From the editors of $14.95

THE

A.N.A.L.O.G. Computing

FINELLL

COMPENDIU

The best ATARI® Home Computer Programs from the first ten issues of A.N.A.L.O.G. Computing Magazine.

—— e

| ATARIGOO

IATTI

THE

BNELLOG

COMPENDIUM

he best ATARI® Home Computer Programs from the first ten issues of A.N.A.L.O.G. Computing Magazine.

From the editors of
A.N.A.L.O.G Computing

A.N.A.L.O.G Magazine Corp.

Worcester, Massachusetts

This book is dedicated to
our parents.

Copyright © 1983 A.N.A.L.O.G. Computing Corp.
A.N.A.L.O.G. Corp. is in no way affiliated with Atari.

ATARI and 800 are trademarks of Atari, Inc.

All rights reserved.

No part of this publication may be reproduced, in any form or
by any means, without the prior written permission of the
publisher.

Printed in the United States of America
ISBN 0-914177-00-1
10987654321

Table of Contents

EVEEOTUICTION 05 w55 5 5w 5000 55 7008545500 0 50505 555 5830 #5958 5 0 B0 650 o o o ik 0 0 350 o m Jon A. Bell
Checksum Programs

CICHECK i 50 v 055 6 505506505508 5 6 5505 156 858 45,5 5.4 15 o100 oo ok im0 1o o v m et 1w o o Tom Hudson
DiCHECKZ . ettt e e Istvan Mohos and Tom Hudson
Programming Utilities

Unleash The Power of Atari’s CPUottt et et Ed Stewart
Console BUutton SUbroUtingttt i e e Jerry White
TrapPIiNg YOUr Alari .ottt e et e et e e e Donald B. Wilcox
Bassnotes in BASIC e e e Jerry White
AUDGCTL DB ¢ 5 51655505 5505 55080570 500856508 550w 15 80508 605 5 81856 03 555 68 0 805 50 8 305 4 R0 5 o 6 6 6 600 00 B0 3 0 0o o Jerry White
Variable Listero e e e e Tony Messinna
BUNCIUS L e e e Tony Messina
OYS/ OVAY e s mrim im0 500055 50 4 500506500 60 0 65 5055 508 50 66 0 B0 505 5. 6 80 B B 0 B e s Robert Hartman
Faster Character DUMPS .. oiitti ittt ittt it it e et et et ettt ettt Joseph Trem
O (7 o] o o111 T P Mark Chasin
Graphics

GraphiCs O GTIA DM . . ottt ettt ittt ettt ettt e et ettt ettt e e te ettt
(@1 o[I T 4T S
TAAGIE DEITO: 5 ts im0 5550555500808 505555565 50 80608 050§ 558 508 50 850 5 95 8 505 8 o e 68098 5080 0 03 B m 4 mm tm m mm m me
AL SYMBDO| DEIMO! 5c s oo mma s sisimsmes s mssio s e s ssss s s s 88 e es s s s s esasssn:ss s Craig Weiss
GraphiCs 10 G A DeMO . o . ittt ettt ettt ettt e ettt et ettt et e et te e e enananeaanenns
MOVING Players in BasiC .. .uvvtn ittt it it it ittt ettt et et et et e Jerry White
USING DLIS csxsimsmsanininsimiamims ams mae s msisisins@aissBuimsios s 0i@aisidi®oinim Joseph Trem
A Graphics Clipping ROUtINEottt e e et i et e i Tom Hudson
3-D Graphs Made Fastand Easy ...t i it Tom Hudson
SPREIE DEIND e oo e e o e me o 5 w0 ms0 00 559 0 5 o 555 20 8 8 30005 o B w0t 0 6 85 3 5 i 9 B o o i 03 i @ o s b 0 o 10 0 o o
GraphiC ViolBNGE s msuwsamsmsmmsmss e s s mes 555 688 b 585 67656858808 RTH5 680500 Tom Hudson
Graphies 11 GTIADEING i s msm s wms o5 e m s 16 s 080895 50916 5508 60 008 5 805 0308 58 05 518 6 08 18 o 6 6 6 50 8 ¥ 10 0 0 06 08 00 L6 09 3 08
Atari 1020 Printer DEMO i ettt ittt e e e e et e e et Tom Hudson
RaINDOW DBMIO . .ottt ettt ettt e e e e e e e
SWIF DEIMVO" ¢ 5005055557815 8.8 518 % 508 5570 85 555 B8 B3k 5 0 5 68 SN0 06 6 BB 6 95,6 5 B RSB B8 B 5 R R S B AW R MRS
STOWHAKE DETITO « 15 s mrs s msis i mms o8 o s s m s s 81905 55 6855565 £ 95 M 8EE 3% G E T8 TS EE S HEEaeEHEEsEE TR
GraphiCs 8 COlOr DEMO .. i ittt ittt ettt e et e e et e et e et et e et
o 1 =0 0 =Y o T PP
CirCle/ RAAIUS DEING S . v i s o o558 507 5558 515 61508 515 5508 55 55509 805 0 506 515 0 508 506 M3 0 01865 o R0 6000 80 o B 05 0 B BT F 8 B 8
PYEIEY DIEIMIO 15 51555 1555 505 5 8 3 05 805 65,5 50 8 o 5660 6 903100066 606 58 188380 66 B0 870 0B 0650 66060 06 B S 6 198 5 816 (B 918 M B &
Atari 1020 Printer DEMOSo i ittt ittt i e ettt e Tom Hudson
Disk Utilities

Disk Files: Using NOTE and POINTottt ee e Jerry White
Disk DireCtory DUMD ..ottt e i e ettt c it e e e e Tony Messina
BUITDY . « e i e om0 100 10010 0 i e o w5 8 5056 0 6 5 e e G B b A BRI B AR S MG AR R SRR Charles Bachand
The Black Rabbit 2.0 « :s s iassssmisasmsmainss st essms@ise: s gsass@oipessssnsssass Brian Moriarty
Disk TOOI 1, REV. B ittt e e e e et et it e e e Tony Messina
Home Utilities and Education

Home Energy Consumption Analysisoiiiiiiiiiiiiiiiiii i iiinneennn, Joseph E. Harb
Y711 Ve T 1 = U1 1= Regena
Entertainment

Motorcycle Maze Rider.ot i i e it ce i Charles Bachand
DN BaE .., o 0o 555056505 005 6150805555 5.5 58 05, 50506 8 615 M55 505 9 80§ 86516 506 57 5 18 60 5 19 54508 5.6 %0 8 /8 81 8 1903 8 56 308 Art V. Cestaro lll
Triple Threat DiCe. .. i vttt i e et e et e e ittt ittt . Michael A. lvins
BUCYLCIE: v« v s v 1000w w0 0 v 0 101 w0 i s 0 v B o s i e 6 B B AR SR GBI GBS RS Dan Devos
Color SIot MACKING: & csswomesmsms amemsims oosms s ssesamssessesssssiessgssssessnssn Micheal A. lvins
Halls Of The Leprechaun King ...« Keith Evans and Ted Atkinson
SHUNEMI AN .ottt e e e e Stephen Pogatch
Dungeons and Dragons Character Generator. ...t i, Bob Curtin
Dungeons and Dragons Housekeeping 2...... ..ottt i, Bob Curtin
ThUunder ISIANE v voeveie e cnm e eimmrimsie b i s % bbb o b P E O s RS W@ Craig Patchett
=1 1= (o R e L T Rick Messner
Harvey Wallbangert i i it ittt Charles Bachand

Fill M@0 WD AT e vre oo esm i e o oo 508 5505 505897500500 56 60060 006065655 06 037678 006 /0 96 IS 0808 606 80 8 9 08 18 2 19 Tom Hudson

13
15
16
18
19
20
24
30

34

101
110

117
119
123
126
128
135
140
143
149
158
161
166
175

PAGE 4 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

Introduction

Lee Pappas and Mike DesChenes of Worcester, Massachusetts bought their first Atari home com-
puters in November of 1979. Their first year as Atari owners was spent developing their program-
ming skills, blowing away Zylons, and tearing out their hair because of the lack of support for their
new machines. Where was the information that they (and thousands of other Atari owners) so
desperately needed? From the seeds of this frustration, Atari users groups began sprouting up all
over the country. New Atari owners started pooling their knowledge and linking their collective
consciousness via bulletin board systems. Nevertheless, there was no dedicated publication for
their systems, no single source of information that could link Atari owners together. Lee and Mike
decided to do something about it.

In November of 1980, they started an Atari-only publication called A.N.A.L.O.G. 400,/800
Magazine. The first issue was only 40 pages long, and had a modest print run of 4000 copies. Grati-
fyingly, it sold out. Almost three years and 15 issues later, A.N.A.L.O.G Computing has grown to
over 160 pages, with a world-wide distribution of over 80,000 copies — and no end in sight.

With the smaller print runs of the earlier issues, we had virtually no returns. Supplies of back
issues sent out from our editorial offices were quickly exhausted. Reprints were done of issues 2, 3
and 4. These sold out, too. Compounding the problem was the fact that the newcomers to
A.N.A.L.O.G. wanted any and all issues previous to the first one they purchased. The later the
issue, the more back issues they needed. The solution? This book.

The A.N.A.L.O.G. Compendium is not intended as an all-encompassing primer on Atari pro-
gramming. Although many of the programs included here were originally written as tutorials, it was
never our intention to publish a textbook. The A.N.A.L.O.G. Compendium is presented solely
as a collection of programs to benetit those who missed out on our first ten issues. Some of the
programs here have been revised and improved since they originally appeared in the magazine.

We have also included several programs never before published.

Whether you're interested in utilities, tutorials or games, we hope you enjoy our first book.

Jon A. Bell
Managing Editor
A.N.A.L.O.G. Computing

CHECKSUM PROGRAMS

Important!

All of the programs in The A.N.A.L.O.G. Compendium were listed from working copies of
the program in order to minimize errors. However, there is a strong possibility of readers mis-typing
programs, especially when entering lengthy listings. Before you type in any of these programs, it is
strongly advised that you read pages 7-10. (C:CHECK and D: CHECK 2). These programs will assist
you in checking for typing errors when entering in programs from The A.N.A.L.O.G. Compen-

dium.

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 7

C: CHECK

16K Cassette

by Istvan Mohos and Tom Hudson

When typing programs into your computer from
the A.N.A.L.O.G. Compendium, there is always
a chance of making a mistake. C:CHECK will help
you find such errors very easily. Type in the accom-
panying program and SAVE it. Follow the instruc-
tions below to check C:CHECK as you would any
other program.

CHECKIing your typing.

L. Type in the program listing from the Com-
pendium. Visually check it for obvious errors
(missing lines, etc).

2. LIST the program to be checked to
cassette. Use the command:

LIST *C:*

3. LOAD C:CHECK and RUN it.

4. C:CHECK will ask you if you want the
output to go to the screen or printer. Type S for
screen or P for printer and press RETURN.

5. C:CHECK will ask for an issue number.
For the Compendium, type 99 and press RE-
TURN. If you read A.N.A.L.O.G. Comput-
ing Magazine, you can use C:CHECK to check
the programs in each issue. Just type the issue
number and press RETURN.

6. Position the tape to the beginning of the
program to be checked and press PLAY on the
program recorder. Press RETURN.

7. C:CHECK will begin reading the program
from tape and generate a checksum table. This
data should match the “CHECKSUM DATA"”
printed after the program listing you are
checking. The following example shows how to
check for errors.

Sample Compendium CHECKSUM DATA:

18 DATA 34,455,234,22,55,38,93,45,114,
285,633,442,453,23,31,2957
168 DATA 82.94,64,73,347,199,287,84,15
6,368,59,48,98,9,342, 2382

318 DATA 65,356,101,25,547

Sample C:CHECK output:

18 DATA 34,455,234,22,55,38,244,45,114
2 285,633 ,442,453,23,31,3108

168 DATA 82,94,64,73,347,199,287,84,15
6,368,59,40,98,9,342,2382

318 DATA 65,101,34,280

Each line of the program being checked has
its own checksum value. If any characters in the
line are incorrect, the checksum value will be
different from the corresponding value in the
Compendium. The checksum data is set up so that
there are 15 checksum values in each line with the
16th value containing the total of the checksums.

The line number of the checksum line tells which
line number is first in the checksum group. In the
example above, the first line checked in the first
checksum line is 10, and its checksum is 34. The first
line checked in the second checksum line is 160, and
its checksum is 82. The first line checked in the third
checksum line is 310, and its checksum is 65.

Let’s assume the CHECKSUM DATA above was
listed in the Compendium, and you typed in the
program and checked it with C:CHECK.

The first thing to do would be to look at the total
of the values in the first line. This value should be
2957, as shown in the Compendium CHECKSUM
DATA. However, in the results in the C:CHECK
output, the total is 3108. This means that there is an
error in the 15 checksum values in this line. Com-
paring the Compendium checksums to the
C:CHECK output, we find that the seventh check-
sum is 244 in the C:CHECK data, and should be 93.
This means that there is an error in the seventh line
of the program. Note the error and continue
checking. The rest of the line is correct, so we go on
to the second line.

Now we check the total of the second line of

checksum data. The total of 2302 in our C: CHECK

PAGE 8 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

data matches the total in the Compendium, so we
can go on to the third checksum line.

The third checksum line is different from the
others in that it only checks four lines. This is
because it is at the end of the program, and the pro-
gram did not have an even multiple of 15 lines. The
line is checked the same as the others. As you can see,
the total of the line should be 547, but is only 200 in
the C:CHECK data. Looking at the C:CHECK
output, you will notice that there is one less check-
sum value (the 356 in the Compendium checksum
data). This means that the first line in the program
after line 310 is missing. The last checksum in this
line is also incorrect. Itisa 34 and should be 25. This
means that the third line after line 310 in the pro-
gram is incorrect.

To summarize, there were 3 errors in the program
we checked. Two errors were caused by mistakes in
the lines, and a third appeared because a whole line
was missing.

...Qnce you have noted all errors, type NEW and

press RETURN. This erases the C:CHECK

Program. Next, bring the program being checked

into memory by positioning the tape and typing:
ENTER “C:”

If the program had errors, correct the lines in
error. If there were no errors, the program is correct
and ready to run. O

188 REM AdY DEBUGLTING a4ID

BY TISTUGN MOHDS
118 REM UERSION 2 MODS AND CASSETTE
128 REM UERSION BY TOM HUDSOMW
138 GRAPHICS 8:7 :2 “"This run will LIS
T data statemwents ta the screen or

printer "

i48 7 :7 "Thics #ATA is created by eval
uating each character of a user pro
gram, LISTed to tape.,":?

i58 DIM DUTS(1) ,T5(128% ,CR5(1)

i@ 7 "QUTPUTY TO QCREEN 0R PRINTER";:: 1

NPUT QUTS:TIF OUTS{R"S" aND QuTrsOvpP" 1

HEHW 148

1786 IF OQUTS='S' THEWN OPENM #2,8,.8,"E:":

GOTO 268

188 CLOSE #Z:7 "[JREADY PRINTER AWD PRE

55 [TAELT; : INPUT CRS

i98 TRAP 180:0PEN H7,3.8,"P;"

288 7 :7 "ENTER ISSUE MUMBER';:TRAP 28

A:THPUT T55UE

2if8 7 :7 U"READY TAPE anNd PRESS [JRITI
;:OPEN B1,4,8,"0 7 7

228 Z-O:LINECOUNT=Z:PLINCZ 1H=Z

2IR TRAP I40:INPUT 81 IS:LINECOUNT=LIN
ECOUNTH1:LINUM-UAL (T5(1,52)

248 NLCKZMLCK+1:IF NLCK}1 aND NLCK{16
THEN 298

2508 IF LIMECOURT=1 THEN 288

268 7 HZ;TOTAL:NLCK=1

278 IF OQUTS="5" THEN PLINZ-PLIN+1:IF PL
IN=1i@ THENWN 7 "PRESS [IHFI] TO CONTINUE
"y INPUT CR5:PLINCH

288 TOTAL=Z:? HZ;LINUM;'" Data *;

298 CHKSUM=Z:IF TISS5UE>T THEW H=2

388 FOR I-1 TO LEN(IS) :PRODUBCT=H®¥ASC(TI
SCY,I3) :CHKSUMSCHKSUMEPRODUCT : HoHHL IF
K=4 THENW HcZ1

ZI18 MNEHT T:CHHSUM=CHESUMIHXISS KoH+1:X
F H=4 THEN K=1

?29 CHESUM-CHKSUM-10AGX*INT {CHKSUIKM 1688

T30 7 HZ CHKSUM;" , " : TOTAL-TOTAL+CHKSU
M:GO0TO 238

348 CLOSE #H1:IF LINECOUNT=Z THEW X748
358 ? H72:7074L

I68 CLOSE H#2:END

378 7 UR§":? “"Your typed-in prograw wa
& not properiylIsTed to tape."

3ag 7 7 "please LIST your programs to
tape, thenRUN *;CHRS(I4) ;""CHECK" ;CHRS(
I42 ;" 3gain.":CLOSE #2:CLR :END

CHECKSUM DATA
(See pgs. 7-10)

188 hava 198,759,11,135,191,594,198,88
6,763,467,931.106,465,572,167,6297

258 pavta 764,922,11,168,375,783,384,25
9,534,898,875,136,732,361,7114

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 9

D:CHECK 2

16K Disk

by Istvan Mohos and Tom Hudson

When typing programs into your computer from
the A.N.A.L.O.G. Compendium, there is always
a chance of making a mistake. D: CHECK2 will help
you find such errors very easily. Type in the accom-
panying program and SAVE it. Follow the instruc-
tions below to check D:CHECK2 as you would any
other program.

CHECKIing your typing.

1. Type in the program listing from the Com-
pendium. Visually check it for obvious errors
(missing lines, etc.).

2. LIST the program to be checked to disk.
Use the command:

LIST “D:progname”

3. LOAD D:CHECK2 and RUN it.

4. D:CHECK will ask for a filename. Re-
spond:

D:progname

and press RETURN.

5. D:CHECK2 will ask for an issue number.
For the Compendium, type 99 and press RE-
TURN. If you read A.N.A.L.O.G. Comput-
ing Magazine, you can use D:CHECK2 to
check the programs in each issue. Just type the
issue number and press RETURN.

6. D:CHECK2 will execute. The screen will
go black in order to speed up the program.

7. When D:CHECK?2 finishes, it will display
final instructions. At this time you should type
NEW and press RETURN.

8. When D:CHECK2 executed, it created a
BASIC file on disk called BUG. ENTER it into
your computer with the command:

ENTER “D:BUG”

This file should match the “CHECKSUM
DATA” printed after the program listing you are
checking. The following example shows how to
check for errors.

Sample Compendium CHECKSUM DATA:

10 DATA 34,455,234,22,55,38,93,45,114,
285,633 ,442,453,23,31,2957
160 DATA 82,94,64,73,347,199,287,84,15
6,368,59,40,98,9,342,2302
318 DATA 65,356,101,25,547

Sample “D:BUG”” CHECKSUM DATA:

18 DATA 34,455,234,22,55,38,244,45,114
,285,633,442,453,23,31,3108

160 DATA 82,94,64,73,347,199,287,84,15
6,368,59,48,98,9,342,23082

3168 pDATA 65.181,34,200

Each line of the program being checked has its
own checksum value. If any characters in the line are
incorrect, the checksum value will be different from
the corresponding value in the Compendium. The
checksum data is set up so that there are 15 check-
sum values in each line with the 16th value contain-
ing the total of the checksums.

The line number of the checksum line tells which
line number is first in the checksum group. In the
example above, the first line checked in the first
checksum line is 10, and its checksum is 34. The first
line checked in the second checksum line is 160, and
its checksum is 82. The first line checked in the third
checksum line is 310, and its checksum is 65.

Let’s assume the CHECKSUM DATA above was
listed in the Compendium, and you typed in the
program and checked it with D:CHECKZ2.

The first thing to do would be to look at the total
of the values in the first line. This value should be
2957, as shown in the Compendium CHECKSUM
DATA. However, in the results in the BUG file, the
total is 3108. This means that there is an error in the
15 checksum values in this line. Comparing the
Compendium checksums to the BUG checksums,
we find that the seventh checksum is 244 in the BUG
data, and should be 93. This means that there is an
error in the seventh line of the program. Note the
error and continue checking. The rest of the line is
correct, so we go on to the second line.

Now we check the total of the second line of
checksum data. The total of 2302 in our BUG file
matches the total in the Compendium, so we can go
on to the third checksum line.

The third checksum line is different from the
others in that it only checks four lines. This is
because it is at the end of the program, and the pro-
gram did not have an even multiple of 15 lines. The
line is checked the same as the others. As you can see,

PAGE 10 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

the total of the line should be 547, but is only 200 in
the BUG file. Looking at the BUG file, you will
notice that there is one less checksum value (the 356
in the Compendium checksum data). This means
that the first line in the program after line 310 is
missing. The last checksum in this line is also incor-
rect. It is a 34 and should be 25. This means that the
third line after line 310 in the program is incorrect.

To summarize, there were 3 errors in the program
we checked. Two errors were caused by mistakes in
the lines, and a third appeared because a whole line
was missing.

Once you have noted all errors, type NEW and
press RETURN. This erases the D:CHECK2
program. Next, bring the program being checked
into memory by typing:

ENTER “D:progname”

If the program had errors, correct the lines in
error. If there were no errors, the program is correct
and ready to run. O

18 REM Hd99 DEBUGGHING AaTh
BRY T5TUAN HOHNOS

28 REM UERSTION 7 MODS BY TOM HUDSON

Ig GRAPHICS 8:7 7 “"This run will LIST
d43ta statements with the name: [E
;, T the disk.™

48 2 2 “The [pATA i5s crested by ev
aluating each character of 3 user prog
rawm, LYSTed Tt disk.®":?

58 DIM FIS{15)

EgsrtﬂﬁE Bi:? "ENTER FULEMAME™: :TNPUT
78 PINCPEEK(5593:7-0:REM

88 7 7 "ENTER ISSUE WUMBERY::TRaP 8a:
INPUT TISSUE
98 TRAP H8:0PEN H1.4,8,FI5

igd ON ¥ GOTO 186,288

118 7 UK :? UDTSABLING SCREEM...STaND
8BY, .. ":FOR T=1 70 BOO:MEXT T: PDRE 559,
Z:REM debug bhefore paking

120 LIMECOUNT=Z:DIM IS5{17ZH2
13I8 TRAP 158:INPUT BL:IS:LINECOUNT=LIN
ECOUNTHL

148 GOTO 136

158 CLOSE BL:Q-THT{LINECOUNTAI5Y:DIM ©
(LIMECOUNTY ,R{0X,55(52:IF (LINECOUNT=Z
NOR T5=ry THFN 510
168 IF ASCLIS501,133448 OR ASC{TIS5{1,11)
»57 THEN 338
i78 X=-1:G0O7T0 98
138 RANGE=Z;;LINE-Z:FOR I=1 70 5:55{(1.1
1= MINERT X
198 COUMT=Z
280 INPUT HI:IS:T1:COUNT=COUNT+1
218 IF I5(T, Tl(?" * THEN S55(7,T)¥=1I5(T,
TYIETSTH#A: GOTO zZia
228 LIMEZUALISS)
238 RIRANGEIZLINE:RAONGEZRANGE+1
748 TRAP 279:INPUT #1:I5
258 COUNT-COUNTHL:IF COUNT:}S THEN 138
768 GOTH 248
278 CLOSE #1:X=2:607T0 98
288 FOR T=i T0O LIMECOUNT:CHECKSHM=Z
Z938 GET U1 ,NUMBER:PRODUCT-H¥HWUMBER : CHE
gzﬁgM?CHECKSUM+PQODUCT:E:X+1:IF H=-4 TH
I08 TIF NUHMBER=-155 THENW I29
Ii8 GOrTo 7948
128 CHECKSUM-CHECKSUM-1BBAXINT {(CHECKSU
EX%BBB):C(I):CHECKSUM:IF I55UE>9 THEN
IIB NEXT X
348 CLOSE R1:NDPEH H1,8.8,Y0: 308" L TNE=
RIZIITEM=7

358 COUNT=15:TOTAL=Z:IF LINHECOUNT{I5 T

HEW COUNTZLIMECOUNT

I6B PRINT H#1:LINE;® DaTa *f;

I78 FOR I=1 TO POUNT DnTUM—F(15*ITFM+I

JIPRINT B1;DATHM; ", ; : TOTAL=-TOTAL+DATU

MINEXT I

380 PRINT fi:T70TaL

3989 TTEM-ITEMHL:LINECOUNTZLINECOUNT-15

PIF LINECOUNT{1 THEN 428

488 LINE-RC(ITEM)

418 GOTO 3I58

428 CIOS5E #1:POKE 559,PIK

438 7 "K[JTa check E]IE data against pri

nted data statements, type HEW. Th

en type:®

448 7 “ENTER ";CHRS{Z4) ;"D : UG
Type LIST after the

READY prompt .

458 7 :7 "The line number of each data
statementcoincides with the €first 1in
e 0f the"

468 ? "user prograwm which the d4ata sta
tewment evaluates.,”

478 ? "Mumbers within Pach data statem
ent represent consecutive lines of
the User program, !

488 7 "The 1ast number is the total.®
438 ? :7? “Check the number of eac
h state- ment against the printed ver
sion;"

588 ? "only in case of a discrepancy C
heck 23ch numberr in the data statews
f 1

dlﬁ Z "Eake note of”¥he linesstontaisi
ng the bugs. Then ENTER Y;CHRS5(I4);'"D:
yourprngﬁﬁklﬂlﬂ"

528 7 “"to make the correctinns,":FEND
538 POKE 559,PIK:? "RJ“:? “Your typed-
in progran was not properiylIsTed to d
isk

548 7 :? “Please LIST your program to
disk, thenRUN " :CHRS(I4) :"D:CHECK'";CHR
S(Xdl'“ Again.*:CLR :END

CHECKSUM DATA
(See pgs. 7-10)

1A DATH 44,815,767,524,686,389,806, 850
,86,721,971,593,591,704,974,9471

168 pATa 482,125,389,696,567,797,442,5
61,238,89,717,216,943,541,299,7094

216 pafe 7139,711,741,427,244,435,7288,5
B4,553,441,711,499,8083,322,515, 7993
468 DaTa 246,684,486,232,123,708,480,7
74,508, 4145

PROGRAMMING UTILITIES

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 13

UNLEASH THE POWER
OF ATARI's CPU

by Ed Stewart

Would you like to get as much as a 30% increase in
speed from your ATARI 6502 CPU? Would you
also like to get this benefit without any additional
capital expense? If your answer is no, you probably
don’t like apple pie, either...but if your answer is
yes, read on, and I will tell you how to accomplish
such a feat with one simple BASIC POKEin the right
place.

First, a little background information about one
of the many things going on inside your ATARI
computer. The particular thing that I want you to
know about is how display information reaches your
TV screen. There is a hardware chip called ANTIC
that has most of the responsibility for seeing that the
display gets to your TV screen. ANTIC does this by
operating independently from the main 6502 CPU
in your computer. ANTIC is, in fact, a primitive
CPU in its own right. It executes a program which is
located in RAM, just as the 6502 executes a program
in RAM or ROM. We can therefore call the ATARI a
multiprocessing computer, since more than one
CPU may be active at any time.

A peculiar and somewhat unfortunate thing hap-
pens when a multiprocessing system such as the
ATARI is actively executing instructions — both
CPU s desire access to memory simultaneously. The
two CPUs cannot both access memory at the same
time, so one must wait until the other completes its
access request. This memory access conflict is
common to all computers containing more than one
CPU — from micros to macros — and is generally
not something to be concerned about.

The ANTIC chip fetches its data from memory
using a technique called “Direct Memory Access’’ or
DMA. Whenever this memory fetch is occurring,
the 6502 is temporarily halted. DMA is said to be
“stealing” a portion of the computer’s available
time, called a cycle. There are 1,789,790 cycles of
computer time available per second. If DM A had not
“stolen” that cycle of computer time, the 6502

would not have been halted and, therefore, would
have finished its program instructions sooner. It is
only logical to conclude that the more this DMA ac-
tivity occurs on behalf of the ANTIC chip, the more
our 6502 will be slowed down.

The ANTIC chipre-displays the entire TV display
60 times each second. During this period, many
computer cycles are stolen from the 6502. During
each of these 60 times, the ANTIC chip also “‘inter-
rupts”’ the 6502 and causes it to perform such tasks
as updating various software timers and reading
game controllers (joysticks and paddles). When the
6502 finishes what it must do in response to the
ANTIC “interrupt,” it may continue with what it
was doing previous to being sidetracked by ANTIC.
You should be getting the picture by now that, al-
though ANTIC is indispensable, it causes a slow-
down in the 6502 CPU. But how much?

[wrote a simple BASIC program for my ATARI
800 in an attempt to answer this question. A
FOR/NEXT loop was executed 100,000 times with
no intervening statements as follows:

28 FOR I=1 TO 18088088:NEXT I

The first thing to measure was how long this loop
executes with no ANTIC DMA active. A POKE
559,0 turned DMA off, and the TV screen went
black. A POKE 559,34 turned DMA back on, and
the original display was restored. The FOR/NEXT
loop was executed in graphics modes 0-8 with DM A
active, and the executive times were observed as
shown in Table 1. The execution times with DMA
increased from as little as 10% for graphics 3 to as
much as 47% for graphics 8.

It is easy to see that — if you do a lot of number
crunching and you don’t need the TV screen, soft-
ware timers or game controllers — then turn off the
ANTIC DMA for a while, and you’ll get your answer
back sooner. It is also apparent from the chart below
that your programs will execute faster if you are
using graphics modes 3, 4, or 5.

PAGE 14 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

I hope you have learned a little bit more about the
ATARI computer and how the ANTIC DMA inter-
feres with the 6502 CPU. You may someday be able
to leash that latent power within during a computer
chess tournament, and — when someone asks how

in the world you did it — you can smile and say, “‘me
and my DMA.” O

GRAPHICS EXECUTION % INCREASE

MODE SECONDS (over no-DMA)
NO DMA 148
GRAPHICS 0 216 46
GRAPHICS 1 188 27
GRAPHICS 2 186 26
GRAPHICS 3 163 10
GRAPHICS 4 164 11
GRAPHICS 5 167 13
GRAPHICS 6 173 17
GRAPHICS 7 185 25
GRAPHICS 8 218 47

Graphics 9 GTIA Demo

gE: GRAPHICS 9 GTIA DEMO (OVAL)

GRAPHICS
c_o.SETcOLon 4,C,0
X=8 T0 39
v:o T0 95
768 XWH=39-X:YH=95-Y:COLOR INT (SOR CXMIEXM
+YHEYID /76 . 5)
88 PLOT X,Y
98 PLOT 79-X%,Y
88 PLOT X,191-Y
PLOT 75— ,191-Y
NEXT
NEXT %
C=C+1:IF c)15 THEN C=8
SETCOLOR 4
FOR rxn£-1 TO 500 :NEXT TIME
c0TO 1

CHECKSUM DATA
(See pgs. 7-10)
186 DATHA 682,253,174,886,298,293,938,61

7,923,418,747,766,767,154,494 ,8402
160 pATA 433,716,1149

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 15

CONSOLEBUTTON
SUBROUTINE

16K Cassette or Disk
by Jerry White

The ATARI BASIC Reference Manual describes
decimal location 53279 as “Console switches” (bit
2= Option; bit 1= Select; bit 0= Start. POKE
53279,0 before reading. O= switch pressed).

The would-be BASIC programmer has got to be a
bit confused after reading the above. In BASIC, you
normally don’t think about bit settings, and the
beginner has a long way to go before he or she will
have to worry about such things.

The point is that a BASIC PEEK (53279) will tell
you which console buttons, if any, are pressed. You
can see how pressing one or more buttons changes
the value of that location with a one-line program.
Enter line 10 below, then type RUN and RETURN.
Watch the screen as you press the various console
buttons, then press BREAK to abort.

18 PRINT PEEK(53279):GOTO 16

Now for a somewhat more useful demonstration,
enter the CONSOLE BUTTON SUBROUTINE.
Note that although it is a subroutine, it has been set
up so that it will run withoutany additional code. Of
course, you could access it from your own program
with a GOTO 30000.

This routine provides the user with three options.
It will allow you to RERUN THIS PROGRAM (the
program currently in RAM), RETURN TO BASIC
(which is a fancy way to say END), or RUN A
MENU PROGRAM from diskette. Naturally, you
could change these options to whatever your own
program requires. The START button is used to
execute the option that is currently displayed, using
inverse video. Pressing the OPTION or SELECT
buttons will change the previously highlighted op-
tion back to normal video and highlight the next op-
tion. When the desired option is highlighted, the
START button is used to say “DO IT.”

Since this is a routine you will modify and include
in many of your own programs, it should be LISTed
onto cassette (LIST “C:”) or disk (LIST “D:
BUTTON. LST,” 30000, 30170). When vyou
want to include it as part of your own program
currently in RAM, ENTER “C”: from cassette or
ENTER “D: BUTTON. LST” from disk. OJ

@ REM CONSOLE BUTTON SUBROUTINE

1 REM BY JERRY HHITE 6/5/82

380808 GRAPHICS :POKE 752,1:POKE 710,4

8:POKE 82,2: POKE 281.,9

lesie ? “8&44 lise the LARE] or EldNdw]
button to":? :? * highlight your choi
ce below, then"

36828 ? :? "} press the button.™
:FOR ME= 0 TO 8:POKE 53279, HE'NEHT ME:G

0sSUB 381868:5EL=11

Jagle POSIYION SEL,SEL: 7 "HAATIRGIEN
ROGRA

30848 BUTTON-PEEK(S3279):IF BUTTON=7 7T

HEN J00848

23950 GOSUB 38148:IF CHOICE-6 THEN 361
380868 SEL=SEL+Z:IF SEL>15 THEN SEL=11:
GO51iB I8168:60T0 06630

38878 IF SEL=-13 THEN GOSUB 38168:P0SIY

ggg 11,5EL:? *HEFIMTIRINT-ER{s : GOTO 36

386868 IF SEL=-15 THEN GOSLB 36180:PO0SIT

gg:oll,SEL:? iERIIN MENU PROGRAMEEET R !

38898 GOTO IG640

381086 POSYTION 11,11:7 "RERUN THIS PRO
GRAM™:? :? ,"RETURN TO BASIC™:? :7 ,"R
UN MENU PROGRAM'':RETURN

36118 TRAP J0000:POKE 261,108:IF SEL=1S5
THEN ? "R":? :7 ,“LOADPING MENIU*:RUN *
D:MENU":TRAGPFP 480060

36128 IF SEL=-13 THEN GRAPHICS @8:7 :7 "
ESSIC":? nys;: sPOKE 752,8:TRAP 408080:E
36136 TRAP 46000:RIN

Ieid4e GOSUB 36176

38156 CHOYCE=-BUTTON:BUTTON-PEEK (532793}
cIF BUTTONC)>7 THEN 38158

36168 GOSUB 3I0170:RETURN

36178 FOR ME-Q TO 8:POKE 53279 ,ME:NEXKT
ME :RETURN

CHECKSUM DATA
(See pgs. 7-10)

8 DATA 874,8082,472,699,6768,842,127,1937
:960,185,623,205,215,413,935,7819
Iai138 DaTA 746,141,237,526,717,2367

PAGE 16 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

TRAPPING YOUR ATARI

by Donald B. Wilcox

It is often frustrating to be forced to restart a
program because an inadvertent error caused the
program to crash. ATARI BASIC provides a special
word — TRAP — that often can be used to prevent a
program from ending before intended. Many errors
are subject to automatic correction or compensation
through a little extra effort on the part of the pro-
grammer.

If you are not yet familiar with the TRAP state-
ment, the following examples show how to use it to
detect INPUT errors. These occur when the user of a
program types invalid values into a numeric vari-

able.

18 INPUT X
28 PRINT K
38 GOTO 18

In the above listing, typing a non-numeric re-
sponse to the INPUT statement in line 10 (such as
accidentally pressing return with no number en-
tered) will result in an “ERROR-8 AT LINE 10"
message. By adding a TRAP statement, this problem
can be avoided completely.

18 TRAP 10:INPUT X
28 PRINT X
I8 GOTO 18

In the slightly modified exaniple above, if an input
error occurs, the TRAP statement will catch the
error and go back to line 10 to try the INPUT again.

After perusal of these five examples, you should
be able to understand how to make your programs
less vulnerable to errors that prematurely end your
program.

Listing 1 — If you mistakenly create a new
file using a file name that already exists, you will
destroy the already existing file. No error message
will warn you of the impending disaster. Listing
1 will prevent this.

Listing 2 — If you try to OPEN a non-
existent file, you will get an error message 170 and

your program will crash. This can be prevented by
using Listing 2.

Listing 3 — If you try to input data from

a disk file beyond the end-of-file, you will get
an error message 136, and your program will termi-
nate. You may not always know beforehand where
the file data ends, so an automatic end-of-file trap
can be programmed easily to prevent the error. List-
ing 3 solves this problem.
Listing 4 — You forgot to turn on your printer
or interface unit and get error message #138.
If you attempt to use the Continue command
after you turn on the correct unit, your program will
continue beginning at the line number that follows
the line that caused the error. Often this can create
erroneous results (not always detected), because the
instructions on the line that caused the error may not
have been executed correctly before the error.

Listing 5 — You are reading in data with a
READ statement and you do not want to use an
end-of-data dummy value as a flag, nor do you want
to count the entries to determine when all the data
has been read. Listing 5 demonstrates a simple
method to prevent error #6 (Out Of Data) from
prematurely terminating your program.

Finally, for those of you who are relatively new to
ATARI BASIC, there are several locations (ad-
dresses) that you may PEEK to find out which error
occurred and which line caused the error. Location
195 contains the error number. Locations 186 and
187 contain the line number where the error
occurred, low byte, high byte, respectively. To dis-
play this information on your screen, use the fol-
lowing statements:

1@ REM DISPLAY ERROR NUMBER

ZB REM AND LINE NUMBER OF ERROR

28 PRINT PEEK{1953;" AT LINE ";PEEK({iS8
GIFPEEK(1872#256

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 17

Listing 1.

%ggszg‘":CLn :REM CLEAR SCREEN AND Va
118 REM PREVENT ERASURE OF PROGRAM ALR
EADY STORED ON DISK)

é§%1g}" ATRAPS (6) ,A5C124) ,NAMES (8) ,FIL
130 REM SET UP DISK SUFFIX 'D:°* FOR FI
LE NAME. IOCB IS FILECDEVICE) NUMBER
148 FILES="D:":JIOCB=2:IN-4:GNL=38

158 REM GNLU=8 IS5 THE OUTPUT MODE

168 SET=168:CLOSE RIOCB:IF ATRAPS="SPR
UNG' THEN PRINT " FILE NAME DID NOT PR
EVIOUSLY EXRIST":GOTO 288

178 TRAP SET:PRINT "ENTER FILE NAME"™
180 INPUT NAMES:FILES(I)-NAMES:ATRAPS=
“SPRUNG" : OPEN #IOCB,IN,O,FILES

198 PRINT FILES;" ALREADY EXISTS':? "l
igeﬁ DIFFERENT NAME":CLOSE #IOCB:GOTO
280 OPEN #IOCB,GNU,8,FILES

218 PRINT FILEg;" OPENED SUCCESSFULLY™
228 CLOSE B#IOCB

e
Listing 2.

188 PRINT “R":CLR :REM CLEAR SCREEN AN

D VARIABLES

118 DIM ATRAPS (6) ,NAMES (5) ,FILES(8)

128 REM SET UP DISK SUFFIX FOR FILE NA

ME. IOCB IF THE FILE(DEVICE) MNUMBER.
IN=4 I5 THE INPUT MODE

138 FILES="D:":IOCB=2:IN=4

148 REM WRITE ERROR IF TRAP IS5 SPRUNG.
IT IS GOOD PRACTICE TO CLOSE FILES T

0 PREVENT ERROR #3129 IF YOU LOOP BACK

150 REM TO A4 PREVIOUS PART OF YOUR PRO

GRAM THAT OPENS A FILE.

168 SET=168:CLOSE RIOCB

178 IF ATRAPS="SPRUNG" THEN ? "ERROR 1

78, FILE ";FILES;"™ NON-EXISTANT":FOR D

=1 TO 1886:NEXT D:GOTO 180

188 REM KEEPS MESSAGE ON SCREEN TEMPOR

ARILY BEFORE RETURNING TO BEGINNING OF
PROGRAM

198 TRAP SET:PRINT “TYPE IN FILE NAME™

:PRINT DO NOT INCLUDE °'D:' PREFIK":IN

PUT NAMES

288 FILES(3I)-NAMES:REM CONCATENATES FI

LE NAME ONTO DEVICE PREFIK 'D:°

218 ATRAPS="'SPRUNG"

228 REM IF THE °OPEN' STATEMENT WORKS,
WE HAVE A& VALID FILE NAME ALREADY 5TO

RED ON DISK READY FOR INPUT

238 OPEN HIOCB,IN,8,FILES

248 PRINT “FILE ";FILES;"™ OPENED SUCCE

SSFULLY"

258 CLOSE #IOCB

@
Listing 3.

160 PRINT "K":CLR :REM CLEAR SCREEN AN
D VARIABLES

116 REM CATCH END-OF-FILE ERROR

1%0 pIM ATRAPS(6) ,A5C124) ,NAMES (8) ,FIL
ES(18)

130 FILES="D:":I0CB=2:IN-4:GNL=8

148 REM 'D:' IS FILE NAME PREFIX. IN=
4 IS INPUT MODE. GHNU=8 I5 OUTPUT MODE
. IOCB I5 DEVICE(FILE) NUMBER

1560 REM FIRST MWE MUST CREATE A FILE AN
D PUT SOME DATA IN IT BEFORE TRYING TO
READ THE DATA.

168 PRINT "ENTER A FILE NAME":PRINT "D
0 NOT INCLUDE THE 'D:" PREFIX"
170 INPUT NAMES:FILES (I)-NAMES:REM CON
CATENATES PREFIX AND FILE NAME
188 OPEN #IOCB,GNU,8,FILES
196 REM WRITE DATA ONTO FILE.
280 PRINT H#IOCB;'FIRST"
218 PRINT BIOCB;''SECOND"
228 PRINT #IOCB;'LAST"
238 CLOSE MIOCB:REM IT IS GOOD PRACTIC
E TO KEEP A FILE CLOSED WHEN NOT USED
248 REM FAILURE TO PROPERLY CLOSE A FI
LE CAN CAUSE IT TO BE LOST
258 REM
268 REM READY TO READ THE FILE
270 OPEN #IOCB,IN,8,FILES
288 SET=318:TRAP SET
298 REM READ DATA FROM FILE AND PRINT
EACH VALUE A5 IT IS5 READ
388 INPUT #IOCB,AS:PRINT AS:GOTO 290
318 PRINT “"FINISHED READING FILE SUCCE
326 HEM DELETE_LINE 20

AND YOU WILL &
ET AN ERROR MESSAGE 136 (END OF FILE)

Listing 4.

180 PRINT “K":CLR :REM CLEAR SCREEN AN
D VARIABLES

%éo REM CATCH DEVICE TIMEOUT ERROR # 1
1728 REM YOU FORGOT TO TURN ON AN INPUT
OR OUTPUT DEVICE

138 DIM ATRAPS (6)

148 SET=148:IF ATRAPS="CAUGHT'" THEN PR
INT “TURN ON I/0 DEVICE"™

158 TRAP SET:ATRAPS="CAUGHT"

168 LPRINT “PROGRAM RAN SUCCESSFULLY"™
178 REM RUN THIS PROGRAM MWITH PRINTER
TURNED ON AND OFF

188 REM CHAONGE LINE 168 TO USE DISK, I
NTERFACE, OR SOME OTHET I/0 DEVICE

Listing 5.

188 PRINT "R":CLR :REM CLEAR SCREEN AN
D VYARIABLES

118 REM READ DATA AND TRAP OUT-OF-DATA
ERROR 186

128 SET=148:TRAP SET:REM DELETE THIS L
INE AND ERROR 36 MWILL OCCUR

138 READ N:PRINT N:GOTO 138

146 PRINT "FINISHED READING DaATA"™

i58 paTh 26,4,156,83,12

PAGE 18

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

BASSNOTESIN BASIC

16K Cassette or Disk

by Jerry White

Those of you who have written music using
ATARI BASIC may have noticed that even the
lowest note available in distortion level 10 is not
really a low bass note.

The secret to getting a deep, rich bass note is to use
distortion level 12. The BASIC program called Bass-
note will display the notes and pitch numbers for
two octaves of low bass notes.

It will also play the deep bass introduction to the
theme from Barney Miller. While doing this, the
sound commands used will be displayed on your
screen. [

éﬂ REM BASSHOTE TUTORIAL 8Y JERRY WHIY

zZa 7

38 GOSUB 2%8:G05UB 19%0:G0T0 168

46 S0UND 8,0,8,0:READ PITCH:D-12:VU=14:
SETCOLOR 2, PITCH @:50UND Q,PITCH,D,V

58 POSITION i8, 20:7° " SOUND 8, "'PITCH
lll l.lDl'l llnu-ll IllR[T“R"

68 FOR HOLD=1 To 200: NEKT HOLD:S50UND @
(B,8,8:PITCH=0:D=A:V=08:G05UB S8:RETURN
78 FOR HOLD=1 TO 58:NEXT HOLD: RETURN
88 FOR HOLD=1 TO 25:NENYT HOLD:SOUND 8,
8,8,08:RETURN

98 DATA i82,98,85,82,75,72,67,67,68,57
,68,67,75, 67 51 6@ @

186 FOR TIMEZ1 ToO 2: G05uUB 48:605U8 68:

GOSUB &6

élﬂ GOSUB 40:GOSUB 78:GOSUB 48:G0SUB 7
128 GOS5UB 40:GO0S5UB 68:GOSUB 68

%39 GOSUB 40:G05UB 78:G05UB 40:GOSUB 7

148 GOSUB 48:GOSUB 68:G0SUB 60

158 FOR QUARTERNOTE={ TO 8:GOSUB 40:G0

SUB 78:NEHT QUARTERNOTE

168 GOSUB 40:GOSUB 88:G05UB 48:GOSUB 8

a

ézﬂ GO5UB 40:GOSUB B8B6:RESTORE :NEXT TI

%88 gESTORE :GOSUB 48:G05UB 66:POKE 75
a:

190 ? 1?7 ," PITCH = NOTE":GOSUB 316

'200 ? 17 VZISCZE™,Z7-DM,28=D ,'I0=CH

? lei:c "’..33:8 ll,l'xﬁ:null'llx?:n "
228 ? "48=GH","42=G ","45-FH#","48=F "
238 7 “Si=E ", “55=DH","57=D ","68=CH"
248 7 "63I=C _","67-B ","72=AM","75= a
258 7 "82=GH","85=GC ", I0=FH","I7=F "
Z68 7 "182=E":GOSUB 3ie
276 2 :7 " THE ATARI BASIC SOUND COMM
288 7 :7 “50UND_VOICE,PITCH,DISTORTION

,VOLUME" :GOSUB 310: RETURN

290 GRAPHICS O:POKE 752,1:GOSUB 318:7?
THE THEME FROM BQRNEY MILLER"
388 7 :? “BASSNOTES USING SOUND DISTOR
TION 12":GOSUB I1@:RETURN
318 FOR CTRLR=Z 7O 36:? "=";:NEXKT CTRL
R:RETURN
328 REHM OO0 MM I M3
338 REM ¥ D=DISTORTION V=-VOLUME *
348 REM ¥ GOSUB 58 FOR WHOLE MNOTE 3*
358 REM ¥ GOSUB 78 FOR QUARTER NOTE *
368 REM ¥ GOSUB 88 FOR EIGHTH NOTE *
ggg ggn ¥ GOSUB 76868 TO DRAW A LINE
SOOI DI MMM I MMM N M M

CHECKSUM DATA
(See pgs. 7-10)

i@ paTh 785,653,272,597,653,822,191,72
1,617,779, 221 95,227,61, 557 6431

168 pATA 242, 874 327 262 121 388,408,41
232,893,691, 764 69 86,692,5318

SiﬂsbﬁTﬁ 45 788 982 780 31 927,785,886
;2064

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 19

AUDCTL DEMO

16K Cassette or Disk
by Jerry White

AUDCTL is an abbreviation for AUDIO
CONTROL, and a label given to decimal location
53768. For those interested in reading up on the
functions of the various sound registers, I strongly
recommend that you read the SOUND chapter in
De Re ATARI about three times, and that you try
the little demonstration routines supplied.

For those who don’t really care to know why
things happen, but like to take advantage of the
amazing range of sound effects that are available
from BASIC, I submit the following little demo
program. In a nutshell, POKE commands into deci-
mal locations 53760 through 53767 are used to create
a full C major chord. To further enhance the
effect of this program, we slide up to the higher C
note in line 180.

At the prompt, you may enter a value which will
be POKEd into decimal location 53768. Start by
entering zero, so you can hear the effect with no
distortion before we begin experimenting. By enter-
ing other values from 1 to 255, you will notice some
strange sounds coming from your TV speaker.

There is probably no better way to learn how to
create sound effects than by trial and error. Hope-
fully, this little demonstration will provide some

food for thought. O

18 GOSUB 158:REM QUDCTL DEMO BY JERRY
WHITE 652782

28 FOR OFF=8 TO 3J:S50lND OFF,08,8,8:NEXT
OFF:REM TURN OFF ALL SOUNDS

I8 7 :7? “ENTER 4 NUMBER BETWEEN 8 AND"
+? 255 THEN PRESS [ARfT:I";

48 POKE 764,255:TRAP J0:INPUT NUMBER
50 NUMBER=INT{NUMBER) :If NUMBER{8 OR N
UMBER> 255 THEN 38

68 POKE 53760,243:POKE 53762,81:POKE 5
I764,96:POKE 53766,121:REM C MAJOR

78 FOR X=53761 TO 53767 STEP 2:POKE X,
162 :NEXT K

82625“ DISTORTION=18 VOLHUME=2 (18%16+%2
98 POKE 53768, NUMBER:REM aUDCTL

168 FOR X=243 70 68 STEP —-1:POKE 53768
JHINEXY H:REM SLIDE SOUND

118 ? :? “pPRESS [§E8 7O END™:? "PRESS A
NOTHER KEY TO CONTINUE" :POKE 764,255
128 KEY=PEEK(764):IF KEY=-28 THEN POKE
82,2:7 7 “BASIC'™:? "IS5";:END

138 IF KEY<{>255 OR PEEK(532793(>7 THEN
149IGOT0 1Z28:REM WHATCHA WANT? PRESSA

158 GRAPHICS B:S5ETCOLOR 2,9%,8:POKE 82,
5:? :REM CLEAR SCREEN/LEFT MARGIN=S

i68 ? :? "This progran was designed"
178 ? :? "to demonstrate the effects™
i88 ? :? "made possible by altering"
198 7 :? ""the audio Control Register®
2808 7 :7? "3t decimal location 53768*
218 2 :7? "({5d288) .":RETURN

CHECKSUM DATA
(See pgs. 7-10)
i0 DATA 414,918,846,958,678,674,194,76
3,431,47,269,213,84,763,717,7953
168 pATA 368,641,576,412,839,359,3187

PAGE 20 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

VARIABLE LISTER

16K Cassette or Disk

by Tony Messina

Have you ever written a program and then tried to
go back and document all of the variables that were
used? If you’re one of the elite 10% who are orga-
nized, you probably wrote down all of your variables
and their meanings as you wrote the program. If
you're like the other 90% of us, who write a program
and then spend several agonizing hours documenting
it, then help has arrived.

The following utility was written to help me keep
track of my variables. It doesn’t tell me what I used
them for, but it does tell me what I used. This utility
is just the start of another utility I’'m working on (a
cross reference program). You can run out and spend
anywhere from $9.00 to $45.00 for any of a multi-
tude of utilities, but I don’t have much money — and
writing the things myself has taught me more about
the inner workings of the ATARI than any listing
could. Let me explain how your ATARI stores vari-
able names. It will help you to understand how and
why the program works.

Behind the scenes.

Within the heart of your ATARI lurks the Vari-
able Name Table. This table contains all of the
variables used (and, sometimes, not used) by a pro-
gram. How do they get there? Good question. When
you type in <A=10> for example, the ATARI
BASIC cartridge takes the “A’” and puts it in the first
available slot of the Variable Name Table. It also
stores the value of our “A’ into the Variable Value
Table. Sounds simple, so far. . .now enters the curve.
IN ATARI BASIC, variable names can be up to 128
characters long. How does the interpreter know
where one variable name ends and the next one
begins? What about string variables and dimen-
sioned variables?

Here’s the scoop. The very last character of each
variable name is stored in the table as an inverse char-
acter. Our “A” character would actually be stored in
the name table as an inverse A, since the beginning

and ending character for the variable is A. If the vari-
able name was “TEST,” then “TES” would be
stored as normal characters and the last “T"’ would
be stored asan inverse ““T.”” TESTS$, a string variable,
would be stored as “TEST” (normal) and “$”" (in-
verse). If a variable has dimensions [e.g., DIM A
(26)], then the variable is stored as “A’” (normal)
and “(” (inverse). Knowing where the Variable
Name Table starts, we should be able to go in and
pick out all the variables in any given program.

How do we know where to stop? The end of the
table is denoted by a blank byte following the last
character of the last variable name. For the purpose
of our utility, however, we want to stop picking off
variables when we encounter the first variable of the
utility program. Armed with this information, let’s
try our first experiment.

Listing 1.

S REM TYPE 4 CONTROL COMMA BETWEEN THE
QUOTES IN LINE 78 TO PRODUCE A HEART

18 ? CHR5(125) :REM #CLEAR SCREEN¥

28 _7 "AS5CII","CHAR","ADDRESS":REM ¥ HE

ADINGS *

I8 A-18:TEST1=18:DIM BS5{1),YES(5,5) :RE

M ¥ SQMPLE VARIABLES *

48 START=PEEK(138)+PEEK(131)%*256:REM *

GET DECIMAL START ADDRESS OF VAR NAME

TABLE *

58 2 " "PEEKC{STARTY,® ";CHRS(PEEK(S5TA

RT32,* ";S5TART:REM ¥ PRINT ASCII, LETT

ER GND ODDRESS *

68 START=STARTH+1:REM ¥ GET NEXT ONE ¥*

78 IF PEEKCSTARTI=ASC("¥"'3 THEN END :R

EM ¥ IF BLANK THEN END ¥

gg EOTO 58:REM ¥ GO PRINT NEXT CHARACT

CHECKSUM DATA
(See pgs. 7-10)

S pATA 3I31,198,962,568,625,198,352,787
»538,4463

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 21

As you can see, the variables for the program itself
were printed to your screen. This was just a sample
for the non-believers out there. The variables pre-
sented are representative of all types used by the
ATARI: regular, string and dimensioned. Another
thing you will notice is that the variables follow the
order in which they were typed. Line 30 is the first
place variables were typed in. If we look at the output
of our program, we see that the variables follow the
same order as Line 30: A,TEST1,B$,YES and START.
The address of each letter is also printed in the last
column. This will be helpful when we conduct our
other experiments, so type in this program.

[hope this little demo illustrated the points I made
previously. Here is an explanation of how the utility
operates.

The program.

Listing 2 is the utility program. Program flow is as
follows:

32500 clears the deck and initializes the util-
ity variables. 32502 clears the screen and out-
puts a message to the printer. 32504 takes the
contents of the current address and stores it in
TEMP. A check is then made to see if TEMP is
an inverse character (i.e., >=128), or if it is a
blank. If one of the conditions is true, the
program goes to the subroutine at Line 32514
to find out what the character is. If neither con-
dition is true, we drop through and store the
value from TEMP, and store it into the appro-
priate location in VAR$. We are building our
variable name in VARS$ for output to the prin-
ter. A check is made of the error flag ERRER. If
set, an asterisk is appended to our variable name
in VARS. If clear, then SKIP is checked. If it is
set (“‘set’’ meaning it is equal to 1), then it’s time
to print our variable name. If clear (“clear”
meaning it’s equal to zero), we increment the
current address CURADD, the character count
CHARCNT and then go back for the next line.

32514-32522 are the subroutine lines used
to determine the type of variable. We get here if
the value in TEMP was an inverse character or a
blank. If the content of TEMP is an ASCII
blank, then the program goes to Line 32512,
prints out some information and stops. If
TEMP contains an inverse “$,” then we change
it to a normal “$” (TEMP-128) and GOTO
32522.1f TEMP contains an inverse “‘(,”" then it
is changed to a normal “(,” and we GOTO
32522. Ifall of the above fail, then we assume an
ASCII number or letter. It is changed to a
normal character, and a check is made to see if
the new number falls between 48 and 90. If you
look in Appendix C of the ATARI manual, you
see that ASCII 48-90 contains the numbers,
some other characters and then the letters A-Z.

If the value in TEMP does not fall between any

of these values, we have an error, and the error
flag is set. If everything is okay, line 32522
increments the number of variables VACNT,
sets the skip flag SKIP to 1 and returns.

32524 appends an asterisk to our variable if
an error occurred, sets ERRER back to 0 and
returns.

32526-32528 check what is in the string
VARS$. If the actual name VARS$ is there, then
the program ends. If not, then the variable name
and its address in RAM is printed. The charac-
ter count CHARCNT is cleared (set to zero),
SKIP is cleared, VARS$ is cleared, and we return
to build the next variable name.

32512 prints the start and end address of the
name table. It also prints out the number of
variables in the target program.

How to use it.

Type the program in exactly as shown in the list-
ing. When you've finished, check everything and
then save it using the LIST“D:VARLST” for disk or
LIST“C:” for cassette commands. The reason we use
LIST rather than CSAVE or SAVE“D:filename”’ is
so that we can merge the utility with your target pro-
grams without disturbing anything. Once the pro-
gram is saved, you can load in any BASIC target
program. By target program, I don’t mean a program
that has target in it; | mean any program you want to
obtain a variable listing from, utilizing the utility.
Once the target program is loaded, use the following
commands to merge the utility. If you have a cassette,
cue up the utility and type ENTER*“C:” and hit RE-
TURN. After the beep, press the play button, hit
RETURN again and the program will load. For disk
users, type in ENTER “D:VARLST”. The program
will then load from disk. Once the utility is loaded,
type in (using direct mode) GOTO 32500 and the
utility will do its thing.

This utility is set up for output to a printer. If you
don’t have one, simply replace all LPRINTs with
PRINTSs. Be prepared to hit CONTROL 1 to stop the
screen listing, so you can copy the variable names.
Hit CONTROL 1 again to resume output.

You are probably wondering why I have the
address printed out. If you don’t want it printed,
REPLACE Line 32528 with the following:

32528 LPRINT UVARS:CHARCNT=8:5KIP-8:VaAR
S RETURN

This will prevent the address from being printed and
leave you with a clean piece of paper to document
your program. There is a method to my madness in
printing the address.

The method.

Consider this. . .if we know the address locations
of our variable names, it would follow that, if we
POKE different characters into the table, we could
change our variable names. This is not only true, but
offers other potential benefits and (if the reader is

PAGE 22 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

not careful) problems. Beware!! The following ex-
periments should be tried after reading the following
paragraph.

The interpreter does not care about variable
names, other than when they are initially defined.
After that, it doesn’t care. Why? Well, once you
define a variable, it is assigned a number from 128-
255. The first variable is assigned 128, the second
variable is assigned 129, etc....up to 255. In the
tokenized version of your program, these variable
number assignments become important, not the
names. When you list your program, the interpreter
scans the tokenized form of your program in mem-
ory, and matches all the numbers with KEYWORDS,
such as GOTO, REM, COLOR, etc. When he hits a
variable number — 128, for example — he says,
“Oh...This is a variable; its number is 128, but, to
me, that’s variable number 1. Let me go into the
Variable Name Table and get the name. Since it’s
number 1, it is the first name in the table.” Once the
name is retrieved, it is put up on the display. All of
this happens in mere microseconds, but that’s what
your interpreter does. If we happen to change the
names in the table, the interpreter will blindly go in
and grab whatever is or isn’t there. He grabs the vari-
able name based on the number, not the name. Re-
member the inverse character at the end of each vari-
able name? Joe Interpreter uses this as a signal to tell
him when he has gotten the whole thing. Enough
theory, next experiment.

Experiment #2.

Let’s try changing some names. If you haven’t
done so, type in the short example program at the
beginning of this article. If you did type it, then load
it. RUN the program and follow along with me. On
the screen you should see the variable “A” in in-
verse. Let’s change it to “Z”. In direct mode, type the
following:

POKE ADDRESS,aS5C{"&"2

Make sure the “Z” isaninverse “Z.” The address will
vary with the amount RAM you have and the con-
figuration, so use the address that is on the screen
(e.g., the address given for variable ““A’"). Hit RE-
TURN and, when READY appears, LIST the pro-
gram. The former statement “A=10"" will magically
be replaced by “Z=10"!

Let’s try once more. Let’s change “TEST1” to
“BLAHI1”. First re-RUN the program, then, in
direct mode, type the following:

POKE ADDRESS,A5C{"B"} :POKE ADDRESS5+1.4
SC{"L"):POKE ADDRESS+2,a45C{"a"):POKE A
DDRESS+3 , A5C(VH")

(“A”):POKE ADDRESS+3,ASC(“H”)
Again, we have the starting address of “TESTI1”.
Since each letter occupies one byte, then “T” begins
at the address listed in your output; “E’ is located at
the address+1, etc. Since the 1isalready thereand in
inverse, we don’t have to use inverse letters in our
POKE statements above. Use the regular old every-

day non-inverse letters between the quotes. Hit RE-
TURN and LIST the program. If you did everything
right, “TEST1”’ will be replaced by “BLAH1". Of
course, we only replaced variable names with those
that had the same length. For experimenting, use the
same length name because you can really make a
mess out of things. If you are adventurous, try any-
thing!! Just remember that the variable names must
end in an inverse character.

Experiment #3.
RUN the program again, then, in direct mode,
type the following:

FOR Z=-FIRSTADDR YO LASTADDR:POKE Z,155
'NEKT Z

Substitute the appropriate addresses on the screen
for FIRSTADDR and LASTADDR. When READY
appears, LIST the program. Surprise! All you see now
is KEYWORDS. Not a variable in sight! Run the
program — yes, just type RUN. Surprise II. It works
just like normal. Except where the variables once
were is now filled with empty space. Whahappened??
The 155 POKEd into the name table is a non-
printing character. The interpreter picked up the
name and even printed it on the screen...we just
couldn’t see it. You could do this to that secret pro-
gram of yours and let your friend borrow it. When
he LISTs it to learn all of your secrets. . . boy, will he
get a surprise. Try it! I have, and what a ruckus it
caused. Be sure to save a copy of the original for
yourself, or you may be the one who is surprised!

The last experiment.

For our last trick, try this. First load the program,
or, if you didn’t save it, type it in again (SAVE it this
time). Now RUN it. In direct mode, type the follow-
ing:

FOR A=FIRSTADDR T LASTADDR:POKE 4,A5C
(""¥"] :NEHT a4

Again use the addresses that are on the screen. When
READY appears, LIST the program. Check out all of
the garbage!! T'll let you figure it out for yourself.
(Hint — The interpreter searches for inverse charac-
ters.)

Final notes.

VARLST will interfere if your target program has
the same line numbers as the utility. I started at
32500 as all of my program line numbers fall way
below that figure. If necessary, change the line num-
bers higher or lower, but remember to change all of
the GOSUBs and GOTOs. Also, if your target has
more than 119 variablesinit, VARLST will not load.
[’ve never seen a program with that many variables,
but it is possible. If you have any variable names
longer than 30 characters, VARLST will not work.*
Have fun experimenting! [J

*Dimension VARS$ larger in this case.

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 23

Listing 2.

32588 CLR :DIM UARS(3IB) :TABLESTART=PEE
K{1IB)+PEEK (131X ¥#256 : CURADD=-TABLESTART
PCHARCNT=1:UACNT=-0:ERRER=-O:INV=-128
32502 SKIP=@8:7? "“R":LPRINT "THE FOLLOMWI
NG UARIABLES ARE IN THIS PROGRAM":FOR
H=1 TO 58:NEXT H

32504 TEMP-PEEK (CLURADD) :IF TEMP>=INV O
R TEMP=ASC('"¥") THEN GOS5UB 32514

325086 UARS {CHARCNT,CHARCNTI=CHRS (TEMP)
:IF ERRER THEN GOSUB 12524

325688 IF SKIP THEN GOSUB 32526

32518 CURADD=CURADD+1:CHARCNT-CHARCHNT+
1:607T0 32584

32512 LPRINT :LPRINY "TABLESTART= '";Ta
BLESTART:LPRINT “TABLE END = *;CURADD-
4:LPRINT "B OF VARIABLES= *";VACNT-1
32513 END

g%g{; IF TEMP=ASC("¥") THEN POP :GOTO
22516 IF TEMP=ASC (") THEN TEMP=TEMP-
128:607T0 32522

32518 IF TEMP=ASC{"[I") THEN TEMP=TEMP-
128:60T0 32522

32520 TEMP-VEMP-128:IF TEMP{48 OR TEMP
>38 THEN ERRER=1

32522 VACNT-UACNT+1:SKIP=1:RETURN
32524 VAR5 (CHARCNT+1,CHARCNT+1)="3":ER
RER=B:RETURN

g%gZB IF VARS="UARS" THEN POP :GOTOD 32
32528 LPRINT VARS,,," ADDRESS= " ;CURA
DD-CHARCNT+1:CHARCNT=0:5KIP=8:VARS="":
RETURN

®
CHECKSUM DATA
(See pgs. 7-10)
12508 DATA 256,390,285,624,952,663,823

,957,377,141,159,129,984,932,148,7340
22528 patTa 715,715

Circle Demo

18 HC=1608:YC=80

28 RD=68:INC=18:Y5=8.75
I8 GRAPHICS 8:COLOR 1
48 GOSUB 1880:END

1888 REM
1918 REM
1828 REM
18638 REM
1848 REM
1858
1068
ie7e
iase

x-coordinate of center
y-coordinate of center
circle radius

drawing increment 1-3680
y—scaling factor

:PLOT XC,YCHRD¥®YS
CIRCLE=8 70 368 STEP INC
KCOORD=KC+SIN(CIRCLE)*RD
YCOORD=YCH+COS5 (CIRCLE)*RD¥*YS
DRAWTO KCOORD,YCOORD
NEKT CIRCLE:RETURN

=G b -
WESOM

wa (Y ae aw

CHECKSUM DATA
(See pgs. 7-10)

18 DATA 118,981,32,473,165,240,167,278
,180,184,463,8,40,284,645,4258
1118 pATA 469,958,422 ,8638,442,3159

PAGE 24

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

BUNCRUSH

16K Cassette or Disk

by Tony Messina

In our last episode, we left our hero (Bruno Bit-
mangler) tearing out his hair, looking for his lost
energy variable E amidst all the garbage on the TV
screen. Meanwhile, Bruno Jr. screams, ‘I wanna
play Missile Command!” and Mrs. Bitmangler
shouts, “Both of you get in here...DINNER is get-
ting COLD!” If only our hero had BUNCRUSH, his
problem would be solved. What’s a BUNCRUSH?
It’s the BASIC Unembellished No-Cost Cross Ref-
erence Utility and Software Helper. If you want to
get it up and running, type in Listing 2 and skip to
the “How to use BUNCRUSH?” section. Those of
you who want to learn a little more about the ATARI
BASIC token structure and how BUNCRUSH was
developed should read on.

Design considerations.

Several major considerations were involved in
designing BUNCRUSH. The list I used was as fol-
lows.

1.) Build upon the concepts presented in
Utility #1 — Variable Lister (see page 20)

2.) Allow use with both Cassette and Disk
systems.

3.) Allow screen or printer output.

4.) Output should include the variable name,
its associated line reference numbers and be
neat in appearance.

5.) Make the output fast and simple.

6.) Provide flexibility for user modifications.
With these considerations in mind, [sat down and

wrote BUNCRUSH. It’s been rewritten three or four
times. Each time it was improved and streamlined.
Listing 2 is the final version.

With all the above ground rules set, I'll dive into
the background material, namely ATARI token
structure.

BASIC’s background.

As was explained in the last utility article, vari-
ables are assigned numbers in our token program.
Names do not matter, unless we want to print out a
program listing. It follows that, if we could locate the
start of our token program, scan each line for a
variable # (128-255), save the line numbers that
contain the variables we are looking for and print out
this information, we would be all set. Of course, we

would have to do this for every variable number, and
it could take some time. We’ll worry about the time
later. The first question is: where does the tokenized
version of our BASIC program begin? Glad you
asked! The start location can be found at address
135,137 (Decimal) or $88,89 (Hex). This is not
where the program begins, but rather the pointer to
where it begins. To obtain the decimal location
number, we would execute the following BASIC
statement.
TOKEN=PEEK (136) +PEEK (137) %256

The variable token would be set equal to the start
address of our token program. Now what? Well, it’s
time to scan the program from start to finish for our
first variable. Before we do this, I'll digress into my
“Here’s how a tokenized BASIC line is set up’’ tap
dance routine.

[saw a hand in the back of the room. .. “What's
this ‘tokenized program’ you keep referring to?”’ I'm
sorry. . .let me explain. When you type in a program
line in BASIC and hit RETURN, several things hap-
pen. First, the BASIC cartridge takes each item you
typed in and converts it into tokens for its own use.
Each command (GOTO, TRAP, etc.), operator (+,
-, =, etc.)and function (STR$, SIN, COS, etc.) hasa
special token associated with it. The interpreter
scans, tokenizes, places the token in the program area
and continues till it hits your carriage return. If
everything is correct with respect to syntax, the
cursor appears on the left side of the screen, and you
can continue on with the nextline. If you make a mis-
take, the interpreter stops scanning and prints the
line out with an error message and an inverse cursor
to show you where it stopped.

After you correct your mistake, the interpreter
goes through the line again. This process continues
until you have entered your entire program.

The tokenizing process is used to save space by
converting the ASCII input to tokens. For example,
the Restore command would normally take 7 bytes
(one per letter). Through tokenization, it only takes
1 byte containing the number 35 Decimal. Tokens
serve another important purpose. At Run-Time, the
BASIC interpreter fetches a token. This token is
actually an index for a jump table. This jump table

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 25

points to the various routines within the system.
When a token has been executed, BASIC returns,
fetches the next token and continues the process of
execution.

With that simple explanation out of the way, let’s
look at the structure of a tokenized line of BASIC.
Each line varies depending on its length and the
number of multiple statements in it. Some items
don’t get tokenized. ASCII strings are an example. In
a statement such as PRINT “This is a test,”’ the
PRINT statement will get tokenized. When the in-
terpreter encounters the quotes, it replaces them
with a 15-token (string follows token), saves one
space, then puts each letter of the string in one byte
until it hits the last quote. The byte after 15 then gets
updated to the number of ASCII characters in the
string. Similarly, numbers are put in BCD represen-
tation. BCD numbers take up 6 bytes for the number
itself. For example, with PEEK 130, the PEEK would
get a token of 70, and the ““(’’ a token of 58. Then a
14 would be placed next. Fourteen is the “BCD
number follows token.”” After the 14 would be the 6
byte BCD representation of 130 (65 1 48 0 0 0).
Don’t worry, no need to memorize BCD numbers.
Just remember how they appear. Anyway, our
example of a simple tokenized BASIC line follows.

BASIC line:
20 PRINT PEEK(Z)

Tokenized form (in decimal):
Bytes (1) (2) (3) (4) (5) (6) (7) (8) (9)(10)
20 0 10 10 32 70 58 128 44 22
Bytes 1 and 2 — Line number LSB MSB FO
RMAT
Byte 3 — Numerical offset to the next line
number in bytes
Byte 4 — Numerical offset to next statement
number of bytes. This is used to keep track of
where the interpreter is when a line has multi-

ple statements; i.e., 10 GOTO 20:GOSUB 200:

PRINT X:GOTO 5 — The remainder of the

bytes consists of the tokenized form of our

BASIC line.

Byte 5 is the token of PRINT.

Byte 5 is the PEEK token.

Byte 7 is the left parenthesis token (“‘("").
Byte 8 is the variable number assigned to Z.
Byte 9 is the right parenthesis token (*)”).
Byte 10 is the end of line token.

To help you get a feel for these concepts, I've in-
cluded the ATARI BASIC TOKEN TABLE 1. I've
also included a short program that prints out the
tokenized version of line numbers within a program.
This is Listing 1. I call it TOKLOOK. Type itin and
save it using the LIST command. Now load in one of
your BASIC programs. When “ready’’ appears, load
the TOKLOOK program, using the ENTER com-
mand. When it’s in, type GOTO 32500. Answer the

prompt with a line number. The tokenized version of

the line will appear, as well as the BASIC form. Use
Table 1 and compare the token version with the
table. This little utility helped me a great deal in un-
derstanding how things get tokenized.

Back to BUNCRUSH.

Well, with that digression out of the way, let’s
look at Listing 2, the actual BUNCRUSH utility.
You may notice some similarity to the Variable
Lister program. I built BUNCRUSH around it.
Variable names were shortened and some unneces-
sary items removed. There are 2 parts to BUN-
CRUSH. I used BASIC to handle the string mani-
pulation tasks of finding the variable names and
formatting the names/line numbers for output. The
ML routine works hand in hand with BASIC. All the
ML routing does is search the token program for our
variable number (we start at number 128). When it
finds it, it returns the line number to BASIC. BASIC
then takes the number and puts it in the string
VARS. If VARS$ exceeds the print length of 80, the
program prints out that line. BASIC then jumps
back into the ML routine, and the search goes on
until all variables and line references are output.

Program flow.

Line 32500 — Clears all variables and sets
up the program parameters.

Line 32502 — Outputs heading credit. (Go
ahead — put your own name in there if you
want.)

Line 32503 — Skips some lines, prints out
column headings and reads in the ML routine
data. '

Line 32504 — Gets our variable name, one
character at a time. Remember from Variable
Lister, an inverse character marks the end of a
variable name. If TP>=128 then we subtract
128 and set a flagat 1690 for use later on. I call it
the Variable Name Complete Flag. If TP is not
>=128 we move on.

Line 32506 — Puts the variable name in
VARS$. CC is the Character Count.

Line 32508 — Checks our Variable Name
Complete Flag. If itset (=1) we GOSUB 32526.
If not, we fall through.

Line 32510 — Updates the current address
(CA), the character count (CC) and goes back
to 32504 to get the next character of the vari-
able name.

Line 32512 — Skips a few lines and prints
out the variable count at the end of the program.

Line 32513 — Ends the program.

Line 32526 — [sasubroutine; we jump here
from Line 32508. First we check if our variable
name is VARS. If yes, pop the stack and end the
program. If not, we drop through.

Line 32527 — Pads VAR$ with blanks.
Variable names can be up to 15 characters long.
If you have variable names longer than 15, just

PAGE 26

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

change the 15 to whatever you want. [haven’t
had any problems yet. Fifteen is a safe num-
ber.

Line 32530 — Jumps to our ML routine.
The source listing is included as Listing 3. The
ML routine searches every line of the token
program, looking for our variable number. It
returns to BASIC under two conditions.

Condition 1: It finds our variable num-
ber in a line.

Condition 2: It encounters Line 32500,
which is the start of the utility.

Some simplifications were necessary in writing the
search program.

1.) If you find our variable, stop searching
that line and return to BASIC with the line
number. There is no need to search any further,
even if the variable appears 10 times in the line.
All we care about is the line number, not how
many times the variable appears therein.

2.) If we encounter a DATA or REM state-
ment, skipit. There are no variables in DATA or
REM statements.

3.) If we pick up a “BCD Number Follows™
token (14), skip past it. Searching it is not
healthy — we’ll get an erroneous cross-reference
in some instances.

4.) If we encounter a “String Follows”’ token
(15), skip past the string, as any inverse charac-
ters will trigger the “I found our variable”
signal. Remember, we look for variable
numbers from 128-255.

5.) If we hit a “Statement End” token (15),
skip past the next byte. It contains an offset
number which can cause errors.

VARS$ gets printed first, then is padded with 15
blanks.

Line 32540 — The line number get added to
VARS$ and a (comma space) is appended. Here,
X is updated to reflect the length of VAR$. We
then jump back to the ML routine so we can
continue on.

How to use BUNCRUSH.

Type in the program from Listing 2. Double-
check everything, especially the ML DATA, to en-
sure a good program. Save the program to disk using
the LIST “D:BUNCRUSH” command or to cassette
using the LIST “C:” command. To use BUNCRUSH:

1.) Load in the program you want to cross
reference.

2.) Load in BUNCRUSH using the ENTER
“D:BUNCRUSH” command for disk or the
ENTER “C:” command for cassette.

3.) When READY appears, be sure your
printer and interface are turned on.

4.) Type in immediate mode GOTO 32500.

5.) BUNCRUSH should now print out the
title and the column header VAR LINE
NUMBERS to the printer.

6.) The CRT display should say READING
ML PROGRAM. After 3-5 seconds GOOOQ!!
should appear, and the printer should be busy
dumping out the Variable Cross Reference.

Modifications.

The program in Listing 2 is set up for an ATARI
825 printer with a line output of 80 columns. Modi-
fications for other printers follow:

1.) PRINTER — If you have an ATARI 40-

column printer, change the >80 in Line 32538

[won’t go into too much detail on the ML routine. to >40.
[t’s not even very elegant, as a matter of fact. Things 2.) NOPRINTER — If you don’t have a prin-
can be done to speed it up, but — as you’ll see —it’s ter, change all LPRINT statements to PRINT in
plenty fast enough!!! Anyway, we return to BASIC. Lines 32502, 32503, 32512, 32535 and 32538.

Line 32532 — Checks the con location at
1680 decimal. If set, we are continuing — GO
process the line number. If not, we are done
with this variable, so drop through.

Line 32534 — Erases the comma at the end
of the last line number. If X <=16 then no line
numbers were generated for this variable and
therefore there are no references for it.

Line 32535 — Prints out VARS, zeros out
the character count, clears out VAR$ and
NUMS$ and returns to 32510 to get the next
variable flag.

Line 32536 — Gets the current line number
(CL) from locations 1683 and 1684 — that’s
where the ML routine put them.

Line 32538 — Converts the line number to
a string. It checks to see if the length of this line
number, when added to the current length of
VARS$, will be greater than 80. If it would,

In addition, change the 80 in Line 32538 to 39.
Everything will now be dumped out to the
screen. Use the CNTRL 1 key to STOP/START
the listing.

3.) LINE NUMBERS — If you want to
change the line numbers for BUNCRUSH in
order to move it up or down, you must beware
or certain items. All GOTO and GOSUB ref-
erences must be changed to reflect the new line
numbers. The most important change of all is in
the ML routine itself. The ML routine checks to
see if the current line number is 32500. If you
change the starting line number of BUNCRUSH,
you must change the check in the ML routine.

DATA Line 32548, item 14 is a 126 which is
the MSB of the line number 32500; DATA Line
32500, item 5 is a 244 which is the LSB of
32500. Anyway, whatever your new line
number, break it down into LSB/MSB format

VOL. 1

THE A.N.A.L.O.G. COMPENDIUM PAGE 27

and substitute the appropriate numbers in the
above mentioned locations.

4.) OTHER CHANGES — Other things
which you may want to add to BUNCRUSH are
ERROR CHECKING andan INPUT line which
will let you title the listing in expanded print so
you know what program is being Cross
Referenced. Another change which would
require some work is to output an alphabetical
Cross Reference. The possibilities for additions
are limited only by your imagination.

Drawbacks and limitations.

BUNCRUSH has some limitations which I
thought should be mentioned prior to receiving a
bunch of nasty phone calls and letters. Limitations
on BUNCRUSH are identical to those of the Vari-
able Lister Utility on page 20. BUNCRUSH will
not work correctly if:

1.) The target program uses more than 120
variables. BUNCRUSH will abort the load pro-
cedure with an ERROR 4 (Too Many Vari-
ables).

2.) Line numbers are the same as BUN-
CRUSH. In this case, BUNCRUSH will merge
just fine with the target program but may cause
problems if the target program has line numbers
not contained in BUNCRUSH.

3.) The target program is so large that BUN-
CRUSH will not load due to an ERROR 2 (In-
sufficient Memory).

I've never had problems with item 2 or 3. [have a
48K system, however, and this may be the reason. |
have encountered item 1 only once, and it was with a
canned program. There is a way around all of these
problems — a method by which BUNCRUSH will
work on ANY BASIC program. If BUNCRUSH

were written entirely in machine language, without

BASIC overhead, everything would work fine. I'll
leave that as an exercise for the reader. O

Listing 1.

32588 CLR :DIM VYARS{L) :ST-PEEK({13I6)+PE

EK(1I7¥#Z56 :HT=5T

32582 7 CHRS5(1252:7 TR CTH8- I
MO INPUT A

32584 TL-PEEK(NTI+PEEKINT+1)¥256:BC=-PE

EK(MT+2) :IF TL=32588 OR TL>A THEN 7 “[§

INE MNOT FO " GOT0 32512
32586 IF TL{>A THEN NT=NT+BC:GOTO 32586
4

32587 27 ' LINEH","NHT LINE",“NHT STHMNT
"

2588 7 "LSB/MSB',' OFFSET",' OFFSET"
32589 7 ' UPEEK(NTY ;" /" ;PEEK(NT+13 "
";PEEK(NT+2Y,* YIPEEKIHTH3I)

32516 7 “IITdLFFAIMERCYIGE0R i FOR KCoNT
+4 TO MTH+BC-1:7 PEEK{¥Y ;" " ; :NEKT H:?
HEREOSIC STATEMENTRHSSSEN:]

gggéz EEEEERANOTHER LINE? ¥/ NERERE 1IN}
32514 IF VARS(1,1)="Y" THEN NT=5T:GOTO

32582
32516 END

CHECKSUM DATA
(See pgs. 7-10)

32588 DATA 345,677,832,112,932,768,733,
158,821,323,566,66819

Listing 2.
IFA88 RFM EHEHEEHEEESHERENOHHOGHENH
32418 REM ¥ THIS REM IS5 T0 LET yYou %
IZ2415 REM ¥ KNOW THAT THIS VERSION ¥
32428 REMWM ¥ OQF BUNCRUSH HOS BEEN *
32438 REM ¥ IMPROVED YO HANDILE alLil
32448 REM ¥ CASES OF IF/THEN. DON'T¥
32458 REM ¥ TYPE IN THIS REM, JUST ¥
37460 REM ¥ READ FOR INFORMATION,.
IZ4FE REM IBHOOEHHOOORHRREDNOOHERNNE

32488 REM %
32508 CLR :DIM UVARS (881, NUMS5(5) :CA=PEE
KC1Z8)Y +PEEK (1313 #256:CC=1:POKE 1699,8
32582 ? "R :LPRINT *"CROS5S5 REFERENCE uvy
Ila}x VER. 2.6 BY TONY MESSINA NEWPORT
325683 LPRINT :LPRINT :LPRINT "uUaR

LINE NUMBERS'":LPRINT :GOSUB 3I25

42

32564 TP-PEEK(CA):XIF TP>=128 THEW TP=T
P-128:POKE 1699,1

32506 VARS(CC,CCI=CHRS(TP)

325688 IF PEEK(1699) THEN GOSUB 32526
32518 COA-CAH+1:CC=CCH+L1:60T0 32584

32512 LPRINT :LPRINT *'#t OF VARIABLES:=
YIPEEK (16953128

32513 END

gfg?ﬁ IF UARS="UARS5'" THEN POP :GOTD 32
32527 FOR H=CCH+1 TOD 15:VARSIH,HI=" *":N
EXT K:GOTO 32538

32538 A-HSRUI1536]

32532 IF PEEK(1694) THEN GOTO 32536
32534 VARSCH-1,¥-1)=" “:IF K<{=16 THEN
UARS (LEN (UARSY+13—""NO REFERENCES"
32535 LPRINT VARS:LPRINT :CC=@8:POKE 16
99,8:VARS=""": NUMS="":RETURN

22536 CL=-PEEK(1697)+PEEK(1698)¥%256
32538 NUMS=STRS(CL) :IF LENC(VARSIHLENCN
uMs1 42288 IHEN LPRINT VARS:UaRS="

22548 UARSC{LEN(UVARS)+1)-RUMS :UARS (LENC
PARSI #13="", ":K=LEN(VARS) :GO0T0 32538
32542 RESTORE 32546:7 I ond T[N

(YY:**:FOR H=1536 TO 1699:READ TP:POKE X

,TP:NEXT H

32544 ? CHRS(125):? "“[HiL[ILE" : RETURN

32546 _DaTa 169,8,285,158,6,208,8,165,1

32548 DATA 285,165,137,133,2086,168,8,1

77,285,141

32556 DavTA 161,6,208,177,285,141,162,6

,201,126

3§gsgaga1a 288,7,173,161,6,201,244,7248

372554 pavTa 177,285,141,157,6,168,4,177

, 285,281

52556 pata 20,208,9,192,4,240,1,209,20

géggg pave 115,6,285,159,6,2408,59,2081,

gé?gg DaTa 49,281,1,240,45,281,14,288,

ggsgz vaTa 24,185,7,168,76,115,6,208,2
.15

32564 DaTA 208,23,136,136,177,2685,208,

788,201,27

gzggs DATA 248,13,177,285,1486,168,6,23

8,6
32568 DATA 24,189,160,6,168,2084,157,6,
144,183

PAGE 28

THE A.N.A.L.O.G. COMPENDIUM

VOL. 1

32,144,6,76,15,6,141,158,6 0395 DEY 3 ELSE DEC FOR
32570 pava ’ el Bl 4 2 0400 DEY 3 THEN CHECK
" 0405 LDA (P@2),Y i BET PREVIOUS TOKEN
32572 DATA 144,6,76,142,6,136,238,159, 0419 INY 4 3 THEN RESTORE
6,1 2415 INY } ORIBINAL POINTER
0420 CHP #THEN 3 1S IT THEN?
32574 paTA 158,6,184,96,165,2085,24,183 2425 BE@ CKCNT i YES. IF/THEN NOT STRINB!
, 157 ,6 0430 LDA (PGB),Y 3 NO..GET S8TRING CNT
32576 DATA 133,205,144,2,230,206,96,80, 9435 STY YSAVE 3 BAVE Y
8.128 0440 INC YBAVE 3 INC PAST THE LAST BTRING
9445 cLc 3 CLEAR CARRY FOR ADD
3&578 paTh 6,0,6,0,8,0 0430 ADC YSAVE $ ADD STRIN® COUNT TO OLD
2455 TAY 3 PUT CNT BACK IN Y REG
0460 CKCNT CPY COUNT i ARE WE IN NXT BASIC LINE
® 2465 BCC START 3 IF NO GET THIS BYTE
04790 SKIPIT J8R TOKUP } IF YES UPDATE TOKEN PTR
CHECKSUM DATA 0475 JMP CONTIN } CONTINUE TO LOOK
04890 PROCIT STA COMN 3 MAKE CON NON-ZEROD
0485 JSR TOKUP i UPDATE PAGE ® POINTER
(See pgs. 7‘10) 2490 JMP BASIC 3 EXIT TO BASIC
9495 DONE DEY i DEC Y TO ZERO
868,659 2500 INC TARBET i UPDATE TARGET NUMBER
3124088 DaTH 582,78%5,847,663, 79200 9746 2505 aTY CON i ZERO OUT CON FOR BASIC
, 796,596,385 897 819 873 i52,1 9510 BASIC PLA 3 PULL NASTYNESS OFF
%2508 pata 501,933,946,557,148, 8“2%? 0313 RTS | RETURN T0 BAGIC
8 9520 3
&2716666 612 288 ézglsggﬁﬁzglsggﬁ 822 DT25 JHEARRIRRA RN R R R AR F RN AR RBRRRRD N
2546 DaTA 698614 ’ 2330 3% * SUBROUTINE TOKUP # .
7635817,137,86 924 ‘8‘ 815 716 6805 0833 3 » R R R Y Y
patTa 795 593 1488 9540 j» THIS BUBROUTINE UPDATES THE
32576 ©9545 j# PE® PTR OF THE TOKEN PROGRAM#
9550 j» THE OLD PTR I8 LOADED AND #
°® 9553 j# THEN THE BYTE CNT IS ADDED. #
9569 §+ IF CARRY 19 SET PE@+1 IS »
Assembly language listing. 95635 5% ALSO UPDATED *
ﬂ57ﬂ FRERBRARRCBRRNRBRNRRBRERRRERRRD NN
8575 3
DO § R0 0000034030 0000 003 03 4 00 00 3 4 0 00 26 gggg Tokup EE‘C\ *PeQ § GET LSB OF POINTER
0010 1# ML SEARCH AIDE FOR ATARI 400w ’ ¥ LLEGR CARRY. FOR ADD
SH1S % F8OSU R ANy HESTINA: = g:w ADC COUNT i ADD CNT TO NXT LINE #
0620 1« 48 DUDLEY AVE NEWPORT, RI ® 4 ate aroe I POT. LT BACK
PBZa T 02048 VERETON 2o6 15 YUl &% 0600 BCC OUT } IF CARRY CLEAR GET OUT
OO30 IHERRBEGRBSRTRRRRRRRER PR RN RN 32?3 ouT ;?g BPOOXL } oors, CAR?Y BEY: INC M98
O3S (RREAARRA SRR R BB R SR NN R R B RBRB RN 0615 3 i SCRAM sAnM!
:::g ::.ff"."ﬁ153.:25.:5335‘::‘.52‘;58:..: D620 jewamannn LOCAL VARIABLES FOLLOW ##sexsxes
0625 §
0050 :
2638 COUNT .BY @ 5 BYTE CNT THIS BASIC LINE
. TA TOKEN
goas R hi - oara Toee P&35 CaN .BY @ i FLAG FOR BASIC & ML ROUT
Spis HED S T V' BeD & TOvEN 0649 TARGET .BY 128 } VARIABLE TOKEN # START A
9070 STRING ‘b1 13 I STRING TOKEN EaeS HEnE =BY/ 9 1 Y REGISTER SAVE AREA
967% SIRT ‘i 28 . BUATENEWT END 0650 LINNUM .BY @ } BASIC LINE NUMBER LSB
$£80 THEN =Dt 27 . IHEN TOKEN iie mvrue ‘v i THyEnme FLas GREA
0085 TOKPTR .DI %0088 3 POINTER TO BAS Giin e ’ E
8099 PGQ .DI $90CD i LOC ON PAGE © ¥
0095 3
D100 JHBREFRVVARBRBRBRNSSRRERRRRERE S RN
0105 3» THIS PROGRAM DOES A SEARCH #
6110 j» TO AIDE BUNCRUSH. BASIC WAS ®
9115 3# TOO SLOW, SO THIS ML ROUTINE#®
8120 5» WAS WRITTEN TO SPEED THINGS ®
9125 j* UP A BIT.. ATARI BASIC
f130 ;i.nnnn-numnucuanrnu&nuunu TOKEN TAB E
135 3
o140 .08 § STORE OBJECT IN MEM L
gll;: p— -:2 ::6“ : Bg:\gl: :?ér’u o COMMANDS OPERATORS FUNCTIONS
L
2155 cMP CON } CK WITH CON FLAG HEX DEC HEX DEC HEX DEC
0160 BNE CONTIN y SKIP INIT IF NOT @
e1sS YNIT (DA STOWETH §{ GET L8P OF POINTER 00 0 REM 0E 14 [NUM CONST] 3D 61 STR$
179 STA *PGQ 5 8TORE IT 01 1 DATA OF 15 [STR CONST] 3E 62 CHR$
o179 LDA #TOKPTR+1 ' g$;R23?YD: PgINTER 02 2 INPUT 10 16 " 3F 63 USR
o180 LS
2185 CONTIN oy wo } START v AT zERO 03 3/CoLOR 11 17 [NOTUSED] 40 164 ASC
2190 LDA (PG®),Y i GET LSB OF LINE NUMBER 04 4 LIST 1218, 41 B85 VAL
o;;: STA LINNUM] ?::EF;;N’:’UEF:QS{CBY " 05 5 ENTER 13 19§ 42 66 LEN
) INY [2 :
pet ot LDA (PEOY, Y i BES TaP OF LINE NINBER 06 6 LET 14 20 :[STMT END] 43 67 ADR
2218 STA LINNUM+1 § SAVE IT FOR BASIC 07 7 IF 15 21 ; 44 68 ATN
9215 3 08 8 FOR 16 22 [LINE END] 45 69 COS
:ggg :l!.i CHECK THIS LINNUM FOR 32509 =ewes 09 9 NEXT 17 23 GOTO 46 70 PEEK
2238 CHP #%7E 3 IS IT = TO M8B 0A 10 GOTO 18 24 GOSUB 47 71 SIN
9235 BNE NOEQ 3 1IF NO THEN START 0B 11 GOTO 19 25 TO 48 72 AND
gg:g t:g t:gfuﬂ : ;§5I$ﬂ CK LSB 0C 12 GOSUB 1A 26 STEP 49 73 FRE
2250 BEQ DONE ¢ If EQ. DONE THIS VAR 0D 13 TRAP 1B 27 THEN 4A 74 EXP
9255 NOEQ INY 3 INC PTR TQ NEXT LOCATION 0E 14 BYE 1C 28 # 4B 75 LOG
. By UMDY e woow F
2270 LDY #4 3} BET NEW OFFSET 10 16 COM 1E 30 <> 4D 77 SQR
9275 START LDA (PGO),Y 3 GET A BYTE INDIRECTLY 11 17 CLOSE 1F 31 >= 4E 78 SGN
2280 CMP #STMT y CK FOR A STHMNT/DIM TOKEN 18 GLR 20 82 < 4F 79 ABS
2285 BNE TARGCK 4 IF NO, CK FOR TBT TOKEN N <
2290 CPY ®a 5 WAB IT 18T BYTE? 13 19 DEG 21 3 > 50 80 INT
29293 BE@ WASDIM § YES..IT WAS A DIM! 14 20 DIM 22 34 = 51 81 PADDLE
:2:: T :::) INC f :_SRSE‘:T 15 21 END 23 35 & 52 82 STICK
3 INC
2310 JMP CKCNT } 8EE IF WE ARE DONE 16 22 NEW 24 36 % 53 &3 PTRIG
2315 TARBCK CMP TARBET § I8 IT OUR TARBET 17 23 OPEN 25 37 + 54 84 STRIG
2320 BE@ PROCIT y 1IF= G0 PROCESS THIS LINE 18 24 LOAD 26 38 -
0323 CHP #REMARK i NO CK REM
2330 BEQ SKIPIT § IF REM BKIP THIS LINE 18 25 SAVE 27 394
PRRE CMP WDATA J NOT REM. CK DATA 1A 26 STATUS 28 40 NOT
o e Emmpragm, 20O mEw= s g
'
2330 BNE STRCK J IF NOT BCD CK FOR STRING 1C 28 POINT 27, 42| ‘BN
23355 TYA 3 ITS BCD PUT DOFFSET IN A 1D 29 XIO 2B 43 (
0363 ADC #7 | ADD 7 T SKIP THE BCD # g £
& " 3 ADD 7 TO 8K 4
9370 TAY § PUT NEW OFFSET BACK IN Y LRl 2D 9, =l ARITHNIASSIGN)
2373 JMP CKCNT § AND 80 CX CQUNT 20 32 PRINT 2E 46 = [STRING ASSIGN]
9380 STRCK INY } INC PTR BY ONE 21 33 RAD 2F 47 <= [STRINGS]
0385 CHMP WSTRING i CK IF STRING TOKEN 22 34 READ 30 48 <
9390 BNE CKCNT NO CK TH
¥ 1 (NQs 180 Bk THE, OUNT 23 35 RESTORE 31 49 >=

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 29

24 36 RETURN 32 50 <

25 37 RUN 33 51 >

26 38 STOP 34 52

27 39 POP 35 53 + [UNARY]

28 40 7 36 54 -

29 41 GET 37 55 ([STRING LEFT PAREN]
2A 42 PUT 38 56 ([ARRAY LEFT PAREN]
2B 43 GRAPHICS 39 57 ([DIM ARRAY LEFT PAREN]
2C 44 PLOT 3A 58 ([FUN LEFT PAREN]

2D 45 POSITION 3B 59 ([DIM STR LEFT PAREN]
2E 46 DOS 3C 60 , [ARRAY COMMA]

2F 47 DRAWTO

30 48 SETCOLOR

31 49 LOCATE

32 50 SOUND

33 51 LPRINT

34 52 CSAVE

35 53 CLOAD

36 54 [IMPLIED LET]

37 55 ERROR- [SYNTAX]

Triangle Demo

=1
GRAPHICS 23
E-INT (IBO¥RND (1))
g:}ﬂT(SBO*RND(l))
COLOR C
B=39
a=79
FOR 5=1 TO0 D STEP E
FOR H=a4 TO B STEP -2
PLOT 86,4-K
DRAWTO 88+H,INT(A/S5)
DRAWTOD 80,H
DRAWTO 80-H,INTIA/5]
DRAWTO 86,A-K
IF PEEK({764)<>255 THEN END
COLOR C
NEXT X

95 C=C+1

188 NEHXT 5

ias SETCOLOR ©,7,2

118 T=T+1

115 &OTO 5

CHECKSUM DATA
(See pgs. 7-10)

S DATA 693,999,498,483,967,760,238,227
,138,962,886,148,38,146,502,7677

8@ DATA B871,785,4083,77,748,508,326,662
, 4386

PAGE 30 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

SYS/ STAT

16K Cassette or Disk

by Robert Hartman

System Status is a BASIC program that allows
the user to look at a formatted listing of all the
devices accessible to him/her. It also has the capabil-
ity to display 64 files on drives one through four. Its
main purpose, however, is not to be a menu, but to
supply the user with information regarding the
accessibility of the four RS-232 ports.

NOTE: If a drive is started up after the program
has been run, it is necessary to re-run the program in
order to get a menu on that particular drive. O

186 REM analog System 5S5tatus

28 REM Version 1.1

38 REM Copyright (C) aApril, 1981

48 REM by Robert W. Hartman

58 DIM AS(28),B5{6),F5(5),A(5) :GRAPHIC
9 B8:POKE 752,1:POKE 559,8:POKE 82,1:P0
KE 83,39:FR=-FRE(O) :L5CH=764:CON=53279
68 POKE 65,0:REM Noisy I/0 off

78 REM SET UP SCREEN

86 FOR I=i2 Y0 22:POSITION 18,I:7 "|*:

NEXT X

98 POSYITION 12,1:? "analog systat“:Fo
R I=12 T0 25:POSITION I,8:7 "=":POSITI

ON X,2:7 "=":POKE CON,B:NEHT I

168 FOR I=8 TO0 IB:POSITION XI,3:7 "=t:p
O0SITION I,19:7 "=="':NEKT X

118 REM CHEAT (just a lxttle)

129 POSITION 12,5:7 "R "'
FOR I=-12 70 26: PDSITIUN I,6:7 "=t:NE
I:POSYITION 1,7:2 * Keyboard"

138 POSITION 1,9:7 °* -Screen*:POSITIO

N 1,11:? *[§ -Editor':POSITION 1,13:2

M -Cassette":C=7:R=26

148 REM 5YS7TAT

150 TRAP 19D0:0PEN 21,5,08,"D1:% 3 P0S5Y
T}ON R,C:7? "} -Drive #1":G05UB 268:D1
i68 OPEN $82,6,0,"D2:% %' :POSITION R,C:
ESRD 7| —Drxve ﬂ2"'GOSUB 268:D2=1

178 OPEN #3,6,08, DI ¥ ¥ POSITION R,C:
ESRRD 2| —Drxue ux"-505u3 268:D3=1

188 OPEN 114,6,0,"D4:3% W' ;POSITION R,C:
ESRLD 4] —Drxue ﬂd" GOSUB 268:D4=1

199 TROAP 280:0PEN #H5,8,08,"R:":605U8 27

289 CLOSE HS5:TRAP 2108:0PEN #15,8,8,"P:"
:POSITION 14,14:7 “[J -Printer®

218 REM MEMORY

228 POSITION 1,19:7 "amount=gf=HMemory"
:POSITION 1,28:7 FR:FOR I=1 7O S5:PDSIT
ION I,28: GET H6,A:ACIICAINENRT I

238 FOR I=1 70 5 F$(I I) CHRS(A(IY+128
J:NEXKT I: POSITION 1. 20 » :POSITION 2,
21:7 Fs-n

249 GDTO 280

258 FOR I=1 TO 7:CLOSE HI:NEHT I:RETUR
N

268 C=C+2:RETURN
270 POSITION 12,16:FOR I=1 TO 4:? “Q@;
CHRS (I+484128);%, *;:NEHT I:? “{{":P05

ITION 1Z,17:? “R5232-C ports":RETLURN
288 TRAP I2767:POSITION 23,19:7 "Comma
nds":POSITION 24,28:7 "[-Menu(s)"

298 POSITION 24,21‘9 “[§-Run again b
:POSITION 24,22:7 "F-EHIT":POKE 559,34
:3ETCOLOR 2,4 4:POKE L5CH, 2535

388 CLOSE 115:0PEN 5,4, 9,"K'"'GET 5,49
:IF A{>69 AND A<{>77 AND A<>82 THEN 388
318 IF A=63 THEN GRAPHICS 8:POKE 65,1:
GOSUB 250:NEH

328 IF A-82 THEN RUN

338 REM MENU{5)

348 POSITION 23,19%:7 * “*:POKE 2
01,14:FOR I=28 TO 22:POSITION 24,1:7 ,
SNEXT I:POSITION 24,21:7 "Enter Drive"
I58 TRAP 288:POSITION I7,21:INPUT DR
368 IF DR{1 OR DR>4 THEN 288

ggﬁ IF DR=1 AND D1=1 THEN DRUZ1:60T0
I88 IF DR=2 AND D2=1 THEN DRVY=2:GOTO

398 IF DR=3I AND D3I=1 THEN DPRU=3I:GOTOD
488 IF DR=4 AND D4=1 THEN DRU=4:GOTO

418 GOTO 288

428 ? "K":POSITION 2,1:? “Menu for Dri

ve #;DRY:? @7 :GOSUB 258 :BS="'D :%,.%";

B5t(2, $1= STRS(DRU)

430 OPEN #1,6,08,B5:0PEN H2,4,8,"K:"

448 TRAOP 488 INPUT #i,A5:N= Ni1

458 ? A5(2, LEN(AS)) :IFf PEEK(98)=21 THE
¥ 50KE 82,PEEK(82)+28:POSITION PEEK (82
468 IF N=35 THEN GOTO 528

478 GOTO 448

488 ? CHRS{28);" ":? 11X
F LEN(AS) D15 THEN IF As50108,113= usER TH
EN GOTO 588

498 AS(LEM(AS5)+1)=" FREE SECTORS"

5868 FOR I-i{ TO LENCAS):AS(I,I)=CHRS{AS
CLAS(I,TI)+128) :NEXT X:? a5

219 POKE LSCH,255:GET ®Z,A:CLO5C B2:RU
928 REM Get rest of Menu After Cha

538 POKE L5CH,255:GET 82,0:P0KE 82 23
UR":POSITION 2,3

?;9 TRAP 578: INPUT #1,05:7 aS(2,LENCAS
550 IF PEEK(908)=22Z THEN POKE 82,PEEK(S
2)128:POSITION PEEK(82) .4

5368 GOTD 540

578 TRAP I2767:GOTO 480

e & & &

CHECKSUM DATA
(See pgs. 7-10)

i8 pATA 988,4,923,497,183,455,788,733,
522,885,47%,08,266,62,125,6822

168 DATA 971,386,1,844,985,35,322,333,
723,526,292,597,148,128,961,8451

i bATHA 771,8008,146,204,921,738,288,2
97,386,287,718,918,984,932,648,8958
468 bATH 418,728,64,134,615,333,767,23
7,39,838,729,937,5831

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 31

FASTERCHARACTER DUMPS

16K Cassette or Disk
by Joseph T. Trem

If you are an avid ATARI enthusiast as | am, then
you probably have gone through quite a number of
different programs. Many of the better programs use
character redefinition. Unfortunately, to define a
new character set one must move ATARD’s character
set into a new defined memory location. In BASIC,
this takes time. For 1024 bytes (128 characters or 4
pages) it takes approximately eleven seconds. It's
downright boring!

This article demonstrates a machine language
routine in string form which transfers ATARI’s
character set into a user-chosen RAM area. It runsin
a split second. Before going any further, I must state
that this article is nota tutorial on character redefini-
tion or animation, although they are both used in
the demo.

Here is a brief summary of the four sample pro-
grams included. Program 1 demonstrates charac-
ter redefinition and the time involved in transferring
1024 bytes (line 40). This takes approximately 11
seconds. Program 2 incorporates the machine
language routine and takes less than a second (line
30). Program 3 demonstrates a sample program
with sound and animation. There are five redefined
characters. After the program executes once, it
recycles and re-executes all over again. Notice the
time it takes to rerun...remember: every time this
program runs, it is dumping 1024 bytes in under a
second! Program 4 is the source code for the
machine language routine.

The technique used in this program is called a
block move. We simply look at what is in ATARI’s
character base address and move that data to our new
character address, one byte at a time. This technique
is also good for player/missile graphics. You can zero
out all player/missile data in a split second. Just
think, no more time delay to clear P/M memory.
Sound great? Then read on...here is the
documentation for the first three programs.

Program 1.
Line 20 — Sets up character variables
Line 40 — Transfers characters (slow)
Lines 50-70 — Reads in new character
Line 80 — Points to new character base

Program 2.

Line 20 — Sets up character variables
Line 30 — Transfers characters (fast)
Lines 40-60 — Reads in new character
Line 70 — Points to new character base

Program 3.

Line 10 — Sets up variables
Line 100 — Transfers 128 characters

Lines 1000-2170 — Alters character set
Line 3000 — Points to a new character base
Lines 3500-7000 — Main loop for

animation

Line 10000 — Sound routine
Here’s some information on our USR call:

A=USR{ADR{ES) , ADDR, PAGE)
ADDR=address where new character setis to
reside
PAGE=the number of 256 blocks you wish
to move.
In closing, 1 hope that everyone will enjoy the
substantial increase in speed this subroutine can pro-
vide. Just think, no more “‘Please wait. .. prompts.

O

Program 1

18 REM ODUMPS 1624 BYTES TO NEW CHBA
5 USING ONLY BASIC (APROXK. 11 SECONDS)

28 DIM E5(58) :RAMTOP-PEEK (166)-8:POKE
186, RAMTOP : CHBAS=RAMTOP : ADDR-CHBAS¥Z56
I8 GRAPHICS 17:POSITION 8,9:7 #H6;"MOVI
NG CHARACTER SET"

48 FOR X=8 TO 182I:POKE ADDR+X,PEEK (57
J44+H] :NEXKT K

58 CHAR=S9:POS-ADDRt {CHAR¥S)

68 DATAH O,24,36,66,153,66,68,8

786 FOR =6 TO 7:READ A:POKE (POSHX),d:

NEXT X
gg GRAPHICS 18:POKE 752,1:POKE 756,CHB

90 POSITION 18,5:7 86 [
ie8 GOTO 168

PAGE 32 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

CHECKSUM DATA
(See pgs. 7-10)

ie dpaTh 377,935,598,506,976,318,768,421
,361,683,5895

&
Program 2

i8 REM 06¢DUMPS 1624 BYTES TO MEW CHBA

5 IN MACHINE LANGUAGE (ND DELAY)HR

26 DIM E5(58) :RAMTOP=PEEK (106 -8:POKE

106, RAMTOP : CHBAS-RAMTOP : ADDR-CHBAS*Z56

sPAGE=4

I8 FOR H=1 TO 48:READ N:E5(HI=CHRSIN):

NEHT H:A-USRCADRIESI ,ADDR,PAGE) :REM %D

LIMP ROUTINE

48 DATA 104,104,133,287,104,133,206,10

4,104,133,212,169,8,13%,204,169,224,13

3,285,162 :

58 pATA 1,160,8,177,2084,145,286,2088,20

213436238,205,238,207,212,228,212,288,
»

68 CHAR=S59:POS=ADPDR* (CHAR¥E)

78 DATH 8,24,36,66,153,66,606,08

SEH$0§ ¥=8 TO 7:READ a:POKE (P05+K) f:

38 GRAPHICS 18:POKE 752,1:POKE 756,CHB

as

18668 POSITION 2,5:7 B6;"["

i18 GOTO 110

CHECKSUM DATA
(See pgs. 7-10)

i@ DATA 659,729,479,848,552,978,328,76
2,423,29%2,689,6722

Program 3

18 CLR :DIM ES5S(50) :RAMTOP-PEEXK (1061 :CH
Bas= RAMTOP -8 : ADDR= CHBAS*256: PAGE=4: SND

108 FOR H=1 TO 48:READ N:E5(HI-CHRS(N)
:NEXKT H:QZUSRIQDR(ES),QDDR,PQGE):REM *
DUMP ROUTINE*

1i8 paTA 164,184,133,267,184,133,266,1
04,184,133, 212 169 8,133,204,169,224,1
33,285,162

170 pafta 1,168,9,177,264,145, 286,208,
634%496238 285, 236 287 232 226 212 288
2

1088 CHAR=S59:PO5=ADDR+ (CHAR*8)

18618 DATHA B8,0,144,96,144,8,8,0
gO%gEFOR ®=B TO 7% READ A:POKE (PO5+H],
2088 CHAR=6O: P05 ﬁDDR*(CHnR*B)

2618 DATA 8,6,6,15,6,6,8,0

2028 FOR H=0 T0 7: READ A:POKE (POS+H),
O:NEXT X

2858 CHAR=61:PO5:= ﬁDDR*(CHOR*&)

2068 DATh 0,0,06,28,8,20,8,

20678 FOR K=0 TO 7:READ A: POKE (POS5¥H),
A:NEKT X

2188 CHOR=62:POS=ADDR+ {(CHAR*8)

2118 DaTn 8,8, 20 18,60,28,108,8

2128 FOR K=8 TO 7:READ A: POKE (POS+H),
fi:NEXT X

2158 CHAR=6I:POS= ﬁDDR*(CHﬁR*B)

2168 DATA 0,140,1084,57,86,72,

2170 FOR ¥=0 TO 7:READ A: POKE (POS*H),
A:NEXT H

ﬁggg GRAPHICS 17:POKE 752,1:POKE 756,C

3818 PDSITION 1,28:7 #6;"A55Y CHORACTE

R DUMP'

3588 FOR K-@ TO 4:POKE 708,14:POSITION
H,5:7 #i6;*" [*":GOSUB SND:POKE 788,8:P

O3ITION X,5:7 #6;" \ ":GOSUB SND

3518 NEXKT K

I520 FOR I=1 TO 20:POKE 768,14:GO5UB 5

ND:POKE 788,8:G05UB SHND

3538 REXT I

4888 FOR HK=5 TO0 18:POKE 788,14:P051I710
N H,5:7 ti6;" [":GOSHB SND:POKE 768,8:
POSITION K,5:? ®##6;" \ '":GOS5UB SND

4818 NEXT H

4529 FOR I=1 TO 20:POKE 768,14:G05UB 5
ND :POKE 708,8:G05UB S5SND

4538 NEXT I

5886 FOR H=11 TO 14:POKE 788,14:POS5SITI
ON H,5:2 @t6;" [":GOSUB 5SND: POKE 788,8
:POSITION H,59:7 #16;* \ ":GOSUB SND
5018 NEXT H

68868 POSITION 15,5:7 #6;"1IV:FOR DP=-14 7T
0 16 STEP —-1:50LUND 8,30,8,D:NEXT D
60618 POSITION 15,5:7 ;"A"'FOR p=i8 T

0 5 STEP —1:50LND 8,100,8,D:NEXT D
6820 POSITION 15, 5:% u6;*"_":FOR D=5 TO
8 STEP —-1:50UND 8,36,8,D:NEXT D

6838 POSITION 15,5:7 #6;"_":FOR D=5 1O
@ STEP -1:50UND 0,38,8,D:NEXT D

6640 POSITION 15,5:7 H#6;"A":FOR D=18 T

0 5 STEP -1:50lND 0,1080,8,D:NEXT D

6658 POSITION 15,5:7 #6;"1":FOR D=14 T

0 18 S5TEP —-1:50UND 0,38,8,D:NEXT D

66786 POKE 788,08:50UND 6,08,8,8:50UND 1,

6,8,0:50UND 2,6,08,0

7680 GOTO 18

18808 SOLUND 8,208,12,8:50UND 2,283,12,
B:50UND 1,RND(B)%*18,18,8:RETURN

L]

CHECKSUM DATA
(See pgs. 7-10)

i8 DaTA 772,278,748,506,876,319,217,87
2,8063,2193,878,993,224,877,233,8815
2128 bATA 222,883,396,227,344,9328,573,
549,57,506,889,536,5%,568,398,6995
5818 DATA 538,815,747,838,839,750,828,
756,623,551,7277

®
Assembly listing.

4188 ;CHARACTER DUMP BY JOE TREM

8118 OLD=$CC ;TEMP, LOCATION OF ATARI‘S CHARACTER SET
8128 MEW=$CE =TEHP LOCATION OF NEW CHARACTER SET
8138 PAGE=$D4 ;NIMBER OF 256 BYTE BLOCKS

2148 #=3:08

B158 PLA .

8168 PLA ;PULL HIGH BYTE OF ADDR

8178 5TA NEW+1

8188 PLA ;PULL LOW BYTE OF ADDR

8198 5TA HEW

8280 PLA ;PULL HIGH BYTE-DON‘T NEED

8218 PLA PULL NUMBER OF BLOCKS T0 MOVE

9228 5TA PAGE

6238 LDA H88 ;LOADS IN ATARI CHR.SET

8248 5TA OLD

9258 LDaA “EO iATART CHR. SET IS AT $E868 OR 57344 IN &

8248 STA OLDH!

8276 LDX #1

8280 LDY H8

6278 LOOP LDA (OLD},Y

8388 S5TA (NEW),Y ,MUUES TO NEW AREA

8318 INY

4328 BNE LOOP

@336 INC OLD+!

€349 INC NEW+1

8358 IMX

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 33

8368 CPX PAGE
8378 BNE LOOP
gggg RTENBIF ALL BLOCKS ARE LOADED RETURN TO BASIC

Atari Symbol Demo

REM H6068006H0000060HH00E
REM * *
REM * ATARI SYMBOL *
REM ¥ BY CRAIG HWEISS
REM * *

REM 66ER000C0OEH0O0O0HE
18 GRQPHICS 24:COLOR 1:POKE 559,0

M
gg SE: 3I¥% PLOT STRAIGHT LINES 3386¢
gglﬂEﬁD M, H,Y,Z:PLOT W,X:DRAWTO Y,Z:R=

180 DATA 144,13,144,76,144,13,156,15,1
44,13,128,28, 156,15, 156,88, 168, 16, 156,
20,168,16,168,176

118 paTa 166,16,188,20,180,20,180,176,
184,21,180,24,184,21,194,24,194,24,194
,84,240,154,240,172

120 DATA 249,172,2208,172,180,176,168,1
76,160,176,144,176,144,176,144,144,88,
180,68, 180,88, 188,88, 168

138 paTa 68,1808,68,168,68,160,88,160,1
28,28,128,76,184,21,184,84

134 REM

135 REM %%% PLOT FALSE CURVES 3%

136 REM

148 pATA 128,77,126.5,94,126.5,94,124,
108,124,108,1208,122,1208,122,112,137,11
2,137,104,145

158 DATA 184,145,96,150,96,158,88,155,
88,155,80,158,80,158,72, 160

168 DATA 144,76,142.5,94,142.5,94,148,
108,140,108,135,122,135,122,126,137,12
6,137,120, 145

178 DATA 120,145,114,151,114,151, 193
2285 ,108,155.5,108,158.5,160,158. é
188 DATA 156,88,153.5,112,153.5,112,15
8,128,150,128,144,144,143,144,136,156,
136,156,124,168

198 DATA 124,168,112,176,112,176,182,1
79,102,179,96, 186,96, 180, 88, 180

200 DATA 194,84,194,92,194,92,198,112,
198,117,208,130.5,208,138.5,216,141, 21
6,141,224,148

219 DATA 224,148,232,152,232,152,248,1

54

220 DATA 184,84,186,1084,186,104,189.5,
120,189.5,120,196,136,196,136,284,148

238 DATAH 2064,148,216,160,216,160,228,1
68,228,168,248,172

240 DATA 182,122,184,132,184,132,188,1

161385148 :196,152,196,152,208,164,208
r

250 IF R(GB THEN 3@
268 IF R=68 THEN 5860
318 REM
3280 REM FILL

REM

=0

READ 4,8,C,D:PLOT A,B:POSITION C,D
=041
288 POKE 765,1
918 HIO i8.,u6,8,8,"5:"
1008 DATA 144,13,144,76,144,76,142.5,9
4,142.5,94,140,108,140,1088,135,122,135
,122,126,137,126,137,128,145
18106 DATA 128,145,114,151,114,151,188,
155.5,1088,155.5,1680,158.5,180,158.5,88
,160,88,160,88, 180
1820 paTa 160 16 169,176,184 ,21,184,84
1830 pAnTa 184,84,186,164,186, 184, 18%.5
;120,189.5, 120 196 136 196 136 284 i48
1840 DATA 294 148 216,168,216.160.228,
168,228,168, 239 171
7800 IF 0<20 THEN 500
2010 IF 0=28 THEN 28889
2588 REM
2518 REM ¢ MACHINE LANGUAGE ¢
2520 REM
28808 POKE 559,34:FOR K=1 TO 18688:NEHT

H

3080 FOR I-1664 TO 1673:READ A:POKE I,
A:NEXKT I

32%2 gara 232,142,10,212,142,24,288,76
3020'? USRC1664) :RETURN

3838 RETURN

CHECKSUM DATA
(See pgs. 7-10)

8 DATA 552,194,141,466,20808,562,472,981
»265,567,271,550,6085,686,546,6998

138 bATH 16,87,243,89,84,8085,1138,371,6
81,338,184,5408,938,889,345,5648

2580 DpPATA 655,495,81,759,87,225,685,793
,764,530,838,34,78,73,592,6689

20106 DATAH 864,292,243,294,878,63,617,1
61,786,4190

PAGE 34

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

MULTIPROCESSING

16K Cassette or Disk
by Mark Chasin

No, this article will not enable you to set up a time-
sharing service on your ATARI home computer, but
it will demonstrate how to implement a form of
multiprocessing which has been used in a number of
recently released programs for the ATARI. To un-
derstand the principles of this program, you will
need some background on how the video display
operates.

The beam of electrons generated in the cathode
ray tube of your TV set is focused and directed at the
phosphors on the screen. The beam begins scanning
the screen at the upper left corner, and proceeds
across the screen from left to right. At the right edge,
it returns to the left side and drops down one scan
line, and proceeds to the right again. This process is
repeated 262 times until the whole screen has been
scanned, and then the beam is turned off and re-
turned to the upper left corner to repeat the process
again, sixty times a second.

This seems like a great deal to handle in one-
sixtieth of a second, but your ATARI has a machine
cycle time of 560 nanoseconds, so in that time in-
terval, the ATARI can execute approximately
30,000 cycles. The result of this is that when the
beam returns to the upper left corner of the screen,
there is a good deal of time to waste before it must
start scanning again. At this point, the ATARI goes
off on its own, performing a number of housekeep-
ing functions, updating timers and the like. Ulti-
mately, it returns to the business of drawing on the
screen. '

The folks who built your ATARI designed the
system so that it could be modified easily by anyone
wanting to do so, and the remainder of this article
will discuss such a modification. The computer
“knows” where to go during the wait described
above because two memory locations contain a hexa-
decimal address telling it where to go, and every time
it gets to the upper left corner of the display, it looks
in these memory locations and goes to the indicated
address, where the housekeeping routines are stored.
This process is called vectoring. There are actually
two independent routines performed during each
interval, and separate vectors exist for each. The im-

mediate vertical blank vector is found at hexadeci-
mal address $0222 and $0223, and the second vec-
tor, called the deferred vertical blank vector, is found
at $0224 and $0225. What we are about to do is
change the address located at $0224, $0225 to point
to our own routine, and then we’ll jump back into
the routine that the ATARI was originally pointing
to. When this is accomplished, our routine will
execute 60 times per second, and will continue to
execute until we either turn off the computer or hit
SYSTEM RESET. This will be totally independent
of anything else we may be doing at the time, such as
programming, editing, or playing a game!

The BASIC program shown in Figure 1 is simply
an implementation in BASIC of the Assembly lan-
guage program shown in Figure 2, so [will describe
the operation of the Assembly language program in
detail. First, I will list the locations and their uses
within the program.

COUNT 1 — used to determine how many
times we have gone through the routine, to cal-
culate when to start and stop the notes to be
played.

COUNT 2 — used to remember which note
the routine is playing.

VVBLKD — the location of the deferred
vertical blank vector.

SETVBV — an ATARI routine, described
in more detail below.

MUSIC — the location where the list of
notes to be played is stored.

RETURN — this is where we need to jump
to return to the ATARI housekeeping routines.

SND — the frequency register for SOUND
O.

VOL — the distortion and volume register
for SOUND O.

Lines 130 and 170-190 are housekeeping func-
tions of this routine. Line 130 provides the PLA
instruction necessary for accessing the routine from
BASIC, and lines 170-190 set both COUNTs to O.
Lines 230-270 repoint the delayed vector to our
routine, as follows. Since the 6502A inside your
ATARI is an 8 bit processor, we can only handle one

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 35

byte at a time. It should be obvious that if the com-
puter tries to access this vector after we have changed
one byte of the address, but before we have changed
the second, the computer will go on a wild goose
chase looking for where it should be. To prevent this,
those clever folks who wrote the operating system
for your computer built in a routine, called SETVBYV,
which will change these vectors without the chance
of fouling things up. To use it, we load the Y register
with the new vector low byte, and the X register with
the new vector high byte, $20 and $06 respectively
in this case, since our routine is loaded at $0620. We
then load the accumulator with a 7 if we are setting
the deferred vector, or a 6 if the immediate vector,
and then we JSR to the subroutine SETVBV. Presto!
Our vector is changed, and the routine starts oper-
ating.

This routine will play a little familiar background
music while you slave away over a hot computer.
Later on, I'll describe how to change the tune to your
own selection. The routine starts on line 320. This is
the first time through, so we increase COUNT 1 to
one. If COUNT 1=12, we’ll turn the note off, and
when COUNT 1=15, we’ll play the next note, and
reset COUNT 1 to O. Lines 360-370 shut off the
note, lines 410-420 reset the count to O, and lines
430-470 play the next note. The tune consists of
eight notes repeated over and over, and COUNT 2
keeps track of which note is being played. When it
gets up to 8, it’s reset to O (lines 480-530), so the
first note is played right after the eighth. If COUNT
1 is not equal to either 12 or 15, the routine ends and
returns to the normal housekeeping functions per-
formed by the ATARI during the vertical blank
period (line 400). Also, after a new note is started,
the same thing happens (line 540). The table of notes
played in the tune is located in line 590.

The BASIC program in Figure 2 simply converts
the instructions described above into decimal form,
and POKEs the routines into the correct place in
memory. The routine is then set in motion with the
USR call in line 27000, and from that point on, can
be ignored. It will continue by itself!

Changing the tune being played is very simple.
Choose a song in which all the notes are the same
length, e.g., quarter notes. In line 24000, change the
1639 to (1632+the number of notes in your tune-1),
replace the data in lines 25000 and 26000 with the
notes for your tune, and change the 8 in line 22000
to the number of notes in your tune. Remember, the
tune will play over and over, so pick something
which sounds good on repetition.

The routine presented here can be ended by a
power-off, power-on sequence, or by a SYSTEM
RESET. A third method, probably more useful for
use in a program, is this:

POKE 1562,1084:POKE 1544,98:POKE 1546,2
28:H-USRI1542) : S0UND 9,0,8.,8

This is a simple demonstration of the use of verti-
cal blank interrupt routines. There are many other
potential uses for this approach, such as background
music for another program, checking for keyboard
or joystick input during a program, or implementa-
tion of multitasking. It is perfectly feasible to have
two completely separate programs running “‘simul-
taneously,”” but the programming for this gets fairly
complicated. One program would run in real time,
and the other during the vertical blank interrupt
routines. Play around with the ideas presented here,
and learn all about simultaneous processing. [

Figure 1.

8088 RENM OEOBBONOOEOOOODODEE FIRST,
WE'LL POKE IN THE LINES FROM 138-278
OF THE ASSEMBLY LISTING 38000006006¢
5888 RESTORE 186608 FOR I=1536 TO 1552:
READ A:POKE I,A:NEXT

10998 DATA 184, 169 a8, 133 192,133

116068 paTh 194,160,32,162,6,169

12088 bATA 7,32,92,228,96

138688 REN OEHHEHEHEHEEHEHOOOHOEEREO0E
THEN WE'LL POKE IN THE MAIN ROUTINE

FHOROEHEEOHEOHORHREOHORRHROOEEOOEEOEE
140088 RESTORE 15886:FOR I=1568 T0 1619
iREAD A:POKE I,A:NEHT I

15888 DATA 238,192,166,192

160008 DATA 224,12,144,5,169,8

17008 DaATH 141,1,210,224,15,176

13968 patTn 3,76,9338,228,169,8

19080 DATA 133,192,166,194,189,96
26808 DATA 6,141,0,218,169,166

21000 bATA 141,1,218,238,194,166
22008 DATA 194,224,8,144,4,169

238668 DATA 0,133,194,76,98,228

8 REM

?égALLY, WE'LL POKE IN THE TABLE OF NO
IECOHEORORDEHEORNEOREEEERRCEOEOEE

24088 RESTORE 25808:FOR I-1632 TO 1639

:READ A:POKE I,A:NEXT I

25800 DATA 243,243,217,243,284,243

26808 DATA 21?,243

265068 RENM ¥E6560H6H8CHORHOBEEEB00EBHORNE

NOW WE'LL RUN THE ROUTINE ! 68660606066¢

27000 H-USR(1536)

°
CHECKSUM DATA

(See pgs. 7-10)

8888 DATA 133,4665,426,611,26,547,351,8
74,164,587 ,365, 735 335 421 397 7038
23ggg pATA 403,616,945,911,197,274,175
3

)
Figure 2.

19 %= $0408
20 COUNT] = $96C8
30 WBLKD = $8224
48 COUNT2 = $08C2
59 SETVBV = $E45C
40 MUSIC = $8640
78 RETURN = $E462
88 SND = $0200

78 YL = $D281
p180 ;

PAGE 36

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

yileg
e126
8130
8148
4158
8148
8176
8186
4178

8284

9216
8220
8230
824¢
9238
8240
8276

PLA FOR BASIC ACCESS
PLA
INITIALIZE COUNTERS TO ZERO
LDA #e
STA COUNT1
5Ta COUNTZ
: N RESET DEFERRED VECTOR
;

LDY #$26

TRl

—nSw e

JSR SETUBY
RTS

8280

9274

. MAIN INTERRUPT ROUTINE

8360 ;

4318
8320
8330
#348
8356
8348
6376
8388
8376
#4880
8414
8428
8438
6448
8458
3468
947§
6488
8474
a5ee
8518
8528
8330
8348
8556

8548
4579
8386
8576

#= 8424

INC COUNTI

LOX COUNT!

CPx 812 :TIME TO 5TOP NOTE?

BCC K1 sNO

LoA 48 ;YES S0 ST0P 17

STa VoL
K1 CPX #15 ;15746 SECONDS GONE?
BCS PLAY :YES, PLAY NEXT MOTE
JMP RETURN Nﬁ END INTERRUPT
PLAY LDA 48

STA COUNT: RESET COUNT1 TO ZERD
LDX COUNTZ ;GET NOTE TO PLAY
LbA HUSIC,X LHOK IT WP

5TA SND ‘bET 1T°5 FREQUENCY

LDA H3A6

5TA YOL 3SET PURE NOTE ,VOLUME=4
INC COUNT2 jSET UP NEXT NOTE
LDX COUNT2

CPX #8 ;ALL NOTES USED UP?

BCC DONE 3NO

LDA #o YEb START OVER AGAIN

A COWNTZ

DNE P RETURN ‘ALL DONE
! TABLE OF MUSICAL NOTES

4= 30446
(BYTE 243,243,217,243,204, 243,217,243

Graphics 10 GTIA Demo

18 REM GRAPHICS 18 GTIA DEMO

28 REM

38 GRAPHICS 18

48 REM CHANGE DATA TO CHANGE COLORS
58 FOR CN=8 TO 7:READ CVU:POKE 785+CN,C
v: NEHT CH:DATA 6, 12 23,42,53,62,73, 84
68 C=B:5ETCOLOR 4,

78 FOR X=8 TO 39

8@ FOR Y=6 TO 95

38 HW=IF-K:YW=95-Y:DIST=INT (SOR (KMBEHR+
YYD)

188 COLOR 1+8%(DIST/8-INT(DIST/8))
1i8 PLOTY H,Y

128 PLOY 79-X.,Y

138 PLOT X,i91-Y

148 PLOTY 79-H,191-Y

158 NEKT ¥

168 NEXT X

178 REM ROTATE COLOR REGISTERS

1880 CHOLD=PEEK(785)

1%8 X=7@S

288 POKE X,PEEK(H+1)

218 K=H+1:IF H{712 THEN 200

228 POKE 712,CHOLD

238 GOTO 186

CHECKSUM DATA
(See pgs. 7-10)

18 pATA 989,253,992,758,196,8908,294,29
7,224,512, 822 151 427 755 775 8328
ig@dggIﬁ 776 485 793 323 635 532 582,7

GRAPHICS

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 39

MOVING PLAYERS
IN BASIC

16K Cassette or Disk

by Tom Hudson

Player-missile graphics are one of the most
powerful graphic features of ATARI personal
computer systems. Unlike traditional graphics,
players and missiles can be moved around on the
screen without disturbing the existing display.

In order to use players and missiles, one must first
reserve a portion of memory. Once this is done, the
user can begin designing and displaying the players
and missiles.

The problems begin when the user wants to move
a player or missile around on the screen. Horizontal
movement is done easily. A POKE to the appropriate
horizontal position memory location will move the
desired player to any horizontal location on the
screen. If the user wants to move a player or missile
vertically, he or she must copy the P/M bit image to
another location in memory. BASIC is too slow to
do this smoothly, but it can call a machine-language
subroutine to do the “dirty work.”

Designing Players

Before we start using the player movement
subroutine, we must have some sort of graphic image
to place in the player.

Players are eight pixels (picture elements) wide, so
the first step in designing the player image is to draw
a matrix eight cells across and as tall as the desired
image. In the “two line” resolution player mode
(each pixel in the player is two television scan lines
tall), the player can be up to 128 pixels high. The
computer can display players with pixels one scan
line tall, but the one-line resolution requires twice
the memory of the two-line mode. This
demonstration uses the 2 line resolution in order to
save memory. For our purposes, we will set up an
8 x 10 matrix to design the player image (Figure 1).

Figure 1.

128 64 32 16 8 4 2 1

If you look at Figure 1, you will notice numbers
over each column in the matrix. These numbers
range from 1 on the right to 128 on the left. These
numbers will be used to create a DATA statement
that will represent a player image.

Figure 2.

128 64 32 16 8 4 2 1

PAGE 40 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

Figure 2 shows the simple player image used in
the demonstration program following this article.
The number to the right of each row is the total of the
column numbers in which a pixel is “on.” If all pixels
in a row are on, the number is 255 (1284+64+32+
16+8+4+2+1). If no pixels are on, the total would
be zero. You will note that the player image in figure
2 is seven pixels tall, meaning thatin order to display
this player image we will have to move seven bytes to
player memory. Try designing your own player
images using this method. Remember that players
using the two-line resolution mode can be up to 128
pixels tall.

The program.

Once you have designed your player images, you
are ready to display them with the computer. The
BASIC program in Listing 1 will move all four
players around on the screen. It calls the P/M
movement assembly language routine, shown in
Listing 2.

As listed, the program will move the shape
designed in Figure 2 around on the screen at random.
The shape of the player is stored as a series of bytes in
the string PO$. By placing your player image data in
line 420, you can change the shape that appears on
the screen. There are currently seven bytes in line
420, but if your player image has a different number,
place the appropriate value in lines 130 and 290.

Lines 110-180 — Set up the subroutine and
turn on the P/M graphics.

Lines 220-230 — are for demonstration
purposes only. You can put your program code
in this section.

Line 110 — Loads the string PMMOV$ with
the P/M movement subroutine.

Line 130 — Places the data that defines the
graphics image into the string PO$. If your
player image is more or less than seven pixels
tall, place the appropriate value in this line.

Line 140 — This line tells the system where
the P/M memory is located.

Line 150 — This line saves the address of the
string that holds the player image data.

Line 170 — Turns on P/M direct memory
access so that the image will appear on the
screeen.

Line 180 — Sets the color of player O to
blue. The value 136 is derived by multiplying
the color number (8) by 16 and adding the
luminance value (8). The result is (8%16)+8 or
136.

Line 220 — Initializes the X and Y
coordinates of the player. The coordinates refer
to the upper left corner of the player. The X
coordinate may range from 0-255, and the Y
coordinate from 0-127.

Lines 230-280 — This section simply
changes the player’s coordinates randomly.

Line 290 — This USR call moves the player
to the desired X and Y location. This statement
has 7 parameters inside the USR parentheses:

A=USR(MOVE,8,PMB,PMD,X,Y, 7}

“MOVE” is set up in line 110. It is the
address of the P/M mover subroutine. Do not
change this value.

“0'“ means that we want to move player zero.
This value can range from 0-3, moving any one
of the four players.

“PMB?” is the P/M base address set up in line
150. Do not change this value.

“PMD” is the address of the string that holds
the player image data. This should be set to the
address of the string you are using to hold your
player shape data. If your player shape dataisin
a string called “PL$,” you could replace PMD
with ADR(PL$).

The X and Y variables are the horizontal and
vertical coordinates of the player.

The last parameter, “7,” indicates that the
player we are displaying is 7 pixels tall (see lines
130 and 420). If the player you design is 10
bytes long, place a 10 here.

Line 300 — This line determines when to
randomly change the player’s movement
direction. If a random number is chosen that is
greater than .95, a new direction is tried.

Line 310 — This line loops back to line 240
if no new direction is needed.

Lines 350-380 — These lines contain the
assembly-language code for the player
movement subroutine. Do not change these
lines, or the subroutine will probably not work.

Line 420 — This line contains the values
which represent the player image’s shape. Place
your image values here.

Summary.

The ATARI computer systems’ player-missile
graphics capabilities are actually very easy to use,
given the proper tools. The subroutine presented
here will help even the beginning ATARI
programmer experience the wonders of player-
missile graphics. O

Listing 1.

18 REM HE0G6600G000C0COCO00R 000

286 REM ¥ pP/M MOVER SUBROUTINE DEMO ¥
I8 REM ¥ 3*
48 REM ¥ BY 70M HUDSON 3*
58 REM ¥ *
68 REM ¥ A.H.A.L.0.G. COMPUTING 3*
78 REM

86 REM

98 REM IOEHEEOBH0O0E SETHP H000CO66M
1868 REM

118 DIW PHMOUS (1083 ,P85(30) :MOVEZADR(P
MMOUSI :FOR XK=1 TO 108:READ N:PMMOUS (X2
“CHRS (M) :HEXT X:REHM ¥READ ML DATAX

1720 REM ¥¢x NOW READ SHAPE DATA ¥ex

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 41

ligxgﬂs H=1 TO 7:REaQD N:PB8%{X)I=CHRS (NI
148 PHBASE-INT((PEEK{145)+3)/4) ¥4 POKE
54279, PMBASE:REM ¥ SET UP P/M AREAN
158 PMB-PMBASEX256

160 PMD-ADR(POS) :REM 3% P/M DATA ADDR
ESS ¥

178 POKE 559,46:POKE S3277,3:REM ¥%¥ p
M DML e

188 POKE 784 ,136:REM ¥¥¥ PLAYER 8 COLO

R 3%

138 REH

288 REM 066¢ YOUR PROGRAM HERE! 366
218 REM

220 K=128:Y=64

5%? HIZ1-INTC(RND (@3 %3IJ :YI=1-INT (RHND(8)

248 H-H+KI:Y=-Y+YI

258 IF X{58 THEN X=58:G0T0 278

2680 IF K2>198 THEWN H=198

278 IF Y{28 THEN Y=20:GOTO 298

280 IF Y>118 THEN v=118

238 G-USR(MOVE,q,PMB,PMD,X.Y.7)

368 IF RND(B3>0.95 THEN 238

316 GOTO 248

328 REM

338 REM ¥ PM MOVER DATA 06t

148 REM

I58 DATH 216,164,184,1064,133,213,184,2
4,185,2,133,286,184,133,205,164,133,20
4,184 ,133,203,1084,1084,133,2068

368 PATA 164,104,133,209,164,1084,24,18

1,289,133.287,166,213,240,16,165,285,2

4,185,128,133,205,165,266,105

378 baTa 8,133,206,262,288,240,160,8,1

62,6,196,209,144,19,196,2ﬂ5,1?6,15,132
»212,138,168,177,283,164

388 DATH 212,145,205,232,169,0,246,4,1

62,0,145,265,20806,192,128,268,224,166,2

13,165,2088,157,06,208,936

398 REM

488 REM ¥ PLAYER IMAGE DATA ¥

418 REM

420 baTa 255,129,129,231,129,129, 255

CHECKSUM DATA
(See pgs. 7-10)

i8 DATA 532,930,996,64,0,483,544,265,9
89,74,765,328,743,981,536,8078

168 DaTa 723,778,445,181,552,79,854,96
8,479,928,983,921,954,424,274,9561

318 baTa 7084,84,588,98,633,732,435,188
,185,191,83,56,3887

®
Listing 2.
EH
IR
G180 PURYER-MIZSILE MOVER SUBROUTINE
B128 ;

313 187 TOM HLOSM
AN.ALLL0.G. CMPUTING
8178 iPABE ZERD USAGE

iP7M BASIC STR

AuC
AYEE ADD
i

ING

&
17 POSITION
(HOLD AREA
sPLAYER & TO MOVE

48 HOLD = 304
6756 ELNUM = 305

8246

4274
8280
3278
8360
4318
8328
8338
6340
4336

a3se-

8374
3388
8376
#4ud
0418
6428
0436
(144¢@
8458
0448
8474
6488
3478
0588
8314
@520
8534
8546
8550
#34€
8574
as5ae
85748
as88
Bsld
foze
04834
Béde
654
Bk
8579
d45¢
8478
8780
8718
B7z4
3728
{748
3750
#7488
87
6788
4774
gsee
B34
agze
332
#24¢
#3358
f5s
#5748
G568
3276
94
8714
8726
§734
A48
8758

{UPERATING SYSTEM EBUATES

APOSPE = $0048

;PRUGRAH STARTS HERE!

¥= $5868
START CLD
PLA
PLA
PLA
574 PLNUM
FLA
CLe
ADC #2
5Ta PLADR+!
PLA
57A PLADR
PLA
STA PM5TR+!
PLA
STAa FHSTR
PLA
PLp
5TA XFO3
PLA
PLA
5T YPOS
BLA
PLA
Cic
ADC YROS
5Ta PMEND
D5 PLRUM
BEG EHDCAL
PLCALC LDA PLADR
CLE
AdC #123
3TA PLADR
LDA PLADR+]
ADC #A
3Ta PLADR+!
DEX
BNE PLCALT
ZHOCAL LOY 40
L0y 40
COPYLP CPY YPOS
BoL ZERD
CPY PHEND
C5 ZERC
3TY HOLD
T4A
TAY
LA (PMSTRY,Y
LDY HOLD
ST/ (PLADR) Y

I

LDA HE

BEG MEXT
ZERD LOA HE

5TR LPLADR) ¥
NEXT IR

CPY #1123

ENE CORYLP

LD PLHUH

LEA XPGS

5ThA HPGSPE X

RTS

END

{ANY ADDRESS
{CLEAR DECIMAL MODE
iDI5CARD

1DISCARD # HI
PULL PLAYER # LD
AND SAVE 1T
iPULL P/M BASE HI
ADD OFFSET TO GET
:PLAYER MEMORY ADDR
AND SAVE!

{PULL P/M BASE LG
{ARD SAVE!

iPULL STRING HI
AND SAVE:

{PULL STRING LO
WD SAVE!
1DISCARD X HI
PULL ¥ LG

AND SAVE IT!
{0I5CARD ¥ HI
(PULL v LG

iAND SAVE IT!

;01 STARD LENGTH Hi
tPULL LENGTH LD
3R0D Y POSITION
+T0 GET ENB

1AND SAVE 7!

$GET PLAYERH

iND IHDEX MEEDED!
W00 128 T0
{PLATER

1ADDRESS

T

{POINT TO

NEXT

{PLAYER,

:RNQTHER ROJUSTHENT ™

+7ER0 P/M COUNT
'TERD STRING COUNT
{EUPYING CATA YET”
it

FINISHED COPYING?

YES!

15AVE ¥ REG
MOVE X REG...
170 Y REGISTER
(GET P/M BYTE
5ET P/M DFFSET
(CHANGE PLAYER!
sHEXT STRING BYTE.
{FORCE BRANCH
+T0 MEXT BYTE!
$2ERG OUT. ..
iPLAYER BYTE!
(NEXT B/M BYTE
1DINE W/COPY?
(NOT DOWE YET!
JBET PLaYER 4
(NOW JUST SET
4 LOCATION!
JFINTS?

PAGE 42 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

USING DLIs

16K Cassette or Disk
by Joseph T. Trem

For many years there have been powerful com-
puters on the market which performed multi-tasking
functions. Not until a few years ago did the home
computer acquire this capability. At last! ATARI!

Having a 6502 microprocessor for its brain, your
ATARI computer has the capability of using inter-
rupts. An interrupt is a tricky way of freezing the
state of the microprocessor while performing some
other function, then moving on when completed.

Here is an example. On a raster scan TV, the
picture you see is drawn sixty times a second. The
beam starts in the upper left-hand corner and even-
tually ends up in the lower right-hand corner. This is
done sixty times a second. The time taken for the
beam to travel from the bottom of the screen back to
the topis called vertical blank. During vertical blank,
there is plenty of time for other processing. Using an
interrupt, one could check for vertical blank. When
vertical blank occurs, it is possible to perform some
other function, then continue on. Some of the more
common functions would be moving player/mis-
siles, updating score counters, changing colors. . . all
between Vblank, as it is more commonly called. If
these functions are performed during Vblank, there
is no unsightly flicker on the screen. Besides, Vblank
is processing time to kill, right?

ATARI goes a step further by implementing a dis-
play list interrupt or DLI. On a raster scan TV, the
beam sweeps across the screen, from left to right,
moves down one line, then does it again. One sweep
of the beam is one scan line. It takes 262 sweeps of
that beam to create a single frame on your TV, all
done sixty times a second. In other words, there are
262 scan lines available on your TV.

ATARI designed their computer to evolve around
the architecture of your TV set. Even better, the dis-

play list uses all combinations of the scan line from
graphics O to graphics 8 and allows you to set up a
DLI on any line. For example, one could draw a scan
line, change the background color, and so on. The
final picture will appear to have a different color on
each line.

To set upaDLI, there are a few steps which have to
be taken. First, we have to create a DLI routine in
machine language that will do what we want. This is
called a service routine. Then we must let the micro-
processor know where to find that routine by vec-
toring through $200 (low byte) and $201 (high
byte). That's 512 and 513 decimal. Next, we set the
display list lines that we want the service routine to
occur after with a DLI instruction. Finally, we must
enable the DLI.

Because the concept of the DLI is a hard one to fol-
low and needs some understanding of Assembly lan-
guage, | have presented an example. ..a picture is
worth a thousand words! This program, written in
BASIC, twinkles a starfield while running player/
missiles. . .both appearing independent of one
another.

The program is well documented. In the example,
the service routine is located at $600. Every display
list line has been set in the graphics 7 mode with a
DLI instruction (Figure 1). This was determined by
using the chart in Figure 2. The DLI instruction for
graphics 7 is 141 decimal. Included with the BASIC
program is the assembled listing of the service rou-
tine which simply stuffs colors in the color register.

Hopefully, this program will help you gain a better
understanding of the DLI. It is among the most
powerful programming tools you can use. Take some
time to understand the concept, and you will greatly
increase your programming expertise. [J

VOL. 1

THE A.N.A.L.O.G. COMPENDIUM PAGE 43

New Graphics 7 Display
List with DLI Set

70 8 Blank lines
70 8 Blank lines 70 8 Blank lines
70 8 Blank lines 70 8 Blank lines

4D Antic Mode 13 4D Antic Mode 13
(Basic mode 7) (Basic mode 7)

Standard Graphics 7
Display List
70 8 Blank lines

60 60
70 70
0D 8D Antic Mode 13
with DLI set
0D 8D
0D 8D
0D 8D
0D 8D
Figure 1.

Display List Interrupt Instruction Chart
Graphics Mode DLI Instruction

Basic Antic Hex Decimal
0 $02 $82 130

None $03 $83 131

None $04 $84 132

None $05 $85 133
1 $06 $86 134
2 $07 $87 135
3 $08 $88 136
4 $09 $89 137
5 $0A $8A 138
6 $0B $8B 139

None $0C $8C 140
7 $0D $8D 141

None $0E $8E —
8 $OF $8F 143

Figure 2.

1860 REM FLICKERING STARFIELD

118 REM BY JOE TREM (c) 1982

128 REM

138 REM SETS5 GRAPHICS 7 FULL SCREEN, D
RAWS SURFACE WITH SOUND

148 GRAPHICS 23:POKE 7068,136:COLOR 1:F
OR K=8 TO 159:S50UND 6,18,K,4:PLOT X,95
:DRANTO X,80+RND (8)X%5:NEXT X

158 REM CALCULATES DISPLaV LIST, SETS
SPEED OF PLAYER TO

168 SP-B:DLST= PEEK(560)+PEEK(561)*256
178 REM SET5 UP DLI FOR EACH GRAPHICS
7 SCAN LINE

138 FOR L=6 TO 84:POKE DLSTHL,141:NEXT

198 REM READS MACHINE LANGUAGE ROUTINE
INTO PAGE 6

2808 FOR J=8 TO JI:READ A:POKE 1536tJ,f:
NEXT J

216 COLOR I:REM SETS COLOR TO FLICKER
228 REM PLOTS STARS WITH 50

238 FOR X=1 TO S6:S0UND 8, H H, :PLOT R
ND (8)¥159, RND (B) ¥#75: NEXT H

248 REM SETS STARTING ADDRESS FOR DLI
(PAGE 6) AND ENABLES DLI

ggﬂ POKE 512,06:POKE 513,6:POKE 54286,1

260 REM SETS UP PLAYER/MISSILE O

2780 YP=8:POKE 559,62:PMBAS-PEEK(186)-3
2:POKE S54279,PMBAS:POKE 53277,3:PMB=PM
BASHZ56+1024

288 GOSUB 3I56

2;0 REM PLAYER/MISSILE COLOR, MOVE RIG

H

388 POKE 704,INTI(RND(0)¥*15)%*16+8:FOR X
=38 TO 238 STEP SP:POKE 53248,X:S0LND

0,H,8,4:NEXT X

318 GOSUB 350

?20 REM PLAYER/MISSILE COLOR, MOVE LEF

338 POKE 7084, INT(RND(8)*15)¥16+8:FOR X
=230 TO 30 STEP —-SP:POKE 53248,H:S0UND
@,X,8,8B:NEXT K:GOTO 286

348 REM ROUTINE ERASES OLD PLAYER, DET
ERMINES SPEED, AND VERTICAL LOCATION O
F PLAYER @

358 SP-S5PH+1:FOR H=YP TO YP+4:POKE PMO+
H,8:NEXT H:IF 5P>15 THEN 5P=1

368 YP-I@+RND(8)*150:POKE PMO+YP,Z24:P0
KE PMO+YP+1,255:POKE PMO+YP+2,255:POKE
PMO+YP+3,24 :RETLURN

378 REM MACHINE LANGUAGE DATA

388 DATA 142,24,208,64

338 REM NOTE TO ASSEMBLY PROGRAMMERS..
W3YNC WAS NOT USED FOR MORE ERRATIC FL
ICKERING

CHECKSUM DATA
(See pgs. 7-10)

188 paATA 190,749,88,569,86,1080,793,712
,498,713,519,482, 263 294 178 6226
250 DaTa 994,486,125,996,763,168,971,4
16,696,868, 181 59 947 793 791 9160

©
Assembly listing.

FLICKERING STARFIELD

&’
gi%g : DLI SERVICE ROUTINE
8138 ; ADDRESS $D@i8 IS THE
0146 ; COLOR/LUMINANCE REGISTER
8156 ; OF PLAYFIELD 2
68168 ;
8178 COLPFZ = 5peis

8198 M*=5600

SAVE WHATEVER IS IN THE
K-REGISTER INTO PLAYFIELD
COLOR 2 HARDHWARE REGISTER

8258 STH COLPFZ ; STORE COLOR
8268 RTI ; RETURN FROM INTERRUPT

8288 .END

[~
[
[
[~}
e ee e e e

PAGE 44 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

A GRAPHICS
CLIPPING ROUTINE

16K Cassette or Disk

by Tom Hudson

Probably every ATARI user who has ever dabbled
in the graphics area has encountered the infamous
“ERROR 141 — CURSOR OUT OF RANGE.”
This error message occurs when you try to PLOT or
DRAWTO a point which is off the screen. The
program listings presented in this article will
demonstrate a BASIC subroutine which eliminates
this problem, while drawing the portion of the line
which is on the screen.

Listing 1 is the clipping routine. Type in this sub-
routine and check it for typing errors. List this onto
tape (LIST *C:”) or disk (LIST “D:filenam), so
that it can be easily merged with other programs.

Listing 2 is a demonstration of the clipping
routine’s capabilities. This program is a general-
purpose shape rotation routine and will be explained
in detail later. Type NEW and enter this listing into
your computer, then check it for typing errors.

When you are sure Listing 2 has been entered
correctly, ENTER the clipping routine from tape
(ENTER “C:”) or disk (ENTER “D:filename”).
The two listings will merge, forming one program.
RUN the program. You will see a square appear. It
will begin rotating and increase in size until its
corners run off the screen completely, and it
disappears altogether. Press BREAK to stop the
program.

How it works.

Line 150 — This line sets the BASIC
DEGREE flag. This tells the computer that all
angles will be expressed in degrees.

Line 160 — This line sets up a full-screen
GRAPHICS 6 screen.

Line 170 — This line tells the computer to
use color 1 when drawing.

Line 180 — This line sets the shape size
increment (SI) to 1.1. This means that each time
the shape is drawn, it will be 1.1 times as large as
the previous plot. If Sl is set to 1, the shape will
stay the same size. If Sl is set to 0.5, the shape
will shrink to half its size each time it is drawn.

Line 190 — This line establishes the initial
size of the shape. Since SFis set at 0.5, the object
will start out half as big as defined.

Line 200 — This line sets RF, the rotation
factor, to 10. With this value, the shape will
rotate 10 degrees counter-clockwise each time it
is drawn. A negative value will rotate it
clockwise, and a value of zero will result in a
non-rotating shape.

Line 210 — This line defines CX and CY, the
center coordinates of the object. The present
values will place the object at the center of the
screen. Try other values here and observe the
results.

Line 220 — This line is essential to the
operation of the clipping routine. It defines the
limits of the screen area you wish to use. These
values are currently set to the normal
GRAPHICS 6 screen limits (X RIGHT=159, X
LEFT=0, Y BOTTOM=95, Y TOP=0). By
changing these values, a smaller “window’’ may
be created. For example, make the following
changes to line 220:

226 HR=80:KL=-48:YB=58:YT=38

RUN the program and observe the result.
The shape will be clipped to the new window
limits. By using this technique, very interesting
displays can be created with independent
clipping windows!

Line 230 — This line sets the DATA pointer
to line 360. This line contains the data which
defines the shape of the object.

Line 240 — This line reads the number of
points in the shape and dimensions X and Y
coordinate work arrays accordingly.

Line 250 — This line reads the X and Y
coordinates of each point in the shape and scales
them as requested in line 190.

Lines 260-270 — These lines increment the
rotational position of the object. Rotation
values greater than 360 degrees are adjusted

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 45

properly.

Line 280 — This line adjusts the size of the
shape as requested in line 180.

Lines 290-300 — These lines rotate each
point in the shape using the BASIC functions
SIN and COS (sine and cosine). The adjusted
points are stored in the X2 and Y2 arrays.

Line 310 — This line clears the screen for the
next plot. If this line is removed, the images of
the rotating square will build up into an
interesting display.

Line 320 — This line adjusts each point in
the shape to its proper screen position by
adding the centerpoint coordinates (defined in
line 210).

Lines 330-340 — These lines are very
important, as they send the PLOT AND
DRAWTO coordinates to the clipping routine.
The clipping routine requires four variables:
X1, Y1, X2 and Y2. The routine analyzes the
coordinates and simulates the function:

PLOT Hi,Yi:DRAWTO H2Z,¥2

To see what happens when the clipping
routine is not used, replace the GOSUB 1000
statements in lines 330 and 340 with PLOT X1,
Y1: DRAWTO X2, Y2 and RUN the program.
The program will operate correctly until the
square runs off the screen. When this happens,
the program will end with an error condition.

Line 350 — This line simply loops back to
line 260, where the drawing process starts again.

Line 360 — This DATA statement contains
information about the shape we want to draw.
The first number is the number of points in the
object. Since this is a square we are using, there
are 4 points. The rest of the data values are the X
and Y coordinate pairs for each point. To make
a hexagon, for example, try this data statement:

DATA 6,11,0,6,-10,-6,-10,-11,0,-6,10,6,10
Figure 1 is an X-Y coordinate grid which is helpful

in defining a shape. The shape rotates around the
intersection of the X and Y axes (0,0) which in this
case is the center of the square. You can set up any
shape you like merely by changing this DATA line.

X
4 A 1
-10, 10 10, 10
: _
| |
< | | » Y
| |
| |
I S—
-10, -10 10,-10
3 2

Figure 1.

The clipping routine.

Line 1050 — This line clears all the flags
which determine when clipping is necessary.

Lines 1060-1130 — These lines check the X
and Y coordinates to see if they have exceeded
the screen limits defined in line 220 of the shape
rotation demonstration. If the coordinates
exceed the limits, flag variables are set to
indicate this.

Line 1140 — If both X coordinates are to the
left or right of the screen, or both Y coordinates
are to the top or bottom of the screen, the line
will not show up on the screen at all, and the
plot is abandoned.

Line 1150 — This line sets up work
variables to clip one end of theline, if necessary,
and GOSUBs to line 1210 to perform this
function.

Line 1160 — In order to clip the other end
of the line, this line copies the second set of
coordinate flags to the first.

Line 1170 — This line saves the XW and
YW values, which are the last set of clipped
endpoints. It then sends the X and Y endpoints
to the clipping calculator and clips the other end
of the line.

Line 1180 — If any of the clipped points
could not be placed within the clipping area,
the plot is abandoned.

Line 1190 — This line PLOTs and DRAW:s
the clipped line.

Line 1200 — This line exits the clipping
routine after the clipped line is drawn.

Line 1210 — This line is the start of the
clipping calculator, the heart of the clipping
routine. If the total of the clipping off-screen
flags is zero, no clipping is required. The XW
and YW values are set up, and the clipping
routine is exited.

Line 1220 — If the line goes past the left side
of the screen, this line calculates the point at
which the line crosses the left limit, and saves
the X and Y coordinates of that point. If this
point is on the screen then the calculation is
complete and the subroutine is exited.

Line 1230 — If the line goes past the right
side of the screen, this line calculates the point
at which the line crosses the right limit, and
saves the X and Y coordinates of that point. If
this point is on the screen then the calculation
is complete and the subroutine is exited.

Line 1240 — If the line goes past the bottom
of the screen, this line calculates the point at
which the line crosses the bottom limit, and
saves the X and Y coordinates of that point. If
this point is on the screen then the calculation is
complete and the subroutine is exited.

Line 1250 — If the line goes past the top of

PAGE 46 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

the screen, this line calculates the point at which
the line crosses the top limit, and saves the X
and Y coordinates of that point. If this point is
on the screen then the calculation is complete
and the subroutine is exited.

Line 1260 — This line forces a return from
the subroutine after all calculations are
complete.

Final comments.

The graphics clipping routine can be used in many
graphics applications where it is possible to exceed
screen limits. This routine can be used with any
graphics mode, and can allow the use of graphics
“windows’ anywhere on the screen.

To use the clipping routine in your own programs,
simply use lines 1000-1260 and set up the desired
screen limits to the XL, XR, YT, and YB variables.
When you want to draw a line, instead of the
command:

PLOT Hi,Y1:DRAWTO HZ,¥Y2
use the following:
(Set up X1, Y1, X2, and Y2)
GOSUB 1000

This will work for any line, even those that are

completely off the screen. O

Listing 1.
188 REHM
119 REM ¥ SHAPE ROTATION DEMO *
128 REM *
138 REM * BY TOM HUDSOMN *
148 REM
158 DEG

168 GRAPHICS 6ti6

178 COLOR 1

i88 5I=1.1

198 5F=8.5

288 RFz=18

218 CX=88:CY¥=438

2280 HR=159:KL=-B:YB=35:YT-8

238 RESTORE 368

248 READ W:DIM K{N3,Y(N),HZ(N),YZ{N)
258 FOR H=1 TO N:READ M1,WZ:X{HI-MiIN5F
Y (HIWZHSF HEXRT X

260 RW-RMIRF:IF RW)368 THEN RMW=RW-368:
GOTO 32767

278 IF RMW{8 THEN RW-RWt3I6H

280 FOR H=1 TO N:K{HIZHOHIMSI:Y(HIZY(H

I¥STINEKT H

298 FOR X=1 TO N:IXZ(HIZH(MI¥COS(RMW) Y (
HINSIN(RKW)

388 YZIXI--HOHIMSINCRWI+Y (HIHCOS{RMHD : N
EXT X

3106 GRAPHICS 6416

228 FOR X=1 TO N:XZ{HI-H2{HIHCK:YZIXI=
YZ(HIH+CY:NEXT X

338 FOR X=1 TO N-L1:XI-HZI{H) :YI=Y2({H2I:X
2HZ2 (XK1Y 1 V2oYZ (K+1) :GOSUB 1808 :NEXKT X
48 XA=HZIND :YIZYZIN) :RZ=HZ{1) :¥2=¥2({1
J:GOSUB 198686

358 GOTO 268

368 DATA 4,18,18,18,-18,-18,-18,-16,148

CHECKSUM DATA
(See pgs. 7-10)

188 DaTh 274,394,868,852,286,35,223,49
?,578,583,299,36,472,2082,715,63081

258 DATA I17,285,346,819,167,288,212,4
98,135,523 ,722,9351,5955

Listing 2.

1888 REM BOHEHEHOOHOBEEGHEEHOEEEREEE0E
1818 REM ¥ GROPHICS CLIPPING ROUTINE :

1820 REM ¥
BY TOM HUDSON *

1638 REM ¥
1848 REM ¥BO600O0CHOEHOEOOROOORENE0OREE
1858 L1=0:L2=8:R1-B:R2=-8:T1=-8:T72=8:B1=
8:B2=8

18608 IF Hi{HL THEN L1=1:60T0D 1638

1878 IF X1>XR THEN Ric=1

1888 IF ¥1>Y¥B THEN B1=1:GO0TO 1180

1898 IF Y1<{YT THEN Ti-=1

1188 IF H2Z{HL THEWN L2Z=1:GOTO 1128

1118 IF HZ)>HR THEN R2Z=1

1128 IF ¥2>¥B THEN B2=1:GOTD 1148

1138 IF ¥2{YT THEN T2=1

1148 IF L1+40L2=2 OR Ri1+R2=2Z OR Ti+72:=2

OR Bi1+872=2 THEN RETURN

1158 HI-HI:¥3I=Y1:H4SR2:¥4=¥2:605UB 121

a

1168 Li1=LZ2:RIZR2:Ti=-T2:81-B2

1178 HA-SHM:YI-VHIXI-K2:VI=YZiN4-H1:1Y4Z

Y1:G05UB 1218

1188 IF Xi{KL OR Xi}XR OR Yi{¥T OR Y1}

YBE OR HW{HL OR XMWXHR OR YMW{YT OR YW>YB
THEN RETURN

1198 PLOT Hi,Y1:DRAWTO XH,YHW

1208 RETURN

1210 IF Li+T1+B1+R1=89 THEN HH-KI:YH-Y3I
:RETURN

1228 IF L1 THEN XM-HL :YH-oYIHIV4-YIIN(K

L-H3 /A IH4-HII 1 XI=HM: ¥I=YM:IF ¥YI2=YT AN
D ¥3{=¥B THEN RETURN

1238 IF R1 THEN HHW-HR:YH-YIH(Y4-YIIH(X
R-H3) A C(H4-KII :KI-KM: ¥I-YH:IIF YI2=YT AN

B ¥I<=YB THEN RETURN

1248 IF B1 THEN YW-YB:HW-KI+(H4-HII®{Y

B-¥3) A {Y4-YI) :KI-HM:YI=YH:IF HI>=HR AN
b K3I{=HL THEWN RETURN

1758 IF Ti1i THEN YHSYT:IXHHWoHIHIK4-HIIELY
T-¥3)/IY4-YII i HI-KMW: ¥YI=YH:IF HIP>=HR aN
D XKI{=HL THEN RETLRN

1268 RETURN

CHECKSUM DATA
(See pgs. 7-10)
18868 DATH 598,934,68,54,6082,235,68,814
,6,822,52,814,18,822,688,6587

1158 baTh 879,618,493,947,81,785,168,3
28,947,9085,968,731,8434

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 47

3-D GRAPHS
MADE FAST&EASY

16K Cassette or Disk

by Tom Hudson

Thanks to ATARI's Graph-It (TM) graphics
package, ATARI computer owners can generate bar
charts, pie graphs, and two- and three-dimensional
plots. Unfortunately, when more complex three-
dimensional plots are desired, Graph-It can take
more than an hour to complete just one plot!

In order to assist those Graph-It users who
would like to see a quick rendition of their 3-D plot
before committing themselves to a marathon wait
with Graph-It, | have written a 3-D graph program
which is easy to use and produces graphs very
quickly.

By now, many readers are probably asking, “ What
in the world is a 3-D graph?” which is not a bad
question at this point, and one I will try to answer.

We are all familiar with 2-dimensional (flat)
graphs. They are usually called “line” or “bar”
graphs. Figure 1 is a line graph of the equation
Y=2*X. When X is four, Y is two times four, or
eight, and so on.

Figure 1.
Y
8 —
7
6 —
g —
4 -
3
2 —
1 —
L L O . L B
12345678 x

In a 3-dimensional graph, things are a little more
complicated. As the name implies, we are trying to
generate a 3-dimensional form, derived from an
equation. To do this, we need three coordinates. We
will label these coordinates X (width), Y (depth) and
Z (height).

Z L F T T F TS
7 A A e
Z wd Z 7,
yi A A
Z w4 2 AT
Z Z yays
Z £ L 7/
pa L 7 ZZ 2L ZZZ 7 Y
Z 7 L 777
[7T 77 77 7 7 777
LA s L L /
Z K7,
L L 7777 A
X
Figure 2.

We start with a grid marked with X and Y
coordinates, then we lay this grid flat as in Figure 2
(a good way to visualize this is to lay a piece of graph
paper on a table in front of you). Next we use an
equation to determine the Z coordinate. The Z value
tells how high off the table each point on the grid is.
The Z coordinate is always derived from the X and Y
values. In this way, we can see how changes in the X
and Y values affect the Z value. For example, in the
equation Z=(X+Y)*3, when we are at the
coordinates X=1 and Y=3, Z would equal 12 (4
times 3). On our graph, this would be represented as
a small peak (Figure 3), telling us that where X=1
and Y=3, the Z value is 12. Of course, to be useful
this process must be repeated for each point on the
grid so that we can see the overall results. Three-
dimensional graphs are useful for visualizing how an
equation will act with varying X and Y values.

PAGE 48

THE A.N.A.L.O.G. COMPENDIUM

VOL. 1

yd

/

Z a4
ya L L L L L
L L L L L L
yd L L L L L
¢ Y4 DA a4 L L L Z
y L L L L L L L L
L [S L L S L LS
L L L L L L L L Y
\ Ve d L /L
3 N 7~ 7 7 4
L L L L L LS
L L L L L L LS
L L L L L LS

X

Z
a4
Z S

Figure 3

Listing 1 is a simple but effective 3-dimensional
graph generation program. It is NOT meant as a
replacement for the Graph-It 3-D plot program,
but an enhancement.

Type Listing 1 into your computer and check it
for accuracy. When the program is correctly entered,
you will be ready to start graphing in three
dimensions!

Let’s say you want a 3-D plot of a complex
equation. You don’t know what it will look like, but
you’'d like to get some idea before you wait an hour
for Graph-It to process it. With this program, you
can “‘preview” a 3-D graph, and if you want a
detailed copy, the same equation can be processed by
Graph-It. An equation requiring 70 minutes on
Graph-It can be processed by this program in five.
Of course, the Graph-It version is much smoother
and will do such things as automatic scaling, but if
you need the output quickly, this program can do it.

Let’s find out what the equation Z=(X-Y)? looks
like. Line 220 is where all equations must be
executed, so change line 220 to read:

2280 Z=({H-Y)*Z

When the line is changed, RUN the program. The
screen will go black for several seconds while the
computer calculates the plot coordinates of the
graph. When these calculations are finished, the
screen will come back on, and the graph will be
drawn. It’s that simple.

How it works.

Line 80 — Set up the arrays needed to store
the plot points.

Line 120 — Turn off the system’s Direct
Memory Access (DMA). This speeds up
calculations considerably. The only unpleasant
side effect is that the screen goes black until
DMA is turned on again.

Line 160 — Set the screen limits for the
graphics clipping routine (see lines 600-720).

Lines 210-230 — Thisisa FOR-NEXT loop
for calculating the Z value for each point on the
grid. Line 220 is where your equation should be
placed. Just replace the existing equation with

your own, starting with Z=. The program will
do the rest.

Lines 270-300 — After all the Z values have
been calculated, this section changes them to
plot coordinates so that they can be placed on
the screen.

Line 340 — This line turns DMA on again,
so that we can see the graph.

Line 380 — This line draws the ‘zero
reference’” outline. This is simply the outline of
the grid before the Z coordinates were
calculated. It lets you know where zero is,
relative to the rest of the points on the grid.

Lines 420-430 — This section actually
draws the grid on the screen using the datain the
GX and GY arrays, which were built in lines
270-300. It uses the graphics clipping routine in
lines 600-720 just in case the lines run off the
top or bottom of the screen.

Lines 470-500 — These lines draw the
vertical lines from the baseline to the corners of
the graph.

Line 540 — This line loops the program
forever. Hit the break key to stop the program.

Line 600-720 — This is a modified graphics
clipping routine. (See A Graphics Clipping
Routine, page 44). It is modified to only clip
lines that extend beyond the top and bottom
of the screen, not the sides.

You can try any equation you like in line 220,
just set Z to the result. Included below are a few
interesting equations for you to try, along with
the time required to generate the graphs. Simply
replace line 220 with one of these equations. O

220 Z-SINCC(K+Y-4)/74%38) 438
(Requires approx. 38 seconds)

i2g Z=50RCABS (H-10.5) A2+ABSIY-5.52A2) A

(Requires approx. 2.25 minutes)

228 Z=(1/5QR(SORC(ABS(K-18.5) A2+ABS (Y-

DIAZYH4) AZ)*E08-50
(Requires approx. 2.75 minutes)

228 Z=-70-SOQR(ABS(H-18.5) A2+ABS(Y-5.534
2)A1.7

(Requires approx. 2.3 minutes)

220 Z-(SINCH/718)+COS(Y/5))%38
(Requires approx. 48 seconds)

2280 Z=(SINC(H/16)I%5INIY/5)I%38
{requires approx. 48 seconds)

18 REFM IOC0O0CHNICHMEM NN

28 REM ¥ 3-b GRAPH PROGRAOM
38 REH %

48 REHM * BY TOM HUDSOHR
3¢ REM 3 ¢

b8 REM

L X

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 49

78 GRAPHICS 24:5ETCOLOR 2,8,8:C0LOR 1
88 DIM GH(21,112,6Y(21,113
398 REM

188 REM B¢ DMA OFF 0%
118 REH

128 POKE 553,86

138 REM

148 REM 306¢ SET CLIPPING LIMITS ¢
158 REH

168 KR=I19:HL=-B:YT=0:YB=131

178 REM

188 REM 330 YOUR FORMULG GOES ¥
158 REM 3¢ INSIDE THIS LOOP ¥
288 REM

218 FOR H=1 Y0 Z1:FOR Y=1 70 11

228 Z=({H+Y)¥Z

238 GYIH,YIZZINEHKT Y:INEXKT H

240 REM

258 REM % CAiC. SCREEN COORDS. ¥
268 REM

2780 FOR H=1 70 21:FOR ¥Y=1i TO 11

280 GHIX,YI-(H-12#10+(Y-12%i9

298 GYLK,¥2-188-{¥Y-1)¥10-GY(H,Y)
IB8 NEHKT Y:NEKT X

318 REM

328 REM 3¢ DMA ON AGAIN 06¢
338 REM

348 POKE 559,34

358 REM

360 REM ¥ DRAW BASELINE &¢w

378 REM

368 PLOT 0,180.:DRAKYD Z68,188:DRAMTD 3
89,88 :DPRAKTO 160,88:DRAKWTO 8,189

338 REM

408 REM ¥¥¥ PLOT THE GRAPH ¥

418 REHM

428 FOR K={1 70 21:FOR ¥Y=2 70 11:M1=-6X(
H,Y-1):YI=GYIH,¥-1) (HZ=GX{X,¥) :¥Y2=GY (X
»T3:G05UB 688 :NERT Y.NEXKT X

438 FOR ¥Y=1 70 11:FOR H=2 TO 21:HiI=GH(
K-, ¥ :i¥YI-GY{K-1,YI K2=GRUIH,Y) (¥Y2=LY (¥
» T3 :6G05UB GOO:NEKT H:NEHXT Y

448 REH

458 REM 3% DRAMW VERTICAL LINES #éd
468 REM

478 Hi-9:;Y¥1-180:H2=-GHI{1,1) Y226V (1,1}
GO5UB 688

480 Hi=288:Y1-180:H2=GH{21,13:¥2=6Y(21
,12 ;G058 646

498 Kiz=I08:¥1-H9:X2=-6GK {21,113 :¥2=6Y {21
113 :GO5UB 688

588 XKiz-iB80:Y1-88:H2=GK{1,113:¥2=GY(1,1
i} :605UB 684

519 REHM

528 REM ¥ LOOP FOREVER M
538 REM

548 GOTO S48

998 REH

568 REM e e a pOE S M 0
5780 REM ¥ GRAPHICS CLIP ROUTINE #
580 REH 303000 M0 0 B0 M0
598 REH

688 Ti=8:72=0:Bi=8:82=0:IF Yi<{¥T THEN
Ti=Z1:60T7T0 628

618 IF ¥1>YB THEW Bi=1

620 IF YZAYT THEW T2=1:GOTO0 &48

638 IF Y2>YB THEN B2=1

648 IF Ti+72=2 OR B1+B2=2 THEN RETURN
658 X3I-H1:YI=Y1:H4-HZ:Y4=Y¥Y2:G605UB 698
668 TI-TZ2:Bi=ZB2:XIiz-KW:YI-YMIHI-HZ2:Y3ZY
2 H4-K1:Y4=Y¥1:G605UB &30

678 IF Y1{¥T OR Y1i2¥B OR YMHL{YT OR YWY
B THER RETIURN

688 PLOT XK1,¥1:DRAWTD HW.YW:RETURN

698 IF T1+B1=8 THEM HW-HI:YH-YI:RETURN
788 IF T1 THEN YHCYT ! KWoHI+H(H4-KIPE{YT
=“Y¥I3/(Y4-¥3I cHI-HM:YI=-YHW:RETURN

718 IF Bi THEN YH-YB:HW-HI+{H4-HIIN(YB
3LV -YII i HICHM:IYI-YWN:RETURN

728 RETURHN

y CHECKSUM DATA
(See pgs. 7-10)

18 paTh 587,293,21,12,59%5,261,273,936,
267,6493,77,777,83,421,8%,5341

168 DATH 657,95,3%8,245,76,34.99%0,837,
88,515,94,52,428,3841,528,58082

319 baTA B81,562,87.3,93,546,99,883, 185
,830,83,323,366,32,349,4582

468 DATA 98.734,383,488,855,85,726,931,

7233,97,368,494,374,1089,536,6872

618 DavTH 188,353,198,823,482.869,545.4

8,298,732,.5731,.599%,.5768
®

Sphere Demo

8 SIZE=Z20:REM IEERADIUSENN

9 CH=-168:CY=96:REM ¥XCENTER*

18 DEG :TIME=1

26 GRAPHICS 24:SETCOLOR 2,8,8:5ETCOLOR
1,8,8:COLOR 1

25 PLOT CH+5IZE,CY:REM WMNSTARTIONN

38 FOR Y=98 TO 8 STEP -12

480 FOR K=8 TO I68 STEP 12

98 IF TIMEZ1 THEN H2=-CH+S5IZE¥COS{K1:Y2
SCY-(S5IZEXSIN (HI®SINCY2) :GOTO 68

99 HZ-CH-(SIZENSINIHIMSINIY]) :¥Y2=CY+51
ZERCOS5 (KD

68 DRAWTO H2,Y2:NEHT H:NEXT ¥

98 TIME-TIME+1:IF TIME=Z THEN PLOT CX,
CY+5IZE:GOTO 38

188 SIZE-ZO4RND (13 ¥#IB:CH=SIZE+1+I(RND (1
INCILB-(STZEMHZ) D) :CY=SIZEH1+ (RND (13 % (1
gﬂ—(SIZE*2))):GOSUB 1800 : TIME=1:60TOD 2

918 REM ¥ ERASE HIDDEN LINES ¥06¢
1886 COLOR B:FOR X=8 TO 98 STEP 8.5
1018 X2=-S5IZEXCOSCHI :Y2=SIZE¥*S5IN(H)
1828 PLOT CX+H2,CY+Y2:DRAWTO CH-H2,CY+
YZ:PLOT CH#X2,CY-Y2:DRAWTO CH-H2,CY-Y2
tNEHT H:COLOR 1:RETURN

CHECKSUM DATA
(See pgs. 7-10)
8 DaTa I65,712,888,195,686,399,350,614

,3868,298,205,186,520,297,673,.6688
1828 pATA 282,202

PAGE 50 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

GRAPHIC VIOLENCE

16K Cassette or Disk

by Tom Hudson

When writing game programs, many
programmers automatically choose assembly
language over BASIC because of the obvious speed
advantage. This can sometimes be a mistake, since
BASIC offers some functions (such as sine, square
root, etc.) not easily written in assembler. One way
to take advantage of the convenience of BASIC and
the speed of assembler is to combine the two
languages. ATARI BASIC allows the user to “‘call”
machine-language subroutines, which can be many
times faster than the same routine in BASIC.

In order to assist those game programmers who
would like to have dramatic explosion effects in their
BASIC programs, I have developed Graphic
Violence, a group of assembly-language subroutines.
These routines allow BASIC to generate up to 20
simultaneous explosions in GRAPHICS 7. They can
optionally generate sound effects as well as “‘cycle”’
the colors of the explosions for an interesting
“radioactive glow”’ effect.

The first half of this article is a non-technical
explanation of how to use Graphic Violence. The
second half is an in-depth discussion of the actual
assembly language code for those interested in the
inner workings of the subroutines.

Using Graphic Violence.

Listing 1 is the BASIC language code necessary to
set up the Graphic Violence subroutine. This code
should be placed in any program that is to use the
explosion generator. After typing this program in,
SAVE it immediately, BEFORE RUNNING IT! The
routine has some safeguards against typing errors in
the DATA statements, but if it is executed with bad
DATA, the system may crash and it will be necessary
to re-type the program.

After the programis typed and SAVEd, RUN it. If
it is typed correctly, the program will run for several
seconds before anything happens. The screen colors
will begin cycling quickly. If not, an error was made
somewhere, and you should re-boot your system,
load the SAVEd program, find the mistake, SAVE it
and try again.

If a message such as “COORDIERR” occurs, you
have made a mistake typing in the DATA statements.
“COORDI ERR” indicates that an error was made

in the COORDI DATA, “INIT ERR” is an error in
the INITIALIZATION CODE, etc. Find the error,
fix it and re-RUN the program.

Once the computer starts cycling colors, press
SYSTEM RESET before doing anything else.
Whenever operating any program using the Graphic
Violence subroutine, you MUST use the SYSTEM
RESET key to terminate the program. The sub-
routine automatically disables the BREAK key since
typing commands in immediate mode while the
subroutine is in operation will usually cause a system
crash. Pressing SYSTEM RESET will correctly
terminate the subroutine and avoid any problems.

At this point, you should have a correctly
operating Graphic Violence initialization sub-
routine SAVEd on tape or disk.

Program 1 Flow.

Line 80 — GOSUBs to line 10000 to
initialize the subroutine.

Line 10010 — Dimensions the strings
needed by Graphic Violence and RESTOREs
the DATA pointer.

Line 10020-10060 — READs DATA state-
ments into the strings used by the subroutine.

Line 10080 — POKEs graphics PLOT
values into Graphic Violence.

Line 101000 — Calls the machine-
language initialization routine. It is of the form:

A-USR(ADR (INITS5) ,ADRCHMAINS) , ADR (CODRD1
$1,ADRC(COORD25) ,COLOR, SOLND)

The COLOR value tells whether or not you want
the color of the explosions to cycle. In the program
listing, this value is set to 1, indicating that cycling is
desired. If you do not want cycling, place a O here.

The SOUND value tells whether or not you want
the routine to generate sounds with the explosions.
In the listing it is a 1, indicating that we want sound.
If sound is not desired, place a O here.

Line 10110 — This line simply returns from
the subroutine to the main program

A short demonstration.

With Listing 1 in your computer, add Listing 2
to the original program and RUN it. This is a short
demonstration routine which simply places an

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 51

explosion at the center of the screen, then repeats.
By looking at this short routine, you will notice
the USR call in line 220. This is the command which
starts an explosion. Once the Graphic Violence
machine-code subroutine is set up, this short
operation is all you need to generate explosions.
Remember to stop the program by pressing

SYSTEM RESET.
Program 2 Flow.

Line 190 — Set up a full-screen graphics
mode 7.

Line 220 — Call the explosion-starting
machine language routine. This line actually
starts the explosion. It is of the form:

A=USR{ADR (EXPLS) , X, YD

X and Y are the screen coordinates of the center of
the explosion. In the Listing, X=80 and Y=48,
placing the explosion at the center of the screen.

This statement is the heart of the Graphic
Violence routine. Once this statement is executed, it
starts off an explosion while BASIC continues with
whatever it is doing. In addition, the explosion
handler can operate up to 20 explosions simultan-
eously, while BASIC does its own processing!

Line 240 — This line is a simple delay loop
which allows an explosion to dissipate before
generating another.

Line 260 — This line goes to start a new
explosion after the wait.

In the previous example, we generated one
explosion at the center of the screen, just to keep
things simple. In the next example, we will see how
the Graphic Violence routine will handle up to 20
simultaneous explosions without the programmer
having to worry abeut what’s going on inside the
explosion handler! All the programmer needs to do
is send the explosion coordinates to the routine via
the USR command and let the computer do the rest.
(What could be simpler?)

With Listing 1 in your computer, add Listing 3
to the original program and RUN it. The program
will fill up most of the screen with graphics, then
start dropping “bombs” from the top of the screen.
As they hit the graphics area, they will explode
violently, “eating’’ away the graphics. As soon as one
of the bombs falls off the bottom of the screen, an
end message will be displayed and subsequently
destroyed by a number of explosions. The program
will run continuously and MUST be stopped by
pressing SYSTEM RESET.

Program 3 Flow.

Line 190 — Sets up graphics mode 7 and sets
COLOR #2 (the explosion color) to maximum
brightness.

Line 210 — Fills up the bottom section of
the screen with COLOR 1 graphics.

Line 230 — Makes sure any error will cause

the program to continue at line 320 (the “THE
END” routine). This TRAP statement will take
effect when a bomb falls off the bottom of the
screen.

Line 250 — Gets the X and Y coordinates
where the bomb will start its drop.

Line 270 — Erases old bomb position (using
COLOR 0) and increments Y position so that
bomb will “fall” toward bottom of screen.

Line 290 — Uses the LOCATE command
to see if the bomb has hit anything. If the bomb
hits color 1, an explosion is started at the X and
Y coordinates and a new bomb is randomized.

Line 310 — If no hit is detected, the bomb is
plotted in color 2, the program waits a fraction
of a second, then continues at line 270.

Line 330 — When a bomb falls off the
bottom of the screen, the error is TRAPped
here. At this time, the computer sets up a new
graphics 7 screen, sets the explosion brightness,
and selects COLOR 1.

Line 350 — This line RESTOREs the
DATA pointer to line 400 (THE END shape
data), reads from-and-to plot data and draws
the THE END message on the screen.

Line 370 — This line sets off 200
explosions, which destroy the THE END
message. Note that the explosion USR call has
random number functions for X and Y
coordinates of the explosion center. There is
also a 40 count delay after each explosion is
started for a more interesting display.

Line 390 — After all explosions are
generated, wait a few seconds and GOTO line
190 to re-run the demonstration continuously.

Line 410-430 — These lines contain PLOT
data for the words “THE END.” Each line in
the letters is represented by 4 values, made up of
2 sets of X and Y coordinates, the line
endpoints.

Summary.

The Graphic Violence explosion generator
subroutine will operate in almost any game using
graphics 7. Explosions overlapping the edges of the
screen are automatically “clipped,” but the program
has minimal error-trapping. The user should take
care to make sure that the coordinates supplied to
the routine do not exceed the graphics 7 screen
limits. The routine uses sound channel 1 when the
sound generation option is requested. The
Explosions use COLOR 3 (SETCOLOR 2), and will
cycle the color only (not brightness) if color cycling
is requested. Any program using the Graphic
Violence routine must be terminated with SYS-
TEM RESET to avoid a system crash.

The following section contains a discussion of the
assembly-language routines that make up Graphic
Violence. This information is not necessary to use

PAGE 52 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

the subroutine, but may assist those interested in

assembly language and the inner workings of the
ATARI computers.

Background information.

The Graphic Violence subroutine is made up of
three program segments and two data tables. These
five modules work together to provide a machine-
language explosion generator for BASIC.

The first assembly program (Listing 4) is the
Graphic Violence initialization subroutine. It is
stored in the BASIC string variable INIT$. Its
function is to accept the locations of the main
program module, and accept the color cycling and
sound generation options.

Remember that this is the routine called in the

BASIC statement:

A-USR(ADR (INITSY , ADR(MAINS) ,ADR (COORDL
$3,ADR{COORD25) ,COLOR, SOUND3

Program 4 Flow.

Line 230 — This line arbitrarily sets the
location counter to $6000. Since this routine
will be fully relocatable and stored in a BASIC
string, this address does not matter.

Line 240 — This PLA instruction pulls the
first argument off of the stack. Ina BASIC USR
call, this argument is always the number of
arguments passed to the machine language
routine. We do not use it in this case, and it is
discarded.

Line 250-270 — This section zeroes out the
explosion ready flag and the explosion counter.

Line 280-330 — This section pulls the low
and high bytes of the address of the main
routine (ADR MAINS$), transfers them to the X
and Y registers, then puts a 7 in the accumulator
and jumps to the SETVBV subroutine. This
tells the system that we are using a vertical blank
interrupt. The 7 indicates that it is a ““deferred”
vertical blank routine, that is, it operates after
the system’s vertical blank operation.

Line 340-410 — This section pulls the low
and high bytes of the two sets of plot
coordinates (COORD1$ and COORD2$, 4
PLA stotal)and stores them on page zero ($CB-
$CE) for later use by the main module.

Line 420-440 — This section pulls the color
cycle indicator (COLOR) from the stack. Since
this is a one-byte indicator and the system sends
atwo-byte argument, the first byte (high byte) is
discarded and the second is stored in CYCFLG.

Line 450-470 — This section is the same as
lines 420-440, except that it stores the sound
indicator (SOUND) in SNDFLG.

Line 480 — This RTS (Return from

Subroutine) returns control to your BASIC

program after the initialization is complete.

The second assembly language program (Listing
5) is the explosion start routine. It is called by the
BASIC statement:

A-USR (ADRCEXPLS) , X, Y2

This routine simply accepts the coordinates of the
explosion from BASIC. If there are 20 explosions
active, it will ignore the request, otherwise it will
send the coordinates to the main module, which is
executing in the deferred vertical blank.

Program 5 Flow.

Line 200 — Once again, this Listing has its
location counter set to $6000. It makes no
difference, since this routine is fully relocatable.

Line 210 — As in the previous Listings,
this line discards the first item on the stack (the
number of arguments passed to the assembly
routine).

Line 220-240 — These lines check the
variable EXPCNT to make sure the new
explosion can be started. If there are less than
20, control is passed to EXPOK (explosion
OK).

Line 250-290 — These lines are used if
there are already 20 explosions. The remaining
4 bytes are pulled from the stack and discarded,
and the program returns to BASIC. No
explosion is generated.

Line 300-350 — In a manner similar to the
COLOR and SOUND parameters in Listing
#4, this routine pulls the X and Y coordinates
off of the stack and places the values in NEWX
and NEWY for use by the main module.

Line 360-370 — This section places a 1 in
READY flag, which tells the main interrupt
routine that a new explosion is ready to start.

Line 380 — This RTS instruction simply
returns control to BASIC. In this way, the
interrupt can start the explosion graphics while
BASIC keeps running normally.

The third assembly language routine (Listing
6) is the vertical blank interrupt routine, stored in
MAINS. It does all the color cycling, sound, and
graphics for the explosions. Since it is an interrupt-
driven program, it operates independently of
BASIC, allowing BASIC to continue processing
normally while the vertical blank does all the
explosion work.

Since this program is stored in a BASIC string, any
program editing or immediate mode operations in
BASIC while the vertical blank routine is running
will cause a system crash. This is due to the fact that
BASIC moves its variables around in memory during
editing of programs, and such movement of the
interrupt routine will confuse the system. To help
avoid such a problem, the Graphic Violence

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 53

interrupt routine disables the break key, making it
necessary to press SYSTEM RESET to stop program
execution. This is only a partial solution, however,
since if the programmer allows his program to end
with the READY prompt, then enters a program
line, the crash will still occur.

The interrupt routine performs several functions.
First, it disables the BREAK key and cycles the color
of playfield 2 if necessary. Next, it processes
sound, if required, using sound channel 1. The last
major function it performs is that of explosion
graphics generation.

Each explosion graphic is made up of 89 separate
pixels. The routine uses the specified centerpoint of
each explosion and adds X and Y offset values, which
are stored in the BASIC string variables COORD1$
and COORD2$. Each of the 89 pixels are first
turned on, one pixel at a time, resulting in a
“growing” appearance. After all 89 pixels are on, the
routine turns off one pixel at a time, causing the
explosion to dissipate. Each active explosion has a
pixel either turned on or off each time the interrupt
is performed. Since this happens 60 times a second,
each explosion takes roughly 3 seconds to expand
and dissipate [(89%2)/60]. Explosions are
independent of each other because of three tables.
The X and Y coordinates of each explosion are
stored in the XPOS and YPOS tables. The third
table, CNT, holds the number of the pixel which will
be turned on or off next for each explosion. This
value ranges from O to 88 for “‘on’ pixels, and 89 to
177 for "off” pixels. If the CNT value for an
explosion exceeds 177, the explosion has dissipated
completely and its values are removed from the
explosion tables by a “repack” operation. That is, if
explosion number 2 is finished, explosion 3 will
move back to 2, 4 to 3, etc.

Program 6 Flow.

Line 500 — Clears decimal mode. This
instruction is vital when writing subroutines for
BASIC that do any binary arithmetic.

Line 510-540 — Disables the BREAK key
by altering POKMSK and IRQEN, the interrupt
request enable. This prevents the BREAK key
from generating an interrupt.

Line 550-640 — Cycles colors if CYCFLG
is not zero.

Line 650-770 — Processes explosion sound
if SNDFLG is not zero.

Line 780-940 — Monitors the READY flag
to see if there is a new explosion. If not, the
program checks for any old explosions at
MAIN. If there is a new explosion, the routine
sets up the XPOS, YPOS and CNT tables with
the new information.

Line 950 — Zeroes out COUNTR, the
variable indicating which explosion is being
processed.

Line 960-1000 — Increments the explosion
counter. If the counter is greater than the
current number of explosions active
(EXPCNT), the routine jumps to XITVBYV, the
vertical blank exit vector. Otherwise control is
passed to INDEX.

Line 1130-1350 — This section repacks the

XPOS, YPOS and CNT tables to eliminate a

“dead” explosion. It then branches back to

RUNLP to handle the next explosion.

Line 1360-2350 — This routine turns
explosion pixels on or off, depending on the
PLOTCLR setting. If the pixel is off the screen,
the plot is abandoned by a branch to RUNLP.
By expanding the XPOS, YPOS and CNT tables

and altering the explosion call routine (Listing 5),
advanced users can enable the Graphic Violence
routine to handle many more explosions than it can
now. However, 20 explosions are more than enough
for most applications, and the routine should serve
well as is.

[hope that ATARI programmers will see by this
example that it is not always necessary to write game
programs completely in assembly language. Just use
BASIC for complicated functions difficult to write
in assembler, and use assembler for things BASIC is
too slow to do. O

Listing 1 (BASIC)
13 REM 0N

280 REM ¥ GRAPHIC VIOLENCE DEMO ¥
.39 REM ¥ g.N.aA.L.0.G. COMPUTING *
48 REM ¥* BY TOM HUDSON *
58 REM

68 REM

78 REM 6% TNITIALIZE THE GRAPHIC VUIOL
ENCE SUBROUTINE %%

88 GOSUB 16818

28 REM

188 REH ¥OECEEEOEECGHCOROOOO00E00ER0E
1180 REM ¥¥ YDUR PROGRAGM GOES HERE! %
120 REM 306300 N M0 MW MM M0
i3I8 GcOTO 138

éﬂBBB REM 3d# TNITIALIZATION SUBROUTIN
16818 DIM INITS5{413 ,EXPL5{(23) MAINS (35
g%,CODRDISKBB),COORDZﬁ(BB):RESTORE iia

18926 TOT=6:FOR H=i TO 83:READ A:T707=T7
DT+A:COORDIS (K, KI=CHRS5{A) :NEXT X:IF TO
T{»9984 THEN ? "“COORD1 ERR":END

i8838 TOT=-8:FOR X=1 TO 89:READ A:TOT=T
OT+A:COORD25 (K, HI=CHRS {A) : NEXNT X:IF 1O
T{>3984 THEN ? “COORD2Z ERR":END

18848 TOT=-8:FOR H=1 TO0 41:READ A:TOT=T
OTHA:INITSIK, HI=CHRS {A) : MEXT H:IF TOT{
}4237 THEN 7 “INIT ERR':END

18856 TOT-8:FOR H=1 70 29:READ A:T707=7
OT+A:ERPLS (H,¥I=CHRS5{A) :NEHT H:IF TOT{
22198 THEN 7 “EHPL ERR":END

18868 TOT=8:FOR K=1 71O IS5:READ A:TOT=
TOTHA:MATINS (R, HISCHRS (A) :NEXT H:IF TOT
£236691 THEN ? "MAIN ERR":END

188768 REM ¥d SET UP PLOT BITS ¥
19888 POKE 1568,19%2:POKE 1569,48:POKE
i578,12:POKE 1571,3

18898 REM ¥td INITIALIZE GRAPHIC VUIOLE
HCE ROUTINE AND RETURN 3

18188 A-USRIADRCINITS) ,ADRIMAINS) ,ADR(
COORD153 ,ADR{(COORD2S5) ,1,1)

18116 RETIURN

PAGE &4 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

110680 REM %% COORD1 DATA %X

11818 paTa &,1,255,8,255,8,255,2,1,1,8
»254,255,1,8,1,254,254,2,8,1,255,2,2,2
,255,254,1,253,3,3,4,252,253,254

11828 paTa 255.254,2.3,3.253.6,8,8,4,4
,252,3255,2,8,3,2,1,253,254,254.,252. 253
,3,253,252,251.251,252.4,3,4,255

11838 DAaTH 5,5,5,253,1,254,8,255,252,2

53,251,253,25%2,%,4,3,1,255,1,2,4

17088 REM %¥% COORDZ DATA %K

17818 DATH 6,255,1,2,254,255,8,1,7254,0
,1,8,255,1,253,253.,2,255,255,254,2,3,2
,8,254,2,1,3,254,1,254,255,8,1,253
17828 paTa 253,754.3,2.8,3,252,4,3,6,2
,2,4,4,5,3,253,252,08,3.4,254,252,252,2
+1,1,8,255,254,255,1.,251

17036 baTA 8,255,1.4,4,252,251,252,253
,253,255,255,3,253,253.4,251,5,5,252,3

13000 REM *x% INITIALIZATION CODE ¥k

13618 DATA 164,16%,6,141,08,6,141,1,6,1

84,170,184,168,169,7

13878 DATA 32,97,228,104,133,264,184,1
33,783,104,133,206,104, 133,285

131036 DATA 184,.164,141,11,6,184,104,14
1,12,6,96

14008 REM *¥% EXPLOSION Call CODE %
146816 DaTa 184,173,1,6,261,20,48,5,104
,164,104,164,96,104, 1084

14826 DATA 141,2,6,164,164,141,3,6,169
,1,141,8,6,96

14996 REM #¥% MAIN INTERRUPT CODE 3%
15808 DATA 216,165,16,41,127,133,16,14
1,14,718,173,11,6,2468,728

15818 paTA 173,14,6,24,1085.16,141,14,6
,173,198,2,41,15,13

15026 paTa 14.6,141,198,2,173,17,6,248
,22,173,13,6,248,17

15638 paTa 56,233,1,141,13.6,74,74,74,
141,1,218,169,48, 141

15646 DaTa @,210,173,8,6,240,31,238,1,
6,174,1,6,173,2

15856 DATA 6,.157.64,6,173,3,6,157,85,6
,169,127,141,13,6

15666 DAaTA 16%,8,157,166,6,141,8,6,141
,5,6,238,5,6,173

15878 nava 1y 5 285,5.6,16,3,76,98,228,

174,5.6,16

15888 DATA 141 4,6,189,1686,6,2681,89,48
,51,238,4,6,56,233

15838 DATA B89,281,89,48,41,138,168,232
,236,1,6,248,2,16,21

15188 baTa 189, 54 6,153,64,6,189,85,6,
i53,85.6,1589, 166

15116 bafa t%o,lé& 6,2788,208.277,286,1
,6,206,5,6,169%,0,248

15128 paTa 176.254,186,6,168,189,64.6,
74,113,783,141,56,6,281

15136 DATe 168,176,159,189,85,6,24,113
,285,141,7,6,2681,96,176

15140 DATA 146,18,133,267,169,8,248,2,
748,137,133,2688,165,207,18

15158 paTa 133,287,165, 203 42,133,288,
165,787,18,133.267,141,9,

15168 DATA 165,208,472, 133 788,141,8,6,
165,2087,16,133, 287,165, 288

15178 DATA 42,133,288,165,2687,18,133,2
87,165,268,42,13%,208,165,287

15188 Datn 24,189,9,6,133,287,165,288,
189,8,6,133,2088,165, 88

15196 DATA 24,1831,207,.133.207,165,89,1
81,268,13,288,173,6,6,41

15206 DaTA 3,168,190,32,6,142,10,6,173
,6,6,74,74,74,181

152186 pava 2787,133,207,165,208,165,6,1
33,208,1668,8,173,4,6,208

15226 DaTa 11,173,19,6,81,267,145,2687,
169,8,248,132,173.168,6

15238 DaTA 73,255,49,287,145,287,163,0
,240, 241

CHECKSUM DATA
(See pgs. 7-10)

i1¢ DOGTOH 286,324,225,872,288,261,725,83
7,267 ,775,948,784,701,836,321,8441
ig8za DOTH 887,814,298,377%,416,442,758
,786,708,43,332,981,920,385,338,7674
12016 DATH 966,265,36,858,239,9067,884,
831,543,392,825,377,13,7,217,7368
15848 DATH 456,996,743,441,863,381,958
, 239,326,614 ,853,887,899,16%,376,9189
i5158 DpaTH 615,9608,489,269,122,2375

o
Listing 2.

130 REM 3OEMc b e M 0 M M RO M0
148 REM ¥ GRGPHIC UIOLENCE DEMO ¥
158 REH = NUMBER 1 *
168 REM 3030000 MM 3O MMM B 3
178 REH

188 REM ¥¥¥ S5ET UPF GRAPHIC MODE 7 3¢x
178 GRAPHICS 7+i6

268 REM ¥¥¥ SET OFF AN EXPLOSION 36X
218 REM ¥¥% A7 SCREEN CENTER M
228 A-USR{aDR(EXPLS53,808,48)

238 REM %3% WAIT 6 FEW SECONDS %X
248 FOR MWAIT=1 TO 2800:NEXT WAIY

258 REM ¥ DO EXPLOSION AGAIN oxx
268 GOTOC 228

Listing 3.

13I8 REH MMM 00003 W

148 REM ¥ GRGPHIC UIOLENCE DEMO ¥

158 REM # MUMBER 2 *

168 REM g 3

178 REH

188 REM WX SET UP GRAPHICS 7 FULL SCR

EEN AND EXPLOSION COLOR ¥

138 GRAPHICS 7+i6:iSETCOLOR 2,15.15

288 RENM W6¢ DRAW THE 'GROUMND'® X

218 COLOR 1:FOR Y=28 7O 35:PLOT 6,Y:DR

OWTO0 15% YINEHKT Y

228 REM W% TRAP ANY ERRORS TO *THE EN

D' ROUTIRE 3ex

238 TRaP I28

248 REH ¥ RANDOMIZE STARY POINY FOR

DROPPING BOMBS 363

258 H-OtRHD(B)®145:Y=RND (0) %3

268 REM X ADUANCE THE BOMB a5 IT DRO

P45 WX

278 COLOR B:PLOY X,Y:¥Y=Y+3

288 REM W¢¥ IF THE BOMB HITS COLOR i,

SET OFF EHPLOSION We¢

228 LOCATE HK,¥,Z:IF Z=1 THEN A=USR(ADR

(EXPLSY,H,¥): c0T0 258

308 REM ¥%% NO HIT, CONTIWUE DROP 3¢

3i8 COLOR 2:PLOT K,YiFOR DELAY=1 70 i@

NEKT DELAY:GOTO 278

326 REM ¥¥¥ "THE END'® e

ggﬂlGRﬁPHICS Z+16:5ETCOLOR 2,15,15:COL

348 REM ¥¥¥ PLOT 'THE END® 00¢

358 RESTORE 488:FOR X=1 70 22:READ FRX

SFRY, TUK, TUY:PLOT FRXE,FRY:DRAWTO TUX,T

LY :NEKT X

68 REM #¥¥ SET OFF 720868 RANDOM EHPLOSI

ONS ¥

278 FOR EKPL=1 70 2008:A4-USRCADRCEXPLS)

fABERKD (@) 75, Z04RND (@) *55) :FOR BELAY=

1 7O 48:HEHT DELAY:INEKY ENPL

388 REM ¥ LET EXPLOSIONS DIE, THEN R

E-RUN THE DEMO 3%

g?gBEOR DELAY=1 TO Z2886:NEXKT DELAY:GOT

468 REM 4% *THE END' DATA 0%

418 pavTa 58,25,67,25,59,25,59,45,72,25
?2 45,72, 35 88 35 88 25 88 45 93 25 3
45 93 25 199 25 ﬂ3 35 193 35

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 55

428 DATA 93,45,189%,45,58,58,58,708,58,5
8,67,58,508,608,67,68,58,708,67,79,72,78,
7z2,58,72,50,88,76,88,78,88,50

438 DATA 93,58,93,76,33,58,162,58,182,
50,189,56,189,56,189%,64,1089,64,1082,78,
182,78,93,78

CHECKSUM DATA
(See pgs. 7-10)

13I8 pATA 3I51,454,438,368,95,483,617,148
8,539,885,711,348,552,331,4708,56646

288 DATA 421,589,835,842,98,463,638,15
3,787,999,122,753,683,481,961,8665

438 DaThA 292,232

Listing 4.
GRAPHIC JIOLENCE
8128 : A.N.A.L.O.G. COMPUTING
6130

8148 : INITIALIZATION CODE
8150 :

8148 READY = 3688

8178 EXPCNT = 3481

9138 CYCFLG = $488

8198 SNDFLG = $66C

3288 COORD! = $CB

8218 COORDZ = $CD

4220 SETUBV = $£45C

8930 3= $6000

A1
8118

.. m

8178 EXPINT = $481
8138 NEWX = %682
B178 NEWY = 3483

8708 ¥=$4008
0218 PLA +DISCARD
8220 L0A EXPCNT ' OF EXPL.
0238 [MP 420 128 ACTIVE?
248 BMI EXPOK ND, IT°S OK!
8250 PLA "YES DISCARD
1248 PLA :80TH COORDS
80278 PLA
9239 PLA
6298 RTS AAND EXIT
4398 EXPOK PLA :DISCARD HIGH
0318 PLA '6ET X-COORD
9328 STA NEUX :STORE 1T
9338 PLA 1DISCARD HIGH
9340 Pla {GET Y-COORD
8358 STA NEWY :STORE 1T
8358 LDA #1 'TELL INTERRUPT
8378 STA READY {E'RE READY!
8320 RTS :AND EXIT BACK
8398 ; T0 BASIC!
2408 ' .END
®

Listing 6.
8188 : GRAPHIC YIOLENCE

8118 :

g%g : A.N.A.L.0.G. COMPUTING
ggg : UBLANK INTERRUPT ROLTINE
8148 READY = $480

8248 INIT PLA :DISCARD
8256 LDA Ho ;ZERD OUT:
7248 STA READY ;READY FLAG
8278 STA EXPONT o OF EXPL.
9238 PLA

; INTERRUPT HI
PUT IN X

8178 EXPINT = $481
9130 NEWX = 3682
8196 NEWY = 9683
8280 PLOTCLR = %464
8218 COUNTR = $485
8220 PLOTX = $484
8238 PLOTY = 4487
0248 HIHLD = $483
8238 LOHLD = 4409
8248 FLOTBYT = $48A

8298 TAX :
4388 PLA 3 INTERRUPT L0
8310 TAY PUT IN Y
8328 LDA #7 ;DEFERRED VBI
8338 JSR SETVBY $SET IT!
8348 PLA ;COORD! HI
§358 STA COORD1+1 JSAVE 1T
4348 PLA sPULL COORDL LO
8378 5TA COORD! (SAVE IT
8336 PLA iPULL COORD2 HI
8396 STA COORDZ2+1 1SAVE 1T
3488 PLA 3PULL COORDZ LO
841¢ 35TA COORD2 1SAVE 1T
8428 PLA ;D15CARD
§438 PLA 1PULL COLOR CYCLE FLAG
8448 5TA CYCFLG 15AVE IT
8458 PLA ;DISCARD
4448 PLA ;PULL 30UND FLG
8478 STA SNDFLG (SAVE IT
8488 RTS +F INTSHED!
2498 .END
@

Listing 5.

0140 5 GRAPHIC VIOLENCE
3?33 D ANA.L.0.G. COMPUTING #8
1' v

B148 + EXPLOSION CALL ROUTINE
8158

8149 READY = 3489

8270
az3a
8278
8380
8314
8328

CYCFLG = 3408
SNDFLG = $46C
SNDINT = 348D
COLOR = $48E

PLOTBL = $628
XP03 = 3440

8338 YPOS = XP05+21

8348
2338
8340
4378
8336
g3ve
2408
8418
3428

CNT = YPO5+2{
L0 = $CF
HI = 308
COORDY = $CB
COORD2 = $CD

:5YSTEM EGUATES
XITVBY = $E442

8438 COLPF2 = $20¢

2446 AUDC! = $D281

8458 AUDF1 = $D208

8448 SAVMSC = 458

3478 POKMSK = $18

8430 IRGEN = $D26E

4498 ¥=$4080

9588 CLD iCLEAR DECIMAL
8518 LDA POKMSK 1GET IRE INT.
8328 AND #37F ;NO BREAK KEY
8538 STA POKMSK ; THE BREAK KEY
8548 5TA [ROEN 115 NOW OFF!
8358 LDA CYCFLG ;CYCLING CDLOR?
8368 BEG CONT iNO, CONTINUE

PAGE 56

THE A.N.A.L.O.G. COMPENDIUM

VOL. 1

LDA COLOR

Cig

ADD #14

5TA COLOR

LDA COLPF2
AND aF

OrA COLOR

aTa COLFF2
CONT LDA SNDFLG
BEQ GO

LDA SNDCNT
BE@ GO

SEC

SEC 4t

STﬁ ENDONT

LoA ﬂ48
STA AUDEY

6 GO LDA READY

BEL HalN

16ET LAST COLOR
s INCREMENT 17
1BY 14
AN S4VE [T
1GET COLOR REG,
{GET BRIGHTNESS
140D THE COLOR
SAND SAVE IT!
1SOUND w
iNO, SKIP I
R anuuo'
IND, SKIP [T
SDECREMENT THE
:S0UND COUNTER
SAND STORE IT
(SHIFT DOW 70
sDERTUE YDLUME
{FROM COUNTER
'SET UF SOLHD
ICHANEL 1.,
tFINISHED!
INEW EXPLOSION®
N0, CONT INUE

pT THIS FOINT, THERE IS A

NEN EXPLOSION]

"INC EXPONT
LD EXPINT
LDA NEWX
578 %POS,X
LOA NEWY
oTh YPOS,X
Lha 4127
STA SHDORY
Lin 42

STA NT,x
5TA READY

B MAIN STA COUNTR

RURLP INC CONTR
LDA EXPINT

LJA IUUN E
#8
57A PLOTCLR

6 SiA P
[NT, ¥
En o
;

37

B¢1 DOPLYT
ING PLOTCLR
SEC 427

P 457

41 DOPLOT

{UNE MORE EXPL
sBUT TN INDEX
1GET X-COORD,
iPUT IN TABLE
$GET Y-COORD,
tkiUT 1M TABLE
INITIALIZE THE
sSOUWND COUNTER
SINIT COUNTER
{FOR EXPL IMAGE
:AND READY FLAG
12ERD COUNTEF
NEXT EXPLOSION
{5ET # OF EXPL,
1ANY HORE EXPL?
$YES, CONTINUE

(GET INDEX

1367 PLOTCLR
19=PLOT & BLOCK
10ET COUMTEX
FOR EXPLOSTON

ALL DR

MO, DO 1T N
T1=ERASE BLOCK
{GET READ

v FOR
LE

IERA C
ERASE DINE?
NOLERRSE BLOCK
(MOVE TWDEX

170 Y REGISTER

sl ;?HE FOLEGWING ROUTINE REPRCKS
170 jTHE EXPLOSION TABLE

T4 GET RiD

(0F EXPLOSITNS THAT &RE DOME.

REFRCE INX
CEX EXPONT
BEG RPKZ
BPL RPKEND

PPKE Lhr XPOS X
STA ¥POS,Y
LOA YFOS,X
5Ta YRGS, ¥
~s)H D” ;l\::
5TA ONT,Y
INY

BNE REPACK

HEXT EXPLOSTON
Ddr‘h_

N, PEPAL
‘IEO| F i'
MO, START 'fm'
MOVE BACK »

HIVE BACK ¥
HMOVE BACK CNT
MEXT REFACK

HIRE

PPKEND DEC EXPINT DEC POINTERS

DEC COWNTR

;DUE TO REPACK

1348
1336
1344
1378
1320
1398
1484
1416
1428
1438
1448
1458
1448
1478
1430
1498

1508

1518
1526
1534
1348

LDa #6
8ED RUNLP
DDSLUT INC CHT X 3

LDa XPOS,X

Lt

ADC (COORDL) Y
514 PLOTX

CHP 4148

BES RUMLF

LJA YPO5,X

RDC (CONRDZ: Y
STa PLOTY
CHP #74 ;0FF SCREEN?
BCS RUNLP ;YES,DGN’T PLOT

sTHE FOLLOWING SECTION IS A
:DEDICATED MULTIPLY ROUTINE
$WHICH MULTIFLIES THE A REGISTER
BY 46, WITH RESULT IN LD & HI

{FORCE BRANCH
iT0 NEXT EXPL.
$INC COUNTER
{EXP PHASE IN Y
16ET X-COORD

iADD X OFFSET
1STORE 1T

10FF SCREEN?
'YES DON‘T PLOT
iGET Y-COORD

;ADD Y OFFSET
;bTURt 17

1536 ;

1348
1576
1588
1574
1406

Asl A

5TA LO

LDa 6

BEG X2
JRUNLF BEG RUNLP
X2 5TA HI .
Lha L0
AsL A

§14 L0
LDA HI
ROL A

3TA HI
(DA L0
AsL A

574 L0
5Ta LOHLD
LDA HI
RIL A

STh HI
STA HINLD
LDA L0
AsL A

574 L0
L0A HI
ROL #

STA HI
LDA LC
AiL A
5TA LO
L0 HI
RUL A

374 HI
LD4 LO
£Le

AbC LOKLD
5T& L0
LUA H
ADC HIHLD
5TA H (4 ¥5=x40

3

AT THIS POINT, THE MULTIPLY BY
148 15 FINIS “ED AND WE NEED TC
;GET AM OFFSET ’NTO THE SCREEN
MEMORY

Lha SAMSC
£LE

A0C L0

-‘7« ‘(

LJﬂ SEMSCH
AbC Hl

5TA HI

LDA PLOTX
AND 43

TRY

i¥3

¥4

:ADD THE DISPLAY
:ADDRESS TO GET
$THE ACTUAL
1ADIRESS OF THE
SBYTE THAT WILL
:BE ALTERED FOR
{THE PLOT.

HASK PLOTX FOR
{THE PLOT BITS,
iPLACE IN Y...

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 57

2116 LDX PLOTBL,Y sGET PLOT BITS,
2128 STX PLOTBYT #AND SAVE!
2138 LDA PLOTX iGET PLOTX AND

2148 LSRA ;DIVIDE

2158 LSR A 1BY 4

21466 CLC {AND ADD TO
2176 ADC LO PLOT ADDRESS
2186 STA LO iFOR FINAL PLOT
2196 LDA HI ;ADDRESS.

2246 ADC o
2218 STA HI)

2220 LDY #o s2ERD OUT Y REG,
273% LDA PLOTCLR 3ERASING?

2248 BNE CLEARIT YES,G0 CLEAR IT
7756 LDa PLOTBYT iGET PLOT BITS,
2286 EOR (L0J,Y GALTER DISPLAY,
3378 STA (LO),Y 3AND PLOT IT!
2286 LDA He :FORCE BRANCH
2298 JRUNLP? BEQ JKUNLP 3AND EXIT!
2368 CLEARIT LDA PLOTBYT ;PLOT BITS
7316 EOR HSFF FLIE BN

2376 AND (LO),Y ;ALTER DISPLAY
3338 STA (LO),Y ;AND ERASE IT!

2348 LDA HU ;FORCE BRANCH
2358 BEG JRUNLP2 :AND EXIT!
2366 .END

®

Graphics 11 GTIA Demo

REM GRAPHICS 11 GTIA DEMO
REM

GRAPHICS 11
CIZ1:C=0:SETCOLOR 4,0,2
FOR Y=@8 TO 191

FOR H=8 TO0 79

C=C+1:IF C=16 THEN C=9
COLOR C

LC=LC+1:IF LC=16 THEN CI=-CI:LC=1
C=C+CI:IF C=16 THEN C=@

NEHT ¥

GOTO 14e

CHECKSUM DATA
(See pgs. 7-10)

18 DATA 998,253,995,374,128,296,319,77
8,619,758,988,438,769,707,8404

PAGE 58

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

ATARI 1020 PRINTER DEMO

18 REM *mx—**u—u—u—x—n—x—mu—x—n—u—u—x**
280 REM ¥ ATARI 1828 PLOTTER ¥
380 REM * SPHERE DEMONSTRATION ¥

48 REM BY TOM HUDSON *
58 REN E8E8600000E000E0OOO M0
68 REM

78 REM 3¢% OPEN IOCB 1 TO PLOTTER ¥
80 REM
98 OPEN Hu1.,8,8,"p:"

188 REM

1i8 REM 0¥ SET SPHERE RADIUS 0%
128 REM

138 5IZE=158

148 REM

158 REM 6% INITIALIZE PLOTTER 3%
168 REM

170 7 H1;UENMHEI®MO,";-SIZE-20; "*I"
188 REM

198 REM ¥ SET SPHERE CENTER 3%

REM
218 CH=z408:CY=0
228 REM
238 REM ¥6¢ START PLOTTING! 306
248 REM
258 DEG :TIMEZ=1
268 ? H1;UM';CH4SIZE;",";CY:REM &N 57T
ART THE PLOT ¥
278 FOR Y=98 T0 8 STEP -12
280 FOR X=9 T0 368 S5TEP 12
238 IF TIME=1 THEN H2-CH+SIZEXCOS{H):Y
ZZCY-(SIZERSIRI{KIRSINIYII:GOTU 340
308 H2-CH-(STZEXSINCHIMSINIYI) :YZ-CY+45
IZE¥CO0S5 (X)
318 REM
328 REM 3% DRAW LINE OF SPHERE ¢
338 REM
348 ? n1;"D" K2;",";¥2
358 NEXT H:NEKT Y
368 REM
370 REM 6% DO NEXT DIRECTION 6%
380 REM
390 TIME-TIME+1:IF TIME=2 THEN 7 #1;"M
"ICH;Y,";CY+SIZE:GOTO 276
488 REM
418 REM 6% MOVE PAPER UP AT END W6
4280 REM
430 7 #1;'H¥M@,*;-S5IZE-28;"*I1"
448 CLOSE H1:END

CHECKSUM DATA
(See pgs. 7-10)

18 DATA 267,70,613,989,275,261,719,265
,985,74,225,808,748,86,6089,57086

i68 bpATA 92,755,98,248,76,28,82,288,88
,84,840,182,274,562,515,4212

318 baTa 81,293,87,768,536,96,322,182,
97,80,39%5,86,576,131,3618

18 REN 36660000030 03060

28 REM ¥ ATARI 1820 PLOTTER *

I8 REM ¥ "SQUARE-MWEB" DEMO *

48 REM * BY TOM HUDSON *

58 REM 3000 MMM

68 REM

78 RE: #¥% OPEN IOCB 1 TO PLOTTER ¥

RE
386 OPEN nu1,3.,8,"p:"
188 REM
110 REM 3% INITIALIZE PLOTTER 3%
1286 REH
130 7 81 UENMHEINMB, -400%I"
148 REH
158 REM &% START PLOT LOOP ¥éx
168 REM
178 FOR H=2Z8® TO 388 STEP 28
180 REM
138 REM 3% DRAW 4 LINES 6%
288 REM
218 ? 81, M H;",I80%DIB0," ;408K ;"
408-X;",20;208,";H;";";K;, 388"
228 NEHXT H
238 REM
248 REM % ALL DONE! 6%
258 REM
268 7 #1;"H"
278 CLOSE RB1:END

CHECKSUM DATA
(See pgs. 7-10)

ie DATA 831,647,628,440,839,261,719,26
5,585,74,597,80,923,86,212,7167

168 DaTa4 92,382,98,591,76,229,766,85,1
75,91,499,136,3140

DISK UTILITIES

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 61

DISK FILES:
USING NOTE & POINT

32K Disk
by Jerry White

This is a demonstration program that creates a 100
record inventory file and permits the user to update
the file using random access. Random access allows
immediate access to any given record in a file without
reading each record again and again.

The rest of this article assumes you have typed in
the program. If there were no errors in typing, you
should now have 3 options on the screen. First, we
must create a data file, so type 1. This will send the
program to line 100. We will now create a 100 record
file to work with. Each record will contain a record
number, an item count and an item description field.
Each field is separated by a comma. As the file is
created, it will be displayed on the screen. After
record 100 is written the file is closed, and you will
be returned to the 3 original options.

Now type the number 2. In order to use random
access updating, we must know exactly where each
record begins on the diskette. Before updating, the
program will create an index using an array in mem-
ory. Once this is done, we can instantly find any re-
cord using the POINT instruction. But first, we must
NOTE the location by storing the sector number and
byte in our arrays. We only have to do this once.
Then we can inspect or change as many records as
needed.

The index is created using the routine starting at
line 300 and ending at 420. Line 500 is the beginning
of the random access routine. You should be able to
follow the program listing, since the variables used
will all be defined at the end of this article. At this
time, [will only explain how the NOTE and POINT
instructions are used.

At line 310, we check a flag to see if an index has
already been created. If so, we do not have to repeat
this procedure and go to line 500. To create the in-
dex, we read the datafile. Before reading each record,
we NOTE the sector and byte position and put it into
our SEC and BYT arrays.

Once the array is complete, we are ready to display
or update any record in the datafile using the POINT
instruction to locate the record we want. Let’s start
by displaying record 50. Type D and press RETURN.
Then type 50 and press RETURN. At line 760, we

POINT to the sector and byte of record 50. At line
780, we INPUT that record, clear the screen, and
display record 50 on the screen.

Remember the number of items in this record,
press any key, and you will be returned to the option
routine at line 5000. Type 2 and this time we will
change record 50. Type U and press RETURN, then
type 50 and press RETURN. Record 50 will again be
displayed, but now we have 3 new options. Let’s take
them in order. Type 1, then press RETURN. To
update the quantity, we merely add to it by typing
the number of items to add, or subtract by typing a
negative number. Remember that our quantity field
is only 3 positions, so don’t increase it to more than
999 items.

After reading the record from the datafile, we
store it in a string call REC$. The quantity field is
updated in the string. It will be updated on the disk
only when we choose option 3 to exit. Before we exit,
let’s change the description field. Type 2 and press
RETURN. Choose a new description and type it.
Now type 3, and the record will be updated on the
disk.

To be sure that the record has been changed pro-
perly, you can choose the display/update option
then redisplay record 50. By now, you can see the
advantages of random access updating. You don’t
have to read the first 49 records to get to record 50.
Once the arrays of the sectors and bytes contain the
beginning of every record, we can locate any record
instantly. O

286 REM INVENTORY TUTORIAL PROGRAM TO D
EMONSTRATE RANDOM ACCESS UPDATING

36 REM ¥¥¥ BY JERRY WHITE 36

58 DIM SEC(1608) ,BYT({168], RECS(3G) DESS
(383 ,CHOXICES (1) :CXI=8: GOTO 5@

**8 REM ¥3%% CREATE INITIAL DﬂTﬁ FILE *

118 FOR BLAGNK=1 TO 3I8:RECS (BLANK,BLANK

. 1= "INEKT BLANK

1286 CLOSE #1:0PEN #1,8,0,"D:DATAFILE"

138 RECS5(4,43=", “'REC$(8 383="",ITEMN DE
SCRIPTION FIELD™

146 FOR RECORD=1 TO i@8

168 IF RECORD<{18® THEN REC5(1,2)="88':R
EC5(3,33I=5TRS (RECORD) :GOTO 228

PAGE 62

THE A.N.A.L.O.G. COMPENDIUM

188 IF RECORD{188 THEN RECS(1,1)="@":R
EC5(2,3)=5TRS (RECORD) : GOTO 220

2886 RECS(I 3)=5TRS (RECORD)

228 RECS(5,731=5TRS5{RND(8)%1006+1808)

248 PRINT u1 RECS:? :? “RECORD “;RECOR
D:? RECS:NEXT RECORD

268 CLOSE n1:G070 50400

388 REM ¥ CREATE INDEX %

318 IF CI=1 THEN RECORD=101:G0TD 500
328 TRAP 2088:CLOSE #2:0PEN #12,4,8,"D:
DATAFILE" : TRAP 40088

gggEFOR ARRAY=1 TO 180:NOTE H2,5ECTOR,
388 ? :7? "RECORD ";AaRRAY;" SECTOR ;5
ECTOR'" 8YTE ";BYTE

488 SEC (ARRAYI=5ECTOR:BYT (ARRAYI =BYTE:
INPUT 132,RECS5:NEHY ARRAY

428 CLOSE #2:CLOSE #3:CI=1

580 REM ¥ RANDOM ACCESS DATAFILE 66e
928 CLOSE H4:0PEN U4,12,8,"D:DATAFILE"
548 ? CHRSC125):2 :? “TYPE D TO DISPLA
Y A RECORD™:? :7 “TYPE U TO UPDATE A R
ECORD";

Sgg INPUT CHOICES:IF CHOICES="D" THEN

588 IF CHOICES="U" THEN %86

608 ? CHRS5{253):GOTD 540

788 ? 7 "TYPE RECORD NUMBER TO DISPLA
?“"TRQP 780:INPHT RN:TRAP 48

728 IF RN{ARRAY AND RN>@ AND Rl INT (RN
) THEN 760

748 ? CHR5(253):2 "INVALID RECORD NUMB
ER*:GOTD 788

768 POINT 44 ,5ECIRN) ,BYTI{RN)

7860 INPUY #t4,RECS:? CHR5(125):7 :7 “RE
CORD ";RN:? 1?7 RECS

888 2 17 “PRE55 ANY KEY FOR OPTIONS:™:
POKE 764,255 CLOSE 24

820 IF PEEK(764)<)255 OR PEEK(53279) O
7 THEN POKE 764,255:G07T0 5088

848 GOTO 828

988 ? :7 “TYPE RECORD NUMBER TO BE UPD
ATED' ; : TRAP 988:INPUT RN:TRAP 40008
928 IF RN{ARRAY AND RN>8 AND RN=INT (RN
J THEN 968

948 ? CHR5{253):7 "INVALID RECORD NUMB
ER":GOTOD 288

260 POINT 214 ,SEC(RN) ,BYT (RN2

988 INPUT %4 ,RECS:? CHRS (1252

1800 7 :7 “RECORD "IRN:? :? RECS

1818 ? :7 “TYPE 1 TO UPDATE OUANTITY":
? “TYPE 2 7O CHANGE DESCRIPTION":? 'TY¥
PE 3 TO EXIT"

1828 TRAP 1868:INPUT CHOICE:TRAP 40008
1848 IF CHOICE{1 OR CHOICE)>3I OR CHOICE
()INT(CHDICE) THEN ? CHRS5(253):G6070 10

1060 ON CHOICE GOTOD 1186,1308,108380
1888 POINT 14 ,5EC(RN) ,BYT(RN) :PRINT 14
;RECS5:CLOSE #4:G0T0 5000

1168 7 7 "TYPE POSITIVE NUMBER Y0 INC
REASE ITEMS":? "7YPE NEGATIVE NUMBER T
0 DECREASE ITEMS"

1148 TRAP 1180:INPUT NUMBER:TRAP 40080
:ﬁagEaTEHSZUﬁL(RECS(5,7)):ITEMS:ITEMS+
11886 IF ITEMS5>999 THEN ? CHRS5(253):2
ITEMS CANNOT EXCEED 999":GOT0 1189
12088 IF ITEMS<8 THEN ? CHRS${2533:7 “IY
Egg CANNOT BE A4 LESS THaAN ZERO":GOTO 1

1220 IF ITEMS<18 THEN RECS{(5,6)="88":R
EC5(7,72)=STR5CITEMS) :GOT0 1068

1748 IF ITEMS5{188 THEN RECS5(5,5)="@":R
EC5(6,7)=STRS(ITEMSY :GOTN 1nan

1268 RECS (5,7)=5TRS (ITEMS) :GOTO 1008
1380 ? CHR5(125):7 :2 “RECORD “;RN:? :

?_REC

1328 7 :? "TYPE NEM DESCRIPTION UP TO
22 POSITIONS"

1348 INPUT DESS5:LD=LEN(DESS)

136080 IF LD>22 THEN ? CHR5(253):7 “FIEL
D TOO LONG, EXTRA IGNORED™

1388 IF LD=22 THEWN 14298

1496 FOR BLANK=LD TO 22:DESS(LEN(DESS)
#13=' "INEHT BLANK

1428 RECS5(9,38)=DE55:G0T0 1868

7880 ? CHR5(253):7 :7 “DATAFILE NOT ON
DISK:TRAP 48880"

gg%g FOR HWAIT=1 TO S@0:NEXT HAIT:GOTO
5088 REM 3¢ INITIAL DISPLAY OF OPTIOM
5 W

5818 GRAPHICS 18:7 H6:7?7 U6;" INVENTORY
OPTIONS:":7 #16:7 B6;" 1= CREATE FILE
"

5828 7 #H6:7 H6;" 2= DISPLAY/UPDATE™:?
i6:7 B6:" I= END PROGRAM"

5848 CLOSE HS:OPEN U5,4,0,"K:":GET U5,
GC:CLOSE #5:GC=GC-48

5868 IF GC{1 OR GC>3I THEN 5088

5888 GRAPHICS 8:POKE 82,1:5ETCOLOR 2,0
8:0M GC GOTO 100,308,6080

6880 GRAPHICS O:POKE 8Z,2:END

CHECKSUM DATA
(See pgs. 7-10)

286 DATA 161,467,887,260,998,773,777,82
0,284 ,222,294,135,704,47,688,7431

I18 DATA 667,231,617,590,588,241,7981,6
58,461,2088,528,24,428,3087,3085,63538

768 DATA 887,785,571,427,729,784,315,3
11,891,498,769,443,866,682,198,9068
1880 DATA 743,395,936,868,817,197,63,8
5,456,987,.634,949,21,624,38,7857

1428 DATA 626,794,547 ,747,299,492,9935,
631,886,917,6934

VOL. 1

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 63

DISK DIRECTORY DUMP

16K Disk

by Tony Messina

This utility is rather simple in nature, but can
prove quite helpful when trying to remember what
program is on which diskette. In order for this utility
to work, you need the following items: 1) a disk
drive, 2) a printer (40 or 80 column), 3) an ATARI
computer with at least 16K of memory. The utility
itself will give you a neat, formatted hardcopy of
your disk directory (I told you it was simple!). The
following article should also give you a general idea
about IOCBs and the OPEN/CLOSE statements
which are part of the BASIC repertoire.

I0CBs.

Many programs appearing in this book use OPEN
and CLOSE statements to perform a particular func-
tion. I'm sure such questions as ‘“What is being
opened/closed,” “How/Why is it being opened/
closed,” and “How can I open/close my own
things?”’ have crossed your mind, so now would be a
good time to find out what it’s all about!!

One of the most difficult things to do on any com-
puter is INPUT/OUTPUT, or I/O for short. Would
you like to write the program (commonly called a
driver) to print to the printer or list to the disk or
input a character from the keyboard? It really isn’t all
that fun. Thanks to those great ATARI folks who
designed our systems (the operating system in par-
ticular), we don’t have to worry too much about the
above-mentioned items. We can control out /O
through an IOCB or Input/Output Control Block.

The operating system has eight IOCBs. Each
[IOCB contains information as to the nature of the
device we want to communicate with, where the
driver for the device is located, where the buffer for
the device is located, the length of the buffer, the
command we are trying to execute on the device
(OPNE, CLOSE, PUT CHARACTER, GET CHAR-
ACTER, etc.), timeout values (i.e., how long do we
try to execute a command before we decide to give
up), etc. This information is used by the Central

Input/Output (CIO) portion of the operating sys-
tem when communicating with the device on the
IOCB specified.

Now that we know something about IOCBs, let’s
look at how we set them up.

OPEN and CLOSE.

The OPEN command allows us to communicate
with a device using the CIO facility. We don’t have
to know machine language to access a device. . .we
can use BASIC instead! OPEN just dedicates an
[OCB to perform our command. We can think of it
as opening a hotline to our device. The line will stay
open until we hang up or CLOSE it. The form of the
OPEN command is as follows:

OPEN #IOCB,I/O CODE, SPECIAL, DEVICE

Parameters can take on the following values:

IOCB — Any number from 0-7. Usually only 1-5
is best, since the operating system uses IOCB O for
the screen/editor, 6 for any graphics window (I'm
sure you all have used a PRINT #6 statement), and 7
for LPRINT and Cassette 1/0.

[/O CODE — 4=INPUT, 8=OUTPUT, 12=
INPUT and OUTPUT, 6=DISK DIRECTORY IN-
PUT and 9=OUTPUT (APPEND TO END OF
FILE).

SPECIAL — Is usually O but can be filled in based
on the device you are using. If you are opening a
screen mode other than GR.O, you would need to
put the GR. mode number in the SPECIAL para-
meter. If you have a sideways printing printer (say
that 10 times quickly), you could get it to print side-
ways by putting 83 as the SPECIAL parameter.
When in doubt, use O.

DEVICE — Devices which we can control and
which BASIC knows about are the KEYBOARD
“K:”, GRAPHICS WINDOW “S:”, PRINTER
“P:”, CASSETTE “C:”, DISK FILE “D:filename.
ext””, SCREEN EDITOR “E:’ and RS232 PORTS
SR

PAGE 64 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

When opening a device, we must make sure that
the parameters make sense. We wouldn’t want to
open a printer for INPUTand OUTPUT, since most
printers only allow OUTPUT. Italso wouldn’t make
sense to open the graphics window for DISK DIREC-
TORY INPUT. See...it’s not all that complicated.

Once we have opened a device, there are many
things which can be done. Commands such as PUT
#, GET #, PRINT #, etc. can be executed by BASIC
directly to the device we have opened. The only thing
we have to remember is not to use an invalid com-
mand for the I/O CODE selected. If we opened the
GRAPHICS WINDOW for OUTPUT, for example,
then we could not use the GET command. Experi-
ment using OPEN with its associated commands and
you’ll soon become proficient in the mysterious

world of ATARI 1/0.

How DDD uses IOCBs.

This utility opens 2 IOCBs. IOCB 1 is opened for
output to the printer in LINE 220, and IOCB 2 is
opened for disk directory input in LINE 230. The
filename to get has been set to “D:**”’| since we want
to see all of the files. DEV$ is simply set to *“P:"’ for
the printer. I also set all my codes to constants for
easier reading. The values can be found in LINES
115-125.

With these two IOCBs open, the rest of the utility
is a snap. We input a file name in LINE 380 and
output it to the printer. A nice thing about the direc-
tory input command is that it also returns the num-
ber of FREE SECTORS after the last filename has
been input. LINE 385 checks for this and routes us
to LINE 420 when we are done. Another item to
note is that the printer now recognizes **;”” and *,”’ so
that we can format our output. LPRINT, under cer-
tain circumstances, will recognize these two charac-
ters, but it’s best to open a channel to the printer and
do a PRINT # instead.

The remainder of the utility performs error checks
and issues prompts for the user. All of the major
sections have been block commented and should
present no major problems when you try and figure
out what is being done.

How to use it.

Type in the listing and save it to your disk. You can
now RUN the program. If you forget to turn on your
printer or disk, you will be razzed until you do. Just
follow the prompts and you’ll soon have a listing of
all your directories. You can even print a title (18
characters max) for each of your directories to help
jog your memory.

One last note. If your printer doesn’t support the
expanded print mode, then you must change LINE
305 by deleting the ESC/ESC/CNTL N sequence
and also deleting the “*2)” from the centering cal-
culation. If you have an EPSON printer, just change

the code for expanded print to the appropriate
code. OJ

18 REM

15 REM ¥ UTILITY H4 *
28 REM * DISKCAT VER.1 *
25 REM ¥ BY TONY MESS5INA *
39 REM * FOR A.N.A.L.0.G. COMPUTING *
35 REM

48 REM ¥

45 REN 3BEHHGO6HH00BE0O00EE

50 REM ¥ MAKE SCREEN TITLE ¥

55 REM ¥BOH06HEHOHOCOBOHOHE0E

650 REM *

65 GRAPHICS Z2:5TART-PEEK(568) +PEEK {561
IX256:POKE START+9,6:POKE START+18,6:P
OKE START+11,5
78 POKE 712,326P065171$,é2 —
2 sy = 52 HE H
Dﬂs[ﬁ IDEr] EuEP":? BE YW ==moo=srosc=
Hi? #e;" B

85 7 BB =CSccooooCostnessoEE"

98 REM ¥*

95 RENM 06000EH006HE6E0HE

188 REM * UARIABLE INIT %

185 REM BE006G00RRHO0O0E

118 REM *

115 DIM DEVS(2):DIM TAB5(48) :DIM DIREC
TORY5(5) :DIM FILENAMES (192 :DIM ANS5(1)
128 DIRECTORYS="D: % ¥':TABS="

1725 DISK=2:PRNTER=1:DIRTAB=16:COLWID=4
B:0UTPUT=8:NULL=8:DIRIN=6:COUNT=3:5PAC
E=3

138 REM *

135 REN ¥M6660HC0OHEOOE0OE0E

148 REM * GET USER INPUT ¥

145 REHN 306E060E6ECO0EECOE000E

158 REM *

155 2 "R"

168 DEUS="p:":TRAP 585:7 "[HiINI[AL
[CTBGEEETDY ' INPUT WIDTH

%35 %5 WIDTH{($48 AND WIDTH{>88 THEN GO
1

I;gSIF WIDTH=88 THEN COLWID-WIDTH:GOTO
175 DIRTAB=1:COUNT=2:5PaCE=2

i8a 7

185 REM

198 REM BO6HHEEOHEOOHOCOR0EE

195 REM * OPEN DEVICES FOR X

7208 REM ¥ INPUT/0UTPUT *

2085 REM B66OEHEE0EROCHEOEO00E

2180 REM %

215 TRAP 495:LPRINT

220 OPEN H#PRNTER,OUTPUT,NULL,DEVS

225 TRAP 568

238 OPEN #DISK,DIRIN,NULL,DIRECTORYS
235 REM *

2408 REM ¥EHOOGHG00C000OHE0006066E

245 REM #* AS5K FOR HEADER NAME *

2508 REM 306E6GHEE0O00HEOOHOHO000E

255 REM *

gggs? ST ETER SN ; : THPUT FILEN
265 IF FILENAMES='"" THEN FILENAMES="-D
EFAULT NAME-"

278 REM *

2808 REM »* PRINT TITLE OUT *
REM IEE0E0CH0EEE00000E

298 REM ¥

295 IF LENCFILENAMES)>18 THEN GOTO 510
a8 TRAP 518

285 PRINT HPRNTER; TABS (1, INT{(COLWID-(
LEN(FILENQHES)*Z))/Z));"‘_"'FILENQMES

318 7 UPRNTER:? ﬂPRNTER;TﬁBg(l,DIRTQB)

315 REM ¥

X268 REM HEEOCHOOOOO0OOO0OE

325 REM ¥ PRINT COLUMN ID *

230 REHNH MEOECHEREC00EE

335 REM *

348 FOR HEADCNT=1 TO COUNT:7? HPRNTER;"
FILMAME/EXT LEN";TABS(1,5PACE]; :NEXT

HEADCNT : 7 HPRNTER
245 7 HPRNTER:? HPRNTER;TAB5(1,DIRTAB)

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 65

358 REM *

355 REM OO M0 30O
360 REM ¥ GET FILENAMES AND PRINT *
365 REM E066H00C0EG0000OGOE0OECO0M
378 REM *

375 FOR X=1 TO COUNT

3868 INPUT HDISK,FILENAMES

385 IF LENC(FILENAMES) {17 THEN 7 HPRNTE
R:7 HPRNTER;TABS {1, ({COLHWID-16)/2)-1);
FILENAMES:GOTO 428

398 7 UPRNTER;FILENAMES;TABS (1,5PACE);
NEXT H:GOTO 345

335 REM *

4008 REM 3OEEHOOOECOOEEOOGE00O00E

485 REM ¥ CK IF USER WANTS MORE *

418 REM IEGEGHOOCOO GO0

415 REM *

420 CLOSE MDISK:CLOSE HPRNTER

425 7 "GV IRGITNEEOE ; : INPUT ANSS
438 IF QN5 YT AND ANSS{>"N'" THEN GO

TO 428

435 IF AWSS="N" THEN ? “[RCDILTMNETE:
GOTO 468

LY RARLIISE SAME PARAGMETERS (Y/N) ST
PUT ANS

445 IF ANSS<{>"Y" AND ANSS<>“N** THEN GO
TO 440

458 IF ANSS5="Y" THEN GOSUB 498:GOT0 22
8

455 GO5UB 438:RUN

468 END

465 REM ¥

478 REM IDGHOCGOHGHOOOEOGOO0OE0EEE

475 REM ¥ ERROR TRAPS FOLLOMW ¥

480 REM 336O606G0060006000000CHE0E

485 REM *

ER AR I TNSERT NEM DISK AND HIT <SRETHR
CEEALS ; : INPUT ANSS:RETUR

TEEEESRALPRINTER DOES OT RESPOND ! | KagiH
070 168

568 7 "RUFETY DDES NOT RESPOND ! | R N R i1
E ﬁPRNTE"GOTO

2 e INPUT ERROR (ONLY NUMBERS PLE#

HSW:60T0 1
sm RN & ME TOO LONG! | ARSI MAR LENGT

[EEEWis":GOTO 268

CHECKSUM DATA
(See pgs. 7-10)

i6 DaTa 771,6,123,386,973,798,73,36.95
7,38,77,571,96,789,414,6186

85 DATA 336,83,555,565,775,274,626,478
,181,288,6068,328,683,286,382,6406

168 DATA 891,741,931,154,989,360,43,94
e,821,29,276,732,876,711,271,8631

23S DpATH 287,288,220,291,293,179,615,2
94,811,693,814,30868,828,765,370,6988
X198 DATA i65,283,733,563,796,289%,683,1
§8,298,366,588,36%,296,778,666,7612
385 baTh 23,135,387,293,438,.296,285,96
5,318,322,55,17,334,135,534,4457

468 DaTa 50,306,117 ,84,120,3086,488,484
,898,979%,588,4326

Rainbow Demo

5 Sg;COLOR 2,8,8:PO0KE 752,1:PRINT CHRS

DIM C5(24)

FOR I=1 TO 24
REaAD D
C5(I,IY=CHRS (D)
NEXT I
D=USR(ADPRICS1)
END

igﬁlngﬁ 162,0,173,11,212,201,32,288,2
116 paTa 18,212,142,24,288,232,232,288
s 246,142

128 baTa 24 ,208,240,232

CHECKSUM DATA
(See pgs. 7-10)

S5 bATA 557,836,236,324,3066,388,233,255
(645,111, 599 4476

PAGE 66 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

BURP!

16K Disk
by Charles Bachand

Over the years, we have all run across diskettes
that just would not format. This was probably due to
a scratch or dent on the disk surface, and even
though the ATARI 810 disk drive returns the
addresses of bad sectors to the computer (Huh, I
didn’t know that!), the disk operating system makes
no use of them. Well, how would you like to be able
to use those disks that up until now you have been
feeding to the trash? '

BURP (Basic Unusable-disk Reclaimer Pro-
gram), is a machine language program that patches
itself into DOS’s disk formatting routine. Being an
AUTORUN.SYS file, it is loaded when the
computer is first powered on and is essentially
transparent to the user. The only programming
limitation is that no other program can reside within
the address space $600-$694.

There are a couple of limitations involved in using
BURP:

1) The program will still return a bad sector error
and abort if any bad sector is in the space taken up by
the disk directory (sectors 360-368) or the disk boot
(sectors 1-4).

2) Do not save DOS out to a disk after BURP has
run without also saving a copy of the
AUTORUN.SYS file containing BURP to the same
disk. The DOS will have been patched into BURP,
and without BURP itself loaded into memory any
attempt to format a disk will end with DOS dying a
terrible death! (In other words, it bytes the dust.)

BURP is divided into three sections. The first is a
group of patches that load into the exisiting DOS.
These patches wedge BURP into the Disk Operating
System, and reduce the error retry count to allow
the OS to say “I give up!” a lot sooner.

Next follows the main section of the program that
converts the bad sector numbers returned by the 810
disk drive into the corresponding bits of the disk
directory’s Volume Table Of Contents (VTOC).
The VTOC has a bit for every sector on the disk. If a
bit is on (1), this tells DOS that it may store data in

that sector; no other file is currently using it. It also
follows that if the bitis off (0), the sector is currently
in use and should not be touched.

We next compare these bits with those of a freshly
formatted disk. If the bit is on then BURP will shut it
off to mark it as being in use. However, if it was in use
to begin with, then we are in trouble and BURP will
produce a bad sector error.

The last part of the program will check the number
of sector errors on the disk. If there were no errors
encountered, the program merely writes the first
directory sector. Otherwise, we build a fake file entry
with the name “Bad Sectors” and a length of the
number of bad sectors. This entry is used as a flag to
identify which of your disks caused problems.

The completely documented Macro Assembler
listing follows, as well as a BASIC program to
generate BURP.

There are two more limitations of this program
that have surfaced. The larger of the two problems is
the fact that it will not work with Percom disk drives.
This is due to the fact that the Percom drive does not
return bad sector numbers to the operating system if
it cannot format a disk. The second problem shows
up if you try to duplicate a disk using DOS option
“J.” DOS 2.0S copies all sectors whose correspond-
ing bit in the VTOC is set, it will try to copy the bad
sectors which it cannot do. It will instead issue an
error message. A way around this would be to copy
individually every file on the disk.

To generate the BURP program and have it
SAVEd to a file, run the BURP maker program
written in BASIC. The object program will be stored
on file D:AUTORUN.SYS, which will automatically
load the program after DOS is loaded.

If you want the option of using BURP or not using
it, simply change the file name specified in the
opening statement to something other than
D:AUTORUN.SYS. To run BURP now, it will be
necessary to call up the DOS Menu and perform a
binary load from your chosen new file. O

VOL. 1

THE A.N.A.L.O.G. COMPENDIUM

PAGE 67

BASIC Listing.

1886 REM ¢+
i1i8 REM B
128 REM R
138 REM
146 OPEN
158 TRaAP
168 READ
178 CLOSE
268 Data
218 DaTA
2208 Data
238 DATA
248 DAThH
258 DaTa
2686 baATA
278 DATAH
288 baTa
298 DATA

++ BURP +++4
ASIC UNUSEABLE-DISK
ECLAIMER PROGRAOM

?;68,8,"D:QUTURUH.5Y5"

A:PUT B#1,A4:6G0T0 168

#i:END
255,255,148,7,141,7,169,8
76,13,78,13,76,82,13,142
13,144,13,32,8,6,165,13
169,13,2068,248,32,181,6,0
6,144,6,169,0,141,148,6
141,147,6,172,147,6,177,71
141,145,6,200,177,71,141,146
6,208,281,255,288,8,2085,145
6,208,3,76,149,16,148,147
6,169,08,160,3,78,146,6
116,145,6,106,136,208,246,42
42,42,42,168,169,8,56, 186
136,16,252,178,173,145,6,185
18,168,138,49,69,288,5,104
184,76,181,18, 138,81,69,145
69,168,3,177,69,56,233,1
145,69,238,148,6,76,8,6
172,148,6,240,21,162,10,189
134,6,9,128,157,6,28,282
16,245,169,96,141,1,28,148
2,28,32,113,16,76,25,18
96,66,97,168,32,83,101,99
116,111,114,115,224,2,225,2
133,86

CHECKSUM DATA
(See pgs. 7-10)

iee paTa 347,185,821,83,288,726,842,13

4,963,782

,486,978,524,825,266,8154

278 baTHA 5,7,697,221,975,239,813,55,76
1,548,9,748,798,585,21 ., 6482
428 DATH 948,748,1688

®
: BURP
: Writt
- This
: ATARI
3

H

. Note:
H

H

y

)

i

3

VTC =
BAD =
WRTDIR =
WRUTC =
DELDOS =
ERDBAD =
DIR =

Assembly listing.

- Bad Disk Reclaimer Program
en by Charles Bachand

rogram patches itself into
950339 2.8 to allow for the

formatting of physically damaged
and previously unuseable diskettes

This program will not allow

the formatting of a disk

with dmaged isk boot sectors,

gro damaged directory sectors.
rry.

System Equates

$435 sdirectory’s VTOC pointer
$47 ;bad sector buffer pointer

41871 jwrite directory sector

$1895 ;write volume table of contents
$1219 ;set no DOS)
$12B5 ;normal bad disk sector exit
$1481 ;file directory buffer

BOSLP

BOCONT

BS1

BS3

-BS4

Patches to DOS 2.68S

ORG
LDA

ORG
JHP

ORG
JSR

ORG
BNE
JSR

$878C
10
$8D4C
$8052
$8DBE
BDS
$8DAT

$8DIF
WRTD8

;no retry on errors
sbypass bad sector errors
;patch new error handler

;do all but first sector
jwrite first directory sector

Routine to mark bad sectors as being
in use on the disk’s VTOC. Patched into
the DOS at address $8DSE.

ORG

$8480

0
BADCNT

BOSPT
BOSPT
(BAD) Y
BSNUM

(BAD) ,Y
BSNUM#

HSFF
BOCONT

BDCONT
BOSPT
fe

43
BSNWM

BSt

-4 g >>>D>

BS3
BSNUM
#1e

(V1) ,Y
BS4

ERDBAD

(VTC),Y
(UTC) Y
43

(VT Y

i1
(UTC) Y

BaDCNT

BOSLP

;swe had to put it someplace!

sinitialize

;bad sector counter

;and bad sector index
;1oad index

;oet bad sector (low)
jstore it for later
sincrement pointer

;get bad sector (high)
jstore it too)
;increment pointer again
send of data?

;No. not yet

;is low byte $FF?

;No. not at end yet.

jYes. Write VTOC

;save index

jZero accumulator

;shift sector number

;3 bits to the right
sthrough high and low bytes
jrem goes in A as XXX0888e
jdecrement count

;Done 3 times? No.

;Yes. rotate a left 4
;times, so that it will
shave data in low bits
sand look like 88888)XXX
juse value as counter
;Zero accumulator

jset carry ﬂa%

sjrotate carry through Acc
sdecrement counter

At Y/th position? No.
;Yes, save bit mask in X
;get byte number

;add offset to sector map
suse as VTOC index

jget bit mask back

$AND wi th UTC

;Bad sector in use? Ne.
$YES! We are in trouble!
spull return stack address
;and report error condition
;jget bit mask again
;invert allocation bit
;and store it back in VTOC
spoint to free sectors
soyte in VTOC

;set carry for subtract
;jdecrement number by one
;save it out again
sincrement bad sector count
;loop back and do it again.

I+ no bad sector errors, then Jjust write
out the first directory sector to disk.

PAGE 68 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

; 14 there are errors, we will put a file
; entry into the direCtory teiting how many
: sectors are bad and then write it to disk.

WRTDB LDY BADCHT ;get bad sector count

BEG NOERRS ad sectors? NO.

LDX #18 .Yea File name to entry
MOVFN LDA BADFN,X ;#rom BADFN -

ORA #430 yinverse video, WOW!

5TA DIR45,X tn directory buffer area

DEX 'decrement counter

BPL MOVFN Done 11 bytes? No.

LDa #5450 ,mark file as locked

STA DIR ;and in use

sTY DIRt! ;store bad sector count
NOERRS JSR WRTDIR ,urlte sector to disk

JMP DELDOS :mark disk with no DUS

RETURN RTS jreturn atter patching

BADFN DB ‘Bad 57 ;file name used to mark
DB ‘ectors’ the disk as damaged.

BSNH DS 2 ibad sector number. .
BOSPT DS 1 ;bad sector pointer
BADCHT DS { ;bad sector count

END RETURN ;iust return after Toading

Swirl Demo

C=@:0=1:5ETCOLOR 1,5,5:DEG
HI-808:YI=56:GRAPHICS 23
PLOT XI,YX
FOR I=i TO i8@88 STEP S
Q-0+1:IF 0>3.5 THEN 0=1
COLOR Q:R=I/18:T7T=I
H-R®COS(T) : Y=R¥ESIN(T)
IF Y+YI{@ THEN 148
PLOT HEHI,Y+YI
ZC(I+0) /16#COS(I+C+98)
Y= (I+C) /16HS5IN(I+C+98)
DRAWTD H4HI,Y+YI
NEXKT I
SETCOLOR 2,8,2:SETCOLOR 1,8.,5
SETCOLOR :GOSUB 216
SETCOLOR :3ETCOLOR 2,8,5
SETCOLOR :GO5UB 210
SETCOLOR tSETCOLOR 8,8,5
SETCOLOR 2, :GO05UB 218
GOTO 1480
FOR K=1 TO 13:MEHT K:RETURN

CHECKSUM DATA
(See pgs. 7-10)
18 patTa 977,537,75,338,279,7,362,850,4

82,117,132, 836 737 378,877, 6968
168 paTh 373 886 3?6 895 69? 163,339%8

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 69

THEBLACK RABBIT

48K Disk

by Brian Moriarty

Let’s face it. Backing up disks with a single drive is
a dull and time-consuming chore. Even with a 48K
system, ATARI DOS will make you swap at least
three times to copy a reasonably full disk. And then
there are those disks DOS won’t copy — boot-load
programs, Letter Perfect files, FORTH screens,
anything recorded with a non-DOS file structure.

One day I got sick of disk-swapping and decided to
write a more efficient disk backup system. I wanted
to be able to duplicate all 720 sectors of a disk with
no more than two read/write passes. To accomplish
this,I had to find a way to cram 360 sectors worth of
data into RAM at once — 46080 bytes!

A 48K ATARI contains 49152 bytes of user
RAM. But the first four pages (1024 bytes) are
reserved for use by the operating system ROM
routines. A graphics mode O screen and display list
require an additional 993 bytes. This leaves a
maximum of 1055 bytes for the disk copier.

The Black Rabbit fits into this cramped space with
room to spare. Version 2.0 features simple one-
button operation with audio/visual prompting,
automatic formatting of the destination disk and a
“Visible VTOC” (Volume Table of Contents) that
lets you check the distribution of data on the source
disk and monitor the progress of the copy. It “‘skips
over” empty sectors and will not crash if it
encounters an unreadable sector.

Typing it in.

Listing 1 is an ATARI BASIC program that will
create an auto-booting image of the Black Rabbit on
any disk. Listing 2 is the assembly-language source
code, created with the MAC/65 Macro Assembler
by OSS. This listing is only provided to show you
how the program works; you do NOT have to type it
in to use the Rabbit.

Enter each line of the BASIC program carefully.
Be especially careful with the DATA statements in

2.0

lines 1000-1290. When you're finished, LIST the
program out to disk and use D:CHECK2 (see page
9) to verify the accuracy of your typing. Use the
following procedure to write your copy of Black

Rabbit 2.0:

1. Load the BASIC program into memory and type
RUN. The line numbers between 1000-1290 will be
displayed as each DATA statement is checked. If bad
data is encountered, the program will list the line
containing the error and stop so that you can correct
it. Re-RUN the program until all data lines are
thoroughly debugged.

2. You will next be prompted to insert a blank disk
into drive #1. Make sure this disk contains no important
programs or data, because it is about to be completely
erased.

3. Press the START key. The destination disk will
be formatted and a copy of the Black Rabbit will be
written out to the first six sectors. An error message
will result if the disk is write-protected or cannot be
formatted.

4. The prompt “Rabbit disk okay’ means success!
Remove the Rabbit disk from the drive, replace it
with one of your regular DOS disks and SAVE the
BASIC program. You can use it to make extra back-
up copies of the Rabbit.

Rabbit, Run.

Now it’s time to test the Black Rabbit. Re-insert
the Rabbit disk in drive #1, turn off your computer,
let it rest for a moment and turn it back on.

If you see “Remove cartridge; requires 48K
RAM?” on your screen, you forgot to remove the
BASIC cartridge. The Black Rabbit needs every byte
your computer can spare, and the cartridge de-
selects an 8K block of RAM. So pull the cartridge
out and power-up again. You should now be looking
at the Rabbit’s title screen (Figure 1).

PAGE 70 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

by Brian Moriarty
Insert SOURCE disk, press

Figure 1

The 18x40 dot matrix on the bottom half of the
screen is the Rabbit’s “Visible VTOC.” Each dot
represents one of the 720 sectors on a standard
ATARI disk.

Put the disk you want to copy into drive #1
and press the START key. The drive will begin
spinning and you will hear the familiar beep-beep-
beep of sectors being read into memory. As each
sector is read, the corresponding dot in the Visible
VTOC will change to a different character:

O indicates a data sector
0 indicates an empty sector
? indicates an unreadable sector.

The Rabbit will beep again when his memory
buffer is full. Remove the source disk, insert a blank
copy disk and press START. Your copy disk will be
formatted and the source data will be written out,
one sector at a time. Each written sector will change
its corresponding dot in the VTOC to an inverse dot
character. Note that the Rabbit always uses the write-
with-verify function of the 810 disk drive. It’s slower
than writing without verify; but more reliable.

The prompt “Insert source disk, press START”
will re-appear at the end of the first read/write pass.
Repeat the procedure outlined above. At the end of
the final read/write pass, the Rabbit will offer to
make another copy. Press START to re-run the
Rabbit or press OPTION to boot the copy disk.

Empty and/or unreadable source sectors do not
take up any memory in the Rabbit’s disk buffer. So if
the source disk has lots of empty or bad sectors, the
Rabbit may be able to duplicate the whole thing with
a single read/write pass. [n any case, it will never take
more than two swaps to copy an entire disk. (]

Listing 1.

1649 REM SO NOOENERERHO0HE
i18 REH ¥ BLACH RaBBIT 2.8 HAKER ¥
iZ6 REM ® BY BRIAH MIRTARTY ¥
138 REM ¥ ANALOG COHPEHDIUM U. 1 23
148 BFEH MEMEERECH R OO I e
i%59 REM

168 CLR :DIM BUFSI{7E8I.ML5(42:FOR I
T“ 4:REQAD BYTEIMLS (I} ZCHRS (BYTED (NEXT

POKE 752,11

178 BUFS (L= HSFf(7632:”*“'RUF$f?2:

BUF5:7 “"REYerifying 2474 lines.' 17 'R

padinhg Line *';

188 B-0:TOTALTB:LINEZ998:RESTORE 10808:
TRAP 258

129 LINECLINE+!18

2089 POSITION 15,3:7 LIME

218 FOR I=1 T0 25:8B=B+1 READ BYTE:TOT&

LoTOTAL+BYTE (BUFS{B, B3 OHRS(SYTEY 1 HERT
I

270 IF PEEE{i1BIXIIS6¥PEEN(I843{0LINE 7
HER 27 "™4Line *;LIME:"missing.'' (END

2IB REAQD CHECKSUMIIF CHECKSUM=TOTAL TH
EN 178

248 G070 160

258 POKE 752.8:IF PEEKL13534>6 THEH 36

8

68 7 }DATA lines veraified.":? "$41Inse
rt a blank disk in Draive Hi.*

276 7 "iPress EEEEE to write disk.(3¢
288 IF PEFEK(5I27324{35 THEN 28@a

238 POXKE 78%,1: PGKF F28,33:7 “JFormatt
ing disk.'"':¥= USR{Q&R(HIJ‘)

Ia9 IF PFEKL77134>1 THEN ? “"KiFarmat @
rrorit:? Remove wréte—protec! tab or®
17 Ureplace disk.T:GOTO 278

Fi8 7 “jHriting data. i POKE 778 .87 :POK
E 779 A:BUHFFERC QDR(BU 53

329 FﬂR JECTOR 1719 &

I3I8 POKE F73,5ELTOR:POKE 773 ,INT(BUFFE
R/2563 : POKE 772 qﬂFFER*fESS*PTEK’?’a))
THTUSRCADRINLS))

3489 BUFFER-BUFFER+IZE:HEKT SECTOR

A58 7 “iRabbit disk okay.":EHD

60 7 “Bad data at line JU;LIHE:LISTY L
INE:EHWD

X700 daTh 164,76.83,228

Z80 REM ¥ M/ DaT4H

16490 LaTa 8,5,1728.4.134,4,169,8,168,14

5,94,32,77, , 185,186, ?91 192,176,12.16

9,158,133,134,169,2582

1818 daTa 6,32,131.5.?6,15?,4,162,9,14

2,196,2,434,129,134,131,142,68,2,232,1

34,128,134,138,134,5138

1920 dOTH 9,142,1,3,.134,144,24,165,83,

185,239,133,136,133,138.165.,89,185.9,1

33,137,13%,139,32,77,7734

1838 »a7T4 6,169.1%2,137,134,163.,6,32,1

31,6,%4,165,88,185,172,133,1468,144,2,2

36,141 ,2368,136,288,2,10584

1040 DAaTA 239,133,162,2,168,8.169,.14,1

45,138,3808,£92,248,298,243,24,165,138

185,240,133 ,138,144,2,220,14151

1658 paTa 139,2082,16,231,32,142%,6,24,1

65,1%65,194,128,123,238,165,137,101,129
153 139 169.226,133,134,16%,17188
1a60 DaTA 6,32,131,6,32,91.5,169,82,14
1,2,%,165,128,141,168,3,165,129,141,11,

2,32,83,228,19328

1678 pata 173,3,%3,16,4,169,31,.2688,15.1

60,127,177,132,288,7,136,16,243,169,16

»208,2,16%,128,133,2137%

1888 Dava 147,168,8,132,77,145,133,238

£138,288,2,238,13%,230,128,288,2,238,1

23,165,12%2,281,2,288,6, 25359

1638 DATH 165,128,201 .209,248.31,165,1

43,281,128,288,181,24,173.4,3,1085,128,

141,4,3,133,132,173,.%5,28387

11886 batTa I,185,8,141,5,3,133,13%,281,

188,298,156,24,165,136,181,1368,133, 131
y169,137,461,131,133,139,.31296

1118 bala 169,4,3132.13 2,2,32,131;6
2 32,31,6,198,144,268.,3 +586,6,169,23
»141,2,3,32,32276

1129 b4G7QA 83,228,173,3,.3,3281,1,2406,14,

169,72,133,134,16%,7,32,131,6,.32,31,5,

248 ,224,32,143,35843

1139 pavta 6,169,87,141,2,3,165,136,141

+18,3,165,131,144,12,3,160,8,132,77,17

7,138,133,143,281,38312

1148 DaTA 125,288,5,32,83,.2258,48,251,1

69,142,1568,0,145,138,2308,138,.288,2,230

(139,2364,139,283,2,229,41735

1159 paTa 131,i65,131,281,2,2988,6,16%5,

138,281,2089,248,36,165,143,281,128,7288

2193,24,173,4,3,1985,128,45898

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 71

8 DATA 141,4,2,.173,5, 3,195,8,141,5,

281, 188,2&8,172 76,1,5,169,38.133,13

89.7,32 47286

8 DatTa 171,6 173,31,208,281,6,748,1

a1, 3,208,245,32.1;3 &, 76 119,228,372

3, b 76,160,4,43854

8 DaTa 163.9,141,4,3,169.45141,5,3,

?4,165,88,105,42,137,148,165,872,185

1’3 141, 96 52615

58 DATA 169,1086,141,8,218,16%,178, 14

718,169,8,133,20,165,28, 281, IS,LBB

5,!55 a, 141,;.219 55878

a4 bata 173 3i1,288,261,6,208,249%,173
,208,28%,72, 288 249,96,133, 135 lbﬂ 3
134, 145 id48,136, 16,58456

DAaTa 249,96, 163, 128,133,137,141,4

3,7,133,133,141,5,3,96,56,191,189

118,181,86,99,68317

paTA 27,114,116 ,114,185, 198,183,

8,114,4681,3113,117,1085,114,181,11

4, 43 8,58, 33,6?344

LE: 45,16;.:36.225 227,235,128,1

276,226,233,744,128,146,147,144

21,

T

7,
&
’

N:\!
IR -

8 34,114,105,97,66563
] 115 Q 45,.111,114,185,97,114,
4;,110 115.181 114,116,0,51, 47
35,37, 6 166 62465
até 165 15,187,47,8,112,114,1981
,115 a, 1?9 ‘85 161 178,186,6,6,08,4
6,115, 191 114, 116 78837
1
2

r
]
’
i
a
i,

(L TS-T 8
c&wwa

DatTa 6,ud;4?;48,5?,9;189,195,ii#;
12,8,112, 114.191 115,115,6,17%,18¢8
61 1?8 i86,8,8, 72893

115 111,8, 114 181,13 114 117 116,12,9,
175, 176,189,169,175,75459

1788 DaTa 174,.8,116,114,8,98,3111,111,1
6,8,50,181,142,168,97,99,181,8,38
6,8,35,77294

TA 47,48,57,6,166,1085,115,187,1
2,114,161 ,155.115,08,179,188,161,
.8,6,8,8,73326

Qh:ﬁ

CHECKSUM DATA
(See pgs. 7-10)

ien paTh 529,353,257,477,551,89.8%98,13
X,283, 49L,~”5 174 817, 123,719 5898

Zﬁﬂ DATH 219,811, 716, 854,128, 2?4,351 7
88,5%7,782, 385, 2;1.816 484,37,.81

1618 DATA 166, 399,388,885, 148, ‘86 481,
553,68%,346,564, 8;.,?5,559,?85 7787
1158 pata YS" 84.686,352,37, 172,294 893
8,26%2,573.939,284, 656 993, 6479

Listing 2.
B100 1 FEEERXIREXITHEARREIRAS
6118 ; # Black Rabbit 2.8 %
@128 i FEEREFERRRRERERERRERS
a138 ;
8146 ; Highspeed sector copier
8158 ; for single-drive systems
8148 :
8178 : by Brian Moriarty
g}gg ; ANALOG Compendium Yolume 1

8208 i : 05 disk handler equates
8218 ;

8228 DEWNLM = $8381

8238 DCOMND = 46382

8246 DSTATS = $8283

82568 DBUFLD = %6304

8268 DBUFHI = 48365

8276 SECTLO = 6364

8286 SECTH] = $830B

8298 DVSTAT = $82EB

8308 DISKIO = $E453

8318 ;

8326 ; Disk handler commands
8330 ;

8340 READ = $52

8336 WRITE = $57

8368 FORMAT = $21

8378 ;

8388 3 Misc. system equates
8398 ;

8466 COLDST = $8244

8416 BOOT? = $89

8428 SAVMSC = $38

8438 COLORZ = $82C6

8448 OLDADR = $5E

8458 CONSOL = $DBIF

8448 RAMTOP = $6A

8478 AUDF1 = $D288

8488 AUDCI = $D261

8498 RTCLOK = $14

8508 ATRACT = $4D

8518 COLDSV = $E477

8528 ;

gg%g ; Internal program equates
8558 RTOTAL = $88

8568 WTOTAL = $82

8578 BPOINT = 384

8588 PPOINT = $86

8598 SCREEN = 488

8408 UTOC = 484

8418 LINE = $8C

8426 SAVEY = $8E

8438 SBYTE = $8F

8448 FFLAG = $98

8458 ;

8868 3 Characters for "Visible VTOC"
8470 ;

8488 DOT = $6E
8470 DATA = 480
8700 BAD = $1F

8718 WRITTEN = $8E
8720 NOTHING = $i6
8730 ;

8748 ; Memory usage
8756

8748 DUMHY = $8400
8776 ORIGIN = $8480
8788 BUFFER = $8788
87908 ;

Dummy buffer
Program start
Data buffer

P L

1
agee #= (RIGIN
8818 ;
8826 ; 6 bivtes to control boot-up
8836 :

8848 .BYTE $08,%86 : # boot sects
9856 .BYTE ORIGING235,0RIGIN/256
gggg .BYTE ENTRY&255,ENTRY/25¢

8888 ENTRY

8876

8908 ; Init screen line pointer
8916 ;

@926 LDa #@

8930 TAY

8948 STA (OLDADR),Y ; Kill cursor
8950 JSR TOPLINE

; Check for 48K RAM

@996~ LDA RAMTOP

108 CMP #$C8 5 $C8 = 48K
1018 BCS RABBIT ;) OR = 48K

Print RAM warning

(e~
~O
~
-]

o aw e

b
=
(2%
(=~
- .

PAGE 72

THE A.N.A.L.O.G. COMPENDIUM

1850 LDA MIARNING&2SS

1848 STA PPOINT

1078 LDA MIARNING/256

1680 JSR MESSAGE

169 ;

1188 PREEZE N

1118 JMP FREEZE ; Infinite Toop

1120 ;

1138 : FHEOREEEHEEE R
l
!

1148 ; ® Initialize R/ *

1150 3 FHEREREEEREEERERIRER

1148 ;

1178 RBBIT

1188 o _
1198 ; Initialize important things
1260 ;

1218 LDX #8 ; Black

1220 STX COLOR2 Back round
1230 STX RTOTAL+1 Clear MSB
1248 STX WTOTAL+1 ‘ Ditto

1258 STX COLDST ; "Coldstart flag
1240 INX i X=1

1278 STX RTOTAL i L5B
1286 STX WTOTAL ; Ditto
1298 STX BOOT? j Boot flag
1308 STX DEUNUM ; Drive ¥
1310 STX FFLAG ; Format enable

Setup JTOC screen pointer
1350 CLC

1348 LDA SAMSC ; Addr of screen
1378 ADC l239EN 6 lines douwn

-
(74
L
=
o an

1398 5TA VTOC
1488 LDA SAMSC+!
1418 ADC #8

1420 STA SCREENt!
1436 STA VTOC+!

1450 3 Print title

1478 JSR TOPLINE
1488 LDA #TITLE&235
1498 STA PPOINT
1588 LDA 8TITLE/256
1518 JSR MESSAGE

1538 ; Reset screen pointer

1550 CLC

1548 LDA SAWMSC

1378 ADC #122 5 X=2, Y=3
1580 STA LINE

1396 BCC DODOTS

1488 INC LINE+!

1428 3 Init UTOC display matrix

1640 00DOTS

1658 INC TOC
1648 BNE MATRIX
1678 INC UTOCH

1488 MATRIX

1699 LDX 42

1789 LOOPY

1718 LDY 8

1726 (DA 4D0T
1736 LOOP2

1748 STA (VTOC),Y
1750 INY

1768 CPY %248
1778 BNE LOOP2

CLC
1798 LDA vTOC
1808 ADC #240
1818 5TA VTO0C

1826 BCC MORE
1838 INC VTOC+!
1848 MORE

1830

DEX
1848 BPL LOOP1
1878 ;
1888 ; EXEXXXFERAAFERRREE
1898 ; ¥ READ Routine #
1900 ; EXEERXEREXERERRIEE
1918 ;
1920 READER
1938 ;
{ggg ; Reset buffer addr pointers
5
1940 JSR REPOINT
1978
1988 ; Update VTOC pointer

b
2000 CLC
2016 LDA SCREEN
2028 ADC RTOTAL
2038 S5TA VTOC
2048 LDA SCREEN+1
2058 ADC RTOTAL+!
2068 STA VTOC+1

2080 : Print READ prompt

2108 LDA #RPROMPT&255
2118 STA PPOINT
2128 LDA ¥RPROMPT/256
2138 JSR MESSAGE

2158 JSR WAIT ; START Key

2178 LDA HREAD
2188 STA DCOMND ; Set READ mode

b)
2208 ; RRERRXXERRBERRRAZRRRRER

2218 ; ¥ Start of READ loop *
2228 3 BEEEERERECEREERERERNTEE

2248 RLOOP

1
2268 ; Update sector #
2278 ;
2288 LDA RTOTAL
2298 STA SECTLO
2308 LDA RTOTAL+!
2318 STA SECTHI

2338 JSR DISKIO ; Fetch sector
2348 LDA DSTATS i ; Check status
2358 BPL SgggTAT Branch if okay

LDa #
2379 BNE SHOWSTAT
2338 . Check sector data for status

3418 SecsTaT

2428 LDY #$7F

2438 NEXTBYTE

2448 LDA (BPOINT),Y

2458 BNE DATAID

2448 DEY

2478 BPL NEXTBYTE

2488 LDA #NOTHING

2498 BNE SHOWSTAT

2588 DATAID

2518 LDA #DATA

2528 SHOWSTAT

2538 5TA SBYTE

2548 LDY #8

2358 STY ATRACT ; Attract off
2548 STA (VTO0C) Y

2578

2583 i Update UTOC addr pointer

VOL. 1

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 73

2408 INC VT0C 3388 ; Check for okay format
2618 BNE UPCOUNT 3398 ;

2629 INC VTOC+! 3480 LDA DSTATS

2638 UPCOUNT 3418 P #1

2648 INC RTOTAL 3428 BEQ NOFORM

2658 ENE SECTMAX 3438 ;

26.58 INC RTOTAL#1 3448 ; Print bad format warning
2678 . 3450 ;

2688 3 End of disk? 3448 LDA #BADFORM&235

2698 3478 STA PPOINT

2708 éECTMAX 3486 LDA #BADFORM/256

2718 LDA RTOTAL+1 3498 J5R MESSAGE

2729 {MP #3482 3508 JSR WAIT

2738 ENE DATACHECK 3518 BEQ ERASE"

2748 LDA RTOTAL 3528 ;

2758 (P #3$D1 3538 NOFORM

2748 BEQ WRITER 3548 ;

2778 ; 3558 JSR REPOINT ; Reset pntrs
2788 3 Check for data sector 3548 ;

2798 3578 LDA #WRITE

2880 DATACHECK 3580 STA DCOMND ; WRITE command
2818 LDA SBYTE 3598

2820 (HP #DATA 3400 3 FEREXATEERHHERHHRERHEER
2830 BNE RLOOP 3618 3 ¥ Start of WRITE loop *
2840 3428 i FERERHERRRIRRRRRRRRNRIHE
2858 ; Add 128 to buffer pointers 3638 ;

2868 3 3648 WLOOP

2878 L 3658

2840 LDA DBUFLE 3448 ; Update setor #

2398 ADC #3868 3678

2988 STh DBUFLO 3488 LDA WTOTAL

2918 STA BFQINT 34948 STA SECTLO

2728 LDA DBUFHI 3748 LDA WTOTAL+!

2738 ADC B0 3718 STA SECTHI

2948 5TA OBUFHI 3720

2758 S§TA BPOINT+! 3738 ; Get status of next read
2948 3748

2978 3 Check if buffer full 3758 LDY #6

2988 3 3748 5TY ATRACT

2998 [MP #8BC 3 Top of buffer? 3778 LDA (VTOC) ,Y

3808 BNE RLOOP ; No: Keep going 3736 STA SBYTE

3818 ; 3798 3

3020 3 OSRGOS 3808 ; Branch depending on status
3838 ; ¥ UWRITE Routine ¥ 3818

3049 ; FERRRREARNFRRRAAIHF 3328 CMP HDATA

3058 3830 BNE SKIPSECT ; If no data
3048 URITER 3848 ;

W78 ; 3858 OWRITE ,

3888 ; Init UTOC pointer 3848 JSR DISKIO ; Write sector
3898 ; 3878 BMI DWRITE

3108 CLE 3388 ;)

3118 LDA SCREEN 3898 ; Display write status

3120 ADC WTOTAL 3988

3138 5TA YT0C 3918 SKIPSECT

3148 LDA SCREEN+! 3928 LDA #WRITTEN

3156 ADC WTOTAL+1 3938 LDY #8

31468 STA VTOCH 3748 5TA (UTOD) Y

3178 3958

3188 ; Print WRITE prompt 3948 ; Update UTOC, WTOTAL

3198 3978

3208 LDA SWPROMPT&255 3988 INC VT0C

3218 5TA PPOINT 3798 BNE WRUP

3228 LDA #WPROMPT/254 4068 INC UTOC+!

3238 JSR MESSAGE ’ 4818 WRUP

3248 ;) 4828 INC WTOTAL

3258 JSR WAIT ; START Key 4838 BNE WSECTMAX

3268 40489 INC WTOTAL+!

3278 DEC FFLAG . 4858 WSECTMAX

3230 BNE NOFORM ; Skip 1f Pass 2 4848 LDA WTOTAL+

3298 _ 4878 (HP #3582

3388 ; Format disk 4088 BNE BUFLOOK

3318 ; 4878 LDA WTOTAL

3328 ERASE 4108 CHP #$01

3330 JSR DUMPOINT ; buffer addr 4118 BEQ FINISHED

3340 LDA #FORMAT 4128

3356 STA DCCMND ; format cmnd 4138 3 Should buffer addr be updated?
3348 JSR DISKIG ; Do it! 4148 ;

3378 ;

PAGE 74

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

4156 BUFLOOK 4926 BEEP

4148 LDA SBYTE 4936 LDA RTCLOK

4178 (HP #DATA ; Update bufadr® 4948 CHP #15 ;3 174 sec

4188 BNE WLOOP ; Noj next sect 4958 BNE BEEP

4198 ; 4948 LDA #e)

4208 ; Update buffer address 4%78 5TA AUDCE ;5 Silence!

4218 4980

4228 CLC 4996 3 Check Key

4238 LDA DBUFLO 3008

4248 ADC #s88 5616 FOLDIT '

4258 S5TA DBUFLO 5826 LDA CONSOL

4248 LDA DBUFHI 2838 CHP #6

4278 ADC #8 Je46 BNE HOLDIT 5 Pressed?

4288 STA DBUFHI 3036 LETGO

4298 J846 LDA CONSOL

4386 Buffer full? 3878 P 47 _

2638 BNE LETGO 5 Till released

4328 FULBUF 3876 RTS

4338 CMP #1460 3166 ;

4348 BNE Wi.OoP 3118 ; Print text messages

4358 JHP READER 3 Next pass 9126 ;

4348 : 513 MESSAGE

4370 7 BEREXFERXRXRHAERS 5146 5Ta PPOINT+1

4386 ; ¥ End routine ¥ 2156 LDY #33

4390 3 BEERRXRERAEERRIRY 5148 NEXTPRINT

448¢ 3178 LDA (PPOINT},Y

4418 FINISHED 5188 STA (LINE}, ¥

4428 LDA #CMPLETE&255 3196

4436 5TA PPOIN 5286 BPL NEXTPRINT

444¢ LDA #C(MPLETE/ZSé 5218 RTS

4450 JSR MESSAGE 3228 ; _

4448 DECIDE 3236 ; Set buffer pointers

447 LDA CONSOL 3248

4480 CHP #¢ ; START press? 3254 QEPOINT

4496 BEG RERUN 3248 LDA ¥BUFFER&255

4586 (MP #3 3 OPTION? 3278 STA BPOINT

4518 BNE DECIDE 3288 ETA DBUFLOD

4526 JSR LETGO 5298 LDA #BUFFER/256

4538 JMP COLDSY 3 Cold boot a3ee STA BPOINT+!

4548 RERUN 3318 STA DBUFHI

4558 JSR LETGO 9320 RTS

4548 JMP RABBIT ; Re-run Rabbit 5338

4378 ; 5340 3 BEERRRXRRRXERRXRRES

4580 3 HEOHERERERAXRAEARY 5358 ; ¥ Message texts ¥

4598 : ¥ Subroutines * 5340 1 REEAXXAFRXEFXRAFER

Q400 7 FAERXRFIFERRRRAERE 9378 ;

4618 3388 WARNING .
gégg i Point to dummy buffer gggg ,SBYTE *Remove cartridge; reguires 48K RAM®
638 ¢ i

4648 DUMPOINT 5418 TITLE

4458 LDA #DUMMY&255 2426 .SBYTE "Black Rabbit 2.8 by Brian Moriarty"
4448 STA DBUFLO 3438

4478 LDA #DUMMY/ 254 5448 RPROMPT)
4686 STA DBUFH! 3456 .SBYTE "Insert SOURCE disk, press START *
4598 TS 3468 ;

anme 3 3476 WPROMPT

321-@ ; Point to top screen line ggge .SBYTE "Insert COPY disk, press START .
P H

4736 TopLINE 5508 CONPLET

474¢ CLe 018 SB{TE “START to re-run, OFTION to boot °

4756 LDA SAMSC 3928 3

4768 ADC #42 HID SV €1 5536 BADFORM

4778 STA LINE 3346 .SBYTE "Replace bad COPY disk, press START®

4788 LDA 5AWMSCH 3558

4798 ADC 48 3540 .END

4386 STA LINE+!

481 RTS °

4828

4836 5 Beep and wait for START Key

4844

4858 WalT

4848 LDh #1ee ; Freq = 1e@

4878 5Ta AUDF1

448¢e Lba #8520 ;D& V=18

4876 STA AUDCH

4588

LDa #e
ST RTCLOK 1 Clear count

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 75

DISKTOOL REV.3

32K Disk

by Tony Messina

Disk Tool is designed to work with an ATARI
400/800/ 1200 with at least 32K of memory and up
to 4 single-density disk drives. The key is SINGLE
density. PERCOM, RANA, MICRO-
MAINFRAME and other double density drives can
run Disk Tool, but only in the single-density mode.
Sorry, but Disk Tool was designed and written back
in the olden days BD (before double density), and
would require a complete overhaul in every aspect.

Disk Tool history.

My need for a disk utility made its appearance
shortly after my disk drive arrived in March, 1981. 1
was plagued with disk link errors and crashed files all
over the place. To put it mildly, “Boy, was I really
mad!”’ It was then I decided to write a program that
would allow me to access any sector on the disk. To
make a long story short, [got a copy of the DOS 1
source listing and ATARI Tech Manual. I then
locked myself in the den and proceeded to work. 50
gallons of coffee, two power outages and 5 billion
phone calls to ATARI later, I emerged victorious. I
had actually managed to READ and WRITE to a
disk sector without using the File Management
System (FMS) or Utility Code in DOS 1. Yaaayy!!

When DOS 2 arrived on the scene, I converted the
Tool. Some letter I had received prompted me to
organize the Tool and publish it as a 2-part article in
A.N.A.L.O.G. Computing. Response to the pro-
gram and the article was outrageous. When A.N.A.-
L.O.G. editor Lee Pappas mumbled something
about a Compendium, [saw the opportunity not
only to improve the article and documentation, but
also the method by which I could include the most
requested enhancements to the Tool. So here it is,
everything you ever wanted to know about disk
structures and Disk Tool. And away we go. . .

Disk sector structure.
The ATARI 810 disk drive, in conjunction with
the File Management System (FMS), organizes data
on a diskette into blocks called sectors. There are

720 sectors (numbered from 0-719) on each diskette
after it is formatted by the Disk Operating System.
The sectors are laid out in what are known as tracks.
There are 40 tracks per diskette, each containing 18
sectors. To clarify the last two statements, [have my
patented “formatted diskettes are like onions’’ dog
and pony show. Next time you cut an onion in half
(when you make onion rings, mushrooms and
onions, etc.), lop off a hunk in the middle about
1/4 inch wide. Now turn the onion so that the big
round part faces you. Each individual ring of that
onion is exactly similar to a track on the diskette. Go
ahead, pull off the outer ring. Now, if you cut that
ring into 18 equal pieces, each piece would repre-
sent a sector. The outer ring is track 0. As you move
inward, the next ring is track 1 and so forth until you
reach track 39. Each track would contain 18 sectors.
Track O contains sectors 0-17, track 1 has sectors 18-
35, etc.

Now you have an idea of how a diskette is organ-
ized. Disk Tool is designed to work at the sector
level. Although there are 720 sectors on each
diskette, not all sectors are available to you, the user.

You’ve just formatted a diskette. Ahhh, the feeling
of power, 720 sectors to store all of your programs.
You hit the A OPTION in DOS (just to see that
magic number 719). Upon hitting RETURN, the
number 707 appears when using DOS 2 and 709
appears when using DOS 1. What! What happened?
Well, it’s quite simple, friends. Although there are
720 sectors, only 707 are available for your use with
DOS 2 and 709 sectors with DOS 1. The other
sectors are reserved for use by DOS. The disk direc-
tory steals 8 sectors starting at sector 361 and
running to 368. One sector (360)is allocated for the
VTOC (Volume Table of Contents, pronounced
“Vee-Talk”). The boot portion of FMS also
occupies 3 sectors (1,2,3) for DOS 2, only 1 sector
for DOS 1. That’s what happened to your 12 missing
sectors for DOS 2 and 10 missing sectors for DOS 1,
so don’t be alarmed.

PAGE 76

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

With that out of the way, it’s time to discuss the
different types of sectors. Yes, [know it sounds con-
fusing. . .after all, isn’t a sector a sector?! The answer
is yes. Each sector is capable of holding 128 bytes of
data. The manner in which the data is structured on a
sector is dependent on a particular sector’s purpose
or type. I like to define sectors as being of 4 types:

l.)Data Sector: Containing program
information, text files, etc. _

2.)Boot Sector: Containing ML program
data.

3.) Directory Sector: Containing program
names and associated data.

4.)VTOC Sector: Sector containing free
count and disk bit map.

Let’s take a look at the differences and similarities
of each type of sector.

Data sectors.

This is the most common type of sector on your
disk. Technically, all the sectors are data sectors. I
use this name only to distinguish its format from
other types of sectors.

Whenever you use the commands SAVE
“D: XXX, LIST “D:XXX” or invoke the Binary
Save option from DOS, the actual programs are
written to the disk in data sector format. The format
is quite simple. Bytes 0-124 contain actual program
data. Bytes 125-127 contain sector identity data or
“link data.” Figure 1 illustrates this type of format.

0 124 125 127

Link

125 Bytes of Program Data
Data

Figure 1.
Data Sector Format.
The link data for DOS 2 is formatted as in Figure
2, while link data for DOS 1 is as per Figure 3.

Byte 125 Byte 126 Byte 127

of actual program
bytes (0-7D) in

this sector

File # T
this sector fro
belongs to] l

7lol514]3]211]0

10 Bits
Next sector of this file
Figure 2.
DOS 2 link structure.

Byte 125 Byte 126 Byte 127
File # ' Sector Sequence
this sector 11017161514 312 |1 |0 number
belongs to 1] 0-X*

| 10 Bits |

Next sector of this file
*The first sector of a file contains O, the second 1 etc. . . the last sector of
a file is unique however. The value in Byte 127 will contain (# of actual
bytes used + 1) + $80 for the last sector of a file.
Figure 3.

DOS 1 link structure.

Notice that the lower two bits of byte 125 and all
of byte 126 combined point to the next physical
sector of this file. A zero (0) indicates that this is the
last sector of a file.

One variation in data sector format occurs when
the Binary Save option is used to save an area of
memory to the disk. The variation occurs with the
first 6 bytes of the first sector of the binary file.
Those 6 bytes are commonly referred to as the
“binary file header.” The header is formatted as per
Figure 4.

Bree 4 1 2 3 4 5
LSB MSB LSB MSB
FF FF Start Start End End

addr addr addr addr

Figure 4.
If, for example, you answer the Binary Save Prompt

DOS with “MLPROG,0600,065F,” then the first 6
bytes of the first sector of disk storage for this pro-
gram would look like Figure 5.

BT 9 1 2 3 4 5
FF FE [oo [os | sF [oo |
Binary file Start addr End addr
definition bytes LSB/MSB LSM/MSB
Figure 5.

Binary program save example.

Directory sectors.

There are 8 directory sectors starting at sector 361
and running sequentially to sector 368. The
directory contains the names of all the programs on
the diskette along with the other information about
the program. Each directory entry uses 16 Bytes.
There is enough room to hold 8 program names (and
associated data) on 1 sector. (16 Bytes * 8 names +
128 Bytes or 1 sector.) Therefore with 8 sectors
available, we can have (8 sectors *8 names per sec-
tor) = 64 possible file names total. On a directory
read, DOS starts at sector 361 and keeps reading
sectors until there are no more names. Directory
entries have the following format:

_ o Entry O
o Entry 1
- e
-~
— .
- .
_-
7
- -~ Entry
= Directory sector
Byte (¢] 1 2 3 4 5 12 13 15
Directory | Status Length Length Start | Start Filename Ext
. tors) |) |sect (primary)
entry byte (in sectors) [(in sectors ctor|sector | o space or
LSB MSB LSB MSB ($20) ($20)

Bits 7 6 5 4 3 53— —1—_ 0

Status File File |File DOS o%een
deleted| P Spare | 5 | Sor

byte . use |locked file | output

Figure 6.

e

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 77

NOTE: Bits set (+1) indicate condition listed.
Bit 6 set indicates the file is in use.
Bits can be combined for multiple status.

Example: Bits 1,5 and 6 set would mean file was
created by DOS 2, it is locked and in use.

Here is a quick reference to the possible status
values.

$00=File is never used.

$01=File open for output.

$02=File created by DOS 2 (if bit not set,
assume DOS 1).

$20=File locked.

$40=File in use.

$80=Entry deleted.

How does DOS use the information we have dis-
cussed so far? In simple terms, when you type LOAD
“D:XXX” in BASIC, the FMS opens the directory
for input, reads in the directory sectors starting at
sector 361 and searches for a match. If it finds an
entry that matches the program name you asked for,
FMS extracts the starting sector from bytes 3 and 4
of the entry and also the length from bytes 1 and 2.
FMS then positions the read/write head of the disk
drive at that sector, reads in the sector, extracts the
link information (to find the nextsector)and checks
to see if this sector actually belongs to the file you
wanted. If it does, then FMS checks to see if this is
the last sector to load. (Remember, the next sector to
load is in the link bytes.) FMS keeps loading until the
next sector to load is O.

If, during this process, the file number of the
sector just loaded does not match the one you are
looking for, a file number mismatch error (#164)
occurs. This usually means that either the disk link
information of the previous sector was incorrect, or
possibly the link data of the current sector is
incorrect. We'll discuss how to fix this later.

Boot sectors.

[use the term “boot sector format’” when referr-
ing to files which start at sector 1 and run
contiguously to sector X, where sector X is the
ending sector. These files do not need any language
cartridges or DOS. They are completely self-
contained programs which load and execute upon
powering up the computer. Do not confuse these
with AUTORUN.SYS files.

Remember the header bytes for binary files saved
using the Binary Save Option of DOS? Well, boot
sectors have a similar structure. Sector 1 of the disk
contains the magic header information which is
structured as per Figure 7.

Brte 1 2 3 4 5
0 by # of LSB MSB LSB MSB
tradition sectors Load Load | Init addr| Init addr
to load addr addr

Boot sector header (sector 1)

Figure 7.

Whenever you turn on your computer, a check is
made to verify if any cartridges are present. If a car-
tridge is present, the ““Allow Disk Boot Bit” (Bit O of
location $BFFD) is checked. If it is zero (as it would
be if no cartridge were present) then the ROM boot
routine is invoked. This routine goes out to sector 1
of the disk, reads in the data contained there and
interprets it. Byte 1 tells the system how many
sectors to read. Bytes 2 and 3 tell the system where to
load the data, and bytes 4 and 5 tell the system where
to start executing the ML program once it is loaded.

Boot sectors do not have any link data.
Consequently, each boot-type sector can contain
128 bytes of program information. [said “‘can”
because the last sector may be a short sector con-
taining less than 128 bytes. The FMS for DOS 2
contains 3 bootsectors worth of program data, while
the FMS for DOS 1 has only 1 boot sector.

VTOC sector structure.

Sector 360 contains the VTOC or Volume Table
of Contents. The purpose of the VTOC is to keep
track of which sectors on the disk are or are not being
used.

There are basically two important parts of the
VTOC: the miscellaneous portion (bytes 0-4) and
the sector use map (also called sector bit map). Bytes
0-4 are used as follows:

Byte 0=Use byte (2 for DOS 2, 1 for DOS
1).
Bytes 1 & 2=Total # of sectors (LO/HI
format).

Bytes 3 & 4=Free sector count (LO/HI
format).

The sector use map begins at byte $0A and runs to
byte $63. Each bit of each byte represents one sector
on the disk. If the bit is zero, then that sector is being
used. If the bit is 1, then that sector is available for
free. Bit 7 of byte $OA represents sector O, which
does not exist (see experiment 5 for explanation). Bit
6 of byte $0A represents sector 1, etc., all the way
down to bit 1 of byte $63 which represents sector
719. Use Disk Tool to examine the maps of your
own diskettes.

Well, that about wraps up our discussion on disk
data structures. I realize I've clobbered you with
many new concepts and material. The best way to
digest this information is to use the Disk Tool
experiments which follow.

Disk Tool structure.

You may have noticed that Disk Tool consists of 3
programs: an AUTORUN.SYS creator program, a
machine language loader and the actual BASIC code.
Why 3?7 Well, the original intent was to make Disk .
Tool fit into a 16K disk system. That was when the
Tool was small. Now it’s so huge that it won’t all fit,

PAGE 78 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

so I keptitat three programs. Disk Tool sets itself up
as follows:

1.) Protect 3000 bytes of low end memory
and disable the break key (via AUTORUN.
SYS);

2.) Load the ML portion of Disk Tool into
the protected area, and load the Disk Tool
BASIC program;

3.) Execute Disk Tool from BASIC.

Since 1 believe it is more important to know how
to use this utility, I won’t get into a long-winded
dissertation about how it works (as I haven’t been
long-winded already in this article). If you study the
listings along with the documentation, you should be
able to geta very good understanding of whatis going
on.

Warnings.

Disk Tool will happily allow you to wipe out your
directory, the VTOC, DOS boot sectors or any
other sector on your disk. It will ask you to verify
prior to writing, but once a sector has been written, it
may be too late. You don’t need to be an advanced
systems programmer to use Disk Tool — only a
careful programmer. It is suggested that you read the
descriptions of each function as presented, and then
perform all of the experiments in order to become
familiar with Disk Tool and its capabilities.

OK, warnings are behind us. Let’s move on.

Getting things together.

The first thing to do is to get a new diskette, format
it and write out DOS 2 to the diskette. Type the list-
ings in order from program 1 to 3. SAVE the three
programs to your new disk. Suggested filenames
follow:

1.) AUTORUN.SYS maker—MAK-

AUTO.UTL

2.) ML loader—DSKTOOL.PT1
3.) Disk Tool BASIC—DSKTOOL.PT2

These are only suggestions. If you decide to
rename the BASIC Disk Tool portion, you must
change the RUN command in the ML Loader so that
you don’t get a file not found error. Run the AUTO-
RUN.SYS maker first so it can create the AUTO-
RUN.SYS file. Power down, power up with the same
disk and type RUN “D:DSKTOOL.PT1.”

A note on typing.

The program listings for Disk Tool are fairly large
(that’s an understatement). Suffice it to say if any
data is missing or erroneously typed in, the Tool will
not work correctly. I suggest that you purchase the
disk version of this Compendium. You’ll not only
save yourself hours of typing, but you will be assured
that all programs will work correctly. I have spent
over 200 hours debugging, testing and ensuring that
the listings presented here are exact duplicates of my
working copy of Disk Tool. It really does work! And
now back to our regularly scheduled Disk Tool.

Using Disk Tool (finally!).

I know everyone has Disk Tool running. (Those
of you who don’t keep trying.) The first thing you
will see is the Command Menu and a “COMMAND
OR SECTOR NUMBER” prompt. To examine any
sector, just type in the number and hit RETURN.
Only sectors 1-720 can be examined. Any number
<1 or > 720 will generate an error message. Sector
numbers can be entered in either decimal or hex (if
preceded by a $). Let’s try it out. Put in any of your
program diskettes.

Experiment #1:
Look at Directory Sector.

Answer the prompt with 361 and hit RETURN.
You will see the first sector of the directory. Com-
pare each entry with the format of Figure 5. Once
you feel comfortable with the format of the direc-
tory, move on to the next experiment.

Experiment #2:
Look at Formatted Directory Output
with “D” Command.

Answer the COMMAND OR SECTOR
NUMBER prompt with a D and hit RETURN. A
formatted display should appear. All numbers
appear in hex notation. This option displays 2
sectors worth of directory data (16 program names).
The sector number is the actual sector at which that
directory entry resides. FILENAME is self-
explanatory. START is the first disk sector which
contains data pertaining to that program. LEN is the
length or number of sectors that file contains. FIL# is
the entry number in the directory for that file; and
STAT is the file status in human readable form
where:

*=File locked.

U= in use.

D=File has been deleted.
1=File created by DOS 1.
2=created by DOS 2.

To examine more directory sectors, hit “+”’ and
press RETURN. The new sectors will appear. To
abort the directory format, just hit RETURN and
our friend “COMMAND OR SECTOR
NUMBER” will appear.

Experiment #3:
Trace/Examine a File.

Now find a file you want to examine from the
directory listing. (Try one other than DOS.SYS or
DUP.SYS.) Find the start sector number for that file
under the START column. Since the start number is
in hex, type $ followed by the number. You don’t
need to type in leading zeros. If the start number was
OOBF, then type $BF, for 01CD type $1CD, etc.
Then hit RETURN. The sector will appear in
HEX/ATASCII format along with the sector num-
ber, next sector and file information. SECTOR
NUMBER indicates the current sector number being

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 79

displayed. NEXT SECTOR points to the next sector
containing data for this file. FILE NUMBER s the
file number to which this sector belongs. The next
sector does not have to be the current sector number
+1 (more on this later).

When you’re ready to look at the next sector, you
can enter the number and hit RETURN. If the next
sector happens to be the current sector +1, just hit
RETURN or “+” and RETURN. If you want to
look at the current sector -1, type - and RETURN.
Trace your file, examining the format of the data, etc.
Remember Figure 1. Try to look atall types of files:
Binary, SAVE files, ASCII files, etc., and compare
these with the appropriate figures. When you hit the
end of a file, you’ll see that the next sector pointer
will equal zero.

Experiment #4:
Change Bytes with “C” Command.

Call up sector 720 on the disk. If it is all zeroes
then you can use it. If it isn’t, type “-"* and hit
RETURN until a sector is displayed with all zeros.
At the prompt COMMAND OR SECTOR
NUMBER, type in C and hit RETURN. The screen
should change to yellow and a prompt should
appear. Move the cursor (CTRL up, down, left,
right, arrow, etc.) to the Ist hex value in byte 00 line.
Replace the 00 values with the following:

44 49 53 4B 54 4F 4F 4C

Then hit RETURN. Make sure you overwrite each
value of 00 and space between each byte. If you have
done everything correctly, you should see a “‘secret
message.”’

The C function only changes memory locations.
Nothing has been written to the disk. You can only
change one display line at a time. RETURN must be
hit after your line changes are satisfactory. If you
wish to change more data on the sector, simply hit C
again, make your change, hit RETURN, etc.

Experiment #4A:
Change Bytes (ATASCII method).

Follow the procedure in Experiment #4. To
change bytes, move the cursor over to the hex para-
meter to change. Hit the space bar to blank out the
first parameter of the hex number. Now type the
ATASCII letter or number you want. Continue with
the rest of the line, always remembering to precede
the character you want with a space. Hit return and
check your work.

Experiment #5:
Writing to Disk with “W” Command.

As [mentioned previously, writing to the disk can
be dangerous. Be careful! Sector 720 should be safe.
Why? Well, there is a bug in DOS. DOS can only
handle sector numbers from O to 719. The disk
drive, however, will only accept commands for

sectors 1-720. Some software developers have taken
advantage of this useful quirk to protect their disks.
So don’t write to 720 if something was there. If all
was OK and you did Experiment #4, hit RETURN.
Now type W and hit RETURN again. The screen
will turn red and a verify prompt will appear. Answer
Y to the prompt if you are sure you want to write to
the disk. When the write is complete, the screen will
turn green again and we’re back to the COMMAND
OR SECTOR NUMBER prompt. Recall sector 720

just to check what was written.

Experiment #6:
Trace File with “T” Command.

Now that you’ve traced a file the hard way (if you
didn’t do Experiment #3, then shame on you), we’ll
do it using the T command. Call up the directory and
pick a file (any file). Note the file number in the FIL#
column. Hit T and RETURN. Enter the selected file
number (hex or decimal) and hit RETURN. The
computer should be busily grinding away, spewing
out hexidecimal numbers along with the filename
and start sector. When done, the word END should
appear. This function shows you exactly which
sectors on the disk the file you selected occupies.

Trace will scream if it encounters any file number
mismatch errors or short file errors. A short file
error means that the length of the file in the direc-
tory does not match the number of sectors traced. If
this happens for every file you trace, then a possible
typing error exists in the ML Loader portion of Disk
Tool.

Experiment #7:
Set Drive Number with “S” Command.

This straightforward command was a heavily re-
quested addition to Disk Tool. At the COMMAND
OR SECTOR NUMBER prompt, type “S’" and hit
RETURN. The current working drive number will
appear as well as a prompt for the new drive number.
Drive numbers 1-4 will be accepted and processed;
anything else will produce a RAZZ and an error
message. If you change to a drive that does not exist,
trying to execute a command will again cause the
infamous RAZZ/error message combination.

Experiment #8:
Print Screen with “P” Command.

Another straightforward command. If you don’t
have a printer, you may skip to the next experiment.
If you do have a printer, then pick a screen which you
would like a hard copy of and answer the
COMMAND OR SECTOR NUMBER prompt
with a “P”’ and RETURN. The message PRINTING
SCREEN will appear and the screen will be dumped.
If you fail to turn on your printer or interface, you
will obtain an error message.

You cannot print the HELP screen as the dump
routine is only set up to dump Graphics 0. If you try
to dump the HELP screen, you will get an IM-
PROPER SCREEN CONDITION error message.

PAGE 80

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

Experiment #9:
Modify links with “M” Command.

The modify links command is very powerful and
one should exercise EXTREME CAUTION in its
use. Improper use could cause you to destroy the
integrity of a file or files and is guaranteed to make
you exclaim that famous all-American expression
“Awww Jeepers!”’ if used incorrectly. Since you
have your experiment disk loaded, it won’t matter if
we mess up a file and then fix it using the Tool.

Find a nice, long file on your experiment disk by
scanning the directory. Aha!, there’s one. OK, go to
the starting sector of the file (indicated under the
START column). Manually trace the file for about 4
or 5 sectors and stop. REMEMBER this sector
number. Answer the COMMAND OR SECTOR
NUMBER prompt with M and RETURN. When
the next prompt appears, type in the sector number
which you remembered. The sector will be read in
and the file number and next sector will be displayed.
A prompt asking you for the new file number will
appear. Type in a number other than what is dis-
played but REMEMBER the old file number.
Another prompt will appear asking you for the new
next sector pointer. Type in a number which is 1
more than the number being displayed but REMEM-
BER the old number. Boy, we really messed up this
file, huh?

A message indicating the new links and a prompt
to write the sector to the disk if correct will appear.
We will now destroy your disk! No, only kidding.
Hit W and RETURN. The screen will turn RED and
the verify prompts will appear. Answer Y and write
out the sector. Now, if you still remember the file
number, hit T and RETURN. Enter the file number
at the prompt and watch Trace in action. You should
get an error message which indicates a FILE MIS-
MATCH ERROR AT SECTOR $XXX where X is
the sector number of the sector which you clob-
bered. If you didn’t, then you probably typed in the
wrong file number. OK. Let’s fix the error.

Experiment #9A:
Fix error from last experiment.

Hit M and RETURN and recall the sector you
clobbered. Change the file number back to what it
was. Do NOT fix the next sector number yet. Type in
the same number when prompted for the new sector
pointer. After all the messages come up, write this
sector back out again. Trace the same file. Every-
thing will seem to be fine until the trace realizes that
there are some sectors (1 sector in our case) missing.
Trace will tell you how many sectors there should be
as well as how many it found. The number of
“should be” sectors minus the number of “found”
sectors should equal the number of missing sectors.
Fix the error by recalling that same messed-up sector
and replacing the next sector pointer with the origi-
nal value. Write it back out and re-trace.

Experiment #10:

Recover a deleted file with “*R” Command.

Recovering a deleted file is no simple task using
manual methods. This was the most requested func-
tion to be added to Disk Tool, so here are the steps.

Find a deleted file entry by scanning the directory.
Answer the COMMAND OR SECTOR NUMBER
prompt with R and RETURN. Answer the next
prompt with the file number (hex or decimal) you
want to recover and hit RETURN. Disk Tool will
now be busy recovering the file. It will keep you in-
formed with messages as it proceeds. Soon you will
see the FILENAME.EXT RECOVERED message.
Magic, huh? Now, before you go scrambling for
those diskettes with deleted files, I must say that
there are certain file conditions which must exist or
RECOVER will not work — as a matter of fact,
NOTHING will work! Let me explain.

Recover file restrictions.

In order for a file to be recovered, it cannot have
any sectors which have been written on by other
saves. When a file is deleted, DOS sets the file
deleted flag in the file status byte of the directory
sector where the name resides. It then traces that file
to obtain the sector numbers which that file occu-
pied. DOS sets the bits in the VTOC bit map, thus
marking the sectors occupied by the file being
deleted as now being available. On any subsequent
saves to the disk, DOS first searches for an empty file
entry in the directory sectors and places the new
name and file status in that slot. DOS then examines
the VTOC bit map searching for sectors which can
be allocated to the new file being saved. If the sectors
that it finds available are the same sectors belonging
to a previously deleted file, DOS doesn’t care and the
data belonging to the new file will overlay the deleted
filed data. Once this is done, there is no way that the
deleted file can be recovered.

Now that the explanation is out of the way (did it
make any sense?), let me just say that the recover
function of Disk Tool makes extensive checks for file
integrity, proper link structure and available sectors.
If anything in the file being recovered is goofy, the
message FILENAME.EXT CANNOT BE RE-
COVERED, along with the appropriate reason will
be displayed. The recover function will work with
both DOS 1 and DOS 2 files, so that some of those
oldies but goodies can possibly be rescued from obli-
vion.

The listings.

Listing 1 — contains the data statements
needed to create the AUTORUN.SYS file for
Disk Tool.

Listing 2 — is the assembly language source
code listing for the AUTORUN.SYS file. This
does NOT need to be typed in for Disk Tool to
work. The AUTORUN.SYS creator (Listing
1) will create the appropriate file. Listing 2 is

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 81

there for reference only. This should give you a
pretty good idea of how to reserve some low-
end memory, and also how to disable the break
key prior to BASIC gaining control of the
system.

Listing 3 — is the ML loader program for
Disk Tool. This program loads in all of the
machine language instructions needed by the
Disk Tool BASIC program.

Listing 4 — (the huge one!) is the assembly
language source code for Disk Tool utility. In it,
you will find how to put a character on the
screen, how to convert binary numbers to hex
and hex to binary, how to display messages on
the screen, how to go crazy trying to read an
assembly listing and other common routines. I
must say that this code is not the most efficient.
Things can be done to improve it, so feel free. I
will be glad to answer any questions or
comments about it. My address is at the top of
the listing (please send a SASE if you write).

Listing 5 — is the Disk Tool BASIC code. I
have completely overhauled the code and
commented it like a maniac. The documenta-
tion following Listing 5 gives all the addresses,
label names and a complete cross-reference to
the BASIC code. There is also a memory map
which is valid only after Disk Tool has been
loaded.

Hints on using Disk Tool.

In these modern times, with DOS 2 being avail-
able and all that, it is very rare to come up with link
errors and crashed files. Some errors occur, how-
ever, when you try to copy DOS 1 files using DOS 2,
or you may #-en run across an old program by some
obscure out-of-business company that is loaded with
crashed sectors (probably why they are out of busi-
ness). Whatever the reason, if you have run into
Error 164 here is one procedure to follow.

1.Isolate the file causing the problem. It this
isn’t obvious, call up the directory and trace each file
(using the T function) until the culprit is caught.
Dump the trace to the printer.

2.Remember the file number. Go to the sector
previous to the one in error. This is where some
detective skills will pay off. Examine the sectors
from your current location to current sector +10,
noting which file they belong to. You will probably
find your missing sector within this range. Thave not
failed yet. This usually works on diskettes that have
not had too much disk activity; i.e., a lot of file dele-
tions and new file saves. If you run into a toughy,
don’t give up! You WILL find your missing sector.

3. Once found, note the sector number and the
next sector number. Manually trace it to verify the
integrity of the file.

4. Call up the original sector which had the incor-
rect pointer using the M command. Change the

pointer to the missing sector and write out the sector
using the W command.

This sounds like an involved process, and in some
extreme cases it may be, but it sure beats retyping the
original file.

Other uses.

CHANGING HEADER BYTES ON ML OB-
JECT FILES: You have a relocatable ML file which
you assembled on page 6. You now want to move it
someplace else. The old procedure would be to load
in the assembler, load in the source file, change the
origin of the file, re-assemble, save the object code.
Bah-Humbug to that. With Disk Tool simply call up
the directory and find the start of the object file. Call
up that sector and change the header information as
per Figure 4. Re-write the sector and your file will
now be loaded at the new address.

The uses for Disk Tool are left to your imagina-
tion. It’s saved me a lot of time by allowing me direct
access to the disk sectors and the information on
them. I’ve patched ML programs directly, added
code and allocated new sectors for that code,
changed file names that refused to be changed by
DOS and recovered many valuable files that were
crashed. Let your imagination run wild. OJ

Listing 1.

18 GRAPHICS 2416

LA LI+ +++++++++++++4+++4+0

20 ? #6;" i ANALOG 400/880 +

25 ? #6;"

Ia 2 6; "

X5 7 #6;"

48 7 #H6;"

45 2 #e;" +++f++++++++++++++"

58 7 #6;" hit any key to":? H6;" cre
ate AUTORUN.SYS"™:? H6;" filem

68 OPEN t1,4,0,"K:"

65 GET #1,n

78 CLOSE #1

A IR Tl reating fileg

88 OPEN 11, 8 B, "D:AUTORUN,.5Y5"

85 PUT ui, 255:REM HEADER 5FF

98 PUT 1,255:REM HEADER S5FF

isa puUT u1 @:REM LOAD START LSB 588
185 PUT ##1,6:REM LOAD START M5B 586
118 PUT 81,74:REM LOAD END LSB 544
115 PUT RI,G:REN LoAaD END MSB 586
128 READ Q:IF A=999 THEN GOTO 148

123 REM 3% NOW PUT OUT REST OF PROG ¢
125 PUT 11,4

138 G070 120

148 CLOSE 11

168 POSITION 3,18:?7 H6;* FILE WRITTEN"
178 GOTO 1780

1gng7gara 24,173,231,2,185,184,141,231
’ 2

i882 DATH 232,2,105,11,141,232,2,169,90
133

%884 pavTa 8,32,27,6,76,0,160,128,173,2

1886 DavTH 2,141,60,6,173,23,2,141,61,56
1888 DATA 169,52,141,22,2,169,6,141,23

2

lgéﬂ DATA 88,96,72,173,14,218,16,4,184
iaiz pava 59,6,169,127,141,14,218, 165,
i6,141

PAGE 82 THE A.N.A.L.O.G. COMPENDIUM VOL. 1
1814 DATA 14,210,104,64,8,226,2 ﬂm"l." -

1816 DaTa zzg,z.é.s.éuizizzstz,a.s 5583 paus MW PUY SUR L85 URMOLES doueess Si8

igis8 patTa 99 9395 §

1828 REM EH0CHHEE06H0000¢ 2400 LDA #L,0URIRG 3 GET ADDR LO o
1822 Ben % END OUTORN, 3VY HE O D (ERED
1824 REM ¥ LOADER 0 2415 TA VMIRQ+ 3

1826 REM ::g: g#; : :s: :;#S:NINTERUPTS
. ::gg :!Cl!i'l&lill'.'l&.!IQ'Q.QQIQ

CHECKSUM DATA
(See pgs. 7-10)

18 DATA 442,342,782,4,723,347,422,348,
971,480,388,504,332,48,762,6887

98 DATA 749,325,357,489,116,197,986,59

4,698,647,891,725,587,482,235,7318

1886 DATA 54,497,359,628,586,782,885,7

89,726,285,801,6312

1]
o012
2015
ve20
PO2%
2030
o035
8040
1231
ov3w
2035
2060
o065
2070
2875
44:1]
2v8s
A
2095
[281
21083
o110
2115
2120
9125
2130
2133
0140
0145
21508
9133
G169
0163
o170
2175
2189
2185
2190
2193
e200
2205
2210
2213
9220
#2235
0230
#2335
2240
B245
2230
2235
9280
0265
2270

0273
o280
2283
2292
2293
o320
2303
o312
#9313
2329
2325
2332
2335
2340
2343
VIS0
2335
(21
2363
2370
2375

Listing 2.

R s T Ty Y e
i* AUTORUN.SYS S8OURCE CODE

i* FOR DSKTOOL UTILITY RV3

j® BY: TONY MESSINA

(B 48 DUDLEY AVE

i NEWPCORT ,R1 922840

(A ’

i#* THIS FILE RESERVES 39800

§* BYTES OF RAM BY MOVINB THE
i* MEMLO POINTER UP BEFORE

§# THE BASIC OR ASSEMBLER CART#
§* BETS CONTROL OF THE SYSTEM.#®
e -
i®* THIS CODE ALSO DISABLES THE#

EE XXX XN RN

3* BREAK KEY TO PREVENT ANY »
3* POSSIBLE USER ERRORS FROM =
i® HAPPENING. "
¥

i * PROGRAM BASED ON IDEARS -
§# PRESENTED IN DE RE ATARI #
§* PBS 8-11 & B-195 ”
JEARASAIARR R AR IR ERIRRNRR R RRBER

i
iRrEaReRRRERER

i®* EQUATES =
IRAS 2222 X 22222
i
MEMLOL .DE ®D2E7?]
MEMLOH .DE $02E8]
WARMST . DE s@g98]
CARVEC «DE sAQ09Q L]
SAVBYT .DI 3008 ¥
POKMSK «DE $9010 i
IRQEN .DE ®D20E i
IRQST - DE IRQEN 3
VHIRQ .DE 89214]
¥
jrRnERRrRRRRRES
i# CONTROL #
jRressnanteaneR

«BA 80400]

L8
.08

¥

FRARERRERRN SRR

§* PROGRAM =«

PRARRENNRRNBNR

jenne RESERVE 3000 BYTES sase
i
8TRES cLC

LDA MEMLOL
ADC #L , SAVBYT
8TA MEMLOL
LDA MEMLOH

- e w e

FMAOE @3

ADC #H,SAVBYT
STA MEMLOH
LDA #20

STA *WARMST
JSR SWAPEM
JMP CARVEC

L]

IHRN KRR RRRRRERDRPBRR RN RN

i*® SWAP IRQ VEC ROUTINE =

i® TO POINT TO OUR OWN #

§#* ROUTINE. WE WILL 1G- =

i % NORE THE BREAK KEY. -
FREARRB AR R RN AR RRR RN R R RS

¥

jee# 1ST PUT SYS IR@ IN OUR BTUFF
i
SWAPEM SEI i
LDA VHMIRQ 3
STA SYSIRQ+1 L]
LDA VHMIRQ+1]
8TA SYSIRG+2 P

LO BYTE MEMLO
HI BYTE MEMLO
WARSTART FLAG

CART STARTY VECTOR
% OF BYTES TO RESERVE

POKEY IR MASK
IRG ENABLE BITS
IR@ STATUS

SYS8TEM IRQ VECTOR

ORIBIN so60¢
GIMME LISTINB
0OBJ CODE TO MEM

CLEAR FOR ADD

0440
2445

j®# THIB IS THE ACTUAL IRA L4
j# SERVICE ROUTINE. ALL WE #

#4502 3+ DO 18 CHECK FOR A BREAK =

9435 3« KEY. IF BREAK IS HIT, WE #

9460 j» CAUSE THE SYSTEM TO JUST =

P4465 g« IGNORE IT AND THEN RETURN®

PA70 [2RARABARERVRRARRERRRPRRSERRS

@475 3

2480 OURIRQ PHA § SAVE A

0483 LDA LRAST § WAB THIS A BREAK??
2499 BPL TI1SBRK i YES IT 18!'!

D495 PLA i NO SO PULL A

23909 SYBIRQ JMP SYSIRQ 3 AND CALL SYSTEM ROUTINE
2505 3

2513 jyw#se BREAK KEY HIT S0 SQUASH ##w

PH1% jwee THIS MAMA & STOP DOOM!! wuw

2520 3

@325 YISBRK LDA #®7F 3 WIPE BRK BIT
253 STA TRQ@ST $ PUT IN STATUS
2535 LDA #POKMSK 3 BET POKEY MASK
83540 STA IRQEN § AND STUFF

03545 PLA § PULL A

2530 RTI 3 AND RETURN FROM INTERUPT
23393 3

PS40 Jresrsunnrntwen

2365 §# END PROE «

OS70 §REeteEEtnnnn

93573

<EN THE END

GET CURRENT MEMLO LO BYT

ADD 3989 LO
STORE

BET CURRENT MEMLO HI

ADD 3800 HI
STORE IT
WARMSTART RESET
STORE

DO BREAK KEY STUFF
JUMP THROUBH CARY

"nn

STOP IR@'S FOR NOW
GET 8YSTEM IRQ LO ADDR

MOUDIFY JMP LO

BET 8YS8 IR@ HI ADDR

MODIFY JnMP HI

Listing 3.

18 GRAPHICS 2+16:POKE 712,14:POKE 789,
ia2:POKE 788,282

15 7 #6;" ™

78 7 #6;" -

25 ? #5;" .

38 7 #6;" -

35 2 #6;" "

48 ? H6;" 2

45 7 #6;" y

58 7 #5;" TONY HESSINA"

LR Y RIreading Ml Programy

68 AREA=7420:REM %ML SAUE AREQ %%

POKE 711,14:READ X:IF X=939 THEN PO
755,2:6G07T0 75

POKE 711,8:POKE AREA,X:AREA=-AREN+1:
GOTOD 65

ggn?oﬁff;T;gading dsktool.utl™:RUN "D:
?g?nata 32,83,228,48,51,173,138,29,268
gs baTa 32,133,29,32,38,38,173,22,36,3
go oaYa 15,38,32,175,29,162,0,1668,0,18
25 DATO 253,3,32,243,29,32,222,29,32,2
}go pata 38,32,178,29,32,31,36,208,192
;?gzonra 240,17,232,76,25,29,148,126,2
iig paTa 16,32,168,0,1408,22,30,1604,96,
115 paTa 23,308,138,56,233,7,1768,238,23

189,253,3,32,195,29,142,129,2
57,35,174,129,29,232,236,23,3
235,169,155,32,57,35,174,23,3
128,176,202,32,38,38,32,6,38,
175,29,168,0,174,23,38,76,25,

6,0,8,0,86,0,0,167,8,189
154,29,246,183,142,127,29,32,5

174,127,29,232,56,176,238,96,

i45 DbavTa
158 baTa
7,35

155 PatTa
125,66

THE A.N.A.L.O.G. COMPENDIUM

PAGE 83

268 DATA
285 bava

4,32

218 bava
8,24

215 pave
222

228 bava
23

225 bata

235 DATA
,177,285
248 DATA
9,29

245 pava
8,5,200
258 DATA

53,3
255 bava
6,29
269 pavta

265 DaTH
41,1890
278 baTa
13

275 Dbata
X2

288 Davn
9,253
285 DaTa
62,08

298 DaTa
4,11,144
295 bava
288,177
3ae pava
1,234,31
385 bava

7,285,141

I18 DATH

89,84,69,35,127,127,72,69,88,
127,65,84,65,83,67,73,155,8,3
178,29,169,32,32,57,35,96,41,
281,108,48,2,185,6,185,48,96,2
32,144,26,201,125,144,18,201,
12,261,155,144,18,2081,160, 144
253,144,2,169,46,96,32,24,38,
242,29,32,57,35,173,241,29,32

35,32,31,30,96,8,08,72,74,74
74,74,32,184,29,141,242,29,18

184,29,141,241,29,96,173,22,3
185,8,141,22,30,37,243,29,32,
29,96,08,0,142,127,29,148,128,
96,174 ,127,29,172,128,29,96,1
32,57,35,16%,36,32,57,35,96,1
184 ,133,7686,104,133,285,168,2
32,111,386,178,24,105,8,141,12
200,268,2806,177,205,2681,32.28
177,285,268,3,32,111,38,157,2
232,236,129,29,144,231,72,76,
8,56,233,48,281,16,144,2,233,
96,72,288,177,205,32,1081,36,1
36,1064,37,101,38,10,16,10,18,
166,398,96,76,52,29,32,243,29,
222,29,96,32,83,228,48,241,16
133,2085,169,3,133,206,168,5,1
177,285,157,2241,31,280,232,22
245,160,0,177,285,141,236,31,
285,141,235,31,200,177,285,14
280,177,285,141,233,31,288,17
232,31,44,236,31,16,8,169,68,
237,31,76,254,308,86,37,169,85
237,31,169,32,44,236,31,248,5
42,141,239,31,169,2,44,236,31
8,169,50,141,238,31,76,254,38
49,141 ,238,31,32,43,30,173,11
32,47,35,173,18,3,32,136,38,3
178,29,162,8,189,221,31,32,24
312,57,35,32,31,308,232,2724,8,1
239,32,24,38,32,178,29,32,31,
189,221,31,32,24,308,32,57,35,
31,36,232,224,11,144,239,32,1
32,43,306,173,232,31,32,136,38
233,31,32,136,38,32,178,29,32

388 DpaTH
35,31
335 paTh

335 pata
32
400 pava

:25 PavTa
438 DbaTh
73

435 bata

:75 DATA
488 DaATAH

585 baTa
, 288,247
518 DATA
141,18

515 bavTa
177,285

528 Dava

37,5
565 pate
16
78 paTa
34
575 pata

, 43
605 paTa

38,173,234,31,32,136,38,173,2
32,136,36,32,175,29,32,43,38,
243,31,32,136,38,32,175,29,16
189,237,31,32,24,38,32,57,35,
31,38,169,32,157,237,31,282,1
238,243 ,31,238,242,31,169,8,2
31,248,22,165,285,24,1085,16,1
144,2,238,2086,169,155,32,57,3
264,31,76,156,30,169,155,32.5
173,18,3,24,105,1,141,18,3,14
3,238,11,3,162,0,142,242,31,1
241,31,268,17,238,241,31,76,1
162,11,169,32,157,221,31,282,
96,206,241,31,?6,63,29,8,0,8

8,8,8,8,0,0,8,0,8,8
8, 8.‘(2 37 37 39 1% a8 a

Ear R - AR ~

32 83, 228 16,3 76,52,29,32,16
32,76,63, 29 173, 132 29 42 42,

131,29,141,127,4,76,63,29,173
4,72,41,3,141,131,29,1084,74,7
141,132,29,96,173,254,34,248,
76,189,32,164,164 ,141,11,3,14
35,104,141,18,3,141,118,35,18
286,1084,133,285,104,184,141,2
83,228,16,3,76,221,34,162,11,
15,177 ,285,157,220,31,136,282
177,265,141,11,3,136,177,285,
3,136,177,285,141,235,31,136,
141,234,31,136,173,117,35,2440
252,35,177,265,240,26,141,236
236,31,16,28,32,212,33,142,12
32,213,34,76,64,29,162,34,168
32,159,33,173,243,31,32,136,3
42,33,162,32,1608,232,32,1593,3
212,33,162,33,1608,239,32,159,

11,3,32,47,35,173,10,3,32,136
316,160,16,148,249,34,169, 155,

35,162,7,142,248,34,32,83,228
31,76,221,34,32,16,32,238,255,
288,3,238,6,35,173,132,29,285
31,2088,35,173,123,4,13,131,29
81,32,199,33,32,1,35,206,248,
16,2168,169,1,141,46,35,286,24
16,190,141,254,34,76,64,29,32
31,162,34,160,20,22,159,33,32
39,173,11,3,32,47,35,173,18,3

PAGE 84 THE A.N.A.L.O.G. COMPENDIUM VOL. 1
618 DaTA 32,136,30,162,34,1608,54,32,15 gsg pATA 86,228,96,162,64,169,12,157,6
9,33 s
615 pata 169,1,141,126,29,141,46,35,16 sgs paTa 32,86,228,162,64,169,3,157,66
9,8 N
6208 DATA 141,255,34,141,254,34,141,0,3 ago paATA 169,54,157,68,3,169,35,157,69
5,76 :
625 DATA 64,29,173,234,31,77,255,34,20 gzs paTA 169,8,157,74,3,32,86,228,162,
8,31
638 pava 173,235,31,77,8,35,208,23,141 gee pATA 169,11,157,66,3,169,0,157,72,
, 255
635 bavTa 34,141,0,35,162,34,168,134,32 985 paTa 157,73,3,104,96,0,8,0,0,0
159 918 paTa 0,08,8,0,0,0,0,0,0,8
648 DATA 33,169,155,32,57,35,169,1,76, 315 pATA 0,0,0,0,0,9,0,0,0,0
47 928 bDATA 0,0,08,8,0,0,0,0,0,8
645 DAaTa 3I3,162,34,168,139,32,159,33,1 925 paTh 08,0,0,0,8,0,0,6,0,0
73,235 938 paTh 0,0,0,08,0,08,0,0,0,8
658 pATA 31,32,136,368,173,234,31,32,13 335 pATA 9,0,0,08,8,0,0,8,08,0
o 240 DATA ©,8,0,08,0,0,08,8,0,8
655 DATA 162,34,1608,165,32,159,33,173, 945 pATA 6,9,0,08,0,0,8,6,0,0
8,35 958 PATA 0,0,0,0,0,0,8,0,0,0
668 pavTa I2,136,30,173,255,34,32,136,3 955 paTh 0,0,0,0,0,0,0,0,0.0
8,162 968 DATA 0,0,0,08,8,0,0,0,0,0
665 DATA 34,168,191,32,159,33,169,0,14 965 DATH 6,08,0,0,0,0,0,0,0.0
55 978 DATA 0,0,0,0,0,0,0,0.8.0
g;o DATA 34,141,08,35,76,42,33,173,136, zgs PATA 8,0,148,253,34,173,11,3,141,1
sgg 22;o 141,250,34,173,137,29,141,251 9?29°°t° 35,173,18,3,141,115,35,162,35
r r
§§°2§ST° 136,29,142,137,29,32,133,29,1 935 PATA 120,142,5,3,140,4,3,162,104,1
685 DATA 34,141,136,29,173,251,34,141, 999 pATA 1,148,11,3,142,18,3,32,83,228
137,29 995 paTa 16,13,162,38,168,251,32,159,3
698 DATAH 174,252,34,172,253,34,96,173, 3,32
131,29 1000 DATA 204,31,76,221,34,32,218,37,1
695 DATA 141,11,3,173,123,4,141,198,3,9 72,253
6 1685 DATA 34,177,285,208,3,76,144,32,1
780 paTe 162,0,189,221,31,32,24,38,32, 41,236
57 1810 DATA 31,44,236,31,16,73,162,38,16
7685 DATA 35,32,31,30,232,224,11,144,23 0,34
9,96 1815 paTA 32,159,33,173,116,35, 141,11,
718 paTa 79,73,76,69,58,32,8,32,32,32 3,173
715 paTA 32,32,83,84,65,82.84,32,83,69 1820 DATA 115,35,141,10,3,32,83,228,16
728 DATA 67,84,79,82,58,36.8,32,73,83 .16
725 DATA 32,68,69,76,69,84,69,68,3%,33 1925 paTA 32,212,33,32,284,31,162,39,1
738 DATA 253,253,155.8,155,70.73.76.69 60,19
22 1830 pava 32,159,33,76,221,34,32,16,32
735 pATh 78,85,77,66,69,82,32,77,73,83 , 238
748 DATA 77,65,84,67,72,32,65,84,32,83 1835 DATA 255,34,208,3,238,8,35,173,13
745 DATA 69,67,84,79,82,27,31,8,155,67 Z,29
758 DATA 72,69,67,75,32,80,82,69,86,73 1640 DATA 205,243,31,2088,27,173,123,4,
755 bavTa 79,85,83,32,83,69,67,84,79,82 13,131
gga patTa 32,76,73,78,75,83,33,33,253,2 1345 DATA 29,240,84,32,199,33,76,89,36
765 DaTa 0,67,65,78,78,79,84,32,82,69 1858 dATA 212,33,162,38,160,68,32,159,
778 DATA 65,68,32,83%,69,67,84,79,82,58 33,76 L, |- g ormeea
;75 pata 27,31,36,253,8,155,78,79,32,6 10855 DATA 47,33,162,34,1608,208,32,159,3
3,32
780 pATA 78,84,82,89,32,768,79,82,32,78
785 pATA 73,76,69,27,31,36,253,8,32.,69 1366 TR Aty SR 1705 11, S e, A7 36, 172,
798 DaYa 78,68,8,155,79.82.73,71.73.78 1865 DATA 3,32,136,308,169,155,32,57,35
795 DATA 65,76,32,83,69.67,84,79.82.32 , 162
888 DATA 67,79,85,78,84,27,31.36.8,155 1878 DaTA 33,160,232,32,159,33,32,212,
805 DATA 65,67,84,85,65,76,32,83,69,67 33,162
810 DATA B84,79.82,83,32.76.79.65.68,69 1875 DATh 38,168,88,32,159,33,32,7204,3
815 DATA 68,27,31,36,8,155.83,72.79.82 1,240
820 DATA B84,32.,78,73.76,69,32, 69 82,82 1888 pava 204,32,212,33,32,2084,31,162,
825 paTa 79,82,33,33,253,155,0,162, 34, 38,160
160 1885 DATA 88,32,159,33,76,103,33,173,2
830 pata 3,32,159,33,96,162,34,168,87, 34,31
32 1890 paTa 77,255,34,208,232,173,235,31
835 DATA 159,33,173,11,3,32,47,35,173, ,77,0
i@ 1895 DATA 35,288,224,141,255,34,141,8,
840 paTa 3,32,136,36,169,155,32,57,35, 35,162
76 1180 DATA 38,168,114,32,159,33,173,118
845 pATA 42,33,0,0,0,0,0,0,0,0 35,141
858 DATA @,32,24,30,173,46,35,240,6,32 1185 pATA 10,3,173,119,35.141,11,3,32,
855 DATA 43,38,76,28,35,169,27,32,57,3 83
5 1118 DATA 228,16,13,162,39,168,38,32,1
860 DATA 169,31,32,57,35,32,43,30,173, 59,33
131 1115 pATA 32,204,31,76,42,33,160,0,173
865 DATA 29,32,47,35,173,123,4,32,136, ,120
3a 1120 paTA 35,281,2,208,4,169,66,2088,2,
878 DATA 169,0,141,46,35,96,1,32,243,2 169
9 1125 DATA 64,145,205,169,87,141,2,3,32
875 pava 32,231,29,96,69,58, 155,162, 64 N E
+32 1138 pATA 228,16,35,32,218,37,32,204,3

THE A.N.A.L.O.G. COMPENDIUM

PAGE 85

1135 Dava
1148 pavn
1145 DATA
1158 DaTah
162,38

1155 pavTa
141,18

1168 DATA

228
1165 DaTa

1178 DATA
1175 Dava

1189 DATA
128,142
%185 DaTa
1198 pATA
1195 DATA
27,32
1286 DaTAh
218

b4

1285 pava
32,159
1218 DATA
4,29

1215 DATA

1228 DaTA
3

1225 DATA
1238 bava
9,8,56
1235 DATA
85,18
1248 DATA
,286,123
1245 DaThH
286,124
1258 bava

45
1255 DaTa

2

%260 DaTn
%265 DATA
gl?ﬂ DaTha
1275 Dava
65

1286 DATAH
9

1285 DATA
53

i?ﬂe DaTa
1285 Dava
, 58

%398 DaTa
3395 DaTh
%318 DATA
;315 DaTh
%320 Dava
1325 Davta
1338 baTnh
3

%335 DaTa
%348 DaTa
1345 DATA

82
%350 DATH

39,166,62,32,159,33,173,11,3
47,35,173,168,3,32,136,38,162
168,86,32,159,33,76,42,33,32
37,162,38,160,152,32,152,33,
160,174,32,159,33,173,115,35
3,173,116,35,141,11,3,32,83,
16,13,162,39,168,19,32,159,3
2084,31,76,221,34,32,234,37,3
32,173,123,4,13,131,23,2408,6
199,33,76,115,37,162,35, 168,
5,3,1408,4,3,162,184,160,1,14

18,3,140,11,3,169,87,141,2,3
32,83,228,16,13,162,38,168,2

159,33,32,218,37,76,42,33,32
37,32,212,33,162,38,160, 264,
33,32,2064,31,142,117,35,76,6
162,3,168,253,142,5,3,140.,4,
162,82,142,2,3,96,169,08, 168,
78,11,3,118,18,3,186,136, 268
168,5,106,136,208,252,168,16
186,136,16,252,72,172,18,3,1
168,1084,89,126,35,153,128,35
35,173,123,35,281,255,268,3,
35,96,127,86,65,83,82,49,32,
32,67,72,69,67,75,73,78,71,3
78,73,76,6%,32,67,7%,78,68,7
84,73,79,78,155,0,32,73,83,3
78,79,84,32,68,69,76,69,84,6
68,33.33,155,253,0,44,32,67,
78,78,79,84,32,66,69,32,82,6
67,79,86,69,872,69,68,33,33,2
155,0,76,73,76,69,32,73,748,48
65,67,84,155,127,88,65,83,83
32,45,32,82,69,67,7%,86,69,8
73,78,71,32,76,73,76,69,155,
68,73,82,69,67,84,79,82,89,3
63,78,84,82,89,32,68,73,78,6
155,0,82,69,65,76,76,79,67,6
84,73,78,71,32,68,69,76,69,8
69,68,32,8%,69,67,84,79,82,8
155,0,32,72,65,83,32,66,69,56
78,32,82,62,67,79,86,69,82,6
68,33,253,155,8,69,82,82,79,
32,73,78,32,86,84,79,67,32,8

égSS paTn 82,73,84,69,33,33,253,155,8,
13608 pATH 82,82,79,82,32,73,78,32,86,8

4
éIBS pavTa 79,67,32,82,69,65,68,32,33,3
ég?ﬁ pavTa 253,155,0,70,73,76,69,32,82,

ég?S DaTH 65,68,32,69,82,82,79,82,33,2
%380 DATH 155,0,68,73,82,69,67,84,79,8

%385 paTH 89,32,82,69,65,68,32,69,82,8
1%90 paTR 79,82,33,253,155,68,68,73,82,

6

iISS paATh 67,84,79,82,89,32,87,82,73,8
1496 patTa 69,32,69,82,82,79,82,33,27,3
1485 DpATA 253,155,68,8,08,999

CHECKSUM DATA
(See pgs. 7-10)

18 paTa 601,859,577,173,886,415,856,35
8,194,519,564,841,983,755, 385, 8866

85 pDaTa 287,260,764,536,556,358,379,58
8,885,892,537,5087,433,588, 758, 7815

168 DATA 489,349,537,548,888,644,367,4
44,23,629,624,352,58%,988,609, 8080

235 pATA 128,561,845,578,617,261,677,4
32,564 ,898,576,144,882,99,938,8200

318 paTa 357,618,685,6687,626,532,321,3
98,571,519,493,851,6808,415,841, 8346
I85 paTa 371,465,5208,844,677,652,617,6
89,278,533,853,894,224,256,637,8378
468 DATA 169,591,579,294,844,885,823,1
86,379,157,678,908,831,694,564,8582
535 paTa 588,615,608,668,62,871,436,57
3,621,597,599,6082,695,379,113,8827

618 DATA 592,419,577,648,578,619,573,7
22,595,606,865,891,617,898,718,9912
685 DATh 744,741,285,497,611,381,219,3
45,283 ,469,285,240,246,263,298,5827
760 pATh 677,264,299,389,251,231,264,2
84,230,275,289,211,232,428,581,4897
835 pATA 524,546,336,99,383,396,598,34
1,466,488,643,632,647,271,93%6,7298

918 pATG 254,259,257,262,268,265,263,2
68,266,271,269,274,272,549,633,4622
985 paATA 535,68,639,595,641,524,747,38
4,755,539,537,580,418,799,518,8191
1860 DATA 435,537.594,789,581,882,819,
6068,846,460,797,486,322,3668,779,9259
1135 pafa 332,388,577,631,844,3087,546,
511,335,835,214,15,816,574,639,7476
1718 paTa 521,199,194,530,648,771,92,8
38,478,327,339,3083,356,485,339,6412
1285 DATa 598,363,432,322,381,349,369,
316,353,349,292,354,503,327,558,5718
1368 DaTa 339,311,471,584,3%6,246,518,
373,363,82,3653

PAGE 86 THE A.N.A.L.O.G. COMPENDIUM VOL. 1
Listing 4. #3200 DMPABC 8TX HIADR § SAVE COUNT
202 TXA § BET THIS COUNY
OO06 (RRRRBERRPANERRERIRRGRBURERNNDR o204 8EC
2008 3= THIS FILE IS THE CONTROL » 2206 8BC #7 1 SET START FOR DUMP
2018 3 » FILE USED TO ASSEMBLE ALL # 2208 TAX 3 PUT IN X
@812 3» PARTS OF THE ML PORTION OF » o210 INC HIADR 3 INC FOR COMPARE
o#14 3» THE DISK TOOL UTILITY. IT @ 8212 GETIT LDA CASBUF, X 3 BET WHOLE BYTE
8816 j# I8 EXECUTED BY TYPINS THE = o214 J8R CKDOOM § STOP TROUBLE
o¥18 ABM "D:DMPUNIV.CTL"™ * WB216 8TX CHRCNT § BAVE THI8 COUNT
@923 3+ COMMAND FROM THE MAE EDITORw® 29218 JE8R PUTCHR 3 CHARACTER T0O SCREEN
CB22 (RRENNSRNSAREARNEANERRIBRARSRARR® 0229 LDX CHRCNT 3 RESTORE X
o024 .CT w222 INX I AND INCREMENT
9023 .L8 0224 CPX HIADR 3 LIMIT REACHED?
0026 .FI “D:DMPUNIV.SRC* 82286 BNE QETIT § NO..NEXT CHAR
@228 LDA #CR } YEB..80
2239 J8R PUTCHR i BKIP A LINE
D:DMPUNIV.SRC 2232 LDX HIADR I} CK LIMITS
2234 CPX #1728 } DONE SECTOR?
G002 JRRARUARRLARBILRBARVRLARIRGAD 9236 BCS EXIT I YEB..GDODBYE
Poc4 # DSKTOOL MLLIST = * @238 JBR PREFIX 3 PUT UP >0
2906 RERRBARENNRENNRIRE bod a240 JSR UPDATE } UPDATE BYTE CNT
211] L d 8 AUB 1981 * - 8242 JSR SPACE2 } SKIP 2 SBPACES
ea1a #REVS6 13 JUL 1983 d 0244 LDY #o)} ZERO Y COUNTER
o012 # TONY MESSINA = L 0246 LDX HIADR # BET OLD X COUNT
o614 # 48 DUDLEY AVE #» L] w248 JHMP DSPHEX 3 AND BET MO STUFF
#v16 - NEWPORT,RI » * 0239 3§
do18 » 82840 - L 3 G2T2 IRRRRARERERRERD
G020 JRRARRCRBRNAFRIRNPERRRNE NP ERER #2594 3» VARIABLES =
#0022 3 0254 JRENBERBRBERRED
0924 jaunnprinsnnee 292598 3§
@026 j* EQUATES 924@ ERRFLB .D8 1 I ERROR FLAB
0828 jaaanacunrnens #2462 BAVEX .D8 1 § X SAVE
2932 3 82464 BAVEY .DS 1 3 Y SAVE
#9032 DSKVEC . DE SEAS3 3 READ/WRITE DI1S8SK @2&6 CHRONT DS 1 § BTOREABE
@934 CASBUF .DI ®O3FD § 128 BYTE BUFFER P248 WFLAGB .D8 1t } WRITE FLAB
#9346 PERIOD .DI %2E § ASCII PERIOD 9270 TOPSEC .D8 1
#0638 CR .DI %9B I CARRIBE RETURN 9272 FILNUM .D8 1
2040 BP .DI 820 3 ASCII BPACE 8274 3
#0942 CLS .DI ®7D 3 CLEAR SCREEN B276 1HRBRRREERERERE
0044 TAB «DI $7F 3 TAB SPACE 9278 § ¢ SUBROUTINESH®
9946 NULL .DI %29 1 END OF TEXT DELIMETER D260 jasnnpxneeneneae
0048 PAGE® .DI #@0CD j} PGB @ WORK LOCATION 2282 1
2030 LOCKED .DI *2@ § FILE LOCKED MASK 2284 ywee WRITE HEADER ##n
@032 DOBMSK .DI %92 I DOS 2 MASBK #3286 gunn SUBROUTINE #we
P954 DAUX1 .DE ®039A 2288 3
2934 DAUX2 .DE 9030B 9299 MS88 LDX %@ 3 START AT ZERD
#9838 ESC .DI ®P21B 3 ESC/ESC SE@ #9292 DISMSG LDA HEADER, X § BET BYTE
29949 BELL .DI SFD } RING BUZZER 2294 BE@ ENDMBES ¥ 1IF ZERO SCRAM
#0862 RAR .DI ®PO1IF § RIBHT ARROW P296 8TX SAVEX 3 SAVEX
0064 3 2298 J8R PUTCHR i DISPLAY CHAR
OBLE JRRuERSRRRRERE 23089 LDX 8SAVEX i RESTORE X
#9048 j* CONTROL = 2382 INX § ADD 1
OO70 jeesnunnnnrane 02304 8EC
@072 §# NOTE: L o304 BCS DISMSH § ALWAYS BRANCH!'!
@074 3= ORG DOS2= = 93¢8 ENDMSG RTS8 ¢ ADIOS'!
8076 1@ $1CFC SRNRRENRBANIRSARD N ?@31@ HEADER .BY CLS "BYTE#®’
@978 y» ANY OTHER ORE WILL REQUIRE =
20809 j» CHANBES TO THE BASIC PART =« 9312 «BY TAB TAB 'HEX" TAB TAB 'ATASCI' CR NULL
6082 j# OF THIS UTILITY..BEWARE'!'!'!'#% #3146 sere WRITE SPACES waw
20684 1% RUN ONLY UNDER UNMODIFIED » @318 j#w# SUBRODUTINE w=wss
29846 §# DOSZ (I.E. DOS2 THAT DOES = 2320 3
@988 3# NOT SAVE SPACE BY DROPPING # 2322 8BPACEZ2 J8R S8PACE1L § 60 HERE FOR 2 SPACES
9098 3« NON-EXISTINB DRIVES!'!'! 9324 BPACE) LDA #8BP I LOAD A SPACE
2892 |-cu-lnionnlvlnnni.nnnonlnnnn.n 232646 JSR PUTCHR I AND DISPLAY
2074 2328 RTS8 3 THEN RETURN
28996 .PR "ORIGIN OF HEXDMP"“ j ASK ORG 9330 3§
2998 ASTART . IN ASTART } USER INPUT D332 guen CONVERT ASCI #ew
31089 .BA ASTART 3 AASIGN ORO @334 gwew SUBROUTINE waews
2102 .as J STORE OBJ CODE IN MEM 2336 3
o104 .MC sA900 § BUT PUT AT sA98® 2338 CONASC AND #80OF I CLEAR TOP NYBLE
2108 PR “ORIGIN AT INPUT" 0340 CHMP ®#80A I I8 A REG>9??
o108 .PR “0BJ STORE AT sA900" 0342 BMI LT9 § NO..ONLY ADD 939
o110 3 2344 ADC #6& 3 YES.ADD &
G112 jrassnennnnnresy 2346 LT9 ADC #8390 § ADD $30
2114 3% PROBRAM # 2348 RTS } AND RETURN
Pl14 jRepennasrnnuns 9330 3
2118 3 9352 yuws CHECK GARBARE #ww
#1289 START J8R DSKVEC i DO READ OR WRITE #3354 j=#e BUBROUTINE e
9122 BMI DERR 1 1F ERROR BRANCH 2334 3§
o124 LDA WFLAB 3 WAS IT A WRITE? 2338 CKDOOM CHP #8290 3} A < BPACE?
B126 BNE EXIT2 3 YEB..KEEP DISPLAY! 8360 BCC BUBPER 3 YES 8S8UB PERIOD
@128 MEBABE J8R M8G 3 PUT UP HEADER f3462 CHP #%7D i NO < 7D77
o138 JSR PREFIX y PUT UP >» 2364 BCC OUT ¥ YES8 PRINT
o132 LDA LOADR 3 BET LOADR A1 CHMP #%80 1 NO..HOW ABOUT (%88
d134 JBR AROUND i PUT UP @0 23468 BCC SUBPER i YES..8UB PERIOD
o136 JSR S8PACEZ2 3 2 8PACES 2378 CHMP &CR § < 89B 7?7
@138 jesx SECTOR IS IN, HEADER UP, DUMP HEX ==w 9372 BCC our 3 YES..SCRAM
9140 3 9374 CHP #sAR i NO..< sA@7??
o142 LDX #9 3 BYTE COUNTER 29376 BCC SUBPER ¥} YES..SUB PERIOD
o144 LDY #0 ¥ COUNT 8 HEX BYTES o378 CHMP #SFD) N@..HOW BOUT ®FD
@146 DBPHEX LDA CASBUF, X } BET A BYTE 2380 BCC OUT § YES..ELSE
@148 JSR CONVERT 3 BREAK INTO NYBLES @382 SUBPER LDA #PERIOD 3 LOAD A PERIOD
2150 JBR DISPLY § AND DISPLAY 4384 our RTS8 § THEN RETURN
2132 J8R 8AVXY i BAVE X&Y REGS o386 3
o134 JSR SPACE1 § NOW SP 1 #3688 1w#» DISPLAY HEX BYTES sss»
29136 JBR RESXY 3 RESTORE X&Y REGS 9390 puns SUBROUTINE
#1398 INY 1 INC COUNT o392 3
o140 CPY #8 § TIME TO DUMP ASBCII?? 2394 DISPLY J8R SAVXY } SAVE X¥& Y REGS
91462 BEQ@ DMPASC § YES..G80 DO IT 2396 LDA HIHEX 3§ BET HI BYTE
21464 INX 1 NO..INC BYTE COUNT 2398 JB8R PUTCHR 3 PUT ON SCREEN
P166 JMP DBPHEX ¥ NO..NEXT?7? 24009 ONEBYE LDA LOHEX 3 BET LO BYTE
9148 3 2492 J8R PUTCHR ¥ AND DISPLAY IT TOO
G170 juanntenentenee dapa JBR RESXY i RESTORE X&Y REGS
#9172 3# DSBK ERRORS « D406 RTS8 I THEN RETURN
P174 jeaennusnnesanen #4838 LOHEX .DS 1 $ LO HEX STORE
2176 3 @410 HIHEX .D8 1 3 HI HEX S8TORE
2178 DERR 8TY ERRFLB 3 INFORM BASIC OF ERROR #9412 3
2180 EXIT J8R WEIRD § BREAK UP WEIRD BYTE D414 ywas CONVERT BIN BYTE TO 2 HEX DIGITS #se
2182 LDY & } ZERO VY B4146 guen SUBROUTINE #»a#®
o184 8TY LOADR 3} ZERO LOADR va18 3
9186 EXIT2 PLA # CLEAN UP 8TACK @420 CONVERT PHA 3 18T BAVE A
o188 RTS § AND RETURN TO BASIC Paz22 LER A ¥ EXTRACT
o190 0424 L8R A i TOP NYBLE
0192 jesanrnnunnsrns @426 LS8R A ¥ AND SHIFT TO
2194 3= ASCII DUNP = 3428 L8R A } BOTTOM NYBLE
A196 juanensntnianires 2430 J8B8R CONASC § CONVERT BIN TO ASCII
2198 2432 8TA HIHEX 3 8TORE 1T

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 87
0434 PLA 3 BET ORIBINAL BYTE 2720 LDA #°U } USED LOAD 'U*
9436 JSR CONASC 3 CONVERT IT 9722 8TA FILSTA+1 3 STUF

2438 8TA LOHEX 3 BTORE IT 9724 CKLOCK LDA #LOCKED § LOCK MASK

2440 RTS § AND RETURN 0726 B1T FILSTA § 18 1T?

8442 3 2728 BE@ CKDOS § NO CK DOS

8444 y=#w UPDATE BYTE COUNT sws 2730 LDA &’ § YES. LOAD "#°
0446 inew SUBROUT INE s 8732 8TA FILSTA+3 i STUF

3448 1 8734 CKDDS LDA #DOSMSK 1 DOS MASK

#4350 UPDATE LDA LOADR 3 BET LO BYTE 8738 BIT FILSTA 1 DOs27?

2452 cLc I CLEAR CARRY 2738 BEQ DOS1 1 NO DOS1

oAn4 ADC %808 1 ADD B G740 LDA #'2 i YES LOAD 2

2456 8TA LODADR 1 STORE AWAY 0742 STA FILSTA+2 3 STUF

2438 ARDUND JSR CDNVERT t CONVERT IT 0744 JMP OUTFIL 3 AND OUT

0460 JSR DISPLY § AND DISPLAY #7446 DOS1L LDA #°'1 I LOAD 1

0as2 RTS 1 THEN RETURN a7aa STA FILSBTA+2 3 AND STUF

94464 LOADR .D8 1 3 BYTE COUNT LO 9750 jwxw FILE FORMATTED..DUMP IT wsex

@444 HIADR .DS 3 BYTE COUNT HI 2752 DUTFIL JSR JUSHEX I PUT UP A s

9468 9734 LDA DAUX2 3 BET SEC HI

2470 3 @736 PUTSEC JBR DOONE $ DISPLAY LO NYBLE
@472 jeew SAVE XkY REBISTERS w#a# 6798 LDA DAUX1 i DSK SEC LO

3474 jame SUBROUT INE ey 0740 JSR DOBOTH 3 DISPLAY

2476 3 0762 JBR SPACE1L } SKIP SPACE

2478 SAVXY 8TX SAVEX 8764 LDX ®0 §} BET INDEX

2489 STY SAVEY #7466 DISPFL LDA NAMBUF, X 3} BET LTR

2482 RTS 8768 JSR BAVXY 3} BAVE IDX'S

9484 RESXY LDX SAVEX 8770 JBR PUTCHR 1 PUT ON SCRN

9486 LDY SAVEY 8772 JBR RESXY 3 RESTORE X/Y

2488 RTS 3774 INX

9490 1 8776 CPX #8 § DONE NAME?

8492 jess PREFIX BYTES WITH >8 ses 2778 BCC DISPFL } NO.BET MO

BA94 ran SUBROUT INE e a780 JBR BAVXY 3§ 8SAVE X&Y

0494 3 8782 JSR SPACE1 1 1 SPACE

PA98 PREFIX LDA #°>5 1 LOAD A CARAT @784 J8R RESXY 31 RESTORE X&Y

o530 JSR PUTCHR t DISPLAY IT 9784 DOEXT LDA NAMBUF A X i BEY EXTENSION
A%82 JUSHEX LDA #° 98 i LOAD HEX DESIGNATOR g7ae J8R SAVXY 3 SAVE ENM

as04 JSR PUTCHR 1 DISPLAY IT a798 J8R PUTCHR t DISPLAY

@596 RTS 3 RETURN 8792 JBR RESXY RESTORE

29508 1 a794 INX § INC COUNT

@510 i#nea ML CHANBE BYTE ROUTINE »rex @796 CPX #11 § BOT EXTENSION?
@512 3#»wm BASIC ENTERSB MERE Y 8798 BCC DDEXT § NO..BET ALL

@514 CHNBBY PLA 1 PULL OFF # VARS PASSED 98092 JSR SPACE1L 3 PUT UP 8P

2516 PLA 1 PULL OFF HI ADR 2802 JBR JUSHEX § AND 8

9518 STA #*PABEM+1 t STUFF 1T 2804 LDA STABEC i LOAD START

2520 PLA } NEXT?? 2806 PUTSTA JSR DOBOTH ¥ TO HEX

0522 STA *PAGE® $ STUFF IT 2808 LLDA STASEC+1 i 8TART LO

0524 INDEX LDY #2 i1 SKIP >® wain I8R DOROTH 3 DISPLAY

25264 LDA (FABE®) Y 5 HI HEX o812 JSR SPACE1 T SKIP 3

2528 J8R MAKBIN 3 HEX ASCI TO BIN RYTE o814 J8R JUSHEX § PUT UP 8

[ERT) TAX 1 SAVE START INDEX 2816 LDA FILEN 8 FILE LEN MI

2532 cLc 2818 PUTLEN JSR DOBOTH 3 DISPLAY

8534 ADC %88 1 BET MAX COUNT 2820 LDA FILEN+1 § FILE LEN LO

2536 STA CHRCNT 3 STORE 1T 6822 JSR DOBOTH i DISPLAY

2538 INY 0e24 JSR S8PACE2 1 SKIP 3

@540 HX2BIN INY i SKIP TO 2826 J8R JUSHEX i PUT UP 8

0542 INY 5§ NXT USEABL BYTE 9828 LDA FINUMB i FILE NUMBER

o544 LDA (PABE®) ,Y } HI CHAR 2830 JSR DOBOTH } DISPLAY

2546 CHMP #8P § 18 IT SPACE? 2832 JSR SPACE?2 5} SKIP 2

2548 BNE NOTASC I NO..HEX @834 PSTATU LDX #2) CNT 2

2530 INY 3 YES..BET CHAR Pbb4 BE TNAM LDA (PAGE®),Y } BET CHAR

o552 LDA (PAGE®) .Y i IN A @668 8TA NAMBUF X } STUFF

0354 BNE STUFIT i AND STORE DIRECTLY 0670 INY § ING THE

9556 NOTASC JSR MAKBIN i HEX ASCII TO BIN BYTE 8672 INX } COUNTERS

@558 STUFIT 8TA CASBUF, X I STUFF IN BUFFER B&L74 CPX @11t t+ DONE WITH NAME?
2540 INX 04676 BCC BETNAM } NO.BET MORE

oN&2 CPX CHRCNT i1 DONE 8 BYTES 8478 LDY 49 i YES

o384 BCC HX2BIN t NO.BET NXT 84660 BETSTA LDA (PABE®),Y 3} BEY STATUS BYTE
o546 PHA 3 PUBH FOR EXIT 8682 8TA FILBTA 5 STORE

9548 JMP MESABE t PUT UP NEW SCREEN 8684 INY ? NEXT BYTE

@373 TEMP .D8 1 § LO BIN VAL STORE @686 BETLEN LDA (PAGEM) VY ¥ LEN LO

8572 j##n ABCI HEX TO BIN #se 2688 STA FILEN+1 3 STORE

0574 1s%w SUBROUTINE *en 8690 INY

8576 3 8692 LDA (PABE®),Y 3 LEN HI

#3578 AS2BIN SEC § SUBTRACT 8694 STA FILEN i STORE

2380 S8BC #'0 i ASCII @ 0676 INY

382 CMP %10 I AC1B7 ?4698 FISTAR LDA (PABE®),Y 3 BET FI START
9584 BCC ASBIN1) YES JnMP o708 STA STASEC+1 § BTUF

085686 SBC #7 + ELSE SUB 7 MORE 2702 INY

79588 ASBIN{ RTS 1 AND RETURN 704 LDA (PAGE®),Y 3 8TART HI

LELT] a786 S8TA STASEC 3 STUF

OT92 (RS RNARRRR AR AR DR AR AN RBRDRRRN B RN 3788 CKSTA BIT FILSTA 3 ENTRY DELETED?
#5594 3% CONVERT 2 ASCII HEX DIGITS = o710 BPL CKUSBED I NO. CK IF USED
#3596 3# TD A BINARY #. THE HI DIGIT # 8712 LDA #'D 1 DELETED LOAD "D’
#5398 31® COMES IN THE A REG. THE LO # 8714 STA FILSTA+1 ¥ 8TUF

8600 j» DIGBIT I8 EXTRACTED FROM THE # 8716 JMP OQUTFIL 1 THEN OUT

9432 §#» PAGE ® PTR + Y REB. ROUTINE #» 9718 CKUSED BVC OQUTFIL § 1F NOT USED, OUT
PL04 1% EXITS WITH BIN NUMBER IN A # 28346 PUTLTR LDA FILSTA+1, X 3 PUT UP STATUS
DOEBE TRRARNREREARRIPRRER RN RO RRRR R TR 2838 JSR 8AVXY 3 BAVE X&Y

2608 1 6840 J8R PUTCHR 3 PUT UP ASCII
8618 MAKBIN PHA i SAVE HI HEX DIGIT 29842 J8R RESXY I RESTORE X&Y

2612 INY 0844 LDA #SP ¢ LOAD SPACE

0614 LDA (PABE®),Y)} BET LO HEX DI@ 2846 STA FILSTA+1,X i CLEAR TH18 8TATUS
24616 J8R AS2BIN 1 CONVERT o848 DEX ' DECREMENT COUNT
618 STA TEMP i STORE oase BPL PUTLTR 3 BRANCH TILL DONE
2620 PLA 3 BET BACK HI 2852 INC FINUMB § INC FILE NUMBER
@622 JSR AS2BIN i CONVERT 2854 INC SECMAX 3 AND FILESB/SBECTOR CNT
0424 ABL A 3 SHIFT 28364 LDA #8 t CLEAR OLD FILE ITEMS
8626 ABL A 3 IT 28586 CHMP SECHMAX 3 DONE 8 FILES?
2628 asL A 1 uP 8860 BEQ NXTSEC i YES-BET NEXT SECTOR
24630 ASL A 3 TOP 8862 LLDA *PABE® § ELBE INC BUFFER POINTER
9632 ORA TEMP 8 OR IN LO BYTE 88464 cLC } S0 THAT WE

2634 RTS 3+ RETURN WITH BIN IN A 9846 ADC #1656 3 SKIP 146 BYTES
@636 j#ew DIRECTORY DUMP STARTS HERE ### 2868 B8TA *PABER I STORE NEW POINTER LOW
2638 JPONT JMP DERR § LONG BRANCH 2870 BCC NOHIBY 3 JUMP IF NO CARRY
@&4A® DOBOTH J8R CONVERT i COM VAL IN A TO HEX 0872 INC #PABEQ+1 3 ELSE INC H! PART OF POIN
0642 JSR DISPLY i AND DISPLAY P874 NOWIBY LDA #CR I LOAD RETURN

B644 RTS #9876 JBR PUTCHR " bOo IT

8646 3 2878 JSR CLRNAM 1 CLEAR NAME BUFFER
8648 REDIR J8R DSKVEC 3 READ SECTOR o8ae JMP FILOOP 3} & BET NXT FILE INFO
0690 BMI JPONT 1 JUMP LONG ON ERROR 9882 NXTSEC LDA #CR + EXECUTE A

2652 LDA #L K CASBUF § LO BUF START £884 JSR PUTCHR 3 LINE FEED

8634 STA =PAGEQ® 3 STUFF 9886 LDA DAUX1 5 INC DSK I0OCB
0656 LDA #H,CASBUF ¥ HI START 2968 cLc 3} TO READ THE NEXT
2638 STA #PABES+1 } STUFF #8990 ADC #1 3 SECTOR

86468 FILOOP LDY @53 j NAME START 8892 STA DAUX1 } THEN STORE

9662 LDX 3 BUF INDEX 2894 BCC NOFLIP 1 INC HI

86464 1eee NOW GET FILE NAME aas 2896 INC DAUX2 3 IF NEEDED

PAGE 88 THE A.N.A.L.O.G. COMPENDIUM VOL. 1
2898 NOFLIP LDX #& 3 CLEAR FILE CNT
0900 STX SECHAX 1ias R Lt) FILE DELETED??
0902 LDA TOBGLE J DONE 2 SECTORS? 1168 JSR DISNAM § ¥2-.078 USED.Y
0904 BNE CLENUP) YES CLEAN UF OUR ACT 1170 8TX ERRFLO L ARTE e e
2906 INC TOGBLE } NO..SET FOR NEXT TIME TH 1172 J8F BELLTE) BOTE ERROR
@908 JMP REDIR 3 AND BO READ NEXT BECTOR 1174 INP EXTT2e1 } PUT DEL MSB
B0 JRRAABVARRARAERRAXSRRES 1176 NOENT LDX #H,6KNOMSE } BN acram
8912 j# CLEAR NAME BUFFER ® 1178 LDV oL NOHSE } M88 ADDR
0914 SUBROUTINE . {18 F80 FLipLE
P14 JRERRERRANRBEFRRRERRON 1182 LDA FINUMB b e nahoe
::;2 CLRNAN LDX ®11 } 11 CHARACTERS 1184 J8R DOBOTH : ;:‘Q.EL:‘:"BER

LDA &8P i ONE BPACE 118
Poza TR DEx euaF.X ¥ ExeaR 17 1188 yesws FILE USED PUT LP NANE ETC bace o CRROR EXIT

EX } BET EVERYTHING!'!
8926 BNE CLRSPA § TILL DONE :::g T t35 :['32:2 s T
0928 RTS i THEN RETURN 1194 OBR ELIPLT ¥ HI/LO
PIID JRRRRRARRRARRRERR RS 1196 JBR DISNAM {1 prerLey
#932 j+# DIRECTORY DUMP # 1198 LDX #H,SE ! Lol
8934 1w EXITS HERE ® 1200 UBY .L'ssg:gg ¥ MS8 ADDR
P9Z4 JEARBASRNARNACURSARRR 1202 isR FLiPIT
6938 CLENUP DEC TOGBLE 5 CLEAR TOBELE LDCATION 1204 LDA DALX2 ? FLIP M8GS
0940 JIMP EXIT2 } AND THEN JUHP BACK TO BA 1204 JSR DOONE S N ia L “IAST aECYOR
BF42 FRERSRENASRREDEE TN 1208 LDA DAUX1 3 DEBE HEX
8944 §» DIRECTORY DATA # 1210 JB8R DOBOTH ! U
P44 JREREAXUNERRRBRRRER 1212 SETY LDY #16 } DO 17 LINES
#948 NAMBUF .08 11 } FILE NAME BUF 1214 8TY YCNT § BAVE CNT
9950 STASEC .D8 2 } START SEC HI/LO 121& DORETN LDA #CR + CARR RET
::gz r;}tgr:“ .n8 2 § FILE LEN HI/LD 1218 JSR PUTCHR § DISPLAY

.BY 32 32 32 32 32 j FILE 8TATUS :g:g '511): :'7:"1 S B SECTORGULTHE
09%6 TOGGLE .p8 1 3 INFAMOUS TOBGLER 1224 DOREAD JBR DSKVEC - 32:5 a
0958 SECMAX .D8 1 § FILE COUNTER 1226 BPL DRIVON gk D nee ar
960 FINUMB .DS 1 } THIS FILE # 1228 JMP RDERR : B"P R
P42 jeesREnnvRsRERRBRRN 1238 DRIVON 3SR WEIRD # BAD READ!'
2628 "FI "D:DMPUNIVZ.8RC" 1232 INC FILCNT i EXTRACT WEIRD BYTE
1002 JRERESARANNRRQABUARENDTER 1234 BNE GO 3 INC COUNTER
1804 §» CHANGE SECTOR LINKS 1236 IND OoN 3 NO WRAP YET
QDG §H25 0400 1238 GOON LD FILCNT+4 § ELBSE INC HI
1968 ENTLNK JBR DSKVEC 3 READ SECTOR He Rt il ! BET THIS FILE #
:::g BPL CHGLNK } JMP BOOD READ 1242 BNE 3323“ : 33"'5‘-“&&“ AR

JHMP DERR E Ly e .
1914 CHBLNK JER WEIRD : Blﬁgﬁkss,ﬁoﬁusecmﬂ :?:; '632 CASBUF+126 i BET LO PTR
1016 JMP EXIT2 } AND RETURN 1548 s :OPBEC i OR WITH Hl BYTE'!
1618 NEWLNK LDA FILNUM) BET NEW FILE 1296 S (MERONE ¢ IF ZERO THEN DONE
1920 ROL A 3 ROLL IT 2 1555, HoRGER o SETUP + ELBE S8ETUP FOR NXT RE#
1922 ROL A ¥ BITS LEFT HEEE il gczglﬁ ¥ DISPLAY TRACE S8ECTOR
1024 ORA TOPBEC 3 OR IN HI BECTOR 1256 BPL DORE L ey
1026 8TA CASBUF+125 3} STUFF BACK 1258 ~ EAD 3 IF NOT DONE 8 THEN GET
1828 aNP EXiT2 1 AND RETUSR 12 LDA #1 3 ELSE SETUP NXT LINE
1930 jEERRERREIRRPRERRAN 1242 STA FAKFLG 3 FOR ONLY ®
1832 3% EXTRACT HI/LO # e DEC YCNT # DEC LINE CNT
1034 §# NEXT S8ECTOR @ S BPL DORETN 3 IF NDT 1& BO BACK
1936 j¢ SUBROUTINE # o 8TA CONTIN + ELBE SET CONTINUE FLB
19368 s% THIS AVOIDS A * - JMP EXTT2+1 ¥ AND ESCAPE..WE WILL RE
1949 & HORRENDOUS BUS# o J8R CILRNAM 3 CLEAR NAME
1642 3« OF TYINB UP # Sers LDX #H, LINKER 1 MS8 ADDE
1044 j# THE STACK (AT & 150 LDY #L,LINKER
1646 3% LEAST I HOPE) # JBR FLIPIT i DISPLAY
1040 (R 0SSN RBRARESNES 1278 ONMOER JBR JUSHEX I PUT UP
1950 3 i 1289 LDA DAUX2 i HI S8EC
1052 WEIRD LDA CASBUF+12% 3 BET WEIRDO s 988 \DODNE i DISP JUST LO
1954 PHA i BTUFF AWAY Hrd 5:2 ggg“ i LO SEC
1056 AND #9803 1 MASK OFF BITS 2-7 1288 LASHSG t DX aTH $ DISPLAY
1058 8TA TOPBEC } S8TUFF HI BY 1290 Lgv #H, ODAMSG ¥ MSB HI
:::g Elé: = i BET STUFFED BYTE 1292 J8R :tigll)?HBB : :5? E? UF

5 RIBHT JUSBTIFY

1864 LS8R A } FILE NUMBER e CONnEX LEA S e I RESTORE FAKE
1066 STA FILNUM ¥ STUFF IT 1298 CLRFAK aTA F
1848 RTS } BO HOME Lzo8 AKFLB } RESET FAKE
1670 jeews TRACE SECTORS ENTERS HERE weew T5g5 LDA 4o 3 CLR CONTIN
1072 TRASEC LDA CONTIN § FIRST TIME? 1304 312 leJLcm ¥ CLEAR EOUNTR
LO7A BEG NOCON } YES..DO PULLS 1386 ata F;EE;';.,
1076 PLA 1 JUST PULL VAR PASSED 1308 IHE CXTFo44 § NI CLR
1678 JMP SETY } NO..NO PULLS 10 TREBONE e } AND SCRAM
1080 NOCON PLA 1 PULL OUT VAR CNT 1312) g L9ET _QRIGINAL Lo
1082 LA BUCL STARy R s EOR FILECNT § OR WITH COUNTER
1084 STA DAUX2 i STORE FOR READ 1316 Ly i # IF NOT ZEROD..SORRY
:zgg 8TA DINUMH } STO FOR RECOV 1318 Eg: 4?53?11 : gg #LE:DN

PLA GET START L LE
1090 STA DAUX) : 8TORE FOR Rgnn :2;? grr‘z FELo6 } SCnE_AD ABuvE
11%11; STA DINUML 1 8TD FOR RECOV i3os =l i:tgm’ﬂ 3 CLR FUR NXT TIME

PLA INDEX HI
1096 STA *PABED+1 : STORE :ggg tg: :?.gigs:g I ANNOUNCE WE DONE
1898 PLA + INDEX LO ixa Loy Sad g 5 TO THE WORLD
110¢ 8TA =PA jy DO IT
1162 PLA e : .‘3:32: HI 122 LOA 9ER I CARR REF

3 334 JBR PUTCHR DO IT

1104 PLA } FILE® LO .
1106 8TA FINUMB + BTORE IT i iy I } LOAD TO CLR
1128 JSR DSKVEC 3 READ SECTOR 1320 GORRYV s AK § EXIT GRACIOUSLY
1110 BPL NOERR i BRANCE NO ERROR 1342 LDY bl s ¥ M50 A0k
1112 ERRTRP JMP RDERR i ERROR. .JUMP 1344 38R :L,::n.nsrs
1114 NOERR LDX @11 i NAME GOUNT 1544 SR oLl } PUT 1T UP
1116 LDY #15 4 INDEX CNT 1348 Lok Dxuznu
1118 LOADIT LDA (PABE®) Y i BET LETTER 1350 Lba FDBDTH
1120 STA NAMBUF-1,X ¥ STUFF 1T 1 et So0 SieEN
1122 DEY v DEC Y 1354 LDX #H, FIMSB1
1124 DEX ¥ AND X 1356 LDY #L,FIMSG1 e
1126 BNE LOADIT i BET MORE 1358 J8R FLIPIT
1128 LDA (PAGE®),Y I BET START LO 1360 LEA FTLENF I DIBPLAY
;1‘32 gm DAUX?Z I BTUFF 1342 JSR DOBOTH

EY
1134 LDA (PADE®) , Y) BET L0 1366 38R DOBOTH

8TA DAUX1 y 8TU I
1138 DEY i 1370 LDv abFInanz Poeast
1140 LDA (PABE®) Y } BET FI LEN HI 1372 JSR FLIPIT < .
1142 8TA FILEN+1 i BAVE FOR CKS 1374 SnR B i DISPLAY
1144 DEY ikl i S ¥ CLEAR FILCNT
e LR LMD, Y s FI LEN LO 1378 STA FILCNT+1

FILEN } BAVE IT TOO
it DEY ,lig; |QI.DIIII*Q‘:::'EE:‘:E: b NOWIEXLY HAERRUR
1152 LDA RECOVR i ARE WE DOING RECOV FIL? 1384 ;& MORE SUBROUTINES &
::g: gig g;g:ﬁ ¥ NO..CHECK B8TATUS 1386 1 FOLLOW %
: I YES..DO RECOVER'

1198 STCHK LDA (PABEM) ,V ¢+ BET 8TATUS :ggg :QQD.QQ.!IQ“!QQG!CIQ!
1160 BEQ NOENT i IF 2ERD, NO ENTRY
1162 8Ta FILSTA 3 STORE 1T nay oREAT coa Dlangert } OLD PTR

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 89
1396 LDA DISHMSB+2 2045 y# LOW DISKTOOL YO RUN #
1398 8TA TEMP2 207@ §+* WITH ALL. ATARI PROD- #
1400 8TY DISHSB+1 § POINT TO 2075 j# UCT8 IN THE FUTURE....®
1402 8TX DISHSB+2 § NEW N8B 2080 (AP IRBEURRAERIRRRARRR BN
1404 JSR M8G § PUT UP THE MNS@ 208%
1406 LDA TENP1 § RESTORE OLD 2090 (RANSNABNVRVARLARBONRRRD
1408 8TA DISHEG+1 3 MS8 POINTER 2695 3# 1I0CB EQUATES FOLLOW =
1419 LDA TEMP2 2100 FRRPLUNRBNRRRBEEERRR R RD
1412 8TA DISMEE+2 2105 3
1414 LDX TEMPX } RESTORE X&Y 2118 10CBA4 .DE %4a¢ § 10CB 4mib
1416 LDY TEMPY 1 ALSO 2115 10CB8BT .DE %0340 3 BTART 10CB BLKS
1418 RTS8 I THEN RETURN 2120 ICHID .DE 10CBST 3 HANDLER 1D
1420 SETUP LDA TOPSEC § SECTOR MSB 212% ICDNUM .DE ICHID+1 3 DEVICE &
1422 STA DAUX2 i S8TORE FOR NXT READ 2138 1CCOM .DE ICDNUM+1 i COMMAND BYTE
1424 BETUP2 LDA CASBUF+126 3 SECTOR LS8B 213% ICSTA .DE ICCOM+1 3 STATUS BYTE
1426 8TA DAUX1 ¥} STORE FOR NXT READ 2146 I1CBAL .DE IC8TA+1 § BUFFER ADDR LOW
1428 RTS 3 AND RETURN 2145 ICBAH .DE ICBAL+1 3} BUFFER ADDR HIBH
1430 DISNAM LDX &9 i BTART AT ZERO 213@ ICPTL .DE ICBAH+1 3 POINTER LO
1432 BETMOR LDA NAMBUF, X ? BET LETTER 2155 ICPTH .DE ICPTL+1 ? POINTER HI
1434 JSR SAVXY 21606 1CBLL +DE ICPTH+1 ¥ BUFF LEN LOW
1436 J8R PUTCHR 1 DISPLAY 2145 ICBLH .DE ICBLL#*1 } BUFF LEN HI
1438 J8R RESXY 2178 I1CAX1 .DE ICBLH+1 } AUX BYTE 1
1440 INX 2173 1CAX2 .DE ICAX1+} § AUX BYTE 2
1442 CPX #11 2180
1444 BCC BETMOR 2185 § 4 SPARE UN-LABELED BYTES FOLLOW IN IOCB
1446 RTS § B0 BACK..JACK 219¢ CIOVEC .DE SEAN6 3 CID ADDRESS
1448 jREvsaenenennenEnervnan 2195 CLOSE .DE soC } CLOSE COMMAND
1459 1* HERE ARE THE MSBS « 2200 OPEN .DE $03 3 OPEN COMMAND
1452 JRAKERIRRIRERNERRERRRAR 2205 BETCHR .DE 807 3 BET CHAR CMND
::34 LA"E 5% SESUES # WiLL 2210 PUTCAR .DE 80P 3 PUYT CHAR CHND

& . ' : .
1488 SECHSB .BY 8P 8P 8P 8P ' START SECTOR:$’ NULL §§;3 25::52 :32 ::3 : ?51 :EEDZ:N§NND
1469 DELMSG .BY ' I8 DELETED!!' BELL BELL CR NULL 222% WRITE .DE s@8 i WRITE (FOR OPEN)
;:23 L INKER :g; gﬁLLFlLE NUMBER MISMATCH AT SECTOR’ ESC 2232 READ "DE o4 I READ (FOR OPEN)
1466 ODAMSB .BY CR ’CHECK PREVIOUS SECTOR LINKS: '’ 2235 SPLIT -DE 810 } BPLIT SCREEN
1448 .BY BELL BELL NULL 2240 DBPEC .BY "E:" CR 3 EDITOR DEV
1470 RDNSB .BY ’*CANNOY READ SBECTOR:® ESC RAR "8’ BELL 2245
1472 NOMSS .BY CR °NO ENTRY FOR FILE' ESC RAR "$' BELL 2230 HEARREANRERREIARRRBRR
1474 STOPMS .BY SP "END' NULL ©2255 §# NEW PUTCHR SUBRTN #
1476 FILMS@ .BY CR "ORIBINAL SECTOR COUNT’ 2240 JARARARARERRBRARNRNERRS
1478 FIMSB1 .BY CR ®"ACTUAL SECTORS LOADED’ 2245 §# A REO HAS CHARACTR#
1480 F1MSB62 .BY CR *"SHORT FILE ERROR''® 2270 JRRRRARARGRVNDIBRAERRR
1482 DELETE LDX ®H,DELMSB 3 POINT TO 2275
1484 LDY #L, DELMSE i DELETED 2286 PUTCHR LDX #10CBA y 10CB INDEX
1486 J8R FLIPIT § DISPLAY 228% BOCIOV JSR CIOVEC 3 BO TO C10 HANDLER
1488 RTS 1 RETURN 2298 RTS } THEN RETURN
149¢ RDERR LDX #H,6RDMSE 229% 1
1492 LDY #L,6 RDMSO 2300 RACREFERRBAREIRERERRAR
1494 JSR FLIPIT I DISPLAY 2306% j» INITIALIZE IOCB #4 ®
1496 LDA DAUX2 3 SECTOR HI 2310 JREAERRRREE RN RRE R
1498 JB8R DOONE i DISPLAY 2315 §
13500 LDA DAUX1 } BECTOR LD 2320 CLRIODCA LDX #10CB4 § INDEX TO #4
15027 JBR DOBOTH § DISPLAY 2323 LDA #CLOSE } CLOSE COMMAND
1504 LDA &CR § LINE FEED 2339 8TA 1CCOM, X i S8TUFF COMMAND
1506 JSR PUTCHR 1 DO IT 2335 JSR CIDVEC 3 CLOSE IT
15088 JMP COMMEX § AND EXIT 2340 LDX #IOCB4 3 RESBET X
1510 I ReREnsenaninatesine sy 2345 OPN1OC4 LDA #%OPEN } OPEN COMMAND
1512 s« TRACE SECYOR VARS = 2359 STA ICCOM, X } STUFF IT
134 | REERAEERCHARLARLESEXS 2353 LDA #L, DS8PEC 4 LOAD ADDR TO E:
151& XCNT -BY 2 2340 8TA ICBAL, X § STUFF IT
1518 YCNT -BY @ 2365 LDA #H,DSPEC i ADDR H
1520 TEMP!1 «BY ® 23790 8TA ICBAH, X i STUFF
1522 TEMPZ .BY © 2375 LDA #WRITE § WRITE ONLY
19524 TEMPX .BY 8 2360 8TA ICAX1, X 3 8TUFF
1526 TEMPY .BY © 2385 J8R CIOVEC 3 B0 TO CIO HANDLER
1528 CONTIN .BY ® 2399 3
1530 FILCNT .BY 8 @ 239T JRAERGARANEEPARARARARLARSRAREERS
1532 JERRuNaRasRREENERRIBREIRRRRER 2400 3+ SET UP IOCP4 SO THAT WE CAN #
1534 §* THIS SUBROUTINE DISPLAYS # 2405 §# PAB8 THE CHARACTER TO DIS-
1536 j# THE SECTOR TRACE IN THE « 2410 3# PLAY IN THE A REBISTER. THIiSe
1538 j# FORM >8XXX. DEPENDING ON # 241% j# I8 DONE BY USINB THE PUTCAR #
1548 j# THE FAKFLB VALUE THE 18T» 2420 3 * COMMAND AND ENSURING THAT .
1542 i# VALUE OF EACH LINE WILL # 2425 j# THE BUFFER LENBTH I8 ZERO.. #
13544 3+ BE OF THE FORM ®XXX. L 2830 [RRRANSARRENCEARNIPRRRNAASRENSRER
194A (RARFRRRBERANFERBRRNERRERNRRER 243% 3§
1548 SECDIS JBR SAVXY 1 SAVE X&Y 2440 LDYX #10CB4 3 REBET X
19350 LDA FAKFLB 3 ONLY XXX THIS TIME? 2445 SETA LDA #PUTCAR i PUT CAR CHND
1552 BEQ DOPREF § NO-DO >® 24350 8TA ICCOM, X § BTUFF
1554 JBR JUBSHEX § YESB-JUSTS 2435 LDA &9 } ZAP BUF LEN
1556 JHP FAKEQNE 3 THEN Jump 2440 8TA ICBLL,X ' AP
1958 DOPREF I.DA ®ES8C 3 SEND ESC FIRST 24465 8TA ICBLH, X i ZAP
1560 JBR PUTCHR | SEND IT 2470 PLA 3 CLEAR BTACK
1562 LDA ®RAR § LOAD RIBHT ARROW CHAR 2475 RTS ¢ RETURN TO BASIC
1564 JSR PUTCHR ¥ SEND IT I00S (RARERERBABURAEIRRRAAPERREHNARESR
1546 J8R JUSHEX § PUT UP 8 3910 3* RECOVER FILE CODE FOLLOWS «
1568 FAKEONE LDA TOPSEC i BET UPPER NYBLE IP1LT JARRARNANANVBENGRC R RN T RO RN RRRETN
1579 J8R DDONE 3 DISPLAY ONLY LO NYBLE 3828 j* THE ACTUAL RECOVER ENTRANCE =
1572 LDA CASBUF+126 3 BET LO BYTE 3925 3 I8 AT LABEL NDCON. IN THE *
1574 JSR DOBOTH 3 DIBPLAY IT 3039 j* BASIC PART OF DISKTOOL THE «
1574 LDA #9 # LOAD ZERO 3835 j* RECOVR FLAG IS SET 80O THAT »
1578 8TA FAKFLB i CLEAR FAKFLB 3940 ;® THE PROGRAM WILL JUMP HERE =
1580 RTS § AND RETURN 3545 J# THIS WAS DONE TO SAVE SOME #
1582 jesnsesnene 3950 3 » CODE REPETITION. »
1584 FAKFLE8 «BY 1 § INITIALLY ONE 3055 RENSARNBRCURBANRARNVRRRNAGRNERRR
1586 frensnnnnen 3060 DCOMH .DE 778) COMMAND BYTE
1388 3645 DBUFLO .DE 772 } DSK BUF PTR LO
1590 jeunenprrotstenetRee 38679 DBUFHIL .DE 773 § D8S8K BUF PTR HI
1592 j# PRINT 1 BYTE + 3975 2
1594 jRanRReRNARIRRERRED 3989 STSECL .BY © i SEC LO STORE
1594 DOONE 38R CONVERT § CONVERT TO ASCII 3985 STSECH .BY © } S8EC HI STORE
1598 JS8R ONEBYE 3 DISPLAY LO NYBLE ONLY 3990 RECOVR .BY ©® i RECOVER FLAG
1600 RTS8 i AND RETURN 3993 DINUML .BY @ § DIRECTORY NUM LO
2000 JREQIERARARERREREDERBEHNUR 3169 DINUMH .BY © ! AND HI
200% 3* IOCE HANDLER CODE FOR # 3103 vTOC .DS 132 } 132 BYTE BUFFER
2010 j» DISKTOOL.THIS CODE WASe 3119 3
2015 j* WRITTEN TO GET RID OF # 3115 DOREC STY TEMPY | SAVE STATUS INDEX
2020 3® THE UNAUTHORTZED CALL # 3120 LDA DAUX2 } BET DIR SEC HI
202% §» TO THE PUTCHR ROUTINE.® 3123 8TA STSECH i SAVE IT
2030 j* THIB CAUSED PROBLEMS # 3130 LDA DAUX1 § GET DIR SBEC LO
2035 j# ON THE 12P@XL AND WAS # 3139 8TA BTSECL i BAVE IT
2049 j» NOT A CORRECT METHOD # 31406 LDX @H,vTOC ¥ ALT BUF HI ADDR
204% j# FOR WRITINB A CHARAC- # 3143 LDY #L,VvTOC } ALT BUF LO ADDR
2050 1# TER TO THE SCREEN. b 3159 STX DBUFHI 1 STUF IN 10CB
2083 j» THE CIO WAY I8 MORE - 3155 8TY DBUFLOD i ALSO LO
20460 j* FLEXIBLE AND SHOULD AL#® 3140 LDX #3468 § VTOC SECTOR 360

PAGE 90 THE A.N.A.L.O.G. COMPENDIUM VOL. 1
3165 LDY #3801 3 IS @148 3735 3

3170 8TY DAUX2 3 STUFF MSB 3730 LDA DINUML 3 LO BYTE

3175 8TX DAUX1 3 STUFF L8B 3735 STA DAUX1 t STUFF 17

3180 JSR DSKVEC § LOAD VTOC INTO ALT BUFFE 3760 LDA DINUMH ! HI BYTE

318% BPL RESBUF 3 IF NO ERROR RESTORE OLD 3763 STA DAUX2 3 STUFF 1T

3199 LDX #H,VRBAD i MS8 HI ADR 3770 JSR DSKVEC § 80 READ IT

3199 LDY #L,VRBAD 3 LO ADR 3775 BPL CHKDOS 3 JMP BOOD RD
3200 JSR FLIPIT 3 DISPLAY IT 3780 LDX #H,DIRDE i HSB HI

3203 JSR CLRNAM 1 CLEAR NAME 3785 LDY #L,DIRDE i M98 LO

3210 JHP RDERR } ELSE EXIT W/ERROR 3790 JSR FLIPIT ¥ DISPLAY IT

3215 RESBUF JBR RESDSK 1 RESYOKE DSK 10CB 3795 J8R CLRNAM i CLR NAME

3220 3800 JMP COHMMEX 1 ELSBE EXIT

322% JRARRREARACANARAABNREEDARRRERNERRR 38905 CHKDOS LDY #0 i CLEAR Y REB
3230 3» RESTORE INDEX AND CK STATUS = 3810 LDA vTOC ¥ BET VTOC DOS
J23IT AP RN RN RN R BA PN IR R AR R E AR R R R AR AR RS 3815 CMP #DOSHMSK 3 18 IT DOS 27
3240 382 BNE DOSIFL $ NO..DOS 1

3245 LDY TEMPY i REBTORE INDEX 3825 LDA 8842 J LOAD FILE USED
3250 LDA (PABE®),Y } BET STATUS 3830 BNE STOSTA 3 AND BRANCH

32558 BNE STOFIL 3 JMP 1F ENTRY 3835 DOSIFL LDA #8490 ¥ ELSE ONLY USED
3240 JMP NOENT 3 ERROR 80 JMP %849 STOSTA STA (PABE®),Y § STORE NEW STATUS
3265 STOFIL aTA FILSTA 3 ELSE SAVE STATUS 3845 LDA &'W 3 LOAD WRITE COMMAND
3270 BIT FILSTA 3 FILE DELETED FOR SURE?? 383¢ STA DCOMM i STUFF IN DSK 10CB
3273 BPL FIUSED § NO!' USER PLAYINB TRICKS 38353 JSR DSKVEC § WRITE OUT DIR SEC
3289 LDX #H,PASS1 3 DOK..ITS DELETED IBL0 BPL WFINE i JMP GO0D WRITE
3285 LDY #L,6PASS1 3 NOTIFY USER WHATS HAPNIN 3843 J8R RESDSK I RESTORE DSK 10CB
3290 JSR FLIPIT $ DISPLAY MS8 3878 JSR CLRNAM 3 ERROR CLR NAME
3299 3 3873 LDX #H,K DIRMWE 3 MSB HI

3300 I NRRBIFRBRRDERARABARERRRRRRRRRNE 3880 LDY #L,DIRWE ¥ MS& L0

3395 3 » TRACE SECTORS FOR CONTINUITY# 3eas JB8R FLIPIT i DISPLAY

IILG (RN RRERERRRRDRRRRTRRRRR NN h-A1] LDA DAUX2 i SECTOR MSB

3315 3 3893 JSR DOONE § DISP 1 DIBIT
3320 LDA STSECH 1 RESTORE SEC M1 3909 LDA DAUX! 1 SECTOR LSB

3329 STA DAUXZ2 3 STUF IN 10CB 3905 JSR DOBOTH 1 DISP 2 DIGS
3339 LDA STSECL i BET 8EC LO 391@ LDX #H, DIRWEZ2 3 PT2 HI

3338 STA DAUX1 1 STUF IT TOO 39135 LDY #L,DIRWE2 3 PT2 LO

3I34@ VERIFY JBR DSKVEC 1 BET A SECTOR 3920 J8R FLIPIT i DISPLAY

3343 BPL Va0 3 JMP GOOD READ 392 JMP COMMEX 3 EX1T W/ERROR
3359 JSR DISNAM 3 DIPLAY NaM 3939 WFINE JSR RESDSK § RESTORE DSK 10CB
3359 JSR CLRNAM 3 CLR NAME 3935 L.LDX ®H DIRENT t DIRECTORY DONE MS8
3340 LDX #H,FIRDE I MS8 H1I ADR 3940 LLDY #L DIRENT ¥ AND LO

3363 LDY #L FIRDE i MS8 LO ADR 3943 JSR FLIPIT i WRITE IT

370 JBR FLIPIT 3 DISPLAY MSB 3938 1

3378 JMP RDERR 1 EXIT W/ERROR IOUS (RN RRIRRRRONRR NS R I RN ABRRRERERRRR

3389 VAo JSR WEIRD 8 EXTRACT LO/HI NXT SECTOR 39460 1®» NOW RETRACE EACH SECTOR AND =

3I3BT INC FILCNT 1 INC SECTOR COUNTER 3965 §# UPDATE THE BIT MAP TO FULLY »

3399 BNE VBOON i BRANCH NO WRAP 3973 t# RECOVER THE FILE..DO NOT FOR-e

3395 INC FILCNT+1 1 ELSE INC HI 3975 1+ GET TO DECREMENT THE @ OF SECe

349@ VGOON LDA FILNUM # BET FILE # TO WHICH SEC 3989 ;* TORS AVAILABLE FOR EACH SEC- #»

3a0% CHP FINUMB I BAME AS 1 WE SEEK? 3985 j# TOR THAT 18 ALLOCATED... *

J412 BNE NOREC 3 NO..FILE NOT RECOVERABLE IPFD RS RARRAARRARRIFAPARARRARRROBRRN

3413 LDA CASBUF+124 3 YES. GEY LD PDINTER IS 3

3420 ORA TOPSEC 3 OR WITH HI SECTOR 4009 LDX #H,REALOD § REALOCATE M30
3425 BEQ CKSECN + IF ZERO..TRACE I8 DONE 40035 LDY #L, REALD ! HI/LD

3430 JSR SETUP # ELSE SETUP NXT READ 4010 JSR FLIPIT § DISPLAY

3435 JMP VERIFY 3 AND BET NXT BECTOR 40175 LDA STSECL i LO SEC

3440 3 4029 8TA DAUX1 § STUFF IT

3445 1 RRCTRIRRORERRAICRRANRIRRRIRAORRN 49025 LDA STSECH i HlI SEC

3458 y* PASS1 ERROR PROCESSINB HERE # 4930 8TA DAUXZ2 i BTUFF 1T

SAST (RS RARERNRRRNRRRRNFAENRASBRARNRRERR 40335 RREC J8SR DSKVEC § BET A SECT

3460 3 4040 BPL RBO § JMP 800D RD
3445 FIUSED JSR DISNAM 3 DISPLAY FILE NAME 4845 LDX ®H,FIRDE i MS8 HI

3470 LDX #H, NODEL 3 M88 HI 4930 LDY #L FIRDE i M88 L0

3475 LDY #L,6NODEL 5 MSO LO 4033 JSR FLIPIT § DISPLAY

3480 JSR FLIPIT 3 DISPLAY IT 4060 JS8SR CLRNAM i CLEAR NANE

348% EUSE JMP COMMEX 3 EXIT WITH ERROR 4065 JMP RDERR 1 B0 READ ER

3490 NOREC LDX #H, LINKER § MSB HI A407® RGO JBR FINDIT ¥ FIND VTOC BYTE
3495 LDY #L, L INKER § MSB LO 4075 JSR MEIRD 3 BET NXT SEC
3300 JSR FLIPIT 3 DISPLAY 4089 LDA CASBUF+124& 3 BET LO PTR

3523 JSR JUSHEX § PUT UP A 8 492835 ORA TOPSEC 3 OR WITH HI

3510 LDA DAUX2Z 3 HI SEC @ 4990 BEQ RECDON i IF @ WE FINEETO
3513 JBR DOONE ¥ DISPLAY ONLY LO NYBLE 4093 J8R SETUP 3 ELSE SET NXT READ
3520 LDA DAUX1 $ LO SEC NUM 4199 JMP RREC 3 AND DO IT

3325 JSR DOBOTH 3 DISPLAY WHOLE THINB 4109 3

3532 LDA #CR 3 LOAD CRET 4110 FREPARBNENAVAAPRFRRRRB SRS ERBRB RN

3538 JSR PUTCHR 3 DISPLAY 4113 i# RECOVER FILE CLEAN UP CODE. #

3540 LDX #H, NAME 3 FILE: Ma8 4120 1% SAVE NEW VTOC, CLEAR FLABS, #»

3545 LDY #L,NAME 3 LO ADDR 4125 1# PUT UP SUCCESS MS8 AND RET. =

3590 J8SR FLIPIT 3 PUT UP MS8@& 4130 3# TO BASIC. FILE 18 RECOVERED.#

hi-1o1-1 JSR DISNAM 3 PUT UP FILE NAME 4139 g» (PLEASE LET IT BE RECOVERED)#®

3342 LDX #H,6NORECO 1 NON-RECOVER M88 HI 4140 JHARERSRERXRARBRRDEBERPRFR SRR R0

35465 LDY #L,6NORECQ 3 MSe Lo 4145 3

3570 JSR FLIPIT 3 DISPLAY 413@ RECDON LDX @#H,vTOC 1 BUF PTR H

3575 JSR CLRNAM 1 CLEAR FILE NAME 4155 LDY &L, VTOC i BUF PTR L

3380 BEQ EUSE 3§ EXIT W/ERROR 4169 8TX DBUFHI I STUFF IT

3383 DOOM JSR DISNAM i DISP NAHME 4163 STY DBUFLO I STUFF IT

3599 JSR CLRNAM B 3 CLR NAME 4170 LDX #8448 I SECTOR 340

3593 LDX #H,NORECO § ADR HI 4175 LDY #s31 I} = 80168

3669 LDY #L NORECO 3 ADR LO 4180 8TX DAUX1 i STUFF

3695 JSR FLIPIT 3 DIEPLAY IT 4183 8TY DAUX2 i STUFF

3610 JMP SORRY 3 CONTINUE ER 4199 LDA #°W I WRITE COM

361T 3 4193 STA DCOMM ¥ STUFF IT

JH20 (#RRERARVEARBRARRBRARER BRI RN G ERR AZ290 J8R DSKVEC 1 WRITE IT

3623 §# CHECK TO SEE THAT LENBTH IN # 4293 BPL VOUTOK 3 JMP BOOD W

3432 t# DIRECTORY MATCHES LEN OF FIL#® 4219 LDX #H,VBAD ' QEY mMS8e

JE3IT IRFRERARRARRRRERRRRRRERRRR R G RN R 4213 LDY &L, K VBAD I ADDRESS

3642 3 4220 JSR FLIPIT i DISPLAY IT

3647 CKSECN LDA FILEN § ORIBINAL LO 4223 JSR RESDSK i RESTORE DSK 10CB
3430 EOR FILCNT i OR W/COUNT 4239 JHMP COMMEX } EXIT W/ERR

34635 BNE DOOM § NO..ERROR 4233 VOUTOK JSR RESDSK } RESTORE 10CB
3660 LDA FILEN+1 i ORIB HI 4240 JBR DISNAHM 3 DISP NAME

36465 EDR FILCNT+1 3 DR ALSO 4245 LDX #H,SUCCES I SUCCES MS8

3670 BNE DOOM 3 B0 IF ERROR 4230 LDY #L 6 SUCCES t ADDRESS

3675 STA FILCNT 3 CLR COUNTER 4235 J8R FLIPIT i DISPLAY IT

3680 8TA FILCNT+1 3 LO/HI 4260 JBR CLRNAM i CLEAR NAME

3685 42465 8TX RECOVR 1 CLEAR RECOVER FLAG
JE90 (ARRRRRARRRRRADARRUNARFRADRRBO BN 4270 JMP EXIT2+1 3 RETURN TO BASIC'!
3495 3« BEGIN PASS 2 OF FILE RECOVER# 4275

3709 (1 #csRanatn ettt ettt tnununrnenesnen 4280 AREERERARNATRNTRABANSARARTIRNGIRNES

3783 3 4283 3+ SUBROUTINE RESDSK: RESTORES #

371@ PASS2 LDX #H,6 DK } OK M88 HI 4292 j» THE DISK IOCB TO A READ CON- «

3713 LDY #L,0K 3 AND LO 4293 g#» DITION AND POINTS THE BUFFER =

3720 J8R FLIPIT 3 DISPLAY 43208 1#» TO CASBUF. -

X723 3 43T JARRNVRCRRARRNRNVVRERRSRR AR PSR ROB RN

I730 I #RBARRARRRERRTRIRRANPH AR RBRE PN 4312 3

3735 j# GET DIRECTORY FOR OUR FILE # 4315 RESDSK LDX ®&H,K CASBUF 1 BUF HI

F740 (RReRRRORNRARRRRRRNRRNIRNRRRRRNRRRRT 4320 LDY #L 6 CASBUF i BUF LO

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 91
4325 STX DBUFHI 3 STUFF LINKER =2214 LOADIT =204F LOADR =1E16
4330 8TY DBUFLO 3 STUFF LOCKED =0@828 LOHEX =1DF1 LT9 =1DCO
4335 LDX #°R 3 READ COM MAKBIN =1E&F MESAGE =1D06& M88 =1D8Y
4349 8TX DCOMM I STUFF NAMBUF =1FDD NAME =21E8 NEWLNK =2002
4345 RTS I RETURN NOCON =20929 NODEL =2&44 NOENT =2890
4350 3 NDERR =204B NOFL1P =1FBC NOHI =2621

43TT JHARRRARRRNARRR R R PO R R RRR R R RN

4340 3+ SUBROUTINE FINDIT:

FINDS THE

"

43675 3® APPROPRIATE BYTE OF THE VTOCw
4370 3# AND THE PROPER BIT OF THAT
4375 3% BYTE WHICH REPRESENTS THE

4380 j» CURRENT SECTOR OF QUR FILE.
4383 j# THE SECTOR MAP I8 UPDATED TO#
4399 3% ALLOCATE THE CURRENT SECTOR

4395 3+ A8 BEINB USED.

IN ADDITION,

4499 3# THE NUMBER OF FREE SECTORS
44035 3= AVAILABLE IS DECREMENTED 80
4410 3# THAT DOS DOESNYT GO BANNANAS.#

4415
4420 3
44235 FINDLIT
4430

4433 FIND®
4449

4445

4430

4435

44460

4443 FIND1
4470

4475

4480

4485

4490

4493 FIND2
49090

4305

4519

4315

4520

4325

4339

4333

4540

4543

43550

4333

4560

4565

4379 NOHI

LDA
LDY
LS8R
ROR
ROR
DEY
BNE
LDY
ROR
DEY
BNE
TAY
LDA
8EC
ROR
DEY
BPL
PHA
LDA
ADC
TAY
PLA
EOR
SYA
DEC
LnAa
CHMP
BNE
DEC
RTS8

wo

®3
DAUX2
DAUX1
A

FIND®
#3
A

FIND1
L]

A
FIND2

DAUX1
#30A

vroc, v
vyoc, v
vToC+3
vTOC+S
WOFF

NOHT

vTac+4

»
-
®

"
*
"
-

JRRERRERRARRRERBRERRRRRAE SRR R RN

4573 (RERBVENFURVRAIRANAER AR RS ER AR S RN
4380 3* RECOVER FILE HESSAGES FOLLOW#

43873
4599 3

4393 FASS1
44609

44605 NODEL
44619 NORECO
4619 0K
4629

4629 DIRENT
4639 REALO
4435 SUCCES
46409 VBAD
4645 VRBAD
44638 FIRDE
44633 DIRDE
4660 DIRWE
46463 DIRWE?2
2034

--- LABEL FILE:

AROUND =1EOF
ASTART =1CFC
CHBLNK =1FFC
CHRCNT =1D81
CKDOY =1EEA
CKSTA =1ECA
CLOSE =A@eC
CLRNAM =1FCC
COMMEX =212A
CONVERT =1DF3
DAUX2 =@39B
DCOMM =9302
DERR =1D34
DIRDE 27264
DIRWEZ =2736
DISPFL =1F12
DDASEC =20F2
DOOM =24CD
DOREAD =20CC
D081 =1EF9
DRIVON =20D4
DSPHEX =1D19
ERRFLB =1D7E
EUSE =2499
FAKEONE =231C
FILEN =1FEA
FILOOP =1E9C
FINS@2 =22BF
FINDZ =2602
FIRDE =2713
FLIPIT =219F
BETLEN =1EBSJ
QETREC =0003
800N =20DF
HIHEX =1DF2
ICAX2 =9@34B
ICBLH =0349
ICDNUM =@341
ICPTL =8344
IDCBA =0040
JPONT =1E89F

. BY
.BY
. BY
. BY
.BY
.BY
. BY
.BY
. BY
.BY
.BY
. BY
. BY
-BY
. BY
-EN

TAB ’*PASS1L -~ °*

'CHECK!NB FXLEEgnNDITIDN'

e
*, CANNOT BE RECOVERED''"
CR TAB
CR NULL
CR NULL

IS NOT DELET

*FILE INTACT®
"RECOVERING FILE

"DIRECTORY ENTRY DONE®
'REALLOCATING DELETED SECTORS’

AS2BIN =1E6Y
BELL =@8FD
CHKDOS =23518
CIQVEC =E4364
CKLOCK =1EDE
CKUBED =1ED7
CLRFAK =212F
CLRBPA =1FD@®
CONASC =1DBB
CR =099B
DBUFHI =9303
DELEYE =22D3
DINUMH =2377
DIRENT =2498
DISMESG =1D87
DISPLY =1iDDE
DOBOYTH =1EAB
DOONE =232F
DOREC =23FC
DOS1FL =2323
DBKVEC =E433
ENDMSB =1D99
ERRTRP =2948
EXIT =1D37
FAKFLO =232E
FILMS88 =228B
FILBTA =1FEC
FINDO =2JEE
FINDIT =23EA
FISTAR =1EBF
BETCHR =9007
BETMOR =21Dé
BETSTA =1EAD
HEADER =1D9A
HX2BIN =1E47
ICBAH =0343
ICBLL =@348
ICHID =@349
ICBTA =@3AT
10CBST =9340
JUSHEX =1E2B

IRAAZA S A4 SRR AR 22222 2 2 2)

St e m wm me e wr ws wm s e w WE WS e v e e WS e e e v e we we e we e we

HAS BEEN RECOVERED'"
*ERROR IN VTOC WRITE!'!'"
"ERROR IN VTOC READ
"FILE READ ERROR'"®
‘DIRECTORY READ ERROR'’
"DIRECTORY WRITE ERROR'’
BELL CR NULL

CLEAR OUT A

PREP FDR /8B

DIVIDE BY BHIFTINB
8AME FOR LO

AND ALSO0 R REB

DEC CNTR

DO 3 SHIFTS TO DIV
DETERMINE SHFT CNT
ROTATE BIT IN A REG

DEC CNT

DO 5 TIMES
UBE A8 CNTR IN Y

CLEAR A

SET OUR BIT IN CARRY
AND SHIFT TO PROPER

DEC GHFT
8HFT TIL
BAVE THE
BEY VTOC
ADD VTOC
INDEX OF
PULL THE

CNT
NEBATIVE
PROPER BIT
BYTE NUMBER
OFFBET

vTac BYTE
MASK

CLEAR BECTOR BIT

PUT BACK

IN VTOC

DEC AVAILABLE SECTORS

GET vAL

DID WE FLIP?

NO. RETURN

ELSE DEC

HI

AND RETURN

CR BELL

"PAg82

BELL

CR NULL

NULL

BELL CR NULL

CR NULL
CR NULL

BELL CR NULL

''* BELL CR NULL
BELL CR NULL

BELL CR NULL
ESC RAR
ABBIN1 =1E&E

CASBUF =@3FD
CHNB8BY =1E31
CKDOOH =1DC3
CKB8ECN =24DD
CLENUP =1FD7
CLRIOCA =233F
CL8 =@87D
CONTIN =22FE
DAUX1 =@39A
DBUFLO =@304
DELM8B =22@3
DINUML =2376&
DIRWE =273E
DISNAM =21D4
DMPASC =1DA41
DOEXT =1F2C
DOPREF =230F
DORETN =28C2
DOSHMEK =g802
DSPEC =2336
ENTLNK =1FF4
EBC =@@1B
EXIT2 =1D3F
FILCNT =22FF
FILNUM =1D84
FIMBEB1 =22A5
FINDL =23FA
FINUMB =1FF3
FIUSED =248F
BETIT =1DAC
BETNAM =1EAQ®
GoCcIOQV =233B
HIADR =1E17
ICAX1 =@34A
ICBAL =0344
ICCOM =0342
ICPTH =9347
INDEX =1E38
1T8USD =20A9
LASHSE =2123

NOH1BY =1F9E
NORECD 22438
NXTSEC =1FA9
ONEBYE =1DE7
OPEN =0003
QUTFIL =1EFE
PASS2 =24F3
PBTATU =1F70
PUTLEN =1FS58
PUTSEC =1F04
RDERR =22DD
REALO =26AE
REDIR =1ER&F
REGXY =1E1LF
SAVEX =1D7F
SECDIS =2301
GET4 =2364
SETY =Z0BD
3PACE1 =1DBZ
3TART «1CFC
STOFIL =243E
STSECH =2374
SUBPER =1DDB
TENP =1E&64
TEMPX =22FC
TOPSEC =1D8F
VBAD =26E3
VBOON =2479
vrac =2378
WFINE =2556
XCNT =22F8

/78900, 2759 ,B39D

NOMSA =226F
NOTASC =1ES4
ODAMBB =2236
ONMOER =2114
OPNIQC4 =2734B
PAGE® =08CD
PERIOD =@@2E
PUTCAR =090B
PUTLTR =1F72
PUTSTA =1F46
RDMSB =2237
RECDON =2%9%
RESBUF =2431
RBO =238%
SAVEY =1D89
SECMAX =1FF2
SETUP =21C7
SORRY =2167
APACEZ2 =1DAF
S8TABEC =1FEB
STOPMS =2286
ATSECL =2373
SULLES =264CC
TEMPL =22FA
TEMPY =22FD
TRASEC =2020
VERIFY =243%
YouTOoK =223C4
WEDONE =2140
WFLAG =1D82
YCNT =22F9

NOREC =24%C
NULL =¢3209
0K =24672
Q0P8 =210A
OUT =1DDD
PASS1 =2622
PREFIX =1E26
PUTCHR =2339
PUTREC =@00%9
RAR =@W1F
READ =0094
RECOVR =2373
RESDSK =235DA
RREC =2373
BAVXY =1E18
9ECM8B =21EF
SETUP?2 =21CD
8P =@929
SPLIT =90190
STCHK =2878
8T08TA =2527
STUFIT =1E57
TAB =BO@7F
TEMP2 =22FB
TOBBLE =1FF1t
UFPDATE =1E06
vVen =244E
VRBAD =26FB
WEIRD =2010
WRITE =pdo8

Listing 5.

i@ REM ¥0E0000HCOAHO0HOOOCR0EOHE
15 REM ¥ DISK TOOL BASIC PROGRAOM ¥

BY TONY MESSINA (C) 1982%
25 REM ¥EE06HOHEECOHOEO0OEREEGEE0E0E0E

38 PDKE 82,8:REM ¥XLFT MAR TO @8 6%

35 REM

48 REN BE8080HHE0HOHOOHOOHOUOOHEEEE

45 REM ¥ UARIABLE/CONSTANT/STRINGS *
98 REM ¥ TNITIALYIZATION FOLLOWS fad

55 REN 60080 H00HGBEHCOHEHEOE0OEOEE0EE
68 REM % CONSTANTS FOLLOW *
65 REM % THE FOLLOWING CONSTANTS *
78 REM ¥ ARE USED TO MAKE THE DSK-— ¥
75 RENM ¥ TOOL LISTING EASIER TO *
88 REM » IT ALS0 PROUIDES f *
85 REM ¥ CENTRQL LOCATION FOR IS50- ¥
298 REM ¥ LATING ADDRESS POINTERS IN¥
95 REM ¥ ORDER TO MAKE MODIFICATIONX
i88 REM ¥* OF THE PROGRAM EASIER. *
185 REM # ENTRIES ARE ALPHABETICAL. *
118 REM ¥ SEE THE CONSTANTS DESCRIP-¥

REM * TION SECTION OF THE DOCU- *
ggn ¥ MENTATION FOR DEFINITIONS.*

REM
BACKGND=718:BLACK=0:BORDER=712:8UF
HIZ-773:BUFLO=772 :BUFPTR=-126:CASBUF=182
1:CASPTR=CASBUF+BUFPTR

148 CHAR=789:CHNGBY=7729:CKLIM=475:CKR
OLM=590:CKROLP=558:CLI0CA=-9823 :CNTIN=S
58 :DAUKLI=778:DAUK2=779

145 DBYHI=777:DBYLO=776:DCOMM=770:DECH
EX=-1360:DUNIT=769 :ENTLNK=8188: ERRFLG=7
998 ERTRAP=625: FILNUM=7556

158 FINUMB=8179:GREEN=Z14:G5EC=82:HEKD
EC=1270:HILO=-S15:MESAGE=7430 : NHLNK=819
4 :PCHANGE=1885:PDIR=14208

155 PHELP=1198:PLUSMIN=865:PMOD=1645:F
PRINT=1530:PRECOVER=1938:PROCINP=745:P
3EC:87:PSET:2039:PTRﬂCE:l?SS:PHRITE:SS

168 RECOVYR=9877:RED=64:REDIR=7823:5CRO
LL=668:5ETDSK=488 :5ETS5CRN=705:5TART=74
20:TOPSEC=7355: TRASEC=8224

165 TURQR=186:WFLAG=7554 : WHITE=18:YELLO
H=26

178 REM

175 REHM

186 REM = VARIABLES FOLLOW *

PAGE 92 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

185 REM 3 THE FOLLOWING ARE VARIA- *
198 REM * BLES SET TO THEIR DEFALLT *
135 REM ¥ VALUES INDICATED DURING *
788 REM ¥ PROGRAM INITIALIZATION.SEEX
285 REM ¥ UARIABLE DESCRIPTION SEC- ¥
218 REM ¥ TION OF DOCUMENTATION FOR ¥
215 REM * LIST OF ALL UVARIABLES AND *
2720 REM ¥ THEIR PURPOSE. *
225 REM

238 REM

235 DRIVE=1:HELP=1:5ECHI=@:5ECLOW=1:5E
CNUM=1

248 REM

245 REM EE0H60HROHEHODOOHOOHEHOG00O0E
253 REM * STRING INIT FOLLOMWS *
255 REM ¥ SEE STRING DESCRIPTION *
268 REM ¥ SECTION OF DOCUMENTATION ¥
265 REM ¥ FOR DESCRIPTIDN AND UHSES *
278 REM ¥ OF THE FOLLOWING STRINGS.¥
2795 REM 30600000 H I MMM
2806 REM

gg?lggﬂ N5 (48) ,ANS (1) ,HEXREPS (4) ,HEXTA
298 HEXTABS="8123456783aBCDEF"

295 REHM

388 REM WHHHEOOHGEOCHEHOREHOEEEOHEREE
385 REM ¥ UARIABLE/CONSTANT/STRING ¥

318 REM * INITIALIZATION END *
315 RLM OOOHOHOHEEHHEO0OREOOHEOHEEHE
328 REM

325 TRaP ERTRAP

338 GOSUB SETDSK

I35 H-USRICLIONC4) :REM CLR IOCB 4
348 gg;ﬂ PHELP

3568 REH HHOHOOCOGHHOOOOREHEO0OOOO0O0EE
355 REM COMMON PROGRAM SUBROUTINES ¥
368 REHM ¥EOCECE00C0OCCHEE NI C6E

365 REM
I78 REM OE0EE0CH0OCOOOO0OBHEEOHOO000
375 REM ¥ HaDE W *
388 REM ¥ SEY UP DISK VECTOR TABLE *
385 REM H0800LHOGH0OCEHOOGHOEHEOOEE0E
398 REM
395 REM

488 POKE DUNIT,DRIVE:REM ¥¥ DRIVE #f
485 POKE DCOMM,GSEC:REM % FOR READ
418 POKE DAUX1,SECLOMW

415 POKE DAUXZ,SECHI

428 POKE BUFLO,253:REM 3*¥ LOM BUF ADR
(SFD3 3

gIg*POKE BUFHY,3I:REM ¥¥HI BUF ADR (583

438 POKE DBYLO,127:REM ¥ GET 128 BYTE

5 (1 SECTOR) ¥x

435 POKE DBYHI,B:REM ¥¢ NO HI ¢

449 RETURN

445 REM

458 REM **mﬁmxﬂ*xﬁm

455 REM ¥ [M{B{P

460 REM ¥* CK SECNUM LIMITS {1 >728 *

465 REM 300000006 MM 600N W

478 REM
SECHHN—UQL(QS) I ! L

UM)?ZG THEN INVALID SEC

NGE IS5 (1- 729 "“:POP :GOTO PROCINP

488 RETUR

485 REM

438 REM

495 REM ¥ (RN 3

580 REM ¥BREAK SECNUM TO HI/LO FORM

585 REM OH80CCGCEEEEEEEEHEENE

518 REM

915 SECHI-INT(SECNUM/256) :SECLOM=INT(S

ECNUM- (SECHI®*256)) :RETURN

928 REM
$25 REM 06E000C0C00OOCHHEOHEEOOC00E
526 REM ¥ MTTONN *

538 REM ¥ ROLL SECTOR MUM TO 1 IF *
535 REM ¥ >728 *
548 REM I0OE06GOOEEMMC MM
545 REM

558 IF SECNUH)?26 THEN SECNUM=1

955 RETUR

568 REM

565 REM I60C0ECOOOCOEEEEOOOOH0E
566 REM ¥ METINH *

570 REM ® ROLL SECTOR NUM TO 728 *
575 REM ¥ (

580 REM mm*mmmm
585 REM

590 IF SECNHH(I THEN SECNUM=726

595 RETU

ggg gg: :*g:?g::******************:
618 REM 3 EO HERE ON ERROR *
615 REM 3OO INM I M-I
628 REM
625 ? "HINNATTESTUTLITRENE : POKE CHAR,BLA
CK:POKE BACKGND,GREEN:TRAP ERTRAP:GOTO
PROCINP
638 REM
635 REM 3OEE0CGEEEEOEEOOOEEEO0E
636 REM ¥ E:INE *
648 REM * SCROLL 5 LINES *
645 REM % FROM THE BOTTOM OF SCRN
658 REM 3086000000
655 REM

668 POSITION 0,17:7 “[FXXXI"':POSITION 8
17 :RETURN

665 REM

678 REM BE800GH0GHHE000CCO0OEEOOEEE
671 REM * EREHIH *
675 REM * SET SCREEN TO *

688 REM ¥ DEFAULY COLORS OF GREEN ¥
685 REM ¥* BACKGND,WHITE BORD, BLQCK*
698 REM % LETTERS.
695 REM
708 REM
785 POKE BORDER,MWHITE:POKE CHAR,BLACK:
POKE BACKGND , GREEN:RETURN

18 REM
?15 REM 3068000000
728 REM ¥ [LIRTIEN *
725 REM ¥ MAIN COMMAND/INPUT PROC- *
738 REM ¥ ESSING PORTION FOLLOKS *
735 REN 666006000H00H6G00000000C0H N
748 REM
345 WIS ;DRIVE:?

758 IF A%="H" THEN HELP=1:GOTO PHELP
755 _IF a5="p" THEN GOSUB PPRINT:GOTO P
ROCINP

768 IF aA5="T" THEN GOTO PTRACE

765 HELPZ=@

778 IF O5="+" OR AS5="" THEN SECNUM=SEC
NUM+1:GOSUB CKROLP:GOTO PLUSMIN

775 IF A5(1,1)="-" THEN SECNUM=SECHUM-
1:GOSUB CKROLM:GoTO PLUSMIN

788 IF AS="W' THEN GRAPHICS 8:GOSUB P
RITE:GOTO PROCINP

785 IF a45="C" THEN GRAPHICS 0:GOSUB PC
HANGE :GOTO PROCINP

738 IF A5="D" THEN GOTO PDIR

795 IF 65=""T" THEN GOTO PTRACE

880 IF AS="M" THEN GRAPHICS 8:G05UB SE
TSCRN:GOTO PMOD

885 IF AS="R" THEN GOTO PRECOVER

818 IF AS="5" THEN GRAPHICS 0:G0SUB SE
TSLRN GO0TO PSET

815 IF A5(1,1)="5" THEN GOSUB HEHDEC
820 GOSLUB CKLIM

825 REHM
838 REN 80000 EOCEEOEN NI IO
835 REM »* JETEICHE ¥*

848 REM * PROCESS THE (43 (-) OR *
845 REM ¥ NUMERIC INPUT. PRINT SEC-*
858 REM ¥ TOR DISPLAY & RTN TO 378 *
855 RENM MO86COOC0ROOOEEEEEN I
868 REM

865 GRAPHICS O:GOSUB SETSCRN:GOSUB HIL
0:GOSUB DECHEX

870 POKE DALX1,SECLOM: POKE DAUXZ, SECHI
875 X=USR(STARTI :REM 3¢ GO DO IT

8808 IF PEEK(ERRFLG)=138 THEN ? "DRIUE

LU L IS RDOFES NOT RESPOND ! K

885 IF PEEK(ERRFLGJ THEN 7 "m
SITU " ; SECNUM; " (5" ; HEXREPS;)" : POKE
ERRFLG, 816070 PROCING

886 IF SECNUM=368 THEN 7 mYTOC SECTOR=

Bi368 (50168)";:7 "CREQTED DOSEH Y3 8
(LD BRI FREE SECTOR

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 93

887 IF SECHMUM=3I68 THEN ? PEEK(CASBUF+3
J+PEEK(CASBUF+4)¥#256:GOTO PROCINP
898 IF SECNUM{I69 AND SECNUM) I68 THEN

EARLID TRECTORY SECTORJRIFE AN [T FAUNN € 3LH
HEXREPS;'")":LG0T0 PROCINP

8§95 7 ¢ ':SECNUM; ™ (5" ;HEXREP
5;"3) ' (PEEK(TOPSEC) ¥256) +P
EEK(CASPTR)

988 ? "[EINIESY'; PEEK (FILNUM)

285 GOTO PROCINP

218 REM

9215 RENM E88800HO0OOC00C0C0HEHO0H060E
928 REM ¥ &0 *

925 REM ¥ PROCESS (W) COMMAND TO 7 *
938 REM ¥ SECTOR REQUESTED 7O DISK.¥
935 REM ¥ WRITE ONLY AFTER VERIFY..¥*
948 REN BEH6GHEEEEECEECOROEM OO0
245 REM

358 POKE BACKGND,RED:POKE CHAR,MWHITE:P
OKE BORDER,MHITE

355 H=USR(MESAGE)

968 GOS5UB SCROLL:GOSUB HILO:GOSUB DECH

"t SECNUM;

g EBRLR S URE ABOLT NRITE(Y/N)""INPUT

988 IF ANSC"Y" AND ANS()"N“ THEN 7 "}
DANGEROUS TINPLT! | gisiRgi]

385 IF ANSC=""N" THEN 7 'HRITE ABORTEDAKRK
":GOTO 10825

998 POKE DCOMM,PSEC:POKE WFLAG,1

295 X=USR(START)

1888 IF PEEK(ERRFLG)=138 THEN 7 “[F{3

2;:DRIUE;" OES NOT RESPOND ! SEHAIITINT:]

1885 IF PEEK(ERRFLG)=144 THEN ? DI'SK
Emm L USSR TS WRITE PROTECTED!
*:G0TO 1820

18018 IF PEEK(ERRFLG) THEN ? “[EFJIJ3 -

;PEEKC(ERRFLG) ;" -[J'':GOTO 1828
1015 2 ° AR I H HRITTE N

éOﬁgLPgKE ERRFLG,8:POKE DCOMM,G5EC:POK
1825 PDkE CHAR,BLACK : POKE BACKGND, GREE

N

1838 ANS="

1835 RETURN

1048 REM

1845 REM EHEHHOEOOOEOHEOHECOREHOEOEE
1858 REM ¥* [[IdI-TIq3 *

1855 REM * PROCESS (C) COMMAND TO %
1868 REM X CHANGE BYTES OF SECTOR INX
1865 REM % CURRENT BUFFER.....

1878 REM

1875 REM

1888 REM %% CHANGE BYTES ROUTINE %
1685 POKE BACKGND, YELLOW:POKE CHAR,BLA
CK:POKE BORDER, WHITE

1898 K=LSR (MESAGE)

1895 GOSUB SCROLL

1188 7 “[JMOVE CURSOR TO BYTES,CHANGE,H
IT RETURN"

1185 INPUT a$

1118 IF a5="" OR LEN(AS) {26 THEN 7 il
LEGAL INPUT''!PRES5 RETURNIRITILIRE KL
1115 POKE BACKGND,YELLOW

1128 LINBUF=ADR (A%

1125 X-LSR(CHNGBY,LINBUF)

FREC IRIRLDATA CHANGED--HIT RETLRN T0 CO

1135 INPUT a$
1148 POKE BACKGND,GREEN
1145 RETURN

1168 REM ¥* [LT4N:N *
1165 REM ¥ PROCESS (H) COMMAND BY *
1178 REM ¥ DISPLAYING THE COMMANDS
1175 REM ¥ QUAILABLE IN DISK-TOOL...¥

IBOHEHOEEOBOOEEN IO

1198 GRAPHICS 1:POKE BACKGND,GREEN:? #t
6 ; "' : 2 186 EEEE O

0
1195 7 u6;" .

1280 7 #6;"=READ NEKT SECTOR":? #6;"@
=READ PREVIOUS SEC":? #16;"[@-CHANGE SEC
BYTES"

1205 ? #6;"E=DPIRECTORY LIST'":? #6;"[=H

1218 2 #6;"[T-MODIFY LIMKS":? #6;'{3=PRI
NT SCREEN"

1215 ? #6;"[E-RECOVER A FILE":? #16;"H=5
ET DRIVE #t"

1228 ? #6;"[=TRACE FILE CHAIN'":? #16;"[
“WRITE 4 SECTOR"

1225 ? "R":GO0TO PROCINP

1238 REM
1235 REN 06060C0EHOHCOEOHO0OC0000E00E
1248 REM ¢ [j{s{v]3vH *

1245 REM ¥ HEK-DEC CONVERSION SUBRTN¥
1258 REM ¥ HEH INPUT FROM A5 IN THE %
1255 REM ¥ FORM SHXHX. OUTPUT DEC AS¥
1260 REM HEEOEHEHOCGHOOOOHOOEEEOEOEEE0E
1265 REM

1278 N=8

1275 FOR I=2 TO LEN{AS)

1288 IF A5(X,I){"8" THEN GOTD 1318
1285 IF 05(1 I){="'9" THEN N-N¥16+UAL (A
$C(I,I)):GOTD 1380

1298 IF ASCI, I {"a" OR AS(I,I)>"F" THE
N 1310

1295 N=N¥16+ASCIAS (I, I3 -A5C("a")+16
1306 NEXY I

1385 QSZSTRSIN):RETHRE
ARSI TNUALID HEX PARAMETERBERZU]
TO PROCINP

1315 REM
1328 RENM ¥E66086HHCEO00HO0OEHO0HEE00E

1325 REM ¥ W *
1338 REM * G- CONVERSION SUBRTN*
1335 REM ¥ HI/LD OF NUMBER IN SECLOME
1340 REM * & SECHI. HEK OUTPUT IN 3*
1345 REM ¥ HERREPScouneunos ¥
13568 REM HEOEOOHOCOCOOEEOOEEO0OHE00E
1355 REM

1368 TSECH=SECHI:SECHI-INTI(SECHI/16)+1
tHERREPS (1, 1) HEHTQB$(5ECHI S3ECHID
1365 SECHI= (TSECH- (SECHI-1)%16) +1:HEXR
EPS(2,2):HEHTAB$(SECHI,SECHI):SECHI:TS
ECH

1378 TSECL-SECLOMW:SECLOWN=INT(SECLOW/16
;*1:HEHREPS(3,3):HEHTQB$(SECLOH,SECLOH

1375 SECLOW=(TSECL-{SECLOM-1)¥16)+1:HE
HREPS (4,4) “HEXTABS (SECLOM, SECLOMW) : SECL
OM=TSECL :RETLRN

1388 REM

1385 REM

13938 REM * [IJ{]

1335 REM ¥ PROCESS (D) COMMAND TO
1488 REM ¥ DISPLAY FORMATTED DISK
1485 REM ¥ DIRECTORY/FILE INFO..
1418 REM

1415 REM

1428 POXE DAUXZ,1:POKE DAUX1,185:REM *
¥* SET SECTOR 361 FOR READ

1425 SECNUM=361

1438 GRAPHICS 8:GO5UB SETSCR

1435 27 UK HEFILENQME /EXT

H
1448 H=US (REDIR)
1445 SECNUM=SECNUM#1

LEE T

1458 2 37 iEl RETURN QST + U
CONT . RRgF

145 INPUT ANS
1468 IF ANS="+#" AND SECNUM{3I65 THEN 14

1465 ANS="":POKE FINUMB,®
SP YL BB (COMMAND OR SECTOR NLUMBERREH
1475 INPUT A
1488 IF AS='"" THEN GOTO 1498
1485 IF ASC1,1)="W"' OR AS5(1,1)=""C" THE
g 14“; MPROPER SCREEN CONDITIOMNKSZREAIRS
1498 GOTO PROCINP+S

REM

iggg EEH :*:g:?:?**********ﬂ***ﬂ****:
1510 REM * PROCESS (P) COMMAND TO 7 *
1515 REM ¥ THE SCREEN TO PRINTER.. ¥
15268 REM 36H00CCO0HOBOGEEEEOEEEEEEEE
1525 REM

PAGE 94 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

is3ia IF iHELP) LS A TMPROPER SCREE
LSRG ROTLY " : RETURN

1535 TRAP 1685:LPRINT :LPR

1548 2) PRINTING SCREEN"‘"'POKE B
ACKGHND , TURQ

1545 SCOND=PEEK (88)+PEEK(89) %256

1558 REM ¥¢PRINT SCREEN TO PRINTER ¥
1555 FOR H=1 T0O 19

1568 ARPT=1

1565 FOR Y=SCAND TO SCAND+39

15768 nS(ARPT,ARPTI =CHRS CLASC {** ") +PEEK
(Y22 :TEMP= ﬁSC(nS(ﬂRPT ARPTI)

1575 IF EHP)IZg THEN TEMP=TEMP-128:0%5
(A4RPT,ARPTI=CHRS (TEMP)

1580 IF ASCARPT, ARPTI(" " OR A5 (ARPT , A
RPTY>'"Z" THEN ﬁgtﬁRPT,QRPT)Z".“
1585 ARPT=ARPTH+1:NEHKT Y
1598 IF A5(28,21)=""DR" THEN GOTO i600
15395 LPRINT a5:5CAND=SCAND+48:NEXT K
1688 POKE BACKGND,GREEN:TRAP ERTRAP:AS
St GOSUB SETDSKIRETURN

LT LS (PRINTER DOESK'T 'RESPOMND ! ! KKgH
GOTO 1666

1616 REM

1615 REM WE0CHGOHEEHOOOCOOOCCOCEE0EE
1628 REM ¥ *
1625 REM * PROCESS (M) COMMAND TO *
1630 REM * MODIFY LINKS OF A FILE.. ¥
1635 REM 66E0GHOBEHECEEHEOGHOOHEE00E
1648 REM

1645 ? "R MODIFY. SECTOR LINKSRH
EAEREARL SECTOR 'TO#MODIFY ' (HEX OR DEC)gH
tINPUT
1658 IF AS="" THEN GOTO PROCINP
1655 IF a45€1,1)="5" THEN GOSUB HEXDEC
1668 6O5UB CKLIM
aggs GOSUB HILO:GOSUB SETDSK:GOSUB DEC
1678 X=USRCENTLNI)
1675 IF PEEK(ERRFLG}? THEN GOTO 885
1688 7 :7 “[HI{NEER : PEEK (FILNUMD ;" :[T3
T _SECTOR= (PEEK(TOPSECI¥256) +PEEK(C

R2
UL SRR ENTER NEW FILE, (DEC OR HEX)
vt INPUT AS

1698 IF A5="" THEN FIL=PEEK(FILNLM) :GO

TO 1785

1695 IF A5¢1,1)="5" THEN GOSUB HEXDEC

1768 FIL=VAL(AS)

1785 POKE CFILNUM) ,FIL:7 :7 “AENIET
SECH (HEX OR_DEC) NG LIAEN

710 IF AS-"" THEN GOTO PROCINP

1715 IF aS5C1,13="5" THEN GOSHB HEXDEC

;;20 IF VAL (AS)=6 THEN SECNUM=8:GOTO 1
("]

1725 GOSUB CKLIM

17368 GOSUB HILO:POKE (TOPSECY,SECHI:PO

KE CASPTR,SECLOM

1735 X=USR (NWLNK)

1748 ? (L TNKS CHANGED ! ! Sk i |

A pEEK(FILKUM) ;™ 2

; (PEEK CTOPSEC)%256) +PEEK (CASPTR)

é745 SECNUM=PEEK (DAUK1) +PEEK (DALIK2I %25

1750 2 :7 [F§I36I DISk IF CHAMGES.
ORRECT"'? :GOTD PROCIN

1755 EM

1768 RE

1765 REM ¥ RLTYTIH *

1778 REM % PROCESS (T) COMMAND TO *

1775 REM ¥ TRACE THE SECTORS OF a4

1786 REM * FILE FOR FILE INTEGRITY ¥

1785 REM

1798 REM

1795 IF (HELP) THEN GRAPHICS O:HELP=0:

GOSUB SETSCRN

1880 ? "HINPUT FILF MNUMBER (HEX OR DEC

);:?)70 TN Or [TO ABORY'; :INPUT

a

1885 IF AS(1,1)="X" THEN GOTO PROCINP

1818 IF ad¢1.1)="5" THEN GOSUB HEXDEC

1815 FINZUAL (A5) :STSEC=INTCFIN/8)+361:

IF STSEC(3I61 OR STSEC)>3I68 THEN 7 I
AT :G0T0 PROCINE

1870 RELFI-FIN-(INTC(FIN/8)¥8)

1825 IDX= (RELFI*lG)*CﬁSBHF

1838 7 “K}) : T

1835 H-USRC(TRASEC,STSEC,IDX,FIN)

1846 IF PEEK(ERRFLG) THEN POKE ERRFLG,
0:POKE FINUMB,0:? :GOTO PROCINP
#ggg)SECLOH:PEEK(CQSPTR):SECHI:PEEK(TO
1858 IF NOT PEEK(CNTIN) THEN POKE (FI
NUMB) ,8:607T0 PROCINP

1855 % :2 " TO CONTIN DRINT SCRN {RET
> TO STOP";:INPUT AN$

1868 IF ANS="""' THEN POKE CNTIN,9:POKE
FINLUMB,8:GO0TO PROCINP

lgggle ANS="'P™ THEN GOSUB PPRINT:GOTO
1878 IF ANS{>"+'" THEN POKE CNTIN,8:POK
E FINUMB,8:G0T0 _ERTRAP

1875 7 "Ki SECTOR TRACE (CONT)"
1888 H-USRITRASEC)

1885 GOTO 1848

1898 REH
1895 REHM @BHEOOCOOOHOOO0COCOHHOOO0O0HE
S LN I PRECOVER ; *

1385 REM ¥PROCESS (R) COMMAND WHICH ¥
1918 REM ¥WILL RECOVER A FILE WHICH *
1315 REM ¥#HAS BEEN DELETED

1338 IF (HELP) THEN GRAPHICS O:HELP=@:

GO5UB SETSCRN

19235 7 “)INPUY FILE NUMBER (HEX OR DEC
%";Z 70 EYITED OR [TO 4BORT™; :INPU
1948 IF ASC1,1)="H" THEN GOTO PROCINP
1245 IF 05(1 1)="%" THEN GOSUB HEXDEC
19358 FIN= UQL(A5) STSECZINTC(FIN/8)+361:

IF STSECC(3I61 OR STSEC)368 THEN 7 B AD
FILE LU LY : GOTO PROCINP

RELFIZFIN-(INT(FIN/8)¥*8)

1960 IDK-(RELFI¥16) +CASBUF

1965 ? "R} RECOVER FILES

1978 POKE RECOVUR,1

1375 H-USR(TRASEC,STS5EC,IDX,FIN]

1988 IF PEEK(ERRFLG) THEN POKE ERRFLG,

8:POKE RECOVUR,8:

1285 POKE FINUHB ,8:GOT0 PROCINP

1998 REM

1995 REM MHEOOGEOOOHOOOGE0O0EC0ENOEEEN

2808 REM ¥ [FISH *

2885 REM ¥PROCESS (S) COMMAND WHICH *

2018 REM ¥ALLOWS USER TO CHANGE THE *

28015 REM ¥WORKING DISK DRIVE NUMBER *

2020 REHM ¥E06EHHECHEOHGCE0HHOOOOGRO0H0E

2825 REM

rA KON SRS FT DRIVE NUMBERWM

3035 EARESRICURRENT DRIVE ISt

%0:2 ERRTNPUT NEH DRIVE (1-4)HERG L]

2845 IF 05‘“" THEN GOTO PROCINP
L{AS):IF H<1 OR H}4 THEN ? "}

NUQLID DRIUE FGEGELE" : 60T0 PROCINP

%agﬁ DRIVEZK:GOSUB SETDSK:? :GOTO PROC

CHECKSUM DATA
(See pgs. 7-10)

186 DA7A 532,783,458,549,218,270,538,17
9,914 555,376,887,737,641,6568,8191

85 DAYA 855,191,95,887,148,236,48,368,
789,83,25,952,5%56,196,492,5833

168 paTa 642,799,95,804,557,84,166,76,
445,181,335,152,484,731,85,5616

235 baTa 51,88,558,647,876,99,861,9,56
7,168,90,792,1688,543,23,5486

316 batTh 549,551,84,322,598,212,91,935,
737,548,800,181,564,576,784,6584

385 paATH 572,185,118,698,738,88,828,27
9,753,491,92,599,97,799,256,6489

468 baTa 796,867,181,257,611,169%,572,7
43,980,552,8%5,856,88,361,389,7387

VOL. 1

THE A.N.A.L.O.G. COMPENDIUM

PAGE 95

538 DATA 424,61,362,99,482,609,188,373
,395,365,994,374,111,514,621, 5804
688 DaTa 84,357,488,137,360,96,563,93,
366,426,847,5089,367,1084,626,5329
665 DATA 187,373,668,817,628,661,612,3
84,86,2408,89,559, 771,812, 845, 7644
735 DaTa 565,98,188,784,9168,958,688,99
1,728,677,415,805,964,983,284,9862
818 DATA 26,536,251,93,562, 823 339,978
,539,573,1086,538, 364,685,652, 7063
685 DaTa 978, 128,336,189,907, 752 645,9
3,563,577,828,1,23,567,107,6696
358 DATA 658,444,958,166,775,385,533,4
92,471,648,84,189,76,285,3108,6474
1825 DATA 363,208,792,279,796,756,768,
155,5085,789,292,867,212,552,369, 7635
1180 paTa 824,915,225,436,724,741,195,
918, 166,796,283 ,800,264,673,15,7975
1175 pDATA 989,7933,296,456, 964, 185,508,
512,330,541,25,284,8081,459,361, 7504
1758 DATA 865,982,794,297,994,837,84,6
74,584,216,493,52,877,295.793.8837
1325 DATA 478,3%15.9,7937,329,796,299,53
,426,321,191,292,869,777,722,7085
1490 DaTA 949.829,795,298,964,91,61,81
8,269,786,780,811,945,326,698,9412
1475 DATA 931,507, 348,891, 386,797,568,
815,954,799,3682,813,92,155,821, 90891
1550 pata 18@,399,488,825,458, 851, 286,
244, 375 914,459,152,294,811,801,7521
1625 paTa 733,947,813,297,952,179,583,
434,715,624,566,467,171,583,587,8651
1780 DATA 389,455,178,582,39,443,613,3
34,577,125,246,311,889,585,738,6264
1775 DATA 784,942,821,385,887,789,738,
575,239,679,425,775,387, 130,348, 8656
18568 DATA &68,764,584,898,816,291,562,7
54,308,825,358,238,263,398,811,7870
1925 DATa 314,797,229,727,591,236,695,
422,696,539,394,231,592,311,828,7682
28008 DaTa 781,208,18,230,786,289,784,2
87,669,172,306,731,5261

Cross Reference of Disk Tool BASIC program

VAR LINE NUMBERS

BACKGND 135, 623, 783, 9359, 1023, 1083, 1115, 1148,
1190, 1540, 1600

BLACK 135, 623, 70%, 1025, 1089

BORDER 135, 705, 950, 1089

BUFHI 133, 428

BUFLQ 135, 420

BUFPTR 135

CASBUF 135, 8864, 887, 1823, 1968

CASPTR 135, 895, 1680, 1730, 1748, 1845

CHAR 140, 625, 703, 956, 1023, 1085

CHNBBY 140, 1125

CKLIM 140, 820, 1660, 172%

CKROLM 140, 779

CKROLP 140, 770

cLI0C4 140, 335

CNTIN 140, 1859, 1869, 1870

DAUX1 140, 410, 870, 1420, 1745

DAUXZ 140, 413, 878, 1420, 1745

DBYHI 145, 433

DBYLO 145, 430

pcomMm 143, 45, 999, 10220

DECHEX 145, 865, 940, 1445

DUNIT 145, 409

ENTLNK 145, 1670

ERRFLG 145, 889, 885, 19060, 1005, 1010, 102,
1675, 1840, 1989

ERTRAP 145, 325, 625, 1600, 1870

FILNUM
F1INUMB
GREEN
GSEC
HEXDEC
HILO
MESAGE
NWLNK
PCHANBE
PDIR
PHELP
PLUSMIN
FPMOD
PPRINT
PRECOVER
PROCINP

PSEC
PSET
PTRACE
PWRITE
RECOVR
RED
REDIR
SCROLL
SETDSK
SETSCRN
START
TOPSEC
TRASEC
TuRQ
WFLAG
WHITE

YELLOW
DRIVE

HELP
SECHI
SECLOW

SECNUM

As

ANS

HEXREP®
HEXTABS

X

LINBUF
N

1
TSECH
TSECL
SCAND

ARPT

TEMP

145,

155,
890,
1819,
20859,
155,

160,

160,

160

f
165,
165,
163,

163,

235,
2035,
235,

235,
1843
231,
1845
235,
ess,
1445,
285,
78¢,
1105,
1299,
1590,
1690,
1800,

1950,

285,

1465,
28%,

1370,
285,

338,

1555,
1979,
1120,
1270,
1273,
1368,
13579,
1543,
1560,
19639,

1570,

980, 1680, 1690, 1705, 1740

1465, 1840, 1850, 1840, 1878, 1985

623, 705, 1025, 1140, 1198, 1600

403, 1020

815, 1653, 1695, 1719, 1810, 1945

B6S, 940, 1665, 1730

955, 1090

1735

789

799

340, 730

770, 773

soe

755, 1863

so%

475, 623, 753, 780, 785, 885, 887,

995, 1223, 1310, 1490, 1759, 1803,
1840, 1850, 1840,1948, 19350, 198%5,
2055

990

810

768, 795

780

1979, 1980

950

1440

960, 1095

I30, 1600, 1465, 2055

808, 819, 865, 14309, 1793, 193¢

875, 993

893, 1680, 1730, 1740, 18435

1835, 1880, 1979

1540

990, 1020

703, 930, 1085

1085, 1115

40@, 745, 880, 970, 1000, 1005,
2055

750, 76%, 1838, 1795, 1930

415, 515, 870, 1360, 1365, 1730,

410, 513, 870, 1370, 1375, 1730,

473, 513, 556, 399, 778, 775, 889,

6887, 890, 89%, 9635, 1013, 1425,
1860, 1720, 1743

473, 743, 750, 795, 766, 776, 779,

785, 799, 793, 6869, 805, 810, B81S,
11198, 1120, 1133, 12735, 1280, 1285,
1473, 1480, 1485, 1378, 1375, 1380,

1595,
1695, 1700, 170%,
1803, 1810, 18135,

1600, 1645, 1630, 1655, 168%,
1710, 1715, 1720,
1935,1940, 1945,

2040, 204%, 2099

?7%, 980, 98%, 1830, 1455, 1460,
1853, 1860, 1843, 1870

885, 890, 893, 945, 1360, 1345,
137%

290, 1360, 136%, 1370, 137%

B75, 955, 995, 1099, 1125, 1449,
1598, 1670, 1735, 1835, 1882,
2089, 2055
11239
1285, 1295, 1303
1280, 1285, 1299, 1293, 1308
1369
1375
1565, 1593
1897¢, 13573, 1980, 1589
137¢, 1389
1375

PAGE 96

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

FIL 1699, 1700, 1703

FIN 1813, 1828, 1833, 1
8TSEC 1815, 1835, 19359, 1
RELFI 1828, 1825, 1953, 1
DX 1823, 1833, 1940, 1

@ OF VARIABLES= 82

9308, 1953, 1973
973
%0

973

Disk Tool Memory

Map

(after fully loaded)

$FFFF
Basic code to Mem. top
10420 followed by O.S./hardware area $28B4MEMLO
10073 Free patch area for modifications $2759
Dsk Tool ML Code
7420 Fu $1CFC
Pg. 7-1C contain DOS 2.0S
1792 FMS Code & Disk Drive Buffers $0700
1536 |Pg-6 Autorun.sys init. code & IRQ handler] $0600
Pg. 4 & 5 not used by
Dsk Tool 047F
cassette buffer (128 bytes) is used $03FO
not used by Dsk Tool 1030C
Pg. 3 serial bus handler table is used $0300
Pg. 2 not used by Dsk Tool $0200
256 Pg. 1 stack area $0100
$CD and $CE are only Pg. 0
0 Locations used 0
Constant Description List
DSKTOOL.PT2
ID NAME VAL DESCRIPTION
1 BACKGND 710 Background color register address (REGISTER 2)
BLACK 0 Color value for black
1 BORDER 712 Border color register address (REGISTER 4)
I:BUFHI 113 Address of Disk buffer Pointer MSB
2
BUFLO 712 Address of Disk buffer Pointer LSB
BUFPTR 126 Value set to 126. Byte 126 of CASBUF contains the LSB of the next sector number
of the file being examined.
CASBUF 1021 Pointer to the start of the cassette buffer.
CASPTR CASBUF+CASPTR Points to the absolute address in CASBUF of the LSB of the next sector
number for the current file.
1 CHAR 709 Character color register address (REGISTER 0)
* CHNGBY 7729 Absolute address to beginning of Change Byte ML code.
CKLIM 475 Line number to Basic routine.
CKROLM 590 Line number to Basic routine.
CKROLP 550 Line number to Basic routine.
* CLIOC4 9023 Absolute address to ML routine which sets up IOCB4 for ML output of messages etc.
* CNTIN 8958 Absolute address to continue flag. Tells ML code if we are continuing a directory
dump or sector trace.
[DAUXI 778 Address to disk AUX value LSB.
3
DAUX?2 1779 Address to disk AUX value MSB.

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 97

DBYHI 777 Address to disk byte count MSB.
4 [|

DBYLO 776 Address to disk byte count LSB.
DCOMM 770 Address to disk command byte location. Commands used by DISK TOOL are PUT
SETOR with verify and GET SECTOR.
DECHEX 1360 Line number to Basic routine.
DUNIT 769 Address to disk unit number. Location contains current drive being accessed.
* ENTLNK 8180 Absolute address to the Change links ML code.
* ERRFLG 7550 Absolute address to the error flag indicator in ML code.
Flag is set by ML code to indicate any errors. g
Basic checks the flag to determine appropriate message.
ERTRAP 625 Line number to Basic routine.
* FILNUM 7556 Absolute address to ML location. Location contains the file number to which the
current sector belongs.
* FINUMB 8179 Absolute address to ML location. Location contains the directory file number of a

file $0-$3F.
GREEN 214 Value for the color green.
GSEC 82 GET SECTOR disk command value.
HEXDEC 1275 Line number to Basic routine.
HILO 515 Line number to Basic routine.
* MESAGE 7430 Absolute address to ML code which displays items in CASBUF in HEX/ ATASCI
format.

* NWLNK 8194 Absolute address to ML code which changes links during a modify link operation.
PCHANGE 1085 Line number to Basic routine.

PDIR 1420 Line number to Basic routine.
PHELP 1190 Line number to Basic routine.
PLUSMIN 865 Line number to Basic routine.
PMOD 1645 Line number to Basic routine.
PPRINT 1530 Line number to Basic routine.
PRECOVER 1930 Line number to Basic routine.
PROCINP 745 Line number to Basic routine.
PSEC 87 Disk command value for a PUT SECTOR with verify.
PSET 2030 Line number to Basic routine.
PTRACE 1795 Line number to Basic routine.
PWRITE 950 Line number to Basic routine.

* RECOVR 9077 Absolute address in ML code of recover flag. Used by ML code to distinguish a

recover file from a trace file.

RED 64 Value for the color red.
* REDIR 7823 Absolute address in ML code to the read directory function.
SCROLL 660 Line number to Basic routine.
SETDSK 400 Line number to Basic routine.
SETSCRN 705 Line number to Basic routine.
START 7420 Absolute address to the start of DISK TOOL ML code.

* TOPSEC 7555 Absolute address to ML location. Location contains the MSB of the sector number
currently being examined.

¥ TRASEC © 8224 Absolute address to the start of the TRACE SECTOR ML code.

TURQ 186 Value for the color turquoise.
* WFLAG 7554 Absolute address to ML Write flag location. Informs the ML code if the next opera-
tion is a read or write. 1=write
WHITE 10 Value for the color white.
YELLOW 26 Value for the color yellow.

ID EXPLANATIONS

1= References hold true for Graphics 0. Other modes have different meanings. If confusion exists, see color register
assignment table in the ATARI BASIC Reference Manual.

PAGE 98

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

2= These locations point to an area in memory where we want the data on a disk sector to be placed after aread. Ona
disk write, these locations point to the area of memory which contains the data to be written. Disk Tool sets these
pointers to the cassette buffer since it is free when using the disk drive.

3= Locations contain sector number (LSB/MSB format) of sector to read or write.

4= Locations contain number of bytes (LSB/MSB format) to be read or written.

*= Point to absolute locations in the ML code. In most cases the Basic constant name is the same as the label name in
the assembly source code. Exceptions are CNTIN for CONTIN and NWLNK for NEWLNK due to BASIC not
accepting CONTIN and NEWLNK. I could have used the LET statement but...NAAHH!!!

ARPT
DRIVE
FIL
FIN
HELP

IDX
LINBUF
RELFI
SCAND
SECHI
SECLOW
SECNUM
STSEC
TEMP
TSECH
TSECL

X

Y

NAME

A$

AN$
HEXREP$
HEXTAB$

VARIABLE DESCRIPTION LIST

Pointer to each item in A$

Current Disk Drive being used.

Temporary file number variable.

File number input for TRACE or RECOVER.

Help flag. 1=Help menu is up. 0=Help menu not up. Prevents printing the help screen since it
is in the wrong graphics mode for the Print routine.
Absolute index to start of file entry in CASBUE

Pointer to A$ string in memory.

Relative file number of an entry in the directory.

Pointer to address of the start of the screen.

Hi byte of SECNUM.

Low byte of SECNUM.

Current sector number being read or written.

Directory start sector number of file being requested.
Value of ASCII character on the screen.

Temporary value of SECHI for DEC-HEX conversion.
Temporary value of SECLOW for DEC-HEX conversion.
MISC variable.

MISC variable.

STRING CONSTANT LIST

DESCRIPTION
Input for COMMANDS, NUMBERS (HEX or DECIMAL) and CHANGE BYTE line.

Input string for various answers to prompts.

String which holds the hex value of a converted decimal value.

Table of hex string values used by the DEC-HEX routine to convert a decimal number string to it’
hex equivalent.

HOME UTILITIES
AND EDUCATION

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 101

HOME ENERGY
CONSUMPTION ANALYSIS

16K Cassette 32K Disk

by Joe E. Harb, Jr.

“Thermowatts” and “Kilowatts” are ATARI
BASIC programs which require 16K RAM with cas-
sette and 32K RAM with disk. “Thermowatts”
analyzes yearly, monthly, and daily natural gas and
electricity consumption and cost for homes which
use both utilities. “Kilowatts” provides similar anal-
ysis for all-electric homes.

When we moved into our present house several
years ago, | planned to make a number of energy con-
servation modifications to the house. [decided that I
would like to use my ATARI 800 to determine what
impact those modifications had on our energy con-
sumption and costs. That led to the writing of “Kilo-
watts” which 1 subsequently rewrote as “Thermo-
watts,” using natural gas data which I still had on
hand from my previous house. Both programs make
provisions for yearly and monthly temperature fluc-
tuations. Statistics generated by both programs can
be displayed on the screen or printed to a line print-
er.

Monthly and yearly temperature variations are
taken into consideration by analyzing kilowatt/
therm consumption per cooling/heating degree day,
as appropriate. A heating degree day is each degree
that the average temperature drops below 65 degrees
F on a given day. A cooling degree day is each degree
above 65 degrees F. The total number of cooling and
heating degree days in each month can be obtained
from your local weather bureau (National Oceanic
and Atmospheric Administration — NOAA). Our
local NOAA office at Baltimore Washington Inter-
national Airport kindly provided me with several
years of monthly degree day information over the
telephone.

In a given month, a minimum of 100 cooling
degree days is required before the programs will cal-
culate cooling degree day consumption for that
month. A minimum of 200 heating degree days is
required for heating degree day analysis. This was
done because in months when the number of heating
or cooling days is below the threshold, energy use for

heating or cooling is so low that the data becomes
heavily biased by other energy use. This bias makes it
seem that consumption per degree day is abnormally
high. To change the threshold for cooling degree
days, change the value of MINCD in line 100 of
Kilowatts and 110 of Thermowatts. To change the
threshold of heating degree days, change the value of
MINHD on the same line.

In order to further minimize distortion by elec-
tricity consumption for uses other than heating and
cooling, both programs subtract 400 kilowatts from
each month’s total electricity use before computing
consumption per degree day. (This subtraction is not
performed in computing any other statistics.) The
variable used in the subtraction is FCTR, also in Line
100/110. It can be changed if you feel your non-
heating/cooling electricity use is higher or lower.

All REM statements can be eliminated from both
programs without requiring any line number
changes. Additionally, if you feel the explanation of
DATA statements given in the following paragraph is
adequate, you can eliminate the instruction sub-
routine (Lines 6999-7190 in both programs, 2050 in
“Kilowatts,” and 2090 in “Thermowatts”’). If you
do not have a printer, you can eliminate the printer
subroutines (Lines 2040 and 5999-6880 in “Kilo-
watts” and 2040, 2080 and 5999-6860 in ‘“Thermo-
watts’’).

One DATA line is required for each month of
data. DATA lines must be numbered in increments
of 1, beginning with Line 1000, i.e.,

1060 baTA JAW,?9,1329,29,56.10,30,29.88,984,0
1681 bATA FEB,79,1426,28,60.44,32,31.44,1100,0
1682 pATA MAR,79,520,31,50.98,11,20.33,520,15

DATA statements must contain: month (first three
letters); year (last two digits); number of kilowatts
used; number of days in billing period; cost of elec-
tricity (paid on time and including fuel surcharge);
number of therms; cost of natural gas; heating degree
days; and cooling degree days. The number of

PAGE 102

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

therms and cost of natural gas are not used in “Kilo-
watts.” All of the required information except heat-
ing and cooling degree days can be obtained from
utility bills. As explained above, the information on
heating and cooling degree days can be obtained
from your local NOAA office.

If you have been looking for a relatively quick and
easy way of neatly aligning columns of figures, par-
ticularly those with decimal fractions, you might
want to consider using the technique [employed in
several subroutines of both programs, for example in
Lines 3170-3190. It can be done in four easy steps:

1. Decide the rightmost column for displaying a
particular set of figures. Then add 1 to that value. In
subroutine 3000, I wanted the last digit of the vari-
able X to be printed in column 11. [then added 1 to
that number, for a total of 12. If you are aligning
figures with decimal fractions, use the column where
the decimal point is to be printed, and do notadd 1.

2. Measure the length of the variable by convert-
ing it to a string and using the LEN function. In Line
3170, LEN(STR$(INT(X))) means calculate the
length (LEN) of the variable X after converting it to
an integer (INT) and then to a string (STR$). The
variable must be converted to a string because the
LEN function can only measure the length of string
variables. For this measurement, it is important to
convert a numeric variable to an integer when the
variable includes a decimal fraction. This is neces-
sary because the ATARI eliminates final zeros after
the decimal point. Thus, 3.50 is displayed 3.5. Con-
sequently, if you wished to align the numbers 3.5 and
4.27 and if you measured the whole length of the
variable, the columnar alignment of the numbers
would be:

3.5
4.27

3.Pick a variable name for the column where
printing of the display variable is to begin. (I used
CL1 in the example.) Then, use the algorithm in this
paragraph to calculate the column where printing is
to begin. The algorithm subtracts the length of the
integer portion of the string from the value calcu-
lated in step 1. In other words, the column where
printing is to begin equals the length of the integer
portion of the variable subtracted from the column
where printing is to end. That is expressed in BASIC
as CL1=12-LEN(STR$(INT(X))). This means that
the first digit of the variable X will be displayed at
screen column 12 minus the length of the integer X.

4.Position the cursor at the column and row
where printing is to begin. This is done with the
POSITION statement. In Line 3180, the cursor is
positioned at column CL1,row PEEK(84).
PEEK(84) is the memory location of the current
cursor row. Finally, use the PRINT statement to dis-
play the variable on the screen. Once you get used to
this process, it can be done fairly fast. Of course, it

can be further simplified by performing the whole
operation at one time:

POSITION 12-LEM(STRSCINTX))),PEEK(84):7K

In “Thermowatts,” each of the subroutines for the
menu options does double duty. Each subroutine
computes either gas or electricity statistics, depend-
ing on what is requested. The software accomplishes
this by setting the variable T toa 0’ ora ‘1"’ during
menu selection. A “0” indicates that electricity data
is to be processed, and a ““1” indicates natural gas
data. Each subroutine has statements which check
the value of T and then select the appropriate data or
print the proper column headings. For instance, in
Lines 3120-3130, if T=0, the variable DD (degree
days) = CD (cooling degree days) because electric-
ity powers air conditioning equipment. If T=1,
DD=HD (heating degree days) because natural gas
provides heat.

During operation of these programs, do not
depress the return key at any time when responding
to a screen prompt. Simply type the letter(s) or
numbers desired for input. The GET statement will
determine which key(s) you depressed. In order to
access the keyboard, a channel to the keyboard was
opened in Line 70.

Variables used in Kilowatts and Thermowatts.

A: Used with GET to determine last key depressed
on keyboard.

A1$: Used only in gas and electricity program.
Represents variations of the words “‘therm” or
“kilowatts’ in column headings on screen or printer.
Allows one subroutine to print headings for gas or
electricity.

ANET: Used to represent electricty cost (NET) or
gas cost (GNET) whenever single subroutine must
calculate either gas or electricity statistics.

AVG: Per kilowatt or per therm cost.

B: Use with A when more than one key input from
keyboard is required.

C: Used with A & B when three-key input
required from keyboard.

CAVG: Average monthly consumption of
kilowatts per degree day. Used only in subroutine
6000 of Kilowatts. See explanation under CDAVG.

CD: Cooling degree days in a given month.

CDAVG: Average annual consumption of
kilowatts per cooling degree day. Used only in sub-
routine 6000 of Kilowatts because both cooling and
heating degree day information are analyzed and
printed at the same time. In Thermowatts, this is not
necessary because there is so much data that separate
printouts are required for cooling and heating degree
day consumption. Consequently, a single variable
DDAVG can perform double duty.

CDDIV: Total number of Kilowatts used when

computing annual average consumption of Kilowatts

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 103

per cooling degree day. Used only in subroutine
6000 of Kilowatts. See explanation under CDAVG.

CDTOT: Total number of cooling days per annum.
Used only in subroutine 6000 of Kilowatts. See
explanation under CDAVG.

CL1: (Column 1); Column where printing of spe-
cified data begins. Used to right-justify screen
display.

CL2: (Column 2); Used with CL1 when more
than 1 column cannot be right-justified in some
other way.

CL3: (Column 3); Used with CL1 and CL2 when
more than two columns cannot be right-justified in
some other way.

CL4: (Column 4); Used with CL1, CL2 and CL3
when more than three columns cannot be right-
justified in some other way.

COST: Total annual cost of gas or electricity.

DAYS: Number of days during billing period.

DD: Used to represent either cooling or heating
degree days in subroutines where either can be used.

DDAVG: Average annual use of Kilowatts or
therms per cooling or heating degree day.

DDNS$: Used in subroutines 3000, 5000, and 6000
to represent words “HEAT” or “COOL” in column
headings, depending on whether user has requested
cooling or heating degree day information.

DDT: Total number of heating/cooling degree
days in a given year.

DIV: Total number of energy units used when
computing annual average consumption per degree
day. Used in subroutine 5000 of Thermowatts and
subroutines 5000 and 6000 of Kilowatts.

FCTR: Estimated minimum amount of electricity
used monthly for uses other than heating or cooling.
Subtracted from UNITS before computing con-
sumption per degree day. Can be raised or lowered if
estimated minimum is different.

GNET: Cost of gas without late charge.

GUNITS: Therms of gas used during billing
period.

HAVG: Average monthly consumption of
kilowatts per heating degree day. Used only in sub-
routine 600 of Kilowatts. See explanation under
CDAVG.

HDDIV: Total number of kilowatts used when
computing average annual consumption of kilowatts
per heating degree day. Used only in subroutine 600
of Kilowatts. See explanation under CDAVG.

HDTOT: Total number of heating degree days per
annum. Used only in subroutine 6000 of Kilowatts.
See explanation of under CDAVG.

HIYR: High year in data base.

HL: No. of lines to be printed on each page.

K$: Month for which data requested in menu
options A, B, E, and F.

KPD: Average number of kilowatts or therms per
degree day.

KPD$: Used to represent either variable KPD or
letters “N/A” when printing out results of
kilowatts/therms per degree day computation.

LINE: Last line of DATA.

LOYR: Lowest year of data in data base

M$: Month of data contained in DATA line.

MINCD: Minimum number of cooling degree
days necessary for computing electricity consump-
tion per cooling degree day.

MINHD: Minimum number of heating degree
days necessary for computing gas/electricty
consumption per degree day.

NET: Cost of electricity without late charge.

NR: Used to calculate number of months in data
base.

PRNT$: One PRNTS string is created for each line
of data to be printed with the line printer in sub-
routine 6000. Allows data to be aligned easily in
columns without using TAB functions which vary
from printer to printer.

R$: Represents month in subroutine 6460/6570
to compare same month of different years.

SET: Sets flag when high line of page print reached
during loop.

T: A flag. In Thermowatts, it is set during menu
selection. It is used later in subroutines to identify
whether gas or electricity data is to be processed. In
Kilowatts, it is set at beginning of subroutines 3000
and 5000 to identify whether user has requested
information on consumption per cooling or heating
degree day. This is unnecessary in Thermowatts
because the choice of desired information is implied
by menu selection of electricty or natural gas data.

TIME: Last line printed on printer.

UNITS: Kilowatts used during billing period.

UP: Average daily kilowatt or therm consump-
tion.

USE: Total annual consumption of gas or
electricity.

Y: Year of data on DATA line.

YR: Year of data being processed.

Z: Index variable for loops, i.e., keeps track of no.
of times loop has occurred. [

Thermowatts
ia 7 "R":POKE 82,8
Za 7 THERMOMWATTS™
Ia 2 Gas & ELECTRICITY"™
an 7 » ANALYSIS PROGRAM':?
58 7 » BY JOF HARB":?
68 ? :? “DURING OPERATION OF THIS PROG

RAM, DO NOTDEPRESS RETURN KEY AFTER TY
PING ANSHWERS TO PROMPTS™

78 DPEN 211,4,08,"K:":REM OPEN KEYBOARD
T0 GET INPUTS WHEN GET STATEMENT IS U5
ED THROUGHOUT PROGRAM

88 7 :? “DEPRESS aANY KEY TO0 CONTINUE.®
GET u1 f:? "RY

188 DIM A15€9),A25(6) ,DDN5C4) , M5(3) K5
(X3 ,KPD5 (6, PRNT$(65) R5(3)

110 MINCD=180:MINHD=280:FCTR=480:REM M
INCD-MINIMUM CODLING DAYS NECESSARY FO
RCOMPUTATION

PAGE 104

THE A.N.A.L.O.G. COMPENDIUM

128 REM ai15 & n25 ARE USED TO PRINT Va
RIATIONS OF THE MHORDS KWATTS OR THERMS
50 ONE SUBROUTINE CAN BE USED FOR

13I8 REM ELECTRICITY OR GAS COMPUTATION

288 REM CALCULATE: TOTAL MONTHS OF DAT

6 (NR); LOW YEGR OF DATa (LOYRY; aMD H

IGH YEAR OF DaTa (HIYR)

218 NR=@

228 READ MS5,Y,UNITS,DAYS,NET,GUNITS,GN

ET,HD,CD

238 REM MS-MONTH, Y=YEOR, UNTTS5-KILOWO

TT5 USED & GUNITS=GAS THERM USED IN BIY

LLING PERIOD

%%g REM DAYS=NR. OF Dav¥5s IN BILLING PE

1]

258 REM NET=COST OF ELECTRICITY WHEN B

ILL PAID ON TIME, GNET=COST OF Gas Pal

D ON TIME

268 REM CAOLCULATE NR. OF MONTHS OF INF

0 IN DATA BASE(HNR), HIGH YEaAR OF Dava(

HIYR), & LOM YEAR OF DATALLOYR)

278 LOYR=Y:RESTORE

288 READ M5, Y, UNITS,DAYS,NET,GUNITS,GN

ET,HD.CD

%99 IF MS="END" THEN RESTORE :GOTO 280

I8 WR-NR+1:HIVRZY

318 6070 7288

498 REM SUBROUTINE TO0 GET INPUT FOR ME

NU OPTIONS A, B, E, F; THEN CLEAR TWNPU

T QUESTIONS FROM SCREEN TO oLLOW

499 REM DISPLAY OF ADOTITIONAL DaTH

588 7 “TYPE FIRST THREE LEVTERS OF MOW

TH vou MANT . " :GET #1,0:GET #1,B:G6ET

#i,cC

518 REM NEXT LINE CONUERTS ATASCY valp

ES TYPED ON KEVBOARD TO a4 STRING

528 KS=CHRS(AY :KSCLENIKSY+1)I=CHRS (B : K

STLENIKSI +1I=CHRS(C) :051IB SI0:RETURN

538 POKE 84,PEEK(84)-2:FOR 7=8 70 1:?

L1}

VOL. 1
12%% gara NOV,88,690,33,30.21,33,27.64
iggg'gﬁTo DEC,88,770,31,33.04,41,34.49
i824 pava Jan,81.642,28,28.85,58,53.37
(1145,8
1899 bata END,999,8,8,0,6,0,8,8
1999 REM MENU SUBROUTINE

2888 ? 7

HIS PROGRAOM ALLOWS THE FOLLOW

ING SELECTIONS:":7?

2aig ? © A. TOTAL MONTHLY AND AVER
AGE DAILY KILOWATYT USE'

28z 7 = B. TOTaL NONTHLV aND AVER
AGE DATILY KILOMATT COST

2838 7 » C. TOTaL ANNUAL KILOWATT
USE aND cosT™

2848 2 v D. PRINTOUT OF aLL ELECTR
ICal USE Dava“

2856 ? ¢ E. TOTAL MONTHLY QND AVER
AGE DATLY GAS THERM USE™

Z868 7 = F. TOTalL MONTHLY AND AQUER
OGE DATLY THERM COST"

2878 7 ¢ . TOTAL aNNUAL THERM USE
aND coSTY

2688 7 = H. PRINTOUT OF allL Gas us

E Data"

§290 78 I. DATA INPUT INSTRUCTION

zZies 7 v J. EXIT PROGRAM"

2110 REM GET IS USED TO DETERMINE LETT

ER TYPED ON KEY BOARD; A=ATASCI VALUE
OF LETTER TYPED

2128 7 “TYPE LETVER OF OPTION YOU MWONT
"":GET #1,06:7 "RV

2138 T=

B:XF A=65 THEN 3IB6B:REM T IS FL

G TO TELL LATER SUBROUTINES WHETHER G
A5 OR ELECTRICITY ANALYSIS REQUESTED

2148 IF A=

2158 IF A=
2168 IF A=

0 60088:REM OPEN CHANNEL 16 ﬁnlu

66 THEN 4080
67 THEW 5080

68 THEN OPEN "P';'GOT

"INEXT Z:REM I3 SPAGCES
540 POKE 84 ,PEEK(84)-2:RETURN

1688 pava
,984,0
1881 DATA
,1180,8
1882 DaTo
,528,15
1883 DaTA
,354,4
1884 pava
75,72
1885 paTa
,6,183
1886 pDATa
. 2,348
1887 pave
, 341
1888 paTa
6,772,145
1889 baTa
311,28
iaia'bave
,425,1
1011 pata

,757,0
in12 pava
,962,8
1813 pava
1815 parva
,273,0
1016 npata
L 74,97
1817 pava
6,203
iais pava
,8,415
1819 pava
LA31
1828 pava
7,280,245

iez21i pava
(311,17

JaM,?9,624,16,26.20,51,36.18
FEB,79,682,31,25.98,60,42.49
MAR,79,536,29,21.65,55,48.61
aPR,79,454,38,19.88,49,35.20
May,79,527,32,27.941,48,31.55
JUN,79,768,29,38.46,3%,22.75
JuL,79,1281,38,55.65,168,9.84
AlG,79,691,29,36.45,8,8.50,3
SEP,79,1242,37,52.16,12,14.7
0CT,79,571,38,24.43,728,28. 11
NOV,79,686,32,27.92,32,25.67
DEC,79,688,31,26.75,49,48.83
JaW,80,619,28,24.45,53,38.88
FEB,88,527,32,20.97,57,45.98
MAR,80,5208,29,21.41,58,41.89
aPR,80,521,36,24.64,39,23.85
MAY,80,591,32,34.82,22,18.97
JuN,80,739,29,37.98,16,10.493
JuL,89,1603,30,98.78,11,7.43
oG ,88,838,29,53.52,8,6.66,8
SEP,80,1530,32,74.26,15,108.7
0CY,80,589,30,30.45,28,22.84

2178 T=1:IF A=69 THEN 3068

2188 IF A=70 THEN 4088

2198 IF a=71 THEN 5088

27288 IF A=72 THEN OPEN #14,8,0,"P:":GO0T
0 6088

2218 IF A=7I THEN 7080

2228 IF A=74 THEN POKE 82,2:END

2292 REM SUBROUTINE FOR MENU OPTIONS A
3aas GOsSUB 568

3210 IF T=8 THEN DONS="COOL":Q15="KWl

a220 IF T=1 THEN DODMS=""HEAT":Q15=""THER
a3 7 auG TOTAOL
QUG ":015:REM 15 SPACES BEFORE avuG

Ia48 7 * ToTaL PAYLY ":DDNS;
L1} USEII

Iase 7 nrals;e ve15;m DGR
EE PER ";DDNS

68 7 "HONTH UsE USE Davs

DGREE Dav"

3878 FOR Z=1 TO NR

3880 READ M5 ,Y,UNITS,DAYS,NET,GUNITS,G
NET ,HD,CD

3090 IF M5{>K5 THEN 3288

3188 X=UNITS:IF T=1i THEN X-GUNITS

31168 UP=INT (1888*K/DAYS) /1000 :REM COMP
UTE UNITS PER DAY AND LIMIT DECIMaL PL
ACES DISPLAYED

3128 IF T=0 THEN DD=CD:IF CD>MINCD THE
N 3158

3130 IF T=1 THEN DD=HD:IF HD>MINHD THE
N FCTRz=8:6070_X158

3140 IF CD HIICD OR HD{=MINHD THEN KP
DS="N/A":GOT0 3178

I1580 KPD=INT(16@8X(X-FCTR)/ ((DD/30) ¥Da
¥5)) /1068 : KPDS=STRS (KPD) :REM COMPUTE Il
NITS PER DEGREE Day

X160 REM LINES I178-3I196 ALIGN AND PRI
NT SCREEN DISPLAY

3170 CLI=12-LEN(STRSC(INT(X))):CL2=17-L
ENCSTRS CINTCURYD) :CLI=27-LENCSTRS (DD))
'CLA=IZ-LENCSTRS CINT C(KPDI))

3180 7 MS;v vyt v :pOSITION CL1,PEE

_KC84):? %::PoSTITTON CL2,PEEK(B4)Y:2 UP;

:POSITION CL3I,PEEK(84):7 DD;

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 105

3198 POSITION CL4,PEEK(B4):? KPDS

3288 WNEXT Z:RESTORE

321@ 7 :7? DO YOU MWANT TO LOOK av ANOT

HER MONTH? TYPE Y OR N.":GET 11,4

3228 IF A=89 THEN GOSUB 536:G60SUB 508:

GOTO0 3876

3238 7 “"R'":GOTO 2008

3299 REM SUBROUTINE FOR MENU OPTIONS B
F

48808 GOSUB 568

4018 7 “"MONTH ToTAL TOTAL UNTT*

4828 A15="KMU ":IF T=1 THEN A15="THER

"ll

4838 7 ** taaLs;e cCos7T caos

T":REN 9 SPACES BEFORE a15

4848 FOR 7=1 TO NR

JOSBHgEﬁD M5,Y,UNITS,DAYS, NET,GUNITS,G

NET,

4866 IF M5(OK$ THEN 4110

4070 X-UNITS:ANET-NET:IF T=-1 THEN X=6U

NITS:ANET=GNET

4880 AVGZINT (1000OX(ANET/K)) /18000 :REM

CALCULATE COSYT PER _UNIT

48968 CLI-13-LEN(STRSIX)) :CL2=19-LENC(ST

R$(IHT(QIET)))

4188 7 M5;" ";V;:POSITION CL1,PEEK(B4)

17 Kjn ""POSITION CLZ,PEEK(84):7 aN

ET;:POSITION 25, PEEK (841 :7 QUG

4110 NEKT Z:RESTORE :?

4126 7 :? “DO_VYOU MANT TO LOOK AT ANOT

HER MONTH? TYPE Y OR N.":GET H1,0

4138 IF A=89 THEN GOSUB 538:G05UB 588:

GOTO 48480

4148 7 "R":GOTO 2068

4999 REM SUBROUTINE FOR MENU OPTIONS C

& G
5880 IF T=8 THEN DDNS="'COOL™:015="KWAT
TS5
5818 IF T=1 THEN DDNS-"HEAT":015="THER
M5":FCTR=8
5828 YRZLOYR

Sa3p 7 u. D'S-ll

HUG “:Q15:REM 22 SPACES BEFORF DDI$

S848 7 nrals; DGREE
PER DGREE' :REM 9 SPQCES BEFORE DGREE
2050 ? “YEAR USED cCosY DayYs)]
vll

5868 USE=8:COST=8:DDT=0:DIV=0

5878 FOR Z=1 7O NR

50880 READ ™MS5,Y,UNITS,DAYS,NET,GUNITS,G
NET,HD,CD

5890 X-UNITS:ANET=NET:IF T=1 THEN X=GU
NITS:ANET=GNET

5188 IF Y<{}>YR THEN 5158

$118 IF T=8 THEWN DD=CD:IF CD{=MINCD TH
EN DD=8:607T0 5148

5128 IF T=1 THEN DD=HD:IF HD{=MINHD TH
EN DD=8:G0TO 5148

5138 DDV=DDTHDD:DIV=DIV+H-FCTR

5148 USEZUSE+X:COST=COSTH+ANET

5158 NEXT Z:RESTORE

51680 DDAYG=8:IF DDT>8® THEN DDAVG-INT {1
888¥pIV/DDTI /1086

5178 CLIZ11-LEN(STRSCUSEY) :CL2=17-LEN(
STRSCINTL(COST))) :CLI=26-LEN(STR5(DDY))
:CLA=IB-LENI(STRS (CINT (DDAVUG)])

5188 7 YR+13080; :POSITION CL1,PEEK(84):

? USE; :POSITION CL2,PEEK(84):7 COST;

5198 POSITION CLI,PEEK(84):7 DDT; :POSI

TION CL4,PEEK(84):7 DDAVG

5268 YR=YR+1:IF YR{HIYR+1 THEN 5068

5218 7 “DEPRESS ANY KEY T0O RETURN TO ™

ENU.":GET 211,64

5228 7 “R":GOTO 2880

5999 REM SUBROUTINE FOR MENU OPTIONS D
& H FOR (LINE PRINTER)

68080 TIME-B8:5ET=6:7 “TYPE NUMBER OF LI

NES PER PAGE TO BE PRINTED":GET %1
JOIGET 31 ,B:HL=((A-481%10) +(B—-48)

6010 LPRINT CHRS (27) ; CHRS (56) :REM DISA
BLE EPSON PRINTER "END OF PAPER" FUNCT
I0

6820 Q15="KWATTS":DDNS="COOL":IF T=1 T
HEN A15=""THERMS'" :DDNS="HEAT":FCTR=0A

6838 7 n4;" T
ET@L AUG* :REM 26 SPACES BEFORE TOTa

6048 7 f4;" .
;Dbﬂg;" “:0a15:REM 26 SPACES BEFORE
DDN

6858 7 4" nrals;t TOTAL
DEGREE PER":REM 9 SPACES BEFORE a1s
6868 7 114 ;"YEAQR USED cos D
nyYs DGR DAY":LPRINT

6870 TIMECTIME+S:VR=LOYR
6888 USE=8:C05T=0:DPDT=0:DIV=0
6098 PRNTS="

“:REM 65 SPACES

6198 FOR Z=1 TO NR:REM CALCULATE aNNUA
L CONSUMPTION AND COST

6118 READ M5,Y,UNITS,DAYS,NET,GUNITS,G
NET ,HD ,CD

6128 KoUNITS:ANET=NET:IF T=1 THEN X=GlU
NITS:ANET=GNET

6138 IF Y{>YR THEN 61886

6148 IF T=8 THEW DD=CD:IF CD{=MINCD TH
EN DD=8:G0T0 6178

6150 XF T=1 THEN DD=HD:IF HD<{=MINHD TH
EN DD=0:GOTD 6170

6160 DDT=DDTHDD:DIV=DIV+K-FCTR

6178 USEZUSE+X:COST=COSTH+ANET

61868 NEXT Z:RESTORE

6198 DDAVG=B:IF DDT>8 THEN DDAVG=INT(1
a8axpIV/DDTI /10606

ggg? PRNTS(11-LENCSTRSC(USE)) 123 =5TRS(
62180 PRNTS(18-LENC(STRSCINTL(COSTII), 21D
=STRS(COST)

62%? PRNTS(28-LEN{STRS(DDT)) ,38I=5TRS(
DD

6230 PRNTS(II-LENC(STRSCINT(DDAVG))II ,36
3I=5TR5(DDAVG]

6248 7 N4;:YR+1900;PRNTS : TIMECTIME+1
6258 YR=YR+1:IF YR{HIYR+1 THEN 6088
6268 LPRINT :TIME-TIME+1

6399 REM CALCULATE AND PRINT MONTHLY
DATA. SUBROUTINE 6418 PRINTS COLUMN
HEADINS ON EACH SHEET OF PAPER

6488 GOSUB 6418:G0T0 64786

6418 A1S="KHATT'":DDNS="COOL":IF T=1 TH
EN ALS="THERM":DDWNS="HEAT™

6420 PRINT 4;"

MALS:REM
51 SPACES BEFORE ai5
6430 PRINT 4 ;"MONTH DAILY MONTHL

Y ToTaL cos7 "IDDNS PER™

64480 PRINT f54;" "'ﬁlS'" ot

S MONTHLY PER DEGREE DEGREE

":REM 9 SPACES BEFORE aA15

64580 PRINT ft4;" UsE UsE
CosT "'hlS'“ DaYs DAY : TIM

E-TIME+4:REM 9 SPACES BEFORE USE
6468 RETURN

6476 RS="JAN":GOSUB 6608

64808 RS="FEB":G60SUB 6600

6498 RS="MAR":GOSUB 6600

6588 R5="APR":G605UB 6680

65108 RS="MaAY":GOSUB 6668

6520 RS=""JUN"':G0S5UB 6688

6538 RS="JUL":GOSUB 6688

65408 RS="AUG":60SUB 6660

6558 RS="SEP':GOSUB 6688

6568 RS="OCT":G0SUB 6688

6578 RS="NOV":G05UB 6688

6580 RS5="DEC":GOSUB 6688

6598 CLOSE #4:7 "KR":GOTO 28868
6608 FOR Z=1 TO WR

6610 PRNTS="

6620 READ M5,Y,UNITS,DAYS,NET,GUNITS,G
NET,HD,CD

6638 IF M5{>R5 THEN G308

6640 H-UNITS:ANET=NET:IF T7=1 THEN X=GU
NITS:ANET=NET

66568 UP-INT (186%*(X/DAYS5)) /188

6660 AUVUG=INT (10806 (ANET/X2) /18088

6678 IF T=8 THEN DDP=CD:IF CD>=MINCD TH
EN 6788

6688 IF T=1 THEN DD=HD:IF HD>=MINHD TH

"EN 6788

6690 IF CD{MINCD OR HD<{MINHD THEN KPD=
8:G07T0 6716

PAGE 106 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

6780 KPD=INT(1800¥({H-FCTR)/ ((DD/3B)¥*DA
¥531/1888 :KPD5S=5TRS (KPD)
g%ﬁg)PRlTS(B-LEN(STRS(INT(UP))) ;83=5TR
67280 PRNTSCL17-LENCSTRS (X)), 163=5TR5(X)
6738 PRNTS(25- LEN(STRﬁ(IIT(ﬁNET))) z7)
=5TRS (ANET)

6740 PRNTS{II-LENCSTRS CINT(AVUG)I D) ,34)=
STRS (AVE)

6750 PRNTS{41-LEN(STR5(DD)) ,40)=S5TRS5(D

D)

6768 IF KPD=8 THEN PRNTS(49,51)="N/A":
GOTOD 6788

6778 PRNTS(48-LENC(STRSC(INT(KPD)I)) ,512=
STR5(KPD)

6780 PRINT H4:M5;" ";¥;PRNTS

6798 TIME=TIME+1:IF TIME=HL THEN SET=1
6888 NEXT Z:RESTORE

6818 IF SET=8 THEN 6858

6828 IF R5="DEC'" THEN 6868

6838 ? "INSERT ANOTHER SHEET OF PAPER;
THEN DEPRESS ANY KEY.":!GET #11,4
65840 TIME=@:5ET=8:G605UB 6418

6850 LPRINT :TIME-TIME+1:IF TIME-HL TH
EN 6828

6868 RETURN

65999 REM INSTRUCTIONS FOR PREPARING D&
Th LINES

78808 ? "K":LINE-NR+9939

7018 7 "FOR EACH MONTH OF DATA YOU HAU
E, You MUST TYPE ONE DATA LINE.':?
7828 ? "THE FIRST DATA LINE MUST BE NU

MBERED 1888"

7838 7 "AFTER THAT, EACH DATA LINE MUS
T BE NUMBERED ONE HIGHER THAN THE
LAST, FOR"™

7848 7 "EXAMPLE 10808 MUST BE FOLLOKED
BY 1881, 1882, 10063, 1884, ETC.':?

7850 7 "DEPRESS aNY KEY WHEN READY FOR
NEXT INSTRUCTIONS.":GET 21,4

3068 ? “"REQUIRED FORMAT FOR DaATA LINE:

7876 ? 1888 DATA OCT,82,1350,38,79.25
48, 35 28,675,8"

7888 "DATA ITEMS QRE:™

:g?g ? 1. MONTH; MUST BE I LETTERS LO

glgﬂ ? "2. YEAR; MUST BE 2 NUMBERS LON
7118 7 "3, NUMBER OF KILOMWATTS USED DU
RING MONTH"

7128 7 4, NUMBER OF DAYS IN BILLING P
ERIOD"

7138 7 5. MET COST OF ELECTRICITY IN
BILLING PERIOD. DO NOT USE 'S5 BEFOR

E COST7."

7148 7 6. NUMBER OF THERMS USED DURIN
G BILLING PERIOD."

7158 7 "7, NEV GAS COS57T DURING BILLING
PERIOD."

7168 ? "8, HEATING DEGREE DAYS IN BILL
ING PERIOD."

7178 7 "9, COOLING DEGREE DaYS IN BILL
ING PERIOD."

7188 7 “THE LAST LINE OF DATA YOU ENTE
RED WAS: “;LINE

glgﬁ 7 “NOW BEGIN TYPING NEW DATA LINE

CHECKSUM DATA
(See pgs. 7-10)

186 DATA 292,441,842,99,579,9987,378,636
,836,328,718,391,885,96,582,79%86

238 bATA 233,738,591,746,76,528,88,6081
,716,931,938,958,8408,258,376,859%4

548 DATA 999,829,942,42,828,874,988,82
1,722,238,08,882,813,869,834,18533

i8i4 DATA 798,789,961,886,798,706,235,
40,817,754,52,716,513,196,246,8431
2028 DATA 108,384,413,926,623,957,582,
I46,410,6606,158,289,852,856,62,7618
2178 DaTA 43,853,857,152,858,829,785,7
25,904,34,834,67,296,576,496,8383

3880 DATA 529,843,657,119,289,954,155,
6,288,885,643,249,778,316,846,7557
32308 DATA 388,791,727,478,859,221,495,
528,844,558,976,789,947,58,316, 8867
4130 DaTa 843,388,797,965,968,821,903,
227,574,777,500,533,562,736,793, 9585
5120 paTa 183,217,179,784,168,155,583,
146,442,40,311,374,459,583, 449, 4985
6830 paTA 989,968,263 ,948,489,781,562,
324,531,5608,750,89,113,222,184,7693
6180 DaTA 789,719,261,379,272,537,363,
456,452,183 ,373,949,793,589,58, 7173
6450 DATA 289,887,8,993,12,27,14,58,57
,35,33,24,61,993,415,3738

6680 DATA 513,715,547,898,256,544,862,
628,652,432 ,421,622,602,336,833, 8853
6750 pafa 94,687,871,681,181,882,752,9
74,248,891,158,819,716,946,671, 9331
7820 DATA 376,829,188,999,227,833,62,3
68,898,846,531,489,482,50,221,7389
7170 DATA 342,975,364 ,1681

Kilowatts
18 POKE 82,0
Za ? "R} KILOMWATTS"
ia 72 ELECTRICITY"
40 2 v ONALYSIS PROGRAM
S8 7 ¢ BY JODE HARB'
68 ? "LIDURING OPERATION OF THIS PROGR
oM, DO NOT DEPRESS RETURN KEY AF

TER TYPING ANSWERS TO PROMPTS.'

70 DPEN #1,4,8,"K:":REM OPEN KEYBOARD
T0 GET INPUTS LATER IN PROGRAM WHEN G
ET STATEMENT IS5 USED

e ? :? "DEPRESS ANY KEY TO CONTINUE."™
rGET 11,

98 DIM DDNS(d) M5 (33 ,K5(3) ,KPD5 (6] ,PRN
T5(653,R5(3)

188 MINCD=180:MINHD=208:FCTR=480:REM M
INCO-MINIMUM COOLING DAYS NECESSORY FO
RCOMPUTATION

118 REM MINHD=-MINIMUM HEATING DEGREE D
AYS NECESS5ARY

128 REM FCTR-NR. OF KILOMATTS TO BE 5U
BTRACTED FROM MONTHLY KILOWATT USE WHE
N COMPUTING DEGREE DAYS.

13I8 REM SUBTRACTING FCTR REDUCES EXTEN
T TO WHICH OTHER HOUSEHOLD ELECTRICITY
USE BIASES HEATING AND COOLING 57aTs
200 REM CALCULATE: TOTAL MONTHS OF DaAT
f (NR); LOW YEAR OF DATA (LOYR); AND H

IGH YEAR OF DATa (HIYR)

218 NR=8

220 READ M5,Y,UNITS,DAYS,NET,HD,CD

238 REM M5= HONTH, Y=YEAR, UNITSZKILOKWA
TTS USED USED IN BILLING PERIOD
ZASDREH DAYS=-NR. OF DAYS IN BILLING PE
RI

258 REM NET=COST OF ELECTRICITY WHEN B
ILL PAID ON TIME,DD=-DEGREE DAYS DURING
BILLING MONTH

268 REM HD-HEATING DEGREE DAYS

278 REM CD=COOLING DEGREE DAYS

280 LOYR=Y:RESTORE

298 READ MS5,Y,UNIT5,DAYS,NET,HD,CD

308 IF MS5="END"™ THEN RESTORE :60TO 288
a

318 NR=NRH+1:HIVR=Y

Iz8 GOTO 290

498 REM SUBROUTINE TO GET INPUT FOR ME
NU OPTIONS A & B; THEN CLEAR INPUT QUE
STIONS FROM SCREEN TO ALLOW DISPLAY
499 REM OF aDDITIONAL DATA

568 ? "KTYPE FIRST THREE LETTERS OF MO
NTH You WANT . ":GET #1,8:GET #1,B:GET

i,

518 REM NEXT LINE CONVERTS ATASCY vaLl
E5 TYPED ON KEYBOARD TO 4 STRING

520 K5=CHRS5{A) :KS (LENIKS5) +13=CHRS(B) : K
SCLEN({KS2+1)=CHRS{C) :GOSUB S30:RETURN

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 107

§38 POKE 84 ,PEEK(84)-2:FOR Z=8 TO 1:7?

"INEXT Z:REM 39 SPACES
548 POKE 84 ,PEEK(84)-2:RETURN
LA MYOUR DATA STATEMENTS GO HERE
1899 pATA END,999,0,8,0,0,8
1999 REM MENL OPTIONS
2880 7?7 "KTHIS PROGRAM ALLOWS THE FOLLO

WING SELECTIONS:*:7

zeig 7 f. TOTAL MONTHLY AND AQUER
AGE DAYLY KTLOWATT USE"

za2a 1 ¢ B. TOTAL MONTHLY AND AVER
AGE DAYLY KILOWATT COST™

263 7 C. TOTAL ANNUAL KILOWATT
USE AND CosT*

ze48 7 * 0. PRINTOUY OF ALL ELECTR
ICal USE paATA"

2656 7 E. DATA INPUY INSTRUCTIONW
Sll

2868 7 " F. EXIT PROGRAM':?

2078 7 “TYPE LETTER OF OPTION YOU WaNT
LIGET #11, 4

20688 REM GET IS5 USED TO DETERMINE LETT
ER TYPED ON KEYBOARD; A=ATASCI VALIE 0O
F LETTER TYPED

2898 TF 4=65 THEN 3888

2188 IF a=66 THENW 4088

72118 IF A4=67 THENW 5088

2128 IF A=68 THEN TRAP 2168:0PEN 14,8,
8,"P:":TRAP 168606:G607T0 6088

2138 IF a4=69 THEN 7886

2148 IF a=78 THEN POKE 82,2:END

2158 GOTO0 2878

2168 REHM PRINTER ERROR MESSAGE

2178 CLOSE #4:7 "PRINTER IS5 NOT ON-LIN
E'[J":TRAP 106888:G0T0 2870

2999 REM SUBROUTINE FOR MENU OPTION 4
Iaan GOSUB 568

Inig ? DO YOU MANT TO INCLUDE TNFORMO
TION ON HEATINGI(H), COOLING(C) OR NE
ITHER(N)?":GET #1,A:605UB 538

3828 IF 6=67 THEN DDNS="COOL':7=@

3830 IF A=72 THEN DDNS="HEAT":T=1

3648 IF 0=78 THEN DDN5=" ":T=2:0D=06
3858 7 "MONTH TOTAL ave TovaL o
UG KM

Iase 7 " KL DATLY DGREE P
ER "'DDH5 REM 8 SPACES BEFORE KMU

in70 Kuil USE DaYSs D

GREE DﬂV"‘REH 14 SPACES BEFORE KWU
Ias88 FOR Z=1 TO NR

3898 READ M5,Y,UNITS,DAYS,NET,HD,CD
3188 IF MS{>K5 THEN 3288

118 UP-INT (1G8XUNITS/DAYS) /168:RER CO
MPUTE UNITS PER DAY AND LIMIT DECIMAL
PLACES DISPLAYED

3128 IF T=@ THEN DD=CD:IF CD:XMINCD THE
N GOTO 150

3138 IF T=1 THEN DD=HD:IF HD>MINHD THE
N GOTO 3158

31408 TIF T=2 DR CD{=MINCD OR HD{=MINHD
THEN KPDS5="N/A4":GOTO0 X178

2158 KPD=INT (168 (UNITS-FCTR) 7 ((DD/38)

#DAYSII /188 :KPDS=STRS (KPD) :REM COMPUTE
UNITS PER DEGREE DAY

3160 REM LINES I178-3198 USED TO ALIGN

AND PRINT SCREEN DISPLAY

3170 CLI-iZ2-LENC(STRSCINTCUNITS)I) (CL2=
17-LENCSTRS CINT (UP3)) :CLI=Z6-LENISTRS(
DD :CLA=IZ-LEN(STRS CINT(KPD)Y3)

188 T MS; ¥ iPOSITION CL1,PEEK (843
1?7 UNITS;:POSITION CLZ,PEEK(84):7 UP;:
POSITION CLI, PEEK (84) : 2 [V H

3138 POSITION cL4, PEEK (84) :? KPD5

3768 NEXT Z:RESTORE

218 7 :? DO YOU WANT TO LOOK AT aNOY
HER MONTH? TYPE ¥ OR N.":GET Hi,n
32268 IF A=89 THEN GOSUB 536:GO0S5UB 586:
GOTO 3888

3238 ? "R":GO0T0 2888

3999 REM SUBROUTINE FOR MENU OPTION B
4888 GOSUB 5086

4818 7 ""MONTH TOTQL TOTAL UNIT"
4828 7 * KuW cosY cosT"™
:REM 2 SPACES BEFORE KHU

4838 FOR Z=-1 TO NR

4840 READ MS5,Y,UNITS,DAYS,NET,.HD,CD

4858 IF M5{(>KS5 THEN 48986

4060 AUG-INT(1B000X(NEY/UNITS5))/10606088:
REM CALCULATE AVERAGE DAILY USE

4078 CLI-1Z-LEN(STRSC(INT(UNITS)))::CL2=
19-LENCSTRS CINT(NET2])

4080 7 MH;" ":¥;:POSITION CL1,PEEK(84)
7 UNITS;"™ ;iPOSITION CLZ,PEEK(84):
? MET;:POSITION 25,PEEK(84):7 AvG

4898 NEXKT Z:RESTORE

4188 7 :? DO YOU WANT TO LOOK AT ANOT
HER MONTH? TYPE ¥ OR N.":GET #1.,0
411080 IF A=89% THEN GOSUB 536:G605UB 508:
GOTO 46838

412 ? “R":GOTO 28608

4999 REM SUBROUTINE FOR MENU OPTIONM C
See8 ? "KD0 YOU WGKT TO INCLUDE INFORM
ATION ONWN HEATING (H} OR COOLING (C)?
IGET #1,0:YR=LOYR

5818 IF A=67 THEN DDNS="COOL":T=@

5020 IF A=72 THEMN DDN5S="HEAT":T=1

5838 7 « "oDDNS ;"
AUG KWATT':REM 22 SPACES BEFORE DDN
5848 7 “YEAR KWATTS PGREE P
ER DGREE":REM 1@ SPACES BEFORE DGREE
ggﬁﬂ z N USED CosY pavYs D

5868 USE=8:CO0S5T=8:DDT=8:DIV=8

5078 FOR Z=1 TO NR

5080 READ MS5,Y,UNITS,DAYS5,NET,HD,CD
5898 IF Y<)YR THEN 5148

5188 IF T=8 THEN DD=CD:IF CD{=MINCD TH
EN DD=0:GOTO 51386

5118 IF T=1 THEN DD=HD:IF HD<{=MINHD TH
EN BD=8:G0TO 5136

5128 DOT=DDT+DD:DIV=DIVHINITS-FCTR
9136 HSEZUSE+UNITS:COST-COSTHNET

5148 WEKT Z:RESTORE

5158 DDAVG=@B:IF DDT>8 THEN DDAVG=INT (i
a8xDIV/DDTIA10686

51608 CL1=-17-LEN(STRSCINT(COSTIX):CL2=2
G-LEN(STRSCINTI(DDTI2) :CLI=IO-LENCISTRS(
INT(DDAVUGID]

5178 T YR+19@6;" “;USE;" " iPOSITIO
N CL1,PEEK{B4):7 COS57T;:POSITION CL2,PE
EK (84 :7 DDT;:POSITION CL3,PEEK(84)
5188 7 DDAVG

5198 YR=YR+1:IF YR<{HIYRt1 THEN 5868
5288 RESTORE

5218 7 7 “DEPRESS ANY KEY TO RETURN T
0 MENU.':GET 811,60

5228 GOTO 2880

99239 REM SUBROUTINE FOR MENU OPTION D
68880 TIMEZOG:SET=8:7 "“KRTYPE NUMBER OF L
INES PER PAGE 70 BE PRINTED.":GET
#i,0:GE7 B1,B:HL=((A-48)%¥18) +(B-48)
6018 LPRINT CHR5(27) CHRS5 (561 :REM DISA
BLE EPS0N "“END OF PAPER"™ FUNCTION

66828 7 14;:" T07
fl avG TatTal. AUG":REM 74 SPRCES
BEFORE TOTAL

6838 7 14;" HE®Q
T KWaTT cooL KHMATT:REM 24 5SPAC

ES5 BEFORE HEAQT

6648 7 it4;" KHATTS TOTaL DGR

PER DGR PER":REM 8 SPACES

BEFORE KWATT

6858 7 114 ;"YEAR UsSED COST Day
5 DGR DAY DAYS DGR DAY" :LPRINT

6860 TIMEZ-TIME+S:YR=LOYR

6870 USE-Q:COST=0:CDDIV=B:CDTOT=B:HDDIX

V=B :HDTOT=8:CDAVYG=B:HDOVG=S6

6888 REM CDDIV & HDDIV ARE NUMBER OF A

NNUAL KILOMWATTS FOR HEATING & COOLING.
GHLY MONTHS MWITH MORE THAN 106

6898 REM COOLING OR 280 HEATING DEGREE

DAYS ARE INCLUDED. 580 KMATTS PER MONT

H SUBTRACTED BY FCTR FOR OTHER ELECT.

6188 REM CDTOT & HDTOT ARE TOVAL HEATI

NG/CODOLING DEGREES PER ANNUM FROM MONT

HS WITH SUFFICIENT DEGREE DAYS

6118 PRNTS="

“:REM 65 SPACES

6128 FOR Z=1 TO NR:REM CALCULATE ANNUA
L CONSUMPTION AND COST

6138 READ MS,Y,UNITS,DAYS,NET,HD,CD

PAGE 108 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

6148 IF Y{>YR THEN 6186

6158 IF CDXMINCD THEN CDTOT=CDTOTH#CD:C
DDIV=CDDIVH+UNITS-FCTR

61680 IF HD)MINHD THEN HDTOT-HDTOTH+HD:H
DDIV=-HDDIVH+UNITS-FCTR

6170 USEZUSE+UNITS:COST=COSTHNET

6180 NEXT Z:RESTORE

65198 IF CDTOT>8® THEM CDAVG=INT (188%CDD
IV/CDPTOT) /1088

6200 IF HDTOT>® THEN HDAVG=IMT (188%HDD
IV/HDTOT) /100

6210 7 #4;YR+1908; :PRNTS(11-LEN(STRS (U
SEY),18) =5TRS (USE)

6220 PRNTS(16- LEI(STns(IIT(COST))) i8>
=5TRS(COST)

6238 PRNTS(25-LEN(STRS(HDTOT)),243=5TR
S(HDTOT)

6248 PRNTS5(3IB-LEN(STRSC(INT(HDAVG)II,32
I=S5TRS (HDAVG)

6250 PRNTS{41-LEN(STRS(CDTOTI),483=5TR
S(COTOT)

6268 PRNTS5 (4S-LENISTRS (INT(CDAVG))I) , 47
I=S5TRS (CDAVG)

62780 7 H4;PRNTS:TIME-TIME+1

6288 YR=YR+1:IF YR{HIYR+1 THEN 6870
6290 RESTORE :LPRINT :TIME-TIME+1

6399 REM CALCULATE AND PRINT MONTHLY
DATA. SUBROUTINE 6418 PRINTS COLUMN
HEADINGS ON EACH SHEET OF PAPER

6400 GOSUB 6410:G0T0 6468

6410 7 n4;"

KuWav KHAT
UTIME-TIME+1:REM 47 & 18 SPACES
6420 ? 14 ;"MONTH DAILY MNTHLY MNT
HLY COST HEAT PER cooL PER"
tTIMECTIME+1

6430 7 14;" KRaTT KMATT cos
T PER DGRE DGRE DGRE DGRE
":TIMECTIME+1:REM 8 SPACES BE4 KWATT
6449 7 H4;" UsE UsE

Kl DAYS DAY DAYS pav“
{LPRINT :TIME-TIME+1:REM 8 & 13 SPCS
64508 RETURN
6468 RS="_JaN":GOSUB 6600
6470 RS5="FEB":GOSUB 6688
6488 RS="MAR":GOSUB 6680
6490 R5="APR":GOSUB 6600
6580 R3="MAY":GOSUB 6680
6518 R5="JUN":GO5UB 6600
6520 R5="_JUL":GO5UB 6688
6538 R5="alG":GOSUB 6608
6548 R5="SEP":GO5UB 66080
6550 R5="0CT":GOSUB 6600
65608 R5="NOV":GOSUB 6680
6578 RS="DEC":GOSUB 6609
65808 CLOSE #14:7 “"K":GOTO 2088
6600 FOR Z=1 T0 NR:REM CALCULATE MONTH
LY cousunprxou AND COST
6618 READ UNITS, DAYS,NET,HD,CD
6620 HAVG= éaﬁ =8
6630 IF ns<>ns THEN 6820
6640 7 M4 M5;" ;¥
6650 PHIT§‘"

":REM 65 SPACES
6660 UP-INT(106%(UNIT5/DAYS5)1/188
g?ag)PRNT$(6-LEl(5TR5(INT(UP))),8):STR

6680 PRNTSC(1S-LEN(STRS (UNITS)),143=5TR
5 (UNITS)

6690 PRNTS5(C(22-LENCSTRS (INTI(NET))),24)=
STRS (NET)

6700 AVUG=INT (19808 (NET/UNIT5)) /1888
6710 PRNTS5{28-LENC{STRS(INT(AVUGI) ,31)=
5TRS (AUG)

6720 PRNTS(II-LENCSTRS(HD)) ,3IBI=STRS(H

D)

6730 IF HDY>MINHD THEN HAUG=INT (1863 (U
NITS5-FCTR)/HD21 /1808

6748 IF HAVG=8 THEN PRNT5(42,44)="N/Q"
:GOTO 6760

6750 PRNTS(43-LENC(STRS(INT (HAVGI 1) ,46)
=5TRS (HAVUG)

6769 PRNTS (S3-LEN(STR5(CDI) ,52)=5TRS(C

6770 IF CDX>MINCD THEN CAVUG=INT (1883 (U
NIT5-FCTR2/CD}) /1680

6788 IF CAVUG=0 THEN PRNTS5(56,58)=""N/a"
:GOTO 6880

6798 PRNTS(S7-LEN(STRS (INT(CAVEI)),68)
=S5TRS (CAVG)

6880 TIME-TIME+1:IF TIME-HL THEN SET=1
6818 7 14 ;PRNTS

6820 NEXT Z:RESTORE

6830 IF SET=8 THEN 6870

6848 IF RS="DEC' THEN 6880

6858 7 "INSERT ANOTHER SHEET OF PAPER;
THEN DEPRESS ANY KEY":GET #1.,4

6860 TIME-8:5ET=0:G05UB 6418

6870 LPRINT :TIMECTIME#+1:IF TIMEZHL TH

EN 6840

6888 RETURN

6399 REM INSTRUCTIONS FOR PREPARING DA

TA LINES

7088 LINE=NR+999

7818 ? "KFOR EACH MONTH OF DATA YOU HA

VE, You MUST TYPE ONE DATA LINE."

7828 7 "4THE FIRST DATA LINE MUST BE N

UMBERED i6a68."

7830 7 "JAFTER THAT, EACH DATA LINE MU

5T BE NUMBERED ONE HIGHER THAN TH

E LAST."

7048 ? "FOR EXAMPLE, 1688 MUST BE FOLL

EHED BY 18081, 1882, 10683, 16884, ETC.

7858 ? "JDEPRESS ANY KEY WHEN READY FO
R NEXT INSTRUCTIONS.":GET %1, 0
7060 ? "KTHE FOLLOMING IS5 THE FORMAT F
OR A DATA LINE:"™

gﬂzgsog"Glﬂﬂﬂ baTa 0OCT,82,1356,398,79.2
zagg z "JREQUIRED DATA SEQUENCE AND FO
7890 7 Ui, MONTH; MIUST BE I LETTERS LO

EIOB 7 2. YEAR; MUST BE 2 NUMBERS LON

?ééaT;"“S. NUMBER OF KILOMWATYS USED IN
7128 7 4., NUMBER OF DAYS IN BILLING P
ERIOD"

7138 ? 5. NET COST OF ELECTRICITY IN

BILLING PERIOD™

7148 7 "6. HEATING DEGREE DAYS IN BILL
ING PERIOD

7158 ? 7. COOLING DEGREE DAYS IN BILL
ING PERIOD"

7168 IF LINE{>999 THEN ? "&LQST LINE 0
F DATA YOU ENTERED WAS: ";:LIN

E§72 ? "JNOW BEGIN TYPING HEH pATA LIN
7188 END

CHECKSUM DATA
(See pgs. 7-10)

18 DATA 626,571,316,11,87,658,765,978,
462,317,312,349,844, 885,96, 7261
228 DATA 748,581,738,157,156,283,79,76
9,55,604,722,11,498,617,848,6685
520 paTa 258,376,999,591,189,73,4720,43
728,148,283 ,330,681,639,405,6467
2690 faTa 851,848,852, 604,860,824,723,
279,394 ,487,725,125,171,153,332,8228
3050 DaTh 496,276,286,497,761,837, 185,
274,293,885,611,584,357,351,249,6942
3280 DATA 778,316,848,308,491,727,478,
84 ,494,758,865, 148,662,758, 783,8482
4180 DATA 314,839,306,495,552,174,156,
179,793,294,777,500,764,748,77,6918
5110 pata 181,58,852,783,713,236,823,6
69,448,51,341,715,499,355,108, 6544
6020 DATA 373,553,240,527,488,719,149,
800,872,557,326,764,751,18,104,7241
6170 DATA 658,789,616,635,828,389,85,5
36,63,546,626,457,719,248,372,7567
6418 DATA 109,812,106,297, 806,999,992,
11,33,13,57,56,34,32,23,4380
65608 DATA 68,992,414,734,777,465,896,3
52,576,210,625,142,869,295,848,8247

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 109

6728 DATA 127,482,778,321,101,446,779,
38%,935,995,804,758,980,169,893,7977
68768 DATA 166,821,716,3508,473,886,594,
635,429,247 ,84,642,143,82,144,6472
zé29 DATA 531,305,47,98,613,435,276,23

Snowflake Demo
REN WK SNOMWFLAKE GENERATOR 08¢

:Ea BY TOM HUDSON
REM SET UP GRAPHICS MODE, COLGORS

REM
GRAPHICS 8+16:S5ETCOLOR 2,08,8:COLOR

REM

REM SET UP DEGREES, X AND Y TABLES
188 REM
116 DEG :DIM D(168) . X(18),Y{1®)
1286 REM
138 REM RANDOMIZE SHAPE
148 REM
158 FOR I=-1 TO 18:D(I)=0:K(I)=RND(B)*8
@:Y(IJ-RND(B)¥I¥4 :NEXT I:POKE 77,0
168 REM
178 REM ECHO AQND ROTATE SHAPE
180 REM
198 PLOT 166,96:FOR I=1 TO 18:DRAMTO 1
60*(K(I)*COS(D(I))*Y(I)*SIH(D(I))) 96+
(-HCIIXSINIDCIII+Y (IIHCOS(D(III]
gzolgérx DI +60:NEXT XI:IF D{13<3I68 TH
218 FOR I=1 TO 10:D(IJ=B:NEKT I
228 PLOT 168,96:FOR I=1 TO 18:DRAMTO 1
60+ (H(IIHCOS(D(IID-YIXINSINCD(I))), 96+
(-HCIXRSINCD (I -Y(IIHCOSCD(I)I3
238 DI(II-DC(II+6B:NEXHY I:IF D(1) <368 TH
EN 220
248 REM
2580 REM LEAVE IT ON SCREEN a4 MWHILE
268 REM
278 FOR DELAY=1 TO S806:NEXT DELAY:RUN

PAGE 110

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

TYPING TRAINER

16K Cassette 24K Disk

by Regena

Typing Trainer utilizes color, graphics and
sound to help a student practice typing sentences for
accuracy. There are 40 different 30-stroke sentences
that are chosen randomly for the drills. Each drill
consists of ten different sentences.

A sentence is shown on the screen. The student
types and enters it. If it is incorrect, an “uh-oh”
sounds and a “wrong’’ score is posted. The student
has time to review the sentence before continuing. If
the typed sentence is correct, a ‘“‘right” score is
posted, a train whistle sounds, and there are two
blasts of steam from the engine’s smokestack.

The running total score is displayed on the screen
after each sentence. After ten sentences, the final
score is displayed and a tune is played.

Following each drill of ten sentences, the student
may choose whether to try again or not. If “N”’ for
“no’’ is entered, the program ends. If “Y”’ for “‘yes”
is entered, the drill is repeated with ten different
sentences. Each drill chooses the sentences random-
ly, and the drill may be performed four times with-
out sentences being repeated. After that, the sen-
tences are all available for four more drills. The drills
will be different each time because the sentences are
chosen randomly. This process continues as long as
the student wishes to continue.

Programming techniques.

ATARI does not allow arrays of string variables,
so an array of sentence numbers is used. The sen-
tences are numbered.- 1 through 40, where] is the
number. Initially, all A(J)s are set to zero. After a
sentence is used, A(])=1.

To print a sentence, first a number J is chosen as a
random integer from 1 through 40 (Line 220). If
A(J)=1 the sentence has been used before and may
not be chosen again, so another] is chosen (Line
230). If A(J)=0, SEN$ is set equal to the Jth sentence
and the program branches to the drill (Lines 232-
250, 4000-4390).

After the drill has been performed four times

(using FLAG as a counter), all A(])s are reset to zero
so the sentences are all available for use in the next
drill (Line 180).

To avoid the possibility of the student “crashing”
the program during responses, an INPUT procedure
is avoided. Instead, the program looks at what key is
pressed by using B=PEEK(764). Yes or no responses
are received by the student pressing “Y” or “N”.
Any other key pressed is ignored.

When sentences are typed, the characters are
printed as each key is pressed until “RETURN” is
pressed (which indicates the student is finished typ-
ing the sentence). The control keys or SHIFTing are
not allowed, since a typist practicing sentences
should not backspace and type over letters, nor type
capital letters in the middle of the sentence (actually,
the student types all capital letters in the standard
computer mode but does not SHIFT). If a control
key or SHIFT is pressed, an asterisk is printed in that
character position of the student’s sentence.

To avoid scrolling, the student is permitted to type
only 34 characters in the sentence (Line 2005). The
student’s sentence is compared with the given sen-
tence either after “RETURN?” is pressed or after 34
characters have been typed. [J

Explanation of the program.

Variables Used

J Sentence number.

A()) =0 for available sentence, =1 if sen-
tence has been used.

FLAG Counter for number of times drill
is performed.

WS Wrong score.

RS Right score.

PROB Counter for number of sentences.

R =1 if sentence is typed correctly,
=0 if sentence is typed incorrectly.

D Counter in delay loop for SOUND.

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 111

B Value in PEEK(764) for key pressed. Subroutines

BB =1 for “yes” response, =0 for “no” 1000-1060 Subroutine reads DATA for assign-
response. ing ASCII code to key pressed for

I Counter in loop. use in printing.

G L ASCII value. 1900-2500 Subroutine prints the sentence and

SENS$ Typing sentence. accepts student’s sentence.

OLDB Holding variable for B value. 1905 Prints the sentence.

K Counter for number of characters 1910-1930 Sounds a “beep” to indicate the
printed in student’s sentence. student’s turn to type.

C$ Character for key pressed. 2000 Initializes variables.

T$ Student’s typed sentence. 2005 Allows student to input up to 34

X,X1,Y,YLII, characters.

X2,Y2,X3,Y3 Coordinates for graphics. 2010-2400 Prints each character as the student

Line Numbers Procedure types it. If the student tries to press

10 Prints title screen and plays music. a control or SHIFTed character,

30 Prints instruction screen. “*" is printed. The student presses

100 DIMensions variables. “RETURN” to end the sentence.

120 Reads in data for ASCII codes re- 2410-2500 Sets R=1 if the sentence typed
lated to key pressed. matches the given sentence, other-

180-200 Initializes variables. wise R=0, then returns.

202 Draws train. 4000-4390 The given 30-stroke typing sen-

205 Initializes score to be zero. tences.

210 Performs the drill for 10 sentences. 5000-6840 Subroutine draws the train and coal

220-230 Randomly chooses a sentence; if car.
the sentence has been used previ- 7000-7490 Subroutine prints title screen and
ously, chooses another one. plays music.

232-250 Depending on the] chosen, prints 8000-8160 Subroutine prints instructions and
the corresponding sentence and waits for student to press “RE-
prints the student’s sentence; com- TURN” to continue.
pares sentences. 9000-9080 Subroutine prints score and plays

255-280 If sentence is incorrect, sounds music.

“uh-oh” and increments wrong
score.

300-310 If sentence is correct, train toots 18 GRAPHICS 18:GOSUB 7008
whistle and blows steam; incre- 38 GO5UB 8oe6

. 188 DIM AC48) LI{63IY,SENS5(38),T5(35),C5
ments right score. €13 ,N5¢€1)

320 Prints running score. 126 GOSUB_ 1688 .

330-345 Short delay for correct sentence, %gg Ffﬁcggl TO 48:0CJI=0:NEXT J
longer delay for incorrect sentence. 202 GOSUB 5000

350 A(J)=1 indicates sentence] has ggg %ﬁapggggl T0 1@
been used and will not be available 228 J=INT(4D%RND (133 +1
to use again. 238 IF a(J)=1 THEN 228

232 IF J)38 THEN 248
355-360 Clears text screen and goes to next 234 IF J>28 THEN 244
236 IF J>18 THEN 248

sentence. , 238 ON J GOSUB 4608,4010,40820,4030,484

370 After ten sentences, prints total 0,4850i4060é4070,4888,4090
score on full screen and plays %33 gg:g_fg
music. 242 ON JJ GOSUB 4180,4118,41208,4138,41

400-495 Asks the student to “‘try again?” ggi"éggé‘%gg'4178'4188’4190
and waits for the student to press 244 JJ=J-20
TG NRE 245 ON JJ GOSUB 4286,4218,4220,4238,42

48,4250,4260,4278,42808,4298

496 If the student pressed “N,” ends 246 GOTO 255

248 JJ=-J-36
program. , 258 ON JJ GOSUB 4360,4316,4326,43308,43
510-530 If the student pressed “Y,” incre- 48,4350,4360,4370,4380,43908

999

ments the number of times the drill
was performed, If the drill has been
performed 4 times, resets all sen-
tences to be available; branches to
beginning of drill.

End.

255 IF
268
264
268
278
275
288
3a0
318

R=1 THEN 368
S50UND ©,84,18,14

FOR D=1 TO 40:NEXT D
S0UND 0,1081,1@,14
FOR D=1 TOD 48:NEXT D
50UND ©0,08,10,0
W5=HW5+1:6G0T0O 328
GOSUB X088

R5=RS5+1

PAGE 112 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

229 PRINT :PRINT RS5;" RIGHT'",MW5;" WRON
330 IF R=1 THEN 345

340 FOR D=1 TO S@8:NEXT D

345 FOR D=1 TO 586:NEXT D

358 a(JI=1

255 PRINT :PRINT :PRINT

I68 NEHT PROB

378 GOSUB 98848

408 GRAPHICS 8

419 PRINT :PRINT :PRINT

428 PRINT "DO YOU MWANT TO TRY AGAIN?Z"
438 PRINT :PRINT "PRESS 'Y' FOR YES"
448 PRINT * '‘N* FOR NO™

458 B=PEEK(764)

468 IF B=43 THEN BB=1:GO0TO 498

478 IF B=3I5 THEN BB=8:G0TO 498

488 GOTO 458

498 S0UND 8,23,10,8

4%2 FOR D=1 TO 10:NEXT D

494 SOUND 8,8,18,8

495 POKE 764,255:B=255

496 IF BB=8 THEN 999

580 PRINT '"R“

518 FLAG=FLAG#+1:IF FLAG=3I THEN 188

538 GOTO 282

999 END

1888 FOR I=8 TO 63

1618 READ C:L{IX=C:NEKT I

1048 DATA 76,74,59,0,0,75,43,42,7%,0,8
8,85,8,73,45,61,86,08,67,8,8,66,88,38,5
2,8,51,54,08,53,50

1858 DQTQ 49 44,32 46,78,08,77,47,0,82,
8,69,89,08,84,87,81,57,60, 48 55,8,56 60,
62,?0,72 58 B 8,71,83, 65

1868 RETIRN

1908 POKE 764,255:B=255

1385 PRINT SENS

1918 SOUND B,47,10,14

1928 FOR D=1 TO 68:NEXKT D

1938 S0UND @,8,10,8

28808 OLDB=-1:T5="""':0PEN ni,4,8,"K:*
2885 FOR K=1 TO 34

2018 GET #1,8:IF B=155 THEN 2480

70208 IF B»96 THEN C5="%':GOT0 2065
2868 CS=CHRS(B)

2865 PRINT C5;:TSC(LEN(TS3+1)=C5

20888 NEHXT K

2898 GOTO 24486

21808 I-INT(PEEK(53I7753/4):IF (I/2)-INY
(I/2) THEN 2818

2118 POKE 764, 255:0LDB=-1

2128 GOTO 2918

2488 CLOSE #1

2418 IF T5=S5EN5 THEN R=1:GOTOD 2508
2420 R=8

2588 RETURN

@88 FOR IX=1 TO 2

3818 SOUND 8,58,18,14:50UND 1,63,18,14
3825 COLOR 2

IB36 GOSUB 3588

348 FOR D=1 TO 180O:NEXT D

3658 SOUND 8,8,10,8:50UND 1,0,18,8
3876 COLOR 8:G0OS5UB 3508

3898 NEXT IXI:RETURN

i508 PLOT 121,3

3518 PLOT 125,14:DRAWTO 126,10

3538 PLOT 124,14:DRAWTO 125,80

3550 PLOT 123,14:DRQNTO 123,98

X578 PLOT 122,11:DRAWTO 121,4

3598 RETURN

4000 SENS‘"HE FEELS5 SHE HaAS A SAFE LEA
SE.":GOT0 1388

4018 SENS="ANDY MUST GIVE MY BAND o HA
ND.":GOTO 1388

40828 SENS5="SHE IS5 STILL AT THE LAKE 5I
TE.":GOTOD 1786

4030 SENS="THERE IS5 A QUICK QUIZ FOR H
IM.'":GOTD 1968

4848 SENS="JUSY SOME OF US HAVE 7O DO
IT.":GO0T0 195048

4058 SENS="THWO OF THE GIRLS ARE HERE N
OW.":GOTO 19886

40608 SENS="JANE STARTS HER TaALK AT THR
EE.":GOTD 1366

4070 SENS="TRY NOT TO LOODK AT YOUR HAN
D5.":G0OT0 1388

4888 SENS="HE DID SEEK AID FOR THE TRU
CK.'":GOTD 193886
48980 SENS='CHECK THE PAPER FOR ANY MAR
K5.'':GOT0 1980
4198 SENS="IT IS5 THIS DESK FILE HE SEE
K5.'":G07T0 1968
4110 SENS="HE KNOWS HE MUST KEEP WORKI
NG.':GOTO 1986
4120 SENS="WE WOULD GIVE HIM & GOOD WA
GE.":GOTO 1980
4136 SENS="BRING ALL BOOKS TO THE TaBL
E5.":GOTD 1988
4148 SENS="I HOPE THaAT TAX DOES NOT PA
3%.":607T0 1986
4150 SENS="GREG BROUGHT IN a4 LARGE CHE
CK.'":GOTD 19880
4168 SENS="IT I5 UP TO THEM TO WORK Ha
RD.":GOTO 1988
4178 SENS="PUT A& LITTLE MORE EFFORT HE
RE.":GOTO 19880
41806 SENS="HAVE A GOAL; WORK TD REACH
IT.'":GOTO0 1986
4130 SENS="ALL GLAD DADS HAD & GLASS J
AR .'": G070 1966
4200 SEN5="IT I5 HOW WE WORK THAT COUN
T5.'":60T0 1%68
4210 SENS="TOM WAS QUICK TO SEND THE B
OK.'":GOTO 1508
4220 SENS='REH WILL HAVE MUCH MORE TO
DO.":GOTO 1960
4238 SEN5="I WILL GO TO TOWN TO0 GET TH
EM.'":GOT0 19388
4240 SENS="HE CAN LEND A HAND TO THE B
0Y."”:6G0T0 19886
4258 SENS="I PAID THE MEN FOR THEIR WO
RK.':GOTO 1386
4268 SENS="THE WORKER SAID HE STRUCK O
IL.":G07T0 1368
4278 SEN5="SHE SAID WE NEED A NEW CamMp
ER.'":GOT0 i9%6e@
42808 SENS="I BOUGHT THE BIG BOX OF BOO
K5.'":GOT0 13@8
4298 SEN5="WE 5HOULD SET A GOAL FOR TH
EM.":GOT0O 19780
4388 SENS="TRY TO TYPE alLL THE BIG WOR
DS.":GOTO 1966
4318 SENS="WE MAY OQUIT THI5 WORK AT FI
VE.':GOTO 19488
4320 SEN5="YOU HAVE TO MWORK FOR TWO Da
¥5.':GO0T0 1968
4338 SENS="TRY TO GET ONE OR THWO OF TH
EM.':GOTO 1968
4340 SENS="YOUR BEST MEN WILL HELP DO
IT.":GOTO 1580
4358 SENS="HAVE THE BOYS DO THE WORK N
OMW.":GOTO 195460
43608 SENS="LET HIM PROVE THE RIGHT THI
NG.":GOTD 198a
4378 SENS="THEY SHOULD READ MY GCOD BO
0K.'":GOTO 19848
4388 SENS="SHE CAN DO A BIG JOB THE BE
5T.'":GOTO 1388
4398 SEN5="DAVE MADE A CAGE FOR HI5 PE
75.":GOTO0 195886
5888 GRAPHICS 7:COLOR 1
5885 COLOR 1
5818 FOR Y=Z8 TO 25
5828 PLOT 55,Y:DRAMWYO 88,Y

NEXT ¥

5858 FOR Y=26 TO X7

5068 PLOT 668,Y:DRAMWTO 65,Y
50888 PLOT 83,Y:DRAMTO 88,Y
9108 NEXT Y

5118 FOR Y=38 TO 58

5128 PLOT 68,Y:DRAWTO 138,V
5148 NEXKT ¥

9158 FOR ¥=34 TO 37

9168 PLOT 97 Y:DRAWTO 183,Y
5188 NEXT

5198 PLOT 98 II:DRAWTO 182,33
5218 PLOY 100 3Z2:PLOT 122, 38
5238 DRAWTO 118,18

5248 DRAMWYOD 122,15

5258 DRAMWTO 126,15

5260 DRAWTO 136,18

9270 DRAWTO 126,38

5288 COLOR 2

VvOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 113

5298 PLOT 59,58:DRAWTO 58,58 7158 SOLUND ©,42,18,8

5310 FOR X=49 TO 19 STEP -1 7178 FOR D=1 TO 5@:NEXT D

5320 PLOT X,40:DRAWTO H,58 7288 S0UND 9,8,10,0

5340 NEXT X 7218 SOLUND 8,42,10,8

5356 COLOR 3 7236 FOR D=1 TO 25:NEXT D

53680 K1-128:Y1=56 7248 SOUND 9,50,18,8

5370 GOSUB 6080 7260 FOR D=1 TO 25:NEXT D

5380 X2-80:Y2=48 7278 SOUND 8,63,18,8

5398 GOSUB 65080 7298 FOR D=1 TD 25:NEXT D

5392 X3I-37:Y3-59:G05UB 6200 7368 SOUND 8,8,16,8:50UND 0,63,10,8

5395 K3I-27:Y3-59:G05UB 6288 7318 FOR D=1 TO 25:NEXT D

5480 FOR II=2 TO 4 7320 SOUND 8,56,10,8

5410 PLOT II¥*18,39 7348 FOR D=1 TO 25:MEXT D

5420 DRAWTO II¥*18+8,39 7358 SOLUND ©,8,10,8:50LUND 8,56,10,8

5430 PLOT II*18%2,38 7360 FOR D=1 TO 25:NEXT D

5440 DRAMTO II¥*16+7,38 7378 SOUND ©,58,18,8

5450 PLOT II*i8+3,37 7418 FOR D=1 TO 58:NEXT D

5460 DRAWTO II*18+7,37 7428 SOUND ©,63,10,8

5478 PLOT II¥*18+5,36 7438 SOUND 1,127,10,2

5480 NEXT II 7448 SOUND 2,101,18,2

5498 RETURN 7450 FOR D=1 TO 180:NEXT D

6608 PLOT X1,Y1 7468 SOLND ©,0,18,0

68010 DRAWTO Hi+4,Y1 7470 SOUND 1,08,18,0

6820 DRAWTO H1+7,Y1+3 7488 SOLND 2,0,10,0

6030 DRAWTO H1+7,Y1+7 7498 RETURN

6040 DRAWTO H1+4,Y1+10 8000 GRAPHICS @

6858 DRAMTO H1,Y1+1@ 8810 PRINT :PRINT

68068 DRAWTD X1-3,Y1+7 8820 PRINT “YOU WILL SEE A SENTENCE"

5870 DRAWTO X1-3,Y1+3 8038 PRINT "ON THE SCREEN."

68808 DRAWTO X1,Y1 8040 PRINT :PRINT “TYPE AND ENTER IT.®

6898 RETURN 8058 PRINT :PRINT "IF IT IS5 CORRECT

6288 COLOR 3 8868 PRINT "THE TRAIN WHISTLE WILL ﬁLo

6205 PLOT X3,Y3 W.™

6218 DRAWTO H3+4,Y3 8065 PRINT :PRINT "IF IT I5 INCORRECT,

6220 DRAWTO X3+6,Y3+2 YOU WILL"

6230 DRAMWTO H3I+6,Y3I+6 8066 PRINT "HAVE TIME TO CHECK YOUR TY

6248 DRAMTO X3+4,Y3+8 PING."

6250 DRAWTD X3I,Y3+8 8070 PRINT :PRINT “YOU WILL BE SHOMN Y

6260 DRAMWTD X3I-2,Y3+6 OUR SCORE"™

6278 DRAWTD H3-2,Y3+2 8080 PRINT “AFTER EACH SENTENCE."

6280 DRAWTO H3,Y¥3 8098 PRINT :PRINT "AFTER TEN SENTENCES

6298 PLOT K3I+2,Y3+4 "

63008 RETURMN 8180 PRINT "YOUR FINAL SCORE IS5 SHOMN.

6580 PLOT X2,Y2 "

6518 DRAWTO H2+6,Y2 8128 PRINT :PRINT

6520 PLOT X2+7,Y2+1 8130 PRINT "“PRESS 'RETURN' TO CONTINUE

6538 PLOT HZ+8,Y2+1 L

6540 PLOT K2+9,Y2+2 8140 B=PEEK(7643:IF B{>12 THEN 8148

6550 PLOT X2+18,Y2+3 8145 SOLND 8,23,18,8

6560 PLOT XK2+11,Y2+4 8146 FOR D=1 TO 18:NEXT D

6578 PLOT H2+11,Y2+45 8147 SOUND ©,0,18,0

6588 PLOT X2+12,Y246 8150 POKE 764,255:B=255

6590 DRAMWTO XH2Z2+12,¥2+12 8168 RETURN

6680 PLOT N2+11,Y2+13 9088 GRAPHICS 18

6610 PLOT H2+11,Y2+14 9818 POSITION 2,3

6628 PLOT X2+18,YZ2+1S 9028 PRINT #6;"RIGHT",RS

6638 PLOT HZ+9,72+16 9830 POSITION 2,5

6640 PLOT X2+8,Y2+17 9940 PRINT #6;"WRONG', WS

6658 PLOT X2+47,Y2+417 98768 GOSUB 78646

6660 PLOT HZ+6,YZ2+18 3888 RETURN

66708 DRAWTO HZ,Y2+18

6680 PLOT X2-1,Y¥2+17

6698 PLOT X2-2,YZ+17 i

Scds BL8t 133 vEMS

g;gg gtg‘{ H2-5,¥2+14 CHECKSUM DATA
K2-5,¥Y2+13 ;

6740 PLOT H2-6,Y2+12 (See pgs. 7-10)

67508 DRAWTO H2-6,Y2+6

6760 PLOT K2-5,Y2+5 18 DATA 640,5,848,793,174,607,803,64,5

6778 PLOT H2-5,YZ+4 99,917,817,464,452,448,129,7735

6780 PLOT K2-4,YZ+3 239 paTA 725,458,983 ,722,456,5,725,462

6798 PLOT H2-3,v2+2 ,22,569,433,132,605,131,%97,6717

6808 PLOT H2-2,Y2+1 2808 DaTh 648,797,529,544,574,583,508,5

6818 PLOT K2-1,YZ+1 03,494,221,836,8908,479,154,971,8651

6820 PLOT X2+3,Y2+9 448 paTh 421,168,892,898,734,599,137,31

6838 DRAWTO K1+2,Y145 4,957,518,972,586,704,78,347,8879

6848 RETLRN 1818 DATA 456,568,468,785,718, 125,543,

7800 POSITION 3,3:PRINT #6;"TYPING" 534,489,973,356,618,247,934,929,8743

7828 POSITION 3,5:PRINT #6;“TRAINER" 2880 DATA 588,714,75,289,708,867,537,1

7048 SOUND 0,580,180, ,796,318,377,6508,939,275,155,7193

7868 FOR D=1 TO 58:NEXT D 3878 DATA 893,758,986,727,528,518,522,

7898 SOUND 8,8,10,8 887,631,817,116,872,875,959,913, 10834

7188 SOUND 8,58,18,8 4078 paTa 154,798,928,707,961,772,91,9

7128 FOR D=1 TO 25:NEXKT D 87,905,747,41,774,711,956, 15,9539

7138 SOUND @,8,10,8:50UND 6,50,10,8 4228 DATA 901,20,757,28,124,753,764,92

7148 FOR D=1 TO 25:NEXT D 4,68,41,932,1%,971,923,588,8207

PAGE 114 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

4370 DATA 959,698,816,986,651,559,484,
544,586,477 ,497,543,588,576,547, 9493
5158 paATA 588,599,551,518,536,352,347,
352,353,363,656,683,328,485,558,7245
5350 DaTh 657,34,949,2085,961,382,387,3
30,299,21,398,19,4080,19,485,5466

5488 DATA 748.808,136,698,738,735,975,
586,732,729,298,798,651,156,714, 9480
6220 paTA 743,748,747,778,745,74%,316,
662,798,153,722,669,673,679,523,9698
6560 DaTh 528,532,537,302,722,724,725,
531,532,530,5%51,6%68,519,5%3,517,8%83
6710 paTa 5i8,519,517,518,762,685,684,
688,676,665,663,682,747,817,597,9730
7620 pata 897,341,528,496,348,515,45,5
17,344,524,477,343,519,347,522,6747
7278 paTa 356,525,54,528,354,523,59,52
5,353,527,357,528,516,296,489,5982

7470 DATA 491,493.817,56,589, 959 673,4
4,159,494,590,861,734,421,423,7869
8100 DATA 155,593,773,186,350,523,494,
713,802,326,223,276,231,3085,961,6825
9980 paTa 803,803

Graphics 8 Color Demo

18 GRAPHICS 8:SETCOLOR 2,8,15:5ETCOLOR
1,8,8:COLOR 1
FOR X=8 TO 2088 STEP 2
PLOT X,8:DRAWTO K,10
NEKT X
=1 TO 281 S5TEP 2
ﬁ,ZO:DRﬁHTO X,30

T0
PLOT X,40: DRQNTO X,50

%8
188 NENT X

CHECKSUM DATA
(See pgs. 7-10)

i8 pATA 137,79,188,393,90,287,339,111,
225,758,2587

ENTERTAINMENT

VOL. 1

THE A.N.A.L.O.G. COMPENDIUM

PAGE 117

MOTORCYCLE
MAZE RIDER

16K Cassette 24K Disk
by Charles Bachand

Maze Rider is a game in which you roar through a
twisting maze of tunnels on a motorcycle. You are
hindered in this feat by the fact that your viewpoint
is from inside the maze. The display is your window
into the maze.

In order to play Maze Rider, a joystick must be
inserted into port #1. After typing RUN the
program will initialize and generate an introduction
screen. The program will ask you to respond to
questions about game options. The first question is
“Do you want to leave a trail?”’ If the answer is yes,
the game will display a line on the ground where you
have previously traveled. The “Extra Passages”
option will add more interconnecting passages to the
maze. The map option allows you to see a map of the
maze displaying an overhead view of the game area.
Motorcycle noise can be eliminated in the last option
if desired.

Pushing the joystick forward will move you
forward within the maze. Pulling back on the joystick
will make you move backward within the maze.
Pushing the joystick to the left or right will change
the direction that you are facing. Pushing the joystick
to the left will make you turn in a counter clockwise
direction and pushing to the right will make you
turn in a clockwise direction. If the map option has
been enabled, pushing the joystick trigger button
will display an overhead view of the maze for about
ten seconds.

For the technical types out there who are
interested in how things work, the maze in this game
is generated using a modified random walk routine
that stores the X and Y locations it has traveled to
into two tables, which are stored on page six of the
computer’s memory. As the cursor walks along,
generating the maze, the X axis is stored at XPNT+
PNTR. The index variable PNTR is then
incremented by one. This operation continues until
it runs into a dead end. At this point the program
starts backtracking back to its origin. The index
variable PNTR is decremented by one and the last X
and Y coordinates are pulled from their locations in
page six. The program then does LOCATEs up,

down, left and right, looking for an unused space. If
the program detects such a space around the cursor,
the maze drawing process is turned back on. The
cursor continues to advance and retreat until it
bumps into its origin. O

Line Explanation
100-640 Generates maze
640-830 Draws maze interior

840-1060 Main program routine
1070-1110 End of game.
1120-1130 Draws map of maze

1140 Draws outline of maze
1150-1230 Title and options select
1240 Perspective view data

188 REM 30960¢ MOTORCYCLE MAZE RIDER w¥x
118 REM ¥ COPYRIGHT 1288 C.BACHAND *
128 REM

138 REM 3% FOR ANALOG MAGAZINE 03¢
148 REHM

158 TOP-PEEK{1086) :5WITCH=8

i68 GOSUB 1150:G05UB 1140

178 PRINT "4 p¥¥ GENERATING MAZE GRID »*

188 HC-INTIRND (ZX®{{WIDTH-33/2)2%243
198 YC-INTO(RHD (B {{LENGTH-I}/231%2+3
288 ER-HC:EY-YC:!HPMT-153I6:YPNT=-1632
218 S5ETCOLOR 1,8,14

278 COLOR Z:PLOT XC,YC:COLOR 1

238 LHG=INT(RND (B2 ¥*I)1%2+2

248 DIR-INT (RHD {B)#*4)

258 S={DIR=8)-(DIR=1)

268 T-{(DIR-Z3-(DIR=3}

278 FOR I=2 TO LMG STEP 2

288 LOCATE HCHS5¥I,YCHT®I,P

238 IF P AND I=2 THEN POP :GOTD 238
388 IF P THEMN POP :LNG=2:GOTO 258
318 NEHT I:HC-HCH+S¥LNG:YC-YC+T¥LNG
328 IF PNTROPMAXR THEN PMAK-PNTR:MX=HC:
MY=¥C iMS=S5:MT=T

338 DRAWTO HC,YC:PNTR=PNTR+1

348 SOLND 6,D2-PNTR8,18,8

358 POKE HPNTH+PNTR,HC

368 POKE YPNTH+PNTH,YC

378 GOSUB 680:IF P THEN 398

388 SOLUND 9.DZ-PNTR¥8,16,2:G070 236
338 HC-PEEK (KPNTH+PNTR2

488 YC-PEEK (YPNT+PNTR3

418 PHTR=PNTR-1:G0O5UB 680

428 S0LUND 6,.DZ-PNTR¥B,18,8

438 IF P AND PNTR THEN 398

448 POKE 77,Z:50UND 8,DZ2-PNTR¥S, 19,2

PAGE 118 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

458 PLOT HC,YC:IF PHTR THEN 238

468 COLOR Z:PLOT MK, MY:COLOR 1

478 MAP-ADR(MAP3) :IF 1-EXTRA THEN 538
4868 FOR I=1 T0O 25

498 HC-INT(RND (O (HIDTH-422+3

588 YC-INT(RHD(B)#{LENGTH-4)1+3

518 Y- (HCH#YCXA2:IF INTIY2ZY THER 438
526 PLOT HC,YC:KEHT I

538 SOUND 0,8,6,0:F0R ¥=1 T8 LENGTH
548 FOR H=1 TO WIDTH:LOCATE X,¥,.P

558 POKE MAP+YX40+K, P NEXT H:NEHKT Y
560 5=-MS:T--MT:M3=8:FOR I=8 TO0 6

578 READ K:POKE EPNT+I,K:MEXT I:P3c-8
588 YPNT-HKPNT+8:POKE ?PNT 1,79

528 FOR I=8 70 &:POYE ¥YP HY*I,??‘(PEﬁK{
gzgi+1)+PEEK(RPNT+I—1)) F4NEXKT I:6070
688 LOCATE HC+2.YC,Pi

618 LOCATE XC-2,YC,P2Z

6728 LOCATE HC,YC+2Z P2

628 LOCATE XC,YC-2Z,P4d

648 P=P1 AND P2 AND PI ARD P4:RETURR
658 Pi=B:GRAPHICS HG:SETCOLOR 1,6,14;:P0
KE ?5Z,1:PRINT :PRINT “HLOOKING "‘QS £
MOVES *';MOVE :MOVE-MOVE+L

668 FOR YC=8 TO 6:PZ-HR{1,YC]

678 IF P2=Z THEK GOSUB &36

680 IF KOT PZ THEK POP :GOTO 836

698 K1-P1:KZ-PEEK(HPHNT+YC) P1zH2

788 IF FEET AND ¥C THEHWH IF P23 AKRD NR
{1,¥C-13=3 THEK PLOT 73,PEEK(YPNTHYC-1
J:DRAWYO 73,PEEK{YPHT+YC2

7i8 FOR KC=8 Y0 2 STEP 2

778 IF KL THER KEIZ158-Hi:X2-158-HZ

738 KDIzZH1/2:¥D2-H2/2

740 IF NR(KC,YC) THER 768

758 PLOT Hi,XDi:DRAWTO HZ,XD2:PLOT Ki,
73-HD1:DRAMTO X2,73-KD2:G0TO 798

768 PLOT Hi,EDIi:DRAMTIO X1,79-HKD1:PLOT
Hi,HDZ DRAWTO ¥Z,HDZ:PLOT X1,79-HDZ:DR
GKTO KZ,73-HD2

778 IF NR({1,¥YC+i} THEN DRAOWTOD KZ,HDZ
788 GOTO 88é

738 PIZ-KR{1,¥YCH+13:IF PZ2-8 OR P22 THENK
DRAWTO K2,HDRZ

880 IF FEET THER IF Y{ AKRD NR(KXC,YC)=3
THEN PLOY 73,PEEK(YPRT+Y() (DRAKTO K1,

PEEK(TPNT¥YC)

818 NEXT HCINEXHT YC:IF NOT NR(L1,7) TH

EXK IF MR{O,63 OR NR({Z,5) THEN PLOT 7%,

33:PLOT 73,448

828 RETURN

838 PLOT XZ,HDZ:DROANTO 1593-K2Z,KDZ:PLOTY
H2,79-HDZ :DRAWTO 159-¥2,795-KDZ;RETURN
848 SOUND 1,258,2,5K0¥4:COLOR 1:MaAP-AD
R{MAPSI :IF T4>1 THEK 868

858 FOR HC=-1 TO 1:FOR YC=@ TO 7:KR{REC
1,¥CI-PEEK {HAPH {MY+YLI R4 O+ HMH-HCY (NEXKT
YCIHERTY HC:AS="SOUTH“:GOTO 328

868 IF T4>-1i THEH 88

878 FOR HC=—-% TO 1:FOR YC=8 T0 7:KR(KC
+1 ,YCICPEEK (RGP (MY-YOI ¥4 +MEHHCT i REKT
YC:HEXHT HC:AS-"KWORTH":GOTO 224

888 IF 54{>-1 THEHW 986

836 FOR XC=—-1i TO 1:FOR YC=6 Y0 7:KR{KC
+1,YCICPEEK {HAP+ (MY -ACI¥4B+MH-YC) (REKT
YC:MEHT HC:a45="WESYT":G0Y0 9286

968 IF 5431 THEN 9228

918 FOR HC=—1 70 L1:FOR YC=8 70 7:NR(IHC
+1,YCOCPEEK (MAPY (MY TECY®4QEMEFYCE (HEXT
YC:NERT KC:AS=UEAST™

928 POKE 54286,8:5HITCHC-I16-SHITCH:POKE
iﬂﬁ,TDP—SHITCH:GOSHB 658 :POKE 54286,6

4:POKE 77,86

938 IF STICK{BI{4i3 THEW 336

240 IF STRIGI(B} OR MAPSH-® THEMN 988

950 IF P3>2 THEN SOUHD €,50,17,6:PRINT
“E$PTHREE LOOKS IS5 YOoUR LIMITH:FOR I=

i TO 1BB:KEXY I:GO0OT0 988

968 GOSUE 1148:PI-PIH1:SETCOLOR 1,8,14
PRINT "4 }CHECK MOTORCYCLE HMAZE Mar #*
;PI:GOSUB 1128

978 FOR H=f To 18:FOR P=1 70 4:FOR IZ2
TO 189:NHEXT I:COILOR P:PLOY ME MY:NEXT
Pi:HEKT M:S50UND 8,8,.6,8:607T0 B48

388 S0UND 8,8,8,8:P-5TICK{6):IF P=i5 O

R P=5 OR P=6 OR P=3 OR P18 THEN 948

228 IF P-id4 THER MHCME#S:MY-MY+T:S50UND
8,1720,.6,5ND¥6:IF NOT PEEK (MAPtMY¥46%
MH] THEN ME-MH-S5:HMY-MY-T:P-8

1888 IF Pzi3 THEKR MH-KE-S5:MYZ-HY-Y:S50UN
D 8,120,56,5ND%6:IF NOT PEEK(MAP+MY¥®40
+MH) THEN MH-HMH+S5:MY-MY+T:P=@

1816 IF P=7 OR P=1% THEN Pi=5:5=-T7:71z=P

1
1028 IF P=11 THEN 5=-5:T=-T

1838 IF P=8 THEH PRINT "Ké)FCRASH!1V:F
OR P=15 T0 8 STEP -1:SOUND @,128,12,P:
FOR I=% TO 5:NEKT I:NEKT P:P=-0:M5-0
1040 TMAP +HYX40+MH: IF PEEK (1)=2 THEN
1858 POKE I,3:IF P THEK 848

1860 GOTO 348

1870 PRINT ''K4)%MEHN YOU ARE FREE ¥

'UUFOR =i TO S:FOR Y=288 T0 O STEP -4
1888 SOUND Z,Y,18,R®I:NEXT Y:FOR I=f T
0 4:PLOT RNDIB3¥159,8:DRAMTO RND(B3X15
9,73:KEXT I:NEXT H:50UND Z,7,Z,Z

1898 POKE 186,TOP

1180 FOR I=1 T0 168:KEXT I:GOSUB 1148:
SETCOLOR 1,0,14:PRINT "Ked %%k vOii'RE
FINAL MAP 30680 :COSUB 1128

1118 POKE 752,8:END

1170 MAP=ADR(MAPS) :FOR Y=3 TO LENGTH-2
iFOR =3 T0 WIDTH-2:COLOR PEEKCHAP+Yx4
1130 SOUND 8,290-Y*i4-K,18,6:PLOT X,Y:
NEHT H:NEKT ¥:RETHRN

1146 GRAPHICS I:COLOR 1:PLOT 1,1:DRAKT
0 WIDTH,1:DRAMTO WIDTH,LENGTH:DRAWTO 1
LLEHGTH:DRAMTO 1,1:POKE 752,1:RETLRN
1150 GRAPHICS 2:5ETCOLOR 1,0,14:PRINT

#6:" 7/ motorcycle \":PRINT #6:" 7
MWaze rider \":PRINT H6:0PEN 11,4,8,"K
1168 WIDTH=I9:LENGTHZ19:DP=96:D2-DPX3
1178 DIM MAPS (8686 ,a5¢5),C5(1),NR(2,7)
1188 PRINT 6:PRINT f16:PRINT H6:" 2 AN
ALOG ABB/808 L7 :PRINT #6:" Lier: CEVEFE

GE E:.m"‘PRINT 2433

1196 PRINT R4 DO YOU WANT TO LEQUE
6 TRAGIL"::GET #i,A:IF CHRSLAI="¥" THEN
FEET=1

1200 PRINT “K4 DO YOU WANT EXTRA PAS
SGGES"; (GET #1,6:IF CHRS(AI="Y" THEN E
KTRA=1:60T0 1218

1216 PRINT “K4 DO YOU WANT 70 USE TH
E MAP";:GET #1i,6:IF CHR3(A)="Y" THEN M
APSW=1:GOTO 1228

1778 PRINT "R4 DO YOU WANT MOTORCYCL
E SOUKD;:GET #i,A:IF CHRS(AY="Y" THEN
SHD=1

1238 RETURN

1748 DaTh 6,78,46,68,68,74,78

CHECKSUM DATA
(See pgs. 7-10)

1860 DATH 973,829,88,783,86,456%,43%2,385
4084 ,63%,768,697,18,368,835, 7853

258 DAaTaA 747.761,569,387,358.457,828,5
48,163 ,271,171,172,514,336,458,6739
408 PATH 438,712.267,423,694,.456,1886,9
63,158,98%1,122,71%,82,438,631,76836

958 DATAL BGV,373,23.341,481,828,838,76
2,7793,958,334,5608,285,382,423,8425

78 DAaTA 88,115,688,785,415,343,348.76
8,733,962,765,874,5681.268,886,8353

858 DATA Z54,789.244,778,417,49%6,244,3
17,487 ,49%7,589,527,451,885,494,7384
1886 DATO 548,49,452,784,477,429,896,3
22,878,159,677,368,241,588,73,6639
ii58 DaTAa 298,.82,185,147,595,426,316.,4
25,788,%48,3372

VOL. 1

THE A.N.A.L.O.G. COMPENDIUM

PAGE 119

DINO BAITTLE

24K Cassette 32K Disk
by Art V. Cestaro 111

Dino Battle is a game of primordial confronta-
tion, a fierce battle between two players. See if you
can defeat a dinosaur!

Your goal is to bite your opponent’s dinosaur on
the back of the neck. By moving your joystick and
pressing the firing button, you can move your dino-
saur and open and close his mouth. You may make a
number of attempts before you succeed. Try to bite
your opponent as many times as you can before the
time is up.

Your score is displayed on the side of each dino-
saur at the start of the game. You receive one point
each time you bite the other dinosaur. (J

7000-7110 Opening display

8000-8220 End of game

10000-10035 Sets up player/missile graphics

10040-11000 Reads shape dataand storesitin the
proper arrays

12000-12900 Data for shapes

Name Variable

Time Time in seconds of the game

Score 1 Players’ scores

Score 2

TT Timing variable

X Horizontal position of dinosaur 1

X2 Horizontal position of dinosaur 2

DR1 Direction dinosaur 1 is facing

DR2 Direction dinosaur 2 is facing

DF1 Area in memory where player data
is poked

DB1

DF2

DB2

Y, Y1 Vertical position of dinosaur 1

Y2, Y3 Vertical position of dinosaur 2

RT, RET, RT1 Return Flags

G, H, DD Dummy variables

C; Z;

I Top of RAM: used for setting up
player/missile area
Arrays

TF1, TF2 Flying dinosaur’s front

TB1, TB2 Flying dinosaur’s back

DI1INF1

D1NF2 Dinosaur front and back views

DINBI1

DINB2

DHR Dinosaur’s head and mouth open

Line Explanation

Y, Y1 Vertical position of dinosaur 1

3 Sets GRAPHIC mode and colors

12 Sets time and score

13-16 Draws landscape

80-81 Prints text

100-200 Main loop: checks joystick and
triggers and increments time

300-315 Moves dinosaur figures on screen

1000-1015 Turns dinosaur number 1 around

1100-1115 Turns dinosaur number 2 around

3500-3595 Makes dinosaur 1 open his mouth
and try to bite the other one

3600-3710 Makes dinosaur 2 do the same thing

3800 Prints both players’ scores

3900-3905 Plots cacti

3910-3930 Plots rocks

4000-4021 Plots dinosaur 1, fall routine

4500-4531 Plots dinosaur 2, fall routine

4600 Erases the dinosaur

4800-4810 Moves dinosaur away from defeated
opponent

5000-5990 Plots title

Each dinosaur is made up of two players, positioned
next to each other so they make up one dinosaur
shape. O

PAGE 120 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

8 REM TR SFN9 REV 1.8

i REM By aArt VU Cestaro III 18/13/81

3 GRAPHICS 7:CLR :POKE 752,1:POKE 712,

197:POKE 718,24:POKE 788,99%:POKE 783,1

95

6 GOSUB 3938

12 TIME=S59:TIM=0:SCORE1=86:5CO0REZ2=8:C0OL

OR 1

13 Y-INT(RND(8)}¥#35+18) :D=-1:FOR X=86 TO

158 STEP Z:Y1=-INT (1S¥RND(8)+Y-5¥D}:PLO

T K,47:DRAWTO X,Y:PLOT Ht1,47

14 DRAWTO Kt1, (Y+VY1)/2:¥= Yi:IF v>48 TH

EN Y=Y-108:D=2

15 IF ¥{28 THEN Y=Y+18:D=1

16 NEXT X

17 GOSUB 3I9%80:605UB 3918

38 GOSUB 7680

IiegETIG:GOSUB 186888:G605U8 16688:GOSUB

88 POKE 7527,1:POKE 656,0:POKE 657,3:7

AT AR I POKE 656,8:POKE 657,28:7 *
SCORE [

81 POKE 656,0:POKE 657,12:7 “|4€fie]":

POKE 656,0: POKE 657,27:2 "]i¢ &f "IPOK

E 656,08: POKE 657, 16:7 =

82 GOSUB 3860

188 TT=TT+0.2:IF TT>1 THEN TT=0:TIME=T

IME-1:XF TIME<1 THEN TIME-S9:TIM-TIM-1

184 IF STICK(8)=7 THEN H-K+2:IF DPRi:=1

THEN GOSUB 1608

185 IF STRIG(8)=6 THEN RT=8:GOS5UB 35886

118 IF STICK(13=7 THEN X2=XZ2+2:IF DR2:=

Z THEN GOSUB 1116

111 IF H{55 THEN R=55

112 IF X>195 THEN K=195

115 ON DR1 GOSUB 386,385

128 IF STICK(i)=11 THEN X2=-K2-2:IF DR2

=1 THEN GOSUB 1168

138 IF STICK(O)=11 THEN Kc-K-2:IF DPRi:=2
THEN GOSUB 1810

éIZ IF STRIG(1)=8 THEN RT1=6:605UB 368

133 IF K255 THEN H2:=55

134 IF K2>195 THEN HZ2=195

135 ON DPRZ GOSUB 318,315

169 IF TIM{1 AND TIME{Z THEN POKE 656,
2:POKE 657,18:7 '"90:60":GO0T0 8800

172 IF TIME{16 THEN POKE 656, Z:POKE 65
7,18:7 TIM;":8";TIME:GOTO 188

175 POKE 656 2 1 POKE 657,18:7 TIM;":'";7T
I"E-!I "

188 POKE 77,8

260 GOTC 168

308 POKE 53248, X:POKE 53249 ,H-8:RETURN
385 POKE 53249,H-8:POKE 53248,X:RETURN
316 POKE S$S32506,K2-8:POKE 53251,H2:RETU

RN
1% POKE 53251,X2:POKE 532568,H2-8:RETU

RN

1000 DRi1=2:FOR G=1 TO 4:POKE DBitG,8:N
EXT G:Y=65:Y1=63:DF1=Y+J:DBi=Yi+J1:FOR
G=1 TO 18:POKE DB1i4G,DINB1(G)

1885 POKE DFI1+G,DINF1(G) :NEXT G:FOR G=
%3R;0 22:POKE DF1+G,DINF1(G) :MEXT G:RE
1816 DRIZ1:FOR G=1 TO 4:POKE DF14G,0:N

EXT G:Y=6%3:Y1=65:DF1=¥+J:DB1=Y1+J1:FOR
G=1 70 18:POKE DF1i+G,DINB2 (G}

iai5 POKE DBI1+G,DINFZ(G) :NEKY G:FOR G=
%ERLO 22:POKE DB1+G,DINF2Z(G) :NEXT G:RE
1168 DRZ=2:FOR G=1 TO 4:POKE DBZ¥#G,0:N
EXT G:Y2=65:Y3=69:DF2=YZ+JZ:DB2=-YI+JI:
FOR G=i TO 18:POKE DF2+G,DINFZ(G)

1185 POKE DB2+G,DINBZ(G) :NEXT G:FOR G=

19 TO0 22:POKE DF2+G,DINF2(G]):NEKT G:RE

TURN

1116 DR2=1:FOR G=1 TO 4:POKE DF2+G,8:N

EXT G:YZ2=69:Y3=65:DFZ2=YZ2+J2:DB2=-YI+J3:

FOR G=1 TO 18:POKE DF2+G,DINB1(G)

1115 POKE DB2+G,DINF1(G) :NEKT G:FOR &=

19 T0 2Z2:POKE DB2+G,DINF1(G) :NEXT G:RE

TURN

3588 ON DR1 GOTO 3I518,3528

35i8 BB=DB1:GG=3598:G0T0 3558

35208 BB=DF1:GG=3580

3558 GOSUB GG

3555 FOR G=58 TO 180:S50UND 8,G,18,15:5
Oglg g 188-(G-56),10,15:NEXT G: SolUND 8
3568 ON DRl GOTO 3563, 3565

3563 POKE 8:FOR_G= 1 T0 6:POKE BB+G,
DINF2(G]: NEHf :GOTO 3591

3565 POKE BB, B FOR G=1 TO 6:POKE BB+G,
DINFL(G) :NEXT G:GOTO 3591

3576 RETURN

3580 POKE BB+6,224:FOR G=06 TO S:POKE B
B+G,DHR(G+1) : NEXT G:RETURN

3590 POKE BB+6,7:FOR G=6 TO 5:POKE BB+
G,DHL (G¥+1) :NEXT G:RETURN

2591 IF RT=1 THEN RETLURMN

3532 IF DRi=2 AND DR2=1i AND PEEK (53260
=12 THEN GOSUB 4580

3533 IF DRi=1 AND DR2=Z AND PEEK(53261
J=i2 THEN GOSUB 4500

3595 POKE S53278,08:RETURN

3680 ON DRZ GOTO 3618,3620

i6108 BB=DBZ:GG=3580:G0T0 3658

36280 BB=DFZ:GG=359%8

3658 GOSUB GG

3655 FOR 6G=56 TO 160:50UND 8,G,18,15:5
OUND 8,180-(6G-50),12,10:NEXT G:S50UND @

:0,8,0

36608 ON PR2 GOTO 3I663,3665

i663 POKE BB,@:FOR G=1 70 6:POKE BB+G,
DINFL1(G) :NEXT G:GOTO 3786

3665 POKE BB,@:FOR G=1 TO0 6:POKE BBtG,
DINF2(G) :NEXT G

3788 IF RTi=1 THEN RETURN

3781 IF DR2=2 AND DRi=1 AND PEEK(53262
1=3 THEN GOSUB 40860

3785 IF DR2=1 aND DR1=2 aMD PEEK(532&3
=3 THEN GOSUB 4608

3718 POKE 53278,8:RETURN

3888 POKE 656,2:POKE 657,6:7 SCOREL;"
":POKE 656,2:POKE 657,31:7 SCOREZ;"
"":RETURN

3988 COLOR Z:FOR J=1 TO 4:H=INT{45+RND
(8)#10) :G-RND (8)%145+18:G05UB IIBI:NEX
T J:RETURN

39801 DRAWTO G+2,H+5:DRANWTO G+2,H+I:RET

LIRN

3983 PLOT G,H:DRAWTO G,H+3:PLOT G, Ht4:
ggﬂHTO G-2,H+4 :DRAMWTO G-2,H¥1:PLOT G,H
5325 DRAWTO G+2,H+5:DRAWTO G#2 , H+IRET

3918 COLOR 1:FOR J=1 TO I:H=4B+RND(B8)*
éﬁ:g;RND(B)*ldelﬂ:GOSUB JII1INEKT J:R
TU

ﬁgil DRAWTO G+5,H+5:DRAWTO G+3I,H+9:RET

3913 PLOT G,H:DRAWTO G-5,H*S5:DRAKWTO G+
I,HtI:DRANWTO G,H:DRAMWTO G+4,H+1

33#5 DRAWTO GH+5,H+5:DRAWTO G+3I , HE+I:RET
3230 COLOR I:FOR G=79% TO 47 STEP -1:PL
0T B,G:DRAOMWTO 159,G:NEXT G:RETLRN

4060 BB1=-DF1:BB2=-DB1:GOSUB 4608

4883 Y=75:Y1=74:DFi=Y+J:DBi=Y1+.J1

486865 ON DR1 GOSUB 4616,4020

4886 RT1=1:GOSUB 36086:GOT0 4818

4618 FOR G=1 TO 3%:POKE DB1+G,DLFI{G):PO
¥EGDF1+G,DLB(G):SDUND 8,126,8,15-G:NEX
4611 POKE DF1+18,DLB(16 :POKE DF1+1i1,D
LE(11) :FOR G=1 TO 6:50UND ©,128,8,15-G
:FOR HH=1 TO 10:NEXKT HH:MNEXT G:RETLRN
4820 FOR G=1 T0 3:POKE DB1+G,DRB(G]I:PO
¥EGDF1*G,DRF(G):50HND 8,1268,8,15-G:NEX

4621 POKE DB1+106,0RB(18) :POKE DB1+11,D
RB(11):FOR G=1 TO 6:S50UND 8,128,8,15-G
tFOR HH=1 TO 10:NEXT HH:NEXKT G:RETURN
4588 BBi=-DF2Z2:BB2=DBZ:GOSUB 468686

4583 YZ=74:Y3=75:DF2=Y2+J2:DB2=-Y3I+J3
4585 ON DRZ GOS5SUB 4528,4530

4518 RT=-1:GOSUB 3580:G0T0 4800

4528 FOR G=1 TO 9:POKE DF2Z+G,DRB(G):PO
KE DB2+G,DRF(G]) :50UND 0,118,8,15-G:NEX

TG

4521 POKE DF2+168,DRB{16) :POKE DFZ+11,D
REC11):FOR G=1 TO 6:SOUND ©,110,8,15-G
tFOR HH=1 TO 18:NEXT HH:NEXT G:RETURN

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 121

4538 FOR G=1 TO 9:POKE DB2+G,DLB(G):PO
¥EGDF2+G,DLF(G):50UND 8,1108,8,15-G:NEK

4531 POKE DB2+18,DLB(18) :POKE DBZ+11,D

LBC(11) :FOR G=1 7O 6:50UND ©8,118,8,15-G
:FOR HH=1 TO 18:NEXT HH:NEXT G:RETURN

4688 FOR G=1 TO 2Z:POKE BBi1+G,0:POKE B

B2+4G,0:NEXT G:RETURN

480808 H=INT(RND(83¥145458) :0N DR1 GOSUB
386,365:G05UB 1168:5CORE1=-SCOREL1+10:G
05UB 3800:RETURN

4518 K2-INT (RND (8)%145+50) :ON DR2 GOSU

B 318,315:605UB 1000:SCOREZ=-SCOREZ+18:

GOSUB I800:RETLRN

5688 COLOR 1:PLOT 26,5:DRAGKWT0 26,15:PL
0T 26,5:DRAWTO 31,6:DPRAWTO 31,14:DRANT
0 26,15:G0T0 5998

5160 PLOT 36,5:DRAMTO 3I6,15:PLOT 35,5:
PLOT 3I7,5:PLOT 35,15:PLOT 37,15:6070 5
998

52806 PLOT 42,15:DRAKWTO 42,5:DRAKWTO 46,
15:DRAKTO 46,5:60T0 59398

5388 PLOT 50,5:DRANTO 50,15:DRAKMTO 55,
15:DRAWTO 55,5:DRAKHTO 5@,5:60T0 59236
54808 PLOT 66,5:DRAWTO 66,15:DRaAMTO 71,
15:DRAWTO 71,5:DRAWTO 66,5:PLOT 66,18:
DRAWTO 71,16:G0T0 5998

55868 PLOT 76,5:DRaAMTO 81,5:DRAMWTO 81,1
S:PLOT 76,5:DRAKTO 76,15:PLOT 76,18:DR
AWTO 81,10:G6G07T0 5338

56808 PLOT 85,5:DRAMTO 91,5:PLOT 88,5:D
RAWTO 88,15:G0T0 5338

57688 PLOT 95,5:DRAWTO 1081,5:PLOT 38.5:
DRAWTO 98,15:G0OT0 5996

5866 PLOT 106,5:DRAWTO 166,15:DPRAWTO 1
11,15:60T0 5998

5988 PLOT 116,S5:DRAWTO 116,15:DRAKTO 1
21,15:PLOT 116,10:DRAMTO 121,16:PLOT 1
16,5:DRAWTO 121,5:G0T0 5998

5998 RETURN

78688 DD=17:DIM TFL1(DD),TBLL(DD] ,TFZ(DD)
» TBZ(DD)

7605 FOR G=1 TO DPD:TF1(GI=B:TFZ(GI=B:T
B1(G)=8:TBZ(G)=B:NEHKT G

7810 FOR G=1 TO 14:READ C:TF1(G)=C:NEX
TGG:FOR G=1 TO 1I:READ C:TB1(GI=C:NEKT

78208 FOR G=1 TO 1I:READ C:TB2(GI-C:NEX
T G:FOR G=1 TO 14:READ C:TFZ(GI=C:KEXT
G

7825 RET=6:G0S5UB 1808686

7830 POKE 704,49:POKE 785,49:FO0R G=5 T

0 19:POKE DF1+G,TF1(G—-4) INEXT G:FOR G=
1 TO 1Z:POKE DB1+4G,TB1({G):NEXT G

7848 FOR X=228 T0 35 STEP —1:POKE 5324

8,K-7:POKE 53243 ,K:50UND 8,K,18,6:FO0R

H=1 TO I:HEKT H:NEXT H

7845 FOR G=1 70 18:POKE DF1+G,8:POKE D

B1+G,8:NEXKT G

7851 POKE 704,49:POKE 705,49:FOR G=1 7T
0 13:POKE DB1+G,TBZ(G) :NEKT G:FOR G=4
TO 18:POKE DF1+4G,TFZ(G-I) :NERT G

7868 FOR H=38 TO 210: POKE 53249 ,H:POKE
53248,K+7:50UND 8,K,18

7862 IF X=7?5 THEN GO5UB’ 5900

7863 IF H=85 THEN GOSUB 5188

7864 IF H=91 THEN GO5UB 5289

7865 IF K=183 THEN GOSUB 53086

78666 IF HK=119 THEN GO5UB 5488

7867 IF K=138 THEN GOS5UB 5588

78068 IF K=138 THEN GOSUB 5688

7869 IF H=144 THEN GOSUB 5780

7878 IF X=155 THEN GOSUB 5880

7871 IF X=165 THEN GOSUB 59808

7875 FOR H=1 TO 4:NEHT H:NEXT H

78688 ? YR By art.V,Cestaro TII

":50UNMD 8,980,127 11:50UND 1,91,12,12:G0
S5UB 18840

7885 COLOR O:FOR G=5 TO 16:PLOT 25,G:D
RAKTO 125,G:PLOT 25,15-(G-5) :DRANTO 12
9,15-(G-5) :NEKT G

7686 SOUND ©,88,12, :SOUND 1,81,12,14
78698 ? R i
78631 FOR G=1 TO 28:GO05UB 7098:NEXKT G
7892 7 "R PRESS STAaRT *
7832 FOR G=1 TO 28:GOSUB 7898:MNEXT G:G
0T0 7836

1338 IF PEEK({532793=6 THEN POP :GOTO 7
7893 RETURN
7188 7 "R

(1]

7181 FOR G=1 T
1:50UND 8,120

OH OH .., FOOTSTEPS
:FOR H=15 T0 8 STEP -

0 2

;8. H
7185 SOUND 1,122,8,H:FOR J=1 TO 8:NEKT
J:NEXT H:FOR F=1 TO G68:NEHT F

7187 FOR H=15 TO @ STEP —-1:50UND 8,110
s8,H:SOUND 1,112,8,H:FOR J=1 TO 8:NEXT
JINEXKT H:FOR F=1 TO 68:NEKT F:NEXT G
7118 ? "R'":RETURN

86668 FOR G=1 TO 10:POKE 656,8:POKE 657
»15:7 " GAME OVER ":SOUND ©,150,10,14:
FOR Z=1 TO 1S5:NEXT Z

8085 POKE 656,08:POKE 657,15:7?

(33" : SOUND 8,180,18,14: FOR H=1 TO 15:
NEHT H:NEKT G

8689 SOLND ©,0,8,08:POKE 656,0:P0KE 657
FEESEaL PRESS START i
868168 IF SCORE1>SCOREZ THEN 8620

8613 IF SCORE2>SCORE1 THEN 883a

8@15 IF SCORE1=SCOREZ THEN 8040

8828 POKE 656,8:POKE 657,3:7 " SCORE
":FOR H=-1 T0 15:GOSUB 8108:NEXT H
8021 POKE 656,8:POKE 657,3:7 'Y ORE

.“'FOR H=1 70 15:G05UB 8108 NEXT H:GOT

aze
8938 POKE 656,08:POKE 657,28:7 " SCORE
5033 Dok L5t ol poke hs,S100 INER
B :FOR H=1 T0 15:G05UB 8100 :NEXT H:60
TO 86838
8848 POKE 656,8:POKE 657,3:7 * SCORE
":POKE 656,08:POKE 657,28:% " SCORE
"“:FOR H=-1 TO 15:G0OSUB 8180
8841 NEXKT H
8845 POKE 656,8:POKE 657,3:7 "1
B':POKE 656,8:POKE 657, 7817 SCORE
":FOR H=1 TO 15:GOSUB 8180
8846 NEXKT H:GOTO 8040
gégﬂ IF PEEK(53279)=6 THEN POP :GOTO 8
8181 RETURN
8288 SCOREL1=8:S5COREZ=0:TIM=8:TIME=59
8218 FOR 6G=2568 T0 @ STEP -3I:50UND 8,6+
501g315 tS0UND 1,G+4,10,14:50UND 2, G+3
8215 SOUND 3,6+2,1i8,12:POKE 712 ,RND (83
¥255:NEXT G:FOR G=8 T0 3I: SOUND G 6,8,0
POKE 53248+G,35:NEHT G
8217 POKE 712,197:GOSUB I938:GOSUB 390
8:G6G05UB 3918
8228 POKE 656,8:POKE 657,13:7 "
"":POKE 712,13%7:G0OT0 75
180888 POKE 559,46:I=PEEK(186)-24:POKE
54279, I:POKE 53277,3:POKE 623,1
18816 J-IX256+512:J1-IX256+640:.02=-T%25
64768 JI=-I%2564896
éDBlS FOR &=J TO J3+128:POKE G,®:NEKT

18828 POKE 78B4, 165 POKE 785,165:POKE 7
86,228:POKE 797 z0

18025 K=188:Y= 1? Yiz=1i6

33338 DF1=Y+J:DB1=Y1+J1:DF2=Y¥+J2:DB2=Y
18835 IF RET=6 THEN RETLRN

186840 DD=22:DIM DINFLi(DD)I,DINFZ(DD),DI
NB1(DDY ,DINBZ (DD} ,DHR(6), DHL(G)

10843 CC=11:DIM DRF(CC) DRB(CC) DLF (CC
},DLB(CC)

18845 FOR 6=1 TO DD:DINF1C(GI=B:DINFZIG
J=B:DIMB1(GI=-B:DINB2(GI=B:NEXT G

18858 RESTORE 12588:FOR G=1 TO 18:REaAD
C:DINBLIGI=C:NEXT G:FOR G=1 TO 2Z:REAQ
D C:DINFL1(GI=C:NEKT G

18868 RESTORE 12688:FOR G=1 TO 2Z:READ
C:DINFZ(G)-C:NEXT G:FOR G=1 TO 18:REn

D C:DINBZCGI=C:NEXT G

18865 RESTORE 12788:FOR G=1 TO 6:READ

C:DHRIGI=C:NEXT G:FOR G=1 TO 6:READ C:

DHL (G)=C:NEXT G

18866 RESTORE 1Z868:FOR G=1 TO 93:READ

C:DRF(GI-C:NEXT G:FOR G=1 TO CC:READ C
:DRB(GI=C:NEHT G

PAGE 122 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

180868 RESTORE 123908:FOR G=1 TO 9J:READ

C:DLF(G)=C:NEXT G:FOR G=1 TO0 CC:READ C
:DLBL{GI=C:NEXT G

188780 H-180:H1-92:HZ-150:HI=-158:¥Y=64:Y
1-68:Y2=-64:Y3=-68

10871 DF1=Y+J:DBi=Y1+J1:DF2=-Y2+.J2:DB2=
YI+J3

11860 RETURN

i2888 DATA 1,6,28,47,63,87,175,31,28,5
6,56,24,12,4

12885 DATA I,6,28,24,56,48,112,112,243
+252,248,249,158

12818 DATA 192,96,56,24,28,12,14,14,29
7,63,31,153,112

12828 DATA 128,96,56,244,252,234,245,2
48,56,28,28,24,48,32

12588 DaTh 1,1,1 7 7,%3,7,15,7,143,199,
143,198,158,188, 249 224,64

12518 DATA 28 52 62,122,245,242,224,25
1,245,248,248,224,192,128,132,224,248,

112,48,96,96,248
126088 DATA 56 44 124,94,175,79, ? 223 1
79,15,15,7,3, s 7 15 14 12,6, 6

12618 patTa 128 128 128 224 224 192 224
»248,224,241, 227 241 99 121 61,15, 7
12780 paTA 76,184,298,254,249,224,58,2
2,11,127,15,7

12868 DATA 12,15,229,55,255,254,252,24
8,%%2,128,128,240,252,31,15,?9,39,19,3

12388 pATA 48,240,160,231,252,127,63,3
%,14,1,1,143,63,248,240,242,228,200,12
,48

CHECKSUM DATA
(See pgs. 7-10)

8 DATA 989,124,4084,671,656,206,623,380
,485,289,3,392,475,873,35,6291
188 pATA 250,499,808,932,769,988,956,83
5,868,956,964,352,969,677,493,18468
175 DaTA 493,966,685,140,162,188,78,38
2,495,480,4908,657,488,658,495,6778
35808 DATA 5,527,591,975,775,52,885,887
,885,95,78,573,304,310,415,7277
688 DATA 14,533,598,978,772,61,862,58
5,272,915,927,403,300,809,606,8635
3383 DATA 60,614,285,623,9345,631,374,9
4,308,283,99,915,6,948,9,6186
4580 DATA 113X,562,338,832,959,40,936,7
,440,5600,942,627,924,621,208,8141
5488 PATA 86,69,289,636,440,811,823,78
797,768, 778 998 189 221 432 8081
7651 DaTn 557,619,754,762,766,447,463,
450,469,465, 452,456 373 329 212 7574
7886 DATA 41?,639,650,803,61,999,818,5
21,923,437,219,391,591,685,357,8441
8810 DATA 215,224,226,614,322,338,194,
757,501,375, 797 983 798 779 585 8380
8215 paTa 11 115 197 176 270 801,711,9
73,382,726, 484 643 831 619 528 7487
18865 DATA 811,7?7,?68,759,580,43,2?9,
8086,564,311,872,333,488,780,373,8654
12888 DATA 251,148,321

Moire Demo

DEG
A-INT(1.9%168)
GRAPHICS 8+t16
SETCOLOR 2,0,0
FOR I=68 TO 168 STEP S
B=INT(I/2)
COLOR 1
PLOT 8,B
DRAWTO I, 160
PLOT 4, B
DRAWTO A-I,168
PLOT 0,160-B
DRAWTO I,0
PLOT a,168-B
DRAWTO A-XI,0
NEHT I
IF PEEK(764)<>255 THEN EHD
G0TO 170

CHECKSUM DATA
(See pgs. 7-10)

i DATA 217,62,458,287,54,4,732,5088,18
7,758,488,289,838,329,363,5486
168 pATA 746,161,728,1635

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 123

TRIPLE THREAT DICE

16K Cassette 24K Disk
by Michael A. Ivins

Do you like to gamble but can’t afford trips to Las
Vegas or Atlantic City? If so, then this program is for
you. By placing your bets carefully, you can be fairly
sure of a high return, while impulse betting on the
high odds might make you a big winner — or it might
make you go broke.

This game is modeled after a type of gambling
machine found in Las Vegas casinos. These machines
use three dice to play and give you several options to
bet on. Unlike craps, you are betting solely on the
outcome of a single roll of the dice. You may bet up
to five coins (normally quarters) on each of the bet-
ting options, with no limit (other than your total
cash) to how many of the options you choose to bet
on.

You use your joystick to position the bet cursor
next to the option you wish to bet. Pressing the
trigger button will enter your bet one coin at a time
until you reach five coins, after which it will not
accept any more bets on that option. Moving the joy-
stick to the left or right will move the cursor. After
you have bet as many options as you wish, hold the
joystick to the right until the pointer appears in the
box marked “ROLL DICE.” Press the trigger again,
and the computer will roll the dice.

After each roll of the dice the computer will dis-
play your win or say “SORRY” if you did not win.
At this time you have an additional option. If you
should wish to take your winnings and quit, all you
need do is pull the joystick toward you. A push on
the trigger will return you to the betting routine. O

i REM TRIPLE THREAT PICE

2 REM BY MICHAQEL 4. IVINS

3 REM JULY, 1981

18 DINM BET(I1i) :COUNT=@

15 GRAPHICS @8:7 “THIS IS 4 GAME PATTER
NED AFTER A':7 “GANBLING MACHIRE IK LA
5 VEGAS."

28 7 '"YOU BET ON THE OUTCOME OF THE RO
LL OF":7 “THREE DICE. YOU HAVE MAKY OP
TIONS You*

25 7 "CaN BET ON. TO SELECT THE OPTIO
N ON":? "WHICH YOU WISH T8 BET, USE TH
EII

30 7 "JOYSTICK TO MOVE THE '">' UNTILL
IT":? “POINTS TO THE PROPER OPTION. Y
0“!!

35 ? “"THEN ENTER YOUR BET BY PRESSING
EEE":? “TRIGGER. YOU MAY BEY UP 10O FI
48 7 "DOLLARS ON EACH OPTION."

45 ? :? "WHEN YOU HAUVE FINISHED BETTIN
G, HOLD*":7? "THE JOYSTICK TO THE RIGHY
UNTILL A"

58 ? “POINTER APPEARS IN THE BOXK MARKE
D'*:? "'ROLL DICE" AND PRESS TRIGGER."™
66 7 :? "PRESS ENLLINE TO BEGIN™

78 7 “"GOOD LUCK!!i*™

7?5 IF PEEK(53273)<{>6 THER 75

98 GOTO 1668B:REM DRAK BETTING LaYOUT
168 M—108:POSITION 7,28:7 M;

alﬂ GOSUB 1288:REM CLEAR BETS RESET KI

120 IF COUNT=-8 THEN M-108

13I8 IF STICK(8)=9 OR STICK(B8)=-18 OR 57T

ICK(B8)=11 THEN B=B-1:GOS5UB 1588

132 IF STICK{G8)=6 OR STICK{BI=7 OR STI

CK(8)=5 THEN B=B+i:GOSUB 1568

égslgg B{3I2 THEN IF BET(B)=5 OR M=8 TH

148 IF B{3I2Z AND STRIG(B)=8 THEN BET(B)
“BET(BY+1:POSITION XK,Y:? BET(B);:50UND
6,158,10,15:M-M-1

141 IF B{(3Z THEN IF BET(B)=6 THEN POSI
TION K,Y:? * ®;

142 IF B{32 THEN IF BET(B)>@ THEN POSI
TION X,Y:? BET(B)

145 POSITION 7,28:7 M;v ",

148 FOR DELAY=i TO 28:NEXT DELAY

i49 IF B»32 THENW B=3Z2

158 IF B=32 AND STRIG(8)=-8 THEN 280
155 FOR PELAY=1 TO 28:NEKT DELAY

i68 S0UND 8,8,8,8:6G070 138

gg@ COUNT=COUNTt1:REM ROLL aND DROMW DI
285 GOSUB 2788

218 Y-O:A-INTI(RND(O)}¥6+1) ;H=18:0N A GO
3UB igooa,1060i8,168028, 18838 i8e4a,1885
2280 H-14:B-INT(RND(G)¥G6+1):0NK B GOSUB
i8000,10016,16020,10830,10040, 1808508
238 H-18:C-INT{(RND(D)¥6+1):0N C GOSUB
iepso,10016,16620,1608306,10040, 10858
240 D-A+B+C:IF COUNT?>1 THEN COLNT=1
258 REM PAY WINNING BETS

268 IF BET(83=8 OR D<12 THEN 275

265 WIN-KINHBET(8) :POSITIOK 6,21:7 WIN

770 POSITION 3,14:7 "4
275 IF BET(1)=6 OR D)3 THEN 298
788 WIN-WIN+BET (1) :POSITION 6,21:7 WIN

285 POSITION Z,15:7 *4;

gge IF a{>B OR B<}C OR BET(2)=@ THEN 3
g?aI:IN:HIN+(BET(2)*36):POSITION 6,21:
368 POSITION I,16:7 'y

I85 IF (A<>B aND a<’C AND B{>C) OR BET
(32=8 THEN 326

318 IF 4=B OR B=C OR A=C THEN HIN-HIN®
(BET(I)*6) : POSITIBN 6,21:7 HWIN;

315 POSITION I,17:7 ity

328 IF A=B AND B=C THEN GOSUB Za8a

PAGE 124

THE A.N.A.L.O.G. COMPENDIUM VOL.

3IB8 IF A=B THEN G=A:GOS5UB 2188
335 IF A=C THEN G=A:GOS5UB 2186
348 IF B-C THEN G=B:GOSUB 2160
358 IF D11 THEN GOSUB ((D-3)*18)+2208

352 IF D18 THEN GOSUB {ABS5S(D-183¥*isl

368 IF D=17 THEN GOSUB 2216:IF D=18 TH
EN GOSUB 2280

3780 M-MtWIN:POSITION 7,28:7 H;

372 IF M=8 THEN 428

73 IF M)-5089 THEN 50088

375 IF WIN>B® THEN 480

388 GOSUB 2688

382 POSITION 1,8:7 "S50RRY";

385 IF STRIG(B) =8 THEN POSITIOI 1,0:7?
" ";:GO0TO0 116

398 IF STICK({(8)=1i3 THEN 5068

335 GOTO 382

488 GO5UB 2560

482 POSITION 1,08:7 "WINNER'";

485 IF STRIG(B) =8 THEN POSITION 1,8:7
£ #::607T0 119

418 IF 5TICK(8):13 THEN 508

415 GOTO 482

428 ? *"RI'M SORRY, BUT YOU HAVE GONE B
¥3K§::? “IF YOU WISH TO START AGATIN KWI
438 ? "NEW BANKROLL PRESS ENLLEI, 70 au
IT"" HDRESS Bglgi?

448 IF PEEK(53279){>6 AND PEEK(53279)¢
»5 THEM 448

458 IF PEEK(53273)=6 THEN COUNT=8:GO0TO

28
468 IF PEEK{532793)=5 THEN ? "GOODBYE
ND BETTER LUCK MEXT TIME'":EN
588 ? "KRIT IS5 4 WISE GAMBLER WHO KKNOW
5 WHEN T0O QUIT.*
518 7 7 Y“THANK YOU FOR PLAYING AND GO
0D LUCK TO YOU THE MNEHT TIME.*
528 ? ;7?7 “GOODBYE.":.END
1988 GRAPHICS O:POKE 752,1:POKE 82,1:5
ETCOLOR 2,12,12:7?

USE JOYSTICK;
1882 SETCOLOR 1,12,8:5ETCOLOR 4,12,12
1685 7 ' T0
MOVE BET"
isia 2 POX
NTER"
128 ? :? "PAYS 216-1 PAYS 18-1 TOT
aL PayYs*
1825 ? “ﬂ 1 =1 T

iy
1830 7 "l I-ONES |1 2-oNES |]

216- .
1835 21"1 I-TW0Ss || 2z-TWos || 4
ledgﬁﬂlTl 3I-THREES|| 2-THREES|] 5
1845 ? | 3I-FOURS |l 2Z-Foums |] &
105% 7 'y 3I-FIVES || 2-FIVES || 7

8
3

14
1855 ? | 3I-SIKES || 2-SIXKES ||

18068 ? "L L 1 |
9-1}"
1865 7 ' r 11 18
10708?171 HI (OVER 11) 1-1}1 11
10759?171 L0 (UMDER 1@) 1-1}1 12
19828? "l ANY I OF KIND I6-1j1 13
1oa§‘?1"l ANY 2 OF KIND 6-1]1 14
1898 7 VL i{ 15
21-1]"
1995 LT 1T 1] 16
_1 "
1190291"1cnsu- i1 rRoLLfl 17
1185 7 U|WIN: Il pICEf] 18

216-1]"
1118 7 1l 4L 1L
|

1128 GOTO 118

1223TPgKE 732,1:FOR I=68 70 31:BET(I)=@

1219 FOR I-6 70 11:POSITION 2,I:2? =
:POSITION 14,X:7 * '::NEXT '

%222EF$RII =14 T0 17:POSITION r O i

1238 FOR I=6 TO 21: POSITION 26,1I:7 "

";:HERT I

1240 POSITION 19,28:7 ' }¢ ";

1270 WMIN=8:POSITION 6,21:7 n o

1288 B=8:G05U8 1589

1298 RETURN

1580 IF B{@ THEN B=8:IF B>32 THEN B=32

1518 IF B=8 THEN POSITION I,14:7 ">3}¢

", iK=2:Y=14

1511 IF B=1 THEN POSITION 3I,14:7 ™ ¢

€ Y IR=2:¥Y=15

1512 IF B=Z THEN POSITION 3,15:7 * &)

+€ ' IH=2:1Y=16

i513 IF B=3 THEN POSITION 3,16:7 " {4}

";:POSITION 3,6:7 " "“;:iH=2:Y=17

1514 IF B=4 THEN POSITIOH I,17:2 " N;:.
POSITION 3,6:7 ")4& ";:¥= 2'Y‘6

1515 IF B)l AND 8(9 THEN POSITION 3Z,B+
1:72 ©» ‘(.)_‘(. ll--" —B+2

1516 IF B=2 THEN POSITIOI 3,10:7 " 33
";¢POSITION 15,6:7 ' *::H=2:Y=11
1517 IF B=18 THEN POSITION 3,11:2 v u;

POSITION 15,6:7 "34¢ ;1N 14:7=6
1518 IF B>10 AND B{15 THEN POSITION 15
SJB=5:7 " J£33€ " iH=-14:Y=B-4

1519 IF B=15 THEN POSITION 15,18:7 * 3
€3 iPOSITION 27,637 ' " 1= 14:v=11

1526 IF B=16 THEH POSITION 15,11:72 » ¢
tPOSITION 27,6:7 ")4€ ";:H= 26:Y=6

1521 IF B)16 AHD B{31 THEN POSITION 27
JB-11:7 W J€d4€ ' iK=26:Y=B-18

1522 IF B=31 THEN POSITION 27,28:7 ™ §
€)M :POSITION 19,208:7 * }¢ ""H 26:V¥=2

1

1523 IF B=32 THEN POSITION 27,21:7 " *

;iPOSITION 19,20:7 "hieF™;

1558 RETURN

2088 IF BET{(A+33=80 THEN RETURN

2010 WIN-WIN+(BET(A+33¥216) :POSITION 6

s 21:7 MWIN;

2020 POSITION Z,a45:7 ";

2038 RETURN

2108 IF BETI(G+9)=@ THEN RETURN

2113 HIN-HIN+BET{(G+3)¥18:POSITION 6,21

17 WIN;

2128 POSITION 15,G45:7 4;

2138 RETURN

2288 IF BET{1IX+D)=80 THEN RETURN

2202 WIN-WIN+BET(13+DI)#216:POSITION 6,

21:? WIN;

2204 POSITION 27,D+3:7 "4

22806 RETURN

2218 IF BETU{13+D)Y=8 THEN RETURN

§1%2“¥£H‘HII+BET(13+D)*72‘POSITION 6,2

7214 POSITION 27,D43:7 g

2216 RETURN

2228 IF BET(i3I+D3=0 THEN RETLRN

22%2“¥£N “WINBET{134D)¥*3I6:POSITION 6,2

2224 POSITION 27,D43:2 e

2226 RETURN

2238 IF BET(134D)=8 THEN RETLRN

2232 Hﬁﬂ “HINTBETC(13I+DIX21 :POSITION 6,2

1:7 WI

2234 POSITION 27,D43:7 g

2236 RETURN

2248 IF BET(13+D)=8 THEN RETLRN

%242"¥IN THINYBET(134+D) %14 :POSITION 6,2
o "

7244 POSITION 27,0437 g

2246 RETURH

2258 IF BET(134D)=8 THEN RETURN

%232 ?iﬂ HINYBETC(13+DI#10Q:POSITION 6,2

2254 POSITION 27,D043:7 i

2256 RETURN

2268 IF BET(13+D)=-8 THEN RETURN

VOL. 1

THE A.N.A.L.O.G. COMPENDIUM

2£ﬁﬁI:IN:HIN*BET(13+D)*9:POSITION 6,21

2264 POSITION 27,D43:7 gy

2266 RETURN

2276 IF BET(13+D)=8 THEN RETURN

2%751#IN:HIN+BET(13+D)*8:POSITION 6,21
. : ¥

2274 POSITION 27,D43:7 "4';

2276 RETURN

2568 FOR I=1 TO 1@

2585 FOR 5=48 TO 38 STEP S5

2518 SOUND 8,5,18,108

2538 NEKT 5

2548 FOR 5=98 TO0 48 S5TEP -5

2556 SOUND 0,5,16,18

2578 KEXT S

2588 NEXKT I

2598 SO0UND ©,80,8,8:RETURN

26008 SOLND ©,260,18,10

26208 FOR DELAY=1 TO 108:NEXT DELAaY

2638 S0URD 0,241,18,.18

2646 FOR DELAY=1 TO 158:NEXT DELAY
2658 SOUND 0,8,8,8:RETURN

2768 FOR I=1 TO 2@

2710 FOR 5=6 T0 56 STEP 20

2726 SOUND 8,5,8,15

2738 NEXKT S:SDHHD 8,8,0,0

2748 HEXT I

2758 POKE 77,08:RETURN

Sea8 ? CHRS(IZS)'"THIS MACHINE HAS NO
MORE MONEY.™

56818 7 7 “IF YOU WISH T) CASH IN VYOUR
BANKROLL":? "AND PLAY AGAIN AFTER THE

MANAGE-"'
56824 7 * Ha5 REFILLED IT, PRE
55?7 . TO QUIT PRESS e

5838 IF PEEK(532793<{)6 AND PEEK({53279)
{35 THEN 5638

5040 IF PEEK(53273)=5 THEN ? “THANK YO
U FOR PLAYING":? “"GOODBYE!'':END

5658 COUNT:O:GOTD iaaa

1600868 POSITION X,Y:? " ';
18081 POSITION K,Y+1:7 '
18062 POSITION H,Y+2:7 ™ '

18883 RETURN

ieeia POSITION X,Y:7? "2
18811 POSITION XK,¥Y+1:7? " ;
10612 POSITION H,Y+2:7 * "
16813 RETURN

188206 POSITION K,Y:? * e
16621 POSITION H,Y+1:7 s
i8822 POSITION X,Y+2:7 "
18823 RETURN

168368 POSITION H,¥:? * ot
188631 POSITION X,Y+1:7 wifh
10032 POSITION K,Y+Z2:7 " "3
16833 RETURN

16648 POSITION X,Y:7? ' i
18841 POSITION X, Y+#1:7? R
16842 POSITION X,Y+2:72 *
18843 RETURN

168568 POSITION K,Y:? ' -
18851 POSITION X,Y+1:7? i
18852 POSITION X, Y+2:7 e
16853 RETURN

CHECKSUM DATA
(See pgs. 7-10)

1 DATA 5083,632,398,141,268,152,341,724
,364,964,357,926,652,485,701,8208

28 paTHA 7,758,336,439,680,570,166,814,

431,127,146,339,678,261,339,6151

168 DATA 157,784,804,588,315,334,580,4

56,813,248,964,926,252,975,45,8235

235 DATA 696,951,1206,8680,962,547,806,8

87,8168,363,993,3108,143,562,985,9843

375 pata 859 824 695 727 478 ?43 8481,9

11,436,456, 705 533 643 981 307 18125

460 pata 704 326 95 158 893 846 185,96
,524,223,499,533,795,549,469,7486

1855 baTn 54%,35,161,873,27,87,67,111,
182,464,356 ,257,868,548,199,4584

1228 bATh 682,786,226,362,614,734,459,
991,183,191,167,944,793,466,436,7374
1518 DaTHA 726,852,59%,718,893,935,7939,
182,53,69,784,283,782,193,787,8563
22808 DATA 985,944,198,799,986,36,199,8
8e,9%07,35,206,8061,9088,25,201,7858

2236 DATA 882,%9869,31,2082,863,918,24,28
3,804,911,751,204,8085,912,751,9622
2274 DATHA 285,806,347,111,418,534,283,
453,538,589%,257,7572,623,766,635,7248
2658 DATA 256,356,281,606,436,511,94,1
88,973,526,9342,8%1,148,176,2088,6506
18802 DATA 256,49,136,246,248,51,158,2
12,238,53,982,250,2208,55,118,3162
12341 bavTa 216,222,57,120,218,224,53,1

PAGE 125

PAGE 126 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

BICYCLE

16K Cassette 24K Disk

by Dan Devos

Bicycle is a one player game. You are a messenger
working for the largest shipping company in the
world. As part of your daily routine, you must run
memos and invoices from the main shipping offices
out to the loading and receiving docks. Leaping on
your trusty bicycle, you proceed across the vast
parking lot, past rows of idling tractor trailer rigs,
dodging the many potholes that impede your
progress. However, the potholes are not the only
things you have to look out for. The drivers of the
trucks are in a hurry to leave, and often they can’t
bother to watch out for one poor little messenger on
a bicycle! Needless to say, you have to be careful
where you’re going!

Playing the game.

The cyclist is continually proceeding at a fixed
rate, and he can also move up and down. Every time
you are hit by a truck or fall into a pothole, you lose a
cyclist. There is a total of three cyclists in a game.

Scoring.

For every space you move, you get one point. For
every section of the parking lot, there are two truck
drivers walking to their trucks. If you hit a walking
truck driver you get 500 points. Watch out! The
truck drivers can stand over the pot holes and when
the cyclist hits them he falls into the hole.

The program.

This program uses a machine language subroutine
to move player missile graphics. The program draws
two rows of trucks in Graphics Mode 1. Then three
players, exactly the same as the edited characters, are
put on top of three of the trucks. These trucks are
erased and the player trucks can then move
smoothly. The rest of the program just moves the
players. Type in the program and wait until the
screen display says “Press Start.”” O

8 GOTH 288648

1 BR=CA:T=CHAU-CB:Y=CH:HIH CHARSICSI , M
HICHICI,C2Y :CHARS=V'FRUUMEZ"

? GRAPHICS CLi7:CHSET-(PEEK {1863 -CIZ2I¥C
256 :CHORG=57344 :POKE 623 ,C1

I FOR I=CO 70 S11:POXE CHSETHI, PEEX{CH
ORGHII:MEHT I

4 FOR I=C1 7140 C7

LE T
58 POSTITION L2, H

5 CHPOSZCHSETH{ASCICHARS(T13-CI23%C8

6 FOR J=C8 70 L7

7 READ a:POKE CHPOS+,a

8 HEHT J:WEHT I

% FOR YI=C3IZ 70 I9:POKE CHSET+I,CZ56-C1

G POKE 756,CHSET/C256

i35 DATH 8,9,223,149,213,85,223.8

i6 0aTn 9,1i6,128,254,127,38,4,48

17 daTA 8,8,28,20,54,4,8,8

1% baTha 8,8,28,28,93,42,238,8

19 DATA 117,1127,248,248,252,252,225,22

28 OATA 2726,225,254,.254,255,127,1381,24

Z1 DATH 22F,95,27,8,8,8,8.0

31 BBZCO:¥Y=CO:5ETCOLOR C2,.C3,C4:5ETCOL
OR CI,C08,12:5ETL0LOR C£41,C8,C8:5ET7TCDLOR
CH,C8, 04

32 BB=CO:HW-CI:POSITION £5,13:7 HCH:"'ME
Hivuy:POSTTION C9,.028:7 BCe ;" Uguy*e

IS5 ToCB8:U-CB:SETCRLOR CZ2,.L3,.C4:53ET7COLD
R £Z,C08,12

48 POSITION C2,05:7 |

AR GRS

54 SETCOLOR C1,08,L8: J=INTI(CI7H¥RND (CH)
U2 KZINT(CAXRRD (CA)HCBD

5% L-INT{CA?HRND {COI+C23 I M-INT (CA¥RND(
Ca)+Ca) :POSITION J,K:? HLG;'"q"

96 POSITION L,M:? HCE:'"qv

57 SETCOLOR C£8,C8,C4 H-INTICI7%RND (CB]
+C23 1 0ZINT(CIXRND (£AY+CH)

58 P-INT(CAI7HRND(CBY4C2) :Q-INT (CIHRND(
CRYHCRI ;POSTITION N,D:7 UHCH; "y

6% POSITION N, O+C1:7? HC6;"UT:POSITION

?,ﬂ:? HCH; "' POSITION P, O¥CL:7 HCE: 'Y

76 IF a4 THEN 49808

189 dA-C1:POKE 752,C1:POKE 53257,C0:P0
KE 53258,C@8:P0OKE 353253,L8

118 PCOLB-Z6IPCOLICS2:PCOL2=52::PCOLICS

2

18088 FOR IZ1536 TO 1786:READ A:POXE I,
AGHERET T

1918 FOR I=1774 7O 1787 :POKE I,CH:HEXT

I

1828 PH-PEEX{186)-C16:PHBASE-CZ256XPH
18306 FOR Y-PHMBASE+1823 70 PHBASE+2846:
POKE TI,CH:NEHT I
i6848 FOR Y=PMBASE+1825 T0 PMBaSE+1934:
READ A:POKE Y, A:MERY I
16508 FOR I-PMBASE+1281 TO PMBASE+1299:
READ A:POKE I,AHEXT I
1866 FOR I-PMBASE+153I7 70 PMBASE+1555:
READ A:POKE T,.A:NEMT I

i861 FOR I=PMBASE+1733 TO PHBASE+1i811:
READ A:POKE I,0:NHEHT X

1878 POKE 764 ,.PCOLO:POKE 785,PCOL1:POK
E 786,PCOLZ:POKE 787,.PCOL3

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 127

1088 PLK=53248:PLY=1786:PLL=1784
1890 POKE 559,62:POKE 1788, PMiC4:POKE
53277,CI:POKE 542793,PH
1188 x:usn(1595)
2999 oaTn 162,3,189,244,6,240,89,56,22
240,6,248,83, 141 754,6,106,141
2619 Dnia 265,6,142,25%,6,24,169,8,169
,253,6,24,1089,257,6,133,204,133
2020 DATA 206.189,248,6.133,208%,173,25
4,6,133,205,189,248,6,178,232,45, 255
2638 DATA 6,144,16,168,177,2083,145, 205
169,0,145,2083,136,202,208,244,76,87
840 ' DATA 6,166,8,177,%83,145, 205,169,
0,145,2083,200,202,208,244,174,253.6
2850 DATA 173,254.6.157,248,6, 189,236,
6,240,48,133,203,24,138,141,253,6
20666 DATA 109,235,6,133,204,24,173,253
6,1089,252,6, 133,286,189 ,240,6, 133
%078 DATA 205,18%,748,6,178,166,8,177,
203,145,205,200,202,208,248,174,253,6
726808 DATA 169,8,157,236,6,202,48,3,76,
2,6,76,98,228,08,0,104,163
78698 pATa 7,162.6,166,08,32,92,228,96
3600 DATA 48,48.32,56,36,56,1108, 181,16
5,66
3010 DATA 112,112,248,248,252,252,226,
276,226,226,254,254,255,127,181,245,22
3,95,27
36208 DATA 112,112,248,248,252,252,226,
226,226,226,254,254,255,127,181, 245,22
3,95,27
3630 DATA 112,117,248,248,252,252,226,
226,226,226,254,254,255,127,181,245,22
3,95,27
4000 POKE PLL,C10:POKE FLL4C1,C26:POKE
PLL4CZ,C20:POKE PLL+CI,C20:0-C0:B=88
4016 POKE PLX,n+C48:POKE PLY,B+C32
4628 G=INT (CAXRND (CO))+C1:D=G*¥C16:E=35
:POKE PLK#C1,D+C48:POKE PLY+C1,E+C32

40838 G=GH+G:POSITION &,12:7? HCE;'™ ":POS5
ggIRN"G,13:? HCH;' ":POSITION G,14:7 H

4040 I-INT(CS¥RND (CQIIFCSIF-IXC16:6295
:POKE PLE+CZ ,F+C48:POKE PLY#C2Z2,G+C32
4859 I-I+I:POSITION I,12:7 HC6;" *:POS
ITION I,13:7 HC6;" ":POSITION I,14:7 8
ce;'

4868 R-INT(COXRND(COII+CL:H-R¥*¥C16:1=39
:POKE PLEX+CI, H+C48:POKE PLY+CI,I+C32
4878 R=R+R:POSITION R,C5:7 HC6;' *":POS
ggIEN“R,CS:? #ece: ™ "“:POSITION R,C7:7 8
4871 POKE 532?8,CG:IF BB THEN 4888
4872 BB=C1:50UND C8,2088,C16,C8:50UKD C
1.281,C18,C8

4073 POSITION C5,18:? HCG6;'"'press start

4874 R-R+CL1:SETCOLOR C1,R,C8:IF PEEH(S
2279)4{>C6 THEN 4873

4875 POSITION C5,.18:7 HCG;"

"ISETCOLOR Cl,CB,CB:SOUND ce,c8.ce,ce:
SOURD Ci,C8,C8,C8

4688 POSITION C5,C17:7 HLC6;"5CORE:";Y,
4881 IF THT((A/CBI4CLIHCBECA) IHCEHCE O
R INT({4/CBIH+CIIHCBIC4<{I¥CE THEN 4128

468968 IF INT((B/C8IFCLINCAHCAIKHCE AND

%NT((B/CB)*CI)*CB+C4(K*CG+CB THEN 3688

4128 IF INT((A/CBI+CLIXCEHC42L¥CBHCE O
R INT({A/CBYHCLIHCB4CA{L¥CE THEWK 4148
4138 IF IHT({B/CBY+CLIXCBHC4>MHCE AHD
éNT((B/CB)+CI)*CB+C#(H*CB+C3 THEN 3888

4148 IF T THEMN 41958

4156 IF INT((A/CBI+C1IMCBICAINNCE+CE O
R INT{{(A/CBYI4CL1IXCE+CAd{NXCE THEN 4198

4168 IF INTO((B/CBY+CLIXCBHC430%CE AND

ggT((B/CB)fCl)*CS+Cd(O*CS*CIG THEN 188

4198 IF U THEN 4279

4288 IF INT({A/CBIH4CLI¥CBHC4IP¥CBHLE O
R INT{{A/CBIHCIIXCB4C4<P¥LE8 THEMN 4228
4218 IF INT((B/CBY*CLIXCBICH4QHCE AND
{ET((B/CS)+Cl)*CB+Cd(Q*CB+C15 THEN 1889

4228 IF INT({B/C8I+L1IMCB+CE{63 OR INT
((B/CBY+C1IXCHEFCB2I6 THEN IB0A6

4238 IF NOT STRIG(CB) THEN Y888

4388 E-E-C1:POKE PLE+Ci,D+C45:POKE PLY
+C1,E+CI2:G=G-C1:POKE PLX+CZ,F+C48:P0K
E PLY+CZ,GH+C32

4318 I-I+C1i:POKE PLK+C3I,HtC43:POKE PLY
+C3,I+C32

4688 IF PEEK(532501 THEN 38868

5888 aza+

S881i IF JTICK(CGJ 13 THEN B=B+C3

5082 IF STICK{CB8I=C? THER A=a+Ci

5883 IF STICKLCAI=14 THEN B=B-C3

5864 IF A>165 THEWN Zp@ee

5885 Y=¥Y+C1:50UND €1,58,C168,C8:50UKD C
1,C6,C8,CO:POKE PLK,0+C43:POKE PLY,BtC
32:G0T0 46388

29888 FOR ZZ=C1 TO 2I8:KWENT ZZ

9881 IF NOT STRIG(CA) THEN 4388

9682 GOTO 2981

16886 Y=C1:POSITION N,0:? HC6;"F'":POSI

TION N,0+C1:7 HCH;® "'GOTU 158648
18618 (=Ci:POSITION P,0:7 HC6;"F*:POST
TIOK P,Q+C1:7 HCE;" "iGOTD 18868

10860 U UHC1:¥Y:= ?+508 FOR KK=C256 10 C1
TEP -C1:50UND C8 KK, CIB 14 :NEKT KK:5

ouuo €08,C6,C8,C0:607T0 4880
20008 POSITION N,0:7 ucsv" “:pOSITION
N,04C1:7? HC6;" ":POSITION P,0:7 HCBE;"

"iPOSITION P,O+C1:? NCG;"

20810 POSITION J,K:? HCE;' ":POSITION
L M '} ucﬁ-ll 143

28928 GOTO 35

380068 W-KW-Ci1:POKE PLK,Aa+43:POKE PLY,B+
CI2:FOR XK=14 T0 €8 STEP -C1

lg81ie SOUND CO,258,C1i6,KX:FOR YY=C1 TO
C2:NEKT YY:NEXKT XX

Ja626 POSITION K,0:7 HCG;" ":POSITIOH
N,0#Ci:7 BCH;'" ":POSITION P,0Q:7 HCE;"
*;POSITION P,Q+C1:7 HCE;" "

Ien3a POSITION J,K:? HC6;'" ":POSITION
L,M:? HCH;'

IB83Ii POSITION C5,19:7 HCH;"MEN:":FOR
Z=C8 TO MW:POGSITION CO9+M,19:7 HC6;" '"IP
O5ITION CI+M, CZ20:7 HCH ;" "“:INEKT Z
38048 IF NOT M THEN 31

Igese GOTO0 35

@868 C1=1:C2=2:C3=:C4=4:C5=5:C6=6:C7
=7:C8=8:C9=3:C16=18;:C16=16:C17=17:C28=
28:C32=32:C48=48:C256=256

308768 GRAPHICS C1:5ETCOLOR C2,C8,C8:PO
SITION C5,C8:7 HC6;'"¥* BICYCLE ¥':POSIT
ION C9,C18:7 ”HCH;"BY'™

I8888 POSITION C6,12:7 HC6;"DAN DEVOS™
6898 FOR T=C1 Tg 2688:S5ETCOLOR CA,T7,C8
'POSITION C5,C8:7 HCG6;"¥ BYCYCLE ®*':ME
HT T:65070 1

CHECKSUM DATA
(See pgs. 7-10)

8 PATA 623,.344,396,665,276,726,288,49,
214,585,127,426,5868,861,385,7157

19 DATH 288.,278,31,.833,464,387,481,358
,16,468,564,29,504,789,386,5786

188 DATH 665,304,46,296,542,845,568,59
5,602,612,1722,12,272,246,433,6217

2818 DATA 175,662,648,727,384,533,798,
647,2.556,537,538,539,378,598,7626
4828 DavTa 957,326,999,948,59.194,351,8
84,906,181,959,678,73%1,821,746,108240
4138 DATA 822 549 766 315, 551 753, 928,
839,864,417, 868 469 363 814, 354 18764
5883 pata 823 ?72 423 13, 855 ?43 21,7
33,948,?57,383,36?,519,631,?63,332?
Ig8Ie DaTH 389,8082,886,915,636,321,778
187 ,48286

PAGE 128

THE A.N.A.L.O.G. COMPENDIUM VOL: 1

COLOR
SLOT MACHINE

24K Cassette or Disk

by Michael A. Ivins

The re-defined character set is a powerful tool
which can be used in many different ways. The
characters can be used for special animation effects,
and are especially useful when combined with
certain types of modified display lists. Finally, they
can be used to create colorful graphic displays in the
text mode, GR.0. This last application is the subject
of this article.

If you have ever done much playing around with
GR.8 you know that getting four colors in this mode
is not as difficult as you might expect. For the new-
comers | include example Program 1 to show what I
mean.

18 GRAPHICS 8: SETCOLOR 2 8,15

28 SETCOLOR 1,8,0:COLO

38 FOR X=8 TO 2080 STEP 2 PLOT X.,0
48 DRAWTO H,18:NEXT

58 FOR X=1 T0 281 STEP Z:PLOT X,28
68 DRAWTO X,3B:NEXT X

78 FOR X=8 T0 208:PLOT H,48

88 DRAWTO H,50:NEHT X

Program 1.

This may seem to have little to do with re-defined
character sets, but bear with me, I'm coming to it.
The example should show what appear to be three
bars on a white background with blue at the top, red
next and black at the bottom. The program was
supposed to draw two sets of evenly spaced vertical
lines and one solid bar, so what happened? You
would expect the bottom bar to be black. The only
differences between the top two bars is in the posi-

tioning of the vertical lines, yet we get the two colors. *

This effect is due to a curious property of the
graphics screen whose technical name is “‘artifact-
ing.” Simply stated, the principle is that a single pixel
of GR.8 (the smallest the ATARI will generate) will
be one color while another pixel one space or any
odd number of spaces away will have a different
color. By now you are probably asking, “If this guy
wants to talk about re-defined character sets, why all
this stuff about colors in GR.8?"’ Every character has
eight bytes associated with it, and the pattern made
up by those bits which are ones determines the shape
of the character. Two examples of this are shown in
Figure 1 with 1A showing the bit pattern of the
letter “A” and 1B showing a percent sign. Each
pixel has a GR.0 character, whether it be text or
control graphic, is identical to a single pixel of GR.8.
By applying the same techniques which gave us
colors in GR.8 to re-defining characters, we can get
many kinds of colored graphic characters.

A B
00000000 00000000
00011000 01100110
00111100 01101100
01100110 00011000
001100110 00110000
01111110 01100110
01100110 01000110
00000000 00000000

Figure 1.

There is one important factor which should be
mentioned at this point. The colors you can get from
your special characters (or a GR.8 display) will

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 129

depend on the chosen background color and chosen
luminosity of the foreground. For your own appli-
cations you should experiment with the combina-
tions of foreground and background color which
gives the effect you want most. For the purpose of
this article and the game program which accompan-
ies it | use a white background (SETCOLOR 2,0,15)
and a black foreground (SETCOLOR 1,0,0).

I give two examples in Figures 2 and 3. For
greater ease of use I have enlarged the pattern of bits
so you can see them better than in the previous
example. I have also labeled the values of the bits and
given the decimal values that you would poke into
the character table to make the changes. With the
specified colors, the character defined in Figure 2
will give you a solid blue block while the one in
Figure 3 will make a solid red block.

Decimal
value
170
170
170
170
170
170
170
170
170

128 64 32 1
1

e e e
cjolololoJololole)

e e e e e e

olooloNoNoloNoNeNe))
— e b e s Q0
cloNoloNoNoNoNoNa R
= R e e e e = DN
olololololololoNoN o

Figure 2 (Blue Block).

Decimal
value

85

85

85

85

85

85

85

85

—
[\
@
o))
]

ololololololoN®]

— e = =
ololoNololoNoNeoN
= = = QN
olololoNeoloRoNe N)
o e S
olololololoNoNeN -
o e e e e e e el

Figure 3 (Red Block).

Simple red and blue blocks alone make for rather
dull graphics, but I'm sure you can see that by clever
arranging of the dots you can create many interesting
shapes. If the shape you want is too large to fit into a
single 8x8 grid then use two, three or even more
characters. To give one example of the kinds of
things that can be done with color graphics
characters and hopefully have a little fun at the same
time, I include my program for Color Slot
Machine.

Before getting into a description of the game itself

there is a comment I would like to make. Calcula-
ting out all the numbers for special characters you
have drawn on graph paper is very slow work and it
tends to be boring. Fortunately this is the sort of task
which lends itself to being “‘computerized.” There
are, in fact, many character editor programs on the
market as well as some which have been published in
magazines. These all allow you to make changes in an
enlarged matrix and see the effects of these changes
on the normal sized character. They let you save the
special character set or “font” for use with your own
programs. [used such a program which went as far as
writing the actual subroutine that does the work in
the Slot Machine game.

The game.

After the title display, the program will draw a
colorful slot machine on the screen making use of
several kinds of colored graphics characters. There
are two ways to play, which you choose by pressing
the OPTION button any time there is no bet placed.
For those who might be unfamiliar with slot
machines I will describe the options. Single line play
uses only those symbols which line up in the center
of the pay windows. In this version additional
“coins” bet give bigger payouts when a winning
combination comes up. The five line version gives
more ways to win by adding top, bottom and dia-
gonal paylines for the number of coins played. Single
line play can pay more when it pays, but the five line
version can give more ways to win so you win more
often.

Playing the game itself is simple. To enter a single
coin bet, press the trigger button of the joystick and
release. If you wish to bet the maximum bet of five,
simply hold the trigger button down until the beeps
stop. In the single line version the paychart changes
to reflect payout for the size of the bet, while the five
line version employs line pointers to indicate how
many lines are in play. When you have made your
desired bet, move the joystick in any direction to
spin the reels. More details are given in the program
documentation. Happy gambling! [

PROGRAM DOCUMENTATION
The first thing the program does is to jump to the
routine which alters the character set and since that is
the main thing I wish to. illustrate, I will cover this
first.

Line 32000 The first step resets RAMTOP.
Next a graphics command to set the new top of
memory. Now we poke the location of the new
character set.

Line 32005 This defines a machine language
routine which will copy the old character set out
of ROM into the protected area of RAM.

Lines 32010-32015 These lines are here to
give you something to look at while the char-
acter set initializes. You won’t see anything at

PAGE 130

THE A.N.A.L.O.G. COMPENDIUM

this point since the area pointed to by CHBAS
(location 764) is blank.

Line 32020 This executes the machine
language routine so that the material printed in
the previous lines can now be seen on the screen.

Lines 32030-32040 Now we make the
actual changes. We first read the number that
tells where to start and then put in the new
numbers. Some of the characters look a bit
funny (like a cluster of cherries with a blue leaf
or a purple bell) but this is the best I could do

redraws the machine and paychart and resets all
values to beginning levels. Quitting naturally
ends the game.

Lines 500-590 The functions here are
similar to the betting loop of the single line
version. The main difference is in setting line
pointers instead of changing the paychart.

Lines 600-610 This reads all payable
locations. Caution should be noted here. Be
sure when you type these lines in that you use
the abbreviation LOC, for LOCATE and POS,

VOL. 1

with these colors. for POSITION, or you won’t get everything in
Now we return to the main program and from this on those lines.

point I will take things in the sequence they are Lines 620-676 This section checks tor
shown in the program. winning combinations and jumps to the payout

Lines 10-11 These set up the reels of 30
“symbols’ on each. If you wished to change the
odds of the game, this is the place to do it. You
could make it harder to win by changing the
symbols or by adding no pay symbols or blanks.
If you wanted to, you could set up the reels so
that you would win on every play, which I
would consider to be boring

Line 30 Jumps to the routine which draws
the machine.

Lines 40-100 Here we set the initial values
for game counters and display them. This also
lets you know you are playing the one line
version.

Line 120 This displays the betting prompt.

Line 125 If the bet is the maximum or the
bankroll is zero then the betting routine is
skipped.

Line 130 Wait for trigger press, increment
bet, decrement bankroll and start sound. Also
gosub to change the paychart.

Line 135 Jump to the five line version if
OPTION is pressed and bet is zero.

Line 145 Erase play prompt if bet reaches
maximum.

Line 150 A delay is slow betting.

Lines 160-168 Display bet, shut off sound,
display bet.

Lines 170-175 Return to betting loop if
stick not moved or if stick moved but bet zero.

Line 180 Zero out the attract mode.

Lines 290-310 Jumps to the routine that
animate the handle and spin the reels.

Lines 311-315 Reads the symbols on the
payline and jumps to payroutine.

Lines 320-327 Calculates the proper length
of windsound and jumps to that routine.

Lines 330-340 Resets bet to zero and if any
money is left you are returned to the betting
routine.

Lines 350-420 This is the routine that is
activated if you go broke. It resets the left
margin, erases the paychart and then gives you
your quit or start over options. Starting over

routine if one is present. | originally tried to
make this section more brief, but kept getting
errors.

Lines 680-698 Checks for win and goes to
sound routine if appropriate.

Lines 700-720 Resets bet, erases line
pointers and jumps back to betting routine if
not bankrupt.

Lines 1000-1055 This creates the siren for
winning and is a simple tone with rising and
falling pitch.

Lines 1300-1360 This is the routine which
resets the paychart according to the size of the
bet in the one line play version.

Lines 2000-2090 This is the routine
which actually draws the machine. Notation
should be made here that the paychart is not
truly complete. Most combinations will pay
with a bar (single or double) on the last reel. I
did not have room to fit this on the screen.

Lines 2300-2390 This animates the handle
by first erasing the knob and redrawing it lower
and doing the reverse by drawing a section of
the handle and the knob one space higher. This
routine also clears any old wins.

Lines 2400-2495 This is the payout
routine for the single line version.

Lines 2600-2690 This is the super jackpot
routine and is triggered if three of the “seven”
symbols appear on the center line with maxi-
mum bet in the one line version and on the fifth
line with maximum bet in the five line version.
This has first an explosion sound, a slower siren
than the regular windsound followed by another
explosion. Then the words “SUPER JACK-
POT!!!” are flashed. I suggest that you type in
“GOSUB 2600” from the direct mode as you
won'’t be seeing much of this routine unless you
change the odds.

Lines 2950-3180 This animates the spin of
the reels. I had originally tried to make the reels
turn two full spins plus a random bit extra, but
this slowed down the action of the game too
much, doing it from BASIC. Therefore we just

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 131

assume those spins without showing them and
take a certain number plus a random amount.
From this point the reels are moved visibly by
a fixed number of spaces for each reel.

Lines 4000-4080 This is the pay routine for
the five line version. O

i REM COLOR SLOT MACHINE

2 REM BY MICHAEL a. IVINS

3 REM NOVEMBER 1981

4 GOs5UB Iz20860

180 DIM L5(60) ,M5(68),R5(68) ,PAYS5(3):0P
EN #2,12,0, "S'"'HINSbUND 1000 FPAY= 498
8: SPIN 2959

11 PAYS=" hh_=ee 2" :CH=37:DB=146:5B8=16
a

15 LS"'abcdefgh-abghefcd ghcd—efijc
dghcdgh_cdefcdcdabghefcdcdefgh]
28 M5="ab fghe fabghe fcdmme fcdabe fghi
Jefabcdgh_efabef-ghabcdefcd"

25 RS-"ghcdef_ghefghefcd_cdcdef-cdx
jghilllc dohmmcdide fghe fame fe fcd™

fo BANKROLL-108:BET=0:WIN=6G:L=-1:M=-1:R=

48 GOSUB 20600:REM DRAW MACHINE

38 POSITION 26,28:7 "1 LINE PLAY"

188 POSITION 28,2Z:PRINT "BANKROLL:';B
ANKROLL :POSITION 28,2I:PRINT "BET:';BE
T;:POSITION 38,23: PRINT "WIN:' ;WIN;
128 IF BET{5 THEN POSITION 28,21:PRINT
mELAY 1 TO § COINSHEH

125 IF BANKROLL=0 OR BET=5 THEN 145
138 IF STRIG(BI=0 THEN BET-BET+1:GOS5UB
L1300:50UND 8,50,10,14 :BANKROLL=-BANKRO
L-1

135 IF PEEK(53279)=3 AND BET=8 THEN 58

a
145 IF BET=S THEN POSITION 28,21:2 ¢

150 FOR DELAY=1 TO 5:NEHT DELAY

168 POSITION 24,2I:PRINT BET;

165 SOUND 6,8,8,8

168 POSITION 29,22:PRINT BAMKROLL ;"™ ";
178 IF STICK(8)=15 THEN 128

175 IF BET=8@ THEN 120

188 POKE 77,0

298 GOSUB 2300:REM PULL HANDLE

318 GOSUB SPIN

gé} LOCATE S,8,LM:POSITION 5,8:7 CHRS(
g#g LOCATE 8,8,MM:POSITION 8,8:7 CHRS5(
g%g LOCATE 11,.8,RM:POSITION 11,8:7 CHR
315 GOSUB 2408

320 IF WINX>8 AND WIN{BET®*18 THEN DUR=Z
:GOSUB WINSOLND

325 IF WIN>=BET#*18 AND WIN{BET¥*25 THEN
DUR=3:GOSUB WINSOUND

326 IF WINY>=BET¥*25 AND WIN{-BET#58 THE
N DUR=S:G05UB WINSOLND

327 IF WINYBET*58 AND WIN{2808 THEN DU
R=18:G05UB WINSOLND

338 BET-O:POSITION 24,23:PRINT BET;"

%40 IF BANKROLL>® THEN 120

358 POKE 82,26

368 FOR I=8 TO 23:POSITION 28,I:? "

"IINERT I

378 POSITION 28,08:7 "I'M SORRY'":? "YOU
HAVE GONE BROKE™:7 "“IF YOU WISH TO BU

Y MORE':? "CHANGE PRESS ER{-L:EI"
Sgal;'"PRESS HIANTH] IF YOoU' :? "WISH TO

398 IF PEEK(53279)<>6 AND PEEK(53279){

>S THEN 390

#gnlfr PEEK(532739)=6 THEN POKE 82,2:60

428 POSITION 28,18:7 “THANK YOU":? "FO

gNSLﬁYING, BETTER":? "LUCK MEHT TIME":

588 POSITION 28,28:7 "5 LINE PLAY'™;

518 BET=1:GO5UB 13I88:BET=8

528 POSITION 28,22:7 "BANKROLL :";BANKR

OLL; :POSITION 28,23:7 “BET:";BET;:POS5SI

TION 38,23:7 "WIN:";WIN;

538 IF BET{S5 THEN POSTITION 28,21:PRINT
PLAY 1 TO 5 COINSEH

532 FOR DELAY=1 TO S5:NEXT DELAY

535 IF BANKROLL=O OR BET=5 THEN 568
548 IF STRIG(G)=8 THEW BET-BET+1:BANKR
OLL=-BANKROLL-1:50UND B,50,18,14

545 IF PEEK({532733=3 AND BET=8 THEN 90
558 IF BET=1 THEN POSITION 4,8:PRINT *

555 IF BET=2 THEM POSITION 4,6:PRINT *

LT
§53 IF BET=3 THEN POSITION 4,18:PRINT
Egﬁ’IF BET=4 THEN POSITION 4,4:PRINT

2

958 IF BET=S THEN POSITION 4,12:PRINT
1 s
568 POSITION 29,22:PRINT BANKROLL;"™ ";
(POSITION 24,23 :PRINT BET;

52 IF BETY=5 THEN POSITION 28,21:PRINT
965 FOR DELAY=1 TD ZO:MNEXT DELAY
966 SOUND 6,8,8,0
978 IF STICK{8)=15 THEN 530
575 IF BET=8 THEN 538
988 GOSUB 2380
528 GOSUB SPIN
668 LOCATE S5,8,LM:POSITION 5,8:2? CHRS(
LM) :LOCATE 8,8, MM:POSITION 8,8:7 CHRS(
g?%g%DCQTE 11,8,RM:POSITION 11,8:7 CHR
685 LOCATE 5,6,LYT:POSITION 5,6:7 CHRS(
LTI :LOCATE 8,6 MT POSITION B8,6:7 CHRS(
g{%%%DCﬁTE 11, 6 RT:POSITION 11,6:7 CHR
618 LOCATE 5,10,LB:POSITION 5,18:7 CHR
S5(LB) :LOCATE 8, 19 MB:POSITION 8.,18:? C
HRS (MB) : LOCATE 11,10,RB: POSITION 11,198
:? CHRS(RB)
628 IF (LM=CH AND MM{OCH) OR (LM=CH AM
3 MM-LM) THEN F=-LM:5=HM:T=RM:GOSUB FPA

621 IF LM=DB AND MM=58 AND (RM=DB OR R
M=5B) THEN F-LM:S=MM:T-RM:GOS5UB FPAY
622 IF LM-MM AND RM=MM THEN F=LM:S5=-MM:
T-RM:GOSUB FPaY

623 IF LM=DB AMD (MM=DB OR MM=5B) AaND
RM=5B THEN F=-LM:S=MM:T=-RM:GOS5UB FPAY
624 IF LM{)>CH AND LM{ODB AND LM{>5B AN
D LM{(>185 THEN IF LM=MM AND (RM=DB OR
RM=5B8) THEN 629

625 IF LM=SB AND MM=DB AND (RM=DB OR R
M=5B) THEN F-LM:S5-MM:T=RM:GOSUB FPAY
626 IF LM=5B AND (MM=DB OR MM=5B) AND
RM=DB THEMN F=-LM:S-HMM:T=RM:GOSUB FPAY
628 GOTD 638

622 F=LM:5=MM:T=RM:GO5UB FPaY

638 IF BET=i THEN 688

631 IF LT=DB AND MT=5B AND (RT=DB OR R
T=5B) THEN F=LT:S5=MT:T=-RT:GO5UB FPAY
632 IF (LT=CH AND MT{>CH) OR (LT=CH AN
3 MT=CH) THEN F=-LT:S=MT:T=RT:GOS5UB FPA

633 IF LT=DB AND (MY=5B OR MT=DB) AND
RT=5B THEN F-LT:5=MT:T=RT:GOSUB FPAY
634 IF LT=MT AND RT=MT THEN F=LT:5=MT:
T=RT:GOSUB FPaY

635 IF LT=5B AND MT=DB AND (RT=DB OR R
T=5B) THEN F-LT:S5=MT:T=RT:GO5UB FPAY
636 IF LT{XCH AND LT{31685 AND LT{>DB A
ND LT{>5B THEN IF LT=MT AND (RT=DB OR
RT=5B) THEN 648

637 IF LT=5B AQND (MT=5B OR MT=DB) AND
RT=DB THEN F-LT:S5=MT:T=RT:GOSUB FPAY
638 GOTO 642

648 FZLT:5-MT:T=RT:GOSUB FPAY

642 IF BET=2 THEN 6588

643 IF LB=DB AND MB=5B AND (RB=-DB OR R
B=5B) THEN F-LB:S-MB:T=RB:GOSUB FPAY
644 IF (LB=CH AND MB{>CH) OR (LB=CH AN
D HMB=CH) THEN 652

645 IF LB=DB AND (MB=DB OR MB=S5B) AND
RB=5B THEN F=LB:5-MB:T=RB:GOSUB FPAY

PAGE 132 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

646 IF LB=MB AND RB=MB THEN 652

647 IF LB=SB AND MB=DB AND (RB=DB OR R
B=5B) THEN F=LB:5=MB:T=RB:GOSUB FpPAY
648 IF LBE<)CH AND LB(>185 aND LBODB A
ND LB(>3B THEN IF LB=MB AND (RB=DB OR
RB=5B) THEN 652

649 IF LB=5B AND (MB=DB OR MB=SB) AND
RB=DB THEN F=LB:5=MB:T=RB:GOSUB FPAY
658 GOTO 654

652 F=LB:5=MB:T=RB:GOSUE FPAY

654 IF BET=3 THEN 686

655 IF LT=DB_AND MM=SB AND (RB=DB OR R
B=5B) THEN F=LT:5=MM:T=RB:GOSUB FPAY
656 IF (LT=CH AND MM=CH) OR (LT=CH AND
MM{)CH) THEN 664

657 IF LT=DB_AND_(MM=DB OR_MM=5B) AND

RB=SB_THEN F=LT:S=MM:T=RB:GOSLUB FPAY
658 IF LT=MM AND RB=MM THEN 664

659 IF LT=5B AND MM=DB AND (RB=DB OR R

B=5B) THEN F=LT:5=MM:T=RB:GOSUB_FPAY

668 IF LT{}CH AND LT{>185 AND LT()DB A

ND LT{(>SB THEN IF LT=MM AND (RB=DB OR

RB=5B) THEN 664

661 IF LT=5B AND (MM=DB OR MM=5B) AND

RB=DB THEN F=LT:5=MM:T=RB:GOSUB FPAY

662 GOTO 665

664 F-LT:5=MM:T=RB:GOSUB FPay

665 IF BET=4 THEN 680

666 IF LB=185 AND MM-LB AND RT=MM THEN
MIN-WIN+Z806:G0SUB 2600

667 IF_LB=DB_AND MM=5B AND (RT=DB OR R
T=58) THEN F=LB:5=MM:T=RT:GOSUB FPaY

668 IF (LB=CH AND MM{>CH) OR (LB=CH aN

D MM=CH)} THEN 676

669 IF LB=DB AND _(MM=DBE OR_MM=5B) AND

RT=SB THEN F=LB:S5=MM:T=RT:GOSLUB FPAY

678 IF LBC)105 AND LB=MM AND RT=MM THE

671 IF LB=5B AND MM=DB AND (RT=DB OR R

T=58) THEN_F=LB:S5=MM:T=RT:GOSUB FPAY

672 IF LB{YCH GND LB{>185 AND LB{DB a

ND LB{>SB THEN IF LB=MM AND (RT=DB OR

RT=5B) THEN 676

673 IF_LB=SB AND (MM=DB OR MM=S5B) AND

RT=DB THEN F=LB:S5=MM:T=RT:GOSUB FPAY
674 GOTO 6880

676 F-LB:5=MM:T=RT:GOSUB FPAY

680 BANKROLL=BANKROLL+WIN:POSITION 29,

22:7 BANKROLL ;

685 IF WIN)8 AND WIN{18 THEN DUR=2:GO05

UB WINSOLUND

690 IF WIN>=18 AND WIN{25 THEN DUR=3:6
05UB_WINSOLND

691 IF WIN>=25 AND WIN{=58 THEN DUR=S:
GOSUB_WINSOLUND

695 IF WIN)S8 AND WIN{Z0660 THEN DUR=18
:GOSUB_WINSOLND

780 POSITION 4,4:7 "4'; :POSITION 4,6:7
"J";:$051710n 4,10:7 v TPOSITION 4,
1257 s

7065 BET=0:POSITION 24,21:PRINT BET;
718 IF BANKROLL>® THEN 538

728 GOTO 350

1868 REM WINNER SOLND

1816 FOR I=1 TO DUR

1815 FOR 5=46 _TO 98 STEP 5

1626 SOUND ©,5,18,180

1825 NEXT S

1638 FOR 5-90 TO 48 STEP -5

1635 SOUND 8,5,18,18

1640 NEXT 5

1050 NEXT I

1655 SOUND 8,0,8,0:RETURN

P5=2
1316 FOR I=1 TO 8
1328 POSITION 34,P5:7 ASC(PAYS(I,I))I*B

r
1325 PS=P5+2
1336 HNEXT I
1348 IF BET{S THEN POSITION 34,18:7 as
CIPAYS(9,9)IHBET;:" *;:RETURN
1356 JF BET S THEN POSITION 34,18:7 45
CPAYS(9,9)3%16;
1366 RETURN
2888 POKE 752 :? CHRS(125):POSITION 2
52 iPRINT "rrrtrrrf FFFEFF ab P

2885 POKE ?56 PEEK(106)+1 SETCOLOR 1,08
;8 :S5ETCOLO

ggigsggig} t!}lllllllltt ab ab
i i o
2828 PRINT © H_—'

od

Hh &k

-'“: cd ¢d cd
2825 PRINTY

4
PAYS 14" 5 1tt r" ef ef ef

2033 pRint B 3 3 3fE] on o o
2040 PRINT "M 4 4 JppIe
2845 PRINT "trl-l-l-l-H-l-Hjl-” I N
PaYs 2a" "
7045 pRINT » hixindrdndnd Al wrn sans
PAYS 28" " ”
SEEE S PRI P = = =
2065 pINT - R FFFFFRIYY |"

rFAYS Zae"

zase paikt - RITTITL
So00 PRINT [ATITITIT. [

2888 PRINT
28638 RETURN

2188 POKE 752,1:FOR I=19 TO 23

2116 POSITION 28,1

2128 PRINT * "y

2138 NEXKT I

2148 RETURN

2208 FOR I=1 TO 5

2210 POSITION 20,16:PRINT LPLAY 1 TO

i ij ij

COINSEH

2220 FOR DELAY=1 TO 18:NEXT DELAY

2238 POSITION 20,16:PRINT "PLAY 1 TO S
COINS"';

2248 FOR DELAY=1 TO 16:NEXT DELAY

22580 NEKT I

2260 RETURN

23808 POKE ?52,1:POSITION 17,7

2318 FOR I=1 TO S5

2328 PRINT oL

2325 FOR DELAY=1 TO Z@:NEXT DELAY

2338 NEXT I

2348 FOR I=1 TO 5

2350 PRINT " t+¢liev;

2355 FOR DELAY=1 TO 28:NEXKT DELAY

2368 NEHT I

2378 WIN-O:POSITION 34,23:7 WIN;" ;
2Z38 RETURN

2480 IF LM=CH AND MM<{>CH THEN MWIN=BET*

2416 IF LM=CH AGND MM=CH THEN WIN=-BET¥5
2428 IF LM=99 AND MM-LM AND RM—MM THEN
WIN=BET*18

2425 IF LM=99 AND MM=99 AND (RM=DB OR

RM=S5B) THEN WIN-WINX10

2438 IF LM=-181 AND MM=LM AND RM=MM THE
N WIN=BET¥*1i4

2435 IF LM=181 AND MM—181 AND (RM=DB O
R RM=S5B) THEN WIN-BETi4

2448 IF LM-183 AND MM-LM AND RM=MM THE
N WIN=BET*18

2445 IF LM=183 AND MM=183 AND (RM=DB O
R RM=-5B) THEN WIN=BET¥*18

2458 IF LM-DB AND MM=LM AND RM=MM THEN
WIN-BET*50

2452 IF LM=SB AND MM=-LM AND RM=—MM THEN
WIN=-BET¥*2Z8

2453 IF LHM=DB AND MM=SN AND (RM=DB OR
RM=5B) THEN MWIN=BET*20

2454 IF LM=-DB AND (MM—DB OR MM=SB) AND
RM=3B THEN MWIN=BET*Z0

2455 IF LM=SB AND MM=DB AND (RM=DB OR
RM=5B2 THEN MWIN=BET¥Z0

2456 IF LM=5B AND (MM=DB OR MM=5B) AaND
RM-DB THEN WIN=BET¥2@0

2468 IF LM=185 AND MM=-LM AND RM=MM AND
BET{S THEN WIN-BET¥*280

2478 IF LM=185 AND MM—LM AND RM—MM QND
BET=5 THEN WIN=BET*Z800:G05UB 2600

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 133

2480 POSITION 34,23:PRINT MWIN;™ ';:BaAN
KROLL=-BANKROLL+WIN
2498 POSITION 29,22:PRINT BANKROLL ;"™ *

’

2495 RETURN

2688 FOR I=@ TO 2808 STEP S

2685 SOUND ©,I,8,15

2618 NEXT I

2615 FOR I=1 TO 5

2620 FOR 5=48 TO 2920 STEP 2

2625 SO0UND ©,5,18,18

2638 MNEXT 5

2648 FOR 5=98 TO0 48 STEP -2

2645 SOUND @,5,18,18

2650 NEXRT S:NEXT I

2655 FOR I=1 TO 28

2668 FOR I-@8 TO 288 STEP 5

2665 SOUND 6,I,8,15

2678 NEXT I:S50UND ©9,0,08,8

2672 FOR I=-1 TO 18

2673 FOR DELAY=1 TO 48:NEXKT DELAY
2674 POSITION 208,20:7 "B 8T-1d.CONEE

2675 FOR DELAY=1 TO 28:NEXT DELAY
2676 FOR DELAY=1 TO 20:NEXT DELAY
2678 POSITION 28,28:7 *

2680 NEXT I

2685 POSITION 26,28:PRINT *

r
2698 RETURN
2808 FOR I=1 TO 288 STEP 25
2810 SOUND 0,1,6,8
2828 NEXT I
2838 SOUND a, :RETURN
2956 0 L+INT(R‘D(0)*6)*2 :IF L>59 THEN
L=L-6
2968 M-HM+1G6+INT (RND(B8)¥6I%*2:IF M>59 TH
EN M=M-60
29378 R= R+22+INT(RND(8)*6)*2:IF R>59 TH
EN R=R-60
3888 POKE 77,8:FOR H 1 70 15
3816 POSITION 11,18:PRINT RS(R,R¥1):R=
R+2:IF R>59 THEN R=1
3828 POSITION 11,8:PRINT RS(R,R+1):R=R
+2:IF R3>59 THEN R=1
3838 POSITION 11,6:PRINT R5(R,R+1)
3848 R=R-2:IF R{1 THEN R=R+60
3845 IF X=11 THEN GOSUB 2860
3858 IF X>18 THEN 3118
38608 POSITION 8,108:PRINT MS(M,Mtid :M=M
+2:IF M>59 THEN M=1
3870 POSITION 8,8:PRINT MS(M,Mt1):M=Mt
2:IF M>59 THEN M=1
3888 POSITION 8,6:PRINT M5 (M,M+1)
3188 M=M-2:IF M{1 THEN M=M+&0
3185 IF H=6 THEN GOSUB 2868
3118 IF H>S THEN 3168
31208 POSITION 5,1@:PRINT LS(L,L+1):L=L
+2:IF L>59 THEN L=1
3130 POSITION 5,8:PRINT LSCL,L+1):L=L+
2:IF LY59 THEN L=1
3148 POSITION 5,6:PRINT L5(L,L+1)
3150 L=L-2:IF L{1 THEN L=L+66
31668 NEHXT H
3165 GOSUB 28066
3170 L=L-2:IF L{1 THEN L=-L+60:M=M-2:IF
M{1 THEN M=N+68:R=R-2:IF R{1 THEN R=R

lige RETURN

4888 CHRS(F)=""a" AND CHRS(5){>™a" T
HEN H—Z

4818 IF F=CH AND 5=CH THEN W=5

4028 IF F=99 AND 5=992 AND T=99 THEN M=

18

4825 IF F=39 AND 5=99 AND (T=DB OR T=5
B) THEN HW=1@

4:3?4IF F=-181 AND 5=181 AND T=181 THEN
4835 IF F=181 AND 5=181 AND (T=DB OR T
=5B) THEN W=14

4848 IF F=-183 AND 5=183 AND T=183 THEN
W=18

4845 IF F=1683 AND 5=183 AND (T=DB OR T
=5B) THEN H=1i8

4858 IF F=DB AND 5=F AND T=5 THEN W=280
4852 IF F=DB AND 5=SB AND (T=DB OR T:=5
Bl THEN MW=28

4853 IF F=DB AND (5=DB OR 5=5B) AND T=
5B THEN M=20
4854 IF F=5B aND 5=DB AND (T=DB OR T=35
B) THEN MW=20
4855 IF F=5B AND (5=DB OR 5=5B) AND T=
DB THEN HW=20
4858 IF F=5B AND S5=F AND T=S THEN L—24
4860 IF F=1@5 AND 5=F AND T=5 THEN W-=2

88
4065 WIN-WINHtW:POSITION 34,23:PRINT MWI

4080 RETURN

10068 V=-0:FOR I=-8 TO0 288 STEP 25

18865 SOLND 8,I1,0,15

16886 SOUND 1,I,2,15:50UND 2,1,4,15
10818 NEXT I

16815 SOLUND 9,9,0,8:50LUND 1,8,8,8:50UN
D 2,0,

18898 STOP

20008 FOR I=1 TO0 S

28685 FOR 5=8 TO 2808 5TEP 5

28818 SOUND 0,5,8,15

28815 NEXT 5

20828 FOR 5=2060 T0 8 STEP -S

28825 SOUND 8,5,8,15

28838 NEHT S5

20835 NEXT I

20048 5S0LND 0,0,0,08

28045 s5TO0P

32008 POKE 1066,PEEK(1086)-5:GRAPHICS 2:
START=(PEEK (1862 +1) %256 :POKE 756,5TART
/256 :POKE 752,1

32805 DIM HFR5(38) :RESTORE 320816:FOR X
=1 TO 38:READ N: HFR$(H KI=CHRS (N) :NEXT

(50
-

K
32018 ? H6;" FIIIIIIIIIIIN
32011 2 #o CMCOLOR 300

7 16;" * 510 0
32813 ? H6;" *® mgn}ﬂm %
Jzoid ? 6" IGO0
32815 ? "BY MICHAEL oh; TIVINS"

3126816 DATA 184,169,8,133,283,133,285

69,224,133,206, 165, 165,24,1&5 L1333 é

4,160,0,177,205,145,203,200

32817 DATA 288,249, 239 284,230,206,165
,206,201,228,208,237

312026 2= usn(ann(ansi) :RESTORE 32100

32030 READ X:IF H=-1 THEN RESTORE :RET

32848 FOR Y=8 TO 7:READ Z:POKE X+Y#5TA

RT,Z:NEXT Y:GOTD 32030

37188 DATA 520,178,1708,170,170,178,178

,178,170

gzégx DATA S528,178,85,170,85,1708,85,17
I

32182 DATA 536,170,0,170,0,170,0,170,0

37183 DATA 544,160,160,160,160,10,168,1

8,10

32184 DATA 552,80,80,80,80,5,5,5,5

371085 DATA 560,128,128, 160,168, 168 168
,170,170

37186 DATA 568,2,2,108,18,42,42,170,179

giiggooarn 584,234,184 ,46,139,46,186,2

32188 DATA 6080,167,28,114,200,114,156,

39,170

3§i39 DaTa 608,170,08,178,255,255,176,9
g%éiﬁ baTa 616,1,171,7,175,31,191,127,

32111 DATA 624,255,127,191,159,175,167
32112 pATA 776,2,82,82,81,1,81,88,80
37113 DATA 784,170,168,128,64,64,84,0,

32114 DaATA 792,1,5,5,21,21,

37115 DaTA 808, 54 80,80, 34 84 60 80,64
32116 DATA 808.,2,18,10,42 ie,2
32117 DATA 816,128,160, 166 6 ise 160
,168,128

32118 paTA 824,1,2,1,2,5,18,21,3

32119 DATA 832,0,128,64,128,64,160, 80,
32128 DATA 848,85,85,64,0,1,5,4,20
37121 DATA 848,85,84,4,16,80,64,0,0
32122 paTA -1

PAGE 134 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

CHECKSUM DATA
(See pgs. 7-10)

1 DATA 536,632,899,895,184,307,678,879
,228,295,143,351,720,17,548, 7384

130 paTA 158,933,148,366,905,92,994,46
8,797,966,134,68,248,261,668, 7204

315 paTa 886,170,961,19,825,100,364,78
6,155,968,421,996,516, 318,354, 7691

510 DATA 331,142,28,364,552,948,749,33
3,334,453,342,473,808,774,350,6973

566 DATa 161,487,816,825,96,938,995,30
6,27,725,148,883,578,759,836,8432

628 DATA 726,175,819,865,105,911,237,8
39,650,945,734,214,825,612, 890, 9487
645 DATA 646,76,646,390,680,737,111,83
1,733,26,811,137,767,613,838,8642

662 DATA 746,192,836,995,720,954,798,5
90,747,461 ,8%5,762,161,432,747, 16686
690 DATA 996,245,74,908.719,369,726,55,
744,95,4082,526,271,413,518,6237

1856 DATH 489, 246,288,158,568,667,496,
408,565,794,71,732,697,143,187,6501
2616 DATA 76@,436,815,167,822,168,181,
736,991,278,542,614,61, 168,807, 7546
20869 DATH 7208,241,977,790,616,427,15,4
92,788,147,589,373,111,375,497,7158
2268 DATA 793,627,151,542,%87,498,154,
528,398,561,794,799,130,865,618,7769
2425 DATH 469,248,664 ,267,687,646,662,
567,691,5208,680,796,269,418,88,7672
2495 DATA 812,156,565,505,170,97,432,5
37,289,434,540,368, 156

~J
=]
-~}
(=)
[2]

,571,40
2672 DATA 361,%99,971,401,463,%22,512,1
64,8688,356,320,512,260,328,643,6460
2978 DATA 689,592,351,%13,607,554,746,
858,246,17,304,508,372,576,227,6960
3138 paTa 999,295,504,542,560,528,794,
496,822 ,983,821,378,545,399, 564, 18030
4058 DATH 649,949,978,953,12,718,997,8
69,793,951,446,245,662,525,488, 10227

Z¢g8p8 DATH 262,376,531,689,687,486,678
:683,565,495,288,84%,671,391,128,7767
22813 DaTA 277,683,590,657,59%4,768,663
»768,69,606,408,508,332,128,17,7484
32187 DATA 787,619%,597,366,154,959,387
428,122 ,866,127,4086,371,919%,754,7697
32122 DaTH 832,832

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM

PAGE 135

HALLS OF
THE LEPRECHAUN KING

16K Cassette 24K Disk

by Keith Evans and Ted Adkinson

Alas! The Leprechaun King has awakened from
his long slumber, and he has taken all of the world’s
gold. Every nation is bankrupt. The world’s only
chance is Smiley, the famous gold miner. With his
dexterity and wit, Smiley just might be able to recap-
ture all of the gold, pick up the magic key, and put
the gold in a sanctuary. But unless he’s careful, the
Leprechaun King will give him the Midas touch,
turning him into a 24-carat gold tombstone.

When the game begins, take some time to notice
where everything is positioned. Smiley is in the
upper middle of the screen, and the Leprechaun King
is in the upper right hand corner. Throughout the
maze there are pots of gold. To collect one, just touch
it. If you look in the lower right corner, you will see
the magic key surrounded by walls. Collect about
half of the gold, and the key will move to the center
of the maze.

After Smiley gets the key and all of the gold, he
goes to the sanctuary chamber at the far lower right
corner, directly to the left of the cross. Push the trig-
ger button, and a section of the wall will disappear.
This is the entrance to the sanctuary where Smiley
has to store the gold. Deposit gold by simply touch-
ing the cross.

Another important part of this game is the gold
tombstones. When Smiley loses a life, a tombstone
appears as a resting place for all of the gold he was
carrying. A new Smiley has to touch the tombstone
to collect the gold that the old Smiley was carrying.

You start with three lives. The game is over when
you use them all up. To see how many lives you have
left, look in the upper right or left hand corner of the
screen where vertical bars indicate lives remaining
(including the one currently in use).

An expert player might get to the third maze and
find it is totally different. Two clues about this maze:
the key appears in the lower middle of the screen,
and the section of disappearing wall lies directly
below the cross. O

The program.

Lines 1-10 — Variable initialization, title

Lines 120-372 — Character set redefinition

Lines 395-507 — Maze drawing, placing of
the gold

Lines 510-624 — Joystick reading, move-
ment of Smiley

Lines 630-999 — The Leprechaun’s logic

Lines 1000-1120 — Maze and character set
data

Lines 1150-1154 — Lives left indicator

Lines 1500-1510 — “Midas Touch” sound
effects

Lines 2000-2020 — Counts bags of gold
taken, places key in the maze if enough has been
taken

Line 2500 — Draws tombstone, checks men
left

Lines 2510-2570 — Erases Smiley’s trail

Line 2575 — Starts game over when all men
are used up

Lines 2610-2700 — Puts the gold Smiley
was carrying in a tombstone when he is killed

Lines 3000-3050 — Subroutine to flash
maze

Lines 4000-4350 — Actually moves Lepre-
chaun.

Line 5000 — Plays “Oh, when the saints...,"
clears screen

Lines 6000-6007 — Displays score at end
of game

Line 6010 — Clears screen

Lines 7000-8030 — Data for “Oh, when
the saints...”

Lines 9000-9130 — Subroutine to play
“Oh, when the saints...”

Lines 9150-9260 — Plays “Good night,
ladies...”

PAGE 136

THE A.N.A.L.O.G. COMPENDIUM VOL. 1

Lines 9270-9290 — Data for “Good night,
ladies...”

Line 9300 — Sound effects of gold being
cashed in

Lines 10000-10020 — Color rotation sub-
routine

1 CLR :K-10:Y-i:MES17:MY=-2:Hi-18:v1-1

9 GRAPHICS 2+16:7 #M6;™ ":? #H6;" "

6 7 H6:" THE HALLS oF THE*':? 1i6; L
EPRECHAN KING™:? ue;*"

7 7 #6;" created':? He;*" v

B ? m;ll b llx? nalll ll

9 7T 6" keithland H:T UGyt v:?
u6; " PLEASERHATIT "

18 FOR ZZZ=1 10 20:GOSUB 10088 :NEXT ZZ

Z

128 POKE 1066,PEEK(186)-2

138 GRAPHICS 1+16

158 A-PEEK(166)¥256

i98 SET=PEEK(186)

288 POKE 756,5EY

228 FOR C=@& TO 7

238 POKE a+C.8

248 NEXKT €

258 FOR C=8 10 62

268 READ CHAR

276 POKE A+C,CHAR

288 NEKT C

69 FOR C=64 TO 71:POKE A+C,146:KEKT C
378 FOR €=72 TO 79:POKE Q+C, 144 :KEXKT C
3714 FOR C=88 TO B7:POKE A+C,1Z8:NEKY C
372 FOR C= 88 T0 925:READ CHAR:POKE A+tC,
CHAR:NEXKT

gzg IF TIH) 1 AND TIM{(3I THEN RESTORE 1
396 IF TIM>=3 THEN RESTORE 7668

397 TIM=TIMYL

398 MM=Z:IF TIM-i OR TIM=5 THEN MM-1
488 READ GR1,GRZ,GRI,GR4

418 IF GR1=-1 THEH GOTO 448

338 COLCR 3I5:PLOY GR1,GRZ:DRAMHTO GR3I,G
438 GOTO 468

448 READ G1,G2

. 458 IF G1=-1 THEHN 568

468 COLOR 136:PLOT 61,62

478 GOTO 446

588 IF TIM{4 THEN COLOR 3I5:PLOT 3,2:PL
0T 7,3:PLOT 6,3:PLOT 1,16:COLOR 32:PLO
T 12,14

582 BAGS=8:DBAGS=B:GOLD=8:KEY=-8:IF TIH
{4 THEM COLOR I7:PLOT 18,22

583 XIF TIM{(4 THEN RESTORE 1126

564 IF TIM)=4 THEMN RESTORE 7898:LO0CATE
18,11,Z7:TF ZZ=32 THEN COLOR 3I7:PLOT
i9,11

506 X-18:Y-1:READ RMX:READ RMY:HMX-RMX:
HY-RMY:H1-18:Y1=1

587 READ SDO,5DD1,5D,5D1,5C,5C1,K,E,aH
s Y , KB

5186 H1=K:¥izY

515 POKE 711,251

916 POKE 77,8

528 IF STICK({68)=13 THEN GOTO 5388

538 J=5TICK(82

548 IF J-ii THEN K-K-1

558 IF J=7 THEN H-HH#1

9608 IF J=-i4 THER ¥Y=Y-1

578 IF J=1F THER Y-V+i

588 LOCATE H,Y,X:IF I=35 THEN X-Hi:Y=Y

598 IF I-i3é THEN GOSUB 2648

595 IF XI=38 THEN GOLD=GOLDDGOLD:BAGS=
DBAGS:FOR ZZ=-I8 TO I0:S0UND 8,8B5(ZI3
»10,8:NEXT ZZ:50UND 6,06,08,08

688 IF I-i THEN GOSUB 1588:G07TQ 2508
685 IF I=3I7 THEN KEY=1:ZZZ-68:FOR Z7=6
8 TD 40 STEP =13 SOUND 8,Z7Z,18,8:S0UND
1,Z7Z,18,8:ZZZ=Z7Z-1:NEKT 2Z

606 SOLND 0 8,0,8:50UND 1,8,0,0

615 IF J{>15 THEN COLOR 32:PLOT Ki,¥i
620 COLOR 36:PLOT R,Y

622 IF H:SDO aND Y= SDOl AND KEY=1 AND
STRIG{(B)=8 THEN COLOR 3IZ2:PLOT 5D, SD1
623 IF K= SC AND Y=5C1 THEN PGOLD=PGOLD
+GOLD:COLOR I3:PLOT SC,S5C1:H-AX:HIZH:Y
“AY::YIZY:GOLD=6:GO5UB 32306

624 IF BAGS{=NB AND I=39 THEN 5080
638 MM-MMM-1

648 IF MM=1 THEN 518

658 LOCATE MH-1,HMY,D1

668 LOCATE MH,MY-1,D2

678 LOCATE MR*l MY, D3

688 LOCQEg MY* g

628 IF MK AND Yid>MY THEN 750

788 IF H-MX AND MY)Y THEN FD=2:FDize@
718 IF H-MH AND WYY THEN FD=4:FDi:z=@
728 IF Y=MY AND MK)}X THEN FD=i:Fbi-=e
738 IF Y-MY AND MH{X THEN FD=3:FDi=a
748 GOTO 738

758 IF MH{X THEN FD:=3

760 IF MH>H THEN FD=1

776 IF MY{Y THEN FD1i=4

780 IF MY>Y THEM FD1i=2

7386 REM

795 IF FD14{>8 THEN 368

2ggBIF FD=4 AND D4<{>3I5 THEN RD=4:G0OTO
gigBIF FD=3 AND DI<>3IS THEWR RD=3:60TO
220 IF FD=2 AND D2{>3I5 THEN RD=2:GOTO

158

gigBIF FD=1 AND D1{>3I5 THEN RD=1:G0TO
846 RD-IRT{(RND(B)¥43+1

856 IF RD=1 AND DR1=35 THEN 8490

868 IF RD=Z AND D2=35 THEN 848

878 IF RD=3 OND DI=3I5 THEN 844

888 IF RD=4 AND D4=35 THEN 840

898 GOTO 1158

368 WAYS=@:IF FD=1i AND D1<{>35 THEN WAy
SZHAYSHL HI=1

982 IF FP=2 AND DZ{>3I5 THEN HAYS-MKAYSH
1:HZ2=1

28&315 FD=3 AND D3I{>3I5 THEN HAYSZMAYSH
203‘12 FD=4 AND D4<>3I5 THEN HAYS=MWAYS+
988 IF FDi=1 AND D1<{3>3I5 THEN KAYS=HAYS
+1iM1I11

918 IF FD1=2Z AND D2<2>3I5 THEN HAYSZHAYS
+1:H22-1

912 IF FD1=3 AND D3I<{>3I5 THEN HAYSTHAYS
+1iW33=1

914 IF FDi=4 AND D4<335 THEN HAYSZHAYS
+1:KH44=1

216 IF MWAY5=2 THEN 4668

918 IF MWiz=i THEK RD=1

928 IF MWZ=1 THEN RD=2Z

922 IF MW3I=1i THEN RD=3

924 IF MW4=1 THEN RD=4

325 GOTO 40878

226 GOTO 1156

299 GOTO 5186

1888 DATA 170,84,124,170,146,254,448,18
8

ieig pATh 126,68,66,223,2609,219,66,68
ig28 pATH 1786,85,170,85,176,85,178,85
1638 DpATA 68,126,219,255,189,195,126,6

@

ie3s pava 8,9,7,253,85,.87,6.6

1837 DATA 28,54,119,65,119,119,119,127
1638 DOTA 24,24,126,126,24,24,24,24
1839 DpaTA 31,35,6%9,249,137,138,148,248
1649 DATA 13,13,14,13,2,14,4,14,5,15,4
,15,5,16,8,16,15,15,16,15,13,16,14,16,
2,18,5,18,7,18,9,18,15.,.18,17,

1841 DATA 1,8, 18

18658 paATA 2, 19 3,19,7,19,9,19,11, 19 13
,13,5,28,7, 29 16 28, 13 29 2 21 3,21,5,
21,?,21,9,21,14,21,2,22,3,22

VOL. 1

THE A.N.A.L.O.G. COMPENDIUM

PAGE 137

1866 dATA 1,1,1,5,18,1,18,7,9,1,9,
:6,16,8,18,12,18,16,16,14,16,17,16
16,22,13,10,13,11,13,1?,13,18
ie78 patTa 9,.9,9,10,8,13,8,14,
,8,0,0,23,8, 23 19 23 19 23 19 8
;11,1,16,1,11,2, 16

-
[
-
[,
H
N
p.-
N
H
..-
)
~
e
~
~
o
ad
LI -~ L)

;8,8

1188 pava 4,2,5,5,13,7,4,9,

8,11,15,12, 3 13 9,13,5,14,1

4,16,15,17,6,18,4,21, 12 22,15,128

1110 pata 2,6 1,9

1128 paTA 17, 2 15,22,16,22,18,22,9,12,

17,22,-193

%%53 gF LI-8 THEN COLOR 8:PLOT 12,6:PL
?

ié?lﬁls LI=-1 THEN COLOR 9:PLOT 19,0:P

1152 IF LI=-2 THEN COLOR 18:PLOT 19,8:

PLOT 8,8

1154 GOTO 4118

1568 COUNT=868:FOR ZZ=28 TO 8 STEP -1:

SOUND 6,COUNT,10,ZZ:SOUND 1, COUNTH{ZZ¥

99),18,ZZ:COUNT=-COUNT-18:NEXY ZZ

1516 S0UND 8,06,9,8:50UND 1,8,8,0:RETUR

]

26806 BAGS=BAGS-1:GOLD=GOLD+INT (RND (01 *
188)+1:DBAGS=DBAGS-1

2885 FOR ZZ-28 TO 8 STEP —1 50UKD 8,20
16,ZZ NEXT ZZ:501lND 0,8,8

2818 IF DBAGS=-18 OR BAGS=- 18 THER COL

OR 3I7:PLOT K,E:COLOR 39:PLOT SC,5C1i

2826 RETURN

2580 COLOR 38:PLOT H,Y:REM :LI-LI-1:IF
%g;a3 THEN GOSUB 35156:G05UB 5008:G0TO
2510 LOCATE X,Y,ZZ:IF ZZ=36 THEN COLOR
I2:PLOT K,Y

2528 LOCATE R¥1,Y,ZZ:IF ZZ=36 THEN COL

OR 3Z2:PLOT H+t1, ¥

2538 LOCATE H- 1 Y,ZZ:IF ZZ=36 THEN COL

OR I2:PLOT H-1, v

2548 L 0CATE X, ¥- 1,Z2:IF ZZ=36 THEN COL

OR 2Z:PLOT H,Y 1

25568 1LOCATE R,¥+1,Z7:IF ZZ=36 THEN COL

OR 3Z:PLOT X,Y+1

2555 LIZEI-1:IF LI=-3I THEN GOSUB 3158:

GOSUB 66088:G0T0 2570

2568 COLOR 3IB:PLOT H,Y

2570 K=18:Y=1:KI-H:YI=YIMH=17:MY=2: OMX

MK : OMY=HMY

2572 D=32

2575 IF LYI=-3 THEN LI=8:GO0T0 395

2618 FOR FN=8 TO S80:NEXT FN

2617 DGOLD=GOLD:GOLD-B:K=18:Y=-1:Hi=-18:

2628 ME=RMR :MY=-RMY

2638 D=32

2788 GOTO 582

3088 FOR COUNMT=@ TO g
2818 SETCOLOR 6,8,

3815 FOR ZZ=1 TO 58 NEKT ZZ
3620 SETCOLOR 8,2,8

3825 FOR ZZ=1 TO SG:NEHT Zz
3838 NEKT COLUNT

3848 SETCOLOR 6.,2,8

3858 RETURN

4880 RH-IHKT (RND (83%Z)+1
4818 IF RMW=1 THEN 11i1e
4828 IF MWi=i THEN RD=1
46838 IF W2=-1 THEK RD=2
4848 IF W3I=1 THEN RD=3
4856 IF W4=-1 THEN RD=4
4868 GOTO 1158

4876 IF MWii=1 THEN RD=1
4880 IF W22=1 THEN RD=2
4898 IF W3II=1 THEN RD=3I
4160 IF W44=1 THEN RD=4
41168 IF RD=8 THEN 4368
4120 IF RD=1 THEN MH-ME-1

4138 IF RD=2 THEN MYZ-MY-1

4148 IF RD=3 THEN MH-MK+1

4158 IF RD=4 THEN MY-MY+1i

4155 LOCATE OMX,OMY,ZZ:IF ZZ=36 OR ZZ-

39 THEN 4162

4160 COLOR D:PLOT OMK,OMY

4162 D=32

4165 LOCATE ME,MY,D:IF D=36 THEN GO5UB
1566:G0T0 2586

4176 COLOR 1:PLOT MH, MY

4175 OHXZMH: OMY-MY

4180 FD=-8:FD1=8:RDP=-0B:D1=06:D2=-0:D3=8:D4
=8:HAYS=B:RD=6

4196 WI=B:MWZ-B:MI-B:W4=-0:HII-B:HZ2Z2-0:H
3I3=0:H44-8

4208 GOTO 518

4300 RD-INT(RND (B8)¥*4)+1

4318 IF RD=1 AND Di=3I5 THEN 4388

4320 IF RD=2 AND D2=35 THEN 4188

4328 IF RD=3 AND DI=I5 THEN 4368

4346 IF RD=4 GND D4=3I5 THEN 4388

4358 GOTO 4128

5606 GOSUB 36686:G05UB 3088:G05UB 6600:
TIM=TIM+1:60T0 335

6868 COLOR IZ:C1i-8:C2=8:IF LI{>-3 THEN
GOTO 6085

60861 IF LI=-I THEN GOS5UB 6818:POKE 756
é%zg:PDSITIOH 8,5:7 H6;* SCORE-EAH 4
6882 POSITION 4,18:7 #6;"push trigger"
:IF LI=-3 THEN TIM-0

6983 SETCOLOR 1,12,18:IF STRIGU(8)I=-® TH
EN 6885

6884 FOR ZZ=1 TO S6:NEHT ZZ:SETCOLOR 1
;8,8:FOR ZZ=1 TO SO:NEKT ZZ:GOTO 6863
6895 RESTORE 1648:IF LI=-3 THEN PGOLD=

SGBFREOLOR I2:605UB 6816:POKE 756,5ET:
ETU

60168 FOR Ci=8 TO Z3I:PLOT 6,CL1:DRAMWTO 1
9,C1:NEXT C1:RETURK

7888 DATA 8,9,19.8,19,9,19,23,19,23,0,

23,0,23,96,8,3,3,5,3,5,2,5,2,9,1,11,1,1
goiolgn¥n1;’§ ig % 2,6,11,4,16,5,14,5
14,6,14,6,9216,11,19:11,16 i1, i 1%
,9,12,9,12,9,10,3,5,5,5,5,6,5.6

7020 daTa 3,9,3.18,5,9,5,10,14,9,14,18
,i6,9,16,18,3,12,3,13,5,12,5,13,14,12,
14,13,16,12,16,13

70838 DATA 16,15,18,17,9,16,11,16,3,17
5,17,14,17,16,1%7,3,19,5,19,14,19,16, 1%
,8,28,9,28

7844 DOTH 11,28,12,29,8,22,%,22,11,22,
12,22,2,22,2,23,17,22,17,23,12,21,12,2
: B 21,8,21,3,19,3 28

7858 baTh 3,16,3, 17 16,16,16,17,16,19,
16,26,2,10,3,10,6 18 5.,16,2, 12 3 12 6,
12,5,12,13,18 14,10

7069 DATA 16,18,17,16,13,12,14,12,17,1
2,17,12,-1,-1

7678 baTn 4,2,15,2,4,6,15,6,16,4,186,6,
23,2,11,4,11,6,11,13,11
,15,11,17,11,4,13,15,13

5,16,4,26, 15,28 32, 21 11,21,4,2 1’

Zﬂgg 2gra 18,21, 18 13 ig,12,18,11,10,2
P

8008 paTa 121,6,96,6,91,6,61,1,9.8,121

:,8,96,8,91,8,81,

g#81@ pATa 6,8,121,8,96,8,91,8,81,2,96,

2,121,2,96,2,1688,1

88206 DbaTha 6,8,96,8,96,8,188,8,121,2,12

1,6,96,2,81,4,81,4,91,2

883¢ bAaTh 86,8,91,8,96,8,91,8,81,2,96,2

,188,4,188,4,121,1,-1

3086 RESTORE 8646

9818 READ PITCH

9628 IF PITCH=-1 THEN %138

3848 READ DURATIOHN:DURATIONZINT (58/DUR

ATION)

9850 SOUND 8,PITCH,18,8

3666 IF PITCH=0 THEN 956848

2876 S0UKD 1,PITCH+1,14,8

2688 FOR Z7Z-1 TO DURATION:NEXKTY ZZ

9838 S5S0UND ©,08,06,0

-

[

~

PAGE 138 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

2188 S0UND 1,08,0,0

9110 FOR ZZ=1 T0 5:NEXT ZZ

2128 GOTO %818

9138 RETURN

2158 RESTORE 32780

3168 READ DURATION:IF DURATION=-1 THENM
RETURN

2178 DURATIONZINT (DURATION*18)

9188 READ PITCH:IF PITCH=8 THEN 9208

3198 PITCH=PITCHMI

9288 S0UND 8,PITCH,18,8

92168 S0UND 1,PITCH+1,10,8

9228 FOR ZZ=1 TO DURATION:NEXT ZZ

3238 S0UND 8,8,8,0

9248 50UND 1,8,8,0

9258 FOR ZZ=1 TO I:MEXT ZZ

9268 GOTO 91648

9%78 bavn 2,47,2,68,1,81,3,68,2,47,2,6

8,1,53,3,53,2,47,2,68,1,45,2,45,1,45

3288 DATA 1,47,1,47,1,53,1,53,3,68,1,0

»1.5,47,.5,53,1,60,1,53,1,47,1,47,2,47

,1,93,1,53,2,53

22938 dATA 1,47,1,40,2,49,1.5,47,.5,53,

1,00,1,53,1,47,1,47,2,47,1,53,1,53,1,4
s1,53,3,608,1,8,—

9388 FOR ZZ7Z=-1 TO 3:FOR ZZ=28 T0 8 5TE

P -1:50UKD 8,268,188, 77 :NEXT ZZ:50UND @,

8,8,8:NEXT ZZZ :RETLRN

10868 FOR Z=1 T0 3

18818 A-PEEK(788)

198828 POKE 788,PEEK(711):POKE 711,PEEK
(7183 :POKE 710,PEEK({709):POKE 789,a:NE

HT Z:FOR B=1 TO 18:NHEHT B:RETURN

CHECKSUM DATA
(See pgs. 7-10)

1 baTa 8,703,82,669,687,337,397,37,199
» 539,211,426, 288 786 ?38 65091

258 DATA 162,93, 333 742 713 712,721,64
2,282,323, 121 875 275 455 6?7 7122

438 DATA 784,833,696,291,?28,445,33?,5
1,429,876,926,151,238,959, 36,7568

530 DATA 918,74,785,93,91,2085,828,681,
484,731,983,17,973,483,857,82083

624 DATA 488,689,493,829,812,831,814,1
82,918,911,917,918,746,9224,929,11333
778 bATA 167,178,113,918,228,224,228,2
i6,977,846,853,868,867,983,668,8382
382 DATA 668,667,674,27,38,48,50,9218,8
ie,867,811,815,374,978,746,8999

1888 DATA 226,165,214,287,97,68,763,86
,¢958,137,418,548,616,647,412,5428

1835 DATA 418,873,132,916,498,6088,859,
724,251,119,657,327,491,78%,339,797%
2510 DATA 724,239,248,218,201,.494,282,
783,213,871,731,517,774,208,9683,7318
3008 DATA 810 67? 667,6608,668,195,662,
788,842,933 18 15,7192,7651

4878 pata 766 715 724,726 988,542,557,
551,559,311, 753 284,803,251,7?2,9094
4188 DaTA 625,95,88?,819,667,611,515,6
19,730,1,931,385,398,561,836,9380
6885 DATA 185,951,595,6138,685,393,695,
374,457,283 ,342,188,257,974,783,8820
8828 DATA 596,86,199,118,118,997,893,4
88,342,698,223,218,588,743,801,7812
2158 DATA 226,485,338,695,558,894,342,
698,223,225,59%,761,514,3933,665,7618
9388 DATA 852,362,608,626,1847

For those interested, here are some of the
techniques used in this program. First is “‘redefined
character sets,” which when carefully laid out can
simulate a high resolution graphics screen, but re-

quiring much less memory. They are fairly easy to
design. Each character can be one of four different
colors. Step one is to design some characters. Here’s
Smiley as an example:

128641321168 |4 le

+ |+ [+ |+ |+
[ER P PN 1
© [~ [~ o
o v o

®

"

0 |+ | [|

o o= [~ o
sl e |+ []

~ | |o [|] [oo |
[+]= e [~ [~
o [mlo]+ oo |w
s o]+ =1+ [+ [
1w [[w o o |w
o+ ||+ |w]+ [+ [o

e [+ [+ |+] [+

o N

Make an 8 by 8 grid, mark the blocks to be filled
in, then add up the corresponding numbers to de-
termine its POKE value.

Following is a program which defines a space and
a Smiley character, and then prints out a picture of
Smiley on the screen.

18 GRAPHICS Z2+16:REM STARY OUT WITH o

GRAPHICS STATEMENT

28 POKE 106,PEEK{186)-2:REM SET ASIDE

% PAGES OF MEMORY FOR THE CHARACTER SE

38 CHBASE-PEEK(186)¥256:REM THIS IS5 MWH

ERE THE CHARACTER SET WILL BE POKED IN

T0 HMEMORY

48 SET-PEEK(186) :REM THIS5 XIS WHERE THE
CHARACTERS HWILL GO IW TERMS OF PAGES

OF HMEMORY

98 READ VALUE:IF VALUE=-1 THEN 95:REM
READ IN PART OF A CHARACTER

60 POKE CHBAQSE+HC,VALUE:REM PUT THE HUM
BER IN MEMORY

78 C=CH1:GOTO 58

75 REM bPATA FOR SPACE

84 DATA B,08,0,6,0,8,8,0

85 REM DATa FOR SMILEY

38 DATA 68,126,219,255,189,195,126,68,

35 POKE 756,SET:REM TELL THE COMPUTER

HHERE THE NEMW CHORACTER SET IS LOCATED
168 COLOR L1:PLOT 5,5:REM PUTS SHMILEY O
N SCREEN AT 5,5

1i8 GOTO 118:REM EMDLESS LOOP FOR DISP
LaY PURPOSES

To determine the number for the COLOR state-
ment in line 100: first, Smiley is to be green. Color
register number 1 normally contains green, so it is
used. Smiley has been defined in the program above
as the second character in the redefined set. (The
space was the first.)

With these pieces of information I looked up the
number in a chart, like the following one:

COLOR REGISTER 0= 32, 33 through 95

COLORREGISTER 1=0, 1 through 124,

(125%), 126, 127

COLOR REGISTER 2 = 160, 161 through 223

COLORREGISTER 3= 128, 129 through

154, (155%), 156

through 255

*155 selects the same thing as 32. 125 has no
effect.

Smiley’s color is set by color register 1, so look in

VOL. 1 THE A.N.A.L.O.G. COMPENDIUM PAGE 139

the second row. Since he is the second character, use
the 2nd number in the 2nd row, which is 1. As an-
other example, if Smiley were to be controlled by
color register 2, the correct number would be 161.
Try 161 in the example program above and see what
happens.

Before you get too carried away, remember that
the example program will not allow text to be dis-
played on the screen. To switch back to text only,
type POKE 756, 224.

Another section of the Halls of the Leprechaun
King which is interesting is its color rotation sub-
routine (10000-10020). Adding this to a program’s
title makes it very colorful. Here is how it works.
Memory locations 708-711 contain the numbers
which determine the colors which will be displayed
from each color register. The subroutine rotates the
colors from one register to another so that every-
thing on the screen flashes through each color. Try it
in one of your programs. [J

Circle Radius Demo

18 HCENTER=318/2:YCENTER=192/2
188 GRAPHICS 8

118 COLOR 1

128 ? "ENTER RADIUS:";:INPUT RADIUS
138 LET RADIUS-RADILS+3-1

148 LET Hz=@

158 LET Y=RADIUS

160 LET DIAMETER=3-2¥RADIUS

178 IF H<{=Y THEN GOSUB 18806:IF DIAMETE
R{® THEN DIAMETER-DIAMETER+4%H+6:H-K+1
:GOTO 178

188 IF X>Y THEN END

1980 DIAMETER-DIAMETER+4¥(X-Y)+18

288 Y=Y-1

218 H=K+1:GOTO 17@

180868 REM

18016 PLOT HCENTER+X,YCENTER+Y

1820 PLOT HCENTER+Y,YCENTER+H

1836 PLOT HCENTER+Y,YCENTER-X

1848 PLOT HCENTER+X,YCENTER-Y

18656 PLOY HCENTER-X,YCENTER-Y

1868 PLOT HCENTER-Y,YCENTER-H

1878 PLOT HCENTER-Y,YCENTER+X

180868 PLOT XCENTER-X,YCENTER+Y

1898 RETURN

CHECKSUM DATA
(See pgs. 7-10)

18 DATA 58,988,474,753,651,436,523,779
»371,588,245,356,504,275,95,7060
éngsggTﬂ 95,188,182,185,165,162,184,7

PAGE 140 THE A.N.A.L.O.G. COMPENDIUM VOL. 1

STUNTMAN

16K Cassette 24K Disk

by Steven Pogatch

Your stunt man has been hired to climb to the top
of every building he can find. This is not as easy as it
may seem, though, because the tenants of the build-
ings will do anything to get you off the building.
There are six (6) levels to each building, each pro-
gressing in difficulty.

In the first section, windows constantly close to
keep you from getting past them. Next, men stick
their heads out of the windows, trying to get in your
way. After that, flower pots fall from the window
ledges, closing all windows in their way. After pass-
ing this section, a crazy bird drops girders on you. Be
careful here — they can be deadly if they hit you on
the head. Once you get past the bird, you have to
avoid King Kong, waiting for you on his part of the
building. He is very angry and is throwing down any-
thing he can find on top of you. Last (but not easiest),
girders (3 lanes wide) come crashing down from the
building. Look out!

If you are lucky enough to get through all of this,
there will be a brief intermission telling you to go on
to the next building.

On the top left corner of the screen are three
numbers. The first one represents the section, the
second represents the building number, and the third
represents the number of men you have left. If you
manage to score 10,000, 30,000 or 50,000 points,
you will be awarded a free stunt man. The score is
displayed in the lower left hand corner. You can
move left, right and up with the joystick. For every

movement you make, you are rewarded 50 points. .

You start out with 6 stunt men. Good luck climbing
— you’ll need it. O

The program.
Lines 1-30 — Initialization
Lines 40-1000 — Movement of a player,
activate obstacle(s)
Lines 1000-2000 — Death (fall) of stunt
man
Lines 2000-3000 — Section 1 (windows &

men)

Lines 3000-4000 — Section 2 (flower
pots)

Lines 4000-5000 — Section 3 (bird)

Lines 5000-6000 — Section 4 (King Kong)

Lines 6000-10000 — Section 5 (girders)

Lines 10000-11000 — Bonus stunt man

Lines 11000-32000 — Go on to next build-
ing (intermission) 4

Lines 32000-325000 — Redefines charac-
ter set

Lines 32500-32700 — Title

Lines 32700-32750 — End of game

i GO5UB 3I2880:CLR

Z GOS5UB X2588:5H=6:B=1

5 GRAPHICS 1:POKE 756,PEEK(186)+1

16 SETCOLOR 2,0,08:POKE 7108,%4:POKE 711
;45:FDR A=8 TO 19:POSITION 5,0:7 #6;"e

eeeeeeeeeee" I NEXKT A

28 FOR A=S TO 16:F-RND(8X¥19:IF F>1 TH

EN POSITION A,F:? HE;"f":NEXT A

I0 H=18:Y=18:0K=X:0Y=Y

48 POSITION OX,0YV:? H#H6;"e":POSITION OX
SO0Y+1:7 16 ; e

41 LOCATE K,Y,Z:IF Z=182 OR Z=225 OR Z

=66 THEN GO5SUB 1088

42 POSITION H,Y:? 8#6;"H":POSITION K,V+
1:7? uﬁ - umu

43 IF SC 188688 OR 5C=50088 OR 5C=icoee
8 THEN SH=S5H+1:G05UB 18088

44 IF Y=8 THEN L=L+1:G0T0 5

45 0OH=H:0Y=Y

46 SOUND B,Y+#28,3,15:FOR A=1 TO 15:NEX
T A:50LUND 8 8,8,0

47 GSRND(B)®4:IF G»3.7 THEN FOR a=5 TO
iﬁ :POSITION A,RND(BI18:7 H6;" ' I NEXT

48 ON L GOSUB 2808,30880,40080,50888,60080
:IF L=6 THEN L=0:B-B+1:GO05UB 110688

49 POSITION 8,19:7 #6;S5C:POSITION 1,1:

-2 #6;L:POSITION 1,2:7 #6;B:POSITION 1,

I:7 16;5H
58 IF STICK(B)=14 AND Y>8 THEN Y=Y-1:5
C=5C+58:GOT0 480
680 IF STICK{(8)=11 AND H>5 THEN H=H-1:5
C=5C+58:G0TO 40
78 IF STICK(BY=7 AND H<{16 THEN X=H+1:5
C=5C+58:G0TD <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>