THE FIRST siXx TRICKY
TUTORIALS -,

FOR ATARI 400/800 COMPUTERS

An exciting low cost way to learn
many of the secrets of
programming the Atari Computers.

For new or experienced owners.




Y YOUR FRIENDS \
= AT EDUCATIONAL
8 SOFTWARE..

THE FIRST SIX

TRICKY TUTORIALS

There are many things that the ATARI computers can do either better or easier than othar small computers. The following series
of programs is designed for anyone who s at leas! familiar with BASIC programming. What each tutorial offers is similar to an
extensive magazine article with all discussion in as simple language as is possible, plus you get MANY examples already lyped in
and running. There is little overlap in what is taught, so each tutorial will lurther convince you that buying an ATARI was the right

choice!

#1 DISPLAY LISTS

This program teaches you how lo alter the program in the
ATARI that controls the format of the screen. For example:
when you say graphics 8 the machine responds with a large
graphics 8 area at the top of the screen and a small text area
at the bottom. Now, you will be able to mix various modes on
the screen at the same time. Just think how nice your pro-
grams could look with a mix of large and small text, and both
high and low resolution graphics. The program has received
rave reviews lor the way it does all the calculations of the dif-
ficult things (like counting scan lines). You will guickly be able
to use the subroutines included in your own programs. 16k
memaory required for tape - 24k for disk

#2 HORIZONTAL & VERTICAL SCROLLING

The information you put on the screen, either araphics or
text, can be moved up, down or sideways. This can make for
some nice effects. You could move only the text on the bot-
tom half of the screen or perhaps create a map and then move
smoothly over it by using the joystick. Includes 18 examples
with several using a small machine language subroutine for
smoothness. As always, our examples can easily be used in
your own programs. 16k tape-24k disk.

#3 PAGE FLIPPING

Normally you have to redraw the screen every lime you
change the picture or text. Now you can learn how to have the
compulter draw the next page you want to see while you are
still looking at the previous page, then flip to it instantly. You
won't see it being drawn so a complicated picture can seem to
just appear. Depending on your memaory size and how compli-
cated the picture, you could flip between many pages, thus
allowing animation or other special effects. We have found
that many people skip this tutorial either because it sounds
hard, or they think they will never use it. The basic method
takes only 12 lines and the usefulness is infinite. 16k tape - 24k
disk.

#4 BASICS OF ANIMATION

This program shows you how to animale simple shapes
(with sound using the PRINT and PLOT commands, and also
has a nice little PLAYER/MISSILE GRAPHICS game you can
play with. The P/M example is well commented and will gat
you started on this complicated subject (maore lully explained
in TT#S). This would be an excellent way to start making your
programs come alive with movement! Recommended for be-
ginning users. 16k lape - 24k disk.

#5 PLAYER MISSILE GRAPHICS

This is the big one! We start by showing how to create a sim-
ple shape called a player, then take you through over 25 exam-
ples until you have created a complete business application
and a small game. Also, we include a utility to create the
shapes and choose the colors, then store the players and mis-
sles in data statements. Later YOUR programs bring these
shapes back in when needed. Plus much more! 32k tape or
disk.

#6 SOUNDS & MUSIC
One of the famous programmers for our great machine of-
fers this one through us. Unless you have spent many hours
experimenting with the four voice channels, you will learn alot
fram this one! The nicest part is the MANY examples of special
sound effects that you can refer to when you need them fora
program or to impress a friend. 16k tape - 24k disk.

Many other fine programs are available from:

Educational

Software inc.

4565 Cherryvale Avenue
Soquel, Ca. 95073
(408) 476-4901

©1981 & 1982 BY EDUCATIONAL SOFTWARE

Atari 400/800 are reaistered trademarks of Warner Communications



Imntroductionmn T o
Sanmnta Crwu=
Softwar &

Hi! First let us thank you for purchasing our programs. We want to
start out by telling you a little about ourselves and our company.
Santa Cruz Educational Software is the result of several local
programmers who initially purchased the ATARI computer as a home
machine around the time the 800 was first sold. At that time, and even
today, we found a lack of information about how to use the power of
the machine. As you have seen in a few of the better programs being
sold, the ATARI can do more than any other computer in it’s price
range, but how could we learn the many "tricks" that were contained
withen the machine??

Well, our local club, although it had several HUNDRED members,
ignored most of our questions. Fortunately other clubs across the
country have some excellant newsletters full of programs and facts.
Also, ATARI(tm) has given we owners the Operating System and Hardware
manuals. Finally, many magazine articles and several books have been
published.

All this is great for programmers, but what about the average
owner who doesn’t understand much of what is said in the magazines?
Even as a programmer, I have to spend many hours studying all of the
information that is now available inorder to understand some of unique
things about our machine.

The story ends when I asked some local club members to submit
their best programs for us to offer to others at the lowest possible
price, ie. a price WE WOULD be glad to pay to buy these programs. I
myself wrote most of the TRICKY TUTORIALS(tm) and the MASTER MEMORY
MAP. Now, others across the country have offered programs for us to
sell, all meeting the goal of: minimal on fancy artwork and a few
spelling errors, but worth every penny.

Write us with new ideas or memory locations to share, and if it’s
something we can use, a reward will be sent back to you as soon as we
can. Also, please remember that this is only a part time business. We
are usually late in getting new programs out due to last minute
debugging at midnite(no kidding, I do all this after my regular job).
This doesn’t mean we don’t care!

My thanks to all of you who have raved about the Tutorials. I will
try to keep a new one comming out every three months or less, and also
to get out those bugs that remain.

ROBIN ALAN SHERER (owner, programmer, and janitor)



1323238383322 %
HOW 7TO LOAD

1322283333328 8

TAPE...I..

First, if you haven’t cleaned your tape recorder heads lately,
please do so now. SEE ANY STEREO SHOP FOR THE RIGHT TOOLS. Place the
tape with the label side up in your recorder. Make sure it is rewound
and also reset the counter to 0. Push PLAY on the recorder. TYPE
RUN"C:" AND PRESS RETURN. If this doesn®t work you might try CLOAD. We
also include a backup program on the shorter programs we sell (not the
TUTORIALS), and these sometimes require CLOAD. If the program won’t
start to load, try positioning the tape forward or backward a little
bit at a time. The easiest way would be to LISTEN to the "noise" on
the tape with a regular tape recorder. When you find the steady tone
that lasts for about 8 seconds, you have the beginning of each
program. We recommend vyou write down the number on your recorders
counter as each program starts. This will make it easier to find each
part later on if needed. We occasionally get a bad tape from our
supplier, so if yours won’t load on both your own 410 and a friends
(or your DEALERS), call (408) 4746-4901 for a replacement.

Once the program starts, it will load in the remaining parts. The
multiple parts are needed so that machines with only 16k can enjoy the
TRICKY TUTORIALS. With more memory vyou can go beyond these simple
tutorials. After each part, the computer will beep. This 1is vyour
signal to press return to load in the next part. Some newer programs
will start the next part without pressing return. Most programs will
run themsel ves when done loading.

The reason for several methods of running tapes is that as we
improve the programs, we change the masters; however, the manuals are
printed in large amounts, so changes are VERY hard to get into vyour
manuals!

1322222322322 3222223333023 82 3233332882382

To load & run the disk you first have to turn on the drive. When
the busy 1light goes out place the disk in the drive. Now turn on the
computer with the basic cartridge in place and the program will load
each part and run by itself (aren’t disk drives nice!).

- ii -



DISPLAY LISTS

Display Lists consists of a set of
programs that are simple +to use, but
deal with a complicated subject. Until
now, only a few programmers have
understood enough about modifying +the
ATARI's Display Lists. Using the
examples and manual inside, you have
only to follow a few simple directions
to create your own custom screens.These
scrzens can consist of any of +the
ATARI'S regular Text and Graphics modes
plus 5 new ones. Imagine up to 20 modes

on the screen at once....real special
effects in all your programs!

This program requires very little
actual programming experience. It is

especially designed to allow you to use
iT now, and go back and learn the actual
method within the program at any time in
the future.

REQUIRES 16K TAPE OR 24K IF YOU HAVE
DISK.

)

Educational Software

presents




TRICKY TUTORIAL #1
DISFLAY LISTS

by
Robin Sherer

INTRODUCT ITON

Display List modification 1is a large and complex
subject. |If you have seen any of the articles recently
published in the hobby magazines on the subject, you know
you could never learn to modify your own custom Display

Listse..ooor could you? What if we let the computer do most
of the work?

How to LLoad
TAPE....

Place the tape in your recorder, label side up. Make
sure the tape is rewound, and reset the counter to zero.
Push PLAY on the recorder, type CLOAD and press RETURN.
When the READY prompt appears, type RUN and press RETURN.
If the program won't start to load, try positioning the tape
forward or backwards a little. A little trick to find the
beginning is to first, fTurn your volume UP. Then POKE
54018,52 to start the cassette motor. Listen to the "noise"
on the tape. When you find the high-pitched, steady tone,
you have the beginning of the program. We recommend you
write down the number on your recorder's counter as each
program starts, this will make it easier to find each part
later on. POKE 54018,60 to turn the cassette motor off.

DISK‘...
To load and run the disk, first turn on your disk drive.
When the busy light goes out, place the disk in the drive.

Now turn on the computer, with the BASIC Cartfridge in place
and the program will load each part and run by itself.

Any defective tapes or disks should be returned to:

Educational Software
4565 Cherryvale Ave.
Soquel, CA. 95073

© 1981 EDUCATIONAL SOFTWARE

-1-



SO YOU WANT TO LEARN ABOUT
DISPLAY LISTS!

To use this program you actually don't need *to
understand most of the information we will talk about. Feel
free to just run the examples and play with creating your
own special screens, Later, when you want fto understand more
about what you are doing, come back and read the booklet and
practice modifing the examples. You can't hurt the machine
by changing the numbers in the Display List. At the worst,

the machine might "go to sleep" (the keyboard will not
respond ) if a wrong number is POKEd into memory. Then
you'll have to press RESET or turn off the machine and

reload in the program. This Is one reason tape users should
always keep track of the number on their recorder's counter
for each program so that they can easily reload a program.

This Tutorial doesn't go to the other extreme of
dificulty either. MANY details about DL's are not mentioned.
The lesson is designed to explain all the basic's of the
subject as well as offer examples already typed in for you!
(1've got to keep those two recycled beer cans,Prototype &
Mototype busy doing something!) |f you don't practice
modifing the examples with your own ideas, DL'S probably
won't make sense to you.

NOTE - From this point on we are going to refer to
Display Lists as DL so please don't get confused.

What is a DL?

Why did you buy this program? A surprising number of
people buy my tutorials because they want to know how to use
the special tricks that the ATARI can do, not really
understanding what these tricks are. With this in mind,
we'll start out this lesson by explaining some basics of
what a Display List is. EXAMPLE 9 shows one suggested use,
but you can come up with you own unique ideas!

The ATARI has a special chip inside it to take the
information from within its memory and put it on the screen.
This chip iIs called the ANTIC. This chip is actually a
microprocessor by itself and thus has a set of instructions
to program it....just |ike the main microprocessor .in the
ATARI, the 6502, The difference is we don't use BASIC or
Assembly language to program It. Now stop and think a
moment, | said TWO microprocessors. This gives the machine
much more capability than an Apple or Pet (go brag to your
friends for a moment then come back.seeoeoosa)

The Display List is what the ANTIC looks at to tell the
machine how to treat the screen (plus other things not
mentioned in this lesson):

-2-



The Display List is what the ANTIC looks at to tell +the

machine how to +freat +the screen (plus other things not
mentioned In this lesson):

1)What Graphics and text modes to put on the screen.

2)Where to get the data to put into these mode
areas.

Now don't worry that the subject is too complex. There
are only four +types of instructions, and these are POKEd
info memory using a few basic statements. Let's review - The
DL says something to the computer that means: "Put on the
screen some Graphic Mode 0, now some Mode 7, then some Mode
0 again, and finally some Mode 2. Oh, by the way, get +the
data from this location in memory".

We have to discuss the meaning of a few words before we
can go on. You already have used Graphics Modes 0 fo 8 as
described in the BASIC Manual that came with +the computer.
If you look at Figure 1 you will see a chart showing
something called 0.S. Modes. The Display List instructions
allow the use of these Operating Systems Graphics Modes from
2 to 15. Notice that Graphics Mode 0 is 0.S. Mode 2 and
Graphics Mode 8 is 0.S. Mode 15. In the middle are some new
modes you <can use from BASIC that ATARI didn't mention in
their BASIC book. Uses for these new modes will be mentioned
later. So just remember when we say Graphic Mode we mean the
one you normally wuse from BASIC and the O0.S.(Operating
System) Mode 1is the one you place in the Display List(
through the use of our examples).

0.S Basic # of Pixel # of Bytes of Text
MODE GR. lines per Colors Memory or Additional
[# for mode mode |Ine Used Plot
DL] Per Line Mode
0 - = = - blank |ine In the DL:
1 - - - - Jump 16=2 blank lines
2 0 8 2 40 text 32=3 " "
3 new 10 2 40 text 48=4 " "
4 new 8 4 40 text 68=5 " "
5 new 16 4 40 text 80=6 " "
6 1 8 5 20 text 96=7 N "
7 2 16 5 20 text 112=8 " "
8 3 8 4 10 plot 65=jump & wait
9 4 4 2 10 plot
i0 5 4 4 20 plot
11 6 2 2 20 plot
12 new 1 2 20 plot
13 7 2 4 40 plot
14 new 1 4 40 plot
15 8 1 2 40 plot
FI1GURE 1

-3



Here is another idea to learn about. We are going to
talk about both Mode Lines and Pixel Lines. To see a Pixel
Line, simply look closely at the screen of your TV set.
Those tiny dots you see are pixels, so a row of them across
the screen is called a Pixel Line. The Mode Lines are harder
to understand. |f you look at some regular Mode 0 text(small
white letters with blue background) you can see that the
letters are made up of eight rows of pixels (including the
space at the top and bottom). Now look at the chart for GR.

mode 0. Under the value called "Pixel Lines per mode Iine™",
it says "8", meaning a character in GR.0O takes 8 rows of
pixels. You'll use this value later to help yourself 1in

setting up the DL. To review (see Fig.1), a mode l|line of GR.
8 takes only 1 row of pixels, and 0.S. mode 5 (no equivalent
GR. mode) takes 16 rows of Pixel Lines, thus, adding GR.5 to
your DL fills up the screen 16 times faster than a GR. mode
8 line (0.S. mode 15....l00k at the chart!). When you input
a mode into the Display List in the examples, you must

remember if you take out a mode line that is made up of many
Pixel Lines, you should replace it with several Mode Lines
that use less pixels per line. This will keep the total

number of Pixel Lines drawn on the screen the same. The
standard number of Pixel Lines drawn on the screen is 192,
If you put too few Pixel Lines on the screen, then the
picture will "shrink"™ with just black on the bottom.
Likewise, too many will place part of the picture off the
screen and may cause the picture to "roll", which can NOT be
stopped with the Vertical Hold controls on your TV. I|f you
practice it will all make sense!

NO PROTO,
VERTICALROLL [ &®°

NOT pock € KoLL!




EXAMPLE 1

If you haven't already, please RUN Example 1. This
little program allows you to look at any of the standard GR.
mode DL's, including the new (tfo the United States) GTIA
modes 9, 10, & 11. Let's try inputting a 0. The numbers that
result from the example are those of a standard small text
screen. You read the numbers a row at a time.

EXAMPLE OF
GRAPHICS MODE O

112 <-=--8 blank lines
112 <=-=--8 blank |ines
112 <===8 blank lines
66 <---LMS (includes first line of screen;

ie. 64(LMS) + 2(0.S. Mode)

64 <---Low Byte\
combine to get location of Data
for upper left corner of screen
156 <---High Byte/

2 <==--0.S. mode line (same as GR.0)

2 <===0.S. mode line

2 <===0.S. mode line

2 <=-=--(and all of the other 2's) 0.S. mode l|line

65 <---Says end of Display List, go to the
Display List at next location

32 Sm==
Combine=Low Byte + High Byte * 256
156 <=-=-/

FIGURE 2

The first three numbers are 112. Look at Figure 2. You'll
see that "112" tells the computer to place 8 blank lines on
the screen, starting at the top of your set. Three of these
commands causes 24 blank lines at the top of the screen.
This number of blank lines is standard. They allow for *The
difference 1in individual TV sets, called overscan, so that
your whole picture can be seen.



The next number, "66", is the LMS instruction. LMS means
Load Memory Scan. LMS tells the computer +to "Go find +the
data for the following modes starting at the address in
memory in the next two numbers". We will always use for this
number (LMS) the value of 64+the 0.S. Mode number.....this
means for our GR.0 DL we need 64+2, or 66. Remember that the
chart gives GR.0 = 0.S. Mode 2. The next two numbers will be
the location of the start of the data that is to be put on
the screen. To find the value for your machine (if vyour
interested) +tfake +the second number of +the address(high
byte), multiply it by 256 and add +the first number (low
byte). For example, if the high part of the number was 132
and the low part was 192 then the start of the screen data
would be at 256%132+192 which equals 33984. |f you POKEd a
number intfo this location that was the value of a letter,
number, or Graphics character, you would see it appear at
the upper left corner of your TV screen. In +this example,

POKE 33984,33, an "A" will appear. This is because a 33 in
the screen data means "put an A on the screen at +this

location."

NOTE !

| want to explain an important point about +the "Screen
Data". The information (data) that is put on the screen is
normally stored all in one place in memory, and in the same
form. |t is the type of mode line you write the data on that
determines if it will be large or small text, or graphics
pixels. Later some of our examples LIST the program +to get
data to "flow" +through +the area where the screen data is
stored. Please look closely at the way the same information
is INTERPRETED differently as it «crosses through +the

different modes. This concept is IMPORTANT!

Next in the DL come several # 2's. These numbers, we
already mentioned, are the 0.S. modes that you want. Since
we are in GR.0, the DL needs 2's. For each of +the 2's(
including the one "hidden" in the LMS number before), the
computer will put a GR. 0 mode line (8 pixels high!!) across
the screen. Don't forget +the mode Iline in the LMS
instruction!

Finally comes the number 65. Every DL we will do has
one. The chart gives the meaning of the number 65 as "go
back to the Display List at the following address and wait
for the next +time the screen is drawn". Don't worry about
tThis except to include the 65 at the end of your DL. Leave
whatever numbers come after this alone. You could actually
flip fo a completely new DL and it's data by just changing
these numbers.



WOW. o« - THAT WAas A LOoOT!

Sure it was, but that's about it for the technical talk.
Now we can have some fun! Input other numbers (0 to 11) intc
Example 1. Notice that the DL gets longer as you use modes
with |ess Pixel Lines per Mode Line; ie. for a mode like 7
where a mode line is only 2 pixels high, the DL must have a
lot of number 13's in it to fill up the screen. Input 8,
then look in the middle of the DL. See the 79. There s
already a 79 in the top of the DL for the LMS number. Recall
that 79 =64+15(the 0.S.mode for GR. 8), but why a second LMS
number and a second set of addresses for the screen data?
The reason is that the DL can only locate up to 4k (4096
bytes) of data. Then it gets lost! The second LMS comes at
the point where it ran out of data and says "Here's where to
go find some more data to fill the remainder of screen". The
second LMS is due to a hardware limit. You will have to make
careful calculations to work with it, but only if you use a
DL that requires more than 4k on screen datal!

AOERERER SRR RGOS Y s Y g e e B R

B T 5 T e I A A 5 R S W R A I P

Wk @il Wl o T ECT O DR

I B el el

W B S

A o e BRI L E e R S L e i T W

A FCRER o W R R el Wl R e el s DT

A el s E o SRR L e L e, W L S, S el el LT SERGE DR

o B

AR T RGP B GE TR L EER T R PR LGN A
R G R R D S MDD BRI e RN RTRE T3
TG RSPy RS T Ry

AR RO RCE L,

AAEG CCMELT B E

LA EF MODREX DL O MORE S8 THEN L

AALSE EOT R R

A GEAPHTO S L PORE B, SR

LA E POSEV DD M L B o T RS R E S [ T KUY oL s S
CRLA D W, R L DR R T SR s ME T b SR 6,
B, B,

. -



A ERE R B i WAl SREkR 0 ME T s W L S g

R R SRR o e e R e L R

AR ERESP IS R EE

LEUE G T R RS n PR EEE &

B M I R e

R R W I B M R Rl S T R LR
R R I T e e D e

AR EE EF VRS E e W M S

I R P e T e S e I S A R i L R L

LEER POSETERM &, 8% DEEP Ly LTS%T FoR MoDE 99
PG E § B S T H LARIM L, L § B 08 o o ome e ome ot e e ame et e e e e e o o e 2

s st sdere st et wwome smses e U B

AR FdvR e Tk B
Ao EE R Ao W e R ST EDRY R
BTt 3 5 TR W N R T U A D TN e SR B O S L R O O o

LS S I S I |
.. CERIEOER R WO R, SR s U v R WO RLICRCEE W EOETED
ORI R O
S TF w fatgtes T b L L SRR
gk T PO B R WS e S s R YO s e
AE e R LS R

EXAMPLE 2 (at last)

If you are still in example 1 type in "n" and press
RETURN. Example 2 is for you to practice changing a Display
List. The numbers that come up in a data statement on the
screen are there for you to edit using the cursor controls.
Numbers can be added, changed, or deleted. When ready to see
what the screen will look |ike with your new numbers, press
RETURN. In case you don't understand what to do we have
already changed some 2's to 4's, so just pressing RETURN
will get a custom screen. Now you can see why ATARI didn't
tell you about some of the special modes. Mode 4 is a
multicolored text mode designed for use with character
graphics, but it sure looks funny! I+ also is difficult to
use, so these new modes will not be explained here. Try them
on your own, or see ATARI| publications.

Play with this example awhile. Try different numbers in
the |ist. Remember (| keep repeating myself), the numbers in
the DL are the 0.S. Mode numbers from 2 to 15. This is
designed as a simple example, so don't get frustrated that
you have to keep starting over with the same |list. Later
examples will remember your changes and have more room in
the DATA statements for numbers. ANYTIME YOU WANT TO CHECK
THE MODES YOU HAVE PLACED ON THE SCREEN, THE EASIEST WAY TO
DO IT IS TO BREAK THE PROGRAM AND TYPE LIST. THE LISTING
WILL FLOW ACROSS THE MODES SHOWING YOU WHERE TEXT AND
GRAPHICS ARE.



PO S R B e MV B L 16 R L e

A FREE el T SRR s b RCEE W L ER e

. FEREE Rl W L s REEERY R

HOMIERHT b

A e =R T R O O B -l A I

A L LSS R e 2 e B D RS L TR

AE oo E R D e B PEE R iDL,

SRR m R DS B p E W DS e R L A R RS W T
o el B LRI CE R T % O e = T " W S L

R T VR EOE S oS RECTEEE Ta BEG e

ERAE O Eedn Wk R . B . LA R o, LSRR L B L L
ﬂﬁyﬂmﬁmﬂyﬂydaﬁmﬂuE,E,Eyﬁmﬂ,ﬁﬂﬂyﬁﬂmEﬂ,iﬁﬁy@,gﬂ
iR, Eh
[T = R A L T

H5CER R R R SR CRE R R

SOEROJUE O ETmdER WOREED B L R R
ek Ty G
AoEhE TR o ERoEER E s VRN s RS 0 R,
Ao W NRERE e Wl LR L LS L LR R T g Y R o e
R R R R . R T R N R T ¢ S S I
e B L S L R . R R, Y

G RS T G S U T v e s T RS R R S WIS Hed
I A O WORREE LIRS R DD W S T R R B
USRS e s TR U
A S W RTRT R g R
HOEER RS T ok . L
SR R R

AN

AR P s T O &R
Goedhodm PR BCED el LK
ol RSO R S, SR n T STk W
B S T T A S R

] Eohpc o kel .

BT E O BS

TRy B L ik

RO e o0 R RE e Lm0 dEemdk o WiRETM S
da b Tk G ER

IF a3 e
R 2 il

J D R B I
el SR WIRR e L R

A R T BRI S,

e g

POl A O T e e
TUOE R gm TR R T RS T

W B
X WO ED B RS R R R
LETR T A W N

EXAMFPFLE =

This is a small subroutine for you to use in your own
programs. The numbers for the DATA statement (the DL) can
come from EX. 2 (or better yet EX. 10). Some of the lines in
this example we added to make this Tutorial flow smoothly,
so after you <copy the example, delete all but the call to
the subroutine in line 700 plus the subroutine itself, lines
10000-10040 . Here's how the routine works:

-Q-



10010 DL=PEEK(560)+256*PEEK(561)

Line 10010 - puts together the ftwo parts of the address
stored in 560 & 561. These two locations combine to give you
the start of the Display List. Since this varies, you have
to look at these locations each time you do a Graphics call,
like GR. 0 or GR. 7. The Graphics call will automatically
set up a DL and screen data area within memory.

I"m confused!

Right! We need another chart (next page, Figure 3). On
this chart are every standard Display List. Look at the
first one, for Graphics 0. The Display List starts about 1k
from the top of memory with the DL itself. Then, moving up
in memory comes the 960 bytes of data that the screen needs.
Example 2 calls GR. 0, then looks at 560 & 561 and changes
the DL. The 960 bytes of screen data is enough for the
modifications you can make with the small DATA statement we
have given you so far. Later, when we give you four DATA
statements you may want to start with a Graphics Mode that
gives you more room |like 5,7,even 8. The key Iis to use only
as much of memory as you need. The real way to calculate
what mode to start with is to add up how many lines of each
mode you are using, multiply each of these by the number of
bytes per mode line from FIG.1 , and get a total for them
all. For example:

13 lines of GR. 8 * 40 bytes per |ine
+ 8 lines of GR. 2 ¥ 20 bytes per line
+ 25 GR. 7 lines ¥ 40 bytes per line

equals:1680 bytes needed for DATA
and:191 pixel lines used(close enough to 1921!)

-10-



If you @llow another 70 or so bytes for the DL itself, you
get a minimum of 1750 bytes needed for your custom DL. By
calling a standard GR. 6 (see chart), 2048 bytes would be
set up which is enough. At this point (after the call), you
would look at 560 & 561 to get the address of the start of
the DL. By the way, the estimate of 70 additional bytes for
the DL comes from adding up the number of mode lines you are
going to call (46 in above example), plus some extras for
the blank lines, the LMS bytes, and the 65 & address at the
end of every DL.

Let's finish this example and then explain the chart.

10011 Z1=PEEK(DL+4) :Z2=PEEK(DL+5)

Line 10011 - saves the location where the screen's data

starts, which always comes at the 5th and 6th value into the

DL(right after the LMS).

10012 I=1

10013 READ A:IF A=0 THEN 10040

10014 POKE (DL+1-1),A

10015 IF 1=5 THEN POKE DL+4,Z1

10016 IF 1=6 THEN POKE DL+5,Z2

10020 I=1+1:6G0TO0 10013

10030 DATA 112,112,112,66,64,156,2,2,2,5,5,5,5,2,2,
4,4,4,4,4,65,32,124,0,0,0

Lines 10012 to 10030 - We now set a counter, and read a
value; if it = 0 we're all done; if not, we POKE it into the
first location in the DL(thus changing the DL if fthe number
is different). We then test for the 5th and 6th value, and
if we just POKEd in these values from the DATA statement, we
POKE in another value from line 10011. This is because these
two numbers depend on your memory size, so the numbers in
the data statement are dummys waiting for +these correct
numbers to be PEEKed from the DL and then POKEd right back
in again(sure it could be done other ways....this 1Is my
way). This simple loop continues until the program reads in
a 0 from the DATA statement then stops. Notice whenever you
change a DL this way it changes down the screen just |like a
curtainfalling. Neat!




TOP OF MEMORY

|6 x 1024 or
372 x 1024 om
48 x 1024

FOR GRAFPHICS ©O to 4+1&

-250 BYTES

DISFLAY LIST

—5|Z BYTES

~76% IBYTEQ

—1024 BYTES

BOTTOM OF
MEMORY

0o

-

T

iz

2

A4z

22

GRAPHICS |+ 06

22

MODES |

22

22

_Zl_

22

22

D

22

UNUSED

l.'_..

= X S LN D

GRAPHICS DATA

Oy

-

| TEXT DATA




E ) )
DISPLAY LIST

FOR GRAFHICS S5 to 8+14&

TOP OF MEMORY
b X 1024 OR BOTTOM OF
32X 1024 OR MEMORY
4% X 1024 - 2048 BYTES -4096 (4K) — 6144 (6K) -8192 (8K) 0

22
22
¢ &
22
22

5

BRAPHICS .
MODES

V\\/
V]

22
> Y

< <

g+ 16
L

UNUSED

GRAPHICS DATA

= 0 R MR TEUER DA T i T S R N L



o DISPLAY LISTS [
Ut _ _,Fawawr_hssca?ﬂ‘
/| P

(777777 e = X
- 77— ‘ —~

7 l

V2//124

i —

’_-
BEACK TO THAT BIG CHART AGAIN

It isn't necessary for you fo understand Figure 3, so
feel free +to skip this section. Just pick one of the
Graphics Modes you are used to using and look at it on +the
chart. Lets pick GR.4 (0.S. mode 9). Starting down from the
top of memory about 600 bytes, we see the DL uses 54 bytes
of memory. Next comes the screen data of 400 bytes, then
some empty (unused) memory locations. Finally, 160 bytes of
data for the text window. The other Graphics Modes work the
same way.

The text window is a slight complication +to +the DL
after the sequence of 112's, the LMS bytes, and the various
0.S. Mode numbers, as discussed above, YOU WOULD FIND
ANOTHER LMS! And following that will come more mode |line
instructions (text of course), and now finally comes the 65
address to end the DL. The extra LMS just says to: "Go get
some data from another location in memory than the one +the
computer is at, and then place that data in some text mode
lines(usually 4 lines of GR.0), all at +the bottom of *the
screen.

AER GRS A T g el O R e

SRR PR Rl W SR IS R R W LR, e
Al FRE ARl W L s WERET SN

ol R BEDEY B
SRR RER WIS S @ S0 R e PR WO Ty RS
B R ke RO S S L RRETED et B R . TR e 0 R B W R

o}

SUOEER dn RS RRER L dEokk ERokd

OB RRE R PRET WHE RESCT R WCRERE O e e el ST R D s
Whownt WO 0SB I

OSSO IR B TR SERERdR s METHET e

TR GRS B U U e B L DS PR Y aRik WO
R I e T O e Y A A Y R R W T Y e P T S
BT K W ORI bl T Ry

-14-



AU R R ETSCS iP T R R ek sl Wl L T R E

a D A |
POEER K X5 PO Dok VS e o LD n R TN T e R

AR TR 2 e R
JloEREcE S T R i
LOER R S e i M
B I T S
R B

R
(A M O e N e g T
ol | A A A

o LR R EDS D ahow T ahosdE WHER L R
HoER R

g R ERECET e DT L 0
x XEF . B WU B N e
AR L WF el WHE M P kR E
R g T e SR W R L R
Aok SR el W A . R aLE , WLE B, el . LS B L . B L SR L B,

R NP PR SRR MR N S O R . N S I

A R TR
L
\

el 15, J05E

NOW FOR AN ADVERTISEMENT

All these PEEK and POKE locations are summerized in my
MASTER MEMORY MAP. FORK OVER THE $6.95 and order one today!

| hate ads too, but....News flash!!! The ATARI isn't as
slow as some reviewers have stated In bench tests. The ATARI
ANTIC chip that we have been programming steals time from
the main 6502 processor. The bigger the DL and the more data
it has to pu* on the screen, the more time it steals. This
means that if a reviewer tested the machine in GR.O0 i+ will
run calculations slower than if In GR.2 or 3 which have
smaller DL's. In fact, if you want you can customize a DL to
have only blank |ines with one small message in the middle
of the screen that says "Wait a Moment", this will allow the
machine to run almost as fast as It can go. In case you want
to know the difference; in GR.8 the machine is up to 40%
slower than GR.2!

-15-



EXAMPLE 4 8 35

Ok students, time for fun. Run example 4. All of this DL
stuff may not seem too practical, so the next two examples
are to give you some ideas. By simply setfting up a GR.1
(large letters) DL, but in the middle doing a second LMS
(70,96,127 in the data but the last two numbers are rePOKEd
in lines 10023-10024 depending on your memory), we tell the
DL that once it gets about halfway down the screen, it
should get its data from the same place as the top of the
screen did! There are few restrictions on what you can do
with the LMS byte. |t doesn't have to wait to be wused only
at the beginning of the DL and at 4K boundaries.

Example 5 is the same thing, but with only one copy of
what you type in. Both of these could be used for games, but
a more wuseful idea might be to allow programming in big
letters for the hard of seeing or kids to use.

L

=)
//4

HAaVE I LOST You?

You should still be in example 4. The program says READY
in double letters. Since the program has stopped, you can do
what you Iike. Try a simple line Iike "Hello, | use BIG
letters". The computer will now work like it was in GR.O.
Why? Look at Iine 720 in EX.4--720 POKE 87,0:END. The POKE
to location 87 fools +the computer. We just (in the
subroutine) set wup the DL |Iike a GR.1 screen, but the
computer looks to location 87 to see what mode it is in, so
by POKEing in 0 (the Graphics Mode goes here, not the 0.S.
mode used in the DL), it thinks it can write listings as
though it were in GR.O.

R

HE T
5 P E  A

B N RO

0 B I
b

[ =

S8 S sl g g
L U L R A U E 1 O A 2 L L B R

-16-



CERE RIEM MERE K% oy PR T R O B D ST Wi
i e 00 BWIDTE S popseolesy LS TGS T DS MO T D E D
S FREM O LIST S SOTO S Il BN % R el bl W
O HEE YO PR Rk KRBT E LETTERS SR T e
LK TE 8

el S =l R LR e e R T T o o o B R Y

FEER GO SRR LS

TR FEM WO B S0 PG R S M RE

TR PSR . B M

LI FEM TR BB e DS

LEEGE  GRaP TS 6

RS T T I T W o T R B B S e e = ol T e

SOEECL S AL T R L R R 5

Lo LS s

LEEL T RESD & B @ THERM LS

LSS P RE R R R, 6

LEECE L CTF TS WHEM  PORRE DL, e

AEEER TF RS THEMN PO E Bl 5, e

LEECEE O B THE M PR E L S

FLEEEE  EF R THEM PREE Bl L e

LERECES KoL s T LB

EOEERCEE e F e LR, LR L LR L TR L BB L L L B B, B P,
Wi g B WOHR B, LRV LB LG, B, Gl B, B B B, B B, S, LS, 8, 6
ARG W E T LR b

Example 5 is almost the same, except instead of the POKE
87, we start with a GR.0 mode. This internally changes 87 to
0 (try a PEEK(87) if you don't believe me). Sometimes one
method is more desirable than the other. You pick one. The
other difference is that there 1is no second LMS in the
middle of +the DL. The writing in these two examples is
large, but the computer still thinks it is in mode 0 so It
trys to fit in the normal 40x24 letters. For this reason,
you won't see the text in the way that you expect. Try a
LIST command. STRANGE!

NOTE - To get to example 5 & 6 you have to either type in
RUN"D:EX5" OR RUN"C:", whichever is appropiate. The same for
EX.6. This is because we stopped EX.4 & EX.5 for you to try
out.

TR S e e ol B O e S N = 4 N g e el L R

SRR O Bl Wk O PO BRSO LR . bl

HOE F R BT ER A ER o E MW R

B R b

SEERER O BPEE R OWERED S U % SRR O T R M T wwi Rl W T
EET R R BT BRI LW T RS L SOENE heh e R 0 R
TR

g 0wy R R0 s R RS ILEER L B ERER R N
o BLE R FRET T HE BEESW G WORLER RO e e T B
G R VDS R

e R SOW

LB W R

A SRR AL :
AR R L AL

el

B R U R f SRS L R
R E R B L e S TR




LEEALE K

AOEECEE BE D f o DF fcse THERN LS

BB AL P ORE C L eI .

LESLE LF TS THEN PORE DL ed, EAL T

LEE LG TF TeE TR PR L, B

LB R DL G T O L

LEREEG DT LA . LR, LR, PSP, LS G B B
B o g B e B B B B, B B, B R, LR, B B8
B R TR

EXAMFLE &

This example is Iike EX.2, except that it remembers your
current DL. This way you can slowly change the DL until you
like it. Then copy the numbers and use them in EX.3 in your
own programs. After you create a screen, If you want *To
BREAK the program just +type LIST. This will flow the
programs data over the DL you just created +to better see
each region. To restart the program, just type RUN. Other
commands are: press OPTION to go to EX.7; press START to do
another screen using the current DL numbers; press SELECT to
get back to the original numbers in case your custom screen
goes crazy, or you get lost in what you're doing.

GRAPHICS MODE LINES AND PIXEL LINES

PIXEL LINE

GR.7(0.S. MODE 13)

4--> GR.4(0.S. MODE 9)

(Up tfo 16 Pixels per Mode Line in 0.S. Modes 5 & 7 (=GR.2))

FIGURE 4

-18-



GOING CRAZY?

Yes, remember we said before that if you put in enough
modes in +the DL so that too many pixel lines are used up,
the TV will start to roll. This is simply because you are
saying in the DL to "Draw on the screen more than you have
room for". Conversely, if you put +too few lines on the
screen, the picture will shrink. Simply change the amount of
modes or the type of mode(ie., change several modes |ike 2
which use 8 lines of pixels per mode line of 2(GR.0), +to
ones |ike mode 9 which use only 4 pixel rows per mode
9(GR.4) line). Now,if this mode |ine vs. pixel line stuff
has got you lost, we are going to have one more figure
(figure 4).This one shows clearly (we hope) +the difference
between the two.

A GRaPHICS LT P e e el SR L R

AP OE AL W SRR s P REE L L,

. FOR O FRTL T S WIERT N

OMERT b

Fal O S R T e

EOER R DS s T ORI S B L el RS LR TR

I R B DS Y IS e

Heh F YPRESS EREETEE O T BEG I T R T Dk b W
Pl LR R S D TR TR B B W R IR W 8 e

GiE D@ T LR, LR, LA B B, L, R R LR L LR
o b N S R W A

%ﬁ R I T I - - - P 0 = O O T = O O = T O = SO T S

S R, B, B B, B, L, B, B, B, B, R, LSE, 6

R VST ST P R R s P R S N I S R R T R T S R N < T R

o B R R R L R R R, B B B L B B, B L B L LSS L

E R W S < N I TV < S O P R O TR SO R TRV < P Y ' SO I &

o R R R R R R R, B, 0, W, B, B, R L LR, g

o PODRE SEsSn, &

S FoPEER DS R0

FEOLF s THEM Lt

Fkr GOTO G

AR e RS R o PO STk,

LB LEST S%, 9568

LAE POSTTIOoM o, L8P ek E T HE W URE S WL A

TR S W E R E SO e T R R L B

ACEE PSR L, B

Ao LM LT M

AOEE P RSCET CR R, E

S N SR N AP PR AR O A 4

-19-



B P REE BRI
HodlE PORCSITCT DR R, L u T O e

Ao PRSIECTIE R M W R 8 ST R

LESE PORE B, B

EOERR R SCT R

e I 5 ey X

LS WS R

SAF Iy GRS W

BRI ORI O R e S R R L

s B D = R = ol A 5 R I S et o o I |

W R dm o T dmomE THEM 2

el M = N T o 7 R M T

WES L S T HE M PR D b, 0%

EEEOLF OE=E THEM PORE DS, 5

e B e o O NI B R

WEE PR R TR SeEoBh o BEE T el s PR EF L 6

e P DEHIDT IR s . L PR E S S [EUSEETTT Ty gaah hpee oy
R E S RERETEER T poo e ooT HE R SR e

RSP RIS S TSR P OR T E ORGSR L
o T

WA TR R 5
i W R O R
WOEER E
RS

THE M ok
5 T THEN 5

WOEE L WHE B POOCE P, I s el O g e
EEG GOTO
AR TR B GRS TS s PSR N , d

AR DO ET O LR, LR, REZ L L s, 0 B, S,
o B M A A R T T T S S R
L EE L, LS,
AEE T UEG DT B 0, B W, B, B, 6, B, E, B, R, B, O, 0,
?éﬁfﬁyﬁﬂ@uﬂfﬁyﬁﬂwyﬂﬂ@ﬂmﬂwﬂmﬂwfmfmﬁﬂmﬂﬁiﬁﬁ,@“
L B T R I R S
wymymfﬂﬁ@ﬂmﬂmﬂ@ﬂﬁymyﬁ;h?ﬁ?@?m?w?ég:g%gﬂgé“@ﬁ”
ACEERCE SR T R, R B, B B, B W e e e
B0, 0.0 8,00 &, im ’ ;y ' 33 ’ ;m¢f ;mkf &mlf &mh{ gﬂmi ;1%2;” ﬁiff.mm'i,%f«%;mﬂ @ ﬁﬁ.p
A GERTER # R T e R Sy B

EXAMPLE 7

This one is for you to figure out. Some clues: When the
"HELLO'S" stop, look at all the modes on the screen. Notice
towards the bottom, the mode eight area (obvious by the red
and blue pixels). Since the computer displays the data
according to whatever data is next "in line", the statements
about press OPTION, START, or SELECT end up 1In this mode 8
area (even though vyou <can't see the statements, you can
still use them). Then we hit a 4k boundary, so a LMS
instruction was used but to make it interesting, we used the
same address as the top of the data. Look at the Display
List for GR.8 using EX.1. See the 79 (LMS) instruction 1in

the middle.
-20-



R e R S e i S Sl B+ S AL e = T L L
4 FOR ML OTO O RIa POKE FLG M
5 OFOR O ZR=L OTE L8 :MERT &R
B OMEHT b
A v o o - o B
LB TSP B s TR L
FE GRGPHITCS o W RS E MM L AL S Wi
I i PO E @ RS E LY ST 8 e
oo PR ESS EEEETEEE v BEGIMO O TIE DOk T HE
ML E RS IO TEE R MHEM WO LERE T e
dLER R CRRE W LR
W T A LE , LA L LR BB S, e 0, 0 BB, W
PR I U T T R T N I SO U N N N I -
ﬁfj- HZM ; s:;u: . A 'E",- & ;ll.. £ .,— BNE . LW L L, 'S‘_" b . .;{% . .ﬂl'f. . J‘l: R - S Y
. SRR UL S P < R TP I < P < P O - T < T S SO I Y
w o B, g
G = T O < O R < T < T < < s S SO~ O < O T T S~ T S S~
oL B L, B DL L, B, B, 8, B, o, LSE
L =R O R R R O T - QO SO SO O N IO QU TR O IO O O S O
o B R ER R R R L B LWL W, R 0, R, S, R, LS, 6
o OPORE SERE D, B
B E P EE R SR S
TEOLE S THEM LB
EOE GO 5
AOERER T TR RS IDW DO,
LB LDST OSSN
AR PRSIET RN R, LE D F MG E T HE W E S IR R
MTOER LS WOEE RIS R R s e
BOAS T SR EE ML
AEE S DT e L, E
FS ML
CEE PRSCE LM,
G PR RED RS, AL
LR FRCRCSOECT O, L E e e
R T =0 R e o R 5 S W L
SR ORI S, L
B RESTORE 5SS
L B
AEOW R
TR W=l T v = X i v S e I = S S ) A WS £
ALER I I R R R R e ol il L A R
IR R =l ol L v I el o o A I
FE s 6 or I dmssE CWREM R
(=08 T AN T S A M
GO ME B R e
o WMER PO e,
TR R MR 1 e R
R R ORE BTl WER SRR BERCW B B ROE ERE L 8 ST ES
LR R 5 Rk
e N5 Y = = o R S )
TR MR T R
SILEE Y

o

R

B

R R R R

a3

M

5]

SN

b 5 ]

N I e W L T S S i R
: R"“ uu
SO N S L N S 1 N R

-21-



R I N S
i R %

R

e
30

S N WO B WV

e E ; BT DR A R Bl =1 R B I ¥ I [ A T

s I R T T A T G

CERER TR e e R R 0 IR IR B

R R

Ehos R CEDW AR R .

oo LTI £ ®omoge owo ) 4
ol R S5 Moy e LR L AL o R R Ny R &
o o P T NI N S N S N P B I T K TR R i B i K

G ER R T SUERER M Wk AL . BER L o MW, L,

i T LR R R R R R, kR, R R g
5 7 iz RO N O O TR % (RPN (NP ' VR AR 5 PR N 5 Y 5
W, WE o, Eh o, Bh  ER S S VI T P S SR N IR 5 B 5 R = R
:ﬂ[l: s e e Wy W R R B R R D A R 5 S 5 I
o, W R R R R R, R, R R R, EETR < TR & R G
G 5 T o TR 5
T T M-S o T O A S

e

5 R R

EXAMPLE 8

Get your wife, husband, kids, or friends. You are about
to prove what home computers are good for. Remember that the
LMS numbers (two numbers after the LMS value) tell the
computer where to get the screen data. Well, +this example
Just uses the joystick to change this address so you can see
most of the memory in your machine in both graphics and
text, some of it changing before your eyes. Moving +the
Joystick forward will move up to the top of memory(remember
you were almost at the top to start). Moving down will go
almost to the beginning of memory. |f we were to look at the
very bottom we would crash(stop) the computer because we
would interfere with +the 0.S. OK.....it wasn't that
great....send them all back. Press OPTION to go on.

-



JoE S RS S LR T ks p et T A L

R R
EE FdOue
o R
TR E R E

3 R R R

ToHEamb. e

SR RREDE LS ET WL R

e gl WO SRS BT L R, e
Al Al TR Lk n METHCE TR
T B
B WIS T e TREMER RO M R YR WA s W
W PAET PR R W BRI PR s R 0 g W ED
CH I el I Y
B e BeCRAEED REE R D R g i

Wk EERMORY 8 PRESS [TEETTLT v o0 D

WEOERER o R P B 30

SRR

FOER OO o Wdh S W
FOAER SV SIS R Ry s &

SR
FOLEE
il s B
EE L
e LFE
T
TSR g
TR i
R R
A Eh R L
doE e R
AL
AR K
3R L
A L
FR:T RN
A6 CE
R
B, o, o,
o, EE A

HERER o R

SE kR R R
R R RO IR L B

SR s dmER SR ER AT R

P

o T R R Y

R R s T Eem I WHE M ki

VR PR R

AEon FRULEE I S TS

B s AE WHER O L

R e A S I B

W LR W

BE UL TR E b A
A e PR ET LR

A T S

Tk P A ER

WA B R R R

W B o B AR D o S S R TRl S e T R R L R

P R S S T S A el S R R O I o |

e

B ES e o2 JOF o TR E W L i3 o d

L N E A A T S s T

WO D= WENE M PR R E

Foomfs W E M Pk R

e ol N O T 5 e T

e W LR . LG, RS O, el o BUNES . B 0, B 0, W B

Wieoo W, W, o, W . Bl o LR L LR, LR, AR . LR L D, SR L B, R W,

i R I I L RS Ch

-23-



LOBEEED RO OBEETD Bl e

T ..m, e
h Sl )menlmmﬁbm. .

i = A e

Bl r.n m”@é'% ,?’msgi% %ﬁm”}:ﬂ.ﬁm :gﬁ l, ..ggm i
;Lﬁi& i@l’»ﬁ SR T Wl B e
g B i

SAOEME TTMY TEMNT ... PRE S
Ak D
EXAMPLE 9
A PRACTICAL EXAMPLE

Finally an actual example where we PLOT and PRINT stuff.
Now the problem with custom DL's is not choosing the numbers
as you have already seen. That was easy. But now we have got
to get the PLOT or PRINT statements to work with the new
screen we have setup. When we start out a custom DL with a
POKE 87,GR.mode # or a Graphics statement |Iike GR.0, +the
0.S. +thinks +that it is in that mode, not the one on the
screen. |f the areas we are plotting or writing to are
within +the normal |imits, +then we can just experiment to
find what mode line we want to PLOT/PRINT to. That 1is what
this example does. |It's hit or miss, but it works. Plot
something and if it's not where you want <change +the PLOT
statement. Same with text, wusing the POSITION statement.
There is nothing wrong with the "hit and miss" method, but
our next example will give you +the ©precise numbers to
accurately place your information on the screen.

W IR I 0 O I R

EOE b : R el

Y mOLWER LR T

W el

SEE REM OTHIS NS 0 SUBROGUTYNE FOR YO T wise w

R R RO B S SR It R I DR W

o

EOEE GRS PH S 8

TG GOSLE L

2 w?ﬂwﬁ EE AL ST I R T HE S S B G
e il

s

aOE R B TMIRERE G IR E e
PR L, GRS S N R N
Son R BGCTUR LE L ER  I L T

b

e w U W e L e s
LI N N i
LT g

L

o LY

i il kY

S R BT ER L LT L LS I R e O L. |
LR i V

Ml e el S R S DT A A RS ET 0 , w

L I . O

: SRR U R TS L N

B R AW e g A e LR R I = L
S T Mo W SR e

o w PR E PR Wk sy g

R R R E
W s s
e K
BT




PER O POKE SX2A9,H

FAE FmPEER €S R

FEEOLF EsE THEM P ORE P, L R D p L g

FEE GO P

ALEREEE W R LR R

AERER AL R L PR R R D SRS D b S S E K S LR

LEELL FALTPEERK COLEER 3 F R s EE R DL 4R

LB LE T

LER LT RESD o TF G WHE R L5 i

LEBLE POKE CDLEL-L7 . %

LBELS TF T=% THEM POKE L4, 74

LESLE EF D=6 THEM POKE DLES, @58

LEERE® L s T e RS

LEEEE DATA L. LR, LLZ, O, G, RS, o, G, S, D, W,
W B LB LWL, P T LR R LR LR LR B, R, LA, @, 6
%]

NN

LX 3 S R ]

EXAMFPLE 10O

This example is the big time! We have placed all of the
previous abilities in this one, but added the information we
promised in a chart on the screen. RUN the example and
follow It fthrough with us.

The program still uses DATA statements to experiment
with breaking up the screen into mixed graphic and text
modes. Use the cursor controls as before to edit the Ilist,
press RETURN fto see what you have created. |f you used PLOT
modes at the top of the screen, you won't see that the
confrols are different, so pay attention. When the split
screen appears, you can :

1) Press START (as before) to go change the

current DL.
2) Press SELECT (as before) to go back to the

original DL. )
3) Press OPTION and START at exactly the same tTime.

This will get you to the last example.
4) Press OPTION for a chart of the custom DL
you created.

-25-



Now get to the new chart by pressing RETURN and then
OPTION as explained above. The first column is the position
of each graphics mode vyou choose:1,2,3...last(maximum of
20!). The second column tells you what number to POKE into

location 87. This is simply +the regular graphic mode
number (0-11). Column three is the 0.S.mode # which was the
number you used in the DL itself. Yes, it 1Is confusing *to

use both numbers in the same program when they mean the same
thing to wus, but remember that when you use a regular GR.
mode # you are talking to the BASIC Interpeter which then
changes +the number you give into the 0.S. mode number . We
are just bypassing the interpeter to get the special screens
that it doesn't allow!

The next column is the number of lines of this mode you
asked for, ie. how many times you included it in the DL.
This is useful because if you have say six |ines of a
graphic region and you try to plot to 7,7 you will go out of
that mode and into the next, causing garbage to appear on
the screen. The same goes for text regions. This column will
provide a quick reference. Then comes the two columns of

POKE numbers fcr locations 88 & 89. These two values
combined with 87 will fool the computer into acting as if
each region starts with 0,0 at it's upper left corner. This
makes your PRINT and PLOT statements work |ike normal. The

difference is you PRINT/PLOT to EACH region as if it started
with 0,0 at it's upper left corner.

Write down all this Information or use in your custom
routine, or to modify one of our examples.

The chart also lists the number of lines of pixels you
filled on the screen. |If it doesn't come out close to 192,
or if you want to make some other change, you can go back to
re-edit the DL by pressing START. |If you have +too many
lines, then remove modes |lines, or add some if you're short.

IF YOUTRE STILL LOST

Use the parts of this program that you understand now,
and come back to study and experiment with the rest of it
later. Basically, you should eventually wunderstand the
following to use this program. All +the rest s
"additional information":

1) Use EX.10 to get;

a)the DL to look about right.
b)the numbers to POKE into 87, 88, and 89.

-26-



2) Take EX.11 and change the POKE values
to what EX.10 will give you when you
tranfer the numbers from EX.9 into
the DL data of EX.10.

3) Try to change the graphics and text we
used to your own.

4) If you have more regions than the example
has, add more. Likewise if you have less.

5) Remember to treat each area on the screen
ke it was a small screen by itself...
don't PLOT or PRINT too far.

6 B B s W s T Ry v e e L R

R TE A ERE WAL, el

FOOE R WO Ao RERT R

g BIEMT b

ORI P CEE R oy B MBI R s DR R E R » D s
S s D ST T o R o D PR DR R s D PSS LR D
ORI R

o I T

JoE TR e R

i S o B S B

FOE fE R PO S B CF WD S R L B i CRES WORI TR O
a0 i TR R = T v e 8 T R S T i ol

SR s ERE S EYEETTEE W BRETGUM L v n T SO T W KRR W
B R S e e R IR E R WO B ERIE W R v

e I LT I A = T T VR T <. W W R N S T O < S L
PR A R . T R AR R P . A A G . AL,

R T R - T I - s - TP O = v S O O S = =
o R R L R R R B o, L, R, R R ERER L DR L LEDE .

I e - T - I = P O - IO = R R T = R R = T T IO S N < IO < S <
< U< T = T < T < R < R = U 5 S P % SR % PR QPR s R R s s N

N R R I - R - I - TP I = R R - R R = (O U < U < O < O U < O
I = T I < P = PR = IO = QO = SO SO < S < QO = IO - - S - IR

EOER PR SRS T,

AOERER T R S

oA LF o THER

Fomgr GLTO W Rk

VB TR SR oS

LR RS By PSS T NG M . E

LSRR ST W, b

EEG PORSELTE®M 2, L8 0% e THIE Wl UE S Wil e
BEEOERY RSO WORE RS SRR R TR R S, e

AoAE o vepr g ses FEEETTT] T SEE THE  ME R CSOREE M .
BGOSR PR ST O M A

Ao L MIFPOLT R

PEE PSSV o,

SR O PORE S48, LE

g P0G E T, L T RO e

AEEE OPOSET 0N R, ST e

EdE POREE S45F, L

ba

B3

e

bk b b

-7 -



EEE RESTORE SO s e

FEE OTRGFE 428 RE&GD S SXALS O THEM EEE

EES O OLF Sk THEM Moad=S

FEE OEF SosE THEN RS

R TR

meEh L TR B ST R ERE L R, BB, BEEBE . BEE , E8E B85, W
R, RS . RS, REE, PRV, BB . RS, BB

RES IS s R T S

AR LS E R o DT R SR

BT OMSE R s RO R s

EEE LS

TR OFRES ST N ED S

HOERE T R oS

b R = T Wl M < '8 A S N Y

TECEER W R O R b R O O L R

R = e S vl ol A T R - e ol A

B H FRESD G TP i WHEM S

EE R PR RE el e, 0

EEE OLF DS THE M PDRE Dt 0%

EEEOEF s WHE M PO el S, 5

B = < T e S MR 0 N o <

HRE FORE R TR L EE o WEMT s PORE 8, B

AR ER PRSI DR S R n T v son [UTEEIEETTT R O e T fR
BT W RS Bl R B e R, v

o Ao W COECEESCS EAEEWCEREY P oo TIHE ORGSR
b HSCF g om, we

e tepe R g s n EEGGTIE0 WD DG E CRRENT R

ol L IR B, R
LSRR E R S
B e o A B R

o IS PO E SRR TR, 8

R Bl DA ARl ]

R T R s R

GBI WO ES W ER

o TOES B BRI A
AW OIDF R WM S8

oE R GO e e

LS ER T R B ol BN e
ECEER CF VRS e e LR B . R EE
o R W B W e e el L el L B LR L R L B R, B
o EE L R HE , e

S T VOERGER e T R R L R bR R R L R R W, B R R, B, W,
R R W W W L R, L R, W, B, ER L, W, R L R, SRR Eo o BOERE o gss
Ll = B LRl S VR Y

L5 I R R T R O S

L

o RO & [CEEEYL W R e sV

FdoSOO0W o G, el

. S o G A
PRI O UL

R E . R, W, 8 L L gk PO P T = T < < S
o B R R, R B, R . LG, e
SERCEE T ORI e LA - P I P P P P T T R S
Hmﬁyﬁﬂﬁﬂwﬂmﬂﬂymﬂﬂpmywmmymﬂwﬂmymﬂﬁﬂpgﬂﬂlﬁﬁvﬁw
R N S S s '

WO R

BoER R GRTED  ERGR T, R

TR DAL S R i e TR e

AR RRE D R u B LR SRR 2 D I I3 S LS W
SeaRE IO B L s IR S

=17 G



S EFE PR P 0y THEM MO E R P g - e L
i I 5 N W R N A T R R T R e

GoEprgd gt R e R R BT

B PO B € P - L B R R

EeCEE R C o o on BB b U e B R i e oo Rt S el R o R
=] QA e st 15 I 2 ¥ = 0 A T e Rt O R T N et A

Wi R SR DR R oER o KL OO TR R T el Th R w R R ENE R s s s
AL E S s s L e oo L r B OB AL SR o

A B E R Sk R o R T S s S L T R s s L R S ot s LR
B B el S T N T T I e W W A il i

G B0 R RS oy e e IS A et I TR I i et B B

Ghof i ForR M T R

G 5 ERami O R mL n BRI R o e ER R s R e S R el I G
U R il R O el S 1 B e i N

g IDF O SR SR - R TR M B

E R Gl R E

e REMT M

HRE O LF SEllx A THEM  F S

SUERER D CSSoW D TR R Sl s dm T O R R

WOAER T Saamdd oD B I E R R SENE R R W LR L . SR S LR
Ero RRES RS0 HCOW R

WA e R R S e A I T

WO R Wl B M e n IR gk

FES S OFfrRe Hoemdl Tdd e A

WL ER O OICE B e el e S R b oo WIHES i W R

FERE O R R £ o WHNET R W R

WES R TAR IR

TOECE E s L e S R R e SR R R

TR B e LB e S R e e

WEE MEMT %

FOERE R TTER

AERS PR Beo il TR e 3L R RS REE R L TR s MR T i

G T T el B o T et o ol G S A O o T T R o e e L R TR T Rl 5 T e '
B T DT el o R W

WEERER O e WORRED R T R R RSy e R e

R SN A el W O S Y

S A

FE R P EE Aon i Wk R FRER S T R 0 ST e R R e S R
el R R A T Ll I e

Rl SR N e

el Tt N o S el T N S TR el T TR A (G A I e R R g B

Wl B0 H 42

o R TR = o S - R e I B P R

LR

i
EREE PR W 0 R . R e e s e o . . R L MEED S ]
FRBE ) Pk o
O Fs DT e,
R R R T

P L 'S T i S O L) S A B I N N

Tt

-29-



EER R ERCHCE T O GR 6% L, s v s | o®ew f b e e i
4 % i i i =
EEERE PR CE TR R W, e on o e

A owe

FhEr R e ezl TR B

EE R R R e R e e O el

F o N T T 3 S P i X
sp@h o T WiesseboE T REE B TR R
e e E R I A o IR S OO B O R
g RS T el #

S R T = i o I W S R o LY RN G A T I g H
R RN I o L R T TR L

hedt

GV LR e

e R e e e 0 6 L A A 2 I S

e gk I BT el R TR LI E R O P IDHE L. LCERIES LS e
Cw o R T, T SRS R E ST e e (R T . e
o el T ol 28 i M S B

B R R LRI R R R PR O F TR R ok
Cepire e gy [WEW L v 0T segnm P IS BRCRE W RRSE M B . AL

A T R

b PO BROE SR, R
ORGPl R ERIE YD, 4

B S g A T

e QUF T TRRET R L kR
e R ef R

GhheE R

a3t

EXAMPLE 11
LAST EXAMPLE

This PLOT is just |ike EX.9, but now we add POKEs to 88
and 89 to fool the computer into acting as if the upper
corner of each mode was position 0,0. The POKE to 87 then
says "act as if you're in a regular graphics mode #" (your
input). Now we just PLOT or PRINT as if each section was a
small screen with 0,0 at the top lIike normal. |f you PLOT
too far, the next region down will look funny. We include
the code for this example (minus a few lines you don't need)
since this example is all you really need to understand. Our
other examples will do all the calculating for you. Make
sure you change the 5tfh and 6th numbers in the data |ist to
the correct values for your computer, as explained above.

B G R D L T R o e I B B M

o R sl TR SRR o PR RE WL B

SER O ARl TR LR MEETMT R

OE BE T

L < B = 4 L ST B Ay i = R AR

g F ORI el WAR SEIEER o FRCRBCEE A EGER B PR R SR e IR R
TOLER L Iy R RRCE WA . el

3 ) =



SR PR RE SRl R o B W B R
WEER B E T B
RS N o M e Y | WU N | S A | T T O N Sl o (0
Thdd o T R p Y e R R, ORI TR HL I e N
R R EO W B D W R L
i W o E O IMRE B BRI s e
g o CUERCE O E O RAEGETD . WHH R v

AR RN = N T T
w IR RHED S R TIHE WAL R wE
WOKRE o YT S EH . B T I
FOEEE e e Ere o wed KO0 Lo nagm 00
OHEER L Yoy we v §oune s F oo B
Rl = 3 L Tl SO T T I BNl T T e o e
e A R R e
ek g WS e, R R
GO W e o e L W B L R
R Y O T e
il S O M S W LR ER R OO W M P akRe Wl WD BRSO
e PR T O E R P L D LT G D R T I
WEOTHE GRS OF THE

CROER A R e ST R R TS T YR SEECE O REE TR CTUIHNED W 0 IR AN 0 (ks
o0 e B 0L . SHEEGOW P R T W E R R KIS SRR b
COS s W IR B s o, 3 E o

SRl FETR D DI RS T E IR S I TR T U
WD T W W s B SO BRI TR el W W
(S o 1 T v I 0ttt B B . R

5 Sl s S O T I 5 R MO Y o L O % 7 O R A R T
SRS TS TR WHE D E S W BT . FEELE LM L . . SEE
HRIA T WO o W RS TR R e

R L T o I o e o R M U R L R L B e e B e e D Rk L R L

R O R s s R DRl R RO R MR R R
LE S T ERE G I TS R T W WIHEE AT e T S e iy

R -

Fr N N P e O W 5

e B ER R R R L L e EIE ERGER R R BT R LS RS W

B, o R s s S ERIDAE DWW e s e

e E R o Ui W e L THDERIET RO on W s oy YRR W EE g

ool R B RCED  ERGER L LS ol o PR ROEE ER R, 4L SR

CREER P RROE 8 o s O iR w0 L R n D e S T D, R e
P bR R, SR » P L AT AL L HE o DR T D LS L S s By o HOER
R T L E
GES O PLOT S, LB DRAKTO S, 0 Pl W RS DR

ey

SOELERE S, L on iRl T S, E o PO R R et e B R

I

iz

o )

LI

sl LR Y R R e IR e e WAk LK .

R O R E R, R R n PR RCED B R, NG

(s T = Al < v O o I % PR - B = N MORE BT
FHEEERE i Fac b ooy e e e e e PR I TR

s R E R, SRR s PR R, LU

o FRERBRCE B . B o PSR CW e R L s U R iR S E S
ChEPE WYy TEHT. . ...RPRESS WRE THHRBN T4y dndhk fhjsfes

e s T T I S A R ]

TR DR B R R D

WOELEROIDF 2T WHNED B SF B ER B R

-31-



FE@ HOTE P40

A TR AP L0

SRR T R B P C AL

B L L A R L e e R e

AEEBELE =i

AEGLE RESD o TE e THEM LD

AOEE L P OERE DL, 8

LEBLE EF LSS THENM POKE DL+d4, 51

A LB T PO RE DL S, B

AERERE R LI s G ORT AR L

LEEEG DaTe LR, LR, L, FE, B, LG B, B, T, B, B, T,
I - T T T I ™ - S 2
o,

HOENECA IR T L

EEEEE GRS PGS s P ORE L,

EESBL T TGRS FOR B IIMG FROM SaM TS CRUE
o B W SO T R R L 8 8y T R AL

PRI P I s . I e

Fimal Notes

Sometimes when you do your custom screens you probably
will have your text or plot suddenly shift over |ike this
to the other side of the
screen. This is because your Display List Is going along
at, say, modes using 40 bytes per l|line when you shift and use
three lines of a mode using 20 bytes per mode. The system is
still trying fo place the data where it used to go, so if
you use 40's then switch to 20's or 10's, keep it in
increments of the largest value. For example, if you use 40
byte modes then if you have 10 byte modes either use 4, 8,

12 , etc., so that the computer can find 40 at a time. DON'T
FOOL MOTHER ATARI!

We also want to warn you that EX.10 occasionally can be
fooled by unusual inputs, so If the chart seems incorrect it
may be. This is not a serious problem because you are going
to learn to do all the calculations yourself, AREN'T YOU???

The other modes in the chart (FIG.1) that aren't
explained are for things |ike lowercase descenders and
multi-colored letters. See, | told you not to ask. These

would be good topics for another Tricky Tutorial(tm). Well,
maybe SOMEDAY.....

Well that's it. If even a new programmer will experiment
with these examples, he or she will at least be able to make

some nice custom screens without having to understand it
all.

-32-



ot EEDUCATIONAL
ESOFTWAREE

I///////

—a—ysaan

TRICKY TUTORIAL #2
HORIZONTAL AND
VERTICAL SCROLLING




HORIZONTAL AND
VERTICAL SCROLLING

This program will +tfeach you +the
basic principles of moving text or
graphics on the screen. Movement can be
in any direction +that you <choose. A
total of eighteen examples are provided
plus a 15 page manual to explain them.

Each example, including those with
some assembly language subroutines, are
designed to be easily placed in your own
programs. Anyone with some knowledge of
the BASIC programming language can use

the examples now, and later study the
manual in more detail. This program is
part of a <continuing series and goes
particularly well with #1 - Display
Lists.

REQUIRES 16K OR 24K IF YOU HAVE
DISK.

Educational Software Inc.
4565 Cherryvale
Soquel, CA 95073

(408) 476-4901

Educational Software

presents

TRICKY TUTORIAL #2

Horizontal &
Vertical Scrolling



TRICKY TUTORIAL #2

HORIZONTAL. 8
VERTICAL SCROLLING

by
Robin Sherer

(c)1981 by Educational Software inc.

INTRODUCTION = Hi. I'm going to start out this tutorial with
a sales piftch for one of the other tutorials | teach. As
phony as this sounds, | can't help it. To fully understand
how to scroll you need to also study Display Lists, Tricky
Tutorial(tm) # 1. However, if you just want to be able to do
the different types of scrolling in your own programs, THIS
WILL DO IT FOR YOU. I'Il tell you what to modify without
great explaination. All of +the examples have different
features. Some are faster, some smoother in their scrolling.
It's up to you to take parts of our examples and make them a
part of your programs.

HOW TO LOAD

TAPE ¢« «
Place the tape in your recorder, label side wup. Make
sure the tape 1is rewound, and the BASIC Cartridge is in

place, and always reset the counter to zero. Push PLAY on
the recorder and +type RUN"C: and press RETURN. If the

program won't start to load, +try positioning forward or
backwards a lifttle. The easiest way to find the beginning is
tfo listen fo +the "noise" on the +tape with a regular

recorder. When you find +the steady tfone, you have the
beginning of the program. We recommend you write down the
number on your recorder's counter as each program example
starts, this will make it easier to find each part later on.

D lSK:a s e

To load and run the disk, first turn on your disk drive.
When the busy |ight goes out, place the disk in +the drive.
Now turn on the computer, with the BASIC Cartridge in place
and the program will load each part and run by itself.

Any defective tapes or disks should be returned to:

Educational Software inc.
4565 Cherryvale
Soquel, CA 95073

(408) 476-4901



ALL RIGHT STUDENTS! LET'S BEGIN WITH (SURPRISE!)
EXAMFLE 1

Basic ldeas

If you haven't already, run the first example. To get to
the next example each time, you only have +to press START.
Note - cassette examples should run themselves when loading
is done. If not, type RUN and press RETURN. You may have +to
rewind some examples to the end of the last example and try
several reloads. Remember that this ftape has many examples,
so it is harder to LOAD them all than some small games.

Plug in a Joystick into Port 1 on +the front of your

console. You are now looking at a listing of the example
that is running. | listed it as an easy way to get text on
the screen to scroll. This example, and all others where we
use LIST to get text on the screen, will work exactly the

same if you take out the LIST statement and substitute your
own PRINTing or PLOTing. Do this as soon as you feel you are
beginning to understand the method.

If you move your Joystick to the left or right, the fext
will move in that direction. Look closely at the text as it
moves. Notice that it moves one character at a time in
either direction. This is called COARSE SCROLLING. Later, we
will learn how to move one pixel at a time which is called
FINE scrolling. Eventually we will combine both methods for
(guess what?) COMBINED SCROLLING.

Take a Breake....

OK! Back to Work:

Warning!

In most of our examples we wanted to keep the amount of
BASIC code short, so If you move ftoo far in any direction,
the POKEs we are doing may cause the program tfo error and
stop. To avoid +this problem in actual examples, you will
have to make sure you don't fry to POKE a number larger than
255 into memory. Some of examples will automatically do this

for you. To restart a stopped example, just press RESET and
type RUN.



Here is +the <code for Example 1, a simple coarse
horizontal scroll:

10 DL=PEEK(560)+256*PEEK(561)
20 DL4=DL+4:DL5=DL+5

30 PDL4=PEEK(DL4)

40 ST=STICK(0)

50 IF ST=11 THEN PDL4=PDL4+1
60 IF ST=7 THEN PDL4=PDL4-1
70 POKE DL4,PDL4

80 FOR W=1 TO 50 :NEXT W

90 GOTO 40

THAT'S IT]!

Another note - Yes we know that if you |ist Example 1 it
has more lines than this. The missing |lines above were put
in Example 1 to make it have a title and call Example 2 when
you are ready. The same differences will occur with my other
examples.

To better understand this method, first a few basics from
the Display List Tutorial. The Display List is a set of
instructions in memory +that the computer uses to find out
what to put on the screen. By changing it, we can do many
programming ftricks that are not only interesting to look aft,
but useful. Scrolling is one of those tricks.

Line 10 above looks at locations 560 & 561 by use of +the
PEEK command. The values in these two memory locations
combine to give you the location (called the address) of the
first byte of the Display List. They are combined into the
address as |ine 10 shows. ANYTIME you have a 2 byte address,
the method in Iine 10 is wused. Whenever you use the
"GRAPHICS #" command, +the computer <creates a standard
Display List somewhere in memory and puts the location where
the DL starts in memory locations 560/561.

Now that we know where the DL (Display List) is, line 20
stores the address of the low part (DL4) and high part (DL5)
of a number that is always the 5th and 6th numbers in the
DL. Note +that we call the 5th number into the DL, DL4,
because it is equal to the value at DL plus 4 more, or the
5th number from the start. Confused? Then just remember that
these two numbers tell the computer where to go get the data
for the screen.



IMPORTANT!

You must understand what these two numbers do. Scrolling 1is
based on changing these values. Let's look at a sample GR. 0

Display List

1 1 6 95 34 2 2 2 2 2 2 2 2 2

112 112 112 6
22 222222222222 2E6589 56

The first three numbers are 112's that tell the computer
fo display 8 blank lines each. The next number is called the
Load Memory Scan byte (LMS for short). This is the number we
are about to change. The LMS says fto the computer "Go get
data starting at the location in memory that follows in the
next two numbers...and by the way, start +the screen with

some of this kind of text (or graphics)".
Wow. | can't learn this!

After reading my explainations, you may +think [I'm as
confused as you are, but it's not that hard, and my lessons
not that bad! You must practice on your own beyond these
examples. Try making modifications to what | have given you.
Later 1'll give you a chart that shows what number goes into
the LMS byte (4th # in DL). In this case the chart would say
that for a Graphics 0 LMS, we use 66. The next two numbers
(5th and 6th bytes) are the Ilow and high parts of the
location where the screen data starts in memory. The example
above was made up, so your numbers will be different
depending on your memory size. That's why we store the value
of the 5th #(DL+4 means the 5th number) in lines 20 & 30. We
need to know where +the data is being stored in YOUR
computer.

The next numbers within the DL, the 2's tell the computer
to put a line of Graphics 0 on the screen for each 2. Again
the chart will give you these numbers later for other modes
and types of scrolling. There are 23 2's plus the line of
mode 0 that the LMS created gives 24 lines of mode 0. |f you
want, look ahead at +the chart to see all of this. Under
Graphics mode 0 it says fto put 2 in the DL, 1ie. 2 is +the
instruction +that MEANS put some GR.0 on the screen. Finally
comes a 65 that means all done, go start all over again
using the DL at the location in +the next two numbers
(usually the same DL).

Ok! So far we have found where the data to put on +the
screen is located (lines 20-30). Now, in |line 40 we read the
Joystick. If it is held left, then we take the value in
DL+4, called here PDL4, and add 1. If it is held right, we
subtract 1 in line 60. Now line 70 POKEs this changed value
back into the DL at DL+4. This says to the computer ‘"start



displaying the data on the screen one byte more (or less)
than where you did before." SIMPLE..??...Sure, why not!

Line 80 is a delay loop to slow the action down so we
can see what is happening. Line 90 then goes back to read

the Joystick to see if you want to move +the display some
more.

Notes:

1) You can speed up this method by changing or leaving
out the delay loop.

2) So far we haven't changed the high part of the data
address (DL+5). |f you ftry to move continually in
one direction the value of PDL4 will reach 0 or 255.
Recall that the ATARI| uses 8 bits per word in
memory, ...and 8 bits in binary only counts
to 255. When this happens, the number you POKE

into DL+4 will no longer have any effect. Actually
it is causing errors that the example is TRAPing
to keep the program going. It's sort of like

bottoming out. The simple solution is to do some
mathamatics to change the high byte (DL+5) when
needed. We do this in Example 2.

EXAMPLE 22

This time we scroll vertically:

10 GRAPHICS 0

20 DL=PEEK(560)+256*PEEK(561)
30 DL4=DL+4:DL5=DL+5

40 NUML=PEEK(DL4)

50 NUMH=PEEK(DL5)

60 ST=STICK(O0)

70 IF ST=14 THEN NUML=NUML+40
80 IF ST=13 THEN NUML=NUML-40
90 |IF NUML<0O THEN 140

100 IF NUML<256 THEN 160

110 NUML=NUML-256

120 NUMH=NUMH+1

130 GOTO 160

140 NUML=NUML+256

150 NUMH=NUMH-1

160 |F NUMH<0 THEN 60

170 IF NUMH>255 THEN 60

180 POKE DL4,NUML:POKE DL5,NUMH
190 GOTO 60



The only real difference in COARSE vertical scrolling
over that of horizontal is that to move vertically we want
to add or subtract 40 instead of 1. Do vyou know why? Of
course! |It's because we are using the ATARI's standard 40
characters per l|ine for mode 0. Thus, +fo move +the LMS
address up one |ine, add 40. This is done in line 70. For
other modes you may need to use 20 or 10 instead of 40. Look
ahead at the chart under the row "Bytes of memory per line".
Also this time we include the mathamatics +to change both
numbers of +the address of the data to display. The math
won't be explained..... just use it as 1is. |t 1Is standard
computer math explained in most references. Finally, note

that no delay loop was wused. The extra math delays the
computer enough!

EXAMPLLE 2Z2A

This is a new example added by suggestion from one of

our customers. Some people didn't see how to combine
horizontal and vertical scrolling, so here it 1is. You can
later do the same thing for FINE scrolling. See Micheal, |
told you | listen to my students!

1 GRAPHICS 17:? #6;" EXAMPLE 2A"

2 FOR W=1 TO 230:POKE 710,W

3 FOR ZR=1 TO 10:NEXT ZR:NEXT W

10 GRAPHICS 0

20 LIS

30 DL=PEEK(560)+256*PEEK(561)

40 DL4=DL+4:DL5=DL+5

50 NUML=PEEK(DL+4)

60 NUMH=PEEK(DL+5)

65 POKE 53279,8

70 ST=STICK(0)

80 IF ST=14 OR ST=10 OR ST=6 THEN NUML=NUML+40
90 IF ST=13 OR ST=9 OR ST=5 THEN NUML=NUML-40
92 IF ST=6 OR ST=7 OR ST=5 THEN NUML=NUML-1
94 |F ST=10 OR ST=11 OR ST=9 THEN NUML=NUML+1
95 CON=PEEK(53279):1F CON=6 THEN 1234

100 IF NUML<O THEN 160

110 IF NUML<256 THEN 175

120 NUML=NUML-256

130 NUMH=NUMH+1

150 GOTO 175

160 NUML=NUML+256

170 NUMH=NUMH-1

175 |IF NUMH<O THEN 70

177 |F NUMH>255 THEN 70

180 POKE DL4,NUML:POKE DL5,NUMH

190 GOTO 70

1000 POKE 53279,8

1010 CON=PEEK(53279):1F CON=6 THEN 1234

1234 POKE 764,12:RUN "D:EX3"



EXAMPLLE 3=

Lets sketch out an abbreviated screen of data:

is stored In memory as...

33 *
27 First 40 D
Cmmmm 7 11 > 41 #'s that go
Characters . as 1st l|lline
| AM.......BEC ‘ N
AUSE.......ALS 19
14
24 |ines 32 2nd 40 #'s /N
total . = 2nd |ine
. on screen
GR.O .
17 v
etc.
Figure 1
is still stored in memory
like this...
47 *
9 N\
Cmmmm e e 256====—-mm - > 0
Characters 21 1st 256
. #'s used
| AM..JBECAUSE....ALlSO..IN A . for 1st
. line \b
14
24 lines 10
total 87 N
2 2nd 256
<mmmm = 40-===- > S #'s used
‘ for 2nd
line
° 4
62 \
etc.

Figure 2

¥ This number is stored in your memory at (DL+4)+(DL+5)%*256



Look at the top of Figure 1. The box drawn represents a
screen area which is 40 characters wide by 24 down. You can
see that if we attempt +to scroll horizontally over this
area, we have nowhere to go, so the data on the last line
Just moves up to the next line one character at a time. What
can we do? Figure 2 shows some data that is now wider. How
wide is optional with you. Since memory is always stored 1
value at a time, you can set up lines of any width. It is
the wuse of more than one LMS byte that sets up different
line widths. The box that represents the screen now has room
to move to either side when horizontally scrolled.

The idea in the above paragraph is not easy +to grasp.
Let's start with some basics. Memory is organized |ike a
very long strip of numbered locations. When we say tfo PEEK
at (look at) a certain memory location, what we are really
doing is to go down this strip of locations until we get +to
the number in question. Then we read what is written there.
Got that? Good! When the computer starts +to draw the
screen... 60 times a second ....it goes out to the location
we discussed earlier (DL+4 and DL+5). There it gets +the
location for the start of the screen data. In a 48k machine
in GR. 0, this would be at 40000. If an "A"™ is currently
being displayed in the upper left corner, a PEEK at this
location will show "33",

To draw the rest of the screen, the <computer Ilooks at
the next 39 locations (for a total of 40) and draws them
across the screen. Now it says +to itself: "Since I'm in
GR.0, | must place the next value back at the start of the
screen, but one row down. This means +the 41st value goes
right under the 1st. This goes on until the screen is filled
(after 40%24 values have been placed on the screen). What we
do to make memory seem |ike Figure 2 is to fool the computer
intfo taking wevery 256th value as the start of a new line.
This allows us to move sideways over the data. The sideways
comment is from the perspective of the screen... memory is
still just that long strip of locations, and we are still
taking 40 memory values at a time for each row of the screen
in GR.0. But after 40 values are used, we skip 256-40 values

before the next |l Ine is drawn. The other 216 values are
being saved for when we scroll. In Figure 2, imagine that
the initial screen shows us values from 8 to 47. To scroll

left, just have the screen show values from 7 to 46, 6 *to
45, etc. When we get to showing 0 fo 39 we must stop or the
values will jump up a line as we would now be showing 255 of
the last row through 38 of the current row. This is what we
saw in Example 2.



1 GRAPHICS 17:? #6;" EXAMPLE 3"
2 FOR W=1 TO 230:POKE 710,W

3 FOR ZR=1 TO 10:NEXT ZR:NEXT W
5 P106=PEEK(106)

10 POKE 106,PEEK(106)-24

15 GRAPHICS 0:LIST

20 DL=PEEK(560)+256*PEEK(561)

30 P560=PEEK(560) :P561=PEEK(561)
40 DL4=PEEK(DL+4):DL5=PEEK(DL+5)
50 START=DL4+256%*DL5

60 FOR I=1 TO 24

70 POKE DL+3%*],66

80 POKE DL+1+3%]|,DL4

90 POKE DL+2+3%]|,DL5+I

100 NEXT |

110 POKE DL+78,65

120 POKE DL+79,P560:POKE DL+80,P561
130 K=0

135 POKE 53279,8

140 ST=STICK(O0)

145 CON=PEEK(53279):1F CON=6 THEN 1234
150 IF ST=11 THEN K=K+1

160 IF ST=7 THEN K=K-1

170 FOR L=0 TO 23

180 POKE DL+4+3%L,DL4+K

190 NEXT L

200 GOTO 140

1234 POKE 106,P106:RUN "D:EX4"

WE'LL TAKE IT SLOW: Location 106 holds the number of pages
that vyour memory size allows. In my 48k machine it is 106.
In line 10 we store the original value to restore in line
230 when the program is done. Now, in line 20, we fool the
computer by subtracting 24 pages from 106 (a page 1is 256
bytes of memory). Then, in line 30 when we say Graphics O,
the computer looks at location 106, tThinks memory is 24%256
bytes less +than it is, and places the Display List down by
this much in memory. What we have so easily accomplished s
tfo save that many extra bytes of memory for a lot of data
for the screen. Lines 40 to 60 store the location of the DL
and the start of screen data as before.

The next lines, 70 to 110, do a nice trick. Now that we
have such a large area to use, we POKE the DL with a whole
bunch of LMS, low, high insftfructions, with each address
pointing to data 256 bytes further down in memory. So what?
Well, now there are lines on the screen (run Example 3) that
are 256 bytes long. With the Joystick you can scroll and see

NEW information appear....not from the row below, as before.
Remember that there has to be enough of these LMS POKEs +to
fill the screen, which for GR.0 equals 24, thus the loop 1
to 24 on line 70.



The data we are scrolling over is again placed on the
screen by the LIST command. Now you can see where the ending
of each 40 bytes is, because that is where each new |ine of
the program listing starts.

To better visualize this, look at Figure 2 again. The
LMS addresses should point to the data for the left corner

of each line. It sounds complicated, but by using 256 Ilong
lines we <can just add 1 to the original DL5 value for each
new LMS we set up. The new value will point down by one line

of data...256 bytes!! Remember that values In the high byte
of a number equal 256 times those in the low byte (just use
the example if this is too hard...come back to it later) .
Look at line 100 to see the above.

You could, with simplemathamatics, set up lines of any
length you want, but lines of 256 characters were easier and
clearer for a demonstration |ike this. Lines 160 to 220
increase or decrease the DL4 number by one, as in Example 1.
But now the lines are 256 wide, so we can scroll without
having characters jump wup *to the next line. Also note in
line 200 that we only POKE every third Iline. This is because
the DL must now use three lines of instructions for each
line generated on the screen.

What if I'm lost

That is what Is nice about +the Tricky Tutorials=-=-you

don't have to understand all this. Just use the examples by
copying them +to your tape/disk and modify them with
different PRINT and PLOT commands. The technical stuff is

included to make a complete package for your use when ready.

EXAMPLE 49

Please run Example 4. Notice that we used Graphics 2 for
this example. This was to show you +that any mode will
scroll. Also, we relocated the entire Display List to page
six of memory (a reserved area for us to wuse) so ‘that it
could be modified while leaving the original intact.

Different Graphics modes!
What happens when you change Graphics modes? Well look

at that famous <chart we keep promissing and read the
discussions later.

-10-



LOOK AT GRAPHICS MODE (0-8) THEN GO DOWN UNTIL DESIRED
OPTION IS FOUND

GRAPHICS

Desired MODE
Aptien o 1 2 3 4 5 6 71 8
DL # 2 6 7 8 9 10 11 13 15
HScrol | 18 22 23 24 25 26 27 29 31
VScrol l 34 38 39 40 41 42 43 45 47
HS&VS 50 54 55 56 57 58 59 61 63
LMS 66 70 71 72 73 74 75 77 79
HS & LMS 82 86 87 88 89 90 91 93 95
VS & LMS 98 102 103 104 105 106 107 109 111
HS,VS,LMS 114 118 119 120 121 122 123 125 127
# Pixel
lines per 8 8 16 8 4 4 2 2 1
mode | ine
# Rows
to fill 24 24 12 24 48 48 96 96 192
screen
Bytes of
memory 40 20 20 10 10 20 30 40 40
per line

65 = Start again at top of Display list

112= 8 Blank lines

=1 e




10 GRAPHICS 17:? #6;" EXAMPLE 4"
20 FOR W=1 TO 230:POKE 710,W

30 FOR ZR=1 TO 10:NEXT ZR:NEXT W
40 POKE 1536,112

50 POKE 1537,112

60 POKE 1538,112

70 FOR I=1 TO 12

80 POKE 1536+3%1,71

90 POKE 1536+3*1+1,0

100 POKE 1536+3%[+2, |

110 NEXT |

120 POKE 1575,65

130 POKE 1576,0

140 POKE 1577,6

150 POKE 560,0

160 POKE 561,6

170 K=130

180 POKE 53279,8

190 ST=STICK(O)

200 IF ST=7 THEN K=K-1

210 IF ST=11 THEN K=K+1

220 FOR J=1 TO 12

230 CON=PEEK(53279):iF CON=6 THEN 270
240 POKE 1536+3%J+1,K

250 NEXT J

260 GOTO 190

270 RUN "D:EX5"

EXAMPLE S

This example generates some random characters and POKEs
them right into the screen data area. To some of you, this
will look like a useless example, but please think a moment.
In order to get the text YOU want onto the screen, just
replace the RANDOM statements in lines 120 to 170 with PRINT

statements. If your text is not 256 characters wide, then
fill in with blanks. The +text <could be stored in DATA
statements and +then read in as needed. Think what a nice

business spread sheet could be done!

Did you notice that this example scrolls faster. The
reason for this is +that in ATARI BASIC, FOR-NEXT loops
(which we use) go back fto the first line and count forward
on every loop. This means that they run faster if near the
front. Also, if several lines are placed on one |ine speed
increases. Finally, any math calculation should be done only

once if possible. This example has these changes for you to
study:

50 X=DL+4:FOR L=0 TO 69 STEP 3:POKE X+L,Y:NEXT L:RETURN

-12-



270 ST=STICK(0):K=K+(ST=11)=(ST=7) :Y=DL4+K
310 GOSUB 50

LINE 50 does the exact same thing as lines 190 +to 220
in Example 3. It is a subroutine to allow it to be moved
to the top. Line 270 1is much faster than +the +two IF
statements. | better explain it. |If ST = 11 then the ST=11
part will be TRUE, so (1) will be added to K. Likewise with
ST=7. Since both can't be true at once, K will either go up
or down by one each pass if the stick is moved. ATARI BASIC
has it's nice points too!

10 GRAPHICS 17:7 #6;" EXAMPLE 5"
20 FOR W=1 TO 230:POKE 710,W

30 FOR ZR=1 TO 10:NEXT ZR:NEXT W

40 GOTO 55

50 X=DL+4:FOR L=0 TO 69 STEP 3:POKE X+L,Y:NEXT L:RETURN
55 P106=PEEK(106)

60 POKE 106,PEEK(106)-24

70 GRAPHICS O

80 DL=PEEK(560)+256%PEEK(561)

90 P560=PEEK(560) :P561=PEEK(561)

100 DL4=PEEK(DL+4) :DL5=PEEK(DL+5)

110 DL5=DL5+1:POKE DL+5,DL5:POKE 89,DL5
120 SIARI=DL4+256%DL5

130 FOR G=0 TO 4

140 FOR H=0 TO 255

150 POKE START+G¥*256+H,G+1*¥RND(9)*100
160 NEXT H

170 NEXT G

190 FOR I=1 TO 24

200 POKE DL+3*1,66

210 POKE DL+3*1+1,DL4

220 POKE DL+3*|+2,DL5+1-1

230 NEXT |

240 POKE DL+78,65

250 POKE DL+79,P560:POKE DL+80,P561

260 POKE 53279,8

270 ST=STICK(0):K=K+(ST=11)=-(ST=7) :Y=DL4+K
300 CON=PEEK(53279):1F CON=6 THEN 330
310 GOSUB 50

320 GOTO 270

330 POKE 106,P106:RUN "D:EX6"

| B



EXAMPLE &

What about a practical wuse? Well, how about a word
processor that would allow you to input the width and then
not wrap around, but rather scroll right or left as you
want. To wuse Example 6, just type In a bunch of lines of
text (almost filling the page is best). When ready, press
RETURN. Now use the good old Joystick to scroll. If you look
at the code, we added only a few lines. The POKE 559 at Iine
140 +turns off +the screen until we want It on at line 220.

This speeds up the ATARI| and looks more professional.

10 GRAPHICS 17:? #6;" EXAMPLE 6"
20 FOR W=1 TO 230:POKE 710,W

30 FOR ZR=1 TO 10:NEXT ZR:NEXT W

35 P106=PEEK(106)

40 POKE 106 ,PEEK(106)-24

50 GRAPHICS 0

60 DIM A$(255)

70 DL=PEEK(560)+256*PEEK(561)

80 P560=PEEK(560):P561=PEEK(561)

90 DL4=PEEK(DL+4):DL5=PEEK(DL+5)
100 DL5=DL5+1:POKE DL+5,DL5:POKE 89,DL5
110 NON=PEEK(559)

120 START=DL4+256%DL5

130 INPUT A$

140 POKE 559,0

150 FOR I=1 TO 24

160 POKE DL+3*1,66

170 POKE DL+1+3%],DL4

180 POKE DL+2+3%]|,DL5+1-1

190 NEXT |

200 POKE DL+78,65

210 POKE DL+79,P560:POKE DL+80,P561
220 POKE 559,NON

230 K=0

240 POKE 53279,8

250 ST=STICK(0)

260 IF ST=11 THEN K=K+1

270 |IF ST=7 THEN K=K-1

280 CON=PEEK(53279):IF CON=6 THEN 330
290 FOR L=0 TO 23

300 POKE DL+4+3%| ,DL4+K

310 NEXT L

320 GOTO 250

330 POKE 106,P106:RUN "D:EX7"

-14-



EXAMFPFLE 7

This looks just like +the last example, doesen't (t1?
Well, when you press RETURN and try fto scroll something
funny will happen. The screen will go "crazy" because we

POKE the wrong numbers 1into the DL. Look at the code and
find the error. This error is +tfypical of +the +type that
occurs when modifing displays.

Now, just like the contests +that 'a certain computer
company holds, we will give $50. to the LAST person to send
us the correct answer (Can you believe some people actually
wrote us hoping they would be the last one and thus win a
prize!). It's a joke, folks...don't write in.

10 GRAPHICS 17:? #6;" EXAMPLE 7"
20 FOR W=1 TO 230:POKE 710,W

30 FOR ZR=1 TO 10:NEXT ZR:NEXT W
35 P106=PEEK(106)

40 POKE 106,PEEK(106)-24

50 GRAPHICS 0

60 DIM A$(255)

70 DL=PEEK(560)+256%PEEK (561 )

80 P560=PEEK(560):P561=PEEK(561)

90 DL4=PEEK(DL+4):DL5=PEEK(DL+5)

100 DL5=DL5+1:POKE DL+5,DL5:POKE 89,DL5
110 NON=PEEK(559)

120 START=DL4+256%DL5

130 INPUT A$

140 POKE 559,0

150 FOR I=1 TO 24 STEP 3

160 POKE DL+3%1,66

170 POKE DL+1+3%|,DL4

180 POKE DL+2+3%|,(DL5+1-1)

190 NEXT |

200 POKE DL+78,65

210 POKE DL+79,P560:POKE DL+80,P561
220 POKE 559,NON

230 K=0

240 POKE 55279,8

250 ST=STICK(0)

260 IF ST=11 THEN K=K+1

270 IF ST=7 THEN K=K-1

280 CON=PEEK(53279):1F CON=6 THEN 350
290 FOR L=0 TO 23

300 POKE DL+4+3%L,DL4+K

310 NEXT L

320 GOTO 250

330 POKE 53279,8

340 CON=PEEK(53279):1F CON=6 THEN 350
350 POKE 106,P106:RUN "D:EX8"



EXAMPFLE &

This time we point out that you don't have to scroll all
the lines on the screen. You can enable scrolling for only
the lines you want. Look at lines 170 +to 190 in this
example. We POKE only the 3rd to 5th lines on the screen.
You can scroll from one |line to a screen full. Any mode line
in the DL can be set from regular (DL #'s 2 to 15) to
scrolling (see the chart; for example...GR.6) horizontally
(27), vertically (43), or BOTH directions for diagonal
scrolling (59). This effect can, for example, be wused +to
make a nice scrolling "marque" of text across the screen.

The other possibilites for a mode |ine are LMS (LOAD
MEMORY SCAN) mentioned above; HS & LMS, which is when you
want tell the computer where to get its screen data and also
have that line (remember LMS sets up a line on +the screen
also) be able +to scroll. The same applies to vertical
scrolling & LMS, and HS, VS, & LMS.

Yes, | am using a lot of terms and abbreviations. You
may feel better knowing that even |, as a programmer, was
confused at first. The concepts we are teaching here are NOT
BASIC programming, but rather Graphics programming, which is

a new and complex area. After this Ilesson, some of you
non-programmers will be way ahead of many professionals
unfamiliar with graphics.

1 GRAPHICS 17:? #6;" EXAMPLE 8"
2 FOR W=1 TO 230:POKE 710,W

3 FOR ZR=1 TO 10:NEXT ZR:NEXT W
5 P106=PEEK(106)

10 POKE 106,PEEK(106)-24

15 GRAPHICS O:LIST

20 DL=PEEK(560)+256%PEEK(561)

30 P560=PEEK(560) :P561=PEEK(561)
40 DL4=PEEK(DL+4):DL5=PEEK(DL+5)
50 START=DL4+256%DL5

60 FOR I=1 TO 24

70 POKE DL+3*1,66

80 POKE DL+1+3%|,DL4

90 POKE DL+2+3%|,DL5+I

100 NEXT |

110 POKE DL+78,65

120 POKE DL+79,P560:POKE DL+80,P561
130 K=0

135 POKE 55279,8

140 ST=STICK(O0)

150 IF ST=11 THEN K=K+1

160 IF ST=7 THEN K=K-1

-16-



165 CON=PEEK(53279):1F CON=6 THEN 1234
170 FOR L=2 TO 4

180 POKE DL+4+3%L,DL4+K

190 NEXT L

200 GOTO 140

1234 POKE 106,P106:RUN "D:EX9"

EXAMFLLE <9

This example is coarse scrolling, but in *the vertical
direction with GRAPHICS. Just substitute your own PLOT
commands if you like. The method 1is the same, only the

numbers have been changed using the chart.

1 GRAPHICS 17:7 #6;" EXAMPLE 9"
2 FOR W=1 TO 230:POKE 710,W

3 FOR ZR=1 TO 10:NEXT ZR:NEXT W
10 GRAPHICS 5+16

20 COLOR 1:PLOT 1,1:DRAWTO 79,39
30 DL=PEEK(560)+256%PEEK(561)

40 DL4=DL+4:DL5=DL+5

50 NUML=PEEK(DL+4)

60 NUMH=PEEK(DL+5)

65 POKE 53279,8

70 S1=STICK(O0)

80 IF ST=14 THEN NUML=NUML+40

90 IF ST=13 THEN NUML=NUML-40

95 CON=PEEK(53279):1F CON=6 THEN 1234
100 IF NUML<O THEN 150

110 IF NUML<256 THEN 170

120 NUML=NUML-256

130 NUMH=NUMH+1

130 NUMH=NUMH+1

140 GOTO 170

150 NUML=NUML+256

160 NUMH=NUMH-1

170 |IF NUMH<O THEN 70

180 IF NUMH>255 THEN 70

190 POKE DL4,NUML:POKE DL5, NUMH
200 GOTO 70

1234 RUN "D:EX10"

= T



EXAMFLE 19O

If you look on the chart, you'll see that for GR. 0 tThe
regular number for +the DL is 2, but +o scroll (fine)
vertically use 34. In the code for this example we POKE 34
info the DL in lines 25 to 40. This tells these lines to
fine scroll, but how much? Fine scrolling means instead of
moving a row (column) of letters or graphics one character
or graphics pixel (these come in different sizes - see your

BASIC manual) at a +time, we move these characters one TV
pixel at a time. TV pixels are the tiny dots vyou see when
you look CLOSELY at your TV, or Monitor.

To fine scroll, we change the value in a new J|ocation:
54277. This location may contain 0 (normal) fto 15. These
numbers are the number of TV pixels that the |line will be
moved. This example is in a loop to scroll up 7 then reset

to 0, then loop again. If we were in another Graphics mode,
we would look at the chart to see how many pixels per mode
line are being used. You then can scroll from 0 to 1 less
thah +this number (for example, 0 to 7 is 8, the number of
pixels in a mode 0 line). For GR.2, we scroll 0 to 15; for
GR.8 you can't fine scroll (a coarse scroll here is the same
as fine, one pixel line up).

The chart doesn't give values for every mode that the
ATARlI has. If you look at +the row marked DL#, you will
notice missing #'s 3,4,5,12,& 14, Until we do a special
tutorial on +these modes, you can use the Operating System
manuals that ATARI sells to explore them. Also missing are
Graphics modes 9,10 & 11 which were not in U.S. machines
when this was written. These modes use #15 (GR. 8) with a
few POKEs into +the Operating System to change the way the
data is interpreted.

1 GRAPHICS 17:? #6;" EXAMPLE 10"

2 FOR W=1 TO 230:POKE 710,W

3 FOR ZR=1 TO 10:NEXT ZR:NEXT W

10 GRAPHICS O0:LIST

20 DL=PEEK(560)+256%PEEK(561)

25 FOR S=9 TO 13

30 POKE DL+S,34

40 NEXT S

45 POKE 55279,8

50 FOR Y=0 TO 7

60 POKE 54277,Y:POSITION 2,20:? "THE NUMBER OF PIXELS
SCROLLED IS ";Y:FOR W=1 TO 50:NEXT W

70 NEXT Y

100 CON=PEEK(53279):IF CON=6 THEN 1234

110 GOTO 50

1234 RUN "D:EX11"

-1 B



EXAMFLE 11

Same thing as Example 10, but using the Joystick so you
can practice moving up or down a pixel at a time. This will
make sure everyone understands the diference between fine

and coarse scrolling.

10 GRAPHICS 17:t #6;" EXAMPLE 11"

20 FOR W=1 TO 230:POKE 710,W

30 FOR ZR=1 TO 10:NEXT ZR:NEXT W

40 GRAPHICS '3

50 COLOR 1:PLOT 1,1:DRAWTO 1,10:DRAWTO 10,10:DRAWTO 10,1:
DRAWTO 1,1

60 DL=PEEK(560)+256%PEEK(561)

70 FOR S=6 TO 15

80 POKE DL+S,40

90 NEXT S

100 POKE 53279,8

110 1=0

120 S1=STICK(O0)

130 IF ST=14 THEN

140 IF ST=13 THEN

150 IF 1<0 THEN I=

160 IF 1>7 THEN I=

170 POKE 54277,1:2 |

180 CON=PEEK(53279):1F CON=6 THEN 200

190 GOTO 120

200 RUN "D:EX12"

EXAMFPLE 12

There is also a horizontal fine scroll register similar
to +the one for vertical fine scrolling. It is at 54276,
right next to the other. To use it, look again at the chart.
POKE the value into each line we want to scroll in +the DL.
For example, the correct value for a GR. 0 line that allows
a horizontal scroll is 18. Now POKE +the amount of <clock
cycles +tfo scroll, 0 to 15 into 54276. No, | am not going to
explain "clock cycles". It's exact meaning 1Isn't important
here and besides, |ike so many of the numbers we have been
discussing, you will learn more if you try it vyourself. It
would be the exceptional person who could write a program to
scroll without first trying it. Paper descriptions are not
easy to read. Practice......

-19-



1 GRAPHICS 17:? #6;" EXAMPLE 12"

2 FOR W=1 TO 230:POKE 710,W

3 FOR ZR=1 TO 10:NEXT ZR:NEXT W

10 GRAPHICS 0:LIST

20 DL=PEEK(560)+256*PEEK(561)

30 POKE DL+9,18

40 POKE DL+11,18

50 POKE 53279,8

80 FOR X=0 TO 15

85 CON=PEEK(53279):|F CON=6 THEN 1234

90 POKE 54276,X:POSITION 2,20:2 " ":POSITION 2,20:7 X
95 FOR W=1 TO 100:NEXT W

100 NEXT X

110 GOTO 40

1000 POKE 53279,8
1010 CON=PEEK(53279):1F CON=6 THEN 1234
1234 RUN "D:EX13"

EXAamMiFLE 173X

We left a few goofs in this example. The LMS byte was
not changed per the chart from 66 to 98. Also, a jump occurs
on the screen. The method is just a combination of the two
previous vertical scroll examples. After the great
instruction vyou have been getting, you can figure this one
out in a few minutes...CAN'T YOU 27?7

10 GRAPHICS 17:2? #6;" EXAMPLE 13"
20 FOR W=1 TO 230:POKE 710,W

30 FOR ZR=1 TO 10:NEXT ZR:NEXT W
40 GRAPHICS 0O:LIST

50 DL=PEEK(560)+256%PEEK(561)

60 DL4=DL+4:DL5=DL+5

70 NUML=PEEK(DL+4)

80 NUMH=PEEK(DL+5)

90 FOR S=6 TO 27

100 POKE DL+S,34

110 NEXT S

120 POKE 53279,8

130 1=0

130 1=0

140 POSITION 35,15:2 [:ST=STICK(O0)
150 IF ST=13 THEN I|=1-1

160 IF ST=14 THEN I=1+1

170 IF 1>7 THEN POKE 54277,0:1=0:G0T0 220

180 |IF 1<0 THEN POKE 54277,7:1=7:G0T0 220

190 POKE 54277,1:POSITION 2,20:FOR W=1 TO 10:NEXT W
195 CON=PEEK(53279):1F CON=6 THEN 350

-20-



200 GOTO 140

220 |IF ST=14 THEN NUML=NUML+40
230 IF ST=13 THEN NUML=NUML-40
240 |F NUML<O THEN 290

250 IF NUML<256 THEN 310

260 NUML=NUML-256

270 NUMH=NUMH+1

280 GOTO 310

290 NUML=NUML+256

300 NUMH=NUMH-1

310 IF NUMH<O THEN 140

320 |F NUMH>255 THEN 140

330 POKE DL4,NUML:POKE DL5,NUMH
340 GOTO 140

350 RUN "D:EX14"

EXAMFPLE 1494

This is the best you can do to combine fine and coarse

vertical scrollira, There are no new tricks to learn, just
look at the sequence of how we put two previous examples
together. Especially notice Ilines 190 and 300. This is
pretty nice for BASIC! This example could be renumbered into
a subroutine for you to use in programs Ol.ceeecs. Since
there are so many possible combinations of scrolling, we
don't show you each combination. |t 1Is weasy +to combine
whichever types of scrolling you need. Really!

10 GRAPHICS 17:? #6;" EXAMPLE 14"

20 FOR W=1 TO 230:POKE 710,W

30 FOR ZR=1 TO 10:NEXT ZR:NEXT W

40 GRAPHICS 0:LIST

50 DL=PEEK(560)+256*PEEK(561)

60 DL4=DL+4:DL5=DL+5

70 NUML=PEEK(DL+4)

80 NON=PEEK(559)

90 NUMH=PEEK(DL+5)

100 POKE DL+3,98

110 FOR S=6 TO 27

120 POKE DL+S,34

130 NEXT S

140 POKE 53279,8

150 1=0:POKE 752,1

160 REM %%%% MAIN LOOP %%%%¥%%%%%%%%
170 POSITION 35,14:? |:ST=STICK(0)
180 CON=PEEK(53279):IF CON=6 THEN 340
190 I=1=-(ST=13)+(ST=14)

200 IF 1>7 THEN 1=0:G0TO 230

210 IF 1<0 THEN [=7:G0T0 230

=P



220 POKE 54277,1:G0TO 170

230 NUML=NUML+(ST=14)%40-(ST=13)*40

240 |F NUML<0O THEN 270

250 |F NUML<256 THEN 280

260 NUML=NUML-256 :NUMH=NUMH+1:G0TO 280

270 NUML=NUML+256 : NUMH=NUMH=1

280 |F NUMH<O THEN 170

290 IF NUMH>255 THEN 170

300 POKE 559,0:POKE DL4,NUML:POKE DL5,NUMH:POKE 54277, 1:POKE
559,34

310 GOTO 170

320 POKE 55279,8

330 CON=PEEK(53279):1F CON=6 THEN 340

340 RUN "D:EX15"

EXAMFPLE 15

When vertical scrolling, as in the example above (BASIC
Language only), the screen seems to blink as it scrolls.
This is because we are moving a Iline wup 1,2,...7 pixels.
Then we move it back +to 0 and, as quickly as possible,
coarse scroll It up 8 pixels. This gets the text to move wup
or down, but the "jump" shows on the screen. To hide the
jump, the screen is POKEd off (559,0) before +the jump and
POKEd on (559,34) after. Thus, the blink.

NOW WE GIVE YOU...ASSEMBLY LANGUAGE.

Geoff Caras, of our little group, wrote a small Assembly
subroutine to do the POKEs and you can see how quick and
smooth it works. | won't feel bad if you use this example
instead of my # 14 in vyour programs. Just <change the
Graphics to wuse *this example as a subroutine 1in your
programs!

10 GRAPHICS 17:? #6;" EXAMPLE 15"

20 FOR W=1 TO 230:POKE 710,W

30 FOR ZR=1 TO 10:NEXT ZR:NEXT W
40 DIM A$(38):TRAP 60:1=1

50 READ X:A$(1)=CHR$(X):1=1+1:G0TO0 50
60 GRAPHICS 0:LIST :POKE 752,1
70 POKE 712,148

80 DL=PEEK(560)+256*PEEK(561)

90 DL4=DL+4:DL5=DL+5

100 NUML=PEEK(DL+4)

110 NON=PEEK(559)

120 NUMH=PEEK(DL+5)

130 POKE DL+3,98

P P



140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

of
sta
POK

FOR $=6 TO 27
POKE DL+S,34
NEXT S

POKE 55279,8
=0

POSITION 35,20:? |1:ST=STICK(Q)
CON=PEEK(53279):1F CON=6 THEN 410

I=1=-(ST=13)+(ST=14)

IF 1>7 THEN [=0:G0TO 250
I[F 1<0 THEN [1=7:G0TO0 250

POKE 54277,1:G0TO 190

NUML=NUML+((ST=14)%40)-((ST=13)%40)

IF NUML<O THEN 300
IF NUML<256 THEN 310

NUML=NUML-256 : NUMH=NUMH+1

GOTO 310

NUML=NUML+256 : NUMH=NUMH-1

IF NUMH<O0 THEN 190
IF NUMH>255 THEN 190

X=USR(ADR(A$),1,DL4,NUML,DL5, NUMH)

GOTO 190

DATA 160,0,140,47,2,104,104,104
DATA 141,5,212,104,133,225,104,133
DATA 224,104,104,145,224,104,133,225

DATA 104,133,224,104,1
DATA 34,141,47,2,96,0

04,145,224,169

CON=PEEK(53279):1F CON=6 THEN 410

RUN "D:EX16"

EXAMPLE 1&

This is an example of
the chart. The titles
tements or disk If
Eing the border color

changing Graphics modes by the use
could be brought iIn from DATA
you wanted. These examples are now
to match the page (you really

should have one of our Master Memory Maps to learn these
POKEs). The examples are really starting to be professional

|oo

10
20

30
40
45
50
60
70
80
90

king.
GRAPHICS 17:? #6;" EXAMPLE 16"
FOR W=1 TO 230:POKE 710,W

FOR ZR=1 TO 10:NEXT ZR:
GRAPHICS 17:POSITION 2,

POKE 712,152:POKE 708,1

NEXT W
10:? #6;"TITLE GOES HERE"

DL=PEEK(560)+256*PEEK(561)

DL4=DL+4:DL5=DL+5
NUML=PEEK(DL+4)
NON=PEEK (559)
NUMH=PEEK(DL+5)

-23=



100 POKE DL+3,102

110 FOR S=6 TO 27

120 POKE DL+S,38

130 NEXT S

140 POKE 53279,8

150 1=0:POKE 752,1

160 REM %%%% MAIN LOOQP %%%%%%%%%%%%%
170 POSITION 35,14:ST=STICK(0)

EXAMFPLE 17

Another example of scrolling a Graphics line wup and
down, but +this time with the Assembly subroutine. Think of
the games you can write, or great educational programs!
Don't fall into *the “+trap of thinking that this is just a
simple example, and a "real" example will be harder. All you
have to change is the GRAPHICS statements!

1 GRAPHICS 17:? #6;" EXAMPLE 17"

2 FOR W=1 TO 230:POKE 710,W

3 FOR ZR=1 TO 10:NEXT ZR:NEXT W

10 DIM A$(38):TRAP 30:1=1

20 READ X:A$(1)=CHR$(X):1=14+1:6G0TO 20
30 GRAPHICS 3:COLOR 1:PLOT 1,1:DRAWTO 19,19
40 DL=PEEK(560)+256*PEEK(561)

50 DL4=DL+4:DL5=DL+5

60 NUML=PEEK(DL+4)

70 NON=PEEK(559)

80 NUMH=PEEK(DL+5)

90 POKE DL+3,104

100 FOR S=6 TO 30

110 POKE DL+S,40

120 NEXT S

130 1=0

135 POKE 55279,8

140 ST=STICK(O0)

145 CON=PEEK(53279):1F CON=6 THEN 1234
150 I=1-(ST=13)+(ST=14)

160 IF 1>7 THEN 1=0:G0TO0 190

170 IF 1<0 THEN 1=7:G0TO 190

180 POKE 54277,1:G0TO 140

190 NUML=NUML+((ST=14)%10)=((ST=13)%10)
200 |IF NUML<0O THEN 240

210 |F NUML<256 THEN 250

220 NUML=NUML-256 : NUMH=NUMH+1

230 GOTO 250

240 NUML=NUML+256 :NUMH=NUMH=-1

250 |F NUMH<O THEN 140

-24-



260 IF NUMH>255 THEN 140

270 X=USR(ADR(A$),!1,DL4,NUML,DL5,NUMH)
280 GOTO 140

400 DATA 160,0,140,47,2,104,104,104

410 DATA 141,5,212,104,133,225,104,133
420 DATA 224,104,104,145,224,104,133,225
430 DATA 104,133,224,104,104,145,224,169
440 DATA 34,141,47,2,96,0

1234 RUN "D:EX18"

EXAMPLE 18&

No, we aren't going to offer an Assembly program for
horizontal scrolling. This is a +tutorial +to learn the
principals of scrolling.

This example, our last, is again combining two previous
examples fo allow continuous scrolling horizontally. The
POKE to turn off the screen is still needed, so that is +the
blink you see. However, the junk on the screen is because of
a point we didn't mention yet. Whenever you POKE a Display
List, you should wait for the time when the TV is blank and
waiting to do the next screen. Well, this happens 30 times a
second! BASIC <can't go that fast, but if you program in
Assembly use WSYNC to prevent the flashing junk that this
BASIC example shows. For the rest of us, we'll wait for some
more subroutines |ike example 15.

There are many details left out of this discussion. For
example try Poking 559,33 and 559,35. This gives you wide or
small playfields of 48 or 32 characters width automatically,
without +the trouble we went through earlier for the 256

width.

1 GRAPHICS 17:7 #6;" EXAMPLE 18"

2 FOR W=1 TO 230:POKE 710,W

3 FOR ZR=1 TO 10:NEXT ZR:NEXT W

4 ? #6;" LAST EXAMPLE":FOR W=1 TO 200:POKE 710,W:NEXT W

10 TRAP 40000:TRAP 300

15 P106=PEEK(106)

20 NON=PEEK(559) :GRAPHICS 0:G0TO 50

40 M=M+(ST=11)%5-(ST=7)%5:Y=DL4+M:POKE 559,0:FOR L=0 TO 72
STEP 3:POKE X+L,Y:NEXT L:POKE 54276 ,K:POKE 559,NON

45 GOTO 130

50 POKE 106 ,PEEK(106)-24:POKE 766,1

60 GRAPHICS 0:LIST

70 DL=PEEK(560)+256%*PEEK(561)

80 P560=PEEK(560):P561=PEEK(561)

DB =



90 DL4=PEEK(DL+4):DL5=PEEK(DL+5)

100

110
120
125
130
1535
140
150
160
300

310

FOR I=1 TO 25:13=3%| :POKE DL+13,82:POKE DL+1+13,DL4:POKE
DL+2+%]13,DL5+] sNEXT |

POKE DL+78,65:POKE DL+79,P560:POKE DL+80,P561
K=0:X=DL+4:M=0

POKE 53279,8

POKE 54276,K:ST=STICK(Q) :K=K-(ST=11)+(ST=7)
CON=PEEK(53279):IF CON=6 THEN 1234

IF K>15 THEN K=0:G0TO 40

IF K<O THEN K=15:G0TO 40

GOTO 130

GRAPHICS 0:? "t":? "YOU WENT TO FAR...PRESS RESET AND

TYPE RUN...+PRESS RETURN."
END

1234 POKE 106,P106:GRAPHICS 0:POKE 709,0
1235 ? " THANK FOR BUYING OUR TRICKY TUTORIALS....";:G0TO

SO

1235

| appreciate that all of you students have stayed awake

long. I'll see you in my next Tricky Tutorial. BYE!

-26-



[EDUCATIONALN ?
' SOFTWAFIE é

’
e ]

: )

II/// 7/} \\\W

TRICKY TUTORIAL #3
| PAGE FLIPPING




PAGE FLIPPING

Page Flipping is a set of simple
programs designed to teach those new to
the ATARI how to store information in
memory and then bring it back on the
screen instantly! With the +fwo methods
taught here, even a new programmer can
learn to do simple animation, or present
nice slide-like displays. The simplest
of these examples has only 12 short
lines of basic code!

The person using this lesson should
be familiar with BASIC programming so
that he or she can read the code that is
included. Since the program s not
protected, the user is encouraged to try
their own modifications inorder fto gain
a greater perspective of the art of
flipping pages of memory.

The program is split up into smaller
pieces “That will load and run on
ATARI (fm) 400/800 computers with 16k RAM
for cassette users and 24k RAM for those
using disk.

Educational Software inc.
4565 Cherryvale
Soquel, CA 95073

(408) 476-4901

Educational Software

presents

TRICKY TUTORIAL #3

PAGE
FLIPPING



TRICKY TUTORIAL #3
PAGE FLIFPFING

by
Robin Sherer

No doubt some of you hesitated before ordering a program

to "flip pages". For this reason | want to start by assuring
you that once you learn either of the +two simple methods
taught here, your programs will look and run much nicer.

Not very long ago, | had +to learn the method of
flipping screens. Since | still remember how confusing it

was at first, only the material you need is presented here.
A few details have been left out because only those trying

fo become experts will care, and they will have to read +the
technical manuals anyway. The style of the manual s
Informal mostly because | have never heard a good
explaination for instructions +that are wriftften in a cold

manner. We bought our computers to learn and have funl!.

HOW 7T0O LOAD
TAPE s o« «

Place the tape in your recorder, label side, up, and
insert your BASIC Cartridge. Make sure the tape is rewound,
and reset the counter to zero. Push PLAY on +the recorder,
type RUN"C:", and press RETURN. |f the program won't start
to load, try positioning the ftape forwards or backwards a
l[ittle. The easiest way to find the beginning is to listen
to the "noise" on the ftape with a regular recorder. When you
find the steady tone, you have the beginning of the program.
We recommend you write down the number on your recorder's
counter as each program starts, this will make it easier tfo
find each part later on.

DISK....

To load and run the disk, first turn on your disk drive.
When the busy light goes out, place the disk into the drive,
with the BASIC Cartridge in place. The program will load
each part and run by itfself.

Any defective tapes or disks should be returned fo:
Educational Software inc.
4565 Cherryvale
Soquel, CA 95073
(408) 476-4901

©1981 by Santa Cruz Educational Software

-1=



What is FPage Fl1lipping

The idea of flipping pages is somewhat unique in small
home computers. You're lucky, the ATARI just happens to be
able to do page flipping. The reason for this is that +the
ATARI allows both its DISPLAY LIST and DISPLAY DATA to be
stored in any free area of memory. A Display List is the
small set of instructions every computer needs to tell
itself how to put the display data on the screen. This s
especially important for wus +to learn since the ATARI
computers offer so many types of graphics modes. This
special capability means that you can store the information
for numerous pages (TV screens) of graphics and/or text and
then later, in your program, go *to any of these pages
instantly. This makes things look much more professional.

—BASICS—

First, we are going to cover some basics. Memory is
stored in something called RAM, which stands for random
access memory. This is because you can either read or write
to any place within it. Usually discussion of memory is in
terms of bytes. For example, your memory(RAM) may consist of
16k ,24k ,32k ,40k, or 48k bytes. Remember that 1k is actually
1024 bytes. Confused? GOOD! Then you may appreciate the fact
that +to flip screens of data we are going to just move down
in memory by increments of 256 bytes at a +time. These
increments are called "pages" (ain't |life simple???). So 4
pages is 4%256 = 1024 bytes = 1k . The last sentence is all
you have to remember. Four pages of memory =1k bytes of
memory. Oh yes, | should tell you that "k" is the symbol for
1000.

The fterm flipping pages would now become confusing - we
are NOT flipping 256 bytes at a time. For this reason we
will refer tfo the process as flipping screens or

displays,ie., +the stuff you see on the TV screen at any one
time.

There will be two methods shown in our examples. DON'T
JUST VIEW THEM. COPY THEM TO ANOTHER DISK OR TAPE AND MODIFY
THEM FOR YOUR OWN USE. WE WANT YOU TO COPY OUR SOFTWARE FOR
USE IN YOUR OWN PROGRAMS. EACH EXAMPLE IS SET UP FOR GENERAL
PURPOSES, SO JUST SUBSTITUTE YOUR OWN TEXT OR GRAPHICS. IF
YOU HAVE 32K OR MORE OF MEMORY, CHANGE TO HIGH RES, GRAPHICS
MODE 8 AND ADD TEXT AS WELL AS GRAPHICS. The method and
examples all work, but could be much better....especially if
written for more memory than the small amount +this |esson

runs on (don't brag about your 48k machine. My ATARI has
160k 1!)



- METHODS 1 —

Normally when you say Graphics 0 fto 8 (11 for newer
units) to the computer, it sets up both a Display List and a
data area just below the top of your memory. Method one
simply tells the computer after a first screen Is drawn,
"memory ain't where it used to be, but it's now lower, so
set up a new (additional) Display List and data area lower
in memory". By doing this as often as you require (and
memory space allows), you allow a number of screens full of
data to be seen by just redirecting the one location that
points to the start of each Display List. EASY! Figure one
will show you this graphically:

TOP OF MEMORY

SCREEN DATA 1 (261 to 7900 bytes)

DISPLAY LIST (20 to 202 bytes)

SCREEN DATA 2

DISPLAY LIST 2

SCREEN DATA 3

DISPLAY LIST 3

AS MANY MORE SCREENS AS YOU HAVE ROOM FOR.

YOUR BASIC PROGRAM and OTHER STUFF.

BOTTOM OF MEMORY



EXAMFPLE 1

Run Example 1. Notice that you can see it draw out some
random |ines, then they disappear and a new set of lines is
drawn out. Then...these +two screens seem +to appear and
disappear, first one then another.

Here's how it works:

10 GRAPHICS 6
12 GOSUB 4000

15 TRAP 20

20 COLOR 1:FOR I=1 TO 20:COLOR 2*RND(4):DRAWTO 140*RND(4),70
¥RND (9) : NEXT |

25 ? "THIS IS FLIPPING BETWEEN TWO AREAS OF MEMORY. PRESS
RETURN TO CONTINUE."

30 A=PEEK(106)

40 DLISTL1=PEEK(560):DLISTH1=PEEK(561)

50 POKE 106,A-32

60 GRAPHICS 6

61 GOSUB 4000

70 DLISTL2=PEEK(560):DLISTH2=PEEK(561)

75 TRAP 80

80 COLOR 1:FOR I=1 TO 20:COLOR 2*RND(4):DRAWTO 140%RND(4),70
¥RND (9) : NEXT |

85 ? "THIS |S FLIPPING BETWEEN TWO AREAS OF MEMORY. PRESS
RETURN TO CONTINUE."

86 POKE 764,255

90 POKE 561,DLISTH1:FOR W=1 TO 2:NEXT W:POKE 561,DLISTH2:IF
PEEK(764)=12 THEN 110

100 GOTO 90

110 POKE 106,A:RUN "D:NEXT1"

4000 X=PEEK(16):IF X=128 THEN 4020

4010 POKE 16,X-128:POKE 53774 ,X-128

4020 RETURN

Lines 10 to 25 draw a screen just |ike normal wusing COLOR,

PLOT, and PRINT commands (See your BASIC referance manual
for these commands).

Line 30 stores the original top of memory (in number of 256
byte pages) read from location 106 using the PEEK command.

Line 40 stores the two numbers that locate the Display List.
Remember that it takes two eight bit numbers to address all
of the computers memory. The LOW part can hold from 0 to 255
and the HIGH part holds from 0 to 255 (t+imes 256)...again

see your manual or our MASTER MEMORY MAP. We will only wuse
the part of the address in location 561. This is because we
are moving memory down in whole ©page increments and 561

holds the number of whole pages. We left in the low part, in
case you want to experiment with your own ideas.



— NOTE —

Often | leave out pieces of code that you may not see
mentioned in the manual. You should assume that it either is
something you will see the need for later, or something
needed just to make all the examples run together smoothly.

Line 50 says "the ftop of memory is located down in RAM
by 32 pages (8k bytes) from the previous value. This is more
than is needed for this example. The extra amount will allow
you room to add more screens later when you come back to
this example to experiment with your own changes.... and you
will come back, won't you?

Line 60 to 85 again draw some graphics just like normal.
The computer looks at location 106 and sees the value we put
there. |t is thus "fooled" into placing the new Display List
and data starting 32 pages lower than it otherwise would
have. Actually,the amount of pages you go down should
correspond to the amount of memory the graphics modes you
are using requires. Look in *The first page of the BASIC
Manual's Graphics section to see how much you need. We used
mode 6, so 2k or 8 pages would have been enough. This way,
though, we left room for you to easily copy this program and
substitute your own graphics!

Line 70 stores the location or address of +this second
Display List. You can do this before (like here, line 70) or
after +the graphics statements. The location will be used tfo
flip the screens later.

Line 90 then does the flipping by just POKEing 561 with
the address (high part only!) of the first Display List,
then the second, then the first, etc. This says "use +this
Display List..no this one...no use the first..efc.".

ANOTHER NOTE. = -

You can see in the program code in Example 1 it is line
110 that POKEs 106 back to the original value. If you are
going to go on and use your computer after confusing it like
this, you had better tell it what the real top of memory is.

If, on +the other hand, you are going to turn it off after
our program is finished, don't bother. Any time you power up
or press RESET, the computer will store the correct value in
106.

Also, while running our program, don't press RESET or
BREAK unless it <crashes (it shouldn't, but...). If any
example stops then press RESET and +type RUN and press
RETURN. of course, you should press RESET and +then
experiment with each example aftfer you have seen the entire
program at least once. This is how you will learn!



EXAMPLE 2

This example is made out of Example 1 to show you how to
expand the basic idea of changing screens. Here we set up
FOUR Display Lists and print four simple messages on the
screen. As you press a button the message appears instantly!
If you think about i+, you will realize that +there 1is no
diference 1Iin flipping between four one line messages on a
page, or four completely filled pages of text. Each time you
press a button, another area of memory is displayed on the
screen. The one |line messages were just to keep the program
simple for you to study. Please add many more l|ines of text
to +this example and see what we mean. You just put more
words between the quotes In lines 20, 70, 110, & 150.

Lines 10 to 40 write text and store +the needed values
for Display List one (DL1).

Lines 50 to 80 POKEs 106 down 8 pages (2k, more than
enough for GR.O0), writes more text, and stores these new
values.

Lines 90 to 120 same thing another 8 pages down in
memory, but different text.

Lines 130 to 160 same thing again for a fourth screen!

Lines 168 to 185 look for you fto press keys 1 to 4 (or
whatever!) so that Ilines 190 to 220 can tell the computer
which of the four Display List you previously created to now
use. The test for CH=12 is to see if you decided to go on fo
something else by pressing return. The POKE of 255 +to 764
clears the location +that holds the internal code for the
last key pressed. The variable CH on line 170 will tell the
system which key you just pressed (if any).

NOTE

You can put in your own text or have the computer read
in the text from the keyboard or disk and place the first
960 bytes (the size of GR.0) in page one, the next 960 in
page 2, etc. The way to read in data from keyboard or disk
is explained In your reference manuals.

5 TRAP 10

10 GRAPHICS 0

20 POSITION 4,10:? "THIS IS PAGE 1.":POSITION 2,20:? "PRESS
1,2,3 OR 4 FOR THAT PAGE."

25 ? "PRESS RETURN TO CONTINUE."™

30 A=PEEK(106)



40
45
50
60
70

75
80
85
90
100
110

115
120
125
130
140
150

155
160
165
168
170
180
181

182
183
184
185
190
200
210
220
230
400
401

402

you
for

DLL1=PEEK(560) :DLH1=PEEK(561)
REM #%XXXXXXXXRXAXXXRRRXRXXRRHRK X XK
POKE 106,A-8
GRAPHICS 0
POSITION 10,10:2 "THIS IS PAGE 2."
1,2,3 OR 4 FOR THAT PAGE."

? "PRESS RETURN TO CONTINUE."™
DLL2=PEEK(560) :DLH2=PEEK(561)
REM  %%%% 3 3 3 % % 3 3 3 % % % 3 3 3 3 % % % % 3 % % % % % %
POKE 106,A-16

GRAPHICS 0

POSITION 15,10:2 "THIS IS PAGE 3.
1,2,3 OR 4 FOR THAT PAGE."

? "PRESS RETURN TO CONTINUE."™
DLL3=PEEK(560) :DLH3=PEEK(561)

REM %% %% % %% %% %3 %% % % % %3 %53 %%%%%%%%
POKE 106,A-24

GRAPHICS 0

POSITION 20,10:2 "THIS IS PAGE 4.
1,2,3 OR 4 FOR THAT PAGE."

? "PRESS RETURN TO CONTINUE."
DLL4=PEEK(560) :DLH4=PEEK(561)

REM ¥¥%%RXXXERKRNAXXRKXX XXX K KKK
POKE 764,255:G0SUB 4000

CH=PEEK (764)

IF CH=31 THEN 190

IF CH=30 THEN 200

IF CH=26 THEN 210

IF CH=24 THEN 220

IF CH=12 THEN 230

GOTO 170

POKE 560,DLL1:POKE 561,DLH1:G0OTO
POKE 560,DLL2:POKE 561,DLH2:G0TO
POKE 560,DLL3:POKE 561,DLH3:GOTO
POKE 560,DLL4:POKE 561,DLH4:G0OTO
POKE 106,A:RUN "D:NEXT2"
0 X=PEEK(16):1F X=128 THEN 4020
0 POKE 16,X-128:POKE 53774,X-128
0 RETURN

EXAaMPLE

:POSITION 2,20:? "PRESS

":POSITION 2,20:? "PRESS

":POSITION 2,20:? "PRESS

170

170

170
170

=

Example 3 is the same as Example 2, but with graphics
instead of text. Although it will

, all you need to do is substitute

seem obvious to some of

graphics type commands

the text commands of Example 2. We used four simple bar

graphs, but you could draw very comp
wanted. Remember that the material
screen doesn't effect the basic method we are using. Even if

licated pictures if you

that you place on a



you fill wup the screen, the computer just keeps looking at
the Display List to see where to get it's screen data. No
more watching complicated pictures drawn out every fTime you
need them. Now you can store them ahead of time in memory.

5 TRAP 10
10 GRAPHICS 5
15 COLOR 1:PLOT 5,5:DRAWTO 5,35:DRAWTO 75,35
20 COLOR 2:PLOT 10,34:DRAWTO 10,25:DRAWTO 5,25:POSITION 5,34
tPOKE 765,2:X10 18,#6,0,0,"§:"
25 ? "PRESS 1,2,3, OR 4 FOR BAR GRAPHS OF":? "THE YEARS 1981,
1982,1983 OR 1984.":? "PRESS RETURN TO GO ON."
30 A=PEEK(106)
40 DLL1=PEEK(560) :DLH1=PEEK(561)
45 REM ¥¥%XXXXXXXXXXXERKKKKAX XX XXX XKX
50 POKE 106,A-8
60 GRAPHICS 5
65 COLOR 1:PLOT 5,5:DRAWTO 5,35:DRAWTO 75,35
70 COLOR 3:PLOT 15,34:DRAWTO 15,20:DRAWTO 10,20:POSITION 10,
34 ¢POKE 765,;3:X10 18,#6,0,0,"S:"
75 ? "PRESS 1,2,3, OR 4 FOR BAR GRAPHS OF":? "THE YEARS 1981,
1982,1983 OR 1984.":? "PRESS RETURN TO GO ON."
80 DLL2=PEEK(560):DLH2=PEEK(561)
85 REM ¥¥¥XXXRXRKXXAXXXKRERRKHRHH X XR X
90 POKE 106,A-16
100 GRAPHICS 5
105 COLOR 1:PLOT 5,5:DRAWTO 5,35:DRAWTO 75,35
110 COLOR 1:PLOT 20,34:DRAWTO 20,15:DRAWTO 15,15:POSITION 15,
34:POKE 765,1:X10 18,#6,0,0,"S:"™
115 ? "PRESS 1,2,3, OR 4 FOR BAR GRAPHS OF":? "THE YEARS 1981,
1982,1983 OR 1984.":? "PRESS RETURN TO GO ON."
120 DLL3=PEEK(560) :DLH3=PEEK(561)
125 REM ¥%X¥XXXXXXXRRERXKXRR XXX AR XXX
130 POKE 106,A-24
140 GRAPHICS 5
145 COLOR 1:PLOT 5,5:DRAWTO 5,35:DRAWTO 75,35
150 COLOR 2:PLOT 25,34:DRAWTO 25,10:DRAWTO 20,10:POSITION 20,
343POKE 765,2:X10 18,#6,0,0,"5:"
155 ? "PRESS 1,2,3, OR 4 FOR BAR GRAPHS OF":? "THE YEARS 1981,
1982,1983 OR 1984.":? "PRESS RETURN TO GO ON."
160 DLL4=PEEK(560) :DLH4=PEEK(561)
165 REM ¥%¥XXXXXXRXRXXHXXXRR XXX XXX XXX X
168 POKE 764,255:G0SUB 4000
170 CH=PEEK(764)
180 IF CH=31 THEN 190
181 IF CH=30 THEN 200
182 IF CH=26 THEN 210
183 |IF CH=24 THEN 220
184 IF CH=12 THEN 230
185 GOTO 170



190 POKE 560,DLL1:POKE 561,DLH1:G0TO 170
200 POKE 560,DLL2:POKE 561,DLH2:GOTO 170
210 POKE 560,DLL3:POKE 561,DLH3:G0TO 170
220 POKE 560,DLL4:POKE 561,DLH4:G0TO 170
230 POKE 106,A:RUN "D:NEXT3"

4000 X=PEEK(16):IF X=128 THEN 4020

4010 POKE 16,X-128:POKE 53774,X-128

4020 RETURN

EXAaAMPFPLE 4

This example draws a shape on each page. Then, by
flipping screens you <can animate the shape! Remember that
any set of data can be used for the shape so why not copy
this program to your disk/cassette and ftry your own shapes.

Another idea would be to draw a business logo and move it
across a chart of profits. Use your imagination, or just
play if you like. The posibilities are endless!

3 GRAPHICS 0
5 TRAP 10

10 GRAPHICS 5

15 COLOR 1

20 READ X,Y:IF X=0 THEN 30

25 PLOT X,Y:GOTGC 20

27 DATA 9,23,10,23,11,23,9,24,10,24,11,24,10,25,8,26,9,26,
10,26,11,26,12,26,7,27,9,27,10,27,11,27,13,27

28 DATA 6,28,9,28,10,28,11,28,14,28,9,29,10,29,11,29,9,30,
10,30,11,30,9,31,11,31,8,32,12,32,7,33,13,33,7,34,13,54

29 DATA 7,%5,8,35,9,35,15,35,14,35,15,35,0,0,0

30 A=PEEK(106)

35 ¢ " HUP!"

40 DLL1=PEEK(560):DLH1=PEEK(561)

45 REM H¥¥XXXRXXEXXKREERRRRXXR XXX KX

50 POKE 106,A-8

60 GRAPHICS 5

63 COLOR 1:RESTORE 77

65 2 " Twoltn

70 READ X,Y:IF X=0 THEN 80

75 PLOT X,Y:GOTO 70

77 DATA 19,23,20,23,21,23,19,24,20,24,21,24,20,25,18,26,19,
26,20,26,21,26,22,26,17,27,19,27,20,27,21,27,23,217

78 DATA 17,28,19,28,20,28,21,28,23,28,19,29,20,29,21,29,19,
30,20,30,21,30,19,31,21,31,19,32,21,32,18,33,22,33

79 DATA 18,34,22,34,18,35,19,35,20,35,22,35,23,35,24,35,0,0

80 DLL2=PEEK(560):DLH2=PEEK(561)

85 REM ¥¥%X¥¥¥XXKARKXXXRRRXX XX H KKK XK



90 POKE 106,A-16

100 GRAPHICS 5

103 ¢ ™ THREE1®

105 COLOR 1:RESTORE 117

110 READ X,Y:IF X=0 THEN 120
115 PLOT X+20,Y:G60T0 110
117 DATA 9,23,10,23,11,23,9,24,10,24,11,24,10,25,8,26,9,26,

10,26,11,26,12,26,7,27,9,27,10,27,11,27,15,27
DATA 6,28,9,28,10,28,11,28,14,28,9,29,10,29,11,29,9,30,
10,30,11,30,9,31,11,31,8,32,12,32,7,33,13,33,7,34,13,34

118

119 DATA 7,35,8,35,9,35,13,535,14,35,15,55,0,0,0
120 DLL3=PEEK(560) :DLH3=PEEK(561)
125 REM ¥%XXXRXRXXXX XXX XXXXRRXKKX XX XX
130 POKE 106,A-24
140 GRAPHICS 5
143 ¢ v FOUR!I"
145 COLOR 1:RESTORE 157
150 READ X,Y:IF X=0 THEN 160
155 PLOT X+20,Y:60T0O 150
157 DATA 18,23,20,23,21,25,19,24,20,24,21,24,20,25,18,26,19,
26,20,26,21,26,22,26,17,27,19,27,20,27,21,27,23,27
158 DATA 17,28,19,28,20,28,21,28,23,28,19,29,20,29,21,29,19,
30;20;30,21,;30,19,351,21,31,19,32,21,32,18;55;22,33
159 DATA 18,34,22,34,18,35,19,35,20,35,22,35,23,35,24,35,0,0
160 DLL4=PEEK(560) :DLH4=PEEK(561)
165 REM %333 % %% %% % % % % %% % % % % % 35 5% %% % %%
168 POKE 764,255
170 CH=PEEK(764)
180 IF CH=31 THEN 190
181 |IF CH=30 THEN 200
182 |IF CH=26 THEN 210
183 |IF CH=24 THEN 220
184 IF CH=12 THEN 230
185 GOTO 170
190 POKE 560,DLL1:POKE 561,DLH1:G0TO 170
200 POKE 560,DLL2:POKE 561,DLH2:60TO 170
210 POKE 560,DLL3:POKE 561,DLH3:G0TO 170
220 POKE 560,DLL4:POKE 561,DLH4:G0TO 170
230 POKE 106,A:RUN "D:NEXT4"
EXAMFPLE S
Notice line 7 which stores +the value held in memory
location 559. Then line 13 POKEs 559 with a 0. Well, this
neat trick turns off the screen so +that +the pictures are
drawn without your seeing them. It also speeds up the
computer by about 30% depending on graphics mode. Want +o
know why? Send wus $40. and we..., oh well, I'Il tell you.

Location 559 controls the ANTIC Chip which puts the video on

=10 =



the screen. Use the original value, stored in "NON" to +furn

it on. Use 0 to turn it off. Line 169 is where we turn the
display back on.

THIS WORKS FOR ANY PROGRAM!

5 TRAP 10
7 NON=PEEK(559)
10 GRAPHICS 5
13 POKE 559,0
15 COLOR 1
20 READ X,Y:IF X=0 THEN 30
25 PLOT X,Y:GOTO 20
27 DATA 9,23,10,23,11,23,9,24,10,24,11,24,10,25,8,26,9,26,
10,26,11,26,12,26,7,27,9,27,10,27,11,27,13,27
28 DATA 6,28,9,28,10,28,11,28,14,28,9,29,10,29,11,29,9,30,
10,30,11,30,9,31,11,31,8,32,12,32,7,33,13,33,7,34,13,34
29 DATA 7,35,8,35,9,35,13,35,14,35,15,35,0,0,0
30 A=PEEK(106)
35 ¢ o HUP 1"
40 DLL1=PEEK(560):DLH1=PEEK(561)
45 REM X¥%XXXXXAKXXXXXXEXHXHXAXHHKHKXXXX
50 POKE 106,A-8
60 GRAPHICS 5
62 POKE 559,0
63 COLOR 1:RESTORE 77
65 7 " TWO! ™"
70 READ X,Y:IF X=0 THEN 80
75 PLOT X,Y:GOTO 70
77 DATA 19,23,20,23,21,23,19,24,20,24,21,24,20,25,18,26,19,
26 ,20,26,21,26,22,26,17,27,19,27,20,27,21,27,23,217
78 DATA 17,28,19,28,20,28,21,28,23,28,19,29,20,29,21,29,19,
30,20,30,21,30,19,31,21,31,19,32,21,32,18,33,22,33
79 DATA 18,34,22,34,18,35,19,35,20,35,22,35,23,35,24,35,0,0
80 DLL2=PEEK(560) :DLH2=PEEK(561)
85 REM R R R R R R R R R R R R R R R R R R R R R R R R R
90 POKE 106,A-16
100 GRAPHICS 5
102 POKE 559,0
103 2 " THREE ! "
105 COLOR 1:RESTORE 117
110 READ X,Y:IF X=0 THEN 120
115 PLOT X+20,Y:G0TO 110
117 DATA 9,23,10,23,11,23,9,24,10,24,11,24,10,25,8,26,9,26,
10,26,11,26,12,26,7,27,9,27,10,27,11,27,13,27
118 DATA 6,28,9,28,10,28,11,28,14,28,9,29,10,29,11,29,9,30,
10,30,11,30,9,31,11,31,8,32,12,32,7,33,13,33,7,34,13,34
9 DATA 7,3%,8,35,9,35,13,35,14,35,15,35,0,0,0
0 DLL3=PEEK(560) :DLH3=PEEK(561)
REM I R R R R R R R R R R R R R R R R R R R R R R R

s e



130 POKE 106,A-24

140 GRAPHICS 5

142 POKE 559,0

143 2 v FOUR!™

145 COLOR 1:RESTORE 157

150 READ X,Y:IF X=0 THEN 160

155 PLOT X+20,Y:G0TO 150

157 DATA 19,23,20,23,21,23,19,24,20,24,21,24,20,25,18,26,19,
26;20,;26,21;26;22;26,17,;27,;19,27;20,27,21;27;23,27

158 DATA 17,28,19,28,20,28,21,28,25,28,19,29,20,29,21,29,19,
30,20,30,21,30,19,31,21,31,19,32,21,32,18,33,22,33

159 DATA 18,34,22,34,18,35,19,35,20,35,22,35,23,35,24,35,0,0

160 DLL4=PEEK(560):DLH4=PEEK(561)

165 REM *¥XXXAXXXUXXXXR XXX XXX XK K XX

168 POKE 764,255

169 POKE 559, NON

170 CH=PEEK(764)

180 IF CH=31 THEN 190

181 IF CH=30 THEN 200

182 IF CH=26 THEN 210

183 IF CH=24 THEN 220

184 IF CH=12 THEN 230

185 GOTO 170

190 POKE 560,DLL1:POKE 561,DLH1:G0TO 170

200 POKE 560,DLLZ2:POKE 561,DLH2:G0TO 170

210 POKE 560,DLL3:POKE 561,DLH3:G0TO 170

220 POKE 560,DLL4:POKE 561,DLH4:G0TO 170

230 POKE 106,A:RUN "D:NEXT5"

METHOD =2

This method differs only slightly from +the first, but

allows you more contfrol of what goes on. The examples will
explain the differences.

EXAMPLE &

Instead of using a variable called "A", we use "P106" to
store the original # of pages In your memory. This will be

more meaningful +to wus. P106 stands for the value to POKE
intfo location 106.

4 P106=PEEK(106)

5 7 "t":? "AT PAGE ONE!":? "PRESS 1 OR 2 FOR THAT PAGE."
7 ? "PRESS RETURN TO GO ON."™

=12



10 DP=PEEK(560)+PEEK(561)%*256

12 POKE 16,64

15 SAV=PEEK(DP+5)

16 POKE 106,P106-4:POKE 89,SAV-4

17 2 "AT PAGE TWO!":? "PRESS 1 OR 2 FOR THAT PAGE.":? "PRESS
RETURN TO GO ON.™

30 POKE 764,255:TRAP 80

33 CH=PEEK(764)

35 IF CH=31 THEN 45

36 IF CH=12 THEN 60

37 |IF CH=30 THEN 40

38 GOTO 33

40 POKE DP+5,SAV-4

43 GOTO 33

45 POKE DP+5,SAV

55 GOTO 33

60 POKE 106,P106:RUN "D:NEXT6"

Line 10 stores the location of the start of +the DL as
one decimal number. Line 15 store the number we are after.
It comes 5 bytes after the start of the DL, so we PEEK at
DL+5, ie. It is the sixth number in the DL.

Line 16 POKEs memory location 106 down by a number of
pages (4 In this case). This |line also stores a new value we
need: location 89. This one is a copy of the value in DP+5
which tells the system where the start of the display data
is. The computer looks at the DL whenever a GRAPHICS command
is used, and stores that value here so that it will know
where the start of your data is. After a Graphics <call, we
are free to ~change +this number (in 89) +o "fool" the
computer intfo doing what we want. After POKEing both of
these locations down far enough, we now write some ftext tfo
the new area of memory on line 17. This could be done many
times if you have enough RAM.

Now when lines 30 to 38 choose which screen you want, I|lines
40 or 45 just change the value In the first Display List
that controls where the first DL gets it's data from. We
don't care about a second (or 3rd or 4th...) Display List as
in Example 1%

SO WHAT?

Well, now by just changing one value at the start of the
first Display List+5 (DP+5), you can tell the system +to go
display different data from all over memory. This change
could be easily contfrolled with a joystick as we do in our
Scrolling Program, Tricky Tutorial #2.

Also, you might want to look at one screen while you are

drawing several others; for example while a decision was
being made about options on the first.

]S -



EXAMFPLE 7

This does what we just suggested. You can not only look
at two screens (press 0 for screen 1 and 4 for screen two),
but by inputing other positive numbers you can look down in
memory. By inputing negative numbers, you look up in memory
until you reach the top. The stuff you see on +the screen
will be the alpha-numeric equivalent of the BASIC program,
your screen data, the Operating System or whatever you are
looking at. The only changes to this program are:

Lines 20 & 33 input a number.
Line 35 tests that number to see if It Is too big.

Line 40 redirects the DL as before, but with your value
Instead of the previous fixed value of 4.

4 P106=PEEK(106)

5 7 "t":? "AT PAGE ONE!":? "PRESS START AND RETURN AT THE
SAME TIME TO GO ON.":? "PRESS BETWEEN O AND ";P106-5;

7 2 " TO LOOK AT MEMORY IN 1/4 PAGE SCREEN INCREMENTS.":?
"THEN PRESS RETURN. REPEAT AS DESIRED."

10 DP=PEEK(560)+PEEK(561)%256

12 POKE 16,64

15 SAV=PEEK(DP+5)

16 POKE 106,P106-4:POKE 89,SAV-4

17 ? "AT PAGE TWO!":? » PRESS START AND RETURN AT THE SAME
TIME TO GO ON"

20 DIM A(2)

25 POKE 53279,8

30 TRAP 30:Z=PEEK(53279):1F Z=6 THEN 80

33 INPUT A

35 |F A>(P106) THEN 60

40 POKE DP+5,SAV-A

55 GOTO 30

60 ? "NUMBER TOO LARGE, MUST BE LESS THAN";P106-5:? "WE ARE
NOW AT 4 PAGES DOWN IN MEMORY™

65 POKE DP+5,SAV-4:POKE 89,SAV-4

70 GOTO 30

80 TRAP 40000:POKE 106,P106:POKE 89,SAV:POKE DP+5,SAV:RUN

"D:NEXT7"

-14-



EXAMFPLE 8

The last example is exactly the same as Example 7,
except it looks at memory wusing a colorful graphics
viewpoint of the data there. Be sure fto try negitive numbers
on the last two examples also. Since the program Iis designed
to look up or down in memory, the negitive numbers look down
while the positives look higher in RAM. You can look most
anywhere from within the BASIC Cartridge to the data flowing
in and out of +the Operating System (try large negative
numbers for this)...See if you can find an area that |is
changing for real special effects.

4 P106=PEEK(106)

5 GRAPHICS 5:COLOR 1:PLOT 10,10:DRAWTO 10,20:DRAWTO 40,20:
DRAWTO 40,10:DRAWTO 10,10

10 DP1=PEEK(560)+PEEK(561)*256

12 POKE 16,64

15 SAVI=PEEK(DP1+5)

16 POKE 106,P106-8

17 GRAPHICS 5:COLOR 2:PLOT 20,20:DRAWTO 20,30:DRAWTO 30,30:
DRAWTO 30,20:DRAWTO 20,20

20 DIM A(2)

21 DP2=PEEK(560)+PEEK(561)%256

22 SAV2=PEEK(DP2+5)

25 POKE 53279,8

27 ? "PRESS START AND RETURN TOGETHER TO GO ON."

30 TRAP 30:Z=PEEK(53279):IF Z=6 THEN 80

33 INPUT A

35 IF A>(P106) THEN 60

40 REM POKE DP1+5,SAV-A

41 POKE DP2+5,SAV1-A

55 GOTO 30

60 ? "NUMBER TOO LARGE, MUST BE LESS THAN";P106-5:? "WE ARE
NOW AT 4 PAGES DOWN IN MEMORY."

65 POKE DP+5,SAV-4:POKE 89,SAV-4

70 GOTO 30

80 TRAP 40000:POKE 106,P106:POKE 89,SAV:POKE DP+5,SAV:RUN

"D:NEXT8"

THAT ™S IT

Just take any of our examples and ftry to modify them so
that you can both understand +the methods and make your
programs look and run much cleaner. | hope you find many new
uses for PAGE FLIPPING. Please write and tell me about your
accomplishments using techniques in TRICKY TUTORIALS. BYE!!

-15-



S EDUCATIDNAL :

-
-~
-
-

e _ \N—_

//// [ TR G, e, —,

2 [ NNS———

,;g;f”""'5\\\\\\




BASICS OF ANIMATION

Basics of Animation is a set of
simple programs designed to teach those
new tfo computers how 1o make shapes
appear to move around on the screen. The
three methods demonstrated are animation
using the PRINT COMMAND, PLOT COMMAND,
and ATARI 'S great PLAYER/MISSILE
GRAPHICS.

The person using this lesson should
be familiar with BASIC programming so
that he or she can read the code that is
included. Since +the program is not
protected, the user is encouraged to tfry
their own modifications inorder to gain
a greater perspective of +the art of
animation.

This program requires 16k of memory
for TAPE users and 24k for those using
DISK.

Educational Software inc.
4565 Cherryvale
Soquel, CA 95073

(408)476-4901

EDUCATIONAL
SOFTWARE

presents

BASICS
of

ANIMATION

TRICKY TUTDRIALtm
Hq

(c) 1981 by S.C.E.S,



TRICKY TUTORIAL #4

BASICS OF ANIMATION

by
Robin Sherer

HOW TO LOAD

TAPE<«.s

Place the tape in your recorder, label side up. Make
sure the tape Is rewound, and the BASIC Cartridge 1s 1in
place. Also, reset the counter to zero. Push PLAY on the
recorder and type RUN"C: and press RETURN. I|f the program
won't start to load, try positioning forward or backward a
little. The easiest way fo find the beginning is to listen
to the "noise" on the tape with a regular recorder. When you
find the steady tone, you have the beginning of the program.
We recommend you write down the number on your recorder's
counter as each program example starts. This will make it
easier to find each part later on.

DlSKeos

To load and run the disk, first turn on your disk drive.
When the busy light goes out, place the disk in the drive.
Now turn on the computer, with the BASIC Cartridge in place.
The program will load each part and run by itself.

Any defective tapes or disks should be returned to:

Educational Software inc.
4565 Cherryvale
Soquel, CA 95073

(408) 476-4901



LET THE ANIMAT 10N BEGIN!

What does animation mean to you? Were Yyou hoping that by
purchasing this Program yoy Would then pe able to do
cartoons on the screen in intricate deTail...or did you

Animation requires +t+yo main qualities +o appear Nicely
on your SCreen, First, You must+ contro| €nough points so
that Something seepms to be happening. Then YOUu must move
these Points arouyng fast €nough so that they appear

[\




Rule number one:
IT CAN'T BE DONE FROM BASIC

Wait! Don't panic and return this program to us before
you read on. We know you are not a Assembly language
programmer . Neither are we, except when necessary.

BASIC in the ATARI Is slow because it is an interpreter,
meaning that every time you tell it to go move some point
around on the screen, It has to first go and figure out
exactly how to do what you've asked. This takes so much time
that even with the machine doing hundreds of thousands of
steps per SECOND, it can only move a single point around as
fast as our first two examples. The way around this is to do
one of four things:

1) You can program in the machine's language, where it
doesn't have to interpret. This, however, would be
too difficult for the average ATARI user.

2) You can use machine language routines built inftfo the
machine. A simple example of this Is what we are
doing in Part 2 using the PRINT command to draw
some what complicated shapes very quickly. In fact
if you look at the code for the space bug, you will
see a delay loop was put in to slow it down! Also,
although ftoo complicated to explain in a
infroductory program like this, you can redefine
the characters you are printing to draw almost
anything you can imagine. The monsters In SPACE
INVADERS are redefined letters of the alphabet,
and are moved about by PRINT commands.

3) You could also go buy a larger BASIC that includes
some machine language movement routines to move your
shapes around. (Basic A+ or Microsoft Basic).

4) You can use PLAYER/MISSILE GRAPHICS |ike the tie
fighter program we include as an example.

ANIMATION USING THE PLOT COMMAND

If you haven't already done so, now is the time to load
in the program. Follow the instructions in the program and
use your Joystick to move a simple square around the screen.
This is similiar to the movement in games of the SURROUND
type. As you can see while you follow the program , it is
really quite simple to move a square! We show you the code
here so you can see the necessary steps to move the square.
Don't worry about learning it all now.



THIS IS THE CODE FOR MOVING A SQUARE:

LRl GRAPHIOCS J4:POKE 764, 2559 H=28 30y -L®

LELERT P UHERE IS5 QU SOLaRE P CRISE wWDUR O JOYS
TR FEr FE T v e e o« BHERN  DORME PR SS Sk REY T
IELBS WS INCK kR

SRR LS Yo W DR R A fNS SR e R - A R - DA e - R
o S

1828 MoH— R 3i - 8 L R - R RS D e LR R A
Y5 A

1EE A4S KF HOL THIEM Hoif

ARt ds TF H>X 3% THEBM M=¥9

IL@id 7 IF AL THEWM %13

I L 48 EIF %WHrEID THEM w=3X9

AedisSa COoLGR L P T kW s D PEER DAEE T FSES THEN
R R R SR

The better games of this type add another player fto
compete with and leave a controlled trail behind them. The
trail is kept track of by the computer. Then, when you touch
a location where the computer's "records" show a trail is,
it scores for the other player

After you have run the program through to the point
where we show you how to erase the trail, we suggest you
stop the program (press BREAK and remove your tape or disk).
You can always come back and finish it later. To continue
with disk, type RUN "D:PLOT2.DSK". For tape, use RUN"C:".
The reason for stopping now is for you to write a small
program that makes use of a square being moved using the
PLOT statement. The easiest way would be for you to look at
the listing.

HERE'S THE CODE FOR MOVING A SQUARE, BUT WITHOUT A TRAIL:

BoES e AW R SR

A EE SE TR R R S R, s R R S

AEEES O NF Wi THEM Yo -4 Pl GT M, Wi
AEEdE TF Wil THEM Yoy s PLday W, % d
HoEcES ek O R WIHE R R s Pl M,
A BEGE F Wi THEM O HomMoe s POy e
AEBSEFE R O MAL THEM ML

BEEEE TF KT OTHEM Mo

AoEEE g L Wl THIE M Yo
JEEgE TF YR OTHEM SoEa

JoEhE L Er TR E R s R M s N PEER CFSE DEEE OTHEM
LRSS

Lines numbered from 10520 to 10610 are the ones that
move the square around. Add to our program using your own
ideas. Also, since the code exists in the program we sent
you, please feel free to delete the lines you don't need,
and start with them already in the computer to save time
(the Assembler cartridge could do this quickly!). Please be
sure if you save your work, it is on a separate tape or
disk.



PN

NOTE: Even 1f you inftfend to do only non-game applications,
the learning you gain from writing a simple game will help
other attempts at animation.

Before going on, we want to point out that when using
PLOT and erasing your "trail", you have to actually PLOT the
position you are erasing with the color of the background.
This makes that position seem to disappear as you PLOT the
next position in the color of your choice.

The next thing | do to show you the BASICS OF ANIMATION
is to draw out the famous "Tie Fighter" shape and move it
using the PLOT command.

PLEASE NOTE THAT THIS IS ONLY AN EXAMPLE AND THE SHAPE
COULD BE ANYTHING FROM A BUSINESS TO A HOME APPLICATION. IT
ALSO COULD BE MUCH LARGER THAN WE DREW. | keep our programs
simple to allow everyone to understand the PRINCIPLES
INVOLVED, but with more memory and time you can do great
things like this:

}
w
|



Here is how to input points to plot:

1,8(2,8/3,8{4,8/5,8|6,8/|7,8/|8,8

Figure 1.

Look at Figure 1. | drew out a shape at the upper left
corner of what is called an X-Y coordinate system. The
upper left most point that is filled in is at x=1 and y=1.
Moving down the figure the next point is at x=1,y=2, then
x=1,y=3, etc. with the last point of OUR shape at x=5,y=5.
The computer doesn't care what order you input points into
PLOT statements, just input them all. This means you don'+t
have to use the points in the same order as we did, or even
use the same points. Now, to put these into a BASIC program
we use the DATA statement (read your BASIC manuall!). |+
looks as follows:

Every two numbers represent one point to plot.



Here is the complete TIE FIGHTER code:

IABZ0 GROSPHICS o o=@ %ol s OO iR L s G SLE R s
@ CHSE JOYSTICK T MOUVE FIGHTER @19 “RRESS &
MY OKEY T imdd fatt

LABZE POKE PB4, 255 SPEEDR=S SETCOL G 2, 03, 6 TR
P OLLEZEG SN PEE D

LAHEXTE WoSTILOK a2 1 TF WoAS THEM 414 8Tse

LAI8TL GOTD LIisss

LABIZ IF PEEK LG4 =SS THEM 148 Ia

LIBITZT EF CHTR=F THEN L3600

LIBTA GOTO LZooa

LABTSE COLOGR 5 G0 SWE 4L L9

LABAL W QUL E R BEG A S RS R S R S G L R e e
[ I M B SR W e B )

LA BAZF Mo R R D e - R L e e o B R S R R R A
W R PR W T R e

AL 2ZFE COLOR o EaSUE LA EE TF O PEER CF G mREES T
F 038X

Li2TE RESTORE L1966 PO0OKE #8532, 1

L19ad BREAOD &, B TF o= THERM A s

L1956 PLODT ek, B9 s G0 d il

11968 DatTe L.1,1.2,4,%,1.4,40,5,2,3,83,2,F,F,%.,
ool E el E o, LR LB L R LB . o B, Y ER L R, 6
LA DT FRE TR M

The last part of this lesson allows you to move the
cursor up to the data |ine we used for the tie fighter
shape. The program is now stopped, waiting for you to enter
new numbers into the DATA statements. |f a mistake occurs,
you can try pressing RESET and typing RUN, but if the DATA
Statements get too messed up it may be easier to reload in
the program. You probally won't have to go through this

since it is easy *to <change +the required lines in *the
program.
All you need to do is type in new numbers that you have

chosen, based on a drawing of YOUR shape made on standard
grid paper. Once the DATA statement l|ooks correct, press
RETURN to enter It and then type CONT and press RETURN again
to restart the program. Also, you may use numbers bigger
than the 8,8 for your shape, but when you move it, if it
goes off screen it will bomb the program since we only
allowed in our code for the smaller shape. The more points
you use, the slower it goes. Again, feel free to copy and
modify our program or, if you like, just slowly change a
small part of it to see how your own changes can add to ift
or make it better!!!



ANIMATION USING THE PRINT COMMAND

We included the "Bird at the Ocean" from the ATARI
BASIC manual as a convenience for those who never typed it
in. It demonstrates the simple use of alternating between
two shapes in a PRINT command in order to obtain a feeling
of motion. We will use this method now. Again, after
finishing this part please modify the shapes or the
background to get a feel for your own ideas. Backgrounds are
simply created with PLOT & DRAWTO commands and the special
Graphics Characters. We next show you animation of a single
character in the horizontal and vertical direction. They
both have simple sounds to demonstrate how easy sound is to
add.

HERE'S THE CODE FOR THE SPACE BUG:

o BAEE O GEOPHICS LT RS R kD oS TR B S Pt
FREbem e s R i T S s WERT b

FAIZH THaGaP ZIXI5LE

HLEE T e M n ik s PPOURED PR L L p T
FATAE POSIITELDMN MY

e W o - S YR RS O Wk M YA

A TSR CE R OO S T T hd R

FBAFZEE T o PSR M S

FAETFE T W e

FAFTDAL O CSOEiMD W, A, L MW

FAITHE OFOR MR TO EE G MERT M PSSO MY
HREEFwE O own ORISR T N B,

o B N B S AP OSETTEDEE M, YR
#=RERE F o e POSET DM M YR
FLFFH OF ER

FRLERT OHmMARE PSS EETXMN M

b B B S R U POERETIODN H YL
HE A LB P N BOSTET LGN Y
Z14Z8 7 et POSTTIOMN M, WEXE
FRAZTE T

ZA1A4TE OFORE MR TO ZrNEHRT WIPOSITIOM H. %
“i432 o0 U P RERINT O M Y
gk R S e R PRSI TT RN M, Y
Zaild4x4 Fo0 UEPOESTT RGN MY X
El4F5 w8 u

2448 SUMD L, L5, B, CHTHE s MoK E2: TF HMFIEI?P THEMN
bl W N R S

21456 GOTO ZA4X A8

AAAdGe ML CRT=OMT-RL s EF MY S THEN 248
EZiATFE GRTO 2L XA

2480 S5OUMND L, 8,858,808 XF CDEWNT=-L THEM SF25648



The program will stop and allow you to move the cursor
up to the six lines that hold the shape for the "SPACE BUG".
Change (using the special graphic characters) the shapes
ONLY BETWEEN the quotes. When done, move the cursor to the
top line and press RETURN until all six lines are re-entered
into memory. If you goof up, clear the page and type GOTO
23500 and press RETURN. If you enter the new shape correctly
move to a BLANK area on the screen and type "CONT", then
press RETURN to see your shape move across the screen. When
you have played enough with our code, try adding backgrounds
first before your shape Is printed or perhaps try several
shapes. You will quickly notice a main drawback to animation
using the PRINT command (and PLOT too); everything you move
over is rewritten and thus disappears

-Note-
To do full animation many additional fricks are taught in
our other Tutorials. This is not intended just to sell more
programs, but you deserve to know how to use the full power

of your ATARI. Some of these other Tutforials include PAGE
FLIPPING, MODIFICATIONS TO THE DISPLAY LIST AND SCROLLING.

d
7

¢
GE
FE\%P‘NG &
DISPLAY
neT [Shoy
>
S —
——
b———/ \ B -




PLAYER MISSILE GRAPHICS

You probally already have heard of the ATARI's unique
feature called PLAYER MISSILE GRAPHICS (PMG). What PMG does
is allow you to animate simple shapes around on the screen
without having to redraw them as we did in the earlier
lessons using PRINT and PLOT. This capability is builf? into
the hardware, so all we have fo do is program the hardware
with simple POKE commands.

NOW COMES THE PROBLEM!

What makes PMG hard to explain is that there are so many
built in features, and so many POKEs to do. We wanted to
reach a compromise with an introductory lesson Iike this, so
we Include an example using PMG with some explaination. Like
before, If you will just take the time to modify our program
you will see the effects of each change. |1t would be even
better 1f you had a specific goal in mind, say to change the
shapes of the Players, or a different background. Please
note that the way this example was written Iis not the best
It could have been done. It was writtrn long ago, but It
works and that was the goal. The various POKEs are listed in
more detail In our MASTER MEMORY MAP, and PMG Is more fully
explained in a seperate Tutorial (#5).



HERE'S THE PGM CODE:

EE KIS REM INITIAL POS5 D o pd

AR TRAP Fi

e SR iRMD D, LXK, P, 3

GEH PRIMT frEgpee

GE GODGUHE SG88:REM BaCKEGEROLMED SOSROLT TME

Fa O SETCOLOR 2,8 .08 8 Mo L 29w 9@ s RIEM SET B )0 R
B UCOREREr G MD P LaYER O OPOSTTIOOM

HFa PORE Fad LT FT REM SETOOLOR O PLaOYERSG O TO BLAGE
e PORE O FERE, LDE D REM SETOCOLOR PL&BYERL TG GREEN
I HoPEER CLEER —& s PORE Sa4275% O PMEBOSE TS 60 R
Er OSEY O PLaYER-MISS5LE STORTING abDRESS

446 PORE S59,.46 0 PORKE SEEZFE, I REM ENGBLE PM GR
APHTES WMITH Z2-LIWHE RESOL W 00

f@Za POKE P52 . 4L REM MMORE RSO DN S E

L%xa FOoR ToPMBOSESRSLE TO PMEBGSE-FS 4G 0 PORKE T, 5 M
EMT E:REM CLEAR gury PLAYERSG FIRST

148 FOoR ToDPMBGSES+SS49E T PREaSE-STSES PO E o, & K
Edt T A REM S ESR T P aviERL O FXRESTT . THIS O OES T4
PR EUEMT  FaukDdbid LM .

LS Fa o-PMBasE4CGEAE-E TO PrMEBaSE G ER L RESD S
P ORE K, B MENT X REM DR LY A

AGa DT LEE, L&, BES, L9, s

A8 REM DavTda FOR O OTIE SHOPE

LEa FOR EDPMBOSE+SSLZEEY T LA 0 1Tl e S B e L e el
PPOKE L.arNERT TrrEM DRk P aYERG

A28 PREE SE2SEE B PORIE SEEEE , LB REM SESE O OF Pl
E G GMD Ll MISSLES

E2og PFREE SIESY.EIREM SHTEE O GF PLaGYERL

ALe Dot L5F, 4189, 208%,08% , 15X

A PDEE GBS E T SNERRRE SN L A ST R b B e

AEe REM SoarE SHAaPE FOoR T HER PLOGYER

Eag RN R D GIES TIHE MO 0 e GO S 0 R B W O
= 5

SR OLF PEEK OSG4I =IL THEN LESE

FER FDPRPTRIOGOG2 »REFM READ TRIGEHERS

EFS TP TR TG £ 00

FH& LF F=@ R MISTIL THEM GiaSiiE S980 REM Skl i
SO D ER R W

FHEOLF G THEM S SAE S s REM FabhT T MISS0E Mo
B R T UM E

&7

TEE POKE 656,83 0F FSoh R GSsil THEM 7 “GREEMS
TR Y SR A BB SR R S O

L E S s RS esE r REM O THESE TELL STHS&RBET O TO O PRINT S
R

e PORE SEZVE @ rREM CLEMAaR WU R L TS0 RES T
ST E RS T WSE ek & 0N

ATEIE =P DL E e

EE RS e B E R

TEE O POKE SEZGEE, 0 KF O MISmE M B L gk T HRE M P ROE
EEE e ar - REM M E P Y R sk MESSLE®R T b
B e B R W OD R RS W M



WEE OPONE SEZED B PORE SEESE,B-L 0 REM SaME FOoR
SR

AR BT EEE o REM GO RESD P DL E S G

EEHE O REM SOUBROETINE FOoR BLWE A S 4 L

AHE O SURLEMED o BRI DL G- W LR RE R MR E S
CRid b D ECRIEGCSE S MES S 0L E MO E S

B MR AR AR PR E R S E DR e W o P ORI I R S R
@y o ls e A

d18 ESPEEKLSIZSEI EF EF@ THEWM HEIT=L::REM TESYT
PRI T

ARG OEF W RE THERM S8 REM MUSSTI0E MOWED Mol Bl
VR 5

AR TS BE T LR M

A v HXI T FSo s REM SaYS 0 PRENT O MEM SOORE . P
G HIT aRE COUMTERS

AEE SR L, FES, B, LEVPOKE S3Z24% 258 FO0R Ml
T 2 :MEHKT M

dER SOREMD W, B, 6

470 POKE S3I24% ., 28 P0KE SIZ27PE8,, 8o REPOSITEG
MR AYERL aMD CLESRE COLLISTOM REGESTER

4B SO0 E RSSO0 E e

A28 Vo MES TR SO0WMD B, B B, o FE TR

SEe IF HIT=L THEM 54

SiLB LT ML TS SO UME 8, 8, 8, 8 RETIRM

SCEE SORLIMD 6, ZEEk, £, 8 P

SEE PR KRS W L EE o PORE PP S SR 8 PO E
PHBOBSEFIS44+T 4 PTEPEEK (53257

HAB IDF PR OTHEM SS9

S5 MEHKT I

HEG SOUIMO B, B, o, 6

G0 ORETURM

WEE REM PoPEER CSIZES LNF PoR THEMN RET RN

SOH SDIME B, 8,8, B8 G5 REM SAYS T PRI NEM
G R

GEnd RIESTORE X8 SOMKD 5, B, &, 15

Gie FOR IT=PMBASE+SLZ TO PMEASECGLR: POKE 1L, 6N
EHT Oy FEM O CLESR 0T P LSV E R R ST

GHEZB YIFPEIFOR ITPMBASE+CSLZEREY TO PHEBOSE S5 0G6 &K
A READ BIFOKE B rMERT L:REM DRAOM PLOYER

GXa DT LST, 189, 2595, 489, L5

Hadd FOR T=Fdd4d 70 SL2:P0KE PMBASEST ,O: MEXKT T
BEE GOREND L L R, 6,

GEB SCOREG=SOORREG+ L

GF8 RE T LM

GES GROPHTCS & OmMT =

BEE OO R L MR M GO R TS W R M D DR RS s T T
L TPLOT KLY IEF CNT» LS8 THEM RETLIRM

FER GG T S S



Player Missile Graphics Explanation

LINE 50 : Clear the screen
LINE 70 : The X and Y position of player one
is established here.
LINES 80-90 : Player colors are stored in 704 to 707.
LINE 100 : Memory location 106 holds the value

(in # of PAGES) of your top of memory.
We simply subtract 8 pages to make
room for the shapes of the Player to
be stored.

LINES 130-140 : To create or erase a player, you POKE the
shape Inftfo memory where we reserved it in
line 100. We first erase the player by
Poking in all O0's. Player 0 starts at the
value of PMBASE plus 512 and goes for 128
locations in memory. Player 1 starts at

640.

LINES 150-160 : Read the shape into memory.

LINES 250-370 : Main loop of program. Location 764 holds
the last key pressed. When you run the
program, you will note that the missiles

don't move the same. One moves In a loop
that is fast because it doesn't go back
and allow any players to move. The

other is slow because it does. The
collision registers mentioned in the
comments to line 320 "record" when
certain things touch eachotheron the
screen. You determine what this location
looks for by the value you put into

623 (if desired). Lines 350 & 360

POKE the location that controls where
ACROSS the screen the Players will
appear. |If you don't plug in Paddles

the values ftransfered here will be 0,

so the players will be off screen.
Values of about 40 to 200 will be on the
screen.



LINES 390-finish : the rest is really just two subroutines
to move the missiles up and down the

screen. This Is done by erasing the
%0 shape at it's current location, and
<§> <¢;> drawing it at a new place in memory

placing 0's at the old memory locations,
4;7 and placing 1's in memory). |If you
2:&7 draw it close to the last location, the
motion will be slower, but smooth. We
also add to the scores here when the
collision registers at 53256/7 don't
.° holid a 0. Finally, the routine at line
690 just creates stars by random PLOTs
YZAREN v

A on the screen.
/\>

The only way that all of these POKEs will become
familiar to you is to get a hold of one of the publications
that gives detalled descriptions of each memory location
needed for PMG. Our Master Memory Map is good, and ATARI's
Operating System manual is better (but very hard to read).
We hope you feel that this lesson was worth the cost.

Thanks..... bye!




EDUCATIDNAL
ESOETWARE ]S

/I/

.\ \\\\

M//l l\k\\\\\\\




EDUCATIONAL SOFTWARE

presents
TRICKY TUTORIAL #5
PLAYER MISSILE GRAPHICS

by
ROBIN ALAN SHERER

JOoN CHip

Eeas | p
;{AMMINE O

[

(c)1982 by Educational Software
ATARI 1is a reglistered trade mark of Warner Communications



MENSHERIMDY

Q
Z

ol
l
TgHAPES LI EE‘

— LAl

YOU CAN ANIMATE YOUR OWN CHARACTERS .....
WITH PLAYER MISSILE GRAPHICS (PMG)!

Ok! You spent your hard earned money on this program
because everyone says that Player Missile Graphics is the
way to go, but you know it is +too hard +to ever really
understand. Besides, you bought $25 worth of magazines for
the two page articles on the subject, and they all said +the
same thing (which made little sense to you). After all that,
you got ATARI's book, DE RE ATARI, which was great reading,
but Chris Crawford only explains the basic capabilities of
PMG. How do you put It all to practical use? Well...oo.

Were Going to
Write a GAME!

Most of us like to play arcade games, and since mosT
arcade games use cute Iittle figures and a maze, we will

design our game that way. One of my favorite games is called
PACMAN (tm). We can't actually use +the same game as the

arcades due to legal problems, but we can take the cute
Iittle character and put him inftfo our our own hair raising

situation!
THIS IS A

PAC PERSON/

1



All games take imagination. Let's put ours to work

making wup all kinds of shapes to animate and "play" with on
the screen. Some of +these characters will be wused in
demonstrations within the 14 main programs. You can take

over where these lessons |eave off and create any kind of
application you wish. Player/Missiles is not just for games.
Any time you need color or movement in your programs PMG is
the best way to get the job done. For example, ATARI's
SCRAM program, a Nuclear Plant Simulator uses Players and
Missiles for the various tanks and mechanisms on the screen.

WHAT IS A PLAYER/MISSILE?

The names Players and Missiles come from the original

use of these objects as guns (for the Player to use) and
bullets or Missiles for the "shot" that was fired. Now, of
course, many other uses exist, but the names are still used.

Letts begin by looking at the original use of PMG, a space
game demonstration. Run the first program now and follow
along in the discussion.......

[t m——

MAKE YOUR FANTASIES

COME ALNE LEARNING
ATARI GRAPHICS.

LOADING INSTRUCTIONS

Before | begin, some special notes are needed “to hglp
tape wusers and those with only 16K of memory. When +eachfng
about Player Missile Graphics, | can't help but get carried
away . Orbie, Pixel, and | were having so much fun, that we

Z



wrote too many examples for this TUTORIAL. Once you finish
This lesson, you will find yourself creating all kinds of
animated creatures! Fortunately, my Robot helper, Prototype,
ate a few of the programs, leaving wus with just enough
examples to fit a very full tape.

Because of the length of the lesson, some of you may
have trouble reading in +the programs on your 410 tape
player. You will have to get 14 successful LOADS; so, as you
LOAD each program , SAVE it on your own backup tape. Before
you start, wind the tape forward and backward once. To load,

reset your recorder's counter to zero. Now type RUN "C:"
and press return twice. The tape should begin fto load into
memory. There is a backup copy of all examples on the back
of your tape, but If loading still produces an error

message, you have two options:

1) Rewind the tape to zero, take it out, and listen fto it
in a regular cassette player. Listen for +the beginning of
the steady tone that preceeds the digital signal. This tone
will continue for about 20 seconds, then the program begins
tfo load. |If you are not sure the tape is at the beginning,
Just rewind or advance it a little bit until you find a
place where there is no steady tone, then move back to the
start of the tone. Now plece it back into the 410 recorder
and reset the counter to zero since you now know this is the
right place. |f the tape lcads from here...great. Remember,
SAVE each program as you get a successful LOAD on another
backup cassette. Prototype sys to remind you to write down
the number your Tape pleayer shows where each of these 14 (12
for 16K users) examples start. This would be a good habit to
develop when using anycne's cassette based program.

2) You can "guess" at the correct spot by going back
forth until you get lucky, but that is very frustrating!

Don't forget, if any program doesn't load properly, you will
find backup copies on the reverse side of the cassette. |f
the program STILL doesn't seem to load properly, try another
recorder (perhaps at a store or a friends house). If you are
so upset at the darn thing you want to buy a disk drive,
send it back for a prompt (| hopel!) replacement to:

Educational Software

4565 Cherryvale Ave

Soquel, Ca. 95073
(408) 476-4901

and



= 16k Users =

| haven't forgotten you. All programs on this tape
excepT the two wutilities will run on your machines. The
utilities are very nice, but not necessary, so just save
Them until you increase your memory size to 32K. Example
5.4, the Playfield editor, is out of order on your tape. It
will be found after example 5.13 (Two players together),
which is the last example that runs in 16K. Finally comes

example 5.14, the last editor, which also requires 32K,

- HOW TO USE THIS MANUAL -

Without the information in this manual, these programs

are rather boring. Only when you understand what is being
shown in the examples will Player/Missle Graphics (PMG)
begin to make sense to you. In fact, after you have written
your first real game or business application you'll feel a

wonderful sense of acomplishment!

\BEEP.-MUNCH,
BEERjuncH

BEENF"UNC H

oy
R

Q jo

As you progress you may find yourself lost on a certaln
sub ject. IMMED | ATELY refer to the FOLLOWING CHART to see
which examples demonstrate the feature 1in question. Note
that | refer to Example 5.1 as 1 since we all know this is
Tutorial #5. When the chart says "others" +this means that
the other examples |isted demonstrate the topic also, but
not as well as those |isted. Here then is



THE FOLLOWING CHART

TOPIC SEE EXAMPLES

General Features of PMG ceccecocsoonss 1,2
Playfields (backgrounds) ecccecececeses 2,4
Color Selection & Pokes ceeeccococcss 5
Memory Area for PMG .ccccceccccccceas 7 +
How to Draw a Player «cceeececccccceee 6,7
Missiles used as a Player .ccceeceeee 9,1
Joystick or Paddle? .cceeceoccccscane 7
Use of Sound with PMG .cccecccccccces 1
Moving Players and Missiles ccoeceoes 1
Size of Players and Missiles ¢ccecees 6
Single/Double Iine Resolution «ceceees 1
How to Animate a Player ..cecececoees 2
Priority seceececsscsscccssccscassccsne 2
CollISIONS coessessccecsssscssssscnnee 2
Two Players as ON€ ceesesoocosccocces |
Complete Game ceceveoccocccccccncnces 2
PMG using STrings ceceeeeocccccsccece 4,14

Poke and Peek Table .ccceescecccceeees Appendix

EXAMFPFLE S. 1

If you are new to the ATARI computer, watch this example

many times and look at It later as each subject s
mentioned. Here Is what you are seeing. First, the screen on
your TV goes black, because | turned off the display

processor, called ANTIC, accomplishing two things:

1) Speeding up the machine by 30%, and
2) Making the background of stars suddenly appear,
rather than seeing them slowly drawn out.

You can compare this to watching the background drawn out In
the next program and choose which method +to use. If vyou

decide to turn off the screen display while YOUR backgrounds
are drawn, here's how:

A,



T

At the point you want the screen to "turn off"

100 ON=PEEK(559):POKE 559,0

««...(PROGRAM CODE TO DRAW YOUR BACKGROUND)

500 POKE 559, 0N

Later 1'll teach you what the correct number for "ON" s,
but you can always just save the old value as | did above.
The number in memory location 559 will have +to be changed

later to allow PMG to work.
@Q/

. S
2 FROCESSORS >

Yes, the ATARI does have two microprocessors. The ANTIC
Is a special one that is used to draw the screen on your TV
or Monitor. |t does both graphics and text. Whenever it s
in use, it "steals cycles" from the main microprocessor, the
6502. This is why the computer is faster when the screen is
blank(559=0).... the main processor runs at full speed if it
doesn't have to stop all the time to allow the ANTIC time to
draw fthe screen.

Are you still in Program 5.1? Good, don't rush ahead.
This is going to take time to explain properly.

The computer has a nice bunch of "stars" on the screen.
Some are red and some blue. This is because when we plot
single points in Graphics 8, the TV can only light up either
a blue or a red pixel on the screen. |f you look real <close
at your tube you will see these tiny pixels of red and blue.
These background stars are called a PLAYFIELD when
discussing PMG. |f you look at the graphics chart on page 53

in your BASIC manual, you'll see that most graphics modes
allow from one to four colors. Modes 9 to 11 have more, but
still only four of the colors pertain to the following

discussion.

When you enter color 1, and then draw out some shapes on
the screen, you ‘are drawing what is called PLAYFIELD 1.
Likewise, if color 2 or 3 is allowed in the graphics mode
you are using, these would be PLAYFIELD 2 or 3. The fourth
playfield is actually color 0, the background color that you
get when you start out in a graphics mode. All of these
colors can be controlled.



| usually set the border +to the background playfield
color so the whole screen appears the same. Notice how the
stars don't actually go to the edge of the screen, but since
the Players can move anywhere, having the border the same
color makes the playfield seem larger.

At last we have two Players on the screen. |t has been a
long winded discussion, but there they are. And, oh my! They
move! Oh, you knew they could? Well, | guess there is no
suprising you. Notice how easily BASIC can move them
HORIZONTALLY across the screen. Now look at the Ilisting for
this program. Notice 5 lines (400 to 440) control the sound
and movement (You ARE going to study the code, aren't you?).
Next, the Players grow in size. This capability also is a
simple POKE of a number, and will be explained later.

Finally our space battle concludes with one ship firing
missiles at another until they both are destroyed and the
example is over. Run the example again until you are sure
what the following mean:

A PLAYER

A MISSILE

THE BACKGROUND
PLAYFIELDS 0 TO 3 r
A BORDER

/SIZE CHANGES
A }~




OuUuUR COMFRFLETE GAME
EXAMPLE S. 2

Rather than talk about some strange ideas like collision
registers now, | thought you would |ike to see and play with
the goal of this Tricky Tutorial, an actual game wusing all
of +the feature of PMG. Now before you begin, please realize
that ocur goal did not include producing a game just |like tThe
arcades. Those are written in machine l|language with special
gicsplay tubes to allow very fine graphics. We just want to
uemonstrate all of the topics you will be learning later in
one program. For the hot programmers in the audience, the
game can be expanded to be quite a lot of fun. As it is now,
it just fits in 16k which was required for our friends with
ATARI 400's (and there area |lot of you out there).

The "rules" of the game are easily changed. In fact,
the first +thing you might do when you finish the complete
lesson is to change the game +to your own specifications.
Most changes will be surprisingly simple. I'l|l offer some
hints when the game is explained at the end of the Tutorial.
Until then, here are my rules:

HOW 70O FrLav THE GaAaME

. Plug in joysticks intc ports 1 and 2. Each Player moves
fils character and tries to score points. One point is scorec
~ach time you "gobble"™ one of the two "Energizer Pellets"
that will appear from time to time. Five points are scored
if you gobble your opponent. This ic done by first touching
The blue recharge zone in the center of +the maze. Your
character will change color and may score by touching the
other Player. |f the other Player touches the recharge zone,
then he can get you and your color changes back to normal.

| started the scores out at three each Just to point
outr that everything doesn't have to begin at zero. The logic
to the game is to balance your moves between going for easy
single pointers and the big score of five points!




That's true, but think of this exciting fact. All of the
basics techniques of real arcade games are Included In *This
little game. The only improvements needed are your own ldeas
and SPEED. Arcade games are written In machine language
which accounts for the speed. The ideas are up to you!

Notice the way the characters move. They are slow, yet |

am moving them with machine language routines (these will be
explained later). What slows them down is the Basic language
needed to call them. Also, notice what happens when the
characters Touch the walls of the maze. After you have a
real Idea of what features are in the game, run example 5.3
and we'll begin the lesson.

EXAMFPFLE S. 3
PLAYFIELDS

This example is so simple to understand that my daughter
even helped me write It. The basic idea | already mentioned
above, but I'll repeat myself just this once (or twice). The
stuff you see on the screen that Is not a Player or Missile
is called PLAYFIELD. Playfields are created by plotting
points using the PLOT and DRAWTO commands, or by direct
POKEing of data into the memory area that 1is displayed on
tThe screen. You should already be familiar with PLOT and
DRAWTO from your BASIC manual. |If not, read about +them 1In
the manual and then come back.

PRESS 1 on your keyboard and plug in a joystick Into port
#1. Move the joystick around to draw color 1 on the screen.

Now PRESS 2 and draw with color 2. PRESS 3 and do the same.
Finally PRESS 0 and draw with color 0. Notice that color 0
seems to erase rather than draw, but | assure you It 1Is
drawing. Think about I+. Color 0 draws with the background
color so when it is plotted any other color, of course, it's
changed (1 know this was obvious to some of you).

| wanted to show you the playfields. Playfield 0 1|is the
background color; Playfield 1 Is whatever Is drawn with
color 1, etc. Page 53 of your Basic manual shows which
Graphics modes allow which playfields. Although very simple,
this example Is Iimportant for you since you must know which
playfield you are testing for when you wuse +the <collislion
registers discussed later.



A NOTE ON COLORS -

Throughout all of these examples, If you don't like +the
colors being wused, please change them to match your TV. |
have several sets that all show the colors differently, so
some of these examples may look strange to you. Here is how
to change the colors:

The correct value to POKE 1is:

COLOR * |6 + LUMINANCE

where color is a 0 to 15 and luminance Is from 0 to 14, in
even numbers.

Look within any example you want to change until you find
the correct number being POKEd and place your color choice
In the POKE statement.

I‘EE>(FNF1F°L:EE 55-"t4}

R plAYFIELD
PEDIToR

You probably know that any program, whether for a game or
a business application, will need a background. The
exception is a text-only program which would seldom need the
use of PMG.

Let's say you want a space game with mountains, enemy
bases, a few ships on the ground fto shoot at, and maybe even
some trees. These need to be plotted on the screen before
the game can begin. The normal method Is to use graph paper
and hand calculate each point to be plotted. WOW! That is
the hard way! Feeling Insplired, | thought | would whip up a
little editor to help you. Here's how to use it.

Because this program requires 32K to run, it is the next
to last program on the cassettes. For disk users, it Is in
the same order we have been discussing.

10



When the program has been loaded, disk users may press
"L" and then "D" to bring In a previously saved drawing as a
test. You will notice a flashing dot, or cursor, on the
screen. This Is the point that Is being drawn as vyou move
it. You can choose between playfields 0 , 1, 2 or 3. First,
find out how many Playfields you are allowed In the Graphics
mode you want to use. For example, if your program wuses
Graphics 5, you have all four colors to work with; in
Graphics 6 you only have +two. Press the number of the
Playfield color and use the cursor keys(don't press CTRL)
to move the cursor. Remember, to erase, you plot 1in the
background, color 0. Draw out a building or spaceship.

When done, the ediftor allows you save the shape two ways:

To save the shapes for future use and modifications vyou
may press "S" and then "T" or "D" for tape or disk.
When done, the editor allows you save the shape two ways:

To save the shapes for future use and modifications you
may press "S" and then "T" or "D" for tape or disk.

Tape users be sure and record the location on the tape
where The program starts so that you may find the data
again. Disk users will always find the data saved under the
same name on the disk, PFDATA, so if you want to keep the
shapes use the rename command, "E", FROM DOS, +to name the
data something more meaningful.

To use the shapes in your program, vyou will need a
simple subroutine. Look in the program code for this example
to see a very sophisticated way to handle the data using

strings. Go ahead and copy parts of it for your own use.

Before presenting the code, let me remind you what we are
doing. Each <color of your shape needs +to be plotted

separately. Also, you will probably want to plot the shape,
for example, a tree with some ground around it, at several
points in The background. Finally, many other shapes |ike

men, spaceships, and planets, must also be plotted.

To get the data for your shape, just press SELECT and
wait for 10 seconds. The ftext area of the screen will start
presenting DATA statements that are the points to plot. The
upper left corner of the square that limits your shape, if
colored, would be 1,1. These numbers represent first an X
value, and then a Y value of a standard grid system the
ATARI normally uses for Graphics. To see all of the data for
each color, press START each time the data stops. [|If you
have more than 199 points in your shape of any one color,
the program will say "TOO MUCH DATA"™ . | could only fit in
that many points, so go back and change a few to a different
color. It won't happen for most shapes.

The numbers of the DATA statements should be changed to
fit within your program. You may want trees to always start
at 5000; buildings at 6000, etc.

11



Here is a sample program to use with the Playfield Editor.

400
410
420
430
440
500
510
600
610
700
710
800
1000
1010
1020
1030
5000
5010

5020

6000
6010
7000
7010
7020

7030
7040

GRAPHICS 5

SETCOLOR 0,12, 4
SETCOLOR 1,3,2
SETCOLOR 2,13, 1
SETCOLOR 3,8,6
REM***DRAW THE TREE

COLOR 1: X=50: Y=24: GOSUB 1000
REM***DRAW THE TRUNK

COLOR 2: X=50: Y=24:G0SUB 1000
REM***DRAW THE SUN AND RAYS
COLOR 3: X=30: Y=15: GOSUB 1000

END
REM***P| OT ROUTINE
FOR I =1 TO 80

READ A,B: IF A =999 THEN RETURN
PLOT A+X,B+Y: NEXT |
REM***DATA FOR TREE

DATA 2,2,3,3,4,4,5 ,8,8,9,9,8,9,7,9,6,

395 636,77
9,5,9, 4,9,3,9,2 9,1,9,0,9
DATA -1,9 -3,9,-4,9,-5,9,-4,8,-3,7,-2,6,-1,
5,0,4 3 999, 999

REM**¥DATA FOR TREE TRUNK
DATA 2;10;3;10,2,11;3,11,2,12,3,12,999,999
REM***DATA FOR SUN AND RAYS

4, - 4, =6y 3y =lyZy=8,1,—9

DATA 0,0,1,-1,2,-2,3,-3, 4,-5,4,-6,

DATA 0,-10,-1,-10,-2,-10,-3,-9,-4,-8,-5,~-7,-6, -6,
=546, 4,-5,-3,-4,—2,-3,-1,-2,0,-1,0

DATA 3,1,4,2,5,3,6,4,7,5,8,6,9,7,10,8,5,-1,6,0,7,1,8,2

DATA 6,-3,7,-2,8,-1,9,0,10,1,11,2,12,3,13,4,6,-6,7,-5,
8;-4;9,-3,0,2,1,3,2,4,35,5,999,999

12



EXAMPLE S. =S
COL ORS

PO ES

Tape users may have this program cone on the screen
looking very strange. Just press reset and type RUN tfo

correct the screen

ITHIS 15 How You-
CHOOSE You
CHARACTERS,
COLOR.

We talked about how +to <change +the <colors of +the
playfield (708 to 712) a few pages ago. The following
uttlity will allow you to pick the colors directly without
calculating the number to POKE. The POKEs |isted, however,
are for the Player colors which live in different locations
(704 to 707 + 711). The color value to place into any of the
locations still uses the formula COLOR * 6 + LUMINANCE.
Beyond this, +the real purpose of +this example 1is +to
Infroduce you to the Players and Missiles.

Look at the stripes of color on the screen. Each one s
hal f a Player. The bofttom half iIs "turned off" so that you
can see the color information.

\

WHAT GOOD ARE STRIPES OF COLOR? ‘

13

-



Good question! The stripes are only being used to best show
the <colors of the Players as you change them (1'll tell you
how in a moment). You can pick which of +the elght plixels
(little squares of color) across each stripe will be
colored. In the next example we will select certain pixels
and create a wuseful shape. For now the top half of each
Player ana Misslle is tfurned on (all 8 pixels colored) and
g?e) bottom half Is turned off(all elght pixels POKEd with
s).

Are you wondering which Player is which? Player 0 is on
the far left and Player 3 Is on the right. On the far right
Is the corresponding Missiles 0 to 3 +that work with each

Player. I know that calling the first Player by "#0" 1Is
confusing, but it is required by the ATARI hardware and
software. Soon you'll see how to place these shapes

anywhere on the screen you wish.

How To Use This Example

Plug a joystick into port 1. As soon as you move your
Joystick an "¥" wil| appear. Place the asterick over any of
the Players. Hold the trigger button down and move +the
joystick up to Increase the color value, or down to decrease
It Notice +that the numbers you POKE are the same for any
given color. This means If you find a red that you lTke with
a value of 45, you can POKE 45 Into any of +the color
registers from 704 to 712 and get red for that Player,

Missile, or Playfleld.

When you have one Player color just like you want I,
move the asterick to another Player and change I[t's color,
too. After all four Players are done, you can set *the
background color by moving the asterick to the far right
side and pressing the trigger. Notice how the background
color changes the appearance of the player's colors. Now
use these color values in POKE statements within your own

programs.

A few of you by now have tried to change the <colors of
the Missiles. We have not yet mentioned any color registers
for the Missiles. That's because there aren't any! Each
Missile takes on the color of the Player with the same
number. Here is a review of the colors and registers:

REGISTER USED FOR
HXXXXERRRKX KREXRKRRXRKX
704 Player 0 and Missile 0
705 Player 1 and Missile 1
706 Player 2 and Missile 2
707 Player 3 and Missile 3
711 Player 4 (all Missiles together)

14



What? Player 4? Yes, you must know by now that the ATARI
Is full of suprises. It furns out that the Missiles can be
combined +tfogether into a 5th Player (#4). We will come back
to how this Is done later. For now, press SELECT. The
Missiles will now come together and take on the color POKEd
Into 711, To use +the Color Editor on Player 4, just move
the asterick to It and use the trigger. Pressing SELECT
agaln would toggle the 5th Player back to Missiles. This
would be a good utility to use whenever you need to choose a
color.

[/TUE DIFEERENCE BETWEEN A
PECE)'TTED SHAPE AND A PLAYER

MISSILE 1S ASTONISHING.

M) /

wWwWHICH IS THE FPLAYERY

Run the next example, (5.6), and look two of my Robot
Prototype's cousins on your screen. Your mission, If you
choose to accept It, Is to figure out which Is a Player and
which Is plotted, ie., drawn on a Playfield. Really try hard
to see the difference

EXAMFLE S. &

15



To solve this "Great Mystery" use a joystick In Port 1
to move each shape. The Player moves WITHOUT PRESSING the
TRIGGER. The playfield shape moves by PRESSING the TRIGGER.

I have to admit that | cheated 1In +this example. The
Player is being moved with a small machine |anguage utility.
However, you will soon see that even BASIC can move a Player

pretty fast vertically and Immediately horilzontally.

An infteresting experiment to do with this example is +to
change the color In the program of the Player (find a POKE
704,with a number after 1t) and then move the Player exactly
on top of the plotted shape. If you move two plotted shapes
over each other, and then move them away, you willl have +to
redraw them both to remove the holes left In thelr shapes!
The effect Is even better [f you break +the program and
change the color of one of the Robots. Aren't Players
great?

EXAMPLE =. 7

CREATING FPLAYERS

Press OPTION to get to the next example, 5.7. This will
begin the tftechnical part of this Tutorial.

First of all, notice that the last picture Is still on
the screen. Do you know how this happened? It's very simple.
With playfields, when you plot a background on the screen
they stay on until erased with either new plotted data, or
usually Just another Graphics call. You loaded In the next
program while a playfield --the Robot-- was still on +the
screen, SO It Is stl1ll there when this example starts to

run. This process Is similar to adding 32 to a graphics call
as explained in the BASIC manual.

You can create your backgrounds with one program and
then have the main loop of your program load in separately.
This allows large programs to fit into smaller memory sizes.
Players will stay on the screen, too.

Again, plug in
Joystick #1. You can
move the shape on the
screen in all directions,
including diagonally.
This routine s very
important to you since It
will tTeach all of the
following basics:




IMPORTANT STUFF TO LEARN
FROM THIS EXAMPLE

1) How to create a Player shape
2) How to move that shape up and down (vertically)
3) How to move It sideways (horizontally)

This example can be copied Into ANY program you want and
just modified In a few places to get a Player moving around
on your own design of a game or other application. It should
be saved to a separate Tape or Disk and even renamed as a
utility for Disk users.

10 GOTO 140

20 REM

30 REM *%%¥%% MAIN LOOP ¥X¥XXX¥¥Xx
40 REM

50 ST=STICK(O)

60 X=X+(ST=6)+(ST=7)+(ST=5)-(ST=9)-(ST=10)-(ST=11)
70 Y=Y+(ST=13)+(ST=9)+(ST=5)-(ST=6)=-(ST=10)-(ST=14)
80 GOSUB 330

85 |F PEEK(532/9)=3 THEN POKE 764,12:RUN "D:EX5.8"
90 |F PADDLE(0)=228 THEN 110

100 X=PADDLE(O)

110 POKE 53248, X

120 GOTO 50

130 REM

140 REM PMB=PLAYER MISSILE BASE ADDRESS IN PAGES
150 REM (256 BYTES PER PAGE)

160 POKE 704,40

The examplie starts out skipping to Iine 140 to do some

standard setups that will always be required. Line 160 you

should recognize as setting the color of Player 0, which we

7:;I +huse for the shape (Spaceship?). Line 170 to 190 look
e is:

170 PMB=PEEK(106)-16
180 POKE 54279, PMB
190 PMBASE=PMB*256

These lines reserve space In memory for Player and Missile
shapes to be stored. This topic alone could take pages to
explalin, but | will give you only enough information to make
It work. <.
\\\\\_.iii:jifzzzszi %%EEE%;::EEEI
JU

17



Players & Missiles are created on the ATARI by something

called DMA. DMA means Direct Memory Access. All +the big
computers have It. Apples don't! This process simply means
that If you have "turned on" the DMA, the computer will take
whatever shapes It finds at a place In memory starting with
PMBASE and put them on the screen. They will be located
horizontally (X direction) by the values stored 1In +thelr
horizontal registers (53248 to 53255). Thelr size In the X
direction Is controlled by values stored In size reglisters
(53256 to 53260) . Thelr slze In the Y direction Is

controlled by two factors. First Is how many pixels you have
turned on for thelr shape. Second, Players may be created
where each number in memory Is put on the screen as either
one pixel (single |Ilne resolution) or two (double Iline
resolution). Thelr locatlion on the screen In the Y direction
I's simply controlled by where In the stripe you turn on
pixels. :

WOW... I'™™M Tired

That was a lot! There's even more to come, so take a
break If you need tO.ecose

Back to lines 170 to 190. Line 170 takes the value In
location 106, which is the location of the top of user
memory (given In number of 256 bytes pages), and subtracts a
certain amount of pages. This number Is +then POKEd Into
54279. That will tell the computer where the Player data
starts. Finally, line 190 takes PMB in number of pages and
converts +the value to a regular memory location, PMBASE. We
will use this number a lot. The number | subtracted, 16,
will change depending on the Graphics mode you are using. .
Choosing the amount to subtract Is explained In EX5.9.

18



210 X=125:Y=100:YSAVE=100
220 POKE 53256,0

Next, in llne 200, we POKE 53277 with a 3. This memory

location I's called GRACTL. Poke it with a 1 for Missiles
only. Poke with a 3 for Players and Missliles.
In line 210 are the Initlal X and Y positions where you

want the Player on the screen.In 220, the slze of Player 0
Is set to normal, which Is 0. If you had just turned on +the
machine, 53256 would have contalined 0 anyway, but since we
are running many programs one after another, thls made sure
the value was correct. The cholces you have for the size
are:

Poke With For

I EE R E R EE &S E ¥ % % % % XX
0 Normal size
1 Double slze
3 Quadruple size
Here are the registers avallable for controlling
Player/Missile slze. POKE wth the approprliate values from

the previous table.

RESISTER PARAMETER
N KKK KKXX KKK KKK
53256 size, Player 0
53257 size, Player 1
53258 slze, Player 2
53259 size, Player 3
53260 size of all missles
To determine Missile size, you'll have to do a little
calculating, but nothing too complicated. Just pick the
desired size for each Missile from the chart below, then add
up the numbers for all four (or however many vyou're using)

and POKE the total into memory location 53260.

For example, if you want a normal Missile 0, a double

Missile 1, a quadruple Missile 2, and a double Missile 3,
you would POKE 0+4+48+64=116.

MISSILE # NORMAL DOUBLE QUAD

K%K KK KX N KK KR N XXX * % % ¥
0 0 1 3
1 0 4 12
2 0 16 48
3 0 64 192

19



230 FOR

Line 230 POKEs 0's
must
stripe first. This may not seem necessary to you.
later examples will
areas while you are watching.
This statement takes a few seconds to do,

Player

reason,
Player

being erased.
delays the beginning of any program that uses
it at the

later examples.
out
Why? To explain we need a chart

thus

best way to speed
programs.

we only
Pmbase+1024 and Pmbase+1280.
of what memory

your
this example

PEEK(106), >

Pmbase+2048__,

Pmbase+1792__,
Pmbase+1536 _
Pmbase+1280__,
Pmbase+1024__*
Pmbase+768__4}

Pmbase b
(POKE intfo

54279)

Look at the chart above marked Single
at the place marked top of
a certain number of pages subtracted
places us at the BOTTOM of the
lines
be explained

Starting

This
was done in
will

some of the

go. This will

it up is to put
This Is demonstrated
had to «clear

looks |ike:

SINGLE LINE RESOLUTION

Top of Memory

Screen Data Area
Depends on Graphics Mode

UNUSED

Player 3

Player 2

—_

Player

Player O

M3 M2 M1 MO

768 Unused
Memory Locations

The Rest of Memory
and Your Program

170 to 190.
Iin EX5.9.

Again,

20

| =PMBASE+1024 TO PMBASE+1280:POKE

Iinto the area where the data for
act to clear out the Players

!

memory,
from the value in
chart.
the amount to

[, 0:NEXT |

the

For +thils

actually erase their
You will

see the junk
and
ite The
front of
For
between

very

memory

694 to 8112 Memory
Locations

8 bits wide -
Each bit lights up
one TV pixel.

2 bits wide each
Missile or use
all 4 as a Player

Line Resolution.
we move down by
106.
This calculation
subtract



" e waWAS,

Now that we have placed Pmbase, go back up in memory +to
Pmbase+1024. The next 256 bytes of memory are the stripe
that holds Player 0. If any of these bytes of memory are not
0, and if the setup POKEs have been made +to +turn on DMA,
then +those non O bytes will light up on the screen with the
color values stored in 704.

To move the shape up or down the screen, you just POKE
non O bytes up or down the stripe of memory. Let's say that
you place Pmbase at 30000 in your memory. Any non 0 bytes
at Pmbase+1030(30000+1030, or 31030) will appear near the

top of the screen and If those same numbers are POKEd into
Pmbase+ 1200, they will appear near the bottom of the
screen.

Continuing with this logic should make 1t <clear what
happens if you POKE numbers into Pmbase+ 1400. You would now
be turning on a shape in Player 1 that would appear on the
screen if +the "setup POKEs"™ were done. Let's finish

discussing the setup procedure.

Lines 240 to 300 POKE the shape into memory, just as we
were talking about above. Understanding lines 250 to 300
will be a real key for you. Here is what they look like:

240 RESTORE 210:CNT=0

250 FOR I=PMBASE+1024+Y TO PMBASE+1280

260 READ B:IF B=0 THEN 310

270 CNT=CNT+1

280 POKE 1,B

290 NEXT |

300 DATA 8,60,126,195,126,60,24,126,165,0,0

The shape is poked into memory with an offset of "Y"., This
says to place the shape Y units down the screen. |f Y=0 then
the shape will be at the top of the screen. A value of Y=252
puts the shape at the very bottom since the shape has eight
numbers that must fit Into the 256 byte long stripe of
memory. In a few lines we will simply calculate where we

want the shape on the screen and use thils routine to POKE i+t
into the right place.

21



The last major hurdle Is the way the data is calculated.
Here 1Is another figure fo help you visualize tThe shape:

FLAYER O

4+8+16=28
24+44B+1 6+T2=62

Prbase+1024 1424441 6+32+64=117
T A DB +BHL b TG =1 2T
Y o 2+44B+16+32464=124
448+ b+32464=1724
_l- B+16+32+64=120
§ 32 =12
Fmbase+1024+Y ¥ B AF32464=124

Top of TV Screen

P54k 2+4+8+16+32+64=126
Number ”,,/f’f””,”1+2+4+8+16+32+64=127
Stripe ::::::::::::::::2+4+8+16+32+64=126

—  —— 2444B+16+32=42
‘ 4+8+146=28
Add 1
—— fdd 2
Add 4
Add 8
———Add 16 , :
v —— Add 32 This Shape
‘it-—————-ﬁdd &4 Has 13 Numbers
Bottom of TV screen Gdd 1928
To create your own shape, you just fill in +the boxes
you want for the shape. Then to get the "TOTAL", you just go
across each row and add up the value for any box that is
filled In. When you poke these numbers into memory, your

shape appears on the screen!

Back to the program code. Line 310 is what finally furns
on the player. The correct value here is obtained by adding
up the options you want from the following:

FOR ADD
FRRRRNRNXHXKHNHHKMHRNRERR LR R R KRR KKK KKK KKK KKK
Wide playfield coceceesscccccaccccccs 3
Standard Playfield cccecocecocccaccns 2Choose 1 Only
Narrow Playfield cccceccesscccccsccns 1
DMACTL (559) T n on Missile DMA wevevenevueanens 4
Turn on Player DMA ..ccccecccccccanse 8
Double Line Resolution ceececceccccs 0
Single Line Resolution .cececccccans 16 Choose 1 Only

Turn on Main DMA cccceccocoosscccoscscsse 32
22



In this case we want Standard playfield (2) + Missile
(4) and Player (8) DMA plus the Maln DMA (32) and Single
line Resolution (16) for a total of 2+4+8+432+16=62. This |Is
why we poke 559,62.

That ends the Setup

You should be able to use this same setup code for most
PMG programs you do. Just make the few changes required by
things |lke resolution and playfield size. Note - single and
double line resolution will be dliscussed In example 5.10
coming up soon.

The program now branches to the main program loop at
ITne 50, which reads joystick 0. Lines 60 and 70 increment X
& Y from their initial positions set In line 210. The only
thing left for the program to do Is move In +the X and Y
directions. The X direction iIs easy. The ATARI has bullt In
position registers for the X direction. In Ilne 110 we just
poke the new X value into that memory location, 53248.

Here are the X directlion registers

REGISTER # MISSILE/PLAYER
KK KKK KKK X KKK NN KR

53248 PO

53249 P1

53250 P2

55251 P3

55257 MO

2253 M1

53254 M2

53255 M3

To move In the Y direction we have to do something similar
to the way the playfield Robot was moved In EX5.6.
Fortunately, we don't have to move as many bytes of memory
around. That robot had almost 200 data points! Moving our
player Is as simple as poking in eight numbers into memory.

310 POKE 559,62

320 GOTO 50

330 REM

340 REM *¥¥x%¥ UP/DOWN MOVE *%%%%x%x
350 IF YSAVE=Y THEN RETURN

360 IF YSAVE<Y THEN 430

370 RESTORE 210

380 FOR I=1 TO CNT

390 READ B

400 POKE PMBASE+1024+Y+1,B

410 NEXT |

420 YSAVE=Y :POKE PMBASE+1024+Y+CNT+1, 0 : RETURN
430 RESTORE 210

23



440 FOR 1=1 TO CNT

450 READ B

460 POKE PMBASE+1024+Y+1-1,B

470 NEXT |

480 YSAVE=Y:POKE PMBASE+1024+Y-1,0:RETURN
Look at lines 340 to 480. First, in 350, I  compare the
current value of Y to the last. If It is the same, we don't
waste our time and just return. Line 360 says, "If Y Is now
bigger than last time, go to the move up In memory routine
at 430, otherwise move down". Remember, as Y Increases 1In
memory, +the shape appears to go down the screen. This comes
from the way the ATARI does it's coordinate system and s

explained on page 47 of your Basic manual.

Both the routine to move up, and the one to move down,
are similar to the original one we used to POKE the shape
into memory. All we are doing is POKEing the same shape down
or up by one byte in memory.

PLAVER MISSILES

=/
v BEALIY MOVE: X P

NOW WE ARE GETTING HOT!

24



IMFPFORTANT FOINT!

When you move the shape you repoke 7 of +the 8 numbers
that are currently in memory and poke in one number in a new
location. That last number Is not changed because you have

moved by one byte. That is why the 0 Is poked into that
remaining location in line 420 or 480. Were the 0 omitted, a
trail of unchanged bytes would be left on the screen,

MoViNg MOVING
0P

DOWN

| f you are lost by all this there is only one way to figure
it out. Stop the lesson now, break the program, and start
making smal l changes to where and what numbers are poked
into memory. Soon you will say to yourself, "That's what The
(old/not so old) PROFESSOR was trying to say!

THAT'S IT?

You now have most ot the basics to place a player on the
screen and move It around. The earlier playfield editor
discussed how to create the background for your program. Now
all we need are the small details that tie all of this
together.

HEY! WHAT ABOUT THE PADDLES?

Oh yes, | forgot to tell you why +the move 1In the X
direction was so slow. The joysticks we are using, combined
with the program code, only allow X to change by one value
at a time. Paddles, on the other hand, can instantly change
the value they return from 0 +to 228. Plug 1in a paddle
controller, If you have one, and now *try moving the shape
across the screen. It will be instantaneous!

25



EXAaMPLE S.8

This simple example takes the same basic routine as in 5.7,
but starts to make it look like a game. Finish it if vyou'd
like, it's good practice. There are three things you should
learn from this example.

First, notice the stripe of randomly flickering "junk"
on the screen when the program first starts. This is caused
by only partly turning on the DMA as discussed above. As

soon as all the setup is complete, the exact shape appears.

Second, look at the program |ist and see the way the program
is structured. When you write your own codes, | suggest you
do something like this. The program just goes fo several

subroutines that

1) Draw the mountains
2) Draw the stars
3) Set up Player 0 as shown in the utility above

4) Main Jlcop routine for the movement and/or
scoring
Notice that | use sound in the loop. It's easy to do if
you spend a |little +time in practice. This simple

structuring is used in many arcade-style games.

Third, 1'll show you one of the +two machine Ilanguage
utilities within the program. Both are short and can easily
be transferred to you own programs. This one is used to
move only Player 0. It will read Joystick 0 and move the
data in the Player 0 stripe accordingly. You must use
single line resolution Players, as we have been doing so
far. (That means the shape is at PMBASE +1024 to PMBASE
+1279) Copy the needed lines to a separate file wusing the
LIST command. Then you could enter it as needed. Don't

forget to delete the other lines of the program first. The
lines you need te keep are just 40,90, and 130.

Heres the routine:

E WD S R R

WE B AL EER b b ORRED R RN A
SREET T B R L T e e T R
AOECE e ERER e o E R L ST D R

26



EXAMPLE S5.%9
A GOoOOF—UF !

IF YoU LOCATE YOUR DATA POORLY,
ALL KINDS OF -THINGS CAN GO WRONG.

o p— ol

When you run this example notice our old friend the
Robot. He's back! However, as you move him around (using
the same machine language routine as +the last example),
there's some ' junk'! on the screen.

The time has come, my friend, to explain how to position
the Player/Missile data area within memory. Look at the
program listing for example 5.9. Do you remember how we
obtained the value for PMBASE? |+ worked |like this:

100 PMBASE = (PEEK(106)-16) %256

On page 45 of the BASIC manual, you'll see a chart
showing the amount of RAM (memory) needed for each graphics
mode. As the next figure shows, you don't want the data for
the Players and Missiles overlapping the data placed on the
screen. Even worse would be to write over the DISPLAY LIST.
That is what happened to tape users with example 5.5.

When they reran +the program by pressing RESET, +the
Operating System fixed the display list. In this
example, look at the Player data being moved by the machine
language program within the Player stripe. See if you can
understand the term 'wraparound' by moving the Player up

until it comes back from the bottom. This will also work
sideways. The data that is being written to the screen area

will also 'wraparound'.
27



In example 5.5, when | explained the method, | said that
the number 16 changes depending on your program. Let's
discuss why. The Ilisting you are looking at will only use
16 as the memory amount to subtract because +the Graphics
mode being used requires 1K or less of memory. As another
example, 5.8 POKEs memory back 40 pages because Graphics 8
requires more memory.

Here's a drawing fto help our discussion:

OOP'S WRONG DRAWING .ceececccocns

CONFLICTS
EBetween
PLAYER MISSILE DATA AREA
and '
SCREEN DATA AREA??

SCREEN DATA AREQ/,//////
256 to 8112

bytes

PLAYER DATA AREA
1k or 2k \\\\\\\\

CONFLICT! ====3 Junk on Screen!

Remainder
of Memory

28



The easy way to avoid putting Player data where it doesn't belong is to
use the following chart. Single Tine resolution players always must start on
a "1K boundary." This simply means subtract from the value in 106 either 8
pages, or 16, 24, 32, etc. Remember, a PAGE is 256 bytes (1/4K). When we
discuss double Tline resolution players (soon, soon), you must start the data
on a 1K boundary, so subtract 4, 8, 12, 16, etc.

—
GRAFHICS MODE APFROX. # MEMORY LOCATIONS USED SUETRACT THIS #
FROM LOCATION 106

0 9922 16 ¢ 8)

{ 674 16 ( 8)

2 424 16 ( 8)

3 434 16 ( B)

4 694 16 ( 8)

] 1174 16 ( 8)

b 2174 16 ¢ 12 )

7 4190 24 ( 20)

8 8112 40 ( 36 )

9 8112 40 ( 36 )

10 8112 40 ( 36 )

i1 8112 40 ( 36 )

IT"S A BIRD
IT"S A PLANE
IT " S. - -DOUBLE LINE
RESOLUTION

EXAMPLE S. 10

This simple example Introduces you to +the SQUIGILY

MONSTER. I+ will show itself in two sizes. The smaller size
Is called single line resolution. This Is the way we have
previously set up our Players. Simply put, each number 1in

the data area for the Player Is placed on the screen as one
line also. The data area has 256 bytes avallable, which as
you saw in the Color Changing example, more than covers the
screen. If you look closely at the screen you can see the
individual pixels.

The other way you can set up your Players and Missliles

I's called double line resolution. This uses only 128 bytes
per Player; meaning, to fill the screen, the computer will
place TWO Iines on the screen for each number In I+ts data

area. This makes the shape appear thicker.

Press the SELECT button for the single I|ine Player and
the START button for double line.

29



Double Ilne Players are set up similar to single Ilne,
but with these differences:

1) Instead of adding 16 to the total value to POKE Into
559, add 0 (see previous chart). This tells +he computer
where to look for the data for each Player and Missile. This

example switches between the two resolutions wi+h just this
one POKE.

2) Instead of POKEing the shape of the Players .into
PMBASE+768 to PMBASE +2048 as the above filgure showed, you
place the data into PMBASE+384 to PMBASE+1024. This means
that we have to look at .... ANOTHER FIGURE:

DOUELE LINE RESOLUTION

Top of Memory

Peek (106) e
Screen Data Area 694 to 8112 Memory
Locations
Depends on Graphics Mode
Unused
Pmbase+1024 >
Player 3 8 bits wide -
Fmbase+896 —r Each bit lights
Player 2 up two TV pixels.
Fmbase+768 >
Player 1
Pmbase+&640 >
Player ¢
Pmbase+S512 > 2 bits wide each
M3 M2 Mi MO Missile, or use
Pmbase+384 » all 4 as a Flaver.
Z84 Unused
Memory Locations
Pmbase 18
{Poke into 54279)
The Rest of Memory
and Youwr Program.

The decision on which resolution to use depends on how
small you want the pixels to be in your figure and how much
memory you can afford to use for +the shape data. I  have
given you several of each type in these examples, so It's up
to you. Have fun!

30



ANIMATION CAN BE AS SIMPLE
AS ALTERNATING SHAPES

.vj|.
(OR

®v

@
N

~

EXAMFLE S. 11

Qoo
2 L\. &N

There isn't too much more to learn before we can discuss the
game. Next, we'll animate the |ittle Pacman(im) +type shape
(note: we refer to a general type of shape and are not trying to
infringe on others rights, end of legal talk). Run example 5.11.
You'll see the memory area for the shape cleared out, then the
shape appears. |t doesn't look much |like a Pacman(tm)? No mouth?
Push the joystick!

The shape looks better now that it is moving. | could have
used three or four shapes to open and close the mouth, but two
shapes:-is simple to explain. |f you add another shape with the
mouth just slightly open, you'll see smoother action. To see the
two shapes as they change, just give a series of quick pushes on
the stick. What you are seeing is two Players, but only one at a
time. Let's see how this is done.

10 FOR 1=1 TO 8:POKE 53247+1,0:NEXT 1:G0TO 240

20 FOR |=PMBASE+1024 TO PMBASE+1792:POKE |,0:NEXT |:RETURN

30 REM *%¥x*P| AYER SETUP *%%¥x

40 GRAPHICS 7:D=20:E=50:POKE 710,0:POKE 712,0:POKE 704, 41:
POKE 706,41 :POKE 559,62

45 COLOR 2:PLOT 1,57:DRAWTO 159,57 :PLOT 1,65:DRAWTO 159,65

50 A=PEEK(106)=-32:POKE 54279,A:POKE 204, A+4:POKE 203,0:
PMBASE=A%256 '

60 POKE 53277,3:X=150:POKE 205, 120:POKE 53256,0:POKE 53250, 150:
POKE 53258,0

70 GOSUB 20
80 RESTORE 110:Y=150
90 FOR |=PMBASE+1024+Y TO PMBASE+1209:READ B:IF B<>0 THEN

POKE |,B:NEXT | 31



100 REM **x¥* DATA FOR PACMAN1 *%%%x

110 DATA 28,62,119,127,254,252,

150 RESTORE 150 248,252,254,127,126,62,28,0,0

130 FOR |=PMBASE+1536+Y TO PMBASE+1792:READ B:I|F B<>0 . THEN

POKE |,B:NEXT |

140 REM **%x%¥ DATA FOR PACMAN2 *¥x**% ;

150 DATA 28,62,118,255,255,255,255,255,126,126,62,28,0,0,0,0

160 POKE 559,62

170 REM

18u REM *%%¥X¥MA|N LOOP ****x¥x

190 REM

210 ST=STICK(0):S=PEEK(53279)

220 IF S$S=3 THEN POKE 764,12:RUN "D:EX5.12"

222 |F ST=15 THEN 210

225 X=X+(ST=7)-(ST=11) :POKE 53248, X:POKE 53250,0:FOR J=1 TO 50:

NEXT J

226 POKE 53250, X:POKE 53248,0

230 GOTO 210

240 GRAPHICS 17:POKE 712,69:POKE 710,19

250 ? #6;"ANIMATION OF SHAPES "

260 #6;" IS AS SIMPLE AS "

270 #6;"SWITCHING BETWEEN Bt

280 #6;" TWO PLAYERS AS YOuU "

290 #6;"MOVE AROUND.....use "

300 #6;"YOUR JOYSTICK TO SEE"

310 ? #6;"THE pacman(TM) MOVE!"

320 FOR I=1 TO 3000:NEXT [|:GO0TO 40

330 POKE 764,255

Look at the program code for example 5.11. Notice 1In line

50 the memory setback is 32, not 16. This Is the amount required
when using Graphics mode 7. In Iine 60 POKEs, are made to both
the horizontal location and size of Player 2. Yes, Player 2! You
don't have to use the Players in any particular order. Lines 120
to 150 just POKE in the data for a second shape into the correct
area for Player 2. In |ine 225, POKEs are made to place Player 0
at X and Player 2 at 0, which is off screen. Finally, at |Iline
226 Player 0 Is moved off screen and Player 2 is placed at X.
There is a delay on line 225 to allow you to see the "switching"

of shapes.

) ) o) o) )

Does that seem hard? All you have to do to create additional
Players lIs:

1) Poke Into the correct memory area the data for their
shape

2) Poke the size you want Into the size location in memory
(optional,since 0 Is a default if you forget)

3) Poke the horizontal location (X) into the horizontal
memory location.

4) Have funl!

32



To animate a shape, just alternate two or more shapes at the
same spot on the screen. The different shapes will seem +o
blend into a single, animated shape!

A note on animation is in order. Remember the Robot
example where | asked "Which Is the Player?". | hope you can
now see the power of using Players for your shapes. To plot
and erase this shape from BASIC would be very,very slow!

FPRIORITY AND COLLISIONS
EXAMFLE S. 12

faLL|5:aN5

These two topics were saved for last. They're not
difficult sub jects, | just wanted you to get a lot of
experience first with the basics. Example 5.12 takes +the
beginnings of a game that we did In example 5.11, and adds

collision with some energy pellets in order +to allow the
creature to "eat" the pellets. When It crosses over the
"walls" in the tunnel, the shape will seem to be in front of
the walls. At the end of +the +tunnel, +the shape will be
Inside, or behind the wall because | set the priorities so
some colors act differently than others. Here's how | did
It!

Most of this program is the same as the other examples.
One of the nicest things about using Players and Missiles Iis
writing a program, and then making only slight changes to
use It for a completely different purpose.

Line 10 POKEs all of the horizontal location reglisters
to 0. This is not used in this program, but makes sure that
all previous Players are off screen. Remember, just because
we loaded 1In a new program, doesn't mean that old Players
will disappear. They stay there until removed! This can be
useful in programs that have multiple parts to them.

33



10 FOR I=1 TO 8:POKE 53247+1,0:NEXT |:G0TO 270

20 FOR |=PMBASE+1024 TO PMBASE+1536:POKE 1,0:NEXT |:RETURN

30 REM *%*x¥%¥pP]| AYER SETUP **¥¥x

40 GRAPHICS 7:POKE 710,0:POKE 712,69:POKE 704, 41:POKE 706,41
POKE 559,62

45 POKE 708,103:POKE 752,1:POKE 709,139:POKE 710,100

47 COLOR 1:FOR X=20 TO 150 STEP 30:PLOT X,61:PLOT X+1,61:NEXT X

50 COLOR 2:PLOT 1,57 :DRAWTO 159,57:DRAWTO 159,66 :DRAWTO 1,66:
DRAWTO 1,57

52 PLOT 157,57 :DRAWTO 157,66:PLOT 158,57 :DRAWTO 158,66

55 COLOR 3:FOR J=1 TO 4:FOR K=1 TO 5

56 T=K+J*30

57 PLOT T,57:DRAWTO T,66:NEXT K:NEXT J

Lines 47 +to 57 plot +three different parts +to +the
background. The first part Is the "energy pellets",le. small
dots, that the Pacman(+m) will "eat". These are plotted In
Color 1 (location 708). Next, lines 50 & 52 draw out the
rectangular |ines that our Imagination will call walls of a
Pacman(tm) tunnel. The walls are drawn in Color 2. Lines 55
to 57 draw the walls that impede the character's progress.
These walls are plotted In... You guessed 1It.... Color 3.
The fact that different things are drawn In different colors
Is critical to the game. These locations, called COLLISION
REGISTERS, are checked by the ATARI to see [If something
(li1ke a Player) has touched something else (like a Color 1
wall). Notice that Colors 1 to 3 may all be the same, Il.e.,
red, but the different walls must be drawn with different
COLOR statements for colllsions to work.

60 A=PEEK(106)-32:POKE 54279,A:POKE 204, A+4:POKE 203,0:PMBASE=A%256
70 POKE 53277,3:X=50:POKE 205,120:POKE 53256,0:POKE 53250, 150
80 GOSuUB 20
90 RESTORE 120:Y=150:ERAX=-10
100 FOR |=PMBASE+1024+Y TO PMBASE+1280:READ B:IF B=999 THEN 110
105 POKE 1,B:NEXT |
110 REM *x*x¥% DATA FOR PACMAN1 X*¥¥¥x
120 DATA 28,62,119,127,254,252,248,252,254,127,126,62,28, 999
130 RESTORE 160
140 FOR |=PMBASE+1536+Y TO PMBASE+1792:READ B:IF B=999 THEN 150
145 POKE 1,B:NEXT |
150 REM *x*x%¥ DATA FOR PACMAN2 X**¥xXX
160 DATA 28,62,118,255,255,255,255,255,126,126,62,28,999
17v POKE 559,62
180 REM
1Yu REM **¥%¥XMA|N LOOP *X¥xxX
200 REM
205 POKE 532/8,1:REM CLEAR ALL COLLISION LOCATIONS(SO THEY HOLD 0'S)
220 ST=STICK(0):S=PEEK(53279)
230 |IF S=3 THEN POKE 764,12:RUN "D:EX5.13"
240 X=X+(ST=7)-(ST=11):POKE 53248, X:POKE 53250,0:FOR J=1 TO 50:
NEXT J
242 |F PEEK(53252)<>0 THEN GOSUB 1000:GOTO 220
245 |F X>220 THEN X=40
250 POKE 53250, X:POKE 53248,0
260 GOTO 220
34



In Iine 205, we learn a new *frick. To go with +Those
Collision Registers, there Is thls location, called HITCLR,
at 53278. |t does just what it's name Implies... When you

POKE It with a 1, it will clear the other Collision
locations so that they read 0. |If +this 1Isn't done, then
after a colllision occurred, the approplate collision
reglister would be set and stay that way. You'll see all
This In action In a moment. Here's a |ist of all the
collision reglisters:
Memory Location Type of colllsion
FH MM KK R KK KRKHH KN KK %K KK KKK HHHKKX

53248 Missile 0 to Playflield

53249 Missile 1 to Playfield

53250 Missile 2 to Playfleld

53251 Missile 3 to Playfleld

53252 Player 0 to Playfleld

53253 Player 1 fto Playfield

53254 Player 2 to Playfleld

53255 Player 3 to Playfleld

53256 Missile 0 to Player

53257 Missile 1 to Player

53258 Missile 2 to Player

53259 Missile 3 to Player

53260 Player 0 to Player

53261 Player 1 to Player

53262 Player 2 to Player

53263 Player 3 to Player

53278 Clear all collision reglisters

That's a lot! They are really easy to use, however, so
stay with me. You simply PEEK at the location that starts
witn the object you are concerned with. In this example, we
want to know if the shape, Player 0, has collided with the

Playfield. That means we will look at the value 1In 53252.
This is done in line 242. |f 1t isn't 0 then some kind of a
collision has occurred and we branch to +the subroutine at
line 1000.

270 GRAPHICS 17 :POKE 712,245
280 ? #6;"NOW WE ADD CHECKING "

290 ? #6;"FOR COLLISIONS WITH "
300 ? #6;"™ THE WALLS AND ALSO "
310 ? #6;" PRIVURITY WITH THE "
320 T #6;"OTHER SHAPES:...use "
330 ? #6;"YOUR JOYSTICK TO SEE"
340 ? #6;"THE pacman(TM) MOVE "
350 ? #6;"™ IN AND OUT OF THE "
360 ? #6;" TUNNEL SHAPES "
365 FOR I=1 TO 2000 :NEXT |

370 GOTO 30

35



1000 REM *¥x¥ COLLISION SOUND *x**x

1002 COL=PEEK(53252)

1004 IF COL=2 THEN 1015

1005 IF COL<>1 THEN 1030

1006 ? "YUMMY!!Im™:? :?

1007 FOR [=200 TO O STEP =1:SOUND 0,1,10,8:NEXT 1:?2 :?2 :?
1008 COLOR 0:ERAX=ERAX+30:PLOT ERAX,61:PLOT ERAX+1,61
1009 X=X+8:POKE 53248,X:POKE 53250, X

1010 GOTO 1030

1015 SOUND 0,50,8,8

1020 FOR I=1 TO 30:NEXT |:SOUND 0,0,0,0

1030 POKE 53278, 1:RETURN

From 1000 to 1005, we Test To see what 1is in +the
Collision register. We already know it iIsn't a zero --
that's how we got this far. If It's a 2 +then we know the
Player "hit" (overlapped) Playfield 2, which is the walls of
the tunnel. We then make a collision sound and go to Iline
1030 which 1Is ALWAYS REQUIRED +to reset all «collisions
registers to hold O's. If I+ is a 1, we ran into Playfield
1, which in our program is +the "energy pellets", so +the
message "Yummy" is printed and an appropiate sound is made.
These lines also POKE HITCLR (53278) and return.

Does all that make sense to ydh?
Let me repeat the basic way to use collisions: Find the
Collision register that deals with the +two Items you are
concerned with, either a Missile #_ or a Player #_ on the

left side and a Player, Missile, or Playfield number on the
right. Read the value in that register by using the PEEK

command. The number that results will be elither 0, 1, 2, or
3. If it is 0, 1t means you collided with yourself which Is
meaningless. |f it is a 1, you collided with Playfield 1,
Player 1 , or Missile 1 depending on the register you are
using. If a 2, it means you collided with PF 2, PLAYER 2, or
Missile 2. A 3 means a collision with PF3, Player 3, or

Missile 3. You can then branch to do whatever kind of nolise
or graphics you want.

| have one last trick in this example. Line 245 allows
the character to wraparound in the X direction. It just
tests for a value of X greater than 200, which 1Is off the
right side of +the screen. By setting X equal to 40, fthe
character will suddenly appear on the left!

One part of this example doesn't show up in the program
listing. That's priority, meaning "What will appear in front
of what'". In other words, will a character appear to go
inside a House drawn on the screen, or pass in front? This
example didn't POKE anything inftfo the Priority register, so
+he defaults were used. Here are the options: for the

priority register:

36



PRIOR (623)

ADD
For overlapping areas of Players

1’0 haVeafhird coloro-lotanonnwooon.ouaouo-c.oc.coio.lcco.ocn32

For all 4 Misslles to have the color
In loca.t-'on 711(Playfle|d 3)...l...........l...'.'.........l..16

ADD ONLY ONE FROM THE FOLLOWING LIST

PrQy PF1, PO to P3, PF2, PF3, BACKBROUND:s¢sssssassssensesesl
PFO to PF3, PO 10 P3, BACKGROUND .o oeeooonenoonossssnssasd
PO & P1, PFO to PF3, P2 & P3, BACKGROUND v veveeeeeeoeeoneees?
PO ¥o P3; PFU to PF3, BACKGROUNDsssssssssvosonscsnsvmsenssss]

To use this location, just add up the options and POKE +the
TOTAL NUMBER Into 623. You can only choose one set of
priorities, so either choose 8, 4, 2, or 1.

A STH PLAYER®?

Remember In example 5.5, +the Color Utility, how you
could press SELECT and have all the Missiles come together
Into a single Player? This Is how It was done. | POKEd 623
with 17 for both the priority | wanted and to change the
colors (lines 1000 to 1050). Then | simply moved +their X
locations next to each other. Remember that Missiles are
only 2 pixels wide each. You can use them together just I|lke
a regular Player. The mathematics to keep track of them will
be a |ittle harder, that's all.

16 FPFIXEL WIDE FPLAYERS
EXAMPLE S.13

You now know that you have at least 128 pixels In the Y
direction to work with. For Single |lne resolution you have
256. But so far we have been hindered by only 8 pixels of
width. The answer Is obvious, but I'lIl mention It anyway.
Just position two Players near each other so they match wup!
You can write some simple math to always keep them 8 apart
Iin the X direction. Look at example 5.13 +to see an ATARI
logo made thls way.




EXAMPLE S. 14
(32K required)

Just In case you have gotten +fo thils polint 1In +the
Tutorial, and feel you haven't gotten your money's worth,
example 5.14, the last program, Is an Editor to create and
change your Player shapes. | hope you like it! Here Is how

to use I+t:

1) When the program starts, it will ask if you want +to
load in old data, or create new shapes. Choose NEW.
2) Then Press the SELECT button. The message "Player #

to edit" will appear. Pick any number from 0 to 4.
Player 4 is made up of the Missiles.

3) A flashing cursor will appear In the editing box on
the left. Press D to draw and move the cursor with the

four cursor control keys ( the CTRL is not needed).

4) To stop drawing, press E (erase). Move the cursor to
the next spot you want to draw.

5) While continuing to edit the shape, press START +to
see the Player's shape updated. The Player will appear
next to It's number.

6) You may also move the Player you are currently
editing anywhere on the screen by using a Joystick in
Port 1.

7) You can change the size of the Player being edited
(except #4), by pressing SELECT and choosing 0, 1, or 3
for normal, double, or quadruple size.

8) Press OPTION to edit a different Player.

9) Press S to save the shapes you have made to tape or

disk.
10) Press L to load any saved Players back in. Disk
users will find a set of Players on the disk already.

Remember when you load in a set of Players you won't
see them until you press OPTION and request each one!

This Editor should allow you to quickly create Players
for any purpose. Write to us with suggestions on
improvements and | will incorporate your Ideas in later
versions of this program. The code for this also is a great
Tutorial on handling Players by using strings to store them
In. Advanced users should study it.

LR R RS R R R R R Y L]

At this point let me see if there are any loose Iideas
that need to be covered. First, let's go way back to the
game In example 5.2. You have learned all of +the “technical
aspects of writing a game using PMG. | want to discuss the
structuring of a game. This means what goes where in The
program coage. You should be able to figure out the rest, but
If I've missed anything, please write.

38



NOTE :

Because of the special characters in this program, the

ITsting beingreferred to will be found a few pages on In the
listings section of the manual.

SPECIAL
CHARACTER.

Lines 40 to 60 set the <colors. Line 70 polnts to a
subroutine to draw the Playflelds. Always do thlis toward the

end of your program so that the main loop will run more
quickly. The Playfield 1In +this case conslists .of just
plotting a lot of data. This Is similar to the earlier

discussion on Playflields.

Line 80 tells you that the program hasn't stopped, but
Is just setting up Itself. This Is always a nice touch.

Line 110 s +tricky. |It's another machine |anguage.
subroutine! But this one Is far more useful than the
ear|lier one. Here | set up four starting locatlions that are
In a safe area of memory, right between PMBASE and
PMBASE+768 where the Missile data starts. Since |lne 20
clears this whole area out, we know It Is safe and
avallable. You'll see what goes there in a moment.

Now, In |lines 130 to 310, | POKE in +the data for two
shapes for the Pacman(tm) and two for the Squigily Monster.
These start at convenlient 1Increments so | can find +the
shapes later.

Line 330 is the machine code which Is stored In a string.
You may copy this Iine out for other programs along with
it's dimension statement In |ine 50 and it's USR call.

Lines 380 to 440 do the normal math +that 1Is needed +to
keep track of X and Y for TWO joysticks.

Lines 450 to 480 are the neat part. First let me tell you
what the machine language can do for you. The routine 1Is a
memory move routine. It takes the values In the memory
locations you tell I+, and moves them to any other location.
You can use It to move and entire screen of data Instantly!
| use It to change the shape that Is In the area where the
data for the two Players Is stored. These |ines simply tell
the computer...

Line 450: "Move the Pacman(tm) data from +the Ilocation
called shapeZ2 to the Player 0 area using 20 bytes of data"

39



hlne 460:"Same thing, but move Squiggly data to Player 1
area

Line 470:"Move a different Pacman(tm) shape to the
Player 0 area"

Line 480:"Move a different Squiggly shape to the Player
1 area.

All of the moves above also take care of movement up or
down the screen at the same time with the addition of the Y

coordinate you want in the "move data +to" location. This
routine will move all 5 Players and/or the Missiles very
quickly. The earlier. machine Ilanguage routine only moved
Player 0.

Lines 490 to 570 take care of all the Collisions that we
might be interested in, and each branches to a subroutine or
makes some change on the same |Iine.

The scoring and sounds are stralght forward.... Make a
sound... Increment a score ...change a color. ALL of these
depend on your imagination, i.e., what do you want to happen
In the game?

Here are the lines to use for the second machine language
routine.

50 DIM A$(100)

I L L P e Gl a1 i b et G L £ o C1 % by
S 2L gag aagd | iy BILIHEC 4 cnd P el fa b as g dE FRN e EgR

450 D=USR (ADR (A$), From Address, To Address, # of bytes to move)

Even though | did not emphasize the use of Missiles very
much, | hope you realize that they are handled just like
Players except .they are two bits wide. A good example  of
moving them is In example 5.1, lines 640 to 710.

Your main |imits are having only two pixels of width, and
the Missile data areas all in the same stripe. This means

you must POKE O's into the data area for Missiles you don't
want to show on the screen, or just move them off screen
with the horizontal position registers.

| left a few strange things in the programs In terms of
colors, sizes, and moving shapes off screen when not In use.

I f you are going to understand PMG, | suggest you now take
any of my examples and start to clean up little details *o
be more to your Iliking. That will be your final exam...

WILL YOU PASS?
Scores will be malled out on Friday. BYE!!!

40



41

SELECTED PROGRAM LISTINGS

5% REM EX5.2 (c) 4282 BY SoaWTa CRUEZ EDRUWCaTIOMOL SO TMMaRE . Pad
MaN CHORAGCTER COPYRIGHT @&V arn k.

1eé GOTO SEE

28 FOR I=PMBASE TO FMEBAOSE-FZO48: POKE X,@:HNEMT LTiRETURN

E@ REM  BERERCRREE Y E R S ET L -

A GROGPFHICS ?:POKE 7L, L2L: POKE 742,68 0KE 7od, 40 PORKE 765 , o
A POKE S5%9, 62

S8 DIM aF CLeE P POKE BEX . L

BE POKE 768, 1823 P0KE 7PS2 .0 PODRE s, dds

FE GOSUE G620 @ REM DRk B R RO N

HE 7 v R MWALT - MOMENT PLE&GE bEREbe

D98 A-ZPEEK L6 —3Z: PDKE Sd427%9, 0@ P B asSE = oak? SE

18668 POKE SI277,X:PDKE SIZS96,8:P0KE SI2SR, 150

118 GOSUB Z8: 5SHAPEAL=ZPMEBASE : SHAPEZ-2PMBAGSE+S0: SHAPEI=PMBASE+1Q
B:SHAPEATPHMBASE + 158

128 RESTORE LB :%AL=IL7VZiYZE2oALPEKHL=ES s M2 LS

16 FOR IZ=PMBASE TO PHBASE+ZG:READ &

L4868 POKE I, B:MERT I

LS REM e Do W ey FURRE PO L D

LE@ DTS O, 8,0 ,28,62, L4%, L27, 026, L24, L2a, 124, 026, 027,026, G2,
ZE, 8,8 . 6,8,8

i1i76¢ RESTORE 216

188 FOR I=PMBASE+SE TO PHMEASE+78:READl B

196 POKE I,.B:NEXT X

208 REM s DAaTa FOR POaCRMalZ Bt

216 DaTa 0.,0,0,28,62 ,L18, 1L26, 126,126, 426,127,125 ,126,62 .20,
ia‘!a,varﬁ

226 POKE SS9 .62

Z2Z@ RESTORE Z6@:FOR I=PMBASE+LBRE T PHMEBEASE+LZO: REaAD B

246 POKE X, B:MEHT X

258 RIEP IR DATE FDR FHOMSTERL e

SEE DaTa 9,68,0,8,0l24, 214,214,254, 124,.68,.68,204,.0,0,0,0,0,,0
P

278 RESTORE 3Ii1G

288 FOR I-PMBASE+ILSG TOo PMBASE+178:READ B

298 POKE I,.B:NEXKT I

FTEE REM *rmadx DATE FOR MONSTER:2Z w66t

Xieé paTa 8,6,8.,8,124,254,214,214,124,68,68,102,0,0,0,0,0,0,a
8,8 ,.08



HEE SO R e R

G R E P

BB S = b TR0 S TR SR R T O TRTE L e T TR e R e TR b e [

H B

& T T a

ok
P

o MEMKT
5
s
{hil. v
BOER B
S
off R
ol 4. €
o) R
< E
il .
o 5
wff. R
ff. 7
wff. R
i ]
LA S W S
ShEheh  TF FEE K DN
oA R A ST AR
S ITFE
gk, LB, F o F DR
SeZE IF

SIS 48X
PR E SI27E,
L B |
GTAL=
GTE=
Iw

T I N A ]
HOWO R
T E

5= X

YEZIEYEA LGSR
HA =L+ C5T L
HEme R LS #

£ LS RO
R Ry R
O S R D R i
£ LS D e

=
[ S A A
[ N

e s 2=W3E—
A
. R

I
EIF PSR CYS R
TIF BB Lyl ey
I g5
PO RE SRR P,
el e o R S T
S F RGBS
(RS0 I = 1 RN o il '

EedoE CF O Y F RS
R B 1 A F JE
EOXE T R T R
Eiod @ P 6
ES T R
BB T
oSS T S T
EoEEr Far R oo A
S RS e
P
WA
P

ELEE T

T ih

13
RS R W e
R e B WL

[ R C O T ]
NS TR AL

WO Eerw W o OB . R ER
o ER o NEOER , LER  ERE R, W
USRS Deas T SRR, B R
B . kR . 45 WR . J R R,
ol SO0 SR = TR A 4
PR 0 5 P 5 T T R
A DT W, B,
o, EE , LB S, B,
OERER Dean WAy B0, @, W
W R, F R SR R
ey W odn R ERER
o, LR, B, KRG, YR
Sea Data Laa, X
B, Sa, Lok, S LEE
L DT LNEE . L
SR, LR Rk . LR

IR E DD = A
AT A N i i A v

R

BT HEE

Y

Ay REM

G E iR

N e [ERER b e W e e R L S P A S TR e

FREEDEDT PR =4 TO X

RE el b dmbef-dob ol gy 0 Bl L (R ebeEe I g

L O IS0 L O e W I S

BB EER OIS ER PR

b
o e S
—EEBTEL=8 4%

R o SHaPEZ . P
ERo S POE e,

Pl X
AR PEE - LR
R e U EmA g  eEE

o R
B O

O o M, B

PPOEE BEXEAE . MY
AR E D B
Bl S 3 e ey L SR
e e S A R R B

ED o S POE L PO S E A L L,

SR S P EE R
W mm At T HE M
K MEMT
WHE b

T E
Wk
BEI=L THEM
R RECE A HCY R
L5 e A = R o
IR e WHE
R RS T
vl HE
Gon Lol Wk R EGE

I dndk WS Tk
Wk R T E
T T3 STEDY
THVRE S T e
CTHR DFFERS

SRR 2 ME T X

s WME MY

R S LR R R TR

50 THEY H

B BCIE W R R PR RS el I p S O I e

O EOCOLE B
AL e AL Y

oo, R R
W S L L

B e B TR R ER B o
Jow SRR . R, ER
e S e G e W O e ST S g

wf e
[N By
g 0k SR
LI Y
L g0 5 IR

R O
5
ErPLOT
6

A

B, BE P L0

LEl W = e
o by BIEE 0
g e
FEiEE "E

[ R

ECHNEL L T ESCH T A
NI HOMN E GG P aRT e
i T R e
NUE MG LR

o ¢

ST EE

[l S ey T I e R R R L e L e e L e L e e e L

FRUL R R Y
M, W s IF M
W 0 o el WD M

SR R EER . R, R

L5 TP O P A TP 5

R R R, <R
Awk o, R

MR R,
R R, SRR L B, F

o R, MR . < S
R, R, B, E R
HEh DR, R L B

B, LSR8,
o Bk, R

e

WO el Bk R

o B R L W R, S R, W,
bl o R LB SRR, EER SRR

w e o S

B B

L% B

B,

P O MR T

o G R

#

LR

B e

R

o o iR, ol R bk o o R, LR L BEER L ERER . SRR . ERER L, R

o SRR L TER L NEER L, R L SRR b

B Bk o WER R, W ER LR ERER R ERER L, SER , S0E

o, Bk, bk oo, S dR

o SRR SR o TR ER L, R TR, SEER L VR SRR, T,

o JLER L ERER L R

B E TR, LB, WD 3SR, Bk, TR BB, B3

®

"

"

5

AoE

&

PR, WU SR . FE , LERER . G, LR, R, LS, R, LB, S, I G
P LEER R L SRS, e, LR el LR W R
e BEE L, EE , LG, L8, LA EE, AR, Sk RS, B, L, S, L

o SRR B R SRR .

P R CEG , KA,
P 2R, P, ., D

OEER R

42

G e, HER L, JLEER L, R, HTEER , EEk , LOEER L, 0k, LEE .



R FEE A ebebEeEbEE 0L L B E S e et ek ieEde gl
EHEE COLOR ZaFOR =i TO ZE8:PLO0T Yé.T8+XiDRAMTO 98, Ta+LWMERT I

Bl @ RO K

EEE RE T LR N

ERENE RE B PEBEMERERE SDORIE ORI R b b

BPE COLOR S8:PLOT F5,SS5:PL0T 435,65 SCOREPACSCOREPGTHL @ FOR X
mEE T L STEP —L:S50UMD B, T, 10,8 NEXT I

ERER GRS LR LSS o RE TR

EECER FRIE A RERESE SRR E RO S W R e el e e

HEE T RR B PO RS, SS L PL0T LES , BIS  SDORE MO WS G R E MO N L PR T
mEE T L STER -y SO B, L, L, 8 MIERT L

L RS LR LB T

R R PERERERE PR DTS B PG T RS e e o

: IF PFEEKISIZFGEOI =2 AND PEEK (7843 =200 THEMN SCOREMACTSC0REP
PGOGSUE L8Z60: 0T P50

G T

FUpm C=@en T 8B STER —L 0 SORIMEG 8, 0, L6, & MEKT T

FLES B PEBEREDE O HUD TS P D M R

IF PEEKESIZELI =1 aND PEEKI7OS =208 THEM S0 0RE QNS S0 E MO
G GDSUE LB TS GOTO S5a

SEE GHRT O L o

G FEDER s T RO STEP L SOUNE 8, T, L8, S MERT K SOlNDG 8, o, 8,
@

R T I

LTl S L e i M AL S P i S M A e R

ER LB D LB S R e B e SR R IR SO R, P R S R S R

B s e T Fe Nl il A e R e B = e G e N O S e R o O Bl o I B

JENE R PR BRSSO s PR RO SR T TP D i e R SO R B e e e
EOCR I O ST R AR e B

4 REM EH 5.6

5 REM (G2 198% BY SAMTAa CRUZ EDUCATIOHMAL SOFTHARE. MRITTEWN B
w ROBIMWM SHERER

i FOR I=i TD S:POKE SXZ2474+L,8:HMERT T:GO0TO 416

SO R M el L DT S P e

W GO Ok EE 6

B =D ESToSEI FCST2F2AFCSTZEI - E5T=93 —€5T=4082 - S5 T=443

S ESE+ESToDLiZI2 4 ST =92+ 065 T=S52 - E5T=E62 —CS5T=483 - ¢ST=14%

Bl FRr Mo TO R FOR Ys=E TR O ZS:PLOT MDD, WAHE D MERT YiMNMEHT M
FEORES TORE LS oL or L

HE OFDR M=L To L8@g:REaD H:REaD %

G LF M=8 oKD Y8 THEM RETURMN

LEE LG0T WD, Y E s MEKT MW

LAE EE O, SO e b b HE W PRI A HE] SN AT P G R TR A e
I T A g ] e e

L2 REM POKE SI248, X6

Ld48 SOUMDB 2,8 ,8,2:F0R YOLTL TO 15 STEP @.1:50UND 8, 25,4, UL
RO AL AE o RO

AEG DaTe 58,0, L,d, 0,5, 0,6,40,,2,3,2,4,2,8,2,6,2,7,2,1,3,2,3%
¢ e EF, B, E, 2 AT 4,4 04,5 ,4,6,4,7 .4, 3,5,4,5,5,5,6,5

rLEa DaAaTe 4,656,959 ,6,2,7,3,7,4,7,8,7,6,7,7,7,1L,8,2,8,6,8,8,&, 1L,
PIE = PR R B 5 R PR L S I < NP B 5 IR B 5 i B WP SIUR U SR <P W S B

*

LFE DETE 2L, FLALE,E, L., AT L, L, 0, L, o, LS LS, LS, a6, 5, L6, d

VAT LS AT LA LB LS, LB, LY, AP, 5, LD, 6, L

LEBE DaTa 2,20 ,3,20,4,20,5,20,6,20,7,20,10,%1,2, 81,3, 24,4,21,5

PEL LB, PL, P, R, H, R, P, 2, R, PR, 4, PR L,E PR, B, B,V 2D

LS8 DAaTEa X, 2T, 4,28 ,5, 23,6, 23,4, 24,5, 24,08,8, 08,0

EOEE RS R PR L Y E R ST L e e

ZLE DIM ESCEBEI PGRAPHICS GB:D-28:ESSO: POKE S59%,.0:GO05UE Za:? v
MHICH X5 THE PLAYERZ?:POKE 718, l48:POKE 712,148

zza P EGWEHVEY — SIFES DEEEGY] = MERT EM.*°
EFE EF CL, 682 ="hbb JHE "W PRI O HE T P G b S AT - {
b N EE ST g W] e e e

43



4 REM EHS .S

S REM (L3 L9282 BY SAaNTa CRUZ EDUCATIONAGL SOFTMARE CROBTMN SHER
ER2

1€ GOTO @

Z8 FOR I=-PMBASETLOZ4 TO PFHEBASE+TLSIE: POKE T,O:MEHT T : RE TG
TEH GOSUE FE@:REM DROMW MHOLEMTOTHS

48 DEIM ES [G03

SH GOGUE ZFH6:REM DRAM STarSs

8 POKE 7A18,6:PDRKE F12,8:POKE 784, 1%%

FE OGODSUE E868:REM SETUP PLAYERS

BO O POKE Z64,04+4: POKE Z8%,8:POKE 8%, 126

B ES O, G = b SHE] R R PR ] R WA A PR e T S R e e S
SUTEN N e MR IR TR

1Lee REM POKE SZ248, %6

LG FEE R PEREE Ry L DR e e

128 SOEMD 2,8, 8,2 FoR WL SE TO L5 STEP 8.0 SO0ime @, R, W, Wik
GRAA M L, L o, WL

LG asUSH CHDR CESD , STDOR Cil b

Ld8 MWEMT SOL

LEE FOR SOL=La To owm STER - B A S ORI ER L, U, o, LRCR D SO L, LE L 4,
L

LEG HoUlSROaDROESD  STECK (8B R

L78 MWEMKYT WL

LEB@ IF PEEKISIZFZDI=F THEM POKE 764, 02 RUMH "0 ERXs , 9o

ALweE GO L

Zaa FE P EREdnb-pb g W B @l G R O i bl i et bt

P18 GRAPHICS SFL6 RESTORE 266

2@ Tk O L

2EB OREAD MLV PLDT KL

48 READ H,¥:LF HrPo9E8 THEM RETLRM

EFEE DROAMYTO H,Y+Lil@:GOT0e 4

ZEB DATE B,1%7, 27 . 166,39, 166,49, L66, 57, LS7, 57, L58, 69, 158, 74,
164, 87,178,877, 4740, 96, L3, 95, L48

FPE DOTH LIi8, e, LL? L 6T, L4, S50, 146, 6%, L2V, 98, LTE,BF, LAB, BT, ALS
AL BT L ALED, S, L6, Hd, LEE, 9L, LS, LT, LEL, L2

FEHG DETO L98, 174,199,174, 285, 165, 287, L4, 229, 155, 245, 156, 296
YAETET 2L L APE, ZHE L AGE, PEF ., AVE, EZO90L , LG4, BEe, B, ZES , FE

ZO9H DAaTa TLI8,E6EI, 999, 239

HEER I RERERERE N T g RS e e

L@ TROF T8

2@ RESTORE X4

TEG REOGD H, ¥ :PLOT H,¥:G0To XX

XAG DOTO P 4,5, %, P, L@, L%, dF, N, BE, W, E, 08, 66, LBE, 45, Tae, 67 %0
1,65, 246,54, 234, 4%, FEL, B8, Fdl, LEE, LBE, SS, G, 9

TEE DATH LE Gd, FEL S, L%, AE, LEE A, B, P, R L REE, BE , L, S, L

Il

"
»
»
H

G, BF  LAE  BE B E e, LBV A, LRSS B, LS, B LS, T
HEG T LEE LS, LEE, P, R2AE B, B, L, E0E , B, EDY, HE, BEG B, 238, 6
PR = |

BFEG RETLHRM

FHG RIEM PRS- SETHP PLaYERS e

28 ATPEEK CLBED —48 : POEE S E5 5 i o P IRHE S SOE ol U

A GDSUE Z28:REM CLEaR PM SRES

Sied POKE SIZP7,,Z:REM TURMN O P Do

A7 ZomZe:rREM TNMITIAL % POSETION DF  SHIDP

G H-oIS@:REM YNMEITILAL H POSITIOM OF SHIDP

448 POKE SIZ248, . H:POKE SITZ4%9 H:REM PODSETTIO0K SHIP CPFLASYERBI O
D FLaHME J(PLaAaYERILZ

458 RESTORE 4838

468 FOR I=SPHMBASE+LOZAd+Z TO PHEASE+CLZEG:: REGD SHAPE:LF SHGPE C>
B THEM POKE I ,5HaPE@WNEXKT I

476 POKE 62Z,41L:REM SET PRIORITY

A868 DATH & 60,126, 195, L 26,68, 24 ,, L26, 165, 129, 98,8, 8,8

Wee POKE SS9 .62

SE8 RETURM
44



EeE TP EE R CL RS - 6 s P DRE SR e P RE e, @ POKE R8T . 8 P S
Y s R DY Y

EEE P RBCED SRRV L E 0 PDE VA, 8 PORE SRR, LSE s P ORE RS, G PR
DB EREE . B

WOEGE FR R D AR S L D R S e L R PR X L B WMIEHT I

SR REGTORE SR

EOER B F DR P AR R R L USRS W IR R S LR RS s R D B POOME D, By MERT O
ECRE Bew W ER B B, BB L LG, LSRG, LB, LRI L, LB, L, S, B, R, S, LS, D
EE, BB, LES

Ao e W ey GE D L ILES . B E B, B, P G, B, S, B . B, 36, R R, e
P . S ]

AE Dl Ty EOE B LR E , ARG, SRS, RS L L RS,

-

SRR WERER L R L Ee L, A, 8 B, R, R

SRETE Pl ED SRR, R

EEE RE M

bR R ET e el et b o g e B DR R EE-eE ke
SRR RE M

EoEE I
A

S N O R A R T I L N RN N - s R T e s ]
N R G A T R R S A A e R ]
SoEkE FF BeoOWHE M RS iEE g
AEE I S W E M DR W e LS P RBCIE SRS L, bR o R Cv I s E RS, R
AEE ST ISR Ce DR CESEY L, S TDCKR CE3 3 s GOoTd EEG
A GRGFHIDCS LW s P LR R
T RS Y TS REHCT e P v
LR 5 I & 4 S GG Wk T E ue
el ol F R p Y IDFFERE MOE BE T MEE M v

K

b

ol 55 g TR p O A LY IO R e S g

£l i 6 WEER e D @ LW R L L . . w00

AOFE T R UV joops it d ek TER SEE

elGERERE ERE UMW IO DS THE TR o v

Wl SE F R DA Wk RGBS T FREE W

ERE R R A R DT S el ek

L O Ch R L :
s i A ST I o A e T A A

el A S AR Mt T N A R B N A 3 B A el

BE S T 0 s

3 FOOOR B TR L s B e R Y

SEGE I Ml aE W TIHE M A

ECFE L OT M, W R E s M T b

SRERER IOF Ll W HE M DR R R T L

SR IR Y LY R

RO FDOR M W Bk s PR W T

ik R ECT LR

e BT %, o AR, R U, NN PR TR L e

P N R . S . [ R R A S IR O T L N

L = T U L S NS, S . P O N L S R S

PO T T T . < VR P N R I O . T ™ S, T R

Eiodl B W W S LR, W LR L, L L E L L, e,

P T R TR N I - S - S I - S R .- O SR - O S N O - SO I

B I T el R A TR R . e W,

L5 [y A : O SR N

L < T A N N S S S A R N

I 7 b o T e = R i

ECEE T E nw YURRESCS @, W, ORI E IFUREE ST

GO W] =

S i A N R e

OB BT o ol o R A

FUROEC D R TS W R

FUEE IOF R W R P E

VORI PR R B WIS M PO E

A G R

et A |

ECw LT e e R BT M W WE T

LR & I~ S . M4

o SR N, B

I PRE = I S = P R P R S R
SR A

MR R e I el B, N L L L W

LA S S N S A -3

. W G

&
o R kR R

o R S

B, v

G R BREIE TR IR
o B IR LR
SRR DT R

45



X REM £C2 1282 BY SaNTa CRUZ EDPUCATIONAL SOFTHMARE CROBTH SHER
EF2

4 REM EH 5.9

5 FOR I=1 TO S:POKE SIZ474+T,0:NEXKT T

& GOTO i1ea

16 DIM ES (683

e ES L, G683 = b b SHE T DRI S E S ST P TSR b TS A e
TR AT T e o o

8 ATPEEKCLBER —16:POKE S4279,a8:POKE 284, 04+4:P0OKE 203, 8@ P MEA S
E = gy 2 506

48 POKE S59%,682:PO0KE SIZ277,3:P0OKE 784,40 :P0KE 20%, 120: POKE S
ZSE , L

58 FOR I=ZPMBASE+LGZ4 TO PMBASE+LZ80:POKE T,8:WNEXKT T

B& FOR I=PMEASE+L1188 TO PMBASE+LIZ7:READ B:POKE T,B:MEMT ¥
P8 DATA S,.50,126,195, 126, 60,24, 126,165 ,129,0, 928,98, 66, 36, 36,
Z4,24,24,8,24,60, 126,255 ,126,60, 24,0

PS5 OPOKE S3IZ48, 158

B8 a=USRIAGDRCES? , STICKIO22 : IF PEEKC(SIZP921=X THEW POKE 764, 42
PPOKE SET256,8:HUKN "D EXS. L@

SE GOTO &a

1e8 GRAPHICS 17

AEE T G MWE MENTIOMED THST L

14 7 FEG YD MUST BE CaREFUOL 4

1ee 7 1mE6;""HWHERE YO PLACE THE @«

118 7 BE;"PLOYER-AMISSTLE DaTer. "

i1zae 7 #1716

LEZS 7 36 ;

i3dFae 7T e

48 7 HHE;

15ae 7T e

ALEa T HE un

LEZ FQRR X1 TO To@@:NMEKT X:PORE 752,04
AE6SE GROEGPHTICS 7@ PORE P02, L4483 .
1E&e ¥ MOVE PLavYER BODTH DIRECTIOWNS ' :? “prRESS [DEEED voa G e

L2868 GDTo L

288 RIEM  EEbeRERE P T SH G P E e
Zeaie ol o A

Zei1E RESTORE Z18é

Z@Ee FOR H=o-iIL TO jleé8:REalD H:REaD %

FOREM Qi L328Z BY SaWTa CRUZ EDPUCATIOMAL SOFTHKAaRECROBIM SHER
R

5 REM EHS .18

iAg FOoR IT=i T S:POKE SETZA474HL , @ iWEHT L:POKE D59, @: G070 X6

Z@ FOR T=PMEaSE+XSLZ TOo PMESESLZEG: PORKE X, O0:WEHRET 0 RE TR M

Foh GRAGPHICS @37 % 17 VO PRESS [EEEG] T0 G0 oMY POKE P52, 4

46 P o v pPRESS ETHAEYE] FOR SIMNGLE LIME RESOLUTICOM
L E R

S@& 7 1?7 * PRESS EECCE FOR DOUBLE LIME RESOLUTIOMN R
LawER" "

a8 POKE Véad,4a

g8 PHME-DPEEK 1862 —1 &6

28 POKE S4Z72, PMEB

188 PMEBEAaSE-PHMB®ZSE

i1i8 POKE SIZ77, 3T :605UEB Z0:POKE S59,34
i1zZe HK=Z-1ZS:¥=-ilila:vSnavE=-ilea

18 POKE SIEX2Z2856,.,8:60TO0 Zao

146 RIEM Rdth-eiet Wy M L OO0 et

158 PoZPEERKISIZFTIR

1E8 XF PS5 THEM POKE S99 ,62
178 IF P=6 THEN POKE 559,46
i1da IF P=ZX THEM POKE 764, 132
i GOTD AS5a

POKE S3IZ48, 186
POKE S3IZ48, L6
RUN "“"D:EHS . L4

46



2ae REM

218 REM STMGLE LCINE RESOL TN e dbheat
228 REM

ZX8 RESTORE Z92@:CHT=B

248 FOR L-PMBaSE+LiozZ44Y TO PHMBOSEYLZEG
2596 REQAD B:XF Bzaé THEH Iad

FEG CRT R

Z7E POoKE I .B

>EB8 MWEHT I

dow DaTa L2420 d4, 214,254 124,68 ,68,Z264 ,6,8,8
Faa REM

Fig REM DOUBLE LIMWE RESOQLUTIIOMN bR
TZa REM

FIE RESTORE Z9@:CHT—&

Fd48 FOR T=PHMBOaSECSLZ-EY TO PMEBASE G 8
FEHE REaD B:IF B THEM 26

FEa CHTOCHWT L

AVe PME D, B

FEa HWEHT X

AsE 0T N

d REM EHS . LE

S OREM 03} A419E2Z BY SaMTa CRUOUZ EDUCaAaTXONMGL SOFTHARECROBIN SHER
IE A

18 FOR IT=i TO S:POKE SIZ4A74+T @ :NEXKT X:GOTO 248

ZE FOR IDPMBASERILIBRZ TO PHMEBASE+®L7Z :POKE X 8@:HEHXKT X:RETLURMN
FTE REM Rl GYER O OSETLUHP bbb

dE GRAGPHICS 7iPOKE P11 , 8:POKE P12 . 8@:POKE 784,430 :POKE 786,41
POKE S5%,62

S @esPEER CLSGR —Za POKE S4Z79 .00 POKE Z8d4,atd4E: POKE 205, 8: PHMHEBAS
By e 2 NSO

e PRRE O SERZPV R M ALEG s PORE REBS , L2680 IPDKE SITZ2ES6E 8 POKE SX25é, 1L
Ll 1

VR GDSRLE 28

H@ RESTORE Lid:%=isSa

GE FDR I=PMEOSE+CLBZ44% TO PFPHMBAOSECLZEE :READ B:IF BA>X8 THEN PO
HE T, B:MEKT I

J88 RIEM PHeEbteEbE DaTaA FOR O FIRST HaLlF e

118 DaTe 2,2,2,2,2,2,2,2,2,4,4,4,8,112.8,a,8a

i1Zaea RESTORE 1S5

AEE FOR I-PMEBOSE+LISIEHRY TO PMBaAaSE+L?2Z:REaD B:IF BAL>8 THENW P
ORKE T . B:HMEXRKT I

A48 RIEM PEREEIER DT FOR O ZHD HaLF bR

LS8 DaTa L6, 168, 168, 168, L6 , 166 , 160, 168 , L68 , L4444, 144, 144, LEE
JAIE 8,8, G

1Lea POKE S99, 632

ires o A6 BEXT MWMIDE SHoaPE"
167 POKE 792,141
16 # o=z SE  JOVSTICK ==

178 REM

LEBO REM PRGN R e

1598 REM

288 IF STRIGLON=G THEW GOEUE Zo:FLAG=®

ZiB STT=STICK B3  STPEEKIST27 52

228 XF S5=F THEMWM POKE 764,412 RUM “DiEHS. 14

EZE HoMEFCSTZPR -5 TLAR s POKE STZ248 , H:POKE SIT250, H4E
G GOTO

248 GRAOPHICS 17

ZEE P OHE ' DO YO MaNT MORE o

268 7 HE;COMPLICATED SHAPES?

278 T HE =
88 7 HE
298 7 16
Zae 7 HE
FiE 7F HE .
FZ8 FOR I=1i TO Z000: HEHT I GOTO 46

EUEE T TR PO T

47



n

ﬁw
liih

L
A

TRICKY TUTORIAL #6
SOUND




Educatiomnal Softwar e
presents

Tricky Tutoriasal (btEm? H oS
SOuUnNDS

by JERRY WHITE

This program starts with the simple sound
statement., but progresses to chords, complete
songs and special effects. It also
demonstrates the use of direct pokes to the
computers built in four channel frequency
controls. All of the material can be used by
a beginner, yet if it is studied. you will
learn many of the tricks that Jerry White
puts into his octher musical programs for the
ATARI (Name That Song, Flayer Fiano, My First
Alphabet’s tunes). MUSIC FROM BASIC BECOMES
ALMOST EASY!

This program requires 16k for tape users
or 24k for disk, and a basic cartridge.

Educational Software inc.
4565 Cherryvale
Soquel, CA 95073 )
¢408) 476-4901 :



SOuUuND TUTORIAL @ — NOTES-:=

This tutorial is different than the previous five in this series.
Like the others, it makes a complicated subject usable for the average
ATARI owner. Also, most people feel it 1s an excellant value for the
price. However, the format is quite different in that the program is
really self documenting. Also, this 1s the first tutorial written by
someone other than myself. Both of these changes are for the better,
so I hope past purchasers of TRICKY TUTORIALS like this one to.

I suggest you learn the program by first running(and playing with)
all seven parts. Then, when you find a specific area that you want to
understand better, go to that program and load it into your memory.
Tape users should write down the starting number of each program. Now,
try looking at the program code itself to see what Jerry has done.
Think of a way you would like to modify the program, and go at it! For
example, the song in part three,"DOE RAY ME", could be changed by
modifing the data statements. For your use, this part is reprinted on
the next page.

Following that page you will find a chart of the notes and pitches
available for the basic sound statement. Then comes the program for
the special sound effects. You can either retype these in to your own
programs as needed, modify them for new effects, or just resave them
by themselves. Note that each little effect is not quite complete by
itself, but needs the variables VO0O-V3 detfined . Finally, Jerry’s
special gift to us is part seven for which both the 1listings and
instructions are included.

For an interesting effect take out the remark in line 74 of parts
1,2, & 4. Most people 1 showed this to didn’t 1like the sound
associated with each letter being put on the screen. You may, or
perhaps you might change the pitch values in the sound statement in 74
to get your own unique effect.

It’s up to you to experiment with sound. This program 1is the
foundation. Write and let us know what you think of it.

Educational Software inc.
4565 Cherryvale
Soquel, CA 95073

(408) 476-4901
BYE ,

Robin Sherer



R T TR I R I e st IR x 2R =8 Rl N il M e 3

While many of the programs in  this package display
documentation, S0UND.Z may require the printed tyvpe. This
program plays a song and displays sing along  words  on the
SO . If vou understand this program, and vou can  read
sheet music, yvou may wish to wite you own BASIC songs.

I vou dont know how to read sheet music, vyouw might
get by if yvou have a good ear and wuse the old trial and
error method. I+ vou don*t have either, and vou can’t
sing, then just listen.

You will need some knowledoge of music to wite music.
I will have to assume that you wnderstand the following
musical terms: NOTE or FITCH, CHORD, S5HARF, and FLAT. It

vyt e lost already, the rest of this P ogr am
documentation wont help you. Let us know i+ vou’d like =&
tutorial on reading music and describing the previously

mentioned musical terms.

Llet’s walk through the SBOUND.Z program listing. We
begin by DIMensioning & string called LINE#® and an  array
calleaed "MY which will store S50 9 pitches. These pitches
will correspond to musical notes. LINE$S will store one
line of words in our song. We then set VO=0 (Voice O),
Vi=1 VOICE 1), etc., then GOTO 100,

Why the heck did he GOTO a line of DATAT I actually
should have gone to line 120, but ATARI BASIC will bail me
out & just fall through to line 120, which sends us off to
a subrouvtine at limne Z21000. That routine just clears the
screen, displays the heading, FOKEs location 77 with a
zero, and rebtuwns. Im case vou don™t krnow what that FORE
does, it temporarily defeats ATARI's auvtomatic color
changing routine which is also known as attract mode.

RETURMing to line 120, we read data for 50 notes into
the N (NOTE) array. Then I TRAFped to line 19000 which
makes no sense at all since there is no line 19000 in  this
{317 CICIH &M I+ vyou decide to make modifications to this
program, get rid of that useless TRAF. By the way, the
reason I got away with it was only because there are no
other errors in this program. The FOKE 82,8 indents the
left margin.

Before we start reading more data at line 210, it is
important to understand the use of the "N" array and the
subroutines found from line 30 through line 74.

Look at the DISTORTION LEVEL 10 PFITCH CHART. The
first note i quite logically numbered 1. It's
corresponding FITCH is 14 and the musical note is C. This
is a very high sound. The higher the sound. the lower the
NOTE # and FITCH value. In ocur "N" array, N(l) contains a



4. The DATA in lines 100 and 110 correspond  to  the
FITCHes an the CHART.

Why use NOTE numbers in an array when ATARI supplies
FITCH values in their BASIC REFERENCE manual? I"m glad
vou asked. Gtart reading the FITCH numbers on the FITCH

chart until vou get to the number 21. What happened to
207 If you look further down the chart, you®ll notice an
increasing rnumber of missing numbers. Now look down the

column of NOTE #°s. You will find 50 consecutive numbers.
This provides us with a guick and easy way to let BASIC
calculate chords when we supply only the base note of the
desired chord.

The subroutine beginning at line 40 is ow chord
calculator. You need only supply it with the NOTE $# in
the variable "F". The routine assumes that F will be at
least 8 and not greater than S0. It then sets FO (PITCH
) egual to N{F). Then it calculates ouwr chord and stores
the pitches in F1, F2. and FZ. Im line 42, we tuwrn on &ll
4 voices. Motice that voice O is set at a greater volume,
and the three notes of ow chord are played at a lower
valume but equal to each other.

In line S0 we get to ouwr WAIT routine. We FOKEE the
value stored in the variable WAIT into location G540, This
location counts backwards to rero at the rate of &0 per

e ]

second (JIFFIES). We Jjust waste time at line 32 until the
countdown is completed. Then we twn off VOICE © ONLY and
RETURM.

S0 what did all this accomplish? Im plain English,
we plaved a melody note along with & chord, then turned
off the melody note. The chord continues to play. The
subroutine at line 60 is used to tuwn oft ALL voices.

The subroutine at line 30 will change only the melody
pitch, then go on to the WAIT routine.

The subroutine at line 70 turns on all fouw voices at
gaqual volume, then decreases the volume gradually, until
all sounds are off.

Now., where were we??? Ah ves, line 210 where we read

LINES$, CHORD,F, WAIT:FRINT LINE®: and o aff to the
subroutine beginning at line 40. We are reading the DATA
which begins at line 1000, We read the words, "DOE A DEER

A FEMALLE DEER" into a string then put it on  the screen.
We also read the number 49 into the wvariable CHORD, AT
into the variable F, and 45 into the variable WAIT.

Remember . we GOSUR 40 to play a melody note,
calculate our chord, play the chord, and kill some time.
The best way to learn from  exdxamining SOMECNe elases
pragram, i by acting as if you were the computer. Follow

the instructions, and see what vouw, or the computer, will



do. Let’s try it.

I1°11 be the computer this time. I have just read the
data as I was instructed to do in line 210, and now I°m at
the subroutine at line 40. I am told to make FO=N{F). I
just read DATA and set the value of P=3I7. I look up the
value of N{Z7) and see that it is 1321, I set FO=121.

My next instruction is to make Fl=N(CHORD). I read
the value of CHORD in line 210 and know that CHORD=47. I
lookup the value of N{49) which is 243%, and set Fl=243,
F2? must be set to the value stored in N{43) and F3I must be
set to the value stored in NGGZ2) . FR=19% and F3=162.

I tuwrn on all four voices as indicated in line 42
then FOEE the number 4% into my memory location 540, At
line 32 I look at the value stored in memory location 340
and compare it to O. It"s not O so 1 check it again.
Fach time I check that location, it's wvalue is less than
it was the last time I looked, but it's not zero so I Lkeep
checking. I"m getting bored.

Finally I find a zero and go on to line 54. I turn
cof f the sound of Voice O then RETURN  from this subroutine
to line 2Z0.

Now it's  vouwr twrn. Continue through the program
doing what T just did. I+ you start getting confused,
take a pencil and write down values as vou read and change
thvem. You should soon understand  what  I've puat  vour
computer through, to play this simple song.

The logic in this program is ot switable for  all
songs. You  will  have to make minor modifications  for
different tempos, or if other than standard Maior chords

are required. This pragram demonstrates one way to play  a
simple song and an easy method of finding the notes of a
chicrd. Dar*t think vouw camn just add a few lines of DATA

arnd create the Matcracker Suite.

I+ vou just want to enter the music, then see i1t ir
sheet music form while it is plaved, I'd recommend ATARI s
MUSTC COMFOSER. It vou'd lLike to see youwr melody as it
would be plaved on a piano, or play vouwr kevboard as if it
WEr e & Pl &Ernc, consider  the S5ANTA CRUZ  SOFTWARE  FLAYER
FIAND package. I know the author. he used to be a pianc
plaver.



10

30

40

42

50
52
54

60

70

72

74

100

SOUND.3 (c) 1981 by Jerry White

DIM LINES$(40) ,N(50):
Y0=0;

Vi=1:

V2=2:

V3=3:

6070 100

SOUND VO,N(P),10,14:
6070 50

PO=N(P):

P4=N(CHORD):

P2=N(CHORD-4) :

P3=N{(CHORD-7)

SOUND VO,P0,10,14:

SOUND Vi,P1,10,6:

SOUND V2,P2,10,6:

SOUND V3,P3,10,6

POKE S40,WAIT

IF PEEK(540)¢>0 THEN &2

SOUND V0,0,0,0:

RETURN

FOR OFF=0 T0 3:

SOUND OFF,0,0,0:

NEXT OFF:

RETURN

PO=N(F):

P1=N{CHORD):

P2=N(CHORD-4) :

P3=N(CHORD-7)

FOR DECAY=8 TO 0 STEP -1:
SOUND Y0,P0,10,DECAY:
SOUND Vi,P1,10,DECAY:
SOUND V2,P2,10,DECAY:
SOUND V3,P3,10,DECAY

NEXT DECAY:

RETURN
DATA 14,15, 16,17,18,19,21,22,23,24,26,27,29, 31,35,

35,37,40,42,45, 47,50, 53,57, 60, b4, 66,72, 76, 81,85, 91, 76

110

120

200

2190

220

230

DATA 102,108,114,121,128, {36,144,
153,162,173, 182,193, 204,217,230, 243,255
G0SUB 21000z
FOR X=1 TD 50:
READ IT:
N(X)=ITs
NEXT X
TRAP 19000:
POKE 82,8:
T
?
READ LINES,CHORD,P,WAIT:
? LINES:
60SUB 40
FOR ME=1 TO &:
READ P,WAIT:
G0SUB 30:
NEXT ME:
GOSUB 60:
WAIT=10:
g0SUB 50
READ LINE$,CHORD,P,WAIT:
7 .

250

260

270

280

290

320

330

340

350

7 LINES:

60SUB 40

FOR ME=i TO 6:
READ P, HAIT:
GOSUE 30:

NEXT ME:

GOSUB 40:

WAIT=30:

80SUB 50

READ LINES,CHORD,P,WAIT:

L Y

7 LINES:

GOSUB 40

FOR ME=1 TO &
READ P,NAIT:
BOSUB 30:

NEXT ME:

GOSUB 40+

WAIT=10:

GOSUR 50

READ LINES,CHORD, P, WAIT:

2R

7 LINES:

GOSUE 40

FOR ME={ 70 é:
READ P WAIT:
BOSUR 303

NEXT ME:

GOSUB 603

WAIT=30:

GOSUB S0

READ LINES$,CHORD,P,WAIT:

20

7 LINES:

60SUB 40

FOR ME=1 TO 5:
READ P MAIT:
GOSUB 303

NEXT ME

READ CHORD,P,WAIT:

GOSUB 40:

GOSUR 60:

WAIT=30:

60SUB 50

READ LINES,CHORD,F,WAIT:

L IS

7 LINES$:

G0SUB 40

FOR ME=1 TO 5:
READ P,WAIT:
GOSUB 30:

NEXT ME

RERD CHORD,F,WAIT:

BOSUB 40:

B0SUB &60:

WATT=30:

G0SUB SO

READ LINES,CHORD,P,WAIT:

3



360

370

380

400

410

420

430

440

460

(2]
ot
<

540

wn
n
<

360

? LINES:

GOSUB 40

FOR ME=1 TO 5:
READ F,WAIT:
§05UB 303

NEXT ME

READ CHORD,P,WAIT:

G0SUE 40:

BOSUB 40:

WAIT=10:

505UB 50

READ LINES$, CHORD, P WAIT:

? LINES:

GOSUB 40

READ P WAIT:

GOSUB 30

READ CHORD,F,WAIT:

BOSUB 40

READ P,HAIT:

BOSUB 30

READ CHORD,P,WAIT:

GOSUB 40

READ F,WAIT:

GOSUB 30

READ CHORD,P,WAIT:

GOSUB 40

GOSUR 40:

WAIT=10:

GOSUB 50:

FOR DECAY=15 7O 0 STEP -0,35:
SOUND VO, N{1),10,DECAY:

NEXT DECAY

GRAPHICS {8:

7§62

7 $6;" major chords®

FOR ME=1 TO &:
READ CHORD,P,LINES:
POSITION ME32,10-ME:
? #6;LINES:
GOSUB 70:

NEXT ME

FOR ME=8 70 { STEF -1:
READ CHORD,P,LINES:
POSITION ME$Z, 10-ME:
? #6;LINES:
GOSUB 70:

NEXT ME

WAIT=15:

GOSUB S50:

POSITION 4,11:

7 #6; "PRESS”

FOR DECAY=15 TG 0 STEF -0.5:
SOUND VO,N(b),10,DECAY:

NEXT DECAY

WAIT=15:

GOSUB 50:

POSITION f0,11:

? 463 "5TART"

370

600

700

710

720

739

749

750
760
900
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1410
1120
1130
1140
1150
1160
{70
1180
1200
1210
1220
1230
1240
1250
1260
1270
1300
1310
1320
1330
1340
1350
1360
1370
21600

FOR DECAV=15 T0 0 STEP -0.5:
30UND VO, N(1},10,DECAY:

NEXT DECAY

SETCOLOR 0,PEEK(Z0),10:

IF PEEK(53279) <76 THEN 600

BRAPHICS 18:

SETCOLOR 0, 1,103

SETCOLOR 1,14,12:

SETCOLOR 3,9,12

PRESS option™:

TO RERUN"
WATT=60;
60SUB 50
? #6:
? #6;*  PRESS start®:

2464 T0 CONTINUE"
IF PEEK(S3279)=3 THEN

RUN

IF PEEK(53279)=6 THEN 300
GOTO 740
RUN “D:SOUND. 4°
DATA DOE A DEER A FEMALE DEER
DATA 49,37,45,35, 15,33,45,37,15,33,30,37,30,33,45
DATA RAY A DROF OF GOLDEN SUN
DATA 42,35,45,33,15,32,15,32,15,33,15,35,15,32,90
DATA ME A NAME I CALL MYSELF
DATA 49,33,45,32,15,30,45,33,15,30,30,33,30,30,45
DATA FA’ 4 LONG LONG WAY TO RUN
DATA 44,32,45,30,15,28,15,28,15,30,15,32,15,23,90
DATA SEW A NEEDLE PULLING THREAD
DATA 49,30,45,37,15,35,15,33,15,32,15,30,15,44,28,90
DATA LA A NOTE TG FOLLGW SEW
DATA 44,28,45,35,15,33,15,34,15,30,15,28, 15,42, 26,90
DATA TEA A ORINK WITH JAM AND BREAD
DATA 42,26,45,33,15,31,15,29,i5,28,15,26,15,49,25,90
DATA THAT WILL ERING US BACK TO DOE
DATA 49,25,15,26, 15
DATA 44,28,30,32,30
DATA 42,26,30,30,30
DATA 49,725,590
DATA 49,37,C
DATA 47,35,D
DATA 45,33,E
DATA 44,32,F
DATA 42,30,6
DATA 40,28,A
DATA 38,26,B
DATA 37,25,C
DATA 37,25,c
DATA 38,26,b
DATA 49,28,a
DATA 42,30,9
DATA 44,32, f
DATA 45,33,e
DATA 47,35,d 21030
DATA 49,37,c 21040
GRAPHICS 0:

SETCOLOR 2,9, 0:

SETCOLOR 4,9, 0;

SETCOLOR 1,9,12:

POKE 752,1:

POKE 82, 2:

POKE 83,39:

POKE 201,7
010 70

7 "IRRRRRRRRRRRRRKE "
20020 7 ,"! MAJOR CHORD HARMONY :*
7 ,"IRRRRRRRRRRRRRRC "
POKE 77,0:
RETURN



DTS TORT O L EEWE L

FXITOCH CH&RRT

NOTE # FITCH MUSICAL NOTE

1 14 C
2 15 E
3 16 A#¥ or EBb
4 17 £
S 18 G# or Ab
) 19 G
7 21 F# or Gb
=) 22 F
4 23 E
10 24 D# or Eb
11 26 D
12 4 CH# or Db
13 29 C
14 31 E
15 23 A¥ or EBEb
16 25 A
17 37 G# or Ab
18 40 G
19 2 F# or Gb
20 45 F
2 47 E
22 =0 D# or Eb
23 53 D
24 57 C# or Db
25 60 [
26 &4 H
27 68 A# or BEb
28 72 A
29 76 G# or Ab
30 81 G
31 89 F# or Gb
32 91 F
33 Q& E
34 102 D# or Eb
33 108 D
36 114 CH# or Db
7 121 C
8 128 E
39 136 A# or Bb
40 144 A
41 153 GH# or Ab
42 162 G
473 1773 F# or Gb
44 182 F
45 193 E
44 204 D# or Eb
47 217 D
48 230 C# or Db
49 243 C

S0 259 E



SOUND.6 BASIC SOUND EFFECTS BY JERRY WHITE PAGE 1

0 REN SOUND.& (c) 1981 by Jerry White 11/9/81

10 ¥0=0:V1=1:Y2=2:V3=3:POKE 82,2:POKE 83,39:6070 2000

50 POKE 540, WAIT

52 IF PEEK(540) ()0 THEN 52

54 FOR OFF=0 TO 3:50UND OFF,0,0,0:NEXT OFF:RETURN

89 REN

90 REN $43 MACHINE GUN %88

91 REN

100 FOR SHOT=1 TO 12:FOR VOL=15 TO 0 STEP -5:SOUND V0,80,0,VOL:SOUND V1,60,0,VOL
110 SOUND ¥2,200,4,V0L:SOUND V3, 10,4,VOL:NEXT VOL:GOSUB 54:NEXT SHOT

120 RETURN

189 REN

190 REN 143 SURF/WAVES #38

191 REN

200 FOR P0=10 T0 2 STEP -0.02:VOL=P0/2:SOUND V0,P0,8,VOL:SOUND V1,P0+1,8,V0L
210 SOUND Y2,P0+2,8,V0L:SOUND V3, RND(0) 43,8, VOL

220 FOR P0=3 T0 12 STEP 0.02:V0L=P0/2:SOUND V0,PO,B,VOL:SOUND V1,PO+1,8,VOL

230 SOUND ¥2,P0+2,8,Y0L:SOUND V3,RND(0) 43,8, VOL:NEXT PO

240 FOR P0=10 TO 2 STEP -0.02:YOL=P0/2:SOUND V0,P0,8,VOL:SOUND V1,PO+1,8,VOL
250 SOUND V2,P0+2,8,Y0L:SOUND V3,RND(0) £3,8,VOL:NEXT PO:60SUB S4:RETURN

289 REN

290 REN t4% LAZERS/PHOTONS $11

291 REN

300 FOR GHOT=1 TO &:FOR P0=0 TO 200 STEP 10

310 SOUND V0,P0,0,8:SOUND V1,P0, 10,8:SOUND Y2,P0, 12,8:S0UND V3,P0,4,8

320 NEXT POsNEXT SHOT:G0SUB 54:RETURN

389 REM

390 REM #18 POLICE/FIRE SIREN #18

391 REM

400 FOR P0=200 TO 50 STEP -1:SOUND VO,P0,10,8:SOUND V1,P0+2,10,6:SOUND Y2,P0+4,10,2:S0UND V3,P0+6,10,2:NEXT PO
420 FOR P0O=50 TO 160 STEP 0.2:50UND V0,P0,10,B:50UND V1,P0+2,10,4:50UND V2,P0+4,10,4:SOUND V3,PO+4, 10, 2:NEXT PO
430 GOSUB 54:RETURN

489 REN

430 REN £1% AIR RAID SIREN $13

491 REN

500 FOR LOOP=1 TO &:FOR P0=1 TO 20:SOUND V0,B0+P0,12,8:NEXT PO

510 SOUND V0,80, 10, 12:SOUND V1,100, 10, 12: S0UND V2,13,4,12

520 WAIT=30:G0SUB 50:NEXT LOOP

530 FOR V=12 T0 0 STEP -0.1:SOUND VO, (20-V) £10,10,V:SOUND V1, (20-V) $10+20,10,V: SOUND V2,13,4,V:NEXT V
540 GOSUB 54:RETURN

589 REN

590 REM %1% TELEPHONE RINGING #11

591 REN

600 FOR RING=1 TO 2:FOR LOUD=1 TO 35:SOUND V0,20, 10,8:SOUND V1,1,2,8

610 FOR LOOP=1 TO 2:5OUND V0,25,10,8:50UND V1,0,2,8:NEXT LOOP:SOUND ¥0,0,0,0:SOUND V1,0,0,0:NEXT LOUD
620 FOR V=7 T0 0 STEP -0,2:SOUND V0,20, 10,V:SOUND V1,0,2,VsNEXT ¥

630 WAIT=90:60SUB 50:NEXT RING:GOSUB 54:RETURN

689 REN

690 REN %83 WHISTLING BOMB $33

491 REN

700 FOR PO=0 TO 150:SOUND 0,P0,10,P0/1542:NEXT PO

710 FOR PO=0 TO 240 STEP 5:VOL=14-P0/20:SO0UND V0,P0,0,V0L:SOUND V1,P0,8, VoL

720 SOUND V2,P0+15,2,VOL:NEXT PO:GOSUB 54:RETURN

789 REN

790 REN $3% SPACE SHIP 118

791 REM

800 SOUND V2,0,8,2:FOR VOL=1 T0 15 STEP 0.1:50UND V0,25,4,V0L:SOUND V1,13, 4, VOL:NEXT VoL
810 FOR VOL=14 T0 0 STEP -0.1:SOUND V0,25,4,V0L:SOUND V1, 13,4, VOL:NEXT VOL

820 GOSUB 54:RETURN

889 REN



SO L

If you have run the first 6 progirams in  this package,
you should now have a good background for using the Atari
Bagic SOUND command. The SOUND.S program  gave you some
idea of what you can do by quickly changing the values of
SOUND command variables. The SOUND.& program demonstrated
sound effects and hopefully vou are now thinking about
creating some of your own sound effect routines.

This machine has truly amazing sound capabilities.
Believe it or not, the SOUND command is not the best way
to create sound effects. Using machine language speed is
one way to get sounds that FBasic is just too slow to
create. But you don’t need machine language to get more
sounds from this computer.

Some truly amazing sounds can be created using the
FOKE command. SOUND.7 lets you experiment with POKEs by
using youwr joystick plugged into the first port.

I"11 give vyou more information on these POKE
locations later but first let me explain how to use the
SOUND. 7 program. You can read the technical stuff later.

The numbers 33760 thru 353768 are displayed on the
screen. A greater than ( * ) symbol should appear next to
the top number. Move that * down to the number 53768 by
pulling back on the joystick. This is how we select the
location we wish to FOKE. Once the > points to the
desired location, press the trigger button. The location
number should tuwrn blue.

Now push up on the joystick to make the number to be
poked into location 53768,80. Push up to make the number
higher and pull down to make the number lower. Once vyou
have the number 80 next to the 53768, press the trigger
button. This will cause the §37468 to go back to it's
original yvellow color and the * to return to it's original
position next to the S3760.

No sound? Not yet, be patient. Now lets change the

FOKE For location 5S3760. Since the > is already in
position, Jjust press the trigger and that top number
should turn blue. Use vyour joystick to make the poke

53760,10, then press the trigger.

Still no sound? Boy are vyou impatient. 0. kK. Move
the » to location 53761 and press the trigger. Now change
the poke to that location randomly. SOUND! ! It’s about

time. Now it’s time to experiment. That location at the
scireen bottom is the key. Try changing it to 83, 85, and
other numbers between 0 and 255. Then go back and change
those top two locations.



What about 53762 thru 5374677 Go ahead, do what vyou
want. You can’t hurt anything but you might drive some
people crazy if the volume on yow TV is too high.

To exit this program, just press any key on the
keyboard. This is also a good way to shut off the sounds
and start over by giving the RUN command.

Before using these FOKE locations in Basic, there are
two things vou must know. The PFOKEY chip must first be
initialized. This is accomplished with a simple SO0OUND
0,0,0,0 command and should be done at the beginning of
YyOour progeam.

These locations or sound registers are write only.
For sound, you can FOFE into these locations but FEEEing

will not reflect the value vyou just poked. Confusing?
You®ve got that right! The main thing is that vyou can
create sounds using experimental FOKEs without

understanding what’ s happening or why.

For a detailed more explanation of these registers
and other SOUND information, I°d strongly suggest vyou read
the SOUND chapter in De Re Atari. This book is scheduled
to be available from APEX,

LOCATION DESCRIFTION

SE760 Voice O Frequency
83761 Voice 0O Control
SE762 Voice 1 Freqgquency
83763 Voice 1 Control
553764 Voice 2 Freqguency
53765 Voice 2 Control
53766 Voice I Freguency
S3767 Voice 3 Control

SE7468 Audio Control



SOUND.6 BASIC SOUND EFFECTS BY JERRY WHITE PAGE 2

890 REN 8% SPACE ECHO #41

891 REM

900 FOR VOL=15 TO O STEP -0.2:FOR P0=0 TO 5:SOUND V0,P0,2,VOL:SOUND V1,P0+1,2,V0L:NEXT PO
910 FOR P1=VOL$10 TO VOL STEP -10:S5OUND VO,P1,10,VOL:SOUND V1,P1+VOL,10,VOL:NEXT PL1:NEXT VOL
920 RETURN

989 REM

990 REN #33 DOOR BELL ¥3%

991 REM

1000 FOR YOL=15 70 0 STEP -0.5:SOUND V0,29,10,V0L:S0UND V1,30,10,VO0L:NEXT VOL

1010 FOR VOL=15 TO 0 STEP -0.5:S0UND V0,35, 10,V0L: SOUND V1,36,10,VOL:NEXT VOL

1020 RETURN

1999 STOP

2000 REM #3% MENU OPTIONS 343

2010 GRAPHICS 0:SETCOLOR 2,15,0:POKE 752,1:POKE 201,10:?

2020 7, "qRRARARRRRRRRARRE"
2030 7,1 SOUND EFFECTS }*

2040 7, "TRRRRRRRRRRERRRRE":POKE 201,937
2100 ? ,® <1> HACHINE GUN"

2110 7 ," <2 SURF WAVES"

2120 7 ," (3> LAZER FIRE"
2130 7 ,* <4)> POLICE SIREN"
2140 7 ," <35> AIR RAID SIREN"
2150 7 ," <b)> TELEPHONE RINGING"

2160 7 ,* <7> WHISTLING BOMB"

2170 7 ,* <B> SPACE SHIP®

2180 ? ," (9> SPACE ECHO"

2190 7 ,"<10> DOOR BELL"

2500 7 ,"<11> RUN LAST PROGRAN"

3000 POKE 33279,0:7 :7 ,* CHOICE®;:TRAP 9000: INPUT CHOICE: TRAP 40000

3010 CHOICE=INT(CHOICE):IF CHOICEC! OR CHOICE>L1 THEN 9000

3020 IF CHOICE=11 THEN RUN "D:SOUND.7"

3030 GRAPHICS 0:SETCOLOR 2,CHOICE,0:? :? :? 17 :LIST CHOICE¥100-10,CHOICE¥100+80
3040 GOSUB CHOICE¥100:? :7 :7 * PRESS ANY KEY FOR OPTIONS";:POKE 764,235
3050 IF PEEK{764)=255 THEN 3030

3060 POKE 764,255:607T0 2000

9000 RUN



ARk R kkkkk kR Rk kkkkkkkkkkkkkE kK KXk
k%X SOUND.7 (SOUND EDITOR) XXX
X% (c) 1981 by Jerry White XXX
ARk kkokkkokkkkkkkkk kR kkkxkkkkkkkxk

qu guzo 10000 N 60TO 500
500 Eg;llé?ﬂ 1évé_ 3000 FOR ME=1 TO 10:
HE=0 TO 8: POKE 53279, 0:

FOSITION o6,ME+Z:
7 #6;53700+HE; "= NIME);© s
NEXT ME
600 7 #b6;" select location
700 POSITION 5,2:
o
y=2

POKE 53279,8:
NEXT ME:
RETURN
{0000  GRAPHICS 18:
DIN N(8),L$(5):
SOUND 0,0,0,0
70 S=STIKIO): e
e p 09,204
& S M 08 Tk {0100 7 86" SOUND EDITOR™:
PRBLIUN 2,1 Thert KRR

3-:fff : FOKE 74,755
' :4-.)- =. - __:

POSITION 5, V: 11000 FOR ﬁinﬁ)iﬂ.“

7 #6;CHRS (30): et

60SUB 3000
730 IF PEEK(764)<>235 THEN {2000
740 IF 5=13 AND Y{10 THEN

CLOSE i
OPEN #1,4,0,°K: "

| 6070 500
e Sk {2000 GRAPHICS 0:
e I LIST :
Y=¥ti: Gy
POSITION 5, Vs 4 —— _
B CHRS 30 ? EAD OF SOUND TUTORIAL BY JEGRY WITE.

GOSUE 3000
750 IF STRIG(0)=1 THEN 720
800 BC=Y-2
300 POSITION 0,11:
7 §b3" release trigger
1000 IF 5TRIG{0)=0 THEN 1000
1016 POSITION 3,Y:
? ¥y "
1020 P=53760+G6C:
L$=STR$ (F):
FOR ME=1 TO 5:
IT=ASC{L% (ME,HE)):
[T=1T+i28:
L$ (ME,ME)=CHR$ (IT):
NEXT ME
{030 POSITION &,Y:
7 §b;L%
1040 POSITION 0,11:
? $6;"  change poke
2000 S=STICK{0):
IF 5=14 AND N(GC)<{Z53 THEN
N(GC)=N{GC) +1
2020 IF PEEK(764)<>255 THEN 12000
2100 IF 5=13 AND N{GC) >0 THEN
N{GC)=N(BC)-1{
1200  POKE P,N(BEC):
POSITION 1Z,¥:
? $o;N(BL) ;" "
2300 IF STRIG(O)=1 THEN 2000
2800 POKE 63,0:

END



°

Educational Software's
HORZ/VERT SCROLL Tricky Tutorial #2

o™i G

FOR ATARI" 16K COMPUTER
Use "RUN:C' To Load !

Educationsl Software's

:PAGE FLIPPING TRICKY TUTORIAL #3

(& m o
S "

FOR ATART™ YoR COMPOTER
Use "RUN:C' To I,o:rl

)
-l . &
< "
Fdueati | y m
PLAYER m;rﬁ‘ G:T;;:lrc‘:ess T.T. #5 SOUND m%:l!ml;:
IAL 48
: ” A o :
| Q "\;) : @
For Atari™ 32K Computer
Use 'RUN:C' To Load k=1 -!Mgmxh 4
- _J' o ¢ E | 1 f £
¢ | & L L ¢ '
e U oo | ¢« ‘



	Cover
	Introduction

	Display Lists
	Scrolling
	Page Flipping
	Basics of Animation

	Player Missle Graphics
	Sound

