
The Game
Maker's Manual

Atari ST and STOS Basic

STEPHEN HILL

*-
tf/

The Game Maker's

Manual - Atari ST and

STOS BASIC

Stephen Hill

SIGMA PRESS -Wilmslow, United Kingdom

Copyright © Stephen Hill, 1990

All Rights Reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior written permission.

First published in 1990 Reprinted 1990, 1991

Sigma Press, 1 South Oak Lane, Wilmslow, Cheshire SK9 6AR, England.

British Library Cataloguing in Publication Data

A CIP catalogue record for this book is available from the British Library.

ISBN: 1-85058-158-4

Typesetting and design by

Sigma Hi-Tech Services Ltd

Cover design and layout by

Ellis, Ives and Sprowell, and Professional Graphics

Printed and Bound by:

Manchester Free Press, Paragon Mill, Jersey Street, Manchester M4 6FP
Tel: 061-236 8822

Distributed by

John Wiley & Sons Ltd., Baffins Lane, Chichester, West Sussex, England.

Acknowledgment of copyright names

Within this book, various proprietary trade names and names protected by copyright
are are mentioned for descriptive purposes. Full acknowledgment is hereby made of
all such protection.

Contents

1 First Steps 1
1.1 Planning a game I
1.2 Initial ideas 2
1.3 Producing a game plan 3

1.3.1 Understanding the problem 3
1.3.2 Modular programming 7
1.3.3 Pseudo-code 7

1.4 Critical phases 12
1.5 Designing the graphics 12

1.5.1 Background screens 12
1.5.2 Choosing the resolution 13
1.5.3 Mock-ups 14
1.5.4 Designing the sprites 15

1.6 Data structures 17

1.6.1 Introduction to data structures 17

1.6.2 Memory constraints 18
1.6.3 Garbage collection 19
1.6.4 Memory requirements of an array 19

1.7 Overview of the game plan 19
1.8 Using the game plan 20

1.8.1 Collision detection 21

1.9 Documentation 22

1.10 Testing 23
1.10.1 Syntax errors 23
1.10.2 Logic errors 23
1.10.3 Final testing 24

1.11 Optimization 25
1.11.1 Look-up tables 25
1.11.2 The shift instructions 26

1.11.3 Optimization check-list 27
1.12 Conclusion 27

2 Shoot-em-ups 28
2.1 Space invaders 28
2.2 Basic techniques 29

2.2.1 A brief look at Zoltar 29

2.3 Designing a shoot-em-up 30
2.3.1 Anatomy of a shoot-em-up 30

2.4 Moving the aliens 30
2.4.1 Moving the aliens in a straight line 32
2.4.2 Complex attack paths 32
2.4.3 Movement tables 34

2.5 Fire control 37

2.5.1 Controlling the gun 37
2.5.2 Firing a missile 38

2.6 Collision detection 39

2.6.1 Collisions between the player's ship and missile 40
2.6.2 Collision between attacker and a missile 40

2.7 Animating the background 41
2.8 Inside Zoltar 41

2.8.1 Initialisation 42

2.8.2 Control loop 42
2.8.3 The play game routine 43
2.8.4 The Magedon! 45
2.8.5 Possible enhancements 46

3 Rebound games 47
3.1 Introduction 47
3.2 Game plan of a rebound game 48

3.2.1 Critical routines for rebound 48
3.3Thegame screen 50

3.3.1 Designing the screen 50
3.3.2 Creatinga screen 50
3.3.3 Drawing the blockson the screen 52

3.4 The bat 53
3.4.1 Controlling the bat 53
3.4.2 Positioning the bat 54

3.5 The ball 54
3.5.1 Initial conditions (gluing the ball to the bat) 54
3.5.2 Releasing the ball 54
3.5.3 Moving the ball 54

3.6 Collisions 56
3.6.1 Detecting a collision with the bat 56
3.6.2 Collisions between the ball and the block 57
3.6.3 Collisions between a ball and the walls 57
3.6.4 Collisions with the ball and an irregular object 58

3.7 Rebounds 59
3.7.1 Rebound tables 59
3.7.2 Rebounds with a wall 59
3.7.3 Rebounds with the bat 62

3.7.4 Rebounds with the block 63

3.8 Inside Orbiter 67

673.8.1 Initialisation

3.8.2 The control loop 69
3.8.3 Playing a game 70

4 Simulations 7^
4.1 What is simulation? 75
4.2 Simulation games 76

4.2.1 The game world 76
4.2.2 Game tie 77

4.3 Simulating movement in space 77
4.3.1 Theequations of motion 77
4.3.2 Motion in two dimensions 82
4.3.3 3D Movements 86

4.4 Right simulators 88
4.4.1 Game plan of a flight simulator 89
4.4.2 Reading the controls 89
4.4.3 Control panels 90

4.5 Spacesimulations 91
4.6 Other simulations 92

4.6.1 Creatinga simulation 92
4.6.2 Economic simulation 92

4.7 Conclusions 98

5 Role-playing games 99
5.1 History 99
5.2 Anatomy of a role-playing game 100

5.2.1 Character classes 101
5.2.1 Attributes 101

5.2.3 Experience 103
5.3 Scenarios 104

5.3.1 What is a scenario? 104

5.3.2 Practical considerations 104

5.3.3 Some basic scenario ideas 105

5.3.4 The game map 106
5.4 Game plan of a role-playing game 108
5.5 Creating a character 109

5.5.1 Selecting the attributes 109
5.5.2 Generating a character 110

5.6 Drawing the map 115
5.6.1 Displaying a map from above 115
5.6.2 Displaying part of a map 116
5.6.3 3D effects 125

5.7 Controlling the character 125
5.7.1 Using the keyboard 125
5.7.2 Joystick input 126
5.7.3 Using the mouse 127

5.8 Multiple characters 127
5.8.1 The leading character 128
5.8.2 Individual control 128

5.9 Combat 128

5.9.1 Melee rounds 129

5.10 Magic 135
5.11 Conclusion 136

6 Adventure games 137
6.1 A little history 137
6.2 Adventurers start here 138

6.2.1 Sample transcript from Colossal cave 138
6.2.2 Why STOS Basic? 139

6.3 Scenario design 139
6.3.1 Creating a map 140

6.4 Game plan of an adventure 141
6.4.1 Standard routines 143

6.5 Understanding text 143
6.5.1 The text parser 143
6.5.2 The verb noun parser 144
6.5.3 Expanding the parser 148

6.6 Picturing the scene 152
6.6.1 Choosing the graphics 152
6.6.2 The screen compactor 152

6.7 Graphic adventures 153
6.8 The rooms 155

6.8.1 The long room description 155
6.8.2 The short room description 156
6.8.3 Storing the room descriptions 156
6.8.4 Displaying your descriptions 157
6.8.5 Moving.between rooms 158

6.9 The objects 161
6.9.1 Choosing the objects 161
6.9.2 The current location 162

6.9.3 The inventory 163
6.10 Handling the events 163
6.11 Acting on the user's commands 165

6.11.1 Global commands 165

6.11.2 Local commands 167

6.11.3 System commands 168
6.11.4 Movement commands 169

6.12 Conclusions 170

7 3D Techniques 171
7.1 Introduction 171

7.2 Creating an object in 3D 171

7.2.1 Coordinate systems 171
7.3 General techniques 174

7.3.1 Moving the origin 174
7.3.2 Scaling an object 175

7.4 Displaying an object in 3D 177
7.4.1 Perspective 177
7.4.2 Clipping 184

7.5 3D rotation 186
7.5.1 Rotation directions 186
7.5.2 The 3D rotation formulae 187

7.6 Checking for visibility 194
7.7 Flight simulators 196
7.8 practical considerations 199

7.8.1 Sine tables 199
7.9 Conclusions 200

8 Animation Techniques 201
8.1 Colour scrolling 201

8.1.1 Basic principles 201
8.1.2 FLASH 203
8.1.3 SHIFT 203
8.1.4 The FADE instruction 204

8.2 The ANIM command 205
8.3 Screen animation 206

8.3.1 SCREENS 207
8.3.2 Screen flipping 208

8.4 Conclusion 209

9 Sampled sound 211
9.1 Introduction 211

9.2 The STOS MAESTRO system 212
9.3 Special effects 213

9.3.1 Choosing the recording speed 213
9.3.2 Getting the most out of your sampler 214

9.4 Potential sound sources 214

9.4.1 The MAESTRO samples disk 214
9.4.2 The public domain 215
9.4.3 Films and tapes 215
9.4.4 Television 215

9.4.5 Other sources 216

9.4.6 Creating an alien 216
9.4.7 Direct synthesis 217

9.5 Possible applications 218
9.5.1 Arcade games 218
9.5.2 Simulations 218

9.5.3 RPGs 218

9.5.4 Adventures 218
9.6 Conclusion 219

10 Scrolling techniques 221
10.1 Introduction 221
10.2 Basic principles 222
10.3 The SCROLL command 224
10.4 A window to the world 228

10.4.1 The game map 229
10.4.2 The MAP definer 229
10.4.3 Storing the map 230
10.4.5 Scrolling through a map 230
10.4.6 Initialising the game map 231
10.4.7 Redrawing the fringe 232

10.5 Screen flipping 236
10.6 Using sprites with a screen scrolling game 238

10.6.1 Difference between UPDATE and SYNCHRO 238
10.7 Conclusion 239

11 Assembly language programming techniques 241
11.1 Why program in assembly language? 241
11.2 Choosing an assembler 242

11.2.1 The STOS Basic assembler 242
11.2.2 Other assemblers 242

11.3 Free standing assembly language programs 243
11.4 STOS Basic extensions 244

11.5 Interpreter extensions 245
11.5.1 The header 245
11.5.2 Initialisation section 247

11.5.3 Syntax checking 248
11.5.4 Function definitions 253

11.5.5 System support routines 254
11.5.6 Interpreter extension checklist 259
11.5.7 Bis for BUG! 259

11.6 The compiler extensions 261
11.6.1 The header for compiler extension 261
11.6.2 The compiler library 264
11.6.3 Creating a compiler library 265
11.6.4 Retrieving the parameters entered by the user 266
11.6.5 Using a data area 266
11.6.6 System variables 267
11.6.7 Compiler extension checklist 270

11.7 Conclusions 270

Glossary 271
Index 277

First Steps

1.1 Planning a game

It's a well known fact that the journey of a thousand miles begins with just a single
step. This is especially true if you're trying to write a computer game, as it's all too
easy to fall flat on your face before you have really started. Wouldn't it be nice if
there was someone out there to help you on your way? Well, that's the aim of this
chapter. I can't promise to solve all your problems for you, but I can try to signpost
some of the danger signs you will encounter during your journey.

Many people think that the difficult part of games programming is actually writing
the code. But if you were to ask a professional programmer about this, the answer
would probably surprise you. Programming is easy, they would say, it's only the
initial planning phases that are complicated. Commercial software houses often
employ separate people especially to make up the initial plans. These systems
analysts don't produce a single line of code. But they are usually paid several times
the salary of even the best computer programmer.

If you want to write a computer game successfully, you need to combine the skills of
both the programmer and the systems analyst. Sometimes the temptation to start
programming immediately can be almost irresistible. This temptation should be
avoided at all costs! Any mistakes you make early on in your program will be
propagated through your code like a horde of locusts, and will eat away at it until it is
stone dead. After you've invested a great deal of time and energy into a particular
program, it can be heartbreaking to discover that the basic concept of the program is
completely unworkable. Writing a game without a plan is as silly as visiting a strange
city without bothering to take a map. In both situations you would probably get
totally lost before you reached halfway to your intended destination. Planning is one
of the most crucial phases of games creation. Good programmers plan each step of
their programs carefully before writing a single line. So when they write then-
programs they always know precisely what they are trying to achieve, and have
already solved most of the potential problems well in advance.

If you plan your game scrupulously, the programming will suddenly seem incredibly
easy. A day's worth of planning can often save you several weeks of difficult
programming. So any effort involved in the planning process will usually be rewarded
many times over.

The real beauty of the planning stage, is that enables you to discover any potential
difficulties in your program well in advance. If some of these problems prove to be
insoluble, it's then usually possible to adapt your game to avoid them completely.
You can also perform simple experiments to check how the mechanics of your game
will work out in practice. This lets you explore many possible ideas before
committing yourself to anything concrete.

1.2 Initial ideas

Few computer games are written in isolation. Nowadays, most games can be placed
into one of a small number of basic types. These categories include arcade games,
adventures, platform games, and war-games. Some formats have been developed from
just a single success story, whilst others are the latest developments of ideas which
hark back to the very earliest days of computing.

You start off by choosing one of the type of games which particularly interest you.
You should then try to think of any ways one of these games could be improved.
Obviously, it's pointless to attempt to write an exact duplicate of someone else's
program in STOS Basic. Not only is this almost certainly illegal, but it's also
completely futile. If people want to play the original ARKANOID, they will
invariably prefer to buy the official version rather than yours. At least that way they
will be rewarding the people who did the actual work on the project.

Furthermore, if you wish to sell your program to either a commercial software house
or a magazine, you will need to add something new and innovative to make your
game stand out from the crowd.

A good source of inspiration is to look at as many existing examples of your chosen
format as possible. You can then make out a complete list of the various things you
like and dislike about these games. Hopefully, this process should give you a number
of useful ideas about how the game might be expanded. Think of different
modifications to the game, and try to work out the consequences of these changes in
terms of the final game play. But don't get too carried away with any single idea.
Inevitably, as your plans progress, some notions will prove to be unworkable, and
other possibilities will occur to you instead.

In order to illustrate this technique, I'll list a few of the plus and minus points from
MEGAMAX'S MEGAROIDS game. I've chosen this program incidentally, because
it's one of the few games which are owned by the majority of ST users.

Likes:

• Nice graphics;

• GEM based;

• Action fast and furious;

• Good implementation of the game "ASTEROIDS";

• High score table;

• Works equally well on colour or monochrome systems.

Dislikes:

• Poor use Of colour;

• No support for low resolution;

• Keyboard used to control ship rather than joystick;

• Lack of variety;

• Poor use of sound.

On the whole, MEGAROIDS is quite a reasonable game. It's certainly an excellent
demonstration of MEGAMAX's C compiler. But these comments do suggest a
number of possible improvements. These could form the basis of a new version of
MEGAROIDS written in STOS Basic.

1.3 Producing a game plan
I'll now go into the precise details of how one of these game plans can be created.
The first stage is to produce a detailed specification. This should consist of a
complete written description of the game in standard English. The aim of the
specification is to list all the important features of your program, and to attempt to
isolate any potential problems. You can also use this process as an opportunity to
work out the detailed mechanics of the game play. What's the aim of the game? How
will it eventually be achieved by the player?

Failure to concentrate sufficiently on this problem can have potentially disastrous
results. It's quite possible to spend a great deal of time and energy to produce a game
which looks and sounds absolutely brilliant, but which is completely unplayable. This
is an area that even the experts can occasionally get wrong. So even if you already
have a fairly good idea about the sort of game you wish to create, it's still worth
while drawing out a detailed game plan.

It's amazing how many improvements can arise from the simple transition of an idea
onto paper.

1.3.1 Understanding the problem

I'll now show you how a complete specification can be produced for the
MEGAROIDS type game I mentioned earlier. I'll start off with a brief description of

the game in English. If you've got a version of MEGAROIDS on your ST, it might
be a good idea to play around with it for a while before you read any further.

The first decision I'll take is to choose a name for my new game. The selection on a
name is often quite difficult, since you need to find something which hasn't already
been used. I'll provisionally call my game PATHFINDER, keeping the option to
change it later if it proves necessary.

Specification for PATHFINDER

Description:

This is a game based on the old arcade favourite ASTEROIDS. The player is given
control of a space ship which can be moved around on the screen. The ship is initially
placed at the centre of the playing area. During the game, a number of large rocks
slowly creep up from the edges. If one of these rocks hits the players ship then the
player will lose a life. The object of the game is simply to zap the rocks with the gun
before they collide with the space ship.

Alongside this verbal description, you can also add rough sketches of the various
graphical elements which make up the game. A mock-up of a typical screen might
look rather like the one shown in Figure 1.1.

Score 00600 Lives 3

Figure 1.1 Mock-Up of a Pathfinder screen

You can now jot down a list of the various actions which will take place when the
game is played, along with any initial thoughts about how these might be
implemented in the final program.

Actions:

1 The rocks will move in straight lines from a random point on the edge of the
screen.

Note: Move using STOS MOVE command.

2 Shooting a large rock will split it into two medium sized ones which will move
apart at right angles to the rocks original course.

Note: Large rock uses 32 by 40 sprite?
Medium rock uses 16 by 20 sprite?

3 Shooting a medium sized rock will split it into two smaller ones. These rocks will
move away from each other after they are created.

Note: Small rock uses 16 by 8 sprite?

4 Shooting a small rock will destroy it.

5 The smaller the rock, the faster it will move and the higher the points which will
be scored when it is hit.

6 The player controls a small space ship using the joystick.

Note: implement ship as 16 by 16 sprite.

7 Pulling the left hand joystick will move the player's ship around on the screen.

8 If the ship is hit by a rock, both ship and the rocks are destroyed.

9 Pressing the fire button releases a missile. This takes the form of a moving dot.

10 The player will be allowed to fire as many shots as he likes on the screen.

11 If a shot hits a rock, the rock will be either split or destroyed depending on its
size. The players score will increased appropriately.

If you examine these actions carefully, a couple of significant questions should arise:

STOS Basic only allows you to use fifteen sprites at any one time. Since each
rock will spawn up to four smaller rocks during the game, you will need to
restrict the initial number of rocks accordingly. The maximum number of
asteroids at the start of the game can be calculated by simply dividing the
number of sprites by four. This results in a initial maximum of 3.75 rocks.
Obviously, it's impossible to split a sprite into pieces, so the initial number of
asteroids will be three or less. This will use up 12 of the 15 sprites, leaving
you with three spares. As the rocks are successively destroyed, your program
can then add new ones from the sides of the screen.

There's also a question of speed. STOS Basic works best when there are just a
limited number of sprites on the screen. So how will it cope with these 12
sprites? Luckily, the original specification required only the smallest rocks to
be moved at high speed. Providing you keep these sprites as small as possible,
you should still be able to produce a game which plays reasonably smoothly.

The final problem, posed by the specification, is the nature of the dot used for
the missile. How will this be generated? You can't use a sprite, as there are
only a couple spare. Could you use the STOS Basic PLOT command in some
way? Or will you have to work around this problem by changing the
specification? You might find that the only way to beat this problem would be
to remove requirement number 10 completely. This was the line which
allowed the player to fire multiple missiles. You would now be able to
implement your missile using a single sprite.

Alternatively, you could also attempt to generate the missile using PLOT.
Before continuing with your game plan, you could check whether this
approach was feasible by writing a small program as an experiment. If this was
successful, you could then design your game, secure in the knowledge that the
solution to the problem was actually achievable. This situation is typical of the
type of difficulty which is commonly thrown up during the planning stage. If
you hadn't bothered with the game plan, you would only have discovered the
problem well into writing the program. The only feasible solution might even
have involved completely rewriting your game from scratch!

Of course, the specification I have shown you is only intended as a rough
demonstration, and would probably need expanding before it was ready to proceed
any further. The game play in particular, would currently appear to be rather
repetitive. Here are a few suggestions for possible improvements:

12 Different types of rocks have separate colours.

13 Red boulders explode violently and score higher points.

14 Yellow boulders need several hits before they explode, and score maximum
points.

15 If the player hits the <SPACE> bar, the ship jumps to a random location.
(Hyperspace option)

16 An enemy ship appears at random intervals and fires at the player. Killing this
ship scores extra points.

The key thing to remember about these game plans, is that they should never be set in
concrete. Even the best plan can be improved, and you will probably think up a
number of potentially interesting ideas during the development process. It's
recommended that you only treat the game plan as a flexible framework which can be
fleshed out in the course of time.

1.3.2 Modular programming

The next stage in the development process is to group the various activities into
separate tasks. These will eventually form the basis for the subroutines which are
used in the final STOS Basic program. Experience has shown that any large program
can be simplified enormously if it is split up into a number of smaller, more
manageable chunks. This approach is known as modular programming.

Modular programming has proved phenomenally successful in the world of
computing. STOS Basic itself was produced using a similar technique, as were all the
pieces of associated software. Modular programs are both easy to write and easy to
change. So you can start off with something extremely basic, and steadily expand it
into a polished and attractive game.

You begin by listing the individual activities which are to be performed by the
program. These can be grouped together into the following way:

1 Initialise the screen

2 Move the rocks

3 Move the ship
4 Test the joystick
5 Fire the bullet

6 Detect collisions

Each of these five activities represents the execution of a specific section of the
program. Unfortunately, this list only gives you a very crude picture of the program,
as there is no information specifying the particular order in which an activity will be
performed. Before you can include this in your descriptions, it's necessary to extend
the current notation so as to allow you to make decisions. The easiest way to achieve
this, is to use something called pseudo-code (pronounced soo-doe-code).

1.3.3 Pseudo-code

Pseudo-code enables us to completely describe the action of any computer program
using a limited form of English.

The fundamental unit of this pseudo-code notation is the statement. Statements are
represented by a few words which explain concisely what each operation is supposed
to achieve.

The following English phrases are all valid pseudo-code statements:

Move the ship

Update score

Like Basic, you can control your activities using statements such as IF...THEN, and
loops like REPEAT...UNTIL. But since we are working on paper, there is no
complicated syntax to remember.

Pseudo-code is not limited to just describing a computer program, and can be applied
to any activity. The best way to understand pseudo-code is to attempt to write some
yourself. Try to produce a pseudo-code description of the activities you would need to
perform in order to make a cup of black coffee. Assume you are giving instructions to
an intelligent, but literal-minded person who has no initiative whatsoever. If you have
a little experience with adventure games, you should have a good idea of the sort of
words you will need to use.

After a little work, you should have written something like:

get coffee jar

get coffee mug

get spoon

grab top of coffee jar

grasp top of the jar

repeat

turn top

until top is removed

push spoon in coffee jar

scoop up some coffee

empty coffee from spoon into mug

put down coffee jar
put down spoon

put down mug

get kettle

fill kettle from sink

plug kettle' s lead into power socket

turn on kettle

while kettle is turned on

If kettle boils

then

turn off kettle

pour water into coffee mug

endif

wend

As you can see, even simple activities need to be broken down into quite a long list
of instructions. Fortunately, writing a computer game is MUCH easier than making a
cup of coffee! (How many coffee machines do you know which can perform all these
actions by themselves?)

The main intention of pseudo-code is to provide a sort of halfway house between a
human language like English and a computer language like Basic. This allows you to
produce a description of how an activity can be performed, without worrying about
any boring implementation details.

Eventually each pseudo-code statement will be translated into Basic. After translation
it may represent anything from one to several hundred actual instructions. Here are
some small fragments of this pseudo-code applied to the pathfinder problem:

If rock is hit then destroy rock

If joystick has been moved

then

move the players ship

check for collisions

endif

Repeat

Move rock

Until rock leaves screen

While missile is moving
Check for collisions

Wend

It should be apparent that the statement between the IF and THEN represents a
comparison of some sort. If this comparison is fairly complex, each test may involve
a separate module in the resulting program.

This will be called before the check occurs, and will normally set a Basic variable
which can be tested using the STOS Basic IF instruction.

See how I've used indentation to highlight groups of associated statements. Also note
the WEND and ENDIF instructions, which indicates the outer limits of the list of
statements which are to be performed by the WHILE and the IF operations
respectively.

It is important to realise that there is nothing particularly sacred about the precise
details of the notation I've just been discussing. You can therefore chop and change
this notation as much as you like, without robbing the technique of any of its power.
So if you would prefer to invent your own pseudo-code system instead of using mine,
go ahead. The only thing that really matters is how easy it is for you to understand.
Anything else is irrelevant.

A larger example of this pseudo-code, which concisely describes the action of the
Pathfindergame is given in Figure 1.2 on the next page.

This code is not supposed to be complete by any means, and would need to be
extended for the finished game plan. It is however, more than adequate to enable you
to isolate a few more of the game's more important components. Have a brief look at
this code, and try to jot down a list of crucial activities.

Hint: Each activity will be associated with a single pseudo-code statement.

Initialise the screen.

Repeat

Move the rocks

Check for collisions

If a rock hits the ship

then

destroy ship

endif

If a bullet hits a large rock

then

split rock

update score

endif

If a bullet hits a medium rock

then

split rock

update score

endif

If a bullet hits a small rock

then

remove rock from the screen

update score

add new rock from edge of the screen

endif

Test the joystick

If joystick has been pulled

then

move the ship

endif

If the fire button is pressed

then

activate bullet

endif

If bullet is activated

then

move bullet

endif

Until ship is destroyed

Figure 1.2 Pseudo-Code description of Pathfinder

10

The main activities will be:

• Initialise the screen;

• Move rocks;

• Detect collisions;

• Destroy ship;

• Split rock;

• Update score;

• Remove rock from screen;

• Place new rock at edge of screen;

• Test the joystick;

• Move ship;

• Activate bullet;

• Move bullet.

These activities can also be expanded into pseudo-code. So the "Check for
Collisions" activity could be expressed as:

Description of Check for Collisions:

Check for collision between a rock and the ship
If bullet activated

then

check for collision between rock and bullet

check for collision between ship and bullet

endif

If ship collides with bullet then destroy ship

By expanding all of the procedures using the same systematic method, you can refine
the game plan still further. You should then isolate any new activities which will be
required, and describe each of them with their own fragment of pseudo-code.

If you repeat this process, you will finally be left with a list of pseudo-code
definitions representing each of the Basic procedures. These can then be translated
directly into a small number of STOS Basic instructions. Normally, this point will be
reached within approximately three or four loops. The game plan will now be
complete, and you will have a completedescription of the workingsof your game.

Think of the planning process like the peeling of an onion, layer by layer. As the
method progresses, the precise workings of the program will slowly be unravelled.

My own example has practically reached this point. Only the "destroy ship" activity
will need to be developed any further. The various "check for collision" routines
could be performed using a single "COLLIDE" instruction from STOS Basic.

n

Sometimes your original plan will prove slightly impractical. If for instance, you had
added a check for the collision between two rocks, you would have encountered a
problem. This is because the STOS Basic "COLLIDE" command has to include the
number of a specific sprite. You would therefore need test the status each individual
sprite of the screen in turn, before a collision would be detected. In practice, this
process could slow down the action of your game significantly.

You could avoid this complication completely by simply jumping back to the original
specification, and making the appropriate changes. Remember that the specification
can easily be altered at any point during the development process.

1.4 Critical phases

The execution of any game can be split into three critical phases:

• Initialisation;

• Control loop;

• Termination.

The initialisation stage corresponds to the "Initialise screen" activity from
Pathfinder. Its aim is to prepare all the various screens and load your variables with
their initial values.

The Control loop forms the heart the game, and controls the action of the entire
program. A typical example of this type of procedure can be seen in the pseudo-code
I showed you earlier for the pathfinder program. (See Figure 1.2)

The Termination phase performs a simple cleaning-up operation after the game has
concluded. This normally includes the following activities:

• Close any currently open files;

• Update the high score table on the disk;

• Present the player with the option of a further game.

1.5 Designing the graphics

1.5.1 Background screens

It's now time to design the various screens which will be appearing in your game.
STOS Basic includes a range of facilities which make it especially easy to incorporate
beautiful graphics directly into your Basic programs. Although STOS doesn't supply
you with a built-in drawing utility, it's totally compatible with both the Neochrome
and DEGAS graphics packages.

The single most important consideration when designing your graphics is to make
them as easy to change as possible. The majority of software houses now employ

12

different people to write their games, and to draw the screens. The latter include
talented artists such as Mandarin's Dave McLachlan who drew most of the original
artwork for STOS Basic. The employment of people of this calibre during the
development of a game has contributed enormously to the vast improvement in the
quality of such graphics over the past few years. If you wish to sell your game
commercially, it is quite likely that your artwork will need to be re-drawn
professionally at some stage. Even if your graphics are exceptional, there is always
the possibility that the name will be have to be altered before publication. Most
commercial games go through several name changes during development. This could
have a significant affect on the final appearance of your game. Fortunately, STOS
Basic is amazingly flexible in this respect.

All the sprite definitions are stored in a separate memory bank, and can be changed
independently from the rest of your program. You can also load screen banks with an
image in either DEGAS, or NEOCHROME format and compress them into just a
fraction of their normal size using the compaction accessory. This format should
generally be used for your background screens. Any other screens in your game are
best created using the map definer, because these maps can be readily modified at any
time without having to make major changes in the structure of your program.

1.5.2 Choosing the resolution

The most fundamental decision you must make when designing your game screens, is
to decide which one of the ST's three resolutions you will be using. Unlike many
other programming languages, STOS Basic is capable of performing equally well in
all of the ST's three graphics modes. Since most ST users possess a colour system,
your choice is really between medium or low resolution. Each of these modes has its
own inherent set of advantages and disadvantages.

Low resolution is perfect for games which need a lot of colour. This includes the
majority your arcade favourites such as Arkanoid and Xenon. Sometimes however,
low resolution images simply can't contain all the information you wish to display on
the screen, so medium resolution has to be used. Furthermore it's often quite easy to
convert a medium resolution game into monochrome.

This'widens your games appeal to all ST users, and is potentially a very useful selling
point. (I'm reliably informed that 90% of Germans use ST's with a monochrome
monitor!)

Certainly, if you're thinking of writing an adventure, it's well worth taking a little
extra trouble to design your game for use with both mono and colour systems. Any
built-in graphics can be easily restricted to low resolution without noticeably reducing
the quality of the game. It's even possible to convert your colour pictures into
monochrome inside the program. This technique is neatly used to add a touch of
graphics to Rainbird's "The PAWN" when it is displayed on a monochrome
monitor.

13

Obviously if you are restricted to a mono monitor, the decision will be effectively
taken out of your hands. The market for high-resolution games may be fairly limited,
but there is also very little competition in this area. The best idea is to write your
game on a monochrome system initially, and then modify it for use in medium
resolution colour. It is this approach which has been adopted by MTNDSCAPE for
their excellent BALANCE OF POWER.

1.5.3 Mock-ups

Before you begin drawing your final artwork, it is useful to sketch out the basic
screen format on a piece of paper. Despite the undoubted power of drawing packages
such as DEGAS and NEOCHROME, it's all too easy to get bogged down in
extraneous details. You should initially concentrate on the overall structure of the
screen, rather than producing a completely perfect rendition of the image. Many
games require you to split the screen into a number of separate sections. It is
therefore important to decide on the physical size of these areas, and work out exactly
where they will be positioned.

Figure 1.3 shows an example of a typical mock-up of the screen for the ORBITER
game supplied with STOS Basic.

Figure 13 Mock-Up of a background screen

Title

Score
0005432

^fi Score
1000000

/ \
fczm mmm>

<S*Hmm>
<ili mm>

After you have created your mock-ups on paper, you can then enter your sketches
directly into Neochrome. These can be saved on the disk, and used for the
preliminary versions of your game. It may be tempting to spend ages drawing the
final artwork at this point. This is very dangerous idea, as it fixes the structure of the
graphics at far too early a stage.

14

If you keep the initial screens simple, you can effortlessly make major modifications
to your program as the game progresses.

This approach was used to great effect during the creation of the STOS Basic sprite
definer. The author (Francois Lionet) originally based the program around a
background screen which was supplied at the start of the assignment. The finished
artwork was then added by Dave McLachlan, after the program itself had been
completed.

Oddly enough, I never saw any of this artwork while I was writing the section on the
sprite definer in the STOS Basic manual. This led to hilarious results when I first
attempted to demonstrate the sprite definer to my friends, as I was thrown totally by
the fancy icons. So despite having explained it to you in copious detail, I was
sheepishly forced to referbackto my own manual before I could actually use it!

1.5.4 Designing the sprites

Any sprites which are to be used in your game need to be chosen with special care.
Although STOS Basic is extremely good at moving your sprites around on the screen,
some limitations are inevitable. The most important constraint is one of speed. As you
would expect, the maximum speed of a sprite varies depending on its size. In general,
the smaller the sprite, the faster it can be manipulated.

It's worth remembering that the more sprites you have on the screen, the slower they
can be moved around.

This is particularly relevant to arcade games, such as space invaders, which often
require you to restrict the size of your ships to 16 by 16 pixels in order to get the
maximum speed.

Other programs, such as platform games, have comparatively few sprites on the
screen. You therefore have the luxury of using sprites up to around 32 by 40. Finally,
there are role-playing games which will often display less than three or four sprites at
a time. These can easily utilise sprites up to the maximum of 64 by 64.

Of course, the previous discussion is only intended as a rough guide. Don't be afraid
to experiment with larger sprites to see what happens. Providing you ruthlessly keep
the number of objects on the screen to a bare minimum, it's still possible to envisage
a perfectly playable arcade game using even the largest sprites.

Additionally, the movement speed of a sprite is also dependent on the screen
resolution. Since the higher resolutions use less information to represent a single point
on the screen, all sprite movements can be performed faster. This means a 32x32
sprite in medium resolution can be moved appreciably faster than the equivalent sprite
in low resolution. So if your game requires particularly large objects, it might be
worth considering writing the program to use medium resolution graphics.

15

Because the main sprite definer is compatible only with low resolution, you would be
forced you to create your sprites using the SPRITE2 program, which can be found on
the accessory disk.

You must keep track of the amount of memory which will be consumed by your
sprites. On a 520 ST, STOS Basic leaves you with over 220k ofmemory to hold your
programs and data. Normally, this will be more than adequate for the majority ofyour
game ideas. If, however, you are contemplating using a very large number of game
screens, you might find that memory starts to become rather tight. A single 64 by 64
sized sprite will take over 2k ofthe ST's memory in low resolution. So if you wanted
to use dozens of these images, you could quickly run out of space.

The solution is to calculate your games memory requirements during the initial
planning stage. This allows you tailor the size of your sprites precisely to the amount
of available memory. But how can you compute the memory needs of a STOS Basic
sprite? Fortunately, there a simple rule of thumb which can calculate the memory
taken by any low resolution sprite:

MEMORY = WIDTH/2 * HEIGHT + 8

To work out the storage used by a 32x32 sprite, you could perform the following
calculation:

MEMORY = 32/2 * 32 + 8

= 16*32 + 8

= 512 + 8

= 520 bytes

This figure applies to each individual image you are using. So 10 of these images
would use around 5k of the ST's memory.

Similarly, the equations for medium and high resolutions are:

MEMORY = WIDTH/4 * HEIGHT + 8 (Medium res)
MEMORY = WIDTH/8 *HEIGHT + 8 (High res)

The final size constraint is generated by your earlier decisions concerning the nature
the background screen. If you are writing a platform game, you may have already
decided to split the screen into three separate levels. This will inevitably determine
the most appropriate size of your characters.

As with the background screens, it's sensible to produce a complete mock-up of all
your sprites before you create them with the sprite definer. This is especially
important if you wish to produce an animation sequence such as a walking man. By
keeping the initial drawing extremely simple, you can work out the position of the
various limbs relatively easily. You can then draw successive frames of the
movement on separate pieces of paper, and animate the figure by simply flicking
through the pages one after another.

16

This system may seem rather crude, but despite the availability of modem computers,
it is still commonly used by many professional animators.

After you've animated the skeleton of the figure, you can then enter these frames
directly into the STOS Basic sprite definer. It's wisest to leave these in their original
state until the program is nearing completion. This will allow you to change the size
or appearance of your sprites quickly, as your game evolves.

Figure 1.4 Mock-up ofa sprite - the octopus from ANIMALS l.MBK (on STOS Basic accessory disk)

1.6 Data structures

1.6.1 Introduction to data structures

The last phase of the planning process, is to decide where the various pieces of
information required in your game are to be stored. If you have written out your
program in pseudo-code, some of this data will be fairly obvious. You can for
instance, quickly list many of the simple variables which will occur in the pathfinder
program, e.g.

score

number_of_rocks

livesjeft

There will however, also be a need for far more complicated arrangements of data.
These will be held in special data structures. "Data structure" is just a fancy name for

17

a collection of items of similar information. There are a number of different types of
data structures which can be used. These include arrays, lists, stacks and records.
When writing a computer program, you are often faced with a bewildering range of
storage methods.

By choosing the data structures most appropriate to the problem in hand, you can
often speed up your game significantly. Supposing you wished to select the data
structures required for the pathfinder program. In this case, the biggest requirement
will be for a way of keeping track of the individual rocks. Every rock will be drawn
using one of the 15 available sprites.

STOS Basic refers to each sprite using a number from 1 to 15. It's very important to
keep track of the size of a rock, as this will be needed to decide whether the rock
should be split in two or destroyed after a successful hit. You therefore need to create
a table containing the size of each individual rock. This can be done using an array
which can be defined at the start of the program in the following way:

10 DIM ROCK (12)

Each sprite will have a number specifying the size of the rock which it represents. If
you have decided to have different sorts of rock in the game, you will also need
separate arrays to hold this data. These can be defined in exactly the same way.

When you are defining your variables, you may be tempted combine many similar
arrays in a single mulu-dimensional array. However, it's recommended that you use a
single dimension whenever possible, because STOS Basic does take slightly longer to
retrieve information from an array with more than one dimension.

This means that a line like;

X=XARRAY(10):Y=YARRAY(10)

performs marginally faster than the equivalent;

X=ARRAY(10,1):Y=ARRAY(10,2)

The first line is also much easier to read.

1.6.2 Memory constraints

When you are choosing the data structures used by your game, it's important to keep
an eye on the amountof memory they are taking up. The storage used by any variable
depends on its type, as shown in the following table:

Type Size Notes
Integer 4 Bytes Default variable type
Real 8 Bytes (even in v2.4) Followed by a "#"
String up to 65536 Followed by a "$"

1.6.3 Garbage collection

The STOS Basic SCREENS command often forces you to manipulate some very
large strings indeed. Unfortunately, it can prove almost impossible to calculate in
advance the amount of memory which will be used. This is particularly relevant if
you are planning to swap information between several strings, because it can lead to
an annoying problem known as garbage collection.

Garbage collection is a tidying-up operation which is invisibly performed by the
STOS Basic system. It occurs at fairly irregular intervals, and can occasionally halt
your entire game for several seconds.

The only reliable solution, is to use the STOS Basic FREE command to force this
operation at a convenient point in your program, e.g.

10 X=FREE

Note that the garbage collection routine used for programs compiled using the STOS
Compiler is much faster than the original interpreted one. This can lead to a dramatic
improvement in the performance of certain games.

1.6.4 Memory requirements of an array

The amount of memory taken by an array can be calculated by simply multiplying the
number of elements by the size of each one. In practice, the memory used can quickly
mount up, especially when you are using arrays with more than a single dimension.
This is particularly evident if your game utilises wireframe graphics. A single object
in your game could easily need 30 or more coordinate pairs to describe it. If you
wished to display this object from 10 different viewpoints, you would need to create a
three dimensional array as follows:

10 dim object(10,30,2)

The total number of elements in this array would be 10*30*2 or 600. The memory
used would therefore be 600*4 or 2400 bytes. This may not seem much, but it would
still limit you to around 80 different objects on a standard 520 ST. If you tried to
write a program which ignored this constraint, you could soon find yourself with a
serious memory shortage.

1.7 Overview of the game plan
The planning stage of your game is now complete. Whew! If it all looks rather
tedious, it is important to realise that the entire process can often be finished in less
than a day.

Pseudo-code is especially useful; it is much easier to write than Basic, because you
can leave out many of the fiddly implementation problems and concentrate on the

19

overall structure of program. Even if you are only prepared to spend a couple of
hours on your plan, you can still save yourselfweeks of futile programming.

I'll conclude this section with a summary of the various steps in the planning process:

1 Choose a game type

2 Produce a written specification. This should include mock-ups of any screens
used, and brief descriptions of the size and appearance of the sprites.

3 Isolate the various activities in your program.

4 Generate a pseudo-code description of each activity starting with the control loop.

5 Successively repeat steps 3-4 for each of the activities in your program.

6 Isolate the information needed by your program, and choose the appropriate data
structures to contain it.

1.8 Using the game plan
Once you've finished your game plan, you are now ready to start generating the
program lines which make up your game. Normally, this should be fairly easy,
because much of the work will have already been done. It's best to write each section
of your program on paper before typing it in. This is particularly important if you
don't have a printer, as it can often prove almost impossible to debug large programs
without a listing beside you.

As you write your program, it's sensible to make a note of all the different variables
on a separate piece of paper. This will serve as a valuable memory jogger during the
debugging process. Don't bother creating the finished artwork until the program is
approaching completion. Try to concentrate on the game-play without the distractions
of the graphics.

If you're writing an arcade game, most of the programming effort will need to be
spent on producing'the sections which will perform the sprite movements. Even if
you have planned your game to perfection, there will inevitably be some problems
which you simply cannot solve on paper. You then need to experiment with your
program until you have achieved the desired effect.

Take the pathfinder program. In this case, you will have to concentrate on the
sections of the program which move the rocks around on the screen. This will require
you to create a list of movement strings which can be executed by the STOS Basic
MOVE X and MOVE Y instructions.

Although you may have a very good idea about the approximate directions you will
need, you will still need to experiment with a number of possibilities before you can
generate the precise results you desire. It's therefore a good idea to start off with a
simple test program which will enable you to play around with the various different
options.

21)

Here is a small example of a sprite experimenter program for you to type in.

Example 1.1 Sprite experimenter program

10 els physic : els back

2 0 input "Sprite Number" ;S

30 input "Image Number ";I

40 line input "Vertical moves" ;V$

50 line input "Horizontal moves";H$

60 sprite S,160,100, I

70 move x S,H$: move y S,V$: move on

80 input "Stop?";S$

90 move off : goto 10

This program expects to find some sprites in memory before it is run. If you've
already created your sprites, you can enter these using a line like:

load "back.mbk"

Otherwise you should use the sprite definer accessory to produce a set of sprites with
the appropriate sizes. These don't need to be anything fancy, as you are only
interested in the speed and direction of the sprites rather than their appearance. Often
a simple rectangular block is more than sufficient for this purpose. After you have
experimented with this program, you should be left with a list of movement
definitions which can be incorporated into your game.

Personally, I use this prototyping technique a great deal. By testing a bare-bones
version of the code, you can quickly determine which approaches will actually work,
and which can be safely discarded.

1.8.1 Collision detection

The most critical part of an arcade game is the collision detector. If this is badly
written, your game will be virtually unplayable, no matter how good it looks. You
should therefore endeavour to make this routine as fast and reliable as possible. STOS
Basic includes two instructions for collision detection, COLLIDE and ZONE.
COLLIDE is used to detect a collision between two or more sprites. Typical
applications are in games such as ZOLTAR, or SPACE INVADERS.

The ZONE command allows you to check whether a specific rectangular area of the
ST's screen currently contains a sprite. This command is extremely fast, and it is used
to great effect by the game ORBITER, to discover when the ball hits one of the
coloured blocks.

There is also a useful DETECT instruction, which enables you to test the colour of
the point underneath the hot spot of a sprite. This could be very useful when creating
games such as PINBALL.

21

Remember that the operation of these instructions is relative to a sprite's hot spot. So
choose the position of this point very carefully.

For further information on the subject of collision detection, see Chapters 2 and 3.

1.9 Documentation

If you've ever attempted to modify one of your programs after a period of some
months, you will already be aware of the vital importance of good documentation.
This is especially true if you are hoping to sell your game. Frankly, a badly
documented program is unlikely to be accepted by any of the ST magazines, as the
workings will appear to be incomprehensible to their readers. Furthermore, software
houses will often require substantial alterations to a game before accepting it. If the
program is resistant to change, then it could easily be rejected out of hand.

Some people restrict their documentation to just the occasional REM statement. There
is however, a great deal more to program documentation than this. Each subroutine in
your program should begin with a couple of REM's explaining precisely what it does,
and detailing any variables which it uses to communicate with the rest of the
program. If you have made out a game plan, this will form a valuable part of your
documentation. So tidy it up and update it to provide a full description of the program
structure of your game.

If you try to add the remark statements after the program has been written, you can
easily end up missing something crucial. You should also try to choose the names of
your variables to indicate the nature of their contents. This considerably improves the
readability of your listings. Look at the following lines of Basic code:

10 if SP=5 then S=S + 100

10 if SHIP=5 then SC0RE=SC0RE+100

Both lines perform exactly the same action, but the second version is a great deal
easier to read.

Note how I've neatly avoided using the keyword OR in the variable SCORE by
replacing the O's with zeros. This has little effect on the readabilty, but stops STOS
from interpreting the line as:

10 if SHIP=5 then SC or E= SC or E+100

Remember that STOS Basic allows you to use variables with names up to 31
characters long. These names are stored in the ST's memory only once, no matter
how many times they are used in your program. You have therefore no excuse for
using complicated or confusing names in your routines.

22

1.10 Testing

1.10.1 Syntax errors

After you've written your game out on paper, it's time to enter it into your ST.
Ideally your program will work perfectly the first time you run it, but unfortunately,
this is very rarely the case. You can divide the various bugs in your game into two
separate categories. The easiest problems to solve are caused by syntax errors. These
generate STOS Basic error messages, and are usually produced by simple typing
mistakes which can be quickly corrected.

1.10.2 Logic errors

The second type of bug is the dreaded logic error. This is created by an error in the
design of the program. If you have planned your program properly, these logic errors
should be rare. But since no-one is infallible, it is quite likely that the odd logic error
will still creep into your program unnoticed.

Whenever possible, you should always try to test each section of your program
separately. This removes the additional complication of debugging the entire program,
and isolates any problems to one particular section of code. Obviously, this approach
is only effective for some types of routines. These include subroutines for input;
sprite movement; screen scrolling; screen generation; adventure parsing; and character
generation. These can be entered into the ST one at a time, and saved to the disk in
individual files. Other activities however, can only be tested within the context of the
finished game. The classic example of this sort of procedure is the collision detection
routine used in an arcade game.

Debugging a program is an art in itself. The standard technique involves working out
the expected contents of your program's variables, and checking these against the
actual values produced when the program runs. The easiest way to achieve this, is to
insert the appropriate PRINT statements at various points in your program. These
statements will need to be carefully removed from your program after the problem
has been have solved. Any statements you miss, will corrupt your game screen at
unexpected intervals. STOS Basic provides you with a useful command called
FOLLOW, which is equivalent to the TRACE instructions found in other versions of
the language. FOLLOW prints out the contents of any list of variables as and when
they are changed. It also informs you of the line number at which this change has
occurred. Unfortunately, the FOLLOW command generates an incredible amount of
information, most of which is irrelevant to the problem in hand. It can also
occasionally slow the action of your game down to a crawl. So it's usually a good
idea to use a combination of both methods.

23

1.10.3 Final testing

This is normally the last stage in the creation of your game. It is also one of the most
critical. There are two separate aspects of this testing process. The first involves
checking every possible eventuality in your game for errors. If you are considering
selling the game, this testing should be exhaustive.

Failure to do this can have potentially disastrous effects, as I know from painful
experience. Try to do something really silly in your game, and see how it reacts. If
there's any conceivable way a user can mess up your program, somebody will
probably attempt to do it. The only safeguard against this, is to be unbelievably
thorough in your testing. It's also a good idea to make use of the STOS Basic ON
ERROR directive to allow your program to safely recover from any unavoidable
errors, such as the player unexpectedly removing a disk, while your program is
accessing the drive.

Don't assume that the player has any previous knowledge of the game at all.
Remember that many people attempt to play a game straight from the box, without
bothering to read the instructions. Such people include many professional software
reviewers, who often have to work to very strict dead-lines.

If you're writing an arcade game, you should concentrate on the critical routines such
as collision detection. These are almost impossible to test in isolation, and need to be
checked very carefully indeed. The biggest problem with these routines is caused by
the fact the sprite movement is performed independently of the rest of the program.

Unless you execute the collision detection command at exactly the same time as the
collision occurs, an erroneous result may be returned. This means that your program
needs to call the collision detection routine at frequent intervals during your game.

Fortunately, the range of the COLLIDE and ZONE instructions can be specified
explicitly in your program. This allows you to tailor the accuracy of your routine to
the particular circumstances of your game. The diagram on the next page (Figure 1.5)
illustrates this technique.

Give the player the benefit of the doubt whenever possible, in the following way: set
the detection range to be slightly larger than the attacking ships, to guarantee that any
genuine collisions will be discovered by your program, but make the collision range
smaller than the defender. This will ensure that the player's ship is only destroyed
when it has definitely been hit.

The final aspect of your game which you should check is the quality of the game
play. This is really a very subjective area indeed, and can only be checked by getting
as many people to play the game as possible. In my experience, there is a very fine
line between a game which is exciting and challenging, and a game which is
impossibly difficult. Sometimes by reducing the speed and complexity of a game you
can vastly improve its appeal. So don't be afraid to modify the game extensively to
get the feel just right.

2-1

Figure 1.5 The Collision Zones

1.11 Optimization

I'll conclude this chapter with a brief look at a number of optimization techniques
which can be used to improve the overall performance of your STOS Basic programs.
Some types of game require your program to execute a large number ofcomplicated
calculations time and again. The worst offenders are 3D graphics programs which
need tocompute the appearance ofan object from many different angles.

These calculations can take an extraordinarily long time to perform, and this can slow
down the action of your game considerably. You should be especially wary of any
mathematics involving the trigonometric functions because these are particularly slow
in version 2.3 of STOS Basic. Luckily, this problem has been corrected by the latest
update supplied with the STOS compiler.

1.11.1 Look-up tables

The solution to these problems, is work out the most commonly needed results in
advance, and store them in a so called look-up table. This is just a list of
pre-computed values which can be subsequently accessed practically instantaneously
by your game. The best way to create one of these tables is to write a small Basic
program. Here is a crude demonstration of how one of these tables could be
produced.

25

Example 1.2 Table of sines

10 rem Table of SINE values

20 DIM SN#(360)

30 for i=0 to 360

40 SN#(i)=SIN(RAD(i))

50 NEXT I

You could now generate the SIN of 45 degrees with a line like:

x=SN#(45)

Look-up tables are often converted into data statements and inserted directly into your
program. This approach has been used by the ORBITER program to hold its rebound
tables.

1.11.2 The shift instructions

Another useful optimization technique, is to replace certain arithmetic operations with
faster versions. You may already know that INC and DEC can be used to add or
subtract one from a variable at high speed.

Replacing X=X+1 with INC X, and X=X-1 with DEC X can improve the
performance of critical sections of your program by around 25%.

There are also versions of "*" and "/" which can speed up multiplication and
division operations. These are provided by the ROL and ROR instructions.

ROL multiplies a variable by a power of 2.

i.e.

ROLL 1,X is equivalent to X=X*2

and

ROLL 2,X is the same as X=X*4

Similarly, ROR will divide a number by a power of 2:

ROR.L 1,X is identical to X=X/2
ROR.L 3,X can replace X=X/8

Typical speed improvements are up to 25% for ROL and over 80% for ROR. One
minor limitation is that both of these operations will only work for positive numbers
smaller than 1,073,741,824. This is unlikely to be a serious restriction!

26

1.11.3 Optimization Check-list

1 If your program performs many complex computations, work them out in
advance and place them in a look-up table.

2 Replace statements such as A=A+1 and A=A-1 by INC A and DEC A
respectively.

3 Replace divisions and multiplications by a power of two by ROR.L and ROL.L
instructions.

4 Avoid Boolean algebra. This is often slower than the equivalent IF...THEN
instructions in STOS Basic.

5 Use explicit constants in your assignments instead of variables. A=A+10 is
marginally faster than A=A+TEN. This is exactly the opposite to the Basic used
by the ATARI 800XL.

6 Graphics programmers should always place an AUTOBACK OFF statement at
the beginning of their programs, even if the game uses sprites. If you need the
sprite background to contain an exact copy of the screen under display, it's much
faster to use an explicit call to SCREEN COPY after the graphics have been
drawn, e.g

screen copy physic to back

Depending on your precise application, this will generally reduce the overall time
taken by your drawing operations by between 10 and 80 percent.

7 Don't try to combine too many instructions which use interrupts in one program.
There's only so much computer time for these routines to use, and the more you
try to do, the slower things become. Avoid playing music during the speed
critical parts of your game. When I removed the music statements from Zoltar
and added some sampled sounds for the STOS Maestro project, I discovered that
the game-play speeded up noticeably. Also, only activate your menus when they
are actually needed by the user. Killing the menus frees valuable time for the rest
of system.

If you still have speed problems, you will probably need to purchase the separate
STOS Basic compiler. This is capable of significantly speeding up the execution of
many STOS Basic programs (up to twice as fast), and can be highly recommended.

1.12 Conclusion

Well, that's the first step, what's next? In the next ten chapters, I'll be providing you
with a host of cook-book solutions which cover most of your common programming
problems. Read on, and discover the vast and exciting world of writing games with
STOS Basic'.

27

Shoot-em-ups

2.1 Space invaders

The original Space Invaders was the direct ancestor of most modern arcade games.
All subsequent space combat games from Galaxians up to and including Elite are
descended in some small way from this single classic program.

The basic concept of the game was remarkably simple. The player was confronted
with a fleet of attacking alien space ships which were steadily marching towards the
bottom edge of the screen. As the game progressed, each alien would let off a salvo
of deadly missiles which would gradually eat away at the players defences. The aim
was to destroy all the invaders one at a time before they reached the bottom of the
screen.

From our current perspective it's hard to fully comprehend the reason for this game's
phenomenal success. But at the time, home computers were still in their infancy.
Space invaders was the first computer game most people had ever seen, and it
captured the public's imagination in a way which has never been successfully
duplicated. For me, space invaders triumphed because of the compelling nature of the
action. Anyone who wanted to achieve reach any respectable score would be unable
to relax for a second along the way.

It's also true that space invaders had no real competition. It was quite literally the
first game of its kind in existence.

There were of course, dozens of limitations with the original game. After you had
played space invaders for some time, the movements of the alien ships started to
become predictable. Later developments, such as Galaxians, were to incorporate a
much-needed element of variety into the game-play. In order to complete one of these
games, you had to successfully destroy a vast number of different screens, each with
its own unique set of problems. Galaxians also moved the aliens in smoother and
more realistic attack formations. This tremendously improved the overall quality of
the game, as you now never knew precisely where the aliens were going to appear
next.

2;;

Another of my favourites was Gorf, which included some surprisingly modern
features. It was, for instance, the first arcade game to provide the player with a
computer generated speech system. Gorf was effectively a clone of both Space
Invaders and Galaxians, and it attempted to combine four entirely separate arcade
games in one. This idea caught on quickly, and has now become a standard feature in
many popular games.

It's absolutely essential for the action in one of these games to be both fast and
furious.

Up until now, the only way of achieving this sort of speed was to write the entire
game in 68000 machine code. But with the introduction of STOS Basic, it's now
possible to produce a perfectly acceptable arcade game without having to concern
yourself with any of these complications.

2.2 Basic techniques
In this section, I will be discussing a number of techniques which will enable you to
produce your very own arcade games for fun and for profit. I'll also be giving you a
fascinating glimpse inside the Zoltar program provided free with the STOS Basic
system.

2.2.1 A brief look at Zoltar

The best way to learn about the workings of a game, is to examine one which has
already been written. So it's a worthwhile exercise to load up Zoltar from the STOS
games disk, and note down some of its features. Try to count the number of sprites on
the screen at once, and think about the possible ways they could be moved using the
STOS Basic SPRITE and MOVE instructions.

If you look carefully, you should be able to deduce the facts listed in Figure 2 below.

1 There are a maximum of 15 sprites on the screen at any one time. These consist of
nine aliens, five missiles, and a single ship which is controlled by the player.

2 The sprites on the screen are relatively small. (Actually 16x16)

3 The alien ships move smoothly in complicated curved paths.

4 The player controls the defending ship using the ST's mouse cursor.

5 Only four missiles are fired by the aliens in any one salvo.

6 Once the player has fired a missile, it continues until it either hits something, or it
reached to top of the screen.

7 There is a separate game screen containing a single, massive alien (inexplicably
known as the MAGEDON).

Figure 2.1 Analysis of Zoltar

29

It's possible to draw a couple of interesting conclusions from this information. The
first statement implies that all 15 available sprites are being used on the screen at
once. This has clearly forced the programmer to restrict the sizes of the sprites to an
absolute minimum (16x16).

Also, the movements of the aliens are extremely complex. This type of motion would
be very hard to implement using the STOS Basic MOVE instruction, so it's likely
that the programmer is animating them directly with the SPRITE command.

2.3 Designing a shoot-em-up
After you've produced a specification for your game, you'll need to isolate the critical
activities in the program. Think about Zoltar, and try to name some of the main
program sections. Don't worry about how these routines might be implemented, as
I'll be discussing them in detail a little later. You should also ignore the features
which are specific to Zoltar, such as the menu system, the Magedon, and the game
creator. Hopefully, you will eventually be left with a list which looks rather like this:

• Initialisation;

• Load attack wave;

• Move aliens;

• Control player;

• Fire missile;

• Detect collisions;

• Animate background.

These activities will provide the backbone for any genuine shoot-em-up game.

2.3.1 Anatomy of a shoot-em-up

The next stage in the development process, is to produce a detailed description of the
mechanics of your game. This is written in the pseudo-code which I introduced in
Chapter 1. If you haven't familiarised yourself with this system, it's well worth
making a brief detour before progressing any further. I've included such a description
in Figure 2.2 on the next page.

Although the actual order of this code might vary slightly between different
implementations, the overall format will remain pretty much the same. I'll now take
each of these activities, and show you how they might be written using STOS Basic.

2.4 Moving the aliens
The animation of the attacking aliens is one of the most vital areas of your program.
If you make a mistake in this section, then the game will be both ugly and
unplayable. It's therefore well worth concentrating heavily on this section during the
design of your game. This will reap real dividends when you begin to generate the
final STOS Basic program.

30

Initialise background screen

Repeat

Load attack wave

Initialise attack wave

Repeat

Move attacking ships
Check for a free missile

If missile free for use

then

Choose one of the attacking ships

Fire missile from ship

endif

Input player movement

If firepressed andmissile is not alreadymoving
then

Fire missile

endif

Move player' s missile
Move attacker' s missiles

Animate background screen

Detect for a collision between player and a missile
Detect for a collision between player and attacker

If player is hit

then

Destroy player

Lives=Lives-l

endif

Detect collision between player' s missile and enemy

If enemy hit

then

Destroy enemy

Attackers=Attackers-l

Increment score

endif

Until Lives=0 or Attackers=0

Until Lives=0

Another game?

Figure 22 Game Plan of a Shoto-em-up game

31

The optimum approach to this problem depends almost entirely on the type of motion
which will be needed in your game. I'll now have a detailed look at several of the
more likely possibilities.

2.4.1 Moving the aliens in a straight line
Some games only call for the attackers to proceed in simple straight lines. These
movements are best produced using a matched pair of MOVE X and MOVE Y
instructions. Ifyou wanted to move your aliens in a zigzag pattern, for instance, you
could use the following fragment of STOS Basic.

load "back .mbk"l: remLoadexample sprites from STOS Games
disk

10 sprite 1,0,0,1: Rem Place sprite on screen
15 rem Sweep sprite 1 to and fro

20 movex1,"(1,4,80) (1,-4,80)1
25 remrepeatedly move sprite up anddown
30 movey 1, "0(1, 4, 50) (1,-4,50)1"
40 move on :rem activate movements

While this type of routine is certainly capable of generating some useful effects, it's
not really applicable to modem games such as Galaxians. These generally expect you
to rush your sprites through much more complex and intricate attack sequences.

2.4.2 Complex attack paths

There are effectively two ways of generating the smooth sprite animations found in a
modern arcade game. One idea is to split any complicated manceuver into a number
of simple components. These can then be generated by producing a couple of large
movement strings for use with the STOS Basic MOVE commands.

Look at the pattern shown in Figure 2.3 below:

Figure 23 Moving the sprite in a double loop

This route can be approximated by the straight line segments in Figures 2.4a, and
2.4b. Each section of this course can be taken in turn, and the required movements

32

initiated using an appropriate combination of MOVE X and MOVE Y instructions.
The smoothness of the attack wave will depend entirely on the number of movement
steps you are prepared to expend to produce the effect. So Figure 2.4b generates a far
cleaner curve than the relatively crude Figure 2.4a.

(a) a simpleapproximation to a loop

(b) a closer approximation to a loop

Figure 2.4 a and b Straight line approximations to a curve

In order to use this technique, you have to divide up each line into its separate
vertical and horizontal components. These can be found by drawing the curve out on
paper,and then running yourfinger along the required route.

Place your finger at point XI on Figure 2.4a, and follow the curve until you reach
your original starting point. Now make a note of your fingers movement from left to
right. It should be apparent that the horizontal part of the motion is justa simple back
andforth movement from XI to X2. This could be generated with an instruction like:

MOVEX 1," (1,1, 100) (1,-1,100)1"

You can now repeat the same process for the vertical component, starting from the
lowest point in the curve (Yl) and moving your finger right to Y2. As you trace the
path from Yl to Y3, your finger progresses up to Y2 and down to Y3. The journey
from Y3 back to Yl also involves a single up and down movement. This information
is allows you to quickly create the movement string needed to reproduce the vertical
part of the motion with MOVE Y. e.g.

MOVE Y,"(1,-1,50) (1,1,50) (1,-1,50) (1,1,50)1"

33

This could be reduced to:

MOVE Y," (1,-1,50) (1,1,50)L"

You would of course, need to experiment very carefully before you could create the
precise effect you wanted. But the technique I've just shown you does provide an
efficient method of animating your sprites through relatively complex sequences of
movements.

The problem, of course, is that the motion tends to jerk slightly between the separate
movement steps. So although you can generate some impressive effects using this
system, it will be impossible to attain genuinely fluid attack sequences .

2.4.3 Movement tables

If you wish to animate your sprites really smoothly, you should forget about the
MOVE commands completely, and perform all sprite movements directly using the
STOS Basic SPRITE instruction. This can be achieved using a movement table.

A movement table is just a simple list of coordinates, with one pair of numbers
corresponding to each possible position of the sprite. Every time the sprites are
moved, the appropriate entry in the movement table is accessed from memory to find
the new screen positions of the aliens. These can then be moved into place with a
series of instructions like:

SPRITE 1,X(I) ,'Y(I) ,1

The arrays X(I) and Y(I) contain the coordinates of sprite position number I. Each
attack wave in your game will have its own separate movement table. If you're
feeling particularly adventurous, you can even specify different movements for each
type of ship.

The only limits to the complexity of the attack sequence, are the size of the
movement table, and the overall speed of the STOS Basic sprites. Because of sheer
power of STOS Basic, and the massive amount of memory in your ST, you would be
really hard pressed to exceed either of these restrictions in practice.

Example 2.1 Movement tables in action

10 rem example 2 .1

20 mode 0 : els physic : els back : flash off : hide on :

curs off

30 gosub 110 : rem get sprite palette

40 rem load up movement table
50 read SIZE, SPEED, IMAGE : dim XPATH (SIZE) ,YPATH (SIZE)

60 for 1=0 to SIZE : read XPATH (I) ,YPATH (I) : next I

70 rem animate sprite

34

80 for 1=0 to SIZE-1 : sprite 1,XPATH (I) ,YPATH (I) ,IMAGE :
wait SPEED : next I

90 goto 80

100 goto 80

110 rem Get pallete from sprite bank

120XP=hunt(start(1) to start(1)+length(1),"PALT") : if
XP=0 then return

130 XP=XP+4 : for 1=0 to 15 : colour I,deek(I*2+XP) : next I :

return

19 9 9 9rem.movement data

20000data 24,5,25

20001data 125, 97, 98, 84, 83, 82,51,86,47,95,70,118,83, 127,
97,128,122,123,137,107

20002data153,78,172,69,198,74,214,90,218,108,211,124,200,
127,187,12 6,167,115,151,105

20003data 137,10 0,135,99,133,98,133,98,221,125,2 04,12 9,
190,130,173,125,162,119,155,111

You'll probably be wondering how I produced all that impenetrable data at lines
2000-2003. Even the simplest movement sequence contains dozens of complicated
coordinate pairs, and it would be unbelievably tedious to have to generate all this
information by hand. Fortunately there's a clever trick you can use to avoid this
difficulty completely. All you need to do, is to write a small program to enter the
movement coordinates with the mouse cursor. You can now use this routine to
generate a separate movement table for each wave in your game.

This was the approach adopted by the creators of Zoltar. So rather than being just an
afterthought, the game creator was actually an integral part of the original game
design. Here's a simple path definer for use in your own games:

10 rem Example

2 0 rem Path definer

30 rem load a sprite bank into memory
40 F$=file selects ("*.mbk","Load some sprites", 7) : if
F$="" then stop

50 if len(F$)<5 then boom : goto 40
60 if right$ (F$, 4) <>" .MBK" then boom :goto 40
70 dimPAL(16) : rem dimension palette
80 dimXPATH(lOOOO) ,YPATH (10000)
90 loadF$

100 mode 0

110 rem set movement speed (l=very fast 10=very slow)
120 input "Movement speed (1-10) ";SP
130 SPEED=11-SP

140 if SPEED<1 or SPEED>10 then boom : goto 120
150 rem choose a sprite

35

160 input "Which sprite do you wish to animate"; IMAGE
170 rem initialise screen

180 print "Click left mouse key to start"

190 flash off : gosub 630 : rem get sprite colours

200 if XPO0 then for 1=0 to 15 : colour I,PAL (I) : next I

210 change mouse IMAGE+3

220 rem wait for a mouse button to be pressed

230 while mouse key=0 : wend : wait 10 : els physic : els back

240 curs off : locate 0,0: centre "Creating a path"

250 rem create the movement table using the mouse

2 60 repeat

270 XPATH (P)=x mouse : YPATH (P)=y mouse

280 wait 5 : inc P : locate 10,20 : print "Position ";P; "";:
290 until P>10000 or mouse keyOO : change mouse 1

300 rem animate the sprite using the table you have just

defined

310 for 1=0 to P-1 : wait SPEED : sprite 1,XPATH (I) ,YPATH (I) ,

IMAGE : locate 10,2 0 : print "Position ";I;" "; : next I

320 rem save data to disc as a list of data statements

330 rem load using FLOAD "* .ASC"

340 sprite 1,-100,-100,0 : locate 0,20 : input "Do you want

to save this data (Y/N) ";A$

350 if A$="Y" or A$="y" then gosub 300 : rem save data

360 input "Another go? (Y/N) ";A$

370 if A$="Y" or A$="y" then P=0 : goto 120

380 stop

3 90 change mouse 1

40 0 rem choose filename

410 F$=file select$ ("* .asc", "Save movement table", 7)

420 if F$="" then return

430 if len (F$)<5 then boom : goto 410

440 rem choose start of data statements

450 input "Starting line";FIRST_LINE
460 if FIRST_LINE<1000 or FIRST_LINE>60000 then print
"Starting line must be in range 1000-60000 ." : print " Try
again" : goto 450

470 open out #1,F$: rem open data file

480 rem save size of table, movement speed and image number

490 print #l,str$(FIRST_LINE)+" data "+str$(P)+","
+Str$(SPEED)+","+str$(IMAGE)

500 rem generate data statements in D$

510 for 1=0 to P/10

520 D$=str$ (FIRST_LINE+I+1) +" data "
530 for J=0 to 9

540 rem add a movement position to the list

36

550 BIT$=str$(XPATH(I*10+J))+","+Str$(YPATH(I*10+J))-" "

: D$=D$+BIT$

5 60 rem separate coordinates with a comma

570 if J<>9 then D$=D$+", "

580 next J

590 print #1,D$: rem write data to disc

600 next I

610 close #1 : rem close data file

620 return

630 rem Get sprite pallete

640XP=hunt(start(1) to start(1)+length(1),"PALT") : if

XP=0 then return

650XP=XP + 4 : for 1=0 to 15 : PAL (I) =deek (I*2+XP) : next I :

return

2.5 Fire control

2.5.1 Controlling the gun

Another vital element of your program, is the routine which is used to control the
player's ship. I'll now present you with a general purpose control system which can
perform this activity for you automatically. This routine can be freely used in your
own games without any restrictions whatsoever.

Example 2.2 Universal Control System

10 rem Universal Control System
15 rem Don't bother to type in these REMs .

20 rem They are just for documementation purposes
25 rem Test routine. Load some sprites FIRST
30 mode 0 : rem Change for other resolutions

40 LX=10 : RX=300 : LY=150 : RY=180 : gosub 1000 : rem
Initialize UCS

45 rem Set movement increments and choose sprite image
50 IX=2 : IY=2 : SHIP=1

60 gosub 1100 : rem read joystick

70 if K=0 then 60 : rem Exit if FIRE or a mouse button is

pressed

80 stop

990 rem UCS

995 rem Initialization

996 rem Call this once at the start of your program
997 rem LX, LY = Top left corner of movement zone

998 remRX, RY = Bottom right corner of zone

lOOOlimit mouse LX,LY to RX,RY

37

1005SX=(RX+LX)/2 : SY=(RY+LY)/2

lOlOhide on : return

1060rem Universal control system
1070rem Ship = Image number of bat

1075rem sprite used is assumed to be number 1

1080rem inputs

1081rem SX, SY = coordinates of ship

1082rem IX, IY hold the increments which are added to the

current position

1083rem whenever the joystick is pulled. As the increment

increases

1084remthe sprite movements become faster but jerkier
1085remUse increments of one or two for smooth movements

108 6remUse increments of three or four for maximum speed

1087rem LX, LY = Top left corner of movement zone

1088rem RX, RY = Bottom right corner of zone

1089rem You can restrict the movement directions using
LX,LY,RX,RY

1090rem If LX=RX then only vertical movements will be

detected

10 91rem If LY=RY then only horizontal movements will be

performed

1092rem k=status of mouse key

10 95rem outputs

1096rem SX, SY = coordinates of ship

1097rem k=status of mouse key

10 98remNote there are seperate routines to read the mouse

and joystick

10 9 9 rem Read mouse

1100SX=x mouse : SY=y mouse : K=mouse key : sprite

1,SX,SY,SHIP : return

HlOremRead joystick

1115remNote the optimization

1120if jleft and SX>LX then SX=SX-IX : goto 1140

1130if jright and SX<RX then SX=SX+IX

1140if jup and SY>LY then SY=SY-IY : sprite 1,SX,SY, SHIP :
K=fire : return

1150if jdown and SY<RY then SY=SY+IY : sprite 1,SX, SY, SHIP :
K=fire : return

1160sprite 1,SX,SY,SHIP : K=fire : return

2.5.2 Firing a missile

This routine requires your to perform two separate activities. Firstly, you need to have
some way of moving the missile across the screen. The MOVE Y instruction is ideal

38

for this purpose, as it allows you to fire your missiles in just a couple of lines of
STOS Basic.

move y S," (1, -5, 0)L" :rem Fires missile S straight up

move on: rem Start the movement running

In addition, you can easily add a little animation to your missiles with the ANIM
command. That's how the weird "wriggling" missiles found in Zoltar were
produced.

Before you can fire your missile however, you will need to allocate it to one of the
currently available sprites. This is important, because the number of missiles in
motion will vary from moment to moment during the game.

After you've allocated the sprites for the rest of your objects, you will normally be
left with a mere 2 to 4 sprites for your missiles. You therefore need to select one of
the available sprites which is currently unused. This can be done by individually
checking the current status of each missile using the MOVON function.

Example 2.3 Firing a missile

load "back .mbk" :rem load sprites from STOS accessory disk

10 rem Fire a missile

20 s=12:n=4

30 rem s=first sprite used for a missile

40 rem n= number of sprites used for a missile

50 for I=s to s+n

60 if movon(i)=0 then sprite y,i*2 0, 199,24: move y i," (1,-
5,80) 1' ' :move on

7 0 next i

80 goto 50

The effect of Example 2.2 is to repeatedly fire off a salvo of missiles from the bottom
of the screen. The same idea can be seen from the equivalent routine on line 10480 of
Zoltar.

2.6 Collision detection

Once you've animated your sprites, and fired off your missiles, you'll need to be able
to detect the inevitable collisions. In most cases the objects to be checked are both
sprites, so you will need to use the COLLIDE function from STOS Basic.

COLLIDE is hardly the most intuitive command, and unless you have a good grasp
of binary notation, it's easy to get totally confused.

Instead of boring you with a lot of abstract programming theory, I'll present you with
a couple of cook-book solutions which will allow you handle most types of collisions
reasonably efficiently. These can be freely modified for use with your own programs.

39

2.6.1 Collisions between the player's ship and a missile

Load a variable with the binary number %1111111111111110 during initialisation.
This number is known as the mask and contains the list of all of the spriteswhich are
to be moved on the screen. Now set the bits representing your ship and its missile to
zero with the BCLR command like so:

100 shipmask=%1111111111111110 :bclr shipno,shipmask
110 bclr missno, shipmask

where:

shipno = the number of the sprite used for your ship
missno = the sprite used for your players missile

This situation corresponds to the simplest case, where all fifteen of the available
sprites are being movedoff the screen. If your program uses fewer sprites, you should
also remove the unused sprites from consideration by clearing the appropriate bits in
the mask.

You can now detect for a collision between the ship and any other sprite using the
line:

1000 CS=collide (shipno, 16, 8) and shipmask :if CSO0 then
gosub 2000 :rem Where your explosion routine was at 2000

2.6.2 Collision between attacker and a missile

You can use a similar technique to check for the destruction of one of the attackers.
This time you start off with a mask containing a string of binary zeros. Whenever you
load up an attack wave, you should now set the binary digits representing the alien
sprites to a one.

Supposing you had implemented your alien fleet using the sprites from 3 to 5. In this
case, you would initialise the detection mask with the line:

3000 attmask=0 :bset 3,attmask:bset 4,attmask:bset
5,attmask

You could now detect the collisions between your missile and the attacking fleet
with:

3500 ca=collide (missno, 16, 8) andattmask: if ca<>0 then

4000 :rem jump to routine to act on the collision.

Note that the above code only detects that a collision has occurred. If you want to
determine which of the attackers has been hit, you will need to check the relevant bits

40

for each ship in the formation. This could be accomplished using the BTST function,
as follows:

4000 for i=3 to 5

4010 if btst (i,ca) then killed=i :gosub 5000

4020 next i

5000 rem kill off an attacker

5010 move off killed:bclr killed, attmask :rem Destroy ship

5020 rem Do explosion

See how line 5010 removes the killed ship from the detection list held in attmask.
This ship will not be tested for a collision when the check is performed again at 3500.

2.7 Animating the background

Many arcade games such as Galaxians, require dozens of aliens to be moving across
the screen at once. This is clearly impossible if you are forced to rely on the 15
sprites available from STOS Basic. The key to the solution of this problem is to
realise that most of the ships are moving relatively slowly in a simple holding pattern.
It's therefore possible to animate the main attack formation in the background, while
your sprites are reserved for those ships which are actively attacking.

STOS Basic provides you with several possible methods of achieving this effect. The
simplest of these, is to move the entire pattern around on the screen with SCREENS.

If you decide to use this technique, you'll obviously need to be able to detect
collisions between the ships making up the background screen, and the player's
missiles. This can be implemented with the DETECT function, which returns the
background colourof the pixel currently underneath one of your STOS Basic sprites.

Providing you keep the background colour different from the colours used for the
animation, you can instantly detect collisions between a missile and the holding
pattern. You can now use the position of the missile to determine precisely which
ship has been affected. This can be subsequently removed using CLS, and you can
add the normal explosion affect to make things realistic.

2.8 Inside Zoltar

I'll now examine some of the ideas behind the excellent Zoltar program supplied on
the STOS Basic games disk. This was written in a matter of days by Francois Lionet,
one of the original STOS Basic programmers. It embodies most of the principles I
have been discussing in this chapter, and provides a superb example of what you can
achieve with a little ingenuity and a lot of talent.

41

2.8.1 Initialisation

The program commences with an initialization section from lines 10 to 1000. This
defines all the variables needed by the game and unpacks a number of important
screens. The title screen is loaded from bank 5 at line 300 and placed into the string
TTLE$ using SCREENS.

The magedon is now unpacked from bank number 6. It is then copied into the string
MAGEDON$(0) using the SCREENS function.

The magedon is then shifted sideways slightly and the process is repeated several
times; the appropriate screen data is entered into the array elements MAGEDONS(l)
to MAGEDON$(3). This allows the program to move the magedon smoothly across
the screen without ever having to cross a 16 pixel boundary. During the initialisation
process, the following four subroutines are called:

10050 Clears and resets screen

10100 Draws the game screen

10250 Set up an attack wave

10 600 Initialise movement data

The menu bar is now created, and control passes to the Menu routine at line 11005.

2.8.2 Control loop

If the play game option is chosen, the program jumps to the main control loop at
1100. The action of this routine can be described using a little pseudo-code, as shown
in Figure 2.5 below.

Initialise variables

while wave<maxwave

load a phase from the disk

repeat

Play a single turn

check status of player

until lives<0 or aliens=0

wend

Figure 2.5 Pseudo-code for Zoltar's control loop

Line 1100 is of particular interest, because it defines the initial values of three
important variables:

42

WAVE Holds the number of the current wave

LIVES Holds the number of lives left. This normally starts at three, but you can
cheat by setting it to any number you like.

SCRE Holds your current score

2.8.3 The play game routine

The play game routine, is split into two separate sections positioned at lines 10400
and 10800respectively. The procedure at 10400 controls the action of a normal game,
and the one at 10800 is used whenever the Magedon is selected. At first glance this
routine appears rather impenetrable, but this is misleading. I'll now describe the
action of this code in some detail.

The lines from 10400 to 10450 are concerned with initialisation. They create the
display on the screen and prepare the attack wave data which has just been loaded
from the disk. This data is contained in bank 11, and uses the following format:

Byte Meaning

0-3 Identification code for a Zoltar wave

4-13 The ship numbers used for each of the nine aliens. These numbers range
from 0 to 8

14 Release time in units of 4/50 seconds for ship 1
18 Release time for ship number 2

48 Release time for ship number 9
50 Fire rate

52 Magedon flag. $ff for magedon otherwise zero
54 Maximum number of hits needed to kill magedon
56 X coordinate of first position in movement table
57 Y coord of first position
58 X coord of second position
59 Y coord of second position

movement table terminated by $ffff

The actual game begins with the loop at line 10455. In order to simplify things for
you, I've produced the following pseudo-code expansion of this routine. Alongside
each statement, I've added the number of the appropriate line in the program.

43

Action Lines
repeat 10455

move player 10460

player fires a missile? 10465

animate background 10470

move aliens 10470

If Alien fires missile 10475

then

Choose alien 10480

move missile 10485

If missile destroys alien 10490
then

Which alien? 10495

Explode alien 10500

Increase score 10505

If missile destroys player 10510
then

Explode player 10515

End turn 10520

wait for next clock tick 10525

screen swap 10530

until (aliens dead 10535

or player is killed

or wave finished)

Figure 2.6 Breakdown of Zoltar's play game routine

Comment

Using SPRITE 1

See Note 1

See Note 2

With ANIM command

See Note 3

See Note 1

Notes:

1 The actual background animation is performed by a routine at 10200. This
procedure scrolls the background around the screen. In order to avoid an annoying
flicker in the rotation, all the screen manipulation is performed on a separate
logical screen which is not currently being displayed. The logical screen is then
switched with the existing physical screen using the SCREEN SWAP instructions
at line 10530.

See how the SYNCHRO command has been used to syncnronise the animation
with the various sprite movements. This instruction is essential if you wish to
produce really smooth background animation. If you require further information
about the above technique, you will find a full explanation under the section in
Chapter 10.

2 The procedure to move the aliens through their attack wave starts at line 10300. It
works by repeatedly accessing a version of the movement table I showed your
earlier. This is contained in memory bank 11, with the coordinate lists starting at
byte number 56. If you examine this code, you'll come across several strange
variables, as follows:

44

T(n) - This array holds a copy of the release time for ship number n, measured in
units of 4/50 of a second, n can range from 0 to 8.

A(n) - Holds the address of the next entry in the movement table, for each of the
nine sprites.

I(n) - Set to >0 is alien n has been released, otherwise zero.

Notice the unusual format of sprite instruction at line 10305. This is an
undocumented feature which changes the position of a sprite which has previously
been placed on the screen. The format of this instruction is:

SPRITE n,X, Y

As you can see, there's no image specified in the instruction at all. STOS Basic
expects your program to have already selected this image with a normal SPRITE
command. The advantage of this format, is that it enables you to move a sprite
without interfering with the animation effects performed by the ANIM instruction.

3 The line at 10525 is used as a sort of clock. Every 4/50 of a second it produces
one "tick". If the program has executed especially quickly, it halts the system
until the next clock tick. This synchronises the sprite movements with the rate
which was set up during the creation of the wave.

2.8.4 The Magedon!

The Magedon routine at 10800 is very similar to the one at 10400. The differences
can be summarised by the following table:

Lines Description

Table 2.1 Magedon routine

Comment

10820-10825 Move MAGEDON This uses the same principles as the code at 1030
with the sprite commands being replaced by the
appropriate SCREENS instructions.
The collision detection routine simply uses the X
SPRITE and Y SPRITE commands to determine

whether a missile has intersected with the area

enclosed by the magedon.
This produces an impressive explosion when the
magedon is destroyed. It comprises of a complex
list of SPRITE commands which are animated with

ANIM.

10845 Magedon Hit

10900 Explode Magedon

45

2.8.5 Possible enhancements

A good way to learn about games programming, is to try your hand at enhancing an
existing game. Zoltar provides you with the perfect opportunity for this sort of
experimentation. Here a few ideas:

1 Change the scoring system. At the moment each ship scores between 200 and 300
points. By modifying line 10505, you can introduce any alternative strategy you
like.

2 Currently, a life is lost automatically if you fail to destroy an attack wave before it
has been completed. It's possible to modify the movement routine at 10300 to
repeat each wave until either your ship or the aliens are destroyed.

3 Add sampled sound to your game. This is very easy - full details are provided
with the STOS Maestro package.

4 Give each type of alien its own attack wave. This would require you to modify the
information used in the movement table loaded from the disk. You would also

need to change the animation routine at 10300.

5 Add different screen types. Zoltar already includes two types of screen (normal and
magedon). It would be relatively easy to incorporate a whole list of similar screens.

If you come up with something really special, be sure to send it to Mandarin for
evaluation. Who knows, it might even be included with the latest version of STOS
Basic!

46

Rebound games

3.1 Introduction

The first ever rebound game was a crude two-player version of table tennis called
Pong. Each player was given control of a small bat, and a ping-pong ball was
represented by a large blob which was flipped erratically from one side of the screen
to another. Although pong looks absolutely horrendous by modern standards, it was a
hailed as a real breakthrough at the time. It made its inventor, Nolan Bushnell a small
fortune, and directly led to the founding of a small inconspicuous little company later
known as "Atari".

It wasn't long before Pong was consigned to the rubbish bin of history. The fact was,
the next generation of arcade games which quickly followed in its steps were so
unimaginably superior that they wiped poor old Pong off the map. These games
incorporated such new and innovative features as "colour" and "graphics". With
that sort of competition, Pong didn't stand a chance!

Old computer games never die however, they just linger on and on until everyone has
forgotten about them completely. Then just when we are certain they are dead and
buried, some whiz-kid brings out a new version, and we all gasp in stupefied
amazement at its originality.

Breakout was a typical example of this sort of development. The actual game-play
was surprisingly similar to pong. But instead of playing against another player, we
were now trying to destroy a set of coloured rectangular blocks. Whenever a ball hit
one of these blocks, it would rebound away in an unusual direction, destroying the
block in the process. The aim of the game was simply to clear the screen whilst
achieving the maximum possible score.

For a while, Breakout was a phenomenal success, and was the inspiration for literally
dozens of similar games. But by the early eighties, it had all started to look
increasingly old-fashioned, and reviewers began making plaintive noises about the
increasing number of boring Breakout clones which were starting to litter their desks.

47

Then, from out of nowhere, came an astonishing new game which breathed new life
into the tired old format. Yet again! I am, ofcourse, referring to the arcade classic
Arkanoid. The most exciting improvement was in the game play. The player was now
confronted with a vast range ofobstacles which needed to be carefully avoided.

The precise effect of hitting a block varied depending on its type. Certain blocks
released bonus pods which gave the player extra equipment, or added to the number
of lives. Also, some blocks required several hits before they could be completely
destroyed.

The result was a game which combined fast action with an intriguing strategic
element which kept the player thinking. To this day, Arkanoid remains one of my
favourite arcade games of all time, and in the unlikely event that this game is not
already a valued part of your software collection, you are strongly recommended to
rush outand buy a copy immediately. It really is that good.

Arkanoid may seem like a rather tough act to follow, but it's still possible to produce
an acceptable alternative directly within STOS Basic. This can be seen from the
excellent Orbiter program included on the STOS Basic games disk. Incredibly
enough, Orbiter actually compares remarkably well to its famous predecessor. But
remember that Orbiter was written entirely in STOS Basic, whilst Arkanoid required
the extensive use of fast 68000 machine code.

In this Chapter, I will be giving you a guided tour of some of the programming
techniques which were usedto make thissuperb program possible.

3.2 Game plan of a rebound game
I'll begin with a generalised game plan of a rebound game, shown in Figure 3.1 on
the next page.

As before, I'll take thisgameplan, and break it down into its component parts.

3.2.1 Critical routines for rebound
• Initialise main screen;

• Load a screen;

• Initialise level;

• Position bat;

• Control bat;

• Release ball;

• Move ball;

• Calculate rebound direction with wall;

• Calculate rebound direction with block;

• Rebound ball;

• Destroy block;

• Handle special block.

48

Initialise main screen

Repeat

Load a level

Initialise level

Position bat

Release ball

Repeat

Move ball

If ball reaches bottom of screen

then

Lives=Lives-l

If Lives>0

then

Position bat

Release ball

endif

endif

Control Bat

If ball collides with bat

then

Calculate rebound direction with bat

Rebound ball

endif

If ball collides with wall

then

Calculate rebound direction with wall

Rebound ball

endif

If ball collides with block

then

Calculate rebound direction with block

Rebound ball

If normal block

then

Destroy block

else

handle special block

endif

endif

Until Lives=0 or blocks=0

Until Lives=0

Figure 3.1 Game plan of a rebound game

49

I will now describe the internal workings of some of these activities in a little more
detail.

3.3 The game screen

3.3.1 Designing the screen

You first need to design the basic screen format for your game. This will involve
choosing the dimensions of the blocks and carefully setting out an invisible grid on
the screen. Each slot in the grid will be just big enough to contain one individual
block. Additionally, it will be illegal for a block to occupy more than a single slot.

In practice, you will quickly discover that it's essential divide up the screen into units
of a single sprite. It's also important to leave a space between the end of the blocks
and the edges of the screen. This will improve the quality of the action by allowing
the ball to ricochet between the blocks and the walls.

The Orbiter game uses a grid of size 16x8. Each block is placed in one position in
this grid, and there are gaps one unit wide between the grid and the walls. The grid
occupies only about two-thirds of the total screen area, with the rest of the space
being reserved for the scoreboard and the title screen.

The size and position of the playing area is totally up to you. There's certainly no
reason why you can't use a much larger proportion of the screen for the game screen,
and indeed this is the approach which was adopted by the original Arkanoid.

You can also experiment with larger grid sizes such as 16x16 or even 32x16.

3.3.2 Creating a screen

Once you've decided on the screen format, you will need to generate the various
levels which will be included in your final game. There are two possible methods of
producing these screens:

Firstly, you can use the map definer program found on the STOS Basic accessory
disk. This is makes absolutely no assumptions as to the size or format of your screen.
It's therefore ideal for creating screens which are slightly different from the usual
format. Before you use this program, you should always remember to create a set of
sprites for your blocks using the sprite definer. You can now load up the map utility,
and produce your game screens with ease. These can then be saved to disk and
incorporated directly into your rebound game.

The data produced by the map program starts off with a small header on line 50005.

50005 data DIST, screens

50

DIST is a record of the number of data statements which hold a single map, and
screens is just the number of maps which have been generated by the definer. Each
game screen starts with two pieces of data containing the width and height of the
sprites making up the screen.

The data itself consists of a list of the sprite numbers which occupy the appropriate
slots in your grid. The entire level can now be displayed automatically by the map
definer, using a simple call to the output routine at 50000.

1000 ROOM=l: gosub 500 00 :rem draw level 1

All maps are drawn on the screen a column at a time. So the first line contains all the
sprites in column number one, the second line contains the sprites in column two, etc.
It's useful to load this data directly into an array, as this enables you to keep track of
the block numbers which have been destroyed or changed during the course of your
game.

99 read map data into an array

100 rem read data lines per screen and no of screens

110 readLS,NSCR

115 dim MAP (NSCR*2 0, 50) :rem reserve plenty of space

120 for s=0 to NSCR-1

130 rem get sizes of sprites

140 readW,H:cols=199/h:rows=319/w

150 d=200-cols*h :rem do the sprites divide evenly into

screen

160 for c=0 to cols-1

170 for r=0 to rows-1

180 readMAP (s*rows+r, c)

190 next r

You now have instant access to the status of the block which has been drawn at any
position. This will be vital for the execution of your game.

One slight problem with the map definer is that it was not designed specifically for
use with rebound games. This means that there are no facilities for setting the
attributes of a block individually, because the definer records only the type of the
block in a particular position, not the number of hits it can take, or the type of pods it
can release. As the data in the map is the only information available to your program
during the game, you are therefore limited to allocating the characteristics of an entire
blocktype,rather than a particular slot on the grid.

Of course, all this can be surmounted by defining a set of blocks which look identical
but are treated separately by your program. This is however, fairly cumbersome, so
you might find it rewarding to use a slightly different approach.

This can be achieved by using Orbiter's own screen definer to generate your screens
directly. Obviously this will restrict your game to a similar format to that of orbiter,

51

but you will be able to set the number of hits which can be taken by each particular
block before it can be destroyed.

The level data usedby the gameis heldon the disk in the following format:

block type, no of hits

There's one entry in this list for every allowable block position on the screen. If the
block is set to zero, then the appropriate slot is empty. A further explanation of this
system can be found in section 3.8: Inside Orbiter.

3.3.3 Drawing the blocks on the screen

After you've produced your game screens, you'll obviously need to display them on
the screen. If you've created the screens with the map definer this will not be a
problem, as you can simply call up the DRAW MAP routine included as part of your
map data.

It is however, well worth examining another technique which was exploited by
Orbiter. This speeds things up significantly by loading the sprite data into a string
with SCREENS. The blocks can now be drawn on the screen using a successive set of
screenS assignments. The advantage of this approach is that it avoids the need for the
WAIT VBL or UPDATE instructions. These tend to slow down the drawing process
considerably. Here is a new version of the output routine from the map definer which
utilises this technique. Replace lines 50000 from the data file produced by mapper
with:

49995 rem New version of Map output program

49996 rem Rewritten using SCREEN$ for extra speed
50001 restore 50005 : readNL,NROOM : if ROOM>NROOM or

ROOM<=0 then return

50002 restore 50010+(ROOM-1) *NL : read GRIDW, GRIDH : els

physic

50003 for 1=0 to 319/GRIDW: for J=0 to 199/GRIDH :read S : if

S>0 then screen$(physic,I*GRIDW+1,J*GRIDH)=SEG$(S)

50004 :next J : next I :return

Before calling this routine, you would first need to load the sprites into a SEGS array
which you have previously defined at the start of your program.

40000 rem Enter sprite images in SEG$ array
40010 els physic : els back

40020 for 1=0 to 30

40030 els physic, 0, 0, 0 to 16,16

40040 sprite 1,0,0, 1+1 : put sprite 1 : wait vbl

40050 SEG$(I+l)=screen$(physic,0,0 to 16,16) : next I
40060 sprite 1,-100,-100,1: return

52

Oddly enough, the original specification of the map definer was intended to use
exactly the same system. But due to encroaching deadlines, there wasn't time to
implement it in the final program.

3.4 The bat

3.4.1 Controlling the bat

When you're writing a game like Orbiter, it's tempting to leave the control of the
mouse cursor entirely to STOS Basic. You can after all, assign any sprite image to
the mouse cursor using a single call to the CHANGE MOUSE command. So why
bother producing your own movement routine?

Unfortunately, in practice this approach is doomed to failure. The problem, is that the
mouse cursor can be moved completely independently of the rest of your Basic
program. This is incredibly dangerous as it's now impossible to know the exact
position of the bat any given instant. All the program can do, is sample the mouse
cursor as often as possible. Because of the sheer speed of the built-in mouse routine,
this is never quite enough.

Imagine what would happen if the bat was moved from the ball just after a collision
had been detected.

The ball would then be seen to rebound from the empty screen position previously
occupied by the bat. You would also get situations where the collision tests missed
the new location of the bat completely. This would allow the possibility of the ball
falling through your waiting bat as if it didn't exist.

I'm afraid this type of problem is inevitable when you are trying to synchronise
several sets of separate activities in a Basic program. The solution is simply to
manipulate the bat directly from your program. This has the added advantage of
allowingyou to incorporate facilities for joystick control in the same routine.

Luckily, it's veryeasy to writesuch a routine in STOS Basic. Here's an example:

Example 3.1 Mouse driver

load "back .mbk" :rem From accessory disk
10 hide mouse :rem Remove mouse pointer from view
20 sprite 1, x mouse, y mouse, 1: remMove spriteaccordingto
mouse

30 locate 10,10:print "Do rest of program"
40 goto 20

In this case, the bat movement is only performed at the most convenient point in the
program. This neatly avoids any possible synchronisation problems, whilst keeping
the mouse control beautifully smooth. An example of this type of routine can be
found in the Universal spritecontroller described in Chapter 2.

53

3.4.2 Positioning the bat

After initialisation, the bat is generally placed at the centre of the playing area. If you
are intending the use the joystick routine from Chapter 2 (Example 2.2), you can
centre the bat by simply setting the variables SX and SY to the required coordinates.
But how do you explicitly change the current position of the mouse pointer within a
STOS Basic program?

Interestingly, there's an undocumented feature of STOS Basic which allows you to do
just that. All you need to do is to assign the appropriate coordinates to the X MOUSE
and Y MOUSE functions as if they were normal variables.e.g.

x mouse=10 :y mouse=10 :rem moves mouse to coordinates 10,10

3.5 The ball

3.5.1 Initial conditions (gluing the ball to the bat)

At the start of a rebound game, the ball is fixed on the bat waiting to be released in
its final trajectory. The universal control system I showed you earlier, returns both the
position of the bat, and the status of the mouse button (or fire key). You can use this
information to effectively "glue" the ball to the ball using the SPRITE command in
the following way:

2000 gosub 1000 :rem Initialize universal control system

2000 gosub 1110 :rem call universal control system

20 05 rem Assume LBAT=width of bat and BALL is image no of ball

2010 if k=0 then sprite 2,bx+lbat/2,by-5,ball :goto 2000

2 02 0 rem Release ball

If you wanted to control the bat with the joystick rather than the mouse, you would
replace 2000 with:

2000 gosub 1100

3.5.2 Releasing the ball

As the mouse key (or fire button) is pressed, the ball is released, and flies headlong
towards the bricks. The direction of flight can either be completely random, or can
depend on the position of the ball relative to the bat. See section 3.8 on Orbiter for
more details.

3.5.3 Moving the ball

Once the ball has been released, it will obviously need to be moved across the ST's
screen. The STOS Basic MOVE commands provide you with the perfect mechanism
for this operation. You do, however, need to calculate the required movement strings

54

by careful experimentation. A full blown sprite experimenter program can be found in
Chapter 1. This will allow you to play around with the possible movements before
deciding on a particular set of strings.

If for instance, you wanted to move the ball diagonally,you could use a pair of
instructions like:

move x1,"(l,l,l)l":move y1,"(1,1,1)1"

This sequence could then be activated using the MOVE ON statement like this:

move on 1

Although the movement commands themselves are trivial, you do need to decide
carefully about the number and type of the directions you will assign to the ball. The
minimum practical number of rebound directions is four, but if you want to produce a
really believable effect, you will need to generate at least eight different movement
paths. (See Figure 3.3 on the next page).

You will also need to provide each direction with several speeds. This allows you to

3

Figure 32 Movement directions (four)

increase the speed of the ball steadily during the course of a game, adding a whole
new dimension to the game play.

The movement strings specifying each possible direction would be held in a set of
arrays. These would be defined at the start of the program in the following way:

dim x$(no_of_directions,no_of_speeds)
dimy$ (no_of_directions, no_of_speeds)

You would then load these strings with the appropriate values during the initialisation
process. Let's assume that you wished to start the ball moving in direction number
one with a speed of three. You could now use the following line in your program:

55

5
Figure 33 Movement directions (eight)

move x 2,x$ (1,3) :move y 2,y$ (1, 3) :move on: rem sprite 2=ball

Orbiter uses a total of twelve possible movement paths, each of which has five
different speeds. It's well worth having a look at these definitions, as they provide a
perfect practical example of. the technique in action. The movement strings can be
found from lines 50000-50300. The first string in each line is used by the MOVE X
instructions, and the second by the MOVE Y.

3.6 Collisions

3.6.1 Detecting a collision with the bat

The easiest collision to detect is that between the bat and the ball. This can be

accomplished with a single call to the COLLIDE command. Supposing you had
allocated sprite 1 for the bat and sprite 2 for the ball. You could now test for a
collision using:

C=COLLIDE(l,W, H)

If a collision had been successfully detected then C would be loaded a binary number
holding the sprite number used by the ball.

This could be tested with the BTST function like this:

ifbtst(SP,C) then 4000

where:

4000 is the location of your explosion routine
SP is the sprite number you've allotted to your ball, and
W and H specify the sensitivity of the test. The ideal values for these variables
will depend on the size of the bat, but it's best to keep them both as small as
possible.

56

Since all collision checks are performed in relation to the hot spot of the sprite, it's
logical to set this to the centre of the bat. This will allow you to combine the
maximum accuracy with the smallest detection zone.

3.6.2 Collisions between the ball and the block

In order to test for a collision between the ball and one of the blocks, you can make
good use of the STOS Basic ZONE function. Each block is allocated one of the 128
possible screen zones during the initialization process. This can be demonstrated by
the following program fragment:

500 for i=0 to BLOCKS

510 reset zone i :rem Free zone for block no i

52 0 set zone I, BLOCKX(I)-1,BLOCKY(I)-1, BLOCKY(I)-4 to

BLOCKX(I)+13,BLOCKY(I)+9

530 next I

BLOCKX and BLOCKY are assumed to be previously defined arrays which have
been loaded with the X and Y coordinates of each block.

You can now instantly determine the number of any block which has just been hit by
the ball:

BLOC=zone (2) :rem ball is sprite number two

If BLOC contains the number of one of the existing blocks, then the collision has
taken place. Otherwise, your program can continue unaffected.

You obviously need to make provision in your program to remove the blocks from
consideration after they have been destroyed. This can be done with a single call to
the RESET ZONE command.e.g.

reset zone BLOC: rem Destroys block number BLOC

3.6.3 Collisions between a ball and the walls

There are literally dozens of ways you can check collisions between the ball and the
edges of the playing area. The most obvious method involves the use of the X
SPRITE and Y SPRITE functions. If you wanted to detect a collision between the
ball and the left hand wall, you could use something like:

if x sprite<=TX then gosub 2000 :rem do collision with Left
wall

The variables TX.TY are assumed to contain the coordinates of the top of the playing
area, and DX,DY the position of the point diagonally opposite.

57

You can also exploit exactly the same idea to test for a collision between the ball and
one of the other walls, e.g

if x sprite>=DX then gosub 2100:rem do collision with right
if y sprite<=TY then gosub 2200 :rem do collision with top
if y sprite>DY then 2300 :rem lose a life

Note that the routines at 2000,2100,2200 and 2300 have not yet been defined. They
are assumed to refer to subroutines which you have written earlier in your program to
handle to various types of collision.

Alternatively, you can enclose the edges of the playing area, with a set of screen
zones. This enables you to use a single call to the ZONE function to detect collisions
between both the edges of screen and the blocks. Each of the three edges is now
assigned a particular screen zone using SET ZONE.

Here is a fragment of code which demonstrates this process:

100 rem Set up zones

110 set zone 100,tx,0 to dx,ty: rem Top

120 set zone 101, 0,ty to tx,dy:rem Left

130 set zone 102, dx, ty to 319, dy: rem Right

20 0 rem read zone

210 z=zone(2) :if z=0 then 210

220 if z<100 then gosub 3000 :rem Collision with brick

220 rem collisions with wall

One minor flaw with this technique, is that it ignores the possibility of the ball hitting
one of the corner points. This will lead to slightly unpredictable behaviour when the
corners are hit, as the rebound effect will vary depending on which zone was entered
first. The solution is simply to define a couple of extra zones to specifically cover the
corner points.e.g.

140 set zone 103, tx, ty to tx+10, ty+10 :rem Top left corner

150 set zone 104,bx-10, ty to bx, ty+10 :rem Top right corner

In the vast majority of rebound games, the bottom corners of the playing area can be
safely ignored by this routine, because they do not produce rebounds.

3.6.4 Collisions with the ball and an irregular object

Normally, all the objects in a rebound game are rectangular. But if you're attempting
to write something refreshingly original, you might wish to introduce circular or even
triangular obstacles to your game. Supposing you wanted to create a version of
pin-ball.

58

Collisions between the ball and your blocks could now be discovered using DETECT.
This returns the number of the colour underneath the hot spot of the ball. Providing
you kept the background colours of your screen separate from those used in the
objects, you would be able to quickly distinguish between your blocks and the
background, and thus detect any collisions.

Unfortunately, youwould still have no ideaabout which particular object the ball had
actually hit. Luckily, there's a delightfully sneaky way of solving this problem with
very little effort. All you need to do, is enclose your object in a rectangular screen
zone. If you've detected a collision, the ball has to lie within one of the rectanglar
zones. So then it's just a matterof finding the zone using using the ZONE function to
get the precise identity of the object in question.

3.7 Rebounds

Whenever the ball hits an object, it will rebound in a distinctive direction. If your
game is to appear realistic, it is essential that you choose the correct rebound effect
for every possible eventuality.

During the game, the ball can rebound off the walls, the blocks, or the bat. The
principles of these rebounds are similar for all three situations.

3.7.1 Rebound tables

The standard way of handling these rebounds is to calculate all the possible rebound
directions in advance. These can then be placed in a look-up table and the required
movement string can be accessed immediately by the appropriate collision handler in
your program. Every distinct type of object in your game will have its own specific
set of rebound directions. Since the rebound of the ball varies according to the point it
hits a block, each face will need to be treated separately.

3.7.2 Rebounds with a wall

The playing area of a rebound game is usually surrounded by three walls. You could
therefore hold the entire rebound table for these walls in an array .e.g.

dim WALL (3, REBOUNDS)

REBOUNDS is just a simple variable holding the number of rebound directions you
have chosen.

This array would then need to be loaded with the appropriate rebound information.
You could now get the direction of rebound of the ball from wall number one, using
a line like:

d=WALL(1,d)

59

D is assumed to hold the number representing the direction of the ball before the
collision took place.

inal direction

Initial direction

Figure 3.4 Collision between the ball and a wall

Supposing the ball was to hit wall number one from direction number four (see
Figure 3.2). The rebound table would now be accessed to work out the correct
rebound direction for the ball.

D = WALL(1,2)

In the case of the situation in Figure 3.4, the required rebound would occur in
direction one. Once you have found the rebound direction, you can simply reset the
motion of the ball using the movement strings you defined earlier for MOVE X and
MOVE Y.

If you had decided on eight possible movement directions, these arrays dimensioned
like this:

dimX$(8) ,Y$(8)

X$ contains the strings needed for the horizontal part of the motion, and Y$ the
vertical component. So the entire rebound effect could begenerated using:

-D=WALL(1,D)

move x 2,X$(D)

move y 2,Y$(D)

move on

60

The really nice thing about this technique is that it's extendible. This allows you to
start off with a minimum of four directions, and steadily expand these during the
development of your game.

I'll now demonstrate the use of rebound tables with a practical example.

Example 3.2 Rebound tables

10 rem Example 3 .2

2 0 rem Rebound

30 TX=0 : rem TX=X coordinate of left wall

40 BX=319 : rem BX=X coordinate of right wall

50 TY=0 : rem TY=Y coordinate of top wall

60 BY=19 9 : rem BY=Y coordinate of bottom wall

7 0 rem set up screen

80 mode 0 : els physic : els back : locate 10,2 : centre

"Rebounds" : curs of f : box TX, TY to BX, BY : hide

90 rem Initialization

100 dim WALL (4,4) : rem four walls and four directions

110 rem load rebound table

120 for W=l to 4 : for D=l to 4 : read WALL (W, D) : next D : next

W

130 dim H$ (4) ,V$ (4) : rem define movement strings

140 rem load movement strings

150 for M=l to 4 : read H$ (M) ,V$ (M) : next M

160 sprite 1,160,100,25 : rem Draw sprite at centre

170REBOUND=1 : rem initial direction of motion

180 rem for R=l to 4 : sprite 1, 160, 100, 1 : move x 1,H$,(R) :

move y 1,V$ (R) : move on : print R : wait key : next R

190 move x 1,H$ (REBOUND) : move y 1,V$ (REBOUND) : move on

200 rem left wall (surface 1)

210 ifxsprite(1)<=TX then REBOUND=WALL(1,REBOUND) :movex
1,H$ (REBOUND) : move y 1,V$ (REBOUND) : move on : shoot

220 rem right wall (surface 2)

230 ifxsprite(1)>=BX then REBOUND=WALL(2,REBOUND) : movex

1,H$ (REBOUND) : move y 1,V$ (REBOUND) : move on : shoot

240 rem Top wall (surface=3)

250 ifysprite(1)<=TY then REBOUND=WALL(3, REBOUND) : movex

1,H$ (REBOUND) : move y 1,V$ (REBOUND) : move on : shoot

2 60 rem Bottom wall (surface 4)

270 ifysprite(1)>=BY then REBOUND=WALL(4,REBOUND) : movex

1,H$ (REBOUND) : move y 1,V$ (REBOUND) : move on : shoot

280 goto 210

2 90 rem rebound table

300data 1,2,2,1

310data 4,3,3,1

61

320data 2,2,3,3

330 data 1,1, 4, 4

340 rem movement strings
350 data " (1,6,4)1","(1,-6,4)1"

360 data " (1,6,4)1","(1,6,4)1"
370 data "(1,-6,4)1","(1,6,4)1"
380 data " (1,-6,4)1"," (1,-6,4)1"

3.7.3 Rebounds with the bat

The bat is the only part of the program which is directly controlled by theplayer. It's
therefore essential to get the rebounds from the bat as accurate as possible. Since the
bat only has a single surface, the rebounds are delightfully straightforward. You
could, for instance, treat the bat as just a moving wall, and implement the rebounds
directly using a simple rebound table.

If you tried to implement this idea in practice, the path of the ball would quickly
degenerate into a predictable pattern which would quickly become boring. This robs
the game of much of its appeal in one foul stroke. The solution is to introduce some
variety into the rebound process. The rebound mechanism between the ball and the
bat provides you with a perfect opportunity to implement this type of system. Here
are a few ideas:

1. The rebound direction depends on the point the ball hits the bat. If you've placed
the hot point of the bat at the centre, the position can be calculated from the
following formula:

position = (width of bat)/2 +x sprite(ball) - x sprite(bat)

This value can now be looked up in a rebound table containing the appropriate
rebound directions for each point on the bat. In the case of Orbiter, each bat has a
rebound table containing 48 distinct elements.

2. Let the rebound table vary depending on the size of the bat. This is extremely
useful in games like Orbiter which include several different bats. The smaller the
bat, the tighter the rebound angle. This can be reflected in the appropriate rebound
table.

3. Test for the speed of the mouse movement. If the player slices the ball, the angle
of rebound will be higher and the ball will be faster. The speed of the movement
can be calculated by keeping a record of the last bat position. So speed = ABS(last
X coordinate - current X coord). (The ABS just removes the sign from the speed
indicator).

4. Change the rebound direction depending on the speed of the ball. Normally the
speed will already be known. So it's just a matter of creating a rebound table
holding the directions for each speed.Fast speeds should have tight rebound angles
and slow speeds should have shallow ones.

i,2

3.7.4 Rebounds with the block

The final type of rebound effect is generated by a collision between the ball and one
of the blocks. It should be obvious that the direction of the rebounding ball will
depend on the side of the block at which the impact occurs. This is shown in the
diagram in Figure 3.5.

Figure 3.5 Rebound directions

As you can see, the rebound direction is completely different when the ball hits at B
from when it impacts at D. Assuming the two paths areparallel, the eventual rebound
direction will be determined entirely by the initial position of the ball. If the ball
starts at the left of the line E F, the ball will be reflected off the left face, but if the
ball starts to the right, it will collide with the bottom edge of the block.

A small distance between the two starting points can have a profound effect on the
final result. This presents theprogrammer with an extremely difficult problem, which
is further complicated by the ball's speed across the screen.

There are several possible solutions to this situation. The best I've seen so far was
devised by Francois Lionet in his excellent Orbiter program. This divides up the area
around the block into the eight sections shown in Figure 3.6, on the next page.

Whenever the ball is in flight, a record is kept of its current coordinates. This record
is invaluable when the ball hits one of the blocks, as it gives a good indication of the
original path of the ball. You can now use this information to calculate which side of
the block has been hit.

63

Figure 3.6 Rebound Zones

If, for instance, the old coordinates of the ball lie in region one, then the ball has
almost certainly collided with the uppermost face of the block. Likewise, regions
three, five and seven indicate a collision between the right, bottom and left sides
respectively.

From these facts, it's easy to get the rebound direction straight from a rebound table
you have defined previously. But what happens if the ball has moved from regions
two, four, six or eight? In this case, the situation is far less clear. Take a look at the
diagram in Figure 3.7on the nextpage.

You can get a good approximation of the path of the ball, by checking whether the
ball originated from above, on, or below the diagonal line A B which divides the
zone neady in two.

If the ball lies above the region then it is likely that the impact point is somewhere
along the left face.

Similarly, if the ball started from below the region then it probably collided with the
top of the block. By checking the relative distances between the old position and
corner points, you can work out whichzone the ball has movedfrom.

64

Figure 3.7 Diagonal hits

This can be used to estimate the final impact point, which can be passed on to the
rebound table in the usual way. If, incidentally, the ball enters along the diagonal line,
then the ball will have hit one of the corners. This situation will require its own entry
in the rebound table.

Unfortunately, it's quite possible to fool the system completely because it assumes
that the motion of the ball is parallel to the line A-B. If you're using more than four
movement directions in your game, this condition is notalways satisfied.

There's no way you can surmount this entirely, but you can add an extra test to
reduce its likelihood. Before your program guesses the collision, it should first check
the condition of some of the adjacent blocks. If you find that a block along the
predicted pathway is still in existence, you can be pretty sure that the collision point
which you have calculated will be wrong.

So far, I've limited my discussion to theory. Here, in Figure 3.8 on the next page, is a
pseudo-code description which might make things a little less opaque.

I appreciate that the above pseudo-code looks rather complicated, but this is simply a
reflection of the difficulty of the problem. The best way to get an understanding of
this procedure, is to laboriously go through the description by hand. It helps to make
a sketch of each zone on a piece of graph paper. You can then trace through the
method, and see how every conceivable path is handled by the system.

Surprisingly enough, the final STOS Basic routine is remarkably small. In the Orbiter
game, Francois Lionet cleverly managed to compact the whole thing down to just six
lines of instructions!

65

(Note that last X, last Y are the last known coordinates of the

ball. Block X and Block Y are the coordinates of the top left

hand corner of the block which has been hit. Length and Height

are the dimensions of the block)

Detect collisions

If collision

then

face=unset

If last X>blockX and last X<block X+Length

and last Y<block Y

then

zone=l

face = top

rebound ball

endif

If last X>blockX and last X<blockX+Length

and last Y>block Y

then

zone=5

face = bottom

rebound ball

endif

If last Y>blockY and last Y<blockY+Height

and last X>block X

then

zone=3

face = right

rebound ball

endif

If last Y>blockY and last Y<blockY+Height

and last X<block X

then

zone=5

face=left

rebound ball

endif

If face=unset

then

handle diagonal

else

Store last X

Store last Y

Endif

Figure 3.8 Rebound system for blocks

66

3.8 Inside Orbiter

Of the three games which are included in the STOS Basic package, Orbiter has to be
my personal favourite. Not only is the action both fast and furious, but the overall
quality of the game approaches that of the original Arkanoid program.

I'll now provide you with a detailed look at the inner workings of this fascinating
program.

The intention is to give you enough information to allow you to modify the game to
your own needs. This would be particularly useful for those of you who are restricted
to a monochrome monitor, as it would enable you to convert the game into high
resolution. I'll also be demonstrating some of the spectacular tricks used to squeeze
the maximum possible speed out of the STOS Basic system.

3.8.1 Initialisation

The program lines from 10-500 perform a variety of useful initialisation steps. The
first action is to fade out the screen and enter low resolution graphics mode. Line 15
now defines a number of important constants.

NXBLOCS «= The maximum number of blocks per row (11)

NYBLOCS = The maximum number of rows per screen (10)

MBLOCS = The maximum number of blocks on the screen (110)

SPEEDMAX = The number of possible speeds for the ball (6)

The numerous arrays required by the game are now defined at line 20.

The rectangular blocks are displayed on a grid with elements numbered from 1 to
110. This grid is stored in the arrays WAVE and BLOC. If an element contains a
zero, then there is no block at the current position. Any other value represents the
type of the block which is present on the screen.

The numbering system starts from the top left corner of the screen and progresses
from left to right. So the number of the slot at row R and Column C is given by the
following formula:

Slot number = (R-1)*MXBLOCS+C

If MXBLOCS=ll, then the slot at row five, column two has an identification number
of:

(5-1)*10+2=42

The other arrays defined at line 20 are:

67

WAVE: This holds a permanent copy of the current game screen. It is only changed
when a new wave is loaded from the disk.

BLOC: holds a temporary copy of the screen which will be altered as blocks are
destroyed during the game.

WAVEHITS: This is an array containing the number of hits which can be taken by
each block before it will be destroyed. Like WAVE, the information in this array is
permanent.

HITS is a temporary version of the WAVEHITS array, which is changed after every
successful hit.

XBLOC: holds the X coordinate of the top left hand corner of each slot in the game
grid. There's an entry in this table for every possible position, even if it does not
contain an actual block.

YBLOCK: holds the Y coordinate of the top corner of the slots.

B$: is an array of thirty strings which will be subsequendy loaded with the images of
the block graphics using the SCREENS command.

MX$: is a string array containing the movement strings describing the balls
horizontal motion for use with the MOVE X instruction. The ball can move at six

speeds and in twelve directions. There is one movement string for each of these
possibilities.

MY$: is an array of strings containing the vertical component of the balls movements
for use with the MOVE Y command.

REBAT holds the rebound table for the bat. The data for this can be found at line

60000 in Orbiter.

REWALL: contains the rebound table for all three walls, along with the two top
corners. Each possibility is managed by its own set of twelve rebound directions. This
data is at line 60100:

REBLOC: This is the rebound table for the blocks. The rebound direction depends
on the face of the block which has been hit, and the initial direction of travel. The
information needed for this table is stored from line 60200.

The EFFECT array holds the location of the subroutines used to handle special
effects such as the bombs and the hyperspace feature. The starting lines of each
routine are loaded in the array using the data at 61000. The appropriate routine can
then be executed like this:

gosub EFFECT (n)

Where n is the number of the effect which is to be executed.

68

TURNS: containsa set of twelveanimation strings which add a spinning effect to the
ball. Six strings are allocated to turns in a clockwise direction, and six for an
anticlockwise rotation. There is a different string in each direction and for the twelve
possible speeds. This data is generated during the game at line 145.

DX = X coordinate of top corner of movement zone for bat.

DY = Y coordinate of top corner of movement zone.

FX = X coordinate of bottom right corner of movement zone

FY = Y coordinate of bottom corner of zone.

The sizes of the movement zones will vary according to the bat which has been
selected. There are therefore three sets of each of these coordinates.

The LB array contains the lengths of each bat. There are three possible bat sizes,
16,32 and 48 units long.

The graphics for the blocks are initially held in the form of sprites. In order to speed
up the block drawing routine, Orbiter loads each sprite into one of the strings in the
B$ array. This is achieved by the routine startingat line 200.

NBBLOC is loaded with the number of different block types.

SPBLOC contains the starting position of the first sprite image used to contain a
block.

The lines from 300 to 1000 now generate the title screen and allow the player to
begin playing the game.

3.8.2 The control loop

The main control loop for the Orbiter game commences at 1000.

The first action is to set up the initial conditions:

WAVE = The number of the wave

NBATS = The number of bats

SCRE = The initial score

WIN = The status of the player.

During the game WIN can take one of the following three values:

WIN = 0 (Player has started a wave)
= 1 (Player has destroyed a wave)
=-1 (Player has been destroyed)

Theactivities of the main control loop can be summarized with a little pseudo-code:

69

The main control loop from Orbiter

Draw screen (Calls routine at 10000 and clears space

needed for blocks)

Repeat

Load wave

Copy wave data into temporary storage

Repeat

Play one game (Calls play game routine at 1200)

Until Lives<0 or wave defeated

Until Lives<0 or no more levels

All the waves are stored on the disk in the form of 110 pairs of numbers with one
pair for each element in the grid. The first number contains the type of the block at
this position. A value of zero indicates that the current position is empty. The second
number holds a record of the amount of damage which can be suffered by a block
before it is destroyed.

3.8.3 Playing a game

The "play game" routine itself can be found from line 1200. I'll demonstrate how it
works with a line by line breakdown of the variousactivities in Table 3.1, below.

Table 3.1 "Play Game" routine

Lines Comment

1200 See Note 1

1210 Calls routine at 10200. Uses temporary
data

1215 Calls routine at 10100

1225

1225 DXBALL=position

1225 Calls routine at 2000

1300 Start of main loop

1300 Call control routine at 2045

Action

Initialise game

Redraw blocks

If new bat slides out "cage"

Set WIN to zero

Centre ball on bat

Release ball

Repeat

Control Bat

70

Table 3.1 "Play Game" routine (continued)

If bat and ball collide 1305

Has ball entered a new zone? 1310

Increase speed of ball? 1315

Has ball hit a wall? 1320

Ball hits block 1325

Is block destroyed? 1325

Stop ball moving 1330

Get row of current block 1330

Get column of current block 1330

Set horizontal distance to dummy 1330

Set vertical distance to dummy 1330

Did ball approach from left? 1335

Did ball approach from right? 1340

Did ball approach from top? 1345

Did ball approach from below? 1350

Call rebound routine at 2025 or release

bat routine if bat "sticky"

OLDZ=01d zone number. If it hasn't,

jump to end of loop at 1385

When SPEEDCPT=0

Handle and jump to 1385 See Note 2

If DESTROY Hag set Check NHITS
and exit to end of loop; see Note 3

Store in Y

Store in X

Loads DX with 100. See Note 4

Loads DY with 100. See Note 4

Ball hit top, bottom or left; see Note 5

Ball hit at top, bottom or right; see
Note 5

Ball hit at top, left or right; see Note 5

Ball hit at bottom, left or right; see
Note 5

Did ball impact at corner? 1355 See Note 4

Set face of impact 1360 See Note 5

Choose rebound direction 1365 Using REBLOC table

If diagonal hit choose 1365 Adds a litde unpredictability
random direction

71

Table 3.1 ' 'Play Game' routine (continued)

Start ball moving in new 1370 Uses MOVE X and MOVE

rebound direction strings in MX$ and MY$

Control mouse 1370 Call routine at 2045 again

Destroy block? 1375 Check number of hits

Special effect? 1375 IF number of hitsoO gosul
EFFECT(type); see Note 6

If normal block 1375 Destroy block

Get old zone number 1385 OLDZ=Z

Get last X and last y 1385 Load in OLDX and OLDY

Check for collision with bomb 1390 Bomb=sprite 5

Check for Escape key 1391

Until no more blocks 1395

or ball reached bottom of screen

Notes:

1 This section sets up the following variables:

SPEEDCPT=3 Speed of ball

REVERSE=0 Set to one if the mouse action is reversed. See line 2800 of
Orbiter.

DESTROY=0 Set to one for Superball (See line 2700 of Orbiter)

GLUE=0 Sticky bat. This is loaded with one at 3700.

BOMB=0 No bombs on screen. Bomb launched by routine at 2600.

YMOVE=0 Set one if UP/DOWN movements are allowed.

BON$="" String containing BONUS sequence

QUIT=0 Set to one if user presses escape

2 If the ball is in a zone with a number greater than that used by a block, then it
must have hit one of the walls. This line uses a rebound table stored in REWALL

to determine the rebound direction.

72

3 This line is only applicable if the superball option has been set. The ball then
destroys the block and continues regardless, with no rebound.

4 DX holds the difference between the last recorded X coordinate of the ball and the

corner of the block.

DY holds the equivalent distance between the Y coordinates.

At the start of the routine, DX and DY are loaded with dummy values of a 100.
These values are changed by the tests at lines 1335-1350. If only one test proves
true, then the ball has approached from the directions 1, 3, 5, or 7 and the impact
point is obvious. Since 100 is much larger than a real distance, the line at 1360
automatically selects the impact point chosen by whichever test was successful.

If however, both values are set, then the impact point will depend on the relative
sizes of DX and DY. This can be clearly seen from Figure 3.9, which illustrates
the three main possibilities.

Starting point
dx>dy

dx=dy

Figure 3.9 DX and DY

If both values are equal, the ball will have hit at the point B. Otherwise it will
impact at either A or C, depending on the values of DX and DY.

5 Notice the checks for the contents of the adjacent blocks.

If none of these blocks are free, the ball must have hit the block at one of its
corners. In this case the variables DX and DY will remain at their initial values
and this will be spotted at line 1355.

73

Ideas for improvements

1 Add your own types of block with their own effects. This is quite easy and could
be accomplished by placing your own routines at the end of the program. You
could then add this to the EFFECT array stored at line 61000. Don't forget to
change the number of effects at 140.

2 Add moving aliens as in Arkanoid. This wouldn't be too hard, as you could use the
movement system I described in Chapter 2. But you might find that the ball
movements slowed down a little. After all, even STOS has its limits.

3 Incorporate another feature of Arkanoid, like the pods.

4 Increase the size of the playing area.

5 Add animation effects to the blocks when they are hit. The blocks could rotate into
oblivion instead of just disappearing.

6 Include some really effective sound effects during the game play.

Hopefully, this section has convinced you that Rebound games are well worth your
serious attention. After many years of deserved success, Arkanoid is now starting to
approach the end of its useful life. Maybe you can create its successor!

74

Simulations

4.1 What is simulation

One of the most important applications of computers in the modem world is in the
field of simulation. The art of computer simulation is to break down a complex
real-world situation and capture its essence inside a computer program. These systems
can then be used to make uncannily accurate predictions as to the outcome of any
specific event, without the risk of disastrous and expensive mistakes. This allows us
to test our theories so we can get things completely right first time.

When the scientists at NASA wanted to calculate the best orbit for the Voyager space
probe, they didn't shoot off a couple of dozen ships in the hope that one would
succeed. That would have been sheer lunacy. Instead they simulated the orbit with a
computer, and simply checked through all the possible combinations until they found
one they particularly liked. This allowed them to make full use of Jupiter's gravity
field, to flick the probe from Jupiter to Saturn with just a minimum expenditure of
fuel. Frankly, without the ability to simulate the mission, it's unlikely that the
amazingly successful Jupiter flyby would ever have been attempted. Considering the
eventual pictures, that would have been real loss to both scientists and space
enthusiasts alike.

Of course, simulations are not always so effective. The met office regularly runs
some of the largest simulations in the world, using computers of unimaginable
complexity. But the reliability of the weather forecasts these systems produce is still a
matter of heated debate!

Because simulations are essentially just lists of mathematical rules, they have always
lent themselves especially well to computer games. These games have long been
popular with computer science students, as many of the basic principles of simulation
programs are naturally acquired as part of their studies. The earliest examples of the
genre were games like Golf, Lunar lander, and Kingdom. Originally these programs
were unbelievably crude, and their graphics were often almost non-existent. Despite
this, the games were surprisingly enjoyable, and I still remember them with a great
deal of fond nostalgia from my own days as a student.

75

Over recent years, the simulation game has evolved out of all recognition. Golf has
been transformed from a grotty text oriented game using the keyboard, to the amazing
World class Leaderboard with its superb graphics and accurate game play. Lunar
lander has progressed from a crude simulation of a real spaceship to the fantastic
imaginary world of Elite. Even Kingdom has been reborn in a new guise, with the
advent of chilling political simulations such as Chris Crawford's excellent "Balance
of power".

4.2 Simulation games

4.2.1 The game world

All the action in a simulation game takes place in an imaginary game world, whose
events are controlled through a complex set of mathematical relationships. In a
commercial simulation, there will hopefully be a some direct correspondence between
the events in the real world and those in the simulation. But in a computer game, this
link is purely arbitrary, and it's quite possible to simulate situations which would
appear totally ridiculous in reality.

Take the Hyperspace sequences found in games like Elite. Ask a respectable physicist
about the possibility of hyperdrive, and you will be greeted with hoots of derision.
According to the best modem theories, it's totally impossible to travel faster than the
speed of light. If however, you were to restrict the spaceships in a space simulation to
sensible speeds, the vast distances separating even the closest stars would seriously
disrupt the mechanics of the game.

But who cares about the accuracy of a computer game? You don't after all, need to
believe that your planet is being invaded to enjoy a game of Galaxians. So why
bother with the authenticity of your simulation game. Show the same respectable
physicist the latest version Elite, and I'm sure he'll enjoy himself no end.

Conversely, if your game is a perfect simulation but is boring and difficult to play,
then it is highly unlikely to be a conspicuous success.

You should therefore always feel at liberty to simplify the game world for your own
convenience. This applies especially to the speeds and distances used in your
calculations. The only possible exception to this rule would be if you were attempting
to recreate the illusion of flying a particular aircraft. But even in the best such
simulations, the programmers are usually forced to take some liberties with the
system. Otherwise, what would be the use of those million pound flight simulators
used by the RAF?

In practice, few people will care about the exact figures you have used in your
program. So given the choice between authenticity and entertainment value, the
sensible programmer always errs on the side of payability.

76

While you're designing your game, it's important to think very carefully about
precisely which aspects of the situation you are actually attempting to simulate.
Normally, the game world will be vasdy simpler than the real world around you. This
will allow you to concentrate on the interesting parts the game, ignoring any boring
details. How many golfing simulations include the movements of the caddy? And
although Elite has you rushing across the galaxy for "months" at a time, there's no
simulation of your character eating lunch or going to the bathroom.

Of course, nobody would really go to those extremes. Once you've started working
on your simulation however, it's all too easy to get carried away, and continue to add
more and more detail, forgetting about the eventual consequences to the gameplay.

4.2.2 Game time

Since the game world only exists inside the computer, the time which passes in the
simulation is completely separate to that experienced by the player. For the purposes
of my discussion, I'll assume game-time to be the time that is apparently spent in the
game world, and real-time as the actual time which takes place for the player.

In games like golf, the two time-scales will be pretty near identical, but if you are
trying to simulate the economics of an entire country over a period of years, you
might need to compress years of game-time into just minutes of real-time activity. By
choosing the ratio of game-time to real-time carefully, you can play complicated
scenarios which would require an enormous amount of time to complete in the real
world, whilst still keeping the gameplay fast and furious.

The time in your game doesn't even need to be continuous. Most economic
simulations only update the time after the player has entered a turn. A good example
of this approach can be found in "Balance of power", which takes each turn to be a
single year. So the length of one of these games depends entirely on the amount of
time the player is prepared to spend pondering each move.

4.3 Simulating movement in space

The simulation process requires you to produce a detailed mathematical model of a
real-life situation. This forces you to break down a complex physical process into a
set of mathematical equations. At first glance this procedure would appear to be
incredibly daunting, but fortunately most of these types of simulations only require
you to understand a relatively few basic physical laws.

4.3.1 The equations of motion

The first reliable description of the laws which govern the motion of an object were
discovered by Sir Isaac Newton. These allow you to calculate the position and speed
of any object moving in three dimensional space. The beauty of the Newtonian laws,
is that they apply equally well to a golf ball as a space ship. Suffice it say, Newton's

77

equations have been successfully employed in many different types of simulations, up
to and including the Voyager simulator I mentioned earlier.

I'll start off with a briefdescription of the laws of motion in a simple straight line. If
you've done a little physics, you will already be fairly familiar with these equations.
They can be summarised as follows:

Distance = ((Initial velocity+final velocity)/2) *time (1)

Final velocity = Initial velocity + acceleration *time (2)

Distance = Initial velocity*time+(acceleration*time2)/2 (3)

Final velocity2=lnitial velocity2+acceleration*distance*2 (4)

Velocity is measured as the distance per unit of time in a specific direction; e.g. 10
metres per second north.

It's important to realise that the velocity of an object is not the same as its speed. A
velocity is the increase in distance in a specific direction. So 30 miles/hour is a speed,
but 30 miles/hour due north is a velocity.

Also note that the units used to measure the distances and speeds purely arbitrary.
The above equations work equally well for both British and Metric systems, and if
you feel more comfortable with yards rather than metres, you can substitute them
directly into my calculations. Treat a metre as approximately 39 inches or 3 1/4 feet.
If you're really lazy, you can forget about the fraction completely and just assume
that metres and yards are identical. This does however, reduce the accuracy of your
calculations by around eight percent. So a really smart player might actually notice
the difference!

Acceleration = Increase in velocity per unit of time

Acceleration is defined in terms of the increase in velocity which takes place over a
given unit in time. If, for instance, an object accelerated from rest with an
acceleration of 10 metres per second per second, the velocity would increase
according to the pattern shown in Table 4.1.

Table 4.1 Acceleration at 10 ms-1

Time Velocity

0 0

1 10

2 20

3 30

Normally the "per second per second" part abbreviated to just "per second2"

78

You might be asking yourself at this point what all this boring physics has to do with
a simulation game. Surprisingly enough, however, you can apply these rules directly
to create a simple moon lander program.

Example 4.1 Simple moon lander

Before entering this program, you will need to generate a sprite for the spaceship. It's
quicker to borrow one of the sprites from Zoltar with:

load "zoltar. bas": rem From the STOS games disk

Place a fresh disk into your current drive and type:

save "sprites.mbk",1

new

load "sprites .mbk"
10 rem Lunar lander version 1
20 SHIP=45 : rem set ship to the image number of your

spaceship
30 els :input "Enter difficulty level";D
40 rem Clear screen

50 mode 0 :curs off :hide on :els physic :els back
60 locate 0,0: centre "Lunar Lander"
70 FUEL=100*(10-D) :HEIGHT=1000 :SPEED=0 :THRUST=0 :

G=2

75 VSPEED=0 : ACC=0

80 rem Set up initial conditions
90 sprite 1,150, 0, SHIP :remdraw sprite
10 0 rem play game

110 while (HEIGHT>0)

130 if FUEL<=abs(THRUST) thenX$="" :THRUST=0 :goto 160
140 if jupthen inc THRUST :rem Increase thrust
150 if jdownthen dec THRUST :rem Reducethrust
160 FUEL=FUEL-abs(THRUST) : rem Fuel consumption
170 locate 0,16 :print "Thrust "/THRUST;"
180 locate 0,17 :print "Fuel ";FUEL;" ";
190 rem perform calculations
200 ACC=G-THRUST

210 FSPEED=SPEED+ACC : rem from (2) with t=l
220 D=(FSPEED+SPEED)/2 : rem from (1)
230 HEIGHT=HEIGHT-D : rem Calculate new height

240 SPEED=FSPEED

250 locate 0,18 : print "Height "/HEIGHT;"

260 locate 0,19 :print "Speed "; SPEED;" ";
270 if HEIGHT>0 then sprite 1, 150, 200-(HEIGHT)/5,SHIP

280 wend

290 if SPEED>5 then els physic : els back :boom : locate
0,0: centre "You crashed" :wait 50 :wait key :goto 10

79

300 if SPEED<0 then locate 0,0 :centre "Boing! ":goto 110
310 if SPEED=0 then els physic :els back :locate 0,0:
centre "Perfect landing" else els back :els physic :
locate 0,0 :centre "Landed safely"
320 wait 50 : wait key :goto 30

It's worth examining Example 4.1 in some detail, as it illustrates a number of
interesting techniques. The ship starts off at a height of 1000 metres with a velocity
of zero. The program then enters a loop at 110 which continues until the ship has
reached the ground. The sprite command at line 270 converts the height of the space
ship into a physical screen coordinate. If your game uses wire frame graphics, this
translation process will be considerably more complex. See Chapter 7 for more
details.

Note the definitions I've used for the thrust and the fuel. Thrust is a measure of the
acceleration of the ship. A positive thrust represents an acceleration towards the
ground, and a negative one denotes an acceleration upwards. The choice of direction
is fairly arbitrary, and was determined by the assuming that the direction of the
motion was positive. Since the force ofgravity is in the same direction as the motion,
this will be represented by a positive acceleration. But as your spaceships engine is
thrusting against the downward motion, itwill be assigned a negative acceleration.

The equation at line 200 adds the negative thrust to the positive gravity, and works
out the total acceleration towards the moon. This is translated into the final velocity at
line 210 using equation 2: (Final velocity =Initial velocity +acceleration *time)

The change in height isnow calculated using the equation 1at line 220, i.e

Distance = ((Initial velocity+final velocity)/2) *time

The new height is then updated accordingly, and the appropriate graphics are
displayed on the screen. Incidentally, the fuel is defined in terms ofacceleration. One
unit offuel is assumed to impart an acceleration of one metre per second per second.
This is a classic example of the type of harmless simplification you can make to
reduce the difficulty of your calculations.

Unfortunately, in real life, things are rather more complicated, and the acceleration
per unit offuel will decrease as the fuel is expended and the ship gets lighter.

That's why most modem spaceships are constructed in stages. As each stage runs out
of fuel, it is immediately jettisoned. This vasdy increases the effectiveness of the fuel
stored in the remaining stages of the spaceship.

The relationship between mass and acceleration can be seen directly from yet another
of Newton's famous formulae:

Force = mass * acceleration (5)

80

Mass is measured using the standard units of weight. On Earth, the mass and weight
of an object are identical. But although weight can change according to the strength
of gravity, the mass of an object depends on the quantity of matter it contains and is
therefore a constant. Supposing you had a brick weighing five kilograms. If you were
to take this brick to the moon, the weight of the object would be reduced to a single
kilo, since the moons gravity is about a fifth of that of the Earth. The mass of the
brick would however remain unchanged at five kilograms.

This difference between mass and weight may seem arbitrary, but it is a matter of life
and death to astronauts. Although it's possible to move extremely large objects in
zero gravity, the force required to start and stop the object's motion is the same as
than on Earth. Forgetting the consequences of this fact could well lead to the
astronauts being accidentally crushed by the mass of an object they were trying to
position.

Force is measured in units called Newtons. One newton is strictly equal to the force
required to produce an acceleration of 9.81 metres per second2 to a mass of one
kilogramme. In practice, you will can round this number up to just ten, with very
litde loss of accuracy. (Around two percent).

You can incorporate equation (5) into Example 4.1 by changing the thrust to a force
rather than an acceleration. You can then calculate the acceleration produced by this
force using (5): Thrust = Mass * Acceleration

So Acceleration = Thrust/mass

Try adding the following lines to Example 4.1.

76 REST=500:rem Mass of ship without fuel
130 if FUEL<=abs (THRUST/1000) then X$="" : THRUST=0 :
goto 170

140 if jup then THRUST=THRUST+1000 : rem Increase thrust
150 if jdown then THRUST=THRUST-10 00 : rem Reduce thrust

160 FUEL=FUEL-abs(THRUST)/1000 :rem Fuel consumption
195 MSS=REST+FUEL

200 ACC=G-THRUST/MSS

See how I've had to modify some of the original equations in order to get things to
work correcUy. The thrust is now measured direcUy in newtons. Since the original
mass of the ship at level five is 1000 (including fuel), it takes 1000 newtons of force
to add an acceleration of 1 metreper second squared, e.g.

Acceleration = force/mass

= 1000/1000
= 1

Also note thateach unitof fuel is assumed to weigh one kilogramme.

81

4.3.2 Motion in two dimensions

The problem with the equations I've so far discussed, is that they only apply for
motion in a simple straight line. If you want to predict the path of a projectile, such as
a golf-ball, you will need to be able to simulatefar more complexmotions.

All projectiles move in a curved path known as a parabola. An example of one of
these parabolas can be seen from Figure 4.1

R

Figure 4.1 Path of a golf-ball

The golf-ball is struck at an angle A to the ground, and follows the path from P to R.
The highest point in the motion occurs at position Q. Since the equations of motion
will not work directly for a curve, they are apparendy useless in the solution to this
problem.

Fortunately, there's a trick which allows us to adapt the original equations for this
new situation. Instead of trying to perform the calculation in one go, we can sneakily
split the velocity into two separate components. One component represents the
velocity of the ball vertically, and the other determines the velocity of the ball as it
moves horizontally across the ground.

The sizes of each component can be calculated from the original velocity (V) using a
litde trigonometry.

Initial horizontal velocity = V * COS(A) (6)

Initial vertical velocity = V * SIN(A) (7)

Where A is the angle between the golf ball and the ground.

It's very similar to the section in Chapter 2 where I showed you how you could
combine the MOVE X and MOVE Y instructions to move a sprite in two dimensions.

82

If the object is accelerating, the velocity components will continually be changing. So
we will also need to divide the acceleration into two components. We can then work
out the separate velocities using equations (1) through (3).

Horizontal acceleration = Total acceleration * COS(T) (8)

Vertical acceleration = Total acceleration * SIN(T) (9)

T is the angle of thrust. If the acceleration occurs in the direction of motion then T
and A will obviously be identical. (See Chapter 7 for an explanation of the SIN and
COS functions)

Once you've worked out the velocities and acceleration, using the formulae shown
above (6-9), you can then treat each component completely independently, using the
equations of motion.

Remember, these equations were given by:

Distance = ((Initial velocity+final velocity)/2) * time (1)

Final velocity = Initial velocity + acceleration * time (2)

Distance = Initial velocity*time+(acceleration*time2)/2 (3)

Final velocity2=lnitial velocity2+acceleration*distance*2 (4)

You can use these equations to find both the maximum range and the height of the
ball respectively. You can also work out the total velocity of the ball at any time
using Pythagoras' theorem.

Final velocity2=(Horizontal velocity)2+(Vertical velocity)2 (10)

Here's a simple example to demonstrate these equations in practice. Let's assume that
your golf-ball left the ground with a velocity of 20 metres per second at an angle of
45 degrees. The height of the ball after the first second of flight can be calculated
from equations (1) and (4)

Initial_velocity (Vertical) = V*SIN(A)
= 20*SIN(45)
= 20*0.707

= 14.14 metres per second.

Final_velocity = Initial_velocity+acceleration*time (1)
= 14.14-10*1 (Acceleration is negative!)
= 4.14 metres per second

Height = ((Initial_velocity+Final_velocity)/2)*time
= (20+4.14)/2*l
= 12.07 metres

Since gravity only acts downwards, there is no acceleration affecting the balls
horizontal motion. So the final velocity will be the same as the initial velocity and
you can calculate the distance directly from (1).

83

Initial_velocity (horizontal) =Total_velocity*COS(angle)
= 20*COS(45)

Final_velocity =Initial velocity
=20*COS(45)

From (1)

Distance = ((Initial velocity+final velocity)/2) * time (1)

Distance = (20 * COS(45) + 20 * COS(45)) /2) * time
= (20*COS(45))
= 14.14 metres

Note that I've intentionally ignored the force of friction from my calculations.
Generally the effect of this is fairly negligible anyway.

With a little mathematical wizardry you can substitute these equations into the
Newtonian formulae to obtain the following rules:

Maximum height of ball = V2SIN(A)2/2*G (11)

Time of flight = V*SIN(A)/G (12)

G = The acceleration of gravity (normally 10 M/S2)

I appreciate that these formulae look pretty horrendous when you first see them. In
fairness, the mathematics shouldn't tax anyone whose been educated up to O-Level
physics. Thankfully you don't really need to understand any of these equations in
order to use them in your programs.

I'll demonstrate this by incorporating the new equations into the moon-lander
program in Example 4.1.

Example 4.2 A moon lander in 2D

10 rem Lunar lander version 2

20 SHIP=45 : rem set ship to the image number of your
spaceship

30 rem Clear screen

40 mode 0 : curs off : hide on : els physic : els back

50 rem Set up initial conditions

60 FUEL=1000 : HEIGHT=1000 : DISTANCE=1000 : VSPEED#=0

65 HSPEED#=50 : SPEED#=0 : THRUST#=0 : G=2 : ANGLE#=90

70 rem play game

80 while (HEIGHT>0)

90 if FUEL<=abs (THRUST#) then THRUST#=0 : goto 140

100 if jup then THRUST#=THRUST#+1 : rem Increase thrust

110 if jdown then THRUST#=THRUST#-1 : rem Reduce thrust

115 rem Turn thrust nozzle clockwise

120 if jleft then ANGLE#=ANGLE#-5

84

125 rem Turn thrust nozzle anticlockwise

130 if jright then ANGLE#=ANGLE#+5

140 FUEL=FUEL-abs(THRUST*) : rem Fuel consumption

150 locate 0,13 : print "Thrust ";THRUST#;" "

160 locate 0,14 : print "Angle ";ANGLE#;" "

165 locate 0,15 : print "Fuel ";FUEL;" ";

170 rem perform calculations

180 A#=rad (ANGLEt) : rem convert angle into radians

190 rem Get horizontal component of thrust

200 HTHRUST#=THRUST#*cos(A#) : rem from (8)

210 VTHRUST#=THRUST#*sin(A#) : rem vertical component

(9)

220 rem Calculate new horizontal velocity using (2)

225 rem thrust is against motion Time=l (2)

230 FHSPEED#=HSPEED#-HTHRUST#

240 rem Calculate distance travelled across screen

250 DISTANCE=DISTANCE+(FHSPEED#+HSPEED#)/2 : rem From

(1)

2 60 HSPEED#=FHSPEED#

27 0 ACC=G-VTHRUST#

280 rem Work out new vertical speed

2 90 FVSPEED#=VSPEED#+ACC : rem from (2) with t=l

300 rem Calculate new height

310 HEIGHT=HEIGHT-(FVSPEED#+VSPEED#)/2 : rem from (1)

32 0 VSPEED#=FVSPEED#

330 rem Calculate total speed

340 SPEED=sqr(HSPEED#A2+VSPEED#"2) : rem from (10)

350 locate 0,16 : print "Height ";HEIGHT;" ";

360 locate 0,17 : print "Speed ";SPEED;" "

37 0 locate 0,18 : print "Hspeed ";int (HSPEED#) ;" "

380 locate 0,19 : print "Vspeed ";int (VSPEED#) ;" "

390 sprite 1,320-DISTANCE/4,200-HEIGHT/5,SHIP

395 rem Sweep ship across screen

400 if DISTANCE<-10 then DISTANCE=1000

410 if DISTANCE>1000 then DISTANCE=0

420 wait 10

430 wend

440 if SPEED>5 then locate 0,0: centre "You crashed" :

goto 470

450 if SPEED<0 then locate 0,0 : centre "Boing! " : goto 70
460 if SPEED=0 then locate 0,0: centre "Perfect landing"
else centre "Landed safely"

470 wait 50 : clear key : wait key : goto 20

As you can see, Example 4.2 is much more complicated than the original
moon-lander. The core of the program lies between lines 130 to 340. These

85

sequentially calculate the horizontal and vertical position of the spaceship during the
flight as follows:

hthrust# and vthrust# are loaded with the vertical and horizontal components
of the acceleration using equations (8) and (9).

Horizontal acceleration = Total acceleration * COS(T) (8)

Vertical acceleration = Total acceleration * SIN(T) (9)

These are used in conjunction which equations (1) and (2) to calculate the final speed
and distance travelled in each direction.

Distance = ((Initial velocity+final velocity)/2) * time (1)

Final velocity = Initial velocity + acceleration * time (2)

The line at 340 combines the two components into the final velocity using
Pythagoras' theorem.

Final velocity2=(Horizontal velocity)2+(Vertical velocity)2 (10)

The movements of the rocket are measured relative to an arbitrary reference point at
the bottom left-hand corner of the screen. These distances are translated into the

actual position of the sprite on the screen using the statements at lines 390. As lunar
landers go, Example 4.2 is rather crude; the graphics in particular are very limited.

Here are a couple of suggestions for possible improvements:

1 Add a fancy looking control panel for the controls. This can be generated with the
Universal Control panel I shall be showing you later in this chapter.

2 Implement a smooth scrolling background moving with the ship. This would
improve the game play no end, and could be easily be implemented using some of
the techniques in Chapter 10.

3 Place a specific landing site somewhere on the moon, and give the player the task
of landing on it.

4.3.3 3D Movements

In order to cope with the three dimensions you need to simulate a movement in the
real world, you need to split up the motion into components along three different
directions. Obviously there has to be some standard way of referring to a particular
heading. For the sake of simplicity, I'll label my directions using the letters X,Y, and
Z. A full explanation of this notation can be found in Chapter 7.

The best way of thinking about these labels is in terms of the points on a compass, as
follows:

Label Directions

X East/West

Y Up/Down
Z North/South

;;<:,

Since the mathematical reasoning behind this procedure is pretty complex, I'll limit
myself to presenting the results. I shall startby defining a couple of angles. These can
be seen from the diagram in Figure 4.2.

North

Figure 4.2 Motion in three dimentions

E This is the angle of Elevation between the velocity and the ground. An elevation of
ninety degrees points straight up, and an angle of zero represents a purely
horizontal velocity.

H H is for heading. This indicates the angle between the motion and due north, e.g

H=0 (North)
H=90 (East)
H=180 (South)
H=270 (West)

Now for the equations themselves:

Initial velocity in the Y direction (Up)

VY = V*SIN(E)

Initial velocity in the X direction (East)

VX = V*COS(E)*SIN(H)

Initial velocity in the Z direction (North)

VZ = V*COS(E)*COS(H)

Total velocity2 = VX2 + VY2 + VZ2 (From Pythagoras)

87

(13)

(14)

(15)

If your object under is acceleration, each component will have its own acceleration.
The size of this component will depend on the angles of thrust.

Acceleration in Ydirection (Up) = Total acceleration *SIN(TE) (16)
Acceleration in X direction (East) =

Total acceleration * COS(TE) *SIN(TH) (17)
Acceleration in Z direction (North) =

Total acceleration * COS(TE)*COS(TH) (18)

Where:

TE is the angle between the thrust and the ground (XZ), and

TH is the angle between the direction of thrust and north.

These equations couldbe now applied to the moon-lander in Example 4.2 to produce
a full blown space simulation. The only difficulty you would encounter would be to
generate the illusion of the spaceship's motion in 3D space. This could be
accomplished using some of the techniques in Chapter 10.

Another possible idea would be to create a realistic golfing simulation. Each club
could impart a set velocity to the ball when it was hit by the player. This could be
modified by the strength of the shot and the degree of slice. You could then work out
the motion of the ball using the equations of motion. This would allow you to
calculate the precise position where the ball would land on the green.

Note that the maximum height of the ball and the time of flight depend only on the
vertical component of the motion. This has exactly the same size as the equivalent
component in two dimensions. You could use equations (11) and (12) to predict the
range of your golf-ball with impunity.

Maximum height of ball = V2SIN(A)2/2*G (11)

time of flight = V*SIN(M)/G (12)

4.4 Flight simulators

A flight simulator places the player in control of an aeroplane which is moving
through a three dimensional landscape. Normally this landscape is generated using
some type of wire-frame graphics. (See Chapter 7).

The aim of thegame is to master the aircraft controls and fly from your starting point
successfully to some specific destination. Along the way, you will see the appropriate
scenery in front of you on the screen.

Many games improve on this idea by adding a strategic element of some sort. The
player is assigned a dangerous mission, which often involves the destruction of
selected ground installations. These installations are hody defended by a squadron of

88

enemy ships. In order to survive the mission and complete the game, these ships will
need to be destroyed. Other games such as Elite also include a trading option, which
allows the player to earn money during the course of the game. This is normally used
to add extra features to the basic space ship.

4.4.1 Game plan of a flight simulator

Initialise game world

Set up the screen

While game is played

Handle takeoff

While (Airborne)

Read the controls

Calculate accelerations in all three dimensions

Calculate new velocities in each direction

Work out new position of the ship

Update screen display

If landing sequence then

Do landing

endif

If combat sequence then

Handle combat

endif

wend

If plane crashed then

Destroy ship

endif

Wend

Obviously, this code only gives an general overview of the design of one of these
games. In practice it would need to be expanded a great deal before you could use as
part of a real game plan.

4.4.2 Reading the controls

STOS Basic provides you with many mechanisms for entering the player's
commands.

The angle of thrust can be controlled directly using the joystick. When the player
pulls the joystick down the vertical thrust angle will be increased and the plane will
climb. A forward motion on the joystick will cause the angle to decrease, forcing the
plane to descend. Similarly, moving the joystick left or right will produce a turning
effect.

89

Example 4.3 Joystick handler for a flight simulator

10 rem Simple joystick controller for a flight simulator
20 rem Climb=angle of ascent (horizontal=0 degrees)

30 rem turn=angle of turn (Straight north = 0)
40 if JLEFT then inc turn

50 if JRIGHT then dec turn

60 if JDOWN then inc climb

70 if JUP then dec climb

80 if FIRE then attack=l

90 return

See how carefully I've chosen the directions of the angles to be as simple as possible.

4.4.3 Control panels

All modem aircraft have complex and exciting looking control panels. You can
simulate these systems using the STOS Basic ZONE command. Here is a general
purpose control panel program for use with your own games:

Example 4.5 Universal control panel

The program is split into three separate parts. The first section initialises the screen
zones and defines the arrays SWITCH and STATUS. SWITCH holds the coordinates
of the top left and bottom right of the switch. The STATUS array contains a number
indicating the current status of the switch (0 for OFF, -1 for ON)

lOOOrem initialise control panel

lOlOreadNZ : reset zone

1020if NZ<0 or NZ>127 then stop

1030dim SWITCH (NZ, 4) ,STATUS (NZ)

1040for 1=1 toNZ

1050for J=0 to 3

1060read SWITCH (I, J)

1070next J

1080set zone I,SWITCH(I,0),SWITCH(1,1) to SWITCH(I, 2) ,

SWITCH(I, 3)

1090if DEBUG then box SWITCH (1,0) ,SWITCH (1,1) to

SWITCH(I,2),SWITCH(I, 3)

HOOnext I : return

DEBUG is a variable which allows you to actually see the position of the switch
which is being implemented. The graphics of a control panel are usually created using
a drawing package such as Neochrome or DEGAS. While you are drawing this
picture, it's easy to make a note of the coordinates of the various buttons. But these
measurements are very approximate, and mistakes are inevitable. The debug option
therefore allows you to synchronise your graphics precisely with the zones of the
control panel.

90

The second part of your routine tests whether the user has selected one of the buttons
with the mouse, and sets an appropriate variable:

1200 rem check zone

1210 Z=zone(0) : if Z=0 or mouse key=0 then return

1220STATUS(Z)=not(STATUS(Z))

1230 if debug then locate 0,10 : print STATUS (Z) ,'Z;

1240 return

Finally, there is a small routine which can be used to highlight the switch which has
just been pressed. This works by drawing over it using writing mode three (XOR).
You may need to choose your background colours carefully in order to achieve a
reasonable effect.

1300 rem Invert a box

1310 wait 5 : gr writing 3 : ink 1

1320 bar SWITCH(Z,0),SWITCH(Z,l) to

SWITCH(Z,2),SWITCH(Z,3)

1330 gr writing 1 : return

Now for a small program which tests these routines.

5 els physic : els back : DEBUG=1

10 restore 1400 : gosub 1000

20 gosub 1200 : goto 20

100 stop

200 data 3

210 data 100,100,150,150

220 data 10, 10,30,50

230 data 250,10,300,60

A further example of this routine can be found in the combat system (Example 5.5) in
Chapter 5.

4.5 Space simulations

If you're writing a space simulation like Elite, you can reduce the complexity of the
equations of motion by ignoring the acceleration completely.

Instead of simulating an object accelerating smoothly through space, you can increase
the velocity in fixed steps, assuming that the ship accelerates to the new speed
practically instantaneously. This reduces equation (1) to:

v=speed(n)

Speed is just an array containing the new velocity for each speed setting. The distance
travelled in all three directions can then be calculated directly from equations (13) to
(15) without having to bother with any of the usual thrust computations.

91

4.6 Other simulations

Up until now, I've concentrated almost completely on simulations involving some
sort of movement through space. In practice however, it's quite possible to simulate
almost anything from the managing of a football team to the running of a nuclear
power station. Many of these simulationscan be developed into excellent games.

4.6.1 Creating a simulation

The main problem with this type of simulation, is that you are generally left on your
own. There are no simple textbooks full of useful formulae for you to cheat with. All
the mathematics will need to be generated by yourself. This involves listing the range
of possible outcomes for the simulation, and then trying to isolate a set of factors
which will determine each of these events.

You can then attempt to develop a crude set of mathematical equations which will
allow you to predict the likely outcome of any action by the user. This can be derived
from the factors you have discovered. Some factors will be used internally by your
program, whilst others will be changed by the player as the game progresses.

Although this technique may seem a pretty tall order, it can often prove surprisingly
simple. After all, providing your game world is believable, it doesn't have to be
particularly accurate.

4.6.2 Economic simulation

The classic simulation game Kingdom, simulates the problems faced by the ruler of a
small primitive culture. The player is given limited control over the economic
resources of the country, and the outcome in terms of population growth and total
income are calculated by the program. The population growth depends on the
available food supply. This in turn depends on the number of crops which have been
planted in the previous year. The aim of the game is simply to survive your term of
office without getting lynched by your disgruntied subjects.

A simple version of the game might ask the player just four questions in each turn.

Question 1 How many bushels of wheat do you wish to buy?

Question 2 How many bushels of wheat do you wish to sell?

Question 3 How many bushels of wheat do you wish to plant?

Question 4 How many bushels of wheat to you wish to give to your people?

The crucial factors in this simulation are as follows:

grain = the quantity of grain in the storehouse

money = the amount of money in the treasury

92

price = the price of grain on the market

sell = the number of bushels sold

buy = the number of bushels bought

crop = the numberof bushels which have been harvested

planted = the amountof grain which has been planted previously

lost = Grain lost because of pests

total food = total food allocated to subjects

food = the amount of food for each subject

subsistence= the minimum amount of food for a person to live one year.

people = the total number of people

growth = the number of people born/starved

If you look at these factors very carefully, you should be able to deduce a number of
general rules which will govern the simulation.

money = money + sell*price - buy*price

crop = planted*yield

food = (total food)/people

newpeople = (total food)/subsistence

growth = (new people)-people

satisfaction^ food/subsistence

I derived these equations directly from the factors I originally isolated, using a
combination of guesswork and experimentation. Although they omit dozens of
features found in the real world, they still provide a useful basis for a version of
kingdom.

Example4.6 Kingdom

10 rem Example 4 .6

20 rem The simulation model here may be crude

30 rem But you can have great fun playing around with it

40 rem Kingdom!

50 mode 0

60 rem set up menus

70 menuS (l)="Game "

80 menu$ (1,1) ="Next turn"

90 menu$ (1,2)=" " : menu$ (1,2) off

100 menu$ (1,3)="New game"

110 menu$ (1,4)=" " : menu$ (1,4) off

93

120 menu$ (1,5)="Quit"

130 menu$ (2)="Economy "
140 menu$ (2,1)="Buy food"
150 menu$ (2,2) ="Sell food"

160 menu$ (2,3)="Check coffers"

170 menu$ (3)="Policy"
180 menu$ (3,l)="Plant seed"

190 menu$ (3,2) ="Distribute food"

200 menu on

210 windopen 2,0,14,40,10

220 windopen 1,0, 1,40,23
230 curs off

240 on menu goto 280, 860,1170

250 on menu on

260 goto 260

27 0 rem Game menu

280 bell : CHOICE=mnselect

290 if CHOICE=3 then gosub 340 : rem new game
300 if CHOICE=l and GAMEOVER=l then gosub 460 : rem next
turn

310 if CHOICE=5 then menu off : stop
320 goto 240

330 rem New game

340 curs on : locate 0,10 : input "What's your

name?";NAME$: print "Welcome to Mundania King ";NAME$:
wait 40 : clw : curs off

350 PEOPLE=1000+rnd(200) : MONEY=PEOPLE*2 4

360 GRAIN#=rnd(1000)+3000 : NGRAIN#=GRAIN# : CROP=0 :

SATISFACTION#=l : PLANTED=0 : LOST=0 : FOOD=0 : SCRE#=0

370 YEAR=1 : GAMEOVER=l

380 SUBSISTANCE=3 : BUY_PRICE=8+rnd(3) :
SELL_PRICE=BUY_PRICE-2

390 rem assuming 1 bushel=100kg of grain, and 2kg of grain
= 1kg of cornflakes

400 rem Thats around one large packet of cornflakes a day

410 rem What an unpleasant prospect. You probably
wouldn't starve however

42 0 rem Ok, so the derivation may be a LITTLE unorthodox

430 rem But who worries about acurracy when they' re having
fun

440 LOST=0 : PEOPLE_NEW=0 : FOOD_RATION=0 : return
450 rem next turn

460 rem Set yield per bushel. Tweek as desired

470 YIELD#=2+(rnd(3)/10.0)

480 rem Reap Crop. I've assumed wastage is always at least
10 percent

94

490 CROP=PLANTED*YIELD* : LOST=rnd(CROP/10+1)+CROP/10
500 rem In order keep the game challenging I've assumed

that

510 rem wastage increases for larger crops

520 rem This can be justified if large crops attract

swarms of locusts

530 rem That' s my excuse anyway.

540 if CROP>10000 then CROP=CROP-rnd(5000)

550 ROTTED=rnd(NGRAIN#/3+l)

560 GRAIN#=NGRAIN#+CROP-LOST

570 FOOD_RATION#=FOOD/PEOPLE :rem calculate ration for
each person

580 rem Assume no of people rises along with increasing
prosperity
590 PEOPLE_NEW=FOOD/SUBSISTANCE :remcalculate people
at end of year

600 GROWTH=PEOPLE_NEW-PEOPLE

610 PEOPLE=PEOPLE_NEW
620 BUY_PRICE=7+rnd(4) :SELL_PRICE=BUY_PRICE-2
630 if GROWTH<0 then STARVED=abs (GROWTH) : INFLUX=0 else

STARVED=0 : INFLUX=GROWTH

640 under on : locate 0,1 :print "In the year ";YEAR;" of
king ";NAMES : under off
650 SATISFACTION#=FOOD_RATION#/SUBSISTANCE
660 locate 0,4 :print INFLUX; : locate 7,4 :print "
people entered the city"
670 locate 0,5 :print STARVED; : locate 7,5 :print "
people starved"
680 locate 0,7 :print " Thy people harvested ";CROP; "

bushels"

690 locate 0,8 : print LOST; " bushels were eaten by

locusts"

700 locate 0,9 :print ROTTED; "bushels rotted in the

warehouse"

710 locate 0,11 :print " Thy treasury containeth ";MONEY;
720 locate 0,12 :print " Thy warehouse holds ";GRAIN*;"
bushels"

730 locate 0,13 : print " Thy subjects number ";PEOPLE;"

citizens"

740 inc YEAR : NGRAIN#=GRAIN# : PLANTED=0 : FOOD=0

750 locate 0,17 : clear key

7 60 SCRE#=SCRE#+SATISFACTION#

770 if SATISFACTI0N#>=1 then print "Prosperity reigns in
Mundania" :print "All hail the name king ";NAME$
780 if SATISFACTI0N#<1 then print " Famine rages through

the land"

95

790 if SATISFACTIONS0.5 then print "Thy people are in
revolt! " :print "Thy reign ofterror ends at year ";YEAR
:print "King ";NAMES; "is DEAD! " :print "Long live the
king!" :GAMEOVER=0 :goto 1420
800 if YEAR>10 and SCRE#>7 then print "After ten happy
years" :print "Your termof office has expired. " :
GAMEOVER=0 : goto 142 0

810 if YEAR>10 andSCRE#>=5 then print " Your term of
office has expired." :print "Hurray!" :GAMEOVER=0 :goto
1420

82 0 if YEAR>10 andSCRE#<5 thenprint " Yourterm of office
finally terminated" :print "The surviving people are
dancing inthestreets" :GAMEOVER=0 :goto 1420
830 locate 0,20 :centre "press anykeyto continue" :wait
key : clw

840 return

850 rem economy

8 60 CHOICE=mnselect

870 ifCHOICE=l andGAMEOVER=l thengosub 920
880 ifCHOICE=2 andGAMEOVER=l thengosub 1020
890 if CHOICE=3 andGAMEOVER=l thengosub 1110
900 goto 240

910 rem buy grain
920 PRICE=BUY_PRICE
930 if PRICE<2 then PRICE=2

940 window 2 :clw :locate 0,0 :centre "Buy Grain"
950 locate 0,2 :print "Grain costs ";PRICE; "per bushel"
960 locate 0,3 :print "You have ";MONEY;" pieces of gold"
970 locate 0,4: print spaceS (40) ; :locate 0,4: input
"How many bushels wilt thou buy";BUY
980 if BUY=0 then print "You leave the trading hall" :wait
40 : window 1 : return

990 if BUY*PRICE>MONEY then print "You don't have enough
money" :wait 40 :locate 0,5 :print space$(40) :goto 950
1000MONEY=MONEY-BUY*PRICE :GRAIN#=NGRAIN#+BUY :
NGRAIN#=GRAIN# : window 1 : return
lOlOrem sell grain

1020PRICE=SELL_PRICE
1030window 2 : clw : locate 0,0: centre "Sell Grain"

10401ocate 0,2 :print "Grain costs ";PRICE; "per bushel"
10501ocate 0,3 :print "You have ";NGRAIN#;" bushels in
the store"

10601ocate 0, 4 :print space$ (40) ; :locate 0,4: input
"How many bushels wilt thou sell"; SELL

1070if SELL=0 then print "You leave the trading hall" :
wait 40 : window 1 : return

96

1080if SELL>NGRAIN# then locate 0,5 : print "You don't

have enough grain" : wait 40 : locate 0,5: print

space$(40) : goto 1060

10 90MONEY=MONEY+SELL*PRICE : GRAIN#=NGRAIN#-SELL :

window 1 : NGRAIN#=GRAIN# : return

llOOrem check status

lllOwindow 2 : clw : locate 0,0 : print "Status report for

Mundania (Year";YEAR;")"

11201ocate 0,2 : print " Thy treasury containeth ";MONEY;

11301ocate 0,3 : print " Thy warehouse holds ";NGRAIN#;"

bushels"

11401ocate 0,4 : print " Thy subjects number ";PEOPLE;"

people"

11501ocate 0,6: print "Press any key to continue" : wait
key : window 1 : return

1160rem Policy menu

1170CHOICE=mnselect

1180if CHOICE=l and GAMEOVER=l then gosub 1220
1190if CHOICE=2 and GAMEOVER=l then gosub 1320
1200goto 240

1210rem Plant seed

1220windOw2 :clw : locate 0,0 :centre "Plant crops"
1230OLD_PLANTED=PLANTED
12401ocate 0,3 : print "Thou hast ";NGRAIN#; "bushels in
the store"

1250input "How many bushels wilt thou plant";PLANTED
1260if PLANTED=0 then input "Are you sure?";AN$: if
AN$="y" or AN$="Y" then window 1 :

NGRAIN#=NGRAIN#+OLD_PLANTED : return else goto 1250
1270if PLANTED>NGRAIN# then print "You don't have enough
grain" : wait 40 : PLANTED=0 : goto 1250
1280if PLANTED<OLD_PLANTED then
NGRAIN#=NGRAIN#+OLD_PLANTED-PLANTED :goto 1300
12 90NGRAIN#=NGRAIN#-PLANTED

1300window 1 : return

1310rem Feed people

1320OLD_FOOD=FOOD

1330window2 : clw : locate 0,0 : centre "Distribute food
ration"

13401ocate 0,3 : print "Thou hast ";NGRAIN#;" bushels in
the store"

1350input "How many bushels wilt thou distribute";FOOD
1360if FOOD=0 then input "Are you sure?";AN$: if AN$="y"
or AN$="Y" then window 1 :NGRAIN#=NGRAIN#+OLD_FOOD :
return else goto 1350

97

1370if FOOD>NGRAIN# then print "There isn' t enough grain"

: FOOD=0 : goto 1350

1380if FOOD<OLD_FOOD then NGRAIN#=NGRAIN#+OLD_FOOD-FOOD

: goto 1300

1390NGRAIN#=NGRAIN#-FOOD

1400window 1 : return

1410rem another game?

1420wait 50 : gosub 1110 : rem check status

1430print "Another game" : input A$: if A$<>"Y" and
A$<>"y" then menu off : stop else clw : gosub 330 : goto 230

If you're really interested in this sort of simulation, it's worth getting a copy of Chris
Crawford's book Balance of power which explains how an excellent political
simulation was developed. Fascinating reading!

4.7 Conclusions

Simulations are one of the most challenging areas of computer gaming. They are also
one of the most engrossing. The range and depth of the subject is immense, and it's
impossible to encompass the entire subject in a single chapter. But don't be put off by
its apparent complexity. If these games are within the reach of computer students
using crude mainframe versions of basic, they should be well within the reach of any
experienced STOS Basic programmer. The fact is, simulation can be fun. So go out
and simulate something today!

Role-playing games

5.1 History

Role-playing games first appeared with the emergence of the Dungeons and Dragons
game in the early seventies. D&D took a small group of people on an exploration of a
vast imaginary world where magic and adventure were really possible. The intention
was to try to simulate the action and excitement of a fantasy novel from the
viewpoint of the people actually experiencing it.

One player, known as the referee, played the part of the story teller, and the other
participants assumed the roles of the various characters. These characters were able to
roam through the game world at will, solving puzzles, rescuing princesses, and killing
the occasional monster. Whenever something interesting happened, such as a monster
appearing, dice would be rolled and tables consulted to determine the eventual result.

Surprisingly enough, the market for these games turned out to be immense. So it
wasn't long before a whole range of competitors sprung into existence. Some of these
were based around a similar world of swords and sorcery as the original D&D.

Other games however, branched out into different areas of fiction, such as SF and
Crime. Typical examples of these games include TRAVELLER™, SUPER-
HEROES™, and STAR TREK™.

Over the course of time, D&D has been steadily evolving and improving. The latest
"Advanced version" is now known under the name of AD&D, and even this is
currently undergoing a major revamp to prepare it for the nineteen nineties.

The biggest attraction of these role-playing games, (or RPGs for short) is that they are
open-ended. Games can last from a couple of hours, to months or even years. Also,
RPGs are essentially a group activity, and there's a lot of fun to be had trying to
out-fox your fellow players.

Unfortunately, it's often impossible to get your favourite group of players around a
table whenever you fancy a game. This has inevitably led to the production of special

99

"solo" games which can be played by a single player. Computers are ideal for this
purpose, because they allow you to play out your favourite RPG from the comfort of
your own living room. As yet, none of these games quite capture the flavour of the
original role-playing systems. But some of the better games, such as Dungeon master,
are now starting to come impressively close.

In recent years, role-playing games have managed to secure a respectable slice of the
total games software market. This fact has now been belatedly acknowledged by the
original producers of D&D (TSR), who have just released an "official" AD&D
computer game for the ATARI ST. Maybe computer RPGs have finally come of age.

Incidentally, you may be wondering about the difference between a role-playing game
and an adventure. A role-playing game can really be considered as a cross between an
adventure and a war game. This lends a strong tactical element to an RPG which is
generally lacking in an adventure.

If you've never played a role-playing game before, it's well worth searching around
for game called "HACK!" which is now available from your favourite software
library for the princely sum of £3.00. Although HACK! is incredibly crude by
modern standards, and the graphics are practically non-existent, it remains an
extremely enjoyable game, and can be highly recommended. I would also strongly
suggest a look at FTL's incredible "Dungeon Master" program. This represents the
current "state of the art" in computer-based RPGs, and has to be seen to be believed.

STOS Basic is ideally suited for the creation of these role-playing games. The
combination of good sprite animation, along with the powerful map definer accessory
makes RPGs well within the reach of most programmers. So providing you were
prepared to invest enough time and energy into the project, there's no logical reason
why you couldn't produce a game which compared favourably with Ultima IV or
even Wizardry.

5.2 Anatomy of a Role-playing game

Before you can write a role-playing game for yourself, you will need to understand a
litde about how they work. The basic principles are exactly the same for computer- or
human- generated RPGs. The game revolves around the activities a number of
"characters". These characters can either be controlled by the player (player
characters), or by the referee (Non-Player Characters or NPC's). Note that to avoid
possible confusion, I'll start off by defining a couple of important terms:

RPG From now on, this will refer to a computer game.

Real-RPG Real-RPGs denote the original Role-playing systems
which use human referees.

100

5.2.1 Character classes

Most games allow you to generate characters belonging to a number of different
professions, known as classes. In a fantasy game like D&D, the typical classes
include:

• Warriors;

• Magic Users;

• Priests;

• Assassins;

• Thieves.

Similarly, space games such as Traveller, split the characters up into the categories:

• Traders;

• Mercenaries;

• Troopers;

• Scouts;

• Navy.

5.2.2 Attributes

Each character is defined by a list of numbers known as attributes. These attributes
determine the exact level of all a character's abilities. As with the classes, the precise
nature of these statistics will vary from game to game.

Common attributes include:

Intelligence Measures how clever the character is.

Endurance Specifies the character's physical stamina. Affects
how much damage the character can survive during
combat.

Dexterity How fast can the character move? How quickly can
the character swing a blade?

Strength How strong is the character? How hard are the
character's blows?

Magical ability Sets the overall power of spells a character is capable
of casting.

Psionic strength This measures a character's CURRENT magical
ability. It will be temporarily reduced whenever a
character casts a spell.

The weight or range of values each of these attributes can take will depend on the
specific scoring system you are using. Normally, the higher the score, the better the

101

attribute. The actual numbers are generally produced using a random number
generator. Usually each character class is generated independently. This avoids the
ridiculous possibility of having a magic user who is unable to cast any spells, or a
fighter who is too weak to pick up his sword. I'll be discussing this problem in more
detail later, when I'll be providing you with a simple character generator written
entirely in STOS Basic.

Additionally, most other objects in the game such as weapons and armour will also
possess attributes. The nature of these attributes will be specific to the object in
question.

Assuming the values taken by an attribute could range from 1-20, I could define the
character OLRIC as follows:

NAME: OLRIC

CLASS: Warrior

STRENGTH 10

ENDURANCE 14

DEXTERITY 15

INTELLIGENCE 5

MAGICAL ABILITY 3

PSIONIC STRENGTH 2

These numbers represent the sum total of the abilities of the warrior OLRIC. They are
collectively referred to as statistics (or stats for short). Different numbers affect
different things. The attributes for strength, endurance and dexterity can be combined
to determine a character's ability for physical combat. This specifies the likelihood of
a blow hitting Okie's opponent, and the amount of damage which would inflicted.
Similarly, the attributes for psionics and magical ability determine Okie's ability to
cast spells. As you can see, OLRIC is hardly suited for work as a magician.

Another type of attribute measures the performance of a specific skill, such as
safe-breaking or engineering. These can be represented either as a percentage chance
to succeed in an specific action, or as a numeric value which can be checked against a
table. Here some typical skills for you to examine:

lock picking This is a really useful talent in a fantasy game.

rifle shooting If your game is based around crime, it might be a
good idea to keep a separate measure of the
character's shooting ability.

space craft repak Essential for some space games!

invisibility This is an ability which might well appear in a
superhero type game.

102

5.2.3 Experience
It's a well known fact that practice often makes perfect. The same is true for the
characters in a role-playing game. Characters start off relatively puny, but as the
game progresses, thek natural abilities develop over time. Eventually this experience
leads to an improvement in the appropriate character attributes. This improvement is
sometimes expressed in terms of the character's level.

All characters are initially given a level number of one, and an experience of zero.
Every time a character is successful at something, this experience is slightly
increased. When the character's experience exceeds a predetermined threshold, the
level number is incremented by one, and the appropriate attributes improved
accordingly.

Take the warrior OLRIC again. At the present time, his current statistics are:

STRENGTH 10

ENDURANCE 14

DEXTERITY 15

INTELLIGENCE 5

MAGICAL ABILITY 3

PSIONIC ABILITY 2

If Olric were to gain experience in fighting and progress to level two, each of the
attributes of strength, endurance, and dexterity would be incremented accordingly.
This could be achieved by multiplying each of the three attributes by a appropriate
level factor.

Using a level multiplier of 1.25, Olric's statistics would now be increased to:

STRENGTH 12

ENDURANCE 17

DEXTERITY 18

INTELLIGENCE 5

MAGICAL ABILITY 3 (Not affected)
PSIONIC ABILITY 2 (Unchanged)

See how I've rounded the numbers down after the calculation. This is a just reflection
of the fact that we will be using STOS Basic integers for all our calculations in the
eventual program.

Note that if you decide to use this system, you will need to be very cautious about the
factors you choose for each level. These need to be worked out by careful
experimentation.

Some games simplify things further by assigning each level number with a name. e.g.

NOVICE (Level 1)
APPRENTICE (Level 2)
MASTER (Level 3)
etc.

103

It's also possible to keep a separate count of the success rate ofevery individual skill.
So, in addition to thek other attributes, a character could possess a range ofoptional
skills like:

lock-picking 50%

starship navigation 30%

horse riding 5%

As the character learned from experience, the percentage chances of successfully
using a skill could be gradually improved. This approach is used to great effect by
role-playing games like RUNEQUEST™, or TRAVELLER™.

5.3 Scenarios

5.3.1 What is a scenario?

All Real-RPGs are split into two separate components. One component defines a
detailed set of rules which form the backbone of the game. These rules specify the
precise mechanics of the game-play, and are used to establish the outcome of the
player's actions.

The other part of the game is the scenario. This is equivalent to the plot of a book,
and provides full details about the particular story which will be enacted by the
players. Because of the open-ended nature of a role-playing game, it is usually
impossible to determine the final outcome of any particular scenario.

From any given set of rules, the number of possible scenarios is effectively limitless.
The big difference between a Real-RPG, and the computer version, is that computer
games are much more limited in scope. Unlike a human referee who can literally
make things up as he goes along, the computer is forced to rely on a complete
scenario which the programmer has carefully worked out in advance.

5.3.2 Practical considerations

Your fkst requkement is to choose a scenario for your game. Like books, scenarios
can be grouped into a number of different genres. These include Fantasy (D&D and
Bard's tale), Science fiction, Crime, and Superheroes. Once you've decided on the
background, you must devise the individual plot of the game.

The best source of inspiration is to re-read some of your favourite novels in the area
you have selected. If you haven't yet read any books in the genre then you have
probably chosen the wrong subject.

Don't however, attempt to base your game too heavily on the work of a single author.
Nowadays popular authors can naturally expect to sell the computer rights to thek
works for very respectable sums. They are therefore unlikely to welcome you stealing

104

any of the characters and situations wholesale out one of thek books, without prior
written permission.

Comics in particular, are very sensitive about the names of thek heroes being taken in
vain. So any mention of a hero such as "Superman™" in one of your programs
might be VERY unwise! There's also the question of originality. It's futile to attempt
a rehash of someone else's work, hoping no-one will notice. Even if you choose
something really obscure, there will always be at least one person who is familiar
with it. This is particularly likely, in the field of science fiction, as many authors are
now enthusiastic computer users.

But ignoring moral considerations, unless you invest the scenario with your own
ideas, the game will be both derivative and utterly boring. So try to think of
something really different, which makes you game stand out from the crowd.

The aim of scenario is to generate subdy the feeling that the player is really inside the
game world you have created. It's important to work out the rationale behind the
various characters extremely carefully. Who are they? Why are they participating in
the adventure? What are thek precise goals?

5.3.3 Some basic scenario ideas

Thankfully, all scenarios can be roughly divided into a relatively limited number of
basic plots. Here is a list of the main possibilities:

1 The purpose is to retrieve one or more valuable artifacts which are hidden
somewhere in the game. (Used in Dungeon Master, Lord of the Rings, etc.).
There's often a pressing reason for this search, such saving the world or
something, but this is normally incidental to the blood and gore!

2 A dastardly villain is threatening the safety of the player's world. The characters
are given the thankless task of destroying this horrible creature before it wreaks
havoc.

3 A beautiful princess has been kidnapped by an evil monster. The party of
adventurers set out bravely to rescue her, against incredible odds. (This is a
two-line precis of STARWARS)

4 The characters are a bunch of mindless psychopathic lunatics who want to kill as
many monsters and amass as much treasure as possible. (Who said you had to be
original?)

5 The characters are lost in the centre of a labyrinth. Thek sole aim is to escape from
thek horrible predicament.

6 The purpose of the game is to solve a complex logical puzzle of some sort. (Used
in Ultima IV).

None of these plots are restricted to a single genre. The same idea can be used
equally well in a science fiction game, as in a sword and sorcery scenario.

105

Furthermore, it's perfectly acceptable to use any combination of these ideas in your
finished game.

5.3.4 The game map

The next step is to produce a complete map of the world you will be using in your
RPG. The standard method of generating this map is to make a rough sketch on a
large piece of graph paper. This can be purchased at litde expense from any decent
stationery shop. The advantage of starting with the map on paper, is that it places you
under no constraints whatsoever about the eventual nature of the graphics. It also
allows you to see the whole design at once, which would be almost impossible if you
attempted to draw the map dkectly with the Map definer.

You should now set up the obstacles which will be arranged against the players, and
choose the ensuing rewards.

Sometimes, the only reward to the successful solution to a puzzle will be the
satisfaction of beating the computer. Other times, the completion of a task will result
in the discovery of an item of treasure or an increase in the abilities of the player's
characters.

It is vital that you try to balance the risks taken by the characters with the possible
rewards. If your game fails to achieve this balance, it will either be monotonously
easy, or impossibly difficult. In order to work, a role-playing game must also include
potential solutions to any traps which are to be encountered by the player.

The best human referees adopt a "hard but fair" approach. The fact is, any game
which kills off the characters randomly without due cause is unlikely to capture the
player's imagination for an appreciable length of time.

As a rough guide, I've briefly listed some of the more common hazards your players
might encounter (Figure 5.1), along with a few of the possible rewards (Figure 5.2)
on the next page. These lists can be used as a valuable source of ideas when you are
creating your game.

You should now take your game map, and mark out the position of the appropriate
objects/puzzles. The location of the monsters can either be random, or be worked out
carefully in advance. If you're producing a set of rooms which will be encountered in
a particular order, you should tailor the type and strength of your problems to the
expected abilities of the characters. This keeps the game reasonably challenging
whilst retaining its overall appeal.

After you have created your map, and designed the hazards and the treasure, your
scenario will be complete. You will now be ready to produce a computer game based
on this scenario.

106

Monsters

Hazards

Pits

Falling walls
Booby-traps
Cursedweapons/treasure
Radiation

Logic puzzles
Hidden doors

Locked doors

Requiring specific key
Requiring brute force
Requiring a certain spell

Teleport rooms
(As the players enter a room, they are instantly transported to a completely
different part of the map. Don't inform the players about this immediately. Let
them work it out for themselves. It's much more fun!)

Switches/Levers

(Which need to be pulled in a particular order)
Passwords

(Which need to be typed in)
Objects

(Which need to be used in a certain way)

Figure 5.1 Obstacles to the players

Money

Weapons

Armour

Spells

Experience

Transportation (Anything from a horse to a spaceship!)

Special objects
Treasure

Keys
Significant objects

(These are objectsneeded to solve a particular puzzle)

Figure 5.2 Possible Rewards

107

5.4 Game plan of a Role-playing game
I'll now discuss the detailed mechanics of a role-playing game. I will begin with
providing you with a description of theprogram using pseudo-code.

Initialise dungeon

If new game then

Generate characters

else

Load saved game

Repeat

Input action

If action is ''savegame'' then save current dungeon
If action is movement

then

check if movement is allowed

If movement is legal

then

Move characters

Redraw screen

Check for an encounter

If enemy encountered

then Resolve combat

Check for a trap

If trap discovered

then Spring trap

Check for objects

If action is ' 'Pick' '

then Get object

If action is ' 'Use''

then Use object

Until Party is killed or Quest is completed

Terminate game

Figure 53 Break-down of a role-playing game

If you examine this description carefully, you should be able to isolate a number of
the more important activities These include:

• Initialise game;

• Generate characters;

• Load game;

• Input Action;

10s

• Save game;

• Check for legal move;

• Redraw Screen;

• Resolve combat;

Q Spring Trap;

• Get Object;

• Use Object.

I'll be expanding some of these requirements in a little more detail during the rest of
this chapter.

5.5 Creating a character

5.5.1 Selecting the attributes

The choice of the possible character attributes can have far reaching consequences for
your game. Most RPGs have the following three attributes in common:

Endurance (or Stamina) Resistance to attack
Dexterity Speed of attack
Strength Force of a physical blow

Any other attributes can be invented completely at your own discretion. Here are few
simple guidelines. Fantasy games, such as D&D need some measure of the
character's magical ability. This results in attributes such as WISDOM, or PSIONIC
strength. Similarly, Space games often require an indicator of a character's
intelligence.

The nature of your scenario may make certain skills essential for the completion of a
game. If the adventure is futuristic, you may decide to include skills like engineering
or astronavigation. Unlike a character's attributes, these skills are entirely optional.
Different characters can have completely different ranges of skills.

You can also choose a number of more unusual attributes. These can be used to

"flesh out" the character's personality, and can add a whole new dimension to your
games.

Supposing your game involves several characters controlled by a single player. It is
normally assumed implicitly that these characters will obey the player's orders
without question. But what will happen if one of the characters is a coward? This
character is liable to ignore any commands which place him in unnecessary risk. So if
the player tells him to attack a fire breathing dragon with his bare hands, he is likely
to run away, terribly fast. You can implement this idea by adding an attribute like
Bravery. This can either be displayed on the screen along with the character's
statistics, or sneakily concealed for the internal use of your program.

109

This technique is particularly effective if the party can grow during the game. Some
RPGs such as ULTIMA IV, commence with a single character who can "recruit"
help as the game progresses. In this situation, you can add an attribute denoting the
trustworthiness of any character the player attempts to recruit. Whenever the party
encountered some really valuable treasure, one of the characters might independently
decide to steal it from the rest of the group. You could also envisage the party
splitting up into several warring factions. This could have potentially hilarious results,
especially if the baddies hadhold of all theparties most potent weapons!

Obviously, this type of nastiness needs to be used with a litde caution. If the honour
of a character is crucial to the games solution, you need to include some way for the
player to work this out in advance. This might involve a magical artifact such as a
jewel which turns a different colour depending on a character's trustworthiness.

5.5.2 Generating a character

Whenever a game is played, a set of characters will need to be allocated to the player.
The easiest possibility is to restrict the player to a list of characters which have been
prepared in advance. The appeal of this idea, is that it avoids having to bother with a
separate character generator. It also guarantees that the object of the game is
achievable with any set of characters which has been selected by the player.

Whilst there is nothing inherently wrong with this approach, it is recommended that
you give each character a distinct personality. Each character should be discussed
separately in the documentation, which should explain precisely who they are, and
why they are available and willing to embark on the current adventure. Careful use of
this technique can add a feeling of atmosphere which is often lacking in randomly
generated characters.

Alternatively, you can generate your characters anew every time the scenario is
played. This allows each player to create their own unique set of characters for the
game. It also enables someone to adapt their favourite characters from a completely
different game.

If each attribute could range from 1-100, you could generate the statistics of a
character using a line like:

100strength=rnd(100):stamina=rnd(100):dexterity=rnd(100)

Unfortunately, this would produce a very poor spread of numbers indeed. Any
character would be equally likely to get a strength of 99 as one of 9. So it would also
be perfectly possible for a character to be generated with ridiculously low values in
all three characteristics. Similarly, the program could accidentally bring forth a
god-like character who could effortlessly destroy even the toughest monster with just
a single blow.

A better approach would be to add an appropriate offset of some sort to the raw
number.

110

100 strength = rnd(10) +5: stamina = rnd(10) +5 :dexterity - rnd
(10) +5

This would limit the initial stats of the character to numbers between 5 and 15.

See how I've initiaUy kept the attributes small. This allows plenty of scope for them
to be increased as the character gains experience.

You can also combine several calls to the random number generator at once. e.g.

100 strength = rnd (5) +rnd(5) +rnd(5) +rnd(5) +4

This line is the exact equivalent to rolling four dice in a Real-RPG. Most numbers
produced by this function are clustered around an average of 14. The chances of
getting an unusually high number such as 24 or an excessively low value are
relatively small. The big danger of this approach is that the random number generator
used by STOS Basic is not completely random. If you're not careful, you can
therefore generatesome very strangeresults with this system.

Here is a listing of a simple character generator for you to type in. Don't bother to
enter the REM statements, as they are only included for documentation purposes.

Example 5.1 Character generation in STOS Basic.

10 rem Character Generation in STOS Basic

20 rem Assumes the character has the following 5

attributes

30 rem Strength, Dexterity, Stamina, IQ, Magic
40 rem Each attribute can range from 1-100
50 rem Also assumes a maximum of 10 characters

60 C=l : rem current character

70 dim STR(10),DEX(10),STA(10),IQ(10),MAG(10),NAME$(10)
80 dim TYPE(10),TYPENAME$(4),SPECIES(10),SPECNAME$(4)
90 for 1=1 to 3 :read TYPENAME$(I),SPECNAME$(I) :next I

100 mode 0 : els physic : els back : curs off

110 rem set up menus

12 0 rem Character menu

130 menu$ (1)=" Character "

140 menu$ (1,1)=" Create character "

150 menu$ (1,2)=" Examine character"

160 menu$ (1,3)=" Quit"

170 rem Species

180 menu? (2)=" Species "

190 menu$. (2,1) ="Human"

200 menu$ (2,2)="Dwarf"

210 menu$ (2,3)-"Troll"

220 rem Class menu

111

230 menu$ (3)=" Class "

240 menu$ (3,1)-"Fighter"
250 menu$ (3,2)="Wizard "
260 menu? (3,3)="Priest"
27 0 rem activate menu

2 80 menu on

290 gosub 620 : rem draw main display
300 on menu goto. 340,740,700
310 on menu on

320 goto 320

330 rem character menu

340 M=mnselect : if M=0 then goto 300
350 on M gosub 380,480,1090
360 goto 300

370 rem Create a character with current settings
380 if O10 then boom : return

390 locate 13,2 : input NAME$(C)
400 if SPECIES(C)=0 then SPECIES(C)=l
410 on SPECIES(C) gosub 810,780,840
420 if TYPE(C)=0 then TYPE(C)=1
430 on TYPE(C) gosub 910,980,1040
440 gosub 630 : gosub 560
450 inc C

460 return

470 rem examine characters

480 locate 12,2 : input N$
485 rem find characters

486 rem I can't use MATCH because the names must be
sorted

487 rem Sorting the names loses the relationship between
488 rem the names and the statistics
490 N=l : FOUND=false

500 repeat

510 if NAME$(N)=N$ then FOUND=true else inc N
520 until FOUND=true or N>10

530 if FOUND=false then boom : N=l

540 swap N,C : gosub 630 : gosub 560 : swap C,N
550 return

560 if NAME$(C)="" then return

565 rem Print out statistics

570 locate 12,0 : print C; : locate 13,2 : print
NAME$(C);

580 locate 13,3 : print TYPENAME$(TYPE(C))
585 locate 13,4 : print SPECNAME$(SPECIES(C))
590 locate 12,6 : print STR(C); : locate 12,7 : print
DEX(C)

112

600 locate 12,8 : print STA(C); : locate 12,9 : print

IQ(C)

610 locate 12,10 : print MAG(C) : return

615 rem print out titles

620 windopen 1,5,5,30,15,5 : title "Statistics"

630 clw : curs off : locate 0,0 : print "Character :";C

640 locate 0,2 : print "Name :";

645 locate 0,3 : print "Class :";

64 6 locate 0,4 : print "Species :";

650 locate 0,6 : print "Strength :"; : locate 0,7

655 print "Dexterity :";
660 locate 0,8 : print "Stamina :";

665 locate 0,9 : print "IQ :";

670 locate 0,10 : print "Magic :";

680 return

690 rem class menu

700 CM=mnselect : if CM=0 then 300

710 TYPE(C)=CM

720 goto 300

730 rem species menu

740 S=mnselect : if S=0 then 300

750 SPECIES(C)=S

760 goto 300

77 0 rem Generate dwarves

780 STR(C)=rnd(5)+2 : DEX(C)=rnd(10)+8 :

STA(C)=rnd(10)+7

790 IQ(C)=rnd(10)+5 : MAG(C)=rnd(8)+8 : return

800 rem Generate Humans

810 STR(C)=rnd(10)+5 : DEX(C)=rnd(10)+5 :
STA(C)=rnd(10)+5

820 IQ(C)=rnd(10)+5 : MAG(C)=rnd(5)+5 : return

830 rem generate trolls

840 STR(C)=rnd(10)+10 : rem trolls are strong
850 DEX(C)=rnd(3)+2 : rem trolls are slow

860 STA(C)=rnd(10)+10 : rem trolls are also VERY tough!
870 IQ(C)=rnd(3)+2 : rem trolls are thick

880 MAG(C)=rnd(2) : rem lousy magicians
8 90 return

900 rem Generate Fighter

910 STR(C)=STR(C)*1.5:DEX(C)=DEX(C)*1.5:STA(C)=STA(C)*
1.5

920 rem Fighters make lousy wizards
930 MAG(C)=MAG(C)/3

940 rem Fighters are generally thick
950 IQ(C)=IQ(C)/2

960 return

113

97 0 rem Generate Wizard

980 IQ(C)=IQ(C)*1.5+1 : MAG(C)=MAG(C)*2+l

990 STR(C)=STR(C)/1.5

1000DEX(C)=DEX(C)/1.5

1010STA(C)=STA(C)/1.2

1020 return

1030 rem priests

1040 IQ (C)=IQ (C)*2 : rem priests are very well educated

1050 MAG (C) =MAG (C) *'l. 5+1 : rem priests are also fair
magicians

1060STR(C)=STR(C)/1.2 : rem not too strong

1070 return

1080 rem quit

1090pop : menu off : on menu off : default : stop

1100 data "Fighter","Human","Wizard","Dwarf","Priest",

"Troll"

I've divided the possible characters into three species, Humans, Dwarves, and Trolls.
But you could quickly modify these races for use with a SF game. All you would
need to do, would be to omit the magic, and change the species names to something
really alien. So the trolls might by called QVORN instead.

Each race has its natural advantages and its inherent disadvantages. This preserves the
balance of the game and avoids generating characters which are too powerful to play
realistically.

It's best to start off with a good idea about the type of races your are trying to
produce. Here are some potted descriptions of the races I defined in Example 5.1

HUMANS - are the most flexible of the character types. They are powerful enough
to reasonably good at magic, yet if they have the inclination they make formidable
fighters.

DWARVES - are magic experts. They are very tough and fast, but they are not
particularly strong. So a dwarf would have to work very hard to become a successful
fighter.

TROLLS - on the other hand, the fantasy equivalent of tanks. These people are
natural born killers. They may not be too bright, but they a VERY hard to kill.

The generation system for these using can be found in the routines at 770, 800, and
830.

Once the players have chosen a race for their character, they need to select a
profession. In Example 5.1, I've provided there possible classes, Fighter, Wizard, and
Priest. Again, you could easily change these to reflect any scenario you had in mind.
You would simply need to change some of the attributes, and alter the figures.

114

As with races, every class is generated by a separate piece of code. These modify the
raw attributes to reflect the result of years of training in a particular skill. I've
implemented this alteration using a system of multipliers. So the more talents an
individual has in a certain profession, the higher their eventual abilities will reach
after training.

A wizard might be generated using the lines:

980 IQ(C)=IQ(C)*1.5+1 : MAG(C)=MAG(C)*2+l

990 STR(C)=STR(C)/1.5

1000DEX(C)=DEX(C)/1.5

1010STA(C)=STA(C)/1.2

This would normally produce a physically weak character with low dexterity and high
magical ability. Perfect for a wizard. Similarly, a fighter would need high values for
the strength, dexterity, and stamina. Look at the routine at 900 for an example of this
type of system.

Note that I derived the numbers used by this generation system purely by
experimentation. There's no guarantee that the same values will be especially suitable
for a specific game. So it's important to experiment with these generators for
yourself, in order to produce a character creation system which is just right for your
own game.

5.6 Drawing the map

Unlike adventure games, a map of the current surroundings of the party is essential in
any true RPG. This is because all role-playing games incorporate a strong tactical
element, which necessitates a display of the type and position of the various monsters.

Over the years, several approaches have been used for these displays. In this section,
I'll briefly examine some of the more popular ones, and will briefly explain how they
can be implemented using STOS Basic.

5.6.1 Displaying a map from above

This is the undoubtedly the easiest method of viewing the terrain around the party.
Screens can be quickly generated using the STOS Basic map definer. You begin by
creating a colourful set of sprites representing the various features of the terrain, such
as walls, hills, and trees. You can then draw each screen in turn using the Map
accessory. These screens can be combined to produce the complete map of the game.

Normally, this map will be consist of many different rooms. It is vital to keep track of
the connections between the different rooms, otherwise your program will get totally
lost. This can be done by arranging the rooms according to a logical pattern as shown
in Figure 5.4 on the next page.

115

Room 1 Room 2 Room 3 Room4 Room 5

Room 6 Room 7 Room 8 Room 9 Room 1 0

Room 11 Room 12 Room 13 Room 14 Room 15

Figure 5.4 Room Maps

Supposing the party was currently inhabiting screen 8. If they were to move over the
top of the screen, they would be entering room number 3. Similarly, if they were to
move off the bottom, they would find themselves in room 13. By following a few
simple rules, the appropriate rooms can be displayed on the screen automatically. If m
is the number of the current room, then the number of the adjacent rooms can be seen
from Figure 5.5.

m-6 m-5 m-4

m-1 m m + 1

m + 4 m + 5 m + 6

Figure 5.5 Moving between rooms

Now for some pseudo-code to demonstrate how this movement technique could be
implemented in practice. This is listed in Figure 5.6 on the next page.

Obviously, this is a very crude system indeed and lacks a couple of features found in
more sophisticated routines. It does however aptly demonstrate the basic principles of
screen management.

5.6.2 Displaying part of a map

One minor problem with this technique, is that the output from the map utility
automatically assumes that the entire screen will be used for the room display. Since
you usually need to restrict your graphics to just a section of the screen, this can be a
real headache. Fortunately, it's fairly easy to modify the standard drawing routines to
display any STOS map in several successive parts.

116

if party exits left-hand edge

then

if current_room>l then
subtract one from current room

redraw current_room

endif

if party exits right-hand edge

then

if current_room<last_room then

add one to current room

redraw current_room

endif

if party exits upper edge

then

if current_room>rooms_per_row then
subtract rooms_per_row from current room

redraw current_room

endif

if party exits bottom edge

then

if current_room+rooms_per_row<last_room then
add rooms_per_row to current room

redraw current_room
endif

Figure 5.6 Moving the party across the screen

In order to use this approach, you will have to limit the size of the game screens to an
integral number of sprite widths. Otherwise some sprites will disconcertingly seem to
disappear of the edge of your display. You also need to divide the game screens into
a fixed number of maps which can be subsequendy produced from the map definer.
e.g.

load "back.mbk":rem from the accessories disc

Example 5.2 Displaying maps in a small section of the screen

10 rem Example 5.2

20 rem draw a map on a section of the screen

30 mode 0 : hide on

117

40 rem number of full sized maps per horizontal and
vertical row

50 MAPS_PER_ROW=2 : MAPS_PER_COLUMN=2
60 HEIGHT=8 : WIDTH=12 : rem width of screen in sprites
70 rem number of game screens per horizontal and
vertical row

80 VIEWS_PER_ROW=3 : VIEWS_PER_COL=3 :
VIEW_COUNT=VIEWS_PER_ROW*VIEWSJPER_COL
90 dim C(16),SEG$(62),MAP(80,60) : rem dimension map
array

100 gosub 150

110 gosub 180

120 gosub 260

rem get palette data

rem load sprite data into segment string

rem load map data in map array

130 locate 0,15 : print space$(39); : locate 0,15 :

input "Input the Map number (0-8)";MAP_NO : if
MAP_NO>VIEW_COUNT-l or MAP_NO<0 then boom : locate 0,15 :

print " This map does not exist" : wait 20 : goto 130

140 fade 1 : wait 7 : gosub 450 : fade

1,C(0),C(1),C(2),C(3),.C(4),C(5),C(6),C(7),C(8),C(9),C(10)

,C(11),C(12),C(13),C(14),C(15) : wait key : goto 130

150 rem Find pallete for sprites

160 X=hunt(start(1) to start(1)+length(1),"PALT") :

X=X+4

17 0 for A=0 to 15 : C(A)=deek(X+A*2) : next A : return

180 rem load segment array with sprite data

190 els physic : els back

200 for 1=1 to 30

210 els physic,0,0,0 to 16,16

220 sprite 1,0,0,1 : put sprite 1 : wait vbl

230 SEG$(I)=screen$(physic, 0,0 to 16,16) : next I

240 sprite 1,-100,-100,1

250 return

2 60 rem load map array from data statements

270 rem read data

280 restore 590 : read NL : rem number of lines per map

290 rem calculate constants

300 read N

310 read W

320 read H

rem number of maps

rem number of sprites per line

rem number of lines per screen

330 NO_OF_COLS=320/W : NO_OF_ROWS=199/H
340 rem ignore partially hidden lines

350 if 199 mod H<>0 then inc NO_OF_ROWS : HIDDEN=1
360 TOTAL_ROWS=MAPS_PER_ROW*NO_OF_ROWS :

T0TAL_COLS=MAPS_PER_COL*NO_OF_COLS

37 0 for C=0 to MAPS_PER_COLUMN-l : rem number of screens
380 for R=0 to MAPS PER ROW-1

118

390 if COO or RO0 .then read DW,DH : rem ignore size

data

400 for J=0 to NO_OF_COLS-l
410 for K=0 to NO_OF_ROWS-l-HIDDEN
420 read MAP(R*NO_OF_COLS+J,C*(NO_OF_ROWS-HIDDEN)+K) :

rem read sprite data
430 next K : if HIDDEN=1 then read DUMMY : rem ignore

unused line at end

440 next J : next R : next C : return

450 rem display a map

460 VIEWX=MAP_NO mod VIEWS_PER_ROW : VIEWY=MAP_NO/
VIEWS_PER_ROW

470 MAP_POS_X=VIEWX*WIDTH : MAP_POS_Y=VIEWY*HEIGHT
480 rem Starting coordinates of map display
490 rem change in sixteen pixel increments (for SCREEN$)

500 XPOS=l : YP0S=1

510 XSIZE=W*WIDTH+XPOS : YSIZE=H*HEIGHT+YPOS : rem

bottom corners of map window

520 rem clear map area

530 els physic,0,XPOS,YPOS to XSIZE,YSIZE : els

back,0,XPOS,YPOS to XSIZE,YSIZE

540 for Y=0 to HEIGHT-1 : rem number of rows

550 for X=0 to WIDTH-1 : rem number of columns

560 XV=X+MAP_POS_X : YV=Y+MAP_POS_Y : if MAP(XV,YV)>0
then screen?(physic,X*W+XPOS, Y*H+YPOS)=SEG$(MAP(XV,YV))

57 0 next X : next Y : return

580 rem map data

590 data 25,4

600 datal6,16,10,10,10,10,10,10,10,10,10,10, 10,10,10,10,

0,0,0,0,0,0

610 datalO,10,0,0,0,0,10, 0,13,13, 13,13, 0,10, 10, 0,13,13,

13,10

62 0 data0,13,6,0,13,0,10,10,0,13,0,0,10,0,13, 0,0,13,0,10

630 datal0,0,13,0,0,10,0,13, 0,0, 0,0, 10,10, 0,13, 0,0,10,0

640 datal3,0,0,0,0,10, 10, 0,13, 0,0,10, 0,13, 0,0,13, 0,10,10

650 dataO,13,0,0,10,0,13,0,0,13,0,10,10, 0,13, 0,0,10, 0,13

660 datal3,13,13,0,10,10, 0,13,13, 13,10, 0,0, 0,0, 0,0, 0,0,0

67 0 dataO, 0,0,10,10,10, 0,0,10,10, 10, 10,10,10,10,10, 10,

10,10,0

680 data0,10,10,10,10,0,0,0,10, 10, 0,0, 0,0, 0,0,10, 10, 0,0

690 dataO,0,10,0,0,11,0,11,0,10,10,0,0, 0,0, 10,0,0, 11,0

700 datal1,0,10,10,10,10,10, 0,10,11,11,11,0, 11,0,10,10,

0,0,10

710 data0,10,11,0,0,0,11, 0,10,10, 0,0, 0,0,10,11, 8, 0,0,11

72 0 dataO,10,10,10,10,10,0,10, 11,11,11,11,11,0,10,10,0,

0,0,0

119

730 datal6,16,10,0,0,0,0,0,0,10,10,0,0, 0,0,10, 0,0, 0,0,0,
0

740 datalO,10,0,0,0,0,10, 0,0, 0,0,0,0,10,10, 0,0,0,0,10
750 datalO,0,10,0,10, 0,10,10, 0,0,0,0,10, 0,0,0,0,0,0,10
760 datalO,0,0,0,0,10,0,0,0,0,0,0,10,10, 0,0, 0,0,10,0

770 dataO,0,0,0,0,10,10, 0,0,0,0,10, 0,0,0,0,0,0,10,10
780 dataO,0,0,0,10,0,0,0,0,0,0,10,10,0,0,0,0,10, 0,0
790 dataO,0,0,0,10,10,0,0,0,0,10,0,0,0,0,0,0,10,10,0
800 dataO,0,0,10,0,0,0,0,0,0,10,10,0,0, 0,0,10,0,0,0
810 dataO,0,0,10,10,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0
820 dataO,0,10,9,0,0,0,0,0,0, 0,0, 0,0,0,10,10,10,10,10

830 datalO,10,10,10,10,10,10,0,0,0,0,0,0,0,0,0,0,0,0,0
840 dataO,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

850 dataO,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

860 datal6,16,10,10,10,10,10,10,10,10,10,10,10,10, 0,0,0,
0,10,0,10,0

870 dataO,0,0,0,10,0,13,13,0,10,0,10,0,0,10,10,0,10,0,0
880 datal3,0,10,0,0,0,0,10,10,0,10, 0,0,13, 0,10, 0,0,10,10

890 datalO,10,0,10,0,0,13,0,10,0,0,10,0,7,10,0,10,0,0,13
900 dataO,10,0,0,10,0,0,10,0,10,0,0,13,0,10,0,0,10,0,10

910 datalO,0,10,0,0,13,0,10,0,0,10,0,0,0,0,10,0,13,13,0
920 datalO,0,0,10,0,0,0,0,10,0,0,0,0,0,0,0,10,10,10,10

930 dataO,10,0,10,10,10,10,10, 10,10,10, 10,10, 0,10,0,10,
10,10,10

940 datalO,10,10,10,10,10, 0,10, 0,0, 0,0, 10,0,0,0,0,0,0,0

950 datalO,0,0,0,0,10, 0,0, 0,0, 0,0, 0,10, 0,0, 0,0,10,0
960 dataO,0,0,0,0,0,10,0,0,0,0,10,0,0,0,0,0,0,0,10
970 dataO,0,0,0,10,0,0,0,0, 0,0, 0,10, 0,0, 0,0,10, 0,0
980 dataO,0,0,0,0,10,0,0,0,0,10,0,0,0,0,0,0,0,10,0

990 datal6,16,0,0,0,10, 0,0, 0,0, 0,0, 0,10, 0,0, 0,0,10, 0,0,0
lOOOdataO,0,0,0,10,0,0,10, 0,10, 0,0, 0,0, 0,0, 0,10, 0,0
1010datalO,0,10,10,10,0,10,10,10,10,10,0,0,10,0,10,0,10,
0,0

1020dataO,0,0,10,0,0,10,0,10,0,0,0,0,0,10,0,10,0,0,10

1030data0,10,10,10,10,10, 0,10, 0,10, 0,0,10, 0,10, 0,0, 0,0,0
1040datalO,0,10,0,0,10, 0,10,0,10,10,10,10,10, 0,10, 0,0,
10,0

1050datalO,0,10,0,6,10,0,0,10, 0,0,10, 0,10,0,10,0,10,10,0
1060dataO,10,0,0,10, 0,10, 0,10, 0,0, 0,0, 0,10, 0,0,10, 0,10
1070dataO,10,0,0,0,10,10,10,0,0,10, 0,10,0,10,10,10, 10,
10,0

1080datalO,0,0,10,0,0,0,0,0,0,0,0,0,10,0,10,10,10,10,10

1090datalO,10,10,10,10,10,10, 0,0,0,0,0,0,0,0,0,0,0,0,0
1100dataO,0,0,0,0,0,0, 0,0, 0,0, 0,0,0, 0,0,0,0,0,0

HlOdataO, 0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

120

This program can be readily modified to place your map displays anywhere on the
ST's screen. Feel free to experiment with it as much as you like. Once you've stored
the sprites in the map array, you can use this information for a variety of other
purposes.

The routine in Example 5.2, for instance, assumes that you wish to display the entire
area around the party. This corresponds to the situation when the party can see for a
considerable distance. If each sprite represented a unit of 10 feet in the game world,
displaying the full screen would be roughly equivalent to a visibility of about 60 feet
in all directions. Whilst this might be true if the party of out in the open, on a sunny
day, it is unlikely to be the case in a dark and gloomy dungeon. Many role-playing
games therefore only draw the locations immediately adjacent to the party as they are
moving. This can be demonstrated by the following small diagram:

Party

You can implement this effect with the following STOS Basic program.

Example 5.3 Visibility

5 rem Example 5.3

10 rem drawing a map around the character

20 mode 0 : hide on : pen 8 : curs off

25 CHAR=25

30 rem number of full sized maps per horizontal and

vertical row

40 MAPS_PER_ROW=2 : MAPS_PER_COLUMN=2
50 HEIGHT=8 : WIDTH=12 : rem width of screen in sprites

60 rem number of game screens per horizontal and

vertical row

70 VIEWS_PER_ROW=3 : VIEWS_PER_COL=3
75 VIEW_COUNT=VIEWS_PER_ROW*VIEWS_PER_COL
80 dim C(16),SEG$(62),MAP(80,60) : rem dimension map
array

90 gosub 140

100 gosub 170

110 gosub 250

rem get palette data

rem load sprite data into segment string

rem load map data in map array

130 fade 1,C (0),C (1) ,C (2),C (3) ,C (4),C (5) ,C (6),C (7) ,C (8),

C(9), C(10),C(11),C(12),C(13),C(14),C(15)

135 goto 1000 : rem control system

140 rem Find pallete for sprites

150 X=hunt(start(1) to start(1)+length(1),"PALT") :

X=X+4

121

160 for A=0 to 15 : C(A)=deek(X+A*2) : next A : return

170 rem load segment array with sprite data
180 els physic : els back

190 for 1=1 to 30

200 els physic,0,0,0 to 16,16

210 sprite 1,0,0,1 : put sprite 1 : wait vbl

220 SEG$(I)=screen$(physic,0,0 to 16,16) : next I

230 sprite 1,-100,-100,1

240 return

250 rem load map array from data statements

2 60 rem read data

270 restore 50005 :read NL :rem number of lines per map
280 rem calculate constants

290 read N

300 read W

310 read H

rem number of maps

rem number of sprites per line

rem number of lines per screen

320 NO_OF_COLS=320/W : NO_OF_ROWS=199/H
330 rem ignore partially hidden lines

340 if 199 mod H<>0 then inc NO_OF_ROWS : HIDDEN=1
350 TOTAL_ROWS=MAPS_PER_ROW*NO_OF_ROWS
355 T0TAL_COLS=MAPS_PER_COL*NO_OF_COLS
360 for C=0 to MAPS_PER_COLUMN-l : rem number of screens
37 0 for R=0 to MAPS_PER_ROW-l

380 if COO or RO0 then read DW, DH : rem ignore size

data

390 for J=0 to NO_OF_COLS-l
400 for K=0 to NO_OF_ROWS-l-HIDDEN
405 rem read sprite data

410 read MAP(R*NO_OF_COLS+J,C*(NO_OF_ROWS-HIDDEN)+K)
42 0 next K : if HIDDEN=1 then read DUMMY : rem ignore

unused line at end

430 next J : next R : next C : return

100 0 rem moving through a map

1010XPOS=0 : YPOS=0

1020XSIZE=W*WIDTH+XPOS : YSIZE=H*HEIGHT+YPOS : rem

bottom corners of map window

1025 rem initial starting position relative to top left

corner of screen

1030MAP_NO=0 : CHARACTER_X=1 : CHARACTER_Y=1
1040 locate 0,16 : print "Room number" : locate 12,16 :

print MAP_NO
1050 rem main loop

1060gosub 1590 : rem load absolute coordinates of

character in CX,CY

1070CX=CHARACTER_X+MAP_POS_X : CY=CHARACTER_Y+MAP_POS_Y
1075 rem get joystick info

122

1080 if jleft then gosub 1230

1090 if jright then gosub 1310
1100 if jdown then gosub 1400

1110 if jup then gosub 1490
1115 rem did character move

1120 if CHARACTER_X=OLD_X and CHARACTER_Y=OLD_Y then 1060
1130OLD_X=CHARACTER_X : OLD_Y=CHARACTER_Y
1140 rem display area around character

1150 for XP=OLD_X-l to OLD_X+l
1160 for YP=OLD_Y-l to OLD_Y+l
1170if XP=OLD_X and YP=OLD_Y then sprite
l,XP*W+XPOS,YP*W+YPOS,CHAR : goto 1210

1180 if XP<0 or YP<0 or XP>WIDTH-1 or YP>HEIGHT-1 then

1210

1190XV=XP+MAP_POS_X : YV=YP+MAP_POS_Y : rem ate 0,18 :
print space$(30) : locate 0,18 : print XV,YV;

1200 if MAP(XV,YV)>0 then

screen?(physic,XP*W+XPOS,YP*H+YPOS)=SEG$(MAP(XV,YV))
1210next YP : next XP : wait 1 : goto 1050

1220 rem move left

1230 if CX<=0 then return : rem player reached end of

world

1240 rem illegal move?

1250 if MAP(CX-1,CY)<>0 then return

12 60 rem player is still in current map

1270 if CHARACTER_X>0 then dec CHARACTER_X : dec CX :
return

12 80 rem player reached edge of map

1290 dec MAP_NO : gosub 1580 : rem clear screen
1300CHARACTER_X=WIDTH-1 : gosub 1590 : return
1310 rem move right

1320 if CX>MAPS_PER_ROW*(320/W) then return
1330 rem illegal move?

1340 if MAP(CX+1,CY)<>0 then return

1350 rem player is still in current map

1360if CHARACTER_X<WIDTH-1 then inc CHARACTER_X : inc CX
: return

1370 rem player reached edqe of map

1380inc MAP_NO : gosub 1580 : rem clear screen
1390CHARACTER_X=0 : gosub 1590 : return
1400 rem move down

1410 if CY>MAPS_PER_ROW*(200/H) then return
1420 rem illegal move?

1430 if MAP(CX,CY+1)<>0 then return

1440 rem player is still in current map

123

1450 ifCHARACTER_Y<HEIGHT-1 then inc CHARACTER_Y :inc
CY : return

14 60 rem player reached edge of map
147 0MAP_NO=MAP_NO+VIEWS_PER_ROW : gosub 1580 : remclear
screen

1480CHARACTER_Y=0 :gosub 1590 : return
14 90 rem move up

1500 if CY<=0 then return

1510 rem illegal move?

1520 if MAP (CX,CY-1)<>0 then return

1530 rem player is still in current map

1540if CHARACTER_Y>0 then dec CHARACTER_Y :dec CY :
return

1550 remplayer reached edge of map

1560MAP_NO=MAP_NO-VIEWS_PER_ROW : gosub 1580 : remclear
screen

1570CHARACTER_Y=HEIGHT-1 :gosub 1590 : return
1575 rem clear screen

1580 els physic, 0,XPOS,YPOS to XSIZE,YSIZE : els

back, 0,XPOS, YPOS to XSIZE, YSIZE : locate 12,16 :print
MAP_NO : return

1585 rem update absolute coordinates of character in

CX,CY

1586 rem these are relative to the entire map (containing
all 9 views)

15 90VIEWX=MAP_NOmodVIEWS_PER_ROW : VIEWY=MAP_NO/
VIEWS_PER_ROW

1600MAP_POS_X=VIEWX*WIDTH : MAP_POS_Y=VIEWY*HEIGHT
1610CX=CHARACTER_X+MAP_POS_X : CY=CHARACTER_Y+MAP_POS_Y
: return

50005rem Add map data here . (Use the one included in

example 5.2)

It's also possible to add checks for the detection of walls or monsters directly into
this routine. You could, for instance, place the locations of the various monsters into
a 2D array in the following way:

10 dim monster (12,12)

Every location on the display would have one element in this array. If an element was
zero, then the area would be free, and any other value would indicate the position of
the occupiers statistics in the attributes table. This table could be loaded when reading
in the map data.

You could now add the detection routine on the next page into Example 5.3.

124

85 dim MONSTER(80,60),ENCOUNTER(8)

410 read OBJECT : OX=R*NO_OF_COLS+J : OY=C*(NO_OF_ROWS-
HIDDEN)+K

415 MAP(OX,OY)=OBJECT : if OBJECT>5 and OBJECT <10 then

MONSTER(OX,OY)=OBJECT-5

1054 for M=0 to EN

1055 if ENCOUNTER(M)<>0 then bell: rem handle encopunter

1056 ENCOUNTER(M)=0 : next M : EN=0

1205 if MONSTER (XV, YV) 00 then ENCOUNTER(EN)=MONSTER(XV,

YV) : inc EN

This routine loads an ENCOUNTER array with a list of "monsters" facing the party.
Since there are no actual monsters in my current map, I've loaded the positions of the
treasures into the monster array instead.

After the program has loaded the encounter table, it can then perform any required
actions using a combat routine at the start of the control loop. In the case of Example
5.3, this routine would be called at line 1055.

5.6.3 3D effects

Another possibility is to draw your displays in glorious 3D. Providing you known a
litde mathematics, the illusion of 3D is not really difficult to produce, and if it is used
properly, it can be incredibly effective. You can easily generate this type of routine
using the techniques I will be discussing in Chapter 7.

Don't attempt to be over-ambitious however. Games such as FTL's Dungeon Master
were certainly not written overnight. Frankly, you would have to work long and hard
to achieve an effect which even vaguely approached this excellent game. Despite this,
3D graphics are certainly worth thinking about, especially for the combat sequences.
It's quite possible to combine a standard 2D system for mapping the dungeon, with a
powerful 3D combat sequence using animated sprites.

5.7 Controlling the character

After you've created your maps, and implemented them using STOS Basic, you will
be ready to add the various puzzles and combat sequences. The nature of these
routines will vary from game to game. One module which is crucial to all j;ames,
however, is the routine which reads and interprets the player's commands.

5.7.1 Using the keyboard

In spite of the availability of the complex input devices like the mouse and the
joystick, the ST's keyboard is still a popular way of entering the commands in a
RPG. This is because, unlike other input devices, there is no real limit to the amount
of information which can be entered quickly and easily by the player.

125

Movement can be implemented using either compass directions, such as North, South,
East, and West; or the standard ST's cursor keys. Other commands, like "fight" or
"unlock" can be entered from the keyboard as in a normal text adventure. Each
command will have its own particular key combinations. When you are designing
these codes, you should attempt to make them as short as possible. This is especially
true of the movement and combat options. Nowadays, few people will be happy to
type in North or South every time they move.

If you are using single key commands, you should chose keys which will be easy for
the player to remember. So the "Get object" command should be controlled using "g"
or "p" rather than "z". You should also remember to make full use of the ST's
function keys. These provide you with an ideal way of entering instructions. It's a
good idea to display the entire list of instructions whenever the ST's <help> key is
pressed. This can improve the effectiveness of your game considerably.

Example 5.4 Reading the <HELP> key

10 rem Fragment of code to read the ST's HELP key

20 x$=inkey$:if asc(x$)=0 then s=scancode
30 if s=98 then gosub 1000:s=0

40 goto 20:rem jump back to main keyboard loop
999 rem help routine
1000print "You think you've got problems?":return

1010 rem this would usually be a little more helpful

You could now place a simple routine to print out the current commands at line 1000.
This would take no time whatsoever to write, but it would be a godsend to the
players.

One common problem which occurs, when reading the keyboard input, is entering the
movement commands using the cursor keys. Here the difficulty lies in the fact than
these keys do not normally return a value from the INKEYS function. Like the
<HELP> key, they can, however, be read using the SCANCODE function.

If your game requires you to input longer pieces of text, you may need to enter them
using the STOS Basic INPUT or INPUTS commands. Always use the LINE INPUT
versions of these instructions, because they are much less fussy about the type of data
they will accept.

You can use these commands in conjunction with MATCH, which searches a string
array containing the allowable inputs and returns the position of the input string in the
array. This number can then be used in your program. For further details of this
technique, see Chapter 6.

5.7.2 Joystick input

The ST's joystick is very useful for entering movement commands and for controlling
the character during combat. The only drawback with using the joystick, is that you
are limited to 16 possible inputs.

126

These consist of the eight normal directions in conjunction with the fire button. For
some games, 16 commands are simply not enough, and you are therefore forced to
split the control between the joystick and the keyboard.

STOS Basic provides you with two separate sets of commands to read the joystick
input.

The simpler set includes the instructions:

JLEFT

JRIGHT

JUP

JDOWN

FIRE

The problem with these instructions, are that they take no account ofdiagonals. These
are best detected through the JOY function. This can read all sixteen of the possible
positions: e.g.

100 rem Read joystick and jump to routine
110 j=joy(0):jump=j*1000:If jump>0 then gosub jump
120 goto 110

This code executes the subroutines at

1000,2000,3000...16000,

depending on the input from the joystick. It is particularly useful for arcade
adventures which use complex animation sequences, as each action can be performed
by its own individual routine.

5.7.3 Using the mouse

The ST's mouse pointer provides you with an extremely effective mechanism for
controlling the activities of your party.

STOS Basic includes a powerful ZONE command, which makes it very easy to
implement complicated dialogue boxes using the mouse pointer. These screen zones
can be used to control everything from character generation to combat.

Furthermore, you can also use some of the many STOS menu commands to set the
various game options. An example of this technique can be found in the combat
simulator listed in Example 5.5 on page 131. This uses the Universal Control panel
described in the previous chapter.

5.8 Multiple characters
Many role-playing games allow the player to control a party consisting of a number
of individual characters. This is an attempt to simulate the action of the original RPGs
which were played by several people.

127

In order to be really effective, the character in an RPG needs to be effectively an
extension of the player's own personality. Because people are only able to directly
relate to a single character at a time, multiple characters lose some of the flavour of
original game. So why do most games still bother to provide them?

The answer is that, used properly, multiple characters can add an intriguing element
ofstrategy to your game. The player now has the additional responsibility of selecting
the mix of character types in the party.

Each character type has its own uses, and the player needs to weigh their advantages
against their disadvantages. Furthermore, by choosing a different arrangement of
characters, the same game can beplayed over and over again.

5.8.1 The leading character

If you were to ask to player to control the movements of four or five characters on
the screen independently, then the action of the game would be reduced to a crawl.
Because of this, it's normally easiest to nominate one character from the group as the
leader. If the party starts off with a single character, the choice should be taken out of
the player's hands. This will allow you to add a litde autonomy to the rest of the
characters. In real life, not all people are honest or trustworthy. The addition of
realistic characters with their own "personality", can enhance the atmosphere of even
the simplest game.

Games which display a view of the party from above can avoid a great deal of
unnecessary complication by only representing the leader on the standard game map.
A three dimensional display should also be assumed to show the surroundings entirely
from the view point of the current leader.

5.8.2 Individual control

Individual control becomes important only during combat. Each character in the
group needs to be given the specific orders for the attack. These orders need to be
input at high speed to keep theaction of thegame running smoothly.

The ideal way of achieving this with STOS Basic, is to use the mouse. Some games
utilise a separate screen for this purpose, and allow each player to be moved around
independently. Experience has shown that the combat element of these games is often
dangerously unwieldy. If you really want to use individual control, you would be
better to allow the input of lists of orders to the character in advance. This would
bring the RPG much closer to a genuine war-game.

5.9 Combat

It is the combat elements of a role-playing game which set it apart from the
run-of-the-mill adventure. When you are writing your games, you should take
particular care to makethe fighting as fast and as furious as possible.

128

5.9.1 Melee rounds

All the action in the game is split into a number of separate melee rounds. Every
melee round involves a single exchange of blows between two sets of fighters.

One set represents the characters controlled by the player and the other group
comprises the monsters which are assumed to be opposing them.

The effect of a weapon is determined using two special attributes:

DAMAGE This is a number representing the average amount of
damage which will be done if the weapon hits an
opponent.

HIT PROBABILITY Determines the likelihood of any weapon actually
hitting.

Note that, for the purposes of my discussion, a "weapon" can be taken as anything
which is capable of inflicting damage on an opponent. This includes natural weapons
like claws, teeth and fists. Like the character statistics, the weapon statistics are best
stored in an array: e.g.

dim WEAPON(10),HIT_PROB(10):rem space for ten weapons

Every weapon which can appear in your game, will have need an entry somewhere in
this table.

The attributes of a weapon can be further affected by the statistics of the person who
is wielding it. Obviously, strong characters will inflict more damage than weaker
ones. Similarly, dexterous characters will have a better chance of hitting their
opponents. In order to reflect this fact, bonuses are normally added to the basic
weapon statistics. The size and type of these bonuses vary depending on the weapon.
So if a fighter was firing a gun, the strength bonuses would be minimal. The size of
the bonus' in any particular instance, need to be worked out by experimentation. The
damage inflicted on the characters will normally subtracted from one the attributes to
determine their current state of health. There are two approaches you can take:

1 Subtract the damage from the character's stamina. If this becomes less than or
equal to zero, then the character has been killed by one of the monsters.

2 Divide the damage evenly between the attributes STAMINA, STRENGTH or
DEXTERITY. Only kill off the character when a couple of attributes reach zero.
This is a more advanced system because it avoids the ridiculous possibility of a
dying character jumping from the ground and chopping a monsters head off with a
single blow.

Combat is performed in the following stages:

129

1 choose weapon

2 choose an opponent

3 check whether weapon hits the opponent

4 if hit is scored then

determine damage
check effect of damage

It's necessary to perform these steps for every character who is involved in the
fighting. This includes all the monsters as well as the members of the adventuring
party. The batde will continue until all members of one side are dead, or one group of
combatants retreat.

Steps one and two can be controlled directly using the mouse. If you allowed each
character to hold a single weapon ready for action, the first step could be removed.
Also, the opponent could be selected automatically by your program, either randomly,
or by taking account of the relative positions of the characters.

The third step, however, is a litde more complicated. This is because members of the
party can attempt to parry. This involves trying to place their weapon or their shield
so as to deflect the blow.

The likelihood of a successful parry will largely depend on the relative dexterity of
the two combatants. If an agile character tries to block a clumsy opponent, the
defence will probably succeed. Similarly, a fast blow against a slow defender stands a
very good chance of hitting. The best way of achieving this is to work out the ratio of
the two DEX values as follows:

PARRY_CHANCE=(DEX of defending player)/ (DEX of attacker)

You then check for the success of a parry with the line:

R=rnd(100) :R=R+25*PARRY_CHANCE:if R<HIT_PROB(WEAPON)
then ? "hit" else ? "parried"

The final element a combat situation is the possibility of a fumble. Whenever several
people are wielding weapons around, there's always the real danger that they will hit
one of their allies by mistake. Many Real-RPGs assign a specific die roll such as a
double zero for this purpose. If the player rolls this value, something disastrous is
assumed to have taken place, and further dice are rolled to determine the final
outcome. This can vary between the character accidentally shooting himself in the
foot, or decimating his entire party!

The same technique can also be applied in one of your own games. All you need to
do, is test for the possibility of a fumble, and then insert the appropriate IF..THEN
statement to detect it. The result of the fumbles is entirely up to you.

130

Another complication is raised by the possibilities of armour. The net effect of this
will be to reduce the impact of a blow by a fixed amount, depending on the strength
of the armour. This can be implemented using a simple offset which can be
subtracted from the damage inflicted on the player.

Different types of armour will absorb different amounts of damage. This can be
represented by an attribute such as the DEFENCE factor. The higher the defence
factor, the better the armour. You could store this information in an array such as:

100 dim ARMOUR(100)

The effect of an attack without a parry can be seen from the following fragment of
code:

100 rem attack

110 rem Set weapon statistics

120 PROB=50:DAMAGE=10:BONUS=0

130 R=rnd(100):rem get a number from 1 to 100
140 rem check if attack successful

145 if R=0 then ? "You fumbled":stop

150 if R<PROB then HITS=RND(DAMAGE)+BONUS+1:print

"ATTACK DID ",HITS," Amount of damage":stop

160 print "attack failed

Note that the attack bonus is currently assumed to be zero.

Now for a larger example, which demonstrates a complete combat routine:

Exmple 5.5 A simple melee round

10 rem Example of a Melee round

20 rem initialise arrays
30 dim STR(10),DEX(10),STA(10),IQ(10),MAG(10),

DAMAGE(10)

35 dim HIT_PROB(10),WEAPON$(10)
40 mode 0 : els back : els physic

50 C=l : rem current character

60 input "What is your characters Name ?";NAME$

65 if NAME$="" then boom : goto 60

70 els : els physic : els back

80 gosub 660 : rem generate player character

90 pen 4 : locate 17,10 : print "Attack" : locate 17,14

95 Print "Parry

100 locate 12,18 : print "Axe" : locate 18,18 : print

"Club"

105 locate 24,18 : print "Sword" : pen 1
110 windopen 1,0,12,10,13,3 : title NAME$: C=l : gosub

620

120 gosub 710

131

130 windopen 2,30,12,10,13,3 : title "Tiger!"
135 C=2 : gosub 620

140 windopen 3,0,5,40,3,0 : windopen 4,0,8,40,3,0
150 restore 1070 : gosub 890

160 rem read weapons in array
170 for 1=1 to 4

175 read WEAPON$(I),DAMAGE(I),HIT_PROB(I)
180 next I

185 SELECTED=4 : gosub 1050 : WEAPON=2:rem select club
189 rem main combat loop
190 repeat

200 wait 5

210 gosub 1000.-rem read control panel
220 if ZOO then on Z gosub 740,760,780,820,860
230 rem Tiger attacks spontaneously
240 if timer=100 or rnd(100)>90 then gosub 410
250 until CHARACTER__IS_DEAD or TIGER_I3_DEAD
260 wait key : default : stop
270 rem handle players attack round

280 if DEX(1)=0 then PARRY_CHANCE#=4 : goto 320
290 PARRY_CHANCE#=DEX(2)/DEX(l):rem compare DEX's
300 HIT=0

310 rem now attack

320 rem check if tiger parries

340 TIGER_PARRY=rnd(3)
350 R=rnd(100) : rem roll a dice

355 rem does tiger attempt to parry

360 if TIGER_PARRY=3 then R=R+25*PARRY__CHANCE# : window
3 : clw : curs off : centre "<Tiger parries>" : return
365 rem check if blow hit

370 if R<HIT_PROB(WEAPON) then gosub 550:rem handle blow
38 0 if HIT=0 then qwindow 4 : clw : curs off : centre
">You missed<" : return

385 rem check if dead

390 if STA(2)<0 and DEX(2)<0 and STR(2)<0 then default :

centre "<The tiger is dead!>" : TIGER_IS_DEAD=true :
return

400 rem tiger attacks player

410 R=rnd(100) : rem get a number from 1 to 100
415 rem work out relative dexterities

420 if DEX(2)=0 then PARRY_CHANCE#=4 : goto 320
430 PARRY_CHANCE#=DEX(1)/DEX(2)
440 if PARRY then R=R+25*PARRY_CHANCE#
455 rem Does tiger successfully strike
460 if R<HIT_PROB(4) then gosub 590:rem Strike
successful

132

465 rem parry successful

47 0 if PARRY and HIT=0 then window 4 : clw : curs off :

centre "<You parried>"

475 rem attack failed

480 if ATTACK and HIT=0 then window 3 : clw : curs off :

centre "<The Tiger missed>"

485 rem update attributes
490 C=l : window 1 : gosub 620 : C=2 : window 2 : gosub

620

495 rem Has tiger killed you?

500 if STA(1)<0 and DEX(1)<0 and STR(1)<0 then default :

centre "You died!" : CHARACTER_IS_DEAD=true

505 rem reset flags

510 if PARRY then PARRY=false : return

520 if ATTACK then ATTACK=false

530 return

540 rem hurt tiger

545 rem deduct hits equally from all attributes
550 HIT=rnd(DAMAGE(WEAPON)) : STA(2)=STA(2)-HIT/3

555 DEX(2)=DEX(2)-HIT/3 : STR(2)=STR(2)-HIT/3

560 window 4 : clw : : curs off

565 P$="<You inflicted"+str$(HIT)+" points of damage>"

57 0 centre P$:return

580 rem tiger got you

585 rem take damage

590 HIT=rnd(DAMAGE(4)) : STA(1)=STA(1)-HIT/3

595 DEX(1)=DEX(1)-HIT/3 : STR(2)=STR(2)-HIT/3

600 window 3 : clw : curs off

605 P$="<Tiger did "+str$(HIT)+" points of damage>"

610 centre P$:return

605 rem print out attributes

620 curs off : locate 0,3 : print "Str:"

625 locate 0,4

630 locate 0,5

635 locate 0,6

640 locate 0,7

650 return

660 rem generate fighter

665 rem high strength,dexterity and stamina
670 STR(l)=rnd(10)+8 : DEX(1)=rnd(10)+8

675 STA(l)=rnd(10)+8

680 rem lousy magic

685 IQ(l)=rnd(5)+5 : MAG(I)=rnd(l)+3

690 return

700 rem generate a tiger

print "Dex:";DEX(C);"

print "Sta:";STA(C);"

print "Int:";IQ(C);" '

print "Mag:";MAG(C);"

133

STR(C) ;'

710 STR(2)=rnd(10)+15 : DEX(2)=rnd(10)+15 :

STA(2)=rnd(10)+15

715 rem how many tigers do YOU know are brilliant

magicians

720 IQ(2)=rnd(3)+2 : MAG(2)=0 : return

725 rem control system

730 rem read attack button

740 ATTACK=true : PARRY=false : SELECTED=1 : gosub 1050

745 timer=0 : gosub 280 : gosub 1050 : return

750 rem read parry

760 PARRY=true : ATTACK=false : SELECTED=2 : gosub 1050

765 timer=0 : gosub 410 : gosub 1050 : return

770 rem get axe

780 SELECTED=WEAPON+2 : rem get old box number

790 if SELECTED03 then gosub 1050 : SELECTED=3 : gosub

1050

8 00 WEAPON=l : return : rem invert box

810 rem get club

820 SELECTED=WEAPON+2 : rem get old box number

830 if SELECTED04 then gosub 1050 : SELECTED=4 : gosub

1050

840 WEAPON=2 : return

850 rem get sword

860 SELECTED=WEAPON+2 : rem get old box number

870 if SELECTED05 then gosub 1050 : SELECTED=5 : gosub

1050

880 WEAPON=3 : return

890 rem initialise control panel

900 read NZ : reset zone

910 if NZ<0 or NZ>127 then stop

920 dim SWITCH(NZ,4),STATUS(NZ)

930 for 1=1 to NZ

940 for J=0 to 3

950 read SWITCH(I,J)

9 60 next J

970 set zone I,SWITCH(I,0),SWITCH(I,1) to

SWITCH(I,2),SWITCH(I,3)

980 box SWITCH(I,0),SWITCH(1,1) to

SWITCH(I,2),SWITCH(I,3)

9 90 next I : return

1000 rem check zone

1010Z=zone(0) : if Z=0 or mouse key=0 then Z=0 : return

1020 STATUS(Z)=not(STATUS(Z))

1030 if DEBUG then qwindow 0 : locate 0,15 : print
STATUS(Z),Z;

1040 return

134

1050 rem Invert a box

1060 wait 5 : gr writing 3 : ink 1

1065bar SWITCH(SELECTED,0),SWITCH(SELECTED,1) to

SWITCH(SELECTED,2),SWITCH(SELECTED,3) : gr writing 1 :

return

10 66 rem dialogue box data

1070data 5

1080data 80,100,240,132

1090data 80,133,240,164

HOOdata 80,165,132,195

lllOdata 133,165,187,195

1120data 188,165,240,195

1125 rem Weapon data

1126 rem NAME,Damage,Hit probability

1130data "AXE",9,60

1140data "CLUB",6,80

1150data "SWORD",15,40

1160 data "CLAWS",12,50

Note that this example is intended purely as a demonstration. Without the underlying
support provided by the rest of the RPG's graphics routines, it's a pretty uninspiring
if you treat it in isolation. But the basic mechanics of the program are identical to the
real combat systems found in many commercial games.

5.10 Magic

Magic is an integral part of many role-playing systems. The big problem with magic
of course, is that it is totally confined to the player's imagination. Like it or not, in
the real world, magic simply doesn't work. So whilst we may know a litde about the
swords part of "Swords and sorcery", the sorcery bit is completely outside our actual
experience.

The only way to successfully apply magic in a game, is to carefully invent a logical
and consistent system of rules. Although the laws of physics may be different in your
game world, you should always try to keep within the bounds of common sense. The
fact is, unless the players are provided with a convincing rationale which underlies
your system, they will simply refuse to believe in it.

In practice, you will undoubtedly need to place real restrictions in the capabilities of
your magic users. Otherwise there will be nothing to stop a powerful wizard zapping
even your toughest monsters with just a casual wave of his hand.

There are several possible solutions to this difficulty:

1 Assume that all spells need a material component of some sort which is used up
after the spell has been cast. Really powerful spells might need especially rare
items in order to work.

135

An example of this technique can be seen in the excellent ULTIMA games. You
could even use the same idea as the basis of the entire scenario.

2 Make wizards start off physically weak and limit their initialabilities ruthlessly. As
the characters increase in power, you can progressively confront them against
tougher and tougher monsters.

3 Keep an indicator of a character's current power rating, which can increase with
experience. In order to cast a particular spell, the character needs temporarily to
expend a certain amount of magical energy. By assigning the highest power
requirements to the more effective spells, you can easily restrict the strongest
magic to characters who have survived some way into your RPG. This is used in
the vast majority of D&D type games, and works well.

4 Assign a cryptic code to each spell. If a character doesn't know the code, then it is
impossible to cast the particular spell. You can place these codes on scrolls at
appropriate points in your game as a reward for solving a especially difficult
puzzle. This is the approach used in FTL's Dungeon master program.

It is perfectly possible to exploit any combination of these ideas in a single game.
After all you're the boss of this world. So quite literally anything goes!

5.11 Conclusion

Creating a role-playing game can be an highly enjoyable pastime in its own right.
I've personally refereed several Real-RPGs and I can assure you that they are terrific
fun to organise. You can now capture the same feeling of satisfaction by writing your
very own role-playing game on the Atari ST. With a litde help from STOS Basic, and
a lot hard work, you might well produce a game which is commercially viable. All
you need are the ideas and the imagination. The rest is easy.

136

Adventure games

6.1 A little history
All modern adventure games are the direct descendants of a single computer program
written in FORTRAN in the early seventies. This was the infamous "Colossal Cave
Adventure", written by Crowther and Woods. When it was first produced, "Colossal
Cave" was one of the largest computer programs ever written. Astonishingly enough,
it's now perfectly possible to fit the entire game on a standard 520 ST! So we now
quite literally have the power of an circa 1970 mainframe at our fingertips.

As you can imagine, the games software market for an early seventies mainframe was
just a litde limited. So the Colossal Cave Adventure was never actually sold
commercially, and poor old Crowther and Woods never made a penny out of their
creation.

The first commercial adventure games were the "Scott Adams adventure series"
released around 1979 for the TRS-80 series of computers. These managed to capture
the imagination of a whole generation of home computer enthusiasts. But despite the
undoubted success of the Scott Adams adventures, they were undoubtedly crude by
comparison with what was to come later.

For me, the modem adventure was initiated with a piece of artificial intelligence
research into natural language systems. This culminated a program called "ZORK",
which was designed as a demonstration of the way computer systems could be made
to "understand" human sentences. ZORK had all the characteristics we now

associate with an adventure, and included the ability to handle some very comphcated
instructions indeed.

Subsequendy, some of the programmers behind this project decided to try to produce
a version of this game for use on a home computer, and the INFOCOM company, as
we now know it, was born. Eventually of course, they were forced to admit defeat.
The final version of ZORK had to be split up into three complete adventures

It's impossible to over-emphasise the impact Infocom have had on the adventuring
scene. Their product list includes classics like "ZORK", "Planetfall" and the
amazingly funny "Hitch-hikers Guide to the Galaxy" adventure.

137

6.2 Adventurers start here

In this chapter, I'll be demonstrating how you can create one of these adventure
games yourselfusing STOS Basic. But what actually is an adventure game? Well, the
basic ideas are quite similar to those of a role-playing game. The crucial difference
between the games lies in the nature of thechallenges presented to theplayer.

The problems in an adventure game are essentially intellectual, and there's litde scope
forphysical combat. Another factor, is that most adventures restrict themselves tojust
a single player character. This avoids the strong tactical element which is usually
present in an RPG. The adventure takes place in an imaginary world in which
practically anything is possible. The surroundings are described by a short piece of
fulsome text which scrolls down towards the bottom of the screen. In the more
modernadventures this text is often supplemented by a picture of the current scenery.

The player takes control of an intrepid explorer who is inhabiting the world of the
adventure. This character can be commanded using simple English sentences which
are usually entered directly from the keyboard.

The underlying appeal of adventures is that they allow you to temporarily abandon
the frustrations of the real world, and embark on a realistic and satisfying journey into
the realms of imagination.

The easiest way to familiarise yourself with these games, is to play one yourself.
There are currently several adventure games on the public domain, including a
complete version of the original Colossal Cave adventure.

Here is a short transcript from the start of the game to whet your appetite. I've typed
the computer's responses in italics.

6.2.1 Sample transcript from Colossal cave

Somewhere nearby, is colossal cave where others havefoundfortunes in treasure and
gold, though it is rumoured that some who enter are never seen again. Magic is said
to work in the cave. I will be your eyes and hands. Direct me with 1 or 2 word
commands...

You are standing at the end of a road before a small brick building. Around you is a
forest. A small streamflows out of the building and down a gully.

>enter building

You are inside a building, a well house for a large spring.
There are some keys on the ground here.
There is a shiny brass lamp nearby.
There is tastyfood here.
There is a bottle of water here.

>get lamp

138

OK.

>rub lamp

Rubbing the electric lamp is not particularly rewarding. Anyway, nothing happens.

What mysterious puzzle awaits you in this adventure? Where is that cave thing that
was mentioned early on? I'm afraid you'll need to purchase a copy of Colossal cave
to find out!

6.2.2 Why STOS Basic?

At this point, you mightby wondering why anyone would wish to write an adventure
in STOS Basic, when there are special adventure creators such as STAC available for
the ST. Well, the reason is simply a matter of flexibility. If you write an adventure in
STOS Basic, you are free to create your game without any restrictions whatsoever.
You can therefore produce full blown graphic adventures which would be impossible
in any other medium. Once you've written the core of your adventuring system, it's
really no harder to write your games in STOS Basic as it is in a dedicated package
like STAC. Since I'll be providing mostof these routines for you, you will be able to
concentrate on the ideas in your adventure, without having to worry about any messy
implementation details at all.

6.3 Scenario design

In order to produce a truly playable adventure, it's vital to generate a believable
atmosphere which captures the player's imagination completely. This is even more
important for an adventure than for an RPG, as there are no combat sequences add
spice to the game. In an adventure, the game play is centred completely on the world
you have created.

You must therefore go to considerable lengths to make this as interesting and
engrossing as possible.

The standard method of creating this atmosphere is to pack the room descriptions
with adjectives. So a tree would be described like:

"A massive oak tree blossoming with the generous bounty of spring" rather than the
more prosaic, but equally accurate

"A tall tree".

Don't however, allow yourself to go overboard with this idea. If you allow your
descriptions to become too flowery, you are rather more likely to send your players to
sleep than to inspire them to complete your adventure.

139

6.3.1 Creating a map

You should always start offby drawing a complete map of your game on paper. This
should include full details of the connections between the various rooms, along with
any ideas you may have about the expected contents. Try to keep the design of your
game world consistent.

Every location and every, object in your adventure should have been put there for a
reason, even if it's just to confuse the player. If you forget about this, and attempt to
match a setof logically unconnected locations together, you will produce an appalling
jumble of fragmented ingredients which no-one will believe.

Stardrive

Figure 6.1 Section of a game map

You are now ready to invent the puzzles and traps which will be encountered in the
adventure. For me, this activity is one of the most enjoyable parts of the entire
process. Obviously all problems which are essential to the completion of the game
need to be solvable, but it's important to keep these solutions within the context of
the game world. So if you've set your adventure in a world of swords and sorcery,
it's pointless to have problems requiring the player to fix a computer!

140

As you devise your puzzles, you should carefully mesh them into the background of
the game world. Games which lack any form of consistent pattern, no matter how
twisted or bizarre, invariably fail to engender the believable atmosphere which is so
vital to a successful adventure.

The best puzzles have solutions which appear to be totally obvious in hindsight, but
which are fiendishly difficult at the time. Remember, nobody enjoys a puzzle which
is too easy, orridiculously contrived. But if you can get the players to regularly kick
themselves for their stupidity, then your scenario will be providing them with a real
and exciting challenge.

One of the simplest examples of this technique, is subdy to alter a standard message
to include some vital piece of information.

Completely different locations can be given almost identical descriptions. It's
amazing how often the player will just skim through the text without totally reading
it. Once the players finally realise the solution, they will be amazed to discover that
the information has been in front of their eyes all the time!

You can also attempt to describe a commonplace object in an unfamiliar way. In a
world of magic, you can have great fun adding mechanical devices such as cars or
refrigerators. These can be explained through the eyes of the character experiencing
the adventure, without reference to the assumptions of our modem-day world. So a
car might be regarded as a gigantic metallic monster with horrible teeth and a fierce
growl. Imagine the chaos which would ensue if youradventure attempted to rescue an
unfortunate damsel who was being "eaten" by this monster. Rather than being
actually grateful, the girl would be extremely upset at beingdragged out of her car by
some moronic barbarian with delusions of heroism!

It's normally advisable to start the adventure with simple puzzels, and then slowly
increase the complexity of your problems during the progression of the game. This
draws the players into the game world, without frustrating them unnecessarily at the
beginning.

6.4 Game plan of an adventure
The overall mechanics of the adventure can best be summarised with a litde
pseudo-code as shown in Figure 6.2 on the next page.

Before you can understand this description, you'll need to be introduced to some new
terms, as follows:

events include all possible occurrences in your adventure. These manage things such
a door opening, a monster appearing, or even one of your characters legs falling off
for no readily apparent reason.

A high priority event is one which must be performed immediately. A typical high
priority event is the character's death. Whenever this occurs, the program should

141

repeat

perform high priority event
describe room

input a line of text

split text into individual words

check for valid words

if word is a system command then interpret system command
if word is a movement

then

if move is allowed

then

enter new room

endif

endif

interpret local commands

perform local events

interpret global commands

perform low priority events

if word is not recognized then print AAI don't understand' '

until player exits, wins, or loses

Figure 62 Pseudo-code description of an adventure

terminate at once, without bothering to read the keyboard, or display the room
description. These events are rather like the "Go to jail" cards in Monopoly, as they
take complete precedence of any other commands in the game

Low priority events are similar to the above, but are slightly less earth shattering in
nature. These handle events such as hunger, which can often be avoided with a litde
action on the part of the player. (Eating some food would certainly help).

Local events. These are situations that can arise only if the character is occupying a
particular location. Traps, for instance, will only be sprung when the character enters
a certain room.

It's also possible to group the player's instructions into a similar set of categories, as
follows:

Movement commands are instructions to the character to move in a certain direction.
These include phrases like: GO EAST, WEST, ENTER SHIP,..etc.

System commands are used to control the actions of the adventure program itself. So
instructions such as QUIT, SAVE, or INVENTORY are all system commands.

142

Finally there are the local and global commands. Local commands are like local
events in that they can only be performed at a specific location. In contrast, Global
commands can be executed anywhere in the adventure.

So "OPENWINDOW" is a local command because it can only take place the room
with the window. But "EAT FOOD" is global because it can be entered whenever
the character is feeling a litde peckish.

Here's a few more examples of these commands:

GET (Global)
OOPS (System)
PRESS SWITCH (Local)

DROP (Global)
CLIMB WALL (Local)

6.4.1 Standard routines

If you examine the pseudo-code in Figure 6.2 carefully, you should be able to isolate
a number of the key components of an adventure game.

These include:

• perform high priority event;
• describe room;

• input a line of text;
• split text intehndividual words;
• check for valid words;

• interpret movement commands;
• interpret system commands;

• interpret local commands;
• perform local events;

• interpret global commands;
• perform low priority events.

I'll now take each of these routines and show you how they can be implemented in
STOS Basic.

6.5 Understanding text

6.5.1 The text parser

The core of any adventure program is provided by the procedures which input the
user's commands, and convert them into a form that can be direcdy understood by the
computer.

143

These routines arecommonly known as parsers.

But why do you need a complicated analysis routine in the first place? After all, it's
perfectly feasible to enter the user's commands into a string variable, and simply test
this using a successive set ofIF..THEN statements in the following way:

100 input c$

110 if c$="get rock" then gosub 1000: rem get rock routine
120 if c$="kill dragon" then gosub 2000: rem kill dragon

The flaw with this simple-minded approach, is that it ignores the sheer richness of the
English language. The single command "kill dragon" could also be expressed as:
• kill monster;

• attack dragon;
• destroy dragon.

Ifyou were to limit your program to simple comparisons between the possible input
strings, you would be forced to check each of the alternatives individually. Otherwise,
it could take the player hours ofeffort to come across the exact phrasing which your
game required. This would be agonisingly slow and would make it impossible for you
to implement anything but the smallest adventures.

6.5.2 The Verb Noun parser

The solution is to allow each command to be entered using a number of common
synonyms. Synonyms are just lists of words with the same or similar meanings. So
destroy and attack are synonyms of the word "kill". Special dictionaries of these
synonyms, called Thesauruses, are available. These contain the possible alternatives
for most English wordsor phrases.

The job of your parser is to convert a complex English sentence into a form which
can unambiguously recognised by the computer. This will involve converting any
common synonyms of a word into a single unique identification number. You will
now be able to perform the test for all combinations ofa certain command with just a
singleIF..THEN instruction, e.g.

120 if verb=kill and noun=dragon then gosub 2000: rem kill
dragon

The easiest requirement of your parsing system is to split up a sentence into its
individual words. Since most English words are separated by spaces, you can isolate
the commands using the STOS Basic INSTR command like this:.

Example 6.1 Separating words

1000 rem Get line and split it into words
1010 line input ">";A$:rem prompt can be anything

144

1020COUNT=0 : CHAR=1 : rem word count and current character

1030 repeat

1040TEST=instr(A$,"",CHAR)

1050 if TESTO0 then L=TEST-CHAR else L=len (A$) -CHAR+1

1055 rem Note the 0 zero in WRD (OR is reserved)

10 60 WRD$ (COUNT) =mid$ (A$, CHAR, L) : CHAR=TEST+1 : inc COUNT

1070 until TEST=0 or COUNT=ll

1080 return

Note the use of LINE INPUT at 1010. Unlike the standard input command, LINE
INPUT allows you to input sentences containing commas and periods (.).
Occasionally this can be quite useful.

WRD$ is an array which will be used to hold your words. This will need to be
dimensioned at the start of your program. You can't use a name like WORDS
incidentally, because "OR" is a STOS Basic instruction. So WORDS is translated by
STOS Basic as:

W or DS

Here's a small program which can be used to test this routine:

10 dimWRD$(10)

2 0 gosub 10 0 0

30 for W=0 to COUNT-1 : print WRD$ (W) : next W

999 stop

Don't forget to enter the lines in Example6.1 before trying to run this program.

Once the words have been separated, your program can now begin to interpret them.
The simplest form of parser uses the verb-noun system, which allows the user to enter
sentences of up to two words in length.

The verb specifies an action to be taken, and the noun indicates the object which is to
be manipulated. A valid sentence can begin with either a verb or a direction. So the
following phrases are legal in this system:

>run

>east

>get carrot

As it is completely ridiculous to start off a sentence with a noun, this needs to be
automatically rejected by the parser. Therefore a command such as:

>carrot

should generate a response from your adventure like:

I'm sorry, butyou are not allowed to "CARROT" something.

145

The action of a verb-noun parser can be summarised by the pseudo-code in Figure 6.3
below.

split sentence into words
if number of words>2 then output A'sentence too complicated' '
if word one is a direction then move character

if word one is a verb

then

if number of words=l or word two is noun or direction

then

perform action

else

print ''I don' t understand' '

endif

else

print "youcan't ";wordone;" something''

endif

Figure 63 Pseudo-code expansion for a verb-noun parser.

You are strongly recommended to keep the computer's responses to improperEnglish
as polite as possible. Don't fall into the trap of using phrases which are sarcastic or
rude. No matter how funny or clever these seem when you are writing them, they will
quickly get under the player's skin. After the fourteenth occurrence of "Learn to type
DUMMY!", even the most patient player is likely to feel jusdy aggrieved!

I've already shown you how a phrase can be split into words in Example 6.1. The
other routines which will be required by the parser are:

check if word is a noun

check if word is a verb

check if word is a direction

perform action

STOS Basic contains a number of powerful string search commands which make it
very easy for your program to check through a list of synonyms.

The best of these is the INSTR command which tests the words against of range of
possibilities held in a string variable. Each type of word, will have its own individual
search string, which will contain all allowable responses. It's common practice to
restrict the string to the first few letters of each word. This speeds up the checking
process considerably.

The number of significant letters in a word is entirely up to you, but the more letters
you use, the more space which will be wasted by the shorter words. In practice, a

146

good word size is six, as this combines a reasonable measure of accuracy with only a
minimal memory overhead.

You can search these word lists using the INSTR statement as follows:

verb=instr(verb$,word$(1)) :verb=verb/6:rem get verb number

Unfortunately, the above instruction produces a different number for every
instruction. What your program needs, is some way of grouping words with the same
meaning together.

The solution is to store a separate identification number for each possible synonym in
an array, e.g.

dim action(100)

The contents of the ACTION array might look rather like this:

Element number Action number Verb

1 1 GET

2 2 DROP

3 3 ATTACK

4 3 KILL

5 4 INVENTORY

6 5 SAVE

Elements three and four of this array both have exactly the same action number. They
therefore represent a single command from the player.

Similarly, all the synonyms used to describe an object will need to be held in an
ITEM array. The format of this array will be identical to ACTION.

Example 6.2 Complete VERB-NOUN parser using INSTR

1100 rem Simple verb noun parser
1105D=0 : NOUN=0 : VERB=0

110 6 rem search for an exit

1110D=instr (EXIT$,WRD$ (0)) : if D<>0 then D=EXIT (D/7) :

return

1112 rem if word is not an exit, then try for a verb

1115V=instr(VERB$,WRD$(0))

112 0 if V=0 then ? "I don't know how to ";WRD$ (0)

something" : ER=1 : return

1125VERB=ACTION(V/7) : rem get action number
112 6 rem verb=GO

1130 if VERB=1 thenD=instr (EXIT$,WRD$ (1)) : : if DOO then

D=EXIT(D/7) : return

147

1131 rem first word if not a verb of a direction

1135 if C0UNT=1 then return

1136 rem search through nouns

1140N=instr(NOUN$,WRD$(l))

1145 if N=0 then ? "I can't see a ";WRD$ (1) ;" here" : ER=1 :

return

1150 NOUN=ITEM (N/7) :rem get item number

1155 return

This routine expects a list of words to be held in the WRD$ array before use. You
can generate this list using the word-splitter given in Example 6.1

I've introduced, in this example, a separate mechanism for checking whether a word
is a direction. This uses the EXITS and EXIT arrays. EXITS is just a list of the
possible directions i.e

EXIT$ = "NORTH N SOUTH S"

The EXIT array holds the direction number for each word in this string. So NORTH
and N both have exactly the same direction number as they represent a single
movement for the player.

Before you can test Example 6.2, you need to define the arrays NOUNS, and VERBS
using lines like:

NOUN$="CARROT DOG ORANGE HAT "

VERB$="GET DROP KILL"

See how I've spaced them out so they are always exactly seven characters apart. If
you pad the user's input with spaces, you can eliminate the possibility of your parser
accidentally interpreting a noun such as CAR as CARROT. You will also need to
define the. synonym lists for ACTION, ITEM and EXIT.

You may be wondering why I've neglected the STOS Basic MATCH command in
my discussion. This would allow you to check all the letters in a word, rather than the
first five or six.

The big drawback of course, is that MATCH will only work using a sorted array.
This makes it very difficult for you to generate a single identification number for a
particular word, without tediously sorting the whole list in advance.

You can't sort the data in the ACTION, ITEM, and EXIT arrays using SORT because
the identifiers are not in step with the appropriate strings. So the whole process needs
to be performed by hand whenever you add a new word to the adventures vocabulary.

6.5.3 Expanding the parser

Although verb-noun parsers are undoubtedly useful, they do seem quite primitive by
the standards we have come to expect from a modem adventure. Most popular

148

adventure games now incorporate far more advanced text recognition systems, which
can interpret a wide range of common English expressions. I'll now examine a
number of simple techniques which can be used to enhance the standard verb-noun
process.

Prepositions

A preposition is a word which is used to specify either the location of a noun, or the
means used to manipulate it. Common English prepositions include:

• inside;

• under;

• with;

• by;

• at.

The ability to recognise phrases which contain prepositions increases the apparent
intelligence of a parser dramatically. All the following phases could now be
interpreted successfully by the computer:

• get gun from pocket;

• look around corner;

• kill monster using axe;

• open safe with key.

The typical phrase now includes 1 verb, 2 nouns, and a preposition. The first noun in
this phrase is known as the subject, and the second as the object. Figure 6.4 on the
next page shows a new version of the original pseudo-code which demonstrates how
one of these parsers might work.

Well, it's not exactly pretty is it? Fortunately it's much easier to implement than it
seems. Anyway, here's one I prepared earlier for you. If it still looks complicated,
don't worry, because you can freely use it your own adventures without needing to
understand any of it.

Example 6.3 Extended noun verb parser

110 0 rem verb noun preposition parser

1105DONE=0 : D=0 : NOUN(1)=0 : NOUN(2)=0 : VERB=0 : PREP=0

1106 rem check for a direction

1110D=instr (EXIT$, WRD$ (1)) : if D<>0 then D=EXIT (D/7) :

return

1112 rem check word one for a verb

1115V=instr(VERB$,WRD$(1))

1116 rem word one must be a verb or a direction

1120 if V=0 then print "I don't know how to ";WRD$ (1) ;"

something" : ER=1 : return :rem set error flag

(continued on page 151)

149

split sentence into words

if number of words>4 then output "sentence too complicated"

if word one is a direction

then

perform movement

endif

if word one is a verb

then

if number of words=l then

perform action

endif

if number of words=2 then

if word two is a noun or direction

then

perform action

else

print "I don't understand"

endif

endif

if number of words=3 then

if (word two is a preposition and word three is a

noun)

then

perform action

else

print "I don't understand"

endif

endif

if number of words=4

then

if (word two is a noun and word three is a

preposition and word four is a noun)

then

perform action

else

print "I don't understand"

endif

endif

else

print "you can't "•;wordone; " something"

endif

Figure 6.4 Pseudo-code expansion for an extended parser

150

1125VERB=ACTION(V/7) : rem get action number
112 6 rem handle go

1130 if VERB=1 thenD=instr(EXIT$,WRD$(2)) : if DO0 then

D=EXIT(D/7) : return

1132 rem about if not a verb or a direction

1135 if COUNT=l then return

1136 rem check second word for a noun

1140 if COUNT=2 then WD=2 :NOUN_NUMBER=l :gosub 1190 :
return

1142 rem if three words then check word 2 for a preposition

1143 rem then check word three for noun

1145 if COUNT=3 then WD=2 : gosub 1220 : WD=3 : NOUN_NUMBER=l

: gosub 1190 : return

1150 if C0UNTO4 then return

1151 rem four words entered

1155 rem is word two a noun

1160 WD=2 : NOUN_NUMBER=l : gosub 1190

1165 WD=3 : gosub 1220 : rem Is word 3 a preposition

1170 rem is word four a noun

1175WD=4 : N0UN_NUMBER=2 : gosub 1190
1180 return

1185 return

1190 rem Check for noun

1200N=instr(NOUN$,WRD$(WD))

1205 if N=0 then print "I can't see a ";WRD$ (WD) ;" here" :
ER=1 : return

1210 NOUN(NOUN_NUMBER)=ITEM(N/7)
1215 return

122 0 rem check preposition

1300P=instr(PREP$,WRD$(WD))

1305 if P=0 then print "I don't recognise the word ";WRD$ (WD)
;" here" : ER=1 : return

1310 PREP=HOW(P/7)

1315 return

This parser should prove more than adequate for most of your adventures. It's
certainly infinitely preferable to a verb- noun system. But if you enjoy experimenting,
there are many further improvements you could make to improve it still further. You
might decide to extend it to understand sentences involving more than two nouns, e.g.

attack monster inside room with axe

You could also include the ability to interpret lists, adverbs, and adjectives.

Don't however, fall into the trap of concentrating too much effort into the text
recognition system. Although software reviewers seem to love the advanced parsers,
many users quickly fall back to the original verb-noun system. One reason for this, is

151

simply that short sentences are quicker to enter from the keyboard. Also, the
verb-noun system is superbly direct. Seasoned adventures quickly realise that the
chancesof an adventure misinterpreting your commands is reducedenormously if you
keep your instructions as straightforward as possible.

Despite having played some of the latest adventures from INFOCOM and
RATNBIRD, I've yet to encounter a parser which could understand absolutely
everything I threw at it. So don't be ashamed to restrict yourself to just the simplest
text parser in your game. The really important part of an adventure is the scenario.
Providing you can capture the player's imagination and include interesting and
challenging puzzles in your adventure, the quality of the parser is probably irrelevant.

6.6 Picturing the scene

6.6.1 Choosing the graphics

The question of whether graphics and adventures actually mix is subject to fierce
debate amongst adventuring enthusiasts.

The traditional view is that pictures take up valuable storage space which would be
better used in creating fuller descriptions and more complicated puzzles. It's perfecdy
true that unless the graphics are superbly drawn, they can often destroy the
atmosphere of a game rather than enhancing it.

Other people however, rightly point to the success of companies like RAINBIRD,
whose games include some marvellous graphics while still being fiendishly
challenging. The decision whether or not to use graphics in your game will depend
entirely on which side of the argument you personally favour. But it's probably safest
to start off with a completely text-based adventure, and then incorporate your
graphics later when the program is finished.

This forces the original descriptions to stand independently from the graphics, and
allows diehard Infocom addicts to turn off the pictures without destroying the appeal
of the adventure. It also lets you freely modify the room descriptions until they are
perfect, without having to worry about redrawing any of the associated pictures.

6.6.2 The screen compactor

The STOS Basic screen compactor is capable of quickly compressing any part of the
ST's screen into just a fraction of its normal size. These screens can be created using
any drawing package which supports either Degas or Neochrome screen formats.

Using the compactor, you will be able to pack around 30 of these screens onto a
single-sided 3.5 inch disk.

It's preferable to store each game screen in its own individual file. Whenever a
picture is needed, it can then be accessed directly using the LOAD instruction, and
expanded into the screen with UNPACK.

152

The following example illustrates this process: place the STOS accessory disk into
current drive, and enter the program in Example 6.4.

Example 6.4 Loading a screen

10 rem Loading a compacted screen

15 rem Enter a compressed screen saved in bank 5

20 load "backgrnd.mbk"

30 mode 0:flash off

40 reserve 5 as screen: rem Reserve screen for picture

50 unpack 5, 6:rem Unpack screen

60 appear 6, 30 :rem Display screen

70 wait key

It's pointless to attempt to produce a piece of graphics for every location in the
adventure. If you concentrate your efforts on the more interesting locations, you can
use the same overall effort to produce a much higher standard of graphics.

6.7 Graphic adventures

Recentiy, a number of games have been developed which depart strongly from the
standard text-based adventure.

The internal mechanics of these games are exactly the same as a normal adventure,
but instead of entering words from the keyboard, the user is able to select an action
directly from the screen using the mouse.

STOS Basic is ideally suited for this type of game, since it allows you to create
control panels and menus effortlessly. The control panel can be generated using the
Universal Control panel system demonstrated in Chapter 4. Once the actions have
been input, they may be interpreted using the same techniques as used in other
adventures. But there's absolutely no possibility of ambiguity, so the parser can be
replaced with a simple call to the ZONE command.

Example 6.5 Simple screen input system

10 rem Example 6.5

20 mode 0 : els physic : els back

30 locate 0,0 : centre "Alternative Adventure example"

40 curs off

50 rem dimension arrays

60 dimWRD$(127),TYPE(127),MEANING(127),SWITCH(127,3)

70 NOUN=l : VERB=2 : EXIT=3 : rem set up constants

80 gosub 140 : rem generate dialogue box and define screen

zones

90 gosub 350 : goto 90 : rem call Universal Control panel

153

100 stop

110 rem generate grid and set up zones
120 reset zone

130 rem define size and position of various buttons
140 XPOS=0 :YPOS=143 :NO_OF_ROWS=4 :NO_OF_COLS=5
150 LINE_LENGTH=10 : rem eight characters per button
160 WIDTH=xgraphic(LINE_LENGTH) :rem width of button in
pixels

170 HEIGHT=8 : rem height of button in pixels
180 rem draw dialogue boxes and install zones

190 for ROW=0 to NO_OF_ROWS-l
200 for COL=0 to NO_OF_COLS-l
210 Z_NUMBER=ROW*NO_OF_COLS+COL+l : rem get zone number
220 rem Calculate position of zone

230 SWITCH(Z_NUMBER,0)=ROW*WIDTH+XPOS :
SWITCH(Z_NUMBER,1)=COL*HEIGHT+YPOS

240 SWITCH(Z_NUMBER,2) = (ROW+1)*WIDTH+XPOS-l :
SWITCH(Z_NUMBER,3)=(COL+1)*HEIGHT+YPOS

250 rem read word's name, it's type (verb, noun or string) and

it' s word number

260 read WRD$(Z_NUMBER),TYPE(Z_NUMBER),MEANING(Z_NUMBER)

270 rem print out text for the various buttons
280 locate ROW*LINE_LENGTH+l,COL+ytext (YPOS+1) :print
WRD$(Z_NUMBER)
290 rem draw a box around the text

300 box SWITCH(Z_NUMBER,0),SWITCH(Z_NUMBER,1) to
SWITCH(Z_NUMBER,2),SWITCH(Z_NUMBER,3)
310 rem set up screen zone

320 set zone

Z_NUMBER,SWITCH(Z_NUMBER,0),SWITCH(Z_NUMBER,1) to
SWITCH(Z_NUMBER,2),SWITCH(Z_NUMBER,3)
330 next COL

340 next ROW : return

350 rem check zone

360 Z=zone (0) : if Z=0 or mouse key=0 then return

370 gosub 440 : rem invert

380 rem display chosen word

390 if TYPE (Z)=NOUN then locate 0,5 : print space$ (39) :

locate 0,5 : print "Noun number ";MEANING(Z)

400 if TYPE (Z)=VERB then locate 0,5 : print space$ (39) :

locate 0,5 : print "Verb number "/MEANING (Z)

410 if TYPE (Z)=EXIT then locate 0,5 : print space$ (39) :

locate 0,5 : print "Direction number "/MEANING (Z)

420 wait 10 : gosub 440

430 return

440 rem Invert a box

154

450 wait 5 : gr writing 3 : ink 1 : bar
SWITCH(Z,0),SWITCH(Z,l) to SWITCH(Z,2),SWITCH(Z,3) : gr

writing 1 : return

460 rem define words making up the control panel

470 rem actions

480 data " Get ",VERB,1," Drop" ,VERB, 2, " Look", VERB, 3, "

Say",VERB,4

490 data " Attack",VERB,5, " Throw",VERB,6,"

Drink", VERB, 7," Eat", VERB, 8

50 0 data " Search", VERB, 9, " Feel", VERB, 10

510 rem objects

520 data " Room", NOUN, 1," Knife ",NOUN,2," Wine", NOUN, 3,"

Cat ",NOUN,4

530 data " Letter",NOUN,5

540 rem directions

550 data " North",EXIT, 1, " South",EXIT,2," East",EXIT,3,"

West",EXIT,4,"Up",EXIT,5

Another idea might be to use the STOS sprites to provide a graphical representation
of the objects found in the current location. These could be displayed over a
background screen produced from NEOCHROME or DEGAS. The user could then
pick up or drop objects directly from the screen using the mouse pointer. This could
be implemented using the COLLIDE function to check for a collision between the
mouse cursor and the relevant sprite.

6.8 The rooms

Every room in the adventure needs to be lovingly portrayed in a considerable amount
of detail. Normally, each room will have two separate descriptions. The long
description will be displayed the first time the player enters the room, and whenever
the LOOK or DESCRIBE commands are entered.

There will also be a shorter description which will be printed on any subsequent
visits.

6.8.1 The long room description

This is a complete word picture of the current room which includes vital information
needed to solve the adventure, whilst still stimulating the player's imagination. It is
vital that you provide the players with enough information to be able to completely
visualise the room, as this will encourage the feeling that they are actually
experiencing the adventure. As I mentioned earlier, this is often achieved by packing
your description with plenty of adjectives and adverbs. Look at the following
portrayal of two identical rooms.

1 You are in a thirtyfeet high chamber. There are exits to the chamber to the east
via a canyon and to the west througha small passage. A bird is singing.

155

2 You are in a splendid chamber thirty feet high. The walls are frozen rivers of
orange stone. An awkward canyon and a good passage exit from the east and west
sides of the chamber. A cheerful little birdis sitting there singing.

The second piece of text is taken directly from the original Colossal cave adventure.
Maybe the quality of some of the English is rather strained, but there's no doubt
about which of the two descriptions is the more atmospheric.

Another thing to consider is humour. Used sparingly, this can add a nice element of
fun to the adventure. But don't be too heavy handed about this. Repeated and
unnecessary sarcasm can get very irritating after a while, and there's nothing so
unfunny as a really bad joke. Unless you regard yourself as the next Douglas Adams,
it's risky to try to base your game totally around humour. On the other hand, if you
have a really terrific idea, maybe it's worth the risk.

6.8.2 The short room description

This is a one line summary of the current location. It is used to briefly describe a
room which the player has already seen. The room in the previous example could
have a short description like:

SPLENDID CHAMBER

6.8.3 Storing the room descriptions

Once you have written out the descriptions for each room, you will need to enter
them in the ST's memory. Each room in your adventure will be assigned an
individual identification number. I'll be showing you shordy how this number can be
used to print out the descriptions as the player enters a room.

There will also be a STATUS array which will hold the list of rooms which has been
visited by the player. This will be used to choose between the short or long room
descriptions.

Whenever a room is entered, the relevant numbers in the array can be set to one.
Your program can now automatically select the required mode with just a single test,
e.g.

if STATUS (ROOM) =0 then print long$ else print small$

As with many aspects of games programming, there are literally dozens of possible
storage strategies.

Here are a few ideas.

1 Store each description in a string array. This could be defined using a line like:

10 dimdesc$ (100) ,sum$(100)

156

These strings can be loaded during initialisation, either from a file on the disk or
from a list of data statements in your program. The appropriate descriptions could
then be printed out using a line like:

1000 print desc$ (current_room)

In practice there are a couple of inherent problems with this approach. If you load
your descriptions from the disk, then you will be forced edit the appropriate file
from outside STOS Basic in order to change a single line of your text.

So it's very hard to modify your adventure once you have created the original data
file. Alternatively, if you store the description as a list of data statements, then you
will be permanently stuck with two separate copies of your text in the ST's
memory.

2 Access the descriptions directly from a set of DATA statements. Providing you
arrange the data statements used for each location to starta specific distance apart,
you can print out yourroom descriptions with the following code.

1000 restore 30000+100*current_room: read D$:printD$

This works by assuming that the line numbers containing the data for each successive
room descriptions always are exactly 100 units apart, starting from line 30000,e.g.

30000 data "rooml"

30100 data "room 2"

You could also store all the short descriptions using the exactly the same system.
These might be placed in the data statements from lines 40000 onwards.

The appeal of this second technique is that it makes it extremely easy to edit the room
descriptions using the standard STOS Basic editor. Furthermore, this system is ideal
for magazine publication, as it's possible to input the adventure directly from a
printed page.

On the other hand, the first method is much faster, and can be recommended if you
wish to sell your game commercially.

6.8.4 Displaying your descriptions

The STOS Basic windowing system allows you to divide up the game screen
effortlessly between text and graphics. It also lets you create custom designed
character sets for use with your adventure. These can be produced using the FONT
definer program supplied with the STOS Basic package.

Here is a small example which illustrates this technique. Insert the STOS accessories
disk into drive A and load a set with:

157

load "font2 .mbk"

10 rem Using windows .

15 rem Open a window using the character set

20 remSee page 164 of the STOS manual for a full explanation
30 windopen 1,1,1,39,20,0,4
40 window 1: rem Activate window

50 home

60 print "Enter some text >";a$

70 if a$<>"" then 60

8 0 default

It's important to restrict the number of windows on the screen to the absolute
minimum needed by the game. If you try to pack too much information onto the
screen at once, the user will end up totally confused.

The prime consideration when designing a font should always be readability. It's
ridiculous wasting your time and effort to create a fancy character set which is
difficult for the player to actually read.

6.8.5 Moving between rooms

So far, I haven't included any mechanism to allow the player to move between the
various rooms. Generally, this will be implemented by creating a map in memory of
the connections between each room in the adventure. This map will contain a list of
all the rooms which are accessible from a given location.

Supposing you had defined eight possible movement directions in your adventure.
Each direction would be associated with a number. North might be represented by
direction number one, south by direction two, etc.

You could now store the entire map in an array like:

dim map (no_of_locations, 8)

After this array had been initialised, you could then find the result of moving the
player's character in any direction simply by checking one of the elements in MAP.
This element would be set to either zero (for no exit) or to the number of the room
which could be reached in the chosen direction, e.g.

1000 exit=map(room,direction) :if exit=0 then print "You
can't go that way" else room=exit

The map array will require 32 bytes for each room in your adventure. Unfortunately,
most of this space will be completely wasted, as few locations have the maximum of
eight different exits.

If your adventure is really large, it's possible to reduce some of this overhead by only
holding the exits from thecurrent room in your map array. The rest of themap can be

158

held in a similar way to the room descriptions, either in a the form of a data
statements or on a file on the disk.

This simplified system is much slower than the first approach because the map needs
to be updated constantly after the player's movements. It can, however, save your
program a great deal of memory.

The easiest way to understand about these maps is to create one yourself. So I'll
demonstrate the process with a litde worked example. Look at the map in Figure 6.5
on the next page.

Webegin by defining the listof allowable directions in ouradventure.

Direction Identifier
north 1

south 2

east 3

west 4

north east 5

north west 6

south east 7

south west 8

We will now produce the connection list for Figure 6.5. Each location will be
associated with several pairsof numbers. The first number will represent an allowable
movement direction, and the second will indicate a room that can be reached in that
direction.

After a few minutes work, you shouldbe left with the following table of numbers:

Table 6.1 Typical Connection list

Location Name Connections

1 Bridge 1,4 4,2 3,3 2,6 7,5

2 Airlock 3,1

3 Rec Area 4,1

4 Obs Deck 2,1

5 Quarters 8,1 4,6

6 Gangway 2,7 1,1 3,5

7 Engine room 1,6

The obvious problem with this type of list is that it is impossible to read directly.
This would cause you serious difficulties when you were entering the map definitions,
as it would be disconcertingly easy to make a mistake. It would also be very hard to
extend your adventure once it had been written. Luckily, there's a really neat way of
entering this data into thecomputer which cansimplify your table enormously.

159

2

Airlock

Figure 6.5 A typical room map

(4 '
Obs deck

v

(1
Bridge

r 6 ^

Gangway

7

Engine room
>

f 3 *
Rec area

\
r 5 ^

Quarters

You start off by defining a list of constants for the various possible directions at the
beginning of your program, e.g.

50 n=l:s=2:e=3:w=4:ne=5:nw=6:se=7:sw=8

You can now type theentire table directiy into thecomputer in the following way:

50000 data N, 4, W,2,E,3,S,6, SE,5:rem room 1
50001 data E, 1: rem room 2

50002 data W, 1: rem room 3

50 003 data S, 1: rem room 4

50004 data NW, 1,W, 6:rem room 5

500 05 data S,7,N, l,E,5:rem room 6

50006 data N, 6:rem room 7

As you can see, this data is much easier on the eye. If you subsequendy wanted to
connect room five to room three, you could now modify lines 50001 and 50002 to
something like:

160

50002 data W, 1, S, 5 :rem room 3

50004 data NW, 1, W, 6,N, 3 :rem room 5

Note that if you need to encrypt this data prior to publication in a magazine, you can
replace these constants with the actual numbers using a series of CHANGE
instructions from the editor, e.g.

CHANGE "N, " to "1, " :rem the comma avoids confusion with

CHANGE "S," to "2, ": rem variables like NOTICE

Certain adventures also allow the player to move in unusual directions such as IN or
OUT. Instead of defining a whole new direction for just a couple of locations, it's
normally advisable to interpret these directions using the local command system I will
be showing you a litde later.

6.9 The objects

6.9.1 Choosing the objects

The next step in the creation of your game, is to decide on the nature and position of
the objects you will be including in your adventure. These form the tools which will
be used by the player to solve the puzzles, and survive the cunning traps you are
eagerly preparing for the adventure.

It's important to realise that when I'm referring to an object, I'm actually talking
about a vast range of possible entities. For the purposes of my discussion, an object
can be treated as literally anything that can be manipulated by the player. Some
objects can be picked up and examined, but others are much more intangible. Here is
a list of the common objects which can be found in an adventure:

keys Can be used to unlock doors
doors Doors may be opened
holes May be fallen into, or just looked in!
spells Cannot be examined or picked up but may be CAST
buttons Which can be pressed
red herrings Intended simply to waste the player's time.

Whilst you are choosing your objects it's a good idea to jot down a few of the
possible verbs which could be used to manipulate them. This will prove very helpful
when you finally start generating the list of words required for the parser.

Each object in your adventure will be assigned it's own unique identification number.
This will be used to refer to the object in the program. When you are starting your
adventure, it's best to assign these numbers to a list of constants. This allows you to
refer to an object directly, without having to look up its number in a table, e.g.

161

10000 CARROT=l: rem carrot is object 1

10010 WATCH=2 :rem watch is object 2

You can now test for the presence of the carrot using a like like:

if NOUN=CARROT then print "What' s up doc !"

6.9.2 The current location

In order to manage the objects in your adventure successfully, it's necessary to store a
number of pieces of information. These include:

The current location. This is simply the room number where the object can be
currently found. It is normally stored in a location array as follows.

1010 DIM OBJECT_LOC (1000):rem Where there are a maximum of
1000 objects.

Depending on the nature of your adventure, there will usually be several special
locations:

Uncreated The object has yet to be discovered or created in the
adventure. It is effectively in limbo until your program
assigns it to a specific location

Carried The object is carried by the player

Worn This means that the object is currently worn by the
character.

Part The object is part of another object. It cannot therefore be
manipulated directly

These locations can be assigned numbers outside the allowable range of locations.

Depending on the nature of your adventure, there may well be other special locations
which I haven't mentioned. So don't feel inhibited about extending these definitions
to fit the needs of your adventure precisely.

Not all of the objects in your adventure can be carried by the character. You therefore
need to treat any immovable objects separately in your program. One idea, is to
define an array to store the weight of every object which appears in the adventure.
Alternatively, you can use some sort of coding scheme to distinguish movable from
fixed objects.

It's also important to have some way of storing the text which describes how each
object will be seen by the player. Since these descriptions are usually rather short, it's
easiest to keep them in an normal array, for example:

dimobject$ (1000)

162

Finally, there is the ITEM array which I mentioned earlier. This holds the object
number which is associated with any particular word. It is used to convert a raw word
number into a reference to a specific object in the adventure.

6.9.3 The inventory

When the character moves through the adventure, any objects being carried will need
to be moved accordingly. This can be accomplished the storing the identification
numbers of the required objects in an array.

dim INV (20)

The size of this array determines the maximum number of objects that can be carried
by the player. This inventory can be printed out at any time using the following code:

Example 6.6 Inventory command

4000 rem INVENTORY

4001APPARENT=0 : print "You are carrying"

4002 if CARRIED=0 then print "nothing" : return

4005 for 1=1 to 20

4010 0=INV(I) : rem Get object number carried

4011 rem if object is carried then describe object

4015 if OBJECT_LOC (O) =CARRY then print OBJECT$ (O) :
APPARENT=1

4016 next I : if APPARENT=0 then print "nothing"

4017print

4020return

6.10 Handling the events

All the events in your adventure will be controlled through a set of variables known
as flags. Flags store all the various pieces of information needed to determine the
outcome of an event, or the fulfilment of a condition.

Here are a few examples of how these flags might be used in practice:

SAFE_OPEN Set to 1 if the safe was open, otherwise 0.
ALIVE Set to 0 if the player is killed. Normally 1.
TORCH Stores the number of turns the current torch will last.

HUNGER Set when the player is hungry.

It's theoretically possible to store these flags using normal Basic variables. Were you
to attempt this approach in reality, you would be forced to save each variable by
name during your SAVE game option. This would be unbelievably tedious, and it
would be easy to miss out an essential variable from the list during development. It is

163

much safer to hold the main variables in a single array. This could be defined from
your Basic programs as follows:

dimv(lOOO)

You could now refer to each flag using the index; then the FOOD flag might
correspond to V(l), the TORCH flag to V(2), etc.

You can simplify this notation considerably by substituting a previously defined basic
variable for some of these numbers. This clarifies your program by allowing you to
refer to the flags using an actual name, eg.

v (torch)=10: rem torch=l

Each of these variables would need to be defined separately during the initiaUsation
process:

10000 torch=l:safe_open=2:alive=3:hunger=4

You could later remove these variables using the STOS CHANGE command. This
would stop an unscrupulous player searching through the program text for hints.

As I stated earlier, the possible events which can happen to the adventurer can be
divided into three different categories:

• High priority - Performed at the start of the control loop.

• Low priority - Executed at the end of the control loop.

• Local - Local to a specific room.

Here is a simple example of how a high priority event could be implemented:

5000rem DEATH

5010if v (alive) =1 then return: rem Player' s character is

alive

5015rem If character dies, jump out of routine

5020pop:goto 20000 :rem Another Game?

The "alive" flag might be set by a global event as follows:

60 00 rem HUNGER

6010dec v (hunger)

602 0if v (hunger) <0 then print "I'm Hungry" :v (hunger) =0

6030if v (hunger) <-5 then print "I'm starving"

6040if v (hunger) <-10 then print "If I don't eat something

soon I'11 probably die !"

6050if v (hunger) <-15 then "I've starved to DEATH! " :

v(alive)=0

6060return

164

Remember that the only essential difference between a high priority event and a low
priority event is the order they are executed in the program. Otherwise, the
programming techniques required to generate them are exactly the same. Both events
can be implemented directly in your program as part of the main control loop.

Local events are best dealt with by assigning a separate subroutine to each location in
the adventure. These subroutines will normally also include the program statements
needed to interpret any local commands.

Here's a typical local event:

10000 rem Local event

10010 rem The pit

10015 rem leg and fallen are variables defined
10016 rem during initialisation

10020 ifv (fallen) =1 then return: rem player already fallen

10030 v (fallen) =1:? "Arrgh! I've fallen down a pit! "

10040 If v(leg) =0 then ? "I think I've broken my leg! " else

"My leg really hurts"

10050 v (leg) =v (leg) +1: return: rem Break a leg

Alongside this routine, there would need to be a global event called OUTSIDE, which
reset v(fallen) to zero if the player had managed work out some way of escaping from
the pit.

6.11 Acting on the user's commands
In order for an adventure to work, there has to be some way of interpreting the
player's commands, and choosing the relevant action. I've already shown you how
you can convert these instructions into a numerical format using the parser. Assuming
the VPN system from Example 6.3, the following information will be available to
your interpretation routines.

VERB Contains the number of the verb which has been input by
the user

NOUN(l) First noun
NOUN(2) Second noun. 0 if it doesn't exist
PREP Preposition
D Direction number. This is set to zero if the user hasn't

entered a direction.

COUNT Number of words in the line

6.11.1 Global commands

Global commands may be entered at any point in the adventure. Each global
command is executed using a single STOS Basic subroutine. GET, and DROP are
typical of these global commands. Here are their definitions:

165

Example 6.7 GET andDROP

4025remGET

4030if NOUN (1)=ALL then gosub 4150 : return

4035 rem GET object

40 40 OBJECT=NOUN (1) : rem Get object number

4045 if OBJECT_LOC (OBJECT)<0 then ? "You can't pickup
";OBJECT$(OBJECT) : return

4050 if OBJECT_LOC (OBJECT)=CARRY then ? "But you are already
carrying ";OBJECT$ (OBJECT) : return

4055 if OBJECT_LOC (OBJECT)=WEAR then ? "You' 11 need to
remove it first" : return

4060 if OBJECT_LOC (OBJECT) =0 then ? "But there isn't a

*';WRD$(2) ;" here" : return

4065 if OBJECT_LOC (OBJECT) OROOM then ? "I can't see
";OBJECT$(OBJECT) : return

407 0 rem Object is really here

4075 inc CARRIED : rem increase number of items carried

4080 if CARRIED>20 then print "It' s too heavy" : return

4085 rem Get object

4090 print "You picked up ";OBJECT$(OBJECT) : return

4090 if NOUN(l)=ALL then gosub 4170 : return

If you examine this example carefully, you will probably be wondering why I
bothered to sort the INV array at line 5080. This is necessary to allow you to search
through it using the MATCH command

410 0 rem Drop

4105OBJECT=NOUN(l) : rem Get object number

41100=match(INV(0),OBJECT)

4112 if O<0 then print "But you don't have a ";WRD$ (2) :

return

4115 rem Object is really carried

4120 rem Object worn

4125 if OBJECT_LOC (OBJECT) =WEAR then ? "You' 11 have to
remove";OBJECT$(OBJECT);"first" : return

4130 INV (O)=0 : rem Set item to zero

4135 rem Sort inventory and push the current item to the

4140 sort INV(0) : dec CARRIED

4144 ? "You dropped ";OBJECT$ (OBJECT) :

OBJECT_LOC(OBJECT)=ROOM
4145 return

415 0 rem GET ALL

4150APPARENT=0

4155 for 1=1 to NO OF OBJECTS

166

4160 if abs(OBJECT_LOC (i))+ROOMthenNOUN(1) =i :gosub 4035
: APPARENT=1

4165 next I

4166 if APPARENT=0 then print "There' s nothing here !"

4167 return

417 0 rem DROP ALL

4175 for 1=1 to 20

418 0 if INV(I)<>0 then NOUN (1)=INV (I) : gosub 4100

4185 next I : return

The standard way of calling a global command is to load an array with the locations
of the various subroutines. You can now execute all global commands using a single
line:

IF GLOBAL (VERB) then gosub GLOBAL (VERB)

Obviously you would need to remember that the GLOBAL array would need to be
defined at the start of your program.

Finally, I'll provide you with a LOOK command which prints out a description of the
current room:

Example 6.8 LOOK

7000remLOOK

7005 rem G is a flag set to 1 when the use types LOOK
7006 rem But when the routine is called automatically G=0

7010 if V (VERBOSE) <>1 and STATUS (ROOM) =1 and GO1 then

restore 40000+ROOM-l : readD$: print D$: return

7015 rem long description

7020 restore 30000+100* (ROOM-1) : read DS : for L=l to DS :

read D$: print D$: next L : STATUS (ROOM) =1

7030 for 1=1 to NO_OF_OBJECTS
7040 if abs (OBJECT_LOC (I))=ROOM then ? "There is
";OBJECT$(I)

7050 next I : return

6.11.2 Local commands

Some commands only make sense when the adventurer is occupying a specific
location. A safe, for instance, can only be opened if the player is actually standing in
front of it.

It's simplest to use the same subroutine to handle both local events and commands.
This reduces the complexity of your program by performing all local operations in
one place. Each location in your adventure will have its own individual routine. The
starts of these routines will be held in an array like the GLOBAL array I showed you
earlier.

167

You can now call up any local commands at the current room using a line in the
control loop like:

if LOCAL (ROOM) then gosub LOCAL (ROOM)

Where LOCAL is assumed to have been defined during your programs initialisation
section.

Note that this instruction includes an allowance for the fact that not all rooms need

individual handler routines. It only tries to execute a subroutine if the appropriate
element has been loaded into the local array. This enables you to pad out your
adventure with many similar rooms without having to write a specific subroutine for
each new location.

Remember that the local events are usually controlled using flags, and that commands
are interpreted using the variables VERB, NOUN, and PREP. Here is an example of
one these routines:

11000 remAirlock

11005 rem open, spacesuit, air, out, go, door, alive

11006 rem are variables defined earlier

11010 if verb=open and (noun (1)=d00r or noun (1)=lock) then

v(air)=l:v(d00r)=l

11020 if v (air) =1 and v (spacesuit) =0 then ? "The air rushes

out of the airlock leaving you to die horribly. " :? "You' 11

never destroy that koala now! ":v (alive) =1: return

11035 if v (air) =1 and v (dOOr) =1 then "The door opens

smoothly. There is a meteor outside" :v(door) =0 :return

11040 if v (air) and verb=out or (verb=go and noun (1)=out

then room=5 :return :rem move out

11045 return

6.11.3 System commands

System commands provide the user with the ability to interact directly with the
program. Common system commands are LOAD, SAVE and VERBOSE. Here are a
few useful definitions for your game:

170 rem call high priority event routines here

185 gosub 1000 : rem split up words

18 6 rem Check for system command

187 X=instr (SYS$,WRD$ (1)) : rem search through list

188 if X=0 then 200 : rem word not found

189 X=X/6+l : rem get command number

190 on X gosub 8070, 8000, 8140, 8200, 4000 :rem jump to routine
200 rem call low priority events here

30 0 return

168

Example 6.9 SAVE,LOAD, and VERBOSE

800 0rem Save game

8005F$=file select$("*.ADV","Save an adventure")

8010if F$="" then print "Save game aborted" : return

8011if len (F$) <4 then boom : goto 8005

8015if right$ (F$,4) <>" .ADV" then boom : goto 8005

8020open out #1,F$

8025rem save position and status

8030print #l,ROOM : print #1,SCRE

8035remsave flags

8040for 1=0 to NO_OF_FLAGS : ? #1,V(I) : next I
8045remsave object locations
8050for 1=0 to NO_OF_OBJECTS : ? #1,OBJECT_LOC (I) : next I
8065print "Ok" : close #1 : return : rem that's all

807 0 rem Load game

8075F$=file select$ ("* .ADV", "Load a game")

8080 if F$="" then print "Loading aborted" : return

8081 if len(F$)<4 then boom : goto 8075

8085 if right$ (F$, 4)<>" .ADV" then boom : goto 8075

8090 open in #1,F$

8095 rem load position and status

810 0 input #l,ROOM : input #1,SCRE

8105 rem load flags

8110 for 1=0 to NO_OF_FLAGS : input #1,V(I) : next I
8115 rem load object locations

8116CARRIED=0

8117 for 1=0 to 20 : INV(I) =0 : next I : rem zero inventory '
8120for 1=0 to NO_OF_OBJECTS :input #1,OBJECT_LOC(I)
812 5 rem load inventory

8130 if OBJECT_LOC(I)=CARRY then INV(CARRIED)=1 : inc
CARRIED

8135next I : sort INV(0) : print "Ok" : close #1 : return
8140 rem Quit

8145 input "are you sure (Y,N)";A$

8150 if A$<>"Y" and A$<>"y" then return

8155 print "You scored ";SCRE;" points" :pop : stop
82 0 0 rem verbose

8210V(VERBOSE)=not(V(VERBOSE))

8220 if V (VERBOSE) =0 then ? "Verbose off" else ? "Verbose on"

8230 return

6.11.4 Movement commands

The movement commands allow the player to move through the various locations in
the adventure. Depending on the storage strategy you have chosen, a list of the

169

possible exits will be found either in the MAP array or on the appropriate data
statements in the program.

You can now interpret the player's movements using a routine such as:

30 0 0 rem Move

3040 if MAP (ROOM,D)<>0 then ROOM=MAP (ROOM,D) :DONE=l else
print "You can't go that way"
3050 return

6.12 Conclusions

If like me, you're a fan of adventures, it's well worth the effort involved to write one
of your own. You'll probably find that the process of creating an adventure is actually
even more fun than playing someone else's.

I've already provided you with all the elements you need to generate your own
adventure in a matter of hours. Many of these routines compare favourably with those
included in dedicated adventure creators costing over thirty pounds. So there's now
no reason why you can't produce a perfectly commercial adventure directly within
STOS Basic. After all, it's not often you get a perfectly legitimate chance to play
God!

170

3D Techniques

7.1 Introduction

One day in the not-too-distant future, it's possible that we will be able to play our
computer games using some sort of three-dimensional "holographic" display.
Despite decades of accumulated research on this project however, the immediate
prospects for such a development look depressingly bleak. This causes a severe
difficulty for anyone trying to write a flight simulator game for the Atari ST. These
games need to capture the illusion of movement through three-dimensional space.
How can we possibility generate this type of display on a flat computer screen?

Fortunately for us, computer scientists have had to live with this problem for a long
time, and have developed a vast repertoire of potent solutions to most of the more
pressing requirements. These enable the skilled programmer to produce a good visual
representation of any three-dimensional object on a standard display.

The amount of material which has been amassed on this subject is literally awesome,
and a comprehensive explanation of the entire field could easily take up several books
in its own right. Furthermore, much of the available information is highly technical
and would prove unpalatable to the vast majority of potential readers.

I'll therefore restrict myself to a brief discussion of some of the more important
concepts, without worrying about any of the complicated technical details. The
intention is to concentrate on the practical aspects of the subject, giving only a
cursory explanation of the complex mathematics required for a complete understand
ing. If you wish to explore the subject in more depth, I can recommend Uwe Braun's
in depth analysis of the subject in "3D Graphics techniques on the ST" (see
Bibliography).

7.2 Creating an object in 3D

7.2.1 Coordinate systems

Coordinate systems allow you to produce a complete description of the position and
size of any object in three-dimensional space using a simple list of numbers.

171

The position of an object is represented using three numbers, which roughly
correspond to the grid references of a map.

All measurements are taken from an arbitrary reference point known as the origin.
The distances from the origin to the object are taken in three directions which are at
right angles to one another. These directions are normally indicated using the letters
X,Y, and Z.

Think of the coordinates in terms of a map. The Y value specifies the distance of the
object from the ground, and the Z and X values measure the distances in the
directions north/south and east/west respectively. Depending on the scale of the map,
the units used for the coordinates can be anything from an inch to a light year.

+x

Figure 7.1 The position of a single point in 3D

The scale of these units can be set independently for each of the three directions. So
you could measure the height of an object in units of a thousand feet, but its
horizontal coordinates in miles.

You can also arbitrarily choose the directions in which the measurements will be
taken. These directions would usually be selected during the planning stages of your
game to simplify your calculations as much as possible. It's common practice to obey
the following conventions:

• X values to the right of the origin are considered to be positive and distances to the
left are treated as negative.

• Positive values of Y usually measure a point which is above the origin, with
negative values being reserved for the points below.

G There is no fixed rule for the measurement of the Z-coordinate. For the purposes of
my discussion, the Z-axis will form a line at right angles to your TV screen

172

pointing inwards. So a positive value will represent a point behind the screen, and
a negative value a point in front of it.

Since I'm intending to use the screen as a window to an imaginary game world, I'll
only be dealing with objects occurring on the far side of the screen. The
Z-coordinates of these objects will therefore always be positive.

The example in Figure 7.1 only dealt with a single point, but it's perfectly feasible to
represent infinitely more complicated objects using exactly the same system. Each
corner point in the object is specified using its own individual set of three
coordinates.

Take the pyramid in Figure 7.2. This has five comers labelled A to E. A typical set of
coordinates for this pyramid would be:

Corner X F Z

A 0 10 0

B 0 0 5

C 5 0 0

D 0 0 -5

E -5 0 0

-X

Figure 7.2 A simple 3D pyramid

173

+x

These coordinates are usually abbreviated to a list of numbers enclosed between
curved brackets. The standard format is:

(X,Y,Z)

So the coordinates describing the points of the pyramid could be represented as
simply:

(0,10,0),(0,0,5),(5,0,0),(0,0;-5),(-5,0,0).

7.3 General techniques

I'll now briefly discuss a couple of general techniques which can be used to
manipulate these sets of coordinates. These will form the groundwork for many of the
3D graphics routines I will be introducing in this chapter.

7.3.1 Moving the origin

As I've said before, the origin of your coordinates is completely arbitrary. You can
change this reference point at any time, without affecting the relationships between
any of the points which make up your object. This can be done using a process
known as transformation. All transformations can be accomplished using the
following stages:

1 Find the distances between the old origin and the new one in each of the three
directions.

2 Subtract these distances from the appropriate values of every point you have
defined in your coordinate system.

It's easiest to demonstrate this technique with an example. Look at the triangle in
Figure 7.3 on the next page. This has been subjected to a transformation of the origin
from (0,0,0) to (0,100,0). Before the transformation was performed, the coordinates of
the points A and B were (50,50,0) and (100,50,0) respectively.

These coordinates have now been transformed into:

A=(50-0,50-100,0-0)=(50,-50,0)

B=(100-0,50-100,0-0)=(100,-50,0)

Note that although the coordinates may have changed, the distances between any two
points such as A and B are remain exacdy the same. The transformation hasn't
actually moved anything. It's merely changed the reference point used for the
measurement of the coordinates.

174

X2

Figure 73 Transformation of coordinates

7.3.2 Scaling an object

Scaling is a simple process which allows you to enlarge or reduce the size of an
object. This can be done by multiplying the coordinates by a known as a scaling
factor. If the absolute value of this number is greater than one then distances between
the various points in the object will expand. This will lead to an increase in the size
of the object. Similarly, a scaling factor which lies in the range between zero and one,
will produce a reduction effect.

Figure 7.4 on the next page shows the result of scaling a pyramid by a factor of two.
After the scaling operation, the coordinates would be changed as follows:

Old coordinates:

(0,10,0),(0,0,5),(5,0,0),(0,0,-5),(-5,0,0)

New coordinates:

(0,20,0),(0,0,10),(10,0,0),(0,0,-10),(-10,0,0).

175

-X

Figure 7.4 Scaling a pyramid

You could now reduce this pyramid back to its original size by multiplying it by a
scaling factor of 0.5.

The example in Figure 7.4 was centred on the origin. If you were to scale an object
some distance away from this point, the object would appear to jump away from the
centre. Far from being an annoyance, this feature, shown in Figure 7.5 on the next
page, is actually useful, because it forms the basis of the perspective calculations I
will be discussing presendy.

If you want to avoid this movement, you need to transform the coordinates of the
origin to the centre point of the object before you perform the scaling operation. You
can then scale your object as required, and reverse the process to move it back to its
original starting point. This results in the object changing in size, while apparendy
staying fixed in space.

176

+x

A1 (20,20,20)

Figure 7.5 Scaling an object apart from the centre

7.4 Displaying an object in 3D

I'll now show you how some of these techniques can be applied to produce an
accurate representation of a three-dimensional object on your computer screen.

7.4.1 Perspective

The drawing process relies on an effect called perspective, which has been tacitly
understood by artists for centuries. The basic idea can be summarised by the
following rule:

The apparentsize ofan object varies in proportion to its distancefrom the observer.

This means that the further away you are from an object, the smaller it will appear. If
you move twice as close to an object, then the object will seem to double in size. But
as you move away, the object will gradually fade into the horizon.

This fact is of course, intuitively obvious. It's used by our brains to judge the relative
distances of objects in the world around us, and this is an ability which we pick up
during early infancy.

There are however, a number of peculiar side effects. If you look at a
three-dimensional object such as a cube, the face which is further from you will look
slightly smaller than the face which is nearest to your eye. The edges of the cube will

177

therefore apparendy converge somewhere in the centre of your field of vision. Look
at the cube in Figure 7.6 below.

Figure 7.6 Representation of a cube in three dimensions

Because the lines in this figure converge according to the rules of perspective, our
brains automatically assemble it into a realistic three-dimensional cube.

The point at which the horizontal lines in a picture meet is known as the vanishing
point. You can see this convergence more clearly from the parallel railway tracks in
Figure 7.7 on the next page. The vanishing point occurs when the two tracks merge
together into the distance.

Artists have long applied this idea to produce their landscapes and room interiors.
They would start their picture by marking the vanishing point somewhere in the
centre of the canvas. They would then sketch in several lines stretching from the
vanishing point to the edges of the frame. These lines could be used as guidelines for
the perspective effect. Any lines in the picture which were parallel to the ground
(along the Z-axis) could now be drawn by following the guidelines. This would
generate a convincing illusion that the picture was set in a real three-dimensional
world.

Particularly clever artists, like M.C Esher, even played tricks with the rules of
perspective, and painted seemingly sensible pictures which bent reality in strange and
impossible ways. These resulted in the complete confusion of the viewer's sense of
perspective, which were totally mindboggling. Literally. When you examine these
pictures, your brain is unable to cope with the contradictory visual information. It
therefore keeps switching back and forth between several impossible viewpoints. This
is disconcertingly weird.

In order to harness the perspective effect on a computer, it's necessary to condense
some of these ideas into a comprehensive set of mathematical equations. Since the

178

Figure 7.7 The vanishing point

images seen by the eye are focused using an organic lens mechanism, it's possible to
derive these formulae directly from an understanding of the physics of lenses. Rather
than present you with yet another slice of boring O-level physics, I'll limit myself
here the results of these calculations.

The apparent size of an object displayed on a computer screen can be found by the
following equation:

apparent size = real size * perspective factor

The perspective factor is a just multiplier used to change the visible size of the object.
The magnitude of this factor depends on the relationship between the distance of your
eye from the screen, and the total distances between the eye and the object. This is
shown in Figure 7.8 on the next page.

179

TV Screen

Image]Ac S 0
* • -^ •
• 1 »•.

Object

Total Distance of object from eye (T)

Figure 7.8 Perspective

The perspective factor can be computed from the formula:

perspective factor = S/T

Where:

S = The distance from the eye to the screen, and
T = The total distance from the eye to the object

From the diagram in Figure 7.8, it can be seen that T is the distance from the eye to
the screen (S) added to the distance of the object behind the screen (O).

So:

perspective factor = Real size * S/(S+0)

It's vital to realise that the viewing distance S is just an imaginary figure. If S is very
small relative to O, then the image will look unnaturally expanded. The effect of this
is very similar to that of a wide-angle lens on a camera. Conversely, if S is
proportionally large compared to O then the display will seem to be compressed into
the distance.

The number you use for the viewing distance depends only on the effect you want to
create. It does NOT depend on the actual distance of the viewer from the ST's screen.
This will vary according to the user's personal preferences, and is largely irrelevant to
your calculation. Otherwise you would be forced to include a ruler with your game
with instructions to the players to position their heads correcdy. This would be very
silly, although it would certainly provide your players a litde harmless amusement!

If you assume that the centre of the viewing screen lies at the origin of the coordinate
system, and that the positive part of the Z-axis extends directly into the screen, then
the following equations can be derived:

180

X=X*S/(S+Z) Perspective correction for X coord (1)
Y=Y*S/(S+Z) Perspective correction for Y coord (2)

Notes:

1 These equations can be used to convert a set of three game world coordinates into
the X, Y coordinates used by the ST screen. Since the screen is at the origin, the
distance of any point from the screen (O) will be given directly by its Z
coordinate.

2 These equations only stricdy apply if the origin lies at the centre of the screen.
Unfortunately, the ST's drawing operations work using an origin at the top left
hand comer. The formulae therefore need to be modified slightly using the
transformation techniques I showed you earlier.

If your program held the centre point of the screen the variables CX and CY,
equations (1) and (2) can be extended to:

VX=CX+X*S/(S+Z) (3)

The directions of measurement in the Y-axis used by the screen coordinates and the
game coordinates are completely opposite. You can correct for this by multiplying the
Y-coordinates by minus 1. (This is effectively a rotation of 180 degrees. See later)

VY=(Y*S/(S+Z)-CY)*-1

or

VY=CY-Y*S/(S+Z) (4)

VX and VY are the coordinates required by the STOS Basic drawing commands. The
appropriate points can now be plotted directly on the screen using PLOT.

In a computer game, the comer points in the object would be connected with straight
lines. All objects would need to be represented using two arrays. One array would
contain a list of the three game world coordinates for each point. The other array
would hold a list of the lines connecting these comers to form the finished object. I'll
now demonstrate these techniques with an example program:

Example 7.1 3D drawing routine

10 rem Simple 3D drawing routine
2 0 auto back off : rem See optimization techniques in C 1
30 CX#=320/divx : CY#=200/divy : rem get centre of screen
40 OX#=0 : OY#=0 : OZ#=100 : rem Object coords in game world

50 read NP : rem Read number of points in object

60 dim OBJECT*(NP,3),VIEW#(NP,3),VX(NP),VY(NP)

7 0 rem load points

80 for 1=1 to NP

181

90 for J=0 to 2

100 read OBJECT* (I,J)

110 next J : next I

12 0 read NL : rem read number of lines

130 dim LINES (NL, 2) : rem dimension line array
140 for 1=0 to NL-1

150 read LINES(I,0),LINES (1,1)

160 next I

17 0 rem main program

180 input "Viewing distance";S#

190 if S#<1 then print "Viewing distance must be >0 " : goto
180

20 0 input "Ship coordinates X,Y,Z";SX#,SY#, SZ#

210 input "Object coordinates X,Y, Z";OX#, OY#, OZ#

220 if OZ#<50 then print "That' s much too close" : goto 210
230 rem Copy object definition into view array
240 for 1=1 to NP

250 VIEW* (1,0)=OBJECT# (1,0) +OX#-SX# :rem transform origin
2 60 VIEW* (I, 1)=OBJECT# (I, 1)+OY#-SY# :rem to screen centre

270 VIEW*(1,2)=OBJECT#(1,2)+OZ#-SZ#

280 next I

290 rem calculate perspective

300 for P=l to NP

310O#=VIEW#(P,2) : rem get Z coordinate of point

320PERS#=S#/(S#+0#) : rem get perspective factor
330VX(P)=CX#+VIEW#(P,0) *PERS# : rem Get screen coordinates

340 VY(P)=CY#-VIEW#(P,1)*PERS#

350 next P

360 rem Draw lines

370 els physic : els back

380 hide on

390 for 1=0 to NL-1

400 rem get starting ending points of line

410X1=VX(LINES(1,0)) : X2=VX(LINES(1,1))

415 Y1=VY(LINES(I,0)) : Y2=VY(LINES(I,1))

420 draw XI, Yl to X2,Y2 : rem draw line

430 next I

440 screen copy physic to back : show on

450 goto 180

700 rem define corner points of a cube

705 rem This can be changed for any other object
706 rem number of coordinates in the object
710 data 8

715 rem corner point 1

720data-50,-50,50

725 rem corner point 2

182

730data 50,-50,50

740data 50,-50,-50

750data-50,-50,-50

760data-50,50,50

770data 50,50,50

780data 50,50,-50

790data-50,50,-50

800 rem define the connecting lines

805 rem Number of lines in the figure

810 data 12

812 rem pairs of points to be connected

820 datal,2,2,3,3,4,4,1,5,6,6,7,7,8,8,5, 8, 4, 7, 3, 6,2,5,1

Since this program is rather complicated, it's worth spending a litde time explaining
some of the various features.

On startup you will be asked to input the viewing distance S. This is needed by the
perspective calculations. A good value to start with is about a hundred. Try playing
with larger or smaller viewing distances to see the effects.

The program makes use of four separate coordinate systems. One set is held in the
OBJECT array, and contains a list of coordinates measured relative to the centre point
of the object. The OBJECT coordinates enable you to define an object without having
to worry about its eventual position in space. It also allows you to generate several
similar objects from just one set of coordinates. This is very useful for games like
Elite, because it allows you to create a large game world out of a few simple
components.

The second set of coordinates refer to the absolute position of the object in a
three-dimensional map of the game world. These "game world" coordinates are used
by your program to determine the relative positions of several objects in
three-dimensional space. The example program prompts you for the starting
coordinates of both the cockpit and the object. These are entered in the order X,Y,Z
and are loaded into the variables SX#, SY#, SZ# and OX#, OY#, OZ# for the ship
and the object respectively.

Start with a set of coordinates like:

0,0,0 (For the ship)
0,0,50 (For the object)

Keep the value of OZ# greater than fifty, otherwise the program may try drawing the
cube from a viewpoint behind the screen!

Note that to simplify the program, I've been forced to assume that the view port
always points in the positive direction of the Z-axis. I'll be showing you how this can
be changed in the section on 3D rotations.

183

The VIEW array holds a copy of these points after they have been transformed to an
origin at the centre of the cockpit's screen. It's needed as a temporary copy of the
game world for the perspective calculations. You are recommended to recreate the
view coordinates from scratch every time the object is redrawn. This will avoid the
risk of rounding errors in the ST's calculations which can reduce your display to a
hopeless jumble.

Finally, there are the arrays VX and VY which hold the actual screen coordinates.
These hold the list of actual points which will be plotted on the screen after the
perspective calculations have taken place. The starting and ending points of the lines
are held in the LINES array. These lines can be plotted directly using the DRAW
command from STOS Basic.

Summary of the coordinate systems

Object coordinates - These are used to define the size and shape of the objects in
your game.

Game world coordinates - Specifies the position of an object in the game world.

View-port coordinates - These are measured relative to the cockpit's centre and are
needed for the perspective calculations.

Screen coordinates - Hold the final coordinates of the points on the ST's two
dimensional screen after the perspective calculation.

If you play around with this program, you'll probably find that it occasionally
terminates with an "ILLEGAL FUNCTION CALL" error. This is caused by an
attempt to display an object which was too large to fit on the ST's screen. The
solution to this problem is to perform an activity known as clipping.

7.4.2 Clipping

A clipping routine checks whether a line will fit on the screen before drawing it. If
the line is too big, it truncates it to fit in the available space.

Don't be mislead by the STOS Basic CLIP instruction. This is only intended for use
with windows, and has no facilities for handling objects larger the total screen area.

Surprisingly enough, there has been a great deal of research into these clipping
techniques. As the majority of clipping systems are extremely complicated, I'll
restrict myself here to just a brute force approach. If you want to explore more
advanced clipping routines, I can recommend Data Becker's 3D graphics
programming, as it contains a full description of the popular "Cohen and Sutherland"
technique.

The easiest clipping method is to check each coordinate explicitly with an IF THEN
statement. In my previous example, this could be accomplished by the following
code:

184

410 gosub 470 :rem call clipping routine
415 rem Draw line if one or more points lie inside screen

420 if VPX<2 andVPY<2 then drawXl#,Yl# to X2#,Y2#

455 rem note that I've assumed a mode 0 screen

456 rem you' 11 need to change some of the constants

467 rem for other resolutions

460 rem perform clipping

470VPX=0 : VPY=0 :rem Set visible point checks

475 G#=0 :rem set gradient of a line

480 X1#=VX (LINES (1,0)) : X2#=VX (LINES (I, 1)) :rem coords

490Y1#=VY(LINES(1,0)) : Y2#=VY(LINES(I,1)) :rem are REAL

495 rem calculate gradient

500 if X2#-X1#<>0 then G#= (Y2#-Y1#) / (X2#-X1#) else 610

510 if G#=0 then 610

515 rem check whether a point lies outside the screen

516 rem and calculate the intersection point with the screen

520 if X1#<0 then Y1#=Y1#-X1#*G# : X1#=0 : inc VPX

530 if X2#<0 then Y2#=Y2#-X2#*G# : X2#=0 : inc VPX

540 if Xl#>319 thenDX#=Xl#-319 : Xl#=319 : Y1#=Y1#-DX#*G# :

inc VPX

550 if X2#>319 thenDX#=X2#-319 : X2#=319 : Y2#=Y2#-DX#*G# :

inc VPX

560 if Y1#<0 thenXl#=Xl#-Yl#/G# : Y1#=0 : inc VPY

570 if Y2#<0 thenX2#=X2#-Y2#/G# : Y2#=0 : inc VPY

580 if Yl#>199 thenDY#=Yl#-199 : Yl#=199 : X1#=X1#-DY#/G# :

inc VPY

590 if Y2#>199 then DY#=Y2#-199 : Y2#=199 : X2#=X2#-DY#/G# :

inc VPY

600 return

605 rem Gradient = 0 or infinite so line is horizontal or

vertical

610 if X1#<0 then X1#=0 : inc VPX

620 if X2#<0 then X2#=0 : inc VPX

630 if Xl#>319 then Xl#=319 : inc VPX

640 if X2#>319 then X2#=319 : inc VPX

650 if Y1#<0 then Y1#=0 : inc VPY

660 if Y2#<0 then Y2#=0 : inc VPY

670 if Yl#>199 then Yl#=199 : inc VPY

680 if Y2#>199 then Y2#=199 : inc VPY

690 return

As you can see, even a simple-minded approach looks unpleasandy messy when it's
actually implemented! The basic idea of my routine is to check each corner point in
the line to see if it lies on the screen. If the program is dealing with just a simple
vertical or horizontal line, this can be safely truncated at the edge of the screen.

185

For other lines your program is required to calculate the coordinates of the point
where the line overruns the ST's screen. This can be performed by getting the slope
of the line using the equation of a straight line:

Slope = (Y2-Y1)/(X2-X1)

It is now possible to compute the required intersection point needed by your routine.
The result is by no means perfect, but the routine does produce an acceptable effect in
the majority of cases, without the overhead of a really fancy clipping algorithm.
Suffice it to say,you may make full useof this routine in your own programs.

The variable VPX holds the number of X coordinates in the line which have been
clipped, and VPY holds the number of Y coordinates. If either VPX or VPY is
greater than 2, both the starting point and the ending point of the line will lie outside
the screen. In this case, it's safe to ignore the line completely.

7.5 3D rotation

Most flight simulators require you to fly an aeroplane through a comphcated series of
manceuvers in the game world. The attitude of the craft is often controlled using the
joystick. As the joystick is pulled back, the angle of flight will be altered accordingly.

7.5.1 Rotation directions

When dealing with these angles, it's common practice to measureall rotations parallel
to one of the three axes. Rotations in an anti-clockwise direction are considered
positive, and clockwise rotations are negative.

+Y

+X

Figure 7.9 Rotation directions

186

If the ST's joystick is pulled up or down, then the heading will usually be rotated
parallel to the X-axis. The effect of moving the joystick to the left/right direction will
however, vary from game to game. Sometimes it controls the heading parallel to the
Z-axis, and other times it changes thecurrent heading along the Y-axis.

7.5.2 The 3D rotation formulae

All of these rotation effects can be generated using the same set of simple formulae.
As in the case of the perspective equations, I'll produce these equations out of thin
air, avoiding the problem of derivation completely. Frankly, the derivation isn't
complicated, and should only prove an minor challenge to anyone with an A-level in
mathematics. (Hint, use the addition formulae for SIN and COS to get the new rotated
coordinates).

Here are the equations for these rotations:

Rotation parallel to the X-axis

All X coordinates are unchanged. The Y- and Z coordinates need to be computed
using the formulae:

new z =(01d Y)*SIN(XA)-(Old Z)*COS(XA) (5)
new y = (Old Y)*COS(XA)+(Old Z)*SIN(XA) (6)

Where:

XA is the angle of rotation parallel to the X-axis

Rotation parallel to the Y-axis

new Y = Old Y (Unchanged)
new X= (Old X)*SIN(YA)-(Old Z)*COS(YA) (7)
new Z = -(Old X)*COS(YA)-(Old Z)*SIN(YA) (8)

Where:

YA is the angle of rotation parallel to the Y-axis

Rotation parallel to Z-axis

new Z = Old Z (Unchanged)
new X= (Old X)*COS(ZA)-(Old Y)'SIN(ZA) (9)
new Y = (Old X)*SIN(YA)+(Old Y)*COS(ZA) (10)

SIN and COS describe ratios between the various sides of a right angled triangle. The
relations can be seen in Figure 7.10. If you're still slightly unsure, it's worth
mentioning that both of these functions are included as part of the STOS Basic
system. So you can happily use them in the rotation equations without worrying how
they actually work.

187

Hypotenu

Adjacent side

Figure 7.10 (SIN and COS)

SIN formula

Sine (Angle) = Opposite side
Hypotenuse

COS formula

Cosine (Angle) = Adjacent side
Hypotenuse

The use of these equations in can be seen in Example 7.2.

Example 7.2 (3D rotation)

10 rem 3D experimenter program

15 rem By Stephen Hill

16 rem See optimization techniques in Chapter 2
20 auto back off

30 mode 0 : els physic : els back : curs off : hide on

35 rem title screen

40 windopen 1, 10,5,20, 18 : curs off

50 print : centre "3D Experimenter" :print : print
55 centre "By Stephen R Hill"

60 locate 0,5: centre "Press:"

65 locate 0,7 : centre "<RETURN> to run" : locate 0,9

66 centre "<HELP> for options"

70 X$=inkey$: if scancode=98 then windel 1 : gosub 1440 :
goto 80

75 if X$="" then 70 else windel 1

76 rem get centre of screen

80 CX#=160 : CY#=100 :rem change for modes 1 or 2

90 OX#=0 : OY#=0 :OZ#=100 : rem Object coords in game world
100 read NP : rem Read number of points in object
110 dim OBJECT*(NP,3),VIEW#(NP,3) ,VX(NP) ,VY(NP)
120 rem load points

130 for 1=1 to NP

140 for J=0 to 2

188

150 read OBJECT* (I,J)

160 next J : next I

17 0 read NL : rem read number of lines

180 dim LINES (NL, 2) : rem dimension line array

190 for 1=0 to NL-1

200 read LINES(1,0),LINES(1,1)

210 next I

220 rem main program
230gosub 900 : rem position ship and object
240 gosub 380 : gosub 450 : gosub 530

250XA=0 : YA=90 : ZA=0

2 60 rem main loop

270 repeat
280ROTATED=0 : COZ#=OZ# :rem Save centre coordinate

290X$=inkey$: SK=scancode:rem get keypress

300 if SK=98 then gosub 1450 :rem call help menu
305 rem Handle function keys VIEW coords

310 if SK>58 and SK<=68 then FK=SK-58 : on FK gosub

980,1000,102 0,1040,1060,1080,1100,1120,900,1140
314 rem if rotated then copy OBJECT to VIEW (gosub 380)
315 rem perform X rotation (gosub 1160)
316 rem perform Y rotation (gosub 1260)

317 rem perform Z rotation (gosub 1260)
318 rem determine perspective (gosub 450)

319 rem draw lines (gosub 530)

320 if ROTATED then gosub 380 : gosub 1160 :gosub 1260 :
gosub 1360 : gosub 450 : gosub 530

325 rem display status

330 locate 0,19 : print "Distance =";OZ#-SZ#
340 locate 0,20 : print "X-angle=" ;XA; " Y-angle =";YA;

345 print " Z-angle=";ZA;

350 until true=false :rem repeat loop forever

360 curs on :rem just in case

370 stop

380 rem Copy object definition into view array
390 for 1=1 to NP

400 VIEW*(1,0)=OBJECT*(1,0)+OX#-SX#

410 VIEW*(I,1)=OBJECT*(I,1)+OY#-SY#
420 VIEW*(1,2)=OBJECT#(1,2)+OZ#-SZ#

430 next I

440 return

450 rem calculate perspective

460 for P=l toNP

470 0#=VIEW# (P,2) : rem get Z coordinate of point

480 PERS#=S#/(S#+0#) : rem get perspective factor

189

490 VX(P)=CX#+VIEW#(P,0) *PERS# : rem G#et screen

coordinates

500VY(P)=CY#-VIEW#(P,1)*PERS*

510 next P

520 return

530 rem Draw lines

540 els physic

550 rem check if object is behind ship

560 if COZ#<0 then return

570 for 1=0 to NL-1

58 0 rem perform clipping

590 gosub 660

595 rem if at least one point is visible then draw line

600 if VPX<2 andVPY<2 then draw Xl#, Yl# to X2#,Y2#
610 next I

62 0 return

640 rem perform clipping

650 rem change clip coordinates for modes 1 and 2

660VPX=0 : VPY=0 : G#=0

665 rem get starting and end points of line

670X1#=VX(LINES(1,0)) : X2#=VX(LINES(1,1))

680Y1#=VY(LINES(1,0)) : Y2#=VY(LINES(I,1))

685 rem is slope positive

690 if X2#-X1#<>0 then G#= (Y2#-Y1#) / (X2#-X1#) else 800

695 rem is slope zero

700 if G#=0 then 800

705 rem get intersection point

710 if X1#<0 then Y1#=Y1#-X1#*G# : X1#=0 : inc VPX

720 if X2#<0 then Y2#=Y2#-X2#*G# : X2#=0 : inc VPX

730 if Xl#>319 thenDX#=Xl#-319 : Xl#=319 : Y1#=Y1#-DX#*G#

inc VPX

740 if X2#>319 then DX#=X2#-319 : X2#=319 : Y2#=Y2#-DX#*G#

inc VPX

750 if Y1#<0 thenXl#=Xl#-Yl#/G# : Y1#=0 : inc VPY

7 60 if Y2#<0 then X2#=X2#-Y2#/G# : Y2#=0 : inc VPY

770 if Yl#>199 thenDY#=Yl#-199 : Yl#=199 : X1#=X1#-DY#/G#
inc VPY

780 if Y2#>199 thenDY#=Y2#-199 : Y2#=199 : X2#=X2#-DY#/G#
inc VPY

7 90 return

795 rem horizontal or vertical line

800 if X1#<0 then X1#=0 : inc VPX

810 if X2#<0 then X2#=0 : inc VPX

820 if Xl#>319 then Xl#=319 : inc VPX

830 if X2#>319 thenX2#=319 : inc VPX

840 if Y1#<0 then Y1#=0 : inc VPY

190

850 if Y2#<0 then Y2#=0 : inc VPY
860 if Yl#>199 then Yl#=199 : inc VPY

870 if Y2#>199 then Y2#=199 : inc VPY

880 return

890 rem set initial conditions

900 els : ROTATED=true

910 input "Viewing distance",-S#
92 0if S#<1then print "Viewingdistance must be >0 " :goto
910

930 input "Ship coordinates X, Y, Z" ;SX#, SY#, SZ#
940 input "Object coordinates X, Y, Z" ;OX#, OY#, OZ#
950 if OZ#<50+SZ# then print "That's much too close" :goto

940

960 curs off : return

97 0 rem Add 10 to X angle

980XA=XA+10 : ROTATED=l : return

990 rem Subtract 10 fromX angle

10 00XA=XA-10 : ROTATED=l : return

1010 rem Add 10 to Y angle

1020YA=YA+10 : ROTATED=l : return

1030 rem Subtract 10 from Y angle

1040YA=YA-10 : ROTATED=l : return

1050 rem Add 10 to Z angle

1060ZA=ZA+10 : ROTATED=l : return

107 0 rem Subtract 10 from Z angle

1080ZA=ZA~10 : ROTATED=l : return

1090 rem move ship forwards

1100SZ#=SZ#+10 : ROTATED=l : return

1110 rem move ship backwards

1120SZ#=SZ#-10 : ROTATED=l : return

1130 rem stop

1140 pop : curs on : show on : clear key : stop
1150 rem rotate object along X-axis
1160 RXA#=rad(XA) : rem Trig functions work in radians
1170SN#=sin(RXA#) : CS#=cos(RXA#)

1175 rem Get distance of object centre from cockpit
1180 COZ#=-COZ#*CS#+(OY#-SY#)*SN#

1185 rem rotate the object data in VIEW

1190 for 1=1 toNP

12 00Y#=VIEW#(1,1) : Z#=VIEW#(I, 2)

1210NZ#=Y#*SN#-Z#*CS# : rem newzcoord

1220Y#=Z#*SN#+Y#*CS# : rem new y coord

1230VIEW#(I,1)=Y# : VIEW#(I,2)=NZ#

12 4 0 next I : return

1250 rem rotate object along Y-axis
1260 RYA#=rad(YA) : rem Trig functions work in radians

191

1270SN#=sin(RYA#) :CS#=cos(RYA#)
1275 rem Get distance of object centre from cockpit
1280COZ#=-(OX#-SX#)*CS#-COZ#*SN# :rem get zcoord of
centre

1285rem rotate the object data in VIEW
1290 for 1=1 to NP

1300X#=VIEW#(1,0) :Z#=VIEW#(I, 2)
1310NX#=X#*SN#-Z#*CS# :remget new X coor
1320Z#=-X#*CS#-Z#*SN# :remget new Y coord
1330VIEW#(I,0)=NX# :VIEW*(I, 2)=Z#
1340 next I : return

1350rem rotate object along Z-axis
1360RZA#=rad(ZA) :rem Trig functions work in radians
1370SN#=sin(RZA#) :CS#=cos(RZA#)
1375 rem rotate the object data in VIEW
1380 for 1=1 to NP

1390X#=VIEW#(1,0) :Y#=VIEW#(I,1)
1400NX#=X#*CS#-Y#*SN# :rem get newxcoord (9)
1410Y#=X#*SN#+Y#*CS# :remGet new y coord (10)
1420VIEW#(I,0)=NX# :VIEW*(I,1)=Y#
1430 next I : return

1440 rem help menu

1450 windopen 1,10,5,20,18 : curs off

1460 print :centre "Function keys" :print :print
1470 print "Fl : Increment XA"

148 0 print "F2 : Decrement XA"

1490 print "F3 : Increment YA"

1500 print "F4 : Decrement YA"

1510 print "F5 : Increment ZA"

1520 print "F6 : Decrement ZA"

1530 print "F7 : Move closer"

1540 print "F8 :Move away"
1550 print "F9 :New position"
1560 print "F10: Exit program"

1570 locate 0,14 :centre "<RETURN> to resume" :wait key :
wait 10 :windel 1 :els physic :els back :clear key :return
1575 rem a rectangular block

1580 data 8:rem eight points
1590data-50,-50,50

1600data 50,-50,50

1610data 50,-50,-50

1620data-50,-50,-50

1630data-50,50,50
1640data 50,50,50

1650data 50,50,-50

1660data-50,50,-50

192

1670 rem lines

1680 data 12 :rem twelve lines

1690datal,2,2,3,3,4, 4, 1,5, 6, 6, 7, 7, 8, 8, 5, 8, 4, 7, 3, 6, 2, 5,1

As this program is rather involved, I'll provide you with a complete pseudo-code
description of its main activities.

Table 7.1 Breakdown of the 3D experimenter program

Action lines Comments

Initialise program 10 Load object array

120 Loads object coordinates into OBJECT

Load line array 170 Loads LINES with connections between

corners

Set viewing position 230 Calls routine at line 900

Set position of ship 930

Set position of object 940

Copy OBJECT data into VIEW 240 Calls subroutine at 380

Calculate perspective 240 Calls subroutine at 450

Draw object 240 Calls subroutine at 530

Set initial conditions 250 See Note 1

Repeat 270 Main loop

Reset ROTATED flag 280 if user changed anything ROTA-
TED=true

Load COZ# with OZ# 280 COZ# is used by the check for visibility,
see Note 2

Get a keypress 290

Test <HELP> key 300 Help menu at 1440

Input command 310 See Note 3

If heading is changed 320

Then

Copy OBJECT to VIEW 380

Perform X-rotation 1160

Perform Y-rotation 1260

Perform Z-rotation 1360

Compute perspective 450

Draw object 530

Endif

Print status 330

Until true=false 350 Do forever

193

Notes:

1 YA# is measured anti-clockwise from the Y-axis. A viewpoint along the Z-axis
therefore corresponds to a heading of 90 degrees.

2 This variable is used to determine the relative distance from the ship to the object
along the Z-axis. If this value is negative, then the object is currently behind the
ship, and should not be drawn. (See section 7.6)

3 The reason I'm using SCANCODE rather than ON FKEY is that I need the
scancode for the <HELP> menu. Alas, the ON FKEY command will not work in
conjunction with the INSTR function. I am therefore forced to read the function
keys directly using SCANCODE.

Here are few ideas for possible modifications to this program:

1 Add the ability to handle several objects at once. This could be done by extending
the object* and view# arrays into another dimension, e.g.

dim object* (no, points, 3) ,dim view* (no, points, 3)

You could then extend the rotation routines to rotate all objects in the current view
point.

2 Draw the object on a separate logical screen, and flick between the logical and
physical screens. See Chapter 8 on animation.

3 View the object from a range of viewpoints. This can be best accomplished using
the following rotations:

Effect Rotation

Back view Rotate view by 180 degrees on X-axis

Left view Rotate view by 270 degrees on Y-axis

Right view Rotate by 90 degrees on Y-axis

Over view Rotate by 270 degrees on X-axis

Under view Rotate by 90 degrees on X-axis

7.6 Checking for visibility
If you are writing a full-blown flight simulator, then it's vital to determine quickly
which objects will be visible from the current position. This will allow you to reveal
the new elements of the game world as they become visible from the player's ship.

If you attempted to individually check each object in your entire game whenever the
ship moved, you wouldbe faced with a mammoth task. Most flight simulators contain
literally hundreds of objects. Of course, only a few of these objects will be in view at
any one time; the vast majority will be too far away to be seen.

194

The first stage of your visibility check is to split the game world into a number of
rectangular zones. This allows you to restrict your tests to the objects in the
immediate vicinity of the player's ship, which simplifies things enormously. The sizes
and nature of these areas will naturally depend on your game. A genuine flight
simulation would set each zone to a particular grid reference on a real map. Other
games, like Elite use playing areas the size of an entire solar system.

In order to manage these areas, you need to keep track of the position of every object
in a specific area. You might decide to calculate these positions in advance during the
creation of your game. It's also possible to allocate the positions randomly whenever
a player enters a specific zone. All coordinates will be measured from the centre of
the zone to the centre point of your object.

Providing you use the same format to keep track of the coordinates of your spaceship,
you can easily determine which objects will be visible from the player's cockpit.

Let's assume, for the purposes of argument, that the coordinates of the object and the
player's ship are held in the variables OX, OY, OZ, and SX, SY, SZ.

The object will only be visible if it satisfies the following conditions:

1 The object is in front of the ship. This condition is only true if OZ-SZ is positive.

2 The object is close enough to the ship to be seen. The apparent size of the object
depends on the perspective factor. If the perspective factor is negligible, then the
object will be too small to be seen from the ship.

3 The object lies within the field of vision enclosed by the cockpit.

Your visibility routine would need to test all these conditions for every object in the
current area. This might be accomplished within a small FOR/NEXT loop.

A good demonstration of the first type of check can be found in Example 7.2. This
rotates a COZ# along with the coordinates. If COZ# becomes negative, then the
object is not drawn on the screen.

Note that the coordinates used in these calculations are relative to the cockpit's centre
rather than the current zone. That's why I'm subtracting SX# and SY# in the
appropriate formulae.

As the centre point of the object is only an average, it's still possible that some of the
points in the object might have a negative Z coordinate, despite the fact that the
centre value is positive. In this case, the ship and the object may have collided, and
your program should check for this condition accordingly, e.g.

425 if O#<=0 then vis (i) =0 :goto 510 else vis (i) =1

Where:

vis is an array containing one element for each object in the area.
0# holds the current Z coordinate in the perspective calculations.

This line neady checks for a collision whilst keeping the value of 0# positive.

195

If you try this approach, you need to remember to prevent the drawing operations
displaying an invisible object. This can be accomplished using a simple test at the
start of the drawing routine.

The second visibility condition is also quite easy. If you restrict the maximum size of
the object to the physical dimensions of the ST screen, then the object will disappear
from view when the perspective factor reduces each screen coordinate to a number
less than one. This occurs when the factor is less than about (l/screen_width).

Every time you multiply this number by an X or Y coordinate, the result will be
smaller than one, and the point will not be plotted. You can check for the perspective
factor using the centre coordinate OZ. So:

if S/ (OZ+S) > (1/32 0) then vis (i)=l else vis (i)=0

Incidentally, if you increase this minimum value, you will reduce the range of
visibility of your objects accordingly. This could be very useful for certain types of
games.

I'll now show you how you can check for the final visibility condition. The field of
vision of your craft is obviously limited to the size of the ST's screen. If the centre
point of the object lies outside this area, then part or all of the object will be hidden.

Providing you have assumed that the maximum size of the object in any dimension is
less than the maximum screen width, you can test for this condition using the
following procedure:

Start off by calculating the perspective values from OX and OY and placing them in
PX,PY

if (PX<-screen_width) then object to left
if (PX>screen_width*2) then object to right
if (PY<-screen width) then object above

if (PY>screen width*2) Then object below

This check is only not completely accurate, and it will inevitably flag some invisible
objects as being visible. Fortunately, these objects will be safely handled by your
clipping routine without problems.

The same conditions can be extended to check whether an object has crashed into the
ship. If the conditions are satisfied when the VIS variable has been set to one, then
the object must be immediately in front of the ship, at a distance of zero or less. The
only way this condition could be satisfied would be if the two objects had collided!

7.7 Flight simulators

I'll now conclude this chapter with a few ideas about how you could apply some of
these techniques to a practical problem such as a flight simulator. These games

196

generally allow several objects to be in the current game area at one time. You would
therefore need to expand the OBJECT, VIEW and LINE arrays accordingly:

dim objects(total_objects,points_per_object,3)
dim view(objects_per_area,points_per_object,3)
dim line(total_objects,lines_per_object,2)

Each object in the game would be defined by its own set of coordinates held in the
array OBJECTS. The LINE array would contain the lines used to connect these points
into a coherent shape. As I've said before, you would normally split the game world
into a number of rectangular zones. Every zone would contain a list of the objects
present, and the coordinates of these objects relative to its centre point. This data
would be stored in a two-dimensional array which could be created with the lines:

dim area(objects_per_area,3)
dim local objects (objects_per_area)

The coordinates stored in the area array would be relative to the centre point of the
current zone. These coordinates could be added to the coordinate definitions in

OBJECT to produce a complete map of each point in 3D space.

Whenever the ship arrived in a new area, the VIEW array would be loaded with the
coordinates of every point making up the objects in the zone. The view point would
then be transformed to the centre of the cockpit by subtracting the coordinates of the
ship from each value in this VIEW array.

The player's ship could now be moved through the area as required. After every
movement, the distance travelled would be subtracted from the coordinates in the

VIEW array. Similarly, if the objects around the ship moved, then the new distance
could be added to the VIEW coordinates.

In real life, changing your viewpoint can be achieved by simply turning your head. If
you turn your head to the right, the entire world seems to creep away from the left.
Of course, you know that this effect is only an illusion. The real world is fixed, and
it's only your field of vision which is being rotated. But in a computer, it's easiest to
rotate the actual world, whilst keeping your viewpoint steady. This allows you to use
all the perspective calculations I showed you earlier.

When the player changed the heading of the craft, all the points in the VIEW array
will be rotated in the opposite direction. This would provide the illusion of a shift in
the cockpit's viewpoint. Remember that the VIEW array is completely separate to the
object arrays which hold the absolute position of the object. The information it holds
is required solely for the creation of the view outside the cockpit's window.

Finally, your program would need to perform the perspective calculations and check
for each object's visibility. The screen could now be cleared, and the visible objects
redrawn after clipping.

197

The entire process can be summarised by the pseudo-code listed in Figure 7.11
below.

initialise object arrays

load first area

load VIEW array from object definitions

choose a position for the ship

transform coordinate in VIEW relative to cockpit centre

repeat

if ship moves outside current area

then

find new area

get position of ship relative to area

load VIEW array from OBJECT definitions

transform coordinates in VIEW relative to

cockpit centre

endif

update ship' s position

if ship' s position changes

then

subtract distance moved in all three directions

from the VIEW coordinates

endif

update object' s position

get first object

Repeat

if current object has moved

then

add distance moved to object data in VIEW

endif

if ships heading has changed

then

rotate all VIEW coordinates by new heading

endif

get next object

until no more objects

calculate perspective

load'screen coordinates into VX and VY arrays

isolate visible objects

clip screen coordinates

redraw visible objects

until game over

Figure 7.11 Breakdown of a simple 3D flight simulator

198

7.8 Practical considerations

The necessity to perform many calculations before and after each movement places a
considerable burden on your program. However, there are a number of optimization
tricks you can use to keep the game moving reasonably quickly.

The best of these is to splash out some money on the STOS Basic compiler. Since I
wrote the manual of this package, it's hard to free myself completely from any
accusations of bias. But I honestly believe that it is an indispensable part of any
STOS Basic development system. Like the rest of the STOS Basic package, there are
a number of free extras. The most interesting, is the new STOS version 2.4. This uses
single precision mathematics which lead to a dramatic improvement in the execution
speed of the SIN and COS functions. Typical speed increases are of the order of
twenty times, so you'll probably notice the difference even in your interpreted
programs.

And once you've compiled you routines into machine code, you can expect the rest of
the program to run considerably faster.

7.8.1 Sine tables

Sine tables allow you to perform many of your calculations in integer arithmetic. The
idea is to precalculate all the sine and cosine functions in advance and convert them
into integers. These integers are placed in a look-up table which can be accessed from
your program, almost instantaneously.

The conversion process starts by calculating the sine of the angles from one to ninety
degrees. You now multiply each value by a number which is a power of two, such as
32768. This gives you a result between 0 and 32768 which is placed in a table.

You can now find the sine of a number by simply looking up the value from the table
and dividing by 32768. Once you've got the sine table, the cosine of an angle can be
derived using the formula:

cos(angle)=sin(90-angle)

You could incorporate this technique directly into the rotation routines in Example
7.2. Here's a fragment of code which demonstrates this for a rotation parallel to the
X-axis.

420 s=st(XA)/32768:c=st(90-XA)/32768

430 for i=0 to np-1

440y#=view(i,2):z#=view(i,3)

450 nz# = Z#*C-Y#*S

460 y*= Z#*S+Y#*C

For further information on this system, see the section on look-up tables in Chapter 1.

199

7.9 Conclusions

By now, you should be well on your way to appreciating the type of problems you
will need to solve in order to write your own flight simulator in STOS Basic. I
appreciate that this is not the simplest of subjects to comprehend. It's the type of
topic which makes even the most hardened computer scientists cringe in their seats.
So I do hope I've managed to shed a litde light on the topic, and removed some of
the mystery from it.

When I first played Elite, I was restricted to a 48K Spectrum. With a litde help from
the STOS Basic compiler and a great deal of hard work, I'm sure it's possible to beat
that original program comfortably using the techniques I've shown you in this
chapter. Even if you decide not to attempt to write a simulation game yourself, do
have fun playing around with my experimenter program.

200

8

Animation techniques
STOS Basic provides the games programmer with a host of powerful instructions
which gready simplify the creation of animated screens. This chapter will be
explaining how you can exploit some of these features for use in your own games.

8.1 Colour scrolling

8.1.1 Basic principles

The Atari ST allows you to use up to sixteen colours on the screen at any one time.
Each colour can be individually selected from a grand total of 512 possible shades.
The values for these colours are stored in a set of memory locations known as the
colour registers. Whenever one of these registers is updated, the appropriate colour on
the screen is altered immediately.

STOS Basic refers to each register by a number from 0 to 15. This number can be
used to set one of the registers to a particular colour value using the COLOUR
instruction in the following way:

colour 1,$700 :rem load index one with $700 (RED)

Supposing you were drawing a rectangle on the screen using the colour held in
register 1. This could be accomplished by the instructions:

10 ink l:bar 100, 50 to 200,150

What would happen if you were to load one of the other registers with the same
shade and then attempted to overwrite the bar with a circle? Well, you can now test
this by entering the lines:

15 rem Copy colour 1 into register number 2

20 colour 2, colour (1)

30 ink 2:circle 150,100,25

201

When you run this program, the screen seems to be empty except for a large red
block near the centre. But appearances are deceptive. This can be seen when you add
the following to the program.

40 wait key:colour 2, $777

Suddenly, a filled circle appears from out of nowhere. This is the circle which was
drawn by line 30. Up until now, the circle has been impossible to see, because it was
displayed in the same colour as the rectangle underneath. The colour statement at line
40 then loaded colour number two with $777 (white). This made the circle drawn in
colour two stand out against the red rectangle.

As far as the ST is concerned, anything drawn using a different colour register is
displayed on the screen totally separately. So if two objects are drawn on top of each
other using registers containing identical colour values, they will seem to merge
together completely. If you subsequendy update one of the colour registers, one
object will appear to wink into existence above the other. Here's a larger example
which demonstrates this idea.

Example 8.1 A moving box

10 mode 0 : els physic : els back : flash off

11 auto back off : hide or

12 rem Set all colours to black

15 for C=0 to 15 : colour C, 0 : next C

20 for 1=0 to 2

30 for J=0 to 5

40 ink I*5+J : rem Set ink used for block

50 bar J*50,1*60 to (J+l) *50, (1+1) *60 : rem draw a BAR

60 next J

7 0 next I

80 rem Animate bar

90 colour 1, $770 : rem first block=yellow

100 for C=2 to 15

110 colour C-l, 0 : colour C, $770 : rem Switch block

115 wait 3

120 next C

125 colour 15, 0 :goto 90

Example 8.1 draws fifteen boxes on the screen. Each box is drawn using a different
colour index. These registers are all set to zero at the start of the program. So the
boxes are indistinguishable against the black background. The program then
successively makes each box appear on the screen by manipulating the colour
registers using the COLOUR instructions at 110. The result is the illusion of a single
box jumping back and forth across the ST's screen.

The same process can be applied to animate any sequence of objects you wish.
Remember that when you change a colour, you affect all the objects painted with it.

202

If you want to animate an object against a colourful background, you will therefore
need to keep the colours in the object entirely separate from those in the rest of the
display. Also, it is vital to ensure that none of the objects overlap. Otherwise the
animation effect simply won't work.

One limitation in Example 8.1, was that your program has to manage all the colour
cycling by itself. STOS Basic includes three useful instructions which allow you to
perform the entire process automatically.

8.1.2 FLASH

The FLASH command successively changes the value held in any single colour
register using an interrupt routine. This can be used to generate a vast range of
effects. Try adding the following lines to Example 8.1:

12 dimF$(16)

13 rem Save colours

14 for C=l to 15 : F$ (C)=hex$ (colour (C))-"$": next C

99 rem Set up flash

100C$='> '(0,10) (' ,+F$(C)+' ', "+str$(rnd(10)+l)+' ')"

110 flash C,C$

115 wait 3

120 next C

125 colour 15, 0

The same process can also be used to add a litde life to your background screens.

Imagine you were displaying a picture of a computer bank. Each button on the
control panel could be made to flash through several different colours. So as you
looked at the computer, the display would appear to be continually changing in front
your eyes. Since FLASH works independently of your Basic programs, once you have
initialised the display, you can forget about the animation completely. Another
possible use for this feature would be to create the alert screens found in games such
as "Star Trek (™)".

8.1.3 SHIFT

SHIFT consecutively rotates the values held in the palette through each of the sixteen
colour registers. This can be used to produce some stunning effects, which can be
glimpsed from the program in Example 8.2.

Example 8.2 The shift command

10 hide on : mode 0 : auto back off : els physic : els back :
flash off

20 shift 2

40 1=1 : for X=0 to 319 step 2
50 inc I : if I>15 then 1=1

203

60 ink I : draw 160, 100 to X,0
7 0 next X

80 1=1 : for X=0 to 199 step 2
90 inc I : if I>15 then 1=1

100 ink I : draw 160,100 to 319,X

110 next X

120 1=1 : for X=319 to 0 step-2

130 inc I : if I>15 then 1=1

140 ink I : draw 160,100 to X, 199
150 next X

160 1=1 : for X=199 to 0 step-2
170 inc I : if I>15 then 1=1

180 ink I : draw 160,100toO,X
190 next X

200 wait key : show on : els : shift off

Example 8.2 generates a beautiful moir6 pattern which would look great as your
program is loading. It's produced by drawing successive lines in the colours 1 to 15,
from the centre of the screen to the edges. When you shift these colours through the
available possibilities, you end up with something which looks like a whirling
kaleidoscope. SHIFT is perfect for creating the "hyperspace" sequences found in
games like "Captain Blood". It can also be used to produce impressive explosion
effects.

If you wish to keep part of your display static, you can optionally add a starting
colour to the SHIFT instruction. This is especially useful if you need a specific area
on the screen to be visible at all times. Type in the following changes to Example 8.2:

change ,,I=1" to ,,I=2"

20 shift 2,2: curs off: rem start from colour 2

195 ink 1: locate 10, 0:centre ''Hi there''

8.1.4 The FADE instruction

FADE allows you to progressively fade the entire colour palette from one set of
values to another. The most common use of this instruction is to fade out the

background during your game's initialisation phase. Normally, all the colours on the
screen are faded to black, whilst the new game screen is being drawn. The colour
palette can then restored again as the game commences, producing a highly
professional fading effect. But FADE is not just limited to your loading screens.

It's actually an extremely versatile command, capable of smoothly scrolling any set of
colours through several intermediate shades. Try entering the statement:

FADE 10,$700

204

This fades the background colour down to red. The speed of the fade indicates the
interval in 50th's of a second between each step, and can vary between 1 and 999. All
fades are performed in exactly seven steps. So the maximum time to completion is
about 140 seconds. (999*7/50).

With a litde inventiveness, you can utilise FADE to create a range of startling
animations, from sunsets to explosions. Here's an example of a simple sunset:

Example 8.3 The FADE instruction

10 mode 0 :colour 4, $770 :rem Yellow

20 els physic: els back: rem clear screen
30 circle 80, 60, 60 :rem Yellow sun

40 fade 999, ,,,,$700 :rem Fade down to red

50 wait key

Notice the commas between the 999 and $700. These indicate that the colours
between 0 and 3 and 5-15 are not to be faded by the instruction.

The FADE at line 40 fades the sun from yellow to red using the slowest available
speed setting. Another potential use of the FADE command, is for teleport effects.
These are especially useful for adventures/RPGs as they can be used to generate eerie
ghost-like disappearances.

Since the STOS Basic sprites use the exactly the same colour registers as the screen,
it's also possible to fade out any particular sprite. Providing you keep the colours
used by your sprites completely separate from those required by the screen
backgrounds, youcan teleport them away with just a single FADE instruction.

8.2 The ANIM command

ANIM is probably the most widely used of all the STOS Basic animation commands.
Since the ANIM command has already been covered in considerable detail in the
STOS Basic manual, I'll limit myself to a discussion of some of the more practical
considerations.

Whilst ANIM is ideal for the many applications, it's unwise to over-use the
instruction. The first point to recognise, is that the quality of the animation does tend
to decrease slightly as the sprites get larger. So if you try to animate several really
large objects on the screen at once, an annoying flicker will begin to intrude into the
game. This is especially true if you are subsequendy intending to move the sprites
with a MOVE instruction.

It's probably safest to keep your sprites down to sizes of around 32x32 for the best
results. If your objects are much larger than this limit, you would often be wiser to
forget about sprites completely, and manipulate the graphics directly with SCREENS.

205

This was the approach used to animate the massive MAGEDON in the game Zoltar,
and as you can appreciate, it works extremely well.

There's also the problem of synchronisation. Because of the interrupt system used by
the ANIM command, you can never be absolutely sure about precisely which image
is being displayed on the screen at any one time. Normally this doesn't really matter*
butin some programs, such as platform games or RPGs, it can be of vital importance.

Let's assume you had animated the closing of a door using ANIM. The effect of the
player who attempted to enter while the door was closing, would be completely
different to that of someone who tried to walk through a fully closed door. It would
be crucial to know the exact status of the door at the precise moment the character
passed through. The solution is to bypass ANIM completely, and animate the door
directly using the SPRITE instruction.

Example 8.4 Using the SPRITE instruction

load "animalsl .mbk" :rem from STOS Games disk

load "backgrnd.mbk" :rem Background screen
10 els : flash off

20 unpack 11, back : screen copy back to physic
30 for 1=5 to 10

40 sprite l,xmouse, y mouse, I : rem Move the sprite with
mouse

50 wait 10

60 next I

70 goto 30

It would be misleading to imply from this discussion that the ANIM command is
rather inadequate. On the contrary, providing you use it with a litde care, you can
produce some wonderful effects. ANIM can be successfully exploited in anything
from an Adventure game to a simulation.

One possibility is to incorporate a simple animation sequence to your background
screens. Clocks canbe made to "tick", and windmills canbe seen turning away in the
distance. With a litde imagination, you can transform a boring static background into
something which looks impressively realistic.

8.3 Screen animation

If you want to animate objects larger than around 48 by 50 pixels, you will need to
make use of either SCREEN COPY or SCREENS. Both of these commands allow
you to copy large areas of thescreen from oneplace to another. But, although the two
commands are roughly equivalent, SCREENS is by far the most suitable for the
purposes of animation. This is because it's much easier to manipulate an array of
strings than an isolated block of screen segments.

206

8.3.1 SCREENS

SCREENS allows you to capture each frame of the animation sequence in one
element ofa string array. It's then possible to quickly display successive parts of the
sequence in turn using a simpleloop.

Example 8.5Animation with the SCREENS function

10 rem Generate a growing disk

15 hide on

20 mode 0 : flash off : els physic : els back

25 colour 3,0

30 dimFRAME$(5)

40 for 1=1 to 5

50 R=I*16 : ink 3 : circle 160,100,R
55 rem Grab disk into string

60 FRAME$(I)=screen$(physic,160-R,100-R to 160+R,10 0+R)
7 0 next I

80 elsphysic :elsback :colour 3, $770
90 for 1=1 to 5

95 rem Redraw disk

100screen$(physic,160-1*16,100-1*16)=FRAME$(I)
110 next I

120 wait key

Example 8.5 draws five disks on the ST's screen and loads them into the array
FRAMES. The loop at 90 then displays each frame inquick succession, producing the
impression of an energy bolthurtling from thecentre of the screen.

Notice how the disk vanishes after you press [RETURN]. Whenever a STOS Basic
program terminates correcdy, the "physical screen" being displayed is automatically
over-written by the background screen used by the sprites. Since the program only
copied the data to the physical screen, the background display is left completely
blank. This would lead to serious difficulties if you wanted to use the routine
alongside the STOS Basic sprites. In this case, you would need to copy all your
graphics to both the physical and the background screens. You can add this by
modifying Example 8.5 using the line:

115 screen?(back,160,50)=frame$(i)

Another factor to remember when using the SCREENS function is the screen
synchronisation problem. This is covered in detail on pages 151-152 of the original
STOS Basic manual.

The difficulty arises because of the unpredictable nature of the sprite movements. If a
sprite is drawn between instructions 110 and 115, it's possible that the images will
get corrupted slightly. The solution, is to use the SYNCHRO command to control the
sprite updates within your own program.

207

8.3.2 Screen flipping

Screen flipping is an invaluable technique which can substantially improve the
smoothness of your animation effects. The problem with the normal screen
commands, is that they allow you to see the drawing operations while they are taking
place on the screen. Although most of these operations perform remarkably quickly,
there's still a noticeable flicker to your animated graphics.

The solution is to draw the object onto a separate logical screen which is invisible to
the user. After the drawing has been completed, this screen can swapped with the
physical screen to produce a smooth, flicker-free animation. The old physical screen
is now hidden away from view, and this can be used for the new logical screen. The
whole process works in a simple loop. This can be seen from the following piece of
pseudo-code:

reserve logical screen

repeat

draw graphics

switch physical and logical screens
until game over

Since the location of the screen is held in a special register in the ST's graphic's chip,
it is possible to perform this switching practically instantaneously. The only penalty
to your program, is the extra 32k of memory needed by the logical screen. This is
normally a fairly small price to pay for the improvement in the quality of your
graphics.

If you wanted to add screen flipping to Example 8.5, you would need to generate a
separate logical screen using the RESERVE command. You would then switch
between the physical screen and the logical screen using as soon as the updates have
been completed.

STOS Basic includes two useful facilities which allow you to simplify this screen
switching. These are summarised in Table 8.1 below.

Table 8.1 TheSTOS Basic Screen switching commands

SCREEN SWAP Swaps the logical and physical screens.

LOGIC Always holds the current address of the logical screen. This
can be changed at any time using a normal assignment
statement, e.g.

logic=6:rem set the logical screen to memory bank 6

DEFAULT LOGIC Contains the address of the original logical screen. This can
be used in the following way:

logic=default logic

208

Table 8.1 The STOS Basic Screen switching commands(continued)

PHYSIC Holds the address of the screen memory which is currently
being displayed. Like LOGIC it can be changed at any time
using a simple assignment statement:

physic=8:rem set the physical screen to the start of memory
bank 8

DEFAULT PHYSIC This resets the physical screen to it's initial value which is
loaded when the ST is turned on.

Finally, here's an example which exploits the animation techniques I've been
discussing to generate a bouncing block.

Example 8.6 A bouncing block

10 els physic : els back

11 hide on : auto back off

20 ink 5 : bar 100,100 to 150,150

30 ink 6 :polygon 100,100 to 125, 75 to 175, 75 to 150,100
40 ink 7 :polygon 175,125 to 150,150 to 150,100 to 175,75
50 BLOCK$=screen$(physic,100, 75 to 176,175)
55 els physic : els back

60 reserve as screen 10 : logic=10 : els logic
7 0 X=0 : Y=0 : DX=16 : DY=8

85 rem Control horizontal movements

90 X=X+DX : if X>2 00 or X<16 then DX=DX*-1 : X=X+DX : TURN=1
100 Y=Y+DY : if Y>92 or Y<8 then DY=DY*-1 : Y=Y+DY : TURN=1

110 screen?(logic,X,Y)=BLOCK$

12 0 screen swap : wait vbl : wait 2

130 if TURN then els logic :TURN=0 :goto 90 else els
logic,0,X-DX,Y-DY to X+110-DX,Y+100-DY :goto 90

See Chapter 10section 10.5 for a further example of this technique.

8.4 Conclusion

Used properly, animation can add a real feeling of excitement to even the most
mundane game idea. STOS Basic is supremely good at this type of animation, and it's
senseless to let all that power go to waste. Once you've seen what can be achieved,
try introducing a litde animation into your own games. I'm sure you will be amazed
at the results.

209

210

Sampled sound

9.1 Introduction

A few years ago any sound effects found in computer games were restricted to the
occasional beeps. The fact is that even the best machines of the early eighties were
limited to producing only crude explosions or simple tones. So most programmers
placed sound very low on their list of priorities, and concentrated their efforts on the
graphical elements of a game instead.

As computers became more sophisticated, it slowly started to become practicable to
incorporate rather more impressive sounds into a game. But all these effects were
limited by the programmer's ability to generate the original sound synthetically. It
was therefore extremely difficult to produce authentic impressions of real sounds
without complex and expensive additional hardware.

The breakthrough came with the development of techniques to digitally encode
natural sounds in a form which could be subsequendy reproduced by a computer. The
basic idea was very simple indeed. Samples of a sound were taken thousands of times
per second, and converted into a list of numbers which could be held in the
computer's memory. Each sample contained enough information to reproduce a
fraction of a second of the recorded sound.

These samples could then be successively replayed through the computer's sound
chip to generate an excellent approximation of the original sound.

Unfortunately, this approach consumes enormous amounts of memory. A couple of
seconds of digitised speech can easily take up over 32k of memory. So although the
technology first appeared in the heyday of the Commodore 64, it has only been the
advent of really powerful computers such as the ST and the Amiga, that it has
become genuinely feasible to add sampled sound to a computer game.

Since its initial introduction, sampled sound has quickly penetrated most areas of the
computer games industry. Rather than being just an afterthought, sound effects are
now widely recognised as a vital component of any well-written computer game. So

211

it's almost impossible for an game to get a rave review from one of the top computer
magazines, unless it contains literally mind-blowing sound effects. Sampled sound
provides even the most inexperienced programmer with the ability to generate sound
effects which would make a Spectrum user gasp in amazement.

But how do you actually incorporate some of these samples into your own STOS
Basic programs? Well, it is important to realise that your requirements will vary
depending on whether you wish to create a sample yourself, or just play back an
existing sample.

If you want to record your own samples, you will need to buy a piece of special
hardware known as a sampler cartridge. This will cost you around £50, and will plug
into your ST's cartridge port. All the currently available packages contain software
which allows them to be used in conjunction with the majority of programming
systems. There is, however, only one package which allows you to exploit the full
power of the STOS Basic system directly: the STOS MAESTRO system.

9.2 The STOS MAESTRO system

The STOS MAESTRO utility from Mandarin software comes in two forms currently
priced at £25 and £70 respectively. The cheaper version includes software which
allows you to play back previously generated samples within STOS Basic. These
samples can be created using most of the sound samplers currently available for the
ST. So if you've aheady bought one of these cartridges, you almost certainly won't
need to replace it especially for use with STOS Basic.

This package also includes a whole disk full of sound samples, which are ready to use
straight from the box. These samples can be added to your STOS Basic programs
using a powerful set of extension commands. Furthermore, all samples are replayed
using interrupts. You can therefore easily combine sampled sound with arcade games
such as Zoltar, without affecting the speed of any of the action.

The second, more expensive package, supplies you with a purpose built STOS
MAESTRO sampling cartridge. This is able to recreate any sound which can be
entered from an external source such as a cassette recorder.

Since I was actively involved in the production of the Maestro documentation, it's
hard to free myself completely from any possible accusations of bias. But I honestly
feel that one or other of the STOS MAESTRO packages is an essential purchase for
anyone who seriously wishes to add sampled sounds to a STOS Basic game. During
my experience of using the system, I'm still amazed at the sheer simplicity of Jon
Wheatman's sampler extensions. I was for instance, able to add sampled sound to a
large STOS Basic program such as Zoltar in well under an hour. The only drawback
I've so far been able to discover, is that Maestro is not fully compatible with the ST's
music system. I don't think this is an actual deficiency, since given the limitations of
the ST's (mono) sound chip, some restrictions are inevitable.

212

On the other hand, when I removed the music and added sampled explosions to
Zoltar, I noticed a significant improvement in the animation speed. So there are
certainly some compensations.

9.3 Special effects

9.3.1 Choosing the recording speed

In order to achieve the best results from the STOS Maestro package, you need to
understand a litde about the possible sample speeds. The choice of sample speed is a
major factor in the quality of the eventual sound. So a full appreciation of the
available effects is vital.

All sample speeds are measured in Kilohertz (kHz). These correspond to the number
of samples which are taken from the sound in a single second. A speed of one kHz
means that a thousand samples will be entered every second. Each individual sample
uses up one byte of the ST's memory. The total length of a sample can therefore be
calculated from the following simple formula:

LENGTH=SPEED*TIME

If, for instance, you had created a sample 10 seconds long using a speed setting of 5
kHz, the total sample size would be:

5000*10 bytes or 50k

Alternatively, if you recorded the same sample at 20 kHz, it would now occupy an
astonishing 200k of memory. It should be obvious from the above calculation that the
slower you can keep the sample speed, the more samples you will be able to pack
into your programs. But there's also the question of the accuracy of the recording.

The apparent quality of a sound increases in direct proportion to the rate at which it
was sampled. This is because the higher speeds generate a much more detailed
representation of the original sound. The slowest samples do sound rather choppy and
incoherent by comparison to the fastest. There is therefore a trade-off between the
quality of the sample, and the amount memory it uses.

The key to the successful application of sampled sound, is to manage this trade-off in
your own favour. You have to find a way of keeping the sample speed down to an
absolute minimum, whilst still providing enough information to enable the sampler
extensions to reproduce the sound realistically.

The STOS MAESTRO system allows you to record samples using a range of speeds
between 5 and 32 kHz. Because the samples are played back using interrupts
however, the maximum playback speed from within STOS Basic is limited to 22 kHz.
This restriction was necessary to allow the rest of the STOS system enough time to
perform the various other interrupt routines such as those controlling the sprite

213

movements. There's only so much time to go round, and the more power you reserve
for the MAESTRO extensions, the less will be available for the rest of the STOS
system. So the slower the playback speed, the faster your Basic programs will run.

The only reliable way of selecting the correct recording speed in any particular case,
is by careful experiment. Here are a number of guidelines which may prove helpful.

9.3.2 Getting the most out of your sampler

1 Record special effects such as explosions and ray-guns using a sample speed of
between 5 and 12 kHz. The quality of these effects is often perfectly acceptable at
even the lowest speeds. Furthermore, due to the way STOS MAESTRO's
play-back routines are implemented, choosing the slowest sample speed will
guarantee the maximum performance out of your Basic programs.

2 Speech requires a minimum sampling rate of about 8 kHz to be understandable. In
practice, the desirable speed will be closer to 10 or 12 kHz. This was the speed
which was used in the samples contained in the STOS MAESTRO demonstration
disk.

3 If your sample needs to be of really high quality, you should make the recording at
32 kHz and then compress it to 16 kHz using the PACK option from the
MAESTRO program. When the sample is played back, there will be a noticeable
improvement over sound which had been originally recorded at a rate 16 kHz.

4 Whenever you are using an existing sample from a PD disk, remember that the
PACK option can compress these samples as well. This allows you to reduce the
speed of samples to a slower and more efficient rate. As an experiment, pack down
some of the samples from the STOS samples disk. Most of the effects in the
SOUND folder will compress nicely, without any appreciable loss in sound quality.

9.4 Potential sound sources

I'll now discuss a number of potential sources for your samples.

9.4.1 The MAESTRO samples disk

The STOS MAESTRO package provides a disk containing around 300k of
professionally produced samples. These cover most of the more common require
ments for your games such as a explosions and guns. There's also a number of
stranger sounds, including a full range of musical instruments. In practice, you'll
probably find that the samples held on this disk will be more than sufficient for the
majority of your programming needs. So when you need a sample, the samples disk
should always be your first port of call.

Even if the exact effect you want isn't available, you may be able to modify one of
the existing samples to your current requirements. By carefully changing the
play-back speed and adding reverberations and echoes, you can transform a simple

214

play-back speed and adding reverberations and echoes, you can transform a simple
sound out of all recognition.

Take the sample "EEARR.SAM" from the VOICE folder. When this is played back
at around 7 kHz, the result sounds like a charging elephant. So the next time you
need to a charging elephant in your game, you know where to look. It's also possible
to change the direction of a sound, or mix several unconnected sounds together. If
you use this technique, you can vasdy increase the range of sounds obtainable from
the samples disk with just a litde extra work.

9.4.2 The public domain

As sound samplers have become increasingly popular, a number of discs have
appeared in the public domain. Since the MAESTRO package is compatible with the
majority of current sampling systems, it's usually possible to incorporate these
samples directly into your STOS Basic programs. You can also load them into the
STOS MAESTRO package and manipulate them from within the MAESTRO
program in the normal way. A single disk could contain a large number of potentially
useful effects. But beware of samples recorded at odd speeds like 7.5 kHz. These will
sound very odd when played back from STOS Basic.

9.4.3 Films and Tapes

If you have access to a sampler cartridge, you may be tempted to "borrow" effects
from your favourite records or video tapes. Whilst you are unlikely to encounter any
problems with samples used in games you written for your own amusement, you will
almost certainly need to get permission from the original producers if you wish to
distribute your game commercially.

The situation regarding special effects like explosions and "Phasers" is rather more
complex. This is because, after you have manipulated one of these sounds, it can
prove almost impossible to recognise the original source. It's rather like trying to
reconstruct an egg once you have made it into an omelette.

At the present time, the precise legalities of this situation have yet to be fully
resolved. So it's advisable to make a note of all your original sources in your program
documentation before submitting your work to a commercial software house. After
all, if you are lucky enough to get your game accepted, the sound effects will
probably need to be remixed anyway.

9.4.4 Television

If your TV set has a earphone socket, you will be able to enter samples into directly
from a television program. Alternatively, you can record the sounds from the
loudspeaker.

215

Although some of the sounds will be subject to copyright, there will be plenty of
others which can be used in your games without any problems. These include a vast
range of real sounds from an aeroplane landing at Heathrow, to the thundering of a
Formula II motor race. Providing you use a litde imagination, you can capture a
variety of sounds which would otherwise be impossible, all from the comfort of your
own living room.

9.4.5 Other sources

It's a well known fact that the best things in life are free. The world around you
contains a vast spectrum of potentially useful sounds, from bird calls to car engines.
By carefully using the MAESTRO sampler program, you can transform even the most
mundane sound, like a door bell, or a dog bark, to a something strange and possibly
even sinister.

In the earliest days of radio, it was commonplace for the various sound effects to be
generated by hand during transmission. These clever people were capable of
generating marvellous results from just couple of coconut shells or a few small bits of
wood.

Even the original effects from the amazing "Hitch-hiker's Guide to the Galaxy" were
created using equipment which would now appear laughably primitive compared to
the facilities provided by a modern recording studio.

With a litde ingenuity and a lot of experimentation, it's possible to produce almost
any sound imaginable. Once you've entered this into the computer, you can then
sculpt the sound into something incredible. Don't underestimate the power of your
own voice. The range of sounds the human vocal cords are capable of producing
directly is truly remarkable!

9.4.6 Creating an alien

Many games, such as "Captain Blood" incorporate interactive alien speech effects. If
you've listened to some of these sounds in admiration, you will be delighted to hear
that it's quite possible to create a convincing impression of alien speech using the
STOS MAESTRO system.

Begin by taking the cassette recorder you are using to enter your samples, and
preparing for a recording session.

Now start the recording and try to talk in gibberish for several minutes. (I found this
especially easy!). If you attempt this feat with several people, you'll probably fall into
hysterics at some point. This is perfecdy natural, and nothing to be ashamed of. The
resulting sounds might even be rather useful.

After you've made your recording, you will be left with a tape containing some
extremely silly noises. Connect your tape recorder to your sampler cartridge and
create a sample in the normal way using a speed setting of 16 kHz.

216

You should now gradually increase the play-back speed up to the maximum of 32
kHz, noting the results. Your original noise will quickly change into something quite
alien. Reverse the process using speeds from 16 kHz down to 5 kHz. Again make a
note of any effects with you find pleasing. You should then choose the results you
particularly like, and save the samples to the disk. This allows you to manipulate your
sounds without any fear of losing anything permanent.

You are now ready to enter the FX menu, and add some special effects. In practice,
I've found that the best results are obtained with ECHO, REVERB, and HALL. It is

important to note that the effects of these commands are cumulative. So if you
repeatedly add reverberations to one of your samples, the quality of the sound will be
progressively changed.

Hopefully, you will eventually have produced an interesting set of alien sound effects
for use with your game. These can now be saved on the disk, and replayed at the
appropriate points in your program.

9.4.7 Direct synthesis

If you're feeling really adventurous, you might attempt to synthesise a sample
direcdy. Since each sample is represented by just a single number, it's possible to
produce a range of effects by generating your own numbers straight out of the
computer. Here is a simple example of this technique:

Example 9.1 A square wave

10 input "Frequency (1 to 1000)";F

20 fill start (5) to start (5)+10232, 0

30 print "Please wait"

40 for 1=1 to 10000/F

50 SND=32

60 f or J=l to F

70 if J=F/2 then SND=-32

80 poke start (5)+I*F+J,SND

9 0 next J

100 next I

110 click off : sound init

120 if F<1 or F>1000 then 10

130 samraw start (5) ,start (5) +length (5)

This produces a crude square wave which can be played using the SAMRAW
command. It's only really intended as a demonstration, and is hardly impressive. In
fact, a rather better effect could have been produced in a couple of seconds using the
standard STOS sound commands. Despite this, synthetic sounds do have their uses.
They are ideal for generating raw clicks and buzzes which can be combined together
to create a background track. This can be subsequendy merged with your main
sample to produce a range of interesting sound effects.

217

9.5 Possible applications
I'll now discuss a number possible ways in which sampled sounds can be exploited in
your games.

9.5.1 Arcade games

In my experience, adding realistic sound effects such as explosions to an arcade
game, can produce a massive improvement in the game's overall quality. Often, these
effects can be taken straight out of the samples disk included with the STOS
MAESTRO package. A full explanation of the required programming technique can
be found in the Chapter 3 of the STOS MAESTRO manual.

9.5.2 Simulations

The use of sampled sound in a simulation will often vary depending on the nature of
the game. If you are simulating a real situation, it's often possible to generate the
samples directly from the source. Take a game like golf, for instance. In this case,
you can capture the thwack of a golf club as it hits the ball with just a simple visit to
your municipal golf course with your tape recorder.

9.5.3 RPGs

One of the most impressive uses of sampled sound that I've so far encountered, was
contained in FTL's excellent Dungeon Master. This included a host of realistic
sounds for everything from a door opening to the shrieks of the monsters. Many of
these sounds were of extremely short duration, and could be sampled at quite low
speeds without any appreciable loss of quality.

Here a few ideas of how the various effects could be produced:

1 The sound of a door opening might be created by simply ringing a small bell.

2 The swish and the thud of the blades can be produced using some of the samples
supplied with STOS MAESTRO.

3 The screeches can be sampled directly from your own voice. You may need to
modify the sounds a litde with REVERB or ECHO to get the desired effect.

9.5.4 Adventures

Adventures are traditionally extremely memory hungry. So although graphics have
now become commonplace, I've yet to see a successful use of sound samples in an
adventure game. I do however, firmly believe that there is immense potential for
sampled sound in one of these games. I'm certain that as memory becomes cheaper,
sampled sound will become a familiar part of many adventures.

218

The scope for sampled sound in an adventure game is enormous. By adding the
appropriate effects as the adventure progresses, you can enhance the illusion of reality
considerably. Supposing you are playing an adventure is set in a dungeon. (Just for a
change.) As you progress through the caverns, you encounter a number of doors.
Imagine how you would feel when you listened at a door, and heard a horrible
scream! Even the most mundane sounds, such as the strike of a match, or a telephone
ringing, canhave a dramatic effect if theplayer isn't expecting them.

In order to conserve memory, it's advisable to store samples in separate files on this
disk. When required, they can be entered into memory with LOAD, and played using
the SAMRAW extension. If you record your samples at 10 kHz or less, you can pack
up to 15 samples ona single sided disk, whilst still leaving enough room for another
ten compacted pictures. This means that you don't necessarily have to sacrifice
graphics to make the space for your sound effects.

9.6 Conclusion

Hopefully, you'll now be buzzing with ideas for using sampled sound in your STOS
Basic programs. Sampled sound won't make a bad computer game a success. Nothing
can do that, other than a major rewrite. But it will add a final gloss to an already
enjoyable game. This might make all the difference if you try to sell it commercially.
So add a litde sound to yourprograms and makeyourplayers jump off their seats!

219

220

10

Scrolling techniques

10.1 Introduction

The ability to set the action against a moving background has now become a familiar
part of everything from an arcade game to an RPG. Paradoxically, scrolling is one of
those activities which has become increasingly difficult as computers have advanced.
The stunning graphics which can be produced by the ST require a hefty 32K of
memory. This compares badly with the maximum of 8K needed by the original Atari
800.

One unwelcome side-effect is that an ST program has to work very hard to generate
scrolling effects which have would been trivial to one of its predecessors. In order to
scroll the ST's screen by a single line, it's necessary to copy over thirty thousand
pieces of information in memory. These scrolling operations will usually need to be
performed several times a second. This is a severe challenge for even the fastest
computer. The above problem is not restricted to the Atari ST incidentally; it applies
equally well to all modem computers. The only feasible solution is to use a special
piece of graphics hardware known as a Blitter. Unfortunately, the ST was originally
designed as a business machine, and the expensive blitter chip was omitted for
reasons of economy.

At the time of writing, blitter chips are slowly starting to percolate into the larger ST
systems such as the Mega ST. For the time being, these machines are much too
expensive for the majority of home users. Hopefully, it won't be long before all ST's
have a blitter chip fitted as standard. Until then, I'm afraid we'll have, to live with this
problem.

Until recently, the only way of generating a smooth scrolling effect on an Atari ST,
was to write the entire game in machine code, so screen scrolling games were
restricted to expert machine code programmers with a detailed knowledge of the inner
workings of the ST.

Although STOS Basic cannot escape the inherent limitations of the ST's hardware, it
is still capable of generating some superb effects which come impressively close to
the best commercial software. But if you're really serious about writing a screen

221

scrolling game, it's still worth investing in a copy of the STOS Basic compiler.
Screen scrolling games need every scrap of computer power you can give them, and
the STOS compiler can certainly lead to a real improvement in the speed of your
game.

You don't, however, have to take my word for it. After all, I did write the manual for
the package, so maybe I'm a litde biased. Get hold of a compiled copy of Bullet
train, and compare it with the interpreted version provided on the STOS games disk. I
think you'll agree that the difference in speed is remarkable.

I'll now discuss some of the basic techniques which can be used to add scrolling
effects to one of your games. In order to make my discussion as general as possible, I
will intentionally avoid going into too much detail about any individual game genre.
So although I'll be concentrating on vertical scrolling, the same ideas can be applied
equally well to a producing a horizontal scroller like Bullet. They can also be used to
generate the more complex scrolling systems required by some RPGs.

You may be wondering slighdy as to this strange treatment of Bullet. After all, I did
give you a full breakdown of the other STOS games. Is there something wrong with
this program? Well there's actually one important fact about Bullet which you are
probably not aware of.

Bullet train was originally written for the French version of the STOS Basic package.
(STOS vl.O). But the screen scrolling commands such as SCROLL or SCREENS
were only incorporated into the STOS system for version two. The Bullet program
was therefore forced to perform all scrolling operations entirely using SCREEN
COPY! This must have been tremendously difficult, and I'm filled with admiration
for programmer who managed to produce such an impressive game using such limited
tools.

Fortunately, we English users have been spared all this complication with the
introduction of the STOS Basic SCROLL commands. So we don't need to be a

programming genius like Francois Lionet in order to write effective screen scrolling
games in STOS Basic.

10.2 Basic principles

All the ST's graphics are stored in a set of thirty two thousand memory locations
collectively referred to as the screen memory. Scrolling involves copying the data
describing one part of the screen over the area used by another. Look at the picture in
Figure 10.1a on the next page. The area (A) is the section of the screen which to be
scrolled. If you were to copy (A) into the space above it (B), the entire screen would
appear to scroll upwards. This can be seen from Figure 10.1b, also on the next page.

It is vital to realize that screen memory itself hasn't moved anywhere. The only
change has been in the contentsof the locations holding the image. Any graphics you

222

Figure 10.1a Before a vertical scroll Figure 10.1b After a vertical scroll

have drawn at the top of the screen will of course be completely obhterated by the
scrolling operation. Also, since the scroll didn't alter the lower portion of the data, the
bottom edge of the screen will be totally unaffected.

So there will now be two copies of this section on the ST's screen. As you can see,
from Figure 10.1b, the part of the original image which wasn't scrolled is interfering
with the display. This useless "fringe" needs to be removed directly using the CLS
command.

Here's an equivalent version of this diagram for a horizontal scroll. The only
difference is that youare now moving your screen data either left or right.

Figure 10.2a Before a horizontal scroll Figure 10.2b After a horizontal scroll

223

The scrolling speed will depend entirely on the amount of data which is to be copied
in each operation. The smaller the zone you wish to scroll, the faster the scroll will be
performed. In practice, most games limit the scrolling area to about two-thirds of a
screen. The rest of the screen is normally reserved for the high score table or the
copyright notices.

The solution to incorporating scrolling effects successfully into your own games, is to
keep the size of the scrolling zone to as small as possible. Any reduction in size will
lead to a proportional increase in the scrolling speed. It is therefore possible to scroll
half a screen, twiceas quickly as the entire screen.

10.3 The SCROLL Command

STOS Basic provides you with a special instruction called SCROLL which enables
you to scroll sections of the screen in every conceivable direction. Before using this
instruction, you first need to define the size and position of the scrolling zone with

Before

^Catchment Area s$$$OclDY (X2,y2)

(xi.yi)

After

(x2,y2)

Figure 10.3 The Action of the SCROLL command.

224

DEF SCROLL. It's possible to use this feature to create sixteen independent scrolling
zones on the screen at a time. This will be more than sufficient for the vast majority
of your games.

The format of DEF SCROLL is:

DEF SCROLL Z, XI, Yl to X2 , Y2, DX, DY

Z is just the number of the scrolling zone from 1 to 16. The other values are slightly
less obvious. Look at the diagram in Figure 10.3 on the previous page.

The coordinates X1.Y1 and X2,Y2 enclose a rectangular zone in which the scrolling
takes place. Anything on the screen which lies outside this area will be completely

Before

After

Figure 10.4 Scrolling a real image

225

unaffected by the scrolling operations. DX and DY specify the horizontal and vertical
distances by which the area is to be scrolled.

As I mentioned earlier, the standard scrolling operation does not remove the existing
parts of the image from the corner of this area. This L-shaped fringe, shown in Figure
10.4 on the previous page, needs to be removed by your program immediately after
the scroll has finished.

Note that the diagram in Figure 10.3 only stricdy applies if both DX and DY are
positive. There are actually four main possibilities for the position of the scrolling
area as shown in Figure 10.5 below.

s

c

R

E

E

N

S

C

R

E

E

N

DX>0

DY>0

DX>0

DY<0

Figure 10.5 Possible scrolling directions

S

C

R

E

E

N

S

C

R

E

E

N

DX<0

DY<0

DX<0

DY>0

llilEIgjjB

^r

Additionally, there are the situations when either DX or DY is zero. In these
circumstances the scrolling is in one direction only, and the scrolling zone is similar
to that shown in Figures 10.1 and 10.2.

Warning! At the time of writing, the STOS Basic SCROLL command has a small
bug. This may lead to some slight confusion when you are adding scrolling effects to

226

yourprograms. (It certainly confused the heck out of me!). If you try to set values for
DX and DY which are not exact multiples of sixteen, the scrolling zone tends to
expand outside the limits you originally specified by DEF SCROLL. There's no
guaranteed way of calculating the screen area in advance, but in all my tests the new
zone always lies within the coordinates:

Xl-abs(DX),Yl-abs(DY) to x2+abs(DX),Y2+abs(DY)

You therefore need to indulge in a litde experimentation to determine the precise
dimensions of the scrolling area. It's then just a simple matter of expanding your
graphics to fit into the new area. Here's an experimenter program to help you along.

10 els physic : els back

20 input "dx=";DX : input "dy=";DY

30 def scroll 1, 48, 50 to 272, 150,DX,DY

40 rbar 128,75 to 176,125

45 rem change for medium or high res

50 box 0,0 to 319,199 : box 47, 49 to 273,151

60 wait key

70 scroll 1

80 wait key : goto 70

This program draws a rectangular bar inside two boxes. The dimensions of inner box
shows you the current scrolling area, whilst the outer box simply highlights the
borders of the screen.

On startup, you will be prompted for your values of DX and DY. You can then test
the scrolling action by repeatedly pressing return. Try running the program with
values of -10 and -10. This gives a good demonstration of the type of problem you a
likely to encounter in your scrolling operations.

The easiest way of discovering the limits of the scrolling area, is to move the mouse
pointer around on the screen. Since the program operates on the physical screen, the
mouse pointer is scrolled along with it.

When you move your mouse outside the scrolling zone, this effect will stop. You can
then hit <CONTROLxC> and print out the coordinates of the scroll boundary:

print x mouse, y mouse

Once you've defined your scrolling zone, you can now perform a scrolling operation
using the SCROLL command. The format of this instruction is simply:

SCROLL n

Where:

n is the number of the scrolling zone you specified with DEF SCROLL.

227

Example 10.1 Horizontal and vertical scrolling

10 rem define a vertical screenscrollingzone
20 def scroll 1,0,0 to 160,200,0,16
30 rem define a horizontal scrolling zone
40 def scroll 2,0,0 to 320,100,16,0
50 els physic:els back

60 ellipse 80,100, 60, 80:rem draw an ellipse
70 for i=lto200

80 scroll i:rem Scroll the ellipse downwards
90 next i

100 els physic:els back

110ellipse 160, 50,150, 40:rem draw an ellipse
120 for i=l to 320

130 scroll 2:rem scroll ellipse to right
14 0 next i

10.4 A window to the world

So far I've neglected to remove the annoying fringe effects from the screen. Real
programs, such as Bullet, incorporate the clever ability replace these useless sections
with new parts of the game map.

These games treat the ST's screen as a sort of window, looking down on a much
larger world. As the window moves up through this game world, the image on the
screen moves accordingly. The fringe at the bottom is continuously updated to reveal
the parts of the world which were previously hidden from sight. This generates a
convincing illusion that the player is moving across a vast imaginary landscape.

Figure 10.6 Illusion of movement

228

10.4.1 The game map

It's usual to implement this effect by storing the entire world view in a single large
map. Every section of the map is built up out of a fixed number of components. The
game map will contain nothing more than simple list of the identification numbers.

This reduces the amount of memory needed by the map by an extremely large factor,
because the same components can be used to create a practically infinite number of
screens. It's typically possible to compact all the information for a screen into a
couple of hundred bytes. So you can cram literally hundreds of screens into your
game without running out of memory on a standard 520 ST.

At this point, you might have realized that I'm actually making an oblique reference
to the STOS Basic MAP Definer.

Since I actually wrote this program, I'm naturally interested in seeing it put to good
use. Looking back, I can appreciate that the output routines could certainly do with a
major injection of speed.

Fortunately, it's easy to adapt the same data to a whole range of other, faster drawing
systems. I included an example of such a routine in Chapter 3, and I'll be exploiting
this system in the scrolling programs towards the end of this chapter.

10.4.2 The MAP definer

Before I show you how you can use some of these techniques, it's worth saying a few
words about the map definer itself. You will probably find that the definer works best
if the height of the sprite divides evenly into the maximum height of the screen. So
sizes of 16x20 are easier to handle than the 16x16 sprite included in the "BACK" fde.

You'll also discover that the map definer performs fastest with sprites around 32x20
in size. This is because the program makes heavy use of the PUT SPRITE command,
which is quite inefficient when dealing with large numbers of small sprites. I would
probably have spotted this problem during the development process, but most of my
example files used sprites with sizes of 32x20!

Thankfully, the drawing speedcan be radically improved using the SCREENS system
from Chapter 3. This works equally well for all STOS Basic sprites.

When you're creating your scrolling zones, set the scrolling dimensions sensibly
according to the sizes of your sprites. Ideally, there should be a integral number of
sprites in each line, and a whole number of lines per game screen. Don't bother
drawing the areas of the map which lie outside your chosen scrolling zone. These can
be safely ignored, and will lead to a small, but irrelevant, waste of memory in the
finished map.

229

It is essential to keep the numbering system for your game screens as consistent as
possible. If you are scrolling in a single direction, it's trivial to number your screens
in the order they will be encountered by the player. But if you wish to scroll in
several directions, you will need to devise a coherent pattern. An example of such a
pattern can be seen in Chapter 5. (RPGs).

10.4.3 Storing the map

The way you will store your game map varies depending on the type of scrolling
operations you will be performing. If you are writing a vertical scrolling arcade game,
you are strongly advised to split the map into horizontal lines as follows:

dim MAP(row,col)

This format allows you to find the components of each line using a single
FOR/NEXT loop, e.g.

for i=l to col: component=MAP (line, i) :gosub 1000 :next i

I'm assuming that the routine at 1000 would be defined separately in your program to
print out a component of your map. I'll be showing you a definition of this routine a
litde later.

The same storage strategy is also applicable to more complex scrolling systems. But
in the case of pure horizontal scrolling, you will need to divide the screen into
vertical strips. So the MAP array would be defined as:

dim MAP (col, row)

If you wished display the contents of a particular strip, you would need to modify the
FOR/NEXT LOOP to:

for i=l to row:component=MAP (col,i) :gosub 1000 :next i

10.4.5 Scrolling through a map

I'll now demonstrate how you can use one of these game maps in an actual program.
The scrolling process is really incredibly easy. This can be seen from the pseudo-code
description in Figure 10.7 on the next page.

Note that this code is only intended to illustrate the general principles of the scrolling
system. If your game was limited to a single movement direction, you could simplify
the pseudo-code considerably.

230

initialise game map

draw first screen

repeat

play game

if down selected and row>0 then scroll up

if up chosen and row<max_row then scroll down

if right and column>0 then scroll left

if left and column<max_columns then scroll right
redraw fringe

redraw sprites

until game over

Figure 10.7 Pseudo-code description of a scrolling game

10.4.6 Initialising the game map

During the initiaUsation phase, the data produced from the map definer will should be
loaded into one of the MAP arrays I mentioned earlier. Oddly enough, the format of
the map data was originally set up for horizontal scrolling. I'm sure that I had an
extremely good reason for this at the time, but can't for the life of me remember it!

I'll now provide you with a couple of routines which will perform this procedure
automatically for you. Don't hesitate to use them in any of your own programs.

Example 10.2 Loading the map array for horizontal scrolling

10 dim MAP (100, 100)

100 rem Initialization routine for horizontal scrolling

110 readLS,NSCR

115 rem LS= number of data lines per screen

116 rem NSCR=Number of screens defined

120 for S=0 to NSCR-1

130 restore 50010+S*LS

135 read W,H : ROWS=199/H : COLS=319/W : rem get unit size

140 for C=0 to COLS

150 for R=0 to ROWS

160 read MAP (S*NSCR+C,R)

17 0 next R : next C : input A$: next S

Example 10.3 Loading the map array for vertical scrolling

100 rem Load a map for vertical scrolling

105 rem read data lines per screen and no of screens

110 readLS,NSCR

120 for s = 0 to NSCR-1

231

130 rem get sizes of sprites

140 readW,H:cols=19 9/h:rows=319/w

150 d=200-cols*h :rem do the sprites divide evenly into
screen

160 for c=l to cols+ 1

170 for r=l to rows

180 readMAP (s*rows+r,c)

190 next r

200 if d then read DUMMY: rem if last row not used, ignore it
210 next c :next s :return

10.4.7 Redrawing the fringe

This subroutine forms the heart of your scrolling routine. Its action is to redraw the
parts of the game map which have just been revealed at the edge of the screen.

Your program begins by creating a list of the location of the screen segments which
make up the fringe. The sizes of these segments wiU obviously depend on the sizes of
the sprites you used when designing the screen using the map definer.

If your game requires the screen to scroll in several directions, it is sensible to define
one set of positions for each possibility.

Supposing you wished to produce a simple vertical scroll. The fringe area would look
something like the one shown in Figure 10.8:

1
i * i * i * i * i * i * i * i * i * i * i'

•ill
mm

Figure 10.8 List of screen segments in the fringe

The program stores one set of coordinates for each component of the fringe. If you
had ten sprites making up each horizontal line, then you could initialise the fringe
array using the following code:

232

100 dim SLOT (10) :rem dimension array for position of fringe

110 for SL=1 to 10 : SLOT (SL) = (SL-1) *32 : next SL

Note that for a purely vertical scroll, it's only necessary to store the X coordinate of
the component. But in the case of a more complex scroll, the fringe will be L-shaped,
and you will therefore need to store both the X and Y coordinates of the segments to
completely specify their position.

After you've stored this data, you are ready to redraw the fringe using the data stored
in the map array. The fastest way of achieving this in practice, is to load each sprite
image into a string using SCREENS. You can then output the entire line at high speed
using the following code:

Example 10.4 redrawing the fringe

220 for c=l to cols

225 rem YROW=Y coordinate of fringe

22 6 rem SEG$ array holds block images

227 rem MAP holds world map

228 rem CL holds number of current line

230 if MAP (CL, SP) >0 then

screen$(physic, SLOT(c),YROW)=SEG$(MAP(CL,c))

240 next c

seg$ is an array containing the sprite images used for your segments. These images
would be loaded into the seg$ array using a routine such as:

420 rem Enter sprite images in SEG$ array

430 els physic : els back

435 rem no_of_blocks holds number of sprites to be grabbed
440 for 1=0 to no_of_blocks
450 els physic, 0,0, 0 to 16,16

460 sprite 1,0,0,1+1 : put sprite 1 : wait vbl

470 SEG$(I+l)=screen$(physic,0,0 to 16,16) : next I

480 sprite 1,-100,-100,1

490 return

Here's a complete example which demonstrates these techniques to scroll a large
spaceship through the screen. Before you can run this program, you will need to load
the background sprites supplied on the STOS Basic accessory disk.

load "back.mbk"

Note that it's also possible to use this routine directly with your own map definitions.
This will avoid typing in all those boring data statements at the end of the program.
Create your maps in the normal way using the Map definer, and save them using the
S.ASC function. Now load them into memory, and delete the old output program
with:

233

load "map .asc" :rem Or whatever you called your maps
delete 50000-50003

You may now enter the program in Example 10.5, ignoring the data statements at 600
onwards.

Example 10.5 Vertical Screen scroller version 1

10 rem Vertical screen scroller

20 rem Screen generation using mapper

25 dimSEG$(40) :rem define segment array

30 mode 0 : els physic : els back : flash off

40 gosub 420 :rem load sprite images into SEG$ using SCREEN$

50 ROOM=l : gosub 500 : rem draw first screen

60 def scroll 1, 0, 0 to 320,192, 0,-16 : rem define scrolling

70 def scroll 2, 0, 0 to 320,176, 0,16 : rem define scrolling

80 dimMAP (100,20) ,SLOT(20) : rem dimension MAP and SLOT

90 rem load slots

100 for SL=1 to 20 : SLOT (SL) = (SL-1) *16 : next SL

110 rem initialise game map

120 restore 600

130 read LS : rem read number of lines per screen

140 read NSCR : rem read number of screens

150 for S=0 to NSCR-1

160 rem get sizes of sprites

170 read W,H : ROWS=199/H : COLS=319/W

180 D=200-COLS*H : rem do sprites divide evenly into screen

190 for C=l to COLS+ 1

200 for R=l to ROWS

210 readMAP(S*(ROWS)+R,C)

220 next R

230 if D then read DUMMY : rem if last row not used, ignore it

240 next C : next S

250 rem Main scrolling loop

2 60 CL=12 :rem start line

2 65 rem main loop

270 repeat

280 rem Scroll screen up

290 if jup andCL>13 then dec CL : gosub 360

300 if jdown and CL<ROWS*NSCR then inc CL : gosub 320

310 until fire

315 stop

316 rem Scroll the screen down

320 scroll 1 : els physic, 0, 0,176 to 320,192 : rem erase

fringe

330 rem redraw fringe

234

340 for C=l to COLS+1 : if MAP (CL, C) >0 then

screens(physic,SLOT(C),176)=SEG$(MAP(CL,C))

350 next C : return

360 rem scroll the screen up

370scroll 2 :els physic, 0, 0, 0 to 320,16 :rem erase fringe
375 rem redraw fringe
380 for C=l to COLS+ 1 : if MAP (CL-12, C) >0 then

screen$(physic,SLOT(C),1)=SEG$(MAP(CL-12,C))
3 90 next C : return

400 default

410 stop

420 rem Enter sprite images in SEG$ array

430 els physic : els back

440 for 1=0 to 30

450 els physic, 0,0,0 to 16,16

460 sprite 1,0,0,1+1 : put sprite 1 : wait vbl
470 SEG$(I+l)=screen$(physic,0,0 to 16,16) : next I

480 sprite 1,-100,-100,1

490 return

495 rem New version of Map output program

496 rem Rewritten using SCREEN$ for extra speed

500 restore 600 : readNL,NROOM

505 if ROOM>NROOM or ROOM<=0 then return

510 restore 610+ (ROOM-1) *NL : read GRIDW, GRIDH : els physic

520 for 1=0 to 319/GRIDW

530 for J=0 to 199/GRIDH

540 reads

550 if S>0 then screenS(physic, I*GRIDW+1,J*GRIDH)=SEG$(S)

560 next J : next I : return

570 rem Distance between screens, number of screens

580 rem The distance may need changing after you have

590 rem renumbered these lines from 50000 +

600data 13,2

605 rem Screen 1

610 data 16,16,0,0,0,0,0,0,17,17,17,17,17,0,0,0,0,0,0,

0,17,17

620 datal7,17,17,17,17,0,0,0,0,0,17,17,1,1,1,1,17,17,0,0

630 dataO,0,17,17,1,1,1,1,1,1,17,0,0,0,17,17,17,1,1,1

640 datal, 1,1,17, 0,0,17,17,17,17,17,17, 17,17,17,17,17,0,

17,17

650 datal7,22,2 0,20,22,17,17,17,17,17,0,17,17,17,2 3,18,

18,23,17,17

660datal7,17,17,0,17,17,17,23,18,18,23,17,17,17,17,17,

0,17,17,17

67 0data23,18,18,20,20,20,20,20,20,0,17, 17,17,23,18,18,

20,20,20,20

235

680data 20, 20, 0,17, 17,17,23,18,18,23,17,17,17,17,17,0,
17,17,17,23

690 data 18,18,23,17,17,17,17,17,0,17,17,17,24,20,20,24,
.17,17,17,17

700 data 17,0,0,17,17,17,17,17,17,17,17,17,17,17,0,0,0,
17,17,17

710 data 1,1,1,1,1,1,17,0,0,0,0,17,17,1,1,1,1,1,1,17

720 data 0,0,0,0,0., 17,17,1,1,1,1,17,17, 0,0,0,0,0,0,17

730 data 17,17,17,17,17,17,0,0,0,0,0,0,0,17,17,17,17,17,
0,0

735 rem screen 2

740 data 16,16,0,0,0,0,0,0,0,0,0,0,0,0,0,17,17,0,0,0,0,0

750 data 0,0,0,0,0,0,17,17,17,0,0,0,0,0,0,0,0,17,0,17

760 data 17,17,0,0,0,0,0,0,0,17,17,0,17,17,17,17,0,0,0,0

77 0 data 0,0,17,17,0,17,17,17,17,17,0,0,0,0,17,17,17,0,
17,17

780 data 17,17,17,0,0,0,0,17,17,0,0,17,17,17,17,17,0,0,0,
17

790 data 17, 17,0,0, 17, 17, 17,17,17,17,17,17,17,17,0,0,0,

20,20,20

800 data 20,20,20,20,20,20,20,20,20,0,20,20,20,20,20,20,

20,20,20,20

810 data 20, 20, 0,17,17,17,17,17,17,17,17,17, 17, 0, 0, 0,17,

17,17,17

820 data 17,0,0,0,17,17,17,0,0,17,17,17,17,17,0,0,0,0,17,

17

830 data 0,0,17,17,17,17,17,0,0,0,0,17,17,17,0,17,17,17,

17,17

840 data 0,0,0,0,0,17,17,0,17,17,17,17,0,0,0,0,0,0,17,17

850 data 0,17,17,17,0,0,0,0,0,0,0,0,17,0,17,17,0,0,0,0

8 60 data 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Most of this program should be fairly familiar, since I've already discussed the major
components in some detail. Variable CL holds the number of the current line. At the
start of the program it is set to twelve, which is the bottom line of the screen.

The routines from 320 and 370 scroll the screen and replace the fringes with the
hidden data from the MAP array. Also note that I have set the direction of scrolling
to be opposite to the direction you moved the joystick. This is because when you are
walking across the ground, the ground seems to scroll away in the beneath you, in the
opposite direction to your motion. It therefore makes sense to puU the joystick to
scroll up, and push the stick to move down.

10.5 Screen flipping
Although the program in Example 10.5 works quite well, especially when compiled,

236

it does suffer from a slight jerkiness. This is caused by the fact that you can see the
image currently under construction. The solution is to use a separate logical screen for
the image your are generating. This can be interchanged with the current physical
screen using the SCREEN SWAPinstruction.

If you want to exploit this idea, you need to remember that as the two screens are
only displayed on alternate scrolling operations, each scroll must be twice the normal
size. This needs to be executed with a litde finesse, because the physical and logical
screens have to be carefully kept in step with each other.

You should also take care that the sprite background always contains an exact copy of
the physical screen for use by the STOS Basic sprites. If you omit to update the
background screen, the sprites will start to interfere with your scrolling operations.

The ideal solution is to scroll the background screen directly, and then copy over the
results into the physical screen. There are however a number of complications. You
can't just swap the background screen with the physical screen, as this would corrupt
the various sprite operations. You therefore need to keep a separate copy of the
logical screen somewhere in memory, and copy the background screen into this. I'll
clarify the technique with a litde pseudo-code.

reserve screen

draw first image

copy image to sprite background

repeat

scroll background

copy background to logical screen

screen swap

Until game over

Figure 10.9 Scrolling the screen using screen flipping

This technique can be incorporated into the program from Example.10.5 by adding
the following lines:

35 reserve as screen 6

320OLD=logic : logic=back

330 scroll 1 : els logic, 0,0,176 to 320, 192 : remerase

fringe

340 for C=l to COLS+ 1

345 if MAP (CL,C)>0 then

screenS(logic,SLOT(C),176)=SEG$(MAP(CL,C))

237

350 next C :logic=OLD :screen copy back to logic
355 wait vbl : screen swap : return
360OLD=logic : logic=back

375 scroll 2 :els logic, 0,0,0 to 320,16 :remerase fringe
380 for C=l to COLS+1

385if MAP(CL-12,C)>0 then screenS(logic,SLOT(C),1) =
SEG$(MAP(CL-12,C))

390next C :logic=OLD :screen copy back to logic
395 wait vbl : screen swap ; return

550if S>0 then screenS(physic,I*GRIDW+1,J*GRIDH)=SEG$(S)
: screen$(back,I*GRIDW+1,J*GRIDH)=SEG$(S)

10.6 Using sprites with a screen scrolling
game

The vast majority of screen scrolling games also make heavy use of the STOS Basic
sprites. If you try to use the normal sprite operations for this purpose, you will
quickly discover that the sprites clash with the scrolling operations. Normally, all the
sprites are redrawn automatically by STOS Basic. It is this redrawing process which
generates the interference. The solution is to take control of the sprite updates
yourself. This can be achieved using either the UPDATE or SYNCHRO commands

10.6.1 Difference between UPDATE and SYNCHRO

The actions of these two commands are broadly similar. Both instructions redraw any
sprites which have moved on the screen since he last update. The difference between
them is subde but important.

As you probably know, the coordinates of the STOS Basic sprites are usually updated
every 50th of a second using an interrupt routine. It is however, impossible to update
the actual positions of the sprites on the screen within the interrupt. There simply
isn't the time. Instead, STOS Basic automatically calls the redrawing operations
direcdy within your program between successive Basic instructions.

UPDATE OFF turns off this redrawing process but has no effect on the interrupt
which actually changes the sprites screen coordinates. So the sprites are still moving
around in memory, even when they are not being displayed on the ST's screen. You
can force the redrawing process at any convenient point in your program using
UPDATE. The SYNCHRO command is rather different, because it disables the sprite
interrupt completely. The coordinates of the sprite are now only updated when it is
redrawn using SYNCHRO.

Both commands have their own advantages and their disadvantages. If your sprites
need to move independently of the background, then UPDATE will produce the
smoother effect. But if you want to move your sprites along with thebackground, you

238

will need to control every aspect of the sprite movements in your program. This will
forceyou to use the SYNCHRO instruction instead.

10.7 Conclusion

The STOS Basic scroll commands make smooth scrolling effects an achievable reality
rather than just an impossible dream. With a litde work, you should be able to add
scrolling backgrounds to any of your own games, without having to resort of any
complicated programming tricks or optimization strategies. But don't try to be
over-ambitious. Even STOS Basic has to live on the ST, and unless you restrict the
sizes of your scrolling zones ruthlessly, you'll need to work quite hard to produce
true commercial quality arcade games using this system. On the other hand, if Bullet
had been written today using the SCROLL command, it would probably have been
much more effective. So there's certainly nothing stopping you from incorporating
some marvellous scrolling effects in your games!

239

240

11

Assembly language
programming techniques

11.1 Why program in assembly language?

Throughout this book, I've been emphasising the fact that you can write commercial
quality games without the need to involve yourself in complicated 68000 assembly
language programming. So why have I felt the need to include a section on assembly
language programming at all?

Well, I do have an excuse. I am after all an enthusiastic assembly language
programmer myself. Like many such people, I often find it very hard to restrain
myself from hacking out a quick 68000 routine to optimise one of my STOS Basic
programs. You may not NEED to use assembler from STOS Basic but if you aheady
understand it, there's absolutely nothing stopping you from combining your favourite
assembly language routines direcdy into a STOS Basic program.

A few years ago, it was common practice to generate a commercial quality game
using a hybrid of Basic and assembler. This allowed the skilled programmer to write
the critical parts of a game in machine code, whilst controlling the simpler sections
using Basic. Even on a Atari 800 XL this technique was capable of producing some
mind-blowing results. Imagine what you could achieve with STOS Basic!

Since STOS Basic is already very powerful, it wouldn't take a lot of assembly
language to transform even the most sluggish STOS Basic game into a machine code
masterpiece. That's why several major software houses are now starting to use STOS
Basic in a big way. I'll now provide you with a complete explanation of the STOS
Basic assembly language interface. This will include a detailed examination of the
various extension formats you can use to add whole libraries of new commands to
your STOS Basic system.

In order to make the most of this section, you'll already require a basic grasp of
68000 assembly language. If you are unfamiliar this subject, you should refer to one
of the 68000 tutorials listed in the bibliography before preceding any further. The

2-11

only hard part of 68000 programming is the learning process. Once you've got the
knack, you will be astonished at how easy it really is. So don't be afraid to persevere
for a while until you have passed the initial confusion. Everyone has to struggle at the
beginning, and the longer you work at 68000 assembler the simpler it becomes.

11.2 Choosing an assembler

11.2.1 The STOS Basic assembler

As you know, STOS Basic comes complete with its own 68000 assembler utility. If
you've experimented with this program, you will have realized that it has a number of
annoying limitations.

The fact is, the STOS Basic assembler was originally created for use with the French
version of the package. It was included with the English system as an after-thought,
and was never really intended as a serious development tool. So although the STOS
assembler is fine for simple programs, it's not really very useful. I would therefore
strongly advise you to treat yourself to one of the many alternative assemblers
available on the market.

Luckily, STOS Basic is compatible with most 68000 assemblers, so the choice of
package is entirely up to you. Here are a few suggestions.

11.2.2 Other assemblers

K-SEKA

K-SEKA is notable because it was used by Francois Lionet and C.Sotiropoulos during
the development of the original STOS Basic package. K-Seka may not be the most
advanced assembler on the market, but it's incredibly small, and impressively fast.

Francois was therefore able to assemble the complete 600k or so of STOS Basic
source code in a matter of minutes using an unexpanded 1040 ST. Overall, K-SEKA
is definitely worth thinking about if you want to write large programs on a standard
520 ST.

Supplier: Kuma

DevpakST (Version 2)

In my opinion DevpakST 2 is the best assembler currently available for the ST series
of computers. At £59.95, it's not exactly cheap, but if you are serious about using
68000 assembly language on the ST, you'll quickly regard it as money well spent.

One feature which is especially useful for STOS programmers, is the AMONGST
program. This can be placed in the AUTO folder of your working copy of STOS

242

Basic, and will load automatically along with the rest of the system. Whenever a
processor error occurs, the MONST monitor is entered immediately from memory.
You can now debug your program by placing an illegal instruction such as a TRAP
#10 at the problem points in your assembly language routine.

Supplier: Hisoft

Devpack 1 ST

This an earlier version of the DEVPAK assembler which justiy earned a rave review
from yours truly in Atari ST User. It's nowhere near as good as the latest system, but
it does include everything you need to generate useful assembly langugage programs.

The really interesting thing about DEVPAK 1 is that you may be able to obtain it
quite cheaply. It did after all, form the centre piece for one of the ST/AMIGA
FORMAT cover disks. (Issue 10). So if you're lucky, you might still be able to get
hold of a back issue from Future publishing. (If you're really fortunate, you may
already have a copy lying around in your disk box waiting to be used.)

Supplier: Hisoft

Don't panic, by the way, if you already own an assembler which I haven't mentioned.
You almost certainly won't need to replace it especially for use with STOS Basic.

11.3 Free standing assembly language
programs

The easiest method of adding some assembly language into a STOS Basic program is
to place your routines direcdy into a memory bank. You can then execute these
procedures using the CALL command as follows:

CALL Bank no

Any of the registers A0-A6 and D0-D7 can be accessed direcdy from Basic using the
AREG and DREG functions.

Another approach, is to load your machine code routines into a string variable. In this
case, you will need to ensure that all your routines are fully relocatable, as STOS
Basic strings can move around in memory. You should also remember that STOS
Basic strings are limited to 32k.

Supposing you had previously placed some machine code into the string CODES.
You could now execute this routine with a line like:

CALL VARPTR (CODES)

243

Your assembly language programs can make free use of any of the DOS, BIOS, and
XBIOS traps allowable under the TOS operating system. You can also call the
WINDOW, SPRITE, and MUSIC functions detailed on pages 257 to 265 of the
STOS Basic manual. You should however, steer well clear of the TRAP #4 and
TRAP #6 functions. These have been omitted in the later versions of STOS Basic for

reasons of space. So any attempt to call them will, I'm afraid, be doomed to failure.

11.4 STOS Basic extensions

One of the most exciting features of STOS Basic, is the ability to add whole new
instructions to the standard system. These can be incorporated directly into your Basic
programs and can be executed like any other STOS Basic instructions. With a litde
extra work, it's also possible to compile these new instructions using the COMPILER
accessory.

STOS Basic extensions provide you with the perfect way of expanding the language
to your own individual requirements.

So in the unlikely event that there's anything you really hate about STOS Basic,
you'll probably be able to change it using an extension.

Whenever STOS Basic is run, the BASICPRG program searches the STOS folder for
any files with the extension .EXn, where n can be any of the letters from A to Z
(except B). These files are then loaded into memory, and the appropriate extension
commands are installed automatically. Similarly, the STOS Basic compiler checks the
COMPILER folder for compiler extensions in the form ".ECn" .

It's likely that you've already been using some of these extension commands for
some time without actually realising it. The STOS Basic package includes a powerful
set of screen compression extensions in the fde COMPACT.EXA. These provide you
with the two extra instructions PACK and UNPACK. Neither instruction is native to

STOS Basic. If you've purchased the STOS MAESTRO package, you will also be
familiar with the various sampler extensions.

I'll now show you how you can create one of these extensions for use in your own
programs. All extensions are written in assembly language, using a special format.
Although this format looks rather daunting at first, it's well worth persevering. After
all, when you've successfully mastered the art of extension programming, you will be
able to incorporate fast machine code into your games using your very own STOS
Basic instructions.

Different techniques are required to produce the extension files needed for the STOS
Basic, interpreter and the compiler. I'll begin with the interpreter extensions because
they are easier to understand.

244

11.5 Interpreter extensions

11.5.1 The header

At the start of every extension there is a list of information which details of the
number and type of the extension commands defined in the file. Since this header
data is not directly executable by the ST, the first instruction shouldalways be a jump
to an initialisation routine, e.g.

bra INIT

Each STOS Basic command is assigned a unique number known as a token. Even
tokens refer to Basic instructions, and odd tokens are used for the functions. STOS
Basic allocates 128 tokens for use by your extension. These range from 128 to 255.

The header commences with the number of the first token in your list. This value
should always be set to 128.

even

dc.b 128

Note that these token numbers are automatically combined with the number of the
extension during initialisation. So it's perfectly legal to use the same numbers in
several different extension files.

The header now contains a detailed list of all the Basic instructions which will be

provided by your extension. This list consists of the names of your instructions (in
lower case), followed by their respective token numbers. The entire token list is
terminated by a chr$(0).

Here is an example of one of these lists in Table 11.1.

Table 11.1 Example of a token list

ens:

dc.b "at",128

dc.b "vers",129

dc.b "code$",130

dc.b "test",132

dc.b "test on",134

dc.b "test off',136

dc.bO

even

Instructions have EVEN tokens

Functions are ODD

Commands can contain almost any character including
spaces

Tokens may be out of sequence

All the characters in a name are significant

So "test" "test on" and "test off are DIFFERENT

instructions

The end of the token list is indicated with a ZERO

245

The names of your instructions can be practically anything you like. But you can't
include the names of any existing STOS Basic instructions in your new commands,
because these are processed before your extensions.

•So a command like DECODE, would be illegal, and would be interpreted by STOS
Basic as:

dec ODE

You should also note that you are not allowed to use tokens with the numbers 160 or
184, as these are reserved for STOS Basic's internal use.

The next part of your extension informs the STOS system of the addresses of your
new commands in memory. These are specified in the form of a "jump table", with
the first word containing the number of jumps, and the succeeding words holding the
actual addresses of your routines. The number of jumps in the list will often be the
same as the number of new commands. If however, you are using tokens out of
sequence, you need to include "dummy" values for any of the positions you will not
be requiring.

So although there were only 6 instructions in the example in Table 11.1, you would
actually be forced to include 9 addresses in your jump table.

The number of jumps required can be calculated by the formula:

number of jumps = last token - first token + 1
= 136 -128 + 1

= 9

Here is a jump table for the example in Table 11.1

jumps:

Table 11.2 The jump table for an extension

dew 9

del AT 128

del VERS 129

del CODE 130

del DUMMY 131

del TEST 132

del DUMMY 133

del TESTON 134

del DUMMY 135

del TESTOFF 136

The labels AT, VERS, CODE, etc. refer to the addresses of the start of your
extension routines. I'll be showing you the definition of DUMMY slighdy later.

246

The final step is to add the messages which will be printed out after the extension has
loaded. Two messages are needed, one in English and one in French.Each messageis
terminated by a chr$(0), as follows:

welcome: dc .b "Tiny extension", 0

dc.b "Extention Tiny!", 0

If you don't speak French, you can place any message you like in the second
position; you cannot omit the message altogether. In practice, it's well worth taking
the trouble to translate your welcome into French, using a dictionary.

This keeps the system tidy, and recognizes the French origin of the STOS Basic
package.

You should now reserve some space for two variables which will be required by the
extension.

SYSTEM:dc.l 0 Address of system routines

RETURN: del 0 Used to return back to Basic

(See later)

SYSTEM holds the address of a table containing the location of some of STOS
Basic's internal subroutines. These can be called at any time from your extension.
Features available include the conversion of a number from floating point to an
integer, and the ability to exit back to Basic with a specified error condition.

RETURN is used to keep a copy of Basic's return address. This will be needed to
allow your extension to safely returns to STOS Basic when it has finished.

11.5.2 Initialisation section

This is the first thing which is executed after the extension has been successfully
loaded. Its action is to place the address of the end of the extensions into register AO,
and the address of the COLD start routine in Al. e.g.

INIT : lea EXIT, aO EXIT is a label at the END of

your program

lea COLDST,al

rts

After this initialisation has been performed, the cold start routine at COLDST is
immediately executed.

On entry, a pointer to the system routines is placed into register AO. This should be
immediately saved in the SYSTEM variable you defined in the header. You must now
inform the STOS Basic system of the location of the various bits of header
information you created earlier, in the following way:

247

COLDST: move .1 aO, SYSTEM Copy address of system table

into memory

lea WELCOME, aO Address of welcome message

lea WARMST, al Address of Warm start routine

lea TOKENS, a2 Address of the TOKEN table

lea JUMP, a3 Address of the JUMP table

The warm start routine is entered whenever STOS Basic is reset with <UNDO>. It's

possible to exploit this feature to redefine any important variables used by your
program to their default values after a reset. As the vast majority of extensions don't
need this type of initialisation, it's common practice to substitute a single RTS
instruction in this position:

WARMST: rts

11.5.3 Syntax checking

Once you've completed your header definition, and set up the initialisation section,
you are finally ready to implement your actual extension commands.

Whenever you call an instruction from Basic, you normally include a number of
parameters. A parameter is just a fancy name for a value you provide to a Basic
instruction. Take, for instance, the STOS Basic BOX command:

BOX 10,15 to 200,100

This has the four parameters: 10, 15, 200, and 100. In the same way, a line like
x=max(17Z) has parameters of 17 and Z.

Any parameters which have been input to your commands will need to be accessed
one at a time from within your extension routine. Fortunately, most of the really
complicated stuff is performed automatically by STOS Basic. By the time your
extension has been reached, the number, type, and even the values of the parameters
are aheady known.

When your new instruction is executed, the number of parameters will be placed in
register DO. The parameters themselves are pushed onto the A7 stack in the order
they were typed, from left to right. Since Basic calls your extension using a JSR
instruction, the first item on the stack will be the return address of the extension

handler. The first action of your extension routine should therefore be to load this
address in the RETURN variable you defined earlier. This will allow your extension
to return back to Basic after it has completed, eg

EXT: move.l (a7)+, RETURN Save return value

do extension

248

move .1 RETURN, aO Load return address into AO

jmp (aO) Jump back to STOS Basic

Your routine should now check the number of parameters supplied by the user against
the number which is required by the instruction. Some instructions are capable of
being successfully called in several different formats. In this case, each allowable
format needs to be tested individually. If the wrong number of parameters has been
input, your extension should immediately jump back to Basic using an error routine
found in the SYSTEM table. This can been called using the following code:

SYNTAX moveq#12,d0 Error number 12

bra. s ERROR

TYPEMIS moveq#19,d0 Error number 19

bra. s ERROR

ILLEGAL moveq#13,d0 Error number 13

* Load start of SYSTEM table into AO

ERROR: move .1 SYSTEM, AO

move.l $14 (AO) ,A0 Get address of error handler

jsr (aO) Jump to error handler

Note that the error numbers used by this function correspond precisely to the normal
STOS Basic error messages. See pages 233-238 of the STOS Basic manual.

Providing the user has entered the correct number of parameters, your extension can
now pull them directly off the A7 stack in REVERSE order. Each parameter is stored
in four parts, and these are normally loaded into the registers D2-D4 using an
instruction like MOVEM.L (a7)+,D2-D4.

The contents of these registers will vary depending on the type of the parameters you
are using. I'll now provide you with a list of the possible formats, along with a
sample set of syntax checking utilities to get you started:

INTEGER:

D2.B = 0

D3.L=Number

D4.L= 0

* Get integer from stack and check for syntax error
* INPUTS: none

* OUTPUTS: D3 = integer

GETINT: move.l (a7)+,a0 Save return address

249

movem.l (a7)+,d2-d4 Get parameter

tst.b d2 Is the argument an integer?
bne TYPEMIS No ! Signal an error

jmp (aO) Return from subroutine

TYPEMIS: moveq#19,d0 Error number 19

bra .s ERROR Jump to error routine defined

previously.

Another useful subroutine allows you to convert an floating point number into an
integer. This can be incorporated directiy into the GETTNT routine above:

* Convert an a floating point number into an integer

* INPUTS D3/D4=Floating point number
* OUTPUTS D3=Integer

INTFL: movem.l d0/dl/d5/d6/d7/a0-a2> - (a7)

move .1 SYSTEM, aO Get address of system routines

move .1 4 (aO) ,aO Get address of FLTOINT routine

jsr (aO) Call FLTOINT

movem.l (a7)+,dO/dl/d5/d6/d7/aO-a2

rts

FLOATING POINT:

D2.B = $40

D3 .L = Top half of number

D4 .L = Bottom half of number

* Check for the presence of a floating point parameter

* Assumes the existence of the TYPEMIS routine shown earlier

* INPUTS: none

* OUTPUTS: D3/D4 hold number in floatingpoint format

GETFLOAT: move. 1 (a7)+,aO Save return address

movem.l (a7)+,d2-d4

tst. b d2 Is the argument in floating

point?

ble TYPEMIS No! Signal an error

jmp (aO) Return from subroutine

There's also a routine to convert an integer into a floating point number. This can be
called using the system table in the following way:

* Convert an integer into a floating point number

*INPUTS D3=Integer

*OUTPUTS D3/D4=Floating point number

250

FLINT: movem.l d0/dl/d5/d6/d7/a0-a2, - (a7)

move.l SYSTEM, aO Get address of system routines

move.l 8(aO) ,a0 Get address of FLTOINT routine
jsr (aO) Call FLTOINT

movem.l (a7)+,d0/dl/d5/d6/d7/a0-a2

rts

Incidentally, during the changeover from STOS Basic V2.3 to the latest version 2.4
the format of floating point numbers has changed. This has NO effect on the
workings of your extensions.

STRING:

D2.B = $80

D3.L = Address of string

D4.L = 0

* Get a string from the stack and check syntax

* INPUTS: none

* OUTPUTS: D2 holds length of string, D3 contains address

* Note this routine destroys the contents of Al

GETSTR: move.l (a7)+,a0 Save return address

movem.l (a7)+,d2-d4 Get parameters

tst .b d2 Is the argument a string?

bge TYPEMIS No!

move.l d3,al

move.w (al)+,d2 Get length of string

jmp (aO) Return from subroutine

The first two bytes of the string hold its length, and there is NO chr$(0) at the end.
You therefore need to reformat the string for use by the various TOS routines.

* Routine to convert a string from STOS to GEMDOS format

* INPUTS: D3=Address of string

* OUTPUTS: Dl=Length of string

* Corrupts D2

STRFIX: movem.l al-a2, - (a7) Save registers

move.l d3,al

move.w (al)+,d2

move. w d2, dl

move .1 d3, a2

STRL1: move.b (al)+, (a2) +

dbra d2,STRLl

move.w #0,(a2)+

Get length of string

Save in dl

Create space for chr$ (0)

Loop through string

Copy zero at end of string

movem.l (a7)+,al-a2 Restore registers

rts

251

After you've called the STRFLX routine you canprint out the string using the various
GEMDOS commands. Before returning to STOS Basic, you should always take the
trouble to reconvert the string back to its original format. Otherwise an error will
occur whenever you try to use that string again from STOS Basic.

* Converts a string for TOS format back to STOS

* INPUTS : Dl= Length of string, D3= Address of string
* OUTPUTS: none

*

STOSSTR: movem. 1 d0/al/a2,-

move .1 d3, al

move.1 d3, a2

add.l #2,a2

move .w dl, dO

STRL2: move.b (al)+,(a2)+

dbra dO,STRL2

move.l d3,al

move.w dl, (al) +

movem.l (a7)+, d0/al/a2

rts

(a7) Save registers

Save address of string

Save destination address

Add 2 for length

Set counter in DO

Make room for length

Loop through string

Replace length at start

You can use these syntax checking routines by simply calling them from your
program with a JSR. Supposing you had an instruction called TEST which had three
parameters in the format:

TEST string,float,integer

A typical call to this function might be:

TEST "Hi",3.141,42

You could now retrieve the parameters using the following fragment of assembly
language:

TEST: move.l (a7)+,RETURN

cmp #3,d0

bne ILLEGAL

jsr GETINT

move.1 d3, d5

jsr GETFLOAT

move.l d3,d6

move.1 d4, d7

jsr GETSTR

move .1 d3, aO

Save return address for Basic

Check for THREE values

Signal an error

Get an integer

(Parameters in REVERSE order)

Save integer in D5

Get a floatingpoint number

Save top half of number

Bottom half

Get a string

Save address of string in AO

252

Body of TEST routine
move .1 RETURN,aO Get return address for Basic
jmp (aO) Return to Basic

ILLEGAL: moveq#13,d0 Illegal instruction
bra ERROR Jump to error routine

Note that the body of your extension program should always save the registers
A3/A5/A6 before changing them. These are reserved for STOS Basic's internal use
and should be restored to their original values at the end of your routine. The best
way of achieving this is to define a data area at the end of your extension and save
the registers using something like:

leas averegs,aO where saveregs is the address
of the end of your data area

movem.l D5-D6/A1-A6, - (aO)

At the end of your routine Gust before the MOVE.L RETURN,aO), you can then reset
these registers to their starting values with:

lea loadregs, aO loadregs = Address of the

start of your data area

movem,1 (aO)+,D5-D6/A1-A6

The space for the registers should be defined in the form:

loadregs ds . 1 8

saveregs:

11.5.4 Function definitions

Any functions included in your extension will need to be able to return a value back
to STOS Basic. This can be done by simply setting the registers D2-D4 using exactly
the same format.:

Type Registers
Integer D3 = Integer returned

D2 =0

Floating point D3/D4 = Floating point number
D2 = $40

String D3 = Address of string
D2 = $80

253

11.5.5 System support routines

I've already mentioned that the SYSTEM table contains the addresses of a numberof
important routines. The full list runs to several pages, so I'll limit myself to a
summary of more interesting ones:

* Check whether a value is an address or a bank number

* INPUTS: D3.L=Value

* OUTPUTS:

* If D3 contains the number of a reservedmemory bank
* then D3 is loaded with the start address of the bank

* If the bank is not reserved, an error is generated

GETBANK: movem. 1 a0-a2,- (a7) Save registers

move .1 SYSTEM, aO Get address of SYSTEM table

move.l $88 (aO) ,a0 Get ADORBANK address

jsr (aO) Call routine

movem.l (a7)+,a0-a2 Restore register
rts

* Check whether an address or a bank number is a screen

* INPUTS: D3.L=Value

* OUTPUTS:

* If successful, D3 contains the start address of the screen

* Otherwise an error is generated

GETSCR: movem.l a0-a2,-(a7) Save registers

move .1 SYSTEM, aO Get address of SYSTEM table

move.l $80 (aO) ,a0 Get ADORSCRN address

jsr (aO) Call routine

movem.l (a7)+,a0-a2 Restore register
rts

* Generate a user defined error condition

* INPUTS : AO = The address of a string containing the error
* messages in TWO languages!

* DO = The number of the error message to output
* OUTPUTS: NONE

MYERROR: movem. 1 a0-a2, - (a7) Save registers
move.l SYSTEM, aO

move.l $18 (aO) , (aO) routine number $18
jmp (aO)

rts

* Get space for a new string

254

* INPUTS D3 .L = Length of new string
* OUTPUTS AO = Address of allocated string

Al = Another copy of the address in AO
move. 1 SYSTEM, aO

move.l SlC(aO) ,(aO) routine number SIC

jsr (aO)

rts

Another very useful routine is the DUMMY command I mentioned earher.

DUMMY: move.l (a7)+, return Remove return address
bra SYNTAX Generate a syntax error

Now for a full blown extension for you to type in:

Example 11.1 The Tiny extension

* Tiny Extension By Stephen Hill
* Adds three (trivial) new commands to STOS Basic

* caps on

* turns on caps lock within a program

* caps on

* ALL INPUT TEXT IS IN UPPER CASE

* x$=code(a$,n)

* encodes a string by adding an integer n to each character

* useful for adventure games

* eg c$="ATTACK" :print code$(c$,2) gives
* CWCEM

* caps off

* now you' re back in lower case

* Extension Header

even

bra INIT Jump to initialization
routine

dc.b 128 Starting at token number 12!

* Token list

TOKENS dc.b "caps on", 128 Instructions are even
dc.b "code$", 129 Functions are odd

dc.b "caps off", 130
dc.bO End of new instructions

255

Jump table

even

JUMPS dew 3

del CAPSON

dc. 1 CODE

del CAPSOFF

Number of extension commands

Addresses of extensions

* Welcome messages irr TWO languages

WELCOME dc.b 10, "Tiny extension", 0

dc.b 10,"Extension tiny", 0
dc.b 0

even

* Reserve space to hold address of Basic variables

SYSTEM dc.10

* Reserve space to hold return address from Basic

RETURN dc.10

* Load aO with offset to end of extensions in memory

INIT lea EXIT,aO

lea COLDST, al

rts

COLDST move.l aO, SYSTEM

lea WELCOME, aO

lea WARMST, al

lea TOKENS, a2

lea JUMPS, a3

rts

WARMST rts

* Support routines for a STOS Basic extension

* Get an integer argument

GETINT move.l (a7)+,a0 Save return address

movem.l (a7)+,d2-d4 Get a parameter

tst.b d2 Is the argument an integer?
bne TYPEMIS No!

Address of cold start routine

Copy address of variables

into AO

Address of welcome message

Address of Warm Start routine

Address of token list

Address of jump table

Currently does nothing

256

jmp (aO)

* Get a string argument

Return from subroutine

GETSTR move.l (a7)+,a0 Save return address

movem.l (a7)+,d2-d4 Get parameter

tst. b d2 Is the argument a string?

bpl ILLEGAL No !

jmp (aO) Return from subroutine

* Ask STOS nicely for some string space
* Thanks Francois !

ASK move.l SYSTEM (pc) ,a0

move.lSic(aO),a0

jsr (aO)

rts

* Syntax errors

SYNTAX

TYPEMIS

ILLEGAL

ERROR

moveq #12,dO

bra .s ERROR

moveq #19, dO

bra .s ERROR

moveq #13, dO

Error number 12

Error number 19

Error number 13

move .1 SYSTEM (pc) ,aOGet address of Basic routines

move.l $14 (aO) ,a0 Get address of error routine

jmp (aO) Jump back to basic

* caps on

* sets capslock on

CAPSON move.l (a7)+,RETURN Save return address

movem.l A0-A6, - (a7) Be paranoid!

move.w #16,-(a7) Set bit 4 for kbshift

bra SETCAPS Jump to BIOS Call

* caps off command

* Turns off CAPS Lock

CAPSOFF move.l (a7)+,RETURN

movem.l A0-A6, - (a7) Be paranoid!

257

move.w #0, -(a7)

SETCAPS move.w#11,-(a7)

trap #13

addq.l #4,a7

movem.l (a7)+,a0-a6 restore registers

move .1 RETURN, a0 Jump back to basic

jmp (aO)

* x$=code$(s$,n)

CODE move.l (A7)+,RETURN

cmp #2,dO

bne SYNTAX

bsr GETINT

move .w d3, dl

bsr GETSTR

move .1 d3, a2

moveq #0,d3

move.w (a2)+,d3

jsr ASK

move.w d3,(aO)+

subq #l,d3

ADSTR

EXIT

move.b (a2)+,d2

add.bdl,d2

move.b d2, (a0) +

dbra d3, ADSTR

move .1 al,d3

move.w #$80,d2

move.l RETURN, aO

jmp (aO)
del 0

Resets keyboard completely

Call kbshift

BIOS trap

Save return address

Two parameters?

Syntax error

Get an integer

Store in Dl

Get a string

Save address of string in A2

Zero D3

Get length of string

Get some space for result

Save length in new string

Get first byte

Code byte

Save in new string

Loop through string

Save address of string

Tell STOS to expect a string

Jump back to basic

End of routines

This program should be assembled into PC Relative code and placed in a file such as
TINY.EXE inside the STOS folder on your BACKUP of the STOS Basic system
disk. The new commands will be loaded automatically when you next run STOS, and
can be used straight from the editor. Try typing in the following small program:

10 caps on

20 input "Please input some text to encode" ;C$

30 input "Please enter the code number (1 to 255) ;C

40 print code$ (c$,c)

50 caps of f :goto 20

258

11.5.6 Interpreter extension checklist

1 Add a jump past the header information to the main initialisation routine.

2 Produce the token table for the extensions, starting with a token number of 128.
Each new instruction will need its own definition in this table. End the token

table with a CHR$(0).

3 Create the jump table. This specifies the addresses of the various extension
commands included in your file. One entry is needed for each token. Don't forget
to add the dummy entries for any tokens you aren't using in the sequence.

4 Add welcome messages terminated by a CHR$(0) in TWO languages.

5 Reserve space for RETURN and SYSTEM variables.

6 Initialisation. Set up the addresses of the end of the extension and the cold start
routine. Feel free to use the code directly from my examples.

7 Cold start routine. Defines the addresses of the header information for use by the
Basic interpreter.

8 Warm start routine. This called every time STOS Basic is reset using the
<UNDO> command. The warmstart can be anything from a simple RTS to a
complex piece of initialisation code.

9 Start your extension instructions. These should begin by saving the return address
with "move.l (a7)+.RETURN"

10 Check the number and type of parameters entered by the user. Abort with an
error if there has been an input mistake otherwise load the parameters.

11 Perform the main body of your extension routine.

12 Exit back to STOS Basic with something like:

move.l RETURN, a 0

jmp (aO)

11.5.7 B is for BUG!

When STOS Basic was first produced, a couple of minor bugs were left in the
extension commands. These have been corrected in version 2.4 of STOS Basic, but
they are still well worth knowing about if you are intending to sell your extensions
commercially.

1 You can't use an extension file with the letter B. So TTNY.EXB would be illegal.
This is not a major problem, as there are 24 other letters to choose from.

2 This is the big one. The original STOS source allocated the space for the
extension instructions with DC.L 26 instead of DS.L 26. This means that the

259

addresses of the extensions are actually loaded into the stack used for the FOR
NEXT loops! Fortunately, this is not as bad as it sounds. As a default you are
allowed to use nest ten of these loops inside each other. You would therefore be
able to type a horrendous program such as:

100 FOR A=l to 100

110 FORB=l to 200

120 FORC=l to 300

130 FORD=l to 400

140 FORE=l to 500

150 FORF=l to 600

160 FORG=l TO 700

170 FORH=l TO 800

180 FOR 1=1 TO 900

190 FOR J=l TO 1000

200 PRINT A+B+C+D+E+F+G+H+I+J

210 NEXT J

220 NEXT I

230 NEXT H

etc...

In practice, few Basic programs actually need this level of nesting. Every
extension file you use in STOS V2.3, reduces the number of nested FOR/NEXT
loops by one. This means that there is a practical limit of around six or seven
extensions in version 2.3. At the present time there are only two extensions
available to the general public. One of these, the compiler extension, includes a
copy of STOS version 2.4 which fixes the problem completely. So there's
nothing to be unduly worried about.

If you are defining a function with no parameters, you will be unable to use it in
a normal Basic expression, e.g.

B=TESTEXT*5 Doesn't work

Where TESTEXT was your new extension. The solution is simply to add a
dummy parameter in your extension definition. This can then be manipulated in
the standard way.

B=TESTEXT (0) *5 Is legal

Don't forget to remove the parameter from the stack inside your extension.
Otherwise the useless parameters will lurk dangerously on the stack.

260

11.6 The compiler extensions
The STOS Basic compiler expects to find full details of all the current extensions in
the \COMPILER folder. The format of these extension files is effectively split into
two sections.

One section gives a complete description of the syntax of the new instructions. This
information is needed during compilation to allow the compiler to detect any possible
errors in a program before converting it into machine code.

The second, and rather longer part, contains a set of library routines which will be
selectively incorporated into the final machine code program. Since there's no way of
knowing where these routines will be situated in the ST's memory, it's vital to
remember to generate them using PC RELATIVE code.

11.6.1 The header for a compiler extension

The compiler header starts off with a list of three relative addresses.

START: dc .1 PARA-START Offset to the parameter list

del INIT-START Offset to the Initialisation

section

del LIB1-START Offset to the start of the

library routines.

Next comes the library catalogue. This holds the lengths of all the library routines
which you are defining in your extensions. In the case of the TTNY extension I
showed you previously, this catalogue would look like this:

* LIBl is label referring to the address of the CAPSON

* LIB2 is a label holding the address of start of the CODE

routine

* LIB3 is a label indicating the position of the CAPSOFF

extension.

* LIBEX is a label denoting the address of the end of library

CATALOG dew LIB2-LIB1 length of routine 1

dewLIB3-LIB2 length of routine 2

dew LIBEX-LIB3 length of routine 3

The header now contains the parameter definitions needed by the compiler's syntax
checker:

PARA: dew 2,2

261

The first number corresponds to the total number of library routines in the file, and
the second value to the number of new instructions. Normally, both numbers will be
exactly the same, but it's theoretically possible to create internal library routines
which are common to several instructions.

You now enter the offset to the parameter definitions needed by each extension
instruction:

Offset to parameter set for CAPS ON

Offset to parameters for CODE

Offset to parameters for CAPS OFF

The order of these definitions is exacdy the same as the order you used in your EX
file when you created your interpreter extensions. As before, if you are using
instructions out of sequence you will need to include dummy definitions for all the
tokens which are not required.

You are now ready to specify the parameters for each new extension command. If
your command has several possible formats, you will need to include all allowable
forms in this definition.

The parameters are defined using the following coding scheme:

0 = Integer parameter
$40= Floating point number
$80= String
1 = End of one set of parameters for the instruction.
1,0= End of entire parameter definition for a specific instruction,

indicates that the parameters are to be separated by a comma.

The format of the definition is the same for both instructions and functions. The first
byte in the definition holds the type of value which is returned by the command. If
your command is an instruction, this value will be set the zero.

One useful trick is to define a constant for each of the different types of data. This
enables to read the definitions at a glance, without having to refer back to the table,
for example:

I EQU 0

F EQU $40

S EQU $8 0

Now for a set of example definitions for you to examine.

* CODE x$,n

PI: dc.b 0,S,",",1,1,1,0

* X$=UNCODE(C$,N)

dc,. w PCAPS-PARA

dc,,w PCODE-PARA

dc, w PLOW-PARA

262

P2: dc.b S,S,",",1,1,1,0

* Parameter definition for the STOS Basic MAX function.

* x=MAX(a,b)

MAX: dc.b I,I,",",1,1 First set of parameters

debF,F,",",F,l x#=max(a#,b#)
dc.b S,S,",",S,1 x$=max(a$,b$)
dc.b 1,0 End of parameters for max

DUMMY: deb 0,1,1,0 Dummy parameters. Needed for

unused tokens .

The next part of the extension definition is the initialisation routine. This section is
always incorporated into the compiled machine code program. It performs any
essential set-up procedures, and includes all the data needed by your extensions.
Generally the data areas are reserved at the beginning of the segment. So the first
instruction is usually a jump to the cold start routine itself, e.g.

INIT bra COLDST Jump to cold start routine

DATA

* Place any data values needed by your extension here

* (Optional)

* e .g.

BUFFER: dc. 1 0 Typical variable

On entry to the cold start routine, AO is loaded with the address of the memory
available for your use, and Al to end of this area. Additionally A5 points to the start
of Basic's variable table. There's also a special EXIT routine which is called when
the extension has finished. The address of this routine should always be placed in A2
at the start of the initiaUsation section.

Here is a really simple set up for you to look at:

COLDST: lea END(pc),a2

rts

END: rts No termination routines

needed

Incidentally, if a problem occurs during the installation process, you can signal an
error condition by placing a POSITIVE value in DO.

263

Also, if you manipulate the value in AO, you can reserve some memory for your
extensions exclusive use.

Reserving memory for a compiler extension:

* Reserve 1000 bytes for internal use

COLDST:

lea BUFFER-INIT (pc) ,a2 Get address of your variable
move.laO, (a2) Save start of memory block in

variable BUFFER

lea 1000(a0),a0 Reserve memory
cmp.lal, aO Is there enough memory free?
bcc OUTOFMEM No

clr.wdO DO is set to zero if no error

lea END(PC),a2 load address of end routine

rts

OUTOFMEM:

moveq#l,d0

rts

Signal an error condition

11.6.2 The compiler library

The library system supported by the compiler is "smart". This means that only the
library routines which are actually used by your program will be inserted in the
machine code produced by the compiler. You can call a library function from the
main compiler library using an instruction like:

jsr LIB

LIB is simply the numberof the library routine. Here are a couple of functions which
are especially useful for your extensions:

GETBANK

GETSCR

EQU 214

INPUTS:

OUTPUTS:

REGISTERS CHANGED

EQU 234

INPUTS:

OUTPUTS:

REGISTERS CHANGED

Gets address of a bank

Bank number .L. This is placed

on the A6 stack e.g.

movem. 1 #No, - (a6)

D3 .L = Address of bank

D0-D3:A0-A3

Checks whether an address in

DO points to a screen.

Bank number .L. Place on A6

stack

D3.L = Address of screen

D0-D3:A0-A3

264

ASK EQU 7 0

INPUTS:

OUTPUTS:

Asks STOS Basic to allocate

you some space for a string
D3 .L = No of bytes of string

space in reserve.

D3.L = Address of allocated

string

It's also possible to define your own library routines for use in your extension file. In
practice, however, these routines can be a nightmare to actually implement. Since the
benefits of an internal library are pretty marginal, I would therefore strongly advise
you to avoid these routines completely. But if you enjoy a challenge, here's the
format:

jsr number+$80000000

where number is the number of the library routine relative to the start of the
catalogue.

11.6.3 Creating a compiler library

Each new instruction in your extension requires an appropriate library routine to be
produced. Whenever an attempt is made to compile your instruction, a call to this
code will be generated by the compiler. If you are accessing any internal library
routines in your extension, you need to place a list of addresses at the start of your
code. This list contains the relative positions of all the places in your routine where
you are calling one of these functions. The list is terminated by a zero word. The
reason for this list is that the final addresses of the various internal libraries are only
known during the compilation process. So it is vital that the compiler is able to
replace your "jsr number" statements with the correct jump to an absolute address in
your program. For example:

LI: dew Lla-Ll, 0

Lla jsr GETBANK

rts

Tell compiler that there is a

library call at Lla

Rest of extension code

Call GETBANK routine

The extension itself is just a simplified version of the instruction you created in the
".EX" file. Since all the syntax checking is performed by the compiler, there is no
need to perform any complicated error handling. You can exit from your extension
routine at any time using a simple RTS instruction.

265

Note that the end of your extension lists should always be terminated by a zero
word.e.g.

ENDEXT dc.w 0 End of your extensions

11.6.4 Retrieving the parameters entered by the user
On entry to the extension, DO is loaded with the number of the parameter list which
has been entered by the user. This is NOT the number of the parameters. A6 contains
the address of a stack containing of these parameters.

You can now access each parameter in reverse order using an instruction in the
following format:

move.l (a6)+,d0 Pull an integer from the stack DO=INTEGER
input by the user

move.l (a6)+,a0 Pull a string from the a6 stack AO=Address
of the string in STOS format. (First

word=length)

move.l (a6)+,d0 Removes top half

move.l (a6)+,dl and bottom half of floating point number.

Similarly functions need to push their results on the A6 stack after the function has
been completed, e.g.

move.l dl, - (a6) Return an integer

movem. 1 dl-d2, - (a6) Return a floating point

move .1 aO, - (a6) Return a string. Always request space for

this string using ASK before returning.

11.6.5 Using a data area

I'll now briefly explain how you can manage the data area if you reserved one earher.
Although this gets a litde technical, it is important to realise that none of the
information below is essential for the creation of an extension. It is only relevant if
you are writing large programs which need to reserve their own private work spaces.
Every time one of your extensions is incorporated into a compiled program, the data
area you included in the initialisation section (between INIT and the start of your
extensions) is automatically included into the final machine code. The address of the
data area can be retrieved using a special system variable called DEBUT. This is
normally contained in a large INCLUDE file called "EQUATES.S" which is not
currently available to the general public. I have however, assembled this file and
retrieved the number you need direcdy, e.g.

DEBUT EQU $92c

266

You can now get the address of your data array by adding the following lines at the
start of your extensions:

move .1 debut (a5) ,a3 get address of DEBUT variable

move.l 0 (a3,dl. w) ,a3 get address of data area

Let's assume you had defineda list of your variables in this area as follows:

Start of data areadata:

varl dc w 10

var2 ds 1 5

var3 dc b"Hello

You could now access these variables using the following instructions:

move .1 varl-data (a3),dO DO is loaded with ten
lea .1 var2-data (a3),aO AO is loaded with the start of

the long words you defined at

var2

lea .1 var3-data (a3) ,al Al points to the string
"Hello"

11.6.6 System variables

The variable table from 11.6.5 contains two useful addresses which can be accessed

by your extension.

FLAGEM EQU $9a0 Set to one if compiled program is running
from the GEM desktop, otherwise zero

ERROR EQU $93c Holds the address of the error handler

routine . Call using the following code :

moveq #err_no,d0 STOS error no
move.l error(a5),a0 Address of routine

jmp (aO) Signal an error

Example 11.2 A compiler extension for TINY

* Example Compiler library

* Set up system variables

Debut EQU $92c

Error EQU $93c

FlaGem EQU $9a0

* Define extension addresses

267

START dc. 1 PARA-START Parameter definitions

dc .1 DATA-START Reserve data area for program
del LIB1-START Start of library

CATALOGdew LIB2-LIB1 length of routine 1

dew LIB3-LIB2 length of routine 2

dew LIBEX-LIB3 length of routine 3

PARA dew 3 Number of Library routines

dew 3 Number of extension commands

dc .w PCAPS-PARA Offset to first parameter set

dc. PCODE-PARA

dc .w PLOW-PARA Offset to parameters for UNCODE

* Parameter definitions

I

F

S

r

* 1

EQU 0

EQU $40

EQU $80

Forces a comma between any commands

Indicates the end of one set of parameters for an in

struction

* 1, 0 Indicates the end of the commands entire parameter

definition

PCAPS dc.b 0,1,1,0

PCODE dc.b S

dc.b S,",", I

dc.b 1,1,0

PLOW dc.b 0,1,1,0

* End of parameter definitions

Dummy for caps on

Function return value

(optional)

Parameter definitions

End of definition

Dummy for caps off

EVEN

* Initialisation section

* This code is loaded into memory during initialisation

* It can be accessed using the address placed in the DEBUT

variable

DATA

INIT

bra

lea

rts

INIT

END (pc) ,a2 Load position of end into A2

26!i

END rts

* Extension Library

* caps on

* set capslock on

LIB1 dew 0

movem.l a0-a6,-(a7)

move.w #16,-(a7)

move.w #11,-(a7)

trap #13

addq.l #4,a7
movem.1(a7)+,a0-a6

rts

No library calls

Be paranoid!

Call kbshift

BIOS trap

restore registers

* X$=code$(x$,10)

ASK

LIB2

CALASK

ADSTR

LIB3

LIBEX

equ 70

dew

move.1

move.1

moveq

move.w

jsr

move.w

move.w

subq

move.b

add.b

move.b

dbra

move.1

rts

CALASK-LIB2,0

(a6)+,dl

(a6)+,a2

#0,d3

(a2)+,d3

ASK

d3, (a0) +

d3,d0

#l,d0

(a2),d2

dl,d2

d2, (a0) +

dO,ADSTR

al,-(a6)

dc. w 0

movem.Ia0-a6, -(a7)

move.w #0,-(a7)

move.w #11,-(a7)

trap #13

addq.l #4,a7

movem.1(a7)+,a0-a6

rts

dc .w 0

269

call ASK

Get n

Get code string

Get length of string

Get a new string in AO
Move length to destination

Adjust for DBRA

Get a character

Add in offset

Replace encoded character

Repeat for all characters

No library calls

Be paranoid!

Resets keyboard completely

Call kbshift

BIOS trap

restore registers

End of library

11.6.7 Compiler extension checklist

1 Start the extension header with a list of offsets to your parameter definitions, your
initialisation section, and your extension instructions.

2 Create the library catalogue. This contains the lengths of all the library routines
you are adding in your extension.

3 Produce the header for the parameter list. Begin with two words holding the total
number of libraries created, and the number of new instructions in your
extension. Then add a list of offsets to the appropriate parameter definitions.

4 Generate the parameter definitions in the same order they appear in your
interpreter extension. Don't forget to cover all possible sets of parameters.

5 Write initialisation/data section. If you are not using an internal workspace, then
this will be very simple.

6 Add your extension programs. These should commence with a list of the
addresses in your routine where you call a library procedure. Library procedures
may be internal (defined in your program) or external (built into the main
compiler library).

7 Read the user's parameters off the A6 stack in REVERSE order.

8 Exit your instruction with an RTS.

9 Exit your extension with a dew 0 directive

11.7 Conclusions

The STOS Basic extension system provides you with the perfect opportunity to take a
real part in the continuing development of the STOS Basic system. Given the
undoubted talent of many users, I confidendy expect to see some incredible results.
But if you have any problems with these extensions, drop me a line via the STOS
User club. I'll be happy to try and set you on the right track.

Well that's it for this book. I hope you've enjoyed reading it as much as I've enjoyed
writing it. Writing a game in STOS Basic can be an extremely rewarding experience.
So do have a go. The journey you will travel to reach your objective may be long and
hard, but the feeling of satisfaction you will get from reaching it will repay you many
timesover. So what are you waiting for? Get out and writea computergame today!

270

Glossary of Terms

Acceleration (Simulation) Acceleration measures the rate of increase of an objects
speed. It's commonly measured in (Meters Per Second)/
Per second

Attributes (Role-playing) Attributes provide a role playing game with a measure of
the strengths and weaknesses of the various characters.
Typical attributes are STRENGTH, DEXTERITY, and
STAMINA

Axes (3D graphics)

Background screen
(Sprites)

Colour registers

Colour scrolling

Connection list

Coordinate systems

Data structure

Documentation

Extensions

The axes of a coordinate system highlight the three
directions from which the coordinates will be measured.
These directions are given the labels X,Y, and Z

This is a separate screen used by STOS Basic to hold a
copy of the area UNDERNEATH the sprites. The address
of the screen is held in the reserved variable BACK.

The Atari ST allows you to display up to sixteen different
colours on the screen at a time. The precise shade of each
colour is held in a set of 16 memory locations known as
the colour registers.

Colour scrolling is a simple technique which progres
sivelychanges the values held in the ST's colour registers
to producea range of interesting animation effects.

A list of the connections between the various rooms in an

adventure. Usually held in an array such as:
map(roorn_number,exit_nurnber)

These allow you to specify the exact location of a point in
3D space relative to an arbitrary starting point.

A list of connected information treated as a unit. Typical
data structures include arrays and records.

A complete written description of the workings of a
computer program. Often supplemented by the use of
copious REM statements within the program.

Special assembly language programs which can add
whole new instructions to the STOS Basic system.

271

Fringe (Scrolling)

Fumble (Role playing)

Game plan

Game world

Game time

Garbage collection

Implementation

Interrupt

Level (Role playing)

Logic error

Logical screen

A useless region of the image which is left over from a
scrolling operation. Usually removed using the CLS
instruction (Extended version).

A random number generated during the combat calcula
tions of an RPG which represents a disastrous mistake on
the part of the players character.

Game map (Adventures) A complete map of the locations of each room, and the
connections between them. The game map is usually
drawn up on a piece of paper when you are designing
your adventure. It often includes brief descriptions of the
various puzzles and objects which are to be encountered
by the players.

A complete plan of your game written as an aid to
programming.

The imaginary world created inside a computer game
such as a simulation or an adventure.

The time which is presumed to have passed inside the
game world. Sometimes this can be very different from
the actual time experienced by the player.

An automatic reorganisation of the ST's memory which
releases any memory which is no longer needed by your
STOS Basic program.

The process of converting a written specification (or game
plan) into a STOS Basic program which can be entered
directly into your computer.

Interrupts are internal routines which are called automati
cally after a certain period of time. Used by STOS Basic
to control the spritesand the music operations.

A single number which indicates the general level of
abilities attained by a player's character. The level of a
character usually increases with experience.

An error in the DESIGN of your program.

The screen which is used by the ST for all drawing
operations. If this is different from the physical screen,
then the image under construction will not be displayed
until your program specifically requests it. See SCREEN
SWAPPING. STOS Basic stores the location of this
screen is a special variable called LOGIC.

272

Look up table

Melee rounds

(Role playing games)

Mock-up

Movement table

(Arcade games)

Origin (3D Graphics)

Parabola

Parry (RPG's)

Parser (Adventures)

Physical screen

Pixels

Prototyping

Pseudo-code

A table of values calculated in advance. Look-up tables
allow you to replace complex calculations with a direct
read from an array, and can speed up many programs
considerably.

Melee rounds split a combat situation into a number of
phases which can be performed by a computer.

Mock-ups are simple sketches of the game screens
produced during the planning process. They can be easily
created with Neochrome or DEGAS for use as test

screens while your game is being developed.

Movement tables contain a list of the successive positions
of a sprite during an attack wave. They are used
extensively in games such as Zoltar or Space Invaders.

The arbitrary starting point from which the coordinates
are measured. The origin always has coordinates of
(0,0,0)

A smooth curve which is traced in the air by an projectile
such as a golf ball.

An attempt by characters in an RPG to defend themselves
from attack.

The section of an adventure program which reads the
users commands and translates them into a form that can

be interpreted by a computer.

The physical screen is an array of memory locations
which hold the image which is currently being displayed
on your TV. It is not necessarily the same as the screen
used for the various drawing operations. See Logical
screens. The location of the physical screen is always held
in the STOS Basic variable PHYSIC.

Short for Picture ELements, pixels are the smallest
individual points which can be manipulated on the ST's
screen.

The process of testing possible ideas experimentally
before including them in the final game plan.

A simplified form of English which allows you to
concisely describe the action of a program without having
to involve yourself with any messy implementation
details.

273

Realtime

Rebound table

(Rebound games)

Real RPGs

RPG

Screen swapping

Scenario

Simulation

SIN and COS

Specification

Sprite

Stats

Statistics (RPGs)

Syntax errors

The time which is actually experienced by the players of
a simulation. Separate from the time assumed to have
passed in the Game world.

A table containing the rebound directions for all the
various obstacles in a rebound game.

The original Role playing game played out on paper.

Short for Role playing game

The art of updating a piece of graphics on an invisible
logical screen and smoothly updating the actual display.
This technique can be used to generate some delightful
effects.

The "plot" of an adventure game or an RPG.

A mathematical "model" of a real world situation held

inside a computer.

Two mathematical equations which describe the ratios of
the various sides of a right-angled triangle. Used in many
3D graphics programs.

A detailed plan of a computer program made out prior to
its creation. Similar to a Game plan.

Sprites are special pieces of graphics which can be
manipulated independentiy from the rest of the screen.
See Chapter 4 of the original STOS Basic manual for
more details.

See Statistics

These specify the abilities of a particular character in a
role playing game. See Attributes.

Structured programming The art of unravelling the detailed workings of a
computer program from a simple pseudo-code description.

Synonyms (Adventures) Words with an identical or similar meaning, ie GET and
TAKE. Lists of common synonyms are held for each of
the possible commands in an adventure to reduce the risk
of ambiguity.

Errors generated by typing mistakes made when you are
entering your program into the ST. eg

prunt "This is a syntax error"

274

Systems analysis

Thought experiments

Velocity

Zone

The act of analysing a problem and generating a solution.
This solution often takes the form of a computer program.

A thought experiment describes the process of thinking
through the various implications of an idea before
committing yourself to actually using it in one of your
games. This can save you hours of frustration trying to
write a program which will never really work out in
practice

A measure of an objects speed in a specific direction, e.g.
Ten miles per hour due North.

Zones are areas of the screen defined using the STOS
Basic SET ZONE command. They can be used to
recognise the colUsion between a sprite and a section of
the screen.

275

276

3D effects, 125, 171, 177, 181
movements, 86
rotation, 186

68000 programming, 242

acceleration, 78
AD&D, 99
adventure, game plan, 141
aliens, moving, 30, 32
ANIM, 205
ARKANOID, 48, 67
array, view, 184
asembly language programs,241 - 243
ASTEROIDS, 4
attack paths, 32
attributes, 101, 109

B
background, 41

animation, 44
screens, 12

ball, 54, 57
bat, 53, 54, 56, 62
Bullet, 228

c
call, 243
characters, 100, 110, 127

classes, 101
controlling, 125
generation, 111
creating, 109
leading, 128
player, 100

clipping, 184
collide, 21, 24, 39
collisions, 40, 56, 57, 58, 60
collision detection, 21, 39
Colossal Cave, 137, 138
colour registers, 201

scrolling, 201
combat, 128

commands, dummy, 255
movement, 169

compiler, 244
extensions, 260, 269
library, 264, 265

connection list, 159
control loop, 12, 42, 69

panels, 90

Index

277

controlling
characters, 125
guns, 37

coordinate systems, 171
coordinates, 172

game world, 183
object, 183
transformation, 175

COS, 190
creating a character, 109

map, 140
critical phases, 12

routines, 48
current location, 162

D
data

area, 266
structures, 17

DEBUT, 266
DEC, 26
DEF SCROLL, 225, 227
defence factor, 131
definitions, function, 253
Degas, 12, 14, 152, 155
descriptions, 157
designing

graphics, 12
screen, 50

detect, 21, 59
DevpakST, 242
direct synthesis, 217
directions, rotation, 186
disk, samples, 214
displaying

map from above, 115
part of a map, 116

documentation, 22
drawing the map, 115
drop, 166
dummy, 246
dummy command, 255
Dungeons and Dragons, 99

economic simulation, 92
elevation, 87
Elite, 183
equations of motion, 77
errors, logic, 23

syntax, 23

events, 142, 163
local, 142
priority of, 142

expanding the parser, 149
experience, 103
extensions, 244, 255

compiler, 260, 269
interpreter, 258

F
FADE, 204, 205
flags, 163
FLASH, 203
flight simulators, 88, 89, 197, 198
follow, 23
fringe, 226, 232, 233
fumble, 130
function definitions, 253

G
Galaxians, 28
game map, 106
game plan, 1, 3, 6, 9, 19, 48, 89

adventure, 141
role-playing, 108
Shoot-em-up, 31
using, 20

game world, 76
game world coordinates, 183
game-time, 77
garbage collection, 19
get, 166
global commands, 165
glueing (the ball to the bat), 54
graphics

adventures, 153
choosing, 152
designing, 12

gun, controlling, 37

H
high priority event, 142, 164
hyperspace, 204

/
INC, 26
individual control, 128
initialisation, 12, 42, 67
initialising, 231
input, joystick, 126
INSTR, 147
interpreter extensions, 245, 258
inventory, 165, 163
irregular object, 58

/
joystick

handler, 90
input, 126

jump table, 246

278

K
K-SEKA, 242
keyboard, 125
kilohertz, 213
Kingdom, 9, 2, 93

laws of motion, 77 -78
leading character, 128
level, 103
library routines, 261
local, 164

commands, 167
events, 142, 167

logic, 208
logic errors, 23
LOOK, 167
look-up tables, 25
low priority, 164
low priority events, 142

M
machine code, 241
magic, 135
map

creating, 140
definer, 50, 52, 229
displaying from above, 115
displaying part of, 116
drawing, 115
scrolling through, 230
storing, 230
room, 116

mass, 81
melee, 131
melee rounds, 129
memory, 16, 18, 19
missile, 39, 40
mock-ups, 4, 14, 16
modular programming, 7
moon lander, 79, 84
motion in two dimensions, 82
mouse, 53, 127
move X, 33
move Y, 33
movement

commands, 169
directions (eight), 56
directions, 55
strings, 32, 33, 55
tables, 34, 43
3D, 86

moving
between rooms, 116, 158
aliens, 30, 32

N
Neochrome, 12, 14, 152, 155
Newtonian laws, 77
NPC, 100

'

o
objects, 161

coordinates, 183
scaling, 175

obstacles to the players, 107
optimization, 25, 27
Orbiter, 14, 26, 48, 51, 67
origin, 172, 174

P
parabola, 82
parameters, 248, 262, 265
parry, 130
parser, 144

expanding, 149
verb noun, 144, 147

perspective, 177
perspective factor, 179
picturing the scene, 152
planning a game, 1
player characters, 100
players, obstacles to, 107
prepositions, 149
programming, modular, 7
programs, assembly language, 243
pseudo-code, 7, 19

R
reading the <HELP> key, 126
reading the controls, 89
Real-RPG, 100
real-time, 77
rebound, 59, 62, 63, 66

game plan, 49
tables, 59, 61
zones, 64

recording speed, 213
resolution, choosing, 13
rooms, 155

description, 155, 156
maps, 116
moving between, 116, 158

rotation

directions, 186
formulae, 187

routines,
critical, 48
system support, 253

RPGs, 99, 100

sampler, making the most of, 214
sampler disk, 214
Save game, 163
scaling, 176

an object, 175
scenarios, 104, 105, 139
SCREENS, 205, 206, 207, 222
screen , 50

animation, 206

279

screen

background, 12
compactor, 152
coordinates, 184
copy, 206
designing, 50
flipping, 208, 236, 237
input system, 153
scroll, 224
swap, 208, 237

SCROLL, 227
scrolling

through a map, 230
zones, 225

SEG$52
separating words, 145
SHIFT, 203
Shoot-em-up, game plan, 30-31
simulation, 75, 92

economic, 92
simulator, flight, 197-198
sines, 26

tables, 199
SINH, 190
sound sources, 214
space invaders, 28
space simulations, 91
special effects, 213
specification, 3
sprites, 15, 238
STAC, 139
storing the map, 230
STOS Basic

assembler, 242
compiler, 27, 199, 222, 260
MAP Definer, 229

STOS MAESTRO, 212
SYNCHRO, 238
synchro, 44, 207
syntax

checking, 248
errors, 23

system support routines, 253
system variables, 267
systems, coordinate, 171

tables, rebound, 59, 61
termination, 12
testing, 23, 24
text, understanding, 144
The Pawn, 13
token, 245
transformation of coordinates, 175
trap, 243, 244

u
Universal control panel 90, 153
Universal Control System 37
UPDATE, 238
using the game plan, 20

v w
vanishing point, 178 weapon, 129
velocity78 weight, 81
verb noun parser, 144, 147
view array, 184 2J

voxr^i121' m Z011^ 29- 30- «« 206- 212
VPN- 165 zone, 21, 24, 57, 58, 90, 153

zones, scrolling, 225
Zork, 137

280

BEST SELLERS AND NEW TITLES FROM SIGMA PRESS

Manage Your Business - Computerise your Accounts MalcolmBriggs
After word processing, most PC users need an accounting package. Although this book uses the
Sage Sterling package as an illustration, the principles are sufficiently general for any other
package to be used. It explains the principles of small business accountancy and how to transfer
smoothly from a manual system. Contents include: simple accounting; setting up a computerised
system; nominal ledger; sales (or debtors) ledger; stock control and order processing; benefits of
integration.
Spring 1990 ISBN: 1-85058-147-9 250 pages £12.95

Timeworks Publisher Companion - DTP on a PC Ray Morrissey
This is a "hands on' approach to using the popular, low- cost Timeworks package. The package
has been widely acclaimed as having many features only found on Ventura, Pagemaker and
other high-cost packages. With Timeworks and a low-cost PC, you really can get started in
desk-top publishing. Contents: Word Processing and DTP; Introduction to typography;
Installing Timeworks; Designing the layout - using the "toolbox'; Text and graphics
manipulation; Preparing single page and multi-page documents; Choosing printers; Advanced
applications.
Summer1989 ISBN: 1-85058-149-5 250 pages £12.95

Ventura Adventure - moving up to Version 2.0! Philip Crookes
This explains what the manual never told you - and it also shows the differences between
version 1.1, 1.2 and the new, greatly enhanced version 2.0. See how to deal with the ordinary
and extraordinary problems of desktop publishing, and how you can use Xerox's Ventura
Publisher packages even on such a low-cost machine as the Amstrad PC1512. After an
introduction to DTP and Ventura, you'll see how to: read in text from word processors,
spreadsheets, and databases; how to edit and typeset on the screen; exploiting the full character
set; creating graphics not just from Ventura, but also from GEM, from spreadsheets and from
CAD programs; placing pictures in the text; letting the computer do the work of indexing,
preparing contents pages, building tables
Winter 1988 1-85058-123-1 216 pages £12.95

Communications and Networks - a handbook for the first time user Philip Croucher
Many PC users want to transfer files from other computers, or to network their hardware so that
expensive resources such as laser printers are shared between computers. Phil Croucher
provides low cost solutions, in practical terms for the beginner, in an easy conversational style.
The first part covers computer communications and includes:; ; Principles; Protocols;
Communication packages (including Kermit); Hardware (modems, fax cards, telex cards) ;
Troubleshooting. The second part describes networking: Advantages; Networking versus multi
user; Hardwareand software;Packet switched systems;Security.
Spring 1989 1-85058-136-3 180pages £11.95

Hypertext and HyperCard - Theory and Applications Nigel Woodhead
This book presents an overview of the theory, core Hypertext features, available applications
and specific case studies. It will be of interest to those who need an introduction to the area and
to those needing to see Hypertext in the context of database models, object-oriented and frame-
based programming. Contents include: History of Hypertext; early models; innovations and
methodological issues; Potential of Hypertext: identifying application areas; Case studies: the
Stackware culture; financial and library management; real-time databases; Available packages.
Companiontables of relativecosts and features; bibliographyand source addresses.
Spring 1990 ISBN: 1 85058183 5 £12.95 250pages

The Shareware Handbook Odd de Presno
Thousands of public domain and shareware programs are available for the cost of a telephone
call from a bulletin board, or for a few pounds by mail. But how to select the best from the
crowd? Published comparative evaluations of shareware is rare - and that's where this book
comes in. It presents a selection of the best public domain and sharewareproducts available. It
guides thereader to choose the best and to judge whether it suitshis or her needs. It highlights
strengths, weaknesses and indicates applications. The book is supported with a library on a UK
Bulletin Board.

Summer 1989 ISBN: 1 85058157 6 220pages £11.95

Moving Up To WordStar 5.5 Tony Hollins
This book, written in afriendly practical style, covers the latest releases ofWordStar -enabling
users of version 4 and earlier to move up to the newest versions. It covers: installation;
upgrading; file management; mailmerge; DTP applications; shortcuts; communications
Winter 1989 ISBN: 1 85058184 3 £12.95: 250pages

Amiga in Depth - the complete owner's guide Patrick Hall
Patrick Hall has the knack of explaining difficult concepts in an easy, relaxed manner. This is
essential for Amiga owners struggling to do more than scrape the surface of this powerful
machine's capabilities. Unlike other Amiga books, this is comprehensive and complete in one
volume.

Spring 1990 ISBN: 1 850581789 250pages £12.95

Programmer's Technical Reference: MS-DOS and the IBM PC (to version 4.01)
Dave Williams
This book is intended foradvanced PC users, programmers, system builders and others wishing
to exploit the full power of MS-DOS.
Packed with tables of reference data, the Technical Reference has been developed and tested
over a period of many years prior to publication. The Technical Reference includes copious
detail on every aspect of the PC and its operating systems. Writing in a friendly style
appreciated by otherprogrammers, DaveWilliams examines all technical features in depth.
Numerous appendices are included for reference.
Winter 1989 ISBN: 1 85058 1991 350 pages £14.95

The Comms Book - edited by Dennis Jarrett
Communications is now the most rapidly expanding area of computing but it is sometimes
difficult for the newcomer to understand the terminology, or experienced users to keep up with
the trends. The COMMS BOOK is a comprehensive and practical answer. Written by many of
the well-known names in the computer industry, it offers a wide-ranging survey of the
background and applications to computer communications.
Summer 1989 ISBN:1 85058179 7 300 pages £12.95

Mastering Protext Jeremy Williams
The book specifically covers versions 4.2 and 4.3, the most recent and enhanced versions of this
popular and powerful word processing package. Protext is available for a wide range of
computers, including the IBM PC, Atari ST, Amiga and Amstrad PCW. For PCW owners, who
invariably start with LocoScript, there are great attractions in using the more powerful and
standardised Protext which enables them to move easily to other machines.
Spring,1990 ISBN:185058182 7 250 pages £11.95

Foxbase and Clipper Tools of the Trade David M Bell
Over several years, the author has developed software and databases using dBase m and similar
languages. Great use has been made of Foxbase Plus and Clipper, and the wealth of tools
associated with these products. Many of these powerful tools are little known in the UK, but
they can help to make software development more productive and pleasurable.
The book is aimed at those who already know dBase and are considering Clipper or Foxbase.
Also, regular users of these products will find the book to be an invaluable reference.
Spring1990 ISBN:1-85058-205-X 280 pages £12.95

Inside The Z88 Dave Oborne
The Z88 portable computer from Cambridge Computers retains a solid following despite the
near-absence of in-depth books. This new book is not a re-write of the manual, but instead an
exploration of how to get the best from the machine. For example, the word processor contains
many functions and facilities to ease the programs use. Numerous examples and actual screen
dumps illustrate the techniques used.
Spring 1990 ISBN: 1-85058-204-1 250 pages £12.95

A complete catalogue of all of our books is available. Order our books from your usual
bookseller or, in case ofdifficulty, contact us direct:

Sigma Press, 1 South Oak Lane, Wilmslow, Cheshire, SK9 6AR. Phone 0625-531035; 24 hour
tele-ordering and message service. Fax 0625-536800. Access and Visa orders are welcome.

I

m

just keeps on growing

tier

Speed upyourSTOS
games by up to 100%

£19.95
Code: 9423 I

Add dramatic sampled
sound to your
programs
£24.95
Code 9424 I

ir^

"""i*.

Includes a precision-
made sampling
cartridge
£69.95
Code: 9425

Games Galore brings together four of the best games
written using STOS intoone exciting package.
Jump onto a skateboard and negotiate bollards and pot
holes in Skate Tribe; fly a highly-manoeuvrable Spitfire
in Skystrike; it's cartoon fun all the way in Mouthtrap;
and horizontal scrolling and real strategy arecombined
in Yomo.

FREE with every pack: STOS Squasher. Compact PRG
and MBK files to a fraction of their normal size using
these two amazing new STOS Basic commands.

Only £19.95! Code 9879

I

.*"*».

More than 600
ready-made sprites
for you to use
£14.95
Code: 9426

Available from computer retailers nationwide

In case of difficulty, you can order direct. Ring 051-375 2961, or send your name, address
postcode, product code number (see above) together with acheque payable to Mandarin
Software oryour Access/Visa number and its expiry date. Postage free in the UK (Add £2
per program for Europe and £5 for overseas).
Send to: Database Direct, FREEPOST, Ellesmere Port, South Wirral L65 3EB.
Your order will be despatched within 48 hours together with afree disc containing STOS
Paint (a feature-packed art program) and Pukadu (a new game from the author of
Mouthtrap on Games Galore) plus asample STOS Club Newsletter crammed with useful
information.

SQFTWA RF

Keep right up to date with

Join the hundreds of STOS owners who are already
active members of the STOS Club.

Six times a year you will receive a professional-looking
newsletter that's packed with hints and tips, short
listings, contact addresses, an extensive public domain
library and the latest news and reviews of STOS
products.

In addition you'll receive a remarkable free gift: a disc
containing STOS Word - a powerful word processor
written in STOS. This has all the features you'll need
(see below) and is currently on sale for £14.95 - but
you'll get it free of charge!

With STOS Word you can:

• Left, centre or right justify
• Cut, copy and paste
• Search and replace
• Word wrap
• Underline, inverse or shade text
• Count the works in your document
• Jump to any 4 locations in your text
• Go directly toa page
• Define kn/board shortcuts
• Work in any resolution (unlike any other ST word processor)
• Load and edit First Word files
• Add icons at any point in your text (perfect for letterhead designs, digitised signatures, and

so on)

• Print out fast using the 390-byte printer driver routine on almost any printer (source code
included)

• Print oji singlesheets or use sprocket-fed paper
• Modify the program to your heart's content-and learn more about STOS at the same time
• Create README files to document your programs

... and much more besides!

STOS Word is fullydocumented on the disc -with support easily available if you need it.
The disc will be crammed with many other useful programs and mini-games to appeal to beginners and
experts alike - it's not to be missed.

Whether you're a newcomer to games programming or a competent coder, the STOSClub will
help you make the most of your purchase.

Send a cheque, postal order or international money order (£10 for UK, £12 for Europe, £15
Overseas Airmail) together with your name,address, telephone number and your STOS serial
number to:

The STOS Club, Aaron Fothergill, 1 Lower Moor,
Whiddon Valley, Barnstaple.North Devon, EX32 8NW, England

•

Games beyond your wildest dreams!
The Atari ST is a great games machine and STOS is the best
environment for creating your own productions. And now you can
use the expertise of Stephen Hill - the author of the original STOS
manual and one of the leading games creators in the UK.

All aspects of game creation - complete with tested, working
illustrations are included in this book. Some of the important
techniques presented are:

«*Game planning - graphic design, mock-ups, sprites

»*Shoot-em-ups using high speed sprites as in ZOLTAR- fire control,
collision detection, background animation

«# Simulations - from economics to flight simulators

«+ Role playing - characters, scenarios and magic

«*Adventure games - plans, rooms, user commands

«*Animation, scrolling, sound and 3D graphics techniques

■♦Assemblylanguage programming - interpreter and compiler exten
sions

About Sigma Press:

We publish a wide range of books on all
aspects of computing. Please write or phone
for a complete catalogue:

Sigma Press,
1 South Oak Lane,
Wilmslow,

Cheshire SK9 6AR

Phone:0625-531035

We welcome new authors.

ISBN 1-85058-158-4

781 850"581581

	Front Cover
	Title Page
	Copyright

	Contents
	Contents 2
	Contents 3
	Contents 4
	Contents 5
	Contents 6

	1: First Steps
	1.1: Planning a game
	1.2: Initial ideas
	1.3: Producing a game plan
	1.3.1: Understanding the problem
	1.3.2: Modular programming
	1.3.3: Pseudo-code

	1.4: Critical phases
	1.5: Designing the graphics
	1.5.1: Background screens
	1.5.2: Choosing the resolution
	1.5.3: Mock-ups
	1.5.4: Designing the sprites

	1.6: Data structures
	1.6.1: Introduction to data structures
	1.6.2: Memory constraints
	1.6.3: Garbage collection
	1.6.4: Memory requirements of an array

	1.7: Overview of the game plan
	1.8: Using the game plan
	1.8.1: Collision detection

	1.9: Documentation
	1.10: Testing
	1.10.1: Syntax errors
	1.10.2: Logic errors
	1.10.3: Final testing

	1.11: Optimization
	1.11.1: Look-up tables
	1.11.2: The shift instructions
	1.11.3: Optimization check-list

	1.12: Conclusion

	2: Shoot-em-ups
	2.1: Space invaders
	2.2: Basic techniques
	2.2.1: A brief look at Zoltar

	2.3: Designing a shoot-em-up
	2.3.1: Anatomy of a shoot-em-up

	2.4: Moving the aliens
	2.4.1: Moving the aliens in a straight line
	2.4.2: Complex attack paths
	2.4.3: Movement tables

	2.5: Fire control
	2.5.1: Controlling the gun
	2.5.2: Firing a missile

	2.6: Collision detection
	2.6.1: Collisions between the player's ship and a missile
	2.6.2: Collision between attacker and a missile

	2.7: Animating the background
	2.8: Inside Zoltar
	2.8.1: Initialisation
	2.8.2: Control loop
	2.8.3: The play game routine
	2.8.4: The Magedon!
	2.8.5: Possible enhancements

	3: Rebound games
	3.1: Introduction
	3.2: Game plan of a rebound game
	3.2.1: Critical routines for rebound

	3.3: The game screen
	3.3.1: Designing the screen
	3.3.2: Creating a screen
	3.3.3: Drawing the blocks on the screen

	3.4: The bat
	3.4.1: Controlling the bat
	3.4.2: Positioning the bat

	3.5: The ball
	3.5.1: Initial conditions (gluing the ball to the bat)
	3.5.2: Releasing the ball
	3.5.3: Moving the ball

	3.6: Collisions
	3.6.1: Detecting a collision with the bat
	3.6.2: Collisions between the ball and the block
	3.6.3: Collisions between a ball and the walls
	3.6.4: Collisions with the ball and an irregular object

	3.7: Rebounds
	3.7.1: Rebound tables
	3.7.2: Rebounds with a wall
	3.7.3: Rebounds with the bat
	3.7.4: Rebounds with the block

	3.8: Inside Orbiter
	3.8.1: Initialisation
	3.8.2: The control loop
	3.8.3: Playing a game

	4: Simulations
	4.1: What is simulation
	4.2: Simulation games
	4.2.1: The game world
	4.2.2: Game time

	4.3: Simulating movement in space
	4.3.1: The equations of motion
	4.3.2: Motion in two dimensions
	4.3.3: 3D Movements

	4.4: Flight simulators
	4.4.1: Game plan of a flight simulator
	4.4.2: Reading the controls
	4.4.3: Control panels

	4.5: Space simulations
	4.6: Other simulations
	4.6.1: Creating a simulation
	4.6.2: Economic simulation

	4.7: Conclusions

	5: Role-playing games
	5.1: History
	5.2: Anatomy of a role-playing game
	5.2.1: Character classes
	5.2.2: Attributes
	5.2.3: Experience

	5.3: Scenarios
	5.3.1: What is a scenario?
	5.3.2: Practical considerations
	5.3.3: Some basic scenario ideas
	5.3.4: The game map

	5.4: Game plan of a role-playing game
	5.5: Creating a character
	5.5.1: Selecting the attributes
	5.5.2: Generating a character

	5.6: Drawing the map
	5.6.1: Displaying a map from above
	5.6.2: Displaying part of a map
	5.6.3: 3D effects

	5.7: Controlling the character
	5.7.1: Using the keyboard
	5.7.2: Joystick input
	5.7.3: Using the mouse

	5.8: Multiple characters
	5.8.1: The leading character
	5.8.2: Individual control

	5.9: Combat
	5.9.1: Melee rounds

	5.10: Magic
	5.11: Conclusion

	6: Adventure games
	6.1: A little history
	6.2: Adventurers start here
	6.2.1: Sample transcript from Colossal cave
	6.2.2: Why STOS Basic?

	6.3: Scenario design
	6.3.1: Creating a map

	6.4: Game plan of an adventure
	6.4.1: Standard routines

	6.5: Understanding text
	6.5.1: The text parser
	6.5.2: The verb noun parser
	6.5.3: Expanding the parser

	6.6: Picturing the scene
	6.6.1: Choosing the graphics
	6.6.2: The screen compactor

	6.7: Graphic adventures
	6.8: The rooms
	6.8.1: The long room description
	6.8.2: The short room description
	6.8.3: Storing the room descriptions
	6.8.4: Displaying your descriptions
	6.8.5: Moving between rooms

	6.9: The objects
	6.9.1: Choosing the objects
	6.9.2: The current location
	6.9.3: The inventory

	6.10: Handling the events
	6.11: Acting on the user's commands
	6.11.1: Global commands
	6.11.2: Local commands
	6.11.3: System commands
	6.11.4: Movement commands

	6.12: Conclusions

	7: 3D Techniques
	7.1: Introduction
	7.2: Creating an object in 3D
	7.2.1: Coordinate systems

	7.3: General techniques
	7.3.1: Moving the origin
	7.3.2: Scaling an object

	7.4: Displaying an object in 3D
	7.4.1: Perspective
	7.4.2: Clipping

	7.5: 3D rotation
	7.5.1: Rotation directions
	7.5.2: The 3D rotation formulae

	7.6: Checking for visibility
	7.7: Flight simulators
	7.8: Practical considerations
	7.8.1: Sine tables

	7.9: Conclusions

	8: Animation techniques
	8.1: Colour scrolling
	8.1.1: Basic principles
	8.1.2: FLASH
	8.1.3: SHIFT
	8.1.4: The FADE instruction

	8.2: The ANIM command
	8.3: Screen animation
	8.3.1: SCREEN$
	8.3.2: Screen flipping

	8.4: Conclusion

	9: Sampled sound
	9.1: Introduction
	9.2: The STOS MAESTRO system
	9.3: Special effects
	9.3.1: Choosing the recording speed
	9.3.2: Getting the most out of your sampler

	9.4: Potential sound sources
	9.4.1: The MAESTRO samples disk
	9.4.2: The public domain
	9.4.3: Films and Tapes
	9.4.4: Television
	9.4.5: Other sources
	9.4.6: Creating an alien
	9.4.7: Direct synthesis

	9.5: Possible applications
	9.5.1: Arcade games
	9.5.2: Simulations
	9.5.3: RPGs
	9.5.4: Adventures

	9.6: Conclusions

	10: Scrolling techniques
	10.1: Introduction
	10.2: Basic principles
	10.3: The SCROLL Command
	10.4: A window to the world
	10.4.1: The game map
	10.4.2: The MAP definer
	10.4.3: Storing the map
	10.4.5: Scrolling through a map
	10.4.6: Initialising the game map
	10.4.7: Redrawing the fringe

	10.5: Screen flipping
	10.6: Using sprites with a screen scrolling game
	10.6.1: Difference between UPDATE and SYNCHRO

	10.7: Conclusion

	11: Assembly language programming techniques
	11.1: Why program in assembly language?
	11.2: Choosing an assembler
	11.2.1: The STOS Basic assembler
	11.2.2: Other assemblers

	11.3: Free standing assembly language programs
	11.4: STOS Basic extensions
	11.5: Interpreter extensions
	11.5.1: The header
	11.5.2: Initialisation section
	11.5.3: Syntax checking
	11.5.4: Function definitions
	11.5.5: System support routines
	11.5.6: Interpreter extension checklist
	11.5.7: B is for BUG!

	11.6: The compiler extensions
	11.6.1: The header for a compiler extension
	11.6.2: The compiler library
	11.6.3: Creating a compiler library
	11.6.4: Retrieving the parameters entered by the user
	11.6.5: Using a data area
	11.6.6: System variables
	11.6.7: Compiler extension checklist

	11.7: Conclusions

	Glossary of Terms
	Index
	Adverts - Sigma Press
	Adverts - STOS
	Back Cover

