SHIFT 8

[J 162 v i\) SH I FT-2 0 193 I.IN A

0 163 ill\) SHIFT-3 [ill 194 vi\) B

[I) 164 (II\) SHIFT-4 (g 195 (11\1 C

5J 165 v i\) SH I FT-5 @] 196 ill\) D

llil 166 v i\) SHIFT-6 [I] 197 (II\) E

D 167 v i\) SH I FT-7 ITJ 198 v i\) F

II] 168 II I\.) SHIFT-9 [9 199 II I\) S

ITl 169 IJI\.I SHIFT-O [8J 200 III\) H

~ 170 I~~) • [JJ 201 (II\) I

·AII A lari ASCII characlers f rom 161 -255 incl usive are displayed in reverse.

300 User's Handbook to th e Atari 400/ 800 Computers

u ~ Qi "'~ "C ..
« " Keystrokes

'" - '" .S '"
~ '" 0:0 ..,"0 For Outputting
~ ..c: ",..c:

'" 0 «U «U CiU Character

u ~ ~

'" "'~ "C ..
Keystrokes « I.;

.S '" '" - '" .- ~ o ~ 1.;"0 For Outputting ~ '" ~..c: ",oJ:
'" 0 «U «U CiU Character

ill 202 1/ 1\)) EJ 237 I)II.) (LOWR) M

[] 203 ill\) K GJ 238 VII.) (LOWR) N

[D 204 II I\) l GJ 239 I) I\) (LOWRI 0

B 205 ill\) M [£) 240 (}~I (LOWR) P

~ 206 Il l\) N @] 241 I)IIJ ILOWR) Q

[Q] 207 ill\ I O [] 242 1.111.) (LOWRI R

0 208 ill\) P 0 243 III\.) (LOWR) S

[§] 209 il~1 Q [] 244 () IIJ (LOWR) T

[K] 210 II I\) R 0 245 (II\.) (LOWR) U

[II 211 II I\) S 0 246 VI\) (LOWR) V

ITI 212 (II\) T El 247 viI.) (LOWR) W

~ 213 II I\) U 0 248 (I I\) (LO W R) X

0 214 (11\) V GJ 249 (/ 11.1 (LOWR) Y

~ 215 (11\ 1 W [] 250 (111.1 (LOWR) Z

[] 216 1)1\ 1 X II] 251 IJI\.I CTRL- ;

GJ 217 (/ i\ 1 Y OJ 252 (AIJ SH IFT-:

[l] 218 (I I\) Z ~ 253 ESClCTR L-2

IT] 219 1/ 1\) SHIFT -,

IS] 220 Vi\) SH I FT-+

[I] 221 i)1\) SHIFT-.

[!] 254 VII.) ESClCTR L-
BACK S

III 255 I.II\.)
ESClCTRL- >

~ 222 VI\) SHIFT-"

Id 223 (II\) SH IFT- -

[I) 224 (II\) CTRl- .

GJ 225 (11\ 1 (l OWRI A

~ 226 !AIJ (l OWRI B

[£] 227 I.IIIJ (l OWRI C

Q] 228 1.111.1 (l OWRI 0

0 229 () II.I (l OWRI E

ill 230 1.11\) (lOWRI F

~ 231 (l11J ILOWRI G

[B 232 1.11\ 1 ILOWRI H

CJ 233 I.II\) (LOWR) I

OJ 234 (111.1 (LOWRI)

III 235 (/ 1\ 1 (LOWR) K

[i] 236 1.111.1 (LOWR I L

Al l A lar i ASCI I characlers from 161-255 inclusive are disp layed in reverse.

Appendix D. 301

Appendix D. Atari 400/800 Memory Map

The following illustrations and tables depict the organi zation of
memory in the Atari 400/ 800. Note that the addresses for the top
of RAM, OS, and BASIC may differ according to the amount of
memory present.

Illustration D-1. Memory Map Without BASIC

65536

57344

55296

53248
49152

40960

32768

10879

1792

o

Operating System ROM'

Floating Point Routines

Hardware Registers2

Not Used

Cartridge Slot A

Cartridge Slot B3

RAM (8-40K)

DOS

Operating System RAM4

302 User's Handbook to the Atari 400/ 800 Computers

Illustration D-2. Memory Map With Atari BASIC

65536

57344

55296

53248

49152

40960

32768

10879

1792

o

Operating System ROM'

Floating Point Routines

Hardware Registers 2

Not Used

BASIC ROMS

Cartridge Slot B3

BASIC Program Area

DOS

Operating System RAM6

& 8K BASIC

, Reference Table D-1 .
2 Reference Table D-2.
3 Atari 800 only.
4 Reference Table D-3.
S Reference Table D-4.
6 Reference Table D-S.

Appendix D. 303

Table 0-1. Operating System ROM Memory Addresses

Memory Address

62436-65535
61667-62435
61249-61666
61048-61248
60906-61047
59716-60905
59093-59715
58534-59092
58496-58533
58448-58495
58432-58447
58416-58431
58400-58415
58384-58399
58368-58383
57344-58367

Reference

Display & Keyboard Handling Routines
Monitor
Cassette Handling Routines
Printer Handling Routines
Disk Hand ling Routines
SIO
Interrupt Handling Routines
CIO
Initial RAM Vectors
Jump Vectors
Cassette Vectors
Pri nter Vectors
Keyboard Vectors
Screen Vectors
Editor Vectors
Character Set

\

(Operating
System
Vectors

Table 0-2. Hardware Register Memory Addresses

Memory Address Reference

54784-55295 Not Used
54272-54783 ANTIC
54016-54271 PIA
53760-54015 POKEY
53504-53759 Not Used
53248-53503 CTiA or GTIA

304 User's Handbook to the Atari 400/ 800 Compute rs

Table D-3. Operating System RAM Memory Addresses

Memory Address Reference

1152-1791 User RAM
512-1151 Operating System RAM (detailed below)

1021-1151 Cassette Buffer
1000-1020 Spare
960-999 Printer Buffer
944-959 I/ O Channel 7
928-943 I/ O Channel 6
912-927 I/ O Channel 5
896-911 I/ O Channel 4
880-895 I/ O Channe l 3
864-879 I/ O Channel 2
848-863 I/ O Channell
832-847 I/ O Channel 0
794-831 Handler Address Tables
780-793 Miscellaneous
768-779 DCB
736-767 Miscellaneous
712-735 Spare
704-711 Colors
656-703 Screen RAM
648-655 Miscellaneous
624-647 Game Controllers
554-623 Miscellaneous
512-553 Interrupt Vectors
256-511 Stack
128-255 User Page 0 RAM

0-127 Operating System Page 0 RAM

Appendix D. 305

Table 0-4. BASIC ROM Memory Addresses

Memory Addresses Reference

48549-49151 Floating Point
47733-48548 I/O Routines
47543-47732 Graphics
47382-47542 Errors
47128-47381 CO NT Subroutines
45321-47127 Execute Statement
45002-45320 Execute Function
44164-45001 Execute Operator
44095-44163 Operator Precedence
43744-44094 Execute Expression
43632-43743 Operator Table
43520-43631 Statement Table
43359-43519 Execute CONT
43135-43358 Memory Manager
42509-43134 Syntax Tables
42159-42508 Statement Name Table
42082-42158 Search
41056-42081 Syntax
41037-41055 Warm Start
40960-41036 Co ld Start

Table 0-5. Operating System RAM and BASIC

Memory Address Reference

End of Free RAM-1792 BASIC Program

1536-1791 Free RAM
1406-1535 Input Line Buffer
1152-1405 Syntax Stack

512-1151 Operating System RAM
256-511 Stack
128-255 BASIC Page 0 RAM

0-1 27 Operating System Page 0 RAM

306 User's Handbook to the Atari 400/ 800 Computers

Appendix E. Atari PEEK and POKE Locations

This appendix lists memory addresses that BASIC programmers
may wish to access via the PEEK or POKE statements.

In BASIC, memory addresses as well as the contents at those
addresses are given in decimal notation. Each address contains a
value between 0 and 255.

Two consecutive addresses are required to store numbers
greater than 256. I n these instances, the val ue of the fi rst add ress
plus the va lue of the second address multiplied by 256will result
in the total va lue. For example, PEEK (97) + 256 * PEEK (98) will
return the ending graphics cursor co lumn.

Most Atari memory locations are referred to by name as well as
by decimal memory address. Both are given in Appendix E.

Decimal
Address Name Description

Memory Addresses

14,15 APPMH I These addresses contain
the highest address that can
be used for program lines
and variables.

88,89 SAVMSC These addresses contain
the lowest screen memory
address. The contents of
that address wi ll be dis-
played in the screen's
upper right-hand corner.

128,129 LOMEM The BASIC low memory
pointer.

144,145 MEMTOP The BASIC top of memory
pointer.

741,742 MEMTOP

743,744 MEMLO

Appendix E. 307

The highest address in the
free memory address will
be returned by PEEK (741) +
PEEK (742) * 256 - 1.

These locations contain the
lowest address in the free
memory area.

Screen Addresses

82 LMARGIN Thi s address gives the col
umn position of the left
margin in graphics 0 mode.
The default value is O.

83 RMARG/N This address gives the col
umn position of the right
margi n of the screen in
graphics 0 mode. The de
fault value is 39.

84 ROWCRS This address gives the cur
rent row position.

85,86 COLCRS This address gives the cur
rent column position.

87 D/NDEX This address gives the cur
rent screen mode.

90 OLDROW This address specifies the
starting graphics cursor row
for DRAWTO and X/018
statements.

91,92 OLDCOL This address gives the be
ginning graphics cursor
column for DRAWTO and
XIO 18 statements.

308 User's Handbook to the Atari 400/ 800 Computers

93 OLDCHR

94,95 OLDADR

This address contains the
character beneath the cur
sor. This value will be used
to redisplay the character
when the cursor is moved.

This address contains the
current text cursor address.
This value is used with
address 93 to restore the
character beneath the cur
sor once the cursor is
moved.

96 NEWROW This address contains the

97,98 NEWCOL

201 PTABW

656 TXTROW

ending cursor row for a
DRAWTO or graphics XIO
statement.

This address contains the
ending cursor column for a
DRAWTO or graphics XIO
statement.

This address indicates the
number of columns be
tween tab stops. The de
fault value is 10.

This address indicates the
cursor row in the text win
dow. This value will range
from 0 to 3, with 0 i nd i
cating the top row in the
text window.

657,658 TXTCOL

752 CRSINH

755 CHACT

756 CHBAS

763 ATACHR

765 FILDAT

708 COLORO

Appendix E. 309

This address indicates the
cursor column in the text
window. This value will
range from 0 to 39, with 0
being the first column.

A value of 0 at this address
resu Its in the cu rsor not
being visible . Any other
value results in the cursor
being visible.

This address generally has a
value of 2. Any other
value will result in the cur
sor 's being opaque, the
cursor being absent, or
characters being inverted.
These values and their ef
fect are summarized in
TableE-l .

This address indicates the
character set to be used in
graphics modes 1 and 2 (224
= standard; 226 = alternate).

This address contains the
Atari ASCII code for the last
character read or written or
last graphics point output.

The address contains the fill
data to be used with a
graphics XIO command.

Graphics Addresses

Color register O.

310 User's Handbook to the Atari 400/ 800 Computers

709 COLOR1 Co lor register 1.

710 COLOR2 Co lor register 2.

711 COLOR3 Color register 3.

712 COLOR4 Co lor register 4.

Cassette Buffer

61 BPTR This address contains a
pointer to the next location
to be accessed in the cas-
setted buffer.

63 FEOF If this address contains a 0,
an end-of-file has not been
encountered. A va lue of 0
indicates an end-of-f il e has
been encountered.

649 WMODE This address indicates the
present cassette operat ion
(0 = read; 128 = write).

650 BLIM This address indicates the
size in bytes of the cassette
buffer (0-128).

1021- CASBUF These addresses are used as
1151 the cassette buffer.

Printer Addresses

29 PBPNT This address contains a
pointer to the current loca-
t ion in the printer buffer.

30 PBUFSZ

960-999 PRNBUF

17 BRKKEY

694 INVFLG

702 SHFLOK

764 CH

53279 CONSOL

Appendix E. 311

This address indicates the
size of the printer buffer (40
= normal mode; 29 = side
ways mode) .

Th ese addresses are avai l
ab le for th e printer buffer.

Keyboard Addresses

This address indicates that
the Break key has been
pressed (0 indicates Break
pressed) .

This address contro ls
whether keyboard entries
result in normal or inverse
video character output (0 =
normal ; non-ze ro = in
verse).

This address indicates
whether the caps or control
locks are in effect (0 = nor
ma l--no locks; 64 = caps
lock; 128 = contro l lock).

This add ress conta ins the
value of th e key wh ich was
previously pressed. If no
key was pressed, the ad
dress will contain 255.

Executing a PEEK to this
locat ion returns a va lue
which indi cates whether a
special function key has
been pressed. These values
alo ng with the funct ion key
indicated are listed in Table
E-2.

312 User's Handbook to the Atari 400/ 800 Computers

65 SOUNDR

186,187 STOPLN

195

212,213

251

ERRSAV

FRO

RADFLG or
DEGFLG

POKE (53279,8) retracts the
core of the built-in speaker
while POKE (53279,0)
exte nds it. When these two
statements are alternated,
clicking sounds will be
emitted from the speaker.

Miscellaneous

If the value for this address
is 0, sound can be heard
over the television set dur
i ng disk or cassette access
ing. A value of ° eliminates
this sound.

These addresses return the
line number where exe
cution of a BASIC program
was stopped due to a STOP
statement, a TRAP state
ment, an error, or the
Break key being pressed.

This address contains the
error number if an error
takes place.

These addresses contain a
value which is to be re
turned to a BASIC pro
gram from a USR function.

This address determines
whether trigonometic
functions are calculated
using degrees or radians (0
= radians; 6 = degrees).

Appendix E. 313

Table E-l. Address 755 Values and Effects on
Cursor and Character Display

Address 755 Cursor Cursor Characters

Value Visible/ Not Visible Transparent/ Opaque Normal/Inverse

0 Not Visib le Transparent Normal

1 Not Vis ible Opaque Normal

2 Visible Transparent Normal

3 Visi ble Opaque Normal

4 Not Visib le Transparent Invened

5 Not Visible Opaque In vened

6 Visib le Transparent Inverted

7 Visible Opaque Inverted

Table E-2. PEEK (53279) Function Key Values

Value Returned Function Keys Pressed

0 OPTION, SELECT, & START
1 OPTION & SELECT
2 OPTION & START
3 OPTION
4 SELECT & START
5 SELECT
6 START
7 None

ABS 92
AC Power Adapter 10, 11
ADR 92
Alternative Character Set 276
AND 56, 57, 58 , 92, 93, 94
Append Operat io n 225
Argument 74
Arithmeti c Expression s 51, 54
Arithm etic Operators 53
Arrays 49, 50, 51
A rrow Keys 34
ASC Function 78, 94
ASC II 75
ASC II Code Set 295,297,298,299, 300
Assignme nt Statements 60
Atari 400 7, 8, 9
Atari 400, Install ation 21
Atari 410 Progra m Reco rder 9, 14, 15,
147, 163, 189

A tari 8007 , 8,9
Atari 800 , Install ati on 19
At ari 810, Install ati on 21, 22, 23
Atari 810 Disk Dri ve 10, 15, 16, 148, 163
205

Atari 820 Printer 10, 11, 149, 164, 253
Atar i 820 Printer , Insta llation 23
Atari 822 Printer 16, 149, 164, 253
Atari 822 Printer, Install ati o n 24
Atari 825 Print er 16, 17, 149, 164, 253
Atar i 825 Printer, Install ation 24,25
Atari 830 Modem 17
Atari 850 Interface Mod ul e 16, 17, 24

25, 152, 165
Atari ASC II 75, 78

Index 315

INDEX

Ata ri ASC II Code Set 295,297,298,299
300

A tar i ASCII Forma t 192, 193
A tari BASIC 9, 37
A tari Educa ti onal Sys tem 9
Atari Key ()IU 34
A tari Keyboard 11, 148
ATN 94 , 95
A uto Repea t Key 36
AUTORUN.SYS 215

Back S Key 35
Backspace , Pri nter 260
BASIC A tar i 9, 37
BASIC Rese rved Word s 294
BASIC ROM Cartr idge
Bi nary Load 236, 237
Binary Save 234, 235, 236
Blocks 192, 197, 201
Boo lean Express ion 51
Boo lean Operations 53, 56, 57
Bootin g, DOS 217, 218
Branching Sta tements 68, 69
Brea k Key 32, 72, 73
Buffer. Casse tt e 198
Buffer , Disk 217, 247, 248, 250
BYE 95
By tes 13

C: 147, 163, 167
Ca ps Key 33, 296
Caps/Lowr Key 33
Carr iage Retu rn 259
Ca rri age Return / Line Feed 63

316 User's Handbook to the Atari 400/800 Computers

Cartridges, ROM 25
Cassette Buffer 198, 201
Cassette Tape 189
Chaining 197, 243
Channel 145, 162, 166, 169
Channel, 1/ 0 145
Channel Switch 10
CHR$ 78, 96, 254, 258, 261
Clear Key 35
CLOAD 83, 95, 96, 104, 174, 190, 192

193, 194
CLOG 96
CLOSE 97, 198, 200, 246, 247
CLR 97
COLOR 98, 99, 100, 101, 102,137, 156,

267, 272, 273, 274, 275, 276, 277, 278
280, 281

Color Registers 100, 265, 26, 272
COM 102, 103
Comma, Formatting 63
Compound Express ions 52
Concatenation 77
Condensed Character Set 260
Conditional Statements 68
Constants 47
CONT Command 32, 72, 73, 103, 180
Control Characters 256, 295, 296
Control Key 33
Controller Jacks 10
Copy File 223, 225, 226, 227
COS 104
Create MEM.SAV 238, 239
CSAVE 83, 95, 104, 190, 191 , 192,

193, 194
Cursor Control 86

D : 147,148,149
DATA 60, 61, 62, 105, 106,170, 171 , 172
Data blocks 198
Data Files 189, 190, 244
Defau lt 222
DEG 106, 107, 169
Delete File 227, 228
Delete Key 35
Delimi te r 61
Density 15
Device Names 146, 147, 199
Device Timeout Error 147

DIM 49, 50, 51, 102, 107, 108, 109
Directory Full Error 224
Disk Buffer 217, 247, 248, 250
Disk Directory 220
Disk Drive 10, 15, 16
Disk Fil es 213
Disk Full Error 224
Diskettes 205, 207, 208
Diskettes, Double-Sided 15, 211
Diskettes, Single-Sided 15, 211
Disp lay Lines 41
DOS 110, 111, 215, 216, 218
DOS 1.0 110, 111, 215, 216, 218
DOS 2.0 110, 111 , 215, 216, 218
DOS Menu 110, 111 , 218, 219, 220
DOS.SYS 111 , 216
Dot Spaces, Printer 260, 261, 262
Double-Sid ed Diskettes 211
Down Arrow Key 34
DRAWTO 99, 112, 113, 138, 139, 151
161,272, 278,283

Duplicate Diskette 233, 234
Duplicate File 239, 240, 241

E: 147,150
Editor 149, 150
ELSE 68
END 40, 73, 74, 114
END Parameter 235
ENTER 114, 115, 134,136,174,190,192
193, 194, 242, 243

EOF Record 198
EOL Character 84,85 , 201,202,203,248,
249, 255

Error Mesages 43, 287, 288, 289, 290
291, 292, 293

Error Traps 91
ESC Key 36, 79
Escape Sequence 36, 79, 80,86,295,296
Execution, Program 40, 41
EXP 115, 116
Exponentiation 54
Expressions 51 , 52

Fields 189, 190
File Management Subsystem 211
File Not Found Error 224
Filename Extension 213, 214

Filename Match Characters 213, 214
Fil enames 213
Files 189, 213
Floating Point Decimal 44
Floppy Diskettes 207, 208
FOR 66 , 67, 68, 116, 117, 118, 141 , 142
Format Di skette 232
Formatting 232
FRE 118
From Paramter 223
Functions 74

Game Controls 17
GET 119,120,121,122,123, 197,200, 202
203, 244, 248 , 250

GOSUB 69, 70, 71 , 72, 123, 124, 159, 160
172

GOTO 42, 69 , 70, 125, 126
GRAPHICS 101 , 126, 137, 151 , 263
Graphics Characters 80, 81 , 82
Graphics Mode 0 263, 264,275
Graphics Mode 1 267, 268, 269 , 270
271, 273

Graphics Mode 2 267, 268, 269, 270
271, 273

Graphics Modes 3,5,7 273,278, 279,
280

Graphics Modes 4,6 273, 278, 279, 280
Graphics Mode 8 274,278,280
Graphics Window 270

Half-Line Feed 259
Hard Disks 205, 206
Hard Sectors 209, 210
Hardware Stack 183, 184
Home 87
1/ 0 Cha nnel 145, 162,166, 199,246
1/ 0 Operations 145, 146, 245, 246
IF THEN 68, 90, 126, 127, 128
Immediate Mode 37
Index Hole 209, 210
Index Variable 67
INIT Address 235, 236
INPUT 64, 65, 129, 130, 131 , 132
INPUT# 197, 200, 202, 203, 244, 248, 249
250

Input Error Checks 89, 90
Input Programming 88

INPUT Prompt 65,66
I nsert Key 35
INT 132, 133
In tegers 44
Interpreters 18

Joysti cks 17, 178, 179

K: 147, 148
Keyboard , Atari 11 , 20
Keyboard Controllers 17
Keywords 41 , 42, 148
Kilobytes 14

Lan guages 18
Leader 198
Left Arrow Key 34
LEN 77 , 133
LET 47 , 60, 133, 134
Line Feed 258
Line Numbers 38 , 39

Index 317

LI ST 40, 42, 114, 134, 135, 136, 190, 191 ,
192, 193, 194 , 240, 242

Li st File 221, 222
LIST P: 253
Listing, Program 42
LOAD 136, 137, 190, 192, 193 , 194, 242,

243
Load in g 189
LOCATE 137, 138, 139, 282 , 283
Lock Fi le 230, 231
LOG 139
Logica l Operators 56, 57
Loops 66 , 67
Loops , Nested 67
LOWR Key 33, 296
LPRI NT 63, 64, 139, 140, 145, 254 , 255

Megabyte 205
Memo Pad Mode 25, 110
Memory Addresses 301 through 313
MEM:SAV 111, 215, 224, 238, 239
Merging 224
Modem 17
Modulo 202, 248
Monitor 11 , 12
Monitor , Insta ll ation 13
Monochromatic Text Mode 12

318 User's Handbook to the Ata ri 400/800 Compu ters

Nes ted Loops 67
NEW 40, 83,136, 140, 141 , 143,193
NEXT 66, 67, 68, 116, 11 7, 118, 141 , 142
NOT 56, 57, 58, 142
NOTE 143, 216, 250
Numer ic Data 43,44

ON GOSUB 72, 90, 124,144, 159, 172
ON GOTO 70, 90, 125, 144 , 145
OPEN 97, 119, 120, 121, 122, 129,130,

131,132, 145, 146,147, 148,149,150,
151 , 152. 163, 164, 165, 166, 198, 199,
244, 245, 246

Operands 51
Operati ng System 9, 17, 18
Operators 51
Optio n Key 31
OR 56,57, 58, 153, 154
Order of Eva luation 53

P: 147, 253
PADDLE Funct ion 154, 155
Padd les 17, 154, 155
Parameters 41
PEEK 83, 87, 155
Pi xe l 101
PLOT 98, 101,102, 11 2, 113, 151, 156,
157, 161, 272, 277, 278

Plu g- In Cartridges 13
POINT 157, 158, 215, 250, 251
POKE 83, 84, 88, 155, 158, 159, 276
POP 159, 160, 172
POSITIO N 84,87, 160,161,281,282
Power On 26, 27, 28, 29
PRINT 42, 62, 63, 84, 161, 162, 163,164,
165, 295, 296

PRINT# 197, 200, 201, 244,247,248,255
Print Zone 63
Printer Buffer 255
Prin ter Character Sets 255, 260
Prin ter Con tro l Cha racters 256, 257,
258

Program Execution 41
Program Files 190
Prog ram Lin es 41
Program Listing 42
Program Mode 37, 38
Program Reco rd er 9, 14, 15

Program Recording Formats 191
Programs, App li cat ions 18
Pro mpt Messages 65, 66, 88, 89
Proportiona l Cha racter Set 260, 262
PTR IG 166
PUT 166, 167, 168, 169, 197, 200, 202,
244, 247, 248 , 255, 283

R: 152
RAD 169
RAM 14, 83
Random Access 205
READ 60, 61, 62, 105, 106, 109, 170,171
Readl Writ e Head 205
Reading 189, 248
READY M essage 29, 37
Records 189, 190, 191
Relational Expression 51
Relational Operations 53, 55
REM 59,60 , 171
Remark Statemen ts 59
Rename Fi Ie 228, 229, 230
Reserved Words 41, 294
RESTORE 61, 62, 170, 171 , 172
RETURN 71, 123, 172
Return Key 32
Reverse Half-Lin e Feed 259
Reverse Li ne Feed 258
Right Arrow Key 34
RND 172, 173
ROM 14
ROM Cartridges, Installation 25, 26
Rounding 46
RUN 37, 173, 174, 243
RUN Addre ss 235, 236
Run At Address 237, 238
RUN C: 195,196,197
Run Ca rtrid ge 22, 223

S: 147,150, 164
SAVE 95, 137, 173,174, 190, 191,240, 241
SAVE C: 174, 191
Saving Progra ms 189, 190, 240
Scientifi c No tation 45 , 46
Screen 1/0 Operations 151
Screen Margins 88
Sea rch Spec 221, 222

Sectors 208, 209
Se lect Key 32
Semicolon , Formattin g 63
SETCOLOR 100,101, 175,265,266,271,

273, 280
Sequenti al Access 205
SGN 175
Shift Key 32
Simpl e Expression 52
SIN 175, 176
Single-Sided Di skettes 21 1
Soft Sectors 209, 210, 211
Software 17
SOUND 176, 177, 285, 286
SQR 74, 177
Standard Character Sets 260, 276
Start Key 31
START Parameter 235
Statem ent 41
STATUS 177
STATUS Codes 178
STEP 67 , 141,142
ST ICK 178
STOP 73, 180
STR$ 181
STRIG 179
Stri ng Concatenation 77
String Hand ling 76
String Variables 49, 50
Strin gs 43
Subroutines 70, 71
Subscript 49 , 50
Subscri pted Variables 49, 50
Substr in gs 76
System Reset Key 31, 72, 73

TAB Function 85
Tab Key 35, 85
Tab Stops 85, 86
Tables 49, 50

Index 319

Telev ision Set, Disp lay 11 , 12
Telev ision Set, Instal lat ion 11, 12
Text Data 43
TO Parameter 223, 224
Tokenized Format 192
Tracks 208, 209
TRAP 91 , 181, 182
TV Switch Box 9, 11 , 19, 20

Unary Operation 54
Underlining, Print er 259
Un lock Fi le 231
Up Arrow 34
USR 182,

VA L 183, 184
Variable Names 48
Variab le Name Tab le 82, 83, 193, 194
Variable Storage 82
Variab les 47
Variables, Str in g 48 , 49
Vid eo D isp lay 11

W inchester Disk 205, 206
Writ e DOS 213, 232
Writing 189

XIO 138, 139, 161, 184, 185, 187, 188,
283, 284, 285

	Cover
	Contents
	Introduction to the Atari Computer and Peripherals
	Installation and Operation
	Atari BASIC
	Advanced BASIC
	BASIC Reference Guide
	The 410 Program Recorder
	The 810 Disk Drive
	Atari Printers
	Graphics and Sound
	Appendix
	A: Atari Error Messages
	B: Reserved Words
	C: Atari ASCII
	D: Memory Map
	E: Peek and Poke Locations

	Index

