(ATARIV Version) Stimulating Stmulations C.W. Engel

 Second Edition

 Second Edition}

12 unique programs in BASIC for the computer hobbyist

 Art Auction • Monster Chase • Lost Treasure • Gone Fishing • Space Flight . Starship Alpha. Forest Fire . Nautical Navigation - Business Management . Rare Birds . Diamond Thief • The Devil's Dungeon

(ATARI Versioni)

Stimulating
 Simulations

Second Edition

The Hayden Microcomputer Series

```
BEAT THE ODDS: Microcomputer Simulations of Casino Games
Hans Sagan
MUSICAL APPLICATIONS OF MICROPROCESSORS }
Hal Chamberlin
TEN EASY PIECES: CREATIVE PROGRAMMING FOR FUN AND PROFIT*
Hans Sagan and Carl Meyer, Jr.
CONSUMER'S GUIDE TO PERSONAL COMPUTING AND MICROCOMPUTERS*
Stephen J. Freiberger and Paul Chew, Jr.
THE FIRST BOOK OF KIM†
Jim Butterfield, Stan Ockers, and Eric Rehnke
SMALL COMPUTER SYSTEMS HANDBOOK\dagger
Sol Libes
HOW TO BUILD A COMPUTER-CONTROLLED ROBOT }
Tod Loofbourrow
HOW TO PROFIT FROM YOUR PERSONAL COMPUTER*
Ted Lewis
THE MIND APPLIANCE: Home Computer Applications*
Ted Lewis
THE 6800 MICROPROCESSOR: A Self-Study Course with Applications*
Lance A. Leventhal
THE FIRST BOOK OF MICROCOMPUTERS
Robert Moody
MICROCOMPUTERS AND THE 3 R's: A Guide for Teachers*
Christine Doerr
DESIGNING MICROCOMPUTER SYSTEMS*
Udo W. Pooch and Rahul Chattergy
```

*Consulting Editor: Ted Lewis, Oregon State University
\dagger Consulting Editor: Sol Libes, Amateur Computer Group of New Jersey and Union Technical Institute

(ATARI Vessinn)

Stimulating Simulations

Second Edition

C. W. Engel

[0]

HAYDEN BOOK COMPANY, INC.
Rochelle Park, New Jersey

Note to User

The programs in this book were not originally written in Atari BASIC and therefore will not run on the Atari computer without some modification. The supplement in the Appendix contains those programs from the book that require changes. All of these programs have been run and tested on an Atari 400 and Atari 800 computer, and you should encounter no difficulty in using them. Where the word "LPRINT"' is used in a program, what follows it will be printed out on the Atari printer. If you do not have one, simply replace "LPRINT" with "PRINT." This will direct the printed output to your television screen.

It has not been possible to convert every single program in the book for use on the Atari computer. The programs for which no Atari equivalent has been written are:

1. Soccer I, page 9
2. Starship Alpha, page 46

If you carefully study the original program listings in the book, and the Atari versions given in the Appendix, you will quickly see what the differences are in Atari BASIC, and it will be easier for you to convert programs from other books and magazine articles for use on your Atari computer. Good luck and happy computing.

ATARI is a registered trademark of the Warner Communications Company and is not affiliated with Hayden Book Co., Inc.

```
ISBN 0-8104-5197-2
Library of Congress Catalog Card Number 79-88327
```

Copyright © 1977 by C. William Engel. Copyright (C) 1979 by Hayden Book Company, Inc. All rights reserved. No part of this book may be reprinted, or reproduced, or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, without permission in writing from the Publisher, with the exception that programs may be stored and retrieved electronically for personal use.

$$
\begin{array}{lllllll}
6 & 7 & 8 & 9 & 10 & 11 & \text { PRINTING }
\end{array}
$$

Contents

Introduction 1Soccer, 9
Art Auction 20
Monster Chase 24
Lost Treasure 28
Gone Fishing 34
Space Flight 40
Starship Alpha 46
Forest Fire 59
Nautical Navigation 65
Business Management 71
Rare Birds 77
Diamond Thief 83
The Devil's Dungeon 89
Appendix: Program Conversions for the Atari 101
xintur
\qquad

(ATTARI Version)

Stimulating
 Simulations

Second Edition

Whand
Nablimer
ditimblit
Then

inTRODUCTION

Simple number games and puzzles are frequently developed by beginning computer hobbyists. While some enthusiasts develop computer systems that monitor environmental conditions, compute income tax, or serve as expensive burglar alarms, most continue to use their computers primarily for recreation. This book is designed for the person who is beyond the simple number-game stage of software development and would like to develop some interesting simulations. It is assumed that the reader is familiar with most of the BASIC commands and has written some simple programs.

Most of the programs in this book are written so that the computer does not do all of the "thinking" but forces the player to develop strategies for achieving the objectives. A general overview of a simulation is illustrated in the flowchart below.

The simulations presented in this book are written in BASIC and can be easily adapted to almost any system.* The programs vary from 500 to 2,000 bytes or 32 to 115 lines of BASIC. Some of the lines have multiple statements; but, since the line numbers are multiples of ten, it would be easy to modify the programs to operate with single statements.

Each simulation begins with a scenario describing the rules, conditions and objectives to be achieved. The rules have been written in second person, because some programmers like to condense the rules and place them in a subroutine for access by the operator. A sample run and a general flowchart with line numbers provide additional information about each program. A description of the variables precedes the program listing. Some program modifications are suggested. The minor modifications require only adjustments of variables in specific lines, while major modifications require additional programming. In some cases, supplemental playing boards, graphs, and charts are supplied for recording information on the progress of the simulation.

A brief description of each program is given below.

1. ART AUCTION (48 lines)

One buys and sells paintings to make a maximum profit. This is a fast simulation and does not require extra materials.
2. MONSTER CHASE (48 lines)

A monster is chasing a victim in a cage. The victim must elude the monster for ten moves to survive. This is a fairly quick simulation that doesn't require too much thinking.
3. LOST TREASURE (74 lines)

A map of an island that contains treasure is presented.
The adventurer travels over different terrain with a
compass that isn't very accurate in an attempt to find the treasure. This is a short simulation that requires about 15 moves. A map is provided.
4. GONE FISHING (83 lines)

The objective is to catch a lot of fish during a fishing trip. Half of the catch spoils if the time limit is exceeded, time is lost in a storm, and the boat sinks if it is guided off of the map. There are also sea gulls and sharks to watch. A chart is needed to keep track of good fishing spots.
5. SPACE FLIGHT (68 lines)

The task is to deliver medical supplies to a distant planet while trying to stay on course without running out of fuel. Graph paper is required to plot the course.
6. STARSHIP ALPHA (98 lines)

This expanded space flight is written in "real time." As commander of a large spaceship, the player must make quick,
*RND(1), for example, generates a number from \emptyset to 1 in MITS BASIC. $\operatorname{RND}(1)$ must be replaced with $\operatorname{RND}(\emptyset)$ for the TRS-80 computer.
logical decisions regarding landing instructions, crew morale, the black hole, radiation, aliens, and the use of shields, gyros and lazer beams.
7. FOREST FIRE (77 lines)

The objective is to subdue a forest fire with chemicals and backfires. The success of a firefighter is based on the time needed to control the fire and to completely extinguish it.
8. NAUTICAL NAVIGATION (70 lines)

This simulation requires the navigation of a sailboat to three different islands, using a radio direction finder. The wind direction is an important variable. Graph paper, protractor and ruler are needed to plot the course.
9. BUSINESS MANAGEMENT (92 lines)

In this simulation, raw materials are bought and finished products are produced and sold. The cost of materials and production and the selling price vary each month. The objective is to maximize the profits. No extra materials are required.
10. RARE BIRDS (75 lines)

This is a bird watching simulation. The objective is to identify as many different birds as possible. A record of those identified is helpful and a bird watching chart is provided.
11. DIAMOND THIEF (83 lines)

One assumes the role of a detective is this simulation. A thief has just stolen a diamond from a museum. Five suspects must be questioned to determine the thief. A floor plan of the museum and a chart indicating suspects and times are provided.
12. THE DEVIL'S DUNGEON (115 lines)

A fantasy adventure into a bottomless cave. The player must chart his way, fight monsters, poisonous gas and demons to escape with the gold.

The SOCCER program developed in the last section of the Introduction is designed for two players, although it could be modified so that the computer is one of the players. In this simulation, each player controls a team of five soccer players whose objective is to kick the ball across the opponent's goal line. This program is written in three stages to illustrate the procedure for modifying and expanding already existing simulations.

In addition to extending the simulations in this book, the reader might try combining some of them. For example, one could use the money earned in Art Auction to start the Business Management simulation. After twelve months of business, the profits could be used to buy a boat to use in the Gone Fishing simulation. A larger boat could survive more storms, hold more fish, and allow fishing in deeper water. The ultimate objective could be to catch the most fish.

The computer hobbyist is limited only by the imagination in simulating real events. It is the author's desire that this book provide some fun and, at the same time, stimulate further development of creative
simulations. Some additional ideas for simulations are suggested below.

1.	Hunt Big Foot
2. Race a Sailboat	
3.	Inhibit the Andromeda Strain
4. Stop the African Bee Invasion	
5. Climb Mountains	
6. Survive in the Wilderness	
7.	Find Gold or Oil
8. Swim from Sharks	
9.	Dispatch Airplanes, Trains, or Trucks
10. Herd Sheep	
11. Explore Caves	
12.	Catch Butterflys

The next section offers some guidelines for developing simulation activities.

DEVELOPING SIMULATIONS

A Creative Process

If one has a mathematical problem for computer solution, the programming process can be approached in the following manner: 1) Develop the flowchart. 2) Define the variables. 3) Write the initial program. 4) Debug. 5) Run. In developing a simulation activity, however, there is a great deal more creative effort involved; and the steps listed above are not necessarily implemented in sequence. One can compare the development of a simulation program to that of a creative artist such as a painter. The blank computer memory is the canvas and BASIC language represents the paint and brushes. An artist continually retouches and reworks the painting until the final product meets the artist's criteria for success.

Most technological advances, such as television and radio, are "one-way streets" -- one observes what takes place. The observer seldom creates, composes or interacts with such devices. Developing simulation programs for computers can provide intelligent people with an opportunity to react with their environment in a problem-solving mode.

Selecting a Topic

The first task in developing a computer simulation is to select a topic. Almost any idea could serve as a starting point; however, the reader's own interests and hobbies are usually the best resource for ideas. The possibilities are unlimited. One could develop simulations on cooking, stamp collecting, gardening, racing cars, dating, jogging or dreaming. With a little research, a long-desired ambition could become material for an exciting simulation -- a safari across Africa, a trip around the world, or a walk on the moon. The creative programmer can be transported to any time or any place in the universe via the computer simulation.

Once a topic for the simulation is selected, the next step is to write down a fairly detailed description of what the program will accomplish. This narration will become the scenario. To illustrate this
process, the author has chosen "survival in a jungle" as a topic.

Jungle Survival Scenario

You have crashed somewhere in the middle of an uninhabited jungle island in the Pacific. You will have to select a limited quantity from the provisions on the plane. The more provisions you carry, the slower you will travel. As you travel across the island, you will encounter various hazards with which you must deal. The terrain will consist of mountains, rivers, plains, swamps and lakes. Crossing a mountain range will be slow, but it will provide a more direct route. Traveling down a river will be easy, but a variety of unpredictable hazards will occur. Your objective is to hike to the perimeter of the island in as few days as possible.

The scenario should provide answers to the following questions.

1. What will the operator do?
2. What feedback will the computer provide?
3. What surprise elements will produce fun and excitement?
4. What are the winning conditions?
5. How will the success of the simulation be measured?

The writer must realize that the first scenario is only an approximation to the final product. As the program is developed and field tested, the scenario will probably change considerably.

While developing the scenario, the writer should begin to visualize a sample run. In the case of the jungle survival program, a sample run might look something like the following.

CHOOSE YOUR PROVISIONS: 1 FOOD
2 WATER

N XXXXXXX
READY TO START JOURNEY?
YOU ARE AT POSITION 42,43. IN THE CLEAR
CHOOSE THE DIRECTION OF YOUR NEXT MOVE? N HOW FAR WOULD YOU LIKE TO GO? 32 MILES

YOU ARE AT POSITION 42,42 . IN THE MOUNTAINS
CHOOSE THE DIRECTION OF YOUR NEXT MOVE? E
HOW FAR WOULD YOU LIKE TO GO? 10 MILES
YOU FELL INTO THE RIVER!
The sample run listed above has several problems. First, the distance the player can travel in a given time-interval should be limited. Also, one should probably be able to see mountains ahead. At this point in the development of the program, however, the writer should have decided that the output of the computer will include the location of the player, the type of terrain, and a request for the player to select the direction of travel.

Flowchart

The next step in developing a simulation is to construct a general flowchart. In the case of the jungle survival simulation, the first flowchart might take the following form.

It is not necessary to provide all of the details in the flowchart in the beginning. It is better to start writing the program and develop the flowchart along with the program. The flowchart should provide a graphic aid to the programming and need only be developed to the extent that the programmer feels it is necessary to keep track of the flow of ideas.

Selecting the Variables

It is a good idea to keep a list of the variables used in the program. If such a list is not referred to and continually updated, the same variable might be used to represent two different things. Usually the letters, I, J, K, are used for indexing loops; and the first one or two letters of a word are selected for major variables in the program, e.g., T for time. It is also useful to designate a range for the variables.

In the jungle survival program, a list of the variables might be as follows.

		$\frac{\text { Range }}{0}$
X,Y	position on island	$0-100$
T	time on island	$0-100$
E	energy of survivor	$0-100$
W	weight of provisions	$0-50$
MX,MY	location of mountains	
LX,LY	location of lakes	

CX.CY location of clearings

M direction of movement
The list of variables should be expanded as needed during the writing of the program.

Subroutines

One of the reasons given for using subroutines is to limit the amount of repetition in a program. Another use of subroutines is to provide flexibility in developing a program. The main parts of a program can be written first and subroutines can be used to add the details later. The use of subroutines frees the writer from having to determine in advance how many lines are needed between main parts of the program. Also, the main parts of the program can be more easily identified if subroutines are used to handle the details.

The use of subroutines, as described above, is illustrated below.

FLOWCHART WITHOUT SUBROUTINES

Writing the Program

After developing a rough flowchart, one can start to write and test the first part of the program. It is not usually a good idea to type in and test a long, complicated program in its entirety. The writer should make sure that the first part of the program works independently. Usually after some experimentation with the initial part of the program, one will think of new ideas; and the flowchart and/or scenario will be revised. The programmer should not forget to keep an updated version of the program on a disk or tape to avoid a second typing of the program due to an accidental loss of memory.

Sometimes the writer may find a particular objective very difficult to program. Rather than spend considerable time trying to achieve what may be impossible, it would be advisable to change the scenario. Quite often such "open-mindedness" leads to a more interesting or more elegant simulation than was originally anticipated. The writer, on the other hand, should not hesitate to program what might seem like a complex idea. Many
times complex ideas are easy to program, while simple ideas are very difficult to program. The programmer should not strive for perfection. Most programs could probably be "neater" or more elegant with the investment of a few more hours of programming time; however, the only accomplishment might be to save a few milliseconds during the run.

The simulation should be fairly simple at first, until it is running. Then the programmer can add the "bells and whistles" if desirable. Sometimes too much complexity distracts from the enjoyment of the simulation, especially if it takes another computer to operate the simulation.

When writing a program, one should keep all program statements involving a similar idea together. Such a practice will make debugging a program much easier. A brief summary of the instructions for the simulation is also worthwhile if memory capacity is sufficient.

It is sometimes difficult to provide an appropriate balance between ski.1 and luck. The chance factors provide interest, excitement and intrigue; however, too much luck does not provide sufficient challenge. Also, with too many chance factors, it would be difficult to compare different runs of the program. An interesting possibility would be to provide a variety of options at the beginning of a program that determines the balance of luck and skill.

Field Testing

When the program is in a "playable" form, it should be tested by several different players. An unanticipated method for achieving the objective may be discovered or the objective may be almost impossible to achieve. Most likely, one will find that many new ideas will result from feedback from these players, and some will be easily incorporated into the program.

The writer will find that the simulation will never reach, but only approximate, the ideal. The fun and excitement of creating, modifying, and expanding your simulation will never end.

In the next section of this book are fifteen simulations that are in a playable form; however, they are only the beginning for the person with a creative mind.

Each program in this book concludes with a list of suggested modifications. This section illustrates how to modify and expand a simple program, SOCCER I, to the more sophisticated SOCCER II and SOCCER III. These three programs require two people to operate the computer, where each person controls five players on a playing field.

The objective in SOCCER I is to eliminate the opponent's players. SOCCER I is the least sophisticated of the three programs and does not provide for incorrect inputs from the keyboard.

In SOCCER II, the objective is to be the first team to pick up a ball that is resting in the middle of the field. Sidelines are drawn in this program, and a player's movement can be stopped by pressing the space bar. Incorrect key entries are ignored.

In the last version presented here, SOCCER III, one must kick the ball across the opponent's goal line. When a player touches the ball, it moves in one of three random directions toward the goal, unless it is blocked by an opponent. Injured players appear on the sidelines.

The technique of modifying and/or expanding existing programs is very valuable. It would be a good exercise for the student to continue expanding this program by using the suggestions listed at the end of the SOCCER III section.

SOCCER I

Scenario

This simulation requires two people to play. One person controls the five letters, A, B, C, D and E; another person controls the five numerals, $1,2,3,4$ and 5. In the beginning, the letters appear on the left side of the screen and the numerals appear on the right side of the screen. A small dot will appear on either the left or right side of the screen to indicate which player can take a turn.

A turn consists of moving one of the five players by entering the appropriate numeral or letter, followed by an arrow entry to indicate the general direction of movement. A player moves ten spaces each turn. If a player lands on an opponent, the game is over. Incorrect key entries must be avoided in this program or the program will halt.

Sample Run

SOCCER I FLOWCHART

SOCCER I PROGRAM

Variables

I,J,K	Indices
P	Player
L(I)	Location of player
X $\$$	Input character
N	ASCII code of character
Y $\$$	Input direction
D	ASCII code of direction
L	Old location
M	New location
E,F	Temporary variables

Program Listing

5 REM SET
10 DEFINT I-W:DEFSTR X-Z:CLS:P=1:RESTORE
20 FOR I=1 TO 1ø:READ L(I):NEXT
30 DATA $198,326,454,582,710,249,377,505,633,761$
35 REM PRINT
50 FOR I=1T05:PRINT@L(I),CHR\$(64+I);:NEXT:FOR I=6T010:PRINT@L(I), CHR\$(43+I) ; :NEXT:SET($\emptyset, 47)$

55 REM INPUT
60 X=INKEY\$:IF X=""THEN 60:REM NO SPACE
$70 \mathrm{~N}=\mathrm{ASC}(\mathrm{X})$
80 IF $\mathrm{P}=1$ THEN $\mathrm{N}=\mathrm{N}-64$ ELSE $\mathrm{N}=\mathrm{N}-43$
$90 \quad \mathrm{~L}=\mathrm{L}(\mathrm{N})$
$100 \mathrm{Y}=$ INKEY $\$:$ IF $Y="$ "THEN 100
110 D=ASC (Y)
195 REM START MOVE
200 FOR I=1 TO 1ø
210 IF $\mathrm{D}=10$ THEN $\mathrm{M}=\mathrm{L}+58+3 * \mathrm{RND}(3)$
220 IF D=91 THEN M=L-58-3*RND (3)
230 IF D=9 THEN ON RND(3) GOSUB 501,5Ø2,5Ø3
240 IF D=8 THEN ON RND(3) GOSUB5 $04,505,5 \emptyset 6$
$250 \mathrm{E}=(\mathrm{M}-3) / 64: \mathrm{F}=(\mathrm{M}+4) / 64$
260 IF $M<64$ OR $M>895$ THEN $M=L: G O T 035 \emptyset$
270 IF INT(E)-E= \varnothing OR INT(F)-F= \emptyset THEN $M=L: G O T 035 \emptyset$
275 REM CHECKS
280 FOR K=1 TO 1ø
290 IF K=N THEN 340
300 IF M $<L(K)$ THEN34D
310 IF $\mathrm{P}=1$ AND $\mathrm{K}<6$ THEN $\mathrm{M}=\mathrm{L}: G O T O$ 34D
320 IF $\mathrm{P}=2$ AND $K>5$ THEN $M=L: G O T O$ 34 \emptyset
330 CLS:IF P=1 PRINT@410,"LETTERS WIN!";ELSE PRINT@410, "NUMBERS WIN!";
335 FOR I=1 TO 1øDD:NEXT J:RUN
340 NEXT K:PRINT@L," ";:L=M:PRINT@M,X;
350 NEXT I
395 REM FINISH MOVE
$400 \quad \mathrm{~L}(\mathrm{~N})=\mathrm{M}$

410 IF $\mathrm{P}=1$ THEN $\mathrm{P}=2$ ELSE $\mathrm{P}=1$
420 IF $\mathrm{P}=1$ THEN $\operatorname{SET}(\emptyset, 47): \operatorname{RESET}(127,47)$
430 IF $\mathrm{P}=2$ THEN SET $(127,47): \operatorname{RESET}(\emptyset, 47)$
450 GOT06Ø
$501 \mathrm{M}=\mathrm{L}+3$: RETURN
$502 \mathrm{M}=\mathrm{L}-61$: RETURN
$503 \mathrm{M}=\mathrm{L}+67$: RETURN
$504 \mathrm{M}=\mathrm{L}-3$: RETURN
$505 \mathrm{M}=\mathrm{L}+61$: RETURN
506 M=L-67:RETURN

Soccer II

This program is an extension of the previous program, SOCCER I. It is a good idea to have SOCCER I running before proceeding with the modifications and additions suggested in this section.

Scenario

In this simulation, as in SOCCER I, two people control five players each. The major difference is the objective -- to be the first to land on a ball resting in the middle of the field. You can eliminate more than one of your opponent's players. Also, you can stop your own player's movement by pressing the space bar.

A border is drawn around the field, and prompts are printed at the bottom of the field to indicate each player's turn and the character that has been entered. Inappropriate entries from the keyboard are not accepted. The strength of the players, which diminishes with each move and increases when resting, determines the players' ability to move and eliminate opponents.

Sample Run

SOCCER II PROGRAM

Variables

The same as for SOCCER I with the following additions:
$S(N) \quad$ strength

Program Listing

The same as for SOCCER I with the following changes:
To replace the dot indicator with the word, LETTERS, and to add the ball in the middle of the field, eliminate : SET $(\emptyset, 47)$ from line 50 and add line 52.

52 PRINT@960,"LETTERS";PRINT@481,"*";:PRINT@990,"I";
Add line 40 to draw two horizontal and two vertical lines.
40 FOR I=4 TO 123:SET(I,2):SET(I,42):NEXT:FOR I=2 TO 42: $\operatorname{SET}(4, I): \operatorname{SET}(123, I): N E X T$

Add 1 ines 72 and 74 to insure that the correct characters are entered from the keyboard.

72 IF $P=1$ AND ($K<65$ OR $N>69$) THEN $6 \emptyset$
74 IF $\mathrm{P}=2$ AND (K 49 OR $\mathrm{N}>53$) THEN 6Ø
To make sure that an eliminated player is not moved, add line 85.
85 IF $L(N)<\emptyset$ THEN $6 \emptyset$
To print characters and directional arrows on the screen, add the following lines.

92 PRINT@990, X;
$111 \quad \mathrm{I}=\emptyset$
112 IF D=8 PRINT@990, $\operatorname{CHR} \$(93) ;: I=1$
114 IF D=9 PRINT@99ø, CHR\$ (94);:I=1
116 IF $D=1 \emptyset$ PRINT@99 $\operatorname{CHR} \operatorname{CH}(92) ;: I=1$
118 IF D=91 PRINT@99の,CHR\$(91);:I=1
120 IF I=Ø PRINT@99め,"?";
To stop movement of player, add the following lines.
$205 \quad Y=I N K E Y \$: I F \quad Y="$ "THEN $Y=" Z "$
207 IF ASC $(Y)=32$ THEN 4ดØ
Add the following to the end of line 400.
:PRINT@990,"I";
To win, add line 272.
272 IF M=481 GOTO $33 \emptyset$

To have the movement and elimination of other players depend upon the strength，make the following additions and changes．

In line 200，replace 10 with $\mathrm{S}(\mathrm{N})$ ．
Add lines 325 and 327.

```
325 IF S(N) =S(K) THEN L(K)=-1:GOT034\varnothing
```

327 GOTO $34 \emptyset$

Add line 440 to adjust strength．
440 FOR J＝1T010：S（J）＝S（J）＋3：NEXT J：S（N）＝S（N）－I
To print＂LETTERS＂and＂NUMBERS＂，change lines 420 and 430 as follows．

```
420 IF P=1 THEN PRINT@960,"LETTERS";:PRINT@1\emptyset16," ";
```

430 IF P=2 THEN PRINT@1016,"NUMBERS";:PRINT@960," ";

Program Listing

5 REM SET
10 （See Soccer I）
20 FOR I＝1T01ø：READ L（I）：S（I）＝5：NEXT
（See Soccer I）
40 FOR I＝4TO123：SET（I，2）：SET（I，42）：NEXT：FOR I＝2T042：SET（4，I）：
SET（123，I）：NEXT
50 （See Soccer I）
52 PRINT＠96Ø，＂LETTERS＂．；PRINT＠481，＂＊＂；
55
70 （See Soccer I）
72 IF $\mathrm{P}=1$ AND（ $\mathrm{N} \subset 650 \mathrm{R} \mathrm{N}=69$ ）THEN 60
74 IF $\mathrm{P}=2$ AND（ $\mathrm{N}=49$ OR $\mathrm{N}<53$ THEN 60
80 （See Soccer I）
85 IF $\mathrm{L}(\mathrm{N})<\emptyset$ THEN $6 \varnothing$
90 （See Soccer I）
92 PRINT＠99め，X；

110 （See Soccer I）
111 I＝ø
112 IF D＝8 PRINT＠990，CHR\＄（93）；：I＝1
114 IF D＝9 PRINT＠99め，CHR\＄（94）；：I＝1
116 IF D＝10 PRINT＠99, CHR $\$(92) ;: I=1$
118 IF D＝91 PRINT＠990，CHR\＄（91）；：I＝1
120 IF I＝ø PRINT＠99め，＂？＂；
195 （See Soccer I）
200 FOR I＝1TO S（N）
$205 \quad \gamma=I N K E Y \$: I F \quad \gamma="$＂THEN $Y=" Z "$
$207 \operatorname{IF} \operatorname{ASC}(Y)=32$ THEN4DD
210
270 （See Soccer I）
272 IF M＝481 GOT033ø

275
320 (See Soccer I)
325 IF $S(N)>=S(K)$ THEN $L(K)=-1: G 0 T C 34 \emptyset$
327 GOTO34ø
330
395 (See Soccer I)
400 L(N)=M:PRINT@990,"I"
410 (See Soccer I)
420 IF P=1 THEN PRINT@960,"LETTERS";:PRINT@1016," ";
430 IF $\mathrm{P}=2$ THENPRINT@1016,"NUMBERS";:PRINT@960,"
440 FOR J=1TO1D:S(I)=S(J)+3:NEXT J:S(N)=S(N)-I
450
506 (See Soccer I)

Soccer III

This program is an expansion of the previous program, SOCCER II. SOCCER II should be working well before one begins to develop SOCCER III.

Scenario

The movement of the players in SOCCER III is the same as in the previous program, SOCCER II. In order to win in SOCCER III, however, one of your players must kick the ball across the opponent's goal line. The distance the ball is kicked will depend on the strength of the player. When eliminated, a player appears on the sideline. Strength is not a factor in eliminating opponents as in SOCCER II, since it might be possible for an opponent to block the movement of the ball indefinitely.

Sample Screen Display

B

B

SOCCER II AND III FLOWCHART

SOCCER III PROGRAM

Variables

The variables are the same as SOCCER II with the following additions.

```
Q,T Indices
B Location of ball
C Temporary location of ball
G,H Temporary variables
```


Program Listing

The listing is the same as in SOCCER II with the following changes.
To set the ball, add $B=481$ at the end of 1 ine 10 .
To check if the ball is hit, replace line 272 with the following
272 IF M=B THEN60ด
and replace line 330 with the following.
330 GOSUB47Ø
Eliminate lines 325, 327 and 335.
To place a player on the sideline, add the following lines.
$470 \mathrm{Z}=" \mathrm{ABCDE} 12345 ": F O R \mathrm{Q}=1 \mathrm{TO} \mathrm{K}: \mathrm{Y}=\mathrm{MID} \$(\mathrm{Z}, \mathrm{Q}, 1):$ NEXT Q
$480 \mathrm{~L}(\mathrm{~K})=-9$:IF K<6 PRINT@993+2*K,Y;
490 IF K>5 PRINT@993+2*K, Y ;
495 RETURN
To move the ball, add the following lines.
600 IF $\mathrm{P}=1$ THEN $\mathrm{G}=3$
610 IF $\mathrm{P}=2$ THEN $\mathrm{G}=-3$
615 H=64*(RND (3)-2)
620 FOR T=1 TO S(N)/5
$630 \mathrm{C}=\mathrm{B}+\mathrm{G}: \mathrm{C}=\mathrm{C}+\mathrm{H}: \mathrm{E}=(\mathrm{C}-3) / 64: \mathrm{F}=(\mathrm{C}+4) / 64$
640 IF INT(E)-E= \emptyset THEN CLS:PRINT@41 $0, " N U M B E R S ~ W I N " ;: G O T 064 \varnothing ~$
650 IF INT(F)-F=ø THEN CLS:PRINT@410,"LETTERS WIN";:GOT0650
660 IF $\mathrm{C}<127$ OR $\mathrm{C}>831$ THEN $M=\mathrm{L}: G 0 T 028 \varnothing$
670 FOR $Q=1$ TO 10
680 IF $\mathrm{C}=\mathrm{L}(\mathrm{Q})$ THEN $\mathrm{M}=\mathrm{L}: G 0 T 028 \emptyset$
690 NEXT Q
700 PRINT@B," ";:PRINT@C,"*";:B=C
710 NEXT T
720 GTT028ø
For better blocking, change line 680 to the following.
680 IF $\mathrm{C}=\mathrm{L}(\mathrm{Q}) \mathrm{OR} \mathrm{C=L}(\mathrm{Q})+64$ OR $\mathrm{C}=\mathrm{L}(\mathrm{Q})-64$ THEN $\mathrm{M}=\mathrm{L}: \mathrm{GOTO} 28 \emptyset$

Modifications with Instructions
The following modifications are not absolutely necessary but provide the reader with a variety of interesting options.

To add directions, insert the following lines.

```
    2 CLS:PRINT@389,"WANT INSTRUCTIONS (Y OR N)";
```

 \(4 \quad Y \$=\) INKEY \(\$\) :IF \(Y \$=\) ""THEN 4
 6 IF Y\$="Y"THEN GOSUB8øø
 800 PRINT"TO WIN GET * ACROSS GOAL."
801 PRINT"* MOVES TOWARD GOAL WHEN TOUCHED BY PLAYER."
802 PRINT"TO MOVE PLAYER, PRESS LETTER OR NUMERAL THEN ARROW."
803 PRINT"STOP PLAYER BY PRESSING SPACE BAR."
804 PRINT"PLAYER IS OUT OF GAME IF HIT BY OPPONENT."
805 PRINT"PLAYERS BLOCK *."
806 PRINT"DISTANCE PLAYER MOVES AND BALL GOES DEPENDS ON STRENGTH."
807 PRINT"PLAYER LOSES STRENGTH WHEN MOVING. GAINS STRENGTH WHEN
RESTING."
808 PRINT"TEAM THAT KICKS BALL MAINTAINS CONTROL."
809 PRINT"PRESS ANY KEY TO PLAY."
810 Y $\$=I N K E Y \$: I F Y \$=" " T H E N 81 \varnothing$
811 RETURN

To allow the player who kicks the ball another chance to dribble or pass, add the following line.

720 L(N)=M:PRINT@L," ";:PRINT@M,X;:GOT06Ø
To make the ball easier to hit, add the following line.
272 IF $M=B \quad 0 R \quad M=B-3 \quad$ OR $\quad M=B+3 \quad$ OR $\quad M=B-61 \quad O R \quad M=B-67 \quad O R \quad M=B+67 \quad O R$ $\mathrm{M}=\mathrm{B}+64$ OR M=B-64 THEN 6øØ

To keep score, add the following lines.
640 IF INT(E)-I= \emptyset THEN PRINT@41 $1 \varnothing$,"NUMBERS SCORE"; :NS=NS $+1:$ GOT075 \emptyset
650 IF INT(F)-F= \emptyset THEN PRINT@41 $0, " L E T T E R S ~ S C O R E " ;: L S=L S+1: G 0 T 075 \emptyset$
750 FOR I=1 TO 1ØDD:NEXT
760 PRINT:PRINT"LETTERS:";LS:PRINT"NUMBERS:";NS:FOR I=1 TO 2øøض: NEXT:GOTO $1 \emptyset$

To keep time, add the following lines.
$450 \mathrm{TT}=\mathrm{TT}+1$:PRINT@995,TT;
452 IF TT>1øゆTHEN CLS:IF LS>NS PRINT@41ø,"LETTERS WIN": END ELSE PRINT@410,"NUMBERS WIN": END

Modifications

1. Injured players on the sideline return after three or four moves.
2. Provide a goat keeper.
3. Use a timer and scoring device.
4. Add more players.
5. Implement regulation soccer rules.
6. Allow passing to teammates.

ART AUCTION

Scenario
In this simulation, you will be given an opportunity to buy and sell up to five paintings. The objective is to make a large profit by buying the paintings for as little as possible and selling them for as much as possible.

In order to buy a painting, you must bid against a secret bid made by another buyer (the computer). When a painting is offered for sale, three numbers will be given that represent the mean and range of bids for this particular painting. For example, "200 300 400" indicates that the mean bid price for the painting is 300 , and about 70% of the time the price will be between 200 and 400 . (Note that higher priced paintings tend to have a larger range of prices.)

After you buy your paintings, you will be given an opportunity to sell them. You will receive from one to five offers, but you do not know in advance how many offers will be made. The offers will be, on the average, 50 higher than the bids made during the buying phase. If you do not accept an offer, and it is the last one, then the offer will be automatically processed. Sometimes it will be wise to accept an offer that is less than the purchase price rather than gamble on a higher offer that does not materialize.

When all of the paintings that you have bought have been sold, you will be given your total profit for all of the transactions.

Sample Run

BUY PAINTING 1
PRICES: 546553560
YOUR BID? 560
OPPONENT BID 565.
YOU WERE OUT BID.
BUY PAINTING 2
PRICES: 336449562
YOUR BID? 400
OPPONENT BID 440.
YOU WERE OUT BID.
BUY PAINTING 3
PRICES: 213288363
YOUR BID? 300
OPPONENT BID 324
YOU WERE OUT BID.
BUY PAINTING 4
PRICES: $403 \quad 514625$
YOUR BID? 600
OPPONENT BID 497.
YOU BOUGHT IT.

BUY PAINTING 5
PRICES: 274346417
YOUR BID? 350
OPPONENT BID 311.
YOU BOUGHT IT.
SELL PAINTING 4
YOU BOUGHT IT FOR 600.
AVERAGE OFFER IS 564.
OFFER 1 IS 649.
ACCEPT? Y
SELL PAINTING 5
YOU BOUGHT IT FOR 350.
AVERAGE OFFER IS 396.
OFFER 1 IS 365.
ACCEPT? N
YOUR PROFIT IS 64.
PLAY AGAIN?

```
Variables
    P(5) Prices
S(5) Price range
F(5) Set flag if painting is bought
CB Opponent's bid
YB Your bid
I,J,K Indices
P Profit
N Number
D Dividend
Q Quotient
```


Program Listing

```
5 REM SET PRICES AND RANGES
10 DIM P(5),S(5),F(5)
20 FOR \(I=1\) TO 5
\(30 \quad \mathrm{P}(\mathrm{I})=100+\mathrm{INT}(900 * R N D(1))\)
\(40 \quad \mathrm{~S}(\mathrm{I})=\mathrm{INT}(\mathrm{P}(\mathrm{I}) * R N D(1))\)
50 IF P(I)<500 THEN S(I)=INT(P(I)*.7*RND(1))
\(60 \quad \mathrm{~F}(\mathrm{I})=0\)
70 NEXT I
95 REM BUY PAINTINGS
100 FOR \(\mathrm{I}=1\) TO 5
110 GO SUB 500
120 PRINT: PRINT "BUY PAINTING"; I:PRINT:PRINT
130 PRINT "PRICES:"; INT(P(I)-.5*S(I)); P(I); INT(P(I)+.5*S(I))
140 PRINT: PRINT: INPUT "YOUR BID"; YB
150 PRINT "OPPONENT"S BID"; CB; "."
160 IF YB>CB THEN PRINT "YOU BOUGHT IT.": F(I)=YB: GO TO 180
170 PRINT "YOU WERE OUT BID."
180 NEXT I
195 REM SELL PAINTINGS
200 FOR \(I=1\) TO 5
210 IF \(\mathrm{F}(\mathrm{I})=0\) THEN 310
220 FOR K=1 TO INT(5*RND(1))
230 GO SUB 500: CB=CB+INT(100*RND(1))
240 PRINT "SELL PAINTINGS"; I
250 PRINT "YOU BOUGHT IT FOR"; F(I): PRINT "AVERAGE OFFER IS"; P(I) +50
260 PRINT "OFFER"; K; "IS"; CB; "."
270 INPUT "ACCEPT"; Y\$
280 IF Y\$="Y" THEN 300
290 NEXT K
\(300 \quad \mathrm{P}=\mathrm{P}+\mathrm{CB}-\mathrm{F}(\mathrm{I})\)
310 NEXT I
320 PRINT: PRINT "YOUR PROFIT IS"; P; "."
330 INPUT "PLAY AGAIN"; Y\$
340 IF Y\$="Y" THEN RUN
350 END
```

495 REM NORMAL DISTRIBUTION SUBROUTINE
500
510 $\mathrm{D}=0$
$\mathrm{N}=\mathrm{INT}(65536 * \mathrm{RND}(1))$
520 FOR $J=1$ TO 16
$530 \mathrm{Q}=\operatorname{INT}(\mathrm{N} / 2)$
$540 \quad \mathrm{D}=\mathrm{D}+2 *(\mathrm{H} / 2-Q)$
$550 \quad \mathrm{~N}=\mathrm{Q}$
560 NEXT J
$570 \quad \mathrm{CB}=\mathrm{P}(\mathrm{I})+\mathrm{S}(\mathrm{I}) *(\mathrm{D}-8) / 8$
$580 \quad \mathrm{CB}=\mathrm{CB}+20 * \mathrm{RND}(1)$
$590 \quad \mathrm{CB}=\mathrm{INT}(\mathrm{CB})$
600 RETURN

ART AUCTION MODIFICATIONS

Minor

1. Number of paintings -- lines $10,20,100,200$
2. Starting prices -- line 30
3. Price spread -- lines 40, 50
4. Built-in profit -- lines 230,250
5. Error in price range -- line 580
6. Number of offers -- line 220

Major

1. Have one or more of the paintings a forgery that is worth nothing.
2. Have one or more of the paintings that have a low purchase price be very valuable.
3. Have more opponents bid against you.

ART AUCTION FLOWCHART

MONSTER CHASE

Scenario

In this simulation you are locked in a cage with a hungry monster who has a life span of ten turns. Your movement and that of the monste takes place on a 5×5 grid. You may move north, east, south, or west by entering N, E, S, or I. If you enter any other letter, you will remain in the same place.

The monster is programmed to move along one of the arrows toward you as shown below :

Your only means of survival is to outwit the monster for ten turns.

Sample Run

1	- . . . -	-••••
....	- ${ }^{\text {M }}$	$\cdots \cdot \cdots$
.	Y M
Y	. . . Y	-••••
MOVE 1	MOVE 4	MOVE 7
DIRECTION? H	DIRECTION? M	DIRECTION? W
\dot{M}	- . . .	- . . .
.	γ M
\dot{y}	$\cdot \dot{Y}^{M}$	$\cdots \cdot \cdots$
MOVE 2	MOVE 5	MOVE 8
DIRECTION? N	DIRECTION? . 4	DIRECTION? N
-••••	EATEN PLAY AGAIN?
- \dot{M}	$\cdots \cdot \cdots$	
Y		
MOVE 3°	$\operatorname{MOVE}_{6}{ }_{6} \cdot \mathrm{M}$	
DIRECTION? S	DIRECTION? N	

MONSTER CHASE PROGRAM

Variables

R,C	Your row and column
X,Y	Monster's row and column
L,M	Temporary variables
M\$	Your move (N,E,S,W,0)
D	Direction of the monster (1-8)
T	Turns (1-10)

Listing

5 REM SET CONDITIONS
$10 \quad X=1: Y=1$
20 R=5: $C=5$
30 FOR T=1 T0 10
35 REM DISPLAY GRID
40 FOR I=1 TO 5
$50 \quad$ FOR $\mathrm{J}=1$ TO 5
60 PRINT TAB(8)
70 IF I=X AND J=Y THEN PRINT "M";: GO TO 100
80 IF I=R AND J=C THEN PRINT "Y";: GO TO 100
90 PRINT ".";
100 NEXT J
110 PRINT
120 NEXT I
210 ?:?:? "MOVE NUMBER"; T
220 INPUT "DIRECTION (NESWO)"; M\$
240 IF $M \$=" N "$ THEN $R=R-1$
250 IF $\mathrm{M} \$=$ "E" THEN $\mathrm{C}=\mathrm{C}+1$
260 IF $M \$=" S "$ THEN $R=R+1$
270 IF $M \$=$ " V " THEN $\mathrm{C}=\mathrm{C}-1$
280 IF $\mathrm{R}^{\star} \mathrm{C}=0$ OR R>5 OR $\mathrm{C}>5$ THEN PRINT "OUT OF BOUNDS": GO TO 520
290 IF $\mathrm{R}=\mathrm{X}$ AND $\mathrm{Y}=\mathrm{C}$ THEN PRINT "EATEN": GO TO 520
300 IF $X=R$ AND $Y<C$ THEN $D=1$
310 IF $X>R$ AND $Y<C$ THEN $D=2$
320 IF $X>R$ AND $Y=C$ THEN $D=3$
330 IF $X>R$ AND $\gamma>C$ THEN $D=4$
340 IF $X=R$ AND $Y>C$ THEN $D=5$
350 IF $X<R$ AND $Y>C$ THEN $D=6$
360 IF $X<R$ AND $\gamma=C$ THEN $D=7$
370 IF $X<R$ AND $Y<C$ THEN $D=3$
$380 \mathrm{D}=\mathrm{D}+\mathrm{INT}(3 * \operatorname{RND}(1)-1)$
390 IF $\mathrm{D}=0$ THEN $\mathrm{D}=8$
400 IF $D=9$ THEN $D=1$
410 IF $D>1$ AND $D<5$ THEN $x=x-1$
420 IF $D>5$ THEN $x=x+1$
430 IF D>3 AND $D<7$ THEN $Y=Y-1$
440 IF $D<3$ OR $D=8$ THEN $Y=Y+1$
450 IF $x=0$ THEN $x=x+1$
460 IF $\mathrm{Y}=0$ THEN $\mathrm{Y}=\mathrm{Y}+1$
470 IF $X=6$ THEN $X=X-1$
480 IF $Y=6$ THEN $Y=Y-1$

```
490 IF X=R AND Y=C THEN PRINT "EATEN": GO TO 520
500 NEXT T
510 PRINT "YOU SURVIVED!"
520 INPUT "PLAY AGAIN"; Y$
530 IF Y$="Y" THEN RUN
540 END
```

MONSTER CHASE MODIFICATIONS

Minor

1. Grid size -- lines $20,40,50,280,470,480$
2. Turns to win -- line 30

Major

1. Have more than one monster.
2. Chase a little monster while a big monster tries to get you.
3. Have the monster fall in quicksand.
4. Require food in order to maintain energy.

MONSTER CHASE FLOWCHART

LOST TREASURE

Scenario

You have landed somewhere on an island that has treasure, woods, mountains, a cave, a bluff, an oak tree, and, of course, sea water all around. Your objective is to find the treasure as quickly as possible without falling into the shark-infested water.

You can move north (N), east (E), south (S), or west (W) one square at a time. Your compass, however, is not very accurate. There is only an 80% chance that you will move in the intended direction. There is a 20% chance you will move diagonally to the left or to the right. Each time that you move you will receive feedback regarding the type of terrain on which you are traveling.

If you fall into the sea, you will be placed back on the square occupied prior to your unfortunate move, unless you disturb the sharks. The chance that the sharks will eat you the first time you fall in is 20%. The second time you fall in the chance of being eaten is 70%. The third time you fall in will be your last!

Since you have a map of the island, you will be able to determine your approximate position. For example, if you are in the woods and you move east two squares and find that you are in mountains, then you are most likely located in the north-east corner of the island. The reason you can't be sure of the exact location is that you may have veered off to the right or left. With practice, you should be able to find the treasure in less than fifteen moves.

Sample Run

RUIN
YOU ARE IN THE CLEAR.
MOVE (NESW)? S
YOU FELL INTO THE OCEAN.
EATEN BY SHARK.
PLAY AGAIN Y OR N? Y
YOU ARE IN THE CLEAR.
MOVE(NESW)? S
YOU ARE IN THE WOODS. MOVE(NESW)? N

YOU ARE IN THE MOUNTAINS. MOVE(NESW)? E

YOU ARE IN THE WOODS. MOVE(NESW)? S

YOU ARE IN THE CLEAR. MOVE(NESW)? E YOU FOUND THE TREASURE IN 9 MOVES. PLAY AGAIN Y OR N?

LOST TREASURE FLOWCHART

LOST TREASURE MAP

S

Legend
Mountains
Oak Tree

Cave
Treasure

Variables

$L(R, C)$	Locations
S	Probability of being eaten by shark
R	Your row

C	Your column
RT, CT	Temporary storage
T	
	Number of turns

Listing

5 REM SET TERRAIN
10 DIM L $(9,9)$
$20 \quad S=.2$
30 FOR $I=1$ TO 9: FOR $\mathrm{J}=1$ TO 9
$40 \mathrm{~L}(\mathrm{I}, \mathrm{J})=0$
50 NEXT J,I
60 FOR I=1 TO 6
70 READ R,C
$80 \quad L(R, C)=1$
90 NEXT I
100 FOR $I=1$ TO 6
110 READ R,C
$120 L(R, C)=2$
130 NEXT I
$140 \quad L(1,8)=3$
$150 \quad L(6,1)=4$

$160 \quad L(9,6)=5$
$170 \quad L(5,5)=6$
175 REM YOUR LOCATION
$180 \mathrm{R}=\mathrm{INT}(9 * \mathrm{RND}(1)+1)$
$190 \mathrm{C}=\mathrm{INT}(9 * \operatorname{RND}(1)+1)$
200 IF $\operatorname{SOR}((R-5) \uparrow+(C-5) \& 2)<2$ THEN 180
205 REM START MAIN LOOP
210 FOR T=1 TO 100
220 PRINT "YOU ARE ";
$230 \mathrm{~J}=\mathrm{L}(\mathrm{R}, \mathrm{C})+1$
240 ON J GO SUB $250,260,270,280,290,300$: GO TO 310
250 PRINT "IN THE CLEAR.": RETURN
260 PRINT "IN THE WOODS.": RETURN
270 PRINT "IN THE MOUNTAINS.": RETURN
280 PRINT "NEAR A CAVE.": RETURN
290 PRINT "ON A BLUFF.": RETURN
300 PRINT "NEAR AN OAK TREE.": RETURN


```
370 GO T0 460
375 REM MOVE SUBROUTINE
380 J=INT(10*RND(1)+1)
390 IF J>2 THEN RETURN
4 0 0 ~ I F ~ J = 1 ~ T H E N ~ C = C + 1 : ~ R E T U R N ~
4 1 0 ~ C = C - I : ~ R E T U R H
4 2 0 ~ J = I N T ( 1 0 * R N D ( 1 ) + 1 )
4 3 0 ~ I F ~ J > 2 ~ T H E N ~ R E T U R N N
440 IF J=1 THEN R=R+1: RETURN
4 5 0 ~ R = R - 1 : ~ R E T U R N
455 REM IN OCEAN, FOUND TREASURE?
460 IF R<1 OR R>9 OR C<1 OR C>9 THEN 490
470 IF L(R,C)=6 TIIEN PRINT "YOU FOUND THE TREASURE IN"; T: GO TO 550
4 8 0 ~ N E X T ~ T ~
4 9 0 ~ P R I N T ~ " Y O U ~ F E L L ~ I N T O ~ T H E ~ O C E A N . " ~ '
500 IF RND(1)<S THEN PRINT "EATEN BY SHARKS!": GO TO 550
510 S=S+.5: R=RT: C=CT: IF S>1 THEN S=1
5 2 0 ~ P R I N T ~ " T H E ~ P R O B A B I L I T Y ~ O F ~ B E I N G ~ E A T E N " ~
530 PRINT "BY A SHARK NEXT TIME IS"; S; "."
540 GO TO 480
550 INPUT "PLAY AGAIN"; Y$
560 IF Y$="Y" THEN RUN
570 END
580 DATA 2,3,3,5,3,9,4,1,7,2,8,8
590 DATA 1,2,3,7,5,2,6,8,8,3,8,6
```


LOST TREASURE MODIFICATIONS

Minor

1. Probability of first shark attack -- line 20
2. Grid size -- lines 30,180 , 190, 460
3. Number of woods -- lines 60,580
4. Number of mountains -- lines 100,590
5. Landmarks' locations -- lines $140,150,160$
6. Location of the treasure -- line 170
7. Movement error -- lines 380,420
8. Amount you disturb shark -- line 510

Major

1. Vary number and amount of treasure.
2. Add parameters of water and/or food to maintain your energy level.
3. Hunt a moving treasure.
4. Modify direction of movement.
5. Add quicksand.
6. Include landmarks placed at random that are not on the map.
7. Randomly place treasure before each hunt.

NOTES

GONE FISHING

You are going on a fishing trip. The sea is an 8×8 grid, forming 64 fishing locations. You will start at the dock, square (1,1), and try to catch as many pounds of fish as you can. You may move one square at a time horizontally or vertically by entering a north(N), south(S), east(E), or west(W). Entering an F allows you to fish in the same place again, and a B allows you to start another fishing trip immediately. If you select a direction that takes you off the grid, your ship will sink. You must return to the dock in sixty moves, which is equivalent to six hours. If you don't return in time, half of your catch will spoil.

The chance of catching fish is different for each square and is determined at the beginning of the trip. The chance of catching fish in a given square will remain the same throughout the trip or will decrease if the fish are scared by a shark. The maximum number of fish that can be caught in each square (density) is also determined at the beginning of the simulation. This number varies from 1 to 5 . The maximum number of fish you can catch in a square will decrease only if sea gulls eat some of the bait. The maximum weight of a fish in a particular square is the product of the row and column; therefore, the further out you go, the bigger the fish.

The longer you fish, the greater the chance of an afternoon storm occurring. If you hit a storm, you will lose .5 hour. One of the more difficult manuvers of the trip is to fish as long as necessary to accumulate a large catch without getting lost in a storm. Also, there is a 4% chance that you will experience some unexpected event during each move of the trip. Be sure you return to the dock before six hours have elapsed. Your rating as a fisherman will be the number of pounds of fish you catch divided by five.

You may wish to use the fishing grid on page 4.6 to record the best fishing spots. A small marker can be used to keep track of your location on the grid.


```
RUN
NO BITES
AT LOCATION 1 1
TOTAL LBS. THIS TRIP IS 0.
YOU HAVE FISHED FOR O HOURS.
MOVE(N,S,E,N,F,B)? E
NO BITES
AT LOCATIOH 1 2
TOTAL LBS. THIS TRIP IS 0.
YOU HAVE FISHED FOR . }1\mathrm{ HOURS.
MOVE(N,S,E,W,F,B)? S
YOU CAUGHT 1 FISH,
EACH WEIGHING 2 LBS.
AT LOCATION 2 2
TOTAL LBS. THIS TRIP IS 2.
YOU HAVE FISHED FOR . 2 HOURS.
MOVE(N,S,E,W,F,B)? S
NO BITES
AT LOCATION 3 2
TOTAL LBS. THIS TRIP IS 2.
YOU HAVE FISHED FOR . }3\mathrm{ HOURS.
MOVE(N,S,E,W,F,B)? E
YOU CAUGHT 4 FISH,
EACH WEIGHING 2 LBS.
AT LOCATION 3 3
TOTAL LBS. THIS TRIP IS 10.
YOU HAVE FISHED FOR . }4\mathrm{ HOURS.
MOVE(N,S,E,W,F,B)? E
NO BITES
AT LOCATION 4 6
TOTAL LBS. THIS TRIP IS 10.
SEA GULLS ATE SOME OF YOUR BAIT.
CATCH WILL BE SMALLER THIS TRIP.
YOU HAVE FISHED FOR . }8\mathrm{ HOURS.
MOVE(N,S,E,W,F,B)? S
```

YOU CAUGHT 4 FISH, EACH WEIGHING 15 LBS. AT LOCATION 43 TOTAL LBS. THIS TRIP IS 155. YOU CAUGHT A 50 LB. SHARK. TOTAL LBS. THIS TRIP IS 205. YOU HAVE FISHED FOR 1.8 HOURS. $\operatorname{MOVE}(N, S, E, W, F, B) ? W$

YOU CAUGHT 1 FISH, EACH HEIGHING 3 LBS. AT LOCATION 3 TOTAL LBS. THIS TRIP IS 208. WATER SPOUT DISPLACES YOU. YOU ARE NOW AT LOCATION 45 YOU HAVE FISHED FOR 2.6 HOURS. $\operatorname{MOVE}(N, S, E, W, F, B) ? W$

NO BITES
AT LOCATION 12
TOTAL LBS. THIS TRIP IS 211. YOU HAVE FISHED FOR 3.2 HOURS. $\operatorname{MOVE}(N, S, E, N, F, B) ? W$

YOU ARE BACK AT THE DOCK AFTER 3.2 HOURS OF FISHING CLEAN 211 LBS. OF FISH. YOU RATE 42 AS A FISHERMAN.

GONE FISHING FLOHCHART

GONE FISHING PROGRAM

Variables

$P(I, J) \quad$ The probability of catching a fish
$D(I, J) \quad$ The maximum number of fish in square (I, J), from 1 to 5
W Weight of each fish caught, from 1 to RXC
$P \quad$ The total number of pounds of fish caught at a given time
R Row in which you are fishing
C Column in which you are fishing
$N \quad$ Number of fish caught in a given turn
T Time in tenths of an hour, maximum 6 hours
M\$ Move (N, E, S, W, F, B), where N, E, S, and W are directions, F allows you to fish again in the same square, and B allows you to start the fishing trip over again

Listing

5 REM SET PROBABILITIES AND DENSITY
10 DIM P $(8,8), \mathrm{D}(8,8)$
20 FOR I=1 TO 8: FOR J=1 TO 8
$30 \quad P(I, J)=.7 * R N D(1)$
$40 \quad D(I, J)=\operatorname{INT}(\operatorname{RND}(1) * 5+1)$
50 NEXT J,I
$60 \quad P(1,1)=0: P=0: R=1: C=1$
145 REM MAIN LOOP
150 FOR T=0 TO 6 STEP . 1
160 IF RND(1)>P(R,C) OR D(R,C)<1 THEN PRINT "NO BITES": GO TO 220
$170 \mathrm{~N}=\operatorname{INT}(\operatorname{RND}(1) * \mathrm{D}(\mathrm{R}, \mathrm{C})+1)$
$180 W=\operatorname{INT}(\operatorname{RND}(1) * R * C)+1$
$190 \quad \mathrm{P}=\mathrm{P}+\mathrm{N} * \mathrm{~W}$
200 PRINT "YOU CAUGHT"; N; "FISH,"
210 PRINT "EACH WEIGHING"; W; "LBS.,"
220 PRINT "AT LOCATION"; R; C
230 PRINT "TOTAL LBS. THIS TRIP IS"; P; "."
325 REM UNEXPECTED EXPERIENCES
330 IF RND(1)<T/60 THEN PRINT "STORM -- LOST 1/2 HOUR": T=T+. 5
$340 \mathrm{~J}=\mathrm{INT}(100 * \mathrm{RND}(1))+1$
350 IF J>4 THEN 370
360 ON J GO SUB $600,700,800,900$
370 PRINT "YOU HAVE FISHED FOR"; T; "HOURS."
380 INPUT "MOVE (N,S,E,W,F,B)"; M\$
390 IF $M \$=" E "$ THEN $C=C+1$
400 IF $M \$=" N "$ THEN $R=R-1$
410 IF M\$="W" THEN C=C-1
420 IF $M \$=" S$ " THEN $R=R+1$
430 IF M\$="B" THEN RUN
440 IF R<1 OR R>8 OR C<1 OR C>8 THEN PRINT "GROUNDED--SUNK!": G0 TO 550
450 IF $\mathrm{R}=1$ AND $\mathrm{C}=1$ THEN GO TO 500
460 NEXT T
470 PRINT "TIME UP. THE SUN HAS SET."
480 PRINT "HALF OF YOUR CATCH HAS SPOILED."
$490 \quad \mathrm{P}=\mathrm{P} / 2$
REM SUBROUTINES
IF $\mathrm{R}+\mathrm{C}<9$ THEN RETURN
PRINT "FISH SCARED BY SHARK."
PRINT "NOT BITING AS OFTEN."
FOR $I=1$ TO 8: FOR $\mathrm{J}=1$ TO 8
$P(I, J)=P(I, J)-.1$
NEXT J,I
RETURN
PRINT "SEA GULLS ATE SOME OF YOUR BAIT."
PRINT "CATCH WILL BE SMALLER THIS TRIP."
FOR $I=1$ T0 8; FOR $\mathrm{J}=1$ T0 8
$D(I, J)=D(I, J)-1$
NEXT J,I
RETURN
PRINT "WATER SPOUT DISPLACES YOU."
$\mathrm{R}=\mathrm{INT}(8 * \operatorname{RND}(1)+1)$
C=INT(8*RND (1)+1)
PRINT "YOU ARE NOW AT LOCATION"; R; C
$\mathrm{T}=\mathrm{T}+.2$
RETURN
PRINT "YOU CAUGHT A 50 LB. SHARK."
$\mathrm{P}=\mathrm{P}+50$
PRINT "TOTAL LBS. THIS TRIP IS"; P; "."
RETURN

GONE FISHING MODIFICATIONS

Minor

1. Grid size -- lines $10,20,440,630,720,810$, and 820
2. Maximum probability of catching fish in a square -- line 30
3. Maximum density of fish in a square -- line 40
4. Maximum time of fishing -- line 150
5. Storm probability -- line 330
6. Rating scale -- line 540

Major

1. Catch different kinds of fish, such as, sharks, whales, or mermaids.
2. Change the goal to catching the biggest fish.
3. Use fuel to run the boat.
4. Add a choice of hook sizes and fishing depth.
5. Add different kinds of hazards, such as whales, reefs, UFO's.
6. Let fishing success depend on time of day.
7. Fix weather conditions and fishing conditions at the beginning of the trip.
8. Utilize sonar devices to help locate fish.
9. Allow ship to move in a diagonal direction.

FISHING MAP

SPACE FLIGHT

Scenario

In this simulation, you are living in the year 2062 as the captain of a space ship. Your orders are to deliver medical supplies from Alpha at coordinates $(10,10)$ to Beta at coordinates $(80,80)$. Your rating as a space pilot will depend upon how fast you can make the trip.

During each time interval, you will be able to determine the following information:

1. Total time elapsed
2. Location in terms of X and Y coordinates
3. Amount of fuel left
4. Speed
5. The angle at which you are moving
6. Your distance from the planet.

To change direction or to increase or decrease speed, you can fire one of two kinds of rockets: main (M) and half (H). These rockets take one unit and $1 / 2$ unit of fuel, respectively. A "C" will allow you to coast for five time intervals.

Once you decide how much fuel you are going to burn, you must decide on the direction in which you will be firing the rockets. You are able to rotate your space ship with small thrusters as it drifts in space. The directions are shown below:

Once you fire your main rocket for three or four turns to increase your speed, you can conserve fuel by drifting through space. You must start to fire in the opposite direction to slow down before arriving at Beta. In order to meet arrival conditions, you must be within a distance of one and at a speed of less than one.

You may wish to make copies of the grid at the end of this section to aid in plotting your course. If you find that you are off course, you may have to fire a "correction" rocket. In order to estimate the angle of firing, you can use a force diagram as shown below.

Example 1: Correction

Example 2: Retrofire

Sample Run

0 HOURS 10 LITERS

LOCATION 1010
VELOCITY: 0
DEGREES: 0
D=98.995
COMMAND ($0, \mathrm{M}, \mathrm{H}, \mathrm{C}$)? M ANGLE? 45

DATA READOUT
. 01 HOURS 9 LITERS
LOCATION 10.677610 .67
VELOCITY: . 952905
DEGREES: 45
D=98.942

SPACE FLIGHT FLOWCHART

SPACE FLIGHT PROGRAM

Variables

X,Y	Location
VX,VY	Speed
Z	Angle of coast
V	Velocity
T	Time
D	Distance to planet
J	Index for hazards
F	Fuel
A	Angle input
L,M	Temporary Variables
R	Rating
F1	Coast count
G	Accuracy of gyros

Listing
$X=10: Y=10: V X=0: V Y=0: Z=0: V=0$ $\mathrm{F}=10$: $\mathrm{D}=98.995$: $\mathrm{P}=3.1416$: $\mathrm{G}=1$ FOR T=0 TO 10 STEP . 01

```
PRINT " DATA READOUT:": ?
```

```
    PRINT T; "HOURS "; F; "LITERS"
```

 PRINT T; "HOURS "; F; "LITERS"
 PRINT "LOCATION:"; X; Y: PRINT "VELOCITY:"; V
 PRINT Z; "DEGREES"
 PRINT "DISTANCE:"; D
 J=INT(50*RND(1)+1)
IF J<6 THEN PRINT "PROBLEMS: ";
ON J GO SUB 230,240,250,260,270: GO TO 290
PRINT "GYROS ANGLE ERROR": G=G+1: RETURN
PRINT "FUEL LINE": F=F-.5: RETURN
PRINT "LIFE SUPPORT": T=T+.05: RETURN
PRINT "ALIENS": VX=0: VY=0: RETURN
PRINT "METEORS.": VX=VX+RND(1)-.5: VY=VY+RND(1)-.5
RETURN

```

IF Fl>0 THEN F1=F1-1: GO TO 450
INPUT "COMMAND ( \(0, \mathrm{M}, \mathrm{H}, \mathrm{C}\) )"; C\$
IF \(C \$=\) "M" THEN \(B=1\) : GO TO 350
IF \(\mathrm{C} \$=\) "H" THEN \(\mathrm{B}=2\) : GO TO 350
IF C \(\$=\) "C" THEN Fl \(=5\)
GO TO 450
INPUT "ANGLE"; \(A: A=A+(20 * G * R N D(1)-10 * G)\)
\(A=A * P / 180\)
\(L=\operatorname{CoS}(A): M=\operatorname{SIN}(A): \quad F=F-1 / B\)
\(\mathrm{VX}=\mathrm{VX}+(1+.4 * \mathrm{RND}(1)-.2) * \mathrm{~L} / \mathrm{B}\)
\(\mathrm{VY}=\mathrm{VY}+(1+.4 * \mathrm{RND}(1)-.2) * \mathrm{M} / \mathrm{B}\)
IF \(V X=0\) AND \(V Y>=0\) THEN \(Z=90\) : GO T0 450
IF \(V X=0\) AND \(V Y<0\) THEN \(Z=270\) : GO T0 450
Z=ATN(VY/VX): Z=Z*180/P
\(Z=Z+I N T(10 * R N D(1)): Z=I N T(Z)\)
IF \(\mathrm{VX}<0\) THEN \(\mathrm{Z}=\mathrm{Z}+180\)
\(X=X+V X: \quad Y=Y+V Y\)
```

530 V=SQR(VX+2+VY+2)
540 D=SQR((X-80)+2+(Y-80)+2)
6 0 0 ~ I F ~ F < 0 ~ T H E N ~ P R I N T ~ " O U T ~ O F ~ F U E L " : ~ G O ~ T O ~ 6 6 0 ~
610 IF D<1 AND V<1 THEN PRINT "ARRIVED": GO TO 630
6 2 0 ~ N E X T ~ T ~
630 PRINT "THE TRIP TOOK"; T; "HOURS."
640 R=200*T
650 PRINT "YOUR RATING IS"; R; "."
660 INPUT "PLAY AGAIN"; Y\$
670 IF Y\$="Y" THEN RUN
6 8 0 ~ E N D

```

SPACE FLIGHT MODIFICATIONS

\section*{Minor}
1. Starting position -- lines 10,20
2. Amount of fuel -- line 20
3. Time limit -- line 30
4. Planets location -- lines 540,20
5. Arrival conditions -- line 610
6. Probability of problems -- line 200

Major
1. One must fire small thruster rockets to rotate ship.
2. Have meteors hit ship.
3. Use meteor shields.
4. Fight aliens.
5. Visit more than one planet.
6. Provide planets with gravitational force.
7. Have refueling stations.


Sandy



\section*{STARSHIP ALPHA}

You are the commander of a large spaceship traveling to the distant planet, Omega. You must make decisions regarding the use of shields, gyros, and lazer beams and solve all navigational problems. You must choose between landing on a planet to "recharge" your engines or continuing your journey. When an alien spaceship is near, you will have to decide when to bring down your shields to perform a radar search. You will have to avoid the black hole and a planet emitting radiation. Should you continue at warp speed or slow down? Watch out for space storms and meteors! How is the morale of your crew?

The success of your mission will depend on your ability to make logical decisions that will affect you, your crew and your spaceship. Since the program is written in a "real time" mode, you will have to make these decisions quickly.

\section*{Objective}

Your objective is to eliminate the alien spaceship with your lazer beam and land on the planet symbolized by "\#". You should try to accomplish this mission in as short a time as possible.

\section*{Flight Termination}

Your flight is terminated if the energy of your ship, your crew's morale or time falls below zero.

\section*{Motor Commands}

The curser controls, \(\leftarrow, \rightarrow, \uparrow, \downarrow\), are used to turn on the motors. While one of the motors is firing, its corresponding arrow is displayed on the video. An \(x \cdot y\) coordinate system is used to keep track of the location of your ship, the planets, the black hole, and the alien. Only one command can be given in each time-interval. The velocity of the spaceship will increase or decrease depending on which motor is being fired. Note that motors that face in opposite directions cannot be fired simultaneously. All motors can be turned off by pushing the entry key.

Each time-interval that a motor is firing, one unit of energy is being used and the temperature of the engines increases by one.

If the velocity is . 2 in the \(x\) direction, this means that the spaceship will move . 2 units to the right each time-interval. If the motors are not being fired, the ship will coast in space. A speed over 2 "warp" for vx or vy will utilize an additional unit of energy per timeinterval and a "TOO FAST" message will be displayed.

Gyros "G"
Pressing a G key will turn on the gyros, which cost one unit of energy each turn (time-interval). The gyros will give you better control of the motor firings and the velocity will change only by . 1 each timeinterval, instead of the random velocity change that occurs without the gyros. The gyros will allow you to gain better control when attempting a soft landing on a planet.

Pressing the \(S\) key will place an electronic shield around your spaceship. Such a shield costs one unit of energy each turn. The shield will protect you from radiation and alien lazers. You cannot perform a radar search or fire your lazers when the shield is up.

The gyros and shield can be terminated by pressing the clear key.

\section*{Radar Search "R"}

Pressing the \(R\) key will cost ten units of energy and flash the position of the alien on the screen. Make sure the shield is down!

Fire Lazers "L"
Pressing the \(L\) key will cost you ten units of energy. The alien will be eliminated if it is within ten units of your ship. If the alien is further than ten units, you will receive a "MISSED" message.

Coordinate Check "C"
Pressing the C key will display the coordinates of each planet. Knowing the position of each planet will be useful in making a landing.

\section*{Instructions "I"}

Pressing the I key will give you a brief summary of the scenerio. The format of the summary is left to the discretion of the programmer because its length and detail should vary considerably with the amount of memory available and the environment in which the program is being used. The instructions should begin with line 700. The present program initiates a time-delay at this point in the program.

Landing on a Planet
You begin your journey with 200 units each of energy and crew morale. Two hundred units is probably not sufficient to meet the objectives of the mission; therefore, during your journey, it will be necessary to land on a planet where you will recover your 200 units of energy and morale.

In order to successfully land on a planet, you must be within two units of the planet and both the \(x\) and \(y\) velocities must be less than 2 . If you pass within two units of a planet with velocities greater than two, up to ten units of energy will be consumed each time-interval to maintain a cool heat shield.

Landing on the "\#" planet after the alien is eliminated will complete the mission.

The Alien
One alien is randomly placed near the center of the universe \({ }^{1}\) at the beginning of the mission. The alien moves one unit per time-interval randomly in one of four directions, \(N, E, S\), or \(W\), throughout the universe.

1The space within the coordinate system defined under Anti-space.

If you are within ten units of the alien and your shield is down you will receive a message, You can locate the alien anywhere in the universe by using a random search.

If you are within ten units of the alien, the alien has a \(10 \%\) chance of "zapping" you if your shields are down. If you get "zapped" you will lose up to 20 units of energy and up to 20 units of crew morale.

Anti-space
The coordinate system goes from 0 to 127 for \(x\) and from 0 to 32 for y. If you travel "out of bounds" you will receive an "ANIT-SPACE" message. Your ship will lose up to ten units of energy and your crew will lose up to ten units of morale each time-interval you are in anti-space.

\section*{Black Hole}

The black hole is located randomly at the beginning of the mission. If you travel within ten units of the black hole, your ship will lose up to ten units of energy and your crew will lose up to ten units of morale for each time-interval you are in this area.

The shield will not protect the ship against anti-space or the black hole.

\section*{Radiation}

At the beginning of the mission, one of the planets is randomly selected as "hot". The amount of radiation emitted from this planet can be monitored. You will lose up to R units of energy and R units of morale each time-interval, where \(R\) is the amount of radiation hitting the ship. The shield will protect the ship and its crew from radiation.

\section*{Motor Temperature}

As the motors are firing, the temperature increases. When the temperature is over 20 units, a "TOO HOT" alarm is given. An additional unit of energy is required to cool the hot motors. If the motors are not used, they will cool one unit per time-interval.

\section*{Morale}

The morale of the crew drops one unit each time-interval.

\section*{Miscellaneous Hazards}

There are five random events, each with a \(1 \%\) chance of occurring. They are as follows:

\section*{EVENT}

Meteor Hit
Fuel Leak
Crew Ill
Space Storm
Heat Problem

\section*{RESULT OF OCCURENCE}
\(x, y\) position displaced
lose a maximum of 20 units of energy
lose a maximum of 20 units of morale
ship stops; lose a maximum of 20 units of morale
temperature climbs a maximum of 20 units

\section*{Sample Screen Display}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{* * \#} \\
\hline \multicolumn{6}{|c|}{\multirow[t]{2}{*}{*}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|c|}{* *} \\
\hline \multicolumn{6}{|c|}{*} \\
\hline \multicolumn{6}{|c|}{*****TOO HOT*****} \\
\hline \(V X=0.1\) & \(V Y=0.3\) & BLACK HOLE & 62 & ENERGY & 125 \\
\hline \(X=1.7\) & \(Y=7.7\) & TEMP & 30 & MORALE & 87 \\
\hline & & RADIATION & 1 & TIME & 94.4 \\
\hline
\end{tabular}

\section*{STARSHIP ALPHA PROGRAM}

\section*{Variables}
\begin{tabular}{|c|c|}
\hline A\$ & Format for vx,vy; "\#\#.\#" \\
\hline B\$ & Format for \(\mathrm{s}, \mathrm{y}, \mathrm{T}\); "\#\#\#.\#" \\
\hline C\$ & Format for energy, morale, black hole,radiation; "\#\#\#" \\
\hline Z\$ & Input \\
\hline A, B & Location of black hole \\
\hline C & Planet with radiation(1-10) \\
\hline D & Shield flag for defense( \(\emptyset\) or 1) \\
\hline E & East flag (Ø or 1) \\
\hline F & Energy or fuel ( \(\emptyset\) - 2ضП) \\
\hline G & Gyro flag(Øor 1) \\
\hline H & Temperature or heat \\
\hline I, J, K & Index variables \\
\hline L, M & Temporary variables \\
\hline N & North flag \\
\hline P & Morale(Ø-20ø) \\
\hline Q & Distance to alien(20Ø if no alien) \\
\hline R & Radiation level \\
\hline S & South flag \\
\hline T & Time \\
\hline U, V & Location of alien \\
\hline W & West flag \\
\hline X, Y & Location of ship \\
\hline VX,VY & \(X\) and \(y\) velocities \\
\hline PL & Distance to planet \\
\hline
\end{tabular}

\section*{Program Listing}
```

 10 CLS:DEFSTR Z:DEFINTI,J,K:DIML(11):A\$="\#\#.\#":B\$="\#\#\#.\#":C\$="\#\#\#"
 \(15 \quad X=3: Y=25: \operatorname{SET}(3,25): F=2 \emptyset \emptyset: P=2 \emptyset \emptyset: T=1 \emptyset \emptyset\)
 \(20 A=30+\operatorname{RND}(50): B=R N D(32)\)
 \(25 \mathrm{U}=3 \emptyset+\operatorname{RND}(5 \emptyset): V=\operatorname{RND}(32): C=\operatorname{RND}(1 \emptyset)\)
 30 PRINT@783,"******"; TAB(41)"******";
 35 PRINT@832,"VX=";TAB(11)"VY=";TAB(29)"BLACK HOLE";TAB(52);
 "ENERGY";
 40 PRINT@897," $\mathrm{X}=\mathrm{=}$; TAB (12)" $\mathrm{Y}=$ ="; TAB(35)"TEMP";TAB(52)"MORALE";
45 PRINT@990,"RADIATION"; TAB(52)"TIME";:FOR I=7@4T0767:PRINT@I,".";
:NEXT
50 FOR I=1TO1D:READ J:PRINT@J,"*";:NEXT:PRINT@242,"\#";
55 DATA7ด,2Ø9,595,401,168,564,93,223,42Ø,543,242
56 DATA12, 3, 34, 10, 38,28,34,19,81,7,1Ø4,25
57 DATA59,3,62,10,73,18,63,25,100,10
60 Z=INKEY\$:IF Z=""THEN17ด
65 I=ASC(Z):IF Z="C"THEN GOSUB6ØØ
70 IF Z="I"THEN GOSUB7ØØ
75 IF $Z=" G " G=1: P R I N T @ 961$,"GYROS";
80 IF Z="S"D=1:PRINT@972,"SHIELD";
85 IF Z<>"R"OR D=1THEN1Ø5
90 PRINT@793, "RADAR SEARCH";:F=F-10:GOSUB50Ø
95 IF Q=2ØØPRINT@799,"NO ALIENS";:GOSUB5ØØ:GOT0105
100 FOR J=1T04:PRINT@792,"ALIEN LOCATION"; :SET(U,V):GOSUB50ø:
RESET(U,V):GOSUB5ØØ:NEXT
105 IF Z®"L"OR D=1THEN125
110 PRINT@794,"FIRE LAZERS"; :GOSUB50П:F=F-1ן
115 IF Q>1ØPRINT@795,"MISSED"; :GOSUB50Ф:GOT0125
120 PRINT@792,"ALIEN ELIMINATED";:Q=2ضด:P=10Ø:GOSUB5ดØ
125 IF I=91THEN PRINT@779,CHR\$(91);:N=1:S=ø
130 IF I=1ØTHEN PRINT@779,CHR\$(92);:S=1:N=Ø
135 IF I=9THEN PRINT@768,CHR\$(94);:E=1:W=ø
140 IF I=8THEN PRINT@768,CHR\$(93);:W=1:E=Ø
149 REM CLEARS
150 IF I=31PRINT@96Ø," ";:G=ø:D=ø
155 IF I=13THEN PRINT@768," $" ;: N=\emptyset: E=\emptyset: S=\emptyset: W=\emptyset$
170 IF $G=1$ THEN $L=\emptyset E L S E \quad L=1$
175 IF $N=1$ THEN $V Y=V Y+1 \emptyset+L * R N D(5 \emptyset)$
180 IF S=1THEN VY=VY-10-L*RND(50)
185 IF E=1THEN VX=VX+10+L*RND (50)
190 IF W=1THEN VX=VX-10-L*RND(50)
$195 \mathrm{I}=\mathrm{N}+\mathrm{S}+E+W+\mathrm{D}+\mathrm{G}: F=F-\mathrm{I}: H=H+I-D-G: I F \quad I=\emptyset T H E N \quad H=H-1: I F \quad H<\emptyset T H E N \quad H=\emptyset$
200 PRINT@836," ";:PRINTUSING A\$;VX/10Ø;:PRINT@847," ";
:PRINTUSING A\$;VY/1ØП;
205 PRINT@939," ";:PRINTUSING C\$;H;
210 IF $A B S(V X)>2 \emptyset \emptyset O R$ ABS $(V Y)>2 \emptyset \emptyset T H E N ~ P R I N T @ 793, " W A R P ~ S P E E D " ; ~$
:GOSUB5 \emptyset : $F=F-1$
215 IF $\mathrm{H}>2$ ØTHEN PRINT@795, "T00 H0T";:GOSUB5 0 : $F=F-1$
$220 \mathrm{~L}=\mathrm{X}+\mathrm{VX} / 10 \emptyset: \mathrm{M}=\mathrm{Y}-\mathrm{VY} / 10 \emptyset$
230 IF $L<1$ OR $L>1270 R$ M>330R M<ØTHEN PRINT@792,"ANTI SPACE";
:GOSUB5 $0: L=X-V X / 1 \emptyset \emptyset: M=Y+V Y / 1 \emptyset \emptyset: F=F-R N D(1 \emptyset)$
$235 \operatorname{RESET}(X, Y): X=L: Y=M: \operatorname{SET}(X, Y)$
240 PRINT@9@り,"";:PRINTUSING B\$;X;:PRINT@911,"";:PRINTUSING B\$;32-Y;
$245 \mathrm{I}=\mathrm{SQR}((\mathrm{X}-\mathrm{A}) \uparrow 2+(\mathrm{Y}-\mathrm{B}) \uparrow 2):$ PRINT@875," ";:PRINTUSING C\$; I;

```
```

250
255
260 L=U+4- RND(7):M=V+4-RND(7):IF L<\emptyset0R L>1270R M<\emptyset0R M>32THEN25\emptyset
265 U=L:V=M:Q=SQR((X-U) \uparrow2+(Y-V) \uparrow2)
270 IF Q>2\emptysetTHEN295
275 PRINT@792,"ALIENS NEAR";:GOSUB50\emptyset
2 8 0 ~ I F 1 \emptyset < R N D (1 0 \emptyset) T H E N 2 9 5 ~
285 PRINT@790,"ALIENS ZAPPED YOU";:GOSUB500:F=F-RND(2\emptyset):P=P-RND(20)
295 IF D=1THEN R=\emptyset:GOTO325
300 RESTORE:FOR I=1TO10:READ J:NEXT
305 FOR I=1TO C:READ J,K:NEXT
310 R=SQR((X-J) \uparrow2+(Y-K)\uparrow2)

```

```

3 2 0 ~ F = F - R N D (R) : P = P - R N D (R)
325 PRINT@1003," ";:PRINTUSING C$;R;
330 RESTORE:FOR I=1TO11:READ J:NEXT
335 FOR PL=1TO11:READ J,K:L=SQR((X-J) \uparrow2+(Y-K)\uparrow2)
400 IF L>2 OR ABS(VX)>2\emptyset0R ABS(VY) >2\emptysetTHEN416
405 IF L<2AND ABS(VX)<2\emptysetAND ABS(VY)<2\emptysetPRINT@792,"SOFT LANDING";:
GOSUB5\emptyset\emptyset:F=2\emptyset\emptyset:P=2\emptyset\emptyset
4 1 0 ~ I F ~ P L = 1 1 A N D ~ Q = 2 \emptyset \emptyset T H E N ~ P R I N T @ 7 9 \emptyset , " M I S S I O N ~ C O M P L E T E D " ; : G O S U B 5 \emptyset \emptyset : ~
GOT041D
415 IF L<2AND(ABS(VX)>200R ABS(VY)) >2@PRINT@792,"IN ATMOSPHERE ";:
 GOSUB5D\emptyset:H=H+RND(10)
416 IF L>1AND L<6THEN RESTORE:FOR I=1T01\emptyset:READ J:PRINT@J,"*";:NEXT:
 PRINT@242,"#"
4 1 8 \text { NEXTPL}
4 2 0 ~ I F ~ T < = \emptyset T H E N ~ P R I N T @ 1 \emptyset 1 8 , " \emptyset \emptyset \emptyset " ; : ~ T = \emptyset : P R I N T @ 7 9 4 , " O U T ~ O F ~ T I M E " ; : '
 GOSUB 50D:GOT042\varnothing
4 2 5 ~ T = T - . 1 : P = P - 1 : P R I N T @ 1 0 1 7 , " ~ " ; : P R I N T U S I N G B \$; T ;
4 3 0 ~ I F ~ F < = \emptyset P R I N T @ 8 9 2 , " D \emptyset \emptyset " ; : P R I N T @ 7 9 3 , " O U T ~ O F ~ E N E R G Y " ; : G O S U B 5 \emptyset \emptyset ~
 :GOT043D
4 3 5 ~ P R I N T @ 8 9 1 , " ~ " ; : P R I N T U S I N G C \$; F ;
440 IF P<=\emptysetPRINT@956,"Ø\emptyset\emptyset";:PRINT@795,"MUTINY!!";:GOSUB50\emptyset:GOT044\emptyset
445 PRINT@955," ";:PRINTUSINGC$;P;

```

```

4 6 0 ~ G O T 0 6 0 ~ \
500 FOR I=1T080D:NEXT:PRINT@790," ";:RETURN
600 RESTORE:FOR I=1TO11:READ L(I):NEXT
610 FOR I=1TO11:READ J,K
6 2 0 ~ P R I N T @ L (I) + 1 , J ; " , " ; 3 2 - K ; : N E X T ~
630 FOR I=1TO10日\emptyset:NEXT
640 FOR I=1T011:PRINTQL(I)+1," ";:NEXT:RETURN
700 FOR I=1TO2\emptysetD\emptyset:NEXT:GOSUB5\emptyset\emptyset:RETURN
800 ONRND(10\emptyset)GOSUB81\emptyset,82\emptyset,83\emptyset,84\emptyset,85\emptyset
805 RETURN
810 PRINT@792,"METEOR HIT";:GOSUB7\varnothing\emptyset
815 L=X+6-RND(11):M=Y+6-RND(11)
8 1 7 IF L<Ø0RL>1270R M<ØOR M>32THEN RETURN
818 RESET (X,Y):X=L:Y=M:SET(X,Y):RETURN
820 PRINT@792,"FUEL LEAK";:GOSUB70\emptyset:F=F-RND(2\emptyset):RETURN
830 PRINT@794,"CREW ILL";:GOSUB700:P=P-RND(2\emptyset):RETURN
840 PRINT@792,"SPACE STORM";:GOSUB7\emptyset\emptyset:VX=\emptyset:VY=\emptyset:P=P+RND(10):RETURN
850 PRINT@792,"HEAT PROBLEM";:GOSUB7\emptyset\emptyset:H=H+1\emptyset:RETURN

```







\section*{sUBROUTINES}


\section*{STARSHIP ALPHA MODIFICATIONS}
1. More than one alien spaceship is encountered during the mission.
2. Starship Alpha must land on more than one planet to complete the mission.
3. The number of hazards is increased.
4. Increase the number of devices that the commander controls, for example, offensive and defensive weapons.
5. Aliens attack the spaceship.
6. Devices break and a repair time is necessary.
7. Gravitational effects from the planets must be overcome.
8. When the spaceship lands on a planet, the crew may have to battle monsters, hunt for fuel, and encounter a variety of adventures.
9. When the spaceship is close to a planet or lands on a planet, this area is magnified on the video display.
10. Competition with another computer system in "real time".

\section*{FOREST FIRE}

\section*{Scenario}

A lightening storm has ignited fires in a forest. Your task is to put out the fires and save as many trees as possible. The forest is divided into 81 sectors formed by a \(9 \times 9\) grid. Each sector is identified by the number of its row and column. The symbol, ".", represents woods, an "*" represents fire, and a blank space represents burnt out woods.

The chance of an existing fire spreading to adjacent wooded areas is \(70 \%\). Fires last for nine turns before burning out.

You have two weapons with which to fight the fire. You can drop chemicals that are designed to extinguish the fires in a specified sector. The chance that the drop will affect the fires in this sector and its eight adjacent sectors is \(50 \%\). For example, if there are six fires burning in a nine-square area, approximately three will be affected by the chemicals. The effect of chemicals is to reduce the number of turns before the fire burns out by three. Since a fire lasts only nine turns, three successful chemical hits will be needed to extinguish a fire. If the fire has been burning for six turns, then one hit will suffice.

The second weapon available to you is a backfire. To start a backfire, you must respond to the row input with a zero. You will then be asked for a backfire row and column. The sector in which a backfire is started must be wooded. This backfire will not spread and will burn out in the next turn, forming a barrier against the spread of fire.

Your rating will be the number of trees remaining after all the fires are out, plus 30.


\section*{Sample Run}


ROW? 0
BACKFIRE ROW? 4 BACKFIRE COLUMN? 7
```

\#2
123456789
1
2
3 衣衣.
5* .
6...*
7..*
3
9

```
ROW? 0
BACKFIRE ROW? 5
BACKFIRE COLUMN? 7


ROW? 0
BACKFIRE ROW? 6 BACKFIRE COLUMN?7


ROW? 6
COLUMN? 3
\#12
123456789 1. . \(\quad \underset{*}{*}\) * \(\quad *\) 2.... \(* *\) 3


ROW? 8
COLUMN? 7

ROW? 6
COLUMN?
2
\#16
123456789


ROW? 6 COLUMN? 6

YOUR RATING IS 69. PLAY AGAIN?

\section*{FOREST FIRE FLOWCHART}


\section*{FOREST FIRE PROGRAM}

Variables
\begin{tabular}{ll} 
L(R,C) & Burnt woods: 0, fire: 1-9, woods: 10, temporary variable: 11 \\
R & Row \\
C & Column \\
I & Row number increment \\
J & Column number increment \\
A & Adjacent row \\
B & Adjacent column \\
F & Count \\
T & Temporary variable \\
R & Rating
\end{tabular}

\section*{Listing}

10 DIM L \((9,9)\)
20 FOR R=1 TO 9: FOR C=1 TO 9
\(30 \quad L(R, C)=10\)
40 NEXT C,R
50 FOR \(I=1\) TO 3
\(60 \quad \mathrm{R}=\mathrm{INT}(9 * \operatorname{RND}(1)+1)\)
\(70 \quad \mathrm{C}=\operatorname{INT}(9 * \operatorname{RND}(1)+1)\)
\(80 \quad L(R, C)=9\)
90 NEXT I
95 REM PRINT GRID
100 PRINT " 123456789 "
110 FOR R=1 TO 9
120 PRINT R; " ";
130 FOR \(\mathrm{C}=1\) T0 9
140 IF \(L(R, C)=10\) THEN PRINT ".";: GO TO 170
150 IF \(L(R, C)>0\) AND \(L(R, C)<10\) THEN PRINT "*";: GO TO 170
160 PRINT " ";
170 NEXT C
180 PRINT: NEXT R
195 REM INPUT ROUTINE
200 INPUT "ROW"; R
210 IF R<0 OR R>9 THEN 200
220 IF R=0 THEN 330
230 INPUT "COLUMN"; C
240 IF \(\mathrm{C}<1\) OR C \(>9\) THEN 230
250 FOR \(\mathrm{I}=-1\) TO 1: FOR \(\mathrm{J}=-1\) TO 1
\(260 \quad A=R+I: B=C+J\)
270 IF \(A<1\) OR \(A>9\) OR \(B<1\) OR \(B>9\) THEN 310
280 IF \(L(A, B)<1\) OR \(L(A, B)=10\) THEN 310
290 IF RND (1)>. 5 THEN 310
\(300 \quad L(A, B)=L(A, B)-3\)
310 NEXT J,I
320 GO TO 400
330 INPUT "BACKFIRE ROW"; R
340 IF \(\mathrm{R}<1\) OR R>9 THEN 330
350 INPUT "BACKFIRE COLUMN"; C
360 IF C<1 OR C>9 THEN 350

370
395
400
410
420
430
440
450
460 IF \(A<1\) OR \(A>9\) OR \(B<1\) OR \(B>9\) THEN 500
470 IF \(L(A, B)<>10\) THEN 500
480 IF RND ( 1 )<. 3 THEN 500
\(490 \quad L(A, B)=11\)
500
505 REM BURN FIRE AND COUNT
\(510 \quad \mathrm{~F}=0\)
520 FOR R=1 TO 9
530 FOR \(C=1\) TO 9
\(540 \quad \mathrm{~T}=\mathrm{L}(\mathrm{R}, \mathrm{C})\)
550 IF \(\mathrm{T}=11\) THEN \(\mathrm{T}=9\)
560 IF \(\mathrm{T}>0\) AND \(\mathrm{T}<10\) THEN \(\mathrm{T}=\mathrm{T}-\mathrm{l}: \mathrm{F}=\mathrm{F}+1\)
\(570 \quad L(R, C)=T\)
580 NEXT C,R
590 IF \(\mathrm{F}<1\) THEN 620
600 GO TO 100
615 REM COUNT WOODS RATING
620 C=0
630 FOR R=1 TO 9: FOR C=1 T0 9
640 IF \(L(R, C)=10\) THEN \(W=W+1\)
650 NEXT C,R
\(660 \quad R=W+30\)
670 IF \(\mathrm{R}>100\) THEN \(\mathrm{R}=100\)
680 PRINT "YOUR RATING IS"; R; "."
690 INPUT "PLAY AGAIN"; Y\$
700 IF Y\$="Y" THEN RUN
710 END

\section*{FOREST FIRE MODIFICATIONS}

Minor
1. Number of beginning fires -- line 50
2. Location of beginning fires -- lines 60,70
3. Probability of putting out fire -- line 290
4. Amount fire burns out each turn -- line 300
5. Size of backfire -- line 370
6. Probability of spread -- line 480
7. Size of spread fires -- line 550
8. Rating scale - lines 660,670

Major
1. Change grid size.
2. Randomly choose location of beginning fires.
3. Add time to move from one place to another.
4. Have wind speed and direction affect the spread of the fire.
5. Include barriors such as lakes and roads.
6. Have some of the sectors burn faster than others.

\section*{NAUTICAL NAVIGATION}

Scenario
Your task is to navigate a sailboat that has an electronic direction finder to three different islands in the South Pacific. You do not have to dock at the islands, but only come close enough to make a visual sighting. The minimum sighting distance will vary from five to ten miles, depending upon weather conditions.

The islands are located at coordinates \((200,300),(600,300)\), and (300,100). Your starting location will be approximately \((200,200)\). You will need graph paper and an inexpensive protractor and ruler in order to plot your course.

Each turn you will receive information about your bearings in degrees from each of the three islands. For convenience, you will also receive the bearings from the ship to each of the islands. The example below shows how the bearings are determined. If you know the bearing from two of the three islands, you can locate the ship; however, there are some random errors in the readings, so it might be wise to use the readings from all three islands.

Bearing from island \#1: \(317^{\circ}\); bearing to island \#1: \(138^{\circ}\). Bearing from island \#2: \(230^{\circ}\); bearing to island \#2: \(50^{\circ}\).


SHIP

After you locate your position, you must determine your heading and the length of time you wish to remain on this course. You can use the heading from the ship to the island of your destination to determine the ship's heading. Since you are in a sailboat, your speed will depend on your direction with respect to an easterly wind. In order to make any progress toward the East, you must tack at either \(45^{\circ}\) or \(315^{\circ}\). The speed
of the sailboat as a function of its direction is shown in the graph below.


The fastest speed of ten miles per hour is acheived when the boat is perpendicular to the wind -- heading either directly north ( \(90^{\circ}\) ) or south \(\left(270^{\circ}\right)\). When the boat is running with the wind directly behind it, its speed is about half the maximum speed or five m.p.h.

Once you determine the heading, you must determine the length of time you wish to remain on the heading or the length of time you wish to travel before the next navigational check. The speed at 700 is about \(6.7 \mathrm{~m} . \mathrm{p} . \mathrm{h}\). In ten hours, you would travel about 67 miles . Of course, the wind speed varies; so you may wish to make one or two navigational checks on a long run.

You can visit the three islands in any order. You must compute the angle and time so the end of a run is within five to ten miles of an island. Since visibility conditions vary, you may have to wait for a turn to allow sighting conditions to improve.

Your rating as a navigator will depend on the number of navigational checks required and the amount of time for the trip. A good sailor should be able to complete the trip with a rating close to 100 .

Sample Run
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{NAVIGATION CHECK 1} \\
\hline BEARING FROM 1: 279 & T0: 99 \\
\hline BEARING FROM 2: 197 & T0: 17 \\
\hline BEARING FROM 3: 136 & TO: 316 \\
\hline ELAPSED TIME 0 & \\
\hline HEADING? 99 & \\
\hline TIME? 33 & \\
\hline \multicolumn{2}{|l|}{NAVIGATION CHECK 2} \\
\hline BEARING FROM 1 : 97 & T0: 277 \\
\hline BEARING FROM 2: 158 & T0: 338 \\
\hline BEARING FROM 3: 108 & T0: 288 \\
\hline \multicolumn{2}{|l|}{ELAPSED TIME 32.9694} \\
\hline \multicolumn{2}{|l|}{HEADING? 277} \\
\hline \multicolumn{2}{|l|}{TIME? 20} \\
\hline \multicolumn{2}{|l|}{NAVIGATION CHECK 3} \\
\hline \multicolumn{2}{|l|}{VISITED 1} \\
\hline BEARING FROM 1: 84 & T0: 264 \\
\hline BEARING FROM 2: 179 & T0: 359 \\
\hline BEARING FROM 3: 115 & TO: 295 \\
\hline \multicolumn{2}{|l|}{ELAPSED TIME 52.9576} \\
\hline \multicolumn{2}{|l|}{HEADING? 295} \\
\hline \multicolumn{2}{|l|}{TIME? 30} \\
\hline \multicolumn{2}{|l|}{NAVIGATION CHECK 4} \\
\hline \multicolumn{2}{|l|}{VISITED 1} \\
\hline BEARING FROM 1: 296 & T0: 116 \\
\hline BEARING FROM 2: 201 & T0: 21 \\
\hline BEARING FROM 3: 117 & T0: 297 \\
\hline ELAPSED TIME 82.9246 & \\
\hline HEADING? 297 & \\
\hline TIME? 10 & \\
\hline
\end{tabular}

NAVIGATION CHECK 5
VISITED 1
BEARING FROM 1: 296 TO: 116
BEARING FROM \(2: 209\) TO: 29
BEARING FROM 3: 114 T0: 294
ELAPSED TIME 92.8834
HEADING? 294
TIME? 3
NAVIGATION CHECK 6
VISITED 1
VISITED 3
BEARING FROM 1: 296 TO: 116
BEARING FROM 2: 212 T0: 32
BEARING FROM 3: 119 T0: 299
ELAPSED TIME 95.8568
HEADING? 60
TIME? 120

NAVIGATION CHECK 7
VISITED 1
VISITED 3
BEARING FROM 1: 35 TO: 215
BEARING FROM 2: 92 TO: 272
BEARING FROM 3: 58 T0: 238
ELAPSED TIME 215.833
HEADING? 272
TIME? 28

TRIP COMPLETED IN 243.859 HOURS NUMBER OF NAVIGATIONAL CHECKS 7 YOUR RATING IS 66
PLAY AGAIN?

WIND DIRECTION



\section*{NAUTICAL NAVIGATION PROGRAM}

Variables
\begin{tabular}{ll} 
D(3) & Set to 1 if arrived at destination \\
A(3) , B(3) & Coordinates of islands \\
\(X, Y\) & Coordinates of ship \\
E & Total elapsed time \\
C & Number of navigational checks \\
L & Angle bearing from island \\
H & Heading of ship \\
T & Time for one leg of trip \\
A,B & Temporary variables \\
\(Y \$\) & Play again
\end{tabular}

Listing
5 REM PLACE ISLANDS AND SHIP 10 DIM \(A(3), B(3), D(3)\)
\(20 \quad E=0: P=3.14159\)
30 FOR \(I=1\) TO 3
40 READ A,B
\(50 \quad A(I)=10 * A: B(I)=10 * B\)
\(60 \quad D(I)=0\)
70 NEXT I
80 DATA \(20,30,60,20,30,10\)
\(90 \quad X=175+50 * \operatorname{RND}(1): Y=175+50 * R N D(1)\)
95 REM START MAIN LOOP
100 FOR \(C=1\) TO 100
110 PRINT "NAVIGATION CHECK"; C
120 FOR I=1 TO 3
130 IF \(D(I)=1\) THEN PRINT "VISITED"; I
140 NEXT I
150 FOR \(I=1\) TO 3
\(160 \quad A=A(I): B=B(I)\)
170 GO SUB 600: L=L+2.5-5*RND(1)
\(180 \mathrm{~L}=\mathrm{L}+180\) : IF \(\mathrm{L}>360\) THEN \(\mathrm{L}=\mathrm{L}-360\)
190 PRINT "BEARING FROM"; I; "IS"; INT(L);
200 IF L>=180 THEN L=L-180; PRINT " T0"; INT(L): G0 T0 220
210 IF L<180 THEN L=L+180: PRINT " T0"; INT(L)
220 NEXT I
225 REM INPUT
230 PRINT "ELAPSED TIME"; E
240 INPUT "HEADING"; H
\(250 \mathrm{H}=\mathrm{H}+5-10 * \mathrm{RND}(\mathrm{I})\)
260 INPUT "TIME"; T: T=ABS(T)
\(270 \quad \mathrm{CO}=\mathrm{COS}(\mathrm{H} * \mathrm{P} / 180)\) : \(\mathrm{SI}=\mathrm{SIN}(\mathrm{H} * \mathrm{P} / 180)\)
280 IF \(\mathrm{H}>180\) THEN \(\mathrm{H}=360-\mathrm{H}\)
290 IF \(\mathrm{H}<30\) THEN \(\mathrm{S}=0\)
300 IF \(\mathrm{H}>=30\) AND \(\mathrm{H}<90\) THEN \(\mathrm{S}=10+(\mathrm{H}-90) / 6\)
310 IF \(\mathrm{H}>90\) THEN \(\mathrm{S}=10-(\mathrm{H}-90) / 18\)
\(320 \quad \mathrm{~S}=\mathrm{S}+2 * \mathrm{RND}(1)-1\)
\(330 \mathrm{~T}=\mathrm{T}+(.1 * \operatorname{RND}(1)-.05)\)
\(340 \mathrm{X}=\mathrm{x}+\mathrm{T} * \mathrm{~S} * \mathrm{C} 0\)
```

350 Y=Y+T*S*SI
360 E=E+T
400 FOR I = 1 TO 3
410 D=SQR((X-A(I))\uparrow2+(Y-'(I))\uparrow2)
420 IF D<5+10*RND(1) THEN D(I)=1
4 3 0 ~ N E X T ~ I ~
4 4 0 ~ I F ~ D (1) + D (2) + D (3) = 3 ~ T H E N ~ G O ~ T O ~ 5 0 0 ~
450 NEXT C
4 6 0 ~ P R I N T ~ " E X C E E D ~ N A V I G A T I O N ~ C H E C K " : ~ G O ~ T O ~ 5 3 0 ~
500 PRINT "TRIP COMPLETED IN"; E; "HOURS."
510 PRINT "NUMBER OF NAVIGATION CHECKS IS"; C; "."
520 PRINT "YOUR RATING IS"; 170-(INT(E+10*C/3))
530 INPUT "PLAY AGAIN"; Y\$
540 IF Y\$="Y" THEN RUN
550 END
600 IF }X=A AND Y>B THEN L=270: RETURN
610 IF }X=A AND Y<B THEN L=90: RETUR
620N=ABS(Y-B)/ABS (X-A)
630 L=ATN(N):L=180*L/P
640 IF X>A AND }\gamma>=B\mathrm{ THEN L=L+180
650 IF X<A AND Y>B THEN L=360-L
660 IF X>A ANID }Y<B\mathrm{ THEN L=180-L
670 RETURN

```

NAUTICAL NAVIGATION MODIFICATIONS

\section*{Minor}
1. Location of islands -- line 80
2. Starting place of ship -- line 90
3. Error in angle -- line 170
4. Input error -- line 250
5. Speed error -- line 320
6. Time error -- line 330
7. Sighting criteria -- line 420
8. Rating -- line 520

Major
1. Change number of islands.
2. Have storms.
3. Have wind direction change.

NAUTICAL NAVIGATION FLOWCHART


\section*{BUSINESS MANAGEMENT}

\section*{Scenario}

In this simulation you manage a small factory that produces three different kinds of products (P1 - P3). Three different kinds of raw materials ( RT - R3) are required to produce the products. Each product requires exactly two raw materials with a different subscript. For example, to manufacture one unit of P 2 , you would need a unit of R1 and a unit of R3. To manufacture one unit of P3, you would need a unit of R1 and R2.

The cost of raw materials varies from \(\$ 10\) to \(\$ 20\) per unit. It costs from \(\$ 1\) to \(\$ 9\) per unit to manufacture a product from raw materials. The selling price of each finished product varies from \(\$ 50\) to \(\$ 90\) per unit. Prices of raw materials and manufacturing costs will vary by not more than \(\$ 2\) per turn. Prices of finished products will vary by not more than \(\$ 5\) per turn.

You will receive a data report at the beginning of each turn. This report will give you the number of units you have on hand, available cash, and the manufacturing costs. You can buy, manufacture, or sell each turn. In order to manufacture a given product, you must have enough of the correct kind of materials on hand.

After twelve turns (months), the materials and/or products that you have on hand will be automatically sold at the current prices and your profit will be computed.

Sample Run
\begin{tabular}{lcc} 
ITEM & MATERIALS & PRODUCTS \\
1 & \(\$ 0-\$ 16\) & \(\$ 0-\$ 72\) \\
2 & \(\$ 0-\$ 15\) & \(\$ 0-\$ 72\) \\
3 & \(\$ 0-\$ 17\) & \(\$ 0-\$ 73\) \\
MONTH 0 & YOU HAVE \(\$ 500\) & \\
MANUFACTURING COSTS ARE & \(\$ 2\) \\
TRANSACTION \(0, B, M\), S? & \\
AMOUNT OF MATERIALS? 10 \\
ITEM\#? 2 & &
\end{tabular}
\begin{tabular}{llc} 
ITEIM & MATERIALS & PRODUCTS \\
1 & \(\$ 0-\$ 16\) & \(\$ 0-\$ 67\) \\
2 & \(\$ 10-\$ 16\) & \(\$ 0-\$ 71\) \\
3 & \(\$ 0-\$ 16\) & \(\$ 0-\$ 73\)
\end{tabular}

MONTH 1 YOU HAVE \$350
MANUFACTURING COSTS ARE \$1
TRAISSACTION O,B,M,S? B
AMOUNT OF MATERIALS? 10
ITEM\#? 1
\begin{tabular}{ccc} 
ITEM & MATERIALS & PRODUCTS \\
1 & \(\$ 10-\$ 18\) & \(\$ 0-\$ 63\) \\
2 & \(\$ 10-\$ 17\) & \(\$ 0-\$ 70\) \\
3 & \(\$ 0-\$ 18\) & \(\$ 0-\$ 68\)
\end{tabular}

MONTH 2 YOU HAVE \$190
MANUFACTURING COSTS ARE \$2
TRANSACTION \(0, R, M, S ? ~ M\)
MANUFACTURE AMUUNT? 10
ITEM\#? 3
\begin{tabular}{ccc} 
ITEM & MATERIALS & PRODUCTS \\
1 & \(\$ 0-\$ 19\) & \(\$ 0-\$ 67\) \\
2 & \(\$ 0-\$ 15\) & \(\$ 0-\$ 72\) \\
3 & \(\$ 0-\$ 18\) & \(\$ 10-\$ 73\)
\end{tabular}

MONTH 3 YOU HAVE \$170
MAIIUFACTURING COSTS ARE \(\$ 2\)
TRANSACTION \(0, B, M, S\) ? S
AMOUNT TO SELL? 10
ITEM\#? 3
\begin{tabular}{ccc} 
ITEM & MATERIALS & PRODUCTS \\
1 & \(\$ 0-\$ 17\) & \(\$ 0-\$ 72\) \\
2 & \(\$ 0-\$ 17\) & \(\$ 0-\$ 76\) \\
3 & \(\$ 0-\$ 18\) & \(\$ 0-\$ 77\)
\end{tabular}

MONTH 4 YOU HAVE \(\$ 900\)
MANUFACTURING COSTS ARE \$3
TRANSACTION \(0, B, M, S ?\)
\begin{tabular}{lcc} 
ITEM & MATERIALS & PRODUCTS \\
1 & \(\$ 0-\$ 18\) & \(\$ 0-\$ 71\) \\
2 & \(\$ 0-\$ 12\) & \(\$ 0-\$ 62\) \\
3 & \(\$ 0-\$ 10\) & \(\$ 0-\$ 68\) \\
MONTH 12 & YOU HAVE \(\$ 2380\) & \\
MANUFACTURING COSTS ARE \(\$ 8\) \\
TRANSACTION \(0, B, M, S ?\) & 0 \\
END OF YEAR & & \\
YOUR PROFIT IS 1880. & \\
PLAY AGAIN?
\end{tabular}
bUSINESS MANAGEMENT FLOWCHART


\section*{BUSINESS MANAGEMENT PROGRAM}

Variables
\begin{tabular}{ll} 
R(I) & Number of raw materials \\
C(I) & Cost of one unit of raw material \\
F(I) & Number of finished products \\
P(I) & Price of one unit of finished product \((\$ 50-\$ 90)\) \\
C & Cash on hand \\
M & Manufacturing costs ( \(\$ 1-\$ 9)\) per unit \\
T & Time \\
N & Item number \\
A & Amount \\
T\$ & Input \(0, B, M, S\)
\end{tabular}

Listing
5 REM SET PRICES
10 DIM R(3), C(3), F(3), P(3)
\(20 \quad \mathrm{C}=500: \mathrm{M}=2\)
30 FOR \(I=1\) TO 3
\(40 \quad R(I)=0: F(I)=0\)
\(50 \quad \mathrm{C}(\mathrm{I})=\operatorname{INT}(3 * \operatorname{RND}(1)+15)\)
\(60 \quad \mathrm{P}(\mathrm{I})=\mathrm{INT}(10 * \mathrm{RND}(1)+70)\)
70 NEXT I
80 FOR \(T=0\) TO 12
90 GO SUB 450
100 PRINT "MONTH"; T; "YOU HAVE"; C: PRINT: PRINT "MANUFACTURING COSTS ARE \$"; M
110 INPUT "TRANS ACTION \(0, B, M, S " ; ~ T \$\)
120 IF \(\mathrm{T} \$=\) "B" THEN GO SUB 500
130 IF T\$="M" THEN GO SUB 600
140 IF T\$="S" THEN GO SUB 700
150 GO SUB 300
160 NEXT T
165 REM SUMMARY
170 PRINT "END OF YEAR"
180 FOR \(\mathrm{I}=1\) TO 3
\(190 \quad C=C+R(I) * C(I)\)
\(200 \mathrm{C}=\mathrm{C}+\mathrm{F}(\mathrm{I}) * \mathrm{P}\) (I)
210 NEXT I
\(220 \quad \mathrm{C}=\mathrm{C}-500\)
230 PRINT "YOUR PROFIT IS"; C; "."
240 INPUT "PLAY AGAIN"; Y\$
250 IF Y\$="Y" THEN RUN
260 END
295 REM CHANGE PRICE SUBROUTINE
300 FOR I=1 TO 3
\(310 \mathrm{~J}=\mathrm{INT}(5 * \operatorname{RND}(1)-2)\)
\(320 \mathrm{~J}=\mathrm{C}(\mathrm{I})+\mathrm{J}\)
330 IF \(\mathrm{J}<10\) OR J \(>20\) THEN 310
\(340 \quad \mathrm{C}(\mathrm{I})=\mathrm{J}\)
\(350 \mathrm{~J}=\mathrm{INT}(11 * R N D(1)-5)\)
\(360 \mathrm{~J}=\mathrm{P}(\mathrm{I})+\mathrm{J}\)

IF J<50 OR J>90 THEN 350
\(380 \quad P(I)=J\)
390 NEXT I
400
410
\(J=\operatorname{INT}(5+R N D(1)-2)\)
\(J=M+J\)
IF \(\mathrm{J}<1\) OR J>9 THEN 400
\(M=J\)
440 RETURN
445
450 PRINT "ITEM MATERIALS PRODUCT": PRINT
460 FOR I=1 TO 3
470 PRINT I; " "; R(I); " \$"; C(I); " "; F(I); " \$"; P(I):PRINT
480 NEXT I
490 RETURN
495
500
510 INPUT "ITEM\#"; N
520 IF \(\mathrm{N}<1\) OR \(N>3\) THEN PRINT "ERROR": RETURN
\(530 \quad \mathrm{C}=\mathrm{C}-\mathrm{A} * \mathrm{C}(\mathrm{N})\)
540 IF \(\mathrm{C}<0\) THEN 570
\(550 \quad R(N)=R(N)+A\)
560 RETURN
\(570 \quad \mathrm{C}=\mathrm{C}+\mathrm{A} * \mathrm{C}\) ( N )
580 PRINT "INSUFFICIENT FUNDS"
590 RETURN

\section*{595 REM MANUFACTURE}

600 INPUT "MANUFACTURE AMOUNT"; A: INPUT "ITEM\#"; N
610 IF \(\mathrm{N}<0\) OR \(\mathrm{N}>3\) THEN PRINT "ERROR": RETURN
620 C=C-A*M
630 IF \(\mathrm{C}<0\) THEN PRINT "INSUFFICIENT FUNDS": \(\mathrm{C}=\mathrm{C}+\mathrm{A} * \mathrm{M}\) : RETURN
640 FOR I=1 TO 3
650 IF I=N THEN 680
\(660 \quad R(I)=R(I)-A\)
670 IF \(R(I)<0\) THEN PRINT "MATERIALS GONE": \(R(I)=R(I)+A: C=C+A * M\) : RETURN
680 NEXT I: \(F(N)=F(N)+A:\) RETURN
695 REM SELL
700 INPUT "AMOUNT TO SELL"; A: INPUT "ITEM\#"; N
710 IF \(N<0\) OR \(N>3\) THEN PRINT "ERROR": RETURN
\(720 \quad F(N)=F(N)-A\)
730 IF \(F(N)<0\) THEN 760
\(740 \quad \mathrm{C}=\mathrm{C}+\mathrm{A} * \mathrm{P}\) ( N )
750 RETURN
\(760 \quad F(N)=F(N)+A\)
770 PRINT "PRODUCTS GONE"
780 RETURN

BUSINESS MANAGEMENT MODIFICATIONS

Minor
1. Starting amounts -- lines \(20,50,60\)
2. Number of turns -- line 80
3. Amount raw materials vary -- line 310
4. Range of raw materials -- line 330
5. Amount products vary -- line 350
6. Range of products -- line 370
7. Amount manufacturing costs vary -- line 400
8. Range of manufacturing costs -- line 420

Major
1. Increase number of raw materials and finished products.
2. Have a storage fee.
3. When you buy, prices increase.
4. When you sell, prices decrease.
5. Borrow money with interest.
6. Add random events, such as strikes, shortage of materials, fires, no demand.
7. Provide names for raw materials and products.


\section*{RARE BIRDS}

\section*{Scenario}

In this simulation you attempt to identify as many birds as possible in a ten hour period. First, you must choose a place to watch birds. It must be in the swamp (S), the water (H), the desert (D), or the forest (F). Then you must choose a time of day -- morning (M), or evening (E). Finally, you must choose to look up in the sky -- high (H) or on the ground -- low (L). There are sixteen different birds that can be identified. The birds are classified as small or big, yellow or blue, shortbeaked or long beaked, and female or male.

After you have selected a place to watch birds, you will receive one clue about the bird and the length of time it took you to spot it. If no bird is spotted in a two-hour period, you may try a new place. After receiving your clue, you then have an opportunity to identify the bird. You should refer to the bird watching chart to determine where the birds are seen and their specific characteristics. The birds with the larger numbers are observed more frequently.

If your first identification is not correct, you will have an opportunity to try again. Each time you try, however, one point will be subtracted from your final rating. If you identify a bird that you have identified correctly before, you will be notified of the fact and may try a new place. Your final rating is determined by multiplying ten times the number of birds identified and subtracting one for each incorrect identification.


PLACE S,W,D,F? S
WHEN M,E? E
WHERE H,L? L
THE BIRD IS YELLOW
TIME LAPSE: 1.28
TOTAL TIME: 1.28
IDENTIFY 1-16? 12
NOT CORRECT IDENTIFICATION IDENTIFY 1-16? 12
A NEW ONE!
PLACE \(S, W, D, F ? W\)
WHEN M,E? E
WHERE H,L? H
THE BIRD IS BIG
TIME LAPSE: . 18
TOTAL TIME: 1.46
IDENTIFY 1-16? 11
NOT CORRECT IDENTIFICATION IDENTIFY 1-16? 9 A NEW ONE!
-
-

PLACE \(S, W, D, F ? S\)
WHEN M,E? E WHERE H,L? L NO SIGHTINGS

TIME UP
YOU SAW BIRD\# 1
6
12
15
16
YOUR RATING IS 57 PLAY AGAIN?


\section*{RARE BIRDS FLOWCHART}


\section*{Variables}
\begin{tabular}{ll} 
B(I,J) & I is bird (1-16); J is characteristic (1-14) \\
N\$(I) & Name characteristic \\
P(I) & Probability of sighting \\
K,I,J,Q,N & Temporary variables \\
L\$ & Place \\
T\$ & When \\
A\$ & Where \\
I & Lapsed time for one sighting \\
H & Total time \\
\(B_{1}\) & Number of identifications \\
\(C_{1}\) & Number of birds identified
\end{tabular}

\section*{Listing}
```

5 REM SET DATA
10 H=0: DIM B(16,14),I(16),N$(8), P(16)
20 PRINT "PLEASE WAIT": FOR I=1 T0 16
30 B (I,14)=0
40 P(I)=1/(17-I)
5 0 ~ R E A D ~ N ~
60 FOR J=12 T0 1 STEP -1
70 Q =INT(N/2)
80 B(I,J)=2*(N/2-Q)
90 N=Q
100 NEXT J
110 NEXT I
120 DATA 2128, 1121, 594, 355, 3220
130 DATA 2725, 2454, 1703, 1528, 1017
140 DATA 2042, 3067, 3516, 3773, 4030, 4031
150 FOR I=1 TO 8
160 READ N$(I): NEXT I
170 DATA BIG, SMALL
180 DATA BLUE, YELLOW
190 DATA LONG BEAKED, SHORT BEAKED, FEMALE, MALE
195 REM INPUT PLACE
200 FOR I=1 T0 16: I(I)=0: NEXT
210 INPUT "PLACE S,W,D,F"; L\$
220 INPUT "WHEN M,E"; T\$
230 INPUT "WHERE H,L"; A\$
260 IF L$="S" THEN I (1)=1
270 IF L$="W" THEN I (2)=1
280 IF L$="D" THEN I (3)=1
290 IF L$="F" THEN I (4)=1
300 IF T$="M" THEN I (5)=1
310 IF T$="E" THEN I (6)=1
3 2 0 ~ I F ~ A \$ = " H " ~ T H E N ~ I ~ (7) = 1 ~
330 IF A\$="L" THFN I (8)=1
340 FOR I=1 TO 16: B(I,13)=0: NEXT I
350 FOR I=1 TO 16: FOR J=1 TO 8

```
```

360 IF B(I,J)<>I(J) AND B(I,J)=0 THEN 390
370 NEXT J
380 B (I,13)=1
390 NEXT I
395 REM FIND BIRDS
400 FOR I=1 T0 2 STEP . }0
4 1 0 \mathrm { J } = \mathrm { INT } (1 6 * \operatorname { R N D } (1) + 1)
420 IF B (J,13) <> 1 THEN }44
430 IF RND(1)<P(J) THEN }46
4 4 0 ~ N E X T ~ I ~
450 PRINT "NO SIGHTINGS": H=H+I: GO TO 200
4 6 0 \quad H = H + I
470 K=INT(4*RND(1)+1)
4 8 0 N = B (J , K + 8)
490 PRINT "THE BIRD IS"; N$(2*K-N): PRINT "TIME LAPSE:"; I: PRINT
 "TOTAL TIME:"; H
495 REM INPUT ID
500 INPUT "IDENTIFY 1-16"; I
510 IF I=J THEN 530
520 PRINT "NOT CORRECT IDENTIFICATION": Cl=Cl+1: GO TO 500
530 IF B(J,14)=1 THEN PRINT "ALREADY SPOTTED": GO TO 550
540 PRINT "A NEW ONE!": B(J,14)=1
550 IF H>10 THEN }57
560 GO TO 200
570 PRINT "TIME UP"
580 FOR I=1 TO 16
590 IF B(I,14)=1 THEN PRINT "YOU SAN BIRD #"; I: Bl=BT+1
600 NEXT I
610 PRINT "YOUR RATING IS"; 10*B1-Cl; "."
620 INPUT "PLAY AGAIN"; Y$
630 IF Y\$="Y" THEN RUN
640 END

```

RARE BIRDS MODIFICATIONS

Minor
1. Probability of sighting -- line 40
2. Time interval per turn -- line 400
3. Total time -- line 550
4. Rating formula -- line 610

Major
1. Increase number of birds.
2. Increase characteristics of birds.
3. Allow a bird to be identified more than once.
4. Have some extremely rare birds.

Note: The birds' characteristics are stored in decimal format in statements 120,130 , and 140 . Statements \(50-100\) convert the decimal numbers into binary and store the binary digits in \(B(I, J)\).

BIRD WATCHING CHART
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline B
I
R
D & PLACE & WHEN & WHERE & S & \[
\begin{array}{ll}
\hline \text { Y } & \\
\mathrm{E} & \\
\mathrm{~L} & B \\
\mathrm{~L} & \mathrm{~L} \\
0 & U \\
W & E
\end{array}
\] &  & \(\begin{array}{lll} & F \\ & E \\ M & M \\ A & A \\ L & L \\ E & E\end{array}\) \\
\hline 1 & S & E & L & S & \(\gamma\) & S & M \\
\hline 2 & V & E & H & S & Y & S & F \\
\hline 3 & D & E & L & S & \(Y\) & L & M \\
\hline 4 & F & E & H & S & Y & L & F \\
\hline 5 & SW & M & L & S & B & S & M \\
\hline 6 & S D & M & H & S & B & S & F \\
\hline 7 & S F & M & L & S & B & L & M \\
\hline 8 & WD & M & H & S & B & L & F \\
\hline 9 & W F & ME & HL & & Y & S & M \\
\hline 10 & DF & ME & HL & B & Y & S & F \\
\hline 11 & WDF & ME & HL & B & Y & L & M \\
\hline 12 & S DF & ME & HL & B & Y & L & F \\
\hline 13 & SW F & M & HL & B & B & S & M \\
\hline 14 & SWD & M & HL & B & B & S & F \\
\hline 15 & SWDF & M & HL & B & B & L & M \\
\hline 16 & SWDF & M & HL & B & B & L & F \\
\hline
\end{tabular}

\section*{DIAMOND THIEF}

Scenario
An expensive diamond is stolen from a museum. Your job, as the detective assigned to the case, is to determine who stole the diamond and at what time. You deduce the solution by studying the responses made by five different suspects, one of whom is guilty. Your rating is determined by how quickly you can identify the thief.

The five suspects were wandering through a nine room museum from one p.m. to twelve midnight. They never stayed in the same room for two consecutive hours, although they may have returned to the same room more than once.

You determine who you want to question and a specific time from one to twelve. The suspect responds by giving the following information:
1. Suspect's location at specified time
2. Whether or not the diamond was seen in room \#5 at the specified time
3. Who was with the suspect
4. Who the suspect saw in adjacent rooms

There is a catch, however. The innocent suspects can forget the exact room they were in and may name adjacent rooms \(5 \%\) of the time instead. There is also a \(5 \%\) chance that innocent people will make errors in naming people in the room with them or people whom they saw. The thief makes errors \(50 \%\) of the time. Any statement made about room \#5 or any statement made about the diamond is always true.

The diamond was stolen at the end of the time interval; therefore, the thief or people in room \#5 with the thief will claim to have seen the diamond during the time it was stolen. Of course, after the diamond was stolen, suspects will not have seen it.

When you think you know who the thief is and the time it was stolen, you should enter a zero in response to "suspect?". If you get either the thief or the time correct, you will get another chance, but will lose a ten question penalty on the final rating.

\section*{Sample Run}
```

RUN
PLEASE WAIT
SOMEONE STOLE THE DIAMOND!!
QUESTION 1
SUSPECT (1-5)? 1
TIME? 6
SUSPECT 1 AT TIME 6
I WAS IN ROOM 8
I WAS WITH 3
I SAW 4
QUESTION 2
SUSPECT (1-5)? 4
TIME? 6
SUSPECT 4 AT TIME 6
I WAS IN ROOM }
I SAW 1
QUESTION 3
SUSPECT (1-5)? 2
TIME? 6
I WAS IN ROOM }
I SAW 4
QUESTION 4
SUSPECT (1-5)? 5
I WAS IN ROOM 1
QUESTION 5
SUSPECT (1-5)? 3
TIME? }
I WAS IN ROOM }
I WAS WITH }
I SAW 4
•
QUESTION 15
SUSPECT (1-5)? 4
TIME? 4
I WAS IN ROOM 5
I SAW THE DIAMOND
I WAS WITH 3
QUESTION 16
SUSPECT (1-5)? 0
GUILTY SUSPECT? 4
TIME OF CRIME? 4
YOU GOT "EM
THE THIEF IS 4 AT TIME }4
YOUR RATING IS }8
PLAY AGAIN?

```

DIAMOND THIEF FLOWCHART


\section*{DIAMOND THIEF}

\section*{Variables}
\begin{tabular}{ll} 
A(I, J\()\) & \begin{tabular}{l} 
Adjacent rooms \\
\(\mathrm{L}(\mathrm{I}, \mathrm{J})\) \\
Room where person I is located at J time \\
T
\end{tabular} \\
Time of theft \\
D & Thief \\
P & Probability \\
S & Suspect \\
G & Time of guess \\
A & Temporary variable \\
I,J,K & Indices
\end{tabular}

\section*{Listing}
\(10 \operatorname{DIM} A(9,3), L(5,12): Q=1:\) PRINT "WAIT"
20 FOR I=1 TO 9
30 FOR J=1 T0 3
40 READ A
\(50 \quad A(I, J)=A\)
60 NEXT J,I
70 DATA \(2,4,0,1,3,0,2,6,0\)
80 DATA \(1,5,7,4,6,8,3,5,9\)
90 DATA 4,8,0,5,7,9,6,8,0
100 FOR \(I=1\) TO 5
\(110 \mathrm{~L}(\mathrm{I}, 1)=\mathrm{INT}(\operatorname{RND}(1) * 9+1)\)
120 NEXT I
130 FOR I=2 TO 12
140 FOR J=1 T0 5
\(150 \mathrm{~K}=\mathrm{INT}(3 * \mathrm{RND}(1)+1)\)
\(160 \mathrm{~L}(\mathrm{~J}, \mathrm{I})=\mathrm{A}(\mathrm{L}(\mathrm{J}, \mathrm{I}-1), \mathrm{K})\)
170 IF L(J,I) \(=0\) THEN 150
180 NEXT J,I
\(190 \mathrm{~T}=\mathrm{INT}(12 * \operatorname{RND}(1)+1)\)
200 FOR I=1 TO 5
210 IF L(I,T)=5 THEN 240
220 NEXT I
230 GO TO 190
\(240 \mathrm{D}=\mathrm{INT}(5 * \operatorname{RND}(1)+1)\)
250 IF L(D,T)<>5 THEN 240
260 PRINT "SOMEONE STOLE THE DIAMOND."
270 REM START MAIN LOOP
280 PRINT: PRINT "QUESTION"; Q
290 INPUT "SUSPECT"; S
300 IF \(\mathrm{S}<1\) THEN 800
310 IF \(S>5\) THEN 290
320 INPUT "TIME"; G
330 IF G<1 OR G>12 THEN 320
340 PRINT: PRINT "SUSPECT"; S; "AT TIME"; G; ":"
350 IF \(\mathrm{S}=\mathrm{D}\) THEN \(\mathrm{P}=.5\)
360 IF \(S<>D\) THEN \(P=.05\)
370 IF RND(1)>P OR \(L(5,6)=5\) THEN \(A=L(S, G): G O\) TO 410
\(380 \mathrm{I}=\mathrm{INT}(3 * \operatorname{RND}(1)+1)\)
```

390 A=A(L(S,G),I)
400 IF A=0 OR A=5 THEN 380
410 PRINT: PRINT "I WAS IN ROOM"; A
4 2 0 ~ I F ~ A < > 5 ~ T H E N ~ 4 5 0 ~
4 3 0
4 4 0
4 5 0
4 6 0
IF I=S THEN
4 8 0 ~ I F ~ L (S , G) < > L (I , G) ~ T H E N ~ 5 0 0 ~
4 9 0 ~ P R I N T ~ " I ~ H A S ~ W I T H " ; ~ I ~
500 NEXT I: G0 TO 540
510 I=INT(7*RND(1)+1): IF I=S THEN 510
520 IF I<6 THEN PRINT "I WAS WITH"; I
540 IF RND(1)<P THEN }64
5 5 0 ~ F O R ~ I = 1 ~ T 0 ~ 3 ~
5 6 0 ~ A = A (L (S , G) , I)
570 IF A=0 THEN 610
5 3 0 ~ F O R ~ J = 1 ~ T O ~ 5 ~
590 IF L(J,G)=A THEN PRINT "I SAlV"; J
6 0 0 ~ N E X T ~ J ~
6 1 0 NEXT I
6 2 0 ~ G O ~ T O ~ 7 0 0 ~
640 J=INT(10*RND(1)+1)
650 IF J<5 THEN PRINT "I SAM"; J
700 IF RIID(1)>P THEN }77
710 K=INT(10*RND(1)+1)
7 2 0 ~ I F ~ K < 6 ~ A N D ~ K < > J ~ T H E N ~ P R I N T ~ " I ~ S A N " ; ~ K
770 Q=Q+1: GO TO 280
800 INPUT "GUILTY SUSPECT"; S
810 IF S<1 OR S>5 THEN }80
820 INPUT "TIME OF CRIME"; G
8 3 0 ~ I F ~ G < 1 ~ 0 R ~ G > 1 2 ~ T H E N ~ 8 2 0 ~
840 IF S=D AND G=T THEN PRINT "YOU GOT 'EM!": GO TO 870
850 IF S=D OR G=T THEN PRINT "PARTLY RIGHT": Q=Q+10: GO T0 280
860 PRINT "BETTER GIVE UP": Q=Q+100
870 PRINT "THE THIEF IS"; D; "AT TIME"; T
900 PRINT "YOUR RATING IS"; 100-Q
910 INPUT "PLAY AGAIN"; Y\$
920 IF Y\$="Y" THEN RUN
930 END

```

\section*{diamond thief modifications}

Minor
1. Probability of thief lying -- line 350
2. Probability of innocent suspect lying -- line 360

Major
1. Change room design.
2. Have an accomplice.
3. Jewel is hidden after it is stolen.
4. A guard is roaming around the museum as well.
5. Give suspects and rooms actual names, for example, Mr. Smith is in the Red Room.

MUSEUM FLOOR PLAN


\section*{THE DEVIL'S DUNGEON}

\section*{The Legend}

For many years now you have heard rumors of large quantities of gold hidden in a maze of caves whose connecting passageways lead deep beneath the earth of an occasionally active volcano. The stories tell of monsters and demons who roam through the caves, poisonous gas, tremors from the volcano, and one man who returned from these perils alive and named the caves The Devil's Dungeon.

After much searching, you have located the wealthy, solitary man who survived a journey through the dungeon; and he has agreed to see you. Although now very old and in poor health, he tells you everything he can remember about the dungeon.

\section*{The Dungeon}

There is much gold still remaining in this maze of caves called The Devil's Dungeon; and the stories of demons, monsters and poisonous gas are true. There are sixteen rooms on each level of the dungeon, although many may be blocked by rockfalls caused by volcanic tremors. The number of levels is unknown. Perhaps it is bottomless, for the creatures encountered inside the dungeon were certainly not from the earth as we know it.

\section*{Rooms and Passageways}

You will begin your adventure in Room \#1 at Depth \#1. The contents of the room you occupy and the numbers of the adjacent rooms will be listed. You may move to an adjacent room by entering one of the adjacent room numbers. If the output reads: MOVE FROM 2 TO ?, all adjacent rooms on your present level are blocked. If a "slide" to a room is indicated, you may use it by entering that room number; however, it is a one-way passage and cannot be used to return to the first room. A simple map of connecting rooms at each depth will prove invaluable, even though you can receive a list of the rooms you have visited and their respective adjacent rooms any time you enter an 88.

\section*{Descending into the Dungeon}

Movement to a lower depth can be achieved by using a dropoff. Fifty percent of the rooms at a given depth have dropoffs. To drop to a lower depth, enter any negative number when you are in one of these rooms. You will then find yourself in the same room on the next lower level. The configuration of rooms on this level will not be the same, and a new map must be drawn. Once you have left a given depth, you can never return. You cannot move up.

A dropoff can be created by using the Magic Wand, which you carry with you at all times. The use of the Magic Wand, however, is very risky, because \(40 \%\) of the time it backfires. When a backfire occurs, your strength and speed are reduced by \(50 \%\). When the use of the wand is your only alternative, you must enter 99. If the wand works, it will clear out everything in the room and create a dropoff. If the wand backfires, you will remain in the same place with \(50 \%\) of the strength and speed you had before using the wand. The Magic Wand can be used repeatedly in every room except Room \#1. If you enter a 99 while in Room \#1, the simulation

\section*{Tremors}

The contents and arrangements of rooms on each level remain the same throughout the journey. When you return to a room, everything will be the same, except, perhaps, the gold or monster. (See Gold and Monster.) The same passageways will be there leading to the same adjacent rooms, unless a tremor occurs. When a tremor occurs, some of the passageways may be blocked and others may be opened. To determine the effect of a tremor on passageways, you can enter an 88 to get a listing of open adjacent rooms to the rooms you have visited.

\section*{Room \#1}

Room \#1 is very important on every level. It is the only room from which you may leave the dungeon by entering a 99. Room \#1 is the only place at which you can increase your strength and speed. There are no hazards in this room. When you drop to a lower level, you will want to locate Room \#1 as soon as possible.

\section*{Speed and Strength}

Speed and strength are two qualities that must be maintained throughout your journey in order to survive. Both speed and strength are needed to kill a monster, but speed alone is needed to run from the monster. The curse of a demon affects your speed, and the poisonous gas affects your strength. You begin your journey with 100 units of both speed and strength. Each time you move to another room, your strength and speed will decrease by your depth. If you are at depth \#4, the value of both your speed and strength will be decreased by 4 whenever you move. If at any time your strength or speed becomes zero or less, you are declared dead.

\section*{Experience}

You begin with zero experience points. Everytime you move, your experience points are increased by your depth level number. You can also acquire up to the value of twice a monster's strength in experience points by killing the monster. One experience point is gained for every piece of gold found. Experience points can be traded for strength and speed, one for one, by entering a zero while in Room \#1 at any depth. You will then be asked how many points you want added to your speed and to your strength.

\section*{Monsters}

If a monster is present in a room, its speed and strength will be listed immediately after your speed and strength. If you elect to fight the monster, you must enter a zero. The monsters are faster and stronger in rooms with larger numbers and at lower depths. If your speed is faster than a monster's speed, you have a greater chance of attacking first. If your strength is greater, you have a better chance of killing it. If your speed and strength are two or three times that of the monsters', you will kill them most of the time. When you run from a monster instead of
fighting it, speed is important. If a monster hits you on your way out of the room, you will lose \(20 \%\) of the monster's strength. The monster cannot hit you if you use a dropoff or the Magic Wand in its room.

Demons and Poisonous Gas
About \(25 \%\) of the rooms on each level have demons and about \(25 \%\) of the rooms have poisonous gas Neither of these hazards can be eliminated, but you can escape from them. The demons and gas are always in these rooms and they should be avoided when possible. If you enter a room with demons or gas, there is a \(40 \%\) chance that you will be cursed or gassed. If you are cursed, you will lose one-half of your strength. You can always escape being cursed or gassed by moving to a lower level.

Gold
The maximum amount of gold that could be in a room is stated when you enter the room. This quantity is directly related to the room number and depth. The amount of gold you actually find is given when you leave the room. This amount is a percentage of the maximum, randomly determined. You cannot take gold from a room unless you move to another room on the same level. Once you leave a room carrying gold, the gold is yours for the rest of the journey. Sometimes demons in the room with the gold will steal it as you leave. But whether you leave the room with the gold or demons steal it, when you return to that room, there will no longer be any gold there. You can take gold from a room only one time. If a monster is present in a room containing gold, you must kill the monster before you can take the gold. If you leave the room without killing the monster, the gold and the monster will remain in the room and be there when you return.

Summary
\begin{tabular}{llc} 
In Room \#1 & \begin{tabular}{l} 
to trade experience \\
for strength and speed
\end{tabular} & Enter \\
& to end adventure & 0 \\
\begin{tabular}{c} 
In any room \\
except \#1
\end{tabular} & \begin{tabular}{l} 
to move to adjacent \\
room on the same level
\end{tabular} & \begin{tabular}{c} 
adjacent \\
room \#
\end{tabular} \\
& to fight monster & 09
\end{tabular}

\section*{Sample Run}
\(\begin{array}{lllll}\text { GOLD } & 0 & \text { EXP } & 0 & \text { DEPTH }\end{array}{ }^{1} 10\)
SLIDE TO 2
MOVE FROM 1 TO 7? 7


SLIDE TO 2
MOVE FROM 7 TO 12 6? 6
\begin{tabular}{llrrrl} 
GOLD & 0 & EXP & 2 & DEPTH & 1 \\
YOUR SPEED & 98 & STRENGTH & 98
\end{tabular}

MONSTER'S SPEED 6 STRENGTH 7
DROPOFF
MOVE FROM 6 TO 7 14? 14
\begin{tabular}{lrrrl} 
ESCAPED & & & \\
GOLD & EXP & & DEPTH & 1 \\
YOUR SPEED & 97 & & STRENGTH & 97
\end{tabular}

MAXIMUM GOLD 57
MOVE 14 TO 6? 6
\(\begin{array}{lcl}\text { GOLD } 25 & \text { EXP } & 31 \\ \text { YOUR SPEED } & \text { DEPTH } & 1 \\ 94 & \text { STRENGTH } & 5\end{array}\)
MONSTER'S SPEED 8 STRENGTH 5
DEMONS
MAXIMUM GOLD 9
MOVE FROM 2 TO 5 7? 0

YOU ATTACK
MONSTER DEAD!
GOLD 25 EXP 41 DEPTH 1 YOUR SPEED 93 STRENGTH 91

DEMONS
MAXIMUM GOLD 9
MOVE FROM 2 TO 5 7? 5
\(\begin{array}{llllll}\text { YOU FOUND } & 6 & \text { PIECES OF GOLD } \\ \text { GOLD } 31 & \text { EXP } & 48 & \text { DEPTH } & 1 \\ \text { YOUR SPEED } & 92 & \text { STRENGTH } & 90 \\ \text { MAXIMUM GOLD } & 21 & & & \\ \text { MOVE FROM } & 5 & \text { TO } & 2 & 3 & 11 ? \\ \\ & & & & & 11\end{array}\)


GOLD 46 EXP 70 DEPTH 1 YOUR SPEED 84 STRENGTH 82

SLIDE TO 2
MOVE FROM 1 TO 7? 0


MAP OF DEPTH 1 DRAWN BY PLAYER


GOLD 46 EXP 2 DEPTH 1 YOUR SPEED 116 STRENGTH 116 MONSTER'S SPEED 6 STRENGTH 7

DROPOFF
MOVE FROM 6 TO 7 14? -1
MAP OF DEPTH 2
DRAWN BY PLAYER

GOLD 46 EXP 2 DEPTH 2
YOUR SPEED 114 STRENGTH 114
MONSTER'S SPEED 14 STRENGTH 24
SLIDE TO 9
MOVE FROM 6 TO 24 12? 4

GOLD 179 EXP 2 DEPTH 2
YOUR SPEED 138 STRENGTH 137
MONSTER'S SPEED 30 STRENGTH 30
SLIDE TO 4
DROPOFF
MOVE FROM 11 TO 1? -1
\begin{tabular}{lllrl} 
GOLD 179 & EXP & 2 & DEPTH & 3 \\
YOUR SPEED & 135 & & STRENGTH & 134
\end{tabular}

POISONOUS GAS
SLIDE TO 6
MOVE FROM 11 TO 4713 ? 7
\(\qquad\)
GASSED
GOLD 179 EXP 5 DEPTH 3
YOUR SPEED 132 STRENGTH 64
MONSTER'S SPEED 42 STRENGTH 27
MOVE FROM 7 TO \(2 \quad 6 \quad 11\) 13? 0


THE DEVIL'S DUNGEON FLOWCHART




\section*{Variables}
\begin{tabular}{|c|c|c|}
\hline \(R(16)\) & ) \(0-524287\) & Specifies contents of room \\
\hline L(65) & ) \(1-16\) & Lists adjacent rooms \\
\hline F (16) & ) or 1 & Set flags for adjacent rooms \\
\hline X(19) & ) 0 or 1 & Flags for room contents (see below) \\
\hline B(16) & ) 0 or 1 & Flags rooms already visited \\
\hline L & 1-16 & Your location \\
\hline G1 & & Amount of gold in room -- depends on depth, size of room, and random factor \\
\hline G & & Total amount of gold that you have accumulated \\
\hline E & & Total experience points -- gained by moving, fighting, running, collecting gold -- can be traded for strength and speed \\
\hline D & \(1-\infty\) & Depth \\
\hline YS & & Your strength -- you die if it drops to 0 \\
\hline YD & & Your speed -- you die if it drops to 0 \\
\hline YH & & Your hit when fighting \\
\hline MS & & Monster's strength -- depends upon depth, size of room, and random factor \\
\hline MD & & Monster's speed \\
\hline MH & & Monster's hit when fighting \\
\hline I, J & & Indices \\
\hline & 0 or 1 & Flag for monster present \\
\hline N, Q, R & & Temporary variables \\
\hline S & & Slide \\
\hline M & & Move to \\
\hline T & & Treasure \\
\hline S(1), & , X(12) & Demon \\
\hline \(X(2)\) & & Monster \\
\hline S(3), & \(, x(4), x(5)\) & Monster's strength \\
\hline \(X(6)\), & \(, x(7), x(8)\) & Monster's speed \\
\hline \(\chi(9)\), & ,\(\times(11)\) & Poisonous gas \\
\hline \(X(10)\) & & Treasure \\
\hline \(\mathrm{S}(14)\) & & Slide \\
\hline \(X(15)\) & - \(X(18)\) & Slide to room \\
\hline X (19) & & Dropoff \\
\hline & & Number of room \\
\hline
\end{tabular}

\section*{Listing}

5 REM SET ROOMS
10 DIM \(R(16), L(65), F(16), X(19), B(16)\)
\(20 \mathrm{~L}=1: \mathrm{G}=\emptyset\) : \(\mathrm{E}=\emptyset\) : X=16
\(30 \quad \mathrm{D}=1\) : YS=1ø1: \(Y \mathrm{D}=1 \emptyset 1\)
40 FOR \(\mathrm{I}=\emptyset\) TO 65: \(\mathrm{L}(\mathrm{I})=\emptyset:\) NEXT
50 FOR I=1 TO X: N=INT(3*RND(1)+1)
60 IF I=1 THEN N=3
70 FOR J=1 TO N
\(80 \mathrm{R}=\operatorname{INT}(64 * \operatorname{RND}(1)+1)\)
90 IF L(R) \(<>\) THEN \(8 \varnothing\)
\(100 \quad \mathrm{~L}(\mathrm{R})=\mathrm{I}\)
110 NEXT J
\(120 R(I)=I N T(524287 * R N D(1)): B(I)=\emptyset\)
130 NEXT I:B(L)=1
```

140 R(1)=24576:FOR I=1 TO 19:X(I)=\varnothing:NEXT

```
```

145 REM HAZARDS
150 IF RND(1)K.\emptyset1 THEN PRINT "TREMOR":FOR I=1 T0 2\emptyset:L(I)=
INT(X*RND(1)+1):NEXT
160 IF RND(1)<.\emptyset1 THEN PRINT "TREMOR":FOR I=1 TO 2\emptyset:L(I)=\emptyset:NEXT
170 IF X(1)*X(12)=1 AND RND(1)<.4 THEN PRINT "CURSED BY DEMON!":
YD=INT(.5*YD)
180 IF X(9)*X(11)=1 AND RND(1)<.4 THEN PRINT "GASSED!":YS=
INT(.5*YS)

```
185 REM DECREMENT AND TEST
190 YD=YD-D
200 YS=YS-D
210 IF YS<=ø OR YD< \(<\emptyset\) THEN PRINT "YOU'RE DEAD":END
215 REM OUTPUT STATUS
220 PRINT "GOLD"; G; " ";
230 PRINT "EXP."; E; "DEPTH"; D
240 PRINT "SPEED: ";YD; "STRENGTH: ";YS:GOSUB 25D:GOT031D
245 REM ADJACENT ROOMS
250 FOR I=1 TO X: F(I) \(=\emptyset:\) NEXT
260 FOR I=1 TO 64
270 IF L<>L(I) THEN3DD
280 IF \(L(I+1)<>\emptyset\) AND \(L(I+1)<>L\) THEN \(F(L(I+1))=1\)
290 IF \(\mathrm{L}(\mathrm{I}-1)<>\emptyset\) AND \(\mathrm{L}(\mathrm{I}-1)<>\) LHEN \(\mathrm{F}(\mathrm{L}(\mathrm{I}-1))=1\)
300 NEXT:RETURN
305 REM CONVERT
\(310 \quad N=R(L)\)
320 FOR I=1 TO 19:Q=INT(N/2):X(I)=2*(N/2-Q):N=Q:NEXT
325 REM MONSTERS, DEMONS, GAS
330 IF \(X(2)=\emptyset\) THEN MS \(=\emptyset: G O T 038 \emptyset\)
340 IF F=1 THEN 370
\(350 M S=D *(X(3)+2 * X(4)+4 * X(5)+L)\)
\(360 M D=D *(X(6)+2 * X(7)+4 * X(8)+L)\)
370 PRINT "MONSTER'S SPEED:";MD;"STRENGTH:";MS
380 IF \(X(1) * X(12)=1\) THEN PRINT "DEMONS"
390 IF \(X(9) * X(11)=1\) THEN PRINT "POISONOUS GAS"
395 REM TREASURE
400 IF \(X(1 \emptyset)<>1\) THEN \(T=\emptyset: G O T 043 \emptyset\)
\(410 \mathrm{~T}=\mathrm{X}(11)+2 * \times(12)+4 * \times(13)+1\)
420 PRINT"MAXIMUM GOLD:";T*L*D+1
425 REM SLIDES AND DROPOFFS
\(430 S=X(15)+2 * X(16)+4 * X(17)+8 * X(18)+1\)
440 IF \(S>X\) THEN \(S=1\)
450 IF \(\mathrm{S}=\emptyset\) THEN \(\mathrm{S}=1\)
460 IF \(X(14)=\varnothing\) OR \(S=L\) THEN48 \(\varnothing\)
470 PRINT "SLIDE TO:";S
480 IF \(X(19) * \times(13)=1\) THEN PRINT"DROPOFF"
485 REM INPUT MOVE
490 PRINT"MOVE FROM";L;"TO";
500 FOR I=1 TO X
510 IF \(F(I)=1\) AND I \(\propto L\) THEN PRINT I;
520 NEXT I

530 INPUT M:IF M=88 THEN1ゆゆØ
540 IF M<ø AND \(X(19) * X(13)=1\) THEN \(D=D+1: F=\emptyset: G O T 04 \emptyset\)
550 IF \(M<\varnothing\) THEN PRINT"NO DROPOFF":GOTO 15Ø
560 IF \(M>X\) AND L=1 THEN PRINT"YOU FOUND";G;"PIECES OF GOLD.":END
570 IF \(M<X\) THEN6ØØ
575 REM MAGIC WAND
580 IF RND (1) <.4 THENPRINT"BACKFIRE":YS=INT(.5*YS):YD=INT(.5*YD): GOT0150
590 PRINT"WAND WORKS": R(L) =26624Ø:GOT022Ø
595 REM MOVE TRADE
600 IF MS \(>\emptyset\) THEN7ØØ
610 IF \(M>\emptyset\) OR L \(<>1\) THEN92Ø
620 PRINT"EXPERIENCE";E;"SPEED";YD;"STRENGTH";YS:INPUT"ADD SPEED";N
630 IF E-N< \(\quad\) THEN PRINT"NEED MORE EXPERIENCE":GOT062Ø
\(640 \mathrm{E}=\mathrm{E}-\mathrm{N}: Y \mathrm{D}=\mathrm{YD}+\mathrm{N}: P R I N T^{\prime E}\) EXPERIENCE LEFT"; E
650 INPUT"ADD STRENGTH";N
660 IF E-N<ฤ THEN PRINT"NEED MORE EXPERIENCE":GOT065Ø
\(670 \quad E=E-N: Y S=Y S+N\)
680 GOTO22Ø
695 REM FIGHT
\(700 \quad \mathrm{~F}=1\)
710 IF \(M=0\) THEN9ØD
\(720 \quad \mathrm{YH}=\mathrm{INT}(\operatorname{RND}(1) * Y S): M H=I N T(R N D(1) * M S)\)
730 IF \(\mathrm{YH} \rightarrow\) MS THEN \(\mathrm{Y}^{\prime}=\mathrm{MS}\)
740 IF \(M H>Y S\) THEN \(M H=Y S\)
750 IF RND (1)*YD>RND (1)*MD THEN \(78 \emptyset\)
760 PRINT"MONSTER ATTACKS":YS=YS-MH:MS=MS-INT (.5*YH)
770 GOT08ØØ
780 PRINT"YOU ATTACK":MS=MS-YH:YS=YS-INT(.5*MH)
\(800 E=E+2 * Y H\)
810 IF MS<=ø THEN PRINT"MONSTER DEAD!": R(L)=R(L)-2:GOT015Ø
815 PRINT
820 PRINT"MONSTER STILL ALIVE":GOT015
895 REM RUN
900 IF RND(1)*YD>RND(1)*MD THEN PRINT"ESCAPED":GOT097Ø
910 PRINT"MONSTER HIT YOU":YS=YS-INT(.2*MS):GOT097
915 REM TREASURE
920 IF T=Ø THEN97Ø
930 G1=INT(RND (1)*T*L*D) +1
940 IF \(X(1) * X(12)=1\) AND RND \((1)<.4\) THEN PRINT"DEMON GOT GOLD!":G1= \(\emptyset\)
950 PRINT"YOU FOUND";G1;"PIECES 0F GOLD.":G=G+G1:R(L)=R(L)-512
\(960 \quad \mathrm{E}=\mathrm{E}+\mathrm{G} 1\)
965 REM MOVE
970 IF \(F(M)=1\) OR \(M=S\) THEN \(L=M: F=\emptyset: E=E+D: B(L)=1: G O T 015 \emptyset\)
980 PRINT"NOT ADJACENT":GOTO15Ø
995 REM PRINT ROOMS
1000 L1=L:FOR K=1 TO X
1010 IF \(B(K)<>1\) THEN1Ø7Ø
1020 PRINT K; "--";
1030 L=K:GOSUB25Ø
1040 FOR J=1 TO X
1050 IF \(F(J)=1\) AND J<>K THEN PRINT J;

1060 NEXT J:PRINT
1070 NEXT K
1080 L=L1: GOT022 \(\varnothing\)

\section*{THE DEVIL'S DUNGEON MODIFICATIONS}

Minor
1. To change initial amount of gold or initial amount of experience, change the appropriate variable in line 20.
2. To begin at a lower level, increase \(D\) in line 30 .
3. To begin with a different amount of strength or speed, change YS and/or YD in line 30.
4. To increase the probability of a tremor, increase . 01 in line 150 and/or 1 ine 160.
5. To increase the probability of being cursed by a demon/gassed, increase the . 4 in line 170.
6. To increase the effect of being cursed/gassed, decrease the . 5 in line 170/180.
7. To double the monster's strength/speed, insert a statement, MS=2*MS/MD=2*MD at line 355/365.
8. To increase the probability of demons/gas in a room from \(25 \%\) to \(50 \%\), remove the \(X(12) / X(11)\) from lines \(170 / 180\) and \(380 / 390\).
9. To double the treasure, insert the statement, \(T=2 * T\) in line 415.
10. To increase the probability of a dropoff in a room from \(25 \%\) to \(50 \%\), remove the \(x(13)\) from 1 ines 480 and 540.
11. To increase the probability of the wand backfiring, increase the .4 in line 580.
12. To increase the effect of the wand backfiring, decrease the . 5 in line 580.
13. To increase the amount the monster loses/you lose when attacking, increase the . 5 in line 760/780.
14. To increase the amount of experience you gain while fighting, increase the 2 in line 800.
15. To increase the amount you lose when getting hit while running from the monster, increase the . 2 in line 910.

\section*{Major}
1. Weapons and equipment must be bought with gold before starting on the journey.
2. There could be different sized monsters, determined by the expression, \(X(3)+2 * X(4)+4 * X(5)\) in line 350 . Each monster could be named, ie, Glub, Knaw, Slurp, Hairy, ... .
3. The treasures could be in various sized containers, determined by the expression, \(X(11)+2 * X(12)+4 * X(13)\) in line 410.
4. The number of rooms at each level could be determined randomly.
5. Some rooms could be light and others dark.
6. Some monsters or demons could appear at random rather than be assigned to specific rooms.
7. A mean magician could relocate you in another room.
8. You could accidentally fall into a pit that drops you to a lower level.

\section*{Appendix}

\section*{Program Conversions for the Atari Microcomputer}
ximond



\section*{Art Auction Program（page 20）}
```

5 REM SET PRICES AND RANGES
10 DIM F(5),S(5),F(5),Y(3)
20 FOR I=1 TO 5
30 P(I)=100+INT(900)*RMO(1))
40.S(I)=INT(P(I)*RND(1))

```

```

D(1))
60 F(I)=0
7 0 NEXT I
95 REM EUG PAINTINGS
160 FOR I=1 T0 5
110 GOSUB 500
120 PRINT :PRINT "BUY' PAINTING "; I:FRINT
PRINT
130 PRINT "PRICES: ";INT(F(I)-0.5*S(I));
"*;INT(P(I)+0.5*S(I))
140 PRINT :PRINT "YOUR BIO";:INFUT IE
150 PRINT "OPPONENTS EID ";CE;"."
160 IF YB>CB THEN 162
161 COTO 170
162 PRINT "YOU BOUGHT IT.":F(I)=Y':GOTO
180
170 PRINT पYOU WERE OUTT BID."
180 NEXT I
195 REM SELL PAINTINCS
20日 FOR I=1 TO 5
210 IF F(I)=0 THEN 310
220 FOR K=1 TO INT(5*RND (1))
230 GOSUB 500:CE=CE+INT(100, (RHD(1)
240 PRINT "SELL PAINTING ";I
250 PRINT "YOU BOUTHT IT FOR ";F(I):PRIH
T "AMERAGE OFFER IS ";P(I)+50
260 PRINT "OFFER ";K;" IS ";CE;" "
270 PRINT "ACCEFT"; INPUT Y主
280 IF Y-((1,1)="Y" THEN 300
290 NEXT K
300 P=P+CB-F(I)
310 NEXT I
320 PRINT :PRINT "YOUR PROFIT IS ";F;"."
330 PRINT "PLA'Y AGAIN";:INPUT Y生
340 IF Y((1,1)="ソ" THEN RUN
3 5 0 END
4 9 5 ~ R E M ~ N D R T 1 \& L ~ D I S T R I E U T I O N ~ R O U T I N E ~
500 D=0
510 N=INT(65536*RNO(1)
520 FOR J=1 TO 16
530日=1NT(H-2)
540000+2*(N2-0)
550 N=Q
560 NEXT J
570 CB=F(I)+S(I)*CD-8)/8
590 CB=CB+20*RND(1)
599 CE=INT (CB)
6 0 0 ~ R E T U R N ' \

```

Monster Chase Program（page 24）

\section*{5 REM SET COHDITIONS}

6 DIM M\＄（1），Y（3）
\(10 X=1: Y=1\)
```

20 R=5:C=5
30 FOR T=1 T0 10
35 REM DISPLAYY GRID
40 FOR I=1 TO 5
50 FOR J=1 TO 5
6 0 ~ P R I N T ~ " ~ " ;
70 IF I=X AND J=Y THEN }7
71 GOTO 80
72 PRINT "M";:GOTO 100
80 IF I=R AMD J=C THEN 82
81 GOTO 90
82 PRINT "Y";:GOTO 100
90 PRINT ".";
100 NEXT J
110 PRINT
120 NEXT I
210 ? :? :? "MONE NHMBER ";T
2%0 PRINT "DIRECTION (NESWO)"; :INPUT M*
2 4 0 ~ I F ~ M \$ = " N " ~ T H E N ~ R = R - 1 ~
2:50 IF M\$="E" THEN C=C+1
260 IF M M="S" THEN R=R+1
2 7 0 IF M\$="W" THEN C=C-1
280 IF R*C=0 OR R>5 OR C>5 THEN 282
281 GOTO 290
282 PRINT "OUT OF BOUNCS.":GOTO 520
290 IF R=XPWNOY=C THEN 292
291 GOTO 300
292 PRINT "EATEN. ":GOTO 520
300 IF }x=R\mathrm{ AND Y<C THEN D=1
3 1 0 IF X > RANDY <C THEN D=2
320 IF }X>R AHD Y=C THEN D=3
330 IF X>R AND Y>C THEN D=4
340 IF }X=R\mathrm{ AND Y>C THEN D=5
350 IF X<R AND Y}
\mathrm{ THEN D=6
3 6 0 IF K<R AND Y=C THEN D=?
370 IF K<R AND Y<C THEN D=8
380 D=D+INT(3 KRND(1)-1)
3 9 0 ~ I F ~ D = 0 , ~ T H E N ~ D = 8 ~
400 IF D=9 THEN [=1
4 1 0 ~ I F ~ D > 1 ~ A N D ~ [\ < 5 ~ T H E N ~ \ \{ = X - 1 ~
4 2 0 ~ I F ~ D > 5 ~ T H E N ~ K = K + 1
4 3 0 IF D>3 AND D<? THEN Y=Y-1
4 4 0 IF D<3 DR D=8 THEN ' = \}
4 5 0 IF X = 0 THEN X = x + 1
4 6 0 IF ' = 0 THEN Y=' '+1
4 7 0 IF X = 6 THEN X = X - 1
4 8 0 IF Y = 6 THEN Y='Y-1
4 9 0 IF Y=R AND Y=C THEN 495
4 9 1 ~ G O T O ~ 5 0 0 ~ \% ~
495 PRINT "EGTEN.":GOTO 520
500 NEXT T
510 PRINT "YOU SURUIUED!"
5 2 0 ~ P R I N T ~ " P L A ' Y ~ A G A I N " ; ~ I N F U I T ~ Y ~ \ ~ \$
530 IF Y年(1,1)="Y" THEN R\HN
540 END

```

Lost Treasure Program (page 28)
```

5 REM SET TERRGIN
10 DIM L(9,9), M(1), Y(3)
20 5=0.2
30 FOR I=1 TO 9:FOR J=1 T0 9
40 L(I, J)=0
50 MEXT J:NEXT I

```

60 FOR \(I=1\) TO 6
70 READ R，C
\(80 L(R, C)=1\)
90 HEXT I
160 FOR \(I=1\) TO 6
110 READ R．C
\(120 L(R, C)=2\)
130 NEXT I
\(140 \mathrm{~L}(1,8)=3\)
\(150 \mathrm{~L}(6,1)=4\)
\(160 \mathrm{~L}(9,6)=5\)
\(170 \mathrm{~L}(5,5)=6\)
175 REM YOIR LOCATION
\(180 \mathrm{R}=\mathrm{INT}(9 \times \mathrm{RND}(1)+1)\)
\(190 \mathrm{C}=\operatorname{INT}(9 * \operatorname{RND}(1)+1)\)
200 IF SQR（（R－5）へ \(2+(C-5)\) 人 2 ） 2 THEN 180
205 REM START MAIN LOOP
210 FOR \(T=1\) TD 100
220 PRINT＂YOU ARE＂；
\(230 \mathrm{~J}=\mathrm{L}(\mathrm{R}, \mathrm{C})+1\)
240 ON J GOSUE 250，260，279，280，290．300：15
\(0 T 0310\)
250 PRINT＂IN THE CLEAR＂：RETURN
260 PRINT＂IN THE WODDS＂：RETURN
270 PRINT＂IN THE MOIHTAINS＂：RETIRRN
280 PRINT＂NEAR A CAUE＂：RETURN
290 PRINT＂ON A ELIIFF＂：RETURN
300 PRINT＂NEAR AN DAK TREE．＂：RETIURN
310 PRINT＂MOUE（NESW）＂：INPUT M\＄
320 RT＝R：CT＝C
330 IF M \(\mathrm{M}=\)＂ N ＂THEN \(\mathrm{R}=\mathrm{R}-1\) ：GOSUB 3895
340 IF M\＄＝＂E＂THEN \(\mathrm{C}=\mathrm{C}+1\) ：GOSUE 420
350 IF M \(=\)＝＂ \(\mathrm{S}^{2}\) THEN \(\mathrm{R}=\mathrm{R}+1\) ：GOSUE 380
360 IF M \(=\)＂W＂THEN \(\mathrm{C}=\mathrm{C}-1:\) TOOSUE 420
370 GOTD 460
375 REM MPUE SUEROUTINE
\(380 \mathrm{~J}=\mathrm{INT}(10 \times \mathrm{NND}(1)+1\) ）
390 IF J＞2 THEN RETURN
400 IF \(\mathrm{J}=1\) THEN \(\mathrm{C}=\mathrm{C}+1:\) PETUARN
\(410 \mathrm{C}=\mathrm{C}-1\) ：RETIJN
\(420 \mathrm{~J}=\mathrm{INT}(10 \times \mathrm{NN} \mathrm{N}(1)+1)\)
430 IF J＞2 THEN RETURN
440 IF \(\mathrm{J}=1\) THEN \(\mathrm{R}=\mathrm{F}+1\) ：RETUPN
\(450 \mathrm{R}=\mathrm{R}-1\) ：RETUNN
455 REM IN DCEAN FOMD TREAGURE？
460 IF R＜1 OR Rソ9 OR C＜1 OR E 99 THEN \(49 月\)
470 IF L（R，C）＝6 THEN 475
471 GOTD 450
475 PRINT＂YOU FOMD THE TREABARE IH＂；T
：GOTO 550
480 NENT T
490 FRINT＂YOU FELL IN THE DCEAN：＂
500 IF FNID 1 ＜S THEN 5 S 5
501 GOTD 510
505 PRINT＂EATEH EY SHARKG！＂：GOTD 5511
\(510 \mathrm{~S}=\mathrm{S}+\mathrm{g} .5: \mathrm{R}=\mathrm{RT}: \mathrm{C}=\mathrm{CT}:\) IF \(\mathrm{S}>1\) THEN \(\mathrm{S}=1\)
520 PRINT＂THE PROEAEILITY OF BEINT，EATE
\(\mathrm{N}^{\prime \prime}\)
530 PRINT＂EY＇A SHARK NEXT TIME IS＂：S；＂
540 GOTO 480
550 PRINT＂FLAM AGAIH＂：：INFUIT Y
560 IF \(\gamma(1,1)=" Y "\) THEN RUN
570 END
580 DATA \(2,3,3,5,3,9,4,1,7,2,8,8\)
590 DATA \(1,2,3,7,5,2,6,8,8,3,8,6\)

\section*{Gone Fishing Program（page 34）}
```

1 PRINT CHR午 125):REM CLEAR SCREEH
5 REM SET FROEAEILITIES \& DENSITY
10 DIM M*(1),准(1),F(8,8),D(8,8)
20 FOR I=1 TO \&:FOR J=1 T0 \&
30 P(1,J)=0.7*NHO(1)
40 D(1, J)=INT(FND(1)*5+1)
50 NEXT J:NEXT I
60 P(1,1)=0:P=0:R=1:C=1
145 REM MAIN LOOP
150 FOR T=0 TO 6 STEP 0.1
160 IF RHD(1)\F(R,C) OR D(R,CX (1 THEN 1E
5
161 GOTO 170
165 PFINT "ND EITES." %OTO 2EQ
170 N=INT(PHOC1)*L(R,C)+1)
180 W=INT(RNOC 1) *RNC`+1 190 F=F'+N**W 200 PRINT "YOU CANTHT ";H;" FISH," 210 FRINT "EACH WEIIHIMG ";H:" LEG.," 220 FRINT "AT LOCATION ";R:",";涼"." 230 PRINT "TOTAL LES. THIS TRIF IS ";F;" : 325 REM INEXPEOTED ENPERIEINES 330 IF RNDC 1 \T/GO THEN 335 331 GOTO 340 335 FRIAT "STORT1---LOST 1/2 HOUR" "T=T+ 0.5 340 J=INT(10日0*ND(1))+1 350 IF J>4 THEN 370 360 ON I GDSUE 680,702, 300,900 370 FRINT "YOU HAUE FISHED FDR ";T:" HOU, RS." 380 FRINT "MOUE (N,S,E,W,F,E)"; INFUT M侍 390 IF M*="E" THEN C=C+1 400 IF M M="N" THEN R=R-1 4 1 0 ~ I F ~ M \$ = " W " ~ T H E N ~ C = C - 1 ~ 420 IF M$="S" THEN R=R+1 4 3 0 \text { IF M\$="B" THEN RUN*} 440 IF R<1 OR R`8 OR C<1 OR C>S THEN }44
4 4 1 GOTO 450
445 PRINT "GROUND---SUNK'" :GOTO 558
4 5 0 IF R=1 AND C=1 THEN 500
4 6 0 ~ N E N T ~ T ~ T
4 7 0 ~ P R I N T ~ " T I M E ~ U F " . ~ T H E ~ S U N ~ H A S ~ S E T . ~ 2 " ~
489 PRINT "HALF OF YOUR CATCH HAS SFOILE
D."
490 P=P/2
495 REM SUMTHARY OF TRIF
500 IF T=0 THEH 505
501 GOTO 510
505 PRINT "STILL AT DOCK.": GOTO 10
510 PRINT "YOJ ARE EACK AT THE [DISK"
520 PRINT "AFTER ";T;" HOURS OF FISHINE.

5 3 0 ~ P R I N T ~ " C L E A N ~ " ; F ; " ~ L E S . ~ O F ~ F I S H . " ~
540 PRINT "YOU RATE ";INT(P/5);" AS A FI
SHERMAN."
550 PRINT "ANOTHER FISHING TRIP (Y/N)";
INPIT X S
560 IF 准="Y" THEN RU雎
570 END
5 9 5 ~ R E M ~ S U E R O U T I M E S ~

```
```

600 IF R+C<9 THE!: RETUPN
GIO PRINT "FISH SCARED EI SHARK."
620 FRINT "NOT EITIN', AS OFTEN."
6OD FOR I=1 TO E.FOF }j=1\mathrm{ TO S
640 F(I.J)=F(1..)-0.1
650 NEXT J:NENT I
6 6 0 RETIIFH
700 PRINT "SEA GILIS ATE SOHE OF YOUR EA
IT."
710 PRINT "CHTCH WILL EE GHALLEF THIS TE
IP."
720 FOR I=1 TO \&:FOR J=1 TO E
730 D(1.J)=0<1, 1)-1
740 RENT J:HENT I
750 RETINH
80D PRINT "LHTER GFDUT DISPLACES YOS."
810 R=1NT(c)
820 C=INT(S*RNO(1)+1)
80 PRINT "MOH ARE WW% GT LOCHTION ";R:"
,";Cj"."
840 T=T+0.2
850 RET!HE:
900 FRINT "YOU CAUGHT A SD LE SHAPE:"
910 P=F'+5B
920 FFINT "TOTAL LEG. THIS TRIF IS ";F;"
930 RET!N:4

```
Space Flight Program (page 40)
```

5 DIMC\&(1),将(3)
10 X=10:Y=10:U:=0:UY=0: : =0:U=0
20 F=10:D=98.995:P=3.1416: [=1
30 FOR T=0 TO 10 STEF D.O1
100 PRINT " [GATA READOIT"
110 PRINT T;" HOIRS ";F;" LITERE"
120 PRINT "LOCATION: ":X;","':FRINTT "UE
LOCITY: ";U
130 PRINT 2;" DEIGEES"
140 PRINT "OISTHNCE: ";D
200 J=INT(50**NO(1)+1)
210 IF K6 THEN 215
211GOTO 230
215 PRINT "PFDELEMS.";
220 ON J GOSUE 230,240, 250, 260, 279 GOTO
290
230 PRINT "GYROS AHGLE EFROR": 斤= = T+1:RETU
RN
240 PRINT "FIEL LINE" F=F-6 5 RETIRM
250 PRINT "LIFE SUPFORT" T=T+Q BS:FTTMRN
2G日 PRINT "ALIELS":UN=0:U'=0,RETUEH
270 FRINT "METENRS":UN=UK+RN[C1)-0.S:U'=
UT+FND(1)-0.5
280 RETIMPN
290 IF F1>0 THEN F1=F1-1: [0TO 450
30日 PRINT "COHNANO (D,M.H,C)"; :IMP!T E*
310 IF CE="M" THEN E=1:GOTO 350
329 IF C%="H" THEN E=2:GOTO 350
330 IF C\$="C" THEN F1=5
340 [0T0 450
350 PRINT "ANGLE";:INFUT A:A=\hat{A}+(2B*O%NRO
(1)-10*G)

```

```

370 L=COS(A):M=SIH(A):F=F-1/B
380UK=
390 U' = U'
400 IF UN=0 AND UY>=0 THEN 2=90:G0TD 450
410 IF US=0 AND UNOO THEN Z=270:GITO 450

```

```

4302=2+INT(10*FNDC(1)):Z=INT(Z)
440 IF WNO THEN Z=2+180
450 X=K+UN:Y=%+UY
530U=S0R(|N2+UPN2)
540 D=S|R((x-80),2+(Y-80)<2)
600 IF FOS THEN ERS
6 0 1 ~ G 0 T 0 ~ 6 1 0 ~ 0
605 PRINT "OIT DF F!E!": GOTO 6603
610 IF D<1 ANO U\1 THEN 615
611 GOTO 620
615 PRINT "ARRIUEO":GDTO G39
G20 NEMT T
630 PRINT "THE TRIP TODK ";T:" HDHRE."
640 R=200*T
650 PRINT "YOUR RATINTIS ";R;" :"
660 FRINT "FLAiI AGAIN"; INFIIT Y年
6,0 IF Y* (1,1)="Y" THEN FUN
6 8 0 ~ E N D ~

```

\section*{Forest Fire Program (page 59)}
```

10 DIM L(9,9), 隹(3)
20 FOR R=1 T0 9:FOR C=1 T0 9
30L(R,C)=10
40 NEXT C:NENT R
50 FOR I=1 TO 3
60R=INT(9*RND(1)+1)
70C=INT(9*RND(1)+1)
80L(R,C)=9
90 NEXT I
95 REM FRINT GRID
100 PRINT :PRINT " 12345679G"
110 FOR R=1 TO 9
120 PRINT R;" ";
130 FOR C=1 T0 9
140 IF L(R,C)=10 THEN }14
141 GOTO 150
145 PRINTT " ";:GOTO 170
150 IF L(R,C)>0 fNO L< R,C`10 THEN 155 151 GOTO 160 155 PRINT "*"; :GOTO 170 160 PRINT " "; 170 NEXT C 180 PRINT :NEXT R 195 REM INPUTT ROUTINE 200 PRINT :FRINT "ROW"; : INFUTT R 210 IF R<0 OR R`9 THEN 200
220 IF R=0 THEN 330
230 PRINT "COLUMNN"; INFITT C
2 4 0 IF C<1 OR C\9 THEN 230
250 FOR I=-1 TO 1:FOR J=-1 TO 1
260 \hat{A}=R+I : B=C+.I
270 IF A<1 OR A`9 OR B<1 OR E`9 THEN 310

```

```

290 IF RNO(1)>0.5 THEN 310

```
```

300 L(A,B)=L(A,E)-3
310 NEXT J:NEXT I
320 GOTD 400
330 PRINT "EACKFIRE RON|"; INPUT R
340 IF R<1 OR R`9 THEN 330
350 PRINT "EACKFIRE COLUNN"; INPITT C

```

```

370 IF L(R,C)=10 THEN L(R,C)=2
395 REIM SPREAO FIRE
400 FOR R=1 T0 g:FOR C=1 T0 9
410 IF L(R,CX1 DR L(R,C)Y9 THEN 500
420 IF L(R,C)<3 THEN 50日
430 I=INT(3*RHD(1)-1)
440J=INT(3*RN(1)-1)
450 A=R+1: E=C+J
460 IF f<1 OR A>O OR E<1 DR E%9 THEN 50日
4 7 0 IF L(A , B) < > 1 0 ~ T H E N ~ 5 0 0 ~
4 8 0 ~ I F ~ R H D C 1) \ 0 . 3 ~ T H E N ~ 5 M 3)
490 L (A , B)=11
500 NEXT C:HENT R
50.5 REM EIPNN FIRE FHOCOMNT
510 F=D
520 FDR R=1 T0 }
530 FOR C=1 T0 ?
540 T=L(R,C)
5 5 0 ~ I F ~ T = 1 1 ~ T H E N ~ T = 9 ~
5 6 0 IF T>0 AND T<10 THEN T=T-1:F=F+1
570 L(R,C)=T
580 NEST C: HEXT R
590 IF F<1 THEN 620
600 GOTO 100
615 REM COUNT WOODS RATIHG
620 C=0
630 FOR R=1 T0 9:FOR C=1 T0 9
640 IF L(R,C)=10 THEN W=W+1
6 5 0 ~ N E X T ~ C : H E K T ~ R ~
60 R=W+30
670 IF R>100 THEN R=100
680 PRINT "YOUR RATINE IS ":R;"."
6 9 0 ~ P R I N T ~ " F L A M ' ~ A G G M N " : ~ I N F I T T ~ ' O * * * *)
700 IF Y(\$ (1,1)="`"" THEN ROM
7 1 0 END

```

\section*{Nautical Navigation Program（page 65）}

5 REM PLACE ISLANDS AND SHIF
10 DIM \(\mathrm{A}(3), \mathrm{B}(3), D(3), Y\) 隹 \((3)\)
\(20 E=0: P=3.14159\)
30 FDR \(I=1\) TO 3
40 READ A，B
\(50 \mathrm{~A}(I)=10 \mathrm{KA}: B(I)=10 \times \mathrm{B}\)
\(60 \mathrm{D}(\mathrm{I})=0\)
70 NEXT I
80 DATA \(20,30,60,20,30,10\)
\(90 \quad X=175+50 * \operatorname{RND}(1): Y=175+50 \times \mathrm{RHO}(1)\)
95 REM START MAIN LOOP
160 FOR \(\mathrm{C}=1\) TO 100
110 PRINT ：PRINT＂NAUIGATION CHECK＂；C：
120 FOR \(I=1\) TO 3
130 IF \(D(I)=1\) THEN 135
131 GOTD 140
135 PRINT＂UISITED＂；I
140 NEXT I
```

150 FOR I=1 TO 3
160 A=A(I):B=B(I)
170 GOSIJE EDO:L=L+2.5-5*RNE(1)
180 L=L+180: IF L>360 THEN L=L-360
190 PRINT "BEARING FROTH ";I;" IS "; INTCL
>;
200 IF L>=150 THEN L=L-180:PRIHT " T0 ";
INT(L):GOTO 220
210 IF L<180 THEN L=L+1800 FRINT " TO ";I
NT(L)
220 NEXT I
225 REM INPIT
230 PRINT "ELAPSED TIME ";E
240 PRINT "HEADINI"; : INPUT H
250 H=H+5-10x (ND(1)
260 PRINT "TIME"; : INPUT T:T=AEG(T)
270 CO=COS(H*P:180):SI=SIN(H*F.180)
280 IF H>180 THEN H}=360-
290 IF H<30 THEN S=0
300 IF H
3 1 0 IF H)96 THEN S=10-(H-90)/18
320 S=S+2*RND(1)-1
330T=T+(0.1*RN[0(1)-0.05)
340 K= X+T*S*CO
350 Y=Y+T*S*SI
360 E=E+T
400 FOR I=1 TO 3
410D=SDR((X-A(I))}2+(Y-D(I))^2
420 IF D< 5+10*RNT(1) THEN D(I)=1
4 3 0 ~ N E X T ~ I ~
440 IF D(1)+D(2)+D(3)=3 THEN 5AP
4 5 0 ~ N E X T ~ C ~ C
460 PRINT "EYCEED NAOLGATIOH CHECK": FOTD
530
5 0 0 ~ F R I N T ~ " T R I F ~ C O M P L E T E D ~ I N ~ " ; E ; " ~ H D U R S ~
5 1 0 ~ P R I N T ~ " M O P E E F ~ O F ~ N A U I G A T I O H ~ C H E D K S ~ I ~ I
s ";C;" "
520 PRINT "YOUR RATINJ IS ";170-CINTCE+1
0*(13))
539 PRINT "PLAY AISAIN"; INFITT ''$.
540 IF Y'$(1,1)="}" THEN RUMN
550 END
600 IF }X=A\mathrm{ GND Y>E THEN L=270: RETURN
610 IF }K=A\mathrm{ AHO Y<E THEN L=90: RETHPN
620N=AES(Y-B)/AES(X-A)
630 L=ATHN):L=180%L/P
640 IF }\because>A\mathrm{ ANO }\because=E\mathrm{ THEN L=L+180
6 5 0 IF KA AND Y>E THEN L=360-L
660 IF X>A AHN Y<B THEN L=180-L
6 7 0 RETUNN

```

\section*{Business Management Program (page 71)}

5 REM SET PRICES

\(20 \mathrm{C}=500\) : \(\mathrm{M}=2\)
30 FOR I=1 TO 3
\(40 R(I)=0: F(I)=0\)
\(50 \mathrm{C}(I)=\operatorname{INT}(3 \times \operatorname{RND}(1)+15)\)
\(60 \mathrm{P}(I)=\operatorname{INT}(10 \times \mathrm{RND}(1)+70)\)
70 NEXT I
80 FOR \(T=0\) TO 12
```

90 GOSUB 455
100 PRINT "MDNTH ";T;" YOU HAUE ";L:PRIN
T :PRINT "MANUFACTURING COSTS ARE \&";M
110 PRINT "TRANSACTION (0,B,M,S)"; INFUT
T年
120 IF T$="E" THEN GOSUE 500
130 IF T*="M" THEN GOSNE G00
140 IF T$="S" THEN COSUE 700
150 GOSUE 300
160 NEXT T
165 REM SITHTARY'
170 PRINT "ENO OF YEAR"
180 FOR I=1 T0 3
190 C=C+R(I) *C(I)
200 C=C+F(I) *F(I)
210 NEXT I
220 C=C-50日
230 PRINT "YOUR PROFIT IS ";L,"."
240 PRINT "PLAY AGAIN"; INPUIT Y\$
250 IF Y\$(1,1)="Y" THEN RUN
260 EMD
295 REM CHANHE FRICE ROUTINE
300 FDR I=1 TO 3
310 J=INT(5*RNO(1)-2)
320 J=C(I)+J
330 IF K10 OR J`20 THEN 310
340 C(I)=.
350 J=INT(I1*PNO(1)-5)
360 J=F(I)+J
370 IF K50 OR 1>90 THEN 350
380 P(I)=1
390 NENT I
400 J=INT(5+RNO(1)-2)
4 1 9 ~ J = 1 1 + J ~
420 IF K1 OR J>9 THEN 400
430 M=J
4 4 8 RETURN
445 REM DUTTUTT DATA
450 PRINT "ITEM MATERIALS PROOICT"
:PRINT
469 FOR I=1 TO 3
4 7 0 PRINT I;" \$";R(I);" - \$";C(I)
;" \$";F(I);" - \$";P(I):PRINT
480 NEXT I
4 9 0 ~ R E T U R N
4 9 5 ~ R E M ~ B U Y ' ~ M A T E R I A L S ~
5 0 0 ~ P R I N T ~ " A M O L N T ~ D F ~ M A T E R I G L S " ; ~ : I N P U I T ~ A ~ A
510 PRINT "ITEM \#"; : IFFUT N
5 2 0 IF NK1 OR N>3 THEN GOTO 525
521 c0TO 530
525 PRINT "ERFOR":RETIIRN
530 C=C-A*C(N)
540 IF C<B THEN 570
550 R(N) =R(N)+A
5 6 9 ~ R E T I N T H
5 7 0 C = C + A \mp@code { M C (N) }
580 PRINT "INSUFFICIENT FIMDS."
5 9 0 ~ R E T I F N + N
595 REM MAN|JFGCTURE
600 PRINT "MAHDFACTURE AMOHTH"; INFUT A
PRINT "ITEM \#";:INFUIT H
6 1 0 IF NOD DR N>3 THEN 615
6 1 1 G0T0 620
615 PRINT "ERROR":RETIRNN
620 C=C-A*M
630 IF C<0 THEN 6.35

```
```

631 GOTO 640
635 PRINT "INSUIJICIENT FINNOS.":C=C+{綗:
RETURN
640 FOR I=1 T0 3
6 5 0 ~ I F ~ I = N ~ T H E N ~ 6 8 0 ~
6ED R(I)=R(I)-A
670 IF RCI \0 THEN 675
671 GOTO 6BD
675 PRINT "MATERIALS GONE.":R(I)=R(I)+A
C=C+A*MM: RETUPNH
680 NEXT I :F(N)=F(N)+H:RETURN:
6 9 5 PEM SELL
700 FRINT "ARNUNT TO SELL"; INP!IT A:FRIN
T "ITEM \#"; :INPIT H
701 GOTO 720
710 IF NKO OR N\3 THEN 715
715 PRINT "ERPDR":RETIRN
720 F(N)=F(N)-A
730 IF F(N)<O THEN 760
740 C=C+A**(H)
750 RETURH
750 F(N)=F(N)+A
70 FRINT "PRODUCTS EORE."
780 RETIJRH

```

\section*{Rare Birds Program（page 77）}
```

1 REM RARE BIROS
2 REM
5 REM SET GATA
6 ? CHR\$(125):FEM CLEGR SCREEF
10 H=g:OIM E (16,14),I(16),N(150),F(16),

```

```

15 FOR I=1 TO 150 性(I,I)=" ":NEST I
20 PRINT "FLEAGE WAIT":FOR I=1 TO 16
30 B(I,14)=0
40 P(1)=1^17-1)
5 0 , ~ R E A D ~ N
G0 FDR J=12 TO 1 STEP -1
70Q=INT(N2)
80 B(I, I)=2*(N-2-\Omega)
90 N=O
1GM NEMT I
110 NEMT I
120 DATA 2120,1121,594,355,3220
130 DATA 2725,2454,1703,1528,1017
140 DATA 2042,3067,3516,3773,4030,4031
145 W=-12
150 FDR I=1 T0 E
160 REA[M1:*
161 W=N+13
165 N*(0,)=N!寺
170 NEMT I
171 性(LENKM⿱土寸,
175 DATA EIG SMALL
180 DATA ELIE, YELLON
190 DATA LDNG EEGKED, SHDRT EEAKED,FEMALE
,MALE
195 REM IHPUT FLACE
200 FOR I=1 TO 1E:ICI)=0:NEST I
210 PRINT "FLACE (S,W,O,F)"; INFUTT L\$
220 PRINT "WHEH (11,E)"; INPUT T生
230 PRINT "WHERE (H,L)";:INPIJT A年
260 IF L\&="S" THEN I(1)=1
270 IF L\&="W" THEN I(2)=1

```
```

280 IF L\$="D" THEN I(3)=1
290 IF L事="F" THEN I(4)=1
300 IF T %="11" THEN \(5)=1
310 IF T\&="E" THEN I(}\epsilon\mathrm{)=1
3 2 0 ~ I F ~ A \$ = " H " ~ T H E N ~ I (7) = 1
330 IF A 束="L" THEN I(8)=1
340 FOR I=1 TO 16:E (I,13)=0:NE:T I
350 FOR I=1 TO 16:FOR J=1 T0 \&
360 IF B(1,J)<>I(J) AND E(1,J)=0 THEN 39
0
370 NEMT J
380 E (I, 13)=1
390 NENT I
3 9 5 REM FINH EIROS
400 FOR I=1 TO 2 STEP Q .02
410 J=INT(1E榇N(1)+1)
420 IF E (, 13)<>1 THEN 440
430 IF FNOC 1 <F(J) THEN 4E,
4 4 9 ~ N E X T ~ I ~
450 PRINT "NO SIGHTINGS":H=HHI:GOTO 200
4 6 0 ~ H = H + I
470K=INT(4)NMD(1)+1)
480 N=E(JN+8)
485 KK=(2秋-H)*13
486 IF KK=104 THEN KK=92
490 FRINT "THE EIRD IS ";N\#(KK,KK+13):PR
INT "TIME LAP'SE";I:FRINT "TOTAL TINE:";
H

```

```

500 PRINT "IDENTIFY 1-1E"; INFUT I
510 IF I=\ THEN 530
520 PRINT "FHT CORRECT IDENTIFICATIOM.":
C1=C1+1: ITDTO 500
530 IF E(1,14)=1 THEN 535
531GOTO 540
535 PRINT "ALREAD'" SPOTTED.":GOTD 550
54日 FRINT "A NEH OHE!":E(J,14)=1
550 IF H>10 THEN 570
560 GOTO 200
570 PFINT "TIME UF "
580 FDF I=1 TO 1E
59, IF ECI,14)=1 THEN 590
591 GOTO GBO
595 PRINT "YOU/ SAN EIRT \#";I:E1=E1+1
600 NENT I
610 FRINT "YOIR RATIMF IS ";10%B1-C1;"."
620 PRINT "FLAM' ARATH", ; INPITT Y叓
630 IF Y(% (1.1)="Y" THEN F! 䐆
6 4 0 ENO

```

\section*{Diamond Thief Program（page 83）}
```

1 REM DIAMONO THIEF
2 REM
3 ? CHRO(125):REM CLEAR SCREEN
10 DIM A(9,3),L(5,12),Y(3):Q=1:PRINT "W
AIT"
20 FOR I=1 TO 9
30 FOR J=1 TO 3
4 0 READ Aे
50 A(I, J)=A
60 NEXT J:NEST I

```
```

70 DATA 2,4,0,1,3,0,2,6,0
80 DATA 1,5,7,4,6,8,3,5,9
90 DATA 4,8,0,5,7,9,6,8,0
100 FOR I=1 T0 5
118L(I,1)=INT(RND(1)*9+1)
120 NEXT I
130 FOR I=2 TO 12
140 FOR J=1 TO 5
150 K=INT(3*RND(1)+1)
160L(J,I)=A(L(I,I-1),K)
170 IF L(J,I)=0 THEN 150
180 MEXT J:MEXT I
190 T=INT(12*RND(1)+1)
200 FOR I=1 TO 5
210 IF L (I,T)=5 THEN 240
2 2 0 ~ N E X T ~ I ~ T
230 GOTO 190
240 D=INT(5%PND(1)+1)
250 IF L(D,T)<>5 THEN 240
260 PRINT "SOHEONE STOH.E THE DIANMHO."
270 REM START OF MAIN LODF'
280 PRINT :PRINT "DUESTION ";Q
290 PRINT "SUSPECT";:INFUT S
300 IF S<1 THEN 800
310 IF S>5 THEN 290
320 PRINTT "TIME"; : INPUT [G
3.30 IF G<1 OR G>12 THEN 320
340 PRINT :PRINT "SUSFECT ";S;" AT TIME
";G;"."
3 5 0 ~ I F ~ S = D ~ T H E N ~ P = 0 . 5 ~
360 IF S<>D THEN P=0.05
370 IF RNO(1)>P OR L(5,6)=5 THEN A}A=L(S,
):GOTO 410
380 I=INT(32RND(1)+1)
390 A=A(L(S,G),I)
400 IF A=O OR A}=5\mathrm{ THEN 300
410 PRINT :PRINT "I WFSS IN ROO\#1 ";A
4 2 0 ~ I F ~ A < > 5 ~ T H E N ~ 4 5 0 ~
430 IF TSIG THEN }43
4 3 1 GOTD 4 4 0
435 PRINT "I DIO NDT SEF THE DIAMOND!":5
OTO 450
440 PRINT "I SAN THE DIGMONO "
450 IF RHDC 1 < THEN 510
460 FOR I=1 TO 5
4 7 0 IF I =S THEN 500
4 8 0 IF L(S,G)<\L(I,G) THEN 500
4 9 0 ~ P R I N T ~ " I ~ W H S ~ W I T H ~ " ; I ~
500 NEXT I : FOTO 540
510 I=INT(7 NRNO(1)+1): IF I=S THEN 510
520 IF I'G THEN 525
521 GOTO 530
525 PRINT "I WFS WITH ";I
530 REM
540 IF PND(1)<F THEN G40
550 FOR I=1 T0 3
560 A=A(L(S,5),I)
5 7 0 IF A=0 THEN E10
500 FDR J=1 TO 5
590 IF L(J,G)=A THEN 595
591 GOTO GDD
595 FRINT "I GAN ":J
600 NENT I
6 1 0 ~ N E X T ~ I ~
620 GDTO 7日月
640J=INT(10*FNOC1)+1)
650 IF JS5 THEN G5S

```
```

651 50T0 700
6 5 5 ~ P R I N T ~ " I ~ S A N ~ " . J '
700 IF ETHC1)\F THEN TPO
710K=INT(10%PUC(1)+1)
720 IF KEE AND K<1 THEH 72S
721 GOTD PTO
725 PRINT "I SAN ";K
770Q=0+1: GOTO 280
800 PRINT "GJILTY SUSFECT"; :INFUT S
810 IF S<1 OR S>5 THEN SOD
820 PRINT "TIME OF CRIME";:INFUT I
830 IF G<1 OR G>12 THEN 820
849 IF S=D AND G=T THEN }24.
8 4 1 ~ G O T O ~ 8 5 0 ~
845 PRINT "YOU FOT 'EM!":"OTOTO 870
850 IF S=0 DR G=T THEN 255
851 GOTO 860
855 PRINT "PARTL' RIGHT ":\Omega=\Omega+10:GOTO 28
0
860 PRINT "EETTER IIUE IF ":\Omega=0+100
870 PRINT "THE THIEF IS ";D;" AT TIME";
T
900 PRINT "YOU RGTINT, IS ";10D-0
910 PRINT "PLA'' ATAIH";:INPUT Y圭
920 IF Y-(1.1)="Y" THEN R|N
930 END

```

\section*{The Devil's Dungeon Program (page 89)}
```

1 REM THE DEUIL'S OUNHEDF
2 REM

```

```

5 REM SET ROOMS
10 IIM R(16),L(65),F(16),M(19),E(16)

```

```

30 D=1:YS=101:YD=101
40 FOR I=0 TO G5:L`I)=0 NEXT I
5 0 ~ F O R ~ I = 1 ~ T O ~ X : N = I N T (~ 3 ~ \% R N D C ~ 1) + 1 ~ \% ~
6 0 ~ I F ~ I = 1 ~ T H E N ~ N = 3
70 FDR J=1 TO N
80 R=INT(64:NRM(10)+1)
90 IF L(RY)O THEN 80
100L(R)=I
110 NEMT J

```

```

130 NEXT I: E(L)=1
140 R(1)=2457E:FDR I=1 TO 19:XCI I=O:NEMT
I
145 REM HARZARDG
150 IF RHD 1 <O Q1 THEN :5S
151 GOTO 160
155 PRINT "TREMOR":FOR I=1 TO 20:LCI =IN
T(SWRHD(1)+1):NEXT I
160 IF RND(1)<0 ThiEN 165
161 GOTO 170
165 PRINT "TREMOR":FOR I=1 T0 20:L<I)=0:
NEXT I
170 IF X(1)
175
171 GOTO 180
175 PRINT "CURSED BY' OENON!":YD=INT(0.5*
Y0)
180 IF X(9)蒓(11)=1 THEN 185
181 GOTO 190

```
```

185 PRINT "GASSED!":YS=INT(0.5*1'S)
1 8 9 REM DECREMEHI MND TEST
190 YO=Y0-D
200 YS=YS-D
210 IF YS<=0 OR YO<=0 THEN 215
211 GOTO 220
215 PRINT "YOU'RE DEAD ":ENII
219 REM DUTFIT STATUS
220 PRINT "GOLD ":G;" ";
230 PRINT "EXP. ";E;" DEPTH ";D
240 PRINT "SPEED: ";YD;" STRENGTH: ";'
S:GOSUE 250:TOTM 310
245 REM AD.JACENT FOMHS
250 FOR I=1 TO X:F(I)=0:NEXT I
260 FOR I=1 TO 64
270 IF L<>L(1) THEN 300
280 IF L(I+1)<>0 ANOL(I+1 K)L THEN F(IS
I+1)}=
290 IF LCI-1)K>O AHD LCI-1X\L THEN FCLC
I-1))=1
300 NEXT I:RETIRKS
305 REM COFPMERT
310N=R(L)
320 FOR I=1 TO 19:Q=INT(N/2):N(I)=2*(N/2
-Q : : N=Q:NEXT I
325 REM MDHSTERG, DEMTME, GAS
330 IF X(2)=0 THEN MS=0:GOTO 380
340 IF F=1 THEH 370
350MC=D*(N3)+2**(4)+4*

```

```

370 PRINT "MONSTER'S SPEED: ";MD;" STRE
NGTH: ";MS
380 IF X(1)w(12)=1 THEN 385
381 G0TO 309
385 FRINT "DEMOHS"
390 IF $(9)*** 11)=1 THEN 395
391 GOTO 4000
395 PRINT "POISNHOUS TAG"
399 REM TREAGTPE
400 IF <(10)<>1 THEN T=0:GOTO 430
410 T=$(11)+2w<< 12)+4*<< 13)+1
420 PRINT "MAKIMNTM GOD[D: ";T*L紬+1
425 REM SLIDES AMO DROPOFFS
430S=N(15)+2\times< 16)+4**(17)+8w*(18)+1
4 4 9 IF SNX THEN S=1
4 5 0 ~ I F ~ S = 0 ~ T H E N ~ S = 1 ~
460 IF K(14)=0 OR S=1 THEN 480
4 7 0 ~ P F I N T ~ " S L I D E ~ T O ~ " : S ~
4 8 0 IF < (1 9) * * 1 3) = 1 ~ T H E N ~ 4 8 5
4 8 1 GOTO 490
4 8 5 ~ F R I N T ~ " D R O P N F F " ~
4 8 9 ~ R E M ~ I N F I T T ~ M O U E ~
490 FRINT "NO!EE FROM "'L:" TO ";
500 FOR I=1 TO %
510 IF FCI =I GND IML THEN 515
511 GOTO 520
515 FRINT I:
520 NEST I
5.39 INFUT M: IF M=88 THES 100E
540 IF MKQ AFD * 19** 13)=1 THEN D=0,1
F=0:50TO 40
5 5 0 ~ I F ~ M K G ~ T H F N ~ E E 5 ~
551 GOTO 56月
5 5 5 ~ P R I N T ~ " 4 O ~ D R M F M F E " , O T O ~ I S Q ~
560 IF MNO ofH L=1 THEN 5F5
561 GOTO 576
56.5 PRINT "HOU FOMNC ":G:" FIECES OF GOL

```
```

D.":ENC
570 IF M8 THES 60 ?
575 REM MATTC WATE
580 IF FHC1 ME 4 THEH GS5
581 GOTO 590

```

```

NT(0 5wn : GDTO 150

```

```

2c0
595 REM WUE TRODE
600 IF MED THEH 7 AO

```

```

GOD PRTNT "EDPETENE "EE" SFEED "YO:
" STRENTTH "MS:PRINT "ADN SPEED": : IHFII
T H
630 IF E-H0 THFU 63
6.31 GOTO E.40
635 PRIUT "MEFD MORE EMPERIEHTE ":COTO E
20
$649 E=E-H: Y D=10+14: P R T H T$ "EMPRESNE LEFT
"; E
650 PRIMT "ADM STFE HTH" : INFUT N
660 IF E-HO THEN 5EE
661 EOTO ETA

```

```

50
670 E=E-N: $19=0+1$
680 G10T0 229
695 REM FITHT
$7010 \mathrm{~F}=1$
710 IF MMA THEN 900

```

```

730 IF YHNS THE! MH:F
740 IF MHNO THFY HHE:M

```

```

760 FRINT "MOMTE ATTANE ": MS=M-MH:NE
$=\mathrm{HS}-\operatorname{INT}(\mathrm{O}$ CWH:
770 60T0 035

```

```

NT(0.5*中1-
$806 \mathrm{E}=\mathrm{E}+2 \times 4$
810 IF MS $=0$ THFU 24
811 GOTn Ses

```

```

TO 150
ELD PRTHT PRTNT "NTMOTES STUA ALTME":
gOTO 150
895 REM RIn

```

```

901 GOTn 918
905 PRIUT "EOCPEE " GOTR 976

```

```

.2wns):GUTO 970
915 PEM TFEEEFE
$900 \mathrm{IF} T=0 \mathrm{TH} 920$

```


```

94.5
941 COTO 950
945 PRTMT "DFw rot Ger $":-4$
950 FRTUT "Yn! Four "rt;" FIENE DF EO

```

```

$960 E=E+5:$
965 REM MTMF
970 IF MCI $=1$ OF $M=S$ THE $:=M: F=Q: E=E+[1:$
$\mathrm{E}(\mathrm{L})=1: \mathrm{COTO} 15 \mathrm{~S}$
980 FRTNT "MOT AnMOCETT":COTO 150

```

395 REM PRIUT RODNG
\(1000 \mathrm{~L}=\mathrm{L}:\) FOR \(\mathrm{K}=1 \mathrm{TO}:\)
1010 IF ECKY) THEN 1070
1020 PFTHT K "--";
1030 !-x0cue 25
1040 FOR \(J=10 \%\)
1050 IF \(F(J)=1\) AN W SK THEN 1055
1051 GOTO 100 O
1055 PRTUT I:
1064 HET- IFPIHT
1070 HETK
\(1080 \mathrm{t}=1: 1 \mathrm{n} \% \mathrm{~m}\)

\section*{STIMULATING SIMULATIONS, Atari Version, Second Edition}

\author{
C. W. Engel
}

Here is an exciting handbook containing twelve "simulation programs," which are actually game programs. Each program is presented with a listing, sample run, instructions, and program documentation, including a flowchart and ideas for variations. Original program listings are provided in Atari BASIC.
"This book is a good starting point for the computer hobbyist who wishes to explore the use of the small computer in simulating real events." Computer Notes

\section*{Other books of interest...}

\section*{HOW TO PROFIT FROM YOUR PERSONAL COMPUTER: Professional, Business, and Home Applications}

\section*{T. G. Lewis}

Describes the uses of personal computers in common business applications, such as accounting, managing inventory, payroll, and mailing lists. Includes terms, notations, and techniques commonly used by programmers. Some special features are structured design of programs using blueprints, up-to-date programming methods, and a full glossary of terms. Many BASIC language programs are reproduced to illustrate the techniques for putting your computer to work for you. 5761-X, paper, 208 pages.

\section*{THE MIND APPLIANCE: \\ Home Computer Applications, Atari Version}

\section*{T. G. Lewis}

Make your computer write poetry, balance a checkbook, score musicals, become an electronic filing cabinet, automatically dial the telephone, and draw graphic art objects. These and many other ideas, such as handling household budgets, cooking, menu planning, shopping lists, and income tax calculations, are fully illustrated by actual programs that can be put to use. Dozens of Atari BASIC programs show you how to implement the techniques immediately. \#5198, paper, 144 pages

\section*{BASIC FROIV THE GROUND UP}

David E. Simon
Here's a text that examines computers and the BASIC language in a simple, direct way that doesn't require a heavy mathematical background. All the features of BASIC are covered, plus one version of each of the BASIC statements. This approach prepares readers to write programs in any version they encounter. Exercises and six worked-out problems are included. \#5760-1, paper, 232 pages```

