

THE
ELEMENTARY

ATARI

THE
ELEMENTARY

ATARI

By

William B. Sanders, Ph. D.
San Diego State University

Illustrations by
Martin Cannon

~ DATAMOS';"
8943 Fullnrighl Avenue

Chal 5worlh . CA 91311-2750
(818) 709·1202

~ DATAMOS"t"
ISFlN O-HH1')O-117-2

"" COPYRIGHT 1983 BY DATAMOST INC.
ALL RIGHTS RESERVED

This manual is published and copyrighted by DATAMOST. Inc. All
rights are reserved by DAT AMOST. Inc. Copying. duplicating. sell
ing. or otherwise distributing this product is hereby express ly for
bidden except by prior consent of DA TAMOST. Inc.

The word AT ARI and the Atari logo are registered trademarks of
AT ARI Inc. Atari Inc. was not in any way involved in the writing or
other preparation of this manual. nor were the facts presented here
reviewed for accuracy by that company. Use of the term ATARJ
should not be construed to represent any endorsement. official or
otherwise. by AT A RI Inc.

ACKNOWLEDGEMENTS

Several people helped directly or indirectly in the creation of
ELEMENTARY A TAR!. First and foremost, lowe a great
deal to Eric Goez. Eric taught me more about programming
than anyone else; especially about the importance of good
algorithms in programming. Having only 16K of RAM memory
in the standard ATARI 400, a good algorithm is indeed worth
a thousand bytes of memory! Secondly, Bill Parker got across
the point of structured programming to me better than any
one else ever has. Finally, the many users of the ATARI,
especially those in the local ATARI club, the San Diego Atari
Computer Enthusiasts (ACE), provided me with a number of
hints and tips that I would have been unable to accumulate
without their help and knowledge.

Dave Gordon of DATAMOST INC. provided a world of sup
port for the book's production. Marcia Carrozzo edited the
manuscript for style and consistency, making the work a good
deal clearer. She also had to learn about using the ATARI to
make sure that what was in the manuscript worked on the
computer. Also, Marcia's strong background in math was
very helpful for improving many of the programs. Hal Glicks
man debugged the programs where the inevitable typos crept
in. This will save beginner's from the frustrations of little
errors that have disastrous results. Martin Cannon did the
art work in a way that communicated ideas creatively and
visually. He gave life to the notion that a picture is worth a
thousand words. The rest of the staff at DATAMOST were
equally helpful and friendly.

Finally, my wife Eli and sons Billy and David, and even our
dog Cassiopeia, put up with the inconvenience of a writer in
the house. To every one of these people lowe a debt of grati
tude, but as in all such efforts, if anything goes wrong, it is
only the author who is to blame. Therefore, while I happily
give those who assisted credi t, any of the book's shortcomings
,are the sole responsibility of the author.

-

TABLE OF CONTENTS

Preface
Chapter 1 Introduction... 11

Hooking Up Your Atari and
Peripheral Equipment 16

Power On 23
The ATARI Keyboard 33
Summary 39

Chapter 2 Getting Started 41
Your Very First Command 42
Your Very First Program 43
Setting Up a Program 45
Using Your Editor: Fixing Mistakes on the Run .. . 51
Elementary Math Operations 58
Summary 61

Chapter 3 Moving Along 63
Variables 63
Input and Output 73
Looping with FOR/NEXT 78
Summary 84

Chapter 4 Branching Out .. 87
Branching 88
Relationals .. 91
AND/OR/ NOT 94
Subroutines 96
Arrays 97
Summary .. 108

Chapter 5 Organizing The Parts 111
Formatting Text 111
Unraveling Strings. 118
String Formatting 119
Setting Up Data Entry 129
Setting Up Data Manipulation 130
Organizing Output 132
Scroll Control 135
Summary .. 137

Chapter 6 Some Advanced Topics 139
The AT ASCII Code and CHR$ Functions 140
POKE s and PEEKs 144
Sources of Sound 155
Summary .. 159

Chapter 7 Using Graphics 161
Keyboard Graphics 162
Screen Graphics 164
Color 167
Plotting and Drawing 171
Graphics That Conserve Memory. 177
Graphics: High Resolution 179
Player/Missile Graphics 184
Multiple Players 197
Missile Memory Storage 199
Summary .. 202

Chapter 8 Data and Text Files 205
Data Files and Your Cassette. 209
Sequential Files and the Disk System 217
Summary . 225

Chapter 9 You and Your Printer 227
Printing Text on Your Printer 230
CHR$ to the Rescue . 233
Printer Graphics .. 240
Pseudo-Graphics 241
Summary .. 243

Chapter 10 Program Hints and Help 245
Atari User Groups 245
Atari Magazines 246
Atari Speaks Many Languages 248
Sort Routines 254
Key Tricks .. 256
Function Keys 258
Utility Programs. .. 259
VVord Processors 260
Keyboards for the Atari 400 264
Data Base Programs 264
Business Programs 265
Graphics Packages .. 267
Expanded Memory. .. 269
Summary 270

Atari Command Examples 272
Index 283

PREFACE

My first formal introduction to the workings of a computer
was in 1966. At that time our wise mentor told us that if we
learned the lowest level operations of a computer, we would be
set for life. As a result of this philosophy, we were taught how
to do everything from counting in binary and conversion to
octal to the essentials of FORTRAN. The problem was that we
never really sat down and programmed at a terminal. So while
we had a terrific theoretical understanding of the workings of
computers, we did not learn very much about actual
programming.

Since that time, both computers and the people who use them
have changed. To learn how to use a computer, it is unnecessary
to learn everything about how they work or the theory behind
their operation. It is true that by having a detailed under
standing of the theory and operation of computers one can do
more with them, but it is something that does not have to be
done at the outset. One can learn how to program, and at a
later date learn the more technical details of a computer's
operation. After all , most people learn to drive without know
ing the intricacies of the internal combustion engine of their
automobile.

Another major change in computers has been the transition
from "mainframes" and "terminals" to small individual com
puters. Your ATARI is not merely a terminal. It is a whole
computer. Therefore, you are not dependent on using a piece
of a larger computer, but you get the whole thing all to your
self. As a result, you are not subject to a set of policies and
regulations for getting "on line" or paying for the time you
use. You make your own policies and are the captain of your
own computer ship. Therefore, it is unnecessary to spend a lot
of time discussing the organizational aspects of accessing the
CPU (Central Processing Unit), time-sharing, and so forth.
We will go right to the heart of the matter, programming
YOUR computer.

9

The purpose of this book is primarily to teach you how to work
your computer and program in the language called BASIC. It
is ELEMENTARY. So, while you will learn a lot, don't expect
to learn everything about working with your AT ARI. Once
you are finished with this book, you will realize how much
more you can do with your computer, and the more you learn,
the more you will find to learn. However, by following the
instructions and keying in the examples, you will learn how to
write programs with most of the instructions in the version of
BASIC on your ATARI. Since ATARI now has several dif
ferent models - 400, 600XL, 800, 800XL, 1200XL, 1400XL,
1450XL - it was important to have programs that work with
all of these computers. Therefore, the STANDARD ATARI
BASIC was used for all programs, and works with the BASIC
that comes on all new models.

As a final note, don't expect to learn everything right away. Be
patient with yourself and your computer, and you will be
amazed at how much you will learn. If you do not understand a
command or a procedure, you can always come back to it later.
Try different things and play with your programs. Think up
different projects you would like your computer to do and then
try writing a program to do what you want. By all means,
though, do not be afraid to make an attempt. With each step or
attempt you will make some progress. While it may be slow at
times, the accumulated knowledge will eventually lead to
understanding.

10

CHAPTER 1

Introduction

This book is intended to help you operate your new ATARI
computer, get started programming and make life easier with
your computer. It is not for professional programmers or more
advanced applications. It is only the first step, and it is for
BEGINNERS on the ATARI computer. This book is intended
for the ATARI 400.600.800. 800XL. 1200XL. 1400XL and
1450XL computers. There are some differences among the

11

machines, but the materials in this book apply to all. Where
significant differences exist, they will be noted. Since this
book is intended to teach you how to program your computer
in BASIC, you will need the ATARI BASIC COMPUTING
LANGUAGE cartridge for the 400/800 (not XL) models.
Note: Our examples will be with ATARI BASIC (CXL4{1{12).
ATARI also sellsATARI Microsoft BASIC (CX8126) on diskettes.
The Microsoft version is different in many respects; so to avoid
confusion, use theATARI BASIC. Everything will be kept on
an introductory level but, by the time you are finished, you
should be able to write and use programs. (Really!)

To best use ELEMENTARY A TARI it is suggested that you
start at the beginning and work your way through step-by
step. I have tried to arrange the book so that each part and sec
tion logically follows the one preceding it. Skipping around
might result in your not understanding some important aspect
of the computer's operation. The only exception to this rule is
the last chapter where I have put a number of suggestions for
programs you might want to buy in order to help you write
programs (called UTILITY PROGRAMS). Also, there are
descriptions of programs for doing other things such as busi
ness, word processing and so forth. When you're finished with
this chapter, it would be a good idea to take a quick peek at
some of the programs described in the last chapter to see if any
of them fit your needs while you're learning about your
ATARI. You don't have to purchase any of them but, depend
ing on your interests and needs, you will find some of them
very useful.

The first thing to learn about your computer is that it will not
"bite" you. It requires a certain amount of care. There are
ways you can destroy diskettes, tapes, and information but,
by following a few simple rules, you should be all right. All of
us have used sophisticated electronic equipment, such as our
stereos, televisions, and video-tape recorders; and there is a
certain amount of care they require. Otherwise, there is no
need to fear them. Likewise, your computer is electronic. If
you pour water or other liquids on the computer while the
power is off or on, you're likely to damage it. Using reasonable
care, go ahead and put it to use. Remember, it is virtually
impossible to write a program which will harm the hardware
(or electronic circuits) in your machine. At worst, one of your

12

programs might erase the information on a tape or diskette.
Throughout this book there will be tips about how to do things
the right and wrong way but. in general. treat your computer
as you would your microwave oven. garage door opener or
radio - with care but without fear.

At this stage of the game it is unnecessary to learn a lot of com
puterjargon, but some ofthis terminology is necessary to help
you understand how your computer operates. As we go on,
more new terms will be introduced but. for the most part the
text will be in plain English. Nevertheless, you should know
the following just to get started:

Hardware

Hardware refers to the machine and all of its electronic parts.
Basically, everything from the keyboard to the wires and little
black chips in your computer is considered "hardware." You
will also hear the term. "firmware." This is another type of
hardware on which programs are written. Called "proms" or
"eproms", these chips have information stored in them just as
tapes and disks do. Firmware is either inside your computer or
in cartridges or boards you plug in the top of your A TAR!. A
biological analogy of hardware is the physical body, most
importantly the brain. and firmware is a like "inherent"
intelligence or "transplanted" intelligence.

Software

Software consists of the programs which tell the computer to
do different things. Whatever goes into the computer's memory
is software. It is analogous to the mind or ideas. Treating the
hardware as the brain. any idea which goes into the hardware
is the software. Software is to computers as records are to
stereos. Software operates either in Random Access Memory
(RAM) or Read Only Memory (ROM). (Firmware is hardware
with "burned in" software.)

13

, - ,

RAM You may hear people talk about expanding their
RAM. This is the part of the computer's memory into which
you can enter information in the form of data and programs.
The more memory you have, the larger the program and more
data you can enter. Think of RAM as a warehouse. When you
first turn on your computer. the warehouse is just about emp
ty. but as you run programs and enter information. the ware
house begins filling up. The larger the warehouse the more
information you can store there, and when it is full, you have to
stop. ATARI's come with different amounts of RAM. The
800XL. 1200XL, 1400XL and 1450XL have 64K; the 800, 48K
(some older models come with less); and the 400 and 600XL,
16K. The "K" for computerists refers to kilobytes or thousands
of-bytes. but the actual number is 1024 bytes. (The new disk
storage systems are measured in megabytes or millions-of
bytes - 102400 bytes to be precise. The next time you're at a
cocktail party, mention megabytes and you'll really impress
everyone.) For now. all you need to know about bytes is that
they are a measure of storage in computers. The more bytes,
the more room you have. Think of them in the same way you
would gallons. inches or meters - simply a unit of measure. Up
to 48K RAM can be added to the 800 model with RAM car
tridges. but you will need to take your 400 to a service center
to have additional memory added.

14

ROM A second type of computer memory is ROM meaning
"Read Only Memory." This type of memory is "locked" into
your computer's chips. Your ATARI's programming language.
called BASIC. is stored in ROM. The difference between ROM
and RAM is that whenever you turn off your computer. all
information in RAM evaporates. but ROM keeps all of its
information. Don't worry. though. you can save whatever is in
RAM on diskettes and tape and get it back. We'll see how that
is done later.

Now that you know a few terms and enough notfear your com
puter. let's get it cranked up and running. If you already have
your computer all hooked up and working properly. you can
skip the next section and go directly to the "Power On!" sec
tion of this chapter.

1II III IIIIIIIIIIIIIIIIflIIIIIIIIII11

~~----~ . \L-___ ~\ ____________________ ~r __ ~/

15

Hooking Up Your Atari and
Peripheral Equipment

The LAST thing you should do after reading this section is
plug in your A TAR! and turn it on. Everything else should be
done first. If you bought your computer without a tape recorder
or disk drive, it will work fine, but you will need an Atari 410 or
1010 Program Recorder or an Atari 810 or 1050 Disk Drive to
save information. If you have just the computer, skip to the
section on hooking up your TV set to the computer.

Program Recorder

(Skip this section if you have only a disk drive.) If you are using
a program recorder, either with or without a disk operating
system, hooking it up is quite simple. On your Atari 410 or
1010 Program Recorder is a cable to connect it to the com
puter. Take the cable and insert it into the slot labeled
"PERIPHERAL" on the right side of your computer. (It's the
biggest slot on the side.) Make sure that it is lined up correctly
with the "teeth" in the slot, and do not use excessive force
when connecting it; however, be certain that it goes in all the
way. That is all there is to it! Your program recorder is now
ready to operate. Use ordinary cassette tapes - usually 5 or 10
minute tapes are the best.

16

Disk Drive

With the ATARI you should use the ATARI 810 or 1050 disk
drive or other Atari compatible drives. We will be using exam
ples from the 810 disk drive system. The 1050 and new DOS
are compatible with the 810. but they have added features you
will find in your disk manual. To connect your disk drive,
insert one end of the disk cable into the socket marked
"PERIPHERAL" on the right side of your computer (the
largest socket on that side) and the other end to the socket in
the back of your disk drive, in one of the sockets labeled "I/O
CONNECTORS." Now plug the power cord for your disk
drive into the socket labeled "PWR." (There are two round
holes near the "PWR." label. Use the smaller of the two.
directly above where it is marked "PWR.") When everything
else is connected. you can plug your disk power cord into a
wall socket and flip the switch located on the front of your
drive to ON. If everything is connected correctly, both the red
lights on the front of your computer will come on. The head in
your drive will spin for a while and then stop and the light
labeled "BUSY" will go off. Ifthat happens, everything is con
nected correctly. Note: If yo'u are 'Using a program recorder
and a disk drive. connect the recorder' to the disk drive thrmtgh
the "I/O CONNECTORS" port in the back of the disk drive.
This combination is handy since yO~i can make "back-'Ups" of
yo'Ur programs on cassette tapes, which are are good deal
cheaper than diskettes.

TV or Monitor

In order to see what's going on in your computer. you need a
TV set. On some computers it is necessary to purchase an RF
modulator. but your ATARI comes with a built-in RF mod
ulator. It is the cable extending from the back of your com
puter. Attach the disconnected end into the box that you
attach to your TV. The box is attached to the antenna leads
marked "VHF" on the back of your TV set, and the switch on
the box is flipp ed to "computer." Finally. there is a switch
marked "2-CHAN.-8" on the right side of your computer right
next to where you connect the disk drive or program recorder
cable. Switch it to channel 2 or3 depending on what channel is
"free" in you !' area. If it is switched to the back (relative to fac-

]7

ing the front of your keyboard), it is set for channel 3, and for
channel 2 if switched to the front. Then set your TV dial to
channel 2 or channel 3. Once that's done you are all set.

Another option you can use with your ATARI is a monitor
instead of a TV set. Basically, a monitor is the same as a TV
except it has higher resolution, and it is quite useful if you're
doing a lot of word processing. To connect to a monitor, you
will have to purchase a special cable that will fit the socket
marked "MONITOR" located on the right side of your com
puter. The other end should go into the monitor itself. The
CX82 Monitor Cable (for black & white and green screen) or
CX89 Monitor Cable (color monitor) required for monitors is
available from your Atari dealer. Connecting a monitor to the
TV cable leading from the back of your computer will not
work! The following descriptions of monitors and TV sets are
the range of video devices you can use with your A TAR!.

Types of TV Sets

TVs come in ajillion different shapes. sizes. etc.; either a color
or black and white will work fine. BE CAREFUL in the selec
tion of the TV set you buy! Not all televisions work well with
your ATARI; so ask first before you buy. When I bought my
TV set. a color one for the graphics. I simply looked at the color
TVs being used on the computers in the stores and bought the
same make and model at an "EI Cheapo" discount house. An
inexpensive way to get clear text is to purchase a black and
white set. It has better resolution than a color set. is less
expensive. and is good for word processing. Best of all. though,
you can get one for as little as $50 and used ones for even less.
Whatever the case. check to make sure that the TV set you
purchase will work with your ATARI.

Types of Monitors

Green screen This type of monitor gives a green or
amber on black display and can be bought for between $100
and $200. The green and black display is quite good for people
doing a lot ofworcl processing and non-graphic programming
since it is easy on the eyes. However. since this display presents

18

only green and black, it is not too good for color graphics. Mon
itors also come with amber or blue screens, but the green
screens are the most popular. Amber is good if you have
florescent lights in your room.

Black and white This monitor is essentially the same as
the green screen, but is in black and white instead of black and
green. However, it is more expensive than a black and white
TV set, and while it gives better resolution than a television
set, the extra cost may not be worth the difference. If you are
considering the purchase of a black and white monitor, com
pare the resolution with a black and white TV set first to see if
the extra cost is justified.

Color This type of monitor is the most expensive. but for
people who work a lot with graphics, it is probably worth the
added cost. It provides the high resolution for seeing graphics
in detail. The very best color monitors require a special inter
face. Make sure you can get one for your ATARI before
buying.

Printers

This section simply tells you how to hook up your printer and a
little about the different kinds of printers. If your printer is
already hooked up and working. take a look at Chapter 9 for
tips on maximizing your printer's use.

Types of Printers

There are three basic kinds of printers - dot matrix. letter
quality and thermal. However. for specialized use. there are
also devices called plotters. ink-.iet printers. line printers.
laser printers and drum rotate printers. For heavy business
use or specialized applications. you may want to ask your
dealer about these other ones not descl'ibed below.

Dot Matrix First. the most popular kind of printer is the
"dot matrix" printer. This printer has a number of little pins
which are fired to form little dots that print out as text or
graphics. The advantage of dot matrix printers is their rela-

1 ~ l

tively low cost and the fact that many of them can do both text
and graphics. The improved quality of text printing of dot
matrix printers gives an almost letter quality product, and
usu ally can give you several different type faces. In Chapter 9
there are several examples of different printing modes on dot
matrix printers. The ATARI 850 Interface Module, or similar
interface made for the Atari, is required to connect most of the
popular dot matrix printers on the market. On the XL series
computers, interfaces are built in the computer. The ATARI
1025 is the standard ATARI dot matrix printer.

Letter Quality Second, for people whose major use of
their computer is to do word processing, there are letter
quality printers. Most of these are daisy wheel printers and
type characters in much the same way as a typewriter does.
Each symbol has a molded image as on typewriter heads.
These printers are not good for graphics, but for the user who
wants top notch looking letters, manuscripts, reports and
other written documents, this type of printer is the best. They
tend to be relatively expensive, however, and for most written
materials, dot matrix printers are fine. The ATARI 1027 printer
is an exception to an expensive letter quality printer - it sells
for less than $300! It is relatively slow, but if you are looking
into letter quality printing, the 1027 is agood buy. Thethingto
do before you buy is compare. Special interfaces may be
needed to connect a letter quality printer to your ATARI; so
make sure you get a demonstration with the correct interface
before buying a printer. Since the ATARI 400/800 have serial
ports (instead of a parallel port), you will probably want to get
a printer that is serial compatible. The XL series models have
parallel ports making it simple to plug in parallel printers.

Thermal Third, for those people who are really on a
budget, there are thermal printers. These printers work with a
special kind of paper, usually on a roll, and make a picture of
what is on the computer screen. They can easily handle both
text and graphics, but the quality of output is relatively low
and the paper is very expensive. The best feature of these
printers is their small size and light weight, and for people
who travel with their computers and need print-outs, they can
be handy. The AT ARI 822 printer is a 40 column thermal
printer that hooks directly into the serial port of your com
puter. Other thermal printers are available, but before pur
chasing one, make sure you can interface it to your ATARI.

20

FREE ADVICE

Before you buy a printer, decide what you will need it for
and then look at the features of the different kinds before
buying!!! And by all means, ask to see a demonstration
on an ATARI. Never let a salesperson convince you a cer
tain printer will work without seeing a demonstration.
Even a salesperson with the best intentions (e.g., he/she
thinks a certain printer is the best for your needs) may
not realize that the model cannot be interfaced to your
machine. Only a demonstration is sufficient to remove
all doubts!

If you purchase an ATARI 822 or ATARI 820 or similar printer,
connecting it is very simple. Just plug it into the serial port,
"PERIPHERALS" or "I/O CONNECTORS" on your disk
drive. If you have a parallel printer, such as the ATARI 825 or
1025, connect the printer cable to the ATARI 850 Interface
Module. The interface module is connected either directly into
the "PERIPHERAL" slot, or one of the "I/O CONNECTORS"
slot in the back of your disk drive. This is called "daisy chain
ing" the printer to the computer through the interface module
and disk drive. With the XL models, just connect parallel
printers to the parallel port on the computer.

CAUTION

NEVER insert or remove cables or interfaces to your
computer while the POWER IS ON! Even if you are rich
and can afford to buy new chips every time you blow
them by messing with the hardware on your ATARI
while the power is on, you might give yourself the
SHOCK of a lifetime by doing so.

21

Other Gadgets

Besides the disk drive, TV/ monitor, and printer, most new
users do not have anything else to hook up at this point, so you
can skip on to the next section. However, if you plan on
expanding your ATARI or have other gadgets you bought
with your system, you had better read the following section.

Many Ports of Call

The nicest feature of the AT ARI is its expandability and
adaptability. The various ports and slots on your computer
can be used to add many different devices to enhance your
system.

22

Modem A MODEM is a device which allows your computer
to communicate with other computers over telephone lines.
These devices usually require that you hook up your telephone
to a part of the modem, or place the phone in an acoustic
sender/receiver. The ATARI 830 Acoustic modem can be used
with your computer by connecting it to your ATARI 850 Inter
face Module or the ATARI 835 or 1030 Direct Connect modem
through your serial port. The ATARI TeleLink I cartridge
provides the communication software needed to "talk" to
other systems. Not only can the modem be used to call up com
puter bulletin boards, but you can access such information
centers as "The Source" to get everything from weather
reports to airline tickets!

More Wonderful Gadgets There are numerous other
cartridges and interfaces to make the ATARI into a mul
tifaceted machine. Special interfaces will allow you to access
and use a variety of peripherals such as various disk drive sys
tems, printers and other devices. So while the A TARI is a
terrific microcomputer all by itself, it is fully expandable to
make it even better.

POWER ON!

SYSTEM CHECK-OUT

Now that you have your ATARI all set to go, you simply plug it
in, along with your TV or monitor, program recorder, disk
drive and printer, turn on the power and let her rip! Before you
start, make sure the ATARI BASIC CARTRIDGE is in place
on ATARI 400/800 models. (On all the XL series computers,
BASIC is built-in.) On theATARI 400, it is placed in the sloton
the top of the computer; on the 800, it goes in the top left
slot.

If you have a color TV, the letters will be in light blue against a
dark blue background surrounded by a black border. Directly
below the READY message is a little square. It is called the
"cursor," indicating your computer is waiting for you to press
some keys and tell it what to do. Press the RETURN key
several times and the cursor will move down the side of the

23

screen. The READY message will scroll off the top of your
screen. Your cursor is now at the bottom of the screen. To getit
to the top, press the key marked CLEAR/< in the upper right
hand corner of your keyboard and the SHIFT key. Now the
cursor will pop to the upper left hand corner. That done, you
know your keyboard and computer are all set. We will return
to the keyboard in a bit, but first let's check out your printer,
disk drive andlor program tape recorder. (You may skip the
sections dealing with the printer, disk drive and program
recorder if you do not have these peripherals.)

Printer Check

To see if your printer is working correctly, put in the following
program EXACTLY as it appears below: First write in the
word NEW and press RETURN. «RETURN > means press
the button marked "RETURN.")

10 OPEN #2,8,0, "P :"
20 PRINT #2; "MY PRINTER IS WORKING!"
30 CLOSE #2

Make certain you have written the program EXACTLY as it
appears above. If there are even minor differences, change it
so that it is precisely the same. Put the ribbon and some paper
into your printer. Now, turn on your printer, making sure it is
"On Line", and write in the word RUN on your computer and
< R ETU R N > . If your printer is attached properly, it will print
out the message, MY PRINTER IS WORKING! If an
ERROR- 133 AT LINE 20 or some other error message
jumps on the screen, it means that you wrote the little test pro
gram improperly; so go back and do it again. If the system
hangs up - the screen goes blank and nothing happens - check
to make sure the printer is turned on and all of your connec
tions are correctly installed. If it still doesn't work, turn off the
power on the printer and computer and review the steps for
hooking up your printer and try again.

24

Booting Disks

Assuming your system is working correctly, let's "boot" a
diskette on your ATARI 810 disk drive. (If you have another
type of disk system, see the manual that comes with your disk
drive.) This will get your Disk Operating System (DOS - pro
nounced "DAS") operating. Here's how:

1. Turn your computer off.

2. Turn on your disk drive by flipping the switch
located in the front of the drive to the ON position.
The red lights will light and some noises will come
out for a few seconds and then the top red light will
go off.

25

3. At this point insert your MASTER DISKETTE II in
the drive with the label facing upwards, oriented
toward the right side of the disk drive door. Put it in
all the way. Now close the door on the disk drive
until it clicks shut. Turn your computer on.

4. After the READY prompt appears on your screen
and the top red light on the disk drive is out, type in
DOS < RETURN >. Your disk drive will make some
noise and soon the following will appear on your
screen:

DISK OPERATING SYSTEM II VERSION 2.0S
COPYRIGHT 1980 ATARI

A. DISK DIRECTORY
B. RUN CARTRIDGE
C. COPY FILE
D. DELETE FILE(S)
E. RENAME FILE
F. LOCK FILE
G. UNLOCK FILE
H. WRITE DOS FILES

I. FORMAT DISK
J. DUPLICATE DISK
K. BINARY SAVE
L. BINARY LOAD
M . RUN AT ADDRESS
N. CREATE MEM.SAV
O. DUPLICATE FILE

SELECT ITEM OR (RETURN) FOR MENU

Note: On ATARI 815 and 1/J5jj Dual Disk systems, you will
have VERSION 2./JD instead of 2./JS. I'll bet that the "D"
means "double density" and the "S" is for "single density."
What do you think?

26

At this point. your DOS is all set. However, in order to save
information to a diskette, it is necessary to have a "formatted"
diskette. To format a diskette, you will need a single-density
diskette for your ATARI 810 drive. (If you have an ATARI 815
Dual Disk Drive. you need a "double density" diskette. When
you purchase diskettes make sure to specify single or double
density.) The "write protect notch" must be "open" on the
diskette. (That means there should be no write-protect tab
over the little square notch on your diskette.)

27

To format your disk. follow these s teps:

1. Remove your MASTER DISKETTE from the drive,
but do not turn off the disk drive or computer and do
not remove the DOS Menu from the screen.

2. Insert your blank diskette in the disk drive with the
write protect notch oriented toward the left side of
the drive door and close the door. (If you have multi
ple drives, put it in "Drive 1" as described in your
disk operating manual.)

3. Press I from your menu selection and < R ETU R N >.

4. When you are asked, WHICH DRIVETO FORMAT?
enter 1 < RETUR N>. Then when prompted, TYPE
"Y" TO FORMAT DISK 1, enter Y < RETURN > .
The disk will spin for a while, and then stop. Your
menu will then return to the prompt, SELECT
ITEM OR PRESS RETURN. This means your disk
ette is all set for use.

Note: Once a disk is formatted, you should NO Tforma t it again
unless you want to remove all programs from the diskette.

Now that you have a formatted diskette, you will have to
decide whether or not you want DOS on the diskette. The
advantage of having DOS on your disk is that whenever you
enter DOS from your keyboard, you will get the DOS menu
and functions. This means less swapping back and forth be
tween the disk you are using and your MASTER DISKETTE.
The disadvantage is that having DOS takes up space on your
diskette. To see this , enter A from your menu and press
R ETU R N twice. You will see that your newly formatted disk
ette has 707 FREE SECTORS. Now let's put DOS on your
diskette to see how it's done and how many sectors of disk
space are used. Here's how:

28

1. Insert a formatted diskette. (Leave in the one you
just formatted.)

2. Choose H from the DOS Menu and < RETURN >.

3. Enter 1 < RETURN > for the drive and Y <RE
TURN >' WRITING NEW DOS FILES will appear,
and when the DOS files are written the SELECT
ITEM OR PRESS RETURN prompt will appear.
Now you have DOS on your diskette.

To see how many sectors you used. enter A and < R ETU R N >
twice. Now you will see that you have only 626 FREE SEC
TORS, and:

DOS SYS 039
DUP SYS 042

This means that files named DOS and 0 UP are written to
your disk. Both are "system files" indicated by the SYS and
one takes up 39 sectors and the other 42 sectors. (Add 39 and
42 and subtract that sum from 707. You will get 626, the new
number of free sectors on your formatted disk.)

To get back to BASIC, enter B, the RUN CARTR I DG E choice,
from the menu and < R ETU R N >. To see if everything is
working correctly, enter the followin g once you get your
READY prompt:

DOS < RETURN >

Now you should see your DOS Menu. Press A and < R ETU R N >
twice and there are your two system files, DOS and DU P. In
Chapter 2, we will see how to save and retrieve programs from
disks, so keep your formatted diskette handy. Whenever you
wish to see the directory for any diskette, choose A. This is
how you access the" directory" of your diskette. (See Chapter
9 for more details on using your disk system.)

29

WARNING!!

When you buy commerical programs on diskette, they
are already formatted. If you format them, you will
destory all the programs you have bought. In fact, any
programs on a diskette, whether commercial or ones you
wrote yourself, will be clobbered if you attempt to format
them. (It's really miserable, though, when you spend
$49.95 for a really neat program and then blow it into
silicon heaven by formatting it.) The best way to protect
yourself against accidental re-formatting is to put a
"write protect" tab on your diskette over the write pro
tect notch. In this way you will know not to try to for
mat that disk. You can always remove the write protect
tab if you want to save programs to the disk or re-format
it to have a blank diskette.

LOADing and RUNning Programs
From Tape

The procedure for loading and running programs from tape is
quite simple. The following steps show you how:

STEP 1 Make sure your tape recorder is connected
and rewind it to the beginning. If you have a tape with
programs on it, use it to test loading. (A game cassette,
not cartridge, will work fine.) If you do not have a tape
with a program on it, enter the following program:

NEW < RETURN >
10 PRINT "<YOUR NAME> " < RETURN >
20 END < RETURN >

30

Press REC and PLAY on your recorder and enter

CSAVE < RETURN > < RETURN >

After the first < R ETU R N > your computer will "beep"
a couple times, and after the second < R ETU R N> the
Program Recorder will begin saving your program.
(The beep is to remind you to press REC and PLAY, so
if you already have them on, just press R ETU RNa
second time.) When the READY prompt comes on
your TV screen, press STOP/ EJ. on your recorder and
rewind your tape. To make sure there is nothing in
memory, turn off your computer.

STEP 2 Turn on your computer. When you get the
READY prompt and cursor, press PLAY on your re
corder and write in the following:

CLOAD < RETURN > < RETURN >

STEP 3 When the program is loaded, you will get the
READY prompt and cursor. At this point your pro
gram is all loaded and ready to go. Enter the word
RUN , and your program will then execute. If you used
our example program, your name will simply be printed
on the screen. Rewind your tape now so that it will be
ready for the next time. Do not forget to reset the pro
gram counter. That makes it a lot easier to find your
programs later. In fact, a good habit is to write down
the beginning and ending locations of your tape pro
grams in a log book. Later, to find your programs
stored on tape, simply press the ADVANCE key on
your recorder to set it to the beginning of the program
you want. Each time you CSAVE a program, it erases
whatever is on the portion of the tape you are using.
Therefore, programs should be save sequentially.

31

TAPE TO DISK TRANSFER

If you have both a tape and disk system and you don't
want to wait for the longer loading time of tapes every
time you run it (especially when you start accumulating
several programs on tape), why not transfer your tape
files to disk? Just boot your DOS, put a formatted disk
into the drive, and then load your program on tape. Once
your tape program is loaded, simply write in SAVE" 0 1 :
<name offile>", and now your tape program is on disk!
Makes life simpler.

Cartridge Programs

When you purchase cartridge programs for your computer,
simply insert the cartridge into the cartridge port and turn on
your computer. It will automatically run the program for you.

The ATARI Keyboard

Almost Like a Typewriter:
The Familiar Keys

If you are familiar with a typewriter keyboard, you will see
most of the same keys on your ATARI. For the most part, they
do almost the same thing as your typewriter keys. If you type
in the word COM PUTER, hitting the same keys you would on
a typewriter, the word COMPUTER appears on the screen
just as it would on paper in a typewriter. However, the upper
case (capital letters) and lower-case letters do not work
exactly the same as a typewriter. On the AT ARI. you have to
shift into the "upper/lower-case" mod e by pressing the
"CAPS/LOWR Key" (the littl e one in the lower right hand cor
ner above the SHIFT key). When you do that, your keys will

work more like a typewriter. When you want upper-case, sim
ply press the SHIFT key and a letter to get upper-case as you
would on a typewriter. Also, the screen has only 38 columns
instead of 80 like most typewriters. Of course, you cannot type
just anything on the screen. If you start typing away, you'll
get a ERROR- every time you press RETU RN unless you put
in the proper commands. Otherwise, think of your keyboard as
you would a typewriter keyboard. Pressing the SHIFT key
and CAPS/LOWR key simultaneously will return all keys to
upper case. Note: In most of the programming examples, we
will be using upper-case only. This is because your computer
recognizes commands only in 'upper case. If you enter ru n
instead of RUN ymL will get an ERROR-. However, you can
output lower case messages.

10 REM HIT THE "SHIFT" KEY AND THE "CAPS LOWR"

KEY AT THE SAME TIME FOR ALL UPPER CASE

20 REM hit just the "caps lowr" key for lower case

30 REM USE THE ~ KEY TO TOGGLE BETWEEN

33

Keys You Won't See on a Typewriter

While most of the keys on your ATARI look like those on a
typewriter, many do not, and they are important to under
stand. The following keys are peculiar to your computer; you
will soon get used to them even though they will be a bit mys
terious at first:

ATARI KEY)1\ This key, located in the
lower right hand corner of your keyboard, is used for shifting
between normal and inverse video. It toggles between the two
displays. Press it and type in some letters. They will be inverse.
Press it again, and they will return to normal. The inverse
mode is used to high light messages on your screen. On the
400/800 computer it has the ATARI logo, and on the XL mod
els it is a little square with a diagonal slash.

-

::l4

CTRL (control) On the far left side of your keyboard is
the CTR L key, called the "control key." By pressing the CTR L
key and one of the alphabetic keys, you wiII be presented with
graphics on your screen instead of letters. Try holding down
the CTR L key and pressing letters of the alphabet. The CTR L
key is also used in editing programs, as we will see in the
next chapter.

ESC (escape) In programming, this key allows the user to
include certain features that delay execution until the pro
gram is RUN. For example, if you want a program to clear the
screen when it is first executed, by pressing the ESC key and
CLEAR key within quotation marks in a PRINT statement,
your screen will be cleared at the program's beginning. In
combination with other keys, the ESC key allows access to
various graphic characters as well.

BREAK This key wiII stop a program in the middle of
execution and listings. It is very handy when you have long
programs and want to examine the middle of the listing.

CLEAR (clear home) In the upper right hand corner is a
very important key, the CLEAR key. In computer talk, HOME
refers to placing the cursor in the upper left hand corner of the
screen, and CLEAR means to erase the screen. To test this
key, write anything on your screen and press the R ETU R N
key several times so that the cursor is at the bottom of the
screen. Now press the SH 1FT and CLEAR key. and the cursor
will pop to the top of the screen and everything you entered
will disappear.

INSERT This key is handy for editing programs. The
SHIFT-INSERT wiII enter an additional line. and CTRL
INSERT will place a single space between letters. By moving
the arrow keys (see below). and using the I NSERT key. edit
ing programs is made very simple.

ARROW (cursor) KEYS In the middle right hane! sie!e
of your keyboare! are the four cursor keys - arrows set on
inverse baekgJ'oune!s. They al'e usee! to move the cursor
around the screen without affecting anything on the SCI·een.
The arrows on the keys inciicate the ciil'ection they will move

35

when they are pressed with the CTR L key. To get used to
using them, here's a little exercise. Press SH I FT-CLEAR and
then place the cursor right in the middle of the screen using
only the cursor keys. If you can do that, you can use the keys
correctly. When the cursor keys are used within quotation
marks in PR I NT statements, using the ESC key, funny things
begin to happen. Your computer is reading the cursor as
though an invisible hand were moving the cursor. Note: In the
following example, first press ESC and then the CTR L key and
the arrow keys simultaneously.

PRINT "(ESC CTRL-DOWN-ARROW 10 TIMES)
HELLO" < RETURN >

You will get a series of down pointing arrows, and when you
press R ETU R N the message HELLO will be spaced 10 places
below the line on which you entered the command.

RETURN The R ETU R N key is something like the carriage
return on a typewriter. In fact, you may see it referred to as a
"Carriage Return" or "CR" in computer articles. It works in
an analogous manner to a typewriter's carriage return, be
cause the cursor bounces back to the left-hand side of the dis
play screen after you press it. However, there are other uses
for the RETURN key which will be discovered as you get
into programming.

CARAT keys Under the CLEAR and INSERT keys, and
on the right arrow key are little "horns" or "carats." The left
and right carats are used in comparative formulas to indicate
"less than" or "greater than," and together «» to indicate
"not equal to." The vertical carat key is used for exponentials
of numbers. For example, enter PRINT 2 A 2 and < R ETU R N >.
Your screen will print 3.99999996, the value of 2 to the
second power. (Actually, the value is "4", but this little quirk
of your computer is because it is attempting precision to 8
decimal point positions. Enter PRINT 2 * 2 < RETU R N> for
the exact right answer!)

DELETE/BACKS (delete back space) This key is an
"editing key" to backspace and delete characters. Enter
ABCDEFGH IJ K and then hit the key several times and watch

36

the backspace gobble up your characters. (A do-it-yourself
PAC-MAN.) If you press the CTRL key and DELETE key
simultaneously, the character at the cursor will be deleted. In
editing, the DELETE/ BACK S key is used in combination
with the INSERT key to edit programs.

eLK/SET/TAB (tab set and clear) This key is like the tab
set and clear on a typewriter. The default setting on the key is
8 columns across the screen, except from the far left side, when
it is 6. (That's because the screen prints out 38 columns. The first
two columns are used as margins. Thus, 6 + 8 + 8 + 8 + 8 = 38.)
Press the key several times and watch the cursor jump across
the tab stops. Using the space bar, place the cursor two spaces
from the left side and press SH IFT-CLR/SET /TAB. This will
set a tab at the second column. Thus, whenever you press
SHIFT-CLR/ SET/ TAB, you set a tab at the cursor. Now, go
back to where you set the tab and press CTRL-CLR/SET/TAB.
This clears the tab stop. If you clear all the tab stops, the cursor
will jump one vertical line whenever you press the TAB key.

SPECIAL KEYS On the far right side of your keyboard on
the ATARI 400/800 and at the top of the ATARI 1200s are
keys used for special applications. About the only key you will
be using in beginning programming is the SYSTEM RESET
key (R ESET on the 1200, located on the top left side above the
keyboard.) This is a "panic button" that will reset everything
if your computer "freezes up" on you. Both beginning and
experienced programmers will enter information that will tie
up the normal operation of your computer. Even the B R EA K
key will not "release" the computer back to your control, so by
pressing the RESET key, you can restore operations to nor
mal. Even your program in memory will not be affected.
Therefore, do not be afraid to use this key if you run into prob
lems. On the XL series, the HELP key is useful for beginners
since it will show you various instructions on certain pro
grams. The OPTION, SELECT and START keys are explained
in Chapter 10. Finally, on the XL series ATARls, the "function
keys", numbered from Fl to F4 are for special applications
also discussed in Chapter 10.

37

Some New Meanings For Old Keys

Some of the familiar keys have different meanings for the com
puter than we usually associate with the key symbols. Many
are math symbols you mayor may not recognize. In the next
chapter, we will illustrate how these keys can be operated and
discuss them in detail. For now let's just take a quick look at
the math symbols.

Symbol Meaning
+ Add

*
/

Subtract
Multiply (different from conventional)
Divide (different from conventional)
Exponentiation

In addition to some of the new representations for math sym
bols, other keys will be used in a manner to which you are not
accustomed. As we go on, we will explain the meanings of
these keys, but just to get used to the idea that your ATARI
has some special meanings for keys, we'll show you some more
here which will have special meanings later.

Symbol
$

?

Meaning
U sed to indicate a string variable and
hexadecimal value.
Used to indicate "end of statement" in
program.
Can be used as PRINT command.

Don't worry about understanding what all of these symbols
do for the time being. Simply be prepared to think in "com
puter talk" about symbols. As you become familiar with the
keyboard and the uses and meanings of these symbols, you
will be able to handle them easily, but the first step is to be
aware that the different meanings exist.

38

SUMMARY

This first chapter has been an overview of your new machine.
You should now know how to hook up the different parts of
your ATARI and get it running. Also, you should be able to
boot and format a disk, view the contents (directory) of a disk,
and run a program from disk or tape. You should know some of
the basic DOS commands for manipulating files on your disk
ette. Finally, you should be familiar with the keyboard and
know what the cursor means. At this point there is still much
to learn, so don't feel badly if you don't understand everything.
As we go along, you will pick up more and more, and what may
be confusing now, later will become clear. Have faith in your
self and in no time, you will be able to do things you never
thought possible.

The next chapter will get you started in learning how to pro
gram your ATARI. It is vitally important that you key in and
run the sample programs. Also, it is recommended you make
changes in them after you have first tried them out to see if you
can make them do slightly different things. Both practical and
fun (and crazy!) programs are included so that you can see the
purpose behind what you will be doing and enjoy it at the same
time.

39

-..

-
-

-
-
-
-
-

-

--

-.

CHAPTER 2

Ladies and Gentlemen,
Start Your Engines

Introduction

This chapter will introduce you to writing programs in the
language known as BASIC. ATARI BASIC is different from
some other versions of the language, and if you are already
familiar with BASIC, you will find these differences. However,
if you are new to the language, then you will find program
ming in BASIC very simple. To get ready, turn on your com
puter. When the" REA OY" sign comes up on your TV, you are
all set to begin programming. If something else is on your
screen, press SHIFT-CLEAR and key in the word NEW to
clear memory.

41

Your Very First Command! PRINT

Probably the most often used command in BASIC is PRINT.
Words enclosed in quotation marks following the PRI NT com
mand will be printed to your screen, and numbers and vari
ables will be printed ifthey are preceded by a PR I NT command.
It is used to command your computer to print output to the
screen from within a program or in the Immediate mode. You
may well ask what the difference is between the Immediate
and Program modes. Let's take a look.

Immediate Mode The Immediate mode executes a com
mand as soon as you press R ETU R N. For example, try the
following:

PRINT "THIS IS THE IMMEDIATE MODE"
< RETURN >

If everything is working correctly, your screen should look like
this:

READY
PRINT "THIS IS THE IMMEDIATE MODE"
THIS IS THE IMMEDIATE MODE

READY

See how easy that was? Now try PRINTing some numbers,
but don't put in the quote marks. Try the following:

PRINT 6 < RETURN >
PRINT 54321 < RETURN >

As you can see, numbers can be entered without having to use
quote marks, but as we will see later, the actual value of the
number is placed in memory rather than a "picture" of it.

PROGRAM MODE This mode "delays" the execution of
the commands until your program is "RUN". All commands
which begin with numbers on the left side will be treated as
part of a program. Try the following:

42

10 PRiNT "THiS is THE PROGRAM MODE"
< RETURN > -

nothing happens, right? Enter the RUN command and your
screen should look like this:

READY
10 PRiNT "THiS is THE PROGRAM MODE"
RUN
THiS is THE PROGRAM MODE

Your Very First Program! Clearing
the Screen and Writing Your Name

Let's write a program and learn two new commands. First, the
new commands are CLEAR and END. The CLEAR command
clears the screen and places the cursor in the upper left hand
corner. The C LEAR command is a one key command made by
pressing the SHIFT key and CLEAR keys at the same time. In
the Program Mode, the CLEAR appears as a little bent arrow
on your TV from within a program, entered as PRINT "{ESC
SHIFT-CLEAR}". It is important to remember to first press
the ESC key when entering C LEA R in a program. If you don't,
your screen will immediately be cleared. The END command
tells the computer to stop executing commands. From the
Immediate mode write in the C LEAR command to see what
happens. Now, let's write a program using {ESC-SHIFT
CLEAR}, END and PRINT. From now on, press the RETURN
key at the end of each line. Throughout the rest of the book, I
will no longer be putting in < R ETU R N > except in reference
to entries in the Immediate mode.

READY
10 PRiNT "(ESC-SHiFT-CLEAR}": REM A LITTLE

BENT ARROW WiLL APPEAR ON YOUR SCREEN
20 PRiNT "< YOUR NAME> ".
30 END
RUN < RETURN >

43

All you should see on the screen is your name, READY and the
cursor. Now, we're going to introduce two shortcuts which
will save you time in programming and in memory. First,
instead of entering new line numbers, it is possible to put mul
tiple commands on the same line by using a colon ":" between
commands. Also, instead of typing in PRINT, you can key in a
question mark "?". Try the following program to see how
this works.

10? "(ESC-SHIFT-CLEAR)"
20? "< YOUR NAME> ": END
RUN < RETURN >

It did exactly the same thing, but you did not have to put in as
many lines orwrite out the word PRINT. Neat, huh? Now, as a
rule of thumb, ALWAYS begin your programs with PRINT
"{ESC-SHIFT-CLEAR}". This will help you get into a habit
which will payoff later when you're running all kinds of dif
ferent programs. There will be exceptions to the rule but, for
the most part, by beginning your programs with {ES C-S HI FT -
CLEAR}, you will start off with a nice clear screen rather than
a cluttered one.

While we're just getting started, it will probably be a good
idea to use the colon sparingly. This is because it is easier to
understand a program with a minimum number of commands
in a single line. Later, when you become more adept at writing
programs, and want to figure out ways to save memory and
speed up program execution, you will probably want to use
the colon a good deal more. Also, we want to make liberal use
of the REM statement. After the computer sees aRE M state
ment in a line, it goes on to the next line number, executing
nothing until it comes to a command that can be executed. The
REM statement works as aRE M ark in your program lines so
that others will know what you are doing and as a reminder to
yourself what you have done. Just to see how it works, let's put
it into our little program.

10 PRINT "{ESC-SHIFT-CLEAR)": REM THIS
CLEARS THE SCREEN

20 PRINT "< YOUR NAME> ": END
30 REM THIS MAGNIFICENT PROGRAM WAS

CREATED BY < YOUR NAME>

44

Now RUN the program and you will see that the REM
statements did not affect it at all! However, it is much clearer
as to what your program is doing since you can read what the
commands do in the program listing.

Setting Up a Program

Using Line Numbers

Now that we've written a little program, let's take a look at
using line numbers. In your first program, we used the line
numbers 10, 20 and 30. We could have used line numbers 1, 2
and 3 01'0,1 and 2 or even 1000, 2000 and 3000. In fact, there is
no need at all to have regular intervals between numbers, and
line numbers 1, 32 and 1543 would have worked just fine.

However, we usually want to number our programs by 10's,
starting at 10. You may well ask, "Wouldn't it be easier to
number them 1, 2, 3, 4, 5, etc.?" In some ways maybe it would,
but overall, it definitely would not! Here's why. Type in the
word LIST < RETURN>, and if your program is still in
memory it will appear on the screen. Suppose you want to
insert a line between lines 20 and 30 that prints your home
address. Rather than re-writing the entire program, just enter
a line number with a value between 20 and 30 (such as 25) and
enter the line. Let's try it, butfirst remove the END command
in line 20 .

25 PRINT "< YOUR ADDRESS> "
RUN < RETURN >

Aha! You now have your name and address printed on the
screen, and all you had to do was to write in one line instead of
retyping the whole program. Now if we had numbered the
program by l's instead of10's you would not have been able to
do that since there would be no room between lines numbered
2 and 3 as there was between 20 and 30. You would have to
rewrite the whole program. Now with a small program, this
would not be much of a problem, but when you start getting
into 100 and 1000 line programs, you'll be glad you have space
between line numbers!

45

LISTING YOUR PROGRAM
As we just saw, using the word LIST gives us a listing of our
program. To make it neat, type in (SHIFT) CLEAR and LIST
< R ETU R N >, and you'll get a listing on a clear screen.
However, once you start writing longer programs, you won't
want to list everything, but only portions. Let's examine the
options available with the LIST command.

What You Write What You Get
LIST Lists entire program

L.

LIST 20

LIST 20.30

Shortcut for LIST.

Only line 20 is listed (or any
line number you choose.)

All lines from 20 to 30 inclusive
are listed (or any other range
of lines you choose).

Try listing different portions of your program with the options
available to see what you get. The following commands will
give you some examples of the different options:

L.
LIST 25
LIST 25.30

MY SCREEN IS FREAKING OUT!

If you leave your screen on while working with this book,
as you should be doing, you might notice that all of a sud
den it starts turning different colors. (If you have a black
and white TV it will turn different shades of gray.) No,
your computer has not been gobbling Morning Glory
seeds, but rather it is keeping your screen from becoming
"etched" with lines from the text on your screen. This is
an important feature of ATARI computers, and very
good for your TV screen. As soon as you press any key, it
will return to normal. ATARI 1200XLs will go blank
instead bursting into different colors. Again, it's just try
ing to save your TV or monitor screen.

46

Saving Your Program

Suppose you write a program, get it working perfectly and
then turn off your computer. Since the program is stored in the
RAM memory, it will go to Never- Never Land, and you will
have to write it in again if you want to use it. Fortunately, it is a
simple matter to SAVE a program to your diskette. Let's use
our program for an example of SAVEing a program to disk.
Make sure your program is still in memory by LiSTing it, and if
it is not, rewrite it. Make sure a formatted disk is in the drive
and write in the following: (If you are not certain about disk
formatting, review the section covering those items in Chapter 1.)

SAVE "01 :PROG1 .BAS"

The disk will start whir ling and both red lights will g low on the
disk drive. This means the disk drive is writing your program
to disk. When the top red light goes out, write in DOS; when
the DOS menu appears enter A < RETURN > RETURN >.
You will be presented with a directory of the disk, and if
you see:

PROG1 BAS 001

in the directory, that means your program has been suc
cessfully saved to disk.

Saving Programs on Tape

To save a program to tape, put a blank cassette into your tape
recorder and rewind it. Press the REC button and the PLAY
button together on your tape recorder and write in CSAVE
< RETURN > < RETURN > . The tape recorder will start
spinning. When it is done, the READY prompt will reappear
on the screen Your program is now SAVEd to t ape. Unlike
SAVEing to disk, you do not have to enter a device number
(e.g., Dl:) since the A TARI defaults to the cassette drive with
the CSAVE command.

47

Retrieving Your Programs

The best way to make sure you have SAVEd a program to disk
or tape is to completely turn off your ATARI, and then turn it
on again. Go ahead and do it. Call up DOS and view your disk
directory. You should be able to see your program,
(PROG1.BAS) in the directory. Now return to BASIC, choos
ing B from the DOS menu. Enter LOAD 0: PROG1 .BAS. The
disk drive will whirl for a while, and then your program will be
loaded and the REA 0 Y prompt will reappear. LI ST and RUN
your program to made sure it's the same one you SAVEd. If it
is the same, you know you have successfully SAVEd it to disk.

If you have a tape cassette, press the PLAY button on your
recorder and enter C LOAD. The tape will whirllookingforthe
program, and then load it, responding with a READY when
completed. LIST and RUN it to make sure it's the correct one.

48

Now that you have SAVEd and LOADed programs, let's look
at another neat trick. Remembering you SAVEd your file
under the name PROG1 .BAS, let's change the contents of
that file. First, add the following line and then LIST your
program:

27 PRINT "< YOUR CITY, STATE & ZIP> "

Your program is now different from the program you SAVEd
in the file PROG1.BAS since you have added line 27. Now
write in

SAVE "01 :PROG1.BAS" < RETURN >

Clear memory with NEW, LOAD the file PROG1.BAS and
LIST it. As you can see, line27 is nowpartofPROG1.BAS. All
you have to do to update a program is to LOAD it, make any
changes you want, and then SAVE it under the same file
name. However, BE CAREFUL. No matter what program is
in memory, that program will be SAVEd when you enter the
SAVE command; therefore, if your disk has PROGRAM A
and you write PROG RAM B, and then SA V E it under the title
PROGRAM A, it will destroy PROGRAM A and the SAVEd
program will actually be PROGRAM B. Also, if you have a
really important program, it is a good idea to make a "back
up" file. For example, if you saved your current program
under the file names, PROG1 .BAS and PROG1.BKU, it
would have two files with exactly the same program. To really
play it safe, save the program on two different diskettes.

49

I TOLD YOU SO DEPT.

Sooner or later the following will happen to you: You will
have several disks or tapes, one of which you want to for
mat or save programs on. You will pick up the wrong
diskette or cassette, one with valuable programs on it.
There will be no write protect tab on the diskette or
cassette, and after you format it or overwrite programs
on it and blow away everything you wanted to keep, you
will realize your mistake and say, "!&$# "! %&", and kick
your dog. You cannot prevent that from happening at
least once, believe me. Therefore, to insure that such a
mistake is not irreversible, do the following: MAKE
BACK-UPs. Take your ORIGINAL and put it some
where out of reach, so when you accidentally erase a disk
or tape, you can make another copy. Remember, if you
fail to follow this advice, your dog will have sore ribs. Be
kind to your dog.

FILENAMES

Naming your files is very important. for as you begin
collecting more and more programs, names like PROGI
are not very useful. How do you know what's on PROGI
and PROG25? Rather than having to write down all pro
gram names and starting locations as you do with pro
grams saved on tapes, it is better to make the names
descriptive. For example. instead of PROGl. we could
have called it NAMEADDR or any other name that will
tell us something about the program we saved. The only
limitation is in the size of the file name. which is limited to
eight characters.

50

Extenders It is possible to use three character extenders
after programs on your A TAR!. These extenders can be used
to tell you the kind of program you have saved. For example,
BAS can be used for BASIC programs and BKU can be used to
indicate a "Back-up." To add an extender, simply enter a
period and the three-character extender to your program as
we did in our examples. Later we will see how to save pro
grams using the LIST command; programs saved this way
require a different loading technique. Therefore, it is a good
idea to differentiate a program saved with SAVE and one with
LIST. However, since most of the time we will be saving pro
grams in BASIC, we can SAVE them without any extenders,
assuming that programs in the directory with no extenders
are SAVEd in BASIC. Everything else will have extenders,
including back-ups.

On The Run

If you want to RUN your program as soon as it's loaded, you
do not have to go through a two step process of first LOA Ding
or CLOADing it and then RU Nning it. From disk enter

RUN "01 :PROG1.BAS" <RETURN>

and from tape press PLAY and enter

RUN "C:" < RETURN > < RETURN >

This method of getting up your programs is handy if you sim
ply want to RUN them instead of editing or adding program
lines to them.

Using Your Editor: Fixing Mistakes
on the Run

The Error Messages and Repairing Them

By now you probably entered something and got an ERR 0 R
ABC, ERROR- 9 AT LINE 30. refel'I'ingtoerrortype9linea0

!il

or any other line where an error is detected. This occurs in the
Immediate mode as soon as you hit R ETU R N and in the Pro
gram mode either when you enter the error or as soon as you
RUN your program. Depending on the error, you will get a dif
ferent type of message. As we go along, we will see different
messages depending on the operation. For now, we will con
centrate on how to fix errors in program lines rather than the
nature of the errors themselves. This process is referred to as
"editing" programs. (See APPENDIX A for a complete list of
error messages. It would be a good idea to make a copy of
those error messages on a separate sheet and paste them on
cardboard. In this way you will have a handy reference with
you as you program.)

Deleting Lines

The simplest type of editing involves inserting and deleting
lines. Let's write a program with an error in it and fix it up.

NEW < RETURN >
10 PRINT "(ESC-SHIFT-CLEAR)"
20 PRINT" AS LONG AS SOMETHING CAN"
30 PRINT A$: REM LINE WITH ERROR

52

4121 PRINT "IT WILL"
5121 END
RUN < RETURN >

If the program is written exactly as depicted above, when you
RUN it you will get ERROR- 9 AT LINE 30. Now, write in

3121 < RETURN >
LIST < RETURN >

What happened to line 307! You just learned about deleting a
line. Whenever you enter a line number and nothing else, you
delete the line. We already learned how to insert a line; so to
fix the program enter the following:

3121 PRINT "GO WRONG"

Now run the program. It should work fine. The error was
PRINTingtheA$. (Later we will see that PRI NTing A$ is not
an error as long as we set it up properly.) Another way you
could have fixed the program was simply to re-enter line 30 cor
rectly without first deleting it, but I wanted to show you how
to delete a line by entering the line number.

Using the AT AR) Editor

Within your AT ARI is a trusty editor. To see how to work with
your editor, we'll write another bad program and fix it. OK.
write the following program and RUN it.

NEW
1121 PRINT "(ESC-SHIFT-CLEAR}"
2121 PRINT "IF I CAN GOOF UP A PROGRAM"
3121 PRINT "I CAN" : FIX IT: REM BAD LINE
4121 END
RUN < RETURN >

All right, you got

3121 ERROR- PRINT "I CAN" : FIX (I)T :
REM BAD LINE

53

as soon as you pressed R ETU R N after entering line 30. To
repair it, instead of rewriting line 30 do the following:

STEP 1. LIST your program.

STEP 2. Press CTRL and the UP-ARROW and "walk"
the cursor to line 30.

STEP 3. Now using the CTRL key and RIGHT
ARROW key "walk" the cursor to the" E" in
ERROR-

STEP 4. Press the CTRL and DELETE keys until you
have erased "ERROR-".

STEP 5. The cursor should now be over the" P" in
PRINT in line 30. Using the CTRL and
RIGHT-ARROW keys, walk the cursor to
the second quote mark at the end of the word
"CAN" and delete the quotation mark and
the colon using the CTRL and DELETE keys
together.

STEP6. Now, walk the cursorto the inverse "I" in the
word" IT" and change it to a normal" I" sim
ply by pressing "I".

STEP 7. All that's left is to insert a quotation mark
between the word "IT" and the colon before
the REM statement. Walk the cursor so that
it is directly over the colon and press the
CTRL and INSERT keys simultaneously.
The colon will move over, so now enter a
quotation mark in the space. You are all
finished!

LIST the program again. Line 30 should now be correct. RUN
the program. You should see the statement, IF I CAN GOOF
UP A PROGRAM I CAN FIX IT. Let's learn more about the
editor. Put in the following program: (Remember, in ATARI

54

BASIC, we can use question marks to replace P R I NT state
ments. So when you see the question marks where you would
normally expect to see a PR I NT statement, don't be surprised.)

NEW
10? "{ESC-SHIFT-CLEAR}"
20? "SOMETIMES I LIKE TO WRITE LONG, LONG,

LONG, LONG LINES " : WHEW!
30? "AND SOMETIMES I LIKE SHORT LINES"
40 END
LIST < RETURN >
RUN < RETURN >

OK, after you entered line20 the program wentEI Bombo. The
problem was that we stuck in that WHEW! without a PRINT
statement or quote marks after the colon had terminated the
line, or, alternatively, we left out aRE M statement before
WHEW!. To repair it, LI ST the program, "walk" the cursor
up to line 20 using the CTRL and UP-ARROW keys and start
ing at line 20 put the cursor over the E in ERROR- and press
the CTRL and DELETE/ BACK S keys at the same time until
ERROR- disappears. To make it simple, remove the second
quote mark, leaving the colon in place, and add a quote mark
after the word WH EW!. Since the colon is now inside the
quote marks, it will be printed as part of the PRI NT statement
and be ignored as a line termination statement. Press R ETU R N
and RUN the program.

Now let's take a look at a feature of the ATARI editor that
might cause some problems. Enter the following BUT DO
NOT HIT RETURN!!!!:

NEW
20 PRINT "I LIKE TO COMPUUUUUUT

Whoops! There's a mistake, but you haven't finished the line.
No sweat. Just press DELETE BACK S and back the cursor
over the multiple "U's" and re-enter it correctly. That's a lot
easier than having to go back once the error has been entered
with RETURN !

55

WATCH OUT FOR 'RUNDY'

After editing with the ATARI, I have often entered RUN
over the READY prompt, ending up with RUNDY. Of
course, instead of having the program RUN, it gives an
ERROR-. On some computers, as soon as you press
R ETU R N, the remaining characters on the line are for
gotten if the cursor has not been passed over them.
Therefore, if you are used to other kinds of computers,
watch out for RUNDY!

More Editing

Let's do a few more things with your editor before going on.
We'll practice some more with inserting characters and num
bers, but we will also see how to edit groups of characters. So,
let's see how we can use the editor to do more with "inser
tions." Try the following little program:

NEW
113 PRINT "(ESC-SHIFT-CLEAR)"
213 PRINT "NOW IS THE TIME FOR ALL

GOOD MEN";
313 PRINT "TO COME TO THE AID OF

THEIR COUNTRY"
413 END

So far so good, but you meant to include women as well as men
in line 20. You could retype the entire line, but all you really
need to add is AN D WOM EN after M EN. Also, it's really
boring to have everything in upper case. Let's change the line
to include women and make it both upper and lower case:

STEP 1. Press the CAPS-LOWR key and every non
shifted alphabetic character you enter will
now be in lower case.

STEP 2. "Walk" the cursor up to the beginning of
line 30 using the CTRL and ARROW keys
and then place the cursor to the right of the
first quotation mark.

56

STEP 3. Press the CTRL and INSERT keys to make
enough spaces to include" and women", and
enter and women .

STEP 4. To make the sentence look better, overwrite
the line with lower case characters where
appropriate. REMEMBER that all the com
mands must be in upper case; so leave them
as they are.

After these repairs, you now have upper and lower case, and
when you RUN your program it should read

Now is the time forall good men and women to come to
the aid of their country.

You will save yourself a great deal of time if you use the editor
rather than retyping every mistake you make. Therefore, to
practice with it, there are several pairs oflines below to repair.
The first line shows the wrong way and the second line in the
pair shows the correct way. Since "little" things can make a
big difference, there are a number of changes to be made.
However, as you will soon see, those little mistakes are the
ones we are most likely to get snagged on. Practice on these
examples until you feel comfortable with the editor - time
spent now will save you a great deal later.

EDITOR PRACTICE

5121 PRINT TIS BETTER TO HAVE LOVE AND LOST
THAN TO HAVE NEVER LOVED AT ALL"

5121 PRINT "TIS BETTER TO HAVE LOVE AND LOST
THAN TO HAVE NEVER LOVED AT ALL"

1121 PRINT {ESC-SHIFT-CLEAR}
1121 PRINT "{ ESC-SHIFT-CLEAR}"

BQ1 PRINT "A GOOD MAN IS HARD TO FIND"
BQ1 PRINT "A GOOD PERSON IS HARD TO FIND"

4121 PRINT"{ESC-SHIFT-CLEAR}" PRINT"WE'RE OFF!
4121 PRINT "{ESC-SHIFT-CLEAR}" :

PRINT "WE'RE OFF!"

57

If you fixed all of those lines, you can repair just about any
thing. Once you get the hang of it, it's quite simple.

ELEMENTARY MATH OPERATIONS

So far all we've done is to P R I NT out a lot of text, but that isn't
too different from having a fancy typewriter. Now let's do
some simple math operations to show you your computer can
compute! Enter the following:

(SHIFT-CLEAR)
PRINT 2 + 2 < RETURN >

This is what your screen should look like now:

PRINT 2 + 2
4

Big deal, so the computer can add - so can my $5 calculator and
my 8 year old kid. Who said computers are smart? The pro
grammer (you) is who is smart. OK, so let's give it a little
tougher problem.

(SHIFT-CLEAR)
PRINT 7.87 * 123.65 < RETURN >
973.1255

Still nothing your calculator can't do, but it'd be a little rough
on the 8 year old.

As we progress, we can include more and more aspects of
mathematical problems. In the next chapter, we will see how
we can store values in variables and a lot of things that would
choke your calculator. For now, though, all we'll do is to
introduce the format of mathematical manipulations. The
"+" and "-" signs work just as they do in regular math, and
the "x" is replaced by "*,, (asterisk) for multiplication and" -:--"
is replaced by the "/" (slash) for division.

As we begin dealing with more complex math, we will need to
observe a certain order in which problems are executed. This
is called "precedence." Depending on the operations we use,

58

and the results we are attempting to obtain, we will use one
order or another. For example, let's suppose we want to mul
tiply the sum oftwo numbers by a third number - say the sum
of 15 and 20 multiplied by 3. If you entered

3 * 15 + 20

you would get 3 multiplied by 15 with 20 added on. That's not
what you wanted. The reason for that is precedence - mul
tiplication precedes addition. To help you remember the
precedence, let's write a little program you can run and then
play with some math problems in the Immediate mode to see
the results and refer to your "Precedence Chart" on the screen.
(This little program is quite handy, so save it to disk or tape to
be used later.)

10 {ESC-SHIFT-CLEARl
20 PRINT "1. - (MINUS SIGNS FOR NEGATIVE

NUMBERS - NOT SUBTRACTION)"
30 PRINT "2. A (EXPONENTIATION)"
40 PRINT "3. * / (MULTIPLICATION AND DIVISION)"
50 PRINT "4 . + - (ADDITIONS

AND SUBTRACTIONS)"
60 PRINT "NOTE: ALL OTHER PRECEDENCE

BEING EQUAL PRECEDENCE IS FROM
LEFT TO RIGHT"

70 PRINT "YOUR COMPUTER FIRST EXECUTES
THE NUMBERS IN PARENTHESES. WORKING
ITS WAY FROM THE INSIDE OUT IN
MULTIPLE PARENTHESES."

Try some different problems and see if you can get what you
want. Note: In Chapter 4, we will be dealing with "Relationals. "
All string relationals have a higher precedence than negative
designations(-), and all numeric relationals have lowerprece
dence than plus and minus (+, -). For now, don't worry about
it, though.

He-ordering Precedence

Once you get the knack of the order in which math operations
work, there is a way to simplify organizing math problems. By

59

placing two or more numbers in PARENTHESES, it is pos
sible to move them up in priority. Let's go back to our example
of adding 15 and 20 and then multiplying by 3, but this time we
will use parentheses.

PRINT 3 * (15 + 212l)

Now since the multiplication sign has precedence over the
addition sign, without the parentheses we would have gotten
3 times 15 plus 20. However, since all operations inside paren
theses are executed first, your computer FIRST added 15 and
20 and then multiplied the sum by 3. Ifmorethan asingle setof
parentheses is used in an equation, then the innermost is
executed first, working its way out.

THE PARENTHESES DUNGEON

To help you remember the order in which math opera
tions are executed within parentheses, think of the
operations as being locked up in a multi-layer dungeon.
Each cell represents the innermost operation, and the
cells are lined up from left to right. Each "prisoner" is an
operation surrounded by walls of parentheses. To escape
the dungeon, the prisoner must first get out of the inner
most cell, go to his right and release any other prisoners
in their cells. Then they break out of the "cell-block" and
finally out into the open. Unfortunately, since operations
are "executed," this is a lethal analogy for our poor
escaping "prisoners." Do some of the examples and see if
you can come up with a better analogy.

The following examples show you some operations with
parentheses.

PRINT 212l + 112l * (8 - 4)
PRINT (12.43 + 92) / 3 " (11 - 3)
PRINT (22 - 3 .1415) * (22 + 3.1415)
PRINT ((16 - 4) + (3 + 5)) / 18
PRINT 1 9 + 2 * (51 + 3) - (112l12l - 1 4)

60

N ow try some of these problems in the proper format expected
by your computer:

Multiply the sum of 4 , 9 and 20 by 15

Add up the charges on your long distance calls and
divide the sum by the number of calls you made. This
will give you the average expense of your calls. Re
member, though, you have to do this in one set of
statements in a single line. Do the same thing with
your checkbook for a month to see the average (mean)
amount for your checks.

SUMMARY

This chapter has covered the most basic aspects of program
ming. At this point you should be able to use the editor in your
ATARI and write commands in the Immediate and Program
(deferred) modes. Also, you should be able to manipulate
basic math operations. However, we have only just begun to
uncover the power of your computer, and at this stage, we are
treating it more as a glorified calculator than a computer.
Nevertheless, what we have covered in this chapter is ex
tremely important to understand, because it is the foundation
upon which your understanding of programming is to be built.
If there are parts you do not understand, review them before
continuing. If you still do not understand certain operations
after a review, don't worry. You will be able to pick them up
later, but it is still important that you try and get everything to
do what it is supposed to do and what you want it to do.

The next chapter will take us into the realm of computer pro
gramming and increase your understanding of your ATARI
considerably. If you take it one step at a time, you will be
amazed at the power you have at your fingertips and how easy
it is to program. Also, we will be leaving the realm of calculator
like commands and getting down to some honest-to-goodness
computer work. This is where the fun really begins.

61

.-

-.

-
.-

-
-
.-

--
.-

-
..-

-
-

CHAPTER 3

Moving Along

Introduction

In the last chapter, we saw how to get started in executing
commands in both the Immediate and Program modes. From
now on we will concentrate our efforts on building from the
foundation set in Chapter 2 in the Program mode, tying
various commands together in a program. We will, however,
use the Immediate mode to provide simple examples and to
give you an idea of how a certain command works. Also, as we
learn more and more commands, it would be a good idea if you
started saving the example programs on your disk or cassette
so that they can be used for review and a quick "look-up"
of examples.

On disk, use file names that you can recognize, such as
VARS1 orGOSUB3 and REMEMBER each file has to havea
different name; so be sure to number example file names (e.g. ,
ARRAYS1 , AR RAYS2. etc.) . For programs CSAVEd on tape,
use more descriptive names in a log, and be sure to write down
the beginning counter position for each program saved.

VARIABLES

Perhaps the single most important computer function is in
variable commands. Basically, a variable is a symbol that can
have more than a single value. If we say, for example, X = 10,
we assign the value of 10 to the variable we call "X". Try
the following:

x = 1 (2l < RETURN >
READY
PRINT X < RETURN >

Note: You can define variables using LET (e.g., LET X = 1#),
but it is unnecessary to use LET; so we won't.

63

Your computer responded

10

Now type in

X= 55.7 < RETURN >
READY
PRINT X < RETURN >

This time you got

55.7

Each time you assign a value to a variable, it will respond with
the last assigned value when you PRINT that variable. Now
try the following:

X = 10 < RETURN >
Y = 15 < RETURN >
PRINT X + Y < RETURN >

And your ATARI responded with

25

As you can see, variables can be treated in the same way as
math problems using numbers. However, instead of using the
numbers, you use the variables. Now let's try a little program
using variables to calculate the area of a circle.

10 PRINT "{ESC-SH 1FT-CLEAR}"
20 PI = 3 .14159265: REM THIS IS THE VALUE

OF PI FROM YOUR GEOMETRY CLASS.
30 R = 15 : REM R IS THE RADIUS OF OUR CIRCLE
40 PRINT PI * (R * R) : REM THIS GIVES US PI

TIMES THE RADIUS SQUARED.
50 END

When you RUN the program, you will get the area of a circle
with a radius of15. If you change the value of"R" in line 30, it
is a simple matter to quickly calculate the area of any circle
you want! Since our example "squares" a result, why don't we
use our exponential sign " A ". Change line 40 to read

64

413 PRINT PI * (R 1\ 2)

That saves typing, doesn't it. RUN the program again and see
if you get the same results. You don't, but they're close. That's
because" 1\ " drops some decimal points on the end. Also,
change the value of R to see the areas of different circles.

Variable Names

When you name a variable, the computer looks at all the
characters in a variable name. For example, if you name a
variable NUMBER , your computer will differentiate it from
N U. Since many computers use only the first two characters of
a variable, you should be aware of this difference. Try the
following:

NUMBER = 63
NU = 999
PRINT NUMBER
PRINT NU

You got 63 for NUMBER and 99 for NU.

~:-:;;.:::~ c '(1(' 1/ 11,(.

el i fFtrff'I(~ b(!f .. ·('c.,

)0'" t o -. 1,,;1 .T (J".t

N ow it may seem the best thing to do is to use variable names
with as few characters as possible to save time, but as you get
into more and more sophisticated programs, it helps to use
variable names that are descriptive. For example, the follow
ing program uses MEAN as a descriptive variable name:

10 PRINT"lESC-SHIFT-CLEAR}"
20.A = 15 : B = 23 : C = 38
30 MEAN = (A + B + C) / 3
40 PRINT MEAN
50 END

If the above program were a hundred or more lines long, you
would know what the variable MEAN does - it calculates a
"mean." This makes it a lot easier to understand what the
variable does.

Other considerations in naming variables include not using
"reserved words" (i.e., programming commands). In fact, if the
first characters of a variable have a reserved word in it, it will
be invalid. Let's look at some examples of what is and what is
not a valid variable name:

PRINT= 987 (Invalid name since PRINT is a reserved
word.)

R 1 = 321 (Valid name since first character is a letter.)

1 R = 55 (Invalid since first character is not a letter.)

FORT = 222 (Invalid since variable name begins with
reserved word FOR.)

TFOR = 8910 (Valid since variable does not begin
with reserved word FOR.)

PR = 99 (Valid name, for even though reserved word
PRI NT begins with PRo only partofthereserved word
is used in vari able name.)

IF = 99999999 (Invalid since I F is a reserved word.)

ADFETDCVRRWRDAAF = 10 (Valid name. but really
dumb.)

66

It is also possible to give values to variables with other
variables or a combination of variables and numbers. In our
example with the variable MEAN we defined it with other
variables. Here are some more examples:

T = A * (8 + C)
N=N+1
SUM = X + y + Z

Types of Variables

Real Variables

So far we've used only "real" or "floating point" variables in
our examples. Any variable that begins with a capital letter
and does not end with a dollar sign ($) is a real variable. The
value for a real variable can be from - to + 9.99999999E+97.
The "E" is the scientific notation for very big numbers. For the
time being, don't worry about it, but if you get a result with
such a letter in a numeric result, get in touch with a math
instructor. At this juncture. figure you can enter numbers in
their standard format with 9 significant digits. (If your check
book debit or income tax payments have a scientific notation
in them, leave the country.) Think of real variables as being
able to hold just about any number you would need along with
the decimal fractions.

String Variables

String variables are extremely useful in formatting what you
will see on the screen, and like real variables. they are sent to
the screen by the P R I NT statement. However. rather than
printing only numbers. string variables send all kinds of
characters. called "strings." to the screen. String variables
are indicated by a dollar sign ($) on the end of a variable. For
example. A$, BAO$, Gal, amI PULL$ are all legitimate string
variables. (In computer parlance. we use the term "string" for
the dollar sign. Thus. our examples would be called "A strin.g".
"BAD string". etc.) String variables are el efin ed by placing
the "string" in quotation marks . .iust as we diel with othel'
messages we printed out.

67

Before we can use string variables, we mustfirst "dimension"
them using the 0 I M statement. The DIM statement sets the
maximum length of the string. For example, if you wanted
your string to be CAT you would have to DIMension itto 3. To
set the DIMension of a string, enter

DIM A$(9)

or any other string name or size. In our example, we want a
string for CAT to be "3" since there are 3 characters in the
word CAT. We will use the variable name C$; thus, we
would enter

DIM C$(3)

Let's try out a few examples from the Immediate mode:

DIM ABC$(3) : ABC$ = "ABC" : PRINT ABC$
< RETURN >

DIM G$(9) : G$ = "BURLESQUE" : PRINT G$
< RETURN >

DIM DOG$(3) : OOG$ ="DOG" : PRINT DOG$
< RETURN >

DIM NUMBER$(7) : NUMBER$ = "1234567" :
PRINT NUMBER$ < RETURN >

DIM B1$(11) : B1$ = "5 + 10 + 20" :
PRINT B1$ < RETURN >

Note: 81 $ was DIMensioned to be 11 instead of 7. That's
because spaces count as chaTacten.

In the same way as real variables. a stringvariable must begin
with a letter and use non-reserved words. More importantly.
you probably noticed in our examples that numbers in string
variables are not treated as numbers. but rather as "words"
or "messag-es. " For example. you may have noticed that when
you PR I NTed 81 $. instead of printing out " ;~5 " (the sum of 5.
10 and 20), 81 $ printed out exactly what you put in quotes.
5 + 10 + 20. Do not attempt to do math with s tring variahles.
(In later chapters. we'll see somt' tricks to convert stl'ing
variahles to numeric -real 0 1' integ-er- vm·iahles. hut for now
.iust treat them as mess a,Q:es.)

Now let's put all of our accumulated knowledge together and
write a program that uses variables. We will start a little pro
gram which wi ll a llow you to subtract a check from your
checkbook and print the amount. This program will be the
beginning of something we will later develop to give you a
handy little program with which to do checkbook balancing.

10 PRINT "{ ESC-SHIFT-CLEAR}"
20 BALANCE = 571.88 : REM ANY FIGURE WILL

DO. BALANCE IS A REAL VARIABLE
30 CHEC K = 29.95 : REM WHAT YOU LAST

SPENT IN THE COMPUTER STORE. CHECK
IS A REAL VARIABLE.

40 DIM B$(28) : B$ = "YOUR BEGINNING
BALANCE IS $"

50 DIM C$(19) : C$ = "YOUR CHECK IS FOR $"
60 DIM NB$(21) : NB$ = "YOUR NEW BALANCE

IS $": REM B$, C$ AND NB$ ARE
STRING VARIABLES

70 PRINT B$;BALANCE
80 PRINT C$; CHEC K
90 N = BALANCE - CHECK

100 PRINT NB$; N
110 END

Since this is a fairly long program for this stage of the game,
make sure you put in everything correctly. For the computer,
it is critical that you distinguish between commas, semicolons,
periods, etc. Also, save it to disk or tape. To play with it,
change the values in lines 20 and 30 .

Let's quickly review what we have done.

STEP 1. First we defined the real variables BA LA N C E
and CHECK.

STEP 2. Then we dimensioned and defined string
variables B$, C$, and N B$ to use as labels
in screen formatting.

STEP 3. Finally, we printed out a ll of our information
using our variables, with one new variable,
N, defined as the difference between BAL
ANCE and CHECK.

69

Note how we formatted the "output" (what you see on your
screen) of our P R I NT statements. The semi-colon ";" between
the variables accomplished two things: (1) it told the com
puter where one variable ended and the next began, and (2) it
told the computer to PRINT the second variable right after
the first one. Thus, it took the string variable N 8$

YOUR NEW BALANCE is $#

and stuck the value of the real variable N right after the dollar
sign (exactly where we placed the hatch #). Later we will go
more into the formatting of output, but for now let's take a
quick look at using punctuation in formatting text. We will use
the comma "," and semicolon ";" and "new line" to illustrate
basic formatting. Put in the following little program:

NEW < RETURN >
1121 PRiNT "{ESC -SHiFT-CLEAR}"
2121 DiM A$(4), B$ (5) , C$ (5), D$ (4)

70

30 REM NOTE HOW ALL STRINGS
WERE OIMENSIONEO

40 REM USING A SINGLE 'DIM' STATEMENT
50 A$ = " HERE" : B$ = "THERE" :

C$ = "WHERE" : D$ = "DERE"
60 PRINT A$; : PRINT B$; : PRINT C$; :

PRINT D$; : REM SEMI-COLONS
70 PRINT
B0 PRINT A$. : PRINT B$. : PRINT C$.:

PRINT D$. : REM COMMAS
90 PRINT : REM A 'PRINT' BY ITSELF GIVES

A VERTICAL 'SPACE' IN FORMATTING
100 PRINT A$: PRINT B$: PRINT C$: PRINT D$:

REM 'NEW LINES'
110 END

Now RUN the program. As you should see, the little differ
ences in lines 60, 80, and 100 made big differences on the
screen. The first set is all crammed together, the second set is
spaced evenly across the screen, and the third set is stacked
one on top of the other. As we saw in the previous program,
semicolons put numbers and strings right next to one another.
However, using commas after a PRINTed variable will space
output in groups of four across the screen, and using "new
lines" in the form of colons or new line numbers will make the
output start on a new line. A PRINT statement all by itself will
put a vertical " linefeed" between statements. Try the follow
ing little program to see how PR I NT statements all by them
selves can be used.

NEW < RETURN >
10 PRINT "{ESC-SHIFT-CLEAR}"
20 PRINT "WHENEVER YOU PUT IN A PRINT

STATEMENT" ; : REM NOTE PLACEMENT
OF SEMI-COLON

30 PRINT " ALL BY ITSELF. IT GIVES A ·LlNEFEED· ...
40 PRINT
50 PRINT "SEE WHAT I MEAN?"
60 END

Play with commas, semicolons, and "new lines" with variables
and string variables until you get the hang of it. They are very
important and are the source of program "bugs."

71

BUGS and BOMBS

We've mentioned "bugs" and "bombs" in programs but
never really explained what they meant. "Bugs" are sim
ply errors in programs that either create ?SYNTAX
ERR 0 R s or prevent your program from doing what you
want it to do. "Debugging" is the process of removing
"bugs." "Bombing" is what your program does when it
encounters a "bug." This is all computer lingo, and if you
use it in your conversations. people will think you really
know a lot about computers or have a bug in your
personality.

72

Input and Output (I/O)

Input and output, often referred to as I/O, are ways of putting
things into your computer and getting it out. Usually we put
IN information from the keyboard, save it to disk or tape, and
then later put it in from the disk drive or cassette recorder.
When we want information OUT of the computer, we want it to
go to our screen or printer. This is what I/O means. So far, we
have entered information IN the computerfrom the keyboard
either in the Program or in the Immediate mode. Using the
PRINT statement, we have sent information OUT to the
screen. However, there are other ways we can IN PUT infor
mation with a combination of programming and keyboard
commands. Let's look at some of these ways and make our
CHECKBOOK program a lot simpler to use.

Input

The I N PUT command is placed in a program and expects
some kind of response from the keyboard and then a R ETU R N.
(A R ETU R N alone will also work, but the response is read as"
".) Let's look at a simple example:

NEW < RETURN >
10 PRiNT "{ESC-SHiFT-CLEAR}"
20 iNPUT X: REM 'X' is A NUMERiC VARiABLE SO

ENTER A NUMBER
30 PRiNT X
40 END

RUN the program and your screen will go blank and a"?"
along with a blinking cursor will sit there until you enter a
number and then the computer will PR I NT the number you
just entered. Really interesting, huh?

Let's try IN PUTing the same information using a slightly dif
ferent format. Look at the following program:

NEW < RETURN >
10 PRiNT "(ESC-SHiFT-CLEAR)"
20 PRiNT "ENTER YOUR AGE "; : iNPUT X

73

30 PRINT "{ESC-SHIFT-CLEAR}" : PRINT:
PRINT: PRINT

40 PRINT "YOUR AGE IS "; X

Now RUN the program. You will see that the presentation is a
little more interesting. Also, notice we did not put an END
command at the end of the program. In A TARI BASIC it is not
necessary to enter an END command, but it is usually a good
idea to do so. As we get into more advanced topics, we will see
that our program canjump around, and theplacewewantitto
END will be in the middle. We will need an END statement so
that it will not crash into an area we don't want it to go. So,
while an END command really has not been necessary up to
now, it is nevertheless a good habit to develop.

Let's soup up our program a little more with the I N PUT
statement.

NEW <RETURN >
10 PRINT"{ESC-SHIFT-CLEAR}"
20 DIM NA$(20) : REM WILL ACCEPT UP

TO 20 CHARACTERS
30 PRINT "WHAT'S YOUR NAME - > "; : INPUT NA$
40 PRINT
50 PRINT "WHAT'S YOUR AGE - > "; : INPUT AGE
60 PRINT
70 DIM RT$ (1) : PRINT "PRESS < RETURN>

TO CONTINUE "; : INPUT RT$
80? "{ESC-SHIFT-CLEAR}" : ? : ? : ? : ? : ? : REM

USING "?" AS SUBSTITUTES FOR PRINT
90 PRINT NA$; " IS "; AGE; " YEARS OLD. " : REM

BE CAREFUL WHERE YOU PUT YOUR QUOTE
MARKS AND SEMICOLONS IN THIS LINE

100 END

Now we're getting somewhere. You can enter information as
numeric or string variables and the output is formatted so you
know what's going on. As your programs become larger and
more complicated, it is very important to connect your string
variables and numeric variables in such a way that it is easy to
see what the numbers on the screen mean. Let's face it, a com
puter wouldn't be very helpful if it filled the screen with num
bers, and you did not know what they meant! Line 70 is the

74

format for a pause in your program. RT$ doesn't hold any
information, but since I N PUT statements expect something
from the keyboard and a variable, RT$ (for R ETU R N) is as
good as any.

READing In DATA

A second way to enter data into a program is with REA D and
DA T A statements. However, instead of entering the data
through the keyboard, DATA in one part of the program is
READ in from another part. Each READ statement looks at
elements in DATA statements sequentially. The REA D com
mand is associated with a variable which looks at the next
DA T A statement and places the numeric value or string in the
variable. Let's look at the following example:

NEW < RETURN >
10 PRINT "{ESC-SHIFT-CLEAR}"
15 DIM NA$(12), OC$(15) , ST$(14), CT$(1 0),

SA$(10)

75

20 READ NA$: REM READS NAME
30 READ OC$: REM READS OCCUPATION
40 READ SN : REM READS STREET NUMBER
50 READ ST$: REM READS STREET NAME
60 READ CT$: REM READS CITY
70 READ SAm : REM READS STATE
B0 READ ZIP: REM READS ZIP CODE
90 PRINT: PRINT: PRINT
100 REM BEGIN PRINTING OUT WHAT 'READ'

READ IN. (BE CAREFUL TO PUT IN EVERYTHING
EXACTLY AS IT IS LISTED.)

110 PRINT NA$
120 PRINT OC$
130 PRINT SN; "" ; ST$
140 PRINT CT$; "," ; SAm ;" "; ZIP
150 END
1000 DATA DAVID GORDON, SOFTWARE TYCOON,

B943, FULLBRIGHT AVE
1010 DATA CHATSWORTH, CALIFORNIA, 91311

NOTE: Spaces were left between the DATA elem ents f01" clarity.
They will be read as spaces by the REA D statem ents. By either
omitting spaces after the commas in the DATA elements or by
making the DIMensions of the strings longer, the o~dput will
be correct.

In the DATA statements there is a comma separating the
various elements, unless t he DA T A statement is at the end of a
line. If you have one of the elements out of place or omit a com
ma, strange things can happen. For example, if the READ
statement is expecting a numeric variable (such as the street
address) and runs into a string (such as the street name) you
will get an error message. Think of the DATA statements as a
stack of strings and numbers. E ach time a REA 0 statement is
encountered in the program the first element of the DATA is
removed from the stack. The next READ statement looks at
the element on top of the stack, moving fro m left to right. Go
ahead and SAVE this program and let's put an error in it.
(SAVE it first, though, so you will have a correct listing of how
READ and DATA statements work.)

76

Note that you did not have to put the string elements in quote
marks. In fact. if you do put a DATA statement in quotes. the
string will be defined to include the quotations. For example
enter the following program:

NEW
10 PRINT"{ESC-SHIFT-CLEAR}"
20 DIM QUOTE$(21)
30 READ QUOTE$
40 DATA "To be or not to be."
50 PRINT QUOTE$

When you RUN the program you will get

"To be or not to be."

Not only did the quotation marks show up in our output, but
the string was able to include both upper and lower case in its
definition and therefore in its output. This is one method of
getting quotation marks to be part of a string. (What would
happen if you simply entered QUOTE$= "To be or not to
be."?)

77

I CqN

..,L,5.0 fYl tl KE
IT &0

~

Looping With FOR/NEXT

The FO R/ N EXT loop is one of the most useful operations in
BASIC programming. It allows the user to instruct the com
puter to go through a determined number of steps, at variable
increments if desired, and execute them until the total number
of steps is completed. Let's look at a simple example to get
started.

NEW < RETURN >
10 PRINT "IESC-SHIFT-CLEAR}"
20 DIM NA$(30) :NA$ = "< YOUR NAME>"
30 FOR 1=1 TO 10 : REM BEGINNING OF LOOP
40 PRINT NA$
50 NEXT I: REM LOOP TERMINAL
60 END

Now RU N the program and you will see your name printed 10
times along the leftsideofthe screen. That's nice, butso what?
OK, not too impressive, but we will see how useful this can be
in a bit. But first let's look at another simple illustration to
show what's happening to "I" as the loop is being executed.

NEW < RETURN >
10 PRINT "I ESC-S HIFT-CLEAR}"
20 FOR 1= 1 TO 10
30 PRINT I
40 NEXT I

As we can see when the program is RUN, the value of "I"
changes each time the program proceeds through the loop. Think
of a loop as a child on a merry-go-round. Each time the merry
go-round completes a revolution, the child gets a gold ring,
beginning with one and ending, in our example, with 10.

78

TRIVIA

As you begin looking at more and more programs, you
will see that the variable I is used in FO R/ N EXT loops a
lot. Actually, you can use any variable you want, but the I
keeps cropping up. Like yourself, l was most curious as
to why programmers kept using the letter I, and after
several moments of exhaustive research I found out. The
I was the "integer" variable in FORTRAN (an early com
puter language), and it was used in "DO loops" since it
was faster. The I also can be interpreted to stand for "in
crement." I told you it was trivia.

Having seen how loops function, let' s do something practical
with a loop. We'll fix up our CHECKBOOK program we've
been playing with.

In our souped up CHECKBOOK program, we are going to use
variables in many ways. First, our FO R/ N EXT loop will use a
variable. We'll stick with tradition and use I. Second, we will
use a variable to indicate the number of loops to be executed.
We will use NUMBER as the variable name. Third, we will
use variables for the balance, the amount of the check, and the
new balance. This program is going to be a little longer; so be
sure to SAVE it to disk every five lines or so. For cassette,
SAVE it about every 10 lines.

NEW < RETURN >
10 PRINT "{ESC-SHIFT-CLEAR}"
20 DIM CB$(9) : CB$ = "(ATARI KEY) CHECKBOOK

(ATARI KEY)"
30 PRINT : PRINT: PRINT CB$: PRINT
40 PRINT"HOW MANY CHECKS";: INPUT NUMBER
50 PRINT "WHAT IS YOUR CURRENT BALANCE" ; :

INPUT BA
60 REM BEGIN LOOP
70 FOR 1=1 TO NUMBER
B0 PRINT "YOUR BALANCE IS NOW $" ;BA
9~ PRINT " AMOUNT OF CHECK #";1; "- > ";
1001NPUT CK : REM VARIABLE FOR CHECK

79

110 BA= BA- CK: REM KEEPSA RUNNING BALANCE
120 NEXT I : REM TOP OF LOOP
130 PRINT "{ESC-SHIFT-CLEAR}" : REM CLEAR

SCREEN WHEN ALL CHECKS ARE ENTERED
140 PRINT: PRINT: PRINT
150 PRINT "YOU NOW HAVE $"; BA ;

" IN YOUR ACCOUNT"
160 PRINT: PRINT" THANK YOU AND

COME AGAIN"
170 END

Our checkbook program is coming along, making it easier to
use, and that is the purpose of computers. Now, let's look at
something else with loops.

Nested Loops

With certain applications, it is going to be necessary to have
one or more FO R/ N EXT loops working inside one another.
Let's look at a simple application. Suppose you had two teams
with 10 members on each team. You want to make a team roster
indicating the team number (#1 or #2) and member number
(#1 through #10). Using a nested loop, we can do this in the
following program:

NEW < RETURN >
10 PRINT "{ESC-SHIFT-CLEAR}"
20 FOR T = 1 TO 2 : REM T FOR TEAM #
30 FOR M = 1 TO 10: REM M FOR MEMBER #

40 PRINT "TEAM #" ; T, "PLAYER #"; M
50 NEXT M
60 NEXT T
70 END

In using nested loops. it is important to keep the loops straight.
The innermost loop (the "M loop" in our example) must not
have any other FO R or N EXT statement inside of it. Think of
nested loops as a series of fish eating one another, the largest
fish's mouth encompassing the next smallest and so forth on
down to the smallest fish.

80

Look at the following structure of nested loops:

FOR A = 1 TO N

FOR B = 1 TO N

FOR C = 1 TO N

FOR 0 = 1 TO N

NEXT 0

NEXT C

NEXT B

NEXT A

Note how each loop begins (a FO R statement is executed) and
is terminated (encounters a N EXT statement) in a "nested"
sequence. If you have ever stacked a set of different sized
cooking bowls, each one fits inside the other; that is because
the outer edge of one is larger than the next one. Likewise, in
nested loops, the "edge" of each loop is "larger" than the one
inside it and "smaller" than the one it is inside.

Stepping Forward and Backward

Loops can go one step at a time, as we have been using, or they
can step at different increments. For example, the following
program "steps" by 10.

NEW <RETURN >
10 PRINT "{ESC-SHIFT-CLEAR}"
20 FOR 1= 10TO 100STEP 10
30 PRINT I
40 NEXT I

This allows you to increment your count by whatever you
want. You can even use variables or anything else that has a
numeric value. For example:

NEW <RETURN >
10 PRINT"{ESC-SHIFT-CLEAR}"
20 K = 5: N = 25
30 FOR 1= K TO N STEP K
40 PRINT I
50 NEXT I

Go ahead and RUN the program. The variable works just like
numbers. (But you knew that, didn't you?)

It is also possible to go backwards. Try this program:

NEW < RETURN >
10FORI=4T01 STEP-1
20 PRINT "FINISHING POSITION IN RACE =";1
30 NEXT I

82

As we get into more and more sophisticated (and useful) pro
grams, we will begin to see how all of these different features
of ATARI BASIC are very useful. Often, you may not see the
practicality of a command initially, but when you need it later
on, you will wonder how you could program without it!

.. ~

IN CASE YOU WONDERED

You may have noticed that the lines inside the loops were
indented. If you tried that on your ATARI you probably
found that as soon as you LISTed your program, all the
indentations were gone. Unfortunately, that will hap
pen, and without special utilities, there's nothing you can
do about it. However. don't let it worry you. It is a pro
gramming conven tion for clarity to indent or "tab" loops
to make it easier to understa!1d what the program is
doing. but they do not affect your program at all.

83

Counters

Often you will want to count the number of times a loop is
executed and keep a record of it in your program for later use.
For example, if you run a program that loops with a STEP of3,
you may not know exactly how many times the loop will
execute. To find out, programmers use "counters," variables
that are incremented, usually by +1, each time a loop is
executed. The following program illustrates the use of a
counter:

NEW < RETURN >
10 PRINT "{ESC-SHI FT-CLEAR)"
20 FOR 1= 3 TO 99 STEP 3
30 PRINT I
40 N = N + 1 : REM THIS IS THE COUNTER
50 NEXT I
60 PRINT : PRINT "YOUR LOOP EXECUTED ";

N;" TIMES."

The first time the loop was entered, the value of"N" was 0, but
when the program got to line 40, the value of 1 was added to N
to make it 1 (i.e. 0 + 1 = 1). The second time through the loop,
the value of N began at 1, then 1 was added, and at the top of
the loop, line 50, the value of N was 2. This went on until the
program exited the loop. Then, after all the looping was finished,
PRESTO! Your N told you how many times the loop was exe
cuted. Of course, counters are not restricted to counting loops,
and they can be incremented by any value, including other
variables you may need. For example, change line 40 to read

40 N = N + (I * 2)

RUN your program again and your "counter total" will be a
good deal higher.

SUMMARY

This chapter has begun to show you the power of your com
puter. and we have really began programming. One of the
most important concepts we have cove\'ed is that of the "vari
able." The significant feature of variables is that they "vary"

84

(change depending on what your program does). This is true
not only with numeric variables, but also with string variables.
The various input commands show how we enter values or
strings into variables depending on what we want the com
puter to compute for us. Finally, we have learned how to loop.
This allows us, with a minimal amount of effort, to tell the com
puter to go through a process several times with a single set of
instructions. With loops, we can set the parameters of an
operation at any increment we want, and then sit back and let
our ATARI go to work for us.

However, we have only just begun programming! In the next
chapter we will begin getting into more commands and opera
tions that allow us to delve deeper into the ATARI's capa
bilities and make our programming jobs easier. The more
commands we know, the less work it is to write a program.

85

-
-

-
-
-

CHAPTER 4

Branching Out

Introduction

In this chapter we will begin exploring new programming con
structs that will geometrically increase your programming
ability. We will be examining some more sophisticated tech
niques, but by taking each a step at a time, you will begin using
them with ease. Later, when you are developing your own pro
grams, be bold and try out new commands. One problem new
programmers have is a tendency to stick with the simple com
mands they have learned to get a,iob done. After all, why use
"complicated" commands to do what simpler ones can do?
Well, the answer to that has to do with simplicity. If one" com
plicated" command can do the work of 10 "simple" com
mands, which one is actually simpler? As you get into more
and more sophisticated programming applications, your pro
grams can become longer and subject to more bugs. The more
commands you have to sift through, the more difficult it is to
find the bugs; therefore, while it is perfectly OK to write a long
program using a lot of simple commands while you're learn
ing, begin thinking about short-cuts through the use of the
more advanced commands.

Related to this issue of maximizing your knowledge of dif
ferent commands is that of letting the computer perform the
computing. This may sound strange at first, but often novices
will figure everything out for the computer and use it as a
glorified calculator. In the last chapter, you may remember,
we set up a counter to count the times a loop was executed
when we used a STEP 3 loop. We could have figured out how
many loops were executed instead of letting the computer do it
with the counter, but that would have defeated the purpose of
programming! So, as you learn new commands, see how they
can be used to perform the calculations you had to work
out yourself.

87

Branching

So far all of our programs have gone straight from the top to
the bottom with the exception of loops. However, if our A TAR!
is to do some real decision making, we must have some way of
giving it options. When a program leaves a straight path, we
refer to it either as " looping" or "branching." We already
know the purpose of a loop, but what is a branch? Well, using
the IF ITH EN and G OTO commands, we will see. Consider the
following program: NOTE: By now you should know enough to
clear memory with aNEW command, so I won't keep on insult
ing your intelligence by putting one at the beginning of each
program.

YOll DON' T UNDER~Ti1fW "&O TO""
Tu TELL YOu (oJIIERE 'l'o u CAN (joro!

10 PRiNT "{ESC-SHiFT-CLEAR}"
20 PRiNT "CHOOSE ONE OF THE FOLLOWiNG BY

NUMBER: "
30 PRiNT
40 PRiNT"1 . BANANAS"
50 PRiNT "2. ORANGES"

88

60 PRINT "3 . PEACHES"
70 PRINT "4 . WATERMELONS"
80 PRINT
90 PRINT "WHICH " ; : INPUT X
100 PRINT "{ESC-SHIFT-CLEAR}"
1101F X = 1 THEN GOTO 200
120 IF X = 2 THEN GOTO 30121
130 IF X = 3 THEN GOTO 400
1401F X = 4 THEN GOTO 500
150 GOTO 1121 : REM THIS IS A 'TRAP' TO MAKE SURE

THE USER CHOOSES 1, 2 , 3 , OR 4
200 PRINT "BANANAS" : END
300 PRINT "ORANGES" : END
400 PRINT " PEACHES" : END
500 PRINT "WATERMELONS" : END

As you can see, your computer "branched" to the appropriate
place, did what it was told and ENDed. Not very inspiring, I
admit, but it is a clear example. Now, let's t ry something a lit
tle more practical for your kids to play with in their math
homework.

10 PRINT "{ ESC-SHIFT-CLEAR}" : DIM AN$(1)
20 PRINT"{ATARI KEY}ADDITION GAME{ATARI KEY}"
30 PRINT: PRINT
40 PRINT " ENTER FIRST NUMBER -- > " ; : INPUT A
50 PRINT
60 PRINT"ENTER SECOND NUMBER--> ";: INPUT B
70 PRINT
80 PRINT "WHAT IS "; A ; "+" ; B; : INPUT C
90 IF C = A + B THEN GOTO 20121
100 PRINT: PRINT "THAT'S NOT QUITE IT.

TRY AGAIN ." : PRINT
110 GOTO 80
200 PRINT " THAT'S RIGHT! VERY GOOD "
210 PRINT
220 PRINT"WOULD YOU LIKE TO DO MORE? [YI N) : ";
230 INPUT AN$
2401F AN$ = "Y" THEN PRINT"{ESC-SHIFT-CLEAR}" :

GOTO 30
250 PRINT"{ESC-SHIFT-CLEAR}" : PRINT :

PRINT : PRINT
260 PRINT "HOPE TO SEE YOU AGAIN SOON": END

89

As you can see, the more commands we learn, the more fun we
can have. Just for fun, change the program so that it will han
dle multiplication, division, and subtraction.

WHAT'S IN A NAME?

Kids (of all ages) like to have their names displayed. See
if you can change the above program so that it asks the
child's name; then when the program responds with
either a correction or affirmation command, it mentions
the child's name. (e.g., THAT'S RIGHT! VERY GOOD,
SAM.) Use NAME$ as the name variable, AND be sure
to 0 I M ension it to at least 10!

90

Let's look carefully at our program to learn something about
IF ITH EN statements. First, note in line 240, the branch is to
clear the screen (PRINT"{ESC-SHIFT-CLEARJ") ifAN$ ="Y".
If any other response is encountered it ends the program. You
may ask why the program did not branch to line 30 regardless
of the response since the GO TO 3 (2) command is after a colon,
making it a new line. Good point. The reason for that is after an
IF statement, when the response or condition is null, the pro
gram immediately drops to the next LINE NUMBER. That is,
any statements after a colon in a line beginning with an IF
statement will be executed onlyifthe condition of the I F state
ment is met. The "Y" is in quotation marks because AN$
expects a string variable. If the Y were by itself, the program
would expect a value to be entered for a numeric variable.
Therefore in the setting ofthe conditional, we must remember
what kind of variable we are using. On the other hand, if we
used a numeric variable, such as AN, we could have entered a
line such as

IFAN=1THEN

Relationals

So far we have only used "=" to determine whether or not our
program should branch. However, there are other states,
referred to as "relationals," that we can also look at. The
following is a complete list of the relationals we can employ:

SYMBOL MEANING

Equal to

< Less than

> Greater than

<> Not equal to

>= Greater than or equal to

<= Less than or equal to

91

:r (11'/1

~ ALL
(/TH~
QTHE: RS!

THE,(' RE ALL

~ (Y1E!

NoBQD'f IS
g (V1E !

Now let's play with some of these, and then we' ll examine
them for their full power. Here are some quickie programs:

10 PRINT "{ESC-SH 1FT- CLEAR }"
20 PRINT "NUMBER 1- - > "; : INPUT A
30 PRINT " NUMBER 2--> " ; : INPUT B
401F A > B THEN GOTO 100
50 IF A < B THEN GOTO 200
601F A = B THEN GOTO 300

100 PRINT " NUMBER 1 IS GREATER THAN
NUMBER 2" : END

200 PRINT " NUMBER 1 IS LESS THAN
NUMBER 2" : END

300 PRINT "NUMBER 1 IS EQUAL TO NUMBER 2"

10 DIM AN$ (1)
20 PRINT "{ESC· SHI FT- CLEARl"

92

30 PRINT "DO YOU WANT TO CONTINUE? (YI N)"; :
INPUT AN$

40 IF AN$ <> "Y" THEN END
50 GOTO 10

10 PRINT "{ESC-SHIFT-CLEAR}"
20 PRINT "HOW OLD ARE YOU? "; : INPUT AGE
301F AGE >= 21 THEN GOTO 100
40 PRINT"{ESC-SHIFT-CLEAR}" : PRINT: PRINT

"SORRY, YOU'VE GOT TO BE 21 OR OLDER TO
COME IN HERE!" : END

100 PRINT"{ESC-SHIFT-CLEAR}" : PRINT: PRINT
"WHAT WOULD YOU LIKE TO DRINK?"

OK, you have the idea of how relationals can be used with
IF ITH EN commands; note that they work with string as well
as numeric variables. However, there is another way to use
relationals. Try the following from the Immediate mode:

A = 10: B = 20 : PRINT A = B

Your computer responded with a 0, right? This is a logical
operation. If a condition is false, your ATARI responds with a
0, but if it is true, it responds with a 1. Now try the following
little program.

10 PRINT "{ESC-SHIFT-CLEAR}"
20 A = 10
30 B = 20
40 C = A > B
50 PRINT C

When you RUN the program, you again get a 0. This is
because the variable C was defined as A being greater than B.
Since A was less than B the variable C was 0 or "false." Now,
let's take it a step further:

10 PRINT "{ESC-SHIFT-CLEAR}"
20 A = 10
30 B = 20
40 C = A > B
50 IF C = 0 THEN PRINT "A IS LESS THAN B" : END
60 IF C = 1 THEN PRINT "A IS GREATER THAN B"

93

Later. we will see further applications of these logical opera
tions of the ATARI. For now. though. it is important to
understand that a true condition is represented by a "I" and a
false condition by a "0."

AND/OR/NOT

Sometimes we need to set up more than a single relational.
Suppose. for example. that you are organi zing your fin ances
into 3 categories of expenses: (1) Under $10; (2) between $10
and $100; and (3) over $100. With our relationals it would be
simple to compare in put under $10 and over $100. But what if
we wanted to do something in between. In this case we might
have some difficulty without added commands. TheAN D. OR
and NOT statements allow us to set ranges with our relationals.

AN 0 If all conditions are met then true
OR If one condition is met then true
NOT If condition is not met then true.

For example:

1 ILl PRINT "{ESC-SHIFT- CLEAR)" : DIM AN$(1)
21Ll PRINT "ENTER AMOUNT -- > $"; : INPUT A
31LliFA < 11LlTHEN 1 ILl ILl
4 ILl IF A > 1 ILl AND A <= 1 ILl ILl THEN 21Ll0
51Ll1FA > 1 ILl ILl THEN 3 ILl ILl
1 ILl ILl PRINT " PETTY CASH ": GOTO 41Ll1Ll
21Ll1Ll PRINT" GENERAL EXPENSES" :GOTO 41Ll1Ll
31Ll1Ll PRINT" BIG BUCKS"
41Ll1Ll PRINT " DO YOU WISH TO CONTINUE" ; :

INPUT AN$
41 ILl IF AN$ < > "Y" AND AN$ < > "N" THEN

PRINT"ANSWER 'Y' OR 'N' PLEASE ": GOTO 41Ll1Ll
42 ILl IF AN$ = "Y" THEN 21Ll
431Ll PRINT"{ESC-SHIFT-CLEAR)" :

PRINT "GOODBYE"

In line 40 we set the conditional branch to be BOTH greater
than 10 and equal to or less than 100. The variable A had to
meet both conditions to branch. Similarly. in line 410. using
the AN 0 st atement again. we made sure that the response
had to be either Y or N.

94

If you are very perceptive, you may have asked yourself about
some fishy format in the program. There are conditional
IF/ TH EN lines that simply say THEN 100 and stuff like that.
What's going on? Shouldn't there be a GOTO statement there?
Again, we have slipped in another feature of ATARI BASIC.
When using IF/ THEN statements, it is possible to drop the
GOTO on a branch and simply put in the line number. How
ever, note that we have used GOTO statements elsewhere in
the program where no conditional is used within the same line
or within a single set of colons. Until you become more familiar
with programming you might want to keep your GOTO
statements after I F/ TH EN statements, but they are not
required.

Now let's use the OR and NOT statements in a program:

10 PRINT "{ESC-SHIFT-CLEAR)"
20 READ A
30 READ B
40 READ C
50 DATA 10,20,30
601F A + B = C DR A < B DR A - B = C THEN 100
70 END

100 PRINT"{ESC-SHIFT-CLEAR)" : PRINT "ONE OF
'EM MUST BE TRUE"

Looking at line 60 we can see that A - B does not equal C;
however, A + B does equal C and A is less than B. Using the
OR statement, only one statement has to be true to branch.
Let's try the following program:

10 PRINT "{ESC-SHIFT-CLEAR)"
20 READ A : READ B : READ C
30 DATA 10,20,30
40 Z = A- B = C
50 IF NOT Z THEN 100
60 END

100 PRINT" THAT'S RIGHT! A- B = C IS NOT
RIGHT! - DID I SAY THAT RIGHT?"

As can be seen from the example, it is possible to use the
"negation" of a formula to calculate a branch condition. In
most cases, you will use < > (not equal) or the positive case,
but at other times it will be simpler to employ NOT.

95

~-----

Subroutines

Often in programming there is some operation you will want
your computer to perform at several different places in the
program. Now, you can repeat the instructions again and
again or use GOTOs all over the place to return to your
original spot after branching to the operation. On the other
hand, you can set up "subroutines" and jump to them using
G OS U B and get back to you r starting point using the R ETU R N
command. Up to a point the GOSUB command works pretty
much like the GOTO command since it sends your program
bouncing off to alineoutofsequence. Also, the RETURN com
mand is something like G OTO since it also sends your pro
gram to an out-of-sequence line. However, the GOSUBI
R ETU R N pair is unique in what it does. Let's take a look at a
simple example to see how it works:

96

10 PRINT "{ESC-SHIFT-CLEAR}" : DIM A$(20)
20 A$ = "HELLO" : GOSUB 100
30 A$ = "HOW ARE YOU TODAY?": GOSUB 100
40 A$ = "I'M FINE" : GOSUB 100
50 END
100 PRINT A$
110 RETURN

Our example shows that a GOSU B statement works exactly
like a command on the line itself except that it is executed
elsewhere in the program. The RETURN statement brings it
back to the next statement after the GOSU B statement.
Using the GOSU B/ RETU RN pair it is much easier to weave
in and out of a program than using G OTO since the R ETU R N
automatically takes you back to the jump-off point.

To better illustrate the usefulness ofGOSU B, let's change our
subroutine beginning at line 100 to something more elaborate.
Also, in line 10 add TAB$(38) to the DIM statement. Try the
following: NOTE: We will be getting ahead of ourselves a bit
with this example, but the following is meant to illustrate some
thing very useful in GOSU Bs.

100 L = 19 - LEN (A$)l2
110 FOR 1=1 TO L: TAB$ (I) ="" : NEXT I
120 PRINT TAB$; A$
130 RETURN

N ow when you RUN the program, all of your strings are cen
tered. As you can see, a single routine handled all of the cen
tering, and instead of having to rewrite the routine every time
you wanted a string centered, all you had to do was use a
GOSUB to line 100.

97

NEATNESS COUNTS

We really have not discussed the structure of programs
too much up to this point. In part, this is because we have
not really had the need to do so. However, as our instruc
tion set grows, so too does the possibility for errors, and
by now if you haven't made ari error, you haven't been
keying in these programs! One way to minimize errors,
especially using GOSUBs, is to organize them into
coherent blocks. Basically, a block is a subroutine within
a range of lines. For example, you might block your sub
routines by 100's or 1000's, depending on how long the
subroutines are. Thus, you might have subroutines
beginning at lines 500, 600 and 700. It doesn't matter if
the subroutine is 1line or 10 lines; as long as it is confined
to the block, it is easier to debug, easier for others and
you to understand what is happening in the program,
and in general a good programming practice. Also, we
should DIM our strings at the beginning of a program
instead of hither and yon as we have been doing. Up to
now, it was clearer to DIM a string, in some cases, right
before we used it so you were reminded what the DIM
was for. Wewon't be doing that anymore, for it will cause
problems in many programs we will be writing.

Computed GOTO and GOSUB

Now we're going to get a little fancier. but in the long run, it
will result in clearer and simpler programming. As we have
seen, wecan GOTO or GOSU B on a "conditional" (e.g., IF A =
1 THEN GOTO 200). An eas ier way to make a conditional
jump is to use "computed" branches using the ON statement.
For example:

10 DiM AN$(1 J

20 PRiNT "(ESC-SHiFT-CLEAR)" : PRiNT "ENTER A
NUMBER FROM 1 TO 5"; : iNPUT A

30 iF A < 1 OR A > 5 THEN 20 : REM TRAP

40 ON A GOSUB 100,200,300,400,500 :
REM COMPUTED GOSUB

50 PRINT"DO YOU WISH TO CONTINUE? (YIN),,;:
INPUT AN$

60 IF AN$ <> "Y" THEN END
70 GOTO 20
100 PRINT "ONE" : PRINT: RETURN
200 PRINT "TWO" : PRINT : RETURN
300 PRINT "THREE" : PRINT: RETURN
400 PRINT "FOUR" : PRINT: RETURN
500 PRINT "FIVE" : PRINT: RETURN

The format for a computed G OS U BIG OTO is to enter a vari
able following the 0 N command. The program will then jump
the number of "commas" to the appropriate line number. If a
"1" is entered, it takes the first line number, a "2," the second,
and so forth. It's a lot easier than entering:

701F A = 1 THEN GOSUB 100
80 IF A = 2 THEN GOSUB 200

etc.

However, it is necessary to use relatively small numbers in the
"ON" variable since there is a limited number of subroutines.
If your program is computing larger numbers, convert the
larger numbers into smaller ones by changing the variables.
For example:

10 DIM AN$(1)
20 PRINT "{ESC-SHIFT-CLEAR)" : PRINT "ENTER

ANY NUMBER-- > "; : INPUT A
301FA < 100THEN B= 1
40 IF A > = 100 AND A < 200 THEN B = 2
50 IF A > = 200 THEN B = 3
60 ON B GOSUB 100,200,300: REM COMPUTED

GOSUB ON 'B' VARIABLE
70 PRINT "00 YOU WISH TO CONTINUE?(Y/N)"; :

INPUT AN$
80 IF AN$ <> "Y" THEN END
90 GOTO 20
100 PRINT "LESS THAN 100" : RETURN
200 PRINT "MORE THAN 100 BUT LESS

THAN 200" : RETURN
300 PRINT "MORE THAN 200" : RETURN

99

RUN the program and enter any number you want. Since the
program is branching on the variable B, and not on A (the
INPUT variable), you will not get an error since the greatest
value of B can only be 3.

Now let's get back to relationals and see how they can be used
with computed GOSU B. Remember, in using relationals, the
only numbers we get are 0's and l's for false and true respec
tively. However, we can use these 0's and l's just like regular
numbers. Try the following:

10 PRINT "(ESC-SHIFT-CLEAR)"
20 X = 1 : Y = 2 : Z = 3
30 A = X < Z
40 B = Y > Z
50 C = Z > X
60 PRINT "A + A =" ; A + A
70 PRINT: PRINT "A + B =" ; A + B
80 PRINT: PRINT "A + B + C = " ; A + B + C
90 END

Now before you RUN the program, see if you can determine
what will be printed by lines 60 , 70 and 80. Once you have
made a determination, RUN the program and see what hap
pens. Go ahead and do it. How'd you do? Let's go over it step
by step.

1. Since X is less than Z, A will be "true" with a value
of one (1). Therefore A + A (1 + 1) will equal 2.

2. Since Y is not less than Z , (Y = 2 and Z = 3, remem
ber) B will be "false" with a value of 0. Therefore,
A + B (1 + 0) will total 1.

3. Since Z is greater than X. C will be "true" with a
value of 1. Therefore A + B + C (1 + 0 + 1) will
equal 2.

If you got it right. congratulations! If not. go over it again.
Remember, very simple things are happening. so don't look
for a complicated explanation!

100

Now that we see how we can get numbers by manipulating
relationals, let's use them in computed GOSU Bs. The follow
ing program shows how:

1121 DIM AN$(1)
2121 PRINT "{ ESC-SHIFT-CLEAR}" : PRINT " HOW BIG

WAS THE HOME CROWD?"; : INPUT HC
3121 R = 1 + (HC >= 5121121) + (HC >= 1121121121)
4121 ON R GOSUB 1121121,2121121,3121121
5121 PRINT: PRINT "DO YOU WISH TO CONTINUE?

(YI N) "; : INPUT AN$
6121 IF AN$ < > "Y" THEN END
7121 GOTO 2121

1121121 PRINT "{ ESC-SHIFT-CLEAR}" : PRINT "THE
HOME CROWD WAS NOT VERY BIG - LESS
THAN 5121121" : RETURN

2121121 PRINT "{ ESC-SHIFT-CLEAR}" : PRINT "THE
HOME CROWD WAS A PRETTY GOOD
SIZE - BETWEEN 5121121 AND 1121121121." : RETURN

3121121 PRINT "{ ESC-SHIFT-CLEAR}" : PRINT "THE
HOME CROWD WAS VERY BIG - 1121121121 OR
OVER! " : RETURN

This program is hinged on line 30's formu la or algorithm.
Let's see how it works:

1. There are 3 conditions:
a. He is less than 500
b. He is 500 or more but less than 1000
c. He is 1000 or greater.

2. If the first condition exists both He >= 500 and He
> = 1000 would be false. Thus 1 + 0 + 0 = 1.
Therefol'e R = 1.

3. If He is > = 500 but less than 1000 then He >= 500
wou ld betrue but He > = 1000 would be false. Thus
we wou ld have 1 + 1 + 0 = 2.

4. Finally if He is both > = 500 and > = 1000 then our
formu la wou ld l'esult in 1 + 1 + 1 = :~.

101

REST AREA

At this point let's take a little rest and reflect. In pro
gramming, there is no such thing as THE RIGHT WAY
and THE WRONG WAY. Certain programs are more
efficient, faster or take less code and memory than others,
but the computer makes no moral judgments. If a pro
gram does what you want it to do, no matter how slowly it
does it or how long it took you to write it, it is "right." In
the above example we used an algorithm with relationals
to do something we could have done with more code.
Don't expect to use such formulas right off the bat unless
you have a strong background in math. If you're not used
to using algorithms, don't expect to understand their full
potential right away. The one we used is relatively sim
ple, and you will find far more elaborate ones as you
begin looking at more programs. The main point is to
keep plugging ahead. With practice, you will learn all
kinds of little shortcuts and formulas, but if you get stuck
along the way, just keep on going. Remember, as long as
you can get your program running the way you want it to,
you're doing the "right" thing.

Strings and Relationals

Before we leave our discussion of computed GOTOs and
GOSU Bs with relationals, let's take a look at how relationals
handle strings. Try the following:

DIM A$(1). B$(1) : A$ = "A" : B$ = "B" :
PRINT B$ > A$
(Return)
(Result=) 1

Surprised? In addition to comparing numeric variables, rela
tionals can compare alphabetic string variables with "A"
being the lowest and "z" the highest. (Actually, any string
variables can be compared, but we will just look at the alpha
betic ones here.) So, if we askifB$ is greater than A$, we get a
"I" (true) since B$ was a Band A$ was an A. Now you might

102

be wondering what on earth you could possibly want to do
with this knowledge. Well, in sorting strings (like putting
names in alphabetical order) such an operation is crucial.
Let's make a simple string sorter for sorting two strings.

10 DIM A$(20), B$(20): PRINT"{ESC-SHIFT-CLEAR)"
20 PRINT "WORD #1 --> " ; : INPUT A$
30 PRINT "WORD #2 --> " ; : INPUT B$
40 PRINT: PRINT: PRINT
50 IF A$ < B$ THEN PRINT A$: PRINT B$
60 IF A$ > B$ THEN PRINT B$: PRINT A$

Just what you needed! A program that will put two words in
alphabetical order!

Arrays

The best way to envision arrays is as a kind of variable. As we
have seen, we can name variables A, X 1 and so forth. An array
uses a single name with a number to differentiate different
variables. Consider the following two lists, one using regular
variables and the other using an array:

Variable

A=l
B=2
C=3
D=4

Array

A(l) = 1
A(2) = 2
A(3) = 3
A(4) = 4

Again, you may well ask, "So what? Why not just use regular
numeric variables instead of arrays?" Well, for one thing, it
can be a lot easier to keep track of what you're doing in a pro
gram using arrays, and for another, it can save a lot of time.
Consider the following program for INPUTing a list of 10
employees' numbers from a list of names using an array.

10 PRINT "{ESC-SHIFT-CLEAR)" : DIM PAY (10)
20 FOR 1= 1 TO 10
30 PRINT "EMPLOYEE #"; I ; : INPUT P
40 PAY(I) = P
50 NEXT I

103

100 PRINT "{ESC-SH 1FT-CLEAR}" : FOR 1=1 TO 10
110 PRINT "EMPLOYEE #"; I; " GETS $"; PAY[I]
120 NEXT I

N ow write a program that does the same thing using non
array variables. It would take a lot more code to do so, but go
ahead and try it. Use the variables PAY1 through PA Y10 for
the names just to see what it would take.

If you re-wrote the program, you saw how much time using
arrays saved, but before going on let's take a closer look at
how the program worked with the FO R/ N EXT loop and array
variable:

1. The F 0 R/ N EXT loop generated the numbers se
quentially so that the array would be the following:

FOR 1=1 TO 10
PAY(1) < --First time through loop
PA Y(2) < --Second time through loop
PAY(3) < --Third time through loop
PAY(4] etc.
PAY(5]
PAY(6]
PAY(7)
PAY(B]
PAY(9)
PAY(10)
NEXTI

2. Each value IN PUT by the user was stored in a
sequentially numbered array variable.

3. Output, using the P R I NT statement, was generated
by the FO R/N EXT loop sequentially supplying
numbers to be entered into array variables.

Now, to get used to the idea that an array variable is a vari
able, enter the following:

A(10) = 432 : PRINT A(10) < RETURN >
XYZ(9) = 2.432: PRINT XYZ(9) < RETURN >
J(5) = 321 : PRINT J(5) < RETURN >

104

OK, maybe it didn't take all that to convince you that an array
is a variable with a number in parentheses after it, but it's
easy to forget and think of arrays as something more exotic
than they are.

The DIMension of an ARRAY
As with strings, it is necessary to DIM ension arrays. It is done
in the same way as with strings. The following is an example of
the format for DIM ensioning an array.

10 PRINT "(ESC-SHIFT-CLEAR)"
20 DIM AB(150l : REM DIMENSION OF

ARRAY VARIABLE 'AB'
30 FOR I = 1 TO 150
40 AB(ll = I
50 NEXT I
60 FOR 1= 1 TO 150
70 PRINT AB(ll,
B0 NEXT I

RUN the program as it is written. It should work fine. Now
delete line 20 by simply entering 20 . (Remember how we
learned to delete single line numbers by entering that num
ber?) Now RU N the program, and you will get ERROR- 9 AT
LI N E 4121. That's because there was no DIM statement in line
20. So, whenever you create arrays be sure to DIM them.

DO IT YOURSELF DIM

It is perfectly all right to DIM an array with a variable.
That is, you can write your program so that you enter the
DIM ension as you go along. For instance, if the first line
is something like,

10 PRINT "HOW BIG IS THE ARRAY?"; : INPUT N

The variable N can be used to DIM your array (e.g., DIM
X (N)). The FOR/ NEXT loops that generate the array
elements can be topped with an N (e.g., FOR 1=1 TO N).
This option gives you more flexibility in writing pro
grams with arrays.

105

Multi-dimensional Arrays

So far, all we have examined are single dimension arrays.
However, it is possible to have arrays with two or more dimen
sions. Let's begin with two-dimensional arrays, and examine
how to use arrays with more than a single dimension.

The best way to think of a two-dimensional array is as a matrix.
For example, if our array ranged from 1 to 3 on two dimen
sions the entire set would include: A(l,l) A(1,2) A(1,3) A(2,l)
A(2,2) A(2,3) A(3,l) A(3,2) and A(3,3). By laying it out on a
matrix, we can think of the first number of the subscript as a
row and the second as a column. This makes it much clearer:

Column #1 Column #2 Column #3

Row#1
Row #2
Row #3

A(1,l)
A(2,1)
A(3,1)

A(1 ,2)
A(2,2)
A(3,2)

A(1,3)
A(2,3)
A(3,3)

Again, it is important to remember that each element in the
array is simply a type of variable. Now let's use a two-dimension
array In a program.

10 DIM V(3,3) : REM 2 DIMENSIONAL ARRAY "V"
20 DIM STOCK$(20), MONTH$(10)
30 PRINT "{ESC-SHIFT-CLEAR}"
40 PRINT "{ATARI-KEY} COMPUTER STOCK

{ATARI-KEY}" : PRINT
50 FOR 1= 1 TO 3
60 READ STOCK$
70 FOR K = 1 TO 3
80 READ MONTH$
90 PRINT "VALUE OF "; STOCK$; " FOR"; MONTH$:

INPUT W
100 V(I,K) = W
110 NEXT K : N EXT I
120 RESTORE: REM RESET THE 'READ' POINTER

BACK TO THE FIRST DATA STATEMENT
130 PRI NT "{ESC-SHIFT-CLEAR}"
200 *** REM OUTPUT THE VALUES ***
210 PRINT "{ATARI-KEY} MONTHLY VALUES OF

COMPUTER STOCK {ATARI-KEY}"

106

220 PRINT
230 FOR 1=1 TO 3
240 READ STOCK$
250 FOR K = 1 TO 3
260 READ MONTH$
270 PRINT STOCK$; " FOR"; MONTH$; "= $"; V(I,K)
280 NEXT K : NEXT I
290 END
1000 *** REM DATA STATEMENTS ***
1010 DATA Jumbo Computers, January, February,

March
1020 DATA Super Computers, January, February,

March
1030 DATA Marvel Computers, January, February,

March

When you RUN this program, you will be asked to enter the
values for the various stocks for the first quarter of the year
(J anuary, February, and March). Then, the program, using
the two-dimensional array, will print out your list for you.

We put a new BASIC statement into this program, RESTO R E.
What this does is start reading the DATA statements from
the beginning. In this way, we can "re-use" the same data
statements we did the first time, instead of having to key in a
whole new set of DATA statements for the output.

To make sure you understand how everything works, let's go
over the program step by step:

STEP 1: We 01 Mensioned our array with 3 and 3.
This gives us a total of 9 values we can enter.
Then we DIM ensioned our strings, STO C K$
and M 0 NTH$ so that they will be long
enough to READ their values from the
DATA statements beginning in line 1010.

STEP 2: We set up a "nested loop" with I and K both
with a top value of 3. The first time through
the I loop, STOC K$ was" Jumbo Computers"
and then the K loop generated MONTH$
values of "January, February , March" on
the three times through the K loop. Thus, the

107

first time through both loops with K and I
equal to "1", our array was V(1 ,1). The
second time through the K loop, the array
element was V(1,2). That is V(I, KJ, equaled 1
for I and 2 for K. In this way we generated
values for array elements V(1 ,1) through
V(3,3).

STEP 3: After all of the values for the array were
entered with IN PUT statements and trans
ferred to the array, V(I,K) = W, the screen
was cleared and the REA D pointer was reset
to the beginning with RESTO R E.

STEP 4: The I and K loops were set up again begin
ning at line 230 and we re-read the DATA
statements into our strings. This time, in
stead of entering data, we output the infor
mation stored in our array, generated by the
I and K loops.

It is also possible to have several more dimensions in an array
variable. As you add more and more dimensions, you have to
be careful not to confuse the different aspects of a single
array. Sometimes, when a multi-dimensional array becomes
difficult to manage (or use), it is better to break it down into
several one- or two-dimensional arrays.

SUMMARY

We covered a good deal in this chapter, and if you understood
everything, excellent! If you did not, don't worry, for with
practice, it will all become very clear. Whatever your under
standing of the material, though, experiment with all the
statements. Be BOLD and daring with your computer's com
mands, and as long as you have a disk or cassette on which you
can practice your skills, the worst that can happen is that you
will erase a few programs!

We learned that your ATARI computer can compute! Using
the IF/THEN commands and relationals we can give the

108

computer the power of" decision making." Using subroutines
it is possible to branch at decision points to anywhere we want
in our program. Computed GOTOs and GOSUBs allow the
execution to move appropriately with a minimal amount of
programmmg.

Finally, we examined array variables. Arrays allow us to
enter values into sequentially arranged variables (or ele
ments). Using FO R/ N EXT loops it is possible to quickly pro
gram multiple variables up to the limits of our DIMensions.
Not only do arrays assist us in keeping variables orderly, they
save a good deal of work as well.

In the next chapter, we will begin working with commands
which help arrange everything for us. As our programs
become more and more sophisticated, we will need to keep bet
ter track of what we're doing. By organizing our programs
into small, manageable chunks, we can create clear, useful
programs.

I@ PRI NT" DO YOU WANT

(

TO CO"fTI lJuE THE
PATH OF 5 111 A~D

PERDI n ON 7 "
lP I ",pur A ~J

31' IF AN1 = N THEN

"oro ~f1, "L.\£ Sf?
;:;-;:

))

109

-
-
-

-
-.

-
-
--

-

CHAPTER 5

Organizing the Parts

Introduction

Unless we organize as we accumulate more and more infor
mation, work, or just about anything else, things get confus
ing. Good organization allows us to do more and to handle
more complex and larger problems. These principles hold
with programming as well. As we learn more commands, we
can do more things, but the more we do, the more likely we are
to get tangled up and lost.

One of the areas which is likely to be the first to suffer from
overflow is that of formatting output. Variables get mixed up,
arrays are misnumbered and the screen is a mess. In order to
handle this kind of problem, we will deal extensively with text
and string formatting. Not only will we be able to put things
where we want them, but we will do it with style!

The second major area of disorganization is I/O (INPUT/
OUTPUT). Some of the problem has to do with formatting, but
even more elementary is the problem of organizing the input
and output so that data is properly analyzed. Data has to be
connected to the proper variables and be subject to the correct
computations. Thus, in addition to examining string format
ting, we will also look at organizing data manipulation.

Formatting Text

In Chapter 1 we said that the A TARI keyboard works in many
ways like a typewriter. One feature of a typewriter is its ability
to set tabs so that the user can automatically place text a given
number of spaces from the left margin. With your ATARI, you
can TAB in much the same way.

We have been using the ESC-SHiFT-CLEAR sequence to
clear our screen. In the same way, we use our TAB key. Enter
the following:

111

PRINT "{ESC-TAB) HERE" < RETURN >
HERE

When you entered ESC-TAB within the quote marks, you got
a little left-facing arrow. Your computer read that to mean,
"Go to the first tab stop and output the next character at that
point." Now let's add another tab stop:

PRINT "{ESC-TAB) {ESC-TAB) HERE" < RETURN >
HERE

'~UITQQ~~ j @~'

t:::::>

~

~'~~b~@~'D

This time you got two arrows, and your message, HER E was
printed at the second tab stop, 14 spaces from the left side.
Depending on where we want our output to be placed on the
screen, we can enter our tabs in different places. In addition,
we can change our tabs for special output. Suppose we have
six columns of numbers and we want our output to line up the

112

six columns evenly. First, we will clear our tabs by pressing
the TAB key, and at each tab stop entering {CTRL-TAB}.
Second, we will set our new tabs at five spaces apart. To do
this, we start on the left hand side and press the SPACE bar
five times, enter{SHIFT-TAB) and press the SPACE barfive
more times until we have set six tabs. To make sure we have
our tabs set the way we want, we simply press the TAB key to
see if the cursor stops where we intended. Now enter the
following program:

10 PRINT {ESC-SHIFT-CLEAR}
20 FOR 1= 1 TO 6
30 PRINT "{ESC-TAB} #"; I ;
40 NEXT I
50 PRINT ""
60 FOR J = 1 TO 6 : PRINT "{ESC-TAB}" ; : NEXT J

When you RUN the program, you will see all of your columns
lined up and underlined. (To get the underline character,
press SHIFT "-" .) You should also note that in line 50, we put
in a PRINT"". This was so that the next TAB would not be the
left hand side of the screen. (The far left tab is a TAB you can
not clear!)

Now let's have some fun with our commands. Here's a little
program which will give you an idea of how to place text
within your program.

10 DIM MS$(30), A$(1)
20 PRINT "{ESC-SHIFT-CLEAR}" : FOR 1=1

TO 4 : PRINT : NEXT I : PRINT "ENTER
MESSAGE--> "; : INPUT MS$

30 PRINT : PRINT "HORIZONTAL PLACEMENT
[1-37) - > "; : INPUT H

40 PRINT : PRINT "VERTICAL PLACEMENT
[1-24) - > "; : INPUT V

50 PRINT "{ESC-SHIFT-CLEAR}"
60 FOR VER = 1 TO V: PRINT: NEXT VER :

FOR HOR = 1 TO H : PRINT"" ; : NEXT HOR :
PRINT MS$

70 PRINT : PRINT "HIT RETURN TO CONTINUE
OR 'Q' TO QUIT" ;

80 INPUT A$
90 IF A$ < > "Q" THEN 20

100 END

113

As you can see, spaces and PRINT statements can be used to
format the output of text horizontally and vertically. The
variables (H and V in our example) serve to give us different
screen locations. Using the above program, what do you think
would happen if you entered "THIS IS A LONG STRING", a
HORIZONTAL placement of 35 and a VERTICAL placement
of 24? Since the maximum horizontal position is 38 and the
maximum vertical placement is 25, the string (MS$) will go
over the boundaries. Go ahead and try it to see what happens.
In fact, it would be a good idea to test the limits of TAB and
vertical placement with this program to get a clear under
standing of their parameters.

Position It!

Now that we have examined how to move the cursor around
with tabs and loops, let's do some easy formatting! (Why
didn't we do it the easy way, first?) The POSITION command
allows you to enter text or graphic characters on an X,Y axis
with X being the horizontal position and Y the vertical. The
format for the POSITION statements is:

POSITION X,Y : PRINT "HERE"

Try the following little program to see how easy it is to use
compared to our previous efforts:

10 PRINT "{ESC-SHIFT-CLEAR}" : DIM AN$(1)
20 PRINT "HORIZONTAL (0-39)" ; : INPUT H
30 PRINT "VERTICAL (0-23)" ; : INPUT V
40 POSITION H,V: PRINT "X"; : FOR PAUSE = 1

TO 100: NEXT PAUSE
50 POSITION 10,22 : PRINT "HIT RETURN TO

CONTINUE"; : INPUT AN$
60 PRINT "{ESC-SHIFT-CLEAR}" : GOTO 20

See how easy that is! Now let's see if you can write a program
which will stick your name right in the middle ofthe string. I'm
not going to tell you how to do it, but if you can figure it out,
then you can position just about anything you want. HINT:
Use a string variable for your name and the LEN function.

114

Paddle and Joystick Formatting

NOTE: If you do not have paddles and/or .joysticks, skip
this section.

Paddle formatting of text or graphics can add a lot to your
computer's usefulness. To get started, plug your paddles into
"slot I" on the front or side of your computer. (ATARI
400/800's have four paddle/joystick jacks on the lower front
of the computer, and ATARI 1200XL's have only two,located
on the left side-labelled "CONTROLLERS" on all machines.)
One of the paddles will be PADDLE(0) and the other will be
PADDLE(l) . To find out which is which, enter the following
little program:

10 PRINT "{ESC-SHIFT-CLEAR}"
20 P0 = PADDLE(0)
30 POSITION 10,10: PRINT P0; "";
40 GOTO 20

When you run this program, you will see some numbers in the
middle of the screen. Turn the knobs on your paddles. One of
the paddles will cause the numbers to change. That paddle is
PADDLE(0). Label that paddle P0 and the other one P1. The
values generated from the paddles can be used in programs
just like variables. In fact, in this little test program, we used
the variable P0 to be the value of PADDLE(0). You can for
mat output with your paddles if you want. For example, you
might make PADDLE(0) = Hand PADDLE(l) = V, and then
using POSITION H. V place text on the screen with your pad
dies. However, the values of the paddles range from 1 to 228,
and you would have to be careful not to have your text posi
tioned in a location beyond 39 horizontally or 23 vertically!
Justforfun. try the following little PADDLE ADD program to
see that paddle values are treated the same as any others.

10 PRINT "{ESC-SHIFT-CLEAR}"
20 P0 = PADDLE(0) : P1 = PADDLE(1)
30 POSITION 10,10: PRINT P0;" " ;
40 POSITION 10,11 : PRINT P1 ;" ";
50 POSITION 9 ,12 : PRINT" + _ _ " ;
60 POSITION 10.13 : PRINT P0 + P1
70 GOTO 20

llG

Interesting, huh? Now I think you could format that a little
better, don't you? Let's see if you can line up the numbers a lit
tle better than that. Again, you're on your own! HINT: Use I FI
THEN and "<".

FIRE! Another programmable feature of your paddles is
the "fire button." When the button is pressed it's value is "0",
and when it is not being pressed, it is " I ". PADDLE(0) fire
button is PTRIG(0) and PADDLE(I),s is PTR IG(1). (I bet the
PTRIG stands for PADDLE TRIGGER.) All we have to do to
use the fire buttons is to make something happen when their
value changes. The following program shows how this is
done.

10 PRINT "(ESC-SHIFT- CLEAR)"
20 FIRE0 = PTRIG(0) : FIRE1 = PTRIG(1)
30 IF FIRE0 = 0 THEN GOSUB 100
401F FIRE1 = 0 THEN GOSUB 200
50 GOTO 20
100 REM *** A LITTLE ANIMATION ***
110 PRI NT "{ ESC-SHIFT- CLEAR}"
120 FOR 1= 0 TO 37
130 POSITION 1,10: PRINT "-> "
140 FOR P = 1 TO 3 : NEXT P
150 POSITION 1,10 : PRINT" "
160 NEXT I
170 POSITION 3B,10 : PRINT "- > "
180 POSITION 34,11 : PRINT "THUNKI"
190 RETURN
200 REM *** A LITTLE MORE ANIMATION ***
210 PRI NT "{ ESC-S HIFT-CLEAR}"
220 FOR 1= 37 TO 0 STEP-1
230 POSITION 1,10 : PRINT "<-"
240 FOR P = 1 TO 3 : NEXT P
250 POSITION 1,10: PRINT ""
260 NE XT I
270 POSITION 0,10 : PRINT "<-"
280 POSITION 0,11 : PRINT "BONK!"
290 RETURN

lHi

Later, when we get to graphics, we will play some more with
animation, the paddles and graphics, but now let's look at the
joysticks. They work on the same principle as paddles except
they have only nine values based on the position of the paddle.
The following diagram shows the joystick's value relative to
its stick's position:

JOYSTICK POSITION VALUES

TOP
14

10~ l' /,6

11~15~7

9/1 ~5
13

Those values give us a lot less to work with. The following pro
gram will help you see the values as you move the stick:

10 PRINT "{ESC-SHIFT-CLEAR}"
20 JOY0 = STICK(0)
30 POSITION 20, 10: PRINT JOY0; "";
40 GOTO 20

The fire button is STRIG(0) or STRIG(1) with a default value
of "I" and a pressed value of "0". Let's use it to shoot some
horizontal lines across the screen and at the same time redefine
the stick values:

10 PRINT "(ESC-SHIFT-CLEAR}"
20 VPOS = STICK(0) : FIRE0 = STRIG(0)
30 IF VPOS = 14 THEN V = 5
401F VPOS = 15 THEN V = 10
50 IF VPOS = 13 THEN V = 15
60 IF FIRE0= 0 THEN PRINT "(ESC-SHIFT-CLEAR)'" :

FOR 1= 0 TO 39:POSITION I,V: PRINT "-" : NEXT I
70 GOTO 20

117

By moving the stick up and down and pressing the fire button,
it is possible to put a line of dashes across the screen in dif
ferent vertical positions. Soon you'll be able to use the sticks to
blast aliens back to Mars! For practice, see if you can shoot
vertical lines from different horizontal positions. When you've
done that, see if you can shoot both vertical and horizontal
lines!

Unraveling Strings

Our discussion of strings up to this point has involved whole
strings. That is, whatever we define a string to be, no matter
how long or short, can be considered a whole string. For exam
ple, if we define R$ as WALK, then wecan consider WALK to
be the whole of R$. Likewise, if we defined R$ as A VERY
LONG AND WORDY MESSAGE then, A VERY LONG
AN D WO R DY M ESSAG E would be the whole string of R$.
There will be occasions, however, when we want to use only
part of a string or tie several strings together. (When we get
into data base programs, we will find this to be very impor
tant.) Also, there are applications where we will need to know
the length of strings, find the numeric values of strings, and
even change strings into numeric variables and back again.

TRUST ME!

I hate to admit it, but when I first learned about all of the
commands we are about to discuss, I thought, "Boy,
what a waste of time!" It was enough to get the simple
material straight, but why in the world would anyone
want to chop up strings and put them back together
again? If you want only a certain segment of a string,
why not simply define it in terms of that segment? And if
you want a longer string, then just define it to be longer!
Those were my thoughts on the matter of string format
ting. However. I have now come to the point where I fino
it very oifficult to even conceive of pl'ogramming without
these powerful commane!s. So. trust me! String format
ting commands are terl'ific little e!evices to have. ane! if
you do not see their app li cability l'ight away. you will as
you begin writing more pl'ogTams.

String Formatting

We will divide our discussion of string formatting into
four parts: 1) Calculating the length of a string; 2) Locat
ing parts of strings; 3) Changing strings to numeric
variables and back again; and 4) Tying strings together
(concatenation).

Calculating the LENgth of Strings

Sometimes it is necessary to calculate the length of a
string for formatting output. Happily, your ATARI is
very good at telling you the length of a particular string.
By the command, PRINT LEN (A$) you will be given the
number of characters, including spaces, your string has.
Try the following little program to see how this works:

10 DIM A$(38) : DIM AN$(1) : PRINT
"{ESC-SH I FT -CLEAR}"

20 PRINT "NAME OF STRING- > "; : INPUT A$
30 PRINT A$; " HAS "; LEN(A$); " CHARACTERS"
40 PRINT: PRINT" MORE (YI N) ";
50 INPUT AN$
60 IF AN$ = "Y" THEN 20

N ow to see a more practical application, we will look at a mod
ified version of the centering routine we used in the last
chapter.

10 DIM S$ (38), A$(1)
20 PRINT "{ESC-SHIFT-CLEAR)" : PRINT "ENTER

A STRING LESS THAN 39 CHARS" : INPUT S$
30 PRINT "{ESC-SHIFT-CLEAR}"
40 L = 19 - LEN[S$)/2: FOR C = 1 TO L-1 : PRINT

"(SPACE),,; : NEXT C : PRINT S$
50 FOR 1=1 TO 20: PRINT : NEXT I: PRINT "HIT

RETURN TO CONTINUE OR 'Q' TO QUIT ";
60 INPUT A$
70 IF A$ < > "Q" THEN 20
80 END

119

Now that we can see how to compute the LENgth of a string
and then use that LENgth to compute our tabbing, let's see
how we can control the input with the LEN command. Sup
pose you want to write a program which will print out mailing
labels, but your labels will hold only 30 characters. You want
to make sure all of your entries are 30 or fewer characters
long, including spaces. To do this we will write a program
which checks the LENgth of a string before it is accepted.

10 DIM NA$(40), AN$(1)
20 PRINT "{ESC-SH 1FT-CLEAR)"
30 PRINT "ENTER A NAME LESS THAN 30": PRINT

"CHARACTERS INCLUDING SPACES" :
PRINT "-> "; : INPUT NA$

40 IF LEN (NA$) > 29 THEN GOTO 100 : REM TRAP
50 PRINT: PRINT NA$
60 PRINT: PRINT "ANOTHER NAME?(Y/ N) ";
701NPUT AN$
80 IF AN$ < > "Y" THEN END
90 GOTO 20

100 PRINT "{ESC-SHiFT-CLEAR)" : PRiNT "PLEASE
USE 30 CHARACTERS OR LESS"

110 PRiNT : GOTO 20

120

N ow break the rule!!! Go ahead and enter a string of more
than 30 characters to see what happens. (If your computer
gets snotty with you, you can always re-program it. It helps to
remind it of that fact periodically.) If the program was entered
properly, it is impossible to enter a string of more than 30
characters. NOTE: We intentionally 0 I Med N A$ to be greater
than 311 so that the LE N of N A$ could be greater. If you 0 I M a
string to a given length, it will accept any size string but ter
minate it after the 0 I M size has been exceeded.

From the above examples, you can begin to see how the LEN
command can be useful in several ways. There are many other
ways that such commands can be employed to reduce pro
gramming time, clarify output, and compute information. The
key to understanding its usefulness is to experiment with it
and see how other programmers use the same command.

Substrings

Suppose you want to use a single string variable to describe
three different conditions, such as "POOR FAIR GOOD", but
you want to use only part of that string to describe an outcome.
Using substrings, it is possible to P R I NT only that part of the
string you want. For example, the following program lets you
use a single string to describe three different conditions:

10 DIM X$(14), F$(1), AN$(1)
20 PRINT "{ESC-SHIFT-CLEAR}" : X$ ="POOR

FAIR GOOD"
30 PRINT "HOW DO YOU FEEL TODAY? «P> OOR,

< F> AIR OR < G> OOD),,;
40 INPUT F$: IF F$ = "" THEN 40
50 IF F$ = "P" THEN PRINT X$(1,4)
50 IF F$ = "F" THEN PRINT X$(5,4)
70 IF F$ = "G" THEN PRINT X$(10)
80 PRINT: PRINT: PRINT "ANOTHER GO?(Y/ N) ";
90 INPUT AN$: IF AN$ = "" THEN 90

1001F AN$ = "Y" THEN 20

Let's face it, it would have been easier to simply branch to a
PRI NT'GDDO' 'FAI R' or'PDD R' and no less efficient. But, no
matter, it was for purposes of illustration and not optimizing
program organization.

121

Lines 50 through 70 have a similar format except that line 70
has only a single number after X$. Let's see what's going on.
When you enter a string variable and two numbers in paren
theses following it, the string is printed from the position of
the first number to the position of the last number. The posi
tion "place" is determined by counting the string's characters
from left to right beginning with "1." If there is only a single
number in parentheses following the string variable, the
characters from that position to the end of the string are
printed. Since GOOD made up the last four characters of X$,
beginning in position 10, all we had to do to get it to PRINT
"GOOD" was to enter X$(10) instead ofX$(10,14). To give you
some immediate experience with these commands, try the
following:

DIM W$(11) :W$ = "WHAT A MESS": PRINT W$(6)
< RETURN >
(Result = A MESS)

DIM G$(9) : G$ = "BURLESQUE" : PRINT G$(4,6)
< RETURN >
(Result = LES)

DIM X$(16) : X$ = "A PLACE IN SPACE" :
PRINT X$(5,7) : PRINT X$(14) < RETURN >
(Result = See if you can guess!)

Another trick with partial strings is to assign parts of one
string to another string. For example,

10 DIM BIG$(30), LlTTLE$(4), AWY$(5), LG$(4)
20 PRINT "{ESC-SHIFT-CLEAR)" :BIG$ =

"LONG LONG AGO AND FAR FAR AWAY"
30 LlTTLE$ = BIG$(11 ,13)
40 AWY$ = BIG$(27,30)
50 LG$ = BIG$(1,4)
60 PRINT : PRINT: PRINT AWY$;" ";LG$;" ";LlTTLE$
70 REM BEFORE YOU RUN IT, SEE IF YOU CAN

GUESS THE MESSAGE.

For an interesting effect, try the following little program:

122

10 DIM NA$(30), AN$(1)
20 PRINT "{ESC-SHIFT-CLEAR}"
30 PRINT "YOUR NAME"; : INPUT NA$
40 FOR I = LEN (NA$) TO 1 STEP -1 :

PRINT NA$(I ,I) ; : NEXT I
100 REM *** SLOWER WITH DELAY LOOP ***
110 PRINT : PRINT: PRINT "NOW IN SLOW

MOTION" : PRINT
120 PRINT "{ATARI KEY} PRESS RETURN TO

CONTINUE {ATARI KEY}"; : INPUT AN$
130 FOR I = LEN (NA$) TO 1 STEP -1 : PRINT

NA$(I,I); : FOR J = 1 TO 100 : NEXT J : NEXT I
140 PRINT: PRINT "AGAIN (YI N)"; : INPUT AN$
150 IF AN$ = "Y" THEN 20

Now you have probably been wondering ever since you got
your computer how to make it print your name backwards.
Well, now you know! (If your name is BOB you probably didn't
notice it was printed backwards - try ROBERT.) Actually, the
above exercise did a couple of things besides goofing off. First,
it is a demonstration of how loops and substrings can be used
together for formatting output. Second, we showed how out
put could be slowed down for either an interesting effect or
simply to give the user time to see what's happening.

123

Changing Strings to Numbers and
Back Again

Now we're going to learn about changing strings to numbers
and numbers to strings. If you're like me, when I first found
out about these commands, I thought they were pretty use
less. After all, if you want a string use a string variable, and if
you want a number use a numeric variable. Simple enough,
but again, once you understand their value, you'll wonder how
you ever did without them. To get started, let's RUN the
following program:

10 DIM NA$(11 J,X(5)
20 PRINT "{ESC-SHIFT-CLEAR}"
30 FOR 1=1 TO 5 : READ NA$
40 X(I) = VAL (NA$(LEN(NA$J,LEN(NA$)))
50 NEXT I: RESTORE
60 FOR 1= 1 TO 5 : READ NA$
70 PRINT "OVERTIME PAY FOR ";

NA$(1.LEN(NA$)-1); "= $"; X(I) * (1 .5 * 7) : NEXT I
80 DATA SMITH 7, JONES 8, MCKNAP 6,

JOHNSON 2, KELLY 3

U sing DATA that were originally in a string format, we were
able to change a portion of that string array to a numeric
array. By making such a conversion, we were able to use our
mathematical operations on line 70 to figure out the overtime
pay for someone receiving time and a half at seven dollars ($7)
an hour. We now have a list of who got what and the total over
time paid!

It always helps to do a few immediate exercises with a new
command to get the right feel, so try these:

DIM A$(3) :A$ = "123" : PRINT VAL(A$) + 11
<RETURN >
DIM Q$(4) :Q$ = "99.5" : PRINT VAL(Q$) * 7
<RETURN>
DIM SALE$(5) : SALE$ = "44.95" : PRINT "ON
SALE AT HALF PRICE - > $"; VAL(SALE$) / 2
<RETURN>
DIM 00$(7), DN$(6) : 00$ = "$103.88" :
DN$ = "$18.34" : PRINT
VAL (00$(2)) + VAL (DN$(2)) < RETURN>

124

NOTE: Since you may want to SAVE the above examples on
tape or disk, all you have to do is to add a line number and
SA VE them as little programs.

From Numbers to Strings

All right, now let's go the other way. We saw why we might
want to change strings to numbers, but we may also want to
change numbers to strings. To make the conversion we use the
STR$ command. For example, look at the following program:

10 DiM A$(20) : PRiNT "{ESC-SHiFT-CLEAR}"
20 PRiNT " ENTER A NUMBER WITH 5 DIGiTS ":

PRiNT " AFTER THE DECIMAL POINT" ; : INPUT A
30 A$ = STR$(A)
40 PRINT : PRINT A$(1,4)

As you can see, you have truncated the number to four charac
ters including the decimal point. Now, let's do some in the
Immediate mode to get the idea firmly into your mind, and a
little later we will do something very practical with these
commands.

125

DIM A$(4) : A = 5.00 : A$ = STR$[A) : PRINT A$
< RETURN>
(Result = 5 - What happened?!)

DIM V$(4) : V = 2345 : V$ = STR$[V) : PRINT V$
< RETURN >
DIM BUCKS$(5) :BUCKS = 22.36 : BUCKS$ =
STR$[BUCKS) : PRINT BUCKS$ [1.2) < RETURN >

Remember these commands, and when you are dealing with
decimal points you will often find them handy. However, even
the string cannot preserve the 0's directly from a numeric
variable. Later we will see how to fix that.

Tying Strings Together: Concatenation

We have seen how we can take a portion ofastringand PRINT
it to the screen. Now, we will tie strings together. This is called
CONCATENATION and is accomplished by using the "+"
sign with strings. For example:

10 DIM NF$(20). NL$(20): PRINT "(ESC-SHIFT-
CLEAR)"

20 PRINT "YOUR FIRST NAME - > "; : INPUT NF$
30 PRINT "YOUR LAST NAME - > "; : INPUT NL$
40 NF$ [LEN [NF$)+1) = NL$
50 PRINT NF$

A little messy, huh? However, you can see how to tie N F$ and
N L$ together into a single larger string. Now, change line 40
to read

40 PRINT NF$; "" ; NL$

and delete line 50. This time when you RUN the program,
your name will turn out fine. This change did not concatenate
string variables, but instead PRINTed the strings along with
a" space" between the first and last names. Thus, even though
we can concatenate strings, it is not always a good idea to do
so. However, there are definite purposes for concatenation.
Let's take a look at a very important one.

126

,.,. ;- '

<:.j /

One of the problems with the way BASIC formats numbers is
that it drops 0's off the end. For example, try the following:

PRINT 19.80
PRINT 5.00

In dealing with dollars and cents, this can be a real pain in the
neck, and it doesn't look very good. So, using concatenation
and our VAL and STR$ commands, let's see if we can fix
that.

10 DIM T$(10). Z1$(1), Z2$(3), R$(1), NT$(15)
20 PRINT "lESC-SHIFT-CLEAR}" : PRINT "8E SURE

TO INCLUDE ALL CENTSI" : PRINT: PRINT
30 PRINT "HOW MUCH SPENT"; : INPUT S
40 T = T + S
50 T$ = STR$(T)
60 NT$ = "000" : NT$(LEN(NT$)+1)= T$:

REM CONCATENATE 3 "0'5" ONTO T$
70 Z1 $ ="0" : Z2$ = ".00"
80 IF NT$ (LEN (NT$) - 1, LEN (NT$)-1) = "." THEN

NT$(LEN (NT$) + 1) = Z1 $: GOTO 100
90 IF NT$ (LEN (NT$) -2, LEN (NT$) -2) < > "."

THEN NT$ (LEN (NT$) +1) = Z2$
100 PRINT: PRINT: PRINT "YOU NOW HAVE

127

SPENT $" ; NT$
110 PRINT "PRESS RETURN TO CONTINUE OR

'Q' TO QUIT";
120 INPUT R$
130 IF R$ = "Q" THEN END
140 GOTO 20

This may look pretty complicated, but let's break it down to
see what has been done.

1. We entered numeric variables in line 30 and com
puted their sum in line 40.

2. The sum represented by T was then converted to a
string variable T$ in line 50.

3. In line 60 we padded T$ with three 0's to give it a
minimum length we will need in lines 80 and 90.

4. Line 80 computes the second from the last charac
ter in NT$. If that character is a decimal point (.),
then we know it must be a figure that dropped off
the last cent column. (e.g., 5.4, 19.5, etc.) So we tack
on a "0" by concatenating NT$ with Z1 $ and jump
to line 100.

5. Line 90 computes the third from the last character,
and if it is not a decimal point (.) then we know it
must have dropped all the cents completely - an
even dollar number. So we tack on the decimal point
and two 0's (.00) , Z2$.

6. Finally, in line 100 we print out our results but first
drop the padding we added in line 60 using NT$(4),
the substring beginning with the fourth character
in the string.

All of this may seem a bit complicated just to get our 0's back,
but actually, the entire process was done in 6 lines (50 through
100). SAVE or CSAVE the program, and when you need those
0's in your output, just include those lines! (Be careful, though,
this will not work with subtraction when you get below $1!)

128

Setting Up Data Entry
Now that we have a firm grip on numerous commands, it is
time we begin thinking seriously about organizing our pro
grams. The first thing we must do is arrange our data entry
in a manner that we ourselves and others can understand.
This involves blocking elements of our program and deciding
what variables and arrays we will be using. Also. when we
enter data, we want to make sure that we are entering the cor
rect type of data; so we have to set "traps" so that any input
that is over a certain length or amount can be checked against
our parameters. Let's look at a way to make our strings a cer
tain length (no shorter or longer a length than we want).
We've already discussed how to keep strings to a maximum
length. so let's see how to keep them to a minimum as well.
This latter process is referred to as "padding."

10 DIM CM$(20) . R$(1), PAD$(10) : PAD$ =
"XXXXXXXXXX" : N = 10

20 PRINT "lESC-SHIFT-CLEAR}" : FOR 1= 1 TO 8 :
PRINT : NEXT I : PRINT "YOUR COMPANY-- > "; :
INPUT CM$

30 IF LEN(CM$) < = 10 THEN 70
40 IF LEN(CM$) > 10 THEN PRINT "10 OR FEWER

CHARACTERS PLEASE" : REM TRAP FOR TOO
LONG A NAME

50 PRINT : PRINT "{ATARI KEY} HIT RETURN TO
CONTINUE {ATARI KEY}"; : INPUT R$

60 GOTO 20
70 IF LEN(CM$) < 10 THEN CM$ (LEN(CM$+1))=

PAO$(N) : N = N - 1 : GOTO 70
80 PRINT "{ ESC-SHIFT-CLEAR}" : FOR 1=1 TO 8 :

PRINT : NEXT I: PRINT "THE COMPUTER HAS
DECIDED THAT"

90 PRINT CM$; "SHOULD GIVE YOU A RAISE!"

Now if YOUR COMPANY < CM$> is less than 10 charac
ters, you will see some X's stuck on the end. These were put
there to show you how padding works. Now change the X's to
spaces in the definition of PAO$ in line 10 and see what hap
pens. (i.e. , PAO$ = " ".) Go ahead. The second time you
ran the program, if your company's name was less than 10
characters, there were a lot of blank spaces after the company
name. To remove the spaces, we would enter:

129

75 IF CM$(LEN(CM$), LEN(CM$)) ="" THEN
CM$ = CM$(1, LEN(CM$)-1) : GOTO 75

It may not make much sense to add spaces and then remove
them, but with certain applications, you will want to tie several
strings together and then divide them up based on a certain
length for various parts of the string. After dividing the big
string into smaller ones, you will want to get rid of the padding.
This is especially true when you begin writing data base pro
grams. For the time being, though, just note how padding
works.

Setting Up Data Manipulation

Once you have organized your input, the next major step is
performing computations with your data. There are essen
tially two kinds of data manipulation you will deal with:

1. NUMERIC - Manipulating numeric data with
mathematical operations.

2. STRING - Manipulating strings with concatena
tion and substring commands.

Most of the string manipulations are for setting up input or
output, so we will concentrate on manipulating numeric data.
We will use a simple example that keeps track of three
manipulations: (1) additions; (2) subtractions; and (3) running
balance. This will be our checkbook program we started
earlier.

10 DIM CB$(22), AN$(1) :
PRI NT "{ESC-SH IFT-CLEAR~"

20 REM ### BEGIN INPUT & HEADER BLOCK ###

30 CB$ = "{ATARI-KEY~ =COMPUTER
CHECKBOOK= {ATARI-KEY~": L= 19- LEN (CB$) / 2:
FOR C = 1 TO L-1 : PRINT" ";: NEXT C : PRINT
CB$: REM =HEADER=

40 FOR 1=1 TO 4: PRINT: NEXT I: PRINT "ENTER
YOUR CURRENT BALANCE-> $"; : INPUT BA

50 PRINT: PRINT "1. ENTER DEPOSITS": PRINT:
PRINT "2. DEDUCT CHECKS"

130

55 PRINT : PRINT "3 . EXIT"
613 FOR 1= 1 TO 7 : PRINT: NEXT : PRINT

"{ATARI KEY} CHOOSE BY NUMBER {ATARI-KEY}"; :
INPUT A

713 ON A GOTO 11313,21313,41313
813 GOTO 613: REM TRAP
913 REM ENO OF INPUT BLOCK
11313 REM ## # DATA MANIPULATION

ROUTINE NO.1 ## #

1113 PRINT"{ESC- SHIFT-CLEAR}" : FOR 1= 1
TO 6 : PRINT : NEXT I : PRINT "ENTER AMOUNT
OF DEPOSIT $ "; : INPUT DP

1213 BA = BA + DP: REM RUNNING BALANCE
1313 PRINT : PRINT : PRINT "YOU NOW HAVE $ ";

BA ;" IN YOUR ACCOUNT"
1413 PRINT : PRINT "{ ATARI-KEY}MORE DEPOSITS?

(YI N) {ATARI-KE Y}";: INPUT AN$
1513IF AN$ = "Y" THEN 1113
1613 PRINT : PRINT "WOULD YOU LIKE TO

DEDUCT CHECKS? (YI N) "; : INPUT AN$
1713 IF AN$ = "N" THEN 41313
1813 IF AN$ = "Y" THEN 21313
1913 PRINT" {ESC-SHIFT-CLEAR }" : GOTO 1613:

REM TRAP & END OF DATA MANIPULATION
ROUTINE NO.1

21313 REM # ## DATA MANIPULATION
ROUTINE NO.2 ###

2113 PRINT"{ESC-SHIFT-CLEAR)" : FOR 1=1
TO 6 : PRINT : NEXT I : PRINT " ENTER
AMOUNT OF CHECK $ "; : INPUT CK

2213 BA = BA - CK : REM RUNNING BALANCE
2313 PRINT: PRINT "YOU NOW HAVE $ "; BA ;" IN

YOUR ACCOUNT"
2413 PRINT : PRINT "MORE CHECKS (YI N) - 'Q'

TO QUIT ";: INPUT AN$
2513 IF AN$ = "Y" THEN 2113
2613 IF AN$ = "Q" THEN 41313
2713 PRINT : PRINT "AN Y OEPOSITS (YI N) " ;:

INPUT AN $
2813 IF AN $ = "Y" THEN 11313
2913 GOTO 2 413: REM TRAP & END OF DATA

MANIPULATION BLOCK NO. 2
41313 REM ### TERMINATION BLOC K ###

410 PRINT"{ESC-SHIFT-CLEAR}": FOR 1=1
TO 380: PRINT "$" ;: NEXT I

420 PRINT "YOU NOW HAVE A BALANCE OF $"; BA

This program is designed to provide a simple illustration of
how to block data manipulation. However. there are some
problems with it in the output. We are not getting the 0's on
the end of our balance! This is an output problem we will dis
cuss in the following section, but before we continue, make
sure you understand how we blocked the data manipulation.
We used only three variables:

BA = BALANCE
CK= CHECK
DP = DEPOSIT

When we subtracted a check, we simply subtracted CK from
BA, and when we entered a deposit, we added DP to BA. In
this way we were able to keep a running balance and at the
very end BA was the total of all deposits and checks. By keep
ing it simple and in blocks we were able to jump around and
still keep everything straight.

Organizing Output

Let's go back to our program and repair it so that our balance
will have the 0's where they belong. This is essentially a prob
lem of output, because all of the computations have been done,
and they correctly tell us our balance, but it doesn't look right
with the missingWs. However, we don't want to have to enter
the lines for converting our balance into a string variable
every time the running balance is printed. Therefore. we will
put the subroutine for our conversion in a block. Looking at
our COMPUTER CHECKBOOK program, it just so happens
that there is a block available in the 300' s - ou r luck is with us!
We'll use that block to format our output.

300 REM ### FORMAT OUTPUT ###

310 BA$ = STR$(BAJ
320 NBA$ = "000" : NBA$(LEN(NBA$J+1J = BA$:

REM CONCATENATE THREE "0's" ONTO BA$
330 Z1 $ ="0" : Z2$ = ".00"

122

340 IF NBA$ (LEN (NBA$) - 1, LEN (NBA$)-1) =
THEN NBA$(LEN (NBA$) + 1) = Z1 $
: GOTO 36121

3501F NBA$ (LEN (NBA$) -2, LEN (NBA$) -2) < >
THEN NBA$ (LEN (NBA$) +1) = Z2$

360 RETURN
370 REM END OF OUTPUT BLOCK

Now, all we have do is to change a few lines in our program
so that when there is an output of our balance, it will jump to
the subroutine between lines 300 and 350 and then R ETU R N
to output BA$. The followin g lines in our COMPUTER
CHECKBOOK program should be changed and/ or added:

5 DIM BA$(20), NBA$(23), Z1 $(1) , Z2$(3)
125 GOSUB 31210
130 PRINT: PRINT : PRINT "YOU NOW HAVE $";

NBA$(4) ; " IN YOUR ACCOUNT'
225 GOSUB 30121
230 PRINT: PRINT "YOU NOW HAVE $"; NBA$(4);

.. IN YOUR ACCOUNT'
415 GOSUB 300
420 PRINT "YOU NOW HAVE A BALANCE OF $" ;
NBA$(4)

N ow if you put everything together properly, you should have
a handy little program for working with your checkbook. Just
to make sure you got everything. here's the complete program
with all the subroutines and changes we made:

5 DIM BA$(20) , NBA$[23), Z1 $(1), Z2$(3)
10 DIM CB$(22) , AN$[1) : PRINT

"{ ESC-SH I FT - CLEAR)"
20 REM ## # BEGIN INPUT & HEADER BLOCK # ##

3121 CB$ = ":ATARI-KEYl = COMPUTER
CHECKBOOK= :ATARI-KEYl":
L = 19 - LEN (CB$] / 2 : FOR C = 1 TO
L-1 : PRINT" ";: NE XT C : PRINT
CB$: REM = HEADER=

4121 FOR 1= 1 TO 4 : PRINT : NEXT I: PRINT
" ENTER YOUR CURRENT BALANCE- > $" ;
: INPUT BA

50 PRINT : PRINT "1. ENTER DEPOSITS": PRINT :

PRINT "2. DEDUCT CHECKS"
55 PRINT: PRINT "3. EXIT"
60 FOR 1=1 TO 7 : PRINT: NEXT: PRINT

"{ATARI KEY} CHOOSE BY NUMBER (ATARI-KEY}";:
INPUT A

70 ON A GOTO 100,200,400
B0 GOTO 60: REM TRAP
90 REM END OF INPUT BLOCK
100 REM ### DATA MANIPULATION ROUTINE

NO. 1 ###
110 PRINT"{ESC-SH 1FT-CLEAR)" : FOR I = 1 TO 6 :

PRINT: NEXT I: PRINT "ENTER AMOUNT OF
DEPOSIT $"; : INPUT DP

120 BA = BA + DP: REM RUNNING BALANCE
125 GOSUB 300
130 PRINT: PRINT: PRINT "YOU NOW HAVE $";

NBA$(4] ;" IN YOUR ACCOUNT"
140 PRINT: PRINT "(ATARI-KEY}MORE DEPOSITS?

(YI N] {ATARI-KEY}"; : INPUT AN$
150IFAN$="Y"THEN 110
160 PRINT: PRINT "WOULD YOU LIKE TO DEDUCT

CHECKS? (YI N] " ;: INPUT AN$
170 IF AN$ = " N" THEN 400
1801F AN$ = "Y" THEN 200
190 PRINT"{ESC-SHIFT-CLEAR}" : GOTO 160:

REM TRAP & END OF DATA MANIPULATION
ROUTINE NO.1

200 REM ### DATA MANIPULATION ROUTINE
NO.2###

210 PRINT"{ESC-SHIFT-CLEAR}": FOR 1=1 TO 6:
PRINT: NEXT I : PRINT "ENTER AMOUNT OF
CHECK $" ; : INPUT CK

220 BA = BA - CK : REM RUNNING BALANCE
225 GOSUB 300
230 PRINT : PRINT "YOU NOW HAVE $";

NBA$(4];" IN YOUR ACCOUNT"
240 PRINT: PRINT "MORE CHECKS (YI N] - 'Q'

TO QUIT ";: INPUT AN$
250 IF AN$ = "Y" THEN 210
260 IF AN$ = "Q" THEN 400
270 PRINT : PRINT "ANY DEPOSITS (Y I N) "::

INPUT AN$
280 IF AN$ = "Y" THEN 100

1 :~ I

290 GOTO 240: REM TRAP & END OF DATA
MANIPULATION BLOCK NO.2

300 REM ### FORMAT OUTPUT ###

310 BA$ = STR$(BA)
320 NBA$ = "000" : NBA$(LEN(NBA$)+1) = BA$:

REM CONCATENATE 3 "0's" ONTO BA$
330 Z1 $ ="0" : Z2$ = ".00"
340 IF NBA$ (LEN (NBA$) - 1, LEN (NBA$)-1) = "."

THEN NBA$(LEN (NBA$) + 1) = Z1 $
: GOTO 360

3501F NBA$ (LEN (NBA$) -2, LEN (NBA$) -2) < > "."
THEN NBA$ (LEN (NBA$) +1) = Z2$

360 RETURN
370 REM END OF OUTPUT BLOCK
400 REM ### TERMINATION BLOCK ###
410 PRINT"{ESC-SHIFT-CLEAR)": FOR 1=1 TO 380:

PRINT "$";: NEXT I
415 GOSUB 300
420 PRINT "YOU NOW HAVE A BALANCE OF $";

NBA$(4)

Scroll Control!

One of the big problems in output occurs when you have long
lists that will scroll right off the screen. For example, the out
put of the following program will kick the output right out the
top of the screen:

10 PRINT "{ESC-SHIFT-CLEAR)"
20 FOR 1=1 TO 100: PRINT I : NEXT I

Instead of numbers, suppose you have a list of names you have
sorted or some other output you wanted to see before they
zipped off the top of the screen. Depending on the desired out
put, screen format and so forth, there are several different
ways to control the scroll. Consider the following:

10 DIM A$ (1) : PRINT "{ESC-SHIFT-CLEAR)"
20 FOR 1= 1 TO 100
30 IF 1= 20 THEN GOSUB 100
40 IF 1= 40 THEN GOSUB 100
50 IF 1= 60 THEN GOSUB 100

135

601F I = B0 THEN GOSUB 100
70 PRINT I: NEXT I
B0 END
100 PRINT: PRINT: PRINT "{ATARI-KEY} HIT

RETURN TO CONTINUE{ATARI-KEY}" ;: INPUT A$
110 PRINT "{ESC-SH IFT-CLEAR}" : RETURN

REMEMBER!! You and not the computer are in CONTROL!
You can have your output any way you want it. To use more of
the screen, you can have output tabbed to another column. For
example,

10 PRINT "{ESC-SHI FT-CLEAR}"
20 FOR 1=1 TO 20
30 PRINT I; "{ESC-TAB} {ESC-TAB}"; 1+20
40 NEXT I

(See if you can add a third column from 41 to 60.) When you
RUN the above program, you may want your numbers in the
first column to be right justified. To do that add the following
four lines:

25 IF I < 10 THEN GOTO 100
50 END
100 PRINT" "; I; "{ ESC-TAB} {ESC-TAB}"; I + 20
110 GOTO 40

Alternatively, you could do the same thing with only one
line:

251F I < 1 OTHEN PRINT" "; I ; "{ESC-TAB}{ESC-TAB}";
1+ 20: NEXT I

The first method is a little clearer since we broke it down into
several parts, but the second is more efficient, quicker and
takes less work.

Well, you get the idea. Format your ouput in a manner that
best uses the screen and suits your needs and get that scroll
under control!

136

SUMMARY

The formatting of programs makes the difference between a
useful and not-so-useful application of your computer. The
more organized and clear your program is, the better the
chances are for simple yet effective programming. Formatting
is more than an exercise in making your input/ output fancy or
interesting. It is a matter of communication between your
ATARI and you! After all, if you can't make heads or tails of
what your computer has computed, the best calculations in
the world are of absolutely no use.

In the same way it is important to have your computer tell you
what you want, it is also important to write your programs so
that you and others can understand what is happening. By
using blocks, it is easier to organize and later understand
exactly what each part of your program does. Obviously, it is
possible to write programs sequentially so that each com
mand and subroutine is in an ascending order of line numbers,
but to do so means that you will have to repeat simple and/or
complex operations that could be better handled as sub
routines. Also, it will be considerably more difficult to locate
bugs and make the appropriate changes. In other words, by
using a structured approach to programming, you make it
simpler, not more difficult.

Finally, you should begin to see why there are commands for
substrings and the importance of the TAB key. These are
handy tools for organizing the various parts in a manner that
gives you complete control overyour computer's output. What
may at first seem like a petty, even silly command in ATARI
BASIC, upon a useful application, can be appreciated as an
excellent tool. Therefore, as we delve deeper into your com
puter, look at the variety of commands as mechanisms of more
efficient and ultimately simpler control and not a complex
"gobbleygook" of "computerese" for geniuses. After all, if
you've come this far, you should realize that what you know
now looked like the work of "computer whizzes" when you
first began.

137

-
-.

-

-

-
-
-
-
-

CHAPTER 6

Some Advanced Topics
(But Not Too Difficult

Once You Get To Know Them)

Introduction

The topics of this chapter are more code like and contain the
kinds of commands that look frightening. At least that's how I
interpreted them when I first saw them. Many of the functions
can be done with commands we already know, but many can
not. Still others, as we will see, can be accomplished better
using these new commands. Like so much else you have seen
in this book, what at first may appear to be impossible is really
quite simple once you get the idea. More importantly, by play
ing with the commands, you can quickly learn their use.

The first thing we will learn about is the ASCII code. ASCII
(pronounced ASS-KEY) stands for the AMERICAN STAN
DARD CODE for INFORMATION INTERCHANGE. Essen
tially, this is asetofnumbers which have been standardized to
mean certain characters. The ASCII code on your A TARI is
based on a slightly different ASCII, called ATASCII so that
the several graphic characters and special keys on the ATARI
can be acces~ed. In ATARI BASIC the CHR$ (character
string) command ties into A TASCII and can be used to direc
tly output ATASCII. As we will see, the CHR$ command is
very useful for outputting special characters.

The next commands have to do with directly accessing loca
tions in your computer's memory. The first, POKE, puts
values into memory and the second, PEE K, looks into memory
addresses and returns the values there. We will examine
several different uses of these two commands. These com
mands are essential for producing certain types of graphics
and sound.

139

The ATASCII Code
and CHR$ Functions

In a couple of places we have used an ESC sequence to pro
ducevarious results, such as ESC-SH I FT - C LEAR to clear the
screen, or ESC-TAB to make the output jump to a given tab
stop. In our program, we get a little bent arrow between quote
marks to indicate the screen will be cleared or various other
symbols depending on the statement we are using. Using the
CH R$ function, we can directly access any combination of
keyboard characters or functions. For example, if we want a
single inverse letter, in lower case, instead of having to press
the ATARI KEY before and after the desired character and
then theCAP/LOWR key, we enter the CH R$ value of the let
ter. In APPENDIX C of your Basic Reference Manual there is
a complete listing of ATASCII which you will want to examine.
Whenever we want to access a character we just enter the
C H R$ and the decimal value of the character we want. For
example, enter the following:

PRINT CHR$(65) < RETURN >

You got an A. That's simple enough and not too interesting.
On the other hand, try the following little program, and I'll bet
you couldn't do it without using the C H R$ function:

10 PRINT CHR$(125) : REM USES ATASCII
FOR {ESC-SHIFT-CLEAR)

20 DIM QU$(1 J, BUZ$(1 J, AN$(1) : QU$ = CHR$(34)
: BUZ$ = CHR$(253) : REM USES ATASCII
: VALUE FOR QUOTE MARKS AND BUZZER

30 FOR 1=1 TO 20: PRINT: NEXT I : PRINT
"HIT RETURN TO CONTINUE OR ";

40 PRINT QU$; "Q" ; QU$; "TO QUIT ";
50 PRINT BUZ$; : INPUT AN$
601F AN$ = CHR$(B1) THEN END
70 PRINT "To be continued ... "

RUN the program and look carefully. Note the quotes around
the Q. If we tried to PR I NT a quote mark, the computer would
think it got a command to begin printing a string. However,
by defining Q U$ as C H R$(34) we were able to slip in the
quote marks and not confuse the output! (Just for fun, see if

140

you can do that without using the CHR$ command.) Also, did
you notice how we began the program? Instead of using the
ESC-SHiFT-CLEAR key, we used CHR$(125). We did not
have to put in the quote (") marks around CH R$(125) as we
did with ESC-SH i FT-CLEAR. Likewise, we defined BUZ$ as
CH R$(253) to produce a buzzer sound to remind the user to
press either R ETU R N or Q. To see what different characters
you have available, RUN the following program:

10 PRINT CHR$(125)
20 FOR 1= 1 TO 255
30 IF 1= 125 THEN PRINT" "; "";: NEXT I
40 PRINT CHR$(I); ""; : NEXT I

Voila! There you have all of your symbols. Well, actually we
got all but the last two. We heard CH R$(253) with the buz
zer, but since CHR$(254) backs over itself, it is invisible.
However, if we have an ESC sequence before those characters
we can see them. CHR$(27) is the CHR$ code for ESC, so
let's see if we can use it to get our characters on the screen.
Insert the following lines to do so:

30 IF I = 125 OR 1= 253 OR 1= 254 OR 1=255
THEN PRINT CHR$(27); CHR$(I);" "; : NEXT I

35 IF I> 255 THEN END

Now we can see all of our characters, including the CLEAR
and BUZZER symbols, but we don't hear the buzzer! Origi
nally, we substituted a" " for CLEAR since we didn't want
everything to disappear when C H R$[125) was printed out.
(Remove lines 30 and 35 to see what happens!)

141

The following is a little programs with which you can practice.
See if you can guess what they will produce before running
them:

10 DIM LB$(7). RB$(1). AT$(5)
20 LB$ = CHR$ (219) : RB$ = CHR$(221)

: AT$ = "ATARI"
30 LB$(LEN(LB$) + 1) = AT$
40 LB$(LEN(LB$) + 1) = RB$
50 PRINT CHR$(125) : L = 19 - LEN(LB$)/2-1
60 FOR 1=1 TO L: PRINT CHR$(31);

: NEXT I : PRINT LB$

DO IT THE EASY WAY

The following little program provides you with the per
fect opportunity to write the bulk of your program with
your editor. Key in lines 10 and 20 normally. After line 20,
simply "walk" the cursor back to line 20 and enter 30,
change the 10 to 15 and press R ETU R N. Do thatfor the
rest of the lines, only adding the appropriate line number
and FO R/ N EXT value. This shortcut can be applied to
lessen programming errors since once a line is correctly
entered, it will be automatically correct if it is simply
duplicated. Gives you more time for mountain climbing.

10 PRINT CHR$(125) : PRINT : PRINT: PRINT
20 FOR 1=1 TO 10: PRINT CHR$(160); :

NEXT I : PRINT: PRINT
30 FOR 1=1 TO 15 : PRINT CHR$(160) ; :

NEXT I : PRINT: PRINT
40 FOR 1=1 TO 20: PRINT CHR$(160); : NEXT I

: PRINT : PRINT
50 FOR 1=1 TO 12 : PRINT CHR$(160); : NEXT I

: PRINT: PRINT

The above program shows how to create bars for a graph
using CHR$ commands. The same thing could have been
done with the ATARI KEY and the space bar, but using the

142

C H R$ function, it is clearer and less cumbersome. In the next
chapter, covering graphics, we will use the C H R$ command a
good deal in creating pictures, charts and graphs.

The following program is a handy little device for printing out
all of the C H R$ values to screen. Save it to tape or disk to use
as a handy reference guide to look up C H R$ values and
symbols.

CHR$MAP

10 PRINT CHR$(125) : N = 0: COUNTER = 0
: DIM AN$(1)

20 FOR 1= 1 TO 255
30 COUNTER = COUNTER + 1 : IF COUNTER = 76

THEN GOSUB 300
40 N = N + 1 : IF N = 4 THEN GOSUB 200
50 IF 1=3 OR 1=4 OR 1=5 OR I =28 OR 1=29

OR I = 30 0 R I = 31 TH EN 1 00
55 IF 1= 125 OR I = 127 OR I = 158 OR 1= 159

OR I = 253 OR 1= 254 OR 1= 255 THEN 100
60 PRINT I; "= "; CHR$(IJ; CHR$(127);
70 NEXT I
80 END
100 PRINT I; "= "; CHR$(27); CHR$(I);

CHR$(127) ; : NEXT I
110 GOTO 70
200 N = 0 : PRINT: RETURN
300 PRINT: PRINT "(ATARI KEY) PRESS RETURN

TO CONTINUE (ATARI KEY)"
310 COUNTER = 0 : INPUT AN$: PRINT

CHR$(125) : RETURN

The program CHR$ MAP can be used as a handy eference
for you to look up the C H R$ values of different symbols. You
may have noticed that the program branches to a subroutine
at line 100 if I has various values. This was to minimize the
effect the special and CTRL characters had on screen format
ting. All line 100 did was to add an ESC sequence, CH R$[27J,
so that the function would not be executed. Even so, there
were still a few strange format outputs which would take more
programming to repair. Also, note how we worked with the
tabs. Instead ofusing{CTRL-TAB), we used CHR$(127) in

143

lines 60 and 100 to get the tabs we wanted. However, in line
300, we did not attempt to put our prompt message in with
C H R$ codes, but instead simply used the A TARI KEY to
toggle the inverse mode. (Let's face it boys and girls, we could
have done it with C H R$ but that would have been a lot of
work! Using C H R$s would have been interesting, but it would
have been a really dumb application.)

POKES and PEEKS:
Looking inside your ATARI's Memory.

At first you won't have too many uses for PO KEs and PEEKs,
but as you begin exploring the full range of your computer's
capacity, they will be used more and more. Basically, a PO K E
command places a value into a given memory location and a
PEEK command returns the value stored in that location. For
example, try the following:

POKE 2048, 255 : PRINT PEEK (2048) < RETURN >

144
\

You should have gotten "255" since the PO K E command
entered that value into location 2048 and PRINT PEEK
(2048) printed out the value ofthat address. That's relatively
simple. but more is going on than storage of numbers.

The key importance of PO K E and PE E K involves what occurs
in a given memory location when a given value is entered. In
some locations nothing other than the storage of the number
will occur, as in our example above. However. with other
memory locations, very precise events occur. What we will do
in the remainder ofthis section is to examine some ofthe more
useful locations for POKEing and PEEKing in your ATARI.
We will not be getting into the more complex elements of
POKEs and PEEKs. however.

145

A TALE OF TWO NUMBER SYSTEMS

When using POKEs and PEEKs, we use decimal num
bers for accessing locations. However, much of what is
written about special locations in your TECHNICAL
REFERENCE NOTES available fOI" your ATARI is
written in HEXADECIMAL, generally referred to as
HEX. Since we've used decimal notations for counting all
our lives, it seems to be a "natural" way of doing things.
However, decimal is simply a "base 10" method of count
ing and we could use a base of anythin g we wanted. For
reasons I won't get into here, "base 16", called HEX
ADECIMAL is an easier way to think about using a com
puter's memory, and that's why so much of the notation
we see is in HEX. HEX is counted in the same way as
decimal except it is done in groups of 16, a nd it uses
alphanumeric characters instead of just numeric ones.
You can usually tell if numbers are HEX since they are
typically preceded by a dollar-sign (e.g., $45 is not the
same as decimal 45), and often there are alphabetic
characters mixed in with numbers . (e.g., FC58, AAB,
12C). The following is a list of decimal and hexadecimal
numbers.

Decimal

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Hexadecimal

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B
$C
$D
$E
$F
$10

146

As you can see, instead of starting with double digit numbers
at 10, hexadecimal begins double digits at decimal 16 with a
$10. In the "Major Memory Locations of Interest" in your
ATARI TECHNICAL REFERENCE NOTES, the hex
adecimal numbers are given. (Your ATARI BASIC REF
ERENCE MANUAL has some locations of interest in both
hexadecimal and decimal.)

A ROTTEN TRICK!!

When you start POKEing and PEEKing into different
locations of your A TAR!, you will not always get what
you expect. In the decimal addresses from 1536 through
1791, you will be pretty safe, since this is the User Basic
area. However, other locations are the "homes" of spe
cial routines which will react directly to anything PO KEd
into them. For example, if you POKE 694,255 all of
your keys will give you strange results, and you have to
press SYSTEM/ RESET to get it back to normal. Now if
you slipped that into one of your programs and gave it to
a friend, it would goof up his machine, and that would be
a Rotten Trick! Of course, you wouldn't ever do anything
like that. Would you?

147

I'M C.OI/ll(r

,." HEX
THE>E NVMSfR~!

..::-

ir~
Now let's take a look at some places to POKE. We will begin
with your text screen.

POKEing the Text Screen

Another use of PO K Es is to enter a character to a location on
your next screen. Each character has a different value be
tween 0 and 255. Your screen can be envisioned as a set of
addresses on a 40 by 24 grid beginning at a decimal location
we call "SCREEN" and ending at SCREEN + 40 * 24. That
gives you exactly 960 locations on your screen where you can
place text. The addresses are contiguous. and by using FORI
N EXT loops, it is a simple matter to enter sequenti al lines of
text. Or, using POKE s, you can put text anywhere on the
screen you want.

First, though, it is necessary to find where your computer is
storing screen display. Dependingon what program is in your
computer and what it is doing at a given point, the location of
SCREEN wi ll vary. That's why we are defining it as a vari-

148

able! (On some computers, the screen display addresses are
constant.) To get started, we have to examine a special
address that tells us where the beginning screen memory is
currently located. The "pointers," at locations 88 and 89, tell
us where the screen starts. Therefore, it is necessary to PEEK
those locations. However, the locations actually have a re
versed hexadecimal code which has to be converted to a useful
decimal code. The formula

PEEK(88) + 256 * PEEK(89)

will give us that starting address; therefore, we will define our
variable SCREEN to be

SCREEN = PEEK(88) + 256 * PEEK(89)

To get an idea of what happens when we POKE characters
directly into memory, try the fo llowing program: (Give it to
your true love.)

10 PR IN T CH R$ (125)
20 SCREEN = PEE K(88) + 256 * PEEK(89)
30 FILL = 40 * 24
40 FOR 1= 0 TO FILL - 1
50 POKE SCREEN + 1, 64
60 NEXT I

]49

If you have been paying attention, you should have absolutely
no idea of what made that happen! Where did those hearts
come from? TheATASCII code for hearts is 0, but we POKEd
the screen with 64. Also, why in the world did the horizontal
screen go all the way to 40 instead of 38like we have seen up to
now? (Now hold on, don't go back to the ALIEN FROG
BLASTER game and give up programming just yet.) All
that's happened is that you have been given more POWER
over what your computer does. Let's take it one step at a
time.

1. First, in line 30 we defined FILL as 40 * 24. That
means we are now using all 40 horizontal columns
of your screen instead of the defaulted 38 that we
have been using up to now. There are still 24 vertical
rows, so the 24 stays the same as always. Thus,
there are 40 * 24 or 960 spots on the screen to put a
character. Since each spot is an address and the
addresses for screen memory begin wi th S eRE EN,
we filled up the screen with FILL -1. (We used
FI LL -1 since we began with 0 instead of 1.) The
first address of screen memory [SC R E E N + 121] is
the upper left hand corner, and the last is the lower
right hand corner.

2. Second, the values for PO K Ed characters are dif
ferent from C H R$ values. Thus, a "64" is a heart
when PO KEd into screen memory. The nice thing
about POKEing in a character is that it does not
function but is only displayed. (Remember when we
made our C H R$ list and things went crazy when a
control character was inserted without an ESC
sequence?) The following program will give you a
list of all the characters that can be PO KEd in your
screen memory.

10 PRINT CHR$(125]
20 SCREEN = PEEK[88] + 256 * PEEK[89]
30 FOR V= 1 TO 10 : PRINT: NEXTV
40 FOR 1= 0 TO 255
50 POKE SCREEN + I. I
60 NEXT I
70 PRINT: PRINT : PRINT : PRINT: PRINT

150

Now you see that a ll the characters can be PO KEd in without
affecting your tabbing or anything else. Also, note that we
tabbed vertically with line 30 to vertical position 10, but our
first character was printed in vertical position 1 on the screen
(top row) . That is, while the cursor was at Row 10, the output
began in Row 1. This is because we were filling an address and
not PR 1 NTing a character to the screen. This gives you total
control over where your characters will be placed.

We also used an "offset" in our program. In programming,
offsets are important for keeping track ofthings. In line 50, we
used the offset from S C R E E N to be + I. This means that
whatever the address ofSCR EEN is, we add the value of 1 to it.
This allowed us to sequentially place all of our characters in
memory locations instead of the same one over and over. (To
see what happens without an offset, remove the +1 from line
50. All of the characters will be printed in the upper left hand
corner.) In several programs, we will be doing that to let the
computer do all the computations for us. (REMEMBER: A
good program lets the computer do the hard work!)

In order to easily see what characters are produced with dif
ferent values we PO K E into screen locations, the following
program allows you to 1 N PUT a value and then displays the
character on the screen for you. Of particular interest in this
program are lines 50 and 60. Line 50 prints out a message and
ends it with a blank instead of a semicolon. However. when
the program is RUN the character output is right next to the
end of the string we entered in line 50. The reason for that is
we PO K Ed the output in a screen address right next to the end
of our string. We could have placed a semicolon, comma or
blank at the end of line 50 and the output would have been in
the same place. Try it and see.

10DIMAN$(1)
20 PRINT CHR$(125) PRINT PRINT: PRINT

"ENTER A NUMBER FROM 0 TO 255- > ";
: INPUT X

30 IF X > 255 THEN 20
40 FOR 1= 1 TO 11 : PRINT : NEXT I
50 PRINT "THE CHARACTER FOR "; X ; " IS- > "
60 SCREEN = PEEK(88) + 256 * PEEK(89)
70 VMOVE = 40 : HMOVE = 28

15 1

80 POKE SCREEN + 15 * VMOVE + HMOVE, X
90 PRINT: PRINT: "HIT RETURN TO CONTINUE

OR 'Q' TO QUIT"
1001NPUT AN$
110 IF AN$ < > "Q" THEN 20
120 END

HOW TO FIND PLACES TO POKE

We've seen how to POKE some interesting locations in
memory for information we need. With all the memory in
an ATARI, how do we know what to POKE? Well, this is
a little advanced for beginners, but you won't be a begin
ner all your life; so here are some tips. First of all, in
APPENDIX I of your BASIC REFERENCE MANUAL
which comes with your computer, is a list of memory
locations. The decimal locations tell you where to PEE K
for the information you need. This is only a partial list,
but now you know how to use it. To get all the technical
information, along with a lot more insight into how your
ATARI works, get a copy of the ATARI TECHNICAL
REFERENCE NOTES. This is a big, complicated set of
notes, but with a little study you can use it. The trick is to
know what to look for. For example, to find the beginning
address for screen memory, I had to look up "Screen
Memory Address" on page 222 in the OPERATING
SYSTEM USER'S MANUAL (which is part of the
TECHNICAL REFERENCE NOTES). There was a brief
description of SA VMSC along with the notation (0058,2).
Now, since the notations are given in HEX, I knew that
the 0058 was 88 in decimal, and the "2" indicated that 2
bytes were used; so, the pointers were located at decimal
locations 88 and 89. To convert from hexadecimal to
decimal, I simply used a handy little program which lists
out hexadecimal values from 0 to 255, reproduced below.
(Also, there's a nice decimal to hex conversion program
in Appendix H of your BASIC REFERENCE MANUAL.)
I admit that this is a little hairy for beginners, but once
you get the hang of it, you can really start to delve into
your computer's "mind."

152

DECIMAL - HEX CONVERSION PROGRAM

10 DIM AN$(1] : PRINT CHR$(125]
20 DIM HD$(26] : HD$= "{ATARI-KEYI HEX - DECIMAL

CONVERSION (ATARI - KEY]"
30 L = 20 - LEN (HD$]/2 : POSITION l, 0: PRINT HD$
40 FOR N = 0TO 255
50 PRINT "$ "; : REM THE $ IS USED TO REPRESENT

HEX NUMBERS
60 H = INT (N]/16 : H = INT(H] : GOSUB 200
70 H = N - INT(H] : 16: H = INT(H] * GDSUB 200
80 PRINT "="; N ; CHR$(127]
90 C = C + 1 : IF C =4 THEN PRINT : C = 0
100 C2 = C2 + 1 : IF C2 = 76 THEN C2 = 0: PRINT : PRINT

"{ATARI-KEYI HIT RETURNTD CONTINUE{ATARI-KEYI";
: INPUT AN$: PRINT CHR$(125]

110NEXTN
120 END
200 REM *** CONVERSION ROUTINE ***
210 PRINT CHR$(48 + H + 7 * (H > 9]] ;
220 RETURN

CHART IT!

In addition to having labels stuck all over my computer, I
have a number of charts. The nice thing about a chart is
that it has everything from a single category together in
one place. You should make or buy or somehow get your
hands on charts which will summarize POKEs, PEEKs
and other handy locations and addresses. Also, in several
computer magazines, you can find charts. Make copies of
the charts and using rubber cement, paste them to card
board and keep them handy. In the chapter on printers,
we'll see how to print out our HEX - DECIMAL CON
VERSION program.

153

Resetting the Text Window

As we saw with the POSITION command, we can use two
extra columns to the left of our text window. For example:

POSITION 0,5 : PRINT "X";

will print an X at the far left-hand side of our screen in row 5.
Using a special POKE, we can change that. Decimal address
82 sets the left margin of our screen. For example, load a pro
gram into memory and enter:

POKE 82, 0

Now LIST your program. It lists along the far left side instead
of where it normally does. Enter the following:

FOR 1=1 TO 40: PRINT"1";: NEXT I

As you can see, you now have a 40 column screen instead of a
38 column screen. To get it back to a 38 column screen, enter:

POKE 82,2

Now let's change the right margin of the screen. This time we
will POKE address 83 instead of 82 . Enter:

10 POKE 83,10
20 FOR 1=1 TO 38: PRINT"1";: NEXT I
RUN

This time, you were only able to print out nine l's before the
next line started. Now, LIST the program. You still have a
right margin of 10; so even your LIST comes out funny. (By the
way, how come you only get nine columns when you POKEd
the right margin to 10? See if you can figure it out, and remem
ber that column 0 is at the far left side and your left column
begins at 2 in the default condition.) To quickly get everything
back to normal, press SYSTEM RESET.

Having done that, let's change both the left and right margins
and see what happens:

154

10 PRINT CHR$(125)
20 POKE 82, 20 : POKE 83, 30 : PRINT
30 FOR 1=1 TO 11 * 23 : PRINT CHR$(128);

: NEXT I
40 PRINT"ENTER #"; : INPUT A: REM This just holds

things so you can look at the screen.

RUN and LI 5T the program. This will give you a clear idea of
what happens when the text window is reset. Nothing is
harmed, and it gives you greater flexibility in formatting your
screen output. Finally, for an interesting effect add line 50:

50 POSITION 2,0: POKE 82,2 : POKE 83,19 : LIST

This does a double window chanP.'e!

Sources of Sound

Now that we have seen that besides simply POKEing num
bers in empty memory locations, we can also POKE in values
at special locations to get some immediate results, we are
ready to take a look at the ATARI's fantastic sound capabili
ties. There are two sources of sound which can be generated.
On the one hand, we can click the speaker. This involves
PO KEing memory location 53279 with a 0 and building loops

155

to give it different effects. On the other hand you can generate
sound through your TV's speaker. For this, we use the Atari
BASIC word SOU N D. This will give us agood deal of power in
generating sound. NOTE: If you are using a monitor without a
speaker, the SO UNO command will not work. It will be
necessary to install an exte?'nal speaker or hook up your com
puter to a TV. We will keep everything simple and provide pro
grams and instruction on how to get started.

Tweaking the Speaker

We have buzzed the speaker with CHR$(253), but now we
will PO KE memory location 53279 with 0 to click it. If this is
done with different delays, we can get different effects. The
following program runs through the range of tones produced
by the internal speaker:

10 PRINT CHR$(125) : BUZZ = 53279
20 FOR J = 1 TO 20
30 FOR 1= 1 TO 200
40 POKE BUZZ, 0
50 FOR PAUSE = 1 TO 20 STEP J : NEXT PAUSE
60 NEXT I: NEXT J

The buzz starts like a sputtering airplane and then increases
in speed as the PAUSE loop shortens until it reaches a high
pitch. By playing around with different delay loops, you can
create different effects. Experimentuntil you find a sound you
like. Remember. all it takes is a PAUSE loop of a different
length to change the speaker's sound!

Sound Off!

Turn up the sound of your TV set and let's really make some
racket! The format of the SO UNO statement in BASIC is
as follows:

SO UNO voice. pitch, distortion. loudness

156

When each of these parameters is set to a value, different
sounds, including musical notes, can be generated from your
TV's speaker. The sound will continue until it is turned off
with SO U N D 0,0,0,0. To control the duration of a sound,
delay loops are used. To get started, let's make a little sound
and then see what we've done:

10 PRINT CH R$(125)
20 SOUND 3,127,8,15
30 FOR DURATION = 1 TO 400: NEXT DURATION
40 SOUND 0, 0, 0, 0

What was that sound? A rocket as heard from the inside of a
spaceship, of course! Well, it can be anything you want, and
you can change it. Just for fun, using your editor, change the
values in line 20 to see what you get. Be careful, though. The
first number has to be between 0 and 3; the second between 0
and 255; the third, even numbers between 0 and 14; and the
fourth, between 0 and 15.

Now let's see what we have been doing. We will examine the
four values plus the DURATION loop and then make a pro
gram which examines the various sounds.

1. VOICE (0-3) Think of the voices as separate
speakers, and you can have all four speakers (0-3)
going simultaneously, or turn on some and not
others. Individual SO U N D commands must be used
for each voice or speaker.

2. PITCH (0-255) The pitch value produces the fre
quencies which make specific notes or sounds. With
256 tones available, there is a full range of notes you
can produce.

3. DISTORTION (even numbers, 0-14) This is the
variable for "sound effects." A value of 10 produces
a pure tone, while other even numbers give varying
amounts of distortion. Odd numbers result in clicks.

4. VOLUME (0-15) This parameter simply turns up
the volume to a given level. If you want a constant
sound but you want to make it sound as though it is
getting closer or further away, vary the volume in
your SO U N D command.

157

5. DURATION This isnot part of the SOUND com
mand, but it is a loop which will make the sounds
last a varying amount of time until the values of the
SO UNO statement are changed or until they are
turned off with SOUND (0-3),0,0,0.

N ow let's whip up a program which will allow us to explore the
different sounds we can make. Make notes of the sounds you
like so that you can incorporate them in your programs later on.

10 DIM AN$(1)
20 PRINT CHR$(125) :PRINT "VOICE 0-3";

: INPUT VOICE
30 PRINT "PITCH 0-255"; : INPUT PITCH
40 PRINT"DISTORTION 0-14"; : INPUT DISTORTION
50 PRINT "VOLUME 0-15"; : INPUT VOLUME
60 PRINT"DURATION "; : INPUT DURATION: PRINT

CHR$(125)
70 SOUND VOICE,PITCH, DISTORTION, VOLUME
B0 FOR D = 1 TO DURATION : NEXT D
90 FOR N = 0 TO 3 : SOUND N,0,0,0: NEXT N
100 PRINT: PRINT "THAT SOUND WAS MADE BY:"
110 PRINT "VOICE = "; VOICE
120 PRINT "PITCH ="; PITCH

158

130 PRINT "DISTORTION ="; DISTORTION
140 PRINT "VOLUME = "; VOLUME
150 PRINT: PRINT "{ATARI KEY} PRESS RETURN

TO CONTINUE {ATARI KEY}": PRINT"{ATARI KEY}
OR 'Q' TO QUIT {ATARI KEY}"; : INPUT AN$

160 IF AN$ <> "Q" THEN GOTO 20

To experiment with multiple voices simultaneously, enter
I N PUT statements for more variables and on separate lines
between lines 70 and 80. enter additional SO UN D statements.
As you may have noted. line 90 is already set up to turn off the
sound on all voices.

SUMMARY

This chapter has ventured into the ATARI's memory, and
while you are not expected to understand all of the nuances of
our discussion. I hope that you have a general idea of how
ATASCII values work and a little about addresses and loca
tions. Most important is that you have tried the commands
introduced and attempted to use them in your programs. The
more you use different commands. the more you begin to
understand what is happening.

The C H R$ function introduced A TASCII values. Some of the
uses of C H R$ allow us to access characters not available in
our programming. We can loop through different values or
enter text characters with numeric variables using C H R$.

The POKE command enters a value to a decimal address and
the PEE K command retrieves a value from an address. Special
locations in your ATARI's memory have special functions.
such as the ATASCII screen values. More advanced uses of
POKE and PEEK can provide ways of virtually writing
machine-level subroutines. Making different sounds on the
ATARI was accomplished using POKEs to tweak the com
puter's built in speaker with a series of delays to produce a
variety of sounds. To really get sound. we saw that the
SOUND command in BASIC could easily produce a wide
range of noise and music on four different voices simultan
eously. These sounds can be integrated with text and graphics
to produce anything from sound prompts to output to games.

159

-

-..

-

-

-

-

-

CHAPTER 7

Using Graphics

Introduction

One ofthe nicest features of the A TARI is its graphics capabil
ities. There are three kinds of graphics: (1) Keyboard Graphics,
(2) Screen Graphics and (3) Player/Missile Graphics. Key
board graphics are something like text except that we use a lot
more color and figures instead of letters and numbers. The
way the graphics are used, however, we can access both
graphics and text simultaneously. This feature is especially
useful for labeling our graphics. such as charts or figures we
may wish to create. As a matter of fact, if you have pressed the
CTRL key and one of the other keys simultaneously, you may
have already accessed some of your computer's graphics
capabilities.

161

Screen graphics have the most varied number of possibilities.
Different screen sizes, color combinations, resolutions, text
expansion, and drawing words in BASIC are available to the
user. You can really turn your computer into an artist's
palette with graphics on the A TARI!

Player/Missile graphics are wholly different from keyboard
and screen graphics, and they are a good deal more difficult to
use. However, player/missile graphics give you an incredible
amount of flexibility and power in creating figures in fine
detail, especially animated ones for game applications. Once
you become adept at using player/missile graphics, there are
limitless possibilities for the creation of colorful animated
characters.

Keyboard Graphics

Keyboard graphics are very simple to use, since you can enter
figures directly from the keyboard. To create a single figure
simply PRINT that figure in the same way you would a letter
or number. For example, if you enter

162

PRINT "(CTRL-,)" : REM CONTROL - COMMA

you will get a heart figure. However, to create more interest
ing graphics. you will want to enter commands from the Pro
gram mode. This can be done by writing a series of PRINT
statements. entering the drawing as you go along. For exam
ple. let's make a graphic rocket ship. We'll keep it simple and
program a one stage rocket. (It would be a good idea to SAVE
or CSA V E this program to disk or tape, as well as the others in
this section. SAVE them under different file names since, even
though some will have the identical results. they are pro
grammed differently.)

10 PRINT CHR$(125]
20 PRINT" {CTRL-H} {CTRL-J}"
30 PRINT" {CTRL-V} {CTRL-B}"
40 PRINT" {CTRL-V} {CTRL-B}"
50 PRINT" {CTRL-V} {CTRL-B}"
60 PRINT" {CTRL-V} {CTRL-B}"
70 PRINT" {CTRL-H} {CTRL-V} {CTRL-B} {CTRL-J}"
80 PRINT" {CTRL-M} {CTRL-M}"

When you are finished writing the program you should be able
to see a "Rocket" on your screen - even before you RUN the
program. When you do RUN it, the screen will clear and a
"Rocket" will appear in the upper left hand corner of your TV.
In the same way, you can draw anything else you want with
the different shapes and characters on your keyboard.

Let's take another look at our "Rocket" and see if we can
improve the program. First, note that lines 30 through 60 are
identical. Instead of having to re-write those lines, let's use
our GOSUB commands, treating the repeated lines as sub
routines. Using your editor, change line 30 to line 100, adding
a colon and RETURN after line 100. Now change lines 30
to read:

30 FOR I = 1 TO 4 : GOSUB 100: N EXT I

Add line 90 EN D. The program should now look as follows:

10 PRINT CHR$(125]
20 PRINT" {CTRL-H} {CTRL-J}"

163

30 FOR I = 1 TO 4 : GOSU B 100 : N EXT I
70 PRINT" (CTRL-H) (CTRL-V) {CTRL-B) {CTRL-J}"
80 PRINT" {CTRL-M) (CTRL-M)"
90 END
1 00 PRINT" {CTRL-V) (CTRL-B)" : RETURN

Now that didn't save a lot of programming time, but if you
begin to think of keyboard graphics as you would any other
program, you will want to look for shortcuts both to save
memory space and to minimize programming redundancy.

EDIT IT!!

If you did not use your editor to change the above lines,
you are working too hard! All that is required when you
edit a line is to enter the changes and hit R ETU R N. To
change a line to a different line number, simply enter the
new line number over the old line number. For example,
to change line 30 in our original "Rocket" to line 100,
simply use the cursor key to walk up to line 30, place the
cursor over the 3, enter 100 and press RETURN . When
you LIST the program, line 30 will still be there in its
original form, but there will now be a line 100 identical to
line 30.

We will be leaving keyboard graphics now, but not for good
since we may want to use them later on. The main thing to
understand in this section is that figures and symbols can be
output very much like text. You are simply sending informa
tion to your computer's screen. In the next section keep this in
mind as we explore other screens in your ATARI computer.

Screen Graphics

There are nine GRAPHICS screens on your ATARI. We have
been working on the GRAPHICS 0 screen thus far, and now
we will look at the others. Since screens 1 through 8 have dif-

164

ferent characteristics, we will examine the screen in groups of
common features. Our discussion of the screens will be in the
following groups:

GRAPHIC SCREENS

1,2
3,5,7
4,6
8

GROUP

A
B
C
D

GROUP A: Big Text Screens

This first group of screens, GRAPHICS 1 and GRAPHICS 2,
prints big text on your screen. To set either graphics screen,
enter

or
GRAPHICS 1 [GR. 1)

GRAPHICS 2 [GR. 2)

As soon as you set a graphics screen, everything on it is
cleared; so if you write big text on GRAPH ICS 1 and then
enter GRAPH ICS 2, your text from GRAPH ICS 1 will disap
pear. Therefore, while these two screens are similar, they can
not be used together without more advanced programming
techniques beyond the scope ofthis book. NOTE: We have been
using fully spelled out commands. With GRAPH ICS we will
make an exception and use GR. instead of GRAPHICS since,
when you LIST you'rprogmm after entering GR. , GRAPH ICS
will appear fully spelled out. It's magic!

Both GRAPHICS 1 and 2 leave four lines of text at the bottom
of the screen. When you enter GR. 1, for example, the screen
will go black except for a littl e blue window at the bottom.
GR. 0 will return everything to the full text screen where we do
all of our programming. In our programs, we will be putting in
a little"utility" to get back to GRAPHICS 0 after we have seen
the effects on the GRAPHICS screen. This utility is:

500 INPUT AN$: GR. 0: LIST

lfiG

It is not to be considered anything other than a routine which
will quickly get back the program listing. When you are
finished with a graphics program. it should be removed.

To print out big text in GR. 1 or 2, you have to use PR INT #6
(or? #6) for output. Upper and lower case change the colorof
the printed text; so if you see lower case in your program,
don't expect to get it in your screen output. To get started,
enter the following program:

10 DIM AN$(1)
20 GR. 1
30 PRINT #6; "This Is In BIG" : PRINT #6; "letters"
40 PRINT #6: REM WORKS JUST LIKE "PRINT"

ON GR. 0
50 PRINT #6 ; "This is graphics 1"
60 PRINT #6 : PRINT #6
70 PRINT #6; "PRESS RETURN";
200 INPUT AN$: GR. 0: LIST

When you RUN the program. you will be presented with let
ters in double width with the upper case in one color and the
lower case in another. (Remember what you entered as lower
case will be upper case on the output.)

Now, to see GR. 2, simply change line 20 to:

20 GR. 2

and the 1 in line 50 to 2. This time you will get the same
message. but the text will be double width and double length.

If you want to use the full graphics screen. you add 16 to the
GR. mode. For example. if you want full screen for GR. 1. you
would enter GR. 1 + 16 (or GR. 17) . However. with full screen
graphics. you have to hold onto the screen with a loop or it will
think it is supposed to go back to GR. 0. For example, change
the above program by adding the following:

20 GR. 1 + 16
B0 FOR PAUSE = 1 TO 1000: NEXT PAUSE

166

Now when you RUN the program, there is no little text win
dow at the bottom of the screen, and after the PAUSE loop, all
you get on your screen is a question mark waiting for you to
press RETURN. Experiment with these two screens.

Color

We interrupt our discussion of different screen to bring you
COLOR! This may seem like a rude place to insert color, but I
wanted you to see some different graphics screens first.

Setcolor

To get started enter the following from GR. 0:

SETCOLOR 2,3,8

Your screen turned a yellow-orange. OK. but why? First, let's
see what the different numbers mean.

SET COLOR (register numbers 0-4), (color 0-15),
(luminance 0-14 <even numbers»

1) Register number These five registers vary in
their effect depending on which mode you are in. In
general, though, they direct color changes to dif
ferent "switches" in memory.

2) Color There are 16 codes for colors. The follow
ing table shows how to obtain different colors by
entering: different codes.

167

COLOR

Aqua
Blue
Blue-Green
Blue-Purple
Go ld
Green
Green-Blue
Grey
Light-Blue
Orange
Orange-Green
Pink
Red
Violet
Yellow-Green

CODE

10
7
9
6
1

12
11
o
8
2 & 15

14
4
B
5

1 ;~

These colors work with the various modes to set back
ground and border color. Later we will discuss the
COLOR command, which isdifferentfromSETCOLOR.

3) Luminance This sets the color to different levels
of brightness, using even numbers from 0 to 14. The
0level produces an almost black level and 14 an
almost white level.

Now that we have an idea of the different colors, set your
screen to GR. 0, and let's take a tour of the different back
ground and border colors avai lable to you. In this, GR. 0, the
number 2 register sets background color, and the number 4
register the border:

10 PRINT CHR$(125) : DIM AN$(1)
20 FOR BORDER = 0 TO 15
30 FOR BACKGROUND = 0 TO 15
40 SETCOLOR 4, BORDER, B
50 SETCOLOR 2, BACKGROUND, B
60 PRINT : PRINT: PRINT "BORDER ="; BORDER
70 PRINT: PRINT"BACKGROUND ="; BACKGROUND
B0 PRINT : PRINT : PRINT"PRESS RETURN";: INPUT

AN$: PRINT CHR$[125)
90 NEXT BACKGROUND: NEXT BORDER

Now let' s examine luminance. To do this we will simply
change the above program as follows:

20 FOR LUMINANCE = 0 TO 14 STEP 2
50 SETCOLOR 2, BACKGROUND, LUMINANCE
60 PRINT : PRINT: PRINT "LUMINANCE =";

LUMINANCE
90 NEXT BACKGROUND: NEXT LUMINANCE
(Delete line 40)

The above two programs ought to give you a good idea of how
to change colors and luminance to all kinds of combinations. If
you're really sharp, I'll bet you noticed that by changing
luminance, you can also change colors. So how many different
combinations of colors can you get by changing luminance
with colors? HINT: Count the number of times you had to press
R ETU R N in the second program.

169

Now that we have seen how SETCOLOR can change back
ground and border colors along with luminance in G R. 0, let's
see what it can do with GR. 1 and GR. 2. We will use GR. 1 in
our examples of coloring and lighting text since it and GR. 2
have the same effects. The first thing we learned about GR. 1
and GR. 2 is that the color of the TEXT changes with upper
and lower case and with inverse and normal text. To see the
different colors we can get with different SETCO LO R com
binations and text styles, enter the following program: Notice
that we placed GR. 1 inside our loop.

10 DIM AN$(1)
20 FOR HUE = 0TO 15
30 GR. 1
40 SETCOLOR 0, HUE, 8
50 PRINT #6; "THIS IS UPPER CASE"
60 PRINT #6; "this is lower case"
70 PRINT #6; "{ATARI KEY} THIS IS UC INVERSE

{ATARI KEY}"
80 PRINT #6; "{ATARI KEY} this is Ie inverse

{ATARI KEY}"
90 PRINT #6; : PRINT #6; "HUE ="; HUE
100 PRINT #6 : PRINT #6: PRINT #6; "(press return)"
110 INPUT AN$
120NEXTHUE
200 GRAPHICS 0: LIST

In order to change background and border colors in GR. 1 and
GR. 2, it is necessary to use register number 4. The default
color of black may not be what you need, so let's see what we
can do. Add the following line to the above program:

35 SETCOLOR 4, 5, 8

Now you have a violet border and background. You can also
change the luminance to get just the right combination of
background and text color. Try changing the luminance values
in line 35 to 4 and in line 35 to 10. (Remember the last value in
SETCOLOR is for luminance.) Just for fun, see if you can set a
blue background the same color and luminance as the text
window. You can then print big text on what appears to be
GR. 0. (Amaze your dog.)

170

At this point let's summarize our understanding of color and
graphics modes in a little chart. The next graphics we discuss
will take a leap into another type of graphics.

SETCOLOR
REGISTER MODE EFFECTS

0 0 NUL
1 0 Character luminance
2 0 Background color
3 0 NUL
4 0 Border color
0-3 1,2 Character color
4 1,2 Background and Border

N ow we are all set to forge onward!

Screen Graphics (continued)

GROUP B : Plotting and Drawing

The most useful way to conceive of graphic screens 3,5 and 7 is
in terms of different gradations of points placed on the screen.
In GR.3, the points plotted are large and blockish looking, in
GR. 5 they are smaller blocks, and in GR. 7, the plots are little
blocks, almost points. Depending on your application, one
mode or another will be best.

To get started, let's take a look at three new commands:
COLOR, PLOT and ORAWTO. The COLOR command, tells
the computer what foreground or "plotted" color to draw to
the screen in. PLOT, in the following form:

PLOT [horizontal) , [vertical)

tells the computer where to plot a block. For example, the
following program plots a block in GR. 3 in the upper left hand
corner and lower right hand corner of the graphics screen.
(Remember, line 200 is just our utility to get back to our
"programming screen.")

171

10 GR. 3
20 COLOR 1
30 PLOT 0,0
40 PLOT 39,19
200 DIM AN$ (1) : INPUT AN$: GR. 0 : LIST

Now let's look at DRAWTO. It "draws" a line from PLOT h,v
to DRAWTO h,v. For example, in the program we just ex
amined, change line 40 to read:

40 DRAWTO 39,19

This time when you RUN the program, you have a diagonal
line (looking like a staircase) from the upper left to lower right
corners of your graphics screen.

Screen Sizes

When we change from GR. 3 to GR. 5 or 7, the same commands
work, but the results are different. Change the program so
that line 10 reads:

10 GR. 5

and then after running it, change it to

10 GR. 7

In both cases everything worked fine, except the line pro
duced by DRAWTO was shorter and finer. With GR. 5, the
line went a little beyond the middle of the screen, but it still
looked more like a staircase than a line. However, with GR. 7,
the staircase turned into a dotted line, and it didn't even reach
the middle of the screen. Since the printed blocks are smaller
for GR. 5 and 7 than for GR. 3, it is possible to have a larger
number of plot positions on the screen. If we add 16 to ourGR.,
we get rid of the text window at the bottom and have even
more vertical room for our drawings. The following chart
shows the different sizes of the graphics windows:

172

GRAPHICS MODE MIXED

3 40 by 20
5 80 by 40
7 160 by 80

FULL

40 by 24
80 by 48

160 by 96

When you are making your plots, it is important to remember
that the first vertical or horizontal plot position is 0 and not 1;
so think of your highest plot positions as 1 less than the num
bers on the above chart. For example, the highest PLOT ver
tically on GR. 3 in the mixed graphics and text mode is 19 and
not 20. (REMEMBER, though, that 0 through 19 are 20 posi
tions to plot.

Now that we can COLOR, PLOT and DRAWTO, whatkindof
useful things can we do with these screens? One use is to make
graphs. Using the lower resolution graphics we can make bar
graphs, and with the higher resolution we can make line
graphs. Let's start off with a horizontal bar graph using GR. 5.
Also, while we're at it, let's use the different COLORs avail
able. In GROUP B graphics, we have four colors - one back
ground and three foreground. For a quick look at these colors,
let's run through them in a little program:

10 DIM AN$(1)
20 GR. 3
30 FO R C = 0 TO 3
40 COLOR C
50 PLOT 0,0
60 DRAWTO 39,19
70 PRINT "COLOR = ";C
80 PRINT "PRESS RETURN "; : INPUT AN$: PRINT

CHR$(125) : NEXT C
200 INPUT AN$: GR. 0: LIST

As you saw, COLOR (21 is the same color as the background.
(Actually, you did not see anything except a black screen!)
Therefore, we really have only three colors with which to work
on the graphics screen. OK. now to our graph. NOTE: Put in
Lines 1# and 3##-31# first!

10 PRINT CHR$(125) : DIM TI$(30), AN$(1)
20 PRINT "TITLE OF GRAPH"; : INPUT TI$

173

30 PRINT "HOW MANY PLOTS (1-10)" ; : INPUT NP
40 IF NP > 10 THEN PRINT CHR$(253);

"NO MORE THAN 10!" : GOTO 30
50 DIM P(NP)
60 FOR 1- 1 TO NP
70 PRINT "VALUE FOR PLOT (0-79) "; I : INPUT VP
80 IF VP > 79 THEN PRINT CHR$(253);

"NO MORE THAN 79!" : GOTO 70
90 P(I) = INT (VP) : NEXT I
100 REM *** DRAW THE GRAPH ***
110 REM
120 REM ** FIRST DRAW THE SIDES IN COLOR 1 **
130 REM
140 GR. 5 : COLOR 1
150 PLOT 0,0 : DRAWTO 0,39: DRAWTO 79,39
160 REM
170 REM ** NEXT DRAW THE BARS IN COLOR 2 **
180 REM
190 COLOR 2
200 FOR I = 1 TO NP
210 PLOT 0, I * 3 : DRAWTO P(I) , I * 3
220 NEXT I
230 REM
240 REM ** STICK IN THE TITLE **
250 REM
260 L = 19 - LEN (TI$)/2 : FOR 1=1 TO L

: PRINT" "; : NEXT I : PRINT TI$
270 REM *** THAT'S ALL ***
300 REM *** * UTILITY - REMOVE AFTER GRAPH

IS COMPLETED ****
3101NPUT AN$: GRAPHICS 0: LIST

RUN the program and see how nicely you can present data
graphically. The program is severely limited in that it does
only amaximum of10 plots and values from 0 to 79. Itis simple
to change the number of plots above 10. You need only change
the trap value in line 40 to a higher number, and change the
offset in line 150 to I * 2 or simply I. Changing the values to
greater than 79 is a little trickier, butwewill see howto do that
in a bit. First, though, let's take a look at a different kind of
graph, a line graph using G R. 7. We will also see how to use all
three colors on a graph and how to set up more informative
labels in the "text window" at the bottom of the screen. This

174

graph is pretty fancy, as a matter of fact, so there are several
REM statements to tell you what's happening. (REMEMBER
to put in the "utility" at the end of the program after you enter
line 10 .)

10 DIM AN$(1) , MN$(12), TI$(30): MN$ =

"JFMAMJJASoNo": PRINT CHR$(125)
20 PRINT "N AME OF THIS CHART" ; : INPUT TI$
30 PRINT " FIRST YEAR, LAST YEAR" ; : INPUT

YEAR1 , YEAR2
40 PRINT"NUMBER OF MONTHS: (1-12),, ;: INPUT M
50 PRINT " NUMBER OF YEARS: (1-3)" ; : INPUT Y
60 DIM PM (M,Y) : REM ** USEA TWO-DIMENSIONAL
ARRAY TO HANDLE ALL PLOTTING **
70 FOR YR = 1 TO Y
80 FOR MO = 1 TO M
90 PRINT " PLOT VALUE YR "; YR; " MONTH " ;

MO: PRINT"MAXIMUM VALUE= 79";: INPUT PLOT
1001F PLOT > 79 THEN PRINTCHR$(253): GOTO 90
110 PM (MO,YR) = INT (PLOT) : REM ** PUT THE

INTEGER VALUE IN THE ARRAY 'PM' **
120 NEXT MO: NEXT YR
200 REM
210 REM *** MAKE A LINE GRAPH ***
220 R~M
230 REM ** FIRST MAKE THE SIDES **
240 REM
250 GR. 7 : COLOR 2
260 PLOT 0,0: oRAWTO 0,79 : oRAWTO 159,79
270 REM
280 REM ** DRAW THE LINES **
290 REM
300 FOR YR = 1 TO Y
310 PLOT 0,39 : REM ** START IN CENTER OF

VERTICAL AXIS **
320 FOR MO = 1 TO M
330 COLOR YR : REM ** DIFFERENT COLOR

FOR EACH YEARLY LINE **
340 oRAWTO 12 * MO, 79 - PM(MO,YR) : REM **

SUBTRACT PLOT VALUE FROM 79 **
350 NEXT MO : NEXT YR
360 REM
370 REM ** USE SUBSTRINGS OF MN$ TO

LABEL MONTHS **

175

38121 REM
39121 FOR 1=1 TO M : PRINT" "; MN$(I,I]; "";

: NEXT I
4121121 PRINT: PRINT TI$; " FOR "; YEAR1;

" TO " ; YEAR2
5121121 REM
51121 REM *** UTILITY - REMOVE WHEN FINISHED ***
52121 INPUT AN$: GR. 121 : LIST

Now that should give you a near professional looking graph!
(And you thought you couldn't program!) Line 340 is impor
tant, for it reverses your values so that the higher values will
appear higher on your screen. Remember, since the top of
your vertical axis is 0, your higher plot values would be lower
on the screen if we simply used DRAWTO to the values we
entered. For example, if one value was 20 and another was 40,
the vertical position of 40 would be lower than vertical position
20. By subtracting the plot value from 79 (the highest vertical
value we can ploton GR. 7) we make the lines appear higher for
higher values. Thus, 40 becomes 39 and 20 becomes 59.

Now let's see if we can solve the problem of the maximum
value of a plot. To do this, we will use GR. 3 since it has the
fewest number of plotting positions, and if we can do it with
GR. 3, the same principles can be applied to the other graphics
modes. While we're at it, let's do something about changing
the SETCOLOR. For GR. 3, 5, and 7, we use register 4 for
changing both background and border co lors.

1121 PRINT CHR$(125) : DIM AN$(1] , PV(2]
2121 PRINT " MAX VALUE- >"; : INPUT MV
3121 RATIO = 19.9/ MV : REM THIS SETS UPTHE RATIO

FOR ANY LINE AS A RATIO OF 2121- .1
4121 FOR 1=1 TO 2
5121 PRINT "PLOT VALUE->" ; I; : INPUT PV
6121 IF PV > MV THEN PRINT CHR$(253] : GOTO 5121
7121 PV(I) = INT (PV * RATIO]
8121 NEXT I
1121121 REM *** MAKE THE CHART ON GR. 3 ***
11121 GR. 3 : SETCOLOR 4,3,6 : COLOR 1
12121 REM * FIRST MAKE THE SCALE MARKS *
13121 FOR SM = 121 TO 2121 STEP 4
14121 PLOT 121, SM : DRAWTO 39, SM : NEXT SM

176

150 REM * NEXT CHANGE THE COLOR AND
DRAW THE GRAPH *

160 COLOR 2
170 FO R I = 1 TO 2
180 PLOT 10 * I, 19 : DRAWTO 10 " I, 19 - PV(I]
200 REM *** LABEL YOUR CHART WITH THE

TE XT WINDOW ***
210 L = 6 : FOR TAB = 1 TO L : PRINT

"{ESC-CTRL-RIGHT ARROW)"; : NEXTTAB: PRINT
" PLOT" ; I

220 NEXT I : REM ** THIS IS FROM THE LOOP
THAT STARTED ON LINE 170 **

230 PRINT : PRINT "MARKS = "; MV/ 5;
" MAX VALUE = "; MV

240 REM * KILL THE CURSOR AND GO INTO
ENDLESS LOOP *

250 POKE 755,0 : GOTO 250
260 REM * PRESS 'BREAK' AND THEN 'CONT'

TO GO ON *
300 REM *** UTILITY WHILE WORKING WITH

GRAPH ***
310 INPUT AN$: GR. 0 : LIST

As you can see, changing the maximum possib le value of what
can be plotted simply requires the algorithm we used in line 30.
By dividing the maximum plotting position minus .1 by the
maximum value to be entered as a plot value, all values can be
proportionally adjusted so that your chart will reflect re lative
differences in your plot values. This little trick allows you to
graphically plot any values you want! We also cleaned up the
display by POKEing755 with a0 in line250 to remove the cur
SOl'. Using the BREAK key and then the CO NT command, we
can get to our utility on line 300 . (Not too elegant. I admit, but
it gives a clean display of your chart.)

GROUP C: Graphics that Conserve Memory

GRAPHICS 4 and 6 are essentially like those in GROUP B, but
they only have one foreground color. GR. 4 has the same
resolution as GR. 5 while GR. 6 has the same resolution as
GR. 7, and both use about half the memory. If you are writing
longer programs or programs that use more memory or you

177

are using the ATARI 400 with the minimum memory con
figuration. GROUP C grap hics may be needed. (Don't worry if
you have only 16K of memory. though. there's sti ll plenty of
room!) To test this graphics group. replace GR. 5 with GR. 4
and GR. 7 with GR. 6 in the programs from the GROUP B pro
grams above. Make sure to have all COLORS = 1 .

Let's take a look at a new command here. This command can
be used in the other graphics modes we have discussed. but
GROUP C graphics should have something new! The com
mand is XIO . and is used for filling in boxes. The format for
XIO is:

XIO 18, #6,0,0, "S:"

Now that's a strange format, but it's the on ly one used, so it
shouldn't be too difficult to remember. We also have to learn a
new POKE. It is 765 and is POKE d with the COLOR number
we want to fill our box with. Since GROUP C graphics only
have 1 foreground color. this should be simple. We will POKE
765,1. Also. we have to use POSITION. With this applica
tion, though, wedonot POSITION text output. butwe POSI
TION the cursor on ly. (We cannot see it on the graphics
screen, but it's there.) We POSITION the cursor to the lower
vertical and leftmost horizontal placement. The following pro
gram illustrates how to do this:

10 PRINT CHR$ (125)
20 GR. 6 : COLOR 1
30 PLOT 0,0: DRAWTO 159,79 : DRAWTO 0,79

: DRAWTO 0,0
40 POSITION 0,79
50 POKE 76 5,1 : REM ** POKE IN COLOR 1 **
60 XIO 18, #6,0,0, "S:"
200 DIM AN$(1) : IN PUT AN $: GR. 0 : LIST

That should have filled your screen with CO LO R 1 . Now
change line 40 to:

40 POSITION 0,39

RUN the program again. and this time the screen on ly fills
halfway. Now change line 40 to:

178

40 POSITION 79, 79

This time around, you got a diagonal fill, leaving a black
triangle on the left side. Experiment with different positions
and different graphics modes with the X 10 command. Be sure
to try it with different colors, in the appropriate modes, by
POKEing 765 with 1, 2, or 3.

GROUP D GRAPHICS: High Resolution

The final screen graphics we will examine is GR. 8, the only
mode in GROUP D. GRAPHICS 8 has a resolution of 320 by
160 (mixed) and 320 by 192 (full). That means it is possible to
have much finer drawings on the screen. The only problem
with GR. 8 is the limited colors. We can get only one color at a
time but, using two luminances, it is possible to draw on the
screen. Essentially, we have a background of one luminance
and draw in a foreground color of another luminance. Given
the high resolution, we could make finer line graphs, but let's
do some drawing instead. (If you want to do graphs with
GRAPHICS 8, just change the programs we have already
done to GR. 8 along with the parameters to adjust to the
higher resolution.)

179

Since we have been drawing only graph lines, straight ones
from one point to another, let's take a look at how to draw cir
cles. Using the SIN (sine) and COS (cosine) functions in
BASIC, we can PLOT and DRAWTO curves on the high
resolution screen of GR. 8. (We'll throw in a couple of straight
line geometric figures in our program as well, just to make
sure you can see how they are done.)

10 GR. 8 : SETCOLOR 1,0, 12 : REM SET LUM INANCE
OF FOREGROUN D TO 12

20 REM
30 REM **** CIRCLE ****
40 REM
50 FOR 1= 0 TO 6.3 STEP 0.01
60 R = 40 : REM RADIUS OF THE CIRCLE
70 XPLACE = 150: YPLACE = 75 : REM

HORIZONTAL AND VERTICAL POSITIONS
80 X = R * COS(I) + XPLACE
90 Y = (R / 4) * SIN (I) 1 0.3 + YPLACE
100 PLOT X,Y: DRAWTO X,Y
110 NEXT I
120 REM
130 REM **** SQUARE ****
140 REM
150 PLOT 10,20: DRAWTO 10,50: DRAWTO 50,50

: DRAWTO 50,20 : DRAWTO 10,20
160 REM
170 REM **** TRIANGLE ****
180 REM
190 PLOT 30,60: DRAWTO 50,80: DRAWTO 10,80

: DRAWTO 30,60
200 REM
210 REM **** PARALLELOGRAM ****
220 REM
230 PLOT 20,90 : DRAWTO 50,90: DRAWTO 40,110

: DRAWTO 10,110: DRAWTO 20,90
300 REM
310 REM **** UTILITY ****
320 REM
330 DIM AN$(1) : INPUT AN$: GRAPHICS 0: LIST

180

With those shapes, you can make just about anything you
want. If you are a better artist than I (and everyone I know
certainly is!), you can do all sorts of artwork. However, it can
be a lot of programming to stick in all the plots and lines you
need for an artistic masterpiece. Why not use our game pad
dIes to do the PLOTs and DRAWTO s for us? Then all we'd
rave to do is to turn the paddles and push buttons to get our
pictures drawn on the screen. The following program does
just that. Before we key it in, let's see how it works. (If you do
not have paddles. you can either skip this program or use
INPUT statements to enter the values of X and Y.)

We use POKE 755,0 to get rid of the cursor, as you will
remember. Then we use POKE 656,0 , a new one. This POKE
sets the cursor to the top of the text window in the mixed
graphics mode. Since we wi ll be using the text window to dis
play the X (horizontal) and Y (vertical) positions for PLOT
and DRAWTO . we will need that information in one place all
the time. Next, we define PAD DLE(0) + 46 to be our X posi
tion and PADDLE(1) to be our Yposition. We added the46 to
PADDLE(0) to center our posit ion on the horizontal axis since
the paddle value on ly goes to 228 and our screen goes to 360.
On the other hand. since our vertical axis is only 160 , we had to
limit thevalueof PADD LE(1) to 159 so as not to put the cursor
out of range. In order to PLOT and DRAWTO, we put in sub
routines beginning at lines 200 and 300 respectively. We set
up PTRIG(0) to jump to the PLOT subroutine and PTRIG(1)
for t he DRAWTO subroutine. This allows us to move the
horizontal and vertical position of our cursor without drag
ging a line with it if we desire. We put in a single buzzer
(CHR$(253)) to PLOT when the button on Paddle 0
[PTR I G(0)] is pressed and two buzzers when the button on
Paddle 1 [PTRIG(1)] is pressed to remind us whether we are
using PLOT or DRAWTO .

To use the program. hook up you r paddles in "ControllerJack
1" and RUN the program. TurninR the paddles to Ret the
des ired position for yo ur first PLOT. press the button on Pad
cll e 0. Then chan Re the posit ions and press the button on Pad
cll e 1. and yo u will Ret a line. If you want to add to the line.
simply change the hori zontal ancl vertical values and press the
Paclclle 1 button aRain . If you want to clraw another lin e which
is not connected . change the pos it ions a ncl press the button on

IHI

Paddle 0. Then, after moving the horizonta l and vertical posi
tions again , draw another line by pressing the button on
Paddle 1.

10 GR. 8 : SETCOLOR 1,0,12
20 POKE 755,0 : POKE 656,0
30 X = PADDLE (0) + 46 : Y = PADDLE(1)
401FY > 159THEN Y= 159
50 IF PTRIG(0) = 0 THEN GOSUB 200
60 IF PTRIG(1) = 0 THEN GDSUB 300
70 PRINT " HOR=";X;" VER=" ; Y; " "
80 FOR PAUSE = 1 TO 10: NE XT

PAUSE: GOTO 20
200 REM
210 REM *** PLOT POI NT ***
220 REM
230 PRINT CHR$ (253) : PO KE 656,0
240 PLOT X,Y
250 RETURN
300 REM
310 REM *** DRAWTD POINT ***
320 REM
330 PRINT CHR$ (253) : FOR J = 1 TO 50 : NEXT

J : PRINT CHR$ (253) : POKE 656,0
340 DRAWTO X,Y
350 RETURN

Animation

We have spent a good deal of time working on charts in the
various GRAPHICS mode since it is important to see the prac
tical appli cations of such graphics. Often users simply see
screen graphics as something to draw mosaic pictures on and
nothing else; however. as we have seen. it is possible to make
very good practical use ofthem as well. Now let's have a li ttle
fun with animation before go ing on to player/missile graphics.
To do so we will retu rn to keyboard graphics since they give us
several different little shapes to move.

Animation in keyboard grap hics can be used in games and for
special effects. However. we will touch upon onl y some ele
mental'Y examples to provide you with the concepts of how

182

animation works. Basically, by placing a figure on the key
board, covering it up, and then putting it in a new position, you
can create the illusion of moving figures. It works in exactly
the same way as animated cartoons. A series of frames are
flashed on the screen sequentially. Even though each indi
vidual frame has a stationary figure, by rapidly flashing a
series of such frames, the figures appear to move. Your com
puter does the same thing. For example, the following little
program appears to bounce a ball in the upper left hand
corner:

10 PRINT CHR$(125J • POKE 755,0
20 PRINT "(CTRL- TJ " • REM SPACE BETWEEN

CTRL-T AND SECOND QUOTATION MARK
30 FOR 1= 1 TO 100. NEXT I
40 PRINT CHR$ (28J;" [CTRL-T]". REM

SPACE BETWEEN FIRST QUOTATION MARK
ANDCTRL-T

50 FOR 1=1 TO 100 . NEXT I
60 PRINT CHR$[28J; GOTO 20

183

What appeared to be a moving "ball" was actually a figure
being placed on the screen, erased, and then placed in a dif
ferent location. Now, let's do the same thing on the vertical
axis. Also, just for fun, let' s add some sound and special
effects.

1!2l PRINT CHR$(125) • POKE 755,!2l
.REM *** REMOVE CURSOR AND BEGIN
ANIMATION BLOCK ***

2!2l FOR 1= !2l TO 22
3!2l POSITION 2!2l,1 • PRINT "(CTRL- T)" • REM A

WHITE BALL WILL APPEAR ON YOUR SCREEN
4!2l FOR J = 1 TO 5!2l . NEXT J . REM DELAY

LOOP TO SLOW MOVEMENT
5!2l POSITION 2!2l,1 • PRINT "(SPACE)" • REM PUTS

SPACE WHERE BALL WAS
6!2l NEXT I
7!2l GOSUB 2!2l!2l
9!2l POSITION 2!2l,1 • PRINT "*,, • END. REM

*** END ANIMATION BLOCK ***
2!2l!2l REM *** SOUND EFFECTS ***
21!2l SOUND !2l,12B,12,14
22!2l FOR DU = 1 TO 5!2l . NEXT DU

• REM SET DURATION
24!2l SOUND !2l,!2l,!2l,!2l. REM TURN OFF SOUND
25!2l RETURN

By experimenting with different a lgorithms, you can create a
wide range of effects. If you have played arcade games with
movement and sound. you now have an idea of how they were
created. Now, go ahead and start working on that SUPER
SPACE BLASTER ALIEN EATER game.

Player/Missile Graphics

Now that we have an ie!ea of how to go about using graphics on
the e!ifferent graphics screens. let's take a look at a vel'y power
fu I aspect of your AT A R I : playe r/ mi ss il e graphics. First. wc' lI
have to explain \v hat pla,ver/ miss il es a re ane! what yo u may
want to use them fo r, Essentiall y. a player/ missile is a fi g-un'
in memory. Depene!in,e: on what) ' Ol1 place in spec ial memory

1?14

locations, you will get different figures or player/missiles.
They can be used in animation and game development, but
they also may be used to liven up virtually any presentation.

The good news about player/missiles in your ATARI is that
you have a tremendous amount of control in their creation
since you enter them in a translated binary code. The bad
news is that they are a bit tricky to understand. However, if we
organize ourselves into the basic components of programming
player/missiles, the effort will be worth the trouble. To pique
your interest let's start with a simple example. Key in the
following, and you will get a little "Player/Missile Rocket."
We'll explain what happened later on, but for now, key in the
program and watch what happens.

10 PRINT CHR$(125)
20 X = 50 : Y = 50: REM X (HORIZONTAL) AND Y

(VERTICAL) COORDINATES OF PLAYER/MISSILE
30 TOR = PEEK (106) - 8 : REM FIND TOP OF

RAM AND SUBTRACT 8
40 POKE 54279, TOR: REM STORE HIGH BYTE

OF TOR AT THIS ADDRESS
50 PMB = 256 * TOR: REM PLAYER/ MISSILE BEGIN
60 RES = 559: POKE RES,46: REM POKE RESolution

46 FOR DOUBLE OR 64 FOR SINGLE
70 ENABLE = 53277 : POKE ENABLE, 3 : REM 3

TO ENABLE AND 0 TO DISABLE
80 HOR = 53248: POKE HOR, X: REM HORIZONTAL

POSITION FOR PLAYER #0
90 P0 = 512 : REM PLAYER #0
100 REM
110 REM **
120 REM SET UP PLAYER DATA FOR PLAYER #0
130 REM *** *
140 REM
150 FOR 1= PMB + P0TO PMB + P0+ 128: POKE 1,0

: NEXT I : REM CLEAR OUT PLAYER #0
160 C0= 704: POKE C0, 3 * 16 + 6: REM

COLOR FOR PLAYER #0
170 REM COLOR IS 16 TIMES COLOR VALUE

PLUS LUMINANCE- COLOR 3 = RED/ORANGE
200 REM

185

21121 REM ***********************
22121 REM POKE IN PLAYER #121
23121 REM ***********************
24121 REM
25121 FOR 1= PMB + PI2I + Y TO PMB + PI2I + 6 + Y

: READ 0 : POKE I,D : NEXT I
26121 REM 6 = NUMBER OF DATA ELEMENTS -1
3121121 REM
31121 REM ********************
32121 REM MOVE PLAYER #121
33121 REM ********************
34121 REM
35121 FOR I = X TO X + 15121 : POKE HOR, I : NEXT I
4121121 REM
41121 REM ***************
42121 REM PLAYER DATA
43121 REM ***************
44121 REM
45121 DATA 192,224,62,127,62,224, 192

Now if everything is done correctly, you should see a little
"space rocket" move horizontally across your screen. There's
a lot more you can do with player/missiles, but let's use the
above example to explain what is happening. The first concept
to examine is that of binary arithmetic. If we conceive of our
player/missiles as little dots on the screen which are together
in blocks, we can understand both binary math and player/
missiles. To begin, we will examine an 8 bit byte, numbered
from 7 to 0, each containing a 0 or 1- the only two numbers in
the binary system.

7 6 5 4 3 2 1 0

010 110 1 0

For your computer to do math, it must convert everything into
the binary system, and the 6502 microprocessor in your
ATARI does this in chunks called bytes 8 bits long. The above
binary number 01011010 is translated into the decimal num
ber 90, and whenever you key in 90, your computer translates
it into 01011010.

186

It makes this conversion automatically, but in order to make
player/missiles, it will be necessary for you to do it. However, it
is really quite simple. In binary arithmetic, since we have only
two digits, whenever we run out of unique combinations, we
tack on a 0 to the end and start over again. We do the same in
decimal math. For example, when we get to 9 in decimal, we
start over with a 1 and tack on a 0 to get 10. Couting in binary,
we have the following:

0=0
1 = 1

10 = 2
11 = 3

100 = 4
101 = 5
110=6
111 = 7

1000 = 8

It's just like when we reach 9, 99, or 999, we start over with 1
and add another digit. In binary, we start over with 11, 111,
1111, etc. since we only have 0 and 1 to work with. However,
because we are not used to working in a binary system, we
have to have a simple way to convert binary to decimal. To
make it simple for you, the following little program will
automatically convert binary into decimal.

187

BINARY TO DECIMAL CONVERSION

10 PRINT CHR$(125)
20 DIM H$(9) : DIM AN$(1)
30 PRINT "BIN:";: INPUT H$
40 IF H$ = "Q" THEN END: REM PRESS 'Q' TO QUIT
50 IF LEN (H$) < > B THEN PRINT CHR$(125)

: PRINT: GOTO 30
6001 = VAL (H$(1,1)) * 128 + VAL(H$(2,2))

* 64 + VAL (H$(3,3)) * 32
7002 = VAL (H$(4,4)) * 16 + VAL (H$(5,5)) * 8 + VAL

(H$(6,6)) * 4 + VAL (H$(7,7)) * 2 + VAL (H$(8))
80 DECIMAL = 01 + 02
90 PRINT: PRINT "DECIMAL= ";DECIMAL
100 POSITION 5,20: PRINT "{ATARI-KEY} HIT

RETURN TO CONTINUE {ATARI-KEY}";
: INPUT AN$

110 PRINT CHR$(125) : PRINT: GOTO 30

Another simple way of making conversions is to remember
that each bit has a different value depending on whether there
is a0 or 1 in the bit. Let's look at these values and how they can
be used for conversion:

"On Value" 128 64 32 16 8 4 2 1

Bit Number 7 6 5 43210

o 1 o 11010

o + 64 + 0 + 16 + 8 + 0 + 2 + 0 = 90

To get our decimal value (90), just add the sum of the "on
values."

Now the obvious question is "Why bother?" Well, since
player/missiles are made up of little dots or pixels which are
created by the various bits being ON, we can create any
shapes we want by turning on the combination of bits we
want. Then by converting the binary patterns to decimal, we
can PO KE in the bit patterns from BASIC. To begin, let's see
how our "space rocket" in the above program was created.
Here's what you'll need:

188

1. Some graph paper.
2. A pencil and clean eraser
3. A ruler

On the graph paper, draw an 8 wide by 7 long matrix. (The
width has to be 8, but the length of figures can be longer or
shorter.) We will use the binary conversion program to enter
the numbers from the leftmost square or bit to the rightmost
square in the byte.

Let's take a look at the following figure and see how the
player/missile data is created.

189

192
224
62
1 27
62
224
192

Let's look at Row # 1 and see how we converted a piece of
our drawing.

ROW#l

"On Value" 128 64 32 16 8 4 2 1

Bit Number 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0

128 + 64 + o + o + 0 + 0 + 0 + 0 = 192

Now, while the process is admittedly somewhat involved and
exacting, it is more a matter of organization than complexity.
After all, it is relatively simple to draw a player/missile on
graph paper once you have your plot set up, and since you can
draw fairly detailed shapes your efforts will be rewarded.
Also, if you draw player/ missiles like the one in the example,
certain rows repeat themselves; so once you have figured out
the values for a row, all you have to do when they are repeated
is enter the identical data.

190

SAVE YOUR PLAYER/MISSILES

Once you have figured out a player/missile and have all
the data laid out, it would be wise to save that player/
missile to disk. By using line numbers over 400 in sub
sequent applications, just load the data for the player/
missile into memory, and then program the parameters
from lower line numbers. (i.e. commands which turn on
graphics, order moves. READ DATA, etc.) This will save
you the trouble of having to re-do figures you have
already worked out. Also, you can change part of your
player/missile to make new player/missiles. So if you
save your player/ missile drawings, you can add or mod
ify lines; then, rather than having to begin all over again,
simply by adding new DATA you can modify existing
player/missiles to create what appear to be entirely new
ones. (In the next chapter we will see how player/missiles
can be saved with LIST, making their inclusion into new
programs even easier.)

N ow that we see how to create player/missiles, the next step is
to get them to do tricks for us. First of all, we have to be aware
of the layout of the area through which we move. It does not
matter what screen is used in moving your player/missiles. In
fact, if you add a line at the beginning of our example program
for GRAPHICS 2,3,4 - right on up to GRAPHICS 8 - the lit
tle rocket will act the same as it does on the default GRAPHICS
o screen. (Go ahead and try it!) In our example, we used only
part of the available vertical area for a player missile - seven
out of a possible 256. However, we did use the entire eight
horizontal pixels available to us.

Movement is through an independent screen, superimposed
on any current graphics screen. Roughly, horizontal can be
from 0 to 256, and for most practical purposes, the maximum
Y (vertical) value is 120. Horizontal movement is accom
plished by changing the value of the horizontal register (53248
for Player #0). The movement created by rapid change of this
register is smooth and animated, but vertical movement is
more complicated and slower. By changing the value of Y and

191

entering the different values into the register, it will appear to
move to different locations. A little trick with vertical move
ment is to have a 0 value in the first and last bytes of your
player/missile. In this way, it is possible, incrementing the
vertical position by 1, to smoothly redraw the player/missile
in consecutive vertical positions without smearing the screen
with the last or first byte. The following little program shows
how to move diagonally. We will use our rocket, but we have
added a 0 to the first and last bytes (0's in the first and last
DATA statements). Don't write this entire program! Take the
ORIGINAL PROGRAM and using your EDITOR, just make
the necessary changes!

10 PRI NT CH R$(125)
20 REM X (HORIZONTAL) AND Y (VERTICAL)

COORDINATES) OF PLAYER/ MISSILE ARE
DEFINED IN MOVEMENT SECTION

30 TOR = PEEK (106) - 8 : REM FIND TOP OF
RAM AND SUBTRACT 8

40 POKE 54279, TOR: REM STORE HIGH BYTE
OF TOR AT THIS ADDRESS

50PMB=256 * TOR: REM PLAYER/ MISSILE BEGIN
60 RES = 559: POKE RES,46: REM POKE RESolution

46 FOR DOUBLE OR 62 FOR SINGLE
70 ENABLE = 53277 : POKE ENABLE, 3 : REM 3

TO ENABLE AN 00 TO DISABLE
80 HOR = 53248 : REM HORIZONTAL POSITION

FOR PLAYER #0
90 P0 = 512 : REM PLAYER #0
100 REM
110 REM **
120 REM CLEAR PLAYER DATA AREA AND

SET COLOR
130 REM **
140 REM
150 FOR 1= PMB + P0TO PMB + P0 + 128

: POKE 1,0: NEXT I:
REM CLEAR OUT PLAYER #0

160 C0 = 704 : POKE C0, 3 * 16 + 6 : REM
COLOR FOR PLAYER #0

170 REM COLOR IS 16 TIMES COLOR VALUE
PLUS LUMINANCE- COLOR 3 = RED/ ORANGE

300 REM

192

310 REM **
320 REM MOVE & CREATE PLAYER #0 IN X AND

Y DIRECTIONS
330 RE M ***** **** **** ******************* **** ******
340 REM
350 FOR Y = 20 TO 100
360 RESTORE: X = Y: POKE HOR, X
370 FOR 1= PMB + P0 + Y TO PMB + P0 + B + Y

: READ D: POKE I, D : NEXT I
3B0 NEXT Y
400 REM
410 REM ******************
420 REM PLAYER DATA
430 REM ******************
440 REM
450 DATA 0,192,224,62,127, 62,224,192,0
460 REM NOTE 0'S TACKED ON TO BEGINNING

AND END OF DATA

At this point, before going on to multiple players, missiles, and
other features of these special graphics, let's stop and go over
the first program to see exactly what we did. It is important to
use descriptive variables and lots of REM statements with
these graphics since we will be using more than a single player
and missile. To keep it all straight and to help in understand
ing, use the variables and REM statements. It takes up
memory, but even on the smallest ATARI 400, you have
plenty of room for these examples. Don't worry about under
standing everything at this point, but with time and practice,
you will see the importance of the organizing concepts we are
using. We will now go over the program step by step.

Step 1 LINES 10-20. In line 10 we simply cleared
the screen. Since player/missiles will crash right on
through anything on the screen, it is very important to
clear things up first. In line 20 ,we defined the initial X
and Y coordinates using the variables X and Y. (Better
to be clear than original!)

Step 2 LINES 30-50. The first thing we did was to
locate the Top Of Ram (TOR) and subtract 8. This
value is used in lines 40 and 50. First, in line 40, we
store TOR in location 54279, a special address used in

193

player/missile graphics. Then. in line 50. we use the
value in TO R times 256 to define our Player/Missile
Begin (or PMBASE as it is also called). These same
lines are used in all player/missile graphic programs.

Step 3 LINES60-90. The decimal memory address
which controls RESolution is at 559. so we defined
RES = 559. Then we POKEd RES with 46 for double
resolution. Had we wanted single resolution. we would
have POKEd RES with 62. Likewise. to ENABLE our
player/missiles. we defined the enable/disable address
as ENABLE and POKEd it with 3 to crank up our
player/missiles. A 0 to ENABLE will turn them off.
Next we defined the HORizontal position register of
Player #0 to HOR. Player #0 horizontal register is
53248. (Since each player and missile has an individual
horizontal position register. we should have defined it
as HP0 or some similar name. but for the first time
around. I wanted to be a bit more descriptive with this
register.) The following are the values for different
horizontal positions registers for all four players and
missiles along with variable names we will use:

HP# = Horizontal position player #.
HM# = Horizontal position missile #.
HP0 = 53248
HP1 = 53249
HP2 = 53250
HP3 = 53251
HM0 = 53252
HM1 = 53253
HM2 = 53254
HM3 = 53255

As we will see. it is important to have individual regis
ters for both players and missiles. This is because you
may want to separate a missile from a player. (e.g ..
Blast the heathens!)

Finally. we defined Player #0 as P0. There are offsets
for each player using double and single resolution.
The offset values for double and single resolution are:

194

DOUBLE

P0 = 512
PI = 640
P2 = 768
P3 = 896

SINGLE

P0 = 1024
PI = 1280
P2 = 1536
P3 = 1792

Step" LINES 100-170. The first thing we must do
is to clear the player/missile area in memo ry we are
going to use. This is 128 bytes we want to fill with 0's.
Each player has the same number of bytes, so using
the 128 offset will clear any player we want. Next, we
set the color. Each player/missile has its own color
register, as follows:

C0 = 704
Cl = 705
C2 = 706
C3 = 707

Using the formula COLOR * 16 + LUMINANCE, we
can create 16 hues (0-15) with 8 different luminances.
That's 128 different colors! (The bad guys are green,
remember.)

Step 5 LINES 200-260. In all those REM state
ments, only line 250 is relevant. Using the values we
generated or defined, we now create a player. We
made a loop beginning at the Player Missile Begin +
Player Missile # + Vertical position and ending at
that location plus the number of bytes minus one. This
gave us the correct range of addresses to store the
player DATA.

Step 6 LINES 300-350. This block too has only one
significant line. Line 350 sets up a loop using the
horizontal position X, which we defined with a begin
ningvalueof50, and using it we POKE the HOR (for
horizontal placement) variab le. This makes our play
move.

Step 7 LINES 400-450. Among the REM state
ments, westuck our DATA in line450 for the playerwe
created on graph paper.

195

N ow, if we keep things straight with variables defining offsets
and registers rather than trying to remember a whole slew of
numbers, writing more complex programs is much easier. By
and large, we let the computer do the figuring rather than try
and do it ourselves. For example, we could multiply our
desired color values by 16 and add the luminance and put in a
single number when PO KEing in the player/missile colors.
However, when we go back and read that program, we prob
ably wouldn't have the sli ghtest idea of what that number
means. In fact, we could have entered PO KE 704, 54 and had
the same results as POKE C0, 3 * 16 + 6, but which one is
clearer? (You said, "Neither?")

Expanding Players

Each player has three possible relative sizes: normal, double,
and triple. It is a simple matter to change the sizes of players,
since each has a 8ize register. By PO K Eing a 0, 1 or 3 into the
register address, the player/missile will appear in single, dou
ble or triple size respectively. The values for the different
registers are as follows:

SIZE REGISTERS

80 = 53256
81 = 53257
82 = 53258
83 = 53259

To test this out, enter the following line In our original
program:

170 S0 = 53256 : POKE S0, 1

That will give you a double sized player/missile. If you POKE
80 with 3, your player/missile will be triple sized. By changing
the sizes of your player/missiles, you can make them appear to
get closer or further away. Experiment with them!

196

MULTIPLE PLAYERS

In order to have multiple player/missiles, it is necessary to
enter data into a different part of memory and control a
second, third, and even fourth player missile. Again, rather
than rewriting an entire new program, let' sjust fix up our first
one to include another player/missile. (If there are extra
player/missiles in memory, either by PO K Eing the player/
missile locations with 0's or turning off your computer, you
can clear out the unwanted player/missiles.)

10 PRINT CHR$(125)
20 X = 0 : Y = 50: REM SET X AND Y COORDINATES
30 TOR = PEEK (106) - 8 : REM FINO TOP OF

RAM AND SU8TRACT 8
40 POKE 54279, TOR : REM STORE HIGH BYTE

OF TOR AT THIS ADDRESS
50PMB=256 * TOR : REM PLAYER/ MISSILE BEGIN
60 RES = 559 : POKE RES,46: REM POKE RESo lution

46 FOR DOUBLE OR 62 FOR SINGLE
70 ENABLE = 53277 : POKE ENABLE, 3 : REM 3

TO ENABLE AND 0 TO DISABLE
80 H0 = 53248 : H1 = 53249 :REM HORIZONTAL

POSITION FOR PLAYER #0 AND PLAYER #1
90 P0 = 512 : P1 = 640 : REM OFFSETS FOR

PLAYERS #0 AND #1
100 REM
110 REM ***********************************
120 REM CLEAR PLAYER DATA AREA AND

SET COLOR
130 REM ***********************************
140 REM
150 FOR 1= PMB + P0TO PMB + P0 + 128

: POKE 1,0: NE XTI : REM CLEAR OUTPLAYER #0
155 FO R I = PM B + P1 TO PM B + P1 + 128

: POKE 1,0 : NE XT I: REM CLEAR OUT PLAYER # 1
160 C0 = 704 : POKE C0, 3 * 16 + 6 : C1 = 705

: POKE C1 , 6 * 16 + 6: REM COLOR
FOR PLAYERS #0 & # 1

170 REM COLOR IS 16 TIMES COLOR VALUE PLUS
LUMINANCE - COLOR 3 = REO/ ORANGE &
COLOR 6 = PURPLE/ BLUE

]97

2121121 REM
21121 REM *****************************
22121 REM CREATE PLAYERS #121 & #1
23121 REM *****************************
24121 REM
25121 FOR 1= PMB + PI2I + Y TO PMB + PI2I + 6 + Y:
READ 0 : POKE I. 0 : NE XT I
26I21FORI = PMB + P1 +Y+ 1I21TDPMB+P1 + 6+Y

+ 1121: READ 01 : PO KE I. 01 : NEXT I
27121 REM NOTE THAT AN 'OFFSET' OF 1121 WAS

ADDEO TO THE Y VALUE FOR PLAYER # 1
28121 REM THIS WAS SO THATTHE PLAYERS WOULD

BE IN DIFFERENT VERTICAL LOCATIONS
3121121 REM
31121 REM ***************************
32121 REM MOVE PLAYERS # 121& # 1
33121 REM ***************************
34121 REM
35121 FOR I = X TO 255 : POKE HI2I. I : POKE

H1 . 255- 1 : NEXT I
36121 REM HAVE PLAYERS FLY IN OPPOSITE

DIRECTIONS
4121121 REM
41121 REM *******************
42121 REM PLAYER DATA
43121 REM *******************
44121 REM
4 5121 DATA 192. 224. 62 . 127. 62. 224. 192
46121 DATA 7 .1 5. 126. 252. 126.15.7

We've been referring to player/missiles. but we haven' t done
anything with the missiles. To understand missiles. you' ll
have to put on your thinking cap a li ttle: they are not quite like
players. but in most ways they are. Missiles reside in the offset
from 384 to 511. right below Player #0. However. t hey are
separated "horizontall y" instead of "vertically. " as are players.
For example. the offset for P layer 0 begin s a t 512. Player 1 at
640 and so forth. However. a ll the missiles. 0-3. reside in the
same memory. To access a miss il e. you have to cal"ve up a byte
in to 4 parts:

] 98

MISSILE MEMORY STORAGE

** ** -,-

"On Value" 64 32 16 8 4 2 1
** ** *

Bit Number 5 4 3 2 1 0
-* *

** M2 ** Ml ** M0 *

Each missile only occupies a part of each byte. Therefore, to
access MissileRl. instead of POKEing in the missile in a range
of addresses between 384 and 511, simply POKE in any
address in that range and 1 or 2. For Missile 3, you would
PO K E in 64 or 128. for Missile 2, 16 or 32 and for Missile 1, 4 or
8. Now let's take a look at a program using a missile. We'll use
our rocket, and while we're at it, we make some sound effects
for "shooting" our missile.

10 PR INT CHR$(125)
20 X = 50 : Y = 60
30 TOR = PEEK (106) - 8 : POKE 54279, TOR
40 PM8 = 256 * TOR
50 RES = 559 : POKE RES, 46 : ENA8LE = 53277

: POKE ENA8LE.3
60 HOR = 53248 : POKE HOR, X : MHOR =

53252 : REM MHOR IS THE M ISSILE'S
HORIZONTAL REGISTER

70 P1 = 512 : MISSILE =384 : MOFFSET = 3: REM
MOFFSET IS TO PUT THE MISSILE IN THE
MIDDLE OF OUR PLAYER

80 FOR 1= PM8 + MISSILE TO PM8 + P1 + 128
: POKE 1,0: NEXT I: REM CLEAR MISSILE AND
PLAYER AREAS

90 C1 = 704 : POKE C1 , 3 " 16 + 6
100 PSIZE = 53256 : POKE PSIZE, 1 : REM

00U8LE SIZE PLAYER
110 FOR 1= PM8 + P1 + Y TO PM8 + P1 + Y + 6

: READ 0 : POKE 1,0 : NEXT I
120 POKE PMB + MISSILE + Y + MOFFSET,2 : REM

CREATE MISSILE 0
130 SOUND 0, 90, 8,15
140 FOR PAUSE = 1 TO 50: NEXT PAUSE
150 SOUND 0, 0, 0, °

199

160 FOR X = 55 TO 255 : POKE MHOR,X : NEXT
X: REM FIRE MISSILE

170 GOTO 130
200 DATA 192, 224,62,127,62,224, 192

Line 120 is where we create our missile. We used the offset
M 0 F FS ET in order to put the missile right on the nose of our
rocket. Otherwise, it would have been up on the top fin. The
register MHO R controls the horizontal movement of the mis
sile, and the vertical control is the same as the Y value which
places the player vertically.

Moving Player/Missiles with the Paddles

Another important aspect of moving player/missiles is using
them with paddles. The horizontal movement is excellent, but
the vertical is somewhat clunky without more advanced tech
niques. Basically, you define the horizontal (X) movement as
one paddle and the vertical (Y) movement as another. We will
use PAD DLE(0) as our horizontal controll er and PAD DLE(1)
as the vertical. (Just ed it your original program to put this in!)

PLAYER PADDLE MOVEMENT

10 PRINT CHR$(125)
20 X = PADDLE(0) : Y = PADDLE(1)
30 TOR = PEEK (106) - 8 : POKE 54279, TOR
40 PM8 = 256 * TOR
50 RES = 559 : POKE RES, 46 : ENABLE = 53277

: POKE ENABLE,3
60 HOR = 53248 : POKE HDR, X
70 P1 = 512
80 FOR 1= PMB + P1 TO PMB + P1 + 12B : POKE

1,0 : NEXT I
90 C1 = 704 : POKE C1, 3 * 16 + 6
100 PSIZE = 53256 : POKE PSIZE, 1
110 Y = PADDLE(1) : IF Y > 80THEN Y = B0
120 IF Y < 20 THEN Y = 20
130 FOR 1= PMB + P1 TO PMB + P1 + 128 : POKE

1,0: NE XT I
140 FOR 1= PMB + P1 + Y TO PMB + P1 + Y + 6

: READ 0 : POKE I,D : NE XT I

200

150 X = PADDLE(0) : POKE HOR,X
160 RESTORE : IF PADDLE(1) > Y + 1 OR

PADDLE(1) < Y - 1 THEN 110
170 GOTO 150
200 DATA 192,224,62,127,62,224, 192

As you will see, the vertical movement i~ slow and seems to
bounce rather than rise smoothly. That's because it has to
be redrawn every time the Y value in PADDLE(1) changes
more than plus or minus one. However, if you leave PAD
DLE(1) alone, you will see how easy it is to move the player
horizontally.

The final characteristic of player/missile graphics we should
cover is single line resolution. Here, the players look less
blocky, but they take up more memory. Basically, to get single
line resolution we change a few parameters of our variables.
(By the way, you should now see the value of using variables
instead numbers all the time, since in this next program, all we
have to do is change a few variables.)

SINGLE LINE RESOLUTION

10 PRINT CHR$(125)
20 GR. 4 + 16 : X = 0: Y = 100: REM USE FULL

SCREEN GRAPHICS MODE 4
30 TOR = PEEK (106) - 8 : POKE 54279, TOR
40 PMB = 256 * TOR
50 RES = 559 : POKE RES, 62 : ENABLE = 53277 :

POKE ENABLE,3 : REM CHANGE RES
FROM 46 TO 62

60 HOR = 53248 : POKE HOR, X
70 P1 = 1024 : REM PLAYER 0 IN SINGLE

LINE RESOLUTION
80 FOR 1= PMB + P1 TO PMB + P1 + 256 : POKE

1,0: NEXT I : REM NOTE CHANGE
FROM 128 TO 256

90 C1 = 704 : POKE C1, 3 * 16 + 6
100 PSIZE = 53256 : POKE PSIZE, 0
110 FOR 1= PMB + P1 + Y TO PMB + P1 + Y + 6

: READ 0 : POKE I,D : NEXT I
120 FOR X = 0 TO 255: POKE HOR,X : NEXT X
130 GOTO 120
200 DATA 192, 224, 62, 127,62, 224,192

201

That's about it for player/missiles; whatever you want to do
with them is left to your imagination. They are a bit more com
plicated than what we have dealt with previously, but if you
remember to organize your programs into blocks, have recog
nizable variables, and pay attention to the sequence, there is a
great deal you can do with player/ missiles. You may have
noticed that animation is actually simpler with player/missiles
than with previous animation we studied. We did not have to
follow our player/missiles with an erase, and you might notice
that one player/missile can pass behind another. If you want,
you can even control whether a player/ missile passes in front
of or behind another player or the background using register
623. The following parameters are used:

PRIORITY = 623

POKE PRIORITY, 1 : All the players have priority
over the background.

POKE PRIORITY, 2 : Players 0 and 1 first, then the
background, and then Players 2 and 4

POKE PRIORITY, 4 : The background has priority
over all players.

POKE PRIORITY, 8 : Playfield registers 0 and 1, then
all the players, and then Playfield registers 2 and 3.

Experiment with the priority registers. We did not use them in
our examples simply to keep things as simple as possible. So,
while there is a good deal of figuring to be done, there is more
you can create with player/missiles than with other forms
of animation.

SUMMARY

This chapter has taken us in to the world of computer graphics.
Beginning with screen graphics, we saw how we could mix
graphics and text together to create graphs. Then we saw how
we could animate screen figures by putting them in different
screen locations, erasing them, and then re-entering them at

202

another location. We also found out how to color our graphics
both from the keyboard and from POKEing the color screen on
top of the figures we had entered. By programming with
"offsets" we were able to coordinate our figures and colors.

The final part of our exploration into graphics took us into the
world of player/missiles. Beginning with a drawing on graph
paper, we transferred our creations to the computer's memory
by translating our figures into binary images. Then we learned
how to store the information into memory and bring out an
animated player/missile. Next, we added color and expanded
both the size of our player/missiles and their placement on the
screen. Finally, we saw how to create and animate multiple
player/missiles simultaneously.

As a final note on graphics, it should be pointed out that
besides being fun and artistic, computer graphics can be put
to other practical uses as well. We saw, for example, how to
create graphs with screen graphics, but you can also use
player/missile graphics in programs to make them clearer and
more interesting. We naturally think of games when working
with player/missiles and animation, but do not limit your use
of graphics to the obvious. Also, see how they can be employed
to enhance information for your computer or used in some
other creative manner.

203

-.

-
-

-.

.-

-

CHAPTERS

Data and Text Files
with the Tape and Disk System

Introduction

In this chapter we are going to learn more about some advanced
applications with the tape and disk system. First, we will look
at some additional commands for saving information to tape
and disk as well as doing other programming chores. These
new forms of saving information will allow you to load different
parts of a program from separate files. Secondly, we will be
covering two types of files: (1) Data files, and (2) Sequential
files. There are many similarities between data and sequential
files, and once you've learned one, the other will be simple.
Your disk system's data files are a type of sequential file, and
we might even consider the way in which your cassette stores
data to be a form of sequential text file. However, for the sake
of clarity we will discuss each separately.

Before beginning, I want to point out that the ATARI 810 and
1050 floppy disk systems are very sophisticated and smart
devices. For beginners, it can be difficult to understand some
of a disk drive's more advanced applications, and there is a
very real risk of destroying programs and data on your disk.
Therefore, in this section, we will take each step slowly and,
even at the risk of redundancy, explain the various functions
of commands dealing with your disk system. Also, we will not
be dealing with the most advanced features of the disk operat
ing system, for they are beyond the scope of this book.
However, we will be going to a middle range of sophistication,
and it is strongly advised for those of you with a disk system to
use a blank formatted disk on which you have not accumulated
programs. By doing so you will not inadvertently destroy
valuable data and programs. (This comes from the voice of
experience, having clobbered numerous disks myself!)

205

Listing and Entering Programs to
Cassette and Disk

Up to this point, all we have used the LIST command for is to
look at the contents of our programs. It is possible to use LIST
to save programs to cassette or disk as well, and programs
saved in this manner can be loaded with ENTER. The advan
tage of using this method is that you can save just a portion of
your program and then ENTER it into memory without destroy
ing the contents of memory. For exarople, let's say that you
have labored long and hard on graph paper to create several
player/missiles. Instead of having to key them in anew every
time you want to use them in a program, wouldn't it be nice
simply to tack them onto a program? Or even better, what if
you have several routines you've created and you want to use
these routines in various programs without having to key
them in anew every time you use them. That's exactly what
LIST and ENTER allow you to do.

To use these, let's load into memory the program we wrote in
Chapter 7 to illustrate player/missiles. N ow enter the following:

CASSETTE USERS
LIST "C:", 450 < RETURN > Press REC/ PLAY
< RETURN >
DISK USERS
LIST "01: PMOATA" , 45121

What we did was save only line 450, the line with our player/
missile DATA. If we had not entered any line numbers, the
entire program would have been recorded on cassette or dis
kette, or if we had entered a range of lines (e.g., 400, 500) the
specified range of line numbers would have been saved.

Now let's try a little experiment. Clear memory with NEW,
and enter the followin g little program:

1121 PRINT CHR$(125)
2121 FOR I = 1 TO 7
3121 READ 0
4121 PRINT 0
5121 NEXT I

206

Cassette users should rewind their tape and key in:

ENTER "C:" < RETURN > Press PLAY < RETURN >

Disk users key in:

ENTER "01: PMDATA" < RETURN >

Once your READY prompt returns, enter RUN. Voila! Your
program now has DATA to read, and it did not get clobbered
when you used ENTER as it does with CLOAD or LOAD. LIST
your program to make sure that line 450 has been added.
Experiment with different program parts to see how you can
use the LIST and ENTER commands with your program
recorder and disk drive. As you begin writing often-used sub
routines, you can save them with LIST and create all kinds of
different programs simply by ENTERing different segments
rather than keying them in over and over again.

OPEN, GET and PUT

There is another way to input data that we have not yet
examined. Usually, when we have data to input, we use the
IN PUT statement in our programs. However, if we want only
a single key to enter information without having to press
RETURN, the GET statement is handy. We have not dis
cussed it until now since it is necessary to use the 0 PEN com
mand to access an "Input/Output Control Block" or IOCB. To
use GET it is necessary to direct input to the keyboard with
OPE N. We use the following format with 0 PEN:

OPEN, (Ref. number 1-5), (Code number), (Auxiliary
code), ("File designation: title")

As we look further into files, we will provide the various
parameters used with 0 PE N, but for now, we will see how to
use GET with the keyboard and OPEN. Enter the following
program:

10 PRINT CHR$(125)
20 OPEN #5,4, 0, "K:" : REM THE "K:" INDICATES
'KEYBOARD'

207

3121 PRINT "PRESS ONE KEY"
4121 GET #5, V
5121 PRINT V
6121 PRINT CHR$(V)
7121 CLOSE #5

Let's go over this step by step so that you can see what
happened:

Step 1 LINES 10-20. Clear the screen in line 10. In
line 20, we used the Reference Number 5. We could
have used any number between 1 and 5 (and some
times 6 and 7). The second number, '4', is a code for an
input operation. The third number is '0', indicating no
special device dependent auxiliary is required. Final
ly, we used "K:" to indicate the keyboard, just as we
have used "C:" for cassette and "0:" for disk drive.

Step 2 LINES 30-40. Line 30 prompts the user to
press a key, and line 40 GETs the key in the variable
'V'. The value of GET is the ATASCII value of the key
pressed. Note that we used the # 5 reference we set up
in the OPEN statement in line 20.

Step 3 LINES 50-70. First we printed out the
value of V, and then to show that V was equal to the
CHR$ value of V, we PRINTed CHR$(V). Finally, we
CLOSEd the channel we had opened, #5.

Now that we can see how to use GET to input a single byte,
let's look at PUT, which outputs a single byte. Try the follow
ing program, and note that the output device is "S:" for
'screen'. (We would not want output to the keyboard!)

1121 PRINT CHR$(125)
2121 OPEN #3,8,121, "S:"
3121 FOR I = 121 TO 255
4121 IF 1= 125 THEN NEXT I
5121 PUT #3, I
6121 NEXT I
7121 CLOSE #3

When you RUN this program, notice how the output was for
matted. Usually when there is no semi-colon after a symbol

208

output to the screen, there is a line feed. However, with the
PUT statement, the output begins in the upper lefthand cor
ner and each symbol is placed into the next location. To see
something really interesting, delete line 10. LIST the program
so that there's something on the screen and RUN the program
again. As you will see, the screen is still cleared, and the out
put begins in the upper left hand corner. Remember this when
using PUT.

ypg ~ ~ PlAYEKS i ['n t,,, of Diner stoff J

~\ ~ ~oo~

"

Data Files and Your Cassette

OPEN,INPUT#, PRINT# and CLOSE

In order to prepare your cassette for reading or writing infor
mation from within a program, the tape file must first be pre
pared with an OPEN statement, just as we saw with the GET
and PUT commands. The format is as follows for 1) Writing
and 2) Reading:

209

Write To Tape
OPEN #2 , 8,0, "C:"

Read From Tape
OPEN #2,4,0, "C:"

As you may have noted. the only difference is that an '8' is used
to output data to tape and a '4' is used to input (read) data
from tape.

To see how data files can be used. let's write a little program
which stores batting averages in data files. We will create a
program which first uses input from the keyboard and writes
the information to tape and then a second program which
reads the data from tape and figures out a batting average.

10 PRINT CHR$(125)
20 DIM 8A(10) : REM 8ATTING AVERAGE
30 FOR 1= 1 TO 10
40 PRINT "BATTING AVERAGE FOR GAME #"; I
50 INPUT AV
60 BA[I) = AV
70 NEXT I
80 PRINT CHR$(125) : REM CLEAR SCREEN
90 PRINT "PRESS PLAY & REC ON RECORDER"

: PRINT: PRINT "PRESS < RETURN >
ON COM PUTER"

100 REM
110 REM *****************
120 REM WRITE TO TAPE
130 REM *****************
140 REM
150 OPEN #2,8,0, "C:"
160 FOR 1= 1 TO 10
170 PRINT #2; BA[I)
180 NEXT I
190 CLOSE #2

Before running this program. be sure to note the beginning
position on your tape counter. We will use it in our program
which reads from the tape. OK, now dream up some batting
averages (or any numbers you'd like if you're not a baseball
fan) and RUN the program. When you're finished entering

210

and recording the information, press PLAY and REC on your
program recorder and RETURN on your computer. Wait a
while, and when the READY prompt comes up, pressSTOP on
your recorder and rewind it. Now, we're ready to read the data
from the cassette tape. To do so, we have to use a tape read
ing program:

10 REM BATTING AVERAGE STARTS AT
10 COUNTER # N (use the counter value for the

beginning of the data from the program which
wrote the data to tape.)

20 PRINT CHR$(125)
30 PRINT " PRESS PLAY ON RECORDER" : PRINT

: PRINT "PRESS < RETURN > ON COMPUTER"
100 REM
110 REM **************************
120 REM READ DATA FROM TAPE
130 REM **************************
140 REM
150 OPEN #2.4. 0. "C:"
160 FOR I = 1 TO 10
170 INPUT # 2 ; AV
1 B0 PRINT AV
190 AT = AT + AV : REM RUNNING TOTAL

OF BATTING AVERAGES
200 NEXT I
210 CLOSE # 2
300 REM
310 REM **
320 REM FIND AVERAGE FROM DATA ON TAPE
330 RE M * **** **** *********** ******** **** **** ****
340 REM
350 PRINT "AVERAGE FOR 10 GAMES ="; AT/ 10

In the above two programs, we used two new commands, even
though you may not have noticed it. We used P R I NT # and
INPUT # . When we write data to tape we PRINT # it to the
cassette instead of to the screen. When we read data from a
tape, we IN PUT # it from the tape instead of the keyboard.
Think of the PR I NT # and I N PUT # statements in the same
way you would PRINT and INPUT, but going to or coming
from different sources.

211

Now that we have seen all of the commands for reading and
writing files from and to tape, let's take a look at an applica
tion. We might as well use a practical application, so we will
make a li st of our friends' phone numbers. Whenever we want
to call a friend, all we have to do is read the list from tape.
First, we must create a li st to enter names and save them to
tape. After we have done that, we will write a program to ret
rieve the names and numbers.

10 PRINT CHR$ (125) : DIM FN $ (35) . FP(6)
20 FOR 1= 1 TO 6 : READ FN$
30 PRINT FN$; "'S NUMBER";
401NPUT FPH : REM ONLY ENTER NUMBER

WITHOUT SPACES OR DASHES
50 FP(I) = FPH
60 NEXT I
70 RESTORE: REM RESET DATA POINTER

TO BEGINNING
100 REM
110 REM *****************
120 REM WRITE TO TAPE
130 REM *****************
140 REM
150 PRINT CHR$(125) : PRINT"PRESS PLAY &

REC ON RECORDER" : PRINT : PRINT "PRESS
< RETURN > ON COMPUTER"

160 OPEN #5, B, 0, "C:"
1 70 FO R I = 1 TO 6
1 B0 READ FN$
190 PRINT #5 ;FN$
200 PRINT # 5 ;FP(I)
210 NEXT I
220 CLOSE # 5
300 REM
310 REM *************
320 REM NAME LIST
330 REM *************
340 REM
350 DATA ART, SALLY, BILL, NANCY, MARCIA. DAVE

212

To use this program, get a blank tape and rewind your
cassette. RUN the program, and you will be prompted to
PRESS PLAY and REC ON RECORDER when you have
entered all the numbers from the NAM E LIST from the DATA
statements in line 350. As soon as you press the play and
record buttons and R ETU R N on your computer, your tape
recorder sp indles will begin turning. When all the information
is saved, the recorder will stop and the screen will display the
READY prompt. All your data has been saved. (Tape storage
is relatively slow compared to disks, so to save time it is sug
gested to use just a few names (six or so as in our example)
at first.

Now let's see if everything worked out according to plan. To
do that we need a program to read our data; we will use
INPUT# to read the names and numbers. Since the names
were saved as strings, and the phone numbers as numeric
variables, we will have to alternate between string and numeric
variables with our INPUT#. While we're at it, let's make a
program which will read a li st of any number of names. Since
our example used six, we could use a FOR/ NEXT loop to
generate the INPUT#s, but sometimes we may have forgot
ten the number of names we used. Therefore, we will use the
TRAP statement. Essentially the TRAP statements will
branch to a line in the TRAP statement when an error is
encountered. In this case the ERR 0 R would be 136, indicat
ing "End of File." So when we run out of data, instead of
bombing, the program will branch to the CLOSE# routine at
line 150. (Remember to rewind your tape before RUN ning
this program!)

10 PRINT CHR$(125): DIM FN$(35)
20 TRAP 150
30 PRINT " PRESS PLAY ON RECORDER" : PRINT

: PRINT " PRESS < RETURN > ON COMPUTER"
40 OPEN #5,4,0, " C: "
50 INPUT #5; FN$
60 INPUT #5; FP
70 PRINT FN$; " "; FP
80 GOTO 50
100 REM
110 REM ******************************
120 REM CLOSE THE FILE ON TRAP

213

130 REM ******************************
140 REM
150 CLOSE #5

When you RUN this program, you will be prompted to PRESS
PLAY on RECORDER and PRESS < RETURN > ON COM
PUTER. When you do so, the screen will freeze, and after a bit
your friends' names and phone numbers you entered will
appear. After a little while your READY prompt will appear
indicating the end of file has been reached and the file is
closed.

Now let's go back to see how we can save player/ missile infor
mation on tape. Also, we will see how we can load the informa
tion from tape and execute a program using the tape data.
There is a word of caution in order, however. Sometimes there
is more information on the tape then we want, and so it is
important to load into memory just what we want and ignore
everything else. This is a little inconvenient since we have to
keep an eye on all of our data and know how many pieces of
data make up our player/missiles. However, since that infor
mation is necessary anyway, our job is not too difficult.

To get started, we will create a player/ missile and save it to
tape. We'll use our "rocket" character again :

WRITE PLAYER/MISSILE DATA TO TAPE

10 PRINT CHR$(125) : DIM PMD(7)
20 FOR 1= 1 TO 7
30 READ 0
40 PMD(I) = 0
50 NEXT I
100 REM
110 REM ***********************
120 REM WRITE DATA TO TAPE
130 REM ***********************
140 REM
150 PRINT "PRESS PLAY & REC ON RECORDER"

: PRINT : PRINT "PRESS < RETURN >
ON COMPUTER"

2 14

1 60 0 PEN # 1 , 8, 0, "C:"
170 FOR 1= 1 TO 7
180 PRINT #1; PMD(I)
190 NEXT I
200 CLOSE # 1
300 REM
310 REM *************
320 REM READ DATA
330 REM **** *********
340 REM
350 DATA 192, 224, 62,127,62,224,192

We created the player/ missile just as we would were it part of
a program to make the character. We need only to change the
DA TA elements in line 350 whenever we want a different
player/missile recorded on tape. For larger player/missiles,
we simply DIM PM D to the appropriate size and adjust the
size of the loop in line 170. The advantages of using this
method over CLiSTing player/missile data to tape in line
numbers is that we can write programs which use player/
missiles without having to worry about conflict with the
CLiSTed DATA's line numbers. For example, if we have a
player/missile saved with CLiST in line numbers 400-500,
and our program uses those same line numbers, we would run
into a conflict. However, by just saving the data itself to tape,
we don't have to be concerned about what line numbers we use.

Now let's load the player/ missile from tape and run it in a pro
gram. Be sure to save the following program, for with it you
can load any player/ missile from tape you want and run it.
This will save a good deal of time, since, rather than having to
write a player/ missile routine every time you want to have a
different character. simply load the program, set your cassette
tape at the beginning of a player/ missile data storage area
and run the program. You can do this with any player/missiles
you want. However, you will have to adjust for the number of
bytes that make up your player/missile. The following pro
gram is set for ones using seven bytes.

10 PRINT CHR$(125) : DIM 0(7), PO (7)
20 X = 0 : Y = 50 : C = 0
30 TOR = PEEK (106) - 8
40 POKE 54279, TOR

215

50 PMB = 256 * TOR
60 RES = 559 : POKE RES, 46
70 ENABLE = 53277 : POKE ENABLE, 3
B0 H0 = 53248
90P0=512
100 REM
110 REM *******************************
120 REM CLEAR AND SET PI M COLOR
130 REM *******************************
140 REM
150 FOR 1= PMB + P0 TO PMB + P0 + 128

: POKE 1,0 : NEXT I
160 C0 = 704 : POKE C0, 3 * 16 + 6
200 REM
210 REM **************************
220 REM READ DATA FROM TAPE
230 REM **************************
240 REM
250 PRINT "PRESS PLAY ON RECORDER" : PRINT

: PRINT "PRESS < RETURN> ON COMPUTER"
260 OPEN # 1,4,0, "C"
270 FOR 1= 1 TO 7
280 INPUT #1 ;PV
2900(1) = PV : REM CREATE AN ARRAY TO

STORE PI M DATA
300 NEXT I
310CLOSE#1
400 REM
410 REM *******************************
420 REM CREATE AND MOVE PLAYER
430 REM *******************************
440 REM
450 FOR 1= PMB + P0 + Y TO PMB + 0 + 6 + Y

: C = C + 1 : POKE I, D(C) : NEXT I
460 REM *** NOW MOVE PLAYER ***
470 FOR I = X TO 255 : POKE H0, I : NEXT I

Besides using this method to load a single player, it can be
used for several. Remember, when the information is stored
on tape, all you have is a set of values. These values are stored
on a strip of tape, and as the cassette turns, it sequentially
reads the information on tape. Think of the tape as entering
the values in the same way you wou ld from the keyboard or in

216

DATA statements in a program. Using the TRAP command
and a" counter," it is possible to modify the program to take in
any size of player/ missile you may create. For practice, why
not create several different players with seven bytes (e.g.,
seven values), and watch your program load them from tape
and enter them into your program.

Sequential Files and the
Disk System

If you do not have a disk system, you can skip this section and
go on to the next chapter. However, if you are considering
purchasing a disk drive for your A TAR!, the following ma
terial will be of interest. In many respects storing data on
disks is similar to storing it on tape except the storage and re
trieval process is much quicker. In fact, all of our examples in
the previous section can be operated with the disk system with
only a few minor changes in the format. Therefore, to get star
ted, we will see how we can store data to disks using a slightly
different format than we did with tape. To do this we will
examine the OPEN, CLOSE, INPUT#, PRINT# and GET#
commands for disk.

217

OPEN

To open a disk channel, we access the device "D: <File
Name>" instead of"C:" as we did with the cassette. It is very
important to remember to include the file name when using
the disk system. For example, we would enter the following to
read a file named PMDATA:

OPEN #3,4, 0, "0: PMDATA"

Likewise, to write, we use Code 8, just as we did with the
cassette. However, with the disk system, there are some very
important additional codes we can use. If we enter a 9 in the
second position, instead of overwriting a file, information will
be appended to the file. Whenever a file is OPENed to write
(Code 8), the exiting file is erased, but with Code 9, informa
tion is added to the file. We will examine this append code
further on in this chapter. Finally, Code 12 allows both read
ing and writing to a file. This can be used to re-enter and cor
rect data in files.

DISK CODES MEANING

4 Read a file
8 Write a fil e
9 Append a file

12 Read & write a file
(Used to correct!
change data)

Now to see how all of this goes together, we will re-do our
original FRIENDS PHONES program we created for tape.
The data entry block is identical, so we wi ll do only the block
which saves the information to disk:

10 PRINT CHR$ [125) : DIM FN$[35), FP[6)
20 FOR 1=1 TO 6 : READ FN$
30 PRINT FN$; "'S NUMBER";
401NPUT FPH : REM ENTER NUMBER

WITHOUT SPACES OR DASHES
50 FP[I) = FPH
60 NEXT I
70 RESTORE: REM RESET DATA POINTER

218

TO BEGINNING
100 REM
110 REM *****************
120 REM WRITE TO DISK
130 REM *****************
140 REM
150 OPEN #5, B, 0, " 01 : FPHONES"
160 REM WITH 1 DISK DRIVE THE NUMBER

AFTER '0' IS OPTIONAL
170 FOR 1= 1 TO 6
1 B0 READ FN$
190 PRINT #5 ;FN$
200 PRINT #5 ;FP(I)
210NEXTI
220 CLOSE #5
300 REM
310 REM *************
320 REM NAME LIST
330 REM *************
340 REM
350 DATA ART, SALLY, BILL, NANCY, MARCIA, DAVE

As can be seen, the main difference between tape and disk is in
the format in line 150. Otherwise, the disk and tape writing
format is identical. Likewise, in retrieving information from
disk, there are more similarities than differences between
tape and disk.

10 PRINT CHR$(125) : DIM FN$(35)
20 TRAP 150
50 OPEN #5,4,0, " 01: FPHONES"
60 INPUT #5 ; FN$
70 INPUT #5; FP
80 PRINT FN$; " ";FP
90 GOTO 60
100 REM
110 REM ****************************
120 REM CLOSE THE FILE ON TRAP
130 REM ****************************
140 REM
150 CLOSE #5

219

If you have both a program recorder and a disk drive, you may
have noticed how much faster the information was retrieved.
The TRAP command is even more important with disk than
tape since we will be seeing how to append information to a
file, and after a while we lose track of how many items are in
our file.

N ow let's see how the" append" works on the disk system. We
will take our F R lEN OS' PH 0 N ES program and simply change
the code number from 8 to 9 and change the names in the
DATA statement:

10 PRINT CHR$ (125) : DIM FN$(35), FP(6)
20 FOR 1= 1 TO 6 : READ FN$
30 PRINT FN$; "'S NUMBER";
40 INPUT FPH : REM ENTER NUMBER

WITHOUT SPACES OR DASHES
50 FP(I) = FPH
60 NEXT I
70 RESTORE: REM RESET DATA POINTER

TO BEGINNING
100 REM
110 REM *******************
120 REM APPEND TO DISK
130 REM *******************
140 REM
150 OPEN #5,9,0, "01: FPHON ES"
160 REM THE '8' WAS REPLACED WITH A '9'

IN LINE 150
170 FO R I = 1 TO 6
180 READ FN$
190 PRINT #5;FN$
200 PRINT #5;FP(I)
210 NEXT I
220 CLOSE #5
300 REM
310 REM *******************
320 REM NEW NAME LIST
330 REM **** **** **** ***** **
340 REM
350 DATA JANET, VAL, NORMAN. KARL, ERICA, PETE

220

Now we can see how to write a file, read the file and append a
file. Next, we will look at the mode used for reading and writ
ing to a file - Code 12. The first thing we'll use update for is to
find a single name and telephone number. While we're at it, we
should also do something about formatting the output. Every
one knows that telephone numbers have a dash after the first
three numbers, so let's put in that dash. To do this, we will con
vert the telephone number to a string variable and then use
substrings to make the output look correct. The following pro
gram does two things, then. It finds the name and number you
enter, and it prints out the name and number in a nice way.

10 PRINT CHR$(125) : DIM FN$(35) , FF$(35).
NN$(12)

20 TRAP 290: REM IF THE NAME IS NOT FOUND
CLOSE THE FILE

30 PRINT "NAME TO FIND ";
40 INPUT FN$
100 REM
110 REM **
120 REM OPEN FILE AND SEARCH FOR NAME
130 REM **
140 REM
150 OPEN #3,12,0, "01 : FPHONES"
160 INPUT #3, FF$: IF FF$ = FN$ THEN 200
170 GOTO 160
200 REM
210 REM ***
220 REM FORMAT AND OUTPUT INFORMATION
230 REM * ******************* ******** *************
240 REM
250 PRINT FF$: REM PRINT NAME
260 INPUT #3, FN : REM GET PHONE NUMBER
270 NN$ = STR$ (FN)
280 PRINT NN$ (1 ,3); "-"; NN$(4)
290 CLOSE #3

221

YE P, THAT FILl:..
WILL BE SHOW'IN '

UP ANY TIME.

NOW I

As you probably know, you could have done the same thing
using Code 4 that reads the files. However, I wanted to show
you that Code 12 both reads and updates (writes to) files. Once
the name in the file has been found, the pointer is at the next
item. In the case of our file called F PHD N ES, we know that
the next element will be a seven digit phone number. So, by
changing our previous program a little, we can find any name
we want and update (change) the phone number. Notice that
we use both INPUT # for reading and PRINT # for writing
information. With this file, you can look up a name, change the
number and then have it printed out for you:

10 PRINT CHR$(125) : DIM FN$(35), FF$(35),
NN$(12)

20 TRAP 290 : REM IF THE NAME IS NOT FOUND
CLOSE THE FILE

30 PRINT "NAME TO FIND ";
40 INPUT FN$
50 PRINT "NEW NUMBER";
601NPUT XN
100 REM
110 REM *************************************
120 REM OPEN FILE AND SEARCH FOR NAME

222

130 REM *************************************
140 REM
150 OPEN #3, 12,0, "01: FPHONES"
1601NPUT #3, FF$: IF FF$ = FN$ THEN 200
170 GOTO 160
200 REM
210 REM ***
220 REM ENTER NEW NUMBER INTO FI LE AND

PRINT IT OUT WITH NAME
230 REM * ******** **** *********************** *****
240 REM
250 PRINT FF$: REM PRINT NAME
260 PRINT #3; XN : REM ENTER NEW NUMBER

INTO FILE
270 NN$ = STR$ (XN)
280 PRINT NN$ (1 ,3); "-"; NN$(4)
290 CLOSE #3

That about does it for files . There are several more things you
can do with your ATARI 810 disk drive and the filing system
we have discussed. However, these are for more advanced
applications. In the meantime, though, this information should
give you plenty of file handling ability for your own needs.

Before we conclude this chapter, there is one last thing we
should cover. It has to do with reading the contents of your
disk. When you work with files, there are several occasions for
you to access DOS. Whenever you do that, your program is
wiped out, and if you forget to SAVE it, a lot of work can be
ruined. There are two ways to access the disk directory without
losing your program. The first method is using MEM .SAV.
Whenever a diskette has M EM.SAV on it, your current pro
gram will be SAVEd automatically whenever you enter DOS.
When you return to BASIC, your program will be there wait
ing for you. To initialize a diskette with MEM.SAV, simply
enter:

SAVE "01 : MEM.SAV"

Now there will be a M EM .SAV file on your diskette, and you
do not have to worry about losing your program. However,
when you do that it takes a lot more time for DOS to load and
unload. (It seems like FOREVER!)

223

An alternative method that I like to use is a little utility sub
routine I stick on the end of a file. When the program is com
pleted, I delete the file. It lists the contents of your directory
quickly without bothering your program in memory. In this
way, either with or without M EM.SAV, it is possible to check
your directory while working on a program. Code 6 is used
when you OPEN a file:

5000 END: REM ** DELETE WHEN FINISHED **
5010 CLR: DIM DIR$(25)
5020 OPEN #5, 6,0, "01: **"
5030 TRAP 5000
5040 INPUT #5; DIR$
5050 PRINT DIR$: GOTO 5040

Whenever you want to see the contents of the directory, sim
ply enter GOTO 5010. Since this is such a handy utility, save
it with the LIST command, and then ENTER it to the end of
your program. If your program line numbers extend over
5000, simply use higher line numbers. Also note that it begins
with an EN 0 statement in line 5000. This is so that it will not
get in the way of testing programs during their development.

224

SUMMARY

In this chapter we learned how to save a lot of time by saving
files to tape and disk. Data can be saved to your cassette tape
for use later within a program. This is handy since it allows
you to enter data at one time and then use it later without hav
ing to key in the data all over again. Using CLiST and LIST, it
is possible to save DATA statements and then later append
them to your program with E NTE R. By storing data on tape, it
is possible to use it in many different programs. This is
especially handy with player/missiles you have created.

Using a disk system, it is possible to store data in sequential
files much like saving data to tape. However, disks access the
data much faster than tapes, and it is possible to have a single
program do several different things with data files on disks.
By combining the various programs we showed above, it is
possible to jump to subroutines which will read, write, append
or update files. Care has to be taken to keep everything straight
with such a program, but using sequential files increases the
power of your computer a great deal. The practical applica
tions of such programs are immense.

225

-

--

-
-
-
-

CHAPTER 9

You and Your Printer

Introduction

By now you should be used to "outputting" information to
your screen. cassette. or disk. When you write in PR I NT
"HELLO" you output to your screen. When you CSAVE, SAVE
or PR I NT # something, you "output" to your tape or disk. In
the same way that you access your screen. tape or disk. you
can access your printer. It is simply another output target.
However, you cannot LOAD, I NPUT. orin someotherway get
anything from your printer as you can from your keyboard,
tape, or disk. (How are you going to get the ink off the paper
and back into memory?)

The procedures for getting material out to your printer and
using your printer's special capabilities require certain pro
cedures not yet discussed. Therefore, while much of what we
will examine in this chapter will not be new in terms of the
language of commands, it will be new in terms of how to
arrange those commands. Also. we will see how we can use the
printer in ways which have been done poorly using the screen.
For example, no matter how long a program listing is, it can be
printed out to the printer. while long listings on the screen
scrolled right off the top into Never-Never land. Likewise, in
Chapter8, we made a handy little program for storing friends'
phone numbers. With a printer we can print out our phone
numbers or run off mailing labels with commands which out
put information to the printer.

There are a lot of printers for computers on the market. The
ones chosen for this book are the more popular ones, but if
your printer interfacing is correct you can use just about any
computer printer. Also, we will be working with examples
from 80 column printers. and so if you have a 40 column
printer, the examples will turn out a little different than what
is described here. A TARI Inc. sells the AT ARI 825 printer,
along with all the appropriate cables you will need to hook it
up to the ATARI 850 Interface Module (or some other ATARI

227

compatible interface). With the new ATARI 1025 printer,
there is no need for the ATARI 850 interface, and you can plug
it directly into any of the XL series models. If you have some
other printer, such as an Epson, C. Itoh, IDS or NEC. you will
need to purchase a special cable which hooks up to the inter
face and the printer. In fact, Microbits Peripheral Products
makes the MPP-1100 Parallel Printer Interface that works
without the AT ARI 850 Interface Module. (MPP 434 W. First
Street, Albany, OR 97321, (503) 967-9075.) It costs only $99
and works with most parallel printers. If you have an ATARI
850 Interface module, Milford Null Modem (MNM, Phx'ville
Pike and Chas'tn Road, Malvern, PA 19355, (215) 296-8467)
sells cables which interface to several popular parallel printers
through the AT ARI 850. If you have an XL model, you simply
plug in your printer to the parallel interface on the computer.

228

BEFORE YOU BUY A PRINTER!!

The most important aspect in purchasing a printer is
making certain it will interface with your ATARI. Many
times over-enthusiastic salespersons will tell buyers all
the qualities of a printer and naively believe they can be
used on any computer. This is simply not true! In order
for a printer to work with a computer, it must have the
proper interface; the best printer in the world will not
work with your ATARI without such an interface. There
fore, when you buy a printer other than one made speci
fically for your A TAR!, make sure to buy the proper
interface for it. The only certain way to insure the printer
works with an A TARI is to ha'.'e it demonstrated with your
computer. The ATARI 822,820,825 and 1025 printers
will work with the ATARI, but otherwise you should
have the printer's ability to work with your computer
shown to you. With the XL series, the problem of inter
facing is not as troublesome, but still, test a printer on
your model before purchase!

And another thing!

SET PRINTER LINE FEED

On some printers, you have a choice of having the printer
automatically give a line feed when it encounters a CR
(carriage return) or wait until it gets one from the com
puter. The ATARI is set up so that the printer provides
the linefeed. Therefore. if your printer keeps running
over the same line, flip the necessary switch that indi
cates auto-line feed . Your printer manual will describe
how to do this.

229

Printing Text on Your Printer

The first thing you will want to do with your printer is to print
some text in hardcopy. (Hardcopy is a really impressive term
computer people use to talk about print outs on paper. Use the
term and your friends will be amazed.) Like your cassette tape
and disk drive, it is necessary to first go through a number of
steps to channel information to your printer. There are several
different ways to send output to your printers. Let's review
those ways now.

LPRINT The most direct and simple way to send output to
your printer is with the LPRINT command. It can be used
from either the Immediate or the Program mode. For example:

or

LPRINT "This will come from my printer"

10 DIM A$(22) : A$ = "This should be printed on
the printer"

20 LPRINT A$

RUN the program, and it will print to your printer in the same
way as itwould to the screen. Think of LPR I NT as a substitute
for P R I NT with the former going to the printer instead of
the screen.

LIST "P:" One ofthe best ways to debug a long program is
to list it to the printer. Once your program is about 22 lines
long, things start scrolling off the screen. (Using long multiple
lines, it'll scroll much sooner!) If you want to examine an
entire program, instead of entering LIST, use LIST "P:". You
can also list a range of lines, using, for example, LIST "P:",
40,1 00. That is easy!

LIST "P:"

or

LIST "P:", 50, 70

230

PRINT# Ifach annel is OPENed to the printer, a ll PRI NT#
statements will go to the printer. The followin g command
sequence is used :

OPEN #3,5,0, " P"

Any PR I NT # command will now send information to the
printer.

With what we've see so far. there would not seem to be any
reason to have more printer commands. but as you will see.
there is. Enter and RUN the fo llowing program:

10 FOR I = 1 TO 20
20 LPRINT "X";
30 PRINT "X";
40 NEXT I

There is an importa nt output difference between your printer
and your screen. Twenty X's lined up on yO Ul' screen. but the
X's to the printer went a ll overthe place. Now try the foll owing
progTam:

10 OPEN #3,3,0, "P:"
20 FOR 1=1 TO 20
30 PRINT #3; "X"; : REM NOTE FORMAT
40 PRINT "X";
50 NEXT I
60 PRINT #3
70 CLOSE #3

When you RUN the program, your X's on the printer will line
up on your printer paper as they did on the screen. Thus, when
you have formatted output, it is better to use the OPEN .. . "P:"
and PRINT# sequence than LPRINT. NOTE: Line 6/1 is
necessary to initiateanEnd Of Line <EOL> to theprinterbuf
fer. Take that line out and see what happens. Enter RUN
several times and you will see that the program outputs to the
printer only every other RUN. That's because it takes a second
RUN to kick it out to the printer from the buffer. Also note the
different printer output without line 6/1.)

Formats for PRINT# include the following:

PRINT#7; NA$ (String variables)

or:

PRINT#7; "Charlie Tuna" (Strings)

or:

PRINT#7; 12345 (Numbers)

Let's try a little program to print names to the printer to show
how P R I NT # can be used in programs where you wan t to use
both the screen and the printer.

10 PRINT CHR$(125) : OIM A$(1), AN$ (1), NA$(20]
20 PRINT: PRINT: PRINT "(ATARI KEY) TURN

ON PRINTER (ATARI KEY)"
30 PRINT: PRINT: PRINT "PRESS RETURN

TO CONTINUE";
401NPUT A$
50 PRINT CHR$(125]
60 OPEN #1 , 1,0, "P:"

222

70 PRINT "NAME TO PRINT";
80 INPUT NA$
90 PRINT # 1; NA$
100 PRINT #1 : REM KICK IT OUT OF THE BUFFER
110 PRINT "ANOTHER(Y/ N)";
120 INPUT AN$
130 IF AN$="Y" THEN 70
140 CLOSE #1
150 END

CLOSE The final command in accessing your printer is
CLOSE. As we can see in the above program, it closes the
channel to the printer and turns it off. For the most part
CLOSE works pretty much the same way as it does with the
tape and disk systems; however, there is an important pro
tocol involved.

CHR$ to the Rescue

The secret to using printers is in understanding what their
control codes mean and how to use those codes. For example,
the following is a partial list of codes provided with a CEN
TRONICS737 printer(which,iustso happens to be identical to
the ATARI 825):

Mnemonic Decimal Octal

ESC.SO
ESC.DC4
ESC.DC1

27,14
27.20
27,17

033.016
033.034
033.021

Hex Function

1B,0E E longated Print
1B.13 Select 16.7 cpi
1B,n Proportional Print

Now. for most first-time computer owners. that could have
been written by a visitor from another planet for all the good it
does. However. there is important information in those codes
and. once you get to know how. it is relatively easy to use
them.

To get started. forget everything except the Decimal and
Function columns. Now. taking the first row. we have decimal
codes 27 and 14 to get elongated print. To tell your printer you
want elongated print you would use C H R$(27) and C H R$(14).
To kick that into your printer you would do the following:

((

2. LPRINT CHR$(27); CHR$(14) ; " FAT MESSAGE"

If you have a Centronics 737 or 739 printer (or ATARI 825).
that would have printed the string FAT MESSAGE in an
elongated print. Likewise. for the condensed printing 16.7 cpi
(characters per inch) . you would have entered CH R$(27);
CH R$(20) and for the proportional type face. CH R$(27);
CH R$(17). Once you get the decimal code. enter that code to
the printer and it will do anything from changing the type-face
to performing a backspace function . So. taking the same infor
mation. we can make a more usefu l chart:

PRINTER OUTPUT

Elongated
Condensed
Proportional

CHR$ CODE

CHR$(27] ; CHR$(14]
CHR$(27] ; CHR$(20)
CHR$(27]; CHR$(17)

To see how the CH R$ functions work. we will use a simple
program which will print out your name. Since we already
know how to print out normal text. we will being with expanded
text. Lookingatourchart. weseethat CHR$(14) will expand
our print out: so we wi ll use it in our program:

10 PRINT CHR$(125) : DIM NA$(20)
20 OPEN #7,7,0, "P:"
30 PRINT "YOUR NAME";
40 INPUT NA$
50 PRINT#7 CHR$(27); CHR$(14); NA$
60 PRINT#7
70 CLOSE #7

RUN the program, print out some names, and note the ex
panded characters. (Try that on your typewriter!) On some
printers, such as the A TARI 1025 (essentially the same as a C.
ITOH 8510). EPSON MX-80FT with GRAFTRAX PLUS and
GEMINI, it is possible to have not only expanded print but
also italicized, condensed, double strike, emphasized, and
super/subscript type faces and any combination of them
together. Using C H R$, all of the different type styles can be
used separately or in combination with one another.

POSSIBLE SHORT-CUT

Instead of using C H R$ commands, you can get different
type styles on your printer using your keyboard. For
example, LPRINT CHR$(27); CHR$(14); "WIDE
PRINT" can be produced with LPRINT "{ESC} {ESC}
{CTRL-N} WIDE PRINT". This is a way to save key
strokes, but it may not be clear to you in a program list
ing. Look up the decimal control values, using {ESC}
{ESC} for CHR$(27). and then look up the character
associated with the C H R$ of that value. For a good arti
cle on how to do this with Epson printers, see "Epson
Printing Modes Simplified" by Thomas M. Krischan in
A.N.A.L.O.G., No. 10, pp 61-62.

Now that we have seen different ways to operate the type
faces on the printer, let's do something practical. We will make
a mailing label program for your printer. Various label
manufacturers make adhesive labels with tractor-feed mar
gins so that you can put them into your printer just like your
paper. Our program will make labels which will print the
addressee's name in expanded type, the address, city, state,

235

and zip code in normal. (This program will work with the
ATARI 825 and 1025, Centronics 737 & 739, Epson and Gemini
printers. If you have a different printer, check to see if the code
for expanded print is the same.

10 PRINT CHR$(125) : CLR : DIM AN$(1) , NA$(20),
AD$(20), CT$(20) , SA$(2), ZI$(6)

20 REM ** ENTER INFORMATION **
30 PRINT "NAME " ; : INPUT NA$
40 PRINT "ADDRESS "; : INPUT AD$
50 PRINT "CITY"; : INPUT CT$
60 PRINT "STATE "; : INPUT SA$
70 PRINT "ZIP CODE " ; : INPUT ZI$
100 REM
110 REM ************************************
120 REM FORMAT AND PRINT TO PRINTER
130 REM ************************************
140 REM
150 OPEN #7,7,0, "P:"
160 PRINT#7; CHR$(27) ; CHR$(14) ; NA$
170 PRINT#7; AD$
1B0 PRINT#7 ; CT$; ", "; SA$; " " ; ZI$
190 PRINT #7
200 CLOSE #7
210 PRINT "{ATARI KEY} ANOTHER(Y/ N)

{ATARI KEY}"; : INPUT AN$
220 IF AN$ = "Y" THEN 10
230 END

In order for the program to be more practical, we will need a
few line feeds at the end of the printing so that your labels can
be properly aligned. Depending on the size of your mailing
labels, you will need a greater or fewer number of line feeds.
Change line 190 in your program and adjust the size of the
loop to align your labels properly:

190 FOR 1=1 TO 3: PRINT #7: NEXT I: REM
CHANGE "3" TO THE CORRECT NUMBER OF LINE
FEEDS FOR YOUR LABELS

Instead of having to enter all of your typefaces individually,
why not have a program that selects the typeface for you? On
Epson printers with GRAFTRAX PLUS, there are several dif
ferent typefaces and combinations of typefaces. The basic
typefaces include:

236

1. Expanded (Shift-out)
2. Condensed (Shift-in)
3. Emphasized
4. Double Strike
5. Italics

Each of these typefaces, with the exception of the Expanded,
remains the typeface until you enter the code to remove it.
Therefore, if you have the Condensed typeface working, and
you enter the code for Italics, you will have Condensed-Italic
typeface. The following program works on Epson printers. If
you have a different type of printer, simply change the code
and typeface designations to work with your printer.

EPSON TYPEFACE CONTROLLER

10 PRINT CHR$(125) : DIM T$(25) , UL$(25), 0$(15)
20 FOR 1= 1 TO 35 : PRINT "{ ATARI KEY} {SPACE}

{ATARI KEY}"; : NEXT I
30 T$ = "EPSON TYPEFACE CONTROLLER"

: L = 19 - LEN(T$)I2 : POSITION L. 4 : PRINT T$
40 UL$ = " " : REM 25 CTRL-R'S
50 POSITION L,5 : PRINT UL$
60 FOR 1= 2 TO 15 : POSITION 2,1 : PRINT

"{ATARI KEY){SPACE){ATARI KEY}" : POSITION 36,1
: PRINT "{ ATARI KEY} {SPACE} {ATARI KEY}"

70 NEXT I
80 FOR 1=1 TO 6 : READ 0$: POSITION 9, 1+6

: PRINT I; "."; 0$: NEXT I
90 FOR 1= 2 TO 36 : POSITION 1,15 : PRINT

"{ATARI KEY} {SPACE} {ATARI KEY}" : NEXT I
100 POSITION 5 ,20: PRINT "CHOOSE BY

NUMBER "; : INPUT CHOICE
110 GOSUB 200
120 ON CHOICE GOSUB 300,400,500,600,700, B00
130 CLOSE #5
140 GOTO 100
200 REM
210 REM ****************************
220 REM OPEN PRINTER CHANNEL
230 REM ****************************
240 REM
250 OPEN #5,5,0, "P:"

237

260 RETURN
300 REM
310 REM *************
320 REM EXPANDED
330 REM *************
340 REM
350 PRINT#5 ; CHR$(27J ; CHR$(14J ; "HERE IS

YOUR TYPE FACE"
360 PRINT# 5
370 RETURN
400 REM
410 REM **************
420 REM CONDENSED
430 REM **************
440 REM
450 PRINT#5; CHR$(27J ; CHR$(15J; "HERE IS

YOUR TYPE FACE"
460 PRINT #5
470 RETURN
500 REM
510 REM ***************
520 REM EMPHASIZED
530 REM ***************
540 REM
550 PRINT#5 ; CHR$(27J; CHR$(69J; "HERE IS

YOUR TYPE FACE"
560 PRINT #5
570 RETURN
600 REM
610 REM ******************
620 REM DOUBLE STRIKE
630 REM ******************
640 REM
650 PRINT#5; CHR$(27J ; CHR$(71) ; "HERE IS

YOUR TYPE FACE"
660 PRINT #5
670 RETURN
700 REM
710 REM *********
720 REM ITALICS
730 REM *********
740 REM
750 PRINT#5 ; CHR$(27J; CHR$(52J ; "HERE IS

YOUR TYPE FACE"

238

760 PRINT #5
770 RETURN
800 REM
810 REM ******
820 REM EXIT
830 REM ******
840 END
1000 REM
1010 REM *************
1020 REM MENU DATA
1030 REM *************
1040 REM
1050 DATA EXPANDED, CONDENSED, EMPHASIZED
1060 DATA DOUBLE STRIKE, ITALICS, EXIT

The above program ought to give you a pretty handy utility for
setting up typestyles on your Epson printer. Now, the next
program is the world's most primitive word processor, PRIMO
WRITER. With it, you can actually write and edit text, but it
prints out whatever you write as soon as you press RETURN.
However, using the built-in editor on your ATARI, if you
change the text before you press R ETU R N, it will edit it just
fine. Otherwise, it has none of the properties of a real word
processor, but it is a lot offun and the price is right. (It will also
work with any printer.)

PRIMO-WRITER

10 PRINTCHR$(125)
20 DIM S$(70) : REM SETS MAXIMUM LINE

LENGTH TO 70. CHANGE IF DESIRED.
30 OPEN #1,1,0, "P:"
40 PRINT ">"; : INPUT S$
50 PRINT #1;" "; S$: REM LEFT MARGIN SET

WITH SPACES BETWEEN QUOTES
60 PRINT #1 : REM GIVES DOUBLE SPACE.

REMOVE LINE FOR SINGLE SPACE
70 CLOSE # 1
80 GOTO 30
100 REM
110 REM ***********************************
120 REM USE ONLY PRIMO-WRITER TO
130 REM WRITE TO AUTHOR WITH YOUR

239

140 REM COMMENTS ON THE BOOK.
150 REM TO:
160 REM WILLIAM B. SANDERS
170 REM
180 REM
190 REM

C/ O DATAMOST
8943 FULL8RIGHT
CHATSWORTH, CA 91311

200 REM ***********************************
210 REM

SAVE THE WORLD FROM PRIMO-WRITER!

PRIMO-WRITER is so dumb, it is a pleasure to take
credit for it. However, by this time, you ought to be
smarter than the author; so why not improve on PRIMO
WRITER. Enhance it so that it can change typefaces,
save text to tape or disk and do other neat things. Send
your original entry to:

PRIMO-WRITER CONTEST
DATAMOST
8943 FULLBRIGHT
CHATSWORTH, CA 91311

If your enhancement of PRIM 0-WRITER is judged to be
the best and weirdest, you will win $100. (Donated by the
Dave Gordon Lunch Money Fund.) In future editions of
THE ELEMENTARY ATARI, your program will be
published. The only rules are:

1. The program must be original.
2. All documentation must be written on your ver

sion of PRIMO-WRITER.

Printer Graphics

If you want to dump graphics from the screen to your printer,
you will need a special program to do so. For example,
GRAPHICS HARDCOPY by Macrotronics, Inc. dumps graph
ics to most popular brands of printers. (The ATARI 825 does
not have graphics capabilities, but the ATARI 1025 does.)
Also check with your club's public domain software library. It

240

will probably have some kind of program for dumping graphics
to your printer, but it will almost undoubtedly be for only a
single printer type.

PSEUDO-GRAPHICS

One way to print graphics to your printer is with pseudo
graphics. Early graphics from computers were produced by
programming various ASCII characters and then dumping
them to the printer. For example, the following program makes
a diamond:

10 PRINT CHR$(125)
20 OPEN #1,1 , 0, "P:"
30PRINT#1; " *"

40 PRINT # 1 ;" ***"
50 PRINT #1 ; " *****"
60PRINT#1;" ***"
70 PRINT #1;" *"

80 PRINT #1
90 CLOSE #1

That should give you an idea of how to create pseudo-graphics.
Using different combinations of characters, it is possible to
create many different low resolution graphics with the ASCII
characters.

Now, let's do something a little more practical. Remember how
we needed graph paper to make our graphic PLAYERS in
Chapter 7? Instead of using graph paper, we can use our printer
to make the graph paper for us. The following program makes
an 8 by 8 PLAYER/ MISSILE TABLE you can use in design
ing players. If you want a longer table, increase the value in
the "I" loop.

10 PRINT CHR$(125)
20 OPEN #1,1,0, "P:"
30 PRINT # 1 ; "PLAYER/ MISSILE TABLE"
40 PRINT #1
50 FOR 1=1 TO 8
60 PRINT #1; I; " " ;
70 PRINT # 1; CHR$(124) ; CHR$(95) ;

241

80 NEXT J
90 PRINT # 1 ; CHR$(124)
100 NEXT I
110 CLOSE # 1

PLAYER/MISSILE TABLE

1 1_1_ 1_ 1_ 1 __ 1_ 1_ 1
2 1_ 1_ 1_ 1_ 1 __ 1_ 1_1
3 1_ 1_ 1_ 1_ 1 __ 1_ 1_ 1
4 1_ 1_ 1_ 1_ 1_ 1_ 1_ I_ I
5 1_ 1_ 1_ 1_ 1_ 1_ 1_ I_ I
6 1_ 1_ 1_ 1_ 1_ 1_ 1_ I_ I
7 1_ 1_ 1_ 1_ 1_ 1_ 1_ I_I
8 1_ 1_ 1_ 1_ 1_ 1_ 1_ I_ I

242

SUMMARY

The ATARI computer has several built-in words which can be
used with a printer. Combined with the A TARI 850 interface.
or another ATARI compatible interface. it is a simple matter
to send information to the printer. Using LIST "P:". programs
can be dumped to the printer for debugging or for sending to a
friend in the mail. The LPRINT command. in both the Imme
diate and the Program modes will output to the printer instead
of to the screen. It is almost like using PRINT except, instead
of sending the information to the screen, it goes to the printer.

Using a similarformat as employed for outputting to a cassette
tape or disk. it is also possible to vector output to the printer.
Instead of using 0 PEN to prepare a channel to tape. disk. or
screen. you can also OPEN a channel to the printer. Then
when you PRINT #. your formatted messages or characters
will be sent to the printer. Using the OPEN/PRINT # se
quence, it is possible to exercise more control over the manner
in which material is printed.

Dumping graphics to the screen requires special utility pro
grams which are too advanced for this book, but it is possible
to obtain such programs from commercial vendors or public
domain sources. However. using ASCII characters. we saw
how we could produce pseudo-graphics with the knowledge
we now have of programming. With some practice, you will be
able to do just about anything you want with your printer and
the ATARI.

243

-

-

-
--
-.

......

-

CHAPTER 10

Program Hints and Help

Introduction

Well. here we are at the last chapter. We've covered most of
the commands used for programming in BASIC on the A TARI
and many tricks of the trade. However, if you are seriously
interested in learning more about your computer and using it
to its full capacity. there's more to learn. In fact, this last chap
tel' is intended to give you some direction beyond the scope of
this book.

First, we will introduce you to the best thing since silicon -
ATARI Users Groups. These are groups who have interests in
maximizing their computer's use. Second, I would like to sug
gest some periodicals with which you can learn more about
your ATARI computer. Third, we will examine some languages
other than BASIC which you can use on your ATARI. BASIC
has many advantages, but like all computer languages it has
its limitations, and you should know what else is available.

Next, we will examine some more programs. First, there will
be listings ofpl'ograms which you may find useful, fun, or both.
The ones included were chosen to show you some applications
of what we have learned in the previous nine chapters, en
hancing what you already know. Then we will look at different
types of programs you can purchase. These are programs
written by professional programmers to do everything from
making your own programming simpler to keeping track of
your taxes. Finally, we will examine some hardware peri
pherals to enhance your ATARI.

ATARI User Groups

Of all the things you can do when you get your A TARI, the
most helpful. economical. and useful is joining an ATARI User
Group. Not only will you meet a great group of people with
ATARI computers, but you will learn how to program and

245

generally what to do and not to do with your computer. My
club, The San Diego Atari Computer Enthusiasts (ACE), is
made up of people who have ATARI 400s. 600XLs, 800s, 800
XLs, 1200XLs, 1400XLs. 1450XLs and every kind of adapta
tion ofthose models imaginable. Various club members helped
me a great deal in learning about all the ins and outs of my
ATARI. On top of all that, clubs have libraries of Public
Domain software (FREE!) for their members and special dis
count rates for commercial software from stores.

Usually the best way to contact your ATARI User Group is
through local computer or software stores. Often stores sell
ing ATARI computers and/or software will have membership
application forms, and some even serve as the meeting site for
the clubs. Other microcomputer clubs in your area may also
have ATARI users in them, so ifthere is not an ATARI club,
join a general computer group. The help you get will be
worth it.

To start your own ATARI Users group, post a notice and
meeting time and site in your local computer store. Fellow
ATARI users will get in touch with you. and before you know
it, you'll have a club. Another way to get in touch with fellow
ATARI users is via a modem. Using the ATARI 850 Interface
Module and either an ATARI 830 Acoustic Modem or an
ATARI 835 Direct Connect Modem, dial up the computer
bulletin boards in your area and look for messages pertaining
to ATARls. Usually, you can get in contact with other users
very quickly this way. (Ask for the PMS (Public Message Sys
tem) numbers at your local computer store.) If you don't see
any references to the ATARI, leave a message for people to
get in touch with you.

ATARI Magazines

There are several periodicals with information about the
ATARI. Some microcomputer magazines are general and
others are for the ATARI only. When you're first starting, it is
a good idea to stick with the ones dedicated to the ATARI
since there are different versions of BASIC for non-ATARI
computers. When you become more experienced, you can
choose your own, but to get started there are several good
ones with articles exclusively on the AT ARI. These are as
follows:

246

A.NA.L. 0. G. COMPUTING: The Magazine for ATARI
Computer Owners
A.N.A.L.O.G. , 565 Main Street, Cherry Valley, MA
01611, PH. (617) 892-3488.

A.NA.L. O. G. is a bi-monthly publication with a wide
variety of articles and programs for the ATARI. Here
you will find programming techniques, tips for begin
ners, reviews of new hardware and software available,
and various applications. Articles range from the sim
ple to the technical, so regardless of your level of
expertise, you will find this extremely useful. Sub
scriptions are $14.00 per year for 6 issues.

ANTIC: The AT ARI Resource
Antic, 600 18th Street, San Francisco, CA 94107,
PH. (415) 864-0886

247

A second magazine for your ATARI is ANTIC, a
monthly publication, which covers a broad range of
ATARI applications, software and hardware, and has
several programs for you to key in. There are plenty of
articles for beginners, and each issue has a list of
Public Domain software available. Subscriptions are
$12.00 per year for 12 issues.

Compute!
P.O Box 5406, Greensboro, NC 27403

Compute! is not dedicated to the A TARI, but it gener
ally has one or more articles on the A TARI in each
issue. More than most other general computer maga
zines, Compute! will provide you with programs and
programming techniques which can be applied to your
computer. Additionally, it has several general articles
on programming, hardware, and software which you
will find useful. Finally, there are many bargains on
software and peripherals to be found in the magazine.
Subscriptions are $20 for 12 issues.

OTHER USEFUL PUBLICATIONS

In addition to the above three magazines, there are several
others that you may find useful. Publications such as Creative
Computing, Byte, Interface Age, Popular Computing and Per
sonal Computing all have had articles about the ATARI. The
best thing to do is to go through the table of contents in the
various computer magazines in your local computer store.
This will tell you at a glance if there are any articles or pro
grams for the ATARI. As more and more clubs begin spring
ing up, club newsletters can often be an invaluable source of
good tips and programs for your computer, and they are a
resource that should not be overlooked.

ATARI Speaks Many Languages

Besides BASIC, your computer can be programmed and can
run programs in several other languages. In some cases, spe
cial hardware devices are required to run the languag-es, and
there is special software required as well. Now let's look at
some of these other languages.

248

Assembly Language

Assembly language is a " low level" language, close to the
heart of your computer. It is quite a bit faster than BASIC or
virtually any other language we will discuss. To write in
assembly language, it is necessary to have a monitor or
assembler to enter code. This language gives you far more
control over your ATARI than BASIC, but it is more difficult
to learn, and a program takes more instructions to operate
than BASIC. (However, the object code is more compact, tak
ing up fewer sectors on your disk.) For the ATARI, ATARI
makes an Assembler Editor cartridge you can install for
entering assembly/ machine code. Also, for users with a disk
drive, theATARI Macro Assembler and Program-Text Editor
is available on disk. If you are not sure you will like assembly
language, you can try the public domain version written in
BASIC. It is slow. but since it is free from your club library, or
available for $10 from ANTIC Magazine (see above for ad
dress) on ANTIC Utility Disk # 1. it might be a useful preview
of what you can do with this very fast language. Several other
commercial assembler/editors are available. Check the re
views and advertisements of the different magazines to see
what best fits your needs.

249

To learn how to program in assembly language, the following
were found to be the most useful:

1. The ATARI Assembler by Don Inman and Kurt
Inman. (Reston, VA. : Reston Publishing Co., 1981.)

This book was written for the ATARI Assembler
Editor Cartridge. However, it can be used with
other assembler editors since it uses general 6502
Opcodes and machine code listings. It is strictly for
beginners in assembly language, and while you
can't expect to learn everything about machine/
assembly language from it, it will get you well on
your way.

2. HOW TO PROGRAM YOUR ATARI IN 65{12
MACHINE LANGUAGE (Upland, CA : IJG, Inc.)
$9.95.

While learning assembly language, this book will be
of great assistance, especially as a reference guide
to the functions of the various machine codes on
your ATARI. However, it is best used in conjunc
tion with the A TAR! TECHNICAL REFERENCE
NOTES. (See below.)

3. ATARI TECHNICAL REFERENCE NOTES.
(ATARI, Inc., 1982).

This collection has everything you need to find by
way of machine level subroutines, special registers,
and all the rest you need to know about your A TARI
400/800. (Most of it applies to the XL series ma
chines as well , but there are some differences in the
XL's not found in the NOTES.) Included in the
NOTES are the OPERATING SYSTEM USER'S
MANUAL, HARDWARE MANUAL, and the OP
ERA TING SYSTEM SOURCE LISTING. The last
of these three manuals in the NOTES is the most
useful for beginners in assembly programming since
it provides the addresses of the built-in machine
language subroutines.

250

Other books are available for learning assembly level pro
gramming. and you will find books for other 6502 computers.
such as the Apple II. to be of some value.

HIGH AND LOW LEVEL LANGUAGES

When computer people talk of high and low level lan
guages. think of high level as being close to talking in
normal English and low level in terms of machine lan
guage. e.g .. binary and hexadecimal. Assembly language
is a low level language. one notch above machine level.
The other languages we will discuss are high-level.

Forth

FORTH is a very fast high-level language. developed to create
programs which are almost as fast as assembly language but
take less time to program. Faster than Pascal. BASIC. For
tran. COBOL and virtually every other high-level language.
FORTH is programmed by defining words which execute rou
tines. New words incorporate previously defined words into
FORTH programs. The best part of FORTH is that several
versions are public domain. The Fig (FORTH Interest Group)
FORTH version is in the public domain. available from your
user group. If you are handy with assembly programming.
you might even be able to install your own. However. there are
FORTH vendors who have FORTH for the ATARI. One ver
sion recommended is :

val FORTH (24K RAM minimum required) $45.00
Valpar International
3801 E. 34th Street
Tucson. AZ 85713
Ph. (800) 528-7070

The nice thing about valFORTH is that it is supported by
several othervalFORTH utility packages allowing the user to
enhance graphics (e.g .. create and speed up vertical move
ment ofplayer/missiles. etc.). manipulate text. and other use
ful applications.

251

The best source to learn about what is available is through the
publication, FORTH Dimensions (see below) and your maga
zines where AT ARI products are advertised.

Good books on learning FORTH are only just now becoming
available. For learning FORTH, the following are recommended:

1. FORTH PROGRAMMING by Leo J. Scanlon (In
dianapolis: Howard S. Sams & Co., 1982). This book
uses the FORTH-79 and fig-FORTH models as
standards, thereby providing the user with the most
widely distributed versions of FORTH. This is a
well organized and clear presentation of FORTH.

2. STARTING FORTH by Leo Brodie (Englewood
Cliffs: Prentice-Hall, 1981). Well written and illus
trated work on FORTH for beginners. Uses a com
bination of words from Fig, 79-Standard and
polyFORTH.

3. FORTH Dimensions. Journal of FORTH INTER
EST GROUP. P.O. Box 1105, San Carlos, CA 94070.
This periodical has numerous articles on FORTH
and tutorial columns for persons seriously interes
ted in learning the language.

Pascal

Pascal is a high-level language originally developed for teach
ing students structured programming. It is faster than BASIC,
but is not as difficult to master as assembly language. It is
probably the most popular high level language next to BASIC.
You will find different versions of Pascal, but the language is
fairly well standardized so that whatever version of Pascal
you purchase will work with just about any Pascal program.
Currently, ATARI PASCAL is available through the ATARI
Program exchange (APX). It requires two drives, and an 80
column cartridge is useful but not required. To learn how to
program in Pascal, there are several books available, the
following having been found to be among the best:

252

1. ELEMENTARY PASCAL: LEARNING TO PRO
GRAM YOUR COMPUTER IN PASCAL WITH
SHERLOCK HOLMES. By Henry Ledgard and
Andrew Singer. (N ew York: Vintage Books.) This is
a fun way to learn Pascal since the authors use
Sherlock Holmes type mysteries to be solved with
Pascal. It is based on the draft standard version for
Pascal called X3J9/ 81-003 and may be slightly dif
ferent from the version you have, but only slightly so.

2. PASCAL FROM BASIC. By Peter Brown. (Read
ing, MA: Addison-Wesley, 1982). If you understand
BASIC, this book will help you make the transition
from BASIC to PASCAL. It is written with the P AS
CAL novice in mind but assumes the reader under
stands BASIC.

-

253

Pilot

This language is for children. It was developed primarily as a
teaching tool and is very simple to use, especially with turtle
graphics. One version of this language available for the
ATARI is available from ATARI, Inc. in both an Educator's
Package and a Home Package. The Educator's Package re
quires an ATARI 410 Program Recorder, while the Home
Package is on a cartridge. For a first programming language
for children, PILOT is highly recommended.

Finally, if you find that programming in BASIC is most suit
able for you, but you would like to speed up your programs, a
simple way to do that is with a compiler. Essentially, a com
piler is a program which transforms your code into a binary
file which will run four to five times faster than ATARI BASIC.
All you do is write the program in BASIC, compile it, and then
save the compiled program. From then on, you run your com
piled program as a machine language program. Two com
pilers available for your AT ARI are

ATACOMP (40K Disk System required) $34.00
ATACOMP, RR 3, P.O. Box 21
Coggon, IA 52218 PH. (319) 435-2031.

BASM BASIC COMPILER and ASSEMBLER (32K
Disk System required.) $99.95.
21115 Devonshire St. # 132
Chatsworth, CA 91311 PH. (213) 368-4089.

The BASM compiler is actually a combination compiler and
assembler/editor. It can be used as a transition between
BASIC and assembly language programming as well as a
compiler.

Sort Routines

These programs will sort numbers for you. The first program
uses the "Bubble Sort" algorithm, which is simple but rela
tively slow. A random set of numbers is generated, and then
they are printed out to the screen, first in random order and
then in sorted order. Note how long it takes. The second pro-

254

gram, using the " Shell Sort" algorithm, does something a lit
tle more useful. It sorts ZIP codes for you, but for purposes of
comparison, RUN it with the random number routine. (Just
substitute the first part of the " Bubble Sort" program before
the "Shell Sort" routine.) By choosing the correct algorithm,
you can save a lot of time.

BUBBLE SORT

10 PRINT CHR$(125)
20 PRINT " NUMBER OF NUMBERS TO SORT";
301NPUT TN
40 DIM A(TN)
50 FOR I = 1 TO TN
60 X = RND (0)
70 A(I) = INT (1000 * X)
B0 NEXT I
90 FOR 1=1 TO TN : PRINT A(I) : NEXT I: PRINT
100 REM
110 REM ****************
120 REM BUBBLE SORT
130 REM ****************
140 REM
150 FOR J = 1 TO TN-1
160 FOR 1= 1 TO TN-1
1701F A (I) < = A(1+1) THEN 210
1B0T=A(I)
190 A(I) = A(1 + 1)
200 A(1 + 1) = T
210 NEXT I
220NEXTJ
300 REM
310 REM ********************
320 REM ORDERED OUTPUT
330 REM ********************
340 REM
350 FOR 1= 1 TO TN
360 PRINT A(I)
370NEXTI

255

SHELL SORT

10 PRINT CHR$(125)
20 PRINT "NUMBER OF ZIP CODES TO ENTER";
30 INPUT TZ : DIM A(TZ+1), L(TZ), R[TZ)
40 FOR N =1 TO TZ
50 PRINT "ENTER ZIP CODE ";
60 INPUT ZIP : A[N) = INT (ZIP)
70 NEXT N
100 REM *** SHELL SORT ***
110 L = (2 1\ INT [LOG [TZ) / LOG (2)))-1
120L=INT[U2)
1301F L < 1 THEN 300
140 FOR J = 1 TO L
150 FOR K = J + L TO TZ STEP L
160 I = K
170T=A(I)
1 B0 IF A[I-L) < = T THEN 220
190 A[I) = A[I-L)
200 I = I-L
210 IF I > L THEN 1 B0
220 A[I) = T
230 NEXT K
240 NEXT J
250 GOTO 120
300 REM
310 REM ********************
320 REM ORDERED OUTPUT
330 REM ********************
340 REM
350 PRINT
360 FOR 1=1 TO TZ
370 PRINT A[I)
3B0 NEXT I

Key Tricks

Before you read this, promise not to get angry. OK? All right,
now you can read on. Up to this point we have not used a num
ber of short-cuts available on your keys. This is because it was
important for you to first get used to the commands and how to
use them correctly. Also, as we will see, the short-cuts do not
clearly show you what is happening on your computer as fully
as writing out the commands.

256

In Appendix A of your BASIC REFERENCE MANUAL
there is a chart which shows how to enter the first one or two
letters of a command and a period (.) to get the whole com
mand into your program. This will save you some time in pro
gramming, but it is difficult to read the command until you get
used to it. For example, put a program into memory and enter
L. and RETURN. The command is the same as entering LIST
except you have to make only two key presses instead of four.
Now, clear memory and enter the following:

10? CHR$ (125) : DIM A$(B) : A$= "ALL RIGHT"
20 F. I = 1 TO 10 : ? A$: N. I

Before you RUN the program, can you guess what will hap
pen? If you cannot, don't feel bad since it is confusing, es
pecially the way it appears on the screen. When you RUN the
program, it will clear the screen and print the message ALL
RIGHT 10 times. Now LIST your program, and all the com
mands are clear exceptfor the PRI NT statement remaining as
a question mark. These key short-cuts are handy in some
cases and confusing in others. The L. for LIST command is
usually from the Immediate mode and is handy to use in the
abbreviated fashion. But until you become better acquainted
with programming, these short-cuts may be more confusing
than helpful. Use the ones with which you feel comfortable,
and introduce them gradually.

Console Keys

To the right of your keyboard are four keys we have not men
tioned yet. They are called the Console Keys and are accessed
by PEEKing location 53279. To use them, a keyboard scan is
set up, and when one of the four keys is pressed, the program
branches to a subroutine. They have applications where the
user is expected to interact with the program from the key
board, but the other keys are used for IN PUT of characters
and keyboard graphics. For example, let's say you wanted to
have a program that would enter names until a certain key
was pressed. Since you would not want the key to be one with
which you entered characters for the name you are entering,
you could use the Console Keys. The values 3, 5, and 6 returned
from location 53279 mean that the START, SELECT or

257

OPTION key is being pressed, respectively. By scanning
address 53279, it is possible to branch to a subroutine when a
specified key is pressed. The following program illustrates
how this is done:

10 PRINT CHR$(125) : PRINT "CHOOSE
CONSOLE KEY"

20 CONSOLE = 53279
30 START = 6
40 SELECT = 5
50 OPTION = 3
601F PEEK (CONSOLE) = START THEN GOSUB 100
701F PEEK (CONSOLE) = SELECT THEN GOSUB 200
801F PEEK (CONSOLE) = OPTION THEN GOSUB 300
90 GOTO 60
100 PRINT "START KEY PRESSED" : RETURN
200 PRINT "SELECT KEY PRESSED" : RETURN
300 PRINT "OPTION KEY PRESSED" : RETURN

You probably noticed that if you held the key down there were
repeat messages. You have to be nimble with this program!

Function Keys on the 1200XL, 1400/1450
XL Series Computers

If you have the ATARI 1200XL, 1400XL, or l450XLyou may
have discovered the use of the four "function keys" at the top
of the keyboard. These keys, numbered Fl, F2, F3, and F4 are
primarily for moving the cursor. In the normal or shifted
mode, the function keys will move the cursor one step or a
screen jump. With the CTRL and function keys you can do spe
cial things. The following summarizes their uses:

KEY NORMAL SHIFTED CTRL

Fl Cursor up 1 Cursor to top Toggle keyboard

F2 Cursor down 1 Cursor to bottom Toggle screen

F3 Cursor left 1 Cursor far left Toggle key click

F4 Cursor right 1 Cursor far right Toggle European
Character set

258

The normal and shifted modes are fairly self-explanatory, but
the CTRL modes need some elaboration. First, by toggle we
refer to setting one state by pressing the CTRL and function
keys and then setting the opposite state by pressing that com
bination a second time. When CTRL-F1 is pressed, the key
board locks up so that no one can use it. This might be handy
when you're in the middle of a program and the phone rings
and you don't want anyone goofing up your program while
you're on the phone. The CTRL-F2 disables the screen. This
can be useful in the middle of a program since computations
can be done faster with the screen off. To get the screen back,
just press CTRL-F2 a second time. If the keyboard click
bothers you, the CTR L- F3 disables it. Finally, if you want to
enter European characters, use the CTRL-F4 combinations.
(Give your programs the continental look.)

Utility Programs

What's a Utility?

Utility programs are programs which help you program or
access differen t parts of your computer. In this section we will
review some of the more useful utility programs available at
this time.

Currently, ATARI does not make utilities, other than tutorial
cartridges and MICROSOFT BASIC. However, MICROSOFT
BASIC is an excellent language compared to the standard
ATARI BASIC. It does require a disk drive system, 32K RAM
configuration, and is designed for the ATARI 800. However, if
you want a more powerful language to develop and speed up
your programs, as well as a form of BASIC which is becoming
the standard in microcomputers, it would be worth having a
look at MICROSOFT BASIC.

For ATARI 800 owners only, one of the few cartridges avail
able for the right hand cartridge slot is a general utility called
MONKEY WRENCH II. This is a true programming utility
providing automatic line numbering, renumbering, search
and find strings within a program, search and replace and
several other handy utilities. In addition it has a 6502 monitor

259

for examining and changing memory contents. Unfortunate
ly, this works only on the ATARI 800 since it is the only model
with dual cartridge slots.

More universal utilities are available. Probably the best place
to start looking for what you need is in your ATARI club's li
brary of public domain utilities on tape and disk. Two public
domain utility disks are available through ANTIC magazine,
so you should check them as well.

Word Processors

Your ATARI computer can be turned into a first class word
processor with a word processing program. Word processors
turn your computer into a super typewriter. They can do
everything from moving blocks of text to finding spelling mis
takes. Editing and making changes is a snap, and once you get
used to writing with a word processor, you'll never go back to
a typewriter again. This book was written with a word processor,
and it took a fraction of the time a typewriter would have
taken. (Believe me, I've written 10 books with a typewriter!)

260

There are some limitations with word processors. First, the
ATARI screen displays only 40 columns. Since the standard
page size is 80 columns. this bothers some people since what
appears on the written page is different from what appears on
the screen. However. since I write material which will be
printed out in everything from 20 to 132 columns, the 40
columns do not bother me. If you want 80 columns for your
screen, though. you can purchase adaptors which will provide
80 columns on the screen for you. Using an 80 column adaptor,
you can see exactly what you will get when you print out your
material. To give you some help in making up your mind, the
following are some features you might want to look for:

1. Find/Replace.
Will find any string in your text and/or find and replace
anyone string with another string. Good for correcting
spelling errors and locating sections of text to be repaired.

2. Block Moves.
Will move blocks of text from one place to another (e.g ..
move a paragraph from the middle to end of document).
Extremely valuable editing tool.

3. Link Files.
Automatically links files on disks. Very important for
longer documents and for linking standardized shorter
documents.

4. Line/Screen Oriented Editing.
Line oriented editing requires locating beginning of line
of text and then editing from that point. Screen oriented
editing allows beginning editing from anywhere on the
screen. The latter form of editing is important for large
documents and where a lot of editing is normally
required.

5. Automatic Page Numbering.
Pages are automatically numbered without having to
determine page breaks in writing text.

6. Embedded Code.
In word processors. this enables the user to send special
instructions directly to the printer for changing tabs,

261

printing special characters on the printer, and doing
other things to the printed text without having to set the
parameters beforehand and/or having the ability to
override set parameters.

These are just a few of the thi ngs to look for in word processors.
As a rule of thumb, the more a word processor can do, the more
it costs. If you want to write only letters and short documents,
there is little need to buy an expensive word processor.
However, if you are writing longer, more complex, and a wider
variety of documents, the investment in a more sophisticated
word processor is well worth the added cost. If you have
specialized needs (e.g., producing billing forms), you will want
to look for those features in a word processor which meet
those needs. Therefore, while a particular word processor
may not do certain things, it may be just what you want for
your special applications. As with other software, get a
thorough demonstration of any word processor on an ATARI
before laying out your hard earned cash. The ATARI WORD
PROCESSOR (for the 800 only) and the newer ATARI
WRITER, for the 400, 800 and 1200XL, are available directly
from ATARI dealers. The newer ATARIWRITER is an ex
cellent word processor with most of the features listed above.
It comes on a 16K cartridge. The following are some other
word processors you might consider:

1. BANK STREET WRITER (48K RAM and Disk Drive
required.)
$69.95
Broderbund Software
1938 Fourth Street
San Rafael, CA 94901
(415) 456-6424

Bank Street Writer is an excellent word processor, especially
for younger writers. It is very "user friendly," and was used in
educational programs to encourage and help students to learn
writing skills.

2. LETTER PERFECT (16K RAM.$149.95 disk/ $199
cartridge)
UK Enterprises, Inc.
P.O. Box 10827
St. Louis, MO. 63129

262

-

This word processor comes in 80 or 40 column versions. It is
configured to use any printer, an important feature of any
word processor. It is also compatible with Data Perfect, a data
base program by the same company.

3. ACCU/ WRITE. (16K Cassette). $20.00
DPH, Inc.
1700 Stumph Blvd. Suite 705
Gretna, LA 70053
(504) 361-8594

For those who have limited memory and uses for a word
processor, ACCU/WRITE might be just the thing. It takes up
little room, is cassette based and is inexpensive. Also, it re
quires the use of an Epson printer.

As a cautionary note, word processors take a bit of time to
learn to use effectively. It is possible to start writing text
immediately with most word processors, but in order to use all
of their features, some practice is required. One of the strange
outcomes of this is that once a user learns all of the techniques
of a certain word processor, he or she will swear it is the best
there is! Therefore, avoid arguments about the best word
processor. It's like arguing politics and religion.

If you want to write text in more than 80 columns, you will
need an adaptor. The following cartridge will do that for you:

1. 40/80 VIDEO CARTRIDGE $219.95
FULL-VIEW 80. $349.00 (Cartridge)
Bit-3 Computer Corp.
8120 Penn Ave. South, Suite 548
Minneapolis, MN 55431.

This cartridge can be used with or without a word processor,
providing both 40 and 80 columns of text. It fits into the "back
slots" (slot 3) of your computer. Compatible with Letter Per
fect as well as other word processors.

Also for 80 columns, you might want to look at:

2. CM-1000/V $489.00
Compu-Mate Corp.
6305 Arizona Ave.
Los Angeles, CA 90045.

263

The Compu-Mate CM-1000/V serves as both an 80 column
screen display and a peripheral interface (like the ATARI 850
interface). It serves as an "all-in-one" device for printer inter
face and 80 columns on the screen.

Keyboards for the AT ARt 488

As much as you might love your ATARI 400, it would be nice
to have a movable keyboard like the 800 or XL models. Well,
there are plenty avai lable for you. The following are a
sampling:

1. JOYTYPER-400 $129.95
Microtronics, Inc.
P.O. Box 8894
Ft. Collins, CO 80525
(303) 226-0108

The JOYTYPER-400 plugs into the ATARI 400 with no
soldering necessary.

2. COMMANDER 2400 $109.00 - $199.00
RCE
536 N.E. "E" Street
Grants Pass, OR 97526
(800) 547-2492

The Commander 2400 keyboard comes with or without a
numeric keypad. It plugs into either the 400 or 8M and does
not require soldering. Both your regu lar keyboard and the
Commander 2400 can be used simultaneously if you want.
Easily detachable if you don ' t want the kids (or their parents!)
playing on it.

Data Base Programs

When you need a program for creating and storing informa
tion, a "data base" program is required. Essenti ally, pro
fessionally designed data base programs use either sequential
or random access files. When you use one, you just use the pre
defined fields provided or create fi elds. For example. a user

204

may want to keep a data base of customers. In addition to hav
ing fields for name and address, the user may want fields for
the specific type of product the customer buys, dates of last
purchase, how much money is owed, date of last payment, etc.

Probably more than most other packages, data base pro
grams should be examined carefully before purchasing. Some
of the more expensive data bases can be used with virtually
any kind of application, but if you're going to be using your
data base only to keep a list of names and addresses to print
out mailing labels. for example, a data base program designed
to do that one thing will usually do it better and for a lot less
money. On the other hand if your needs are varied and involve
sophisticated report generation and changing record fields,
then do not expect a simple, specialized program to do the job.
ATARI, Inc. has a nice data base program, MAILING LIST,
which can be used for several general purpose lists, such as
names and addresses, client names, and similarfiles requiring
names. For bigger and more varied jobs, ATARI also has THE
HOME FILING MANAGER, which has more general data
base uses. It can organize everything from small inventories
to people on your Christmas list. For a really powerful data
base, you might want to look at DATA PERFECT from LJK
Enterprises or FileManager 800 or FileManager+ from
Synapse Software. These database programs are for complex
applications which require storing and retrieving large
amounts of diverse information. As a cautionary note, before
you get a sophisticated database program, check the RAM
requirements. You can add up to 64K of RAM on your
400/600XL/800. (For 800XL, 1200XL, 1400XL, and 1450XL
users, you probably have the RAM, but check for compatibility!)

Business Programs

If you think that the ATARI is primarily for games, you will be
amazed by the number of business programs there are on the
market for ATARI. Business programs have such a wide
variety of functions that it is best to start with a specific busi
ness need and see if there is a program which will meet that
need. On the other hand there are general business programs
which are applicable to many ciifferent businesses. Specific
business programs include ones which deal only with real

2fji)

estate, stock transactions, and inventory planning. More
general programs include "General Ledgers," "Financial
Planning," and, as discussed above, data base programs.

Unfortunately, business people often spend far too much for
systems which do not work. They believe that if one spends a
lot of money on software and hardware, it must be better than
a less expensive simpler system. This thinking is based upon a
"You Get What You Pay For" mentality, and it leads to sys
tems which are not used at all. Here is where a good dealer or
consultant comes in handy. First, since computers are getting
more sophisticated and less expensive, often you do not "Get
What You Pay For" when purchasing a big expensive one.
Often all the business person ends up with is a dinosaur sys
tem which is outmoded, too big, and too expensive for the
needs. Some computer dealers specialize in helping the busi
ness person. They will help set up the needed system in your
place of business, help train office personnel, and provide
ongoing support. These dealers will charge top dollar for your
system and supporting software, as opposed to the discount
stores and mail order firms; however, if you have any prob
lems you will have someone who will come and help you out.
Since the ATARI is so inexpensive to begin with, the extra
money spent on buying from a business supportive dealer is
well worth the little extra cost. Alternatively, there are con
sultants for setting up your system. If you use a consultant,
get one who is an independent without any connection to a
vested interest in selling computers. Contact one through
your phone book and tell him you want to set up an ATARI
system in your office and let him know exactly what your
needs are. If he is familiar with your system, he will know the
available software and peripherals you need. If he tries to sell
you another computer, that probably means he is unfamiliar
with your system, and it would be a good idea to try another
consultant.

I do not mean to sound cynical, but I have encountered too
many unhappy business people who bought the wrong system
for their needs. One businessman said he paid $14,000 for a
computer system which never did work for his requirements
and finally bought a microcomputer system for about a tenth
of the price and everything worked out fine. This does not
mean that a business may not require an expensive computer
to handle certain business functions. and the A TARI certainly

266

has limitations. However, before you buy any system, make
sure it does what you want and have it shown to you working
in the manner that fits your needs. Often you will find that the
less expensive new micros like the ATARI will actually work
better than costly big machines.

A good start for business programs is some kind of spread
sheet or general ledger. These programs are excellent for
keeping track of complicated accounting. The best known
spreadsheet is VisiCalc, used for column/row tabulations with
user produced formulas. It is the best general purpose finan
cial calculator on the market and consistently a bestseller.
ATARI, Inc. has THE BOOKKEEPER which has a general
ledger, accounts receivable, and accounts payable along with
commands for dumping output to the printer. Another general
business program is the COLOR ACCOUNTANT from Pro
grammer's Institute. It includes, among other features, a
checkbook manager. check search, mailing list, decision maker
and a color graph design package. It comes on both cassette
and disk. Finally, Computari has a disk based program, A
FINANCIAL WIZARD 1.5. This program has several utilities
for creating custom business applications, tabulations, budget
forecasts, and several other useful business features. It is also
configured for printing out the results to several different
brands of printers.

The above programs are a sampling of what is available, and I
have touched only on the more general ones. For more specific
applications. your A TARI software dealer can show you a lot
more. And remember, before buying, get a demonstration to
make sure what you buy is what you need.

Graphics Packages

In our chapter on graphics we discussed some of the ATARI's
capabilities with graphics. However. certain uses require
either highly advanced programming skills or a good graphics
package. Using graphics utilities and/or hardware. it is pos
sible to create pictures easily. The pictures produced can then
be saved to disk or tape or printed out to your printer. Also.
character editors. for producing different characters for your

2fi7

keys are available. These programs allow you to concentrate
on the graphics themselves rather than the programming
techniques necessary to produce them.

Probably the best bet for serious graphics work are the various
packages which operate under vaIFORTH. Two programs
highly recommended are the PLAYER MISSILE GRAPHICS,
CHARACTER EDITOR AND SOUND EDITOR, and TUR
TLE AND VALGRAPHICS AND FLOATING POINT ROU
TINES from Val par. These programs will require purchasing
vaIFORTH; but in addition to being able to create all kinds of
interesting graphics (including professional quality graphics)
you will learn how to program in FORTH. If you're on a
budget, there are several public domain programs for doing
graphics in your club library, or for $10 you can get ANTIC's
public domain disk, ANTIC GRAPHICS AND SOUND
DEMO # 1. Don't expect to do anything of professional quality,
but the price is right!

268

If you are not inclined to spend time programming graphics,
you can purchase hardware devices which allow you to "draw"
your graphics. One way is with a "light pen." Programmer's
Institute has one for only $29.95. It requires software, also
available from Programmer's Institute, but with it you simply
draw on the screen, and your pictures can be saved to disk or
dumped to a printer.

Finally, to dump your programs to a printer, you need, in addi
tion to a printer, special hardware/software. Your club's
public domain library probably has several programs for
dumping graphics to various printers. One useful hardware/
software package is GRAPHICS HARDCOPY for$79.95 from
Macrotronics, Inc. It dumps text and graphics to your printer.
If you get one, be sure to specify whether you are using the 400
or800 and the type of printer you have so that you get the cor
rect cable and software.

Expanded Memory

The ATARI's memory is "expandable." With an ATARI
800XL, 1200XL, 1400XL or 1450XL you don't have to worry
too much about expanded memory since it comes with a lot,
but your ATARI 400, 600XL and 800 might need more
memory. ATARI Inc. makes RAM expansion modules that
increase memory in the 400 and 800 up to 48K and up to 64K for
the 600 XL. Other companies also have up to 64K of RAM
which can be added to the 400 or 800 models. One popular
board is the Mosaic 64K RAM SELECT. If you are handy with
hardware and on a budget, you can get kits for 16-32K up
grades for $49.95-$64.95 from Bontek, MPO Box 547, Niagara
Falls, NY 14302 (416) 245-9758. For the ATARI 400, Austin
Franklin Associate makes a 48K board for $149.95 that is all
set to install. If you join a club, ask other members what they
recommend and their experiences with different memory
upgrades.

Like software, before you purchase an interface or peripheral,
make sure it works with your computer! Unfortunately, many
hardware attachments come with such poor documentation
that without someone to show you how to work them, it is
almost impossible to get them to operate properly.

269

SUMMARY

The most important thing to understand from this last chap
ter is that we have only scratched the surface of what is avail
able for the ATARI computer. There is much, much more than
a single chapter could possibly cover, and, as you come to
know your ATARI, you will find that the choice of software
and peripherals is limited only by the confusion in making up
your mind. There were other items for the ATARI that came to
mind, but this chapter and book would have never ended were
I to indulge myself and keep prattling on. The software and
hardware I suggested were based on personal preferences; I
would suggest that you choose on the basis of your own needs
and preferences and not mine. Think of the items mentioned as
a random sampling of what one user found to be useful and
then, after your own sampling, examination and testing, get
exactly what you need.

As you end this book, you should have a beginning level
understanding of your computer's ability. Whether you use it
for a single function or are a dedicated hacker, it is important
that you understand the scope of its capacity to help you in
your work, education and play. It is not a monstrous electronic
mystery, but rather a tool to help you in various ways. You
may not understand exactly how it operates, but you probably
do not understand everything about how your TV set operates
either, but that never prevented you from watching the even
ing news. With your computer, though, you make the "news"
on your TV.

270

271

ATARI COMMAND EXAMPLES

This glossary is arranged in alphabetical order. The examples
are set up to show you how to use the commands and their
proper syntax. In some cases when a command has different
contexts of usage. more than a single example will be used.
Some examples are given in the Immediate mode and some in
the Program mode < those with line numbers> and some with
both. Results are given to show what a particular configura
tion would create in some examples for clarification. Some
commands of specialized use that were not covered in the text
have been included here for a more complete glossary.

ABS() Gives the absolute value of a number or variable.

PRINT ABS(-123.45]
< RESULT> 123.45

ADR Returns memory address of string.

10 DIM A$(14]
20 A$ = "ATARI COMPUTER"
30 PRINT ADR(A$]
< RESULT> 7743 (Depends on memory size.)

AND Logical operator used in IF/THEN statement.
1401F A$ < > "Y" AND A$ < > "N" THEN 80TO 10
o

ASC() Returns ASCII value of first character in string.

PRINT ASC ("W"] or A$ = "ATARI" : PRINT ASC(A$J

ATN() Returns arctangent of number or variable.

PRINT ATN (123J
< RESULT> 1.56266643

BYE Exits from BASIC to scratch pad.

BYE

272

CHR$() Returns the character with a given decimal value.

PRINT CHR$(65)
< RESULT> A

CLOAD Loads program from cassette tape into memory.

CLOAD

CLOSE # N Closes channel to device or file.

210 CLOSE #7: REM 7 IS FILE NUMBER OF DEVICE
OR FILE BEING CLOSED.

CLOG Returns common logarithm of argument.

PRINT CLOG(123)
< RESULT> 2.08990511

CLR All variables are reset to zero.

120 CLR

COLOR Sets color register with DRA WTO and PLOT and/
or in GRAPHICS 0, 1 or 2, the next character to be plotted.

20 COLOR 122

CONT Continues program after a STOP or <BREAK> in
program

CONT

COS() Returns the cosine of variable or number.

PRINT COS(123)
<RESULT> - .8879689074

CSAVE Saves program to cassette tape.

CSAVE

DATA Strings or numbers to be read with READ statement.

273

1000 DATA 2, 345, HELLO

DEG Sets up trigonometric functions to be expressed in
degrees instead of radians.

10DEG
20 PRINT COS(7)
<RESULT when RUN> 0.992546157
<RESULT without DEG> 0.7539026737

DIM Allocates maximum range of array OR string variable.

130 DIM A$ (20)
1 0 0 1M J K [1 00)

DOS Accesses disk directory and menu.

DOS

DRAWTO C,R Draws a line between last point PLOTted
and specified Column and Row.

10 GRAPH ICS 7
20 COLOR 2 : PLOT 0,0
30 DRAWTO 50,50

END Terminates running of program.

200 END

ENTER Loads a LISTed program (saved to disk with
"D:LIST") into memory without erasing current program.

ENTER

EXP() Returns e=2.71828179 to indicated power.

PRINT EXP (5)
<RESULT> 148.413155

FOR Set ups beginning of FOR/NEXT loop and top limit
of loop.

274

40 FOR 1= 1 TO 100

FRE() Returns available memory.

PRINT FRE(0)

GET #N Used to input single byte of information to disk or
can be used to input single byte of information from keyboard.
In latter application, it is used to halt program until number
is pressed.

< KEYBOARD>
30 OPEN #5.4,0,"K :"
40 GET #5, A

< DISK>
10 OPEN #2,4, 9, "01 : FILENAME"
20 GET #2; FV

GOSUB Branches to subroutine at given line number.

100 GOSUB 200

GOTO (or GO TO) Branches to given line number.

100 GOTO 200

GRAPHICS Sets graphics modes 0-8.

30 GRAPHICS 4

IF jTHEN Sets up conditional logic for execution.

60 IF A$ = "Q" THEN END

INPUT Halts program execution until string or numbers
entered and RETURN key is pressed. May enter message
within INPUT statement.

90 INPUT "ENTER WORD- > " ; W$(I)
100 INPUT "ENTER NUMBER -> "; A
110 INPUT "ENTER INTEGER NUMBER -> "; N%
120 PRINT "HIT 'RETURN' TO CONTINUE ";
1301NPUT R$

275

INPUT# Takes data from a previously OPENed file or
device.

200INPUT# 1. R$

INT() Returns the integer value of real variable or number.

PRINT INT (123.45)
<RESULT> 123

LEN Returns the length in terms of num bel' of characters for
a specified string.

A$ = "COMPUTER AWAY"
PRINT LEN(A$)
< RESULTS> 12

LET Optionally used in defining value of variable or string.

20 LET A = 10
30 LET A$ = "ATARI"

LIST (Dos) Save a program to disk as ATASCII file.

LIST "o :GRAPH"

LOAD Loads program from disk.

LOAD " 0 : PROG1 "

LOCATE C,R,V Store in variable V, the Column and Row
data.

10 GRAPHICS 3
20 COLOR 2
30 SETCOLOR 2, 13,6
40 PLOT 5,5
50 DRAWTO 20,20
60 LOCATE 1 g, 1 g , L
70 PRINT L
<RESULT when RUN > 2

LOG() Returns logarithm of specified number or variable.

276

or

PRINT LOG (123)
<RETURNS> 4.81218436

G = 123 : PRINT LOG (G)

LPRINT Sends output to printer.

LPRINT "Atari on my printer"

NEW Clears program in memory.

NEW

NEXT Sets the bottom of the loop begun with FOR statement.

10 FOR 1= 1 TO 100
20 PRINT "THIS" ,
30 NEXT I

NOT Logical negation in IF/ THEN statement.

60 IF A NOT 8 THEN GOTO 100

NOTE S,C Used in advanced disk file handling operations
to find position of file pointer, indicating last Sector and
Character.

NOTE #5, SEC, CHR

ON Sets up computed GOTO and GOSUB.

190 ON A GOSU8 1000,2000,3000

OPEN #R,CN,AC,"FD: TITLE" Opens channel to Ref
erence number, Code Number, Auxiliary Code device or file.

4= READ 8= WRITE 12= READ/ WRITE
6= READ DISK DIRECTORY
C:= CASSETTE 0 := DISK DRIVE S:= SCREEN

P:= PRINTER K:= KEY80ARD E:= EDITOR
500 OPEN #5,4,0, " 01 : PMDATA" (Opens channel to
disk drive for reading file.)

277

OR Logical OR in IF/THEN statement.

1301F A=10 OR B = 20THEN GOTO 190

PADDLE() Get information from paddle value.

140 A = PADDLE(1 J
150 PRINT A

PEEK Returns memory contents of given decimal location.

170 PRI NT PEEK (768)
180 IF PEEK(768J = 5 THEN GOTO 200

PLOT C,R Plots a point in graphics at Column, Row
designated.

10 GRAPHICS 3
20 PLOT 5,10

POINT #N,S,C Used in disk file handling operations to
move position of file pointer, to Sector and Character of
OPENed file, channel N. Used in advanced file handling.

20 POINT #5, 200, 20

POKE Inserts given value in specified memory location.

POKE 768,10 (Sets memory location 768 to decimal
value 10J

POP Used to exit GOSUB rather than using RETURN.

10 GOSUB 100
20 PRINT "HERE"
30 END
100 PRINT "NOW"
110 POP
<RESULT> NOW

POSITION C,R Places cursor at specified Column, Row.

10 PRINT CHR$(125J
20 POSITION 10,20
30 PRINT "THIS LINE"

278

PRINT Outputs string, number or variable to screen or
printer. (Can substitute "?" for PRINT.)

PRINT 1 ;2;3; "GO"; F$; A; N%

PRINT# Sends output to specified OPENed device or file.
(The question mark (?) cannot be substituted when using
PRINT# .)

OPEN #5,8,0, "P:"
PRINT#5 ; "HELLO ATARI"
< RESULT> Prints message HELLO ATARI to
printer.

PTRIG() Get information from paddle button - 0 if being
pressed.

40 A = PTRIG(0)
50 IF A = 0 THEN GOSU8 100

HAD Default condition of trigonometric functions specify
ing radians rather than degrees. Used to restore to default
after DEG is used.

10 DEG
20 PRINT COS(6)
30 RAD
40 PRINT COS(6)
< RESULTS when RUN> 0.9945218991

0.9601700149

READ Enters DATA contents into variable.

10 READ A : READ 8$
20 DATA 5 , "8ATS"

REM Non-executable command. Allows remarks In pro
gram lines.

10 DIM A$(122): REM DIMENSIONS STRING
ARRAY "A$" TO 122

RESTORE Resets position of READ to first DATA statement.

279

10 FOR 1=1 TO 5 : READ A$(I): NEXT
20 RESTORE

RETURN Returns program to next line after GOSUB
command.

500 RETURN

RND() Generates a random number less than 1 and greater
than or equal to 0.

PRINT RNo(5)

INT (RND (1) * (N) + 1) Generates whole random num
bers from 1 to N, with N being the upper limit of desired
numbers.

10N=10
20 R = INT (RNo (1) * (N) + 1)
30 PRINT R
<RESULT> Random number between 1 and 10

RUN Executes program in memory.

RUN

SAVE Records program on disk.

SAVE "0: GRAPH PLOT"

SETCOLOR CR,H,L Sets color of Color Register (CR) to
Hue and Luminance. Color register is dependent on Graphics
mode.

SETCOLOR 2, 16,6

SGN() Returns value for sign. If positive number then 1, if0
then 0 and if negative then -1.

PRINT SGN(123)
< RESULT> 1

SIN() Returns the sine of variable or number.

280

PRINT SIN(123)
< RESULT> -0.459903894

SQR() Returns the square root of variable or number.

PRINT SQR(64)

STEP Sets the increment/decrement of FOR/NEXT loop.

10 FOR X = 1 TO 100 STEP 10
20 FOR Y = 100 TO 10 STEP -10

STICK() Get information from joystick value. Values from
5-15.

10 S1 = STICK(1)
20 PRINT S1
30 IF S1 = 14 THEN R = R + 1

STRIG() Get information from joystick button - 0 if being
pressed.

10 FIRE = STRIG(0)
20 IF FIRE = 0 THEN GOSU8 100

STOP Halts execution and prints line number where break
occurs. (CONT command wi ll re-start program at next in
struction after STOP command.)

100 STOP

STR$() Converts number/variable into string variable.

20 DIM T$(3) : T= 123: T$= STR$(T) : TT$= "$" + T$
+".00"

THEN Used in conjunction with IF. See IF/THEN above.

TO Used in conjunction with FOR/ NEXT. See FOR/NEXT
above.

TRAP Primarily used in detecting end offile in file program
ming. When INPUT to OPENed file is error, TRAP is used to
branch to out of sequence line.

281

10 TRAP 150

150 CLOSE #5

VAL() Used to convert string to numeric value.

30 H$ = "123" : PRINT VAL(H$)

XIO (1) Used as "fill" and DRA WTO statement with graph
ics. (2) Advanced multi-function I/ O.

(1) 60 XIO 18, #6, 0,0, "5: " : REM FILL
(2) 200 XIO 5, #5,0, 0, "PROG1 .LST"

282

INDEX

A
algorithm 101
A.N.A.L.O.G. Computing 247
AND/OR/NOT 94
animation 182-184
ANTIC: The Atari Resource 247
arrays 103-108

DIMension of an array 105
multi-dimensional 106
variable 103

arrow key 35-36
Atari and Other

Languages 248
assembly 249
FORTH 251-252
Pascal 252-253
Pilot 254

Atari command
examples 272-282

Atari editor 53
Atari key 34
Atari magazines 246-248
ATASCII code 140-144
Atari user groups 245-246

B
background color 169-173
backward steps 82-83
BASIC 41
binary arithmetic 186-187
black and white monitor 19
booting disks 25
branching 88-91
break key 35
bubble sort 255
bugs and bombs 71-72
business programs 265
buzzer 141

C
carat key 36
cartridge programs 32
cassette 16, 30-32, 209-217
cassette programs 31-32
checkbook program 130-135
CHR$ 143-144
CHR$ map 143-144
CLOAD 51
clear key 35
clear screen 43
close 213, 233
CLR/SET/TAB key 37
colon 44,71
color background 169-173

chart 168
command 171
graphics 167
monitor 19
setcolor 167-169

comma 71
compilers 254
Compute! 248
computed GOTO and GOSUB 98
concatenation 119, 126-128
console keys 257, 258
COSine 180
counters 84
CSAVE 63
CTRL key 35
cursor 23

D
DATA 75
data entry 129-130
data files 205

282

cassette 209-217
disk 206-209

data manipulation 130-135
DATA statement 107
DATA statement in quotes 77
decimal address 154
Delete/Back key 36-37
deleting lines 52-53
diagram, nested loop 81
DIMension 68, 121
DIM of an array 105
DIM PMD 215
disk code meanings 218
disk drive 17, 25-30

booting 25
programs 30

distortion, sound 157
DOS 28
DOS commands 34-37
dot matrix printer 19
DRA WTO command 171
duration, sound 158

E
"E" 67
editor/editing 51-58
elementary math

operations 58-61
ENABLE command 194
END command 89
ENTER command 200
equal to relationals 91
error 213
error messages 51-52
ESC key 35
ESC-TAB key 140
expanded memory 269, 270
expanding players 196
extenders 51

F
false 94
file names 63
fire button 116

formatting a disk 28
formatting text 70-71, 111-114
FOR/ NEXT 78, 104
FORTH langauge 251-252
function keys for 1200XL,

1400/ 1450XL series 258-259

G
GET 208-209
GOSUB 100,101
GOTO 88, 91
graphics

color 167
keyboard 162-164
high resolution 179-182
pseudo 241-242
save memory 177-179
screen 165-167

graphics packages 267-269
greater than or equal

to relationals 91
greater than relationals 91
green screen monitor 18

H
hardcopy 230
hardware 13
hexidecimal numbers 146
HORizontal position 194

I
IF/THEN 95, 110
IF/THEN with relationals 93
immediate mode 42
input 73
input # 211, 222
Input/ Output 73, 111
insert/ inserting key 35

J
joystick formatting 117-118

284

K
keyboard 33-39

arrow (cursor) key 35-36
break key 35
carat key 36
clear (clear home) 35
CLR/SET/TAB key 37
CTRL key 35
delete/back key 36-37
ESC key 35
insert key 35
return key 36
special keys 34-37

keyboards for Atari 400 264
key tricks 256

L
languages

assembly 249
FORTH 251-252
Pascal 252-253
Pilot 254

LEN function 114, 120-121
length of strings 119
less than relationals 91
less than or equal to

relationals 91
LET 63
letter quality printer 20
line numbers 45
LISTing program 46
list "P:" 230
LOAD 51
LOADing programs from disk 30
LOADing programs from tape 30
Loops

diagram 81
nested 80-82

looping 78
LPRINT 230
luminance, color 169

M
math operations 58-61
mean as variable name 66
MEM.SAV 223
missile memory storage 199-200
modem 23
MOFFSET command 200
monitors 17-19

black and white 19
color 19
green screen 18

multi-DIMensional array 106
multiple players 197-198

N
nested loops 80-82
NEW 24
not equal to relationals 91
NU 65
number lines 45
numbers to strings 125-126

o
OPEN 208, 209, 218
OUTPUT 73,111

p
paddles

adding to program 115
fire button 116
formatting 115-117
trigger 116

parenthesis 60
Pascal 252-253
PAUSE 156
peripherals

disk drive 17
modem 23
printers 19
program recorder 16
TV or monitor 17

Pilot 254
pitch 157

285

play 51
player/missile graphics 184-196
PLOT 171
plotting and drawing 171
POKEs and PEEKs 144-145
POSITION 114
precedence chart 59
precedence recording 59-61
PRESS PLAY 213
PRINT 42,71
PRINT # 211, 222, 231
printer graphics 240-241
printer output 236
printers

dot matrix 19
letter quality 20
thermal 20

printing 53
program

cartridge 32
disk 30
tape 30-31

program (deferred) mode 42
programming

LISTing 46
setting-up 45
SAVEing on disk 47
SAVEing on tape 47
retrieving your programs 48

pseudo-graphics 241-242
PTRIG 116
publications 248
punctuation in formatting text 70
PUT 208-209

Q
question mark 38

R
RAM 13,14
READ 75-76
READing in data 75

286

real variables 67
REC on recorder 213
register number 167
relationals 91
REM statement 44
reordering, precedence 59-61
repairing 51-52
reserved words 66
reset 147
resetting the text window 154
RESTORE 106-108
return key 36
ROM 13,15
RUN 43,51
RUNning programs from tape 30

S
SAVE to cassette 47,79
SAVE to disk 47, 79
scientific notation 67
screen 148
screen graphics

big-text screens 165
color 167

screen sizes 172-177
scroll control 135-136
sequential files and

disk system 217
set color graphics

color 167-169
luminance 169
register number 167

shell sort 256
SINe 180
software 13
sort routines 254-256
sound 155-159
special keys 34-37
STRIG 117
string formatting 119
strings to numbers 124-125

string variables 67, 124-125
substrings 121
system/ reset 147

T
TAB 111-112
tape

LOADing programs 30
RUNning programs 30

TRAP 213, 220
true 94
TV 17
tweaking the speaker 156

U
unraveling string 118
user groups 245-246
utility programs 259-260

V
variable names 65
variables 63-72
voice 157
volume 157

W
word processors 260-264

287

-

-
-

	Cover
	Contents
	Preface
	1: Introduction
	2: Start Your Engines
	3: Moving Along
	4: Branching Out
	5: Organizing the parts
	6: Some Advanced Topics
	7: Using Graphics
	8: Date and Text File with the Tape and Disk System
	9: You and Your Printer
	10: Hints and Help
	Atari Command Examples
	Index

