by Clayton Walnum

pet_letter:
move.l
move.n
trap
addg. 1

nove.N
trap
addg.1

#prompt,-(sp)
#9,-(sp)

i

#6,sp

#1,-(sp)
#1
#2,sp

BLET_A,d8
do_a
HLET_B,d8
do_b
8LET_C,d8
do_c
get_letter

HLET_A,key_nsg+14

; add "A" to string,
I

Text Marks Search Block Print Special Mode Hel
it et = DINIMAC\PROGZ.S =

; put string address on stack.
; function # to display string.
; call the operating systenm.

; clean up the stack.

; function # to get a character.
; call the 0S.
; clean up stack.

; is the letter "A"?
!

; Yep!

; not "A"; is it a “B"?

} sure is,

; not "B"; is it a "C"?

) yes.

; invalid input; try again.

A Taylor Ridge Book

THE ST ASSEMBLY
LANGUAGE WORKSHOP

VOLUME 1

THE ST ASSEMBLY
LANGUAGE WORKSHOP

VOLUME 1

CLAYTON WALNUM

TAYLOR RIDGE BOOKS
MANCHESTER, CONNECTICUT

Copyright © 1991 by Clayton Walnum. All rights reserved.

Any reproduction of this work, in part or in whole,
mechanical or electronic, is strictly forbidden without the
written consent of the author, with the exception of brief
passages to be used in a review.

While every effort has been made to ensure the accuracy of
the contents of this book, the author and the publisher
accept no liability for losses that may arise from the use of
the information contained herein. This book is sold without
warranty, either express or implied. Published by Taylor
Ridge Books, P.O. Box 78, Manchester, CT 06045.

This book was produced on an Atari Mega 4 workstation,
using Calamus desktop publishing software.

Designed and lllustrated by
Beyan Schappel

Cover Artwork Designed by

Clayton Walnum & Bryan Schappel

Reference Section Compiled and Written by

Beyan Schappel

Sccond Edition

Printed in the United States of America.

To Charles F. Johnson,

One of the best programmers and musicians I know.

TABLE OF CONTENTS

introduction xiii
Who This Book is For xiii

Which Assembler? xiv

A Multi-Volume Work xiv

How To Use This Book xv

The Workshop Begins xvi

Chapters

1 AFirst Look At Assembly Language 1
The Answers 1
Language Types 2

Our Own Machine Language 3
Machine Language to Assembly Language 4
Assemblers and Housekeeping S
Registers and Memory 7

The Program Counter 8

The Stack]

Let’s Get Busy 14
Conclusion 17
Summary 17
Program Listing #1 19

2 Data Sizes And Number Systems 21
Data Sizes 21

Bits, Bytes, Words, and Long Words 22
Binary, Hexadecimal, and Decimal Numbers 24
Number Systems 24
Hexadecimal Digits 26
Converting Binary to Hexadecimal 26
Converting from Hexadecimal to Binary 27
Converting Decimal to Binary 28
Converting Decimal to Hexadecimal 30

The Easy Way 3
Conclusion 31

Summary 31

3 Registers, The Stack, And Addressing 33
Modes

Registers 33
The Program Counter 34
The Status Register 34
The Stack and ST Function Calls 35
Addressing Modes 36
Instruction Suffixes 37
Conclusion 38
Summary 39

4 Constants, Function Calls, And Branching 41

The Program 4]
The Data Segment 42
The Text Segment 44
Immediate Addressing 45
And Back to the Program 45
Address Register Indirect Addressing with Pre-decrement 45
The Way It Works 46
The Function Cconws 47
The addg instruction 48
Address Register Direct Addressing 48
The Cconin Function 418
Comparisons 49
Data Register Direct Addressing 51
String Manipulation 51
Absolute Addressing 52
Finishing It Up 52
Conclusion 53
Summary 53
Program Listing #2 55
5 Numbers 59
A Number in Memory 59
Converting Numbers 60
The Program 61
Verifying the Input 62
Saving a Register 63
Simple ASCIi to Integer Conversions 63
Simple Integer to ASCH Conversions 64
Programming Style 65
Conclusion 66
Summary 66

Program Listing #3 68

6 Subroutines And Looping 71

The Program 71
String Arrays 72
Subroutines 73
Saving Registers 74
Looping 76
Address Register indirect Addressing with Post-Increment 77
Restoring the Registers 79
Subroutine Design 79
Commenting a Subroutine 80
Conclusion 80
Summary 80
Program Listing #4 82
7 Numbers Revisited 85
The Program 85
Uninitialized Data Storage 86
Generating Random Numbers 87
16-bit Integer to ASCII 90
Local Labels 92
ASCIl to 16-bit Integer 93
The Main Program 95
Conclusion 96
Summary 96
Program Listing #5 99
8 Manipulating The System Clock 109
The Program 109
A First Look at Macros 110
Getting the System Date 112
Getting the System Time 116
Setting the System Date 117
Setting the System Time 121
Address Register Indirect Addressing with Displacement 122
Address Register Indirect Addressing with index 123
Indexing an Address Table 124
Conclusion 125
Summary 125

Program Listing #6 127

9 Simple File Handling And Printer Output 145

The Program 145
More About Macros 146
A String-input Macro 147
A Get-Character Macro 148
Opening a Disk File 148
Checking the Printer’s Status 149
Reading a File 150
Why a Buffer? 153
Conclusion 153
Summary 154
Program Listing #7 156
10 More File Handling 165
The Program 165
Some New Macros 166
Creating a File 166
Writing to a File 167
High-Level Assembly Language 168
Inside the Program 169
Conclusion 171
Summary 171
GEMDOS Error Codes 172
Program Listing #8 173
11 Playing With the Screen 187
The Program 187
DEGAS Flle Format 188
How the Program Works 189
Getting the System’s Resolution 189
Calculating Screen Memory 190
Getting the Physical Screen’s Address 192
Manipulating Palettes 193
Flipping Screens 195
Conclusion 197
Summary 198
That's All Folks 199
Program Listing #9 200
A Appendix « Assembly Instructions 213
Assembling with DevPac2 213
Assembling with MadMac 215

Changes for MadMac 215

B 68000 Instruction Reference
Abbreviations

Addressing Modes

ABCD « Add Binary Coded Decimal with Extend
ADD * Add Binary

ADDA + Add Address

ADDI + Add Immediate

ADDQ ¢ Add Quick

ADDX * Add Binary with Extend
AND *» Logical AND

ANDI « AND iImmediate

ANDI < AND Immediate Data to CCR
ANDI = AND Immediate Data to SR
ASL ¢ Arithmetic Shift Left

ASR * Arithmetic Shift Right

Bcc ¢ Branch on Condition Code
BCHG e+ Test aBit and Change

BCLR e+ TestaBitand Clear

BSET e« Test Bit and Set

BSR e Branch to Subroutine

BTST * Test Bit

CHK * Check Register Against Boundaries
CLR ¢ (Clear an Operand

CMmP * Compare

CMPA + Compare Addresses

CMPI = Compare Immediate

CMPM « Compare Memory

DBcc * Test, Decrement, and Branch
DIVS * Signed Divide

DIVU « Unsigned Divide

EOR e Exclusive OR

EORI ¢ Exclusive OR immediate
EOR! e Exclusive OR immediate Data to CCR
EORI * Exclusive OR immediate Data to SR
EXG * Exchange Registers

EXT * Sign Extend

ILLEGAL ¢ Take lllegal Instruction Trap
JMP * jump

JSR * Jump to Subroutine

LEA * Load Effective Address

LINK ¢ Link and Allocate Space

LSL ¢ Logical Shift Left

LSR * lLogical Shift Right

MOVE < Move Data

MOVEA e« Move to Address Register

217
218
218
219
219
220
220
221
221
222
222
223
223
224
224
225
226
226
227
227
227
228
228
229
229
230
230
231
232
232
233
233
234
234
234
235
235
235
236
236
237
237
237
238
238

MOVE
MOVE
MOVE
MOVE
MOVEM
MOVEP
MOVEQ
MULS
MULU
NBCD
NEG
NEGX
NOP
NOT
OR
ORI
ORI
ORI
PEA
RESET
ROL
ROR
ROXL
ROXR
RTE
RTR
RTS
SBCD
Scc
STOP
SUB
SUBA
SUBI
SUBQ
SuUBX
SWAP
TAS
TRAP
TRAPY
TST
UNLK

Index

Move to CCR

Move from SR

Move to SR

Move to/from the User Stack Pointer
Move Multipie

Move Peripheral Data

Move Quick

Signed Multiply

Unsigned Multiply

Negate Decimal with Extend
Negate

Negate with Extend

No Operation

Logical Complement
Inclusive Logical OR
inclusive OR Immediate
Inclusive OR Immediate to CCR
Inclusive OR iImmediate to SR
Push Effective Address

Reset External Devices
Rotate Left

Rotate Right

Rotate Left with Extend
Rotate Right with Extend
Return from Exception
Return and Retore CCR
Return from Subroutine
Subtract BCD with Extend
Set According to Condition
Load Status Register and Stop
Subtract Binary

Subtract Address

Subtract Inmediate

Subtract Quick

Subtract with Extend

Swap Register Halves
Indivisible Test and Set

Trap Through the Exception Table
Trap on Overflow

Test an Operand

Unlink and Deallocate Stack

239
239
240
240
241
241
241
242
242
243
243
244
244
245
245
246
246
246
247
247
248
248
249
249
249
250
250
250
251
252
252
253
253
254
254
254
255
255
255
256
256

257

INTRODUCTION

m elcome to the ST Assembly Language Workshop.

Over the course of this volume, and the ones to
come, we will teach you everything you need to know to
produce your own programs in assembly language on the
Atari ST. We at the workshop figure there’s no reason it
should be only the ST “gurus” who hold the secrets to the
wonderful world of 68000 assembly language, because
learning assembly language is really not very difficult. As
long as you're willing to do a little work and accept some
new ways of programming, you too can amaze your friends
and other ST users with your assembly language skills.

Who This Book is For

While learning assembly language is not that much more
difficult than learning any type of programming language,
you probably should already be familiar with computer
programming before you tackle this book. We aren’t going
to take the time here to present an introductory course in
computer science. You should understand all the basic
programming concepts (i.c., variables, looping, Boolean
logic, etc.) and have some programming experience.

Other than some basic programming skills, the only
other things you need to bring to the workshop are an
assembler, an ST, and a willingness to learn.

Xiv

Which Assembler?

There are several assemblers available for the ST line of
computers, including DevPac2, AssemPro, MadMac, and
AS68. The programs in this book were designed using the
DevPac2 assembler, published by HiSoft and distributed in
the U.S. by Goldleaf Publishing. However, we have also
provided full support for Atari’s MadMac assembler, which
comes with the Atari Developer’s Kit. The main difference
between the two assemblers is the way they handle
assembler directives. These differences are mentioned in the
body of the text, and are explained fully in Appendix A.

In other words, to follow the programming examples
in this book most easily, your best choice for an assembler
would be DevPac?2. But if you have access to Atari’s MadMac,
that assembler will do just fine. Other assemblers can be
used, of course, but it will be up to you to correct any
incompatibilities that you may run into. Because the actual
instructions used in 68000 assembly language are the same
from one assembler to the next, code differences will
probably arise only with assembler directives and minor
points of syntax, all of which can be easily corrccted if
you're familiar with your assembler or are willing to spend a
little time reading your assembler’s manual.

A Multi-Volume Work

You’ve undoubtedly noticed the “Volume 1” tacked onto
this book’s title. Yes, The ST Assembly Language Workshop is
a multi-volume work. This volume, part 1, teaches basic
assembly language programming, including the most-used
68000 assembly language instructions, many common TOS
functions, and basic programming strategies. By the end of
this book, you should have a good understanding of 68000
assembly language and be able to write full-length TOS
programs on your ST. You’ll be able to convert numbers,
call OS functions, handle disk files, and send data to a

printer. You’ll even know how to load and display DEGAS
picture files.

Volume 2 of this series will take the basics you’ve
learned here and apply them to GEM programming. You'll
lcarn to handle file selectors, alert boxes, dialog boxes,
menus, and windows. Programming a GEM application is a
complex task, one that you cannot possibly tackle without a
good grounding in the language with which you plan to
work, in this case 68000 assembly language. Volume 3 will
dig even deeper into the depth of GEM programming,
covering advanced topics of interest to programmers who
want to get the most from their machines.

How to Use This Book

The ST Assembly Language Workshop is a tutorial. It is not a
text book, nor is it a reference book (although the index is
complete enough that you should have little difficulty
finding information you need). I believe that the best way to
learn something is to dig in and get your hands dirty.
Therefore, rather than covering topics in an “organized”
text book fashion, I cover topics as they arise in the pro-
gramming experiments. You won'’t, for example, find
explanations of all the addressing modes in one place, as
you would in a text book. Instead, each addressing mode is
discussed when it appears in a sample program for the first
time.

To get the most from each lesson, you should first
read the text, getting a general understanding of what the
chapter covers. You should then read the chapter again, this
time reading more slowly and paying particular attention to
the chapter’s sample program. (Only two chapters don’t
include a sample program.) Once you feel comfortable with
the material, read over the summary, making sure
everything there makes sense to you. Only when you
understand everything in the summary should you go to the
next chapter.

While we’ve covered the material presented in this
book as completely as possible, you should consider
obtaining a couple of reference books on general 68000
assembly language programming and on the ST’s operating
system. You should have no difficulty finding the former;
your local bookstore will likely have many 68000 assembly
language reference books. (I use Programming the 68000 by
Steve Williams, published by Sybex.)

Unfortunately, finding reference books for your ST
may be difficult (one reason Taylor Ridge Books was
formed), since many are now out of print. Your best choice,
if you can find it, is Sheldon Leemon’s excellent three-
volume reference work, which includes the volumes Atari
ST: TOS, Atari ST: VDI, and Atari ST: AES. These books were
published by Compute books. Atari, can, of course, supply
you with complete documentation. To get this documenta-
tion, you must purchase the Atari Developer’s Kit, which
comes not only with complete reference materials, but also
the Alcyon C compiler, and the AS68 and MadMac assem-
blers. Call Atari for more information.

Finally, although not all instructions are covered in
the text of this volume, there is a 68000 assembly language
quick reference included at the end of this book that
includes short descriptions of all 68000 assembly language
instructions. Feel free to poke around in there and experi-
ment with what you discover.

The Workshop Begins

So much for the chatter. Get your goggles on, crank up your
machine, and let’s get grinding. The ST Assembly Language
Workshop is now open for business. See you there.

Clayton Walnum
November, 1991

E 1
A FIRST LOOK AT ASSEMBLY
LANGUAGE

50, you want to learn 68000 assembly language, e¢h?
Wonderful! You've probably made one of the wisest
choices of your programming career, because learning

assembly language will imbue you with the power to make
your machine do every trick it’s capable of, no holds barred.

In fact, assembly language is the only computer language
that offers this power.

Why is assembly language so powerful? Because it’s
the closet thing to machine language, which is the only
language your computer actually understands. In a way,
assembly language is machine language. There is a one-to-
one relationship between assembly language instructions
and machine language instructions. Assembly language just
supplies easy-to-remember names for all the 68000’s
machine-language instructions, instructions that are really
nothing more than numbers.

But before we get too far with this discussion, let’s
explore some basic questions. Where does assembly
language fit into the scheme of things? Is it anything like
BASIC or Pascal or C? If you already know a high-level
language, will that knowledge help you learn assembly
language? Or will you be starting completely from scratch?

So many questions! Let’s get right to the answers.

The Answers

Assembly language is similar to high-level languages like
BASIC and Pascal in that an assembly language program is a

THE ASSEMBLY LANGUAGE WORKSHOP

series of instructions that are performed in a specific order.
However, assembly language is very unlike other languages
when it comes to form and technique. Learning assembly

language requires thinking about programming in a whole
different way.

Knowing other computer languages will certainly

help you with assembly language, because many concepts
associated with programming--such as looping constructs
and variables--are shared by all computer languages. In fact,
as you learn assembly language, you'll also learn a lot more
about high-level languages, because you’ll begin to unders-
tand how those languages work. Mark my words, one day
you’ll be writing an assembly language program and a giant
light will go on inside your head, and you’ll say something
like “So that’s how a FOR..NEXT loop works!” or “No

wonder | ran out of memory when I called that subroutine
inside an infinite loop!”

Language Types

There are three kinds of computer languages: interpreted
languages, like BASIC; compiled languages like Pascal or C;
and assembly languages. Because your computer can
understand only machine language, all three types of
languages must be converted into machine language before
the computer can run them. One big difference between
these three kinds of languages is the way they are converted
into machine language. .

BASIC, for example, is converted one line at a time.
Let’s say you’ve written the following BASIC program:

+1

imn

X=X
Y=X

When you type “run,” the BASIC interpreter takes the
first line of code, X=X+ 1, and converts it into machine

A First Look At Assembly Language

language. The computer then performs that machine
language version of the instruction, after which the
interpreter grabs the next line of code and converts it. This
constant conversion of code at run time is one reason BASIC
is slow. (Most modern versions of BASIC now use compilers,
as well as interpreters. A compiled BASIC program runs
much faster than an interpreted one, for reasons we shall
soon see.)

When you write a program in a compiled language
like Pascal, the source code must be completely converted
into machine language before you can run the program.
This process is called compiling. Although you still have to
wait for the computer to do the conversion, once you've
done it, you never have to do it again (unless, of course, you
make changes to the program). Your compiler stores the
converted program onto your disk, from which it can be run
any time you please. However, although compiled programs
run much faster than interpreted ones, they are usually
slower than assembly language programs. This is due to
unavoidable inefficiencies in the way the source code is
converted into machine language.

Assembly language programs can be converted
(assembled) into machine language very quickly and also
run very quickly, because assembly language really is just
another form of machine language. The conversion process
is perfect, involving none of the inefficiencies inherent in
the compilation process. Each assembly language
instruction has an exact machine language counterpart.

Our Own Machine Language

Confused? Let’s say we’re electronics engineers, and we're
going to create a brand new computer. Because this is our
machine, we can design its instruction set any way we like.
We do, however, have to remember that computers
understand only numbers, so each instruction code we
devise for our computer must be a number. To keep things

THE ASSEMBLY LANGUAGE WORKSHOP

simple, let’s say that our computer has only three memory
locations named A, B, and C. Now, let’s make up the
machine language code we need to add two numbers.

First, we must retrieve the numbers we want to add.
Let’s say the code 12 means “load a number into A.” For our

new machine language instruction to make sense, we need
to know the number to load. So, now let’s make up a rule
that says every time we use the instruction 12, it must be
followed by the number to load. In this example we’ll be
adding the numbers 2 and 3, so our first machine language
instruction for our wonderful new computer is 12 2, which
means “load the number 2 into memory location A"

Now, we want to load the second number into ... oh ...
how about memory location B? We pick a code to be our
machine language instruction for loading a number into B.
How about 35? Just as with our instruction 12, we need to
follow the instruction 35 with the number to load. We now
have our second machine language instruction, 35 3, which
means “load the number 3 into memory location B."

Next, we need to make up an instruction that adds
the numbers in A and B and stores the answer in our final
memory location, C. How about 47 this time? Our complete
machine language program, then, is:

12 2
35 3
47

Machine Language to Assembly
Language

If you were to stop reading here and come back to this
lesson tomorrow, when you looked at the list of numbers
making up our machine language program, it probably
wouldn’t mean anything to you. Similarly, if you were to
cover your eyes right now and then try to reproduce the
program, you'd probably have a hard time remembering it.

A First Look At Assembly Language

Assembly language to the rescue! We can make our
machine language instructions easier to read and easier to
remember by giving them more readable names. Let’s
assign the name LDA (LoaD A) to 12, the name LDB (LoaD
B) to 35, and ADD to 47. Each name we chose is a mnemonic
(look that word up in the dictionary if you don’t know what
it means), because it helps us remember what the instruc-
tions are supposed to do. Our program now looks like this:

LDA 2
LDB 3
ADD

Wow! That's a heck of a lot easier to remember than
all those numbers, isn’t it? And guess what? We just created
our own little assembly language. We could go on, making
up more and more instructions, giving us the power to do
all sorts of awesome things with our newly designed
computer. Of course, with a real computer, the instructions
are not just pulled out of the air like ours were; there are
lots of complications that only a physics whiz can
understand. But we don’t care about that. As far as we're
concerned, real machine language instructions are just a
bunch of numbers that are used much like the machine
language instructions we made up.

You should now understand what I meant when I said
assembly language and machine language share a one-to-
one relationship: LDA=12, LDB=35, and ADD=45. Fach
instruction in our machine language has its own assembly
language mnemonic. An assembler changes the mnemonics

back into numbers for the machine, because our computer
understands 12, not LDA; 45, not ADD.

Assemblers and Housekeeping

Besides converting mnemonics back into numbers, assem-
blers also do a lot of dirty work for us. For example, let’s say

THE ASSEMBLY LANGUAGE WORKSHOP

we want to add those two numbers in our machine repeat-
edly. We could write a long line of instructions that goes on
forever, but it'd be much easier to jump somehow backward
to the beginning of our three instructions every time we
finished adding the numbers. That means we need another

instruction. Let’s use the number 39 and assign it the name
JMP (JuMP). Here’s our code now:

LDA 2
LDB 3
ADD
JMP

We still have a problem. When we get to the JMP
instruction, how do we know where to jump? We need to
tell the computer how many instructions to skip back in
order to get to the beginning of the code. We need to jump
backward through ADD, 3, LDB, 2, then stop on LDA, right?
Counting each number (remember: our mnemonics repre-
sent numbers), we now know we must jump back five
places. In our JMP instruction, we’ll use negative numbers
when we want to jump backward and positive numbers
when we want to jump forward. Here’s our code now:

LDA 2
LDB 3
ADD

JMP -5

Many years ago programmers used to program the
way we just did, counting each byte of memory in order to
calculate where jump and branch instructions should go.
That task was easy for us, because we have only a few
instructions in our program. Can you imagine having to
count bytes for programs made up of thousands of instruc-
tions? I'd rather dig holes in sidewalks with a spoon.

A First Look At Assembly Language

Again assembly language comes to our rescue, by
allowing us to name places in memory and tell the assem-
bler the name when we want to Jjump to that place. The
assembler does all the counting for us. To see how this
works, let’s add a name to our example program:

LOOP LDA 2
LDB 3
ADD
JMP LOOP

As you can see, we've now replaced the -5 with the
name, or “label” as it’s called in assembly language, of the
instruction to which we want our program to jump. We
don’t have to do any calculations at all. When we assemble
the program into machine language, the assembler will do
the counting for us. And you thought assembly language
was difficult!

Using labels we can name any location in a computer’s
memory. It doesn’t have to be the location of an instruction.
It could be the location of text we want to print to the
screen or the location of a variable. Labels are a powerful
tool, as we will see as we learn more about assembly
language.

Registers and Memory

Remember when I said our computer would have only three
memory locations labeled A, B, and C? 1 lied. Our computer
must have many more memory locations than that. Do you
know why? We have to store our program someplace, right?
To run the assembly language program we just wrote, we
need at least seven additional memory locations, enough
space in which to load our program.

What I should have said before was that our new
computer would have only three “registers.” Registers are

THE ASSEMBLY LANGUAGE WORKSHOP

special memory locations used to store numbers and
perform calculations. Your ST (and any other computer
using a 68000 microcomputer chip) has 16 regular registers,
plus a few special-purpose registers. We'll talk about them
in detail in a later lesson.

So, now we must add some extra memory to our
computcr. Let’s give it 10 bytes, and then load our program
into the new memory. If we could look inside the
computer’s memory, we’d now see something like this:

12 2 35 3 47 39 -500 0

The first seven locations are our program. (Recognize
the numbers?) The last three locations are zeros because
those locations are empty. (In a real programming situation,
you can never assume that an unused memory location
contains a zero; it could contain any number.)

In actuality, a computer already has names for every
location in its memory. Those names are called addresses.
Because a computer can deal only with numbers, it should
be obvious that addresses are also numbers. To make things
casy for us humans, computers name their memory
locations starting with zero, incrementing each “address” for
each successive location. If we wanted to draw a picture of
the memory in our new computer, it might look something
like figure 1.1.

The Program Counter

Okay, so now we’ve got some memory in our computer to
go along with our three registers. Now, let’s tell the
computcr to run our program. Go ahead: tell it. What?
Nothing happened? Hmmm. I guess we need to do a little
more work.

First, we need to add a marker into memory that’ll tell
our computer where to start processing our program. We’ll

A First Look At Assembly Language

o[12
11 2
2 35
3 3
4 45
5 39
6 -5
7 0
8 0
9 0
Reg. A o
Reg. B o |
Reg. C 0
Figure 1.1

also use this marker to help the computer keep track of
where in our program we are.

How about adding another register? We’ll usc this new
register only for pointing to the next instruction we want to
execute. We’ll keep the marker updated so that it always
points to the next instruction. Figure 1.2a shows our
computer with its new register (labeled “PC”), and the
program ready to run.

Now, when we tell the computer to run our program,
it “fetches” the instruction pointed to by the new register,
updates our marker, then executes the instruction it just
fetched. When it’s finished with the first instruction, the
computer looks where the marker is now pointing and
loads that instruction. And so it goes until our program
finishes.

In the high-tech world of computers, our new marker
register has a name. It’s called the program counter (PC).
Every computer, including your ST, has one of these handy
memory bookmarks. Let’s see exactly what happens when

THE ASSEMBLY LANGUAGE WORKSHOP

we run our program. Figures 1.2a through 1.2e show how
our computer’s memory is affected by the program.

In Figure 1.2a, nothing has happened yet. When the
computer runs the program, it first fetches the instruction
12 (LDA) and the instruction’s argument, 2. The PC moves
to address 2, which holds the next instruction, after which
the first instruction is performed, loading register A with
the number 2. Figure 1.2b shows the computer’s memory
after this instruction is executed.

OO
PC—0 | 12 o 12 0 | 12
1 2 1 2 1 2
2 35 PC —2 35 2 356
3 3 3 3 3 3
4 45 4 45 PC —> 4 45
5 398 6 39 5 38
8 -6 6 -5 6 -b
7 0 7 o 7 0
8 0 8] 8 0
9 0 9 o 9 0
A 0 A 2 A 2
B 0 B o B 3
c 0 c o c 0
Figure 1.2a Figure 1.2b Figure 1.2¢

Next, the computer fetches the instruction 35 (LDB)
and its data, 3. The PC is updated to address 4. The
instruction is executed, loading register B with 3. Figure
1.2c shows our memory’s current state.

Having completed the LDB instruction, the computer
fetches the instruction 45 (ADD), moves the PC to address 5,
and then performs the instruction, adding register A and
register B and placing the result in register C, as shown in
figure 1.2d.

Finally, the instruction 39 (JMP) and its argument (-5)
are fetched. Because of the negative jump, the PC is moved

10

A First Look At Assembly Language

back five memory locations, as shown in figure 1.2e. This
brings us almost back to the state shown in figure 1.2a; the
difference is that now our registers contain values other
than zcro.

0 12 PC —o0 12

1 2 1 2

2 35 2 35

3 3 3 3

4 45 4 45
PC —5 39 5 39

6 -6 6 -5

7 o 7 0

8 0 8 0

9 0o 8 o

A 2 A 2]

B[3 B | 3

c s c [s~

Figure 1.2d Figure 1.2¢

One important thing to note about the PC is that it
always points to an instruction, never to a piece of data. If
the PC in your ST should ever get out of whack and point to
something other than an instruction, you'll almost certainly
find a string of bombs on your computer’s screen.

The Stack

Suppose we now wanted to use our three registers for
something else, but we didn’t want to lose the values they
already held? What we need in our computer is a kind of
scratch pad, a place where we can temporarily store values,
without worrying about trodding all over important data.
What we need is a section of memory called a “stack.”

This strange area of memory is called a stack because
of the way it works. Imagine a stack of plates. You can add
new plates onto the top of the stack. You can also take plates
off the top of the stack. But you can’t get at the plates on the

11

THE ASSEMBLY LANGUAGE WORKSHOP

bottom until you’ve unloaded all the plates off the top. A
computer’s stack works the same way. Values are accessed in
a last-on-first-off manner.

Figure 1.3a shows the stack for our new computer.
One thing you should notice right off is that our stack has a
“bookmark” just like our computer’s main memory does.
This bookmark is called the “stack pointer (SP), and it
always points to the top of the stack. In assembly language,
we can put (push) values onto the stack for safe keeping and
then take (pop) them off again when we need them. The
stack pointer in Figure 1.3a is not pointing to anything yet,
because we have nothing on our stack.

O|OI0|O|0I0|0(0|0|O

WN

Figure 1.3a

Let’s try using the stack and see what happens. Since
we want to reuse our three registers without losing their
values, let’s save the values on the stack. First, we push
register A onto the stack, as shown in figure 1.3b. To do this
we first move SP forward, then copy the value in register A
into the stack location pointed to by SP. Now, we do the
same thing with registers B and C, as shown in figures 1.3¢
and 1.3d. Notice that, so far, we’ve done nothing to change
the values of our registers; we’ve only copied their values
onto the stack.

12

A First Look At Assembly Language

0 0
o 0 |
0 0 |
0 0
o 0
(o] 0
o | 0
5 —5"
0 SP— | 3]
SPp — 2 2
A 2 A 2
B 3 B 3
C 5 C 5
A
Figure 1.3b Figure 1.3¢

Now the contents of our three registers are safely
tucked away, waiting until we need them again. In figure
1.3e, we've gone ahead and used the registers to add two
more numbers. The registers’ previous values are now
destroyed. No problem! We saved their values on the stack.

o 0
0 0
o [9)
0 0
o)
0 o
) 0
SPp — 5 SP— [5
3 3
2 2
A 2 A [22]
B 3 B 43
c 5 C | 65
—
Figure 1.3d Figure 1.3e

13

THE ASSEMBLY LANGUAGE WORKSHOP

When we want registers A, B, and C restored to their
original values, all we must do is pop their values off the
stack. Because we can access the stack from only one end, we
must pop the register’s values off in reverse order; that is,
opposite of the way we pushed them on. (That’s what we

mean by “last-on-first-off.”) Figures 1.3f, 1.3g, and 1.3h show
the process of popping the three values from the stack.

L~

_0 | 0 0
o o 0
0 0 0 |
0 o 0
o 0 0
0 0 o
o) 0 o
5 5 5
SPp — 3 3 3
2 Sp — 2 2
SP —
A | 22 A [22 A 2
B 43 B 3 B 3
Cc 5 o] 5 Cc 5
Figure 1.3f Figure 1.3g Figure 1.3h

Our registers have now been restored to their original
condition. Notice, however, that the numbers we placed on
the stack are still there, but because the stack pointer always
points to the top of the stack, those values are as good as
gone as far as we're concerned. The next time we use the
stack, we’ll write new values over the old ones.

Let’s Get Busy

Okay, okay. I know you’re impatient to finish all this
theoretical stuff and get to the real programming. Youw’ll be
delighted to know that I'm not going to do what many
assembly language book authors do: force you to read 10
chapters of theory and background before you actually get
to do some programming. I think you learn best by doing,

14

A First Look At Assembly Language

so let’s dive right in with our first 68000 assembly language
program.

On your disk, youw’ll find two files in the CHAP1
folder: PROG1.S and PROG1.TOS. The former is the source
code for our first program and the latter is the assembled,
runnable program. To assemble the source code, follow the
instructions that came with your assembler or check this
book’s appendix A. Remember that the assembly language
code in this book is written for DevPacST or Atari’s MadMac
assembler. If you’re using a different assembler, you may

have to make modifications to the source code to getit to
assemble correctly.

Our first program does nothing more than print a
line of text to the screen, wait for a keypress, and then exit
back to the desktop. Although the program is short, it
contains many of the elements of a full assembly language
program, including comments, instructions, assembler
directives, and storage areas. Let’s start at the top of the
program and look at each line, to see what it does.

The first six lines are comments. Whenever DevPacST
or MadMac sees a semicolon in the first position of a line, it
knows that what follows is text we’ve added for our own use,
usually to document or identify a program. You can write
whatever you want after the semicolon. The assembler will
skip over it all, going right to the next line of code.

In line 7 you see the word “text.” This is an “assembler
directive” that tells the assembler where the program
begins. An assembler directive gives instructions to the
assembler, but doesn’t generate machine language code.
Following the word “text,” you see ten lines (counting blank
lines) of assembly language code. Fach line of assembly
language source code has four parts, or “fields,” although
not all four fields are necessarily used. The four fields are:

LABEL: OPCODE OPERANDS COMMENT

15

THE ASSEMBLY LANGUAGE WORKSHOP

Whereas every line of assembly language code must
have the opcode (operation code) and operand fields, they
do not have to have the label and comment fields.

Look at the second line after the word “text.” The
word move. ! is the opcode that tells your ST to copy a piece
of data from one location to another. The #string, the first
operand, is the data to copy, and the ~(sp), the second
operand, tells the ST where to copy it. (The minus sign and
the parentheses tell the ST to do something else as well;
we'll talk about that later.) See the “sp”? Does that mean
something to you? If you said that “sp” stands for “stack
pointer,” you get a gold star.

Following the opcode and its arguments, you'll see a
semicolon. This is the beginning of another comment.
Again, everything following the semicolon is ignored by the
assembler. The comment is only for us humans. In assembly
language, more than in any other language, comments are
important. Assembly language can be confusing if you
forget exactly what you’re doing, and the instructions
themselves are not always easy to interpret. Of course, you
won’t usually have to comment every line the way we have
here. But you should use enough comments to make sure
that, when you look at your program later down the line,
you can see what you were doing.

The only part of the instruction line we haven’t seen
here is the label part. We discussed labels a little earlier, so
you should already have a feel for what they do. We'll see
lots of labels in future programs.

See the word “data”? This is another assembler
directive. This time we're telling the assembler that the lines
following constitute the area in which we’re storing our
data. The word “string” is a label that names the starting
location of the string we want to print to the screen.

The dc. b stands for “define constant.byte.” It is also an
asscmbler directive. It tells the assembler how to store our
string in memory, in this case as data that will be
interpreted as bytes. We’ll take a closer look at these

16

A First Look At Assembly Language

directives when we learn more about the format in which
data is stored in your ST’s memory.

Conclusion

If you didn’t understand some of our first 68000 assembly
language program, don’t worry about it. We'll be covering
the details in greater depth later. You should, however, have
a good feel for what assembly language is, how it is different
from other computer languages, and how it is similar to
machine language, the only language a computer unders-
tands. In addition, you should know how a computer stores
and runs a program. Finally, you should know what pro-
gram counters and stack pointers are and how they help the
computer keep track of what it’s doing.

To make sure you understand the concepts presented
in this chapter, review the following summary carefully.

Summary

~ Assembly language is the closest thing to
machine language, which is the only language
your computer understands.

~ Machine language is made up of only
numbers.

v Assembly language uses easy-to-remember
mnemonics to represent machine language
instructions.

~ One way assemblers make programming
easier is by doing much of the work for us,
such as counting the length of jumps and
branches.

17

THE ASSEMBLY LANGUAGE WORKSHOP

« Registers are special places in memory that
your computer uses to store numbers and
perform calculations.

~ The program counter is a register that acts as
a program bookmark, always pointing to the
next executable instruction.

«~ The stack is a section of memory that works
like a scratchpad, where we can store values
temporarily.

« The stack pointer always points to the top of
the stack--that is, the last value placed on the
stack.

~ 68000 assembly language instructions are
made up of four parts: the label, opcode,
operand, and comment fields.

~ With most assemblers, a semicolon marks the
beginning of a comment.

A First Look At Assembly Language

o‘oL‘el’ jweiboid 3su1} unQ,, q-op tBuriys
818D
"S°0 9y} jq®o ! ln dey)
‘weliboid }ixa 0} yx uoljouny ¢ (ds)-‘pg m-eacw
‘S0 ey} ||®o ! bn deu)
"sseJidAey 104 j1BM O) 5 UOI}OUNy ¢ (ds)-*ig M BAOW
*)oe}s 8y} dn use|o ! ds‘Qy | ‘bppe
"S°0 ayy) ||eo ¢ ln deJ}
"Butiys Aejdsip 0} & uorjouny ¢ (ds)-‘gx Mm-aAow
"¥9®)s uo ssaJppe BuiJsis ynd ¢ (ds)-‘Builisy |-eAow
1x8}

WNNTYM NOLAVYIO A8 166} LHDIHALOD

| WVHDOYd
dOHSHHOM 3OVNONVT >Jm§mmw< 1S 3HL

L R L)

19

E=

DATA Si1zEs AND NUMBER
SYSTEMS

: ’n the previous chapter, we took a quick look at

what assembly language is and how it works. Now,
we're going to get down to business and learn some
important concepts that apply specifically to 68000 assembly
language, as well as tackle a little computer math. No
grumbling allowed! Assembly language is very different
from other programming languages you may have learned.
Before you can program in assembly language, you must
understand some important background material.

Data Sizes

If you’ve had any programming experience, you're familiar
with the terms bits, bytes, words, and long words. These
terms describe the basic elements that make up any data.
But until now your programming experience has probably
been in high-level languages. High-level languages and
assembly language handle data sizes differently. For
example, in most high-level languages, when you declare a
variable, you implicitly declare it’s size. When you declare
the variable Number as a variable of type integer, the
language automatically assigns two bytes (on a 68000-based
machine) to that variable. From then on, you don’t have to
worry about it, except to be sure that you don’t end up with
type mismatches in your instructions (trying to add a
floating point number to an integer, for example).

With assembly language, however, as far as the

computer is concerned, variables don’t have types and sizes.
A variable name is nothing more than an address. Every

21

THE ASSEMBLY LANGUAGE WORKSHOP

instruction in your source code must tell the assembler
what size of data that instruction is to work on. In other
words, assembly language is really concerned only with
addresses, not data sizes. In fact, to a computer, all memory
is simply a long string of 0’s and 1’s. Bytes, words, and long
words are human concepts that we use to help us organize
all those 0’s and 1’s in our own minds. They really don’t
exist at all.

Bits, Bytes, Words, and Long Words

A bit, which stands for binary digit, is the smallest piece of
data a computer can handle. A bit can be “on” (1), or it can
be “off” (0). It has only these two values. Amazingly
enough, those 0’s and 1’s are all your computer needs to
perform its amazing stunts.

Other types of data are constructed by putting
together a series of bits. A byte, for example, is eight bits.
Because we now have eight digits, a byte can represent 256
different values, instead of only two. Bytes are usually
interpreted as .+ value from 0 to 255. They can also represent
the values -128 i« +, when dealing with signed numbers.
(We’ll discuss signed numbers later.)

[1]o]o] 1] 1]o]1]0]

Figure 2.1 A Byte

In 68000 assembly language, a word comprises two
bytes, or 16 bits. (When talking about words, it’s important
to specify the hardware. A word on a 6502 machine is only
one byte.) Because we now have many more bits to work
with, a word can represent values from 0 to 65,535 (or, with
signed numbers, -32,768 to +32,767).

Because the order in which we interpret the two bytes
is extremely important, we must decide on a “most signifi-
cant byte” (the byte that has the greatest impact on the

22

Data Sizes and Number Systems

word’s value) and a “least significant byte” (the byte that has
the least impact on the word’s value). So, in 68000 assembly
language, a word always starts at an even address and is
stored in high byte/low byte fashion. That is, the most
significant byte (high byte) is in the even-numbered, lower
address, and the least significant byte (low byte) is in the
odd-numbered, higher address, as shown in figure 2.2.

If this ordering seems strange, think about how we
interpret numbers in the real world. Take a number like
16,532, for example. Aren’t the least-significant digits found
on the right and the most-significant (those with the highest
value) on the left?

1000 1001
L1o]of1]1]o[1]0] [iT1[o[1][0]1]0[T]
High Byte Low Byte

Figure 2.2« A Word

A long word in a 68000-based machine comprises four
bytes, or 32 bits, and can store numbers into the billions.
Because of their size, long words are mostly used to store
addresses. Just as with word-length data, long words start on
an even address, but a long word is divided into a high word
and a low word, each of which is in turn divided into a high
byte and a low byte.

1000 1001 1002 1003

LLLLLTTT) CELTTD (700 (IO
High Byte Low Byte High Byte Low Byte
|“High Word] |“Low Word]

Figure 2.3 « A Long Word

23

THE ASSEMBLY LANGUAGE WORKSHOP

Binary, Hexadecimal, and Decimal
Numbers

Remember that, to your computer, all numbers are nothing
more than a string of binary digits. This may be great for
your machine, but it’s not good enough for us humans. As
assembly language programmers, we need to deal with
numbers in different ways. Sometimes the binary
representation will be best for what we want to do. But
often, we may want to think of numbers in decimal form, or
in an abbreviated “binary” form called hexadecimal.

Binary, decimal, and hexadecimal numbers are simply
numbers in different base systems. Binary numbers are base
2, decimal numbers are base 10, and hexadecimal numbers
are base 16. Because 16 is an even multiple of two, binary
and hexadecimal numbers are closely related. You can think
of hexadecimal numbers as a short form of binary.
Confused?

Number Systems

Okay, let’s see how number systems work, starting with our
own base 10 system. Consider the number 5,302. As you
know from grade school arithmetic, the location of each
digit in 5,302 determines that digit’s value. The “2” is in the
one’s place, the “0” is in the ten’s place, the “3” is in the
hundred’s place, and the “5” is in the thousand’s place. To
calculate the value of the entire number, we multiply each
digit times its place value, and then add the results together,
like this:

2 x 1 = 2

O x 10 = 0

3 x 100 = 300
5 x 1000 = 5,000

2+0+300+5,000-5,302

24

Data Sizes and Number Systems

Notice that the place values--1, 10, 100, and 1,000--are
all powers of 10, as shown below.

1 = 1070
10 = 10M
100 = 1072
1000 - 1073

This is why we say our decimal numbering system is
base 10, because the place values of each digit are powers of
10. (An interesting side note: We use a base 10 number
system because we have 10 fingers. That's where the term
“digits” comes from; early man used his fingers to count. If
humans had been created with only eight fingers, we’d now
be counting in a base eight numbering system--octal rather
than decimal!)

Now let’s take the same number in binary:
1010010110110. You may not believe it, but this is still 5,302.
It’s now in base 2 or binary format. In base 2, each digit’s
place is calculated as a power of 2 rather than a power of 10,
so we interpret our binary number like this:

O x 270 - 0
1 x 2M = 2
1 x 272 = 4
O x 273 - 0
t x 274 = 16
1 x 275 = 32
O x 26 = 0
1 x 277 = 128
O x 2/8 - 0
O x 279 = 0
1T x 2M0 = 1,024
0 x 2M1 = 0
1 x 2M2 = 4,096

5,302

25

THE ASSEMBLY LANGUAGE WORKSHOP

As you can see, though binary numbers are long and
look strange, they aren’t much different from the decimal
numbers we’re used to using. The only difference is that
each digit’s place value is interpreted as a power of 2 rather
than a power of 10. Of course, when we look at 5,302, we
immediately understand the number, because we’ve had so
much experience with base 10 numbers. When we look at
1010010110110, there’s no way we can interpret it without
first translating it into our own number system.

Hexadecimal Digits

There is, however, a way we can shorten binary numbers so
they aren’t as confusing. We do this by converting them to
hexadecimal numbers, which are base 16. But using a base
16 system creates a problem for us decimal users. Notice
that in our base 2, binary system the only digits we have are
Oand 1. In our base 10 decimal system, we have the digits 0
through 9. In other words, the number of digits we need to
represent a number in a given base system is 0 to base-1.
This means that to represent numbers in a base 16 number
system, we need 16 unique digits, to represent the values 0
through 15. Uh-oh. Because we’ve always used a base 10
system, we have only 10 digits with which to work. Looks
like we’re gong to have to invent some new ones. How about
if we use letters of the alphabet to represent digits with
values of 10 through 15? Using this rule, our hexadecimal
digits look like this:

01234567 89ABCDETF

Converting Binary to Hexadecimal

Remember when I said base 16 numbers were a handy way
to abbreviate binary numbers, because 16 is an even
multiple of 2? As an example, let’s take 5,302 again, which is
1010010110110 in binary. By converting this number to
hexadecimal, we can see what 5,302 looks like in base 16.

26

Data Sizes and Number Systems

First, starting from the right, divide the binary
number into groups of four digits. Our binary version of
5,302 then looks like this:

1 0100 1011 0110

If you like things neat and tidy, you can add some
leading zeros to keep everything in groups of four. This
isn’t necessary, however. If you choose to do this, your
binary number looks like this:

0001 0100 1011 0110

Now, we must convert each group of four digits into a
single hex digit. When converting a binary number, all we
need to know is the place value of each digit. (Well, we need
to know how to add too.) Starting from the right, the place
values of each digit are 1, 2, 4, and 8. If a digit is 0, then the
value for that place is zero. If the digit is a one, we add the
place value of that digit to our number. So our binary
number above converts like this:

0+0+0+1 = 1
0+4+0+0 = 4
8+0+2+1 = 11
0+4+2+0 = 6

Substituting hex digits for the values above, we get
the hex number 14B6, which is the hex equivalent of 5,302,

Converting from Hexadecimal to
Binary

To convert from a hexadecimal number to a binary number
isn’t as easy. We must rewrite each hex digit as a four-digit

27

THE ASSEMBLY LANGUAGE WORKSHOP

binary number so the sum of the place values of each
binary digit is equal to the hex digit. Get that? Using 14B6
as an example, we first change each hex digit into its
decimal equivalent:

14116

We then change each decimal equivalent into binary
form, remembering that bit 3 equals 8, bit 2 equals 4, bit 1
equals 2, and bit 0 equals 1. This conversion gives us the
binary number 0001 0100 1011 0110, which should look
familiar. In order to help you with this type of conversion,
table 2.1 lists the binary equivalents of all the hex digits.

Hex Binary| Hex Binary
0 0000 | 8 1000
1 0001 9 1001
2 0010| A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Table 2.1 « Hex to Binary Conversion

Converting Decimal to Binary

Because of their close relationship, it’s easy to convert
between binary numbers and hexadecimal numbers. How-
ever, converting decimal numbers to binary or hexadecimal
is a little tricky. It’s not hard; it’s just a meticulous process.
Let’s again use 5,302 as an example and convert it into
binary. The first step is to find the highest binary place
value that is smaller than 5,302. For example, in table 2.2,
which lists the place values for a binary word, we see that
the highest value that’ll go into 5,302 is 4,096, which is in bit

28

Data Sizes and Number Systems

12's place. So, we construct a binary number with 13 digits

(numbered 0 through 12), placing a 1 in bit 12’s place, giving

us 1000000000000. We then subtract 4,096 from 5,302,

giving us 1,206.

Now, we move down to the next bit’s place, which is
bit 11 with a value of 2,048. This number is too big to go
into 1,206, so we place a 0 in bit 11’s place. Moving back
another bit, we see that bit 10 has a value of 1,024, which
will fit into 1,206. We place a 1 in bit 10’s place and subtract
1,024 from 1,206, giving us 1010000000000 and 182, respec-
tively. We continue the above process until we have a
complete binary number. Table 2.3 shows a su mmary of the

entire conversion.

Bit® Value| Bit# Value| Bit® Vaiue| Bit® Value

0 1 4 16 8 266| 12 4,096

1 2 5 32 9 612 13 8,192

2 4 6 64| 10 1,024 14 16,384

3 8 7 128| 11 2,048 15 32768

Table 2.2 ¢ Binary Place Values

Binary Number [Bit®[Vaiue Operation Remainder
5,302
1 12] 4,096{5,302 - 4,096 1,206
10 11[2,048|None 1.206
101 10(1,024|1,208 - 1,024 182
1010 8| 512|None 182
10100 8| 256(None 182
101001 7| 128|182-128 54
1010010 6 64 None 54
10100101 5 32|54 - 32 22
101001011 4 16/22- 16 6
1010010110 3 8|None 6
10100101101 2 46-4 2
101001011011 1 2(12-2 o
1010010110110 O 1 |[None 0

Table 2.3 » Decimal to Binary Conversion

29

THE ASSEMBLY LANGUAGE WORKSHOP

Converting Decimal to Hexadecimal

Converting a decimal number to hexadecimal works almost
the same way as converting into binary, except we use the
place values of hexadecimal digits, and we use division,
which will usually yield results larger than just 0 or 1.
Taking the number 5,302 again, we start by finding the
largest hex place value that’ll divide into it. Looking at table
2.4, we that this value is 4,096. We divide 5,302 by 4,096,
getting a result of 1 and a remainder of 1,206. The value
4,096 is in digit 3’s place, so we start with the hex number
1000. Dropping down to the next digit, we divide 1,206 by
256, giving us a result of 4 and a remainder of 182. We then
put a 4 in digit 2's place, giving us the hex number 1400.
This process continues until we get the complete hex
number. The conversion process for changing 5,302 into
hex is summarized in table 2.5.

Digit # Value

0 1

1 16

2 256

3 4,096

4 65,536

5 1,048,576

6 16,777,216

7 268,435,456

-
Table 2.4 « Hex Digit Place Values
Digit # | Value Operation Result | Remainder | Hex #
5,302

3 |4,096; 5302/ 4,096 1 1,206 1
2 256 1,206 / 256 4 182 14
1 16 182716 11 6] 14B
o 1 6/1 6 0| 14B6

Table 2.5 » Decimal to Hex Conversion

30

Data Sizes and Number Systems

The Easy Way

Although it’s important to understand how to convert
between decimal, binary, and hexadecimal numbers, when
you start programming, you'll waste a lot of time doing
these conversions by hand. Pick up a scientific calculator
that can perform these conversions for you, and you’ll save
yourself some aggravation. If you like having an “on-line”
calculator, your Assembly Language Workshop disk contains
a public-domain program called The Take Note Calculator
that can be installed on your ST as a desk accessory.

Conclusion

Yeah, I know this chapter was a bit technical, but you simply
cannot understand assembly language well until you
understand how computers and programmers deal with
numbers. You'll be doing yourself an immense favor if you
take the time to learn well the concepts presented here. If
you don’t, mark my words, you’ll be back here before you
know it.

Summary

~ Computers understand only binary numbers,
which are comprised of bits.

~ To make computing easier for us humans, we
created several data types that let us combine
bits into bytes, words, and long words.

«~ In 68000 assembly language, bytes allow
values from 0 to 255, words (two bytes) allow
values from 0 to 65,535, and long words (four
bytes) allow values into the billions.

31

THE ASSEMBLY LANGUAGE WORKSHOP

~ Word and long word values must start on an
even address and are stored in high byte/low
byte fashion.

< Although a computer stores all its data as 0's
and I's, we can interpret numbers using
several number systems. When programming
in assembly language, we frequently need to
convert between decimal, binary, and
hexadecimal values.

< Because we need 16 digits to represent
hexadecimal values, we use the letters A
through F to represent digit values of 10
through 15.

~ Binary and hexadecimal numbers are closely
related, so it’s fairly easy to convert between
them. However, converting a decimal number
into a binary or hexadecimal number
requires a series of subtractions or divisions.

32

== 3

REGISTERS, THE STACK, AND
ADDRESSING MODES

: ’n this chapter, we’ll look at some technical details
we need to know in order to study 68000 assembly

language programs. Although we touched on registers and
stacks in chapter 1, we discussed them only generally. Now,
we'll talk about registers and the stack as they are imple-
mented on your ST. We’ll also discuss addressing modes,
which tell your ST how to find data, and instruction suffixes,
which tell your assembler how to handle data. In the next
chapter, we’ll get to work on some real programming.

Registers

Every computer that uses the 68000 processor, including
your ST, has 16 main registers. Registers are simply special
memory locations that are built into the processor, where
they can be accessed quickly. The 68000’s registers are
divided into two types: data registers and address registers.
Both types of registers can hold a long word (four bytes), but
address registers are used for holding addresses, whereas
data registers can hold any type of data we want. Note that
only the lower three bytes of an address register are used to
specify an address, which means that the highest address
you can access is 16,772,216. You may have heard that a
68000-based machine can never address more than 16
megabytes. Now you know why.

There are eight data registers, named DO, D1, D2, D3,
D4, D5, D6, and D7, and eight address registers, named A0,
Al, A2, A3, A4, Ab, A6, and A'7. Register A7 is the system
stack pointer, which can be written as either A7 or SP in

33

THE ASSEMBLY LANGUAGE WORKSHOP

your programs. In addition, there are two special registers:
the program counter and the status register.

The Program Counter

As we learned in chapter 1, a program counter always points
to (contains the address of) the next executable instruction
in our program. The ST’s program counter (PC) is no
different. When we load a program, the PC points to the
first instruction. When an instruction is executed, the PC
moves to the next instruction. We can manipulate the PC in
several ways. Whenever we perform any kind of jump or
branch instruction, we are changing the contents of the PC.
Just as with any address pointer, only the three lowest bytes

of the PC are used to store an address, so its maximum
value is 16,772,216.

The Status Register

Most computers have a status register, which is used to store
information about the machine, most importantly, the
results of the last executed instruction. Qur programs will
use the status register to decide when to branch to other
parts of the program. The ST’s 16-bit status register
comprises a “system byte” and a “user byte.” The system
byte is used mostly by systems programmers, so we won’t go
into much detail on it. However, you should know that the
system byte is bits 8 to 15 of the status register.

The lowest eight bits of the status register (bits 0 to 7)
are the user byte, which comprises three unused bits and
five “condition codes” that contain information about the
outcome of the last executed instruction. These condition
codes are the carry bit, the overflow bit, the zero bit, the
negative bit, and the extended bit. The carry bit holds the
carry-over from an arithmetic instruction; the overflow bit
is set when an instruction results in a value too large to be
stored; the zero bit is set when an instruction results in a

34

Registers, The Stack, and Addressing Modes

zero value; the negative bit is set when an operation results
in a negative value (when the most significant bit of a result
is set to 1, the result is considered to be negative); and the
extended bit is an extension of the carry bit and is used in
multiple-precision operations. These condition bits are
arranged in the status register as shown in figure 3.1.

If you’ve no experience with assembly language, the
last couple of paragraphs have probably got your head
spinning. Don’t worry if you don’t understand all this stuff,
Absorb what you can, and then move on. We'll talk about
the condition codes in greater detail later on.

151413121110?{? 765643210
LT T T O T IXINZIVIC]
System Byte User Byte

Figure 3.1 » The Status Register

The Stack and ST Function Calls

The ST’s operating system provides programmers with
many functions, such as reading characters from the
keyboard, printing characters to the screen, performing disk
functions, and myriad others. Most of these functions are
called with a “trap” statement. A trap statement signals the
operating system that we want it to do something for us.
Before we can perform a trap, however, we must place the
function’s arguments on the stack. Then, when we call the
function by executing the trap statement, the computer
uses the information on the stack to perform the function.

For example, in chapter 1’s program, we used the
Cconin function to grab a character from the keyboard.
Before the operating system could do that, though, we
needed to tell it what function we wanted it to perform. We
did that by placing the function’s number onto the stack.

35

THE ASSEMBLY LANGUAGE WORKSHOP

Then when we executed the trap instruction (¢rap #1), the
computer looked on the stack, found the function number,
and knew what we wanted it to do. To put it simply, we used
the stack to communicate between our program and the
opcrating system.

The Cconin call is a simple example. Many functions
wc'll use in our assembly language programs require more
than one value to be placed on the stack. Some function
calls, for instance, also need an address where the operating
system can find additional data.

As you saw from our stack discussion in chapter 1,
whatever we put on the stack stays there. It’s up to us as
assembly language programmers to keep the stack cleaned
up. We do this by resetting the stack pointer to its original
position. Whenever we use the stack to perform function
calls, we must be sure to take care of this little bit of
housekeeping. In our next program, we’ll see how to do
this. But before we can study an assembly language program
in any depth, we must learn about addressing modes.

Addressing Modes

Every instruction in a computer program nceds data upon
which to work. Obviously, each instruction needs to know
where its data is located. There are many ways that your
assembler can calculate a datum’s address. Each of these
methods uses one vi 3 addressing modes: immediate,
absolute short, absolute long, data register direct, address
register direct, address register indirect, address register
indirect with post-increment, address register indirect with
pre-decrement, address register indirect with displacement,
address register indirect with index, program counter with
displacement, program counter with index, and status
register.

Don’t let these fancy terms scare you. We'll talk about
cach of the addressing modes as they come up. You’ll be
happy to know, however, that you don’t need to memorize

36

Registers, The Stack, and Addressing Modes

all those tongue-twisting address-mode names. The address-
ing modes are implicit in the language’s syntax. In other
words, as you learn to program in 68000 assembly language,
you can’t help but learn the addressing modes, too.

Instruction Suffixes

Let’s say we’re writing an assembly language program, and
we want to use a variable named Number. Because Number
is an integer, we assign it two bytes. We'll see later exactly
how to do this; the key point is that we assign it two bytes.
The data size isn’t handled automatically as it is in high-
level languages. We could just as easily assign Number three
bytes. Our assembler doesn’t care. Remember: The terms
“integer” and “byte” are abstractions we use to help us
organize the computer’s memory. They mean nothing to
the computer.

We can think of Number as a variable name, but it’s
really a label for an address. If we were to print the value of
Number to the screen, we'd see the starting address of the
two bytes we just reserved for our variable. When we start
working with Number, we can tell the computer to handle
that address any way we want. We can, for example, tell the
computer that Number is the address of a byte, in which
case the computer will happily perform its instruction on
the byte at the address Number. Likewise, we can tell the
computer than Number is a word, in which case the
computer will perform its instruction on the two bytes
starting at Number. Although we could run into trouble, we
could even tell the assembler that Number is the address of
a long word, in which case it'd try to handle four bytes. I said
“try to” because, since we reserved only two bytes at
Number, at this point we have no idea what might be in
memory beyond those two bytes.

Obviously, we need a way to tell the assembler the size
of a piece of data. We do this with instruction suffixes. In
68000 assembly language, most instructions have either an

37

THE ASSEMBLY LANGUAGE WORKSHOP

explicit or implicit suffix that tells the assembler what
length data that instruction is supposed to work with. For
example, let’s take the instruction move. I. The suffix ./
following the word move tells the assembler that this
instruction is to move a long word. Remember, I said that
the computer doesn’t care about how we declare our data
sizes. If we were to use our integer Number with the move. |
instruction, the computer would try to grab four bytes
starting at Number. It doesn’t care that we originally
reserved only two bytes at that location. All it knows is that
Number is a valid address.

So, since we have three lengths of data, our move
instruction, like many other 68000 assembly language
instructions, has three forms: move. b, which moves a byte;
move.w, which moves a word; and move. /, which moves a
long word. Because words are the standard length of data
used in 68000 assembly language, we can also write the
move command without a suffix. In this case, the assembler
assumes that the instruction will be moving word-length
data. This is an implicit suffix.

Many other instructions in 68000 assembly language
use this same convention. Look at the listing for program 1,
found at the end of chapter 1. You can see that most of the
instructions have a suffix. The ones that don’t have a suffix,
don’t need them, because they don’t manipulate data.

Conclusion

Now that we know something about how our computers are
constructed and how assembly language handles data, we’re
ready to start programming. In the next chapter, we’ll tackle
our first full-length program, but before we move on, please
make sure you understand what we've covered so far, by
reviewing the summary on the next page.

38

Registers, The Stack, and Addressing Modes

Summary

« The ST has 16 main registers, including cight
address registers (A0 through A7) and eight
data registers (DO through D?7).

« Register A7 is a special register, called the
stack pointer, that is used to manipulate the
system stack.

« Before we call an operating system function
with a trap instruction, we must place the
function’s arguments on the system stack.

~ The ST also has two special registers: the
program counter, which always points to the
next executable instruction, and the status
register, which is made up of a series of flags
we can use to track the status of the machine.

« The ST has 13 addressing modes that it uses
to calculate the location of data it needs to
complete an instruction. Whenever we write
an instruction in 68000 assembly language, we
use at least one of these addressing modes.

~ Most 68000 assembly language instructions
include a suffix that tells the assembler the
size of the data we want to manipulate.

39

E 4
CONSTANTS, FUNCTION CALLS,
AND BRANCHING

ow that we've gotten some technical stuff out of the

way, we can start studying 68000 assembly language
more seriously. In this chapter, we’ll learn about string
constants, equates, and several new addressing modes. We'll
also learn a couple of new operating system function calls,
some new instructions, and how to handle the system stack
when calling operating system functions.

The Program

In the CHAP4 folder of your Assembly Language Workshop
disk, you’ll find the files PROG2.S and PROG2.TOS, which
are the source code and executable file for program 2. If
you'd like to assemble the program yourself, follow the
instructions that came with your assembler or check this
book’s appendix A.

When you run the program, it asks you to press the
letter A, B, or C. After pressing a letter, you get a message
telling you which key you pressed. For example, if you press
B, you see the message “You Pressed B.” If you press a key
other than those requested, the program repeats its request
until you enter a correct key. After printing the message, the
program ends, returning control to your ST.

Now, look at the program listing. You can see that it is
divided into two main sections, labeled with the words
“text” and “data.” As we said previously, the text section is
where we place the instructions that make up our program,
and the data section is where we place our initialized data.
In some programs, there also will be a “bss” (block storage

41

THE ASSEMBLY LANGUAGE WORKSHOP

segment) section, where we can store uninitialized data or
set aside blocks of memory for use as buffers or other types
of storage.

The Data Segment

Let’s start our examination of the program with the data
segment. In the first three lines of the data scgment, we
define three constants--LET_A, LET_B, and LET_C--with
the assembler directive equ. This directive does the same
Jjob as the #define statement in C. When the assembler finds
any of these three labels in our source code, it'll replace the
label with the number to the right of the equ. In this case,
these numbers happen to be the ASCII values of the letters
A, B,and C.

In the next line, we set up storage for a string. The 13s
and the 10s are the ASCII values for carriage returns and
line feeds, respectively. (A carriage return/line feed combi-
nation moves the screen cursor to the left margin of the
next line.) The 0 is a null character to mark the end of the
string. When the program is assembled, the label prompt
will hold the address of the string. The dc. b stands for
“declare constant.byte.” This assembler directive tells the
assembler that we are going to store a series of constant
values, in byte form, in consecutive addresses starting at
prompt. L.ct’s say that this address turns out to be 1000.
Then memory will look like figure 4.1.

0’\@0&60‘\000'\0«‘5&60'\%90\‘)
O L OO (s Ks) PN N VBN ANVTNONT WP W9 gD a4 g
07000 \°°\CP\° O \°°\° D000 D000 .0'0.0%0 O

cr{it[PIr]e]s]s] [A[.TB[.T Jo[r[[C[:] Jcr[ifhul

Figure 4.1 » A String in Memory

The next line, where we set up storage for a string
labeled key_msg, is handled much the same. Notice the

42

Constants, Function Calls, and Branching

syntax of these lines. You can initialize a constant as a string
of numbers or as a string of characters. You can even mix
both together as we did here. Numbers are separated with
commas, while strings must be enclosed in quotes. (The
syntax may vary, depending on the assembler you're using.)
To give you a clearer example, let’s say we want to set up the
string constant “ABC,” followed by a carriage return and a
line feed. Either of the following lines would do the trick:

letters: dc.b 65,66,67,13,10,0
letters: dc.b »ABC”,13,10,0

Here, letters is the label that’ll hold the address of the
string. The assembler directive dc. b tells the assembler that
we want the values that follow stored as bytes. Why do we
need to tell the assembler this? Remember that bytes, words,
and long words all have different lengths. Just as with many
other instructions, we canadd a . b, .w, or ./ to the dc
assembler directive, telling it to store different types of
values. To see the difference let’s compare the lines below:

letters: dc.b 65,66,67,13,10,0
letters: dc.w 65,66,67,13,10,0

The byte version of this constant declaration will set
up memory like this:

65 66 67 13 10 0

However, the word version of the constant declaration
will set up memory like this:

65066 06701301000

43

THE ASSEMBLY LANGUAGE WORKSHOP

Do you know why? If you said, “Because a word is two
bytes,” you're right.

The Text Segment

Now, let’s talk about the text segment, where the actual
program resides.

In the first line, we mark the beginning of the
program with the label get_letter. This label will hold the
address of the first instruction in our program. In that
instruction, move. | #prompt, -(sp), we copy the value stored
in prompt onto the stack. Obviously, we need to examine
this instruction a little more closely.

You already know what the move. | instruction docs; it
copies a long word from one location to another. You also
know that the two values following the instruction are its
arguments. Normally, these arguments would be the source
and destination addresses for the instruction. However, the
“#” in front of prompt changes it from an address into an
“immediate” value. That means that the value stored in
prompt is to be treated as a number rather than an address.

Confused? Look at the end of the program listing,
whcere you'll see the label prompt, which is the address of
the string “Press A, B, or C:.” Suppose the program is loaded
into memory such that our string starts at address 1000. The
label prompt then contains the value 1000. When we per-
form the instruction move. | #prompt -(sp), we copy the
value 1000 to the stack. However, if we were to perform the
same instruction without the pound sign, we would copy the
long word starting at address 1000, which includes our line
feed, carriage return, and the letters “P” and “r.” (A long
word is four bytes.)

Sce the difference? In the first case, we’re interpreting
prompt as the actual data we want to move; in the second
casc, we're interpreting it as an address that tells us where to
get the data to move. When we include the pound sign,
we're saying “This is the number we want you to use.” When

44

Constants, Function Calls, and Branching

we don’t include the pound sign, we're saying, “This is
where you'll find the number we want you to use.”

Immediate Addressing

By the way, we’ve just learned our first 68000 assembly
language addressing mode. Didn’t hurt a bit, did it? When
we place the pound sign in front of an argument, we are
using “immediate addressing.” The data we want is an
immediate constant; that is, the data is included in the in-
struction itself, rather than located in another memory
location.

And Back to the Program

So, now we know we’re moving a long word and that the
long word we’re moving is the number stored in the label
prompt (which happens to be the address of a string
constant). But where are we moving it? The -(sp) in the
instruction tells the assembler where. You know from the
previous chapter that sp stands for “stack pointer,” right?
But why is it surrounded with parentheses and preceded
with a minus sign? Because we’ve already discovered a new
addressing mode!

Address Register Indirect
Addressing with Pre-decrement

Whew! That’s a mouthful. As I mentioned before, the stack
pointer (SP) is actually register A7, which is an address
register. That explains the “address register” part of this
addressing mode. The “pre-decrement” part means that the
value in the register (in this case, SP) is decremented before
the value is used. This is indicated in the instruction by the
minus sign in front of the argument. The “indirect” part
means that the value stored in SP is not to be used directly,
but rather is to be interpreted as an address—here, the

45

THE ASSEMBLY LANGUAGE WORKSHOP

destination address of the instruction. Simply, we're using
SP to point to the location in which we want the value
stored. Guess that’s why they call it a pointer, huh?

The Way It Works

Here’s what’s happening: We’ve told the computer to move a
long word from one location to another. The instruction’s
first argument tells the computer the location of the long
word we want to move. Because we're using immediate
addressing with this argument, the instruction uses the
number stored in the label prompt as the data. Now, the
computer needs to know where to put the data. Let’s say the
stack pointer equals 5000, which means our stack starts at
this address. The computer first subtracts four from 5000,
giving it 4996. This gives us room for a long word, the four
bytes of which will be stored in 4996, 4997, 4998, and 4999. It
then takes the number stored in the label prompt and
copies it into the stack starting at address 4996. If we hadn’t
put the SP in parentheses--that is, if we hadn’t used its value
indirectly--the instruction would have stored the value in
prompt into SP itself, rather than onto the stack.

Wait a minute! We're subtracting from the stack
pointer? What kind of craziness is this? I guess I should have
mentioned the peculiar way our STs handle the stack. In
order to make sure the stack has as much room as it needs,
the ST’s operating system places it in high memory, and
then builds the stack down towards low memory. In other
words, the more data you place on the stack, the lower the
address in the stack pointer becomes.

Just about every time we place a value on the stack,
we’ll use the address register indirect with pre-decrement
addressing mode. If you look at the next line in the pro-
gram, you can see that we are placing the number 9 onto
the stack. With the 9, we’re again using immediate address-
ing (the pound sign), which tells the computer that 9 is the
data we want, not the address at which the data is stored. We

46

Constants, Function Calls, and Branching

are then using address register indirect addressing with pre-
decrement for the second argument, which places the
number 9 onto the stack above the value we placed in the
first linc. This time 2 is subtracted from the stack pointer,
because we’re moving a word (two bytes) rather than a long
word (four bytes). (In this addressing mode, the amount
decremented is based upon the size of the data we're refer-
encing in the source argument.) After the second move
instruction, we have placed six bytes onto the stack.

When using the stack pointer, we can move only
words or long words. This is because the stack pointer must
always contain an even address. If you try to fool the compu-
ter into moving a byte onto the stack, it'll move a word, any-
way. Obviously, you must be aware of the stack’s condition
at all times. If the stack pointer ever ends up pointing to the
wrong address, you could crash your entire system, because
your ST also uses the system stack to keep track of other
things, like return addresses.

The Function Cconws

Why are we putting all this stuff onto the stack? We’re
getting ready to use a function called Cconws to display our
prompt “Press A, B, or C:” To use this function, we must put
two pieces of data onto the stack: the address of a null-ter-
minated string and Cconws’s function number. We've done
that with the two lines of code we Jjust discussed. Once the
data is placed onto the stack, we must execute a trap #1 in-
struction, which tells the computer to check the stack and
do whatever it finds there. You can see that we’ve done this
in the third line of code. When the operating system returns
from the trap, the low word of register DO will contain the
number of characters actually printed, should we, for some
reason, need this information. For now, we’ll assume that
the entire string was printed. (By the way, we use a trap #1
to call any GEMDOS function. Your ST’s operating system
provides three libraries of functions: GEMDOS [trap #1],
BIOS [trap #13], and XBIOS [trap #14].)

47

THE ASSEMBLY LANGUAGE WORKSHOP

After the trap instruction, we must clean up the stack,
by resetting the stack pointer.

The addgq instruction

The fourth line of code, addq. | #6,sp, takes care of reset-
ting the stack pointer. Let’s say that the stack pointer con-
taincd the address 5000 before we started monkeying with it.
After placing the two arguments on the stack, the stack
pointer contains 4994. To clean up the stack, we don’t
actuaily have to remove the values we stored there. We can
ignore them. All we must do is set the stack pointer back to
where we found it. The addgq. | instruction means “add
quick,” so the full instruction as we have it in the program
adds 6 to the stack pointer, setting it back to where we
started. In our example, that would be 5000.

What do we mean by “add quick”? You can use the
addq instruction whenever you're adding an immediate
value from 1 to 8. This instruction works faster than a
regular add because the value is stored as part of the in-
struction, meaning the computer doesn’t have to go out to
memory to get it.

Address Register Direct Addressing

In the previous paragraph, when we added 6 to the stack
pointer, we were using immediate addressing for the source
argument (the 6) and address register direct addressing for
the stack pointer. Whenever you directly manipulate the
content of an address register (when you're not using it as a
pointer), you are using address register direct addressing.

The Cconin Function

Now that we’ve displayed our prompt, we must allow the
user to do what we’ve requested. In other words, we must
accept a keystroke from the keyboard. In the next three

48

Constants, Function Calls, and Branching

lines of code, we place the function number for Cconin 1)
onto the stack, call the operating system with trap #1, and
then reset the stack pointer. Notice that this time we’re
adding only 2 to the stack pointer. This is because we put
only the number 1, a word, onto the stack.

The function Cconin waits for a character from the
keyboard, which it returns in DO. The character’s ASCII
code will be in the low byte of the low word, and the
character’s scan code will be in the low byte of the high
word. What’s the difference between an ASCII code and a
scan code? Scan codes allow you to recognize keystrokes
from special keys, like the cursor keys or the “F” keys, none
of which have ASCII codes. Figure 4.1 shows DO after a call
to Cconin.

LTI OO I

Scan Code ASCIl Code

Figure 4.1 » Register DO after Cconin

Comparisons

The next seven lines of code in our program make up an
assembly language version of an IF..THEN...ELSE state-
ment. In this part of the program, we need to figure out
what key the user pressed and then jump to the appropriate
section of the program. To do that, we must compare the
ASCII value returned in the low byte of D0 with the ASCII
values of the letters A, B, and C. The cmp (CoMPare) in-
struction, which compares its source and destination
operands, is perfect for this task. (Note that the destination
operand for this instruction must be a data register.)

The cmp instruction works by subtracting the source
operand from the destination operand, without actually
changing the values of the two operands. This operation
sets the flags in the condition code register (CCR, the user

49

THE ASSEMBLY LANGUAGE WORKSHOP

byte of the status register), according to the results. For
example, if the two operands are equal, subtracting the
source from the destination yields a result of zero, which
sets the CCR’s zero flag. If the value in the source operand
is larger than the one in the destination operand, we end up
with a negative value when we do the subtraction, which
sets the CCR’s negative flag. By checking the CCR’s flags, we
can tell if the two operands are equal, or if one is larger
than the other.

In the first line of this section of code, we compare
the immediate constant #LET A, which is the ASCII value of
the letter A, with the value in DO, which was returned to us
by the call to Cconin. See the suffix . b that we've added to
the instruction? This means we are comparing bytes. How
can this be? After all, #LET _A is a word value, and register
DO is a long word. How can we compare bytes? Easy. The
instruction compares the low byte of #LET _A with the low
byte of DO. If we had used .w as a suffix, we would have
compared #LET A’s full two bytes against the lower two
bytes of DO. Get it?

Now, when the value in #LET A is subtracted from the
value in DO, if they are equal, we get a zero result, which
sets the CCR’s zero flag. In the next line, we use the beq
instruction (Branch EQual) to test the zero flag. If the zero
flag is set, we branch to the address following the instruc-
tion, or in this case, to the label do_a. If the result of the
compare did not set the zero flag, the program drops down
to the next instruction, which does the same compare with
#LET_B, which is the ASCII value of the letter B. If the
compare sets the zero flag, we branch to do_b. If it doesn’t,
the program drops down to the next instruction, which
checks to see if the user typed the letter C. If he did, we
branch to do_c. If he didn’t, we use an “unconditional
branch” to jump back to the top of the program and get
another letter. When a program gets to a bra instruction, it
branches to the destination address, no matter how the
condition flags are set.

50

Constants, Function Calls, and Branching

There are 15 branch instructions in 68000 assembly
language, each of which branches based on certain flags in
the CCR. All these instructions are listed in the reference
section of this book. You might want to take a couple of
moments right now to look them over.

Data Register Direct Addressing

Guess what? We've learned a new addressing mode. In the
compare instructions discussed in the previous section, we
used immediate addressing for the source argument and
data register direct addressing for the destination argument,
in this case, D0. Data register direct addressing is just like
address register direct addressing, except we are manipulat-
ing a data register rather than an address register. In other
words, when we directly manipulate the value of a data
register, we are using data register direct addressing.

String Manipulation

Once the user has typed the proper key, we need to add the
appropriate letter to the end of our string “You Pressed .” If
you look at this string in the data section of our program,
you’ll see that we’ve left space at the end of the string for
the letter. All we must do to complete the string is to copy
the ASCII value of the letter into the correct position. If
you're still awake, you realize this means we must move the
low byte of one of our word constants into the fifteenth
character of the string. What you probably haven’t figured
out is how to tell the assembler the correct address into
which to copy the letter. If you look at the instruction
move. b #LET A, key_msg+14, you’ll get a clue.

Remember that the address of our string is repre-
sented by the label key_msg. In other words, the address
stored in key_msg is the address of the first character of our
string. Looking at our program’s data section, we see that
the string starts with a carriage return/line feed combina-

51

THE ASSEMBLY LANGUAGE WORKSHOP

tion, so the address in the label key_msg is the address of the
carriage return. Because each character in the string is
stored in successive bytes, to calculate the address of any
character in the string, we add to the string’s address the
character’s offset from the beginning of the string.

For example, let’s say that key_msg equals 1000. Then
the carriage return that starts off our string is at address
1000. More importantly, the line feed, which is the next
character in the string, is at address 1001; the letter Y is at
address 1002; and so on up to the period at the end of the
string, which is at address 1015. This means that, to com-
plete the string for the user, we have to copy the ASCII
value of the letter he pressed into address 1014--or, since the
label is our only real reference, key_msg+14.

In the do_a and do_b sections of the program, we do
this copy and then use a bra instruction to jump to the part
of the program that prints the now completed string to the
screen. In the do_c section of the program, we don’t need
the branch, but we copy the letter the same way.

Absolute Addressing

Sheesh! We’ve already stumbled upon another addressing
mode. In the instruction move. b #LET A, key_msg+14,
we’re using absolute addressing to form the instruction’s
destination address. In other words, the operand
key_msg+14 is the actual address, or the absolute address,
that we need. Whenever an operand is an actual address--
that is, it isn’t a register, and it isn’t an immediate operand--
we are using absolute addressing.

Finishing It Up

In the prnt_strg section of the program, we print our com-
pleted string to the screen. Here, we again call Cconws to
print the string, and then wait for a key press with Cconin. In
the last two lines of the text segment, we call GEMDOS

52

Constants, Function Calls, and Branching

function #1, Pterm0, which releases all memory uscd by the
program and returns us to the desktop. If we had been
using disk files in this program, Pterm0 would have also
closed any open files. Note that this is the only function that
doesn’t require that we reset the stack pointer after the call.
Obviously, we can’t reset the pointer, since this function
ends the program. In this case, the system resets the stack
pointer for us.

Conclusion

In this chapter, we wrote our first full-length assembly lan-
guage program. The program may not do much, but it
exposes us to many of the concepts we need to master in
order to write more sophisticated programs. We’ll be
writing those more sophisticated programs soon, so make
sure you understand everything presented here before
moving on to the next chapter. If everything in the follow-
ing summary makes sense to you, you’re well on your way to
becoming an assembly language programmer.

R

Summary

.

~ The dc assembler directive lets us define con-
stants. By adding the proper suffix, we can set
up our constants as bytes, words, or longs.

~ When we include the data we want to
manipulate as part of our instruction, we are
using immediate addressing.

~ With address register indirect addressing with
pre-decrement, we use the address register as
a pointer to another part of memory. Further-
more, before using the address stored in the
register, we subtract from it the length of the
data referenced by the instruction.

53

THE ASSEMBLY LANGUAGE WORKSHOP

< With address register direct addressing, we
are directly manipulating the contents of an
address register.

« Data register direct addressing is similar to
address register direct, except we use a data
register rather than an address register.

~ The addq instruction adds an immediate
value between 1 and 8 to the instruction’s
destination argument. This instruction works
quickly because the immediate value is small
enough to be stored as part of the instruction.

« The cmp instruction nondestructively
subtracts the source operand from the
destination operand, which sets the
appropriate flags in the CCR. Using this
instruction, we can compare arguments and
determine whether or not they are equal.

v The bra instruction has 15 different forms,
each of which allows us to branch to another
part of our program, based on the status of
the flags in the CCR.

~ Whenever an operand is identified by an
actual address, we are using absolute
addressing.

~ GEMDOS function #9, Cconws, writes a null-
terminated string to the screen.

« To wait for a key press, we call GEMDOS
function #1, Cconin.

«~ To terminate a program, we call GEMDOS
function #0, Pterm0.

54

Constants, Function Calls, and Branching

*uitebe A1} fyndul pijBAUI

*88k

&:o: m H_ w_ m:m: HOC
"S1 8ins

O.:m: w u_ w_ m:<: #OC
idaA

éuVi 18118 8U} si

*)¥oB}S dn uBs |9

SO 8y} ||eo
"J8joBJiBYY B }86 0} 5 uOI}ouUNn}

*)0BlS 8y} dn uee |9

‘we)sAs Bujijeviedo ay}) ||eo
"Buiils Aejdsip 0} g uoijouny
"joBlS uo sseoippe Bulsls ind

WNNTYM NOLAVIO A8 1661 LHOIHALOD

oM em e e se e e

ls}le|~1ab
2-0p
oP‘0" 13
q-op
oP‘87 1311
B~Op
OP‘V™L3n
aw.Nn

b
(ds)-‘1g
am.mn

($3
(ds)-‘6sn

(ds)-*1dwoidy

dOHSMHOM 3DVYNONVT-AT8N3SSY LS 3HL

Big
baq
q*dwo
baq
q ‘' dwo
baq
g dwo

| ‘bppe
des}
M 3Aaow

| “bppe
dei}
Mo eAowW
| “8AoW
HOE-DRE-Rhabk-1s

¢ Wvdb0Hd

o e am e ee

.o

55

THE ASSEMBLY LANGUAGE WORKSHOP

‘wa}sAs Buyjisiado sy} ||eo
‘wesboud }1xe 0} g4 uoilouny

"SO 8y} ||®ed
"J8joeieYyd B }8b 0} g uoiiouny

‘jyoeis dn uB9|O

‘we)sAs Buyjesedo 8y} | |82
"Buriis Ae|dsip 0) & uoi}ouny
"}oB}S uo sssaJppB Buisls ynd

"Buriis oy 0, ppe

*Buriys eyy) jurid ob
*buriys o} g, ppe

"Burlis 8y} juiid ob
.mc_huw 0} «V« PPB

b
(ds)-‘6u
(ds)-*Bsw=Asyy

plL+Bsw Aoy ‘0~ 137y

Biis—juusd
pi+Bsw Aoy ‘g 137y

Biis—juid
pl+BsSw™ A8y ‘y~137n

ded)
M 8AOW

del}
M aaow

| “bppe

deJ}

M 8AOW

| *8AOW
t611s—uud

g’ aAowW
:0-0p

BlQ
q‘aAow
‘gTop

B.q
g’ aAow
iB-0p

56

Constants, Function Calls, and Branching

0°0L€L* " pessalid NoA, ‘L el
0°0L'€L ' 0 10 ‘g 'V ssaid, Ol E}
.9

99

g9

q-op
gq-op
nba
nbe
nbe

:BswAay
:ldwoud
o713
g7 131
V7131

BjBp

57

E 35

NUMBERS

Ithough we’ve talked about different number sys-

tems, until now, we’ve only glossed over the way
your computer interprets numbers. Bytes, words, and long
words are ways we group the bits that make up the comput-
er's memory, so we can more easily interpret their values.
However, in a computer, the same value may represent sev-
eral different types of data, including unsigned integers,
signed integers, characters, and addresses.

In this chapter, we’ll start to examine numbers and
the way they are interpreted. Along the way, we’ll learn
some new 68000 assembly language instructions and pick
up some tips on programming style.

A Number in Memory

All by itself, stuck somewhere in memory, a number is justa
number. Like a word in a book, the number lacks meaning
until we attach some significance to it. For example, let’s say
we've got a byte of memory containing the number 48. That
48 can represent several things. It might be the ASCII value
of the character “0,” the low byte of an integer, the low byte
of an address, or a binary value being used as a series of
flags. It might, given the right hardware, even be part of a
floating point number.

How does the computer know how to interpret that
48? It doesn’t -- until we tell it how. Let’s suppose the
number 48 is stored in a data location labeled num and the
number 50 is stored in D0. Look at the instruction on the
next page.

59

THE ASSEMBLY LANGUAGE WORKSHOP

move.w num, do@

Does this instruction tell the computer how to inter-
pret num? Nope. All we’ve done here is copy the two bytes
at address num into the lower two bytes of register DO (clob-
bering the 50 that was already there). The computer needs
to know nothing about the number, except that it’s two
bytes long. Now, assuming the same conditions, look at this
instruction:

add.w num,do

This instruction tells the computer to add the value in
num to the value in the lower two bytes of D0 and store the
result in DO. Did we tell the computer anything about our
pal 48 this time? We sure did. By using the add instruction,
we’ve implicitly told the computer that it should interpret
both num and DO as integers. After the instruction executes,
DO will contain the number 98. Now, how about this in-
struction, based on a line from chapter 4’s program:

move.b num,key_msg+14

If you remember, key_msg is the address of a string
constant. In this above instruction, we’re placing the value
48 at the end of the string. When we call Cconws to print the
string, that function will interpret 48 as the character “0.” As
you can see in the above examples, the value we stored in
num can serve many different purposes.

Converting Numbers

Yes, numbers in assembly language are flexible entities.
However, this flexibility comes with a price. As you know,
when a value is input from the keyboard, our program

60

Numbers

receives it as either an ASCII value or a scan code. If we
enter the number 1, our program receives the ASCII value
49. Now, what if we want to use the number we typedina
calculation? Obviously, 49 is not 1. If we try to add...oh, how
about 15...to that number, we’ll get 64, not 16, which is the
answer we really want. This means that numbers as they are
input from the keyboard must be converted into integers
before they can be used mathematically. Moreover, once we
are through with the math, if we want to print the results to
the screen, the results must be converted back the other
way, from integer to ASCII.

As you will see from program 3, when dealing with
single digits, this conversion is easy. Consider the ASCII
value of “1,” which is 49. To change it into an integer, all we
do is subtract 48, the ASCII value of “0.” A piece of cake. To
change it back into ASCII, all we do is add back the ASCII
value of “0.” However, when working with numbers of more
than one digit, the conversion process can be tricky.

The Program

In the CHAPS5 folder on your Assembly Language Workshop
disk, you'll find the files PROG3.S and PROG3.TOS, the
source and executable files for program 3, whose listing is
printed following this chapter. If you'd like to assemble the
program yourself, follow the instructions that came with
your assembler or check this book’s appendix A.

When you run the program, it asks you to enter a
single digit. If you try to enter something other than a digit
from 0-9, the program asks again. When you enter a valid
digit, the program doubles the value of the number and
then prints out the result. Yeah, I know; not exactly a
commercial-quality program, but it does illustrate the
basics of converting numbers between ASCII and integer. It
also introduces us to a few new instructions.

61

THE ASSEMBLY LANGUAGE WORKSHOP

Verifying the Input

Let’s examine program 3's source code. We start by using
Cconws to print a prompt and Cconin to get a character from
the keyboard. Nothing new here. We covered these func-
tions in previous chapters, so we won’t go into any detail
now.

After getting the character, however, we must verify
that it is a digit between 0 and 9. Because we have the ASCII
value of the character in the low byte of DO, we use acmp. b
to see if the ASCII value of the key pressed is less than the
ASCII value of “0.” If it is, the key typed wasn't a digit. After
the compare, we use the bt (Branch Less Than) instruction,
which sends us back to get another keypress if the user slips
us some bad input.

The bit instruction branches to the destination label if
the CCR’s (condition code register, remember?) N (negative)
flag is set and the V (overflow) flag is clear, or if the N flag is
clear and the V flag is set. In plain English, the branch will
occur if the cmp’s destination operand is less than its source
operand. Remember that a cmp instruction works by sub-
tracting the source operand from the destination operand.
If the destination is smaller than the source, we’ll geta
negative result, which sets the CCR’s N flag.

If the character passes the first test, all we know is that
its ASCII value is larger than or equal to the ASCII value of
“0.” We now have to make sure that it’s not larger than the
ASCII value of “9,” because then it wouldn’t be a digit
either. So, we do another compare, this time against the
ASCII value of “9.” If the cmp’s destination operand is larger
than its source operand, the bgt (Branch Greater Than)
sends us back for another try. (If you’re interested in exactly
which flags in the CCR are affected, check the reference in
the back of this book. The way the flags are affected by
instructions can be extremely complicated.)

62

Numbers

Saving a Register

Once we get a digit, we drop past the compares, to where we
move the low byte of D0 (the ASCII value of the key
pressed) into the string, just as we did in chapter 4’s pro-
gram. We then copy DO into D5. This is critical, becausc in
the next section of the program, we’re going to print the
string. You may remember that Cconws returns in D0 the
number of characters printed, meaning whatever was stored
in DO gets clobbered. We still need the number in DO, so we
must move it to a new register. Forgetting to save your regis-
ters can create hard-to-find bugs. You've been warned.

Simple ASCII to Integer Conversions

After saving DO, we print the string, showing the user the
key he pressed. (Hey, maybe he has a short memory.) Now,
in order to perform arithmetic operations on the number,
we must convert it from ASCII to integer. The instruction
subi. b #NUM _0,d 5 subtracts the immediate value 48 (the
ASCII value of “0”) from the low byte of D5, giving us the
character’s integer equivalent. The instruction subi (SUB-
tract Immediate) subtracts the source operand from the
destination operand, storing the result in the destination.

Now that we’ve converted the value into an integer, we
can use it in arithmetic operations. To prove this, we use the
add.b d5,d5 instruction to add the low byte of D5 to itself,
thus doubling the number. The add instruction adds the
source argument to the destination argument, storing the
result in the destination. It is in the same family as the addg
instruction that we use to reset the stack pointer, except
that, with add, we are not forced to add an immediate value
from 1 to 8. We can use any “effective address operand.” An
effective address operand is simply an operand that denotes
the address in which the data is stored. It’s the opposite of
“immediate.”

63

THE ASSEMBLY LANGUAGE WORKSHOP

Simple Integer to ASCIl Conversions

Converting our digit into an integer and using it in arith-
metic operations does us little good if we can’t see the
results. So, the next step is to take the results of the addition
and convert it to ASCII for printing to the screen. This isn’t
as simple as converting from ASCII to integer, because the
sum may be more than one digit. If, for example, we had
entered the digit 6, the sum now stored in the low byte of
D5 would be 12. We must convert this one byte value into a
two-byte ASCII string. In the next chapter, we’ll see how to
do this conversion for any number (well, almost any
number). This time around, we’re going to cheat.

We know that the sum in the low byte of D5 has to be
between 0 and 18, inclusive. In other words, all we must do
is check to see if the sum is larger than 10. If it is, we place a
Lin the 10’s place of the ASCII string, subtract 10 from the
low byte of D5, convert the remaining byte to ASCII, and
add it to the string after the 1. Of course, if we have only a
one-digit sum, we can just convert the single byte and add it
to the string.

To check if the sum in D5 is larger than 10, we use the
instruction subi. b #10,d5. The subi (SUBtract Immediate)
instruction subtracts an immediate source value from the
destination, storing the result in the destination. In our case,
10 is subtracted from the low byte of D5 (notice the . b
suffix). If the value in the low byte of D5 is less than 10
(meaning it will convert to a single ASCII digit), we geta
negative result, which sets the CCR’s N flag. We use the
instruction bmi one_digit to test this condition, and jump to
the label one_digit if the condition is true. The bmi (Branch
MInus) instruction branches to the destination address
when the CCR’s N flag is set.

If we don’t branch, we know the value in the low byte
of D5 was greater than 9 (I say “was” because, after subtract-
ing 10 from it, it is no longer greater than 9. It is, in fact, the
number we need to convert to ASCII for the string’s 1’s
place.), so we move the ASCII value of “1” into the string.

64

Numbers

We then convert the byte remaining in the low byte of D5 to
ASCII with the instruction addi. b #NUM _0,d 5. The addi
(ADD Immediate) instruction, as you may have guessed, adds
an immediate source value to the destination argument,
storing the result in the destination. After doing the conver-
sion, we move the resultant ASCII value into our string and
jump to the section of the program in which the string is
printed.

For a single-digit sum, the bmi instruction branches to
the label one_digit, where we convert the value in the low
byte of D0 into a single ASCII digit and tack it onto the
string. Notice that, in the conversion, we are adding
#NUM_0+10. We need to add an extra 10 to replace the 10
we subtracted previously.

Programming Style

Before we finish this chapter, look at the style used in writ-
ing program 3. You should notice three things. First, all the
address labels in the text segment are on lines by them-
selves. By doing this, the labels stand out better and can be
as long and descriptive as we want, without messing up the
format of the instruction columns. Also, this technique
makes it easier to add new lines of code at a label’s position.
For example, If I had written the first program line as

get_number: move.l Hprompt,-(sp)

to add an instruction at get_number, I'd have had to rewrite
move. | #prompt,~(sp) on the next line, delete that instruc-
tion from the label’s line, and then add the new line. With
the label on its own line, all I do to add an instruction is add
an extra line after the label and type the new instruction.

Notice also the way I've broken the instructions into
small groups, each of which performs a specific task. For
example, the first four lines print a prompt onto the screen,

65

THE ASSEMBLY LANGUAGE WORKSHOP

while the next three lines get a character from the key-
board. Dividing the code into logical units this way makes
the code easier to read.

Finally, notice that, although in our first two pro-
grams, we commented just about every line, in this one
we’ve changed our commenting style to show what task the
code accomplishes, rather than what an instruction is
actually doing. For example, in the program’s first
instruction move. | #prompt,-(sp), we don’t need to say that
this line moves an address onto the stack. Anybody who
knows 68000 assembly language can see that. That’s not a
helpful comment (except maybe for a novice Jjust learning
the instructions). Instead, the comment shows the string that
will be printed. We’ve actually commented all four lines
with this one comment.

Conclusion

Handling numbers in assembly language can be tricky,
since there are so many ways in which they can be inter-
preted. In this chapter, we’ve gotten a quick introduction to
some of the ways numbers can be manipulated. In forth-
coming chapters, we’ll gain more skills in this important
area of assembly language programming.

Summary

« Numbers stored in memory can be
interpreted as unsigned integers, as signed
integers, as characters, and as addresses.

v The computer can’t interpret a number until
we tell it how, which we usually do implicitly
with the instructions we choose.

66

Numbers

« In order to use numbers in our programs, we
must convert them from one type to another.
Most often, we need to convert from ASCII to
integer, or integer to ASCII

« The blt instruction, following a cmp, branches
to its destination address when the cmp’s
destination argument is less than its source
argument.

« The bgt instruction, following a cmp,
branches to its destination address when the
cmp’s destination argument is greater than its
source argument.

v The branch instructions actually branch
based on the flags in the CCR. For example,
the bmi instruction branches to its destina-
tion address if the CCR’s N flag is set. The N
flag is set whenever an instruction yields a
negative result.

« The subi instruction subtracts an immediate
value from the destination operand, storing
the result in the destination operand.

~ The addi instruction adds an immediate
value to the destination operand, storing the
result in the destination operand.

~ The add instruction adds an effective address
operand to its destination operand, storing its
result in the destination operand.

~ When writing source code, we should be
aware of programming style. Specifically, we
should place most address labels on their own
lines, as well as group instructions into logical
groups based on their tasks.

~ We should use informative comments, to
make our code easier to understand and
maintain.

67

THE ASSEMBLY LANGUAGE WORKSHOP

‘0P 30 S}usajuoos aaes
"Buiiys o) 3161p ppe

*Jayjoue j1ab os ‘poob ou ‘daAk
¢B UBY) Jo1BaIB 109)0BIBYD BY) S|

*uirsbe K13 ob ‘daA
@i UBYY SST) J3}0BIBYD 3y} si

*9|0SU0D 8y} woly JBYS B }8b

« ""3161p 9jburs B adAy,, juiud

WNNTYM NOLAVIO A8 166} LHDIHALOD

XN

Gp‘op

yi+06sw—Aayigp

Jagunu-)ab
0P ‘6 WNNz
Jaqwnu-}9b
0P ‘0 WNNz
QQ.N”

ba
(ds)-“|g
Qw.wﬂ

bae
(ds)-‘6n

(ds)-¢31dwoidy

dOHSYHOM 3DVNONY1 ATEW3SSY 1S 3HL

G- aaowW
g eaow

16q

q°dwo

119

q " dwo

| "bppe

del)

M BAOW

| “bppe

deJ}

M BAOW
| “eAOW

:lagqunu~y)ab

€ WVHDOHd

L LS

-

68

Numbers

111 nw_ _w~0u OE._-: uC_LQ

"Buil)s o) saqunu ppe
*II08V 0} Jaqunu }13AuU09D

*6ursys ayy jurid ob
"Bursys 03 116ip jBULY ppE
"IIDSY 0} JepuiBwal }J8Auo0d
‘eoe|d s@L ul .}, 89®|d
“3161p suo Ajuo ‘ou

¢0l « lagunu s|

*laqunu ayj ajgnop
“jul 0} [19SY wouy abusyo

« 1'Passaid NOA,, juluid

L N) L TN

XS

ds‘ox

ba

(ds)-‘6xn
(ds)-‘Bswppey

Gl+bsw-ppe‘Gp
SP0L+0 NNz

613s—ju4d
Gl+bsuppe‘gp

SP ‘O WNNe
P1+6SWppe ‘I TWNN:
y1B1p-auo

SP‘Qln

gpicp
SP ‘07NN:

ds‘gn

%4
(ds)-‘6n
(ds)-‘Bsw-Aayy

| “bppe

deus}

M aA0W

| *8A0W
:61)8-u4d

g-aaow

q ippe
ty161p~auo

BIq
q°oAow
q° ippe
q°eaow

1ug
g igns

q°ppe
g-lgns

| “bppe

dei)
M°aAOW
| “eAOW

69

THE ASSEMBLY LANGUAGE WORKSHOP

0oLl .’

‘S| |B}Oo} B8yl

0‘0L‘eL’,," pessaid noj,‘QLEl
0, tioqunu }1B61p ajbuls B adhy,,

‘weJsboid ji1xe

*i9)0BIBYO B }9b

LS
6v
:14

q°op
q-op
q°op
nbs
nbe
nba

(ds)-‘0n
ds‘2n

(ds)-‘ig

g18p

del}
M aaouw

| “bppe
dei}
M aA0W

:Bswppe
1Bsw—Aay
:1dwoud
87NN
I ANN
0"NNN

70

E= ¢

SUBROUTINES AND LOOPING

: ’n the previous chapters, we’ve written programs
that execute their instructions sequentially--that is,

starting at the top of the program and moving downward
through the code until getting to the end. Occasionally,
we’ve branched forward over code that we didn’t want to
execute, based on some sort of compare. However, we’ve
always branched forward, never back.

To take advantage of subroutines, as well as to create
efficient loops, we require special branch instructions.
Granted, the branching instructions we’ve used so far can
be used to implement subroutines and looping. However,
because most programs use many subroutines and loops,
the 68000 instruction set contains instructions specially
designed for this purpose. In this chapter, we’ll learn how
these instructions work.

The Program

In the CHAP6 folder on your Assembly Language Workshop
disk, you'll find two files: PROG4.S and PROG4.TOS. The
former is the source code for the sample program, which is
reprinted at the end of this chapter. The latter is the
executable file, which was formed by assembling PROG4.S.
If you'd like to assemble the program yourself, refer to the
instructions that came with your assembler or check this
book’s appendix A.

When you run the program, six lines of text are
printed to the screen, after which the program waits for a
keypress and then returns to the desktop. Although the

71

THE ASSEMBLY LANGUAGE WORKSHOP

program seems to do very little, the source code contains
many new instructions and concepts.

String Arrays

Before we can study the main program, we have to discuss a
new assembler directive, as well as the data structures in the
data segment. Look at the bottom of the program listing,
where we’ve placed our program data. Immediately follow-
ing the word “data” is the word “even.” Remember when we
discussed words and long words, we said they always must
start on an even address? The assembler directive even tells
the assembler to align the next piece of data on an even
address. Because the next seven pieces of data in our data
segment are all words or long words, each of them is then
guaranteed to start on an even address, too.

Now, let’s look at the data itself. The data labeled s_cnt
is the number of strings we’ll be printing, and the data
starting at s_adr is a table of addresses. Each entry in the
table is the address of a string we want to print. Notice that,
to store a string’s address, we can just use its label. The
assermbler automatically replaces the label with the proper
address once that address is calculated.

Following the address table are the six strings, each
with its own label, so we have a way to reference each string
individually. You can see that the labels are the same labels
we used to set up our address table. Why are we bothering
with an address table? Well, we could have printed the six
strings with six different calls to Cconws, but if you’ve done
any programming, you know that, when you see the same
process being done repeatedly, you've probably found a
good place for a program loop. By enclosing a single call to
Cconws within a loop and changing only the address we
send to the function, we can greatly shorten our source
code.

We could have used the strings themselves as our
table and calculated within the loop the address of each

72

Subroutines and Looping

string. We’d perform this calculation by adding to the
starting address of the first string the number of characters
between the start of the first string and the start of the
string we want to print. For example, suppose the first
string, s1, was stored starting at address 5000. We could
calculate the address of the second string by counting the
number of characters in s7 and adding that count to 5000.
String s is made up of 32 characters, so if string s7 started
at addresss 5000, string s2 would start at address 5032.

If all six strings were the same length, we could use
the string length to easily calculate each string’s address.
However, they’re not all the same length, which means that
to print each string in our loop, we'd need a table of string
lengths. And, if we must use a table, a table of addresses is
the simplest to implement, since we don’t have to count
characters, and we can change the length of the strings any
time without having to change the table, too.

Now that we understand the way our data is set up,
let’s look at the subroutine itself,

Subroutines

A few chapters ago, we were introduced to the stack. So far,
we've used the stack only for calling operating system
functions, but, obviously, the stack has many other uses.
One of those uses is the storage of return addresses when
calling a subroutine. Look at the first three lines of our
program. Here, we're getting ready to call a subroutine.
First, we store the address of our string-address table into
A5. Then, we store the number of strings to print in D5.

In the next line, we call a subroutine with the call bsr
print. (The mnemonic bsr stands for Branch to SubRou-
tine.) When we call a subroutine, the computer takes the
address of the next instruction and copies it onto the stack.
It then loads the program counter with the bsr’s destination
address--in our case, the address print. You already know
that the program counter always contains the address of the

73

THE ASSEMBLY LANGUAGE WORKSHOP

next executable instruction. It should be obvious then that,
by loading a new address into the program counter, we
branch to a new part of the program.

In our sample program, that new part of the program
is the subroutine that begins at the label print. After the
branch, all the instructions that make up the subroutine are
executed until the program reaches the rts (ReTurn from
Subroutine) instruction, which causes the computer to pop
the return address off the top of the stack and load it into
the program counter, which sends us back to the instruction
immediately following the bsr. Note that the computer
assumes that the return address is on the top of the stack. In
other words, if we place some of our own data on the stack
(as we do in our subroutine print), we must be sure to reset
the stack pointer to the return address. If we don’t, the
computer will load the program counter with whatever four
bytes it finds on top of the stack, and we can expect to see
some bombs on the screen.

Saving Registers

Subroutines, like any assembly language code, usually use
registers. This means that, when you call a subroutine, you
must be aware of registers that may get clobbered. An
example of this is our Trap #1 call to GEMDOS. Before we
make this call, we must be sure that we have nothing
important in registers A0, A1, A2, DO, D1, and D2, because
these registers may be overwritten by the operating system.
One way to avoid this problem in our own subroutines is to
make sure that our subroutines never change any registers.
To perform this seemingly impossible feat, all we must do is
save the contents of whatever registers we use in the
subroutine and then restore their contents before returning
to the main program.

Why don’t the operating system calls provide this
simple courtesy? Because saving and restoring registers
takes time. So that the operating system functions run as

74

Subroutines and Looping

efficiently as possible, the OS designers decided to leave it
up to us to avoid register conflicts by not putting important
data in registers AQ through A2 and D0 through D2 when
calling these functions.

It doesn’t take much processor time to save a few
registers, though, so in our own programs, we’ll usually
want to make our subroutines as transparent to the calling
code as possible. Where can we store the registers? On the

stack, of course. For example, we could store the registers
like this:

move, | ad,-(sp)
move. | al,-(sp)
move. | do,-(sp)
move. | dt,-(sp)

This method requires a line of code for every register
we want to save. If we save all the registers, that’s 16 lines of
code. And don’t forget that we also must restore the regis-
ters at the end of the subroutine. That’s another 16 lines of
code. The fine folks who designed the 68000 assembly lan-
guage anticipated this problem and created an instruction
that allows us to save or restore as many registers as we
want, all at once. The first line in our subroutine, movem. |
a0-al /d0-d1,-(sp), moves A0, A1, DO, and D1 onto the
stack. We could have saved all 16 registers just as easily, with
the instruction movem. | a0-a7 /d0-d7,-(sp). To move just
A0 and DO, we’d use the instruction movem. | a0 /do,-(sp).
Get the idea? With the movem (MOVE Multiple) instruction,
we can signify a range of registers using a hyphen. We use a
slash to separate address registers from data registers.

It's important that we remember to pull the saved
values off the stack before we return from the subroutine,
for two reasons. First, if we don'’t, our registers won’t get
restored to their original values. But more importantly, if
we don’t reset the stack pointer, our subroutine can’t return
properly. Do you know why? Remember that, when we

75

THE ASSEMBLY LANGUAGE WORKSHOP

called the subroutine, the computer stored the return
address onto the stack. By saving our registers on the stack,
we've buried the return address. Since the rts instruction
expects to find the return address on top of the stack, we
better be sure that it’s there.

Looping

Getting back to our subroutine print, after we save the
registers on the stack, we subtract 1 from D5, the register
that holds the number of strings we want to print. We do
this because of the way the looping instruction works.

Our loop comprises five lines of code, starting with
the line immediately following the label loop. In the loop we
call Cconws to write a string to the screen. After the four
lines that handle our call to Cconws, you’ll see the line dbra
d5,loop. This is the instruction that controls the loop. The
dbra (Decrement and BRAnch) instruction first subtracts 1
from the low word of the source data register (in this case,
D5). If the data register is greater than -1 after the subtrac-
tion, the program branches to the source address (in this
case, loop). If, due to the subtraction, the data register
becomes -1, the loop is terminated, and program execution
begins with the first instruction following the dbra.

You can now see why we had to subtract 1 from the
register before we started the loop. Because the loop
terminates when the count register becomes -1, the loop is
performed once more than the counter value. Yeah, I know
it’s weird, but nobody promised you that 68000 assembly
language programming was logical.

Just as the bra instruction has many forms (bgt, bmi,
bcec, bit, etc.), so too does the dbra instruction. By using
different forms of the decrement-and-branch instruction,
we can check for two conditions at once. For example, the
instruction dbeq d 5, loop will terminate the loop both if the
CCR'’s Z flag is set (possibly meaning that a previous cmp
instruction compared equal pieces of data) or if the loop

76

Subroutines and Looping

counter, Db, reaches -1. Using this instruction, we could do
something like search a string of a certain length for a par-
ticular character, breaking out of the loop if we find the
character or if we reach the end of the string. (The length of
the string minus 1 would be loaded into the loop counter
register.)

The many forms of the dbra instruction are listed in
Appendix B. We won’t go into detail on them at this time.
However, in upcoming chapters, we'll bump into some form
of this looping instruction often.

Address Register Indirect
Addressing with Post-Increment

The first instruction in our loop, move. | (@5)+,-(sp), intro-
duces us to a new addressing mode. We're already familiar
with address register indirect addressing with pre-decre-
ment. That's what we always use when we move something
onto the stack. We are, in fact, using it here, in the destina-
tion operand. Address register indirect with post-increment
is the opposite. Instead of decrementing the register before
we use it, we’re incrementing the register after we use it.

In the above instruction, A5 contains the address of
our string-address table. We loaded that address into the
register before we called the subroutine, remember? If we
had written the above instruction as move. / as,-(sp),
without the parentheses and the plus sign on A5, we would
be moving the value stored in A5 onto the stack. By putting
parentheses around A5, we’re changing it into a pointer
(address register indirect addressing). The instruction
move. | (@5),-(sp), then, moves the value pointed to by the
address in A5 onto the stack. When we add the plus sign to
the instruction, move. | (@5)+,-(sp), we are moving the valuc
pointed to by the address stored in A5 onto the stack and
then incrementing A5 by the appropriate number of bytes--
here, four, because we're moving long words.

77

THE ASSEMBLY LANGUAGE WORKSHOP

In our program loop, this addressing mode allows us
to use A5 to point to each entry in our address table, one
after the other, moving forward to the next address each
time through the loop. Figure 6.1 compares the address
register direct, address register indirect, and address register
indirect with post-increment addressing modes. Notice how
the contents of the stack and A0 change with each

instruction.
R
1000[1024 1000[1024
1004 1067 1004 1067
Ao[1000] AO[1000 |
L1 sp——["1000]
Sp —
Figure 6.1a

move.l a0,-(sp)

1000[1024 1000[1024
1004 1057 1004 1067
AO[1000 | A0(1000 |
I Sp ——

SP ——

Figure 6.1b
move.l @0),-sp)

1000 1024 1000| 1024
1004{ 1067 1004| 10567
Ao[1000 | Ao[1004]
- L1 spP—
Figure 6.1¢
move.l @0)+,-(sp)
T R R

78

Subroutines and Looping

Restoring the Registers

As you know, before we return from our subroutine, we
must restore the registers. We do this with the same movem
instruction we used to save the registers, except now we
reverse the source and destination operands, and we use
address register indirect addressing with post-increment
with the stack pointer instead of address register indirect
addressing with pre-decrement. This addressing mode
moves the stack pointer back down the stack as we restore
each of our register’s values. You can see this instruction in
the sample program, right before the rts instruction, which
returns us to the main program.

Subroutine Design

Subroutines are great for breaking our programs up into
logical chunks, as well as dividing a program into sections of
code that perform general tasks. By setting up our string-
printing routine as a subroutine, for example, we can call it
many times in the program without having to rewrite the
code. Without the subroutine, every time we wanted to print
a string array, we’d have to place another copy of the code
into the program. In other words, subroutines help us avoid
redundant program code.

Subroutines also allow us to use a structured, top-
down programming approach. By using descriptive
subroutine labels, we can quickly see what each subroutine
call in our main program does, without having to study the
details of the subroutine. We can think of a subroutine as a
“black box,” a device that gives us a certain output for a
certain input. We are interested only in what the box does,
not in how it does it. Once our subroutine is working
properly, we can forget how it works and just use it.

To achieve the black-box effect, however, we must
design our subroutines to be as free-standing as possible.
This means passing all relevant data into the subroutine via
registers or the stack. If a subroutine is to be a black box, it

79

THE ASSEMBLY LANGUAGE WORKSHOP

cannot access data external to itself, unless that data is
passed into the subroutine.

Commenting a Subroutine

The black-box idea can be extended to include the subrou-
tine’s comments. At the beginning of every subroutine, we
should include a comment block that describes not only
what the subroutine does, but also where it expects to find
its data, the type of output it generates, and what registers it
affects. By commenting our subroutines this way, we can
quickly see the requirements for calling the subroutine
without having to look at the code. You should develop a
consistent style for writing these “header” comments, so you
can always tell at a glance everything you need to know
about your subroutines.

Conclusion

In this chapter, we learned how to create program loops and
how to implement subroutines. Both of these programming
techniques allow us to streamline our code, by eliminating
redundant instructions. We’ll be using both of these tech-
niques frequently in our programs from now on, so be sure
you understand how they work.

Summary

< The even assembler directive can be used to
ensure that data starts on an even address.

« The dbra group of instructions automatically
decrements a loop counter and branches to a
destination address if the counter is greater
than -1. Many instructions in this group allow
us to check two conditions in a loop: the loop

80

Subroutines and Looping

counter and the status of the Condition Codes
Register (CCR).

~ The bsr instruction allows us to branch to
subroutines. The rts instruction returns us
from a subroutine.

« In our subroutines, we should save registers
before using them, and restore the registers
before leaving the subroutine. This makes the
subroutine more transparent to the calling
code. The movem instruction allows us to
save many registers at once.

~ With address register indirect addressing with
post-increment, we use a register as a pointer
to the data we want to manipulate, and
increment the register by the appropriate
number of bytes after using it.

« With subroutines, we can break our programs
up into logical tasks, which allows us to use
top-down programming. Subroutines also
help us to avoid redundant program code.

~ Whenever possible, subroutines should be
designed as “black boxes,” so we need be
concerned only with what a subroutine does
and not with how it does it.

« Passing all needed data into the subroutine
via registers or the stack, and composing
descriptive “header” comments, are both
important in creating a free-standing
subroutine.

81

THE ASSEMBLY LANGUAGE WORKSHOP

"ayqe} u) sburils jo Jaqunu--gp
"8(qe)] ssaippe-buills o ssaippe--GB :jndu]

"uU831ds ayj o) Asuie Bujsis B sjuiad aurinoigns siyy

ln deu)

*dojysap o) yoeq ¢ (ds)-‘gg m°arow
ds‘gy | °bppe

bn desy

*ssaldAsy 10} jiem ¢ (ds)-‘ig Mm-aaow
*sbuisys jurid ob yurad 18q

GpflusTs m°aaow
GB‘IpBTSy | "aAOW

*Junod Bujlys peo|
*SS8.ippe 29|qB} PBO|

WNNTYM NOLAVIO A8 1661 LHDIHALOD

¥ WvHO0Hd
dOHS)HOM 3DVNONVYT ATBNISSY LS 3HL

“n

Y N,

IS

82

Subroutines and Looping

€8s 1°9p
cs 1°0p
18]*0p :iipB~S

g M*Op :}ud-s

s}l
lPp-Qp/lB-QB‘+(dS) | “WaAow
doo|‘gp viqp

‘aullnoiqgns }1xa
*s19)s1baJ 9J0}s04
‘Butiys)xau 10§ X0BQ YoUBIQ

o "m .

ds‘gn | “bppe

gt ngu
(ds)-‘6x M dAOW
*uselos 0) Buysys Juyrad ¢ (ds)-“+(6®) | @aow
:dooj
*doo| 104 junoo Buisys }i9AUOD Sp‘lm |°bgns
“30BlS O)juo siajsibas aamvs ¢ (ds)-‘/p-@p/.lB8-08 | “WwaAow
tjurad

9uUON :pafusys sieys|bay

83

THE ASSEMBLY LANGUAGE WORKSHOP

o‘ol‘ecl‘, ~doo| abenbue| A|quasss,,
0‘oL‘el‘,ue Buisn Ag 1xau ey} o) Burlys,
0‘0l‘cl*,,8U0 WOJ} aAOW puB ‘s8sSSaJIpPPB,,
0'oL‘el‘,Buriys Jo ajqe) B asn ued nok,,
0‘oL'el‘,,‘ueaios ay} o) sbulils jo saluias,,
0'OL‘el ‘B Julid 0} juBm JaAd NOK }I,.‘QL'El

gs
gs
ps

g-op

gs
gs
¥s
£s
zs
LS

84

E== 7

NUMBERS REVISITED

By now, you should be fairly comfortable with the
basics of assembly language programming. So, in
this chapter, we’re going to write a full program: a number-
guessing game. In this game, the computer picks a number
from 1 to 100, and the player tries to guess it. Although this
is a simple problem to program, it allows us to get into
many new topics of discussion, including base storage
segments, advanced number conversions, random number
generation, and several new programming instructions.

The Program

In the CHAP7 folder of your Assembly Language Workshop
disk, you’ll find the files PROG5.S and PROG5.TOS, which
are the source code and executable file for this chapter’s
sample program. If you'd like to assemble the program
yourself, please refer to the instructions that came with your
assembler or check this book’s appendix A.

When you run the program, you're asked to guess a
number from 1 to 100. After you’ve entered the number, the
computer tells you whether your guess was too high or too
low. Based on this hint, you should guess again. You get six
tries, after which, if you haven’t guessed correctly, the
computer tells you the number and returns to the desktop.
If you guess the number before your turns run out, the
computer gives you a congratulatory message and exits to
the desktop.

As you probably know, the quickest way to guess the
number is to use a binary search--that is, keep splitting the

85

THE ASSEMBLY LANGUAGE WORKSHOP

possible numbers into two equal parts. For example, start
with a guess of 50. If the computer says that that’s too high,
then guess 25. If that’s too low, guess 37, and so on, eliminat-
ing 50% of the remaining numbers with each guess. Using
this method, you can always guess the correct number
within seven tries. That’s why the game gives you only six!

Now that you know how the game works, let’s start
our study of the program with the data section.

Uninitialized Data Storage

Often in our programs, we need areas of memory that we
can set aside for future use. Although these areas will
contain data at some time during the program’s execution,
we don’t know what that data will be. In other words, these
areas start uninitialized. In this chapter’s sample program,
for example, we need a buffer in which to store a string.
Because this string will be typed by the user after the
program is run, we have no idea what the string will be. All
we can do is supply space for the string and sce that it gets
placed there when the user types it.

Look at the end of this chapter’s assembly language
listing. You’ll see the word bss followed by the line buffer:
ds. b 10. The assembler directive bss (Block Storage
Segment) sets aside an area for uninitialized data. You
already know that buffer is a label that we can later use to
refer to the address of this data. But what's thatds. b? The ds
(Define Storage) assembler directive allows us to set aside
space in memory. Here, we're setting up a storage area for
10 bytes. If we had used the assembler directives ds. w or
ds. |, we would have been setting up storage for words or
long words, respectively.

Why have a special area for this type of data? Why not
Just use the dc assembler directive? Since storage set up
with the dc directive has specific data associated with it (the
data used to initialize the area), all the data must be stored
as part of the program file. If we had set up our buffer with

86

Numbers Revisited

the line buffer: dc. b 0, 0,0, 0,0, 0, 0, 0,0, 0, using the
define-constant directive instead of the define-storage
directive, our program file would have been 10 bytes longer.
(Note that, when initializing a large area of memory to the
same value, we can use the dcb [Define Constant Block]
assembler directive. To initialize buffer to 10 zeroes, we can
write buffer: dcb. b 10, 0. The first number after the
directive is the size of the area, and the second number is
the value to which each location in the area should be
initialized.)

When we use the ds assembler directive to define our
storage, all the program loader had to do is grab 10 bytes
from memory and initialize it to zeroes. It doesn’t have to
load it with any specific data. Furthermore, because the
loader need not initialize our buffer with specific data, our
program file need not store the data, so the file is that much
smaller. Whenever you need uninitialized storage, you
should define it in the . bss section of your program.

You should be able to figure out the rest of the data
area yourself, so let’s move on to our next topic, random
numbers.

Generating Random Numbers

Although TOS provides a random-number generator, the
value it supplies is too “raw” to be of any practical value. We
must take the number returned from this function and
change it to a number that falls within a range more suited
to the current application. Most BASIC languages provide a
random-number statement that returns a random number
from 0 to n-1, where n is a value provided by the program-
mer. For example, a BASIC command like A=RANDOM(10)
will return a value from 0 to 9. If we wanted a number from
1 to 10, we would use the statement A=RANDOM(10)+1.

We’ve used this typical BASIC implementation of
random numbers as the model for our own random-
number subroutine, found in the sample program at the

87

THE ASSEMBLY LANGUAGE WORKSHOP

label rand. This subroutine returns a random number from
0 to n-1. The value for n is stored in register D3 before
calling the subroutine. A random number within the
requested range is returned to the main program in DO.

Let’s examine the rand subroutine. In the first line,
we save all the registers--except D0. We don’t want to save

and restore D0, because we use it to return the final random
number to the main program. In the next line, move.w
#RANDOM,-(sp), we move onto the stack the function
number for the random-number call. This XBIOS function
returns a 24-bit random number in D0. Notice that we’ve
replaced the function number (17) with a descriptive name.
By using constants this way, we don’t need to remember all
the function numbers when we want to cali them; we just
use their names. All the function calls in this program, and
all upcoming programs in this book, use this technique.
Constants are defined in the data section of a program.

The trap #14 calls the XBIOS, which performs the
random number function, returning the 24-bit value in DO.
Unfortunately, a 24-bit random number can be larger than
100, the high end o: .uec range we want. We must convert the
number to the appropriate range. Because our subroutine is
designed to return only 16-bit numbers, we first clear the
upper word of D0, the register that contains the 24-bit
random number. The line andi. | #30000FFFF,d0 does this
for us. The instruction andi (AND Immediate) ANDs an
immediate source value with an effective-address destina-
tion value, storing the result in the destination address. It
can be used on all data lengths. (The “$” before the number
tells the assembler that the value is a hexadecimal number.)

What's an AND? An AND operation compares the bits
of each operand. If both bits are set, the result is 1. If either
or both of the bits are not set, the result is 0. In other words,
we can “mask out” any bits we want, by ANDing them with
0. Any bit ANDed with a 0 results in a 0, whereas any bit
ANDed with a 1, retains its value, either 1 or 0. This
operation is shown in figure 7.1.

Numbers Revisited

Destination [1|0[0|1|1]0[1[@[1|0|0|1]171911J9]
Source [0]o[0[0]0]0]0]0] L AT
Result [0]0[0]0]0]0[0]0] [1[0]0[T[i][o[i[o]

Figure 7.1

So, now that we have a 16-bit value, we can calculate
our final random number by dividing DO by the value in D3
(the value passed into the subroutine). The line divu d3,d0
takes care of this. The instruction divu (DIVide Unsigned)
divides a 32-bit destination data register by a 16-bit effec-
tive-address source operand and stores the result in the des-
tination register, with the quotient in the low word and the
remainder in the high word. Note that the source operand
must be a 16-bit value and that both the quotient and re-
mainder are also 16-bit values. Note also that, because this
operation always operates on the same data lengths, it
makes no sense toadd a . b, .w, or . [suffix to the instruc-
tion. Figure 7.2 shows how this instruction works.

[109] DO (32-bit value)

D1 (16-bit value)

L 9 [10] DO after operation

Remainder Quotient

Figure 7.2

After the division, the high word of D0 (the
remainder) contains a number within the requested range.
However, before we can close up shop, we must clear out
the quotient, which is stored in D0’s low word. Sounds like a
job for the andi operation, doesn’t it? The line andi.
#$FFFF00000,d0 clears the quotient from D0. We're not
done yet, though. In order to have a 16-bit value, we must

89

THE ASSEMBLY LANGUAGE WORKSHOP

move our newly generated random number from the high
word of D0 into the low word. Luckily, the 68000 assembly
language instruction set contains the perfect instruction for
this task. In our subroutine, the line swap d0 swaps D0’s
high and low words--that is, the low word is moved into the
high word, and the high word is moved into the low word.
At last, we have a random number within the requested
range. To finish up, we restore the registers and return from
the subroutine.

16-bit Integer to ASCII

Now that we know how to perform division in assembly
language, we can write a subroutine that’ll convert any
unsigned 16-bit integer into an ASCII string. We did a
similar conversion with single-digit numbers in a previous
chapter, but the process for larger numbers is a bit more
complicated. The conversion is accomplished by dividing
the integer by decreasing powers of ten. Each division yields
a value that can be converted into one digit for the string.

For example, let’s say we want to convert the integer
5,376 to a string. The highest possible 16-bit number we can
have is 65,535, which means our most significant digit in the
string will be in the 10,000th’s place. So, we first divide 5,376
by 10,000 giving us a quotient of 0 and a remainder of
5,376. We convert the quotient into an ASCII character and
add it to our string, giving us “0.” Dropping to the next
lowest power of 10, we divide the remainder of the previous
operation by 1,000, giving us a quotient of 5 and a
remainder of 376. We convert that digit, giving us the string
“05.” Dividing the remainder by 100 (the next lowest power
of 10), we get a quotient of 3 and a remainder of 76. Adding
the next digit to the string, we get “053.” Using the same
process, we divide by 10 and then finally by 1. After the last
digit is converted, we have the string “05376.”

The subroutine for this conversion is in the sample
program, at the label int2ascii16. To call the subroutine,we

20

Numbers Revisited

place the address of a string buffer in A3 and the 16-bit
integer we want to convert in D0. After the subroutine has
done its processing, the ASCII string will be stored in the
buffer pointed to by A3.

Look at the code. As with all subroutines, before we
do anything, we save the registers. Because we aren’t using
any of the registers to return values to the main program,
we'll save and restore all 16 registers. (Some programmers
save only the registers that they know they’ll use; others, to
be on the safe side, save them all. Now, dear reader, you've
been exposed to both methods.) Next, we clear D3, which
we will use as a flag to tell us whether we’ve yet generated a
digit greater than 0. Using this flag, we can avoid leading
zeroes in our string. The clr (CLeaR) instruction clears the
effective-address destination operand to all zeroes. After
clearing the flag, we load D1 with the first divisor we’ll use
(10,000) to calculate the first digit in our string--that is, the
digit in the 10,000th’s place.

Now, we can start the conversion process, by dividing
DO, which contains the integer we want to convert, by D1,
which contains the current power of 10. We then check to
see if we are producing an ASCII digit for the one’s place. If
we are, we have to allow a “0” digit, even though it’s
technically a leading zero. If we didn’t allow this exception
to our leading-zero rule, we’d be unable to convert the
integer 0. After this check, we use the line tst. w d3 to test
whether we have yet generated a non-zero digit. (D3 isn’t
affected by the previous instructions; we will set D3 later in
the subroutine when we convert the first non-zero digit.)
The tst instruction may be used on any size data. All it does
is compare the operand with zero and set the flags in the
CCR accordingly. It does not change the data. If D3 is not o,
we have already generated a non-zero first character, so
generating a “0” in the string is okay. Program execution
jumps to zero_ok, where we move the quotient into our
string buffer and convert it to ASCI], by adding the ASCII
value of “0.”

91

THE ASSEMBLY LANGUAGE WORKSHOP

If, when we tested the flag D3, it was zero, we know we
haven’t yet generated a non-zero digit. So, we test the quo-
tient of our division with another tst instruction. If the quo-
tient is zero, we don’t want to generate an ASCII digit in the
string, because this digit would be a leading zero. We jump
over the integer-to-ASCII conversion. If the digit is not a 0,
we set D3 to 1 with the line moveq #1,d3, so we later know
that we’ve found our first non-zero digit. (The moveq in-
struction is a more efficient form of the move instruction. It
copies a signed immediate source operand with a value
between -128 and +127 to the destination operand.) We then
convert the digit to ASCII.

Despite the value of the flag D3, we eventually end up
at next_digit, where we divide D1 by 10, to get the next
smallest power of ten for a divisor. We then test the divisor
for a zero result, which would mean that the conversion is
complete. If the divisor is still a non-zero value, we zero out
the low word of DO (the quotient), use the swap instruction
to move the remainder into the low word, and then loop
back to convert the next digit.

When the divisor, D1, becomes zero, program execu-
tion branches to add_null, where we add a null to the string,
restore the registers, and return to the main program.

Local Labels

Look closely at the labels in the int2ascii16 subroutine.
You’ll notice that all but the first and last start with periods.
A label that starts with a period is a “local” label, one that is
valid only in the area between the previous and the next
non-local label. Look at this example:

label1:
.label2:
.label3:
label 4:

92

Numbers Revisited

Here, label2 and label3 are said to be local to labell.
These labels can be referenced only in the code that lies
between /abel1 and label4. If you try to reference one of the
local labels in code before labell or after label4, you will get
an “undefined symbol” error. On the positive side, we can
rcuse any of the local label names elsewhere in our program
without confusing the assembler. As far as the assembler is
concerned, the local labels don’t even exist, except within
their locality. Using local labels is another way we can make
our subroutines more like “black boxes.” Using this tech-
nique, we can define labels in our main program without
fear of accidentally duplicating labels in our subroutines. In
addition, local labels allow us to use more general-purpose
labels like Joop or out as often as we like, as long as we will
never need to reference them outside their locality.

ASCII to 16-bit Integer

Converting an ASCII number to an integer is similar to
converting an integer to ASCII, except we use multiplica-
tion instead of division. The algorithm works like this:
Check the first digit to be sure that it is a digit and not
some other character. If it’s okay, convert the digit to an
integer, and add it to an accumulator register, which was
initialized to 0. Then, check the next character to see if it’s
the null marking the end of the string. If it’s not, the
character just converted is multiplied by 10, and the
program loops back for the next digit, converting it and
adding it to the accumulator. This process continues until
the end of the string, at which point the accumulator
contains the full, converted integer.

Let’s say we have the string “426.” We subtract the
ASCII value of “0” from the ASCII “4,” which leaves us with
the integer 4. We then add 4 to the accumulator, giving us 4.
Because we aren’t yet at the end of the string, we multiply
our accumulator by 10, giving us 40. We then convert the
“2” to 2and add it to the accumulator, giving us 42. We're
still not at the end of the string, so we again multiply the

93

THE ASSEMBLY LANGUAGE WORKSHOP

accumulator by 10, giving us 420. After converting the “6” to
6, and adding the result to the accumulator, we end up with
426, the final integer. See? It’s easy!

The code that does this conversion is found in the
sample program, at the label ascii2int16. As always, we first
save the registers--except DO, which we use to return the
final integer to the main program. We then clear DO, which
we also use as the accumulator. (The clr instruction sets its
effective-address destination argument to 0.) We also clear
register D3, which we will use as a work register. We start
the conversion by comparing the byte pointed to by A3 to
the ASCII values of “0” and “9,” to make sure we have a
digit. If we don’t have a digit, we branch to .digit_error,
where we load DO with our error code of -1.

If the digit is okay, we load it into D3 with the line
move. b (a3)+,d3. Notice that we’re using address register
indirect addressing with post-increment in this instruction.
After the instruction, A3 will point to the next character in
the string. After loading the character into our work
register, we convert it into an integer, by subtracting the
ASCII value of 0. We then add the resultant integer to DO,
our accumulator. Next, the line tst. b (@3) compares the
byte pointed to by A3 to 0. If that byte is a 0, we’ve reached
the end of the string, and we branch to . out. If we haven’t
reached the end of the string, we multiply the accumulator
by 10, with the instruction mulu #10,d0. The mulu
(MULtiply Unsigned) instruction multiplies two unsigned
16-bit operands (an effective-address source operand and a
destination data register) and stores the 32-bit result in the
destination register. Because this instruction’s arguments
are always word length, the instruction should not have a
suffix.

After the multiplication, we branch back to get the
next digit. When the conversion is complete, we branch to
out, where we restore the registers and return to the main
program.

94

Numbers Revisited

The Main Program

Now that we understand the subroutines, I don’t think we
need to go through the main program line by line. You
should be able to figure out easily how it works. If you can’t,
you may need to reread previous chapters, to review some
of the concepts. There are, however, two things in the main
program we’ve not yet discussed—a new instruction and a
new function call.

Near the top of the program, you'll see the line cmpi. |l
#7,d4, which compares the immediate value 7 with the data
register D4. The cmpi (CoMPare Immediate) instruction is
just another form of the cmp instruction. It is used specifi-
cally to compare an immediate value of any data length to
the destination effective-address argument. In our previous
programs, there were several places where we should have
used this form of the cmp instruction but, for simplicity’s
sake, we used the regular cmp instead. Fortunately, most
assemblers are intelligent enough to substitute the more
efficient cmpi wherever appropriate.

A little farther down the program listing, you’ll see a
block of code that includes the line move. w #CCONRS,-(sp).
This block of code is the GEMDOS function call to read a
string from the keyboard. To use this call, we must first
place two parameters on the stack: the address of the buffer
where the string should be stored and the function number
(10). Before the call, we must also place in the first byte of
the buffer the maximum number of characters we want to
read, usually the buffer length minus 2. The function
terminates either when the user enters the maximum
number of characters or when the user presses Return.

After the call (using trap #1), both the second byte of
the buffer and the register DO contain the number of char-
acters actually read. The string itself is stored starting at the
third byte of the buffer. Figure 7.3 shows the buffer after the
user typed “hello” in response to a call to Cconrs. Note that
the string is not zero-terminated.

95

THE ASSEMBLY LANGUAGE WORKSHOP

Max & of Chars
l # of Chars Read

!
[7[8[h[e[11]o].T.]
m

Figure 7.1

Conclusion

In this chapter, we covered a lot of new material. You should
study the following summary carefully and review any topics
that are not clear to you. As with most technical areas of
study, it is essential that you understand the covered
material before you move on to new topics. You should now
fully understand why we need to convert numbers between
ASCII and integer, as well as how to do it. Also, you should
be comfortable with the new instructions we covered in this
chapter. Take some time to write a small program or two of
your own, incorporating what you’ve learned so far.

Summary

~ The .ds assembler directive allows us to set
up uninitialized storage areas in the . bss area
of our program. Because these areas in
memory do not need to be initialized to
specific values, initialization information
need not be stored with the program’s
executable file.

v The .dcb assembler directive allows us to
initialize large blocks of data to the same
value.

~ The XBIOS function #17 (Random) returns a
24-bit random numbser in register DO.

96

Numbers Revisited

~ The trap #14 exception allows us to call
XBIOS functions.

« By using constants to replace function num-
bers with descriptive names, we make our
source code easier to write and easier to read.

~ The andi instruction ANDs an immediate
source operand with an effective-address
destination opcrand and stores the result in
the destination operand.

« The divu instruction divides a 16-bit source
operand into a 32-bit data register, storing the
result in the destination. The quotient is
stored in the low word, and the remainder is
stored in the high word.

« The swap instruction switches the values
found in the destination argument’s low word
and high word.

« The tst instruction compares its effective-
address operand to 0. The operand is not
modified, but the flags in the CCR are set
accordingly.

~ The moveq instruction is a more efficient
form of move, which should be used when
moving immediate values between -128 and
+127.

« Labels that start with a period are considered
local to the area between the two closest non-
local labels.

~ The clr instruction sets its effective-address
destination argument to 0.

~ The mulu instruction multiplies an unsigned
effective-address source operand and an un-
signed 16-bit value stored in a data register. It
stores the 32-bit result in the destination
register.

97

THE ASSEMBLY LANGUAGE WORKSHOP

« The cmpi instruction compares an immediate
source operand with an effective-address
destination operand, setting the appropriate
flags in the CCR.

< GEMDOS function #10 (Cconrs) retrieves a
string from the keyboard.

98

Numbers Revisited

(ds)-‘SMNOOOz M aAow

« ~TJdagunu B ssanp,, julid ¢ (ds)-‘jdwoidg |-8AcW
JysT1j0fyp BIQP
*18j4ng jno o019z !¢ +(18)'0r Q- oAQW

t1)8TI0

*483)unod dooj| jiul
*1844nq Jo ssaippe }ab
~dak

¢19A0 aweb

*19)unod juawalou|

P9y Mm-aAowW

Lefiayinqy | *aA0W

1980 baq

P ln | " 1dwo

vP‘luz M bppe
tlaqunu—y}ab

*19)unod Uiny }jiul ¥p |10

*laqunu wopuel B8ABS
‘@Ol 031 | o) abueis }ieAuod

ZP‘OP | eAow
OP‘lx | "bppe

LY

puel i8]
‘66 0} @ WOt} g wopuBJ }eb ¢ EP‘00Lle | “@AOU
ixe}

ANNNTYM NOLAVIO A8 1661 LHOIHAMOD

S NVHDO0Hd
dOHSYHOM 3DVNONVI AT8W3SSY LS 3HL

LT Y NP

99

THE ASSEMBLY LANGUAGE WORKSHOP

‘MO| 00} SBM lagquwnu ‘adou
*s94
¢passanb sagqunu ay) sem

*laqunu Jayjous }ab ob

- doqunu adA) jou piqg, julid

*186aju1 0} }J48AUOD
“layyng ul JBYS)SI14 JO sSsaippe

‘pleoghay woiy Builys })ab
*JUnoo Ja3}9BIBYD }IUI

LT e e amm

em am co

e em

yb1y-oo}
passanb
op‘ep

Jaqunu—}ab
nw.mn

I
(ds) - ‘SMNODOn
(ds)-*|bBsuwy

10119-0U
oP‘l-u

9ljulg1iose
£B‘Z+49}4Nqy

ds‘gy

la
(ds)-‘SHNOOOn
(ds)-‘1a4nqy
layngien

ds‘gg
ln

169

bag

M- dwo
$10419—0U

BlgQ

| “bppe
dei)
M BAOW
| *8AOW

auq
| *1dwo

is{
| “oAOwW

| “bppe

dei)
M BAOW
| “aAow
qaAow

| “bppe
deli}

100

Numbers Revisited

"iayyng Buriys 4o ssasppe }ab
‘OP O} g WOpUBJL aAOW

« " "Sassanb Ausw ooy, julid

«will passenb noy,, jutid

*Jsqunu Jsyjoue)eb ob

‘Bursys jurad

w ybiy ooy,

*Burlys ay) jurid ob
1] -go_ OO._-:

PENETS

€8‘ia}inqn
op‘zp

ds‘gn

(§+3
(ds) - ‘SMNODOn
(ds)-‘gbhsuy

1no

nw.wﬂ

$-:
(ds) - ‘SMNODOn
(ds)-‘ybswy

laqunu—yjeb
Qmawﬁn

[$-3
(ds) - ‘SMNODIn

(ds)-‘chswy

11s—juid
(ds)-‘zBsuwy

| *eaAow
| “eAoW

| “bppe

M BAOW
| “aAowW

| “bppe

M BAOW
| “8A0W

| “bppe
M*aAQW

| “9AOW

| *eAOW

deu)

11980}
BlQ

deu)

:passanb
Biq
deis)
t1)ysTyuad

1ybiy-oo)
BIQ

101

THE ASSEMBLY LANGUAGE WORKSHOP

1pusl

‘Qp :pabusydo sio)sibay
*abuel

pajsanbal 8y} u| Jaqunu WOPUBJ }1Q-G| UIBIUOD |[IMm QP :3ndino
("6 0} @ WoJ} Jogwnu wopuel

B Spiaik @) 40 an|BA y) "gp ul abuBJs Jo (u) |.+Jaqunu Y61y :induj

"L-U 0} @ WOJ) J3QWNU WOPUBJ }1Q-QL B SUIN}BJ BUIINOIQRS SIy]

L N N LELETIETS

ln deJy

*dojysap o0} yoBq ¢ (dS)-‘OWHILdy Mm°aaow
ds‘zz | "bppe

bn dei)

‘ssaidAay 1oy jiem ¢ {ds)-‘NINODOz M°aaow

1 1no

ds‘gy | 'bppe

ba deu)

(ds)-‘SMNOOOr m"aaow

Tlaqunu 3981400 julJd ¢ (ds)-‘1a3jynqy | "@AOW
*Bursys 0) p }isAuocd ! gl119sBZIUI is]

102

isited

Numbers Rev

T1OSIAIp LUl
*be|} o0sez-Buipme| }iul
*sla)sibal aaes

IP‘0000)n

€p
(ds)-‘/p-Qp/LB-0Q®

$}11AUOD
| TaAow
(412
| ‘waAow
191110882}U

"INON :peb

"6ull)s pajeulwIe)-{|NU JUBJ|NSAL BY) UIBIUOD ||IM U3}

‘sl19)s1691 di0)s814

‘PJOM MO| Ul JsepulBWe. By} 89Bid
*luarjonb ay) 1899

"8fuBl pajsonbes 0} }48AUOD
‘piom yb1y Jwa o

‘Jagwnu wopuvls }1q-pzZ }eb
*sla)sibas aams

am sm am oww v

e e

"OP Ul }i8AU0D 0}
€8 Ul J34ynq jo

usyo siejsibay
ng ayj :3indino
labajur

ssalppy :induj

‘Bursys pejBulWIal-|[hU
8 ojuy JeBejul paubisun)1g-9| B S}19AUOD Bu|}no.gns sty

lP-ip//B-QB‘+(dS)
op

0P ‘000044448
op‘ep

0P ‘444400009
aw.Nﬂ

Yig

(ds) - ‘NOONVHER
(ds)-‘/p-ip/L8-Q®

s}J

| "waaAow
dems
|*1pue
nALp
|*1pus
| “bppe
del)

M oAOW
| "waAow

103

THE ASSEMBLY LANGUAGE WORKSHOP

‘sJa)sibal ai0)sal
*Buriys o} ||nu ppe

*11b1p 1xau ji9Au0D

‘pPiom mo| Ul JapujBwal jnd
‘PIOM MO| WOJ})| NSBJ 4BO|D
*9l® auns

(104 auop em 9B

*JOSIAIP }X3U 9)}8B|NO|BD

*11088 0) }161p abuByd
*1@}4ng 0} j|nsal aAow

*6e|} os09z-Buipea| }as

*834

¢0482z }|nsais s

*ABYO S80409Z 0S ‘saf

¢4BYD 018z-u0OU B 9ABY ApBalJ|B
Yo shemje .0, ‘os i

¢8%8(d §,9U0 By} B am dJB
‘an|BA 8oB|d 9}8|N3|BY

L A L L ELELETS

Lp-@p/le-0QB*+(ds)
+(€8) ‘On

11AuOS®
opP

0P ‘0n

[Inu=ppe*
Lp

IPp‘Ole

+(€¥) ‘0437
(€®)‘op

€P‘ln
}161p=yxau-
op

j0-0182"
ep

¥0~0182°
1p¢in
op‘iIp

iglL119sBZU|~pUs
(3!
| "waAow
q aAow
*||nu-ppe"
BIQ
dems
M aaow
beq
mMys)
nALp
$11Bip-ixau-
g ppe
q-aaouw
D [l FE-F &
baaow
bag
M)
aug
myis)
bag
| 1dwo
nALp

104

Numbers Revisited

"1161p 1xau op of
*adou

*dak

¢Buiiys jJo pus
*i0}B|NWNOOB O) ppe
“lebajuy o))iaAuod
"1161p 186

*Jolla “dek

By ¢ 1BYD

‘10448 “dek

@ > 1BYD

*691 yiom JB9 O
J0)B|NWNOOB 1BY|D

L L T T T

1161p~iAun”
0P‘Oln

jno-

(€®)

oP‘EP
€P‘0Y3Zn
e€p'+(ce)
101J9~}1B6ip”
(€®) ‘ININ:
Joiie~)1b6ip-
(€8) ‘0H3Zn
ep

op

‘Qp :pebueyos sis}sibay
"i0lda ue saijiubis |- jo uinial y "@p uy 13B9jul }19-9| 1inding
€8 ul Bullls pajeuIWIB}-Q 0 SSAIPPY :3induj

*Jebejur paubiisun
119-91 B8 ojuy s3161p 11988 J0 Bull)s B S)JBAUOD BU|}NOIGNS SIyL

BIQ
n|nw
bag
qrisy
| “pp®
m°gns

q anow

16q
q - dwo
119
q* dws
t31Bip~iauo
PIE
{*4]90

(ds)-‘/p-1p/Le-0® | waAow

‘glLiulgiiose

L N LI L L

105

THE ASSEMBLY LANGUAGE WORKSHOP

‘el el ybiy ool ‘0L el
2'0LCL MO 001, ‘DL E!

p‘oL‘el’, "urebe A1} asma|d,,
« “daqunu B adA} jou pPIp NOA,‘OL*E]
0‘DL L 001 O} | WOoJ} Jogunu B sSany, ‘glegl

*sia}si1b6as aJ0)sal

‘U0 }IpUOD J0JJB }8S

2!

LP-ip/L8-08‘+ (dS)

oP‘l-n

q°ap
q°op
q°op
9°ap
g op

:gbsw
:2bsw

:1b6sw
tydwoud

SHNOJD
SMNOOJO
NINOOD
OiNd31d
WNOONVH

3ININ

0d3z

gL 1u1Z!1 19S8~pUB

S}l

| "waAowW

| “9AOW

1yno”

t10148")1b61p-

106

Numbers Revisited

0!

0°, :seBm Jagunu ay) “-sassanb Ausw 001,,'Ql ‘el

o‘at‘el i

106 noj,‘0lL‘el

q°sp

118)4ngq

:gbsw
:pbsw

107

E— g
MANIPULATING THE SYSTEM
CLOCK

‘ >kay, get those thinking muscles loose and limber. In
this chapter, we’re going to write a program that

will actually do something useful--namely, allow you to set
your system clock. Although this program uses no dialog
boxes or menu bars, or any other of the GEM-type objects
to which you’ve grown accustomed, it’s still lengthy. Because
assembly language instructions can accomplish so little
compared with most high-level language commands, even
simple programs can sometimes be large.

Of course, by writing larger programs, we open many
new topics of discussion. In this chapter, we'll getan intro-
duction to macros, write a couple of new general-purpose
subroutines, discuss two new addressing modes, and, of
course, learn a couple of new assembly language
instructions.

The Program

In the CHAPS folder on your Assembly Language Workshop
disk, you'll find the files PROG6.S and PROG6.TOS, which
are the source code and executable file, respectively, for this
chapter’s sample program. If you'd like to assemble the
program yourself, please refer to the instructions that came
with your assembler or check this book’s appendix A.

When you run the program, you are shown the
current system date and asked whether you'd like to change
it. Type “Y” to change the date or any other key to leave the
date as it’s shown. If you choose to change the date, the

109

THE ASSEMBLY LANGUAGE WORKSHOP

program asks you to enter the current date in the format
mmy/dd/yy.

Next, the program shows the system time and asks
whether you'd like to change it. As with the date, type “Y” to
change the time or any other key to leave it as it is. If you
choose to change the time, you are prompted for the new
time, after which you get the message “Press Return at exact
minute.” When you press Return, the system clock is set to
the time you entered, and the program returns you to the
desktop.

Note that the program is semi-intelligent and won’t
let you enter an invalid date or time. Note also that you can
place this program into your AUTO folder, so you'll be
prompted for the current date and time each time you boot
your system.

A First Look at Macros

Look at the first few lines of the source code for our clock-
setting program, and you’ll see our first “macro.” (If you use
MadMac, see appendix A.) Macros allow us to replace many
instructions with a single line, thus greatly reducing the size
of our source code, especially when we repeat the same task
often in different parts of the program.

One task we repeat often in our programs is printing
lines of text to the screen. Printing a string to the screen
requires four lines of code, and we must enter these four
lines cach time we want to do it. But by using a macro, we
can force the assembler to add those lines automatically
wherever we need them.

Look at the second line of the main program: print
msg1. This is a macro call. This line tells the assembler to
place the code that makes up the macro print at this loca-
tion in the program. The word msg1, which is the address of
the text we want to print, is this macro’s parameter. A
macro may have many parameters.

110

Manipulating the System Clock

Now, look at the macro again. The first line, print
macro, tells the assembler that we are about to define a
macro called print. The assembler will read and remember
every line of code from this point on, until it sees the
assembler directive endm, which tells the assembler that it
has reached the end of the macro.

Our print macro comprises the code necessary to call
the GEMDOS function Cconws, which we use to print text
to the screen. The first line of the macro, move. | #\1,-(sp), is
the first line of the call to Cconws, where we place the
address of the string to print onto the stack. The \] tells the
assembler to place the first parameter in this location. In
other words, with our first macro call, print msgl, msg] is
substituted for the \1, so that the final line reads move. |
#msg1,-(sp). If our macro call had more than one
parameter, each parameter would be given a number based
on its order in the call. For example, if we wanted to pass
into our macro both the address of the string to print and
the Cconws function number, the call would look like this:

print msgt,BCCONWS

and the macro itself would look like this:

print macro
move .|l ®\1,-(sp)
move .w ¥\2, -(sp)

trap |
addq.! ®6,sp
endm

The process of replacing a macro call with the lines
that make up the macro is called “macro expansion.”
During macro expansion, the assembler replaces the macro
call with the macro code, placing all parameters is their
proper places. Note that, even though our source code

THE ASSEMBLY LANGUAGE WORKSHOP

shows only a single line wherever we call a macro, the object
code will contain all four instructions that make up the
macro. In other words, macros don’t shorten the assembled
program; they shorten only the source code. We can think
of them as abbreviations. Macros also make our source code
easier to read, by reducing a long series of instructions to a
single, descriptive line (descriptive, that is, if we use good
macro names that make the macro’s purpose clear).

Macros can be very complicated. There are even
directives that allow macros to generate different code based
on the parameters passed to them. In a way, macros are a
miniature programming language unto themselves. In
upcoming programs, we'll learn more about macros and
their amazing abilities.

Now that we have been introduced to macros, let’s
move on and discuss the program, starting with our new
subroutines.

Getting the System Date

The first thing we must do in our program is display the
current system date. After all, how can the user know
whether it must be changed if he can’t see it? Because this is
the sort of general function that we may need in many of
our programs, it’s a perfect candidate for a subroutine.

If you look about half way down the program listing,
you'll see the subroutine that retrieves the system date and
returns it to the main program. After our call to this
subroutine, the “raw” unformatted GEMDOS date will be in
DO. To make things easier for the programmer, this subrou-
tine also extracts the day, month, and year from the raw date
and returns them in D5, D6, and D3, respectively.

Getting the raw GEMDOS date from the system
requires only a standard GEMDOS function call to Tgetdate.
In our subroutine, the first thing we do after saving the
registers, is call T[getdate, which returns the system date in
the low word of D0. What? All the date information in two

112

Manipulating the System Clock

lousy bytes? Yep. To translate the system date into some-
thing more usable, we have to do a lot of fiddling with the
value returned to us in DO. The date is returned in
GEMDOS format: the day is stored in bits 0-4, the month is
in bits 5-8, and the year is in bits 9-15. This bit organization
is illustrated in figure 8.1.

1514131211109 87 6565 432 10
O|0|0[1]|O|1[1[O|O|O]|1]|1]|0]|1|0]1
L 1 | N
Year Month Day
Figure 8.1

Obviously, if the makers of GEM decided to format
the date like this, there must be some way to use assembly
language to extract the day, month, and year. We already
know about the AND operation, which allows us to mask
out unneeded bits in a piece of data. To get the day portion
of the date, all we must do is mask out the upper 11 bits of
the raw date. Before doing that, though, we need to make a
copy of the date, so when we mask out the bits, we still have
the full date stored somewhere. In the subroutine, the lines
that follow make a copy of the date and mask out the
unneeded bits, leaving us with the day portion of the date:

move.| do@,d5
andi.l ®#$1f,d5

Unfortunately, a simple AND operation is not enough
to extract the month and year portions of the date. If, for
example, we were to mask out all but the month bits, we’d
have the right bits isolated, but they’d be in the wrong

113

THE ASSEMBLY LANGUAGE WORKSHOP

position. To have the correct value, the bits must be shifted
into the lowest bits of the register. Suppose that, after an
AND operation, we are left with the bits 0000000011100000
in the low word of the register. Looking at bits 4-8, which
determine the month portion of the date, we get the bit
pattern 0111, which equals 7, or the month of July. But
when looking at the entire 16 bits in the low word of the
register, we have 224 not 7. In order for the register to equal
7, we have to shift the month bits, 0111, into the lowest bits
of the register.

And shift is exactly the right word to use. The Isr
(Logical Shift Right) instruction allows us to shift to the
right the bits of any data register or memory location. (No
address registers allowed.) The vacated bits on the left are
filled with zeroes, whereas the bits shifted out on the right
are lost forever, except the last bit shifted, which is stored in
the CCR’s C and X flags. This operation can be performed
on bytes, words, or long words. However, when used on a
memory location, the operation is restricted to word size
data and can shift only one bit at a time. A shift on a
memory location looks like this: Isr.w addr. The destination
operand addr may be a label or an address (i.e. $4758).

So, the following lines, taken from our subroutine,
extract the month portion of the date:

move.| d@,d6
Isr.I #5,d6
andi.l 8$%f,d6

The first instruction above gets a working copy of the
date into register D6. Then we shift the bits in the register
five places to the right, which places the bits of the month
portion of the date into bits 0-3. Finally, we use an AND
operation to clear all bits except the lower four, which
leaves us with the correct value for the month. The entire
process is illustrated in figure 8.2.

114

Manipulating the System Clock

1514131211109 87 65432 1 0
move. d0.d6 @[olol1]ol1|1lo[olo|1[1Io[1]o|1 D6

lsr1 #6.d6 [o]o[oJofo[0]o[o[1]o[1]1]o]o[o[1] De
andil #3fd6 [o]oo]o]o[o]o[o[o]o[o]o[o[o[0]1] D6

“
Figure 8.2

In the shift instruction that follows, we used an
immediate operand to specify the number of bits to shift.
We also can store the shift count in a data register, like this:

Isr.l do,d1

In the above example, register D1 is shifted a number
of bits equal to the value stored in D0. Note that the shift
count cannot be greater than 8. If we need to shift an
operand more than eight times, we must use more than one
shift operation.

Now that we have the day and month portion of the
date, all we need is the year. We extract the year from the
raw date the same way we got the month, by shifting to the
right and masking out the unneeded bits. The only
differences are that we must now shift the register nine bits
to the right, and then we must AND it with $7f rather than
$f, since we aren’t masking as many bits. Another important
difference is that, even after getting the year extracted from
the rest of the date, we still need to do a little more work.
The system year is actually the year-1980. In other words, to
get the correct year, we must add 1980 to the value we
extract from the date. But we don’t handle that wrinkle in
the subroutine; we just return the year as found in the
GEMDOS date.

115

THE ASSEMBLY LANGUAGE WORKSHOP

Getting the System Time

Getting the system time isn’t much different from getting
the system date. We must use the same sort of shift and
AND operations to extract the seconds, minutes, and hours
from the GEMDOS-format time. In our sample program, we
have a subroutine that takes care of all this, returning the
raw time in DO, the seconds in D5, the minutes in D6, and
the hours in D3.

Let’s look at that subroutine now, located in the
listing at the label get_time. In the first line, we save all the
registers except the ones we’ll use to return values to the
main program. After that is our call to the GEMDOS
function Tgettime, which rcturns the system time in DO, with
the seconds in bits 0-4, the minutes in bits 5-10, and the
hours in bits 11-15. Note that the seconds are actually the
seconds/2. To get the current seconds, we must multiply the
value retrieved from the raw date by 2. This means, of
course, that the seconds are accurate only to the nearest
even second. Figure 8.3 shows the bit organization for the
raw GEMDOS time.

1514131211109 8 76 54 3 2 10
oj|1]1{1j0{1|0|1|1({0|1]|0|1(1]l1]0
| | | |
Hours Minutes Seconds
Figure 8.3

After we retrieve the raw GEMDOS time, we use a
series of shifts and ANDs to extract the seconds, minutes,
and hours into D5, D6, and D3, respectively. After discussing
the method by which we worked with the GEMDOS date, 1
don’t think we need to go into any detail here. The source
code speaks for itself.

116

Manipulating the System Clock

Setting the System Date

When retrieving the system date, we must use a series of
right shifts and ANDs to extract each element of the date.
When setting the system date, we must do the oppositc.
That is, we use a series of left shifts and ORs.

Look at the section of code starting with the label
change_date. Here, we get a new date from the user, convert
it into GEMDOS format, and then use it to reset the system
clock. To get a new date from the user, we just use a call to
Cconrs, prompting the user for the date in the standard
mm/dd/yy format. After we get the date string from the
user, we must do the following:

> Extract the day, month, and year portions.

» Convert the day, month, and year strings to
integers.

» Check that each of the date values is valid.
(Months must be 1-12, days must be 1-31, and
years must be any pair of digits.)

> Merge the day, month, and year integers into
a GEMDOS format date.

» Call Tsetdate to install the new date into the
system clock.

In the source code, we first convert the year, which,
after the call to Cconrs, is located in buffer+8 and buffer+9.
We copy the two characters that make up the year into their
own buffer, and add a null to the string, with the lines

move.b buffer+8,buf2
move.b buffer+9,buf2+1
move.b #Q,buf2+2

We then convert the string to an integer with a call to
our subroutine ascii2int16. After the conversion, we check
that the subroutine didn’t return a -1, which would indicate

117

THE ASSEMBLY LANGUAGE WORKSHOP

an error, usually a non-digit entered by the user. Then, since
it's not likely that anyone will be setting their system clocks
for a time in the past, we check to see whether the value
entered for the year was less that 91, and assume that any
value less than 91 is meant to be a date after the year 2000.
(Hey, you never know. Someone may still be using these
machines then. The 21st century is less than a decade away!)
Remember that the year in a GEMDOS-format date is
actually the year-1980, so we must subtract 80 if the entered
year is still in this century, or add 20 if the year value
entered was 0 to 90. For example, if the year entered was 01,
we must assume that the user meant the year 2001. Adding
20, we get 21, which is 2001-1980.

Once we get the year converted to an integer, we must
add it to D3, which is the register we’ll be using to store the
GEMDOS-format date. First, we copy D0, which contains the
converted integer for the year, into D3. This operation puts
the year value in D3’s lower bits. According to the GEMDOS
format, we must put the year into bits 9-15. We do this by
using the Is/ (Logical Shift Left) instruction to shift the bits
nine positions to the left. Because we can shift only eight
places at once, we must use the Is/ instruction twice to get
the year in its correct position.

The Isl instruction is the opposite of the Isr instruc-
tion. It shifts bits to the left, bringing zeroes in at the right
and losing the bits that are shifted out the left, except the
last bit shifted out, which is stored in the CCR’s C and X
flags. Except the direction of the shift, this instruction
works exactly like the /Isr instruction.

After we have the year tucked safely away, we copy the
digits that make up the month with the lines

move.b buffer+2,buf2
move.b buffer+3,buf2+1

This time we don’t need to add a null to the string,
because the null we previously placed in buf2+2 is still

Manipulating the System Clock

there. After converting the string to an integer, we check to
be sure that the value falls between 1 and 12. If it does, it’s
ready to be added to our date-storage register, D3. Because
the value for the month must be stored in bits 5-8, we need
to shift our month five bits to the left with the line Isl.1
#5,d0.

Now, how are we going to merge the month value in

DO with the date in D3, without clobbering the data already
in D3? With a neat operation called OR. An OR is the oppo-
site of an AND, so whereas we use an AND to mask bits out,
we use an OR to add bits in. When we OR two bits together,
we get a result of 1 when either or both of the bits are equal
to 1, and we get a 0 when both bits are equal to 0. Figure 8.4
shows how the OR operation works.

Destination [1]0[0[1]1]0[1[0] [0]0[1[1]6]7[0[7]
Source [0]0[0[0]0]0[0] 1] U]
Result [1]oJo[1[1]o[1 1] ({4 [A[1[1[1][1]1]

Figure 8.4

The idea is that wherever we have a 0 in the source
operand, the value in the destination operand will remain
unchanged, but wherever we have a 1 in the source
operand, a 1 will appear in the destination. This allows us to
select exactly where in the destination operand we will copy
in bits from the source operand. However, when merging
two values into a single value, we must be sure that all the
target bits in the destination are 0. Otherwise, we may not
end up with a copy of the source bits in the target bits. (For
example, if there isa 1 in the target bit and a 0 in the source
bit, we will end up with a 1 in the target, when we really
wanta (.)

Gasp! Got all that? So, to merge the month value with
the year, we use the line or; / do0,d3. In 68000 assembly lan-

119

THE ASSEMBLY LANGUAGE WORKSHOP

guage, the instruction or ORs the source operand with the

destination operand, leaving the result in the destination.

You cannot use address registers with this instruction, and

either the source or destination arguments must be a data
register (both may be). Figure 8.5 summarizes the opera-
tions required to combine the month and the year values,
using shifts and ORs.

move.l d0,d3
Year (1991-19880) to D3

isll #8,d3
First shift

lsll #1,d3
Year now in position

Jsr ascli2int16
Month (7) now in DO

Isll #5,d0
Month now in position

orl d0.d3
Month merged with year

1514131211109 876643210
(oloJo]JolofoJo]ofolololo] 1[0 1]1]

(o[o]o]oJo]oTolo]olololol 1[0l 1]1]

(o[o]o]o[o]o]o]ofofofolol 1[0 1]1]
loJo]ofo[1]o[1T1]o]ofo[o[olo]0]0]

(o[oJoJoJo[o[o]ololo]o]o[1]0] 1]1]
[o[ofoT1]o]1]1To]o]o]o]o]0]0]0]0]

[o]o]oJoJolo[o]ololo[o]o[o]1T1] 1]
[oJoJo1]o[1T1]o]o]oolofolo]o]0]

[o[o]oJo[o]olo]o]1[1[1]o[0]0]0]0]
[oJoJoT1]o]11]o]olololo]0]0]0]0]

(o]o]oJoJofofofo 1T1]1]o]0[0]0]0]
[o[ofof1]eT1T1To 11 1]o]0]0]0]0]

Do
D3

DO
D3

Do
D3

Do
D3

DO
D3

Do
D3

Figure 8.5

After getting the year and month stored in D3, we

convert the day similarly, copying the string into buf2 and
converting it to an integer, which we check for validity by
comparing it against 1 and 31, the lowest and highest days

possible. After getting a valid day, we OR it into the rest of

the date.

120

Manipulating the System Clock

To actually set the date, we must move the new
GEMDOS-format date onto the stack and call the GEMDOS
function Tsetdate. Note that when we move the date onto the
stack, we are not copying the entire register, but rather only
the low word. This means we update the stack pointer by
adding 4, not 6--two bytes for the date and two bytes for the
function number.

Setting the System Time

As you've probably guessed, setting the system time is a ot
like setting the system date. Look at the program listing,
starting at the label change_time. First, we retrieve the new
time from the user in the hh:mm format, storing the string
in buffer. Then we move the two characters that make up
the hour into their own buffer, buf2, and add a null to the
string. A call to our subroutine ascii2int16, converts the year
string into an integer, which we then check to make sure it
falls between 0 and 23 inclusive (24-hour, military time) and
shift it into its correct bit position in the register.

After we’ve determined that the hour is valid, we
convert the minutes similarly, by moving the characters into
the buffer and converting them to integer. We verify that the
minutes are valid by checking them against 0 and 59; then
we shift them into their correct bit position and OR them in
with the hours. Now that we have a valid GEMDOS-format
time in the register, we prompt the user to press Return on
the exact minute. We obviously can’t expect the user to
enter the seconds by hand. He’d have to be fast on the
keyboard!

Finally, a call to the GEMDOS function Tsettime sets
the system clock to the requested time. Before calling the
function, we must move the new GEMDOS-format time and
the function number (45) onto the stack. Again, as with the
call to Tsetdate, we do not copy the entire register onto the
stack, but rather only the low word.

121

THE ASSEMBLY LANGUAGE WORKSHOP

Now, we know everything there is to know about
setting the ST’s system clock. (Well, almost everything.) Let’s
finish this chapter by learning two new addressing modes.

Address Register Indirect
Addressing with Displacement

Go back to the top of the program listing and find the label
find_null. Four lines down from the label are these
instructions:

move.b HSPACE,1(a0)
move.b #0,2(a0)

In the destination argument for both these
instructions, you can see an example of address register
indirect addressing with displacement. You already know
that when we place an address register in parentheses, we
are using it as a pointer. This is address register indirect
addressing. When we place a number in front of the
parentheses, we are indicating a “displacement” from the
address in the register. Simply, the source address is the
address in the register plus the displacement. If, for
example, register A0 in the above example contained the
address $5000, the destination address in the first line would
resolve to $5001, and the destination address in the second
line would resolve to $5002. The displacement may be any
16-bit value--that is, a value from -32,768 to +32,767.

As a further example, let’s say we have a string of
characters stored at the address string. The addresses of the
first three characters could be referenced using absolute
addressing, like this:

string
string+1
string+2

122

Manipulating the System Clock

If we load the address of the string into an address
register with the instruction move. | #string,a0, we could
then reference the first three characters in the string like
this:

(a@)
1(aQ)
2(a0)

These two methods are equivalent, as long as the
value of string is first loaded into AQ.

Address Register Indirect
Addressing with Index

Now, we can go one step further and add an index to our
address register indirect addressing. Look at the very top of
the program, where we get the system date and display it on
the screen. Upon return from our subroutine get_date,
register D6 contains the date’s month value in integer form.
To print the correct month from our table of strings, we
need to use the value in D6 (after a little converting, which
we’ll discuss later) to index our table of string addresses. For
example, if the system time returned a month value of 2, we
need to print the string “February.” The address of this
string is the second address in our table, which is located at
the label months in the data segment.

Probably your first thought is to use address register
indirect addressing with displacement, like this: D6(A0). Not
a bad idea. Unfortunately, it’s not a legal instruction. A data
register can never be used as a displacement. It can,
however, be used as an index, which, when you get right
down to it, is actually much the same. The proper format for
the argument, then, is x(An, Dn), which is an example of
address register indirect addressing with index. (The
displacement x can be any value from -128 to +127. The

123

THE ASSEMBLY LANGUAGE WORKSHOP

register number 1 can be any number from 0 to 7.) The
address is computed by adding all three values together.
Suppose A0 contains the address $5000, and DO contains the
value 5. In this case, the operand 1(A0,D0) would resolve to
$5000+1+5 or $5006. In this addressing mode, we can use
either a data register or an address register as the index, and
we can specify a word or long word index by adding a suffix
to the index register (i.e. DO.W or D0.L).

In the sample program, we really don’t need the
displacement, but because we want to use a data register as
an index, we have to use this addressing mode. No problem.
We just use a displacement of 0.

Indexing an Address Table

As I mentioned previously, before we can use the value in
D6 as an index, it must be converted. The reason for this
conversion may not at first be obvious. In our program we
have a table of addresses, with each entry in the table being
the address of text for a month of the year. The addresses
are in the order of the months; that is, the first is the address
of the string “January,” the second is the address of the
string “February,” the third is the address for the string
“March,” and etc.

When we get the value for the month back from our
subroutine get_date, it will be an integer from 1 to 12, just
as you would expect. But because we must usc this value as
an offset--a value to be added to the starting address of the
table--we must first subtract 1. Why? Well, our table of
string addresses starts at the label months. The first address,
the one that points to the string “January,” is the table entry
months+0, right? Yet, the integer value for January is 1. If
we use this index value as it is, we will be end up with
February rather than January.

After changing the month value into a correct index
by subtracting 1, we then have to consider that each entry in
our address table is four bytes long, not one. (Addresses are

124

Manipulating the System Clock

always long words.) If January’s entry is at months+0,
February’s entry is at months+4, and March’s entry is at
months+8. This is why, after subtracting 1, we multiply the
result times 4.

Conclusion

This chapter has been the most challenging yet. We covered
a lot of material, learned several new instructions, address-
ing modes, and system functions. You should study this
chapter carefully, reviewing previous chapters where neces-
sary. You also should try writing your own programs and
experiment with the various addressing modes and new
instructions. Go over the following summary to be sure you
understand all the material presented here.

In the next chapter, we’ll learn how to send a text file
to the printer.

Summary

~ Macros allow us to shorten our source code,
by replacing many instructions with a single
macro call.

~ The GEMDOS function call Tgetdate (#42)
retrieves the system date and returns it in the
low word of register D0. The day is in bits 0-4,
the month is in bits 5-8, and the year-1980 is
in bits 9-15.

« The Isr instruction shifts the bits of its
destination operand to the right, filling the
vacated left-hand bits with zeroes and storing
the last bit shifted out the right in the CCR’s
C and X flags.

125

THE ASSEMBLY LANGUAGE WORKSHOP

« The Isl instruction shifts the bits of its
destination operand to the left, filling the
vacated right-hand bits with zeroes and
storing the last bit shifted out the left in the
CCR’s C and X flags.

« The GEMDOS function Tgettime (#44) returns
the system time in register D0, with the
scconds/2 in bits 0-4, the minutes in bits 5-10
and the hours in bits 11-15.

« The or instruction ORs its source operand
with its destination operand, storing the
result in the destination.

« The GEMDOS function Tsetdate (#43) sets the
system date according to the GEMDOS-
format date passed to the function on the
stack.

« The GEMDOS function Tsettime (#45) sets the
system time according to the GEMDOS-
format time passed to the function on the
stack.

~ With address register indirect addressing with
displacement, x(An), an address is calculated
by adding the address in register An and the
displacement x.

~ With address register indirect addressing with
index, x(An, Dn), the address is the sum of
three values: the value stored in the index
register, the value of the displacement, and
the address stored in register An.

126

Manipulating the System Clock

1x9)

AVHOOHd NIVW
wpue
ds‘gy | "bppe
n deus)

(ds)- ‘SMNOOOx M anow
(ds)-‘“1\g | "0AOW

0lo8W jurad

*jurJd o}
Bursys ayy jo ssouppe ay) ‘Jojewsied suo sasinbas] "uOlIoUN}
SOONID smu09) ay) Bujysn ‘usapios ay) o} Buri)s B sjurid oJoBW SIYJ

WNNTYM NOLAYTO A8 1661 LHODIHALOD

9 NVH90dd
dOHSYHOM IOVNONVT ATBNISSY LS 3HL

127

THE ASSEMBLY LANGUAGE WORKSHOP

*Buiiys Aep jurid
*Buriys 0) | nu ppe
*Bursls o) aseds ppe
*Buriys o) Bwwoo ppe
*pu® Jo} 00| pum

**Buil)s jo ssaippe }ab

*Buris}s o) A8p }isAu0D

*Bursys yjuow jusasind jurid
*Builys 1si14 j0 ssaippe }ab
*lunoo piom Buoj 0) }i8Auo0d
*Buriys 4o }9s}40 8}B|NO|BD

« "SI 8}®p jusiind a8yl

*9]8p waysAhs js8b

i344ng

(0®)20n
(08)1°‘30VdSn
(0®) - YWAOOR

| |puTpuly
+(0®) 'On

oB‘'i9}4nqy

9lL119882}U|
op‘sp
getiajingn

ds‘gy

b
(ds) - ‘SMNOOOx
(ds)-‘(gp‘ge)Q
ge‘Syjuowy

9P ‘vn

9P ‘in

| Bsw

ajep-lab

jurid

g aAow
q°aAoW
g oAow
aug
q " dwo
fprnuTputy
| “eAow

isf
{"eAow
| “eAow

| “bppe
deiJ)
M sAoW
| “9AOW
| “aAoW
njnw
|-1qns
juiid

i8]

128

Manipulating the System Clock

w6l

*losn wou) Buiiys ajep jeb
*ynduy o0} sJBYD jO lagqunu
« T°9)BP Mau Jajug,,

‘ewry) op o6 ‘ou
éuh, Jomsue s
*9)8p abuvyo o6 ‘dak
éuhi 19MSUB S|

‘aul| meu o) ob

Tlesn wolj ilomsue }ab
abuvys o3} ayiy nok P NOM,,

‘9ul] lxau 0} sAow
"Butiis JBak jujid

*Buiiys 0) 1B8A }iaAu0D

la
(ds) - ‘SHNODOn
(ds)-‘Jayynqy
134}nq‘gn
gbsw

awly
EPATO I
ajep—abuvyd
EP‘A™0Nu

4149

ep‘op

Qm.Nﬂ

ba
(ds) - “NINODOm

2bsw
$149
lajing

9l119sBZ}UI
op‘ep

deus)

Mo aaow

| “9Aow

g-aaow
jurad
t93ep~abusryd

aug
M dwo
baq
M dwo

jurad
| *aAow
| “bppe
des
M aaow

jurid
juysd
jupid

18!
| *aAOW

129

THE ASSEMBLY LANGUAGE WORKSHOP

‘yjuow jo j161p puoosas)eb
“yjuow jo 3161p 3sity jeb

‘uorlisod 1281409 S}

‘TTO) 31 oljlus
"*°pus JBak 8i0]}s

*JBWJO) 1B3A QOOWID O} 1i8AUOD

‘jBWIO} 1BAA SOQN3D ©) 1J8AuU0D
*Kinjuas sz S,)! swnsse
*cruayl) ‘I > AL i
*Jolle o)wviauab ‘adou

N0 1J8AUGD Jaqunu piIp
*19b8jul 0} i1®8h }iaAuod
*Builys jo ssaippe }8b
“I{nu ppe

*1Bak jo)161p puooaes jeb
*1Bak jo }161p 3si1} 198b
*9)8Bp 40} Jajsibas jiul

L N A A N LR L LT

L+24nq‘e+1944nq
2ing‘z+dajyng

€P Iy
£P‘8xn
£p‘op

oP‘0en

1884A~210)8

0P ‘08n
00021834
oP‘i6n
poob-ou—ejep
oPp‘l-n
gijuigiiose
€8‘2inqn
2+24nq‘0n
l+24Ng‘g+48}4nq
ging‘g+iajjng
ep

}140
Qw.mﬂ

q-aAow
g-aAowW

HPR-E-V Sl - DL B R
|“1ppe
1V YA R KT
BiQ
friqgns
1iq
| *1dwo
bag
M1 dwo
1sq
| "aA0wW
g aAow
q°aAowWw
q-aAou
174190

jurad
| “bppe

130

Manipulating the System Clock

« 188 3}1Bp MaN,

‘g Uolloun} SOGN3D
“30B}S 0)UO 9)Bp BAOW

*a)ep o} Aep ppe

‘1§ uBy} J9)1BaIb

*'tl0 | uBy} SS8| 8q
**t1,UBD anjea Aep ayj
“labejur 0} ABp }i9Au0d

*Aep jo0 }16i1p puooses ey} 186
*Aep jo 3161p ysity jeb

‘a}ep 0} yjuow ppe

"uol}isod 3001100 0} yluow 3}Iys
‘PlIBAUL S yluow

T8yl 21 <« anjea §| pue
‘PlBAUL S|

Ttoyjuow syl ‘4 > an|BA 1
*Jabajul 0} yjuow }JaAUOD

e

L Y A LTS

aw| }

ghsw

ds‘yy

§-
(ds)-‘31va13S1n
(ds)-‘ep

ep‘op
poof-ou—ajep
oP‘lEn
poof—ou—ajep
oP‘In
gijuigriose
l+24nq‘g+Jajyng
2ing‘g+iayyng

ep‘op

OP‘Sn
poob-ou~ajep
oP‘2ln
poof~ou—a)ep
oP‘In
gljutrgliose

BlIQ
jupad

| “bppe
deu)

M aaow
M aaow

|*10
16q
M1 dwo
119
M dwo
i18q
q-eaow
q-aaow

{*d0
F18]
169
M°dwo
iq
M1 dwdo
isq

131

THE ASSEMBLY LANGUAGE WORKSHOP

"« PPE
*JaA0 19}3BIBYD 3AowW

“«@ 94l pesu) ,uop ‘adou
¢49}108BIBYD 8U0 Ajuo
*Burtys o) Jiajuiod jasal

*adou
¢19A | |nu punoy
‘JUNOD 13)0BJIBYD JUBWAIOU|

*JUn0D 12)9BIBYD iUl
*builsys inoy 40 ssaippe jab

*Buriys 11088 0}

**sJnoy Jabajuy abueyo
*iajyng Burlys jo ssaipps jab
« TS| dwl} weysAs ayy,,

«i9}BPp pl|BA B JON,,

(0®) ‘0d3zZn
(0®) 1 (08)
oJez-Bujipea|—ou
14 R E"
@8‘io}ngy

clinuTpury
+(0®) ‘On
PP g

PP -1t
ge‘l8}4nqy

gl11osegiul
op‘ep
€e‘layjngy
gbsw

awi }—)eb

ajep~abusyd
pbsw

t0lsz~BuipBa|-ou

g aaouw
g-aaouw

auq
| *1dwo
| “aAow

auqg
q-tdws
| “bppe
1Z1inuTpuyy
| “aAow
| *aAow

i8]
| “8AOW
| "9A0W
jurid

is|

N

BIQ
juiJd
:poob-ou-ajep

132

Manipulating the System Clock

ds‘zZz | "bppe

I ded)
*lasn wol} lsmsuw }ab ¢ (ds)-*NINODDx Mm-oaouw
« " "9busyo o) ay1| nok pynopy, ! gbsw juyud

§149 jurad
\ dejjnq jurid
“1|hu ppe

: (08)2'0r q-8Aow
1goiaz—6u)pea|~ou
“«@« PPB (08) ‘Od3Zn q° 90w

(GB)L°(@B) q-aAow
golaz—buipes|—ou auq
PPl | 1dwo
Qe‘S+1a}4jNqQy | "8AOW
glinuTpury auq

+(0®) ‘0 q°1dwd

¥Pp‘Lln | "bpp®

*19A0 J9)0BJIBYD aAow

"u@« PBAU J uop ‘ou
¢i9joeiByd auo Ajuo
*Jajurod)asal

‘ou

¢184 | |nhu punoy

*l1Uunod 19}0BJBYD JUBWAIOUI

L L L LTS

‘glnuTpury
"iunod 19)0BIBYD) U} ypfl-g | "9AOW
“sajnuiw jo jJB)S jO ip® Qe‘c+i8}4NnqQy | "oAOW
*Buriys 11088 0} sajnuIwW gi11988ZIU! is|

@P9p | anow
€B‘C+18}}Nqy | OAOW
(0®8)2°‘NOT00r Qq-8Aow

**r198bajul ayy }i9AU0D
*Buriys 4o jied sajnulw jo Jippe
"Butiys oy i, ppe

L N R LTS

133

THE ASSEMBLY LANGUAGE WORKSHOP

*pl|BAUl S1 8n|BA Jnoy

‘'@ > ONjBA }i

*Jabajur 0} }ieauo0d

*Bujsys inoy jo ippe 386
*buriys Jnoy o} ||nu pps
*INoY JO JBYO pPuUOIBS BAOW
*1NOY JO JBYD }SI1} aAow
*8awl) mau Joy Joysibas iwayo

*Jasn woi} 9jep }ab
*yndul o) SJIBYS J0 g }as
o T tew) mau Jajug,,

"weibosd aasa} ‘ou
¢k JOMSUB S|

*ow|) abusys ob ‘daA
Guhe dOMSUB S|

*auj| mau o} ob
*9)0J1}sAay aABS

em se o am sm Be am e

em em s em

poof—ou—auwi)
oP‘0n
gliuizgiiose
€B‘24Nnqy
2+24nq‘Qn
l+2ingg+1844nq
gingfz+iajyng
ep

$149

ds‘ge

I
(ds) - ‘SHNODOn
(ds)-*18}ynqp
laying‘gy
Jbsuw

1no
EP‘ATDn
aw) }—sbuByd
EP‘ATONR

4149
eEp‘op

iiq
M1 dwo
is|

j 80w
g aAow
g aAow
g-aAow
[*4]19

jurid
| *bppe
deJ)
meaaow
}"aAow
q-aaow
yurad
taw) }~ebueyo

aug
m° | dwo
baq
M- | dwo

jurad
| “aAow

134

Manipulating the System Clock

‘oWl) mau }as
*)08)S U0 g uol}ouny ind
"30B}S 9y} OJUO BWl) mBU aAow

*ssaJidAey 10} }iBm

« TT9INULW UO uln}aY SSBU{,,
‘aW|) mau 0} sajnujw ppe
*eov(d OJul sajnuUIW }41ys
‘65 UBY) J9jeaib

***'9q }1 ueo

**Tlou @ uBYy} SS9

**T},UBD an|BA Ssalnuiw
*1962)ul o) sajnuIwW }J9AUOD
‘SejnuUIW jO JBYS PuUODaS aAow
"S8}NUIW J0 1BYD }SIl) aAow

‘8wl) mau o) sinoy ppe
‘90®v|d ojul sinoy 3jt1ys

*pood ou an|BA JnOY
"TTEg < anjea)

LY YN

LE T T Y ST T R

TSR T TN

(%3
(ds)-“3INI1LL3Sln
(ds)-‘gp

Qw.Nﬂ
In
(ds)-‘NINOQOxn

gbsw

ep‘op

oP‘Sn
poof-ou~aw| }
0P ‘6Sn
poof~ou—auwi)
oP‘0On
gLiutgliose
l+24ng‘g+Ja}yng
2ing‘g+194ynq

ep‘op
0P ‘En
op‘8n
poob-ou~aw| }
opP‘een

de.t)
M*aAowW
M*aAowW

| “bppe
del)
M aaAouw

yuqrad
io
17181
16q
Mm° | dwo
119

M | dwo
isf
gq-aaow
q-aaow

| *9Aow
1718
17181
16q
Mm* 1 dwo

135

THE ASSEMBLY LANGUAGE WORKSHOP

‘9)8p wajsAs j8b ! (ds)-“31val3oig Mm°aAcow

*sJa)sibeals anms (ds)-‘zZp-i1p/ge-@e | WaAow
is)ep—y)eb

"EP pue ‘gp ‘Gp ‘gp :pabueyds sia)sibay

‘Ep ul ieak
pue ‘gp ut yjuow ‘Gp ui Aep ‘gp ul 3)}Bp SO@NID MeY :3indinQ
‘QuoN :3indug

*suoljiod Aep puB ‘yjuow °‘Ieak
8y) O3jul)i sejeiedas pus ajep wa}sAs ay) sj}eb aulinoiqns siyy

L N A A N L LR L]

in deJ}

*dojysap 0] yoBQ ¢ (dS)-‘OWH3ldr M aAow
$)no

awi)~abuwvyo BIqQ

wi8Wl) pr|BA B JON,, ¢ gbsw julld

:poob-ou—awi)

ino BIq
ds‘yy | "bppe

136

*QuUON :)ndug

‘paioubt @B Spuooas ayy "suol}iod ajnuiw pue Inoy

137

Manipulating the System Clock

S}! 0jul)1 sajeiedss pus oawi) wa)sAs a8y} sj}ab aujnoigns sy

s14

‘slo)sibes eJ0}s0s ¢ 2p-ip/ge-pB8f+(ds) | "waaow

*189K SOQAID WOJ} }19AU0D ¢ €r‘086in | !ppe
*$}1q 488K }ng ||® }no ysew ¢ EP‘4.Qn [°1pum
€P‘ln | "8

*S$31q MO| ojul 4Bk }y1ys ¢ €P‘8u }°i18]
*918p j0 Adoo)86 ¢ €P‘OP | -eaow

“S)1g yjuow)ng ||® }no yseBwW ¢ 9P‘i%n | “Ipue
*S}1Qg MOJ OJuUl yjuow }jiys ! gp‘Sy |48
*8)8p 40 Adod }eb ¢ gp‘op | "aaow

"S}iq ABp }ng ||B }NnO ysBW ! SP418n | 1pue
*9}8p }j0 Adoo jeb sp‘op | eAow

ds‘2y | "bppe

€53 Qﬁhu

oo sm e e

THE ASSEMBLY LANGUAGE WORKSHOP

*sJ19)si6as 9i10)s8Y
*$)1Q pepaauun jno yssw

"S}11q MO} 0) sJinoy }jtys
‘8wl) Jo Adoo jab

"Sa}NuUIW }Ng | |8 JBA[D

"S}1Q MOy OjuUl sajnuIw 3p1ys

*awl) jo Adoo 36

*Spuocoas jnqg s}i1q ||B ySBW
‘swi} jo Adooa jeb

*awWl) wajysAs)ab
‘siaisibel aaes

‘gp ul sajnuiw ‘Gp u|

‘Ep pue ‘gp ‘Gp ‘gp :pabueyd siaysibay

Spuooas

S)4
Zp-1p/2e-QB‘+(ds) | wanow

€P 4% | °1pue
EP‘En | JS|
€p‘8n | "48|
€P‘gp | "anow

9P‘4€%n | " Ipus
9p‘Sn [TIS|
gp‘ep | aAow

SPIi%n | "1pue
Sp‘gp | eAow

ds‘zz | "bppe
b deJ)

(d8)-‘JNILL13DIn Mm"aAOW
(ds)-‘Zp-1p/ge-08 | "wWaaow

iowi)yeb

"€p ul sinoy pue

‘Op Ul ewi} SOQN3D MeY :indinQ

LN Y

138

Manipulating the System Clock

*18}4Nq 0} }|nsas aAow

*6e|} o0isz-Buipes| }as

*sak

¢019z)|nsas s|

‘ABYO $80J98Z 0S ‘safk

¢4BUD 019Z-UOU B 9ABY Apwal|®
Yo sAem|e 0, ‘0S 4|

¢908|d s,8U0 Ay} }B am aJm
‘anjea 8d%8|d 9}B|N0|BO

"10SIAID U
‘68|) 0l0z-Buipea| }IUI
"slojstbas asams

"Buills pajBUIWIB)-[|NU JUBI|NSAJ @Y} UIBIUOD |[|IM J3}4Nng 8yl :inding

B Oojul Jabajul paubisun }1q-9| ® S}J8AUOD BUIJNOJIGNS SIyL

LE R Y AT AT AT AT ee

LE T YN

(€8)‘0p Qq-anow

1)0~olaz-
€p‘in baaow
}161p~ixau- bag
gp mis)
yo—olaz* auq
ep mis)
y0—0il82° baq
bP b |t 1dwo
op‘ip nALp
$3JAUO0D"
IP‘0000In | 8AOW
Ep 17419

(ds)-‘Zp-pp/.B8-08 | "wWoAoOwW

‘op ui
‘€' ul

‘gl1iosegiul
*INON :pabuByos sialsibay

}18AU0D 0) Jabajuj
Ja}jng }jo ssaippy :indug

*butsjs pajBulwWIa}-||nu

L T Y L S T AT Y

XS

139

THE ASSEMBLY LANGUAGE WORKSHOP

(ds)-‘/p-1p/LB-QB | "weAow

"mPuc_m__uwm

‘op nmmcw:o whmuw_mmm

"104Jo uB saljiubls |- jo uinjai y "@p uj Jabajur 31g-gf :indinQ
‘€8 ul Bullys palBUIWIA}-p JO SSaJppy :}induj

*Jebajuy paubisun
119-g} B 0} Ul w“_m_u 11088 }Jo Buriys 8 $)119AUOCD BUI}NOIQNS S|Y]

g} 1198BZIUI~pUD

sid
*sia9)si1b69) si0}s04 ! lP-0p/lB-QB‘+(dS) | WaAow
*6uysys o) |[nu ppe ¢ +(€8) ‘0 Q- aAowW
‘]11huTppe-”
*1161p yx8u ji8Au0o ¢ 11AU0D" BIQ
‘pJom MO| Uu| JapulBwal jnd ¢ op dems
‘PIOM MO| WOJL} }{nsss IBa|D ¢ 0P‘0ng Mm-3AoW
9iB ains ! | |nu-ppe- bag
¢19A auop am aie P m71s)
*lOSIAIp)}X8U @)B|NO|BD ¢ 1P‘Qln nAlp
:}161p~ixau”

11988 03 1161p 8bueyd +(€8)‘043Zua q°pPE

140

Manipulating the System Clock

*sJa)si1bal1 sJ0)sal

U0l }IpuUOD JO1Jd }3S

"3161p yxau op ob
*adou

*dak

¢Buliys jo pus
*J0}B|NWNO%B O} ppE
*19bajul 0y }laauod
*116ip)86

‘10118 "dak

«Be ¢ 4BYD
*loli1a "dak

D » 1BYD

*Bal yiom iwe |0
Jo)B|NWNOOB JBB|O

[y

L R N Y Y LT LET TS

T SETN

Lp-ip/lB-@B‘+(dS)

oP‘l-n

1161pTiauo”
oP‘Qln

ino"

(€8)

op‘ep

€P ‘0437
Ep‘+(g®)
loii1e—y1B61p-
(€8) ‘ININm
lo0119"y161p°
(€8) ‘OH3Zn

€p
op

‘gliulgiioseTpus

s}

| "waaow
1yno-

| “aAow
t10449")1BIp*

BUIQ
n|nw
bagq
qris}
| “PPB
M qns
g-aAouw
16q
q - dwo
1iq
q " dwo
$3161p=iAus”
]*110
|"4]9

141

THE ASSEMBLY LANGUAGE WORKSHOP

Sy
144
1504
A4
ol

nba
nba
nba
nba
nbs
nba
nba
nba

nbea
nbe
nba
nba
nba
nbe
nbs
nba
nbe
nbe
nbs
nbs

B1Bp

JNILL3SL
INILLI3DL
3ival3st
3ivali3st
SHNOJO
SMNOOO
NINODD
OWNd3Lld

ATO1
ATOoN
NOT00
3ININ
ELVE
J34HL
oML
3INO
Od32
HSY1S
VYWAOD
I0VdS

142

Manipulating the System Clock

0‘DL‘EL " "aInUIW joBXd }B NWNLIY SSaid,,
0‘@L‘el‘, iswl) p1|BA B JON,

0. f(uww:iyy) awi) wa)sAs mau lajug,,

0': S! 8w} walsAs jualind ayj,,
0‘0Lel‘,,"18s 8iBp MaN,,

0‘0L‘ElL‘,,id)Bp pI|BA B JON,

0 :(AA/pp/ui) 9)Bp Wa)AS mau l8}ug,,
0°0L‘EL 1 abBuBys o) ay1| NoA p|nom,
0‘. S! 9)}Bp wa)sAs juelind ayy,,

0°. laquaoaq,,
s-: LQDE®>°Z-.
0y 1890390,
0‘., i9qua)dag,,
ss: M%DOD(._
2w Ainp,,

s.: wC—Jq’:
s.: >w§:

0 114dy,,
0° UDJBN,,
o' Kienigay,

p‘y Aienuep,,

oap‘aou‘yjoo‘dasibne nffunf‘Aew . ide JBW qa} ‘ue|

q°9p
q°op
qrop
q7ap
qrop
q-op
q°9p
q°op
q°op

q'op
q°9p
q op
g op
q°ap
qrop
G op
g op
g°9p
q-op
q°op
q°op

|*op

:gbsw
:gbsw
:,6sw
:gbsw
:gbsw
tpbsw
tgbsw
1gbsw
{1 6sw

:00p
tAOU
2100
:des
:6ne
nf
runf
AW
tide
tisw
kY
tue|

rsyjuow

143

THE ASSEMBLY LANGUAGE WORKSHOP

(]

Q

-—

o [S]

— -—m

0 0 o0

. (7] .

O w 0 0

© o T T
[-

.. @ o»

o— - N

—_— e

— pee 2|

[&] £ 09

144

E ¢

SIMPLE FILE HANDLING AND
PRINTER OuTPUT

: ’t’s pretty tough to write a full-scale program that
doesn’t, at one time or another, access disk files or

send data to a printer. In this chapter, we'll get an introduc-
tion to both of these important programming topics, and,
along the way, we’ll discover some new things about macros.

The Program

In the CHAP9 folder on your Assembly Language Workshop
disk, you'll find the files PROG7.S and PROG7.TOS, which
are the source code and executable program files for this
chapter’s sample program. (A listing of the program can be
found at the end of this chapter.) If you'd like to assemble
the program yourself, please refer to the instructions that
came with your assembler or check this book’s appendix A.

When you run the program, you are asked to enter a
filename. This should be the name of a text file you want to
send to the printer. If the file is in the same folder from
which you ran the program, you need type only the file-
name. If the file is in another folder, you must type the
entire pathname--for example, D:\DOCUMENT\MY-
FILE.TXT. Your pathname may be up to 64 characters in
length, so you should be able to get to any file on your disks.

After you enter the filename, the program checks to
see that the file exists. If it doesn’t, the program displays a
file-open error and asks if you want to try again. If the
program finds the file, it then checks that the printer is
responding correctly. If the printer doesn’t respond, the
program displays a printer error. If you want to try again,

145

THE ASSEMBLY LANGUAGE WORKSHOP

check your printer, and then respond “Y” to the prompt. If
all goes well, the complete document is sent to your printer,
after which you’ll see the message “All done.” Press Return
to return to the desktop.

More About Macros

At the top of the program listing, you'll find three macros,
the first being a revision of our print-string macro from a
previous chapter. (MadMac users should consult Appendix
A for their versions of these macros.) In this version, we’ve
added code to check that the right number of parameters
has been sent to the macro. We do this using the ifc
assembler directive, which compares two strings, both of
which should be enclosed in single quotes. If the strings are
equal, the code between the ifc and the endc (the endc
marks the end of the “if” construct) is assembled. If the
strings are not equal, assembly continues after the endc.

In our macro, we compare an empty string with the
macro’s first parameter, like this:

ifc *7,’\1’

If, when we called the macro, we forgot to send the
required parameter, the \1 would be an empty string, in
which casc, we would execute the following assembler
directives:

fail Missing parameter!
mexit

The first line sends an error to the user. (Here, the
user is you, the programmer; this is an assembly-time error,
not a run-time error.) The second line forces the assembler
to exit from the macro, without processing further
instructions.

146

Simple File Handling and Printer Output

If the parameter sent to the macro is not an empty
string, the assembler starts processing the code that follows
the endc. This is the same code that our macro originally
contained.

When we use if-type directives in our assembly
language programs, we are using “conditional assembly.”
That is, assembly of particular pieces of code is performed
only under certain conditions. Conditional assemnbly is a
powerful tool that allows us to make our programs more
versatile and more easily changeable.

A String-Input Macro

The second macro, input_s, simplifies our getting a string
from the keyboard. We call the macro with the line

input_s string,x

where string is the address of the buffer in which the string
is to be stored and x is the maximum allowable length of
the string, which should be no larger than the length of the
buffer minus 2. Remember that Cconrs, the GEMDOS
function we call in the macro, expects to find the maximum
allowable string length in the first byte of the buffer, and it
will place the length of the string that was entered in byte 2
of the buffer.

Normally, when we call this function, we must,
besides load the right parameters onto the stack, make
sure the right value has been stored in the first byte of the
buffer. Our macro takes care of all this for us, making this
function call a snap to use. Notice that, again, we’re using
the ifc directive to check the macro’s parameters. In this
case, we're comparing an empty string to \2, the second
parameter. If we checked \1, all we’d know is whether the
first parameter was passed. By checking \2, we can verify
that both parameters were sent. Of course, this doesn’t

147

THE ASSEMBLY LANGUAGE WORKSHOP

guarantee that the parameters are correct--only that they
exist.

A Get-Character Macro

Our second new macro, get_char, simplifies our getting a
character from the keyboard. Rather than having to type
three lines of assembly code every time we want a character,
wc can just type get_char, and our new macro will take care
of everything for us.

In the get_char macro, we don’t use the ifc directive to
check for parameters, because this macro requires no
parameters. All we do is call the macro by name, after which
register DO contains the character that the user typed.

Now, let’s look at the main program.

Opening a Disk file

The first thing we do in the main program is prompt the
user for a filename. We use this filename in a call to the
GEMDOS function Fopen, which opens a disk file and
returns an identifier, called a “handle,” that we use
whenever we need to reference the file. The Fopen call
requircs that three parameters be placed onto the stack: the
operations mode, the address of the null-terminated
filename, and the function’s number (61). The operations
code determines what operations may be performed on the
file and must be one of three values: 0 for read only, 2 for
write only, and 3 for read or write. After the call (via trap
#1), register DO will contain the file handle or a negative
value, the latter of which indicates an error. In our
program, we call the function like this:

move .w HWREAD_ONLY,-(sp)
move.|l ®filename+2,-(sp)
move .w HFOPEN, -(sp)

148

Simple File Handling and Printer Output

trap ®1
addq.! u8,sp

Notice the use of constants to increase the readability
of the code. It’s a heck of a lot easier to understand the
program when we use a constant like READ_ONLY rather
than the number 0. Moral: Wherever possible, replace
values in your code with descriptive constant names.

After we call Fopen, we test D0, to make sure we didn’t
getan error. The branch instruction bge (Branch Greater
than or Equal) branches if the result of our tst instruction is
greater than or equal to 0. If DO contains a negative number,
we display an error message and give the user a chance to
try again. If we don’t get an error (DO is positive), we branch
to the label read_file, where we save the file handle that was
returned to us in DO. Note that the first file handlec is always
6, because TOS reserves handles -3 through 5 for system
devices, such as the screen and the printer.

Checking the Printer’s Status

The next step, before we can start sending text to the
printer, is to check that the printer port is ready to receive
data. We do this with a call to the GEMDOS function
Cprnos, like this:

move.w BCPRNOS, -(sp)
trap ®1
addq. | ®2,sp

The function call’s single parameter is the function
number, 17. After the call, register D0 will contain 0 or -1.
The former indicates that the Centronics parallel printer
port is not ready to accept output; the latter indicates that
the port is ready to receive data.

149

THE ASSEMBLY LANGUAGE WORKSHOP

After the call to Cprnos, we test DO. If the register
contains 0, we display an error message and give the user a
chance to correct the situation. If the printer is ready, we

branch to the label printer_ready, where we start sending
data to the printer.

Reading a File

Of course, before we can send data to the printer, we first
must have data. The data we’ll be printing is found in the
file we just opened. To send the contents of the file to the
printer, we must read data from the file into a buffer and

then send the contents of the buffer to the printer, all the
while making sure that the printer is paying attention.

This is easier than it sounds. First, we read data from
the file into our buffer, like this:

move.| ®buffer,-(sp)
move.| ®256,-(sp)
move.w handle,-(sp)
move.w ®FREAD,-(sp)
trap 1

add.l ®12,sp

The above is an example of a call to the GEMDOS
function Fread, which reads a specific number of bytes from
a file into a buffer. As you can see, this function requires
that four parameters be placed on the stack: the address of
the buffer into which the data will be read, the number of
bytes to read, the source file’s handle, and the function
number (63).

After the call, register DO will contain the number of
bytes actually read (it may not be what we requested), a
negative number if we experienced a read error, or a 0 if we
tried to read data after reaching the end of the file (cof).

150

Simple File Handling and Printer Output

Why would Fread sometimes read less than we
requested? Usually because, at the time of the call, we have
fewer bytes in the file than the number requested. For
example, in our program, we're reading the file 256 bytes at
a time. Let’s say that our file contains 550 bytes. On the first
read, we’ll copy 256 bytes from the file into our buffer, after
which DO will contain 256. The second read will get us
another 256 bytes, and DO will again contain 256. At this
point, we have already read 512 bytes, which means that our
file has only 38 bytes remaining. On the third read, we’ll
transfer those 38 bytes to the buffer, and DO will contain 38--
less than we actually requested, but all that was available.
Finally, on our fourth read, DO will contain 0, because we
were at the end of the file and could read no data.

So, getting back to our program, after we read data
into our buffer, we test DO. If it contains a 0, we have printed
all the data in the file. In that case, we branch to the label
eof, where we inform the user that we are done printing his
file, after which we close the file using the GEMDOS
function Fclose (#62) and exit to the desktop. If DO contains
a negative number, we experienced some sort of read error,
sO we print an error message to the user and exit to the
desktop.

If DO contains a value greater than 0, we have new
data in our buffer. We branch to the label print_buffer,
where we...well...print the buffer, of course! To do this, we
first save the number of characters in the buffer, by copying
DO into D5. (Remember: DO is frequently corrupted by
system function calls.) We then move the address of our
buffer into A3, so we can use that register as a pointer. We
are going to need to use two data registers: one to convert
each character into the proper format for the print-
character function and one to use as a loop counter. Before
we start, we clear both registers.

At the label next_char, we actually start printing, with
a call to the GEMDOS function Cprnout, which looks like
this in our program:

151

THE ASSEMBLY LANGUAGE WORKSHOP

move.b @0(a3,d3),d4
move.w d4,-(sp)
move.w BCPRNOUT,-(sp)
trap #1

addq.| ®4,sp

Using A3 as a pointer and our loop counter as an
index, we use address register indirect with index
addressing to move a character from the buffer into D4. We
move the character into D4 first, because we can’t move
bytes onto the stack. We must convert each of our characters
into words. After moving the character into D4, we move it
again, this time in word form, onto the stack. We follow that
with the function number (5) for Cprnout. The trap #1
instruction calls the function, which prints the character
and returns, after storing a status code in D0. A negative
code means the character was printed; a 0 means the
character wasn’t printed, probably due to a printer time-out
of some kind.

After calling Cprnout, we test DO. In the case of an
error, we branch to the label timeout, where we print an
error message to the screen and give the user a chance to
correct the problem. If the character printed okay (DO is
negative), we increment our loop counter with the line
addq.| #1,d3; and compare d3 with d5, the character
counter, to see if we’ve yet printed all the new characters in
the buffer. If we have printed the last character in the
buffer, we branch to printer_ready, where we refill the
buffer. If D3 is still smaller than D5, we branch to next_char,
to print the next character in the buffer.

Gasp! Bet you never realized how hard your computer
has to work to do something as ostensibly simple as printing
a little text!

152

Simple File Handling and Printer Output

Why a Buffer?

In computing, we see the word “buffer” a lot. There isn’t a
computer system on the planet that doesn’t use buffers. If
you don’t know much about computer architecture, you're
probably not sure why we bother with buffers. Why not just
rcad a character from the disk and then send it directly to
the printer? If we did that, we could get rid of the buffer
completely, not to mention the time it takes to load the
buffer from disk.

The fact is that, due to the glacial speed of disk drives
(at least glacial in terms of computing speed), it would take
an immense amount of time to have to access a disk drive
for each byte. In other words, it is much faster to read 256
bytes in one big chunk than it is to read 256 bytes one at a
time--much faster. But, you ask, how about the time it takes
to read the characters from the buffer? And, I say, what
about it? Your computer’s memory is fast. Comparing a disk
drive to memory is like comparing a skate board to Star
Trek’s Enterprise.

Now you’re probably thinking that, if using a 256-byte
buffer is so fast, wouldn’t a 1024-byte buffer be even faster?
It sure would! This is one of those times when you have to
balance memory usage against speed. If we wanted, we
could have a buffer big enough to hold an entire text file,
but then that memory would be unavailable for other uses.
As you know from running the program, a 256-byte buffer
seems to work pretty well for our purposes. If you like you
can increase it, although you probably wouldn’t want to
make it any larger than 1,024 bytes (a full kilobyte).

Conclusion

Reading a disk file and sending text to a printer is a heck of
a lot easier in assembly language than one might expect.
Except for having to fool with a buffer, these tasks are really
not much more difficult than they are in a high-level
language. In fact, although you’re not aware of it, even a

153

THE ASSEMBLY LANGUAGE WORKSHOP

high-level language like BASIC has to use a buffer when
reading from a disk file or sending to a printer. For
example, when you use a language like BASIC to read data
from a disk, you read the data into a variable. In this case,
the variable is your buffer.

As always, go over the following summary carefully, to
be sure you understand the topics covered in this chapter.
When you’re ready, I'll meet you in chapter 10.

Summary

~ Using if-type constructs to control the
assembly process is called conditional
assembly.

« The ifc and endc assembler directives allow us
to compare two strings and assemble different
sections of code based on the outcome of the
compare.

~ The assembler directive fail allows us to
generate our own error messages. The text
following the directive will be printed to the
SCTEEN as a USEr €rror message.

v The mexit assembler directive allows us to
exit a macro prematurely, usually because of
a detected error condition.

v The GEMDOS function Fopen opens a disk
file for one of three operations. It requires
three parameters: the operations code, the
address of a null-terminated filename, and
the function number (61). The three
operations codes are 0, 2, and 3, which stand
for read only, write only, and read and write,
respectively. After the call, DO will contain a
file handle or a negative error code.

154

Simple File Handling and Printer Output

« The bge instruction causes a branch when the
result of a previous cmp or tst is greater than
or equal to 0.

~ The GEMDOS function Cprnos allows us to
check the status of a printer. It requires one
argument, the function number (17). After
the call, a negative value in D0 indicates that
the printer is ready to receive data. A 0 in D0
indicates that the printer did not respond.

v The GEMDOS function Fread reads a
specified number of bytes from an open disk
file and places them into a buffer. The
function requires four arguments: the address
of the buffer, the number of bytes to read, the
handle of the file, and the function number
(63). After the call, DO will contain the
number of bytes read, a zero if the read was at
the end of the file, or a negative error code.

~ The GEMDOS function Cprnout sends a
single character to a printer. It requires two
arguments: the character to be printed (in
word form) and the function number (5).
After the call, DO will contain a negative value
if the character was printed and a 0 if there
was an error.

~ The GEMDOS function Fclose closes an open
file. It requires two arguments: the file’s
handle and the function number (62). After
the call, DO will contain a 0 if all went well or
a GEMDOS error number if it didn’t.

~ Buffers are used to speed up the transfer of
data in a computer system. Generally, the
larger the buffer, the faster data can be moved
between peripherals (i.e., disks and printers).
A 1K buffer is usually more than sufficient
for most uses.

155

THE ASSEMBLY LANGUAGE WORKSHOP

SOANID SJu0d) a8y} bBuisn pieoghAay ay) wouy Buriys B s}ab osoBW Sy

wpus
ds‘gm | “bppe
ba desy

(ds)-‘SMNOQJz M- anow
(ds)-“i\g | -9A0wW

opus

11 x8W

jlo)ewsied BuissSIn |18}
AV 041

0JoBW jurid

*jurid o}
Butsys ay) jo ssaippe a3y} ‘Jajowsied 8uo0 sasinbais 3] -uojjouny
SOQN3D smuo092) ady} Buisn ‘uassios sy) o) Buriis ® syurud ososw sIy|

WNANTYM NOLAVIO A8 166} LHOIHALOD

L WVH90Hd
dOHSHEOM 3DVNONYT ATEN3SSY 1S 3HL

e s s s ewm

S

156

Simple File Handling and Printer Output

ds‘gg |°
ln
(ds)-‘NINODOn Mm°
0loBW

"UOl}OouUN} SOQWID UIU03)
3y} bursn ‘pieogAey ay) wouy Ja}oBIBYD 8)6uUIS B S}86 0J0BW S1y]

ds‘gy |°

o
(ds)-‘SHNODD: M°
(ds)-“f\g |°
I‘2\e 9°
}

isdeojsweisd BuissIy
AV

wpus
bppe
deJ}
aaow

aAoW
aAow
aAow
opus
I xaW
|18}
041

.-

0JOBW Ss~)ndu]

§19)0BJBYD 4O JBQWNU XBW 8y} PuB BUIJ}S By} 940}S O} YJIym U|

i8}ng ay) jo sseippe 8y} :siojawesed om} sasinbai }j

P

‘uo

-

Bo. 0)

1jouny

157

THE ASSEMBLY LANGUAGE WORKSHOP

*pedA) 18}0BIBYD 9ABS
*lamsue s, .1asn }ab

w6 (U/7K) 11x3,,
widodda uado 914,
10119 uB Job am ‘dak
8|14 pesl obf ‘adou
¢ 1) bBuiuado 10110

*§59908
***Kluo-pras 10} d|1l}
*-*pajsanbas sy} uado

"awBUd| 1} By}
"0} ||hu B pp®e

swsuaj1} 196

WSO} Jo sweu Jajuz,

EP‘Op |-aAow

igyo—}eb

ghsw jyurld

2bsw jutad
8|1}~ pead obq
op 1718}

ds‘gn | 'bppe

%3 des)

(ds)-“N3dOdn Mm"aaow
(ds)-‘z+oWBUd | |jgr | -0AOW

(ds)-‘AINO™QVYIHr M dAOW

| [hu~ppe isf
CR‘BWBUB}!ig | OAOW
$149 jurad
pgaweua| 1) s—ynduy

|6sw jurad
iaweBuB|1}~)8b

1x8)
................. g
WVHDOHd NIVW ¢

158

Simple File Handling and Printer Output

‘104 yoeq of pue

*-padA) 18)9BIBYD X08YyD
‘Ul | us8lds }xau o) job
*19MSUB B9ABS

*19MSUB S, 13sh 386

wourebe A} o) juepm,
wibuipuodsas jou Jajuirig,
‘puodsaes },upip Jajurid ‘ou
*jursd ob ‘dak

¢ApBal uajuiid s

"Snie)s s,J8jutid yo8yo

‘9|puUBY 2|1} oABS

‘uiebe awsus|i} JO} A4}
‘pip ains

¢k, padky Jsasn

‘949y Bl)INnO 8J,am ‘daf
éuAa PAdA) Jasn

"8ul| ueauos }xau

LT T S Y

19)yuiid-yoayo
€P‘AT0N

§140

ep‘op

gbsw
gbsw

Apeai~Jojulid
op

Qw.mﬁ
la
(ds) - ‘SONHdOn

a|pusy‘gp

aweua|1}~19b
ino

EP‘AT0n

ino

€P‘A™0Nx
}149

baq
M dwd
jurad
| *8AoW

J8yo—1eb

jurad
juiad

wg
18}

| "bppe

dei)
M*3A0W
tlajurid-yoeyo

M aAoW
18] 1}-peal

BIQ
baq
M dwo
baq
M dwo
jurid

159

THE ASSEMBLY LANGUAGE WORKSHOP

*Jajunos doo| }1ul
*afeioy}s iBYyds }J1ul
*iaying jo ssaippe jeb
*JUnOS pBaJ B9ABS

*l1xa uayy ‘Asy ssaid
**°0) Josn 10} }ieBM
«id0lle peas 9| e Y
*10119 ue)ob

***Jo ‘Joa payoseas ‘ou
"} jurid of ‘daf
¢BuiylAue peal am pip
RELITER SV

"9} wol} pesl

‘g UOI3OUNY

‘o|pusy 8|1}

‘peaJ 0) Sa}Aq j0 g
*iay4ng j0 ssaippe }8b

‘weiboid ji1xe ‘es|e
-:%: LO :>: Uma>u
*teiasn }1 K1} Jsyjoue

L N L N N N L

14

£p
€8°13}Nnqn
sp‘op

ino
ybsw

jo9
Jajyng-iuiad
op

ds‘gin

$-1
(ds)-‘Qv3ddn
(ds)-¢‘a|pusy
(ds)-‘gS2n
(ds)-‘1944nQy

}no
i9yjurid-yo8yo
EPAT0n

M 1|0
[°119
| "8A0OW
| “aA0W
tlayyng-yuyrad

Biq

18yos—y)9b

wuirad

baq
16q
1718}
| "ppe
del)

M°BAOW
m-aaow

| “@Aow
| “aAoW
tApeaJ—uajuiid

BIQ
baq
M dwo

160

Simple File Handling and Printer Output

‘wesboid ayy ji1xs 1o
*jurid o) uiebe A1) ob

‘uiebs A1 pue
***wa|qoid sy}

**TX14 0] aguByo ®
**rJasn ay) oAb

wiuiebe A1) o) juepm,

« JN0 pawr) J3julig,
“ino swy} Jajuiid ajpusy

*1BYyo 1xau juiid ob ‘ou
*lapyng 1404 ob °sak
¢18198BIBYD })se|

*Junod juawaiodul -ou
T

(40118 uB 818y} SBm

*)0BIS 19911090

*l9jurld o) leyo puss

‘g uorjouny

‘piOM SB Y0B}S 0} Uay}
*rrla)sibal 0y iBYI aAow

e sem s v am e L N N LT TS e em

1no
l8yds—ixau
EP‘ATDn
JBYs—}xau
EP‘ATON:
}149
cp‘op

gbsw
lbsw

JBYo—xau
Apsai—iajulid
sp‘ep

EP‘ln

jnoswi)

op

ds‘py

$:3

(ds) - LNONYdOx
(ds)-‘pp
yp‘(ep‘ce)Q

BIg
baq
M dwo
bagq
M- dwo
jurad
| 90w

l8yos—)ab

jurid
yurad
fjnhoauwt)

BIq
baq
| * dwo
| “bppe
baq
is}

| “bppe

dei)

M OAOW

M°OAOW

g-eAow
t1BYosTixau

161

THE ASSEMBLY LANGUAGE WORKSHOP

s34
£p/cgB+(dS) | "waaow
(EP‘€B)2‘On Q- 8AOW
epf(er)l Qraaow
€p 17419
(ds)-‘gp/ge | "waaow
‘{|nhuTppe
*INON :pabusyo siajsibay
*Buiiys Ul J19)0BIBYD)SB| J8}4B ||NN :indinp
“g® ul Jajyng Buisys jo ssalppy :induj

"$1U0DD UO!}OUN} SOOGN3D 8yl 0}
1180 B y}im paasalJias Buiiys ay} 0} |{NU B SPPB Aul}noiqns Styj

L A Y L L

bn deJ)
‘soipe ¢ (ds)-‘ONd3ldn M aAow
:1no
*ssoJidAay Jo} }jiBm ¢ Jgyo—y)eb
o 8Uop |y, ¢ gbsw juiad
1409

162

Simple File Handling and Printer Output

o‘ol'‘el

o‘oi‘el‘, "auog |1V,
o‘eeL‘eL " ino pauwr) d3}ul a4,

0 ¢(U/A) uiebe £i} o} JUBM,,
o‘0L‘cL*, iBuipuodsas jou l9julig,,
‘0L ‘el j101i9 pBAI CANICH
0'ué(u/k) Jix3,

0‘0L‘el‘,ji0110 uado CARK

0 fjurad o) 811} jo sweu da}jug,,

€9 nba
29 nbe
19 nbe
Ll nba
0l nbe
6 nbe
] nbe
1 nba
(1) nbas
let nba
68 nba
0 nba

s$8q
q-op 4149
q°op :gbsw
q-op :/b6sw
q-op :gbsw
qop :gbsw
q°op tybsw
q-ap :gbsw
gq-op :2bsw
q-op f16sw
av3y4d
380104
N3d04
SONHdO
SUNODD
SMNOQD
1NONHdID
NINOOJO
ONd31d
ATD1
AToN
ATINO™QvY3d

B18Bp

163

THE ASSEMBLY LANGUAGE WORKSHOP

86e
.9
}

q sp
g sp
M Sp

tlayyng

towBua| |}

uaad

ta|puey

164

E— 10

MORE FiLE HANDLING

: ’n the previous chapter, we learned how to open and
read files. Many programs, however, also require

that we write data to a file. Moreover, in many cases, the file
to which we want to write the data doesn’t yet exist, which
means we need a way to create new files, as well as write to
them. In this chapter, we’ll study these other important file-
handling basics.

The Program

In the CHAP10 folder on your Assembly Language Work-
shop disk, you'll find the files PROGS8.S and PROGS.TOS,
which are the source code and €xecutable program files for
this chapter’s sample program. (A listing of the program is
included at the end of this chapter.) If you'd like to assemble
the program yourself, please refer to the instructions that
came with your assembler or check this book’s appendix A.

PROGS.TOS does nothing more than copy the
contents of a source file into a new destination file. When
you run the program, you're asked for the source filename.
Enter the filename and press Return. You’re then asked for
the destination file. If the file you enter for the destination
already exists on the disk, you are asked whether you want
the old file deleted. If you respond “Y,” the old file is
overwritten with the new one. If you respond “N,” you're
asked for a new filename. Once the file has been copied,
press Return to get back to the desktop.

165

THE ASSEMBLY LANGUAGE WORKSHOP

Some New Macros

In order to keep the main program as understandable and
as short as possible, PROG8.TOS uses some new macros.
These macros--open_file, create_file, read_file, write_file, and
close_file--supply us with all the tools we need for general
file handling. We looked at a couple of these functions
previously. Specifically, the open_file, read _file, and close_file
macros use the same GEMDOS functions we studied in
chapter 9, so we won’t cover them here. You should, how-
ever, take a little time to compare the macro versions with
the functions as we used them previously.

One thing you’ll notice immediately is a new instruc-
tion, pea. The instruction pea (Push Effective Address)
pushes the effective address of an operand onto the stack.
For example, the lines move. | #buffer,-(sp) and pea buffer
accomplish the same thing, placing the address of buffer
onto the stack, but in the latter case, we don’t have to
manipulate the stack pointer ourselves; the system does it
for us.

Creating a File

So much for opening, reading, and closing a file. Now, let’s
look at the new GEMDOS file-handling functions, which are
used in our new macros. In case you couldn’t figure it out
by its name, the create_file macro creates a new file. It’s
invoked like this:

create_file attribute,filename,handle

In this macro call, attribute determines the type of file
to be created. A value of 0 creates a normal file, a 1 creates a
read-only file (one that can’t be deleted or written to), a 2
creates a hidden file (one that doesn’t show up in the normal
directory), a 4 creates a system file (also one that doesn’t
appear in a normal directory), and an 8 creates a volume

166

More File Handling

label. The argument filename is the address of a null-
terminated filename string. Finally, handle is the address
where the file handle returned from the function is to be
stored. After creating the file, we will use the handle to refer
to the file. The filename is used only when opening or
creating the file.

If you look at the create_file macro, you can see how
we call the GEMDOS function Fcreate (#60). As always, we
first place the function’s arguments on the stack, in this case
the file’s attribute flag, the address of the filename, and the
function’s number. Then we call the function with a trap
#1. The file handle is returned by the function in DO, from
which we copy it into the address represented by the third
macro parameter before ending the macro. If the function
returns a negative value, an error occurred.

Writing to a File

Another new macro, write_file, writes data to an open file. It
is invoked like this:

write_file buffer,num,handle

In this macro call, buffer is the address of the source
data (the data to be written to the file), num is the number of
bytes to write to the file, and handle is, of course, the file's
handle, which was returned to us by Fcreate or Fopen. (Note
that num must be a long word!) This macro uses the
GEMDOS function Fwrite (#64), which is called by placing
the buffer address, the number of bytes to write, the file
handle, and the function number on the stack, and then
using trap #1 to call the operating system. After a call to
Fwrite, the actual number of bytes written to the file is
returned in DO. Hopefully, this will be same the number
that we requested be written. If an error occurs, the
function returns a negative error code.

167

THE ASSEMBLY LANGUAGE WORKSHOP

High-level Assembly Language

Look at the program listing. Notice that, although the
complete program is fairly lengthy, the main program
section is quite short. Moreover, the main program section
reads more like a high-level language than assembly
language. This is because we’ve placed all the details of the
program into macros or subroutines.

PROGS8.TOS has been written using top-down
programming techniques. This style of programming
provides both advantages and disadvantages. The main
advantage is that, using many subroutines and macros, our
main program section is, in a general way, easy to
understand. On the other hand, if we want to see exactly
what the program is doing, we must continually jump from
the code in the main program to the code in the subrou-
tines and macros. Moreover, we need to add many extra
comments to our program, to document the subroutines
and macros. This makes our program listings longer,
although the size of the assembled program should stay
about the same.

Deciding whether to hide all your program’s details in
subroutines and macros or write in a more straight-line
fashion is a matter of taste. You should, however, always use
subroutines for longer tasks that you perform often in
different parts of your program. Doing this will reduce the
size of the assembled program. Macros, on the other hand,
because they are always expanded to their full size wherever
they are invoked, don’t shorten your program’s executable
file at all. Instead they shorten the size of the source code.
This difference between macros and subroutines will help
you decide which to use when.

The astute among you may notice that some macros
used in this book could be written as subroutines and thus
save us a couple of instructions in the assembled object
code. However, because a macro invocation is much easier
to read than the two or more instructions required to call a
subroutine (you usually must load values into registers, as

168

More File Handling

well as use the bsr instruction), I usually choose a macro
over a subroutine wherever it seems reasonable. Exceptions
to this are when a subroutine can be called with only one
instruction (i.e., bsr get_filenamel) or when the number of
instructions to perform a task is too large to make using a
macro reasonable. Remember: the code that makes up a
macro replaces the macro invocation wherever the invoca-
tion appears, whereas a subroutine’s code appears only once
in the assembled program. If you invoke a large macro
many times in a program, the program could grow to
monstrous proportions.

Inside the Program

Let’s take a quick look at the main program section, starting
at the label get_source. First, we call the subroutine
get_filenamel, which gets the source filename from the
user. This subroutine uses the macro input_s to get the
filename (with Cconrs). It also calls the subroutine add _null,
which adds a null character to the end of the string. (Yes,
you can use macro invocations and subroutine calls inside
subroutines.) Finally, the subroutine returns the address of
this string in the variable Filename?2.

After we have the source filename, we then invoke the
open_file macro, passing the READ_ONLY file flag, the
address of the filename string, and the address of the vari-
able where we’ll store the file’s handle. Notice that, for the
filename’s address,we’re passing filenamel +2. Remember
that Cconrs uses the first two bytes of the buffer to store and
retrieve information about the string.

After the call to open_file, a file handle or a negative
error code (which Fopen placed in DO0) will be stored in the
variable handle. We use the tst instruction to make sure the
file opened correctly. If we have a valid file handle (a posi-
tive number), we branch to the label get_dest. If we discover
that an error occurred, we give the user a chance to try
again or to quit the program.

169

THE ASSEMBLY LANGUAGE WORKSHOP

Assuming the file opened successfully, we get the
destination filename by calling the subroutine
get_filename2, which works similarly to get_filename],
except it returns the address of the filename in the variable
filename2. We use filename2 in another call to the macro
open_file. Unlike our first call to open_file, this time we want
to get an error code, since that indicates the file doesn’t
already exist. (You can’t open a non-existent file.) If we get
an error code, we can go ahead and branch to the label
make_file, where we’ll create the new file.

If our call to open_file yields a valid file handle, we
must warn the user that the destination file already exists
and ask whether he wants it overwritten. Because the
get_answer subroutine returns a 0 if the user answers “N,”
after the call to the subroutine, we use the instruction beq
get_dest to give the user a chance to type in a different
filename.

At make_file, we use our create_file macro to create
the new file. Like opening a file, when we create a file, a
negative file handle indicates an error. After invoking the
macro, we test for this condition with the instruction tst
handle2, after which, if we have a valid file handle, the
instruction bge copy will send us to the section of the code
that copies the file. If we encounter an error when creating
the file, we inform the user and end the program.

Our final task, after getting both files open, is to copy
the source file to the destination file. To do this, we call our
read _file macro to read 1K of data into our buffer. If, after
the macro invocation, D0 contains a positive, non-zero
value, we branch to the label write_buffer, where we invoke
our write_file macro to write the data from the buffer into
our destination file. If DO contains 0 after invoking read_file,
we've finished copying the file, and so we branch to the
label eof, where we inform the user that we’re done and exit
the program. If DO contains a negative value, we've encoun-
tered a read error. If this happens, we inform the user and
exit the program.

170

More File Handling

Note that, although we don’t take advantage of it in
this program, the Fwrite function, which we use in our
write_file macro, also returns a negative error code in D0 if
there’s a problem writing the data to the file. Otherwise,
this function returns the number of bytes written. Note also
that, before we exit the program, we use our close_file
macro to close both the open files.

Conclusion

As you can see from this chapter’s program, subroutines
and macros help take the details of your program and hide
them out of the way. Our main program section here
contains only about 40 instructions.

Also, this chapter’s program should have given you a
firm grasp on file handling with assembly language.
Because you will often use these file-handling functions in
your programs, make sure you understand how they work.
Besides the file-handling functions discussed in the last two
chapters, there is also a complete set of functions that allow
you to do such things as delete files, create directories
(folders), get the current drive name or path, and set the
current path. We’ll look at these functions in volume II of
The ST Assembly Language Workshop.

Summary

~ The instruction pea (Push Effective Address)
pushes the effective address of an operand
onto the stack.

~ The GEMDOS function Fcreate creates a new
file. It requires three arguments: an attribute
flag, the address of a null-terminated
filename, and the function number (60). For
the attribute flag, a value of 0 creates a
normal file, a 1 creates a read-only file, a 2

171

THE ASSEMBLY LANGUAGE WORKSHOP

creates a hidden file, a 4 creates a system file,
and an 8 creates a volume label. After the call,
DO will contain the file’s handle or a negative
error code. See table 10.1 for a list of
GEMDOS error codes.

« The GEMDOS function Fwrite writes data to
an open file. It requires four arguments: the
address of the buffer holding the data, the
number of bytes to write, the file handle, and
the function’s number (64). After the call, DO
will contain the number of bytes written or a
negative error code.

v By using many macros and subroutines, we
can make our programs generally much
easier to understand.

e

Error # Description

-32 Invalid function number

-33 File not found

-34 Path not found

-35 Too many open files

-36 Access denied

-37 Invalid file descriptor

-39 Insufficient memory

-40 Invalid memory block
address

-46 Invalid drive specified

-49 No more files

-64 Range error

-65 Internal error

-66 Invalid program load
format

-67 Setblock failure do to
growth restrictions

Table 10.1 e GEMDOS Error Codes

172

More File Handling

wpue
E\‘OPp Mm-aaow
ds‘gx | "bppe

bt desy

(ds)-‘N3d0dn M- aAow

2\ Bad

(ds)-fI\g Mm-aaow

opus

}1xaw

iSlojswelied Buissip |18}
B\ 94!

0JoBW 9|1} usado

"abBiO}S 9 puBy-8(1} 40} Sseippe 8y} puB ‘sweuUd|}} By} j}o
ssaippe ay) ‘spow o__* 3y} :sisjewsivd 991y} sesinbas }j ‘uoljouny
SOQN3D uadog ‘pasajynqun ayj} Buisn 8114 B suado 0JoBW Siy]

AWNNTYM NOLAVIO A8 166} LHOIHALOD

8 WYHDOHd
dOHSYHOM 3DVNONYT A18W3SSY hw JHL

Smoem e e

L N T .

173

THE ASSEMBLY LANGUAGE WORKSHOP

-0/--—

"3|puBY 31!} 8y} pu® ‘peal 0} SalAq ;0 Jaqunu ay}
‘Ssoippe J3}}nq 9y} :suojawsiBd 834y} Saliinbas }] ‘uoij}oun}
SOOQN3D Ppe8Jd ‘paJajjnqun ay) bBuisn 8|1} ® speal 0JJBW S1yJ

e\ ‘op

ds‘gn

b
(ds)-‘31v3aHddn
2\

(ds)-‘I\g

jisiajaweied Buissip
B\

94!

wpue
M aaow
| “bppe
delt)

M BAOW
Bad
MTaaow
opue
}Ixsw
|18}
941

0J0BW 8| |}-pBAl

LY N T

0J0BW 8|1}~9)88iD

"9bB810)S 9|puUBY-3|i} IO} SS2IPPB BY} PUB ‘BWBUB|I} BY} 4O SS3.IppPB
ay) ‘@jnglJiiie a1} ay) :suajeweled 8aly) salinbals)] ‘uoljouny
SOOQNID 9182104 ‘palajynqun ay) Buisn @)} B $81BAIO 0JOBW SIy|

LT T N

174

More File Handling

($43
(ds)- ‘3L 1HMIn
(ds)-‘g\
(ds)-‘z\

I\

isiajaweivd Buissipy
AT

deu}

M aaow
M aAowW
| "aA0OW
Bad
opue
}1xew
|18}
34!

"@|puUBY B} By} puB ‘@)1JM 0) S3}AQ O JaqUNU By} }jO SSIJPPE 8y}
‘ssaippe i844nq ay} :sisjewesBd 99.y} S8J|nbaJ 311 "uoijouny
SOQAD 8} 1im4 ‘paiajynqun ayj Buisn 8|14 B 03 S8}14M 0JOBW S1Y]

ds‘ziln

ln
(ds)-‘ay3ddn
(ds)-‘g\
(ds)-‘2\n

I\

jsiojowsied BuissIp

M aaow
| “9A0W
Bad
opua
}ixaw

| 184

0JOBW 8| 1}~8}1 .M

LE ST NS

(XS

175

THE ASSEMBLY LANGUAGE WORKSHOP

941
cloBW

“1u

11d 0}

BuiJis ay) jo ssaippe 9y} ‘lojawessd auo saJsinbsal] ‘uoijounj
SOQN3D smuod) ay} Buisn ‘usaios ay) o) Buisls B sjurid o0J0BW SIY]

Q”.Vﬂ

(%3
(ds)-*3807104=n
(dsy-*\

jd9)owsied BuissIp
PR

M aAow
M AOW
opue
)i xaw
|18}
0}

010BW B8]}~3S0|0

*a|puey 8|1} 9y} :Jojaweied auo saiinbai

i1 “uo

rjouny

SOQAN3D 8S0j024 ‘paiajjnqun ay) Buisn 8|1} B S3S0|0 0JOBW SIy)

ds‘Zinm

wpua
| "ppe

176

More File Handling

aw.mﬂ

L
(ds) - ‘SHNODOx
(ds)-*i\n
I\‘2\xu

jSio)oweised BuissiIpy
TAYRN

Si9}0BJBYD O Jaqunu xew a8y} pus Bulsls 8y} 9.0)S O} YSIym Ul
4944nq @y} jo ssaippe ay) :siajswesed om} sasinbas)] ‘uorjouny
SOQN3D s4u09D ay} Buisn pueoghey ay) woisy Burils B s)ab oloew syl

aw.mn

ba

_ (ds) - ‘SMNOJDn
(ds)-*‘I\n

j49)owesed BUulssIp

wpus
| “bppe
deu}
MTaAowW
| “9AOW
g-aAow
opus
}1xaw
|18}
941!

0J10BW S~ndui

‘pBal 0)

LE T Y L T

wpus

| *bppe
ded}

M OaAOW
| “aAoWw
opua
11 x8uw
|18}

177

THE ASSEMBLY LANGUAGE WORKSHOP

A PBAAY Jasn ! ino
lemsuB—}ab

wb{U/hy 11x3, ¢ ybsw
widoate uado ay14,, cbsw
*3)1} pval ob ‘adou ysap—iab
¢9) 14 Bujuado Jousie ¢ ja|pusy

'8y} d89inos uado
.mEucm__*oogsowumm

“n o

jaweus||j—)ab

ds‘Zn
%3

(ds)-‘NINODOxz
0J0o8BW

auq
isf
yurad
juyad

afqg
1718}

l8|puey‘z+jowsua) 1} ‘AINO"QYIY 8! }"uado

is|
1909.4nos~)ab
1x8)

wpue
| “bppe
deus)
M aaow
i8Yo~}ab

[]
"Uo13}ouUN} SOGNID u!tuod)y ¢

ay) Buisn ‘pisogAey ay) wol} J9)0BIBYD B|BUS B S}86 0J0BW Siy)

3
.

178

More File Handling

“}no)1 a)i1im ob ‘daf
¢BuiyiAue peas am pip
‘914 8oinos peai

‘8|ppBPIYS

"3} 9s0|0

*SsaidAay Joy ji1Bm
«'Builioge weibougy,,

« @14 Buiieeto Jouig,
‘9114 Adoo obf ‘adon
610113

"@[14 mau 8})eaJD

‘uiebe awsua|1} 10} A4}

wéd! ouo_mQ:

«iSIsSIxd Apeai|e 9}14,,
“}1 9388123 0} AB)0 ‘sadou
¢1S!x8 Apeai|e 9|1y ssop
"8|1} uorjsuy}sap uado
"8 14 uoliBUl}Sap }eb

‘urebe aweua|iy Joj £u)

L BT Y . S L N L I L T ey

o

lajing=a)1im y6g

op |18}

81PUBY“YZRL‘1a)4nq a1 }-pBal
:Adod

1no BUQ

l8lpuey aji1479s0|9

Jeys—jab

gbsw juyad

gbsw jurid

Adoo abq

gojpuey 18}

29IPUBY‘Z+28WBUD| 1} ‘Q 9|14 ~0)BAID
19 14-ayBuW

yjsep—}ab beq

lamsue—)9b is|

Jbsw jurad

gbsw jurid

3l rjTayew lug

colpuey is)

29| puBY‘Z+zgaWBUI| 1§ “ATINO"QYIY 2!} uado

geweua|ij—j9b i8]
t}sap~y}ab

90inos—)9b B.q

179

THE ASSEMBLY LANGUAGE WORKSHOP

"SIU0D) UO!}OUN} SOQAID 9y} 0}
182 ® YiIm panaarijas Buriys @y} O} ||NU B SPPe QUI}NOIQNS Siy)

am e em

lu dsi}
(ds)-‘ONH3Llde Mm"aAow
co|puBy 9147880}
I9|puBy 9)1}~9s0|9

"soipe
9|14 UOI}BU|I}SEp 8S0|0
*8|1} @894Nn0S 3s0|90

am s se

tino

isyo—)ab
gibsw jurid

*$89.4dA9y 10} j18Mm
« 8UOp |V,

CE TN

1409

Adoo BIQ
co|puBy‘@p iayyng aj14~oliim
1194 pNngTaylim

*|njiajyng }xau peal
9] 14 "1S9p O} 1844nq 331im

*jJoqe ! ino BIQ

‘ss@idAay 10} jiem ¢ ieyo~)ab

o Burlioge weibouiy,, ! 6fsw jurid
«id0118 pBas B4, ¢ gbsw jurid
*}08 0s ‘peas bBuiyjou ¢ jos bag

180

More File Handling

j140 jutid
¥9‘loweua| |4 s—ynduy
|Bsw jurid

sweua||} }ab
« 7914 jo awsu Jajug,

|| §
}140 “jewBua) i} ¢|Bsw :pasn ®BlBQ ¢

j1nu~ppe ‘s=yndu; ‘juiud :s|je8y ¢

"INON :pebueyo sbay ¢

“leWeUS| |y Ul BwBUB| |} pajBUIWIA}-||NN :yndinp ¢

"INON sindug ¢

3

@14 80in0S 8y} 40 BwWBU BY)} SIABIJ}al sulinoiqns sy ¢
|| R T ey |

s34

gp/cet+(ds) | "waaow
(EP‘EB)Z2 On q-anow
Ep‘(ee)l q-anow

€p 1°419
(ds)-‘gpsev | "waaow
‘lihu~ppe

"INON :pabueyo sia)sibey
*Buriis ur Ja)0BiBYD)SB| U8B [IAN :3ndinQ
€8 Ul Jajynq Burils jo ssalppy :indul

LL T AT

THE ASSEMBLY LANGUAGE WORKSHOP

“3INON :indug

"N pu®B A isulebe)i sesBdwod puB pJBOgAaY
9y} woJ} asuodsas 19)0BIBYD-BUO B SIA3IJ}3J BU|}N0IQNS S|y|

LB Y

| Ihu~ppe is
gBfgaweus|(jy |[*aAOW
y119 julid
yg‘zaweuaji} s—yndul

(lOwBUB| I} mau 1ajug,, ¢ Z2bsw jurJd
1Zgawsua|14—)ab
$140 ‘lawsusyi} ‘)Bsw ipasn ®leQg
| IRU~ppPR ‘sTindu; ‘juiid is||8n
*INON :pabueyo sbay
"gOWBUA| |} U| BWBUS|!} pa}BUIWIA}-]||NN :1ndyino
“3NON tyndug

8|14 UOI)BUI}SAp By} JO BWBU By} SIAAIJ}8J BUIINOIQNS SIy|

T T e e e e e e e e e e e mr ;e e e r e m S m e ——m . - ————— .- —— - = — - ——

s}l
‘aweBuay1y) ayy ¢ |{nu—ppe 18]
**°0)} j|nhu e ppe ¢ £B‘|aWBUB |1}y | B9AOW

L L A LR L LTS

182

More File Handling

*dek
¢l P9dAY Jasn
*dak
¢uAia PodA) Jasn

‘lamsur §,13sn }8b

*padAy Aay Jayjo Aue it @

om s e ose

ATOT ‘ATON
JBYyos—y)eb
‘00

Q<-@ "padAky A 41 @Q¢-l

:lamsus~)eb-pus
s}
tyno-
| *baaow isek
Blq
]*419
beq
m* dwo
baq
M dwd
juyriad
| “aAow
Jeyos—jab
tlemsus—)ab

:pasn BlBQ
is||8)
tpabueyo sbay
13ndyino

LT AT T NEY'N

183

THE ASSEMBLY LANGUAGE WORKSHOP

p‘oL‘el’,,"buryiogs weiboug,,
o‘el‘el 7811y Burisauo Jsouusg,
0 é(uzhy 11 ayaeq,

0‘0L‘EL iSISIX® ApBal|® 3|14,
p‘oL‘el,idolla peal 814,
0'ué(u/ky 1ix3,,

p‘oLel‘,i10419 uado 8|14,

@', t8WBUD| I} MAU J3}uz,,

0‘. :Adoo 0} 8|1} }j0 sweu Jalug,

¥9 nbe
€9 nbe
29 nba
19 nbs
09 nb»
2 nbe
ol nbs
8 nba
S nbe
} nba
0 nba
121 nbe
68 nba
0 nba

g ap 1gbsw

q-op :gbsw
q'op :/Bsw
q°op :gbsw

q-op :gbsw
q°op tybsw
q°'op tpbsw
q-op :gbsw
q'op 1| 6sw

31I19Md
av3dd
380704
N3d0O4
31v3yod
SONHdO
SHNOJO
SMNOO0
1NONHdO
NINOOO
ONd31d

A~01
ATONn
ATINO™QV3Y

184

More File Handling

1441}
8
.8

q°sp
q°sp
q°sp
Mm°Sp
M- Sp

o‘ol‘el

8‘0L'el, "auoq |1V,

1194)nq

A :-DEY R

PLaWBUd | 1}

12| pusy

1L9|pusy
uaaa

q-op '} 40
q'op :@ibsw

185

E 11

PLAYING WITH THE SCREEN

m e’ve been working hard throughout this workshop.
I figure it's about time we had a little fun, especially

considering that this is the last program in the book. In this
chapter, we won’t learn much new about 68000 assembly
language, but we will tackle some new--and important--
XBIOS functions. We’ll use these functions to load and
display a DEGAS-format picture file.

The Program

In the CHAP11 folder on your Assembly Language Work-
shop disk, you'll find the files PROGY.S and PROG9I.TOS,
which are the source code and executable program files for
this chapter’s sample program. (A listing of the program is
included at the end of the chapter.) If you’d like to assemble
the program yourself, please refer to the instructions that
came with your assembler or check this book’s appendix A.

When you run the program, you’re asked to type in
the name of a DEGAS-format picture file. The file should be
in uncompressed format, but may be from either the
original DEGAS or from DEGAS Eljte. (For your convenience,
the CHAP11 folder contains three DEGAS pictures, one in
each resolution.) After you type the filename, the program
will check the disk for the file. If the file exists, the program
will then ensure that the picture’s resolution is the same as
your current system resolution. If it is, the program loads
and displays the picture. To return to the desktop, press any
key after the picture is displayed.

187

THE ASSEMBLY LANGUAGE WORKSHOP

DEGAS File Format

Uncompressed DEGAS files come in two types (see figure
11.1), those created by the original DEGAS and those created
by DEGAS Elite. A file from the original DEGAS contains
16,017 words (32,034 bytes). The first word is the picture’s
resolution, and will be 0 for low resolution, 1 for medium
resolution, and 2 for high resolution. The next 16 words
make up the picture’s palette. It is these values that control
the colors in which the picture is displayed. Finally, the last
16,000 words are the actual picture data.

Palette Animation
(32 bytes) (32 bytes)
| I
' '
{ $
I |
Resolution Plcture
(2 bytes) (32,000 bytes)

ﬁ

Figure 11.1 « DEGAS Picture File Format

An uncompressed file from DEGAS Elite is a bit larger,
16,033 words (32,066 bytes). The first 16,017 words contain
the same information as a file from the original DEGAS: 1
word for the resolution, 16 words for the palette, and 16,000
words for the picture data. The extra 16 words tacked on to
the end of a DEGAS Elite uncompressed file are information
for controlling animation (the rotation of colors), which is a
fcature that was added to DEGAS when it became DEGAS
Elite. So, to load and display a picture from either DEGAS or
DEGAS Elite, we need be concerned with only the first 32,034
bytes of the file. Any additional bytes can be ignored, as
long as we’re not trying to reproduce the animation as well
as the picture.

188

Playing With The Screen

How the Program Works

Let’s go through the program’s main-program section and
see exactly what’s required to display DEGAS picture files.
Once you learn these basics, you should be able to extend
the program to accommodate many different types of
picture files. You only need to know the file format.

The first part of the program should be familiar
territory. At the label get_source, we get a filename from the
user, using a subroutine we’ve seen before, get_filename. (It
was previously named get_filenamel) We then use the
filename to open the file. If the file opens okay, we branch
to the label read_rez, where we start to read the file. If the
file didn’t open properly, we notify the user of the error and
give him another chance. Old hat, right?

At the label read _rez, we get into the real meat of the
program. Here, we read the first two bytes of the picture
file, which gives us the picture’s resolution. We store this
information in the variable pic_rez. We'll use this
information later, when we compare the picture’s resolution
to the system’s resolution. After the read, we check to make
sure we actually read two bytes. If we did, we branch to
get_rez. If we didn’t (probably because the file is too short),
we notify the user of the error.

Getting the System’s Resolution

Now, to be sure we can display the picture correctly, we
must compare the system’s current resolution with the
picture’s resolution. How can we determine the systemn’s
resolution? Easy! All we need is a call to XBIOS function #4,
Getrez. After a call to Getrez, register DO will contain the
system’s current resolution, with 0 meaning low resolution,
1 meaning medium resolution, and 2 meaning high
resolution. We call Getrez like this:

189

THE ASSEMBLY LANGUAGE WORKSHOP

move.w H®GETREZ,-(sp)
trap "4
addq.! #2,sp

Unless you’ve been dozing, you've probably noticed
that the resolution values used in the first word of a
DEGAS-format picture file are the same as those returned
from Getrez. How convenient! To be sure we can display the
picture properly, we need only compare our variable
pic_rez with the value returned in DO, like this:

cmp.w pic_rez,dd

If pic_rez and D0 are equal, we can go ahead and
display the picture. If they’re different, we're in the wrong
resolution for the currently selected picture, so we must
inform the user of his error and give him a chance to pick
another file.

Assuming the system and picture resolutions match,
we branch to read_palette, where we read the 16 words (32
bytes) of color data into the buffer new_palette. We'll use this
information later in the program, when we learn to set the
system’s palette.

Caiculating Screen Memory

Now that we’ve read the picture’s resolution and palette,
we're ready to read the actual picture data. But, where can
we store this data so that it can be displayed on the screen?

Your ST can use just about any part of its memory for
the screen display,but there’s one important rule: An ST’s
screen memory must always start on a 256-byte boundary.
In other words, the screen’s starting address must be evenly
divisible by 256.

Look at the data portion of our program. In the bss
section, we have a buffer called, appropriately enough,

190

Playing With The Screen

buffer. This buffer is 32,256 bytes long, a little larger than
we need to load the DEGAS picture data, which is 32,000
bytes. (By the way, that the picture data is 32,000 bytes long
is no arbitrary decision. Your ST's full screen display also
uses 32,000 bytes, despite its resolution.)

Why did we make our buffer 256 bytes larger than
needed? The answer to that question is a little complicated.
When we define our buffer, we have no idea where in
memory the system will decide to place it. Yet, we have to be
sure that our picture data (and thus the screen display) starts
on a 256-byte boundary. This means that we’re going to
have to load our picture data into the first address after
buffer that is evenly divisible by 256. In other words, we’ll
be bumping the screen address up a little higher than the
starting address of buffer. By making buffer 256 bytes larger
than we actually need, we are sure to have enough room to
load the picture data after we bump up the address.

The calculations required to position our picture and
screen data on a 256-byte boundary are found at the label
set_boundary. We do it like this:

move.l ®buffer,do
andi.l #$ftffffo0,do
addi.l #256,do
move.| d@,a3

In the first line, we copy the address of our buffer into
DO, where we can work with it. In the second line, we use an
AND operation to mask out the low byte. This operation
makes the contents of D0 evenly divisible by 256. However,
what we’ve really done by clearing the lower byte is make
the address in DO lower. In other words, after the AND, the
address in DO is lower than the address of buffer. If we try to
load the picture at this address, we’ll overwrite our program
in memory. We can’t have that! So, in the third line we add
256 to DO, which moves the address past buffer but still on a

191

THE ASSEMBLY LANGUAGE WORKSHOP

256-byte boundary. See why we needed 32,256 bytes rather
than just 32,000?

Now that we have a valid screen address, we copy it
into register A3, and, using address register indirect
addressing, we call our read_file macro to read the 32,000
bytes of picture data into the buffer.

Getting the Physical Screen’s
Address

Your ST actually has two screens: a physical screen and a
logical screen. The physical screen is what is displayed on
your monitor; it’s the part of memory you can see. However,
there’s also a logical screen, which is the section of memory
to which all screen-writing functions are directed. Most of
the time, the physical screen and the logical screen are set to
the same address, allowing you to see the screen as well as
any changes that are being made to it. For example, when
you use a word processor, the words you type appcar on the
screen because the screen you're viewing and the screen
you’re writing to--that is, the physical and logical screens--
are at the same address.

As a programmer, you can separate the physical and
logical screens, so that you're looking at one display while
you’re modifying another--behind the user’s back, as it
were. If, in our word processor example, we were (o separate
the physical and logical screens, you'd be able to see your
word processor on the screen, but when you typed, no
words would appear. Your typing would still be going into
the computer’s memory, but it would be going to the logical
screen instead of the physical screen.

Our DEGAS picture viewer doesn’t require that we
separate the physical and logical screens. However, because
using the function that changes the screen’s location
requires an understanding of this concept, I thought you'd
appreciate being clued in. Just one of the many services we
provide at the ST Assembly Language Workshop.

192

Playing With The Screen

At the label show_pic, we start the process of
displaying our newly loaded picture. We first save the
address of the current physical screen, so we can restore it
when we’re done. We do this with a call to the XBIOS
function #2, Physbase, like this:

move.w ®PHYSBASE,-(sp)
trap ni14
addq.l #2,sp

Of course, the constant, PHYSBASE, is equal to the
function’s number, which is 2. After this call, DO will contain
the address of the physical screen. In our program, the first
thing we do after the call is copy DO into A4, where the
physical screen address will be safe until we need it.

Manipulating Palettes

Before switching to the picture screen, we must save the
system’s palette, and then change the system’s palette to the
picture’s palette. Unfortunately, while there is a single call
that’ll simultaneously set all 16 color values in the system’s
palette, there is not a similar call for retrieving those values.
Instead, we must use 16 separate calls to a function known
as Setcolor, XBIOS function #7. This function can both set
the value of a single color register and return the register’s
current value to us. Of course, we’ll use a loop, so we need
have only one actual call to Setcolor in our program.

This loop is located right after the call to Physbase.
First, we load into A6 the address of the buffer in which
we'll store the 16 color values. The buffer we’ll be using is
located in our data section, at old_palette, and is 32 bytes, or
16 words, in length--just long enough to store the entire
palette. After loading the buffer’s address into A6, we
initialize a loop counter, D3, to 15, and initialize D4 to be

193

THE ASSEMBLY LANGUAGE WORKSHOP

used as an index register. After the loop initialization, we
call Setcolor like this:

move.w ¥®#-1,-(sp)
move.w d3,-(sp)
move.w HSETCOLOR,-(sp)
trap "4

addq.l #6,sp

In the first line, we place onto the stack the color
value to which we want the register set. In our case, we use
-1, since this tells the function that we don’t want to change
the register; we only want the current value returned to us,
In the second line, we put the color register number onto
the stack. The 16 color registers are numbered 0 through 15,
S0 we can use our loop counter, D3, to keep track of the
color register numbers as well as the loop count. In the third
line, we place the function number onto the stack, and in
the fourth we call the XBIOS with the usual trap #14.
Finally, as always, we clean up the stack.

After the call to Setcolor, the color register’s old
setting (and, in our case, this setting also happens to be the
current setting, since we didn’t change the register’s value)
will be in D0. We place that value into its appropriate
position in old_palette with this instruction:

move.w d0,0(a6,d4)

Here, we're using address register indirect addressing
with index in our destination argument. Remember: the
destination address is calculated by adding the address
register (in this case, A6), the index (stored in D4), and the
offset (0). The first time through the loop, we’ll be saving
the value of color register 15 (the value stored in D0) into
the last two bytes of old_palette (whose address is stored in
A6).

194

Playing With The Screen

After saving the retrieved color value, we subtract 2
from D4, so that it will index the next two bytes (working
backward) of our buffer. Then the dbra instruction
decrements D3, our loop counter and color-register
number, and sends us back to the label color_loop for the
next iteration. When D3 becomes -1, the looping stops and
program execution drops down to the next instruction. At
that point, we will have grabbed the values of all 16 color
registers and stored them in our buffer, old_palette, where
they’ll be when we want to restore them.

With the old color values safely tucked away, we're
ready to set the system’s colors to the picture’s palette. The
XBIOS function #6, Setpalette, can handle that for us. We
call it in our program like this:

move.l ®new_palette,-(sp)
move.w HSETPALETTE,-(sp)
trap 814

addq.l ®6,sp

As you can see, the only two arguments we need to
pass to this function are the address of the buffer that holds
the new color values and the function number. In our
program, new_palette holds the palette data we loaded from
the picture file.

Flipping Screens

Are you ready for the magic? We can now display the
picture. We do this by changing the address of the physical
screen to the address of our picture data. If you recall, we
have the address of our picture data stored in register A3. To
display the picture, we use the XBIOS function #5,
Setscreen, to switch to the new screen (see figure 11.2). In
our program, we call the function like this:

195

THE ASSEMBLY LANGUAGE WORKSHOP

move.w ¥-1,-(sp)

move.l a3,-(sp)

move.l a3,-(sp)

move.w HSETSCREEN, -(sp)

trap H14

add. | #12,sp
“

SR

Memory oud Now

Screen Screen

+ 4+ ¢
 SE—
emor Ol Ne
M Y Screen Scro“n
¢ + o+

Figure 11.2 ¢ Effect of SETSCREEN

In the first line, we're placing the code for the new
resolution onto the stack. (Yes, you can use Setscreen to
change screen resolution, but, unless you really know what
you're doing, I wouldn’t advise fooling with this feature.) By
using -1 as the resolution code, we’re telling the function to
leave the resolution as it is. In the second and third lines,
we’re placing onto the stack the addresses of the physical
screen and the logical screen, respectively. Because we want
both set to the same address--our picture--we pass the
address stored in A3 for both parameters. (Actually, because

196

Playing With The Screen

we aren’t going to be writing to the screen, we don’t need to
set the logical address. We could have left the logical address
set to its original value by passing a -1 as its address.) The
last parameter is the function number, 5.

After the Setscreen function call...prestol...the picture
is on the screen. To end the program, all we must do is reset
the palette and the screen address to their original values,
which we do with two more calls to Setpalette and Setscreen,
using the values we saved previously.

Conclusion

That’s all there is to loading and displaying a DEGAS-format
picture file. To make the new function calls in this program
as understandable as possible, I resisted the urge to program
them all as macros. But in the spirit of readable code, why
don’t you now take the time to change the Physbase, Getrez,
Setscreen, Setpalette, and Setcolor function calls into

macros? For example, you might write the Setcolor macro
like this:

set_color macro

ife ’','\2°

fail Missing parameters!
mexit

endc

move.w \1,-(sp)
move.w \2,-(sp)
move.w H®SETCOLOR, -(sp)

trap H14
addq.l ®6,sp
endm

You could then set (or get) a color register with a
simple, one-line call like this:

set_color ®-1,819

197

THE ASSEMBLY LANGUAGE WORKSHOP

Also, notice that each error-message routine in the
program is virtually identical. You might want to convert all
of them into a single subroutine and reduce the size of the
assembled program. Remember, there’s only three things
that can guarantee your successful programming: practice,
practice, and practice.

NOTE: Because of the assumptions they make
regarding the size of the monitor’s screen and screen
memory, the graphics functions discussed in this chapter
are guaranteed to work properly only with standard Atari
monitors.

“
Summary

~ XBIOS function #4, Getrez, retrieves the
system resolution and returns it in DO. It
requires only one argument, the function
number, to be placed on the stack before it is
called with trap #14.

« The ST’s screen memory, which is 32,000
bytes in length, must always start at a 256-byte
boundary in memory.

~ The physical screen is the part of memory
that is displayed on your monitor. The logical
screen is the part of memory to which all
screen writes are directed. Usually, the
physical screen and logical screen are set to
the same address, but they can be different.

~ XBIOS function #2, Physbase, retrieves the
physical screen address and stores it in DO.
One argument, the function number, must be
placed onto the stack before calling the
function with trap #14.

198

Playing With The Screen

~ XBIOS function #7, Setcolor, sets or retrieves
the color value of a single color register.
Before calling the function with trap #14,
three arguments must be placed onto the
stack: the new color value (-1 for no change),
the color register number (0 through 15), and
the function number. After the call, DO wili
contain the color register’s old value.

« XBIOS function #6, Setpalette, changes the
entire system palette (all 16 color registers)
with a single call. It requires that two
arguments be placed onto the stack before the
call: the address of the new palette
(containing 16 word values) and the function
number.

~ XBIOS function #5, Setscreen, changes the
physical screen and the logical screen to new
locations in memory. It can also be used to
change the system’s resolution. Before the
call, four arguments must be placed onto the
stack: thc new resolution (-1=no change,
O=low, 1=medium, and 2=high), the physical
screen address (-1 for no change), the logical
screen address (-1 for no change), and the
function number.

That’s All Folks

Congratulations! You’ve reached the end of The ST
Assembly Language Workshop, Volume 1. If you've studied
hard, you’re all set to write TOS programs on your ST. In
volume 2 of the workshop, we'll start learning to tame the
beast called GEM, using what we've lcarned so far about
68000 assembly language.

199

THE ASSEMBLY LANGUAGE WORKSHOP

£\ ‘0p

ds‘gy

ba
(ds)-“N3d0dn
2\

(ds)-‘|\g

jslojaweied BujssIN
-M/_.—-

wpua
MTIAOUW
| “bppe
dei)
M aAOW
Bad

M oAOW
opue
11 xaeuw
118}
941

oloBW aj|j}~uado

"abwvJo)s ajpuBy-a|1} 10} SS3IPPB Ay} PU® ‘BWBUS|I} 8y} 40
$salppe 3y} ‘epow 3|1} a8y} :siajewssed 93.y) Saiinbas] "uoI}oun}
SOQN3D usdoj ‘pesajynqun ay) Buisn 9|1} B suado 0JoBW SIy|

WNNTYM NOLAVID A8 1661 LHDIHALOD

6 WvHdd0Hd

dOHSYHOM 39DVNONY1 ATEW3SSY LS 3HL

LT NPT

L L)

S

200

Playing With The Screen

idojoaweied BuissIp
_F/--..

|18}
9} 1

0JOBW 3| 14~3S0|9

ds‘Zin

la
(ds)-‘Qvy3ddn
(ds)-‘g\
(ds)-‘2\n

I\

jsiajaweied Buissipy
B\

"9|pUBY 81} Ayl pue ‘peas 0) Sa}Aq
‘ssalpp® 19}4nq ey} :sisjowe.ed 98Jy)} saiinbal
SOQN3D pBal4 ‘patajynqun ayy Buisn a1y ® spe

-
—
.
=
(]
-
(34
[
=
-—

wpus
| “Pp®
deus}
M aaow
Meanouw
| “9A0W
Bod
opus
} I xaw
j1ey
o241
0l2BW 8| 1}-pBal
40 Jaqunu ay)
}I "uorjouny
81 0JoBW Sy

L N NN

201

THE ASSEMBLY LANGUAGE WORKSHOP

SOQN3D s4u02) 8y) bBuisn pieoghasy a8y} wosj Buriys B s)ab osoBw syl

ds‘gy

L
(ds) - *SMNODDn
(ds)-‘|\g

jlojeweled BuissIp
——,/-._.

wpus

| *bppe
dea}

M OAOW
| “aAOW
opus
}ixew
118y
34!

0loBW ju1ad

*jurid o0y

Buiiys ay) jo ssalppe sy} ‘Jajawsied auo saiinbas)1 “uoyjouny

SOQN3D smuo09) ayj Buisn ‘usaids ayj 0) Buriys ® sjuiid oJoBw syl

ds‘yy

b
(ds)-‘3807104n
(ds)-*|y

M aAOW
M- aAow
opus
}ixaw

202

Playing With The Screen

ds‘gg "
85
(ds)-‘NINODDn Mm°
olo8UW

‘uoljoun} SO@AID uiuoagd
3y} Buisn ‘pisoghay a8y} woij 191o8iBYd 2|buls ® s}86 0JOBW SIY]

wpus
bppe
deu)
sAow

wpua

ds‘gy | “bppe

ln deu)

(ds)-‘SUNOOO: Mm"aAow
(ds)-“i\g |- eaow

Iv'e\r q-eaow

apue

}1xew

isiajaweled Bujssipy |18}
.N/-.- U*_

0loBW S~)ndu|

4844nq ay) jo ssauppe ay} :siejewesed Om} salinbals 3]

‘peal 0} !
§19)0BJBYI O Jaqunu xBw 8y} pue Buil)s 9y} 8J0}S O} ydIym uy |

‘uo

1iauny

203

THE ASSEMBLY LANGUAGE WORKSHOP

“wAa PadA) aasp

w(N/A) 631 X3,

«id0419 peRBl 9|14,

*daj

¢M0 sa}hq g peay
‘uotrin|osss 9injoid peay

‘uiebe awsua|iy 1o} AiJ
“uAa PBAAY Jasp

wb(U/K) 11x3,,
wid0l14e uado a4,
*9)14 peai ob ‘adoN
¢9)114 Buruado Joluig

901nos—)sb BIQ
a|pusy 9|1}-8s0]9

1no aug
Jamsue—)ab is|
ybsw jurid

Ghsw jurad
r{-Fiad¥-1¢ baq

opP‘2n M dwo

9|puBy‘z‘zai~o1d 81} -pBAl

"@]14 8dinos uadp ! @|puBy‘z+owBUS] |} AINOTQYIY O ! jUado

‘ewBuUd |1} 80.INOS }8H !

$23i-peal
801n0s~)96 BIq
1nho auq
lamsue—3ob i8]
pybHsw jurad
gbsw jurid
2a1-peaJ abq
9|pusy 1738}
awBus|}~)ab i8]
1901n0s—)96
1x8}
B kR
WVHOOHd NIV ¢

204

Playing With The Screen

«(N/A) é1ix3,
«wid0119 pesl aj14,
‘PIp 8ing

¢S®14q 2¢ |1e J0p
"9))9|ed 8injo1d peay

«(N/A) é31x3,,

wiluolinjosas Buoup,

*daj

c9WBS 3y} zaJ WasAs § 214

‘uotinfosel weshs }a8p

801n0s—)8b BIq
a|puBy @|14-8s0|3
ino auq
lamsus—)ab isi
pbsw yurid

¢bsw juriad
Alspunoq-ies baq
op‘2En mdwo
9|puBy‘ze‘alia|Bd~Mau 3| | }~pBal
t9)}e

80.inos—})98b BIQ
a|puBy @|1}-980|2
ino aug
Jamsus—)ab 18]
pybsw jurad

Z2bsw jurid
@)l8|ed-peal baq
gp‘zasi~o1d M dwo
ds‘2nz | "bppse

1 4% deit}
(d$)-‘Z34139n M eAow

|ed-pgal

1291-)8b

205

THE ASSEMBLY LANGUAGE WORKSHOP

*X9puU| SSalppB JIU]
*1ajunoo dooj j1uj
‘dajyng jo Jippe }8p

‘SS3Ippe USBJIOS BABG

‘WaW Ud3JOS 40 IppB }8Y

W(N/A) é3ix3,
«id0112 pBaJ 813,

-7
¢S814Aq 000‘2e 10D
‘elep ainjoid pesy

*SS3.IppB PO)B|NO|BIOSI 9ABS
*Alepunoqg 93AQ-9g2 01}
‘t°ssalpp® 1a44nq)88

*l9}yng }jo ssaippe }ep

“n em s sm

LT AT Y YN

yP‘0€n | "aAoW

EP‘Sin | "eAow

ge‘ajle|ed-p|og |- 8AOW

yeR‘OP | "9AOW

ds‘gu | bppe

Vin deis}

(ds)-‘3SVESAHd: M aAow
$o1d-moys

80inos—)eb BIQ

8|puBY @8|14-950|9

}no auq

lamsus—)ab is{

yhsw julid

gbsw jutad

a1d—moys bagq

or‘00026n M dwd

3|puBy‘ppoec‘(ce) B|1}~pBal
to1d-peal

£€B‘QPp | “9Aow

op‘9Sen | 1ppe

OP‘00}Ii4}iS | 1pUB

Op‘iajyngy | "aAowW

:AlBpunog-yas

206

Playing With The Screen

*8in3o1d 0) uasids jag

"$40109 8i4n}o1d 0} jag
"8N|BA 10]00 }x8u J0} dooq

"X8pu| JppeB }Xau 8}B|N9|B)
"iaj4nq ul en|BA 1003 2ABG

"6a1 10109 4o anjBA }ep

.

LT TS

Jeyo—}ab

ds‘Zig | 'ppe

Vin dei}
(ds)-'N33H0S13Sn M aAow
(ds)-‘ge | -aaow
(ds)-‘ge | -anow
(ds)-‘1-4 M aAow

ds‘gn | "bppe

vig deus}

(ds)-‘31137vd13Se M- aAow
(ds)-‘a3)e|Bd~mauy |- aAow

dooj|—i0j00‘gp BIQp
vPp‘2n m-iqns
(YP‘9B)Q‘0p M anow

ds‘gn | "bppe

Pin deds}

(dS)- ‘4000138 M*3Aow

(ds)-‘gp m°aaouw

(ds)-¢|-g Mm-anrow
:doo|-i0yj090

207

THE ASSEMBLY LANGUAGE WORKSHOP

ilinuTppe

L]

"INON :pobusyo sis}sibay

"Guiiys uy J9)0BIBYD 1SB| JB)}B ||NN :}nding
‘B Ul Jajyng Burils o ssaippy :)nduj

"$1U02D UOIJOUN} SOONID By} 0)
182 B yiim paaatiias Buriys ay} 0} ||nu B Sppe auljnoiqns siyj

L A N LN LR LT]

1
1
'
'
1
]
i
!
i
]
]
1
'
'
!
'
]
]
t
L]
]
'
'
i
'
]
t
]
]
1
]
]
'
]
]
1
'
'
]
]
]
]
'
]
]
]
!
]
]
1]
1
]
]
1
i
]
1
'
]
]
'
1
]
]
'
'
t
]

lu deuJ)
rdoyysep o} yoeg ¢ (dS)-*OWHTldy M°aAowW
*8}14 9in}o)1d aso|o ! d|puBy 8|1}§~as0|9 1yno

ds‘gn | -bppe

1 4% deu}

(d8)-‘31137Vd13Sn M 8Aow

‘9}ja|ed pjo si0}say ! (ds)-‘e))ajed-pjog |-aAow
ds‘Zin | “pPpPB

Yin deJ)

(ds)-'N33HOSL3ISn M- aAow

(ds)-“p® | -aAow

(ds)-f‘pe | aaow

"uU?slos pjo 0))yoBQ }ag ¢ (ds)-f1-g m-3AoW

208

Playing With The Screen

"OWBUA| I} By}
"T"0) [|Nu B ppB

awBuaj|ij jab
« TT911} jOo sweu lajug,,

b1do
l1nu~ppe

"8WBUS| 1} Ul BWBUA| I}

9|14 99In0S 3y} jo aweu

lnu—ppe
gB‘BWBUB | | jn
4149
yg‘aweua| i}
| Bsw

‘sweua|yy *¢|bsw
‘s=indu; “juiid
“3NON
PajBUlWIa}-| NN
“3INON

s}l

isI

| *aAoW

jurJd

s~induy

jursd

iswBuUa)j1}~)8b

tpasn B)BQ
is]|eQ
:pabusyo sbay
t1ndinQ
fyndug

3y} saA81J}aJ eullnoiqns siyj

Ep/ee‘+(ds)
(EP‘E®)2‘0n
ep‘(ce)l

ep
(ds)-‘gp/ee

s34

| "waAow
q-aAow
q-anow
1*4)9

| "waAow

4

L N L L T I T T

209

THE ASSEMBLY LANGUAGE WORKSHOP

tlamsue—jab-pus

s34
:yno-
0Q‘iyn | “baaow 189K
yno- B.Q
mo _.m_o
“dak ! saf- eq
¢k padA) Jasn ¢ EP‘A™07n M dwd
dak ¢ sek baq

EPATONE M- dwo

$149 juyad

EP‘OP | "eAow

Jeyo—}eb
rlamsue—)eb

éuh PAAA} Jasn

oo

*lamsuB s, Jasn }ab

AT01 ‘ATOn ipasn ®leQg

lgyos—)ab is||89

‘0Q :pebusys sbay

"padAy Aay Jayio Auv j1 @Q<-0 "padA)l A 41! 0Q¢-| tindino
“3NON 13nduj

‘N pue A jsuiebe)i seJBdwoo puw p.eOQAdY
9y} woJ} asuodsaJ 18)0BIBYI-8UO B SAAB11}9J BU|INOIQRS SIY]

L L Y T Py

210

Playing With The Screen

0 ué(usky yi1xg,
‘OL‘el*,ji041a uado 814,
‘0L ‘el iuorinjosas Buoupy,,

0°u 3114 SYDIQ }0 swBU Jajug,

£9 nba
29 nba
19 nbe
ol nbe
6 nbe
. nbo
9 nba
[nba
14 nbe
2 nbe
1 nba
0 nbes

121 nba
68 nbe
0 nbe

g-op :pbsw
q-op tebsw
q°op :26sw
g-op :1b6sw

avayd
380724
N3dO4
SHNOJD
SMNOOD
"4070313S
31137vdl3S
N33H0S13S
Z3"139
3SVESAHd
NINOJD
ONd31d

A0
ATON
ATINO™Qv3y

211

THE ASSEMBLY LANGUAGE WORKSHOP

ggeee
9!
9l

L8

q°sp
m-sp
M Sp
m-sp
q°sp
M°Sp

o‘oL'el

o‘oL‘el‘ i40110 pBAL B|14,

1Jajjng
tajja|ed-p|o
:9)}98d~Mau
$z94-01d
HETTL-TIE TN
19|pusy

uaaa

g°op 14149
q-op :ghsw

212

ASSEMBLY INSTRUCTIONS

Ithough the programs in this book were developed
using DevPac2 from HiSoft (distributed in the USA
by Goldleaf Publishing), all the programs are also compat-
ible with Atari’s MadMac assembler, which comes with the
Atari Developer’s Kit. However, certain changes are re-
quired if you want to take advantage of this compatibility.

First, in some cases, MadMac uses different assembler
directives than DevPac?2, meaning you must modify certain
sections of code--speciﬁcally, the macros. We'’ve included
modification instructions below. In addition, the disk con-
tains both DevPac2 and MadMac versions of the programes,
when appropriate.

Second, DevPac2 and MadMac use different proce-
dures for assembling source code into executable form.
General assembly instructions for both assemblers are also
included below.

Assembling with DevPac2

To assemble a program with DevPac2, first load the assem-
bler, by double-clicking the GENST2.PRG file. When the
assembler loads, click the Load entry of the File menu to
load the source code you want to assemble (see figure A.1).
When the source code is loaded, click the Assemble entry of
the Program menu. The dialog box shown in figure A.2 will
appear. By clicking the dialog’s Assemble button, you can
assemble the program into memory, from which you can
run it using the Run option of the Program menu.

213

THE ASSEMBLY LANGUAGE WORKSHOP

Save o8S
Save fis,,. BS

Print Block 5N
Insert File BI

Figure A.1

{ Assenbly Options |
Program type
Spabols case
Debug info [IETTTN
List [EITTN
fAssenbly

[None | Max:18.k

(oisk:i]|

m
Figure A.2

When your program is complete, you’ll want to
assemble it to disk, so it can be run by others. To do this,
click the Disk button before assembling. The program will
then be assembled to disk, into an executable file. For
example, if you named your source MYPROG.S, the
assembler will create a runnable file named MYPROG.PRG.
If you’d like the assembiled file to have a different name,
type the new name in the space following the Disk button.

214

Appendix A - Assembly Instructions

Assembling with MadMac

MadMac uses a command-line interpreter to accept instruc-
tions from the user, unlike DevPac2, which features a com-
plete GEM interface. To load MadMac, double-click the file
MAC.PRG. When the program loads, you’ll see a “*”
prompt. To asscmble a source-code file, type the filename
and press return. (Note: The file must have a .S extension
and, for ease of access, be located in the same directory as
the MAC.PRG file.) When you assemble code this way, the
assembler creates a .O file (object file) on your disk. This
type of file is not executable. (It must first be linked with
other routines.)

To assemble a program into an executable disk file,
type the source code’s filename followed by the -p switch.
That is, to assemble a program called MYPROG.S located in
the same directory as MAC.PRG, type MYPROG -p at the
MadMac prompt. The assembler will name the resultant,
executable file MYPROG.PRG.

Changes for MadMac

Because MadMac features a different set of assembler direc-
tives for use with conditional assembly, users of that assem-
bler must modify macros written for DevPac?2. Using the
input_s macro from chapter 9 as an example, here are the
changes required:

.macro input_s

Lf\?2
move.b #\2,\1
move.l #\1,-(sp)
move.w ¥CCONRS,-(sp)
trap 81
addq.! ®6,sp

.else

.assert \?2

.endif

.endm

215

THE ASSEMBLY LANGUAGE WORKSHOP

In the preceeding macro, the . if, . else, and .endif
assembler directives work just as we would expect. If the
line . if \?2 evaluates to true, MadMac asscmbles the
statements between the . if and the . else. Otherwise, the
assembler will jump to the statements between the . else
and the . endif (which marks the end of the “if” construct).
In input s, there is, between the . else and .endif, only an
assembler directive that prints an error message to the
screen.

The “\?2” following the . if and .assert directives is
interpreted as “if parameter 2 is specified and non-empty.”
This condition allows us to check whether the correct
number of parameters have been sent to the macro. The
-assert directive evaluates the expressions following it
(there can be several expressions, separated by commas),
and if any equals 0, the assembler prints a warning to the
screen.

Notice also that the macro and endm directives are
used differently (as compared with DevPac?2). With MadMac
both directives must be preceded by periods. In addition,
you must place the . macro directive before the macro’s
name rather than after it.

Other macros throughout the book require similar
changes if they are to be used with MadMac. For your
convenience, MadMac versions of programs that need these
changes are included on your Assembly Language Workshop
disk.

216

E= g
68000 INSTRUCTION REFERENCE

by Bryan P. Schappel

his appendix gives a complete list of the 68000
assembly language instructions, their syntax, valid
addressing modes, and affected Condition Code Register

(CCR) flags. Figure B.1 illustrates the layout of the entries in
the reference section.

—
lnstruction/—vADDA Add Address <+————— grief
. Syniax: CCR: Unchanged . oe
mnemonic ADDA.3 ea,An description
where €8 is
'nStrUCtion / on -tAn) 4181PC, Xn) \ AﬁECted
syntax / R CCR flags
TAn)s Bonums ana L
. “This instruction adds the cand 1o the .
Valid 7| e e o | Detailed
addressing NOTE: this Instruxtion pesmis only word and long- description
word data sires.
modes & notes

Figure B.1 » Layout of Reference Entries

On the following page you will find a list of abbrevia-
tions that are used throughout the reference. The abbrevia-
tions are not only used in the instruction descriptions, but
in the instruction syntax as well.

A list of addressing modes is also included. This list
gives the proper syntax and a brief description of each of
the M68000’s addressing modes.

217

THE ASSEMBLY LANGUAGE WORKSHOP

Abbreviations
An Address register 0-7
CCR Condition Codes Register
Dn Data register 0-7
ds 8-bit displacement value
d16 16-bit displacement value
ea effective address
nnn.L 32-bit address
nnn. W 16-bit address
PC Program counter
SP Stack pointer
SR Status register
Rn Any 68000 data or address register
Xn Register used as an index
.8 Operand size (Byte, Word, Long)

Addressing Modes

Dn Data register direct

An Address register direct

(An) Address register indirect

(An)+ Address register indirect with
post-increment

- (An) Address register indirect with pre-
decrement

d16(An) Address register indirect with

16-bit displacement
d8(An,Xn) Address register indirect with
8-bit displacement and index

nnn.W Absolute short

nnn.L Absolute long

#cnum Immediate

d16(PC) PC indirect with 16-bit displace-
ment

d8(PC,Xn) PC indirect with 8-bit displace-
ment and index

218

68000 Instruction Reference

ABCD Add Binary Coded
Decimal with Extend
Syntax: CCR: ZCX
ABCD Dn,Dn
ABCD -(An),-(An)

This instruction affects only eight bits of data. It adds
the source operand, the value in the eXtend bit, the
byte in the destination, and stores the result in the
destination operand.

ADD Add Binary

Syntax: CCR: NZvCX
ADD.s eal,Dn
ADD.s Dn,ea2

where eal is

Dn -(An) d18(PC,Xn)
An d18(An) d8(PC,Xn)
(An) d8(An,Xn) nnn. W
(An)+ Benum> nnn. L

where ea?2 is

-(An) d18(PC,Xn)

d16(An) d8(PC,Xn)
(An) d8(An,Xn) nnn . W
(An)+ Be¢num» nnn,L

This instruction adds the source and destination
operands together and stores the result in the
destination operand.

NOTE: at least one of the operands must be a data
register.

219

THE ASSEMBLY LANGUAGE WORKSHOP

ADDA Add Address
Syntax: CCR: Unchanged
ADDA.s ea,An

where €a is
Dn -(An) d18(PC,Xn)
An di8(An) d8(PC,Xn)
(An) d8(An,Xn) non.W
(An)+ Hanum» nnn.L

This instruction adds the source operand to the
value in an address register.

NOTE: this instruction permits only word and long-
word data sizes.

ADDI Add Immediate

Syntax: CCR: NZvCX
ADDI .s Benum> ,ea

where €8 is

Dn -{An) d18(PC,Xn)
d18(An) d8(PC,Xn)

(An) d8(An,Xn) nnn, W

(An)+ Honum» nnn.L

This adds the immediate value of the source

operand to the destination operand and stores the
result in the destination.

220

68000 Instruction Reference

ADDQ Add Quick
Syntax: CCR: NZvCX
ADDQ.s ®cnum>,ea
where €4 is
Dn -(An)
An d18(An)
(An) d8(An,Xn) nnn W
(An)+ nnn.L

This instruction adds a value between 1 and 8 to the
destination operand and stores the result in the

destination.
ADDX Add Binary With Extend
Syntax: CCR: ZCX

ADDX.s Dsrc,Ddest
ADDX.s ~-{Asrc),-(Adest)

This instruction adds the value in the source
operand, the value of the eXtend bit, the destination,
and stores the value in the destination.

221

THE ASSEMBLY LANGUAGE WORKSHOP

AND Logical AND

Syntax: CCR: NZvVC
AND.s ea,Dn
AND.s Dn,ea

where the destination is a data register, ea is

Dn -(An) d18(PC,Xn)
di18(An) d8(PC,Xn)

(An) d8(An,Xn) nnn.W

(An)+ 8apum» nnn.L

where the source is a data register, €a is

-(An)

d16(An)
(An) d8(An,Xn) nnn.W
(An)+ nnn.L

This instruction performs a bitwise logical AND with
the source and destination operands. The result is
stored in the destination.

NOTE: At least one of the operands must be a data

register.
ANDI AND immediate
Syntax: CCR: NZvVC
ANDI.s Bcpum> ,ea

where €8 is

Dn -(An)

d18(An)
(An) d8(An,Xn) nnn W
(An)+ nnn.L

This instruction performs a bitwise logical AND with
the immediate source operand and stores the result
in the destination.

222

68000 Instruction Reference

ANDIto CCR AND Immediate Data To

the Condition Codes

Syntax: CCR: NZvCx
AND1 B<num> ,CCR

This instruction performs a bitwise logical AND with
the immediate source operand and the CCR. This

instruction may be used to clear one or more of the
condition code bits.

ANDI to SR AND Immediate To the
Status Register
(Privileged)

Syntax: CCR: NZVCX
ANDI ®<num>,SR

This instruction performs a bitwise logical AND with
the 16-bit immediate source and the status register.
This may only be executed in supervisor mode.

223

THE ASSEMBLY LANGUAGE WORKSHOP

ASL and ASR Arithmetic Shift Left And

Right
Syntax: CCR: NZVCX
ASL.s Dn,Dn
ASL.s Benum> ,Dn
ASL ea
ASR.s Dn,Dn
ASR.s Bcnum> ,Dn
ASR ea
whereea is
-(An)
di6(An)
{An) d8(An,Xn) nnn.W
(An)+ nnn.L

These instructions will shift contents of the
destination operand a given number of times. If the
destination is a data register, the number of shifts
may be 1-8. If the destination is 2 memory location it
may be shifted only one bit at a time.

224

68000 Instruction Reference

Bcc

Syntax:
Bce

Branch On Condition
Code

CCR: Unchanged

displacement

The 15 different branch instructions are:

BHI --
BLS --
BCC --
BCS --
BNE --
BEQ --
BVC --
BVS --
BPL --
BMI --
BGE --
BLT --
BGT --
BLE --
BRA --

Branch Hi

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

if
on
on
on
if
it
it
it
it
if
if
if
if

Low or Same

Carry Clear

Carry Set

Not Equal

Equal

Overflow Clear
Overflow Set

Plus

Minus

Greater Than or Equal
Less Than

Greater Than

Less Than or Equal

Branch Always

These instructions test a specific bit in the CCR and
branch if that bit is set.

225

THE ASSEMBLY LANGUAGE WORKSHOP

BCHG
Syntax:
BCHG. s
BCHG. s
where ea is
Dn
(An)
(An)+

Test a Bit and Change

CCR: Z
Dn,ea
Benum> ,ea
~-{An)
di18(An)
d8(An,Xn) nnn.W
nnn.L

and where sis .B or .LL
**+*.Lis only valid when ea is a data register

This instruction tests a bit value, moves the bit value
into the Zero flag, and flips the value of the bit. The
operand may be 32 bits wide if it resides in a data
register and only eight bits wide if it is in memory.

BCLR
Syntax:
BCLR.s
BCLR.s

wherc ea is
Dn

(An)
(An)+

Test a Bit and Clear

CCR: Z
Dn,ea
Benpum> ,ea
-(An)
d18(An)
d8(An,Xn) nnn W
nnn.L

and where s is .B or .LL
*** L is only valid when €4 is a data register

This instruction tests a bit, sets the Zero flag, and

clears the bit.

226

68000 Instruction Reference

BSET
Syntax:
BSET.s
BSET.s
where €4 is
Dn
(An)
(An)+

Test Bit and Set
CCR: Z
Dn,ea
Bepum> ,ea

-(An)

d18(An)

d8(An,Xn) nnn. W
nnn.L

This instruction tests the value of a bit, sets the Zero
flag, and sets the bit’s value to 1.

BSR
Syntax:
BSR

Branch to Subroutine

CCR: Unchanged
of fset

This instruction branches to a subroutine at the
address: OFFSET + PC + 2. The offset is an address
label defined in the program’s text area.

BTST
Syntax:
BTST.s
BTST.s

where €4 is
Dn

(An)
(An)+

Test Bit
CCR: Z

Dn,ea

B<num>,ea

-(An) d18(PC,Xn)
d16(An) d8(PC,Xn)
d8(An,Xn) nnn W

nan.L

This instruction tests the value of a bit and sets the
Zero flag accordingly.

227

THE ASSEMBLY LANGUAGE WORKSHOP

CHK Check Register Against
Boundaries
Syntax: CCR: N
CHK.s ea,Dn
where €4 is
Dn -(An) d18(PC,Xn)
d18(An) d8(PC,Xn)
(An) d8(An,Xn) nnn. W
(An})+ Benum> nnn.L

This instruction compares the source operand toa
data register. If the value in the data register is
negative or greater than the source operand the
68000 traps through exception vector #6.

CLR Clear an Operand
Syntax: CCR: NZvC
CLR.s ea

where €48 is

Dn -(An)

di18(An)
(An) d8(An,Xn) nan W
(An)+ nnn.L

This instruction zeroes (moves a zero to) the
destination.

228

68000 Instruction Reference

CMP Compare
Syntax:
CMP.s ea,Dn

where €4 is

Dn -{An)

An di16(An)

(An) d8(An,Xn)

{An)+ " num>

CCR:NZVC

d18(PC,Xn)
d8(PC,Xn)
nnn W
nnn,L

This instruction subtracts the source operand from a
data register (the destination) and sets the CCR

accordingly.
CMPA Compare Addresses
Syntax: CCR: NZvVC
CMPA . s ea,An
where €4 is
Dn -{(An) d18(PC,Xn)
An d18(An) d8(PC,Xn)
(An) d8(An,Xn) nnn. W
(An)+ 8<num» nnn.L

This instruction subtracts the source operand from
an address register (the destination) and sets the CCR

accordingly.

229

THE ASSEMBLY LANGUAGE WORKSHOP

CMPI Compare Immediate
Syntax: CCR: NZvC
CMPI.s Bepum>,ea
where €4 is
Dn -(An) d18(PC,Xn)
di16(An) d8(PC,Xn)
(An) d8(An,Xn) nnn.W
(An)+ nnn.L

This instruction subtracts the immediate source
operand from the destination operand and sets the
CCR accordingly.

CMPM Compare Memory

Syntax: CCR: NZVC
CMPM. s (An)+, (An)+

This instruction subtracts the value pointed to by the
source address register from the value pointed to by
the destination address register and sets the CCR
accordingly.

230

68000 Instruction Reference

DBcc

Syntax:
DBcc

The mnemonics

DBT --

DBF --
DBHI --

DBLS --
DBCC --
DBCS --
DBNE --
DBEQ --
DBVC --
DBVS --
DBPL --
DBMI --
DBGE --
DBLT --

DBGT --
DBLE --

Test, Decrement, and
Branch

CCR: Unchanged
Dn,displacement

for this instruction follow:

True

False

High

Low or Same

Carry Clear

Carry Set

Not Equal

Equal

Overflow Clear
Overflow Set

Plus

Minus

Greater Than or Equal
Less Than

Greater Than

Less Than or Equal

This instruction is used to perform a loop. The loop

terminates when t
condition or the d

he CCR matches the given
ata register used as the loop

counter becomes -1. (This instruction decrements
the data register with each iteration of the loop.)
Most assemblers will accept DBRA in place of DBF.

The displacement
program.

in this instruction is a label in the

231

THE ASSEMBLY LANGUAGE WORKSHOP

DIVS Signed Divide
Syntax: CCR: NZVC
DIVS.W ea,Dn
where €a is
Dn -(An) d16(PC,Xn)
d18(An) d8(PC,Xn)
{An) d8(An,Xn) nnn. W
(An)+ Henum» nnn. L

This instruction divides the destination operand by
the source and stores the result in the destination.
This performs signed division.

DIVU Unsigned Divide
Syntax: CCR: NZVC
DIVU.W ea,Dn

where €8 is

Dn -(An) d18(PC,Xn)}
di18(An) d8(PC,Xn)

(An) d8(An,Xn) nnn W

(An)+ Henum> nnn.L

This instruction divides the destination operand by
the source operand and stores the result in the
destination. This performs unsigned division.

232

68000 Instruction Reference

EOR
Syntax:
EOR. s

where €a is
Dn

(An)
(An)+

Exclusive OR

CCR: NZvVC
Dn,ea
-(An)
d16(An)
d8(An,Xn) nnn W
nnn.L

This instruction performs a bitwise Exclusive OR
with the contents of the data register and the
destination operand. The result is stored in the

destination.

EORI

Syntax:

EORI .s

where €48 is
Dn

(An)

(An)+

Exclusive OR Immediate

CCR: NZVC
Bcpum>,ea
-{An)
d16(An)
d8(An,Xn) nnn.W
nnn.L

This instruction performs a bitwise Exclusive OR
with the immediate source operand and the contents
of the destination. The result is stored in the

destination.

233

THE ASSEMBLY LANGUAGE WORKSHOP

EORI to CCR Exclusive OR Immediate

Data to the Condition
Codes

Syntax: CCR: NZVCX
EORI Be<pum» ,CCR

This instruction performs a bitwise Exclusive OR
with the immediate source operand and the
condition codes register. This is an excellent way to
invert a number of the CCR’s flags at once.

EORI to SR Exclusive OR Immediate
Data to Status Register
(Privileged)

Syntax: CCR: NZVCX
EORI ®<pum>,SR

This instruction performs a bitwise Exclusive OR
with the immediate source operand and the status
register. This instruction may only be executed in
supervisor mode.

EXG Exchange Registers

Syntax: CCR: Unchanged
EXG R1,R2

This instruction swaps the values of any two
registers. The instruction swaps all 32 bits. You may
swap data registers, address registers, or a
combination.

234

68000 Instruction Reference

EXT Sign Extend

Syntax: CCR: NZvC
EXT.s Dn

This instruction sign extends the data register’s
value.

ILLEGAL Take lllegal Instruction
Trap
Syntax: CCR: Unchanged
ILLEGAL

This instruction causes the 68000 to trap through
exception vector 4 (the Illegal instruction vector).

JMP Jump

Syntax: CCR: Unchanged
JMP ea

where €4 is

di18(PC,Xn)
d18(An) d8(PC,Xn)
(An) d8(An,Xn) nnn.W
nnn.L

This instruction causes program execution to JuMP
to the specified address.

235

THE ASSEMBLY LANGUAGE WORKSHOP

JSR

LEA

Jump to Subroutine
Syntax: CCR: Unchanged
JSR ea
where €a is
d168(PC,Xn)
d18{An) d8(PC,Xn)
(An) d8(An,Xn) nnn.W
nnn.L

This instruction calls the subroutine at the specified
address. When the subroutine terminates program

execution begins at the instruction immediately after
the JSR.

Load Effective Address

Syntax: » CCR: Unchanged
LEA ea,An

where €8 is

d16(PC,Xn)
d16(An) d8(PC,Xn)
(An) d8(An,Xn) nnn.W
nnn.L

This instruction calculates an effective address and
moves that address into the specified address
register. Since this calculation is performed at run-
time use of this instruction can help you write
relocatable code.

236

68000 Instruction Reference

LINK Link and Allocate Space

Syntax: CCR: Unchanged
LINK An,®cpum»

This instruction pushes the contents of the given
address register onto the stack, moves the value of
the stack pointer into the address register, and then
adds the signed 16-bit immediate value to the stack

pointer. Use the UNLK instruction to reverse this
process.

LSL and LSR Logical Shift Left and

Right
Syntax: CCR: NZvCX
LSL.s Dn,Dn
LSL.s Bcpum> ,Dn
LSL ea
LSR.s Dn,Dn
LSR.s Bcpum> ,Dn
LSR ea
where €8 is
-(An)
d18(An)
(An) d8(An,Xn) nnn.W
{(An)+ nnn,L

These instructions shift the contents of the
destination operand the given number of times. The
restrictions of the ASL/ASR instructions also apply
here.

237

THE ASSEMBLY LANGUAGE WORKSHOP

MOVE Move Data
Syntax: CCR: NZVC
MOVE . s eal,ea?

where eal is

Dn -{An) d18(PC,Xn)
An di18(An) d8(PC,Xn)
(An) d8(An,Xn) nnn.W
(An)+ Honum» nnn.L

and where ea?2 is

Dn -{An)
d18(An)
d8(An,Xn) nnn.W
{An)+ nnn.L

This instruction moves the contents of the source
operand to the destination operand thus destroying
the destination.

MOVEA Move to Address Register
Syntax: CCR: Unchanged
MOVEA.s ea,An

where €a is

Dn -(An) d18(PC,Xn)
An d16(An) d8(PC,Xn)
(An) d8(An,Xn) nnn. W
(An)+ #e¢num> nnn.L

This instruction moves either the word or long-word
at the cffective address into an address register.

238

68000 Instruction Reference

MOVE to CCR Move to the Condition
Codes Register

Syntax: CCR: NZVCX
MOVE ea,CCR
where €4 is
Dn -{An) d18(PC, Xn)
d16(An) d8(PC,Xn)
(An) d8(An,Xn) nnn. W
(An)+ 8cnum» nnn.L

This instruction moves the word-sized source
operand to the CCR. Only the least significant five
bits of the source are actually used; the rest are
ignored.

MOVE from SR Move From the Status

Register
Syntax: CCR: Unchanged
MOVE SR, ea
where €8 is
Dn -(An)
d16(An)
(An) d8(An,Xn) nnn. W
(An)+ nan.L

This instruction moves a copy of the contents of the
status register to the destination operand.

239

THE ASSEMBLY LANGUAGE WORKSHOP

MOVE to SR Move to the Status
Register (Privileged)

Syntax: CCR: NZVCX
MOVE ea,SR
where €a is
Dn -{An) d18(PC,Xn)
d16(An) d8(PC,Xn)
(An) d8(An,Xn) nnn.W
(An)+ Ycnum» nnn.L

This instruction moves the word-sized source
operand into the status register. This instruction may
be executed only in supervisor mode.

MOVE USP Move To/From the User
Stack Pointer (Privileged)

Syntax: CCR: Unchanged
MOVE USP,An
MOVE An,USP

This instruction moves the contents of the user stack
pointer to or from a given address register. This
instruction may be executed only in supervisor
mode.

240

68000 Instruction Reference

MOVEM Move Mutltiple

Syntax: CCR: Unchanged
MOVEM.s reg.list,ea

MOVEM.s ea,reg.list

where €43 is
Dn -(An) d18(PC,Xn)
An d16(An) d8(PC,Xn)
(An) d8(An,Xn) nnn W
(An)+ Benum» nnn.L

These instructions move the values of specified
registers to or from consecutive memory locations.

MOVEP Move Peripheral Data
Syntax: CCR: Unchanged
MOVEP.s Dn,disp(An)
MOVEP.s disp(An)

This instruction moves data between a data register

and alternating bytes of memory. (These would be
all odd or even addresses.)

MOVEQ Move Quick

Syntax: CCR: NZvC
MOVEQ B<num> ,Dn

This instruction moves a signed 8-bit number into a
data register. The 8-bit value is sign extended
through all 32 bits of the register.

241

THE ASSEMBLY LANGUAGE WORKSHOP

MULS Signed Multiply
Syntax: CCR: NZVC
MULS.W ea,Dn
where €4 is
Dn -(An) d16(PC,Xn)
d18(An) d8(PC,Xn)
(An) d8(An,Xn) nnn W
(An)+ Henum» nnn.L

This instruction performs a signed multiplication of
the source and destination operands. It stores the
signed result in the destination. The source operand
is 16-bits wide. It is multiplied with the low 16-bits of
the destination, producing a 32-bit product.

MULU Unsigned Multiply
Syntax: CCR: NZVC
MULU.W ea,Dn

where €48 is

Dn -{An) d18(PC,Xn)
d16{An) d8(PC,Xn)

(An) d8(An,Xn) nan. W

(An)+ Henum» nnn. L

This instruction multiplies the 16-bit unsigned
source with the lower 16-bits of the unsigned
destination and stores the unsigned result in the
destination. The product is a 32-bit unsigned integer.

242

68000 Instruction Reference

NBCD Negate Decimal With
Extend
Syntax: CCR: NZVCX
NBCD ea
where €8 is
Dn -{An)
di8(An)
(An) d8(An,Xn) nnn W
(An)+ nnn,L

This instruction subtracts the value of the eXtend
flag and the destination from zero and stores the
result back into the destination. This instruction uses
BCD (Binary Coded Decimal) arithmetic.

NEG Negate

Syntax: CCR: NZvCX
NEG. s ea

where ea is

Dn -{An)

d18(An)
(An) d8(An,Xn) nnn W
(An)+ nnn.L

This instruction calculates the two’s complement of
the operand. It performs this task by subtracting the
operand from zero. The result is stored back in the
operand.

243

THE ASSEMBLY LANGUAGE WORKSHOP

NEGX Negate With Extend
Syntax: CCR: NZvCX
NEGX. s ea

where €8 is

Dn -(An)

d16(An)
(An) d8(An,Xn) non W
(An)+ nnn,L

This instruction subtracts the value of the eXtend
flag and the operand from zero. It then places the
result back into the operand.

NOP No Operation

Syntax: CCR: Unchanged
NOP

This instruction does not perform a useful function
except consume a clock cycle. Its most common uses
are for timing loops and replacing questionable
instructions while debugging.

244

68000 Instruction Reference

NOT

OR

Syntax:
NOT

where €48 is
Dn

(An)
(An)+

Logical Complement

ea

-(An)
d16(An)
d8(An,Xn)

CCR: NZVC

nnn.W
nnn.L

This instruction performs a logical bitwise

complement of the operand. It turns each 1 into a 0
and each 0 into a 1. (This is the same as EOR’ing the
operand with $FFFFFFFF.)

Syntax:
OR.s
OR.s

where eal is

Dn

(An)
(An)+

where €a2 is

(An)
(An)+

Inclusive Logical OR

eal,Dn
Dn,ea?

-{An)}
d16(An)
d8(An,Xn)
Bcnum»

-(An)
d168(An)
d8(An,Xn)

CCR: NZvVC

d18(PC,Xn)
d8(PC,Xn)
nnn.W
nnn.L

nnn . W
nan.L

This instruction performs a bitwise logical OR with
the source and destination operands and stores the

result back into the destination.

245

THE ASSEMBLY LANGUAGE WORKSHOP

ORI Inclusive OR Immediate
Syntax: CCR: NZVC
ORI.s Hepum> ,ea

where €8 is

Dn -(An)

d18(An)
(An) d8(An,Xn) nnn. W
(An)+ nnn.L

This instruction performs a bitwise logical OR with
the immediate source operand and the destination
operand, storing the result back into the destination.

ORIl to CCR Inclusive OR Immediate to

Condition Codes Register
Syntax: CCR: NZVCX
ORI B<num> ,CCR

This instruction performs a bitwise logical OR with
the immediate data and the CCR.

ORI to SR Inclusive OR Immediate to
Status Register
(Privileged)
Syntax: CCR: NZVCX
ORI Hcnum>,SR

This instruction performs a bitwise logical OR
between the immediate data and the SR. This
instruction may be executed only in supervisor
mode.

246

68000 Instruction Reference

PEA Push Effective Address
Syntax: CCR: Unchanged
PEA ea
where €4 is
d16(PC, Xn)
d18(An) d8(PC,Xn)
(An) d8(An,Xn) nnn W
nnn.L

This instruction calculates an actual 32-bit address
from the given effective address and then pushes the
calculated address onto the stack.

NOTE: This instruction pushes the address onto the
stack NOT the value at the address!

RESET Reset External Devices
(Privileged)
Syntax: CCR: Unchanged
RESET

This instruction tells the 68000 to raise its output
signal, RESET, thus signaling external devices to
perform a reset. This instruction does not interfere
with the 68000. After the RESET instruction has
executed, the processor moves to the next
instruction. This instruction may be executed only in
supervisor mode.

247

THE ASSEMBLY LANGUAGE WORKSHOP

ROL and ROR Rotate Left and Right

Syntax: CCR: NZVC
ROR.s Dn,Dn
ROR.s Yc<num> ,Dn
ROR ea
ROL.s Dn,Dn
ROL.s B<pum> ,Dn
ROL ea

where €8 is

-(An)

d16(An)
(An) d8(An,Xn) non.W
(An)+ nnn.L

These instructions rotate the bits in the operand
either left or right. If the destination is a register, the
shift may be from one to eight bits. If the destination
is a memory location only one bit shifts are allowed.

248

68000 Instruction Reference

ROXL & ROXR Rotate Left and Right

With Extend
Syntax: CCR: NZVCX
ROXR. s Dn,Dn
ROXR. s ®<num>,Dn
ROXR ea
ROXL.s Dn,Dn
ROXL.s B<num> ,Dn

ROXL ea
where €4 is
-{An)
d16(An)
(An) d8(An,Xn) nnn. W
(An)+ nan.L

These instructions rotate bits in the operand either
left or right, just like ROL/ROR, except the eXtend
bit is included in the rotatation allowing
multiprecision shifts longer that 32 bits. The
restrictions of ROR/ROL apply here as well.

RTE Return From Exception
(Privileged)
Syntax: CCR: NZVCX
RTE

This instruction restores the state of the 68000 after
an exception routine has been executed. At the very
least the SR and PC are restored (other registers may
be restored depending on the contents of the stack
and internal processor state). This instruction may be
executed only in supervisor mode.

249

THE ASSEMBLY LANGUAGE WORKSHOP

RTR Return and Restore
Condition Codes
Syntax: CCR: NZVCX
RTR

This instruction removes a word from the stack and
then moves the lowest five bits of the word into the

CCR. Then the 68000 pulls a longword from the
stack and transfers that value into the PC. Program
execution continues at the new PC.

RTS Return From Subroutine
Syntax: CCR: Unchanged

RTS

This instruction pulls a longword from the stack and
moves it into the PC. Program execution then
continues at the new PC. (This is the complement to
the JSR and BSR instructions.)

SBCD Subtract BCD With Extend
Syntax: CCR: NZVCX
SBCD Dn,Dn
SBCD -(An),-(An)

This instruction subtracts the value of the eXtend
flag and the source operand from the destination
and stores the result in the destination. The
instruction uses BCD arithmetic.

250

68000 Instruction Reference

Scc

Syntax:
Scc

where €48 is
Dn

(An)
(An)+

Set According to

Condition
CCR: Unchanged
ea
-(An)
d18(An)
d8(An,Xn) nnn W
nan.L

The mnemonics for this instruction follow:

SvC
Svs
SPL
M1
SGE
SLT
SGT
SLE

True

False

High

Same or |ow
Carry Clear
Carry Set

Not Equal
Equal

Overflow Clear
Overflow Set
Plus

Minus

Greater or Equal
Less than
Greater than
Less or Equal

This instruction tests the state of a given condition.
If the condition is TRUE, the processor sets the
destination byte to all ones; if the condition is
FALSE, the processor sets the byte to all zeroes.

251

THE ASSEMBLY LANGUAGE WORKSHOP

STOP Load Status Register and
Stop (Privileged)
Syntax: CCR: NZvCX
STOP H<pum>

This instruction loads the 16-bit immediate value
into the status register and stops the further
execution of instructions.

SUB Subtract Binary
Syntax: CCR: NZVCX
SUB.s eal,Dn
SUB. s Dn,ea?2

where eal is

Dn -(An) d18(PC,Xn)
An di6(An) d8(PC,Xn)
(An) d8(An,Xn) nnn.W
(An)+ Hanum» nnn.L

and where ea2 is

-{An)
di6(An)
(An) d8(An,Xn)
(An)+ nnn. W

nnn.L

This instruction subtracts the source operand from
the destination and stores the result back into the
destination. At least one of the operands must be a
data register. If an address register is used as an
operand, the only valid data sizes are word and
longword.

252

68000 Instruction Reference

SUBA Subtract Address
Syntax: CCR: Unchanged
SUBA.s ea,An

where €4 is
Dn -{An) d18(PC,Xn)
An di18(An) d8(PC,Xn)
(An) d8(An,Xn) nnn.W
(An)+ Henum» nnn.L

This instruction subtracts a word or longword from
an address register and stores the result back into the
address register. The result is always 32-bits wide,

SUBI Subtract Immediate
Syntax: CCR: NZVCX
SUBI . s Bcpum> ,ea

where €48 is

Dn -(An)

di8{An)
(An) d8(An,Xn) nan. W
(An)+ nnn,.L

This instruction subtracts the immediate source data
from the destination and stores the difference back
into the destination.

253

THE ASSEMBLY LANGUAGE WORKSHOP

SUBQ Subtract Quick
Syntax: CCR: NZvVCX
SUBQ Bepum> ,ea

where €4 is
Dn -{An)
An di18{(An)
(An) d8(An,Xn) nnn.W
(An)+ nnn.L

This instruction subtracts the immediate source
data, which can have a value from 1 to 8, from the
destination and stores the result back into the

destination.
SUBX Subtract With Extend
Syntax: CCR: NZVCX

SUBX.s Dn,Dn
SUBX.s -(An),-(An)

This instruction subtracts both the value of the
eXtend flag and the source operand from the
destination. The result is stored in the destination.

SWAP Swap Register Halves
Syntax: CCR: NZvVC
SWAP Dn

This instruction exchanges the high and low words
of a data register.

254

68000 Instruction Reference

TAS Indivisible Test and Set
Syntax: CCR: NZVC
TAS ea

where €a is

Dn -(An)

di18(An)
(An) d8(An,Xn) nnn W
(An)+ nnn.L

This instruction tests a byte sized operand, sets the N

and Z flag accordingly, and sets bit 7 of the operand
to 1.

TRAP Trap Through the
Exception Table
Syntax: CCR: Unchanged
TRAP Bevector»

This instruction pushes the PC, SR and exception
table vector onto the stack, in that order, and calls
the exception routine. After the TRAP has executed
the processor is in supervisor mode.

TRAPV Trap on Overflow

Syntax: CCR: Unchanged
TRAPV

This instruction traps through exception number 7
if the oVerflow flag is set. If the V bit is not set the
program executes normally.

255

THE ASSEMBLY LANGUAGE WORKSHOP

TST

Test an Operand
Syntax: CCR: NZvC
TST.s ea
where €4 is
Dn ~-(An) d18(PC,Xn)
d16{An) d8(PC,Xn)
(An) d8(An,Xn) nnn W
(An)+ nnn.L

This instruction tests the operand (by comparing it
to zero) and sets the Negative and Zero flags
accordingly. The operand is not altered in any way.

UNLK Unlink and Deallocate
Stack
Syntax: CCR: Unchanged
UNLK An

This instruction is the complement of the LINK
instruction. This instruction first loads the SP with
the value in the given address register. A longword is
then pulled from the new stack and stored back into
the original address register. (This process removes
the frame created by the LINK instruction.)

256

A

Absolute addressing 36, 52

abcd 219

add 63,219

adda 220

addi 65, 220

addq 48, 221

addx 221

Addresses 8

Addressing modes 36-37

Address registers 33

Address register direct
addressing 36, 48

Address register indirect
addressing 36

Address register indirect
addressing with
displacement 36, 122-123

Address register indirect
addressing with index 36,
123-124

Address register indirect
addressing with post-
increment 36, 77-78

Address register indirect
addressing with pre-
increment 36, 45

AND 88-89, 113

and 222

andi 88, 89, 222-223

Arrays 72-73

ASCIl 49, 61, 62, 63-65, 90-92,
93-94

INDEX

asl 224
asr 224
Assembler directives 15

B

BASIC 1, 2-3

beq 50

Binary numbers 24, 25-26,
27-29

Bit 22

bcec 225

bchg 226

bclr 226

bcs 225

beq 225

bge 149, 225

bgt 62, 225

bhi 225

ble 225

bls 225

bit 62, 225

bmi 64, 225

bne 225

bpl 225

bra 50, 225

bset 227

bsr 73,227

bss 41-42,86

btst 227

bve 225

bvs 225

Buffers 86, 153

Byte 22

257

THE ASSEMBLY LANGUAGE WORKSHOP

C dbpl 231
dbra 76-77, 231
dbt 231
Carry bit 34 dbvc 231
Cconin 35-36, 48-49 dbvs 231
Cconrs 95-96 dc 16,42, 43, 86-87
Cconws 47,63 dcb 87
chk 228 divs 232
clr 91, 228 divu 232
cmp 49-50, 62, 229 ds 86,87
cmpa 229 Decimal numbers 24, 28-29, 30
cmpi 95, 230 DEGAS files 187-188
cmpm 230 divu 89
Comments 15, 80
Comparisons 49-51 E
Compiled languages 2, 3
Compiling 3
Condition codes 34, 49-50 Effective address 63
Conditional assembly 146-147 endc 146
Constants 42-44, 88, 149 endm 111
Converting numbers 26-31, eor 233
60-61, 63-65, 90-92, 93-94 eori 233-234
Cpmos 149 equ 42
Cprnout 151-152 even 72
exg 234
D ext 235
Extended bit 34, 35
data 16, 41 F

Data registers 33
Data register direct addressing

36,51
Data sizes 21-23 fail 146
dbcc 231 Fclase 151
dbcs 231 Fetching 9
dbeq 76-77, 231 Fields, instruction 15
dbf 231 Fcreate 167
dbge 231 Fopen 148-149
dbgt 231 Fread 150-151
dbhi 231 Function calls 35-36
dble 231 Fwrite 167,171
dbls 231
dblt 231
dbmi 231
dbne 231

258

Index

G

Getrez 189-190

H

Hexadecimal digits 26

Hexadecimal numbers 24, 26,
27

High byte 23

High level languages 1, 2

High word 23

I

ifc 146,147

illegal 235

Immediate addressing 36, 45

Immediate values 44

Instruction fields 15

Instruction suffixes 37-38

Interpreted languages 2

integers 60, 61, 63, 64, 90-92,
93-94

Interpreting numbers 59-60

J

Jmp 235
Jsr 236

L

Labels 7, 15-16

lea 236

link 237

Least significant byte 23
Local labels 92-93

Logical screen 192, 196-197
Long word 23

Looping 76-77
Low byte 23
Lowword 23
Isl 118, 237

Isr 114-115, 237

M

Machine language 1, 3-4
macro 111

Macros 110-112, 146-147
mexit 146

Mnemonic 5

move 38, 44, 238, 239-240
movea 238

movem 75,79, 241
movep 241

moveq 92, 241

Most significant byte 22
muls 242

mulu 94, 242

N

nbcd 243

neg 243

Negative bit 34, 35
negx 244

nop 244

not 245

null character 42
Number systems 24-26

(0

Opcode 15-16
Operand 15-16
or 119-120, 245
on 246

OR 119
Overflow bit 34

259

THE ASSEMBLY LANGUAGE WORKSHOP

P

Pallette 193-195

pea 166, 247

Physbase 193

Physical screen 192-193,
196-197

Printers 149-150, 151-152

Program counter 8-11, 34,
73-74

Program counter addressing
with displacement 36

Program counter addressing
with index 36

Programming style 65-66

Pterm0O 53

R

Random 88
Random numbers 87-90

Registers 7-8, 33-35, 63, 74-76

reset 247

Restoring registers 79
rol 248

ror 248

roxi 249

roxr 249

rte 249

rtr 250

ns 74,76, 250

S

Saving registers 63, 74-76
sbcd 250

scc 251

scs 251

seq 251

sf 251

sge 251

sgt 251

shi 251

sle 251

sis 251

sit 251

smi 251

sne 251

spl 251

st 251

stop 252

sub 252

suba 253

subi 253

subg 254

subx 254

svc 251

svs 251

swap 254

Scan codes 49

Screen flipping 195-197

Screen memory 190-193

Screen resolution 189-190, 196

Setcolor 193-195

Setpalette 195

Setscreen 195-197

sp 16,33

Stack 11-14, 35-36, 46-47, 48,
73-74,75

Stack pointer 12, 33, 45, 46-47,
48,74

Status register 34-35

Status register addressing 36

Strings 42-43,51-52, 72-73, 86

String arrays 72-73

Structured programming 79

subi 63, 64

Subroutines 73-76, 79-80

swap 90

T

Tables 72-73, 124-125
tas 255

text 15, 41

Tgetdate 112-113

260

Tgettime 116

Top-down programming
168-169

trap 35-36, 47, 88, 255

trapv 255

Tetdate 121

Tsettime 121

tst 91

U

Uninitialized data 86-87
unlk 256

| 4

Verifying input 62

w

Word 22

Z

Zero bit 34

261

‘ layton Walnum, the former editor of ST-Log and
ANALOG Computing, has been programming Atari

computers for a decade. In addition, he has sold more than 300
articles to such magazines as The Writer, Atari Explorer,
Compute, VideoGames & Computer Entertainment, and, of
course, ST-Log and ANALOG Computing. Now a full-time, free-
lance writer, he has published several books, including Beyond
the Nintendo Masters (Hayden Books), Master Populous (Sams),
The First Book of Works for Windows (Sams), and C-manship
Complete (Taylor Ridge Books). Mr. Walnum lives in
Connecticut, with his wife, Lynn, and their three children,
Christopher, Justin, and Stephen.

The ST

fissembly Language
Workshop

Clayton Walnum’s first programming book, C-manship Com-
plete, was praised as one of the best books of its kind. A complete
tutorial in both the basics of C and advanced GEM programming,
C-manship taught thousands of ST programmers how to make their
computers jump through the hoops. Now, Taylor Ridge Books is
proud to present Mr. Walnum’s newest work, The ST Assembly Lan-
guage Workshop, Volume 1, the first volume of a three-volume set.

In The ST Assembly Language ‘Workshop, Volume 1, you will
learn the basics of programming in 68000 assembly language, every-
thing you need to know to produce full-length programs on your
Atari ST. You'll learn the most commonly used 68000 instructions, as
well as how to handle disk files, printers, graphics, and more. Also
included in the book is a quick reference to the complete 68000
instruction set, providing you with the information you need to ex-
plore the language more fully.

If you want to tackle assembly language programming on your
ST, let The ST Assembly Language Workshop be your guide.

Praise for C-manship Complete

“Within its genre, it has all the earmarks of a classic text. "
--John Jainschigg, Atari Explorer

“C-manship is a terrific way to learn the C language in general and
ST programming in particular. Highly recommended|”

--Charles F. Johnson, CodeHead Software

“For learning C programming and the VDI, AES and GEM libraries on
the Atari ST, this book cannot be matched. ”

--Stephen D. Eitelman, Current Notes

T

Taylor Ridge Books

P.O. Box 78 U.S. $24. 95
Manchester, Connecticut 06045 Includes Disk!

(203) 643-9673

