The
Secontl
Book

0f
Machine
Language

Personal Computer Machine Language :
Programming for the Commaodore 64, VIC-20, Atari,
Apple, and PET/CBM Computers. o

By Richard Mansfield*

. The
Second

Book

of
Machine
Language

By Richard Mansfield

COMPUTE! Publico’rions,lnc.@

One of the ABC Publishing Companies

Greensboro, North Carolina

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America
ISBN 0-942386-53-1
10987654321

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies, and is not associated with any
manufacturer of personal computers. PET, CBM, VIC-20, and Commodore 64 are all
trademarks of Commodore Electronics Limited and/or Commodore Business Ma-
chines, Inc. Apple is a trademark of Apple Computer Company. Atari is a trademark
of Atari, Inc.

Contents

PIElICE « cossusnspuspsosns susnasssssnsssssssasssss v
1: How to Use This Book BESE &S PETENE S0 1
2: Defs:

Equatos and Delinitionscoevsousssnanos ensan 13
3: Eval:

B8 MBI LBBE .osuvnsnnsosnacaniss ens sesemnnns 27
4: Equate and Array:

Data Dase Managementccossnvssnessnsanwssss 77
5: Openl, Findmn, Getsa, and Valdec:

I/O Management and Number Conversions 103
6: Indisk:

The Main Input ROutinevvcovonensossnnnwnss 137
7: Math and Printops:

Range Checking and Formatted Output 177
8: Pseudo:

[/O and Linked Files 197
9: Tables:

Data, Messages, Variables 219

10: 6502 Instruction Set 237

11: Modifying LADS

Adding Error Traps, RAM-Based Assembly, and a

LUSBSRERIBIOr . .oswsssssrmanensssnamma s e sanesq 275
SNPPCIIRIUNE np v o swn 3% b o 6 0 AR 5 5 R BB B AT 3 353
Ar How o Use LADS ... conwprusnsossmssssmnne sy 355
B: LADS Object Cade . .;:cvcsnssiisvnnsismannnvs 857
C: Machine Language Editor for Atari and Commodore 415
D: A Libraty of Subtoutines:.:svssnsss0nn0: 433
E: How to Type In Basic Programs 440

Index 443

Preface

This book shows how to put together a large machine lan-
guage program. All of the fundamentals were covered in my
first book, Machine Language for Beginners. What remains is to
put the rules to use by constructing a working program, to
take the theory into the field and show how machine language
is done.

Showing how to construct an assembler—written entirely
in machine language—would serve two useful purposes. It
would illustrate advanced programming technique and also
provide the reader with a powerful assembler to use in other
ML programming.

This book, then, offers the reader both a detailed descrip-
tion of a sophisticated machine language program (the LADS
assembler) and an efficient tool, a complete language with
which to write other machine language programs. Every line
in the LADS assembler program is described. All the sub-
routines are picked apart and explained. Each major routine is
examined in depth.

LADS, the Label Assembler Development System, is a
fast, feature-laden assembler—it compares favorably with the
best assemblers available commercially. And not the least of
its virtues is the fact that few programs you will ever use will
be as thoroughly documented and therefore as accessible to
your understanding, modification, and customization.

LADS is a learning device too. By exploring the assem-
bler, you will learn how to go about writing your own large
machine language (ML) programs. You will see how a data
base is created and maintained, how to communicate with
peripherals, and how to accomplish many other ML tasks.
Also, because you can study the creation of a computer lan-
guage, the LADS assembler, you will gain an in-depth knowl-
edge of the intimate details of direct communication with your
computer.

Most programming involves a tradeoff between three pos-
sible objectives: speed, brevity, or clarity. You can program
with the goal of creating the fastest running program possible.
Or you can try to write a program which uses up as little
memory as possible. Or you can try to make the program as
understandable as possible, maximizing the readability of the
program listing with REMarks.

LADS emphasizes clarity so that its source code will serve
as a learning tool and as the focus of this book. It's designed
so that important events in the program can be easily ex-
plained and understood. Virtually every ML instruction, every
tiny step, is commented within the source code listings follow-
ing each chapter.

This doesn’t mean that LADS is flabby or slow. Assem-
bling roughly 1000 bytes a minute and taking up 5K in mem-
ory, LADS is considerably faster and more compact than most
commercial assemblers. That’s because, in ML, you can have
the best of both worlds: You can comment as heavily as you
want, but the assembler will strip off the comments when it
creates the object code. In this way, clarity does not sacrifice
memory or speed.

The frequent comments contribute considerably to the
educational value of this assembler. Exploring LADS is a way
to learn how to achieve many common programming goals
and how to construct a large, significant program entirely in
ML. An additional advantage of this comprehensibility is that
you’ll be able to modify LADS to suit yourself: Add your own
pseudo-ops, define defaults, format output. All this is referred
to as a language’s extensibility. We'll get to this in a minute.

What BASIC is to BASIC programming, an assembler is to
ML programming. LADS is a complete language. You write
programs (source code) which LADS translates into the fin-
ished, executable ML (object code). Unlike less advanced
assemblers, however, symbolic assemblers such as LADS can
be as easy to use as higher level languages like BASIC. The
source code is very simple to modify. Variables and sub-
routines have names. The program can be internally com-
mented with REM-like explanations. Strings are automatic via
the .BYTE command. There are a variety of other built-in fea-
tures, the pseudo-ops, which make it easy to save object pro-
grams, control the screen and printer listings, choose hex or
decimal disassembly, and service other common programming
needs.

Perhaps the best feature of LADS, though, is its extensibil-
ity. Because you have the entire source code along with de-
tailed explanations of all the routines, you can customize

vi

LADS to suit yourself. Add as many pseudo-ops as you want.
Redesign your ML programming language anytime and for
any reason. Using an extensible programming language gives
you control not only over the programs you design, but also
over the way that they are created. You can adjust your tools
to fit your own work style.

Do you often need to subtract hex numbers during assem-
bly? It's easy to stick in a — command. Would you rather that
LADS read source programs from RAM memory instead of
disk files? (This makes it possible to assemble using a tape
drive. It can also be a bit faster.) In Chapter 11 we’ll go
through the steps necessary to make this and other modifica-
tions. You'll be surprised at how easy it is.

Finally, studying the language (the LADS assembler)
which produces machine language will significantly deepen
your understanding of ML programming.

I would like to thank Charles Brannon for his translation
and work with the Atari version of LADS, Kevin Martin for his
translation and work with the Apple version, and Todd
Heimarck for his many helpful discoveries about the assembler.

vii

Chapter 1

How to Use This
Book

EEEmEIS NN NN

How to Use This Book

The dual nature of this book—it’s both a text and a pro-
gram—offers you a choice. You can follow the ideas: reading
through the chapters, studying the program listings, and deep-
ening your understanding of machine language programming.

Alternatively, you can type in the LADS assembler and
experiment with it: learning its features, trying out modifica-
tions, and using it to write your own machine language pro-
grams. Appendix A describes how to use the assembler and
Appendix B provides instructions on typing it in. If you choose
this second approach, the rest of the book can serve as a ref-
erence and a map for modifying the assembler. The tutorials
can also help to clarify the structure and purpose of the vari-
ous subroutines and subprograms.

LADS is nearly 5K long, and for those who prefer not to
type it in, it can be purchased on a disk by calling COMPUTE!
Publications toll free at 1-800-334-0868. Be sure to state
whether you want the Commodore, Atari, or Apple disk. The
disk contains both the LADS source and object code (these
terms are defined below). To create customized versions of the
assembler, you will need the source code. It, too, can be typed
in (it is printed in sections at the end of Chapters 2-9). If you
don’t type in any of the comments, it is roughly 10K long. The
Commodore disk contains the various PET/CBM (Upgrade
and 4.0 BASIC), VIC, and Commodore 64 versions.

Definitions
There are several concepts and terms which will be important
to your understanding of the rest of the book.

ML programming, and programming in general for that
matter, is a new discipline, a new art. There are few rules yet
and few definitions. Words take on new meanings and are
sometimes used haphazardly. For example, the word monitor
means two entirely different things in current computerese: (1)
a debugging program for machine language work or (2) a spe-
cial TV designed to receive video signals from a direct video
source like a computer.

Since there is no established vocabulary, some program-
ming ideas are described by an imprecise cluster of words.
When applied to machine language programming, the terms
pointer, variable, register, vector, flag, and constant can all refer

How to Use This Book

to the same thing. There are shades of difference developing
which distinguish between these words, but as yet, nothing
has really solidified. All these terms refer, in ML parlance, to a
byte or two which the programmer sets aside in the source
code. In BASIC, all these terms would be covered by the

word variable.

Loose Lingo

Purists will argue that each of these words has a distinct, de-
finable meaning. But then purists will always argue. The fact
is that computing is still a young discipline and its lingo is still
loose.

Some professors of BASIC like to distinguish between vari-
ables and constants, the latter meaning unchanging definitions
like SCREEN = 1024. The address of the start of screen RAM
is not going to vary; it’s a constant.

In BASIC, something like SCORE = 10 would be a vari-
able. The score might change and become 20 or whatever. At
any rate, the word SCORE will probably vary during the execu-
tion of the program. In ML, such a variable would be set up as
a two-byte reserved space within the source code:

100 SCORE .BYTE 0 0

Then, anytime you ADC SCORE or ADC SCORE+1, you
will add to the SCORE. That’s a variable. The word pointer re-
fers to those two-byte spaces in zero page which are used by
Indirect Y addressing—Ilike LDA (155),Y—and which serve to
point to some other address in memory.

Register usually means the X or Y or Accumulator bytes
within the 6502 chip itself. As generally used, the word reg-
ister refers to something hard wired within the computer: a
circuit which, like memory, can hold information. It can also
refer to a programmer-defined, heavily used, single-byte vari-
able within an ML program:

100 TEMP .BYTE 0

A wvector is very much like a pointer. It stores a two-byte
address but can also include the JMP instruction, forming a
three-byte unit. If you have a series of vectors, it would be
called a “jump table,” and the Kernal in Commodore comput-
ers is such a table:

How to Use This Book

FFD2 JMP $F252
FFD5 JMP $A522
FFD8 JMP $B095

Thus, if you JSR $FFD2, you will bounce off the JMP into
$F252, which is a subroutine ending in RTS. The RTS will
send you back to your own ML code where you JSRed to the
JMP table. That’s because JMP leaves no return address, but
JSR does.

A flag is a very limited kind of variable: It generally has
only two states, on or off. In LADS, PRINTFLAG will send ob-
ject code (defined below) to the printer if the flag holds any
number other than zero. If the PRINTFLAG is down, or off,
and holds a zero, nothing is sent to the printer. The word flag
comes from the Status Register (a part of the internals of the
6502 chip). The Status Register is one byte, but most of the bits
in that byte represent different conditions (the current action in
an ML program resulted in a negative, a zero, a carry, an inter-
rupt, decimal mode, or an overflow). The bits in the Status Reg-
ister byte are, themselves, individual flags. ML programmers,
however, usually devote an entire byte to the flags they use in
their own programs. Whole bytes are easier to test.

Source code is what you type into the computer as ML
instructions and their arguments:

100 *= 864

110 LDA #$0F ; THIS WILL PUT A 15 ($0F) INTO THE
ACCUMULATOR

120 INY ; THIS RAISES THE Y REGISTER

After you type this in, you assemble it by turning control
over to the LADS assembler after naming this as the source
code. The result of the assembly is the object code. If you have
the .S pseudo-op on, causing the object code to print to the
screen, you will see:

100 0360 A9 OF LDA #$0F ; THIS WILL PUT A 15 ($0F)
INTO THE ACCUMULATOR

120 0362 C8 INY ; THIS RAISES THE Y
REGISTER

Properly speaking, the object code is the numbers which,
taken together, form a runnable ML program. These numbers
can be executed by the computer since they are a program. In
the example above, the object code is A9 OF C8. That's the
computer-understandable version of LDA #$0F: INY. It's gen-

How to Use This Book

erated by the assembler. An assembler translates source code
into object code.

A complex assembler like LADS allows the programmer to
use labels instead of numbers. This has several advantages. But
it does require that the assembler pass through the source code
twice. (When an assembler goes through source code, it is
called a pass.) The first time through, the assembler just gathers
all the label names and assigns a numeric value to each label.
Then, the second time through the source code, the assembler
can fill in all the labels with the appropriate numbers. It doesn't
always know, the first time through, what every label means.
Here’s why:

100 LDA 4222

110 BEQ NOSCORE

120 JMP SOMESCORE

130 NOSCORE INX:JMP CONTINUE
140 SOMESCORE INY

150 CONTINUE LDA 4223

As you can see, the first time the assembler goes through
this source code, it will come upon several labels that it doesn’t
yet recognize. When the assembler is making its first pass, the
labels NOSCORE, SOMESCORE, and CONTINUE have no
meaning. They haven't yet been defined. They are address-type
labels. That is, they stand for a location within the ML program
to which JMPs or branches are directed. Sometimes those
jumps and branches will be forward in the code, not yet
encountered.

The assembler is keeping track of all the addresses as it
works its way through the source code. But labels cannot be de-
fined (given their numeric value) until they appear. So on the
first pass through the source code, the assembler cannot fill in
values for things like NOSCORE in line 110. It will do this the
second time through the source code, on the second pass. The
first pass has a simple purpose: The assembler must build an
array of label names and their associated numeric values. Then,
on the second pass, the assembler can look up each label in the
array and replace label names (when they’re being used as
arguments like LDA NAME) with their numeric value. This
transforms the words in the source code into numbers in the
object code and we have a runnable ML program. Throughout
this book, we'll frequently have occasion to mention pass 1 or
pass 2.

6

How to Use This Book

The Two Kinds of Labels

There are two kinds of labels in ML source code: equate and ad-
dress labels. Equate labels are essentially indistinguishable from
the way that variables are defined in BASIC:

100 INCOME = 15000

This line could appear, unaltered, in LADS or in a BASIC
program. (Remember this rule about labels: Define your equate
labels at the start of the source code. The LADS source code
shows how this is done. The first part of LADS is called Defs
and it contains all the equate definitions. This is not only
convenient and good programming practice; it also helps the
assembler keep things straight.)

The other kind of label is not found in BASIC. It’s as if you
can give a name to a line. In BASIC, when you need to branch
to a subroutine, you must:

10 GOSUB 500

500 (the subroutine sits here)

that is, you must refer to a line number. But in LADS, you give
subroutines names:

10 JSR RAISEIT; GOSUB TO THE RAISE-THE-Y-REGISTER-
SUBROUTINE

;500 RAISEIT INY; THE SUBROUTINE WHICH RAISES Y
510 RTS

This type of label, which refers to an address within the ML
program (and is generally the target of JSR, JMP, or a branch
instruction), is called an address-type label, or sometimes a PC-
type label. (PC is short for Program Counter, the variable
within the 6502 chip which keeps track of where we are during
execution of an ML program. In LADS, we refer to the variable
SA as the Program Counter—SA keeps track, for LADS, of
where it is during the act of assembling a program.)

Subprogram is a useful word. LADS source code is written
like a BASIC program, with line numbers and multiple-statement
lines, and it’s written in a BASIC environment. The source
code is saved and loaded as if it were a BASIC program. But if
you are writing a large ML program, you might write several
of these source code “programs,” saving them to disk sepa-

How to Use This Book

rately, but linking them with the .FILE and .END pseudo-ops
into one big chain of source programs. This chain will be
assembled by LADS into a single, large, runnable ML object
program.

Each of the source programs, each link in this chain, is
called a subprogram. In the source code which makes up LADS
there are 13 such subprograms—from Defs to Tables—compris-
ing the whole of LADS when assembled together. This book is
largely a description of these subprograms, and some chapters
are devoted to the explication of a single subprogram. To distin-
guish subprograms from subroutines and label names, the sub-
program names (like Tables) have only their first letter
capitalized. Subroutines and labels are all-caps (like
PRINTFLAG).

The word integer means a number with no fraction at-
tached. In the number 10.557, the integer is the 10 since inte-
gers have no decimal point. They are whole numbers. ML
programs rarely work with anything other than integers. In fact,
the integers are usually between 0 and 65535 because that’s a
convenient range within which the 6502 chip can operate—two
bytes can represent this range of numbers. Of course, decimal
fractions are not allowed. But virtually anything can be accom-
plished with this limitation. And if you need to work with big
or fractional numbers, there are ways.

In any case, when we refer to integer in this book, we
mean a number that LADS can manipulate, in a form that
LADS can understand, a number which is a number and not,
for example, a graphics code. For example, when you write
LDA $15 as a part of your source code, the computer holds the
number 15 in ASCII code form. In this printable form, 15 is
held in the computer as the numbers $31 $35 which, when
printed on the screen, provide the characters 1 and 5 (but not
the true number 15). For the assembler to work with this 15 as
the number 15, it must be transformed into a two-byte integer,
an actual number. When translated, and put into two bytes, the
characters 1 5 become: $0F 00. We'll see what this means, and
how the translation is accomplished, in Chapter 5 where we
examine the subprogram Valdec. It's Valdec’s job to turn ASCII
characters into true numbers.

How to Use This Book

The Seventh Bit (Really the Eighth)

For most of human history, we had to get along without the 0.
It was a great leap forward for mankind when calculations
could include the concept of nothing, zero. But now there’s an-
other mental leap to be made, a private adjustment to the way
that computers use zero: They often start counting with a zero,
something humans never do.

Imagine you are driving along and you've been told that
your friend’s new house is the third house in the next block.
You don't say “house zero, house one, house two, house
three.” It makes no sense (to us) to say “house zero.” We al-
ways count up from 1.

But the computer often starts counting from zero. In
BASIC, when you DIM (15) to dimension an array, it’s easy to
overlook the fact that you've really DIMed 16 items—the com-
puter has created a zeroth item in this array.

It's sometimes important to be aware of this quirk. A num-
ber of programming errors result from forgetting that unnatural
(or at least, nonhuman) zeroth item.

This situation has resulted in an unfortunate way of count-
ing bits within bytes. It's unfortunate in two ways: Each bit is
off by 1 (to our way of thinking) because there is a zeroth bit.
And, to make things even tougher on us, the bits are counted
from right to left. Quite a perversity, given that we read from left
to right. Here’s a diagram of the Status Register in the 6502
chip, each bit representing a flag:

7 6 54 3 2 10 (bit number within the Status Register byte)
NV - BD1I ZC (flag name)

As a brief aside, let’s quickly review the meanings of these
flags. The flag names in the Status Register reflect various pos-
sible conditions following an ML event. For example, the LDA
command always affects the N and Z flags. If you LDA #0, the
Z flag will go up, showing that a zero resulted (but the N flag
will go, or stay, down since the seventh bit isnt set by a zero).
Here’s what the individual flags mean: N (negative result), V
(result overflowed), - (unused), B (BRK instruction used), D
(decimal mode), I (interrupt disable), Z (result zero), C (carry
occurred).

But in addition to the meanings of these flags in the Status
Register, notice how bytes are divided into bits: count right to
left, and start counting from the zeroth bit.

How to Use This Book

This is relevant to our discussion of LADS when we refer
to bit 7. This bit has a special importance because it can sig-
nify several things in ML.

If you are using signed arithmetic (where numbers can be
positive or negative), bit 7 tells you the sign of the number
you're dealing with. In many character codes, a set (up) sev-
enth bit will show that a character is shifted (that it's F instead
of f). In the Atari, it means that the character is in inverse
video. But a set seventh bit often signifies something.

One common trick is to use bit 7 to act as a delimiter,
showing when one data item has ended and another begins.
Since the entire alphabet can easily fit into numbers which
don'’t require the seventh bit up (any number below 128
leaves the seventh bit down), you can set up a data table by
“shifting” the first character of each data item to show where
it starts. The data can later be restored to normal by “lower-
ing”” the shifted character. Such a table would look like this:

FirstwordSecondword AnotherwordYetanother.

BASIC stores a table of all its keywords in a similar fash-
ion, except that it shifts the final character of each word
(enDstoPgotOgosuBinpuT...). Either way, shifted characters can
be easily tested during a search, making this an efficient way
to store data. Just be sure to remember that when we refer to
the seventh bit, we're talking about the leftmost bit.

Springboard

In the 6502 chip instruction set, there aren’t any instructions for
giant branches. Some chips allow you to branch thousands of
bytes away, but our chip limits us to 127 bytes in either direc-
tion from the location of the branch. Normally, this isn't much
of a problem. You JSR or JMP when you want to go far away.

But as you assemble, you'll be making tests with BNE and
BEQ and their cousins in the B group. Then, later, you'll add
some more pieces of programming between the branch instruc-
tion and its target. Without realizing it, you'll have moved the
target too far away from the branch instruction. It will be a
branch out of range.

This is pretty harmless. When you assemble it, LADS will
let you know. It will print a bold error message, print the
offending line so you can see where it happened, and even ring
a bell in case you're not paying attention. What can you do,

10

How to Use This Book

though, when you have branched out of range? Use a
springboard.
The easiest and best way to create a giant branch is this:

100 LDA 15
110 BEQ JTARGET

i70 JTARGET JMP TARGET; THIS IS THE SPRINGBOARD

‘930 TARGET INY ; HERE IS OUR REAL DESTINATION FROM
LINE 110

When you get a BRANCH OUT OF RANGE ERROR mes-
sage, just create a false target. In LADS, the letter] is added to
the real target name to identify these springboards (see line 170
above). All a springboard does is sit somewhere near enough to
the branch to be acceptable. All it does is JMP to the true tar-
get. It’s like a little trampoline whose only purpose is to bounce
the program to the true destination of the branch.

One final note: To make it easy to locate programming
explanations in the text of this book, all line numbers are in
boldface. Most of the chapters in the book cover a single major
subprogram. At the end of a chapter is the appropriate source
code listing. It is these listings to which the boldface line num-
bers refer.

Now, let’s plunge into the interior of the LADS assembler.
We'll start with the equate labels, the definitions of special ad-
dresses within the computer.

11

san
|v..

Chapter 2
Defs:

Equates and Definitions

HEERENMNE s EEREM.

Defs:

Equates and Definitions

Let’s get started. Recall that the boldface numbers within the
text refer to line numbers within the program listings at the
end of each chapter. The first section of LADS defines many
of the variables which are used throughout the program. It’s
called “Defs.”

Defs for Relocatability

One of the advantages of advanced assemblers, LADS in-
cluded, is that they create object code (runnable ML programs)
which are both relocatable anywhere within a computer’s RAM
memory as well as transportable between computer brands and
models.

If you want to put LADS at $5000 instead of $2AF8, you
can relocate it quite simply: Just change line 10 in the Defs
source code file, the first file in the chain of LADS source code
files. As written, line 10 reads *= 11000 (equivalent to *=
$2AF8) and that causes the entire object program to start at
that address. Changing line 10 to *= $5000 relocates LADS
when you next assemble it. If you include the pseudo-op .D,
the object program will be saved to disk under the filename
you specify.

In the source code of LADS itself, at the end of this
chapter, the “.D LADS64" in line 30 will create a version of
LADS on disk by the name of LADS64 and if you later LOAD
“LADS64",8,1 it will come into your computer ready to run
with a SYS 11000. If you change the start address in line 10,
however, to $5000, and then reassemble the source code, your
LADS will start with a SYS 20480 (decimal for $5000).

The numbers generated by the assembly (the object code)
will be sent to a disk file if you specify that with .D. They will
be sent into RAM memory if you use the .O pseudo-op. If you
do turn on storage of object code to memory, LADS will send
the results of the assembly right into memory during the
assembly process. This can cause mysterious difficulties unless
you are careful not to assemble over LADS itself. If you have
created a version of LADS which starts at $4C00 and you then
start assembly of some object program at $5000, you'll eat into
LADS itself. LADS is about 5K long. This, of course, would

15

Defs: Equates and Definitions

cause havoc. Using the .D pseudo-op is safe enough, since the
new ML program assembles to disk. But the .O pseudo-op will
send bytes right into RAM during assembly.

Be aware, too, that LADS builds its label array down from
the start of its own code. During assembly, the labels and their
values are stored in a growing list beneath the start address of
LADS (where you SYS to start the assembler). If you send ob-
ject code into an area of RAM which interferes with this array,
you'll get lots of UNDEFINED LABEL errors. So be sure you
know where you're putting object code if you store it in RAM
during assembly by using the .O pseudo-op.

Defs for Transportability

The only part of LADS which is intensely computer-specific is
this first file, this first subprogram, called Defs. Here we define
all the machine-specific equates. (An equate is the same thing
as a variable definition in BASIC. For example, RAMSTART =
$2B is a typical equate.) We’ll use the Commodore 64 Defs
(Program 2-1) as our example. The labels (variable names like
RAMSTART) for all other computers’ versions of LADS will
be the same—only the particular numbers assigned to these
labels will vary. The addresses of pointers and ROM routines
vary between computer models.

Defs contains the definitions of all zero page or ROM ad-
dresses that will be used in the rest of the source code. Once
again, remember that all zero page equates must be defined at
the start of the source code (Defs illustrates that rule: Defs is the
first part of the LADS source code). From lines 60 to 170 we
define the locations within zero page that we’ll be using. In
line 70 we define the top of the computer’'s RAM memory.
We're going to lower it from its usual spot to fall just below
where LADS itself starts.

ST is the location where errors in disk file manipulation
can be detected. Like all of these zero page equates, this loca-
tion varies from computer to computer. LOADFLAG (line 90)
signals the computer that we want to LOAD a program file
(rather than VERIFY a previously SAVEd program file). This
flag will be set in the version of LADS which assembles from
RAM memory (and LOADs in chained source code programs
from disk). This RAM-based version of LADS will be created
- later in Chapter 11, the chapter on modifying LADS.

16

Defs: Equates and Definitions

Disk 1/O Information

The next five definitions show where information is stored just
before a disk operation. They tell the operating system where
in memory a filename is located, how long the name is, the
file number, the file’s secondary address, and the device num-
ber (8 for disk, 4 for printer, in Commodore computers).

CURPOS always contains the position of the cursor on-
screen (as a number of spaces over from the left of the screen).
We'll use this to format the screen listings. And the final
machine-specific zero page definition is RAMSTART. It tells
LADS where BASIC RAM memory starts. It, too, is used in the
version of LADS which assembles from RAM.

Why do we need to define these locations if the operating
system uses them? Because we're going to use a few of the
built-in BASIC routines to handle the I/O (Input/Output) op-
erations for us when we need to communicate with a periph-
eral. To OPEN a file, for example, we need to set up several of
these pointers. To OPEN file #1, we have to put a 1 into ad-
dress $B8 (that’s where the file number is held on the Com-
modore 64). But why not just use LDA #1: STA $B8? Why do
we want to use these labels, these variable names?

Programming with pure numbers instead of labels pre-
vents transportability. It locks your program into your com-
puter, your model. It’s far easier to change this single equate
in line 120 to $D2 to make the program run on a PET/CBM
with BASIC 4.0 than it would be to go through the entire
source code, changing all B8's to D2’s. Also, if you buy a
newer model and they’ve moved things around in zero page
(they almost always do), making the adjustments will be
simple. You just use a map of the new zero page and make a
few changes in the Defs file.

LADS Zero
Because LADS needs to use the valuable Indirect Y addressing
mode—LDA (12),Y or STA (155),Y—it will want to usurp a
few of those scarce zero page locations itself. Line 170 defines
a two-byte temporary register called TEMP which will be used
in many ways. SA is going to function as a two-byte register
for the LADS Program Counter which will keep track of
where we are currently storing object bytes during the assem-
bly process.

MEMTOP is used in the construction of our label data

17

Defs: Equates and Definitions

base. It will always know where the last symbol in our label
table was stored. All through pass 1 it will be lowering itself,
making room for new symbols and labels. (This data base will
later be referenced as we fill in the blanks on pass 2.)
PARRAY makes that search through the symbol table on pass
2 easy and fast. It points us through the array. PMEM is used
as a pointer during assembly from RAM, if you decide to use
the RAM-based version of LADS described in Chapter 11. The
uses of all these variables will become clear when we exam-
ine, throughout the book, the techniques which utilize them.

Borrowing from BASIC

The next section, lines 190-320, defines the routines within
BASIC ROM memory that we're going to use. Naturally, these
are particular to each computer brand and model, so we want
them up front where they can be easily identified and
changed.

BASIC always has an entry point called the warm start ad-
dress, a place where you can jump into it “warmly.” But
there’s another entry that’s not as gentle. Many BASICs clear
out RAM memory and radically reset pointers, etc., when you
first turn on the computer. This is called the cold start entry
point, and it’s as much of a shock to the computer as walking
outdoors into a winter wind is to you. We don’t want this
shock when we return from LADS to BASIC. Instead, we want
the RAM memory left alone. After all, LADS is in there and
possibly an object or source program is in there too. So when
assembly is finished, we want to go into BASIC via the warm
start entry point.

KEYWDS is the address of the first BASIC keyword. We'll
see why we need this address in the chapter on the Indisk
subprogram. OUTNUM is a ROM routine which is used to
print line numbers for the BASIC LIST command. We'll use it
in a similar way to list the line numbers of our source code.

OPEN, CHKIN, CHKOUT, CLRCHN, and CLOSE allow
us to communicate with the disk drives and printers. CHARIN

18

Defs: Equates and Definitions

is like BASIC’s GET command, PRINT like PRINT. STOPKEY
sees if you've pressed the STOP or BREAK key on your key-
board. And, last, SCREEN tells LADS where in RAM your
video memory starts.

The use of these routines, and the ways that ML pro-
grams can borrow from BASIC, will be covered in detail as
they appear in the LADS source files. For now, we only need
to know that they are defined here, in Defs, and can be
quickly changed to suit different computers, different BASICs.

There you have it. We'll be explaining these pointers and
registers as we come upon them in the explication of LADS.
Now on to the heart of LADS, the section which evaluates all
the mnemonics (like LDA) and addressing modes and turns
them into opcodes (like A9) that are the machine’s language.
This next section, Eval, is—by itself—a complete assembler. It
would stand alone. The rest of the sections of LADS add
things to this core, things like disk management, arithmetic
and other pseudo-op routines, label interpretation, screen and
other output, and a host of other niceties. But Eval is the sun;
the rest of the routines are lesser bodies, planets in orbit
around it.

Note: Because the Defs subprogram is computer-specific,
there are five source code listings at the end of this chapter,
one for each computer. There are also multiple listings in
Chapter 5 since it deals with computer-specific peripheral
communication. However, the majority of chapters will
have only a single complete listing, followed by the few
modifications required by the different computers, because
the majority of LADS’ source code is identical and entirely
transportable between 6502-based computers.

19

Defs: Equates and Definitions

(DIA ¥OJ ZLTA/AAVYDAN ¥YOJ ZZE€dA) ¢ 18C

*WYd OLNI (d7TI4 dd0D dDdN0S) dTId WYYD0odd DISVE ¥ AV0oT GLT1d$ = dYOT1 @8C
JLA9d INO INO SANIS fzadd$ = LNI¥d QLT

ALAE INO NI STINd ‘vAAAS = NIVVYHO @9¢

(X NI #d7Id) ALIYM 304 TINNVHD SNAJO (6Ddd3 LAOMHD @S¢

(X NI #d7TId) AV¥Ey d0d TINNVHD V¥V SNAJO ¢9D04d$ = NIMHD @¥Z

*(WOd NI NEHJO TYWYON LSYd SALAY €) HTIId ¥ SNAJO ‘T1DTA$ = NIJO Q€2
JIIWAN (dST) X ‘(9SW) ¥ 1IN0 SINI¥d {ddodds$s = WANLNO @ZZ

OISVd NI dTdVL QYOMAEM J0 I¥VLIS ‘H6QVYS SAMAEM @T1¢

DISVE OL MOVd 09 *‘HLP¥YS = DISVEOL 90T

¥3J4nd LNdANI S,DISvVvd (@g@zZg$ = JAndvd g6l

uuuuuuuuuuu SALYNOE WO¥ DIAIDAAS EANIHOVW ——-—-———=—=—=———==! @87
LY$ = WIWd:ZHS = AVHNVA:QES = JOIWAW:Qd$ = VS:€d$ = dWAL OLT
||||||||||| SALYNOT AOVA O¥AZ TYNJELINI SAVT -—-—-—--——=——————————=! pQT

ENIT NIFYDS NHAID ¥ NO ¥0Sd¥ND 40 NOILISOd *TITIZ = SO0d¥Nd @ST
(MSIA FJYOAOWWOD ¥Od4 8) YILAWNN IDIAAA V€S = AIAL O%1T
NEdO ¥04 SSTYAAVY AYVANODIS LINIMIND <6€H$ = ANODISA @€
IOIAEA OL SYVHD ILNd R LIAD ‘NIJO ¥04 ¥IGWNAN FTIA INIAJIND ‘8d$s = WANJI 9CT
‘WYY NI NOILVYDOT HWYNITIA OL YHAINIOA <€g9$ = YIdIAWYNI QTT
d1I4 ¥ NIZdO ¥0d IWYNATIA 40 HLONIT ¢,9d$ = NITIAWYNI @G0T
(@v0T = @) AATYIA ¥O AVOT SIAAIDAA HOIHM SVTII <‘€6$ = DYTIIAVOT 06
0/I FAVYL/MSIA ¥0d QYOM SNIYLIS *‘$¥T = IS @8
YALNIOd AJOWHW WYY J40 dOL S,DISVH ‘L€$ = dOLWIWE @L
YHALNIOd AYOWIW WYY J0 LIV.LS S,DISVE ‘€9Z$ = IIAVLISWYE @9
1

||||||||||| SALYNOE FOVd O¥FZ DIAIDAJS ANIHOVW -—-——-—=———————————eeu! G
¥9 FWOUOWWOD ¥0d4 SNOILINIAIA ANV SALVNDE ,$9Sdad, ! ob

¥9Sav1 a* ¢

ON* @z

PPQTT =x QT
+9 diopowrwio)) :sj3(J ‘-7 weidoig

20

Defs: Equates and Definitions

ZLTES = AVYOT 9L

¥3IINd INANI S,0ISVd ‘@@gz@$s = JAndvd GLT

DISVE OL)OVd 09 ‘#.¥D$ = DISVAOL @LTI

||||||||||| SHIVNOE WOd DIJIDAAS ANIHOVHW —--—-————==——————==! (9T

LYS = WIWd:ZdS = AVYNVYd:@dS = dOLWIW:dJS ¥S:dd$ = dWIL @ST

||||||||||| STLVNOI IOVd O¥HZ TYNJALNI SAVI —-———————————————! gy

("WISSY QISVI-WVd ¥0d) XMOWIW WVY J0 IIVILIS OL YALNIOd ‘dZ¢$ = I¥VILISWYY GE€T
*ANIT NITIDS NIAID ¥ NO d0S¥ND A0 NOILISOd *1T1Z = SOd¥ND @E€T

JIGWAN IOIAId INIYAND (VLS = AFAI @21

NIdO ¥0d SSHIAAVY AMVANODIAS INIAJIND ‘{698 = ANODISA OTT

JDIAIA OL S¥VHD INd 3 I1ID ‘NIAJO ¥Od YIAGWAN dATId INIJIND 898 = WANI @01
‘WYY NI NOILVOOT IWYNATIIA OL ¥AINIOd {€gd$ = VLJIWYNA G6

IIId ¥ NIdO 904 AWYNIIIA JO HIONIT (.93 NATANYNI 06

€63 = SVIIAYOT S8

0/I AdVYL/MSIA JOod QIOM SNLVLS ‘¥#%T1 = IS @8

YALNIOd X¥OWIW JO dOL S,DISVd ‘LE€$S = dOIWIWE QL

||||||||||| SALVNOA d5Vd O¥dZ DIJIDAAS ANIHOWW —--——-—-—-——=—————=——=! g9

SNOILINIJAd dANVY SILVYNOd ,ASJIA, * @S
NOISYIA DIA P ey

ON* @€

ASAQYT d° @¢

P90TT =+ OT

0T-OIA :$J2("7-7 weadoiq

TYAT dTId* @Y€

s £ % o

WYY NIIYDS 40 FLAE LST 40 SSIYAAVY ‘@t@s = NIFTIDS 0C¢E

*@dssddd JAI DISVd OL SNINLIE ‘XIN dOLS SLSAL ¢TdAds = AIMJOLS QTE
(¥ NI #dTIJd) dTId dSOTD ‘€Ddd$ = ISOTD @0P€

0/I IIN¥4dd STAIOLSIY <DDJI$ = NHOYTO @67

21

Defs: Equates and Definitions

||||||||||| SALYNOT FOVd O¥HZ TYNIHINI SAVI ——————————m———mm—— !
*ANIT NIFIDS NIAID ¥ NO ¥0S¥ND J0 NOILISOd <861 = SOJdIND
(MSIA TIOAOWWOD ¥0A 8) HALIWNN IADIAIA ‘HAS = ATAL
NIdO ¥0d SSTIAAV AYYANODIS INIYIND ‘€d$ = ANODISA
HOIAIA OL S¥VHD ILNd % LIAD ‘NIJO ¥04 ¥YAGWNN HTIA INIIIND ‘gds = WANA
‘WYY NI NOILVDOT AWVNATIA OL ¥IAINIOd ‘VAS = YLAAWYNAI
dIId ¥ NAdO ¥04 AWYNATIA J0 HLONAT ‘1d$ = NATIWYNA
(A¥0T1 = @) AAIYIA d0 AVYOT SIAAIDIAA HOIHM 9DVIA ‘d6$ = 9HVTAAVOT
O/I FAVYL/MSIA ¥0d QIOM SALVYLS ‘@ST = IS
YALNIOd AYOWAW WV J0 dOL S,DISVd (€S = dOLWAWH
dHILNIOd AYOWIW WV J0 LIVLS S,DISvd ‘8¢$ = LIYVLSWYA
||||||||||| SALYNOd dAOYd 0ddZ DIAIDAJS ANIHOVW ——-—-—————mmmmmmmmm !
DISvVE @°'b WED/Ldd ¥04 SNOILINIAIA ANV SdI¥Yndd ,S4dd, -

220TT =%

OISVd 0’y WHD/14Ad s} "¢-7 weisoid

TVAd dTIAC

(XIOWIW AAANVAXI/M) WY NITIDS J0 HLALE LST A0 SSHAAAV ‘@P@RATS = NIIADS
*@assdId AI OISVE OL SNINLAY ‘ZXIM dOLS SISHL ¢ T13II$ = AIIAOLS
(¥ NI #d7TI4) FIId ISOTD *€Ddd$ = HSOID

0/I IINVAdd SHIOLSHY +DD4d$ = NHDYETD

ALAE INO ILNO SANIS ‘zadd$ = INIdd

LA INO NI STINd *pdAIIS = NIVVHO

(X NI #dTId) ALIYM Y04 TANNVHO SNIJO ¢6D44$ = LNOMHD

(X NI #J71Id) AVIY ¥0d4 TINNVHD ¥ SNEAJO ¢9044$ = NIMHD

(WO¥ NI NIJO TVYWION ISVd SHELAE €) dTII4 V¥V SNIJO ‘3dTIS = NIJO
YIGWNN (9gST) X ‘(9SW) ¥ INO SLNI¥dd :dddd$ = WANLNO

DISVE NI dTdVL QIOMAIM A0 IIVYIS ‘d6@Ds = SAMAEM

%9
98¢
aLe
992
@sc
ove
pET
@gze
p1T
vaT
26T
28T

22

Defs: Equates and Definitions

|||||||||||| S31YN03 3994 0437 31413345 INIHIGW ——— =

JiWgN I T4 40 HI9NIT 164% = NITIWYNAS
iX31L 40 3L1A9 1X3N 01 M3IINIOL 8% = HidiXl
HIINIOd AHOW3IW 40 401 S5.018vd 5v$ = JOLiW3IWA

SNOILINIH3A aNY S3IYND3 «543d. ¢
NOISH3IA F1dd9:
ON~

sav a-

Jd6L% =%

=8
08
QL
09
05
Ot
(65
oz

o1

oddy :sjo(‘-7 weadoig

TYAd HTIA®

WYY NIJdDS A0 dLAd ILST JO SSTIAAY -@@@8s = NITIDS

*@dssddd JAI DISVE OL SNINLIAY ‘AIM dOLS SLSAL +TdJIS = AAMNJOLS
(¥ NI $#37I4) JTIA dSOTD ‘gdzgds = dSOTID

0/I 11INYJdd STIOLSTY ‘DDAAS = NHODYTID

(9 Y04 GLTI/DIA ¥OA TLTA/IAVYDAN ¥OJ gTed)

‘WYY OLNI (dTIA 0D dDYNOS) dTId WYIdH0dd OISVd ¥ AYOT 9G6€d$ = AYOT
dLAd INO LNO SANAS -zddJds = INIdd

dLAd ANO NI STINd ‘$dAJdS = NIYVYHD

(X NI #37TId) JLI¥YM ¥0Od4 TIANNVHO SNHJO 60448 = LNOMHD

(X NI #d7TIJ4) AVdd ¥0Od4 TIANNVHD ¥V SNI4C -9D44$ = NIMHD

*(WOY NI NAJO TYWION ILSVd SHALAd €) d1I4 ¥ SNIJO -€9G4d$ = NIJO
JIGWAN (gST) X ‘(dSW) ¥ LNO SINIdd -‘€84AD0S = WNANLNO

DISVd NI dTdVYI QIOMAAM A0 JIIVYLS -‘Zd@ds = SAMAIM

DISVE OL MOvd 09 ‘4d€d$S = DISVLOL

ddJ40d ILNdINI S,DISVd :‘@@c@s = Jndvd

||||||||||| SHILVNOA WO¥ DIAIDAdS ANIHOVW ————=—=———————————l
d9d$ = WIWd:dds$ = AVYYVYd:9ds = dOLWAW:dJdS = VS:dJd$ = dWIAL

ovE
gEE
QcCeE
Q1€
20¢€
pec
8¢
28¢
aLe
99¢
2s¢
2ve
gET
gce
a1¢
29¢
261
28T
oLT

23

Defs: Equates and Definitions

A3 JI4° OF9

WYY NI3IHIS 40 JLAdA IST 40 S553HAAY 00v0$ = NIIYIS 08T

i¥31 0I5Yd DiINI 3INITT JISYH id3ISNI ¥2vd$ = SNINIT 052

WANNITT OENT MH1d1X1 WOHH H3FWNN INIT 139 (009ds = 139NIT ObZ
TYMOIS AOY3H HM3IAINIHdS (TOT13% = NAMINYA OS2

HM3IINIH4 HOH NOILYPID1 0/1 (04600% = MINMA 0OZZ

JiAd9 3INO 1N4in0 :04d4% = 1N03 012

ANILNOS LNdind H310YH9HI 40 SS3INAAY 1ESuvs = aMSI 002

H3IFWNN (IS X " {dSW) ¥ iN0 SINIMd (¢Zd3s = WNANLND 06T

JISyd NI IEYL OHMOMATH 40 iHY1S 1040ds = SAMA3IE 08T

H344nd INdNI 5.015v949 <0% = 4dNgvd S41

215949 01 H0vd 09 = JIS59H901 G471

IIIIIIIIIII S3i9N03 WOH JI4Id3d45 INIHIUW £ 091
3% = 4dOWd-Yas = WHYd 55

3% = AvAHP4:d3% = 4dDLW3IW-d4% = ¥5:94% = JdW3L 051

IIIIIIIIIII S3ivNo3 389%d 0437 EMH3INI 5Jv7 POvT
TANITT NI3IH3IS N3IAI9 Y NO HOS3MND 40 NDILISOd 9% = S044N3 O%1
H3IINIOL I1EYL FEVINYA 16F% = JYLHYA OTT

{(NLTE) ALITIILN H34SNUHI 40071 40 NOILIYNILIS3A HOIH ive6$ = SAHIIH 00T
WYHO0N4 40 ON3 01 H3IiNIOd 49$ = AONI9Hd 56

iX31 40 FiAdg L1X3N 1389 :1d% = 1394HI 046

24

Defs: Equates and Definitions

Program 2-5. Defs: Atari

146
1106
126
13@
144
158
169
170
180
19a
200
210
220
239
240
259
269
279
280
294

= 8096

.D D:LADS.0OBJ
ST = %61
FNAMELEN $80

FNAMEFTR = %81
FNUM = 483
FSECOND = %84
FDEV = %85
CURPOS = 85
TEMP = $86

5A = 488

MEMTOP = $8A
PARRAY = $8C
INFILE = 4%8E

OUTFILE = $8F
PMEM = $A@
RAMFLAG = $AZ
BABUF = @540
SAVMSC = 458
.FILE D:EVAL.SRC

25

Chapter 3
Eval:

The Main Loop

EEEAas EEEnE

Eval:
The Main Loop

Eval is the heart of LADS. It is the main loop. It starts assem-
bly at START (line 30) and ends assembly at FINI (line 4250).
Throughout Eval, JSRs take us away from the main loop to
perform various other tasks, but like mailmen, all the other
routines in the assembler start out from Eval, the post office,
and they all RTS back to it when their work is done.

For convenience, references to lines within the source
code listing at the end of the chapter are boldface inside
parentheses. Also, to distinguish label names like FINI from
the names of one of the 13 sections of LADS (a subprogram
like Eval), we'll put label names in all caps, but just capitalize
the first letter of the subprograms of the assemb]er.

Preliminaries, Preparations

Most programs have a brief initialization phase, a series of
steps which have to be taken to fix things up before the real
action of the program can commence. Variables have to be set
to zero, files sometimes have to be opened on a disk, defaults
have to be announced to the program. (Defaults are those
things a program will do unless you specifically tell it not to.
A game might default to single-player mode unless you do
something which tells it that there are two of you playing.
LADS defaults to hexadecimal numbers for printer or screen
listings and turns off all its other options.)

At its START, LADS loads the Accumulator with zero and
runs down through 48 bytes of registers, flags, and pointers,
stuffing a zero into each one. These flags are all needed by
LADS to keep track of such things as which pass it’s on,
whether or not you want a printer listing, or want the results
of an assembly to POKE into memory, or whatever. This
initialization fills them all with zero. The label OP is the high-
est of these registers in memory, so we LDY with 48 and DEY
down through them (see line 30).

Let’s take a minute to briefly review our terminology:

Register usually refers to the Accumulator (A), or the X or
Y Register in the 6502 chip. It can also mean a single byte set
aside to temporarily hold something. It’s like a tiny buffer.

A buffer is a group of continuous bytes used to hold infor-

29

Eval: The Main Loop

mation temporarily. An input buffer, for example, holds the
bytes you type in from the keyboard so they can be inter-
preted by BASIC. The bytes stay there until you type RE-
TURN, BASIC stores the information into your program, and
you type a new line into the input buffer.

A flag is a byte which is either on or off (contains either
zero or some number) and signifies a ““do it”” or “don’t do it,”
yes or no, condition. Of course, a single byte could hold a
number of flags because each bit could be on or off. In fact,
the Status Register in the 6502 chip does just that—it’s only a
single byte, but its bits are flags tested by CMP and the BNE,
BEQ-type instructions. When you need a flag, though, it’s eas-
ier to just use a whole byte and test it for zero or not-zero. An
example of a flag in LADS is the PRINTFLAG. If nonzero, the
assembler sends a printout of the assembly process to a
printer. If zero, the printer remains silent and still. You set
(turn on) the print flag with the pseudo-op .P; otherwise, the
default is no printing.

A pointer holds a two-byte address. Many times pointers
are put into zero page so they can be used by Indirect Y
addressing: LDA ($FB), Y gets the byte from the address held
in $FB and $FC (seen as a single, two-byte-long number). If

00FB 00
00FC 15

(remember that the 6502 expects these numbers to be back-
ward; this two-byte group means $1500) then LDA ($FB),Y
will load the A register (the Accumulator) with whatever byte
is currently in address $1500. We can set up our own pointers.
If they're not in zero page, they're likely holding some im-
portant address which a program needs to remember. In
LADS, ARRAYTOP is such a non-zero-page pointer; it tells
LADS where to start looking through the label table for a
match. We'll look into this when we get to the subprogram
Arrays.

Cleaning the Variables

At its start LADS must initialize its variables. If we didn't fill
them with zero, there could be some other number in these
bytes when we fire up LADS and that could cause unpredict-
able results. Then (80) we get the low byte of the start of
LADS (using the pseudo-op #<START) and put it in the low

30

Eval: The Main Loop

byte of MEMTOP (used by the Equate subprogram). We also
put it into the pointer BASIC uses to show how much RAM
memory it has available, BMEMTOP (line 70 in Defs). And, fi-
nally, put it in ARRAYTOP. ARRAYTOP will show where the
LADS’ data base of labels starts in memory (it builds down-
ward from the location of LADS).

Then we take the high byte of START and put it into the
high bytes of these three pointers.

Now for the defaults. There is only one. We want listings
to be in hexadecimal unless we specifically direct the assem-
bler otherwise with the .NH, no hex, pseudo-op. So we put #1
into the HXFLAG. The rest of the flags are left at zero. If you
want different defaults, put #1 into some of the other flags.
For example, if you usually want to watch the results on
screen during an assembly, just create a new line: 185 STA
SFLAG. This will cause a screen disassembly every time you
use LADS. Putting this default into LADS itself merely saves
you the time of adding the .S pseudo-op if you generally do
want to watch the assembly onscreen. That does slow up the
assembler, but with shorter programs, you might not notice
the difference.

Where’s the Source File?

LADS needs to know what you want to assemble. If you're
using the RAM-based version of LADS (see Chapter 11),
there’s no need to give a filename to LADS; just SYS, and
LADS will assemble what’s already in RAM. But if you're in
the normal LADS mode, assembling from a disk file, you'll
have to announce which file. LADS looks at the upper left-
hand corner of the screen to read the filename (190). If it finds
a space #32, it checks for another space (310) before giving up.
This way you can have continuous names like FILENAME as
well as two-word names like FILE NAME. Whatever it finds
onscreen, it stores in the buffer FILEN. It also takes care of
characters which are below the alphabet in the ASCII code by
adding 64 to them if they fall below 32 (240). The Atari ver-
sion asks for the filename from the keyboard in the manner of
a BASIC INPUT command.

When the filename is stored in the buffer, we JSR to
Openl, the subprogram which handles all 1/0O, all commu-
nication with peripherals. In this case, communication will be
with the disk drive.

31

Eval: The Main Loop

After the file is opened for reading, we JSR to another
subprogram, Getsa, the get-start-address routine. It just looks
for *= (the start address pseudo-op) and, finding it, returns to
Eval where the number following that symbol will be eval-
uated. If it doesn’t find a *=, that can only mean two things.
Either there is no program on the disk by the name you put
onscreen or LADS did find the program, but no starting ad-
dress was given as the first item in the source code. Both of
these situations are capable of driving LADS insane, so Getsa
aborts back to the safety of BASIC after leaving you a message
onscreen.

This SMORE routine (370) will be used again when we’ve
completed the first pass of the assembly process. The first pass
goes through the entire source file, storing all the names of the
labels and their numeric values into an array.

When we finish making this collection of labels, our label
array, we've got to make a second pass, filling in the opcodes
and replacing those labels with numbers. It’s here, at SMORE,
that we jump to start the second pass.

A zero is given to ENDFLAG to keep the assembler run-
ning. If the ENDFLAG is left up, is not zero, the assembler as-
sumes it has finished its job and stops.

The initialization is completed with a JSR to the sub-
program Indisk which pulls in the number you wrote as the
starting address following *=. This number is left in LADS’
main input buffer called LABEL. Before dealing with this num-
ber, though, we check to see if we're on the first pass (410)
and, if so, print the word LADS onscreen after a JSR PRNTCR
which prints a carriage return. Routines beginning with PRNT
like PRNTSPACE and PRNTLINE are all grouped together in
the subprogram Findmn. They’re used by most of the sub-
programs and print various things to the printer or screen.

Now we need to put the starting address into the pointer
SA which always holds the current target for any of our
assembled code during execution. If the HEXFLAG is up, that
means you wrote something like *= $5000 and hex numbers
are translated by the subprogram Indisk before it RTSs back to
Eval. Decimal numbers like *= 8000, however, are not trans-
lated into the two-byte integers that ML (machine language)
works with, so we need to send decimal numbers to Valdec
(another subprogram) to be turned into ML integers (610). The

32

Eval: The Main Loop

pointer called TEMP is made to point to LABEL so Valdec will
know where to look for the number.

It's important to realize that numbers coming in from the
disk or from RAM memory are in ASCII code, as characters,
not true integer numbers. That is, the characters in a number
like 5000 will come into the LABEL buffer as they appear in
RAM or on a disk file. 5000 would be (in hexadecimal nota-
tion) 35 30 30 30; these are the character codes for 5-0-0-0. It’s
Valdec’s job to transform this into 00 50, an ML integer. When
we get to Valdec, we'll see just how this is done. It’s a useful
technique to learn since any numbers input from a keyboard
will also be in this ASCII form and will need to be massaged a
bit before they’ll make sense to ML.

Remembering the Start Address

When, at STAR1, we finally have an ML integer in the little
two-byte variable called RESULT, we can transfer the integer
to SA. And we put the integer into the variable TA, too, so
that we’ll have a permanent record of the starting address. SA
will be dynamic; it will be changing throughout assembly to
keep track of the current assembly address. It will be LADS’
Program Counter. TA will always remember the original start-
ing address.

By this time you might be thinking that all this is hard
to follow. TA and RESULT and LABEL don’t mean much at
this point. We’ve plunged into Eval, the most condensed, the
most intensive, section of the entire program. As the main
loop, Eval will send tasks to be accomplished to many sub-
routines, in subprograms which we’ve not yet examined. It's
like landing in a strange city without a map. You see street
signs, but they mean nothing to you yet. But this is one of the
best ways to learn if you can be patient and ignore the tem-
porary gaps in your knowledge and the momentary sensations
of confusion.

We're gradually building a vocabulary and mapping out
some of the pathways which make up the language LADS and
the ways the ML works. The subprograms are, by and large,
easier to follow. They're more self-contained. But bear with
this tour through Eval. It makes what follows easier to grasp
and offers a foundation—however unconscious at this point—
for a deeper appreciation of the ways that ML does its magic.

33

Eval: The Main Loop

The Main Routine

Every line of source code which LADS examines begins with
STARTLINE (690). The ML between STARTLINE and P (5520)
is, in effect, an assembler. The rest of the routines and sub-
programs deal with the niceties, the auxiliary efforts of the
assembler—pseudo-ops, built-in arithmetic routines, 1/0,
printout formatting, and so forth.

In fact, this section of LADS is based on the BASIC
assembler, the Simple Assembler, from my previous book, Ma-
chine Language for Beginners. If you want to see how a large
BASIC program can be translated into ML, you might want to
compare the Simple Assembler to the rest of Eval. There are
some comments within the listing of LADS’ source code which
refer to the BASIC lines within the Simple Assembler (see
lines 3270 and 3410 for examples), and a number of the labels,
starting at 4670, also refer to their BASIC line number equiva-
lents in the Simple Assembler. L680 is a label to LADS, but is
also a reference to an equivalent line, 680, in the BASIC of the
Simple Assembler.

It's LADS’ job to take each line in the source code and
translate it into runnable ML object code. LADS would take
the source line 10 LDA #15 and change the LDA into 169 and
leave the 15 as 15. The value 169 is the ML opcode for the
Immediate addressing mode of LoaDing the Accumulator.
Then LADS would send these two bytes of object code, 169
15, to any of four places depending on what destinations you
had specified as pseudo-ops in the source code. The .D
pseudo-op would send 169 15 to a disk file, .P to the printer,
.S to the screen, and .O directly into RAM memory.

When LADS first looks at at each source code line,
STARTLINE checks the ENDFLAG to be sure it’s safe to con-
tinue. I[f ENDFLAG is zero, we BEQ to the JSR to Indisk.
(Otherwise, the program would go down to FINI and close up
shop, its work finished.)

Indisk is the second largest subprogram, and LADS will
be gone from Eval a long time by the computer’s sense of
time. For us, this detour happens in a flash, and a lot happens.
Indisk can even JSR into other subprograms, but we’ll see that
in a later chapter. All we need to realize now is that each
source line needs to be pulled onto our examination desk so
LADS can pick it apart and know what to assemble.

34

Eval: The Main Loop

Our examination desk is the buffer called LABEL. First a
line of source code is laid out on the desk. To prepare for the
exam, we put down the EXPRESSF(lag) and the BUFLAG, al-
though they might be raised again during the evaluation to
come. EXPRESSF tells LADS whether the expression following
a mnemonic like LDA is a label or a number. It signals the dif-
ference between LDA SPRITE and LDA 15. BUFLAG tells
whether or not there is a REM-like comment attached to the
line under examination. If there is a comment, we’ll want the
assembler to ignore the remarks, but the screen or printer
should nevertheless display them.

Now, as we often will, we check PASS (760) to see if it’s
the first or second time through the source code. On the first
pass, we're not going to print things to a printer or the screen,
so we’'d jump to MOE4 and ignore the next series of printouts.

But if it’s the second pass, we check the SFLAG, the
screen flag, to find out if we should print to the screen. If the
answer is yes, we print a line number, a space, the SA (current
address), and another space. Don’t worry about LOCFLAG
just yet.

Now we want to know if there’s any math to do.
PLUSFLAG is up when the line contains something like this:
LDA SCREEN+5. If it does, we briefly detour to the sub-
program Math to replace SCREEN +5 with the correct, cal-
culated number.

The Inner Core

Now we're at the true center, the hot core, of LADS: Line 900
is the pivot around which the entire structure revolves. This
JMP to Findmn accomplishes several important things and sets
up the correct pathways for the assembler to follow in the fu-
ture. Findmn finds a mnemonic. Say LADS is examining this
line:

10 LDA 15

After Findmn does its job and JMPs back to Eval, there would
be a 1 in the TP register (it's like a BASIC variable, called TP
for “type”). And there would be a 161 in the OP, for opcode,
register.

That 161 is not the number we'll want POKEd into mem-
ory. 161 is the right number for the LDA (something,X)
addressing mode, but it's wrong for the other modes, includ-

35

Eval: The Main Loop

ing LDA 15. Nevertheless, any LDA will first get a 161, the
base opcode. It's the lowest possible opcode for an LDA; the
other LDA addressing modes can be calculated by adding to
161. LDA 15 is Zero Page addressing and its opcode is 165.
Eval’s main job is to start off with the lowest, the base opcode
for a particular mnemonic like LDA, and then make adjust-
ments to it when the correct addressing mode is detected. Eval
establishes the addressing mode when it examines the line
and looks for things like the # symbol and so forth. As we’'ll
see, this examination will modify the OP number until the
correct opcode is calculated.

For now, though, it's enough that we return from Findmn
with a base opcode number, something reliable to work from,
stored in the variable OP. By the way, Findmn gets these
numbers, TP and OP, from a table in the subprogram Tables.
We'll look at it at the very end of our exploration of LADS in
Chapter 9. Tables is where all the constants are stored.

When No Match Is Found

Sometimes Findmn won't find a match when it looks through
the table of mnemonics in the subprogram Tables. This means
that the first word in the line under examination was not a
mnemonic. If this happens, Findmn returns (via a JMP) back
into Eval where labels are analyzed. Eval then knows that this
first word isn’t one of the 6502 commands. Instead, it must be
a label.

Labels in this first position in a line can be of two types:
address labels and equate labels. An address label identifies a
location within the program that will be the target for
branches, jumps, JSR, etc. It's like giving names to subroutines
so you could later JSR PRINTROUTINE. Here’s an example:

100 START LDA #0

After the assembler finishes assembling this, we’ll have:
100 3A00 A9 00 START LDA #0

The OP 161 has been changed to 169 (the hex number A9
in the example above), and we’ll see how that was arrived at
presently. But START has had no visible effect. Its just listed
there, but doesn’t affect the A9 or 00. START is a place
marker. It hasn’t been ignored. During the first pass, LADS

stored START in an array along with the 3A00 address. That’s
why START can be called an address label. This is very much

36

Eval: The Main Loop

the way that BASIC reads a variable name, sticks it in an ar-
ray, and puts the value of the variable up there with the
name.

On pass 2, when all these labels are needed, the correct
address will be there, waiting in the array. If LADS comes
across a JSR START or a BEQ START, it will be able to search
the array and replace the word START with the right number,
the address.

The other possible kind of label is the equate label. It
looks like this:

1100 SCREEN = $0400

It, too, is stored during the first pass and looked up dur-
ing the second pass. But the equals sign shows that we should
remember the value on the other side of the = symbol, not
the address of the location of the label. In this example, when-
ever we want to store something onscreen, we don’t need to
calculate the correct address. $0400 is the first byte in screen
memory (on the Commodore 64 in this example). So we can
just STA SCREEN to put whatever is in A into the upper left-
hand corner of the screen. Or STA SCREEN+200, or STA
SCREEN+400, or whatever. (Adding numbers to SCREEN
will, in this case, position our A lower on the screen.)

It’s here that we decide whether we're dealing with one of
the labels or with an ordinary mnemonic. If we JMP back from
Findmn to EVAR (920), the first thing on the source code line
was a mnemonic. If we JMP back from Findmn to EQLABEL,
it wasn’t a mnemonic (hence it’s a label). EVAR evaluates the
argument, the 15 in LDA 15. EQLABEL evaluates the other
kind of argument, the label SPRITE in LDA SPRITE.

Simple and Other Types

Some of the mnemonics are quite straightforward. They've
got no argument at all: INY, ROL, CLC, DEC, BRK, RTS, etc.
There’s no argument to figure out, and all of these self-
contained instructions have the same addressing mode, Im-
plied addressing. Fully 25 of the 56 mnemonics are of this type.
We've called them type 0 (see the chapter on the Tables sub-
program for an explanation of the types), and so Findmn puts
a 0 into the TP variable. Our first step in the evaluation of any
argument (920) is to check the TP, and if it’s 0, go to the type
1 (meaning only one byte, the opcode itself) area. There, the

37

Eval: The Main Loop

single byte will be POKEd and printed if you've requested that
with your pseudo-ops. And then we can go on to fetch a new
line.

If it's a more complicated addressing mode, though, we
continue evaluating, comparing it to type 3 (940). If you want,
you can look up the mnemonics and the parallel types and
ops tables in the Tables subprogram. Type 3’s are the bit-mov-
ing instructions ROL, LSR, ROR, and LSR. They have a pat-
tern of possible addressing modes in common. (It’s this
common pattern of addressing modes which underlies these
types. They share the same potential addressing modes and
can be evaluated and adjusted as a category rather than
individually.)

In any case, we turn them into type 1 and then look at
the fourth position in the storage buffer LABEL. If we could
peer into this buffer, we might see either:

ASL
or
ASL 1500

That bare ASL is not an implied address like INY and
CLC and the rest of those self-contained instructions we dis-
cussed above. These bit-moving instructions (ASL, ROR, etc.)
are just like type 1 (LDA, etc.) with this single exception: They
can have a special addressing mode all their own called Accu-
mulator addressing. It's a rare one. In this mode, ASL would
Arithmetic-Shift-Left the number in A, the Accumulator.

The point to grasp here is that, rare as a nude ASL is,
we’ve got to include it in the assembler. So we check to see if
there is a zero in the fourth position in our buffer, LDA LA-
BEL+3. A zero means end-of-line. So we can detect from a
zero that there is no argument and, hence, this is a case of
Accumulator addressing. If it is, we need to add 8 to the base
opcode for these bit-movers and then jump to the type 1 exit.
If it isn’t, we've already turned it into a type 1 (970) and from
here on, we'll treat it as a member of that family. In effect,
type 1’s can have several addressing modes, so we must eval-
uate the mode. We go to EVGO.

Fat Y Loops
Before entering most ML loops, you'll first LDY #0. Y often
functions as a counter, so it's set to zero, and then INY occurs

38

Eval: The Main Loop

at the end of the loop. But some loops require that we INY at
the start or at least early within the loop. In such cases, we
must LDY #255 before entering the loop. The first event
within the loop is an INY, so in effect, Y becomes 0 right off
the bat. When you increment 255, you get a zero.

EQLABEL is where we determine what kind of label
we're dealing with. On the first pass, we don’t care. All labels
must be stored in our label table array for later reference on
pass 2. On pass 2, though, we must go through the test in
EVX1 (1090). And it’s one of those fat Y loops that start off
with a bloated Y Register. We put 255 into Y at the start.

We load the first character in the LABEL buffer. If it's zero
(end of the line), there wasn’t any argument. There should
have been. This is a mistake. By this time, there has to be an
argument. We’ve already eliminated the only addressing types
that have no argument: Implied (type 0) and Accumulator (a
variant of type 3). If there’s no argument, the source code is
defective. There should be an argument. We've got to print an
error message.

NOAR is tucked away at line 520 of the Equate sub-
program. We’ll get to it later. It just prints a “‘no argument”
error message. But we should clear up the little mystery
surrounding the bounce we just took. We BEQ GONOAR
(1110) only to JSR NOAR (1320). Why? This is one of those
springboards we discussed in Chapter 1.

The B instructions, the branchers like BEQ, can move us
only 127 bytes in either direction, forward or backward, from
their location. This is sometimes not far enough. LADS will
alert you to this if you should try to branch further than you
can. It will print BRANCH OUT OF RANGE and ring the bell.
The easiest solution to this problem is to simply have the
branch go to a nearby JMP or JSR. They can fly off to any ad-
dress in the computer. Have them act as springboards, bounc-
ing you to your actual target.

The alternative is to move your target closer to the
branch. The target is probably a subroutine. But moving a sub-
routine is often a lot more trouble than simply creating a
springboard.

Back to the evaluation (1120). If there is an argument, we
move it up to another buffer called FILEN. Then we check for
the blank character, 32, before leaving this loop. The label

39

Eval: The Main Loop

name gets moved up to FILEN for further analysis. Then we
INY and look at the next character.

Which Kind of Label?
If the first thing after a blank character is =, we've got an
equate label like:

100 NAME = $500

If it is an equate label, we ignore it because we’re on the
second pass here. Line 330 sends us over this section if it’s the
first pass. There’s no need to pay any attention to equate la-
bels on the second pass, so we jump to INLINE, the prepara-
tions for getting a new line to evaluate.

But it might be the other type of label, an address label
like:

100 START LDA #15

On pass 2 we can also ignore START, the label part of this
line. Both types of labels have already been safely stored in
our array during pass 1. Nevertheless, following the address-
type label is some code we cannot ignore. On pass 2 LADS
must assemble that LDA #15.

NOTEQ (not equate type) moves the address label up to a
buffer called FILEN while at the same time moving the LDA
#15 over to the start of the LABEL buffer. It's doing two
things at once. This is how these buffers look before NOTEQ
(1180-1200):

LABEL START LDA #1500000000000
FILEN 000000000000000000000000

and after NOTEQ:

LABEL LDA #150A #1500000000000
FILEN START0000000000000000000

START is up at FILEN and can be printed out later for a
listing. But what good is that mess in the LABEL buffer? It will
work perfectly well because that 0 in the eighth position is the
delimiter. It tells LADS to ignore any random characters
following it. Remember that these numbers are stored in mem-
ory as ASCII code, not as literal numbers. 15 would be stored
as 49 53. 150 (the number 150) would be stored as 49 53 48.
But a different kind of 150, where that final 0 is a true zero, a
delimiter, would be stored as 49 53 0. So when we go to look
at and assemble the information in LABEL, LADS will only

40

Eval: The Main Loop

work with LDA #15 and ignore the 0A #150000, etc., the
remnants of the old line. All is now ready for the assembler to
take a look at a mnemonic and its argument, so we JMP to
MOE4 (1310). If this had been pass 1, we would have by-
passed all this and leapt from 1070 right down to 1330, where
we go to the subprogram Equate, which stores labels and their
values in the label table array. But both pass 1 and pass 2
must continue to work out the addressing modes by going to
MOE4. Why should we need to worry about addressing
modes on pass 1 since LADS doesn’t POKE anything into
memory or save any