

THE
ATARI130XE
HANDBOOK

In association with 'Personal Computer World'

Microcomputing for Business: A Csar's Guide
edited by DICK OLNEY
The Microcomputer Handbook: A Buyer's Guide
edited by DICK OLNEY
The Spectrum Handbook
TIM LANGDELL
The Intimate Machine
NEILFRUDE
35 Educational Programs for the BBC Micro
IAN MURRAY
Educational programs for the Dragon 32
IAN MURRAY
Educational Programs for the Spectrum
IAN MURRAY

Information Technology Yearbook
edited by PHILIP HILLS
The Database Primer
ROSE DEAKIN
Computer Gamesmanship
DAVID LEVY

Best ofPCW: Software for the BBC Micro
Best ofPCW: Software for the Dragon
Best ofPCW: Software for the Spectrum

The ORIC Handbook
PETER LUPTON and FRAZER ROBIT\SON
The Commodore 64 Handbook
PETER LUPTON and FRAZER ROBll'iSON

35 Programs for the Dragon 32
TIM LANGDELL

THE
ATARI130XE
HANDBOOK

PETER LUPTON & FRAZER ROBINSON

CENTURY COMMUNICATIONS

LONDO[\'"

Copyright <!:I Peter Lupton and Frazer Robinson 1985

All rights reserved

First published in Great Britain in 1985
by Century Communications Ltd
A division of Century Hutchinson

Brookmount House
62 - 65 Chandos Place

London
WC2N4NW

ISBN 0 712697055

Typeset by Spokesman, Bracknell
Printed in England by the Sidmouth and Devon Print Group

CONTENTS

Acknowledgements
Introduction

1 Computers and Programs
2 Setting up your 130XE
3 First Steps
4 Programming
5 Program Control
6 Data and Programs
7 Pieces ofStrings
8 Functions
9 Logical Thinking
10 Memory Management
11 Sound and Music
12 Characters
13 Graphics
14 Advanced Graphics
15 Player-Missile Graphics
16 Permanent Storage
17 Advanced Techniques

APPENDICES

1
3
8
18
31
45
52
63
70
74
77
105
136
153
173
189
197

2 BASIC Error Messages
3 Speeding Up Programs
4 Numbering Systems
5 Graphics Modes
6 Colour Codes
7 Character Codes
8 Display List Instructions
9 Useful Memory Locations
10 Music Frequencies
11 Musical Notation
12 System Memory Map

Index

215
223
225
230
231
232
234
236
238
239
243

244

ACKNOWLEDGEMENTS

Our thanks to all those who in some way or other
made this book possible. These include (in no
particular order):

Steph for helping to heat up the treacle pudding 5
years ago in Leeds, Alison and Steve for wet
weekends in Somerset, Mac Peters for the Irish
Moss, Don Gray for being on our side, Bronwyn
Doughty at Atari in Slough for our machines, Peter
Norton for his sleeves and finally Ian, Paul and
Kevin for the salads.

ABOUT THE AUTHORS

Frazer Robinson graduated from Leeds University
and works (occasionally) as a technical author and
programmer for a leading UK computer company.
He always wears his sleeves rolled up except when
it's too cold or he's wearing a T shirt.

Peter Lupton graduated from Imperial College,
London and is employed as a consultant by the
same company. As he owns several short sleeved
shirts it is sometimes difficult to tell how he's
wearing his sleeves.

INTRODUCTION

This book is an introduction to the ATARI 130XE
computer and its predecessors (Atari 400, 800 and
the XL range). It takes you from the first steps in
BASIC programming, pointing out the pitfalls and
explaining how to make the most of the features of
ATARI BASIC, through to a detailed under-
standing of how to write good, structured
programs, with many illustrative examples along
the way.

A chapter is devoted to the extensive sound
capabilities of the XL, including details of the
sound generating chip itself which allow you to
create a wider range of effects than is possible
using the standard commands.

Four chapters cover the incredible graphics
facilities of the machines, including many
spectacular examples and useful programs. An
advanced chapter shows how a detailed knowledge
of the way graphics are created leads to even more
exci ting effects.

A comprehensive set of appendices ensure that the
book will remain a valuable reference work long
after you have grasped the principles of the
machine.

We hope that you will find this book both enjoyable
and instructive and that it enables you to exploit
the potential of your Atari to the full.

PETER LUPTON and FRAZER ROBINSON 1985

CHAPTER 1

COMPUTERS AND PROGRAMS

Despite everything you may have heard about
computers being hyperintelligent machines which
are on the point of taking over the world, a
computer is not really intelligent at all. A
computer is at heart little more than a high-speed
adding machine, similar to an electronic calculator,
but with more sophisticated display and memory
facilities.

The feature that gives computers their immense
flexibility and potential is this: they can store lists
of instructions which they can read through and
obey at very high speed. These lists of instructions
are called programs, and most of this book is
concerned with how these programs are wri tten.

The computer instructions which form programs
must follow certain rules, or the computer will not
be able to understand them. The rules for writing
programs resemble the rules of a spoken language,
and so the set of instructions is often said to form a
programming language. There are many different
computer programming languages; the one that
the Atari 130XE understands (in common with
most other personal computers) is called BASIC.
(The name BASIC is an acronym for Beginners'
All-purpose Symbolic Instruction Code.)

A programming language is much simpler than a
human language because computers, for all their
power, are not as good at understanding languages
as people are. The BASIC language used by the

1

2 The Ateri 130XE Handbook

130XE has only about 80 words. The rules for
combining the words - the 'grammar' of the
language - are much more strict than for a
language like English, again because it is difficult
to make computers that can use languages in the
relaxed sort of way in which we speak English.
These may seem like limitations, but in fact as you
will discover BASIC is still a powerful language,
and it is possible to write programs to perform very
complex tasks.

Finally, remember this. Your computer will not do
anything unless you tell it to, so whatever happens,
you're the boss. Your Atari won't take over the
world unless you make it!

CHAPTER 2

SETTING UP YOUR 130XE

Before you can use your Atari 130XE, you must
connect it to a power supply and to a television. To

• 0 • I'11-1

"// / /// / / / / / / / / /// ...

Peripheral
port

Cartridge Expansion Monitor TV Power aNI
OFF

The Atari 130XE Connectors -Rear View

PORT 1 PORT2

The Atari 130XE Connectors - Side View

load and save programs you will also need to
connect a cassette unit to the 130XE. Before
connecting anything, make sure you know what
should plug in where. The diagrams above show all
the connector sockets of the 130XE.

3

4 The Ateri 130XE Handbook

There are several sockets through which the
130XE passes and receives information, and one
through which it gets the electrical power it needs
to operate. The sockets are clearly labelled, but
refer to the diagram before plugging anything in.

POWER

The 130XE needs a low voltage DC supply, and this
is obtained from the power supply unit supplied
with your computer. Plug this power supply into
the mains, and plug the output lead into the
computer at the socket labelled PWR. IN on the
back of the computer. Do not switch on yet!

DISPLAY

The Atari 130XE uses a standard domestic TV to
communicate with you, and for this almost any TV
will do. To get the best results, use a modern, good
quality colour TV. If you use a black and white set,
the colour displays produced by the computer will
appear as shades of grey.

To connect the 130XE to the TV, plug the supplied
aerial lead into the aerial socket of the TV, and
plug the other end into the socket labelled TV at
the back of the computer (check the diagram). The
lead has a different type of plug at each end, so take
care that you don't try to force in the wrong one.

CASSETTE RECORDER

The Atari 130XE, like most other small computers,
uses cassette tapes to save programs or
information, so that you don't have to type them in
every time you need them.

You cannot use an ordinary cassette recorder with
the 130XE: you must use the special Atari cassette
unit, which is available at extra cost. The power for

Setting up your 130XE 5

the cassette unit is taken from the adaptor supplied
with it. Plug this adaptor into the mains, and plug
the lead into the socket labelled POWER IN on the
back of the cassette unit. To connect the cassette
unit to the computer, plug one end of the lead
supplied into the socket marked PERIPHERAL on
the back of the computer, and the other end into
either of the sockets marked I/O CONNECTORS on
the back of the cassette uni t.

DISK DRIVE

Programs can also be stored on floppy disks. A
floppy disk drive is faster than a cassette unit and
is more flexible in use. (It is also much more
expensive). The disk drive connects to the socket
labelled PERIPHERAL at the rear of the computer.
The disk unit requires its own power supply and so
must also be plugged into the mains.

PRINTER

If you have a printer, its lead plugs into one of the
I/O CONNECTORS socket at the rear of the
cassette unit. If you are using a disk drive you
should plug the printer lead into the spare socket at
the rear of the disk drive. The printer also has a
separate mains lead.

SWITCHING ON

When you have connected everything together, you
are ready to switch on. The equipment must be
switched on in the right order, or there is a risk of
damaging the computer.

First switch on the TV.

6 The Ateri 130XE Handbook

Second, switch on the disk drive and then the
printer. Remember that you should never switch a
disk unit on or offwith disks inside it.

Last, switch on the computer itself, using the
switch on the back next to the PWR. IN socket.

Switching off should be carried out in the reverse
order: first the computer, then the disk drive and
printer, and last of all the TV.

TUNING

To get a display to appear on the TV screen, tune to
channel 36, or, on a pushbutton set, use a spare
channel and keep tuning until you see this appear
on the screen:

READY.

Ifyou are unable to tune the television, perform the
following checks:

Setting up your 130XE

1 Check that the aerial lead is connected.

7

2 Make sure the computer is connected to the
mains and switched on. The red power
indicator should be on.

3 Try tuning the TV again, and - if possible -
try a different TV.

With a little time and careful tuning, it is possible
to get a clear and stable display on nearly all types
of TV. Ifyou are unsuccessful, consult your dealer.

If you are thinking of buying a TV especially for
use with your 130XE, it's worthwhile taking the
computer to the shop, as certain types of TV seem
to give better results than others.

For the best quality display, you could buy a
monitor. This is a display specifically designed for
use with a computer, and contains no circuitry for
TV reception. However, a good colour monitor can
cost twice the price of the computer!

The 130XE provides a standard output for a
monitor, through the socket next to the TV socket.
Your dealer can advise you on the connecting leads
required.

CHAPTER 3

FIRST STEPS

Before you can make use of your Atari, you must
find out how to communicate with it.

Communication is a two-way process: you must
give the Atari instructions, and you must be able to
find out how it responds to them. You give
instructions using the keyboard, and the computer
displays its response on the TV screen.

Type the following phrase on the keyboard:

PRINT "ATARI XE"

You will see the letters appear on the screen as you
press the keys. The light blue square - called the
cursor - will move to indicate where the next letter
you type will appear. Nothing else happens
though: the computer has not yet obeyed your
instruction.

Now press the RETURN key. The words 'ATARI
XE' appear on the screen, and the word 'READY' is
printed to tell you that the computer is waiting for
your next command. If instead of printing 'ATARI
XE' the computer prints 0, or prints 'ERROR' and
reprints your instruction, it means you have made
a typing mistake. Try again!

So, to give the Atari a direct command you type it
at the keyboard and press RETURN. Try another
command:

8

First Steps

PRINT "HELLO!"

9

Again, the letters between the quotation marks are
printed. You can tell the Atari to print any
sequence ofletters, but you must remember to put
them between quotation marks. Try making it
print your name.

You don't have to type PRINT in full every time -
the command can be abbreviated to PRo (the full
stop must be included), or to a question mark. Try:

PRo "HELLO"

and:

? "ATARI"

(remembering to press RETURN after typing each
command, of course).

MANAGING THE DISPLAY

As well as typing on to the screen, there are a
number of different ways to alter the display.

The Cursor

The cursor can be moved around the screen using
the key labelled CONTROL at the left of the
keyboard and the four keys at the right with
arrows marked on them. To move the cursor, hold
down the CONTROL key and press one of the
arrowed keys.

This method of assigning two functions to a key is
similar to the use of a SHIFT key on a typewriter,
except that on the Atari computer it is taken a
stage further, with the CONTROL key as well as

10 The Atari 130XE Handbook

the SHIFT keys, so any of the other keys may have
three different uses.

Try moving the cursor around the screen (it will
continue to move for as long as you press the key).
Notice that when the cursor reaches one edge of the
screen it reappears at the opposite edge.

The TAB key is used in the same way as that on a
typewriter. Pressing TAB moves the cursor right
to the next preset position. You can set and clear
the tab stops by using SHIFT and TAB together to
add a new stop at the current horizontal position of
the cursor, and CONTROL and TAB together to
clear a stop. When you first switch on the Atari
there are five TAB stops set automatically, at eight
column intervals across the screen.

You will notice after a little experimenting that the
TAB key may move the cursor to different positions
on successive horizontal lines. This is because, as
you will discover later, it is possible to type an
instruction which extends over two or even three
lines of the screen, and the TAB key is moving to
preset points along this 114 character line.

Screen Scrolling

When you move the cursor down to the bottom of
the screen with the cursor keys, it will reappear at
the top and continue to move downwards.
However, if you use the RETURN key to move
downwards, when the cursor reaches the bottom
the display will begin to move upwards. This
movement is called scrolling. Anything which
disappears from the top of the screen can not be
recovered, as the screen will only scroll one way.

Corrections

First Steps 11

If you notice - before you press RETURN - that
you have made a typing mistake, you can correct
the error by using the cursor keys. For example, if
you type:

PRONT "ATARI XE"

and then realise your mistake, position the cursor
over the offending 0 using the cursor keys, and
type an 1. You can now press RETURN - there's
no need to move the cursor to the end of the line.
This is a general rule; pressing RETURN will tell
the computer to consider the line upon which the
cursor rests as a command. This means you must
be careful to delete any rubbish from the line before
pressing RETURN, or the Atari will not
understand the instruction.

To remove large amounts of text, use the DELETE
BACK SPACE key which will delete characters to
the left of the cursor for as long as it is held down.
If you hold down CONTROL and press DELETE
BACK SPACE characters to the right of the cursor
will be deleted. To insert text in a line, hold down
the CONTROL key and press the INSERT key -
this will create a space for your additions.

You can delete whole lines from the screen by
holding down SHIFT and pressing DELETE BACK
SPACE; using SHIFT and INSERT will insert
blank lines.

Clearing the screen

This can be done in three ways. You can hold down
the SHIFT key or the CONTROL key and press the
CLEAR key to simply clear the screen. Pressing
the RESET key (in the row at the right hand edge
of the keyboard) will clear the screen, return the

12 TheAtari 130XE Handbook

screen colour to blue and display the READY
message.

NUMBERS

As well as printing words, the Atari 130XE can
also handle numbers. Try:

PRINT 5

You can do ari thmetic:

Addition:

PRINT 5+3

Subtraction:

(RETURN)

PRINT 7-4

Multiplication:

PRINT 3*5

Division:

PRINT 15/6

Powers (exponentiation):

PRINT 31\2

You can ask the computer to calculate longer
expressions, such as:

PRINT 3*5 + (11+5)/(9-7) * 3/4

(the answer should be 21).

First Steps 13

In working out expressions like this, the computer
follows strict rules about the order in which the
various arithmetical operations are performed.

First The expressions inside brackets are
evaluated.

Second Any powers (squares, cubes, etc.)
indicated by 1\ are worked out.

Third The computer performs the
multiplications and divisions.

Fourth The additions and subtractions are
performed.

If you are unsure, put brackets round the bit you
want calculated first. Try the following examples,
and see if you can work out the answers yourself to
check that you know what the computer is doing.

PRINT 2 * 2 + 2 * 2
PRINT 2 + 2 * 2 + 2
PRINT 6 + 3 / 5 - 4
PRINT 3 1\ 2 + 4 1\ 3 / 2
PRINT (3 + 4) * 2

Both text and numbers can be printed by a single
PRINT command if they are separated by a semi-
colon. For example:

PRINT "3+5 = It; 3+5

DISPLAYINGCHARACTERS

There are several ways in which the characters
displayed may be altered.

14 The Atari 130XE Handbook

Upper and Lower Case Letters.

When you first switch on and type, all the letters on
the screen are displayed as capitals.tupper case).
The Atari can also display letters in lower case.

PRINT "THIS IS A TEST"

will print the message 'THIS IS A TEST'. Now,
press the CAPS key and type the line again:

print "this is a test"

The Atari will tell you you have made an error
because it can not understand commands typed in
small letters. You can however print both sizes:

PRINT "LARGE AND small letters"

is OK. You can use the SHIFT key to get the
upper case letters, or press CAPS again to return
normal upper case only mode.

Reverse Mode

Up to now, all our characters have been in light
blue on a dark blue background. You can invert
this by pressing the key at the bottom right of the
main part of the keyboard, with the black and
white triangle marking - the reverse key. From
now on, anything you type appears reversed, with
dark characters on a light background. To turn this
off press the reverse key again. The Atari will not
understand instructions typed in reverse video, but
reversed characters can be included in PRINT
commands.

Graphics Characters

The Atari has a set of graphical symbols which can
be displayed by holding down the CONTROL key

First Steps 15

and typing letters. To switch permanently to this
mode, press CONTROL and CAPS together. Any
letter key pressed will now display a graphics
character. Pressing SHIFT and CAPS restores the
normal upper case mode.

The command:

POKE 756, 204

will replace these graphics characters with the
International character set - a collection of
accented letters. The command:

POKE 756, 224

restores the graphics characters, as does pressing
the RESET key. The POKE command is described
in Chapter 10.

CONTROL CHARACTERS
When you use the cursor control keys, or the TAB
key, or any other of the controlling keys, the effect
is usually immediate. It is possible however to
write PRINT commands which perform the same
functions as the control keys. Try the key
sequence:

PRINT It[ESC][SHIFT & CLEAR]1t

(The symbol [ESC] means press the key marked
ESC. Don't type the brackets). Instead of the
screen clearing when the CLEAR key is pressed, a
control character (looking like '\J representing the
screen clear key is added to the print command.
When you press RETURN, and this control
character is printed, it has the same effect as
pressing CLEAR usually does.

16 The Afar; 130XE Handbook

You can use the ESC key in a similar way to insert
cursor controls, INSERT, DELETE BACK SPACE
and TAB actions into PRINT commands. The ESC
key affects only the next key to be pressed, so to
enter a sequence of commands, you must type, for
example:

PRINT II [ESC] [CLEAR] [ESC] [CONTROL/UP]

In the rest of this book we will, where possible, use
symbols such as i to represent the typing of ESC
and a control character.

If you want to display the control symbols on the
screen, pressing ESC twice will produce an ESC
control character to precede the control character
symbol to be displayed.

MULTIPLE COMMANDS

You can put more than one instruction in one
command if you separate the instructions with
colons (=). Try this:

PRINT "3+4=": PRINT 3+4

Or this:

PRINT PRINT "IS": PRINT
"AN": PRINT "ATARI 130XE": PRINT
"COMPUTER"

It doesn't matter if you run over the end of the line
on the screen, as long as there are no more than
three screen lines of characters (including the
spaces) in the command. A beep will sound to warn
you as you approach the maximum number of
characters.

Entering a number of instructions together like
this can get very cumbersome. In the next chapter

First Steps 17

we will discover a way of giving the computer a
large number of instructions all at once - in the
form of a program.

SUMMARY
PRINT instructs the 130XE to print something on
the screen.

PRINT "ABCDEFG"

prints the characters between the quotation marks.

PRINT 3+4

prints the result of the sum.

These can be combined:

PRINT "3+4*5+7 = "; 3+4*5+7

Upper and lower case characters, reversed
characters and graphics characters are available.

Control characters to clear the screen and move the
cursor can be included in a PRINT command.

Multiple Commands

A number of separate instructions may be included
on one line but must be separated by colons (:).

CHAPTER 4

PROGRAMMING

At the end ofChapter 3, we saw that it is possible to
give the computer a number of instructions at one
time by writing them one after another on one line.
We will now look at a much more powerful way of
doing this - using a program.

A computer program is a numbered list of computer
instructions which are entered together and stored
by the computer to be obeyed later. Let's look at the
last example of Chapter 3 and see how we can turn
it into a program. In Chapter 3 we had:

PRINT ""THIS": PRINT "IS": PRINT
"AN": PRINT "ATARI 130XE": PRINT
"COMPUTER"

Rewri tten as a program it would look like this:

10 PRINT" "THIS"
20 PRINT "IS"
30 PRINT "AN"
40 PRINT "ATARI 130XE"
50 PRINT "COMPUTER"

To enter the program into the computer, type each
line in turn, remembering to press RETURN after
each. You will see that the Atari does not obey the
instructions as they are entered, and that the
'READY' message does not appear after you press
RETURN. The computer recognises that each line

18

Programming 19

is part of a program because each begins with a
number, and the program is stored for future use.

When you have typed in all the lines, you can
inspect the stored program by typing LIST (and
pressing RETURN, of course). The instructions are
listed in numerical order on the screen. You can
list parts of the program by specifying line
numbers. For example:

LIST 30, 50

LIST 20

lists all lines from 30 to 50

lists only line 20

If a program is very long, it will occupy more lines
than there is space for on one screen, so the screen
scrolls upwards to display the program. The listing
can be suspended by holding down CONTROL and
pressing 1. Repeating the CONTROL 1 sequence
will restart the listing.

To order the computer to act on the program you
use another BASIC command: RUN. Type this in
(followed by RETURN). This tells the computer to
read through the stored program and obey each
instruction in order. The program gives exactly the
same results as the multiple instructions in
Chapter 3.

A program may be RUN as many times as you like.
It will be stored in the computer's memory until
you switch it off. Programs can be altered or added
to at will. To alter an instruction, retype the line.
If you enter:

40 PRINT "ATARI"

the original line 40 is replaced by the new one.

Extra lines are added by typing them as before:

20

35

The Atari 130XE Handbook

PRINT "AN EXTRA LINE"

Notice that the computer inserts the extra line in
the appropriate place: it is not put at the end.

NOTE It is a good idea always to number
program lines in steps of 10 to allow
extra or forgotten lines to be inserted
without having to renumber the whole
program.

To delete a line, type the line number and press
RETURN. The line is deleted from the list in the
computer's memory.

Now see if you can alter the example program to
PRINT different words on the screen.

When you have exhausted the possibilities of this
program, you can use the command NEW to delete
the whole program. You will then be ready for the
next program.

This program will demonstrate some of the
graphics facilities of the Atari. Don't worry if you
don't understand all the BASIC commands, they
are explained later in this book.

10 GRAPHICS 9
20 SETCOLOR 4,1,0
30 FOR Y=50 TO 0 STEP -10
40 FOR X=O TO 24
50 LUM = X+3: IF X>ll THEN LUM =

27-X
60 Y2 = X+Y
70 DIAM = SQR(144-(X-12) *

(X-12»/2
80 COLOR 15-LUM
90 PLOT Y2, Y+7-DIAM
100 DRAWTO Y2, Y+7+DIAM
110 COLOR LUM

Programming

120 DRAWTO Y2, 180+DIAM-Y
130 NEXT X
140 NEXT Y
200 FOR T=l TO 1000: NEXT T
210 FOR C=O TO 15
220 SETCOLOR 4,C,0
230 FOR T=l TO 500: NEXT T
240 NEXT C
250 GOTO 210

21

ARITHMETIC IN PROGRAMS - VARIABLES

We discovered in Chapter 3 that the Atari will
print the answers to arithmetical problems in
response to commands such as:

PRINT 3+5

This sort of instruction can be included in a
program like this:

10 PRINT" ","
20 PRINT "3+5 = "; 3+5

but it would be difficult to make much use of this
for working out your personal finances.

What gives a computer the power to perform
complex data processing (or 'number crunching')
tasks is its ability to do algebra: to use names as
symbols for numbers. This means that programs
can be written with names to symbolise numbers,
and then RUN with different numbers attached to
the names. These number-names are called
VARIABLES because they represent varying
numbers. Let's try an example:

The area of a rectangle is equal to the width of the
rectangle multiplied by the height. By using

22 The Atari 130XE Handbook

r
HEIGHT AREA = WIDTH X HEIGHT

1
... WIDTH •

names instead of n umbers we can wri te a program
to work out the area of any rectangle:

10 WIDTH = 8
20 HEIGHT = 12
30 AREA = WIDTH * HEIGHT
40 PRINT "AREA = "; AREA

This program, when RUN, will print the areaof a
rectangle 12 inches by 8 inches. By changing the
numbers in lines 10 and 20 we can obtain the area
of a rectangle of any size.

VARIABLE NAMES

A variable name can have as many as 114
characters. All variable names must begin with a
letter, but the other characters may be numbers,
for example A1, EGG7, LASTl. There must not be
any spaces in a variable name as this will confuse
the computer.

NOTE You cannot use as a variable name any
of the BASIC command words, or any
name which begins with the letters of a
BASIC command word. If you do, the
Atari will complain of errors as soon as
you type the line. For example, the
name LENGTH begins with LEN, and

Programming 23

COST begins with COS. (See Appendix
1 for a full list of all the BASIC reserved
words.)

TYPES OF VARIABLE

There are two different types of variable, one
represents numbers, the other represents words.
The type which represents numbers is called the
numeric variable; the type representing words is
the string variable, so called because it contains a
sequence or 'string' of characters. The variables in
the rectangle program were all numerical
variables.

Numeric Variables

These are used to represent numbers and can have
any value, whole numbers or fractions. Real
variables should be used in all arithmetical
programs. Real variables can have any value, for
example:

REAL = 3.72
SIZE = 87.3 * 2.5

String Variables

A string variable is used to store words, letters or
numbers. The variable name for a string variable
must be followed by a dollar sign ($) to distinguish
it from the a numeric variable. Examples are:

NAME$ = "WINSTON CHURCHILL"
STRING$ = "ABCDEFG"

Note that the letters defining the variable contents
are enclosed by quotation marks.

A string variable can hold almost any number of
characters, limited only by the amount of memory

24 The A tar; 130XE Handbook

available, but you must set the maximum number
of characters allowed for each string variable
before using the variable. The DIM command
(short for dimension) is used for this:

DIM BONZO$(30)

sets the string variable BONZO$ to have a
maximum length of 30 characters. If you then try
to store more than 30 characters in BONZO$ an
error message will be displayed.

NOTE It is possible to have variables of
different types with the same name,
such as:

NAME = 87.76
NAME$ = "GEORGE WASHINGTON"

The computer will not be confused, but
you might, so be careful!

ARRAYS

Numeric variables (but not strings) may be used in
a special form - an array. In normal use a variable
name represents one stored number. In an array,
the variable name represents a collection of stored
information, with one or more reference numbers
identifying the individual items. An array can be
pictured as a collection of boxes. The table on the
next page is a diagram of an array which uses one
reference number.

The array has 6 elements numbered from 0 to 5.
The array would be used like this:

10 DIM BOXES(5)
20 BOXES(O) = 11
30 BOXES(I) = 92.73
40 BOXES(2) = 6

Programming

REFERENCE CONTENTSNUMBER
0 11
1 92.73

2 6
3 0.4971
4 -3
5 125.6

The Array BOXES

50 BOXES(3) = 0.4971
60 BOXES(4) = -3
70 BOXES(5) = 125.6
100 FOR N = 0 TO 5
110 PRINT N, BOXES(N)
120 NEXT N

25

As mentioned before, an array may have more than
one reference number. The number of reference
numbers per item is called the number of
dimensions of the array. Here is a program using
an array with two reference numbers per item:

10 DIM TABLE(2,1)
20 TABLE(O,O) - 34
30 TABLE(O,l) = 3.7
40 TABLE(l,O) = 7
50 TABLE(l,l) = 6.85
60 TABLE(2,0) = 302
70 TABLE(2,1) = 0.35
100 FOR A = 0 TO 2
110 FOR B = 0 TO 1
120 PRINT TABLE(A,B),
130 NEXT B

26

140
150

The Atari 130XE Handbook

PRINT
NEXT A

Here again the array can be thought of as a
collection of storage boxes, this time laid out in a
grid as shown in the table below. The two columns
could represent for example the number of items in
stock, and the price of each item.

B = 0 B = 1

A=O 34 3.7

A = 1 7 6.85

A = 2 302 0.35

The Array TABLE

You can use arrays with one or two dimensions, but
no more. The maximum allowed value of each
reference number may be anything up to several
thousand, but this depends on how much memory is
occupied by the program itself, and by the other
variables of the program.

A DIM command must be included at the
beginning of any program which will use arrays.
The command tells the computer to reserve
memory space for the array. If you try to use an
array without setting its dimensions the Atari will
give the error message 'ERROR 9'.

GETTING VALUES INTO PROGRAMS

It would be very inconvenient to have to alter a
program to make it handle different numbers, so
there are a number of instructions which allow

Programming 27

numbers or letters to be given to a program while it
is running. The first of these is INPUT.

When the computer finds an INPUT statement in
a program, a question mark is displayed on the
screen. The computer waits for you to, type in a
number or letter string, which it will then store as
a variable before continuing with the rest of the
program. Type NEW (RETURN) to delete any
program currently in the computer's memory and
then try this example:

10 INPUT NUMBER
20 PRINT NUMBER

When you RUN this program you will see a
question mark on the screen. Type a number and
press RETURN: the number is printed.

The INPUT instruction can handle strings too, if
you specify a string variable in the INPUT
command:

10 DIM NAME$(20)
20 INPUT NAME$
30 PRINT NAME$

This program will accept both numbers and letters
and store them as a string variable. Pressing
RETURN enters a null string but this time nothing
is displayed.

It is possible to use one INPUT command to input
two or more numbers or strings.

10 DIM NAME$(20)
20 INPUT NAME$, AGE
30 PRINT NAME$
40 PRINT AGE

28 The Atari 130XE Handbook

The variables must have commas separating them
in the lNPUT command. If you press RETURN
before entering all the items the 130XE will print
another question mark and wait for the remaining
items. When you type in the information you must
use a comma to separate numeric entries, or press
RETURN to mark the end of each string entry (a
comma would be counted as part of the string). If
you enter too many items the surplus ones will be
ignored.

Let's use what we know about variables and
lNPUT to improve the area program. Clear the
computer's memory by typing NEW (RETURN),
and then type in this program.

10 REM IMPROVED AREA PROGRAM
20 PRINT " " "
30 PRINT "ENTER WIDTH" ;
40 INPUT WIDTH
50 PRINT "ENTER HEIGHT" ;
60 INPUT HEIGHT
70 AREA = WIDTH * HEIGHT
80 PRINT: PRINT "AREA = " . AREA,

This program will read the two numbers you type
in for width and height and print the area of the
rectangle. Using lNPUT has made the program
much more flexible: we don't have to alter the
program to use different numbers.

REMARKS

Line 10 of the last program is a remark or comment
statement. These are used to hold comments, notes
and ti tles to make the purpose of a program and the
way in which it works clear to someone reading the
listing. Remarks are identified by the word REM
before the remark and have no effect when the
program is RUN.

Programming 29

You should always put plenty of remarks in
programs, because although you may understand
how a program works when you write it, three
months later you will have forgotten. Ifyou need to
modify a program at some time after writing it,
remarks will make it much easier to remember
how the program works.

SUMMARY

PROGRAMS

A program is a numbered sequence of computer
instructions.

LIST

RUN

NEW

displays the lines of a program.

starts the execution of a program.

deletes a program from the computer's
memory.

VARIABLES

Variables represent numbers and words In
programs.

There are two types ofvariable:

Numeric

String

INPUT

representing numbers.

representing words or numbers, and
distinguished by $ after the name.

is used to enter numbers or words into
variables while a program is running.

30 The Ateri 130XE Handbook

Numeric variables may take the form of arrays,
with one variable name representing a number of
different values, with reference numbers to
distinguish between the items.

REMARKS

REM is used to put remarks into programs
for the programmer's benefit.

CHAPTER 5

PROGRAM CONTROL

In the last chapter we defined a program as a
numbered list of instructions to the computer,
which are obeyed in order from beginning to end.
In this chapter we will find out how to write
programs in which some instructions are executed
more than once. This makes programs more
efficient, as instructions which must be repeated
need to be written only once. We will also discover
that the computer can make decisions.

REPETITION

A section of program can be repeated many times
using the instructions FOR and NEXT. Try this
example:

10 FOR COUNT = 1 TO 10
20 PRINT COUNT
30 NEXT COUNT

which prints the numbers from 1 to 10 on the
screen. The section of program between the FOR
and the NEXT commands is repeated for each
value of COUNT, and COUNT is automatically
increased by one every time the NEXT command is
met in a loop.

The variable in a FOR ... NEXT loop need not be
increased by 1; any increase or decrease can be

31

32 The Atari 130XE Handbook

specified using the command STEP. Try changing
line 10 to:

10 FOR COUNT = 0 TO 30 STEP 3

Then RUN the program again. COUNT is now
increased by 3 each time the loop is repeated. The
STEP can also be negative, so that the numbers
get smaller:

10 FOR COUNT = 50 TO 0 STEP -2.5

In summary, the instructions are used like this:

FOR V = X TO Y STEP Z

is used to begin a loop (V is a variable and X, Y and
Zmay be variables or numbers), and

NEXT V

marks the end of the loop. Note that, unlike some
other microcomputer BASICs, in Atari BASIC the
variable must be specified after NEXT.

The variables used in FOR ... NEXT loops must be
simple numeric variables; string variables, and
elements of arrays may not be used.

Nested Loops

FOR ... NEXT loops can be nested - that is, one
loop can be contain one or more other loops. Here is
an example:

10 FOR A = 1 TO 3
20 FOR B = 1 TO 4
30 PRINT A, B
40 NEXT B

50 NEXT A

Program Control 33

For any nested loops, it is very important that the
enclosed loop is completely within the outer loop,
otherwise the program will not work. To clarify
this, let's examine the order in which instructions
are obeyed in the program.

START

IT; 10 FOR A = 1 TO 5
20 FOR B = 1 TO 5L 30 PRINT A, B
40 NEXT B
50 NEXT A
END

The two loops are arranged so that one is
completely within the other. If lines 40 and 50
were swapped over, the result would be as shown in
the next example. You can see that the two loops

START

ce 10 FOR A = 1 TO 5
20 FOR B = 1 TO 5
30 PRINT A, B
40 NEXT A
50 NEXT B
END

overlap and the order in which the instructions
should be obeyed is not clear,and the Atari will
give 'ERROR 13'.

This rule always applies to FOR ... NEXT loops -
the loops must always be one within the next.

34 The Atari 130XE Handbook

JUMPS

The computer can be instructed to jump from one
program line to another using the command
GOTO. Enter this program:

10 GOTO 30
20 PRINT "LINE 20"
30 PRINT "LINE 30"

When it is RUN the message 'LINE 20' is not seen
because the GOTO instruction in line 10 sends the
Atari straight to line 30.

The jump can be to a lower numbered line. The
following program will go on for ever, unless you
stop it by pressing the BREAK key:

10 PRINT "ON AND
20 GOTO 10

This is called an endless loop, and is to be avoided!

DECISIONS

The commands IF and THEN are used in programs
to make decisions. A variable is tested, and one of
two alternative actions is taken, depending on the
result of the test.

10 FOR X = 1 TO 10
20 PRINT X
30 IF X = 5 THEN PRINT "X = 5"
40 FOR P = 0 TO 200 : NEXT P
50 NEXT X

The format of IF ... THEN is:

IF (condition) THEN (instructions)

Program Control 35

The condition after IF may be one of many possible
alternatives. Examples are:

IF COUNT = 10

Continue when variable (COUNT) equals a
number, in this case 10.

IF COUNT < 100

Continue when variable less than a number.

IF COUNT > 100

Continue when variable greater than a number.

IF NUMBER < > VALUE

One variable not equal to another (greater than
or less than).

IF X >= y

Greater than or equal to.

IF X <= y

Less than or equal to.

Two conditions may be combined, as in:

IF X = 1 OR X = 2

IF A = 3 AND NAME$ = "ATARI 130XE"

In all of these, the items being compared may both
be variables, or one may be a variable and the other
a number. (There's not much point in comparing
two numbersl) For further details see Chapter 9,
Logical Thinking. The instructions after THEN

36 The A ta ri 130XE Handbook

are carried out if the condition is met, otherwise
the program continues at the next line.

IF ... THEN can also be used to control jumps:

10 PRINT "WHAT NUMBER AM I
THINKING OF";

20 INPUT N
30 IF N < > 3 THEN PRINT

"WRONG" :GOTO 10
40 PRINT "CORRECT!"

If the jump is the only instruction after THEN, the
word GOTO can be omitted:

10 DIM A$(20)
20 PRINT "WHAT AM I";
30 INPUT A$
40 IF A$ = "ATARI 130XE" THEN 80
50 PRINT: PRINT A$;"? NO, TRY

AGAIN"
60 PRINT
70 GOTO 20
80 PRINT: PRINT "GOOD GUESS!"

Variables can be used to direct a GOTO command:

10 JUMP = 40
20 GOTO JUMP
30 PRINT "THIS LINE IS MISSED"
40 PRINT "JUMPS TO HERE"

EXAMPLE PROGRAM - SORTING NUMBERS

As an example of what can be done using loops and
decisions, here is a program which sorts ten
numbers into ascending order.

10 REM SORTING PROGRAM

Program Control 37

20 DIM NUM(10),SORT(10)
30 REM INPUT 10 NUMBERS
40 PRINT "<."
50 FOR N=l TO 10
60 PRINT "ENTER A NUMBER";: INPUT

NUMBER
70 NUM(N)=NUMBER
80 NEXT N
100 REM COPY NUMBERS TO ARRAY SORT
110 FOR C=l TO 10
120 SORT(C) = NUM(C)
130 NEXT C
200 REM SORT NUMBERS
210 COUNT = 0
220 FOR N=l TO 9
230 IF SORT(N+l) >= SORT(N) THEN

280
240 TEMP = SORT(N+l)
250 SORT(N+l) = SORT(N)
260 SORT(N) = TEMP
270 COUNT = COUNT + 1
280 NEXT N
300 IF COUNT > 0 THEN 210
310 FOR Z=l TO 10
320 PRINT NUM(Z),SORT(Z)
330 NEXT Z

The REMarks indicate the functions of the
different sections of the program, which works like
this:

Line 20 dimensions the two arrays used in the
program.

Lines 40 to 80 input ten numbers from the
keyboard and store them in the array NUM(),
using a FOR ... NEXT loop.

Lines 110 to 130 copy the numbers from NUM()
to a second array SORT() which will be sorted,
while NUM retains the numbers in the order in

38 The Atari 130XEHandbook

which they were typed in. Again, a FOR ...
NEXT loop is used.

The lines from 210 to 280 sort the numbers in
the array SORT(10) into ascending order. A
FOR ... NEXT loop compares each element of
the array SORT with the next, and swaps them
over if they are in the wrong order. A variable,
COUNT, keeps track of the number of these
swaps and, if at the end of the loop this isn't
zero, the loop is repeated.

Lines 310 to 330 complete the program by
PRINTing the two sets of numbers.

PAUSES

To make a pause during the running of a program,
we can use a FOR ... NEXT loop which does
nothing at all except count its way through the
steps. The following program is an example:

10 FOR T = 0 TO 5000
20 NEXT T
30 PRINT "ABOUT 10 SECONDS"

Another way to make a pause is to use the Atari's
built in timer. The three storage locations 18, 19
and 20 are incremented about 5 times a second, so
for a 10 second wait, try:

10 POKE 19,0:POKE 20,0
20 IF PEEK(19) < 2 THEN 20
30 PRINT" [BELL] "

(The BELL character is obtained by pressing ESC
then holding down CONTROL and pressing 2.)

Program Control

SUBROUTINES

39

A subroutine is a section of program which is
executed at a number of different times in the
course of a program, but is written only once. The
computer is diverted from the main program to the
subroutine, and returns to the main program at the
point from which it left.

The command GOSUB followed by a line number
or a variable diverts the computer to the
subroutine in much the same way as the GO TO
command. The difference is that the end of a
subroutine is marked by a RETURN command
which sends the computer back to the instruction
after the GOSUB command. As an example of two
very simple subroutines, type in the following
program:

10 GOSUB 110
20 C = A+B
30 GOSUB 210
40 END
100 REM SUBROUTINE TO INPUT A & B
110 INPUT A
120 INPUT B
130 RETURN
200 REM SUBROUTINE TO DISPLAY

RESULT
210 PRINT"
220 PRINT
230 PRINT Ai," + "iBi" = HiC
240 RETURN

Lines 10 to 40 are the main program. Line 10 calls
the subroutine at line 110, line 20 adds A and B
and stores the result as C, and line 30 calls the
subroutine at line 210. Line 40 marks the end of
the program - as the last line to be executed is not
the last line of the program we have to tell the

40 The Atari 130XE Handbook

Atari not to go on to the following lines, which
contain the subroutines.

The subroutine at line 110 inputs two numbers and
stores them as A and B. The subroutine at line 210
clears the screen and prints the two numbers and
their sum.

When the program is RUN, the computer begins,
as always, at the lowest numbered line, line 10.
This line calls the first subroutine, and the
computer is diverted to line 110. Line 130 returns
the computer to the instruction after the GOSUB,
which is in line 20. The program proceeds as
normal to line 30, which causes another diversion
to line 210. Line 240 returns the computer to line
40, and the program ends.

So, a GOSUB command causes a diversion from
the sequence of a program to a subroutine, and the
RETURN command ends the diversion.

The use of subroutines saves a lot of effort in
writing programs, as the program lines in the
subroutine need to be written only once, instead of
being retyped at every point in the program where
they are needed. There is no limit to the n umber of
times a subroutine may be called.

Another advantage of subroutines is that they can
make the design of a program simpler. If you use
subroutines for the repetitive and less important
parts of a program the main program becomes
much easier for you, the programmer, to follow,
and is therefore much easier to write.

Subroutines, like loops, may be nested - that is, the
subroutines may call other subroutines, which may
in turn call others. However, a subroutine may not
be called by another subroutine which it has itself
called, or an endless loop occurs. The program will

Program Control 41

crash (come to an undignified halt) when the Atari
runs out of the memory it uses to store all the line
numbers for the RETURNs, and the message
(ERROR 2 AT LINE xx' will be displayed.

STOPPING AND STARTING

In the last example program the new command
END was used to indicate the last line of the
program to be executed. The command tells the
computer to stop running the program. There is a
second command, STOP, which also halts
programs, but the two have slightly different
effects. END stops the program running, and the
(READY' message is displayed, but when STOP is
used the program halts and the message
(STOPPED AT LINE xxx' is printed (xxx is the line
number of the STOP instruction). Unless you need
to know where the program halted, END is the one
to use.

If a program has been halted by one of these
instructions, or by pressing the BREAK key, it may
be restarted with the instruction CONT. The
program will continue from the instruction after
the last one to have been executed. CONT may
only be used immediately after the program has
been stopped. You may not use CONT within
programs.

ON ... GOSUB (GOTO)

Both GOSUB and GOTO may be used in a second
type of decision command which selects one of a
number of destinations depending on the value of a
chosen variable.

ON N GOTO 100, 200, 300

results in:

42

GOTO 100
GOTO 200
GOTO 300

The Atari 130XE Handbook

ifN = 1
ifN = 2
ifN = 3

Similarly:

ON P GOSUB 500,200,500,400,100

selects the P'th destination in the list and calls it as
a subroutine. If the value of the variable is greater
than the number of destinations in the list, or if it
is zero, no destination is selected and the program
continues at the next instruction. If the value is
less then zero, the program stops with the error
message 'ERROR - 3'. To avoid this, make sure
you only use positive values by testing them first.
For example, instead of:

250 ON NUM GOTO 1000, 2000, 3000

write:

250 TEST=NUM
260 IF TEST<O THEN TEST=O
270 ON TEST GO TO 1000, 2000, 3000

SUMMARY

LOOPS

The loop structure has the form:

FOR V = A TO B STEP C ... NEXT in which the
instructions between the FORand NEXT
commands are repeated once for each value of V
indicated by the FOR ... STEP command. A, Band
C may be variables or numbers; V must be a
variable. Loops may be nested one within another.

DECISIONS

Program Control 43

IF (condition) THEN (instruction) decides between
two actions. The condition after IF is usually a test
of a variable. There may be more than one
instruction after THEN, in which case colons (:)
must be used to separate them. The complete IF ...
THEN command must be in one line.

GOTO need not be included if it would be the only
command after THEN, but it must be if there is
another command before it:

100 IF ACE = 1 THEN 20

but 100 IF ACE = 2 THEN KING =
7:GOTO 20

SUBROUTINES

Diversions from a program, using the commands
GOSUB and RETURN. GOSUB calls the
subroutine, and RETURN at the end of the
subroutine returns the computer to the instruction
after the GOSUB.

ON ... GOSUB and ON ... GOTO

Select a destination from a list:

ON P GOSUB X, Y, Z

causes a GOSUB to the P'th item in the list.

ON N GOTO A, B, C

This causes a jump to the N'th destination - if
there is an N'th item in the list.

END halts the running of a program.

44 The Ateri 130XE Handbook

STOP halts a program and prints 'STOPPED AT
LINE xxx',

CONT will restart a program.

CHAPTER 6

DATA AND PROGRAMS

So far we have not examined all of the ways in
which information can be given to programs, nor
those by which programs can print out information
on to the screen. There are several ways of getting
information into programs which we will examine
in this chapter, and we will also examine in more
detail the use of PRINT and other commands to
display data.

READ AND DATA

To enter large amounts of data which will be the
same each time the program is RUN we use the
data entry command READ. Look at this
program:

10 DIM STOCKS(10),PRICE(10)
20 FOR ITEM=l TO 10
30 READ DTAl,DTA2
40 STOCKS(ITEM)=DTAI
50 PRICE(ITEM)=DTA2
60 NEXT ITEM
70 PRINT"'"
80 FOR X=l TO 10
90 PRINT X,STOCKS(X),PRICE(X)
100 NEXT X
110 END
120 DATA 5,1.41,1,5.75,10,2.63,

100,9.95,0,2.23,5,5.6,123,
1.49,8,9.12,20,5.55,1,6.59

45

46 The Ater! 130XE Handbook

This method ofentering information is much easier
to use than simply writing it into the program by
setting variables. Imagine the typing involved in
entering lots oflines like:

PRICE(2)=5.75

With DATA lines you can layout the information
in a clear tabular form and check it much more
easily. You can also alter it if you need to without
touching the main program.

When a program is running, the computer uses a
'pointer' stored in its memory to keep track of how
many DATA items it has read. Every time a
READ command is met, the DATA item indicated
by the pointer is copied into the variable, and the
pointer moves on to the next item. This means you
must have a DATA entry corresponding to each
occurrence of READ. The program will stop if
there are too many READ commands and the
Atari will print an error message: ERROR-6.

The command RESTORE can be used to reset the
data pointer to the first DATA item in the
program. RESTORE followed by a line number,
such as:

50 RESTORE 2000

will reset the data pointer to the first DATA item
which occurs after that line.

The variables used in the READ command must
match the type of data in the corresponding DATA
entry. A READ with a string variable will read
anything as a string, but READ with a number
variable must find a number in the DATA entry or
the error message ERROR-6 will result.

Data and Programs

GET

47

The GET instruction provides a second way of
feeding information to programs from the
keyboard. GET is used in handling many different
peripheral devices, but here we will consider it only
as a keyboard command. (See Chapter 15 for more
details on other uses of GET).

GET halts the program and waits for a key to be
pressed. The ASCII code for the key character is
stored in a variable.

Before GET may be used, a channel must be
opened to the keyboard, by the command

OPEN#1,4,0,IK:"

The GET instruction then takes the form:

GET#l,KEY

Try this short program to see GET in action.

10 REM READING KEYS WITH GET
20 OPEN#1,4,0,"K:"
30 GET#l,KEY
40 PRINT KEY,CHR$(KEY)
50 GOTO 30

GET is not the ideal command for taking large
amounts of information from the keyboard. It is
very useful to be able to halt a program until a key
is pressed, before, for example displaying a new
screen of information. GET also alows one-key
entries to be made when selecting items from
menus - lists of options. Try this program:

10 REM MENU
20 OPEN#1,4,0,"K:"

48 The Atari 130XE Handbook

30 PRINT " i- i- i- SELECT OPTION":REM
REVERSED TEXT

40 PRINT " i- RED"
50 PRINT " i- YELLOW"
60 PRINT " i- BLUE"
70 GET#l,KEY
80 IF KEY=ASC("R") THEN SETCOLOR

2,3,6
90 IF KEY=ASC("Y") THEN SETCOLOR

2,2,8
100 IF KEY=ASC("B") THEN SETCOLOR

2,9,4
110 GOTO 30

This kind of menu is useful in many types of
program when asking the program user to make
simple decisions and selections. The program is
made extremely easy to use as keystrokes are
reduced to a minimum.

MORE ABOUT PRINTING

So far, we have described the use of PRlNT (or ?)
simply to display single items of data on the screen.
The Atari has a number of extra facilities which
allow you to control the screen layout and produce
clear and orderly output from programs.

Punctuating PRINT Statements

You can PRINT more than one item on a single
line by including 'punctuation' in the PRlNT
command. You can use commas to separate the
items, in a PRINT statement, and the effect is
rather like the 'tab' function of a typewriter.
Output on the screen is formatted at every tenth
column. For example:

PRINT "A","B","C","D"

Data and Programs

will give a display:

49

A B C D

The first item in the PRINT statement appears in
the first column. The next item - the first after a
comma - appears in column 10. The other items
appear in columns 20 and 30.

The semicolon (;) can be used in a similar fashion.
This leaves no space between successive items in
the PRINT statement.

PRINT "A";"B";"C";"D";"E";"F"

will display:

ABCDEF

The same rules apply when printing numbers, and
numerical variables.

The effect of commas and semicolons is not confined
to the PRINT statement in which they appear. If
you end one PRINT statement with a comma or
semicolon then the data printed by the next
PRINT command will appear on the same line,
with spaces as appropriate.

POSITION

The command POSITION can be used to make the
Atari begin printing at any point on the screen. To
place the cursor at column C, row R, use:

POSITION C,R

On the standard text display, C must be between 0
and 39, and R must be between 0 and 23.

50 The Atari 130XE Handbook

Cursor Control

Just as we can use the cursor keys to move the
cursor round the screen, so can we use a program to
move it. As described in Chapter 3, the Atari
interprets four characters as control codes
governing the cursor movement.

The characters can be used within strings. For
example:

10 DIM CD$(20): DIM CUS(20)
20 PRINT
30 PRINT "TOP LINE"
40 CDS = "-!- -!- -!- -!- -!- -!- -!- -!- -!- -!- "
50 CUS = "i iii iii iii"
60 FOR T = 0 TO 500:NEXT T
70 PRINT CDS; "MIDDLE LINE"
80 FOR T = 0 TO 500:NEXT T
90 PRINT CUS;"BACK TO THE TOP!";

CDS

prints the three messages in various parts of the
screen using the strings CD$ and CU$ to move the
cursor.

You can use the other control characters in a
similar way - to insert or lines and characters, to
set and clear tabs, and so on.

The way in which data is presented on the screen is
an important part of the program and can make the
difference between a program being easy to use, or
frustrating and confusing. Make good use of the
commands available!

Data and Programs

SUMMARY

51

READ and DATA are used to copy large amounts
of information into variables without writing lots
of program lines.

POSITION C,R places the cursor at column C,
rowR.

There are a number of special commands which
allow control of the format ofdata PRINTed on the
screen.

CHAPTER7

PIECES OF STRINGS

String variables are used to store sequences -
'strings' - of characters. There are a number of
BASIC commands which are used to manipulate
strings, and these are described in this chapter.

We saw in Chapter 4 that a string variable can
store a sequence of characters. For example:

NAME$ = "WILLIAM SHAKESPEARE"
GAME$ =" SPACE INVADERS"
REFERENCE$ = "ABC123D"

A string can almost any number of characters,
limited only by the amount of memory space
available. The maximum length of any string must
be specified in a DIM statement before the string is
used. The characters in a string may be letters,
figures, punctuation marks, spaces - in fact any of
the characters the Atari can print. The number of
characters in a string can be counted using the
function LEN. Try this:

10 DIM NAME$(25)
20 NAME$ = "JOHN SMITH"
30 PRINT NAME$
40 PRINT LEN(NAME$)

This program prints the length as 10, which is the
number of characters in NAME$ (including the
space).

52

Pieces ofStrings

NUMBERS AND LETTERS

53

Computers cannot handle characters (numbers,
symbols and letters) directly - they use numbers to
represent the characters. Each letter, and each of
the other characters the 130XE can print, is
represented by a different code number. There are
several systems used in different computers for
deciding which code number represents which
letter. The Atari uses a system called ASCII - the
American Standard Code for Information
Interchange - which is the most common system
for micros. The table in Appendix 4 shows how the
ASCII code relates to letters and numbers. (In fact
the Atari code differs from standard ASCII in
certain respects, but this is not too important.)

From the table we see that the 130XE uses a code
number 65 to represent the letter A, code number
66 for B and so on. Even numerals have codes. For
example the character '9' has the code number 57.

There are two functions in BASIC which allow us
to convert characters to numbers and numbers to
characters.

The function CHR$ converts a number to a string
containing the corresponding character:

10 DIM A$(1)
20 C = 65
30 A$ = CHR$(C)
40 PRINT A$

This displays the letter 'A'. You can use a variable
with CHR$, as in the example, or a number:

PRINT CHR$(42)

This displays an asterisk (*).

54 The Atari 130XE Handbook

CHR$ can only give one character at a time. There
are 255 possible characters, and if the number' or
variable in the brackets is increased beyond 255
the character set is repeated. The value used must
be less then 65536, and must not be negative, or an
ERROR-3 message will result.

The function ASC complements CHR$, ASC finds
the ASCII codes of characters.

lOB = ASC ("B")
20 PRINT B

displays '66', which is the ASCII code for the letter
B. You can also use string variables with ASC:

10 DIM B$(l)
20 B$ = "B"
30 PRINT ASC(B$)

also displays '66'. If the variable contains more
than one character, ASC gives the code for the first
character only:

PRINT ASC ("ABCDE")

displays '65', the code for 'A'.

FIGURES IN STRINGS

A string can contain any characters - including
numerals. There are two functions which can be
used to make strings of number characters from
actual numerals and to find the numeric value of
the number characters in a string.

The function STR$ creates from a number a string
containing the characters of that number:

10 DIM A$(5)
20 A$ = STR$(12345)

Pieces ofStrings

30 PRINT A$

55

This converts the single number 12345 into a
string by assigning the characters 12345 to A$ and
displays the string.

The complementary function to STR$ is VAL.
VAL evaluates the numerical characters in a
string:

10 DIM A$(10)
20 A$ = "123456"
30 A = VAL(A$)
40 PRINT A

This displays the number '123456'.

If the string evaluated contains letters as well as
numbers then only the numbers which appear to
the left of all the letters are converted by VAL.
This means that

PRINT VAL("123ABC45")

displays '123'.

The signs + and - may appear before the number
characters. They will be treated by VAL as the
sign of the number. If the first characters of the
string are not numeric the message ERROR-i8 is
displayed by the Atari.

TESTING STRINGS

Strings can be compared with each other,in the
same way as numbers, using IF ... THEN. A
routine like this one can be used to check that an
entry is suitable for the program:

10 DIM PW$(50)

56

20

30

40

The Ater! 130XE Handbook

PRINT "WHAT'S THE PASSWORD";:
INPUT PW$
IF PW$ <> "BEANS" THEN PRINT
"WRONG !!!":GOTO 20
PRINT "1\ O. K. "

As well as testing to see if two strings are the same,
you can use the 'greater than' ('> and 'less than'
(<) tests to compare strings.

10 IF liB" > "A" THEN PRINT "OK"

This works because the letters are stored as
numbers. The computer is in fact comparing the
ASCII codes of the letters in the strings. This is
very useful because it allows strings to be sorted
into alphabetical order, as we will show later in
this chapter.

STRINGMANIPULATION

Atari BASIC differs from most other dialects of
BASIC in the way in which strings are handled.
Characters can be copied from strings, and can be
inserted into strings to replace some of the
characters already there. To illustrate the various
commands we will use a string A$ which contains
the first 10 letters of the alphabet. The string is
defined by:

Position 1 2 3 4 5 6 7 8 9 10

Character A B C D E F G H I J

The string A$

DIM A$(30)

Pieces of Strings

A$="ABCDEFGHIJ"

57

Portions of strings can be copied by specifying the
positions of the beginning and end of the substring
to be removed, like this:

B$=A$(FIRST, LAST)

SO to print the fifth to eighth characters of A$, use
the command:

PRINT A$(5,8)

New characters may be inserted into a string by
specifying the posi tion of the first character:

A$(4)="XYZ"
PRINT A$

Notice that end of the string is reset to the end of
the new section, despite the fact that the original
string was longer. The end of the first string can be
recovered by adding a character to the end:

A$(ll)="Q"
PRINT A$

You can add material to the end of a string by this
method as long as the total length does not exceed
the maximum set by the DIM command. A useful
formula to add one string to the end of another is:

A$(LEN(A$)+l)=B$

It is quite legitimate to add a new string at a
position beyond the end of the first string. Try
adding more letters to A$ like this:

A$(20)="LMNOP"
PRINT A$

58 The Atari 130XE Handbook

The characters in the middle of the string, which
have not been defined by any of your commands,
turn out to be hearts. The character code of a heart
is zero, and the memory is filled with zeros when
the Atari is switched on.

The facility to manipulate strings in this way and
the fact that a string may hold a very large number
of characters allows a single string variable to be
used in a similar fashion to a numeric array
variable. An "array" or ten strings, each with a
length of20 characters ofless, can be fitted into one
string wi th a length of 200 characters by allowing
20 character positions for each of the substrings.
The substings can then be read and replaced using
the commands outlined above.

There are two problems in using strings like this.
The first is that the string is initially filled with
hearts. This can be overcome by filling the string
with spaces before adding any data to it:

10 DIM ARRAY$(200)
20 FOR Z=1 TO 200
30 ARRAY$(Z)=""
40 NEXT Z

The second problem is that every time new
material is inserted into a string, the position of the
end of the main string is reset to the posi tion of the
end of the inserted portion. The answer to this is to
write a space in the last character space of the main
string after every modification:

150 ARRAY$(140)="NEW STUFF"
160 ARRAY$(200)=""

There are one or two other point to watch out for.
Garbage characters may be left behind if you
replace an element with a shorter string. This
again can be solved by writing spaces into the

Pieces ofStrings 59

appropriate portion of the string before inserting
the new material.

The program below uses these string handling
techniques to sort 20 words into alphabetical order.
The string ALL$ with a maximum length of 440
characters is used as the array.

10 REM STRING SORTING PROGRAM
20 PRINT "",,"
30 DIM WORD$(20),ALL$(440)
40 FOR L=l TO 440: ALL$(L)=" ":

NEXT L
50 REM INPUT 20 WORDS
60 FOR C=l TO 20
70 PRINT "ENTER A WORD";
80 INPUT WORDS
90 ALL$(C*20)=WORD$
100 NEXT C
110 ALL$(440)=""
120 REM PRINT UNSORTED LIST
130 GOSUB 1000

190 REM SORT THE WORDS
200 SWAPS=O
210 FOR Z=1 TO 19
220 ZO=Z*20
230 ZI=ZO+20
240 IF ALL$(Zl,ZI+19) >=

ALL$(ZO,ZO+19) THEN 300
250 WORD$=ALL$(ZI,Zl+19)
260 ALL$(Zl)=ALL$(ZO,ZO+19)
270 ALL$(ZO)=WORD$
280 ALL$(440)=""
290 SWAPS=SWAPS+1
300 NEXT Z
310 IF SWAPS>O THEN 200: REM

REPEAT UNTIL NO SWAPS
320 REM PRINT SORTED SEQUENCE
330 GOSUB 1000

60

340

990
1000
1010
1020
1030
1040

The Atari 130XE Handbook

END

REM DISPLAY STRINGS
PRINT" ",,,
FOR P=l TO 20
PRINT ALL$(P*20, P*20+19)
NEXT P
RETURN

This program works in the same way as the sorting
program at the end of Chapter 5. You can input
twenty strings, which may contain more than one
word.

The "array" string ALL$ is not used very
efficiently. The first 19 characters are not used at
all. There is no reason why, with a bit of extra
calculation, these characters should not be used.
Remember that there is no character at ALL$(O) -
if you try to use this position the message ERROR-
9 will be displayed and the program will stop.

If you run this program a few times you will
discover how effective string sorting can be. Notice
that any characters will be sorted into ASCII order,
so strings containing characters such as */@£?%
and /@$&)# will be sorted. You will find that lower
case letters are treated as completely different from
upper case letters, because of course they are
represented by different codes, and the Atari is
interested only in the codes. The lower case letters
have higher codes than the capitals, so they appear
at the end of the sorted list. (You can switch in and
out oflower case by pressing the CAPS key).

SUMMARY

A string is a sequence of characters. These can be
stored in string variables, which are distinguished
by $ after the variable name.

Pieces of Strings 61

LEN(string) gives the number of characters in a
string.

ASCII code is used by the Atari to symbolise
letters. There is a table of the ASCII codes for the
characters in Appendix 10.

CHR$ converts a code number to the equivalent
character:

PRINT CHR$(65)

displays 'A'.

ASC gives the ASCII code for a character:

PRINT ASC("A")

displays '65'.

STR$ turns a number into a string of number
characters:

10 A$ = STR$(123)

20 PRINT A$

VAL evaluates the numerical characters ill a
string:

PRINT VAL("123ABC789")

displays '123'.

62 The Afar; 130XE Handbook

COMPARISONS.

Strings can be compared using IF ... THEN and the
relational operators = < and >. This is useful
for testing inputs and sorting strings.
Strings can be modified by inserting characters at
any position. Substrings can be read by specifying·
the beginning and end of the portion required.

CHAPTER 8

FUNCTIONS

A 'function' in computing is an instruction which
performs a calculation on a number. There are a
number of functions available on the Atari 130XE.
For example, in Chapter 7 functions were described
which operate on numbers to give strings, or on
strings to give numbers. In this chapter we will
look at some more of the functions available on the
Atari.

SQUARE ROOTS

The square root of a number is calculated by the
function SQR(N). The square root of a number or
variable N is the number which when multiplied
by itself, or squared, gives N. Try:

PRINT SQR(4)

The Atari displays 2, because 2 squared (2*2) is 4.

10 FOR N = 1 TO 10
20 PRINT N, SQR(N)
30 NEXT N

prints the numbers 1 to 10 and their square roots.

63

64 The Atari 130XE Handbook

ABSOLUTE VALUES

The function ABS finds the absolute value of a
number: the value of the numeric part,
disregarding the sign. The function changes
negative numbers to positive numbers, but has no
effect on positive numbers.

PRINT ABS(123.456)

displays' 123.456' - no change. But

PRINT ABS(-543.345)

displays' 543.345 ' - the rrunus SIgn has been
removed.

INTEGER CONVERSION

The function INT removes the fractional part of a
number and returns the next lower whole number.
Try:

PRINT INT(123.4567)

Only the whole number part - 123 - is displayed.

Be careful with numbers less than zero. The INT
function finds the first whole number lower then
the number you give it. This means that for
negative numbers the answer is not the whole part
of the initial number, but one less (or minus one
morel). Therefore:

PRINT INT(-2.875)

displays '-3'.

Functions

SIGNS

65

SGN(N) returns a value which indicates the sign of
a number or variable N. If the number is positive,
the result is 1; if the number is zero, the result is
zero; and if the number is less than zero, SGN
returns -1.

PRINT SGN (5)
PRINT SGN (0)
PRINT SGN (-7)

displays '1'
displays '0', and
displays '-1'.

TRIGONOMETRY

The trigonometric functions of sine, cosine and
arctangent are available inAtari BASIC. They are
written:

SIN(N)

COS(N)

ATN(N) where N is a number or a variable.

The angles may be expressed either in radians or
degrees. When first switched on, and after a RUN
command, the Atari treats all angles as being in
radians. To switch to degrees use the command
DEG. The corresponding command RAD returns
the Atari to radian mode.

A radian is the ratio of the length of an arc of a
circle to the radius. In the diagram overleaf, the
angle A in radians is LlR. The circumference of a
circle is 21T times its radius (21TR), so it follows that
360 degrees is equivalent to 21T radians.

66 The Atari 130XE Handbook

/fr
/'

/'
/

/

L "II
I
I
I
1
\..

The angle A is LlR radians

LOGARITHMS

R

Natural logarithms are provided by the function
LOG(number or variable).

PRINT LOG (10) displays '2.30258509'

PRINT LOG(5000) displays '8.5171932'

The antilogs of natural logarithms are calculated
by EXP(N). Try:

PRINT EXP(LOG(100))

The answer is 100. The Atari actually prints
99.9999976 - the calculation is not quite accurate.

Logs can be used to calculate roots. This program
finds the cube root of 8.

10 A = 8
20 R = LOG(A)/3
30 PRINT EXP(R)

Functions 67

The answer is 2, because 2 cubed (2*2*2) is 8.
(Again the Atari is not quite accurate, printing
1.9999999.)

This program calculates fifth roots.

10 N = 243
20 R = LOG(N)/5
30 PRINT EXP(R)

The program will display '3' (actually 2.99999993),
because 3 to the power 5 (31\5 or 3*3*3*3*3) is 243.

Base ten logarithms are catered for by the function
CLOG. The antilogs can be calculated by using the
formula:

Antilog = 10log

So, if:

TENLOG = CLOG (A)

Then:

A = 10/\TENLOG

RANDOM NUMBERS

The Atari 130XE has a function which provides
random numbers. The function is RND(X), which
prints a number between 0 and 1. The 'seed' value
- X - can be any number or letter, but does directly
influence the value of the random number that
results. Try PRINTing RND(1) a few times. You
will get a different number each time.

68 The A ta ri 130XEHandbook

Dice Throwing

We can use random numbers in programs to
imitate the throwing of dice. Try this:

10 OPEN#1,4,0,"K:"
20 PRINT "'PRESS ANY KEY TO THROW

THE DICE"
30 GET#l,KEY
40 DICE = INT(RND(0)*6) + 1
50 PRINT
60 PRINT "YOUR NUMBER IS "iDICE
70 FOR DELAY = 0 TO 500:NEXT DELAY
80 GOTO 20

This program will throw the die every time you
press a key. Pressing the BREAK key will stop the
program.

SUMMARY
There are several built-in functions in Atari
BASIC which operate on numbers or variables:

SQR(N) calculates the square root ofa number N.

ABS(N) returns the absolute value of a number -
changing negative numbers into positive ones, and
leaving positive numbers unchanged.

INT(N) returns the integer value of N, removing
any fractional part.

SGN(N) gives 1 ifN is positive, 0 ifN is zero and -1
ifN is negative.

The trigonometric functions:

SIN(N)

COS(N)

Functions 69

return the values for the angle N (which may be in
radians or degrees).

ATN(N)

returns the value of the angle whose Tangent is N.

DEG switches to degrees mode.

RAD switches back to radians.

LOG(N) returns the natural logarithm of a
number, N.

CLOG(N) returns the base ten logarithm ofN.

RND(N) returns a pseudo random number between
oand 1.

CHAPTER 9

LOGICAL THINKING

As well as doing arithmetic, the Atari 130XE can
perform tests to compare numbers and strings. We
have already seen this when using IF ... THEN. In
this chapter we will examine in more detail the
way in which the 130XE makes comparisons.

Consider the program line:

220 IF A = 3 THEN 500

The line instructs the Atari to branch to line 500 if
the variable A holds the value 3. What does the
Atari do when it encounters this program line?

The first thing the computer must do is decide
whether A is equal to 3; or to put it another way,
whether 'A = 3' is true. The XE tests this, and if
the expression is true, it returns the answer 1; if
the expression is false, the answer is O. If the result
is true (1), the commands after THEN are obeyed.
If the answer is false (0) the program will continue
with the next line.

Why are we telling you all this? Because the
computer can compare numbers and return true or
false values without IF. Try this short program:

10 A = 3
20 PRINT A = 3

The program displays '1'. Ifyou change line 10 to

70

Logical Thinking 71

10 A = 5 (or any other number)
the program will print O.

This applies to all the other comparisons listed in
Chapter 5 as conditions for IF:

Equal

< Less than

> Greater than

< > Not equal

> = Greater than or equal

< = Less than or equal

Try this:

10 A = 5
20 PRINT A <= 7

If you tryout the other tests, you will find they all
behave in the same way.

LOGIC

If two tests are combined, the same true and false
answers are still obtained:

10 A = 5
20 PRINT (A < 7) AND (A > 3)

Now, if the computer evaluates simple relational
expressions such as A < 7, A> 3 as 1 or 0, what
happens when two are combined, and what does the
AND do?

There are three BASIC commands which can be
used with relational expressions: AND, OR and

72 The Ateri 130Xf Handbook

NOT. Forgetting about numerical representations
of true and false for the moment, let's look at what
these commands do.

Using AND to relate two expressions, as in the
example above, it seems fairly obvious that the
final result will be true only if both smaller
expressions are true. This is in fact what happens.
Here is a table of the possible combinations, with
the two simple expressions represented by X and Y.
This type of table is called a 'truth table'.

x Y XANDY

TRUE TRUE TRUE

TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE FALSE

Truth Table for AND

The command 0 R also does the obvious thing,
returning 1 ifX or Y or both are true.

x Y XORY

TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

Truth Table for OR

NOT changes from true to false, and vice versa, so:

Logical Thinking

10 A = 3
20 PRINT NOT A>10

prints 1 (true). Here is the truth table for NOT:

X NOTX

TRUE FALSE

FALSE TRUE

Truth Table for NOT

SUMMARY

73

The Atari 130XE can not only handle numerical
calculations: it can solve logical problems too.
Relational tests such as those performed after IF
are represented numerically:

True

False

is represented by the number l.

is represented by the number O.

There are three logical operators:

AND

OR

NOT

A AND B is true if both A and Bare
true.

A OR B is true if either A is true or B is
true or both are true.

NOT A is true if A is false.

CHAPTER 10

MEMORY MANAGEMENT

The memory of a computer is built up from a large
number of storage units, each ofwhich can hold one
number. Each storage unit is called a memory
location, and each location has a unique reference
number called its address. In a microcomputer like
the Atari 130XE, each memory location can hold
an eight-bit binary number, which can have a
value between 0 and 255. Larger numbers need
more than one location. (If you are not sure about
binary numbers, they are explained in Appendix
4.) Eight bits of storage are called a byte in
computer jargon, so the memory locations of the
130XE hold one byte of data each. The 130XE has
a total of 128k of memory, though not all of it may
be used easily by BASIC programs.

There are two types of memory used in a computer.
Random access memory, or RAM, is used to store
data, and its contents can be changed as the data
changes. Read only memory, or ROM, cannot be
altered and is used to store the programs the
computer needs to work at all; the BASIC
interpreter for example.

There are two BASIC commands, PEEK and
POKE, which are used to look at individual
memory locations. PEEK finds out the contents of
a location, and POKE writes a new number into
the memory. You can tryout PEEK and POKE by
using them to control the display.

Type in these instructions:

GRAPHICS O:POKE 82,20

74

Memory Management 75

The cursor will jump to the middle of the screen,
and from now on you will only be able to use the
right-hand side of the display. This is because the
Atari uses location 82 to control the width of the
screen - this location normally contains the value
2, resulting in a 2 column left-hand margin. The
POKE command placed a 20 in this location,
causing the left-hand margin to move to column 20.
If you now type:

PRINT PEEK(82)

the Atari will print the answer 20, telling you that
the number in location 82 is 20. (It should be, as
you've just put it therel). Before you continue, type:

POKE 82,2

which will reset the margins to their normal
positions.

What makes the POKE and PEEK commands so
important is that not all the memory addresses of
the 130XE are used for memory. Some of the
addresses are used to point to the control registers
of the special chips which control the sound and
graphics facilities. This means that the chips can
be controlled simply by writing a number into
these control registers using the POKE command.
These special chips will be described in the
following chapters.

Two other commands for managing memory are
FRE and CLR. The function FRE(X) tells you
how much memory is left unused: that is the
memory which is not holding the BASIC program
or its variables.

The CLR command clears all the variables stored
by a program, but leaves the program itself intact.

76 The Atari 130XE Handbook

You can then start a program with the maximum
amount of memory free.

THE EXTRA MEMORY OF THE 130XE

The microprocessor used in the 130XE, the 6502, is
able to make use of65536 memory locations (65536
is 216 , or 64k), and this is the normal maximum for
a microcomputer of this type. The 130XE has twice
this - 132k of memory - but needs a special method
of accessing it. The extra 64k is arranged in four
blocks of 16k each, numbered from 0 to 3, and these
may be switched in and out of the normal memory
area in the region between addresses 16384 and
32767. It is also possible to arrange for the ANTIC
display chip to use the extra memory while the
6502 uses the normal memory, and vice versa.

Unfortunately for the BASIC progammer, the
extra memory can not be used easily without a
knowledge of machine code, as the 16k-32k region
is in the middle of the BASIC program area, and
altering the memory could upset your programs.
The display data used by the ANTIC is usually
stored between 32k and 40k, and so, although in
theory you could store screens in the extra memory
for instant display, in practice it is not all that
easy.

The memory is controlled by location 54017. To
select a bank ofmemory use the command:

POKE 54017, 193 + 4*BLOCK +16*MODE

The mode number has the following meaning:

MODE
o
1
2
3

6502 sees:
Extra memory
Normal memory
Extra memory
Normal memory

ANTIC sees:
Extra memory
Extra memory
Normal memory
Normal memory

CHAPTER 11

SOUND AND MUSIC

The Atari 130XE has exceptional sound generating
facilities. The built-in sound generator (POKEY)
is a synthesiser on a chip, with four voices, a wide
range of octaves, and control of the type of tone
produced by each voice.

The Atari has no built-in loudspeaker, but uses the
loudspeaker of the television or monitor to which it
is connected.

WHAT IS SOUND?

Sound is the effect on our ears of vibrations in the
air caused by a vibrating object such as a guitar
string or a loudspeaker.

...........

.... //...................
Amplitude

Vibrating Guitar String

If we plot a graph of the way a vibrating object
moves over time we get an undulating shape which
is called a 'wave'. What you hear depends on the
properties of the wave: the rate at which the object
vibrates (the frequency of the vibration)

77

78

Period

The Atari XL Handbook

Amplitude

Simple Wave

..

determines the pitch of the sound, and the
amplitude determines the volume.

High and Low Frequencies

Large and Small A mplitudes (Loud and Soft)

Not all sounds have the same shaped waves, and
this wave shape, or waveform, has a great effect on
the quality of the sound. The shape of the sound
waves produced by the 130XE looks like this:

A Square Wave - as produced by the XL

Sound and Music 79

- this is known as a square wave for obvious
reasons.

USING THE SOUND GENERATOR

The sound generator chip (known as POKEY)
provides four tone channels, each of which can play
tones spanning three octaves. The four channels
can be set to play independently of each other so
that chords and harmonies can be created. The
volume of each channel is independently
controllable, as is the amount of distortion with
which the tones are played.

The chip can be described as 'intelligent', meaning
that once data about the sound you wish to hear
has been passed to it, the computer can continue
running your program while the sound is being
generated. For this reason, using the POKEY chip
will not slow the running ofBASIC programs.

To provide control over the functions of the POKEY
chip, there is a BASIC command - SOUND

SOUND

The SOUND command must be followed by four
numbers, separated by commas, which determine:

1 The tone channel to be used.

2 The period of the note to be played. The
number is not the frequency of the note,
but is inversely proportional to its
frequency.

3 The distortion to be applied to the
sound.

80 The Atari XL Handbook

4 The volume of the note on that channel.

A typical SOUNO command is :

SOUND 0,126,10,15

where a note of period 126 is played at volume 15
on channel O. The distortion parameter of 10
specifies no distortion - a pure tone is played.

Try the example, and vary the parameters to get a
feel for the noises you can make. You can stop a
note from sounding by pressing the RESET key.

The SOUND command has the format:

SOUND Channel, Period, Distortion, Volume

and the four parameters work as shown below. The
numbers in brackets in the following paragraphs
are the allowable range of values for these
parameters - if you exceed them an error message
is displayed.

CHANNEL (0-3)

This determines which of the four channels is to be
used. The remaining parameters in the command
pertain to that channel only, and have no effect on
the other three channels.

PERIOD (0-65535)

This controls the frequency of the tone, a low
number means a high pitched tone; a high number
means a low tone. Any number up to 65535 is
allowed, but there are only 256 different
frequencies which means that the the numbers 0 to
255 represent all possible tones, with these being
repeated at higher values so that:

Sound and Music

SOUND 0,100,10,14

SOUND 0,356,10,14

SOUND 0,61540,10,14

all produce the same tone.

VOLUME (0-15)

81

This parameter controls the volume of the tone,
with 15 being the loudest possible and 0 being
silence. Ifyou use more than one channel at a time,
it is advisable to ensure that the total of the volume
parameters isn't greater than 32 as exceeding this
value may result in distorted sounds which are
accompanied by buzzing of the TV speaker. The
best way to ensure this is to use a volume
parameter of 8 for each channel, which is quite loud
enough for most purposes. If not, you can increase
the volume using the volume control on the TV set.

DISTORTION (0-65535)

This controls the amount by which the pure tone is
distorted. Numbers between 0 and 65535 are
allowed but only even numbers have any effect,
and there are only eight possible settings - for
numbers higher than 16 the effect repeats. There
are only seven different degrees of distortion,
selected by the numbers 0, 2, 4, 6, 8 and 12; the
numbers 10 and 14 both specify a pure tone.

The term distortion requires further explanation.

As we have seen, the sound waves generated by the
POKEY chip are square waves:

82 The Ater! XL Handbook

A Square Wave

In order to create distorted tones, this regular
pattern is modified by another square wave, this
one having a random pattern like this:

A Random Square Wave

When you specify a distortion parameter other
than 10 or 14, the square wave generated according
to the three other SOUNO command parameters is
modified by the random square wave, such that the
only pulses of the original wave you hear are those
which coincide with a pulse of the random wave.
The diagram opposite shows how this works:

The result of the combination of the two waves
would look like the lowest wave in the diagram. As
well as distorting the quality ofthe sound, the pitch
of the sound you hear is lower, as some of the cycles
of the wave are removed.The different values of the
distortion parameter select different random
waves, producing different degrees ofdistortion.

The following program plays a tone while stepping
through the different distortion values.

10 FOR DISTORT=O TO 14 STEP 2
20 SOUND 0,100,DISTORT,14
30 FOR DELAY=O TO 1000:NEXT DELAY
40 NEXT DISTORT

Sound and Music

SQUARE WAVE

83

RANDOM WAVE

RESULTANTSOUND WAVE

The Distortion process

50 SOUND 0,0,0,0
Notice how some of the values of the distortion
parameter produce more regular sounding noises
than others. This is because, despite the name, the
pattern of random pulses which comprise the
random waves is repetitive. The difference between
the various random waves is the time over which
the pattern repeats. If this time is short, the noises
produced appear repetitive and are useful for
engine noises, for example. The most random
noises are good for explosions and gun shots.

SOUND CHECKER PROGRAM

The following program will allow you to
experiment with the various SOUND parameters
on each channel.

5 REM SOUND CHECKER
10 GOSUB 10000
20 GOSUB FUNKEY

84

30
40
993
994
995
996
997
998
999
1000
1010
1020
1030
1040
1993
1994
1995
1996
1997
1998
1999
2000
2010

2020

2030

2100
2993
2994
2995
2996
2997
2998
2999
3000

3005

The Atar; XL Handbook

GOSUB KEYBOARD
GOTO 20
REM
REM *********************
REM * *
REM * SUBROUTINE FUNKEY *
REM * *
REM *********************
REM
K=PEEK(53279)
IF K=3 THEN GOSUB OPTION
IF K=5 THEN GOSUB SELECT
IF K=6 THEN GOSUB START
RETURN
REM
REM ***********************
REM * *
REM * SUBROUTINE KEYBOARD *
REM * *
REM ***********************
REM
K=PEEK(764)
IF K=54 THEN POKE 764,255:
GOSUB DECREASE:GOSUB PLAY:GOTO
2100
IF K=55 THEN POKE 764,255:
GOSUB INCREASE:GOSUB PLAY:GOTO
2100
IF K=28 THEN GOSUB START:PRINT
" ": END
RETURN
REM
REM *********************
REM * *
REM * SUBROUTINE OPTION *
REM * *
REM *********************
REM
POSITION 2,4:PRINT"CHANNEL
FREQUENCY DISTORTION VOLUME"
P=P+2:IF P=6 THEN P=O

Sound and Music 85

3010

3020

3030

3040

3050
3060
3070
3993
3994
3995
3996
3997
3998
3999
4000
4010
4020
4030
4040
4050
4060
4993
4994
4995
4996
4997
4998
4999
5000

5010
5020
5993
5994
5995
5996
5997

X=((P=0)*11)+((P=2)*22)+
((P=4)*34)
IF P=O THEN M$="FREQUENCY":REM
THIS TEXT IN REVERSE
IF P=2 THEN M$="DISTORTION":
REM THIS TEXT IN REVERSE
IF P=4 THEN M$="VOLUME":REM
THIS TEXT IN REVERSE
POSITION X,4:PRINT M$
GOSUB KEYBOARD
RETURN
REM
REM *********************
REM * *
REM * SUBROUTINE SELECT *
REM * *
REM *********************
REM
POSITION 3,7+2*CHAN
PRINT " "
CHAN = CHAN+l
IF CHAN=4 THEN CHAN=O
POSITION 3,7+2*CHAN
PRINT ">"
RETURN
REM
REM ********************
REM * *
REM * SUBROUTINE START *
REM * *
REM ********************
REM
FOR Z=O TO 3:S0UND Z,O,O,O:
NEXT Z
GOSUB 12010
RETURN
REM
REM ***********************
REM * *
REM * SUBROUTINE DECREASE *
REM * *

86

5998
5999
6000
6010

6020
6493
6494
6495
6496
6497
6498
6499
6500
6510

6520
7993
7994
7995
7996
7997
7998
7999
8000

8005

8010
8020
8030
8040
8050
9993
9994
9995
9996
9997
9998
9999
10000

The Atari XL Handbook

REM ***********************
REM
S(CHAN,P)=S(CHAN,P)-1-(P=2)
IF S(CHAN,P) <0 THEN S(CHAN,P)
=S(CHAN,P+l)
RETURN
REM
REM ***********************
REM * *
REM * SUBROUTINE INCREASE *
REM * *
REM ***********************
REM
S(CHAN,P)=S(CHAN,P)+1+(P=2)
IF S(CHAN,P»S(CHAN,P+l) THEN
S(CHAN,P)=O
RETURN
REM
REM
REM * *
REM * SUBROUTINE PLAY *
REM * *
REM *******************
REM
SOUND CHAN,S(CHAN,O),S(CHAN,2)
,S(CHAN,4)
XP=X+((P=0)*3)+((P=2)*4)+
((P=4)*2)
POSITION XP,7+2*CHAN
PRINT" ":REM 3 SPACES
POSITION XP,7+2*CHAN
PRINT S(CHAN,P)
RETURN
REM
REM ******************
REM * *
REM * SET UP DISPLAY *
REM * *
REM ******************
REM
PRINT

Sound and Music 87

10010 POSITION 13,1
10020 PRINT fIXE SOUND CHECK":REM IN

REVERSE
10030 POSITION 2,4
10040 PRINT "CHANNEL FREQUENCY

DISTORTION VOLUME"
10050 POSITION 12,5:PRINT "(0-255)

(0-14) (0-15)"
10060 FOR CHAN=O TO 3
10070 POSITION 5,7+2*CHAN
10080 PRINT CHAN:NEXT CHAN
10090 CHAN=O:POSITION 3,7+2*CHAN
10095 PRINT ">"
10993 REM
10994 REM ************************
10995 REM * *
10996 REM * SUBROUTINE ADDRESSES *
10997 REM * *
10998 REM ************************
10999 REM
11000 FUNKEY = 1000
11010 KEYBOARD = 2000
11020 OPTION = 3000
11030 SELECT = 4000
11040 START = 5000
11050 DECREASE = 6000
11060 INCREASE = 6500
11070 PLAY = 8000
11080 POKE 752,1:REM TURN OFF CURSOR
11993 REM
11994 REM **************
11995 REM * *
11996 REM * INITIALISE *
11997 REM * *
11998 REM **************
11999 REM
12000 DIM S(3,5),M$(20)
12010 FOR CHAN=O TO 3
12020 FOR P=O TO 4 STEP 2
12030 S(CHAN,P)=O

88 The Ateri XL Handbook

12035 XP=«P=0)*14)+((P=2)*26)+
«P=4)*36):GOSUB 8010

12040 READ D:S(CHAN,P+1)=D
12050 NEXT P:RESTORE
12060 NEXT CHAN:P=-2:CHAN=0
12070 DATA 255,14,15:REM MAX DATA
12080 GOSUB OPTION
20000 RETURN

The program creates a display of the current
Frequency, Distortion and Volume parameters for
each of the four tone channels, and allows you to
change them to experiment with the SOUND
command.

To select one of the four channels, press the
SELECT key on the function keypad - a > symbol
indicates which channel is selected.

To alter one of the parameters on that channel, use
the OPTION key to make your choice - the heading
of the currently selected column will be
highlighted. Use the < and> keys to increase or
decrease the value displayed. The sound you hear is
changed wi th the changing parameters, and in this
way you can tailor the four channels to create the
noise you require and make a note of the
parameters. If you make a mess of things, pressing
the START key sets all the parameters back to
zero.

HOW THE PROGRAM WORKS

The program consists of a number of modules,
defined in lines 11000 to 11070.

The display is created by lines 10000 to 10080 and
lines 12000 to 12080 create an array which
contains the parameters for each channel (initially
zero) and the maximum value for each parameter.

Sound and Music 89

The program selects Channel 0 and Frequency
options as a starting point by setting the variables
P and CHAN in line 12060, then calling the routine
normally called when the OPTION key is pressed.

When running, the program constantly cycles
through the two routines FUNKEY and
KEYBOARD which read the two keyboards, until a
keypress is detected. The appropriate subroutine is
called and SOUND parameters for the selected
channel changed by either the DECREASE or
INCREASE subroutines.

After each keypress is processed, the PLAY routine
at 8000 is called to update the noise, and the
program awaits the next keypress.

PLAYING TUNES

To play tunes, we must 'feed' a SOUND command
with a series of frequency parameters in turn, and
one way of doing this is shown in this example:

10 SOUND 0,INT(100*RND(I)),10,8:
GOTO 10

As mentioned earlier, all four channels are
independant - allowing us to play four different
tones at once on each channel. .

5 REM CACOPHONY!
10 SOUND 0,INT(10*RND(I)),10,8
20 SOUND I,INT(50*RND(I)),10,8
30 SOUND 2,INT(100*RND(I)),10,8
40 SOUND 3,INT(250*RND(I)),10,8
50 GOTO 10

Neither of these examples could be described as
music, for that we need a more controlled way of
calculating frequencies. The table in Appendix 10
lists the frequency values corresponding to musical

90 The Atari XL Handbook

notes (if you are unfamiliar with musical notation,
refer to Appendix 12). Using this table we can build
up a series of numbers corresponding to notes but
we need a way of storing them. One way is to store
them in a string, reading them one at a time as
parameters for a SOUND command. This
technique is illustrated in the following program.

10 DIM TUNE$(ll)
20 TUNE$ = IIQQQQDHHQQUQ II

30 FOR Z=l TO LEN(TUNE$)
40 N = ASC(TUNE$(Z,Z»
50 SOUND 0,N,10,S
60 FOR D = ° TO 100:NEXT D
70 SOUND 0,0,0,0
SO NEXT Z

The main limitation with this method is that the
notes are all the same length, which renders it
impractical for all but the simplest music.

There are several ways of overcoming this: for
example, a second string could be used to hold the
data for the length of notes. Add these lines to the
last program to hear this technique in action.

15 DIM L$(ll)
25 L$="32132121214"
60 FOR D=O TO 100*VAL(L$(Z,Z»:

NEXT D

This method is adequate for simple tunes but a
better way is to hold information concerning notes
and note lengths in DATA statements like this:

10 FOR Z=l TO 13
20 READ NO,LE
30 SOUND 0,NO,10,S
40 FOR DUR=O TO 100*LE:NEXT DUR
50 SOUND 0,0,0,0

Sound and Music 91

60 NEXT Z
70 SOUND O,O,O,O:END
100 DATA 81,2,81,2,88,1,81,1,72,

2,96,4,108,4,122,2,122,2,128,1
,122,1,108,2,144,8

The next program uses DATA statements to playa
tune in four part harmony. There are five DATA
items for each group of notes - the periods of the
four voices, and a value for the note length. The
program will playa tune you should recognise if
you have run the Audio-Visual self checking
routine on the Atari.

It will take you quite a time to type in all the
DATA, but the end result is well worth all the
effort.

You will notice that the values used for note
periods are not the same as those given in the Atari
130XE Owner's Manual supplied with your
computer. We found that the values given by Atari
were not well tuned, and that the note values given
in Appendix 11 sounded much better! Even so, the
tuning is not perfect, as the 255 available periods
are not sufficient to give a perfect sound. Later in
the chapter we will describe how to increase the
range and tuneability of the Atari at the expense of
reducing the number ofvoices from four to two.

10 D=10
20 VO=0:V1=1:V2=2:V3=3
30 VOL=4:VOLO=10:VOL3=6
100 READ PO,P1,P2,P3,T
110 IF T=255 THEN END
120 SOUND VO,PO,D,VOLO
130 SOUND V1,P1,D,VOL
140 SOUND V2,P2,D,VOL
150 SOUND V3,P3,D,VOL3

92 The Aten XL Handbook

155 FOR DEL=O TO T*110:NEXT DEL
160 GOTO 10
1000 DATA 85,0,0,0,2,95,0,0,0,2,

71,0,0,0,2,63,0,0,0,1,47,0,0,0
,1,56,0,0,0,2

1010 DATA 63,0,0,0,1,47,0,0,0,1,
56,0,0,0,2,71,0,0,0,2,63,0,0,0
,2,85,0,0,0,2,95,0,0,0,2

1020 DATA 85,113,143,171,2,
95,127,151,191,2,71,113,143,17
1,2,63,75,127,191,1,47,75,127,
191,1,56,75,95,227,2

1025 DATA 63,75,127,191,1,47,75,
127,191,1,56,71,95,143,2,71,85
,113,171,2,63,85,101,255,2,85,
127,171,203,2

1026 DATA 95,127,151,191,2
1030 DATA 95,0,0,0,2,85,0,0,0,2,

113,0,0,0,2,95,0,0,0,1,85,0,0,
0,1,127,0,0,0,2

1040 DATA 85,0,0,0,1,75,0,0,0,1,95,
0,0,0,2,47,95,191,0,2,56,95,14
3,0,2,63,95,171,0,1,71,95,171,
0,1,95,191,0,0,2

1050 DATA 95,0,0,0,2,85,0,0,0,2,
113,0,0,0,2,95,0,0,0,1,85,0,0,
0,1,105,0,0,0,2

1060 DATA 71,0,0,0,1,63,0,0,0,1,79,
0,0,0,2,39,79,159,0,2,47,79,11
9,0,2,52,79,143,0,1,59,79,143,
0,1,79,0,159,0,2

1062 DATA 0,0,0,0,0
1070 DATA 79,105,159,0,2,71,105,

143,0,2,79,105,159,0,2,71,105,
159,0,1,63,105,127,0,1,52,105,
0,0,1

1072 DATA 71,105,143,0,1,79,105,
159,179,2

1080 DATA 59,79,95,191,1,52,63,79,

Sound and Music 93

9,1,44,52,71,211,1,47,59,79,19
1,1

1082 DATA 52,63,79,159,1,44,0,85,
159,1,47,59,71,143,1,59,0,113,
143,1,52,63,79,159,2

1090 DATA 79,105,159,0,2,71,105,
143,0,2,79,105,159,0,2,71,105,
143,0,1,63,105,127,0,1,52,105,
0,179,1,71,0,143,0,1

1100 DATA 63,85,127,143,2,56,85,
113,143,2,63,85,127,151,2,56,8
5,113,143,1,47,85,95,143,1,42,
85,0,143,1

1102 DATA 56,85,113,143,1,63,85,
127,143,2

1110 DATA 47,63,95,151,1,42,50,63,
171,1,37,47,63,191,1,31,0,63,1
91,1,35,42,56,171,1,37,47,63,1
51,1,42,50,63,127,1

1112 DATA 35,0,56,127,1,37,47,75,
113,1,47,0,95,113,1,42,50,85,1
27,2

1120 DATA 37,63,75,151,1,50,63,74,
151,1,47,56,95,143,2,37,63,75,
191,2,56,71,101,171,2,37,63,75
,191,2,56,71,101,171,2

1130 DATA 47,75,95,227,1,63,75,95,
227,1,56,71,95,171,2,47,75,95,
227,2,56,71,95,171,2

1132 DATA 47,75,95,227,1,63,75,95,
227,1,56,71,95,171,2

1140 DATA 63,85,105,255,1,63,85,
101,255,1,75,95,127,191,2,71,9
5,113,171,2,63,85,105,255,1

1142 DATA 63,85,101,255,1,75,95,
127,191,2,71,95,113,171,1,56,9
·5,113,171,1

1150 DATA 63,85,101,255,2,75,95,
113,191,2,63,85,101,255,2,47,9
5,0,191,2,52,71,75,171,1,56,0,
113,171,1

94 The Afar; XL Handbook

1152 DATA 63,75,127,151,1,71,95,
113,143,1

1160 DATA 63,95,127,151,2,56,95,
113,143,2,47,63,75,151,2,42,50
,71,171,1,35,0,71,171,1,47,0,9
5,191,2,42,0,85,171,2

1170 DATA 47,0,95,191,2,52,71,85,
171,1,56,0,113,171,1,63,75,95,
151,1,71,95,113,143,1,63,95,12
7,151,2

1172 DATA 56,95,113,143,2,47,63,
95,151,2

1180 DATA 42,50,71,171,1,35,0,71,
171,1,47,95,0,191,2,42,85,0,17
1,2,47,95,0,191,2,0,0,0,0,0

1182 DATA 85,85,171,0,2,95,95,191,
0,2

1190 DATA 42,50,71,255,1,35,71,0,
255,1,47,95,0,191,2,42,85,0,17
1,2,47,95,0,191,2,0,0,0,0,0

1192 DATA 85,105,143,211,2,95,127,
151,191,2

1200 DATA 71,95,143,227,2,63,75,
127,255,1,47,0,95,255,1,56,71,
95,143,2,63,75,95,151,1,47,0,9
5,151,1

1220 DATA 56,71,95,171,2,71,95,113,
171,2

1230 DATA 63,85,101,255,2,85,101,
127,203,2,95,127,151,191,2,0,0
,0,0,0,85,113,143,171,2

1232 DATA 95,127,151,151,2,71,95,
143,171,2

1240 DATA 63,75,95,191,1,47,0,95,
191,1,56,71,95,143,2,71,85,113
,171,2,53,63,85,255,2,63,75,95
,191,2,71,95,113,143,3

10000 DATA 0,0,0,0,255

Sound and Music

ADVANCED TECHNIQUES

95

The effects you can acheive using the SOUND
command can be quite spectacular, but it is
possible to do more, since this single BASIC
command doesn't offer control over all of the
functions of the POKEY chip. With more
understanding of how the chip operates you can
have a greater influence on the noises it creates

SOUND REGISTERS

Like other chips in the 130XE, the POKEY chip rs
controlled by a number of registers, whose
addresses and functions are shown here.

The SOUND command has a direct influence on
the first six of these registers, and loads those
pertinent to the specified channel with the
appropriate data, for example:

SOUND 0,100,10,15

can be duplicated by the commands

POKE 53760,100

POKE 53761,175

The first POKE command sets the frequency
register for channel 0 to 100, which is fairly
obvious, but the contents of the channel 0 control
register (53761) require some explanation.

96 The Atari XL Handbook

REGISTER FUNCTION

53760 Channel 0 Frequency
53761 Channel 0 Control
53762 Channel 1 Frequency
53763 Channel 1 Control
53764 Channel 2 Frequency
53765 Channel 2 Control
53766 Channel 3 Frequency
53767 Channel 3 Control
53768 POKEY Control

POKEY Chip Registers

The eight bits of the control register control
different aspects of the sound.

Bits 0, 1, 2 and 3 control the volume - four bits can
represent the numbers 0 to 15, hence the
restriction of 0 to 15 for the volume parameter in
SOUND commands.

Bits 5, 6 and 7 control distortion. Three bits means
eight different combinations or eight different
degrees ofdistortion.

We POKEd a value of 175 into this register, and
obtained a pure tone at volume 15. The volume is
obtained by setting each of the four volume bits to
1. A pure tone involves setting bits 5 and 7 to 1, the
value of bit 6 being irrelevant (that's why the

Sound and Music 97

numbers 10 and 14 give the same pure tone in a
SOUND command).

Converting these bits to a decimal number gives:
128 + 32 + 8 + 4 + 2 + 1 = 175

You can achieve the same effects as those
obtainable with the SOUND command in this way,
but this knowledge isn't much use. But what about
bit 4 of the control register? This is the volume
only bit and when set to 1, the value of the volume
bits (0 to 3) is used to directly control the speaker of
the TV.

Bits 0 to 3 select a voltage which is applied to the
TV speaker if bit 4 is set. The higher the value of
bits 0 to 3, the higher the voltage and the greater
the deflection of the TV speaker.

For example type:

POKE 53763,31

When you press the RETURN key, you will hear
the beep as you press the key, followed by a click
from the speaker.

POKE 53763,16

will select a zero voltage and the speaker will
return to its rest position, with another click. This
is how the 130XE creates noises with square
waves, each pulse of which moves the speaker out
then back to rest again.

Type in the following program, which steadily
increases the voltage applied to the speaker.

10 FOR VOLTS=l TO 15

98 The Ater! XL Handbook

20 FOR Z=l TO 100
30 POKE 53763,16+VOLTS
40 POKE 53763,16:REM 0 VOLTS
50 NEXT Z
60 NEXT VOLTS

Each increase in voltage is alternately applied then
switched off 100 times, causing a buzzing sound,
which increases in volume with each increase in
voltage. For each voltage the distance travelled by
the speaker cone increases, displacing an increased
amount of air, and so producing a louder sound.

We can change the frequency of the noise by
inserting a delay loop:

35 FOR 0=0 TO 30:NEXT 0

With this delay, you can hear the individual clicks
as the speaker moves in and out.

Unfortunately the speed limitations imposed by
BASIC mean that this technique cannot be
exploited fully without resorting to machine code.

THE POKEY CONTROL REGISTER

This register provides additional control of the
POKEY chip, and opens up many more sound
generating possibilities.

The frequency of the square waves generated by
the POKEY chip is governed by another square
wave generated by the computer. The frequency of
this stream of pulses (known as clock pulses) has a
bearing on the range of frequencies you can
generate. You can control the frequency of these
clock pulses and thereby greatly increase the range

Sound and Music 99

of frequencies generated by the POKEY chip. Try
this example:

SOUND 0,255,10,8

will generate the lowest frequency tone possible
with a SOUND command. If you now type:

POKE 53768,1

the frequency of the note produced will drop
dramatically. This is because bit °of the POKEY
control register (PCR from now on) controls the
frequency of the clock pulses applied to the POKEY
chip. Bit°is usually set to 0, but when set to 1, the
frequency of the clock pulses is reduced by a factor
of about four - resulting in a much lower output
frequency.

This effect applies to all four tone channels.

The other seven bits in PCR are used to control
other functions, as shown in this table.

Bits 5 and 6 provide a more flexible way of
changing the clock frequency applied to Channels 2
and 0, without affecting other channels. The clock
frequency is increased by a factor of nearly 28 - try
this example.

SOUND 2,200,10,15

POKE 53768,32

Note that the frequency of the output tone is much
higher after setting bit 5 ofPCR.

10 FOR Z=l TO 12
20 READ N
30 SOUND 0,N,10,8

100 The Ater! XL Handbook

BIT FUNCTION

0 Switch clock from 64kHz to 15
kHz

1 High Pass Filter on Channel 1
(controlled by Channel 3)

2 High Pass Filter on Channel 0
(controlled by Channel 2)

3 Adds Channel 2 to Channel 3
4 Adds Channel 0 to Channel 1
5 Channel 2 clock = 1.79 MHz
6 Channel 0 clock = 1.79 Mhz
7 Increases repeat rate of random

waves

POKEY Control Register Functions

40 SOUND 2,N,10,8
50 FOR P=O TO 200:NEXT P
60 NEXT Z
70 SOUND O,O,O,O:END
100 DATA 251,230,217,204,193,182,

173,162,153,144,136,128

This program plays ascending notes on two
channels at once. Ifyou add the line:

45 POKE 53768,32

bit 5 of the PCR is set, increasing the clock
frequency applied to Channell - try it and see!

Sound and Music 101

This method of increasing the frequency of the
output tone is rather crude, and the PCR provides
facilities for more accurate control of frequencies.

In normal use we are restricted to 256 different
frequencies per channel, since the frequency
register for each channel consists of only eight bits.
This restriction means that many frequencies
cannot be acheived. However, PCR bits 3 and 4
allow you to Join' two channels together, forming
one channel with a 16 bit frequency register.

Bit 3 joins channel 2 to channel 3, and bit 4 joins
channel 0 to channel 1. So if you are prepared to
reduce the number of independent tone channels,
you will be able to generate a much wider range of
frequencies.

The following program demonstrates the increased
frequency range by joining channels 0 an 1.

10 SOUND 0,0,0,0
20 POKE 53768,64+16
30 POKE 53761,160
40 POKE 53763,175
50 FOR Z=O TO 65535
60 HI = INT(Z/256)
70 La = Z-(HI*256)
80 POKE 53760,LO
90 POKE 53762,HI
100 NEXT Z
110 SOUND 0,0,0,0

The program will take a long time to run, so you
might like to try adding a STEP to the FOR
NEXT loop to speed things up a bit.

The range of frequencies can be altered by setting
other bits in PCR which control the clock frequency

102 The A tar; XL Handbook

applied to the POKEY chip. Try changing line 20
to:

20 POKE 53768,16

This will select the normal clock frequency instead
of 1.79 MHz (1 MHz is one million cycles per
second) making the lowest frequency about 1 Hz (or
one click per second). The lowest frequency can be
reduced still further, by setting bit 1 of PCR to
reduce the clock frequency to 15 kHz (l kHz is one
thousand cycles per second):

20 POKE 53768,17

FILTERING

Bits 1 and 2 ofPCR control what are known as high
pass filters. These are filters which cut out
frequencies lower than a certain value. In the
POKEY chip, the filtering frequency (that below
which frequencies are cut off) is set on one of the
tone channels and acts on another channel.

As shown in the table of POKEY control registers
at the beginning of this section, if bit 1 of PCR is
set, any frequency on channell which is lower than
that on channel 3 is filtered out. If bit 2 is set,
channel 2 acts as a filter on channel O.

The principle is as follows:

At any instant, if the frequency on the tone channel
is greater than that of the filter, the tone will be
heard, otherwise it will not. This gives rise to an
effect similar to, but much more regular than,
distortion as illustrated in the diagram opposite.
Try this example to hear it in action.

10 SOUND 0,0,0,0

Sound and Music 103

SQUARE WAVE

F
R
E
Q
u
E
N
C
Y

-
FILTERING WAVE

RESULTANT WAVE

TIME ------.

20 POKE 53768,4
30 POKE 53760,240
40 POKE 53761,168
50 POKE 53764,120
60 POKE 53765,160
70 GOTa 70

If the volume bits of the filter channel are set, that
tone channel will be heard as well - change line 60
to:
60 POKE 53765,168

If you delete line 20, the two tone channels alone
will be heard.

Finally, bit 7 of the peR controls the rate at which
the pattern of the square wave controlling the

104 The Ateri XL Handbook

distortion repeats, and when set to 1, makes any
distorted sound much more regular, as the
following example shows. You will hear the sound
change after about two seconds, as line 50 sets bit 7
in thePCR.

10 SOUND 0,10,8,8
20 SOUND 1,100,8,8
30 SOUND 2,255,8,8
40 FOR D=O TO 1000:NEXT D
50 POKE 53768,128
60 GOTO 60

As you can imagine, the number of possible
combinations of the techniques mentioned in this
chapter is virtually infinite and a good deal of
experimentation is required to get the best out of
the POKEY chip.

CHAPTER 12

CHARACTERS

Up to now all the displays we have created have
comprised light blue characters on a dark blue
background. You will probably be aware that the
130XE is capable ofmore impressive displays than
this, and the following four chapters will explain
how to make the most of the graphics potential of
your computer.

CHANGING COLOURS

The 130XE is able to display 16 primary colours,
and you can choose anyone of these to be the screen
or border colour using a BASIC command -
SETCOLOR

The syntax of the SETCOLOR command is:

SETCOLOR R,C,L

The three parameters specify the register or store
location into which we want to place colour
information, the code specifying the colour we
require, and the luminance, or brightness, of the
colour.

COLOUR REGISTERS

The XE reserves five memory locations for storing
colour information and these colour registers are
numbered 0 to 4. The colour of the screen is
controlled by the contents of register 2, so to change

105

106 The A tar; 130XE Handbook

the screen colour we use the SETCOLOR
command to alter the contents of register 2.

The sixteen colours from which we make our choice
are represented by code numbers 0 to 15, as shown
in this table:

CODE COLOUR

0 GREY

1 GOLD

2 ORANGE

3 RED

4 PINK

5 VIOLET

6 PURPLE

7 LIGHT BLUE

8 DARK BLUE

9 BLUEGREEN

10 BLUE

11 DARK BLUE

12 GREEN

13 DARK GREEN
14 OLIVE GREEN

15 ORANGE

XL Colour Codes

The actual colour displayed depends on the third
parameter in the SETCOLOR command -
luminance. This controls the brightness of the
colour and can have a value between 0 and 14. The

Characters 107

higher the luminance number the brighter the
colour; so grey at luminance 0 will be black, but at
luminance 14 will appear white. Odd values for
luminance have the same effect as the lower even
number, so there is a choice of eight.

To see SETCOLOR in action, type in the following
program which cycles through the possible screen
and border colour combinations.

10 FOR COLR=O TO 15
20 FOR LUM=O TO 14 STEP 2
30 SETCOLOR 2,COLR,LUM
40 FOR DELAY=O TO 200:NEXT DELAY
50 NEXT LUM
60 NEXT COLR

The program changes the con tents of Register 2
which controls screen colour, if you change line 30
to:

30 SETCOLOR 4,COLR,LUM

the border colour will be affected. It is also possible
to alter the luminance of the characters, by
altering register 1 as in this example, where
characters are made to flash by con trolling their
luminance.

10 SETCOLOR 2,3,0
20 LUM = 14
30 SETCOLOR 1,3,LUM
40 FOR PAUSE=O TO 100:NEXT PAUSE
50 LUM = 14-LUM
60 GOTO 30

38 OR 40 COLUMN SCREEN?

All our programs so far have used a screen display
of 38 columns by 24 rows, leaving a margin of two
characters at the left of the display. This margin is

108 The Aieri 130XE Handbook

preset to cater for the variety of TVs which might
be connected to the computer. It is possible to
regain the two columns and allow a full 40 column
display by altering the contents of one of the two
memory locations that the 130XE uses to control
the width of the display. Location 82 sets the
position of the left hand margin, and location 83
the right hand margin. When the 130XE is
switched on, a value of 2 is placed in location 82,
setting the lefthand edge of the display at column
2, so to regain the two 'lost' columns, simply:

POKE 82,0

You will then have access to all 40 columns until
you switch off the computer or press RESET.

DIFFERENT DISPLAYS

As we have said, the Atari is capable of a variety of
display types, and the different displays are
referred to by a number - the MODE number. The
40 by 25 display is known as mode 0, and is the
default mode which is selected when you switch on
the computer. There is a BASIC command which is
used to change modes - GRAPHICS.

The syntax of the GRAPHICS command is:

GRAPHICS M

where M is the number of the mode required. So
typing:

GRAPHICS 0

would select the standard display - but there isn't
much point in doing that since. that's the mode we
are using! There are two other modes which can be

Characters 109

used to display characters similar those in mode 0;
modes 1 and 2.

GRAPHICS MODES 1 AND 2

The characters in mode 1 are twice as wide as those
in mode 0, so the number displayable on one line is
reduced to 20 (the preset margins do not apply to
Graphics 1 and 2 displays). Mode 2 characters are
twice as high and twice as wide, bringing the
number of characters per screen or resolution down
to 20 by 12.

As well as the different sized characters the screen
is split into two parts - a small section at the
bottom is reserved .for a four line mode 0 display
while the top portion is reserved for mode 1 or 2
characters. The mode 0 window means that the
number of rows of characters that can be displayed
in modes 1 and 2 is reduced. To see these modes
type in the following program:

5 REM GRAPHICS 1 AND 2 DEMO
10 MODE=1
20 GRAPHICS MODE
30 PRINT:PRINT"GRAPHICS 0 WINDOW"
40 POSITION 1,5
50 PRINT#6i"GRAPHICS l i MODE; "

SCREEN"
60 GOTO 60

As you can see from the listing, PRINT commands
cause characters to appear in the mode 0 window,
but another technique is required to put characters
on the mode 1 section of the screen.

To cause characters to appear on the mode 1 and 2
screens, the PRINT command is modified to
PRINT '6. This instructs the computer to send
the data following the PRINT command to the
destination specified after the, symbol. In this

110 The Atari 130XE Handbook

case the destination is 6, which represents the
screen. This technique is commonly used to send
data to peripheral devices such as the cassette unit
(see Chapter 16) and here we are treating the
model screen as if it were a peripheral device.

The colour and luminance of the message displayed
by the last program is controlled by colour register
0, and can be changed with the SETCOLOR
command. However it is possible to display
characters in up to four different colours on a mode
1 or 2 screen, as the following program
demonstrates.

10 GRAPHICS 1
20 PRINT#6;"REGISTER ZERO"
30 PRINT#6
40 PRINT#6;"register one"
50 PRINT#6
60 PRINT#6;"REGISTER TWO":REM

THIS TEXT IN REVERSE
70 PRINT#6
80 PRINT#6:"register three":REM

THIS TEXT IN REVERSE

Notice that regardless of the case specified in the
program, the messages on the screen are all in
upper case and those which would appear in
inverse video in mode°do not do so in mode 1. This
is because the additional information which would
affect case and inverse video in mode 0, is used to
select one of four colour registers to determine the
colour of the characters. The following table shows
which registers are selected by which type of text.

Characters can be positioned on the mode 1 and 2
screens using the POSITION command as in mode
0, but remember that because the characters are
larger than those in mode 0, the limits of screen
coordinates are correspondingly reduced.

Characters

TEXT REGISTER

UPPER CASE 0

lower case 1

INVERSE UPPER CASE 2

inverse lower case 3

111

Colour Register use in Modes 1 and 2

There is another way to put characters on the mode
1 and 2 screens using the commands COLOR and
PLOT.

Wi th this method, characters are placed on the
mode 1 or 2 screens with a PLOT command, the
syntax ofwhich is:

PLOT X, Y

where X and Yare screen coordinates, and X=0,
Y = 0 specifies the top left-hand corner of the
display.

The character to be plotted is selected using the
COLOR command. The syntax of the COLOR
command depends upon the graphics mode in use,
and in modes 1 and 2, the syntax is:

COLOR C

where C is a code which specifies not only a
character but also the register in which colour
information for that character is stored. For each
character there are four possible code numbers,
each specifying the same character, but a different
colour register. For example, the code 42
represents the asterisk, and specifies register 0 for
colour information. The number 10 also represents
an asterisk, but its colour is determined by the

112 The Ateri 130XE Handbook

contents of register 1. A full table of all these codes
is given in Appendix 7.

The following program demonstrates how multi-
coloured messages can be displayed on the mode 1
and 2 screens using the COLOR and PLOT
commands.

5 REM MODE 1 & 2 COLOR/PLOT DEMO
10 MODE=2
20 GRAPHICS MODE
30 FOR CHAR=O TO 18
40 READ COLR
50 COLOR COLR:PLOT CHAR,8/MODE
60 NEXT CHAR
70 GOTO 70
500 DATA 52,32,100,201,230,70,101
510 DATA 210,229,78,116,32,195,239
520 DATA 76,111,213,242,83

The DATA statements in lines 100 to 120 contain
codes for the characters and their associated colour
registers taken from the table in Appendix 7, and
these are selected one at a time and plotted by the
loop between line 30 and 60. The program will
work equally well in mode 1.

The colours in which the characters are displayed
are the default values for each of the colour
registers, as shown in the table opposite.

The program can be made more interesting by
changing these registers to give different colours
and luminances. If you do change the value in a
register with the SETCOLOR command, all
characters whose colour is determined by that
register will instantly take on the new colour. You
can see this by deleting line 70 and adding the
following lines to the last program:

100 FOR COLR=O TO 15

113Characters

LOC. REG. COLR. LUM. COLOUR

708 0 2 8 ORANGE

709 1 12 10 GREEN

710 2 9 4 BLUE

711 3 4 6 PURPLE

712 4 0 0 BLACK

Default Colour Register Values

110 FOR REG=O TO 3
120 SETCOLOR REG,COLR+2*REG,12
130 NEXT REG
140 FOR DELAY=O TO 50:NEXT DELAY
150 NEXT COLR
160 GOTO 100

The colours will continue to cycle until you press
BREAK.

You can also use the POKE command to directly
alter the contents of the colour registers. Add these
lines to the last program and type GOTO 200 to
cycle through all the colour and luminance
combinations for the screen colour, by POKEing
the colour register location (given in the table) with
every number from 0 to 255.

200 REG=710
210 FOR COL=O TO 255
220 POKE REG,COL
230 FOR PAUSE=O TO 100:NEXT PAUSE
240 NEXT COL
250 GOTO 250

When you change character colours, you will notice
that the colour of the mode 0 window also changes,
because this is controlled by one of the registers
controlling character colours (register 2). This is a

114 The Afar; 130XEHandbook

bit distracting, and there is a way of removing the
mode 0 window, allowing the entire screen to be
given over to mode 1 or 2 displays. To achieve this
simply add 16 to the mode number, so that mode 1
without a mode 0 window is obtained by typing:

GRAPHICS 1+16

Try changing line 20 in the previous program to see
this. The penalty is that if the program is halted
for any reason, the Atari will return to mode 0 -
losing your display.

One drawback of being able to specify one of four
colours for a mode 1 or 2 display is that only 64
characters can be represented by codes 0 to 255.
This restricts us to using only upper case letters in
the previous examples, which is only half of the
available character set. To display the other half of
the character set, we must change the place from
which the Atari obtains its characters by
POKEing the character set pointer (location 756)
with the number 226 (its default value is 224).
Don't worry too much about what this means - all
will become clear later in this chapter.

The following program, in a romantic vein,
demonstrates the use of the other half of the
character set in mode 2.

10 MODE=2+16
20 GRAPHICS MODE
25 SETCOLOR 0,3,8
30 POKE 756,226
35 FOR CHAR=2 TO 17
40 READ DATA
50 COLOR DATA:PLOT CHAR,4
60 NEXT CHAR
65 REM LOOP TO FLASH MESSAGE
70 FOR LUM=O TO 14 STEP 2
80 SETCOLOR 1,12,LUM

Characters 115

85 FOR DELAY=O TO 30:NEXT DELAY
90 NEXT LUM
100 GOTO 70
110 DATA 104,97,112,112,121,32,

32,118
120 DATA 97,108,101,110,116,105,

110,101

The screen full of hearts occurs because the
character corresponding to space in the first half of
the character set is a heart, so everywhere which
would normally be blank contains a heart. The
colour of the hearts is set in line 25, and the second
halfof the character set specified in line 30.

If you change line 30 to:

30 POKE 756,224

and run the program again, the first half of the
character set will be used but the resulting display
doesn't have the same romantic appeal!

CHARACTER DEFINITIONS

The shapes of all the displayable characters are
defined by numbers held in a special area of
memory. The XE allows you to create new symbols
by entering new definitions for the characters to
replace those held in memory. Each symbol in the
character set is defined by the contents of eight
memory locations, which correspond to a grid of
eight rows; each row consisting of eight dots which
may be set to the foreground or the background
colour. (Each of these dots is called a pixel, which is
a contraction of picture element. The display is
built up from 69120 of these pixels.) Each location
defines one row of the character, and each bit of the
number in the location represents one pixel. If the
bit is set to 1, the pixel is displayed in the

116 The Atari 130XEHandbook

o
1

2
Memory 3
Location:

4

5
6
7

Bit: 7 6 5 4 3 2 1 0

The Character Grid

foreground colour; if the bit is set to 0 the pixel
remains in the background colour.

In normal use, the character defini tions are held in
2K of read-only memory (ROM), beginning at the
location determined by the contents oflocation 756.
The start address of the character set ROM is
obtained by multiplying the contents of location
756 by 256. There are actually two sets of 128
characters, the first set including punctuation and
maths symbols, numbers and letters and graphics
characters. The second set is a copy of the first
except that the 29 graphics symbols (normally
obtained by holding down the CONTROL key and
pressing a key) are replaced by a European
character set, which contains characters like the £
sign. To switch between the two character sets use
the command:

POKE 756,204

and to switch back:

POKE 756,224

Characters

INTERNAL CHARACTER CODES

117

The 130XE makes reference to the eight bytes
defining a character by assigning a code, known as
the Internal Character Code to each one. This is
different from the ASCII code, so to find the eight
bytes defining a character we must first convert the
ASCII code of that character to internal code. This
is done with the following formula:

INTERNAL=ASCII+«ASCII<32)*64)-
«ASCII>31 AND ASCII<96)*32)

What this means is that the internal code is the
same as ASCII for codes greater than 95; for codes
less than 32 the internal code is greater by 64, and
for ASCII codes between 31 and 96, the internal
code is 32 less than ASCII.

Having worked out the internal code of a character,
to find the eight bytes which define it, we multiply
the internal code by eight, and add the start
address of the character set:

CHARACTER LOCATION =(INTERNAL
CODE*8)+(256*PEEK(756»)

So the defini tion of the letter X (ASCII Code = 88;
Internal Code = 56) in the standard character set
is to be found at location:

56*8+(256*(PEEK(756») = 57792

This short program will display the eight numbers
defining any character.

1 REM DISPLAY CHARACTER DATA
5 OPEN#1,4,0,"K:"
10 PRINT" 1\"

118

20
30

40
45

50

60

70
80
90
100

110

The Atar; 130XE Handbook

CSET = PEEK(756)*256
PRINT"ENTER ASCII CODE OF
CHARACTER" ;
INPUT ASCII :PRINT" x "
PRINT "CHARACTER";CHR$(ASCII):
PRINT
CODE=ASCII+«ASCII<32)*64)-
«ASCII>31 AND ASCII<96)*32)
PRINT"ASCII CODE ";ASCII;"
INTERNAL CODE ";CODE:PRINT
CHAR = CODE*8 + CSET
FOR Z=CHAR TO CHAR+7
PRINT PEEK(Z):NEXT Z
PRINT:PRINT "PRESS ANY KEY TO
CONTINUE"
GET#l,X:GOTO 10

For example, taking the letter X, the program
should display the numbers 0,102, 102,60,60,102,
102, O. Having found the eight numbers, we can

128 64 32 16 8 4 2 1

o
102
102
60
60
102
102
o

The Character X

convert them to binary form and fill in the grid to
produce a letter X.

Characters 119

Notice that the top and bottom lines of the
character are left blank. This is to leave a space
between lines of text on the screen.

REDEFINING CHARACTERS

You may be wondering how it is possible to create
new characters when the standard character
definitions are held in ROM - it's difficult to write
new numbers into read-only memory! The answer
is that we have to tell the computer to look
somewhere else for the character shapes, and
define the new characters in RAM. We have used
this technique before to swap between Standard
and European character sets. By POKEing the
high byte of the start address of the character set
into location 756 we changed the memory from
which the character definitions were taken.

Location 756 is the place where the Atari stores the
high byte of the start address of character data (ie
to find the address of the start of character data you
must multiply the contents of location 756 by 256).
This information is used by the chip which controls
all the display of the Atari, known as the ANTIC
chip. Location 756 is a copy of one of the registers
on this chip, known as a shadow register. The
contents of the shadow register are copied to the
chip every sixtieth of a second and used to dictate
whereabouts in ROM the character set is to be
found.

This pointer can just as easily be made to point to
an area ofRAM - try this:

LIST the program to show some characters on the
screen, then type:

POKE 756,2

120 The A ta ri 130XE Handbook

The program listing turns into garbage because the
ANTIC chip is taking data for characters from an
area of RAM which contains system variables, not
character data. Press RESET to return to normal
viewing!

To make use of user defined characters you must
first copy all the characters in a set into the RAM,
and tell the ANTIC chip where to find them. You
can then alter some (or all) ofthe characters to your
own designs.

The first step in redefining characters then is to
copy the entire character set into RAM, in order
that we can modify some or all of the data. The
following program does this for you.

10 REM COpy CHARACTER SET
20 POKE 106,PEEK(106)-4
30 GRAPHICS 0
40 FOR Z=O TO 124
50 PRINT CHR$(Z);
60 IF Z=26 THEN Z=31
70 NEXT Z
75 FOR DELAY = 0 TO 500:NEXT

DELAY
80 CSET=PEEK(756)*256
90 RAMSET = 256*PEEK(106)
100 POKE 756,PEEK(106)
110 FOR Z=O TO 1023
120 POKE RAMSET+Z,PEEK(CSET+Z)
130 NEXT Z
140 PRINT:PRINT "COPYING COMPLETE"

Line 20 reserves space in RAM for the character
set; location 106 contains the page number of the
top ofmemory, i.e.

(256*PEEK(l06))-1

Characters 121

is the address of the top of free RAM. By POKEing
a value of four less into location 106, we protect the
top four pages of memory (1024 bytes) from use by
BASIC. It is here that we will store our character
set. Line 70 sets mode 0, and in doing so forces the
computer to check location 106 to find out how
much memory is available. Lines 40 to 70 put the
characters set on the screen, omitting the control
characters like screen clear and cursor characters.
After a short delay the character set pointer is
moved to our reserved area of RAM by line 80, and
the character data copied from ROM to RAM. As it
is copied, you will see the garbage which used to be
the character set return to normal. The computer
will behave as usual after copying, the difference
being that character data is now being taken from
RAM. Now that the character set is in RAM we can
change it to suit ouselves. As an example, if you
add these lines to the last program and then GOTO
1000, all the characters will be turned upside down
- you have redefined them!

200 END
1000 REM INVERT CHARACTERS
1010 FOR Z=O TO 1023 STEP 8
1020 FOR Y = 0 TO 7
1030 POKE RAMSET+Z+Y,PEEK(CSET+

Z+(7-Y»
1040 NEXT Y

Although this is a good example to illustrate
redefined character sets, if you ever do want to
invert the character set, there is a way of doing so
which requires much less programming effort:

POKE 755,6

This will invert the character set, and

122 The Atari 130XE Handbook

POKE 755,2

will return it to normal.

SPACE INVADERS

A more typical use of user defined characters would
be to create a set of invader characters for a game,
or a foreign character set such as Russian or Greek,
or even a set of symbols for use in some specialist
application.

Let's take the most exciting of these and create
some invaders!

Firstly we take the eight by eight grid from the
beginning of this chapter and draw our design Now

128 64 32 16 8 4 2 1

o
153

189
219
126
36
60
66

Space Invader Character

to calculate the data statements required to specify
the invader character, take one row at a time, and
if a bit is set, write down the value of that bit (the
numbers at the top of the grid). Continue for all
eight bits in the row, and add up the numbers you

Characters 123

obtained. For example, in the bottom row, the sum
is:

64 + 2 = 66

and for the top row where no bits are set the answer
is O.

In this way, you can obtain eight numbers which
define your character.

All that remains is to chose the character you wish
to reprogram, find the start address of the data
defining it, using the formula on page 117, and
replace the data with your own.

If you add the following lines to the program on
page 120, the @ symbol will be turned into an
invader.

200 CHAR = 32*8+RAMSET
210 FOR Z=O TO 7
220 READ D
230 POKE CHAR+Z,D
240 NEXT Z
250 DATA 0,153,189,219,126,36,60,

66

From now on, until you press RESET, enter
another graphics mode or redefine it, the @ symbol
will appear as an invader.

While on the subject of invaders, it is quite easy to
achieve their limited form of animation - by
reprogramming several character sets, each
containing a slightly different version of the
character. To animate, simply move the character
set data pointer (location 756) to each set in turn.

124 The Afar; 130XE Handbook

CHARACTER GENERATOR PROGRAM

This program allows you to design new characters
on the screen and add them to the character set.
The characters are created by filling in a large grid
on the screen, which is then used to program the
character.

10 REM ***********************
11 REM * *
12 REM * CHARACTER GENERATOR *
13 REM * *
14 REM ***********************
15 REM
100 GOSUB 20000:REM SET UP
110 GOTO 10000:REM MAIN PROGRAM
190 REM
191 REM ***********************
192 REM * *
193 REM * REDEFINE CHARACTERS *
194 REM * *
195 REM ***********************
196 REM
200 PRINT ",,"
210 PRINT "ENTER ASCII CODE OF

CHARACTER (0-127)t1:INPUT ASCII
220 IF ASCII<O OR ASCII>127 THEN

200
225 CODE=ASCII+«ASCII<32)*64)-

«ASCII>31 AND ASCII<96)*32)
230 CHARDATA=CODE*8+RAMSET
295 REM STORE CHARACTER DATA IN

ARRAY
300 PRINT""" : GOSUB 900
310 FOR R=l TO 8:GOSUB 1000:NEXT R
395 REM DISPLAY CHARACTER
400 GOSUB 2000
410 X=l:R=l
500 B=PEEK(CC)
510 REM MODIFY CHARACTER

Characters 125

520

525
530
540
550
890
891
892
893
894
895
896
900
910
920
930
940
990
991
992
993
994
995
996
1000
1010
1020
1030
1040

1045
1050
1060
1070
1080
1090
1100
1990
1991
1992

POKE 764,255:GOSUB 3000:POKE
764,255
IF EXIT=l THEN EXIT=O:RETURN
IF CL=l THEN CL=O:GOTO 400
CC=GRIDST+X+40*R
GOTO 500
REM
REM *************************
REM * *
REM * DISPLAY CHARACTER SET *
REM * *
REM *************************
REM
FOR Z=O TO 124
PRINT CHR$(Z}i
IF Z=26 THEN Z=31
NEXT Z
RETURN
REM
REM ************************
REM * *
REM * STORE CHARACTER DATA *
REM * *
REM ************************
REM
N=PEEK(CHARDATA+R-1}
X=8
A(R,9}=N:REM ROW TOTAL
REM STORE BIT PATTERN
IF N/2=INT(N/2} THEN A(R,X}=O:
GOTO 1050
A(R,X}=l
N=INT(N/2}:X=X-1
IF N>=1 THEN 1040
FOR Z=X TO 1 STEP -1
A(R,Z}=O
NEXT Z
RETURN
REM
REM *********************
REM * *

126

1993
1994
1995
1996
2000
2010
2020
2030

2035
2040
2050
2060
2070
2075

2080
2990
2991
2992
2993
2994
2995
2996
3000
3010

3020
3030

3040

3050
3060
3080

3090

The Atari 130XE Handbook

REM * DISPLAY CHARACTER *
REM * *
REM *********************
REM
PRINT
FOR R=l TO 8
FOR X=l TO 8
IF A(R,X)=l THEN PIXEL=84:GOTO
2040
PIXEL=14
POKE GRIDST+X+(R*40),PIXEL
NEXT X
POSITION 18,6+R:PRINT A(R,9)
NEXT R
POSITION 2,20:PRINT"ESC
RETURN - = + * CLEAR
PROGRAM":REM BOLD CHARACTERS
IN REVERSE
RETURN
REM
REM ***************
REM * *
REM * MOVE CURSOR *
REM * *
REM ***************
REM
REM CHECK KEYBOARD
K=PEEK(764):REM INTERNAL CODE
OF KEY PRESSED
REM FLASH CURSOR
CH=PEEK(CC):C=CH-«CH>128)*
128)+«CH<128)*128)
POKE CC,C:FOR PAUSE=O TO
10:NEXT PAUSE
REM CHECK KEY INPUT
IF K=255 THEN 3010
IF K=6 AND X>l THEN POKE CC,B:
X=X-1:RETURN:REM LEFT
IF K=7 AND X<8 THEN POKE CC,B:
X=X+1:RETURN:REM RIGHT

Characters 127

3100

3110

3120

3130

3140

3150

3160
3170
3190
3191
3192
3193
3194
3195
3196
3200
3210
3290
3291
3292
3293
3294
3295
3296
3300
3310
3320
3325

3330
3990
3991
3992
3993

IF K=15 AND R<8 THEN POKE CC,B
:R=R+l:RETURN:REM DOWN
IF K=14 AND R>l THEN POKE CC,B
:R=R-l:RETURN:REM UP
IF K=33 THEN A(R,X)=l-A(R,X):
GOTO 3200:REM CHANGE PIXEL
IF K=10 THEN GOSUB 4020:REM
REPROGRAM CHARACTER
IF K=118 THEN GOSUB 3300:REM
CLEAR CHARACTER
IF K=12 THEN X=l:R=l:POKE CC,B
:RETURN:REM TOP LH CORNER OF
GRID
IF K=28 THEN EXIT=l:RETURN
POKE 764,255:RETURN
REM
REM ****************
REM * *
REM * CHANGE PIXEL *
REM * *
REM ****************
REM
IF B=14 THEN POKE CC,84:RETURN
POKE CC,14:RETURN
REM
REM *******************
REM * *
REM * CLEAR CHARACTER *
REM * *
REM *******************
REM
FOR R=l TO 8:FOR X=l TO 9
A(R,X)=O
NEXT X
POSITION 18,R+6:PRINT"
E-E-E-E-" : : PRINT A(R, 9) : NEXT R
CL=l:RETURN
REM
REM ***********************
REM * *
REM * REPROGRAM CHARACTER *

3994
3995
3996
4020
4030
4040
4050
4060
4065
4070
4080

4090
9990
9991
9992
9993
9994
9995
9996
10000
10010

128 The Ateri 130XE Handbook

REM * *
REM ***********************
REM
FOR RT=l TO 8
FOR XT=l TO 8
D=D+(2A(8-XT))*A(RT,XT)
NEXT XT
POKE CHARDATA+RT-1,D
A(RT,9)=D
0=0
POSITION 18,RT+6:PRINT"

; : PRINT A(RT, 9) : NEXT RT
RETURN
REM
REM *************
REM * *
REM * MAIN MENU *
REM * *
REM *************
REM
PRINT",," :CLOSE#l
POSITION 9,2:PRINT"CHARACTER
GENERATOR"

10020 POSITION 2,5:PRINT"CHANGE
CHARACTERS":REM BOLD
CHARACTERS IN REVERSE

10030 PRINT:PRINT:PRINT"LOAO
CHARACTER SET FROM TAPE"

10040 PRINT:PRINT:PRINT"SAVE
CHARACTER SET TO TAPE"

10050 PRINT:PRINT:PRINT"ESC TO END
PROGRAM"

100600PEN#1,4,0,"K:"
1006 5 GET#1 , K
10070 IF K=67 THEN GOSUB 200:GOTO

10000:REM C
10080 IF K=76 THEN GOSUB 11000:GOTO

10000:REM L
10090 IF K=83 THEN GOSUB 12000:GOTO

10000:REM S
10100 IF K=27 THEN END:REM ESC

Characters

10110 GOTO 10065
10990 REM
10991 REM **********************
10992 REM * *
10993 REM * LOAD CHARACTER SET *
10994 REM * *
10995 REM **********************
10996 REM
11000 CLOSEJj:l:PRINT",," :OPEN#1,4,

O,"C:"
11010 FOR BYTE=O TO 1023
11020 GET#l,TEMP
11030 POKE RAMSET+BYTE,TEMP
11040 NEXT BYTE
11050 CLOSE#l:RETURN
11990 REM
11991 REM **********************
11992 REM * *
11993 REM * SAVE CHARACTER SET *
11994 REM * *
11995 REM **********************
11996 REM
12000 CLOSE#1:PRINT""":OPEN#1,8,

0, "C: "
12010 FOR BYTE=O TO 1023
12020 PUTJj:l,PEEK(RAMSET+BYTE)
12030 NEXT BYTE
12040 CLOSE#l:RETURN
11990 REM
11991 REM ***********************
11992 REM * *
11993 REM * SETTING UP ROUTINES *
11994 REM * *
11995 REM ***********************
11996 REM
20000 DIM A(8,9)
20010 POKE 106,PEEK(106)-4
20020 GRAPHICS 0
20025 SETCOLOR 2,2,6:SETCOLOR

1,2,0:SETCOLOR 4,2,8
20026 POSITION 7,5

129

130 The Ateri 130XE Handbook

20030 PRINT"RELOCATING CHARACTER
SET"

20035 POSITION 5,22:PRINT "Please
wait approx. 25 seconds"

20040 CSET=256*PEEK(756)
20045 POKE 752,1:REM TURN OFF CURSOR
20050 RAMSET=256*PEEK(106)
20060 FOR BYTE=O TO 1023
20070 POKE RAMSET+BYTE,PEEK

(CSET+BYTE)
20080 NEXT BYTE
20085 POKE 756,PEEK(106)
21000 DLIST=PEEK(560)+256*PEEK(561)
21010 SCRNST=PEEK(DLIST+4)+256*

PEEK(DLIST+5)
21020 GRIDST=SCRNST+245
25000 RETURN

The program allows you to redefine any character,
and to save character sets on tape and reload them.
You can use the new character sets with other
programs.

The first thing the progam does is create some
space for the character set and then copy the
character set into RAM. Lines 20020 to 20080 do
this. The rest of the lines in the setting up routine
find the start of screen memory (SCRNST) and
decide whereabouts on the screen the character
grid is to be placed (GRIDST).

Lines 10000 to 10110 then display the menu,
giving you the option to change a character or to
load or save a character set. Pressing the ESC key
stops the program.

The redefining of characters is controlled by the
routine from 200 to 550. When you input the code
of the character you wish to alter, the line 310 calls
the routine at lines 1000 to 1100 to store the data of

Characters 131

the character in an array. The character is then
displayed on the screen by the routine at 2000.

The modification of the character is performed by
the section of program at 3000. You may move the
cursor around the character grid wi th the cursor
keys and use the space bar to set or clear the pixels
of the character. A menu of the options open to you
is displayed at the bottom of the screen. The ESC
key returns you to the main menu, while the
RETURN key moves the cursor to the top left
corner of the grid. To erase all the data for a
character, hold down SHIFT and press the CLEAR
key.

When you have finished designing the new
character, pressing P will store the new definition
in character memory. Lines 4000 to 4090 perform
this function.

Saving a character set onto tape is performed by
the subroutine at 12000. The character sets are
reloaded into the machine by the routine at 11000.

WARNING

Do not reset the Atari by using the RESET key or
the new characters will be lost.

MULTICOLOUR CHARACTERS

There are two more graphics modes which display
characters, and with these the colour of the
individual pixels which make up a character can be
specified. This means you can have up to four
different colours within each character.

The two multicolour character modes are modes 12
and 13, and are obtained in the usual way. A four
line mode 0 window is obtained but as with modes 1
and 2, adding 16 to the mode number in a

132 The Atari 130XE Handbook

GRAPHICS command will allow the entire
display to be used for multicolour characters.

Mode 12 allows 40 columns by 24 rows of
characters - the same as mode o. Mode 13 allows 40
columns by 12 rows of multicolour characters, the
characters being twice as tall as those in mode 12.

Type in the following program to see some
multicolour characters.

10 GRAPHICS 12
20 PRINT#6;"MULTICOLOUR

CHARACTERS"

You may just be able to discern the message - it is
certainly multicoloured, but hardly legible!

This is because in mode 12 (and mode 13) the
information defining a character is interpreted
differently by the computer. A multicolour
character is still defined by eight bytes of character
memory, but each pixel comprising the character is
represented by two bits rather than one. This
means that multicolour characters are only four
pixels wide, but the pixels are double the normal
width so characters are the same size as in other
modes. The extra information available in two bits
is used to select the colour of that pixel.

The multicolour characters can be designed on a
similar eight by eight grid to that used for standard
characters, as shown opposite.

There are four possible combinations of two bits,
00, 01, 10 and 11, and each of these represents a
different colour or rather specifies a different
colour register.

Press the RESET key (to return the colour registers
to their default values) and type in the following

Characters 133

o
1

2
Memory 3
Location:

4

5
6
7

:

Bit: 7 6 5 4 3 2 1 0

The Multicolour Character Grid

program,which puts a letter Q in the centre of a
mode 13 screen. Mode 13 is used for clarity, the
principles apply equally to mode 12.

10 GRAPHICS 13
20 POSITION 18,4
30 PRINT#6; "0"

The Q is just recognisable, and if you look closely
comprises three different colours. To see how these
colours originate, let's look at the eight bytes
defining the letter Q in character memory.

The diagram shows how the data for letter Q is
stored in the 130XE. In mode 0, each pixel is
represented by a single bit. In modes 12 and 13
however, the computer treats this data as four
groups of two bits, each specifying the colour
register from which information concerning that
pixel is to be taken.

If we take one row (one byte) and examine it in
more detail we will see how colour information is

134

o
1

2
3
4
5
6
7

The Atari 130XE Handbook

The Character Q

derived. Take row 6 as it has an example of each of
the four possible bit combinations.

o o o

Row 6 of the character Q

o

The first bit pair is 00, which means the pixel
represented by that bit pair takes its colour from
register 4. The second pair, 11, specifies register 2,
the third register °and the fourth register 1. So
the four pixels comprising the seventh row of the
letter Q in our example should each be in the
default colours of those four registers. If you look
closely at the screen you will find this to be the
case.

Characters 135

A slight variation on this is that if the characters
placed on a mode 12 or 13 screen are in inverse
video (i.e. if bit seven of the character code is set),
the colour of pixels specified by the bit pair 11 is
taken from register 3 rather than register 2.

To see this try typing:

GRAPHICS 12:PRINT#6;"ABCDEFGABCDEFG"

with the second half of the message in inverse
video. Areas of the first half of the message
appearing blue (register 2 default colour) are violet
in the second half of the message (the register 3
default colour).

You will have realised by now that to make full use
of mode 12 and 13 requires a special character set
which will have to be defined in the usual way, but
taking into account the extra considerations of
colour register requirements. The applications are
wide ranging and this is an economical way (in
terms of memory requirements) to achieve
colourful displays.

CHAPTER 13

GRAPHICS

In addition to the five text displaying modes
described in the last chapter, the Atari 130XE has
eleven graphics modes. The different modes offer
many variations in the number of colours
available, and in resolution (the number of rows
and columns in the display). The same commands
are used to control displays in all the graphics
modes.

Graphics Modes

The modes are selected by the command
GRAPHICS followed by the number of the desired
mode. The display modes are numbered from 0 to
15; modes 0, 1, 2, 12 and 13 display text, as
described in Chapter 12; modes 3 to 11 and 14 and
15 are the graphics displays. Try the command

GRAPHICS 5

You will see the screen turn black, except for a four
line high blue area at the foot of the screen. The
black area is for drawing graphics, and the blue
region is a text 'window' - a smaller version of the
mode 0 text display. As in modes 1 and 2, you can
remove the text window by adding 16 to the
number of the mode following the GRAPHICS
command, but you cannot control windowless
displays directly from the keyboard as the XE will
snap back into mode 0 as soon it has obeyed the
GRAPHICS command so that it can display the
'Ready' message.

136

Graphics

Colour in Graphics Modes

137

The different graphics modes use differing
numbers of colours, but they are all controlled in
the same way. As described in Chapter 12, there
are five colour registers which control the display
colours. The SETCOLOR command is used to
select the colour produced by each register.

The colours of objects displayed on the screen are
set by indicating which colour register is to control
their colour. The command COLOR selects the
colour to be used. The command is followed by a
number which indicates the colour selection, but
the number is not always that of the required
colour register, which can be a little confusing.

In mode 5, four colors are used. The background
colour is controlled by colour register 4, register 3
is not used, and registers 0, 1 and 2 hold the
'foreground' colours. The colours to be used are
selected by COLOR as follows:

COLOR 0 Selects the background colour.

COLOR 1 Selects the register 0 colour.

COLOR 2 Selects the register 1 colour.

COLOR 3 Selects the register 2 colour.

When you first enter mode 5, the colour selected in
the background colour (COLOR 0) held in colour
register 4. Type

GRAPHICS 5
COLOR 1

so that you are ready to start drawing.

138 The Atar; 130XEHandbook

Points and lines

To light up a point (or pixel) on the screen the
command PLOT is used. The command is followed
by two numbers - the row and column in which the
point lies.

PLOT 20, 10

lights a pixel on the screen in the colour selected by
the previous COLOR command. Try PLOTting a
few points around the screen. Mode 5 has 80
columns, numbered from 0 to 79, and 40 rows - 0 to
39. If you use numbers which are too large the XE
will print 'ERROR - 141'; if you use numbers less
than zero the Atari prints 'ERROR - 3'.

Try changing the colour of the points you PLOT by
using COLOR 2 or COLOR 3. COLOR 0 will give
invisible points as it selects the background colour.
This means that you can erase pixels by returning
them to the background colour.

When you have finished experimenting with the
PLOT command clear the screen again by typing:

GRAPHICS 5

The command DRAWTO draws lines on the
display. Set a pixel by typing:

COLOR 1
PLOT 5,5

and then try:

DRAWTO 60,5
DRAWTO 60,35
DRAWTO 5,5

Graphics 139

the XE draws a line from the posi tion of the last
PLOT or DRAWTO to the point specified by the
coordinates after the DRAWTO command.

You now know enough to produce line drawings of
all kinds. Try a few experiments.

This program produces a lacy pattern by drawing
lines close together on the mode 7 display, which
has twice as many rows and columns as the mode 5
display but is otherwise the same.

10 REM LACE
20 GRAPHICS 7
30 COLOR 1
40 FOR X=O TO 159 STEP 2
50 PLOT 79, 0
60 DRAWTO X, 79
70 NEXT X

Filling in the Colours

As well as drawing points and lines on the screen,
you can fill in areas of colour. The command used
is XIO, but to fill in an area you must first define
the outline of the shape. The sequence is as follows:

1 PLOT the bottom right-hand corner of the
shape to be filled.

2 DRAWTO the top right-hand corner.

3 DRAWTO the top left-hand corner.

4 Use POSITION to define the bottom left-hand
corner of the shape.

5 POKE the number of the colour you are using
into location 765.

140 The Atar; 130XE Handbook

6 Then use the command XIO 18, #6, 0, 0, uS:".

This program draws a solid rectangle on the mode 5
display in colour number 1, with its corners at (5,
5), (75,5), (5, 75) and (75, 75):

10 REM FILL WITH XIO
100 GRAPHICS 5
110 COLOR 1
120 PLOT 75, 35
130 DRAWTO 75, 5
140 DRAWTO 5, 5
150 POSITION 5, 35
160 POKE 765, 1
170 XIO 18, #6, 0, 0, "S:"

You can fill shapes other than rectangles, within
certain limits:

1 The bottom of the shape must be horizontal, and

2 The top must be horizontal, or slope down to the
right.

This is because of the way the shapes are filled.
The XE fills in the colour by drawing horizontal
lines to the right from a line between the top left-
hand corner and the bottom left-hand corner, as far
as the line defining the right-hand edge. This
means that if the top of your shape slopes up to the
right it won't all get filled. If the bottom left-hand
coner is higher than the bottom right-hand corner
then not all the shape is filled. If the bottom left-
hand corner is lower than the bottom right-hand
corner then the colour spills out across the full
width of the screen.

The next program uses XIO to fill random blocks
on the screen, producing instant abstract art. The

Graphics 141

program uses mode 10, which is a nine-colour
mode. Mode 10 is explained later in the chapter.

10 REM ABSTRACT XIO
20 GRAPHICS 10
30 XMAX=79: YMAX=191
40 POKE 704, 56
50 POKE 705, 24
60 POKE 706, 168
70 POKE 707, 88
80 SETCOLOR 0, 4, 10
90 SETCOLOR 1, 10, 8
100 SETCOLOR 2, 12, 4
110 SETCOLOR 3, 13, 14
120 SETCOLOR 4, 14, 6

200 X = RND(O) * XMAX
210 Y = RND(O) * YMAX
220 X2 = X+RND(O) * (XMAX - X)
230 Y2 = Y+RND(O) * (YMAX - Y)
240 C = RND(O) * 8
250 COLOR C
260 PLOT X2, Y2
270 DRAWTO X2, Y
280 DRAWTO X, Y
290 POSITION X, Y2
300 POKE 765, C
310 XIO 18, #6, 0, 0, "S:"
320 GOTO 200

The final graphics command is LOCATE. This
command moves the invisible graphics cursor to a
point on the screen and reads the colour of the pixel
at that point into a variable.

LOCATE X, Y, C

stores the colour (the colour register number) at X,
Y into C. The next program plots a point in a

142 The Atar; 130XE Handbook

randomly selected colour, and then finds its colour
using LOCATE.

10 REM LOCATE DEMONSTRATION
20 GRAPHICS 3
30 COLOR RND(0)*3
40 PLOT 30, 15
40 LOCATE 30, 15, COL
60 PRINT COL

This program uses mode 3, which is similar to mode
5 but with only half the number of rows and
columns.

THE GRAPHICS DISPLAY MODES

So far we have used only modes 3, 5 and 7. We will
now describe in detail all the graphics modes
available on the 130XE. You can use PLOT,
DRAWTO, LOCATE, XIO and COLOR
commands in all the modes, the only differences
being in the available colours, and in the resolution
of the display.

Mode 3

This is a four colour mode. The background colour
is held in colour register 4 and selected by COLOR
1, the other three colours are held in registers 0, 1
and 2 and are selected by COLOR 1, COLOR 2 and
COLOR 3 respectively.

The display resolution is 40 columns and 24 rows,
or 20 rows if the text window is shown.

Mode 4

This mode displays 48 rows of 80 columns, or 40x80
if the text window is shown.

Graphics 143

Two colours may be used; the background colour is
controlled by colour register 4 and selected by
COLOR O, the second colour is controlled by colour
register 0 and selected as COLOR l.

Mode 5

Four colours are available in this mode, controlled
in the same way as those in mode 3.

The resolution is the same as that of mode 4 - 48
rows of80 columns, or 40x80 with the text window.

Mode 6

This mode has two colours, controlled as in mode 4.

The resolution is 96 rows of 160 columns, or 80x160
if the text window is displayed.

Mode 7

This mode has four colours, controlled as in mode 3 t

with the same resolution as mode 6.

ModeS

Mode 8 has the highest resolution of all the display
modes, 192 rows of 320 columns are allowed, or
160x320 with the text window.

The colour available is similar to that used in mode
0: only one colour can be used, with two possible
luminances. The colour and the luminance of the
background are controlled by colour register 2 t and
selected by COLOR O. The second luminance is
controlled by the luminance of colour register It
and may be selected by COLORl.

Because this mode uses the colour registers in the
same way as the mode 0 text display, the

144 The Atari 130XE Handbook

background does not appear black when you select
this mode, but instead retains the colour of the
mode 0 screen.

Mode 9

This mode, like mode 8, uses only one colour.
However, unlike any other display mode, this mode
gives 16 different luminances. The colour is
controlled by colour register 4, but the luminance
is controlled by the COLOR command and the
luminance set in register 4 has no effect. The
background is set to a luminance ofO.

The resolution in this mode is 192 rows of 80
columns. The text window may not be displayed in
this mode.

The example program shows all 16 luminances of
colour number 3 on the screen.

10 GRAPHICS 9
20 SETCOLOR 4, 3, 0
30 FOR LUM=O TO 15
40 COLOR LUM
50 FOR Z=O TO 11
60 PLOT 0, LUM*12 + 2
70 DRAWTO 79, LUM*12 + 2
80 NEXT Z
90 NEXT LUM
100 GOTO 100

Mode 10

This mode has a similar resolution to mode 9; 192
rows of 80 columns. Again the text window may
not be displayed. Nine colours are displayable,
each in eight luminances. Five of the colours are
specified by the colour registers, and can be set by
SETCOLOR, the other four are controlled by
registers which are usually reserved for use with

Graphics 145

Player-Missile graphics (see Chapter 15). These
registers are memory locations 704, 705, 706 and
707, and cannot be set using SETCOLOR; instead
you must use POKE to place a value for colour and
luminance into the register. The value to use is:

(Colour Number * 16) + Luminance
Eight of the nine colours can then be selected by
COLOR, the ninth sets the colour of the border of
the screen and can not be used for drawing. The
registers and their COLOR codes are:

COLOR No.

o
1
2
3
4
5
6
7

Border

Mode 11

Register

Location 705
Location 706
Location 707
Colour Register 0
Colour Register 1
Colour Register 2
Colour Register 3
Colour Register 4
Location 704

This mode is the 'opposite' of mode 9, giving sixteen
colours but only one luminance, instead of one
colour at sixteen luminances. The resolution is
again 192 rows of80 columns, and the text window
is once again unavailable.

To control the colours you must first set the colour
in register 4 to 0, or the full set of sixteen colours
will not be displayed. The colours are selected
using COLOR and the colour number.

This example program draws the Atari logo in
sixteen colours on a mode 11 display.

146 The Atari 130XE Handbook

10 REM ATARI LOGO
20 GRAPHICS 11
30 FOR Y=O TO 191
40 COLOR Y/16
50 X = SQR(191-Y)*2
60 PLOT X,Y
70 DRAWTO X+7, Y
80 PLOT 36, Y
90 DRAWTO 43,Y
100 PLOT 72-X, Y
110 DRAWTO 79-X, Y
120 NEXT Y
200 GOTO 200

Modes 12 and 13

These modes display text and are described In
Chapter 12.

Mode 14

Mode 14 is similar to modes 4 and 6, but has higher
resolution. There are two colours, used in the
same way as those in modes 4 and 6: the
background is controlled by register 4 and is
selected by COLOR 0, the foreground is controlled
by register 0 and is selected by COLOR 1. A text
window may displayed with colours controlled as in
modeO.

The resolution of this mode is 192 rows of 160
columns, or 160x160 if the text window is used.

Mode 15

This mode is a four colour version of mode 14, with
the colours controlled as in modes 3,5 and 7.

Graphics 147

Memory Use

The various displays require different amounts of
memory, with the higher resolution modes needing
as much as 8k of storage. This may cause problems
if you have a long program, particularly on earlier
machines such as the 600XL with only 16k ofRAM.
Be careful when writing long programs, and keep
checking the available store using FRE(O). For
example, ifyou want to run a program with a mode
8 display, you will need at least 7200 free bytes in
mode O. There is a table showing the memory used
by the display modes in Appendix 5.

JOYSTICKS AND PADDLES

The Atari 130XE can accomodate two joysticks, or
four paddles, which are plugged into the ports on
the right-hand side of the computer. Bothjoysticks
and paddles may easily be used to control BASIC
programs.

There are two BASIC commands used to read
joysticks. The joystick ports are numbered 0 and 1,
not 1 and 2 as is stamped on the computer's casing,
with port 0 at the front. To find the position of a
joystick, use the function STICK(), which returns
a value for the position of the joystick in the
specified port. A second function, STRIG() gives a
value of 0 if the Fire button of the selected joystick
is pressed, or 1 if it is not. The values returned by
STICK() are illustrated in the diagram below.

Paddles are used in a similar way. The a pair of
paddles may be plugged into each port; the paddles
in port 0 are numbered 0 and 1, those in port 1 are
numbered 2 and 3.

The function PADDLE() returns a value of
between 0 and 224 depending on the rotation of the

148 The Atar; 130XE Handbook

(0
The Joystick Positions given by STICK()

controller of the specified paddle. PTRIG() is used
to read the Fire button of a paddle.

The program listed below uses a joystick to control
the drawing oflines on a graphics display.

10
20

100

110
192
200

210
220

992
1000
1010
1020
1030
1040

REM JOYSTICK ARTIST
REM SET UP VARIABLES AND
LABELS
POKE 752,1: PRINT
" 1\
GOSUB 20000
REM FIND JOYSTICK PORT
PRINT" FIRE TO
START"
PORT=O
IF STRIG(PORT)=l THEN PORT=
PORT=O: GOTO 220

REM PICTURE
GRAPHICS 7
X=O:Y=O
GOSUB MESSAGE
POKE 82,0
GOSUB COLOUR

1092
1100
1110
1120
1130
1140

1150

1190
1200

1210
1220
1230
1240
1250
1260
1300

Graphics

REM JOYREAD
JOY=STICK(PORT)
IF JOY=15 THEN GOTO JOYREAD
XNEW=X+DXY(JOY,O)
YNEW=Y+DXY(JOY,l)
IF XNEW<O OR XNEW>159 OR
YNEW<O THEN GOTO JOYREAD
IF YNEW>79 THEN GOSUB TEXT:
GOTO JOYREAD

REM
IF STRIG(PORT)=O THEN GOTO
1250
COLOR BACKGR
PLOT X,Y
COLOR COL
LOCATE XNEW,YNEW,BACKGR
PLOT XNEW,YNEW
X=XNEW:Y=YNEW
GOTO JOYREAD

149

1992
2000
2010
2020
2030
2040

2050

2092
2100

2110
2120
2200
2210
2220

2230
2240

REM TEXT
COLOR BACKGR
PLOT X,Y
X=INT(X/4):Y=0:IF X<2 THEN X=2
POKE 752,0:REM TURN ON CURSOR
POKE 656,Y:POKE 657,X:POKE
658,0

;

REM CHECK JOY
IF STRIG(PORT)=O THEN GOSUB
SWITCH
JOY=STICK(PORT)
IF JOY=15 THEN GOTO CHECKJOY
XNEW=X+DXY(JOY,O)
YNEW=Y+DXY(JOY,l)
IF XNEW<O OR XNEW>39 OR YNEW>3
THEN GOTO CHECKJOY
IF YNEW<O THEN GOTO SCREEN
POKE 656,YNEW:POKE 657,XNEW

150

2245
2250
2255
2260

2292
2300
2310
2320
2330

2492
2500

2510

2520

2530

2540

2550

2592
2600
2610
2620
2630
2650

The A tar; 130XE Handbook

X=XNEW:Y=YNEW
FOR T=l TO 10:NEXT T
GOTO CHECKJOY

REM SCREEN
X=X*4+2:Y=79
POKE
PLOT X,Y
RETURN

REM SWITCH
IF X<7 THEN COL=O:GOSUB
MESSAGE:GOSUB CHCURSOR:RETURN
IF X>8 AND X<15 THEN COL=l:
GOSUB MESSAGE:GOSUB CHCURSOR:
RETURN
IF X>16 AND X<23 THEN COL=2:
GOSUB MESSAGE:GOSUB CHCURSOR:
RETURN
IF X>24 AND X<31 THEN COL=3:
GOSUB MESSAGE:GOSUB CHCURSOR:
RETURN
IF X>32 AND X<38 AND Y=l THEN
POP:COL=2:GOTO PICTURE
RETURN

REM CHCURSOR
POKE 656,Y
POKE 657,X
POKE 752,0

RETURN

2992
3000
3010
3020
3030

REM MESSAGE
POKE 752,1
POKE 82,0
PRINT" '" "
PRINT" ERASE
BLUE CLEAR"

RED YELLOW

Graphics 151

3040

3050

3060

3070

3100

3992
4000
4010
4020
4030
4100

IF COL=O THEN POKE 656,1:POKE
657,2:PRINT"ERASE":REM TEXT IN
REVERSE
IF COL=l THEN POKE 656,1;POKE
657,9:PRINT" RED ":REM TEXT IN
REVERSE
IF COL=2 THEN POKE 656,1;POKE
657,17:PRINT"YELLOW":REM TEXT
IN REVERSE
IF COL=3 THEN POKE 656,1;POKE
657,25:PRINT" BLUE ":REM TEXT
IN REVERSE
RETURN

REM COLOUR
SETCOLOR 0,3,8
SETCOLOR 1,1,12
SETCOLOR 2,9,4
SETCOLOR 4,0,12
RETURN

19992 REM SET UP
20000 DIM DXY(15,1)
20010 FOR J=5 TO 15
20020 FOR K=O TO 1
20030 READ DXY
20040 DXY(J,K)=DXY
20050 NEXT K
20060 NEXT J
20070 COL=2

20092 REM DEFINE LABELS
20100 PICTURE=1000
20110 JOYREAD=1100
20120 TEXT=2000
20130 CHECKJOY=2100
20140 SCREEN=2300
20150 SWITCH=2500
20160 CHCURSOR=2600
20170 MESSAGE=3000
20180 COLOUR=4000

152 The Afar; 130XEHandbook

21000 RETURN
22000 DATA 1,1,1,-1,1,0,0,0,-1,1,-1,

-1,-1,0,0,0,0,1,0,-1,0,0

To use this program you will need a joystick, which
may be plugged into either of the ports. The
program is controlled entirely by the joystick, with
no keyboard actions at all.

After the setting up routines have been run,
pressing the Fire button on the joystick will display
a blank graphics 7 screen, with a text window. The
cursor will be visible as a yellow spot in the top left
corner of the screen. Use the joystick to move the
cursor around the screen, and hold down the Fire
button while moving the cursor to draw lines.

To change colour or clear the screen, move the
cursor down into the text window, position it over
the command you require, and press Fire. There
are four colours to choose from: red, yellow and
blue, and the background colour (selected by
ERASE).

Ifyou find that the display is too fine in mode 7, you
can change the program to run in mode 5 by
altering line 1000, when specifies the mode, and
also by altering the tests in lines 1140 and 1150
which check whether the cursor is running off the
edge of the display. You will also need to alter line
2020, which calculates the cursor position in the
text window after it crosses from the graphics
display, and line 2300, which calculates the cursor
position in the graphics display as the cursor leaves
the text window.

CHAPTER 14

ADVANCED GRAPHICS

This chapter deals with the way in which the
130XE generates the various displays discussed in
the last three Chapters. It describes how the
computer controls the TV and how you can alter
this mechanism to produce yet more varied
displays.

THE ANTIC AND GTIA CHIPS

The Atari uses two special chips to handle the
requirements of generating a display, called
ANTIC and GTIA. The ANTIC chip takes the data
concerning a display from display memory and
passes it to the GTIA chip in the correct form for
the display type currently selected.

The GTIA chip uses the data to control the TV and
so create the display. To understand how this
process works, you must understand some of the
principles used to generate TV pictures.

TV PICTURES

The pictures on a TV screen are created by an
electron beam which is directed at the phosphor
coated inner surface of the screen. Where this
beam strikes the screen, the phosphor glows. To
create a full screen picture, the electron beam scans
across the screen in rows, varying in intensity as it
goes. This variation in intensity is dictated by
information from the TV transmitter and produces
a corresponding variation in the intensity with

153

154 The Atari 130XE Handbook

which the phosphor glows. When the electron beam
reaches the edge of the screen it has completed one
Scan Line and is turned off and moved back to a
position just below the last starting position, before
the process begins again. This scanning continues
until the electron beam reaches the bottom of the
screen, at which point it starts all over again at the
top. This process must happen many times a second
to create a picture that doesn't flicker.

To create a colour picture, the screen is coated with
three different types of phosphor which emit the
colours red, blue or green when struck by the
electron beam. The different phosphors are
distributed in tiny dots or blocks over the screen
and the colour TV signal must contain information
about which of these points to direct the electron
beam at, as well as luminance information.

In creating its displays the 130XE uses the same
principle as the TV transmitter, with the ANTIC
chip feeding data to the GTIA chip, which controls
the electron beam and supplies colour and
luminance information for each dot on the display.

THE DISPLAY LIST

The ANTIC is a microprocessor, like the 6502, and
has its own program in RAM telling it how the data
in screen memory is to be organised to create a
display. This program is called the display list, and
is placed in memory (immediately below screen
memory) by the 6502 processor. The contents of the
display list depend upon the graphics mode
currently selected.

The Atari display is divided into groups of scan
lines known as display blocks. The number of scan
lines per display block depends upon the graphics
mode. In mode 0 a display block is eight scan lines
high, since a graphics 0 character is eight scan

Advanced Graphics 155

lines high. In mode 8 a display block is only one
scan line high, resulting in the 192 line vertical
resolution in mode 8. .

The size of a display block governs the way in
which ANTIC reads data from the display memory,
and hence the way in which it is displayed. Let's
look at the display list and see how it works. Type
in the following program which will print the
display list on the screen.

10 GRAPHICS 0
20 DL=PEEK(560)+256*PEEK(561)
30 FOR Z=O TO 31
40 POSITION 2+((Z>15)*18),Z-

((Z>15)*16)
50 PRINT DL+Z,PEEK(DL+Z)
60 NEXT Z
70 GOTO 70

The location of the start of the display list is stored
in two memory locations: 560 and 561. The
program calculates the address of the start of the
display list and then prints the contents of the next
32 bytes of memory which comprise the display list.
(Line 40 ensures that all the information is
displayed clearly on the screen.)

If you run the program you will see a display like
the one below.

The five figure numbers in columns one and three
of the display are memory locations in which are
stored the display list instructions given in the
second and fourth columns.

15392 112
15393 112
15394 112
15395 66

15408 2
15409 2
15410 2
15411 2

156 The Atar; 130XEHandbook

15396 64 15412 2
15397 60 15413 2
15398 2 15414 2
15399 2 15415 2
15400 2 15416 2
15401 2 15417 2
15402 2 15418 2
15403 2 15419 2
15404 2 15420 2
15405 2 15421 65
15406 2 15422 32
15407 2 15423 60

The ANTIC processor reads the display list from
top to bottom and the instructions in it control the
display in that order.

The three 112 instructions at the start of the list
instruct ANTIC to generate three eight-line
display blocks of border colour.

Of the next three bytes, only the first (66) is an
instruction; this tells ANTIC that display memory
starts at the location given in the next two bytes of
the display list. In a 16k machine these numbers
will be as shown and tell ANTIC that display
memory starts at

64 + 256*60 or 15424.

To see that this is the start of display memory, stop
the program and type:

POKE 15424,1 (or whatever the address is for
your machine)

Advanced Graphics 157

You will see an exclamation mark (1) appear in the
top left hand corner of the screen.
Following this instruction there are 23 '2's. This is
the ANTIC instruction for a mode 0 display block.
When the 130XE interpreted the GRAPHICS 0
command in the program, it allocated sufficient
memory for the display, and created the display list
accordingly. The 23 '2's indicate that the display
should comprise 24 display blocks of 8 lines each.

There is a discrepancy here, since there are only 23
code 2s but mode 0 is a 24 line display. There is
another code 2 at the beginning of the display list
but it isn't obvious. We said earlier that the 66
code indicated that the next two bytes in the list
are to be read as a 16 bi t address. In fact the code
for this is 64 and this has been added to the code 2
specifying the first mode 0 display block of the
screen (the top line of the display), in much the
same way as you addd 16 to a GRAPHICS
instruction in BASIC to modify its effect. The 64
added to the '2' instruction is called a modifier and
is discussed more fully later in this chapter.

Only the first of the last three bytes of the display
list is an instruction. The code 65 tells ANTIC to
jump back to the location specified in the following
two bytes - the start of the display list.

The display list we have examined is fairly short
and simple, being for a mode 0 display. For mode 8
it would be much longer, containing 192
instructions specifying one line display blocks, and
some other codes

A list of the display list instructions is given in
Appendix 9.

158 The Atari 130XE Handbook

Armed with this information we can now make
changes to the display list which will allow us to
create more varied displays than have previously
been possible. One of the things we can do is to
scroll the display in all directions.

SCROLLING

We have met the term scrolling in Chapter 3 as the
name given to the way in which characters on the
screen move upwards and disappear off the top - as
happens when a large program is listed.

However, scrolling is not restricted to this one
direction. We can scroll the display both vertically
and horizontally from within a program, by
changing the address which ANTIC uses as the
start ofdisplay memory.

As mentioned earlier, the address of the start of
display memory is held in the fifth and sixth bytes
of the display list. To make the display scroll
horizontally we must add to (to scroll to the left) or
subtract from (to scroll to the right) the data stored
in these bytes.

The following program demonstrates horizontal
scrolling; use the + key to scroll left and the * key
to scroll right.

5 REM LEFT AND RIGHT SCROLLING
10 GRAPHICS 0
20 DIM MESSAGE$(40):MESSAGE$=

"LEFT AND RIGHT SCROLLING"
30 DISPLIST = PEEK(560)+256*

PEEK(561)
40 DISPMEM = PEEK(DISPLIST+4)+

256*PEEK(DISPLIST+5)
50 POSITION O,II:PRINT MESSAGE$
60 OPEN #1,4,0,"K:"

Advanced Graphics 159

70 GET #l,X
80 IF X=43 THEN DISPMEM=DISPMEM+

l:GOSUB 100
90 IF X=42 THEN DISPMEM=DISPMEM-

l:GOSUB 100
95 GOTO 70
100 DISPHI = INT(DISPMEM/256)
110 DISPLO = DISPMEM-(DISPHI*256)
120 POKE DISPLIST+4,DISPLO
130 POKE DISPLIST+5,DISPHI
140 RETURN

This program makes the display scroll because it
alters the address from which the ANTIC chip
reads display data, but it does not alter the
addresses into which the BASIC routines write the
picture data. In normal use, the pointer to display
memory is set by the operating system to the
address at which BASIC begins storing display
data when the graphics mode is set, or the machine
is switched on.

When you run this program, you will notice that as
you scroll the display to the right, a series of
graphics and other characters appear at the top of
the screen. This is the lower end of the display list,
and appears because to scroll to the right we
subtracted one from the display memory pointers.
This tells ANTIC to take display data from the
address one lower than that where display memory
starts, and as the display list is always stored
immediately before display memory, it is treated as
screen data and displayed.

Vertical scrolling can be achieved in much the
same way, but the display memory pointers must
be incremented by 40, as the following program
demonstrates.

5 REM UP AND DOWN SCROLLING

160 The Ater! 130XE Handbook

10 GRAPHICS 0
20 DIM MESSAGE$(40): MESSAGE$=

"WHAT GOES UP MUST COME DOWN!"
30 DISPLIST = PEEK(560)+256*

PEEK(561)
40 DISPMEM = PEEK(DISPLIST+4)+256

* PEEK(DISPLIST+5)
45 DISPMAX = DISPMEM+880:DISPMIN

=DISPMEM
50 POSITION 0,23:PRINT MESSAGES
55 REM SCROLL UP
60 DISPMEM = DISPMEM+40
65 IF DISPMEM > DISPMAX THEN 80
70 GOSUB 100:GOTO 60
75 REM SCROLL DOWN
80 DISPMEM = DISPMEM-40
85 IF DISPMEM < DISPMIN THEN 60
90 GOSUB 100:GOTO 80
100 DISPHI = INT(DISPMEMj256)
110 DISPLO = DISPMEM-(DISPHI*256)
120 POKE DISPLIST+4,DISPLO
130 POKE DISPLIST+5,DISPHI
140 RETURN

This technique is simple to use but has the
disadvantage that the scrolling is (coarse', that is
the motion is not smooth because the display is
moved by a whole character height or width of
eight pixels at a time. With a bit more program-
ming, we can cause the display to scroll by a single
pixel at a time within a single character space. A
combination of both techniques will allow smooth
scrolling over the entire screen.

SMOOTH SCROLLING

Smooth scrolling is achieved with the use of two
GTIA registers:

Advanced Graphics 161

VERTICAL SCROLL

HORIZONTAL SCROLL
To cause an area of the screen to scroll smoothly,
we must modify the display list for the area of the
screen we are interested in. To do this, a modifier
instruction must be added to the display list opcode
for each display block which is to be smooth
scrolled.

The modifiers are:

HORIZONTAL SCROLL add 16

VERTICAL SCROLL add 32

The modifier indicates to ANTIC that a display
block is to be treated differently from normal.
When such a modifier is encountered, ANTIC
checks the appropriate scroll register and uses the
number it finds to determine how many (if any)
scan lines of that display block to display.

An example will make this clear.

Suppose we wanted to vertically smooth scroll just
one line of a mode 0 display - the following steps
are required:

Add 32 to the display list opcode for that display
block, to indicate to ANTIC that this block is to be
vertically scrolled.

Write a number between 0 and 7, corresponding to
the number of scan lines of that block to be
displayed initially, into the vertical scroll register.

162 The Atari 130XE Handbook

A value of7 would display the entire block whereas
owould result in none of the block being displayed.
Increment or decrement the scroll register to
smooth scroll that display block up or down.
The following program illustrates this technique
by scrolling two lines of text in the middle of the
screen.

5 REM SMOOTH SCROLLING
10 VERTSCROLL=54277
20 DISPLIST=PEEK(560)+256*

PEEK(561)
30 GRAPHICS 0
40 FOR Z=l TO 10
50 PRINT "NON-SCROLLING LINE ";Z
60 NEXT Z
70 PRINT "HIDDEN LINE 11"
80 PRINT "S-M-O-O-T-H S-C-R-O-L-

L-I-N-G-!"
90 PRINT "HIDDEN LINE 13"
100 FOR Z=14 TO 23
110 PRINT "NON-SCROLLING LINE ";Z
120 NEXT Z
200 POKE DISPLIST+15,2+32:POKE

DISPLIST+16,2+32
300 FOR Y=O TO 7
310 POKE VERTSCROLL,Y
320 FOR DELAY=O TO 100:NEXT DELAY
330 NEXT Y
400 FOR Y=7 TO 0 STEP-l
410 POKE VERTSCROLL,Y
420 FOR DELAY=O TO 100:NEXT DELAY
430 NEXT Y
440 GOTO 300

The program works like this:

Lines 10 to 120 create a display to illustrate the
scrolling mechanism.

Advanced Graphics 163

Line 200 adds a modifier of 32 to the display list
codes for lines 11 and 12 of the graphics 0 screen to
indicate vertical scrolling. (The code for a graphics
odisplay block is 2, as described earlier). Line 13,
which has no modifier, is initially hidden to allow
compensation for the disappearing scan lines of
line 11 when scrolling starts. This prevents the
whole of the rest of the screen from moving up with
line 11.

Lines 300 to 330 and 400 to 440 increment and
decrement the vertical scrolling register, with a
delay, to gradually increase or decrease the vertical
offset of lines 12 and 13 on the screen and produce
the effect of smooth scrolling.

This technique can be applied to any area of the
screen, and also works for modes 1 and 2.

GRAPHICS MODE

It is possible to modify the entire display list to
create a display mode which the BASIC command
GRAPHICS cannot give. If you look at the table
of ANTIC instruction codes in Appendix 9, you'll
notice that code 3 isn't used. This is used to select
another text mode which is very similar to mode 0,
but is composed ofdisplay blocks which are 10 scan
lines tall. The only way to use this mode is to
modify the display list, and the following program
will do just that:

5 REM MODE 0.5
10 DL=PEEK(560)+256*PEEK(561)
20 POKE DL+3,67
30 FOR Z=6 TO 23:POKE DL+Z,3
40 NEXT Z
50 FOR Z=24 TO 26:POKE DL+Z,

PEEK(DL+Z+5)

164

60

The Atari 130XE Handbook

NEXT Z

List the program, then try running it. You will see
the screen 'stretch', leaving more space between
the lines of the listing then usual. This is because
each display block is now 10 scan lines high instead
of the normal 8. The number of lines on the screen
is reduced to 19.

Now try typing some lower case characters; you
will observe that some of them appear slightly
different from normal - they have the pixel
normally in the top row of the character displayed
on the bottom. This is because in this mode,
ANTIC takes character data from memory in a
slightly different order from usual, but only for
characters with ASCII codes between 96 and 128.
You may be wondering what use there is for this -
it allows you to create a more legible character set,
in which characters like g, y and j can have
descenders (the part of the character that normally
appears below the line of the text). This involves
reprogramming the character set as described in
Chapter 12. If you want to try this you should be
aware that the data in the top two rows of the
character grid is displayed in the bottom two rows
on the screen, so to create a letter p with a
descender, your character grid should look like
this:

ANTIC will rearrange the data so that when
displayed, the character appears like this:
and will insert two blank scan lines before the
character is displayed.

You will need to use the previous program as a
subroutine to set up the display list in any program
you write to use this mode.

Advanced Graphics

The Character p as Stored in
Memory

165

r--l---r--'---T---r--l---r--,.
I I_._-_._-_._._._._-_._-_._-_.-
I I

2 'EXTRA' SCAN
LINES

The Character p as Displayed in Mode 0.5

MIXING MODES

With more programming, it is possible to mIX
several graphics modes in the screen at once. You
have seen examples of such mixed modes when a
mode 0 text window is displayed at the foot of a
graphics display, and also in the displays used in
self-test mode.

166 The Atari 130XE Handbook

As an introduction, let's examine the display list of
a mode 2 screen, using the following program.

10 DIM LST(25)
20 GRAPHICS 2
30 DL=PEEK(560)+256*PEEK(561)
40 FOR Z=O TO 23
50 LST(Z)=PEEK(DL+Z)
60 NEXT Z
70 GRAPHICS 0
80 FOR Z=O TO 23
90 PRINT LST(Z);" "; :NEXT Z

The display instructions are stored in the array
LST(), and are displayed on a mode 0 screen. This
is what you should see (the data is shown here in a
list for clarity - not as it appears on the screen):

112 8 blank scan lines
112 8 blank scan lines
112 8 blank scan lines
71 7 + 64 - 1 mode 2 display block
112 Display memory at
62 112 + 62*256
7 Mode 2 display block
7 Mode 2 display block
7 Mode 2 display block
7 Mode 2 display block
7 Mode 2 display block
7 Mode 2 display block
7 Mode 2 display block
7 Mode 2 display block
7 Mode 2 display block
66 2 + 64 - 1 mode 0 display block
96 Display memory at
63 96 + 63*256
2 Mode 0 display block
2 Mode 0 display block
2 Mode 0 display block

Advanced Graphics

65 Jump back to
88 88 + 62*256
62 at Vertical Blank

167

This display list is more complex than that
examined previously, but you should be able to see
that it specifies 10 mode 2 display blocks, followed
by four mode 0 display blocks. The thing to note is
that there are two different pointers to display
memory. At the start of the list, ANTIC is told that
display memory is at 112 + 62*256 = 15984 (for a
16k machine), and this is where data for the mode 2
display is stored. After completing the 10 mode 2
display blocks, ANTIC is directed elsewhere in
memory, to 96 + 63*256 = 16224 (for a 16k
machine), where it finds the data for the mode 0
display.

You can apply the same principle to creating your
own mixed mode displays.

As an example, the following program alters the
display list of a mode 0 screen to cause any data
appearing on the lower half of the screen to appear
in multicolour character mode (mode 12).

10 GRAPHICS 0
15 SETCOLOR2,3,14:SETCOLOR4,3,14
20 DL=PEEK(560)+256*PEEK(561)
30 FOR Z=18 TO 29
40 POKE DL+Z,4:NEXT Z

Line 10 sets up the mode 0 display list and the
contents of colour registers 2 and 4 are set equal so
that the background of both displays appears the
same.

If you run the program, it will turn the entire
screen pink. If you now list the program all will

168 The Atari 130XE Handbook

seem normal until you list it again - the second
listing on the lower half of the screen will be in
mode 121

This is a fairly straightforward and not
particularly useful demonstration of mixed mode
displays. A better but more complex one is to
create a mode 8 graphics display, and label it in a
combination of text modes. The following program
creates a display comprising a picture in mode 8,
with ti ties in modes 2 and O.

It

II :

" :

S
10

IS
20
30
40
SO
60
99
100
110
120
130
140
199
200
210

21S

220
230
240
299
300
310

REM MIXED MODES DEMO
DIM Tl$(20),T2$(20),T3$(40),
A$(40)
GRAPHICS 8+16
ST=PEEK(S60)+2S6*PEEK(S61)
DM=PEEK(ST+4)+2S6*PEEK(ST+S)
SETCOLOR 4,3,12
SETCOLOR 1,0,2
SETCOLOR 2,3,12
REM ALTER DISPLAY LIST
POKE ST+3,71
POKE ST+6,7:POKE ST+7,2
POKE ST+160,PEEK(ST+199)
POKE ST+161,PEEK(ST+200)
POKE ST+162,PEEK(ST+201)
REM SET UP TITLES
Tl$=1t THE CUBE
T 2$=II mmmmmmmmmm
REM m IN REVERSE VIDEO
T3$=1t
REM 20 SPACES
A$=Tl$:GOSUB SOO:MEM=MEM+20
A$=T2$:GOSUB SOO:MEM=MEM+20
A$=T3$:GOSUB SOO
REM DRAW CUBE IN MODE 8
COLOR 1
PLOT 100,SO:DRAWTO lS0,SO:
DRAWTO lS0,100:DRAWTO 100,100:
DRAWTO 100,SO

Advanced Graphics 169

320 DRAWTO 125,25:DRAWTO 175,25:
DRAWTO 150,50

330 PLOT 150,100:DRAWTO 175,75:
DRAWTO 175,25

340 GOTO 340
499 REM TRANSLATE TITLES
500 FOR Z=l TO LEN(A$}
510 IF A$(Z,Z}=" " THEN A$(Z,Z}=

CHR$(O}
520 IF ASC(A$(Z,Z}}<>O THEN

A$(Z,Z}=CHR$(ASC(A$(Z,Z}}-32}
530 NEXT Z
549 REM POKE INTO DISPLAY MEMORY
550 FOR Z=l TO LEN(A$}
560 POKE DM+MEM+(Z-l},ASC(A$(Z,Z}}
570 NEXT Z
580 RETURN

The program will create a display comprising:

2 lines ofmode 2 text +
1 line of mode 0 text +

many lines ofmode 8 graphics

looking like this:

How The Program Works

Lines 10 to 60 dimension arrays for the titles, select
mode 8 with no text window, and find the start of
the display list CST} and display memory (DM).
The colour registers for background, border and
foreground are also set up.

Lines 100 to 140 alter the display list as follows:

170 The Atari 130XE Handbook

2 LINESOF MODE 2 TEXT

1 LINE OF MODE 0 TEXT

THE MODE 8 DISPLAY

The Mixed Mode Display
100 Creates a mode 2 display block. The

code 71 is actually 64 +7 - this is the
first display block in the list, and so
contains the modifier pointing to the
display memory address which is 64).

110 Creates the second mode 2 display block,
followed by a mode 0 display block.

120-140 Look to the end of the display list, where
the 'jump at vertical blank' instruction
which sends ANTIC back to the start of
the display list is found, and move this
instruction and the following 16 byte
address further up the display list. This
reduces the effective length of the
display list by 37 scan lines. The reason
for this is that in adding the three text
display blocks to the top of the list, we
added an extra 37 scan lines, because

Advanced Graphics 171

the first three instructions in the list
would normally have specified 3 mode 8
display blocks, which are only one scan
line high. To ensure that no more than
192 scan lines are specified by the
display list, we must 'chop off' the extra
scan lines now at the bottom of the list.
If you don't take this precaution, some
strange effects will result (something for
you to tryl).

Lines 200 to 240 set up the characters for the titles,
. which are converted to internal code and POKEd
into display memory by subroutine 500. The
characters are put into display memory starting at
the top, and the variable MEM keeps track of the
posi tion in memory of each string of characters.

Finally, the picture is drawn in the usual way by
lines 300 to 340.

You can use the principles covered here to create
your own mixed mode displays, by observing the
following rules.:

1 Start with the display list of the mode which
uses the most memory (in our case this was
mode 8). See Appendix 5 for memory
requirements of the various modes.

2 Change the codes to create text for labelling in
the appropriate part of the screen.

3 Calculate the number of scan lines required for
the new display, and if greater than 192
transfer the jump from the end of the display
list to a point such that the display requires no
more than 192 scan lines.

4 Calculate the memory requirements for each
text mode display block, and POKE the

172 The Atari 130XE Handbook

internal codes for the characters into display
memory.

5 Draw the mode 8 picture in the normal way_

These rules and some patience are all that's needed
to create a very complex mixed mode display.

CHAPTER 15

PLAYER-MISSILE GRAPHICS

The 16 graphics modes of the 130XE allow you to
create superb displays, but there is one thing
missing; it is very difficult to produce animated
displays using the normal graphics facilities. The
Atari has a second kind of graphics feature to
overcome this problem: player-missile graphics.

Consider the problems of producing an animated
display, even if you have only one object moving
over a fixed background. As well as redrawing the
moving object every time its position changes, you
must redraw the background, or the moving object
will leave a trail of damage in its wake. Atari have
solved this problem by providing movable graphics
objects - called players and missiles, which can
easily be moved across the screen without any risk
of upsetting the background image.

Players and missiles are similar in nature. A
player can extend over the full height of the screen
and be up to eight pixels wide; a missile is the same
height but only two pixels wide. Four players and
four missiles are available, or the missiles may be
combined and used as a fifth player. The players
and missiles are completely independent of the
background display, and can be used in conjunction
with displays in any of the 130XE's graphics
modes.

A further feature, which is useful in many
applications, is that the Atari hardware (the GTIA
chip) automatically detects the 'collisions' between
pairs of players, players and missiles, and players
or missiles and background features when they are

173

174 Player-Missile Graphics

overlapping each other on the display . You can in
addition control the relative priorities of the
players, missiles and the background to control
which will show when two objects overlap, and thus
obtain three-dimensional effects.

This simple program shows one player, which
appears as a vertical band on the mode 0 screen.

10 REM SET ADDRESSES FOR PLAYER 0
20 POGRAPH=53261
30 POHPOS=53248
40 POCOL=704
50 POSIZE=53256
90 REM SHOW PLAYER
100 POKE POGRAPH, 255
110 POKE POCOL, 54
120 POKE POSIZE, 3
130 POKE POHPOS, 120

The player (Player 0) is set to avertical red band by
this program. The properties of the player are
controlled by the contents of the four registers. The
pattern of bits in location 53261 controls the
appearance of the player - the program sets it to
255 to give a solid vertical band (255 is 11111111 in
binary). Try:

POKE 53261, 170

This give four thin stripes down the screen (170 is
10101010 in binary only the positions
corresponding to the Is are shown).

The colour is controlled by location 704, which
works in the same way as the colour registers for
normal graphics. The number in the register
indicates the colour and luminance as follows:

The Atari 130XE Handbook

Number =(ColourNo.*16) + luminance
Gold is colour 1, so for a bright gold player, try

POKE 704, 16*1 + 12

175

The value in location 53256 controls the width of
the player. A value of 0 gives normal width, 1 gives
double width, and 3 quadruples the player's width.
To shrink the player a little, try:

POKE 53256, 1

The fourth control register has the most dramatic
effect. Location 53248 controls the horizontal
position of the player on the screen. The value may
range from 0 to 255, and the corresponding player
posi tions range beyond the edges of the screen on
both sides, allowing players to be 'hidden'. Try
adding these lines to the first example program:

130 FOR X=O TO 255
140 POKE POHPOS, X
150 NEXT X
160 GOTO 130

The player will move across the screen from left to
right as the value in the horizontal position
register is increased.

CONTROLLINGTHESHAPES OFPLAYERS

The four players may all be controlled in the same
way as Player O. The registers to be used for the
players are shown in Table 15.1. These registers
all control the GTIA (the special purpose chip
which controls the display).

So far you have seen nothing very impressive.
Moving bands, yes, but these are hardly the stuff of

176 Player-Missile Graphics

REGISTER EFFECT LOCATION

PMOCOL Player/Missile 0 colour 704

PM1COL Player/Missile 1 colour 705

PM2COL Player/Missile 2 colour 706

PM3COL Player/Missile 3 colour 707

POHPOS Player 0 position 53248

P1HPOS Player 1 position 53249

P2HPOS Player 2 position 53250

P3HPOS Player 3 position 53251

MOHPOS Missile 0 position 53252

M1HPOS Missile 1 position 53253

M2HPOS Missile 2 position 53254

M3HPOS Missile 3 position 53255

POSIZE Player 0 size 53256

P1SIZE Player 1 size 53257

P2SIZE Player 2 size 53258

P3SIZE Player 3 size 53259

MSIZE Size of all missiles 53260

POGRAPH Player 0 graphics 53261

P1GRAPH Player 1 graphics 53262

P2GRAPH Player 2 graphics 53263

P3GRAPH Player 3 graphics 53264

MGRAPH Graphics for all missiles 53265

Player-Missile Control Registers

which exciting video games are made. To find out

The Atari 730XE Handbook 177

how to turn players into spaceships, we must study
the GTIA in a bit more detail.
As you have seen, the data in the GRAPH register
controls the appearance of the player. As the GTIA
builds up the video pictures, scanning across the
screen from left to right, it is constantly checking
the HPOS registers to see if there are players to be
switched on. When the GTIA finds it has reached
the specified horizontal position for a player,the
data in the appropriate GRAPH register is used to
generate the next part of the horizontal line
instead of the normal data in the screen memory.
This process is repeated as each line of the display
is scanned: as the GTIA reaches a player's HPOS
setting, it takes data from the GRAPH register for
that player to generate the next part of the line.

Because the display is built up a line at a time, if
we could change the contents of the GRAPH
register between lines, we could create much more
interesting shapes for the players.

It would be impossible to modify the registers
quickly enough in BASIC, but it can be done. The
Atari has another special chip, the ANTIC, which
is dedicated to feeding the GTIA registers with the
right information at the right time. All we have to
do is set up a table in memory of the data for each
line of a player, and tell the ANTIC chip to use this
data to feed the GRAPH register of the GTIA. The
next program uses this technique to turn Player 0
into a sunflower.

10 REM SUNFLOWER
20 PMBASE = 54279
30 POCOL = 704
40 POSIZE = 53256
50 POHPOS = 53248
60 SDMCTL = 559
70 GRACTL = 53277

178

100
110
120

130
150
160
170
180
190

200
210
220
230
500

Player-Missile Graphics

START = INT(PEEK(742)/8)-1
FOR X=l TO 25
READ F: POKE START*2048 + 1024
+ 120 + X, F
NEXT X
POKE POCOL, 28
POKE POSIZE, 1
POKE PMBASE, START * 8
POKE SDMCTL, 58
POKE GRACTL, 2

FOR X=20 TO 180
POKE POHPOS, X
FOR T=l TO 10: NEXT T
NEXT X
DATA 30, 42, 42, 93, 93, 93,
93, 42, 42, 30, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 107, 42, 42,
28

Three new control registers are used by this
program: PMBASE (54279), SDMCTL (559) and
GRACTL (53277).

PMBASE is a control register in the ANTIC chip,
telling it where in memory to find the data tables
for the players and missiles. SDMCTL controls the
memory access of the ANTIC, and GRACTL is a
GTIA register, again controlling memory access.

The GRACTL (graphics control) register is used as
follows:

Bit 1 is set to 1 to use memory tables for player
graphics.

Bit 0 is set to 1 to use memory tables for missile
graphics.

The Atari 130XE Handbook 179

The other bits ofGRACTL have no meaning.

SDMCTL is more complicated:
Bit 5 must be set to 1 to switch ANTIC on -
otherwise there will be no display at all.
Bit 4 is set to 1 to give players and missiles a
vertical resolution of 1 screen line to each data
line; and set to °to give a resolution of two
screen lines to each line ofdata.
Bit 3 is set to 1 to enable player memory access.
Bit 2 is set to 1 to enable missile memory access.
Bits 1 and°control the width of the background
screen. Set them to 0,0 for no display, 0,1 for a
width of 32 columns in graphics mode 0, 1,0 for
40 columns (the normal setting) and 1,1 for 48
columns.

The value in PMBASE should be the high byte of
the beginning of the player-missile graphics data
area. The data area is laid out as shown below.
There are two possible configurations of the data
area; which is used depends on the resolution
indicated by bit 4 of the SDMCTL register. If a
resolution of 1 data line per screen line is indicated,
256 bytes are needed to store the data for each
player, one byte for each screen line. If the
resolution selected is 2 screen lines for each data
line then only half as much memory is needed, 128
bytes for each player, and the whole table can be
fitted into half the memory.

The address indicated by PMBASE must be a
multiple of2048 (1024 in reduced resolution mode).
If PMBASE was an eight-bit register you would
expect the value to be the high byte of an address,
which could therefore be any multiple of 256. In
fact, not all the bits ofPMBASE are used.

In the sunflower program, the higher resolution of
1 screen line to each data line was used. PMBASE
was set up by finding the high byte of the address of

180 Player-Missile Graphics

PMBASE + 768 (384)

PMBASE + 1024 (512)

PMBASE + 1536 (768)

PMBASE + 1280 (640)

PMBASE + 2048 (1024)

PMBASE + 1792 (896)

PMBASE

Player-Missile Data Area

Player 3 data

Player 2 data

Player 1 data

Player 0 data

Missile Missile Missile Missile
3 data 2 data 1 data Odata

Not used for graphics

the top of available memory, (stored in 742),
finding the next lowest multiple of 2048 and
subtracting a further 2048 to find a safe place for
PMBASE.

Defining Players

The method of defining a player is similar to that
used for defining characters (see Chapter 12). The
symbol is drawn on a grid, eight pixels wide, and
the values of the bits added up to give a data byte.
The difference with players is that instead of using
eight lines, you can use up to 256. The sunflower
uses only 25 lines of the player to reduce the
amount of typing needed.

The Ater! 130XEHandbook 181

..- PMBASE + 1024 + 120

PMBASE +1024+120+24

Missiles

The Sunflower data

Missiles are defined in a similar manner to players,
except that a missile is only two pixels wide instead
of eight. This means that one register of the GTIA,
the MGRAPH register, can be used to specify the
graphics for all four missiles at once. The register
is used like this:

Bits 7 and 6 define the graphics for Missile 3
Bits 5 and 4 define the graphics for Missile 2
Bits 3 and 2 define the graphics for Missile 1
Bits 1 and 0 define the graphics for Missile 0

Because there is only one register on the GTIA for
all four missiles, only one data table is needed to
specify the appearance of all four missiles.

182 Player-Missile Graphics

Each missile usually takes the colour specified in
the colour register for the player of the same
number. The missiles use horizontal position
registers in the same way as players.

Missile size is controlled by one register MSIZE
(53260). The width ofmissile 0 is controlled by bitsoand 1, that of missile 1 by bits 2 and 3, and so on.
The values for the two bits are the same as those
used in the player width registers.

It is possible to use the four missiles as a fifth
player by careful use of the missile horizontal
position registers. If bit 4 of the priority register
GPRIOR is set to 1, the missiles will all appear the
same colour - that indicated in display colour
register number 3.

PRIORITIES

With a possible four players and four missiles
moving around the screen, and passing over
graphics displays, some rules are necessary for
deciding what should be shown where two players
overlap, or where a player or missile overlaps the
other graphics. Another GTIA register is used to
controls the relative priorities of players, missiles,
and graphics of different colours. This register is
called GPRIOR, and is at address 623. The four
lowest bits of this register (bits 0 to 3) are used to
select among four different orders of precedence for
the colours. These are shown in the table overleaf.

Notice that the priorities are given in terms of
colour registers. The players and missiles are not
shown separately as the colour registers are
shared, and it is the colour register used which
determines the priority of a graphics item. Points
to note are that colour register 4 is always used for
the background colour of a graphics display, and

The Atari 130XE Handbook 183

Bit 3 set Bit 2 set Bit 1 set Bit aset
COLO COLO PCOlO PCOlO

Call Call PCOl1 PCOll

PCOlO COl2 COLO PCOL2

PCOl1 COl3/PCOL5 COL1 PCOL3

PCOl2 PCOlO COl2 COLO

PCOL3 PCOl1 COL 3/PCOL5 coi i
COL2 PCOL2 PCOL2 COL2

COl3/PCOL5 PCOL3 PCOL3 COL 3/PCOl5

COl4 COL4 COL4 COL4
(backgrou nd) (background) (background) (background)

Player-Missile and Colour Priorities

colour register 3, which is not used in most
graphics modes, may be used as the colour register
for a fifth player if bit 4 ofGPRIOR is set to 1.

If you try setting more than one of the four priori ty
controlling bits of GPRIOR at the same time, you
will get very strange results, as the order of
precedence will not then be clearly defined.
Try running the example program below, and
watch what happens as the priorities are changed.
The progam shows the four players: player 0 is
pink, player 1 is white, player 2 is green and player
3 is light blue. The players move around each other
and over graphics blocks coloured by three colour
registers: colour register 0 is orange, colour
register 1 is green and colour register 2 is dark
blue.

10 REM PRIORITIES

90 REM SET UP PLAYERS

184 Player-Missile Graphics

100 POKE 704, 56: POKE 705, 14:
POKE 706, 198: POKE 707, 122

110 FOR GRAPH=53261 TO 53264: POKE
GRAPH, 255: NEXT GRAPH

120 FOR SIZE=53256 TO 53259: POKE
SIZE, 0: NEXT SIZE

138 REM
140 REM BEGIN DEMO
142 REM LOOP FOR EACH PRIORITY
144 REM
150 FOR PR=O TO 3
155 GRAPHICS 5

159 REM SET PRIORITY
160 POKE 623, 2APR
170 PRINT "PRIORITY BIT "; PR; "

SET"

178 REM MOVE PLAYERS RIGHT
180 FOR HP=O TO 3: POKE 53248+HP,

60+HP*15: NEXT HP
200 FOR HP=O TO 3
210 FOR X=60+HP*15 TO 170+HP*10
220 POKE 53248+HP, X
230 FOR D=l TO 10: NEXT D
240 NEXT X
250 NEXT HP

290 REM DRAW RECTANGLES
300 FOR C=l TO 3
310 COLOR C
320 X=(C-1)*20
330 Y=(C-1)*15
340 PLOTX+10, Y+10
350 DRAWTO X+10, Y
360 DRAWTO X, Y
370 POSITION X, Y+10
380 POKE765, C
390 XIO 18, #6, 0, 0, "S:"

The A tar; 130XE Handbook

400 NEXT C

185

490 REM MOVE PLAYERS LEFT
500 FOR HP=O TO 3
510 FOR X=170+HP*10 TO 30 STEP -1
520 POKE 53248+HP, X
530 FOR D=1 TO 10: NEXT D
540 NEXT X
550 NEXT HP
600 NEXT PR: REM GO BACK FOR NEXT

PRIORITY

One final point is that in the text mode, mode 0,
and in text windows in other graphics modes, the
text colour is controlled by colour register 2, but the
luminance of the text is controlled by colour
register 1. If a player passes over the text, the text
colour changes to the colour of the player, but its
luminance is unaltered. This means that the text
may disappear if the luminances of the player and
of the text are the same.

COLLISIONS

The final feature of player-missile graphics is that
the GTIA chip can detect collisions between
players, between a player and a missile, and
between players or missiles and the graphics
objects on the main display. These collisions,
which occur when two graphics objects overlap, are
automatically detected and recorded in various
registers. The collision indication registers are
shown in the table opposite. The contents of the
registers have the following meanings:

Missile/Display and Player/Display collisions

Bit 0 set indicates a collision with a display item
coloured by colour register o.
Bit 1 set indicates a collision with a display item

186 Player-Missile Graphics

REGISTER MEANING LOCATION

MODISP Missile O/Display 53248

M1DISP Missile l/Display 53249

M2DISP Missile 2/Display 53250

M3DISP Missile 3/Display 53251

PODISP Player O/Display 53252

Pl DISP Player l/Display 53253

P2DISP Player 2/Display 53254

P3DISP Player 3/Display 53255

MOPL Missile O/Player 53256

M1PL Missile l/Player 53257

M2PL Missile 2/Player 53258

M3PL Missile 3/Player 53259

POPL Player O/Player 53260

P1PL Player l/Player 53261

P2PL Player 2/Player 53262

P3PL Player 3/Player 53263

HITCLR Clear collisions 53278

Collision Registers

coloured by colour register 1.
Bit 2 set indicates a collision with a display item
coloured by colour register 2.
Bit 3 set indicates a collision with a display item
coloured by colour register 3.

Missile/Player and Player/Player collisions

Bit 0 set indicates a collision with Player O.
Bit 1 set indicates a collision with Player 1.

The Atari 730XE Handbook

Bit 2 set indicates a collision with Player 2.
Bit 3 set indicates a collision with Player 3.
(A player cannot collide with itself.)

187

Note that the addresses of these registers are the
same as those of some of the control registers we
have already described. This does not matter, as
you will only be reading from the collision registers
and writing to the control registers. The Atari
hardware directs the signals to two different
registers depending on whether data is being read
or written.

It is not possible to clear the collision detection
registers by writing zeros to them. The registers
are cleared by POKEing to a special address called
HITCLR, at 53278. It does not matter what value
you write this location, the effect is to clear all
sixteen collision registers.

The final example programs demonstrate the
detection of collisions between players, and
between a player and an object on the display. The
first program demonstrates the detection of
collisions between two players.

10
20
30
40
50

60

70
80

Note:

REM PLAYER-PLAYER COLLISIONS
POKE 53261, 255: POKE 704, 87
POKE 53262, 255: POKE 705, 55
FOR X=O TO 255
POKE53248, X: POKE 53249, 255-
X
IF PEEK(53260)=2 THEN PRINT
"{BELL}"
POKE 53278, 0
NEXT X

The 'BELL' character is CONTROL-2

188 Player-Missile Graphics

The second program shows the detection of
collisions between a player and a coloured
rectangle drawn on the mode 5 display.

10 REM PLAYER-DISPLAY COLLISIONS
20 GRAPHICS 5
30 POKE 53261, 255: POKE 704, 87
40 COLOR 1: PLOT 30, 30:
50 DRAWTO 30, 10: DRAWTO 20, 10:
60 POSITION 20, 30: POKE 765, 1:
70 XIO 18, #6, 0, 0, "S:"
80 IF PEEK(53252)=1 THEN PRINT

"{BELL} "
90 NEXT X

Player-missile graphics are one of the most
powerful features of the Atari, making the creation
of impressive animated displays an easy task.

CHAPTER 16

PERMANENT STORAGE

The 130XE is able to store programs on cassette
tapes or floppy disks, and to LOAD and RUN
programs from tape, disk or plug-in cartridge.
Tapes and disks may also be used to store data for
future use.

PROGRAMS ON TAPE

There are three BASIC commands you can use to
load programs from the cassette unit into the
130XE, and there are three corresponding
commands to allow you to save programs.

CSAVE and CLOAD

To save a program using CSAVE, type:

CSAVE and press RETURN

The TV speaker will 'beep' twice, reminding you to
position the tape and press the RECORD and
PLAY buttons on the cassette unit. Pressing
RETURN a second time will save the program on
the tape. At the end of the process (which you can
monitor by turning up the volume on the TV) the
tape will stop and the READY prompt will be
displayed. Your program, and any variables it
created when RUN, will be saved on the tape.

To load a CSAVEd program back into the 130XE,
type:

189

190 Permanent Storage

CLOAD and press RETURN
The TV speaker will beep once, indicating that you
should position the tape and press the PLAY key on
the cassette unit. When you press RETURN again
the tape will begin to move an the first program the
130XE finds on the tape will be loaded.

The two other groups of loading and saving
commands are less commonly used.

SAVE and LOAD

This pair of commands are more general in their
application, and you must specify to which device
you wish to save your program. For the cassette
unit the syntax is:

SAVE "C: " - the C indicating the cassette
unit.

Any program saved in this way must be reloaded
using the LOAD command, the syntax of which is:

LOAD "C:"

To confuse things slightly, it is also possible to
CLOAD a program which has been saved with the
SAVE command, but it is not possible to LOAD a
CSAVEd program.

LIST and ENTER

As we said earlier, these commands are less
commonly used but can be very useful.

LIST will save a program to the cassette in a
different form from that used by SAVE and
CSAVE.

Both SAVE and CSAVE save programs in
tokenised form, that is, any BASIC command

The Ateri 130XEHandbook 191

within the program are saved as single character
tokens; for example, SETCOLOR would be saved
as a one byte number, not as the characters SET C
o LOR. This has the advantage of saving both
time and space on the tape.

LIST however, saves the program in exactly the
form it appears when you LIST it to the screen,
characer by character. The syntax of LIST when
used to save programs is:

LIST "C:"

You can use the LIST command to save sections of
programs on tape by specifying the line numbers of
the section to be saved in the command:

LIST "C:" 10,100

will save all the program lines between 10 and 100.
This means that you can keep a tape of often used
subroutines on tape for incorporation into your
programs as you write them.

Programs saved with LIST can only be loaded back
into the 130XE with the ENTER statement, the
syntax being:

ENTER "C:"

AUTO RUN PROGRAMS

There is another command, RUN HC:", which
allows you to automatically load and run a
program in one step. RUN HC:" will only load and
run programs which have been CSAVEd.

You can use this facility to chain programs, that is
to have one program load and execute another

192 Permanent Storage

from the tape. If you use this technique, bear in
mind that the variables of the first program will be
destroyed when the second is loaded.

PROGRAMS ON DISK

There are two types of command for loading and
saving programs on disks.

LOAD and SAVE

LOAD and SAVE operate on programs in
tokenised form, much as their counterparts used
with the cassette unit. Their syntax is:

SAVE "0: PROG.BAS"

LOAD "0: PROG.BAS"

where the program is given the name PROG and is
a BASIC program.

It is possible to automatically load and run a
program from disk with the RUN command:

RUN "D:PROG.BAS"

will load and run the BASIC program PROG.

LIST and ENTER

LIST and ENTER deal with programs in ASCII
form, and can be used to save and load sections of
program by specifying line numbers, as with
cassettes.

LIST "0: PROG.BAS"

The Atari 130XE Handbook 193

ENTER "D: PROG.BAS"
By adding line numbers at the end of these
commands, sections of program can be merged with
the program already in memory.

PROGRAMS ON CARTRIDGES

Programs on cartridges are the easiest of all to use.
First, you must switch off the 130XE, or it may be
damaged. Then plug the cartridge into the socket
on the top of the machine and swi tch on again.
Follow the instructions enclosed with the cartridge
to start the program.

FILE HANDLING

As well as loading and saving programs, the Atari
130XE can use the cassette unit to store and reload
data generated by programs. The data is stored in
files, and can be in numerical or string form. To
create a file, the command OPEN is used:

OPEN #C, A, F, D

The parameter C is the channel number - a
reference number used to identify a channel
through which communication to a peripheral
device is made.

A is the direction in which the data is to travel on
the channel, for the cassette unit, a value of 4
indicates that data is to be read from the cassette,
while a value of 8 indicates writing data to the
cassette.

194 Permanent Storage

The F parameter indicates file type and for our
purposes this is O.

Finally, D specifies the device type where "C:"
indicates the cassette unit.

Having opened a channel, data is sent to the
specified device using either the PRINT,
command or the PUT command.

The syntax of the PRINT, command is:

PRINT #Ci"DATA"

PRINT #Ci"123456"

The PRINT, command prints a string of ASCII
characters to the tape, via the channel specified by
the parameter C.

The PUT command sends a single item of data to
the cassette and takes the form:

PUT #C,X

where X is the numeric data and C specifies the
channel.

Reading data from the tape involves the two
commands INPUT' and GET.

The INPUT command is used to retrieve numeric
or string data, depending upon the variable given
in the command. Its syntax is:

INPUT #C,A

INPUT #C,A$

The Atari 130XE Handbook 195

GET is used to read single bytes of data from the
tape, its format is:

GET #l,X
Closing Files

After use, a file must be closed, with the command

CLOSE #C

where C is the channel number.

The following short program shows the use of
OPEN, PRINT#, INPUT# and CLOSE.

S DIM A$(40)
10 OPEN#l, 8, 0, "C:"
20 PRINT#l, "THIS IS A TEST FILE"
30 CLOSE#l
40 STOP
100 OPEN#1, 4, 0, "C : "
110 INPUT#l, A$
120 CLOSE#l
130 PRINT A$

Put a blank tape into the tape unit and wind it
forwards past the transparent leader tape. RUN
the program, and the TV speaker will sound twice
as happens when saving programs. Start the tape,
and the file will be created and the data stored.
The program will stop with the message
((STOPPED AT LINE 40",

Rewind the tape and type GOTO 100. The TV
speaker sounds once. When you set the tape going
the data file will be opened and read, and the data
printed on the screen.

196 Permanent Storage

This technique may be used to store any amount of
data onto tape.

Commas and semi-colons may be used with
PRINT# as with PRINT. Without punctuation,
PRINT# puts a carriage return character after
each item of data written to the tape, and these
carriage returns are used by the INPUT#
statement to distinguish between adjacent items of
data. Using commas or semi-colons suppresses the
carriage returns with the result that the INPUT#
statement will not read the data properly. This is
where GET# is useful, reading single bytes from
the file without regard for carriage returns or any
other markers. If you need to store single byte
numbers, then writing them to the tape with
PUT#; and reading them with GET# makes very
efficient use of the tape, as all the space is taken up
by data with no separating characters. This
method is used in the Character Generator
program in Chapter 12 to save character sets onto
tape.

OTHER PERIPHERAL COMMANDS

STATUS, is a system variable which provides
information about tape files. The variable has
three possible meanings, which are shown in the
table:

STATUS MEANING

1 OK

3 CLOSE TO ENDOF FILE

8 ERROR CODES

CHAPTER 17

ADVANCED TECHNIQUES

The previous chapters cover all you need to write
many programs for your 130XE. This chapter
decribes some further BASIC commands which you
will find useful as you write more ambi tious
programs, and rounds off with some general advice
on how to write good programs.

THE POP COMMAND

This strange looking command IS used III
connection with BASIC subroutines.

Suppose you have a program with subroutines
nested one within the other, one of which checks
which keys are being pressed. You may wish to
respond to one of these keys - ESC perhaps - by
abandoning the current routine and returning to
the start of the program. This could mean
RETURNing through several levels of subroutine,
which would be tedious to program, requiring IF ...
THEN RETURN instructions at each level. The
130XE allows a simpler way of doing this, using
the POP command

Each time a GOSUB command is executed, the
130XE stores the location of the instruction after
the GOSUB on a stack in the reserved area of
memory. At any time the stack contains RETURN
addresses for all GOSUBs for which RETURN
commands have not yet been performed. The POP
command removes the most recently added
RETURN address from the stack, so that the next
RETURN sends the computer back to the GOSUB

197

198 Advanced Techniques

before that most recently added. Try this example
program.

10 GOSUB 100
20 PRINT "MAIN PROGRAM"
30 END
100 GOSUB 200
110 PRINT "SUBROUTINE 100"
120 RETURN
200 GOSUB 300
210 PRINT "SUBROUTINE 200"
220 RETURN
300 RETURN

If you run this program, the 130XE will follow the
GOSUBs to line 300 and then RETURN
progressively through each subroutine, printing
the message. Ifyou now change line 300 to read:

300 POP: POP: RETURN

and run the program again, the program will only
print 'MAIN PROGRAM' and stop.

ERROR HANDLING

The 130XE has a command which allows you to
take corrective action should an error occur as a
program is running - TRAP.

The syntax is:

TRAP N

where N is the line number to which the program is
directed when an error is encountered. TRAP
must be executed before the error occurs, so you
should put it at the start of any program in which
you wish to use it.

The Ateri 130XE Handbook 199

In use, if an error is encounterd, the normal
mechanism whereby program execution is stopped
and an error message displayed is suspended.
Instead, program execution continues at the line
specified by the TRAP command. At this line
number you must include code to handle any
possible errors. You can determine what type of
error has occurred with the statement:

ERR = PEEK(195)

since location 195 contains the code number of the
error (see Appendix 2). The line number at which
the. error occurred can be calculated with a
statement like:

LINE = PEEK(186)+256*PEEK(187)

The following program uses the TRAP command
to good effect by using it to display full error
messages rather than error codes which must be
looked up in a table.

1 GOSUB 32000:TRAP 32500
32000 DIM ERROR$(400):DIM

MESSAGE$(20)
32020 RESTORE 32100
32030 FOR ITEM =2 TO 21
32040 MESSAGE$="

":REM 20 SPACES
32050 READ MESSAGE$
32060 ERROR$((ITEM-2)*20+1)=MESSAGE$
32070 NEXT ITEM
32080 RESTORE
32090 RETURN
32100 DATA MEMORY INSUFFICIENT,

ILLEGAL VALUE,TOO MANY
VARIABLES, STRING LENGTH,OUT OF
DATA

200 Advanced Techniques

32110 DATA LINE NO TOO LARGE, INPUT
TYPE ERROR, DIMENSIONING
ERROR,STACK OVERFLOW,
OVER/UNDER FLOW

32120 DATALINE NOT FOUND,NEXT
WITHOUT FOR, LINE TOO LONG,
GOSUB/FOR DELETED,RETGRN
WITHOUT GOSUB

32130 DATA GARBAGE, INVALID STRING,
LOAD PROG TOO LONG, DEVICE
NUMBER,LOAD FILE ERROR

32500 LINE=PEEK(186)+PEEK(187)*256
32510 CODE=PEEK(195)
32520 PRINT"{BELL}ERROR ";CODE;" IN

LINE ";LINE
32530 P=(CODE-2)*20+1
32540 PRINT ERROR$(P,P+19)
32550 END

If you save this program on tape using the LIST
command it can be reloaded to form a temporary
part of the program you are developing without
disturbance.

MACHINE CODE SUBROUTINES

The 130XE's microprocessor does not understand
BASIC programs without some assistance; it
understands a much cruder set of instructions
called machine code or machine language. BASIC
programs can be run only because the 130XE has
some machine code programs permanently stored
in read-only memory (ROM) which interpret the
BASIC. Writing programs in machine code is more
difficult than using BASIC, but can be very
worthwhile as machine code programs run very
much faster. Machine code is beyond the scope of
this book, but there are several books available

The Atari 130XE Handbook 201

about the 130XE's microprocessor (the 6502) as it is
very common in personal computers.

You can enter machine code routines from BASIC
using the command USR, giving the start address
in memory of the machine code routine. For
example:

USR (69316)

will perform the same function as pressing the
RESET key, and:

USR (69319)

will call the power-on setting up routines which
clear the memory and print the start-up message.
BE CAREFUL using this - it will destroy any
program you have in the 130XE at the time.

The USR command may also contain one or more
arguments, separated by commas, after the address
of the machine code routine. When the command is
executed, the address of the current BASIC
instruction is placed on the stack, followed by each
of the arguments, followed by the number of
arguments included in the command. The machine
code routine can then use the arguments and
return them to the stack, for use by BASIC.

Machine code subroutines may be stored as string
variables, and another command, ADR, used to
determine the start address in memory of the
string, hence the start address of the machine code
subroutine. The syntax ofADR is:

x = ADR(A$)

202 Advanced Techniques

DESIGNING GOOD PROGRAMS

It is easy to write simple BASIC programs, and
after some practice you will find it fairly easy to
write quite complicated routines. However, unless
you plan your programs carefully, a long program
can get very messy and it can be very difficult to
find all the mistakes you are bound to make.

To write complex programs successfully you must
design them carefully, following a few simple rules.
The phrase structured programming is often used
to describe these rules ; all this means is that
programs designed in accordance with these rules
have a clear and logical structure, and the flow
through the program is easy to follow. You may be
put off by hearing people say that BASIC is not a
suitable language for structured programming.
Don't let this discourage you. While BASIC may
lack the elegance of some other languages, it is still
possible to use it to write good programs by
following the simple guidelines set out here:

1 Always plan out the program on paper. Decide
what you want the program to do, identifying
the various tasks it will have to perform, and
divide the program into sections which
correspond to the tasks. For example, you
might have one section of program to get data
from the keyboard, another to sort the data, a
third to display results, and so on.

2 It is often useful to draw sketches of the way the
tasks fit together.

3 When you have got the overall structure of the
program sorted out, work out in more detail

The Ateri 130XE Handbook 203

Key not
valid

CHECKKEY
INPUT

Sketch programs before writing the
BASIC

what each section should be doing, and how it
should be done.

4 Write the BASIC routines for each section of the
program - writing them on paper and not
typing straight into the 130XE. Try to write
each section of the program so that it is as
independent as possible of the other sections,
and arrange the routines with a clear
sequential flow from beginning to end: avoid
jumping around with GOTO. Use a different
set of line numbers for each section, beginning
each at a round number of so many thousands or
tens of thousands.

5 Now type the program into the 130XE.

6 The program will not work! At this stage you
can sort out all the errors easily. If you have
designed the program well, with different

204 Advanced Techniques

sections doing different tasks, it will be much
easier to find the more subtle errors, as you will
be able to isolate the faulty bit of the program
without difficulty.

If you follow these guidelines, you will save a lot of
time in getting your programs to work, and you
will have more time for actually using them.

ABS (N)

ADR (C$)

AND

ASC (C$)

APPENDIX 1

BASIC COMMANDS

Returns the absolute value of
a number (removing the
minus sign).
Chapter S

Returns the address of a
string in memory.
Chapter 17

Logical operator. Returns the
value TRUE if both operands
are true (1).

A = BANDCAisTRUEifB
and C are both TRUE.
Chapter 9

Function. Returns the ASCII
code of a character, or of the
first character of a string.
Chapter 7

ATN(N)

BYE

CHR$(N)

Function. Gives the angle, in
radians or degrees, whose
arctangent is N.
Chapter B

Causes exit from BASIC to
Self-Test mode.

Converts ASCII codes to
characters in string form.
Chapter 7

205

206

CLOSE (N)

CLOAD

CLOG

CLR

COLOR

COM

CSAVE

CONT

BASICCommands

Closes a channel, N, to a
peripheral device (disk,
printer, etc)
Chapter 15

Loads a program from the
cassette uni t.
Chapter 16

Returns base 10 logarithm of
a number.
Chapter 8

Clears variables, arrays, etc,
from memory, and makes the
memory available to BASIC
programs.
Chapter 16

Specifies colour register to be
used in subsequent PLOT
commands. In modes 0 to 2
selects character and colour
register for PLOT.
Chapter 12

Identical to DIM.

Saves a program on the
cassette uni t.
Chapter 16

Restarts program after
pressing the BREAK key or
executing a STOP command.
ChapterS

The Ateri 130XE Handbook 207

COS (N)

DATA

DEG

DIM A(L,M)
DIM A$(L)

DOS

DRAWTOX,Y

ENTER

END

EXP (N)

Gives cosine of angle, which
may be given in radians or
degrees.
Chapter 8

Marks a list of string or
numeric data written into a
program. The items must be
separated by commas.
Chapter 6

All subsequent calculations
to be performed in degrees.
Chapter 8

Dimensions arrays and
strings and allocates memory
space for them.
Chapter 4

Displays DOS menu if disk in
use, otherwise has same
effect as BYE.

Draws a line from last cursor
position to specified position.
Chapter 13

Loads a program which has
been listed to cassette or disk.
Chapter 16

Ends program. Program may
be restarted using CaNT.
Chapter 5

Function returning expo-
nential of N (er-). Acts as
natural antilog function.
Chapter 8

208

FOR

FRE (0)

GET#(N)

GOSUB

GOTO

BASICCommands

Begins loop. For example:

FOR N = A TO B STEP C

All lines as far as NEXT
command are repeated with
value of N increased each
time from A to B in steps ofC.
STEP may be omitted, in
which case the variable is
increased by 1.
Chapter 5

Returns the amount of
memory at present unused by
BASIC.
Chapter 10.

Reads a single character from
the specified file or device
and assigns it to a variable.
Device may be keyboard.
Chapter 15

Program branches to a sub-
routine at the specified line,
returning to instruction after
GOSUB when RETURN is
encountered. Line number
may be specified by a
variable.
Chapter 5

Program branches to the
specified line. The line
number may be specified by a
variable.
Chapter 5

TheAtari 130XE Handbook 209

GRAPHICSM

IF (condition)
THEN (action)

INPUTN
INPUT ltdata";N

INPUT #(N)

INT(N)

LEN(C$)

Selects graphics mode M.
M + 16 removes text window,
M+32 sets mode without
clearing screen.
Chapters 12 and 13

If the condition is true the
action after THEN is carried
out, otherwise the program
continues at the next line.
Chapters 5 and 9

Prompts the operator for an
input and assigns it to a
variable. The variable may
be a number or string: the
input data must correspond.
Chapter 4

Retrieves data from the
specified file number. Data is
in the form of strings up to 80
characters in length,
delimited by CHR$(l3) or, or
; or: .
Chapter 15

Returns integer component of
real number. For example:

INT (3.75)

returns 3.
Chapter 8

Gives the number of char-
acters in the string.
Chapter 7

210

LET

LIST

LOAD

LOCATE X,Y,Z

LOG (N)

LPRINT

NEW

NEXTN

NOT

BASICCommands

Optional. May be used when
assigning values to variables:

LET P = 5 and
P = 5

have the same effect.

Lists the specified lines of the
program on to the screen or to
a peripheral device.
Chapter 4

Reads program file from
peripheral device.
Chapter 15

Returns the value of the data
at screen location X,Y in
variable Z.
Chapter 13

Returns the natural log -
arithm ofa number.
Chapter 8

Outputs data to the printer.

Clears a program and its
variables from memory.
Chapter 4

Marks end of loop begun by
FOR. The variable must be
specified.
ChapterS

Logical operator. Reverses
truth ofexpression.
Chapter 9

The Ateri 130XE Handbook 211

NOTE

ONNGOSUB

ONNGOTO

OPEN #N,O,O,D

OR

PEEK (LOC)

PLOTX,Y

Finds location of next byte to
be accessed from disk.

Program branches to Nth
subroutine in list. If N is
larger than number of items
in list no branch occurs.
ChapterS

Program branches to Nth
destination in list. If N
larger than number of items
in list no branch occurs.
Chapter B

Opens a channel N to a
peripheral device specified by
D.
Chapter 16

Logical operator. Returns
value TRUE if either or both
operands are true. Thus:

A ::. B OR C

A is true ifB or C is true.
Chapter 9

Gives the contents of memory
location LOC.
Chapter 15

Puts point or character on
screen at location X,Y.
Chapter 13

212 BASICCommands

POINT Selects position on disk at
which next byte is to be
wri tten or read.

POKE LOC,N Puts value of N into memory
location LOC. N must have
value 0 - 255.
Chapter 15

POP Removes one address from
the stack.
Chapter 17

POSITION X,Y

PRINT

PRINT# N

PUT#D

RAD

READ

Positions the cursor at X,Y
for subsequent PRINT
operation.
Chapter 12

Puts data, numbers or
characters on the screen.
Chapter 3

Writes data to the specified
file.
Chapter 15

Outputs a single byte to
specified device.
Chapter 16

All subsequent calculations
to be in radians.
Chapter 8
Copies items from DATA
statements into variables.

The Afar; 130XE Handbook

Chapter 6

213

REM

RESTORE

RETURN

RND (N)

RUN

Allows remarks to be
inserted in programs as an
aid to clarity. Remarks are
ignored when program is run.
Chapter 4

Returns READ pointer to
first DATA item. May be
followed by a line number to
indicate the DATA item
required.
Chapter 6

Marks end of subroutine.
Program returns to the
instruction after the GOSUB
instruction which called the
subroutine.
ChapterS

Returns a random number
between 0 and 1, N is a
dummy variable.
Chapter 8

Begins execution of BASIC
program. All variables are
cleared.
Chapter 4

214 BASIC Commands

SAVE Stores the program currently
in memory onto tape or disk.
Device number specifies
tape(C) or disktD).
Chapter 15

SETCOLOR R,C,L Sets colour register R ro
colour C at luminance L.
Chapter 13

SGN (N)

SIN

SQR

Returns 1, 0 or -1 according
to whether number is
positive, zero or negative.
Chapter 8

Function. Returns the sine of
a number in radians.
Chapter 8

Returns the square root of
the argument.
Chapter 8

STATUS Returns
specified
code.
Chapter 8

status of the
device as an error

STICK(N)

STOP

Returns position of specified
joystick.
Chapter 13

Stops execution of program.
A message 'STOPPED AT
LINE xxx' is displayed.
Program may be restarted
usingCONT.
ChapterS

The Atari 130XE Handbook 215

STRIG(N)

STR$ (N)

THEN

TO

Returns 0 if fire button of
specified joystick is pressed, 1
ifnot.
Chapter 13

Converts numbers to strings
of numeric characters.
Chapter 7

See IF.
ChapterS

See FOR.
ChapterS

TRAPN Causes jump to specified line
number when an error
occurs.
Chapter 17

USR (ADDR,[X,Y...])Calls machine code routine at
address specified by ADDR.
The optional arguments
values X, Y etc. are placed on
the 6502 hardware stack,
together with a count of the
arguments and the address of
the next BASIC instruction.
Chapter 17

VAL (C$)

XIO T,C,pl,p2,D

Converts string of number
characters to number.
Chapter 7

Mainly used for filling blocks
of colour on screen.
Chapter 13

APPENDIX 2

BASIC ERROR MESSAGES

If the 130XE encounters a command which it is
unable to execute, or a number it cannot handle, an
error message will be displayed.

If the error occurred while running a program, the
program will stop, and a message of the form

ERROR ***AT LINE XX
will be displayed, where *** represents the error
code, and XX is the program line at which the error
has occurred. The program is retained in the
computer, as are the values assigned to all
variables at the time of the error.

In immediate mode, the error message takes the
form

ERROR - **
and is embedded in the line which is in error.

The following descriptions explain the error codes,
and the possible reasons for them:

2 OUTOFMEMORY

Either the program is too large, or you have used
too many variables, too many FOR ... NEXT loops,

216

The Atert 130XE Handbook 217

too many GOSUBs or allocated too much memory
space with a DIM command.

3 VALUE ERROR

A number outside the allowable range was
encountered, or a negative value has been used as
an argument for a function requiring a positive
argument.

4 TOO MANY VARIABLES

More than 128 variable names have been used.

5 STRING LENGTH ERROR

A program tried to manipulate string data outside
the range for .which the string was dimensioned, or
zero was used as a character posi tion reference in a
string handling command.

6 OUTOFDATA

There were insufficient data items for the READ
command.

7 ILLEGAL LINE NUMBER

A negative line number, or one greater then 32767
has been referenced.

8 INPUT ERROR

An attempt to input a string value into a numeric
variable was made.

218 BASIC ErrorMessages

9 ARRAY OR STRING DIMENSION

Either an undimensioned string or array has been
referenced, or an attempt has been made to
redimension a string or array.

10 ARGUMENT STACK OVERFLOW

An expression is too large or the program contains
too many GOSUBs.

11 FLOATING POINT OVER/UNDER FLOW

A number less than lE-99 or greater than IE 98
has been encountered, or an attempt has been
made to divide by zero.

12 LINE NOT FOUND

A non existent line number has been referenced.

13 NO MATCHING FOR

A NEXT statement with no corresponding FOR
was encountered.

14 LINE TOO LONG

The line entered is grea ter than 140 characters.

15 GOSUB OR FOR DELETED

The line containing a GOSUB or FOR statement
has been deleted.

16 RETURN ERROR

There is no corresponding GOSUB statement for a
RETURN.

The Atari 130XE Handbook

17 GARBAGE ERROR

Random error.

18 INVALID STRING CHARACTER

219

Either an invalid character is present in a string,
or the argument of a VAL command is non-
numeric.

19 LOAD PROGRAM TOO LONG

The program currently being loaded is too large for
the available memory.

20 DEVICE NUMBER ERROR

A device number less than 0 or greater then 7 was
used.

21 LOAD FILE ERROR

The LOAD command was used to load a program
which was CSAVED or LISTed.

128 BREAK ABORT

The BREAK key was pressed during an L'O
operation.

129 CHANNEL OPEN

An attempt has been made to use a channel which
is already open.

130 NON - EXISTENT DEVICE

The device has not been specified in an L'O
operation.

220 BASIC Error Messages

131 IOCB WRITE ONLY

An attempt has been made to read from a file
opened for a write operation.

132 INVALID COMMAND

An illegal command has been used in an VO
operation.

133 DEVICE/FILE NOT OPEN

An attempt has been made to reference an un-
OPENed channel.

134 ILLEGAL IOCB NUMBER

A number less than 0 or greater than 7 was used to
access a channel.

135 IOCB READ ONLY ERROR

An attempt has been made to write to a device or
file which was opened only for read operations.

136 END OF FILE

The end offile marker has been reached.

137 TRUNCATED RECORD

The INPUT command has been used to access a file
created with the PUT command, or the record is
larger than allowed.

138 DEVICE TIMEOUT

The specified device did not respond within the
time allotted by the 130XE for communication
between the comuter and peripherals.

The Atari 130XE Handbook

139 DEVICE NAK

No response from peripheral device.

140 SERIAL FRAME ERROR

Indicates faulty computer or peripheral.

141 CURSOR OUT OF RANGE

221

The cursor is outside the allowable range for a
graphics mode.

142 SERIAL BUS RUNOUT

Fault in serial bus between computer and
peripherals.

143 CHECKSUM ERROR

Data being transferred from peripheral is being
corrupted.

144 DEVICE DONE ERROR

An attempt has been made to write to a write-
protected disk.

145 BAD SCREEN MODE ERROR

An error in the screen handler has occured.

146 FUNCTION NOT IMPLEMENTED

An attempt has been made to use a device in a
manner which is not possible.

222 BASIC Error Messages

147 INSUFFICIENT SCREEN RAM

Not enough memory for the graphics mode
selected.

160 DRIVE NUMBER ERROR

An incorrect number has been used to specify the
disk drive.

161 TOO MANY OPEN FILES

The limit imposed on the number of disk files open
at one time has been reached.

162 DISK FULL

All sectors of the disk are used.

163 UNRECOVERABLE SYSTEM I/O ERROR

An error is present in the DOS or on the disk.

164 FILE NUMBER MISMATCH

Incorrect use of the POINT command - the sector
specified was not included in the open file.

165 FILE NAME ERROR

Illegal filename.

166 POINT DATA LENGTH ERROR

Incorrect use of the POINT command - the
specified byte number did not exist within the
specified sector.

The Atari 130XEHandbook

167 FILE LOCKED

An attempt was made to access a locked file.

168 INVALID DEVICE COMMAND

An illegal device command was used.

169 DIRECTORY FULL

No more than 64 files can exist on one disk.

170 FILE NOT FOUND

223

An attempt has been made to access a file which is
not on the disk.

171 POINT INVALID

Incorrect use of POINT command - an attempt has
been made to use the POINT command with an
incorrectly opened file.

172 ILLEGAL APPEND

The wrong DOS has been used to append a file.

173 BAD FORMAT

Bad sectors have been found on the disk while
formatting - discard the disk.

APPENDIX 3

SPEEDING UP PROGRAMS

There are several things you can do to increase the
running speed of your BASIC programs.
Unfortunately, this is usually at the expense of
clarity, and you may find it useful to keep a 'slow',
but easy-to-follow version of your program should
you wish to amend it at a later date.

1 Remove all unnecessary spaces and REMs
from the program. A small speed increase
will result, because BASIC will not have to
skip over redundant spaces to find executable
commands.

2 Always use variables instead of constants.
The 130XE can handle variables much more
rapidly than numbers. This is especially
important in FOR ... NEXT loops.

3 Use as many statements per line separated
by':' as possible.

4 Re-use the same variables whenever
possible.

5 Use the zero elements of arrays when
possible.

6 Assign often used variables early on in the
program. The 130XE stores all variables in a
table. The first declared variables are the first
in the table and are found more quickly.

224

The Atari 130XE Handbook 225

7 Put all subroutines near the start of the
program. The computer searches through the
whole program for a subroutine each time a
GOSUB command is executed, and
subroutines having low line numbers will be
found and executed more quickly than those
at the end of the program.

S Programs involving large amounts of
calculation but not requiring the screen
display may be speeded up by turning ofT the
screen, with a line such as:

100 A=PEEK(559):POKE 559,0

The screen can be turned back on to display
the results of the calculations with a
statement:

200 POKE 559,A

APPENDIX 4

NUMBERING SYSTEMS

Computers store and operate upon numbers in a
different way from humans - they use a numbering
system known as binary notation.

Binary notation is a means of representing
quantities with groups of Is and Os. We are more
used to a system called decimal notation, in which
quantities can be represented by combinations of
up to ten symbols (the numbers 0 to 9).

Computers use the binary system because they are
able to recognise and differentiate between only
two states - ON and OFF. These two states can
conveniently be represented by 1 (ON) and 0 (OFF).

A single 1 or 0 is called a BInary digiT, or BIT, and
computers store data in the form of groups of eight
of these bits, known as BYTES.

In the computer memory, one memory location is
able to store one Byte of data (eight bits). A
collection of 1024 of these bytes is called a
KILOBYTE, or k for short. We can get an idea of
the data storage capacity of a computer from the
number ofk of memory it has (48k, for example, is
48 * 1024 *8 bits).
We have described a byte as a collection of eight
bits, like this:

11111111

226

227 Numbering Systems

This is an 8-bit binary number, which represents
255 in decimal notation. To see how this is so, we
must first examine the decimal number and see
what it means.

H T U
255

means:

2*100 + 5*10 + 5*1

In other words, each digit is worth 10 times the one
to its right.

Binary notation uses this same 'place value'
principle, except each bit in a binary number is
worth double that to its right. We can assign
values to the eight bits in the same way as the
'hundreds, tens and units' assigned to the digi ts of a
decimal number.

12864 32 16 8 4 2 1
1 1 III 1 1 1

By adding up, we can see why this number
represents 255:

1 *128
1 * 64
1 * 32
1 * 16
1 * 8
1 * 4
1 * 2
+1 * 1

255

You'll notice that 255 is the biggest number we can
represent with an 8-bit binary number. Hence this

The Afar; 130XEHandbook 228

is the largest number we can store In a single
memory location.

As a further example, let's take the decimal
number 170. To find its binary representation, we
continuously divide by two, and the remainder
becomes a bit in the binary number.

170/2 = 85 remainder 0
85/2 = 42 1
42/2 = 21 0
21/2 = 10 1
10/2 = 5 0
5/2 = 2 1
2/2 = 1 0
1/2 = 0 1

giving us the binary number

10101010 (reading upwards)

ADDITION OF BINARY NUMBERS

Binary numbers can be added together in the same
way as decimal numbers. An example will make
this clear.

To perform the sum:

105
+ 19
124

we add up the digits in each column to form that
digit of the answer. If the result of this addition is
greater than 9, we generate a carry into the next
column. This principle also applies to binary
numbers. Let's perform the same calculation with
the binary forms of 105 and 19:

229

01101001
+00010011
01111100

Numbering Systems

In the case of binary addition we generate a carry
when adding 1 to 1 (in columns 1 and 2 in our
example).

NEGATIVE BINARY NUMBERS

You might have wondered how the computer can
recognise negative numbers, since it can only tell
the difference between on and off. This is achieved
by a method known as 'two's complement' notation,
which uses one bit of the binary number (the most
significant bit, often labelled bit 7) as a sign bit.

To subtract two numbers in binary, we form the
two's complement of the number to be subtracted,
then add it to the other number.

As an example we'll subtract 50 from 100 :

100 01100100
-50 00110010

50 00110010

(the answer we want).

To perform the sum in binary, first we find the
two's complement of 50, by changing all the Os to Is
and all the Is to Os,then adding 1.

50 in binary is:
Change Is to Os:
Adding 1 gives
its two's complement:

00110010
11001101

11001110

Now add this to the binary for 100:

The A tar; 130Xf Handbook

01100100
11001110

1 00110010

230

The result is binary 50 - the method worked.

Notice that a carry was generated, indicating that
the answer is positive. A consequence of using bit 7
as a sign bit is that the range of numbers we can
represent with an 8-bit number is restricted to

-128 to + 127
HEXADECIMAL

Manipulating numbers in binary is a lot easier for
a computer than it is for a human, and one way in
which binary numbers can be made more digestible
is by representing them in hexadecimal notation,
or hex.

Hex is a system of counting in base 16, using the
symbols 0 to 9 and A to F as follows

DEClMALO 1 ••• 9 10 11. .• 15 16 17

HEX 0 1 ••• 9 A B... F 10 11

Thus FF (hex) represents 255 (decimal) and
11111111(binary).

You will frequently encounter references to hex,
usually as memory addresses, because it is so
convenient. (Which of these is easiest to recognise?
1111111111111111 or 65535 or #FFFF).

APPENDIX 5

GRAPHICS MODES

ROWS ROWS MEM REQ MEM REQ
MODE TYPE COLS. COLOURS

SPLIT FULL SPLIT FULL

0 TEXT 40 - 24 1 - 992
1 TEXT 20 20 24 5 674 672
2 TEXT 20 10 12 5 424 420
3 GR 40 20 24 4 434 432
4 GR 80 40 48 2 694 696
5 GR 80 40 48 4 1174 1176
6 GR 160 80 96 2 2174 2184
7 GR 160 80 96 4 4190 4200
8 GR 320. 160 192 1 8112 8138
9 GR 80 - 192 1 - 8138
10 GR 80 - 192 9 - 8138
11 GR 80 - 192 16 - 8138
12 TEXT 40 20 24 5 1154 1152
13 TEXT 40 10 12 5 664 660
14 GR 160 160 192 2 4270 4296
15 GR 160 160 192 4 8112 8138

231

APPENDIX 6

COLOUR CODES

COLOUR CODE

GREY 0
GOLD 1

ORANGE 2
RED/ORANGE 3

PINK 4
PURPLE 5

BLUE/PURPLE 6
BLUE 7
BLUE 8

LIGHT BLUE 9
TURQUOISE 10
GREEN/BLUE 11

GREEN 12
YELLOW/GREEN 13
ORANGE/GREEN 14
LIGHT ORANGE 15

232

APPENDIX 7

CHARACTER CODES
SET1 SET2 0 1 2 3
SPACE !IJ 32 0 160 128

I [B 33 1 161 129

" 0 34 2 162 130

35 3 163 131

$ 8J 36 4 164 132

% bJ 37 5 165 133
& 0 38 6 166 134

[SJ 39 7 167 135
(40 8 168 136
) 41 9 169 137

* IiiJ 42 10 170 138

+ 43 11 171 139
44 12 172 140

D 45 13 173 141

D 46 14 174 142
/ 1IJ 47 15 175 143

0 48 16 176 144
1 49 17 177 145

2 B 50 18 178 146

3 EB 51 19 179 147

4 • 52 20 180 148

5 53 21 181 149

6 IJ 54 22 182 150
7 m 55 23 183 151

8 56 24 184 152
9 IJ 57 25 185 153

[B 58 26 186 154

[[] [] 59 27 187 155

< t 60 28 188 156

= • 61 29 189 157

233

234 Character Codes

SET 1 SET2 0 1 2 3

> .. 62 30 190 158
7 ... 63 31 191 159
@ • 64 96 192 224
A a 65 97 193 225
B b 66 98 194 226
C (67 99 195 227
D d 68 100 196 228
E e 69 101 197 229
F f 70 102 198 230
G 9 71 103 199 231
H h 72 104 200 232
I i 73 105 201 233
J J 74 106 202 234
K k 75 107 203 235
L I 76 108 204 236
M m 77 109 205 237
N n 78 110 206 238

0 0 79 111 207 239
p P 80 112 208 240

Q q 81 113 209 241
R r 82 114 210 242

S S 83 115 211 243

T t 84 116 212 244

U U 85 117 213 245
V v 86 118 214 246

W W 87 119 215 247
X X 88 120 216 248

Y Y 89 121 217 249
Z z 90 122 218 250
[• 91 123 219 251

-, I 92 124 220 252

I " 93 125 221 253

1\ 94 126 222 254

95 127 223 255

APPENDIX 8

DISPLAY LIST INSTRUCTIONS

In order to create borders, ANTIC has a set of
instructions which create up to eight scan lines in
either screen or border colour:

ANTIC CODE

o
16
32
48
64
80
96
112

NUMBER OF BLANK LINES

1
2
3
4
5
6
7
8

Another group of instructions select graphics
modes:
ANTIC CODE

2
6
7
8
9
10
11

BASIC MODE

o
1
2
3
4
5
6

235

236

13
15
15
15
15
4
5
12
14
3

Display List Instructions

7
8
9
10
11
12
13
14
15

Antic can be instructed to jump, in which case it
treats the next two bytes in the display list as the
address to which it should jump:
JUMP TO ADDRESS 1
JUMP AT VERT BLANK 65

Most instructions can be modified as follows:

add 16 HORIZONTAL SCROLL

add 32 VERTICAL SCROLL

add 64 LOAD MEMORY SCAN
(REFRESHES SCREEN
MEMORY POINTERS)

APPENDIX 9

USEFUL MEMORY LOCATIONS

LOCATION
16

18,19,20
65

82
83
84
85,86
87
88,89
93

94,95
128,129
656
657,658
144,145
186,187
195

212,213
251

559

694

DESCRIPTION
POKE with 64 and POKE 53774
with 64 to disable BREAK key.
Real time clock.
Poke with 0 to hear sound from
cassette during loading.
Poke with 1 to stop sound.
Left margin of mode 0 text display.
Right margin of mode 0 display.
Current cursor row.
Current cursor column.
Current display mode.
Start of screen memory.
Contains a copy of the character
underneath the cursor.
Current cursor address.
Start of BASIC memory.
Cursor row in text window.
Cursor column in text window.
Top of BASIC memory.
Line number of error found by TRAP.
Error number of error found by
TRAP.
Value returned by USR function.
0=Radians mode.
6 = Degrees mode.
POKE with 0 to disable display. See
Chapters 14, 15.
0=Keyboard gives normal
characters.
Non-zero = Keyboard gives inverse
video characters.

237

238

702

703

704-707
708-712
741,742
743,744
752

755

756

763
764
765
53279

54018

58484
58487

Useful Memory Locations

o= No shift locks.
64 = CAPS lock on.
128 = CONTROL lock on.
24 = Text window off.
4 = Text window on.
Player-Missile colour registers 0 to 3.
Graphics colour registers 0 to 4.
Top of free RAM.
Start of free RAM.
0=Cursor on.
1 = Cursor off.
Controls appearance of cursor and
characters.
Setting bit 0 makes the cursor opaque.
Setting bit 1 makes the cursor visible.
Setting bit 3 inverts the displayed
characters.
224 = Standard character set.
226 = Alternate character set.
ASCII code of last key pressed.
Internal code of last key pressed.
Holds colour data for XIO command.
Bit 0 is zero ifSTART is pressed.
Bit 1 is zero ifSELECT is pressed.
Bit 2 is zero ifOPTION is pressed.
POKE 53279,8 retracts loudspeaker
cone.
POKE 53279, 0 extends loudspeaker
cone.
POKE with 52 to start cassette
motor.
POKE with 60 to stop cassette.
X = USR(58484) gives RESET.
X = USR(58487) gives switch-on reset.

APPENDIX 10

MUSIC FREQUENCIES

NOTE PERIOD NOTE PERIOD

c 255 F#,Gb 89
(#,Db 239 G 81
D 227 G#,Ab 76

D#,Eb 211 A 72
E 203 A# ,Bb 68
F 191 B 64

F#,Gb 179 c 63
G 171 (#,Db 57

G#,Ab 159 D 53
A 151 D#,Eb 50

A#,Bb 143 E 47
B 135 F 45
c 127 F#,Gb 42

(#,Db 119 G 40
D 113 G#,Ab 37

D#,Eb 105 A 35
E 101 A# ,Bb 33
F 95 B 31

239

APPENDIX 11

MUSICAL NOTATION

This appendix will not teach you all about music,
but it contains the basic information you need to
translate sheet music into XL programs.

Music is written by positioning symbols which
represent the length of notes on a framework
(called a stave) representing the pitch.

G
F Atari 3rd octaveE

c D
A B
F G Atari 2nd octave
D E
B C
G A Atari 1st octaveE F
C D
A B
F G

The lengths of notes are indicated by the note
shape:

ASemibreve 0 is twice as long as

a Minim [j which is twice as
long as

a Crotchet which is twice as
) long as

a Quaver which is twice as
long as

240

TheAtari 130XE Handbook

a Semiquaver)

241

Tails on notes may go up V or down). The
feathers on quavers and shorter notes may be
joined where they appear in groups:

A dot after a note means that it is made halfas long
again as a normal note:

J. =J J-
The mark is a tie which means the notes
are joined together.

J J=J-
Volume is indicated by markings below the stave.

ff Very loud

r Loud

mf Moderately loud

mp Moderately soft

p Soft

pp Very soft

.c::::::::: Get louder
Get softer

242 Musical Notation

Speed is indicated by markings which may be
above or below the stave. Examples are:

Presto
Allegro
Allegro moderato
Moderato
Andante
Largo

which means Fast
Quite fast
Moderately fast
Medium pace
Slow
Very slow

Unfortunately, there are many other Italian words
and phrases which may be used. The best thing to
do is to adjust your XL program until the speed
sounds right, and not worry too much about what is
written on the music.

Two other markings which may appear next to
notes are # and b. # (sharp) means that the note
should be raised by one semitone and b (flat)
means that the note is lowered one semitone.

All other markings which may appear on sheet
music (and there are many of them) can be ignored.

LAND OF HOPE AND GLORY

Here is the beginning of 'Land of Hope and Glory',
one of the examples used in Chapter 11. The notes

shown In this music correspond to the notes

The Atari 130XE Handbook 243

represented by the first item of every group of two
in the DATA statement in the program. The
length of the note, indicated by its shape,
corresponds to the second number of each group.

Note the 'sharp' symbols (#) on the lines of the
stave corresponding to the note F. These mean that
all F's throughout the music are sharpened.

APPENDIX 12

MEMORY MAP

Operating system in ROM

Not Used

ANTIC registers

lnput/Output registers

POKEY registers

Not Used

GTIA registers

BASICROM

Cartridge Slot or RAM
Screen Memory

Display List

BASICProgram and
Variables

Free RAM

Operating system and
BASICStorage

65535

55296

54784

54272

54016

53760

53504

53248

40960

32768

NOTE
Locations 16784 to
32767 are not used
in the 600XL.

1792

1536

o

244

DELETE key 11

INDEX DIM 24,52
DRAWTO 138

Editing 11
ABS 64 END 41
ADR 200 ENTER 188
Alternative char. set 114 Error messages 215
AND 71 EXP 66
Animation 123,172
Arrays 24 Files 192
Arithmetic 12,21 Filter 102
Assembly Language 199 FOR 31
ASC 54 FRE 76
ASCII code 53 Functions 63
ATN 65

GET 47
BASIC 1 GET# 193

Commands 204 GOSUB 38
Binary numbers 225 GOTO 34
Bit 225 GRAPHICS 108
Boolean algebra 71 Graphics Symbols 15
Branching 34
BYE 204 Hexadecimal numbers 225
Byte 225 Hierarchy of operations 13
Cassette unit 4 IF 34
Cartridges 192 Immediate mode 8
Channels 192 INPUT 27
Character sets 115 fNPUT# 193
CHR$ 53 INSERT key 11
Clock 38 INT 64
CLOAD 188
CLOG 67 Joysticks 147
CLOSE 194 Jumps 34
CLR 76
Collision detection 184 Keyboard 8
Colour 105 Keywords, BASIC 204
COLOR 111, 137
COM 205 Languages 1
CONT 41 LEN 52
COS 65 LET 209
CSAVE 188 LIST 19
Cursor 8 LOAD 188
Cursor keys 9 Loading programs 188

LOCATE 141
DATA 45 LOG 67
DEG 65 Loops 31

245

246 Index

Lower case 14 ROM 74
LPRINT 209 RUN 19
Machi ne code 199 SAVE 189
Memory map 243 Savin9 programs 188
Memory use 74 Scrolling 10,158
Microprocessor 199 SETCOLOR 105
Monitor 7 SGN 65
Music 77 SIN 65

SOUND 79
Nested loops 32 SQR 63
NEW 20 STATUS 195
NEXT 31 STEP 31
NOT 73 STICK 147
Numbering systems 225 STOP 41

Stopping programs 41
ON ... GOSUB 42 STRIG 147
ON ... GOTO 41 String variables 23,52
OPEN 192 STR$ 54
Operating System 243 Structured programming201
OR 71 Subroutines 39
PADDLE 147 TAB key 10
Pauses 38 Television 4
PEEK 74 THEN 34
Pixel 115 TO 31
PLOT 111, 138 TRAP 197
POKE 74
POP 196 Upper case 14
POSITION 49 User defined characters 115
PRINT 8,18,48 USR 200
PRINT # 193
Program 18 VAL 55
PTRIG 148 Variables 21
PUT 193

XIO 139
RAD 65
RAM 74
Random numbers 67
READ 45
Real variables 23
Register 75
REM 28
Reserved words 204
Reset key 11
RESTORE 46
RETURN 39
Reverse video 14
RND 67

Also available from Century Communications

ATARI
Handbooks
02259
05134

05088

ATARI XL HANDBOOK Peter Lupton and Frazer Robinson £5.95
MICRO ENQUIRER THE ATARI Ben Woolley and £13.95

Chris Bidmead lei
MICRO ENQUIRER THE ATARI Ben Woolley and £8.95

Chris Bidmead (pi

Software andApplications(Books)
05002

05010

ATARI XL GRAPHICS HANDBOOK

BESTOF PCW SOFTWARE
FOR THE ATARI

Peter Lupton and 095
Frazer Robinson

Editors ofPersonal £5.95
ComputerWorld

SOFTWARE (Cassettes/Book packs andcassettes)

05207 BEST OF PCW: SOFTWARE FORTHE
ATARI XL

GENERAL

Editors ofPersonal £11.95
Computer World

Applications andLanguages
'0507X
'05061
0946970068
01155
'05614
'06505
02208
'05797
06653
'05584
'05509
05495

ASSEMBLER ROUTINES FORTHE 6502
ASSEMBLER ROUTINES FORTHE Z80
COMPUTER ART &GRAPHICS
COMPUTER GAMESMANSHIP
EPSON PRINTER USER'S HANDBOOK
HACKER'S HANDBOOK
LOGO PROGRAMMING
PROGRAMMING THE REALWORLD
TALKING TO THE WORLD
TALKING TO THE WORLD
TEACH YOURSELF ASSEMBLER 6502
TEACH YOURSELF ASSEMBLER zao

David Barrow 0.95
David Barrow 0.95
Axel Bruck lei£14.95
David Levy 0.95

Weber Systems £9.95
Hugo Cornwall £3.95
Anne Moller £695

Marcus Watney £695
John Newgas lei £8.95
John Newgas Ipl £595

PaulOveraa 0.95
PaulOveraa 0.95

