

The
Second

Book
01

Machine
Language

By Richard Mansfield

221Yc1~~!~~Eublications,lnc,.
Greensboro, North Carolina

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-53-1

10 9 8 7 6 5 4 3 2 1

COMPUTE! Publications, Inc. , Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies, and is not associated with any
manufacturer of personal computers. PET, CBM, VIC-20, and Commodore 64 are all
trademarks of Commodore Electronics Limited and/or Commodore Business Ma
chines, Inc. Apple is a trademark of Apple Computer Company. Atari is a trademark
of Atari, Inc.

Contents
Preface. .. v

1: How to Use This Book 1

2: Defs:
Equates and Definitions 13

3: Eval:
The Main Loop 27

4: Equate and Array:
Data Base Management 77

5: Openl, Findmn, Getsa, and Valdec:
I/O Management and Number Conversions 103

6: Indisk:
The Main Input Routine 137

7: Math and Printops:
Range Checking and Formatted Output 177

8: Pseudo:
I/O and Linked Files 197

9: Tables:
Data, Messages, Variables . 219

10: 6502 Instruction Set 237

11: Modifying LADS
Adding Error Traps, RAM-Based Assembly, and a
Disassembler 275

Appendices 353
A: How to Use LADS 355

B: LADS Object Code 357
C: Machine Language Editor for Atari and Commodore 415

D: A Library of Subroutines 433

E: How to Type In Basic Programs 440

Index 443

Preface
This book shows how to put together a large machine lan
guage program. All of the fundamentals were covered in my
first book, Machine Language for Beginners. What remains is to
put the rules to use by constructing a working program, to
take the theory into the field and show how machine language
is done.

Showing how to construct an assembler-written entirely
in machine language-would serve two useful purposes. It
would illustrate advanced programming technique and also
provide the reader with a powerful assembler to use in other
ML programming.

This book, then, offers the reader both a detailed descrip
tion of a sophisticated machine language program (the LADS
assembler) and an efficient tool, a complete language with
which to write other machine language programs. Every line
in the LADS assembler program is described. All the sub
routines are picked apart and explained. Each major routine is
examined in depth.

LADS, the Label Assembler Development System, is a
fast, feature-laden assembler-it compares favorably with the
best assemblers available commercially. And not the least of
its virtues is the fact that few programs you will ever use will
be as thoroughly documented and therefore as accessible to
your understanding, modification, and customization.

LADS is a learning device too. By exploring the assem
bler, you will learn how to go about writing your own large
machine language (ML) programs. You will see how a data
base is created and maintained, how to communicate with
peripherals, and how to accomplish many other ML tasks.
Also, because you can study the creation of a computer lan
guage, the LADS assembler, you will gain an in-depth knowl
edge of the intimate details of direct communication with your
computer.

Most programming involves a tradeoff between three pos
sible objectives: speed, brevity, or clarity. You can program
with the goal of creating the fastest running program possible.
Or you can try to write a program which uses up as little
memory as possible. Or you can try to make the program as
understandable as possible, maximizing the readability of the
program listing with REMarks.

v

LADS emphasizes clarity so that its source code will serve
as a learning tool and as the focus of this book. It's designed
so that important events in the program can be easily ex
plained and understood. Virtually every ML instruction, every
tiny step, is commented within the source code listings follow
ing each chapter.

This doesn't mean that LADS is flabby or slow. Assem
bling roughly 1000 bytes a minute and taking up SK in mem
ory, LADS is considerably faster and more compact than most
commercial assemblers. That's because, in ML, you can have
the best of both worlds: You can comment as heavily as you
want, but the assembler will strip off the comments when it
creates the object code. In this way, clarity does not sacrifice
memory or speed.

The frequent comments contribute considerably to the
educational value of this assembler. Exploring LADS is a way
to learn how to achieve many common programming goals
and how to construct a large, significant program entirely in
ML. An additional advantage of this comprehensibility is that
you'll be able to modify LADS to suit yourself: Add your own
pseudo-ops, define defaults, format output. All this is referred
to as a language's extensibility. We'll get to this in a minute.

What BASIC is to BASIC programming, an assembler is to
ML programming. LADS is a complete language. You write
programs (source code) which LADS translates into the fin
ished, executable ML (object code). Unlike less advanced
assemblers, however, symbolic assemblers such as LADS can
be as easy to use as higher level languages like BASIC. The
source code is very simple to modify. Variables and sub
routines have names. The program can be internally com
mented with REM-like explanations. Strings are automatic via
the .BYTE command. There are a variety of other built-in fea
tures, the pseudo-ops, which make it easy to save object pro
grams, control the screen and printer listings, choose hex or
decimal disassembly, and service other common programming
needs.

Perhaps the best feature of LADS, though, is its extensibil
ity. Because you have the entire source code along with de
tailed explanations of all the routines, you can customize

vi

LADS to suit yourself. Add as many pseudo-ops as you want.
Redesign your ML programming language anytime and for
any reason. Using an extensible programming language gives
you control not only over the programs you design, but also
over the way that they are created. You can adjust your tools
to fit your own work style.

Do you often need to subtract hex numbers during assem
bly? It's easy to stick in a - command. Would you rather that
LADS read source programs from RAM memory instead of
disk files? (This makes it possible to assemble using a tape
drive. It can also be a bit faster.) In Chapter 11 we'll go
through the steps necessary to make this and other modifica
tions. You'll be surprised at how easy it is.

Finally, studying the language (the LADS assembler)
which produces machine language will significantly deepen
your understanding of ML programming.

I would like to thank Charles Brannon for his translation
and work with the Atari version of LADS, Kevin Martin for his
translation and work with the Apple version, and Todd
Heimarck for his many helpful discoveries about the assembler.

vii

Ho\V to Use This Book
The dual nature of this book-it's both a text and a pro
gram-offers you a choice. You can follow the ideas: reading
through the chapters, studying the program listings, and deep
ening your understanding of machine language programming.

Alternatively, you can type in the LADS assembler and
experiment with it: learning its features, trying out modifica
tions, and using it to write your own machine language pro
grams. Appendix A describes how to use the assembler and
Appendix B provides instructions on typing it in. If you choose
this second approach, the rest of the book can serve as a ref
erence and a map for modifying the assembler. The tutorials
can also help to clarify the structure and purpose of the vari
ous subroutines and subprograms.

LADS is nearly 5K long, and for those who prefer not to
type it in, it can be purchased on a disk by calling COMPUTE!
Publications toll free at 1-800-334-0868. Be sure to state
whether you want the Commodore, Atari, or Apple disk. The
disk contains both the LADS source and object code (these
terms are defined below) . To create customized versions of the
assembler, you will need the source code. It, too, can be typed
in (it is printed in sections at the end of Chapters 2-9). If you
don't type in any of the comments, it is roughly 10K long. The
Commodore disk contains the various PET ICBM (Upgrade
and 4.0 BASIC), VIC, and Commodore 64 versions.

Definitions
There are several concepts and terms which will be important
to your understanding of the rest of the book.

ML programming, and programming in general for that
matter, is a new discipline, a new art. There are few rules yet
and few definitions. Words take on new meanings and are
sometimes used haphazardly. For example, the word monitor
means two entirely different things in current computerese: (1)
a debugging program for machine language work or (2) a spe
cial TV designed to receive video signals from a direct video
source like a com pu ter.

Since there is no established vocabulary, some program
ming ideas are described by an imprecise cluster of words.
When applied to machine language programming, the terms
pointer, variable, register, vector, flag, and constant can all refer

3

How to Use This Book

to the same thing. There are shades of difference developing
which distinguish between these words, but as yet, nothing
has really solidified. All these terms refer, in ML parlance, to a
byte or two which the programmer sets aside in the source
code. In BASIC, all these terms would be covered by the
word variable.

Loose Lingo
Purists will argue that each of these words has a distinct, de
finable meaning. But then purists will always argue. The fact
is that computing is still a young discipline and its lingo is still
loose.

Some professors of BASIC like to distinguish between vari
ables and constants, the latter meaning unchanging definitions
like SCREEN = 1024. The address of the start of screen RAM
is not going to vary; it's a constant.

In BASIC, something like SCORE = 10 would be a vari
able. The score might change and become 20 or whatever. At
any rate, the word SCORE will probably vary during the execu
tion of the program. In ML, such a variable would be set up as
a two-byte reserved space within the source code:
100 SCORE .BYTE 0 0

Then, anytime you AOC SCORE or AOC SCORE + 1, you
will add to the SCORE. That's a variable. The word pointer re
fers to those two-byte spaces in zero page which are used by
Indirect Y addressing-like LOA (155),Y-and which serve to
point to some other address in memory.

Register usually means the X or Y or Accumulator bytes
within the 6502 chip itself. As generally used, the word reg
ister refers to something hard wired within the computer: a
circuit which, like memory, can hold information. It can also
refer to a programmer-defined, heavily used, single-byte vari
able within an ML program:
100 TEMP .BYTE 0

A vector is very much like a pointer. It stores a two-byte
address but can also include the JMP instruction, forming a
three-byte unit. If you have a series of vectors, it would be
called a "jump table," and the Kernal in Commodore comput
ers is such a table:

4

How to Use This Book

FF02 JMP $F252
FF05 JMP $A522
FF08 JMP $B095

Thus, if you JSR $FFD2, you will bounce off the JMP into
$F252, which is a subroutine ending in RTS. The RTS will
send you back to your own ML code where you JSRed to the
JMP table. That's because JMP leaves no return address, but
JSR does.

A flag is a very limited kind of variable: It generally has
only two states, on or off. In LADS, PRINTFLAG will send ob
ject code (defined below) to the printer if the flag holds any
number other than zero. If the PRINTFLAG is down, or off,
and holds a zero, nothing is sent to the printer. The word flag
comes from the Status Register (a part of the internals of the
6502 chip). The Status Register is one byte, but most of the bits
in that byte represent different conditions (the current action in
an ML program resulted in a negative, a zero, a carry, an inter
rupt, decimal mode, or an overflow). The bits in the Status Reg
ister byte are, themselves, individual flags. ML programmers,
however, usually devote an entire byte to the flags they use in
their own programs. Whole bytes are easier to test.

Source code is what you type into the computer as ML
instructions and their arguments:

100 *= 864
110 LOA #$OF ; THIS WILL PUT A 15 ($OF) INTO THE

ACCUMULATOR
120 INY ; THIS RAISES THE Y REGISTER

After you type this in, you assemble it by turning control
over to the LADS assembler after naming this as the source
code. The result of the assembly is the object code. If you have
the .S pseudo-op on, causing the object code to print to the
screen, you will see:
1000360 A9 OF LOA #$OF ; THIS WILL PUT A 15 ($OF)

INTO THE ACCUMULATOR
120 0362 C8 INY ; THIS RAISES THE Y

REGISTER

Properly speaking, the object code is the numbers which,
taken together, form a runnable ML program. These numbers
can be executed by the computer since they are a program. In
the example above, the object code is A9 OF CS. That's the
computer-understandable version of LDA #$OF: INY. It's gen-

5

How to Use This Book

era ted by the assembler. An assembler translates source code
into object code.

A complex assembler like LADS allows the programmer to
use labels instead of numbers. This has several advantages. But
it does require that the assembler pass through the source code
twice. (When an assembler goes through source code, it is
called a pass.) The first time through, the assembler just gathers
all the label names and assigns a numeric value to each label.
Then, the second time through the source code, the assembler
can fill in all the labels with the appropriate numbers. It doesn't
always know, the first time through, what every label means.
Here's why:
toO LOA 4222
110 BEQ NOSCORE
120 JMP SOMES CORE
130 NOSCORE INX:JMP CONTINUE
140 SOMESCORE INY
150 CONTINUE LOA 4223

As you can see, the first time the assembler goes through
this source code, it will come upon several labels that it doesn't
yet recognize. When the assembler is making its first pass, the
labels NOSCORE, SOMESCORE, and CONTINUE have no
meaning. They haven't yet been defined. They are address-type
labels. That is, they stand for a location within the ML program
to which JMPs or branches are directed. Sometimes those
jumps and branches will be forward in the code, not yet
encountered.

The assembler is keeping track of all the addresses as it
works its way through the source code. But labels cannot be de
fined (given their numeric value) until they appear. So on the
first pass through the source code, the assembler cannot fill in
values for things like NOSCORE in line 110. It will do this the
second time through the source code, on the second pass. The
first pass has a simple purpose: The assembler must build an
array of label names and their associated numeric values. Then,
on the second pass, the assembler can look up each label in the
array and replace label names (when they're being used as
arguments like LDA NAME) with their numeric value. This
transforms the words in the source code into numbers in the
object code and we have a runnable ML program. Throughout
this book, we'll frequently have occasion to mention pass 1 or
pass 2.

6

How to Use This Book

The Two Kinds of Labels
There are two kinds of labels in ML source code: equate and ad
dress labels. Equate labels are essentially indistinguishable from
the way that variables are defined in BASIC:
100 INCOME = 15000

This line could appear, unaltered, in LADS or in a BASIC
program. (Remember this rule about labels: Define your equate
labels at the start of the source code. The LADS source code
shows how this is done. The first part of LADS is called Defs
and it contains all the equate definitions. This is not only
convenient and good programming practice; it also helps the
assembler keep things straight.)

The other kind of label is not found in BASIC. It's as if you
can give a name to a line. In BASIC, when you need to branch
to a subroutine, you must:
10 GOSUB 500

500 (the subroutine sits here)

that is, you must refer to a line number. But in LADS, you give
subroutines names:
10 JSR RAISEIT; GOSUB TO THE RAISE-THE-Y-REGISTER
SUBROUTINE

500 RAISE IT INY; THE SUBROUTINE WHICH RAISES Y
510 RTS

This type of label, which refers to an address within the ML
program (and is generally the target of JSR, JMP, or a branch
instruction), is called an address-type label, or sometimes a PC
type label. (PC is short for Program Counter, the variable
within the 6502 chip which keeps track of where we are during
execution of an ML program. In LADS, we refer to the variable
SA as the Program Counter-SA keeps track, for LADS, of
where it is during the act of assembling a program.)

Subprogram is a useful word. LADS source code is written
like a BASIC program, with line numbers and multiple-statement
lines, and it's written in a BASIC environment. The source
code is saved and loaded as if it were a BASIC program. But if
you are writing a large ML program, you might write several
of these source code "programs," saving them to disk sepa-

7

How to Use This Book

rately, but linking them with the .FILE and .END pseudo-ops
into one big chain of source programs. This chain will be
assembled by LADS into a single, large, runnable ML object
program.

Each of the source programs, each link in this chain, is
called a subprogram. In the source code which makes up LADS
there are 13 such subprograms-from Defs to Tables-compris
ing the whole of LADS when assembled together. This book is
largely a description of these subprograms, and some chapters
are devoted to the explication of a single subprogram. To distin
guish subprograms from subroutines and label names, the sub
program names (like Tables) have only their first letter
capitalized. Subroutines and labels are all-caps (like
PRINTFLAG).

The word integer means a number with no fraction at
tached. In the number 10.557, the integer is the 10 since inte
gers have no decimal point. They are whole numbers. ML
programs rarely work with anything other than integers. In fact,
the integers are usually between 0 and 65535 because that's a
convenient range within which the 6502 chip can operate-two
bytes can represent this range of numbers. Of course, decimal
fractions are not allowed. But virtually anything can be accom
plished with this limitation. And if you need to work with big
or fractional numbers, there are ways.

In any case, when we refer to integer in this book, we
mean a number that LADS can manipulate, in a form that
LADS can understand, a number which is a number and not,
for example, a graphics code. For example, when you write
LDA $15 as a part of your source code, the computer holds the
number 15 in ASCII code form. In this printable form, 15 is
held in the computer as the numbers $31 $35 which, when
printed on the screen, provide the characters 1 and 5 (but not
the true number 15). For the assembler to work with this 15 as
the number 15, it must be transformed into a two-byte integer,
an actual number. When translated, and put into two bytes, the
characters 1 5 become: $OF 00. We'll see what this means, and
how the translation is accomplished, in Chapter 5 where we
examine the subprogram Valdec. It's Valdec's job to turn ASCII
characters into true numbers.

8

How to Use This Book

The Seventh Bit (Really the Eighth)
For most of human history, we had to get along without the O.
It was a great leap forward for mankind when calculations
could include the concept of nothing, zero. But now there's an
other mental leap to be made, a private adjustment to the way
that computers use zero: They often start counting with a zero,
something humans never do.

Imagine you are driving along and you've been told that
your friend's new house is the third house in the next block.
You don't say "house zero, house one, house two, house
three." It makes no sense (to us) to say "house zero." We al
ways count up from 1.

But the computer often starts counting from zero. In
BASIC, when you DIM (15) to dimension an array, it's easy to
overlook the fact that you've really DIMed 16 items-the com
puter has created a zeroth item in this array.

It's sometimes important to be aware of this quirk. A num
ber of programming errors result from forgetting that unnatural
(or at least, nonhuman) zeroth item.

This situation has resulted in an unfortunate way of count
ing bits within bytes. It's unfortunate in two ways: Each bit is
off by 1 (to our way of thinking) because there is a zeroth bit.
And, to make things even tougher on us, the bits are counted
from right to left. Quite a perversity, given that we read from left
to right. Here's a diagram of the Status Register in the 6502
chip, each bit representing a flag:

7 6 5 4 3 2 1 0 (bit number within the Status Register byte)
N V - B 0 I Z C (flag name)

As a brief aside, let's quickly review the meanings of these
flags. The flag names in the Status Register reflect various pos
sible conditions following an ML event. For example, the LDA
command always affects the Nand Z flags. If you LDA #0, the
Z flag will go up, showing that a zero resulted (but the N flag
will go, or stay, down since the seventh bit isn 't set by a zero).
Here's what the individual flags mean: N (negative result), V
(result overflowed), - (unused), B (BRK instruction used), D
(decimal mode), I (interrupt disable), Z (result zero), C (carry
occurred).

But in addition to the meanings of these flags in the Status
Register, notice how bytes are divided into bits: count right to
left, and start counting from the zeroth bit.

9

How to Use This Book

This is relevant to our discussion of LADS when we refer
to bit 7. This bit has a special importance because it can sig
nify several things in ML.

If you are using signed arithmetic (where numbers can be
positive or negative), bit 7 tells you the sign of the number
you're dealing with . In many character codes, a set (up) sev
enth bit will show that a character is shifted (that it's F instead
of f). In the Atari, it means that the character is in inverse
video. But a set seventh bit often signifies something.

One common trick is to use bit 7 to act as a delimiter,
showing when one data item has ended and another begins.
Since the entire alphabet can easily fit into numbers which
don't require the seventh bit up (any number below 128
leaves the seventh bit down), you can set up a data table by
"shifting" the first character of each data item to show where
it starts. The data can later be restored to normal by "lower
ing" the shifted character. Such a table would look like this:

Firs twordSecond wordAnotherword Yetanother.

BASIC stores a table of all its keywords in a similar fash
ion, except that it shifts the final character of each word
(enDstoPgotOgosuBinpuT...). Either way, shifted characters can
be easily tested during a search, making this an efficient way
to store data. Just be sure to remember that when we refer to
the seventh bit, we're talking about the leftmost bit.

Springboard
In the 6502 chip instruction set, there aren't any instructions for
giant branches. Some chips allow you to branch thousands of
bytes away, but our chip limits us to 127 bytes in either direc
tion from the location of the branch. Normally, this isn't much
of a problem. You ,JSR or IMP when you want to go far away.

But as you assemble, you'll be making tests with BNE and
BEQ and their cousins in the B group. Then, later, you'll add
some more pieces of programming between the branch instruc
tion and its target. Without realizing it, you'll have moved the
target too far away from the branch instruction. It will be a
branch out of range.

This is pretty harmless. When you assemble it, LADS will
let you know. It will print a bold error message, print the
offending line so you can see where it happened, and even ring
a bell in case you're not paying attention. What can you do,

10

How to Use This Book

though, when you have branched out of range? Use a
springboard.

The easiest and best way to create a giant branch is this:
100 LOA 15
110 BEQ JTARGET

170 JTARGET JMP TARGET; THIS IS THE SPRINGBOARD

930 TARGET INY ; HERE IS OUR REAL DESTINATION FROM
LINE 110

When you get a BRANCH OUT OF RANGE ERROR mes
sage, just create a false target. In LADS, the letter J is added to
the real target name to identify these springboards (see line 170
above). All a springboard does is sit somewhere near enough to
the branch to be acceptable. All it does is JMP to the true tar
get. It's like a little trampoline whose only purpose is to bounce
the program to the true destination of the branch.

One final note: To make it easy to locate programming
explanations in the text of this book, all line numbers are in
boldface. Most of the chapters in the book cover a single major
subprogram. At the end of a chapter is the appropriate source
code listing. It is these listings to which the boldface line num
bers refer.

Now, let's plunge into the interior of the LADS assembler.
We'll start with the equate labels, the definitions of special ad
dresses within the computer.

11

Defs:
Equates and Definitions

Let's get started. Recall that the boldface numbers within the
text refer to line numbers within the program listings at the
end of each chapter. The first section of LADS defines many
of the variables which are used throughout the program. It's
called "Defs. "

Defsfor Relocatability
One of the advantages of advanced assemblers, LADS in
cluded, is that they create object code (runnable ML programs)
which are both relocatable anywhere within a computer's RAM
memory as well as transportable between computer brands and
models.

If you want to put LADS at $5000 instead of $2AFS, you
can relocate it quite simply: Just change line 10 in the Defs
source code file , the first file in the chain of LADS source code
files. As written, line 10 reads *= 11000 (equivalent to *=
$2AFS) and that causes the entire object program to start at
that address. Changing line 10 to '" = $5000 relocates LADS
when you next assemble it. If you include the pseudo-op .D,
the object program will be saved to disk under the filename
you specify.

In the source code of LADS itself, at the end of this
chapter, the ".D LADS64" in line 30 will create a version of
LADS on disk by the name of LADS64 and if you later LOAD
"LADS64",S,1 it will come into your computer ready to run
with a SYS 11000. If you change the start address in line 10,
however, to $5000, and then reassemble the source code, your
LADS will start with a SYS 204S0 (decimal for $5000).

The numbers generated by the assembly (the object code)
will be sent to a disk file if you specify that with .D. They will
be sent into RAM memory if you use the .0 pseudo-op. If you
do turn on storage of object code to memory, LADS will send
the results of the assembly right into memory during the
assembly process. This can cause mysterious difficulties unless
you are careful not to assemble over LADS itself. If you have
created a version of LADS which starts at $4COO and you then
start assembly of some object program at $5000, you'll eat into
LADS itself. LADS is about 5K long. This, of course, would

15

Defs: Equates and Definitions

cause havoc. Using the .D pseudo-op is safe enough, since the
new ML program assembles to disk. But the .0 pseudo-op will
send bytes right into RAM during assembly.

Be aware, too, that LADS builds its label array down from
the start of its own code. During assembly, the labels and their
values are stored in a growing list beneath the start address of
LADS (where you SYS to start the assembler). If you send ob
ject code into an area of RAM which interferes with this array,
you'll get lots of UNDEFINED LABEL errors. So be sure you
know where you're putting object code if you store it in RAM
during assembly by using the .0 pseudo-op.

Defs for Transportability
The only part of LADS which is intensely computer-specific is
this first file, this first subprogram, called Defs. Here we define
all the machine-specific equates. (An equate is the same thing
as a variable definition in BASIC. For example, RAMSTART =
$2B is a typical equate.) We'll use the Commodore 64 Defs
(Program 2-1) as our example. The labels (variable names like
RAMSTART) for all other computers' versions of LADS will
be the same-only the particular numbers assigned to these
labels will vary. The addresses of pointers and ROM routines
vary between computer models.

Defs contains the definitions of all zero page or ROM ad
dresses that will be used in the rest of the source code. Once
again, remember that all zero page equates must be defined at
the start of the source code (Defs illustrates that rule: Defs is the
first part of the LADS source code) . From lines 60 to 170 we
define the locations within zero page that we'll be using. In
line 70 we define the top of the computer's RAM memory.
We're going to lower it from its usual spot to fall just below
where LADS itself starts.

ST is the location where errors in disk file manipulation
can be detected. Like all of these zero page equates, this loca
tion varies from computer to computer. LOADFLAG (line 90)
signals the computer that we want to LOAD a program file
(rather than VERIFY a previously SAVEd program file). This
flag will be set in the version of LADS which assembles from
RAM memory (and LOADs in chained source code programs
from disk). This RAM-based version of LADS will be created
later in Chapter II, the chapter on modifying LADS.

16

Defs: Equates and Definitions

Disk I/O Information
The next five definitions show where information is stored just
before a disk operation. They tell the operating system where
in memory a filename is located, how long the name is, the
file number, the file's secondary address, and the device num
ber (8 for disk, 4 for printer, in Commodore computers).

CURPOS always contains the position of the cursor on
screen (as a number of spaces over from the left of the screen).
We'll use this to format the screen listings. And the final
machine-specific zero page definition is RAMS TART. It tells
LADS where BASIC RAM memory starts. It, too, is used in the
version of LADS which assembles from RAM.

Why do we need to define these locations if the operating
system uses them? Because we're going to use a few of the
built-in BASIC routines to handle the I/O (Input/Output) op
erations for us when we need to communicate with a periph
eral. To OPEN a file, for example, we need to set up several of
these pointers. To OPEN file #1, we have to put a 1 into ad
dress $B8 (that's where the file number is held on the Com
modore 64). But why not just use LOA #1: STA $B8? Why do
we want to use these labels, these variable names?

Programming with pure numbers instead of labels pre
vents transportability. It locks your program into your com
puter, your model. It's far easier to change this single equate
in line 120 to $02 to make the program run on a PET /CBM
with BASIC 4.0 than it would be to go through the entire
source code, changing all B8 's to 02's . Also, if you buy a
newer model and they've moved things around in zero page
(they almost always do), making the adjustments will be
simple. You just use a map of the new zero page and make a
few changes in the Oefs file.

LADS Zero
Because LADS needs to use the valuable Indirect Y addressing
mode-LOA (12),Y or STA (1SS),Y-it will want to usurp a
few of those scarce zero page locations itself. Line 170 defines
a two-byte temporary register called TEMP which will be used
in many ways. SA is going to function as a two-byte register
for the LADS Program Counter which will keep track of
where we are currently storing object bytes during the assem
bly process.

MEMTOP is used in the construction of our label data

17

Defs: Equates and Definitions

base. It will always know where the last symbol in our label
table was stored. All through pass 1 it will be lowering itself,
making room for new symbols and labels. (This data base will
later be referenced as we fill in the blanks on pass 2.)
PARRAY makes that search through the symbol table on pass
2 easy and fast. It points us through the array. PMEM is used
as a pointer during assembly from RAM, if you decide to use
the RAM-based version of LADS described in Chapter 11. The
uses of all these variables will become clear when we exam
ine, throughout the book, the techniques which utilize them.

Borrowing from BASIC
The next section, lines 190-320, defines the routines within
BASIC ROM memory that we're going to use. Naturally, these
are particular to each computer brand and model, so we want
them up front where they can be easily identified and
changed.

BASIC always has an entry point called the warm start ad
dress, a place where you can jump into it "warmly." But
there's another entry that's not as gentle. Many BASICs clear
out RAM memory and radically reset pointers, etc., when you
first turn on the computer. This is called the cold start entry
point, and it's as much of a shock to the computer as walking
outdoors into a winter wind is to you. We don't want this
shock when we return from LADS to BASIC. Instead, we want
the RAM memory left alone. After all, LADS is in there and
possibly an object or source program is in there too. So when
assembly is finished, we want to go into BASIC via the warm
start entry point.

KEYWDS is the address of the first BASIC keyword. We'll
see why we need this address in the chapter on the Indisk
subprogram. OUTNUM is a ROM routine which is used to
print line numbers for the BASIC LIST command. We'll use it
in a similar way to list the line numbers of our source code.

OPEN, CHKIN, CHKOUT, CLRCHN, and CLOSE allow
us to communicate with the disk drives and printers. CHARIN

18

Defs: Equates and Definitions

is like BASIC's GET command, PRINT like PRINT. STOPKEY
sees if you've pressed the STOP or BREAK key on your key
board. And, last, SCREEN tells LADS where in RAM your
video memory starts.

The use of these routines, and the ways that ML pro
grams can borrow from BASIC, will be covered in detail as
they appear in the LADS source files. For now, we only need
to know that they are defined here, in Defs, and can be
quickly changed to suit different computers, different BASICs.

There you have it. We'll be explaining these pointers and
registers as we come upon them in the explication of LADS.
Now on to the heart of LADS, the section which evaluates all
the mnemonics (like LOA) and addressing modes and turns
them into opcodes (like A9) that are the machine's language.
This next section, Eva!, is-by itself-a complete assembler. It
would stand alone. The rest of the sections of LADS add
things to this core, things like disk management, arithmetic
and other pseudo-op routines, label interpretation, screen and
other output, and a host of other niceties . But Eval is the sun;
the re~t of the routines are lesser bodies, planets in orbit
around it.

Note: Because the Defs subprogram is computer-specific,
there are five source code listings at the end of this chapter,
one for each computer. There are also multiple listings in
Chapter 5 since it deals with computer-specific peripheral
communication . However, the majority of chapters will
have only a single complete listing, followed by the few
modifications required by the different computers, because
the majority of LADS' source code is identical and entirely
transportable between 6S02-based computers.

19

N
 o

P
ro

gr
am

 2
11

.
D

ef
s:

 C
om

m
od

or
e

6
4

H
I

*
=

1

1
0

0
0

20

.N

O

30

.D

L
A

D
S6

4
4

0

:
ID

E
F

S
6

4
"

EQ
U

A
TE

S
A

N
D

D

E
F

IN
IT

IO
N

S

FO
R

CO

M
M

O
D

O
RE

6

4

5
0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
A

C
H

IN
E

S
P

E
C

IF
IC

ZE

R
O

PA

G
E

E
Q

U
A

T
E

S
-
-
-
-
-
-
-
-
-
-
-

6
0

R

A
M

ST
A

R
T

=
 $

2
B

:
B

A
S

IC
'S

ST

A
R

T

O
F

RA
M

M

EM
O

RY

P
O

IN
T

E
R

70

B

M
EM

TO
P

=
 $

3
7

:
B

A
S

IC
'S

T

O
P

O
F

RA
M

M

EM
O

RY

P
O

IN
T

E
R

8

0

ST

=

1
4

4
:

ST
A

T
U

S
W

OR
D

FO
R

D

IS
K

/
T

A
PE

I

/
O

9

0

LO
A

D
FL

A
G

=

 $
9

3
:

FL
A

G

W
H

IC
H

D

E
C

ID
E

S

LO
A

D

O
R

V
E

R
IF

Y

(0

L
O

A
D

)
1

0
0

FN

A
M

EL
EN

=

 $
B

7
:

LE
N

G
TH

O

F
FI

L
E

N
A

M
E

FO

R

O
PE

N

A

F
IL

E

1
1

0

FN
A

M
EP

TR

=

 $
B

B
:

P
O

IN
T

E
R

TO

FI

L
E

N
A

M
E

L

O
C

A
T

IO
N

IN

R

A
M

.
1

2
0

FN

U
M

=

 $
B

8
:

C
U

R
R

EN
T

F
IL

E

N
U

M
B

ER

FO
R

O

PE
N

,
G

ET

&
 P

U
T

C
H

A
R

S
TO

D

E
V

IC
E

1

3
0

FS

EC
O

N
D

=

 $
B

9
:

C
U

R
R

EN
T

SE
C

O
N

D
A

R
Y

A

D
D

R
E

SS

FO
R

O

PE
N

1

4
0

FD

EV

=
 $

B
A

:
D

E
V

IC
E

N

U
M

B
ER

(8

FO

R

CO
M

M
O

D
O

RE

D
IS

K
)

1
5

0

C
U

R
PO

S
=

 2
1

1
:

P
O

S
IT

IO
N

O

F
C

U
R

SO
R

O

N

A
 G

IV
E

N

SC
R

E
E

N

L
IN

E
.

1
6

0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

LA
D

S
IN

T
E

R
N

A
L

ZE

R
O

PA

G
E

E
Q

U
A

T
E

S
-
-
-
-
-
-
-
-
-
-
-

1
7

0

TE
M

P
=

 $
F

B
:S

A

=

 $
FD

:M
E

M
T

O
P

=
 $

B
0:

P
A

R
R

A
Y

=

 $
B

2:
P

M
E

M

=

 $
A

7
1

8
0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
A

C
H

IN
E

S

P
E

C
IF

IC

RO
M

E

Q
U

A
T

E
S

-
-
-
-
-
-
-
-
-
-
-

1
9

0

B
A

B
U

F
=

$

0
2

0
0

:
B

A
S

IC
'S

IN

P
U

T

B
U

FF
E

R

2
0

0

T
O

B
A

SI
C

=

 $
A

4
7

4
:

G
O

B

A
C

K

TO

B
A

S
IC

2

1
0

K

EY
W

D
S

=
 $

A
0

9
E

:
ST

A
R

T

O
F

K
EY

W
O

R
D

T

A
B

L
E

IN

B

A
S

IC

2
2

0

O
U

TN
U

M

=

 $
B

D
C

D
:

P
R

IN
T

S

O
U

T
A

(M

S
B

),

x
(L

S
B

)
N

U
M

B
ER

2

3
0

O

PE
N

=

 $
E

1
C

1
i

O
PE

N
S

A

F
IL

E

(3

B
Y

T
E

S
PA

ST

N
O

R
M

A
L

O
PE

N

IN

R
O

M
).

2

4
0

C

H
K

IN

=
 $

F
F

C
6

:
O

PE
N

S
A

 C
H

A
N

N
EL

FO

R

R
EA

D

(F
IL

E
t

IN

x
)

2
5

0

C
H

K
O

U
T

=
 $

F
F

C
9

:
O

PE
N

S
C

H
A

N
N

EL

FO
R

W

R
IT

E

(F
IL

E
t

IN

x
)

2
6

0

C
H

A
R

IN

=
 $

F
F

E
4

:
PU

L
L

S
IN

O

N
E

B
Y

TE

2
7

0

P
R

IN
T

=

$

F
F

D
2

:
SE

N
D

S
O

U
T

O
N

E
B

Y
TE

2

8
0

LO

A
D

=

$

E
1

7
5

:
LO

A
D

A

B

A
S

IC

PR
O

G
R

A
M

F

IL
E

(S

O
U

R
C

E

C
O

D
E

F
IL

E
)

IN
T

O

R
A

M
.

2
8

1

:
(F

3
2

2

FO
R

U

P
G

R
A

D
E

/E
17

2
FO

R

V
IC

)

tj

~

~

trJ

-g ~

~

rI
l

~

::I 0.
. d ~ ~

::I,. c5"

::I

rI
l

N

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

C
LR

C
H

N

=
 $

F
F

C
C

;
R

E
ST

O
R

E
S

D
EF

A
U

LT

I/
O

C

L
O

SE

=
 $

F
F

C
3;

C

L
O

SE

F
IL

E

(F
IL

E
#

IN

A

)
ST

O
PK

E
Y

=

$

F
F

E
1

;
T

E
S

T
S

ST

O
P

K
E

Y
,

R
E

T
U

R
N

S
TO

B

A
S

IC

SC
R

E
E

N

=
 $

0
4

0
0

;
A

D
D

R
E

SS

O
F

1S
T

B

Y
TE

O

F
SC

R
E

E
N

RA

M

--
--

--
--

--
--

--
--

--
-

, .F
IL

E

EV
A

L

P
ro

gr
am

 2
,2

.
D

ef
s:

 V
IC

,2
0

H

I
*=

1

1
0

0
0

2

0

.D

LA
D

SV

3
0

.N

O

4
0

;
V

IC

V
E

R
SI

O
N

5

0

;
"D

E
F

S
V

"
EQ

U
A

TE
S

A
N

D

D
E

F
IN

IT
IO

N
S

IF

P
R

E
S

S
E

D
.

6
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
A

C
H

IN
E

S
P

E
C

IF
IC

ZE

R
O

PA

G
E

E
Q

U
A

T
E

S
-
-
-
-
-
-
-
-
-
-
-

7
0

BM

EM
TO

P
=

 $
3

7
;

B
A

S
IC

'S

TO
P

O
F

M
EM

O
RY

PO

IN
T

E
R

8

0

ST

=
 1

4
4

:
ST

A
T

U
S

W
O

RD

FO
R

D

IS
K

/T
A

P
E

I/

O

8
5

LO

A
D

 F
LA

G

=
 $

9
3

9

0

FN
A

M
EL

EN

=
 $

B
7

:
LE

N
G

TH

O
F

FI
L

E
N

A
M

E

FO
R

O

PE
N

A

 F
IL

E

9
5

FN

A
M

EP
TR

=

 $
B

B
:

PO
IN

T
E

R

TO

FI
L

E
N

A
M

E

L
O

C
A

T
IO

N

IN

R
A

M
.

1
0

0

FN
U

M

=

 $
B

8:

C
U

R
R

EN
T

F
IL

E

N
U

M
B

ER

FO
R

O

PE
N

,
G

ET

&
 P

U
T

C
H

A
R

S
TO

D

E
V

IC
E

1

1
0

FS

EC
O

N
D

=

 $
B

9
:

C
U

R
R

EN
T

SE
C

O
N

D
A

R
Y

A

D
D

R
E

SS

FO
R

O

PE
N

1

2
0

FD

EV

=
 $

B
A

:
C

U
R

R
EN

T
D

E
V

IC
E

N

U
M

B
ER

1

3
0

C

U
R

PO
S

=
 2

1
1

;
P

O
S

IT
IO

N

O
F

C
U

R
SO

R

O
N

A

 G
IV

E
N

SC

R
E

E
N

L

IN
E

.
1

3
5

R

A
M

ST
A

R
T

=
 $

2
B

:
P

O
IN

T
E

R

TO

ST
A

R
T

O

F
RA

M

M
EM

O
RY

(F

O
R

R

A
M

-B
A

SE
D

A

S
S

E
M

.)

1
4

0

:-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

LA
D

S
IN

T
E

R
N

A
L

ZE

R
O

PA

G
E

E
Q

U
A

T
E

S
-
-
-
-
-
-
-
-
-
-
-

1
5

0

TE
M

P
=

 $
F

B
:S

A

=

 $
FD

:M
E

M
T

O
P

=
 $

B
0:

P
A

R
R

A
Y

=

 $
B

2:
PM

E
M

=

 $
A

7
1

6
0

:-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
A

C
H

IN
E

S
P

E
C

IF
IC

RO

M

E
Q

U
A

T
E

S
-
-
-
-
-
-
-
-
-
-
-

1
7

0

T
O

B
A

SI
C

=

 $
C

4
7

4
:

G
O

B

A
C

K

TO

B
A

S
IC

1

7
5

B

A
B

U
F

=
 $

0
2

0
0

:
B

A
S

IC
'S

IN

PU
T

B

U
FF

E
R

1

7
6

LO

A
D

=

$

E
1

7
2

t)

(t
) t;
i' t'I1

..0
 =

III
 (t

)
rI

J III

::l

0
-

t)

(t
) ;:t.
>

::l
 o ::l

rI
J

N

N

1
8

0

K
EY

W
D

S
=

 $
C

0
9

E
;

ST
A

R
T

O

F
K

EY
W

O
RD

T

A
B

L
E

IN

B

A
S

IC

1
9

0

O
U

TN
U

M

=
 $

D
D

C
D

:
P

R
IN

T
S

O

U
T

A

(M
S

B
),

X

(L

S
B

)
N

U
M

B
ER

2

0
0

O

PE
N

=

 $
E

IB
E

:
O

PE
N

S
A

 F
IL

E

(3

B
Y

T
E

S
PA

ST

N
O

RM
A

L
O

PE
N

IN

R

O
M

)
2

1
0

C

H
K

IN

=
 $

F
F

C
6

:
O

PE
N

S
A

C

H
A

N
N

EL

FO
R

R

EA
D

(F

IL
E

#

IN

X
)

2
2

0

C
H

K
O

U
T

=
 $

F
F

C
9:

O

PE
N

S
C

H
A

N
N

EL

FO
R

W

R
IT

E

(F
IL

E
#

IN

X

)
2

3
0

C

H
A

R
IN

=

 $
F

F
E

4
:

PU
L

L
S

IN

O
N

E
B

Y
T

E

2
4

0

P
R

IN
T

=

 $
F

F
D

2;

SE
N

D
S

O
U

T
O

N
E

B
Y

TE

2
5

0

C
LR

C
H

N

=

 $
F

F
C

C
:

R
E

ST
O

R
E

S
D

E
FA

U
L

T

I/
O

2

6
0

C

L
O

SE

=
 $

F
F

C
3

:
C

L
O

SE

F
IL

E

(F
IL

E
#

IN

A

)
2

7
0

ST

O
PK

E
Y

=

 $
F

F
E

l:

T
E

S
T

S

ST
O

P
K

E
Y

,
R

E
T

U
R

N
S

TO

B
A

S
IC

IF

P

R
E

S
S

E
D

.
2

8
0

SC

R
E

E
N

=

 $
1

0
0

0
:

A
D

D
R

E
SS

O

F
1S

T

B
Y

TE

O
F

SC
R

E
E

N

RA
M

(W

/E
X

PA
N

D
E

D

M
EM

O
R

Y
)

6
4

0

.F
IL

E

EV
A

L

P
ro

g
ra

m
 2
~3
.

D
ef

s:
 P

E
T

jC
B

M
 4

.0
 B

A
S

IC

l0

*
=

1

1
0

0
0

20

.N

O

3
0

.D

LA

D
S

40

;
"D

E
F

S
"

EQ
U

A
TE

S
A

N
D

D

E
F

IN
IT

IO
N

S

FO
R

PE

T
/C

B
M

4

.0

B
A

S
IC

5

0

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
A

C
H

IN
E

S
P

E
C

IF
IC

ZE

R
O

PA

G
E

EQ
U

A
T

E
S

-
-
-
-
-
-
-
-
-
-
-

6
0

R

A
M

ST
A

R
T

=
 $

2
8

;
B

A
S

IC
'S

ST

A
R

T

O
F

RA
M

M

EM
O

RY

PO
IN

T
E

R

70

B
M

EM
TO

P
=

 $
3

4
;

B
A

S
IC

'S

TO
P

O
F

RA
M

M

EM
O

RY

P
O

IN
T

E
R

8

0

ST

=

1
5

0
;

ST
A

T
U

S
W

O
RD

FO

R

D
IS

K
/

T
A

PE

I
/O

90

LO

A
D

 F
LA

G

=
 $

9D
;

FL
A

G

W
H

IC
H

D

E
C

ID
E

S
LO

A
D

O

R
V

E
R

IF
Y

(0

L

O
A

D
)

1
0

0

FN
A

M
EL

EN

=
 $

D
l;

LE

N
G

TH

O
F

FI
L

E
N

A
M

E

FO
R

O

PE
N

A

F

IL
E

1

1
0

FN

A
M

EP
TR

=

 $
D

A
;

P
O

IN
T

E
R

TO

FI

L
E

N
A

M
E

L

O
C

A
T

IO
N

IN

R

A
M

.
1

2
0

FN

U
M

=

 $
D

2;

C
U

R
R

EN
T

F
IL

E

N
U

M
B

ER

FO
R

O

P
E

N
,

G
ET

&

 P
U

T

CH
A

R
S

TO

D
E

V
IC

E

1
3

0

FS
E

C
O

N
D

=

 $
D

3;

C
U

R
R

EN
T

SE
C

O
N

D
A

R
Y

A

D
D

R
E

SS

FO
R

O

PE
N

1

4
0

FD
EV

=

 $
D

4;

D
E

V
IC

E

N
U

M
B

ER

(8

FO
R

CO

M
M

O
D

O
RE

D

IS
K

)
1

5
0

C

U
R

PO
S

=
 1

9
8

;
P

O
S

IT
IO

N

O
F

C
U

R
SO

R

O
N

A

G

IV
E

N

SC
R

E
E

N

L
IN

E
.

1
6

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

LA
D

S
IN

T
E

R
N

A
L

ZE

R
O

PA

G
E

E
Q

U
A

T
E

S
-
-
-
-
-
-
-
-
-
-
-

tj

(1
)

I'+
>

'" trJ

.g ~

(1
) '" ~ Q
.. tj

(1
) ::n

2 .

.... o ::l

 '"

N

w

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

28
1

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

TE
M

P
=

 $
F

B
:S

A

=

 $
FD

:M
E

M
T

O
P

=
 $

B
B

:P
A

R
R

A
Y

=

 $
B

D
:P

M
E

M

=
 $

B
F

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
A

C
H

IN
E

S

P
E

C
IF

IC

RO
M

E

Q
U

A
T

E
S

-
-
-
-
-
-
-
-
-
-

B
A

B
U

F
=

 $
0

2
0

0
;

B
A

S
IC

'S

IN
P

U
T

B

U
FF

E
R

T

O
B

A
S

IC

=
 $

B
3

F
F

;
G

O

B
A

C
K

TO

B

A
S

IC

K
EY

W
D

S
=

 $
B

0
B

2
;

ST
A

R
T

O

F
K

EY
W

O
R

D

T
A

B
L

E

IN

B
A

S
IC

O

U
TN

U
M

=

 $
C

F
8

3
;

P
R

IN
T

S

O
U

T
A

(M

S
B

),

X

(L
S

B
)

N
U

M
B

ER

O
PE

N

=
 $

F
5

6
3

;
O

PE
N

S
A

F

IL
E

(3

B

Y
T

E
S

PA
ST

N

O
R

M
A

L
O

PE
N

IN

R

O
M

).

C
H

K
IN

=

 $
F

F
C

6
;

O
PE

N
S

A

C
H

A
N

N
EL

FO

R

R
EA

D

(F
IL

E
#

IN

X

)
C

H
K

O
U

T
=

 $
F

F
C

9
;

O
PE

N
S

C
H

A
N

N
EL

FO

R

W
R

IT
E

(F

IL
E

#

IN

X
)

C
H

A
R

IN

=
 $

F
F

E
4

;
PU

L
L

S
IN

O

N
E

B
Y

TE

P
R

IN
T

=

 $
F

F
D

2
;

SE
N

D
S

O
U

T
O

N
E

B
Y

TE

LO
A

D

=
 $

F
3

5
6

;
LO

A
D

A

B

A
S

IC

PR
O

G
R

A
M

F

IL
E

(S

O
U

R
C

E

C
O

D
E

F
IL

E
)

IN
T

O

R
A

M
.

;
(F

3
2

2

FO
R

U

P
G

R
A

D
E

/E
17

2
FO

R

V
IC

/E
1

7
5

FO

R

6
4

)
C

LR
C

H
N

=

$F

F
C

C
;

R
E

ST
O

R
E

S
D

E
FA

U
L

T

I
/O

C

L
O

SE

=
 $

F
2

E
2

;
C

L
O

SE

F
IL

E

(F
IL

E
#

IN

A

)
ST

O
PK

E
Y

=

 $
F

F
E

1
;

T
E

S
T

S

ST
O

P
K

E
Y

,
R

ET
U

R
N

S
TO

B

A
S

IC

IF

P
R

E
S

S
E

D
.

SC
R

E
E

N

=
 $

8
0

0
0

;
A

D
D

R
E

SS

O
F

1S
T

B

Y
TE

O

F
SC

R
E

E
N

RA

M

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

, .F
IL

E

EV
A

L

P
ro

g
ra

m
 2

,4
.

D
ef

s:
 A

p
p

le

*=

$
7

9
F

D

1
0

2

0

3
0

4

0

5
0

6

0

7
0

8

0

8
5

.0

L
A

D
S

.N
O

;A

P
P

L
E

V

E
R

SI
O

N

;
.. D

E
F

S
"

E
Q

U
A

T
E

S
A

N
D

D

E
F

I N
 IT

 IO
N

S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
A

C
H

IN
E

S
P

E
C

IF
IC

ZE

R
O

PA

G
E

E
Q

U
A

T
E

S
B

M
EM

TO
P

=
 $

4
C

;
B

A
S

IC
'S

T

O
P

O
F

M
EM

O
RY

P

O
IN

T
E

R

T
X

T
PT

R

=
 $

B
8

;
P

O
IN

T
E

R

TO

N
EX

T
B

Y
TE

O

F
T

E
X

T

FN
A

M
EL

EN

=
 $

F
9

;
LE

N
G

TH

O
F

F
IL

E

N
A

M
E

I:
j

(\
) ~

t'T1

.c

~

~
 ...,.

(\
) '" ~ ~ 0
-

tj

(\
) ::t
:

~
,. ... o ~ '"

tv

~

9
0

C

H
R

G
ET

=

 S
B

1
:

G
ET

N

EX
T

B
Y

T
E

O

F
T

E
X

T

9
5

PR

G
EN

D

=

S
A

F
:

P
O

IN
T

E
R

TO

EN

D

O
F

PR
O

G
R

A
M

1

0
0

H

IG
H

D
S

$
9

4
;

H
IG

H

D
E

S
T

IN
A

T
IO

N

O
F

B
L

O
C

K

T
R

A
N

SF
E

F:

U
T

IL
IT

Y

<B
L

T
U

)
1

1
0

V

A
R

TA
B

=

S

6
9

;
V

A
R

IA
B

L
E

T

A
B

L
E

P

O
IN

T
E

R

1
3

0

C
U

R
PO

S
=

 3
6

:
P

O
S

IT
IO

N

O
F

C
U

R
SO

R

O
N

A

G

IV
E

N

SC
R

E
E

N

L
IN

E
.

1
4

0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

L
A

D
S

IN
T

E
R

N
A

L

Z
E

R
O

PA

G
E

E

Q
U

A
T

E
S

-
-
-
-
-
-
-
-
-
-

-
1

5
0

TE

M
P

=

S
F

B
:S

A

=
 S

FD
:M

E
M

T
O

P
=

S

E
B

:P
A

R
R

A
Y

=

 S
E

D

1
=

=

J
.
J

PA
R

M

S
2

A
:F

M
o

P

S
2

C

1
6

0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
A

C
H

IN
E

S

P
E

C
IF

IC

RO
M

E

Q
U

A
T

E
S

1
7

0

T
oB

A
S

IC

=
 S

3D
O

;
GO

B

A
C

K

TO

B
A

S
IC

1

7
5

B

A
B

U
F

=

S
0

2
0

0
;

B
A

S
IC

'S

IN
P

U
T

B

U
FF

E
R

1

8
0

K

EY
W

D
S

=
 S

O
O

O
O

;
ST

A
R

T

O
F

K
EY

W
O

R
D

T

A
B

L
E

IN

B

A
S

IC

1
9

0

oU
TN

U
M

=

S

E
D

2
4

;
P

R
IN

T
S

O

U
T

A

!M
S

B
J.

X

(L

S
B

)
N

U
M

B
E

R

2
0

0

CS
W

D

=
 S

A
A

53
;

A
D

D
R

E
SS

O

F
C

H
A

R
A

C
T

E
R

O

U
T

PU
T

R

O
U

T
IN

E

2
1

0

C
O

U
T

=

S
F

O
F

O
;

O
U

T
PU

T

O
N

E
B

Y
T

E

2
2

0

PR
N

T
R

=

 S
C

0
9

0
;

I/
O

L

O
C

A
T

IO
N

FO

R

P
R

IN
T

E
R

2

3
0

PR

N
T

R
D

N

=

S
C

IC
1

:
P

R
IN

T
E

R

R
EA

D
Y

S

IG
N

A
L

2

4
0

L

IN
G

E
T

SD

A
O

C
;

G
ET

L

IN
E

N

U
M

B
ER

FR

O
M

T

X
T

P
T

R

IN
T

O

L
IN

N
U

M

2
5

0

L
IN

IN
S

=

 S
D

46
A

;
IN

S
E

R
T

B

A
S

IC

L
IN

E

IN
T

O

B
A

S
IC

T

E
X

T

2
8

0

SC
R

E
E

N

=
 S

0
4

0
0

;
A

D
D

R
E

SS

O
F

1S
T

B

Y
T

E

O
F

S
C

R
E

E
N

RA

M

6
4

0

.F
IL

E

E
V

A
L

tj

n>

~

t"I1

.g ~
 n>

rn
 ~ p.
.

tj

n>

.. 5·
 o ::l

rn

Program 2,5. Defs : Atari
100 *= $8000
110 .D D:LADS.OBJ
120 ST = $01
130 FNAMELEN = $80
140 FNAMEPTR = $81
150 FNUM = $8 3
160 FSECOND = $84
170 FDEV = $85
180 CURPOS = 85
190 TEMP = $86
200 SA = $88
210 MEMTOP $8A
220 PARRAY = $8C
230 INFILE = $8E
240 OUTFILE = $8F
250 PMEM = $A0
260 RAMFLAG = $A 2
270 BABUF = $0500
280 SAVMSC = $58
290 .FILE D:EVAL.SRC

Defs: Equ ates and Definitions

25

Eval:
The Main Loop

Eval is the heart of LADS. It is the main loop. It starts assem
bly at START (line 30) and ends assembly at FINI (line 4250).
Throughout Eval, JSRs take us away from the main loop to
perform various other tasks, but like mailmen, all the other
routines in the assembler start out from Eval, the post office,
and they all RTS back to it when their work is done.

For convenience, references to lines within the source
code listing at the end of the chapter are boldface inside
parentheses. Also, to distinguish label names like FIN I from
the names of one of the 13 sections of LADS (a subprogram
like Eval), we'll put label names in all caps, but just capitalize
the first letter of the subprograms of the assembler.

Preliminaries, Preparations
Most programs have a brief initialization phase, a series of
steps which have to be taken to fix things up before the real
action of the program can commence. Variables have to be set
to zero, files sometimes have to be opened on a disk, defaults
have to be announced to the program. (Defaults are those
things a program will do unless you specifically tell it not to.
A game might default to single-player mode unless you do
something which tells it that there are two of you playing.
LADS defaults to hexadecimal numbers for printer or screen
listings and turns off all its other options.)

At its START, LADS loads the Accumulator with zero and
runs down through 48 bytes of registers, flags, and pointers,
stuffing a zero into each one. These flags are all needed by
LADS to keep track of such things as which pass it's on,
whether or not you want a printer listing, or want the results
of an assembly to POKE into memory, or whatever. This
initialization fills them all with zero. The label OP is the high
est of these registers in memory, so we LOY with 48 and DEY
down through them (see line 30).

Let's take a minute to briefly review our terminology:
Register usually refers to the Accumulator (A), or the X or

Y Register in the 6502 chip. It can also mean a single byte set
aside to temporarily hold something. It's like a tiny buffer.

A buffer is a group of continuous bytes used to hold infor-

29

Eva1: The Main Loop

mation temporarily. An input buffer, for example, holds the
bytes you type in from the keyboard so they can be inter
preted by BASIC. The bytes stay there until you type RE
TURN, BASIC stores the information into your program, and
you type a new line into the input buffer.

A flag is a byte which is either on or off (contains either
zero or some number) and signifies a "do it" or "don't do it,"
yes or no, condition. Of course, a single byte could hold a
number of flags because each bit could be on or off. In fact ,
the Status Register in the 6502 chip does just that-it's only a
single byte, but its bits are flags tested by CMP and the BNE,
BEQ-type instructions. When you need a flag, though, it's eas
ier to just use a whole byte and test it for zero or not-zero. An
example of a flag in LADS is the PRINTFLAG. If nonzero, the
assembler sends a printout of the assembly process to a
printer. If zero, the printer remains silent and still. You set
(turn on) the print flag with the pseudo-op .P; otherwise, the
default is no printing.

A pointer holds a two-byte address. Many times pointers
are put into zero page so they can be used by Indirect Y
addressing: LOA ($FB), Y gets the byte from the address held
in $FB and $FC (seen as a single, two-byte-Iong number). If
OOFB 00
OOFC 15

(remember that the 6502 expects these numbers to be back
ward; this two-byte group means $1500) then LOA ($FB),Y
will load the A register (the Accumulator) with whatever byte
is currently in address $1500. We can set up our own pointers.
If they're not in zero page, they're likely holding some im
portant address which a program needs to remember. In
LADS, ARRAYTOP is such a non-zero-page pointer; it tells
LADS where to start looking through the label table for a
match. We'll look into this when we get to the subprogram
Arrays.

Cleaning the Variables
At its start LADS must initialize its variables. If we didn't fill
them with zero, there could be some other number in these
bytes when we fire up LADS and that could cause unpredict
able results. Then (80) we get the low byte of the start of
LADS (using the pseudo-op #<START) and put it in the low

30

Eval: The Main Loop

byte of MEMTOP (used by the Equate subprogram). We also
put it into the pointer BASIC uses to show how much RAM
memory it has available, BMEMTOP (line 70 in Defs). And, fi
nally, put it in ARRAYTOP. ARRAYTOP will show where the
LADS' data base of labels starts in memory (it builds down
ward from the location of LADS).

Then we take the high byte of START and put it into the
high bytes of these three pointers.

Now for the defaults . There is only one. We want listings
to be in hexadecimal unless we specifically direct the assem
bler otherwise with the .NH, no hex, pseudo-op. So we put #1
into the HXFLAG. The rest of the flags are left at zero. If you
want different defaults, put #1 into some of the other flags.
For example, if you usually want to watch the results on
screen during an assembly, just create a new line: 185 STA
SFLAG. This will cause a screen disassembly every time you
use LADS. Putting this default into LADS itself merely saves
you the time of adding the .S pseudo-op if you generally do
want to watch the assembly onscreen. That does slow up the
assembler, but with shorter programs, you might not notice
the difference.

Where's the Source File?
LADS needs to know what you want to assemble. If you're
using the RAM-based version of LADS (see Chapter 11),
there's no need to give a filename to LADS; just SYS, and
LADS will assemble what's already in RAM. But if you're in
the normal LADS mode, assembling from a disk file, you'll
have to announce which file . LADS looks at the upper left
hand corner of the screen to read the filename (190). If it finds
a space #32, it checks for another space (310) before giving up.
This way you can have continuous names like FILENAME as
well as two-word names like FILE NAME. Whatever it finds
onscreen, it stores in the buffer FILEN. It also takes care of
characters which are below the alphabet in the ASCII code by
adding 64 to them if they fall below 32 (240). The Atari ver
sion asks for the filename from the keyboard in the manner of
a BASIC INPUT command.

When the filename is stored in the buffer, we JSR to
Openl, the subprogram which handles all I/0, all commu
nication with peripherals. In this case, communication will be
with the disk drive .

31

Eval: The Main Loop

After the file is opened for reading, we JSR to another
subprogram, Getsa, the get-start-address routine. It just looks
for * = (the start address pseudo-op) and, finding it, returns to
Eval where the number following that symbol will be eval
uated. If it doesn 't find a * =, that can only mean two things.
Either there is no program on the disk by the name you put
onscreen or LADS did find the program, but no starting ad
dress was given as the first item in the source code. Both of
these situations are capable of driving LADS insane, so Getsa
aborts back to the safety of BASIC after leaving you a message
onscreen.

This SMORE routine (370) will be used again when we've
completed the first pass of the assembly process. The first pass
goes through the entire source file, storing all the names of the
labels and their numeric values into an array.

When we finish making this collection of labels, our label
array, we've got to make a second pass, filling in the opcodes
and replacing those labels with numbers . It's here, at SMORE,
that we jump to start the second pass.

A zero is given to ENDFLAG to keep the assembler run
ning. If the ENDFLAG is left up, is not zero, the assembler as
sumes it has finished its job and stops.

The initialization is completed with a JSR to the sub
program Indisk which pulls in the number you wrote as the
starting address following * = . This number is left in LADS'
main input buffer called LABEL. Before dealing with this num
ber, though, we check to see if we're on the first pass (410)
and, if so, print the word LADS onscreen after a JSR PRNTCR
which prints a carriage return. Routines beginning with PRNT
like PRNTSPACE and PRNTLINE are all grouped together in
the subprogram Findmn. They're used by most of the sub
programs and print various things to the printer or screen.

Now we need to put the starting address into the pointer
SA which always holds the current target for any of our
assembled code during execution. If the HEXFLAG is up, that
means you wrote something like * = $5000 and hex numbers
are translated by the subprogram Indisk before it RTSs back to
Eval. Decimal numbers like * = 8000, however, are not trans
lated into the two-byte integers that ML (machine language)
works with, so we need to send decimal numbers to Valdec
(another subprogram) to be turned into ML integers (610). The

32

Eval: The Main Loop

pointer called TEMP is made to point to LABEL so Valdec will
know where to look for the number.

It's important to realize that numbers coming in from the
disk or from RAM memory are in ASCII code, as characters,
not true integer numbers. That is, the characters in a number
like 5000 will come into the LABEL buffer as they appear in
RAM or on a disk file. 5000 would be (in hexadecimal nota
tion) 35 30 30 30; these are the character codes for 5-0-0-0. It's
Valdec's job to transform this into 00 50, an ML integer. When
we get to Valdec, we'll see just how this is done. It's a useful
technique to learn since any numbers input from a keyboard
will also be in this ASCII form and will need to be massaged a
bit before they'll make sense to ML.

Remembering the Start Address
When, at STARl , we finally have an ML integer in the little
two-byte variable called RESULT, we can transfer the integer
to SA. And we put the integer into the variable TA, too, so
that we'll have a permanent record of the starting address. SA
will be dynamic; it will be changing throughout assembly to
keep track of the current assembly address . It will be LADS'
Program Counter. TA will always remember the original start
ing address.

By this time you might be thinking that all this is hard
to follow. TA and RESULT and LABEL don't mean much at
this point. We've plunged into Eva!, the most condensed, the
most intensive, section of the entire program. As the main
loop, Eval will send tasks to be accomplished to many sub
routines, in subprograms which we've not yet examined. It's
like landing in a strange city without a map. You see street
signs, but they mean nothing to you yet. But this is one of the
best ways to learn if you can be patient and ignore the tem
porary gaps in your knowledge and the momentary sensations
of confusion.

We're gradually building a vocabulary and mapping out
some of the pathways which make up the language LADS and
the ways the ML works. The subprograms are, by and large,
easier to follow. They're more self-contained. But bear with
this tour through Eval. It makes what follows easier to grasp
and offers a foundation-however unconscious at this point
for a deeper appreciation of the ways that ML does its magic.

33

Eval: The Main Loop

The Main Routine
Every line of source code which LADS examines begins with
STARTLINE (690) . The ML between STARTLINE and P (5520)
is, in effect, an assembler. The rest of the routines and sub
programs deal with the niceties, the auxiliary efforts of the
assembler-pseudo-ops, built-in arithmetic routines, I/O,
printout formatting, and so forth.

In fact, this section of LADS is based on the BASIC
assembler, the Simple Assembler, from my previous book, Ma
chine Language for Beginners. If you want to see how a large
BASIC program can be translated into ML, you might want to
compare the Simple Assembler to the rest of Eval. There are
some comments within the listing of LADS' source code which
refer to the BASIC lines within the Simple Assembler (see
lines 3270 and 3410 for examples), and a number of the labels,
starting at 4670, also refer to their BASIC line number equiva
lents in the Simple Assembler. L680 is a label to LADS, but is
also a reference to an equivalent line, 680, in the BASIC of the
Simple Assembler.

It's LADS' job to take each line in the source code and
translate it into runnable ML object code. LADS would take
the source line 10 LOA #15 and change the LOA into 169 and
leave the 15 as 15 . The value 169 is the ML opcode for the
Immediate addressing mode of LoaDing the Accumulator.
Then LADS would send these two bytes of object code, 169
IS, to any of four places depending on what destinations you
had specified as pseudo-ops in the source code. The .0
pseudo-op would send 169 15 to a disk file, .P to the printer,
.s to the screen, and .0 directly into RAM memory.

When LADS first looks at at each source code line,
STARTLINE checks the ENDFLAG to be sure it's safe to con
tinue. If ENDFLAG is zero, we BEQ to the JSR to Indisk.
(Otherwise, the program would go down to FINI and close up
shop, its work finished.)

Indisk is the second largest subprogram, and LADS will
be gone from Eval a long time by the computer's sense of
time. For us, this detour happens in a flash, and a lot happens.
Indisk can even JSR into other subprograms, but we'll see that
in a later chapter. All we need to realize now is that each
source line needs to be pulled onto our examination desk so
LADS can pick it apart and know what to assemble.

34

Eval: The Main Loop

Our examination desk is the buffer called LABEL. First a
line of source code is laid out on the desk. To prepare for the
exam, we put down the EXPRESSF(lag) and the BUFLAG, al
though they might be raised again during the evaluation to
come. EXPRESSF tells LADS whether the expression following
a mnemonic like LDA is a label or a number. It signals the dif
ference between LDA SPRITE and LDA 15 . BUFLAG tells
whether or not there is a REM-like comment attached to the
line under examination. If there is a comment, we'll want the
assembler to ignore the remarks, but the screen or printer
should nevertheless display them.

Now, as we often will, we check PASS (760) to see if it's
the first or second time through the source code. On the first
pass, we're not going to print things to a printer or the screen,
so we'd jump to MOE4 and ignore the next series of printouts.

But if it's the second pass, we check the SFLAG, the
screen flag, to find out if we should print to the screen. If the
answer is yes, we print a line number, a space, the SA (current
address), and another space. Don't worry about LOCFLAG
just yet.

Now we want to know if there 's any math to do.
PLUS FLAG is up when the line contains something like this:
LDA SCREEN + 5. If it does, we briefly detour to the sub
program Math to replace SCREEN + 5 with the correct, cal
culated number.

The Inner Core
Now we're at the true center, the hot core, of LADS: Line 900
is the pivot around which the entire structure revolves. This
IMP to Findmn accomplishes several important things and sets
up the correct pathways for the assembler to follow in the fu
ture. Findmn finds a mnemonic. Say LADS is examining this
line:
10 LDA 15

After Findmn does its job and IMPs back to Eval, there would
be a 1 in the TP register (it's like a BASIC variable, called TP
for "type"). And there would be a 161 in the OP, for opcode,
register.

That 161 is not the number we'll want POKEd into mem
ory. 161 is the right number for the LDA (something,X)
addressing mode, but it's wrong for the other modes, includ-

35

Eval: The Main Loop

ing LOA 15. Nevertheless, any LOA will first get a 161, the
base opcode. It's the lowest possible opcode for an LOA; the
other LOA addressing modes can be calculated by adding to
161. LOA 15 is Zero Page addressing and its opcode is 165.
Eval's main job is to start off with the lowest, the base opcode
for a particular mnemonic like LOA, and then make adjust
ments to it when the correct addressing mode is detected. Eval
establishes the addressing mode when it examines the line
and looks for things like the # symbol and so forth. As we'll
see, this examination will modify the OP number until the
correct opcode is calculated.

For now, though, it's enough that we return from Findmn
with a base opcode number, something reliable to work from,
stored in the variable OP. By the way, Findmn gets these
numbers, TP and OP, from a table in the subprogram Tables.
We'll look at it at the very end of our exploration of LADS in
Chapter 9. Tables is where all the constants are stored.

When No Match Is Found
Sometimes Findmn won't find a match when it looks through
the table of mnemonics in the subprogram Tables. This means
that the first word in the line under examination was not a
mnemonic. If this happens, Findmn returns (via a JMP) back
into Eval where labels are analyzed. Eval then knows that this
first word isn't one of the 6502 commands. Instead, it must be
a label.

Labels in this first position in a line can be of two types:
address labels and equate labels . An address label identifies a
location within the program that will be the target for
branches, jumps, JSR, etc. It 's like giving names to subroutines
so you could later JSR PRINTROUTINE. Here's an example:
100 START LOA #0

After the assembler finishes assembling this, we'll have:
100 3AOO A9 00 START LOA #0

The OP 161 has been changed to 169 (the hex number A9
in the example above), and we'll see how that was arrived at
presently. But START has had no visible effect. It's just listed
there, but doesn't affect the A9 or 00. START is a place
marker. It hasn't been ignored. During the first pass, LADS
stored START in an array along with the 3AOO address. That's
why START can be called an address label. This is very much

36

Eval: The Main Loop

the way that BASIC reads a variable name, sticks it in an ar
ray, and puts the value of the variable up there with the
name.

On pass 2, when all these labels are needed, the correct
address will be there, waiting in the array. If LADS comes
across a JSR START or a BEQ START, it will be able to search
the array and replace the word START with the right number,
the address.

The other possible kind of label is the equate label. It
looks like this:
1100 SCREEN = $0400

It, too, is stored during the first pass and looked up dur
ing the second pass. But the equals sign shows that we should
remember the value on the other side of the = symbol, not
the address of the location of the label. In this example, when
ever we want to store something onscreen, we don' t need to
calculate the correct address. $0400 is the first byte in screen
memory (on the Commodore 64 in this example) . So we can
just STA SCREEN to put whatever is in A into the upper left
hand corner of the screen. Or STA SCREEN + 200, or STA
SCREEN +400, or whatever. (Adding numbers to SCREEN
will, in this case, position our A lower on the screen.)

It's here that we decide whether we're dealing with one of
the labels or with an ordinary mnemonic. If we JMP back from
Findmn to EVAR (920), the first thing on the source code line
was a mnemonic. If we JMP back from Findmn to EQLABEL,
it wasn't a mnemonic (hence it's a label) . EVAR evaluates the
argument, the 15 in LDA 15. EQLABEL evaluates the other
kind of argument, the label SPRITE in LDA SPRITE.

Simple and Other Types
Some of the mnemonics are quite straightforward. They've
got no argument at all: INY, ROL, CLC, DEC, BRK, RTS, etc.
There's no argument to figure out, and all of these self
contained instructions have the same addressing mode, Im
plied addressing. Fully 25 of the 56 mnemonics are of this type.
We've called them type 0 (see the chapter on the Tables sub
program for an explanation of the types), and so Findmn puts
a 0 into the TP variable. Our first step in the evaluation of any
argument (920) is to check the TP, and if it's 0, go to the type
1 (meaning only one byte, the opcode itself) area. There, the

37

Eval: The Main Loop

single byte will be POKEd and printed if you've requested that
with your pseudo-ops. And then we can go on to fetch a new
line .

If it's a more complicated addressing mode, though, we
continue evaluating, comparing it to type 3 (940) . If you want,
you can look up the mnemonics and the parallel types and
ops tables in the Tables subprogram. Type 3's are the bit-mov
ing instructions ROL, LSR, ROR, and LSR. They have a pat
tern of possible addressing modes in common. (It's this
common pattern of addressing modes which underlies these
types. They share the same potential addressing modes and
can be evaluated and adjusted as a category rather than
indi vidually.)

In any case, we turn them into type 1 and then look at
the fourth position in the storage buffer LABEL. If we could
peer into this buffer, we might see either:
ASL

or
ASL 1500

That bare ASL is not an implied address like INY and
CLC and the rest of those self-contained instructions we dis
cussed above. These bit-moving instructions (ASL, ROR, etc.)
are just like type 1 (LOA, etc.) with this single exception: They
can have a special addressing mode all their own called Accu
mulator addressing. It's a rare one. In this mode, ASL would
Arithmetic-Shift-Left the number in A, the Accumulator.

The point to grasp here is that, rare as a nude ASL is,
we've got to include it in the assembler. So we check to see if
there is a zero in the fourth position in our buffer, LOA LA
BEL+3. A zero means end-of-line. So we can detect from a
zero that there is no argument and, hence, this is a case of
Accumulator addressing. If it is, we need to add 8 to the base
opcode for these bit-movers and then jump to the type 1 exit.
If it isn 't, we've already turned it into a type 1 (970) and from
here on, we'll treat it as a member of that family. In effect,
type l's can have several addressing modes, so we must eval
uate the mode. We go to EVGO.

Fat Y Loops
Before entering most ML loops, you 'll first LOY #0 . Y often
functions as a counter, so it's set to zero, and then INY occurs

38

Eval: The Main Loop

at the end of the loop. But some loops require that we INY at
the start or at least early within the loop. In such cases, we
must LDY #255 before entering the loop. The first event
within the loop is an INY, so in effect, Y becomes 0 right off
the bat. When you increment 255, you get a zero.

EQLABEL is where we determine what kind of label
we're dealing with. On the first pass, we don't care. All labels
must be stored in our label table array for later reference on
pass 2. On pass 2, though, we must go through the test in
EVX1 (1090). And it's one of those fat Y loops that start off
with a bloated Y Register. We put 255 into Y at the start.

We load the first character in the LABEL buffer. If it's zero
(end of the line), there wasn't any argument. There should
have been. This is a mistake. By this time, there has to be an
argument. We've already eliminated the only addressing types
that have no argument: Implied (type 0) and Accumulator (a
variant of type 3). If there 's no argument, the source code is
defective. There should be an argument. We've got to print an
error message.

NOAR is tucked away at line 520 of the Equate sub
program. We'll get to it later. It just prints a "no argument"
error message. But we should clear up the little mystery
surrounding the bounce we just took. We BEQ GONOAR
(1110) only to JSR NOAR (1320). Why? This is one of those
springboards we discussed in Chapter 1.

The B instructions, the branchers like BEQ, can move us
only 127 bytes in either direction, forward or backward, from
their location. This is sometimes not far enough. LADS will
alert you to this if you should try to branch further than you
can. It will print BRANCH OUT OF RANGE and ring the bell.
The easiest solution to this problem is to simply have the
branch go to a nearby JMP or JSR. They can fly off to any ad
dress in the computer. Have them act as springboards, bounc
ing you to your actual target.

The alternative is to move your target closer to the
branch. The target is probably a subroutine. But moving a sub
routine is often a lot more trouble than simply creating a
springboard.

Back to the evaluation (1120). If there is an argument, we
move it up to another buffer called FILEN. Then we check for
the blank character, 32, before leaving this loop. The label

39

Eval: The Main Loop

name gets moved up to FILEN for further analysis. Then we
INY and look at the next character.

Which Kind of Label?
If the first thing after a blank character is =, we've got an
equate label like:
100 NAME = $500

If it is an equate label, we ignore it because we're on the
second pass here. Line 330 sends us over this section if it's the
first pass. There's no need to pay any attention to equate la
bels on the second pass, so we jump to INLINE, the prepara
tions for getting a new line to evaluate.

But it might be the other type of label, an address label
like:
100 START LOA #15

On pass 2 we can also ignore START, the label part of this
line. Both types of labels have already been safely stored in
our array during pass 1. Nevertheless, following the address
type label is some code we cannot ignore. On pass 2 LADS
must assemble that LDA #15.

NOTEQ (not equate type) moves the address label up to a
buffer called FILEN while at the same time moving the LDA
#15 over to the start of the LABEL buffer. It's doing two
things at once. This is how these buffers look before NOTEQ
(1180-1200):

LABEL START LOA #1500000000000
FILEN 000000000000000000000000

and after NOTEQ:

LABEL LOA #150A #1500000000000
FILEN STARTOOOOOOOOOOOOOOOOOOO

START is up at FILEN and can be printed out later for a
listing. But what good is that mess in the LABEL buffer? It will
work perfectly well because that 0 in the eighth position is the
delimiter. It tells LADS to ignore any random characters
following it. Remember that these numbers are stored in mem
ory as ASCII code, not as literal numbers. 15 would be stored
as 49 53 . 150 (the number 150) would be stored as 49 53 48.
But a different kind of 150, where that final 0 is a true zero, a
delimiter, would be stored as 49 53 O. So when we go to look
at and assemble the information in LABEL, LADS will only

40

Eva1: The Main Loop

work with LOA #15 and ignore the OA #150000, etc., the
remnants of the old line. All is now ready for the assembler to
take a look at a mnemonic and its argument, so we JMP to
MOE4 (1310). If this had been pass I, we would have by
passed all this and leapt from 1070 right down to 1330, where
we go to the subprogram Equate, which stores labels and their
values in the label table array. But both pass 1 and pass 2
must continue to work out the addressing modes by going to
MOE4 . Why should we need to worry about addressing
modes on pass 1 since LADS doesn't POKE anything into
memory or save anything to disk during pass I?

LADS must keep an accurate PC (Program Counter) dur
ing pass 1 to know what value to assign to address type la
bels. Otherwise, the address labels would be inaccurate:
10 START INC 15
20 LOA 15
30 BEQ FINISH
40 JMP START
50 FINISH R TS

Notice that both INC 15 and LOA 15 are Zero Page
addressing. They occupy two bytes in memory. But they could
have been Absolute (LOA 1500) addressing, or other modes
which use up three bytes. LADS has no way of knowing, by
reading LOA or INC alone, whether to raise the program
counter by two or by three. All this wouldn't matter much ex
cept for that label FINISH in line 50. It has to be assigned its
proper address during pass 1 and stored in the array. That
means LADS needs to know exactly how many bytes it is
from START to FINISH.

Consequently, LADS has to check out the arguments of
INC and LOA to see whether they're addressing modes using
up two or three bytes. This Program Counter is kept in a vari
able in LADS called SA. It 's constantly changing during both
passes of the assembly, but it is used during pass 1 to assign
numbers to address labels like START and FINISH.

We'll deal with the next routine, EVEXLAB (1360), shortly.
Let's go first to MOE4 and see how LADS analyzes
arguments.

We've Been Here Before
Recognize MOE4 (900)? We already discussed it. It I5Rs to
FINOMN and IMPs back to EVAR (920) having recognized a

41

Eval: The Main Loop

6502 mnemonic or JMPs to evaluate a label if it didn't rec
ognize a mnemonic. In our example, it will find LDA #15 this
time, JMP to EVAR, and end up going to EVGO (from 950).

Here at EVGO, LADS has to decide whether it's dealing
with a normal numeric argument like #15 or an expression la
bel, a word like SOUND. Imagine that we'd started off by de
fining the label SOUND:
10 SOUND = 15

When we later wanted to indicate IS, we could substitute
the word (LDA #SOUND) for the number (LDA #15) .

EVGO distinguishes labels from numbers by using the
ASCII code. In this code, letters of the alphabet have a nu
meric value 65 (the letter A) and go up from there. Thus, if
the character in the fourth position (see line 1490) is less than
65, if it triggers a BCe, we don 't raise the EXPRESSF(lag).
That flag indicates a nonnumeric expression. In other words,
the expression has a letter of the alphabet so it must be a la
bel. Similarly, EVM02A raises the Y offset and tests the fifth
character. If it's a zero, we've got a single-letter label, like P
(1540). Meanwhile, we're moving the label up to a buffer
called BUFFER. And, again, we check for a character with a
value lower than 65.

EVM02 (1600) continues to move the label from one
buffer (LABEL) to another (BUFFER) . It only stops when it
finds a zero indicating the end of the line. Note that both
number expressions (arguments) like #15 as well as label ex
pressions like #STOOL are moved from the LABEL buffer up
to the BUFFER buffer. The only distinction between them is
signaled by the raising of the EXPRESSF(lag) when there's a
label rather than a number. For numbers, EXPRESS stays
down, stays O.

Hex Numbers Are Already Evaluated
EVM03 (1660) puts the label's size, the number of characters
in the label, into the variable ARGSIZE and checks to see if
the HEXFLAG is up. The HEXFLAG is sent up in the sub
program Indisk if a $ symbol is noticed as a line is streaming
into LADS. So if HEXFLAG is BNE, not equal to zero, it's up
and we can jump right down to L340, which starts to figure
out the addressing mode. If the EXPRESSF is up, that means a
word label, not a number, so we have to go to EVEXLAB to

42

Eval: The Main Loop

get the number to substitute for the label. Otherwise, we've
got a decimal number to work with as our argument (1730).

The whole function of lines 1730-1840 is to have the
variable TEMP pointing to the first ASCII number in the label.
That's why we keep INCrementing TEMP until we point to a
character that is not BCe, less than the 0 ASCII character (48)
in line 1830. Then we have to test for the (left parenthesis or
, comma character. If it is one of them, it can put in a true
zero as a delimiter.

When the number is properly set up, it is analyzed by the
Valdec subprogram, which turns this ASCII string of numbers
into an ordinary ML two-byte integer.

If, however, we were sent to EVEXFLAG (from 1710), it
checks for something less than an alphabetic character (such
as a (or a # symbol). When it locates the first alphabetic
character, it stores it into the variable WORK and JSRs off to
the subprogram Array where the stored labels will be looked
through . Then it joins up again with the numeric expressions
by going to L340 for addressing mode evaluation.

How Is It Addressed?
This is the final job the assembler must perform- distinguish
ing between Immediate (LOA #15), Absolute (LOA 1500),
Zero Page (LOA 15), Indirect Y (LOA (15),Y), and the other
addressing modes. Recall that we 've already eliminated nearly
half the possibilities by previously handling type 0, the self
contained, implied ones like CLC and INY. What's left is to
check for # and (symbols and to see how big the argument is.
That tells us if our argument (the expression) calls for Zero
Page addressing or not.

First off, LADS checks for the # character (2130) and,
finding one, goes to the IMMEO routine to handle Immediate
addressing. Next it looks for the (character. Finding one of
those, it goes off to the INOIR routine to deal with Indirect
addressing.

Failing to find either of these symbols, it loads in the type
variable, TP, and looks to see if it's an 8. All the B instruc
tions, the branches like BNE and BCe, are grouped together as
type 8. Finding a type 8, LADS goes to the REL subroutine to
handle Relative addressing.

From here (line 2220) to the end of Eval, there will, from
time to time, be adjustments made to the OP variable which

43

Eva1: The Main Loop

are neither easy to explain nor easy to immediately under
stand. They're based on the logic of the interrelationships be
tween the various addressing modes. For example, if we've
reached this point (2220) without branching to one of the
routines like IMMEO, INOIR, or REL, we now need to add 8
to the opcode value. Why? It just works that way. If you're
truly interested, study the table of opcodes and you'll begin to
notice certain similarities between the opcode for LOA ab
solute and INC absolute, etc. It's not necessary to work all this
out. For a detailed discussion of the logic of these adjustments
to OP, see the explanation of the Tables subprogram in Chap
ter 9.

At any rate, INOIR looks at the character of the argument
in BUFFER and sees if it's a) symbol. If not, and it's type 1,
we add 16 to OP. If we have a type 6, we know we've got an
indirect JMP, so we go there. Otherwise, we go to TWOS,
where two-byte addressing modes, like LOA (15),Y, are
handled.

JIMMEO (2420) is one of those springboards to handle a
BRANCH TOO FAR for an unassisted B instruction with its
127-byte reach.

The Hardest Part of LADS
REL handles the B group. This was the hardest part of LADS
for me to write. For some reason, I kept hoping for a simple
way to test and translate forward and backward branches. No
simple way presented itself. There may be a more clever solu
tion than the one you'll see described below, but I couldn't find
it and had to go on.

REL first checks PASS. On pass 1, we simply go directly to
TWOS. On pass 2, though, we look at RESULT. RESULT is a
two-byte variable which holds the integer form of all argu
ments-labels, hex, or straight decimal. They're all left in RE
SULT by the various subprograms, Array, Indisk, and Valdec,
which translate labels, hex ASCII, and decimal ASCII. These
three possible original forms of the arguments are translated
into two-byte integers that can be POKEd into memory or
saved on disk as parts of an ML program.

If we're on pass 2, we look at RESULT and now calculate
the correct argument for a branch instruction. It requires that
LADS first determine whether we're branching backward or
forward in memory. It does this by subtracting SA (the Program

44

Eval: The Main Loop

Counter, the current address, the address of the B instruction to
which its argument will be relative). It subtracts SA from RE
SULT, the argument of the B instruction:
100 1000 AO 00 START LOY #0
110 1002 C8 LOOP INY
120 1003 FO 03 BEQ END
130 1005 4C 02 10 JMP LOOP
140 1008 60 END RTS

The target, END, of the BEQ above is address 1008. The
location of the PC at the BEQ is 1003. MREL (2470) first sub
tracts the PC in variable SA from the target's address. Remem
ber that RESULT holds the correct integer after the Array
subprogram looked through LADS' array and found the label
END. So 1008 minus 1003 gives 5.

BPL and BMI
BCS tests the result of the subtraction-the carry is still set if
the target is higher than SA and, consequently, we've got a
branch forward. We BCS FOR. Otherwise, it's an attempt to
branch backward in memory, and we test the high-byte result
of the subtraction (the number in the accumulator) against
$FF. That high byte must equal $FF, or we've branched too far
and we go to the error-message printout routine (2570). Then
we check the low-byte result of the subtraction (which was
pushed on the stack temporarily in line 2500) to see if it's a
correct value . The PLA (2580) will set the N flag in the Status
Register if the number is greater than 127. We want it to be,
since this is a backward branch. If this flag is not set, we BPL
to the error message. Otherwise, we jump to the concluding
routine, setting up a correct branch.

The FOR routine handles forward branches in a similar
way, going to the error routine if the high byte is not zero
(2610) or if the low byte has the seventh bit set (proving it's
greater than 127, an incorrect forward branch).

Let's pause for a minute to see what BPL and BMI do for
us in this test. In binary, $80 looks like this: 10000000. We
don't care about the bits in the positions where the zeros are.
We're only interested in the leftmost bit, the so-called seventh
bit. Note, too, that PLA affects the Nand Z flags in the Status
Register.

After a PLA of 10000000, BPL would not branch any
where, but BMI would. It would mean that the seventh bit is

45

Eval: The Main Loop

set, the "minus sign" in signed arithmetic was found. The sign
in signed arithmetic is held in the seventh bit. lXXXXXXX
would signify a negative number, OXXXXXXX a positive num
ber. (There's a connection here with the fact that forward
branch arguments can range from $00 to $7F, and backward
branches from $FF down to $80.)

Now some people will point out that there are eight bits in
a byte, and we keep referring to the seventh bit when we're
talking about the eighth. Recall that, in computing, much
counting begins with the zeroth bit. A byte can hold only the
numbers 0-255. The lowest number it can hold is a zero. But
that still means that there are 256 possibilities, 256 possible
states for a byte: 1-255 plus O.

Signed Arithmetic Branching
If all this seems an unnecessary detour into messy detail, con
sider how Relative addressing uses signed arithmetic to cal
culate where it should branch. When the 6502 chip comes
upon one of the B branch instructions like BNE, it looks at the
argument in a unique way. If the number is higher than 127, it
knows it must go backward. If lower or equal, it must go for
ward. That's why you cannot branch further than 128 back
ward or 127 forward. The argument can't use the entire byte
to hold a number-the seventh bit must be reserved to hold
the plus or minus sign. Remember, if the s~'venth bit is set, it
means minus. If clear, it means plus. BPL (Branch if PLus) is
triggered when the seventh bit is clear. BMI responds to a set
(1) seventh bit.

Take a look at the assembly in the example above. Line
120 shows that BEQ END became the opcode FO and the argu
ment is 03 . 03 will take us to END because all branches are cal
culated from the address of the mnemonic following the branch
instruction. Count three from address 1005. You hit END.

A branch backward, too, counts backward from the address
of the mnemonic following the B instruction. All branches count
from their own PC location plus 2. Look at a branch backward:
40 1000 AO 00 START LDY #0
50 1002 C8 LOOP INY
60 1003 DO FD BNE LOOP
70 1005 60 END RTS

Here line 60 is branch backward, but the argument, $FD, is
pretty strange. $FD looks like this in binary: 11111101. So the

46

Eval: The Main Loop

seventh bit is set signifying minus, a backward branch. $FD is
253 decimal. $FF would be -I, $FE would be - 2, and $FD is
-3. From address 1005, -3 lands us at 1002, LOOP, where
we want to land. Luckily, we needn't perform these calcula
tions. LADS will handle all branch arguments. But you might
want to use BPL/BMI branches as well as signed arithmetic in
your ML programming. It's sometimes worth knowing the de
tails of how these things are handled by the microprocessor.

One final adjustment needs to be made before LADS can
POKE in the correct argument for branches. This adjustment
takes place at RELM, where both forward and backward
branches end up, unless they were found to be out of range.

After the low byte of SA was subtracted from the low
byte of RESULT (2500), we pushed it onto the stack with PHA.
That's sometimes a convenient place to stuff something you
want to set aside for a minute while you perform other
calculations. You could STA A or STA TEMP or put it in other
temporary holding variables, but PHA is safe as long as you
remember to PLA to leave the stack clean. You don't want to
keep PHAing, or your program will soon fill up the stack,
resulting in an OVERFLOW error and a machine-wide col
lapse. The 6502 chip won 't ignite, the CRT screen won't melt,
but the program will grind to a halt.

When we have a BRANCH OUT OF RANGE error we
are going to go down to the DOBERR routine at line 5800, but
we do need to PLA in lines 2560 and 2620 to keep the stack
clean.

If there is no error, we've saved the result of the subtrac
tion of the low bytes (it sits in the low byte of the RESULT
variable). That's the number we really care about anyway. A
single byte is all that can be used as a branch argument.

To make it a correct branch argument, we've got to sub
tract 2 from it. This, you recall, is because all branches are cal
culated from the address of the mnemonic which comes just
after the branch instruction. Counting starts from the B instruc
tion 's address, plus two. Subtracting two will fix this up for
branches in either direction.

Further Evaluation
We've seen how LADS calculates the branch addresses. At this
point in the source code, we come upon a continuation of
evaluations of other addressing modes. EVM05 (2740) gets the

47

Eva1: The Main Loop

size of the argument in order to enable us to look at the charac
ter second from the end: LDA (ZERO),Y has a comma in this
second-from-the-end position. INX NAME does not. By now,
the variety of possible addressing modes has been somewhat
narrowed.

If we did find a comma in that second-from-last position,
that means the label ends in ,X or ,Y and we go to XYTYPE to
deal with it. Otherwise, we check to see if it's a JMP (opcode
76). MEV eliminates two other possible modes, both Zero Page,
sending LADS to the TWOS, two-byte, line-ending events.

We're headed for TWOS by now in any case, but we need
to once again adjust the value of the opcode in OP if the type
in TP isn't 6 or 4.

TWOS, like TP1 (for one-byte-long instructions) and
THREES, is where LADS goes after an addressing mode has
been determined. The opcode has been correctly adjusted and
waits in OP. The argument waits in RESULT. TP1, TWOS, and
THREES are quite similar. TP1 doesn't have an argument, so it
just JSRs to a subroutine within the subprogram Printops.
There, the bytes are POKEd into memory or to disk and
PRINTed to screen or printer. Then LADS JMPs to INLINE to
prepare for the next line of code.

TWOS (2970) and THREES (3400) also JSR to that same
subroutine in Printops (which POKEs, SAVEs, or PRINTs an
opcode), and then TWOS and THREES JSR to PRINT2 or
PRINT3 as appropriate to store or print the byte or bytes of
the argument.

Immediate addressing (LDA #12) is a variation of TWOS,
but it first must make one of those adjustments to the value of
the opcode before JUMPing to TWOs (see line 950).

THREES also requires some opcode adjustments before
storing or printing its bytes; PREPTHREES (3240-3390) accom
plishes that.

The JUMP subroutine (3010) handles the mnemonic JMP.
It's a special case because it can have a strange addressing
mode called Indirect Jump. JUMP tests for this and makes the
necessary adjustment to the opcode if it finds the ASCII code
for a parenthesis, indicating an Indirect Jump, for example JMP
($5000).

IMMED handles the # type, Immediate addressing. It first
looks to see if the #" pseudo-op is in effect (3100) and, if so,
stores the argument directly from the buffer. Then IMMED ad-

48

Eva1: The Main Loop

justs the base opcode (in the OP variable) if necessary, and be
haves like any other two-byte addressing mode, jumping to
TWOS.

Preparations for aNew Line
We come now to the cleanup routine, IN LINE (3440). Its pri
mary job is to handle the correct formatting of the printout of
the source code. By the time LADS gets to INLINE, it's already
printed a line's number, the address of the PC (the location of
the code), and the object code bytes themselves:

line # /addr /bytes of object code
40 1000 AO 00

However, there are still three items to print: an address
label (if any), the source code, and remarks (if any). To make
listings easy to read, address labels should be set off by them
selves, and source code should line up vertically on a printed
page or screen:
line # /addr /bytes / addr label/source / comments
40 1000 AO 00 START LOY #0 ; begin here (entry)

Since each column should line up correctly, we're going to
need to construct the ML equivalent of BASIC's TAB function.
Those first three items-line number, address, and object code
bytes-can take care of themselves. But any address labels must
always be in the same position on a line. And since there can
be one, two, or three object code bytes, the address labels
wouldn't line up if we just printed a couple of spaces after the
final object byte.

TAB
The first thing INLINE does is to check if we're on the first
pass. Nothing gets printed out on pass 1, so we jump over the
entire INLINE routine. If it's pass 2, we look to see if the screen
flag, SFLAG, is up (3470). If it isn't, we again jump past
INLINE.

Then the LOCFLAG is checked. It is up when there is a PC
address label (like the label START in the example above). If it's
up, we use something from BASIC: the cursor position byte.
We've been using BASIC's PRINT routine all along. One of the
advantages of this is that PRINT keeps a record in zero page of
the current screen position; we could just LDA #20:STA
CURPOS, and the next printout would be at position 20 .

49

Eval: The Main Loop

Tab to Printer
Things are more complicated, though, since LADS has an op
tion to print listings to a printer as well as to the screen. We
cannot use the same technique with a printer.

To find out how many blanks to print to the printer, it's
necessary to subtract the CURPOS value from 20. Assume that
we've printed 14 characters so far: 20 - 14 = 6. We use this
result in a loop to print blanks to the printer (3660) to cause a
simulated TAB.

Following the TAB, we're set to print an address label
which is still waiting for us up in the buffer FILEN. As usual,
we set TEMP to point to the message we want printed, and JSR
PRNTMESS, thereby printing whatever is in FILEN, delimited
by O.

Source Code Printout
It's time to move over to the thirtieth position (on screen or
printer) to the place where the source code is printed. This is
handled basically the same way as the TAB 20 above. The main
difference is the BEQ and BMI checks (3920) to take care of ex
tra long labels. In most cases, your labels will be less than ten
characters long, but LADS allows labels to be any length. How
will we balance the need for neat, vertically aligned printouts
against the option of labels of any length? How can labels
which potentially range in length from 1 to 200 characters be
formatted?

Since address labels always start in the twentieth position,
and source code always begins in the thirtieth position, we've
allowed ten spaces for address labels during printout. Onscreen,
an address label 12 characters long would be truncated:
STARTLINEHERE would be printed as STARTLINEH. But on
the printer, the entire label would be printed and simply push
the source code printout over. You can adjust any of these
formatting options rather easily if they don't suit your needs. If
you want to truncate address labels to five rather than ten
character lengths on screen, just change LDA #30 to LDA #25
(3830).

In INLINE, we've done some output switching between
screen and printer. We've called upon routines like CLRCHN,
CHKOUT, and CHKIN. The protocol for using these routines is
discussed in Chapter 5, the chapter on peripheral
communications.

50

Eval: The Main Loop

PRMMFIN (4000) prints the characters in the buffer LA
BEL. That will be the source code. Then, LADS checks to see if
there was a < or > pseudo-op in this line. If so, it tags one of
these symbols onto the end of the source code label. If your
source code looks like this: LOA #>STARTLINE, the printout
will be LOA #STARTLINE>. This will help to call attention to
this special pseudo-op addressing mode. The < and> symbols
are not buried within the label.

The underlying reason for doing things this way, however,
is not its visual appeal. It's easier and faster for LADS to an
alyze #STARTLINE than to analyze #>STARTLINE. During the
analysis phase, LADS pulls out the < or> and raises BYTLFAG
to show that the pseudo-op was originally a part of the label.
Then it can assemble the label the same way it would assemble
any other label.

The final job to be performed by INLINE is to check
BABFLAG to see if there is a REMark, a comment, to print out
(4100). The Indisk subprogam sends any comments to the
buffer called BABUF to keep them safely out of the way.
BABUF is the same buffer that BASIC uses for input. If there is
a comment, we print a semicolon (4130), point TEMP to BABUF
(4160), and PRNTMESS.

Then a carriage return is printed and we check to see if this
was the final line of the source code. If ENOFLAG is set, we go
to the assembly shutdown routine, FIN!. If not, we pop back up
to where we first started this line, STARTLINE, and pull in the
next line of source code.

FINI: Which Pass?
As a two-pass assembler, LADS, of course, goes through the
entire source code twice. When we get to FINI, we need to
check which pass we're on . If it's pass 1, we INC PASS (from
its zero condition, thereby setting it). After this INC, the next
time we reach the end of the source code and come to FINI,
we'll be sent to FIN, the shutdown routine.

But assume we've just finished pass 1 at this point. What
we must do is reset the PC, the Program Counter. Back at the
beginning, we saved the starting address in TA. SA has been
LADS' PC variable, counting up and always keeping track of
the current address during each event. Now it's time to reset
SA by putting TA in it. Then we close the source code file on
disk and promptly open it up again. This has the effect of reset-

51

Eval: The Main Loop

ting the disk's PC to point to the first byte in the disk file. Now
we're ready to read in the source code all over again. We're
ready to start the second pass.

We jump back up, just below START, to SMORE and read
in, once again, the first line of the entire source code.

If we've already completed pass 2, however, we don't want
to restart source code examination-every thing's already
accomplished, POKEd and PRINTed and SAVEd to disk as the
case may be. We want to gracefully exit the assembler. FIN
(4390) does this. It closes down any read or write files on disk,
closes down communication to a printer, and jumps to BASIC
mode. Now would be the time to try the object code program,
to make some adjustments to your source code if you want, and
then SYS back into LADS for another assembly.

Each computer has a "side entrance," a warm start into its
BASIC. This entrance doesn 't wipe out what's in RAM memory,
doesn't blank out the screen. It's here that the LADS goes to
move gently back into BASIC mode. The address of TOBASIC
for each computer is defined in the subprogam Defs.

Evaluating ,X and ,Y
Although FIN I is the logical end of the evaluation process, it's
not the physical end of the Eval subprogram. Just below FINI is
XYTYPE where such addressing modes as LDA $5000,Y are
analyzed.

They too require some opcode adjustments before going to
TWOS or THREES for printing and POKEing. We JMP to
XYTYPE after having found a comma in a source code line like:
LOA SCREEN,X

and so the Y Register is pointing to the character just beyond
the comma when we arrive at XYTYPE. All we need to do is
load BUFFER, Y to check if the character following the comma is
an X or a Y. If it's an X, we jump down to L720 which handles
X type modes.

Otherwise, we're dealing with something involving a Y
addressing mode. It might be this:
LOA (15),Y

so we have to check for the right parenthesis. We DEY DEY to
move over to just in front of the comma and see if there's a)
symbol. If not, we've got a Zero Page Y addressing mode like
LDX IO,Y or STX IO,Y. LDX and STX are the only two

52

Eval: The Main Loop

mnemonics which can use Zero Page Y addressing. They're
rare. It's quite likely you haven't ever used them; it's possible
that you haven't ever heard of them. But LADS must check for
them just in case. LADS goes to ZEROY if there was no)
symbol.

LADS is likely to find the), however, because Indirect Y
addressing is a mode which is both common and useful. En
countering this mode, LADS goes to INDIR to process the In
direct addressing mode.

ZEROY (4660) is a somewhat misleading name, for it also
handles the popular mode, Absolute Y: LDA SCREEN,Y. This
addressing mode is not Zero Page. To find out whether it's
dealing with the Zero Page Y, LADS checks the high byte of
RESULT, the argument. If the high byte contains nothing, it
must be zero page, and we process the opcode as such. If the
high byte does contain something, the argument is thus larger
than 255 and the opcode cannot use a Zero Page addressing
mode. Again, the opcode is adjusted depending on the type (TP).

The routine at L700 (4950) prints out an error message be
cause LADS was unable to calculate a correct addressing mode
and the source code must contain a syntax error.

The concluding adjustments to the opcode take place be
tween L720 and L809 (5040-5450). You might notice several
JSRs to P in this section. P (5520) is a short subroutine which
was used in debugging LADS, but was left in because you
might want to use it when fixing up your own programs.

How P Works
P prints the current PC on screen, but doesn 't destroy what's in
the A, Y, or X Registers. Saving A, Y, and X is straightforward
enough (5520), but where is the PC?

Whenever you JSR, the return address is pushed onto the
stack. We can pull it off the stack with PLA, transferring its two
bytes (one to the X Register and one to the Accumulator), and
then push it back on with PHA. That leaves the stack ready to
RTS correctly, but a copy of this RTS address is now in the reg
isters as well, OUTNUM is a BASIC routine which normally
prints line numbers during BASIC's LIST. But it will print any
integer number if the low byte is in X and the high byte is in A.
(See Atari notes for Atari's OUTNUM.)

Character $BA on Commodore machines is a check graph
ics symbol (v), and it's a convenient way to show that what

53

Eval: The Main Loop

follows is not part of a normal LADS printout. You could use
any other symbol to highlight the special nature of the number
being printed by P. What's important is that you are alerted to
the fact that somewhere within your ML program, you did JSR
to P. And the number that P prints will be the address of that
JSR.

How is P useful? An ML program is like a rocket. It's so
fast that you need to send up balloons now and then just to
mark its passage from subroutine to subroutine. When you're
not getting what you expect (and that's often in large, interact
ing ML programs), you can put JSR P into various parts of the
program. Then, as the program zips along, you'll be able to see
what's happening and in what order it's happening.

P is like setting BRK into the code or putting STOP into a
BASIC program. The difference is that P just gives you a simple
location report and lets the program continue, uninterrupted. If
you wanted more information, you could expand P to print the
registers at the same time. With that, you'd be on your way to
ward constructing the single-step debugging feature available in
some monitor programs.

CLEANLAB (5720) is janitorial. It wipes the main buffers
clean. It puts 80 zeros into LADS' main input buffer starting at
LABEL (see Chapter 9, where the Tables are described). We
don't want any remnants of the previous line left over to con
fuse things.

Finally, DOBERR is the error message printout routine for
branches out of range . It rings the bell (ERRING), prints the
offending line number, then points TEMPS to its message
(stored with the other messages in the Tables subprogram), and
jumps to TWOS so that the Program Counter will still be cor
rectly incrpased by two.

Now we've seen the innards of Eva!, the main evaluation
engine, the heart of the LADS assembler. It's time to turn our
attention to the data base managers Equate and Array. They
build and search the array of labels.

54

P
ro

g
ra

m
 3

-1
.

E
va

l
H

I
~

II
 E

V
A

L
"

M
A

IN

E
V

A
L

U
A

T
IO

N

R
O

U
T

IN
E

(S

IM
P

L
E

A

SS
E

M
B

L
E

R
)

20

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
0

ST

A
R

T

LD
A

#0

4

0

LD
Y

#

4
8

5

0

ST
R

T
L

P
ST

A

O
P
,
Y
~

LO
O

P
TO

C

LE
A

R

FL
A

G
S

-
-

6
0

D

EY

7
0

B

N
E

S
T
R
T
L
P
~

-
-
-
-
-
-
-
-

8
0

LD

A

#
<
S
T
A
R
T
~

ST
O

R
E

B
O

TT
O

M

O
F

LA
D

S
IN

T
O

TO

P
O

F
A

R
R

A
Y

/
M

EM
O

R
Y

.
PR

O
T

E
C

T

IT
.

9
0

ST

A

M
EM

TO
P

1
0

0

ST
A

B

M
EM

TO
P

1
1

0

ST
A

A

R
R

A
Y

TO
P

1
2

0

LD
A

#>

ST
A

R
T

1

3
0

ST

A

M
EM

TO
P+

1
1

4
0

ST

A

B
M

EM
TO

P+
1

1
5

0

ST
A

A
R
R
A
Y
T
O
P
+
1
~
-
-
-
-
-
-
-
-

1
6

0

LD
A

#
l
~

-
-

SE
T

D

E
FA

U
L

T
S

-
-

1
7

0

~
H

ER
E

Y
O

U

CA
N

SE

T

A
N

Y

A
D

D
IT

IO
N

A
L

D

E
FA

U
L

T
S

Y
O

U

W
IS

H

1
8

0

ST
A

H
X
F
L
A
G
~

TU
R

N

O
N

H

EX

L
IS

T
IN

G

FL
A

G

1
9

0

ST
M

0
LD

A

S
C
R
E
E
N
,
Y
~

-
-

G
ET

SO

U
R

C
E

F
IL

E

N
A

M
E

2
0

0

CM
P

#3
2

2
1

0

B
EQ

S
T
M
1
~

C
H

EC
K

FO

R

A
N

O
TH

ER

B
LA

N
K

2

2
0

B

C
S

ST
M

3
2

3
0

C

LC

2
4

0

A
D

C
#
6
4
~

A
D

JU
ST

FO

R

LO
W

A

S
C

II

C
H

A
R

A
C

TE
R

S
2

5
0

ST

M
3

ST
A

F
I
L
E
N
,
Y
~

ST
O

R
E

C

H
A

R
A

C
TE

R

IN

FI
L

E
N

A
M

E

B
U

FF
E

R

2
6

0

IN
Y

2

7
0

JM

P
S
T
M
0
~

G
ET

A

N
O

TH
ER

C

H
A

R
A

C
TE

R

2
8

0

ST
M

1
ST

A

F
I
L
E
N
,
Y
~

C
H

EC
K

FO

R

2N
D

B

LA
N

K

~

2
9

0

IN
Y

~ III
 - ;2 ~
 ~

III
 5'
 b o "0

c.n

0
'

3
0

0

LD
A

S

C
R

E
E

N
,Y

3

1
0

CM

P
#

3
2

;
IF

NO

2N

D

B
LA

N
K

SP

A
C

E

3
2

0

BN
E

S
T

M
0;

TH

EN

G
O

B

A
C

K

FO
R

M

O
RE

N

A
M

E
(M

IG
H

T

B
E

2
W

O
R

D
S)

3

3
0

D

EY

3
4

0

ST
Y

FN

A
M

E
L

E
N

;
ST

O
R

E
FI

L
E

N
A

M
E

LE

N
G

TH

3
5

0

JS
R

O

P
E

N
1;

O

PE
N

RE

A
D

F

IL
E

(S

O
U

R
C

E

C
O

D
E

F
IL

E

O
N

D

IS
K

)
3

6
0

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

R
E

-E
N

T
R

Y

P
O

IN
T

FO

R

PA
SS

2

-
-
-
-
-
-
-

3
7

0

SM
O

R
E

JS
R

G

E
T

SA
;

P
O

IN
T

D

IS
K

F
IL

E

TO

1S
T

C

H
A

R
A

C
TE

R

IN

SO
U

R
C

E

C
O

D
E

3
8

0

LD
A

#

0

3
9

0

ST
A

E

N
D

FL
A

G
;

SE
T

L

A
D

S
-I

S
-O

V
E

R

FL
A

G

TO

DO
W

N
4

0
0

JS

R

IN
D

IS
K

;
G

ET

A
 S

IN
G

L
E

L

IN
E

O

F
SO

U
R

C
E

C
O

D
E

4
1

0

LD
A

P

A
S

S
;

IF

2N
D

PA

SS

4
2

0

BN
E

S
T

A
R

T
L

IN
E

;
TH

EN

JU
M

P
O

V
ER

P

R
IN

T
IN

G

O
F

LA
D

S
N

A
M

E
4

3
0

JS

R

PR
N

T
C

R
;

P
R

IN
T

C

A
R

R
IA

G
E

R

ET
U

R
N

4

4
0

LD

A

#
2

3
0

;
P

R
IN

T

B
LO

C
K

G

R
A

PH
IC

S
SY

M
B

O
L

4
5

0

JS
R

P

R
IN

T

4
6

0

LD
A

#

7
6

;
L

4

7
0

JS

R

P
R

IN
T

4

8
0

LD

A

#
6

5
;

A

4
9

0

JS
R

P

R
IN

T

5
0

0

LD
A

#

6
8

;
D

5

1
0

JS

R

P
R

IN
T

5

2
0

LD

A

#
8

3
;

S
5

3
0

JS

R

P
R

IN
T

5

4
0

JS

R

PR
N

T
C

R
;

A
N

O
TH

ER

C
A

R
R

IA
G

E

R
ET

U
R

N

5
5

0

C
K

H
EX

LD

A

H
E

X
FL

A
G

;
IF

ST

A
R

T

A
D

D
R

E
SS

N

U
M

B
ER

IS

H

E
X

,
IT

'S

A
LR

EA
D

Y

T
R

A
N

SL
A

T
E

D

5
6

0

BN
E

ST
A

R
1

5
7

0

LD
A

#<

L
A

B
E

L
;

IN

TH
E

L
A

B
E

L

B
U

FF
E

R

IS

SO
M

E
T

H
IN

G

L
IK

E
:

*=

8
6

4

5
8

0

ST
A

T

E
M

P;

PU
T

TH
E

A
D

D
R

E
SS

O

F
TH

E
B

U
FF

E
R

IN

T
O

T

H
E

P

O
IN

T
E

R

C
A

L
L

E
D

TE

M
P

5
9

0

LD
A

#>

L
A

B
E

L

6
0

0

ST
A

T

E
M

P+
1

~
 ;. ..., ::r

~
 ~

~
 S· b o 't
l

CJ
1

'.
J

6
1

0

6
2

0

6
3

0

6
4

0

6
5

0

6
6

0

6
7

0

6
8

0

6
9

0

7
0

0

7
1

0

7
2

0

7
3

0

7
4

0

7
5

0

7
6

0

7
7

0

7
8

0

7
9

0

8
0

0

8
1

0

8
2

0

8
3

0

8
4

0

8
5

0

8
6

0

8
7

0

8
8

0

8
9

0

9
0

0

9
1

0

JS
R

V

A
L

D
E

C
:

TU
R

N

A
S

C
II

N

U
M

B
ER

IN

T
O

A

 T
W

O
-B

Y
T

E

IN
T

E
G

E
R

IN

"R

E
S

U
L

T
"

ST
A

R
I

LD
A

R

E
SU

L
T

:
-
-

ST
O

R
E

O

B
JE

C
T

C

O
D

E
'S

ST

A
R

T
IN

G

A
D

D
R

E
SS

IN

S

A
,T

A

ST
A

SA

ST

A

TA

LD
A

R

E
S

U
L

T
+

l
ST

A

S
A

+
l

ST
A

T

A
+

l
;-

--
--

--
--

--
--

--
-

EN
TR

Y

P
O

IN
T

FO

R

EA
C

H

N
EW

L

IN
E

O

F
SO

U
R

C
E

C
O

D
E

ST
A

R
T

L
IN

E

JS
R

ST

O
PK

E
Y

:L
D

A

E
N

D
FL

A
G

:B
E

Q

E
V

IN
D

:J
M

P

F
IN

I:

EN
D

LA

D
S

A
SS

E
M

B
L

Y

IF

:
E

IT
H

E
R

TH

E
ST

O
P

(B
R

E
A

K
)

K
EY

IS

PR

E
SS

E
D

O

R
IF

TH

E
EN

D
FL

A
G

IS

U

P
.

E
V

IN
D

JS

R

IN
D

IS
K

:
O

T
H

E
R

W
IS

E

G
O

TO

PU

L
L

IN

A

L

IN
E

FR

O
M

SO

U
R

C
E

C

O
D

E
LD

A

#
0

ST

A

E
X

P
R

E
S

S
F

:
SE

T

DO
W

N
TH

E
FL

A
G

TH

A
T

S
IG

N
A

L
S

A

L

A
B

E
L

A

R
G

U
M

EN
T

L
IK

E

LD
A

P

ST
A

B

U
FL

A
G

:
SE

T

DO
W

N
TH

E
FL

A
G

TH

A
T

S
IG

N
A

L
S

O
R

(

D
U

R
IN

G

A
R

R
A

Y

C
H

E
C

K
.

LD
Y

P

A
S

S
:O

N

PA
SS

1

,
W

E
D

O
N

'T

P
R

IN
T

L

IN
E

N

U
M

B
E

R
S,

A

D
D

R
.

O
R

A
N

Y
T

H
IN

G

E
L

SE

B
N

E
M

O
R

EE
V

JM

P
M

O
E4

M

O
R

EE
V

ST

Y

L
O

C
FL

A
G

:
ZE

R
O

A

D
D

R
E

S
S

-T
Y

P
E

L

A
B

E
L

FL

A
G

(L

IK
E

:
L

A
B

E
L

IN

Y
)

T
H

IS

IS

FO
R

TH

E
IN

L
IN

E

SU
B

R
O

U
T

IN
E

B

EL
O

W
.

LO
A

SF

L
A

G
;

SH
O

U
LD

W

E
P

R
IN

T

TO

TH
E

SC
R

E
E

N

B
EQ

M

X
;

IF

N
O

T
,

S
K

IP

T
H

IS

PA
R

T

JS
R

P

R
N

T
L

IN
E

;
P

R
IN

T

L
IN

E

N
U

M
B

ER

JS
R

PR

N
T

SP
A

C
E

;
P

R
IN

T

SP
A

C
E

JS

R

PR
N

T
SA

;
P

R
IN

T

PC

(P
R

O
G

R
A

M

C
O

U
N

T
E

R
).

"S
A

"
IS

TH

E
V

A
R

IA
B

L
E

.
JS

R

PR
N

T
SP

A
C

E

M
X

LO
A

PL

U
SF

L
A

G
;

DO

W
E

H
A

V
E

A
 +

PS

E
U

D
O

O

P
BE

Q

M
O

E
4;

IF

N

O
T

S
K

IP

JS
R

M

A
TH

;
IF

S

O
,

H
A

N
D

LE

IT

IN

SU
B

PR
O

G
R

A
M

"M

A
T

H
"

M
O

E4

JM
P

FI
N

D
M

N
;

LO
O

K

U
P

M
N

EM
O

N
IC

(O

R
,

N
O

T
F

IN
D

IN
G

O

N
E

,
IT

'S

A

L
A

B
E

L
)

-
-
-
-
-
-
-
-

EV
A

LU
A

TE

A
R

G
U

M
EN

T

~ ~
 ~ ~

III
 Er
 b o '0

U
1

0
0

9

2
0

EV

A
R

LD

A

T
P

9

3
0

B

EQ

T
P
I
J
M
P
~

C
H

EC
K

T

Y
P

E
,

IF

0
,

N
O

A

R
G

U
M

EN
T

9
4

0

CM
P

#
3
~

IF

N
O

T
T

Y
PE

3

,
TH

EN

C
O

N
T

IN
U

E

E
V

A
L

U
A

T
IO

N

9
5

0

BN
E

EV
G

O

9
6

0

LD
A

#
1
~

O
T

H
E

R
W

IS
E

,
R

E
PL

A
C

E

3
W

IT
H

1

IN

T
P

(T
Y

P
E

)
9

7
0

ST

A

T
P

9

8
0

LD

A

L
A
B
E
L
+
3
~

IS

TH
ER

E
SO

M
E

T
H

IN
G

(N

O
T

A

Z

E
R

O
)

IN

4T
H

P

O
S

IT
IO

N

9
9

0

BN
E

E
V
G
O
~

EV
G

O

=
 A

R
G

U
M

EN
T

{
IF

N

O
T

,
T

H
E

R
E

'S

N
O

A

R
G

U
M

E
N

T
,I

T
'S

IM

P
L

IE
D

1

0
0

0

LD
A

#

8
;

O
T

H
E

R
W

IS
E

,
R

A
IS

E

O
P

(O
PC

O
D

E
)

B
Y

8

1
0

1
0

C

LC

1
0

2
0

A

D
C

O
P

1
0

3
0

ST

A

O
P

1
0

4
0

T

P
IJ

M
P

JM

P
T
P
l
~

A
N

D

JU
M

P
TO

T

Y
PE

1

(S
IN

G
L

E

B
Y

TE

T
Y

P
E

S
)

1
0

5
0

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0

6
0

EQ

LA
B

EL

LD
A

P
A
S
S
~

M
O

E4

FO
U

N
D

IT

TO

B

E
A

L

A
B

E
L

,
N

O
T

A
 M

N
EM

O
N

IC

1
0

7
0

BE

Q

E
Q
L
A
B
l
~

O
N

PA

SS

1
W

E
D

O
N

'T

C
A

R
E

W
H

IC
H

K

IN
D

O

F
L

A
B

E
L

IT

IS

SO

W

E
1

0
8

0

LO
Y

#
2
5
5
~

G
O

DO

W
N

A
N

D

ST
O

R
E

IT

IN

TH

E
A

R
R

A
Y

(V

IA

E
Q

L
A

B
l)

1

0
9

0

E
V

X
l

I
N
Y
~

B
U

T
O

N

PA
SS

2

,
W

E
N

EE
D

TO

D

E
C

ID
E

IF

IT

'S

A

PC

A
D

D
R

E
SS

T

Y
PE

1

1
0

0

LO
A

L
A
B
E
L
,
Y
~

L
A

B
E

L

(L
IK

E
:

L
A

B
E

L

IN
Y

)
O

R
A

N

EQ
U

A
TE

T

Y
PE

(L

A
B

E
L

=

 1
5

)
1

1
1

0

B
EQ

G
O
N
O
A
R
~

SO

IN

T
H

IS

LO
O

P
W

E
LO

O
K

FO

R

A

B
LA

N
K

W

H
IL

E

ST
O

R
IN

G

TH
E

1
1

2
0

ST

A

F
I
L
E
N
,
Y
~

L
A

B
E

L

N
A

M
E

IN

TH
E

"F
IL

E
N

"
B

U
F

F
E

R
.

IF

W
E

F
IN

D

A
 0

,
IT

'S

1
1

3
0

CM

P
#
3
2
~

A

N
A

K
ED

L

A
B

E
L

(N

O

A
R

G
U

M
EN

T
TO

IT

)
W

H
IC

H

C
A

U
SE

S
U

S
TO

P

R
IN

T

1
1

4
0

B

N
E

E
V
X
l
~
O
U
T

TH
A

T
ER

R
O

R

M
ES

SA
G

E
{A

T
N

O
A

R
,

IN

E
Q

U
A

T
E

).
O

T
H

E
R

W
IS

E
,

W
E

F
IN

D

A

1
1

5
0

I
N
Y
~

B
LA

N
K

A

N
D

FA

L
L

TH

R
O

U
G

H

TO

T
H

IS

L
IN

E
.

1
1

6
0

LO

A

L
A
B
E
L
,
Y
~

W
E

R
A

IS
E

Y

 B
Y

1

A
N

D

C
H

EC
K

FO

R

A
N

=

 S
IG

N
.

1
1

7
0

CM

P
#$

3D

1
1

8
0

BN

E
N
O
T
E
Q
~

IF

N
O

T
,

IT
'S

A

PC

A

D
D

R
E

SS

T
Y

PE

(S
O

SE

T

L
O

C
FL

A
G

)
1

1
9

0

JM
P

I
N
L
I
N
E
~

IF

SO
,W

A
S

=
 T

Y
PE

SO

IG

N
O

R
E

IT

(O

N

PA
SS

2

)
-
-
-
-
-
-
-
-
-
-

1
2

0
0

N

O
TE

Q

LO
X

#

0

1
2

1
0

ST

X

L
O
C
F
L
A
G
~
(
S
H
O
W
S

PR
IN

T
O

U
T

TO

D

O

T
H

IS

T
Y

PE

O
F

L
A

B
E

L

O
N

S

C
R

E
E

N
/P

R
IN

T
E

R
)

1
2

2
0

T
X
A
~

PU
T

A

ZE
R

O

IN

A
T

TH
E

EN
D

O

F
TH

E
L

A
B

E
L

N

A
M

E
(A

S
A

D

E
L

IM
IT

E
R

)

~ ~
 ;i

(I
) ~ ~r
 b o 'e

1
2

3
0

1

2
4

0

1
2

5
0

1

2
6

0

1
2

7
0

1

2
8

0

1
2

9
0

1

3
0

0

1
3

1
0

1

3
2

0

1
3

3
0

1

3
4

0

1
3

5
0

1

3
6

0

1
3

7
0

1

3
8

0

1
3

9
0

1

4
0

0

1
4

1
0

1

4
2

0

1
4

3
0

1

4
4

0

1
4

5
0

1

4
6

0

1
4

7
0

1

4
7

2

1
4

7
3

1

4
7

4

1
4

8
0

1

4
9

0

C
Jl

1

5
0

0

\0

ST
A

F

IL
E

N
,Y

;
NO

W

W
E

H
A

V
E

TO

M
O

V
E

TH
E

A
R

G
U

M
EN

T
PO

R
T

IO
N

O

F
T

H
IS

L

IN
E

EV

X
5

LD
A

L

A
B

E
L

,Y
;

O
V

ER

TO

TH
E

ST
A

R
T

O

F
TH

E
"L

A
B

E
L

"
B

U
FF

E
R

FO

R

FU
R

T
H

E
R

B

EQ

E
V

X
4;

A

N
A

L
Y

SI
S

(0

D
E

L
IM

IT
E

R

H
E

R
E

)
ST

A

L
A

B
E

L
,X

;
W

E
CA

N

IG
N

O
R

E

TH
E

PC

L
A

B
E

L

(T
H

IS

IS

PA
SS

2

),

B
U

T
W

E
IN

X
;

N
EE

D

TO

EV
A

LU
A

TE

TH
E

R
E

ST

O
F

TH
E

L
IN

E

FO
L

L
O

W
IN

G

TH
A

T
L

A
B

E
L

.
IN

Y

JM
P

E
V

X
5

;-
--

--
--

--
--

--
--

--
-

EV
X

4
ST

A

L
A

B
E

L
,X

JM

P
M

O
E

4;

JU
M

P
TO

C

O
N

T
IN

U
E

E

V
A

L
U

A
T

IO
N

G

O
N

O
A

R

JS
R

N

O
A

R
;

P
R

IN
T

NO

A

R
G

U
M

EN
T

M
ES

SA
G

E
(A

S

P
R

IN
G

B
O

A
R

D
);

--
--

--
--

-
E

Q
L

A
B

I
JS

R

E
Q

U
A

T
E

;
PU

T
LA

B
EL

A

N
D

IT

'S

V
A

LU
E

IN
T

O

TH
E

A
R

R
A

Y

(P
A

S
S

1

)
JM

P
M

O
E

4;

C
O

N
T

IN
U

E

E
V

A
L

U
A

T
IO

N

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

T
R

A
N

SL
A

T
E

A

R
G

U
M

EN
T

L
A

B
E

L
S

IN
T

O

N
U

M
B

ER
S

EV
E

X
LA

B

LD
A

B

U
F

F
E

R
;

IS

T
H

IS

1
S

T

C
H

A
R

A
C

TE
R

A

L
PH

A
B

E
T

IC

(>
6

4
)

CM
P

#
6

4

B
C

S
E

V
E

l;

IF

S
O

,
G

O

DO
W

N
TO

F

IN
D

IT

S

V
A

LU
E

.
LD

A

B
U

F
F

E
R

+
l;

IF

N

O
T

,
IT

M

U
ST

H

A
V

E
B

EE
N

A

(

O
R

SY

M
B

O
L

IN
C

B

U
FL

A
G

;
TO

T

E
L

L

A
R

R
A

Y

TH
A

T
(

O
R

W

A
S

FO
U

N
D

(A

N
D

TO

IG

N
O

R
E

TH

EM
)

E
V

E
I

EO
R

#

$
8

0
;

SE
T

7T

H

B
IT

IN

1S

T

C
H

A
R

.
(T

O

M
A

TC
H

A

R
R

A
Y

ST

O
R

A
G

E
M

ET
H

O
D

)
ST

A

W
O

RK
;

SA
V

E
IT

H

ER
E

T
E

M
PO

R
A

R
IL

Y

TO

C
O

M
PA

R
E

W
IT

H

A
R

R
A

Y

W
O

RD
S

JS
R

A

R
R

A
Y

;
E

V
A

L
.

E
X

P
R

E
S

S
IO

N

L
A

B
E

L
,

S
H

IF
T

E
D

1S

T

C
H

A
R

.
JM

P
L

3
4

0
;

TH
EN

C

O
N

T
IN

U
E

O

N

W
IT

H

E
V

A
L

U
A

T
IO

N

(A
F

T
E

R

V
A

LU
E

IS

IN

"R
E

S
U

L
T

")

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

IS

A
R

G
U

M
EN

T
N

U
M

E
R

IC

O
R

A

L

A
B

E
L

EV

G
O

LD

Y

#
0

ST

Y

E
X

P
R

E
S

S
F

;
TU

R
N

O

FF

TH
E

"
IT

'S

A

L
A

B
E

L
"

FL
A

G

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

SE
E

C

H
A

PT
E

R

1
1

FO

R

D
E

S
C

R
IP

T
IO

N

O
F

T
H

IS

ER
R

O
R

T

R
A

P
(T

R
A

P
FO

R

N
A

K
ED

M

N
EM

O
N

IC
S

E
R

R
O

R
)

LD
A

L

A
B

E
L

+
3:

C
M

P
#

3
2

:B
E

Q

G
V

E
G

:J
M

P
L

7
0

0
;

(T
E

S
T

FO

R

"I
N

C
:"

T

Y
PE

E

R
R

O
R

)
G

V
EG

LD

A

L
A

B
E

L
+

4,
Y

;
C

H
EC

K

5T
H

C

H
A

R
.

(L
D

A

N
A

M
E

O
R

LD
A

2

5
)

(T
H

E

"N
"

O
R

"
2

"
)

CM
P

#
6

5
;

IF

L
E

SS

TH
A

N

6
5

(A

S
C

II

FO
R

"A

")

TH
EN

IT

'S

A

N
U

M
B

ER

BC
C

EV
M

02
A

~ III
 - ;i (b
 ~

III
 Er S- O

'I
j

Q
'\

o

1
5

1
0

IN

C

E
X

PR
E

SS
F7

>

65

=
 A

L
PH

A
B

E
T

IC

A
RG

(L

A
B

E
L

)
SO

R

A
IS

E

T
H

IS

FL
A

G

1
5

2
0

E

V
M

02
A

ST

A

B
U

F
F

E
R

,Y
7

ST
O

R
E

1S

T

C
H

A
R

.
O

F
A

R
G

U
M

EN
T

IN

"B
U

F
F

E
R

"
B

U
FF

E
R

1

5
3

0

IN
Y

1

5
4

0

LD
A

L

A
B

E
L

+4
,Y

7
LO

O
K

A

T
2N

D

C
H

A
R

.
IN

TH

E
A

R
G

U
M

EN
T

1
5

5
0

B

EQ

EV
M

03
7

IF

Z
E

R
O

,
W

E
'R

E

A
T

TH
E

EN
D

SO

M

O
V

E
O

N

1
5

6
0

ST

A

B
U

FF
E

R
,Y

7
O

T
H

E
R

W
IS

E
,

ST
O

R
E

2N

D

C
H

A
R

.
1

5
7

0

CM
P

#6
57

IF

LO

W
ER

TH

A
N

6

5
,

D
O

N
'T

R

A
IS

E

L
A

B
E

L
-A

R
G

U
M

E
N

T

FL
A

G

1
5

8
0

B

C
C

EV

M
02

1

5
9

0

IN
C

E

X
PR

E
S

S
F

7
IF

H

IG
H

E
R

,
DO

R

A
IS

E

IT

1
6

0
0

EV

M
02

IN

Y
7

NO
W

M

O
V

E
R

E
ST

O

F
A

R
G

U
M

EN
T

U
P

TO

"B
U

F
F

E
R

"
B

U
FF

E
R

1

6
1

0

LD
A

L

A
B

E
L

+
4,

Y
7

LO
O

P
TO

M

O
V

E
TH

E
A

R
G

U
M

EN
T

IN
T

O

TH
E

B
U

FF
E

R

1
6

2
0

B

EQ

EV
M

03
7

EV
M

03

T
A

K
E

S
O

V
ER

A

FT
E

R

EN
D

O

F
A

R
G

U
M

EN
T

IS

R
EA

C
H

ED

1
6

3
0

ST

A

B
U

F
F

E
R

,Y

1
6

4
0

JM

P
EV

M
02

7
R

ET
U

R
N

FO

R

M
O

RE

A
R

G
U

M
EN

T
C

H
A

R
A

C
T

E
R

S.

1
6

5
0

7

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
6

6
0

EV

M
03

D

EY

1
6

7
0

ST

Y

A
R

G
SI

Z
E

7
R

EM
EM

B
ER

N

U
M

B
ER

O

F
C

H
A

R
A

C
T

E
R

S
IN

A

R
G

U
M

EN
T

1
6

8
0

LD

A

H
EX

FL
A

G
7

IF

IT
'S

H

E
X

,
IN

D
IS

K

SU
B

PR
O

G
R

A
M

A

LR
EA

D
Y

T

R
A

N
SL

A
T

E
D

IT

FO

R

U
S

1
6

9
0

B

N
E

L
34

07

SO

G
O

O

N

TO

EV
A

LU
A

TE

A
D

D
R

E
SS

M

O
D

E.

1
7

0
0

LD

A

E
X

P
R

E
S

S
F

:
IF

IT

'S

A

L
A

B
E

L

(N
O

T
A

 N
U

M
B

ER
)

TH
EN

G

O

TO

TH
E

R
O

U
T

IN
E

1

7
1

0

BN
E

EV
EX

LA
B

7
W

H
IC

H

E
V

A
L

U
A

T
E

S
E

X
P

R
E

S
S

IO
N

(A

R
G

U
M

E
N

T
)

L
A

B
E

L
S

,
"E

V
E

X
L

A
B

"
1

7
2

0

:
-
-
-
-
-
-
-
-
-
-

C
A

L
C

U
L

A
T

E

A
R

G
U

M
E

N
T

'S

V
A

LU
E

(I
F

IT

'S

A

D
E

C
IM

A
L

N

U
M

B
ER

)
1

7
3

0

LD
A

#<

B
U

FF
E

R
7

M
A

K
E

"T
E

M
P

"
P

O
IN

T
E

R

P
O

IN
T

TO

"B

U
F

F
E

R
"

1
7

4
0

ST

A

TE
M

P
1

7
5

0

LD
A

#>

B
U

FF
E

R

1
7

6
0

ST

A

T
E

M
P+

1
1

7
7

0

LD
Y

#

0

1
7

8
0

LD

A

B
U

FF
E

R
7

IS

1S
T

C

H
A

R
A

C
TE

R

H
IG

H
E

R

TH
A

N

4
8

(A

S
C

II

FO
R

TH

E
N

U
M

B
ER

Z

E
R

O
)

1
7

9
0

CM

P
#

4
8

1

8
0

0

B
C

S
M

CA
L7

IF

S

O
,

S
K

IP

T
H

IS

PA
R

T
1

8
1

0

C
LC

7
IF

N

O
T

,
TH

E
1

S
T

C

H
A

R
A

C
TE

R

M
U

ST

B
E

O

R

(
..

•
..

SO

W

E
N

EE
D

TO

~

~
 ;l

('I>
 ~

$I
) S· b o 'e

1
8

2
0

1

8
3

0

1
8

4
0

1

8
5

0

1
8

6
0

1

8
7

0

1
8

8
0

1

8
9

0

1
9

0
0

1

9
1

0

1
9

2
0

1

9
3

0

1
9

4
0

1

9
5

0

1
9

6
0

1

9
7

0

1
9

8
0

1

9
9

0

2
0

0
0

2

0
1

0

2
0

2
0

2

0
3

0

2
0

4
0

2

0
4

5

2
0

5
0

2

0
5

5

2
0

6
0

2

0
7

0

2
0

8
0

2

0
9

0

0
\

2
1

0
0

.....

..

IN
C

T
E
M
P
~

M
A

K
E

"T
E

M
P"

P

O
IN

T

1
C

H
A

R
A

C
TE

R

H
IG

H
E

R

IN

"B
U

F
F

E
R

"
TO

B

C
C

M
C
A
L
~

A
V

O
ID

H

A
V

IN
G

TH

E
A

S
C

II

TO

IN
T

E
G

E
R

SU

B
R

O
U

T
IN

E

T
H

IN
K

TH

A
T

TH
E

IN
C

T
E
M
P
+
1
~

N
U

M
B

ER

ST
A

R
T

S
W

IT
H

A

O
R

(

-
-
-

TH
A

T
W

O
U

LD

M
ES

S
T

H
IN

G
S

U
P

.
M

CA
L

LD
A

(
T
E
M
P
)
,
y
~

NO
W

LO

O
K

FO

R

TH
E

EN
D

O

F
TH

E
N

U
M

B
ER

:
-
-
-
-
-
-
-
-
-
-

B
EQ

M
C
A
L
1
~

IT

C
O

U
LD

EN

D

W
IT

H

A
 0

(D

E
L

IM
IT

E
R

)
O

R
CM

P
#
4
1
~

W
IT

H

A

)
R

IG
H

T

PA
R

E
N

T
H

E
SI

S
O

R

B
EQ

M

C
A

L1

CM
P

#
4
4
~

W
IT

H

A

,
CO

M
M

A
(A

S
IN

:
1

5
,y

)
O

R

B
EQ

M

C
A

L1

CM
P

#
3

2
;

W
IT

H

B
LA

N
K

SP

A
C

E

(A
S

IN
:

#
1

5

;C
O

M
M

EN
T)

B

EQ

M
C

A
L1

IN

Y
;

IF

W
E

'V
E

N

O
T

Y
ET

FO

U
N

D

O
N

E
O

F
T

H
E

SE

4
T

H
IN

G
S

,
C

O
N

T
IN

U
E

L

O
O

K
IN

G

JM
P

M
C

A
L

;-
--

--
--

--
--

--
--

--
--

--
--

--
--

-
M

C
A

L1

PH
A

;
SA

V
E

A
C

C
U

M
U

LA
TO

R

TY
A

PH

A
;S

A
V

E

Y
 R

E
G

IS
T

E
R

(B
Y

N

O
W

,
Y

IS

P

O
IN

T
IN

G

A
T

TH
E

SP
A

C
E

JU

S
T

A

FT
E

R

TH
E

#
)

LD
A

#

0
;

PU
T

D
E

L
IM

IT
E

R

ZE
R

O

IN
T

O

B
U

FF
E

R

JU
S

T

FO
LL

O
W

IN
G

N

U
M

B
ER

.
ST

A

(T
E

M
P

),
 Y

JS

R

V
A

L
D

E
C

;G
O

TO

TH

E
A

S
C

II
-N

U
M

B
E

R
-T

O
-I

N
T

E
G

E
R

-N
U

M
B

E
R

-I
N

-"
R

E
S

U
L

T
"

R
O

U
T

IN
E

PL

A
;

R
E

ST
O

R
E

TH

E
A

A

N
D

Y

R

E
G

IS
T

E
R

S

TA
Y

P

L
A

ST

A

(T
E

M
P

),
 Y

;
R

E
ST

O
R

E

"
,

"
O

R

"
)"

TO

TH

E
B

U
FF

E
R

(F

O
R

TH

E
A

D
D

R
.

A
N

A
L

Y
S

IS
)

~
-
-
-
-
-
-
-
-
-

A
N

A
LY

ZE

TH
E

A
R

G
U

M
EN

T
TO

D

E
T

E
R

M
IN

E

A
D

D
R

E
SS

IN
G

M

O
D

E
-
-
-
-
-
-

(T
H

IS

E
SS

E
N

T
IA

L
L

Y

A
M

O
U

N
TS

TO

M

O
D

IF
Y

IN
G

TH

E
O

R
IG

IN
A

L

O
PC

O
D

E
TO

R

E
FL

E
C

T

TH
E

C
O

R
R

EC
T

A
D

D
R

E
SS

IN
G

M

O
D

E.

A
D

JU
ST

M
E

N
T

S
TO

TH

E
O

PC
O

D
E

"O
P

"
A

PP
E

A
R

R

A
TH

ER

FR
E

Q
U

E
N

T
L

Y

FR
O

M

H
ER

E
O

N
.

T
H

E
IR

L

O
G

IC

W
IL

L

N
O

T
B

E
C

O
M

M
EN

TE
D

.
A

D
D

IN
G

4

,8
,1

6
,

O
R

2

4

TO

A
N

"O

P
"

IS

B
A

SE
D

O

N

TH
E

R
E

L
A

T
IO

N
S

H
IP

S

W
IT

H
IN

TH

E
O

PC
O

D
E

T
A

B
L

E

(S
E

E

C
H

A
PT

E
R

9

FO
R

E

X
PL

A
N

A
T

IO
N

)

~ III
 '-"

~

::r

('!
) ~

III
 5' b o '0

0
'\

N

2

1
1

0

2
1

2
0

L

3
4

0

LD
A

B

U
F

F
E

R
:

1S
T

C

H
A

R
.

O
F

TH
E

A
R

G
U

M
EN

T
(T

H
E

"#

"
IN

LD

A

#
1

5
)

2
1

3
0

CM

P
#

3
5

2

1
4

0

B
EQ

JI

M
M

E
D

:

SY
M

B
O

L
FO

U
N

D

(S
O

IM

M
E

D
IA

T
E

M

O
D

E
).

B

R
A

N
C

H

TO

SP
R

IN
G

B
O

A
R

D

2
1

5
0

CM

P
#

4
0

:
IS

IT

A

"
("

L

E
FT

P

A
R

E
N

T
H

E
S

IS
.

IF

S
O

,
G

O

TO

IN
D

IR
E

C
T

A

D
D

R
.

2
1

6
0

B

EQ

IN
D

IR

2
1

7
0

LD

A

T
P

:
IS

IT

A

R

E
L

A
T

IV
E

A

D
D

R
.

M
O

D
E

(L
IK

E

B
N

E
,

B
E

Q
).

2

1
8

0

CM
P

#8

2
1

9
0

B

EQ

R
E

L
:

IF

S
O

,
G

O

TO

W
H

ER
E

TH
EY

A

R
E

H
A

N
D

L
E

D
.

2
2

0
0

CM

P
#

3
:

A
D

D

8
TO

O

P
A

T
T

H
IS

P

O
IN

T

IF

IT
'S

A

T

Y
PE

3

2
2

1
0

BN

E
EV

M
05

2

2
2

0

LD
A

#

8

2
2

3
0

C

LC

2
2

4
0

A

D
C

O
P

2
2

5
0

ST

A

O
P

2
2

6
0

JM

P
T

P
1

:
A

N
D

JU

M
P

TO

TH
E

S
IN

G
L

E

B
Y

TE

T
Y

PE
S

(I
M

P
L

IE
D

A

D
D

R
E

S
S

IN
G

)
2

2
7

0

IN
D

IR

LD
Y

A

R
G

S
IZ

E
:

H
A

N
D

LE

IN
D

IR
E

C
T

A

D
D

R
E

S
S

IN
G

--
--

--
--

--
--

--
--

--
-

2
2

8
0

LD

A

B
U

F
F

E
R

,Y
:

LO
O

K

A
T

TH
E

L
A

ST

C
H

A
R

A
C

TE
R

IN

TH

E
A

R
G

U
M

EN
T.

2

2
9

0

CM
P

#
4

1
:

IS

IT

A

"
)"

R

IG
H

T

P
A

R
E

N
T

H
E

S
IS

2

3
0

0

B
EQ

M

IN
D

IR
:

IF

S
O

,
H

A
N

D
LE

TH

A
T

T
Y

P
E

.
2

3
1

0

LD
A

T

P
2

3
2

0

CM
P

#
1

:
IF

T

Y
PE

1

,
A

D
D

1

6

A
T

T
H

IS

PO
IN

T

TO

O
PC

O
D

E
2

3
3

0

B
N

E
M

IN
D

IR

2
3

4
0

LD

A

#
1

6

2
3

5
0

C

LC

2
3

6
0

A

D
C

O

P
2

3
7

0

ST
A

O

P
2

3
8

0

M
IN

D
IR

LD

A

T
P

:
T

Y
PE

6

IS

A

JU
M

P
IN

S
T

R
U

C
T

IO
N

2

3
9

0

CM
P

#6

2
4

0
0

B

EQ

JJ
U

M
P

:
SO

G

O

TO

TH
E

JU
M

P-
H

A
N

D
L

IN
G

R

O
U

T
IN

E

2
4

1
0

JM

P
TW

O
S:

O

T
H

E
R

W
IS

E
,

IT

M
U

ST

B
E

A

2-
B

Y
T

E

T
Y

PE

SO

P
R

IN
T

/P
O

K
E

I
T

.:
-
-
-
-
-
-
-

2
4

2
0

JI

M
M

E
D

JM

P
IM

M
ED

:
SP

R
IN

G
B

O
A

R
D

TO

IM

M
E

D
IA

T
E

M

O
D

E
T

Y
P

E
S

.

~

~
 ~ ~ ~

~
 ::l
 b o "I
j

Q
'\

V

J

2
4

3
0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

R
E

L
A

T
IV

E

A
D

D
R

E
SS

(B

N
E

)
T

Y
PE

S
2

4
4

0

R
EL

LD

A

P
A

S
S

:
O

N

PA
SS

1

,
D

O
N

'T

B
O

T
H

E
R

,
JU

S
T

IN

C
R

E
A

SE

PC

BY

2
2

4
5

0

B
N

E
M

RE
L

2
4

6
0

JM

P
TW

O
S

2
4

7
0

M

R
EL

S

E
C

:
O

N

PA
SS

2

,
SU

B
T

R
A

C
T

PC

FR

O
M

A

R
G

U
M

EN
T

TO

G
ET

R

E
L

.
B

R
A

N
C

H

2
4

8
0

LD

A

R
E

SU
L

T

2
4

9
0

SB

C

SA

2
5

0
0

PH

A
:

SA
V

E
LO

W

B
Y

TE

A
N

SW
ER

2

5
1

0

LD
A

R

E
S

U
L

T
+

l
2

5
2

0

SB
C

S

A
+

l
2

5
3

0

B
C

S
FO

R
:

IF

A
R

G
U

M
E

N
T

>
C

U
R

R
EN

T
P

C
,

TH
EN

IT

'S

A
 B

R
A

N
C

H

FO
RW

A
RD

2

5
4

0

CM
P

#$
F

F

2
5

5
0

B

EQ

M
PX

S
2

5
6

0

PL
A

2

5
7

0

JM
P

D
O

B
ER

R

2
5

8
0

M

PX
S

P
L

A
:

O
T

H
E

R
W

IS
E

,
C

H
EC

K

FO
R

O

U
T

O
F

R
A

N
G

E
B

R
A

N
C

H

A
TT

EM
PT

2

5
9

0

B
PL

B

E
R

R
:

O
U

T
O

F
R

A
N

G
E

(P
R

IN
T

ER

R
O

R

M
ES

SA
G

E
"B

E
R

R
")

2

6
0

0

JM
P

R
EL

M
;

A
N

D

JU
M

P
TO

R

EL

C
O

N
C

L
U

SI
O

N

R
O

U
T

IN
E

2

6
1

0

FO
R

B

EQ

M
PX

S1
;

C
H

EC
K

FO

R
W

A
R

D

B
R

A
N

C
H

O

U
T

O
F

R
A

N
G

E
2

6
2

0

PL
A

2

6
3

0

JM
P

D
O

B
ER

R

2
6

4
0

M

PX
Sl

PL

A

2
6

5
0

B

PL

R
EL

M
:

W
IT

H
IN

R

A
N

G
E

--
--

--
--

--
--

--
--

--
--

--
-

2
6

6
0

B

ER
R

JM

P
D

O
B

E
R

R
:

P
R

IN
T

"B

R
A

N
C

H

O
U

T
O

F
R

A
N

G
E"

ER

R
O

R

M
ES

SA
G

E
2

6
7

0

RE
LM

S

E
C

:
F

IN
IS

H

U
P

R
E

L
.

A
D

D
R

.
T

Y
PE

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
6

8
0

SB

C

#
2

;
C

O
R

R
EC

T
FO

R

TH
E

FA
C

T
TH

A
T

B
R

A
N

C
H

ES

A
R

E
C

A
LC

U
LA

TE
D

FR

O
M

TH

E
2

6
9

0

ST
A

R

E
SU

L
T

;
IN

ST
R

U
C

T
IO

N

FO
LL

O
W

IN
G

TH

EM
:

B
N

E
L

O
O

P:
L

D
A

1

5

W
O

U
LD

B

E
2

7
0

0

LD
A

#

0
:

C
A

LC
U

LA
TE

D

FR
O

M

TH
E

PC

O
F

TH
E

LD
A

1

5

2
7

1
0

ST

A

R
E

S
U

L
T

+
l

2
7

2
0

JM

P
TW

O
S:

NO

W

G
O

TO

TH

E
2-

B
Y

T
E

P

R
IN

T
/P

O
K

E

(W
IT

H

C
O

R
R

EC
T

A
R

G
U

M
EN

T)

2
7

3
0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

C
O

N
T

IN
U

E

A
D

D
R

.
M

O
D

E
A

N
A

L
Y

SI
S

trJ

<: ~
 ~ (I

) ~

III
 S· b o '1
j

~

2
7

4
0

EV

M
05

LD

Y

A
R

G
SI

Z
E

2

7
5

0

D
EY

2

7
6

0

LD
A

B

U
F

F
E

R
,Y

:
LO

O
K

A

T
L

A
ST

C

H
A

R
A

C
TE

R

O
F

A
R

G
U

M
EN

T
2

7
7

0

CM
P

#
4

4
:

IF

IT
'S

N

O
T

A

CO
M

M
A

,
TH

EN

T
H

IS

M
U

ST

B
E

A

JU
M

P
IN

S
T

R
U

C
T

IO
N

2

7
8

0

BN
E

JJ
U

M
P

:
SO

G

O

TO

TH
E

JU
M

P-
H

A
N

D
L

IN
G

R

O
U

T
IN

E

2
7

9
0

IN

Y

2
8

0
0

JM

P
X

Y
T

Y
PE

:
O

T
H

E
R

W
IS

E
,

IT

M
U

ST

B
E

A

,X

O
R

,Y

T

Y
PE

:-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
8

1
0

JJ

U
M

P

LD
A

O

P
:

H
A

N
D

LE

JM
P

M
N

EM
O

N
IC

2

8
2

0

CM
P

#
7

6
:

IF

TH
E

O
PC

O
D

E
IS

N
'T

7

6
,

IT
'S

N

O
T

A
 J

U
M

P
2

8
3

0

B
N

E
M

EV
:

SO

LO
O

K

FO
R

SO

M
E

T
H

IN
G

E

L
SE

2

8
4

0

JM
P

JU
M

P
:

NO
W

SP

R
IN

G
B

O
A

R
D

TO

TH

E
JU

M
P-

H
A

N
D

L
IN

G

R
O

U
T

IN
E

.-
--

--
--

--
-

2
8

5
0

M

EV

LD
A

R

E
SU

L
T

+1
:

IF

H
IG

H

B
Y

TE

O
F

R
E

SU
L

T

IS
N

'T

ZE
R

O

(Z
E

R
O

PG

.
A

D
D

R
)

2
8

6
0

BN

E
P

R
E

P
T

H
R

E
E

S
:

TH
EN

G

O

TO

TH
E

3-
B

Y
T

E

IN
S

T
R

U
C

T
IO

N
S

(L

IN
E

4

0
0

)
2

8
7

0

LD
A

T

P
:

O
T

H
E

R
W

IS
E

,
IT

'S

ZE
R

O

PA
G

E
M

O
D

E
2

8
8

0

CM
P

#
6

:
IF

H

IG
H

E
R

TH

A
N

T

Y
PE

6

,
IT

'S

A
N

O

R
D

IN
A

R
Y

2-

B
Y

T
E

T

Y
P

E

2
8

9
0

B

C
S

TW
O

S:

SO

G
O

T

H
E

R
E

.
2

9
0

0

CM
P

#
2

:
IF

T

Y
PE

2

,
A

LS
O

G

O

T
H

E
R

E
.

2
9

1
0

B
EQ

TW

O
S

2
9

2
0

LD

A

#
4

:
O

T
H

E
R

W
IS

E
,

A
D

D

4
TO

O

PC
O

D
E

A
N

D

FA
L

L

TH
R

O
U

G
H

IN

T
O

T

W
O

-B
Y

T
E

T

Y
PE

2

9
3

0

C
LC

2

9
4

0

A
D

C
O

P
2

9
5

0

ST
A

O

P
2

9
6

0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
B

Y
TE

T

Y
PE

S
(L

IK
E

LD

A

1
2

)
2

9
7

0

TW
O

S
JS

R

FO
R

M
A

T:

P
R

IN
T

/P
O

K
E

O

PC
O

D
E

2
9

8
0

JS

R

P
R

IN
T

2
:

TH
EN

P

R
IN

T
/P

O
K

E

A
R

G
U

M
EN

T
2

9
9

0

JM
P

IN
L

IN
E

:
A

N
D

F

IN
A

L
L

Y

PR
E

PA
R

E

TO

FE
T

C
H

N

EW

L
IN

E

O
F

SO
U

R
C

E
C

O
D

E

(2
0

0
0

)
3

0
0

0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

JM
P

3
0

1
0

JU

M
P

LD
Y

A

R
G

S
IZ

E
:

IS

IT

JM
P

1
5

0
0

O

R

JM
P

(1

5
0

0
)

3
0

2
0

LD

A

B
U

F
F

E
R

,Y
:

)
A

T
TH

E
EN

D

PR
O

V
E

S
IT

'S

A
N

IN

D
IR

E
C

T

JU
M

P
SO

3

0
3

0

CM
P

#4
1

3
0

4
0

B

N
E

JU
M

O

tT
l

<
 e:..
 ;J (D

 ~

III
 S· b o '1
j

Q
'\

U

1

3
0

5
0

LD

A

#
1

0
8

;
W

E
M

U
ST

C

H
A

N
G

E
TH

E
O

PC
O

D
E

FR
O

M

7
6

TO

1

0
8

3

0
6

0

ST
A

O

P
3

0
7

0

JU
M

O

JM
P

T
H

R
E

E
S;

T

R
E

A
T

IT

A

S
A

 N
O

RM
A

L
3-

B
Y

T
E

IN

S
T

R
U

C
T

IO
N

3

0
8

0

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

IM
M

E
D

IA
T

E

A
D

D
R

E
SS

IN
G

(#

T

Y
P

E
)

3
0

9
0

IM

M
ED

LD

A

B
U

F
F

E
R

+
l

3
1

0
0

CM

P
#

"
"
;

IS

T
H

IS

A
 C

H
A

R
A

C
TE

R

LO
A

D

PS
E

U
D

O
-O

P
L

IK
E

:
LD

A

#
"A

3

1
1

0

B
N

E
IM

M
ED

X

3
1

2
0

LD

A

B
U

F
F

E
R

+
2;

IF

S

O
,

PU
T

TH
E

A
S

C
II

C

H
A

R
.

IN
T

O

"R
E

S
U

L
T

"
(A

R
G

U
M

EN
T)

3

1
3

0

ST
A

R

E
SU

L
T

3

1
4

0

IM
M

ED
X

LD

A

TP

3
1

5
0

CM

P
U

3

1
6

0

BN
E

TW
O

S;

IF

IT
'S

T

Y
PE

1

,
A

D
JU

ST

O
PC

O
D

E
BY

A

D
D

IN
G

8

TO

IT
.

3
1

7
0

LD

A

#8

3
1

8
0

C

L
C

:A
D

C

O
P

:S
T

A

O
P

3
1

9
0

JM

P
TW

O
S

3
2

0
0

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
B

Y
TE

T

Y
PE

S
3

2
1

0

T
P

I
JS

R

FO
R

M
A

T:

JU
S

T

PO
K

E
O

PC
O

D
E

FO
R

T

H
E

S
E

,
T

H
E

R
E

'S

N
O

A

R
G

U
M

EN
T

3
2

2
0

JM

P
IN

L
IN

E
:

(L
IN

E

1
0

0
0

)
3

2
3

0

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
B

Y
TE

T

Y
PE

S
3

2
4

0

PR
E

PT
H

R
E

E
S

LD
A

T

P
;

SE
V

E
R

A
L

O

PC
O

D
E

A
D

JU
ST

M
E

N
T

S
(B

A
SE

D

O
N

T

Y
P

E
)

3
2

5
0

CM

P
#2

3

2
6

0

B
EQ

PT

T

3
2

7
0

CM

P
t7

:
(L

IN
E

4

3
0

)
3

2
8

0

B
N

E
P

T
I

3
2

9
0

PT

T

LD
A

O

P
3

3
0

0

C
LC

3

3
1

0

A
D

C
#8

3

3
2

0

ST
A

O

P
3

3
3

0

JM
P

T
H

R
E

E
S

3
3

4
0

P

T
I

CM
P

#6

3
3

5
0

B

C
S

T
H

R
E

E
S

~

$I
) - ~ C'D
 ~

$I
) ::i" b o "t
j

0
\

0
\

3
3

6
0

LD

A

O
P

3
3

7
0

C

LC

3
3

8
0

A

D
C

#

1
2

3

3
9

0

ST
A

O

P
3

4
0

0

T
H

R
E

E
S

JS
R

FO

R
M

A
T;

P

R
IN

T
/P

O
K

E

O
PC

O
D

E
3

4
1

0

JS
R

P

R
IN

T
3

;
P

R
IN

T
/P

O
K

E

2
B

Y
T

E
S

O
F

TH
E

A
R

G
U

M
EN

T
(3

0
0

0
)

3
4

2
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

PR
E

PA
R

E

TO

G
ET

A

 N
EW

L

IN
E

3

4
3

0

;P
R

IN
T

M

A
IN

IN

PU
T

A

N
D

C

O
M

M
EN

TS
,

TH
EN

TO

S

T
A

R
T

L
IN

E

3
4

4
0

IN

L
IN

E

LD
A

P

A
S

S
;

O
N

PA

SS

1
,

IG
N

O
R

E

T
H

IS

W
H

O
LE

PR

IN
T

O
U

T

T
H

IN
G

.
3

4
5

0

B
N

E
N

L
O

X
I

3
4

6
0

JM

P

JS
T

3

4
7

0

N
L

O
X

I
LD

A

SF
L

A
G

;
L

IK
E

W
IS

E
,

IF

SC
R

E
E

N
FL

A
G

IS

D

O
W

N
,

IG
N

O
R

E
.

3
4

8
0

B

N
E

N
LO

X

3
4

9
0

JM

P
JS

T

3
5

0
0

N

LO
X

LD

A

L
O

C
FL

A
G

;
A

N
Y

PC

A

D
D

R
E

SS

L
A

B
E

L

TO

P
R

IN
T

3

5
1

0

B
N

E
PR

M
M

X
l;

N
O

L

aC

TO

P
R

IN
T

(R

V
S

FL
A

G

U
SA

G
E

,
FO

R

S
P

E
E

D
)

3
5

2
0

LD

A

P
R

IN
T

F
L

A
G

;
P

R
IN

T

TO

P
R

IN
T

E
R

3

5
3

0

B
EQ

PR

M
M

3

5
4

0

LD
A

#

2
0

3

5
5

0

SE
C

3

5
6

0

SB
C

C

U
R

PO
S;

SU

B
T

R
A

C
T

C

U
R

R
EN

T
C

U
R

SO
R

P

O
S

IT
IO

N

3
5

7
0

ST

A

A
i

M
O

V
E

TH
E

C
U

R
SO

R

TO

20
T

H

CO
LU

M
N

O

N

T
H

E

SC
R

E
E

N

3
5

8
0

JS

R

C
L

R
C

H
N

;
PR

E
PA

R
E

P

R
IN

T
E

R

TO

P
R

IN
T

B

LA
N

K
S

3
5

9
0

LD

X

#4

3
6

0
0

JS

R

C
H

K
O

U
T

3
6

1
0

LD

Y

A

3
6

2
0

B

PL

PR
X

M
l

3
6

3
0

LD

Y

#2

3
6

4
0

JM

P
PR

M
LO

P
3

6
5

0

PR
X

M
l

LD
A

#

3
2

3

6
6

0

PR
M

LO
P

JS
R

P

R
IN

T
i-

--
--

--
--

--
--

--
-

P
R

IN
T

B

LA
N

K
S

TO

P
R

IN
T

E
R

~

~
 ~ ('1

) ~

III
 S· b o '1

j

(J
'\

'-
l

3
6

7
0

D

EY

3
6

8
0

BN

E
PR

M
L

O
P;

P

R
IN

T

M
O

RE

B
LA

N
K

S
TO

P

R
IN

T
E

R
;-

--
--

--
--

--
--

--
3

6
9

0

JS
R

C

L
R

C
H

N
;

R
E

ST
O

R
E

N

O
RM

A
L

I/
O

3

7
0

0

LD
X

#

l
3

7
1

0

JS
R

C

H
K

IN

3
7

2
0

PR

M
M

LD

A

#
2

0
;

PU
T

2
0

IN

T
O

C

U
R

R
EN

T
SC

R
E

E
N

C

U
R

SO
R

P

O
S

IT
IO

N

3
7

3
0

ST

A

C
U

R
PO

S
3

7
4

0

LD
A

#

<
F

IL
E

N
;

P
O

IN
T

"T

E
M

P
"

TO

PC

A
D

D
R

E
SS

L

A
B

E
L

FO

R

PR
IN

T
O

U
T

3

7
5

0

ST
A

TE

M
P

3
7

6
0

LD

A

#>
F

IL
E

N

3
7

7
0

ST

A

T
E

M
P

+
l

3
7

8
0

JS

R

PR
N

T
M

E
SS

;
P

R
IN

T

L
O

C
A

T
IO

N

L
A

B
E

L
;-

--
--

--
--

-
3

7
9

0

PR
M

M
X

1
LD

A

#
3

0
;

M
O

V
E

C
U

R
SO

R

TO

30
T

H

C
O

LU
M

N

3
8

0
0

SE

C

3
8

1
0

SB

C

C
U

R
PO

S
3

8
2

0

ST
A

X

;
SA

V
E

O
FF

SE
T

FR

O
M

C

U
R

R
EN

T
P

O
S

IT
IO

N

(3
0

-P
O

S
IT

IO
N

)
FO

R

P
R

IN
T

E
R

3

8
3

0

LD
A

#

3
0

3

8
4

0

ST
A

C

U
R

PO
S;

SE

T

SC
R

E
E

N

C
U

R
SO

R

P
O

S
IT

IO
N

TO

3

0

3
8

5
0

LD

A

P
R

IN
T

F
L

A
G

;
D

O

W
E

N
EE

D

TO

P
R

IN
T

B

LA
N

K
S

TO

TH
E

P
R

IN
T

E
R

3

8
6

0

B
EQ

PR

M
M

FI
N

3

8
7

0

JS
R

C

L
R

C
H

N
;

A
LE

R
T

P
R

IN
T

E
R

TO

R

E
C

E
IV

E

B
LA

N
K

S
3

8
8

0

LO
X

#

4

3
8

9
0

JS

R

C
H

K
O

U
T

3
9

0
0

LD

Y

X

3
9

1
0

B

EQ

PX
M

X
;

H
A

N
D

LE

NO

B
LA

N
K

S
(I

G
N

O
R

E
)

3
9

2
0

B

M
I

PX
M

X
;

H
A

N
D

LE

TO
O

M

A
N

Y

B
LA

N
K

S
(>

1
2

7
)

(I
G

N
O

R
E

)
3

9
3

0

LD
A

#

3
2

3

9
4

0

PR
M

LO
PX

JS

R

P
R

IN
T

;
P

R
IN

T

B
LA

N
K

S
TO

P

R
IN

T
E

R

FO
R

F

O
R

M
A

T
T

IN
G

--
--

--
--

3
9

5
0

D

EY

3
9

6
0

B

N
E

PR
M

L
O

PX
;

P
R

IN
T

M

O
RE

B

L
A

N
K

S
--

--
--

--
--

3
9

7
0

PX

M
X

JS

R

C
L

R
C

H
N

;
R

E
ST

O
R

E

N
O

RM
A

L
I/

O

~

III

~
 ~ ~ ~

III
 S· b o "0

Q
'\

(7

:)

3
9

8
0

LD

X

U

3
9

9
0

JS

R

C

H
K

I
N

:-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
0

0
0

PR

M
M

FI
N

JS

R

P
R

N
T

IN
P

U
T

:
P

R
IN

T

M
A

IN

IN
PU

T

B
U

FF
E

R

(B
U

L
K

O

F
SO

U
R

C
E

L
IN

E
)

4
0

1
0

LD

A

B
Y

T
FL

A
G

:
IS

TH

ER
E

A

<

O
R

>

PS

E
U

D
O

-O
P

TO

P
R

IN
T

-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
0

2
0

B

EQ

PR
X

M
:

H
A

N
D

LE

<
 A

N
D

>

4

0
3

0

CM
P

#
1

:
1

IN

B
Y

TF
LA

G

M
EA

N
S

<

4
0

4
0

B

N
E

M
05

4

0
5

0

LD
A

#

6
0

4

0
6

0

JM
P

PR
M

O

4
0

7
0

M

05

LD
A

#

6
2

:
PR

IN
T

>

4

0
8

0

PR
M

O

JS
R

P

R
IN

T

4
0

9
0

JS

R

P
T

P
l:

P

R
IN

T
>

O

R
<

.
P

T
P

I
IS

TO

P

R
IN

T
E

R
--

--
--

--
--

4
1

0
0

PR

X
M

LD

A

B
A

B
FL

A
G

:
IS

T

H
E

R
E

A

N
Y

CO

M
M

EN
T

TO

P
R

IN
T

(S

O
M

E
T

H
IN

G

FO
L

L
O

W
IN

G

:)

4
1

1
0

B

EQ

R
E

T
T

X
:

IF

N
O

T
,

S
K

IP

T
H

IS
.

4
1

2
0

JS

R

PR
N

T
SP

A
C

E
:

P
R

IN
T

A

 S
P

A
C

E
--

--
--

--
P

R
IN

T

C
O

M
M

EN
TS

F

IE
L

D

-
-
-
-
-
-
-
-
-
-

4
1

3
0

LD

A

#
5

9
:

P
R

IN
T

A

SE

M
IC

O
L

O
N

4

1
4

0

JS
R

P

R
IN

T

4
1

5
0

LD

A

#<
B

A
B

U
F:

PO

IN
T

"T

E
M

P"

TO

TH
E

C
O

M
M

EN
TS

B

U
FF

E
R

"B

A
B

U
F"

4

1
6

0

ST
A

TE

M
P

4
1

7
0

LD

A

#>
B

A
B

U
F

4
1

8
0

ST

A

T
E

M
P

+
l

4
1

9
0

JS

R

PR
N

T
M

E
SS

:
PR

IN
T

W

H
A

T
'S

IN

TH

E
C

O
M

M
EN

TS

B
U

FF
E

R

4
2

0
0

R

ET
TX

JS

R

PR
N

T
C

R
:

P
R

IN
T

C

A
R

R
IA

G
E

R

ET
U

R
N

4

2
1

0

LD
A

E

N
D

FL
A

G
:

IF

EN
D

FL
A

G

IS

U
P

,
JU

M
P

TO

TH
E

SH
U

TD
O

W
N

R

O
U

T
IN

E

4
2

2
0

B

N
E

F
IN

I
4

2
3

0

JS
T

JM

P
S

T
A

R
T

L
IN

E
:

O
T

H
E

R
W

IS
E

G

O

B
A

C
K

U

P
TO

G

ET

TH
E

N
EX

T
SO

U
R

C
E

L

IN
E

.
4

2
4

0

:-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

TH
E

EN
D

O

F
A

PA

SS

(1

O
R

2

)
4

2
5

0

F
IN

I
LD

A

PA
SS

4

2
6

0

BN
E

F
IN

:
IF

IT

'S

PA
SS

2

,
SH

U
T

E
V

E
R

Y
T

H
IN

G

D
O

W
N

.
4

2
7

0

IN
C

P

A
S

S
:

O
T

H
E

R
W

IS
E

,
C

H
A

N
G

E
PA

SS

1
TO

PA

SS

TW
O

(I

N

TH
E

FL
A

G
)

4
2

8
0

LD

A

T
A

i
PU

T
TH

E
O

R
IG

IN
A

L

ST
A

R
T

A

D
D

R
.

IN
T

O

TH
E

PC

PR
O

G
R

A
M

C

O
U

N
TE

R

(S
A

)

tT
l

<!
 ~
 ;J I'D

 ~

~.

::l
 b o "t
j

4
2

9
0

4

3
0

0

4
3

1
0

4

3
2

0

4
3

3
0

4

3
4

0

4
3

5
0

4

3
6

0

4
3

7
0

4

3
8

0

4
3

9
0

4

4
0

0

4
4

1
0

4

4
2

0

4
4

3
0

4

4
4

0

4
4

5
0

4

4
6

0

4
4

7
0

4

4
8

0

4
4

9
0

4

5
0

0

4
5

1
0

4

5
2

0

4
5

3
0

4

5
4

0

4
5

5
0

4

5
6

0

4
5

7
0

4

5
8

0

0
'\

4

5
9

0

\Q

ST
A

SA

LD

A

T
A

+1

ST
A

SA

+1

JS
R

C
L
R
C
H
N
~

R
E

ST
O

R
E

O

R
D

IN
A

R
Y

I/

O

C
O

N
D

IT
IO

N
S

LD
A

U

JS

R

C
L
O
S
E
~

C
L

O
SE

IN

PU
T

F

IL
E

JS

R

O
P
E
N
1
~

O
PE

N

IN
PU

T

F
IL

E

(P
O

IN
T

IT

TO

TH

E
1S

T

B
Y

TE

IN

TH
E

F
IL

E
)

JM
P

S
M
O
R
E
~

PA
SS

1

F
IN

IS
H

E
D

,
ST

A
R

T

PA
SS

2

(E
N

T
R

Y

P
O

IN
T

FO

R

PA
SS

2

)
-
-
-
-
-
-

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

SH
U

T
DO

W
N

LA
D

S
O

PE
R

A
T

IO
N

S
A

N
D

R

ET
U

R
N

TO

B

A
S

IC

-
-
-
-

F
IN

JS

R

C
L
R
C
H
N
~

R
E

ST
O

R
E

N

O
RM

A
L

I/
O

LD

A

#1

JS
R

C
L
O
S
E
~

C
L

O
SE

SO

U
R

C
E

C
O

D
E

IN
P

U
T

F

IL
E

LD

A

#2

JS
R

C
L
O
S
E
~

C
L

O
SE

O

B
JE

C
T

C

O
D

E
O

U
TP

U
T

F
IL

E

(I
F

A

N
Y

)
LD

A

P
R
I
N
T
F
L
A
G
~

IS

TH
E

P
R

IN
T

E
R

A

C
T

IV
E

B

EQ

F
I
N
F
I
N
~

IF

N
O

T
,

JU
S

T

R
ET

U
R

N

TO

B
A

S
IC

JS

R

C
L
R
C
H
N
~

O
T

H
E

R
W

IS
E

SH

U
T

DO
W

N
P

R
IN

T
E

R
,

G
R

A
C

E
FU

L
L

Y
.

LD
X

#4

JS

R

C
H

K
O

U
T

LD
A

U
3
~

JS
R

P

R
IN

T

JS
R

C

LR
C

H
N

LD

A

#4

JS
R

C

L
O

SE

B
Y

P

R
IN

T
IN

G

A
 C

A
R

R
IA

G
E

R

ET
U

R
N

F
IN

F
IN

JM

P
T
O
B
A
S
I
C
~

R
ET

U
R

N

TO

B
A

S
IC

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

,X

O
R

,Y

A
D

D
R

E
SS

IN
G

T

Y
PE

X

Y
TY

PE

LD
A

B
U
F
F
E
R
,
Y
~

LO
O

K

A
T

L
A

ST

C
H

A
R

.
IN

A

R
G

U
M

EN
T

CM
P

#
8
8
~

IS

IT

A
N

X

B

EQ

L
7

2
0

~ Pol
 - ~ ('!

) ~

Po
l Er
 b o "C

j

~

4
6

0
0

D

E
Y

:
O

T
H

E
R

W
IS

E
,

LO
O

K

A
T

TH
E

3R
D

C

H
A

R
.

FR
O

M

EN
D

O

F
A

R
G

U
M

EN
T

4
6

1
0

D

EY

4
6

2
0

LD

A

B
U

F
F

E
R

,Y
:

IS

IT

A

R
IG

H
T

PA

R
E

N
T

H
E

SI
S

4
6

3
0

CM

P
#4

1
4

6
4

0

BN
E

Z
E

R
O

Y
:

IF

N
O

T
,

IT
'S

N

O
T

A
N

IN

D
IR

E
C

T

A
D

D
R

.
M

O
D

E
4

6
5

0

JM
P

IN
D

IR
:

IF

SO
,

IT

IS

A
N

IN

D
IR

E
C

T

A
D

D
R

E
SS

IN
G

M

O
D

E
4

6
6

0

ZE
R

O
Y

LD

A

R
E

S
U

L
T

+
1;

C

H
EC

K

H
IG

H

B
Y

TE

O
F

R
E

SU
L

T

(Z
E

R
O

P

G
.

O
R

N
O

T
)

4
6

7
0

B

N
E

L
6

8
0

;
ZE

R
O

Y

 T
Y

PE

4
6

8
0

LD

A

T
P

:
A

D
JU

ST

O
PC

O
D

E
B

A
SE

D

O
N

T

Y
PE

4

6
9

0

CM
P

#2

4
7

0
0

B

EQ

L
7

3
0

4

7
1

0

CM
P

#5

4
7

2
0

B

EQ

L
 7

3
0

4

7
3

0

CM
P

#
l

4
7

4
0

B

EQ

L
7

6
0

4

7
5

0

L
6

8
0

LD

A

T
P

4

7
6

0

CM
P

#
l

4
7

7
0

B

N
E

L
6

9
0

4

7
8

0

LD
A

O

P
4

7
9

0

C
LC

4

8
0

0

A
D

C
#

2
4

4

8
1

0

ST
A

O

P
4

8
2

0

JM
P

T
H

R
E

E
S

4
8

3
0

L

6
9

0

LD
A

T

P
4

8
4

0

CM
P

#5

4
8

5
0

B

EQ

M
6

4
8

6
0

LD

A

#
$

3
1

4

8
7

0

JS
R

P

4
8

8
0

JM

P
L

7
0

0

4
8

9
0

M

6
LD

A

O
P

4
9

0
0

C

LC

~ ~
 ;i

I'D
 f. ::s r o "I
j

""
I

.....
.

4
9

1
0

A

D
C

#
2

8

4
9

2
0

ST

A

O
P

4
9

3
0

JM

P
T

H
R

E
E

S
4

9
4

0

~
-
-
-
-
-
-
-
-
-
-
-

P
R

IN
T

A

SY

N
TA

X

ER
R

O
R

M

ES
SA

G
E

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
9

5
0

L

7
0

0

JS
R

E
R
R
I
N
G
~

R
IN

G

ER
R

O
R

B

E
L

L

A
N

D

TU
R

N

O
N

R

E
V

E
R

SE

C
H

A
R

A
C

T
E

R
S

4
9

6
0

JS

R

P
R
N
T
L
I
N
E
~

P
R

IN
T

L

IN
E

N

U
M

B
ER

4

9
7

0

LD
A

#
<
M
E
R
R
O
R
~

P
O

IN
T

"T

E
M

P"

TO

SY
N

TA
X

ER

R
O

R

M
ES

SA
G

E
4

9
8

0

ST
A

TE

M
P

4
9

9
0

LD

A

#>
M

ER
R

O
R

5

0
0

0

ST
A

T

E
M

P+
!

5
0

1
0

JS

R

P
R

N
T

M
E

S
S

:J
S

R

P
R
N
T
C
R
~

P
R

IN
T

TH

E
M

ES
SA

G
E

5
0

2
0

JM

P
I
N
L
I
N
E
~

GO

TO

TH
E

G
E

T
-T

H
E

-N
E

X
T

-L
IN

E

R
O

U
T

IN
E

5

0
3

0

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

C
O

N
T

IN
U

E

A
N

A
L

Y
SI

S
O

F
A

D
D

R
.

M
O

D
E

5
0

4
0

L

7
2

0

LD
A

R
E
S
U
L
T
+
l
~

M
A

K
E

FU
R

TH
ER

A

D
JU

ST
M

E
N

T
S

TO

O
PC

O
D

E
5

0
5

0

B
N

E
L
7
8
0
~

N
O

T
ZE

R
O

PA

G
E

5
0

6
0

L

7
3

0

LD
A

T

P
5

0
7

0

CM
P

#2

5
0

8
0

B

N
E

L
7

4
0

5

0
9

0

LD
A

#

1
6

5

1
0

0

C
LC

5

1
1

0

A
D

C
O

P
5

1
2

0

ST
A

O

P
5

1
3

0

JM
P

TW
O

S
5

1
4

0

L
7

4
0

CM

P
U

5

1
5

0

B
EQ

L

7
5

9

5
1

6
0

CM

P
#3

5

1
7

0

B
EQ

L

7
5

9

5
1

8
0

CM

P
#5

5

1
9

0

B
EQ

L

7
5

9

5
2

0
0

L

IS
0

LD

A

#
$

3
2

5

2
1

0

JS
R

P

tr:1

<
 ~
 ~ ro ~

I)
.l S· b o "C
l

'-
J

IV

5
2

2
0

5

2
3

0

5
2

4
0

5

2
5

0

5
2

6
0

5

2
7

0

5
2

7
1

5

2
7

2

5
2

7
3

5

2
7

4

5
2

7
5

5

2
8

0

5
2

9
0

5

3
0

0

5
3

1
0

5

3
2

0

5
3

3
0

5

3
4

0

5
3

5
0

5

3
6

0

5
3

7
0

5

3
8

0

5
3

9
0

5

4
0

0

5
4

1
0

5

4
2

0

5
4

3
0

5

4
4

0

5
4

5
0

5

4
6

0

5
4

7
0

JM
P

L
7

0
0

L

7
5

9

LO
A

#

2
0

C

LC

A
D

C

O
P

ST
A

O

P
;

-
-
-
-
-
-
-
-
-
-

SE
E

C

H
A

PT
E

R

1
1

FO

R

E
X

PL
A

N
A

T
IO

N

O
F

T
H

IS

ER
R

O
R

T

R
A

P
-
-
-
-
-

L
7

6
0

LO

A

B
U

F
F

E
R

+
2,

Y
:C

M
P

#

8
9

:B
N

E

M
L

76
0;

-
-
-

ER
R

O
R

T

R
A

P
FO

R

LO
A

(1

5
,y

)
LO

A

O
P

:C
M

P

#
1

8
2

:B
E

Q

M
L

76
0;

IS

TH

E
M

N
EM

O
N

IC

LO
X

(I

F

S
O

,
M

O
D

E
IS

C

O
R

R
E

C
T

)
JM

P
L

6
8

0
;

IF

N
O

T
,

JU
M

P
TO

M

A
K

E
IT

(L

D
A

$

0
0

1
5

,y
)

A
B

SO
L

U
T

E

Y

M
L

76
0

JM
P

TW
O

S
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
, L

7
8

0

LO
A

T

P

CM
P

#2

B
N

E
L

7
9

0

LO
A

#

2
4

C

LC

A
D

C

O
P

ST
A

O

P
JM

P
T

H
R

E
E

S
L

 7
9

0

CM
P

#
l

B
EQ

L

8
0

9

CM
P

#3

B
EQ

L

8
0

9

CM
P

#5

B
EQ

L

8
0

9

L
8

0
0

LO

A

#
$

3
3

JS

R

P
JM

P
L

7
0

0

L
8

0
9

LO

A

#
2

8

C
LC

A

D
C

O
P

~

III

~
 ~ (t

) ~

III
 :r r o '1
j

'1

W

5
4

8
0

5

4
9

0

5
5

0
0

5

5
1

0

5
5

2
0

5

5
3

0

5
5

4
0

5

5
5

0

5
5

6
0

5

5
7

0

5
5

8
0

5

5
9

0

5
6

0
0

5

6
1

0

5
6

2
0

5

6
3

0

5
6

4
0

5

6
5

0

5
6

6
0

5

6
7

0

5
6

8
0

5

6
9

0

5
7

0
0

5

7
1

0

5
7

2
0

5

7
3

0

5
7

4
0

5

7
5

0

5
7

6
0

5

7
7

0

5
7

8
0

ST
A

O

P
JM

P
T

H
R

E
E

S
;

EN
D

O

F
A

D
D

R
.

M
O

D
E

E
V

A
L

U
A

T
IO

N
S

A
N

D

A
D

JU
ST

M
E

N
T

S

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

ER
R

O
R

R

E
PO

R
T

IN
G

FO

R

D
E

B
U

G
G

IN
G

(P

R
IN

T
S

P

C
)

P
ST

A

A
;

W
H

EN

Y
O

U

IN
S

E
R

T

A

"J
S

R

pO
I

IN
T

O

Y
O

U
R

SO

U
R

C
E

C
O

D
E

,
T

H
IS

R

O
U

T
IN

E

ST
Y

Y

;
W

IL
L

P

R
IN

T

TH
E

PC

FR
O

M

W
H

IC
H

Y

O
U

JS

R
'E

D
.

ST
X

X

:
A

FT
E

R

A
N

R

T
S

,
T

H
IS

W

IL
L

R

EV
EA

L
TH

E
JS

R

A
D

D
R

.
LD

A

#$
B

A
;

P
R

IN
T

A

 G
R

A
PH

IC
S

SY
M

B
O

L
TO

SI

G
N

A
L

TH

A
T

TH
E

PC

IS

TO

FO
LL

O
W

JS

R

P
R

IN
T

P

L
A

;
SA

V
E

TH
E

R
TS

A

D
D

R
E

SS

(T
O

K

E
E

P
TH

E
ST

A
C

K

IN
T

A
C

T
)

T
A

X

PL
A

TA

Y

T
Y

A

PH
A

TX

A

PH
A

T

Y
A

JS

R

O
U

TN
U

M
;

P
R

IN
T

TH

E
PC

A

D
D

R
E

SS
.

LD
A

A

;
R

E
ST

O
R

E

TH
E

R
E

G
IS

T
E

R
S

.
LD

Y

Y

LD
X

X

R

TS

--
--

--
--

--
--

--
--

--
--

--
--

--
-

, C
LE

A
N

LA
B

LD

Y

#
0

;
F

IL
L

S

M
A

IN

IN
P

U
T

B

U
FF

E
R

("

L
A

B
E

L
")

W

IT
H

Z

E
R

O
.

C
L

E
A

N
S

IT
.

TY
A

C

LE
M

O
R

E
ST

A

L
A

B
E

L
,Y

IN

Y

C
PY

#

8
0

B

N
E

C
LE

M
O

R
E

R
TS

~ III
 :-:- ~ rn ~ S· b o '1
j

'-
l .,..

5
7

9
0

5

8
0

0

5
8

1
0

5

8
2

0

5
8

3
0

5

8
4

0

5
8

5
0

5

8
6

0

5
8

7
0

5

8
8

0

5
8

9
0

5

9
0

0

5
9

1
0

:
--

--
--

--
-P

R
IN

T

B
R

A
N

C
H

O

U
T

O
F

R
A

N
G

E
ER

R
O

R

M
E

S
S

A
G

E
--

--
--

--
--

--
-

D
O

B
ER

R

JS
R

PR

N
T

C
R

:
P

R
IN

T

"B
R

A
N

C
H

O

U
T

O
F

R
A

N
G

E"

ER
R

O
R

M

ES
SA

G
E

JS
R

E

R
R

IN
G

JS

R

P
R

N
T

L
IN

E
:

P
R

IN
T

TH

E
L

IN
E

N

U
M

B
ER

LD

A

#<
M

B
O

R
:

P
O

IN
T

"T

E
M

P"

TO

TH
E

ER
R

O
R

M

ES
SA

G
E

"M
B

O
R

"
ST

A

T
E

M
P:

(M

E
SS

A
G

E

B
R

A
N

C
H

O

U
T

O
F

R
A

N
G

E
,

M
B

O
R

)
LD

A

#>
M

B
O

R

ST
A

T

E
M

P
+

l
JS

R

PR
N

T
M

E
SS

:
P

R
IN

T

TH
E

M
ES

SA
G

E
JS

R

PR
N

T
C

R
:

P
R

IN
T

A

C

A
R

R
IA

G
E

R

ET
U

R
N

A

N
D

JM

P
TW

O
S:

B

U
N

G
LE

A

S
A

N

O
R

D
IN

A
R

Y

2-
B

Y
T

E

EV
EN

T
(T

O

K
E

E
P

PC

C
O

R
R

E
C

T
)

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
, .F

IL
E

EQ

U
A

TE

P
ro

gr
am

 3
-2

.
E

va
l,

 A
p

p
le

 M
od

if
ic

at
io

n
s

T
o

cr
ea

te
 t

he
 A

pp
le

 v
er

si
on

 o
f

E
va

l,
 c

ha
ng

e
th

e
fo

ll
ow

in
g

li
ne

s
in

 P
ro

gr
am

 3
-1

:

25

SE
T

U
P

JM
P

E
D

IT
S

U
:

ST
A

R
T

TH

E
W

ED
G

E
4

0

LD
Y

#

5
0

2

0
0

CM

P
#$

A
0

2
2

0

2
3

0

2
4

0

3
1

0

CM
P

#$
A

0:

IF

N
O

SE

C
O

N
D

B

LA
N

K

SP
A

C
E

4

2
8

2

S
E

C
:

SA
V

E
TH

E
LE

N
G

TH

O
F

TH
E

C
O

D
E

4
2

8
3

LO

A

S
A

:
FO

R

TH
E

T
H

IR
D

A

N
D

FO

U
R

TH

4
2

8
4

SB

C

T
A

:
B

Y
T

E
S

O
F

TH
E

B
IN

A
R

Y

4
2

8
5

ST

A

L
E

N
PT

R
:

F
IL

E

C
R

EA
TE

D

BY

TH
E

4
2

8
6

LD

A

S
A

+
l:

.D

PS

E
U

D
O

P

~

~
 ;l

('I
) ~

!!:.

=' b o '0

'-
l

U
1

4
2

8
7

SB

C

T
A

+
l

4
2

8
8

ST

A

L
E

N
P

T
R

+
l

5
7

7
0

C

p
y

#

2
5

5

P
ro

gr
am

 3
-3

.
E

va
l,

A
ta

ri
 M

od
if

ic
at

io
n

s

1
!2

!

3~
!1

41
Z1

5
~
1

6
12

!

7!
Z1

81

Z1

91
Z1

1

IZI
!ZI

1

1
0

1

2
0

1

3
0

14

!Z
1

1
5

0

1
6

0

17
!Z

1
1

8
0

19

!Z
1

2
0

0

2
1

0

2
2

0
 To

 c
re

at
e

th
e

A
ta

ri
 v

er
si

on
 o

f
E

va
l,

ch
an

ge
 t

he
 f

ol
lo

w
in

g
li

ne
s

in
 P

ro
gr

am
 3

-1
:

:A
T

A
R

I
M

O
D

IF
IC

A
T

IO
N

S
-
-

"E
V

A
L

"
T

O
P

JM

P

E
D

IT

S
T

A
R

T

L
D

A

#
0

S

T
A

8

2

L
D

Y

#
4

8

S
T

R
T

L
P

S

T
A

O

P
,Y

O

E
Y

B

N
E

S

T
R

T
L

P

L
D

A

#
<

T
O

P

S
T

A

M
E

M
T

O
P

S

T
A

A

R
R

A
Y

T
O

P

L
O

A

#
>

T
O

P

S
T

A

M
E

M
T

O
P

+
1

S

T
A

A

R
R

A
Y

T
O

P
+

1

L
O

A

#
1

S

T
A

H

X
F

L
A

G

JS
R

C

L
R

C
H

N

L
O

A

R
A

M
F

L
A

G

B
N

E

S
M

O
R

E

L
D

Y

#1
21

L

O
X

A

R
G

P
O

S

tT
l

<: III
 ::- ~

::r
'

('1
) ~

III
 ::s S' 0 "0

'J

2
3

0

0
'\

2

4
0

2

5
0

2

6
0

2

7
0

2
B
~
1

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5
~

4
7

0

4
2

7
1

4

2
7

2

4
2

7
3

4

2
7

4

4
3

5
1

4

3
5

2

4
3

5
3

4

3
6

0

4
4

1
5

5
5

5
0

5

9
1

 Q
I

IN
X

S

T
M

0

L
O

A

B
A

B
U

F
,X

C

M
F'

#

1
5

5

B
E

D

S
T

M
!

S
T

M
3

S

T
A

F

IL
E

N
,Y

IN

Y

IN
X

JM

P

ST
M

iil

S
T

M
!

S
T

Y

F
N

A
M

E
L

E
N

JS

R

O
P

E
N

1

L
O

A

1
6
~
1

L
O

A

S
A

S

T
A

L

L
S

A

L
O

A

S
A

+
l

S
T

A

L
L

S
A

+
!

L
O

A

R
A

M
F

L
A

G

B
N

E

O
V

E
R

O
P

E
N

JS

R

O
P

E
N

!
O

V
E

R
O

P
E

N

JM
P

S

M
O

R
E

L

O
X

#

2
:J

S
R

C

H
k

O
U

T
:L

O
A

#

0
:J

S
R

P

R
IN

T
:J

S
R

C

L
R

C
H

N

L
D

A

#1
61

11

.F
IL

E

O
:E

Q
U

A
T

E
.S

R
C

tr
l <
 ~
 ;l

~
 ~

~.

::l
 b 0 "0

Equate and Array:
Data Base Management

The job of setting up an array in machine language is simpler
than you might imagine. The subprograms Equate and Array
build and access a data base.

There are two basic ways to go about storing information:
in fixed or in variable length fields. (A field in data base
management means a single item, such as a single label name
in LADS.) Fixed fields are easier to search, modify, and sort.
Variable length fields save memory space. LADS uses variable
length fields so the label table will take up as little space
as possible.

A fixed field label system of managing data assigns a
specified size in bytes for each item. If we had wanted to use
this method of data storage for LADS' labels, we could have
made a rule that label names cannot be larger than ten letters
long. This would obviously make it simpler to manage the data.

However, then any label, even short labels, would always
take up ten bytes. That would use up memory rather in
efficiently. Instead, LADS allows labels to be of any length. If
you are like me, the labels that you will think up naturally
(without any restrictions imposed on your imagination) will
normally average about five characters in length. Some will be
longer, some shorter, but the average label will take up five
bytes. Two bytes will be attached to each label to hold the inte
ger number value which the label stands for. So, the average
LADS variable (label name plus two-byte integer) takes up
seven bytes. However, these variable length fields use up about
40 percent less memory when you consider that fields fixed at
ten bytes would always take up ten bytes plus the two-byte
number, never less.

Sons, Daughters, Clones
LADS itself is, of course, an ML program. You can have LADS
object code assemble the LADS source code to disk or some
where in RAM memory. This would create a new version of
the assembler. If you'd made any changes to the source code, it
would be an offspring, a son or daughter of LADS. If you
didn't change the source code, you 'd have created a clone, but
the start address would differ.

79

Equate and Array: Data Base Management

LADS is about 5K long and uses 402 different labels. When
it assembles itself from its own source code, it builds a label ta
ble which is 2851 bytes large. If it had fields fixed at ten bytes,
the label table would be 4824 bytes large.

Why worry? It's true that the label table matters only dur
ing the actual assembly process. As soon as object code has
been created and LADS returns to BASIC, the label table has
served its purpose and can be tossed out like an eggshell after
the egg is in the pan.

There are two good reasons for conserving memory: (1) the
environment and (2) interactive freedom. Picture this: While
assembling itself (or a comparably large program), LADS uses
up about 8K of memory-5K for itself, perhaps 3K for the label
table that builds down from the bottom of the assembler. And
if you've chosen the option of assembling object code to RAM
memory, add another 5K for the object code (the resulting ML
program). A total of 13K. In some computers, this represents a
significant bite out of the available memory.

What's more, LADS is supposed to be interactive. You are
to have the psychological freedom you have with BASIC, to
change things, to experiment, and then to quickly assemble and
test the result. This means that you need space to write your
source program (in RAM where a BASIC program is normally
written). Perhaps you'll want a monitor extension in RAM too,
like "Micromon" or "Supermon" or some other collection of
ML utilities which permit single-step analysis of ML object pro
grams, and other tools which are useful when debugging object
code. And you might want "BASIC Aid" or "POWER" or some
BASIC auto numbering, and other BASIC aids to manipulate
the source code. You might want two different versions of your
object code in RAM simultaneously so you can compare them
in action.

The Programming Environment
All of these options require available RAM. If you can have
them all in memory at once, you've got a better environment for
developing an ML program. You won't always need to wonder
if it's worth loading in a certain routine or utility: They're all
there and ready to go. All your tools are at hand. This is a
more efficient way to program. Tools that are out of reach are
usually tools left unused.

Second, you want as few restrictions as possible when

80

Equate and Array: Data Base Management

working with ML. You don't want to concern yourself about
the length of each label name. Is it short enough? Does it dupli
cate a similar name? Eliminating these questions, too, is part of
the interactivity, the mental freedom that comes with a
smoothly running, efficient program development system. Vari
able length labels promote both effective memory conservation
and an efficient programming environment.

Equate
The Equate subprogram starts off with one of those LDY #255
initializations. Remember that we don't always want to LDY #0
before a loop. There are times when the first event is the zeroth
event. This is one of those times .

Line 40 sets Y to 255 so the INY in line 50 will make Y =
O. This allows us to LDA LABEL,Y and receive the first charac
ter in the buffer called LABEL. If we had set Y=O, the INY
would have forced us to look at the second character in the
buffer. Why not put the INY lower in the loop somewhere?
That way, we would load in the first character the first time
through the loop.

Obviously we can't INY just before the BNE in line 90.
That would branch depending on the condition of Y itself, not
on the item in A (which is our intention). For the same reason,
we can't put it just before the BEQ in line 70. The only other
safe place for it would be in a line between 70 and 80. That
wouldn't do any damage to the branches because the eMP will
reset the flags and the following BNE will act correctly.

This loop isn' t moving characters from one buffer to an
other or anything. Its sole purpose is to count the number of
characters in a label name, to find the length of the label. Y is
the counter.

While locating Y in a line 75 would work correctly, it
would be less clear what the loop is accomplishing. In cases
like this, you have to decide where your personal priorities lie:
Do you want to emphasize the function of a routine in a way
that's more easily understood, or do you want to emphasize a
uniform style of coding loops? If you prefer to always start such
loops with LDY #0, by all means, go ahead. But that LDY #255
serves to alert you that this loop is a special kind of loop. If you
come back later to modify a program, such signals can be
helpful.

81

Equate and Array: Data Base Management

Once the length of our label is discovered, we add 2 to it
by INY INY, to make room for the two-byte integer which will
be attached to the label in our array. Each label stands for a
number. And any legal number in ML can be stored within two
bytes as an integer between 0 and 65535 ($OOOO-$FFFF).

Equate is called upon only during pass 1. On pass I, the
assembler puts each label into the array and attaches the two
byte integer onto the end of the word. So Equate's first job is to
find out how much room to make in the array for each new la
bel it comes upon. It makes room by lowering the MEMTOP
variable by the length of the label name, plus two.

Building the Array Downward
SUBMEM moves our pointer down to make room for a new la
bel. When SUBMEM is finished (200), the array is larger by the
size of the new word we're adding to it, plus two bytes for the
value of the word. The array is thus expanded, lowered.

Now we can store the label in the array. The first letter of
each label in the array is special. It's shifted. That is, we add
$80 (128 decimal) to the normal ASCII code value of the
character. This is the same as setting the seventh bit.

If the label is "addnum," we want to store it as "Addnum"
so that when we later search through the array, we can locate
the start of each new label. The shifted letter will be our delim
iter, separating the different labels. With fixed length fields, we
wouldn't need a delimiter at all-each label would be exactly
the same size as every other label. But our labels can vary in
length, so we have to know where one begins and another
ends.

The array will look like this (the xx is the two-byte value
of each label):
AddnurnxxSecondwordxxThirdwordxxFourthlabelxxFifhlabelxx

What exactly does it mean to say that a letter is shifted? In
the ASCII code for alphabetic, numeric, punctuation (! or . or ,),
and symbolic (# or % or *) characters, everything is assigned a
code number which is lower than 128. Above 128 are the
uppercase versions of letters, etc. Hence, above 128, the charac
ters are shifted. For the purposes of ML, a shifted character is
something with an ASCII code value greater than 127. It has
the seventh bit set in its byte: 10000000. That leftmost bit
would always be up in any shifted character. This phenomenon

82

Equate and Array: Data Base Management

makes it easy to distinguish between shifted and unshifted
characters. We can just LDA CHARACTER and then BMI
(branch if seventh bit up) or BPL (branch if seventh bit down).
The subprogram Array will make good use of this clue.

For now, all we want to do is shift the first character before
we store it into the array. We just set up the seventh bit. If
that's the same as adding $80 to a character, why not simply
ADC $80 instead of EOR $80 (230)? With EOR we get a 1 if ei
ther of the compared bits is set. We get a 0 if both bits are 1 or
if both bits are O. The only way we get a 1 is if one of the bits
is 0 and the other bit is 1. Any other situation results in a O.
Look at a bit comparison:
1 EOR 1 = 0
o EOR 0 = 0
1 EOR 0 = 1

Consequently, EOR $80, with the $80 (binary 10000000)
acting as a mask, will leave all the bits in the Accumulator un
changed, but will set the seventh bit. The main reason to use
EOR is that we don't have to bother with clearing the carry
(CLC) as we normally would prior to any addition.

After we store the shifted first letter in what is currently
the lowest position in the array, we INY. This serves two pur
poses: It points us to the second character in the label word and
also points us to the second space from the bottom of the array
(where the second character of the label word belongs).

Address or Equate?
Now we load the second character and check if it's a space
(260-280). We might be dealing with a one-character-Iong label,
like P. We've got to check for this eventuality. Finding such a
short label, we would jump down to see if there's an = sign.
But if the label is more than one character long, we store the
second letter in the array (290) and jump back up to fetch and
store the third and any additional letters in the label name.

The essential thing to notice here is that a space is our
delimiter in the buffer-letting us know when we've reached
the end of the label word. And after finding a space, we are
then prepared to distinguish between the two types of labels:
PC and equate.

We compare the character following the space to $3D (this
is the = sign). If it is an = sign, we branch to the routine

83

Equate and Array: Data Base Management

which assesses the argument following the equals sign (is it
hex? is it decimal?). Otherwise, we go through this BEQ to the
routine which handles PC-type labels (Program Counter types
like: LABEL LOA 15, where the label indicates a location within
the assembled program).

Storing the value of this kind of label is pretty simple: We
just put the SA into the array. SA is the variable which always
holds the current address during an assembly. But one thing re
mains to be done before we can return to the Eval subprogram
to evaluate the LOA 15 part of this line. We've got to wipe out
the word LABEL which precedes the LOA 15. Eval wouldn't
know how to evaluate it. It's not a mnemonic.

After loading LABSIZE (the length of the label) into X, we
load Y with O. Y will point to the first space in the buffer, while
X will count down until we've covered over the word LABEL
(430).

Removing an Address Label
We load the leftmost part of the mnemonic/argument pair (the
L of LOA is first), and we store it in the leftmost space in the
buffer. In other words, the L of LOA covers up the L of LABEL.
We continue with this process until we've loaded in a 0 and
have therefore replaced LABEL LOA 15 with LOA 15, where
upon we store the final 0 as a delimiter and can return to Eval
(510).

This next subroutine, NOAR (520), isn't in any sequential
relationship to the other routines. It just happens to be here. It
could be anywhere else in LAOS just as easily. Its function is to
ring the error bell and point TEMP to the message NAKED LA
BEL and then print that error message. It handles those cases
when a programmer forgot to put anything after a label:
00 LABEL:INY

or
100 LABEL

or
100 LABEL =

Equate Labels
If we're not dealing with a PC-type label, though, we come
here to store an equate label like LABEL = $22 (590) into the

84

Equate and Array: Data Base Management

label array. We need to store Y first (in the variable LABPTR)
so we can remember where in our array to put the value, the
number following the equals sign. Remember that we've al
ready stored the label name. What we need to do now is to put
the value in the two bytes just following that name. When we
arrive at this subroutine, Y is holding the correct offset from
MEMTOP, the correct distance up in memory, from the bottom
of the array to store the value.

There are now two possibilities. We are dealing with either
a decimal number or a hex number. Hex numbers are translated
by Indisk, the input subprogram, as they flow in from a disk
file or RAM memory source code. So a hex number is already
in the RESULT variable, waiting to be stored in the array.

But decimal numbers aren't translated as they come in.
What's more, they arrive in ASCII form and must be converted
into an integer by the subprogram Val dec.

We check the HEXFLAG to see if it's a hex number (610).
If so, we can just put RESULT into the array and return to Eval
(750).

But if it's a decimal number, we add the value of Y + 3 to
the start-of-buffer address and point TEMP to the first character
in the number we need to evaluate. We have to add this three
to Y because the expression "space-equals sign-space" takes up
three bytes. If we add this to the start of the buffer address,
we're pointing to the first character in the number, pointing to
the 1 in an example like: LABEL = 15.

Then we JSR to VALDEC, which looks at the number
pointed to by TEMP and translates it from ASCII to an integer
and puts the answer in the two-byte variable RESULT.

After this, we go through the same process as with hex
numbers described above. The RESULT is transferred to the ar
ray, we pull off the two-byte RTS left on the stack (when we
JSRed here from the Eval subprogram), and then jump back
into Eval at INLINE, the place where a new line is pulled in
from disk.

Array
The Array subprogram is essentially a search routine. It looks
up a label's name in the array that was built by the Equate sub
program. When it finds a match, it puts the integer value of the
array word into the variable RESULT. In effect, Array replaces a

85

Equate an d Array: Data Base Management

label with its number. Here's an example fragment of source
code:
10 *= 864
100 NAME = 2
110 LABEL = 15
120 START LOA LABEL

On pass I, Equate would store "Start864Label15Name02"
into the array. The LADS label array builds down from the
location of the start of LADS object code in memory. That is,
the first part of LADS itself would be right above Name02. Line
120 contains two labels, START and LABEL. However, Equate
ignores any labels which are not the first word in a given line.
It only stores labels when it comes across the line in which
they are defined. Any label being defined will be the first item
in a given line. And if they are defined twice in the source
code, that's an error.

(Note that, in the example of array storage above, Start864
is for illustration only. The number 864 is stored as a two-byte
integer, not as 864, the ASCII characters we can read.)

While Equate ignores any label which is not the first thing
on a line, Array ignores any label that is the first thing on a
line. In the example above, Array would pay no attention to
any of the labels except LABEL in line 120. It's Array's job to
evaluate expression labels. An expression label is one that is
used in an expression, one that is used as the argument of a
mnemonic.

Array Works on Both Passes
Nevertheless, Array must operate on pass 1 as well as on pass
2. This is because pass 1 must keep an accurate pc, an accurate
Program Counter. For Equate to store the correct number for la
bels, of the address (PC) type (like START in the example
above), it must be able to find out precisely where in memory a
given line is to be assembled. It must know that START is lo
cated at 864.

This problem derives from Zero Page addressing. LOA 15
takes up only two bytes in memory when assembled. LOA
1500 takes up three bytes . If labels were used in place of 15
and 1500 in these instructions, we must know
whether to raise the PC by two or by three. So Array must look
up all arguments on pass 1 to decide how much to increment

86

Equate and Array: Data Base Management

the Pc. (This Pc, or Program Counter, is held in the LADS
variable SA.)

In line 30 where Array begins, it moves the "bottom-of
LADS" (top of array) address from its permanent storage place,
the variable ARRAYTOP, to the dynamic, changing pointer
PARRAY. PARRAY will be lowered frequently as it points us
down through the entire array.

Then we JSR to DECPAR which is the subroutine that low
ers the PARRAY pointer by 1. And we stuff a $FF into the flag
called FOUNDFLAG (90). This is a simple way to test if we've
found our match. If we do find a match, as we'll soon see, we
INC FOUNDFLAG. This means that FOUNDFLAG can more
easily be tested in the way we want to test it. If it gets INCed
once, it will be o. INCed twice, it will be 1. INCed twice (or
more) would mean that a label exists more than once in the ar
ray. That's an error, a redefined label, and we'll want to alert the
programmer. Putting $FF into FOUNDFLAG thus allowed us to
use BEQ to test for this error.

Checking for the Bottom
But all that comes later. The primary routine in Array starts
with STARTLK (100), and oddly enough, the first thing we do is
check to see if we're at the bottom of the array. The Equate
subprogram always leaves the variable MEMTOP pointing to
the bottom of the array. So, by subtracting our current position
in the array (PARRAY) from the bottom of the array
(MEMTOP), we can tell if we've finished looking through the
array. If PARRAY is lower than MEMTOP, the carry will re
main set, and we will then BCS down to the all-finished rou
tine, ADONE.

Otherwise, we've got to keep on looking. Remember that
Array must look through the entire array each time; even after
it finds a match, it must continue looking for another match.
This is the only way we can detect duplicated labels.

Array has to accomplish several things at once. It's got to
point to the current position in the array, keep track of how
large a given label is, and check each letter of each word. The
chip registers will all be busy: A holds characters for checking,
X keeps count of how large each label is, and Y (working with
PARRAY) keeps track of our current position. Here, in line 160,
we set X to zero.

Then we lower PARRAY by two to get past the number

87

Equate and Array: Data Base Management

part of a label stored in array (170-230). We want to get past
the 99 in /LabeI99j. Some of the stored numbers will have
their seventh bit set; they'll be larger than 127. So we've got to
jump over every stored number since the set seventh bit is our
test to see if we've come upon the first character in a label
name. We don't want numbers masquerading as label name
delimiters.

At last we look at a character (260), and if the seventh bit
is set, we BMI down to FOUNDONE. If it's not the start of a
label name, we decrement PARRAY by 1 and jump up to
LPAR to look at the next letter lower in memory within the ar
ray. Notice that we also raise the X (label length) counter (320).
By the time we've found a shifted seventh bit indicating the
start of a label name, X will hold the correct length of the
name.

Double Decrement
Let's pause a minute to look at how a double decrement works
(280-310). If, upon loading the low byte of PARRAY, the zero
flag is set, we would be forced to lower the high byte of
PARRAY (PARRAY + 1 in line 300). If the low byte isn' t yet
lowered to zero, however, we can just lower the low byte and
ignore the high byte (310). Note that a zero in the low byte re
quires lowering both the high and low bytes. Correctly
decrementing $8500 would result in $84FF, lowering both
bytes, while a correct decrement of $8501 would just lower the
low byte: $8500.

Once we have located a set seventh bit, thus locating the
start of a label name, we come to the FOUNDONE subroutine
(350). Here we must first store PARRAY into the temporary
holding variable PT so we can remember exactly where the la
bel name begins. Then we reload A with the first character of
the label (390) and compare it against the first character of the
label we're looking for. That first character was previously in
the variable WORK just before we came to Array from Eval.

If these first characters match, we go to LKMORE to check
the rest of the word for a full match. If not, we go to
STARTOVER.

In LKMORE, we first raise X to be the correct length of the
current array label under examination. Then we save it in the
variable WORK + 1. We've got to save it at this point because
now X will serve as the counter of the source label length. The

88

Equate and Array: Data Base Management

source label is the word we're looking for, the label from the
source code we're trying to find a match to.

The fact that some labels will be like (LABEL),Y or #LABEL
(having a (or # as their first character) is a potential source of
confusion to the Array search routine. To eliminate this confu
sion, whenever a (or # is encountered during the Eval sub
program, a special flag, BUFLAG, is raised. That makes it easy
for us to skip over them here by raising the Y offset (490) if
necessary.,

Paradoxically, we simply INY again, right after this. That's
because we want to point to the second character in the label
(we got this far because the first characters matched). Neverthe
less, the combination of INY and DECPAR (490-500) effectively
takes care of the (or # situation and makes this INY point to
the second letter of the label proper.

The LKM1 loop compares the entire rest of the source label
against the array label (520-600) . There are three ways, and
only three ways, for us to get out of this loop. We can come
upon a zero, which would surely be the end of the label in the
buffer (the source label). A zero always means the end of a line
of source code. Or we can come upon a character which is
lower than 48. That includes things like left parentheses and
commas in the ASCII code. Something like the comma in LDA
LABEL,X would signal the end of the source label. (Checking
for characters lower than 48, however, doesn't exclude num
bers. We can still check for such legal labels as: LDA LABEL12.)

The Third Exit
The third way to exit this loop is when we fail to find a charac
ter match in the labels. Any point at which this happens, we
"fall through" line 600-these characters do not BEQ, they're
not equal. If they are equal, we go back up to check the next
pair of characters. Notice that X continues to count the length
of the words (580). In effect, it is counting the length of the
source label (we already know the length of the array label and
have it safely stashed away in the variable WORK + 1).

If we leave this loop with a match, it will be a zero or a
comma or right parenthesis in the source label that causes us to
leave. X will then be holding the length of the source label. It's
possible that we'll find an apparently "perfect match" which
isn't, in fact, a match at all. For example, LABEL (as the array
label) and LA BE (as the source label) would appear to this

89

Equate and Array: Data Base Management

LKM1 loop as a perfect match. The only way we have of
knowing that they do not really match is to compare their
lengths.

If we fail to find a match, STARTOVER (620) just restores
the correct array location of PARRAY (pointing at the first
character in the label that just failed), and then we lower
PARRAY by 1 (660) and jump back up to the STARTLK rou
tine. STARTLK will also lower PARRAY by 1. This double
lowering of PARRAY moves it past the number stored in the
two bytes at the end of the next label down, thus preparing us
to start the comparison process all over again.

On the other hand, if we did find a match, we go to
FOUNDIT (950). Right off the bat, we check to see if the cur
rent value of X (length of the source label) matches the pre
viously stored value of X (length of the array label). If they
don't match, we've got that LABEL LABE situation, and we
STARTOVER.

If everything checks out, though, we've got an authentic
match. We raise the FOUNDFLAG. If this is the first match,
FOUNDFLAG goes up from $FF to $00. That's fine. There
should be one match. If, however, FOUND FLAG is higher than
0, it means we've found more than one match, and we JSR to
DUPLAB where the "duplicated label" error message is printed
out (1360).

With or without this message, we next compensate for the
(or # symbols which might be at the start of a source label and
then load in the low byte of the number stored just above the
array label. We put this byte into RESULT and put the high
byte into RESULT + 1. When we arrive here at FOUNDIT, the
Y Register is pointing just past the end of the label. In other
words, Y is pointing at the number stored with the label in the
array. This is because we left the LKM1 loop when we got to
the end of the label.

Pseudo-op Adjustments
Here's where we make the adjustments for two of our pseudo
ops: > < and +. If BYTFLAG is set, it means that < or> was
used to request the low or high byte of a label. LDA #<LABEL
requests the low byte (and Eval will only deal with low bytes
in the # Immediate addressing mode). The label's low byte is
already in the low byte of RESULT, so we need do nothing. But
BYTFLAG is a special kind of flag. It has three states rather

90

Equate and Array: Data Base Management

than the normal two (set or clear, up or down) states. If it con
tains a 2, this signals that the #> LABEL pseudo-op was used,
requesting the high byte of the label. To do this, we need to
put the high byte of RESULT into the low byte of RESULT
(1140-50). That's it.

PLUSFLAG signals a + pseudo-op like LDA LABEL+25.
The amount we're supposed to add to LABEL (the 25) is al
ready stored in the variable ADDNUM (by a subroutine in the
Indisk subprogram). All we have to do here is add ADDNUM
to the value in RESULT (1180-1240) .

When these two pseudo-ops have been taken care of, we
return to STARTOVER and keep looking for duplicated labels if
we're on pass 1. On pass I , we aren't allowed to leave the Ar
ray. On pass 2, however, it's not necessary to repeat this check
ing or to repeat the error messages, so we RTS, which sends us
back to the Eval subprogram.

We've successfully put the value of the source label into
RESULT. Now the Eval subprogram can go on to figure out the
addressing mode, finish up by POKEing in the opcode and the
argument, and then pull in the next line of source code.

But what if we didn't find any match to the source label
and we've gone through the entire array? This can mean two
things, depending on which pass we're on. On pass I, it's
harmless enough. It could well mean that the label hasn't yet
been defined:
100INY
110 BNE FORWAROLOOP
120INX
130 FORWAROLOOP LOA 15

On the first pass, the label FORWARDLOOP will not be in
the array until line 130. Nevertheless, the Array subprogram
will search for it in line 110. And it won't find it. But so what?
On pass I, we can just ignore this failure to find a match and
RTS back to Eval.

It would be a serious error, though, if the label could not
be found in the array on pass 2. It would be an "undefined la
bel" error.

When a Label Was Never Defined
Both of these possibilities are dealt with in the subroutine
ADONE (690-940). If FOUNDFLAG has the seventh bit set,

91

Equate and Array: Data Base Management

that means that it's still holding the $FF we put there at the
very start of Array. We never found the match. We check the
PASS, and if it's pass 2, we print the line number and the
NOLAB error message "undefined label."

Then, no matter which pass it is, we still want to keep the
program counter straight, or all the rest of the assembly will be
off. The problem is that an undefined label doesn't give us the
answer to the question: Is this a three-byte ordinary address or
a two-byte zero page address? Is it LDA 15 or LDA 1500?
Should we raise the PC by two or by three? If we raise it the
wrong amount, any future reference to address-type labels will
be skewed. Here's why:
100 *= 800
110 LOA LABEL; this label is undefined
120 ADDRESS INY; what is the location of ADDRESS here?

If LABEL is in zero page, ADDRESS = 802. If LABEL is
not zero page, ADDRESS = 803 . We should try to get this
right on pass 1. Pass 2 depends on pass 1 for correct label val
ues, including address-type labels. Even if a label is not yet de
fined, we should still try to raise the program counter by the
correct amount.

In Eval there are routines called TWOS and THREES.
TWOS raises the PC by two bytes for Zero Page and other two
byte-long addressing modes like LDA #15. THREES handles
three-byte-Iong modes like Absolute addresses, etc. It's here in
the Array subprogram, however, that we have to decide which
of these routines to jump back to in Eval.

Branches like BNE and BEQ will often be undefined during
pass 1 because the program is branching forward. We'll want to
go to TWOS if there's an undefined label following a branch
instruction. All branches are type 8, and we can easily check for
them by LDA TP:CMP #8 (860) . The other possible TWOS can
didate is one of the > or < pseudo-ops. BYTFLAG signals one
of them.

92

Equate and Array: Data Base Managemen t

The # Immediate addressing mode is not tested for, so this
adjustment isn't foolproof. The assumption is that any un
defined label is essentially a fatal error and that there will have
to be a reassembly. Most undefined labels are considered to be
three-byte instructions and we JMP THREES (920).

This clarifies why LADS cannot permit the definition of a
Zero Page address within the source code. All Zero Page ad
dress labels must be defined at the start of the source code,
before any actual assembly takes place. Without this rule, our
"yet-undefined-label" routine (690-930) will treat them, in
correctly, as three-byte address modes. It can recognize only
branches and> < pseudo-ops as two-byte modes. Any other
label that's not defined will be seen as a three-byte type.

93

':f2

P
ro

gr
am

 4
-1

.
E

q
u

at
e

1
0

"E

Q
U

A
T

E
"

EV
A

LU
A

TE

L
A

B
E

L
S

2
0

:

C
O

U
LD

B

E
E

IT
H

E
R

PC

(A

D
D

R
E

S
S

)
T

Y
PE

O

R
EQ

U
A

TE

T
Y

P
E

.
ST

O
R

E

IN

A
R

R
A

Y
.

25

:
F

O
R

M
A

T
--

N
A

M
E

/2
-B

Y
T

E

IN
T

E
G

E
R

V

A
L

U
E

/N
A

M
E

/2
-B

Y
T

E

V
A

L
U

E
/E

T
C

 .
..

3

0

:
-
-
-
-
-
-
-
-
-
-
-
-
-

4
0

EQ

U
A

TE

LD
Y

#

2
5

5
:

PR
E

PA
R

E

Y
 T

O

ZE
R

O

A
T

ST
A

R
T

O

F
LO

O
P

5
0

E

Q
l

IN
Y

:
Y

G

O
ES

TO

ZE

R
O

1

S
T

T

IM
E

TH

R
O

U
G

H

L
O

O
P

6
0

LD

A

L
A

B
E

L
,Y

:
LO

O
K

A

T
TH

E
W

O
R

D
,

TH
E

L
A

B
E

L

70

B
EQ

N

O
A

R
:

EN
D

O

F
L

IN
E

(S

O

T
H

E
R

E
'S

A

 N
A

K
ED

L

A
B

E
L

,
N

O
T

H
IN

G

FO
LL

O
W

S
IT

)
8

0

CM
P

#
3

2
:

FO
U

N
D

A

 S
P

A
C

E
,

SO

R
A

IS
E

Y

 B
Y

2

A
N

D

SE
T

L

A
B

E
L

S

IZ
E

(L

A
B

S
IZ

E
)

90

BN
E

E
Q

1:

O
T

H
E

R
W

IS
E

,
K

E
E

P
L

O
O

K
IN

G

FO
R

A

S

P
A

C
E

.
1

0
0

IN

Y

1
1

0

IN
Y

1

2
0

ST

Y

L
A

B
S

IZ
E

1

3
0

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

LO
W

ER

M
EM

TO
P

P
O

IN
T

E
R

W

IT
H

IN

A
R

R
A

Y

(B
Y

L

A
B

E
L

S

IZ
E

)
1

4
0

SU

BM
EM

S

E
C

:
SU

B
TR

A
C

T
L

A
B

E
L

S

IZ
E

FR

O
M

A

R
R

A
Y

P

O
IN

T
E

R

TO

M
A

K
E

RO
O

M

FO
R

L

A
B

E
L

1

5
0

LD

A

M
EM

TO
P

1
6

0

SB
C

L

A
B

S
IZ

E

1
7

0

ST
A

M

EM
TO

P
1

8
0

LD

A

M
E

M
T

O
P+

l
1

9
0

SB

C

#
0

2

0
0

ST

A

M
E

M
T

O
P

+
l:

--
--

--
--

--
--

--
2

0
5

:S

H
IF

T

7T
H

B

IT

O
F

1S
T

C

H
A

R
.

TO

S
IG

N
IF

Y

ST
A

R
T

O

F
L

A
B

E
L

'S

N
A

M
E

2
1

0

LD
Y

#

0

2
2

0

LD
A

L

A
B

E
L

,Y

2
3

0

EO
R

#

$
8

0

2
4

0

ST
A

(M

E
M

T
O

P
),

Y
:

ST
O

R
E

S
H

IF
T

E
D

1S

T

L
E

T
T

E
R

2

5
0

EQ

3
IN

Y

2
6

0

LD
A

L

A
B

E
L

,Y
:

IF

S
P

A
C

E
,

ST
O

P
ST

O
R

IN
G

L

A
B

E
L

N

A
M

E
IN

A

R
R

A
Y

.
2

7
0

CM

P
#3

2

tT
l .g III
 rP

III

::l
 p..
. ~ "1

 ~ d III
 III
 b:1

III
 '" rP ~

III

::l

III

(J
Q

rP

 S rP

::l

2
8

0

B
EQ

EQ

2
2

9
0

ST

A

(M
E

M
T

O
P

),
Y

i
O

T
H

E
R

W
IS

E
,

PU
T

N
EX

T
L

E
T

T
E

R

IN
T

O

A
R

R
A

Y

&

3
0

0

JM
P

E
Q

3i

C
O

N
T

IN
U

E
.

3
1

0

EQ
2

IN
Y

i
NO

W

C
H

EC
K

FO

R

=
 (

S
IG

N
IF

Y
IN

G

EQ
U

A
TE

T

Y
P

E
)

(L
A

B
E

L

1
5

)
3

2
0

LD

A

L
A

B
E

L
,Y

3

3
0

CM

P
#

$
3

D
i

IF

EQ
U

A
TE

T

Y
P

E
,

GO

TO

F
IN

D

IT
S

V

A
L

U
E

.
3

4
0

B

EQ

EQ
U

A
L

3
5

0

D
E

Y
i

O
T

H
E

R
W

IS
E

,
IT

'S

PC

T
Y

PE

(L
A

B
E

L

LD
A

1

5
)

3
6

0

LD
A

S

A
i

SO

TH
E

PC

V
A

R
IA

B
L

E

(S
A

)
C

O
N

T
A

IN
S

TH
E

V
A

LU
E

O
F

T
H

IS

L
A

B
E

L

3
7

0

ST
A

(M

E
M

T
O

P
),

Y
i

ST
O

R
E

IT

R

IG
H

T

A
FT

E
R

LA

B
EL

N

A
M

E
W

IT
H

IN

A
R

R
A

Y
.

3
8

0

IN
Y

3

9
0

LD

A

SA
+1

4

0
0

ST

A

(M
E

M
T

O
P)

,Y

4
1

0

LD
X

L

A
B

S
IZ

E
i

N
O

W
,

U
SI

N
G

L

A
B

E
L

S
IZ

E

A
S

IN
D

E
X

,
E

R
A

SE

TH
E

P
C

-T
Y

P
E

L

A
B

E
L

4

2
0

D

E
X

i
FR

O
M

TH

E
B

U
F

F
E

R
.

FO
R

E

X
A

M
PL

E
,

(L
A

B
E

L

LD
A

1

5
)

NO
W

4

3
0

LD

Y

#
0

i
B

EC
O

M
ES

(L

D
A

1

5
).

TH

E
LA

B
EL

N

A
M

E
IS

C

O
V

ER
ED

O

V
ER

4

4
0

EQ

5
LD

A

L
A

B
E

L
,X

i
TO

PR

E
PA

R
E

TH

E
R

E
ST

O

F
TH

E
L

IN
E

TO

B

E
A

N
A

LY
ZE

D

4
5

0

B
EQ

E

Q
4i

N

O
R

M
A

LL
Y

BY

E

V
A

L
.

4
6

0

ST
A

L

A
B

E
L

,Y

4
7

0

IN
X

4

8
0

IN

Y

4
9

0

JM
P

EQ
5

5
0

0

EQ
4

ST
A

L

A
B

E
L

,Y

5
1

0

R
T

S
i

R
ET

U
R

N

TO

EV
A

L
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
2

0

N
O

A
R

JS
R

P

R
N

T
C

R
:J

S
R

PR

N
T

L
IN

E
;N

A
K

E
D

LA

B
EL

FO

U
N

D

(N
O

A

R
G

U
M

EN
T)

SO

5

2
5

JS

R

E
R

R
IN

G

5
3

0

LD
A

#<

N
O

A
R

G
i

R
IN

G

B
E

L
L

A

N
D

P

R
IN

T

N
A

K
ED

L

A
B

E
L

ER

R
O

R

M
E

SS
A

G
E

.
5

4
0

ST

A

TE
M

P
5

5
0

LD

A

#>
N

O
A

R
G

5

6
0

ST

A

T
E

M
P+

1
~

5
7

0

JS
R

P

R
N

T
M

E
S

S
:J

S
R

PR

N
TC

R

tTJ

..0

!:

III
 ~ III

::l

0
- ~ ... ~ d III
 III
 tP

III

'I
l
~
 ~

III

::l

III

(J
Q

~
 :3 ~ ::l

\D

Q
'\

5

8
0

5

8
4

5

8
5

5

9
0

6

0
0

6

1
0

6

2
0

6

3
0

6

4
0

6

5
0

6

6
0

6

7
0

6

8
0

6

9
0

7

0
0

7

1
0

7

2
0

7

3
0

7

4
0

7

5
0

7

6
0

7

7
0

7

8
0

7

9
0

8

0
0

8

1
0

8

2
0

8

3
0

8

4
0

 JM
P

E
Q
R
E
T
~

R
ET

U
R

N

TO

E
V

A
L

--
--

--
--

--
--

--
--

--
--

--
-

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

EQ
U

A
TE

T

Y
PE

S
H

ER
E

(L
A

B
E

L

=
 1

5
)

EQ
U

A
L

D
EY

ST

Y

L
A
B
P
T
R
~

T
E

L
L

S

U
S

HO
W

FA

R

FR
O

M

M
EM

TO
P

W
E

SH
O

U
LD

ST

O
R

E

A
R

G
U

M
EN

T
V

A
LU

E
LD

A

H
E
X
F
L
A
G
~

H
EX

N

U
M

B
ER

S
A

LR
EA

D
Y

H

A
N

D
LE

D

BY

IN
D

IS
K

R

O
U

T
IN

E
,

SO

S
K

IP

O
V

E
R

.
B

N
E

F
I
N
E
Q
~

H
EX

FL

A
G

U

P
,

SO

G
O

TO

EQ

U
A

TE

E
X

IT

R
O

U
T

IN
E

B

E
L

O
W

.
I
N
Y
~

O
T

H
E

R
W

IS
E

,
W

E
N

EE
D

TO

F

IG
U

R
E

O

U
T

TH
E

A
R

G
U

M
EN

T
(L

A
B

E
L

=

 1
5

)
I
N
Y
~

T
H

E
R

E

A
R

E
T

H
R

E
E

C

H
A

R
S.

(

=
)

 B
ET

W
EE

N

L
A

B
E

L

&
 A

R
G

U
M

E
N

T
,

SO

I
N
Y
~

IN
Y

T

H
R

IC
E

.
ST

Y

W
O
R
K
+
l
~

P
O

IN
T

T

O

L
O

C
A

T
IO

N

O
F

A
S

C
II

N

U
M

B
ER

(I

N

L
A

B
E

L

B
U

F
F

E
R

)
LD

A

#
<
L
A
B
E
L
~

S
E

T

U
P

TE
M

P
P

O
IN

T
E

R

TO

P
O

IN
T

TO

A

S
C

II

N
U

M
B

ER

C
LC

A

D
C

W

O
R

K
+l

ST

A

TE
M

P
LD

A

#>
L

A
B

E
L

A

D
C

#

0

ST
A

T

E
M

P
+

l
JS

R

V
A
L
D
E
C
~

C
A

L
C

U
L

A
T

E

A
S

C
II

NU

M
B

ER

V
A

LU
E

A
N

D

ST
O

R
E

IN

R

E
SU

L
T

F

IN
E

Q

LD
Y

L
A
B
P
T
R
~

ST
O

R
E

IN

T
E

G
E

R

V
A

LU
E

JU
S

T

A
FT

E
R

L

A
B

E
L

N

A
M

E
IN

A

R
R

A
Y

LD

A

R
E

SU
L

T

ST
A

(M

E
M

T
O

P
),

Y

LD
A

R

E
S

U
L

T
+

l
IN

Y

ST
A

(M

E
M

T
O

P
),

Y

EQ
R

ET

P
L
A
~
P
U
L
L

O
FF

TH

E
R

TS

(F
R

O
M

E

V
A

L
)

A
N

D

JU
M

P
D

IR
E

C
T

L
Y

TO

IN

L
IN

E

P
L
A
~

IG
N

O
R

IN
G

A

N
Y

FU

R
T

H
E

R

E
V

A
L

U
A

T
IO

N

O
F

T
H

IS

L
IN

E

S
IN

C
E

E

Q
U

A
T

E

T
Y

PE

JM
P

I
N
L
I
N
E
~

L
A

B
E

L
S

A
R

E
FO

LL
O

W
ED

BY

N

O
T

H
IN

G

TO

E
V

A
L

U
A

T
E

.F

IL
E

A

R
R

A
Y

Fo
r

th
e

A
ta

ri
 v

er
si

on
 o

f
E

qu
at

e,
 c

ha
ng

e
li

ne
 8

40
 t

o:
 8

40
 .

F
IL

E
 D

:A
R

R
A

Y
.S

R
C

tT
l

'§ Pol

(1
) Pol

~

0
- ~ "1
 ~ tj

Po
l

Pol
 tp

Pol
 '" (1) ~

Pol

~
 £ (1

) 8 (1
) ~

\.
D

"'

I

P
ro

gr
am

 4
,2

.
A

rr
ay

1
0

2

0

3
0

4

0

5
0

6

0

7
0

8

0

9
0

1

0
0

1

1
0

1

2
0

1

3
0

1

4
0

1

5
0

1

6
0

1

7
0

1

8
0

1

9
0

2

0
0

2

1
0

2

2
0

2

3
0

2

4
0

2

5
0

2

6
0

2

7
0

2

8
0

2

9
0

 ;
"A

R
R

A
Y

"
LO

O
K

S
TH

R
O

U
G

H

LA
B

EL

T
A

B
L

E

A
N

D

PU
T

S
V

A
LU

E
IN

R

E
S

U
L

T
.

(U
SE

D

IN

BO
TH

PA

SS

1
A

N
D

PA

SS

2
)

A
R

R
A

Y

LD
A

A

R
R

A
Y

T
O

P;
PU

T

T
O

P
-O

F
-A

R
R

A
Y

V

A
LU

E
IN

T
O

TH

E
D

Y
N

A
M

IC

PO
IN

T
E

R

(P
A

R
R

A
Y

)
ST

A

PA
R

R
A

Y
;

IN

O
TH

ER

W
O

R
D

S,

M
A

K
E

PA
R

R
A

Y

P
O

IN
T

TO

TH

E
H

IG
H

E
ST

W

O
RD

IN

TH

E
LD

A

A
R

R
A

Y
T

O
P+

1;

L
A

B
E

L

A
R

R
A

Y

ST
A

PA

R
R

A
Y

+l

JS
R

D

EC
 P

A
R

LD

A

#
$

F
F

;
SE

T

U
P

FO
R

B

M
I

T
E

ST

IF

NO

M
A

TC
H

FO

U
N

D

ST
A

FO

U
N

D
FL

A
G

ST

A
R

T
L

K

S
E

C
;

ST
A

R
T

LO
O

K
IN

G

FO
R

LA

B
EL

N

A
M

E
LD

A

M
EM

TO
P;

C

H
EC

K

TO

SE
E

IF

W

E
'R

E

A
T

TH
E

B
O

TT
O

M

O
F

TH
E

A
R

R
A

Y

SB
C

PA

R
R

A
Y

LD

A

M
EM

TO
P+

l
SB

C

PA
R

R
A

Y
+l

B

C
S

A
D

O
N

E;

IF

S
O

,
C

H
EC

K

IF

W
E

FO
U

N
D

TH

E
LA

B
EL

(O

R

FO
U

N
D

IT

T

W
IC

E
)

LD
X

#

0
;

SE
T

LA

B
EL

N

A
M

E
S

IZ
E

C

O
U

N
TE

R

TO

ZE
R

O

S
E

C
;

GO

DO
W

N
2

B
Y

T
E

S
IN

M

EM
O

RY

(P
A

S
T

TH

E
IN

T
E

G
E

R

V
A

LU
E

O
F

A
 L

A
B

E
L

)
LD

A

PA
R

R
A

Y

SB
C

#2

ST

A

PA
R

R
A

Y

LD
A

PA

R
R

A
Y

+l

SB
C

#0

ST

A

PA
R

R
A

Y
+

1
LD

Y

#0

;-
--

--
--

--
--

--
--

--
--

--
--

--
-

LP
A

R

LD
A

(P

A
R

R
A

Y
),

Y
;

LO
O

K

FO
R

A

7T

H

B
IT

SE

T

(S
T

A
R

T

O
F

L
A

B
E

L

N
A

M
E)

B

M
I

FO
U

N
D

O
N

E;

IF

Y
E

S
,

W
E

'V
E

G

O
T

TO

TH
E

ST
A

R
T

O

F
A

N

A
M

E.

LD
A

PA

R
R

A
Y

;
O

T
H

E
R

W
IS

E

GO

DO
W

N
1

B
Y

TE

IN

A
R

R
A

Y

B
N

E
M

D
EC

X

tI
i

..c

t:

~

(b

~

::l

0
- ~ "'

I ~ tj

~

~
 OJ

~
 '" (b ~

~

::l

~

IJQ

(b
 S (b

::l

'" 00
3

0
0

3

1
0

3

2
0

3

3
0

3

4
0

3

5
0

3

6
0

3

7
0

3

8
0

3

9
0

4

0
0

4

1
0

4

2
0

4

3
0

4

4
0

4

5
0

4

6
0

4

7
0

4

8
0

4

9
0

5

0
0

5

1
0

5

2
0

5

3
0

5

4
0

5

5
0

5

6
0

5

7
0

5

8
0

5

9
0

6

0
0

D
EC

PA

R
R

A
Y

+1

M
D

EC
X

D

EC

PA
R

R
A

Y

IN
X

;
IN

C
R

E
A

SE

L
A

B
E

L

N
A

M
E

S
IZ

E

C
O

U
N

T
E

R

JM
P

L

PA
R

--

--
--

--
--

--
--

--
--

--
--

--
, FO

U
N

D
O

N
E

LD
A

PA

R
R

A
Y

;
W

E
'V

E

L
O

C
A

T
E

D

A

L
A

B
E

L

N
A

M
E

IN

T
H

E

A
R

R
A

Y

ST
A

P

T
;

R
EM

EM
B

ER

IT
'S

S

T
A

R
T

IN
G

L

O
C

A
T

IO
N

LD

A

PA
R

R
A

Y
+1

ST

A

P
T

+
1

LD
A

(P

A
R

R
A

Y
),

 Y

C
M

P
W

O
R

K
;

C
O

M
PA

R
E

TH
E

1
S

T

L
E

T
T

E
R

W

IT
H

T

H
E

1

S
T

L

E
T

T
E

R

O
F

T
H

E

T
A

R
G

E
T

H

O
R

D

B
EQ

LK

M
O

R
E;

LO

O
K

M

O
RE

C

L
O

SE
L

Y

A
T

T
H

E

W
O

R
D

,
IF

1S

T

L
E

T
T

E
R

M

A
TC

H
ED

JM

P

ST
A

R
T

O
V

E
R

;
IF

IT

D

ID
N

'T

M
A

T
C

H
,

G
O

DO

W
N

IN

TH
E

T
A

B
L

E

&
 F

IN
D

N

EX
T

W
O

R
D

.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

, LK
M

O
R

E
IN

X
;

R
A

IS
E

L

E
N

G
T

H

C
O

U
N

TE
R

BY

1

ST
X

W

O
R

K
+1

;
R

EM
EM

B
ER

IT

LD

X

#1

LD
A

B

U
FL

A
G

; T
H

IS

M
EA

N
S

T
H

A
T

O
R

(
C

O
M

E
B

E
FO

R
E

TH

E
N

M
1E

IN

TH

E
B

U
FF

E
R

B

EQ

L
K

M
1;

IF

T

H
E

Y

D
O

N
'T

W

E
D

O
N

'T

N
EE

D

TO

R
A

IS
E

Y

IN

O

R
D

E
R

TO

IG

N
O

R
E

TH

EM

IN
Y

JS

R

D
E

C
PA

R
;

LO
W

ER

TH
E

IN
D

E
X

TO

C

O
M

PE
N

SA
T

E

FO
R

TH

E
IN

Y

LK
M

1
IN

Y

LD
A

B

U
F

F
E

R
,Y

;
C

H
EC

K

B
U

F
F

E
R

-H
E

L
D

L

A
B

E
L

B

EQ

F
O

U
N

D
IT

;
IF

W

E
'R

E

A
T

TH
E

EN
D

O

F
TH

E
W

O
RD

(0

),

T
H

E
N

W

E
'V

E

FO
U

N
D

A

M

A
TC

H

C
M

P
#

4
8

;
O

R
T

H
E

R
E

'S

A

M
A

TC
H

IF

IT

'S

A

C
H

A
R

A
C

T
E

R

LO
W

ER

TH
A

N

A
S

C
II

0

(,
O

R
+

)
B

C
C

FO

U
N

D
IT

;

N
O

T
Y

E
T

TH

E
EN

D

O
F

T
H

E

"B
U

F
F

E
R

"
H

E
L

D

L
A

B
E

L

IN
X

C

M
P

(P
A

R
R

A
Y

),
Y

;
IF

A

R
R

A
Y

H

O
R

D

S
T

IL
L

A

G
R

E
E

S
iV

IT
H

B

U
FF

E
R

W

O
R

D
,

T
H

E
N

B

EQ

L
K

M
1;

C

O
N

T
IN

U
E

L

O
O

K
IN

G

A
T

T
H

E
SE

W

O
R

D
S

t'T1

.g ~

~

III

::l

p.
. ~ '1

III

~
 d III

~

III
 tt
l

III
 '" ~ ~

III

::l

III

at
< (l>

 3 (l>

::l

~

6
1

0

6
2

0

6
3

0

6
4

0

6
5

0

6
6

0

6
7

0

6
8

0

6
9

0

7
0

0

7
1

0

7
2

0

7
3

0

7
4

0

7
5

0

7
6

0

7
7

0

7
8

0

7
9

0

8
0

0

8
1

0

8
2

0

8
3

0

8
4

0

8
5

0

8
6

0

8
7

0

8
8

0

8
9

0

9
0

0

\0

9
1

0

\0

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

N
O

M

A
TC

H
,

SO

LO
O

K

A
T

N
EX

T
W

O
RD

DO

W
N

ST
A

R
T

O
V

E
R

LD

A

P
T

;
PU

T
P

R
E

V
IO

U
S

W

O
R

D
'S

ST

A
R

T

A
D

D
R

.
IN

T
O

P

O
IN

T
E

R

ST
A

PA

R
R

A
Y

LD

A

P
T

+
l

ST
A

P

A
R

R
A

Y
+

l
JS

R

D
E

C
PA

R
;

LO
W

ER

P
O

IN
T

E
R

BY

1

(S
T

A
R

T
L

K

W
IL

L

LO
W

ER

IT

A
L

S
O

,
B

EL
O

W

V
A

L
U

E
)

JM
P

S
T

A
R

T
L

K
;

T
R

Y

A
N

O
TH

ER

W
O

RD

IN

TH
E

A
R

R
A

Y

._
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

I A
D

O
N

E
LD

A

FO
U

N
D

FL
A

G

B
M

I
A

D
l;

D

ID
N

'T

F
IN

D

T
H

E

L
A

B
E

L

R
T

S
;

A
LL

IS

W

E
L

L
.

R
ET

U
R

N

TO

E
V

A
L

.
A

D
I

LO
A

PA

SS

B
N

E
A

O
IX

;
2N

D

P
A

S
S

--
G

O

A
H

EA
D

A
~
D

P
R

IN
T

ER

R
O

R

M
E

SS
A

G
E

B

EQ

A
D

O
N

E
l;

O

N

1
S

T

P
A

S
S

,
M

IG
H

T

N
O

T
Y

ET

B
E

D
E

F
IN

E
D

(R

A
IS

E

I
~
C
S
A
/
2
S

O
R

A

D
IX

JS

R

E
R

R
IN

G
;

L
A

B
E

L

N
O

T
IN

T

A
B

U
:.

(T

R
E

A
T

IT

A

S
A

2

-B
Y

T
E

A

D
D

R
E

S
S

)
JS

R

P
R

N
T

L
IN

E

JS
R

PR

N
T

SP
A

C
E

LO

A

#<
N

O
L

A
B

ST

A

T
E

M
P

LD
A

#>

N
O

L
A

B

ST
A

T

E
M

P
+

l
JS

R

PR
N

T
M

F.
SS

;
R

IN
G

B

E
L

L

A
N

D

P
R

IN
T

N

O
T

FO
U

N
D

M

E
SS

A
G

E

JS
R

PR

N
T

C
R

A

D
O

N
E

I
PL

A

P
L

A
i

LD
A

O

P
A

N
D

#

3
1

C

M
P

#
1

6

B
EQ

A

D
0

2
;

C
H

EC
K

IF

B

R
A

N
C

H

IN
S

T
R

U
C

T
.

LO
A

B

Y
T

FL
A

G

B
N

E
A

D
0

2
;

<

O
R

>

PS
E

U
D

O

3
S

)

tT1

.0
 ::: III

~

I ~

::l

0
- ~ .., III

-<
 U

III

~

III
 to

III
 '" rtl ~

III

::l

III

(J
Q

rtl

 :3 rtl

::l

~

>
-'

o o

9
2

0

JM
P

T
H

R
E

E
S

9
3

0

A
D

02

JM
P

TW
O

S
9

4
0

;

9
5

0

FO
U

N
D

IT

C
PX

W

O
R

K
+l

;C
H

E
C

K

L
A

B
E

L

LE
N

G
TH

A

G
A

IN
ST

T

A
R

G
E

T

W
O

RD

LE
N

G
TH

9

6
0

B

EQ

FO
U

N
D

F;

TH
EY

M

U
ST

EQ

U
A

L
TO

S

IG
N

IF
Y

A

M

A
TC

H
.

(P
R

IN
T

/
P

R
IN

W

O
U

LD

F
A

IL
)

9
7

0

JM
P

ST
A

R
T

O
V

E
R

;
F

A
IL

E
D

M

A
TC

H

9
8

0

FO
U

N
D

F
IN

C

FO
U

N
D

FL
A

G
;

R
A

IS
E

FL

A
G

TO

ZE

R
O

(F

IR
S

T

M
A

TC
H

)
9

9
0

B

EQ

F
O

F
X

;
IF

H

IG
H

E
R

TH

A
N

0

,
P

R
IN

T

D
U

P
L

IC
A

T
IO

N

L
A

B
E

L

ER
R

O
R

M

E
SS

A
G

E

1
0

0
0

JS

R

D
U

PL
A

B

1
0

1
0

FO

FX

LD
Y

W

O
R

K
+l

1

0
2

0

LD
A

B

U
FL

A
G

;
C

O
M

PE
N

SA
TE

FO

R

A

N
D

1

0
3

0

B
EQ

FO

F
1

0
4

0

IN
Y

1

0
5

0

FO
F

LD
A

(P

A
R

R
A

Y
),

Y
;

PU
T

T

A
B

L
E

L

A
B

E
L

'S

V
A

LU
E

IN

R
E

SU
L

T

1
0

6
0

ST

A

R
E

SU
L

T

1
0

7
0

IN

Y

1
0

8
0

LD

A

(P
A

R
R

A
Y

),
y

1

0
9

0

ST
A

R

E
S

U
L

T
+

l
11

13
13

LD

A

B
Y

T
FL

A
G

11

11
3

B
EQ

C

M
PM

O
j

IS

IT

>

O
R

<

PS
E

U
D

O
PR

IN
T

11

21
3

CM
P

#2

1
1

3
0

BN

E
A

R
EN

D

11
41

3
LD

A

R
E

S
U

L
T

+
l;

ST

O
R

E

H
IG

H

B
Y

TE

IN
T

O

LO
W

B

Y
TE

11

51
3

ST
A

R

E
SU

L
T

11

61
3

CM
PM

O

LD
A

PL

U
SF

L
A

G
;

DO

A
D

D
IT

IO
N

+

PS

E
U

D
O

O

P
1

1
7

0

B
EQ

A

R
EN

D

1
1

8
0

C

L
C

;
A

D
D

TH

E
+

 N
U

M
B

ER

"A
D

D
N

U
M

"
TO

R

E
SU

L
T

11

91
3

LD
A

A

D
D

N
U

M

1
2

0
0

A

D
C

R
E

SU
L

T

12
11

3
ST

A

R
E

SU
L

T

1
2

2
0

LD

A

A
D

D
N

U
M

+l

t'I
i .g ~

~
 ~ P
- ~ '1
 ~ tj

~

~
 OJ

~

0
0

~
 ~

~

::3

~

Il'
Q

~
 3 ~ ::3

~

.....
..

o
..

1
2

3
0

1

2
4

0

1
2

5
0

1

2
6

0

1
2

7
0

1

2
8

0

1
2

9
0

1

3
0

0

1
3

1
0

1

3
2

0

1
3

3
0

1

3
4

0

1
3

5
0

1

3
6

0

1
3

7
0

1

3
8

0

1
3

9
0

1

4
0

0

1
4

1
0

1

4
2

0

1
4

3
0

1

4
4

0

A
D

C
R

E
SU

L
T

+1

ST
A

R

E
SU

L
T

+
1

A
R

EN
D

LD

A

P
A

S
S

;
O

N

2N
D

P

A
S

S
,

C
H

EC
K

FO

R

D
U

PS

B
N

E
A

R
EN

X

R
T

S
;

G
O

B

A
C

K

TO

EV
A

L
A

R
EN

X

JM
P

ST
A

R
T

O
V

E
R

;
O

N

PA
SS

2

,
LO

O
K

FO

R

D
U

PS

(S
O

C

O
N

T
IN

U
E

IN

A

R
R

A
Y

)
i-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

D
EC

 P
A

R

LD
A

PA

R
R

A
Y

;
LO

W
ER

A

R
R

A
Y

P

O
IN

T
E

R

BY

1
B

N
E

M
D

EC

D
EC

PA

R
R

A
Y

+l

M
D

EC

D
EC

PA

R
R

A
Y

R

TS
 --

--
--

--
--

--
--

--
-

D
U

PL
A

B

JS
R

E

R
R

IN
G

;
R

IN
G

B

E
L

L

A
N

D

P
R

IN
T

D

U
P

L
A

B
E

L

M
E

SS
A

G
E

LD

A

jj:
<M

D
U

PL
A

B

ST
A

TE

M
P

LD
A

jj:

>M
D

U
PL

A
B

ST

A

T
E

M
P+

1
JS

R

PR
N

T
M

E
SS

JS

R

PR
N

T
C

R

R
T

S
;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

.F
IL

E

O
PE

N
1

Fo
r

th
e

A
ta

ri
 v

er
si

on
 o

f
A

rr
ay

,
ch

an
ge

 l
in

e
14

40
 t

o
:

14
40

 .
FI

L
E

 D
:O

P
E

N
1.

S
R

C

tT:
I

.0

t:: ~

~

~

::l p.
. ~ '1
 ~ t:)

~

~

tJ:
j

~

'I
l
~
 ~

~

::l

~

(J
Q

~
 3 ~ ::l

-

Open 1, Findm.n, Getsa,
and Valdec:
I/ O Management and
N umber Conversions

I/0 (Input/Output), a computer's method of communicating
with its peripherals, is one of the most machine-specific and
potentially complex aspects of machine language programming.

Sending or receiving bytes to or from disk or tape drives
and sending bytes to a printer are the most common I/0 activ
ities. A large part of a computer's ROM memory is usually de
voted to managing I/ O.

I/O is machine-specific because each manufacturer invents
his own way of managing data, his own variations on the
ASCII code, and his own disk or tape operating systems.

And I/O is complex because printers and disk and tape
drives differ greatly in such things as how fast they can store
bytes, how many bytes they can accept, and esoteric matters
like timing, error checking, and special control signals.

ML programmers are frequently advised to perform I/O
operations in BASIC and then SYS, CALL, or USR into the ML
after the hard part has been accomplished by the computer's
operating system. This works well enough with small ML
projects. But it can become awkward in a large ML program.
LADS itself must open and close disk files pretty often. It
would be inefficient to require LADS to fly down into an at
tached BASIC program for this. Also, large ML programs are
easiest to save, load, and use if they are written entirely in ML.

Fortunately, we can access BASIC's ROM routines from
within an ML program. Certain registers and pointers in zero
page need to be set up, then we can JSR to open a file to a
peripheral. After that, we can send or receive bytes from that
file .

Since these routines are so machine-specific, we'll look at
the Commodore techniques in this chapter. See Appendix C for
an explanation of the Atari and Apple I/O techniques.

105

Open!, Findmn, Getsa, and Valdec: I/O Management

Commodore I/O
Some peripherals are intelligent and some are dumb. Com
modore disk drives are highly intelligent-they've got large
amounts of RAM and ROM memory. One consequence of this is
that relatively little I/O computing needs to be done within the
computer proper. A Commodore disk drive is a little computer
itself. You can just send it a command, and it takes over from
there.

The tape drives, though, are dumb. ROM intelligence within
the computer must manage I/O to tape. Some printers aren't so
dumb, but since you can choose from so many different models
and brands, the computer just sends out a sequence of raw bytes
when you print to a printer. Your BASIC or operating system
makes no effort to control fonts, formatting, or any other special
printer functions. You are expected to send any necessary printer
control codes via your software. If the printer is equipped to TAB
or justify text, that's up to the printer's ROM.

Open!
In the subprogram Open1, there are four Commodore-specific
subroutines. In many respects, they are identical subroutines.
Each opens a file to an external device in much the same way.
Only the specifics differ. The first subroutine, OPEN1, starts
communication with a disk file which will be read. That is, the
source code will come streaming in from this file so that LADS
can assemble it. This file will be referred to as file 1.

The second subroutine, OPEN2, opens file 2 as a write file.
If the user includes the .D NAME pseudo-op within his source
code, the results of a LADS assembly, the object code, will be
stored on disk in a file called NAME. OPEN2 makes the disk
create this file.

The third subroutine, OPEN4, creates a simple write file to
the printer. It, too, is similar to the others except that there is, of
course, no filename.

Looking at OPEN1, the first event is a call to the CLRCHN
subroutine within BASIC. All I/ O (including that to the screen
and from the keyboard) is governed by this opened-files concept
in Commodore computers. The normal I/ O condition is output
to the screen and input from the keyboard. CLRCHN sets the
computer to this condition. It is a necessary preliminary before
any other opening or closing of files .

106

Open!, Findmn, Getsa, and Valdec: I/O Management

Resetting the Disk Program Counter
Next we close file #1 (50-60). This resets the disk intelligence. As
we shift from pass 1 to pass 2, we've been reading through file
#1 to bring in our source code. On pass 2, we want to start all
over again with the first byte in the disk source file . It is nec
essary to close, then reopen, file # 1 to force the disk intelligence
to again point to that first byte in the file.

Next we must prepare some zero page file-manipulation
pointers. We store the file number to FNUM, the device number
(8 is the disk device number in Commodore computers) to
FDEV, and the secondary address to FSECOND. All of this is
precisely what we do in opening a file from BASIC with OPEN
1,8,3.

Then we have to pOint to the location of the filename
within RAM. LADS holds filenames in a buffer called FILEN, so
we put the low and high bytes of FILEN's address into the
FNAMEPTR. Then, at last, we go to OPEN, the BASIC sub
routine which opens a disk file.

The four zero page locations and the OPEN routine in ROM
are all machine-specific. They are defined in the Defs sub
program. OPEN2 is identical except for a different filename, a
different file number, and a different secondary address (which
makes it a write file).

OPEN4, too, is identical except that the secondary address is
ignored, the device number is 4 (for printers in Commodore
computers), and there is no filename.

Line 430 reveals a fifth zero page location which must be
POKEd before calling the OPEN subroutine in BASIC ROM. It
holds the length of a filename . (Opening to a printer uses no
filename, so a zero is put into FNAMELEN [430].)

Both of the other subroutines, OPEN1 and OPEN2, do not
need to POKE FNAMELEN. It is POKEd just before LADS JSRs
to either of them.

LOADl, the final I/ O subroutine in this subprogram, is
used with the assemble-from-RAM-memory version of LADS. In
this case, the source code files are LOADed into RAM before
they are assembled. This means that we need to imitate a typical
BASIC LOAD of program files.

The LOAD subroutine within BASIC requires that the
LOAD /VERIFY flag be set to LOAD (rather than VERIFY), that
8 be declared the device (disk), and that the name of the pro
gram to be loaded be pointed to . Then the machine-specific

107

Openl, Findmn, G etsa, and Valdec: I/ O Management

LOAD routine within BASIC is called. After that, the program
(the source code) is loaded into the normal RAM address for
BASIC programs.

Findmn: Table Lookup
This subprogram is similar to the Array subprogram: Both look
through an array and find a match to a "source" word. Yet
Findmn is simpler than Array. It doesn't need to check for
word lengths. Also, the numbers (the values) associated with
the words in the array are more simply retrieved. Findmn tries
to find a mnemonic like LDA or BCC in a table of all 56 of the
6502 machine language mnemonics.

This table (or array) of mnemonic names is in the sub
program Tables at the very end of LADS source code. The
mnemonics table starts off like this:
50 MNEMONICS .BYTE "LDALDYJSRRTSBCSBEQBCCCMP
60 .BYTE "BNELDXJMPSTASTYSTXINYDEY

and continues, listing all of the mnemonics.
This array of mnemonics is simpler and faster to access than

our array of labels because it's what's called a lookup table. It has
four characteristics which make it both easy to access and very
efficient: It's a fixed field array (all items are three bytes long),
it's static, it's parallel, and it's turbo-charged.

Charles Brannon, my colleague at COMPUTE! Publications,
is a proponent of what he calls " turbo-charged code./I He writes
an ML program, gets the logic right, and then takes a cold look
at things, especially at heavily used loops. Is the first CMP the
one most often true in a series of CMPs? Or would it be faster to
rearrange these CMPs in order of their probability of use?
Should an Indirect Y addressing mode be replaced by an even
faster structure such as self-modifying Absolute addressing?
Would a lookup table be a possible replacement for some com
puted value? Sometimes, small changes can result in extraor
dinary gains in speed. For example, after LADS was finished and
thoroughly tested, it took 5 minutes, 40 seconds to assemble it
self (5K of object code).

A cold look, about five hours of work, and the resulting few
minor changes in the source code brought that time down to its
present speed for self-assembly: 3 minutes, 21 seconds. (This
speed test was conducted with only the .D name pseudo-op ac
tivated, on a Commodore PET /CBM 8032, with a 4040 disk
drive, and involving far fewer comments than found with the

108

Openl, Findmn, Getsa, and Valdec: I/O Management

source code as published in this book. The use of additional
pseudo-ops, additional comments, or other computer/disk
brands and models will result in different assembly speeds. The
Apple has a faster disk drive, for example, and the LADS Apple
version is even faster than the Commodore version.)

How does this mnemonics lookup table differ from the label
array? They're both arrays, but the label array is a dynamic array.
It changes each time you reassemble different source code. A
lookup table, by contrast, is static: It never changes. It's a place
where information is permanent and lends itself, therefore, to a
bit of fiddling, a bit of turbo-charging.

A Special Order
First of all, in what order did we put these mnemonics? They're
not in alphabetical order. In that case, ADC would be first.
They're not in the numeric order of their opcodes either. Using
that scheme, BRK would be first, having an opcode of O. Instead,
they're in order of their frequency of use in ML programming.
The order wasn't derived from a scientific study-I just looked at
them and decided that I used LOA more often than anything
else. So I put it first.

The reason for putting them in order of popularity is that
every line of source code contains a mnemonic. Every time a
mnemonic is detected, it must be looked up. Since this lookup
starts with the first three-letter word in the table (all mnemonics
are three letters long) and works its way up the table, it makes
sense to have the most common ones lowest in the table. They'll
be found sooner, and LADS can continue with other things. It
turns out that rearranging the order of the mnemonics in the ta
ble resulted in an increase in speed of considerably less than 1
percent, but everything helps. The principle is valid, even if it
doesn 't accomplish much in this case.

The second quality of a lookup table-parallelism-is rather
significant to the speed of LADS. Right below the MNEMONICS
table in the Tables subprogram are two parallel tables: TYPES
and OPS. (See the Tables subprogram at the end of Chapter 9.)
TYPES can be numbers from 0 to 9. It is handy to group
mnemonics into these ten categories according to the addressing
modes they are capable of using. Some mnemonics, like RTS,
INY, and DEY, have only one possible addressing mode (they
take no argument and have Implied addressing). They are all la
beled type O. The branching instructions, BNE, BEQ, etc., are ob-

109

Openl, Findmn, G etsa , and Valdec: I/O M anagement

viously related in their behavior as well: They are type 8. This
categorization helps the Eval subprogram calculate addressing
modes. This table of TYPES parallels the table of MNEMONICS.
That is, the first mnemonic (LDA) is type I, so the number 1 is
the first number in the table of TYPES. The fifth mnemonic in
the MNEMONICS tables, BCS, is paralleled by the fifth number
in the TYPES table, 8.

The Efficiency of Parallel Tables
What's the value of putting them in parallel? It allows us to use
the Y or X Register as an index to quickly pull out the values in
any table which is parallel to the primary lookup table,
MNEMONICS. Once we've found a match within MNEMON
ICS, we can simply LDA TYPES,X to get that mnemonic's type.
And we can also LDA OPS,X to get the opcode for that mne
monic. All this works because we INX after each failure to match
as we work our way up through the MNEMONICS table. X will
point to the right item in each of the parallel tables, after we find
a match.

But now on to the actual lookup techniques which are used
in the Findmn subprogram. As usual, we set our index counters,
X and Y, before entering a loop. X gets $FF (40), so it will zero at
the first INX at the start of the loop. Y gets O. You can tell that
this was the first subprogram written in LADS. Nowhere else
can we achieve the elegant simplicity of calling a loop LOOP
and the end of the routine END (390). After using them once,
we'll have to come up with other names for loops and exits.

Anyway, we enter LOOP and look at the first character in
the MNEMONICS table (60). If it matches the first character in
the buffer LABEL (holding something like: LDA 15), we jump
down to look for a match to the second, and then the final,
character in the mnemonic. Otherwise, if there is no match, we
INY INY INY to move up three characters in the MNEMONICS
table and prepare to compare the first letter of the second mne
monic against our source mnemonic.

When looking something up, it saves time if you just test
first characters before going on to whole-word tests.

Assuming a first characters match, MORE (150) compares
the second characters. If they match, we go on to MORE1. This
time a failure to match results in two INYs because there was
one INY at the start of MORE. MOREl tests the third characters.
If it fails, we only need one INY. In each case, a failure returns

110

Openl, Findmn, Getsa, and Valdec: I/O Management

to LOOP. LOOP itself fails when it has exhausted all 56
mnemonics in the table and no match has been found. Since
each attempt causes X in INX, we can test for the end of the ta
ble of 56 mnemonics by CPX #57 (120).

If we have exhausted the table, we jump back into the Eval
subprogram where label definitions are evaluated. Since we
didn't find a mnemonic as the first thing on a source code line, it
must be a label like:
100 LABEL LOA 15

or
100 LABEL = 75

JMP for JMP
Note that we don't need to PLA PLA the return address of an
RTS off the stack before]MPing back to Eval from this sub
program. That's because we]MPed here from Eva!. Both possible
returns to Eval will be]MPs. That makes it possible for us to
]MP directly to Findmn from Eva!. For speed, we can]MP back
to two different places within Eval, depending on whether we
did or did not find a mnemonics match.

Finding a match, however, sends us to the FOUND sub
routine (300) where we check to see if there is a blank character
or a zero (end of line) following the supposed mnemonic. If
there isn't, that means we've got a label which looks like a mne
monic: INYROUTINE or BPLOT or something. We can't let that
fool us. If there's a character in the fourth position, such words
reveal themselves to be labels. If so, we go back to Eval via
NOMATCH.

But let's say that all was well. It's not an address label, it's
not an equate label, it's not a label disguised as a mnemonic.
We've located a true mnemonic. All we have to do is pick its
TYPE and OPCODE out of their tables and store them in their
holding places, the variables TP and OP, and]MP back to EVAR
in Eva!. EVAR is a subroutine in Eval which examines the argu
ment of a mnemonic to determine its addressing mode.

Getsa: The Simplest Routine
This subprogram has only one mission: to point to the starting
address in the source code program. Here's what it points to:
10 *= 864

111

Openl, Findmn, Getsa, and Valdec: I/O Management

Getsa pulls off the first six bytes (in a Commodore disk
program file) so that it can check to see if the seventh byte is
the'" character (120). If so, Getsa returns to the calling routine
in Eval (200). If not, it prints the NO START ADDRESS error
message and goes to FIN (190), the shutdown (return to BASIC)
routine.

Conditional Assembly
There are two fundamentally different versions of LADS. The
version presented as object code (to be typed in) in this book
assembles from disk-based source code. You create BASIC-like
"programs" on disk, and then LADS reads them and assembles
them without bringing any source code into RAM memory.

An easy modification to LADS, however, will allow it to
assemble directly from source code within RAM memory. A
few trivial changes to LADS' own source code and you can as
semble a new, memory-based LADS. These changes are de
scribed between lines 430 and 640 of the Getsa source code
printed at the end of this chapter. The changes are described in
greater detail in Chapter II , "Modifying LADS."

But this Getsa source code illustrates one way that your
source code program can conditionally assemble. Notice line 210.
The MEMSA and CHARIN routines below it will never be
assembled. When LADS sees the .FILE pseudo-op, it will im
mediately turn its attention to the Valdec source code . . FILE
shuts down the current file and switches to the named source
file, ignoring any additional source code in the current file.

Thus, to assemble the "conditional" part of this source
code, all you have to do is move .FILE below the new source
code. See the instruction in line 580 of this Getsa subprogram.
That's how you do it to create a memory-based version of
LADS.

Another way to conditionally assemble is to insert the .NO
pseudo-op, thus turning off object-code-to-memory-storage until
the .0 pseudo-op turns it back on. You could write your own
.ND (no storage to disk) pseudo-op if you want to control
assembly which is sending its object program to a disk drive.
Another pseudo-op you could write would be something like
.NA for No Assembly which would cause LADS to simply
search down through source code (taking no actions other than
building the label array) until it located a .A pseudo-op, turning
all assembly back on. These .ND, .NA, and .A pseudo-ops aren't

112

Openl, Findmn, Getsa, and Valdec: I/O Management

built into LADS, but would be easy to add if you felt you'd have
a use for them.

Valdec: Number Conversion
Numbers such as the 15 in LDA 15 are held in ASCII code for
mat within source programs. In other words, when LADS pulls
in the IS, it doesn't get the number 15. It gets 1-5 instead. It gets
the ASCII for 1 and the ASCII for 5: 49 and 53 decimal. (As an
aside, 1 and 5 are $31 and $35 in hex. It's pretty easy to men
tally convert ASCII hex to numeric form. Just drop the leading 3
from any hex ASCII number.)

What Valdec must do is turn 49 53 into the two-byte num
ber OF 00 which the computer can recognize and work with.
This is just a bit more complicated than it might seem. The
complexity comes from the fact that the 1 in 15 is really 10 times
1. The Valdec subprogram which handles this ASCII-to-integer
translation will have to multiply by 10,000 or 1000 or 10 or 1-
depending on the position of the ASCII digit. We don't need to
worry about numbers higher than 65535 since ML doesn't often
need to calculate higher than that. All addresses that the 6502
chip can reach are within that range, and two bytes cannot hold
a larger number anyway. Therefore, multiplication by 10,000 will
take care of any case we might come across.

And since 10,000 is just 10 X 10 X 10 X 10, we'll really
only need a way of multiplying by 10 a maximum of four times.
So all that's really needed is a multiply-by-10 routine that we
can loop through as often as necessary. Lines 400-550 perform
this operation.

But let's start at the start. Anything in LADS which calls
upon Valdec for its services will have already set up the TEMP
pointer to point to the first ASCII character in the number to be
translated. Also, the number will end with a 0 delimiter. (This
isn' t the ASCII 0, which is $30. It's a true zero.)

Determining Length
After Valdec finishes, it leaves the results in the two-byte register
called RESULT.

First Valdec finds the length of the ASCII number (50-90).
Our example number, IS, would be two bytes long. Its length is
stored in the variable VREND, and we then clean out the RE
SULT register by storing 0 into it (130-150). Then X (not the reg-

113

Openl, Findmn, Getsa, and Valdec: I/O Management

ister, the variable) is stuffed with a 1 (170) so it can tell us how
many times to loop through the times-ten routine for each digit.
As we move from right to left, reading first the 5 then the 1 in
IS, X will be raised. Coming upon the 5, X will be I, and we'll
perform no multiplication. The first thing the loop for multiplica
tion does is DE X, so 1 becomes 0 and we exit the loop (250).

Coming upon the 1, X will tell us to go through the times
ten routine once. In other words, we multiply 1 times 10 for a
result of 10. This, added to 5, gives the 15 we're after.

But let's back up to where we were, at VALLOOP (180). We
can take advantage of the fact that the ASCII code was designed
so that the lower four bits in each ASCII numeral byte hold the
actual number: $35 stands for 5. How do we extract the number
$05 from $35? We could subtract $30. Even simpler is AND
#$OF. AND turns bits off. Wherever a bit is off in the mask (the
#$OF in this example), the bit will be off in the result:

$35 (ASCII for 5)
AND QL.. (the four high bits are all off,

the four low bits are on-they
have no effect)

$05 (the answer we're after)

00110101 ($35, prepared to be stripped of its high bits by)
AND 00001111 ($OF, the mask, turning bits off where the O's

are)
00000101 ($05, leaving the number we want)

Here we load in the rightmost character, the 5 in IS, the
$35 in $31 $35. And strip off the 3, leaving the 5. Then that's
stored in two temporary variables: RADD and TSTORE. Next we
fill both of the high bytes of these variables with 0 (220-240).
That makes them officially correct. Nothing lingers in their high
bytes to confuse things later when we perform two-byte
addition.

Now that our digit 5 is safely tucked away, we need to mul
tiply it by 10 as many time as necessary. DEX lowers X. With
this first character, X becomes 0, and we BEQ to the exit (330).
When we come through this loop next time, holding the 1 in IS,
X will become 1 and we'll therefore JSR TEN (270) one time,
making 1 into 10.

Keeping Track of Position
After the subroutine TEN has multiplied the number in RADD
(named for Result of ADDition) by 10, we transfer the result

114

Openl, Findmn, Getsa, and Vald ec: I/O Man agemen t

from RADD over to TSTORE (280-310). Why the transfer? Be
cause in the lOa's position, a digit would need to be multiplied
by 10, twice. The 2 in 215 would have to be 2 times 10 times
10. So TSTORE has to keep a running total of the results
achieved by the TEN subroutine. TEN uses RADD during mul
tiplication. Obviously, a second two-byte variable will have to
keep track of the total as, more than once, we multiply the larger
digits by 10.

Another running total, the result of all Valdec's efforts, is
kept in the variable RESULT. That will ultimately hold our final
answer. But each time we achieve an interim answer on a single
digit, we]SR VALADD (350) to add the results of that digit's
multiplication to RESULT (570-640).

Meanwhile, back up at line 360, we DEY to point to the
next higher digit, the digit next to the left. And DEC VREND to
see if we've reached the end of our ASCII number and cannot
RTS. If not, we go back up and load in the next digit, continuing
to add to the running total in RESULT.

The multiply-by-ten routine called TEN (410) is worth a
brief examination. Let's imagine that we have put a 1 into RADD
(200) and we're going through the TEN loop once, multiplying it
by 10. We clear the carry. ASL shifts each bit in RADD (the low
byte of this two-byte number) to the left by 1. The interesting
thing is that the seventh bit goes into the carry. Then we ROL
RADD + 1, the high byte, which rotates each bit to the left. This
is the same as the ASL shift to the left. The seventh bit pops into
the carry. But with ROL, the carry moves into the zeroth bit. A
combination of ASL ROL shifts all the bits in a two-byte number
to the left by 1:
Carry bit

o

o

high byte
00000000

00000000

low byte
00000001

00000010

(our 1 before ASL low byte,
ROL high byte)
(after)

You can see that this, in effect, multiplies these bytes by 2. If
we ASL/ROL again, we get:

o 00000000 00000100 (the original number, mul-
tiplied by 4)

At this point, our answer is 4. We've multiplied the original
1 by 4 with an ASL/ ROL combination, performed twice.

Now we CLC again and add the original number (1) to the
current result (4), giving us 5 (460-520) . It's easy to see that all

115

Openl, Findmn, Getsa, and Valdec: I/O Management

we need to do now is one more ASL/ROL, which multiplies the
running total by 2 one more time:

Carry bit high byte
o 00000000

+ o 00000000

o 00000000

low byte
00000100
00000001

00000101

(4)
(added to the original 1,
gives)

(5)

then, we just ASL the low byte:
o 00000000 00001010 (10)

ROL the high byte (which has no effect on this small a number):
o 00000000 00001010 (giving us 10)

That final ASL/ ROL multiplies 5 times 2, and we've got the
right answer (530-540). This trick-multiply by 4, add the orig
inal number, multiply by 2-will work whenever you need to
multiply a number by 10. Other combinations will multiply by
other numbers. And as Valdec illustrates, you can calculate pow
ers of 10 by just running the result through this TEN subroutine
as often as necessary.

116

.....

.....

'-
l

P
ro

gr
am

 5
-1

.
O

p
en

 1
,

C
om

m
od

or
e

1
0

~

"O
P

E
N

1"

O
PE

N

1
,8

,3
,

"W
H

A
TE

V
ER

N

A
M

E
FR

O
M

SC

R
E

E
N

"
2

0

~
O

PE
N

A

F

IL
E

O

N

D
IS

K

(T
H

IS

T
Y

PE

O
F

F
IL

E

IS

R
EA

D

FR
O

M
)

3
0

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
0

O

PE
N

1
JS

R

C
L
R
C
H
N
~
R
E
S
T
O
R
E

N
O

RM
A

L
I

/O

(O
U

T
PU

T

TO

SC
R

E
E

N
,

IN
PU

T

FR
O

M

K
EY

B
O

A
R

D
)

5
0

LD

A

#
1
~

C
L

O
SE

DO

W
N

D
IS

K

F
IL

E

C
H

A
N

N
EL

#1

6

0

JS
R

C
L
O
S
E
~

(W
E

'R
E

G

O
IN

G

TO

R
EO

PE
N

IT

N

O
W

,
B

U
T

W
E

C
L

O
SE

IT

F

IR
S

T
)

7
0

LD

A

#
l

8
0

ST

A

F
N
U
M
~

F
IL

E

9
0

LD

A

#8

1
0

0

ST
A

F
D
E
V
~

D
E

V
IC

E

N
U

M
B

ER
.

1
1

0

LD
A

#3

1

2
0

ST

A

F
S
E
C
O
N
D
~

SE
C

O
N

D
A

R
Y

A

D
D

R
.

1
3

0

N
A

M
E

AD

LD
A

#
<
F
I
L
E
N
~

SE
T

PO

IN
T

E
R

TO

F

IL
E

N

A
M

E
B

U
FF

E
R

(F

IL
E

N
)

IN

L
A

D
S.

1

4
0

ST

A

FN
A

M
EP

TR

~
P
O
I
N
T
E
R

TO

FI
L

E
N

A
M

E

A
DD

R
.

1
5

0

LD
A

#>

F
IL

E
N

1

6
0

1

7
0

1

8
0

1

9
0

2

0
0

2

1
0

2

2
0

2

3
0

2

4
0

2

5
0

2

6
0

2

7
0

2

8
0

2

9
0

ST
A

FN

A
M

E
PT

R
+1

JS

R

O
P
E
N
~

R
O

U
T

IN
E

W

IT
H

IN

B
A

SI
C

TH

A
T

O
PE

N
S

U
P

A
 N

EW

F
IL

E

R
TS

--

--
--

--
--

--
--

--
--

--
--

--
-

,
O

PE
N

2

,8
,2

,
"N

A
M

E"

(O
PE

N
S

D
IS

K

PR
O

G
R

A
M

F

IL
E

FO

R

W
R

IT
IN

G

O
B

JE
C

T

C
O

D
E

)
j-

--
--

--
--

--
--

--
--

--
--

--
-

O
PE

N
2

LD
A

#
2
~

SE
E

D

E
F

IN
IT

IO
N

S

A
B

O
V

E
(S

A
M

E
S

E
T

U
P

)
ST

A

FN
U

M

LD
A

#8

ST

A

FD
EV

LD

A

#2

ST
A

FS

EC
O

N
D

LD

A

#<
F

IL
E

N

ST
A

F
N
A
M
E
P
T
R
~

PO
IN

T
E

R

TO

FI
L

E
N

A
M

E

A
D

D
R

.

o '" (I
) ::l

.

"T
j 5' 0.
. S ::l
 c;J

(I
) ... fr
l
~

~

::l

0.
. ~ 0:

(I
) r. ,....
.

'-
..

o ~

~

::l

~

(J
Q

(I

) S (I
) ::l
 ...

,....
..

,....
..

co

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

5
1

0

5
2

0

5
3

0

5
4

0

5
5

0

5
6

0

5
7

0

5
8

0

5
9

0

6
0

0

LD
A

#>

F
IL

E
N

ST

A

FN
A

M
E

PT
R

+1

JS
R

O

PE
N

JS

R

C
LR

C
H

N

R
T

S
--

--
--

--
--

--
--

--
--

--
--

--
--

,
O

PE
N

4

,4

(O
PE

N
S

F
IL

E

TO

P
R

IN
T

E
R

)
--

--
--

--
--

--
--

--
--

--
--

--
-

, O
PE

N
4

LD
A

#

4
;

SA
M

E
FO

R
M

A
T

,
E

X
C

E
PT

FN

A
M

EL
EN

ST

A

FN
U

M

LD
A

#4

ST

A

FD
EV

LD

A

#
0

;
TH

ER
E

IS

NO

F
IL

E

NA
M

E
SO

SE

T

F
IL

E
N

AM
E

LE
N

G
TH

TO

Z

E
R

O
.

ST
A

FN

A
M

EL
EN

JS

R

O
PE

N

JS
R

C

LR
C

H
N

R

TS

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

,
LO

A
D

"N

A
M

E"

(L
O

A
D

S
A

P
R
O
G
R
A
~
l

F
IL

E
,

A

SO
U

R
C

E
C

O
D

E
F

IL
E

IN

T
O

RA

M
)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

, LO
A

D
1

JS
R

C

L
R

C
H

N
;R

E
ST

O
R

E

N
O

RM
A

L
I

/
O

LD

A

#0

ST
A

L

O
A

D
FL

A
G

;
L

O
A

D
/V

E
R

IF
Y

FL

A
G

ST

A

S
T

;
TH

E
ST

A
T

U
S

B
Y

TE

LD
A

#

8

ST
A

FD

E
V

;
D

E
V

IC
E

N

U
M

B
ER

.
LD

A

#
<

F
IL

E
N

;
SE

T

P
O

IN
T

E
R

TO

FI

L
E

N
A

M
E

B

U
FF

E
R

(F

IL
E

N
)

IN

L
A

D
S

.
ST

A

FN
A

M
EP

TR

;P
O

IN
T

E
R

TO

FI

L
E

N
A

M
E

A

D
D

R
.

LD
A

#>

F
IL

E
N

ST

A

FN
A

M
E

PT
R

+1

JS
R

LO

A
D

;
R

O
U

T
IN

E

W
IT

H
IN

B

A
S

IC

TH
A

T
LO

A
D

S
IN

A

PR

O
G

R
A

M

o "0

(t
>

~

I-
'

'"T
j 5· 0.
. a ::l
 C1

(t>

0
0

~

~

~

0.
. ~ 0:

(t>
 r.
.

"- o ~

~

::l

~

IJQ

(t
>

 a (t>

::l

\

.....

.....

\0

,
-\

u
S

R

C
L

R
C

H
N

6

1
5

LD

A

R
A

M
ST

A
R

T
:S

T
A

PM

E
M

:L
D

A

R
A

M
ST

A
R

T
+

1:
ST

A

PM
EM

+1

6
2

0

R
T

S
6

3
0

.F

IL
E

FI

N
D

M
N

P
ro

g
ra

m
 5

-2
.

O
p

e
n

!,
 A

p
p

le

5
;O

P
E

N

IN
PU

T

F
IL

E

1
0

O

PE
N

I
JS

R

C
LR

C
H

N

2
0

LD

A

#
1

;
C

L
O

SE

F
IL

E

IF

A
LR

EA
D

Y

O
PE

N

3
0

JS

R

C
L

O
SE

4

0

LD
A

#

<
O

PN
R

EA
D

5

0

ST
A

FM

O
P

6
0

LO

A

#
}

O
PN

R
EA

D

7
0

ST

A

F
M

O
P

+
l

8
0

JS

R

FM
D

R
IJ

R
O

9

0

IN
C

F

O
P

E
N

1;

SE
T

IN

PU
T

F

IL
E

TO

O

PE
N

1

0
0

R

T
S

1
0

5

;
O

PE
N

O

U
TP

U
T

F
IL

E

1
1

0

O
PE

N
2

LO
A

#

(
O

PN
W

R
IT

1

2
0

1

3
0

1

4
0

1

5
0

1

6
0

1

7
0

1

8
0

1

8
5

1

9
0

2

0
0

2

1
0

ST
A

FM

O
P

LO
A

#

>O
PN

W
R

IT

ST
A

FM

O
P+

l
JS

R

FM
D

R
IJ

R
O

IN

C

F
O

P
E

N
2;

SE

T

O
U

T
PU

T

F
IL

E

O
PE

N

R
T

S
O

PE
N

4
R

T
S

;
O

PE
N

NO

T

N
E

E
D

E
D

TO

P

R
IN

T
ER

;

R
EA

D

O
N

E
B

Y
TE

FR

O
M

IN

P
U

T

F
IL

E

R
D

B
Y

TE

LD
A

#

<
R

D
IB

ST

A

FM
O

P
LO

A

#>
R

D
IB

o "C
l ro

::l

~

'T
j S·

0.
. 3 ::l
 C1

ro
 ,....

C
Il
~

~

::l

0.
. ~ ~ ro

("

l - " o ~

~

::l

~

(J
Q

ro

 3 ro

::l
 ,....

.....
.

tv

o
2

2
0

2

3
0

2

W

2
~

2
6

0

2
7

0

2
8

0

2
9

0

ST
A

F

M
O

P
+

l
JS

R

FM
D

R
'v

R

JS
R

$3

D
C

ST

A

PA
R

M
+l

ST

Y

PA
R

M

LO
Y

#

0
8

LO
A

W

A
R

M
)

.
Y

;
G

ET

T
H

E
B

Y
T

E

R
T

S
2

9
5

;

W
R

IT
E

O

N
E

B
Y

T
E

TO

O

U
T

PU
T

F

IL
E

3

0
0

W

RB
Y

T
E

ST

A

W
RO

A
TA

3

1
0

LO

A

#
(

W
R

1B

3
2

0

ST
A

FM

O
P

3
3

0

LO
A

#

}
W

R
1B

3

4
0

ST

A

F
M

O
P

+
l

3
5

0

JS
R

FM

O
R

V
R

3

6
0

R

T
S

3
6

5

;
C

L
O

SE

IN
P

U
T

F

IL
E

3

7
0

C

L
O

S
E

I
LD

A

F
O

P
E

N
1;

C

H
E

C
K

TO

S

E
E

IF

IN

PU
T

F

IL
E

IS

O

PE
N

3

8
0

B

EQ

C
L

O
S

E
4;

IF

N

O
T

E
X

IT

3
9

0

LO
A

#

(
C

L
O

SE
R

4

0
0

ST

A

FM
O

P
4

1
0

LO

A

#
}C

L
O

SE
R

4

2
0

ST

A

F
M

O
P

+
l

4
3

0

JS
R

FM

D
R

V
R

4

4
0

LO

A

#
0

4

5
0

ST

A

F
O

P
E

N
1;

S

E
T

IN

P
U

T

F
IL

E

TO

C
L

O
SE

D

4
6

0

R
T

S
4

6
5

;

C
L

O
SE

O

U
T

PU
T

F

IL
E

4

7
0

C

L
O

S
E

2
LO

A

F
O
p
~
N
2
;

C
H

E
C

K

TO

S
E

E

IF

O
U

T
PU

T

F
IL

E

IS

O
PE

N

4
8

0

B
EQ

C

L
O

S
E

4
;

IF

N
O

T
E

X
IT

4

9
0

LO

A

#
(

C
LO

SE
W

o "C
j

(l
) ::l

I-
'

'T
j :r t c;;

(l
) '" $I) $I
) ::l

0.
. ~ 0:

(l
) r:

'-

..
. o ~

$I
) ::l

$I
)

(J
Q

(l

) S (l
) ::l

5
0

0

ST
A

FM

O
P

5
1

0

LO
A

#

>C
LO

SE
W

5

2
0

ST

A

FM
O

P+
l

5
3

0

JS
R

FM

O
R

V
R

5

4
0

LO

A

#
0

0

5
5

0

ST
A

F

O
P

E
N

2;

S
E

T

O
U

T
PU

T

F
IL

E

TO

C
L

O
SE

D

'0

ro
5

6
0

R

T
S

::l

5
7

0

C
L

O
S

E
4

R
T

S
;

C
L

O
SE

N

O
T

N
EE

D
ED

FO

R

P
R

IN
T

E
R

....
~

5
8

0

FM
O

R
V

R
O

LO

Y

#
0

8
;

PU
T

FI

L
E

N
A

M
E

IN

TO

PA
R

A
M

E
T

E
R

F

IE
L

D

'T
j

5
9

0

LO
A

(F

M
O

P)
 •

 Y

::l

6
0

0

ST
A

PA

R
M

0.

. 3
6

1
0

IN

Y

::l

6
2

0

LO
A

(F

M
O

P)
 •

 Y

6
3

0

ST
A

PA

R
M

+l

CJ

ro
6

4
0

LO

A

#
<

F
IL

E
N

.... rn

6

5
0

ST

A

TE
M

P
III

6
6

0

LO
A

#

>F
IL

E
N

III

6

7
0

ST

A

T
E

l'l
P+

1
::l

0.

.
6

8
0

LO

Y

#
0

0

~
6

9
0

LO

A

#$
A

O

-
7

0
0

PA

O
Fl

'·l
ST

A

(P
A

R
M

}.
Y

;
F

IR
S

T

F
I

L
L

W

IT
H

S

P
A

C
E

S

0.
.

ro
7

1
0

IN

Y

r.
7

2
0

C

PY

#
3

1

.....
..

7
3

0

B
N

E
PA

O
FN

'-

..
.

0
7

4
0

LO

Y

#
0

0

~

7
5

0

FM
O

LO

A

<T
EM

P)
 •

 Y
;

TH
EN

PU

T

FI
L

E
N

A
M

E

IN

F'
A

RM

III

7
6

0

O
RA

1

t$
8

0
;

M
A

K
E

SU
R

E

H
IG

H

B
IT

SE

T

::l

7
7

0

ST
A

(P

A
F:

M
)

• Y

III

IJQ

7
8

0

IN
Y

ro

.....
.

7
9

0

C
PY

FN

A
M

EL
EN

3 ro

N

8
0

0

B
N

E
FM

O

::l

.....
.

....

.....

8
1

0

N

N

8
2

0

8
3

0

8
4

0

8
5

0

8
6

0

8
7

0

8
8

0

8
9

0

9
0

0

9
1

0

9
2

0

9
~
"
C

L
o

J

9
3

0

9
4

0

9
4

5

9
5

0

9
6

0

9
7

0

9
8

0

9
9

0

1
0

0
0

1

0
1

0

1
0

2
0

1

0
3

0

1
0

3
5

1

0
4

0

1
0

5
0

1

0
6

0

1
0

7
0

1

0
8

0
 FM

D
R

V
R

JS

R

$3
D

C
;

G
ET

ST

A
R

T

A
D

D
R

E
SS

TO

PA

R
A

M
E

T
E

R

F
IE

L
D

ST

A

PA
R

M
+l

ST

Y

PA
R

M

LD
Y

#

0
0

PA

R
M

SU

LD
A

(F

M
O

P
).

Y
;

PU
T

PA

R
M

S
IN

T
O

PA

R
M

ST

A

(P
A

R
M

).
Y

IN

Y

C
PY

#

1
8

B

N
E

PA
R

M
SU

LO

X

#
0

0

JS
R

$

3
0

6
;

JS
R

TO

F

IL
E

M

A
N

A
G

ER

I
~

D
O

S
R

T
S

;
S

E
T

C

U
R

R
E

N
T

IN

PU
T

C

H
A

N
N

EL

C
H

I<
IN

ST

X

O
P

N
I

R
T

S
;

S
E

T

C
U

R
R

E
N

T

O
U

T
PU

T

C
H

A
N

N
EL

C

H
K

O
U

T
TX

A

ST
A

O

PN
O

C

PX

#
4

;
IF

P

R
IN

T
E

R

TH
EN

B

N
E

C
H

I<
O

U
TO

LO

A

#
(

PR
N

T
R

O
;

SE
T

O

U
T

PU
T

TO

P

R
IN

T
E

R

ST
A

C

SW
D

LD

A

#)
P

R
N

T
R

O

ST
A

C

SW
O

+l

C
H

I<
O

U
TO

R

T
S

;

G
E

T

O
N

E
B

Y
T

E

FR
O

M

C
U

R
R

E
N

T
L

Y

O
PE

N

C
H

A
N

N
E

L

C
H

A
R

IN

ST
Y

Y

l
ST

X

X
;

SA
V

E

X
 &

 Y
 R

E
G

LO

A

O
P

N
I;

C

H
EC

K

TO

S
E

E

IF

IN
P

U
T

C

H
A

N
N

EL

C
M

P
~
H

B
N

E
C

T
O

U
T

;
IF

N

O
T

E
X

IT

o '1
j

(b

::l

~

"T
J Ei"
 S

::l
 CJ

(b

en

~

~

::l

0
- ~ 0:::

(b
 r.

....
....

... o ~

~

::l

~

(l
Q

(b

 3 (b

::l ..,.

.....
..

N

W

1
0

9
0

JS

R

R
D

B
Y

TE

1
1

0
0

PH

P
1

1
1

0

LD
Y

Y

1
1

1
2

0

LD
X

X

1

1
3

0

P
L

P

1
1

4
0

R

T
S

1
1

5
0

C

TO
U

T
LD

Y

Y
1

1
1

6
0

R

T
S

1
1

6
5

;

O
U

TP
U

T
O

N
E

B
Y

T
E

TO

C

U
R

R
EN

TL
Y

O

PE
N

C

H
A

N
N

EL

1
1

7
Q

 P
R

IN
T

ST

Y

Y
1;

SA

V
E

R

EG

1
1

8
0

ST

A

A
1

1
1

9
0

LD

A

O
PN

O
;

C
H

EC
K

TO

S

E
E

IF

TO

O

U
T

PU
T

F

I
L

E

1
2

0
0

CM

P
#

0
2

1

2
1

0

B
N

E
N

X
T

I
1

2
2

0

LD
A

A

I;

Y
E

S
.

W
R

IT
E

TH

E
B

Y
TE

1

2
3

0

JS
R

W

R
B

Y
TE

1

2
4

0

JM
P

C
TO

U
T

1
2

5
0

PR

N
T

R
O

ST

A

A
1;

P

R
IN

T
E

R

O
U

TP
U

T
R

O
U

T
IN

E

1
2
~
0

CM
P

#
$

8
D

1

2
7

0

B
N

E
PR

O
U

T
1

2
8

0

LD
A

#

1
0

1

2
9

0

PR
O

U
T

ST

A

PR
N

T
R

1

3
0

0

N
O

TD
O

N
E

LD
A

PR

N
TR

D
N

1

3
1

0

B
M

I
N

O
TD

O
N

E
1

3
2

0

LD
A

A

1
1

3
3

0

R
T

S
1

3
4

0

N
X

T1

LD
A

O

PN
O

;
C

H
EC

K

TO

S
E

E

IF

TO

P
R

IN
T

E
R

1

3
5

0

CM
P

#
4

1

3
6

0

B
N

E
N

X
T

2
1

3
7

0

LD
A

A

1;

Y
E

S.

P
R

IN
T

TO

P

R
IN

T
E

R

1
3

8
0

JS

R

PR
N

TR
O

o "0

(t
> ::l

~

'T
j i:r

p.
. S ::l
 Q

(t
> en

Pl

Pl

::l

p.
. ~ s: (t>

 r.
.

'-
-.

. o ~

Pl

::l

Pl

I)
Q

(t

> S (t
> a

.....
.

1
3

9
0

JM

P
C

TO
U

T
0

tv
 "'"

1
4

0
0

N

X
T

2
LD

A

A
1;

N

O
.

M
U

ST

B
E

TO

SC
R

E
E

N

't
I (t
)

1
4

1
0

O

RA

#
$

8
0

::l

1

4
2

0

JS
R

C

O
U

T
~
 -

1
4

3
0

JM

P
C

TO
U

T
"T

j
1

4
3

5

;
C

L
O

SE

A
LL

IN

PU
T

A

N
D

O

U
TP

U
T

C
H

A
N

N
EL

S
::l

1

4
4

0

C
LR

C
H

N

LD
A

#

0
0

P

- 3
1

4
5

0

ST
A

O

PN
O

::I

1
4

6
0

ST

A

O
PN

I
-

1
4

7
0

LD

A

#
$

F
O

;
R

E
SE

T

O
U

T
PU

T

R
O

U
T

IN
E

CJ

(t

)

1
4

8
0

ST

A

CS
W

D

.... '"
1

4
9

0

LD
A

#$

F
D

~

1
5

0
0

ST

A

C
SW

D
+1

$I

)

1
5

1
0

R

T
S

::l

P
-

1
5

1
5

;C

H
E

C
K

FO

R

ST
O

P
K

EY

~
1

5
2

0

ST
O

PK
E

Y

LD
A

$C

O
O

O

-
1

5
3

0

CM
P

#
$

8
3

P

-
(t

)

1
5

4
0

R

T
S

n
1

5
4

5

;
C

L
O

SE

O
PE

N

F
IL

E
S

.....

.
1

5
5

0

C
L

O
SE

CM

P
#

0
1

.....

....

1
5

6
0

B

N
E

C
L

2;

C
L

O
SE

IN

PU
T

F

IL
E

?
0

1
5

7
0

JM

P
C

L
O

SE
1

~

1
5

8
0

C

L
2

CM
P

#
0

2
,

N
O

.
C

L
O

SE

O
U

T
PU

T

F
IL

E
?

$I
) ::l

1
5

9
0

B

N
E

C
L

4
$I

)
(J

Q

1
6

0
0

JM

P
C

L
O

S
E

2
(t

)

1
6

1
0

C

L
4

JM
P

C
L

O
S

E
4;

N

O
,

M
U

ST

B
E

P
R

IN
T

E
R

3 (t

)

1
7

0
0

;

B
A

S
IC

W

ED
G

E
::l

1

7
1

0

W
ED

G
E

ST
A

A

1
1

7
2

0

LD
A

#

$
0

0
;

IS

T
X

T
PT

R

A
T

$
2

0
0

?

1
7

3
0

CM

P
T

X
T

PT
R

1

7
4

0

B
N

E
O

U
T

1
7

5
0

LO

A

#
0

2

1
7

6
0

C

M
P

T
X

T
P

T
R

+
l

1
7

7
0

B

N
E

O
U

T
;

N
O

.
E

X
IT

1

7
7

5

LO
Y

#

0

1
7

8
0

N

X
TC

H
R

LO

A

<T
X

T
PT

R
)

•
V

;
IG

N
O

R
E

L

E
A

D
IN

G

S
P

A
C

E
S

0

1
7

8
1

C

M
P

#
3

2

"C
I

(t>

1
7

8
2

B

N
E

IS
L

N
U

M

::I

1
7

8
3

IN

C

T
X

T
PT

R

.....

~

1
7

8
4

JM

P
N

X
TC

H
R

"T

j

1
7

9
0

IS

L
N

U
M

C

M
P

#
$

2
F

;
IS

IT

A

N

U
M

BE
R'

:>

::l

0
-

1
8

0
0

B

C
C

O

U
T

;
N

O
.

E
X

IT

3
1

8
1

0

C
M

P
#

$
3

A

::I

1
8

2
0

B

C
C

IN

S
L

IN

Cl

1
8

3
0

O

U
T

LD
A

$

2
0

0
;

IS

IT

"A
SM

"
?

(t
>

1
8

4
0

C

M
P

#
6

5

.... '"
1

8
5

0

B
N

E
O

U
T

l
,?l

1
8

6
0

LD

A

$
2

0
1

III

::l

1

8
7

0

C
M

P
#

8
3

0

-
1

8
8

0

B
N

E
O

U
T

l
~

1
8

9
0

LO

A

$
2

0
2

-

1
9

0
0

C

M
P

#
7

7

0
-

(t>

1
9

1
0

B

N
E

O
U

T
l

r.
1

9
2

0

LO
A

$

2
0

3
.....

1

9
3

0

C
M

P
#

3
2

0

1
9

4
0

B

N
E

O
U

T
1;

N

O
.

E
X

IT

~

1
9

5
0

LO

Y

#
0

;
Y

E
S

III

1
9

6
0

TF

R
N

A
M

LD

A

$
2

0
4

.Y
;

T
R

A
N

SF
E

R

N
A

M
E

TO

T
O

P
O

F
SC

R
E

E
N

::l

III

1

9
7

0

C
M

P
#

0

IJ
Q

1
9

8
0

B

EQ

A
SM

(t

> 3
.....

.
1

9
9

0

O
R

A

#
$

8
0

(t

>
N

2

0
0

0

ST
A

$

4
0

0
.Y

::I

<.

il
....

.....
.

2
0

1
0

N

0"

-
2

0
2

0

2
0

3
0

2

0
4

0

2
0

5
0

2

0
6

0

2
0

7
0

2

0
8

0

2
0

9
0

2

1
0

0

2
1

1
0

2

1
2

0

2
1

3
0

2

1
4

0

2
1

5
0

2

1
6

0

2
1

7
0

2

1
8

0

2
1

9
0

2

2
0

0

2
2

1
0

2

2
2

0

2
2

3
0

2

2
4

0

2
2

5
0

2

2
6

0

2
2

7
0

2

2
8

0

2
2

9
0

2

3
0

0

2
3

1
0

IN
Y

JM

P
TF

R
N

A
M

A

SM

LD
A

#$

A
O

;
PU

T
FO

L
L

O
W

IN
G

3

SP
A

C
E

S
ST

A

$
4

0
0

,Y

ST
A

$

4
0

1
,Y

ST

A

$
4

0
2

,Y

P
L

A
;

PU
L

L

R
ET

U
R

N

A
D

D
R

E
SS

A

N
D

JU

M
P

TO

ST
A

R
T

PL

A

JM
P

ST
A

R
T

O

U
T1

LD

A

A
i;

N

O
RM

A
L

C
H

R
G

ET

CM
P

#
$

3
A

B

C
S

E
X

IT

CM
P

#
$

2
0

B

N
E

N
X

T
JM

P
C

H
R

G
ET

N

X
T

SE
C

SB

C

#
$

3
0

SE

C

SB
C

#$

D
O

E

X
IT

R

T
S

IN
S

L
IN

LD

X
 P

R
G

E
N

D
;

FO
U

N
D

L

IN
E

N

U
M

B
ER

.
NO

W

iN
S

E
R

T

L
IN

E

ST
X

V

A
R

TA
B

LD

X

PR
G

E
N

D
+1

ST

X

V
A

R
T

A
B

+l

C
LC

JS

R

L
IN

G
E

T
;

G
ET

L

IN
E

N

U
M

B
ER

JS

F:

T
O

K
N

IZ

PL
A

PL

A

JM
P

L
IN

IN
S

;
JU

M
P

TO

N
O

RM
A

L
IN

SE
R

T

L
IN

E

A
N

D

R
E

S
E

T

L
IN

E
L

IN
K

A

D
D

R
E

SS
E

S
T

O
K

N
IZ

LD

Y

#
0

0
;

T
O

K
E

N
IZ

E

L
IN

E

o "0

rt>
 ::s

'"T
j S· 0.
. S P

C
')

rt>
 ,..,.
 '" ~ ~
 ::s 0.
. ~ s: rt>

('

) -'-..,. o ~

~
 ::s ~ (J

Q

rt>
 S rt>
 ::s ,..,.

2
3

2
0

ST

Y

H
IG

H
D

S

2
3

3
0

LD

A

#
0

2

2
3

4
0

ST

A

H
IG

H
D

S
+

l
2:

35
0

TI
<3

LD

A

<
T

X
T

PT
R

)
• Y

2

3
6

0

ST
A

(H

IG
H

D
S

).
Y

0

2
3

7
0

IN

Y

'1
j

2
3

8
0

C

M
P

#
0

0
;

EN
D

O

F
L

IN
E

(b

::I

2
3

9
0

B

N
E

T
IC

~

~

2
4

0
0

D

E
Y

;
Y

E
S

'"I

i
2

4
1

0

TI
<4

D

EY

.....

::l

2
4

2
0

LD

A

(H
IG

H
D

S
),

Y
;

IG
N

O
R

E

FO
L

L
O

W
IN

G

S
P

A
C

E
S

0

-
2

4
3

0

C
M

P
#

3
2

S ::I

2
4

4
0

B

EQ

T
I<

4
~

2
4

5
0

IN

Y

C1

2
4

6
0

LD

A

#
0

(b

 ... 0
0

2

4
7

0

ST
A

(H

IG
H

D
S

).
Y

III

2
4

8
0

IN

Y

III

2
4

9
0

IN

Y

::I

0.
.

2
5

0
0

IN

Y

~
2

5
1

0

IN
Y

2

5
2

0

IN
Y

;
V

-R
E

G

H
O

L
D

S
L

IN
E

L

E
N

G
T

H

+
6

p:

(b

2

5
3

0

R
T

S
r.

2
5

4
0

E

D
IT

S
U

LD

A

#
(

W
ED

G
E;

IN

IT
IA

L
!

ZE

l.J
ED

G
E

H

2
5

5
0

ST

A

$B
B

.....

....
2

5
6

0

LD
A

#

>W
ED

G
E

0
2

5
7

0

S
T

A

$B
C

~

2
5

8
0

LD

A

#
$

4
C

;
It

J
M

p
ll

III

::I

2

5
9

0

ST
A

$B

A

III

(J
Q

2

5
9

2

LD
A

#

$
F

C
:S

T
A

1

1
5

;
S

E
T

H

H
1E

M

(b

2
5

9
5

LD

A

#
$

7
9

:S
T

A

1
1

6

S
....

(b

N

2
6

0
0

R

T
S

::I

'-
l

...
2

6
1

0

.F
IL

E

FI
N

D
M

N

.....

I~

tv

0
0

rt

l ;::l

P
ro

gr
am

 5
,3

.
O

p
en

!,
 A

ta
ri

,....

.
~
 ..
"

1
0

0

O
P

E
N

1

JS
R

C

L
R

C
H

N

3
6

0

O
P

E
N

2

L
O

A

#
2

;::l

1
1

0

L
D

A

#
1

3

7
0

S

T
A

F

N
U

M

0
-

1
2

0

JS
R

C

L
O

S
E

3

8
0

L

D
A

#

8

3 ;::l

1
3

0

L
O

A

#
1

3

9
0

S

T
A

F

O
E

V

~

1
4

0

S
T

A

FN
U

M

4
0

0

L
O

A

#
0

CJ

rt

l
1

5
0

L

O
A

#

4

4
1

0

S
T

A

F
S

E
C

O
N

O

.... 0
0

1
6

0

S
T

A

F
D

E
V

4

2
0

L

O
A

#

<
F

IL
E

N

?
1

7
0

L

D
A

#

0

4
3

0

S
T

A

F
N

A
M

E
P

T
R

~

1
8

0

S
T

A

F
S

E
C

O
N

D

4
4

0

L
D

A

#
>

F
IL

E
N

;::l

0

-
1

9
0

N

A
M

E
A

O

L
D

A

#
<

F
IL

E
N

4

5
0

S

T
A

F

N
A

M
E

P
T

R
+

1

~
2

0
0

S

T
A

F

N
A

M
E

P
T

R

4
6

0

L
D

A

#
2

-

2
1

0

L
O

A

#
>

F
IL

E
N

4

7
0

JS

R

C
L

O
S

E

0
-

rt
l

2
2

0

S
T

A

F
N

A
M

E
P

T
R

+
l

4
8

0

L
O

A

S
T

("

l

2
3

0

JS
R

O

P
E

N

4
9

0

B
M

I
O

P
E

N
E

R
R

,....

2

4
0

L

D
A

S

T

5
0

0

JS
R

O

P
E

N

--

2
5

0

B
M

I
O

P
E

N
E

R
R

5

1
0

L

O
X

#

2

0
2

6
0

L

O
A

R

A
M

F
L

A
G

5

2
0

JS

R

C
H

K
O

U
T

~

2
7

0

B
E

Q

N
O

L
O

A
O

5

3
0

L

D
A

#.

..
,c

-c
-

~

.L
o

J
o

J

;::l

2
8

0

JS
R

A

F
T

E
R

O
P

E
N

5

4
0

JS

R

P
R

IN
T

~

IJ
Q

2
9

0

L
D

A

#
<

T
E

X
T

B
A

S

5
5

0

JS
R

P

R
IN

T

rt
l

3
0

0

S
T

A

PM
E

M

5
6

0

L
O

A

T
A

3 rt

l

3
1

0

L
D

A

#
>

T
E

X
T

B
A

S

5
7

0

JS
R

P

R
IN

T

;::l

3
2

0

S
T

A

P
M

E
M

+
1

5
8

0

L
O

A

T
A

+
1

3

3
0

N

O
L

O
A

D

R
T

S

5
9

0

JS
R

P

R
IN

T

3
4

0

O
P

E
N

E
R

R

JS
R

E

R
R

P
R

IN
T

6

0
0

L

O
A

L

L
S

A

3
5

0

JM
P

T

O
B

A
S

IC

6
1

0

JS
R

P

R
IN

T

6
2

0

L
D

A

L
L

S
A

+
l

7
3

0

S
T

A

F
N

A
M

E
L

E
N

6

3
0

JS

R

P
R

IN
T

7

4
0

L

D
A

#

{
P

N
A

M
E

6

4
0

JS

R

C
L

R
C

H
N

7

5
0

S

T
A

F

N
A

M
E

P
T

R

6
5

0

R
T

S

7
6

0

L
D

A

#
>

P
N

A
M

E

6
6

0

O
P

E
N

4

L
D

A

#
4

7

7
0

S

T
A

F

N
A

M
E

P
T

R
+

l
6

7
0

S

T
A

FN

U
M

8

0
0

JS

R

O
P

E
N

6

7
5

JS

R

C
L

O
S

E

8
1

0

L
D

A

S
T

6

8
0

L

D
A

#

8

8
2

0

B
M

I
O

P
E

N
E

R
R

6

9
0

S

T
A

F

D
E

V

8
3

0

JS
R

C

L
R

C
H

N

7
0

0

L
D

A

#
0

8

4
0

R

T
S

7

1
0

S

T
A

F

S
E

C
O

N
D

8

5
0

P

N
A

M
E

.B

Y
T

E

8
0

5

8

7
2

0

L
D

A

#
2

8

6
0

.F

IL
E

D

:F
IN

D
M

N
.S

R
C

P
ro

gr
am

 5
-4

.
F

in
dr

nn

1
0

;

"F
IN

D
M

N
"

-
-

LO
O

K
S

TH
R

O
U

G
H

M

N
EM

O
N

IC
S

FO
R

M

A
TC

H

TO

L
A

B
E

L
.

20

;
W

E
JM

P
TO

T

H
IS

FR

O
M

E

V
A

L
.

&
 J

M
P

B
A

C
K

TO

1

O
F

2
L

O
C

A
T

IO
N

S
(J

M
P

FO

R

S
P

E
E

D
)

3
0

FI

N
D

M
N

LD

Y

#0

4
0

LD

X

#
2

5
5

;
PR

E
PA

R
E

X

 T
O

GO

TO

ZE

R
O

A

T
ST

A
R

T

O
F

LO
O

P
5

0

LO
O

P
IN

X
i

X

R
A

IS
E

D

TO

ZE
R

O

A
T

ST
A

R
T

O

F
LO

O
P

6
0

LD

A

M
N

E
M

O
N

IC
S,

Y
i

LO
O

K

IN

TA
B

LE

O
F

M
N

EM
O

N
IC

S
7

0

CM
P

L
A

B
E

L
i

C
O

M
PA

R
E

IT

TO

1S
T

C

H
A

R
.

O
F

W
O

RD

IN

LA
B

EL

B
U

FF
E

R

8
0

B

EQ

M
O

R
Ei

IF

=

,
C

O
M

PA
R

E
2N

D

L
E

T
T

E
R

S
O

F
T

A
B

L
E

V

S
.

B
U

FF
E

R

9
0

IN

Y
i

O
T

H
E

R
W

IS
E

G

O

U
P

T
H

R
E

E

IN

TH
E

T
A

B
L

E

TO

F
IN

D

TH
E

N
EX

T
M

N
EM

O
N

IC

1
0

0

IN
Y

1

1
0

IN

Y

1
2

0

C
PX

#

5
7

i
H

A
V

E
W

E
C

H
EC

K
ED

A

LL

56

M
N

E
M

O
N

IC
S.

1

3
0

B

N
E

L
O

O
P

i
IF

N

O
T

,
C

O
N

T
IN

U
E

T

R
Y

IN
G

TO

F

IN
D

A

 M
A

TC
H

~

1
4

0

N
O

M
A

TC
H

JM

P
E

Q
L

A
B

E
L

i
D

ID
N

'T

F
IN

D

A
 M

A
TC

H

(S
O

GO

B

A
C

K

TO

E
V

A
L

)
~

1
5

0

M
O

RE

IN
Y

i
C

O
M

PA
R

E
2N

D

L
E

T
T

E
R

o '0

('!
) ::l

~

"T
j 5· 0.
. :3 ::l
 C;
;

('!
) 0
0

,?l

~

::l

0.
. ~ 0::

('!
) r.

-...

.....
 o ~

~

::l ~

(J
Q

('!

) :3 ('!
) ::l

.....

w

o
1

6
0

LD

A

M
N

E
M

O
N

IC
S,

Y

1
7

0

CM
P

L
A

B
E

L
+

l
1

8
0

B

EQ

M
O
R
E
l
~

IF

=
,

GO

O
N

TO

C

O
M

PA
R

E
3R

D

A
N

D

F
IN

A
L

L

E
T

T
E

R

1
9

0

IN
Y

2

0
0

IN

Y

2
1

0

B
N

E
L
O
O
P
~

2N
D

L

E
T

T
E

R

D
ID

N
'T

M

A
TC

H
,

TR
Y

N

E
X

T

M
N

EM
O

N
IC

(y

<>

0

)
2

2
0

B

EQ

N
O

 M
A

TC
H

~

IF

Y
 =

 0
,

W
E

'V
E

G

O
N

E
PA

ST

T
A

B
L

E

(R
E

T
U

R
N

TO

E

V
A

L
)

2
3

0

M
O

R
El

I
N
Y
~

C
O

M
PA

R
E

3R
D

L

E
T

T
E

R

2
4

0

LD
A

M

N
E

M
O

N
IC

S,
Y

2

5
0

CM

P
L

A
B

E
L

+2

2
6

0

B
EQ

F
O
U
N
D
~

IF

3R
D

L

E
T

T
E

R
S

A
R

E
W

E
'V

E

FO
U

N
D

O

U
R

M
A

TC
H

2

7
0

IN

Y

2
8

0

B
N

E
L
O
O
P
~

O
T

H
E

R
W

IS
E

TR

Y

N
E

X
T

M

N
EM

O
N

IC

29
0

B
EQ

N

O
M

A
TC

H

3
0

0

FO
U

N
D

LD

A

L
A
B
E
L
+
3
~

TH
E

4T
H

C

H
A

R
.

M
U

ST

B
E

A
 B

LA
N

K

FO
R

T

H
IS

TO

B

E
A

 M
N

EM
O

N
IC

3

1
0

CM

P
#3

2
3

2
0

B

EQ

F
0
1
~

IF

S
O

,
ST

O
R

E
D

A
TA

A

B
O

U
T

T
H

IS

M
N

EM
O

N
IC

&

 R
ET

U
R

N

TO

E
V

A
L

.
3

3
0

CM

P
#
0
~

O
R

IF

EN

D

O
F

L
IN

E
,

IT

W
O

U
LD

B

E
A

N

IM
P

L
IE

D

A
D

D
R

.
M

N
EM

O
N

IC

L
IK

E

IN
Y

3

4
0

B

N
E

N
O
M
A
T
C
H

~
O

T
H

E
R

W
IS

E
,

N
O

M

A
TC

H

FO
U

N
D

(I

T
'S

N

O
T

A
 M

N
E

M
O

N
IC

)
.

3
5

0

F
O

I
LD

A

T
Y
P
E
S
,
X
~

ST
O

R
E

A

D
D

R
.

T
Y

PE
.

3
6

0

ST
A

T

P
3

7
0

LD

Y

O
P
S
,
X
~

ST
O

R
E

O
PC

O
D

E
3

8
0

ST

Y

O
P

3
9

0

EN
D

JM

P
E
V
A
R
~

M
A

TC
H

FO

U
N

D

SO

JU
M

P
TO

EV

A
R

R

O
U

T
IN

E

IN

EV
A

L
4

0
0

.F

IL
E

G

E
T

SA

Fo
r

th
e

A
ta

ri
 v

er
si

on
 o

f
F

in
dm

n,
 c

ha
ng

e
li

ne
 4

00
 t

o
:

40
0

.F
IL

E
 D

:G
E

T
S

A
.S

R
C

o "I
j I'D

::l

~

"T
j 5'

0.
. 8 ::l
 C1

I'D

rI
l Jl

III

::l

0.
. ~ 5:

I'D
 r. 0

-<

'-
..

. o ~

III

::l

III

Q
'Q

I'D

 8 I'D

::l

.....
.

w

.....
.

P
ro

g
ra

m
 5

-5
.

G
et

sa

1
0

"G

E
T

S
A

"
G

ET

ST
A

R
T

IN
G

A

D
D

R
E

SS

FR
O

M

D
IS

K

(L
E

A
V

E
S

D
IS

K

P
O

IN
T

IN
G

A

T
-

20

*=

T
H

IS

SP
A

C
E

(S

T
A

R
T

A

D
D

R
E

SS
)

3
0

(E

X
PE

C
T

S
F

IL
E

#1

TO

B

E
A

LR
EA

D
Y

O

P
E

N
E

D
).

4

0

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
0

G

E
T

SA

LD
X

#

1
;

SE
T

U

P
IN

PU
T

C

H
A

N
N

EL

FO
R

A

D

E
V

IC
E

(T

O

G
ET

B

Y
T

E
S

)
6

0

JS
R

C

H
K

IN
;

B
A

S
IC

'S

R
O

U
T

IN
E

7

0

LD
X

#

6
;

W
E

N
EE

D

TO

TH
RO

W

A
W

A
Y

TH

E
1S

T

6
B

Y
T

E
S

O
N

A

 D
IS

K

F
IL

E

(L
IN

E

L
IN

K
,

8
0

LS

A

JS
R

C

H
A

R
IN

;
L

IN
E

#

,
A

N
D

2

B
Y

T
E

S)

(C
H

A
R

IN

IS

"G
E

T

B
Y

T
E

")

9
0

D

EX
;

C
O

U
N

T
DO

W
N

U
N

T
IL

W

E
'V

E

PU
L

L
E

D

O
FF

TH

E
1

0
0

B

N
E

L
S

A
;

1S
T

6

B
Y

T
E

S
•
•
.
T

H
E

N
--

--
--

--
--

--
--

--
--

1
1

0

JS
R

C

H
A

R
IN

;
PU

LL

IN

N
EX

T
B

Y
TE

1

2
0

CM

P
#

1
7

2
;

IS

IT

TH
E

*
SY

M
B

O
L

1
3

0

B
EQ

M

SA
;

IF

SO
,

G
O

B

A
C

K

TO

C
A

L
L

E
R

(E

V
A

L

SU
B

PR
O

G
R

A
M

C

A
L

L
S

G
E

T
SA

)
1

4
0

LD

A

#<
M

N
O

ST
A

R
T

;
O

T
H

E
R

W
IS

E
,

P
R

IN
T

ER

R
O

R

M
ES

SA
G

E
W

H
IC

H

1
5

0

ST
A

T

E
M

P;

SA
Y

S
"N

O

ST
A

R
T

A

D
D

R
E

S
S

".

P
O

IN
T

TO

T

H
IS

ER

R
O

R

M
ES

SA
G

E
IN

1

6
0

LD

A

#>
M

N
O

ST
A

R
T

;
TH

E
P

O
IN

T
E

R
,

"T
E

M
P

,"

A
N

D

P
R

IN
T

TH

E
M

ES
SA

G
E

(P
R

N
T

M
E

SS
)

1
7

0

ST
A

T

E
M

P
+

l;

(N
O

T
E

:
T

H
IS

N

O
-S

T
A

R
T

-A
D

D
R

E
SS

C

O
N

D
IT

IO
N

O

C
C

U
R

S
2

W
A

Y
S:

E

IT
H

E
R

1

8
0

JS

R

PR
N

T
M

E
SS

;
Y

O
U

FO

R
G

O
T

TO

W
R

IT
E

O

N
E

O
R

Y

O
U

G

A
V

E
TH

E
W

RO
N

G

F
IL

E

N
A

M
E)

1

9
0

JM

P
F

IN
;

GO

B
A

C
K

TO

B

A
S

IC

V
IA

TH

E
SH

U
TD

O
W

N

R
O

U
T

IN
E

W

IT
H

IN

E
V

A
L

;-
--

--
--

2
0

0

M
SA

R

T
S

2
1

0

.F
IL

E

V
A

LD
EC

21

5
2

1
7

2

2
0

2

3
0

2

4
0

2

5
0

2

6
0

"M
EM

SA
"

G
ET

ST

A
R

T
IN

G

A
D

D
R

E
SS

FR

O
M

M

EM
O

R
Y

.
L

E
A

V
E

S
D

IS
K

P

O
IN

T
IN

G

A
T

*=

T

H
IS

SP

A
C

E

(S
T

A
R

T

A
D

D
R

E
SS

)
II

IN

IT
IA

L
IZ

E
S

PM

EM

TO

ST
A

R
T

O

F
M

EM
O

RY

R
E

PL
A

C
E

S
"G

E
T

SA
"

SO
U

R
C

E
C

O
D

E
F

IL
E

TO

C

R
E

A
T

E

R
A

M
-B

A
SE

D

A
SS

E
M

B
L

E
R

.

2
7

0

M
EM

SA

LD
A

R

A
M

ST
A

R
T

:S
T

A

PM
E

M
:L

D
A

R

A
M

S
T

A
R

T
+

l:
S

T
A

PM

E
M

+l

o "0

ro ::l

'T
J S· p.
.. § CJ

ro,
. '" ,?l ~

::l

p.
.. ~ 5:

ro r. >
-'

-o ~

~ ~ (J
Q

(b

 :3 (b

::;,
.

.....
.

V
.l

N

2

8
0

3

0
0

3

1
0

3

2
0

3

3
0

3

4
0

3

5
0

3

6
0

3

7
0

3

8
0

3

9
0

4

0
0

4

1
0

4

2
0

4

3
0

4

4
0

4

5
0

4

6
0

4

7
0

4

8
0

4

9
0

5

0
0

5

1
0

5

2
0

5

3
0

5

4
0

5

5
0

5

6
0

5

7
0

5

8
0

5

9
0

LD
X

#3

:M
E

M
1

JS
R

C

H
A

R
IN

:D
E

X
:B

N
E

M

EM
1:

A

D
D

4

TO

PM
EM

TO

P

O
IN

T

TO

*=

JS
R

C

H
A

R
IN

:C
M

P
#

1
7

2
:B

E
Q

M

M
SA

LD

A

#<
M

N
O

ST
A

R
T

:S
T

A

T
E

M
P:

L
D

A

#>
M

N
O

ST
A

R
T

:S
T

A

T
E

M
P

+
1

:J
S

R

PR
N

T
M

E
SS

JM

P
F

IN
:

G
O

BA

CK

TO

B
A

S
IC

V

IA

R
O

U
T

IN
E

W

IT
H

IN

EV
A

L
M

M
SA

R

TS

"N
EW

C

H
A

R
IN

"
A

SS
E

M
B

L
E

SO

U
R

C
EC

O
D

E
FR

O
M

M

EM
O

RY

R
A

TH
ER

TH

A
N

D

IS
K

.
(I

M
IT

A
T

E
S

C

H
A

R
IN

FO

R

D
IS

K
)

R
ET

U
R

N
S

W
IT

H

N
EX

T
B

Y
TE

FR

O
M

M

EM
O

R
Y

,
IN

A

C
H

A
R

IN

IN
C

PM

EM
:B

N
E

IN
C

P
1

:I
N

C

PM
E

M
+1

;
R

E
PL

A
C

E
S

C
O

N
V

E
N

T
IO

N
A

L

C
H

A
R

IN
/D

IS
K

IN

C
P

1
ST

Y

Y
:L

D
Y

#0

:L
D

A

(P
M

E
M

),
Y

:P
H

P
:L

D
Y

Y

:P
L

P
:R

T
S

:
SA

V
E

ST
A

T
U

S
R

E
G

IS
T

E
R

C

H
K

IN

R
T

S
:

R
E

PL
A

C
E

S
D

IS
K

R

O
U

T
IN

E

IN

D
E

FS

.•

TH
E

O
TH

ER

N
E

C
E

SS
A

R
Y

M

O
D

IF
IC

A
T

IO
N

S

:H
E

R
E

A

R
E

TH
E

R
E

ST

O
F

TH
E

M
O

D
IF

IC
A

T
IO

N
S

W

H
IC

H

C
H

A
N

G
E

LA
D

S
FR

O
M

:D

IS
K

-B
A

S
E

D

TO

R
A

M
-M

EM
O

R
Y

-B
A

SE
D

SO

U
R

C
E

C
O

D
E

A
SS

E
M

B
L

Y
:

1
.

R
EM

O
V

E
D

E
F

IN
IT

IO
N

S

O
F

C
H

A
R

IN

A
N

D

C
H

K
IN

(I

N

TH
E

D
E

FS

F
IL

E
)

(J
U

S
T

IN

SE
R

T

A

SE
M

IC
O

L
O

N

A
S

TH
E

1S
T

C

H
A

R
A

C
TE

R

IN

L
IN

E
S

2

2
0

A

N
D

2

4
0

O

F
TH

E
D

E
FS

SO

U
R

C
E

C
O

D
E

F
IL

E
.)

2
.

R
E

PL
A

C
E

"J

S
R

G

E
T

SA
"

IN

L
IN

E

3
7

0

O
F

TH
E

EV
A

L
F

IL
E

W

IT
H

"J

S
R

M

EM
SA

"
A

N
D

R

EM
O

V
E

TH
E

"J
S

R

O
P

E
N

l"

IN

L
IN

E

3
5

0

A
N

D

L
IN

E

4
3

5
0

IN

E

V
A

L
.

3
.

PU
T

A

:
IN

FR

O
N

T
O

F
".

F
IL

E

V
A

L
D

E
C

"
IN

L

IN
E

2

1
0

IN

T

H
IS

F

IL
E

.
(I

N

O
TH

ER

W
O

R
D

S,

A
LL

O
W

TH

E
N

EW

V
E

R
SI

O
N

S
O

F
C

H
A

R
IN

E

T
C

.

o "0

~

~

I-
'

'T
j :5" 0.
.. 3 P

CJ

~

'I
I

,?l

III

::I

0.
.. ~

0:

~
 n

.....
.....

 o ~

III

::I

III

(l
Q

~
 3 ~ ::I

.....
.

W

W

6
0

0

6
1

0

6
2

0

6
3

0

6
4

0

6
5

0

6
6

0

TO

A
SS

E
M

B
L

E

IN
T

O

TH
E

F
IN

IS
H

E
D

V

E
R

SI
O

N

O
F

L
A

D
S

.)

4
.

PU
T

SE
M

IC
O

L
O

N
S

A
S

1S
T

C

H
A

R
A

C
TE

R

IN

L
IN

E
S

7

6
0

,7
7

0
,7

8
0

,
&

 8
0

0

IN

TH
E

PS
EU

D
O

SU

B
PR

O
G

R
A

M
.

A
L

S
O

,
C

H
A

N
G

E
L

IN
E

7

5
0

TO

R

EA
D

"J

S
R

L

O
A

D
1"

(I

N
S

T
E

A
D

O

F
"J

S
R

O

P
E

N
1

")
.

,F
IL

E

V
A

LD
EC

P
ro

gr
am

 5
-6

.
G

et
sa

,
A

p
p

le
 M

od
if

ic
at

io
n

s

T
o

cr
ea

te

th
e

A
pp

le
 v

er
si

on
 o

f
G

et
sa

,
m

ak
e

th
e

fo
ll

ow
in

g
ch

an
ge

s
an

d
 a

dd
it

io
ns

 t
o

P
ro

gr
am

 5
-5

:

75

L
SA

ST

X

X

8
0

JS

R

C
H

A
R

IN
;

RA
M

ST

A
R

T

A
D

D
R

E
SS

,
A

N
D

L

IN
E

L

IN
K

)
(C

H
A

R
IN

IS

"G
E

T

B
Y

T
E

")

8
5

LO

X

X

1
2

0

CM
P

#
$

2
A

;
IS

IT

TH

E
*

SY
M

B
O

L

P
ro

gr
am

 5
-7

.
G

et
sa

,
A

ta
ri

 M
od

if
ic

at
io

n
s

1
<,i

l

5!
Z1

"'
'''

~
'
.
J

7!
Z1

B

!Z
I

To
 c

re
at

e
th

e
A

ta
ri

 v
er

si
on

 o
f G

et
sa

, o
m

it
 li

ne
s

21
5-

66
0

in
 P

ro

gr
am

 5
-5

 a
n

d
 c

ha
ng

e
th

e
fo

ll
ow

in
g

li
ne

s:

;A
T

A
R

I
M

O
D

IF
IC

A
T

IO
N

S
--

G
E

T
S

A

G
E

T
S

A

L
O

A

#
(T

E
X

T
B

A
S

:S
T

A

P
M

E
M

:L
D

A

#
}

T
E

X
T

B
A

S

:S
T

A

P
M

E
M

+
1

L
D

X

#
1

JS

R

L
IN

E
N

U
M

B
E

R

o '1
j rtl
 ::s

"T
j So

~

3 ::s C1

rtl
 ,..,.
 '" ? ~

;:l

~
 ~ 0:

rt
l r.
.

.....
.....

 o ~

~
 ::s ~ (l

Q

rt
l 3 rt
l ::s ,..,.

.....
.

C
,;.

l "'"
9

0

~

1
0

0

1
2

0

C
M

P

#
4

2

2
1

0
.F

IL
E

D

:V
A

L
D

E
C

.
S

R
C

P
ro

gr
am

 5
,8

.
V

al
de

c

1
0

"V

A
L

D
E

C
"

T
R

A
N

SL
A

T
E

A

S
C

II

IN
PU

T

TO

A
 T

W
O

-B
Y

T
E

IN

T
E

G
E

R

IN

R
E

SU
L

T

1
5

2

0

SE
T

U
P

/T
EM

P
M

U
ST

P

O
IN

T

TO

A
S

C
II

N

U
M

B
ER

(W

H
IC

H

EN
D

S
IN

Z

E
R

O
)

.
3

0

R
E

S
U

L
T

S
/

R
E

SU
L

T

H
O

LD
S

2-
B

Y
T

E

R
E

SU
L

T

4
0

:

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S
0

V
A

LD
EC

LD

Y

#0

55

:
R

EA
D

A

S
C

II

FR
O

M

L
E

FT

TO

R
IG

H
T

--
IN

C
R

E
M

E
N

T
IN

G

Y

--
(T

O

F
IN

D

L
E

N
G

T
H

)
6

0

V
G

ET
ZE

R
O

LD

A

(T
E

M
P

),
Y

7

0

B
EQ

V

Z
E

R
O

:
0

D
E

L
IM

IT
E

R

FO
U

N
D

8

0

IN
Y

9

0

JM
P

V
G

E
T

Z
E

R
O

:-
--

--
--

--
--

--
--

(F
O

R

E
X

A
M

PL
E

,
A

SS
U

M
E

A
S

C
II

IS

"
IS

"
)

1
1

0

V
ZE

R
O

ST

Y

V
R

E
N

D
:

SA
V

E
LE

N
G

TH

O
F

A
S

C
II

N

U
M

B
ER

(I

N

TH
E

E
X

A
M

PL
E

,
LE

N

2
)

1
2

0

D
EY

1

3
0

LD

A

#
0

:
C

LE
A

N

"R
E

SU
L

T
"

V
A

R
IA

B
L

E

(S
E

T

TO

0
)

1
4

0

ST
A

R

E
SU

L
T

1

5
0

ST

A

R
E

S
U

L
T

+
l

1
6

0

LD
X

#

1
:

U
SE

"X

"
V

A
R

IA
B

L
E

A

S
A

 M
U

L
T

IP
L

Y
-X

10
-H

O
W

-M
A

N
Y

-T
IM

E
S

C

O
U

N
TE

R

1
7

0

ST
X

X

1

8
0

V

A
LL

O
O

P
LD

A

(T
E

M
P

),
Y

:
LO

A
D

IN

TH

E
R

IG
H

T
M

O
ST

A

S
C

II

C
H

A
R

A
C

TE
R

(E

X
:

"
5

"
)

1
9

0

A
N

D

#
$

0
F

:
A

S
A

S
C

II
,S

=

 $
3

5
.

0
S

T
R

IP

O
FF

TH

E
3

,
L

E
A

V
IN

G

TH
E

5
.

2
0

0

ST
A

R

A
D

D
:

ST
O

R
E

IN

M

U
L

T
IP

L
IC

A
T

IO
N

R

E
G

IS
T

E
R

2

1
0

ST

A

T
ST

O
R

E
:

ST
O

R
E

IN

"R

EM
EM

B
ER

IT

"
R

E
G

IS
T

E
R

2

2
0

LD

A

#
0

:
PU

T
0

IN

B
O

TH

T
H

E
SE

R

E
G

IS
T

E
R

S

(I
N

T

H
E

IR

H
IG

H

B
Y

T
E

S
)

o '0

('1
) =' 'T
j 5·

p.
. 8 F

C1

('1
)
.

0
0

fl

)

fl
) =' p..

~ 0:

('1
) r.
..

'-
-.

 o ~

fl
) =' fl
)

(J
Q

('1

) 8 ('1
) ='

.....
..

C
;..

l
11

1

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
3

5

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

5
1

0

5
2

0
 ST

A

R
A

D
D

+l

ST
A

T
S
T
O
R
E
+
l
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
U

L
T

IP
L

Y

X
10

A

S
M

U
CH

A

S
N

E
C

E
S

S
A

R
Y

--
--

-
V

LO
O

P
D
E
X
~

LO
W

ER

TH
E

C
O

U
N

T
E

R
.

(I
N

TH

E
E

X
A

M
PL

E
,

X
 N

OW

=

 0

FO
R

1S

T

C
H

A
R

)
B

EQ

V
G
O
O
N
~

SO

W
E

D
O

N
'T

JS

R

TO

TH
E

X
10

SU

B
R

O
U

T
IN

E

IN

T
H

IS

C
A

SE
)

JS
R

T
E
N
~

O
T

H
E

R
W

IS
E

,W
E

'D

M
U

L
T

IP
L

Y

TH
E

N
U

M
B

ER

X
10

A

S
M

A
N

Y

T
IM

E
S

A
S

N
E

C
E

SS
A

R
Y

LD

A

R
A
D
D
~

M
O

V
E

R
E

SU
L

T

O
F

M
U

L
T

IP
L

IC
A

T
IO

N

IN
T

O

ST
O

R
A

G
E

R
E

G
IS

T
E

R

ST
A

T

ST
O

R
E

LD

A

R
A

D
D

+l

ST
A

T
S
T
O
R
E
+
l
~

SA
V

IN
G

R

E
SU

L
T

S
O

F
M

O
ST

R

EC
EN

T
M

U
L

T
IP

L
IC

A
T

IO
N

JM

P
V
L
O
O
P
~

C
O

N
T

IN
U

E

M
U

L
T

IP
L

Y
IN

G

X
10

U

N
T

IL

X

IS

DO
W

N
TO

Z

E
R

O
.-

--
--

--

V
G

O
O

N

IN
C

X
~

R
A

IS
E

X

 B
Y

1

(S
IN

C
E

W

E
'R

E
M

O
V

IN
G

L

E
FT

A

N
D

EA

C
H

N

U
M

B
ER

W

IL
L

BE

10

X

TH
E

O
N

E
TO

IT

S

R
IG

H
T

).

LD
X

X

JS

R

V
A
L
A
D
D
~

A
D

D

RA
D

D

TO

R
E

SU
L

T

(A
D

D

IN

R
E

SU
L

T
S

O
F

TH
E

M
U

L
T

IP
L

IC
A

T
IO

N
)

D
E
Y
~

M
O

V
E

IN
D

E
X

O

V
ER

BY

1

(T
O

P

O
IN

T

TO

N
EX

T
A

S
C

II

C
H

A
R

.
TO

TH

E
L

E
F

T
)

D
EC

V
R
E
N
D
~

LO
W

ER

LE
N

G
TH

P

O
IN

T
E

R
.

IF

IT
'S

N

O
T

Y
ET

Z

E
R

O
,

TH
EN

B

N
E

V
A
L
L
O
O
P
~

C
O

N
T

IN
U

E

PR
O

C
E

SS
IN

G

T
H

IS

A
S

C
II

N

U
M

B
ER

R

T
S

;
O

T
H

E
R

W
IS

E

R
ET

U
R

N

TO

C
A

L
L

E
R

.
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
U

L
T

IP
L

Y

BY

1
0

TE

N

C
LC

A

SL

R
A

D
D

i
M

U
L

T
IP

L
Y

RA

D
D

X

4

R
O

L
R

A
D

D
+l

A

SL

RA
D

D

RO
L

R
A
D
D
+
l
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-

C
LC

LD

A

T
S

T
O

R
E

;P
U

L
L

O

U
T

O
R

IG
IN

A
L

N

U
M

B
ER

A

N
D

A

D
D

IT

TO

R

E
SU

L
T

O

F
X

4
(G

IV
IN

G

X
S

)
A

D
C

RA
D

D

ST
A

RA

D
D

LD

A

T
S

T
O

R
E

+
l

A
D

C
R

A
D

D
+l

ST

A

R
A

D
D

+
l;

--
--

--
--

--
--

N
O

W
,

M
U

L
T

IP
L

Y

X
2

.
((

N
*

4
+

N
)*

2
)

IS

N
*1

0

o "0

~

::l

'T
j S·

0
- :3 ::l
 CJ

~
 rr>

~

Pol
 ::l 0
- ~ 0::

~
 r.

.....
.....

 o s:: Pol

::l
 /d ~ :3 ~ ::l

.....
.

U
J

0
'\

5

3
0

A

SL

RA
D

D

5
4

0

R
O

L
R

A
D

D
+

1
5

5
0

R

T
S

5
6

0

;-

-
-
-
-
-
-
-
-
-
-
-
-

A
D

D

R
E

SU
L

T
S

O
F

TH
E

M
U

L
T

IP
L

IC
A

T
IO

N

TO

TH
E

IN
T

E
G

E
R

A

N
SW

ER

5
7

0

V
A

LA
D

D

C
LC

5

8
0

LD

A

RA
D

D

5
9

0

A
D

C

R
E

SU
L

T

6
0

0

ST
A

R

E
SU

L
T

6

1
0

LD

A

R
A

D
D

+1

6
2

0

A
D

C

R
E

SU
L

T
+

1
6

3
0

ST

A

R
E

SU
L

T
+1

6

4
0

R

T
S

6
5

0

.F
IL

E

IN
D

IS
K

P
ro

g
ra

m
 5

,9
.

V
al

de
c,

 A
ta

ri
 M

od
if

ic
at

io
ns

To

cr
ea

te
 t

he
 A

ta
ri

 v
er

si
on

 o
f

V
al

de
c,

m

ak
e

th
e

fo
ll

ow
in

g
ch

an
ge

s
an

d
ad

di
ti

on
s

to
 P

ro
gr

am
 5

-8
:

1
0

:A

T
A

R
I

M
O

D
IF

IC
A

T
IO

N
S

--
V

A
L

D
E

C

6
1

C

M
P

#
4

8

6
2

B

C
C

V

IE
R

O

6
3

C

M
P

#
5

8

7
0

B

C
S

V

IE
R

O

6
5

0

.F
IL

E

D
:I

N
D

IS
K

.S
R

C

o 't
l

('n

::l

~

"T
j :r 0
- S ::l
 CJ

('n
 ... '" ,?l ~

::l

0
- ~ 0::

('n
 r. -'-.... o ~

~

::l ~

(J
Q

('n

 S ('n
 ::l ...

Indisk:
The Main Input Routine

It's up to the Indisk subprogram to pull in a logical line of
source code and set it up so that Eval can evaluate it. What
does the word logical mean when used this way? You'll some
times hear of a " logical" string or a " logical" line versus a
"physical" string or line. The logical thing is what the com
puter will see and compute. The physical thing might well be
longer or shorter.

For example, on the Apple, Atari, and Commodore 64,
the screen permits a physical line of only 40 characters. And
though each screen line can hold only 40 characters, Com
modore BASIC can interpret 80-character lines, Apple can
interpret 256-character lines, and the Atari can interpret 120-
character lines. The log ical line length is 80, 256, or 120
characters, but the physical line is 40. To describe Indisk's
routines, we'll need to make a similar distinction.

Two physical lines of LADS source code might be:
100 LOA 15: INY:RTS
110 DEC 15

but there are four logical lines in these two physical lines:
LOA 15
INY
RTS
DEC 15

Put another way, the LADS logical line is sometimes
smaller than its physical line . The logical item is the piece that
a computer-or in this case, LADS-will work with. When
ever you see a colon, you 're at the end of a logical line.

In addition to setting up each logical line for examination
by Eval, Indisk also performs some other tasks. It sets flags up
in response to several pseudo-ops; it transforms single-byte
tokenized BASIC keywords into ASCII words (? becomes
PRINT); it transforms ASCII hex numbers like $1500 into two
byte integers (the same thing the Valdec subprogram does for
ASCII decimal numbers); and it handles the important .BYTE
pseudo-op. Indisk is a busy place. It's the second longest
source file in LADS. Eval interprets logical lines of source
code; Indisk prepares them for that interpretation.

139

Indisk: The Main Input Routine

Total Buffer Cleaning
Indisk starts by cleaning out an entire group of buffers: LABEL,
BUFFER, BUFM, HEXBUF, FILEN, NUBUFF. That's easy be
cause they are all stuck together (see lines 290-340 in the
Tables subprogram). The CLEANLAB subroutine in Eval just
sticks 0 into the entire string of buffers.

Then 0 is put into the HEXFLAG (is it a $ type number?),
BYTFLAG (is it a < or > pseudo-op?), and PLUSFLAG (is it a
+ pseudo-op?). These three flags will later be set up, if nec
essary, by Indisk. We want them down, however, at the start
of our analysis of each logical line.

At line 110 LADS sees if the previous logical line ended
in a colon. LADS tries to be forgiving. It knows that the pro
grammer might accidentally write source code like:

100 LOA 15: LOX 12

leaving some spaces between a colon and the start of the next
logical line. Rather than crash trying to find a label called
blank-blank-L-D-X, it ignores leading blanks following colons.
Elsewhere, LADS ignores blanks preceding semicolons. This
gives the user complete freedom to ignore that potential
punctuation problem. Logical lines with extra blank spaces
will be correctly analyzed.

If a colon ended the previous logical line, we need to skip
over the fetch-and-store-line -number routine (130-160) since
there is a line number only at the start of a physical line. In
BASIC programs, and consequently in LADS source code, the
two bytes just preceding the start of the code proper in each
physical line are the line number. They need to be remem
bered by LADS for printouts and also for error reporting.

The Suction Routine
Lines 170-190 are the suction routine for blanks which might
precede a colon. We just loop here until something other than
the blank character (#32) is encountered. Notice that this loop
is also performed at the start of a physical line, but will have
no effect since the computer removes any leading spaces when
you first type in a BASIC or LADS line.

Line 210 is the start of the main loop which pulls in each
character from the disk, one at a time. We skip over this (200)
if we've entered at Indisk and therefore are starting a line
rather than just looking at the next character within a line.

140

Indisk: The Main Input Routine

But let's assume for now that we're trying to get the next
character in a line. If it 's zero, that means the end of a phys
ical line (230), so we go to the routine which checks to see if
we're at the end of the entire program, not just the end of a
single line.

If there was no zero, we check for a colon and jump to
the routine which handles that (260). Then we check for a
semicolon. The next section (290-750) handles semicolons.
There are two types of semicolon situations, requiring two dif
ferent responses.

One type of semicolon defines an entire line as a com
ment. The semicolon, announcing that a remark follows, ap
pears in this case as the first character in a physical line:

100; THIS ENTIRE LINE IS A REMARK.

This type is relatively simple since there is no source code for
Eval to evaluate.

The other type of remark, though, appears at the end of a
logical line, and there is something for Eval to assemble on
such lines:
100 LOA 75; ONLY PART OF THIS LINE IS A REMARK.

When we first detect a semicolon (270), we store the Y
Register in variable A (290). The Y Register is very important
in Indisk. It is set to zero at the start of each physical line (60)
and will still be zero in line 290 if the semicolon is the first
character in a physical line . This is how we can tell which
type of comment we're dealing with (at the start of a line or
within a line).

If, however, the programmer has not requested a screen
printout, there is no point to storing a comment. Comments
have no meaning to the assembler; they 're just a convenience
to the programmer. Line 300 checks to see if PRINTFLAG is
set and, if not, skips over the store-the-comment routine.

BABFLAG for Comments
But if the PRINTFLAG was up (contained a I), we transfer
that 1 to force the BABFLAG up as well. BABFLAG tells LADS
that there's a comment to be printed after the source and ob
ject codes have been printed to screen or printer.

Then that previously stored Y Register is pulled back out,
and we see which kind of comment we're dealing with. If Y
isn't zero, we've got a within-the-line comment, and we can

141

Indisk: The Main Input Routine

JSR to the PULLREST subroutine which stores comments in
the comment buffer (350). Then we return to Eval to assemble
the first part of the line, the source code part (360).

When a semicolon appears at the start of a line, though,
we'll just fill LABEL, the main buffer, with the comment and
then print out that kind of line right here within Indisk. (Print
outs are normally controlled by Eval following the assembly of
source code. This type of line, however, contains no source
code.)

A little loop (370-440) stuffs the comment line into LABEL.
It exits when it finds the end of a physical line (380), and it JSRs
when it comes upon a tokenized keyword like PRINT or
STOPIT. (STOPIT would appear as three characters in the source
code: the token for BASIC's STOP command, and the letters I
and T.) Tokenized words have to be stretched out to their ASCII
form, or the comment could contain strange nonprinting charac
ters or graphics characters, etc., when printed out. Any character
larger than 127 is not a normal alphabetic character. It's going to
be a token.

When we finally come upon the end of this physical com
ment line, we land at PUX1 (450) and proceed to print the line
number, the comment, and a carriage return just as we do for
any other line. Then we put 0 into the A variable to let MPULL
(the return-to-Eval subroutine) know that there is no source code
to assemble in this line. It will send us back to two different
places in Eva!, depending on whether we should or shouldn't try
to assemble the line currently held in the LABEL buffer.

Storage to BABUF
The PULLREST routine (520-600) is similar to the PUX routine
above it, but it stores a comment into the BABUF buffer.
PULLREST cannot use the LABEL buffer because this is one of
those lines where the comment comes after some legitimate
source code. And Eval assembles all legitimate source code from
the LABEL buffer. After Indisk turns the following line over to
Eval:
100 LOX 22; HERE IS A COMMENT.

the two buffers hold their respective pieces of this line:
LABEL LOX 22
BABUF HERE IS A COMMENT.

142

Indisk: The Main Input Routine

BABFLAG is set up to alert Eval to print a comment after
it has assembled and printed out the LDX 22 part of this line
(520). Then the semicolon in the Accumulator is saved in the
A Register. This is our end-of-line condition. Logical lines can
also end with colons and zeros. Different end-of-line con
ditions require different kinds of exits from Indisk. For ex
ample, if we hit a colon, we shouldn't pull in the next two
characters and store them as a line number. A colon means
we've not yet reached the end of the physical line. Since
PULLREST is used as a subroutine in various ways-JSRed to
from various places in Indisk-it must save the end-of-line
condition.

KEYWAD
Then PULLREST pulls the rest of the line into BABUF (560-650)
with a little detour to KEYWAD if the seventh bit is set on one
of the characters being pulled in. That signals a tokenized
keyword like? for PRINT. KEYWAD is the same routine as
KEYWORD (called above when Indisk is pulling in source code
characters). The only difference between them is that KEYWORD
extends ? to the word PRINT in LABEL, the source code buffer.
KEYWAD extends tokens into BABUF, the comment buffer.

PULLRX (660-680) is quite similar to PULLREST. However,
PULLRX is a pure suction routine. It pulls in the rest of a com
ment line, but doesn't store any of the characters. It is called
upon when the PRINTFLAG is down and nothing needs to be
printed to screen or printer. All PULLRX does is get us past the
comment to the next physical line.

MPULL (690-750) is the exit from Indisk back to Eval after a
commented line has been handled. Recall that there are two
kinds of comments-those which take up an entire physical line
and those which take up only the latter part of a line, those
which come after some real source code. MPULL distinguishes
between them after first checking to see if we're at the end of
the entire program (ENDPRO). It loads in the A variable. If A is
holding a zero, that would mean that the semicolon was the first
character in the physical line, and consequently, the entire line
was a comment and can be ignored. There's nothing to as
semble. So we PLA PLA to get rid of the RTS address and JMP
directly to STARTLINE in Eval to get a new physical line.

143

Indisk: The Main Input Routine

Y Is the Pointer
Alternatively, if the semicolon was not at the start of the line,
the value in the A variable will be higher than zero. (The Y
Register was stored in A when a semicolon was first detected
[290] .) Y keeps track of which position we are currently look
ing at within each physical line. In cases where there is some
source code on a line for Eval to assemble, we just RTS (750)
back to Eval where the evaluation routine begins.

The end of the main Indisk loop is between lines 760 and
950. This section is all. extension of the character-testing se
quence found between lines 220 and 270. What's happening is
that a single character is being drawn in from the source code
(on a disk file or within RAM memory, depending on which ver
sion of LADS you are using). Each character is tested for a vari
ety of conditions: pseudo-ops, keyword tokenization, hex
numbers, end-of-line (220), colon (240), and semicolon (270). If it
was a semicolon, we dealt with it before making any further
tests. The semicolon (comments) handler is the large section of
code we just discussed (between lines 290 and 750). If the
character isn't a semicolon, however, there are several other spe
cial cases which we should test for before storing the character
into LABEL, the source code buffer.

Special Cases
Is it a > pseudo-op? If so, we go to the routine which handles
that (770) called HI. Is it the < pseudo-op? Then go to the LO
routine. Is it the plus sign, signaling the + pseudo-op? If not,
jump over line 820. The + pseudo-op is handled elsewhere in
LADS; all we do for now is set up the PLUSFLAG (820). Is it the
*=, the Program Counter changing pseudo-op? If so, go to the
subroutine which fixes that (850). Is it one of the pseudo-ops
which start with a period, like .BYTE or .FILE? If so, go to the
springboard to the subroutines which deal with these various
pseudo-ops (870). Is the character a $, meaning that the source
code number which follows the $ should be translated as a hex
number? If so, go to the hex number routine springboard (890).

The final test is for tokenized keywords (? for PRINT). To
kens all have a value higher than 127, so their seventh bit will
be set. If the character is lower (BCC) than 127, we can finally
add the character to the source code line we're building in the
LABEL buffer (930) . Then we raise the Y Register to point to the
next available space in the LABEL buffer, and return to fetch the

144

Indisk: The Main Input Routine

next available space in the LABEL buffer, and return to fetch the
next character of source code from disk or RAM memory (950).

This ends the main loop of the Indisk routine. As you see,
there are many tests before a character can be placed into the
LABEL buffer. We only want to give Eval source code that it can
assemble. We can't give it characters like. or + or $ which it
cannot evaluate properly. Those, and other special conditions,
are worked out and fixed up by Indisk before LADS turns con
trol back to the Eval subprogram.

The Colon Logical End-Of-Line
One special condition is the colon. It is handled at the very start
of Indisk as a new physical line is analyzed (110). Not much
needs to be done with colons except to ignore them. But we do
need to prevent LADS from trying to locate the next physical
line number. Colons signify the end of a logical line, not the end
of a physical line. COLFLAG tells Indisk not to look for a line
number. COLFLAG is set whenever a colon is detected (260). We
jump down to COLON (970) and set the flag. We don't need to
LDA #l:STA COLFLAG because we wouldn't be here unless the
Accumulator was holding a colon character (it's higher than 0).
We can just stuff that character into COLFLAG. As long as a flag
isn't holding a 0, it's set. When setting flags, it doesn't matter
that the number in the flag is higher than 1. Just so it's not O.

There are two springboards at 990-1020. Recall that branch
instructions like BNE cannot go further than 128 bytes in either
direction, so you'll get a BRANCH TOO FAR error message
from LADS from time to time when you exceed this limit. In
such cases, just BNE SPRINGBOARD; just branch to a line you
insert, like 990, which just has a JMP to your true target.

Like the. pseudo-op interpreter subroutine, the hex trans
lator is also too far from the branch which tries to reach it. With
a hex number, though, we first put the $ into the LABEL buffer
so it will be printed when the source code line is sent to the
screen or printer. Then we bounce off to the hex translator sub
routine (1020).

KEYWORD (1040-1210) translates one of BASIC's tokens
into a proper English word. A BASIC word like PRINT is a word
to us programmers, but an action, a command, to the computer.
To save space, many versions of BASIC translate the words into
a kind of code called " tokens." The token for PRINT might be

145

Indisk: The Main Input Routine

the number 153, which can fit into a single byte. The word
PRINT takes up five bytes.

But BASIC itself must detokenize when it lists a program. It
must tum that 153 back into the characters P-R-I-N-T. To do
that, it keeps a table of the keywords in ROM. We'll take advan
tage of that table to do our own detokenization.

The specifics of the example we'll examine here are for
Commodore computers. The principle, however, applies to Ap
ple and Atari as well. Only the particular numbers differ. We ar
rive here at KEYWORD because we picked up a character with a
value higher than 127. The first thing we do is subtract 127.
That will give us the position of this keyword in the table of
keywords. To see how this works, look at how these words are
stored in ROM memory:
enDfoRnexTdatA

Notice that BASIC stores words in this table with their last
letter shifted, similar to the way LADS stores labels with their
first letter shifted. That's how the start of each word can be de
tected. The code for these words is set up so that END = 128,
FOR = 129, NEXT = 130, and so on.

Imagine that we picked up a 129 and came here to the
KEYWORD subroutine to get the ASCII form of the word, the
readable form. We would subtract: 129 - 127 = 2. Then we
would look for the second word in the table. We store the results
of our subtraction in the variable KEYNUM (1060) and keep
DECing KEYNUM until it's zero and we've thus located the
word. We look at the first character in the table of keywords. It
will be an e. If it's not a shifted character, we've not yet come to
the end of a word, and we keep looking (1120). Otherwise, we
go back and DEC KEYNUM. All of this is just a way of counting
through the keyword table until we get to the word we're after.

146

Indisk: The Main Input Routine

When we find it (1140), we store the ASCII characters from
the table into LABEL, our main input buffer. Again, a shifted
character in the table shows us that we've reached the end of the
word (1160), and we can return to the caller (the routine we
JSRed here from) after clearing out the seventh bit.

KEYWORD turns this line (in the source code):
100 START? LOA [IT (two embedded keyword tokens, ? and [)

into:
100 STARTPRINT LOA RUNIT (which we can read from screen or

printer)

The HI subroutine (1230) handles the > pseudo-op which
gets the high byte of a two-byte label as shown in Listing 6-1.

147

~

L
is

ti
ng

 6
-1

C

/J

5
0

S

C
R

E
E

N
P

O
IN

T
E

R

=
 $

F
D

:
Z

E
R

O

PA
G

E

P
O

IN
T

E
R

FO

R

IN
D

IR
E

C
T

Y

A

D
D

R
E

SS
IN

G

1
0

0

SC
R

E
E

N

=

$
0

4
0

0
:

D
E

F
IN

E

ST
A

R
T

O

F
SC

R
E

E
N

RA

M

1
1

0

LD
A

#>

S
C

R
E

E
N

:
LO

A
D

IN

H

IG
H

B

Y
T

E

O
F

SC
R

E
E

N

A
D

D
R

E
SS

1

2
0

ST

A

S
C

R
E

E
N

P
O

IN
T

E
R

+
l:

ST

O
R

E

IT

IN

H
IG

H

B
Y

T
E

O

F
SC

R
E

E
N

P

O
IN

T
E

R

1
3

0

LD
A

#<

S
C

R
E

E
N

:
LO

A
D

IN

LO

W

B
Y

TE

O
F

SC
R

E
E

N

A
D

D
R

E
SS

1

4
0

ST

A

S
C

R
E

E
N

P
O

IN
T

E
R

:
ST

O
R

E

IT

IN

LO
W

B

Y
T

E

O
F

SC
R

E
E

N

P
O

IN
T

E
R

L
is

ti
ng

 6
-2

1

0

*=

8
0

0

1
0

0

LD
A

1

5

1
1

0

JM
P

C
O

N
T

IN
U

E
;

(A
T

T

H
IS

P

O
IN

T

W
E

'R
E

A

T

A
D

D
R

E
SS

8

0
5

)
1

2
0

*=

8

5
5

(T

H
IS

R

E
SE

T
S

T
H

E

PC

TO

8
5

5
)

1
3

0

C
O

N
T

IN
U

E

IN
Y

:
(T

H
IS

IH

L
L

A

SS
E

M
B

L
E

A

T
A

D
D

R
E

SS

8
5

5
,

1
4

0

L
E

A
V

IN
G

A

50

-B
Y

T
E

-L
O

N
G

B

U
F

F
E

R

O
R

1

5
0

ST

O
R

A
G

E

ZO
N

E
FO

R

V
A

R
IA

B
L

E
S

.)

L
is

ti
ng

 6
-3

1

0

3
2

0

*
=

8

0
0

1

0
0

3

2
0

A

S
0

F

1
1

0

3
2

2

4C

58

0
3

1

2
0

3

2
5

*=

8

5
5

1

3
0

3

5
7

C

8
1

4
0

;
1

5
0

:

LD
A

1

5

JM
P

C
O

N
T

IN
U

E
:

(A
T

T

H
IS

P

O
IN

T

W
E

'R
E

A

T
A

D
D

R
E

SS

8
0

5
)

(T
H

IS

R
E

S
E

T
S

TH

E
PC

TO

8

5
5

)
C

O
N

T
IN

U
E

IN

Y
:

(T
H

IS

W
IL

L

A
SS

E
M

B
L

E

A
T

A
D

D
R

E
SS

8

5
5

,
L

E
A

V
IN

G

A

50
-B

Y
T

E
-L

O
N

G

B
U

F
F

E
R

O

R

ST
O

R
A

G
E

ZO

N
E

FO
R

V

A
R

IA
B

L
E

S
.

)

5""
 a-: rI

l ?r

...
j ::r

(1
) ~

III
 5·
.

::l
 '" ~ ... ::0

o ~ ... 5" (1
)

Indisk: The Main Input Routine

This sort of thing is fairly common during the initialization
phase of an ML program. It prepares for the useful Indirect Y
addressing mode (sometimes called Indirect Indexed addressing:
LOA (LABEL),Y). The> and < pseudo-ops make it easy to set
up the zero page pointers upon which Indirect Y addressing
depends.

The adjustments necessary to make these pseudo-ops work
are performed in the Equate subprogram. All we do here is set
up the BYTFLAG to show which of them -was encountered.
BYTFLAG is 0 normally, set to 1 for a < low byte request and 2
for a > high byte request. Then we go back to fetch the next
character in the source code. The > and < symbols are not
stored in the LABEL buffer.

Don't Drive with Your Legs Crossed
The STAR subroutine (1300) deals with the pseudo-op which
changes the Program Counter. This pseudo-op has one primary
use: It creates a stable place for tables . Some people like to use it
to make room for tables within source code (and consequently
within the resulting object code too) . That seems both un
necessary and dangerous, like driving with your legs crossed.
Most of the time it won't do any damage, but when it does
cause problems, it causes a crash.

If you like to live dangerously, go ahead and stick a table
or a buffer right in the middle of your code. The * = pseudo
op allows coding as shown in Listing 6-2. When assembled,
that risky trick will look like the listing shown in Listing 6-3.
This example leaves-between $325 and $357-a 50-byte
long zone to be used for data rather than instructions. You
must jump over the table. But what's the point? Why not do
the sensible thing and put all your tables, register, buffer,
etc.-all your nonprogram stuff-in one place? At the end of
the entire program. Not only does that ease your program
ming task by making it simple to understand what you're try
ing to do, it also allows the * = pseudo-op to make its true
contribution to assembling: a stable table.

When you're assembling a long program, you will often go
through a two-step process. You'll assemble, then test. The test
fails . You change the source code and try it again. This assemble
test rhythm takes place so often that you'll want to make it as
easy on yourself as possible. One of your best debugging tech
niques will involve running your code and then looking in the

149

Indisk: The Main Input Routine

buffers, registers, variables, and other temporary storage places
to see just exactly what is there. That's usually the best clue to
what went wrong. If you are trying to load in the word
TEXTFILE from disk and your buffer holds EXTFILEO, that tells
you exactly what you need to do to fix up the source code.

In other words, you want to be able to check buffers, vari
ables, etc., often. Where are they located in the object code? Ob
viously, each time you make a slight change to the source code,
everything in the object code above the change in memory
shifts. All the addresses beyond the changed source code will go
up or down depending on whether you added or subtracted
something.

Stabilizing Buffers
This makes for very unstable addresses . You would never know
where to PEEK at a particular buffer or variable.

There are two ways to solve this . You could put the data
buffers, etc., at the start of your program. That way, they
wouldn't shift when you changed the source code beyond them.
But that's somewhat clumsy. That means that your program
doesn't start with the first byte. The entry to your program is up
higher, and you can't just SYS or CALL or USR to the first byte.

An alternative, and likely the best, idea is to put tables at
the very end. That way the SYS to the object code start address
is also the first byte of the ML program. But how does this solve
the shifting tables problem? That's where the *= comes in.

When I first started to write LADS, I decided to start it at
$3AOO. That left plenty of room below for BASIC-type source
files and plenty of room above for "Micromon," an extended
debugging monitor program which sits in memory between
$5BOO and $7000. (I do all my programming on the venerable,
but serviceable, Commodore PET 8032.) LADS was expected to
end up using about 4K of memory, so I forced Tables, the final
source file, to detach itself from the rest of the program and to
assemble at $5000. The Tables subprogram started off like this:
10; TABLES
20 *= $5000
30 MNEMONICS etc.

This kept everything in the Tables unaffected by any
changes in the program code below it. The entire source code
could be massaged and manipulated without moving the data ta-

150

Indisk: The Main Input Routine

bles one byte up or down in memory. A detached table is a sta
ble table.

So, during the weeks while LADS was taking shape, I
learned the addresses of important buffers like LABEL and im
portant variables and flags . That makes debugging much faster.
Sometimes, I could tell what was wrong by simply PEEKing a
single flag after a trial run of the source code.

A program the size of LADS, a complex game, or any other
large ML program, will require perhaps hundreds of assemblies.
It becomes very useful to have learned the special addresses, like
buffers, where the results of a trial run of your object code are
revealed. And for this reason, these buffer and flag addresses
should stay the same from the day you start programming until
the day the entire program is composed.

How is the * = pseudo-op handled? Before anything else,
we pull in the rest of the source code line by a }SR to
STINDISK, the main loop in Indisk. After that, STAR checks to
see if anything should be printed out by looking at PASS. On
pass 1, we'll skip over the printout (1320). Otherwise, we print
the star and the input line held in the LABEL buffer. We won't
check to see if a printout is requested by looking at PRINTFLAG
or SFLAG (screen printout). * = is such a radical event that it
will be displayed on pass 2 whether or not any printouts were
requested.

Then we come to the familiar hex or decimal number ques
tion. Hex numbers are translated and put into the RESULT vari
able as they stream in. Indisk does hex. Decimal ASCII isn't
automatically put into RESULT. If the argument following *=
was hex, we skip over the next few lines (1380). If not, we look
for the blank character (in *= 500, the character between the =
and the 5). Finding that (1420), we point the TEMP variable to
the ASCII decimal number and }SR VALDEC to give the correct
value to RESULT. We'll use RESULT to adjust the PC as
requested.

Padding the Disk File
If the programmer wants object code stored to disk, we cannot
just change the internal LADS program counter. The disk
drive won't notice that. We've got to pad the disk program:
We've got to physically send spacer bytes to the disk to move
its pointer the correct number of bytes forward . Object code is
stored only on pass 2.

151

Indisk: The Main Input Routine

Thus, two questions are asked here. Does the programmer
want object code stored? And is the disk drive a recipient of
that object code? If the answer to both questions is "yes," we
JSR FILLDISK (1590), a padding routine we'll come to later. If
not, the whole issue of disk padding doesn ' t matter and we
can proceed to adjust the PC (SA is the variable name of the
LADS Program Counter) by transferring RESULT into it (1600-
1630). Then we PLA PLA the RTS off the stack and jump back
into Eval to get the next physical line.

ENDPRO is a short but essential routine. After each phys
ical line' we need to see if we've reached the end of the source
code program. Microsoft BASIC signals the end of a BASIC pro
gram with three zeros.

But before checking for those telltale zeros, ENDPRO fills
the buffers with zeros to clean them (1680-1710).

Then it pulls in the next two characters. If the second one is
a zero, we know it's the end of a source file (not necessarily the
end of a series of chained source files; that's flagged by the .END
pseudo-op). However, if it is the end of a program file, we flip
the ENDFLAG up to warn Eval and RTS back to Eval (1790).
Even though Indisk has discovered that we're at the same last
line in a file, Eval still has that last line to evaluate and as
semble. The ENDFLAG won't have any immediate effect when
we first return to Eval.

The other possibility is that we won 't find the three zeros
and that this isn't the last line of a file . If it isn 't, we just set the
COLFLAG down because at least we're at the end of a physical
line. A zero always means that. Then we return to Eval. Indisk
just pulls in one line at a time.

Hex Conversions
HEX is an interesting routine. It is called when Indisk detects the
$ character. HEX looks at the ASCII form of a number like $OF
and turns it into the equivalent two-byte integer 00 OF in RE
SULT. It's similar to the subprogram Valdec which translates an
ASCII decimal number into an integer.

HEX operates like a little Indisk. It pulls in characters from
the source code, storing them in its own special buffer, HEXBUF,
until it finds either a zero, a colon, a blank, a semicolon, a
comma, or a close parenthesis character. Each of these symbols
means that we've reached the end of the hex number. Some of
them signal the end of a line, some of them don't. Whichever

152

Indisk: The Main Input Routine

category they fall into, they go to the appropriate routine, DECI
or DE CIT.

Busy X and Y
If we're not yet at the end of the hex number, however, the
character is stored in HEXBUF (1970) for later translation and
also stored in LABEL for printout. Notice that both the X and the
Y Registers are kept busy here, indexing their respective buffers.
Y cannot do double duty because it is farther into the LABEL
buffer than X; the LABEL buffer is holding the entire logical line,
HEXBUF is holding only the ASCII number. The two buffers will
look like this when the source line HERE LDA $45 is completely
stored:
LABEL HERE LDA $45
HEXBUF 45

LABEL will be analyzed and assembled by Eval. It needs to
store the entire logical line. HEXBUF will be analyzed only to ex
tract the integer value of the hex number. Storing anything else
in HEXBUF would be confusing.

A hex number which is not at the end of a line goes to
DE CIT (2020) and, the length of the hex number is stored into
the variable HEXLEN (2020) so we'll know how many ASCII
characters there are to translate into an integer. Then the final
character (a comma or whatever) is put into the LABEL buffer.
Then the JSR to STARTHEX (2050) translates the ASCII into an
integer in RESULT. A JMP (rather than a JSR) to STINDISK pulls
in the rest of the logical line and takes us away from this area of
the code. The assembler will not return to this area. It will treat
the rest of the line as if it were an ordinary line.

By contrast, a hex number which is at the end of a line goes
to DECI (2070), and we store the type of end-of-line condition
(colon, semicolon, 0) in the variable A. We put the length of the
hex number into the variable HEXLEN (2090), so we'll know
how many ASCII characters there are to translate into an integer.
And we put a 0 delimiter at the end of the information in the
LABEL buffer. Then the JSR to STARTHEX (2110) translates the
ASCII into an integer in RESULT. We restore the colon or semi
colon or whatever (2120) and jump to the routine which pro
vides a graceful exit (2130).

ASL/ROL Massage
STARTHEX turns a hex number from its ASCII form into a two-

153

Indisk: The Main Input Routine

byte integer. It does this by rolling the bits to the left, pulling the
number into RESULT's two bytes, and adjusting for alphabetic
hex digits (A-F) as necessary.

The variable HEXLEN knows how many characters are in
the hex number. It will tell us how many times to go through
this loop. Before entering the loop, we clean the RESULT vari
able by storing zeros into it (2140-2160) and set the X Register to
zero.

The loop proper is between lines 2180 and 2350, and is
largely an ASL/ROL massage. Each bit in a two-byte number is
marched to the left. ASL does the low byte, ROL the high byte.
ASL moves the seventh bit of RESULT into the carry. ROL puts
the carry into the zeroth bit of RESULT + 1, the high byte.

As an example of how this ASCII-to-integer machinery
works, let's assume that the number $2F is sitting in the
HEXBUF. As ASCII, it would be 2F. But recall that the ASCII
code simplifies our job somewhat since the number 2 is coded as
$32. To tum an ASCII hex digit into a correct integer, we can get
rid of the unneeded 3 by using AND #$OF.

Alphabetic Numbers
What complicates matters, however, is those alphabetic digits in
hex numbers: A through F. For them, we'll need to subtract 7 to
adjust them to the proper integer value. They, too, will have the
high four bits stripped off by AND #$OF.

Let's now follow $2F as it rolls into RESULT. $2F, as two
ASCII digits in HEXBUF, is: $32 $46 or, in binary form,
00110010 01000110.

HXLOOP starts off by moving all the zeros in RESULT four
places to the left. There are four ASL/ROL pairs. The first time
through this loop, just zeros move and there's no effect. Then
we load in the leftmost byte from the HEXBUF (2260) and see if
it's an alphabetic digit. This time we're loading in the $32 (the
ASCII 2), so it isn't alphabetic and we branch (to 2300) for the
AND which strips off the four high bits:

00110010 ($32, as ASCII code digit)
AND 00001111 ($OF)

00000010 (now a true integer 2)

The ORA command sets a bit in the result if either of the
tested bits is set. That's one way of stuffing a new value into
RESULT:

154

Indisk: The Main Input Routine

00000000 (RESULT is all zeros at this point)
ORA 0000001O(we're stuffing the integer 2 into it)

00000010 (leaving an integer 2 in RESULT)

Next the X index is raised and compared to the length of the
ASCII hex number (in our example $2F, HEXLEN will hold a 2).
X goes from 0 to 1 at this point and doesn't yet equal HEXLEN,
so we branch back up (2350) to the start of the loop and roll the
2 into RESULT, making room for the next ASCII digit:
Carry bit high byte low byte

o 00000000 00000010 (our 2 before first ASL/ROL)
o 00000000 00000100 (after)

o
o
o

00000000
00000000
00000000

00001000
00010000
00100000

(after the 2nd ASL/ROL)
(after the 3rd ASL/ROL)
(after the 4th and final ASL/
ROL)

What's happened here is that we've shoved the 2 from the
low four bits into the high four bits of RESULT. This makes 2
(decimal) into 32 (decimal), or $20. Why do that? Why make
room for the next digit in this way? Because the 2 in $2F is really
a hex $20. It's a digit 2, but not number 2. It's not a number 2
any more than the 5 in 50 is a 5. This ASL/ROL adjusts each
digit to reflect its position, and position determines the numeric
value of any digit.

Alphabetic Adjustment
Now it's time to pick up the F from HEXBUF (2260), and since it
has a decimal value of 70, it is higher than 65, so we adjust it by
subtracting 7. That leaves us with 63 ($3F). We strip off the 3
with AND $OF:

00111111 ($3F, the adjusted ASCII code digit)
AND 00001111 ($OF)

00001111 (now a true integer F)

and then incorporate this F with the $20 we've already got in
RESULT from the earlier trip through the loop:

00100000 (RESULT is holding a $20)
ORA 00001111 (we stuff the F into it)

00101111 (leaving the integer 2F in RESULT)

Again, X is raised and tested to see if we're finished with
our ASCII hex number (2340) . This time, we are finished . There's
nothing more to roll into RESULT so we set up the HEXFLAG.

155

Indisk: The Main Input Routine

This alerts all interested parties in LADS that they do not need
to evaluate this argument. The value is already determined and
has been placed into RESULT, ready to be printed out or POKEd
as the need arises. Then we return to whatever routine called on
STARTHEX for its services.

Pseudo-op Preliminaries
The important pseudo-op .BYTE is also handled within the
Indisk subprogram. Any pseudo-op beginning with. comes here
to PSEUDO] (2410) first. All of these . type pseudo-ops require
certain preliminary actions, and the first section of PSEUDO]
accomplishes those things . Then they split up and go to their
own specific subroutines. Most of them end up going to the sub
program Pseudo.

PSEUDO] first tests to see if there is a PC address-type label
such as the word OPCODES in:
100 OPCODES .BYTE 161 160 32 96.

The Y Register will still hold a zero if the . character is de- "
tected at the very start of a logical line of source code. That ""
would mean that there is no PC-type label and we don't need to
bother storing it into the label array for later reference. Likewise,
if this isn't pass 1, we can also skip storing such a label in the la
bel array.

But if it is pass 1 and there is one of those labels at the start
of the line, we need to save the A and Y Registers (2450-2470)
and]SR EQUATE to store the PC label (and its address) into
LADS' label array. Then we restore the values of A and Y (2490-
2510) and store the . character in the main input buffer LABEL.

If It's Not B
The character following the" will tell us which pseudo-op we're
dealing with, so CHARIN pulls it in and stores it into the buffer
(2550). If it's not a B, we branch to the springboard PSEUDI
which sends us to the Pseudo subprogram for further tests
(3010).

Now we know it's a .BYTE type, but is it the ASCII alpha
betic type or the ASCII numeric type? It is .BYTE "ABCDE or
.BYTE 25 72 1 6?

There is a flag which distinguishes between alphabetic and
numeric .BYTEs: the BNUMFLAG. It is first reset (2600), and we
check both the pass and the SFLAG to decide whether we .

156

Indisk: The Main Input Routine

should print out this line or not. If it's pass 2 and SFLAG is set,
we print the line number and the PC address. Then we pull in
more of this source code line until we hit a space character. If
the character following the space isn't a quote, we know that
we're dealing with the numeric type of .BYTE, so we branch
down to handle that at BNUMWERK (2810).

Otherwise, we take care of the alphabetic type. This type is
easy. We can just pull them in and POKE them. There's nothing
to figure out or translate . These bytes are held in the source code
as ASCII characters and will be POKEd into the object code as
ASCII characters. The main use for this pseudo-op is to store
messages which will later be printed to the screen or printer.

End-of-Line Alternatives
The active parts of this loop are the CHARIN (2820) and the JSR
INCSA (2990) or JSR POKEIT (3050). The decision whether to
simply raise the PC with INCSA or actually POKE the object
code is based on the test of PASS (2970). The rest of the loop
(2830-2960) is similar to other tests for end-of-line conditions
found throughout LADS. We look for a 0 (2830), a colon (2850),
a semicolon (2880), and a concluding quote (2940). Any of these
characters signal the end of our alphabetic message. And each
condition exits in a way appropriate to it. Semicolons, for exam
ple, require that the comment be stored in BABUF for possible
printout. To do this, we JSR PULLREST (2900) .

PSLOOP stores each character into LABEL, the main input
buffer. It also JSRs to the POKEIT routine (in the Printops sub
program) which both stores the character in any object code on
disk or memory and raises the PC by 1. Then it jumps back up
to the start of the loop to fetch another alphabetic character
(3080).

Numeric .BYTE
BNUMWERK is more complicated than BY1 , the alphabetic
.BYTE pseudo-op we just examined. BNUMWERK must not only
check for all of those possible end-of-line conditions; it must also
translate the numbers following .BYTE from ASCII into one-byte
integers before they can be POKEd. It's that same problem we've
dealt with before: 253 is stored in the source code as three bytes:
$32 $35 $33. We need to turn it into a single value: $FD. (One
thing simplifies the numeric type .BYTE pseudo-op. The pro
grammer can use only decimal numbers in the source code for

157

In disk: The Main Input Routine

this pseudo-op .. BYTE $55 $FF is forbidden, although you could
certainly add the option if you wish.)

Like a small version of the Eval subprogram, BNUMWERK
has to have a flag which tells it when to close down. We set this
BFLAG down (3100) and then put the character in the Accu
mulator into a buffer called NUBUF. In this buffer we'll convert
these decimal ASCII numbers into integers. Then we raise X to 1
and enter the main BNUMWERK loop (3130).

The BFLAG is tested, and we shut down operations if it is
set (3140). Otherwise, we pull in the next character and go
through that familiar series of tests for end-of-line conditions: 0,
colon, or semicolon. If it is a regular character, we stick it into
the special BUFM buffer (3250) and check to see what pass we're
on. On pass 1 we don't do any POKEing or printing out, so we
can skip that. But on pass 2, we check to see if we've got a space
character, indicating that we've reached the end of a particular
number, if not yet the end of an entire line (3360). If the number
is completely in the buffer, we raise the PC and go back for the
next number (3320) .

On the second pass, however, we may have to POKE object
code and also provide printouts. This means that we have to
both calculate each number for POKEing as well as store each
number in ASCII form for printouts. We pull the character from
the BUFM buffer and store it in the printout buffer, LABEL, the
main input buffer (3340). After that we check again for end-of
number or end-of-line conditions (3360-3410) and, not finding
one, return for another character (3440) after storing the current
character in HEXBUF.

An end-of-line condition lands at BSFLAG (3450), which
alerts BNUMWERK that it should exit the loop after the current
number in HEXBUR has been analyzed.

A Huge, and Incorrect, Number
WERK2 (3480) performs the analysis of a single number. It
points the TEMP variable to NUBUF where the number is stored
and JSRs to VALDEC, leaving the value of the number in RE
SULT. Then the value is POKEd to the disk or RAM object code
(and the PC is raised by 1) (3550).

So that nothing will be left over to confuse VALDEC during
its analysis of the next number, NUBUF is now wiped clean with
zeros. VALDEC expects to find 0 at the end of an ASCII number
that it's turning into an integer. If that 0 isn't there, VALDEC will

158

Indisk: The Main Input Routine

keep on looking for it, creating a huge, and incorrect, answer.
Then we return to the main loop and look for another

character, the start of another number (3620) .

Graceful Exits
There are so many options in LADS that graceful exits from
routines like BNUMWERK are rather difficult. We cannot just
simply RTS somewhere. We've got to take into account several
sometimes conflicting conditions.

LADS can get its source code from two places: disk or RAM
memory. The source code can be entirely within a single pro
gram file or spread across a chain of linked files. LADS can as
semble hex or decimal numbers from source code (except within
the .BYTE pseudo-op). The assembler can send its object code to
four places: disk, screen, RAM memory, or printer. All or any of
these targets can be operative at any given time. And output can
be turned on or off at will. No wonder there have to be different
exits and some testing before we can leave a pseudo-op. We've
got to figure out what's expected, where the object code is going.
Finally, the fact that logical lines of source code can end in sev
eral ways adds one additional complication to the exit.

BBEND is the start of exit testing for BNUMWERK. On pass
1 we have to raise the PC one final number (3650). If the line
ends with a colon, we cannot go to ENDPRO and look for a
new line number, since colons end logical, not physical, lines of
source code (3680). In either case, we set the COLFLAG up or
down, depending on whether or not we've got a colon-type end
ing to this logical line (3700) . We then raise the LOCFLAG to tell
Eval to print a PC-type address label and PLA PLA, pulling the
RTS off the stack in preparation for a JMP back to Eva!. If it's
pass 1 or if the printer printout flags are down, we don't need to
print anything, and we JMP into Eval at START LINE to fetch a
new line of source code (3790).

Alternatively, if it's pass 2 or if the PRINTFLAG is up, we
go back into Eval at PRMMFIN where comments following
semicolons are printed (3780).

FILLDISK (3810) takes care of a problem created by using
the * = pseudo-op with disk object code files . Recall that if you
wrote source code like:
10 *= 900
100 START INY

159

Indisk: The Main Input Routine

110 * = 950; leave room here
120 INX; continue on

LADS would normally store the INY and follow it immediately
on a disk file with INX. The PC variable (SA) within LADS
would have changed. The INX object code being POKEd to
RAM would be stored correctly at address 950. But the INX
would go to disk at address 901. The disk is receiving its object
code bytes sequentially and doesn't hear about any PC changes
within the computer during assembly.

FILLDISK subtracts the old PC value from the new adjusted
PC value and sends that number of filler bytes to a disk object
file. In the example above, 900 would be subtracted from 950,
and 50 bytes would be sent as spacers to the disk. This creates a
space between INY and INX, a physical space, which will cause
the object file to load into the computer with the correct, ex
pected addresses for each opcode.

A secret is revealed here. There are two full passes, but
LADS starts to try for a third pass. It is quickly shut down be
cause during this pass the END FLAG is up and STARTUNE will
detect it. Nevertheless, we cannot store more bytes during this
brief condition. Bytes must be stored only on pass 2, not on pass
1 or that temporary attempt at a pass 3 (3840).

Starting the Countdown
If FILLDISK is called upon to act, however, it acts. The disk ob
ject file (file #2) is opened (3860), and the old PC is subtracted
from the new one (3880-3940) . The Accumulator is loaded with a
o and we start the countdown; the result of our subtraction, in
the variable WORK, is decremented for each 0 sent to the disk
object file (3960-4000). If WORK hasn't counted down to zero,
we continue with this loop (4010 and 4030). Finally, we restore
the normal I/O and then return to the caller.

The final subroutine on Indisk is functionally identical to
KEYWORD. It turns a token into an ASCII word (turns? to
PRINT), but it sends its results to the BABUF buffer which stores
all comments. KEYWORD sends its results to the main buffer
LABEL for source code lines. To follow the logic of this sub
routine, see the discussion of KEYWORD earlier in this chapter
(line 1040 on).

Now we can tum our attention from LADS input to LADS
output. The bulk of the next chapter explores the four destina
tions of assembled code: screen, printer, disk, or memory.

160

.....
.

Q
'\

.....

.

P
ro

gr
am

 6
-1

.
In

di
sk

1

0

i
"I

N
D

IS
K

"
M

A
IN

G

E
T

-I
N

P
U

T
-F

R
O

M
-D

IS
K

R

O
U

T
IN

E

2
0

iS

E
T

U
P

/E
X

P
E

C
T

S

D
IS

K

TO

P
O

IN
T

TO

1S

T

C
H

A
R

IN

A

 N
EW

L

IN
E

(O

R

B
EY

O
N

D

C
O

L
O

N
)

3
0

iR

E
S

U
L

T
S

/E
IT

H
E

R

FL
A

G
S

EN
D

O

F
PR

O
G

.
O

R

F
IL

L
S

L

A
B

E
L

+
W

IT
H

L

IN
E

O

F
C

O
D

E
4

0

i-

--
--

--
--

--
--

--
--

-
5

0

IN
D

IS
K

JS

R

C
L

E
A

N
L

A
B

i
F

IL
L

L

A
B

E
L

W

IT
H

Z

E
R

O
S

(R
O

U
T

IN
E

IN

E

V
A

L
)

6
0

LD

Y

#0

7
0

ST

Y

H
E

X
FL

A
G

i
PU

T
H

EX
FL

A
G

DO

W
N

8
0

ST

Y

B
A

B
FL

A
G

i
PU

T
C

O
M

M
EN

TS

FL
A

G

DO
W

N
9

0

ST
Y

B

Y
T

FL
A

G
i

PU
T

FL
A

G

SH
O

W
IN

G

<

O
R

>

D

O
vm

1

0
0

ST

Y

PL
U

SF
L

A
G

i
PU

T
A

R
IT

H
M

E
T

IC

PS
E

U
D

O

O
P

(+
)

FL
A

G

DO
W

N
1

1
0

LD

A

C
O

L
FL

A
G

i
IF

T

H
E

R
E

W

A
S

A

C
O

LO
N

JU

S
T

P

R
IO

R

TO

T
H

IS
,

R
EM

O
V

E
A

N
Y

B

LA
N

K
S

1
2

0

B
N

E
N

O
B

L
A

N
K

Si

(T
H

IS

TA
K

ES

C
A

R
E

O
F

:
IN

Y
:

LD
A

1

5
:

LD
X

1

7

T
Y

PE

E
R

R
O

R
S)

1

3
0

JS

R

C
H

A
R

IN
i

O
T

H
E

R
W

IS
E

,
PU

L
L

IN

TH

E
1S

T

C
H

A
R

A
C

TE
R

(F

R
O

M

D
IS

K

O
R

R

A
M

)
1

4
0

ST

A

L
IN

E
N

i
ST

O
R

E

LO
W

B

Y
TE

O

F
L

IN
E

N

U
M

B
ER

1

5
0

JS

R

C
H

A
R

IN

1
6

0

ST
A

L

IN
E

N
+

li

ST
O

R
E

H

IG
H

B

Y
TE

O

F
L

IN
E

N

U
M

B
ER

1

7
0

N

O
B

LA
N

K
S

JS
R

C

H
A

R
IN

i
R

O
U

T
IN

E

TO

E
L

IM
IN

A
T

E

B
LA

N
K

S
FO

L
L

O
W

IN
G

A

C

O
LO

N

1
7

5

BN
E

C
O

O
LO

O
K

1

7
6

JS

R

E
N

D
PR

O
i

T
H

IS

H
A

N
D

LE
S

C
O

LO
N

S
PL

A
C

E
D

A

C
C

ID
E

N
T

A
L

L
Y

A

T
EN

D

O
F

L
IN

E

1
7

7

P
L

A
:P

L
A

:J
M

P

S
T

A
R

T
L

IN
E

1

8
0

C

O
O

LO
O

K

CM
P

#
3

2
i

(O
R

FO

L
L

O
W

IN
G

A

 L
IN

E

N
U

M
B

ER
)

1
9

0

B
EQ

N

O
B

L
A

N
K

S
i-

--
--

--
--

--
--

--
--

--
--

--
--

-
2

0
0

JM

P
M

O
ll

i
S

K
IP

TO

C

H
EC

K

FO
R

C

O
LO

N

(I
T

'S

E
Q

U
IV

A
L

E
N

T

TO

A
N

EN

D

O
F

L
IN

E

0
)

2
1

0

S
T

IN
D

IS
K

JS

R

C
H

A
R

IN
i

EN
TR

Y

P
O

IN
T

W

IT
H

IN

L
IN

E

(N
O

T

A
T

ST
A

R
T

O

F
L

IN
E

)
2

2
0

M

O
IN

D
I

B
N

E
M

O
ll

i
IF

N

O
T

Z
E

R
O

,
LO

O
K

FO

R

C
O

LO
N

2

3
0

JM

P
E

N
D

PR
O

i
FO

U
N

D

A

0
EN

D

O
F

L
IN

E
.

C
H

EC
K

FO

R

EN
D

O

F
PR

O
G

R
A

M

(3

Z
E

R
O

S)

2
4

0

M
O

Il

CM
P

#
5

8
i

IS

IT

A
 C

O
LO

N

2
5

0

B
N

E
X

M
O

li

IF

N
O

T
,

C
H

EC
K

FO

R

SE
M

IC
O

L
O

N

2
6

0

JM
P

C
O

LO
N

i
FO

U
N

D

A
 C

O
LO

N

.....

::l
 ~

rn

i';
'" ~

::r

(!
) ~
 '" S·

::l

"0

C
 ~ C
 S· (!

)

.....
..

(J
'\

tv

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

5
1

0

5
2

0

5
3

0

5
4

0

5
5

0

5
6

0

5
7

0

X
M

01

CM
P

#
5

9
;

IS

IT

A

SE
M

IC
O

L
O

N

B
N

E
C

O
M

O
A

;
IF

N

O
T

C
O

N
T

IN
U

E

O
N

ST

Y

A
;

FO
U

N
D

A

SE

M
IC

O
L

O
N

(R

E
M

)
LD

A

P
R

IN
T

F
L

A
G

;
IF

PR

IN
T

O
U

T

N
O

T
R

E
Q

U
E

ST
E

D
,

TH
EN

D

O
N

'T

ST
O

R
E

TH

E
R

EM
A

R
K

S
B

EQ

PU
LL

R
X

ST

A

B
A

B
FL

A
G

;
SE

T

U
P

P
R

IN
T

C

O
M

M
EN

TS

FL
A

G

(A

M
U

ST

B
E

>

0
A

T
T

H
IS

P

O
IN

T
)

LD
A

A

;
O

T
H

E
R

W
IS

E
,

C
H

EC
K

Y

(S

A
V

E
D

A

B
O

V
E

).

IF

Z
E

R
O

,
IS

A

SE

M
IC

O
L

O
N

A

T
B

EQ

PU
X

;
ST

A
R

T

O
F

TH
E

L
IN

E

(N
O

L

A
B

E
L

S
O

R

M
N

E
M

O
N

IC
S,

JU

S
T

A

B

IG

C
O

M
M

EN
T)

JS

R

P
U

L
L

R
E

S
T

;
O

T
H

E
R

W
IS

E

SA
V

E
C

O
M

M
EN

TS

FO
LL

O
W

IN
G

TH

E
SE

M
IC

O
L

O
N

JM

P
M

PU
L

L
;

A
N

D

TH
EN

R

ET
U

R
N

TO

EV

A
L

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

PU
X

JS

R

C
H

A
R

IN
;

PU
T

N
O

N
-C

O
M

M
EN

T
D

A
TA

IN

T
O

LA

B
EL

B

U
FF

E
R

B

EQ

PU
X

1;

EN
D

O

F
L

IN
E

,
SO

E

X
IT

C

M
P

#
1

2
7

;
7T

H

B
IT

N

O
T

SE
T

(S

O

IT
'S

N

O
T

A

K
EY

W
O

RD

IN

B
A

S
IC

)
B

C
C

PU

X
2

JS
R

K

EY
W

O
R

D
;

IT

IS

A

K
EY

W
O

R
D

,
SO

EX

TE
N

D

IT

O
U

T
A

S
A

N

A
S

C
II

W

O
RD

PU

X
2

ST
A

L

A
B

E
L

,Y
;

PU
T

TH
E

C
H

A
R

.
IN

T
O

TH

E
M

A
IN

B

U
FF

E
R

IN

Y

JM
P

PU
X

;
R

ET
U

R
N

TO

LO

O
P

FO
R

M

O
RE

C

H
A

R
A

C
T

E
R

S
--

--
--

--
--

--
--

--
--

--

PU
X

1
JS

R

P
R

N
T

L
IN

E
;

P
R

IN
T

TH

E
L

IN
E

N

U
M

B
ER

JS

R

PR
N

T
SP

A
C

E
;

P
R

IN
T

A

SP

A
C

E

JS
R

P

R
N

T
IN

P
U

T
;

P
R

IN
T

TH

E
C

H
A

R
A

C
T

E
R

S
IN

TH

E
L

A
B

E
L

B

U
FF

E
R

(M

A
IN

B

U
F

F
E

R
)

JS
R

PR

N
T

C
R

;
P

R
IN

T

A

C
A

R
R

IA
G

E

R
ET

U
R

N

LD
A

#

0
;

SE
T

A

 V
A

R
IA

B
L

E

TO

ZE
R

O

TO

S
IG

N
IF

Y

N
O

T
H

IN
G

FO

R

EV
A

L
TO

EV

A
LU

A
TE

ST

A

A

JM
P

M
PU

L
L

;
G

O

TO

E
X

IT

R
O

U
T

IN
E

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-

PU
L

L
R

E
ST

ST

A

B
A

B
FL

A
G

;
PU

T
R

EM
A

R
K

S
IN

T
O

B

A
B

U
F

(B
U

F
F

E
R

FO

R

C
O

M
M

EN
TS

)
T

H
IS

R

O
U

T
IN

E

R
EM

O
V

ES

(A
N

D

S
A

V
E

S
)

C
O

M
M

EN
TS

ST

A

A
;

SE
T

A

 V
A

R
IA

B
L

E

TO

S
IG

N
IF

Y

N
O

T
H

IN
G

FO

R

EV
A

L
TO

E

V
A

L
U

A
T

E

LD
Y

#

0
;

SE
T

O

FF
SE

T

TO

B
A

B
U

F
B

U
FF

E
R

FO

R

F
IL

L
IN

G

W
IT

H

C
O

M
M

EN
TS

PA

X
1

JS
R

C

H
A

R
IN

;
G

ET

C
H

A
R

A
C

TE
R

B

N
E

PA
X

;
IF

N

O
T

Z
E

R
O

,
C

O
N

T
IN

U
E

.....
.

~

p.
.

<
Il !'r
 ;! ~
 s:: $I

) ~

.

~

'0

~

::0

o ~

 s· ~

5
8

0

ST
A

B

A
B

U
F

,Y
;

O
T

H
E

R
W

IS
E

,
W

E
'R

E

A
T

TH
E

EN
D

O

F
TH

E
CO

M
M

EN
T

5
9

0

LD
Y

A

6

0
0

R

T
S

;
Y

 M
U

ST

H
O

LD

O
F

F
S

E
T

FO

R

ZE
R

O

F
IL

L

(E
N

D
P

R
O

)-
--

--
--

--
--

--
--

--
6

1
0

PA

X

B
PL

PA

X
A

;
N

O
T

A

K
EY

W
O

RD

(7
T

H

B
IT

N

O
T

S
E

T
)

6
2

0

JS
R

K

EY
W

A
D

;
O

T
H

E
R

W
IS

E
,

EX
TE

N
D

K

EY
W

O
RD

IN

T
O

A

N

A
S

C
II

S

T
R

IN
G

6

3
0

PA

X
A

ST

A

B
A

B
U

F
,Y

;
ST

O
R

E

C
H

A
R

.
IN

R

EM
A

R
K

B

U
FF

E
R

6

4
0

IN

Y

6
5

0

JM
P

PA
X

1;

R
ET

U
R

N

TO

LO
O

P
TO

G

ET

A
N

O
TH

ER

C
H

A
R

A
C

T
E

R
--

--
--

--
--

--
--

6
6

0

PU
LL

R
X

JS

R

C
H

A
R

IN
;

JU
S

T

PU
L

L

IN

R
EM

A
R

K

C
H

A
R

A
C

T
E

R
S,

IG

N
O

R
IN

G

TH
EM

6

7
0

B

EQ

M
PU

L
L

;
LO

O
K

IN
G

FO

R

TH
E

EN
D

O

F
L

IN
E

ZE

R
O

6

8
0

JM

P
P

U
L

L
R

X
;-

--
--

--
--

--
--

--
--

--
--

--
--

-
6

9
0

M

PU
LL

JS

R

E
N

D
PR

O
;

C
H

EC
K

FO

R

EN
D

O

F
PR

O
G

R
A

M

A
N

D

TH
EN

7

0
0

LD

A

A
;

SE
E

IF

Y

 =
 0

.
IF

S

O
,

TH
E

SE
M

IC
O

L
O

N

W
A

S
A

T
TH

E
ST

A
R

T

O
F

A
 L

IN
E

7

1
0

B

N
E

M
PU

L
L

l
7

2
0

P

L
A

;
Y

 =
 0

SO

JU

M
P

B
A

C
K

TO

EV

A
L

TO

PR
E

PA
R

E

TO

G
ET

N

EX
T

L
IN

E

7
3

0

PL
A

7

4
0

JM

P
S

T
A

R
T

L
IN

E
;

SE
M

I
@

 S
T

A
R

T

SO

R
ET

U
R

N

TO

EV
A

L
TO

G

ET

N
EX

T
L

IN
E

--
--

--
--

-
7

5
0

M

PU
L

L
l

R
T

S
;

SE
M

IC
O

L
O

N
,

B
U

T
N

O
T

A
T

ST
A

R
T

O

F
L

IN
E

(R

E
T

U
R

N

TO

C
A

L
L

E
R

)
7

6
0

CO

M
O

A

CM
P

#
1

7
7

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

C
H

EC
K

FO

R

O
TH

ER

O
D

D

C
H

A
R

A
C

T
E

R
S

7
7

0

B
EQ

H

I;

F
O

U
N

D
>

7

8
0

CM

P
#

1
7

9

7
9

0

B
EQ

L

O
;

FO
U

N
D

<

8

0
0

CM

P
#

1
7

0

8
1

0

B
N

E
CO

M
O

8

2
0

IN

C

PL
U

SF
L

A
G

;
FO

U
N

D

+

8
3

0

CO
M

O

C
M

P
#

1
7

2

8
4

0

B
N

E
C

O
M

O
l

8
5

0

JM
P

ST
A

R
;

FO
U

N
D

*

8
6

0

C
O

M
O

l
CM

P
#

4
6

~

8
7

0

B
EQ

PS

E
U

D
O

O
;

FO
U

N
D

PS

E
U

D
O

-O
P

w

8
8

0

CM
P

#
3

6

.....

=:l p.
. '" ~

~

::r
'

rt>
 ~

~
 5'
 -=:l '0

c:: ~ c:: 5'

rt>

.....
.

Q
'\

>I'

>-
8

9
0

9

0
0

9

1
0

9

2
0

9

3
0

9

4
0

9

5
0

9

6
0

B
EQ

H

E
X

X
;

FO
U

N
D

H

EX

N
U

M
B

ER

CM
P

#
1

2
7

;
N

O
T

A
 K

EY
W

O
RD

(7

T
H

B

IT

N
O

T
U

P
)

B
C

C

A
D

D
 L

A
B

JS

R

K
EY

W
O

R
D

;
FO

U
N

D

K
EY

W
O

R
D

,
SO

EX

TE
N

D

IT

IN
T

O

A
N

A

S
C

II

S
T

R
IN

G

A
D

D
 L

A
B

ST

A

L
A

B
E

L
,Y

;
PU

T
TH

E
C

H
A

R
A

C
TE

R

IN
T

O

TH
E

M
A

IN

B
U

FF
E

R

A
N

D

IN
Y

;
R

A
IS

E

TH
E

PO
IN

T
E

R

A
N

D

JM
P

S
T

IN
D

IS
K

;
R

ET
U

R
N

TO

G

ET

A
N

O
TH

ER

C
H

A
R

A
C

TE
R

(B

U
T

N

O
T

A
 L

IN
E

N

U
M

B
ER

)
--

--
--

--
--

--
--

--
--

--
--

-
,

9
7

0

C
O

LO
N

ST

A

C
O

L
FL

A
G

;
S

IG
N

IF
Y

C

O
LO

N

BY

S
E

T
T

IN
G

C

O
L

FL
A

G

9
8

0

R

T
S

;-
--

--
--

--
--

--
--

--
--

--
-

9
9

0

PS
EU

D
O

O

JM
P

P
S

E
U

D
O

J;

S
P

R
IN

G
B

O
A

R
D

TO

PS

E
U

D
O

-O
P

H
A

N
D

LI
N

G

R
O

U
T

IN
E

S
1

0
0

0

H
EX

X

ST
A

L

A
B

E
L

,Y
;

SP
R

IN
G

B
O

A
R

D

TO

H
EX

N

U
M

B
ER

T

R
A

N
SL

A
T

O
R

1

0
1

0

IN
Y

1

0
2

0

JM
P

H
EX

1

0
3

0

;
-
-
-
-
-
-
-
-

T
R

A
N

SL
A

T
E

A

S

IN
G

L
E

-B
Y

T
E

K

EY
W

O
RD

TO

K
EN

IN

T
O

A

S
C

II

S
T

R
IN

G

1
0

4
0

K

EY
W

O
RD

S

E
C

;
FI

N
D

N

U
M

B
ER

O

F
K

EY
W

O
RD

(I

S

IT

1
S

T
,

5T
H

,
O

R

~
V
H
A
T
)

1
0

5
0

SB

C

#
$

7
F

1

0
6

0

ST
A

K

EY
N

U
M

;
ST

O
R

E

N
U

M
B

ER

(P
O

S
IT

IO
N

)
IN

B

A
S

IC
'S

K

EY
W

O
RD

T

A
B

L
E

1

0
7

0

LD
X

#

2
5

5

1
0

8
0

SK

EY

D
EC

K

EY
N

U
M

;
R

ED
U

C
E

N
U

M
B

ER

BY

1
(W

H
EN

Z

E
R

O
,

W
E

'V
E

FO

U
N

D

IT

IN

T
A

B
L

E
)

1
0

9
0

B

EQ

FK
E

Y
;

A
N

D

W
E

E
X

IT

T
H

IS

SE
A

R
C

H

R
O

U
T

IN
E

A

N
D

ST

O
R

E

TH
E

A
S

C
II

W

O
RD

1

1
0

0

K
SX

IN

X
;

B
R

IN
G

X

 U
P

TO

ZE
R

O

A
T

ST
A

R
T

O

F
LO

O
P

1
1

1
0

LD

A

K
E
T
I
~
D
S
,
X
;

LO
O

K

A
T

C
H

A
R

.
IN

B

A
S

IC
'S

T

A
B

L
E

.
1

1
2

0

B
PL

K

S
X

;D
ID

N

O
T

F
IN

D

A

S
H

IF
T

E
D

B

Y
TE

1

1
3

0

B
M

I
SK

E
Y

;
D

ID

F
IN

D

ST
A

R
T

-O
F-

K
E

Y
W

O
R

D

S
H

IF
T

E
D

C

H
A

R
A

C
TE

R

-
-
-
-
-
-
-
-
-
-
-
-
-

1
1

4
0

FK

E
Y

IN

X
;

ST
O

R
E

TH
E

K
EY

W
O

RD

IN
T

O

L
A

D
S

'
M

A
IN

B

U
FF

E
R

(L

A
B

E
L

)
1

1
5

0

LD
A

K

E
Y

W
D

S,
X

1

1
6

0

B
M

I
K

S
E

T
;

A
 S

H
IF

T
E

D

C
H

A
R

.
IN

D
IC

A
T

E
S

EN

D

O
F

K
EY

W
O

R
D

,
ST

A
R

T

O
F

N
EX

T
K

EY
W

O
RD

1

1
7

0

ST
A

L

A
B

E
L

,Y
;

PU
T

C
H

A
R

.
IN

T
O

L

A
D

S
'

B
U

FF
E

R

1
1

8
0

IN

Y

1
1

9
0

JM

P
FK

E
Y

;
LO

O
P

A
G

A
IN

FO

R

N
EX

T
C

H
A

R
.-

--
--

--
--

--
--

--
--

--
--

.....

::l
 e:- ~
 ~ I'D

 ~

III
 S·

::l

'1
j ~

 ~ ~ =-. ::l

I'D

>
--

'
0

'
(J

1

1
2

0
0

K

SE
T

A

N
D

#

$
7

F

1
2

1
0

1

2
2

0

1
2

3
0

1

2
4

0

1
2

5
0

1

2
6

0

1
2

7
0

1

2
8

0

1
2

9
0

1

3
0

0

1
3

1
0

1

3
2

0

1
3

2
5

1

3
3

0

1
3

4
0

1

3
5

0

1
3

6
0

1

3
7

0

1
3

8
0

1

3
9

0

1
4

0
0

1

4
1

0

1
4

2
0

1

4
3

0

1
4

4
0

1

4
5

0

1
4

6
0

1

4
7

0

1
4

8
0

-
R

T
S

;
C

L
E

A
R

O

U
T

B
IT

7

A
N

D

R
E

T
U

R
N

TO

C

A
L

L
IN

G

R
O

U
T

IN
E

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

L
E

>

A
N

D

<

P
S

E
U

D
O

-O
P

S

H
I

LD
A

#

2
;

TH
E

B
Y

T
FL

A
G

H

A
S

3
P

O
S

S
IB

L
E

S

T
A

T
E

S
:

ST
A

B

Y
T

FL
A

G
;

0
L

IN
E

D

O
E

S
N

'T

C
O

N
T

A
IN

A

>

O

R
<

PS

E
U

D
O

JM

P
S

T
IN

D
IS

K
;

1
=

 <

(L
O

W

B
Y

T
E

)
T

Y
PE

LO

LD

A

#
1

;
2

=
 >

(H

IG
H

B

Y
T

E
)

T
Y

PE

ST
A

B

Y
T

FL
A

G
;

(A
C

T
IO

N

IS

TA
K

EN

O
N

T

H
IS

PS

E
U

D
O

-O
P

H
IT

H
IN

TH

E
JM

P
S

T
IN

D
IS

K
;

EQ
U

A
TE

SU

B
PR

O
G

R
A

M
).

0
W

E
FE

T
C

H

T
H

E

N
EX

T
C

H
A

R
.

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

TH
E

*=

PS
E

U
D

O
-O

P
(C

H
A

N
G

E
TH

E
P

C
)

ST
A

R

JS
R

S

T
IN

D
IS

K

;L
D

A

P
A

S
S

;
O

N

PA
SS

;B

E
Q

ST

A
R

N

LD
A

#

$
1

8
:J

S
R

P

R
IN

T

LD
A

#

4
2

;
P

R
IN

T

*
JS

R

P
R

IN
T

1
,

D
O

N
'T

P

R
IN

T

O
U

T
D

A
TA

TO

SC

R
E

E
N

JS
R

P

R
N

T
IN

P
U

T
;

P
R

IN
T

S

T
R

IN
G

IN

L

A
B

E
L

B

U
FF

E
R

JS

R

PR
N

T
C

R
;

P
R

IN
T

C

A
R

R
IA

G
E

R

ET
U

R
N

ST

A
R

N

LD
A

H

E
X

FL
A

G
;

IF

H
E

X
,

TH
E

A
R

G
U

M
EN

T
H

A
S

A
LR

EA
D

Y

B
EE

N

FI
G

U
R

E
D

B

N
E

ST
A

R
R

;
SO

JU

M
P

O
V

ER

T
H

IS

N
EX

T
PA

R
T

LD

Y

#
0

ST

A
F

LD
A

L

A
B

E
L

,Y

CM
P

#
3

2

B
EQ

S

T
A

F
I

IN
Y

JM

P
S

T
A

F
;

FI
N

D

N
U

M
B

ER

(B
Y

L

O
O

K
IN

G

FO
R

TH

E
B

L
A

N
K

:
*=

S

T
A

F
I

IN
Y

ST

Y

T
E

M
P;

PO

IN
T

TO

A

S
C

II

N
U

M
B

ER

LD
A

#<

L
A

B
E

L

C
LC

1
5

)

.....
.

::l

p.
. <

Il ~
 ~ rt>

 ~

III
 5'

.....
.

::l
 'g ...,.

~

o ~ ...,.
 5' rt>

.....
..

0
"

0
"

1
4

9
0

A

D
C

TE
M

P
1

5
0

0

ST
A

TE

M
P

1
5

1
0

LD

A

#>
L

A
B

E
L

1

5
2

0

A
D

C
#

0

15
31

3
ST

A

T
E

M
P

+
l

15
41

3
JS

R

V
A

L
D

E
C

;
T

R
A

N
SL

A
T

E

A
S

C
II

N

U
M

B
ER

IN

T
O

IN

T
E

G
E

R

(I
N

R

E
S

U
L

T
)

15
51

3
ST

A
R

R

LD
A

P

A
S

S
;

O
N

PA

SS

1
,

L
E

A
V

E

D
IS

K

O
B

JE
C

T

F
IL

E

A
L

O
N

E
.

1
5

6
0

B

EQ

ST
A

R
R

X

1
5

7
0

LD

A

D
IS

K
F

L
A

G
;

ON

PA
SS

2

,
W

E
'V

E

G
O

T
TO

S

T
U

F
F

TH

E
D

IS
K

O

B
JE

C
T

F

IL
E

1

5
8

0

B
EQ

ST

A
R

R
X

;
IF

TH

E
D

IS
K

FL
A

G

IS

U
P

(H
E

A

R
E

C
R

E
A

T
IN

G

A
N

O

B
JE

C
T

C

O
D

E
1

5
9

0

JS
R

F

IL
L

D
IS

K
;

F
IL

L
D

IS
K

D

O
ES

T

H
IS

FO

R

U
S

.
1

6
0

0

ST
A

R
R

X

LD
A

R

E
SU

L
T

;
PU

T
TH

E
A

R
G

U
M

EN
T

O
F

*=

IN
T

O

T
H

E

PC

(S
A

)
1

6
1

0

ST
A

SA

16

21
3

LD
A

R

E
SU

L
T

+
1

1
6

3
0

ST

A

S
A

+
l

1
6

4
0

P

L
A

;
PU

L
L

O

FF

TH
E

R
T

S
A

N
D

16

51
3

PL
A

16

61
3

JM
P

S
T

A
R

T
L

IN
E

;
R

ET
U

R
N

TO

EV

A
L

FO
R

TH

E
N

EX
T

L
IN

E

O
F

C
O

D
E

1
6

7
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

IS

T
H

IS

TH
E

EN
D

O

F
TH

E
E

N
T

IR
E

SO

U
R

C
E

C
O

D
E

F
IL

E
)

1
6

8
0

EN

D
PR

O

ST
A

L

A
B

E
L

,Y
;

PU
T

TH
E

ZE
R

O

(T
H

A
T

SE

N
T

U

S
H

E
R

E
)

IN
T

O

TH
E

M
A

IN

B
U

FF
E

R

16
91

3
IN

Y

1
7

0
0

C

PY

#8
13

17

11
3

BN
E

E
N

D
PR

O
;

F
IL

L

R
E

ST

O
F

B
U

FF
E

R

W
IT

H

0
0

S

1
7

2
0

ST

A

L
A

B
E

L
,Y

1

7
3

0

JS
R

C

H
A

R
IN

;
PU

L
L

IN

TH

E
N

EX
T

2
B

Y
T

E
S

.
IF

TH

EY

A
R

E
B

O
TH

Z

E
R

O
S

,
TH

EN

1
7

4
0

JS

R

C
H

A
R

IN
:

W
E

H
A

V
E

,
IN

F

A
C

T
,

FO
U

N
D

TH

E
EN

D

O
F

O
U

R

SO
U

R
C

E

C
O

D
E

F
IL

E

1
7

5
0

B

EQ

IN
E

N
D

;
A

N
D

W

E
B

EQ

TO

IN
E

N
D

1

7
6

0

LD
A

#1

3;

O
T

H
E

R
W

IS
E

W

E
PU

T
TH

E
C

O
L

FL
A

G

(C
O

L
O

N
)

D
O

W
N

,
B

E
C

A
U

SE

T
H

IS

IS

17
71

3
ST

A

C
O

L
FL

A
G

;
A

N

EN
D

O

F
L

IN
E

C

O
N

D
IT

IO
N

,
N

O
T

A

C
O

LO
N

1

7
8

0

R
T

S
;

A
N

D

R
ET

U
R

N

TO

C
A

L
L

E
R

1

7
9

0

IN
E

N
D

LD

A

#
1

;-
-
-
-
-
-
-
-

SE
T

EN

D

O
F

SO
U

R
C

E
C

O
D

E
F

IL
E

FL

A
G

TO

U

P
C

O
N

D
IT

IO
N

.....

::l

0.
. 'I

l :;0
;-

~

::r
"

(t>
 ~

~
 S· I,.

....

::l

"0
 ::: ::0

0 ::: ::l

(t>

1
8

0
0

1

8
1

0

1
8

2
0

1

8
3

0

1
8

4
0

1

8
5

0

1
8

6
0

1

8
7

0

1
8

8
0

1

8
9

0

1
9

0
0

1

9
1

0

1
9

2
0

1

9
3

0

1
9

4
0

1

9
5

0

1
9

6
0

1

9
7

0

1
9

8
0

1

9
9

0

2
0

0
0

2

0
1

0

2
0

2
0

2

0
3

0

2
0

4
0

2

0
5

0

2
0

6
0

2

0
7

0

2
0

8
0

>

-'

2
0

9
0

~

2
1

0
0

"1

ST
A

EN

D
FL

A
G

R

T
S

i
A

N
D

R

ET
U

R
N

TO

C

A
L

L
E

R

i-
--

--
--

--
--

--
--

--
--

--
--

-
C

H
A

N
G

E
A

H

EX

N
U

M
B

ER

TO

A

2-
B

Y
T

E

IN
T

E
G

E
R

;

PU
L

L

IN

N
EX

T
FE

W

B
Y

T
E

S
,

T
U

R
N

IN
G

TH

EM

IN
T

O

A
N

IN

T
E

G
E

R

IN

R
E

SU
L

T

H
EX

LD

X

#
0

i
PU

T
S

IN
T

E
G

E
R

E

Q
U

IV
A

L
E

N
T

O

F
IN

C
O

M
IN

G

H
EX

IN

T
O

R

E
SU

L
T

H

I
JS

R

C
H

A
R

IN

B
EQ

D

E
C

Ii

EN
D

O

F
L

IN
E

(S

O

ST
O

P
L

O
O

K
IN

G
)

CM
P

#
5

8

B
EQ

D

E
C

I;

C
O

LO
N

(S

O

ST
O

P
L

O
O

K
IN

G
)

CM
P

#
3

2

B
EQ

H

I;

B
LA

N
K

C

H
A

R
A

C
TE

R

SO

K
EE

P
LO

O
K

IN
G

FO

R

EN
D

O

F
L

IN
E

CM

P
#

5
9

B

EQ

D
E

C
I;

SE

M
IC

O
L

O
N

(S

O

ST
O

P
L

O
O

K
IN

G
)

CM
P

#
4

4

B
EQ

D

E
C

IT
i

CO
M

M
A

(S
O

ST

O
P

L
O

O
K

IN
G

,
B

U
T

G
O

 T
O

A

 D
IF

F
E

R
E

N
T

PL

A
C

E
)

CM
P

#
4

1
i

(T
H

IS

"D
IF

F
E

R
E

N
T

PL

A
C

E
"

H
A

N
D

LE
S

A
 N

O
T

-E
N

D
-O

F
-L

IN
E

C

O
N

D
IT

IO
N

).

B
EQ

D

E
C

IT
i

C
L

O
SE

P

A
R

E
N

T
H

E
S

IS
)

(S
O

ST

O
P

L
O

O
K

IN
G

)
ST

A

H
E

X
B

U
F

,X
i

O
T

H
E

R
W

IS
E

,
PU

T
TH

E
A

S
C

II
-S

T
Y

L
E

-H
E

X

C
H

A
R

.
IN

B

U
FF

E
R

A

N
D

IN

X
i

R
A

IS
E

TH

E
IN

D
E

X

A
N

D

ST
A

L

A
B

E
L

,Y
;

A
LS

O

ST
O

R
E

IT

IN

T
O

M

A
IN

B

U
FF

E
R

FO

R

PR
IN

T
O

U
T

A

N
D

IN

Y
;

R
A

IS
E

T

H
IS

IN

D
E

X
 T

O
O

JM

P
H

li

TH
EN

K

E
E

P
O

N

PU
T

T
IN

G

H
EX

N

U
M

B
ER

IN

TO

H
E

X
B

U
F

F
E

R
--

--
--

--
--

D

E
C

IT

ST
X

 H
E

X
L

E
N

;
SA

V
E

LE
N

G
TH

O

F
A

S
C

II
-H

E
X

N

U
M

B
ER

ST

A

L
A

B
E

L
,Y

;
F

IN
IS

H

S
T

O
R

IN
G

C

H
A

R
S.

IN

T
O

M

A
IN

B

U
FF

E
R

(,

O

R

)
IN

T

H
IS

C

A
SE

)
IN

Y

JS
R

ST

A
R

T
H

E
X

;
T

R
A

N
SL

A
T

E

A
S

C
II

-H
E

X

N
U

M
B

ER

I
N

TO

I
N

T
E

G
E

R

IN

R
E

SU
L

T

V
A

R
IA

B
L

E

JM
P

S
T

IN
D

IS
K

i
R

ET
U

R
N

TO

PU

L
L

IN

R

E
ST

O

F
TH

E
L

I
N

E
i-

--
--

--
--

--
D

E
C

I
ST

A

A
i

SA
V

E
TH

E
EN

D

O
F

L
IN

E
,

C
O

L
O

N
,

O
R

SE

M
IC

O
L

O
N

C

H
A

R
.

FO
R

L

A
T

E
R

LD

A

#0

ST
X

H

E
X

L
E

N
i

SA
V

E
LE

N
G

TH

O
F

A
S

C
II

-H
E

X
 N

U
M

B
ER

ST

A

L
A

B
E

L
,Y

i
F

IN
IS

H

ST
O

R
IN

G

C
H

A
R

S.

IN
T

O

M
A

IN

B
U

FF
E

R

(0

IN

T
H

IS

C
A

S
E

)

.....

=' 0
-

00
' 1'r
 ;J ro ~

~
 S·

=' '0
 c:: ..,. :::0

o c:: ..,. S· ro

.....
.

0
-

0
0

2

1
1

0

JS
R

ST

A
R

T
H

E
X

;
T

R
A

N
SL

A
T

E

A
S

C
II

-H
E

X

N
U

M
B

ER

IN
T

O

IN
T

E
G

E
R

IN

R

E
SU

L
T

V

A
R

IA
B

L
E

2

1
2

0

LD
A

A

;
R

E
T

R
IE

V
E

0

O
R

C

O
LO

N

O
R

SE

M
IC

O
L

O
N

A

N
D

G

O

B
A

C
K

U

P
TO

M

O
IN

D
I

W
H

IC
H

2

1
3

0

JM
P

M
O

IN
D

I;
--

--
--

--
--

--
--

--
-

B
EH

A
V

ES

A
C

C
O

R
D

IN
G

TO

W

H
IC

H

SY
M

B
O

L
A

 H
O

L
D

S.

2
1

4
0

ST

A
R

T
H

E
X

LD

A

#

0
;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
E

X
-A

S
C

II

TO

IN
T

E
G

E
R

T

R
A

N
S

L
A

T
O

R
--

--
--

2
1

5
0

ST

A

R
E

S
U

L
T

;
SE

T

R
E

SU
L

T

TO

ZE
R

O

2
1

6
0

ST

A

R
E

SU
L

T
+1

2

1
7

0

T
A

X
;

SE
T

X

 T
O

ZE

R
O

2

1
8

0

H
X

LO
O

P
A

SL

R
E

SU
L

T
;

S
H

IF
T

A

N
D

R

O
LL

(M

O
V

ES

2-
B

Y
T

E

B
IT

S

TO

TH
E

L
E

F
T

)-
--

--
2

1
9

0

R
O

L
R

E
S

U
L

T
+

1;

D
O

IN
G

T

H
IS

8

T
IM

E
S

H

A
S

TH
E

E
FF

E
C

T

O
F

B
R

IN
G

IN
G

IN

2

2
0

0

A
SL

R

E
SU

L
T

;
TH

E
A

S
C

II

N
U

M
B

ER
,

1
B

Y
TE

A

T
A

 T
IM

E
,

A
N

D

T
R

A
N

SF
O

R
M

IN
G

IT

2

2
1

0

R
O

L
R

E
S

U
L

T
+

1;

IN
T

O

A

2-
B

Y
T

E

IN
T

E
G

E
R

W

IT
H

IN

T
H

IS

2-
B

Y
T

E

V
A

R
IA

B
L

E

W
E

'R
E

2

2
2

0

A
SL

R

E
S

U
L

T
;

C
A

L
L

IN
G

"R

E
S

U
L

T
."

2

2
3

0

R
O

L
R

E
SU

L
T

+1

2
2

4
0

A

SL

R
E

SU
L

T

2
2

5
0

R

O
L

R
E

SU
L

T
+1

2

2
6

0

LD
A

H

E
X

B
U

F
,X

;
G

ET

A

B
Y

TE

FR
O

M

TH
E

A
S

C
II

-H
E

X

N
U

M
B

ER

2
2

7
0

CM

P
#

6
5

;
IF

IT

'S

LO
W

ER

TH
A

N

6
5

,
IT

'S

N
O

T
A

N

A
L

PH
A

B
E

T
IC

(A

-F
)

H
EX

N

U
M

B
ER

2

2
8

0

B
C

C

H
X

M
O

R
E;

SO

D

O
N

'T

SU
B

T
R

A
C

T

7
FR

0l
'1

IT

2

2
9

0

SB
C

#

7
;

B
U

T
IF

IT

'S
>

6

5
,

TH
EN

-7

.
=

6

5
.

6
5

-7

=

5
8

.
2

3
0

0

H
X

M
O

RE

A
N

D

#
1

5
;

W
H

EN

Y
O

U

5
8

A

N
D

1

5
,

Y
O

U

G
ET

1

0

(T
H

E

V
A

LU
E

O
F

A
)

2
3

1
0

O

R
A

R

E
SU

L
T

;
#

1
5

(0

0
0

0
1

1
1

1
)

A
N

D

#
5

8

(0
0

1
1

1
0

1
0

)
=

 0
0

0
0

1
0

1
0

(T

E
N

)
2

3
2

0

ST
A

R

E
SU

L
T

;
PU

T
TH

E
B

Y
TE

IN

T
O

R

E
SU

L
T

2

3
3

0

IN
X

;
R

A
IS

E

TH
E

IN
D

E
X

2

3
4

0

C
PX

H

E
X

L
E

N
;

A
R

E
W

E
A

T
TH

E
EN

D

O
F

O
U

R

A
S

C
II

-H
E

X

N
U

M
B

ER

2
3

5
0

B

N
E

H
X

L
O

O
P;

IF

N

O
T

,
C

O
N

T
IN

U
E

2

3
6

0

IN
C

H

E
X

FL
A

G
;

IF

S
O

,
R

A
IS

E

H
EX

FL
A

G

(T
O

SH

O
W

R

E
SU

L
T

H

A
S

TH
E

A
N

SW
ER

)
2

3
7

0

LD
A

#

1
;

A
N

D

R
ET

U
R

N

TO

C
A

L
L

E
R

2

3
8

0

R
T

S
2

3
9

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
4

0
0

;

H
A

N
D

LE

PS
E

U
D

O
S.

(.

B
Y

T
E

T

Y
P

E
S

)
2

4
1

0

PS
E

U
D

O
J

C
PY

#

0
;

IF

Y
 =

 0

TH
EN

IT

'S

N
O

T
A

PC

L

A
B

E
L

L

IK
E

(L

A
B

E
L

.B

Y
T

E

0
0

)

.... ;:l

0
- f." ~ ('t

) ~

~
 ;:l
 ;:l

"t
j c:: ~

~

o c:: ~
 S·

('t
)

>
-"

0

\
\0

2
4

2
0

B

EQ

P
S

E
2

2
4

3
0

LD

X

P
A

S
S

;
O

T
H

E
R

W
IS

E
,

O
N

1

S
T

P

A
S

S
,

ST
O

R
E

L

A
B

E
L

N

A
M

E
A

N
D

PC

A

D
D

R
.

IN

A
R

R
A

Y

2
4

4
0

B

N
E

P
S

E
2

2
4

5
0

PH

A
;

SA
V

E
A

 A
N

D

Y

R
E

G
IS

T
E

R
S

2

4
6

0

TY
A

2

4
7

0

PH
A

2

4
8

0

JS
R

E

Q
U

A
T

E
;

N
A

M
E

A
N

D

PC

A
D

D
R

.
ST

O
R

E
D

IN

A

R
R

A
Y

2

4
9

0

PL
A

;
PU

L
L

O

U
T

A

A
N

D

Y

R
E

G
IS

T
E

R
S

(R

E
S

T
O

R
E

TH

EM
)

2
5

0
0

TA

Y

2
5

1
0

PL

A

2
5

2
0

P

S
E

2
ST

A

L
A

B
E

L
,Y

;
S

T
O

R
E

.
C

H
A

R
.

2
5

3
0

IN

Y

2
5

4
0

JS

R

C
H

A
R

IN
;

G
ET

C

H
A

R
.

FO
L

L
O

W
IN

G

TH
E

P
E

R
IO

D

(
.)

2

5
5

0

2
5

6
0

2

5
7

0

2
5

8
0

2

5
9

0

2
6

0
0

2

6
1

0

2
6

2
0

2

6
3

0

2
6

4
0

2

6
5

0

2
6

6
0

2

6
7

0

2
6

8
0

2

6
9

0

2
7

0
0

2

7
1

0

2
7

2
0

ST
A

L

A
B

E
L

,Y

IN
Y

CM

P
#

6
6

;
IS

IT

"B

"
FO

R

.B
Y

T
E

B

N
E

P
S

E
U

D
l;

W

A
SN

'T

.B
Y

T
E

LO

A

#
0

;
R

E
SE

T

FL
A

G

W
H

IC
H

W

IL
L

D

IS
T

IN
G

U
IS

H

B
ET

W
EE

N

.B
Y

T
E

0

A
N

D

.B
Y

T
E

"A

ST

A

B
N

U
M

FL
A

G
;

"
T

Y
P

E
,

O
R

0

0

0
8

1

5

1
7

2

T
Y

PE

(T
H

E

TW
O

.B

Y
T

E

T
Y

P
E

S
)

LD
A

P

A
S

S
;

P
R

IN
T

N

O
T

H
IN

G

TO

SC
R

E
E

N

O
N

PA

SS

1
B

EQ

C
LB

ST

Y

Y
;

SA
V

E
Y

R

E
G

IS
T

E
R

(O

U
R

IN

D
E

X
)

NO
W

W

E
R

E
P

L
IC

A
T

E

T
H

E

A
C

T
IO

N
S

O
F

IN
L

IN
E

(I

N

E
V

A
L

)
LO

A

S
F

L
A

G
;

SH
O

U
LD

W

E
P

R
IN

T

TO

SC
R

E
E

N

B
EQ

C

L
B

;
NO

JS

R

P
R

N
T

L
IN

E
;

Y
E

S
,

P
R

IN
T

L

IN
E

N

U
M

B
ER

JS

R

PR
N

T
SP

A
C

E
;

P
R

IN
T

SP

A
C

E

JS
R

P

R
N

T
S

A
;

P
R

IN
T

PC

A

D
D

R
E

SS

JS
R

PR

N
T

SP
A

C
E

;
P

R
IN

T

SP
A

C
E

LD

Y

Y
;

R
EC

O
V

ER

Y

IN
D

E
X

C

LB

JS
R

C

H
A

R
IN

;
PU

L
L

IN

C

H
A

R
A

C
T

E
R

FR

O
M

D

IS
K

/R
A

M

.....
.

::l
 &:

rI
J ::-
;- ;J (1

) ~

~
 S·

.....
.

::l

'1
j C
 ~

o c S· (1
)

.....
.

'1

o
2

7
3

0

ST
A

L

A
B

E
L

,Y
:

ST
O

R
E

IN

M

A
IN

B

U
FF

E
R

2

7
4

0

IN
Y

2

7
5

0

CM
P

#
3

2
:

IS

IT

A
 S

PA
C

E

2
7

6
0

BN

E
C

L
B

:
IF

N

O
T

,
C

O
N

T
IN

U
E

PU

L
L

IN
G

IN

M

O
RE

C

H
A

R
A

C
T

E
R

S
--

--
--

--
--

--
2

7
7

0

JS
R

C

H
A

R
IN

:
(W

E
'R

E

L
O

O
K

IN
G

FO

R

TH
E

1S
T

SP

A
C

E

A
FT

E
R

.B

Y
T

E
)

2
7

8
0

ST

A

L
A

B
E

L
,Y

:
ST

O
R

E
FO

R

P
R

IN
T

IN
G

2

7
9

0

IN
Y

2

8
0

0

CM
P

#
3

4
;

IS

TH
E

C
H

A
R

A
C

TE
R

A

 Q
U

O
TE

("

).

IF

S
O

,
IT

'S

A

.B
Y

T
E

"A

B
C

D

T
Y

PE

2
8

1
0

B

N
E

B
N

U
M

W
ER

K
;

O
T

H
E

R
W

IS
E

IT

'S

N
O

T
TH

E
II

T

Y
PE

2

8
2

0

B
Y

1
~
S
R

C
H

A
R

IN
:-

--
--

--
--

-
H

A
N

D
LE

A

S
C

II

S
T

R
IN

G

.B
Y

T
E

T

Y
PE

S
2

8
3

0

B
N

E
B

Y
2

2
8

4
0

JM

P
B

E
N

D
PR

O
;

FO
U

N
D

A

0

EN
D

O

F
L

IN
E

(O

R

PR
O

G
R

A
M

)
2

8
5

0

B
Y

2
CM

P
#

5
8

:
FO

U
N

D

A

C
O

LO
N

"E

N
D

O

F
L

IN
E

"
2

8
6

0

B
N

E
B

Y
2X

2

8
7

0

JM
P

B
E

N
1:

FO

U
N

D

A
 C

O
LO

N

2
8

8
0

B

Y
2X

C

M
P

#
5

9
:

FO
U

N
D

A

SE

M
IC

O
L

O
N

"E

N
D

O

F
L

IN
E

"
2

8
9

0

B
N

E
B

Y
3

2
9

0
0

JS

R

P
U

L
L

R
E

S
T

:
ST

O
R

E

C
O

M
M

EN
TS

IN

CO

M
M

EN
T

B
U

FF
E

R

(B
A

B
U

F)

2
9

1
0

LD

X

P
R

IN
T

F
L

A
G

:
IF

N

O

PR
IN

T
O

U
T

R

E
Q

U
E

ST
E

D
,

TH
EN

2

9
2

0

ST
X

B

A
B

FL
A

G
:

D
O

N
'T

P

R
IN

T

C
O

M
M

EN
TS

2

9
3

0

JM
P

B
E

N
D

PR
O

:
A

SE

M
IC

O
L

O
N

SO

EN

D

T
H

IS

R
O

U
T

IN
E

IN

TH

A
T

W
A

Y
.

2
9

4
0

B

Y
3

CM
P

#
3

4
:

H
A

V
E

W
E

FO
U

N
D

A

 C
O

N
C

L
U

D
IN

G

Q
U

O
TE

("

)
2

9
5

0

B
N

E
B

Y
3X

2

9
6

0

JM
P

B
Y

1:

FO
U

N
D

A

II

SO

IG

N
O

R
E

IT

2

9
7

0

B
Y

3X

LD
X

P

A
S

S
:

O
N

PA

SS

1
,

JU
S

T

R
A

IS
E

PC

C

O
U

N
TE

R

(I
N

C
S

A
):

D

O
N

'T

PO
K

E
IT

.
2

9
8

0

B
N

E
PS

L
O

O
P

2
9

9
0

JS

R

IN
C

SA

3
0

0
0

JM

P
B

Y
1

:-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3
0

1
0

PS

E
U

D
1

JM
P

PS
E

U
D

O
:

SO
M

E
O

TH
ER

PS

E
U

D
O

T

Y
P

E
,

N
O

T
.B

Y
T

E

(A

SP
R

IN
G

B
O

A
R

D
)

3
0

2
0

PS

L
O

O
P

ST
A

L

A
B

E
L

,Y
:

ST
O

R
E

A

C

H
A

R
A

C
TE

R

IN

M
A

IN

B
U

F
F

E
R

:-
--

--
--

--
--

-
3

0
3

0

TA
X

S"' ~

F.- ~ ~ s:: ~ S"

.....

::l

'0
 c::

:;;;:
;

o c::
 S"

~

.....
.

'-
J

.....
.

3
0

4
0

3

0
5

0

3
0

6
0

3

0
7

0

3
0

8
0

3

0
9

0

3
1

0
0

3

1
1

0

3
1

2
0

3

1
3

0

3
1

4
0

3

1
5

0

3
1

6
0

3

1
7

0

3
1

8
0

3

1
9

0

3
2

0
0

3

2
1

0

3
2

2
0

3

2
3

0

3
2

4
0

3

2
5

0

3
2

6
0

3

2
7

0

3
2

8
0

3

2
9

0

3
3

0
0

3

3
1

0

3
3

2
0

3

3
3

0

3
3

4
0

ST
Y

Y

;
SA

V
E

Y

IN
D

E
X

JS

R

P
O

K
E

IT
;

PA
SS

2

,
SO

PO

K
E

IT

IN
T

O

M
EM

O
RY

(T

H
E

A

S
C

II

C
H

A
R

A
C

T
E

R
)

LD
Y

Y

;
R

E
ST

O
R

E

Y

IN
Y

;
R

A
IS

E

IN
D

E
X

A

N
D

JM

P
B

Y
l;

G

ET

N
EX

T
C

H
A

R
A

C
TE

R

BN
U

M
W

ER
K

LD

X

#
0

;
-
-
-
-
-
-
-
-

H
A

N
D

LE

.B
Y

T
E

1

2
3

(N
U

M
E

R
IC

T

Y
P

E
)

ST
X

B

FL
A

G
;

PU
T

DO
W

N
B

FL
A

G

(E
N

D

O
F

L
IN

E

S
IG

N
A

L
)

ST
A

N

U
B

U
F

,X
;

W
E

'R
E

B

O
R

R
O

H
IN

G

TH
E

N
U

B
U

F
FO

R

T
H

IS

R
O

U
T

IN
E

.
IN

X

W
ER

K
I

LD
A

B

FL
A

G
;

IF

B
FL

A
G

IS

U

P
,

W
E

'R
E

D

O
N

E
.

B
N

E
B

B
E

N
D

;
SO

G

O

TO

EN
D

R

O
U

T
IN

E

vl
K

0

JS
R

C

H
A

R
IN

;
O

T
H

E
R

H
IS

E
,

G
E

T

A

C
H

A
R

A
C

T
E

R

FR
O

M

D
IS

K
/R

A
M

B

EQ

B
SF

L
A

G
;

IF

ZE
R

O

(E
N

D

O
F

L
IN

E
)

S
E

T

B
FL

A
G

U

P
.

CM
P

#
5

8
;

L
IK

E
W

IS
E

IF

C

O
LO

N

B
EQ

B

SF
L

A
G

CM

P
#

5
9

;
SE

M
IC

O
L

O
N

R

E
Q

U
IR

E
S

TH
A

T
W

E
F

IR
S

T

F
IL

L

TH
E

CO
M

M
EN

T
B

U
FF

E
R

B

N
E

W
K

l;

B
E

FO
R

E

S
E

T
T

IN
G

TH

E
B

FL
A

G

(I
N

TH

E
B

SF
L

A
G

R

O
U

T
IN

E
)

JS
R

P

U
L

L
R

E
S

T
;

H
E

R
E

'S

W
H

ER
E

TH
E

CO
M

M
EN

T
B

U
FF

E
R

IS

F

IL
L

E
D

LD

X

P
R

IN
T

F
L

A
G

;
IF

NO

PR

IN
T

O
U

T

R
E

Q
U

E
ST

E
D

,
TH

EN

ST
X

B

A
B

FL
A

G
;

D
O

N
'T

P

R
IN

T

C
O

M
M

EN
TS

JM

P
B

SF
L

A
G

;
FO

U
N

D

SE
M

IC
O

L
O

N

W
K

I
ST

A

B
U

FM
;

PU
T

C
H

A
R

.
IN

T
O

"B

U
FM

"
B

U
FF

E
R

LD

A

P
A

S
S

;
O

N

PA
SS

1

,
R

A
IS

E

TH
E

PC

O
N

LY

(I
N

C
S

A
),

N

O

PO
K

E
S

B
N

E
W

ER
K

5
LD

A

B
U

FM

CM
P

#
3

2
;

IS

IT

A

SP
A

C
E

B

N
E

W
E

R
K

l;

IF

N
O

T
,

R
ET

U
R

N

FO
R

M

O
RE

O

F
TH

E
N

U
M

B
ER

(0

V

S
5

5
5

)
JS

R

IN
C

S
A

;
R

A
IS

E

PC

C
O

U
N

TE
R

B

Y

1
JM

P

W
E

R
K

l;
G

ET

N
EX

T
N

U
M

B
ER

W

ER
K

5
LD

A

B
U

FM
;

PU
T

C
H

A
R

.
IN

T
O

PR

IN
T

O
U

T

M
A

IN

B
U

FF
E

R

ST
A

L

A
B

E
L

,Y

~

~

::i
 ~

en

~
 ;1 ('i

) ~

~
 S' >-
<

::i

'0
 c.: :::0

o c.: M
- 5'

(!
)

>
-'

3

3
5

0

"-
l

tv

3
3

6
0

3

3
7

0

3
3

8
0

3

3
9

0

3
4

0
0

3

4
1

0

3
4

2
0

3

4
3

0

3
4

4
0

3

4
5

0

3
4

6
0

3

4
7

0

3
4

8
0

3

4
9

0

3
5

0
0

3

5
1

0

3
5

2
0

3

5
3

0

3
5

4
0

3

5
5

0

3
5

6
0

3

5
7

0

3
5

8
0

3

5
9

0

3
6

0
0

3

6
1

0

3
6

2
0

3

6
3

0

3
6

4
0

3

6
5

0

IN
Y

CM

P
#
3
2
~

IS

IT

A
 S

PA
C

E

B
EQ

W

ER
K

2
CM

P
#
0
~

IS

IT

EN
D

O

F
L

IN
E

B

EQ

W
ER

K
2

CM
P

#
5
8
~

IS

IT

C
O

LO
N

B

EQ

W
ER

K
2

ST
A

N
U
B
U
F
,
X
~

O
T

H
E

R
W

IS
E

,
ST

O
R

E

IT

IN
X

JM

P
W
E
R
K
l
~

A
N

D

R
ET

U
R

N

FO
R

M

O
RE

O

F
TH

E
N

U
M

B
E

R
--

--
--

--
--

--
--

-
B

SF
L

A
G

IN

C

B
F
L
A
G
~

R
A

IS
E

U

P
T

H
E

EN

D

O
F

L
IN

E

FL
A

G

ST
A

B
U
F
M
+
l
~

SA
V

E
C

O
L

O
N

,
SE

M
IC

O
L

O
N

,
O

R
W

H
A

TE
V

ER

FO
R

L

A
T

E
R

U

SE

JM
P

W
K
l
~

R
ET

U
R

N

FO
R

M

O
RE

(B

U
T

T

H
IS

T

IM
E

IT

W

IL
L

EN

D

L
I
N
E
)
~
-
-
-
-
-
-
-
-

vl
ER

K
2

LD
A

<N
U

B
U

F;

P
O

IN
T

TO

TH

E
A

S
C

II

N
U

M
B

ER

ST
O

R
E

D

IN

B
A

B
U

F
ST

A

TE
M

P
LD

A

#
>N

U
B

U
F

ST
A

T

E
M

P
+

l
ST

Y

Y

JS
R

V

A
L

D
E

C
;

TU
R

N

TH
E

A
S

C
II

IN

T
O

A

N

IN
T

E
G

E
R

IN

R

E
SU

L
T

LD

X

R
E

SU
L

T

JS
R

P

O
K

E
IT

;
PO

K
E

TH
E

R
E

SU
L

T

IN
T

O

M
EM

O
RY

(O

R

D
IS

K

O
B

JE
C

T

F
IL

E
)

LD
Y

Y
~

E
R

A
SE

TH

E
N

U
M

B
ER

IN

H

E
X

B
U

F
LD

A

#
0

LD

X

#5

C
LE

X

ST
A

N

U
B

U
F,

X

D
EX

BN

E
C

L
E

X

JM
P

W
E

R
K

l;

A
N

D

TH
EN

R

ET
U

R
N

TO

FE

T
C

H

TH
E

N
EX

T
N

U
M

B
E

R
;-

--
--

--
--

--
--

B

B
EN

D

LD
A

P

A
S

S
;

EN
D

.B

Y
T

E

L
IN

E
.

O
N

PA

SS

1
,

R
A

IS
E

PC

(P

O
K

E
IT

R

A
IS

E
S

IT

B

N
E

B
B

E
N

D
l;

O

N

PA
SS

2

).

JS
R

IN

C
S

A

.....

::l ~

~
 ;2 ~
 ~ S·

::l "0
 ::
 ::0
 g

 S· ~

3
6

6
0

3

6
7

0

3
6

8
0

3

6
9

0

3
7

0
0

3

7
1

0

3
7

2
0

3

7
3

0

3
7

4
0

3

7
5

0

3
7

6
0

3

7
7

0

3
7

8
0

3

7
9

0

3
8

0
0

3

8
1

0

38
20

3

8
3

0

3
8

4
0

3

8
5

0

3
8

6
0

3

8
7

0

3
8

8
0

3

8
9

0

3
9

0
0

3

9
1

0

3
9

2
0

3

9
3

0

3
9

4
0

.....

.
3

9
5

0

'-
l

V
J

3
9

6
0

B
B

E
N

D
I

LD
A

B

U
F

M
+

li

IF

EN
D

O

F
L

IN
E

S

IG
N

A
L

W

AS

A
 C

O
L

O
N

,
TH

EN

C
M

P
#

5
8

B

EQ

B
E

N
li

D

O
N

'T

LO
O

K

FO
R

L

IN
E

N

U
M

B
ER

O

R

EN
D

O

F
SO

U
R

C
E

C
O

D
E

F
IL

E

(E
N

D
PR

O
)

B
EN

D
PR

O

JS
R

EN

D
PR

O

B
E

N
I

ST
A

C

O
L

FL
A

G
i

SE
T

IT

(C

O
L

O
N

)
O

R

N
O

T
(E

N
D

PR
O

R

ET
U

R
N

S
W

IT
H

0

IN

A
)

IN
C

L

O
C

FL
A

G
i

R
A

IS
E

P

R
IN

T
-A

-P
C

-L
A

B
E

L

FL
A

G

P
L

A
i

PU
L

L

R
TS

FR

O
M

ST

A
C

K

PL
A

LD

A

P
A

S
S

i
O

N

PA
SS

1

,
D

O
N

'T

P
R

IN
T

A

N
Y

C

O
M

M
EN

TS

B
EQ

N

O
PR

LD

A

S
F

L
A

G
i

IF

SC
R

E
E

N
FL

A
G

IS

D

O
W

N
,

D
O

N
'T

P

R
IN

T

A
N

Y

C
O

M
M

EN
TS

B

EQ

N
O

PR

JM
P

PR
M

M
FI

N
i

B
A

C
K

TO

EV

A
L

(W
H

ER
E

C
O

M
M

EN
TS

A

R
E

P
R

IN
T

E
D

)
N

O
PR

JM

P
S

T
A

R
T

L
IN

E
i

B
A

C
K

TO

EV

A
L

(B
Y

P
A

S
S

IN
G

P

R
IN

T
O

U
T

)
i-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

FO
R

C

H
A

N
G

E
O

F
PC

F

IL
L

D
IS

K

LD
A

P

A
S

S
i

CM
P

#
2

i
B

N
E

F
IL

L
X

i
R

T
S

i
N

O
T

A
T

ST
A

R
T

F

IL
L

X

JS
R

C

LR
C

H
N

LD

X

#2

A

C
H

A
N

G
E

O
F

PC

R
E

Q
U

IR
E

S
F

IL
L

IN
G

A

D

IS
K

O

B
JE

C
T

F

IL
E

W

IT
H

TH

E
R

E
Q

U
IS

IT
E

N

U
M

B
ER

O

F
B

Y
T

E
S

TO

M
A

K
E

U
P

FO
R

TH

E
A

D
V

A
N

C
IN

G

O
F

TH
E

PR
O

G
R

A
M

C

O
U

N
TE

R

(P
C

)
O

F
3R

D

PA
SS

(3

R
D

PA

SS

IS

JU
S

T

B
E

FO
R

E

SH
U

T
D

O
W

N
)

JS
R

C

H
K

O
U

Ti

PU
T

SP
A

C
E

R
S

IN

D
IS

K
F

IL
E

FO

R

*=

SE
C

i
F

IN
D

O

U
T

HO
W

M

A
N

Y

SP
A

C
E

R
S

TO

SE
N

D

TO

D
IS

K

BY

S
U

B
T

R
A

C
T

IN
G

:R
E

S
U

L
T

-S
A

LD

A

R
E

SU
L

T

SB
C

SA

ST

A

W
O

R
K

i
A

N
SW

ER

H
EL

D

IN

"W
O

R
K

"
V

A
R

IA
B

L
E

LD

A

R
E

S
U

L
T

+
l

SB
C

S

A
+

l
ST

A

W
O

R
K

+l

PU
T

SP
C

R

LD
A

#0

JS

R

P
R

IN
T

i
P

R
IN

T

SP
A

C
E

R

TO

D
IS

K

.....
.

::l e:- rr>
 ~
 ;J (!

) ~

III
 S·
.

::l

"0

t:: ...,.
 ::0

o t:: ...,.
 S· (!

)

.....
.

'-
1

 "'"
3

9
7

0

3
9

8
0

3

9
9

0

4
0

0
0

4

0
1

0

4
0

2
0

4

0
3

0

4
0

4
0

4

0
5

0

4
0

6
0

4

0
7

0

4
0

8
0

4

0
9

0

4
1

0
0

4

1
1

0

4
1

2
0

4

1
3

0

4
1

4
0

4

1
5

0

4
1

6
0

4

1
7

0

4
1

8
0

4

1
9

0

4
2

0
0

4

2
1

0

4
2

2
0

4

2
3

0

4
2

4
0

4

2
5

0

4
2

6
0

4

2
7

0

LD
A

W

O
R

K
;

LO
W

ER

W
O

RK

B
Y

1

B
N

E
D

EC
W

O
R

K
X

D

EC

W
O

R
K

+1

D
EC

W
O

R
K

X

D
EC

W

O
RK

B

N
E

P
U

T
S

P
C

R

LD
A

W

O
R

K
+1

B

N
E

P
U

T
S

P
C

R
;

PU
T

M
O

R
E

SP
A

C
E

R
S

IN

U
N

T
IL

"W

O
R

K
"

IS

D
E

C
R

E
M

E
N

T
E

D

TO

Z
E

R
O

.
R

E
S

F
IL

L

JS
R

C

LR
C

H
N

LD

X

#
1

;
R

E
ST

O
R

E

N
O

R
M

A
L

I/
O

JS

R

C
H

K
IN

R

T
S

--
--

--
--

--
--

--
--

--
--

--
-

, K
EY

W
A

D

S
E

C
;

SE
E

K

EY
W

O
R

D

A
B

O
V

E
(S

A
M

E

K
EW

O
R

D

TO

A
S

C
II

S

T
R

IN
G

R

O
U

T
IN

E
)

SB
C

#

$
7

F
;

T
H

IS

IS

A

V
E

R
S

IO
N

O

F
K

EY
W

O
R

D
,

B
U

T
FO

R

C
O

M
M

E
N

T
S(

PU
T

S
IT

IN

B

A
B

U
F

ST
A

K

EY
N

U
M

;
IN

S
T

E
A

D

O
F

L
A

B
E

L

B
U

F
F

E
R

).

LD
X

#

2
5

5

SK
E

X

D
EC

K

EY
N

U
M

B

EQ

FK
E

X

K
SX

X

IN
X

LD

A

K
E

Y
W

D
S,

X

B
PL

K

SX
X

B

M
I

SK
E

X

FK
E

X

IN
X

LD

A

K
E

Y
W

D
S,

X

B
M

I
K

SE
X

ST

A

B
A

B
U

F
,Y

IN

Y

JM
P

FK

E
X

K

SE
X

A

N
D

#

$
7

F

R
T

S
i-

--
--

--
--

--
--

--
--

-

S' e:- rr>
 1':
' ~ rt>

 ~

Ilo
l 5"

.....
.

=' "0

~
 ... ~

o ~ ... 5"

rt>

.....
..

'1

U
1

4
2

8
0

.F

IL
E

M

A
TH

P
ro

gr
am

 6
-2

.
ln

di
sk

,
A

p
p

le
 M

od
if

ic
at

io
ns

To
 c

re
at

e
th

e
A

pp
le

 v
er

si
on

 o
f

In
di

sk
,

ch
an

ge
 t

he
 f

ol
lo

w
in

g
lin

es
 i

n
P

ro
gr

am
 6

-1
:

7
4

0

CO
M

O
A

C

M
P

#
$

3
E

i-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

C
H

EC
K

FO

R

O
TH

ER

O
D

D

C
H

A
R

A
C

T
E

R
S

7
6

0

CM
P

#$
3C

7

8
0

CM

P
#$

2B

8
1

0

CO
M

O
CM

P
#$

2A

8
3

0

C
py

#

2
5

5

P
ro

gr
am

 6
-3

.
ln

di
sk

,
A

ta
ri

 M
od

if
ic

at
io

ns

To
 c

re
at

e
th

e
A

ta
ri

 v
er

si
on

 o
f I

nd
is

k,
 o

m
it

 li
ne

s
10

40
-1

21
0

an
d

lin
es

 4
09

0-
42

60
 o

f P
ro

gr
am

 6
-1

 a
nd

 a
dd

 o
r

ch
an

ge
 th

e
fo

llo
w

in

g
lin

es
:

1
0

:A

T
A

R
I

M
O

D
IF

IC
A

T
I

O
N

S
-

-
IN

D
IS

K

1
1

5

JS
R

L

IN
E

N
U

M
B

E
R

3

9
Q

!

4!
l1

!!
I

4
1

e
!

6
H

!
PA

X

N
O

P

6
2
1
~
!

7
6

Q!

C
O

M
O

A

C
I'1

F'

#
6

2

7
8

0

C
M

P
#

6
Qi

8

0
Q

!
C

M
P

#
4

3
8

3
Q!

C

O
M

O

e
M

F'

#
4

2

9
!l

IQ
!

,....
.

::l
 ~

C
Il ~
 ;J (I

) ~

III
 S·

.....
.

::l

'1
j t:::

~

o t:::

 S· (I

)

Indisk: The Main Input Routine

W
L:z:
to

J:
I
<I

t "~1 Cl 1:
In t<1 ··n Z:': I.
t"~1 IS, t.') W 0
is!~....-iZ
lff :# :# .-dU

...J
<I il. il. I;)
Q!:}:WlJ..

" , . .J U U III •

Wl '$: '$: rl C, ~
'$: IS"~ C"l t"~1 <t Wl Wl co
rl C, t.'~1 ~'" i' i' i' N
o-, o-rl rl ... rl~

176

Math and Printops:
Range Checking and
Formatted Output

Math, a short subprogram, has a rather limited job. It is de
signed to turn the ASCII number following the + pseudo-op
into a two-byte integer and to save it in the variable
AOONUM. Later, when the final RESULT is calculated by the
Valdec subprogram, anything in AOONUM will be added to
RESULT. Math responds to a source code line like:
100 SCREEN = $0400
120 LOA SCREEN + 256; this would assemble as $0500

As with the .BYTE pseudo-op, the + pseudo-op allows
only decimal numbers as an argument following the + .

The first loop in the Math subprogram simply looks along
the LABEL buffer to locate the +. Thus, it doesn ' t matter if
the + is right next to its label. You could write
SCREEN + 256 as well as SCREEN + 256. However, find-
ing the +, the subroutine expects to find no spaces between
the + and the number to be added. + 256 is correct. + 256
would be incorrect. This allows us to test for a variety of end
of-number conditions. That means that you can use the +
pseudo-op within such addressing modes as LOA
(SCREEN+256),Y or LOA 1500+25,Y.

Each character following the + is stored in HEXBUF for
later translation by Valdec. Each is also tested to see if it is a
nonnumber-if it is outside the range from 47 to 58, the
ASCII code for the digits 0-9. Anything outside that range
ends our storage of the number to be added, and we go down
to put the number into AODNUM.

Range checking is simple enough. Just remember to test
against a number which is one lower than the low end and
one higher than the high end of the range. For example, to see
if a number is lower than $30, you must test against $2F.
That's because BCC tests for lower than. $30 wouldn't be
lower than $30. The same thing works on the high end. To
test for numbers higher than $39, you CMP #$3A.

After the number is set up in HEXBUF, we point TEMP to
it, JSR to Valdec, and move the result from RESULT into the

179

Math and Printops: Range Checking and Formatted Output

variable AOONUM. It will wait there until , on pass 2, the Ar
ray subprogram makes the addition adjustment in line 1160.

Printops: The Output Routine
One important function performed by the Printops sub
program is raising the PC (Program Counter) . A subroutine
called INCSA (650) increases the PC by one for each object
code byte, whether this byte is an opcode or the argument of
an opcode. Printops' other main job is to send each byte of
object code to one of four places: RAM memory, disk, screen,
or printer.

Because each object code byte can go to anyone, or all, of
these four different destinations, there are a series of tests and
parallel routines within Printops. For one thing, Printops has
little to do on pass I-it does raise the Pc, but nothing is
POKEd anywhere or printed to screen or printer until the sec
ond pass.

Also, Printops has three entry points, depending on
whether the Eval subprogram has assembled a one-, two-, or
three-byte logical line. An INY would only JSR from Eval to
FORMAT, right at the start of Printops. FORMAT loads the
OP (opcode) and stores it and prints it as required. It's a
single-byte event. LOA 15 first JSRs to FORMAT to output the
opcode, the numeric equivalent of LOA, then enters at
PRINT2. LOA 1500 would JSR FORMAT to send the opcode,
then enter at PRINT3. These entry decisions are made by Eval
after it has determined whether it's dealing with a one-, two-,
or three-byte addressing mode.

FORMAT (20) simply raises the PC by one. It does this
with a JSR to INCSA (40) on pass 1. On pass 2, however, it
also checks to see if screen printout was requested (60). If so, it
restores normal I/O and prints the number (120) . As we will
see, PRINTNUM also prints to the printer, if that was re
quested. Then the opcode is POKEd to disk or RAM, if that
was requested . The POKEIT subroutine performs POKEs to
RAM. POKEIT also leads right into INCSA to raise the PC
automatically following each POKE. Finally we RTS back to
Eval (160). So much for a single-byte addressing mode.

Two-Byte Addressing Modes
PRINT2 (180) handl es LOA 15 and other two-byte addressing
modes . Like FORMAT, pass 1 only results in a JSR INC SA (to

180

Math and Printops: Range Checking and Formatted Output

raise the PC). Pass 2 follows the same pattern as FORMAT,
explained above. The major difference is that the number
fetched before the JSR to PRINTNUM comes from the low
byte of the RESULT variable (240) rather than OP. This is a
single-byte argument addressing mode.

PRINT3 (290) parallels the two previous routines, except
that it handles a two-byte argument. On pass 1 it JSRs to
INCSA twice to raise the PC by two.

On pass 2, it prints (370) and POKEs (390) the low byte of
RESULT if requested and then prints (460) and POKEs (480)
the high byte of the argument, RESULT+ 1. A formatting
problem is handled in line 420. HXFLAG shows whether or
not output to screen and printer is supposed to be in hex. If
this flag is set, we don't need to print a space between the low
and high bytes of the argument. The hex printing routine will
do that for us. If printout is in decimal , though, we need to
print a space (440).

Creating an Object Program
POKEIT (490) stores the byte in the X Register at the current
PC address if the POKEFLAG is up . This flag indicates that
the programmer used the .0 pseudo-op, requesting that object
code be stored in RAM memory during assembly. For both
PRINTNUM and POKEIT, the X Register is holding the
opcode or argument. X is saved in the variable WORK + 1;
some of the disk management routines below will change the
value of X, so we must preserve it for later use .

Then the DISKFLAG is checked (550). It indicates that the
programmer used the .0 pseudo-op, asking that an object code
program file be created on disk during assembly. If not, we
just go down to raise the PC at INCSA (560).

But if an object program is being created on disk, LADS
opens communication to file #2 (the write-to-disk file) and
recovers the byte from WORK + 1 (600). The PRINT in 610
will not go to screen or printer. Rather, the current channel is
open to the disk object file and PRINT therefore sends the
byte in the Accumulator to the disk . Then normal I/O is re
stored, and file #1 is accessed again. File #1 is the normal in
put source for LADS, the read-from-disk channel. Finally, we
fall through to INCSA (650).

Although it is one of the simplest events in LADS, INCSA
is also one of the most important. On both passes, INCSA

181

1vlath and Printops: Range Checking and Formatted Output

raises the PC by 1 for each opcode byte and for each argu
ment byte. Much depends on the fact that INCSA keeps the
Program Counter accurate during assembly. A single ignored
byte would throw off all address-type labels which followed.
(The HERE in 100 HERE LOA 15 is an address-type label.) In
consequence, the entire assembled object program would be
useless. INCSA just adds 1 to SA (the variable which holds
the LADS internal Program Counter) . Notice lines 690-710.
They add 0 to the high byte of SA. What's the point of that?

The 256th Increment
For every 255 increments, INCSA will have nothing to add to
the high byte of SA. But on the 256th increment, it must add
1 to the high byte. How does adding 0 to the high byte add 1
to it? The carry flag. ADC means ADd with Carry. If the carry
flag is set, the high byte is incremented. If the low byte is
holding 255 when we add 1 to it (670), that will set the carry
flag.

The rest of the routines in this Printops subprogram handle
the printout of a variety of things: messages, spaces, numbers,
the PC address, a carriage return, a source code line number, a
source code line, or an error message. And each of these print
to-screen routines has a sister routine. There is a parallel series of
routines which print the same thing to the printer.

PRNTMESS (740) will print any ASCII message. There are
two special requisite preconditions: The message must be pointed
to by the variable TEMP, and the message must end with a O.
PRNTMESS is a simple loop, but it can print any message you
want. First the Y Register is set to 0 to act as an index to the
message within LADS' source code. Then the loop begins (750)
by loading in a character from the message (750). If the character
is 0, we exit the loop. Otherwise, the character is printed to the
screen. Then we JSR to the sister routine, PTP, which will send
the same character to the printer, if requested (780). The Y Reg
ister is raised, and we go back for the next character (800).

PRINTSPACE (820) simply prints a space character to the
screen and then checks with its sister routine, PTP, to see if the
space should also be printed on the printer.

Before printing a number, we first put it into the X variable
for safekeeping. Then LADS has to make four tests: Is it printout
to screen or to printer, and is it in decimal or in hex numbers?
PRNTNUM (860) takes advantage of a routine in BASIC ROM if

182

Math and Printops: Range Checking and Formatted Outpu t

LADS' printout is in decimal (requested with the .NH, no hex,
pseudo-op). When you ask BASIC to list a program, it turns inte
ger bytes into printable ASCII numbers to provide line numbers
on the screen. On Commodore computers, the high byte of the
integer is put into the Accumulator, the low byte into the X Reg
ister, and you JSR to within BASIC ROM where this routine re
sides (950). In LADS, the address of this ROM routine is called
OUTNUM. It's defined for each different computer model in the
Defs subprogram.

Hex Default
LADS' default, and probably the most common way to print out
numbers during an assembly, is hex. LADS itself handles hex
printing. If the HXFLAG is up (870), we JSR to HEXPRINT, a
subroutine at the end of the Printops subprogram. We'll get to it
in a minute. It's the opposite of the HEX subroutine within the
Indisk subprogram which changes hex numbers in ASCII format
into integers. The HEXPRINT routine will take an integer and
tum it into hex ASCII characters for printout.

After the number has been printed to the screen, we JSR to
the sister routine PTPNU (910) to also print it to the printer if
necessary. Then the number is restored to the X Register from
the X variable (920) before returning to the caller.

PRNTSA (990) is similar to PRNTNUM. The main dif
ference is that PRNTNUM always prints the single byte sent to it
in the X Register. By contrast, PRNTSA prints the two bytes in
SA, the Program Counter variable. The same four possibilities
are tested: printer, screen, hex, or decimal. PRNTSA's sister rou
tine, PTPSA, is called upon from both the hex (1050) and the
decimal (1100) versions of this routine.

PRNTCR (1120) prints a carriage return; the 13 is the ASCII
code for carriage return on both the screen and a printer.
PRNTLINE (1160) prints out a line number from the source code.
As each physical line is drawn into view by LADS, its line num
ber is stored in the LINEN variable. This routine also uses that
OUTNUM routine from BASIC ROM which prints BASICs line
numbers during a LIST. Line numbers, in BASIC or LADS, are
always decimal. PTPLI (1190) is the sister routine for printer
printouts.

PRNTINPUT (1210) prints the contents of the main buffer.
Those contents will be the most recent logical line of source code
as it appeared in the source code. It uses the PRNTMESS routine

183

Math and Printops: Range Checking and Formatted Output

which sends to the screen any ASCII message which is pointed
to by the TEMP variable. The line must end in O. PRNTMESS
(740) handles the printer with the PTP, single-character, test.
There is no need for a sister routine within PRNTINPUT.

Error Alert
ERRING (1280) performs the preliminaries to an error message
printout. Such messages as SYNTAX ERROR or NAKED LABEL
are triggered at various places within LADS. But most of them
JSR to ERRING before printing out their particular messages.
ERRING rings the bell first. The number 7 is the ASCII code
which rings any bells attached to computers or printers . (This
works on Apple and PET ICBM computers; the 7 is changed to
253 in the Atari version to produce the same result. The VIC
and Commodore 64 have no "bell," so the character 7 will
have no effect on those computers.) The purpose of the bell is
to alert the programmer that an error has been detected. True,
the error message will appear on screen, but during an assem
bly of a large program, the programmer might well miss silent
error messages sliding up the screen.

On Commodore computers, the character 18 reverses the
field of all subsequent characters on a line. This, too, highlights
errors. Next (1320), the logical line of source code where the er
ror appears is printed, followed by a carriage return.

It would be simple to make error reports more dramatic.
You could stop assembly at that point with a key-testing loop
that required the programmer to hit any key to continue. You
could JSR FIN and exit to BASIC mode, aborting all further
assembly. You could JSR PRNTLINE to emphasize the line num
ber in the source code where the error happened. You could ring
the bell ten times. As with all other aspects of LADS, you can
make it do what's efficient for you, what's responsive to your
own style of programming. Add some special effects here if you
wish. Then reassemble your customized version of LADS.

Sister Print Routines
The next few routines are the printer routines: Each is a parallel,
sister routine to one of the screen routines discussed above. Each
tests the PRINTFLAG and returns if the flag is down, indicating
that the user did not request a printout on paper. If the
PRINTFLAG is up, output is redirected to the printer (1450-1470)
by opening a file channel to the printer. On Commodore

184

Math and Printops: Range Checking and Formatted Output

computers, the printer is device #4. Then OUTNUM or PRINT
or HEXPRINT sends the characters or numbers to the printer
(1490, 1680, 1720, 1900, 1960, 2130). After that, normal I/O is re
stored (1500) and a channel is reopened to file #1, the input
source-code-from -disk mode.

To follow the logic of PTP (1380), PTPNU (1560), PTPSA
(1780), or PTPLI (2020), just look at the parallel routines which
JSR to them. The purpose, the tests, and the logic are the same.
The only difference is that the sister routines described above
route their characters to the screen. These routines send charac
ters to a printer.

Printing Hex Numbers
The subprogram Printops concludes with HEXPRINT, an in
teresting routine which converts a one-byte integer into an
ASCII hex string that can be printed to screen or printer.

HEXPRINT operates on a single byte at a time. The byte is
first stored temporarily on the stack with PHA (2200). Let's use
$4A as an example. The four high bits are stripped off with
AND #$OF, leaving $OA. That's one of the characters we need to
print. Then we can use a short, simple lookup table to extract the
character by its position in the table . In the Tables subprogram is
a minitable called HEXA (270) . It looks like this:
270 HEXA .BYTE "0123456789ABCDEF

Since the number $OA (10 decimal) is also the tenth
character in this table, we can just move the ANDed $OA over
to the Y Register (2220) and load HEXA, Y to fetch the ASCII
character for $OA, which would be 65 (the letter A). We can
stick this character into the X Register; X isn't being used else
where in this routine, so it can save the character for us while
we look .at the high)its.
this time we move the four high bits right over on top of the
four low bits. This takes four logical shifts right (2270-2300) .
After LSRing $4A we get $04. Again, we TAY and load the
character 4 from the table (it's 52 decimal) . We print this. In
$4A, the 4 comes first. Then we recover the A character from
the X Register and print it right after the 4 (2350) .

185

~

P
ro

gr
am

 7
,1

.
M

at
h

1
0

"M

A
TH

"
T

H
IS

R

O
U

T
IN

E

H
A

N
D

LE
S

+

IT

C
O

M
ES

FR

O
M

EV

A
L

A
FT

E
R

IN

D
IS

K

2
0

;

IT

L
E

A
V

E
S

TH
E

IN
T

E
N

D
E

D

A
D

D
IT

IO
N

IN

TH

E
V

A
R

IA
B

L
E

"A

D
D

N
U

M
"

3
0

;

(A
D

D
N

U
M

IS

A

D
D

ED

TO

"R
E

S
U

L
T

"
IN

TH

E
V

A
LD

EC

SU
B

PR
O

G
R

A
M

)
4

0

M
A

TH

LD
Y

#

0
;

SE
T

IN

D
E

X
E

S
TO

ZE

R
O

5

0

LD
X

#

0

6
0

M

A
TH

1
LD

A

L
A

B
E

L
,Y

;
LO

O
K

FO

R

L
O

C
A

T
IO

N

O
F

"
+

"

S
Y

M
B

O
L

--
--

--
--

7
0

CM

P
#

4
3

8

0

B
EQ

M

A
TH

2
9

0

IN
Y

1

0
0

JM

P
M

A
T

H
1

;-
--

--
--

--
--

--
NO

W

P
O

IN
T

TO

1S

T

N
U

M
B

ER

FO
LL

O
W

IN
G

+

1

1
0

M

A
TH

2
IN

Y

1
2

0

LD
A

L

A
B

E
L

,Y

1
3

0

JS
R

R

A
N

G
EC

K
;

C
H

EC
K

TO

SE

E

IF

T
H

IS

IS

B
ET

W
EE

N

4
8

-

5
8

(A

S
C

II

FO
R

0

-9
)

1
4

0

B
C

S
V

A
L

IT
;

IF

N
O

T
,

E
X

IT

T
H

IS

R
O

U
T

IN
E

(W

E
'V

E

ST
O

R
E

D

TH
E

N
U

M
B

ER

A
N

D

H
A

V
E

1
5

0

ST
A

H

E
X

B
U

F
,X

;
LO

C
A

TE
D

SO

M
E

T
H

IN
G

O

TH
ER

TH

A
N

A

N

A
S

C
II

N

U
M

B
ER

)
1

6
0

IN

X
;

K
E

E
P

ST
O

R
IN

G

V
A

L
ID

A

S
C

II

N
U

M
B

ER
S

IN

H
EX

B
U

F
B

U
FF

E
R

1

7
0

JM

P
M

A
T

H
2

;-
--

--
--

--
--

--
--

--
--

1
8

0

R
A

N
G

EC
K

C

M
P

#
5

8
;
-
-
-
-
-
-
-
-
-
-
-
-
-
-

IS

T
H

IS

>
47

A

N
D

<

58

1
9

0

B
C

S
M

A
TH

3
2

0
0

SE

C

2
1

0

SB
C

#

4
8

2

2
0

SE

C

2
3

0

SB
C

#

2
0

8
;

IS

IT

>

4
7

&

<

5

8

2
4

0

M
A

TH
3

R
TS

2

5
0

V

A
L

IT

LD
A

#

0
;
-
-
-
-
-
-
-
-
-
-

TU
R

N

IT

FR
O

M

A
S

C
II

IN

T
O

A

2-

B
Y

T
E

IN

T
E

G
E

R

2
6

0

ST
A

H

E
X

B
U

F
,X

;
PU

T
ZE

R
O

A

T
EN

D

O
F

A
S

C
II

N

U
M

B
ER

(A

S
D

E
L

IM
IT

E
R

)
2

7
0

LD

A

#<
H

E
X

B
U

F;

PO
IN

T

"T
E

M
P"

P

O
IN

T
E

R

TO

A
S

C
II

N

U
M

B
ER

IN

B

U
FF

E
R

2

8
0

ST

A

TE
M

P
2

9
0

LD

A

#>
H

E
X

B
U

F

~

~
 ;.

~
 ::s ~

"'d

'1
 :r
 o '1

:j fI>
 ::0

~
 ::s (J

Q

(!
) 9 (!
) 2: ::s (J

Q

~
 ::s 0
-

"'T
j

o '1
 3 ~ ::+

(!
) 0
- o r::

'1
:j r::

.....
.

0
0

'1

3
0

0

3
3

0

3
4

0

3
5

0

ST
A

T

E
M

P
+

l
1\

L
D

E
C

:
R

O
U

T
IN

E

W
H

IC
H

TU

R
N

S
A

S
C

II

N
U

M
B

ER

IN
T

O

IN
T

E
G

E
R

IN

"R

E
S

U
L

T
"

~
S
U
L
T
:

M
O

V
E

R
E

SU
L

T

TO

TE
M

PO
R

A
R

Y

A
D

D
IT

IO
N

V

A
R

IA
B

L
E

,
"A

D
D

N
U

M
"

JS
R

V

,
LD

A

R
E

SU
L

T
,

ST
A

A

D
D

N
U

M

LD
A

R

E
S

U
L

T
+

l
ST

A

A
D

D
N

U
M

+l

3
6

0

R
T

S
:

R
ET

U
R

N

TO

C
A

L
L

E
R

3

7
0

.F

IL
E

P

R
IN

T
O

P
S

F
or

 t
he

 A
ta

ri
 v

er
si

on
 o

f
M

at
h,

 c
h

an
g

e
li

ne
 3

70
 t

o:

37
0

.F
IL

E
 D

:P
R

IN
T

O
P

S
,

S
R

C

P
ro

gr
am

 7
,2

.
P

ri
n

to
p

s
1

0

:
"P

R
IN

T
O

P
S

"
P

R
IN

T
S

&

 P
O

K
E

S
V

A
LU

ES

(B
O

T
H

O

PC
O

D
E

S
&

 A
R

G
U

M
E

N
T

S)

2
0

FO

R
M

A
T

LD
A

P

A
S

S
:

O
N

PA

SS

2
,

IG
N

O
R

E

IN
C

SA

(R
A

IS
E

S

P
C

)
S

IN
C

E

3
0

BN

E
PR

M
:

O
N

PA

SS

2
,

W
E

JS
R

TO

P

O
K

E
IT

(I

T

G
O

ES

TO

IN
C

S
A

)
4

0

JS
R

IN

C
S

A
:

B
U

T
O

N

PA
SS

1

,
W

E
D

O
N

'T

P
R

IN
T

O

R

PO
K

E
A

N
Y

T
H

IN
G

,
W

E
JU

S
T

5

0

R
T

S
:

R
A

IS
E

TH

E
PC

A

N
D

R

ET
U

R
N

-
-
-
-
-
-
-
-
-
-
-
-
-
-

6
0

PR

M

LD
A

S

F
L

A
G

:
SH

O
U

LD

W
E

P
R

IN
T

TO

SC

R
E

E
N

7

0

B
EQ

PR

M
X

:
IF

N

O
T

,
S

K
IP

T

H
IS

N

EX
T

PA
R

T
(P

R
IN

T

TO

SC
R

E
E

N
)

8
0

JS

R

C
L

R
C

H
N

:
O

T
H

E
R

W
IS

E
,

R
E

SE
T

N

O
R

M
A

L
I/

O

C
O

N
D

IT
IO

N

9
0

LD

X

#
1

:
(F

IL
E

#1

FO

R

IN
P

U
T

,
SC

R
E

E
N

FO

R

O
U

T
PU

T
)

1
0

0

JS
R

C

H
K

IN

1
1

0

LD
X

O

P
:

LO
A

D

TH
E

O
PC

O
D

E
1

2
0

JS

R

PR
N

TN
U

M
:

P
R

IN
T

IT

1

3
0

JS

R

P
R

N
T

S
P

A
C

E
:

P
R

IN
T

A

SP

A
C

E

1
4

0

PR
M

X

LD
X

O

P
:-

--
--

--
--

--
NO

W

PO
K

E
TH

E
O

PC
O

D
E

IN
T

O

R
A

M
/D

IS
K

M

EM
O

RY

1
5

0

JS
R

P

O
K

E
IT

1

6
0

R

T
S

:-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

~

p.
l ;.

p.
l =s 0.
.

"'0

'"
I S·

...,.

o "I
j '" ::0

p.

l =s (J
Q

(1

) ('
)

0'
"

(1
) n ~

S· (J
Q

p.
l =s 0.
.

'T
j

o '"
I 8 p.
l ...,.

...,.

(1
) 0.
. o t:: ...,.

"I
j t:: ...,.

.....
.

0
0

0

0

1
7

0

:
P

R
IN

T

TW
O

B
Y

T
E

S
(T

H
E

O

PC
O

D
E

A
N

D

A

i-
B

Y
T

E

A
R

G
U

M
E

N
T

)-
--

--
--

--
--

--
--

--
1

8
0

P

R
IN

T
2

LD
A

P

A
S

S
;

O
N

PA

SS

2
,

W
E

S
K

IP

IN
C

SA

(S
E

E

L
IN

E

20

A
B

O
V

E
)

1
9

0

B
N

E
P2

M

2
0

0

JS
R

IN

C
SA

2

1
0

R

T
S

:-
--

--
--

--
--

--
--

--
--

-
2

2
0

P2

M

LD
A

S

F
L

A
G

;
IF

SC

R
E

E
N

P

R
IN

T

FL
A

G

IS

D
O

W
N

,
S

K
IP

P

R
IN

T
IN

G

TO

SC
R

E
E

N

2
3

0

B
EQ

P2

M
X

2

4
0

LD

X

R
E

SU
L

T
:

O
T

H
E

R
W

IS
E

P

R
IN

T

TH
E

L
O

W
-B

Y
T

E

O
F

"R
E

S
U

L
T

"
(T

H
E

A

R
G

U
M

EN
T)

2

5
0

JS

R

PR
N

TN
U

M

2
6

0

P2
M

X

LD
X

R

E
S

U
L

T
:

A
N

D

A
LS

O

PO
K

E
TH

E
L

O
W

-B
Y

T
E

TO

RA

M
/

D
IS

K

M
EM

O
RY

2

7
0

JM

P
P

O
K

E
IT

:
A

 J
M

P
TO

P

O
K

E
IT

W

IL
L

R

TS

U
S

B
A

C
K

TO

TH

E
C

A
L

L
E

R
--

--
--

--
--

--
2

8
0

:

P
R

IN
T

T

H
R

E
E

B

Y
TE

S
(T

H
E

O

PC
O

D
E

A
N

D

A

2-
B

Y
T

E

A
R

G
U

M
E

N
T

)-
--

--
--

--
--

--
--

--
2

9
0

P

R
IN

T
3

LD
A

P

A
S

S
:

O
N

PA

SS

2
,

S
K

IP

IN
C

SA

(S
E

E

L
IN

E

2
0

A

B
O

V
E

)
3

0
0

B

N
E

P3
M

31

0
JS

R

IN
C

S
A

:
R

A
IS

E

PC

B
Y

2

3
2

0

JS
R

IN

C
SA

3

3
0

R

T
S

:-
--

--
--

--
--

--
--

--
--

-
3

4
0

P3

M

LD
A

S

F
L

A
G

:
SH

O
U

LE

W
E

P
R

IN
T

TO

SC

R
E

E
N

3

5
0

B

EQ

P3
M

X

3
6

0

LD
X

R

E
SU

L
T

:
P

R
IN

T

A
N

D

PO
K

E
LO

W

B
Y

TE

O
F

A
R

G
U

M
EN

T
3

7
0

JS

R

PR
N

TN
U

M

3
8

0

P3
M

X

LD
X

R

E
SU

L
T

3

9
0

JS

R

P
O

K
E

IT

4
0

0

LD
A

SF

L
A

G
:

SH
O

U
LD

W

E
P

R
IN

T

TO

SC
R

E
E

N

4
1

0

B
EQ

P3

M
X

X

4
2

0

LD
A

H

X
FL

A
G

:
A

R
E

W
E

P
R

IN
T

IN
G

O

PC
O

D
E

S
A

N
D

A

R
G

U
M

EN
TS

IN

H

EX

4
3

0

B
EQ

P3

M
X

2:

IF

S
O

,
D

O
N

'T

P
R

IN
T

A

SP

A
C

E

H
ER

E
4

4
0

JS

R

PR
N

T
SP

A
C

E
:

O
T

H
E

R
W

IS
E

,
P

R
IN

T

A

SP
A

C
E

4

5
0

P3

M
X

2
LD

X

R
E

S
U

L
T

+
l:

P

R
IN

T

A
N

D

PO
K

E
TH

E
H

IG
H

B

Y
TE

O

F
TH

E
A

R
G

U
M

EN
T

4
6

0

JS
R

PR

N
TN

U
M

~
 ;. ~

::l

0.
.

""0

'"
I s· o '0
 '" :::0

~

::l

(J
Q

~
 9 ~ ('

) ::0
; s· (J

Q

~

::l

0.
.

'T
j

o '"
I :3 ~ :::: ~ 0.
. o c:: '0
 c::

47
13

P3

M
X

X

LD
X

R

E
SU

L
T

+1

48
13

JM

P
P

O
K

E
IT

:
A

N
D

A

 J
U

M
P

TO

P
O

K
E

IT

W
IL

L

R
T

S
U

S
B

A
C

K

TO

C
A

L
L

E
R

4

9
0

P

O
K

E
IT

ST

X

W
O

R
K

+
1

:-
--

--
--

--
--

--
P

O
K

E

IN

A

B
Y

TE

TO

R
A

M
/D

I
S

K
--

--
--

--
--

--
--

-
51

30

LD
A

PO

K
E

FL
A

G
:

A
R

E
W

E
SU

PP
O

SE
D

TO

PO

K
E

TO

RA
M

51

13

B
EQ

D

IS
P

:
IF

N

O
T

,
S

K
IP

IT

52

13

LD
Y

#

0
:

O
T

H
E

R
W

IS
E

,
SE

N
D

TH

E
B

Y
TE

TO

RA

M

M
EM

O
RY

A

T
C

U
R

R
EN

T
PC

A

D
D

R
E

SS

(S
A

)
53

13

TX
A

54

13

ST
A

(S

A
),

Y
:-

--
--

--
--

--
--

--
-

55
13

D

IS
P

LD

A

D
IS

K
F

L
A

G
:

A
R

E
W

E
SU

PP
O

SE
D

TO

PO

K
E

TO

A
 D

IS
K

O

B
JE

C
T

F

IL
E

56

13

B
EQ

IN

C
S

A
:

IF

N
O

T
,

S
K

IP

IT

5
7

0

JS
R

C

L
R

C
H

N
:

IF

S
O

,
A

L
E

R
T

F

IL
E

#2

(W

R
IT

E

F
IL

E

O
N

D

IS
K

)
58

13

LD
X

#2

5

9
0

JS

R

C
H

K
O

U
T

61
31

3
LD

A

W
O

R
K

+1
:

PU
T

TH
E

B
Y

TE

TO

B
E

SE
N

T

TO

D
IS

K

IN

TH
E

A

R
E

G
IS

T
E

R

61
13

JS

R

P
R

IN
T

:
P

R
IN

T

(A
F

T
E

R

L
IN

E
S

55

13
-5

71
3

A
B

O
V

E
)

P
R

IN
T

S

TO

D
IS

K

F
IL

E

#2

62
13

JS

R

C
L

R
C

H
N

:
R

E
ST

O
R

E

N
O

RM
A

L
I/

O

(P
R

IN
T

TO

SC

R
E

E
N

A

N
D

63

13

LD
X

#

1
:

R
EA

D

FR
O

M

F
IL

E

#1

64
13

JS

R

C
H

K
IN

65

13

IN
C

SA

C

L
C

:-
--

--
--

--
--

--
--

--
--

R
A

IS
E

TH

E
PC

C

O
U

N
TE

R

(S
A

)
B

Y

1
-
-
-
-
-
-
-
-

66
13

LD

A

#
l

67
13

A

D
C

SA

68

13

ST
A

SA

69

13

LD
A

#1

3
71

31
3

A
D

C
SA

+
1

71
13

ST

A

S
A

+
l

72
13

R

TS

73
13

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

PR
IN

T
O

U
T

R

O
U

T
IN

E
S

(T
O

SC

R
E

E
N

)
-
-
-
-
-
-
-
-
-
-

7
4

0

PR
N

T
M

E
SS

LD

Y

#1
3:

P

R
IN

T

A

M
ES

SA
G

E
(E

R
R

O
R

S
U

SU
A

L
L

Y
)

TO

TH
E

SC
R

E
E

N

75
13

M

E
SS

L
O

O
P

LD
A

(T

E
M

P
),

Y
:

T
H

E
SE

M

E
SS

A
G

E
S

A
R

E
D

E
L

IM
IT

E
D

B

Y

0
A

N
D

A

R
E

PO
IN

T
E

D

~

76
13

B

EQ

M
E

SS
D

O
N

E
:

TO

B
Y

TH

E
V

A
R

IA
B

L
E

"T

E
M

P
"

\0

77
13

JS

R

P
R

IN
T

~

III
 9- III

::l

0.
.

""d

'1
 S·

.... o 't
I '" :;0

III

::l

(J

Q

(1
) \)

~

(1
)

('
l ~

S·

(J
Q

III

::l

0.
.

"T
j

o '1
 :3 III
 (1

) 0.
. o C
 .a c

.....

\0

o
7

8
0

JS

R

P
T

P
:

A
FT

E
R

P

R
IN

T
IN

G

A

C
H

A
R

A
C

TE
R

TO

S

C
R

E
E

N
,

C
H

EC
K

TO

SE

E

IF

IT

SH
O

U
LD

7

9
0

IN

Y
:

A
L

SO

B
E

P
R

IN
T

E
D

TO

T

H
E

P

R
IN

T
E

R

8
0

0

JM
P

M
E

SS
L

O
O

P
8

1
0

M

ES
SD

O
N

E
R

T
S

:-
--

--
--

--
--

--
--

--
--

--
--

--
--

-
8

2
0

PR

N
T

SP
A

C
E

LD

A

#
3

2
:

P
R

IN
T

A

SP

A
C

E

C
H

A
R

A
C

T
E

R

8
3

0

JS
R

P

R
IN

T

8
4

0

JS
R

P

T
P

:
SE

E

IF

IT

SH
O

U
LD

A

L
SO

G

O

TO

TH
E

P
R

IN
T

E
R

8

5
0

R

T
S

:-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
8

6
0

PR

N
TN

U
M

ST

X

X
:

P
R

IN
T

A

N

U
M

B
ER

(L

O
W

B

Y
TE

IN

X

,
H

IG
H

B

Y
TE

IN

A

)
8

7
0

LD

A

H
X

FL
A

G
:

IF

W
E

'R
E

P

R
IN

T
IN

G

IN

H
E

X
,

N
O

T
D

E
C

IM
A

L
,

TH
EN

8

8
0

B

EQ

PR
N

TN
U

M
D

:
U

SE

TH
E

H
E

X
PR

IN
T

S

U
B

R
O

U
T

IN
E

.
O
T
H
E
R
~
H
S
E
,

G
O

TO

PR

N
TN

U
M

D

8
9

0

TX
A

9

0
0

JS

R

H
EX

 P
R

IN
T

9

1
0

JS

R

PT
PN

U
:

C
H

EC
K

IF

N

U
M

B
ER

SH

O
U

LD

B
E

P
R

IN
T

E
D

TO

P

R
IN

T
E

R

A
S

W
EL

L
9

2
0

LD

X

X
:

R
E

ST
O

R
E

N

U
M

B
ER

IN

X

B

E
FO

R
E

9

3
0

R

T
S

:
R

E
T

U
R

N
IN

G

TO

C
A

L
L

E
R

--
--

--
--

--
--

--
--

--
--

--
--

-
9

4
0

PR

N
TN

U
M

D

LD
A

#

0
:

P
R

IN
T

A

D

E
C

IM
A

L

N
U

M
B

ER

9
5

0

JS
R

O

U
TN

U
M

:
B

A
S

IC
'S

L

IN
E

N

U
M

B
ER

PR

IN
T

O
U

T

R
O

U
T

IN
E

9

6
0

JS

R

PT
PN

U
:

SH
O

U
LD

W

E
A

L
SO

P

R
IN

T

IT

TO

P
R

IN
T

E
R

9

7
0

LD

X

X
:

R
E

ST
O

R
E

V

A
LU

E
IN

X

B

E
FO

R
E

9

8
0

R

T
S

:
R

E
T

U
R

N
IN

G

TO

TH
E

C
A

L
L

E
R

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

9
9

0

PR
N

T
SA

LD

A

H
X

FL
A

G
:

P
R

IN
T

TH

E
SA

(P

C
,

PR
O

G
R

A
M

C

O
U

N
T

E
R

)
1

0
0

0

B
EQ

PR

N
T

SA
D

:
IF

N

O
T

H
EX

P

R
IN

T
O

U
T

,
TH

EN

U
SE

D

E
C

IM
A

L

R
O

U
T

IN
E

B

EL
O

W

1
0

1
0

LD

A

S
A

+
l:

O

T
H

E
R

W
IS

E
,

P
R

IN
T

LO

W

A
N

D

H
IG

H

B
Y

T
E

S
O

F
SA

(A

S
H

E
X

)
1

0
2

0

JS
R

H

E
X

P
R

IN
T

:
H

IG
H

B

Y
TE

1S

T

1
0

3
0

LD

A

SA

1
0

4
0

JS

R

H
E

X
PR

IN
T

1

0
5

0

JS
R

P

T
P

S
A

:
SH

O
U

LD

W
E

A
LS

O

P
R

IN
T

SA

TO

P

R
IN

T
E

R

1
0

6
0

R

T
S

:-
--

--
--

--
--

--
--

-
1

0
7

0

PR
N

T
SA

D

LD
X

S

A
:

P
R

IN
T

SA

(D

E
C

IM
A

L

V
E

R
S

IO
N

)

~
 ~ III

::l

p.

.

"i:J

'1
 :r

o "r::
:I rr>
 ~

III

::l

(J
Q

~

("
) ::r

~
 ~

S· (J
Q

III

::l

p.
.

'T
j

o '1
 3 III

.....

~

p.
. o c

"r::
:I C

1
0

8
0

1

0
9

0

1
1

0
0

1

1
1

0

1
1

2
0

1

1
3

0

1
1

4
0

1

1
5

0

1
1

6
0

1

1
7

0

1
1

8
0

1

1
9

0

1
2

0
0

1

2
1

0

1
2

2
0

1

2
3

0

1
2

4
0

1

2
5

0

1
2

6
0

1

2
7

0

1
2

8
0

1

2
9

0

1
3

0
0

1

3
1

0

1
3

2
0

1

3
3

0

1
3

4
0

1

3
5

0

1
3

6
0

.....

.
1

3
7

0

\0

.....
.

LD
A

S

A
+

1
JS

R

O
U

TN
U

M

JS
R

P

T
P

S
A

i
P

R
IN

T

TO

P
R

IN
T

E
R

,
TO

O

R
T

S
i-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

PR
N

T
C

R

LD
A

#

1
3

i
P

R
IN

T

A
 C

A
R

R
IA

G
E

R

ET
U

R
N

JS

R

P
R

IN
T

JS

R

P
T

P
i

SH
O

U
LD

W

E
D

O

IT

O
N

TH

E
P

R
IN

T
E

R

TO
O

R

T
S

i-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
P

R
N

T
L

IN
E

LD

X

L
IN

E
N

i
P

R
IN

T

A

SO
U

R
C

E
C

O
D

E
L

IN
E

N

U
M

B
ER

LD

A

L
IN

E
N

+
1

JS
R

O

U
TN

U
M

i
B

A
S

IC

R
O

U
T

IN
E

(L

O
W

B

Y
TE

IN

X

,
H

IG
H

IN

A

)
JS

R

P
T

P
L

Ii

SH
O

U
LD

W

E
A

L
SO

P

R
IN

T

L
IN

E

N
U

M
B

ER

TO

P
R

IN
T

E
R

R

T
S

i
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

P
R

N
T

IN
P

U
T

LD

A

<L

A
B

E
L

i
P

R
IN

T

C
O

N
T

E
N

T
S

O
F

M
A

IN

IN
P

U
T

ST

A

T
E

M
Pi

B

U
FF

E
R

("

L
A

B
E

L
")

LD

A

#>
L

A
B

E
L

i
P

O
IN

T

"T
E

M
P

"
TO

TH

E
B

U
FF

E
R

A

N
D

TH

EN

ST
A

T

E
M

P+
1

JS
R

PR

N
T

M
E

SS
i

U
SE

G

E
N

E
R

A
L

M

ES
SA

G
E

P
R

IN
T

IN
G

R

O
U

T
IN

E

R
TS

--

--
--

--
--

--
--

--
--

--
--

--
-

, E
R

R
IN

G

LD
A

#

7
i

R
IN

G

B
E

L
L

JS

R

P
R

IN
T

ER
R

O
R

P

R
IN

T
O

U
T

PR

E
PA

R
A

T
IO

N
S

LD
A

#

1
8

i
TU

R
N

O

N

R
E

V
E

R
SE

P

R
IN

T
IN

G

TO

H
IG

H
L

IG
H

T

ER
R

O
R

JS

R

P
R

IN
T

JS

R

P
R

N
T

IN
P

U
T

i
P

R
IN

T

C
O

N
T

E
N

T
S

O
F

M
A

IN

IN
P

U
T

B

U
FF

E
R

LD

A

#
1

3
i

P
R

IN
T

A

C

A
R

R
IA

G
E

R

ET
U

R
N

JS

R

P
R

IN
T

R

T
S

i-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
PR

IN
T

O
U

T

(T
O

P

R
IN

T
E

R
)

i(
P

T
P

P

R
IN

T
S

A

S

IN
G

L
E

C

H
A

R
A

C
TE

R

TO

T
H

E

P
R

IN
T

E
R

)
.

~

III
 st- III

::l

0
-
~

'1
 5· ... o 'C

I '" ~ ::l

(J
Q

(1

) ('
) ::r

(1
) ~

5·

(J
Q

III

::l

0
-

'T
j

o '1
 S III
 (1

) 0
- o e ... 'g ...

.....
..

\0

N

1
3

8
0

PT

P
LD

X

P
A

S
S

;
O

N

PA
SS

1

,
DO

N

O

P
R

IN
T

IN
G

TO

P

R
IN

T
E

R

1
3

9
0

B

N
E

P
T

P
I

1
4

0
0

R

TS

1
4

1
0

P

T
P

I
LD

X

P
R

IN
T

F
L

A
G

;
IF

PR

IN
T

FL
A

G

IS

D
O

W
N

,
DO

N

O
T

H
IN

G
,

R
ET

U
R

N

TO

C
A

L
L

E
R

1

4
2

0

B
N

E
M

PT
P

1
4

3
0

R

T
S

;-
--

--
--

--
1

4
4

0

M
PT

P
ST

A

A
;

SA
V

E
C

O
N

T
E

N
T

S
O

F
A

C
C

U
M

U
LA

TO
R

1

4
5

0

JS
R

C

L
R

C
H

N
;

A
LE

R
T

P
R

IN
T

E
R

1

4
6

0

LD
X

#

4

1
4

7
0

JS
R

C

H
K

O
U

T
1

4
8

0
LD

A

A
;

R
EC

O
V

ER

A

1
4

9
0

JS

R

P
R

IN
T

;
P

R
IN

T

TO

P
R

IN
T

E
R

1

5
0

0

JS
R

C

LR
C

H
N

;
R

E
ST

O
R

E

N
O

R
M

A
L

I/
O

1

5
1

0

LD
X

U

1

5
2

0

JS
R

C

H
K

IN

1
5

3
0

R

E
T

T

LD
A

A

;
R

EC
O

V
ER

A

1

5
4

0

R
T

S
;

R
ET

U
R

N

TO

C
A

L
L

E
R

1

5
5

0

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

N
U

M
B

E
R

S
TO

P

R
IN

T
E

R

1
5

6
0

PT

PN
U

LD

X

P
A

S
S

;
SA

M
E

L
O

G
IC

A

S
L

IN
E

S

1
3

5
0

+

A
B

O
V

E
1

5
7

0

B
N

E
P

T
P

N
I

1
5

8
0

R

TS

1
5

9
0

P

T
P

N
I

LD
X

PR

IN
T

FL
A

G

1
6

0
0

B

N
E

M
PT

PN

1
6

1
0

R

TS

1
6

2
0

M

PT
PN

JS

R

C
LR

C
H

N

1
6

3
0

LD

X

#
4

1

6
4

0

JS
R

C

H
K

O
U

T
1

6
5

0

LD
A

 .
H

X
FL

A
G

;
H

EX

O
R

D
E

C
IM

A
L

M

O
D

E
1

6
6

0

B
EQ

M

PT
PN

D

1
6

7
0

LD

A

X

1
6

8
0

JS

R

H
E

X
PR

IN
T

~ go ~

:;3
 p
.

"'0

"1
 S· o '0
 '" :::0

~

:;3

(J
Q

(!

) ('
) ::r

(!
) n J;I
;'" S·

(J
Q

~

:;3
 p
.

"T
j

o "1
 8 ~ (!

) P
- O

c -0
 c

1
6

9
0

JM

P
F

IN
P

T
P

1

7
0

0

M
PT

PN
O

LO

A

#
0

~

1
7

1
0

LO

X

X

~

1
7

2
0

JS

R

O
U

TN
U

M

,....

::r
'

1
7

3
0

F

IN
P

T
P

JS

R

C
LR

C
H

N

~

1
7

4
0

LO

X

#
l

::I
 0
-

1
7

5
0

JS

R

C
H

K
IN

'"'0

1

7
6

0

R
TS

'1

1

7
7

0

--

--
--

--
--

--
--

--
--

-
SA

TO

P

R
IN

T
E

R

::I

,
,....

1

7
8

0

PT
PS

A

LO
X

P

A
S

S
:

SA
M

E
L

O
G

IC

A
S

L
IN

E
S

1

3
5

0
+

A

B
O

V
E

0 't
l

1
7

9
0

B

N
E

P
T

P
S

l
'"

1
8

0
0

R

TS

~

1
8

1
0

P

T
P

S
l

LO
X

PR

IN
T

FL
A

G

~

1
8

2
0

B

N
E

M
PT

PS
A

::I

(J

Q

1
8

3
0

R

TS

rt>

1
8

4
0

M

PT
PS

A

JS
R

C

LR
C

H
N

0 ::r

'
1

8
5

0

LO
X

#

4

rt>
 n

1
8

6
0

JS

R

C
H

K
O

U
T

~

1
8

7
0

LO

X

H
X

FL
A

G
:

....
H

EX

O
R

O

E
C

IM
A

L

PR
IN

T
O

U
T

::I

1

8
8

0

B
EQ

M

PT
PS

A
O

(J

Q

~

1
8

9
0

LO

A

S
A

+
l

::I

1
9

0
0

JS

R

H
E

X
PR

IN
T

0

-

1
9

1
0

LO

A

SA

'":
rj

0
1

9
2

0

JS
R

H

E
X

PR
IN

T

'1

1
9

3
0

JM

P
F

IN
P

T
P

S
A

:3 ~

1
9

4
0

M

PT
PS

A
O

LO

A

S
A

+
l

,....

,....

1
9

5
0

LO

X

SA

rt>

0
-

1
9

6
0

JS

R

O
U

TN
U

M

0
1

9
7

0

F
IN

P
T

P
S

A

JS
R

C

LR
C

H
N

~
 ,....

.....
.

1
9

8
0

LO

X

#
l

't
l

\0

~

V
J

1
9

9
0

JS

R

C
H

K
IN

,....

't:

>
-'

\0

~

2
0

0
0

R

TS

2
0

1
0

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

L
IN

E

N
U

M
B

ER

TO

P
R

IN
T

E
R

2

0
2

0

P
T

P
L

I
LO

X

P
A
S
S
~

SA
M

E
L

O
G

IC

A
S

L
IN

E
S

1

3
5

0
+

A

B
O

V
E

2
0

3
0

BN

E
P

T
P

L
1

2
0

4
0

R

TS

2
0

5
0

P

T
P

L
1

LO
X

PR

IN
T

FL
A

G

2
0

6
0

B

N
E

M
PT

PL

2
0

7
0

R

TS

2
0

8
0

M

PT
PL

JS

R

C
LR

C
H

N

2
0

9
0

LO

X

#
4

2

1
0

0

JS
R

C

H
K

O
U

T
2

1
1

0

LO
A

L

IN
E

N
+

1
2

1
2

0

LO
X

L

IN
E

N

2
1

3
0

JS

R

O
U

TN
U

M

2
1

4
0

JS

R

C
LR

C
H

N

2
1

5
0

LO

X

#
l

2
1

6
0

JS

R

C
H

K
IN

2

1
7

0

R
TS

2

1
8

0

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
EX

N

U
M

B
ER

PR

IN
T

O
U

T

2
1

9
0

~

P
R

IN
T

TH

E
N

U
M

B
ER

IN

TH

E
A

C
C

U
M

U
LA

TO
R

A

S
A

 H
EX

O

IG
IT

(A

S
A

S
C

II

C
H

A
R

S
.)

2

2
0

0

H
E

X
PR

IN
T

P
H
A
~

ST
O

R
E

N

U
M

B
ER

2

2
1

0

A
N

O

#
$
0
F
~

C
LE

A
R

H

IG
H

B

IT
S

(1

0
1

0
1

1
1

1

B
EC

O
M

ES

0
0

0
0

1
1

1
1

,
FO

R

E
X

A
M

PL
E

)
2

2
2

0

T
A
Y
~

NO
W

W

E
KN

OW

W
H

IC
H

P

O
S

IT
IO

N

IN

TH
E

S
T

R
IN

G

O
F

H
EX

N

U
M

B
ER

S
("

H
E

X
A

")

2
2

3
0

LO

A

H
E
X
A
,
Y
~

T
H

IS

N
U

M
B

ER

IS
.

SO

PU
L

L

IT

O
U

T
A

S
A

N

A
S

C
II

C

H
A

R
A

C
TE

R

2
2

4
0

~

(H
E

X
A

LO

O
K

S
L

IK
E

T

H
IS

:
"0

1
2

3
4

5
6

7
8

9
A

B
C

O
E

F
")

2

2
5

0

T
A
X
~

SA
V

E
L

O
W

-B
IT

S

V
A

LU
E

IN
T

O

X

2
2

6
0

P
L
A
~

PU
L

L

O
U

T
TH

E
O

R
IG

IN
A

L

N
U

M
B

ER
,

B
U

T
T

H
IS

T

IM
E

2

2
7

0

L
S
R
~
S
H
I
F
T

R
IG

H
T

4

T
IM

E
S

(M
O

V
IN

G

TH
E

4
H

IG
H

B

IT
S

IN

T
O

TH

E
4

LO
W

B

IT
S

A

R
E

A
)

2
2

8
0

L
S
R
~

(1
0

1
0

1
1

1
1

B

EC
O

M
ES

0

0
0

0
1

0
1

0
,

FO
R

E

X
A

M
PL

E
)

2
2

9
0

L

SR

2
3

0
0

L

SR

~ ~
 ::s p.
.

~

"'
t ::s o '1
j '" ~ ::s (J

Q

~
 n ::r

~

n ;:0
;- S·

(J
Q

~
 ::s 0.
..

'T
j

o "'
t 3 ~ ~ ~ 0.
.. o i:

~

'1
j i:

~

.....
.

\0

CJ
1

2
3

1
0

TA

Y
7

A
G

A
IN

,
PU

T
P

O
S

IT
IO

N

O
F

T
H

IS

V
A

LU
E

IN
T

O

TH
E

Y

IN
D

E
X

2

3
2

0

LO
A

H

E
X

A
,Y

7
PU

L
L

O

U
T

TH
E

R
IG

H
T

A

S
C

II

C
H

A
R

A
C

TE
R

FR

O
M

"H

E
X

A
"

S
T

R
IN

G

2
3

3
0

JS

R

P
R

IN
T

7
P

R
IN

T

H
IG

H

V
A

LU
E

(F
IR

S
T

)
(A

H

O
LD

S
H

IG
H

V

A
LU

E
A

FT
E

R

L
IN

E

2
3

4
0

TX

A
7

(X

H
EL

D

LO
W

V

A
LU

E
A

FT
E

R

L
IN

E

2
2

1
0

)
2

3
5

0

JS
R

P

R
IN

T
7

P
R

IN
T

LO

W

V
A

LU
E

2
3

6
0

R

T
S7

R

ET
U

R
N

TO

C

A
L

L
E

R

2
3

7
0

.F

IL
E

PS

EU
D

O

P
ro

gr
am

 7
-3

.
P

ri
n

to
p

s,
 A

ta
ri

 M
od

if
ic

at
io

n
s

To
 c

re
at

e
th

e
A

ta
ri

 v
er

si
on

 o
f

Pr
in

to
ps

,
ch

an
ge

 t
he

 f
ol

lo
w

in
g

lin
es

 i
n

P
ro

gr
am

 7
-2

:

6
1

~:!

J
S

 R

D
 8

 J
 P

 F
:

r
N

 T

1
2

8
;2

!
E

F
:F

:I
N

G

!_
D

A

#
:-:

5
:.

2
3

7
0

.F

IL
E

D

:P
S

E
U

D
O

.
S

R
C

2
2

8
0

)
I~

.....

 ::r- III

::I

0
-
~

"1
 ::I

0 '0

~
 :::0

II
I ::I

(J
Q

(1

) (
)

::r- (1
) n ~
 ::I

(J

Q

III

::I

0
-

'"I
i

0 "1
 3 III

.....

(1
) 0
- 0 C

'0

C

Pseudo:
I/O and Linked Files
All pseudo-ops except .BYTE (and in-line ones like #< or +)
are handled by the Pseudo subprogram. Eight pseudo-ops are
tested for at the start of Pseudo (50-300). They are: .FILE,
.END, .0, .P, .N, .0, .S, and .H. These tests and the asso
ciated JMPs are identical to an ON-GOTO multiple branch
structure in a BASIC program. The rest of the Pseudo sub
program is a collection of subroutines which service these
various pseudo-ops.

If an unrecognized pseudo-op appears within the source
code, an error message is printed out (340-460). If something
like .X or .MAP appears, the line number, the start address,
and the source code line are printed (350-390). The variable
TEMP is set to point to the SYNTAX ERROR message in the
Tables subprogram, and that message is sent to screen, and
possibly printer, via the PRNTMESS subroutine (440). A car
riage return is printed (450), and we return to the Eval sub
program after pulling all the characters of the current source
code line. The subroutine PULLINE does this (460).

Assuming, however, that LADS came upon the legitimate
pseudo-op .FILE during an assembly, lines 480-830 take the
necessary action . . FILE appears at the end of a subprogram. It
tells LADS that another subprogram is linked to the one just
assembled and that the source code within this next sub
program is to be assembled next, as an extension of the cur
rent sub!Jrogram. The current source code file will need to be
shut down, and the next linked file will need to be opened for
business. The next linked file is the one called NAME, for
example, in .FILE NAME.

Linking with . FILE
The FILE subroutine starts off by looking for a blank character
following the .FILE pseudo-op word (480-510). Locating a
blank, it can now store the name of the next file of source
code. It pulls in the name, one character at a time, looking for
an end-of-line 0 (540) or a byte with the seventh bit set (a
tokenized keyword which needs to be stretched out into a full
ASCII word). Then each character in NAME is stored in the
main buffer (590) as it comes in from the source code.

199

Pseudo: I/O and Linked Files

When an end-of-line 0 is encountered, the whole filename
has been stored in LABEL, the input buffer. And-since Y was
counting the number of characters and helping store them in
the right place in the buffer-Y now holds the number of
characters in the filename, its length. We store Y in the
FNAMELEN variable which will be needed by the DOS (Disk
Operating System) when the OPEN1 subroutine tries to open
or load a program file on the disk.

Now the filename is moved from the LABEL buffer to the
FILEN buffer (630-680). Why not just store the name in the
FILEN buffer in the first place? First, because the printout
routines get their characters and words from LABEL, the main
buffer. Second, because there might be a keyword, a
tokenized, abbreviated BASIC command within a filename.
The filename might be END or IFNOT. And KEYWORD, our
detokenization subroutine, acts upon words in LABEL, the
main buffer. So, rather than make a separate KEYWORD
detokenization subroutine for each buffer, it's easier to bring
words into the main buffer first, detokenizing them on the fly.
Then move them.

But why, then, not have the OPEN1 subroutine look to
the main buffer for its filenames? That way, the names
wouldn't need to be moved to FILEN, a separate buffer. True
enough, but it helps me and, I suspect, many other pro
grammers to keep things separated by function.

It takes only 14 bytes in LADS to move the filename from
the main buffer to the filename buffer. It adds only a few
microseconds during assembly time since .FILE is a relatively
rare event. It won't happen more than a few times during an
entire assembly. It's nowhere near the heavy action of the
innermost loops of LADS where every event counts, where
every improvement in logic results in a noticeable improve
ment in speed. So memory use or speed efficiency is not really
worth bothering with here. If it's easier for you to visualize the
actions of a program (and make sure there are no unwanted
interactions), use as many buffers and variables as you want.

Printing Addresses
The next section of this FILE subroutine prints out to screen or
printer (690-740). Pass 2 doesn't print the starting address of
each linked file. That's one way to tell which pass is currently
being assembled. Change the LOA PASS in line 690 to LOA

200

Pseudo: I/O and Linked Files

#0 if you want the address printed on both passes. The
PRNTSA subroutine (from Printops) prints the address in
RAM memory where the first byte in the new file will be
assembled. PRNTINPUT prints the filename from the main
buffer. Then a carriage return prepares for the next screen (or
printer) line (740). The whole thing looks like this on the
screen:
470A NAME
49FF NEXTNAME

If the .s and .P pseudo-ops are turned off, nothing will be
printed to the screen during an assembly except for this list of
linked files and their object code addresses. That's the fastest
way to assemble any source code. Printing during assembly
takes up a considerable amount of time.

The OPENl closes the old source code file and opens the
new one. OPENl is found in the subprogram of the same
name. Next, the computer's input channel is switched to file
1, the input-from-disk channel, and two bytes are pulled off
the newly opened source code program file. (These first two
bytes are, in the Commodore DOS system, ignorable.) Then
ENDPRO gets us in position to analyze the first line in this
new source code file (800) . Finally, the END FLAG is set down
because there's obviously more code to assemble. We return to
line 80 where the RTS (back to the Indisk subprogram) is
pulled off the stack, and we JMP directly back into the Eval
subprogram to pull in the first source code line of the newly
opened file.

The .END Link
The .END pseudo-op is quite like the .FILE pseudo-op. It serves
to link the last file in a chain to the first file:
PROGl (ends with .FILE PROG2)
PROG2 (ends with .FILE PROG3)
PROG3 (ends with .END PROG!, pointing back to the original

file)

This way, the assembler can go through two passes .
. END starts off by printing the word .END (850-940). Then

it borrows a good section of the FILE subroutine above the
JSRing to line 520. Most of the events in FILE now take place:
The name of the new program file is stored in the two buffers,
the file is opened, END PRO puts us in the right spot to look for

201

Pseudo: 1/0 and Linked Files

a new line, and so on. When we return to the END subroutine
(970), .END's most important work is now performed: On pass
I, the END FLAG is left down (980). But on pass 2, the
ENDFLAG is sent up, and that will quickly cause the Eval sub
program to shut the entire LADS engine down.

But if this is pass I, another very important thing happens:
Pass 1 is changed into pass 2. The PASS flag itself is set up
(1000).

The original starting address is now retrieved from the TA
variable and restored into SA, the main Program Counter vari
able. This starts us off on the second pass with the correct, orig
inal starting address for assembling the object code. The }SR to
INDISK gets us pointed to the first true line of source code in
that first program file (past the >I< = symbol), and we RTS back
up to line 140 which exits us from this subprogram the same
way that the .FILE pseudo-op exits.

Assembly to Disk Object File
The .DISK pseudo-op is an important one: It makes it possible
to store the object code, the results of an assembly, as a pro
gram on disk. In a way, it's the opposite of .FILE .. FILE pulls in
source code from a program file already on the disk; .DISK
sends out object code to a new program file being actively cre
ated during the assembly process.

On pass I, nothing is stored to a disk object file, so we
branch to PULL} which is a springboard to PULLINE.
PULLINE pulls in the rest of a logical line and prepares us to
look at the next logical line.

On pass 2, however, all object code is stored to a disk ob
ject file if the .D NAME pseudo-op has been invoked. This
storage happens character by character, just the way that object
code is sent to the screen or printer. But before these bytes can
go into a disk object code file, the file must be opened for writ
ing on disk.

One character is pulled off the source code, moving us past
the space character in .D NAME and pointing to the N in
NAME. A little loop (1130-1210) stores the NAME of the object
file into the main buffer (for printouts) and into the filename
buffer, FILEN, simultaneously. Meanwhile, if any tokenized
keywords are detected (seventh bit set), we're directed to trans
late them to ASCII characters via a JSR KEYWORD (1170). This
accomplished, we add " , P, W" on to the end of the filename.

202

Pseudo: I/O and Linked Files

That's Commodore-specific; it tells the DOS that this file is to
be a Program/Write file .

At this point, Y holds the length of the filename, and it's
then stored in the proper zero page location (1350) for use by
the DOS in opening this write file. Now the main input line,
the filename, is printed out, and the DISKFLAG is set up
(1380). That tells LADS to always send object code bytes to this
object file on pass 2 when it has finished assembling each logi
cal line.

An Abnormal Program
The routine OPEN2 in the Openl subprogram will now open
the write file on disk (1390), and the channel to that file is made
the main output channel at this point (1400-1410). Whatever is
PRINTed will now go to the disk write file . And the first two
bytes of a program file tell the computer where in RAM mem
ory to load a program file. Normally, for a BASIC program, this
load address would be the start of RAM, the start of BASIC's
storage area for programs. But this is an abnormal program. It's
machine language; it could go anywhere in RAM. We therefore
need to tell the computer what the starting address of this
particular program is.

At the very beginning of LADS, the start address is pulled
from just beyond the source code's * = symbol. That symbol
must be the first item in any source code. The start address is
then put into several variables. SA, the Program Counter, gets
it, but will keep raising it as each logical line is assembled. SA
is a dynamic, changing variable. TA also gets the start address.
TA is a "variable," but never changes. Its job is to remember
the starting address all through the assembly process. Perhaps
TA should be called a constant rather than a variable, but the
term variable is generally used in computing to refer to both
types of " remember this" storage places.

TA Remembers
In any event, TA will always know where we started assem
bling. So TA is sent to the disk object file as the first two bytes
(1420-1450) and then normal I/ O (input from disk source file,
output to screen) is restored (1460-1470) . Now a disk error is
checked for, and we prepare to look at the next logical line via
JSR END PRO (1500). The RTS is pulled off the stack (it would
want to send us back to INDISK), we set the END FLAG down

203

Pseudo: I/O and Linked Files

and JMP back to Eval to analyze the next line of source code
(1550).

The PRINTER subroutine responds to a .P pseudo-op. It is
ignored on pass I, but on pass 2 the file to the printer is
opened (1590), and the PRINTFLAG is raised. Normal I/O is
restored, and we "fall through" to PULLINE, the subroutine
which keeps sucking bytes off the current logical line until the
end of that line is reached. These bytes are ignored. That's why
pseudo-ops should be the only thing on any physical line. Any
thing following a pseudo-op is sucked in and ignored.

The PULLINE routine finishes when a colon or a 0 is de
tected. The exit back to STARTLINE in Eval is prepared for by
the PLA PLA which throws away the RTS (caused by JSRing to
Pseudo from within Indisk). The only difference between a 0
(end-of-physical-line) and a colon (end-of-Iogical-line) condition
is that a 0 requires that we skip over some link bytes in the
source code. 0 requires that we first clean off these link bytes
by a JSR to ENDPRO (1700). ENDPRO is also necessary in the
event that the end of a physical line is also the end of the
source code file itself. ENDPRO would detect that.

The .0 pseudo-op notifies LADS that you want object code
stored into RAM memory during assembly beginning at the
start address *=. This is relatively simple: We just print out the
.0 (1770-1800) and set up the POKEFLAG. (Elsewhere in
LADS, the POKEFLAG is queried to determine if object code
should be sent to RAM.) Then we exit via PULLINE.

Turning Things Off
The .N pseudo-op turns things off. It can turn four things off:
printer printout, RAM object code storage, screen printout, and
hexadecimal printout. If .N is detected in the ON-GOTO sec
tion of Pseudo above (110-320), we are sent here for another
ON-GOTO series of tests (1880-1960) . Of course, none of these
forms of output are triggered on pass I, so they don't need to
be turned off on pass 1 either. But on pass 2, we are sent to
one of the four turn-it-off routines below.

204

Pseudo: I/O and Linked Files

NIXPRINT (1980) first notifies us that the .NP pseudo-op
has been detected in the source code by printing the .NP. Then
the PRINTFLAG is lowered (2050), and a carriage return is sent
to the printer. This is in case you should want the printer
turned on again further along in the source code. (You would
turn it on with the .P pseudo-op.) The first line of a reactivated
printout must appear on a new line, not as an extension of the
previous printout.

Then the printer is turned off with JSR CLOSE (this close
down-a-file routine is in the Open 1 subprogram), and we exit
via PULLINE (2160).

The next three turn-it-off pseudo-ops are simple, and virtu
ally identical. NIXOP prints .NO and sets down the
POKEFLAG. NIXHEX prints .NH and sets down the HXFLAG
(causing decimal to become the number base for opcode print
outs to printer and screen). NIXSCREEN prints .NS and sets
down the SFLAG. Each routine exits via PULLINE described
above.

Disk Error Trapping
DISERR (2510) checks for an error in disk operation. It could be
JSRed to from any place in LADS where you suspect that
things aren't likely to go well with the disk. Disk drives differ
considerably in their reliability: An unabused Commodore 4040
drive is usually good for years of error-free performance; many
of the Commodore 1541 single-drive units, especially the earlier
ones, are perhaps best described as sensitive. In any case, how
often you feel the need to JSR DISERR for a report on the
disk's success in completing an operation will depend on how
often your drive is the cause of problems during your other
programming experience.

For Commodore computers, a simple check of the ST (sta
tus) byte in zero page will reveal many kinds of disk errors. If
one is detected, an error message is printed and LADS is shut
down (2650) by jumping to FIN within Eval.

205

Pseudo: I/O and Linked Files

The .s (screen printout on) and .H (hexadecimal number
printout) pseudo-ops are the final items to assemble as part of
the LADS source code program. The subprogram Table follows,
but it's data, not programming.

There's no particular reason why these two pseudo-ops
should be the last thing in LADS. They just are.

Also, they're very simple. They each print their names to
announce themselves, .S or .H; set up their flags, SFLAG or
HXFLAG; and exit through PULLINE. The only notable thing
about .S is that it must not set its flag until pass 2.

The .H is a default condition of this assembler. LADS as
sumes that you want hex output unless you use the .NH to
turn off hex and turn decimal on . Of course, you can set up
other default conditions which are more harmonic with your
own programming needs.

206

N
 o ""
I

P
ro

g
ra

m
 8

-1
.

P
se

u
d

o

1
0

"P

SE
U

D
O

"
H

A
N

D
LE

A

LL

PS
E

U
D

O
PS

E

X
C

E
PT

.B

Y
T

E

1
5

2

0

JM
P

H
ER

E
FR

O
M

IN

D
IS

K

3
0

(I

N
D

IS
K

W

AS

JS
R

'E
D

TO

FR

O
M

E

V
A

L
).

/

Y
 H

O
LD

S
P

O
IN

T
E

R

TO

L
A

B
E

L

4
0

;

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5
0

PS

EU
D

O

CM
P

#
7

0
;

IS

IT

"F
"

FO
R

.F

IL
E

6

0

B
N

E
P

S
E

I
7

0

JS
R

F

IL
E

;
F

M
EA

N
S

GO

TO

N
EX

T
L

IN
K

E
D

F

IL
E

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
0

G

O
B

A
C

K

PL
A

;
R

ET
U

R
N

TO

EV

A
L

TO

G
ET

N

EX
T

L
IN

E

9
0

PL

A

1
0

0

JM
P

S
T

A
R

T
L

IN
E

;-
--

--
--

--
--

--
--

--
--

--
--

-
1

1
0

P

S
E

I
CM

P
#

1
2

8
;

IS

IT

.E
N

D

1
2

0

BN
E

PS
E

E

1
3

0

JS
R

PE

N
D

;
1

2
8

IS

TO

K
EN

FO

R

EN
D

(E

N
D

O

F
C

H
A

IN

PS
E

U
D

O
)

1
4

0

JM
P

G
O

B
A

C
K

;
R

ET
U

R
N

TO

EV

A
L

1
5

0

PS
E

E

CM
P

#
6

8
;

IS

IT

"D
"

FO
R

.D

IS
K

(C

R
E

A
T

E

O
B

JE
C

T

C
O

D
E

F
IL

E

O
N

D

IS
K

)
1

6
0

B

N
E

P
S

E
E

I
1

7
0

JM

P
P

D
IS

K
;

O
PE

N

F
IL

E

O
N

D

IS
K

FO

R

O
B

JE
C

T

C
O

D
E

ST
O

R
A

G
E

1

8
0

P

S
E

E
I

CM
P

#
8

0
;

IS

IT

"p
"

FO
R

.P

(P

R
IN

T
E

R

O
U

T
PU

T
)

1
9

0

BN
E

P
S

E
E

2
2

0
0

JM

P
P

P
R

IN
T

E
R

;
TU

R
N

O

N

P
R

IN
T

E
R

L

IS
T

IN
G

2

1
0

P

S
E

E
2

C
M

P
#

7
8

;
IS

IT

"N

"
FO

R

.N
H

O

R

.N
S

O

R

SO
M

E
O

T
H

E
R

"T

U
R

N

IT

O
F

F
"

2
2

0

B
N

E
P

S
E

E
3

2
3

0

JM
P

N
IX

;
TU

R
N

SO

M
E

T
H

IN
G

O

FF

2
4

0

P
S

E
E

3
CM

P
#

7
9

;
IS

IT

"0

"
FO

R

O
U

T
PU

T

(P
O

K
E

O

B
JE

C
T

C

O
D

E
IN

T
O

R

A
M

)
2

5
0

B

N
E

P
S

E
E

4
2

6
0

JM

P
O

PO
N

:
ST

A
R

T

PO
K

IN
G

O

B
JE

C
T

C

O
D

E
(D

E
F

A
U

L
T

)
2

7
0

P

S
E

E
4

C
M

P
#

8
3

:
IS

IT

"s

"
FO

R

P
R

IN
T

TO

SC

R
E

E
N

2

8
0

B

N
E

P
S

E
E

5

""0

rr>

(!
) t:: 0.
.

o
.

'-
..

o ~
 =' 0.
.

t""
" 5' ?f

0.
.

"'I
'j
 -(!) rr>

IV

o r:J
;J

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

5
1

0

5
2

0

5
3

0

5
4

0

5
5

0

5
6

0

5
7

0

5
8

0

5
9

0

JM
P

S
C

R
E

IN
:

TU
R

N

O
N

SC

R
E

E
N

P

R
IN

T
IN

G

P
S

E
E

5
CM

P
#

7
2

:
IS

IT

"H

"
FO

R

H
EX

N

U
M

B
ER

S
D

U
R

IN
G

P

R
IN

T
O

U
T

S

B
N

E
P

S
E

9
:

JM
P

H
E

X
IT

:
TU

R
N

O

N

H
EX

P

R
IN

T
IN

G

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

P
R

IN
T

ER

R
O

R

M
ES

SA
G

E
(N

O

SU
C

H

P
S

E
U

D
O

-O
P

)
P

S
E

9
ST

A

L
A

B
E

L
,Y

:
ST

O
R

E

C
H

A
R

.
FO

R

PR
IN

T
O

U
T

JS

R

PR
N

T
L

IN
E

JS

R

PR
N

T
SP

A
C

E

JS
R

PR

N
T

SA

JS
R

E

R
R

IN
G

JS

R

PR
N

T
IN

PU
T

LD

A

#<
M

ER
R

O
R

ST

A

TE
M

P
LD

A

#>
M

ER
R

O
R

ST

A

T
E

M
P

+
l

JS
R

PR

N
T

M
E

SS

JS
R

PR

N
TC

R

JM
P

P
U

L
L

IN
E

:
PU

L
L

IN

(&

IG

N
O

R
E

)
R

E
ST

O

F
L

IN
E

,
TH

EN

B
A

C
K

TO

EV

A
L

:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.F
IL

E

PS
E

U
D

O
-O

P
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

F
IL

E

JS
R

C

H
A

R
IN

CM

P
#

3
2

:
LO

O
K

FO

R

EN
D

O

F
TH

E
W

O
RD

.F

IL
E

(T

O

LO
C

A
TE

F

IL
E

N
A

M
E

)
B

EQ

F
I0

JM

P
F

IL
E

:
C

O
N

T
IN

U
E

L

O
O

K
IN

G

FO
R

B

LA
N

K

F
I0

LD

Y

#0

F
Il

JS

R

C
H

A
R

IN

CM
P

#
0

:
EN

D

O
F

L
IN

E

B
EQ

F

I2

CM
P

#
1

2
7

:
K

EY
W

O
R

D
,

SO

ST
R

E
T

C
H

IT

O

U
T

B
C

C

F
Il

l
JS

R

K
EY

W
O

RD

F
I
ll

ST

A

L
A

B
E

L
,Y

:
ST

O
R

E

C
H

A
R

.
O

F
FI

L
E

N
A

M
E

"'0
 '" (I) c p.
.

o

....
....

.. o ~ p.
.

r
' ~ p.
.

"T
j -(I) 'I

l

6
0

0

IN
Y

6

1
0

JM

P
F

I1
;

C
O

N
T

IN
U

E

ST
O

R
IN

G

FI
L

E
N

A
M

E

IN

M
A

IN

B
U

FF
E

R

(L
A

B
E

L
)

6
2

0

F
I2

ST

Y

FN
A

M
EL

EN
;

ST
O

R
E

FI

L
E

N
A

M
E

LE

N
G

TH

6
3

0

LD
Y

#0

6

4
0

F

IL
O

LD

A

L
A

B
E

L
,Y

;-
--

--
--

PU
T

FI
L

E
N

A
M

E

IN
T

O

PR
O

PE
R

B

U
FF

E
R

(F

IL
E

N
)

6
5

0

B
EQ

F

IL
0

1

6
6

0

ST
A

F

IL
E

N
,Y

6

7
0

IN

Y

6
8

0

JM
P

F
IL

O

6
9

0

F
IL

0
1

LD

A

P
A

S
S

;
O

N

PA
SS

2

,
D

O
N

'T

P
R

IN
T

O

U
T

PC

7
0

0

B
N

E
F

I5

7
1

0

JS
R

PR

N
T

SA
;

P
R

IN
T

TH

E
FI

L
E

N
A

M
E

7

2
0

JS

R

PR
N

T
SP

A
C

E

7
3

0

F
I5

JS

R

PR
N

T
IN

PU
T

7

4
0

JS

R

PR
N

T
C

R
;

C
A

R
R

IA
G

E

R
ET

U
R

N

7
5

0

JS
R

O

P
E

N
1;

O

PE
N

N

EX
T

L
IN

K
E

D

F
IL

E

O
N

D

IS
K

(F

O
R

C

O
N

T
IN

U
E

D

R
E

A
D

IN
G

O

F
SO

U
R

C
E

)
7

6
0

LD

X

#
l

7
7

0

JS
R

C

H
K

IN

7
8

0

JS
R

C

H
A

R
IN

;
PU

LL

IN

N
EX

T
TW

O

B
Y

T
E

S
A

N
D

7

9
0

JS

R

C
H

A
R

IN

8
0

0

JS
R

E

N
D

PR
O

;
C

H
EC

K

FO
R

EN

D

O
F

PR
O

G
R

A
M

8

1
0

LD

X

#
0

8

2
0

ST

X

E
N

D
FL

A
G

;
SE

T

EN
D

O

F
PR

O
G

R
A

M

FL
A

G

TO

ZE
R

O

8
3

0

R
T

S
8

4
0

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.E
N

D

PS
E

U
D

O
-O

P
-
-
-
-
-
-
-
-
-

8
5

0

PE
N

D

LD
A

#

4
6

;
P

R
IN

T

O
U

T
.E

N
D

8

6
0

JS

R

P
R

IN
T

8

7
0

LD

A

#
6

9

8
8

0

JS
R

P

R
IN

T

~

8
9

0

LD
A

#

7
8

\0

9

0
0

JS

R

P
R

IN
T

""d

'" (1) r:: 0
- o

.....
.....

. o ~

::I

0
- C

::I
 ~

0
-

'T
j -(1) '"

tv

.....
.

o
9

1
0

LD

A

#
6

8

9
2

0

JS
R

P

R
IN

T

9
3

0

LD
A

#

3
2

9

4
0

JS

R

P
R

IN
T

9

5
0

JS

R

C
H

A
R

IN

9
6

0

JS
R

F

I0
;

G
ET

FI

L
E

N
A

M
E

,
E

T
C

.
JU

S
T

A

S
.F

IL
E

PS

E
U

D
O

-O
P

D
O

ES

9
7

0

LD
A

P

A
S

S
;

O
N

PA

SS

1
,

D
O

N
'T

SE

T

TH
E

EN
D

FL
A

G

U
P

.
9

8
0

B

EQ

P
E

N
D

l;

B
U

T
O

N

PA
SS

2

,
IT

'S

N
E

C
E

SS
A

R
Y

(T

O

EN
D

TH

E
E

N
T

IR
E

PR

O
G

R
A

M
)

9
9

0

IN
C

EN

D
FL

A
G

1

0
0

0

PE
N

D
I

IN
C

P

A
S

S
;

R
A

IS
E

PA

SS

FR
O

M

PA
SS

1

TO

PA
SS

2

1
0

1
0

LD

A

T
A

;
PU

T
O

R
IG

IN
A

L

ST
A

R
T

A

D
D

R
E

SS

B
A

C
K

IN

T
O

PC

(S

A
)

FO
R

R

E
ST

A
R

T

O
F

1
0

2
0

ST

A

S
A

;
A

SS
EM

B
LY

O

N

PA
SS

2

.
1

0
3

0

LD
A

T

A
+

l
1

0
4

0

ST
A

S

A
+

l
1

0
5

0

JS
R

IN

D
IS

K
i

SE
T

U

P
N

EX
T

L
IN

E

1
0

6
0

R

TS

1
0

7
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.D

FI
L

E
N

A
M

E

PS
E

U
D

O
-O

P
(O

B
JE

C
T

C

O
D

E
F

IL
E

)
1

0
8

0

P
D

IS
K

LD

A

P
A

S
S

;
O

N

PA
SS

1

,
D

O
N

'T

ST
O

R
E

A

N
Y

T
H

IN
G

TO

D

IS
K

1

0
9

0

B
EQ

P

U
L

L
Ji

P

U
L

L
J

IS

A

SP
R

IN
G

B
O

A
R

D

(J
U

M
P

S

TO

P
U

L
L

IN
E

)
1

1
0

0

JS
R

C

H
A

R
IN

;
PO

IN
T

TO

FI

L
E

N
A

M
E

1

1
1

0

ST
A

L

A
B

E
L

,Y

1
1

2
0

LD

Y

#
0

1

1
3

0

PD
LO

O
P

JS
R

C

H
A

R
IN

1

1
4

0

B
EQ

P

D
l;

EN

D

O
F

L
IN

E

1
1

5
0

CM

P
#

1
2

7
;

IT
'S

A

 K
EY

W
O

RD

(W
IT

H
IN

TH

E
F

IL
E

N
A

M
E

)
IF

>

12
7

1
1

6
0

B

C
C

P

O
IX

1

1
 7

0

JS
R

K

EY
\'l

O
R

D

1
1

8
0

P

D
IX

ST

A

L
A

B
E

L
,Y

;
K

E
E

P
ST

O
R

IN
G

FI

L
E

N
A

M
E

IN

T
O

PR

IN
T

O
U

T

B
U

FF
E

R

(L
A

B
E

L
)

1
1

9
0

ST

A

F
IL

E
N

,Y
;

A
S

W
EL

L
A

S
O

P
E

N
I

B
U

FF
E

R

(F
IL

E
N

)
1

2
0

0

IN
Y

1

2
1

0

JM
P

PD
L

O
O

P;

K
E

E
P

ST
O

R
IN

G

F
IL

E
N

A
M

E
;-

--
--

--
--

--
--

--
--

-

~

<
Il I'D
 e p.
.. o
.

....
....

.. o ~ p.
.. C;

::l
 ?r p.
..

"'I
"j
~

I'D

<
Il

1
2

2
0

1

2
3

0

1
2

4
0

1

2
5

0

1
2

6
0

1

2
7

0

1
2

8
0

1

2
9

0

1
3

0
0

1

3
1

0

1
3

2
0

1

3
3

0

1
3

4
0

1

3
5

0

1
3

6
0

1

3
7

0

1
3

8
0

1

3
9

0

1
4

0
0

1

4
1

0

1
4

2
0

1

4
3

0

1
4

4
0

1

4
5

0

1
4

6
0

1

4
7

0

1
4

8
0

1

4
9

0

1
5

0
0

tv

1

5
1

0

.....
.

.....
.

1
5

2
0

P
U

L
L

J
JM

P
P

U
L

L
IN

E
i-

--
--

--
-

SP
R

IN
G

B
O

A
R

D

TO

IG
N

O
R

E

FI
L

E
N

A
M

E

PD
1

LD
A

#

4
4

i
PU

T
,P

,W

(P
R

O
G

R
A

M
,

W
R

IT
E

)
S

IG
N

A
L

S

O
N

TO

FI
L

E
N

A
M

E

ST
A

F

IL
E

N
,Y

IN

Y

LD
A

#

8
0

ST

A

F
IL

E
N

,Y

IN
Y

i
A

D
D

--
,P

,W

LD
A

#

4
4

ST

A

F
IL

E
N

,Y

IN
Y

LD

A

#
8

7

ST
A

F

IL
E

N
,Y

IN

Y

ST
Y

FN

A
M

E
L

E
N

i
ST

O
R

E

FI
L

E
N

A
M

E

LE
N

G
TH

JS

R

P
R

N
T

IN
P

U
T

i
P

R
IN

T

O
U

T
TH

E
L

IN
E

JS

R

PR
N

T
C

R
i

C
A

R
R

IA
G

E

R
ET

U
R

N

IN
C

D

IS
K

F
L

A
G

i
R

A
IS

E

D
IS

K
FL

A
G

TO

SH

O
W

TH

A
T

FU
T

U
R

E

PO
K

ES

SH
O

U
LD

G

O

TO

D
IS

K

JS
R

O

P
E

N
2i

O

PE
N

A

SE

C
O

N
D

D

IS
K

F

IL
E

(T

H
IS

O

N
E

FO
R

W

R
IT

IN
G

T

O
)

LD
X

#2

JS

R

C
H

K
O

U
T

LD
A

T

A
i

P
R

IN
T

O

B
JE

C
T

C

O
D

E
'S

ST

A
R

T
IN

G

A
D

D
R

E
SS

TO

D

IS
K

F

IL
E

JS

R

P
R

IN
T

LD

A

T
A

+1

JS
R

P

R
IN

T

E
D

IS
K

JS

R

C
LR

C
H

N

LD
X

#

li

R
E

ST
O

R
E

N

O
R

M
A

L
I/

O

JS
R

C

H
K

IN

JS
R

D

IS
E

R
R

i
C

H
EC

K

FO
R

D

IS
K

ER

R
O

R

(F
A

IL
U

R
E

TO

O

PE
N

C

O
R

R
E

C
T

L
Y

)
JS

R

E
N

D
PR

O
i

G
ET

N

EX
T

L
IN

E

N
U

M
B

ER

P
L

A
i

PU
L

L

R
TS

PL

A

'"0

on

('!
) ~

~

o
.

.....
.....

 o III

::I

~

t""
" ~ ~ '"
rj

 -('!) on

N

1
5

3
0

.....

.
N

1

5
4

0

1
5

5
0

1

5
6

0

1
5

7
0

1

5
8

0

1
5

9
0

1

6
0

0

1
6

1
0

1

6
2

0

1
6

3
0

1

6
4

0

1
6

5
0

1

6
6

0

1
6

7
0

1

6
8

0

1
6

9
0

1

7
0

0

1
7

1
0

1

7
2

0

1
7

3
0

1

7
4

0

1
7

5
0

1

7
6

0

1
7

7
0

1

7
8

0

1
7

9
0

1

8
0

0

1
8

1
0

1

8
2

0

1
8

3
0

LD
X

#0

ST

X

E
N

D
FL

A
G

i
R

E
SE

T

EN
D

O

F
PR

O
G

R
A

M

FL
A

G

JM
P

S
T

A
R

T
L

IN
E

i
A

N
D

R

ET
U

R
N

TO

EV

A
L

TO

G
ET

N

EX
T

L
IN

E

i-
--

--
--

--
--

--
--

--
--

--
--

--
-

H
A

N
D

LE

.P

(P
R

IN
T

E
R

)
PS

E
U

D
O

-O
P

-
-
-
-
-
-

P
P

R
IN

T
E

R

LD
A

P

A
S

S
i

O
N

PA

SS

1
,

D
O

N

O

P
R

IN
T

E
R

O

U
T

PU
T

B

EQ

P
U

L
L

IN
E

i
G

ET

R
ID

O

F
R

E
ST

O

F
L

IN
E

A

N
D

G

O

O
N

.
JS

R

O
P

E
N

4
i

PA
SS

2

,
SO

O

PE
N

P

R
IN

T
E

R

TO

H
EA

R

FR
O

M

C
O

M
PU

TE
R

IN

C

P
R

IN
T

F
L

A
G

i
R

A
IS

E

P
R

IN
T

E
R

O

U
T

PU
T

FL

A
G

(S

O

P
R

IN
T

W

IL
L

SE

N
D

B

Y
T

E
S

TO

JS
R

C

L
R

C
H

N
i

TH
E

P
R

IN
T

E
R

A

S
W

EL
L

A
S

TH
E

S
C

R
E

E
N

).

LD
X

#

li

R
E

ST
O

R
E

N

O
RM

A
L

I
/O

JS

R

C
H

K
IN

i-

--
--

--
--

--
--

--
--

--
--

-
SU

C
T

IO
N

R

O
U

T
IN

E
.

G
ET

R

ID

O
F

R
E

ST

O
F

A
 L

IN
E

P

U
L

L
IN

E

JS
R

C

H
A

R
IN

i
IG

N
O

R
E

A

LL

B
Y

T
E

S
,

JU
S

T

L
O

C
A

T
E

N

EX
T

L
IN

E

B
EQ

E

N
D

PU
L

L
i

ZE
R

O

EN
D

O

F
L

IN
E

SH

O
U

LD

G
O

TO

EN

D
PR

O

FO
R

N

EX
T

L
IN

E

CM

P
#

5
8

i
W

H
ER

EA
S

A

C
O

LO
N

EN

D

O
F

L
IN

E

S
K

IP
S

TH

A
T

S
T

E
P

B

EQ

E
N

D
PU

L
R

i
(C

O
L

O
N

)
JM

P
P

U
L

L
IN

E
i

N
E

IT
H

E
R

C

O
LO

N

N
O

R

ZE
R

O

(S
O

PU

L
L

IN

M

O
RE

C

H
A

R
A

C
T

E
R

S)

EN
D

 P
U

L
L

JS

R

EN
D

PR
O

EN

D
PU

LR

P
L

A
i

PU
LL

R

T
S

O
FF

ST

A
C

K

PL
A

LD

X

#0

ST
X

E

N
D

FL
A

G
i

SE
T

EN

D
 F

LA
G

DO

W
N

JM
P

S
T

A
R

T
L

IN
E

i
R

ET
U

R
N

TO

EV

A
L

(T
O

G

ET

N
EX

T
L

IN
E

O

F
SO

U
R

C
E

C
O

D
E

)
i-

--
--

--
--

--
--

--
--

--
--

--
--

-
H

A
N

D
LE

.0

(P

O
K

E

B
Y

T
E

S
TO

R

A
M

)
P

S
E

U
D

O
-O

P

O
PO

N

LD
A

#

4
6

i
P

R
IN

T

.0

JS
R

P

R
IN

T

LD
A

#

7
9

i
"
0

"

JS
R

P

R
IN

T

JS
R

PR

N
T

C
R

i
C

A
R

R
IA

G
E

R

ET
U

R
N

LD

A

#1

ST
A

PO

K
E

FL
A

G
i

R
A

IS
E

PO

K
E

-T
O

-R
A

M

FL
A

G

'"0

'" ('!) =

p.
.

o
.

-....
.....

 o):»

;:)

p.
.

t"'"
' :r ~

p.
.

"'l
i -('!) '"

1
8

4
0

JM

P
P

U
L

L
IN

E
;

IG
N

O
R

E

R
E

ST

O
F

L
IN

E

1
8

5
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.N
(S

O
M

E
T

H
IN

G
),

T
U

R
N

-I
T

-O
F

F

P
S

E
U

D
O

-O
P

S

1
8

6
0

N

IX

LD
A

P

A
S

S
;

O
N

PA

SS

1
,

D
O

N
'T

B

O
T

H
E

R

W
IT

H

A
N

Y

O
F

T
H

IS

1
8

7
0

B

EQ

P
U

L
L

IN
E

1

8
8

0

JS
R

C

H
A

R
IN

;
O

N

PA
SS

2

,
SE

E

W
H

IC
H

T

H
IN

G

IS

B
E

IN
G

TU

R
N

ED

O
FF

1

8
9

0

CM
P

#
8

0
;

IS

IT

".
N

P
"

TO

"N
O

T

P
R

IN
T

TO

P

R
IN

T
E

R
"

1
9

0
0

B

EQ

N
IX

P
R

IN
T

1

9
1

0

CM
P

#
7

9
;

IS

IT

".
N

O
"

TO

"N
O

T
PO

K
E

O
B

JE
C

T

B
Y

T
E

S
TO

R

A
M

"
1

9
2

0

B
EQ

N

IX
O

P
1

9
3

0

CM
P

#
8

3
;

IS

IT

".
N

S
"

TO

"N
O

T
P

R
IN

T

TO

SC
R

E
E

N
"

1
9

4
0

B

EQ

N
IX

SC
R

E
E

N

1
9

5
0

CM

P
#

7
2

;
IS

IT

".

N
H

"
TO

"N

O
T

PR
IN

T
O

U
T

H

E
X

"
(T

H
U

S
SW

IT
C

H

TO

D
E

C
IM

A
L

)
1

9
6

0

B
EQ

N

IX
H

E
X

1

9
7

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

TU
R

N

O
FF

P

R
IN

T
E

R

O
U

T
PU

T

1
9

8
0

N

IX
P

R
IN

T

LD
A

#

4
6

;
P

R
IN

T

".
N

P
"

TO

SC
R

E
E

N

1
9

9
0

JS

R

P
R

IN
T

2

0
0

0

2
0

1
0

2

0
2

0

2
0

3
0

2

0
4

0

2
0

5
0

2

0
6

0

2
0

7
0

2

0
8

0

2
0

9
0

2

1
0

0

2
1

1
0

2

1
2

0

N

2
1

3
0

~

2
1

4
0

LD
A

#

7
8

;
liN

 II

JS
R

P

R
IN

T

LD
A

#

8
0

;
li

p
"

JS
R

P

R
IN

T

JS
R

PR

N
T

C
R

;
C

A
R

R
IA

G
E

R

ET
U

R
N

D

EC

P
R

IN
T

F
L

A
G

;
LO

W
ER

P

R
IN

T
-T

O
-S

C
R

E
E

N

FL
A

G

JS
R

C

L
R

C
H

N
;

TU
R

N

O
FF

P

R
IN

T
E

R

LD
X

#

4

JS
R

C

H
K

O
U

T
LD

A

#
1

3

JS
R

P

R
IN

T

LD
A

#4

JS

R

C
L

O
SE

JS

R

C
LR

C
H

N

LD
X

#

1
;

R
E

ST
O

R
E

N

O
RM

A
L

I/
O

'i:
I '" (!) ~

0
-

0 ~

-. 0 III

::l

0
- t""
' ::l

~

(!
) 0
- :n -(!) '"

N

2
1

5
0

JS

R

C
H

K
IN

'i
j

.....

'"
"'"

2
1

6
0

JM

P
P

U
L

L
IN

E
;

IG
N

O
R

E

R
E

ST

O
F

L
IN

E

(A
N

D

R
ET

U
R

N

TO

E
V

A
L

)
~

~

2
1

7
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

ST
O

P
PO

K
E

IN
G

O

B
JE

C
T

B

Y
T

E
S

TO

RA
M

P

o
2

1
8

0

N
IX

O
P

LD
A

#

4
6

;
P

R
IN

T
"

.N
O

"
0

2
1

9
0

JS

R

P
R

IN
T

.....

....

....
.

2
2

0
0

LD

A

#
7

8
;

liN
"

0
2

2
1

0

JS
R

P

R
IN

T

III

2
2

2
0

LD

A

#
7

9
;

It
O

"
;:l

P

o
2

2
3

0

JS
R

P

R
IN

T

~

2
2

4
0

JS

R

PR
N

T
C

R
;C

A
R

R
IA

G
E

R

ET
U

R
N

;:l

2

2
5

0

LD
A

#

0

::0
;-

~

2
2

6
0

ST

A

PO
K

E
FL

A
G

;
TU

R
N

O

FF

PO
K

E
FL

A
G

P

o
2

2
7

0

J
M

P
P

U
L

L
IN

E
;

IG
N

O
R

E

R
E

ST

O
F

L
IN

E

(A
N

D

R
ET

U
R

N

TO

E
V

A
L

)
'T

J
(S

T
A

R
T

D

E
C

IM
A

L
)

....

2
2

8
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

ST
O

P
H

E
X

PR

IN
T

O
U

T
S

-~
2

2
9

0

N
IX

H
E

X

LD
A

#

4
6

;
P

R
IN

T
"

.N
H

"
'"

2
3

0
0

JS

R

P
R

IN
T

2

3
1

0

LD
A

#

7
8

;
"N

"
2

3
2

0

JS
R

P

R
IN

T

2
3

3
0

LD

A

#
7

2
;

"H
"

2
3

4
0

JS

R

P
R

IN
T

2

3
5

0

JS
R

PR

N
T

C
R

;
C

A
R

R
IA

G
E

R

ET
U

R
N

2

3
6

0

LD
A

#0

2

3
7

0

ST
A

H

X
FL

A
G

;
PU

T
H

EX
FL

A
G

DO

W
N

2
3

8
0

JM

P
P

U
L

L
IN

E
;

IG
N

O
R

E

R
E

ST

O
F

L
IN

E

(A
N

D

R
ET

U
R

N

TO

E
V

A
L

)
2

3
9

0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

ST
O

P
SC

R
E

E
N

PR

IN
T

O
U

T
S

2
4

0
0

N

IX
SC

R
E

E
N

LD

A

#
4

6
;

P
R

IN
T

".

N
S

"
2

4
1

0

JS
R

P

R
IN

T

2
4

2
0

LD

A

#
7

8
;

"N
il

2
4

3
0

JS

R

P
R

IN
T

2

4
4

0

LD
A

#

8
3

;
li

S
"

2
4

5
0

JS

R

P
R

IN
T

2
4

6
0

2

4
7

0

2
4

8
0

2

4
9

0

2
5

0
0

2

5
1

0

2
5

2
0

2

5
3

0

2
5

4
0

2

5
5

0

2
5

6
0

2

5
7

0

2
5

8
0

2

5
9

0

2
6

0
0

2

6
1

0

2
6

2
0

2

6
3

0

2
6

4
0

2

6
5

0

2
6

6
0

2

6
7

0

2
6

8
0

2

6
9

0

2
7

0
0

2

7
1

0

2
7

2
0

2

7
3

0

2
7

4
0

IV

2

7
5

0

.....
.

V
I

2
7

6
0

JS
R

PR

N
T

C
R

;C
A

R
R

IA
G

E

R
ET

U
R

N

LD
A

#

0

ST
A

S

F
L

A
G

;
PU

T
DO

W
N

SC
R

E
E

N

PR
IN

T
O

U
T

FL

A
G

JM

P
P

U
L

L
IN

E
;

IG
N

O
R

E

R
E

ST

O
F

L
IN

E

(A
N

D

R
ET

U
R

N

TO

E
V

A
L

)
;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

D
IS

K

ER
R

O
R

D

E
T

E
C

T
IO

N

R
O

U
T

IN
E

-
-
-
-
-
-
-

D
IS

E
R

R

LD
X

S

T
;

C
H

EC
K

D

IS
K

ST

A
T

U
S

V
A

R
IA

B
L

E

(C
O

M
PU

T
E

R

S
P

E
C

IF
IC

)
B

N
E

M
O

D
IE

R
;

IF

N
O

T
Z

E
R

O
,

T
H

E
R

E

IS

SO
M

E
FA

U
L

T

IN

TH
E

D
IS

K

I/
O

R

T
S

;-
--

--
--

--
-

M
O

D
IE

R

LD
A

#

0
;

P
R

IN
T

O

U
T

ER
R

O
R

M

ES
SA

G
E

JS
R

PR

N
TN

U
M

JS

R

PR
N

T
SP

A
C

E

LD
A

#<

M
D

IS
E

R

ST
A

T

E
M

P;

PO
IN

T

TO

D
IS

K

ER
R

O
R

M

ES
SA

G
E

LD
A

#>

M
D

IS
E

R

ST
A

T

E
M

P+
1

JS
R

E

R
R

IN
G

;
R

IN
G

B

E
L

L

JS
R

PR

N
T

M
E

SS
;

P
R

IN
T

ER

R
O

R

M
ES

SA
G

E
PL

A
;

PU
L

L

R
TS

O

FF

ST
A

C
K

PL

A

JM
P

F
IN

;
SH

U
T

DO
W

N
E

N
T

IR
E

LA

D
S

O
PE

R
A

T
IO

N

;-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.S

PS
E

U
D

O
-O

P
(T

U
R

N

O
N

SC

R
E

E
N

P

R
IN

T
O

U
T

)
S

C
R

E
IN

LD

A

#
4

6
;

P
R

IN
T

"
.S

"

JS
R

P

R
IN

T

LD
A

#

8
3

;
U

S"

JS
R

P

R
IN

T

JS
R

PR

N
T

C
R

;
C

A
R

R
IA

G
E

R

ET
U

R
N

LD

A

P
A

S
S

;
O

N

PA
SS

1

,
N

O

SC
R

E
E

N

PR
IN

T
O

U
T

B

EQ

SC
R

E
X

LD

A

#
1

;
O

T
H

E
R

W
IS

E
,

R
A

IS
E

SC

R
E

E
N

PR

IN
T

O
U

T

(L
IS

T
IN

G
)

FL
A

G

ST
A

SF

L
A

G

SC
R

E
X

JM

P
P

U
L

L
IN

E
;

IG
N

O
R

E

R
E

ST

O
F

L
IN

E

(A
N

D

R
ET

U
R

N

TO

E
V

A
L

)

""0

'" ~ c:: 0
- o

'-
-.

 o Pl
 ::I

0
-

r
' 5·
 ?r 0

-
'"n

 -~ '"

tv

.....
..

Q
'\

2
7

7
0

~
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
A

N
D

LE

.H

P
S

E
U

D
O

-O
P

(H

E
X

N

U
M

B
ER

S
D

U
R

IN
G

P

R
IN

T
O

U
T

)
2

7
8

0

H
E

X
IT

LD

A

#
4
6
~

P
R

IN
T

".

H
"

2
7

9
0

2

8
0

0

2
8

1
0

2

8
2

0

2
8

3
0

JS
R

P

R
IN

T

LD
A

#
7
2
~

JS
R

P

R
IN

T

JS
R

P
R
N
T
C
R
~

LD
A

#1

"H
I'

C
A

R
R

IA
G

E

R
ET

U
R

N

2
8

4
0

ST

A

H
X
F
L
A
G
~

SE
T

H

EX
FL

A
G

U

P
2

8
5

0

JM
P

P
U
L
L
I
N
E
~

IG
N

O
R

E

R
E

ST

O
F

L
IN

E

(A
N

D

R
ET

U
R

N

TO

E
V

A
L

)
2

8
6

0

.F
IL

E

T
A

B
L

E
S

P
ro

g
ra

m
 8

-2
.

P
se

u
d

o
,

A
p

p
le

 M
o

d
if

ic
at

io
n

s

To
 c

re
at

e
th

e
A

pp
le

 v
er

si
on

 o
f

P
se

ud
o

, o
m

it
 li

ne
s

12
30

-1
34

0
an

d
 l

in
es

25

00
-2

65
0

fr
om

P

ro
gr

am

8-
1

an
d

ch

an
ge

th

e
fo

ll
ow

in
g

lin
es

:
1

1
0

P

S
E

1
CM

P
#
6
9
~

IS

IT

.E
N

D

9
6

0

JS
R

F
I
L
E
~

G
ET

F

IL
E

N
A

M
E

,
ET

C
.

JU
S

T

A
S

.F
IL

E

P
S

E
U

D
O

-O
P

D

O
ES

1

0
0

2

S
E
C
~

SA
V

E
LE

N
G

TH

O
F

F
IL

E

1
0

0
3

LD

A

S
A
~

FO
R

T

H
IR

D

A
N

D

FO
U

R
TH

1

0
0

4

SB
C

T
A
~

B
Y

T
E

S
O

F
B

IN
A

R
Y

F

IL
E

1

0
0

5

ST
A

L
E
N
P
T
R
~

C
R

EA
TE

D

BY

.D

1
0

0
6

LD

A

S
A
+
1
~

PS
E

U
D

O
-O

P
1

0
0

7

SB
C

T

A
+1

1

0
0

8

ST
A

L

E
N

P
T

R
+

1
1

3
5

0

P
O

I
ST

Y

FN
A

l'1
EL

EN

1
4

5
5

LD

A

L
E
N
P
T
R
~

W
R

IT
E

LE

N
G

TH

O
F

1
4

5
6

JS

R

P
R
I
N
T
~

B
IN

A
R

Y

F
IL

E

1
4

5
7

LD

A

L
E

N
P

T
R

+
1

~

'" t'n c:: 0
- o '"""

"'
-.

. o ~ 0
- r: ::l
 ~

0
-

'T
j -t'n 'I

l

IV

.....

"
l

1
4

5
8

JS

R

P
R

IN
T

1

4
9

0

P
ro

gr
am

 8
·3

.
P

se
u

d
o,

 A
ta

ri
 M

od
if

ic
at

io
n

s

To
 c

re
at

e
th

e
A

ta
ri

 v
er

si
on

 o
f

P
se

ud
o,

 o
m

it
 l

in
es

 1
23

0-
13

40

an
d

li
ne

s
14

00
-1

45
0

fr
om

P

ro
gr

am

8-
1

an
d

ch
an

ge

th
e

fo
llo

w
in

g
lin

es
:

1
(~

I
;

A
 T

A
R

 j
1"1

 0
 D

 ;-
F

I
e
 A

 T
 I

O
N

 '3
 -

--
F'

 S
 E

 U
 D

 0

1
1

 Q
I

F
'S

E
 1

C

t1
F

'
#

::
'9

5

8
i21

6
7
~

,
C

F
'Y

F

N
A

i'l
E

U
,N

68

12
1

B
N

E

F
 I

 L
O

7

8
il
l

7
9

1
11

8

!il
 11

1
9

6
i2

1

J
S

F
:

F
IL

E

H
il

il
!

L
D

A

S
A

l~

:I
;.

'I
L

S
T

A

L
L

S
A

1

(?
(21

 3

L
D

 ;"
,

S
A

 +
 1

1(
11

21
4

S
T

A

L
L

3
A

+
l

2
5

1
0

D

IS
E

R
R

L

D
j

$
0

3
6

3

2
5

3
0

.F

IL
E

D
:
V
E
R
~
A
L

.
S
R
C

'"0

C
Il

(l
) t:: p.
.

o
.

'-
..

o III

::l

p.

.

t'"'
" ~ p.
.

'T
j -(l) C

Il

Tables:
Data, Messages, Variables

Computers are information processors. Data is another word
for information. This points up the difference between the two
distinct sections of any computer program: code and data. The
code, or program proper, is a list of actions for the computer
to take. The data is the information upon which those actions
are based.

Data is usually separated from the code; it might even be
outside the computer. Sometimes data is on a disk file, some
times on tape, sometimes in the user's brain, as when a pro
gram halts and asks for input from a keyboard. In all of these
cases, though, the code is segregated from the data which it
processes.

An Odd Duck
LADS processes source code, turning it into runnable object
code. It takes a list of actions like LOA #75:STA SCREEN and
turns them into computer-understandable machine language
object programs.

LADS gets its data from two sources, a disk source code
file (or source code in RAM) and also from the Tables sub
program. Tables isn't really a subprogram, of course. We're
forced to call it that because there isn't a better word. It's
really an odd duck. There are no commands to the computer
within Tables. It's pure information. Essential information,
true, but there are no ML instructions in Tables. Just defi
nitions, messages, pointers, buffers, flags, and registers. LADS
couldn't operate without them, but they're not active program
ming instructions-they're for reference .

Three Parallel Tables
Tables starts out, appropriately enough, with three parallel ta
bles: MNEMONICS, TYPES, and OPS. Each table contains 56
pieces of information. MNEMONICS holds the names of all
the 6502 mnemonics like LOA and INY. TYPES identifies the
category of each mnemonic (we'll get to this in a minute). And
OPS provides an opcode for each category. To see how these
three tables work together, let's look at the first item in the
first table, the mnemonic LOA.

221

Tables: Data, Messages, Variables

In your machine language programming, you might want
to load the Accumulator with the number 1. You would write:
100 LDA #1

The computer wouldn't grasp the meaning of the ASCII
characters L-D-A-#-l at all. They're for our convenience, not
its.

We think alphabetically or alphanumerically. It thinks
binarily. It wants pure numbers . The CPU, the "thinking" part
of the 6502 chip, takes action according to a code of its own,
but this code isn't the ASCII code. It's an opcode, an opera
tions code. The CPU will place a number into the Accu
mulator, the A Register, if it comes across any of the following
numbers: 161, 165, 169, 173, 177, 181, 185, or 189. Each of
these numbers is an opcode for LDA. But each one loads from
a different place. The different numbers represent the opcodes
for the eight different addressing modes available to LDA. They
are:
Addressing
Mode's Name
Immediate
Zero Page
Zero Page,X
Zero Page,X (indirect)
Zero Page, Y (indirect)
Absolute
Absolute,Y
Absolute,X

Example Opcode
LDA #15 169
LDA 15 165
LDA 15,X 181
LDA (15,X) 161
LDA (15),Y 177
LDA 1500 173
LDA 1500,Y 185
LDA 1500,X 189

Most of the mnemonics can use a variety of addressing
modes. LDA can be addressed these eight ways, LDY can be
addressed five ways, and so on. That's where TYPES comes
in. There are ten TYPES, and each opcode falls into one of the
ten categories. Mnemonics are grouped according to their
addressing mode's similarities. The mnemonics cluster into
TYPES according to the way that they can be addressed:
Type 0:
RTS, INY, DEY, DE X, INX, SEC,
CLC, TAX, TAY, TXA, TYA, PHA,
PLA, BRK, CLD, CLI, PHP, PLP,
RTI, SED, SEI, TSX, TXS, CLV
NOP

222

Tables: Data, Messages, Variables

(Each of these mnemonics takes up only one byte in memory;
each is only capable of Implied addressing-they have no
argument, no address .)

Type 1:
LDA, CMP, STA, SBe, ADC, AND,
ORA, EOR

(Type 1 mnemonics have the largest number of possible
addressing modes, eight. See the list for LOA above.)
Type 2:
STY, STX, DEe, INC

(These are fairly restricted in their addressing options. STY has
only three possibilities: Absolute, Zero Page, and Zero Page,X.
STX can perform only Absolute, Zero Page, and Zero Page,Y
[it's the only one which can use this Zero Y mode]. OEC and
INC can do Absolute; Zero Page; Zero Page,X; and
Absolute,X.)
Type 3:
ROL, ROR, LSR, ASL

(These are the bit-shifting, "logical" instructions. They can be
addressed in the following modes: Absolute; Zero Page; Zero
Page,X; Absolute,X; and one which is reserved for them alone,
Accumulator mode. In that mode, the number held in the
Accumulator is acted upon.)
Type 4:
CPY, CPX

(The compare X or Y can use Immediate, Absolute, or Zero
Page modes.)
Type 5:
LDY, LDX

(These loads are more restricted in their addressing possibil
ities than LOA. LOX can use Immediate; Absolute; Zero Page;
Absolute,Y; and Zero Page,Y. LOY can use Immediate; Ab
solute; Zero Page; Zero Page,X; and Absolute,X. Notice that
they cannot index themselves; ,X modes are possible only with
LOY and vice versa .)
Type 6:
JMP

(This is a special case; it stands alone . It has two ways of
addressing: the extremely common Absolute mode and the ex-

223

Tables: Data, Messages, Variables

tremely rare Indirect mode, JMP (via this). Because most
programming contains many JMPs, it should have its own
category. Also, the only other mnemonic which is essentially
limited to Absolute addressing is J5R, and it gets a category all
to itself as well.)
Type 7:
BIT

(This one is also an oddity. It too needs a category all its own.
BIT can use only Absolute or Zero Page addressing.)
Type 8:
BCS, BEQ, BCe BNE, BMI, BPL,
BVC, BVS

(All the branch instructions collect together as type 8. They
have only one addressing mode, Relative, and they are the
only instructions which can use this mode.)
Type 9:
JSR

(It can only Absolute address.)
Each of these groups derives from the arrangement of the

opcodes. The patterns are more easily visualized if you look at
the opcodes laid out in a table according to their numeric
values.

224

N

N

U
1

T
ab

le
 9

,1
.

T
ab

le
 o

f
O

p
co

d
es

I.
S

I)

M
S

D

B
R

K

O
R

A
 I

N
D

.X

B
P

l
O

R
A

 I
N

D
.Y

)S
R

A

N
D

 I
N

D
.X

ni

t
Z

 r
,l
~l

'

B
M

I
A

N
D

 I
N

D
.Y

R
T

I
E

O
R

 I
N

D
.X

U
V

C

E
O

R
 I

N
D

.Y

In
s

A
D

C
 I

N
D

.X

U
V

S

A
D

C
 I

N
D

.Y

S
T

A
.I

N
D

 X

ST
Y

 Z
 P

ag
l'

UC
C

S

T
A

 I
N

D
.Y

S

T
Y

 Z
 P

a
gl

'.
X

A

L
D

Y
 I

M
M

LD

A
 I

N
D

.X

LO
X

 I
M

M

lD
Y

 Z
 P

.lg
C

BC
S

lD

A
 I

N
D

.Y

L
O

Y
 Z

 P
ag

l·
.X

C

C
P

Y
 I

M
M

C

M
p

 I
N

D
.X

C

ry
 Z

 P
ag

e

D

B
N

E

C
M

p
IN

D
.Y

C
P

X
 I

M
M

S

B
C

 I
N

D
.X

C

P
X

 Z
 P

ag
e

B
E

G

S
B

C
 I

N
D

.Y

O
IU

\
Z

 P
ag

e
A

S
I.

Z
 r

.l
gl

·
P

H
I'

O
R

A
 Z

 P
ag

e.
 X

 A
S

L
 Z

 r
.lg

t"

X

C
I.C

A
N

D
 Z

 r
J~
(,

I~
O
L
 Z

 P
ag

l'
1'1

.1
'

A
N

D
 Z

 P
.lg

C
.X

R

O
I..

 Z
 [
\l

~l
'.

X
S

E
C

E
O

R
 Z

 r
ag

l'
1.5

"
Z

 P
J~

l'

P
H

"

E
O

R
 Z

 P
ag

e,
 X

1.S

I{
Z

 P
i1

).;
l'.

X

C
I.

I

J\
D

C
 Z

 P
J~

l'

R
O

R
 Z

 f
'J

).
;l

'
I'

I.
A

A
D

C
 Z

 P
Jg

l',
X

R

O
I<

 Z
 P

,l)
.;l

',
X

S

EI

ST
A

 Z
 P

ag
e

S
T

X
 Z

 P
ag

t'
D

E
Y

S
T

A
 Z

 P
ag

e.
X

S

T
X

 Z
 P

ag
l',

Y

T
Y

A

L
O

A
 Z

 P
ag

e
LO

X
 Z

 P
ag

l'
T

A
Y

L
O

A
 Z

 r
.l

g(
"X

I.

D
X

z

ra
g"

,Y

C
I.V

C
M

P
 Z

 P
ag

e
D

E
C

 Z
 P

ag
t'

IN
Y

C
M

p
Z

 P
ag

e.
X

D

E
C

 Z
 P

ag
c

.X

C
l

D

S
B

C
 Z

 P
ag

e
IN

C
 Z

 P
ag

e
IN

X

S
B

C
 Z

 P
ag

e.
X

IN

C
 Z

 P
ag

e.
X

SE

D
_

A

C

O
R

A
 I

M
M

;\

S
L

 ,\

O
llA

 A
U

S
.Y

A
N

D
 I

M
M

R

O
L

A

B
IT

 A
B

S

A
N

D
 A

BS
.Y

lU
I<

 [
M

M

IS
R

 A

IM
P

 A
il

S

EO
R

 A
ilS

 Y

A
IX

I M

M

R
O

R
 ,

\
)M

I'
IN

D

A
D

C
 A

Il
S

.Y

T
X

A

S
T

Y
 A

B
S

S
T

A
 A

B
S.

Y

T
XS

I.
D

A
 I

M
M

TA

X

L
D

Y
 A

B
S

L
O

A
 "

OS
,V

,

T
S

X

W
Y

 A
B

S
.X

C
M

p
 I

M
M

D

E
X

C

P
Y

 A
B

S

C
M

p
 A

B
S

.Y

S
BC

 I
M

M

N
O

P

C
P

X
 A

B
S

S
S

C
 A

B
S

.Y

-

0

O
R

A
 A

BS

A
5

1.
 A

S
S

O
R

A
 A

B
S

.X

A
S

l
A

B
S

.X

.. \
N

O
 ..

 \B
S

R
O

L
 A

S
S

A
N

D
 A

S
S.

X

IW
L

 A
B

S
.X

E
O

ll
A

B
S

IS

H
 A

US

E
O

ll
A

U
S

.X

I.S
R

 A
I3S

,X

A
I)
(
 A

U
S

R

O
R

 A
il

S

,\
D

C
 A

U
S

.X

lO
ll
 A

B
S

.X

S
TA

A

il
S

S

TX
.A

B
S

S
TA

A

U
S

.X

I.
D

A
 A

B
S

l

O
X

 A
ilS

L
O

A
 A

B
S

,X

LO
X

 A
Il

S
.Y

C
M

p
 A

B
S

D

E
C

 A
B

S

e
M

P
 A

B
S

,X

D
E

C
 A

B
S

.X

S
Il

C
 A

B
S

IN

C
 A

B
S

S
BC

 A
B

S
.X

IN

C
 A

B
S

.X

lS
I)

\1
5

0

A

C

D
 F

!

~ -rt> 'f
>

 o ~

.?'
 ~

rt>

(I
>

(I

>

~

IJQ

rt>

(I
>

 ~ '1
 ~ (b

(I
>

Tables: Data, Messages, Variables

Notice the relationship between LDA (IS,X) and LDA
#IS. The former has an opcode of 161; the latter, 169. As the
Eval subprogram goes through the source code line, it is look
ing for clues to the addressing mode: Is there a #, a comma, a
parenthesis, an X, or a Y?

Each of these things, combined with the TYPE, tells Eval
when to raise the value of the original opcode (let's call it the
base apcade) assigned to the mnemonic from the OPS table. If
Eval finds a # symbol, it adds 8 to the base opcode and goes
right to the TWOS exit. It knows then that this opcode should
be 169 (161 + 8) and that there will be two bytes to assemble:
Immediate mode addressing uses two bytes. (All the other
mnemonics grouped with LOA as type 1 will also add 8 to
their base opcodes to signify their Immediate addressing
modes .)

The base opcodes are in that third table called OPS (190).
The Eval subprogram looks up each mnemonic in the
MNEMONICS table, and then the numbers extracted from the
TYPES and OPS tables are stored in the variables TYPE and
OP for future reference . Finally, Eval starts looking for those #
and) clues within the source code line. These clues cause Eval
to add 4 or 8 or 16 or sometimes even 24 to the base opcode.
This adjusts the base opcode upward so it will eventually be
come the correct opcode for the addressing mode being used.

CMP is grouped with LOA as a type 1 mnemonic. That's
because a # will add 8 to either of their base opcodes and result
in the correct, final opcode for Immediate addressing. The base
opcode for CMP is 193, which, unadjusted, would stand for
CMP (IS,X). If we come upon a # following the CMP, how
ever, 8 is added to the 193, giving 201, the correct opcode for
CMP #IS. Then Eval would JMP to TWOS and conclude
assembly of that line of source code.

In each case, the base opcode in the OPS table is the low
est possible opcode number from among the addressing mode
options available to each mnemonic. As the evaluation process
proceeds throughout the Eval subprogram, the discovery of the
various addressing modes triggers additions to the base opcode.
In the end, when Eval finally releases a source code line, the
right opcode has been achieved.

Returning to the data within the Tables subprogram, we
next come upon the little HEXA table (270). It lists all the digits
found in hexadecimal numbers. It's used as a lookup table

226

Tables: Data, Messages, Variables

when LADS translates an internal two-byte integer into a print
able, readable ASCII hexadecimal number like F-F-D-2.

The Six Bufferettes
Here are the buffers (290-340). They are constantly being filled
with a source code line, evaluated, and then cleaned off by be
ing filled with zeros. They are separated into six different
bufferettes primarily for the programmer's benefit. It's easier to
visualize different actions if the buffers have different names.

LABEL is the main buffer-every source code line comes
into it. BUFFER is where arguments are sent for further study.
The rest of them are used for special-purpose analysis. Things
like hex numbers are moved up to HEXBUF, for example, so
they will be isolated from other characters and can be
translated.

One other buffer, distant from the rest, is needed. LADS
stores comments (remarks following semicolons in the source
code) into a buffer normally used by BASIC to hold program
lines. The location of this buffer depends on each computer's
memory organization and so it is defined in the Defs
subprogram.

The computer's Accumulator and Y and X are called reg
isters. They're like hypervariables inside the 6502 chip-they
are constantly changing. Calling them registers serves to distin
guish them from program-created variables or other special
locations within the computer. The three variables RADD,
VREND, and TSTORE are called registers in LADS. That's
largely the result of whimsy. There are as yet no established
conventions concerning how to describe storage areas in ML
programming. In this book we're variously referring to these
set-aside bytes as flags, variables, registers, pointers, vectors,
etc. (See Chapter 1).

In reality, they're all pretty much the same thing: Just some
RAM memory space we've allocated with the .BYTE pseudo-op
(or identified in zero page by definition using the = pseudo-op
like STATUS = $FD). But it's nice to use various terms. It
helps to remember things and, sometimes, it even helps to de
scribe the purpose or function of a particular variable. Pointers,
for example, are always associated with the Indirect Y address
ing mode-LDA (POINTER),Y. They point to some address in
RAM.

227

Tables: Data, Messages, Variables

Registers Used by Valdec
Anyway, these three variables are described (350) as registers.
RADD holds numbers being added to other numbers. VREND
holds the length of the ASCII version of a number while it's
being turned into an integer. TSTORE holds the interim results
of multiplication. All three " registers" are used by the Valdec
subprogram.

Lines 400-460 contain the various error messages. Note
that each one ends with .BYTE 0 to stick a delimiting 0 in after
the message itself. This 0 tells PRNTMESS (the subroutine in
the Printops subprogram which prints messages) where to stop.

The rest of Tables contains variables, pointers, and reg
isters. Notice that there are no zero page variables here. Zero
page variables, pointers especially, are most useful for Indirect
Y addressing, but you won't need too many of them. In fact,
you won't be allowed to use much of zero page because it is so
popular with your computer's operating systems and languages.
But the most important thing to remember about any zero page
space that you do use is : Zero page variables must be defined at
the start of your assembler source code. They are unique in this.
Any other equates can be defined anywhere in the source code.
And, of course, the address-type PC variables or labels can be
defined anywhere.

OP and TYPE are variables which hold information about
the mnemonic currently under investigation during assembly.
After a mnemonic is located in the MNEMONIC table, the
matching TYPE and base opcode are pulled out of their tables
and stored into the variables OP and TP for later reference
(480-490). TA is the permanent storage area for the start ad
dress of assembly, the original * =.

Source Code Line Numbers
LINEN holds the source code line number of whatever physical
line is currently being assembled. ENDFLAG tells Eval when to
shut down assembly. It is incremented by the .END pseudo-op.
WORK is used by several routines within LADS as a conve
nient place to temporarily leave two-byte values.

RESULT is an important variable. It holds the argument of
each opcode. When an argument (expression-type) label like
STA HERE is encountered, the label HERE is looked up by the
subprogram Array and the integer value of the word HERE is
placed into RESULT. When a hex argument like STA $1500

228

Tables: Data, Messages, Variables

comes in from the source code, the subprogram Indisk trans
lates the characters $1500 into an integer value and stores that
value in RESULT. Likewise, a decimal argument like STA 5376
is sent to RESULT after it's evaluated in the Eval subprogram.
For every addressing mode which has an argument, the argu
ment is stored in RESULT after it's been evaluated.

ARGSIZE holds the length of each argument, how many
characters long it is. For example, ARGSIZE would hold a 7 for
the argument in LDA (155),Y since (155),Y is seven characters
long. It is used in the Eval subprogram in lines 1670, 2250,
2750, and 3020.

EXPRESSF is a flag which shows whether or not there is a
label being used as an argument. LDA 15 would leave
EXPRESSF down. LDA NAME would set it up. It is used in the
Eval subprogram at lines 740, 1470, 1510, 1590, and 1700.

HEXFLAG tells the Eval subprogram whether or not it
must calculate a decimal argument. Hex arguments are cal
culated (and left in RESULT) by the Indisk subprogram. Deci
mal arguments, however, need to be worked out by Eval.
HEXFLAG is used in lines 550 and 1680 in Eval.

HEXLEN holds the length of a hex number. It is used in
Indisk in lines 2170, 2240, and 2490.

KEYNUM holds the position of a keyword (a BASIC com
mand) in the table of keywords in ROM BASIC. It is used in
Indisk in 1060, 1080, 4260, and 4280.

LABSIZE is used in the Equate subprogram to hold the
number of characters in an equate-type label (such as NAME
22). It is used in lines 120, 160, and 410.

LABPTR is also used by Equate. It points to the position in
the label array where the integer value of a label should be
stored. It is found in lines 600 and 750.

ARRAYTOP points to the highest byte in the label array. It
is where we start any search through the labels. Identical to TA,
ARRAYTOP also represents the start of the LADS assembler in
memory, minus one. It is used in Equate in lines 110 and 150
and in Array in lines 30 and 50.

A List of Flags and Variables
BUFLAG goes up when a line of source code contains # or (.
These symbols are important when determining addressing
mode, but must be ignored in evaluating arguments (the nu
meric value of the expression). This flag is used in lines 470

229

Tables: Data, Messages, Variables

and 1020 in Array and in lines 750 and 1400 in Eval.
PASS is used frequently throughout the entire LADS pro

gram-it shows which pass we're currently on during assem
bly. A 0 in PASS signifies pass 1; a 1 represents pass 2.

The three variables A, X, and Yare often called upon to
temporarily hold the values in the 6502 registers after which
they were named. They are temporary storage areas.

PT is a temporary storage area to hold the PARRAY dy
namic pointer in the Array subprogram.

BNUMFLAG and BFLAG are used in the evaluation of the
.BYTE pseudo-op in the Indisk subprogram.

ADDNUM holds the value of the number following the
+ pseudo-op. For example, it would hold 78 if this were the
source code: LDA LABEL+78.

The PLUS FLAG shows that there is something in the
ADONUM variable which must be added to the label in an
argument. It shows that the + pseudo-op appears in the cur
rent source code line.

BYTEFLAG shows that the < or > pseudo-op appears in
the current source code line. It is an odd flag in that it has
more than two states. It can be 0 indicating no < or >. And it
can be 1 or 2 to distinguish between < and>.

DISKFLAG means the .0 NAME pseudo-op was activated
and so object code should be sent to a disk object file to create
a runnable ML program.

PRINTFLAG means the .P pseudo-op was activated and a
listing should go to the printer for a hard copy record of
assembly.

POKEFLAG means the .0 pseudo-op was activated and
all object code generated by assembly should be POKEd into
RAM memory.

COLFLAG is used in the Indisk subprogram to show that
the previously assembled line of source code ended with a co
lon rather than a 0 (end of physical line) . It tells Indisk not to
look for a new source code line number.

FOUNOFLAG goes up when the same word is found
more than once within the label array, proving that a label has
been redefined. That's illegal and results in an error message.
This flag is used in the Array subprogram.

230

Tables: Data, Messages , Variables

SFLAG means the .S pseudo-op is being used and a vis
ible listing of source and object code should appear on the
screen during assembly.

HXFLAG responds to the .H pseudo-op. If set (that's the
default, the normal start-up condition in LADS), all opcodes
and arguments are printed (to screen or printer) in hexadeci
mal. HXFLAG is turned off by the .NH (no hex) pseudo-op
and causes opcodes and arguments to be printed as decimal
numbers .

LOCFLAG, when set, tells the printout routines within
the Eval subprogram that they need to print a PC address-type
label. For example, a line like:
100 START LOA #GREEN

requires special handling so that the address-type label START
will be printed on screen or printer in the correct format (or
that it will be printed at all). LOCFLAG is used in Eval in lines
790, 1210, and 3510.

BABFLAG shows that there is a semicolon on a line of
source code. It signifies that a REMark, a comment, appears on
this line. It tells the printout routines that there is a comment
which must also be printed on the screen or the printer
following the printout of the business part of a line.

231

~

P
ro

gr
am

 9
,1

.
T

ab
le

s
tv

1

0

"T
A

B
L

E
S

"
1

5

2
0

T

A
B

L
E

O

F
M

N
EM

O
N

IC
S

A
N

D

PA
R

A
L

L
E

L

T
A

B
L

E

O
F

O
PC

O
D

E
/A

D
D

R
E

SS

T
Y

PE

D
A

TA

3
0

B

U
FF

E
R

S
A

N
D

M

E
SS

A
G

E
S,

F

L
A

G
S

,
P

O
IN

T
E

R
S

,
R

E
G

IS
T

E
R

S

4
0

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

M
N

E
M

O
N

IC
S,

T

Y
P

E
S

,
A

D
D

R
E

SS

M
O

D
E

O
PC

O
D

E
S

5
0

M

N
EM

O
N

IC
S

.B
Y

T
E

"L

D
A

L
D

Y
JS

R
R

T
SB

C
SB

E
Q

B
C

C
C

M
P

6
0

.B

Y
T

E

"B
N

E
L

D
X

JM
PS

T
A

ST
Y

ST
X

IN
Y

D
E

Y

7
0

.B

Y
T

E

"D
E

X
D

E
C

IN
X

IN
C

C
P

Y
C

P
X

S
B

C
S

E
C

8

0

.B
Y

T
E

"A

D
C

C
L

C
T

A
X

T
A

Y
T

X
A

T
Y

A
PH

A
PL

A

9
0

.B

Y
T

E

"B
R

K
B

M
IB

PL
A

N
D

O
R

A
E

O
R

B
IT

B
V

C

1
0

0

.B
Y

T
E

"B

V
SR

O
L

R
O

R
L

SR
C

L
D

C
L

IA
SL

PH
P

1
1

0

.B
Y

T
E

"P

L
P

R
T

IS
E

D
S

E
IT

S
X

T
X

S
C

L
V

N
O

P

1
2

0

T
Y

PE
S

.B
Y

TE

1
5

9
0

8
8

8
1

1
3

0

.B
Y

T
E

8

5
6

1
2

2
0

0
1

4
0

.B

Y
T

E

0
2

0
2

4
4

1
0

1
5

0

.B
Y

T
E

1

0
0

0
0

0
0

0
1

6
0

.B

Y
T

E

0
8

8
1

1
1

7
8

1
7

0

.B
Y

T
E

8

3
3

3
0

0
3

0
1

8
0

.B

Y
T

E

0
0

0
0

0
0

0
0

1
9

0

O
PS

.B

Y
T

E

1
6

1

1
6

0

3
2

9

6

1
7

6

2
4

0

1
4

4

1
9

3

2
0

0

.B
Y

TE

2
0

8

1
6

2

76

1
2

9

1
3

2

1
3

4

2
0

0

1
3

6

2
1

0

.B
Y

T
E

2

0
2

1

9
8

2

3
2

2

3
0

1

9
2

2

2
4

2

2
5

5

6

2
2

0

.B
Y

T
E

9

7

2
4

1

7
0

1

6
8

1

3
8

1

5
2

7

2

1
0

4

2
3

0

.B
Y

T
E

0

4
8

1

6

3
3

1

6
5

3

6

8
0

2

4
0

.B

Y
T

E

1
1

2

3
4

9

8

6
6

2

1
6

8

8

2
8

2
5

0

.B
Y

T
E

4

0

6
4

2

4
8

1

2
0

1

8
6

1

5
4

1

8
4

2

3
4

2

6
0

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

H
EX

R

O
U

T
IN

E

T
A

B
L

E

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
7

0

H
EX

A

.B
Y

T
E

"0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F
"

2
8

0

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

B
U

FF
E

R
S

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

~ -~ '" tj

~

? ~

~
 '" '" ~ (J

Q

~
 '" ~ '1
 ~ 0
'"

 -~ '"

N

U
J

U
J

2
9

0

L
A

B
E

L

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
0

0

B
U

FF
E

R

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

1
0

BU

FM

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

2
0

H

EX
B

U
F

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
3

0

F
IL

E
N

.B

Y
T

E

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

4
0

N

U
B

U
F

.B
Y

T
E

0

0
0

0
0

0
0

3
5

0

;
-
-
-
-
-

R
E

G
IS

T
E

R
S

U

SE
D

B

Y

V
A

LD
EC

-
-
-
-
-
-
-

3
6

0

RA
D

D

.B
Y

T
E

0

0;
T

E
M

PO
R

A
R

Y

R
E

G
IS

T
E

R

FO
R

D

O
U

B
LE

A

D
D

IT
IO

N

3
7

0

V
R

EN
D

.B

Y
T

E

0
;

TE
M

P
R

EG

TO

H
O

LD

EN
D

O

F
PR

O
G

R
A

M

C
O

U
N

TE
R

3

8
0

T

ST
O

R
E

.B

Y
T

E

0
0

;
TE

M
PO

R
A

R
Y

R

E
G

IS
T

E
R

FO

R

M
U

L
T

IP
L

Y

3
9

0

;
-
-
-
-

M
E

SS
A

G
E

S
TO

P

R
IN

T

TO

SC
R

E
E

N

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
0

0

M
N

O
ST

A
R

T
.B

Y
T

E

"N
O

ST

A
R

T

A
D

D
R

E
S

S
":

.B
Y

T
E

0

4
1

0

M
BO

R
.B

Y
T

E

,,
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

B
R

A
N

C
H

O

U
T

O
F

R
A

N
G

E
":

.B
Y

T
E

0

4
2

0

N
O

LA
B

.B

Y
T

E

"U
N

D
E

FI
N

E
D

L

A
B

E
L

":
.B

Y
T

E

0
4

3
0

N

O
A

RG

.B
Y

T
E

"

N
A

K
ED

L

A
B

E
L

":
.B

Y
T

E

0
4

4
0

M

D
IS

E
R

.B

Y
T

E

"
«

«
«

«

D
IS

K

ER
R

O
R

»

»
»

»

":
.B

Y
T

E

0
4

5
0

M

D
U

PL
A

B

. B
Y

TE

"
-
-

D
U

PL
IC

A
T

E
D

L

A
B

E
L

-
-

"
:.

 B
Y

TE

0
4

6
0

M

ER
R

O
R

. B

Y
TE

"

-
-

SY
N

TA
X

ER

R
O

R

-
-

"
:.

 B
Y

T
E

0

4
7

0

;
-
-
-
-
-
-
-
-
-
-
-

F
L

A
G

S
,

P
O

IN
T

E
R

S
,

R
E

G
IS

T
E

R
S

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
8

0

O
P

.B
Y

T
E

0

;
O

PC
O

D
E

4
9

0

T
P

.B
Y

T
E

0

;
T

Y
PE

5

0
0

TA

.B

Y
T

E

0
0

;
ST

A
R

T

A
D

D
R

E
SS

5

1
0

L

IN
E

N

.B
Y

T
E

0

0
;

C
U

R
R

EN
T

L
IN

E

5

2
0

EN

D
FL

A
G

.B

Y
T

E

0
;

E
N

D
-O

F
-P

R
O

G

FL
A

G

5
3

0

vl
O

R
K

• B

Y
TE

0

0
;

TE
M

P
W

O
RK

A

R
EA

5

4
0

R

E
SU

L
T

.B

Y
T

E

0
0

;
TE

M
P

A
N

SW
ER

A

R
EA

5

5
0

A

RG
N

.B

Y
T

E

0
0

;
V

A
LU

E
O

F
A

R
G

U
M

EN
T

5
6

0

A
R

G
SI

Z
E

.B

Y
T

E

0
;

LE
N

G
TH

O

F
A

R
G

U
M

EN
T

5
7

0

E
X

PR
E

SS
F

.B
Y

T
E

0

;
IS

IT

A

N

E
X

P
R

E
S

S

L
A

B
E

L

5
8

0

H
EX

FL
A

G

.B
Y

T
E

0

;
H

EX

N
U

M
B

ER

FL
A

G

5
9

0

H
EX

LE
N

.B

Y
T

E

0
;

LE
N

G
TH

O

F
H

EX

N
U

M
B

ER

~

0
'"

;"

'" tj

~
 ... Jl
 ~

rt>
 '" '" JJ rt>
 '" ~ "1
 ~ -rt> '"

N

W
 *'"

6
0

0

6
1

0

6
2

0

6
3

0

6
4

0

6
5

0

6
6

0

6
7

0

6
8

0

6
9

0

7
0

0

7
1

0

7
2

0

7
3

0

7
4

0

7
5

0

7
6

0

7
7

0

7
8

0

7
9

0

8
0

0

8
1

0

8
2

0

8
3

0

8
4

0

8
5

0

8
6

0

N
U

M
SI

Z
E

.B

Y
T

E

0
;

K
EY

N
U

M

.B
Y

T
E

0

;
L

A
B

S
IZ

E

.B
Y

T
E

0

;
L

A
B

PT
R

.B

Y
T

E

0
0

;
A

R
R

A
Y

TO
P

.B
Y

T
E

0

0
;

B
U

FL
A

G

.B
Y

T
E

0

;
PA

SS

.B
Y

T
E

0

;

L
E

N
G

T
H

O

F
A

S
C

II

N
U

M
B

ER

IN

B
U

F
F

E
R

(F

O
R

V

A
L

D
E

C
)

P
O

S
IT

IO
N

O

F
K

EY
W

O
R

D

IN

B
A

S
IC

'S

T
A

B
L

E

S
IZ

E

O
F

L
A

B
E

L

(E
Q

U
A

T
E

T

Y
P

E
)

P
O

IN
T

S

TO

A
R

R
A

Y

P
O

S
IT

IO
N

FO

R

A
R

G

ST
O

R
A

G
E

T

O
P

O
F

A
R

R
A

Y
S

--
S

A
M

E

A
S

M
EM

TO
P

B
E

FO
R

E

L
A

B
E

L
S

.
A

V
O

ID

O

R

(
D

U
R

IN
G

A

R
R

A
Y

S
A

N
A

L
Y

S
IS

W

H
IC

H

PA
SS

W

E
'R

E

O
N

.
A

.B

Y
T

E

0
:X

.B

Y
T

E

PT

.B
Y

T
E

0

0
;

B
N

U
M

FL
A

G

.B
Y

T
E

0

;
B

FL
A

G

.B
Y

T
E

0

0
;

A
D

D
N

U
M

.B

Y
T

E

0
0

;
PL

U
SF

L
A

G

.B
Y

T
E

0

;
B

Y
T

FL
A

G

.B
Y

T
E

0

;
D

IS
K

FL
A

G

.B
Y

T
E

0

;
P

R
IN

T
F

L
A

G

.B
Y

T
E

0

;
PO

K
E

FL
A

G

.B
Y

T
E

0

;
C

O
L

FL
A

G

.B
Y

T
E

0

;
FO

U
N

D
FL

A
G

.B

Y
T

E

0
;

SF
L

A
G

.B

Y
T

E

0
;

H
X

FL
A

G

.B
Y

T
E

0

;
L

O
C

FL
A

G

. B
Y

TE

0
;

B
A

B
FL

A
G

.B

Y
T

E

0
;

0
:Y

.B

Y
T

E

0
;

TO

H
O

LD

R
E

G
IS

T
E

R
S

D

U
R

IN
G

P

S
U

B
R

.
C

H
E

C
K

E
R

T

E
M

PO
R

A
R

IL
Y

H

O
LD

S
PA

R
R

A
Y

(I

N

"A
R

R
A

Y
")

2-

B
Y

T
E

FO

R

.B
Y

T
E

IN

"I

N
D

IS
K

"
FO

R

N
U

M
W

ER
K

IN

"I

N
D

IS
K

"
N

U
M

B
ER

TO

A

D
D

FO

R

+

PS
E

U
D

O

FL
A

G

SH
O

W
S

T
H

A
T

+

PS

E
U

D
O

H

A
P

P
E

N
E

D
.

SH
O

W
S

TH
A

T
<

O

R

>

H
A

P
P

E
N

E
D

.
SH

O
W

S
TO

SE

N
D

B

Y
T

E
S

TO

D
IS

K

O
B

JE
C

T

F
IL

E

SH
O

W
S

TO

SE
N

D

B
Y

T
E

S
TO

P

R
IN

T
E

R

SH
O

W
S

TO

SE
N

D

B
Y

T
E

S
TO

H

EM
O

R
Y

(O

B
JE

C
T

C

O
D

E
)

E
N

C
O

U
N

T
E

R
E

D

A

C
O

LO
N

(U

SE
D

B

Y

IN
D

IS
K

)
D

U
PL

IC
A

T
E

D

L
A

B
E

L

N
A

M
E

(U
SE

D

BY

A
R

R
A

Y
)

SH
O

W
S

TO

SE
N

D

SO
U

R
C

E
C

O
D

E

TO

SC
R

E
E

N

SH
O

W
S

TO

P
R

IN
T

SA

A

N
D

O

PC
O

D
E

S
IN

H

EX

SH
O

W
S

TO

P
R

IN
T

A

PC

A

D
D

R
E

SS

L
A

B
E

L

SH
O

W
S

TO

P
R

IN
T

A

RE

M

A
FT

E
R

P

R
N

T
IN

P
U

T

IN

EV
A

L
._

--
--

--
--

--
--

--
--

--
--

--
,

NO
W

L

IN
K

U

P
W

IT
H

1

S
T

F

IL
E

("

 D
E

F
S

")

TO

PE
R

M
IT

2N

D

P
A

S
S

.

.E
N

D

D
E

FS

~ ;- (
Il

 o ~

III
 ~

~

(
Il

(
Il

III

(J
Q

~

(
Il

 ~ '"
t ~ -n> (

Il

N

V
J

U
1

P
ro

gr
am

 9
,2

.
T

ab
le

s,
 A

p
p

le
 M

od
if

ic
at

io
n

s

To
 c

re
at

e
th

e
A

pp
le

 v
er

si
on

 o
f

T
ab

le
s,

 m
ak

e
th

e
fo

llo
w

in
g

ch
an

ge
s

an
d

ad
di

ti
on

s
to

 P
ro

gr
am

 9
-1

:

2
9

5

.B
Y

T
E

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
o

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

3

0
5

.B

Y
T

E

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

1
5

.B

Y
T

E

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

o
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

o

0
0

0
0

0
0

8

3
0

L

E
N

PT
R

.B

Y
T

E

0
0

;
H

O
LD

S
LE

N
G

TH

O
F

B
IN

A
R

Y

PR
O

G
R

A
M

8

4
0

FO

P
EN

 1

.B
Y

T
E

0

;
H

O
LD

S
TH

E
C

U
R

R
EN

T
IN

P
U

T

F
IL

E

8
5

0

FO
PE

N
2

.B
Y

T
E

0

;
H

O
LD

S
TH

E
C

U
R

R
EN

T
O

U
T

PU
T

F

IL
E

8

5
5

;-

-
-
-
-
-
-
-
-
-
-
-

D
O

S-
M

A
N

A
G

E
R

C

O
N

TR
O

L
B

Y
T

E
S

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
6

0

O
PN

R
EA

D

.B
Y

T
E

1

0
1

0
0

1
6

2
8

7
0

.B

Y
T

E

4
5

1

4
7

0

0
0

1
4

7

0
1

4
6

0

0
8

8
0

O

PN
W

R
IT

.B

Y
T

E

1
0

1
0

0
1

6
4

8
9

0

.B
Y

T
E

1

2
8

1

4
9

0

0
8

3

1
4

9

83

1
4

8

0
0

9
0

0

R
D

IB

.B
Y

T
E

3

1
0

0
0

0
0

0
0

0
0

0
9

1
0

.B

Y
T

E

0
1

4
7

0

1
4

6

0
1

4
5

9

2
0

W

R
IB

.B

Y
T

E

4
1

0
0

0
0

0
0

9
3

0

W
RD

A
TA

.B

Y
'rE

0

0
0

0
8

3

1
4

9

8
3

1

4
8

8

3

1
4

7

9
4

0

C
L

O
SE

R

.B
Y

T
E

2

0
0

0
0

0
0

0
0

0
0

0
0

1
4

7

0
1

4
6

0

1
4

5

9
5

0

C
LO

SE
W

.B

Y
T

E

2
0

0
0

0
0

0
0

0
0

0
0

8
3

1

4
9

8

3

1
4

8

8
3

1

4
7

9

6
0

O

PN
I

.B
Y

T
E

0

;
H

O
LD

S
TH

E
F

IL
E

O
F

TH
E

C
U

R
R

EN
T

IN
P

U
T

D

E
V

IC
E

9

7
0

O

PN
O

.B

Y
T

E

0
;

H
O

LD
S

TH
E

F
IL

E

O

F
TH

E
C

U
R

R
EN

T
O

U
T

PU
T

D

E
V

IC
E

9

8
0

A

l
.B

Y
T

E

0
;

TE
M

P
ST

O
R

A
G

E
O

F
A

C
C

9

9
0

Y

l
.B

Y
T

E

0
;

TE
M

P
ST

O
R

A
G

E
O

F
Y

-R
E

G

1
0

0
0

;-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
0

1
0

.E

N
D

D

E
FS

~ c:r
 -(1) '" tj

III

III
 ~

(1
) '" '" III (J

Q

(1
) '" ~ "1
 ,..
.

III
 c:
r ;- '"

~

P
ro

gr
am

 9
,3

.
T

ab
le

s,
 A

ta
ri

 M
od

if
ic

at
io

n
s

0-
-

To
 c

re
at

e
th

e
A

ta
ri

 v
er

si
on

 o
f

T
ab

le
s,

 m
ak

e
th

e
fo

ll
ow

in
g

ch
an

ge
s

an
d

ad
di

ti
on

s
to

 P
ro

gr
am

 9
-1

:

1
0

:A

T
A

R
I

M
O

D
IF

IC
A

T
IO

N
S

--
T

A
B

L
E

S

8
2

5

L
L

S
A

.B

Y
T

E

0
0

8
6

0

.E
N

D

D
:D

E
F

S
.S

R
C

~ -(D '" d ~ ? ~

(D
 '" '" ~ ()'

Q

(D
 '" ~ ,., ~ 0
'"

(D

'"

6502 Instruction Set
Here are the 56 mnemonics, the 56 instructions you can give
the 6502 (or 6510) chip. Each of them is described in several
ways: what it does, what major uses it has in ML program
ming, what addressing modes it can use, what flags it affects,
its opcode (hex/decimal), and the number of bytes it uses up.

ADC
What it does: Adds byte in memory to the byte in the

Accumulator, plus the carry flag if set. Sets the carry flag if re
sult exceeds 255. The result is left in the Accumulator.

Major uses: Adds two numbers together. If the carry flag
is set prior to an ADC the resulting number will be one
greater than the total of the two numbers being added (the
carry is added to the result). Thus, one always clears the carry
(CLC) before beginning any addition operation. Following an
ADC a set (up) carry flag indicates that the result exceeded
one byte'S capacity (was greater than 255), so you can chain
add bytes by subsequent ADCs without any further CLCs (see
"Multi-Byte Addition" in Appendix D).

Other flags affected by addition include the V (overflow)
flag. This flag is rarely of any interest to the programmer. It
merely indicates that a result became larger than could be held
within bits 0-6. In other words, the result" overflowed" into
bit 7, the highest bit in a byte. Of greater importance is the
fact that the Z is set if the result of an addition is zero. Also
the N flag is set if bit 7 is set. This N flag is called the "neg
ative" flag because you can manipulate bytes thinking of the
seventh bit as a sign (+ or -) to accomplish "signed
arithmetic" if you want to. In this mode, each byte can hold a
maximum value of 127 (since the seventh bit is used to reveal
the number's sign). The B branching instruction's Relative
addressing mode uses this kind of arithmetic.

ADC can be used following an SED which puts the 6502
into "decimal mode. " Here's an example. Note that the num
ber 75 is decimal after you SED:

239

6502 Instruction Set

SED
CLC
LDA #75
ADC #$05 (this will result in 80)
CLD (always get rid of decimal mode as soon as you've

finished)

Attractive as it sounds, the decimal mode isn't of much real
value to the programmer. LADS will let you work in decimal
if you want to without requiring that you enter the 6502's
mode. Just leave off the $ and LADS will handle the decimal
numbers for you.

Addressing Modes:

Name Format

Immediate ADC #15
Zero Page ADC 15
Zero Page, X ADC 15,X
Absolute ADC 1500
Absolute,X ADC 1500,X
Absolute,Y ADC 1500,Y
Indirect,X ADC (15 ,X)
Indirect,Y ADC (15),Y

Affected flags: N Z C V

AND

Opcode

$69/105
$65/101
$75/117
$6D/109
$7D/125
$79/121
$61/97
$71/113

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Logical ANDs the byte in memory with the
byte in the Accumulator. The result is left in the Accumulator.
All bits in both bytes are compared, and if both bits are 1, the
result is 1. If either or both bits are 0, the result is O.

Major uses: Most of the time, AND is used to turn bits
off. Let's say that you are pulling in numbers higher than 128
(10000000 and higher) and you want to "unshift" them and
print them as lowercase letters. You can then put a zero into
the seventh bit of your " mask" and then AND the mask with
the number being unshifted:
LDA ? (test number)
AND #$7F (01111111)

240

6502 Instruction Set

(If either bit is 0, the result will be O. So the seventh bit of the
test number is turned off here and all the other bits in the test
number are unaffected .)

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
Indirect,X
Indirect,Y
Affected flags: N Z

ASL

Format

AND #15
AND 15
AND 15 / X
AND 1500
AND 1500,X
AND 1500,Y
AND (15 ,X)
AND (15),Y

Opcode

$29/41
$25/37
$35/53
$2D/45
$3D/ 61
$39/57
$21/33
$31/49

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Shifts the bits in a byte to the left by 1.
This byte can be in the Accumulator or in memory, depending
on the addressing mode . The shift moves the seventh bit into
the carry flag and shoves a 0 into the zeroth bit.

Flag Bit Bit Bit Bit Bit Bit Bit Bit
7654321 0

Major uses: Allows you to multiply a number by 2. Num
bers bigger than 255 can be manipulated using ASL with ROL
(see " Multiplication" in Appendix D) .

A secondary use is to move the lower four bits in a byte
(a four-bit unit is often called a nybb/e) into the higher four
bits. The lower bits are replaced by zeros, since ASL stuffs ze
ros into the zeroth bit of a byte. You move the lower to the
higher nybble of a byte by: ASL ASL ASL ASL.

241

6502 Instruction Set

Addressing Modes:

Name Format

Accumulator ASL
Zero Page ASL 15
Zero Page,X ASL 15,X
Absolute ASL 1500
Absolute,X ASL 1500,X

Affected flags: N Z e

BCC

Opcode

$OA/ I0
$06/ 6
$16/22
$OE/ 14
$IE/ 30

Number of
Bytes Used

1
2
2
3
3

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the carry flag is clear.
In effect, it branches if the second item is lower than the first,
as in: LDA #150: eMP #149 or LDA #22: SBe #15. These ac
tions would clear the carry and, triggering BCC, a branch
would take place.

Major uses: For testing the results of CMP or ADC or
other operations which affect the carry flag. IF-THEN or ON
GOTO type structures in ML can involve the BCC test. It is
similar to BASIC's> instruction.

Addressing Modes:

Name Format

Relative Bee addr.

Affected flags: none of them.

BCS

Opcode

$90/ 144

Number of
Bytes Used

2

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the carry flag is set. In
effect, it branches if the second item is higher than the first, as
in: LDA #150: eMP #249 or LDA #22: SBe #85 . These ac
tions would set the carry and, triggering BCS, a branch would
take place.

Major uses: For testing the results of LDA or ADC or
other operations which affect the carry flag. IF-THEN or ON-

242

6502 Instruction Set

GOTO type structures in ML can involve the BCC test. It is
similar to BASICs < instruction.

Addressing Modes:

Name Format

Relative BCS addr.

Affected flags: none of them.

Opcode

$BO/176

Number of
Bytes Used

2

BE~at it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the zero flag (Z) is set.
In other words, it branches if an action on two bytes results in
a 0, as in: LDA #150: CMP #150 or LDA #22: SBC #22.
These actions would set the zero flag, so the branch would
take place.

Major uses: For testing the results of LDA or ADC or
other operations which affect the carry flag. IF-THEN or ON
GOTO type structures in ML can involve the BEQ test. It is
similar to BASICs = instruction.
Addressing Modes:

Name Format

Relative BEQ addr.

Affected flags: none of them.

BIT

Opcode

$FO/240

Number of
Bytes Used

2

What it does: Tests the bits in the byte in memory against
the bits in the byte held in the Accumulator. The bytes (mem
ory and Accumulator) are unaffected. BIT merely sets flags.
The Z flag is set as if an Accumulator AND memory had been
performed. The V flag and the N flag receive copies of the
sixth and seventh bits of the tested number.

Major uses: Although BIT has the advantage of not hav
ing any effect on the tested numbers, it is infrequently used
because you cannot employ the Immediate addressing mode
with it. Other tests (CMP and AND, for example) can be used
instead.

243

6502 Instruction Set

Addressing Modes:

Name Format

Zero Page BIT 15
Absolute BIT 1500

Affected flags: N Z V

BMI

Opcode

$24/36
$2C/ 44

Number of
Bytes Used

2
3

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the negative (N) flag is
set. In effect, it branches if the seventh bit has been set by the
most recent event: LDA #150 or LDA #128 would set the sev
enth bit. These actions would set the N flag, signifying that a
minus number is present if you are using signed arithmetic or
that there is a shifted character (or a BASIC keyword) if you
are thinking of a byte in terms of the ASCII code.

Major uses: Testing for BASIC keywords, shifted ASCII,
or graphics symbols. Testing for + or - in signed arithmetic.

Addressing Modes:

Name Format

Relative BMI addr.

Affected flags: none of them.

BNE

Opcode

$30/48

Number of
Bytes Used

2

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the zero flag is clear.
In other words, it branches if the result of the most recent
event is not zero, as in: LDA #150: SBC #120 or LDA #128:
CMP #125. These actions would clear the Z flag, signifying
that a result was not O.

Major uses: The reverse of BEQ. BNE means Branch if
Not Equal. Since a CMP subtracts one number from another
to perform its comparison, a 0 result means that they are
equal. Any other result will trigger a BNE (not equal). Like the
other B branch instructions, it has uses in IF-THEN, ON
GOTO type structures and is used as a way to exit loops (for

244

6502 Instruction Set

example, BNE will branch back to the start of a loop until a 0
delimiter is encountered at the end of a text message) . BNE is
like BASIC's <> instruction.

Addressing Modes:

Name Format

Relative BNE addr.

Affected flags: none of them.

BPL

Opcode

$DO/208

Number of
Bytes Used

2

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the N flag is clear. In
effect, it branches if the seventh bit is clear in the most recent
event, as in: LDA #12 or LDA #127. These actions would
clear the N flag, signifying that a plus number (or zero) is
present in signed arithmetic mode.

Major uses: For testing the results of LDA or ADC or
other operations which affect the negative (N) flag. IF-THEN
or ON-GOTO type structures in ML can involve the BCC test.
It is the opposite of the BMI instruction. BPL can be used for
tests of "unshifted" ASCII characters and other bytes which
have the seventh bit off and so are lower than 128
(OXXXXXXX).

Addressing Modes:

Name Format

Relative BPL addr.

Affected flags: none of them.

BRK

Opcode

$10/ 16

Number of
Bytes Used

2

What it does: Causes a forced interrupt. This interrupt
cannot be masked (prevented) by setting the I (interrupt) flag
within the Status Register. If there is a Break Interrupt Vector
(a vector is like a pointer) in the computer, it may point to a
resident monitor if the computer has one. The PC and the Sta-

245

6502 Instruction Set

tus Register are saved on the stack. The PC points to the loca
tion of the BRK + 2.

Major uses: Debugging an ML program can often start
with a sprinkling of BRKs into suspicious locations within the
code. The ML is executed, a BRK stops execution and drops
you into the monitor, you examine registers or tables or vari
ables to see if they are as they should be at this point in the
execution, and then you restart execution from the breakpoint.
This instruction is essentially identical to the actions and uses
of the STOP command in BASIC.

Addressing Modes:

Name Format

Implied BRK
Affected flags: Break (B) flag is set.

BVC

Opcode

$00/0

Number of
Bytes Used

1

What it does: Branches up to 127 bytes forward or 128
bytes backward from its own address if the V (overflow) flag
is clear.

Major uses: None. In practice, few programmers use
"signed" arithmetic where the seventh bit is devoted to in
dicating a positive or negative number (a set seventh bit
means a negative number) . The V flag has the job of notifying
you when you've added, say 120 + 3D, and have therefore set
the seventh bit via an "overflow" (a result greater than 127).
The result of your addition of two positive numbers should
not be seen as a negative number, but the seventh bit is set.
The V flag can be tested and will then reveal that your answer
is still positive, but an overflow took place.

Addressing Modes:

Name Format

Relative BVe addr.
Affected flags: none of them.

246

Opcode

$50/ 80

Number of
Bytes Used

2

6502 Instruction Set

BVS
What it does: Branches up to 127 bytes forward or 128

bytes backward from its own address if the V (overflow) flag
is set).

Major uses: None. See BVC above.

Addressing Modes:

Name Format

Relative BVS addr.

Affected flags: none of them.

CLC

Opcode

$70/112

Number of
Bytes Used

2

What it does: Clears the carry flag. (Puts a 0 into it.)
Major uses: Always used before any addition (ADC). If

there are to be a series of additions (multiple-byte addition),
only the first ADC is preceded by CLC since the carry feature
is necessary. There might be a carry, and the result will be in
correct if it is not taken into account.

The 6502 does not offer an addition instruction without
the carry feature. Thus, you must always clear it before the
first ADC so a carry won't be accidentally added.

Addressing Modes:

Name

Implied

Format

CLC

Opcode

$18/24
Affected flags: Carry (C) flag is set to zero.

CLD

Number of
Bytes Used

1

What it does: Clears the decimal mode flag. (Puts a 0 into
it.)

Major uses: Commodore computers execute a CLD when
first turned on as well as upon entry to monitor modes
(PET/CBM models) and when the SYS command occurs. Ap
ple and Atari, however, can arrive in an ML environment with
the D flag in an indeterminant state. An attempt to execute

247 -

6502 Instruction Set

ML with this flag set would cause disaster-all mathematics
would be performed in "decimal mode. " It is therefore sug
gested that owners of Apple and Atari computers CLD during
the early phase, the initialization phase, of their programs.
Though this is an unlikely bug, it would be a difficult one to
recognize should it occur.

For further detail about the 6502 's decimal mode, see SED
below.

Addressing Modes:

Name

Implied

Format

CLO

Opcode

$08/216
Affected flags: Decimal (0) flag is set to zero.

CLI

Number of
Bytes Used

1

What it does: Clears the interrupt-disable flag . All inter
rupts will therefore be serviced (including maskable ones).

Major uses: To restore normal interrupt routine process
ing following a temporary suspension of interrupts for the
purpose of redirecting the interrupt vector. For more detail, see
SEI below.

Addressing Modes:

Name

Implied

Format

CLI

Opcode

$58/88
Affected flags: Interrupt (I) flag is set to zero.

CLV

Number of
Bytes Used

1

What it does: Clears the overflow flag. (Puts a 0 into it.)
Major uses: None. (See BYC above.)

248

Addressing Modes:

Name

Implied

Format

eLY

Opcode

$B8/ 184

6502 Instruction Set

Number of
Bytes Used

1

Affected flags: Overflow (Y) flag is set to zero.

CMP
What it does: Compares the byte in memory to the byte

in the Accumulator. Three flags are affected, but the bytes in
memory and in the Accumulator are undisturbed. A CMP is
actually a subtraction of the byte in memory from the byte in
the Accumulator. Therefore, if you LOA #15:CMP #15-the
result (of the subtraction) will be zero, and BEQ would be trig
gered since the CMP would have set the Z flag .

Major uses: This is an important instruction in ML. It is
central to IF-THEN and ON-GOTO type structures. In
combination with the B branching instructions like BEQ, CMP
allows the 6502 chip to make decisions, to take alternative
pathways depending on comparisons. CMP throws the N, Z,
or C flags up or down. Then a B instruction can branch,
depending on the condition of a flag .

Often, an action will affect flags by itself, and a CMP will
not be necessary. For example, LOA #15 will put a 0 into the
N flag (seventh bit not set) and will put a 0 into the Z flag
(the result was not 0) . LOA does not affect the C flag. In any
event, you could LOA #15 : BPL TARGET, and the branch
would take effect. However, if you LOA $20 and need to
know if the byte loaded is precisely $00, you must CMP
#$OO:BEQ TARGET. So, while CMP is sometimes not ab
solutely necessary, it will never hurt to include it prior to
branching.

Another important branch decision is based on > or <
situations. In this case, you use BCC and BC5 to test the C
(carry) flag . And you've got to keep in mind the order of the
numbers being compared. The memory byte is compared to
the byte sitting in the Accumulator. The structure is: memory
is less than or equal to the Accumulator (BCC is triggered be
cause the carry flag was cleared). Or memory is more than
Accumulator (BC5 is triggered because the carry flag was set) .
Here's an example. If you want to find out if the number in
the Accumulator is less than $40, just CMP #$41:BCC

249

6502 Instruction Set

LESSTHAN (be sure to remember that the carry flag is cleared
if a number is less than or equal; that's why we test for less
than $40 by comparing with a $41):
LOA #75
CMP #$41; IS IT LESS THAN $40?
BCC LESS THAN

One final comment about the useful BCC/BCS tests
following CMP: It's easy to remember that BCC means less
than or equal and BCS means more than if you notice that C is
less than S in the alphabet.

The other flag affected by CMPs is the N flag. Its uses are
limited since it merely reports the status of the seventh bit;
BPL triggers if that bit is clear, BMI triggers if it's set. How
ever, that seventh bit does show whether the number is
greater than (or equal to) or less than 128, and you can apply
this information to the ASCII code or to look for BASIC
keywords or to search data bases (BPL and BMI are used by
LADS' data base search routines in the Array subprogram).
Nevertheless, since LDA and many other instructions affect
the N flag, you can often directly BPL or BMI without any
need to CMP first.

Addressing Modes:

Name Format

Immediate CMP #15
Zero Page CMP 15
Zero Page, X CMP 15,X
Absolute CMP 1500
Absolute,X CMP 1500,X
Absolute,Y CMP I500,Y
Indirect,X CMP (15 ,X)
Indirect,Y CMP (15),Y

Affected flags: N Z C

CPX

Opcode

$C9/201
$C5/ 197
$D5/213
$CD/ 205
$DD/22I
$D9/ 2I7
$Cl / 193
$DI/209

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Compares the byte in memory to the byte
in the X Register. Three flags are affected, but the bytes in
memory and in the X Register are undisturbed. A CPX is ac
tually a subtraction of the byte in memory from the byte in

250

6502 Instruction Set

the X Register. Therefore, if you LDA #15:CPX #15-the re
sult (of the subtraction) will be zero and BEQ would be trig
gered since the CPX would have set the Z flag.

Major uses: X is generally used as an index, a counter
within loops. Though the Y Register is often preferred as an
index since it can serve for the very useful Indirect Y address
ing mode (LDA (15),Y)-the X Register is nevertheless pressed
into service when more than one index is necessary or when Y
is busy with other tasks.

In any case, the flags, conditions, and purposes of CPX
are quite similar to CMP (the equivalent comparison instruc
tion for the Accumulator) . For further information on the vari
ous possible comparisons (greater than, equal, less than, not
equal), see CMP above .

Addressing Modes:

Name Format

Immediate CPX #15
Zero Page CPX 15
Absolute CPX 1500

Affected flags: N Z C

Cpy

Opcode

$EO/224
$E4/ 228
$EC/ 236

Number of
Bytes Used

2
2
3

What it does: Compares the byte in memory to the byte
in the Y Register. Three flags are affected, but the bytes in
memory and in the Y Register are undisturbed. A CPX is ac
tually a subtraction of the byte in memory from the byte in
the Y Register. Therefore, if you LDA #15: CPY #15-the re
sult (of the subtraction) will be zero, and BEQ would be trig
gered since the CPY would have set the Z flag.

Major uses: Y is the most popular index, the most heavily
used counter within loops since it can serve two purposes: It
permits the very useful Indirect Y addressing mode (LDA
(15),Y) and can simultaneously maintain a count of loop
events.

See CMP above for a detailed discussion of the various
branch comparisons which CPY can implement.

251

650 2 Instruction Set

to reverse the current state of the sixth bit in a given byte:
LDA BYTE:EOR #$40:STA BYTE. This will set bit 6 in BYTE if
it was 0 (and clear it if it was 1). This selective bit toggling
could be used to "shift" an unshifted ASCII character via EOR
#$80 (1000000). Or if the character were shifted, EOR #$80
would make it lowercase. EOR toggles.

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
Indirect,X
Indirect,Y

Affected flags: N Z

INC

Format

EOR #15
EOR 15
EOR 15,X
EOR 1500
EOR 1500,X
EOR 1500,Y
EOR (15,X)
EOR (15),Y

Opcode

$49/ 73
$45/69
$55/ 85
$4D/ 77
$5D/93
$59/ 89
$41 / 65
$51 / 81

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Increases the value of a byte in memory by
1.

Major uses: Used exactly as DEC (see DEC above), except
it counts up instead of down. For raising address pointers or
supplementing the X and Y Registers as loop indexes.

Addressing Modes:

Name

Zero Page
Zero Page,X
Absolute
Absolute,X

Affected flags: N Z

INX

Format

INC 15
INC 15,X
INC 1500
INC 1500,X

Opcode

$E6/230
$F6/246
$EE/ 238
$FE/ 254

What it does: Increases the X Register by 1.

254

Number of
Bytes Used

2
2
3
3

6502 Instruction Set

the X Register. Therefore, if you LDA #15:CPX #15-the re
sult (of the subtraction) will be zero and BEQ would be trig
gered since the CPX would have set the Z flag.

Major uses: X is generally used as an index, a counter
within loops. Though the Y Register is often preferred as an
index since it can serve for the very useful Indirect Y address
ing mode (LDA (15),Y)-the X Register is nevertheless pressed
into service when more than one index is necessary or when Y
is busy with other tasks .

In any case, the flags, conditions, and purposes of CPX
are quite similar to CMP (the equivalent comparison instruc
tion for the Accumulator). For further information on the vari
ous possible comparisons (greater than, equal, less than, not
equal), see CMP above.

Addressing Modes:

Name Format

Immediate CPX # 15
Zero Page CPX 15
Absolute CPX 1500

Affected flags: N Z C

Cpy

Opcode

$EO/224
$E4/228
$EC/236

Number of
Bytes Used

2
2
3

What it does: Compares the byte in memory to the byte
in the Y Register. Three flags are affected, but the bytes in
memory and in the Y Register are undisturbed. A CPX is ac
tually a subtraction of the byte in memory from the byte in
the Y Register. Therefore, if you LDA #15: CPY #15-the re
sult (of the subtraction) will be zero, and BEQ would be trig
gered since the CPY would have set the Z flag .

Major uses: Y is the most popular index, the most heavily
used counter within loops since it can serve two purposes: It
permits the very useful Indirect Y addressing mode (LDA
(15),Y) and can simultaneously maintain a count of loop
events.

See CMP above for a detailed discussion of the various
branch comparisons which CPY can implement.

251

650 2 Instruction Set

to reverse the current state of the sixth bit in a given byte:
LDA BYTE:EOR #$40:STA BYTE. This will set bit 6 in BYTE if
it was 0 (and clear it if it was 1). This selective bit toggling
could be used to "shift" an unshifted ASCII character via EOR
#$80 (1000000). Or if the character were shifted, EOR #$80
would make it lowercase. EOR toggles.

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
Indirect,X
Indirect,Y

Affected flags: N Z

INC

Format

EOR #15
EOR 15
EOR 15,X
EOR 1500
EOR 1500,X
EOR 1500,Y
EOR (15 ,X)
EOR (15),Y

Opcode

$49/73
$45/69
$55 / 85
$4D/ 77
$5D/ 93
$59/ 89
$41 / 65
$51/ 81

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Increases the value of a byte in memory by
1.

Major uses: Used exactly as DEC (see DEC above), except
it counts up instead of down. For raising address pointers or
supplementing the X and Y Registers as loop indexes.

Addressing Modes:

Name

Zero Page
Zero Page,X
Absolute
Absolute,X

Affected flags: N Z

INX

Format

INC 15
INC 15,X
INC 1500
INC 1500,X

Opcode

$E6/ 230
$F6/ 246
$EE/238
$FE/ 254

What it does: Increases the X Register by 1.

254

Number of
Bytes Used

2
2
3
3

6502 Instruction Set

Major uses: Used exactly as DEX (see DEX above), except
it counts up instead of down. For loop indexing.

Addressing Modes:

Name Format

Implied INX

Affected flags: N Z

INY

Opcode

$E8/ 232

What it does: Increases the Y Register by 1.

Number of
Bytes Used

1

Major uses: Used exactly as DEY (see DEY above), except
it counts up instead of down. For loop indexing and working
with the Indirect Y addressing mode (LOA (lS),Y).

Addressing Modes:

Name Format

Implied INY

Affected flags: N Z

JMP

Opcode

$C8/200

Number of
Bytes Used

1

What it does: Jumps to any location in memory.
Major uses: Branching long range. It is the equivalent of

BASIC's GOTO instruction. The bytes in the Program Counter
are replaced with the address (the argument) following the
JMP instruction and, therefore, program execution continues
from this new address.

Indirect jumping-JMP (lS00)-is not recommended, al
though some programmers find it useful. It allows you to set
up a table of jump targets and bounce off them indirectly. For
example, if you had placed the numbers $00 $04 in addresses
$88 and $89, a JMP ($0088) instruction would send the pro
gram to whatever ML routine was located in address $0400.
Unfortunately, if you should locate one of your pointers on
the edge of a page (for example, $OOFF or $17FF), this Indirect
JMP addressing mode reveals its great weakness . There is a
bug which causes the jump to travel to the wrong place-JMP

255

6502 Instruction Set

($OOFF) picks up the first byte of the pointer from $OOFF, but
the second byte of the pointer will be incorrectly taken from
$0000. With JMP ($17FF), the second byte of the pointer
would come from what's in address $1700.

Since there is this bug, and since there are no compelling
reasons to set up JMP tables, you might want to forget you
ever heard of Indirect jumping.

Addressing Modes:

Name Format

Absolute }MP 1500
Indirect }MP (1500)

Affected flags: none of them.

Opcode

$4C/76
$6C/108

Number of
Bytes Used

3
3

JSR
What it does: Jumps to a subroutine anywhere in mem

ory. Saves the PC (Program Counter) address, plus three, of
the JSR instruction by pushing it onto the stack. The next RTS
in the program will then pull that address off the stack and re
turn to the instruction following the JSR.

Major uses: As the direct equivalent of BASIC's CaSUB
command, JSR is heavily used in ML programming to send
control to a subroutine and then (via RTS) to return and pick
up where you left off. The larger and more sophisticated a
program becomes, the more often JSR will be invoked. In
LADS, whenever something is printed to screen or printer,
you'll often see a chain of JSRs performing necessary tasks:
JSR PRNTCR: JSR PRNTSA:JSR PRNTSPACE:JSR
PRNTNUM:JSR PRNTSPACE. This JSR chain prints a carriage
return, the current assembly address, a space, a number, and
another space.

Another thing you might notice in LADS and other ML
programs is a PLA:PLA pair. Since JSR stuffs the correct return
address onto the stack before leaving for a subroutine, you
need to do something about that return address if you later
decide not to RTS back to the position of the JSR in the pro
gram. This might be the case if you usually want to RTS, but
in some particular cases, you don't. For those cases, you can
take control of program flow by removing the return address

256

6502 Instruction Set

from the stack (PLA:PLA will clean off the two-byte address)
and then performing a direct JMP to wherever you want to go.

lf you JMP out of a subroutine without PLA:PLA, you
could easily overflow the stack and crash the program.

Addressing Modes:

Name Format

Absolute J5R 1500

Affected flags: none of them.

LDA

Opcode

$20/32

Number of
Bytes Used

3

What it does: Loads the Accumulator with a byte from
memory. Copy might be a better word than load, since the byte
in memory is unaffected by the transfer.

Major uses: The busiest place in the computer. Bytes
coming in from disk, tape, or keyboard all flow through the
Accumulator, as do bytes on their way to screen or
peripherals . Also, because the Accumulator differs in some im
portant ways from the X and Y Registers, the Accumulator is
used by ML programmers in a different way from the other
registers.

Since INY /DEY and INX/ DEX make those registers useful
as counters for loops (the Accumulator couldn' t be conve
niently employed as an index; there is no INA instruction), the
Accumulator is the main temporary storage register for bytes
during their manipulation in an ML program. ML program
ming, in fact, can be defined as essentially the rapid, or
ganized maneuvering of single bytes in memory. And it is the
Accumulator where these bytes often briefly rest before being
sent elsewhere.

257

6502 Instruction Set

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
Indirect,X
Indirect,Y

Affected flags: N Z

LDX

Format

LDA #15
LDA 15
LDA 15,X
LDA 1500
LDA 1500,X
LDA 1500,Y
LDA (15 ,X)
LDA (15),Y

Opcode

$A9/169
$A5 / 165
$B5 / 181
$AD/173
$BD/189
$B9/185
$Al/161
$B1/177

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Loads the X Register with a byte from
memory.

Major uses: The X Register can perform many of the tasks
that the Accumulator performs, but it is generally used as an
index for loops. In preparation for its role as an index, LDX
puts a value into the register.

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,Y
Absolute
Absolute,Y

Affected flags: N Z

LDY

Format

LDX #15
LDX 15
LDX 15,Y
LDX 1500
LDX 1500,Y

Opcode

$A2/162
$A6/ 166
$B6/182
$AE/174
$BE/ 190

Number of
Bytes Used

2
2
2
3
3

What it does: Loads the Y Register with a byte from
memory.

Major uses: The Y Register can perform many of the
tasks that the Accumulator performs, but it is generally used
as an index for loops. In preparation for its role as an index,
LDY puts a value into the register.

258

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X

Affected flags: N Z

LSR

Format

LDY #15
LDY 15
LDY 15,X
LDY 1500
LDY 1500,X

6502 Instruction Set

Opcode

$AO/160
$A4/164
$B4/180
$AC/l72
$BC/188

Number of
Bytes Used

2
2
2
3
3

What it does: Shifts the bits in the Accumulator or in a
byte in memory to the right, by one bit. A zero is stuffed into
bit 7, and bit 0 is put into the carry flag.

Bit Bit Bit Bit Bit Bit
76543 2

Bit Bit
1 0

Carry
Flag

Major uses: To divide a byte by 2. In combination with
the ROR instruction, LSR can divide a two-byte or larger num
ber (see Appendix D).

LSR:LSR:LSR:LSR will put the high four bits (the high
nybble) into the low nybble (with the high nybble replaced by
the zeros being stuffed into the seventh bit and then shifted to
the right).

Addressing Modes:

Name Format

Accumulator LSR
Zero Page LSR 15
Zero Page,X LSR 15,X
Absolute LSR 1500
Absolute,X LSR 1500,X

Affected flags: N Z C

Opcode

$4A/74
$46/70
$56/86
$4E/78
$5E/94

Number of
Bytes Used

2
2
2
3
3

259

6502 Instruction Set

NOP
What it does: Nothing. No operation.
Major uses: Debugging. When setting breakpoints with

BRK, you will often discover that a breakpoint, when exam
ined, passes the test. That is, there is nothing wrong at that
place in the program. So, to allow the program to execute to
the next breakpoint, you cover the BRK with a Nap. Then,
when you run the program, the computer will slide over the
NOP with no effect on the program. Three Naps could cover
a JSR XXXX, and you could see the effect on the program
when that particular JSR is eliminated.

Addressing Modes:

Name

Implied

Format

NOP

Affected flags: none of them.

ORA

Opcode

$EA/234

Number of
Bytes Used

1

What it does: Logically ORs a byte in memory with the
byte in the Accumulator. The result is in the Accumulator. An
OR results in a 1 if either the bit in memory or the bit in the
Accumulator is 1.

Major uses: Like an AND mask which turns bits off, ORA
masks can be used to turn bits on. For example, if you wanted
to "shift" an ASCII character by setting the seventh bit, you
could LDA CHARACTER:ORA #$80. The number $80 in bi
nary is 10000000, so all the bits in CHARACTER which are
ORed with zeros here will be left unchanged. (If a bit in
CHARACTER is a 1, it stays a 1. If it is a zero, it stays 0.) But
the 1 in the seventh bit of $80 will cause a 0 in the CHARAC
TER to turn into a 1. (If CHARACTER already has a 1 in its
seventh bit, it will remain a 1.)

260

Addressing Modes:

Name

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
Indirect,X
Indirect,Y

Affected flags: N Z

PHA

Format

ORA #15
ORA 15
ORA 15,X
ORA 1500
ORA 1500,X
ORA 1500,Y
ORA (15,X)
ORA (15),Y

Opcode

$09/9
$05/5
$15/21
$OD/13
$ID/29
$19/25
$01/1
$11/17

6502 Instruction Set

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Pushes the Accumulator onto the stack.
Major uses: To temporarily (very temporarily) save the

byte in the Accumulator. If you are within a particular sub
routine and you need to save a value for a brief time, you can
PHA it. But beware that you must PLA it back into the Accu
mulator before any RTS so that it won't misdirect the computer
to the wrong RTS address. All RTS addresses are saved on the
stack. Probably a safer way to temporarily save a value (a
number) would be to STA TEMP or put it in some other tem
porary variable that you've set aside to hold things. Also, the
values of A, X, and Y need to be temporarily saved, and the
programmer will combine TYA and TXA with several PHAs to
stuff all three registers onto the stack. But, again, matching
PLAs must restore the stack as soon as possible and certainly
prior to any RTS.

Addressing Modes:

Name

Implied

Format

PHA

Affected flags: none of them .

Opcode

$48/72

Number of
Bytes Used

1

261

6502 Instruction Set

PHP
What it does: Pushes the "processor status" onto the top

of the stack. This byte is the Status Register, the byte which
holds all the flags: N Z C I D V.

Major uses: To temporarily (very temporarily) save the
state of the flags. If you need to preserve the all current con
ditions for a minute (see description of PHA above), you may
also want to preserve the Status Register as well. You must,
however, restore the Status Register byte and clean up the
stack by using a PLP before the next RTS.

Addressing Modes:

Name

Implied

Format

PHP

Affected flags: none of them.

PLA

Opcode

$08/8

Number of
Bytes Used

1

What it does: Pulls the top byte off the stack and puts it
into the Accumulator.

Major uses: To restore a number which was temporarily
stored on top of the stack (with the PHA instruction). It is the
opposite action of PHA (see above) . Note that PLA does affect
the Nand Z flags. Each PHA must be matched by a
corresponding PLA if the stack is to correctly maintain RTS
addresses, which is the main purpose of the stack.

Addressing Modes:

Name Format

Implied PLA

Affected flags: N Z

PLP

Opcode

$68/104

Number of
Bytes Used

1

What it does: Pulls the top byte off the stack and puts it
into the Status Register (where the flags are). PLP is a mne
monic for Pull Processor status.

262

6502 Instruction Set

Major uses: To restore the condition of the flags after the
Status Register has been temporarily stored on top of the stack
(with the PHP instruction). It is the opposite action of PHP
(see above). PLP, of course, affects all the flags. Any PHP
must be matched by a corresponding PLP if the stack is to cor
rectly maintain RTS addresses, which is the main purpose of
the stack.

Addressing Modes:

Name

Implied

Format

PLP
Affected flags: all of them.

ROL

Opcode

$28/40

Number of
Bytes Used

1

What it does: Rotates the bits in the Accumulator or in a
byte in memory to the left, by one bit. A rotate left (as op
posed to an ASL, Arithmetic Shift Left) moves bit 7 to the
carry, moves the carry into bit 0, and every other bit moves one
position to its left. (ASL operates quite similarly, except it al
ways puts a 0 into bit 0.)

carry---i T l' T l' l' 1'~ I
Flag Bit Bit Bit Bit Bit Bit

76543 2
Bit Bit
1 0

Major uses: To multiply a byte by 2. ROL can be used
with ASL to multiply multiple-byte numbers since ROL puUs
any carry into bit O. If an ASL resulted in a carry, it would be
thus taken into account in the next higher byte in a multiple
byte number. (See Appendix D.)

Notice how the act of moving columns of binary numbers
to the left has the effect of multiplying by 2:
0010 (the number 2 in binary)
0100 (the number 4)

263

6502 Instruction Set

This same effect can be observed with decimal numbers,
except the columns represent powers of 10:
0010 (the number 10 in decimal)
0100 (the number 100)

Addressing Modes:

Name Format

Accumulator ROL
Zero Page ROL 15
Zero Page, X ROL 15,X
Absolute ROL 1500
Absolute,X ROL 1500,X

Affected flags: N Z C

ROR

Opcode

$2A/42
$26/38
$36/54
$2E/46
$3E/62

Number of
Bytes Used

1
2
2
3
3

What it does: Rotates the bits in the Accumulator or in a
byte in memory to the right, by one bit. A rotate right (as op
posed to a LSR, Logical Shift Right) moves bit 0 into the carry,
moves the carry into bit 7, and every other bit moves one po
sition to its right. (LSR operates quite similarly, except it al
ways puts a 0 into bit 7.)

Bit Bit Bit Bit Bit Bit Bit
7 6 5 4 3 2 1

Bit
o

Flag

Major uses: To divide a byte by 2. ROR can be used with
LSR to divide multiple-byte numbers since ROR puts any
carry into bit 7. If an LSR resulted in a carry, it would be thus
taken into account in the next lower byte in a multiple-byte
number. (See Appendix D.)

Notice how the act of moving columns of binary numbers
to the right has the effect of dividing by 2:
toOO (the number 8 in binary)
0100 (the number 4)

264

6502 Instruction Set

This same effect can be observed with decimal numbers,
except the columns represent powers of 10:
1000 (the number 1000 in decimal)
0100 (the number 100)

Addressing Modes:

Name Format

Accumulator ROR
Zero Page ROR 15
Zero Page,X ROR 15 ,X
Absolute ROR 1500
Absolute,X ROR 1500,X

Affected flags: N Z C

RTI

Opcode

$6A/ 106
$66/102
$76/118
$6E/110
$7E/126

What it does: Returns from an interrupt.

Number of
Bytes Used

1
2
2
3
3

Major uses: None. You might want to add your own
routines to your machine's normal interrupt routines (see SEI
below), but you won't be generating actual interrupts of your
own. Consequently, you cannot ReTurn from Interrupts you
never create.

Addressing Modes:

Name

Implied

Format

RTI

Opcode

$40/64

Number of
Bytes Used

1

Affected flags: all of them (Status Register is retrieved from the
stack).

RTS
What it does: Returns from a subroutine jump (caused by

JSR).
Major uses: Automatically picks off the two top bytes on

the stack and places them into the Program Counter. This re
verses the actions taken by JSR (which put the Program
Counter bytes onto the stack just before leaving for a sub
routine) . When RTS puts the return bytes into the Program

265

6502 Instruction Set

Counter, the next event in the computer's world will be the
instruction following the]SR which stuffed the return address
onto the stack in the first place.

Addressing Modes:

Name

Implied

Format

RTS
Affected flags: none of them.

SBC

Opcode

$60/ 96

Number of
Bytes Used

1

What it does: Subtracts a byte in memory from the byte
in the Accumulator, and "borrows" if necessary. If a "borrow"
takes place, the carry flag is cleared (set to 0). Thus, you al
ways SEC (set the carry flag) before an SBC operation so you
can tell if you need a "borrow." In other words, when an SBC
operation clears the carry flag, it means that the byte in mem
ory was larger than the byte in the Accumulator. And since
memory is subtracted from the Accumulator in an SBC opera
tion, if memory is the larger number, we must "borrow."

Major uses: Subtracts one number from another.

Addressing Modes:

Name Format

Immediate SBe #15
Zero Page SBe 15
Zero Page, X SBe 15,X
Absolute SBe 1500
Absolute,X SBe 1500,X
Absolute,Y SBe 1500,Y
Indirect,X SBe (15 ,X)
Indirect,Y SBe (15),Y

Affected flags: N Z e V

SEC

Opcode

$E9/ 233
$E5/ 229
$F5 / 245
$ED/ 237
$FD/ 253
$F9/ 249
$El / 225
$Fl / 241

Number of
Bytes Used

2
2
2
3
3
3
2
2

What it does: Sets the carry (C) flag (in the processor Sta
tus Register byte).

266

6502 Instruction Set

Major uses: This instruction is always used before any
SBC operation to show if the result of the subtraction was
negative (if the Accumulator contained a smaller number than
the byte in memory being subtracted from it). See SBC above.

Addressing Modes:

Name Format

Implied SEC

Affected flags: C

SED

Opcode

$38/56

Number of
Bytes Used

1

What it does: Sets the decimal (D) flag (in the processor
Status Register byte).

Major uses: Setting this flag puts the 6502 into decimal
arithmetic mode. This mode can be easier to use when you are
inputting or outputting decimal numbers (from the user of a
program or to the screen). Simple addition and subtraction can
be performed in decimal mode, but most programmers ignore
this feature since more complicated math requires that you re
main in the normal binary state of the 6502.

Note: Commodore computers automatically clear this mode
when entering ML via SYS. However, Apple and Atari computers
can enter ML in an indeterminant state. Since there is a possibil
ity that the D flag might be set (causing havoc) on entry to an ML
routine, it is sometimes suggested that owners of these two
computers use the CLD instruction at the start of any ML program
they write. Any ML programmer must CLD following any delib
erate use of the decimal mode.

Addressing Modes:

Name Format

Implied SED

Affected flags: D

Opcode

$F8/248

Number of
Bytes Used

1

267

6502 Instruction Set

SEI
What it does: Sets the interrupt disable flag (the I flag) in

the processor status byte. When this flag is up, the 6502 will
not acknowledge or act upon interrupt attempts (except a few
nonmaskable interrupts which can take control in spite of this
flag, like a reset of the entire computer). The operating sys
tems of most computers will regularly interrupt the activities
of the chip for necessary, high-priority tasks such as updating
an internal clock, displaying things on the TV, receiving sig
nals from the keyboard, etc . These interruptions of whatever
the chip is doing normally occur 60 times every second. To
find out what housekeeping routines your computer interrupts
the chip to accomplish, look at the pointer in $FFFE/FFFF. It
gives the starting address of the maskable interrupt routines.

Major uses: You can alter a RAM pointer so that it sends
these interrupts to your own ML routine, and your routine then
would conclude by pointing to the normal interrupt routines.
In this way, you can add something you want (a click sound
for each keystroke? the time of day on the screen?) to the nor
mal actions of your operating system. The advantage of this
method over normal SYSing is that your interrupt-driven rou
tine is essentially transparent to whatever else you are doing
(in whatever language). Your customization appears to have
become part of the computer's ordinary habits.

However, if you try to alter the RAM pointer while the
other interrupts are active, you will point away from the nor
mal housekeeping routines in ROM, crashing the computer.
This is where SEI comes in. You disable the interrupts while
you LDA STA LDA STA the new pointer. Then eLI turns the
interrupt back on and nothing is disturbed.

Interrupt processing is a whole subcategory of ML
programming and has been widely discussed in magazine arti
cles. Look there if you need more detail.

Addressing Modes:

Name Format

Implied SEI

Affected flags: I

268

Opcode

$78/120

Number of
Bytes Used

1

6502 Instruction Set

STA
What it does: Stores the byte in the Accumulator into

memory.
Major uses: Can serve many purposes and is among the

most used instructions. Many other instructions leave their re
sults in the Accumulator (ADCjSBC and logical operations
like ORA), after which they are stored in memory with STA.

Addressing Modes:

Name

Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
Indirect,X
Indirect,Y

Format

STA 15
STA 15,X
STA 1500
STA 1500,X
STA 1500,Y
STA (15,X)
STA (15),Y

Affected flags: none of them.

STX

Opcode

$85/133
$95/149
$8D/141
$9D/157
$99/153
$81/129
$91/145

Number of
Bytes Used

2
2
3
3
3
2
2

What it does: Stores the byte in the X Register into
memory.

Major uses: Copies the byte in X into a byte in memory.

Addressing Modes:

Name Format

Zero Page STX 15
Zero Page,Y STX 15,Y
Absolute STX 1500

Affected flags: none of them.

STY

Opcode

$86/134
$96/150
$8E/142

Number of
Bytes Used

2
2
3

What it does: Stores the byte in the Y Register into
memory.

Major uses: Copies the byte in Y into a byte in memory.

269

6502 Instruction Set

Addressing Modes:

Name

Zero Page
Zero Page,X
Absolute

Format

STY 15
STY 15,X
STY 1500

Affected flags: none of them.

TAX

Opcode

$84/132
$94/148
$8C/ 140

Number of
Bytes Used

2
2
3

What it does: Transfers the byte in the Accumulator to
the X Register.

Major uses: Sometimes you can copy the byte in the
Accumulator into the X Register as a way of briefly storing the
byte until it's needed again by the Accumulator. If X is cur
rently unused, TAX is a convenient alternative to PHA (an
other temporary storage method).

However, since X is often employed as a loop counter,
TAX is a relatively rarely used instruction.

Addressing Modes:

Name Format

Implied TAX

Affected flags: N Z

TAY

Opcode

$AA/170

Number of
Bytes Used

1

What it does: Transfers the byte in the Accumulator to
the Y Register.

Major uses: Sometimes you can copy the byte in the
Accumulator into the Y Register as a way of briefly storing the
byte until it's needed again by the Accumulator. If Y is cur
rently unused, TAY is a convenient alternative to PHA (an
other temporary storage method) .

However, since Y is quite often employed as a loop
counter, TAY is a relatively rarely used instruction.

270

Addressing Modes:

Name Format

Implied TAY

Affected flags: N Z

TSX

6502 Instruction Set

Opcode

$A8/168

Number of
Bytes Used

1

What it does: Transfers the Stack Pointer to the X
Register.

Major uses: The Stack Pointer is a byte in the 6502 chip
which points to where a new value (number) can be added to
the stack. The Stack Pointer would be "raised" by two, for
example, when you JSR and the two bytes of the Program
Counter are pushed onto the stack. The next available space
on the stack thus becomes two higher than it was previously.
By contrast, an RTS will pull a two-byte return address off the
stack, freeing up some space, and the Stack Pointer would
then be "lowered" by two.

The Stack Pointer is always added to $0100 since the
stack is located between addresses $0100 and $OlFF.

Addressing Modes:

Name Format

Implied TSX

Affected flags: N Z

TXA

Opcode

$BA/186

Number of
Bytes Used

1

What it does: Transfers the byte in the X Register to the
Accumulator.

Major uses: There are times, after X has been used as a
counter, when you'll want to compute something using the
value of the counter. And you'll therefore need to transfer the
byte in X to the Accumulator. For example, if you search the
screen for character $75:

271

6502 Instruction Set

CHARACTER = $75:SCREEN =

$0400
LOX #0
LOOP LOA SCREEN,X:CMP
#CHARACTER:BEQ MORE:INX
BEQ NOTFOUNO
MORE TXA

NOTFOUNO BRK

; (this prevents an endless loop
; (you now know the charac
ter's location)

In this example, we want to perform some action based
on the location of the character. Perhaps we want to remem
ber the location in a variable for later reference. This will re
quire that we transfer the value of X to the Accumulator so it
can be added to the SCREEN start address.

Addressing Modes:

Name Format

Implied TXA

Affected flags: N Z

TXS

Opcode

$8A/138

Number of
Bytes Used

1

What it does: Transfers the byte in X Register into the
Stack Pointer.

Major uses: Alters where, in the stack, the current "here's
storage space" is pointed to . There are no common uses for
this instruction.

Addressing Modes:

Name

Implied

Format

TXS

Affected flags: none of them.

272

Opcode

$9A/154

Number of
Bytes Used

1

6502 Instruction Set

TYA
What it does: Transfers the byte in the Y Register to the

Accumulator.
Major uses: See TXA.

Addressing Modes:

Name Format

Implied TYA

Affected flags: N Z

Opcode

$98/152

Number of
Bytes Used

1

273

-

Modifying LADS:
Adding Error Traps,
RAM, Based Assembly, and
a Disassembler

Special Notes on the Construction of
Atari and Apple LADS

Imagine how nice it would be if you could add any additional
commands to BASIC that you desired. You wouldn't just tem
porarily wedge the new commands into a frozen ROM BASIC.
Instead, you would simply define the new commands, and
they would then become a permanent part of your program
ming language.

This freedom to change a language is called extensibility.
It's one of the best features of Forth and a few other lan
guages. Extensibility opens up a language. It gives the pro
grammer easy access to all aspects of his programming tool.
LADS, too, is extensible since the internals of the assembler
are thoroughly mapped, documented, and explained in this
book. You can customize it at will, building in any features
that you would find useful.

After exploring the details of the LADS assembler and us
ing LADS to write your own machine language, you may have
thought of some features or pseudo-ops that you would like to
add. In this chapter, we'll show how to make several different
kinds of modifications. These examples, even if they're not
features of use to you, will demonstrate how to extend and
customize the language. We'll add some new error traps, cre
ate a disassembler, and make a fundamental change to the
Commodore and Apple LADS-the capability of assembling
directly from RAM. (The Atari version has this feature built-in
already.)

At the end of this chapter we'll cover the details of the
Atari and Apple LADS source code where they differ from the

277

Modifying LADS: Special Notes on Atari and Apple LA DS

general LADS source listings (printed at the end of each chap
ter). The three versions-Commodore, Atari, and Apple-are
functionally identical, so the descriptions throughout the book
apply to each version . However, a few adjustments had to be
made: input/output variations, a special source code editor for
the Atari, etc. All these will be discussed below. But first, let's
see some examples of how to customize LADS.

A Naked Mnemonic Error Trap
The original version of LADS notifies you of most serious er
rors: branch out of range, duplicated or undefined labels, na
ked labels (labels without arguments), invalid pseudo-ops, no
starting address, file not found on disk, and various syntax er
rors. Other kinds of errors are forgiven by LADS since it can
interpret what you meant to type in your source code. For
example, LADS can interpret what you meant when you type
errors like these:
100 INY #77; (adding an argument to a one-byte opcode)
100INY LOA #15:INY:INX;(extra spaces before or after

colons)

The source code in these examples will be correctly
assembled. Also, if you forget to leave a space between a mne
monic and its argument (like: LDA#15), that sort of error will
be trapped and announced.

But the original LADS didn't have a built-in trap for na
ked mnemonics. If you wrote:
100 INC:INY:LOA #15 ; (that "INC" requires an argument)

the assembler would have crashed . No error message, no
warning, just a crash.

Programmers who tested the early versions of LADS
asked that this error be trapped. That is, if this mistake was
made during the typing of an ML program's source code, it
shouldn't cause the assembler to go insane. The following two
error-trap modifications have been made a permanent part of
LADS (and are already in the object code version you typed in
from this book or received on disk).

To expose naked mnemonic errors, a special trap was in
serted into the Eval subprogram (see Listing 11.1)

278

Modifying LADS: Special Notes on Atari and Apple LADS

After Eval has determined (line 930 of Program 3-1) that
the mnemonic under evaluation does require an argument (it's
not like INY, which uses Implied addressing and never has an
argument), Eval then goes down to check to see if the argu
ment is a label or a number (1460).

Here's where we can check to see if the programmer for
got to give an argument. If the mnemonic is followed by a co
lon or a 0 (end of logical line), that's a sure signal that the
argument has been left out. We can load in the character just
after the mnemonic (see line 1474, Listing 11.1). If there is a
space character (#32), all is well and we can continue (1480)
with our assembly. If not, we jump to L700, the error-report
ing routine which will print the error and ring the bell.

A Trap for Impossible Instructions
Another programmer who tested LADS was just starting to
learn machine language. Unfamiliar with some of the
mnemonics and addressing modes, he once tried to assemble a
line like this:
100 LOA 15,Y

not knowing that Zero Page,Y addressing is a rare addressing
mode, exclusively reserved for only two mnemonics: LDX and
STX. But LADS didn't crash on this. Instead, it assembled an
LDA 15,X (the correct addressing mode, but fatal to his
particular program since he was trying to use the Y Register as
an index).

The trap was inserted into LADS (Listing 11.2) to make a
harmless substitution, to assemble an Absolute,Y (at a zero
page address) . Thus, the programmer's intent is preserved, but
the illegal addressing mode is replaced.

By the time Eval reaches this point, it has already filtered
out many other possible addressing modes. Eval knows that
the addressing mode is some form of ,X or ,Y and that it's
Zero Page. Eval first checks to see if we are dealing with an
attempted ,Y addressing mode (eMP #89, the Y character) . If
not, we continue with the assembly (5271) by a BNE to line
5274.

279

Modifying LADS: Special Notes on Atari and Apple LADS

But if it is a ,Y, we check the opcode to see if it is LDX,
the only correct opcode for this addressing mode. If so, we
continue.

However, if it is some other mnemonic like LDA or STY,
this ,Y addressing mode is illegal and we make the adjustment
to Absolute,Y by a JMP to the area of Eval where that
addressing mode is accomplished.

Most illegal addressing will be reported by LADS. Never
theless, if there's a peculiar error that you often make when
programming and LADS doesn't alert you, just add an error
reporting trap or have the assembler automatically correct the
problem.

A final minor modification to the PDISK routine in the
Pseudo subprogram will permit embedded keywords in
filenames when using the .D pseudo-op to save object code to
disk. (The Atari version will not need this modification.) As
printed in this book, LADS will correctly extend and print a
filename following the .D pseudo-op which contains a
keyword. For example, .D OLDSTOP will look correct
onscreen. However, LADS will send the tokenized keyword to
the disk as the filename. This will result in unpredictable
filenames when you use BASIC commands as part of a
filename. To correct this, remove line 1190 of Program 8-1 and
adjust the following lines in the Pseudo subprogram. Then re
assemble a new version of LADS:
1230 PD1 LDY #0
1231 PDLO LDA LABEL,Y:BEQ PDEN:STA FILEN,Y:INY:JMP

PDLO; MOVE NAME
1239 PDEN LDA #44; PUT ,P,\l (PROGRAM, WRITE) SIGNAL

S ONTO FILENAME

280

N

0
0

.....

L
is

ti
ng

 1
1

.1

1
4

7
2

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S
E

E

C
H

A
PT

E
R

1

1

FO
R

D

E
S

C
R

IP
T

IO
N

O

F
T

H
IS

ER

R
O

R

T
R

A
P

1
4

7
3

;

(T
R

A
P

FO
R

N

A
K

ED

M
N

EM
O

N
IC

S
E

R
R

O
R

)
1

4
7

4

LD
A

L

A
B

E
L

+
3:

C
M

P

#
3

2
:B

E
Q

G

V
E

G
:J

M
P

L

7
0

0
;

(T
E

S
T

FO

R

"I
N

C
:"

T

Y
PE

E

R
R

O
R

)

L
is

ti
ng

 1
1

.2

5
2

7
0

;

-
-
-
-
-
-
-
-
-
-

SE
E

C

H
A

PT
E

R

1
1

FO

R

E
X

PL
A

N
A

T
IO

N

O
F

T
H

IS

ER
R

O
R

T

R
A

P
-
-
-
-
-
-

5
2

7
1

L

7
6

0

LD
A

B

U
F

F
E

R
+

2,
Y

:C
M

P

#
8

9
:B

N
E

M

L
76

k:
l;

-
-
-

ER
R

O
R

T

R
A

P
FO

R

LD
A

(1

5
,Y

)
5

2
7

2

LD
A

O

P
:C

M
P

#

1
8

2
:B

E
Q

M

L
76

0;

IS

TH
E

M
N

EM
O

N
IC

LD

X

(I
F

S

O
,

M
O

D
E

IS

C
O

R
R

E
C

T
)

5
2

7
3

JM

P
L

6
8

0
;

IF

N
O

T
,

JU
M

P
TO

M

A
K

E
IT

(L

D
A

$

0
0

1
5

,Y
)

A
B

SO
L

U
T

E

Y

5
2

7
4

M

L
76

0
JM

P
T

\r
oS

~

o 0.
.. -t. ;:l

(J
Q

 r
' ~ (J
J

(J
J

"0

(1
) n a. z o ,..,.

(1
)

en
 o ;:l
 >

,..,.
 el ~

;:l

0.
.. ? "0
 -(1) ~ (J
J

Modifying LADS: Special Notes on Atari and Apple LADS

A Remarkably Simple, Yet Radical, Change
Since LADS uses symbols instead of numbers, it's fairly easy
to change, to make it what you want it to be. What's more, all
the programs you write with LADS will also be symbolic and
easily changed. Let's make a radical change to LADS and see
how easy it is to profoundly alter the nature of the assembler.

As designed, LADS reads source code off a disk program
file. Let's make it read its source code from within the comput
er's RAM memory, instead of from disk . This makes two
things possible: 1. You can change source code, then test it by
a simple SYS to LADS. 2. Tape drive users can use LADS.
This version of LADS isn't functionally different from the nor
mal version since long, linked assembly will still be coming
from disk files. However, it can be a more convenient way to
write and debug smaller ML programs or subroutines. Every
thing works the same when you assemble, except that the first
(or only) source code program resides in RAM instead of on
disk. Commodore and Atari RAM-LADS versions can use
linked files, but the Apple RAM-based version cannot link
files as it can in the normal Apple LADS.

You make a radical change whenever you change *= 864
to * = 5000. You are making a small change at the beginning,
the root, of your source code. After making this change, the
entire program is assembled at address 5000 instead of address
864. The effect-in the usual sense of the term-is quite rad
ical. The effort on your part, however, is rather minor. Like
wise, we can drastically alter the way that LADS works by
making a few minor changes to the symbols in LADS.

Our goal is to make LADS read source code from memory
instead of from disk files. First, we need to add two new
pointers to the LADS zero page equates (in the Defs file). We
create PMEM. It will serve as a dynamic pointer. It will always
keep track of our current position in memory as we assemble
source code.

The intelligence in the disk drive keeps track of where we
are in a file; whenever we call CHARIN, it increments a
pointer so that the next CHARIN call will pull a new byte into
A, the Accumulator. But we're going to be reading from mem
ory so we'll need to update our own dynamic pointer. To cre
ate this pointer, just type in a new line in Defs: PMEM = $xx
(whatever zero page, two-byte space is safe in your computer).

282

Modifying LADS: Special Notes on Atari and Apple LADS

The other new pointer we need to define in zero page will
tell LADS where your BASIC RAM memory starts, where a
program in BASIC starts. To create this register, just look at a
map of the zero page of your particular computer and define:
RAMSTART = $xx (whatever it is) .

Note: These definitions have already been added to the
Commodore versions of the Defs subprogram in this book. If
you are creating a RAM-based version of LADS for the Apple,
add the following two lines to the Apple Defs file:
135 RAMSTART = $67; POINTER TO START OF RAM

MEMORY
157 PMEM = $E2

The Apple version of the RAM-based LADS requires the same
changes to the Eval subprogram as Commodore machines re
quire. However, no changes are needed in the Pseudo or
Open1 subprograms. The one difference between Commodore
and Apple versions in the Getsa subprogram is that Apple re
quires #$2A in line 300 instead of the #172 .

ANew CHARIN
Next, we need to change the CHARIN subroutine itself. As
LADS normally runs, it goes to BASIC's get-a-byte subroutine
whenever CHARIN is invoked. This won't work for memory
based source code. BASIC RAM cannot, alas, be OPENed as if
it were a file . So, since LADS is peppered with references to
CHARIN, we can just undefine CHARIN in the Defs sub
program by putting a semicolon in front of it (Listing 11.3).

Similarly, CHKIN is scattered throughout LADS to reopen
file #1, the read-code-from-disk file. We're not using file #1 in
this version of LADS, so we add a semicolon to its definition
too (Listing 11.4).

But throughout LADS there are references to these two
subroutines. We need to write a new CHARIN and CHKIN to
replace the ones we just obliterated. LADS will then have
somewhere to go, something to do, as it comes upon
CHAR INs or CHKINs throughout the code. We do this by
adding to the Getsa subprogram (Listing 11.5).

283

N

0
0

oj

:>
.

L
is

ti
n

g
1

1
.3

2

6
0

;C

H
A

R
IN

$

F
F

E
4

;
PU

L
L

S
IN

O

N
E

B
Y

T
E

L
is

ti
n

g
1

1
.4

2

4
0

;C

H
K

IN

=

$
F

F
C

6
;

O
PE

N
S

A

C
H

A
N

N
E

L

FO
R

R

EA
D

(F

IL
E

#

IN

x
)

L
is

ti
n

g
1

1
.5

3

4
0

3

5
0

3

6
0

3

7
0

3

8
0

3

9
0

4

0
0

4

1
0

"N
EW

C

H
A

R
IN

"
A

SS
E

M
B

L
E

SO

U
R

C
E

C
O

D
E

FR

O
M

M

EM
O

RY

R
A

T
H

E
R

TH

A
N

D

IS
K

.
(I

M
IT

A
T

E
S

C

H
A

R
IN

FO

R

D
IS

K
)

R
E

T
U

R
N

S
W

IT
H

N

EX
T

BY

T
E

FR

O
M

M

EM
O

R
Y

,
IN

A

C
H

A
R

IN

IN
C

PM

E
M

:B
N

E

IN
C

P
1

:I
N

C

PM
E

M
+1

;
R

E
P

L
A

C
E

S

C
O

N
V

E
N

T
IO

N
A

L

C
H

A
R

IN
/D

IS
K

IN

C
P

1
S

T
Y

Y

:L
D

Y

#
0

:L
D

A

(P
M

E
M

),
Y

:P
H

P
:L

D
Y

Y

:P
L

P
:R

T
S

;
SA

V
E

ST

A
T

U
S

R
E

G
IS

T
E

R

C
H

K
IN

R

T
S

;
R

E
PL

A
C

E
S

D
IS

K

R
O

U
T

IN
E

IN

D

E
FS

~

o 0
- -? ::l

(J
Q

 t'""
 ~ en

en

"0

(T
) n Si'

 - z o (T
) '" o ::l
 :> ~ .., ~

::l

0
- :> "0

"0

(b
 ~ en

Modifying LADS: Special Notes on Atari and Apple LADS

Line 410 is just an RTS. It's a placebo. We never want to
reopen file #1 (CHKIN's normal job), so whenever LADS tries
to do that, we JSRjRTS and nothing happens. Something does
have to happen with CHARIN, however. CHARIN's job is to
fetch the next byte in the source code and give it to the Accu
mulator. So this new version of CHARIN (390-400) increments
PMEM, our new RAM memory pointer, saves Y, loads the
byte, saves the Status Register, restores Y, restores the Status
Register, and returns. This effectively imitates the actions of
the normal disk CHARIN, except it draws upon RAM for
source code.

Here you can see one of those rare uses for PHP and PLP.
There are times when it's not enough to save the A, Y, and X
Registers. This is one of those times. INDISK returns to Eval
only when it finds a colon (end of source instruction), a semi
colon (end of instruction, start of comment), or a zero (end of
BASIC program line, hence end of source instruction) . When
we get a zero when we LDA, the zero flag will be set. But the
LDY instruction will reset the zero flag . So, to preserve the ef
fect of LDA on the zero flag, we PHP to store the flags on the
stack. Then, after the LDY, we restore the status of the flags,
using PLP before we return to the Indisk file. This way, what
ever effect the LDA had on the flags will be intact. Indisk can
thus expect to find the zero flag properly set if a particular
LDA is pulling in the final 0 which signifies the end of a line
in the BASIC RAM source code.

After making these substitutions to LADS, we need to re
move the two references to Open1 (the routine which opens a
disk file for source code reading) in the Eval subprogram.
These references are at lines 350 and 4350. We can simply re
move them from assembly by putting a semicolon in front of
them (Listing 11.6).

Early in Eval, we have a JSR GETSA. This is the GET
Start-Address-from-disk routine. We want to change this to:
JSR MEMSA. GETSA isn' t needed. MEMSA will perform the
same job, but for memory-based source code instead of disk
based source code. MEMSA is found in the Getsa subprogram
(Listing 11.7).

The first thing that MEMSA does is to put the start-of
BASIC-RAM pointer into PMEM (our dynamic pointer). This
positions us to the first byte in the source code. Then it pulls

285

Modifying LADS: Special Notes on Atari and Apple LADS

off enough bytes to point to the * in the start address defi
nition in the source code. This is just what Getsa does for a
disk file. The rest of MEMSA is identical to Getsa.

Second Generation LADS
That's it. These few substitutions and LADS will read a source
file from RAM memory. You can still use .D NAME to create a
disk object code file. You can still send the object code dis
assembly to a printer with .P. All the other pseudo-ops still
work fine . A radical change in ten minutes.

The Getsa subprogram contains a complete, step-by-step
description of this disk-to-RAM modification of LADS. After
you've made the changes to the source code (and saved them
to disk), just load in the normal disk version of LADS, enter
Defs as the starting file for assembly, and SYS to LADS. It will
grind out a brand new, RAM-based assembler for you.

As always, when making a new version of your LADS
assembler, be sure to direct object code to the disk (use the .D
pseudo-op) so that you won't overwrite the working LADS in
the computer. Also be sure you've given the new version a
filename that doesn't already exist on the disk.

286

N

0
0

'-

l

L
is

ti
n

g
1

1
.6

3

5
0

:J

S
R

O

P
E

N
1:

O

PE
N

R

EA
D

F

IL
E

(S

O
U

R
C

E

C
O

D
E

F
IL

E

O
N

D

IS
K

)
4

3
5

0

;J
S

R

O
P

E
N

1:

O
PE

N

IN
P

U
T

F

IL
E

(P

O
IN

T

IT

TO

TH
E

1S
T

B

Y
TE

IN

TH

E
F

IL
E

)

L
is

ti
n

g
1

1
.7

2

2
0

"M

EM
SA

"
G

ET

ST
A

R
T

IN
G

A

D
D

R
E

SS

FR
O

M

M
EM

O
R

Y
.

L
E

A
V

E
S

D
IS

K

P
O

IN
T

IN
G

A

T
-

2
3

0

*=

T
H

IS

SP
A

C
E

(S

T
A

R
T

A

D
D

R
E

SS
)

2
4

0

!1

IN
IT

IA
L

IZ
E

S

PM
EM

TO

ST

A
R

T

O
F

M
EM

O
RY

2

5
0

R

E
PL

A
C

E
S

"G
E

T
SA

"
SO

U
R

C
E

C
O

D
E

F
IL

E

TO

C
R

E
A

T
E

R

A
M

-B
A

SE
D

A

SS
E

M
B

L
E

R
.

2
6

0

-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2
7

0

M
EM

SA

LD
A

R

A
M

ST
A

R
T

:S
T

A

PM
EM

:L
D

A

R
A

M
ST

A
R

T
+

1:
ST

A

PM
EM

+1

2
8

0

LD
X

#3

:M
EM

1
JS

R

C
H

A
R

IN
:D

E
X

:B
N

E

M
EM

1:

A
D

D

4
TO

PM

EM

TO

P
O

IN
T

TO

*=

3

0
0

JS

R

C
H

A
R

IN
:C

M
P

#
1

7
2

:B
EQ

M

M
SA

3

1
0

LD

A

#<
M

N
O

ST
A

R
T

:S
T

A

T
E

M
P:

L
D

A

#>
M

N
O

ST
A

R
T

:S
T

A

T
E

M
P

+
1

:J
S

R

PR
N

T
M

E
SS

3

2
0

JM

P
F

IN
;

G
O

BA

CK

TO

B
A

S
IC

V

IA

R
O

U
T

IN
E

W

IT
H

IN

EV
A

L
3

3
0

M

M
SA

R

T
S

~

o 0
- $ S· IJQ

t""
' ~ r.f
J

r.f
J

"0

(t
) n III
 - z o ,... (t
)

or
> o ::I
 ~

~ III

::I

0
- ? "0
 -(t) t'"'
" ~ r.f
J

Modifying LADS: Special Notes on Atari and Apple LADS

A Disassembler
In a perfectly symmetrical universe, with a right hand for ev
ery left, and a north pole for every sou th, you could transform
an assembler into a disassembler by just making it run
backwards.

Unfortunately, ours is not such a universe. Since LADS
turns source code into object code, it would seem possible to
tinker with it and adjust it a bit and make it turn object code
back into source code, to disassemble . Not so. We have to link
two new files onto LADS to add a disassembler function: Dis
and Dtables.

Personal Programming Style
Dis is an example of how a fairly complex ML program can be
constructed using LADS. The relatively few comments reflect
my personal style of programming. I find many of the variable
names are meaningful enough to make the code under
standable, especially since the purpose of the lookup tables in
Dtables is fairly easy to see.

The relatively few comments in the compressed code in
Dis also allow you to look at more instructions at the same
time on the screen. This can help during debugging since you
might be able to more quickly locate a fault in the overall logic
of a program. Nevertheless, many programmers find such
dense code hard to read, hard to debug, and generally
inefficient.

Obviously, you should write the kind of source code that
works for you. The degree of compression is a matter of
programming style and personal preference. Some program
ming teachers insist on heavy commenting and airy, de
compressed coding. Perhaps this emphasis is appropriate for
students who are just starting out with computing for the
same reasons that penmanship is stressed when students are
just starting to learn how to write . But you needn't feel that
there is only one programming style. There are many paths,
many styles.

How to Use the Disassembler
For convenience, Dis is set to start at 17000. That's an easy
number to remember when you want to SYS, CALL, or USR
to see a disassembly. The version at the end of this chapter is
fully functional, but you might want to make modifications. As

288

Modifying LADS: Special Notes on Atari and Apple LADS

printed, it will ask for the start address location in RAM of the
object code you want to see listed. Notice that the object code
must be residing in RAM to be disassembled. (It would be
simple, though, to make a disassembler which operated on
disk or tape code.) Then it will disassemble until you hit the
STOP or BREAK key. You might want to adjust it- you could
have it assemble 20 instructions and then halt until a key was
pressed. Or you might want to make it print disassemblies to
the printer. Or it could ask for both starting and ending ad
dresses before it begins. To have the disassembler you prefer,
just modify the code.

The disassembler is included in this book because it dem
onstrates compressed LADS source code and it also shows
how LADS itself can be expanded while borrowing from exist
ing LADS subroutines like STOPKEY and PRNTNUM.

The source code in other parts of the book is somewhat
artificial: Each line contains only one mnemonic followed by a
description, a comment about the purpose of that line. Nor
mally, such extensive commentary will not be necessary, and
many lines can contain multiple statements separated by co
lons. Dis is an example of LADS source code as many pro
grammers will probably write it.

To add the disassembler to LADS, change the .END DEFS
at the end of the Tables subprogram in LADS to .FILE DIS.
This will cause the file for Dis to be assembled along with
LADS. Dis will link to Dtables, which ends with .END DEFS
to permit the second pass through the combined LADS lOis
code.

Keyboard Input
Let's briefly outline the structure and functions of the
disassembler. It starts off by printing its prompt message
called DISMESS (30). The actual message is located in line
710. PRNTMESS is a subroutine within LADS which prints
any message pointed to by the variable TEMP.

Then $3F, the? symbol, is printed and STARTDIS (50)
sets the hexflag up so that number printouts will be in hexa
decimal. If you prefer decimal, LOA #0 and store it in
HXFLAG.

Now there's an input loop to let the user input a decimal
start address, character by character. If a carriage return is de
tected (90), we leave the loop to process the number. The

289

Modifying LADS: Special Notes on Atari and Apple LADS

number's characters are stored in the LABEL buffer and are
also printed to the screen as they are entered (100).

When we finish getting the input, the LADS Valdec rou
tine changes the ASCII numbers into a two-byte integer in the
variable RESULT. We pick up the two-byte number and store
it in the variable SA which will be printed to the screen as the
address of each disassembled mnemonic.

Line 150 is a bit obscure. It wasn't originally written this
way, but testing revealed that the JSR GB in line 190 would
increment the start address right off the bat (before anything
was disassembled or printed). At the same time, putting that
increment lower in the main loop was inconvenient. So the
easiest thing was to simply accept a start address from the
user, then decrement it. The disassembler will start off with a
start address that is one lower than the user intends, but that
early increment will fix things up. Thus, the variable PMEM
will hold a number which is one lower than the variable SA.
Both these variables are keeping track of where in memory we
are currently disassembling. But we've got to distinguish in
this way between SA which prints to the screen and PMEM
which tells the computer the current location.

Battling Insects
This is a good place to observe that programming is never a
smooth trip from the original concept to the final product. No
programmer is so well-prepared or knowledgeable that he or
she simply sits down and calmly creates a workable program.
If you find yourself scratching your head, circling around a
bug and not trapping it, spending hours or days trying to see
what could possibly be wrong-you're in good company. I've
worked with some very experienced, very talented people and
have yet to see someone fashion a program without snags.
And the more significant and sophisticated the program, the
more snags it has.

All that can be done, when you hit a snag, is to single
step through the offending area of your program, or set BRK
traps, or puzzle over the source code, or try making some ten
tative reassemblies (not knowing for sure if your changes will
have any salutary effect), or sometimes even toss out an entire
subroutine and start over. For example, I wrote the rough
draft, the first draft of this disassembler, in about two hours. I
didn't have the final version working until I'd spent two full

290

Modifying LADS: Special Notes on Atari and Apple LADS

days battling bugs. Some were easy to fix, some were mon
sters . It took about ten minutes to cure that problem with the
start address being one too high. But it took hours to locate an
error in the disassembler tables, Dtables.

After the user has input the start address, TEMP is made
to point to the LABEL buffer and VALDEC is invoked.
VALDEC leaves the result of an ASCII-to-integer conversion in
the RESULT variable . That number is stored in PMEM and SA
(140-150) . One final adjustment restores SA to the original
number input by the user. SA will only print addresses
onscreen; PMEM is the real pointer to the current address dur
ing disassembly. The decrementing of PMEM, made necessary
by that JSR GB early in the main loop, is not necessary for SA.
(SA is not incremented by the GB subroutine.)

GETBYTE: The Main Loop
Now we arrive at the main loop. GETBYTE (190) first tests to
see if the user wants to stop disassembly via the STOPKEY
subroutine (in the Eval subprogram within LADS). Then the
GB subroutine (690) raises the memory pointer PMEM and
fetches a byte from memory. This byte is saved in the FILEN
buffer and will act as an index, a pointer to the various tables
in the Dtables subprogram. For purposes of illustration, let's
assume that the byte we picked up held the number 1. One is
the opcode for ORA (Indirect,X) . We can trace through the
main loop of Dis and see what happens when Dis picks up a
1.

The 1 is transferred to the Y Register (200), and we then
load whatever value is in MTABLE + 1 since we LDA
MTABLE,Y and Y holds a 1. This turns out to be the number
2, signifying that we've come upon the second opcode (if the
opcodes are arranged in ascending order). Notice that BNE
will make us skip over the next couple of lines. Anytime we
pull a 0 out of MTABLE it means that there is no valid opcode
for that number, and we just print the address, the number,
and a question mark ($3F) . Then we raise the printout address
pointer with INCSA and return to fetch the next byte
(210-220).

291

Modifying LADS: Special Notes on Atari and Apple LADS

However, in our example, we did find something other
than a 0 in MTABLE. We've got a valid opcode. Now we have
to find out its addressing mode and print a one- or two-byte
argument, depending on that addressing mode. Is it Immediate
addressing like LOA #15 (one-byte argument) or Absolute
addressing like LOA 1500 (two-byte argument)?

Having found a valid opcode, we now extract the mne
monic from WORDTABLE and print it out (240-330). First we
multiply our number from MTABLE by 3 since each mne
monic has three letters. The number we found in MTABLE
was a 2, so we have a 6 after the multiplication. That means
that our mnemonic will start in the sixth position within
WORDTABLE. We add 6 to the address of WORDTABLE
(280-290) and leave the variable PARRAY pointing at the first
letter 0 in WORDTABLE.

Now the SA (current disassembly address) is printed
onscreen with PRNTSA and a space is printed (300). We then
print ORA onscreen, one letter at a time (310-330), and print
another space. Now we're ready to figure out the addressing
mode.

Addressing Type
We had previously saved our original byte (the number 1 in
our example) in FILEN (190). We now retrieve it, pull out the
position value from MTABLE (getting the number 2), and load
in the addressing mode type from TYPETABLE (see lines
360-410 in the Dtables subroutine listing at the end of this
chapter). It turns out that the number 2 we're using in our
example will pull out a number 4 from TYPETABLE. The
number 4 identifies this as an Indirect X addressing mode.

Between lines 380 and 410 we have a simple decision
structure, much like BASIC's ON-GOTO structure. In our
example, the CMP #4 in line 390 will now send us to a rou
tine called DINDX which handles Indirect X addressing.

DINDX (460) takes advantage of several routines which
print symbols to the screen for us: LEPAR prints a left paren
thesis; DOONE fetches and prints the next number in RAM
memory (the argument for the current mnemonic); COMX
prints a comma and an X; and RIPAR finishes things off with
a right parenthesis . Now we have something like this
onscreen:

292

Modifying LADS: Special Notes on Atari and Apple LADS

0360 ORA (12,X)

so our disassembly of this particular instruction is complete.
We JMP to ALLOONE (600) and print a carriage return and
start the main loop over again to disassemble the next
mnemonic.

Other mnemonics and other addressing modes follow a
similar path through Dis as they are looked up in Otables and
then printed out.

By the way, if you look at lines 650-680 on page 296,
you'll see a peculiar #/1 pseudo-op. It allows you to specify a
character instead of a number for immediate addressing. In
line 650 we need to print a comma to the screen. You could
LOA #44 (the ASCII code for a comma) and JSR PRINT.

But if you don't want to look up the ASCII code, LADS
will do it for you. Just use a quote after the # symbol: LOA
#/1, (followed by the character you're after; in this case, the
comma). The correct value for the character will be inserted
into your object code. You can see that we used this pseudo
op to load the value for X, Y,), and (symbols as well, in lines
650-680.

293

N

\.
0

>i'

>
P

ro
gr

am
 1

1
-1

.
D

is
-T

h
e
 D

is
as

se
m

b
le

r
1

0

;
D

IS

-
-

D
IS

A
SS

E
M

B
L

E
R

2

0

*=

1
7

0
0

0

3
0

LO

A

#<
D

IS
M

E
S

S
:S

T
A

T

E
M

P:
L

D
A

#>

D
IS

M
E

S
S

:S
T

A

T
E

H
P

+
1

:J
S

R

PR
N

T
M

E
SS

4

0

JS
R

PR

N
T

C
R

:L
D

A

#
$

3
F

:J
S

R

P
R

IN
T

5

0

S
T

A
R

T
D

IS

LO
A

#

1
:S

T
A

H

X
FL

A
G

:L
D

Y

#
0

:S
T

Y

Y

6
0

D

TM
0

JS
R

C

H
A

R
IN

i
-
-

G
E

T

ST
A

R
T

A

D
D

R
E

SS

(D
E

C
IM

A
L

)
-
-

7
0

B

EQ

D
TM

0
8

0

CM
P

#
$

0
0

;
C

A
R

R
IA

G
E

R

ET
U

R
N

9

0

B
EQ

DM

O
1

0
0

LO

Y

Y
:S

T
A

L

A
B

E
L

,Y
:J

S
R

P

R
IN

T

1
1

0

IN
Y

:S
T

Y

Y
:J

M
P

D

TM
0

1
2

0

DM
O

LO
A

#

0
:S

T
A

L

A
B

E
L

,Y
:J

S
R

PR

N
T

C
R

1

3
0

LO

A

#<
L

A
B

E
L

:S
T

A

T
E

M
P:

L
D

A

#>
L

A
B

E
L

:S
T

A

T
E

M
P

+
1

:J
S

R

V
A

LD
EC

1

4
0

LD

A

R
E

S
U

L
T

:S
T

A

S
A

:L
D

A

R
E

S
U

L
T

+
1:

S
T

A

S
A

+
1

1
5

0

LO
A

R

E
S

U
L

T
:B

N
E

B

F
:D

E
C

R

E
S

U
L

T
+

1:
B

F

D
EC

R

E
S

U
L

T
;

LO
W

ER

BY

O
N

E
1

6
0

LO

A

R
E

S
U

L
T

:S
T

A

PM
E

M
:L

D
A

R

E
S

U
L

T
+

1:
S

T
A

PM

EM
+1

1

7
0

1

8
0

1

9
0

2

0
0

2

1
0

2

2
0

2

3
0

2

4
0

2

5
0

2

6
0

2

7
0

2

8
0

2

9
0

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-

PU
L

L

IN

A

B
Y

TE

A
N

D

SE
E

IF

IT

IS

A

 V
A

L
ID

O

PC
O

D
E

G
E

T
B

Y
T

E

JS
R

S

T
O

P
K

E
Y

:J
S

R

G
B

:S
T

A

F
IL

E
N

;
(S

A
V

E

A
S

IN
D

E
X

)
T

A
Y

:L
D

A

M
T

A
B

L
E

,Y
:B

N
E

D

M
O

R
E

:J
S

R

P
R

N
T

S
A

:J
S

R

PR
N

T
SP

A
C

E

LO
X

F

IL
E

N
:L

D
A

#

0
:J

S
R

P

R
N

T
N

U
M

:J
S

R

PR
N

T
SP

A
C

E

LO
A

#

$
3

F
:J

S
R

P

R
IN

T
:J

S
R

IN

C
S

A
:J

M
P

A

L
L

D
O

N
E

i
N

O
T

A
 V

A
L

ID

O
PC

O
D

E
;

C
O

N
T

IN
U

E

O
N

,
FO

U
N

D

A
 V

A
L

ID

O
P

C
O

D
E

--
--

-
D

M
O

RE

ST
A

H

O
R

K
:L

D
Y

#

0
:S

T
Y

P

A
R

R
A

Y
+

1:
A

S
L

:S
T

A

PA
R

R
A

Y
:R

O
L

PA

R
R

A
Y

+1

;
M

U
L

T
IP

L
Y

Y

B

Y

T
H

R
E

E

LO
A

H

O
R

K
:C

L
C

:A
D

C

PA
R

R
A

Y
:S

T
A

PA

R
R

A
Y

:L
D

A

#0
:A

D
C

P

A
R

R
A

Y
+

1:
S

T
A

PA

R
R

A
Y

+1

A
D

D

T
H

IS

TO

W
O

R
D

TA
B

LE

C
L

C
:L

D
A

#<

\lO
R

D
T

A
B

L
E

:A
D

C

PA
R

R
A

Y
:S

T
A

PA

R
R

A
Y

LO

A

#>
H

O
R

D
T

A
B

L
E

:A
D

C

P
A

R
R

A
Y

+
1:

S
T

A

PA
R

R
A

Y
+1

~ p.
.

~
 S· (J

Q
 t""
' ~ (f
)

(f
)

"0

~

(
l ,...
.

~
 - z o ~ en
 o ::l
 >

.... ~ '"
! ,...
.

~

::l

0.
. >

"0

"0

~

t""
' ~ (f
)

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

39
10

4

0
0

4

1
0

4

2
0

4

3
0

4

4
0

4

5
0

4

6
0

4

7
0

48

10

4
9

0

5
0

0

5
1

0

5
2

0

5
3

0

5
4

0

5
5

0

5
6

0

5
7

0

5
8

0

N

5
9

0

\0

U
1

61
00

JS
R

P

R
N

T
S

A
:J

S
R

PR

N
T

SP
A

C
E

LD

Y

#
0

:L
D

A

(P
A

R
R

A
Y

),
Y

:J
S

R

P
R

IN
T

:I
N

Y

LD
A

(P

A
R

R
A

Y
),

Y
:J

S
R

P

R
IN

T
:I

N
Y

LD

A

(P
A

R
R

A
Y

),
Y

:J
S

R

P
R

IN
T

:J
S

R

PR
N

T
SP

A
C

E

LD
Y

F

IL
E

N
:L

D
A

M

T
A

B
L

E
,Y

;
0

M
EA

N
S

N
O

A

R
G

U
M

E
N

T
(I

N
D

IR
E

C
T

O

R

A
C

C
U

M
U

LA
TO

R

M
O

D
ES

)
T

A
Y

:D
E

Y
:L

D
A

T

Y
P

E
T

A
B

L
E

,Y
:B

N
E

B

R
A

N
C

H
ES

JS

R

IN
C

S
A

:J
M

P

A
LL

D
O

N
E

B
R

A
N

C
H

ES

LD
A

T

Y
P

E
T

A
B

L
E

,Y

CM
P

#
l:

B
E

Q

D
IM

M
ED

CM

P
#

2
:B

E
Q

D

A
B

SO
L

:C
M

P
#3

:B
E

Q

D
Z

E
R

O
:C

M
P

#
4

:B
E

Q

D
IN

D
X

:C
M

P
#5

:B
E

Q

D
IN

D
Y

CM

P
#6

:B
E

Q

D
Z

E
R

O
X

:C
M

P
#7

:B
E

Q

D
A
B
S
O
L
X
:
C
~
1
P

#
8

:B
E

Q

D
A

B
SO

L
Y

:C
M

P
#

9
:B

E
Q

D

R
E

L

CM
P

#
1

0
:B

E
Q

JD

JU
M

P
IN

D

JS
R

D

O
O

N
E

:J
S

R

C
O

M
X

:J
M

P
A

L
L

D
O

N
E

;
FA

L
L

-T
H

R
O

U
G

H

TO

T
Y

PE

1
1

(Z

E
R

O
,X

)
D

IM
M

ED

LD
A

#

"#
:J

S
R

P

R
IN

T
:J

S
R

D

O
O

N
E

:J
M

P
A

L
L

D
O

N
E

;
IM

M
E

D
IA

T
E

(T

Y
PE

1

)
D

A
B

SO
L

JS
R

D

O
T

W
O

:J
M

P
A

L
L

D
O

N
E

:J
D

JU
M

P
IN

D

JM
P

D
JU

M
P

IN
D

;A
B

S
O

L
U

T
E

(T

Y
PE

2

)
D

ZE
R

O

JS
R

D

O
O

N
E

:J
M

P
A

L
L

D
O

N
E

;
ZE

R
O

PG

(T

Y
P

E

3
)

D
IN

D
X

JS

R

L
E

P
A

R
:J

S
R

D

O
O

N
E

:J
S

R

C
O

M
X

:J
S

R

R
IP

A
R

:J
M

P
A

L
L

O
O

N
E

;
IN

D
.X

(T

Y
P

E

4
)

D
IN

D
Y

JS

R

L
E

P
A

R
:J

S
R

D

O
O

N
E

:J
S

R

R
IP

A
R

:J
S

R

C
O

M
Y

:J
M

P
A

L
L

D
O

N
E

;
IN

D
.

Y

(T
Y

P
E

5

)
O

ZE
R

O
X

JS

R

D
O

O
N

E
:J

S
R

C

O
M

X
:J

M
P

A
L

L
D

O
N

E
;

ZE
R

O

X

(T
Y

P
E

6

)
D

A
B

SO
LX

JS

R

D
O

T
H

O
:J

S
R

C

O
M

X
:J

M
P

A
L

L
D

O
N

E
;

A
B

SO
L

U
T

E

X

(T
Y

P
E

7

)
D

A
B

SO
LY

JS

R

D
O

T
H

O
:J

S
R

C

O
M

Y
:J

M
P

A
L

L
D

O
N

E
;

A
B

SO
L

U
T

E

Y

(T
Y

P
E

8

)
D

R
EL

JS

R

G
B

:B
P

L

R
E

L
P

L
;

R
E

L
A

T
IV

E

(T
Y

P
E

8

)
ST

A

H
O

R
K

:L
D

A

#
$

F
E

:S
E

C
:S

B
C

H

O
R

K
:S

T
A

H

O
R

K
+1

S

E
C

:L
D

A

S
A

:S
B

C

vJ
O

R
K

+
1:

S
T

A

\lO
R

K

LO
A

S

A
+

1:
S

B
C

#

$
0

0
:T

A
X

:J
S

R

PR
N

TN
U

M

LD
X

H

O
R

K
:J

S
R

P

R
N

T
N

U
M

:J
S

R

IN
C

S
A

:J
S

R

IN
C

S
A

:J
M

P

A
LL

D
O

N
E

R
E

L
PL

C

L
C

:A
D

C

S
A

:A
D

C

#
2

:S
T

A

W
O

R
K

:L
D

A

#0
:A

D
C

S

A
+

1
T

A
X

: J
S

R

P
R
N
T
N
U
~
1

LD
X

H

O
R

K
:J

S
R

P

R
N

T
N

U
M

:J
S

R

IN
C

S
A

:J
S

R

IN
C

S
A

:J
M

P

A
LL

D
O

N
E

D
J
U
~
1
P
I
N
D

JS
R

L

E
P

A
R

:J
S

R

D
O

T
W

O
:J

SR

R
IP

A
R

:J
M

P

A
L

L
D

O
N

E
;

IN
D

.
JU

M
P

(T
Y

P
E

1

0
)

A
LL

D
O

N
E

JS
R

P

R
N

T
C

R
:L

D
X

B

A
B

FL
A

G
:C

PX

#
l:

B
C

C

A
L

L
D

1
:P

L
A

:P
L

A
:J

M
P

F

IN

~

o 0
-

~

5· ac
t t""
" ~ (J
)

(J
)

"(
j

('!
) n

 e.. z o /'!
l '" o ::l
 ;l>

.... ~ "t

~

::l

0
- ;l>

"(
j

"(
j -('!) t""
' ~ (J
)

~

6
1

0

A
L

L
D

1
JM

P

G
E

T
 B

Y
TE

~

6
2

0

D
O

O
N

E
JS

R

G
B

:T
A

X
:L

D
A

#

0
:J

S
R

P

R
N

T
N

U
M

:J
S

R

IN
C

S
A

:J
S

R

IN
C

S
A

:R
T

S

6
3

0

D
O

TW
O

JS

R

G
B

:P
H

A
:J

S
R

G

B
:T

A
X

:L
D

A

#
0

6

4
0

JS

R

P
R

N
T

N
U

M
:P

L
A

:T
A

X
:J

S
R

P

R
N

T
N

U
M

:J
S

R

IN
C

S
A

:J
S

R

IN
C

S
A

:J
S

R

IN
C

S
A

:R
T

S

6
5

0

CO
M

X

LD
A

#

"
,:

J
S

R

P
R

IN
T

:L
D

A

#
"X

:J
S

R

P
R

IN
T

:R
T

S

6
6

0

CO
M

Y

LD
A

#

"
,:

J
S

R

P
R

IN
T

:L
D

A

#
"Y

:J
S

R

P
R

IN
T

:R
T

S

6
7

0

L
E

PA
R

LD

A

#
"

(:
 J

S
R

P

R
IN

T
:

R
T

S
6

8
0

R

IP
A

R

LD
A

#

"
):

JS
R

P

R
IN

T
:R

T
S

6

9
0

G

B

IN
C

PM

E
M

:B
N

E

D
IN

C
P

1
:I

N
C

P

M
E

M
+

1;
R

E
P

L
A

C
E

S

C
O

N
V

E
N

T
IO

N
A

L

C
H

A
R

IN
/D

IS
K

7

0
0

D

IN
C

P
1

ST
Y

Y

:L
D

Y

#
0

:L
D

A

(
P
~
1
E
M
)
,
Y
:
P
H
P
:
L
D
Y

Y
:P

L
P

:R
T

S
;

SA
V

E

ST
A

T
U

S
R

E
G

IS
T

E
R

7

1
0

D
I
S
~
1
E
S
S

.B
Y

T
E

"D

IS
A

S
S

E
M

B
L

Y

ST
A

R
T

A

D
D

R
E

SS

(D
E

C
IM

A
L

)
":

 .
 B

Y
T

E

0
7

2
0

.F

IL
E

D

T
A

B
L

E
S

P
ro

gr
am

 1
1-

2.
 D

ta
bl

es

1
0

"D

T
A

B
L

E
S

"
T

A
B

L
E

S
FO

R

D
IS

A
S

S
E

M
B

L
E

R

2
0

3

0

T
A

B
L

E

O
F

2
5

6

P
O

S
S

IB
L

E

V
A

L
U

E
S

(S
O

M
E

A

R
E

V
A

L
ID

A

D
D

R
E

SS
IN

G

M
O

D
E

S)

4
0

5

0

M
TA

B
LE

.B

Y
T

E

1
2

0
0

0
3

4
0

5
6

7
0

0
8

9
0

6
0

.B

Y
T

E

1
0

1

1

0
0

0
1

2

1
3

0

1
4

1

5

0
0

0
1

6

1
7

0

7
0

.B

Y
T

E

1
8

1

9

0
0

2
0

2

1

2
2

0

2
3

2

4

2
5

0

2
6

2

7

2
8

0

8
0

.B

Y
T

E

2
9

3

0

0
0

0
3

1

3
2

0

3
3

3

4

0
0

0
3

5

3
6

0

9
0

.B

Y
T

E

3
7

3

8

0
0

0
3

9

4
0

0

4
1

4

2

4
3

0

4
4

4

5

4
6

0

1
0

0

.B
Y

T
E

4

7

4
8

0

0
0

4
9

5

0

0
5

1

5
2

0

0
0

5
3

5

4

0
1

1
0

.B

Y
T

E

5
5

5

6

0
0

0
5

7

5
8

0

5
9

6

0

6
1

0

6
2

6

3

6
4

0

1
2

0

.B
Y

T
E

6

5

6
6

0

0
0

6
7

6

8

0
6

9

7
0

0

0
0

7
1

7

2

0
1

3
0

.B

Y
T

E

0
7

3

0
0

7
4

7

5

7
6

0

7
7

0

7
8

0

7
9

8

0

8
1

0

1
4

0

.B
Y

T
E

8

2

8
3

0

0
8

4

8
5

8

6

0
8

7

8
8

8

9

0
0

9
0

0

0
1

5
0

.B

Y
T

E

9
1

9

2

9
3

0

9
4

9

5

9
6

0

9
7

9

8

9
9

0

1
0

0

1
0

1

1
0

2

0
I ~

o 0
- -t. ::l

(J
Q

 t'"'
" ~ S!J

en

"0

(1
) n ~ - z o (1
) '" o ::l
 a e; ~

;:l

0
- >

"0

"0
 -(1) t'"'
" ~ en

IV

\0

'-
l

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

.B
Y

T
E

1

0
3

1

0
4

0

0
1

0
5

1

0
6

1

0
7

0

1
0

8

1
0

9

1
1

0

0
1

1
1

1

1
2

1

1
3

0

.B
Y

T
E

1

1
4

1

1
5

0

0
1

1
6

1

1
7

1

1
8

0

1
1

9

1
2

0

1
2

1

0
1

2
2

1

2
3

1

2
4

0

.B
Y

T
E

1

2
5

1

2
6

0

0
0

1
2

7

1
2

8

0
1

2
9

1

3
0

0

0
0

1
3

1

1
3

2

0
.B

Y
T

E

1
3

3

1
3

4

0
0

1
3

5

1
3

6

1
3

7

0
1

3
8

1

3
9

1

4
0

0

1
4

1

1
4

2

1
4

3

0
.B

Y
T

E

1
4

4

1
4

5

0
0

0
1

4
6

1

4
7

0

1
4

8

1
4

9

0
0

0
1

5
0

1

5
1

0

T
A

B
L

E

O
F

M
N

EM
O

N
IC

S
(T

IE
D

TO

T

H
E

N

U
M

B
ER

S
IN

T

A
B

L
E

A

B
O

V
E

)

V
TO

RD
TA

BL
E

.B
Y

T
E

"X

X
X

B
R

K
O

R
A

O
R

A
A

SL
PH

PO
R

A
A

SL
O

R
A

A
SL

B
PL

O
R

A
O

R
A

A
SL

.B

Y
T

E

"C
L

C
O

R
A

O
R

A
A

SL
JS

R
A

N
D

B
IT

A
N

D
R

O
L

PL
PA

N
D

R
O

L
B

IT

.B
Y

T
E

"A

N
D

R
O

L
B

M
IA

N
D

A
N

D
R

O
L

SE
C

A
N

D
A

N
D

R
O

L
R

T
IE

O
R

. B

Y
TE

"
E
O
R
L
S
R
P
H
A
E
O
P
.
L
S
R
J
~
1
P
E
O
R
L
S
R
B
V
C
E
O
R
E
O
R
L
S
R
C
L
I
E
O
R

.B
Y

T
E

"E

O
R

L
SR

R
T

SA
D

C
A

D
C

R
O

R
PL

A
A

D
C

R
O

R
JM

PA
D

C
R

O
R

B
V

SA
D

C

.B
Y

T
E

"A

D
C

R
O

R
SE

IA
D

C
A

D
C

R
O

R
ST

A
ST

Y
ST

A
ST

X
D

E
Y

T
X

A
ST

Y
ST

A

.B
Y

T
E

"S

T
X

B
C

C
ST

A
ST

Y
ST

A
ST

X
T

Y
A

ST
A

T
X

SS
T

A
L

D
Y

L
D

A
L

D
X

.B

Y
T

E

"L
D

Y
LD

A
LD

X
TA

Y
LD

A
TA

X
LD

Y
LD

A
LD

X
B

C
SL

D
A

LD
Y

LD
A

LD
X

.B

Y
T

E

"C
L

V
L

D
A

T
SX

L
D

Y
L

D
A

L
D

X
C

PY
C

M
PC

PY
C

M
PD

E
C

IN
Y

C
M

PD
E

X
C

PY
C

M
PD

E
C

.B

Y
T

E

"B
N

E
C

M
PC

M
PD

E
C

C
L

D
C

M
PC

M
PD

E
C

C
PX

SB
C

C
PX

SB
C

IN
C

.B

Y
T

E

"I
N

X
S

B
C

N
O

P
C

P
X

S
B

C
IN

C
B

E
Q

S
B

C
S

B
C

IN
C

S
E

D
S

B
C

S
B

C
IN

C

T
A

B
L

E

O
F

M
O

D
E

T
Y

PE
S

(T
IE

D

TO

TH
E

N
U

M
B

ER
S

IN

M
TA

B
LE

A

B
O

V
E

)

(T
Y

PE

0
=

 I
M

P
L

IE
D

)
(1

=

 I
M

M
E

D
IA

T
E

)
(2

=

 A
B

SO
L

U
T

E
)

(3

=
 Z

ER
O

P

G
.)

(T

Y
PE

4

=
 I

N
D

IR
E

C
T

X

)

(5

=
 I

N
D

IR
E

C
T

Y

)
(6

=

 Z
ER

O

X
)

(7

=
 A

B
SO

L
U

T
E

X

)
(T

Y
PE

8

=
 A

B
SO

L
U

T
E

Y

)

(9

=
 R

E
L

A
T

IV
E

)
(T

Y
PE

1

0

=
 J

M
P

IN
D

IR
E

C
T

)
(1

1

=
 Z

ER
O

Y

)

T
Y

PE
T

A
B

L
E

.B

Y
T

E

0
4

3
3

0
1

0
2

2
9

.B
Y

T
E

5

6
6

0
8

7
7

2
4

3
.B

Y
T

E

3
3

0
1

0
2

2
2

9
5

~

o 0
- -? :;l

(J
Q

t""
 ~ (f
)

(f
)

'1
j rt>

('
)

.
~
 - z o ,..,.

rt>

en
 o :;l
 >

,..,.
 e;
.

~

:;l

0
- ? '1
j -rt> t""
' ~ (f
)

N

4
6

0

.B
Y

T
E

6

6
0

8
7

7
0

4
3

3
~

~

0
0

4

7
0

.B

Y
T

E

0
1

0
2

2
2

9
5

6
6

0 ~

4
8

0

.B
Y

T
E

0

8
7

7
0

4
3

3
0

1
0

1
0

~
.

4
9

0

.B
Y

T
E

2

2
9

5
6

6
0

8
7

7
4

3
3

~

5
0

0

.B
Y

T
E

3

0
0

2
2

2
9

5
6

6
~

~

5
1

0

.B
Y

T
E

1

1

0
8

0
7

1
4

1
3

3
~

5
2

0

.B
Y

T
E

3

0
1

0
2

2
2

9
5

6
~

5
3

0

.B
Y

T
E

6

1
1

0

8
0

7
7

8
1

4
5

4
0

.B

Y
T

E

3
3

3
0

1
0

2
2

2
9

en

5
5

0

.B
Y

T
E

5

6
6

0
8

7
7

1
4

3
en

~

5
6

0

.B
Y

T
E

3

3
0

1
0

2
2

2
9

5
~
 n

5
7

0

.B
Y

T
E

6

6
0

8
7

7
~
.

~

5
8

0

.E
N

D

D
E

FS

.-
- Z

0 ~

~

~

0 ~
 ~

~

~

~.

~

~

~

~

~

~
 .-
-

~

~
 ~ en

Modifying LADS: Special Notes on Atari and Apple LADS

Notes on the Structure of Atari LADS
The Atari and Commodore machines have one thing in com
mon-a 6502 microprocessor. The Atari 6502 runs at 1. 79
megahertz, making it somewhat faster than the Commodore
machines. However, the non-6502 hardware-input/output,
graphics, and sound-is entirely different. Although many
Atari enthusiasts argue that it is the most powerful available
on any 6502-based microcomputer, the operating system of
the Atari does not perform basic tasks like input/output in the
same manner as Commodore machines. An understanding of
these differences is essential to fully understand the Atari
LADS source code.

The common tasks machine language programs need to
perform with input/output are: open a file, read a character or
block of characters from the file, write a character or block of
characters to a file, and close the file . With the Commodore
operating system (often called the Kernal), there are separate
routines for each task. You approach each task by adjusting
the Accumulator, X, and Y Registers as necessary, as well as
storing any required information into special memory locations
(usually in zero page). See the discussion of OPENI in Chap
ter 5 for details. For example, the Commodore OPEN must
know where to find the filename, the length of the filename,
parameters like read or write, and the device number.

On the Atari, there is just one entry point-$E456, called
CIO, for all these tasks . Instead of separate entry points, CIO
checks a memory location for the command, a number
representing the action to take, such as OPEN, CLOSE, PUT,
or GET. Other memory locations hold the starting address of a
filename or buffer, and the length of the filename or buffer.
Extra locations hold specialized information. Each block of I/O
information is called an IOCB, for Input/Output Control
Block. There are eight of these IOCBs, numbered 0 to 7. IOCB
o is reserved for the screen editor, and 7 is usually reserved
for language I/O, such as LPRINT in BASIC, or SAVE in the
LADS editor.

Although much of LADS is concerned with internal data
base-type manipulations, such as looking up a label or convert
ing a mnemonic, there is also a good amount of Commodore
style input/output. Routines like OPEN, CLRCHN, CHKIN,
and PRINT are actual ROM entry points on Commodore
computers. To avoid complex changes in the source code,

299

Modifying LADS: Special Notes on Atari and Apple LADS

Atari LADS has a special file called Kernal (see program list
ings below), which transparently supports all these routines,
making the conversion between the Atari's I/O system and
the Commodore's transparent. Explanations of Commodore
I/ O given in Chapter 5, then, are valid as well for the Atari
LADS system. In other words, when the original Commodore
version of LADS was translated to the Atari, the Kernal sub
program was added to mimic the operations of the Com
modore operating system I/O. This emulation allows the
descriptions of LADS to remain essentially identical for non
Commodore machines.

Atari Memory Layout
Memory maps for Commodore computers are relatively sim
ple. Zero page is used by the system, page 1 for the stack,
page 2 for operating system storage, and page 3 for the cas
sette buffer(s). On the Commodore PET, page 4 (starting at ad
dress 1024) on up to location 32768 is free RAM. 32768 is the
start of screen memory on the PET, and never moves. On the
64, the screen occupies page 4 up to 2047 ($07FF). Free RAM
starts at 2048 ($0800) all the way up to 40959 ($9FFF). BASIC
in ROM and the operating system start at 40960 ($AOOO). Al
though there is hidden memory beneath the ROMs on both
the Atari XL series and the Commodore 64, LADS does not
use it.

The Atari memory layout is less fixed. Zero page from
locations 0 to 127 completely used by the operating system.
An applications program like BASIC can use almost all the
memory from 128 to 255. Since Atari LADS operates outside
the BASIC environment, it is free to use this zero page mem
ory upwards from location $80.

Unlike the PET and 64, Atari machines have no set
amount of memory. Atari 400/800 owners have the option of
expanding to 48K, without using bank selection or other tricks.
Without DOS, free memory starts at $0700 (page 6 is re
served). With DOS, free RAM starts at about $2000. The
screen memory, a little over 1K in length, is stored at the top
of memory, and is not fixed, due to memory expansion. Many
Atari machine language programs store themselves at the bot
tom of memory, then use memory above themselves to store
text or other information. But because LADS stores its labels
below itself, the Atari version must be located at the top of

300

Modifying LADS: Special Notes on Atari and Apple LADS

memory. Since the top of memory with a cartridge (or with
40K of RAM) is $9FFF, and since Atari LADS is about 7K long,
$8000 seems to be a good place. If you have a 48K Atari, you
may want to reassemble LADS at $AOOO. The choice of $8000
does exclude Atari owners with less than 40K, but if you have
access to a 40K machine, you could reassemble LADS at 8K
below the top of memory.

Let's look at the major differences between the Atari
LADS and Commodore LADS source code. We won't get into
specifics; for that you can refer to the source code itself. The
translation of Atari LADS involved two goals: the creation of a
powerful assembly development system without making major
changes to most of the Commodore LADS source code. Some
subprograms needed no changes, others did. Three new sub
programs are required by the Atari version: Kernal, System,
and Edit.

Here's how all the subprograms in the Atari LADS are
linked:
Defs Eval Equate Array Openl Findmn Getsa
Valdec Indisk Math Printops Pseudo Kernal System
..... Edit Tables

Defs. Here we set the origin to $8000. Since we are
simulating Commodore I/0, we have to create some label
variables such as FNAMELEN (filename length). These are
used by the Kernal routines. Other LADS variables like
MEMTOP and PMEM are also given zero page definitions for
the sake of speed and for indirect addressing. The BABUF,
used for holding comments and holding a line in the editor, is
defined as $0500 . On Commodore machines it is $0200, the
address of the BASIC input buffer.

Eva!. The first difference between the Commodore and
Atari versions of Eval is that instead of reading the filename
off the screen, Atari LADS gets the filename from the com
mand line, passed by the editor. The editor has previously set
RAMFLAG to 1 if there is no filename . This is a default to
RAM-based assembly (your source code is already in memory
and need not be read from disk) . If RAMFLAG is 0, LADS
must assemble from disk. If the RAMFLAG is nonzero, we
skip over putting the filename into FILEN, and jump past the
JSR OPENl in Eval (since there is nothing to open). At the top
of Eval, the left margin is set to zero.

Since LADS has complete control of the Atari, no memory

301

Modifying LADS: Special Notes on Atari and Apple LADS

needs to be protected from anything, so the top-of-memory
pointer need not be lowered.

In FIN!, the RAMFLAG is also checked so that JSR
OPENI is skipped. In FIN, which FIN I falls to after the end of
the second pass, we send an extra byte out to the object file, if
.D was used.

Equate, Array, and Findmn. There was no need to
change any of these modules, since they contain no system
specific coding.

Openl. Many changes have also been made to Openl , al
though a lot of the source code is similar. FDEV and
FSECOND hold the device number and secondary address in
Commodore LADS. Here they are used to hold the access type
(4 for read, 8 for write) and the auxiliary byte (which is zero
here). Openl checks the RAMFLAG to see whether it should
load the file after it's been opened, in case memory assembly
has been elected. The actual load is done by using part of the
editor's load routine. Because of RAMFLAG, we don't need a
separate LOADI routine .

If the file can't be opened, we call the editor's error mes
sage routine, and then return to the editor. The same error
handling is performed for all the OPENs.

OPEN2 writes out the binary file header, made up of two
255's, followed by the starting and ending addresses in low
byte/high byte format. The origin (the starting address for the
object code) is saved in the variable TA. The object code's
ending address is known, and stored in LLSA. LLSA is ac
tually one higher than the ending address, which is why we
write an extra zero to the end of the file in Eval. This prevents
an ERROR 136 when loading the file from DOS.

OPEN4 just opens a file for write to the printer. The
printer's filename is P:, which is given in the .BYTE statement
as 80 58.

Getsa. Getsa is very similar to the Commodore version.
There is no MEMSA-Getsa initializes PMEM to point to the
start of the editor's text buffer (TEXTBAS), even if PMEM is
not used. Since CHARIN is smart, checking RAMFLAG to de
cide whether to assemble from memory or from disk, no more
changes need to be made.

Valdec. Valdec would have been unchanged from the
Commodore version, since there is no machine-specific code.
However, the editor makes use of Valdec to convert ASCII line

302

Modifying LADS: Special N otes on Atari and Apple LADS

numbers into integers. The ASCII line number does not end
with a zero, though. The first part of Valdec finds the length
of the number by checking for a zero. It has been changed in
the Atari version to exit on any nonnumeric digit (one with an
ASCII value less than 48 or greater than/equal to 58). The
change does not affect any other use of Valdec.

Indisk. It is in Indisk where we see many modifications to
the Commodore version. Since the editor does not tokenize
anything, KEYWORD and KEYWAD are not needed, and ref
erences to them in this source code, as well as the KEYWORD
and KEYWAD routines themselves, have been deleted. Again,
since nothing is tokenized, checks for +, "', <, >, etc., look for
the ASCII values instead of the tokenized ones. Since line
numbers are stored as a string of digits instead of a two-byte
integer, we must call LINENUMBER in the SYSTEM module
in order to set LINEN. ENDPRO, instead of looking for three
zeros to signify the end of a program, must check the disk sta
tus variable for end of file . End of file returns 136 after the last
character has been read, and $03 if you try to read past the
end of file, so we check for both to be safe. We check the sta
tus for file #1 (the input file) directly ($0353), instead of ST,
since ST may have been changed by another I/O operation.
Nonetheless, large parts of Indisk are unchanged from the
Commodore version.

Printops. Because of the Kernal simulator, even though
Printops has plenty of Commodore I/O calls, few changes
were needed to make Printops work on the Atari.

Pseudo. There are some minor changes here . KEYWORD
does not need to be used by .END or .FILE. FILE finds the end
of the pseudo-op by looking for a space delimiter. The
filename is then copied into FILEN, and the file opened. If the
current operation is a RAM-based assembly, Open1 takes care
of loading in the next file. PEND, which supports .END, first
calls FILE to open the file, then copies SA, which holds the
current address, into LLSA for use with OPEN2.

Speaking of OPEN2, some code was deleted from PDISK
and instead implemented in OPEN2. There were no more
changes after PDISK to the Pseudo module. In Commodore
LADS, Pseudo links to Tables, the last module. Here we link
to Kernal, inserting Kernal, System, and Edit into the chain.

Kernal. This is the most important module in the Atari
translation. It implements all the Commodore I/O functions

303

Modifying LADS: Special Notes on Atari and Apple LADS

by simulating CHKIN and CHKOUT, and referencing the
appropriate 10CB according to FNUM. The CIO equates are
first defined: ICCOM, the command byte; ICBADR, which
holds the address of the filename or buffer; ICBLEN, which
holds the length of the filename or buffer; ICAUXI and
ICAUX2, which need to be set to zero; and CIO itself, that sin
gle entry point for all input/output.

A simple routine is X16, which multiplies the Accu
mulator times 16 and stores it in the X Register. X will be an
offset from the first 10CB. Since each IOCB is 16 bytes long,
we can use Indexed addressing to change the appropriate
IOCB with a statement like STA ICCOM,X.

OPEN is the basic open-file routine. It uses X16 to get the
IOCB offset, then stores the filename pointer and filename
length into ICBADR and ICBLEN. The command byte for
open ($03) is stored in ICCOM, then CIO is called. CIO's error
status, which is returned in the Y Register, is saved in ST.

CHKIN changes the default input IOCB, which is used in
CHARIN. CHKOUT changes the default output 10CB, which
is checked for in PRINT. CLOSE just stores the close com
mand (12) into ICCOM and jumps to CALLCIO, part of
OPEN. CLRCHN sets the default INFILE and OUTFILE, as
well as FNUM and ST to zero, which makes CHARIN and
PRINT use IOCB #0, opened to the screen editor.

PRINT is expected to print the character currently in the
Accumulator. It first changes any 13's it sees, which are Com
modore carriage returns, into 155's (Atari carriage returns) .
Another entry point, OBJPRINT, does not transform 13's. This
is called when object bytes need to be sent to disk, where you
don't want 13's changing into 155's. Depending on OUTFILE,
PRINT will automatically use the appropriate 10CB (0 for
screen, 2 for object output, 4 for printer output). We then set
the buffer length to zero, which tells CIO to expect to find the
character to print in the Accumulator. The print text command
is used, then we call CIO and restore the X and Y Registers,
which were saved when PRINT was entered. This prevents
any interference with LADS .

CHRIN is also a busy routine . It first checks RAMFLAG
to see whether it should get a byte from an I/O device or
from the editor's text memory. If it gets a byte from memory, it
must check to see if it has gone past the last byte. If so, we
jump straight to FINI in Eval. Otherwise, CHRIN gets a byte

304

Modifying LADS: Special Notes on Atari and Apple LADS

from disk or the keyboard. It uses INFILE to decide which
IOCB to use, then sets the buffer length to zero. This way it
requests a single byte from CIO. If a 155 is returned, it is
changed into a zero, which is what LADS looks for as end of
line.

There is no "check for BREAK key" routine in Atari ROM,
so STOPKEY checks the BREAK key flag, which is set to zero
if the BREAK key is pressed. If BREAK was pressed, we exe
cute TOBASIC, which jumps back to the editor.

CLALL is not used by LADS, but is used by the editor to
close all files in case of an error. It works like the Commodore
CLALL routine, and restores the default I/O (input from key
board, output to screen) by jumping to CLRCHN.

System. A few more routines are provided here which are
not directly supported by the operating system. OUTNUM
prints the ASCII number given to it in the X Register, which
holds the low byte of the number to print, and the Accu
mulator holding the high byte. We then call $D9AA, which
converts the integer number in locations $D4 and $D5 into
floating point, and then call $D8E6, which converts the float
ing point into a printable ASCII sequence of digits starting at
$0580. The routine at $D8E6 sets bit 7 in the last digit of the
ASCII numeral string. We print the string, checking and mask
ing off bit 7. LINENUMBER reads the ASCII line number from
source code and converts it to an integer, using VALDEC. The
result is saved in LINEN.

Tables. The major changes here are that the error mes
sages must be typed in inverse video. One extra variable is de
fined: LLSA to hold the ending address.

Program 11-3. Kernal
1 QIQI ICCOM = $0342
11 QI ICBADR $Q1344
120 ICBLEN $ii134B
13QI ICAUX1 = $Q134A
140 ICAUX2 = $iZ134B
150 CCLOSE = 12
160 CIO = $E456
170 X16 ASL
1 BQI ASL
19QI ASL
2 iii iii ASL
21 iii TAX
22t!J RTS

305

Modifying LADS: Special Notes on Atari and Apple LADS

23~1 ;Opens a file OPEN #FNUM,FDEV,FSECOND, (F
NAMEPTR)

240 OPEN LDA FNUM
25~1 JSR X16
26111
27~1

28~1

29~1

3111121
31111
32~J

33121
34111
350

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA

FNAMEPTR
ICBADR,X
FNAMEPTR+1
ICBADR+1,X
FNAMELEN
ICBLEN,X
#f:1
ICBLEN+1,X
FDEV
ICAUX1,X
FSECOND
ICAUX2,X
#$1213
ICCOM,X

36111
37111
38121
39111
4 !!1!21 CALLCIO JSR CIO
41111 STY ST
42!!1 RTS
430 CHkIN STX INFILE
44~1 RTS
450 CHkOUT STX OUTFILE
46!!1 RTS
470 CLRCHN LDX #0
48!!1 STX INFILE
491211 ST X OUTF I LE
5121111 STX FNUM
51111 STX ST
51121 RTS
520 CLOSE JSR X16
53121 LDA # 12
54!!1 STA ICCOM, X
55121 JMP CALLCIO
560 PRINT CMP #13
570 BNE OBJPRINT
58!!1 LDA # 155
590 OBJPRINT STA KASAVE
6111111
61111
62~1

63121
64111
65111
66!!1
67v..1
68!!1
69111

306

STY
STX
LDA
JSR
LDA
STA
STA
LDA
STA
LDA

I<YSAVE
I<XSAVE
OUTFILE
X16
#I~I

ICBLEN,X
ICBLEN+1,X
#11
ICCOM,X
I<ASAVE

Modifying LADS: Special Notes on Atari and Apple LADS

7!M21 JSR CALLCIO
71121 LOY I<YSAVE
72QI LOX I<XSAVE
73!21 LOA I<ASAVE
74121 RTS
75121
760 CHARIN STY I<YSAVE
77!21 STX I<XSAVE
78QI LOA RAMFLAG
790 BEQ CHRIN;If RAMFLAG=0 (False) then get

byte from device
800 ;Else get byte from memory
810 LOY #0:LOA (PMEM),Y:PHA
820 INC PMEM:BNE NINCP1:INC PMEM+1
830 NINCP1 CLC:LOA PMEM:SBC TEXENO:STA I<TEMP
84iil LOA PMEM+1
85121 SBC TE X ENO+ 1
860 ORA I<TEMP:BCC NOTEOF:BEQ NOTEOF
88iil JMP FINI
890 NOTEOF LOA #0:STA ST:STA $0353
900 PLA:JMP CHRXIT
910 CHRIN LOA INFILE
92iil JSR X16
93!21 LOA # iiI
94121 STA I CBLEN, X
950 STA ICBLEN+1,X
96!21 LOA #7
97121 STA ICCOM, X
98!21 J SR CALLC 10
990 CHRXIT LOY I<YSAVE
1121Qliil LOX I< XSAVE
HI HI CMP # 155
1 !212iil BNE Z I CR
103iil LOA #!21
1 iiI 4 121 Z I CR RTS
1 iiI 5 iiI STOPI<EY PHA
1 iiI 6 iiI LOA $11
1 el 7 121 BEQ TOBASIC
1 iiI 8 iiI PLA
1 iiI 9 iiI RTS
1100 TOBASIC JMP EOIT
114!21
1150 CLALL LOX #7
1160 CLLOOP STX I<TEMP:TXA:JSR CLOSE
1170 LOX I<TEMP:OEX:BNE CLLOOP ~
118121 JMP CLRCHN
1190 I<ASAVE .BYTE 0
1200 I<YSAVE .BYTE 0
1210 I<XSAVE .BYTE 0

307

Modifying LADS: Special Notes on Atari and Apple LADS

122121 I<TEMP .BYTE 121
123121 .FILE O:SYSTEM.SRC

Program 11-4. System
17!21 OUTNUM STX $04
1 Bel STA $05
19!21 JSR $09AA
2 121 !21 JSR $OBE6
23!21 LOY #121
24(11 ONUMLOOP STY OYSAVE
25!21 LOA ($F3>,Y
26!21 PHA
27!21 ANO #$7F
2B!21 JSR PRINT
29(11 PLA
3!21!21 BMI ONUI'1EX IT
31 lZl LOY OYSAVE
32!21 INY
33!21 BNE ONUI'1LOOP
34121 ONUMEXIT RTS
36(11 OYSAVE .BYTE 121
39!Z1 LINENUMBER LOY #121
4!21!21 LINELOOP JSR CHARIN
41121 CMP #32
42!Z1 BEQ OUTLINE
43121 STA BABUF,Y
44!Z1 INY
45el JMP LINELOOP
46121 OUTLINE LOA #QI
47121 STA BABUF,Y
4B121 LOA #<BABUF
490 STA TEMP
5QI0 LOA #>BABUF
51121 STA TEMP+1
52~1 JSR VALOEC
53121 LOA RESULT
540 STA LINEN
550 LOA RESULT+1
56!Z1 STA LINEN+l
57!Z1 LOY #121
5B0 RTS
59121 .FILE O:EOIT.SRC

The Atari LADS Editor
The Atari editor is a whole minilanguage system itself. The
source code for this subprogram is well commented and
should be understandable as it stands. Since it is not a part of

308

Modifying LADS: Special Notes on A tari and Apple LADS

LADS proper, we'll limit ourselves here to an overview of the
major routines.

UMOVE and DMOVE are high-speed memory move
routines used to adjust the source code when lines are deleted,
added, and so forth. UMOVE can move one range of memory
to another, provided that the block to be moved is higher in
memory. The range of bytes can overlap so UMOVE can be
used as a delete routine. DMOVE moves memory downward,
and is used for inserting. If the memory ranges do not overlap,
either one can be used. FROML and FROMH hold the start of
the block to be moved. DESTL and DESTH are where the
block is moved to. LLEN and HLEN are set to hold the length
of the block to be moved. These routines use self-modifying
code for speed.

EDIT is the entry point for LADS when it is first run, as
well as the return point from the LADS assembler. It cleans up
the stack, resets the left margin to 2, then stores the addresses
of all the editor commands into COMVECT, which is a lookup
table used by COMMAND. The BRK interrupt is initialized to
point to a special breakpoint entry to the editor. We then
check to see if this is the first time EDIT has been entered. If
so, we need to NEW out any garbage in memory. The NEW
routine sets the end-of-text pointer to point to the beginning
of text. No memory is actually cleared.

PROMPT is the entry point for a new line. It prints
"LADS Ready", then falls through to ENTER, which is the en
try point for a new line without printing a prompt. CHARIN
from Kernal gets a byte, which is then processed to remove
lowercase, etc. The line is stored in the BABUF, starting at
$0500. When a carriage return is detected, an Atari carriage re
turn is added to the end of the line in BABUF, and the length
of the line is saved in INLEN. If the length is zero, we go back
for another line. The first character of the line is checked. If it
is a numeric digit, there must be a line number. If there is no
line number, then the line must be a command.

If it is a line number, we call GETLNUM to get the inte
ger value of the line number. GETLNUM also calls FIND LINE
to see if that line already exists. If it does, the line is deleted.
Then we check to see if there is anything else besides just a
line number. If not, we don't insert the line into the source
code. Since the line was already deleted, this has the desired
effect. We then go back for another line.

309

Modifying LADS: Special Notes on Atari and Apple LADS

COMMAND searches through a table of commands,
matching the line the user typed in against the table. If the
command is not found, a syntax error message is displayed,
and we return to PROMPT. If the command is found, we save
the position of whatever's after the command (the argument)
in ARGPOS. The command number (COMNUM) is used as an
index into COMVECT, which holds the addresses of all com
mands. We get the address, subtract one from it, then put it on
the stack. A RTS then ends up pulling this address off and
jumping to it. It's like ON-GOTO in BASIC.

MLIST lists the entire text buffer, from TEXTBAS to
TEXEND. A second entry point in MLIST, INLIST, is called by
the LIST routine to list a part of a program. We also check
here for the BREAK key. MLIST is used by SAVE to list the
program to disk, cassette, or the printer.

DOS is spectacularly simple. It just jumps through the
DOS vector, location $OA.

FIND LINE is crucial to the editor. It searches through the
source code, trying to match the line number given to it
(LNUM) against all the ASCII line numbers in the program. It
uses Valdec to convert the ASCII line number into an integer.
Because of all the ASCII to integer conversions, FINDLINE
can be slow on long programs. It returns with BEGPTR point
ing to the beginning of the line found, and ENDPTR pointing
to the end of the line. If there is no program in memory, it re
turns with BEGPTR and ENDPTR pointing to the start of text.
If the line is not found, BEGPTR and ENDPTR point to the
next line greater than the line number searched for. If there is
no such line, they point to the end of text. The size of the line
found is also calculated for the benefit of the delete routine.

DELETE calls FIND LINE, then calls UMOVE to move
memory from the end of the line on top of the beginning of
the line. TEXEND is then changed to reflect a shorter pro
gram. Many checks have to be made to prevent a crash under
conditions such as no program in memory. INSERT is similar
to DELETE. It calls DMOVE to insert a gap at the position the
line was found .

ERRPRINT is used to display an error message. To be
safe, it also closes all files. GETNUM gets and converts an
ASCII line number to an integer, using the system ASCII-to
floating-point and floating-point-to-integer routines. The
routines return a pointer to the end of the number. This

310

Modifying LADS: Special Notes on Atari and Apple LADS

pointer is always kept track of so we can check for new com
mand arguments. GETLNUM uses this routine, then calls
FINDLiNE.

LlST calls GLlST, which is also used by SAVE. GLlST
finds out the line number range you want to list. If there is no
line number range given, it goes to MLlST to list the entire
program. Otherwise, it has to check for just one line given, or
a range of lines. It's complicated, but it works.

OPENFILE is used by SAVE, LOAD, and MERGE. It looks
at the argument of the command to get the filename, then
calls OPEN within Kernal. If there is an error, we jump to
PROMPT. SAVE calls OPENFILE with an 8 for output. It then
sets the output file and calls GLlST, which sends the listing
out to the current output file. After GLlST returns, the file is
closed.

MERGE just sets the input file to the device and jumps to
PROMPT. PROMPT keeps requesting input and storing lines
until it gets an error. It then closes the file and restores default
I/0.

Adding Your Own Editor Commands
The LADS command checks to see if there is a filename, then
sets the RAMFLAG accordingly and jumps into EVAL. The
SYS command calls GETNUM to get the decimal argument,
then stores the address right after a JSR, to which it then falls
through, creating a self-modifying indirect JSR. If the routine
being called ends in a RTS, control will be returned to
PROMPT. You can use SYS to add new editor commands. Just
check location $DO, which will point to a position with
BABUF ($0500) after the SYS number. You can use $DO to
check for extra arguments within BABUF.

LOAD calls OPENFILE to open the load file for read. It
has a second entry point (AFTEROPEN) if the file has already
opened. For maximum speed, the program is loaded by calling
the CIO get-record routine, which loads in the entire file di
rectly at TEXTBAS, the start of text. Beware, though, that no
conversions are done on any of the text, and no checks are
made for a legal source file. You could even load and list word
processing files. AFTEROPEN is called by Open! if RAM
needs to be reloaded during a memory assembly.

The last routine in the editor handles a BRK instruction
entry encountered. It prints a message, uses OUTNUM to dis-

311

Modifying LADS: Special Notes on Atari and Apple LADS

play the address where the BRK was found, clears the inter
rupt flag, cleans the stack, then jumps to the Edit entry point.
Edit then links to Tables.

Program 11-5. Editor
1~0 ;Line Editor for LADS
110 ;Charles Brannon 1984
012fll
0130 F'TR = $CB
0140 TEXTBAS = $2000
0150 ;Move routines
016fll
!2117fll JMP EDIT
0180 FROML .BYTE 0
0190 FROMH .BYTE 0
0200 DESTL .BYTE 0
0210 DESTH .BYTE 0
0220 LLEN .BYTE 0
0230 HLEN .BYTE 0
0240 ENDPOS .BYTE 0
0250 INLEN .BYTE 0
0260 LNUM . BYTE 0 0
0270 TEXTF'TR .BYTE 0
0280 COMNUM . BYTE 0
0290 TEXEND .BYTE 0 0
0300 LEN .BYTE 0
0310 YSAVE .BYTE 0
0320 BEGPTR .B YTE 0 0
0330 ENDPTR .BYTE 0 0
0340 FOUNDFLAG .BYTE 0
0350 LINESIZE .BYTE 0 0
0360 SAVEND .BYTE 0 0
0370 SAVBEG .BYTE 0 0
0380 ARGF'OS .BYTE 0
0390 ZFLAG .BYTE 0
0400 LCFLAG .BYTE 0
0410 FIRSTRUN .BYTE 0
0420 INDEX = $D0
0430 TMP .BYTE 0
044!21
!2145i21
!2146fll
!2147fll
~348fll

!2149fll
i215QI !~1

!~15 1 !21
QI52!~1

312

UMOVE LDA FROML
STA MOVLOOP+l
LDA FROMH
STA MOVLOOF'+2
LDA DESTL
STA MOVLOOP+4
LDA DES T H
STA MOVLOOF'+5

Modifying LADS: Special Notes on Atari and Apple LADS

12153121 LDX HLEN
!2154121 BEQ SI<IF'MOV
0550 MOVl LDA #121
121 561Z1 MOV2 STA ENDPOS
12157,,21 LDY #121
121580 MOVLOOP LDA $FFFF,Y
121 59 IZI STA $FFFF,Y
061Z1121 INY
!!f6 1 121 CPY ENDF'OS
12162121 BNE MOVLOOP
!21 63 121 INC MOVLOOF'+2
'~164!Z1 INC MOVLOOP+5
12165 121 CPX #IZI
121 660 BEQ OUT
QI671Z1 DEX
068121 BNE MOV1
069121 SI<IPMOV LDA LLEN
121 7 IZI IZI BNE MOV2
IZI71 IZI OUT RTS
!21721l1
121 731Z1 DMOVE LDA HLEN
0741Z1 TAX
121750 ORA LLEN
076121 BNE NOTNULL
077121 RTS
078121 NOTNULL CLC
079121 TXA
QI 8 121 IZI ADC FROMH
081121 STA DMOVLOOP+2
082121 LDA FROML
IZ183121 STA DMOVLOOP+1
0840 CLC
085121 TXA
086121 ADC DESTH
0870 STA DMOVLOOP+5
088121 LDA DESTL
0890 STA DMOVLOOF'+4
IZ190121 INX
IZI91 121 LDY LLEN
092121 BNE DMOVLOOF'
093121 BEQ SI<IPDMOV
094121 DMOV1 LDY #255
095121 DMOVLOOP LDA $FFFF ,Y
0960 STA $FFFF ,Y
097121 DEY
098121 CPY #255
099!l1 BNE DMOVLOOP
1000 SI<IPDMOV DEC DMOVLOOP+2

313

Modifying LADS: Special Notes on Atari and A pple LADS

1010 DEC DMDVLDDP+5
102!Z1 DEX
1 !Z131Z1 BNE DMDV 1
1 IZ14!Z1 RTS
1 IZI 5 IZI
1060 EDIT LDX #255;Reset stack
107i!1 TXS
HI71 JSR CLALL
1080 LDA #0;Clear RAMFLAG
1090 STA RAMFLAG
1100 LDA #2;Left margin
1110 STA 82
1121Z1 JSR PRNTCR
1130 ;Store addresses of commands
1140 LDA # < LIST
1150 STA COMVECT
1160 LDA #)- LIST
1170 STA COMVECT+l
1181Z1 LDA # < DOS
1190 STA COMVECT+2
1200 LDA #)- DOS
1210 STA CDMVECT+3
1220 LDA # < INIT
1230 STA COMVECT+4
1240 LDA # > INIT
1250 STA CDMVECT+5
1260 LDA # < SAVE
1270 STA COMVECT+6
1281Z1 LDA # >SAVE
1290 STA CDMVECT+7
131l11l1 LDA # < LOAD
1310 STA COMVECT+8
132i!1 LDA # >LOAD
1330 STA COMVECT+9
134111 LDA # < MERGE
1350 STA CDMVECT+10
1360 LDA # >MERGE
1370 STA COMVECT+ll
1381Z1 LDA # < LADS
1390 STA CDMVECT+12
14i!11Z1 LDA # > LADS
1410 STA CDMVECT+13
1420 LDA # < SYS
1430 STA COMVECT+14
144!Z1 LDA # >SYS
1450 STA CDMVECT+15
1460 ;Set BR K i n str. interrupt to breakpoint

entry
1470 LDA # < BREA K:STA 518:LDA #) BREAK:STA 519

314

Modifying LADS: Special Notes on Atari and Apple LADS

1480 LOA FIRSTRUN
1490 BEQ OONEW
15(2!0 Jl'lP PROMPT
1510 OONEW LOA #$CB
1520 STA FIRSTRUN
153 11! JMP INIT
1540 NEW LOA # (TEXTBAS;Store beginning locat

ion at ending pointer
1550 STA TEXENO
1560 LOA #) TE XTBAS
1570 STA TEXENO+l
1580 JSR CLRCHN; Ke y board/Screen
15911! RTS
1600 INIT JSR NEW
16111!
1620 PROMPT LOA # (PMSG ; Print prompt
163(2! LOY # >PMSG
164(2! JSR PRMSG
1650 ENTER LO Y # 0 ;Get a line
16611! STY Z FLAG
1670 STY LCFLAG
1680 GETIT JSR CHARIN;a character
1690 LO X ST;Er r or ?
17 11l!2! BPL NOERR
1710 CPX #136;End of file?
1720 BEQ EOF;don't pr i nt error
1730 CPX #128;same for break key abort
1740 BEQ EOF
1750 JSR ERRPRINT;print other error
1760 EOF JSR CLOSEIT ; close down active file
1770 JMP PROMPT;get new line
1780 NOERR CMP # 3 4 ; A quote toggles the lower

case flag
1790 BNE NOTQUOTE
180 0 PHA;sa v e quote
1810 LOA LCFLAG ; fl i p lowercase
1820 EOR #1
183(2! STA LCFLAG
1840 PLA;restore quote
1850 NOTQUOTE CMP #48;an ASCII "0"?
1860 BNE NOTZ
1870 LO X ZFLAG;if so, check to see if it's a

leading z ero
188 (2! BEQ GETIT; i f it is , ignore . it
1890 NOTZ INC ZFLAG; i f we get here , reset Ie

ading zero flag
1900 CMP #59 ; now chec k for comment
191 (21 BNE NOTREM

315

Modifying LADS: Special Notes on Atari and Apple LADS

1920 INC LCFLAG;disable lowercase conversion
for rest of line

1930 NOTREM LD X LCFLAG
1940 BNE NOTLOWER ; if remflag has been set, d

on't convert lowercase
1950 AND #127;kill inverse
1960 CMP #97 ; lowercase "a"
1970 BCC NOTLOWER;if less than, not lowercas

e
1980 CMP #12 3 ;lowercase ","+1
1990 BCS NOTLOWER;if >=, not lowercase
2000 AND #95;kill bit 5 (127-32=95)
2010 NOTLOWER STA BABUF,Y;store it
202121 INY
2030 CMP #121
2040 BNE GETIT
2050 DEY
2060 LDA #155
2070 STA BABUF,Y
2080 STY INLEN;save length of line
2090 CPY #0
2100 BED ENTER;if length=0, blank line, so 9

o back
2110 LDA BABUF;fi r st character: is it a numb

er?
212121 CMP #58
213121 BCS COMMAND;greater than II 9 II, so must

e a command
214121 CMP #48;"0"
215!ZS BCS LINE;greater than 119" ~ but greater

than/== "0 f1 ?
2160 JMP COMMAND;no, so command
2170 ;Must be a line, so get line number
2180 LINE LDA #255;no offset
2190 JSR GETLNUM

b

2200 LDA INDEX;INDEX points to first non-num
eric digit

2210 STA TEXTPTR;so sa v e it
2220 LDA FOUNDFLAG:if it exists
2230 BNE NODELETE;it not, don't delete it
224111 JSR DELETE
2250 NODELETE LDY TEXTPTR;is there any text

226121
2270
228 111
229 121
23 12HZI

316

on the line?
CPY INLEN;compare to
BED OVERINS;no te x t.
JSR INSERT;otherwise
OVERINS JMP ENTER;and

line length
just delete
insert line
get another line

Modifying LADS: Special Notes on Atari and Apple LADS

2310 COMMAND LDA #(COMTABLE;point to start 0

f command table
232 1(1 STA PTR
2330 LDA #}COMTABLE
234121 STA PTR+l
2350 LDY #0;for loop
2360 STY COMNUM;clear command number
2370 LDX #0;for loop
2380 SRCH LDA (PTR} , Y;get a character of com

mand table
2390 BEQ COMFOUND;if we get zero here. comma

nd is found
2400 CMP #255;or synta x error
241121 BEQ SYNERR
2420 CMP BABUF,X;match with parallel charact

er in line buffer?
24 3 0 BNE NOTFND;if comparison fails, try nex

t command
2440 INX;ne x t character
245 121 BACI(I N I NY
2460 BNE SRCH;bump high b y te?
2470 INC PTR+l;yes
2480 JMP SRCH;continue
2490 NOTFND LDA (PTR) ,Y;if not found, skip p

ast ending zero
2 512H;i1 BEQ NXTONE
2 51121 INY
25 2 1!1 BNE NOTFND
253121 INC PTR+l
254 121 JMP NOTFND
2550 NXTONE INC COMNUM;bump up command numbe

2 560 LDX # 0 ;conti n ue search
257 121 J MP BACI< I N
2580 SYNERR LDA # (SYNMSG;print s y ntax error
2590 LDY # } SYNMSG
26!Z1 !Z1 JSR PRMSG
261 121 J MP PROMPT
2620 COMFOUND STX ARGPOS
2630 LDA COMNUM;indirect jump to address of

command
2 64 121 ASL
2650 TAX
2660 LDA COMVECT,X
267 121 SEC
268121 SBC # 1
269121 STA TMP
2700 LDA COMVECT+l , X

317

Modifying LADS: Special Notes on A tari and A pple LADS

271111 SBC #0
272111 PHA
273111 LDA TMP
274!l1 PHA
275!l1 RTS
2760 ;Command table. Format:
277111 ;.BYTE "command" lll,"command" (11,255 (255

to end table>
278111 COMTABLE . BYTE "L I ST"
279111
280111
281111
282111
283111
2840
2850
2860
2870
288111
2890
29(110
291111
2920
2930
2940

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

!ll
"DOS"
(11
"NEW"
0
"SAVE "
0
"LOAD "
III
"MERGE "
0
"LADS"
III
"SYS"
0
255

2950 ;table will hold address of each comman
d routine in low,high format

2960 COMVECT .BYTE 0 0 0 0 0 0 0 0 0 0 0 0 0
o 0 III

297111
2980 MLIST LDA # (TEXTBAS;Point to beginning

of program
2990 STA PTR
3000 SEC;get length of program to list
3(1110 LDA TEXEND
3020 SBC PTR
3030 STA LLEN;into LLEN
3040 LDA #)TEXTBAS
31!150 STA PTR+ 1
3060 LDA TEXEND+1
31Z17!ll SBC PTR+ 1
3080 STA HLEN;and HLEN
3090 INLIST LDA HLEN
3100 TAX
3110 ORA LLEN;both zero ?
312111 BNE DOLIST
3130 RTS;if so, e x it LIST
3131 DOLIST LDA #l:STA 766
3140 CPX #0;high byte zero?

318

Modifying LADS: Special Notes on Atari and Apple LADS

3150 BEQ LoLST;if so, skip primary
3160 LOA #0;for primary pass, list
317111 STA LEN
3180 RELIST LOY #0
3190 PRLIST LOA (PTR),Y
3200 JSR PRINT;print a character
321!21 LOA ST
3220 BMI oUTLIST;exit on error

INY
CPY LEN
BNE PRLIST
INC PTR+l
OEX;primary pass completed?

pass
fully

323e~

324!21
325!ZJ
326!21
327!21
328111
329111
33111!~1

BMI oUTLIST;if so, do secondary pass

331111
332!ZJ

BNE PRLIST;if not,
LoLST LOA LLEN;now
ndary pass)
STA LEN
JMP RELIST;continue

continue
list remainder (seco

333111 oUTLIST LOA #0:STA 766:RTS;go back to R
eady

334111
3350 DOS JMP (10};OOS Vector
336111
3370 FINOLINE LOA #(TEXTBAS;start at top of

program
3380 STA PTR;initialize pointer
3390 LOA #)TEXTBAS;same for high bytes
34111QI STA PTR+l
341 III LOA #111
3420 STA FoUNOFLAG;set foundflag to affirmat

ive
343111 TAY
344111
3450 LED STY YSAVE;preserve Y
3460 TYA;point to first byte in line
347111 CLC
348111 AOC PTR
3490 STA TEMP;so we can convert line #
3500 STA BEGPTR;save start of line
351111 STA ENDPTR
3520 LOA PTR+l;same for high byte
353!21 AOC #111
354111 STA TEMP+ 1
3550 STA BEGPTR+l
3560 STA ENOPTR+l
3570 ;check to see if at end
358111 SEC

319

Modifying LADS: Special Notes on Atari and Apple LADS

359 lZ1
36lZIlZ1
361lZ1
3620
363lZ1
364 111
365lZ1

LDA
SBC
STA
LDA
SBC
ORA
BCC

BEGPTR
TEXEND
TMP
BEGPTR+1
TEXEND+1
TMP
NOTEND

3660 JMP NOTFOUND2
3670 NOTEND JSR VALDEC
3680 SEC;see if line number matches
3690 LDA RESULT
37lZIlZ1 SBC LNUM
371111 STA TMP
3720 LDA RESULT+1
373 lZ1 SBC LNUM+ 1
374 111 ORA TMP
3750 BEQ FOUNDLINE ; if match, line found
3760 BCS NOTFOUND
3770 ;no match at all , s o continue search
3780 NEXTLINE JSR EOL;skip to end of line
3790 INY;skip over eol
380 111 BNE NOADJ 2
3 810 INC PTR+1
3820 NOADJ2 JMP LEQ;continue search
383 0 FOUNDLINE DEC FOUNDFLAG;set to found (a

fter INC in NOTFOUND2>
3840 NOTFOUND JSR EOL;skip past end of line
3850 CLC;store at ending address
3860 TYA
3870 ADC PTR
3880 STA ENDPTR
3890 LDA #0
3900 ADC PTR+1
3910 STA ENDPTR+1
3920 NOTFOUND2 INC FOUNDFLAG;if 255, then 0

(found> , else 1 (not found>
3930 SEC;get size of l i ne
3940 LDA ENDPTR
3950 SBC BEGPTR
3960 STA LINESIZE;put it in LINESIZE
3970 LDA ENDPTR+1
3980 SBC BEGPTR+1
3990 STA LINESIZE+1
4000 INC LINESIZE
4010 BNE NOINC 3
4020 INC LINESI ZE+l
4030 NOINC 3 RTS
4040 ;skip past end of line
4050 EOL LDY YSAVE;restore Y

320

Modifying LADS: Special Notes on Atari and Apple LADS

4060 SRCHEND LDA (PTR).Y;get character
412170 CMP # 155
4080 BEQ ENDLINE;if zero (EOL)
4090 INY;bump up pointer
4100 BNE SRCHEND;zero?
4110 INC PTR+l;next block
4120 NOADJ JMP SRCHEND;end of line?
413121 ENDL I NE RTS
4140
4150 ;Print message
4160 PRMSG STA PTR;prepare pointer
4170 STY PTR+l
418121 LDY #121
4190 PRLOOP LDA (PTR).Y;get msg char
4200 BEQ OUTMSG;zero (end of message)
4210 JSR PRINT;else print char
4220 INY;continue loop
423121 BNE PRLODP
424121 OUTMSG RTS
4250
4260 ;FINDLINE has initialized BEGPTR. ENDPT

R. and LINESIZE
4270 DELETE LDA ENDPTR;move FROM [end of lin

428QI
429QI
43121111
431Q1
432121
433121
434111
435111
436111
437111

e+l]
CLC
ADC
STA
LDA
ADC
STA
LDA
STA
LDA
STA

#1
FROML
ENDPTR+l
#121
FRDMH
BEGPTR;to beginning of line
DESTL
BEGPTR+l
DESTH

4380 SEC:length of move is TEXEND-ENDPTR
439111 LDA TEXEND
44 QIv.1 SBC ENDPTR
441 III
4420
4430
444111
445111
446111

STA
LDA
SBC
BCS
LDA
BEQ

LLEN
TEXEND+l
ENDPTR+l
ZLAST
TEXEND
NDDEC2

4470 DEC TEXEND+l
4480 NODEC2 DEC TEXEND
4490 JMP NOMOV
4500 ZLAST STA HLEN
451121 ORA LLEN
4520 BEQ SKIPDEL;nothing to move'

321

Modifying LADS: Special Notes on Atari and Apple LADS

453~! JSR UMOVE
454~! NOl'10V SEC
4550 LDA TEXEND;subtract size of deleted lin

e from program end
4560 SBC LINESIZE
457~! STA TEXEND
4580 LDA TEXEND+l
4590 SBC LINESIZE+l
4600 STA TEXEND+l
4610 SKIPDEL RTS;delete done'
462~!

4630 INSERT LDA BEGPTR;insert gap at found I
ine position

4640 STA PTR;also set pointer
4650 STA FROML;move From BEGPTR
466~! SEC
4670 ADC INLEN;to BEGPTR+INLEN+l
468~! STA DESTL
4690 LDA BEGPTR+l
4700 STA PTR+l:same for high
471Y.! STA FROMH
472~! ADC #~!

473!Z! STA DESTH
4740 SEC;# of bytes to move is
475~! LDA TEXEND; (TEXEND-BEGPTR) +1
476!Z! SBC BEGPTR
477~!

478!Z!
479~!

480!Z!
481!Z!
4820
4830

STA
LDA
SBC
STA
BCS
LDA
BNE

LLEN
TEXEND+l
BEGPTR+l
HLEN
NOTLAST
TEXEND
NODEC

4840 DEC TEXEND+l
4850 NODEC DEC TEXEND
4860 JMP INSEXIT
4870 NOTLAST ORA LLEN
4880 BED INSEXIT;nothing to insert!
4890 NOINC2 JSR DMOVE;do insert
4900 INSEXIT SEC;add length of line added
4910 LDA TEXEND;to end of text pointer
4920 ADC INLEN
4921 STA TEXEND
4940 LDA TEXEND+l
4950 ADC #0
4960 STA TEXEND+l
4970 LDY #0;gap ready, put in line
4980 INSLOOP LDA BABUF,Y
4990 STA (PTR),Y

-322

Modifying LADS: Special Notes on Atari and Apple LADS

51'/11'/11'/1 INY
51'/111'/1 CPY INLEN
51'/121'/1 BCC INSLOOP
5030 BEQ INSLOOP
5040 RTS;insert done~

5050 CLOSEIT LDA FNUM
5 1<1160 BEQ NOCLOSE
5 1217121 JSR CLOSE
5080 NOCLOSE JSR CLRCHN
5 1219121 RTS

ERRPRINT 510121
511121
512121
513121
514f.!1
515121
516121
517121
518111
519111
52121 121 RTS

LDA
STA TMP
JSR CLALL
LDA #(ERRMSG
LDY #>ERRMSG
JSR PRMSG
LDX TMP
LDA #121
JSR OUTNUM
JSR PRNTCR

ST

5210 PMSG .B YTE 155
522 111 . BYTE "LADS Ready."
523121 . BYTE 155 121
5240 SYNMSG .BYTE 253
525121 .BYTE "S y nta >: Error"
5260 .BYTE 155 0
5270 ERRMSG .BYTE 253
5280 .BYTE "Error -
529 111 . BYTE 1<11
53!111<11 BRI<MSG . BYTE " BRI< from "
531 111 . BYTE 121
532f!J
5330 GETNUM STA SF2
534 !!1 INC SF2
5350 LDA # < BABUF;point to line buffer
536 !11 STA SF3
537111 LDA # >BABUF
5380 STA SF4 ; offset should be in Sf2
5390 JSR SD800;convert ASCII to floating poi

nt
54!!1 !!1 BeS NUMERR
5410 JSR SD9D2;floating point to integer
5420 LDA $F2;store pointer to first non-nume

r al
543!!1 STA INDE X
544 i11 RTS
5450 NUMERR LDA #0;clear result
546 !!1 STA SD4

323

Modifying LADS: Special Notes on Atari and Apple LADS

54 7~1 STA $D5
548111 RTS
5490 GETLNUM JSR GETNUM:Get number from BABU

F+(accumulator+l)
5500 LDA $D4;put it in LNUM
551 !il STA LNUM
5.52!.!1 LDA $D5
553111 STA LNUM+ 1
5540 JSR FINDLINE;find the line
555111 F:TS
5560 LIST JSR GLIST
557111 JMP PROMPT
5580 GLIST LDA ARGPOS;Any arguments?
5590 CMP INLEN;not if argpos is at end of Ii

ne
56illill BNE YESARG
5610 JMP MLIST;so list all
5620 YESARG JSR GETLNUM;get first numeric ar

gument
5630 LDA BEGPTR;list from beginning of first

line
564111 STA SAVBEG;sa v e beginning pointer
565111 LDA BEGPTR+l
566111 STA SAVBEG+l
567111 LDA ENDPTR;save end of first line
5681i1 STA SAVEND
5691i1 LDA ENDPTR+l
570111 STA SAVEND+l
571!.!1 LDA INDEX;point to second argument
572111 CMP INLEN;if equal, no secon d argument
573!.!1 BNE YESARG2
574111 LDA FOUNDFLAG;no second arg, so check

or legal line
5750 BNE NOLIST;line wasn't found, so don't

list it
5760 LDA SAVEND;restore end of line
57?1i1 STA ENDPTR
5780 LDA SAVEND+l
5790 STA ENDPTR+l
5800 JMP OVER2;and skip

f

5810 YESARG2 JSR GETLNUM;get second line num
ber

5820 OVER2 LDA SAVBEG
5831i1 STA PTR
5840 LDA SAVBEG+l
5850 STA PTR+l
5860 SEC;calculate length
58?1i1 LDA ENDPTR
588!!1 SBC PTR

324

Modifying LADS: Special Notes on Atari and Apple LADS

5890 STA LLEN
5900 LOA ENOPTR+l
5910 SBC PTR+l
5920 STA HLEN
5930 BCS GDLIST;if second # < first#.

list
5940 NDLIST RTS
5941 GDLIST LOA FDUNOFLAG:BNE NDINCH
5950 INC LLEN
5960 BNE NDINCH
5970 INC HLEN
5980 NDINCH JMP INLIST
5990
6000 DPENFILE CLC
6fZl 1 121 LOA ARGPDS
6 !il 2121 AOC # < BABUF
6030 STA FNAMEPTR;point to filename
6lZ14lZ1 LOA #0
6050 AOC #) BABUF
6060 STA FNAMEPTR+l
6070 LOY ARGPDS;find end of filename
6080 GETFNAME LOA BABUF,Y
6090 CMP #155;end of line?
6100 BEQ ENOFNAME;if so, e x it loop
6110 CMP #44;end of filename?
6120 BEQ ENOFNAME;also legal
613!Z1 INY

don't

6140 BNE GETFNAME;if no delimiter found ...
6150 JMP SYNERR;it·s a s y nta x error
6160 ENOFNAME TYA;convert Y pointer to lengt

h
617!Z1 SEC
6180 SBC ARGPDS;Y - argpos
6190 STY ARGPDS;reset argpos for list
6200 STA FNAMELEN;filename length
6210 LOA #7;CLDSE #7
622fZl STA FNUM
623lZ1 JSR CLOSE
6240 LOA #0;OPEN #7 , n,0 , filename
625!Z1 STA FSECDNO
6260 JSR OPEN;do open
6270 LOX ST;check for error
6280 BMI ERRABORT; y es, error
629!Z1 RTS
6300 ERRABORT PLA;disk error, so abort
63Hl PLA
6320 JSR ERRPRINT
633121 J MP PROMPT
6340 SAVE LOA #8;8 means output

325

Modifying LADS: Special Notes on Atari and Apple LADS

635111 STA FDEV
6360 JSR OPENFILE;open the file
6370 LDX FNUM;all PRINTs go
6380 JSR CHKOUT;to file
6390 JSR GLIST;send out listing
6400 JSR CLOSEIT;close file
6411Z1 JMP PROMPT
6420 MERGE LDA #4;4 for input
643!l1 STA FDEV
6440 JSR OPENFILE;open it
6450 LDX FNUM;all input comes from this file
646Ql J SR CHK I N
6470 JMP ENTER;file will be closed automatic

ally
6480 LADS LDA ARGPOS;Any argument?
649!l1 CMP I NLEN
6500 BNE NOTMEM;if argpos (} inlen, then there

is,so don't change RAMFLAG
6510 INC RAMFLAG
6520 NOTMEM JMP START
6530 SYS LDA ARGPOS;locate number
6540 JSR GETNUM;get it
6550 LDA $D4;put address directly
6560 STA JUMPVEC+l;into code
6570 LDA $D5;self-modif y ing'
6580 STA JUMPVEC+2
6590 JUMPVEC JSR $FFFF;this address will be

changed by abo v e
66QIQl JMP PROMPT
6610 LOAD JSR PLDAD;do load
6620 JMP PROMPT;done
6630 PLOAD LDA #4;4 for read
664111 STA FDEV
6650 JSR OPENFILE;open file
6660 AFTEROPEN LDA FNUM;all input comes from

this file
667111 JSR X 16
6680 LDA # (TEXTBAS
669111
67Qllll
671111
672Ql
673lZ1
674lZ1
675111
676111
677Ql
67BlZl
679111

326

STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR
LDA

ICBADR,X
> TEXTBAS
ICBADR+l,X
#Ql
ICBLEN,X
#$5QI
ICBLEN+l,X
#7
ICCDM,X
CALLCID
FNUM

Modifying LADS: Special Notes on Atari and Apple LADS

68QIQI JSR X 16
6810 CLC:add buffer length to get ending add

6820 LDA ICBLEN,X
6830 ADC # (TE XTBAS
6840 STA TEXEND;update end
6850 LDA ICBLEN+l ,X
6860 ADC #) TE XTBAS
6870 STA TEXEND+l
688111 LDA ST
6890 CMP #136;end of file?
6900 BEQ NOPRERR;if so, don " t print an error

message
6910 JSR ERRPRINT
692QI J MP PROMPT
6930 NOPRERR JSR CLOSEIT;close down file
6940 RTS;end of load
6950 BREAK CLI:LDA # (BRKMSG:LDY # } BRKMSG:JSR

PRMSG
6960 PLA:PLA:PLA : SEC:SBC #2:TAX:PLA:SBC #0:J

SR OUTNUM
6965 LDX #255:TXS:JSR PRNTCR:JMP EDIT
6970 .FILE D:TABLES.SRC

Atari Machine Language Programming
There is a lot to be learned from the Atari LADS source code.
Both the assembler and the editor are complex, powerful pro
grams. You might find uses in your own programming for
such general-purpose routines as Valdec, UMOVE, and
DMOVE. You can add functions to the editor such as search
and replace. Or you could simply bypass the editor altogether,
creating LADS-compatible source files using an ordinary word
processor (and thus have access to the search and replace and
other features of the word processor program).

Since maps are invaluable in sophisticated ML program
ming, you might want to purchase Mapping the Atari (COM
PUTE! Books, 1983).

Special Apple Notes
The Apple version of LADS works the same as the Com
modore 64 version with only slight modifications. The Apple
doesn ' t have the convenience of Kernal routines to access
DOS, so routines had to be written which could directly access
the DOS file manager routines. This required extensive
changes to the Open 1 subprogram, which are discussed below.

327

Modifying LADS: Special Notes on Atari and Apple LADS

Also, because the Applesoft tokenize routine takes the
spaces out of the text, it was necessary to put a wedge into
Apple's CHRGET routine to intercept the BASIC tokenize rou
tine. And the wedge includes a routine that puts the filename
of the program you want to assemble to the top of the screen
where LADS expects to find it.

Apple Disk Access
The Apple DOS file manager is the part of DOS that handles
all file input and output to the disk. It calls RWTS
(Read/Write to Track/Sector) and is called from the command
interpreter. The command interpreter sends control bytes to
the file manager through the file manager parameter list. You
can access the file manager directly by sending it the param
eters it requires.

To get the address of the parameter field you JSR to
$03DC. This loads the Accumulator with the high byte and
the Y Register with the low byte of the parameter field. You
can then store these to a zero page location for easy transfer of
the parameters.

Table 11,1. Apple File Manager Parameter List

Parameter
1 2 3/4 5 6 7 8 9/10 11 13/14 15/16 17/18

OPEN 1
CLOSE 2
DELETE 5
CATALOG 6
LOCK 7
UNLOCK 8
RENAME 9
INIT 11 157
VERIFY 12

328

Modifying LADS: Special Notes on Atari and Apple LADS

Parameter
1 2 3/4 5/6 7/8 9/10 11 12/14 15/16 17/18

READ 1 Byte 3 1 * * * *
READ Range 3 2 * * * * *
POSITION and 3 3 * * * * * * READ 1 Byte
POSITION and 3 4 • * * * • • •
READ Range
WRITE 1 Byte 4 1 * * * *
WRITE Range 4 2 • • • • •
POSITION and 4 3 * * * * * * WRITE 1 Byte
POSITION and 4 4 * • • • • * •
WRITE Range
POSITION 10 * * * *

Note: The numbers in the leftmost column represent the
opcode; the numbers across the top of this chart represent
byte positions relative to the start of the parameter list. As
terisks signify that a byte is required for the operation listed.
A blank space means that this parameter can be ignored.
Nevertheless, the byte positions must be maintained. For
example, to DELETE, you do not need to worry about the
second, third, or fourth bytes-anything can be in them
but they must exist. The first byte must contain a five, and
the fifth through the eighteenth bytes must be set up as de
scribed below.

* •
*

•
*
*
*

*

The parameters are expained in sections. The first section
tells you about all the opcodes except for the read, write, and
positions opcodes, because they are slightly different from the
rest. The second section tells you about the read, write, and
position opcodes; the third, about the last set of parameters
that is common to all opcodes.

The first byte of the parameter field is the opcode type.
This parameter can be in the range of 1 to 12.

The second parameter is used only with the INIT
opcodes. If you are using a 48K Apple, the correct value for
this parameter is 15 7.

The third and fourth parameters are used with the OPEN
and RENAME opcodes. Together they hold the record length
of a random access file. If you are not using a random access
file, you should have a zero in both of these locations . With
the RENAME opcode, these bytes hold the address of the new
name.

329

Modifying LADS: Special Notes on Atari and Apple LADS

The fifth byte holds the volume number. The sixth byte
holds the drive number. The seventh byte holds the slot num
ber. The eighth byte holds the file type.

The ninth and tenth bytes hold the address of the
filename . The filename must be stored in the address pointed
to by these bytes. It must be padded with spaces.

This section explains the read, write, and position
opcodes.

The first byte holds the opcode. The second byte holds
the subcode.

The next four bytes are used only when you require a po
sition command. The third and fourth bytes hold the record
number. The fifth and sixth bytes hold the byte offset. To re
position the pointer in an open file, you can use these bytes to
calculate a new position. The new position is equal to the
length of the file specified in the open opcode times the record
number plus the byte offset.

The seventh and eighth bytes hold the length of the range
of bytes. This is used only when reading or writing a range.

When reading or writing a range of bytes, the ninth and
tenth bytes hold the start address of the range. If you are read
ing or writing only one byte, then the ninth byte holds the
byte you read or the byte you are going to write.

The following are parameters for all the opcodes.
The eleventh byte is the error byte. It should be checked

each time after you access the file manager. The errors are as
follows:

0: NO ERROR
2: INVALID OPCODE
3: INVALID SUBCODE
4: WRITE PROTECTED
5: END OF DATA
6: FILE NOT FOUND
7: VOLUME MISMATCH
8: I/O ERROR
9: DISK FULL
10: FILE LOCKED

The twelfth byte is unused. The thirteenth and fourteenth
bytes are used for the address of the work area buffer. This is
a 45-byte buffer in one of the DOS buffers.

330

Modifying LADS: Special Notes on Atari and Apple LADS

The fifteenth and sixteenth bytes hold the address of the
track/sector list sector buffer. This is a 256-byte buffer in one
of the DOS buffers.

The seventeenth and eighteenth bytes hold the address of
the data sector buffer. This is another 256-byte buffer in one
of the DOS buffers .

Once you have sent the correct parameters, you can call
the file manager by a JSR to $03D6. You must specify if you
want to create new file on disk if the one you are accessing
doesn 't exist. This is done by loading the X Register with a O.
If you don't want to create a new file, you can load the X Reg
ister with a 1. If you don't want to create a new file and you
try to access a file that doesn't exist, you will receive an error
number 6 in byte 11 of the parameter field.

Apple LADS uses the routines in the file manager that
read or write one byte from or to the disk at a time. The gen
eral routine to transfer the parameters from Tables to the file
manager can be found between lines 810 and 920 in the
Openl listing. This is called from the individual subroutines
for opening, closing, reading, and writing. The OPEN routines
require a filename . Lines 580-800 handle the transfer of the
filename from the filename buffer to the specific buffer.

There is also a check to see whether a file about to be
opened has been opened previously. This was needed because
you cannot close a file unless it was previously opened. This is
handled in the close routine (370-570).

The PRINT routine handles all output, and the CHARIN
routine handles all input. There is one input and one output
channel, and all input and output must be handled through a
channel. The bytes which govern this event are set in the
CHKIN and CHKOUT routine. The CHKIN routine (930-940)
sets all input to come from that file. The CHKOUT routine
(950-1030) sets all output to go to that file. The PRINT routine
(1170-1430) and the CHARIN routine (1040-1160) check to see
what channel is currently open, then go to that routine .

The BASIC wedge (1700-2530) handles the tokenizing of
the BASIC text. It checks to see if the text pointer is at $200
(the input buffer). If not, it goes to the normal GETCHR rou
tine. Otherwise, it checks to see if the first character is a num
ber. If so, it goes to the insert line routine, and if not, it checks
for the characters ASM. If that is found, the wedge concludes

331

Modifying LADS: Special Notes on Atari and Apple LADS

its work by putting the filename at the top of the screen and
jumping to the start of LADS.

The insert line routine gets the line number, then jumps
to the Apple tokenize routine, which loads the Y Register with
the length of the line plus six and then jumps to the normal
line insert and tokenize routine .

The last subroutine in Open 1 is the first thing that is
called when you BRUN LADS. It initializes the wedge and sets
HIMEM to the start of LADS.

332

Ho-w to Use LADS

Here is a step-by-step explanation of how to assemble ma
chine language programs using the LADS assembler. As you
familiarize yourself with its features and practice using it, you
will likely discover things about the assembler which you'll
want to change or features you'll want to add. For example, if
you find yourself frequently using an impossible addressing
mode like LDY (lS,Y), you might want to insert an error trap
for that into LADS source code. Chapter II, "Modifying
LADS," shows you how these customizations can be accom
plished. But here is a description of the features which are
built into LADS.

Apple and Atari Versions
For the most part, the commands and features of LADS are
the same for all versions: Apple, Atari, and Commodore. A
few differences are discussed at the end of the general instruc
tions for all versions of LADS. No matter which computer you
use, you should read the body of this chapter to understand
how to get the most out of LADS. Then, if you use an Atari or
an Apple, you can read the special notes at the end of this
appendix which explain some minor variations applicable to
those computers.

General Instructions for Using LADS
LADS assembles from source files. They are particularly easy
and convenient to create; just turn on your computer and pre
tend you're writing a BASIC program. (To create source files
for the Atari, see " Special Atari Notes" below.) Commodore
and Apple LADS work with source files created exactly the
way you would write a BASIC program. Here's an example:
10 *= $0360
15 .5
20 LOA #22:LDY #0
30 STA $1500,Y
40 .END TEST

Use line numbers, colons, and whatever programmer's
aids (Toolkit, BASIC Aid, POWER, automatic line numbering,
etc.) you ordinarily use to write BASIC itself.

335

Appendix A: How to Use LADS

After you've typed in a program, save to disk in the nor
mal way. (Tape drive users : See special " Note to Tape Users"
at the end of this appendix.) Notice line 10 in the example
above. The first line of any LADS source file must provide the
starting address, the address where you want the ML program
to begin in the computer's memory. You signify this with the
* = symbol, which means "program counter equals." When
LADS sees * = , it sets the Program Counter to the number
following the equals sign. Remember that there must be a space
between the = and the starting address.

The last line of each LADS source file must contain either
the .END pseudo-op or the .FILE pseudo-op. Both of them
link source files together in case you want to chain several
files into one large ML program. However, .FILE names the
next linked source file in the chain whereas .END always
specifies the first source file of the chain. If there is only one
file (as in our example above), you still must end it with .END
and give its name as the first file. More about this shortly.

Also notice that you can use either decimal or hexadeci
mal numbers interchangeably in LADS. Lines 10 and 30 con
tain hex; line 20 has decimal numbers.

After you've saved the source code to disk, you can as
semble it by loading LADS and then typing the name of the
source file in the upper left-hand corner of the screen. (The
Atari version differs here as well.) Let's go through the process
step by step. Type in the little source program above as if you
were writing a BASIC program. SAVE it by typing:

SAVE "TEST",8
Then LOAD "LADS",8,l
Type NEW

Clear the screen and type in the source file's name in the
upper left-hand corner:
TEST

Then cursor down a line or two and type SYS 11000 and
hit the RETURN key. That will activate LADS on the Com
modore 64, VIC-20, and 8032 PET/CBM. See the special notes
below for using the Atari and Apple versions of LADS.

You will see the assembler create the object code, the bytes
which go into memory and comprise the ML program.

Note: Be sure to remember that every source code program
must end with the .END NAME pseudo-op. In our example, we

336

Appendix A: How to U se LADS

concluded with .END TEST because TEST is the name of the
only file in this source code. Also notice that you do not use
quotes with these filenames.

To review: Every source code program must contain the
starting address in the first line (for example, 10 * = $0800)
and must list the filename on the last line (for example, 500
.END SCREENPROG). If you chain several source code pro
grams together using the .FILE pseudo-op, you end only the fi
nal program in the chain with the .END pseudo-op. These two
rules will become clearer in a minute when we discuss the
.END and .FILE pseudo-ops.

Features
There are a number of pseudo-ops (direct instructions to the
assembler) available in LADS. The .S in line 15 is such an
instruction. It tells LADS to print the results of an assembly to
the screen. If you add the following lines to our test program,
you will cause the listing to be in decimal instead of hex and
cause LADS to save the object code (the runnable ML pro
gram) to a disk file called T.OBJ.
10 *= $0360
1l.NH
12.D T.OBJ
20 LDA #22:LDY #0
30 STA $1500,Y
40 .END TEST

The pseudo-op .NH means no hex (causing the listing to
change from hex to decimal), and .D means create a disk file
containing the ML program which results from the assembly
process.

You can add REM-like comments by using a semicolon.
And you can turn the screen listing off with .NS, anytime.
Turn it on or off as much as you want:
10 *= $0360
1l.NH
12 .D T.OBJECTPROGRAM
15.NS
20 LDA #22:LDY #0; load A with 22, load Y with zero
30 STA $1500,Y
40 .END TEST

You turn on printer listings with .P and turn them off
with .NP. However, for the .P pseudo-op to work, the .S

337

Appendix A: How to Use LADS

screen listings pseudo-op must also be turned on. In other
words, you cannot have listings sent to the printer without
also having them listed on the screen at the same time. To
have the ML stored into memory during assembly, use .0 and
turn off these POKEs to memory with .NO.

The pseudo-ops which turn the printer on and off; direct
object code to disk, screen, and RAM; or switch between hex
or decimal printout can be switched on and off within your
source code wherever convenient. For example, you can turn
on your printer anywhere within the program by inserting .P
and turn it off anywhere with .NP. Among other things, this
would allow you to specify that only a particular section of a
large program be printed out. This can come in very handy if
you're working on a SOOO-byte program: you would have a
long wait if you had to print out the whole thing.

Always put pseudo-ops on a line by themselves. Any
other programming code can be put on a line in any fashion
(divided by colons: LDA IS :STA 27:INY), but pseudo-ops
should be the only thing on their lines. (The .BYTE pseudo-op
is an exception-it can be on a multiple-statement line.)
100 .P .S (wrong)
100 .P (right)
110 .S (right)

Here's a summary of the commands you can give LADS:
.P

. NP

.0

. NO

.D filename

. FILE filename

. END filename

338

Turn on printer listing of object code (.S must
be activated).
Turn off printer listing of object code .
Turn on POKEs to memory. Object code is
stored into RAM during assembly.
Turn off POKEs to memory .
Open a file and store object code to disk during
assembly (use no quotes around filename) .
Link one source file to the next in a chain so
that they will all assemble together as a single
large source program (end the chain with .END
pseudo-op) .
Link the last source file to first source file in a
chain. If you are assembling from a single file,
give its filename as the .END so the assembler
knows where to go for the second pass . Any
source code must have .END as the last line in
the program, whether the source code is con-

.S

. NS

.H

.NH

*=

A Stable Buffer

Appendix A: How to Use LADS

tained within a single disk file or spread across
a multiple-file chain.
Turn on screen listing during assembly (re
quired if you desire a hardcopy listing from a
printer using the .r pseudo-op).
Turn off screen listing during assembly .
Turn on hexadecimal output for screen or
printer listing.
Turn off hexadecimal output for screen or
printer listing. (As a result, the listings are in
decimal.)
Set program counter to new address .

The pseudo-op * = is mainly useful when you want to
create data tables. The subprogram Tables in LADS source
code is an example. (A subprogram is one of the source code
files which, when linked together, form an entire ML pro
gram.) You might want to create an ML program and locate its
tables, equates, buffers, and messages at the high end of the
ML program the way LADS does with its Tables subprogram.
Since you don't know what the highest RAM address will be
while you're writing the program, you can set * = to some ad
dress perhaps 4K above the starting address . This gives you
space to write the program below the tables. The advantage of
stable tables is that you can easily PEEK them and this greatly
assists debugging. You'll always know exactly where buffers
and variables are going to end up in memory after an assem
bly-regardless of the changes you make in the program.

Here's an example. Suppose you write:
10 *= $5000
20 STA BUFFER
30 *= $6000
40 BUFFER .BYTE 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 .END BUFFEREXAMPLE

This creates an ML instruction (STA buffer) at address $5000
(the starting address of this particular ML program), but places
the buffer itself at $6000. When you add additional instruc
tions after STA buffer, the location of the buffer itself will re
main at address $6000. This means that you can write an
entire program without having to worry that the location of
the buffer is changing each time you add new instructions,

339

Appendix A: How to Use LADS

new code. It's high enough so that it remains stable at $6000,
and you can debug the program more easily. You can always
check if something is being correctly sent into the buffer by
just looking at $6000.

This fragment of code illustrates two other features of
LADS. You can use the pseudo-op .BYTE to set aside some
space in memory (the zeros above just make space to hold
other things in a "buffer" during the execution of an ML pro
gram). You can also use .BYTE to define specific numbers in
memory:
.BYTE 65 66 67 68

This would put these numbers (you must always use deci
mal numbers with this pseudo-op) into memory at the location
of the .BYTE instruction. An easy way to create messages that
you want to print to the screen is to use the .BYTE pseudo-op
with quotes:
500 FlRSTLETTERS .BYTE "ABCD":.BYTE 0

Then, if you wanted to print this message, you could
write:
2 *= $0360
5 LDY #0
10 LOOP LDA FIRSTLETTERS,Y
20 BEQ ENDMESSAGE
30 STA $0400,Y; location of screen RAM on Commodore 64
40 INY
50 IMP LOOP
60 ENDMESSAGE RTS; finished printout
500 FIRSTLETTERS .BYTE "ABCD:.BYTE 0
900 .END MESSAGETEST

Note that using the second set of quotes is optional
with the .BYTE pseudo-op: You can use either .BYTE
/I ABCD:.BYTE 0 or .BYTE /I ABCD":.BYTE O. To POKE num
bers instead of characters, just leave out the quotes: .BYTE 10
15 75. And since these numeric values are being POKEd di
rectly into bytes in memory, they cannot be larger than 255 .

Labels
With LADS, or with other assemblers that permit labels, you
need not refer to locations in memory or numeric values by
using numbers. You can use labels .

In the example above, line 10 starts off with the word

340

Appendix A: How to Use LADS

LOOP. This means that you can use the word LOOP later on
to refer to that location (see line 50) . That's quite a conve
nience: The assembler remembers where the word LOOP is
used and you need not refer to an actual memory address; you
can refer to the label instead. Throughout this book, this kind
of label is called a PC-type (for Program Counter) or address
type label.

The other type of label is defined is with an assembly
convention called an equate (an equals sign). This is quite simi
lar to the way that BASIC allows you to assign value to
words-it's called "assigning variables" when you do it in
BASIC. In ML, the = pseudo-op works pretty much the way
the = sign does in BASIC. Here's an example:
5 *= $0360
10 SCREEN = $0400; the location of the 1st byte in RAM of the

64 screen
20 HEARTSYMBOL = 83; the heart figure
30; ------------------------
40 START LOA HEARTSYMBOL; notice "START" (an address

type label)
50 STA SCREEN
60 RTS

Line 10 assigns the number $0400 (1024 decimal) to the
word SCREEN. Anytime thereafter that you use the word
SCREEN, LADS will substitute $0400 when it assembles your
ML program. Line 20 "equates" the word HEARTSYMBOL to
the number 83. So, when you LDA HEARTSYMBOL in line
40, the assembler will put an 83 into your program. (Notice
that, like BASIC, LADS requires that equate labels be a single
word. You couldn't use HEART SYMBOL, since that's two
words.)

Line 30 is just a REMark. The semicolon tells the assem
bler that what follows on that line is to be ignored. Neverthe
less, blank lines or graphic dividers like line 30 can help to
visually separate subroutines, tables, and equates from your
actual ML program. In this case, we've used line 30 to sepa
rate the section of the program which defines labels (lines 10-
20) from the program proper (lines 40-60). All this makes it
easier to read and understand your source code later.

341

Appendix A: How to U se LADS

Automatic Math
There are times when you will want to have LADS do addi
tion for you. That's where the + pseudo-op comes in. If you
write "label + 1" you will add 1 to the value of the label.
Here's how it works:
10 *= 864
20 MEMTOP = $34; top-of-memory pointer for 8032 PET.
30; -----------------------------
40 LOA #O:STA MEMTOP:LOA #$50:STA MEMTOP+l

Here we are putting a new location into the top-of
memory pointer which the computer uses to decide where it
can store things. (Doing that could protect an ML program
which resides above the address stored in this pointer.) Like
all pointers, it uses two bytes. If we want to store $5000 into
this pointer, we store the lower half (the least significant byte)
into MEMTOP. We'll want to put the number $50 into the
most significant byte of the pointer-but we don't want to
waste time making a new label. It 's just one higher in memory
than MEMTOP. Hence, MEMTOP + 1.

You'll also want to use the + pseudo-op command in
constructions like this :
10 *= 864
15 SCREEN = $0400
17; -----------------------------
20 LOA #32; the blank character
30 LOA #0
40 START STA SCREEN,Y
50 STA SCREEN+256,Y
60 STA SCREEN+512,Y
70 STA SCREEN+768,Y
80INY
90 BNr: START

This is the fastest way to fill memory with a given byte.
In this case we're clearing out the screen RAM by filling it
with blanks. But it's easy to indicate multiples of 256 by just
adding them to the label SCREEN.

A similar pseudo-op command is the # <. This refers to
the least significant byte of a label. For example:

10 *= $0360
20 SCREEN = $8011
25 SCREENPOINTER = $FB
30 ;--------------------

342

Appendix A: H ow to U se LADS

40 LOA # < SCREENi LSB (least significant byte of the label
SCREEN, $11)

50 STA SCREENPOINTER

You 'll find this technique used several times in the LADS
source code. It puts the LSB (least signficant byte) or the MSB
(most signficant byte) of a label into the LSB or MSB of a
pointer. In the example above, we want to set up a pointer
that will hold the address of the screen RAM. The pointer is
called SCREENPOINTER and we want to put $11 (the LSB of
SCREEN) into SCREENPOINTER. So, we extract the LSB of
SCREEN in line 40 by using # combined with the less-than
symbol. We would complete the job with the greater-than
symbol to fetch the MSB: 60 LDA #>SCREEN. Notice that
these symbols must be attached to the label; no space is al
lowed. For example, LDA #> SCREEN would create problems.
This LSB or MSB extraction from a label is something you'll
need to do from time to time. The #< and # > pseudo-ops do
it for you.

Chained Files
It is sometimes convenient to create several source code sub
programs, to break the ML program source code into several
pieces. LADS source code is divided into a number of program
files: Array, Equate, Math, Pseudo, etc. This way, you don't
need to load the entire source code in the computer's memory
when you just want to work on a particular part of it. It also
allows you to assemble source code far larger than could fit
into available RAM.

In the last line of each subprogram you want to link, you
put the linking pseudo-op .FILE NAME (use no quotes) to tell
the assembler which subprogram to assemble next. Sub
programs, chained together in this fashion, will be treated as if
they were one large program. The final subprogram in the
chain ends with the special pseudo-op .END NAME, and this
time the name is the filename of the first of the subprograms,
the subprogram which begins the chain. It's like stringing
pearls and then, at the end, tying thread so that the last pearl
is next to the first, to form a necklace.

Remember that you always need to include the .END
pseudo-op, even if you are assembling from a single, unlinked
source code file. In such a case (where you're working with a
solo file), you don 't need the linking .FILE pseudo-op. Instead,

343

Appendix A: How to Use LADS

refer the file to itself with .END NAME where you list the solo
file's name. Here's an illustration of how three subprograms
would be linked to form a complete program:

5 *= 864
10; "FIRST"--first program in chain
20;its first line must contain the start address
30;----------
40 LOA #20
50 STA $0400
60 .FILE SECOND

Then you save this subprogram to disk (it's handy to let
the first remark line in each subprogram identify the sub
program's filename):
SAVE "FIRST",8

Next you create SECOND, the next link in the chain. But
here, you use no starting address; you enter no *= since only
one start address is needed for any program:
10 ; "SECOND"
20 INY:INX:DEY:DEX
30 .FILE THIRD

SAVE"SECOND",8

Now write the final subprogram, ending it with the clasp
pseudo-op .END NAME which links this last subprogram to
the first:
10 ; "THIRD"
20 LOA #65:STA $0400
30 .END FIRST

SAVE "THIRD",8

When you want to assemble this chain, just type FIRST in
the upper left-hand corner of the screen, SYS to LADS, and it
will assemble the entire chain.

If you want the object code (the finished ML program)
stored in the computer's memory during the LADS assembly,
add this line to FIRST above:
35.0

If you want to save the object code as an ML program on
disk that can be later loaded into the computer and run, add
this line to FIRST:

344

Appendix A: How to Use LADS

36.0 PROGRAMNAME

When LADS is finished assembling, there will be an ML
program on disk called PROGRAMNAME. You can load it
and SYS 864 (that was the start address we gave this pro
gram), and the newly assembled ML program will execute.

One additional pseudo-op is the # " . It is sometimes useful
when you want to load the Accumulator with a particular
ASCII character and don't offhand recall the numerical value.
The letter A is 65 in the ASCII code. If you LOA #65:STA
SCREEN, you would store the letter A to the screen. But, for
convenience, you can LOA #"A:STA SCREEN. You can, in
other words, use the # " followed by the character itself rather
than by its ASCII code number.

Rules for LADS
Here are the rules you need to follow when writing ML for
LADS to assemble:

1. In general, all equate labels (labels using an equals sign)
should be defined at the start of your program. While this isn't
absolutely necessary for labels with numbers above 255 (see
SCREEN in the example below), it is the best programming
practice. It makes it easier for you to modify your programs
and simplifies debugging. LADS itself locates all its equate la
bels in the subprogram Oefs, the first subprogram in its chain
of source code files.

What's more, it is necessary that any equate label with a
value lower than 256 be defined before any ML mnemonics
reference that label. So, to be on the safe side, just get into the
habit of putting all equate labels at the very start of your
programs:
10 *= 864
20 ARRAYPOINTER = $FB; (251 decimal), a zero page address
30 OTHERPOINTER = $FO; (253 decimal), another zero page

address
40 i------------------------
50 LOY #O:LOA $41
60 STA ARRAYPOINTER,Y
70 SCREEN = $8000

Notice that it's permissible to define the label SCREEN
anywhere in your program. It's not a zero page address. You
do have to be careful, however, with zero page addresses (ad
dresses lower than 255). So most ML programmers make it a

345

Appendix A: How to Use LADS

habit to define all their equates at the start of their source
code.

2. Put only one pseudo-op on a line. Don't use a colon to
put two pseudo-ops on a single line:

10 *= 864
20.0:.NH
30.0
40.NH

(wrong)
(right)
(right)

The main exception to this is the .BYTE pseudo-op. Sometimes
it's useful to set up messages with a zero at their end to de
limit them, to show that the message is complete. When you
delimit messages with a zero, you don't need to know the
length of the message; you just branch when you come upon
a zero:

10 *= 864
20 SCREEN = $0364
30 i----------------------
40 LOY #0
50 LOOP LOA MESSAGE,Y:BEQ END; loading a zero signals

end of message.
60 STA SCREEN,Y:INY: JMP LOOP; LADS ignores spaces after a

colon.
70 ; ---------- message area here ----------
80 MESSAGE .BYTE "PRINT THIS ON SCREEN":.BYTE 0

Any embedded pseudo-ops like + or = or #> can be
used on multiple-statement lines. The only pseudo-ops which
should be on a line by themselves are the I/O (input/output)
instructions which direct communication to disk, screen, or
printer, like .P, .5, .D, .END, etc.

Generally, it's important that you space things correctly. If
you wrote:
SCREEN= 864

LADS would think that your label was screen = instead of
screen. So you need that space between the label and the
equals sign. Likewise, you need to put a single space between
labels, mnemonics, and arguments:
LOOP LOA MESSAGE

Running them together will confuse LADS:

346

Appendix A: How to Use LADS

LOOPLDA MESSAGE

and
LOOP LDAMESSAGE

are wrong.
It's fine to have leading spaces following a colon, how

ever. LADS will ignore those (see line 60 above) . Also, spaces
within remarks are ignored. In fact, LADS ignores anything
following a semicolon (see line 70). However, the semicolon
should come after anything you want assembled. You couldn't
rearrange line 50 above by putting the BEQ END after the re
mark message. It would be ignored because it followed the
semicolon.

When using the text form of .BYTE, it's up to you
whether you use a close quote:
50 MESSAGE .BYTE "PRINT THIS" (right)
60 MESSAGE .BYTE "PRINT THIS (also right)

3. The first character of any label must be a letter, not a
number. LADS knows when it comes upon a label because a
number starts with a number; a label starts with a letter of the
alphabet:
10 *= 864
20 LABEL = 255
30 LDA LABEL
40 LDA 255

Lines 30 and 40 accomplish the same thing and are cor
rectly written. It would confuse LADS, however, if you wrote:
20 5LABEL = 255 (wrong)

since the number 5 at the start of the word label would signal
the assembler that it had come upon a number, not a label.
You can use numbers anywhere else in a label name-just
don't put a number at the start of the name. Also avoid using
symbols like # < > * and other punctuation, shifted letters, or
graphics symbols within labels . Stick with ordinary
alphanumerics:
10 5LABEL (wrong)
20 LABEL15 (right)
30 *LABEL * (wrong)

4. Move the Program Counter forward, never backward. The
* = pseudo-op should be used to make space in memory. If

347

Appendix A: How to Use LADS

you set the PC below its current address, you would be writ
ing over previously assembled code:
10 *= 864
20 LOA #15
30 * = 900 (right)
10 *= 864
20 LOA #15
30 * = 864 (wrong, you'll assemble right over the LDA #15)

Special Note to Tape Drive Users
LADS will assemble source code from disk or RAM memory.
It is possible to use the assembler with a tape drive, using the
RAM memory-based version (see Chapter 11). Of course, disk
users can also assemble from RAM if they choose. But tape
users must.

There is a restriction when using a tape drive as the out
board memory device. You cannot link files together, forming
a large, chained source code listing. The reason for this is that
LADS, like all sophisticated assemblers, makes two passes
through the source code. This means that tape containing the
source code would have to be rewound at the end of the first
pass.

It would be possible, of course, to have LADS pause at
the end of pass 1, announce that it's time to rewind the tape
(see Atari notes below), and then, when you press a key, start
reading the source code from the start of the tape. But this
causes a second problem: The object code cannot then be
stored to tape. A tape drive cannot simultaneously read and
write.

The best way to use LADS with a tape drive is to as
semble from source code in RAM memory and to use the .0
(store object code to RAM pseudo-op). Then, when the fin
ished object code is in RAM, use a monitor program like
"Tinymon" or "Micromon" to save it to tape. If you have ac
cess to a disk drive, you could construct a version of LADS
which automatically directs object code to tape during assem
bly using the .D pseudo-op.

Special Atari Notes
The Atari version of LADs is a complete programming
environment. Unlike the Commodore and Apple versions of
LADS, where you use the BASIC program editor to write and

348

Appendix A: How to Use LADS

edit your source code, the Atari version has a special editor
integrated into LADS itself. This is necessary because with
Atari BASIC, you can only enter BASIC instructions. The line
10 *= $0600

is just as illegal as
10 PRIMT IJNAME":INPPUT A#

Both are coolly received with an error message. This syntax
checking is fine when working with BASIC, but prevents the
standard BASIC editor from accepting and storing LADS
source code. Once the decision was made to create an entirely
new source code editor, LADS became a self-contained pack
age. The BASIC cartridge is neither needed nor especially de
sired. Since LADS takes over the Atari, DOS is the only other
program in memory, freeing up all the RAM ordinarily used
by BASIC.

One note: If you'd rather use a word processor or other
text editor to enter and edit your source code, you can, as long
as your editor will send out numbered statements, in ASCII,
ending with 155's (ATASCII carriage returns). Most Atari
word processors conform to this; it you're not sure, experiment
with a short source code program. Be sure to end each source
line with a carriage return. You can then load the file into the
LADS editor or assemble directly from disk with the LADS
D:filename command.

Entering LADS
The object code for Atari LADS is typed in with the Atari ver
sion of MLX, a machine language entry editor. See Appendix
C for details. After you've typed it in, you can save LADS to
disk under the filename AUTORUN.5YS. This will cause
LADS to load and automatically run when you turn on (boot)
your computer and disk drive . LADS as assembled requires at
least 40K of memory. If you have access to a 40K Atari, you
can reassemble the source code to almost any memory loca
tion you want (see " Programming Atari LADS" in Chapter
11).

If you didn't save LADS as AUTORUN .5YS, you need to
load it from the DOS menu, then use menu selection M and
run it at address 8000 . If you bought the LADS source/object
code disk, LADS will automatically load and run when you in
sert the disk and turn on your system. LADS will then print

349

A ppendix A: How to Use LADS

its prompt, "LADS Ready." This indicates that LADS is ready
to receive commands or source code.

Using the Editor
You enter your ML source code just as you do in BASIC. To
start a new line, type a line number, then the text, followed by
the RETURN key. To delete a line, type the line number by it
self, then press RETURN. To insert a line between two exist
ing lines, just give it a line number that falls between the two.
For example, line 105 will end up between line 100 and 110.

The editor assumes that a line beginning with a line num
ber should be stored as part of your source code. If your line
starts with leading zeros, these leading zeros will be erased.
As the editor reads the line you've entered, it converts lower
case to uppercase, and inverse video characters to normal
ones. It will not convert characters within double quotes
(SHIFT -2) or after a semicolon, which marks the start of a
comment. This line:
0100 Ida #"a":jmp ($fffc); FFFC is the reset vector

would become:
100 LOA #"a":JMP ($FFFC); FFFC is the reset vector

If there is no line number, the editor assumes you've entered
an editor command. Note that if a command has any param
eters after it, the command must be followed by a space.

Atari Editor Commands
LIST
LIST all by itself displays the entire source program. LIST 150
lists just line 150. LIST 110-160 shows all the lines between
and including lines 110 through 160. If you want to list from a
certain line number to the end of your program, just make the
second line number very large, as in LIST 2000,9999. If you
want to send a listing to the printer, use the SAVE command.

SAVE device:filename
SAVE works just like LIST, but sends the listing to the speci
fied device with the given filename . To list the entire source
code to the printer, use SAVE P: . Be sure to put a space be
tween the command and the device. To LIST to cassette, use
SAVE C . When using disk, remember to use D:, for example,
SAVE D:DEFS.5RC. We recommend that you do use an ex
tender, such as .5RC (see .FILE below). Check the DOS man-

350

Appendix A : H ow to Use LADS

ual for examples of legal filenames . You can also save a
portion of the program. SAVE P: ,100,150 would list lines 100
to 150 to the printer.

LOAD device:filename
Load will replace any source code in memory with that read
from the specified device. LOAD C: reads from tape, LOAD
D:DEFS.sRC or LOAD D2:INDISK.SRC from disk .

MERGE device:filename
Merge is used to combine two programs. MERGE works just
like ENTER does in BASIC. Instead of the keyboard being
used to accept text, the editor looks to the file for input. After
all the lines have been entered, the editor restores keyboard
control. MERGE does not just append one program to the
other. If there is a line 150 in the program to be merged, it
will replace line 150 in memory. Therefore, MERGE can re
place selected lines, or add lines to the top or bottom of a pro
gram in memory. You can use SAVE to list to disk a part of a
program, then use MERGE to add it to another program. You
can have a whole disk full of commonly used routines, then
use MERGE to combine the routines you need, speeding up
the development of large ML programs.

DOS
If used with standard Atari DOS 2.0S, this command will load
and run DUP.SYS, the DOS menu. Remember that DUP.5YS
will erase any program in memory if MEM.SAV is not used.
Now you can manipulate files and display the disk directory.
The DOS command makes an indirect jump through the DOS
vector, location $OA.

SYS address
Transfers control with a JSR to the decimal address following
the SYS. Always put a space between SYS and the address. If
the routine ends with a RTS, control will return to the LADS
editor. If a BRK ($00) is encountered, the editor will also be re
entered through the breakpoint, and the address where the
BRK was found will be displayed.

LADS (optional device:filename)
Transfers control to the assembler. Although the editor merely
manipulates text source code, it 's as if all of LADS was just
another editor command. When LADS takes control, the left
margin is set to 0, to give a full 40-column width for printout.

351

Appendix A: How to U se LADS

The left margin reverts to 2 when the editor is reentered. If
you give the filename, as in LADS D:DEFS.SRC, then LADS
will assemble the given source code from disk. This is like
Commodore LADS' default-assembling from disk. If you
leave off the filename, LADS will behave as a RAM-based
assembler, reading the current source code in memory and
assembling it. Unlike Commodore or Apple LADS, where you
change the source code and reassemble a separate version of
LADS dedicated to RAM-based assembly, Atari LADS features
both disk assembly and memory assembly in the same pro
gram, executing the appropriate code by checking RAMFLAG .
For more information on this, see " Notes on the Structure of
Atari LADS" in Chapter 11 .

After an assembly is complete, or if you halt assembly by
hitting the BREAK key, control will return to the editor.

Error Handling
Within the editor, any error will be displayed with Error - and
the error number. This may be Error - 170 for file not found
when you try to load a nonexistent file from the editor, or it
may be an error returned from the assembler. Use your DOS
or BASIC manual for a list of error numbers and error mes
sages. Any illegal command or a command the editor can't
understand will result in a Syntax Error.

Special Notes for Cassette Users
The filename for the cassette is C: . It is possible to assemble
from cassette. When you see the .END, and hear the single
tone, rewind the tape, press play, and then press any key to
start the second pass. If you're using linked files, each file
must link to the next with .FILE C:. The last source file should
end with .END C:. Assembling from tape is a cumbersome af
fair in any case. It might be preferable for tape drive users to
keep all source code in memory, then assemble to memory,
using the cassette only to store and retrieve source code.

Pseudo-ops
All the pseudo-ops described above for the Commodore and
Apple versions are fully operative in Atari LADS. A few usage
notes follow:
.0 This causes the assembler to POKE the object code into
memory. Its converse is .NO. You must not overwrite the

352

Appendix A: How to Use LADS

assembler, which uses memory from $SOOO to approximately
$9FFF. During assembly, the labels are stored below $SOOO,
descending towards $7000. Only a very long program will
need memory between $7000 and $SOOO when it is assembled.
Also avoid overwriting your source code, which starts at
$2000 and works its way up.

A good location for very small routines is in page 6,
$0600-$06FF. During assembly, all of page 5 will be cor
rupted. You can store your object code fairly safely at $5000
or $6000, assuming your source code in memory is not too
long. You can break your source code into modules, which
will link together with .FILE and .END (see below). If you re
move all cartridges (or hold down OPTION when you turn on
your machine, which removes BASIC on a 600XL or SOOXL),
there will be unused memory from $AOOO to about $AFFF,
less screen memory usage.

An alternative to .0 is the .0 pseudo-op, which stores the
object code to disk. This entirely avoids any memory con
straints. You can go to DOS and load the object code, then use
the M. RUN AT ADDRESS option to execute and test it.

.0 If storing object code to disk, be sure to use the 0:, as in .0
D:LADS.OBJ . Storing object code to tape is risky, since an
excessively long leader may be written. Besides, there is no
facility for loading cassette object files without a BASIC loader
program. After the assembly is complete, you can go to the
DOS menu and use menu selection L to load your program,
then selection M to run it. Menu selection M. RUN AT AD
DRESS requires a hexadecimal number without the dollar
sign .

. P This assumes an SO-column printer. Remember to use it
with .s if you want the assembly listing to also go to the
printer. If the printer is not turned on, assembly will abort and
you will be returned to the editor with an Error - 13S .

. FILE Be sure to follow .FILE (or simply .F) with a space, then
0:, followed by the filename. You may get occasional errors if
you don't use an extender. It is recommended that you add
the extender .SRC, as in VALDEC.SRC (SRC for SouRCe). For
example, .FILE D:EVAL.SRC

.END Use this only at the end of the last file in a linked chain
of source code. You can abbreviate it to .E. An example of
proper usage is .END D:DEFS.sRC

353

Appendix A: How to Use LADS

Programming Aids
Following are two utility programs, written in BASIC. Program
A-I will renumber an Atari LADS source program. Just run it
and follow the prompts. Program A-2 partially converts a file
from the Assembler Editor, EASMD, or MAC/65 assembler to
the LADS syntax. It removes leading spaces after a line num
ber, trailing spaces at the end of a line, and tucks comments
right next to the operand fields. Into the DATA statements
starting at 500, insert the filenames of the files you want con
verted. Be sure to make END the last item in the DATA state
ments. To use LADS to assemble code written for one of these
other assemblers, you must complete the conversion yourself
by adjusting the pseudo-ops. See the descriptions of the LADS
pseudo-ops at the start of this appendix.

Program A-I. Atari LADS Renumber Utility

1(1 GF:APHICS 12I: 7 ,"Renumber LADS":?

2QI DIM T'$(2'~I ; ,F$(2i21) ,F2$(2i21) ,A$(12f..:1)
3i21? "Enter- filename. Do not use D:":INPUT T

$:F$="D: ":F -$(3)=T$
4!11 F2$ =" D: TEMP . ": F2$ (LEN (F2$) + 1) =T$
Sl2I TRAP 500:0PEN #1,4 ,0, F$:TRAP 40000
6i~I?:7 "We .. Jill renumber the entire file."
7!~J 7 :7 "What line num ber do you want the fi

1 e " : ':' "t 0 5 t a I" t .. I i t h 7 1 0 121 { 4 L EFT::- " ; : I N PUT
T$: LNUl'l=VAL (T$)

8i21 7 :? "\'<JhCo_t step do you want between": 7 "e
ach line':"1 !21{3 LEFT } ";:INPUT T$:INCF:=VAL(T
$)

':;>'~I OP EN #2,8, ('I, "D : TEt-1F' "
100 TRAP 150:INPU T #1.A$:Z=1
II !:! IF A-$(Z.Z) '-- " "THEN IF Z { LEN(A$) THEN Z

= Z+ I:GOTO 11 11!
130 PRINT #2;LNUM;AS(Z):LNUM=LNUM+INCR
1 'Hi GOTt] lQIi21
150 IF PEEK(19 S) {} 13 6 THEN 200
160 CLOSE # i:CLOS E #2:XIO 33,#1,0,0,F$:XIO 3

2,#i,(21,QI,F2$
17 ,21':':':' "Fi nished' '': END
2QIQI7 "CBELL } Error - ";PEEI«195);" during re

number":END
5 ~~ J QJ ? II {B E L L } C an not 0 pen II; F $: ? "E r r 0 r - II; P

EEf< (195) : END

354

Appendix A: How to Use LADS

Program A-2. Atari LADS File Converter Utility
:::; GF:APH I CS IiI

4 DIM A $ >: 1 ;!I QI) , T$ (1 iiI (21., • F $ (2 t:l) , F 2 $ (5 121)
lQI FEAD T$;7 TS;F$="D:":F$(3)=T -$:IF T$="END"

THEN END
2i!1 F2$="D: TEI'1P,": F2$ (LEN (F2$) +1) =T$
100 OPEN #I , 4 , 0,F$
1 1 j..~j 0 F' E N # 2 .. 8 ~ ~i ~ II 0 : T E M P 11

13(21 TRAP 17i!l: INPUT #1, A$: IF A$ (1,1) =",21" THEN
A$=A$(2)

Z=LEN(A$)
14 0 IF A$(Z.Z) =" " THEN Z=Z-l:GOTO 14!!1
142 A$=A$(l .Z) :Z=1
144 IF A$ (Z .Zl '- " "THEN 7=Z+1:GOTO 144
145 SZ=Z: Z=Z+1
146 IF ~\$(z.n= " " Tf-:EN Z=Z+l:GOTO 146
14 7 TS=A$(Z):AS=AS(I,SZ):A$(SZ+I)=T$:Z=LEN(A

$) :IF T $ (1 .1) =";" THEN 169
1 5 '21 I F AS <Z • Z) <: > " : " TH E N Z = Z - 1 : I F Z THE N 1 5 QI

152 SZ=I: Z=Z -- 1: IF Z ' i2I THEN 169
154 IF AS (Z,Zl=" " THEN Z =Z-l:GOTO 154
1~;6 T$=AS(SZ):A-S=A$ (I,I) :A$(Z+I)=T$
169 PRINT #2: A $:G O TO 130
1 70 C LOSE #l:CLOSE #2 :XT O 33,#1,0,i2I.F$:XIO 3

2 .#l,0.0,F2 S : GOTO 10
180 REM PUT Y OUR F ILENAMES HERE
19 0 REM E.G. DATA DEFS.SRC,EVAL.SRC,END

Special Apple Notes
Once you have typed in Apple LADS, you must BSAVE it to
disk. The start address is $79FD and the length is $1674 . To
execute LADS you BRUN the binary file. After it loads and
sets up its special wedge (see Chapter 11 for details on this
wedge), you will be prompted with the BASIC prompt and a
cursor. You can now type in your files and save them just as
you would an Applesoft file . After saving the program to disk,
you assemble it by typing:

ASM filename

Make sure you have a space between ASM and your filename.
If you do not have the space, you will get a syntax error. With
the wedge in, the BASIC tokenize routine does not execute, so
you cannot type in BASIC programs after you BRUN LADS.
Otherwise, all the features of Apple LADS operate as de
scribed under the general instructions at the start of this
chapter.

355

LADS Object Code
LADS will run on the Commodore 64, VIC-20, PET ICBM,
Atari, and Apple computers. If you have a Commodore or
Atari you should use the "MLX" machine language editor to
enter the object code for LADS. Complete instructions on how
to enter the object code using MLX, as well as the MLX pro
grams, can be found in Appendix C. PET ICBM owners may
find it convenient to use their built-in machine language mon
itor to make the changes shown in Programs B-3a and B-3b.
Apple users should use the Apple built-in monitor and enter
the hex data found in Program B-5. Additional instructions for
the use of LADS can be found in Appendix A, "How to Use
LADS."

LADS is nearly 5K long, and for those who prefer not to
type it in, it can be purchased on a disk by calling COMPUTE!
Publications toll free at 1-800-334-0868. Be sure to state
whether you want the Commodore, Atari, or Apple disk.

Program B·1. Commodore 64 LADS: MLX Format
11000 :169,OOO,160,048,153,113,123
11006 :062,136,208,250,169,248,047
11012 :133,176,133,055,141,135,009
11018 :062,169,042,133,177,133,214
11024 :056,141,136,062,169,001,069
11030 :141,157,062,185,OOO,004,059
11036 :201,032,240,012,176,003,180
11042 :024,105,064,153,150,061,079
11048 :200,076,025,043,153,150,175
11054 :061,200,185,OOO,004,201,185
11060 :032,208,226,136,132,183,201
11066 :032,248,049,032,184,050,141
11072 :169,OOO,141,119,062,032,075
11078 :104,051,173,138,062,208,038
11084 :063,032,133,056,169,230,247
11090 :032,210,255,169,076,032,088
11096 :210,255,169,065,032,210,005
11102 :255,169,068,032,210,255,059
11108 :169,083,032,210,255,032,113
11114 :133,056,173,128,062,208,098
11120 :011,169,068,133,251,169,145
11126 :061,133,252,032,219,050,097
11132 :173,122,062,133,253,141,240
11138 :115,062,173,123,062,133,030

357

Appendix B: LADS Object Code

11144 :254,141,116,062,032,225,198
11150 :255,173,119,062,240,003,226
11156 :076,168,046,032,104,051,113
11162 :169,000,141,127,062,141,026
11168 :137,062,172,138,062,208,171
11174 :003,076,198,043,140,158,016
11180 :062,173,156,062,240,012,109
11186 :032,142,056,032,063,056,047
11192 :032,103,056,032,063,056,014
11198 :173,149,062,240,003,032,081
11204 :059,055,076,106,050 ,173,203
11210 :114,062,240,023,201,003,077
11216 :208,114,169,001,141,114,187
11222 :062,173,071,061,208,104,125
11228 :169,008,024,109,113,062,193
11234 :141,113,062,076,185,045,080
11240 :173,138,062,240,057,160,038
11246 :255,200,185,068,061,240,223
11252 :046,153,150,061,201,032,119
11258 :208,243,200,185,068,061,191
11264 :201,061,208,003,076,233,014
11270 :045,162,000,142,158,062,063
11276 :138,153,150,061,185,068,255
11282 :061,240,008,157,068,061,101
11288 :232,200,076,016,044,157,237
11294 :068,061,076,198,043,032,252
11300 :130,048,032,036,048,076,150
11306 :198,043,173,089,061,201,039
11312 :064,176,006,173,090,061,106
11318 : 238,137,062,073,128,141,065
11324 :120,062,032,207,048,076,093
11330 :197,044,160,000 , 140,127,222
11336 :062,173,071,061,201,032,160
11342 :240,003,076,071,047,185,188
11348 :072,061,201,065,144,003,118
11354 :238,127,062,153,089,061,052
11360 :200,185,072,061,240,022,108
11366 :153,089,061,201,065,144,047
11372 :003,238,127,062,200,185,155
11378 :072,061,240,006,153,089,223
11384 :061,076,112,044,136,140,177
11390 :126,062,173,128,062,208,117
11396 :064,173,127,062,208 , 162,160
11402 :169,089,133,251,169,061,242
11408 :133,252,160,000,173,089,183
11414 :061,201,048,176,007,024,155
11420 :230,251,144,002,230,252,241
11426 :177,251,240,016,201,041,064
11432 :240,012,201,044,240,008,145

358

I
j

Appendix B: LADS Object Code

11438 :201,032,240,004,200,076,159
11444 :162,044,072,152,072,169,083
11450 :000,145,251.032.219.050.115
11456 :104,168,104,145,251,173,113
11462 :089,061,201,035,240,063,119
11468 :201,040,240,023,173 ,1 14,227
11474 :062,201,008,240,055,201,209
11480 :003,208,113,169,008,024,229
11486 :109,113,062,141,113,062,054
11492 :076,185,045,172 ,126,062,126
11498 :185,089,061,201,041,240,027
11504 :016,173,114,062,201,001,039
11510 :208,009,169,016,024,109,013
11516 :113,062,141,113,062,173,148
11522 :114,062,201,006,240,083,196
11528 :076,126,045,076,153,045,017
11534 :173,138,062,208,003,076,162
11540 :126,045,056,173,122,062,092
11546 :229,253,072,173,123,062,170
11552 :229,254,176,014,201,255, 137
11558 :240,004,104,076,010,048,008
11564 :104,016,012,076,062,045, 103
11570 :240,004,104,076,010,048,020
11576 :104,016,003,076, 0 10 ,048,057
11582 :056,233,002,141 ,122,062, 166
11588 :169,000,141,123,062,076,127
11594 :126,045,172,126,062, 136,229
11600 :185,089, 061,201,044,208,100
11606 :004,200,076,242,046,173,059
11612 :113,062,201,076,208,003,243
11618 :076,135,045,173,123,062,200
11624 :208,085,173,114,062 ,2 0 1,179
11630 :006,176,013,201,002,240,2 36
11636 :009,169, 004 ,02 4,109,113,032
11642 :062,141,113,062,032,130,150
11648 :055,032,168,055,076,233,235
11654 :045,172,126,062,185,089,045
11660 :061,201,041,208,005,169,057
11666 :108,141,113,062,076,227,105
11672 :045,173,090,061, 201,034,244
11678 :208,006,173,091,061,141,070
11684 :122,062,173,114,062,201,130
11690 :001,208,209,169,008,024,021
11696 :109,113,062,141,113,062,008
11702 :076,126,045,032,130, 055, 134
11708 :076,233, 045 ,173,114,062, 123
11714 :201,002,240,004,201,007,081
11720 :208,012,173,113, 062,024,024
11726 :105,008,141,113,062,076,199

359

Appendix B : LADS Object Code

11732 :227,045,201,006,176,009,108
11738 :173,113,062,024,105,012,195
11744 :141,113,062,032,130,055,245
11750 :032,194,055,173,138,062,116
11756 :208,003,076,165,046,173,139
11762 :156,062,208,003,076,165,144
11768 :046,173,158,062,208,062,189
11774 :173,152,062,240,042,169,068
11780 :020,056,229,211,141,139,032
11786 :062,032,204,255,162,004,217
11792 :032,201,255,172,139,062,109
11798 :016,005,160,002,076,031,056
11804 :046,169,032,032,210,255,004
11810 :136,208,250,032,204,255,095
11816 :162,001,032,198,255,169,089
11822 :020,133,211,169,150,133,094
11828 :251 i 169,061,133,252,032,182
11834 :046,056,169,030,056,229,132
11840 :211,141,140,062,169,030,049
11846 :133,211,173,152,062,240,017
11852 :031,032,204,255,162,004,252
11858 :032,201,255,172,140,062,176
11864 :240,010,048,008,169,032,083
11870 :032,210,255,136,208,250,161
11876 :032,204,255,162,001,032,018
11882 :198,255,032,155,056,173,207
11888 :150,062,240,017,201,001,015
11894 :208,005,169,060,076,127,251
11900 :046,169,062,032,210,255,130
11906 :032,192,056,173,159,062,036
11912 :240,019,032,063,056,169,203
11918 :059,032,210,255,169,000,099
11924 :133,251,169,002,133,252,064
11930 :032,046,056,032,133,056,253
11936 :173,119,062,208,003,076,033
11942 :140,043,173,138,062,208,162
11948 :027,238,138,062,173,115,157
11954 :062,133,253,173,116,062,209
11960 :133,254,032,204,255,169,207
11966 :001,032,195,255,032,248,185
11972 :049,076,061,043,032,204,149
11978 :255,169,001,032,195,255,085
11984 :169,002,032,195,255,173,010
11990 :152,062,240,021,032,204,157
11996 :255,162,004,032,201,255,105
12002 :169,013,032,210,255,032,169
12008 :204,255,169,004,032,195,067
12014 :255,076,116,164,185,089,099
12020 :061,201,088,240,101,136,047

360

Appendix B: LADS Object Code

12026 :136,185,089,061,201,041,195
12032 :208,003,076,231,044,173,223
12038 :123,062,208,015,173,114,189
12044 :062,201,002,240,082,201,032
12050 :005,240,078,201,001,240,015
12056 :122,173,114,062,201,001,185
12062 :208,012,173,113,062,024,110
12068 :105,024,141,113,062,076,045
12074 :227,045,173,114,062,201,096
12080 :005,240,008,169,049,032,039
12086 :218,047,076,071,047,173,174
12092 :113,062,024,105,028,141,021
12098 :113,062,076,227,045,032,109
12104 :167,056,032,142,056,169,182
12110 :087,133,251,169,062,133,145
12116 :252~032~046,056,032,133,123
12122 :056,076,233,045,173,123,028
12128 :062,208,068,173,114,062,015
12134 :201,002,208,012,169,016,198
12140 :024,109,113,062,141,113,158
12146 :062,076,126,045,201,001,113
12152 :240,016,201,003,240,012,064
12158 :201,005,240,008,169,050,031
12164 :032,218,047,076,071,047,111
12170 :169,020,024,109,113,062,123
12176 :141,113,062,185,091,061,029
12182 :201,089,208,010,173,113,176
12188 :062,201,182,240,003,076,152
12194 :025,047,076,126,045,173,142
12200 :114,062,201,002,208,012,255
12206 :169,024,024,109,113,062,163
12212 :141,113,062,076,227,045,076
12218 :201,001,240,016,201,003,080
12224 :240,012,201,005,240,008,130
12230 :169,051,032,218,047,076,023
12236 :071,047,169,028,024,109,140
12242 :113,062,141,113,062,076,009
12248 :227,045,141,139,062,140,202
12254 :141,062,142,140,062,169,170
12260 :186,032,210,255,104,170,161
12266 :104,168,152,072,138,072,172
12272 :152,032,205,189,173,139,106
12278 :062,172,141,062,174,140,229
12284 :062,096,160,000,152,153,107
12290 :068,061,200,192,080,208,043
12296 :248,096,032,133,056,032,093
12302 :167,056,032,142,056,169,124
12308 :198,133,251,169,061,133,197
12314 :252,032,046,056,032,133,065

361

Appendix B: LADS Object Code

12320 :056,076,126,045,160,255,238
12326 :200,185,068,061,240,086,110
12332 :201,032,208,246,200,200,107
12338 :140,132,062,056,165,176,013
12344 :237,132,062,133,176,165,193
12350 :177,233,000,133,177,160,174
12356 :000,185,068,061,073,128,071
12362 :145,176,200,185,068,061,141
12368 :201,032,240,005,145,176,111
12374 :076,076,048,200,185,068,227
12380 :061,201,061,240,059,136,082
12386 :165,253,145,176,200,165,178
12392 :254,145,176,174,132,062,023
12398 :202,160,000,189,068,061,022
12404 :240,008,153,068,061,232,110
12410 :200,076,113,048,153,068,012
12416 :061,096,032,133,056,032,026
12422 :142,056,032,167,056,169,244
12428 :255,133,251,169,061,133,118
12434 :252,032,046,056,032,133,185
12440 :056,076,202,048,136,140,042
12446 :133,062,173,128,062,208,156
12452 :023,200,200,200,140,121,024
12458 :062,169,068,024,109,121,211
12464 :062,133,251,169,061,105,189
12470 :000,133,252,032,219,050,100
12476 :172,133,062,173,122,062,144
12482 :145,176,173,123,062,200,049
12488 :145,176,104,104,076,233,014
12494 :045,173,135,062,133,178,164
12500 :173,136,062,133,179,032,159
12506 %221,049,169,255,141,155,184
12512 :062,056,165,176,229,178,066
12518 :165,177,229,179,176,099,231
12524 :162,000,056,165,178,233,006
12530 :002,133,178,165,179,233,108
12536 :000,133,179,160,000,177,129
12542 :178,048,012,165,178,208,019
12548 :002,198,179,198,178,232,223
12554 :076,253,048,165,178,141,103
12560 :142,062,165,179,141,143,080
12566 :062,177,178,205,120,062,058
12572 :240,003,076,063,049,232,179
12578 :142,121,062,162,001,173,183
12584 :137,062,240,004,200,032,203
12590 :221,049,200,185,089,061,083
12596 :240,083,201,048,144,079,079
12602 :232,209,178,240,241,173,051
12608 :142,062,133,178,173,143,127

362

Appendix B: LADS Object Code

12614 :062,133,179,032,221,049,234
12620 :076,225,048,173,155,062,047
12626 :048,001,096,173,138,062~088
12632 :208,002,240,023,032,167,248
12638 :056,032,142,056,032 , 063,219
12644 :056,169,239,133,251,169,093
12650 :061,133,252,032,046,056,174
12656 :032,133,056,104,104,173,202
12662 :113,062,041,031,201,~16,070
12668 :240,008,173,150,062,208,197
12674 :003,076,227,045,076,126,171
12680 :045,236,121,062,240,003,075
12686 :076,063,049,238,155,062,017
12692 :240,003,032,230,049,172,106
12698 :121,062,173,137,062,240,181
12704 :001,200,177,178,141,122,211
12710 :062,200,177,178,141,123,023
12716 :062,173,150,062,240,010,101
12722 :201,002,208,030,173,123,147
12728 :062,141,122,062,173,149,125
12734 :062,240,019,024,173,147,087
12740 :062,109,122,062,141,122,046
12746 :062,173,148,062,109,123,111
12752 :062,141,123,062,173,138,139
12758 :062,208,001,096,076,063,208
12764 :049,165,178,208,002,198,252
12770 :179,198,178,096,032,167,052
12776 :056,169,057,133,251,169,043
12782 :062,133,252,032,046,056,051
12788 :032,133,056,096,032,204,029
12794 :255,169,001,032,195,255,133
12800 : 169,001,133,184,169,008,152
12806 :133,186,169,003,133,185,047
12812 :169,150,133,187,169,061,113
12818 :133,188,032,193,225,096,117
12824 :169,002,133,184,169,008,177
12830 :133,186,169,002,133,185,070
12836 :169,150 , 133,187,169,061,137
12842 :133,188,032,193,225,032,077
12848 :204,255,096,169,004,133,141
12854 :184,169,004,133,186,169,131
12860 :OOO,133 , 183,032,193,225,058
12866 :032,204,255,096,032,204,121
12872 :255,169,OOO,133,147,133,141
12878 :144,169,008,133,186 , 169,119
12884 :150,133,187,169 , 061,133,149
12890 :188,032,117,225,032,204,120
12896 :255,165,043,133,167,165,OOO
12902 :044,133,168,096,160,OOO,191

363

Appendix B: LADS Object Code

12908 :162;255,232;185,028;060,006
12914 :205,068,061,240,010,200,130
12920 :200,200,224,057,208,240,225
12926 :076,232,043,200,185,028,122
12932 :060,205,069,061,240,006,005
12938 :200,200,208,224,240,238,168
12944 :200,185,028,060,205,070,124
12950 :061,240,005,200,208,210,050
12956 :240,224,173,071,061,201,102
12962 :032,240,004,201,000,208,079
12968 :213,189,196,060,141,114,057
12974 :062,188,252,060,140,113,221
12980 :062,076,201,043,162,001,213
12986 :032,198,255,162,006,032,103
12992 :228,255,202,208,250,032,087
12998 :228,255,201,172,240,014,028
13004 :169,181,133,251,169,061,144
13010 :133,252,032,046,056,076,037
13016 :200,046,096,160,000,177,127
13022 :251,240,004,200,076,221,190
13028 :050,140,178,061,136,169,194
13034 :000,141,122,062,141,123,055
13040 :062,162,001,142,140,062,041
13046 :177,251,041,015,141,176,023
13052 :061,141,179,061,169,000,095
13058 :141,177,061,141,180,061,251
13064 :202,240,018,032,045,051,084
13070 :173,176,061,141,179,061,037
13076 :173,177,061,141,180,061,045
13082 :076,008,051,238,140,062,089
13088 :174,140,062,032,084,051,063
13094 :136,206,178,061,208,202,005
13100 :096,024,014,176,061,046,205
13106 :177,061,014,176,061,046,073
13112 :177~061,024,173,179,061,219

13118 :109,176,061,141,176,061,018
13124 :173,180,061,109,177,061,061
13130 :141,177,061,014,176,061,192
13136 :046,177,061,096,024,173,145
13142 :176,061,109,122,062,141,245
13148 :122,062,173,177,061,109,028
13154 :123,062,141,123,062,096,193
13160 :032,254,047,160,000,140,225
13166 :128,062,140,159,062,140,033
13172 :150,062,140,149,062,173,084
13178 :154,062,208,012,032,228,050
13184 :255,141,117,062,032,228,195
13190 :255,141,118,062,032,228,202
13196 :255,208,008,032,231,052,158

364

Appendix B : LADS Object Code

13202 :104,104,076,140,043,201,046
13208 :032,240,239,076,166,051,188
13214 :032,228,255,208,003,076,192
13220 :231,052,201,058,208,003,149
13226 :076,080,052,201,059,208,078
13232 :115,140,139,062,173 , 152,189
13238 :062,240,085,141,159,062,163
13244 :173,139,062,240,006,032,072
13250 :238,051,076,022,052,032,153
13256 :228,255,240,014,201,127 , 241
13262 :144,003,032,094,052,153,172
13268 :068,061,200,076,199,051,099
13274 :032,142,056,032,063,056,087
13280 :032,155,056,032,133,056,176
13286 :169,000,141,139,062,076,049
13292 :022,052,141,159,062,141,045
13298 :139,062,160,000,032,228,095
13304 :255,208,007,153,000,002,105
13310 :172,139,062,096,016,003,230
13316 :032,022,055,153,000,002,012
13322 :200,076,246,051,032,228,075
13328 :255,240,003,076,014,052,144
13334 :032,231,052,173,139,062 , 199
13340 :208,005,104,104,076,140,153
13346 :043,096,201,177,240,091,114
13352 :201,179,240,095,201,170,102
13358 :208,003,238,149,062,201,139
13364 :172,208,003,076,147,052,198
13370 :201,046,240,022,201,036,036
13376 :240,021,201,127,144,003,032
13382 :032,094,052,153,068,061,018
13388 :200,076,158,051,141,154,088
13394 :062,096,076,139,053,153,149
13400 :068,061,200,076,006,053 , 040
13406 :056,233,127,141,131,062,076
13412 :162,255,206,131,062,240,132
13418 :008,232,189,158,160,016,101
13424 :250,048,243,232,189,158,208
13430 :160,048,007,153,068,061,103
13436 :200,076,115,052,041,127,223
13442 :096,169,002,141,150,062,238
13448 :076,158,051,169,001,141,220
13454 :150,062,076,158,051,032,159
13460 :158,051,173,138,062 , 240,202
13466 :011,169,042,032,210,255,105
13472 :032,155,056,032,133,056,112
13478 :173,128,062,208,032,160,161
13484 :000,185,068,061,201,032,207
13490 :240,004,200,076,173,052,155

365

Appendix B: LADS Object Code

13496 :200,132,251,169,068,024,004
13502 :101,251,133,251,169,061,132
13508 :105,000,133,252,032,219,169
13514 :050,173,138,062,240,008,105
13520 :173,151,062,240,003,032,101
13526 :213,054,173,122,062,133,203
13532 :253,173,123,062,133,254,194
13538 :104,104,076,140,043,153,078
13544 :068,061,200,192,080,208,017
13550 :248,153,068,061,032,228,004
13556 :255,032,228,255,240,006,236
13562 :169,000,141,154,062,096,104
13568 :169,001,141,119,062,096,076
13574 :162,000,032,228,255,240,155
13580 :044,201,058,240,040,201,028
13586 :032,240,243,201,059,240,009
13592 :032,201,044,240,015,201,245
13598 :041,240,011,157,129,061,157
13604 :232,153,068,061,200,076,058
13610 :008,053,142,129,062,153,077
13616 :068,061,200,032,077,053,027
13622 :076,158,051,141,139,062,169
13628 :169,000,142,129,062,153,203
13634 :068,061,032,077,053,173,018
13640 :139,062,076,161,051,169,218
13646 :000,141,122,062,141,123,155
13652 :062,170,014,122,062,046,048
13658 :123,062,014,122,062,046,007
13664 :123,062,014,122,062,046,013
13670 :123,062,014,122,062,046,019
13676 :123,062,189,129,061,201,105
13682 :065,144,002,233,007,041,094
13688 :015,013,122,062,141,122,083
13694 :062,232,236,129,062,208,031
13700 :209,238,128,062,169,001,171
13706 :096,192,000,240,014,174,086
13712 :138,062,208,009,072,152,017
13718 :072,032,036,048,104,168,098
13724 :104,153,068,061,200,032,006
13730 :228,255,153,068,061,200,103
13736 :201,066,208,104,169,000,148
13742 :141,144,062,173,138,062,126
13748 :240,023,140,141,062,173,191
13754 :156,062,240,015,032,142,065
13760 :056,032,063,056,032,103,022
13766 :056,032,063,056,172,141,206
13772 :062,032,228,255,153,068,234
13778 :061,200,201,032,208,245,133
13784 :032,228,255,153,068,061,245

366

Appendix B: LADS Object Code

13790 :200,201,034,208,069,032,198
13796 :228,255,208,003,076,186,160
13802 :054,201,058,208,003,076,066
13808 :189,054,201,059,208,012,195
13814 :032,238,051,174,152,062,187
13820 :142,159,062,076,186,054,163
13826 :201,034,208,003,076,227,239
13832 :053,174,138,062,208,009,140
13838 :032,032,056,076,227,053,234
13844 :076,139,057,153,068,061,062
13850 :170,140,141,062,032,248,051
13856 :055,172,141,062,200,076,226
13862 :227,053,162,000,142,145,255
13868 :062,157,169,061,232,173,130
13874 :145,062,208,117,032,228,074
13880 :255,240,067,201,058,240,093
13886 :063,201,059,208,012,032,125
13892 :238,051,174,152,062,142,119
13898 :159,062,076,126,054,141,180
13904 :109,061,173,138,062,208,063
13910 :013,173,109,061,201,032,163
13916 :208,211,032,032,056,076,195
13922 :049,054,173,109,061,153,185
13928 :068,061,200,201,032,240,138
13934 :024,201,000,240,020,201,028
13940 :058,240,016,157,169,061,049
13946 :232,076,049,054,238,145,148
13952 :062,141,110,061,076,079,145
13958 :054,169,169,133,251,169,055
13964 :061,133,252,140,141,062,161
13970 :032,219,050,174,122,062,037
13976 :032,248,055,172,141,062,094
13982 :169,000,162,005,157,169,052
13988 :061,202,208,250,076,049,242
13994 :054,173,138,062,208,003,040
14000 :032,032,056,173,110,061,128
14006 :201,058,240,003,032,231,179
14012 :052,141,154,062,238,158,225
14018 :062,104,104,173,138,062,069
14024 :240,008,173,156,062,240,055
14030 :003,076,108,046,076,140,143
14036 :043,173,138,062,201,002,063
14042 :208,001,096,032,204,255,246
14048 :162,002,032,201,255,056,164
14054 :173,122,062,229,253,141,186
14060 :120,062,173,123,062,229,237
14066 :254,141,121,062,169,000,221
14072 :032,210,255,173,120,062,076
14078 :208,003,206,121,062,206,036

367

Appendix B: LADS Object Code

14084 :120,062,208,238,173,121,158
14090 :062,208,233,032,204,255,236
14096 :162,001;032,198,255,096,248
14102 :056,233,127,141,131,062,004
14108 :162,255,206,131,062,240,060
14114 :008,232,189,158,160,016,029
14120 :250,048,243,232,189,158,136
14126 :160,048,007,153,000,002,160
14132 :200,076,043,055,041,127,082
14138 :096,160,OOO,162,OOO,185,149
14144 :068,061,201,043,240,004,169
14150 :200,076,063,055,200,185,081
14156 :068,061,032,090,055,176,046
14162 :018,157,129,061,232,076,243
14168 :074,055,201,058,176,006,146
14174 :056,233,048,056,233,208,160
14180 :096,169,000,157,129,061,200
14186 :169,129,133,251,169,061,250
14192 :133,252,032,219,050,173,203
14198 :122,062,141,147,062,173,057
14204 :123,062,141,148,062,096,244
14210 :173,138,062,208,004,032,235
14216 :032,056,096,173,156,062,199
14222 :240,017,032,204,255,162,028
14228 :001,032,198,255,174,113,153
14234 :062,032,072,056,032,063,215
14240 :056,174,113,062,032,248,077
14246 :055,096,173,138,062,208,130
14252 :004,032,032,056,096,173,053
14258 :156,062,240,006,174,122,170
14264 :062,032,072,056,174,122,190
14270 :062,076,248,055,173,138,174
14276 :062,208,007,032,032,056,081
14282 :032,032,056,096,173,156,235
14288 :062,240,006,174,122,062,106
14294 :032,072,056,174,122,062,220
14300 :032,248,055,173,156,062,178
14306 :240,014,173,157,062,240,088
14312 :003,032,063,056,174,123,171
14318 :062,032,072,056,174,123,245
14324 :062,076,248,055,142,121,180
14330 :062,173,153,062,240,005,177
14336 :160,000,138,145,253,173,101
14342 :151,062,240,022,032,204,205
14348 :255,162,002,032,201,255,151
14354 :173,121,062,032,210,255,103
14360 :032,204,255,162,001,032,198
14366 :198,255,024,169,001,101,010
14372 :253,133,253,169,OOO,101,177

368

Appendix B: LADS Object Code

14378 :254,133,254,096,160,OOO,171
14384 :177,251,240,010,032,210,200
14390 :255,032,186,056,200,076,091
14396 :048,056,096,169,032,032,237
14402 :210,255,032,186,056,096,133
14408 :142,140,062,173,157,062,040
14414 :240,011,138,032,114,057 , 158
14420 :032,227,056,174,140,062,007
14426 :096,169,000,032,205,189,013
14432 :032,227,056,174 , 140,062,019
14438 :096,173,157,062,240,014,076
14444 :165,254,032,114,057,165 , 127
14450 :253,032,114,057,032,022,112
14456 :057,096,166,253,165,254,087
14462 :032,205,189,032,022,057,151
14468 :096,169,013,032,210,255,139
14474 :032,186,056,096,174,117,031
14480 :062,173,118,062,032,205,028
14486 :189,032,076,057,096,169,001
14492 :068;133;251;169;061;133;203
14498 :252,032,046,056,096,169,045
14504 :007,032,210,255,169,018,091
14510 :032,210,255,032,155,056,146
14516 :169,013,032,210,255 , 096,187
14522 :174,138,062,208,001,096,097
14528 :174,152,062,208,001,096,117
14534 :141,139,062,032,204,255,007
14540 :162,004,032,201,255,173,007
14546 :139,062,032,210,255,032,172
14552 :204,255,162,001,032,198,044
14558 :255,173,139,062,096,174,097
14564 :138,062,208,001,096,174,139
14570 :152,062,208,001,096,032,017
14576 :204,255,162,004,032,201,074
14582 :255,173,157,062,240,009,118
14588 :173,140,062,032,114,057,062
14594 :076,013,057,169,000,174,235
14600 :140,062,032,205,189,032,156
14606 :204,255,162,001,032,198,098
14612 :255,096,174,138,062,208,185
14618 :001,096,174,152,062,208,207
14624 :001,096,032,204,255 , 162,014
14630 :004,032,201,255,174,157,093
14636 :062,240,013,165,254,032,042
14642 :114,057,165,253,032,114,017
14648 :057,076,067,057,165,254,220
14654 :166,253,032,205,189,032,171
14660 :204,255,162,001 , 032,198,152
14666 :255,096,174,138,062,208,239

369

Appendix B: LADS Object Code

14672 :001,096,174,152,062,208,005
14678 :001,096,032,204,255,162,068
14684 :004,032,201,255,173,118,107
14690 :062,174,117,062,032,205,238
14696 :189,032,204,255,162,001,179
14702 :032,198,255,096,072,041,036
14708 :015,168,185,052,061,170,255
14714 :104,074,074,074,074,168,178
14720 :185,052,061,032,210,255,155
14726 :138,032,210,255,096,201,042
14732 :070,208,008,032,238,057,241
14738 :104,104,076,140,043,201,046
14744 :128,208,006,032,071,058,143
14750 :076,146,057,201,068,208,146
14756 :003,076,127,058,201,080,197
14762 :208,003,076,244,058,201,192
14768 :078,208,003,076,053,059,141
14774 :201,079,208,003,076,032,013
14780 :059,201,083,208,003,076,050
14786 :237,059,201,072,208,003,206
14792 :076,007,060,153,068,061,113
14798 :032,142,056,032,063,056,075
14804 :032,103,056,032,167,056,146
14810 :032,155,056,169,087,133,082
14816 :251,169,062,133,252,032,099
14822 :046,056,032,133,056,076,117
14828 :007,059,032,228,255,201,250
14834 :032,240,003,076,238,057,120
14840 :160,000,032,228 , 255,201,100
14846 :000,240,014,201,127,144,212
14852 :003,032,094,052,153,068,150
14858 :061,200,076,250,057,132,018
14864 :183,160,000,185,068,061,161
14870 :240,007,153,150,061,200,065
14876 :076,019,058,173,138,062,042
14882 :208,006,032,103,056,032,215
14888 :063,056,032,155 , 056,032,178
14894 :133,056,032,248,049,162,214
14900 :001,032,198,255,032,228,030
14906 :255,032,228,255,032,231,067
14912 :052,162,000,142,119,062,089
14918 :096,169,046,032,210,255,110
14924 :169,069,032,210,255,169,212
14930 :078,032,210,255,169,068,126
14936 :032,210,255,169,032,032,050
14942 :210,255,032,228,255,032,082
14948 :248,057,173,138,062,240,250
14954 :003,238,119,062,238,138,136
14960 :062,173,115,062,133,253,142

370

Appendix B: LADS Object Code

14966 :173,116,062,133,254,032,120
14972 :104,051,096,173,138,062,236
14978 :240,030,032,228,255,153,044
14984 :068,061,160,000,032,228,173
14990 :255,240,020,201,127,144,105
14996 :003,032,094,052,153,068,038
15002 :061,153,150,061,200,076,087
15008 :140,058,076,007,059,169,157
15014 :044,153,150,061,200,169,175
15020 :080,153,150,061,200,169,217
15026 :044,153,150,061,200,169,187
15032 :087,153,150,061,200,132,199
15038 :183,032,155,056,032,133,013
15044 :056,238,151,062,032,024,247
15050 :050,162,002,032,201,255,136
15056 :173,115,062,032,210,255,031
15062 :173,116,062,032,210,255,038
15068 :032,204,255,162,001,032,138
15074 :198,255,032,205,059,032,239
15080 :231,052,104,104,162,000,117
15086 :142,119,062,076,140,043,052
15092 :173,138,062,240,014,032,135
15098 :051,050,238,152,062,032,067
15104 :204,255,162,001,032,198,084
15110 :255,032,228,255,240,007,255
15116 :201,058,240,006,076,007,088
15122 :059,032,231,052,104,104,088
15128 :162,000,142,119,062,076,073
15134 :140,043,169,046,032,210,158
15140 :255,169,079,032,210,255,012
15146 :032,133,056,169,001,141,062
15152 :153,062,076,007,059,173,066
15158 :138,062,240,205,032,228,191
15164 :255,201,080,240,012,201,025
15170 :079,240,058,201,083,240,199
15176 :106,201,072,240,076,169,168
15182 :046,032,210,255,169,078,100
15188 :032,210,255,169,080,032,094
15194 :210,255,032,133,056,206,214
15200 :152,062,032,204,255,162,195
15206 :004,032,201,255,169,013,008
15212 :032,210,255,169,004,032,042
15218 :195,255,032,204,255,162,193
15224 :001,032,198,255,076,007,177
15230 :059,169,046,032,210,255,129
15236 :169,078,032,210,255,169,021
15242 :079,032,210,255,032,133,111
15248 :056,169,000,141,153,062,213
15254 :076,007,059,169,046,032,027

371

Appendix B: LADS Object Code

15260 :210,255,169,078,032,210,086
15266 :255,169,072,032,210,255,131
15272 :032,133,056,169,000,141,187
15278 :157,062,076,007,059,169,192
15284 :046;032;210;255 ; 169 ; 078 ; 202
15290 :032,210,255,169,083,032,199
15296 :210,255,032,133,056,169,023
15302 :000,141,156,062,076,007,128
15308 :059,166,144,208,001,096,110
15314 :169,000,032,072,056,032,059
15320 :063,056,169,021,133,251,141
15326 :169,062,133,252,032,167,013
15332 :056,032,046,056,104,104,114
15338 :076,200,046,169,046,032,035
15344 :210,255,169,083,032,210,175
15350 :255,032,133,056,173,138,009
15356 :062,240,005,169,001,141,102
15362 :156,062,076,007,059,169,019
15368 :046,032,210,255,169,072,024
15374 :032,210,255,032,133,056,220
15380 :169,001,141,157,062,076,114
15386 :007,059,076,068,065,076,121
15392 :068,089,074,083,082,082,254
15398 :084,083,066,067,083,066,231
15404 :069,081,066,067 , 067,067,205
15410 :077,080,066,078,069,076,240
15416 :068,088,074,077 , 080,083,014
15422 :084,065,083,084,089,083,038
15428 :084,088,073,078,089,068,036
15434 :069,089,068,069,088,068,013
15440 :069,067,073,078,088,073,016
15446 :078,067,067,080,089,067,022
15452 :080,088,083,066,067,083,047
15458 :069,067,065,068,067,067,245
15464 :076,067,084,065,088,084,056
15470 :065,089,084 , 088,065,084,073
15476 :089,065,080,072,065,080,055
15482 :076,065,066,082,075,066,040
15488 :077,073,066,080 , 076,065,053
15494 :078,068,079,082,065,069,063
15500 :079,082,066,073,084,066,078
15506 :086,067,066,086,083,082,104
15512 :079,076,082,079,082,076,114
15518 :083,082,067,076,068,067,089
15524 :076,073,065,083,076,080,105
15530 :072,080,080,076,080,082,128
15536 :084,073,083,069,068,083,124
15542 :069,073,084,083,088,084,151
15548 :088,083,067,076,086,078,154

372

Appendix B: LADS Object Code

15554 :079,080,001,005,009,000,112
15560 :008,008,008,001,008,005,238
15566 :006,001,002,002,000,000,217
15572 :000,002,000,002,004,004,224
15578 :001,000,001,000,000,000,220
15584 :000,000,000,000,000,008,232
15590 :008,001,001,001,007,008,000
15596 :008,003,003,003,000,000,253
15602 :003,000,000,000,000,000,245
15608 :000,000,000,000,161,160,057
15614 :032,096,176,240,144,193,111
15620 :208,162,076,129,132,134,077
15626 :200,136,202,198,232,230,184
15632 :192,224,225,056,097 , 024,066
15638 :170,168,138,152,072,104,058
15644 :000,048,016,033 , 001,065,191
15650 :036,080,112,034,098,066,204
15656 :216,088,002,008,040,064,202
15662 :248,120,186,154,184,234,148
15668 :048,049,050,051,052,053 , 099
15674 :054,055,056,057,065,066 , 155
15680 :067;068;069,070,000 ; 000;082
15686 :000,000,000 , 000,000,000,070
15692 :000,000,000 , 000,000,000,076
15698 :000,000,000,000,000,000,082
15704 :000,000,000 , 000,000,000,088
15710 :000,000,000,000,000,000,094
15716 :000,000,000,000,000 , 000,100
15722 :000,000,000,000,000,000,106
15728 :000,000,000,000,000,000,112
15734 :000,000,000,000,000,000,118
15740 :000,000,000,000,000,000 , 124
15746 :000,000,000,000,000,000,130
15752 :000,000,000,000,000,000,136
15758 :000,000,000,000,000,000,142
15764 :000,000,000,000,000,000,148
15770 :000,000,000,000,000,000,154
15776 :000,000,000,000,000,000,160
15782 :000,000,000,000,000,000,166
15788 :000,000,000,000,000,000,172
15794 :000,000,000,078,079,032 , 111
15800 :083,084,065,082,084,032,102
15806 :065,068,068,082,069,083,113
15812 :083,000,045,045,045,045,203
15818 :045,045,045,045,045,045,216
15824 :045,045,045,045,045,045,222
15830 :045,045,045,045,032,066,236
15836 :082,065,078,067,072,032,104
15842 :079,085,084,032,079,070,143

373

Appendix B: LADS Object Code

15848 :032,082,065,078,071,069,117
15854 :000,085,078,068,069,070,096
15860 :073,078,069,068,032,076,128
15866 :065,066,069,076,000,029,043
15872 :029,029,029,029,029,029,174
15878 :029,029,032,078,065,075,058
15884 :069,068,032,076,065,066,132
15890 :069,076,000,029,029,029,250
15896 :029,029,032,060,060,060,038
15902 :060,060,060,060,060,032,106
15908 :068,073,083,075,032,069,180
15914 :082,082,079,082,032,062,205
15920 :062,062,062,062,062,062,164
15926 :062,032,000,029,029,029,235
15932 :029,029,032,045,045,032,016
15938 :068,085,080,076,073,067,003
15944 :065,084,069,068,032,076,210
15950 :065,066,069,076,032,045,175
15956 :045,032,000,029,029,029,248
15962 :029,029,032,045,045,032,046
15968 :083,089,078,084,065,088,071
15974 :032,069,082,082,079,082,016
15980 :032,045,045,032,000,000,006

Program B-2. VIC Adjustments to Prog. B,l
To create the VIC-20 version of LADS, change the following lines in
Program B-1:

11030 :141,157,062,185,000,016,071
11054 :061,200,185,000,016,201,197
12014 :255,076,116,196,185,089,131
12272 :152,032,205,221,173,139,138
12818 :133,188,032,190,225,096,114
12842 :133,188,032,190,225,032,074
1286~ :000,133,183,032,190,225,055
12890 :188,032,114,225,032,204,117
13418 :008,232,189,158,192,016,133
13430 :192,048,007,153,068,061,135
14114 :008,232,189,158,192,016,061
14126 :192,048,007,153,000,002,192
14426 :096,169,000,032,205,221,045
14462 :032,205,221,032,022,057,183
14486 :221,032,076,057,096,169,033
14600 :140,062,032,205,221,032,188
14654 :166,253,032,205,221,032,203
14696 :221,032,204,255,162,001,211

374

Appendix B: LADS Object Code

Program B,3a. PET ICBM 4.0 BASIC Adjustments
to Prog. B,l
To create the 4.0 BASIC version of LADS, type in Program B-1 then
change the following bytes:

Address Byte Address Byte Address Byte
2B05 BB 30F4 BO 324E 96
2B07 34 30F6 BE 3252 04
2BOE BC 30FA BE 3256 OA
2BI0 35 30FE BO 325A DB
2BIB 80 3012 BO 325C 56
2B32 80 3106 BE 3250 F3
2B39 01 3108 BO 3262 28
2E07 C6 310E BO 3264 BF
2E30 C6 3113 BE 3266 29
2E40 C6 3118 BO 3268 CO
2E47 C6 313C BO 3460 B2
2ECO E2 3143 BO 346E BO
2ECI F2 3148 BE 3475 B2
2ECE E2 31A3 BO 3476 BO
2ECF F2 31A9 BO 3496 A9
2E03 E2 310E BO 3497 18
2E04 F2 31E2 BE 3498 20
2EEO E2 31E4 BO 3499 02
2EEE F2 31FE E2 349A FF
2EFO FF 31FF F2 3725 B2
2EFI B3 3203 02 3726 BO
2FF2 83 3207 04 3720 B2
2FF3 CF 320B 03 372E BO
3037 BB 320F OA 385E 83
303C BB 3213 DB 385F CF
303E BC 3215 63 387F 83
3042 BC 3216 F5 3800 CF
304B BB 321B 02 3895 83
3055 BB 321F 04 3896 CF
3065 BB 3223 03 390B 83
306A BB 3227 OA 390C CF
30C3 BB 322B DB 3941 83
30C9 BB 3220 63 3942 CF
3003 BO 322E F5 3967 83
3008 BE 3236 02 3968 CF
30E3 BB 323A 04 3A10 01
30E5 BO 323E 01 3ABE 01
30E7 BC 3240 63 3B72 E2
30E9 BE 3241 F5 3B73 F2
30FO BO 324C 90 3BCE 96

375

Appendix B: LADS Object Code

Program B-3b. PET ICBM Upgrade BASIC Adjust
ments to Prog. B-1
To create the Upgrade BASIC version of LADS, type in Program B-1
then change the following bytes in addition to the changes shown in
B-3a above:

Address Byte Address Byte
2ECO AE 325C 22
2ECE AE 346D 92
2ED3 AE 346E CO
2EED AE 3475 92
2EFO 89 3476 CO
2EF1 C3 3725 92
2FF2 D9 3726 CO
2FF3 DC 372D 92
31FE AE 372E CO
3215 24 385E D9
322D 24 385F DC
3240 24

Program B-4. Atari LADS: MLX Format
32768:076,203,146,169,000,133,215
32774:082,160,048,153,183,154,018
32780:136,208,250,169,000,133,140
32786: 138, 141,205,154,169,128,185
32792: 133, 139,141,21216,154,169,198
32798:01211, 141,227,154,12132,014,12187
32804: 145,165,162,208,026,160,134
32810:l2IQI0,174,062,146,232,189,l2177
32816:000,005,201,155,240,008,145
32822:153,226,153,200,232,076,070
32828:047,128,132,128,032,013,028
32834:135,032,005,136,169,000,031
32840: 141,189,154,032,190,136,146
32846:173,208,154,208,063,032,148
32852: 121, 141,169,160,032,12136,231
32858: 145, 169,l2176,032,!2136,145, 181
32864:169,065,032,036,145,169,200
32870:068,032,036,145,169,083,123
32876:032,036,145,032,121,141,103
32882: 173, 198,154,208,12111,169,!21!:E13
32888: 144, 133, 134, 169, 153, 133,218
32894:135,032,043,136,173,192,069
32900: 154, 133, 136, 141, 185, 154, Qll1
3291216: 173, 193, 154, 133, 137, 141,Q145
32912: 186, 154, Q132, 175,145,173,241

376

Address Byte
387F D9
3880 DC
3895 D9
3896 DC
390B D9
390C DC
3941 D9
3942 DC
3967 D9
3968 DC
3B72 AE

Appendix B: LADS Object Code

32918: 189, 154,24121,01113,076, 174,218
32924: 131,12132,190,136,169,12100,046
3293121: 141,197,154,141,21117,154,132
32936:172,208,154,208,003,076,221
32942: 204, 128, 14121,228, 154, 173, 177
32948:226,154,240,012,032,130,206
32954: 141,11132,051, 141,12132,12191, 162
32960: 141,12132,12151, 141, 173,219, 181
32966:154,240,003,032,047,140,046
32972: 076,183,135,173,184,154,12185
32978:240,023,201,003,208,114,231
32984: 169,001, 141, 184, 154, 173,12114
32990:147,153,208,104,169,008,243
32996:12124,109,183,154,141,183,254
33002: 154,076,191, 131Z1, 173,208,142
33008:154,240,057,160,255,200,026
33014: 185, 144, 153,24121,12146,153,143
33020:226,153,201,032,208,243,035
33026: 200, 185, 144, 153,201,12161, 178
33032:208,003,076,239,130,162,058
33038:000,142,228,154,138,153,061
33044:226,153,185,144,153,240,097
33050:008,157,144,153,232,200,152
33056:076,12122,129,157,144,153,21211
3~062:076,204,128,032,160,133,003

33068:032,12166,133,076,204,128,171
33074: 173, 165, 153,201,12164, 176,214
33080:006,173,166,153,238,207,231
3312186: 154,12173, 128, 141, 191Z1, 154, 134
33092:12132,228, 133, !c!176, 21213, 129, llZll
33098: 16121,1211210,14111, 197, 154, 173, 13121
33104:147,153,201,032,240,003,088
33110: 11176, llZl4, 132, 185, 148, 153, 116
33116: 21211,065,144,1211213,238,197,172
33122: 154, 153, 165, 153,200, 185,11184
33128: 148,153,240,12122,153,165,217
33134: 153,21211,065, 144,01213,238,146
33140: 197, 154,20121,185,148,153,129
33146:24111,1211216,153,165,153,12176,147
33152: 118, 129, 136, 140, 196, 154,233
33158: 173, 198, 154,21218,064, 173,1218111
33164: 197, 154,208, 162, 169, 165, 171
33170: 133,134, 169, 153, 133, 135,235
33176: 16111,11100, 173, 165, 153,201,236
33182:048,176,007,024,230,134,009
33188:144,002,230,135,177,134,218
33194:240,016,201,041,240,012,152
33200:201,044,240,008,201,032,134
33206:240,004,200,076,168,129,231

377

Appendix B: LADS Object Code

,33212:072,152,072,169,000,145,030
33218:134,032,043,136,104,168,043
33224: 11114, 145, 134, 173, 165, 153,1115121
33230:201,035,240,063,201,040,218
33236: 24111, 12123,173,184,154,201,163
33242:008,240,055,201,003,208,165
33248: 113, 169,1211218,12124, 109, 183,12162
33254: 154, 141, 183, 154,12176, 191, 11215
33260: 13121, 172, 196, 154, 185, 165,214
33266:153,201,041,240,016,173,042
33272:184,154,201,001,208,009,237
33278: 169,12116,12124, 11219,183,154,141
33284: 141, 183, 154, 173, 184, 154,225
33290:201,006,240,083,076,132,236
33296: 130,12176,159, 13!11, 173,208, 124
3331212: 154,21218,01213,12176, 132, 130,213
33308:056,173,192,154,229,136,200
33314:072,173,193,154,229,137,224
33320:176,014,201,255,240,004,162
33326:104,076,040,133,104,016,007
33332:012,076,068,130,240,004,070
33338: 11214,076,04121,133,11214,12116,12119
33344:003,076,040,133,056,233,093
33350:QIQI2, 141,192, 154, 169,00QI,216
33356: 141, 193,154,076,132, 13121, 134
33362: 172,196,154,136,185,165,12166
33368:153,201,044,208,004,200,130
33374:12176,12119, 132,173,183,154,QI63
33380:201,076,208,003,076,141,037
33386:130,173,193,154,208,085,025
33392: 173, 184, 154,201,006,176,238
33398:013,201,002,240,009,169,240

3341214:01214,12124,109,183,154,141,227
3341121: 183, 154,12132,118,140,12132,12121
33416:156,140,076,239,130,172,025
33422: 196,154,185,165, 153,21211, 172
33428 : 1214 1 , 208 , 1211215, 1 69, 1 08, 1 4 1 , 052
33434:183,154,076,233,130,173,079
33440: 166, 153,21211, Q134, 21218, 1211216,16121
33446: 173, 167, 153, 141, 192, 154, 122
33452: 173, 184, 154,201,1211211,208,12169
33458:209,169,008,024,11219,183,112
33464: 154, 141, 183, 154,12176, 132,I2IQII1I
3347121: 13121,12132,118,140,076,239,157
33476: 13121, 173, 184, 154,2Qll,1211212,12116
33482:240,004,201,007,208,012,106
33488: 173, 183, 154,024,105,12108,087
33494: 141,183, 154,12176,233, 13121,107
33500:201,006,176,009,173,183,200

378

Appendix B: LADS Object Code

~~
S~51Z16: 1 54 , !!124 , 1 05 , 121 1 2, 1 4 1 , 1 83 , 12177

33512: 154,12132,118,14121,12132,182,122
33518: 14121,173,21218,154,21218,1211213, 10121
33524:12176,171,131,173,226,154,151
3353121: 21218, 1211213, !!176 , 171, 131,173,244
33536:228,154,208,062,173,222,023
33542:154,240,042,169,020,056,175
33548:229,085,141,209,154,032,094
33554:014,145,162,12104,032,12111,13!21
3356121: 145,172,209,154,12116,005,213
33566: 160,!'i11212,!'i176,12137, 131, 169,12193
33572:12132,12132,036,145,136,208,113
33578: 25121,12132,014, 145, 162,12101, 134
33584:032,008,145,169,020,133,043
3359121:!2185,169,226, 133, 134,169,21212
33596: 153, 133,135,032,12134, 141,176
33602:169,030,056,229,085,141,008
3361218: 210, 154, 169,03121, 133,12185,12185
33614:173,222,154,240,031,032,162
3362121: 12114, 145, 162,01214,12132,12111, 196
33626: 145, 172, 21!21, 154,240,12110,253
33632:048,008,169,032,032,036,165
33638: 145,136,208,250,032,014,119
33644:145,162,001,032,008,145,089
3365121: 12132, 143, 141, 173,22121, 154,209
33656:240,017,201,001,208,005,024
33662: 169,12160,12176, 133,131, 169,12196
33668:062,032,036,145,032,175,102
33674: 141, 173,229,154,24121,019,1217121
3368121:12132,12151,141,169,12159,12132,116
33686:036,145,169,000,133,134,255
33692: 169,1211215,133, 135,032,12134, 152
33698: 141,QI32, 121,141, 173, 189,191
3371214: 154, 2Q18, 1211213, Q176, 146, 128, 115
3371 i!l: 173,21218, 154, 2Q18, 12141 , 238, 172
33716:21218,154,165,136,141,23121,19121
33722: 154, 165, 137, 141,231,154,144
33728: 173, 185, 154, 133, 136, 173, 122
33734: 186, 154, 133, 137,12132,12114,12186
3374121: 145,169, 12HZI1, 12132,12125,145, 21Z19
33746:165,162,208,003,032,013,025
33752:135,076,067,128,032,014,156
33758: 145, 169, IZI!Zll , 12132,025, 145,227
33764: 162,1211212,12132,12111,145,169,237
33770:000,032,036,145,032,014,237
33776:145,169,002,032,025,145,246
33782:173,222,154,240,021,032,064
33788: QI14, 145, 162, 1Z11214, 12132,011, l1Z18
33794:145,169,013,032,036,145,030

379

Appendix B: LADS Object Code

33800:032 , 014,145,169,004,032,148
33806:025,145 .076,182,145,185,004
33812:165,153,201,088,240,098,197
33818: 136, 136,185, 165,153,201,234
33824:041.208,003,076,237,129,214
3383!Z1: 173,193,154,208,015,173,186
33836:184,154,201,002,240,079,136
33842:201,005,240,075,201,001,005
33848:24QI, 119, 173, 184, 154,2!!11, 1!!13
33854: 0C!ll, 2C!18, 012,173,183,154, C!125
33860: iil24, li!15, 024,141,183,154,187
33866:076,233,1 30, 173,184,154,000
33872:201,005,240,008,169,049,240
33878:032,248,132,076,104,132,042
33884: 173, 183,154,024, 105,QI28,247
3389 C!1: 141, 183, 154,076,233, 13QI, 247
33896: Q132, 155, 141, C!132, 1 3!!1, 141,223
3391212: 169, 157, 1 33, 134, 169, 154,0C!12
339!.!18: 133, 135,032,i!134, 141,076, 155
33914:239,130,173,193, 154,208,195
3392QI:!!168, 173, 184, 154,201,0!!12, 142
33926: 21218, QI 12, 169, 016, QI2 4, 109, 16QI
33932: 183, 154, 141 , 183, 154, QI7 6, QI07
33938:132,130,201,001,240,016,098
33944:201,003,240,012,201,005,046
33950:240,008,169,050,032,248,137
33956:132,076,104,132,169,020,029
33962:iiI24, 1!!19, 183, 154,141,183,196
33968: 154, 185, 167, 153,201,QI89, 101
33974:208,010,173,183,154,201,087
33980:182,240,003,076,104,132,157
33986:!!176, 132, 13QI, 173, 184, 154,019
33992:201,002,208,012,169,024,048
33998:024, lQ19, 183, 154, 141, 183,232
34004:154,076 ,233, 130,201,001,239
34010:240,016,201,003,240,012,162
34016:201,005,240,008,169,051,130
34022:032,248,132,076,104,132,186
34028: 169, Q128, 024,109,183,154,135
34Q134: 141,183,154,076,233,130,135
34fZ14fZl: 141,21Z19, 154, 14C!1,211, 154,233
34046:142,210,154,169,160,032,097
34fZI52:!Z136, 145 ,1(114,170, 1(114,168,219
34e158: 152,eI72, 138 ,1Z172,152,C!132, 116
34064:207,145,173,209,154,172,052
34eI7QI:211 , 154,174,21111, 154,(1196,253
34C!176: 16 QI, e1el!!I, 152, 153, 144, 153,022
34082:200,192,080,208,248,096,034
34eI88:QI32,121 141,QI32, 155,141, 15QI

380

Appendix B: LADS Object Code

,x 34!1'194:QI32, 13QI, 141, 169,12118, 133, 157
341!~IQI: 134, 169, 154, 133, 135,QI32,!2141
341QI6:QI34.141,11132, 121, 141,11176,11191
34112: 132, 13J.!1, 16121,255, 21Z1121, 185,11212
34118: 144, 153,24121, Q186, 2!~1 1, Q132, 158
34124:208.246,200,200,140,202,248
3413111: 154,1Z156 , 165, 138,237,2QI2,!I'lll21
34136: 154, 133, 138, 165, 139,233,11126
34142:QIQIQI, 133, 139, 16QI,!2112IQI, 185, 199
34148: 144, 153,12173,128,145,138,113
34154: 2 !21 121 , 185, 144, 153,21211,12132,253
34160:240,005,145,138,076,106,054
34166: 133,2121111,185,144, 153, 2!~ll, 11121
34172:lZ161,24i~I,!Z15!~I, 136, 165, 136, 144
34178: 145,138,2121121,165, 137, 145,~~136
34184: 138, 174, 2Q12, 154, 2lZ12, 16121, 142
3419111:!2I!2IQI, 189, 144, 153, 24!1'1,!21!218, 108
34196: 153 , 144,153,232,2lZ1111,lZI76,QI82
34202:143,133,153,144,153,096,208
342!~18:11132, 155, 141, 169,11170, 133,l2192
34214: 134, 169, 154, 133, 135,l2132, 155
3422121: 11134,141, Q176, 223,133,136,147
34226: 14QI, 21113,154,173,198,154,176
34232:208,023,200,200,200,140,131
34238: 191,154,169,144,024, llZ19, 213
34244: 191,154,133,134,169, 153, 1!~16
3425!21: lQI5,lZIQIQI, 133, 135,QI32,l2143, 138
34256: 136, 172,2lZ13, 154, 173, 192,214
34262: 154, 145, 138, 173, 193, 154, 147
34268:2!~1121, 145,138, llZ14, 104,l2176,219
34274: 239,13111,173, 2lZ15, 154. 133,236
3428QI: 14QI, 173, 2Q16, 154, 133, 141,155
34286:QI32,242, 134, 169,255, 141, 187
34292:055,146,056,165,138,229,009
34298: 14111, 165, 139,229,141,176,216
343QI4:11199, 162,IZIQII1I,12156, 165, 14i~l, 11121
3431121:233,1211112,133,14121,165,141,12152
34316:233,QIQIQI, 133, 141, 16!~I,l2IQIQI, 167
34322: 177, 14121,11148,12112, 165, 14!~1, 188
34328:2QI8,QIQI2, 198, 141, 198, 14l21, 143
34334:232,QI76,QI18, 134, 165, 14QI,Q127
3434121: 141,212, 154, 165, 141, 141,222
34346:213,154,177, 14QI,21215, 1912I,QI97
34352: 154,240,003,076,084, 134,227
34358:232,142,191,154,162,1211211,168
34364: 173,21217, 154, 24QI, QIQI4, 2QIQI, ~~I 14
34370:032,242,134,200,185,165,000
34376: 153, 24lZl, 12183, 2Qll, Q148, 144, 173
34382:079,232,209,140,240,241,195

381

Appendix B: LADS Object Code

34388: 173,212, 154,133, 14lZl,173,"-145
34394: 213,154,13 3 ,141, y-132, 242, 237
344"-1121: 134,y-176,246,133,173,{i155,145
3 4406:146,048,001,096,173,208,006
34412:154,208,002,240,023,032,255
344 1 8: 1 55, 1 4 1 , "-132, 1 3 {iI, 1 4 1 , lZI3 2 , 233
34424:lZ151.141,169,lZI54,133,134,12134
34430: 169, 154,133,135,12132,12134,"-115
34436: 141,12132, 121,141, 104, 104,121!!17
34442: 173,183, 154,12141,031,2"-11, 153
34448:016,240,008,173,220,154,187
34454:208,003,076,233,130,076,108
3446"-1: 132,13121,236,191, 154,24121,215
34466:003,076,084,134,238,055,240
34472:146,240,003,032,251,134,206
34478: 172, 191, 154, 173,2,,-17, 154,21211
34484: 24Y-I, !21!211,2121121, 177, 14"-1, 141,12155
34490: 192, 154,2,,-llZl, 177, 14lZl , 141, 166
34496:193,154,173,220,154,240,046
34502:010,201,002,208,030,173,054
345lZ18: 193,154,141, 192, 154,173,187
34514:219,154,240,019,024,173,015
3452121:217,154, 1lZ19,192, 154,141, 159
34526: 192, 154, 173,218 , 154,109 , 198
34532: 193, 154, 141,193,154, 173,212
34538:208,154,240,001,096,076,241
34544:084,134,165,140,208,002,205
34550: 198, 141, 198, 14lZI, lZI96, 032,027
34556: 155, 141,169,127, 133,134,"-187
34562: 169,154,133,135,032,12134,147
34568: 141,12132,121,141,,,-196,,,-132,,,-159
34574:"-114,145,169,001,12132,12125,144
34580: 145, 169 , {iI{ill,133, 131, 169,lZI121121
34586:004,133,133,169,000,133,086
34592: 132, 169,226, 133, 129, 169,222
34598:153,133,130,032,218,144,080
3461214: 165,001,048, {i116, 165, 162,12189
3461121: 24~I, {illl, 12132, lZI03, 152, 169, 145
34616:0121121,133,160,169,032,133,171
34622: 161,12196,032,115,150,12176,18121
34628: 182, 145, 169,12102, 133,131,062
34634: 169,lZ11218, 133,133, 169,00121, 174
3464lZl: 133, 132,169,226, 133,129,234
34646: 169, 153, 133, 13C!1, 169,01212,12174
34652:032,025,145,165,001,048,252
34658:221,032,218,144,162,002,109
34664:032,011,145,169,255,032,236
34670:036,145,032,036,145,173,165
34676:185,154,032,036,145,173,073

382

Appendix B: LADS Object Code

34682: 186, 154, {1132 , 12136,145,173, !Z18!2l
34688:23121, 154,1!132,!2!36, 145, 173, 13121
34694:231,154,032,036,145,032,252
347!21{1!:014, 145,lZI96, 169,12l lZ!4, 133, 189
34706:131,032,025,145,169,008,144
34712: 133 , 133, 169, 121 {11 121 , 1 33,132 ,12184
34718: 169,{11!212, 133 , 128 , 169, 181, 172
34724: 133, 129, 169, 135, 133, 13121,225
3473!21:{1132,218, 144 , 165,01211,12148,1211121
34736:143,032,014,145,096,080,174
34742:058,160,000,162,255,232,025
34748: 185,104,152,21215,144 ,1 53, 11!17
34754:240,010,200,200,200,224,244
34760:057,208,240,076,238,128,123
34766: 2!2llZl, 185, 11214, 152 ,205, 145,173
34772:153,240,006,200,200,208,195
34778:224,240,238,200,185 , 104,129
34784: 152, 2lZ15 , 146, 153, 24~:1, !Z105, 1!211
34790:200,208,210,240,224 ,173,20 5
34796:147,15 3 .201,032 ,240,004,245
34802:201,000,208,213,189,016,045
3481218: 153, 141, 184, 154, 188,12172, 116
34814: 153, 14 !21, 183, 154, !2176,2!217,14 3
3482121: 128 , 169 ,121121121, 133 , 16121, 169 ,251
34826: {1132, 133, 161, 162, !Z11211,!Z132, !2119
34832: 1211218, 145, SZ132, 241, 145 , !Z132, 1 !217
34838:085,145,201 ,042,240, 014 ,237
34844: 169, SZ11Z11, 133, 134, 169, 154, 1Z12 SZ1
3485lZl: 133, 135 ,lZI32, 12134, 141,SZI76,!Z173
34856:220,131,096,160,000,177,056
34862:134,201,048,144,008,201,014
34868:058,176,004,200,076,045,099
34874: 136, 14121,254, 153, 136, 169,12122
3488121:12I!2I~:I, 141, 192, 154, 141, 193, 117
34886: 154 , 162, !21!211, 142 ,21121,1 54 ,12 5
34892: 177, 134,!Z141 ,f2I 15, 141,252, !Z168
34898: 153, 141,255, 153, 169 ,1210 !!1, 185
3491214: 141,253 , 153, 141 ,lZl!2II!I, 154, 162
34910:202,240,018,032,131,136,085
34916: 173 ~ 252:- 153~ 141, 255, 153~ 2~J3
34922: 17 3,253,153,141, 121121 121,154,212
34928:076,094,136,238,210,154,252
34934: 174,21121, 154,!2132, 17 121, 136,226
34940:136,206,254,153,208,202,003
34946:096,024,014 ,2 52 ,1 53,046,203
34952: 2 53,153,014 ,252,153,046,239
34958:253~ 153 ~~J24 !, 173!,255, 153, 1 29
34964: 109,252 , 153 , 141 ,2 5 2, 153, 184
3497121: 173 ,!21!21 !2!, 154, 11219, 2 53 , 153,228

383

Appendix B: LADS Object Code

34976: 141,253, 153,11114,252,153, 11212
34982: Q146 ~ 253 , 153, "196, Q124, 173, 143
34988: 252,153,11219,192,154,141,149
34994: 192,154 , 173 , 253, 153, 1~~19, 188
35i2H21121: 193,154, 141 ~ 193, 154 , 12196,12191
351211216: 12132, Q128, 133, 16!21, (21(21(21, 14121, 171
3512112: 198, 154, 14!21, 229~ 154, 14!21, 187
3512118: 22121,154, 14QI , 219 , 154 , 173,238
35024:224,154,208,003 , 032,241,046
35030:145,032 , 085,145,208,008,069
35036:032,253,137,104,104,076,158
35042:146,128,201,032,240,239,188
35048:076,243,136,032,085,145,181
35054:208,003,076,253,137,201,092
35060:058,208,003,076,139,137,097
35066:201,059,208,104,140,209,147
35072:154,173,222.154,240,074,249
3511178: 141,229 , 154,173,2,,19,154,"142
35084:240,006,032,052,137,076,043
35090:088,137,032,085,145,240,233
35096:007,153,144,153,200,076,245
351i212:"12QI, 137,,,132, 130, 141,('132,Qlli21
351!218:ilI51,141,ilI32, 143, 141,ill32,ill64
35114: 121, 141, 169,0(210, 141,2(219, QI55
3512QI: 154,!2176,088, 137,141,229, 105
35126: 154, 141,2!219,154, 160,121111('1, 104
35132:032,085,145,208,007,153,178
35138: 111111121, i21 121 5 , 172, 2i219, 154,11196, 19111
35144:234,153,000,005,200,076,228
35150:060,137,032,085,145,240,009
35156:003,076,080 , 137,032,253,153
35162:137,173,209,154,208,005,208
35168: 11114,11214,12176,146,128,12196,238
35174:201,062,240,047,201,060,145
35180:240,051,201,043,208,003,086
35186:238,219,154,201,042,208,152
35192:003,076,169,137,201,046,240
35198:240,015,201,036,240,014,104
35204:153,144 , 153,200,076,235,069
35210: 136, 141 , 224, 154,12196,12176, 197
35216: 164, 138, 153,144, 153,2121121,11172
35222:,,176,"131 , 138, 169,0ilI2, 141,195
35228:220,154,076,235,136,169,122
35234:001,141,220,154,076,235,221
35240:136,032,235,136,173,208,064
35246:154,240,011,169,042,032,054
35252:1336,145,032,143,141,11132,197
35258: 121, 141, 173, 198, 154,208, 157
35264:032,1613,000,185,144,153,098

384

Appendix B: LADS Object Code

35270:201,032,240,004,200,076,183
35276: 195, 137,2lZ10, 132, 134, 169, 147
35282: 144,12124, 101, 134, 133, 134, 112
35288: 169, 153, 105,lZllZI0, 133, 135, 143
35294:032,043,136,173,208,154,200
35300:240,008,173,221,154,240,240
35306:003,032,238,139,173,192,243
35312: 154, 133, 136, 173, 193,154,159
35318: 133.137, 1l214, 1l214,lZI76, 146,178
35324: 128, 153, 144, 153,2!!1l21, 192, 198
35330:080,208,248,153,144,153,220
35336:173,083,003,201,003,240,199
35342:010,201,136,240,006,169,008
35348: lZl 121 121 , 141,224, 154,11196, 169,12136
35354:!ZIl2I1,141, 189, 154,l2196, 162,1211211
35360:000,032.085,145,240,044,066
35366:201,058,240,040,201,032,042
35372:240,243,201,059,240,032,035
35378:201,044,240,015,201,041,024
35384:240,011,157,205,153,232,030
3539121: 153, 144, 153,21210,11176,12133,12153
35396: 138,142,199,154,153,144,23121
354l!12: 153, 2 iii QI ,12132,1 iZ12, 138,12176,1211217
354liI8 : 235, 136, 141,2{119, 154, 169, l!1IQI
3 5 4 1 ·4 : 121 !11 121, 1 4 2, 1 9 9, 1 5 4, 1 5 3, 1 4 4, 1 1 iii
3542iil: 153.12132, 1!112, 138.173,2QI9, 131
35426: 154,1::176,238, 136, 169,12liil 12l , lQI3
35432: 141, 192, 154, 141, 193, 154,1::155
35438: 17121 ,i2114 , 192. 154,11146, 193, 111
35444: 154. iiI14.192 : 154,i2146.193, 1!111
3545121: 154, !2114, 192, 154,12146,193, liZI7
35456: 154,12114, 192, 154,iiI46, 193, 113
35462: 154, 189, 2!115, 153, 2 iii 1 ,!2165, 12177
35468: 144,002,233,007,041,015,070
35474: 12113,192,154,141,192,154,224
3548111: 232, 236, 199, 154,21218, 2ii19 , 11 i21
35486: 238,198,154,169, ii1l211, 12196, 246
35492: 192 , !2IlZ!!1I, 241::1, ii114, 174 , 2i118, 224
35 4 98: 154, 2Q18, iii iii 9 ,liI72, 152. i1172, ~:169
3 5 5 iii 4 : 121 3 2 , ~:I 6 6, 1 3 3, 1 iii 4, 1 6 8, 1 121 4 , 121 1 5
3551iil : 153, 144, 153, 2ii1!21, 12132,11185, 181
3 5 5 1 6: 1 4 5, 1 5 3, 1 4 4, 1 5 3 , 2 121 111 , 2 !21 1 , 1 6111
3 5 5 2 2 : 111 6 6 . 2 i21 8. 1 iii 4, 1 6 9 , 121 ii1i21, 1 4 1 , 1 1 4
35528:214,154, 173,2iiI8, 154,24121,12163
35534:12123, 14 i:I,211, 154, 173,226, 11219
3554lil: 154, 24i1l, 11115, 12132, 13!11, 141,156
35546: 11132, QI51 , 141 . 11132, iil91 , 141, 194
35552:iiI 32,1Z151, 141, 172,211, 154,217
3 5558: 11132,12185,145,153,144,153,174

385

Appendix B: LADS Object Code

~35564:200 , 201.032,208.245,032 , 130
35570:12185,145,153,144,153,21210,098
35576:201,034,208,069,032,085,109
35582: 145,21218,!2H213,12176,211,139,12112
35588:201,058,208,003,076,214,252
35594: 139 , 201,059,208,012,032, 149
356121(21:12152,137.174,222, 154, 142, 129
3 5 6 121 6 : 2 2 9, 1 5 4 , 121 7 6 , 2 1 1 , 1 3 9 , 2 1~1 1 , '~1l21 8
35612:034,208,003,076,252,138,227
35618:174,208,154,208,009,032,051
35624:020,141,076,252,138,076,231
.::) 5 6 3 QS: 1 2 2!, 1 4 2 ~ 1 5 3 ~ 1 4 4 ~ 1 5 3 ~ 1 7 ~2S ~ 1 t) 2
35636: 1 4~:1, 211 • 154, i1132, 236, 14121, 197
35642:172,211,154,200,076,252,099
35648: 138, 162,12Hil12I,142.215, 154,11:17
35654: 157,245 !, 1~,3~232~ 173,215~221
35661il: 154,21:18, 117,1:132, lil85, 145, i2149
35666:240,067,201,058,240,063,183
35672:201,059,208,012,032,052,140
35678; 137 , 174,222,154 , 142,229,128
35684: 154,!2176, 151, 139,141, 185, 178
3569~1: 153, 173,21:18,154,21<118 ,1<1113,247
35696:173 , 185,153,201 ,032,208,040
35702:211,032,020,141,076,074,160
3571218: 139,173,185, 153, 15 -3, 144,12147
35714: 153 , 200,201,032,240,024,212
35720:201,000,240,020 ,20 1,058,088
35726:24(21.12116,157,245,153,232,161
35732:12176,i2174,139,238,215,154,i2120
35738; 141. 186 . 153, QI76, 1 1:14, 139, 185
35744: 169.245 ,133, 134,169,153, i39
3575~ZJ: 133~ 135~ 14ej:,211~ 154~~j32~2~~j3

35756: (2143,136,174,192,154, !2132, 135
35762: 236,141:1.172,211,154,169,236
35768:QH21(2I,162,!2I!215,157,245.153,138
35774:202,208,250,076,074,139,115
35780:173,208,154,208,003,032,206
35786:1212121, 141, 173 , 186 , 153,2!211,12152
35792:058,240,003,032,253 ,137, 163
35798:141,224,154,238,228,154,073
35804:104,104,173,208,154,240,179
3581121: !21~:18, 173.226. 154,24121, 121 121 3 , !211216
35816:1iI76, 114, 131,12176, 146,128, 135
35822:173.208,154,201,002,208,160
35828: !211211 , 12196, 12132 , 12114, 145, 162, 182
35834: ~:11212, le132, IiI 11 , 145,12156, 173, 157
3584QI: 192 , 154,229,136, 141, 19~:I,!2118
35846: 154~ 173~ 193: 154,229~ 137,QJ22
35852: 1 4 1 , 1 9 1 , 1 54, 1 69 , lZI!21 leI , QI3 2, 1 87

386

Appendix B: LADS Object Code

",,35858:036,145,173, 191Z1, 154,2i218, 156
35864: 1211213, 21Z16, 191, 154, 21Z16, 19121,21216
35870: 154,21218,238,173,191,154,124
35876:208,233 , 032,014,145,162,062
35882: !Z1121 1, i2132, !(11218, 145, IZ196, 16!ZI, 228
35888:1211Z1!Z1, 162,IZIIZH21,185,144,153, 180
35894:201,043,240,004,200,076,050
3591Z10:051, 14!Z1,20!Z1, 185,144,153, 165
35906: !Z132,!Z178, 14121, 176, i2118, 157,155
35912:2!Z15, 153,232,12176,062, 14121,172
35918:201,058,176,006,056,233,040
35924:048,056,233,208,096,169,126
35930: 01210, 157,205, 153, 169,21215,211
35936: 133, 134, 169, 153, 133, 135, 185
35942:!Z132,!Z143, 136, 173, 192, 154,!Z164
35948: 141,217, 154, 173, 193,154, 116
35954: 141,218,154, iZ196, 173,21218, 1218QI
35960 :154.208, 004,032,020,141,167
35966:096,173,226,154,240,017,008
35972: 12132, !ZII 4, 145, 162,1211211,12132, !Z11216
35978:1211218,145,174,183, 154,12132,Q166
35984 : 1216121, 1 4 1 , 12132 , 1215 1 , 1 4 1 , 1 74 , 23 1
3599121: 183, 154,12132,236, 14121,12196,223
3 5996:173,208,154 , 208,004,032,167
3 6i211Z12: f~12121, 141, IZ196, 173,226, 154, 2 !~14

3 6 IZI 121 8 : 2 4 121 , i21 111 6, 1 7 4, 1 9 2, 1 5 4 , 121 3 2, 1 9 8
3611114:1216111, 141,174,192, 154,QI76,2!~13
361212 111:236. 14!Z1, 173,21218 , 154,21218,12119
36026:007,032,020,141,032,020,182
361~132: 141,1~196,173,226, 154,24121, 198
3612138 :12HiI6.1 74, 192, 154,12132,1216121,12148
3612144: 141,174,192, 154, 1~132, 236,11219
.361115121: 14121, 173 ,226 ,154,24121,12114,133
36056:173,227,154,240,003,032,021
36QI62:1~1 51,141 , 174,193, 154,12132,199
36i2168: j~16 (~1.141, 174, 193, 154,12176,12IQI2
3612174: 236.14111,142,191,154,173,246
36080:223,154,240,005,160,000,254
36S1186: 138, 145 , 136,173,221,154,189
3 6092:240,022,032 , 014,145,162,099
3611198 : I~H21 2 , S113 2 , 121 1 1 , 1 45, 1 73, 1 9 1 , S114 4
36104: 154, i213 2 . i2142, 145,032,12114,171
361 1121: 145. 162, 1211211. !~132, 1211218,145,251
36 1 1 6 : 12124, 1 69 , 121111 1 • 1 !ZI 1 , 1 36, 1 33 , iii 7 2
3 6122: 136, 169,I2H2H21, 11~ll, 137, 133, 19iZi
36128: 137,12196,16121, 121121121,177, 134,224
36134:240,010,032,036,145,032,021
3614i~l: 169, 141, 212H21,S1176, iZI36, 141, !2139
36 146:096.169. 032,032. 036,145,048

387

Appendix B: LADS Object Code

36152:i~~32, 169, 141,!2~96, 142,21!2~,!1178
36158: 154.173,227, 154,24!1~,!2111,253
36 1 6 4; 1 3 8 , !11 3 2 , i21 9 7 , 1 4 2 , i~1 3 2 , 2 1 !21 , 2 ~:I 7
36 1 7!21: 1 4 1 , 1 74 , 2 1 i21, 1 54 , !21 9 6, 1 69 , 25 121
36176:000,032.207,145,032,210,194
36 1 82: 1 4 1 , 1 74 , 2 1 !11, 1 54 , !21 9 6, 1 73 , iZl1 !il
36188:227,154,24121,12114,165, 137, !11 !11 5
36194:!2132, 12197,142,165,136, !2132, 19!21
36200:097,142,032,005,142,096,106
362{,:16: 166, 136,165,137,\2132,2~:17, 185
36212: 14::':',i21::'.2,!21!215,142,!1196, 169, 193
36218:013,032,036,145,032,169,037
3622 4: 141,iZI96, 174, 187, 154, 173,iZ129
3623\21: 188, 154,!2132,2!217, 145,!2132, 124
36236;!1159, 142,\2196,169, 144, 133, 115
36242: 134, 169, 153, 133, 135,12132, 134
36248;034,141,096,169,253,032,109
36254:036,145.032,143,141,169,056
:>626QI:!2113,!1132,QI36, 145,!1196, 174 , 148 .

36266:208.154,208,001.096,174,243
36272:222,154,208,001,096,141,230
36278:2~~l9,,! 154~QJ32,~2S14~ 145~ 162~ 13~!)

36284:004.032,011,145.173,209,250
36290: 154,032,036 ,145,032.014,095
36296: 145, 162,12IQll,QI32,0!218, 145, 181
3631~12: 173.2Qi9,154,!~196, 174,2!218, 196
363 iZ18: 1 54 , 2 f,218 , QI!2~ 1 , ~:19 6, 1 74 , 222 , Q~ 43
36314:154,208,001,096,032,014,211
3632QI: 145 .162.~:H~14.f,2132,011, 145,211
36326: 1 7 3 , 2 2 7 , 1 54 , 2 4 iii, 1211219, 1 7 3, 1 82
36332:21!2I,154,!2132,'<,197, 142,12176, 179
36338:252, 14 1 , 169,~21!2li2l, 174,21!~1, 164
36344:154,032,207,145,032,014,064
3635121: 145 , 162 , !21!2~ 1. !2~32, 121!218, 145 ,235
36356:096,174,208,154,208,001,077
36362:096,174,222,154,208,001,097
36368:096,032.014,145,162,004,213
36374:1213 2,12111,145,174,227,154,253
36380:240,013,165,137,032,097,200
36386: 142,165, 136,!2132,!2197, 142,236
36392;076,050.142,165,137,166,008
36398:136,032,207,145,032,014,100
3641214: 145, 162, !21~:1 1, !2132, !21 121 8 , 145,12133
364 1 QI: f,2196, 174, 2!218, 154, 2!218, I21Ql1 , 131
36416:!2196,174,222, 154,21218,0!211, 151
36422:096,032,014,145,162,004,011
36428: !2~3 2, !2111, 145, 173, 188, 154, \2111
36434: 174, 187, 154,!2132,2!217, 145,213
36440:032,014,145,162,001,032,218

388

Appendix B: LADS Object Code

36446:008,145,096,072 , 041,015 , 21 5
36452: 168, 185 , 128, 153 , 17 111.1!214,24 121
36458:11174,11174,11174,11174,168,185,243
36464: 128, 153,12132,12136,145,138,232
36470:032,036,145 ,096,201,070,186
36476:208,008,032,221,142,104,071
36482: 11114,11176,146,128,21211,12169 ,12186
36488:208,006,032,039,143,076,128
36494: 129 , 142, 2i211 ,12168, 21118, I1H:13, 125
365111111: 11176, 1 !~2, 14 3, 2!211, !218 121, 21218, 19 \<1
3651Z16: IZ11Z13, IZ176, 171,143, 2lZll, 12178, lZI58
36512:208.003, 076,236,143,20 1 ,003
36518:079,208, 003 ,076,215 , 143,122
36524: 201, lZ183, 2l218 , 1211Z13, IZI76 , 165, 14121
3653121: 144, 21211, lZ17 2, 21Z18 , IZIlZI3, 12176,114
36536: 191,144,153,144,153 , IZ132, 233
36542: 13121, 141 ,12132,12151, 141, 11132 ,20 5
36548: QI91 , 141, 12132, 155 , 141,12132, 1212i21
36554: 143 , 141,169,157 , 133 , 134 ,11155
3656lZl: 169, 154 , 1 33, 1 3 5 , lZ132 , lZ134, 12197
3 6566: 141,lZI32,121,141, lZI76 , 19 121,147
36572:143,032,085,145,201,032,090
36578: 24~L !!H213, lZ176, 221,142,16111,11144

36584:000 , 032 ,085 , 145 ,201,000, 183
36590:24!!I,1211Z17, 15 3, 144 , 153,2!21121, 111
36596:12176,233,142,132,128,16121,12191
36602:000 , 185.144,153,240,008,212
366lZ18: 153,226 , 153, 2121l21, 196, 128, 12132
36614:2QI8,243,173,2lZI8, 154,21Z18, 176
3662~:1: lZ11Z16, 12132,12191 , 141 , Q132, IZI51 , 109
36626: 141,!!132, 143, 141 ,QI32, 121, 116
36632: 141,11132 , IZ113 , 135, 162, QIQI1, 252
3 6638:032,008 ,1 45 ,162,000, 142,007
3 6644: 189, 154 , Q196 , 169, IZ146 , Q132, 21QI
36650:036,145,169,069,032,036,017
36656: 145. 169, 11178,1Z13 2,!2136, 145, 141
36662: 169, ~:168. IZI32 , 12136,145,169,161
3 6668:032,032,036 , 145,032,221,046
36674: 142, 173 ,21218, 154, 2 4 !2I, lil~)3, 2 18

3668121:238,189, 154 ,238,21Z18, 154, 229
36686: 165, 136 , 141 ,23121,154,165, !!145
36692: 1 3 7 , 1 4 1 , 23 1 , 1 54, 1 73, 1 85 , iii 8 1
3 6698: 154, 133 , 136, 17 3, 186, 154,121!212
3671214: 133, 137,i2132, 19QI, 136 , 12196 ,1215 2
3671121: 173, 2('18,154, 24QI, i2123, 032,164
36716:lZ185, 145, 153, 144 , 153, 16111, 18121
36722: !!llZl!!l, !!132,!2185, 145 ,24121,12113 , 117
3 6 7 2 8: 1 5 3 ~ 1 4 4 ~ 1 5 3 ~ 1 5 3 ~ 2 2 6!, 1 53!, ~ i 7 8
36734:2!21!!I ,lZI76 , 115 , 14 3,12176, 19 !21, 1 58

389

Appendix B: LADS Object Code

3674121: 143, 132, 128,11132, 143, 141,11183
36746:11132,121,141,238,221,154,12121
36752:032,070,135,032,014,145,060
36758: 162,I1IQl l,!2132,!HI8, 145,12132,12118
36764: 132, 144,11132,253, 137, Il:14, 19111
36770: 11114, 162, 121111!21, 142, 189, 154, 145
36776:vJ76, 146, 128, 173,208, 154,12129
36782:240,014,032,143,135,238,208
36788:222,154,12132,11114,145,162,141
36794:001.032,008,145,0 3 2,085,233
36800:145,240,007,201,058,240,059
36806:006,076,190,143,032,253,130
36812: 137, 11214, 1!214, 162,111111111, 142.11185
36818: 189, 154,12176,146,128,169,12148
36824:11146,12132,12136,145,169,12179,211
36830:032,036,145,032,121,141,217
36836: 169,1211211, 141,223, 154,QI76,224
3 6 8 4 2: 1 9121, 1 4 3, 1 7 3 , 2 lil 8, 1 5 4 , 2 4 lil , 111 6 2
36848:205,032,085,145,201,080,220
36854:240,012,201,079,240,058,052
3 6 86121: 21211,11183,24121, 11116,21211.12172 , 131
36866:240,076,169,046,032,036,089
36872: 145, 169,12178,~:132,12136, 145, 11211
36878:169,080,032.036,145,032,252
36884: 121, 141,2 1216,222, 154,12132 , 128
3689121: 12114,145,162,1211214,12132,12111,138
36896: 145, 169,12113,12132 , Q136, 145, 1216lil ,
3691212: 169.l2l!iI4, 12132, 12125, 145, {~132, 189
3691218:12114, 145 , 162,121j~ll ,12132,121j:18, 15 121
36914: 145,12176, 19121, 143.169,QI46,12151
36920:032 ,036.145,169,078,032,036
36926:036,145,169,079 , 032,036,047
36932: 145,12132.121, 141, 169,121I2H21, 164
36938: 141,223, 154,12176, 191:1, 143,233
36944: 169, ~:146, 12132. 1:136,145,169,165
3695111: 12178,12132, ~:136. 145, 169,12172, llil 6
36956: i!132, 12136, 145,~:132,121, 141,12187
36962: 169,121121121, 141,227, 154,12176,11197
36968: 19111, 143, 169,11146,12132,12136,21218
36974:145,169,078,032,036,145,203
36980:169,083,032,036,145,032,101
36986: 121. 141. 169,111121121,141.226.152
36992: 154,12176, 19121,143, 174,11199, 196
36998:003,048,001,096,169,000,195
37~:1j214: 12132, \i16QI, 141,12132,12151, 141,11185
371211111: 169 ,11192, 133,134,169,154,229
3711116: 133, 135, 11132, 155,141,12132,12112
37022:034,141,104,104,076,220,069
3711128: 131, 169,12146,12132,12136, 145,211

390

Appendix B: LADS Object Code

37Q!34: 169 , ~!83, Qi32, Q!36, 145, l1!32 , 155
37Q!4Q!: 121 ,141,173, 2!1!8, 154, 24~~!, 189
37!1!46:Q!!1!5, 169, Ql!1!1, 141,226, 154, 11Q!
37l1!52:Q!76, 1911!, 143, 169,l1!46,k'!32,k'!76
37ii!58: 11!36, 145, 169, i1!72, l1!32, l1!36 , 172
371!!64: 145, Q!32, 121, 141 ~ 169, 11!11!1, 11!41
37QI711!: 141,227, 154. !2!76~ 19Q!, 143 , 113
37076:010~010,010,010 , 170 , 096,006

3711!82: 165, 131, l1!32,212, 144, 165,l1!43
37i~!88: 129 , 157, l1!68, !1! !1! 3 , 165, 13121, 1 ~~!8
3711!94: 157, 11169 , Q! !1!3, 165, 128, 157, 141
371 Q!I2!: f2!72, !1!!2!3, 169, l1112!Qi, 157, <,1!73, 198
37106:003,165,133,157,0 74,0 03,009
37112: 165.1 32 , 157,12!75,QH1!3, 169, 181
37118:003,157,066 , 003,032,086,089
37124:228, 132,I2IQ!1,Q!96, 134, 142,225
3713Q!:Q!96, 134 , 143, ~~!9 6, 162,Q! ~~!Q!, 129
37136: 134 , 142, 134 , 143, 134, 131, Q!66
37142: 134,1,'11,'11, 12!96 , Q!32, 212,144,129
37148: 169,Q!12, 157, Q!66, !2!11!3,:1!76, 255
37154:002.145,201,013,208,002,093
3716!2!: 169, 155 , 141, 211!3, 145, 14!2!, 225
37166: 2Q!4, 145, 142, 2i!!5, 145, 165, QI28
37172: 143, 12!32 , 212,144, 169, Q! ~~!Q!, 24fZ!
3 7178:157,0 72,003,157,073,003,011
37184: 169 ,Q!11, 157,Q!66 ,11l!113, 173 , 131
3719Q!: 2fZ!3, 145, fZ!32 , Q! 11! 2 , 145, 172, Q!Q!1
37196:2Q!4, 145, 174,212!5, 145, 173 ,Q!98
37202: 203,145, 12!96 , 14Q!, 2!2!4, 145,247
372fZ!8: 142, 2Q!5~ 145, 165, 162, 24Q!, 123
37214:!2146, 1611!,fZ!11!Q!, 177, 16 111,l1172, 197
37220:230,160, 208,002,230,161,067
37226:l1!24~ 165. 16!2!,237,k'147, 146, 117
3 7 2 3 2: 1 4 1 , 2 111 6, 1 4 5, 1 6 5, 1 6 1 , 2 3 7 , 1 4 3
37238:048,146,013,206,145,144,052
37244:005~240,003,076, 174, 131,241
3 7 2 5121: 1 6 9 , l1li1!!1!, 1 3 3 , 121 0 1 , 1 4 1 , i2! 8 3, 1 4 5
37256: 1,'11213, 1fZ14, Q176, 162, 145, 165, 11!23
37262:142,032,212,144,169,000,073
37268: 157, 11!72, 111 i2! 3 • 157.11173, i2l!i!3, 1 ~: ! 1
37274 :169 ,007,157,066,003,032,076
3728l1!:12!fZ!2, 145, 172,211!4, 145, 174,234
37286: 2y-J5 ~ 145 ~ 2QJ 1, 155, 2(218 ~ ~H2J2 ~ ~J5B
37292:169.000,096,072 , 1 65,017,17 9
3 7 2 9 8 : 2 4 Q! , Q! 11! 2, 1 ~~! 4 , !1! 9 6 , Q! 7 6 , 2121 3, 1 3 1
3 7 3 iii 4: 1 4 6, 1 6 2 , Q! 11! 7 , 1 4 2 , 2 Ii! 6, 1 4 5, 2 2 4
.:.7 .:.1\:1: 138 , !1!32 , Q125, 145, 1 74, 2 1116, 142
37316: 145,202,208,243,076,0 14, 060
37322:145,000 ,000,000,000,13 4, 225

391

Appendix B: LADS Object Code

1"37328:212, 133~213, ~132, 17111,217, 161
37334:032,230,216,160,000,140,224
3734111: 24QI, 145, 177,243,QI72,!2141,114
37346:127,032,036,145,104,048,206
37352:006,172,240,145,200,208,179
37358:236,096,000,160,000,032,250
37364: QI85, 145, 2i211 , ~132, 24111, !2l!117, 186
37370:153,000,005,200,076,243,159
37376:145,169,000,153,000,005,216
37382: 169,QI~1!1I,133, 134, 169,!!IQI5, 11214
37388: 133, 135.!1132,QI43, 136, 173, 152
37394: 192, 154~ 141, 187, 154, 173,251
3740121: 193,154,141, 188,154,16f2I ,246
37406:000,096,076,203,146,000,039
37412:000,000,000,000,000,000,036
37418:000,000,000,000,000,000,042
37424:000,000,000,000,000,000,048
37430:000,000,000,000,000,000,054
37436:000,000~000.000,000,000,060

37442: ~IQI~I, 173 ,11135,146,141, 1!Z14, 153
37448: 146,173,!2136, 146, 141, 11115,!2151
37454: 146,173~~137,146,141,11117,1116111
3746QI: 146, 173,11138,146,141, 11118,1l168
37466: 146, 174, ",14111,146, 24QI, !!132, 10111
37472: 169,111!!1!2I , 141,11141,146, 16111,241
37478: 111111111,185,255,255,153,255,181
37484:255,200,204,041,146,208,138
3749!!1:244,238,11115, 146,238, 11118, 169
37496:146~224,000,240,008,202, 172
3751112: 21118.224, 173,11139, 146,21218, 1 ",1121
3751118: 221, ;2196,173, !!14QI, 146, 17121,21111
375 1 4 : 111 1 3 , QI 3 9. 1 46 , 21118 , 111 ~11 , ~I 9 6, 1 29
3752QI:!1124 . 138, 11219,12136, 146,141,226
37526: 184, 146,173,11135,146, 141,2QI7
57532: 183, 146!,eJ24~ 138, IfZJ9 ... 12J38,12J26
37538: 146,141, 187,146,173,11137,224
37544: 146~ 141~ 186,146,232,172,167
37550:039.146.208.004.240.013,056
37556: 160, 255~185,255,255, 153, 163
37562:255,255, 136 , 192.255~208,207
37568:245.21216,184, 146.2!216, 187,!2186
37574: 146, 2!212., 2!218, 234, ~:1 96, 162,222
3758121: 255~ 154, \1132,185,145,169,12;21
37586:i21 i21~:1, 133, 162, 169,1211112,133,12141
37592:082,032. 121~141,169,240,233
37598: 141, 124, 148, 169, 15111, 141,11171
37604: 125. 148,169,228,141,126,141
3761iil: 148~ 169.148,141,127, 148,12191
37616: 169,12184 . 141, 128, 148, 169,12155

392

Appendix B: LADS Object Code

37622: 147, 141 , 129, 148, 169, 175:- 131
37628: 141 , 1 312! , 148, 169, 151 , 141 , 108
37634: 1 31 , 148 , 169, 246, 141 , 132:, 21211
376412!: 148, 169, 151 , 141 , 133:- 148, 13i!!
37646: 169, 196, 141 , 134, 148, 169, 2!z!3
37652: 151 , 141 , 135, 148, 169, 21 1 , 212!7
37658: 141 , 136, 148, 169, 151 , 141 , 144
37664: 137 ~ 148, 169, 224:, 141 , 138, 221
376712!: 148, 169, 151 , 141 , 139, 148, 166
37676: 169 , !Z!74, 141 , 12! !z! 6 , 12!12!2, 169, 11!93
37682:152,141 , 007,002,173,065,078
37688:146,240,003,076,087,147,243
37694: 169, 2!Z!3, 141, !z!65 , 146, 12!76, 12!94
377i!!12!:!2!84, 147, 169,12H2!0, 141,l2!47, 144
377i!!6: 146, 169, !Z!32, 141, l2!48, 146,244
37712:032,014,145.096,032,070,213
37718: 147, 169, 142, 1612!, 15!Z!,12!32, 118
37724: 146, 149, 1612!,!Z!012!, 1412!,12!63,238
377312!: 146, 14~:!,!z!64, 146,Q!32,l2!85, 199
37736: 145, 166,!2!!Z11,!Z!16,12!17,224, 161
37742: 136, 2412!,1211217,224, 128,24l21,12!61
37748: !ZH2!3, !z!32, 115, 1512!, !z!32, 112!4, l2!412!
37754:150,076,087,147,201,034,049
3776~:!: 208, 12!Il2!, 12!72, 173,12164 , 146, 12!33
37766 : l2! 7 3 , 12li'i! 1 , 1 4 1 , i!16 4 , 1 46, 1 1214, 1 5 1
37772:201,048,208,005,174,063,071
37778: 146,240,209,238,063, 146, 164
37784:201,059,208,003,238,064,157
37790:146,174,064,146,208,012,140
37796: !Z!41 , 127, 2l2! 1,097, 144, !Zl!Z!6, lZ! 12
378!l12: 21211. 123,176,002,12141,12195, lZ14!Z1
37808:153,000,005,200,201,000,223
37814: 21218,174,136,169,155,153,153
3782i!!: 121 12! 121 , !ZH215, 1412!, 12142,146,192,201
37826:000.240,153,173,000,005,253
37832:21211,lZI58, 176,12139,2lZI 1,!2148, 155
37838:176,003,076,243,147,169,252
37844:255!,!!J32,223!, 15~J~ 165!12~i8!,221
378512!: 141 , lZI45 , 146, 173,055, 146, 156
37856: 21218, 1211213, 12132,163,149,172,183
37862:045,146,204,042,146,240,029
37868:003,032,255,149,076,094,077
37874: 147, 169,12182, 133,2!113, 169, 121
3788lZl: 148, 133,204, 160, J'211Z1J'2!, 14121, J'211219
37886:046,146,162,000,177,203,220
37892:240,048,201,255,240,034,254
37898:221,000,005,208,009,232,173
37904:200,208,239,230,204,076,149
37910:002,148 , 177,203,240,008,032

393

Appendix B: LADS Object Code

37916:200,208, 2 49, 230,204,076,17 1
37922: 1Z124, 148,238,12146 , 146, 16 2, QI31Z1
37928:000,076,016,148,169,156,093
37934: 16!!1 , 15!ZI, QI32, 146 , 149 ,1Z17 6, 247
3794QI:QI87, 147 , 142 ,i!162, 146, 173,QI41
37946:!Z146, 146, !!11 f!I, 1 7!ZI , 189, 124 ,231
37952: 148, !Z156, 233 ~ 1Z101 , 141, !Z166, 1 97
37958: 146, 189 , 1 25, 148 ,233, f!l illQI , 143
37964:072 , 173,066,146 ,072,096,189
37970:076,073,083,084 ,000, 068 ,2 10
37976:079,083,000,078 ,069,087 ,22 8
37982:000,083 ,065,086 ,069,03 2,173
37988:000 ,076,079 ,065,0 68 ,032,164
37994:000,0 7 7, 069,0 8 2,071,069,218
38000:032,000, 076 ,065 ,068,083, 18 0
38006:000,083,089,083,000,255 ,116
38012:000,000,000,000,000,000,124
38018:000,000~000,000,000~000, 130
38024:000,000, 000,000,169,000,0 49
38f!13 f!1: 133,2QI3 ~ilI56, 1 73,QI4 7, 146, 132
38QI36:229,2QI3, 141 ,(2139, 146, 169,Q151
38042:032,133 ~204, 17 3,048,1 4 6, 1 22

381Z148: 229, 2!!14, 141 , ii14!ZI , 146, 1 73, !Z169
38!Z154: QI4~~I, 146 , 1 7 ill ,!ZII 3, i!139, 14 6, 2i!18
38060:208,001. 096, 1 69,00 1,141 ,020
38066:254,002,224,000,240,029,159
38Q172: 169 , !ZI!!I!ZI, 141, "149,1 46 , 16!ZI, !Z18 1
38078:000.177,203,032, 036,145,0 15
38084:165,001 ~048,022,200,204,068

38090:049, 146 ,208,241~230,204,000
38096:202, 0 48, 01 1~208 ,234, 1 73,060

3811Z12:!Z139, 146, 141,1Z149, 146,1Z176,QI43
3811Z18: 189, 148, 169 ,1Z1i!1i!1, 141,254,IZ197
38114:002,096,108,010,000,169,099
38120:000,1 33.203,169,032,133,134
38126:21Z14, 169, IZIIZIIZI,141 ,QI55 ,146, 185
38132: 168, 141Z1, 1Z15 !il, 146 , 152, (2124,156
. .::.81..::.8: lQll. 2QI3 , 1 33, 1 34, 141,~~151,245
38144: 146, 141 ,IZ153 , 14 6, 1 65 . 21Z14, 1Z18 7
38150:105,000.133,135,141,052,060
38156: 146, 141, 1Z154 , 146 ,i!156 , 1 73,2 1 6
38 1 62 : 1Z15 1 , 1 46 , 23 7 ~ QI4 7 ~ 1 46, 1 4 1 , IZI 1 8
38168:!Z166, 146~ 1 73,1Z1 52 ~ 146,237,!2176
3 8 1 7 4 : !ZI 4 8. 1 4 6 ~ iii 1 3 ~ £1 6 6, 1 4 6, 1 4 4 , (21 8 1
38180:003,076,097,149,032,043,180
38186: 1 36~!2J56 , 1 73~ 1 92~ 154~237:r222

38 1 92 : QI4 3, 1 4 6, 1 4 1 , 1Z16 6, 1 46. 1 73 , 25 1
38198:193,154,237.044,146,013,073
38204:066,146,240,013,176,014,203

394

Appendix B: LADS Object Code

3821 iZl : i213 2. 128, 149. 2 !21 Iii, 208. !21 !212 , !21 1 7
38216:230,204,076,245,148,206,157
38222:12155, 146,iiI32, 128, 149,!2124, 112H21
38228: 152, 1!2S1, 21213,141, iii 5:: , 146, 112
38234: 169, 121!il!2l, 11!S1, 2~~14, 141, !2154, 247
38240: 146,238,12155, 146, !2156, 173, 142
38246:(153, 146,237,iiI51, 146, 141, 1 iii 8
38252:iiI56, 146, 173,!2154, 146,237, 152
38258 : i!15 2, 1 46, 1 4 1 , iii 5 7 , 1 46 , 238, 1 26
38264:056,146,208,003,238,057,060
3827121: 146,(196, 172,12150, 146, 177, 145
38276:203,201,155,240,008,200,115
38282:208,247,230,204,076,131,210
38288:149,096,133,203,132,204,037
38294:160.000,177,203,240,006,168
38300:032,036,145,200,208,246,255
383iiI6:12196, 173,iiI53, 146,12124, lii15,247
38312: (ili2I1, 141,12135,146,173,12154, 2!!16
383 18: 1 46, 1 QI5 , 121 QI!2I, 14 1 , !2i 36, 1 46, 236
38324: 173,12151, 146, 141,!2137, 146, 11216
3833!!1: 173,12152,146,141, !!138, 146, 114
38336:iiI56, 173,iiI47, 146,237,iiI53, 136
38342: 146, 141 , 12139, 146, 173,12148, 123
38348: 146,237,12154, 146, 176,12114,21219
38354:173,047,146,240,003,206,001
3836!!I:iiI48, 146,2!216,!2147, 146,iiI76, 117
38366: 235,149,141, iil4iil, 146,12113,178
38372:039,146,240,022,032,067,006
38378: 146,12156, 173,12147, 146,237, iil15
38384:iiI56, 146, 141,12147, 146, 173, 181
38390:!!:148, 146,237,!2157, 146, 141,253
38396:iiI48, 146,iiI96, 173,12151, 146, 144
38402:133,203,141,035,146,056,204
3841218: 1 iii 9 , iii 4 2, 1 46, 1 4 1 , iii 3 7 , 1 46, 1 1 7
38414: 173, !2152, 146, 133,21214,141,12195
38420:036,146,105,000,141,038,230
38426:146,056,173,047,146,237,063
38432:12151,146, 141,iiI39, 146, 173,216
38438:12148, 146,237,!2152, 146, 141,ii14iil
38444:1214121,146, 176,!2114, 173,12147, 128
38450:146,208,003,206,048,146,039
38456:206,047,146,076,070,150,239
38462:013,039,146,240,003,032,023
38468: 134, 146,12156, 173,12147, 146,iil !212
38474: liiI9,i2142, 146, 141,047, 146, 193
38480: 173,iiI48, 146, 11215,121121121, 141, 181
38486: 12148, 146, 16iil, iZli2I!2I, 185, i2l!2H21, 113
38492:005.145.203,200,204,042,123
38498: 146, 144,245, 24~:1, 243, !!196, 188

395

Appendix B: LADS Object Code

3851114: 165, 131,24111,1111113,11132,11125,188
3851lZI: 145,11132,11114,145,11196,165,195
38516:1111211,141,11166, 146,QI32, 185, 175
38522: 145, 169, 171, 16~l, 15111,11132, 181
38528: 146, 149, 174,QI66, 146, 169,21QI
38534: I1IQII1I, 11132, 2Q17, 145,111 32, 121, 159
38540: 141,096 , 155,076,065,068,229
38546: 11183,11132,082, 11111, Q197, 1 I1IQI, 129
38552:121,046,155,000,253,083,042
38558: 121, 110, 116,11197, 12QI, 12132,242
38564: 11169, 114, 114, 1 11, 114, 155,11173
3857(!1:1Z10l21,253,11169, 114, 114, 111,12163
38576:114,032,045,032,000,066,209
38582: Q182, 11175,12132, 1 Q12, 114, 111, 186
38588:109,032,000,133,242,230,166
38594:242,169,000,133,243,169,126
38600:005,133, 2 44,0 32,000,2 16,062
38606: 176,008,032,210,217,165,246
38612:242,133,208,096,169,000,036
38618:133,212.133,213,096,032,013
38624: 191 , 15111, 165,212, 141 ,11143, 11112
3863111: 146 , 165,213, 141,11144, 146,Q161
38636:032,231,148,096,032,246,253
3 8642: 15111,12176,11187, 147, 173,11162, 169
38648:146,205,042,146,208,003,230
38654: 11176, 14111, 148,11132,223, 15111,255
3866111: 173.11151 . 146, 141, 1116111, 146,21219
38666: 173,QI52, 146, 141,11161, 146,217
38672:173,053,146,141,058,146,221
38678: 173,12154, 146, 141,11159, 146,229
38684: 165,208 ,205,042, 146,208,234
3869111:1112QI, 173,11155, 146,2 1118,11147, 171
38696:173,058,146,141,053,146,245
3871212: 173,11159, 146, 141, 11154, 146,253
387Q18: 11176,11158, 151, 11132,223, 15 111,23111
38714: 173,1116121, 146, 1 33,2QI3, 173, 178
3872111:11161.146, 133,2!214,!Z156, 173,!2169
38726:11153,146.229,2 1113, 141,!1139, 113
38732:146,173,054,146,229,204,004
38738: 141,1114111, 146, 176,1111111,QI 96, 17!21
38744:173,055,146,208,008,238,148
38750:039,146 ,208,003,238.040,000
38756: 146 ,11176, 165, 148,11124, 173,11164
38762:11162,146,11215,121121111,1 33, 129,169
38768: 169.111121111. 1 1215,1111115,133,13111,142
38774: 172,12162, 146, 185,fZI!21121,!2IiZI5, 176
3878111: 21211 , 155,24121, Qll 121,21211,12144,21217
38786:240,006,200,208 ,242,076,07 8
38792:044,148,152 ,056,237,062,0 67

396

Appendix B: LADS Object Code

~_ ... R 7. 98'. 1 4 6, 1 4 ' ... " , (i.' 6 '/ , ".c. _ v, , _ 1 4 6, 1 33, 1 28, 1 29
38804:169,007,133,131,032,025,133
3881121: 145, 169,~:H2I!2I, 133, 132,~:132,253
38816:218, 144, 166,~1H111,QI48, 01211, 226

38822: (2196, 11114. Il214, (2132, 1 15. 15121,255
38828:076,087,147,169,008,133,024
38834: 133.\2132. 1 1114. 151,166,131 ,127
3884i21: \2132. '2111, 145. ~:132, 246.15121.12132
38846:032,104,150,076,087,147,018
3 8 8 5 2: 1 6 9 , !2H~1 4, 1 3 3, 1 3 3 , (21 3 2, 1121 4 , QI QI 3
38858: 1 5 1 , 1 66, 1 3 1 , (2132 , Qllil 8, 1 4 5 , 12167
38864:~:!76,"!94, 147,173,(2162, 146, 138
38870:205,042,146,208,002,230,023
38876: 162,12176 , (2H213, 128, 173, Q!62, 1215 6
3 8 8 8 2: 1 4 6 , QI 3 2. 1 9 1 , 1 5!2!, 1 6 5 , 2 1 2 , 121 9 8
38888: 141,241, 151 , 165,213, 141, !21!2!4
38894: 242~ 151 ~ y-J32 , 255~ 255~ ~~J76~ 225
389!2I!2I :12!87.147,i2132,252,151,!2!76,221
389i~16:!2187, 147, 169,i2HZ!4, 133, 133, 155
38912:!2!32, lQ!4, 151, 165, 131,!2!32, 1!~!3
38918: 212, 144, 169, 121 !2! ![l , 157, Q!68, 244
38924: "H1!3, 169. !2!32, 157,12169, !2HZI3, 189
3893ii'1: 169, ii'HZHZI, 157, i2172,liIQI3, 169, i2!76
38936:080,157,073,003,169,007,001
38942:157,066.003,032,002,145,179
38948: 165, 131 ,1Z!32,212, 144,!2!24,232
38954: 189, li172, QIQ!3, 1 i215, Qli2I!2!, 141, Q!4i2!
3896Q!: 1Z!4 7, 146, 189 ,12173,01213, Il~15, i2!99
38966: ii'132 , 141,12148, 146, 165, !2H211 ,i2!75
38972: 21211 , 136,24 121, !2!~:16, 12132, 115, i2!22
38978: 15!~!,12176,!2!87, 147,i2!32, 104, 15!2!
38984: 15i~l, li!96 , 12188, 169, 181, 16!21, 148
3899ii'1: 15i21, "132,146,149,11214, li2!4, 251
38996: li~14, i2!56, 233, i2!i212, 17i~l, 1(2!4, 241
39002:233,000,032,207,145,162,101
39i2!!2!8:255, 154,i2!32, 121 , 141,Q!76, li2!7
39014:203,146,076,068,065,076,224
39020:068,089,074,083,082,082,074
39i2!26: Q!84, ii'183, ~:!-66, 12!6 7,12183, 12!66, kil51
39032:069,081.066,067,067,067,025
39038:077,080,066,078,069,076,060
39044:068,088,074,077,080,083,090
39050:084,065,083,084,089,083,114
39056:084,088,073,078,089,068,112
39062:069,089,068,069,088,068,089
39068:069,067,073,078,088,073,092
39074:078,067,067,080,089,067,098
39080:080,088,083,066,067,083,123
39086:069,067,065,068,067,067,065

397

Appendix B: LADS Object Code

39092:076,067,084,065,088,084,132
39098:065,089,084,088,065,084,149
39104:089,065,080,072,065,080,131
39110:076,065,066,082,075,066,116
39116:077,073,066,080,076,065,129
39122:078,068,079,082,065,069,139
39128:079,082,066,073,084,066,154
39134:086,067,066,086,083,082,180
39140:079,076,082,079,082,076 ,1 90
39146:083,082,067,076,068,067,165
39152:076,073,065,083,076,080,181
39158:072,080,080 ,076,080,082,204
39164:084,073,083,069,068,083,200
39170:069,073,084,083,088,084,227
39176:088,083,067,076,086 , 078,230
39182:079,080,001,005,009,000,188
39188:008,008,008,001,008,005,058
39194:006,001 ,002 ,002,000,000,037
39200:000,002,000,002,004,004,044
39206:001,000,001,000,000,000,040
39212:000,000,000,000,000, 008,0 52
39218:008,001,001,001,007,008,076
39224:008.003,003,003,000 ,000,073
39230:003.000,000,000,000 ,00 0 ,065
39236:000,000,000,000,161,160,133
39242:!2132,!2196, 176,24fl , 144, 193, 187
39248:208, 162,!2176 , 129, 132, 134, 153
39254:200,136,202,198,232 , 230,004
39260:192,224,225,056,097,024.1 42
39266: 17fl, 168, 138, 152 , f I 72, If14, 134
39272:000,048,016,033,001,065 ,0 11
39278:036,080,112,034,098,066,024
39284:216,088,002,008,040,064,022
3929!Z!: 248. 12!2!, 186. 154. 184,234 . 224
39296:048,049,050,051,052 ,053,175
39302:054,055,056,057.065,066,231
39308:067,068,069,070,000 ,000 ,1 58
39314:000,000,000,000,000 ,000,1 46
39320:000,000,000,000,000,000,152
39326:000,000,000.000,000 ,000.1 58
39332:000,000,000,000,000 ,000, 164
39338:000,000,000,000,000,000 ,170
39344:000.000,000,000.000,000,176
39350:000.000,000.000.000,000 , 182
39356:000,000 , 000,000,000,000,188
39362:000,000,000,000 ,000,000, 194
39368:000,000.000 ,000,000,000,200
39374:000,000 ,00 0,000 ,000,000,2 06
39380:000,000,000,000,000 ,000,2 12

398

Appendix B: LADS Object Code

39386:000,000,000,000,000,000,218
39392:000,000.000,000,000,000,224
39398:000,000,000,000,000,000,230
39404:000,000,000,000,000,000,236
394 1 0:000,000,000,000.000,000,242
39416:000,000,000,000,000,000,248
39422 : 000,000,000,206,239.160,091
39428:211,244,225,242,244,160,050
39434: 193 ,228,228,242,229,243,093
39440:243,000,045,045,045 ,0 45,183
39446:045,045,045,045,045,045,036
39452:045,045,045,045,045,032,029
39458 : 194~242~225~ 238~227 .. 232 ~ 112
39 464:160.2 07,245.244.160,239,015
39470:230,160,210, 225,238 ,231,060
39476 : 229.000,213,238,228,229,16 5
39482 :230,233,238,229,228,160,096
39488:204,225,226,229 , 236.000,160
39 494: 031,031,031,031,031,031,000
39500:031,031,031,032,206,225,120
395Q!6: 235.229,228, 16Q!, 236,225, 115
3 951 2:226,229,236,000,031,031,073
3 9518: !!!31, ~~!31, Q!31, ~!32, 188, 188, ~!83
39524: 188,188, 188,188 , 188, 188,2!!!4
3953~!: 16l21, 196 , 2l2!1, 211. 2!Z!3, 16~~!, 213
39536: 197 , 21 QI, 21 ii!, 2!!17 ,21 l21, 16Q!, l2!26
3 9 5 4 2: 1 9 Q!, 1 9 ~~! , 1 9 Q!, 1 9 l2!, 1 9!2!, 1 9 Q! , 2 3 4
39548:190.190,000,031,031.031,085
39554 : Q! 3 1 , iZI3 1 , 1 6 iZl, 1 73, 1 73, 1 6 '~l , ~! 9 Q!
39560:196,245,240,236,233,227,233
39566:225,244,229,160,160,204,084
39572: 225~ 226 :. 229 .. 236~ 16Q~~ 173, 117
39578 : 173, 16 !!!, iZi!!Ii!!, !!!3 1 ,!!131 , i2131 , QI68
39584:i!!3 1 .!!!31, 16 Q!. 173,173, 16l2!,12~!
39590:211,249 ,238.244.225.248,045
3 9596:160 , 197,242 ,242,239, 242,214
396!2!2: 16!Z!, 173 , 173 , 16!2!,!2Ii!! l2!,Ql!!!~~!,l2176

Program B-5. Apple LADS: Hex DATA
79FO- 4C F5 82
7AOO- A9 00 AO .,..'")

.J. ..:... 99 CE 8F 88
7A08- DO FA A9 00 85 EB 85 4C
7AI0- 80 E4 8F A9 7A 85 EC 85
7A18- 40 80 E5 SF A9 01 80 FA
7A20- 8F B9 00 04 C9 AO FO 07
7A2S- 99 F 3 8E C8 4C 21 7A 99
7A30- F3 8E C8 B9 00 04 C9 AO
7A38- DO E7 88 84 F9 20 E5 80
7A40- 20 58 8 3 A9 00 80 04 8F

399

Appendix B: LADS Object Code

7A48- 20 OE 84 AD E7 8F DO 3F
7A50- 20 50 89 A9 E6 20 06 81
7A58- A9 4C 20 06 81 A9 41 20
7A60- 06 81 A9 44 20 06 81 A9
7A68- 53 20 06 81 20 50 89 AD
7A70- DO 8F DO OB A9 F1 85 FB
7A78- A9 80 85 FC 20 81 83 AD
7A80- 07 8F 85 FD 80 DO 8F AD
7A88- 08 8F 85 FE 80 01 8F 20
7A90- 2F 82 AD 04 8F FO 03 4C
7A98- A1 70 20 OE 84 A9 00 80
7AAO- DC 8F 80 E6 8F AC E7 8F
7AA8- DO 03 4C C9 7A 8C FB 8F
7ABO- AD F9 8F FO OC 20 59 89
7AB8- 20 OA 89 20 32 89 20 OA
7ACO- 89 AD F2 8F FO 03 20 06
7AC8- 88 4C OA 83 AD CF 8F FO
7ADO- 17 C9 03 DO 72 A9 0 1 80
7AD8- CF 8F AD F4 80 DO 68 A9
7AEO- 08 18 60 CE 8F 80 CE 8F
7AE8- 4C B2 7C AD E7 8F FO 39
7AFO- AO FF C8 B9 F1 80 FO 2E
7AF8- 99 F3 8E C9 20 DO F3 C8
7BOO- B9 F1 80 C9 3D DO 03 4C
7808- E2 7C A2 00 8E FB 8F 8A
7B10- 99 F3 8E B9 F1 8D FO 08
7B18- 9D F1 80 E8 C8 4C 13 7B
7B20- 90 F1 80 4C C9 7A 20 78
7B28- 7F 20 1A 7F 4C C9 7A AD
7B30- 38 8E C9 40 BO 06 AD 39
7B38- 8E EE E6 8F 49 80 80 05
7B40- 8F 20 BC 7F 4C BE 7B AO
7B48- 00 8C DC 8F B9 F5 80 C9
7B50- 41 90 03 EE DC 8F 99 38
7B58- 8E C8 B9 F5 80 FO 16 99
7B60- 38 8E C9 41 90 03 EE DC
7B68- 8F C8 B9 F5 80 Fn 06 99
7B70- 38 8E 4C 69 7B 88 8C DB
7B78- 8F AD DO 8F DO 40 AD DC
7B80- 8F DO AC A9 38 85 FB A9
7888- 8E 85 FC AO 00 AD 38 8E
7B90- C9 30 BO 07 18 E6 FB 90
7B98- 02 E6 FC B1 FB FO 10 C9
7BAO- 29 FO OC C9 2C FO 08 C9
7BA8- 20 FO 04 C8 4C 9B 7B 48
7BBO- 98 48 A9 00 91 FB 20 81
7BB8- 83 68 A8 68 91 FB AD 38
7BCO- 8E C9 23 FO 3F C9 28 FO
7BC8- 17 AD CF 8F C9 08 FO 37

400

Appendix B: LADS Object Code

7BDO- C9 03 DO 71 A9 OS IS 6D
7BOS- CE SF SD CE SF 4C B2 7C
7BEO- AC DB SF B9 3S SE C9 29
7BES- F0 10 AD CF 9F C9 01 D0
7BFO- 09 A9 10 IS 60 CE SF SO
7BFS- CE SF AD CF SF C9 06 FO
7COO- 53 4C 77 7C 4C 92 7C AD
7COS- E7 SF DO 03 4C 7 7 7C 3S
7CI0- AD 07 SF E5 FO 4S AD OS
7C1S- SF E5 FE BO OE C9 FF FO
7C20- 04 6S 4C 00 7F 6S 10 OC
7C2S- 4C 37 7C FO 04 6S 4C 00
7C30- 7F 6S 10 03 4C 00 7F 3S
7C3S- E9 02 SO 07 SF A9 00 SO
7C40- OS SF 4C 77 7C AC DB SF
7C4S- SS B9 3S SE C9 2C DO 04
7C50- CS 4C FC 70 AD CE SF C9
7C5S- 4C DO 03 4C SO 7C AD OS
7C60- SF DO 55 AD CF SF C9 06
7C6S- BO 00 C9 02 FO 09 A9 04
7C70- IS 60 CE SF SO CE SF 20
7C7S- 40 SS 20 73 SS 4C E2 7C
7CSO- AC DB SF B9 3S SE C9 29
7CSS- DO 05 A9 6C SO CE SF 4C
7C90- DC 7C AD 39 SE C9 22 DO
7C9S- 06 AD 3A SE SO 07 SF AD
7CAO- CF SF C9 01 DO 01 A9 OS
7CAS- IS 60 CE SF SO CE SF 4C
7CBO- 77 7C 20 40 SS 4C E2 7C
7CBS- AD CF SF C9 02 FO 04 C9
7CCO- 07 DO OC AD CE SF IS 69
7CCS- OS SO CE SF 4C DC 7C C9
7COO- 06 BO 09 AD CE SF IS 69
7COS- OC SO CE SF 20 40 SS 20
7CEO- SO SS AD E7 SF DO 03 4C
7CES- 9E 70 AD F9 SF DO 03 4C
7CFO- 9E 70 AD FB SF DO 3E AD
7CFS- F5 SF FO 2A A9 14 3S E5
7000- 24 SO ES SF 20 lC S2 A2
700S- 04 20 A6 SI AC ES SF 10
7010- 05 AO 02 4C IS 70 A9 20
7018- 20 06 81 S8 00 FA 20 lC
7020- 82 A2 01 20 A2 SI A9 14
702S- S5 24 A9 F3 85 FB A9 8E
7030- 85 FC 20 F9 88 A9 IE 3S
703S- E5 24 80 E9 SF A9 IE 85
7040- 24 AD F5 8F FO IF 20 lC
7048- 82 A2 04 20 A6 SI AC E9
7050- 8F FO OA 30 08 A9 20 20

401

Appendix B : LADS Object Code

7058- 06 81 88 00 FA 20 lC 82
7060- A2 01 20 A2 81 20 66 89
7068- AO F3 8F FO 11 C9 01 00
7070- 05 A9 3C 4C 78 70 A9 3E
7078- 20 06 81 20 8B 89 AO FC
7080- 8F FO 13 20 OA 89 A9 3B
7088- 20 06 81 A9 00 85 FB A9
7090- 02 85 FC 20 F9 88 20 50
7098- 89 AO 04 8F 00 03 4C 8F
70AO- 7A AO E7 8F 00 2C EE E7
70A8- 8F 38 A5 FO EO 00 8F 80
70BO- FO 8F A5 FE EO 01 8F 80
70B8- FE 8F AO 00 8F 85 FD AO
7DCO- 01 8F 85 FE 20 lC 8 2 A9
70C8- 01 20 35 82 20 E5 80 4C
7000- 40 7A 20 IC 82 A9 01 20
7008- 35 82 A9 02 20 35 82 AO
70EO- F5 8F FO 15 20 IC 82 A2
70E8- 04 20 A6 81 A9 00 20 06
7DFO- 81 20 lC 82 A9 04 20 3 5
7DF8- 82 4C DO 0 3 B9 3 8 BE C9
7EOO- 58 FO 62 88 88 B9 3S 8E
7E08- C9 29 DO 0 3 4C EO 7B AD
7EI0- 08 8F DO OF AD CF SF C9
7E18- 02 FO 4F C9 05 FO 4B C9
7E20- 01 FO 77 AD CF 8F C9 01
7E28- DO OC AD CE 8F 18 69 18
7E30- 80 CE 8F 4C DC 7C AD CF
7E38- 8F C9 05 FO 08 A9 31 20
7E40- DO 7E 4C 51 7E AD CE 8F
7E48- 18 69 lC SO CE SF 4C DC
7E50- 7C 20 72 89 20 59 89 A9
7E58- B4 85 FB A9 8F 85 FC 20
7E60- F9 88 4C E2 7C AD 08 8F
7E68- DO 33 AD CF 8F C9 02 DO
7E70- OC A9 10 18 60 CE 8F 80
7E78- CE BF 4C 7 7 7C C9 01 FO
7E80- 10 C9 03 FO OC C9 05 FO
7E88- 08 A9 3 2 2 0 DO 7E 4C 51
7E90- 7E A9 14 18 6D CE 8F 80
7E98- CE 8F 4C 77 7C AD CF 8F
7EAO- C9 02 DO OC A9 18 18 6D
7EA8- CE 8F SO CE 8F 4C DC 7C
7EBO- C9 01 FO 10 C9 03 FO OC
7EB8- C9 05 FO 08 A9 3 3 20 DO
7ECO- 7E 4C 51 7E A9 lC 18 60
7EC8- CE 8F 80 CE 8F 4C OC 7C
7EOO- 80 E8 8F 8C EA 8F 8E E9
7ED8- 8F A9 8A 20 06 81 68 AA

402

Appendix B: LADS Object Code

7EEO- 68 A8 98 48 8A 48 98 20
7EE8- 24 ED AD E8 8F AC EA 8F
7EFO- AE E9 8F 60 AO 00 98 99
7EF8- FI 8D C8 CO FF DO F8 60
7FOO- 20 50 89 20 72 89 20 59
7F08- 89 A9 23 85 FB A9 8F 85
7FIO- Fe 20 F9 88 20 50 89 4C
7F18- 77 7C AO FF C8 B9 Fl 8D
7F20- FO 56 C9 20 DO F6 C8 C8
7F28- 8C EI 8F 38 A5 EB ED El
7F30- 8F 85 EB A5 EC E9 00 85
7F38- EC AO 00 B9 FI 8D 49 80
7F40- 91 EB C8 B9 Fl 8D C9 20
7F48- FO 05 91 EB 4C 42 7F C8
7F50- B9 Fl 8D C9 3D FO 32 88
7F58- A5 FD 91 EB C8 A5 FE 91
7F60- EB AE EI 8F CA AO 00 BD
7F68- Fl 8D FO 08 99 Fl 8D E8
7F70- C8 4C 67 7F 99 Fl 8D 60
7F78- 20 72 89 A9 5C 85 FB A9
7F80- 8F 85 FC 20 F9 88 4C B7
7F88- 7F 88 8C E2 8F AD DD 8F
7F90- DO 17 C8 C8 C8 8C D6 8F
7F98- A9 Fl 18 6D D6 8F 85 FB
7FAO- A9 8D 69 00 85 FC 20 81
7FA8- 83 AC E2 8F AD D7 8F 91
7FBO- EB AD D8 8F C8 91 EB 68
7FB8- 68 4C E2 7C AD E4 8F 85
7FCO- ED AD E5 8F 85 EE 20 CA
7FC8- 80 A9 FF 8D F8 8F 38 A5
7FDO- EB E5 ED A5 EC E5 EE BO
7FD8- 63 A2 00 38 A5 ED E9 02
7FEO- 85 ED A5 EE E9 00 85 EE
7FE8- AO 00 Bl ED 30 OC A5 ED
7FFO- DO 02 C6 EE C6 ED E8 4C
7FF8- EA 7F A5 ED 8D EB 8F A5
8000- EE 8D EC 8F Bl ED CD D5
8008- 8F FO 03 4C 2C 80 E8 BE
8010- D6 8F A2 01 AD E6 8F FO
8018- 04 C8 20 CA 80 C8 B9 38
8020- 8E FO 53 C9 30 90 4F E8
8028- Dl ED FO Fl AD EB 8F 85
8030- ED AD EC 8F 85 EE 20 CA
8038- 80 4C CE 7F AD F8 8F 30
8040- 01 60 AD E7 8F DO 02 FO
8048- 17 20 72 89 20 59 89 20
8050- OA 89 A9 4C 85 FB A9 8F
8058- 85 FC 20 F9 88 20 50 89
8060- 68 68 AD CE 8F 29 IF C9

403

Appendix B: LADS Object Code

8068- 10 FO 08 AD F3 8F DO 03
8070- 4C DC 7C 4C 77 7C EC D6
8078- 8F FO 03 4C 2C 80 EE F8
8080- 8F FO 03 20 03 80 AC D6
8088- 8F AD E6 8F FO 01 C8 Bl
8090- ED 80 07 8F C8 Bl ED 80
8098- 08 8F AD F3 8F FO OA C9
80AO- 02 DO IE AD 08 8F 80 07
8QA8- 8F AD F2 8F FO 13 18 AD
80BO- FO 8F 60 07 8F 80 07 8F
80B8- AD Fl 8F 60 08 8F 80 D8
80CO- 8F AD E7 8F FO 01 60 4C
80C8- 2C 80 A5 ED DO 02 C6 EE
8000- C6 ED 60 20 72 89 A9 96
80D8- 85 FB A9 8F 85 FC 20 F9
80EO- 88 20 50 89 60 20 lC 82
80E8- A9 01 20 35 82 A9 01 85
80FO- 2C A9 90 85 20 20 5F 81
80F8- EE FF 8F 60 A9 13 85 2C
8100~ A9 90 85 20 20 5F 81 EE
8108- 00 90 60 60 A9 25 85 2C
8110- A9 90 85 20 20 8A 81 20
8118- DC 03 85 2B 84 2A AO 08
8120- Bl 2A 60 80 3F 90 A9 37
8128- 85 2C A9 90 85 20 20 8A
8130- 81 60 AD FF 8F FO 27 A9
8138- 49 85 2C A9 90 85 20 20
8140- 8A 81 A9 00 80 FF 8F 60
8148- AD 00 90 FO 11 A9 5B 85
8150- 2C A9 90 85 20 20 8A 81
8158- A9 00 80 00 90 60 60 AO
8160- 08 Bl 2C 85 2A C8 Bl 2C
8168- 85 2B A9 F3 85 FB A9 8E
8170- 85 FC AO 00 A9 AO 91 2A
8178- C8 CO IF 00 F9 AO 00 81
8180- FB 09 80 91 2A C8 C4 F9
8188- DO F5 20 DC 03 85 28 84
8190- 2A AO 00 Bl 2C 91 2A C8
8198- CO 12 00 F7 A2 00 20 06
81AO- 03 60 8E 60 90 60 8A 80
81A8- 6E 90 EO 04 00 OA A9 EC
81BO- 80 53 AA A9 81 80 54 AA
81B8- 60 8C 70 90 8E E9 8F AD
81CO- 60 90 C9 01 DO OC 20 OC
81C8- 81 08 AC 70 90 AE E9 SF
8100- 28 60 AC 70 90 60 8C 70
8108- 90 80 6F 90 AD 6E 90 C9
81EO- 02 DO IE AD 6F 90 20 23
81E8- 81 4C 02 81 80 6F 90 C9

404

Appendix B: LADS Object Code

81FO- 80 DO 02 A9 OA 80 90 CO
81F8- AD Cl Cl 30 F8 AD 6F 90
8200- 60 AD 6E 90 C9 04 DO 09
8208- AD 6F 90 20 EC 81 4C 0 2
8210- 81 AD 6F 90 09 80 20 FO
8218- FD 4C 02 81 A9 00 80 6E
8220- 90 80 60 90 A9 FO 80 53
8228- AA A9 FO 80 54 AA 60 AD
8230- 00 CO C9 83 60 C9 01 DO
8238- 03 4C 32 81 C9 02 DO 03
8240- 4C 48 81 4C 5E 81 80 6F
8248- 90 A9 00 C5 88 DO 18 A9
8250- 02 C5 89 DO 15 AO 00 81
8258- B8 C9 20 DO 05 E6 B8 4C
8260- 57 82 C9 2F 90 04 C9 3A
8268- 90 53 AD 00 02 C9 41 DO
8270- 37 AD 01 02 C9 53 DO 30
8278- AD 02 02 C9 40 DO 29 AD
8280- 03 02 C9 20 DO 22 AO 00
8288- 89 04 02 C9 00 FO 09 09
8290- 80 99 00 04 C8 4C 88 82
8298- A9 AO 99 00 04 99 01 04
82AO- 99 02 04 68 68 4C 00 7A
82A8- AD 6F 90 C9 3A BO 00 C9
82BO- 20 DO 03 4C Bl 00 38 E9
82B8- 30 38 E9 DO 60 A6 AF 86
82CO- 69 A6 80 86 6A 18 20 OC
82C8- OA 20 01 82 68 68 4C 6A
8200- 04 AO 00 84 94 A9 02 85
8208- 95 81 88 91 94 C8 C9 00
82EO- DO F7 88 88 81 94 C9 20
82E8- FO F9 C8 A9 00 91 94 C8
82FO- C8 C8 C8 C8 60 A9 46 85
82F8- BB A9 82 85 8C A9 4C 85
8300- 8A A9 FC 85 73 A9 79 85
8308- 74 60 AO 00 A2 FF E8 89
8310- C9 8C CO Fl 80 FO OA C8
8 318- C8 C8 EO 39 DO FO 4C EB
8320- 7A C8 89 C9 8C CD F2 8D
8328- FO 06 C8 C8 DO EO FO EE
8330- C8 B9 C9 8C CD F3 8D FO
8338- 05 C8 DO D2 FO EO AD F4
8340- 80 C9 20 FO 04 C9 00 DO
8348- 05 BO 71 80 80 CF 8F BC
8350- A9 80 8C CE 8F 4C CC 7A
8358- A2 01 20 A2 81 A2 06 8E
8360- E9 8F 20 B9 81 AE E9 8F
8368- CA DO F4 20 B9 81 C9 2A
8370- FO OE A9 12 85 FB A9 8F

405

Appendix B: LADS Object Code

8378- 85 FC 20 F9 88 4C 02 70
8380- 60 AO 00 Bl FB FO 04 C8
8388- 4C 83 83 8C OF 8F 88 A9
8390- 00 80 07 8F 80 08 8F A2
8398- 01 8E E9 8F Bl FB 29 OF
83AO- 80 00 8F 80 10 8F A9 00
83A8- 80 OE 8F 80 11 8F CA FO
83BO- 12 20 03 83 AD 00 8F 80
83B8- 10 BF AD OE 8F 80 11 BF
83CO- 4C AE B3 EE E9 BF AE E9
83C8- 8F 20 FA 83 88 CE OF 8F
8300- DO CA 60 18 OE 00 8F 2E
8308- OE 8F OE 00 8F 2E OE BF
B3EO- 18 AD 10 BF 60 00 BF BD
83E8- 00 8F AD 11 BF 60 OE 8F
83FO- BO OE BF OE 00 8F 2E OE
83FB- 8F 60 18 AD 00 8F 60 07
8400- BF BD 07 BF AD OE 8F 60
B408- 08 BF BO 08 8F 60 20 F4
B410- 7E AO 00 8C DO 8F 8C FC
B418- 8F BC F3 8F BC F2 BF AD
8420- F7 8F DO OC 20 B9 81 80
842B- 02 8F 20 89 81 80 D3 8F
8430- 20 B9 81 C9 20 DO 08 20
8438- B2 85 6B 6B 4C 8F 7A C9
B440- 20 4C 4C B4 20 B9 81 DO
B448- 03 4C B2 85 C9 3A DO 03
B450- 4C F6 B4 C9 3B DO 73 BC
8458- E8 8F AD F5 8F FO 55 80
B460- Fe BF AD EB BF FO 06 20
8468- 94 84 4C BC 84 20 B9 81
8470- FO OE C9 7F 90 03 20 04
847B- 85 99 Fl BD C8 4C 60 84
8480- 20 59 89 20 OA 89 20 66
B488- 89 20 50 89 A9 00 80 EB
8490- 8F 4C BC 84 80 FC 8F 80
8498- E8 8F AO 00 20 B9 81 DO
84AO- 07 99 00 02 AC E8 8F 60
84AB- 10 03 20 El 87 99 00 02
84BO- C8 4C 9C 84 20 B9 81 FO
8488- 03 4C B4 84 20 82 85 AD
84CO- E8 8F DO 05 68 68 4C 8F
84C8- 7A 60 C9 3E FO 58 C9 3C
8400- FO 5F C9 28 DO 03 EE F2
84D8- 8F C9 2A DO 03 4C 39 85
84EO- C9 2E FO 16 C9 24 FO 15
84E8- C9 7F 90 03 20 04 85 99
84FO- Fl 8D C8 4C 44 84 80 F7
84F8- 8F 60 4C 56 86 99 Fl 8D

406

Appendix B: LADS Object Code

8500- C8 4 C 01 85 38 E9 7 F 80
8508- EO 8F A2 FF CE EO 8F FO
8510- 08 E8 BO DO DO 10 FA 30
8518- F 3 E8 BO DO DO 30 0 7 99
8520- Fl 80 C8 4C 19 85 29 7F
8528- 60 A9 02 80 F3 8F 4C 44
853 0- 84 A9 01 80 F3 8F 4C 44
8538- 84 AD F3 8F FO 20 A9 2A
8540- 99 Fl 80 C8 EE DO 8F AD
8548- F 3 8F C9 01 FO 08 A5 FE
8550- 80 0 7 8F 4C 44 84 A5 FO
8558- 80 07 8F 4C 44 84 20 44
8560- 84 AD E7 8F FO OB A9 2A
8568- 20 D6 81 20 66 89 20 50
8570- 89 AD DO 8F DO 20 AO 00
8578- 89 Fl 80 C9 20 FO 04 C8
8580- 4C 78 85 C8 8 4 F8 A9 Fl
8588- 18 65 F8 85 FB A9 80 69
8590- 00 85 FC 20 81 8 3 AD E7
859 8- 8F FO 08 AD F4 8F FO 03
85AO- 20 AO 87 AD 0 7 8F 85 FO
85A8- AD 08 8F 85 FE 68 68 4C
85BO- 8F 7 A 99 Fl 80 C8 CO FF
8 5 88- DO F8 99 Fl 80 20 B9 81
85CO- 20 B9 81 FO 06 A9 00 80
85C8- F7 8F 60 A9 01 80 04 8F
8500- 6 n A2 00 20 89 81 FO 2C
8508- C9 3A Fn 2 8 C9 20 FO F3
85EO- C9 38 FO 20 C9 2C FO OF
85E8- C9 29 FO OB 90 DE 8E E8
85FO- 99 Fl 80 C8 4 C 03 85 8E
85F8- DE 8F 99 Fl 80 C8 20 18
8600- 86 4C 44 84 80 E8 8F A9
8608- 00 8E DE 8F 99 Fl 80 20
8610- 18 86 AD E8 8F 4C 47 84
8618- A9 00 80 D7 8F 80 08 8F
8620- AA OE 07 8F 2E 08 8F OE
8628- 07 8F 2E 08 8F OE 07 8F
8630- 2E 08 8F OE 0 7 8F 2E 08
8638- 8F BO DE 8E C9 41 90 0 2
8640- E9 0 7 29 OF 00 07 8F 80
8648- 0 7 8F E8 EC DE 8F DO 01
8650- EE DO 8F A9 01 60 CO 00
8658- FO OE AE E7 8F DO 09 48
8660- 98 48 20 lA 7F 68 A8 68
8668- 99 Fl 80 C8 20 89 81 99
8670- Fl 80 C8 C9 42 DO 68 A9
8678- 00 80 ED 8F AD E 7 8F F O
8680- 17 8C EA 8F AD F 9 8F FO

407

Appendix B: LADS Object Code

8688- OF 20 59 89 20 OA 89 20
8690- 32 89 20 OA 89 AC EA 8F
8698- 20 89 81 99 Fl 80 C8 C9
86AO- 20 DO F5 20 B9 81 99 Fl
86A8- 80 C8 C9 22 DO 45 20 8 0

86BO- 81 DO 03 4C 85 87 C9 3A
86B8- DO 03 4C 88 87 C9 38 DO
86CO- OC 20 94 84 AE F5 8F 8E
86C8- FC 8F 4C 85 87 C9 22 DO
8600- 03 4C AE 86 AE E7 8F DO
8608- 09 20 EB 88 4C AE 86 4C
86EO- 56 8A 99 Fl 80 AA 8C EA
86E8- 8F 20 C3 88 AC EA 8F C8
86FO- 4C AE 86 A2 00 8E EE 8F
86F8- 90 06 8F E8 AD EE 8F DO
8700- 75 20 B9 81 FO 43 C9 3A
8708- FO 3F C9 3B DO OC 20 94
8710- 84 AE F5 8F 8E FC 8F 4C
8718- 49 87 80 80 8E AD E7 8F
8720- DO 00 AD 80 8E C9 20 DO
8728- 03 20 E8 88 4C FC 86 AD
8730- 80 8E 99 Fl 80 C8 C9 20
8738- FO 18 C9 00 FO 14 C9 3A
8740- FO 10 90 06 8F E8 4C FC
8748- 86 EE EE 8F 80 81 8E 4C
8750- lA 87 A9 06 85 FB A9 8F
8758- 85 FC 8C EA 8F 20 81 83
8760- AE 07 8F 20 C3 88 AC EA
8768- 8F A9 00 A2 05 90 06 8F
8770- CA DO FA 4C FC 86 AD E7
8778- 8F DO 03 20 EB 88 AD 81
8780- 8E C9 3A FO 03 20 B2 85
8788- 80 F7 8F EE FB 8F 68 68
8790- AD E7 8F FO 08 AD F9 8F
8798- FO 03 4C 65 70 4C 8F 7A
87AO- AD E7 8F C9 02 DO 01 60
87A8- 20 lC 82 A2 02 20 A6 81
87BO- 38 AD 07 8F E5 FD 80 D5
87B8- 8F AD D8 8F E5 FE 8D D6
87CO- 8F A9 00 20 D6 81 AD D5
87C8- 8F DO 03 CE 06 8F CE 05
87DO- 8F DO EE AD 06 8F DO E9
8708- 20 lC 82 A? 01 20 A2 81
87EO- 60 38 E9 7F 80 EO 8F A2
87E8- FF CE EO 8F FO 08 E8 BD
87FO- DO DO 10 FA 3 0 F3 E8 BD
8~F8- DO DO 30 07 99 00 0 2 C8
8800- 4C F6 87 29 7F 60 AO 00
8808- A2 00 B9 Fl 80 C9 2B FO

408

Appendix B: LADS Object Code

8810- 04 C8 4C OA 88 C8 B9 Fl
8818- 80 20 25 88 BO 12 90 DE
8820- 8E E8 4C 15 88 C9 3A BO
8828- 06 38 E9 30 38 E9 DO 60
8830- A9 00 9D DE 8E A9 DE 85
8838- FB A9 8E 85 FC 20 81 83
8840- AD D7 8F 8D FO 8F AD 08
8848- 8F 8D ~1 8F 60 AD E7 8F
8850- DO 04 20 EB 88 60 AD F9
8858- 8F FO 11 20 lC 82 A2 01
8860- 20 A2 81 AE CE 8F 20 13
8868- 89 20 OA 89 AE CE 8F 20
8870- C3 88 60 AD E7 8F DO 04
8878- 20 EB 88 60 AD F9 8F FO
8880- 06 AE D7 SF 20 13 89 AE
8888- 07 8F 4C C3 88 AD E7 8F
8890- DO 07 20 EB 88 20 EB 88
8898- 60 AD F9 8F FO 06 AE D7
88AO- 8F 20 13 89 AE D7 8F 20
88A8- C3 88 AD F9 8F FO OE AD
88BO- FA 8F FO 03 20 OA 89 AE
88B8- D8 8F 20 13 89 AE 08 8F
88CO- 4C C3 88 BE D6 8F AD F6
88C8- 8F ~O 05 AO 00 8A 91 FD
88DO- AD F4 8F FO 16 20 lC 82
88D8- A2 02 20 A6 81 AD D6 8F
88EO- 20 D6 81 20 Ie 82 A2 01
88E8- 20 A2 81 18 A9 01 65 FD
88FO- 85 FD A9 00 65 FE 85 FE
88F8- 60 AO 00 Bl FB ~O OA 20
8900- D6 81 20 85 89 C8 4C FB
8908- 88 60 A9 20 20 D6 81 20
8910- 85 89 60 8E E9 8F AD FA
8918- 8F FO OB 8A 20 3D 8A 20
8920- AE 89 AE E9 8F 60 A9 00
8928- 20 24 ED 20 AE 89 AE E9
8930- 8F 60 AD FA 8F FO OE A5
8938- FE 20 3D 8A A5 FD 20 3D
8940- 8A 20 El 89 60 A6 FD A5
8948- FE 20 24 ED 20 El 89 60
8950- A9 OD 20 D6 81 20 85 89
8958- 60 AE D2 8F AD 03 8F 20
8960- 24 ED 20 17 8A 60 A9 Fl
8968- 85 FB A9 8D 85 FC 20 F9
8970- 88 60 A9 07 20 D6 81 A9
8978- 12 20 06 81 20 66 89 A9
8980- OD 20 D6 81 60 AE E7 8F
8988- DO 01 60 AE F5 8F DO 01
8990- 60 80 E8 8F 20 Ie 82 A2

409

Appendix B: LADS Object Code

8998- 04 20 A6 81 AD E8 8F 20
89AO- D6 81 20 lC 82 A2 01 20
89A8- A2 81 AD E8 8F 60 AE E7
89BO- 8F DO 01 60 AE F5 8F DO
8988- 01 60 20 1C 82 A2 04 20
89CO- A6 81 AD FA 8F FO 09 AD
89C8- E9 8F 20 3D 8A 4C 08 89
89DO- A9 00 AE E9 8F 20 24 ED
8908- 20 lC 82 A2 01 20 A2 81
89EO- 60 AE E7 8F DO 01 60 AE
89E8- FS 8F DO 01 60 20 lC 82
89FO- A2 04 20 A6 81 AE FA 8F
89F8- FO OD A5 FE 20 3D 8A A5
8AOO- FD 20 3D 8A 4C OE 8A A5
8A08- FE A6 FD 20 24 ED 20 lC
8AI0- 82 A2 01 20 A2 81 60 AE
8A18- E7 8F DO 01 60 AE F5 8F
8A20- DO 01 60 20 lC 82 A2 04
8A28- 20 A6 81 AD D3 8F AE D2
8A30- 8F 20 24 ED 20 lC 82 A2
8A38- 01 20 A2 81 60 48 29 OF
8A40- A8 B9 El 80 AA 68 4A 4A
8A48- 4A 4A A8 B9 El 8D 20 D6
8A50- 81 8A 20 D6 81 60 C9 46
8A58- DO 08 20 B9 8A 68 68 4C
8A60- 8F 7A C9 45 DO 06 20 12
8A68- 88 4C 50 8A C9 44 DO 03
8A70- 4C 58 8B C9 50 DO 03 4C
8A78- Cl 8B C9 4E DO 03 4C 02
8A80- 8C C9 4F DO 03 4C ED 8B
8A88- C9 53 DO 03 4C 9A 8C C9
8A90- 48 DO 03 4C B4 8C 99 Fl
8A98- 80 20 59 89 20 OA 89 20
8AAO- 32 89 20 72 89 20 66 89
8AA8- A9 B4 85 FB A9 8F 85 FC
8ABO- 20 F9 88 20 50 89 4C D4
8AB8- 8B 20 89 81 C9 20 FO 03
8ACO- 4C B9 8A AO 00 20 B9 81
8AC8- C9 00 FO OE C9 7F 90 03
8ADO- 20 04 85 99 Fl 8D C8 4C
8AD8- C5 8A 84 F9 AO 00 B9 Fl
8AEO- 80 FO 07 99 F3 8E C8 4C
8AE8- DE 8A AD E7 8F DO 06 20
8AFO- 32 89 20 OA 89 20 66 89
8AF8- 20 50 89 20 E5 80 A2 01
8BOO- 20 A2 81 20 B9 81 20 B9
8B08- 81 20 B2 85 A2 00 8E D4
8810- 8F 60 A9 2E 20 06 81 A9
8B18- 45 20 06 81 A9 4E 20 D6

410

Appendix B: LADS Object Code

8820- 81 A9 44 20 D6 81 A9 20
8B28- 20 D6 81 20 89 81 20 89
8B30- 8A AD E7 8F FO 03 EE D4
8838- 8F EE E7 8F 38 A5 FD ED
8840- DO 8F 8D FD 8F A5 FE ED
8B48- Dl 8F 8D FE 8F AD DO 8F
8850- 85 FD AD Dl 8F 85 FE 20
8B58- OE 84 60 AD E7 8F FO IE
8860- 20 B9 81 99 Fl 8D AO 00
8868- 20 89 81 FO 14 C9 7F 90
8870- 03 20 04 85 99 Fl 8D 99
8878- F3 8E C8 4C 68 88 4C 04
8880- 88 84 F9 20 66 89 20 50
8B88- 89 EE F4 8F 20 FC 80 A2
8890- 02 20 A6 81 AO DO 8F 20
8898- D6 81 AD 01 8F 20 D6 81
88AO- AD FD 8F 20 D6 81 AD FE
88A8- 8F 20 D6 81 20 lC 8 2 A2
8880- 01 20 A2 81 20 82 85 68
8888- 68 A2 00 8E D4 8F 4C 8F
8BCO- 7A AD E7 8F F O OE 20 08
88C8- 81 EE F5 8F 20 lC 82 A2
88DO- 01 20 A2 81 20 89 81 FO
88D8- 07 C9 3A FO 06 4C D4 88
88EO- 20 82 85 68 68 A2 00 8E
88E8- D4 8F 4C SF 7A A9 2E 20
88FO- D6 81 A9 4F 20 D6 81 20
88F8- 50 89 A9 01 80 F6 8F 4C
8COO- 04 88 AD E7 8F FO CO 20
8C08- 89 81 C9 50 FO OC C9 4F
8CI0- FO 3A C9 53 FO 6A C9 48
8C18- FO 4C A9 2E 20 D6 81 A9
8C20- 4E 20 06 81 A9 50 20 06
8C28- 81 20 50 89 CE F~ 8F 20
8C30- lC 82 A2 04 20 A6 81 A9
8C38- OD 20 D6 81 A9 04 20 35
8C40- 82 20 lC 82 A2 01 20 A2
8C48- 81 4C 04 88 A9 2E 20 D6
8C50- 81 A9 4E 20 D6 81 A9 4F
8C58- 20 D6 81 20 50 89 A9 00
8C60- 8D F6 8F 4C 04 88 A9 2E
8C68- 20 D6 81 A9 4E 20 D6 81
8C70- A9 48 20 D6 81 20 50 8 9
8C78- A9 00 8D FA 8F 4C 04 88
8C80- A9 2E 20 D6 81 A9 4E 20
8C88- D6 81 A9 5 3 20 D6 81 20
8C90- 50 89 A9 00 8D F9 8F 4C
8C98- 04 88 A9 2E 20 06 81 A9
8CAO- 5 3 20 06 81 20 50 89 AD

411

Appendix B : LADS Object Code

8CA8- E7 8F FO 05 A9 01 8D F9
8C80- 8F 4C 04 88 A9 2 E 20 06
8CB8- 81 A9 48 20 06 81 20 50
8CCO- 89 A9 01 80 FA 8F 4C 04
8CC8- 8B 4C 44 41 4C 44 59 4A
8COO- 53 52 52 54 53 42 4 3 53
8C08- 42 45 51 42 43 43 43 40
8CEO- 50 42 4E 45 4C 44 58 4A
8CE8- 4D 50 53 54 41 53 54 59
8CFO- 53 54 58 49 4E 59 44 45
8CF8- 59 44 45 58 44 45 4 3 49
8000- 4E 58 49 4E 43 43 50 59
8D08- 43 50 58 53 42 43 53 45
8010- 43 41 44 43 43 4C 4 3 54
8D18- 41 58 54 41 59 54 58 41
8020- 54 59 41 50 48 41 50 4C
8028- 41 42 52 4B 42 4D 49 42
8030- 50 4C 41 4E 44 4F 52 41
8D38- 45 4F 52 42 49 54 42 56
8040- 43 42 56 53 52 4F 4C 52
8D48- 4F 52 4C 5 3 52 43 4C 44
8050- 43 4C 49 41 53 4C 50 48
8058- 50 50 4C 50 52 54 49 53
8060- 45 44 53 45 49 54 53 58
8068- 54 58 53 43 4C 56 4E 4F
8070- 50 01 05 09 00 08 08 08
8078- 01 08 05 06 01 02 02 00
8080- 00 00 02 00 02 04 04 01
8088- 00 01 00 00 00 00 00 00
8090- 00 00 08 08 01 01 01 07
8D98- 08 08 03 03 03 00 00 03
80AO- 00 00 00 00 00 00 00 00
80A8- 00 Al AO 20 60 BO FO 90
80BO- Cl DO A2 4C 81 84 86 C8
80B8- 88 CA C6 E8 E6 CO EO El
80CO- 38 61 18 AA A8 8A 98 48
8DC8- 68 00 30 10 21 01 41 24
80DO- 50 70 22 62 42 08 58 02
80D8- 08 28 40 F8 78 BA 9A B8
80EO- EA 30 31 3 2 33 34 35 36
8DE8- 37 38 39 41 42 43 44 45
80FO- 46 00 00 00 00 00 00 00
80F8- 00 00 00 00 00 00 00 00
8EOO- 00 00 00 00 00 00 00 00
8E08- 00 00 00 00 00 00 00 00
8EIO- 00 00 00 00 00 00 00 00
8E18- 00 00 00 00 00 00 00 00
8E20- 00 00 00 00 00 00 00 00
8E28- 00 00 00 00 00 00 00 00

412

Appendix B: LADS Object Code

8E30- 00 00 00 00 00 00 00 00
8E38- 00 00 00 00 00 00 00 00
8E40- 00 00 00 00 00 00 00 00
8E48- 00 00 00 00 00 00 00 00
8E50- 00 00 00 00 00 00 00 00
8E58- 00 00 00 00 00 0 0 00 00
8E60- 00 00 00 00 00 00 00 00
8E68- 00 00 00 00 00 00 00 00
8E70- 00 00 00 00 00 00 00 00
8E78- 00 00 00 00 00 00 00 00
8E80- 00 00 00 00 00 00 00 00
8E88- 00 00 00 00 00 00 00 00
8E90- 00 00 00 00 00 00 00 00
8E98- 00 00 00 00 00 00 00 00
8EAO- 00 00 00 00 00 00 00 00
8EA8- 00 00 00 00 00 00 00 00
8EBO- 00 00 00 00 00 00 00 00
8EB8- 00 00 00 00 00 00 00 00
8ECO- 00 00 00 00 00 00 00 00
8EC8- 00 00 00 00 00 00 00 00
8EOO- 00 00 00 00 00 00 00 00
8E08- 00 00 00 ~) 00 00 00 00
8EEO- 00 00 00 00 00 00 00 00
8EE8- 00 00 00 00 00 00 00 00
8EFO- 00 00 00 00 00 00 00 00
8EF8- 00 00 00 00 00 00 00 00
8FOO- 00 00 00 00 00 00 00 00
8F08- 00 00 00 00 00 00 00 00
8FI0- 00 00 4E 4F 20 53 54 41
8F18- 52 54 20 41 44 44 52 45
8F20- 53 53 00 20 20 20 20 20
8F28- 20 20 20 2D 20 20 20 20
8F30- 20 20 20 20 20 20 20 20
BF38- 42 52 41 4E 43 48 20 4F
8F40- 55 54 20 4F 46 20 52 41
8F48- 4E 47 45 00 55 4E 44 45
8F50- 46 49 4E 45 44 20 4C 41
8F58- 42 45 4C 00 10 10 10 10
8F60- 10 10 10 10 10 20 4E 41
8F68- 48 45 44 20 4C 41 42 45
8F70- 4C 00 10 10 10 10 10 20
8F78- 3C 3C 3C 3 C 3C 3C 3C 3C
8F80- 20 44 49 53 4B 20 45 52
8F88- 52 4F 52 20 3E 3 E 3E 3E
8F90- 3 E 3E 3E 3E 20 00 10 10
8F98- 10 10 10 20 20 20 20 44
8FAO- 55 50 4C 49 43 41 54 45
8FA8- 44 20 4C 41 42 45 4C 20
8FBO- 20 20 20 00 10 10 10 10

413

Appendix B: LADS Object Code

8FB8- 10 20 20 20 20 53 59 4E
8FCO- 54 41 58 20 45 52 52 4F
8FC8- 52 20 20 20 20 00 00 00
8FOO- 00 00 00 00 00 00 00 00
8F08- 00 00 00 00 00 00 00 00
8FEO- 00 00 00 00 00 00 00 00
8FE8- 00 00 00 00 00 00 00 00
8FFO- 00 00 00 00 00 00 00 00
8FF8- 00 00 00 00 00 00 00 00
9000- 00 01 00 01 00 00 01 06
9008- 02 20 93 00 00 00 93 00
9010- 92 00 00 01 00 01 00 00
9018- 01 06 04 80 95 00 00 53
9020- 95 53 94 00 00 03 01 00
9028- 00 00 00 00 00 00 00 00
9030- 00 00 9 3 00 92 00 91 04
9038- 01 00 00 00 00 00 00 00
9040- 00 00 00 53 95 53 94 53
9048- 93 02 00 00 00 00 00 00
9050- 00 00 00 00 00 00 93 00
9058- 92 00 91 02 00 00 00 00
9060- 00 00 00 00 00 00 00 53
9068- 95 53 94 53 93 00 00 00
9070- 00 01

414

Machine Language
Editor for Atari and
COOltnodore
Charles Brannon
Have you ever typed in a long machine language program?
Chances are you typed in hundreds of DATA statements,
numbers, and commas. You're never sure if you've typed
them in right. So you go back, proofread, try to run the pro
gram, crash, go back and proofread again, correct a few typing
errors, run again, crash, recheck your typing-frustrating, isn' t
it?

Until now, though, that has been the best way to enter
machine language into your computer. Unless you happen to
own an assembler and are willing to wrangle with machine
language on the assembly level, it is much easier to enter a
BASIC program that reads the DATA statements and POKEs
the numbers into memory.

Some of these BASIC loaders, as they are known, use a
checksum to see if you 've typed the numbers correctly. The
simplest checksum is just the sum of all the numbers in the
DATA statements. If you make an error, your checksum will
not match up. Some programmers make the task easier by
calculating checksums every ten lines or so, and you can
thereby locate your errors more easily.

Almost Foolproof
"MLX" lets you type in long machine language (ML) listings
with almost foolproof results . Using MLX, you enter the num
bers from a special list that looks similar to BASIC DATA
statements. MLX checks your typing on a line-by-line basis . It
won't let you enter illegal characters when you should be
typing numbers, such as a lowercase L for a 1 or an 0 for a O.
It won't let you enter numbers greater than 255, which are not
permitted in ML DATA statements. It will prevent you from
entering the wrong numbers on the wrong line. In short, MLX
should make proofreading obsolete!

In addition, MLX will generate a ready-to-use tape or disk
file. For the Commodore, you can then use the LOAD com-

415

Appendix C: Commodore and Atari Machine Language Ed~

mand to read the program into the computer, just as you
would with any program. Specifically, you enter:
LOAD "filename",l,l (for tape)

or
LOAD "filename",8,l (for disk)

To start LADS you need to type SYS 11000 (Com
modore). For complete instructions for the use of LADS,
please read Appendix A.

For the Atari, MLX will create a binary file for use with
DOS. Atari MLX can create a boot disk or tape version of
LADS, but this is not recommended.

Getting Started
To get started, type in and save MLX (VIC owners must have
at least 8K of extra memory attached). When you are ready to
enter LADS using MLX, Commodore 64 and VIC owners
should enter the line below before loading MLX:
POKE 55,0: POKE 56,42: CLR

Commodore PET JCBM owners should use:
POKE 52,0: POKE 53,42: CLR

When you're ready to type in LADS, the program will ask you
for several numbers: the starting address and the ending ad
dress. In addition, the Atari MLX will request a "RunjInit
Address".

Below are the numbers you'll need.

PETjCBM, VIC and Commodore 64:
Starting address 11000
Ending address 15985

Atari:
Starting address 32768
Ending address 39607
RunjInit address 32768

The Atari version will then ask you to press either T for a
boot tape, or D for disk; press D. Next, you'll be asked if you
want to generate a boot disk or a binary file; press F.

Next you'll see a prompt. The prompt is the current line
you are entering from the listing. Each line is six numbers plus
a checksum. If you enter any of the six numbers wrong, or en-

416

Appendix C: Commodore and Atari Machine Language Editor

ter the checksum wrong, MLX will ring a buzzer and prompt
you to reenter the line. If you enter it correctly, a pleasant bell
tone will sound and you proceed to the next line.

A Special Editor
You are not using the normal screen editor with MLX. For
example, it will accept only numbers as input. If you need to
make a correction, press the DEL/ BACKS key (Atari) or the
INST /DEL key (Commodore) . The entire number is deleted .
You can press it as many times as necessary back to the start
of the line. If you enter three-digit numbers as listed, the com
puter will automatically print the comma and prepare to ac
cept the next number. If you enter less than three digits (by
omitting leading zeros), you can press either the comma, space
bar, or RETURN key to advance to the next number. When
you get to the checksum value, the Atari MLX will emit a low
drone to remind you to be careful. The checksum will auto
matically appear in inverse video; don't worry, it's highlighted
for emphasis.

When testing MLX, we've found that it makes entering
long listings extremely easy. We have tested MLX with people
lacking any computer background whatsoever. No one here
has managed to enter a listing wrong with it.

Done at Last!
When you finish typing (assuming you type the entire listing
in one session), you can then save the completed program on
tape or disk. Follow the screen instructions. (For Atari we sug
gest that you use the filename AUTORUN.SYS when saving a
copy of LADS. This way LADS will automatically load and
run when you boot up your computer.) If you get any errors
while saving, you probably have a bad disk, or the disk is full,
or you made a typo when entering the actual MLX program.
(Remember, it can't check itself!)

Command Control
What if you don 't want to enter the whole program in one sit
ting? MLX lets you enter as much as you want, save that por
tion, and then reload the file from tape or disk when you
want to continue. MLX recognizes these few commands:

S: Save
L: Load

417

Appendix C: Commodore and Atari Machine Language Editor

N: New Address
D: Display

For the Atari, hold down the CTRL key while you type
the appropriate key. Hold down SHIFT on Commodore ma
chines to enter a command key. You will jump out of the line
you've been typing, so it's best to perform these commands at
a new prompt. Use the Save command to save what you've
been working on. It will write the tape or disk file as if you've
finished, but the tape or disk won't work, of course, until you
finish the typing. Remember what address you stop on. The next
time you run MLX, answer all the prompts as you did before,
then insert the disk or tape . When you get to the entry
prompt, press CTRL-L (Atari) or SHIFT -L (Commodore) to re
load the file into memory. You'll then use the New Address
command to resume typing.

New Address and Display
Here's how the New Address command works. After you
press SHIFT-N or CTRL-N, enter the address where you pre
viously stopped. The prompt will change, and you can then
continue typing. Always enter a New Address that matches up
with one of the line numbers in the special listing, or else the
checksum won't match up .

You can use the Display command to display a section of
your typing. After you press CTRL-D or SHIFT-D, enter two
addresses within the line number range of the listing. You can
abort the listing by pressing any key.

Tricky Business
The special commands may seem a little confusing at first, but
as you work with MLX, they will become easy and valuable.
What if you forgot where you stopped typing, for instance?
Use the Display command to scan memory from the beginning
to the end of the program. You can stop a listing by hitting
any key.

Making Copies
You can use the MLX Save and Load commands to make
copies of the completed ML program. Use Load to reload the
tape or disk, then insert a new tape or disk and use the Save
command to make a new copy.

418

Appendix C: Commodore and Atari Machine Language Editor

PET and VIC Users
The Commodore 64, PET, and VIC data are almost exactly the
same. There are some lines, though, that are different. Com
modore 64, PET, and VIC owners should use the Commodore
64 data (Program B-1) with MLX. VIC owners should sub
stitute the lines found in Program B-2 (VIC) for the same lines
in Program B-1. PET owners should type in and save the 64
data, then make the necessary changes shown in Program B-3a
and B-3b using the built-in PET monitor. Commodore 64 users
should use the data in Program B-1 as is .

We hope you will find MLX to be a true labor-saving util
ity. Since it has been thoroughly tested by entering actual pro
grams, you can count on it as an aid for generating bug-free
machine language. And be sure to save MLX; it will be used
for future all machine language programs in COMPUTE!,
COMPUTEt's Gaze tte, and COMPUTE! Books.

Program C-l. Commodore 64 MLX
Refer to Appendix E " How to Type In BASIC Programs" before entering this program.

100 PRINT"(CLR}~6~";CHR$(142);CHR$(8);:POKE53281,1
:POKE53280,l

101 POKE 788,52:REM DISABLE RUN/STOP
110 PRINT"{RVS}{39 SPACES}";
120 PRINT" {RVS} (14 SPACES} {RIGHT} {OFFH*~£{RVS}

{RIGHT} (RIGHT}(2 SPACES}~*~{OFF}~*~£TRVS}£
{RVS}{14 SPACES}"; - -

130 PRINT"{RVS}{14 SPACES}{RIGHT} ~G~{RIGHT}
{2 RIGHT} {OFF}£{RVS} £~*~{OFF}g*~{RVS}
{14 SPACES}"; - -

140 PRINT" {RVS} {41 SPACES}"
200 PRINT"{2 DOWN}(PUR}{BLK}{9 SPACES}MACHINE LANG

UAGE ~DITOR (5 DO\-m} "
210 PRINT"~5H2 UP}STARTING ADDRESS?{8 SPACES}

(9 LEFT}";
215 INPUTS:F=1-F:C$=CHR$(31+119*F)
220 IFS<2560R(S>40960ANDS<49152)ORS>53247THENGOSUB

3000:GOT0210
225 PRINT:PRINT:PRINT
230 PRINT"~5~(2 UP}ENDING ADDRESS?(8 SPACES}

(9 LEFT}"; :INPUTE:F=1-F:C$=CHR$(31+119*F)
240 IFE<2560R(E>40960ANDE<49152)ORE>53247THENGOSUB

3000:GOT0230
250 IFE<STHENPRINTC$;"(RVS}ENDING < START

(2 SPACES}":GOSUB1000 :GOTO 230
260 PRINT:PRINT:PRINT
300 PRINT"(CLR}";CHR$(14):AD=S:POKEV+21,0

419

Appendix C: Commodore and Atari Machine Language Editor

310 A=l: PRINTRIGHT$ (" 0000" +MID$ (STR$ (AD) , 2) , 5) ; " : "

315 FORJ=AT06
320 GOSUB570:IFN=-lTHENJ=J+N:GOT0320
390 IFN=-211THEN 710
400 IFN=-204THEN 790
410 IFN=-206THENPRINT: INPUT" {DOWN}ENTER NE\</ ADDRES

S";ZZ
415 IFN=-206THENIFZZ<SORZZ>ETHENPRINT"{RVS}OUT OF

{SPACE}RANGE":GOSUB1000:GOT0410
417 IFN=-206THENAD=ZZ:PRINT:GOT0310
420 IF N<>-196 THEN 480
430 PRINT?: INPUT" DISPLAY: FROM" ; F: PRINT, "TO"; : INPUTT
440 IFF<SORF>EORT<SORT>ETHENPRINT"AT LEAST";S;"

{LEFT}, NOT MORE THAN";E:GOT0430
450 FORI=FTOTSTEP6: PRINT: PRINTRIGHT$ (" 0000" +MID$ (S,

TR$ (I) , 2) , 5) ; " : " ;
451 FORK=0T05:N=PEEK(I+K):PRINTRIGHT$("00"+MID$(ST

R$ (N) , 2) , 3) ; " , " ;
460 GETA$:IFA$>""THENPRINT:PRINT:GOT031 0
470 NEXTK:PRINTCHR$(20); : NEXTI:PRINT:PRINT:GOT0310
480 IFN<0 THEN PRINT:GOT0310
490 A(J)=N:NEXTJ
500 CKSUM=AD-INT(AD/ 256)*256:FORI=lT06:CKSUM=(CKSU

M+A(I))AND255:NEXT
510 PRINTCHR$(18); :GOSUB570:PRINTCHR$(146);
511 IFN=-lTHENA=6:GOT0315
515 PRINTCHR$(20):IFN=CKSUMTHEN530
520 PRINT:PRINT"LINE ENTERED WRONG RE-ENTER":PRI

NT:GOSUB1000:GOT0310
530 GOSUB2000
540 FORI=lT06:POKEAD+I-1,A(I):NEXT:POKE54272,0:POK

E54273,0
550 AD=AD+6:IF AD<E THEN 310
560 GOTO 710
570 N=0 :Z=0
580 PRINT"E£~";
581 GETA$:IFA$=""THEN581
585 PRINTCHR$(20); :A=ASC(A$):IFA=130RA=440RA=32THE

N670
590 IFA>128THENN=-A:RETURN
600 IFA<>20 THEN 630
610 GOSUB690:IFI=lANDT=44THENN=-1:PRINT"{OFF}

{LEFT} {LEFT}";:GOT0690
620 GOT0570
630 IFA<480RA>57THEN580
640 PRINTA$; :N=N*10+A-48
650 IFN>255 THEN A=20:GOSUB1000:GOT0600
660 Z=Z+1:IFZ<3THEN580

420

Appendix C: Commodore and Atari Machine Language Editor

670 IFZ=0THENGOSUBI000:GOT0 570
680 PRINT","; : RETURN
690 S%=PEEK(209)+256*PEEK(210)+PEEK(211)
691 ~ORI=IT03:T=PEEK(S%-I)
695 IFT<>44ANDT<>58THENPOKES %-I,32:NEXT
700 PRINTLEFT$("{3 LEFT}",I-l); : RETURN
710 PRINT"{CLR}[RVS}*** SAVE ***{3 DOWN}"
715 PRINT"{2 DOWN}(PRESS-{RVS}RETURN{OFF} ALONE TO

CANCEL SAVE) {DOWN}"
720 F$="": INPUT" {DmVN} FILENAME"; F$: IFF$=""THENPRI

NT:PRINT:GOT0310 -
730 PRINT:PRINT"{2 DOWN} {RVS}T{OFF}APE OR {RVS}D

{OFF}ISK: (T / D) II - -

740 GETA$:IFA$<>"T"ANDA$<>"D"THEN740
750 DV=I-7*(A$="D"):IFDV=8THENF$="0:"+F$:OPENI5,8,

15, "S"+F$:CLOSEI5
760 T$=F$:ZK=PEE K(53)+256*PEEK(54)-LEN(T$):POKE782

,ZK/256
762 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T$):SYS65

469
763 POKE780,I:POKE781,DV:POKE782,I:SYS65466
765 K=S:POKE254,K / 256:POKE253,K-PEEK(254)*256:POKE

780,253
766 K=E+l:POKE782,K/ 256:POKE781,K-PEEK(782)*256:SY

S65496
770 IF(PEEK(783)AND1)OR(191ANDST)THEN780
77 5 PRINT II {DOWN} DONE. {DOWN}" : GOT0310
780 PRINT"{DOWN}ERROR ON SAVE . {2 SPACES}TRY AGAIN.

":IFDV=ITHEN720 - -
781 OPENI5,8,15:INPUT #15,El$,E2$:PRINTE1$;E2$:CLOS

EI5:GOT0720
790 PRINT"{CLR}[RVS}*** LOAD ***{2 DOHN}"
795 PRINT"{2 DO\'VN}(PRESS-{RVS}RETURN{OFF} ALONE TO

CANCEL LOAD)" -
800 F$="": INPUT II {2 DOWN} FILENAME"; F$: IFF $="" THENP

RINT:GOT0310 -
8113 PRINT:PRINT" {2 DOWN} {RVS}T{OFF}APE OR {RVS}D

(OFF}ISK: (T / D)" -
820 GETA$: IFA$ <>"T"ANDA$ <> "D"THEN820
830 DV=I-7* (A$="D") : IFDV=8THENF$="0: "+F$
840 T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$):POKE782

,ZK / 256
841 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T$):SYS65

469
845 POKE780,I:POKE781,DV : POKE782,I:SYS65466
850 POKE780,0:SYS65493
860 IF(PEEK(783)AND1)OR(191ANDST)THEN870
865 PRINT"{DOWN}DONE . ":GOT0 31 0

421

Appendix C: Commodore and Atari Machine Language Editor

870 PRINT"{DOWN}ERROR ON LOAD.{2 SPACES}TRY AGAIN.
{DOWN} " : IFDV-;-1 THEN800- -

8800PEN15,8,15:INPUT#15,E1$,E2$:PRINTE1$;E2$:CLOS
E15:GOT0800

1000 REM BUZZER
1001 POKE54296,15:POKE54277,45:POKE54278,165
1002 POKE54276,33:POKE 54273,6:POKE54272,5
1003 FORT=1T0200:NEXT:POKE54276,32:POKE54273,0:POK

E54272,0:RETURN
2000 REM BELL SOUND
2001 POKE54296,15:POKE54277,0:POKE54278,247
2002 POKE 54276,17:POKE54273,40:POKE54272,0
2003 FORT=1T0100:NEXT:POKE54276,16:RETURN
3000 PRINTC$;"{RVS}NOT ZERO PAGE OR ROM":GOT01000

Program C-2. VIC MLX
Refer to Appendix E " How to Type In BASIC Programs" before entering this program.

100 PRINT" {CLR} {PUR}" ;CHR$ (142) ;CHR$ (8);
101 POKE 788,194:REM DISABLE RUN / STOP
110 PRINT"{RVS}{14 SPACES}"
120 PRINT"{RVS} {RIGHT}{OFF}~*~£{RVS}{RIGHT}

{RIGHT} {2 SPACEsH*3{oFFH*I£{Rvs}£{RVS} "
130 PRINT"{RVS} {RIGHT} ~G~{RIGHT} {2 RIGHT} {OFF}

£{RVS}£~*~{OFFH*3{RVS} "
140 PRINT"TRVS}{14 SPACES}"
200 PRINT"{2 Do\VN}{PUR}{BLK}A FAILSAFE MACHINE":PR

INT"LANGUAGE EDITOR{5 DOWN}"
210 PRINT"{BLK}{3 UP}STARTING ADDRESS":INPUTS:F=1-

F:C$=CHR$(31+119*F)
220 IFS<2560RS>32767THENGOSUB3000:GOT0210
225 PRINT:PRINT:PRINT:PRINT
230 PRINT" {BLK} {3 UP} ENDING ADDRESS": INPUTE: F=1-F:

C$=CHR$(31+119*F)
240 IFE<2560RE>32767THENGOSUB3000:GOT0230
250 IFE<STHENPRINTC$;" {RVS}ENDING < START

{2 SPACES}":GOS UB1000:GOTO 230
260 PRINT:PRINT:PRINT
300 PRINT" {CLR}" ; CHR$ (14) : AD=S
310 PRINTRIGHT$("0000"+MID$(STR$(AD),2),5);":";:FO

RJ=1T06
320 GOSUB570:IFN=-1THENJ=J+N:GOT0 320
390 IFN=-211THEN 710
400 IFN=-204THEN 790
410 IFN=-206THENPRINT : INPUT" {DOWN}ENTER NEW ADDRES

S";ZZ
415 IFN=-206THENIFZZ<SORZZ>ETHENPRINT"{RVS}OUT OF

{SPACE}RANGE":GOSUB1000:GOT0410

422

Appendix C: C ommodore and Atari Machine Language Editor

417 IFN=-206THENAD=ZZ:PRINT:GOT0310
420 IF N<>-196 THEN 480
430 PRINT:INPUT"DISPLAY:FROM"~F:PRINT,"TO"~:INPUTT
440 IFF<SORF>EORT<SORT>ETHENPRINT"AT LEAST"~S~"

{LEFT}, NOT MORE THAN" ~ E, GOT0430
450 FORI=FTOTSTEP6:PRINT:PRINTRIGHT$("0000"+MID$(S

TR$(I),2),5)~":"~
455 FORK=0T05:N=PEEK(I+K):IFK=3THENPRINTSPC(10)~
457 PRINTRIGHT$("00"+MID$(STR$(N),2),3)~","~
460 GETA$:IFA$>""THENPRINT:PRINT:GOT0310
470 NEXTK:PRINTCHR$(20)~ :NEXTI:PRINT:PRIN~:GOT0310
480 IFN<0 THEN PRINT:GOT0310
490 A(J)=N:NEXTJ
500 CKSUM=AD-INT(AD / 256)*256:FORI=IT06:CKSUM=(CKSU

M+A(I))AND255:NEXT
510 PRINTCHR$(18)~:GOSUB570:PRINTCHR$(20)
515 IFN=CKSUMTHEN530
520 PRINT:PRINT"LINE ENTERED WRONG":PRINT"RE-ENTER

":PRINT:GOSUBI000-;-GOT0310-
530 GOSUB20ro0
5410 FORI=IT06:POKEAD+I-l,A(I):NEXT
5510 AD=AD+6:IF AD<E THEN 3110
5610 GOTO 7110
5710 N=ro:Z=ro
5810 PRINT" ~+~ " ~
581 GETA$:IFA$=""THEN581
585 PRINTCHR$(20)~:A=ASC(A$):IFA=130RA=440RA=32THE

N670
590 IFA>128THENN=-A:RETURN
6100 IFA<>2ro THEN 6310
6110 GOSUB69ro:IFI=IANDT=44 THENN=-I:PRINT"{LEFT}

(LEFT}"~ : GOT069ro
620 GOT0570
630 IFA<480RA>57THEN580
6410 PRINTA$~ :N=N*lro+A-48
650 IFN>255 THEN A=2ro:GOS UBlro00:GOT06ro0
660 Z=Z+I:IFZ<3THEN58ro
670 IFZ=0THENGOSUBI000:GOT0570
680 PRINT","~ : RETURN
6910 S%=PEEK(2ro9)+256*PEEK(210)+PEEK(211)
692 FORI=IT03:T=PEEK(S%-I)
695 IFT<>44ANDT<>58THENPOKES%-I,32:NEXT
700 PRINTLEFT$("{3 LEFT}",I-l)~ : RETURN
710 PRINT"{CLR}{RVS}* * * SAVE ***{3 Dovm}"
720 INPUT" {DO\m} FILENAME" ~F$
730 PRINT : PRINT"{"2 DOWN} {RVS}T{OFF}APE OR {RVS}D

{OFF}ISK: (:!,/ Q) " -

423

Appendix C : Comm od ore and Atari Machine Language Editor

740 GETA$:IFA$<>"T"ANDA$<>"D"THEN740
750 DV=I-7*(A$="D"):IFDV=8THENF$="0:"+F$
760 T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$):POKE782

,ZK/256
762 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T$):SYS65

469
763 POKE780,I:POKE781,DV:POKE782,I:SYS65466
765 POKE254,S/256:POKE253,S-PEEK(254)*256:POKE780,

253
766 POKE782,E/256:POKE781,E-PEEK(782)*256:SYS65496
770 IF(PEEK(783)ANDl)OR(ST ANDI91)THEN780
775 PRINT" {DOWN} DONE . " : END
780 PRINT"{DOWN}ERROR ON SAVE.{2 SPACES}TRY AGAIN.

" : IFDV=1 THEN720 - -
781 OPENI5,8,15:INPUT#15,El$,E2$:PRINTEl$;E2$:CLOS

EI5:GOT0720
782 GOT0720
790 PRINT"{CLR}{RVS}*** LOAD ***{2 DOWN}"
800 INPUT" {2 DOWN} FILENAME"; F$
810 PRINT: PRINT" {2 Dovm} {RVS} T {OFF} APE OR {RVS} D

{OFF} ISK: (T /D) " -
820 GETA$: IFA$ <>"T"ANDA$ <> "D"THEN820
830 DV=I-7 * (A$=" D") : IFDV=8THENF$= "0: "+F$
840 T$=F$:ZK=PEEK(53)+256*PEEK(54)-LEN(T$):POKE782

,ZK/256
841 POKE781,ZK-PEEK(782)*256:POKE780,LEN(T$):SYS65

469
845 POKE780,I:POKE781,DV:POKE782,I:SYS65466
850 POKE780,0:SYS65493
860 IF(PEEK(783)ANDl)OR(ST ANDI91)THEN870
865 PRINT"{DOWN}DONE.":GOT0310
870 PRINT"{DOWN}ERROR ON LOAD.{2 SPACES}TRY AGAIN.

{DOWN}": IFDV;;-1 THEN800- -
880 OPENI5,8,15:INPUT#15,El$,E2$:PRINTEl$;E2$:CLOS

EI5:GOT0800
1000 REM BUZZER
1001 POKE36878,15:POKE36874,190
1002 FORW=IT0300:NEXTW
1003 POKE36878,0:POKE36874,0:RETURN
2000 REM BELL SOUND
2001 FORW=15T00STEP-l:POKE36878,W:POKE36876,240:NE

XTW
2002 POKE36876,0:RETURN
3000 PRINTC$;"{RVS}NOT ZERO PAGE OR ROM":GOTOI000

424

Appendix C: Commodore and Atari Machine Language Editor

Program C-3. PET MLX
Refer to Appendix E " How to Type In BASIC Programs" before entering this program.

100 PRINT" (CLR}" ; CHR$ (142) : POKE53, 43: CLR
110 PRINT" (RVS}(38 SPACES}"
120 PRINT"(RVS} (18 SPACES}MLX(l7 SPACES}"
140 PRINT" {RVS}(38 SPACES}"
200 PRINT"(2 DOWN} MACHINE LANGUAGE EDITOR PET VER

SION{ 5 DOWN}"
210 PRINT"{2 UP)STARTING ADDRESS?(8 SPACES}

(9 LEFT}";
215 INPUTS
220 IFS<2560RS>32767THENGOSUB3000:GOT0210
225 PRINT:PRINT:PRINT
230 PRINT"{2 UP)ENDING ADDRESS?{8 SPACES}{9 LEFT)"

;:INPUTE
240 IFE<2560RE>32767THENGOSUB3000:GOT0230
250 IFE<STHENPRINTC$;"(RVS}ENDING < START

(2 SPACES}":GOSUB1000:GOTO 230
260 PRINT:PRINT:PRINT
300 PRINT"(CLR}";CHR$(14):AD=S
310 A=1:PRINTRIGHT$("0000"+MID$(STR$(AD),2),5);":"

I

315 FORJ=AT06
320 GOSUB570:IFN=-lTHENJ=J+N:GOT0320
390 IFN=-211THEN 710
400 IFN=-204THEN 790
410 IFN=-206THENPRINT:INPUT"{DOWN}ENTER NEW ADDRES

S";ZZ
415 IFN=-206THENIFZZ<SORZZ>ETHENPRINT"{RVS}OUT OF

{SPACE)RANGE":GOSUB1000:GOT0410
417 IFN=-206THENAD=ZZ:PRINT:GOT0310
420 IF N<>-196 THEN 480
430 PRINT:INPUT"DISPLAY:FROM";F:PRINT,"TO"; :INPUTT
440 IFF<SORF>EORT<SORT>ETHENPRINT"AT LEAST";S;"

{LEFT}, NOT MORE THAN"; E : GOT0430
450 FORI=FTOTSTEP6:PRINT:PRINTRIGHT$("0000"+MID$(S

TR$ (I) , 2) , 5) ; " : " ;
451 FORK=0T05 :N=PEEK (I+K) : PRINTRIGHT$ ("00 "+MID$ (ST

R$ (N) , 2) , 3) ; " , " ;
460 GETA$:IFA$>""THENPRINT:PRINT:GOT0310
470 NEXTK:PRINTCHR$(20); :NEXTI:PRINT:PRINT:GOT0310
480 IFN<0 THEN PRINT:GOT0310
490 A(J)=N:NEXTJ
500 CKSUM=AD-INT(AD / 256)*256:FORI=lT06:CKSUM=(CKSU

M+A(I»AND255:NEXT
510 PRINTCHR$(18); :GOSU B570:PRINTCHR$(146);
511 IFN=-ITHENA=6:GOT0315
515 PRINTCHR$(20):IFN=CKSUMTHEN530

425

Appendix C: Commodore and Atari Machine Language Editor

520 PRINT:PRINT"LINE ENTERED WRONG RE-ENTER":PRI
NT:GOSUB1000:GOT0310

530 GOSUB2000
540 FORI=lT06:POKEAD+I-1,A(I):NEXT
550 AD=AD+6:IF AD<E THEN 310
560 GO TO 710
570 N=0:Z=0
580 PRINTCHR$(168);
581 GETA$:IFA$=""THEN581
585 PRINTCHR$(20);:A=ASC(A$):IFA=130RA=440RA=32THE

N670
590 IFA>128THENN=-A:RETURN
600 IFA<>20 THEN 630
610 GOSUB690 :IFI=lANDT=44THENN=-1 :PRINT" {OFF}

{LEFT} (LEFT}";:GOT0690
620 GOT0570
630 IFA<480RA>57THEN580
640 PRINTA$; :N=N*10+A-48
650 IFN>255 THEN A=20:GOSUB1000:GOT0600
660 Z=Z+1!IFZ<3THEN580
670 IFZ=0THENGOSUB1000:GOT0570
680 PRINT","; : RETURN
690 SS=PEEK(196)+256*PEEK(197)+PEEK(198)
691 FORI=lT03:T=PEEK(SS-I)
695 IFT<>44ANDT<>58THENPOKESS-I,32:NEXT
700 PRINTLEFT$("{3 LEFT}",I-1); : RETURN
710 PRINT"{CLR}{RVS}*** SAVE ***{3 DOWN}"
715 PRINT"{2 DOWN}(PRESS-{RVS}RETURN{OFF} ALONE TO

CANCEL SAVE) { DOWN} "
720 F$="":INPUT"{DOWN} FILENAME? *{3 LEFT}";F$:IFF

$="*"THENPRINT:PRINT : GOT0310
730 PRINT:PRINT"(2 DOWN} (RVS}T{OFF}APE OR {RVS}D

{OFF} ISK: (T/D)" - -
740 GETA$: IFA$ <>"T"ANDA$<> "D"THEN740
750 DV=1-7 * (A$=" D") : IFDV=8THENF$="0: "+F$:OPEN15, 8,

15, "S"+F$:CLOSE15
760 T$=F$:ZK=PEEK(50)+256*PEEK(51)-LEN(T$):POKE219

,ZK/256
762 POKE218,ZK-PEEK(219)*256:POKE209,LEN(T$)
763 POKE210,l:POKE211,0:POKE212,DV
765 K=S:POKE252,K / 256:POKE251,K-PEEK(252)*256
766 K=E+1:POKE202,K/256:POKE201,K-PEEK(202)*256:SY

S63203:REM 63140 FOR 3.0
770 IF(191ANDST)THEN780
77 5 PRINT" {DOWN} DONE. {DOWN}" : GOT0310
780 PRINT"(DOWN}ERROR ON SAVE. (2 SPACES}TRY AGAIN.

": IFDV=l THEN720 - -
781 OPEN15,8,15:INPUT#15,E1$,E2$:PRINTE1$;E2$:CLOS

E15:GOT0720

426

A ppendix C: Commodore and Atari Machine Language Editor

790 PRINT"(CLR}(RVS}*** LOAD ***(2 DOWN}"
795 PRINT"(2 DOWN} (PRESS-(RVS}RETURN(OFF) ALONE TO

CANCEL LOAD)" -
800 F$="":INPUT"(2 DOWN} FILENAME? *(3 LEFT}";F$:I

FF$="*"THENPRINT:PRINT:GOT0310
810 PRINT:PRINT"(2 DOWN} (RVS}T(OFF}APE OR (RVS)D

(OFF}ISK: (T I D)"
820 GETA$:IFA$<>"T"ANDA$<>"D"THEN820
830 DV=1-7 * (A$=" D") : IFDV=8THENF $="0: "+F$
840 T$=F$:ZK=PEEK(50)+256*PEEK(51)-LEN(T$):POKE219

,zK/ 256
841 POKE218,ZK-PEEK(219)*256:POKE209,LEN(T$)
845 POKE210,1:POKE211,0:POKE212,DV
850 POKE157,0:SYS 6 2294:REM USE 62242 FOR UPGRADE P

ET 3.0
860 IF(191ANDST)THEN8 70
865 PRINT" {DOWN}DONE. ":GOT0 31 0
870 PRINT"{DOWN}ERROR ON LOAD. (2 SPACES}TRY AGAIN.

(DOWN} ":IFDV;;1THEN800-
880 OPEN15,8,15:INPUT#15,E1$,E2$:PRINTE1$;E2$:CLOS

E15:GOT0800
1000 REM BUZZER
1001 POKE59467,1 6 :POKE5946 6 ,129:POKE59464,255
1003 FORT=200T0250:POKE59466,T:NEXT:POKE59467,0:RE

TURN
2000 REM BELL SOUND
2001 POKE59467,1 6 :POKE5946 6,51:POKE59464,100
2003 FORT=1T050:NEXT:POKE59467,0:RETURN
3000 PRINT"{RVS)NOT ZE RO PAGE, SCREEN OR ROM":GOTO

1000

Program C-4. Atari MLX
Refer to Appendix E " How to Type In BAS IC Programs" before entering this program.

100 GRAPHICS 0:DL=PEE K (560)+256*PEEK(561)+4:
POKE DL-l , 71:PO KE DL+2,6

110 POSITION 8,0: 7 " MLX":POSITION 23,0:? "~
ilsaf'e en't:r ": PO KE 710,0:?

120? "Starting Address";:INPUT BEG:?" End
ing Address";:INPUT FIN:? "RLln/lnit Addr
ess";:INPUT STARTADR

130 DIM A(6),BUFFER$(FIN-BEG+127),T$(20),F$(
20), CIO$ (7) , SECTOR$ (128), DSKINV$ (6)

140 OPEN #1,4,0," K:":?:? ,"[jape or iEisk:";
150 BUFFER$=CHR$(0):BUFFER$(FIN-BEG+30)=BUFF

ER$:BUFFER$(2)=BUFFER$:SECTOR$=BUFFER$
160 ADDR=BEG:CIO$="hhh" : CIO$(4)=CHR$(170):CI

O$ (5)="LV":CIO$ (7)=CHR$(228)
170 GET #l,MEDIA:IF MED I A<> 84 AND MEDIA <>68

THEN 170

427

Appendix C: Commodore and Atari Machine Language Editor

180 ? CHR$(MEDIA):? :IF MEDIA<>ASC("T") THEN
BUFFER$="":GoTo 250

190 BEG=BEG-24:BUFFER$=CHR$(0):BUFFER$(2)=CH
R$«FIN-BEG+127)/128)

200 H=INT(BEG/256):L=BEG-H*256:BUFFER$(3)=CH
R$(L):BUFFER$(4)=CHR$(H)

210 PINIT=BEG+8:H=INT(PINIT/256):L=PINIT-H*2
56:BUFFER$(5)=CHR$(L):BUFFER$(6)=CHR$(H)

220 FOR 1=7 TO 24:READ A:BUFFER$(I)=CHR$(A):
NEXT I:DATA 24,96,169,60,141,2,211,169,0
,133,10,169,0,133,11,76,0,0

230 H=INT(STARTADR/256):L=STARTADR-H*256:BUF
FER$(15)=CHR$(L):BUFFER$(19)=CHR$(H)

240 BUFFER$(23)=CHR$(L):BUFFER$(24)=CHR$(H)
250 IF MEDIA<>ASC("D") THEN 360
260?:? "Boot ~isk or Binary ~le:";
270 GET #1,DTVPE:IF DTVPE<>68 AND DTVPE<>70

THEN 270
280 ? CHR$(DTVPE):IF DTVPE=70 THEN 360
290 BEG=BEG-30:BUFFER$=CHR$(0):BUFFER$(2)=CH

R$«FIN-BEG+127)/128)
300 H=INT(BEG/256):L=BEG-H*256:BUFFER$(3)=CH

R$(L):BUFFER$(4)=CHR$(H)
310 PINIT=STARTADR:H=INT(PINIT/256):L=PINIT

H*256:BUFFER$(5)=CHR$(L):BUFFER$(6)=CHR~

(H)

320 RESTORE 330:FoR 1=7 TO 30:READ A:BUFFER$
(I)=CHR$(A):NEXT I

330 DATA 169,0,141,231,2,133,14,169,0,141,23
2,2,133,15,169,0,133,10,169,0,133,11,24,
96

340 H=INT(BEG/256):L=BEG-H*256:BUFFER$(8)=CH
R$(L):BUFFER$(15)=CHR$(H)

350 H=INT(STARTADR/256):L=STARTADR-H*256:BUF
FER$(22)=CHR$(L):BUFFER$(26)=CHR$(H)

360 GRAPHICS 0:PoKE 712,10:PoKE 710,10:PoKE
709,2

370 ? ADDR;":";:FoR J=1 TO 6
380 GoSUB 570:IF N=-1 THEN J=J-1:GoTo 380
390 IF N=-19 THEN 720
400 IF N=-12 THEN LET READ=1:GoTo 720
410 TRAP 410:IF N=-14 THEN? :? "New Address

";:INPUT ADDR:? :GoTo 370
420 TRAP 32767:IF N< >-4 THEN 480
430 TRAP 430:? :? "Display:From";:INPUT F:?

,"To";:INPUT T:TRAP 32767
440 IF F (BEG OR F>FIN OR T<BEG OR T)FIN OR T

< F THEN? CHR$ (253); "At 1 east "; BEG;", N
ot More Than ";FIN:GoTo 430

428

Appendix C : Commodore and Atari Machine Language Editor

450 FOR I=F TO T STEP 6:? :? I;":";:FoR K=0
TO 5:N=PEEK(ADR(BUFFER$)+I+K-BEG):T$="00
0":T$(4-LEN(STR$(N»)=STR$CN)

460 IF PEEK(764) < 255 THEN GET #1.A:PoP :POP
:? :GoTo 370

470? T$;".";:NEXT K:? CHR$(126);:NEXT I-?-
? : GoTo 37(11

480 IF N< 0 THEN? :GoTo 370
490 ACJ)=N:NEXT J
500 CKSUM=ADDR-INTCADDR/256)*256:FoR 1=1 TO

6:CKSUM=CKSUM+A(I):CKSUM=CKSUM-256*(CKSU
M>255):NEXT I

510 RF=128:SoUND 0.200.12.8:GoSUB 570:SoUND
0,0.0.0:RF=0:? CHR$(126)

520 IF N<> CKSUM THEN? :? "Incorrect";CHR$(2
53);:? :GoTo 370

530 FOR W=15 TO 0 STEP -1:SoUND 0,50,10,W:NE
XT W

540 FOR 1=1 TO 6:PoKE ADR(BUFFER$)+ADDR-BEG+
I-1,A(I):NEXT I

550 ADDR=ADDR+6:IF ADDR <=FIN THEN 370
560 GoTo 710
570 N=0:Z=0
580 GET #1,A:IF A=155 OR A=44 OR A=32 THEN 6

70
590 IF A<32 THEN N=-A:RETURN
600 IF A<>126 THEN 630
610 GoSUB 690:IF 1=1 AND T=44 THEN N=-1:? CH

R$(126);:GoTo 690
620 GoTo 570
630 IF A<48 OR A >57 THEN 580
640 ? CHR$(A+RF);:N=N*10+A-48
650 IF N)255 THEN? CHR$(253);:A=126:GoTo 60

660 Z=Z+1:IF Z<3 THEN 580
670 IF Z=0 THEN? CHR$(253);:GOTO 570
680? ".";:RETURN
690 POKE 752,1:FoR 1=1 TO 3:? CHR$(30);:GET

#6,T:IF T <> 44 AND T <>58 THEN? CHR$(A);:
NEXT I

700 POKE 752,0:? " ";CHR$(126);:RETURN
710 GRAPHICS 0:PoKE 710,26:POKE 712,26:PoKE

709,2
720 IF MEDIA=ASCC"T") THEN 890
730 REM •• "~-J=-
740 IF READ THEN? :? "Load File":?
750 IF DTYPE< >ASC("F") THEN 1040
760 ? :? "Enter AUToRUN.SYS for automatic us

en:? :? "Enter filename":INPUT T$

429

Appendix C: Commodore and Atari Machine Language Editor

770 F$=T$:IF LENCT$) >2 THEN IF T$Cl,2)<)"D:"
THEN F$="D:":F$(3)=T$

780 TRAP 870:CLOSE #2:0PEN #2,8-4*READ,0,F$:
? :? "Working ... "

790 IF READ THEN FOR 1=1 TO 6:GET #2,A:NEXT
I:GOTO 820

800 PUT #2,255:PUT #2,255
81121 H=INTCBEG/256):L=BEG-H*256:PUT #2,L:PUT

#2,H:H=INTCFIN/256):L=FIN-H*256:PUT #2,L
:PUT #2,H

820 GOSUB 970:IF PEEK(195»1 THEN 870
830 IF STARTADR=0 OR READ THEN 850
840 PUT #2,224:PUT #2,2:PUT #2,225:PUT #2,2:

H=INT(STARTADR/256):L=STARTADR-H*256:PUT
#2,L:PUT #2,H

85121 TRAP 32767:CLOSE #2:? "Finished. ":IF REA
D THEN? :? :LET READ=0:GOTO 360

860 END
870? "Error ";PEEK(195);" trying to access"

:? F$:CLOSE #2:? :GOTO 760
880 REM _.uIoli_i":1:.14
890 IF READ THEN? :? "Read Tape"
900 ? :? :? "Insert, Rewi nd Tape.":? " Press

PLAY ";:IF NOT READ THEN? "& RECORD"
9 1 0 ? :? " Pre s s I:t;j ill:t: w hen rea d y: " ;
920 TRAP 960:CLOSE #2:0PEN #2,8-4*READ, 128,"

C· " .? :? "Wor kin g ... "
93121 GOSUB 970:IF PEEK(195»1 THEN 960
940 CLOSE #2:TRAP 32767:? "Finished. ":? :?

IF READ THEN LET READ=0:GOTO 360
950 END
960? :? "Error ";PEEK(195);" when reading/w

riting boot tape":? :CLOSE #2:GOTO 890
970 REM [ijI •• -I(.t=f# a..-W:W#M iiiIW m:I'.M.j £t4 .t$

~or wri~e READ=~ ~or rea
980 X=32:REM File#2,$20
990 ICCOM=834:ICBADR=836:ICBLEN=840:ICSTAT=8

35
1000 H=INT(ADRCBUFFER$)/256):L=ADR(BUFFER$)

H*256:POKE ICBADR+X,L:POKE ICBADR+X+l,H
lQI10 L=FIN-BEG+l:H=INT(L/256):L=L-H*256:POKE

ICBLEN+X,L:POKE ICBLEN+X+l,H
1020 POKE ICCOM+X,11-4*READ:A=USR(ADR(CIO$),

X)

112130 POKE 195,PEEK(ICSTAT):RETURN
11214121 REM .. ''''iliil.l:_r
112150 IF READ THEN 11121121
le160? :? "Format Disk In Drive I? (YIN):";

430

Appendix C : C ommodore and Atari Machine Language Editor

1070 GET #1,A:IF A< >78 AND A<>89 THEN 1070
1080 ? CHR$(A):IF A=78 THEN 1100
1090? :? "Formatting :XIO 254,#2,0,0,"D:

":? "Format Complete":?
1100 NR=INT«FIN-BEG+127)/128):BUFFER$(FIN-B

EG+2)=CHR$(0):IF READ THEN? "Reading ..
. ":GOTO 1120

1110? "Writing ... "
1120 FOR 1=1 TO NR:S=I
1130 IF READ THEN GOSUB 1220:BUFFER$(ItI28-1

27)=SECTOR$:GOTO 1160
1140 SECTOR$=BUFFER$(ItI28-127)
1150 GOSUB 1220
1160 IF PEEK(DSTATS)< > 1 THEN 1200
1170 NEXT I
1180 IF NOT READ THEN END
1190 ? :? :LET READ=0:GOTO 360
1200? "Error on disk access . ":? "May need f

ormatting.":GOTO 1040
1210 REM
1 2 2 0 REM &.-J ""!:JI ill :W:U:1"i ","~~-SIJ;] :ullj. iI: I.,
1230 REM Drive ONE
1240 REM Pass buffer in SECTOR$
1250 REM sector # in variable 5
1260 REM READ=1 for read,
1270 REM READ=0 for write
1280 BASE=3t256
129~ DUNIT=BASE+l:DCOMND=BASE+2:DSTATS=BASE+

3
1300 DBUFLO=BASE+4:DBUFHI=BASE+5
1310 DBYTLO=BASE+8:DBYTHI=BASE+9
1320 DAUX1=BASE+10:DAUX2=BASE+ll
1330 REM DIM DSKINV$(4)
1340 DSKINV$="hLS":DSKINV$(4)=CHR$(228)
1350 POKE DUNIT,I:A=ADR(SECTOR$):H=INT(A/256

):L=A-256tH
1360 POKE DBUFHI,H
1370 POKE DBUFLO,L
1380 POKE DCOMND,87-5tREAD
1390 POKE DAUX2 , INT(S/256):POKE DAUX1.S-PEEK

(DAUX2)t256
1400 A=USR(ADR(DSKINV$»
1410 RETURN

431

A Library of
Subroutines
Here is a collection of techniques you'll need to use in many
of your ML programs. Those techniques which are not inher
ently easy to understand are followed by an explanation.

Increment and Decrement Double ...
Byte Numbers
You'll often want to raise or lower a number by 1. To in
crement a number, you add 1 to it: Incrementing 5 results in 6.
Decrement lowers a number by 1. Single-byte numbers are
easy; you just use INC or DEC. But you'll often want to in
crement two-byte numbers which hold addresses, game
scores, pointers, or some other number which requires two
bytes. Two bytes, ganged together and seen as a single num
ber, can hold values from 0 ($0000) up to 65535 ($FFFF).
Here's how to raise a two-byte number by 1, to increment it:

(Let's assume that the number you want to increment or dec
rement is located in addresses $0605 and $0606, and the ML
program segment performing the action is located at $5000.)

5000 INCREMENT INC $0605; raise the low byte
5003 BNE GOFORTH; if not zero, leave high byte alone
5005 INC $0606; raise high byte
5008 GOFORTH ... continue with program

The trick in this routine is the BNE. If the low byte isn't
raised to zero (from 255), we don't need to add a "carry" to
the high byte, so we jump over it. However, if the low byte
does turn into a zero, the high byte must then be raised. This
is similar to the wayan ordinary decimal increment creates a
carry when you add 1 to 9 (or 99 or 999) . The lower number
turns to zero, and the next column over is raised by one.

To double decrement, you need an extra step. The reason
it's more complicated is that the 6502 chip has no way to test
if you've crossed over to $FF, down from $00. BNE and BEQ
will test if something is zero, but nothing tests for $FF. (The N
flag is turned on when you go from $00 to $FF, and BPL or
BMI could test it.) The problem with it, though, is that the N

433

Appendix D: A Library of Subroutines

flag isn't limited to sensing $FF. It is sensitive to any number
higher than 127 decimal ($7F).

So, here's the way to handle double-deckers:

5000 LDA $0605; load in the low byte (affecting the zero flag)
5003 BNE FIXLOWBYTE; if it's not zero, lower it, skipping high

byte
5005 DEC $0606; zero in low byte forces this.
5008 FIXLOWBYTE DEC $0605; always dec the low byte.

Here we always lower the low byte, but lower the high
byte only when the low byte is found to be zero. If you think
about it, that's the way any subtraction would work.

Comparison
Comparing a single-byte against another single-byte is easily
achieved with CMP. Double-byte comparison can be handled
this way:

(Assume that the numbers you want to compare are located
in addresses $0605,0606 and $0700,0701. The ML program
segment performing the comparison is located at $5000.)

5000 SEC
5001 LOA $0605; low byte of first number
5004 SBC $0700; low byte of second number
5007 STA $0800; temporary holding place for this result
500A LOA $0606; high byte of first number
5000 SBC $0701; high byte of second number, leave result in A
5010 ORA $0800; results in zero if A and $0800 were both zero.

The flags in the Status Register are left in various states
after this routine-you can test them with the B instructions
and branch according to the results . The ORA sets the Z (zero)
flag if the results of the first subtraction (left in $0800) and the
second subtraction (in A, the Accumulator) were both zero.
This would only happen if the two numbers tested were
identical, and BEQ would test for this (Branch if EQual) .

If the first number is lower than the second, the carry flag
would have been cleared, so BCC (Branch if Carry Clear) will
test for that possibility. If the first number is higher than the
second, BCS (Branch if Carry Set) will be true. You can there
fore branch with BEQ for =, BCC for <, and BCS for >. Just
keep in mind which number you are considering the first and
which the second in this test.

434

Appendix D : A Library of Subroutines

Double .. Bvte Addition
CLC ADC and SEC SBC will add and subtract one-byte num
bers. To add two-byte numbers, use:

(Assume that the numbers you want to add are located in ad
dresses $0605,0606 and $0700,0701. The ML program seg
ment performing the addition is located at $5000.)

5000 CLC; always do this before any addition
5001 LO A $0605
5004 AOC $0700
5007 STA $0605; the result will be left in $0605,0606
500A LOA $0606
5000 AOC $0701
5010 STA $0606

It's not necessary to put the result on top of the number
in $0605,0606-you can put it anywhere . But you 'll often be
adding a particular value to another and not needing the orig
inal any longer-adding ten points to a score for every blasted
alien is an example. If this were the case, following the logic of
the routine above, you would have a 10 in $0701, 0702 :

0701 OA; the 10 points you get for hitting an alien
070200

You'd want that 10 to remain undisturbed throughout the
game. The score, however, keeps changing during the game
and, held in $0605,0606, it can be covered over, replaced with
each addition .

Double .. Byte Subtraction
This is quite similar to double-byte addition. Since subtracting
one number from another is also a comparison of those two
numbers, you could combine subtraction with the double-byte
comparison routine above (using ORA). In any event, this is
the way to subtract double-byte numbers. Be sure to keep
straight which number is being subtracted from the other.
We'll call the number being subtracted the second number.

(Assume that the number you want to subtract [the "second
number"] is located in addresses $0700,0701 , and the num
ber it is being subtracted from [the "first number"] is held in
$0605,0606. The result will be left in $0605,0606. The ML
program segment performing the subtraction is located at
$5000.)

435

Appendix D : A Library of Subroutines

5000 SEC; always do this before any subtraction
5001 LOA $0605; low byte of first number
5004 SHC $0700; low byte of second number
5007 STA $0605; the result will be left in $0605,0606
500A LOA $0606; high byte of first number
5000 SHC $0701; high byte of second number
5010 STA $0606; high byte of final result

Multi .. Byte Addition and
Subtraction
Using the methods for adding and subtracting illustrated
above, you can manipulate larger numbers than can be held
within two bytes (65535 is the largest possible two-byte inte
ger). Here's how to subtract one four-byte-Iong number from
another. The locations and conditions are the same as for the
two-byte subtraction example above, except the "first number"
(the minuend) is held in the four-byte chain,
$0605,0606,0607,0608, and the " second number" (the sub
trahend, the number being subtracted from the first number) is
in $0700,0701 ,0702,0703.

Also observe that the most significant byte is held in
$0703 and $0608 . We'll use the Y Register for Indirect Y
addressing, use four bytes in zero page as pointers to the two
numbers, and use the X Register as a counter to make sure
that all four bytes are dealt with . This means that X must be
loaded with the length of the chains we're subtracting-in this
case, 4.
5000 LOX #4; length of the byte chains
5002 LOY #0, set Y
5004 SEC; always before subtraction
5005 LOOP LOA (FIRST),Y
5007 SHC (SECONO),Y
5009 STA (FIRST),Y; the answer will be left in $0605-0608.
500H INY; raise index to chains
500C OEX; lower counter
5010 HNE LOOP; haven't yet done all four bytes

Before this will work, the pointers in zero page must have
been set up to allow the Indirect Y addressing. This is one way
to do it:

436

Appendix D: A Library of Subroutines

2000 FIRST = $FB; define zero page pointers at $FB and $FO
2000 SECOND = $FO
2000 SETUP LOA #5; set up pointer to $0605
2002 STA FIRST
2004 LOA #6
2006 STA FIRST + 1
2008 LOA #0; set up pointer to $0700
200A STA SECOND
200C LOA #7
200E STA SECONO+1

Multiplication
X2
ASL (no argument used, "Accumulator addressing mode") will
multiply the number in the Accumulator by 2.

X3
(To multiply by 3, use a temporary variable byte we'll call
TEMP.)

5000 STA TEMP; put the number into the variable
5003 ASL; multiply it by 2
5004 AOC TEMP; (X * 2 + X = X * 3) the answer is in A.

X4
(To multiply by 4, just ASL twice.)

5000 ASL; * 2
5001 ASL; * 2 again

x 4 (two byte)

(To multiply a two-byte integer by 4, use a two-byte variable
we'll call TEMP and TEMP + 1.)

5000 ASL TEMP; multiply the low byte by 2
5003 ROL TEMP+1; moving any carry into the high byte
5006 ASL TEMP; multiply the low byte by 2 again
5009 ROL TEMP+1; again acknowledge any carry.

437

Appendix D: A Library of Subroutines

X 10

(To multiply a two-byte integer by 10, use an additional two
byte variable we'll call STORE.)

5000i first put the number into STORE for safekeeping
5000 LOA TEMP:STA STORE:LOA TEMP+1:STA STORE+1
500Ci then multiply it by 4
500C ASL TEMPi multiply the low byte by 2
500F ROL TEMP+1i moving any carry into the high byte
5012 ASL TEMPi multiply the low byte by 2 again
5015 ROL TEMP+1i again acknowledge any carry.
5018i then add the original, resulting in X * 5
5018 LOA STORE
501B AOC TEMP
SOlE STA TEMP
5021 LOA STORE+1
5010 AOC TEMP+1
5024 STA TEMP+1
5027i then just multiply by 2 since (5 * 2 = 10)
5027 ASL TEMP
502A ROL TEMP + 1

X ?

(To multiply a two-byte integer by other odd values, just use
a similar combination of addition and multiplication which
results in the correct amount of multiplication.)

X 100
(To multiply a two-byte integer by 100, just go through the
above subroutine twice.)

X 256
(To multiply a one-byte integer by 256, just transform it into
a two-byte integer.)

5000 LOA TEMP
5003 STA TEMP+1
5006 LOA #0
5008 STA TEMP

438

Appendix D: A Library of Subroutines

Division
+2
LSR (no argument used, "Accumulator addressing mode") will
divide the number in the Accumulator by 2.

+4
(To divide by 4, just LSR twice.)

5000 LSR; / 2
5001 LSR; / 2 again

+ 4 (two byte)

(To divide a two-byte integer, called TEMP, by 2)

5000 LSR TEMP+1; shift high byte right
5001 ROR TEMP; pulling any carry into the low byte

439

Hovv to Type In
BASIC Progratns
Some of the programs listed in this book are written in BASIC
and contain special control characters (cursor control, color
keys, inverse video, etc.). To make it easy to tell exactly what
to type when entering one of these programs into your com
puter, we have established the following listing conventions.
There is a separate key for each computer. Refer to the appro
priate tables when you come across an unusual symbol in a
program listing. If you are unsure how to actually enter a con
trol character, consult your computer's manuals.

Atari
Characters in inverse video will appear like: "';W":~"''''''''~];I(I:
Enter these characters with the Atari logo key, {AI .

When you see Tvpe See

{CLEAR} ESC SHIFT ... Clear Screen

{UP} ESC CTRL - ~ Cursor Up

{DOWN} ESC CTRL ... Cursor Oo n

(LEFT} ESC CTRL + <- Cursor Left

(RIGHT} ESC CTRL * -> Cursor Right

(BACK S} ESC DELETE Backspace

(DELETE} ESC CTRL DELETE (J Delete Character

(INSERT} ESC CTRL INSERT n Insert Character

{DEL LINE} ES C S HIFT DELETE ~l Delete Line

<INS LINE} ESC SHIFT INSERT e Insert Line

(TAB } ESC TAB TAB key

{CLR TAB} ESC CTRL TAB a Clear TAB

{SET TAB} ESC SHI F T TAB 0 Set TAB stop

(BELL} ESC CTRL 2 G1 Ring Buzzer

(ESC} ESC ESC '" ESCape key

Graphics characters, such as CTRL-T, the ball character. will
appear as the " normal" letter enclosed in braces, e.g., {T} .

A series of identical control characters, such as 10 spaces,
3 cursor-lefts, or 20 CTRL-Rs, will appear as {10 SPACES},
{3 LEFT}, {20 R}, etc. If the character in braces is in inverse
video, that character or characters should be entered with the
Atari logo key. For example, {5 m} means to enter five inverse
video CTRL-Us.

440

Appendix E: How to Type In BASIC Programs

Commodore 64, VIC, and PET
Program listings will contain words within braces which spell
out any special characters: {DOWN} would mean to press the
cursor down key. {5 SPACES} would mean to press the space
bar five times.

To indicate that a key should be shifted (hold down the
SHIFT key while pressing the other key), the key would be
underlined in our listings. For example, .5. would mean to
type the S key while holding the SHIFT key. If you find an
underlined key enclosed in braces (e .g., {IO N }), you should
type the key as many times as indicated (in our example, you
would enter ten shifted Ns).

If a key is enclosed in special brackets, [< ~,you should
hold down the Commodore key while pressing the key inside
the special brackets . (The Commodore key is the key in the
lower left corner of the keyboard.) Again, if the key is pre
ceded by a number, you should press the key as many times
as indicated.

Rarely, you 'll see a solitary letter of the alphabet enclosed
in braces. These characters can be entered by holding down
the CTRL key while typing the letter in the braces. For ex
ample, {A} would indicate that you should press CTRL-A.

About the quote mode: You should know that you can
move the cursor around the screen with the CRSR keys .
Sometimes a programmer will want to move the cursor under
program control. That's why you see all the {LEFT}'s,
{HOME}'s, and {BLU}'s in our programs. The only way the
computer can tell the difference between direct and pro
grammed cursor control is the quote mode.

Once you press the quote (the double quote, SHIFT -2),
you are in the quote mode. If you type something and then try
to change it by moving the cursor left, you 'll only get a bunch
of reverse-video lines . These are the symbols for cursor left.
The only editing key that isn' t programmable is the DEL key;
you can still use DEL to back up and edit the line. Once you
type another quote, you are out of quote mode.

You also go into quote mode when you INserT spaces into
a line. In any case, the easiest way to get out of quote mode is
to just press RETURN. You'll then be out of quote mode and
you can cursor up to the mistyped line and fix it.

Use the following tables when entering special characters:

441

Appendix E: How to Type In BASIC Programs

When You When You
Read: Press: See: Read: Press: See:

[CLR} I SHiFf II CLR HOME I [i [GRN} ~Q [J
[HOME} I CLR HOME I ~ [BLU} ~LJ GI
[up} I SHiFf 11+ CRSR; I r:l [YEL} ~Q iii
[DOWN} 1+ CRSR; I m [Fl}

I -II • [LEFT} I SHlFr I ~CRSR"' I II [F2 } fl ! II
[RIGHT} ~CRSR~ !I (F3) f3 I • -[RVS} ~~ m [F4} f. I II!
[OFF} ~~ • [F5 } f5 I .1
[BLK} ~CJ • (F6) f6 I II
[WHT } ~LJ ~ [F7J f7 I II
[RED} ~[2J ~ [FB} I f8 I • [CYN} ~~ !IlL ~ 1 1 ~

~c=J • i I SHiFf I [JJ fi (PUR) · -

442

Index
• = (Program Counter =) pseudo-op 32,

111 - 12, 149-51 , 203, 336, 339
> pseudo-op 342-43
< pseudo-op 342-43
+ pseudo-op 179, 342-43
Accumulator. See 6502, Accumu lator

Register
Accumulator addressing 38
ADC 239-40
address (Progra m Counter) labels 7,

36-37
address ing modes . See 6502, instruction

types
AND 240-41

with ASC II numbers 114, 154
Apple LADS 327-32,

BASIC wedge 331-32
Disk Operating System file manager
327-32
er ror byte 330
Openl 327- 32

Array (subprogram) 43 , 85-93
program listings 97-101

ASClI
alphabetic numbers 154-55
characters 33 , 82-83
messages 182
number convers ion 113-16

ASL 241-42
with ROL 115- 16, 153-54

assembly 5-6, 34
Atari

CIO 299
IOCB 299
memory 300

Atari LADS 299-327, 348-55
Defs 301
Editor 301, 308- 12, 350-55
program listing 312-27
Eval 301, 304-5
Getsa 302
Indisk 303
Kerna l 300, 303- 4
program listing 305-8
modifying the Editor 311
Open 1 302
Printops 303
Pseudo 303
System 305
program listing 308
Valdec 302

.B (.BYTE) pseudo-op 156-58
base opcodes 36, 226

BAS IC
borrowing from 18-19, 105-7, 182-83
end of program mark 152
keyword table 10, 18
See also tokenized keywords

BCC 242
BCS 242-43
BEQ 243
B group instructions. See Relative

addressing
BIT 243-44
bit-moving instructions 38
BMI 244

and BPL 45-47, 83
BNE 244-45
borrow 266
BPL 245

and BMI. See BMI and BPL
BRANCH OUT OF RANGE 11, 39
Brannon, Charles 108,415
BRK 245-46
buffer 29-30, 140
BYC 246
BYS 247
carry 239, 242, 247, 266-67
chained fil es. See pseudo-ops, .E; pseudo-

ops, .F
character 8
CLC 247
CLD 247-48
CLl 248
CLY 248-49
CMP 249- 50

and turbo-charged programming 108
cold sta rt 18
comments 141-44
Commodore

Kerna l 4
ST (status byte) 205

constant 4
CPX 250-51
CPY 251 -52
.0 (.D ISK) pseudo-op 181 , 202-5, 345
data base management. See Array (sub-

program); Equate (subprogram)
debugging 53-55, 149-5 1, 260, 339
DEC 252
decimal mode 239-40, 247-48, 261
defaults 29

changing 31
Defs (subprogra m) 15-25

program listings 20-25
relocatability 15-16
transportabil ity 16

443

delimiters 82-84
DEX 252-53
DEY 253
Dis (optional subprogram) 288-96

program listings 294-96
disk 16

assembly to disk. See pseudo-ops, .D
errors 205
padding with spacer bytes 151, 159-60
Program Counter 107

division 259, 439
documentation. See comments
double-byte ML routines

-addition 435
comparison 434
decrement 433
increment 433
subtraction 435

Dtables (optional subprogram) 288-96
program listings 296-98

DUPLICATED LABEL 86-88, 90
.E (.END) pseudo-op 201 , 202, 343
EOR 253-54

to shift an ASCII character 83
equate labels 7, 16, 36-37

zero page 16
Equate (subprogram) 81-84

program listings 94-96
error signals 184
error traps (additional)

impossible instruction 279-80
keywords in filenames
naked mnemonic 278-79

Eval (subprogram) 29-76
calculating an opcode 226
determining addressing mode (instruc
tion type) 43-53
program listings 55-76

expression labels 86
extensibility 277
.F (.FILE) pseudo-op 112, 199-200, 343
fa lse target 11
fields

fixed length 79-81 , 108
variable length 79-83

Findmn (subprogram) 32, 35-37, 109-11
program listings 129-30

flags 5, 9, 30
Getsa (subprogram) 32, 111-13

program listings 131-34
.H (.HEX) pseudo-op 206
hexadecimal (hex) numbers 42-43,

152-56, 183-85
Implied addressing 37-38
INC 254

444

Indisk (subprogram) 32, 34, 42, 139-76
program listings 161-76

initializa tion 29
Input/Output (I / O)

Commodore 105-8
See also Pseudo (subprogram)

instruction types. See 6502, instruction
types

integer 8
interrupt

customizing 268
disabling 268
forced 245

INX 254-55
INY 255
jMP 255-56
jSR 256-57

covering with NOP 260
self-modifying indirect 311

Kernal. See Atari LADS, Kernal; Com
modore, Kernal

labels 40-42
storing in data base 83-85
See also address (Program Counter) la
bels; DUPLICATED LABEL; equate la
bels; expression labels; source labels;
UNDEFINED LABEL

LADS
Apple. See Apple LADS
assembly 34
Atari. See Atari LADS
buffers 227-28
'command summary 338-39
development and philosophy 79-81,
108-11,150-51
disassembler. See Dis (optional
subprogram)
flags 228-31
how to use 335-55
modifying 184, 200-201, 277-98
object code listings 357-414
Program Counter 33, 86, 149-51
RAM-based assembly 282-86
registers 227-28
relocating 15
rules for use 345
tape use 348
zero page usage 17-18

LOA 257-58
LDX 258
LOY 258-59

looping 81-82
linked files

See pseudo-ops, .F; pseudo-ops, .E
lookup tables 108-11
loop counter 252-53

LSR 259
Machine Language Editor (MLX) 415
Macilille Lallguage for Bcgillllcrs 34
Machine Language (ML) routines . See

double-byte ML routines; multi-byte
ML routines

Mappillg the Atari 327
Math (subprogram) 179-80

program listings 186-87
" Micromon" 150
MLX. See Machine Language Editor

program listings 419-31
mnemonic instructions. See 6502, instruc-

tion set
modifying LADS 184,200-201 , 277-98
monitor 3
multi-byte ML routines

addition 436
subtraction 436

multiplication 115-16, 437-38
.N (.NO) pseudo-op 204-5
NAKED LABEL 84
NOP 260
NO START ADDRESS 112
numbers 8
.0 (.OBJECT code to RAM) pseudo-op

181, 204, 344
object code 5, 181
opcodes . See 6502, opcodes
Openl (subprogram) 106-8

program listings 117-29
ORA 260-61

with alphabetic numbers 154-55
output. See Input/Output; Printops

(subprogram)
OVERFLOW 47
.P (.PRINTER) pseudo-op 204
parallel tables 108-11 , 221-27
PHA 261

and PLA 45-47, 53
PHP 262
PLA 262

and JSR 256
and PHA. See PHA and PLA

PLP 262-63
pointer 4, 30
printing

addresses 200
hex numbers 185
routines 184-85
source code 49-51

Printops (subprogram) 180-85
program listings 187-95

Program Counter. See LADS, Progra m
Counter

Pseudo (subprogram) 199-217
program listings 207-17

pseudo-ops
*= (Program Counter =) 32, 111-12,
149-51,203,336,339
#> 342-43
#< 342-43
+ 179,342-43
.B (.BYTE) 156-58
.0 (.DISK) 181, 202-5, 345
.E (.END) 201 , 202, 343
.F (.FILE) 112, 199- 200,343
.H (.HEX) 206
.N (.NO) 204-5
.0 (.OBJECT code to RAM) 181 , 204,
344
.r (.PRINTER) 204
.s (.sCREEN) 206

RAM-based assembly 282-86
range checking 179
redefined label 87
register 4, 29
Relative addressing 44- 47
remarks. See comments
ROL 263-64

with ASL. See ASL, with ROL
ROR 264-65

with LSR 259
RTl265
RTS 265-66
.s (.sCREEN) pseudo-op 206
SBC 266
SEC 266-67
SED 267
SEI 268
semicolon 341
seventh bit (bit 7) 9-10
shifted characters 82, 147, 244-45
signed arithmetic 10, 239, 244-45

branching 46-47
Simple Assembler 34
6502

Accumulator Register 257
addressing modes. See 6502, instruction
types
bug 255-56
instruction types 37-38, 43-45, 222-24
opcades 221-22, 225
Status Register 5, 9, 30, 246
X Register 258
Y Register 258
source code 5
printout. See printing, source cade

source files 335
source labels 88

445

springboards 10, 39, 145
stack 261, 262, 265, 272
start address 32-33. See also pseudo-ops,

'=
STA 269
Status Register. See 6502, Status Register
STX 269
STY 269-70
subprogram 7-8
suction routine 140
SYNTAX ERROR 199
tables . See lookup tables
Tables (subprogram) 36, 108, 221 - 36

program listings 232-36
TAX 270
TAY 270-71
toggle 253

446

tokenized keywords 139, 142, 144-46,
160, 199-200

TSX 271
turbo-charged programming 108
TXA 271-72
TXS 272
TYA 273
types. See 6502, instruction types
UNDEFINED LABEL 91-92
Valdec (subprogram) 32-33, 43, 113-16

program listings 134-36
registers 228

variable 4
vector 4
warm start 18
zero page address labels 93
Zero Page Y addreSSing 53

To order your copy of the LADS Disk call our toll-free US
order line: 1-800-334-0868 (in NC call 919-275-9809) or send
your prepaid order to:

LADS Disk
COMPUTE! Publications
P.O. Box 5406
Greensboro, NC 27403

Please specify whether you want the Apple, Atari or Com
modore LADS. All orders must be prepaid (check, charge, or
money order). NC residents add 4.5% sales tax.

Send __ copies of the LADS Disk at $12.95 per copy for
(check one) DApple D Atari D Commodore

Subtotal $ ____ _

Shipping & Handling : $1.00jdisk· $ ___ _

Sales tax (if applicable) $ ____ _

Total payment enclosed $ ____ _

·Outside US and Canada, add $3.00 per disk for shipping and handling. All
payments must be in US funds.

D Payment enclosed
Charge D Visa D MasterCard D American Express

Acct. No. Exp. Date

Name _____________________ _

Address

City ___________ State ___ Zip

Please allow 4-5 weeks for delivery.

--

ERRATA

A Note To VIC-20 Users:
To insure reliable assembly with the LADS assembler on the
VIC, leave the .S (print to screen) pseudo-op active at all
times.

	Cover
	Contents
	Preface
	1: how to Use this Book
	2: Defs: Equates and Definitions
	3: Eval: the Main Loop
	4: Equate and Array
	5: Open1, FindMn, Getsa, and Valdec
	6: Indisk
	7: Math and Printops
	8: Pseudo
	9: Tables
	10: 6502 Instructino Set
	11: Modifying LADS
	Appendices
	How to Use LADS
	LADS Object Code
	Machine Language Editor for Atari and Commodore
	A Library of Subroutines
	How to Type in BASIC Programs

	Index

