Some Common BASIC Programs
Atari® Edition

Lon Poole
Mary Borchers
Steven Cook

PETER J. VISCOME

OSBORNE/McGraw-Hill
Berkeley, California
Disclaimer of Warranties
and Limitation of Liabilities

The authors have taken due care in preparing this book and the programs in it, including research, development, and testing to ascertain their effectiveness. The authors and the publishers make no expressed or implied warranty of any kind with regard to these programs nor the supplementary documentation in this book. In no event shall the authors or the publishers be liable for incidental or consequential damages in connection with or arising out of the furnishing, performance, or use of any of these programs.

Atari 400 and Atari 800 are trademarks of Atari, Inc.

Published by
OSBORNE/McGraw-Hill
630 Bancroft Way
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A., please write OSBORNE/McGraw-Hill at the above address.

SOME COMMON BASIC PROGRAMS — ATARI* EDITION

Copyright © 1981 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

1234567890 DLDL 87654321

Computer generated image on front cover created by Robert Gotsch.

Special thanks to Cynthia Greever for technical assistance.
Introduction

This book describes a number of programs, written in the Atari® BASIC programming language. These programs perform a variety of common practical tasks.

You can use this book whether or not you know how to write programs in Atari BASIC.

We do not teach you how to program in Atari BASIC; there are many books that do that. But we do describe programs carefully and include user examples with the program listings. So if you are not familiar with Atari BASIC, simply copy the program listings into your computer, then run the programs as illustrated in the examples.

Remarks are included in the listings to help programmers understand how each program works. They will also assist you in identifying parts of programs that you may be able to use in other programs you write. Remark statements precede the line(s) on which they comment. REM statements should be omitted when you enter programs, since they are ignored by the computer and simply use up memory.

All programs can be run using a Teletype™ or similar input/output device with a line width as short as 72 characters. If the line width on your output device is less than 72 characters, you may want to alter the print statements within programs that print longer lines.

Certain programs will require additional programming if you use a CRT display or separate printing device for output. If using a CRT, you will probably want to put a pause in some programs after displaying one screenful of data; otherwise, the data will be displayed faster than you can read it. If using a separate printing device for your output, you may need to add print device select statements to the programs.

All programs in this book have been tested, run and listed on an Atari 800™ computer system. They have also been tested and run on an Atari 400™.

Program Errors

If you encounter an error or program difficulty which you believe is not your fault, we would like to hear about it. Please write the publishers, and include the following information:

- A description of the error
- Data entered which caused the error
- A source listing of your program, from your computer (if possible)
- Any corrections you have

Atari is a registered trademark of Atari, Inc.
Programs

Future Value of an Investment 1
Future Value of Regular Deposits (Annuity) 3
Regular Deposits 5
Regular Withdrawals from an Investment 7
Initial Investment 9
Minimum Investment for Withdrawals 11
Nominal Interest Rate on Investments 13
Effective Interest Rate on Investments 15
Earned Interest Table 17
Depreciation Rate 21
Depreciation Amount 22
Salvage Value 24
Discount Commercial Paper 26
Principal on a Loan 27
Regular Payment on a Loan 29
Last Payment on a Loan 31
Remaining Balance on a Loan 34
Term of a Loan 37
Annual Interest Rate on a Loan 39
Mortgage Amortization Table 42
Greatest Common Denominator 48
Prime Factors of Integers 50
Area of a Polygon 51
Parts of a Triangle 53
Analysis of Two Vectors 58
Operations on Two Vectors 61
Angle Conversion: Radians to Degrees 62
Angle Conversion: Degrees to Radians 64
Coordinate Conversion 66
Coordinate Plot 68
Plot of Polar Equation 73
Plot of Functions 79
Linear Interpolation 83
Curvilinear Interpolation 85
Integration: Simpson’s Rule 88
Integration: Trapezoidal Rule 90
Integration: Gaussian Quadrature 92
Derivative 94
Roots of Quadratic Equations 96
Real Roots of Polynomials 97
Roots of Polynomials: Half-Interval Search 99
Trig Polynomial 103
Programs

Simultaneous Equations 105
Linear Programming 107
Matrix Addition, Subtraction, Scalar Multiplication 112
Matrix Multiplication 115
Matrix Inversion 118
Permutations and Combinations 120
Mann-Whitney U Test 122
Mean, Variance, Standard Deviation 125
Geometric Mean and Deviation 128
Binomial Distribution 129
Poisson Distribution 131
Normal Distribution 132
Chi-Square Distribution 134
Chi-Square Test 137
Student’s t-distribution 140
Student’s t-distribution 142
F-distribution 144
Linear Correlation Coefficient 147
Linear Regression 149
Multiple Linear Regression 151
Nth Order Regression 155
Geometric Regression 158
Exponential Regression 160
System Reliability 162
Average Growth Rate, Future Projections 164
Federal Withholding Taxes 166
Tax Depreciation Schedule 169
Check Writer 173
Recipe Cost 177
Survey Check (Map Check) 181
Day of the Week 189
Days between Two Dates 191
Anglo to Metric 194
Alphabetize 197
Future Value of an Investment

This program calculates a future value of an investment when interest is a factor. You must provide the amount of the initial investment, the nominal interest rate, the number of compounding periods per year, and the number of years of investment.

Assuming there are no additional deposits and no withdrawals, the future value is based on the following formula:

\[T = P \left(1 + \frac{i}{N}\right)^{N \times Y} \]

where:
- \(T \) = total value after \(Y \) years (future value)
- \(P \) = initial investment
- \(i \) = nominal interest rate
- \(N \) = number of compounding periods per year
- \(Y \) = number of years

Examples:

Carl makes an investment of $6800.00 at 9.5%. If interest is compounded quarterly, what will be the value of Carl's investment in ten years?

Ms. Smith purchases a piece of property for $16,050.00. The value of property is rising at an average of 7% per year. What may Ms. Smith expect her property to be worth in five and a half years?

FUTURE VALUE OF AN INVESTMENT

INITIAL INVESTMENT? 6800
NOMINAL INTEREST RATE? 9.5
COMPOUNDING PERIODS PER YEAR? 4
NUMBER OF YEARS? 10
FUTURE VALUE = $17388.64

MORE DATA? (1=YES, 0=NO)? 1

INITIAL INVESTMENT? 16050
NOMINAL INTEREST RATE? 7
COMPOUNDING PERIODS PER YEAR? 1
NUMBER OF YEARS? 5.5
FUTURE VALUE = $23285.51

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "FUTURE VALUE OF AN INVESTMENT"
20 PRINT
29 REM - STATEMENTS 30 TO 100 REQUEST USER INPUT
30 PRINT "INITIAL INVESTMENT";
40 INPUT P
50 PRINT "NOMINAL INTEREST RATE";
60 INPUT I
70 PRINT "COMPOUNDING PERIODS PER YEAR";
80 INPUT N
90 PRINT "NUMBER OF YEARS";
100 INPUT Y
108 REM - CALCULATE INTEREST RATE PER PERIOD:
109 REM - CONVERT FROM PERCENT TO DECIMAL
110 I=I/N/100
119 REM - CALCULATE FUTURE VALUE BY FORMULA
120 T=P*(1+I)^(N*Y)
129 REM - ROUND OFF TO NEAREST CENT, PRINT
130 PRINT "FUTURE VALUE = ";
135 PRINT INT(T*100+0.5)/100
140 PRINT
149 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
150 PRINT "MORE DATA? (1=YES, 0=NO)";
160 INPUT X
170 IF X=1 THEN 20
180 END

OPTION

This program allows you to enter a term of investment in whole years or decimal parts only. In some cases you may wish to enter the term of investment in years and months rather than just years. The necessary program changes follow the example listed below.

Example:

Herb invests $12,000.00 at 8% interest. Interest is compounded quarterly. What is the value of his investment at the end of ten years and seven months?

FUTURE VALUE OF AN INVESTMENT

INITIAL INVESTMENT? 12000
NOMINAL INTEREST RATE? 8
COMPOUNDING PERIODS PER YEAR? 4
NUMBER OF YEARS, MONTHS? 10,7
FUTURE VALUE = $27749.5

MORE DATA? (1=YES, 0=NO)? 0

1 REM - OPTION 90-105
5 GRAPHICS 0
10 PRINT "FUTURE VALUE OF AN INVESTMENT"
90 PRINT "NUMBER OF YEARS, MONTHS":
100 INPUT Y0,M
104 REM - CALCULATE YEARS FROM YEARS AND MONTHS
105 Y=(12*Y0+M)/12
...
Future Value of Regular Deposits (Annuity)

This program calculates a future value when deposits are made regularly. All deposits are equal. You must provide the amount of each deposit, the number of deposits per year, the number of years, and the nominal interest rate.

Assuming that interest is compounded with each deposit, the calculation is based on the following formula:

\[T = R \cdot \left(\frac{(1 + i/N)^{N\cdot Y} - 1}{i/N} \right) \]

where:
- \(T \) = total value after \(Y \) years (future value)
- \(R \) = amount of regular deposits
- \(N \) = number of deposits per year
- \(Y \) = number of years
- \(i \) = nominal interest rate

Examples:

$50.00 is transferred each month from Matt’s checking account to a Christmas Club savings account with 5% interest. How much will Matt receive at the end of the year?

Diana makes annuity payments of $175.00. The interest is 5.5%. What amount will Diana have accumulated in 15 years?

FUTURE VALUE OF REGULAR DEPOSITS

AMOUNT OF REGULAR DEPOSITS? 50
NOMINAL INTEREST RATE? 5
OF DEPOSITS PER YEAR? 12
NUMBER OF YEARS? 1
FUTURE VALUE = $613.94

MORE DATA? (1=YES, 0=NO)? 1

AMOUNT OF REGULAR DEPOSITS? 175
NOMINAL INTEREST RATE? 5.5
OF DEPOSITS PER YEAR? 1
NUMBER OF YEARS? 15
FUTURE VALUE = $3921.52

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "FUTURE VALUE OF REGULAR DEPOSITS"
20 PRINT
29 REM - STATEMENTS 30 TO 100 REQUEST USER INPUT
30 PRINT "AMOUNT OF REGULAR DEPOSITS";
40 INPUT R
50 PRINT "NOMINAL INTEREST RATE";
60 INPUT i
70 PRINT "# OF DEPOSITS PER YEAR";
OPTION

You may wish to enter the term of investment in years and months rather than years. The necessary program changes are listed following the example below.

Example:

How much will Ron receive in ten years and five months if he transfers $50.00 each month into a trust fund with 5% interest?

FUTURE VALUE OF REGULAR DEPOSITS

AMOUNT OF REGULAR DEPOSITS? 50
NOMINAL INTEREST RATE? 5
OF DEPOSITS PER YEAR? 12
NUMBER OF YEARS, MONTHS? 10,5
FUTURE VALUE = $8179.3

MORE DATA? (1=YES, 0=NO)? 0

1 REM - OPTION 90-105
5 GRAPHICS 0
10 PRINT "FUTURE VALUE OF REGULAR DEPOSITS"
...
90 PRINT "NUMBER OF YEARS, MONTHS";
100 INPUT Y0,M
104 REM - CALCULATE YEARS FROM YEARS AND MONTHS
105 Y=(12*Y0+M)/12
108 REM - CALCULATE INTEREST RATE PER DEPOSIT,
Regular Deposits

This program calculates the amount required as a regular deposit to provide a stated future value in a specified time period. All deposits are equal. It is necessary for you to supply the future value, the nominal interest rate, the number of deposits per year, and the number of years.

The calculation for regular deposits is based on the following formula:

\[R = T \left(\frac{i/N}{(1 + i/N)N \cdot Y - 1} \right) \]

where:
- \(R \) = amount of regular deposit
- \(T \) = future value
- \(i \) = nominal interest rate
- \(N \) = number of deposits per year
- \(Y \) = number of years

Example:

Mary would like $1000.00 at the end of one year in a savings account. How much must she deposit each month at 8% interest to achieve this?

REGULAR DEPOSITS

TOTAL VALUE AFTER Y YEARS? 1000
NOMINAL INTEREST RATE? 8
OF DEPOSITS PER YEAR? 12
NUMBER OF YEARS? 1
REGULAR DEPOSITS = $80.32

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "REGULAR DEPOSITS"
20 PRINT
29 REM - STATEMENTS 30 TO 100 REQUEST USER INPUT
30 PRINT "TOTAL VALUE AFTER Y YEARS";
40 INPUT T
50 PRINT "NOMINAL INTEREST RATE";
60 INPUT I
70 PRINT "# OF DEPOSITS PER YEAR";
80 INPUT N
90 PRINT "NUMBER OF YEARS";
100 INPUT Y
108 REM - CALCULATE INTEREST RATE PER DEPOSIT!
109 REM - CONVERT FROM PERCENT TO DECIMAL
110 I=I/N/100
119 REM - CALCULATE AMOUNT OF REGULAR DEPOSIT BY FORMULA
120 R=T*I/((I+1)^(N*Y)-1)
129 REM - ROUND OFF TO NEAREST CENT, PRINT
130 PRINT "REGULAR DEPOSITS = ";
135 PRINT INT(R*100+0.5)/100
140 PRINT
149 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
150 PRINT "MORE DATA? (1=YES, 0=NO)"
160 INPUT X
170 IF X=1 THEN 20
180 END

OPTION

You may wish to enter the term of investment in years and months rather than years. The necessary program changes are listed following the example below.

Example:

Ed would like to save $2000.00 for a new motorcycle. He would like to achieve this amount in a year and five months. How much must he deposit each month if his interest is 8%?

REGULAR DEPOSITS

TOTAL VALUE AFTER Y YEARS? 2000
NOMINAL INTEREST RATE? 8
OF DEPOSITS PER YEAR? 12
NUMBER OF YEARS, MONTHS? 1,5
REGULAR DEPOSITS = $111.5

MORE DATA? (1=YES, 0=NO)? 0

1 REM - OPTION 90-105
5 GRAPHICS 0
10 PRINT "REGULAR DEPOSITS"
...
80 INPUT N
90 PRINT "NUMBER OF YEARS, MONTHS"
100 INPUT Y0,M
104 REM - CALCULATE YEARS FROM YEARS AND MONTHS
105 Y=(12*Y0+M)/12
108 REM - CALCULATE INTEREST RATE PER DEPOSIT:
...
180 END
Regular Withdrawals from an Investment

This program calculates the maximum amount which may be withdrawn regularly from an investment over a specified time period. All withdrawals are assumed to be equal. You must provide the amount of the initial investment, the nominal interest rate, the number of withdrawals per year, and the number of years.

The maximum amount of withdrawals is calculated by the following formula:

\[R = P \left(\frac{i/N}{(1 + i/N)^{N \times Y} - 1/N} \right) \]

where:
\(R \) = amount of regular withdrawal
\(P \) = initial investment
\(i \) = nominal interest rate
\(N \) = number of withdrawals per year
\(Y \) = number of years

Because this program calculates a maximum amount, a balance of $0.00 will be left in your account at the end of the time period. You may withdraw any lesser amount under the same specifications and leave a remaining balance in your account.

Example:

David invests $8000.00 at 9.5%. He plans to make regular withdrawals every month for ten years, leaving nothing at the end. How much should he withdraw each time?

REGULAR WITHDRAWALS FROM AN INVESTMENT

INITIAL INVESTMENT? 8000
NOMINAL INTEREST RATE? 9.5
NUMBER OF WITHDRAWALS PER YEAR? 12
NUMBER OF YEARS? 10
AMOUNT OF WITHDRAWALS = $103.52

MORE DATA? (1=Yes, 0=No)? 0

5 GRAPHICS 0
10 PRINT "REGULAR WITHDRAWALS FROM AN INVESTMENT"
20 PRINT
29 REM - STATEMENTS 30 TO 100 REQUEST USER INPUT
30 PRINT "INITIAL INVESTMENT";
40 INPUT P
50 PRINT "NOMINAL INTEREST RATE";
60 INPUT I
70 PRINT "NUMBER OF WITHDRAWALS ";
71 PRINT "PER YEAR";
80 INPUT N
90 PRINT "NUMBER OF YEARS";
100 INPUT Y
108 REM - CALCULATE INTEREST RATE PER WITHDRAWAL;
109 REM - CONVERT FROM PERCENT TO DECIMAL
110 I=I/N/100
119 REM - CALCULATE REGULAR WITHDRAWAL BY FORMULA
120 R=P*((1+I)^((N*Y)-1)+I)
125 K=INT(R*100+0.5)/100
129 REM - ROUND OFF TO NEAREST CENT, PRINT
130 PRINT "AMOUNT OF WITHDRAWALS = $";K
139 REM - PRINT BLANK LINE TO SEPARATE QUESTION FROM DATA
140 PRINT
149 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
150 PRINT "MORE DATA? (1=YES, 0=NO)";
160 INPUT X
170 IF X=1 THEN 20
180 END

OPTION

It may be more convenient to enter the period of investment in years and months rather than just years. The necessary program changes are listed following the example below.

Example:

How much could be withdrawn each week if you have an investment of $8000.00 at 9.5% interest to be withdrawn from for ten years and five months?

REGULAR WITHDRAWALS FROM AN INVESTMENT

INITIAL INVESTMENT? 8000
NOMINAL INTEREST RATE? 9.5
NUMBER OF WITHDRAWALS PER YEAR? 52
NUMBER OF YEARS, MONTHS? 10,5
AMOUNT OF WITHDRAWALS = $23.28

MORE DATA? (1=YES, 0=NO) ? 0

1 REM - OPTION 90-105
5 GRAPHICS 0
10 PRINT "REGULAR WITHDRAWALS FROM AN INVESTMENT"
 :
80 INPUT N
90 PRINT "NUMBER OF YEARS, MONTHS";
100 INPUT Y0,M
104 REM - CALCULATE YEARS FROM YEARS AND MONTHS
105 Y=(12*Y0+M)/12
108 REM - CALCULATE INTEREST RATE PER WITHDRAWAL;
 :
180 END
Initial Investment

This program calculates the investment necessary to provide a stated future value in a specified time period. You must enter the future value of the investment, the number of years of investment, the number of compounding periods per year, and the nominal interest rate.

The formula used to calculate the initial investment is as follows:

\[P = \frac{T}{(1 + i/N)^{N \cdot Y}} \]

where:
- \(P \) = initial investment
- \(T \) = future value
- \(N \) = number of compounding periods per year
- \(Y \) = number of years
- \(i \) = nominal interest rate

Examples:

How much must you invest at 8.5% to produce $10,000.00 at the end of ten years if interest is compounded quarterly?

Merchant Savings wishes to sell a bond that will be worth $5000.00 five years from the purchase date. Interest will be 7.9% compounded daily. How much must the bank charge for the bond?

INITIAL INVESTMENT

TOTAL VALUE AFTER Y YEARS? 10000
OF COMPOUNDING PERIODS PER YEAR? 4
NUMBER OF YEARS? 10
NOMINAL INTEREST RATE? 8.5
INITIAL INVESTMENT = $4312.38

MORE DATA? (1=YES, 0=NO)? 1

TOTAL VALUE AFTER Y YEARS? 5000
OF COMPOUNDING PERIODS PER YEAR? 365
NUMBER OF YEARS? 5
NOMINAL INTEREST RATE? 7.9
INITIAL INVESTMENT = $3368.59

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "INITIAL INVESTMENT"
20 PRINT
29 REM - STATEMENTS 30 TO 100 REQUEST USER INPUT
30 PRINT "TOTAL VALUE AFTER Y YEARS";
40 INPUT T
50 PRINT "# OF COMPOUNDING PERIODS PER YEAR";
60 INPUT N
70 PRINT "NUMBER OF YEARS";
80 INPUT Y
OPTION

The program above allows you to enter a period of investment of whole years and decimal parts only. You may wish to enter the period of investment in years and months rather than just years. The program changes necessary are listed following the example below.

Example:

Mary wishes to invest a sum in a savings bank. In three years and eight months she would like to have $4000.00 in her account. If 8% interest is compounded monthly, what amount must Mary invest?

INITIAL INVESTMENT

TOTAL VALUE AFTER Y YEARS? 4000
OF COMPOUNDING PERIODS PER YEAR? 12
NUMBER OF YEARS, MONTHS? 3,8
NOMINAL INTEREST RATE? 8
INITIAL INVESTMENT = $2986

MORE DATA? (1=YES, 0=NO)? 0

1 REM - OPTION 70-85
5 GRAPHICS 0
10 PRINT "INITIAL INVESTMENT"
::
60 INPUT N
70 PRINT "NUMBER OF YEARS, MONTHS"
80 INPUT Y0,M
84 REM - CALCULATE YEARS FROM YEARS AND MONTHS
85 Y=(12*Y0+M)/12
90 PRINT "NOMINAL INTEREST RATE"
::
180 END
Minimum Investment for Withdrawals

This program calculates the minimum investment required to allow regular withdrawals over a specified time period. The amount calculated is dependent upon the amount of each withdrawal, the number of withdrawals per year, the number of years, and the nominal interest rate on the investment. All withdrawals are equal.

Only the least amount necessary for your investment is calculated; the program assumes a balance of $0.00 to be left at the end of the time period. Any investment larger than the amount calculated will also enable you to withdraw the desired amount, but leave a remaining balance.

Assuming that interest is compounded with each withdrawal, the calculation is based on the following formula:

\[P = \frac{R \cdot N}{i} \left(1 - \frac{1}{(1 + i/N)^{N \cdot Y}} \right) \]

where:
- \(P \) = initial investment
- \(R \) = amount of regular withdrawal
- \(i \) = nominal interest rate
- \(N \) = number of withdrawals per year
- \(Y \) = number of years

Example:

How much must you invest at 6% interest to allow monthly withdrawals of $100.00 for five years?

MINIMUM INVESTMENT FOR WITHDRAWALS

AMOUNT OF WITHDRAWALS? 100
NOMINAL INTEREST RATE? 6
OF WITHDRAWALS PER YEAR? 12
NUMBER OF YEARS? 5
MINIMUM INVESTMENT = $5172.56

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "MINIMUM INVESTMENT FOR WITHDRAWALS"
20 PRINT
29 REM - STATEMENTS 30 TO 100 REQUEST USER INPUT
30 PRINT "AMOUNT OF WITHDRAWALS";
40 INPUT R
50 PRINT "NOMINAL INTEREST RATE";
60 INPUT I
70 PRINT "# OF WITHDRAWALS PER YEAR";
80 INPUT N
90 PRINT "NUMBER OF YEARS";
100 INPUT Y
109 REM - CONVERT FROM PERCENT TO DECIMAL
110 I=I/100
119 REM - CALCULATE MINIMUM INVESTMENT BY FORMULA
120 P=R*N/I*(1-1/((1+I/N)^(N*Y)))
129 REM - ROUND OFF TO NEAREST CENT, PRINT
130 PRINT "MINIMUM INVESTMENT = $";
135 PRINT INT(100*P+.5)/100
140 PRINT
149 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
150 PRINT "MORE DATA? (1=YES, 0=NO)";
160 INPUT X
170 IF X=1 THEN 20
180 END

OPTION

It may be more convenient to enter the term of investment in years and months rather than years. The necessary program changes are listed following the example below.

Example:

Tony withdrew $250.00 monthly for six years and five months. How much was his initial investment at 6% interest?

MINIMUM INVESTMENT FOR WITHDRAWALS

AMOUNT OF WITHDRAWALS? 250
NOMINAL INTEREST RATE? 6
OF WITHDRAWALS PER YEAR? 12
NUMBER OF YEARS, MONTHS? 6,5
MINIMUM INVESTMENT = $15944.82

MORE DATA? (1=YES, 0=NO)? 0

1 REM - OPTION 90-105
5 GRAPHICS 0
10 PRINT "MINIMUM INVESTMENT FOR WITHDRAWALS"
;
30 INPUT N
90 PRINT "NUMBER OF YEARS, MONTHS";
100 INPUT Y0,M
104 REM - CALCULATE YEARS FROM YEARS AND MONTHS
105 Y=(12*Y0+M)/12
109 REM - CONVERT FROM PERCENT TO DECIMAL
;
180 END
Nominal Interest Rate on Investments

This program calculates the nominal interest rate for a known initial investment which amounts to a known future value in a specified period of time. The nominal interest rate is usually subdivided for compounding purposes.

"Nominal Interest Rate" is based on the following formula:

\[
i = N \left(\frac{T}{P} \right)^{N \cdot Y} - N
\]

where: \(i \) = nominal interest rate
\(P \) = initial investment
\(T \) = future value
\(N \) = number of compounding periods per year
\(Y \) = number of years

The nominal interest rate is expressed as a yearly rate even though the interest rate used when compounding interest is \(i/N \). The nominal interest rate will be less than the effective interest rate when interest is compounded more than once a year. This is because the nominal rate stated does not take into account interest compounded on interest earned in earlier periods of each year. For example, the schedule of earned interest on $100.00 at 5% compounded quarterly would be:

<table>
<thead>
<tr>
<th>Period</th>
<th>Balance</th>
<th>(\frac{i}{100})</th>
<th>Interest</th>
<th>New Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$100.00</td>
<td>0.0125 =</td>
<td>$1.25</td>
<td>$101.25</td>
</tr>
<tr>
<td>2</td>
<td>$101.25</td>
<td>0.0125 =</td>
<td>$1.27</td>
<td>$102.52</td>
</tr>
<tr>
<td>3</td>
<td>$102.52</td>
<td>0.0125 =</td>
<td>$1.28</td>
<td>$103.80</td>
</tr>
<tr>
<td>4</td>
<td>$103.80</td>
<td>0.0125 =</td>
<td>$1.30</td>
<td>$105.10</td>
</tr>
</tbody>
</table>

The effective interest rate in the example is 5.1%, although the nominal rate is 5%.

Examples:

Dick invests $945.00 in a savings bank. Four and a half years later his investment amounts to $1309.79. If interest is compounded monthly, what is the nominal interest rate offered by the bank?

Jane invests $3000.00. Ten years later she has earned $1576.00 in interest. If interest is compounded each month, what is the nominal interest rate on the account?

Nominal Interest Rate on Investments

PRINCIPAL? 945
TOTAL VALUE? 1309.79
NUMBER OF YEARS? 4.5
OF COMPOUNDING PERIODS PER YEAR? 12
NOMINAL INTEREST RATE =7.276104%

MORE DATA? (1=YES, 0=NO)? 1
PRINCIPAL? 3000
TOTAL VALUE? 4576.00
NUMBER OF YEARS? 10
OF COMPOUNDING PERIODS PER YEAR? 12
NOMINAL INTEREST RATE = 4.229544%

MORE DATA? (1=YES, O=NO)? 0

5 GRAPHICS 0
10 PRINT "NOMINAL INTEREST RATE ON INVESTMENTS"
20 PRINT
29 REM - STATEMENTS 30 TO 100 REQUEST USER INPUT
30 PRINT "PRINCIPAL";
40 INPUT P
50 PRINT "TOTAL VALUE";
60 INPUT T
70 PRINT "NUMBER OF YEARS";
80 INPUT Y
90 PRINT "# OF COMPOUNDING PERIODS ";
95 PRINT "PER YEAR";
100 INPUT N
109 REM - CALCULATE NOMINAL INTEREST RATE BY FORMULA, PRINT
110 I2=N*((T/P)^(1/(N*Y))-1)*100
120 PRINT "NOMINAL INTEREST RATE =";
121 PRINT I2;"%"
130 PRINT
139 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
140 PRINT "MORE DATA? (1=YES, O=NO)";
150 INPUT X
160 IF X=1 THEN 20
170 END
Effective Interest Rate on Investments

This program calculates the effective interest rate for a known initial investment which amounts to a known future value in a specified period of time. This rate expresses the actual rate of interest earned annually on the investment.

The effective interest rate is calculated by the following formula:

\[
\text{effective interest rate} = \left(\frac{\text{future value}}{\text{initial investment}} \right)^{1/\text{years}} - 1
\]

You may calculate the effective interest rate on amounts you have already invested and accrued interest upon. Or you may calculate the effective interest rate necessary to enable a principal to reach a hypothetical value in a specified amount of time. For instance, if you invest $5000.00 in a bank and desire $6800.00 after six years, you will predict the effective interest rate the bank must pay in order to achieve this.

"Effective Interest Rate" may also be used to calculate the effective percent of depreciation of an investment. Take your car, for example. If you bought it for $7534.00 and sold it for $3555.00 three years later, you will find that its actual depreciation (a negative interest rate) was approximately 22% each year.

Examples:

Dick deposits $945.00 in a savings bank. Four and a half years later his account has $1309.79. What actual percent of his initial investment did the bank pay annually?

Jane bought her car in 1970 for $7534.84 and sold it in 1973 for $3555.00. What was its effective rate of depreciation?

EFFECTIVE INTEREST RATE ON INVESTMENTS

INITIAL INVESTMENT? 945
TOTAL VALUE AFTER Y YEARS? 1309.79
NUMBER OF YEARS? 4.5
ANNUAL INTEREST RATE =7.523751%

MORE DATA? (1=YES, 0=NO)? 1

INITIAL INVESTMENT? 7534.84
TOTAL VALUE AFTER Y YEARS? 3555
NUMBER OF YEARS? 3
ANNUAL INTEREST RATE =-22.150613%

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "EFFECTIVE INTEREST RATE ON INVESTMENTS"
20 PRINT
29 REM - STATEMENTS 30 TO 80 REQUEST USER INPUT
30 PRINT "INITIAL INVESTMENT";
40 INPUT P
50 PRINT "TOTAL VALUE AFTER Y YEARS";
60 INPUT T
70 PRINT "NUMBER OF YEARS";
80 INPUT Y
89 REM - CALCULATE EFFECTIVE INTEREST RATE, PRINT
90 PRINT "ANNUAL INTEREST RATE =";
99 REM - PRINT BLANK LINE TO SEPARATE DATA FROM QUESTION
100 PRINT ((T/P)^((1/Y))-1)*100;"%"
109 PRINT
110 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
120 PRINT "MORE DATA? (1=YES, 0=NO)";
130 INPUT X
140 IF X=1 THEN 20
150 END
Earned Interest Table

This program calculates and prints an earned interest table for investments. The schedule contains the following outputs:

1. Periodic balance
2. Interest accumulated between two periods
3. Total interest accumulated
4. Effective interest rate

These outputs may be calculated for a single investment or for an initial investment with regular deposits or withdrawals. If the table is to be tabulated for a single investment, you must provide the amount of the initial investment, the nominal interest rate, and the number of compounding periods per year. Your new balance will be printed a maximum of four times per year. If interest is compounded less than four times per year, your new balance will be posted with each interest computation.

If the table is tabulated for regular deposits or withdrawals, you must provide the amount of the initial investment, the nominal interest rate, the number of deposits or withdrawals per year, and their amount. In this case it is assumed that interest is compounded daily (360-day year). Your new balance will be printed at each deposit or withdrawal.

Examples:

Sally invests $2000.00 at 9.5% in a trust fund for ten years. Interest is compounded monthly. What is her yearly balance and earned interest for the last two years?

John deposits $1000.00 at 8% in a passbook savings account. From each monthly paycheck $50.00 is deposited in this account. What is the earned interest table for the first year of this account?

Ted deposits $1000.00 at 8% in his savings. Each quarter he withdraws $150.00. What is the earned interest table for the first year of this account?

EARNED INTEREST TABLE
PRINCIPAL? 2000
NOMINAL INTEREST RATE? 9.5
OF DEPOSITS/WITHDRAWALS PER YEAR? 0
OF COMPOUNDING PERIODS PER YEAR? 12
START WITH WHAT YEAR? 9
END PRINTING WITH WHAT YEAR? 10

EARNED INTEREST TABLE
PRINCIPAL $2000 AT 9.5% NOMINAL FOR 10 YEARS
EFFECTIVE INTEREST RATE 9.92% PER YEAR

<table>
<thead>
<tr>
<th>YEAR</th>
<th>BALANCE</th>
<th>INTEREST</th>
<th>ACCUM.INT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4365.87</td>
<td>2365.86</td>
<td>2365.87</td>
</tr>
<tr>
<td></td>
<td>4470.38</td>
<td>104.51</td>
<td>2470.38</td>
</tr>
<tr>
<td></td>
<td>4577.39</td>
<td>107.01</td>
<td>2577.39</td>
</tr>
<tr>
<td></td>
<td>4686.97</td>
<td>109.58</td>
<td>2686.97</td>
</tr>
<tr>
<td>10</td>
<td>4799.17</td>
<td>112.2</td>
<td>2799.17</td>
</tr>
<tr>
<td></td>
<td>4914.05</td>
<td>114.88</td>
<td>2914.05</td>
</tr>
<tr>
<td></td>
<td>5031.68</td>
<td>117.63</td>
<td>3031.68</td>
</tr>
<tr>
<td></td>
<td>5152.13</td>
<td>120.45</td>
<td>3152.13</td>
</tr>
</tbody>
</table>
CHANGE DATA AND RECOMPUTE?
(1=YES, 0=NO)? 1

PRINCIPAL? 1000
NOMINAL INTEREST RATE? 8
OF DEPOSITS/WITHDRAWALS PER YEAR? 12
AMOUNT OF DEPOSIT/WITHDRAWAL? 50
START WITH WHAT YEAR? 1
END PRINTING WITH WHAT YEAR? 1

EARNED INTEREST TABLE
PRINCIPAL $1000 AT 8% NOMINAL FOR 1 YEAR
REGULAR DEPOSITS/WITHDRAWALS $50 12 TIMES PER YEAR
EFFECTIVE INTEREST RATE 8.33% PER YEAR

<table>
<thead>
<tr>
<th>YEAR</th>
<th>BALANCE</th>
<th>INTEREST</th>
<th>ACCUM.INT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1056.7</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>1113.78</td>
<td>7.08</td>
<td>13.78</td>
</tr>
<tr>
<td></td>
<td>1171.24</td>
<td>7.46</td>
<td>21.24</td>
</tr>
<tr>
<td></td>
<td>1229.08</td>
<td>7.84</td>
<td>29.08</td>
</tr>
<tr>
<td></td>
<td>1287.32</td>
<td>8.23</td>
<td>37.32</td>
</tr>
<tr>
<td></td>
<td>1345.94</td>
<td>8.62</td>
<td>45.94</td>
</tr>
<tr>
<td></td>
<td>1404.95</td>
<td>9.01</td>
<td>54.95</td>
</tr>
<tr>
<td></td>
<td>1464.36</td>
<td>9.41</td>
<td>64.36</td>
</tr>
<tr>
<td></td>
<td>1524.17</td>
<td>9.8</td>
<td>74.17</td>
</tr>
<tr>
<td></td>
<td>1584.37</td>
<td>10.2</td>
<td>84.37</td>
</tr>
<tr>
<td></td>
<td>1644.98</td>
<td>10.61</td>
<td>94.98</td>
</tr>
<tr>
<td></td>
<td>1706</td>
<td>11.01</td>
<td>106</td>
</tr>
</tbody>
</table>

CHANGE DATA AND RECOMPUTE?
(1=YES, 0=NO)? 0

5 GRAPHICS 0
6 DIM W$(1)
10 PRINT "EARNED INTEREST TABLE"
20 PRINT
29 REM - STATEMENTS 30 TO 230 REQUEST USER INPUT
30 PRINT "PRINCIPAL";
40 INPUT P
50 PRINT "NOMINAL INTEREST RATE";
60 INPUT I
69 REM - CONVERT PERCENT TO DECIMAL
70 I=I/100
80 PRINT "# OF DEPOSITS/WITHDRAWALS PER YEAR";
90 INPUT N1
99 REM - DON'T ASK FOR AMOUNT IF FREQUENCY IS ZERO
100 IF N1=0 THEN 160
108 REM - DEPOSITS ARE ENTERED AS A POSITIVE NUMBER
109 REM - WITHDRAWALS ARE ENTERED AS A NEGATIVE NUMBER
110 PRINT "AMOUNT OF DEPOSIT/withdrawal";
120 INPUT R
129 REM - INTEREST IS COMPOUNDED DAILY
130 N=360
139 REM - PRINT AT EACH DEPOSIT/Withdrawal
140 L2=N1
150 GOTO 200
160 PRINT "# OF COMPOUNDING PERIODS PER YEAR";
170 INPUT N
180 N1=0
189 REM - PRINT FOUR TIMES EACH YEAR
190 L2=4
200 PRINT "START WITH WHAT YEAR";
210 INPUT X
220 PRINT "END PRINTING WITH WHAT YEAR";
230 INPUT Y
239 REM - START PRINTING AT THE BEGINNING OF A YEAR
240 X=INT(X)
249 REM - INITIATE RUNNING TOTALS
250 B0=P
260 I1=0
270 I2=0
280 I3=0
290 K=66:REM FORCE PAGE TO START
300 P1=4
310 FOR J0=1 TO INT(Y)
313 REM - START PRINTING?
314 REM - IF FIRST YEAR, SKIP CHECK FOR FULL SCREEN
315 IF J0=X THEN 370
320 IF J0<X THEN 480
330 IF K<22 THEN 470
338 REM - FULL SCREEN (22 LINES)?
339 REM - IF YES, CLEAR SCREEN, PRINT HEADINGS
342 REM - WAIT FOR OPERATOR CUE TO GO TO NEXT SCREEN
344 PRINT "PRESS 'RETURN' TO CONTINUE";
345 INPUT W$
370 K=10
375 GRAPHICS 0
376 POSITION 0,23
380 PRINT " EARNED INTEREST TABLE"
385 PRINT
390 PRINT "PRINCIPAL $";P;" AT ";I*100;"% NOMINAL"
395 PRINT "FOR ";Y;" YEARS"
396 PRINT
399 REM - SKIP DEPOSIT/WITHDRAWAL HEADING IF THERE ARE NONE
400 IF N1=0 THEN 430
410 PRINT "REGULAR DEPOSITS/WITHDRAWALS $";R
415 PRINT " ";N1;" TIMES PER YEAR"
416 PRINT
419 REM - K COUNTS THE NUMBER OF PRINTED LINES PER PAGE
420 K=K+1
430 PRINT "EFFECTIVE INTEREST RATE"
435 PRINT INT((100*((1+I/N)^N-1))*100+0.5)/100;
436 PRINT "/% PER YEAR"
440 PRINT
450 PRINT "YEAR BALANCE INTEREST ACCUM.INT."
459 REM - CALCULATE INTEREST
460 PRINT
469 REM - PRINT YEAR NUMBER
470 PRINT J0;
480 L1=1
490 N2=1
500 P2=1
510 FOR J1=1 TO N
519 REM - DEPOSIT/withdraw ANY MORE THIS YEAR?
520 IF N2>N1 THEN 540
529 REM - TIME TO MAKE DEPOSIT/withDRAWAL?
530 IF N2/N1>J1/N THEN 540
539 REM - CAlCULATE NEW BaNCaLANCE
540 B0=B0+R
549 REM - COUNT DEPOSITS/withdrawALS MADE PER YEAR
550 N2=N2+1
560 B2=B0*(1+I/N)
569 REM - I1=AMOUNT INTEREST WITH EACH COMPOUNDING PERIOD
570 I1=B2-B0
579 REM - I3=AMOUNT INTEREST ACCUMULATED BETWEEN POSTINGS
580 I3=I3+I1
589 REM - I2=TOTAL INTEREST ACCUMULATED TO DATE
590 I2=I2+I1
599 REM - ROUND AT INTEREST POSTING TIME
600 IF P2/P1>J1/N THEN 640
610 I2=INT(I2*100+0.5)/100
620 B2=INT(B2*100+0.5)/100
630 P2=P2+1
639 REM - YEAR TO START PRINTING?
640 IF J0<X THEN 710
649 REM - TIME TO PRINT A LINE?
650 IF J1/N<1/L2 THEN 710
660 L1=L1+1
670 POSITION 6,23
672 PRINT INT(B2*100+0.5)/100;
673 POSITION 20,23
674 PRINT INT(I3*100+0.5)/100;
675 POSITION 30,23
676 PRINT INT(I2*100+0.5)/100
679 REM - INTEREST POSTED, REINITIALIZE INTEREST ACCUMULATED BETWEEN POSTINGS
680 I3=0
710 B0=B2
719 REM - NO MORE LINES TO PRINT IN LAST YEAR?
720 IF J0+J1/N-1>Y THEN 780
730 NEXT J1
739 REM - START PRINTING?
740 IF J0<X THEN 770
750 PRINT
760 K=K+1+L2
770 NEXT JO
780 PRINT
789 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
790 PRINT "CHANGe DATA AND RECOMPUTE?"
795 PRINT "(1=YES, 0=NO)"
800 INPUT Z
810 PRINT
820 IF Z=1 THEN 20
830 END
Depreciation Rate

This program calculates the annual depreciation rate of an investment. You must provide the original price of the item, its resale price, and its age in years.

The depreciation rate is calculated by the following formula:

\[
\text{depreciation rate} = 1 - \left(\frac{\text{resale price}}{\text{original price}} \right)^{1/\text{age}}
\]

Example:

Joan bought her car for $4933.76 and sold it for $2400.00 three years later. What was its actual depreciation rate?

DEPRECIATION RATE

ORIGINAL PRICE? 4933.76
RESALE PRICE? 2400
YEARS? 3
DEPRECIATION RATE = 21.354%

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "DEPRECIATION RATE"
20 PRINT
30 PRINT "ORIGINAL PRICE";
40 INPUT P
50 PRINT "RESALE PRICE";
60 INPUT T
70 PRINT "YEARS";
80 INPUT Y
89 REM - CALCULATE DEPRECIATION RATE BY FORMULA, CONVERT TO PERCENT
90 D=100*(1-(T/P)^(1/Y))
100 PRINT "DEPRECIATION RATE = ";
105 PRINT INT(1000*D+0.5)/1000; "%"
110 PRINT
119 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
120 PRINT "MORE DATA? (1=YES, 0=NO)";
130 INPUT X
140 IF X=1 THEN 20
150 END
Depreciation Amount

This program calculates the dollar amount depreciated within a given year for a depreciating investment. You must provide the original price of the investment, its depreciation rate, and the year of depreciation. The depreciation amount is calculated by the following formula:

\[D = P \cdot i \cdot (1 - i)^{Y - 1} \]

where:
- \(D \) = depreciation amount
- \(P \) = original price
- \(i \) = depreciation rate
- \(Y \) = year of depreciation

Examples:

Joan bought her car for $4933.76. Her model car depreciates at an average annual rate of 21%. What amount has the car depreciated in each of the first three years she has owned it?

Joan is also concerned about the depreciation of the tape deck in her car. It cost her $155.00 two years ago, and has a depreciation rate of 22%. How much will its value decline in the third year?

DEPRECIATION AMOUNT

ORIGINAL PRICE? 4933.76
DEPRECIATION RATE? 21
---(ENTER YEAR=0 TO END)---
YEAR? 1
DEPRECIATION = $1036.09

YEAR? 2
DEPRECIATION = $818.51

YEAR? 3
DEPRECIATION = $646.62

YEAR? 0
MORE DATA? (1=YES, 0=NO)? 1

ORIGINAL PRICE? 155
DEPRECIATION RATE? 22
---(ENTER YEAR=0 TO END)---
YEAR? 3
DEPRECIATION = $20.75

YEAR? 0
MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "DEPRECIATION AMOUNT"
20 PRINT
30 PRINT "ORIGINAL PRICE";
40 INPUT P
50 PRINT "DEPRECIATION RATE";
60 INPUT I
69 REM - CONVERT FROM PERCENT TO DECIMAL
70 I=I/100
80 PRINT "--(ENTER YEAR=0 TO END)--"
90 PRINT "YEAR"
100 INPUT Y
109 REM - THROUGH CALCULATING FOR THIS ITEM?
110 IF Y=0 THEN 160
119 REM - CALCULATE DEPRECIATION AMOUNT BY FORMULA
120 D=P*I*(1-I)^(Y-1)
129 REM - ROUND OFF TO NEAREST CENT, PRINT
130 PRINT "DEPRECIATION = $";
135 PRINT INT(D*100+0.5)/100
140 PRINT
149 REM - RETURN FOR NEXT YEAR NUMBER
150 GOTO 90
159 REM - RESTART OR END PROGRAM?
160 PRINT "MORE DATA? (1=YES, 0=NO)"
170 INPUT X
180 IF X=1 THEN 20
190 END
Salvage Value

This program calculates the salvage value of an item at the end of a given year. It is necessary for you to provide the age of the item, its original price, and its depreciation rate.

The salvage value is obtained by the following formula:

\[S = P (1 - i)^Y \]

where:
- \(S \) = salvage value
- \(P \) = original price
- \(i \) = depreciation rate
- \(Y \) = age in years

Example:

What is the salvage value of Joan’s car if if is three years old, she bought it for $4933.76, and it depreciates 21% annually? What would its salvage value be next year?

Joan’s tape deck is two years old. What is the its salvage value if it cost $155.00 originally and depreciates at a rate of 22%?

```
SALVAGE VALUE

ORIGINAL PRICE? 4933.76
DEPRECIATION RATE? 21
--(ENTER YEAR=0 TO END)--
YEARS? 3
VALUE = $2432.54

YEARS? 4
VALUE = $1921.7

YEARS? 0
MORE DATA? (1=YES, 0=NO)? 1

ORIGINAL PRICE? 155
DEPRECIATION RATE? 22
--(ENTER YEAR=0 TO END)--
YEARS? 2
VALUE = $94.3

YEARS? 0
MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "SALVAGE VALUE"
20 PRINT
30 PRINT "ORIGINAL PRICE";
40 INPUT P
50 PRINT "DEPRECIATION RATE";
60 INPUT I
70 PRINT "--(ENTER YEAR=0 TO END)--"
80 PRINT "YEARS";
```
90 INPUT Y
99 REM - CALCULATE ANOTHER SALVAGE VALUE?
100 IF Y=0 THEN 140
108 REM - CALCULATE SALVAGE VALUE BY FORMULA, ROUND OFF, PRINT
109 REM - DEPRECIATION RATE CONVERTED TO DECIMAL FOR USE IN CALCULATIONS
110 PRINT "VALUE = ";
115 PRINT INT(100*P*(1-I/100)^Y+0.5)/100
120 PRINT
129 REM - RETURN FOR NEXT YEAR NUMBER
130 GOTO 80
139 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
140 PRINT "MORE DATA? (1=YES, 0=NO)";
150 INPUT X
160 IF X=1 THEN 20
170 END
Discount Commercial Paper

This program calculates the amount of discount and net cost of a discounted commercial paper. You must provide the future value of the paper, the discount rate and the number of days to maturity.

The formulas used to calculate the discount and cost are as follows:

\[
\text{discount} = T \cdot \frac{D}{100} \cdot \frac{N}{360}
\]

\[
\text{cost} = T - \text{discount}
\]

where:
- \(T \) = total future value
- \(D \) = discount rate
- \(N \) = number of days to maturity

Example:

Canning Corporation purchases a $625,000.00 commercial paper due in 60 days at 5.4%. What is the discount and cost?

DISCOUNT COMMERCIAL PAPER

FUTURE VALUE? 625000
DISCOUNT RATE? 5.4
DAYS TO MATURITY? 60
DISCOUNT = $5625
COST = $619375

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "DISCOUNT COMMERCIAL PAPER"
20 PRINT
29 REM - STATEMENTS 30 TO 90 REQUEST USER INPUT
30 PRINT "FUTURE VALUE";
40 INPUT T
50 PRINT "DISCOUNT RATE";
60 INPUT D
69 REM - CONVERT PERCENT TO DECIMAL
70 D=D/100
80 PRINT "DAYS TO MATURITY";
90 INPUT N
99 REM - CALCULATE DISCOUNT, PRINT
100 D1=T*D*N/360
110 PRINT "DISCOUNT = $";D1
119 REM - CALCULATE COST, PRINT
120 PRINT " COST = $";T-D1
129 REM - PRINT BLANK LINE TO SEPARATE DATA FROM QUESTION
130 PRINT
139 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
140 PRINT "MORE DATA? (1=YES, 0=NO)";
150 INPUT X
160 IF X=1 THEN 20
170 END
Principal on a Loan

This program calculates an initial amount borrowed. This amount is dependent upon the interest rate, the amount of regular payments, the number of payments per year, and the term of the loan.

The calculation is based on the formula:

\[P = \frac{R \cdot N}{i} \cdot \left(1 - \frac{1}{(1 + i/N)^{N \cdot Y}}\right) \]

where:
- \(P \) = principal
- \(R \) = regular payment
- \(i \) = annual interest rate
- \(N \) = number of payments per year
- \(Y \) = number of years

Example:

Susan has agreed to pay $250.00 bimonthly for 3 years to repay a loan with 20% interest. What is the amount of the loan?

Tom can afford to make payments of $180.00 per month to repay a loan. If he is willing to make payments for four and a half years and the loan company charges 16% interest, what is the maximum amount Tom can borrow?

PRINCIPAL ON A LOAN

REGULAR PAYMENT? 250
TERM IN YEARS? 3
ANNUAL INTEREST RATE? 20
OF PAYMENTS PER YEAR? 6
PRINCIPAL = $3343.45

MORE DATA? (1=YES, 0=NO)? 1

REGULAR PAYMENT? 180
TERM IN YEARS? 4.5
ANNUAL INTEREST RATE? 16
OF PAYMENTS PER YEAR? 12
PRINCIPAL = $6897.51

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "PRINCIPAL ON A LOAN"
20 PRINT
29 REM - STATEMENTS 30 TO 100 REQUEST USER INPUT
30 PRINT "REGULAR PAYMENT";
40 INPUT R
50 PRINT "TERM IN YEARS";
60 INPUT Y
70 PRINT "ANNUAL INTEREST RATE";
80 INPUT I
90 PRINT "# OF PAYMENTS PER YEAR";
100 INPUT N
108 REM - CALCULATE AMOUNT OF PRINCIPAL BY FORMULA:
109 REM - INTEREST CONVERTED FROM PERCENT TO DECIMAL FOR CALCULATIONS
110 P=R*N*(1-1/((1/100)/N+1)^(N*Y))/(I/100)
119 REM - ROUND OFF TO NEAREST CENT, PRINT
120 PRINT "PRINCIPAL = ";
125 PRINT INT(P*100+0.5)/100
130 PRINT
139 REM - RESTART OR END PROGRAM?
140 PRINT "MORE DATA? (1=YES, 0=NO)";
150 INPUT X
160 IF X=1 THEN 20
170 END

OPTION

In some cases it may be more convenient to enter the term of the loan in years and months rather than years. The necessary program changes are listed following the example below.

Example:

What would be the amount of the mortgage if you were paying $75.00 a month for 11 months with 3% interest?

PRINCIPAL ON A LOAN

REGULAR PAYMENT? 75
TERM IN YEARS, MONTHS? 0, 11
ANNUAL INTEREST RATE? 3
OF PAYMENTS PER YEAR? 12
PRINCIPAL = $812.76

MORE DATA? (1=YES, 0=NO)? 0

1 REM - OPTION 50-65
5 GRAPHICS 0
10 PRINT "PRINCIPAL ON A LOAN"
...
40 INPUT R
50 PRINT "TERM IN YEARS, MONTHS";
60 INPUT Y0, M
64 REM - CALCULATE YEARS FROM YEARS AND MONTHS
65 Y=(12*Y0+M)/12
70 PRINT "ANNUAL INTEREST RATE";
...
170 END
Regular Payment on a Loan

This program calculates the amount required as regular payments in order to repay a loan over a specified time period. The specifications you must provide are the amount of the principal, the interest rate charged, the number of payments to be made per year, and the number of years to pay. This program assumes all installment payments will be equal.

The calculation is based on the formula:

\[R = \frac{i \cdot P/N}{1 - \left(\frac{i}{N} + 1 \right)^{-N \cdot Y}} \]

where:
- \(R \) = regular payment
- \(i \) = annual interest rate
- \(P \) = principal
- \(N \) = number of payments per year
- \(Y \) = number of years

Examples:

What must you pay on a loan of $4000.00 at 8% if payments are to be made quarterly for five years?

If Michael borrows $6500.00 at 12.5% from Best Rate Savings & Loan to be paid back over a period of five and a half years, what would his monthly payments be?

REGULAR PAYMENT ON A LOAN

TERM IN YEARS? 5
PRINCIPAL? 4000
ANNUAL INTEREST RATE? 8
OF PAYMENTS PER YEAR? 4
REGULAR PAYMENT = $244.63

MORE DATA? (1=YES, 0=NO)? 1

TERM IN YEARS? 5.5
PRINCIPAL? 6500
ANNUAL INTEREST RATE? 12.5
OF PAYMENTS PER YEAR? 12
REGULAR PAYMENT = $136.66

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "REGULAR PAYMENT ON A LOAN"
20 PRINT
29 REM - STATEMENTS 30 TO 100 REQUEST USER INPUT
30 PRINT "TERM IN YEARS";
40 INPUT Y
50 PRINT "PRINCIPAL";
60 INPUT P
OPTION

You may find it more convenient to enter the term of payment in years and months rather than years. The necessary program changes are listed following the example below.

Example:

Mr. Terry needs $10,000.00 to put down on a new home. Best Rate Savings & Loan offers this amount at 14.0% interest to be repaid over a period of 11 years and 5 months. What would be the amount of regular monthly payments?

REGULAR PAYMENT ON A LOAN

TERM IN YEARS, MONTHS? 11,5
PRINCIPAL? 10000
ANNUAL INTEREST RATE? 14
OF PAYMENTS PER YEAR? 12
REGULAR PAYMENT = $146.59

MORE DATA? (1=YES, 0=NO)? 0

1 REM - OPTION 30-45
5 GRAPHICS 0
10 PRINT "REGULAR PAYMENT ON A LOAN"
...
29 REM - STATEMENTS 30 TO 100 REQUEST USER INPUT
30 PRINT "TERM IN YEARS, MONTHS"
40 INPUT Y0,M
44 REM - CALCULATE YEARS FROM YEARS AND MONTHS
45 Y=(12*Y0+M)/12
50 PRINT "PRINCIPAL"
...
170 END
Last Payment on a Loan

This program calculates the amount of the final payment on a loan. This final payment will complete amortization of a loan at the conclusion of its term. You must provide the amount of the loan, the amount of the regular payment, the interest rate charged, the number of payments per year, and the term of payment.

The amount of the last payment is normally different from the amount of the regular payment. The final payment will be a "balloon" payment if the final payment is larger than the regular payment. A balloon payment is necessary if applying the amount of the regular payment as the last payment leaves a remaining balance due. In order to entirely pay off the loan at the end of its term, this remaining balance is added to the amount of the regular payment to determine the amount of the last payment.

On the other hand, the amount of the final payment is sometimes less than the regular payment. If the regular payment as the last payment would result in a negative loan balance, then the last payment should be smaller. In this case the regular payment is adjusted by the amount of this hypothetical negative balance to determine the amount of the last payment.

\[
\text{amount of last payment} = \text{regular payment} + \text{hypothetical balance due on a loan after } N \cdot Y \text{ regular payments}
\]

where: \(N = \) number of payments per year
\(Y = \) number of years

Examples:

Lynn borrowed $6000.00 at 5% from her father for college expenses. If she pays $1000.00 annually for seven years, what will her last payment be?

Lynn borrows $1150.00 at 8% interest to be repaid at a rate of $75.00 per month. A year and two months later Lynn decides to go to Europe. How much must she pay next month to completely pay off her loan?

LAST PAYMENT ON A LOAN

REGULAR PAYMENT? 1000
PRINCIPAL? 6000
TERM IN YEARS? 7
ANNUAL INTEREST RATE? 5
OF PAYMENTS PER YEAR? 1
LAST PAYMENT = $1300.59

MORE DATA? (1=YES, 0=NO)? 1

REGULAR PAYMENT? 75
PRINCIPAL? 1150
TERM IN YEARS? 1.17
ANNUAL INTEREST RATE? 8
OF PAYMENTS PER YEAR? 12
LAST PAYMENT = $240.38

MORE DATA? (1=YES, 0=NO)? 0
5 GRAPHICS 0
10 PRINT "LAST PAYMENT ON A LOAN"
20 PRINT
25 REM - STATEMENTS 30 TO 130 REQUEST USER INPUT
30 PRINT "REGULAR PAYMENT";
40 INPUT R
50 PRINT "PRINCIPAL";
60 INPUT P
70 PRINT "TERM IN YEARS";
80 INPUT Y
90 PRINT "ANNUAL INTEREST RATE";
100 INPUT I
105 REM - CONVERT INTEREST FROM PERCENT TO DECIMAL
110 I=I/100
120 PRINT "# OF PAYMENTS PER YEAR";
130 INPUT N
140 BO=P
145 REM - COMPUTE ALL PAYMENTS, BALANCES THROUGH LAST PAYMENT USING R
150 FOR J1=1 TO N*Y
155 REM - ROUND OFF INTEREST PAID TO NEAREST CENT
160 II=INT((BO*I/N)*100+0.5)/100
165 REM - CALCULATE AMOUNT AMORTIZED WITH EACH PAYMENT
170 A=R-II
175 REM - BALANCE REMAINING DECREASES WITH EACH PAYMENT
180 BO=BO-A
185 NEXT J1
190 REM - CALCULATE LAST PAYMENT, ROUND OFF, PRINT
195 PRINT "LAST PAYMENT = ";
200 PRINT INT((R+BO)*100+0.5)/100
210 PRINT
215 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
220 PRINT "MORE DATA? (1=YES, 0=NO)";
230 INPUT X
240 IF X=1 THEN 20
250 END

OPTION

You may find it more convenient to enter the term of payment in years and months rather than years. The necessary program changes are listed following the example below.

Example:

If you pay $40.00 a month for two years and three months on a loan of $1200.00 at 7.5%, what amount will the last payment total?

LAST PAYMENT ON A LOAN

REGULAR PAYMENT? 40
PRINCIPAL? 1200
TERM IN YEARS, MONTHS? 2,3
ANNUAL INTEREST RATE? 7.5
OF PAYMENTS PER YEAR? 12
LAST PAYMENT = $287.36

MORE DATA? (1=YES, 0=NO)? 0

1 REM - OPTION 70-85
5 GRAPHICS 0
10 PRINT "LAST PAYMENT ON A LOAN"

60 INPUT P
70 PRINT "TERM IN YEARS, MONTHS";
80 INPUT Y0,M
84 REM - CALCULATE YEARS FROM YEARS AND MONTHS
85 Y=(12*Y0+M)/12
90 PRINT "ANNUAL INTEREST RATE";

250 END
Remaining Balance on a Loan

This program calculates the balance remaining on a loan after a specified number of payments. It is necessary for you to provide the amount of the regular payment, the number of payments per year, the amount of the principal, the annual interest rate, and the payment number after which to calculate the remaining balance.

The remaining balance is calculated by the following method:

\[
\text{remaining balance} = \text{principal} - \frac{\text{amount amortized after } N \times (Y - 1) \times NI \text{ payments}}{N}
\]

where: \(N \) = number of payments per year
\(Y \) = year to calculate remaining balance
\(NI \) = payment number in year \(Y \) to calculate remaining balance

Example:

Kelly has taken out a loan of $8000.00 at 17.2% interest. His regular payments are $200.00 per month. If he has paid through the tenth payment in the fourth year, how much more does Kelly owe on his loan?

REMAINING BALANCE ON A LOAN

REGULAR PAYMENT? 200
PRINCIPAL? 8000
OF PAYMENTS PER YEAR? 12
ANNUAL INTEREST RATE? 17.2
LAST PAYMENT MADE:
(PAYMENT NUMBER,YEAR)? 10,4
REMAINING BALANCE = $2496.17

MORE DATA? (1= YES, 0= NO)? 0

5 GRAPHICS 0
10 PRINT "REMAINING BALANCE ON A LOAN"
20 PRINT
29 REM - STATEMENTS 30 TO 130 REQUEST USER INPUT
30 PRINT "REGULAR PAYMENT";
40 INPUT R
50 PRINT "PRINCIPAL";
60 INPUT P
70 PRINT "# OF PAYMENTS PER YEAR";
80 INPUT N
90 PRINT "ANNUAL INTEREST RATE";
100 INPUT I
109 REM - CONVERT FROM PERCENT TO DECIMAL
110 I=I/100
119 REM - ENTER THE PAYMENT NUMBER WITHIN THE YEAR, I.E. N1<Y
120 PRINT "LAST PAYMENT MADE:"
125 PRINT "(PAYMENT NUMBER,YEAR)";
130 INPUT NI,Y
REM - INITIALIZE REMAINING BALANCE
140 BO=P
149 REM - LOOP TO ACCUMULATE AMOUNT PAID SO FAR
150 FOR J1=1 TO N*(Y-1)+N1
159 REM - CALCULATE INTEREST PAID WITH EACH PAYMENT
160 II=INT((BO*I/N)*100+0.5)/100
169 REM - CALCULATE AMOUNT AMORTIZED WITH EACH PAYMENT
170 A=R-II
179 REM - CALCULATE REMAINING BALANCE ON PRINCIPAL
180 BO=BO-A
190 NEXT J1
199 REM - ROUND OFF, PRINT
200 PRINT "REMAINING BALANCE = ";
205 PRINT INT(BO*100+0.5)/100
210 PRINT
219 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
220 PRINT "MORE DATA? (1=YES, 0=NO)";
230 INPUT X
240 IF X=1 THEN 20
250 END

OPTION

You may wish to specify the number of the last payment made as the total payment number rather than the payment number within a certain year. For instance, when four payments are made per year, payment 3 of the third year would be entered as payment 11. The necessary program changes are listed following the example below.

Example:

John made ten quarterly payments of $550.00 on a loan of $6000.00 with 16% interest. What is his remaining balance?

REMAINING BALANCE ON A LOAN

REGULAR PAYMENT? 550
PRINCIPAL? 6000
OF PAYMENTS PER YEAR? 4
ANNUAL INTEREST RATE? 16
NUMBER OF PAYMENTS MADE? 10
REMAINING BALANCE = $2278.09

MORE DATA? (1=YES, 0=NO)? 0

1 REM - OPTION 119-130, 150
5 GRAPHICS 0
10 PRINT "REMAINING BALANCE ON A LOAN"
:
110 I=I/100
119 REM - ENTER THE TOTAL NUMBER OF PAYMENTS MADE TO DATE
120 PRINT "NUMBER OF PAYMENTS MADE";
130 INPUT N1
139 REM - INITIALIZE REMAINING BALANCE
140 B0=P
149 REM - LOOP TO ACCUMULATE AMOUNT PAID SO FAR
150 FOR J1=1 TO N1
159 REM - CALCULATE INTEREST PAID WITH EACH PAYMENT
...
250 END
Term of a Loan

This program calculates the period of time needed to repay a loan. You must specify the amount of the loan, the amount of the payments, the number of payments to be made per year, and the annual interest rate on the loan. All payments are assumed to be equal.

The term of payment is derived from the following formula:

$$ Y = \frac{\log \left(1 - \frac{P \cdot i}{N \cdot R}\right)}{\log \left(1 + \frac{i}{N}\right)} \cdot \frac{1}{N} $$

where: \(Y \) = term of payment in years
\(P \) = principal
\(i \) = annual interest rate
\(N \) = number of payments per year
\(R \) = amount of payments

Examples:

What would be the duration of payment on a mortgage of $20,000.00 at 18% when payments of $1000.00 are to be made quarterly?

Sally takes out a loan for $12,669.00 at 16.8%. Her payments are $512.34 every two months. What is the term of her loan?

TERM OF A LOAN

REGULAR PAYMENT? 1000
PRINCIPAL? 20000
ANNUAL INTEREST RATE? 18
OF PAYMENTS PER YEAR? 4
TERM = 13.1 YEARS

MORE DATA? (1=YES, 0=NO)? 1

REGULAR PAYMENT? 512.34
PRINCIPAL? 12669
ANNUAL INTEREST RATE? 16.8
OF PAYMENTS PER YEAR? 6
TERM = 7.1 YEARS

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "TERM OF A LOAN"
20 PRINT
29 REM - STATEMENTS 30 TO 100 REQUEST USER INPUT
30 PRINT "REGULAR PAYMENT";
40 INPUT R
50 PRINT "PRINCIPAL";
60 INPUT P
OPTION

It is possible to calculate the term of payment in years and months rather than just years. To do this, make the program changes listed following the example below.

Example:

Dick took out a loan for $8000.00 at 7.5%. Regular payments of $150.00 are to be made monthly. How long will it take to pay off the loan?

TERM OF A LOAN

REGULAR PAYMENT? 150
PRINCIPAL? 8000
ANNUAL INTEREST RATE? 7.5
OF PAYMENTS PER YEAR? 12
TERM =5 YEARS, 5 MONTHS

MORE DATA? (1=YES, 0=NO)? 0

1 REM - OPTION 114-120
5 GRAPHICS 0
10 PRINT "TERM OF A LOAN"
...
110 Y=-(LOG(1-(P*(I/100)))/(N*R))/((LOG(1+I/100/N)*N))
114 REM - CALCULATE YEARS AND MONTHS FROM YEARS
115 M=INT(Y*12+0.5)
116 Y0=INT(M/12)
117 M=M-Y0*12
119 REM - PRINT RESULTS
120 PRINT "TERM =";Y0;" YEARS,";M;" MONTHS"
130 PRINT ...
170 END
Annual Interest Rate on a Loan

This program calculates the rate at which interest is charged on a loan. To determine this rate you must enter the amount of the loan, the amount of the regular payment, the number of payments per year, and the term of the loan.

The annual interest rate is computed by the following method of approximation:

1. Guess an interest rate
 Initialize last guess to 0
2. Compute regular payment using guessed rate:
 \[
 R_1 = \frac{i \cdot P/N}{1 - (1 + i/N)^{-N \cdot Y}}
 \]
 Round off R_1
3. If computed payment = actual payment, then current guess = approximate interest rate
4. Otherwise, save current guess and calculate a new guess:
 \[
 i_2 = \begin{cases}
 i & \text{if } R_1 < R \\
 i + |(i - i_2)/2| & \text{if } R_1 > R
 \end{cases}
 \]
5. Go to 2

where:
\(i \) = interest rate
\(i_2 \) = previous interest rate
\(R \) = input regular payment
\(R_1 \) = computed regular payment
\(P \) = principal
\(N \) = number of payments per year
\(Y \) = number of years

Examples:

Cindy borrowed $3000.00 from her friend George with an agreement to pay back $400.00 quarterly for two years. At what interest rate is she being charged?

To pay back a loan of $10,000.00 John contracted to make monthly payments of $120.00 for nine and a half years. At what rate is interest being charged?

ANNUAL INTEREST RATE ON A LOAN

REGULAR PAYMENT? 400
TERM IN YEARS? 2
PRINCIPAL? 3000
OF PAYMENTS PER YEAR? 4
ANNUAL INTEREST RATE =5.827%
MORE DATA? (1=YES, 0=NO)? 1
REGULAR PAYMENT? 120
TERM IN YEARS? 9.5
PRINCIPAL? 10000
OF PAYMENTS PER YEAR? 12
ANNUAL INTEREST RATE = 6.933%

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS
10 PRINT "ANNUAL INTEREST RATE ON A LOAN"
20 PRINT
29 REM - STATEMENTS 30 TO 100 REQUEST USER INPUT
30 PRINT "REGULAR PAYMENT";
40 INPUT R
50 PRINT "TERM IN YEARS";
60 INPUT Y
70 PRINT "PRINCIPAL";
80 INPUT P
90 PRINT "# OF PAYMENTS PER YEAR";
100 INPUT N
109 REM - GUESS AN INTEREST RATE (10%) TO INITIATE TESTING
110 I=10
119 REM - I2=LAST GUESS OR ESTIMATE (START WITH 0)
120 I2=0
129 REM - COMPUTE REGULAR PAYMENT USING GUESSED INTEREST RATE
130 R1=(I*P/N)/(1-1/((I/N+1)^(N*Y)))
139 REM - ROUND OFF TO NEAREST CENT
140 R1=INT(R1*100+0.5)/100
149 REM - I3=NUMBER USED TO CLOSE IN ON INTEREST RATE
150 I3=ABS(I-I2)/2
159 REM - SAVE THIS GUESS
160 I2=I
168 REM - COMPARE COMPUTED PAYMENT (R1) TO INPUT PAYMENT (R);
169 REM - IF THEY'RE EQUAL, LAST RATE GUESSED=APPROXIMATE INTEREST RATE
170 IF R1=R THEN 230
180 IF R1>R THEN 210
189 REM - R1<R, RATE MUST BE HIGHER THAN LAST GUESS
190 I=I+I3
199 REM - RETEST WITH NEW GUESS
200 GOTO 130
209 REM - R1>R, RATE MUST BE LOWER THAN LAST GUESS
210 REM
212 I=I-I3
219 REM - RETEST WITH NEW GUESS
220 GOTO 130
229 REM - COMPUTE INTEREST TO PROPER PROPORTIONS, ROUND OFF,PRINT
230 I=(((INT((I*1000)*100+0.5))/100)/1000
240 PRINT "ANNUAL INTEREST RATE = "
245 PRINT I*100; "%"
250 PRINT
259 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
260 PRINT "MORE DATA? (1=YES, 0=NO)"
270 INPUT X
280 IF X=1 THEN 20
290 END
OPTION

The above listing allows the term of the loan to be entered in years only. You may wish to enter the term in years and months rather than years. The necessary program changes are listed following the example below.

Example:

If Connie pays $100.00 per month for 11 years and 7 months on a $10,000.00 loan, what is the annual interest rate on the loan?

```
ANNUAL INTEREST RATE ON A LOAN

REGULAR PAYMENT? 100
TERM IN YEARS, MONTHS? 11,7
PRINCIPAL? 10000
# OF PAYMENTS PER YEAR? 12
ANNUAL INTEREST RATE =6.002%

MORE DATA? (1=Yes, 0=No)? 0

1 REM - OPTION 50-65
5 GRAPHICS 0
10 PRINT "ANNUAL INTEREST RATE ON A LOAN"

40 INPUT R
50 PRINT "TERM IN YEARS, MONTHS";
60 INPUT Y0,M
64 REM - CALCULATE YEARS FROM YEARS AND MONTHS
65 Y=(12*Y0+M)/12
70 PRINT "PRINCIPAL";

290 END
```
Mortgage Amortization Table

This program calculates and prints a loan repayment schedule. This schedule provides the following outputs:

1. Payment number
2. Amount of each payment paid as interest
3. Amount of the loan amortized with each payment
4. Balance remaining on the principal at the time of each payment
5. Accumulated interest paid at the time of each payment
6. Amount of the last payment

In addition, the yearly totals of interest paid and amount amortized are tabulated and printed.

To use this program you must supply the amount of the regular payment, the term of payment, the number of payments per year, the amount of the principal and the annual interest rate.

The schedule is calculated in the following manner:

1. Payment number = payment number within each year
2. Amount of each payment paid as interest = remaining balance • i/N
 where: i = annual interest rate
 N = number of payments per year
3. Amount amortized with each payment = R − I
 where: R = amount of regular payment
 I = amount of each payment paid as interest
4. Balance remaining = P − Σ A
 where: P = principal
 Σ A = sum of amounts amortized with each
 payment to date
5. Accumulated interest = I
 where: ΣI = sum of amounts of each payment
 paid as interest to date
6. Amount of last payment = R + (P − R • N • Y)
 where: R = regular payment
 P = principal
 N = number of payments per year
 Y = number of years

Example:

David needs $2100.00 to pay off some debts. His sister offers him the money at 6% interest. With payments of $75.00 monthly for two and a half years, what is David’s repayment schedule?

MORTGAGE AMORTIZATION TABLE

REGULAR PAYMENT? 75
TERM IN YEARS? 2.5
PRINCIPAL? 2100
ANNUAL INTEREST RATE? 6
MORTGAGE AMORTIZATION TABLE

PAYMENTS PER YEAR? 12
START WITH WHAT YEAR? 1

PRESS 'RETURN' TO CONTINUE?

MORTGAGE AMORTIZATION TABLE

PRINCIPAL $2100 AT 6% FOR 2.5 YEARS
REGULAR PAYMENT = $75

<table>
<thead>
<tr>
<th>NO.</th>
<th>INTR.</th>
<th>AMORT.</th>
<th>BALANCE</th>
<th>ACCUM.INT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.5</td>
<td>64.5</td>
<td>2035.5</td>
<td>10.5</td>
</tr>
<tr>
<td>2</td>
<td>10.18</td>
<td>64.82</td>
<td>1970.68</td>
<td>20.68</td>
</tr>
<tr>
<td>3</td>
<td>9.85</td>
<td>65.15</td>
<td>1905.53</td>
<td>30.53</td>
</tr>
<tr>
<td>4</td>
<td>9.53</td>
<td>65.47</td>
<td>1840.06</td>
<td>40.06</td>
</tr>
<tr>
<td>5</td>
<td>9.2</td>
<td>65.8</td>
<td>1774.26</td>
<td>49.26</td>
</tr>
<tr>
<td>6</td>
<td>8.87</td>
<td>66.13</td>
<td>1708.13</td>
<td>58.13</td>
</tr>
<tr>
<td>7</td>
<td>8.54</td>
<td>66.46</td>
<td>1641.67</td>
<td>66.67</td>
</tr>
<tr>
<td>8</td>
<td>8.21</td>
<td>66.79</td>
<td>1574.88</td>
<td>74.88</td>
</tr>
<tr>
<td>9</td>
<td>7.87</td>
<td>67.13</td>
<td>1507.75</td>
<td>82.75</td>
</tr>
<tr>
<td>10</td>
<td>7.54</td>
<td>67.46</td>
<td>1440.29</td>
<td>90.29</td>
</tr>
<tr>
<td>11</td>
<td>7.2</td>
<td>67.8</td>
<td>1372.49</td>
<td>97.49</td>
</tr>
<tr>
<td>12</td>
<td>6.86</td>
<td>68.14</td>
<td>1304.35</td>
<td>104.35</td>
</tr>
</tbody>
</table>

YR. 1: INTEREST = $104.35
AMORTIZED = $795.65

PRESS 'RETURN' TO CONTINUE?

MORTGAGE AMORTIZATION TABLE

PRINCIPAL $2100 AT 6% FOR 2.5 YEARS
REGULAR PAYMENT = $75

<table>
<thead>
<tr>
<th>NO.</th>
<th>INTR.</th>
<th>AMORT.</th>
<th>BALANCE</th>
<th>ACCUM.INT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.52</td>
<td>68.48</td>
<td>1235.87</td>
<td>110.87</td>
</tr>
<tr>
<td>2</td>
<td>6.18</td>
<td>68.82</td>
<td>1167.05</td>
<td>117.05</td>
</tr>
<tr>
<td>3</td>
<td>5.84</td>
<td>69.16</td>
<td>1097.89</td>
<td>122.89</td>
</tr>
<tr>
<td>4</td>
<td>5.49</td>
<td>69.51</td>
<td>1028.38</td>
<td>128.38</td>
</tr>
<tr>
<td>5</td>
<td>5.14</td>
<td>69.86</td>
<td>958.52</td>
<td>133.52</td>
</tr>
<tr>
<td>6</td>
<td>4.79</td>
<td>70.21</td>
<td>888.31</td>
<td>138.31</td>
</tr>
<tr>
<td>7</td>
<td>4.44</td>
<td>70.56</td>
<td>817.75</td>
<td>142.75</td>
</tr>
<tr>
<td>8</td>
<td>4.09</td>
<td>70.91</td>
<td>746.84</td>
<td>146.84</td>
</tr>
<tr>
<td>9</td>
<td>3.73</td>
<td>71.27</td>
<td>675.57</td>
<td>150.57</td>
</tr>
<tr>
<td>10</td>
<td>3.38</td>
<td>71.62</td>
<td>603.95</td>
<td>153.95</td>
</tr>
<tr>
<td>11</td>
<td>3.02</td>
<td>71.98</td>
<td>531.97</td>
<td>156.97</td>
</tr>
<tr>
<td>12</td>
<td>2.66</td>
<td>72.34</td>
<td>459.63</td>
<td>159.63</td>
</tr>
</tbody>
</table>

YR. 2: INTEREST = $55.28
AMORTIZED = $844.72

PRESS 'RETURN' TO CONTINUE?

MORTGAGE AMORTIZATION TABLE
PRINCIPAL $2100 AT 6% FOR 2.5 YEARS
REGULAR PAYMENT = $75

<table>
<thead>
<tr>
<th>NO.</th>
<th>INTR.</th>
<th>AMORT.</th>
<th>BALANCE</th>
<th>ACCUM. INT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3</td>
<td>72.7</td>
<td>386.93</td>
<td>161.93</td>
</tr>
<tr>
<td>2</td>
<td>1.93</td>
<td>73.07</td>
<td>313.86</td>
<td>163.86</td>
</tr>
<tr>
<td>3</td>
<td>1.57</td>
<td>73.43</td>
<td>240.43</td>
<td>165.43</td>
</tr>
<tr>
<td>4</td>
<td>1.2</td>
<td>73.8</td>
<td>166.63</td>
<td>166.63</td>
</tr>
<tr>
<td>5</td>
<td>0.83</td>
<td>74.17</td>
<td>92.46</td>
<td>167.46</td>
</tr>
<tr>
<td>6</td>
<td>0.46</td>
<td>92.46</td>
<td>0</td>
<td>167.92</td>
</tr>
</tbody>
</table>

LAST PAYMENT = $92.92
YR. 3: INTEREST = $8.29
AMORTIZED = $459.63

CHANGE DATA AND RECOMPUTE?
(1=YES, 0=NO)? 0

5 GRAPHC-0 HomE
6 DIM W$(1)
10 PRINT "MORTGAGE AMORTIZATION TABLE"
20 PRINT
25 REM - STATEMENTS 30 TO 150 REQUEST USER INPUT
30 PRINT "REGULAR PAYMENT";
40 INPUT R
50 PRINT "TERM IN YEARS";
60 INPUT Y
70 PRINT "PRINCIPAL";
80 INPUT P
90 PRINT "ANNUAL INTEREST RATE";
100 INPUT I
109 REM - CONVERT FROM PERCENT TO DECIMAL
110 I=I/100
120 PRINT "PAYMENTS PER YEAR";
130 INPUT N
140 PRINT "START WITH WHAT YEAR";
150 INPUT X
159 REM - START PRINTING AT BEGINNING OF A YEAR
160 X=INT(X)
169 REM - INITIALIZE VARIABLES
170 C1=0
180 I2=0
190 I3=0
200 J0=0
210 N1=N
220 K=20
230 B0=P
240 A1=0
250 A2=0
259 REM - TERM LESS THAN ONE YEAR?
260 IF INT(Y)>1 THEN 270
262 N1=((Y-INT(Y))*12)/12*N
264 J0=J0+1
265 GOTO 280
269 REM - LOOP FOR EACH YEAR
270 FOR J0=1 TO INT(Y)
MORTGAGE AMORTIZATION TABLE

279 REM - START PRINTING?
280 IF J0<X THEN 410
289 REM - CHECK FOR FULL SCREEN (20 LINES)
290 IF K+N+3<20 THEN 400
295 REM - WAIT FOR OPERATOR CUE TO GO TO NEXT SCREEN
297 PRINT
300 PRINT "PRESS 'RETURN' TO CONTINUE":
310 INPUT W$
330 PRINT
339 REM - PRINT PAGE HEADINGS
340 GRAPHICS 0
342 POSITION 0,23
345 PRINT "MORTGAGE AMORTIZATION TABLE"
346 PRINT
350 PRINT "PRINCIPAL $":P;" AT ";I*100;
355 PRINT ";% FOR ";Y;" YEARS"
360 PRINT "REGULAR PAYMENT = ":R
370 PRINT
380 PRINT "NO. INTR. AMORT. ";
385 PRINT "BALANCE ACCUM.INT."
389 REM - COUNT LINES PRINTED ON EACH PAGE IN K
390 K=7
400 K=K+N+3
410 FOR J1=1 TO N1
419 REM - CALCULATE INTEREST PAID THIS PAYMENT, ROUND OFF
420 I2=INT((B0*I/N)*100+0.5)/100
429 REM - COUNT NUMBER OF PAYMENTS MADE SO FAR
430 C1=C1+1
439 REM - CALCULATE AMOUNT AMORTIZED THIS PAYMENT
440 A=R-I1
449 REM - SUM AMOUNT AMORTIZED TO DATE
450 A1=A1+A
460 B0=P-A1
468 REM - LAST PAYMENT? IF YES, CALCULATE AMOUNT SO THAT THE
469 REM - BALANCE DUE EQUALS $00.00 AFTER THIS PAYMENT
470 IF C1>N*X THEN 520
475 REM - CALCULATE BALANCE DUE
480 R=R+B0
490 A=A+B0
500 A1=A1+B0
510 B0=0
519 REM - SUM INTEREST PAID TO DATE
520 I2=I2+I1
529 REM - SUM INTEREST PAID THIS YEAR
530 I3=I3+I1
539 REM - SUM AMOUNT AMORTIZED THIS YEAR
540 A2=A2+A
541 A2=INT(A2*100+0.5)/100
549 REM - STARTED PRINTING? IF YES, PRINT COMPUTED VALUES IN TABLE
550 IF J0<X THEN 570
551 A=INT(A*100+0.5)/100
560 PRINT J1;
561 POSITION 6,23
562 PRINT I1;
563 POSITION 12,23
564 PRINT A;
565 \textbf{BO} = \text{INT} (\text{BO} * 100 + 0.5) / 100
566 \textbf{POSITION} 20, 23 \text{ PRINT } \textit{ 20: \#MB.2B.3 \text{ PRINT } I2
567 \text{ PRINT } \textit{B1}
568 \text{ PRINT } \textit{B1}
569 \text{ PRINT } I2
570 \text{ NEXT } \textit{J1}
571 \textbf{REM} - LAST PAYMENT? IF YES, ROUND OFF, PRINT
572 IF \textit{C1}<\textit{N*Y} THEN 600
573 \textbf{PRINT} " \textbf{LAST PAYMENT} = \$\text{INT} (\text{R} * 100 + 0.5) / 100"
574 \textbf{REM} - STARTED PRINTING? IF YES, PRINT YEARLY TOTALS
575 IF \textit{JO}<\textit{X} THEN 640
576 \text{ PRINT }
577 \text{ PRINT } "\textbf{YR. } \text{JO;}\text{ " } \text{INTEREST} = \$\text{I3}
578 \text{ PRINT } " \textbf{AMORTIZED} = \$\text{A2}
579 \text{ PRINT }
580 \textbf{REM} - COMPLETED TERM?
581 IF \textit{JO}>\textit{Y} THEN 720
582 \textbf{REM} - REINITIALIZE YEARLY VARIABLES
583 \textit{I3} = 0
584 \textit{A2} = 0
585 \text{ NEXT } \textit{JO}
586 \textit{JO} = \textit{JO} - 1
587 \textbf{REM} - NEED TO PRINT A PARTIAL YEAR?
588 IF \textit{Y}<\textit{JO} THEN 262
589 \text{ PRINT }
590 \textbf{REM} - RESTART OR END PROGRAM? USER INPUT REQUIRED
591 \text{ PRINT } "\textbf{CHANGE DATA AND RECOMPUTE}"
592 \text{ PRINT } "(1=YES, 0=NO)"
593 \text{ INPUT } \textit{Z}
594 IF \textit{Z}=1 THEN 20
595 \text{ END

OPTION

You may wish to enter the term of payment in years and months rather than years. The necessary program changes are listed following the example below.

Example:

If you took out a loan for $700.00 from a friend at 9% interest and were to pay $100.00 per month for eight months, what would your repayment schedule be?

MORTGAGE AMORTIZATION TABLE

REGULAR PAYMENT? 100
TERM IN YEARS, MONTHS? 0, 8
PRINCIPAL? 700
ANNUAL INTEREST RATE? 9
MORTGAGE AMORTIZATION TABLE

PAYMENTS PER YEAR? 12
START WITH WHAT YEAR? 1
PRESS 'RETURN' TO CONTINUE?

MORTGAGE AMORTIZATION TABLE

PRINCIPAL $700 AT 9% FOR 0 YEARS AND 8 MONTHS
REGULAR PAYMENT = $100

<table>
<thead>
<tr>
<th>NO.</th>
<th>INTR.</th>
<th>AMORT.</th>
<th>BALANCE</th>
<th>ACCUM.INT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.25</td>
<td>94.75</td>
<td>605.25</td>
<td>5.25</td>
</tr>
<tr>
<td>2</td>
<td>4.54</td>
<td>95.46</td>
<td>509.79</td>
<td>9.79</td>
</tr>
<tr>
<td>3</td>
<td>3.82</td>
<td>96.18</td>
<td>413.61</td>
<td>13.61</td>
</tr>
<tr>
<td>4</td>
<td>3.11</td>
<td>96.9</td>
<td>316.71</td>
<td>16.71</td>
</tr>
<tr>
<td>5</td>
<td>2.38</td>
<td>97.62</td>
<td>219.09</td>
<td>19.09</td>
</tr>
<tr>
<td>6</td>
<td>1.64</td>
<td>98.36</td>
<td>120.73</td>
<td>20.73</td>
</tr>
<tr>
<td>7</td>
<td>0.91</td>
<td>99.09</td>
<td>21.64</td>
<td>21.64</td>
</tr>
</tbody>
</table>

YR. 1: INTEREST = $21.64
AMORTIZED = $678.36

CHANGE DATA AND RECOMPUTE?
(1=YES, 0=NO) ? 0

1 REM - OPTION 50-65, 355
10 PRINT "MORTGAGE AMORTIZATION TABLE"
40 INPUT R
50 PRINT "TERM IN YEARS, MONTHS":
60 INPUT Y0,M
64 REM - CONVERT YEARS AND MONTHS TO YEARS
65 Y=(12*Y0+M)/12
70 PRINT "PRINCIPAL":
345 PRINT "MORTGAGE AMORTIZATION TABLE"
346 PRINT
350 PRINT "PRINCIPAL $";P:" AT ";I=100;
355 PRINT "/ FOR ";Y0;" YEARS AND ";M;" MONTHS"
360 PRINT "REGULAR PAYMENT = ";R
760 END
Greatest Common Denominator

This program calculates the greatest common denominator of two integers. It is based on the Euclidean algorithm for finding the GCD:

1. Enter \(A, B \)
 \(A = \) absolute value of \(A \)
 \(B = \) absolute value of \(B \)
2. Calculate \(R = A - B \times \) (integer of \(A/B \))
3. Is \(R = 0 \)? If yes, the GCD = \(B \)
 If no, go to step 4
4. \(A = B \)
 \(B = R \)
5. Go to step 2

Example:

Find the greatest common denominator of 50 and 18, 115 and 150.

```
GREATEST COMMON DENOMINATOR
(ENTER 0,0 TO END PROGRAM)
ENTER TWO NUMBERS? 50,18
G.C.D:2

ENTER TWO NUMBERS? 115,150
G.C.D:5

ENTER TWO NUMBERS? 0,0
```

5 GRAPHICS 0
10 PRINT "GREATEST COMMON DENOMINATOR"
20 PRINT
30 PRINT "(ENTER 0,0 TO END PROGRAM)"
40 PRINT "ENTER TWO NUMBERS":
50 INPUT A,B
59 REM - END PROGRAM?
60 IF A>0 THEN 90
70 IF B>0 THEN 90
80 GOTO 190
89 REM - CALCULATE GCD ACCORDING TO EUCLIDEAN ALGORITHM, PRINT RESULT
90 A=ABS(A)
100 B=ABS(B)
110 R=A-B*INT(A/B)
120 IF R=0 THEN 160
130 A=B
140 B=R
150 GOTO 110
160 PRINT "G.C.D:";B
169 REM - PRINT BLANK LINE TO SEPARATE SETS OF DATA
170 PRINT
179 REM - RESTART PROGRAM
180 GOTO 40
190 END
Prime Factors of Integers

This program lists the prime factors of an integer. It will not test for the integer 0.

Examples:

What are the prime factors of -49?
Factor 92 into primes.

PRIME FACTORS OF INTEGERS

(ENTER 0 TO END PROGRAM)
NUMBER? -49
-1
7^2

NUMBER? 92
1
2^2
23^1

NUMBER? 0

5 GRAPHICS 0
10 PRINT "PRIME FACTORS OF INTEGERS"
20 PRINT
30 PRINT "(ENTER 0 TO END PROGRAM)"
40 PRINT "NUMBER"
50 INPUT Z
59 REM - END PROGRAM?
60 IF Z=0 THEN 200
69 REM - THE SIGN OF THE NUMBER IS ALWAYS A FACTOR
70 PRINT SGN(Z)
79 REM - USE ABSOLUTE VALUE FOR CALCULATIONS
80 Z=ABS(Z)
88 REM - LOOP TO TEST ALL INTEGERS (2 THROUGH Z) AS PRIME FACTORS
89 REM - INTEGERS Z/2 THROUGH Z WILL HAVE NO NEW FACTORS
90 FOR I=2 TO Z/2
100 S=0
110 IF Z/I<>INT(Z/I) THEN 150
120 Z=Z/I
130 S=S+1
140 GOTO 110
149 REM - FIND A PRIME FACTOR? IF YES, PRINT
150 IF S=0 THEN 170
159 REM - PRINT FACTORS WITH EXPONENTS; I^S=I TO THE S POWER
160 PRINT I;"^";S
170 NEXT I
180 PRINT
190 GOTO 40
200 END
Area of a Polygon

This program calculates the area of a polygon. You must supply the x and y coordinates of all vertices. Coordinates must be entered in order of successive vertices.

The formula used to calculate the area is:

\[
\text{Area} = \frac{1}{2} \left[(x_1 + x_2)(y_2 - y_1) + (x_2 + x_3)(y_3 - y_2) + \ldots + (x_n + x_1)(y_1 - y_n) \right]
\]

where \(n \) = the number of vertices

The number of vertices you may enter is currently limited to 24. You may increase or decrease this limit by altering statement 30 according to the following scheme:

\[
30 \text{ DIM } X(N+1), \ Y(N+1)
\]

Example:

Approximate the area of Lake Boyer.

![Diagram of Lake Boyer with labeled vertices and coordinates](image)

Area of a Polygon

(ENTER 0 TO END)

NUMBER OF VERTICES? 14

COORDINATES:

<table>
<thead>
<tr>
<th>VERTEX</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>
12? 13,0
13? 5,1
14? 4,2

AREA = 108
(ENTER 0 TO END)
NUMBER OF VERTICES? 0

5 GRAPHICS 0
10 PRINT "AREA OF A POLYGON"
20 PRINT
29 REM - COORDINATE ARRAYS SHOULD BE SET TO (NUMBER OF VERTICES +1)
30 DIM X(25), Y(25)
40 PRINT "(ENTER 0 TO END)"
45 PRINT "NUMBER OF VERTICES";
50 INPUT N
59 REM - END PROGRAM?
60 IF N=0 THEN 230
69 REM - LOOP TO ENTER COORDINATES IN ORDER OF SUCCESSIVE VERTICES
70 FOR I=1 TO N
80 IF I;1 THEN 110
90 PRINT "COORDINATES:"
95 PRINT " VERTEX "; I;
100 GOTO 120
110 PRINT " "; I;
120 INPUT X1, Y1
122 X(I)=X1
124 Y(I)=Y1
130 NEXT I
139 REM - FIRST VERTEX SERVES AS LAST VERTEX
140 X(N+1)=X(1)
150 Y(N+1)=Y(1)
160 A=0
169 REM - CALCULATE AREA, PRINT
170 FOR I=1 TO N
180 A=A+(X(I)+X(I+1))*(Y(I)-Y(I+1))
190 NEXT I
200 PRINT "AREA = ";ABS(A)/2
210 PRINT
219 REM - RESTART PROGRAM
220 GOTO 40
230 END
Parts of a Triangle

This program calculates three unknown parts of a triangle when three parts are given. At least one part given must be the length of a side. There are five possibilities for data entry:

1. Angle, side, angle
2. Side, angle, side
3. Angle, angle, side
4. Side, side, angle
5. Side, side, side

Data must be entered in the order it appears in a triangle, either clockwise or counterclockwise.

Example:

The base of a triangle measures 14 inches. The base angles measure 0.45 and 2.1 radians. What are the measurements of the triangle?

```
PARTS OF A TRIANGLE

PROBLEM TYPES:
1=ASA, 2=SAS, 3=AAS
4=SSA, 5=SSS, 6=END

ENTER PROBLEM TYPE? 1
ENTER ANGLE, SIDE, ANGLE? 0.45, 14, 2.1

SIDE 1 = 10.919
OPPOSITE ANGLE = 0.45 RADIANS
SIDE 2 = 21.67
OPPOSITE ANGLE = 2.1 RADIANS
SIDE 3 = 14
OPPOSITE ANGLE = 0.592 RADIANS

ENTER PROBLEM TYPE? 6

5 GRAPHICS 0
10 PRINT "PARTS OF A TRIANGLE"
20 PRINT
```
30 DIM A(3), S(3)
35 PI=3.1415927
38 REM - ENTER NUMBER OF PROBLEM TYPE ACCORDING TO KNOWN PARTS
39 REM - OF THE TRIANGLE WHERE A=ANGLE, S=LENGTH OF SIDE
40 PRINT "PROBLEM TYPES:"
50 PRINT "1=ASA, 2=SAS, 3=AAS"
55 PRINT "4=SSA, 5=SSS, 6=END"
57 PRINT
60 PRINT "ENTER PROBLEM TYPE";
70 INPUT X
79 REM - DIRECT PROGRAM TO PROPER CALCULATIONS
80 IF X=6 THEN 560
90 IF X=5 THEN 390
100 IF X=4 THEN 300
110 IF X=3 THEN 260
120 IF X=2 THEN 190
125 IF X<1 THEN 40
130 PRINT "ENTER ANGLE, SIDE, ANGLE";
140 INPUT A1, S3, A2
141 A(1)=A1
142 S(3)=S3
143 A(2)=A2
150 A(3)=PI-A(1)-A(2)
160 S(1)=S(3)*SIN(A(1))/SIN(A(3))
170 S(2)=S(3)*SIN(A(2))/SIN(A(3))
180 GOTO 440
190 PRINT "ENTER SIDE, ANGLE, SIDE";
200 INPUT S3, A1, S2
201 S(3)=S3
202 A(1)=A1
203 S(2)=S2
210 S(1)=SQR(S(3)^2+S(2)^2-2*S(3)*S(2)*COS(A(1)))
220 A(2)=SIN(A(1))/S(1)*S(2)
230 A(2)=ATN(A(2)/SQR(1-(A(2))^2))
240 A(3)=PI-A(1)-A(2)
250 GOTO 440
260 PRINT "ENTER ANGLE, ANGLE, SIDE";
270 INPUT A3, A2, S3
271 A(3)=A3
272 A(2)=A2
273 S(3)=S3
280 A(1)=PI-A(2)-A(3)
290 GOTO 160
300 PRINT "ENTER SIDE, SIDE, ANGLE";
310 INPUT S1, S2, A1
311 S(1)=S1
312 S(2)=S2
313 A(1)=A1
320 T=S(2)*SIN(A(1))
330 IF S(1)<T THEN 520
340 S(3)=SQR(S(2)^2-T^2)
350 IF S(1)<T THEN 380
360 Y=SQR(S(1)^2-T^2)
370 S(3)=S(3)+Y
380 GOTO 220
390 PRINT "ENTER SIDE, SIDE, SIDE";
400 INPUT S1, S2, S3
401 S(1)=S1
402 S(2)=S2
403 S(3)=S3
410 A(1)=(S(2)^2+S(3)^2-S(1)^2)/2/S(2)/S(3)
420 A(1)=ATN((SQR(1-(A(1))^2))/A(1))
430 GOTO 220
440 PRINT
449 REM - RESTART PROGRAM
450 FOR I=1 TO 3
459 REM - THE ANGLE OF A TRIANGLE CANNOT BE LESS THAN ZERO
460 IF A(I)<0 THEN 520
470 PRINT "SIDE ":I:" = ";
475 PRINT INT(S(I)*1000+0.5)/1000
480 PRINT "OPPOSITE ANGLE = ";
485 PRINT INT(A(I)*1000+0.5)/1000;
486 PRINT " RADIANS"
490 NEXT I
500 PRINT
510 GOTO 60
520 PRINT
530 PRINT "NO SOLUTION"
540 PRINT
549 REM - RESTART PROGRAM
550 GOTO 60
560 END

OPTION

It may be more convenient for you to work with angles in degrees rather than radians. The necessary program changes are listed following the examples below.

Examples:

A square measures 8.76 by 8.76 inches. What is the length of its diagonal?
The ladder of a slide measures 10 feet, the slide measures 14 feet, and it covers 13 feet of ground from base of ladder to tip of slide. How steep is the slide?

PARTS OF A TRIANGLE

PROBLEM TYPES:

1=ASA, 2=SAS, 3=AAS
4=SSA, 5=SSS, 6=END

ENTER PROBLEM TYPE? 2
ENTER SIDE, ANGLE, SIDE? 8.76,90,8.76
SIDE 1 = 12.389
OPPOSITE ANGLE = 90 DEGREES
SIDE 2 = 8.76
OPPOSITE ANGLE = 45 DEGREES
SIDE 3 = 8.76
OPPOSITE ANGLE = 45 DEGREES

ENTER PROBLEM TYPE? 5
ENTER SIDE, SIDE, SIDE? 10,13,14
SIDE 1 = 10
OPPOSITE ANGLE = 43.279 DEGREES
SIDE 2 = 13
OPPOSITE ANGLE = 63.027 DEGREES
SIDE 3 = 14
OPPOSITE ANGLE = 73.694 DEGREES

ENTER PROBLEM TYPE? 6

1 REM - OPTION 36-37, 145-146, 205, 275-276, 315, 485-486
5 GRAPHICS 0
10 PRINT "PARTS OF A TRIANGLE"
85 PI=3.1415927
36 REM - SET CONVERSION FACTOR FOR CONVERTING DEGREES TO RADIANS
37 C=0.0174532927
38 REM - ENTER NUMBER OF PROBLEM TYPE ACCORDING TO KNOWN PARTS
...
143 A(2)=A2
145 A(1)=A(1)*C
146 A(2)=A(2)*C
150 A(3)=PI-A(1)-A(2)
...
203 S(2)=S2
205 A(1)=A(1)*C
210 S(1)=SQR(S(3)^2+S(2)^2-2*S(3)*S(2)*COS(A(1)))
...
273 S(3)=S3
275 A(3)=A(3)*C
276 A(2)=A(2)*C
280 A(1)=PI-A(2)-A(3)
...
313 A(1)=A1
315 A(1)=A(1)*C
320 T=S(2)*SIN(A(1))
...
480 PRINT "OPPOSITE ANGLE = ";
485 PRINT INT(A(1)/C*1000+0.5)/1000;
486 PRINT " DEGREES"
490 NEXT I
...
560 END
Analysis of Two Vectors

This program calculates the angle between two given vectors, the angle between each vector and axis, and the magnitude of each vector. The vectors are given in three-dimensional space.

Example:

Find the angle (θ) between a diagonal of a cube and a diagonal of one of its faces. The cube measures $4 \times 4 \times 4$.

![Diagram of a cube with diagonals and angles labeled]

ANALYSIS OF TWO VECTORS

VECTOR 1: X, Y, Z? 0, 4, 4
VECTOR 2: X, Y, Z? 4, 4, 4

VECTOR 1:
MAGNITUDE: 5.65685417
ANGLE WITH X-AXIS: 90.000002
ANGLE WITH Y-AXIS: 44.99999996
ANGLE WITH Z-AXIS: 44.99999996

VECTOR 2:
MAGNITUDE: 6.92820314
ANGLE WITH X-AXIS: 54.73561062
ANGLE WITH Y-AXIS: 54.73561062
ANGLE WITH Z-AXIS: 54.73561062

ANGLE BETWEEN VECTORS: 35.26438793

MORE DATA (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "ANALYSIS OF TWO VECTORS"
20 PRINT
30 DIM X(2), Y(2), Z(2), M(2)
35 PI=3.1415927
REM - STATEMENTS 40 TO 70 REQUEST USER INPUT
40 PRINT "VECTOR 1: X,Y,Z";
50 INPUT X1,Y1,Z1
51 X(1)=X1
52 Y(1)=Y1
53 Z(1)=Z1
60 60 PRINT "VECTOR 2: X,Y,Z";
70 INPUT X2,Y2,Z2
71 X(2)=X2
72 Y(2)=Y2
73 Z(2)=Z2
80 PRINT
89 REM - LOOP TO ANALYZE BOTH VECTORS
90 FOR I=1 TO 2
99 REM - CALCULATE MAGNITUDE, PRINT
100 M(I)=SQR(X(I)^2+Y(I)^2+Z(I)^2)
109 REM - IF VECTOR A POINT? IF YES, CANNOT COMPUTE ANGLE
110 IF M(I)=0 THEN 220
120 PRINT "VECTOR ":I: ":";
130 PRINT "MAGNITUDE: ":M(I)
139 REM - CONVERSION FACTOR FOR RADIANS TO DEGREES
140 S=57.29578
149 REM - CALCULATE ANGLE BETWEEN VECTOR AND X-AXIS, PRINT
150 J=X(I)/M(I)
160 PRINT "ANGLE WITH X-AXIS: ";
162 IF J=0 THEN 167
165 PRINT ATN((SQR(1-J^2))/J)*S
166 GOTO 170
167 PRINT S*PI/2
169 REM - CALCULATE ANGLE BETWEEN VECTOR AND Y-AXIS, PRINT
170 J=Y(I)/M(I)
180 PRINT "ANGLE WITH Y-AXIS: ";
182 IF J=0 THEN 187
185 PRINT ATN((SQR(1-J^2))/J)*S
186 GOTO 190
187 PRINT S*PI/2
189 REM - CALCULATE ANGLE BETWEEN VECTOR AND Z-AXIS, PRINT
190 J=Z(I)/M(I)
200 PRINT "ANGLE WITH Z-AXIS: ";
202 IF J=0 THEN 207
205 PRINT ATN((SQR(1-J^2))/J)*S
206 GOTO 210
207 PRINT S*PI/2
210 PRINT
220 NEXT I
230 J=0
239 REM - IF EITHER VECTOR A POINT, CANNOT COMPUTE ANGLE
240 IF M(1)=0 THEN 310
250 IF M(2)=0 THEN 310
259 REM - CALCULATE ANGLE BETWEEN VECTORS
260 J=(X(1)*X(2)+Y(1)*Y(2)+Z(1)*Z(2))/M(1)/M(2)
269 REM - ARE THE VECTORS PERPENDICULAR?
270 IF J<>0 THEN 300
280 J=90
290 GOTO 310
299 REM - CALCULATE ANGLE IN DEGREES, PRINT
300 J=ATN(SQR(1-J^2)/J)*S
310 PRINT "ANGLE BETWEEN VECTORS: ";J
320 PRINT
329 REM - RESTART OR END PROGRAM?
330 PRINT "MORE DATA (1=YES, 0=NO)";
340 INPUT Z
350 IF Z=1 THEN 40
360 END
Operations on Two Vectors

This program performs four operations on two vectors given in three-dimensional space. The operations performed are:

1. Addition
2. Subtraction
3. Scalar (dot) product
4. Cross product

Example:

Vectors are drawn from the origin to two points A(5, -1, 2) and B(1, 4, 9). Add, subtract, and find the dot and cross product of these vectors.

OPERATIONS ON TWO VECTORS

VECTOR A: X, Y, Z = 5, -1, 2
VECTOR B: X, Y, Z = 1, 4, 9

A+B = 6, 3, 11
A-B = 4, -5, -7
A.B = 19
AxB = -17, -43, 21

MORE DATA (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "OPERATIONS ON TWO VECTORS"
20 PRINT
30 PRINT "VECTOR A: X, Y, Z;"
40 INPUT X1, Y1, Z1
50 PRINT "VECTOR B: X, Y, Z;"
60 INPUT X2, Y2, Z2
70 PRINT
79 REM - PERFORM VECTOR ADDITION, PRINT RESULTING VECTOR COORDINATES
80 PRINT "A+B = ";X1+X2;";";Y1+Y2;
85 PRINT ";";Z1+Z2
89 REM - PERFORM VECTOR SUBTRACTION, PRINT RESULTING VECTOR COORDINATES
90 PRINT "A-B = ";X1-X2;";";Y1-Y2;
95 PRINT ";";Z1-Z2
99 REM - CALCULATE DOT PRODUCT, PRINT
100 PRINT "A.B = ";X1*X2+Y1*Y2+Z1*Z2
109 REM - CALCULATE CROSS PRODUCT, PRINT RESULTING VECTOR COORDINATES
110 PRINT "AxB = ";Y1*Z2-Z1*Y2;";"
115 PRINT Z1*X2-X1*Z2;";";X1*Y2-Y1*X2
120 PRINT
129 REM - RESTART OR END PROGRAM?
130 PRINT "MORE DATA (1=YES, 0=NO)"
140 INPUT Z
150 IF Z=1 THEN 20
160 END
Angle Conversion: Radians to Degrees

This program converts an angle given in radians to degrees, minutes, and seconds.

Example:

How many degrees, minutes, and seconds are there in an angle of 2.5 radians? In 118 radians?

ANGLE CONVERSION: RADIANS TO DEGREES

(ENTER 0 TO END THIS PROGRAM)

ANGLE IN RADIANS? 2.5

DEGREES = 143
MINUTES = 14
SECONDS = 22.01

ANGLE IN RADIANS? 118

DEGREES = 280
MINUTES = 54
SECONDS = 6.77

ANGLE IN RADIANS? 0

5 GRAPHICS 0
6 PI=3.1415927
10 PRINT "ANGLE CONVERSION: RADIANS TO DEGREES"
20 PRINT
30 PRINT "(ENTER 0 TO END THIS PROGRAM)"
50 PRINT "ANGLE IN RADIANS;"
60 INPUT R
69 REM - TEST FOR END OF PROGRAM
70 IF R=0 THEN 170
79 REM - CONVERT RADIANS TO SECONDS
80 A=3600*180*R/PI
89 REM - CALCULATE NUMBER OF WHOLE DEGREES
90 D=INT(A/3600)
99 REM - CALCULATE NUMBER OF FULL CIRCLES
100 D1=INT(D/360)
105 PRINT
109 REM - CALCULATE DEGREES OF ANGLE WITHIN 360 DEGREES, PRINT
110 PRINT " DEGREES = "D-360*D1
119 REM - CALCULATE MINUTES, PRINT
120 PRINT " MINUTES = ";
125 PRINT INT((A-D*3600)/60)
129 REM - CALCULATE SECONDS, ROUND OFF, PRINT
130 S=A-D*3600-(INT((A-D*3600)/60))*60
140 PRINT " SECONDS = ";
145 PRINT INT(100*S+0.5)/100
OPTION

You may prefer your answer in degrees and fractions of degrees rather than degrees, minutes, and seconds. The necessary program changes are listed following the example below.

Example:

How many degrees are there in an angle of 2.5 radians?

ANGLE CONVERSION: RADIANS TO DEGREES

(ENTER 0 TO END THIS PROGRAM)

ANGLE IN RADIANS? 2.5

DEGREES = 143

ANGLE IN RADIANS? 0

1 REM - OPTION 110-120
5 GRAPHICS 0
6 PI=3.1415927
10 PRINT "ANGLE CONVERSION: RADIANS TO DEGREES"
...
109 REM - CALCULATE DEGREES OF ANGLE WITHIN 360 DEGREES, PRINT
110 PRINT " DEGREES = ";
120 PRINT INT((D-360*D1)*100+0.5)/100
150 PRINT
...
170 END
Angle Conversion: Degrees to Radians

This program converts an angle given in degrees, minutes, and seconds to radians.

Examples:

An angle measures 30 degrees, 5 minutes, and 3 seconds. What would be the measure of this angle in radians?
What would be the radian measurement of two angles measuring 278 degrees, 19 minutes, 54 seconds and 721 degrees, 0 minutes, 0 seconds?

```
ANGLE CONVERSION: DEGREES TO RADIANS

(TO END, ENTER 0,0,0)
ANGLE IN DEGREES, MINUTES, SECONDS:
? 30,5,3
RADIANS =0.5250676851

ANGLE IN DEGREES, MINUTES, SECONDS:
? 278,19,54
RADIANS =4.85780328

ANGLE IN DEGREES, MINUTES, SECONDS:
? 721,0,0
RADIANS =0.01745149

ANGLE IN DEGREES, MINUTES, SECONDS:
? 0,0,0

5 GRAPHICS 0
10 PRINT "ANGLE CONVERSION: DEGREES TO RADIANS"
20 PRINT
30 PRINT "(TO END, ENTER 0,0,0)"
40 PRINT "ANGLE IN DEGREES, ";
45 PRINT "MINUTES, SECONDS:"
50 INPUT D,M,S
59 REM - TEST FOR END OF PROGRAM
60 IF D<0 THEN 100
70 IF M<0 THEN 100
80 IF S<0 THEN 100
90 GOTO 150
99 REM - CONVERT DEGREES, MINUTES, SECONDS TO DEGREES
100 A=D+M/60+S/3600
109 REM - CALCULATE NUMBER OF COMPLETE CIRCLES
110 R=INT(A/360)
119 REM - CALCULATE ANGLE WITHIN 360 DEGREES, PRINT
120 PRINT "RADIANS =";
125 PRINT A*0.01745329-R*6.2831853
130 PRINT
```
OPTION

It may be more convenient for you to enter the angle in degrees and fractions of degrees rather than degrees, minutes, and seconds. The necessary program changes are listed following the example below.

Example:

How many radians are in an angle measuring 33.08 degrees? 90 degrees?

ANGLE CONVERSION: DEGREES TO RADIANS

(TO END, ENTER 0)
ANGLE IN DEGREES ? 33.08
RADIANS =0.5773548332

ANGLE IN DEGREES ? 90
RADIANS =1.5707961

ANGLE IN DEGREES ? 0

1 REM - OPTION 30-60
5 GRAPHICS 0
10 PRINT "ANGLE CONVERSION: DEGREES TO RADIANS"
20 PRINT
30 PRINT "(TO END, ENTER 0)"
40 PRINT "ANGLE IN DEGREES ;
50 INPUT A
59 REM - TEST FOR END OF PROGRAM
60 IF A=0 THEN 150
109 REM - CALCULATE NUMBER OF COMPLETE CIRCLES
;:
150 END
Coordinate Conversion

This program converts the coordinates of a point given in Cartesian coordinates to polar coordinates, and vice versa.

The formulas for the conversions are:

\[r = \sqrt{x^2 + y^2} \]
\[A = \arctan \left(\frac{y}{x} \right) \]
\[x = r \cdot \cos (A) \]
\[y = r \cdot \sin (A) \]

where: \(x \) = abscissa \(y \) = ordinate \(r \) = magnitude of ray \(A \) = angle (in degrees)

\(\{ \) Cartesian coordinates \(\} \)

\(\{ \) Polar coordinates \(\} \)

Examples:

Find Cartesian coordinates of the point \((2, 30.5^\circ)\) given in polar coordinates.

If a point is at \((7, 18)\) in the Cartesian system, what are its coordinates in the polar system?

A point is located at \((0, -46.8)\). What is its location in polar coordinates?

COORDINATE CONVERSION

\(1=\)CARTESEIAN TO POLAR
\(-1=\)POLAR TO CARTESIAN
\(0=\)END PROGRAM

WHICH DIRECTION? -1
R, A? 2, 30.5
X = 1.72, Y = 1.02

WHICH DIRECTION? 1
X, Y? 7, 18
R = 19.31, A = 68.75

WHICH DIRECTION? 1
X, Y? 0, -46.8
R = 46.8, A = 270

WHICH DIRECTION? 0

5 GRAPHICS 0
6 PI=3.1415927
10 PRINT "COORDINATE CONVERSION"
20 PRINT
30 PRINT " (1=CARTESEIAN TO POLAR)"
40 PRINT " (-1=POLAR TO CARTESIAN)"

50 PRINT " (0=END PROGRAM)"
55 PRINT
60 PRINT "WHICH DIRECTION?"
70 INPUT D
79 REM - END PROGRAM?
80 IF D=0 THEN 380
89 REM - DIRECT PROGRAM TO PERFORM PROPER CONVERSION
90 IF D=-1 THEN 320
98 REM - CONVERT FROM CARTESIAN COORDINATES TO POLAR COORDINATES
99 REM - ENTER CARTESIAN COORDINATES (ABSCISSA, ORDINATE)
100 PRINT "X,Y";
110 INPUT X,Y
119 REM - POINT ON Y-AXIS?
120 IF X=0 THEN 170
129 REM - POINT ON X-AXIS?
130 IF Y=0 THEN 260
139 REM - COMPUTE POLAR COORDINATES, ROUND OFF, PRINT
140 PRINT "R = ";INT(SGN(X)*SQR(X^2+Y^2)*100+0.5)/100;",
150 PRINT " A = ";INT(ATN(Y/X)*180/PI*100+0.5)/100
160 GOTO 55
169 REM - POINT IS ON Y-AXIS; AT ORIGIN?
170 IF Y=0 THEN 240
180 PRINT "R = ";ABS(Y);",
189 REM - IS POINT ABOVE OR BELOW ORIGIN?
190 IF Y<0 THEN 220
200 PRINT " A = 90"
210 GOTO 55
220 PRINT " A = 270"
230 GOTO 55
239 REM - POINT IS AT ORIGIN
240 PRINT "R = 0, A = 0"
250 GOTO 55
259 REM - POINT IS ON X-AXIS
260 PRINT "R =";ABS(X);",
269 REM - IS POINT TO LEFT OR RIGHT OF ORIGIN?
270 IF X<0 THEN 300
280 PRINT " A = 0"
290 GOTO 55
300 PRINT " A = 180"
310 GOTO 55
318 REM - CONVERT FROM POLAR COORDINATES TO CARTESIAN COORDINATES
319 REM - ENTER POLAR COORDINATES (MAGNITUDE OF RAY, ANGLE)
320 PRINT "R,A";
330 INPUT R,A
339 REM - CONVERT FROM DEGREES TO RADIANS
340 M=(A-INT(A/360)*360)*PI/180
349 REM - CALCULATE CARTESIAN COORDINATES, ROUND OFF, PRINT
350 PRINT "X = ";
355 PRINT INT(R*COS(M)*100+0.5)/100;
360 PRINT ", Y = ";
365 PRINT INT(R*SIN(M)*100+0.5)/100
369 REM - RESTART PROGRAM
370 GOTO 55
380 END
Coordinate Plot

This program plots points on a set of coordinate axes. You must provide the x and y coordinates of all points to be plotted, the endpoints of the x and y axes, and the increment between points on each axis.

The graph is unconventional in that its x axis runs vertically while its y axis runs horizontally. In addition, the axes do not necessarily intersect at zero. A reminder about where the axes intersect is printed at the top of each graph.

The limit on the number of points plotted may be increased or decreased by altering statement 30 in the following manner:

\[\text{30 DIM } X(N+1), Y(N+1) \]

where \(N \) = the maximum number of points you wish to plot.

The length of the y axis is limited by the width of the output device. This program tests for a length not to exceed the width of the Atari screen. The test at statement 90 should be altered to accommodate your particular output device. For an output device with a line width of 132 characters you might enter:

\[\text{90 IF B2<=132 THEN 120} \]

Example:

The heights of twelve men and their sons are recorded in the table below. Plot the data points.

<table>
<thead>
<tr>
<th>Father</th>
<th>65</th>
<th>63</th>
<th>67</th>
<th>64</th>
<th>68</th>
<th>62</th>
<th>70</th>
<th>66</th>
<th>68</th>
<th>67</th>
<th>69</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Son</td>
<td>68</td>
<td>66</td>
<td>68</td>
<td>65</td>
<td>69</td>
<td>66</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>67</td>
<td>68</td>
<td>70</td>
</tr>
</tbody>
</table>

Height in Inches

COORDINATE PLOT

X-AXIS: LOWER ENDPOINT, 62, UPPER ENDPOINT, INCREMENT? 62, 73, 0.5
Y-AXIS: LEFT ENDPOINT, 62
RIGHT ENDPOINT, INCREMENT? 62, 73, 0.25
NUMBER OF POINTS? 12
COORDINATES OF POINT 1? 65, 68
POINT 2? 63, 66
POINT 3? 67, 68
POINT 4? 64, 65
POINT 5? 68, 69
POINT 6? 62, 66
POINT 7? 70, 68
POINT 8? 66, 65
POINT 9? 68, 71
POINT 10? 67, 67
POINT 11? 69, 68
POINT 12? 71, 70
INTERSECTION OF AXES AT (62,62)

5 GRAPHICS 0
10 PRINT "COORDINATE PLOT"
20 PRINT
28 REM - DIMENSION OF X() AND Y() SHOULD BE LIMITED TO (N+1);
29 REM - WHERE N=THE NUMBER OF POINTS BEING PLOTTED, MAXIMUM LIMIT 99
30 DIM X(100), Y(100)
39 REM - INPUT INFORMATION TO SET UP AXES
40 PRINT "X-AXIS: LOWER ENDPOINT,"
45 PRINT "UPPER ENDPOINT, INCREMENT";
50 INPUT A1, A2, A3
60 PRINT "Y-AXIS: LEFT ENDPOINT,"
65 PRINT "RIGHT ENDPOINT, INCREMENT";
70 INPUT B1, B2, B3
80 B2=(B2-B1)/B3
88 REM - Y-AXIS TOO LONG FOR OUTPUT DEVICE? IF YES, CHANGE ENDPOINTS
89 REM - OR INCREASE INCREMENT
90 IF B2<=40 THEN 120
100 PRINT "Y-RANGE TOO LARGE"
110 GOTO 60
120 PRINT "NUMBER OF POINTS";
130 INPUT N
139 REM - NO POINTS TO PLOT? END PROGRAM
140 IF N=0 THEN 1070
149 REM - TOO MANY POINTS? IF YES, REENTER NUMBER OF POINTS
150 IF N<=99 THEN 180
160 PRINT "TOO MANY POINTS"
170 GOTO 120
179 REM - LOOP TO INPUT X,Y COORDINATES FOR EACH POINT
180 FOR I=1 TO N
190 IF I>1 THEN 220
200 PRINT "COORDINATES OF POINT ";I;
210 GOTO 230
220 PRINT " POINT ";I;
230 INPUT X1,Y1
232 X(I)=X1
234 Y(I)=Y1
239 REM - ROUND OFF EACH X,Y TO NEAREST INCREMENT ON AXIS
240 X(I)=INT((X(I)-A1)/A3+0.5)
250 Y(I)=INT((Y(I)-B1)/B3+0.5)
260 NEXT I
269 REM - CALCULATE ADDITIONAL X AND Y COORDINATE
270 Y(N+1)=INT(B2+0.5)+1
280 X(N+1)=INT((A2-A1)/A3+0.5)+1
290 PRINT
299 REM - NOTE WHERE AXES CROSS
300 PRINT "INTERSECTION OF AXES AT (";";
301 PRINT A1;",";B1;")"
310 PRINT
319 REM - SORT COORDINATES; REORDER X(I) TO X(N) SMALLEST TO LARGEST
320 FOR J=1 TO N
330 FOR I=1 TO N-J
340 A=X(I)
350 B=Y(I)
360 C=X(I+1)
370 D=Y(I+1)
380 IF A<C THEN 430
390 X(I)=C
399 Y(I)=D
410 X(I+1)=A
420 Y(I+1)=B
430 NEXT I
440 NEXT J
449 REM - NEXT POINT TO BE PLOTTED STORED IN T
450 T=1
459 REM - SKIP POINTS OUT OF X-POSITIVE RANGE
460 FOR P=0 TO N-1
470 IF X(P+1)>=0 THEN Q=P:P=N
480 NEXT P
485 P=Q
489 REM - LOOP TO CALL UP EACH X-INCREMNT FOR LINES OF PRINT
490 FOR I=0 TO INT((A2-A1)/A3+0.5)
495 F=0
500 T=T+F
509 REM - COUNT NUMBER OF POINTS TO BE PLOTTED ON EACH LINE IN P
510 P=0
519 REM - ALL POINTS PLOTTED?
520 IF T>N THEN 540
529 REM - X-VALUE ON X-LINE? IF YES, TEST FOR Y
530 IF X(T)=1 THEN 590
539 REM - FIRST LINE? IF YES, Y-AXIS MUST BE PLOTTED
540 IF I=0 THEN 570
549 REM - PLOT X-AXIS
550 PRINT ";";
560 GOTO 1040
570 S=N+1
580 GOTO 920
590 FOR L=T TO N
599 REM - NEXT POINT PLOTTED ON SAME LINE
600 IF X(L)<=X(T) THEN P=P+1
620 NEXT L
629 REM - PLOT ONE POINT
630 IF P=1 THEN 730
638 REM - LOOP TO SORT Y-COORDINATES WITH EQUAL X-COORDINATES
639 REM - REORDER SMALLEST TO LARGEST
640 FOR J=1 TO P
650 FOR L=1 TO P-J
660 I=Y(T+L-1)
670 B=Y(T+L)
680 IF D<=B THEN 710
690 Y(T+L-1)=B
700 Y(T+L)=D
710 NEXT L
720 NEXT J
730 FOR L=0 TO P-1
740 Z=Y(T+L)
749 REM - TEST FOR OUT-OF RANGE Y-COORDINATE
750 IF Z>=0 THEN 770
760 NEXT L
769 REM - POINT TO BE PLOTTED ON X-AXIS?
770 IF I=0 THEN 910
779 REM - POINT TO BE PLOTTED ON Y-AXIS?
780 IF Z=0 THEN 800
789 REM - PLOT X-AXIS
790 PRINT "*";
795 F=F+1
800 IF L=P-1 THEN 870
810 FOR J=L TO P-1
819 REM - TEST FOR OUT-OF RANGE Y-COORDINATE
820 IF Z>B2 THEN 1040
829 REM - BYPASS DUPLICATE COORDINATES
830 IF Y(T+J)=Z THEN 860
839 REM - PLOT POINT
840 IF Z-F<1 THEN 845
841 FOR R=1 TO Z-F
842 PRINT " ";
843 F=F+1
844 NEXT R
845 PRINT "+";
846 F=F+1
850 Z=Y(T+J)
860 NEXT J
869 REM - TEST FOR OUT-OF RANGE Y-COORDINATE
870 IF Z<=0 THEN 1040
880 IF Z>B2 THEN 1040
889 REM - PLOT POINT
890 IF Z-F<1 THEN 895
891 FOR R=1 TO Z-F
892 PRINT " ";
893 F=F+1
894 NEXT R
895 PRINT "+";
896 F=F+1
900 GOTO 1040
910 S=T+L
919 REM - LOOP TO ESTABLISH PRINT FOR FIRST LINE
920 FOR J=0 TO B2
929 REM - POINT TO BE PLOTTED?
930 IF Y(S)<J THEN 1010
939 REM - PLOT POINT
940 PRINT "+";
949 REM - BYPASS DUPLICATE COORDINATES
950 FOR K=S TO T+P-1
960 IF Y(K)=Y(S) THEN 990
970 S=K
980 GOTO 1020
990 NEXT K
1000 GOTO 1020
1009 REM - PLOT Y-AXIS
1010 PRINT "+";
1020 NEXT J
1029 REM - LABEL Y-AXIS
1030 PRINT "Y";
1039 REM - ADVANCE OUTPUT DEVICE TO NEXT LINE
1040 PRINT
1050 NEXT I
1059 REM - LABEL X-AXIS
1060 PRINT "X"
1070 END
Plot of Polar Equation

This program plots a given function in polar coordinates. There are up to 90 points plotted, one every four degrees. (Some points may overlap.)

The graph is conventional in that the x axis runs horizontally, the y axis runs vertically, and the axes intersect at zero. You need only specify the absolute value of the endpoints.

The increment between each point on the x and y axes is adjusted so that a value of one on either axis is equidistant from zero. This allows the function to be plotted with minimal distortion. An adjustment of each increment is necessary because of different spacing horizontally and vertically on an output device. If your output device differs from the one used here your graph may be distorted.

It is necessary for you to enter the function to be plotted before you run the program. The function must be entered as a function of d. $f(d)$ will be entered and set equal to F at line 130. For example, the function $f(d) = 2 \cdot (1 - \cos(d))$ will be entered as follows:

130 F=2*(1-COS(D))

Example:

Plot the equation $f(d) = 2 \cdot (1 - \cos(d))$.
PLOT OF POLAR EQUATION

ABSOLUTE VALUE OF ENDPOINTS? 4

INCREMENT OF X-AXIS = 0.1333333333
INCREMENT OF Y-AXIS = 0.2222222222

*** PLEASE WAIT A FEW MINUTES ***
FOR THE GRAPH TO APPEAR

5 GRAPHICS 0
10 PRINT "PLOT OF POLAR EQUATION"
20 PRINT
27 REM - COORDINATE ARRAYS SET FOR
28 REM - 90 POINTS: ONE EXTRA
29 REM - X-COORDINATE IS CALCULATED
30 DIM X(91), Y(90)
31 REM
32 REM - N IS THE NUMBER OF POINTS
33 REM - TO BE CALCULATED
34 N=90
35 REM - ABSOLUTE VALUE OF ALL
36 REM - ENDPOINTS ARE EQUAL
37 PRINT "ABSOLUTE VALUE OF ENDPOINTS"
38 INPUT Z
39 PRINT
40 X1=15
41 Y1=18
42 REM - CALCULATE INCREMENTS OF AXES
43 REM - ACCORDING TO CHARACTERS
44 REM - PER AXIS
45 PRINT "INCREMENT OF X-AXIS =";Z/X1
46 PRINT "INCREMENT OF Y-AXIS =";Z/Y1
47 PRINT
48 PRINT "** ** PLEASE WAIT A FEW MINUTES ** **"
49 PRINT "FOR THE GRAPH TO APPEAR"
50 REM - E IS THE NEXT PRINT LOCATION
51 E=1
52 FOR I=1 TO N
53 REM - CONVERT DEGREES TO RADIANS
54 D=0.06981317*I
55 REM - ENTER FUNCTION IN LINE 130
56 REM - AS A FUNCTION OF 'D'
57 REM - "130 F='FUNCTION'"
58 F=2*(1-COS(D))
59 REM - CALCULATE EACH CARTESIAN
60 REM - COORDINATE, ROUND OFF TO
61 REM - NEAREST INCREMENT ON AXIS
62 X(I)=INT((F*COS(D)/Z+1)*X1)+0.5)
63 Y(I)=INT((F*SIN(D)/Z+1)*Y1)+0.5)
64 NEXT I
65 REM
66 REM - SORT COORDINATES; REORDER
67 REM - Y(1) TO Y(N) SMALLEST
68 REM - TO LARGEST
69 FOR J=1 TO N
70 FOR I=1 TO N-J
71 A=X(I)
72 B=Y(I)
73 IF B<=Y(I+1) THEN 260
74 X(I)=X(I+1)
75 Y(I)=Y(I+1)
76 X(I+1)=A
77 Y(I+1)=B
78 NEXT I
79 NEXT J
80 REM - NEXT POINT TO BE PLOTTED
81 REM - IS STORED IN 'T'
82 T=1
83 REM - SKIP POINTS OUT OF THE
84 REM - Y-POSITIVE RANGE
290 FOR P=0 TO N-1
300 IF Y(P+1)>=0 THEN 320
310 NEXT P
318 REM - LOOP TO CALL UP EACH Y-
319 REM - INCREMENT FOR LINES OF PRINT
320 FOR I=0 TO Y1*2
330 T=T+P
337 REM - NUMBER OF POINTS TO BE
338 REM - PLOTTED ON EACH LINE
339 REM - STORED IN P
340 P=0
349 REM - ALL POINTS PLOTTED?
350 IF T>N THEN 370
359 REM - Y-VALUE ON Y-LINE?
360 IF Y(T)=I THEN 420
369 REM - PRINT X-AXIS
370 IF I=Y1 THEN 400
379 REM - PRINT Y-AXIS
380 Z=X1:00SUB 950
385 PRINT CHR$(124);:REM VERT. BAR
386 E=E+1
390 GOTO 860
400 S=N+1
410 GOTO 740
418 REM - NEXT POINT TO BE PLOTTED
419 REM - ON SAME LINE?
420 FOR L=T TO N
430 IF Y(L)>=Y(T) THEN 450
440 P=P+1
450 NEXT L
460 IF P=1 THEN 560
467 REM - LOOP TO SORT X-COORDINATES
468 REM - WITH EQUAL Y-COORDINATES;
469 REM - REORDER SMALLEST TO LARGEST
470 FOR J=1 TO P
480 FOR L=1 TO P-J
490 C=X(T+L-1)
500 A=X(T+L)
510 IF C<=A THEN 540
520 X(T+L-1)=A
530 X(T+L)=C
540 NEXT L
550 NEXT J
559 REM - PRINT X-AXIS?
560 IF I=Y1 THEN 730
570 L=-1
580 S=0
587 REM - MORE THAN ONE POINT TO
588 REM - BE PLOTTED AT SAME POINT
589 REM - ON GRAPH?
590 FOR K=0 TO P-1
600 IF X(T+I)=L THEN 690
610 L=X(T+I)
618 REM - PLOT POINT TO THE LEFT
619 REM - OF Y-AXIS?
620 IF L=X1 THEN 660
630 IF L<X1 THEN 670
640 IF S=1 THEN 670
649 REM - PRINT Y-AXIS
650 Z=X1:GOSUB 950
655 PRINT CHR$(124): REM VERT. BAR
656 E=F+1
660 S=1
668 REM - POINT OUTSIDE OF
669 REM - X-POSITIVE RANGE?
670 IF L>X1*2 THEN 860
679 REM - PLOT POINT
680 Z=L:GOSUB 950
685 PRINT "*";
686 E=E+1
689 NEXT K
700 IF S=1 THEN 860
709 REM - PRINT Y-AXIS
710 Z=X1:GOSUB 950
715 PRINT CHR$(124): REM VERT. BAR
716 E=E+1
720 GOTO 860
730 S=T
739 REM - LOOP TO PRINT LINE OF X-AXIS
740 FOR J=0 TO X1*2
750 IF X(S)<J THEN 830
759 REM - PLOT POINT ON X-AXIS
760 PRINT "*";
761 F=F+1
770 K=S
780 IF K>T+F-1 THEN 840
790 IF X(K)<X(S) THEN 820
800 K=K+1
810 GOTO 780
820 S=K
825 GOTO 840
829 REM - PRINT X-AXIS
830 PRINT CHR$(18): REM HORIZ. BAR
831 E=E+1
840 NEXT J
849 REM - LABEL X-AXIS
850 PRINT "X";
860 PRINT
861 REM - NEW LINE, RESET PRINT LOC.
862 E=1
870 NEXT I
879 REM - LABEL Y-AXIS
880 Z=X1:GOSUB 950
885 PRINT "Y"
890 GOTO 999
900 REM - SUBROUTINE TO TAB
910 REM - Z IS TAB LOCATION,
920 REM - E IS CURRENT
950 IF Z-E<1 THEN 990
960 PRINT " ";
970 E=E+1
980 GOTO 950
990 RETURN
999 END
Plot of Functions

This program calculates and plots up to nine functions. All functions must be functions of \(x \), and all will be plotted on the same set of axes.

To set up the axes you must input the endpoints of the \(x \) and \(y \) axes. You must also state the increment by which the points on each axis are to be increased.

The graph is unconventional in that its \(x \) axis runs vertically while its \(y \) axis runs horizontally. To read the graph you must either turn your output 90 degrees counterclockwise or mentally adjust to the change in convention.

The graph is also unconventional in that its axes do not necessarily cross at zero. A reminder as to where the axes cross is printed at the top of each graph.

You must enter the functions to be plotted as program statements prior to running the program. Statement numbers 221 to 229 are reserved for this purpose. Functions must be entered in the number sequence \(Y(1), Y(2), \ldots, Y(9) \). For example, if you wish to plot the functions \(f(x) = 2x + 1 \) and \(f(x) = \sqrt{x} \), you must type:

\[
\begin{align*}
221 & \quad Y(1) = 2 \times x + 1 \\
222 & \quad Y(2) = \text{SQR}(x)
\end{align*}
\]

The length of the \(y \) axis is limited by the width of your output device. This program tests for a length not to exceed the width of the Atari screen. The test at statement 140 should be altered to accommodate your particular output device. For example, an output device with a line width of 64 characters will accommodate a graph 62 spaces wide. You would change statement 140 to:

\[
140 \text{ IF } Y2 \leq 62 \text{ THEN } 170
\]

Example:

Plot the equations \(f(x) = \cos(x) \) and \(f(x) = \sin(x) \).
PLOT OF FUNCTIONS

NUMBER OF FUNCTIONS? 2
X-AXIS: LOWER ENDPOINT,
UPPER ENDPOINT, INCREMENT? -5, 5, 0.25
Y-AXIS: LEFT ENDPOINT,
RIGHT ENDPOINT, INCREMENT? -2, 2, 0.1

X-AXIS CROSSES Y-AXIS AT Y=-2
Y-AXIS CROSSES X-AXIS AT X=-5
5 GRAPHICS 0
10 PRINT "PLOT OF FUNCTIONS"
20 PRINT
29 REM - NUMBER OF FUNCTIONS WHICH CAN BE PLOTTED IS LIMITED TO 9
30 DIM Y(9),A$(11)
40 A$="123456789++"
69 REM - STATEMENTS 79 TO 120 REQUEST USER INPUT
70 PRINT "NUMBER OF FUNCTIONS"
80 INPUT N
90 PRINT "X-AXIS: LOWER ENDPOINT,"
95 PRINT "UPPER ENDPOINT,INCREMENT"
100 INPUT X1,X2,X3
110 PRINT "Y-AXIS: LEFT ENDPOINT,"
115 PRINT "RIGHT ENDPOINT, INCREMENT"
120 INPUT Y1,Y2,Y3
129 REM - CALCULATE NUMBER OF SPACES ON Y-AXIS
130 Y2=(Y2-Y1)/Y3
138 REM - TEST FOR A Y-AXIS TOO LONG FOR OUTPUT DEVICE
139 REM - IF YES; THEN LESSEN RANGE OR INCREASE INCREMENT
140 IF Y2<=36 THEN 170
150 PRINT "Y-RANGE TOO LARGE"
160 GOTO 110
170 PRINT
180 PRINT
189 REM - MAKE NOTE OF WHERE AXES CROSS
190 PRINT "X-AXIS CROSSES Y-AXIS ";
195 PRINT "AT Y=":Y1
200 PRINT "Y AXIS CROSSES X-AXIS ";
210 PRINT "AT X=":X1:PRINT
219 REM - SET UP LOOP TO READ VALUE AT EACH X-INCREMENT
220 FOR X=X1 TO X2 STEP X3
221 REM - FUNCTIONS Y(1) TO Y(9) SHOULD BE ENTERED AT LINES 221 TO 229
230 FOR I=1 TO N
239 REM - ESTABLISH THE ROUNDED VALUE OF Y FOR EACH X-INCREMENT VALUE
240 Y(I)=INT((Y(I)-Y1)/Y3+0.5)
250 NEXT I
259 REM - LOOP TO READ VALUE OF EACH Y-INCREMENT
260 FOR I=0 TO Y2
269 REM - S COUNTS THE NUMBER OF VALUES AT EACH Y-INCREMENT FOR EACH X
270 S=0
280 FOR J=1 TO N
289 REM - PLOT A POINT ON THIS SPOT? IF YES, STORE FUNCTION NUMBER IN T
290 IF Y(J)<0 THEN 320
291 S=S+1
300 T=J
310 S=J+1
320 NEXT J
327 REM - TEST FOR NUMBER OF POINTS TO PLOT ON EACH SPOT:
328 REM - IF 0 PRINT "+" (FIRST LINE ONLY), IF 1 PRINT FUNCTION NUMBER,
329 REM - IF 2 OR MORE PRINT "*
330 IF S>0 THEN 360
340 PRINT A$(SGN(I)+10,SGN(I)+10)
350 GOTO 400
360 IF S>1 THEN 390
370 PRINT A$(T,T);
380 GOTO 400
390 PRINT "*";
400 NEXT I
409 REM - LABEL AXES AT THE LAST SPACE ON EACH AXIS
410 IF X>X1 THEN 430
420 PRINT "Y";
429 REM - ADVANCE PRINTER TO NEXT LINE
430 PRINT
439 REM - PRINT SPACE INSTEAD OF "+" AFTER FIRST LINE OF PRINT (Y-AXIS)
440 A$(11)=" "
450 NEXT X
460 PRINT "X"
470 END
Linear Interpolation

This program calculates the y coordinates of points on a line given their x coordinates. It is necessary to know coordinates of two points on the same line.

The point is interpolated using the following formula:

$$y = y_1 + \frac{(y_2 - y_1) \cdot (x - x_1)}{(x_2 - x_1)}$$

where: x_1, y_1 = coordinates of first point on the line
x_2, y_2 = coordinates of second point on the line
$x =$ abscissa of point to be interpolated
$y =$ ordinate of the point on the line with x

Examples:

A conversion table lists 60°F as 15.56°C and 90°F as 32.22°C. Calculate degrees Celsius of 73°F and 85.6°F.

A new sales tax of 17.5% has been imposed on us. What will be the tax on a sofa which sells for $455.68?

LINEAR INTERPOLATION

X, Y OF FIRST POINT? 60, 15.56
X, Y OF SECOND POINT? 90, 32.22
INTERPOLATE: $X = \ ?$ 73
 $Y = \ 22.779$

MORE POINTS (1=YES, 0=NO)? 1

INTERPOLATE: $X = \ ?$ 85.6
 $Y = \ 29.777$

MORE POINTS (1=YES, 0=NO)? 0

NEW LINE (1=YES, 0=NO)? 1

X, Y OF FIRST POINT? 0, 0
X, Y OF SECOND POINT? 100, 17.5
INTERPOLATE: $X = \ ?$ 455.68
 $Y = \ 79.744$

MORE POINTS (1=YES, 0=NO)? 0

NEW LINE (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "LINEAR INTERPOLATION"
20 PRINT
29 REM - ENTER X- AND Y-COORDINATES OF TWO POINTS ON THE LINE
30 PRINT "X,Y OF FIRST POINT";
40 INPUT X1, Y1
50 PRINT "X, Y OF SECOND POINT";
60 INPUT X2, Y2
69 REM - ENTER X-COORDINATE OF POINT TO BE INTERPOLATED
70 PRINT "INTERPOLATE: X = ";
80 INPUT X
89 REM - COMPUTE CORRESPONDING Y-COORDINATE
90 Y = Y1 + (Y2 - Y1) / (X2 - X1) * (X - X1)
99 REM - ROUND OFF, PRINT
100 PRINT "Y = ";
101 PRINT INT(Y*1000+.5)/1000
110 PRINT
120 PRINT "MORE POINTS (1=YES, 0=NO)";
130 INPUT Z
140 PRINT
150 IF Z=1 THEN 70
159 REM - INTERPOLATE ON ANOTHER LINE?
160 PRINT "NEW LINE (1=YES, 0=NO)";
170 INPUT Z
180 IF Z=1 THEN 20
190 END
Curvilinear Interpolation

This program computes y coordinates of points on a curve given their x coordinates. You must input coordinates of known points on the curve, no two having the same abscissa.

The computations are performed using the Lagrange method of interpolation.

The number of known points on the curve which may be entered in the program is limited to 50. You may increase or decrease this limit by altering statement 30 according to the following scheme:

30 DIM X(P), Y(P)

where P = the number of known points on a curve.

Examples:

Consider the curve \(y = x^3 - 3x + 3 \). You know that the points \((-3, -15), (-2, 1), (-1, 5), (0, 3), (1, 1), (2, 5), \) and \((3, 21)\) are on the curve. What is the value of \(y \) when \(x = -1.65 \) and 0.2?

Given the following points from a sine curve, what is the sine of \(-2.47\) and the sine of \(1.5\)?

\[
\begin{align*}
(-5, 0.958) & \quad (0, 0) \\
(-4, 0.757) & \quad (1, 0.841) \\
(-3, -0.141) & \quad (2, 0.909) \\
(-2, -0.909) & \quad (3, 0.141) \\
(-1, -0.841) & \quad (4, -0.757) \\
(5, -0.959) & \quad \n
\]

CURVILINEAR INTERPOLATION

NUMBER OF KNOWN POINTS? 7
X, Y OF POINT 1? -3, -15
X, Y OF POINT 2? -2, 1
X, Y OF POINT 3? -1, 5
X, Y OF POINT 4? 0, 3
X, Y OF POINT 5? 1, 1
X, Y OF POINT 6? 2, 5
X, Y OF POINT 7? 3, 21

INTERPOLATE: X = \(? \) -1.65
Y = 3.45787496

MORE POINTS HERE (1=YES, 0=NO)? 1

INTERPOLATE: X = \(? \) 0.2
Y = 2.40799992

MORE POINTS HERE (1=YES, 0=NO)? 0
ANOTHER CURVE (1=YES, 0=NO)? 1

NUMBER OF KNOWN POINTS? 11
X, Y OF POINT 1? -5, 0.958
X, Y OF POINT 2? -4, 0.757
X, Y OF POINT 3? -3, -0.141
X, Y OF POINT 4? -2, -0.909
X, Y OF POINT 5? -1, -0.841
X, Y OF POINT 6? 0, 0
X, Y OF POINT 7? 1, 0.841
X, Y OF POINT 8? 2, 0.909
X, Y OF POINT 9? 3, 0.141
X, Y OF POINT 10? 4, -0.757
X, Y OF POINT 11? 5, -0.959

INTERPOLATE: X = ? -2.47
Y = -0.6218395827

MORE POINTS HERE (1=YES, 0=NO)? 1

INTERPOLATE: X = ? 1.5
Y = 0.9971637861

MORE POINTS HERE (1=YES, 0=NO)? 0
ANOTHER CURVE (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "CURVILINEAR INTERPOLATION"
20 PRINT
28 REM - LIMIT X() AND Y() TO MAXIMUM NUMBER OF POINTS KNOWN ON ANY
29 REM - CURVE TO BE ENTERED
30 DIM X(50), Y(50)
40 PRINT "NUMBER OF KNOWN POINTS";
50 INPUT P
60 FOR I=1 TO P
69 REM - ENTER COORDINATES OF KNOWN POINTS ON CURVE
70 PRINT "X, Y OF POINT ": I;
80 INPUT X(I), Y(I)
82 X(I)=X(I)
84 Y(I)=Y(I)
90 NEXT I
100 PRINT
109 REM - ENTER X-COORDINATE OF POINT TO BE INTERPOLATED
110 PRINT "INTERPOLATE: X = ";
120 INPUT A
130 B=0
138 REM - COMPUTE CORRESPONDING Y-COORDINATES BY LAGRANGE METHOD OF
139 REM - INTERPOLATION
140 FOR J=1 TO P
150 T=1
160 FOR I=1 TO P
170 IF I=J THEN 190
180 T=T*(A-X(I))/(X(J)-X(I))
190 NEXT I
200 B=B+T*Y(J)
210 NEXT J
219 REM - PRINT RESULTS
220 PRINT "Y = "; B
230 PRINT
239 REM - INTERPOLATE MORE POINTS ON SAME CURVE?
240 PRINT "MORE POINTS HERE ";
245 PRINT "(1=YES, 0=NO)";
250 INPUT C
260 IF C=1 THEN 100
269 REM - RESTART OR END PROGRAM?
270 PRINT "ANOTHER CURVE ";
275 PRINT "(1=YES, 0=NO)";
280 INPUT C
290 IF C=1 THEN 40
300 END
Integration: Simpson's Rule

This program approximates the definite integral of a function. The integral is computed using Simpson's rule.

The method the program takes is optional: you must supply either the function of the curve or values of the function at specified intervals. For both methods you must enter the limits of integration and the increment between points within the limits.

If the function to be integrated is known, it must be entered before running the program. The function will be defined at line 350. For example, the function \(f(x) = x^3 \) will be entered as follows:

350 \(F=X^3 \)

Examples:

Find the definite integral of the function \(f(x) = x^3 \) between 0 and 2 with increments of 0.2 and 0.1.

What is the integral of a curve between \(-1\) and \(1\) if the points known are as follows:

\[
\begin{array}{cc}
-1.05 & 0.250969 \\
-0.75 & 0.50878 \\
-0.5 & 0.75073 \\
-0.25 & 1.054 \\
0.1 & \\
\end{array}
\]

INTEGRATION: SIMPSON'S RULE

FORMULA: (1=KNOWN, 0=UNKNOWN)? 1
THE LOWER, UPPER LIMITS? 0, 2
INCREMENT OF X? 0.2
INTEGRAL IS 3.99999994

5 GRAPHICS 0
10 PRINT "INTEGRATION: SIMPSON'S RULE"
20 PRINT
30 PRINT "FORMULA: (1=KNOWN, 0=UNKNOWN)"
40 INPUT S
60 PRINT "THE LOWER, UPPER LIMITS"
70 INPUT A, B
80 PRINT "INCREMENT OF X"
90 INPUT X1
98 REM - INCREMENT MUST DIVIDE INTERVAL INTO EQUAL SUB INTERVALS;
99 REM - IF NOT, CHANGE INCREMENT
100 IF (B-A)/X1<>INT((B-A)/X1) THEN 800
110 IF S=1 THEN 150
119 REM - FORMULA NOT KNOWN; ENTER FUNCTION VALUE AT INTEGRATION LIMITS
120 PRINT "FIRST, LAST VALUE OF F(X)"
130 INPUT Y1, Y2
140 GOTO 170
149 REM - FORMULA KNOWN; CALCULATE F(X) AT INTEGRATION LIMITS
150 X=A
152 GOSUB 350
154 Y1=F
160 X=B
162 GOSUB 350
164 Y2=F
170 C=0
180 D=0
189 REM - LOOP FOR EACH INTERVAL
190 FOR I=1 TO (B-A)/X1-0.5
200 IF S=1 THEN 240
209 REM - ENTER KNOWN FUNCTION VALUE AT EACH INTERVAL
210 PRINT "VALUE OF F(X) AT:"
211 PRINT ";INTERVAL ";I;
212 PRINT " (X=","A+I*X1;");
220 INPUT Y
230 GOTO 250
239 REM - CALCULATE F(X) AT EACH SUBINTERVAL
240 X=A+I*X1
242 GOSUB 350
244 Y=F
249 REM - INTERVAL EVEN OR ODD?
250 T2=I/2:R=INT(T2)
255 IF T2=R THEN 280
259 REM - SUM ALL ODD-INTERVAL FUNCTION VALUES
260 C=C+Y
270 GOTO 290
279 REM - SUM ALL EVEN-INTERVAL FUNCTION VALUES
280 D=D+Y
290 NEXT I
299 REM - COMPUTE INTEGRAL; PRINT
300 PRINT "INTEGRAL IS ";
310 PRINT X1/3*(Y1+(C*4)+D*2+Y2)
320 GOTO 999
330 REM - DEFINE KNOWN FUNCTION
340 REM - BELOW: "F=FUNCTION(X)"
350 F=X^3
360 RETURN
999 END
Integration: Trapezoidal Rule

This program approximates the definite integral of a function. The integral is computed using the trapezoidal rule. You must provide the limits of integration and the number of intervals within the limits.

The function to be integrated must be entered before running the program. The function of \(x \) will be defined at line 210. For example, the function \(f(x) = x^3 \) will be entered as follows:

\[
210 \quad F=X^3
\]

Examples:

Find the definite integral of the function \(f(x) = x^3 \) between 0 and 2 with 10 and 20 intervals.

Find the definite integral of the function \(f(x) = x^{-2} \) between 1 and 2 and 2 and 3 using 10 subintervals.

INTEGRATION: TRAPEZOIDAL RULE

(ENTER 0.0 TO END PROGRAM)
LOWER, UPPER LIMITS? 0,2
NUMBER OF INTERVALS? 10
INTEGRAL = 4.03999994

LOWER, UPPER LIMITS? 0,2
NUMBER OF INTERVALS? 20
INTEGRAL = 4.00999994

LOWER, UPPER LIMITS? 0,0

5 GRAPHICS 0
10 PRINT "INTEGRATION: TRAPEZOIDAL RULE"
20 PRINT
40 PRINT "(ENTER 0,0 TO END PROGRAM)"
50 PRINT "LOWER, UPPER LIMITS";
60 INPUT A, B
69 REM - END PROGRAM?
70 IF A=B THEN 230
80 PRINT "NUMBER OF INTERVALS";
90 INPUT N
100 I=0
109 REM - D IS THE SIZE OF EACH INTERVAL
110 D=(B-A)/N
119 REM - ADD UP THE AREA OF EACH TRAPEZOID
120 FOR X=A TO B STEP D
122 GOSUB 210
130 I=I+F
140 NEXT X
141 REM - OBTAIN FUNCTION OF A
142 X=A
143 GOSUB 210
144 A=F
145 REM - OBTAIN FUNCTION OF B
146 X=B
147 GOSUB 210
148 B=F
149 REM - COMPUTE INTEGRAL, PRINT
150 I=(I-(A+B)/2)*D
160 PRINT "INTEGRAL = ";I
170 PRINT
179 REM - RESTART PROGRAM
180 GOTO 50
190 REM - ENTER FUNCTION BELOW:
200 REM - "F=FUNCTION(X)"
210 F=X^3
220 RETURN
230 END
Integration: Gaussian Quadrature

This program approximates the definite integral of a function. You must provide the limits of integration and the number of intervals within the limits.

The interval of integration is divided into equal subintervals. The definite integral is computed over each subinterval using Gauss' formula. The integrals of the subintervals are summed to give the definite integral of the full interval.

You must enter the function to be integrated before running the program. The function of x will be defined at line 350. For example, the function \(f(x) = x^3 \) will be entered as follows:

\[
350 \ F Z^3
\]

Examples:

Find the definite integral of the function \(f(x) = x^3 \) between 0 and 2 with 10 and 20 subintervals.

Find the definite integral of the function \(f(x) = x^{-2} \) between 1 and 2 and 2 and 3 using 10 subintervals.

INTEGRATION: GAUSSIAN QUADRATURE

LOWER, UPPER LIMITS? 0, 2
NUMBER OF INTERVALS? 10
INTEGRAL = 3.99999993

CHANGE DATA AND RECOMPUTE?
(0=NO, 1=LIMITS, 2=INTERVALS)? 2
NUMBER OF INTERVALS? 20
INTEGRAL = 3.99999993

CHANGE DATA AND RECOMPUTE?
(0=NO, 1=LIMITS, 2=INTERVALS)? 0

5 GRAPHICS 0
10 PRINT "INTEGRATION: GAUSSIAN QUADRATURE"
20 PRINT
30 REM - ENTER FUNCTION IN LINE 350
39 REM - ABCISSAS AND WEIGHT FACTORS FOR 20-POINT GAUSSIAN INTEGRATION
40 DATA .076526521, .15275339, .22778585
45 DATA .14917299, .37370609, .14209611
50 DATA .510867, .13168864, .63605368
55 DATA .11819453, .74633191, .10193012
60 DATA .83911697, .083276742, .91223443
65 DATA .062672048, .96397193, .04060143
70 DATA .9931286, .017614007
80 PRINT "LOWER, UPPER LIMITS";
90 INPUT X, Y
100 PRINT "NUMBER OF INTERVALS";
110 INPUT N
120 S = (Y - X) / N / 2
130 T = X + S
140 R=0
149 REM - COMPUTE INTEGRAL FOR EACH SUBINTERVAL
150 FOR I=1 TO N
160 P=0
169 REM - COMPUTE SUMMATION FACTOR FOR EACH SUBINTERVAL
170 FOR J=1 TO 10
180 READ A,B
190 Z=S*A+T
192 GOSUB 350
194 Z1=F
196 Z=T-S*A
197 GOSUB 350
198 P=P+B*(Z1+F)
200 NEXT J
210 RESTORE
220 R=R+P*S
230 T=T+2*S
240 NEXT I
250 PRINT "INTEGRAL =";R
260 PRINT
270 PRINT "CHANGE DATA AND RECOMPUTE?"
280 PRINT "(0=NO, 1=LIMITS, 2=INTERVALS)"
290 INPUT S
300 IF S=1 THEN 80
310 IF S=2 THEN 100
320 GOTO 370
330 REM - ENTER FUNCTION BELOW:
340 REM - "F='FUNCTION(Z)'"
350 F=Z^3
360 RETURN
370 END
This program calculates the derivative of a given function at a given point.

You must enter the function being evaluated before you run the program. The function will be entered in a statement at line 180. For example, to evaluate the equation \(f(x) = x^{-2} + \cos(x) \) you would enter the following:

\[180 \quad F = Z^2 + \cos(Z) \]

Example:

Calculate the derivative of the equation \(x^2 + \cos(x) = 0 \) when \(x = -1 \), \(x = 0 \), and \(x = 1 \).

DERIVATIVE

(ENTER X=99999 TO END)

DERIVATIVE AT X=? -1

IS -1.15856168

DERIVATIVE AT X=? 0

IS -1.0239954E-05

DERIVATIVE AT X=? 1

IS 1.15852584

DERIVATIVE AT X=? 99999

5 GRAPHICS 0

10 PRINT "DERIVATIVE"

20 PRINT

40 PRINT "(ENTER X=99999 TO END)"

50 PRINT "DERIVATIVE AT X=":

60 INPUT X1

69 REM - TEST FOR END OF PROGRAM

70 IF X1=99999 THEN 200

80 D=0

89 REM - CALCULATE DIFFERENCE QUOTIENTS FOR POINTS APPROACHING X

90 FOR N=1 TO 10

100 D1=D

110 X=X1+0.5^N

111 REM - OBTAIN FUNCTION OF X

112 Z=X

113 GOSUB 180

114 REM - STORE RESULT IN Z1

115 Z1=F

116 REM - OBTAIN FUNCTION OF X1

117 Z=X1

118 GOSUB 180

119 Y=Z1-F

120 D=Y/(X-X1)

130 NEXT N

138 REM - APPROXIMATE DERIVATIVE
139 REM - OF FUNCTION AT X, PRINT
140 PRINT " IS ";2*D-D1
149 REM - RESTART PROGRAM
150 GOTO 50
160 REM - ENTER FUNCTION BELOW:
170 REM - "F=\'FUNCTION(Z)\'"
180 F=Z^2+COS(Z)
190 RETURN
200 END
Roots of Quadratic Equations

This program calculates the roots of a quadratic equation. The equation must be in the following form:

\[ax^2 + bx + c = 0 \]

where \(a, b, c \) are real coefficients.

The formula used to calculate the roots is:

\[\text{root} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a} \]

Example:

Compute the roots of the following equations:

\[2x^2 + x - 1 = 0 \]
\[x^2 + 4x + 6 = 0 \]

ROOTS OF QUADRATIC EQUATIONS

COEFFICIENTS A,B,C? 2,1,-1
ROOTS (REAL):
-1,0.5

MORE DATA (1=YES, 0=NO)? 1

COEFFICIENTS A,B,C? 1,4,6
ROOTS (COMPLEX):
-2 +OR- 1.41421359 I

MORE DATA (1=YES, 0=NO)? 0

5 GRAPHCICS 0
10 PRINT "ROOTS OF QUADRATIC EQUATIONS"
20 PRINT
30 PRINT "COEFFICIENTS A,B,C"
40 INPUT A,B,C
50 S=B^2-4*A*C
60 R=SQRT(ABS(S))
70 IF S<0 THEN 100
80 PRINT "ROOTS (REAL): "
82 PRINT (-B-R)/(2*A); " +OR- ";(-B+R)/(2*A)
90 GOTO 110
100 PRINT "ROOTS (COMPLEX): "
102 PRINT -B/(2*A); " +OR- ";R/(2*A); " I"
110 PRINT
120 PRINT "MORE DATA (1=YES, 0=NO)"
130 INPUT X
140 IF X=1 THEN 20
150 END
Real Roots of Polynomials: Newton

This program calculates real roots of a polynomial with real coefficients. You must give an estimate of each root.

The calculations are performed using Newton’s method for approximating roots of equations. The value of the error and derivative are included for each root calculated.

The equation you enter is presently limited to a degree of 10. You may enter a larger degree of equation by altering statements 30 and 40 of the program according to the following scheme:

30 DIM A(N+1), B(N+1)
40 FOR I=1 TO N+1

where \(N \) = degree of equation.

Example:

Find the roots of \(4x^4 - 2.5x^2 - x + 0.5 \).

REAL ROOTS OF POLYNOMIALS: NEWTON
DEGREE OF EQUATION? 4

COEFFICIENT A(0)? 0.5
COEFFICIENT A(1)? -1
COEFFICIENT A(2)? -2.5
COEFFICIENT A(3)? 0
COEFFICIENT A(4)? 4
GUESS? -0.8
ROOT = 0.3035763403
ERROR = -1E-10
DERIVATIVE = -2.07024701

NEW VALUE (1=YES, 0=NO)? 0
NEW FUNCTION (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "REAL ROOTS OF POLYNOMIALS: NEWTON"
11 REM - LIMIT A() AND B() TO N+1;
12 REM - WHEN THIS IS DONE, LOOP AT
13 REM - LINE 40 SHOULD BE SET TO
14 REM - COUNT FROM 1 TO N+1
15 DIM A(11), B(11)
20 PRINT
30 REM - INITIALIZE ARRAY VARIABLES
40 FOR I=1 TO 11
50 A(I)=0
60 B(I)=0
70 NEXT I
80 PRINT "DEGREE OF EQUATION":
90 INPUT N
95 PRINT
100 FOR I=1 TO N+1
108 REM - ENTER COEFFICIENTS IN ORDER
109 REM - OF LESSER TO HIGHER DEGREE
110 PRINT "COEFFICIENT A(";I-1;")";
120 INPUT A1
122 A(I)=A1
130 NEXT I
140 FOR I=1 TO 10
148 REM - CALCULATE COEFFICIENT OF
149 REM - DERIVATIVE OF POLYNOMIAL
150 B(I)=A(I+1)*I
160 NEXT I
170 PRINT
179 REM - INITIALIZE GUESS
180 PRINT "GUESS";
190 INPUT X
200 Q=0
210 S=1
220 F1=0
230 F0=0
239 REM - COUNT ITERATIONS
240 Q=Q+1
250 FOR I=1 TO N+1
259 REM - CALCULATE VALUE OF FUNCTION
260 F0=F0+A(I)*S
269 REM - CALC. VALUE OF DERIVATIVE
270 F1=F1+B(I)*S
280 S=S*X
290 NEXT I
298 REM - TEST FOR A ZERO DERIVATIVE;
299 REM - IF YES, STOP SEARCH, PRINT
300 IF F1=0 THEN 360
308 REM - GET NEW GUESS USING
309 REM - PREVIOUS GUESS
310 S=X-F0/F1
318 REM - IF NEW GUESS EQUALS LAST
319 REM - GUESS, STOP SEARCH, PRINT
320 IF X=S THEN 380
329 REM - SAVE LAST GUESS
330 X=S
340 IF Q>100 THEN 490
350 GOTO 210
360 PRINT "DERIVATIVE = 0 AT X = ";X
370 GOTO 180
380 PRINT
390 PRINT "ROOT = ";X
395 PRINT "ERROR = ";F0
400 PRINT "DERIVATIVE = ";F1
410 PRINT
418 REM - RERUN TO FIND ANOTHER ROOT
419 REM - IN SAME FUNCTION?
420 PRINT "NEW VALUE (1=YES, 0=NO)";
430 INPUT A
440 IF A=1 THEN 170
449 REM - RESTART OR END PROGRAM?
450 PRINT "NEW FUNCTION (1=YES, 0=NO)";
460 INPUT A
470 IF A=1 THEN 40
480 GOTO 550
487 REM - PRINT CALCULATED VALUES
488 REM - AFTER 100 ITERATIONS;
489 REM - SEARCH 100 MORE?
490 PRINT "100 ITERATIONS COMPLETED:"
500 PRINT "X = ";X
504 PRINT "F(X) = ";F0
506 PRINT
510 PRINT "CONTINUE (1=YES, 0=NO)";
520 INPUT A
530 IF A=1 THEN 200
540 GOTO 420
550 END
Roots of Polynomials: Half-Interval Search

This program calculates roots of polynomials within a given interval. The program first conducts a random search within the given interval for two points with opposite signs. If a change of sign is found, the root is calculated by the half-interval search method. If there is no change of sign found, another interval will be asked for.

Errors may result in this program for two reasons. First, a root may be calculated when it should not be. This may happen if the lowest point is so close to zero that a root is found due to a round-off error. Second, two roots may be so close together that the program never finds the opposite signs between them. The result in this case is that neither root is calculated.

It is necessary to enter the equation before you run the program. The equation will be defined as a function of x at statement 450. For example, if you want to find roots of the function $f(x) = 4x^4 - 2.5x^2 + 0.5$, you will enter:

450 F=4x^4-2.5x^2-2-z+0.5

Example:

Find a root of the function $f(x) = 4x^4 - 2.5x^2 + 0.5$.

ROOTS OF POLYNOMIALS:
HALF-INTERVAL SEARCH

(TO END SEARCH ENTER 0,0)

INTERVAL (LOWER,UPPER)? -1,0
NO CHANGE OF SIGN FOUND
INTERVAL (LOWER,UPPER)? 0,1
ROOT = 0.3035782241

INTERVAL (LOWER,UPPER)? 0,0

5 GRAPHICS 0
10 PRINT "ROOTS OF POLYNOMIALS: "
15 PRINT "HALF-INTERVAL SEARCH"
20 PRINT
40 DIM D(3)
50 PRINT "(TO END SEARCH ENTER 0,0)"
55 PRINT
59 REM - ESTABLISH INTERVAL OF RANDOM SEARCH
60 PRINT "INTERVAL (LOWER,UPPER)"
70 INPUT A,B
79 REM - TEST FOR USABLE LIMITS ENTERED
80 IF A<B THEN 120
89 REM - END PROGRAM?
90 IF A=0 THEN 470
100 PRINT "--INTERVAL LIMITS CANNOT BE EQUAL--"
110 GOTO 60
120 IF A<B THEN 150
130 PRINT "--LOWER LIMIT MUST BE ENTERED FIRST--"
140 GOTO 60
150 Z=A
152 GOSUB 450
154 A1=SGN(F)
160 Z=B
162 GOSUB 450
164 B1=SGN(F)
168 REM - TEST FOR ROOT AT EITHER
169 REM - LIMIT
170 IF A1*B1=0 THEN 360
178 REM - TEST FOR OPPOSITE SIGNS
179 REM - AT INTERVAL LIMITS
180 IF A1*B1<0 THEN 280
188 REM - SEARCH 1000 NUMBERS FOR
189 REM - OPPOSITE SIGNS IN FUNCTION
190 FOR I=1 TO 1000
200 X=A+RND(2)*(B-A)
202 Z=X
204 GOSUB 450
210 X1=SGN(F)
218 REM - TEST FOR ROOT AT RANDOM
219 REM - IF YES, END SEARCH, PRINT
220 IF X1=0 THEN 400
228 REM - TEST FOR OPPOSITE SIGNS AT
229 REM - RANDOM NUMBER & LOWER LIMIT
230 IF A1*X1<0 THEN 270
239 REM - TRY ANOTHER RANDOM NUMBER
240 NEXT I
250 PRINT "NO CHANGE OF SIGN FOUND"
260 GOTO 60
268 REM - CHANGE OF SIGN FOUND:
269 REM - CALCULATE ROOT
270 B=X
277 REM - STORE POSITIVE POINT
278 REM - IN D(1), D(1) AND D(3)
279 REM - BECOME INTERVAL LIMITS
280 D(2+A1)=A
289 D(2-A1)=B
298 REM - CALCULATE MIDPOINT BETWEEN
299 REM - THE TWO LIMITS
300 Y=(D(1)+D(3))/2
302 Z=Y
304 GOSUB 450
310 Y1=SGN(F)
319 REM - TEST FOR ROOT AT MIDPOINT
320 IF Y1=0 THEN 400
328 REM - GET A NEW LIMIT TO CLOSE
329 REM - IN ON ROOT
330 D(2+Y1)=Y
337 REM - TEST FOR A VALUE CLOSE
338 REM - ENOUGH TO ZERO TO ASSUME
339 REM - A ROOT.
340 IF ABS(D(1)-D(3))/ABS(D(1)+ABS(D(3)))<5E-06 THEN 400
349 REM - RETEST WITH NEW LIMITS
350 GOTO 300
358 REM - ROOT AT AN INTERVAL LIMIT;
359 REM - FIND WHICH LIMIT, PRINT
360 IF A1=0 THEN 390
370 Y=B
380 GOTO 400
390 Y=A
400 PRINT "ROOT = "; Y
410 PRINT
419 REM - RESTART PROGRAM
420 GOTO 60
430 REM - ENTER FUNCTION BELOW:
440 REM - "F='FUNCTION(Z)'"
450 F=4*Z^4-2.5*Z^2-Z+0.5
460 RETURN
470 END
Trig Polynomial

This program solves a trigonometric function for a given angle. The function must be in the following form:

\[f(x) = A_1 \sin(x) + B_1 \cos(x) + A_2 \sin(2x) + B_2 \cos(2x) \ldots + A_n \sin(n \cdot x) + B_n \cos(n \cdot x) \]

where \(n \) = the number of pairs of coefficients.

The coefficients of the function are to be entered in a data statement at line 30. The data statement will include the number of pairs of coefficients (\(n \)) and the coefficients of the polynomial. It will be entered as follows:

\[30 \ \text{DATA} \ n, A_1, B_1, A_2, B_2, \ldots, A_n, B_n \]

Example:

Solve the following equation when the angle equals 45°, 90°, and 105°:

\[f(x) = \sin(x) + 2 \cdot \cos(x) - 2 \cdot \sin(2x) + \cos(2x) + 5 \cdot \sin(3x) - 3 \cdot \cos(3x) \]

```
TRIG POLYNOMIAL
(ENTER ANGLE=99999 TO END)

ANGLE? 45
F(45)=3.09559088

ANGLE? 90
F(90)=-2.83213038

ANGLE? 105
F(105)=-1.54720278

ANGLE? 99999

5 GRAPHICS 0
10 PRINT "TRIG POLYNOMIAL."
20 PRINT
27 REM - ENTER NUMBER OF PAIRS
28 REM - OF TERMS AND COEFFICIENTS
29 REM - WITH DATA STATEMENT
30 PRINT "ENTER NUMBER OF PAIRS OF TERMS AND COEFFICIENTS AT LINE 30!"
40 PRINT "(ENTER ANGLE=99999 TO END)"
45 PRINT
50 PRINT "ANGLE":
60 INPUT R
69 REM - END PROGRAM?
70 IF R=99999 THEN 180
78 REM - GET NUMBER OF PAIRS OF
79 REM - TERMS IN POLYNOMIAL
80 READ N
85 Z=0
```
89 REM - READ VALUES OF COEFFICIENTS
90 FOR I=1 TO N
100 READ A,B
108 REM - CALCULATE VALUE OF
109 REM - FUNCTION AT ANGLE X
110 Z=Z+A*SIN(I*R)+B*COS(I*R)
120 NEXT I
129 REM - PRINT RESULTS
130 PRINT "F(\";I;\")=";Z
138 REM - PREPARE TO REREAD
139 REM - FUNCTION COEFFICIENTS
140 RESTORE
150 PRINT
169 REM - RESTART PROGRAM
170 GOTO 50
180 END
Simultaneous Equations

This program solves a system of linear equations. The number of unknown coefficients in each equation must equal the number of equations being solved. You must enter the coefficients of each equation.

The dimension statement at line 30 limits the number of equations which may be solved. You may change this limit according to the following scheme:

30 DIM A(R, R + 1)

where \(R \) = the maximum number of equations.

Example:

Solve the following system of equations:

\[
\begin{align*}
-x + 2x + 3x &= 4 \\
3x + 6x &= 1 \\
-3x + 4x - 2x &= 0
\end{align*}
\]

SIMULTANEOUS EQUATIONS
NUMBER OF EQUATIONS? 3
COEFFICIENT MATRIX:

EQUATION 1
COEFFICIENT 1? 1
COEFFICIENT 2? 2
COEFFICIENT 3? 3
CONSTANT? 4

EQUATION 2
COEFFICIENT 1? 3
COEFFICIENT 2? 6
COEFFICIENT 3? 0
CONSTANT? 1

EQUATION 3
COEFFICIENT 1? -3
COEFFICIENT 2? 4
COEFFICIENT 3? -2
CONSTANT? 0

\[x_1 = -0.356\]
\[x_2 = 0.344\]
\[x_3 = 1.222\]

5 GRAPHICS 0
10 PRINT "SIMULTANEOUS EQUATIONS"
20 PRINT
30 DIM A(15, 15)
40 PRINT "NUMBER OF EQUATIONS";
50 INPUT R
60 PRINT "COEFFICIENT MATRIX:"
70 FOR J=1 TO R
80 PRINT
85 PRINT "EQUATION "; J
90 FOR I=1 TO R+1
100 IF I=R+1 THEN 130
110 PRINT " COEFFICIENT "; I;
120 GOTO 140
130 PRINT "CONSTANT";
140 INPUT A1
142 A(J, I)=A1
150 NEXT I
160 NEXT J
170 FOR J=1 TO R
180 FOR I=J TO R
190 IF A(I, J)<0 THEN 230
200 NEXT I
210 PRINT "NO UNIQUE SOLUTION"
220 GOTO 440
230 FOR K=1 TO R+1
240 X=A(J, K)
250 A(J, K)=A(I, K)
260 A(I, K)=X
270 NEXT K
280 Y=1/A(J, J)
290 FOR K=1 TO R+1
300 A(J, K)=Y*A(J, K)
310 NEXT K
320 FOR I=1 TO R
330 IF I=J THEN 380
340 Y=-A(I, J)
350 FOR K=1 TO R+1
360 A(I, K)=A(I, K)+Y*A(J, K)
370 NEXT K
380 NEXT I
390 NEXT J
400 PRINT
410 FOR I=1 TO R
420 PRINT "X":I:" = ";INT(A(I, R+1)*1000+0.5)/1000
430 NEXT I
440 END
This program uses the simplex method to solve a linear programming problem. You must provide the coefficients of the objective function and the coefficients, relation, and constant of each constraint. This information is entered in DATA statements before you run the program.

After you load the program, enter the DATA statements according to the following instructions. If you run more than one problem, remember to clear out all DATA statements from the previous problem before running the new problem. Our DATA statements occur at lines 30 through 35.

1. Arrange your problem constraints according to their relation, so that the "less than" inequalities precede the equalities, which in turn precede the "greater than" inequalities.

2. Type in as DATA the coefficients of the constraints, in the order the constraints were arranged in step 1. Do not include coefficients for slack, surplus, or artificial variables. Do include a '0' coefficient for any variable that doesn't appear in a particular constraint.

3. Type in as DATA the constants of the constraints (right-hand sides of the constraints) in the same order as you entered the rows of coefficients. These values cannot be negative.

4. Type in as DATA the coefficients of the objective function.

You must select whether the problem solution is to be a minimum or maximum value. The program also asks you to enter the total number of constraints and the number of variables to allow for each, and the number of "less than," "equal," and "greater than" constraints you are considering.

The dimension statement at line 180 limits the number of variables and constraints you may enter. You can change these limits according to the following scheme:

\[180\text{ DIM A(C + 2, V + C + G + 1), B(C + 2)}\]

where:
\[C = \text{number of constraints}\]
\[V = \text{number of variables}\]
\[G = \text{number of "greater than" constraints}\]

Example:

A manufacturer wishes to produce 100 pounds of an alloy which is 83% lead, 14% iron, and 3% antimony. He has five available alloys with the following compositions and prices:

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Alloy 1</th>
<th>Alloy 2</th>
<th>Alloy 3</th>
<th>Alloy 4</th>
<th>Alloy 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>$6.13</td>
<td>$7.12</td>
<td>$5.85</td>
<td>$4.57</td>
<td>$3.96</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
<td>30</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

How should he combine these alloys to get the desired product at minimum cost? Note that this problem results in the following system of equations:

\[x_1 + x_2 + x_3 + x_4 + x_5 = 100\]
\[0.90x_1 + 0.80x_2 + 0.95x_3 + 0.70x_4 + 0.30x_5 = 83\]
\[0.05x_1 + 0.05x_2 + 0.02x_3 + 0.30x_4 + 0.70x_5 = 14\]
\[0.05x_1 + 0.15x_2 + 0.03x_3 = 3\]
\[6.13x_1 + 7.12x_2 + 5.85x_3 + 4.57x_4 + 3.96x_5 = Z\text{ (min)}\]
LINEAR PROGRAMMING - SIMPLEX METHOD

1 MAXIMIZES -1 MINIMIZES? -1
OF CONSTRAINTS,# OF VARIABLES
? 4,5
OF <,=,> CONSTRAINTS? 0,4,0

YOUR VARIABLES 1 THROUGH 5
ARTIFICIAL VARIABLES 6 THROUGH 9

ANSWERS:
PRIMAL VARIABLES:
VARIABLES VALUE
2 10.43478262
3 47.82608693
4 41.73913042
VALUE OF OBJECTIVE FUNCTION =544.826087

5 GRAPHICS 0
20 REM - *** DO THE FOLLOWING STEPS BEFORE RUNNING THE PROGRAM ***
21 REM - TYPE IN COEFFICIENTS OF '<,=,>' CONSTRAINTS IN DATA STATEMENTS;
22 REM - STARTING AT LINE 30, A SEPARATE DATA STATEMENT FOR EACH CONSTRAINT;
23 REM - (LINES 30-33 IN OUR EXAMPLE)
24 REM - TYPE IN CONSTANTS OF THE CONSTRAINTS IN A DATA STATEMENT FOLLOWING
25 REM - THE COEFFICIENT DATA, AND IN THE SAME ORDER AS THE CONSTRAINT DATA
26 REM - WERE ENTERED (LINE 34 IN OUR EXAMPLE)
27 REM - TYPE IN COEFFICIENTS OF THE OBJECTIVE FUNCTION IN A DATA STATEMENT
28 REM - (LINE 35 IN OUR EXAMPLE) FOLLOWING THE CONSTANTS DATA
30 DATA 1,1,1,1,1
31 DATA .9,.8,.95,.7,.3
32 DATA .05,.05,.02,.3,.7
33 DATA .05,.15,.03,0,0
34 DATA 100,83,14,3
35 DATA 6.13,7.12,5.85,4.57,3.96
100 GRAPHICS 0
170 PRINT "LINEAR PROGRAMMING - ";
175 PRINT "SIMPLEX METHOD"
180 DIM A(6,10),B(6)
200 PRINT
210 PRINT "1 MAXIMIZES -1 MINIMIZES";
220 INPUT Z
230 Z=-Z
240 PRINT "# OF CONSTRAINTS,# OF ";
245 PRINT "VARIABLES";
250 INPUT M,N
260 PRINT "# OF <,=,> CONSTRAINTS";
270 INPUT L,E,G
280 IF M=L+E+G THEN 320
290 PRINT "INCONSISTENT DATA - ";
295 PRINT "TRY AGAIN"
300 GOTO 260
319 REM - THIS IS THE INITIALIZATION ROUTINE
320 C=N+M+G
330 C1=C+1
340 C2=N+L+G
350 M1=M+1
360 M2=M+2
380 PRINT
390 FOR I=1 TO M2
400 FOR J=1 TO C1
410 A(I,J)=0
420 NEXT J
430 NEXT I
440 FOR I=1 TO M
450 B(I)=0
460 NEXT I
470 FOR I=1 TO M
480 FOR J=1 TO N
490 READ A1
502 A(I,J)=A1
500 IF I≤L THEN 520
510 A(M1,J)=A(M1,J)-A(I,J)
520 NEXT J
530 IF I>L THEN 570
540 B(I)=N+I
550 A(I,N+1)=1
560 GOTO 630
570 B(I)=N+G+I
580 A(I,N+G+I)=1
590 IF I>l+E THEN 610
600 GOTO 630
610 A(I,N+I-E)=1
620 A(M1,N+I-E)=1
630 NEXT I
640 FOR I=1 TO M
650 READ A1
652 A(I,C1)=A1
660 NEXT I
670 FOR J=1 TO N
680 READ A1
682 A(M2,J)=A1
690 A(M2,J)=Z*A(M2,J)
700 NEXT J
710 PRINT
730 PRINT "YOUR VARIABLES ";
731 PRINT "1 THROUGH "; N
740 IF L=0 THEN 760
750 PRINT "SLACK VARIABLES ";
751 PRINT N+1; " THROUGH "; N+L
760 IF G=0 THEN 780
770 PRINT "SURPLUS VARIABLES ";
771 PRINT N+L+1; " THROUGH "; C2
780 IF L=M THEN 970
790 PRINT "ARTIFICIAL VARIABLES ";
791 PRINT C2+1: " THROUGH ":C
800 M3=M1
810 GOSUB 1240
820 PRINT
830 FOR I1=1 TO M
840 IF B(I1)<C2 THEN 950
850 IF A(I1,C1)<1.0E-05 THEN 880
860 PRINT "NO FEASIBLE SOLUTION"
870 GOTO 1700
880 FOR J1=1 TO C2
890 IF ABS(A(I1,J1))<=1.0E-05 THEN 940
900 R=I1
910 S=J1
920 GOSUB 1490
930 J1=C2
940 NEXT J1
950 NEXT I1
970 PRINT
980 M3=M2
990 GOSUB 1240
1020 PRINT
1030 PRINT "ANSWERS:"
1040 PRINT "PRIMAL VARIABLES:"
1050 PRINT "VARIABLES","VALUE"
1060 FOR J=1 TO C2
1070 FOR I=1 TO M
1080 IF B(I)<J THEN 1110
1090 PRINT J,A(I,C1)
1100 I=M
1110 NEXT I
1120 NEXT J
1130 IF L=0 THEN 1190
1140 PRINT "DUAL VARIABLES:"
1150 PRINT "VARIABLE","VALUE"
1160 FOR I=1 TO L
1170 PRINT I,\(-Z*A(M2,N+I)
1180 NEXT I
1190 PRINT "VALUE OF OBJECTIVE"
1191 PRINT "FUNCTION =\(-Z*A(M2,C1)"
1200 PRINT
1210 PRINT
1220 PRINT
1230 GOTO 1700
1240 REM - OPTIMIZATION ROUTINE
1241 REM - FIRST PRICE OUT COLUMNS
1260 P=-1.0E-05
1270 FOR J=1 TO C2
1280 IF A(M3,J)>P THEN 1310
1290 S=J
1300 P=A(M3,J)
1310 NEXT J
1320 IF P=-1.0E-05 THEN 1680
1330 GOSUB 1350
1340 GOSUB 1440
1345 GOTO 1260
REM - NOW FIND WHICH VARIABLE LEAVE BASIS
Q=1E+38
FOR I=1 TO M
IF A(I,S)<=1.0E-05 THEN 1420
IF A(I,C1)/A(I,S)>=Q THEN 1420
R=I
Q=A(I,C1)/A(I,S)
NEXT I
RETURN
IF Q=1E+38 THEN 1470
GOSUB 1490
RETURN
PRINT "THE SOLUTION IS UNBOUNDED"
GOTO 1700
REM - PERFORM PIVOTING
F=A(R,S)
FOR I=1 TO M2
IF I=R THEN 1590
FOR J=1 TO C1
IF J=S THEN 1580
A(I,J)=A(I,J)-A(I,S)*A(R,J)/F
END IF
END FOR
A(I,S)=0
NEXT J
A(R,J)=A(R,J)/F
NEXT I
A(R,S)=1
B(R)=S
RETURN
END
Matrix Addition, Subtraction, Scalar Multiplication

This program adds or subtracts two matrices, or multiplies a matrix by a given scalar. You must input the value of each element of each matrix. To perform addition or subtraction the dimensions of the two matrices must be equal.

The dimension of the matrices may be increased or decreased depending on the amount of memory available in your system. Statement 30 may be changed to:

```
30 DIM A(X, Y), B(X, Y)
```

where (X, Y) is your limit on the dimension of the matrices.

Example:

Find the sum of the following matrices, then multiply the resultant matrix by 3.

\[
\begin{bmatrix}
1 & 0 & -1 \\
5 & 8 & 0.5 \\
-1 & 2 & 0
\end{bmatrix} +
\begin{bmatrix}
-5 & -1 & 2 \\
6 & -0.1 & 0 \\
3 & 4 & -2
\end{bmatrix}
\]

MATRIX ADDITION, SUBTRACTION, SCALAR MULTIPLICATION

1=ADDITION
2=SUBTRACTION
3=SCALAR MULTIPLICATION

WHICH OPERATION? 1
DIMENSION OF MATRIX (R,C)? 3,3
MATRIX 1:
ROW 1
VALUE COLUMN 1? 1
VALUE COLUMN 2? 0
VALUE COLUMN 3? -1
ROW 2
VALUE COLUMN 1? 5
VALUE COLUMN 2? 8
VALUE COLUMN 3? 0.5
ROW 3
VALUE COLUMN 1? -1
VALUE COLUMN 2? 2
VALUE COLUMN 3? 0
MATRIX 2:
ROW 1
VALUE COLUMN 1? -5
VALUE COLUMN 2? -1
VALUE COLUMN 3? 2
ROW 2
VALUE COLUMN 1? 6
VALUE COLUMN 2? -0.1
VALUE COLUMN 3? 0
ROW 3
VALUE COLUMN 1? 3
VALUE COLUMN 2? 4
VALUE COLUMN 3? -2
-4 -1 1
11 7.9 0.5
2 6 -2

MORE DATA? (1=YES, 0=NO)? 1
1=ADDITION
2=SUBTRACTION
3=SCALAR MULTIPLICATION

WHICH OPERATION? 3
VALUE OF SCALAR? 3
DIMENSION OF MATRIX (R,C)? 3,3

MATRIX 1:
ROW 1
VALUE COLUMN 1? -4
VALUE COLUMN 2? -1
VALUE COLUMN 3? 1
ROW 2
VALUE COLUMN 1? 11
VALUE COLUMN 2? 7.9
VALUE COLUMN 3? 0.5
ROW 3
VALUE COLUMN 1? 2
VALUE COLUMN 2? 6
VALUE COLUMN 3? -2
-12 -3 3
33 23.7 1.5
6 18 -6

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
20 PRINT "MATRIX ADDITION, ";
21 PRINT "SUBTRACTION,"
22 PRINT "SCALAR MULTIPLICATION"
25 PRINT
29 REM - ARRAYS SHOULD BE SET TO DIMENSIONS OF MATRICES
30 DIM A(3,3),B(3,3)
40 PRINT "1=ADDITION"
50 PRINT "2=SUBTRACTION"
60 PRINT "3=SCALAR MULTIPLICATION"
65 PRINT
69 REM - SELECT OPERATION BY ENTERING THE OPERATION NUMBER (1-3)
70 PRINT "WHICH OPERATION";
80 INPUT D
89 REM - TEST FOR ADDITION OR SUBTRACTION
90 IF D<>3 THEN 120
100 PRINT "VALUE OF SCALAR";
110 INPUT S
120 PRINT "DIMENSION OF MATRIX (R,C)";
130 INPUT R,C
138 REM - LOOP TO ENTER MATRIX VALUES
139 REM - FOR SUBTRACTION, MATRIX 2 SUBTRACTED FROM MATRIX 1
140 FOR K=1 TO 2
150 IF K=2 THEN 180
160 PRINT "MATRIX 1:"
170 GOTO 190
180 PRINT "MATRIX 2:"
190 FOR J=1 TO R
200 PRINT "ROW ":J
210 FOR I=1 TO C
220 PRINT "VALUE COLUMN ":I;
230 IF K=2 THEN 260
240 INPUT A1
242 A(J,I)=A1
250 GOTO 270
260 INPUT B1
262 B(J,I)=B1
270 NEXT I
280 NEXT J
289 REM - ONLY ONE MATRIX USED FOR SCALAR MULTIPLICATION
290 IF D=3 THEN 310
300 NEXT K
308 REM - STATEMENTS 310 TO 410 PERFORM REQUESTED OPERATION AND PRINT
309 REM - RESULTANT MATRIX
310 FOR J=1 TO R
320 FOR I=1 TO C
330 IF D<>2 THEN 350
340 B(J,I)==-B(J,I)
350 IF D=3 THEN 380
360 PRINT A(J,I)+B(J,I);" ";
370 GOTO 390
380 PRINT A(J,I)*S;" ";
390 NEXT I
399 REM - ADVANCE OUTPUT DEVICE TO PRINT NEXT ROW
400 PRINT
410 NEXT J
420 PRINT
429 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
430 PRINT "MORE DATA? (1=YES, 0=NO)";
440 INPUT D
450 IF D=1 THEN 40
460 END
Matrix Multiplication

This program multiplies two matrices. The first matrix is multiplied by the second. You must input the elements of each matrix.

The dimensions of the matrices are presently limited to 20×20. This limit may be increased or decreased by altering line 10 according to the following scheme:

\begin{verbatim}
10 DIM A(X, Y), B(Z, X)
\end{verbatim}

where: $(X, Y) =$ dimension of matrix 1

$(Z, X) =$ dimension of matrix 2

Example:

Multiply matrix 1 by matrix 2.

\begin{align*}
\begin{bmatrix}
2 & -1 & 4 & 1 & 2 \\
1 & 0 & 1 & 2 & -1 \\
2 & 3 & -1 & 0 & -2 \\
-2 & -1 & 2 & \\
0 & 2 & 1 & \\
2 & -1 & 1 & 4 \\
-3 & 0 & -1 & \\
2 & 1 & 2
\end{bmatrix}
\end{align*}

MATRX MULTIPICATION

MATRX 1 DIMENSION (R,C)? 3,5
MATRX 2 DIMENSION (R,C)? 5,3
MATRX 1:
ROW 1
VALUE COLUMN 1? 2
VALUE COLUMN 2? -1
VALUE COLUMN 3? 4
VALUE COLUMN 4? 1
VALUE COLUMN 5? 2
ROW 2
VALUE COLUMN 1? 1
VALUE COLUMN 2? 0
VALUE COLUMN 3? 1
VALUE COLUMN 4? 2
VALUE COLUMN 5? -1
ROW 3
VALUE COLUMN 1? 2
VALUE COLUMN 2? 3
VALUE COLUMN 3? -1
VALUE COLUMN 4? 0
VALUE COLUMN 5? -2
MATRIX 2:
ROW 1
VALUE COLUMN 1? -2
VALUE COLUMN 2? -1
VALUE COLUMN 3? 2
ROW 2
VALUE COLUMN 1? 0
VALUE COLUMN 2? 2
VALUE COLUMN 3? 1
ROW 3
VALUE COLUMN 1? -1
VALUE COLUMN 2? 1
VALUE COLUMN 3? 4
ROW 4
VALUE COLUMN 1? 3
VALUE COLUMN 2? 0
VALUE COLUMN 3? -1
ROW 5
VALUE COLUMN 1? 2
VALUE COLUMN 2? 1
VALUE COLUMN 3? 2

-1 2 22
1 -1 2
-7 1 -1

5 GRAPHICS 0
9 REM - ARRAYS A AND B SHOULD BE SET TO DIMENSIONS OF MATRICES
10 DIM A(20,20),B(20,20)
20 PRINT "MATRIX MULTIPLICATION"
30 PRINT
40 PRINT "MATRIX 1 DIMENSION (R,C)";
50 INPUT R1,C1
60 PRINT "MATRIX 2 DIMENSION (R,C)";
70 INPUT R2,C2
79 REM - # OF COLUMNS IN MATRIX 1 MUST EQUAL # OF ROWS IN MATRIX 2
80 IF C1=R2 THEN 110
90 PRINT "CANNOT BE MULTIPLIED"
100 GOTO 40
109 REM - ENTER MATRIX VALUES
110 PRINT "MATRIX 1:"
120 FOR J=1 TO R1
130 PRINT "ROW ";J
140 FOR I=1 TO C1
150 PRINT "VALUE COLUMN ";I;
160 INPUT X
162 A(J,I)=X
170 NEXT I
180 NEXT J
190 PRINT
200 PRINT "MATRIX 2:"
210 FOR J=1 TO R2
220 PRINT "ROW ";J
230 FOR I=1 TO C2
240 PRINT "VALUE COLUMN ";I;

250 INPUT X
252 B(J,I)=X
260 NEXT I
270 NEXT J
280 PRINT
289 REM - PERFORM MATRIX MULTIPLICATION. PRINT RESULTANT MATRIX
290 FOR I=1 TO R1
300 FOR J=1 TO C2
310 S=0
320 FOR K=1 TO C1
330 S=S+A(I,K)*B(K,J)
340 NEXT K
350 PRINT S; " ";
360 NEXT J
369 REM - ADVANCE OUTPUT DEVICE TO PRINT NEXT ROW
370 PRINT
380 NEXT I
390 END
Matrix Inversion

This program inverts a square matrix. The inversion is performed by a modified Gauss-Jordan elimination method.

The dimensions of the matrices are presently limited to \(20 \times 20\). This limit may be increased or decreased by altering line 30 according to the following scheme:

\[30 \text{ DIM } A(R,R), B(R,R)\]

where \(R\) = number of rows (or columns) in the matrix.

Example:

Invert matrix A.

\[
\begin{bmatrix}
3 & 5 & -1 & -4 \\
1 & 4 & -0.7 & -3 \\
0 & -2 & 0 & 1 \\
-2 & 6 & 0 & 0.3 \\
\end{bmatrix}
\]

MATRIX INVERSION

MATRIX DIMENSION? 4
MATRIX ELEMENTS:
ROW 1
VALUE COLUMN 1? 3
VALUE COLUMN 2? 5
VALUE COLUMN 3? -1
VALUE COLUMN 4? -4
ROW 2
VALUE COLUMN 1? 1
VALUE COLUMN 2? 4
VALUE COLUMN 3? -0.7
VALUE COLUMN 4? -3
ROW 3
VALUE COLUMN 1? 0
VALUE COLUMN 2? -2
VALUE COLUMN 3? 0
VALUE COLUMN 4? 1
ROW 4
VALUE COLUMN 1? -2
VALUE COLUMN 2? 6
VALUE COLUMN 3? 0
VALUE COLUMN 4? 0.3

0.654 -0.935 -0.191 0.014
0.198 -0.283 -0.103 0.156
0.368 -1.955 -4.263 -0.425
0.397 -0.567 0.793 0.312

5 GRAPHICS 0
10 PRINT "MATRIX INVERSION"
20 PRINT
29 REM - A() AND B() SHOULD BOTH BE SET TO THE DIMENSIONS OF THE MATRIX
30 DIM A(20,20), B(20,20)
39 REM - MATRIX IS SQUARE SO ONLY ONE DIMENSION IS NEEDED
40 PRINT "MATRIX DIMENSION":
50 INPUT R
60 PRINT "MATRIX ELEMENTS:"
69 REM - ENTER MATRIX ELEMENTS
70 FOR J=1 TO R
80 PRINT "ROW "; J
90 FOR I=1 TO R
100 PRINT "VALUE COLUMN "; I;
110 INPUT A1
112 A(J,I)=A1
114 B(J,I)=0
120 NEXT I
130 B(J,J)=1
140 NEXT J
149 REM - STATEMENTS 150 TO 420 INVERT MATRIX
150 FOR J=1 TO R
160 FOR I=J TO R
170 IF A(I,J)<0 THEN 210
180 NEXT I
190 PRINT "SINGULAR MATRIX"
200 GOTO 500
210 FOR K=1 TO R
220 S=A(J,K)
230 A(J,K)=A(I,K)
240 A(I,K)=S
250 S=B(J,K)
260 B(J,K)=B(I,K)
270 B(I,K)=S
280 NEXT K
290 T=1/A(J,J)
300 FOR K=1 TO R
310 A(J,K)=T*A(J,K)
320 B(J,K)=T*B(J,K)
330 NEXT K
340 FOR L=1 TO R
350 IF L=1 THEN 410
360 T=-1*A(L,J)
370 FOR K=1 TO R
380 A(L,K)=A(L,K)+T*A(J,K)
390 B(L,K)=B(L,K)+T*B(J,K)
400 NEXT K
410 NEXT L
420 NEXT J
430 PRINT
439 REM - PRINT RESULTANT MATRIX
440 FOR I=1 TO R
450 FOR J=1 TO R
459 REM - ROUND OFF, PRINT
460 PRINT INT(B(I,J)*1000+0.5)/1000;
461 PRINT " ";
470 NEXT J
479 REM - ADVANCE OUTPUT DEVICE TO PRINT NEXT LINE
480 PRINT
490 NEXT I
500 END
Permutations and Combinations

This program computes the number of permutations and combinations of \(N \) objects taken \(D \) at a time.

Examples:

How many permutations and combinations can be made of the 26 letters of the alphabet, taking 5 at a time?

- How many different ways can 12 people sit on a bench if there is only room for 2 at a time?

PERMUTATIONS & COMBINATIONS

(ENTER 0 TO END PROGRAM)
TOTAL NUMBER OF OBJECTS? 26
SIZE OF SUBGROUP? 5
7893600 PERMUTATIONS
65780 COMBINATIONS

TOTAL NUMBER OF OBJECTS? 12
SIZE OF SUBGROUP? 2
132 PERMUTATIONS
66 COMBINATIONS

TOTAL NUMBER OF OBJECTS? 0

10 GRAPHICS 0
20 PRINT "PERMUTATIONS & COMBINATIONS"
25 PRINT
30 PRINT "(ENTER 0 TO END PROGRAM)"
40 PRINT "TOTAL NUMBER OF OBJECTS":
50 INPUT N
59 REM - TEST FOR END OF PROGRAM
60 IF N=0 THEN 280
70 PRINT "SIZE OF SUBGROUP":
80 INPUT D
89 REM - SIZE OF SUBGROUP CANNOT BE LARGER THAN SIZE OF GROUP
90 IF D<=N THEN 130
100 PRINT "SUBGROUP TOO LARGE"
110 PRINT
120 GOTO 40
129 REM - LINES 130 TO 200 COMPUTE PERMUTATIONS
130 P=1
140 C=1
150 FOR I=N-D+1 TO N
159 REM - DON'T ALLOW NUMBER SIZE TO OVERFLOW MACHINE CAPACITY
160 IF 1.7E+97/I=P THEN 190
170 PRINT "> 1.7E97 PERMUTATIONS"
180 GOTO 280
190 P=P*I
200 NEXT I
209 REM - COMPUTE INTERMEDIATE FACTORIAL FOR COMBINATIONS
210 FOR J=2 TO D
220 C=C*J
230 NEXT J
240 PRINT P;" PERMUTATIONS"
250 PRINT P/C;" COMBINATIONS"
260 PRINT
269 REM - RESTART PROGRAM
270 GOTO 40
280 END
Mann-Whitney U Test

This program performs the Mann-Whitney U test on samples from two populations.

The dimension statement at line 30 limits the size of the samples. You can increase or decrease the dimension limits according to the following scheme:

30 DIM X(M), Y(N)

where: $M =$ maximum size of first sample
$N =$ maximum size of second sample

Example:

A group of ten women and a group of ten men were asked to rate the flavor of a frozen T.V. dinner on a scale of one to ten. The table below lists the scores. Count the number of times the women’s scores are lower than the men’s, and vice versa.

<table>
<thead>
<tr>
<th>Women</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>3</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>7</th>
<th>8</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

MANN-WHITNEY U-TEST

SAMPLE 1:
SIZE? 10
DATA 1? 1
DATA 2? 3
DATA 3? 4
DATA 4? 3
DATA 5? 6
DATA 6? 8
DATA 7? 9
DATA 8? 7
DATA 9? 8
DATA 10? 4

SAMPLE 2:
SIZE? 10
DATA 1? 7
DATA 2? 9
DATA 3? 8
DATA 4? 5
DATA 5? 10
DATA 6? 9
DATA 7? 10
DATA 8? 6
DATA 9? 5
DATA 10? 2

FIRST PRECEDING, $U = 71.5$
SECOND PRECEDING, $U = 28.5$
5 GRAPHICS 0
10 PRINT "MANN-WHITNEY U-TEST"
20 PRINT
28 REM - SET MAXIMUM SAMPLE SIZE TO X(M), Y(N) (WHERE M=MAXIMUM SIZE OF;
29 REM - SAMPLE 1, N=MAXIMUM SIZE OF SAMPLE 2)
30 DIM X(25), Y(25)
40 DIM N(2)
49 REM - INPUT THE TWO SAMPLES
50 FOR I=1 TO 2
60 PRINT "SAMPLE ":I:" :
70 PRINT " SIZE";
80 INPUT A
90 FOR J=1 TO N(I)
100 PRINT " DATA ":J;
110 INPUT A
120 Y(J)=A
130 NEXT J
129 REM - SORT EACH SAMPLE
130 FOR J=1 TO N(I)
140 FOR K=1 TO N(I)-J
150 C=Y(K)
170 IF Y(K)<Y(K+1) THEN 200
180 Y(K)=Y(K+1)
190 Y(K+1)=C
200 NEXT K
210 NEXT J
220 PRINT
229 REM - TRANSFER FIRST EXAMPLE TO X-ARRAY
230 IF I=2 THEN 270
240 FOR J=1 TO N(1)
250 X(J)=Y(J)
260 NEXT J
270 NEXT I
279 REM - ADD UP RANKS
280 R=1
290 I=0
300 J=0
310 I=I+1
320 J=J+1
330 IF I>N(1) THEN 580
340 IF J>N(2) THEN 620
350 IF X(I)<Y(J) THEN 620
360 IF Y(J)<X(I) THEN 590
369 REM - LINES 370 TO 570 HANDLE EQUAL SCORES FROM BOTH SAMPLES
370 K=2
380 M=I
390 L=J
400 R1=2*R+1
410 R=R+2
420 I=I+1
430 J=J+1
440 IF I>N(1) THEN 480
450 IF X(I)<>(I-1) THEN 480
460 I=I+1
470 GOTO 510
480 IF J>N(2) THEN 550
490 IF Y(J)<>(J-1) THEN 550
500 J=J+1
510 R1=R1+R
520 R=R+1
530 K=K+1
540 GOTO 440
550 X=X+(I-M)*R1/K
560 Y=Y+(J-L)*R1/K
570 GOTO 330
580 IF J>N(2) THEN 660
590 Y=Y+R
600 J=J+1
610 GOTO 640
620 X=X+R
630 I=I+1
640 R=R+1
650 GOTO 330
659 REM - U1=NUMBER OF TIMES SAMPLE 1 SCORES PRECEDE SAMPLE 2 SCORES
660 U1=N(1)*N(2)+N(1)*(N(1)+1)/2-X
669 REM - U2=NUMBER OF TIMES SAMPLE 2 SCORES PRECEDE SAMPLE 1 SCORES
670 U2=N(1)*N(2)+N(2)*(N(2)+1)/2-Y
680 PRINT
690 PRINT "FIRST PRECEDING, U = ";U1
700 PRINT "SECOND PRECEDING, U = ";U2
710 END
Mean, Variance, Standard Deviation

This program calculates the arithmetic mean, variance, and standard deviation of grouped or ungrouped data. The data may represent the entire population or just a sample.

Examples:

There are ten people in a hotel lobby, aged 87, 53, 35, 42, 9, 48, 51, 60, 39, and 44. What would the mean, variance, and standard deviation of the ages of all the people in the hotel be, using the people in the lobby as a sample?

Find the mean, variance, and standard deviation of the ages of the cream cheese on a market shelf. The table below lists the age distribution of 50 packages. Assume the table shows the store’s entire inventory. What if it is only a sample of the inventory?

<table>
<thead>
<tr>
<th>Age</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Cream Cheese

MEAN, VARIANCE, STANDARD DEVIATION

METHOD (0=POPULATION, 1=SAMPLE)? 1
DATA (0=GROUPED, 1=UNGROUPED)? 1
NUMBER OF OBSERVATIONS? 10
ITEM 1? 87
ITEM 2? 53
ITEM 3? 35
ITEM 4? 42
ITEM 5? 9
ITEM 6? 48
ITEM 7? 51
ITEM 8? 60
ITEM 9? 39
ITEM 10? 44

MEAN
46.8
VARIANCE
389.732888

STANDARD DEVIATION
19.74165363

MORE DATA (1=YES, 0=NO)? 1

METHOD (0=POPULATION, 1=SAMPLE)? 0
DATA (0=GROUPED, 1=UNGROUPED)? 0
NUMBER OF OBSERVATIONS? 6
ITEM, FREQUENCY 1? 1,15
ITEM, FREQUENCY 2? 2,10
ITEM, FREQUENCY 3? 3,9
ITEM, FREQUENCY 4? 4,6
ITEM, FREQUENCY 5? 5, 7
ITEM, FREQUENCY 6? 6, 3

MEAN VARIANCE
2.78 2.57159786

STANDARD DEVIATION
1.60362023

MORE DATA (1=YES, 0=NO)? 1

METHOD (0=POPULATION, 1=SAMPLE)? 1
DATA (0=GROUPEd, 1=UNGROUPED)? 0
NUMBER OF OBSERVATIONS? 6
ITEM, FREQUENCY 1? 1, 15
ITEM, FREQUENCY 2? 2, 10
ITEM, FREQUENCY 3? 3, 9
ITEM, FREQUENCY 4? 4, 6
ITEM, FREQUENCY 5? 5, 7
ITEM, FREQUENCY 6? 6, 3

MEAN VARIANCE
2.78 2.62407944

STANDARD DEVIATION
1.61990105

MORE DATA (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "MEAN, VARIANCE, ";
20 PRINT "STANDARD DEVIATION"
25 PRINT
30 PRINT "METHOD (0=POPULATION, 1=SAMPLE)";
40 INPUT S
50 PRINT "DATA (0=GROUPEd, 1=UNGROUPED)";
60 INPUT K
70 PRINT "NUMBER OF OBSERVATIONS";
80 INPUT N
90 R=0
100 M=0
110 P=0
120 IF K=1 THEN 230
129 REM - FOR GROUPEd DATA
130 FOR I=1 TO N
140 PRINT "ITEM, FREQUENCY ";I;
150 INPUT A, B
159 REM - ACCUMULATE ENTERED VALUES
160 R=R+B*A
169 REM - ACCUMULATE INTERMEDIATE VALUES FOR VARIANCE
170 P=P+B
180 M=M+B*A^2
190 NEXT I
199 REM - CALCULATE MEAN AND VARIANCE
200 R=R/P
210 \(V = (M-P*R^2)/(P-S) \)
219 \REM - PRINT RESULTS
220 GOTO 310
229 \REM - FOR UNGROUPED DATA
230 FOR I=1 TO N
240 PRINT "ITEM ";I;
250 INPUT D
259 \REM - ACCUMULATE ENTERED VALUES
260 P=P+D
269 \REM - ACCUMULATE INTERMEDIATE VALUES FOR VARIANCE
270 M=M+D^2
280 NEXT I
289 \REM - CALCULATE MEAN AND VARIANCE; PRINT
290 R=P/N
300 \(V = (M-N*R^2)/(N-S) \)
310 PRINT
319 \REM - PRINT RESULTS
320 PRINT "MEAN","VARIANCE"
330 PRINT R,V
331 PRINT
332 PRINT "STANDARD DEVIATION"
333 PRINT SQRT(V)
340 PRINT
349 \REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
350 PRINT "MORE DATA (1=YES, 0=NO)"
360 INPUT S
370 IF S=1 THEN 25
380 END
Geometric Mean and Deviation

This program computes the geometric mean and standard deviation of a set of data.

Example:

Find the geometric mean and standard deviation of 3, 5, 8, 3, 7, 2.

```plaintext
GEOMETRIC MEAN AND DEVIATION

(TO END PROGRAM, ENTER 0)
NUMBER OF OBSERVATIONS? 6
ITEM 1? 3
ITEM 2? 5
ITEM 3? 8
ITEM 4? 3
ITEM 5? 7
ITEM 6? 2
GEOMETRIC MEAN = 4.14068052
GEOMETRIC DEVIATION = 1.72368997

NUMBER OF OBSERVATIONS? 0
```

```plaintext
5 GRAPHICS 0
10 PRINT "GEOMETRIC MEAN AND DEVIATION"
20 PRINT
30 PRINT "(TO END PROGRAM, ENTER 0)"
40 PRINT "NUMBER OF OBSERVATIONS;"
50 INPUT N
59 REM - TEST FOR END OF PROGRAM
60 IF N=0 THEN 200
69 REM - COMPUTE WHICH ROOT TO USE
70 P=1/N
80 M=1
90 FOR I=1 TO N
100 PRINT "ITEM ";I;
110 INPUT D
119 REM - ITERATEVELY COMPUTE MEAN
120 M=M*D^P
129 REM - ACCUMULATE INTERMEDIATE TERM FOR DEVIATION
130 Q=Q+LOG(D)^2
140 NEXT I
149 REM - COMPUTE DEVIATION
150 R=EXP(SQR(Q/(N-1)-(N/(N-1)*LOG(M)^2)))
160 PRINT "GEOMETRIC MEAN = ";M
170 PRINT "GEOMETRIC DEVIATION = ";R
180 PRINT
189 REM - RESTART PROGRAM
190 GOTO 40
200 END
```
Binomial Distribution

This program calculates the probability of obtaining a given number of successes in a given number of Bernoulli trials. You must provide the probability of success on a single trial.

Examples:

What is the probability of getting three heads in five tosses of a fair coin?

What is the probability that in five rolls of a fair die, a one (1) appears twice?

```
BINOMIAL DISTRIBUTION

(TO END PROGRAM ENTER 0)
NUMBER OF TRIALS? 5
EXACT NUMBER OF SUCCESSES? 3
PROBABILITY OF SUCCESS? 0.5

PROBABILITY OF 3 SUCCESSES
IN 5 TRIALS = 0.3124999833

NUMBER OF TRIALS? 5
EXACT NUMBER OF SUCCESSES? 2
PROBABILITY OF SUCCESS? 0.166666667

PROBABILITY OF 2 SUCCESSES
IN 5 TRIALS = 0.160751028

NUMBER OF TRIALS? 0

5 GRAPHICS 0
10 PRINT "BINOMIAL DISTRIBUTION"
20 PRINT
30 DIM M(3)
40 PRINT "(TO END PROGRAM ENTER 0)"
50 PRINT "NUMBER OF TRIALS";
60 INPUT N
70 IF N=0 THEN 270
80 PRINT "EXACT NUMBER OF SUCCESSES";
90 INPUT X
100 PRINT "PROBABILITY OF SUCCESS";
110 INPUT P
119 REM - COMPUTE THE FACTORIALS
120 M(1)=N
130 M(2)=X
140 M(3)=N-X
150 FOR I=1 TO 3
160 IF M(I)=0 THEN 220
170 A=1
180 FOR J=1 TO M(I)
```
170 A = A * J
200 NEXT J
210 M(I) = LOG(A)
220 NEXT I
229 REM - USING THE COMPUTED FACTORIALS, COMPUTE PROBABILITY
230 R = EXP(M(1) - M(2) - M(3) + X * LOG(P) + (N - X) * LOG(1 - P))
235 PRINT
240 PRINT "PROBABILITY OF " ; X;
245 PRINT " SUCCESSES"
247 PRINT " IN " ; N ; " TRIALS = " ; R
250 PRINT
259 REM - RESTART PROGRAM
260 GOTO 50
270 END
Poisson Distribution

Using the Poisson distribution this program calculates the probability of an event occurring a given number of times. You must know the expected frequency of the event.

Example:

2000 people are injected with a serum. The probability of any one person having a bad reaction is 0.001. Thus we can expect two \((0.001 \times 2000 = 2)\) individuals will suffer a bad reaction. What is the probability that four people will have bad reactions? Only one person?

POISSON DISTRIBUTION

(TO END PROGRAM ENTER 0)

CALCULATED FREQUENCY? 2
TEST FREQUENCY? 4
PROBABILITY OF 4
OCCURRENCES = 0.0902235266

CALCULATED FREQUENCY? 2
TEST FREQUENCY? 1
PROBABILITY OF 1
OCCURRENCES = 0.2706705678

CALCULATED FREQUENCY? 0

5 GRAPHICS 0
10 PRINT "POISSON DISTRIBUTION"
15 PRINT
20 PRINT "(TO END PROGRAM ENTER 0)"
30 PRINT
40 PRINT "CALCULATED FREQUENCY";
50 INPUT L.
59 REM - END PROGRAM?
60 IF L=0 THEN 180
70 PRINT "TEST FREQUENCY";
80 INPUT X
89 REM - COMPUTE FACTORIAL.
90 A=1
100 FOR I=1 TO X
110 A=A*I
120 NEXT I
129 REM - COMPUTE PROBABILITY
130 A=LOG(A)
140 A=EXP(-L+X*LOG(L)-A)
150 PRINT "PROBABILITY OF ";X
160 PRINT "OCCURRENCES = ";A
169 REM - RESTART PROGRAM
170 GOTO 30
180 END
Normal Distribution

This program calculates the probability and frequency of given values on a standard normal distribution curve. You can use non-standard variables if you know the mean and standard deviation.

![Standard Normal Distribution](image)

The shaded area represents the probability of x. y corresponds to the frequency of x.

The normal probability is approximated using the following formula:

$$probability = 1 - r(a_1 t + a_2 t^2 + a_3 t^3) + \epsilon(x)$$

where:

$$a_1 = 0.4361836$$
$$a_2 = -0.1201676$$
$$a_3 = 0.9372980$$
$$r = (e^{-x^2/2})(2\pi)^{-1/2}$$
$$t = (1 + 0.3326x)^{-1}$$

$$|\epsilon(x)| < 10^{-5}$$

Example:

The mean weight of the male students at a college is 150 pounds. The standard deviation is 15 pounds. If the weights are normally distributed, what is the probability that a student weighs between 150 and 180 pounds? Between 130 and 150 pounds?

```plaintext
NORMAL DISTRIBUTION

(0=STANDARD, 1=NON-STANDARD)
WHICH TYPE OF VARIABLE? 1
MEAN? 150
STANDARD DEVIATION? 15

(TO END PROGRAM X=99999)
X =? 180
FREQUENCY = 0.0539999681
PROBABILITY = 0.97724118

X =? 130
FREQUENCY = 0.1640100766
PROBABILITY = 0.90879803

X =? 99999
```

5 GRAPHICS 0
10 PRINT "NORMAL DISTRIBUTION"
20 PRINT
30 PRINT "(0=STANDARD, 1=NON-STANDARD)"
40 PRINT "WHICH TYPE OF VARIABLE":
50 INPUT S
60 IF S=0 THEN 120
69 REM - LINES 70-110 REQUEST 'NON-STANDARD' VARIABLE DATA
70 PRINT "MEAN":
80 INPUT M
90 PRINT "STANDARD DEVIATION":
100 INPUT S
110 GOTO 130
120 S=1
130 PRINT
140 PRINT "(TO END PROGRAM X=99999)"
150 PRINT "X =":
160 INPUT X
170 IF X=99999 THEN 290
179 REM - ADJUST FOR NON-STANDARD VARIABLES
180 X=ABS((X-M)/S)
189 REM - COMPUTE FREQUENCY
190 R=EXP(-X^2/2)/2.50662827
200 PRINT "FREQUENCY = ":R
210 Z=X
219 REM - APPROXIMATE PROBABILITY (AREA UNDER CURVE)
220 T=1/(1+0.33267*ABS(X))
230 T=1-R*(0.4361836*T-0.120167*T^2+0.937298*T^3)
239 REM - ADJUST FOR NEGATIVE VARIABLES
240 IF Z>=0 THEN 260
250 T=1-T
260 PRINT "PROBABILITY = ":T
270 PRINT
280 GOTO 150
290 END
Chi-Square Distribution

This program calculates the tail-end value for points on a chi-square (X^2) distribution curve. You must provide the value of X^2 and the degrees of freedom.

![Chi-Square Distribution](image)

The shaded area represents the tail-end value of X^2.

The X^2 distribution function is calculated using the following formulas:

- with v odd, tail-end value = $1 - \frac{(X^2)^{(v+1)/2} \cdot e^{-v/2}}{1 \cdot 3 \cdot 5 \ldots v} \cdot \left(\frac{2}{X^2 \pi} \right)^{v/2} \cdot Z$

- with v even, tail-end value = $1 - \frac{(X^2)^{v/2} \cdot e^{-v/2}}{2 \cdot 4 \cdot \ldots \cdot v} \cdot Z$

where: $v = \text{degrees of freedom}$

$$Z = 1 + \sum_{m=1}^{\infty} \frac{(X^2)^m}{(v + 2) \cdot (v + 4) \cdot \ldots \cdot (v + 2m)}$$

Since the summation in the calculation of Z cannot actually extend to infinity, we stop summation when the next term is less than a chosen level of precision. The computational precision is limited to approximately 10^{-7}.

Example:

Of a group of 168 people who complained they did not sleep well, 54 were given sleeping pills and the remainder received placebos. They were later asked whether or not the pills had helped them sleep. The X^2 statistic for this study was computed to be 2.571108 with one degree of freedom. What is the tail-end value?

CHI-SQUARE DISTRIBUTION

(TO END PROGRAM ENTER 0)
DEGREES OF FREEDOM? 1
CHI-SQUARE? 2.571108
TAIL END VALUE =0.1088315

DEGREES OF FREEDOM? 0

5 GRAPHICS 0
6 PI=3.14159265
10 PRINT "CHI-SQUARE DISTRIBUTION"
20 PRINT
OPTION

You may wish to compute the percentile rather than the tail-end value. This value corresponds to the unshaded area in the figure above. The program changes necessary are listed following the example below.

Example:

What is the percentile in the example above?

CHI-SQUARE DISTRIBUTION

(TO END PROGRAM ENTER 0)

DEGREES OF FREEDOM? 1
CHI-SQUARE? 2.571108
PERCENTILE = 0.8911685
DEGREES OF FREEDOM? 0
1 REM - OPTION 250
5 GRAPHICS 0
6 PI=3.14159265
10 PRINT "CHI-SQUARE DISTRIBUTION"
240 GOTO 200
250 PRINT "PERCENTILE = ";J*K*L
260 PRINT
269 REM - RESTART PROGRAM
270 GOTO 40
280 END
Chi-Square Test

This program calculates the chi-square (X^2) statistic and degrees of freedom associated with a given contingency table. The expected value for each cell and X^2 contribution from each cell are also printed.

The dimension statement at line 30 limits the size of the contingency table. You can change the dimensions according to the following scheme:

\[
30 \text{ DIM } V1(R \cdot C), V2(C), A(R)
\]

where: R = number of rows in the contingency table
C = number of columns in the contingency table

Example:

Of a group of people who complained they could not sleep well, some were given sleeping pills while others were given placebos. Later they were asked whether or not the pills had helped them sleep. The results are detailed in the table below. What is the value of the X^2 statistic?

<table>
<thead>
<tr>
<th>Sleeping pill</th>
<th>Slept Well</th>
<th>Slept Poorly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>81</td>
<td>35</td>
</tr>
</tbody>
</table>

CHI-SQUARE TEST

NUMBER OF ROWS? 2
NUMBER OF COLUMNS? 2
CONTINGENCY TABLE:
ROW 1
 ELEMENT 1? 44
 ELEMENT 2? 10
ROW 2
 ELEMENT 1? 81
 ELEMENT 2? 35

<table>
<thead>
<tr>
<th>OBSERVED</th>
<th>EXPECTED</th>
<th>CHI2 CONTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLUMN 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>39.70588235</td>
<td>0.3625490065</td>
</tr>
<tr>
<td>81</td>
<td>85.29411764</td>
<td>0.1687728133</td>
</tr>
<tr>
<td>COLUMN 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14.29411764</td>
<td>1.00708057</td>
</tr>
<tr>
<td>35</td>
<td>30.70588235</td>
<td>0.4688133705</td>
</tr>
</tbody>
</table>

CHI-SQUARE = 2.00721575
DEGREES OF FREEDOM = 1

5 GRAPHICS 0
10 PRINT "CHI-SQUARE TEST"
20 PRINT
26 REM - LIMIT SIZE OF CONTINGENCY
27 REM - TABLES TO V1(R*C),V2(C),A(R)
28 REM - WHERE R=NUMBER OF ROWS,
29 REM - C=NUMBER OF COLUMNS
30 DIM V1(4),V2(2),A(2)
40 PRINT "NUMBER OF ROWS";
48 REM - INPUT CONTINGENCY TABLE
49 REM - LINES 50 TO 150
50 INPUT R
60 PRINT "NUMBER OF COLUMNS";
70 INPUT C
80 PRINT "CONTINGENCY TABLE:"
90 FOR I=1 TO R
100 PRINT "ROW ";I
110 FOR J=1 TO C
120 PRINT " ELEMENT ";J;
130 INPUT X
132 V1((I-1)*C+J)=X
140 NEXT J
150 NEXT I
160 PRINT
168 REM - ADD UP MARGINAL FREQUENCIES
169 REM - FOR EACH ROW
170 L=0
180 M=1
190 FOR I=1 TO R
195 A(I)=0
200 FOR J=1 TO C
210 A(I)=A(I)+V1(M)
220 M=M+1
230 NEXT J
240 L=L+A(I)
250 NEXT I
260 N=R*C
268 REM - ADD UP MARGINAL FREQUENCIES
269 REM - FOR EACH COLUMN
270 FOR I=1 TO C
275 V2(I)=0
280 FOR J=I TO N STEP C
290 V2(I)=V2(I)+V1(J)
300 NEXT J
310 NEXT I
320 Z=0
330 PRINT "OBSERVED EXPECTED ";
331 PRINT "CHI^2 CONTRIBUTION"
340 FOR I=1 TO C
350 PRINT " COLUMN ";I
360 FOR J=1 TO R
369 REM - P=EXPECTED CELL VALUE
370 P=A(J)*V2(I)/L
375 X=I+(J-1)*C
377 REM - USE YATES' CORRECTION FOR
378 REM - CONTINUITY IN 2X2 CHI-
379 REM - SQUARE TEST
380 IF RC>2 THEN 390
381 IF CC>2 THEN 390
382 Y=(ABS(V1(X)-P)-0.5)^2/P
383 GOTO 400
388 REM - Y=CHI-SQUARE CONTRIBUTION
389 REM - FROM THIS CELL
390 Y=(V1(X)-P)^2/P
399 REM - Z=TOTAL CHI-SQUARE VALUE
400 Z=Z+Y
410 PRINT " ;V1(X);" ;P;
411 PRINT " ;Y
420 NEXT J
430 NEXT I
440 PRINT
450 PRINT "CHI-SQUARE = ";Z
460 PRINT "DEGREES OF FREEDOM = ";
461 PRINT (C-1)*(R-1)
470 END
Student's t-distribution

This program calculates right-tail values for points on a t-distribution curve. You must provide the value of t and the degrees of freedom.

![Student's t-distribution](image)

The shaded area represents the right-tail value for t.

The right-tail value is approximated using the following formula:

\[
\text{right-tail value} = \frac{1}{4} \left(1 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \right)^{-1} + \epsilon(x)
\]

where:
- \(a_1 = 0.196854 \)
- \(a_2 = 0.115194 \)
- \(a_3 = 0.000344 \)
- \(a_4 = 0.019527 \)

\[
x = \left(\frac{t}{\sqrt{\frac{2}{9d}}} - \frac{7}{9} \right) \left(\frac{\frac{2}{9} \cdot t}{6} \right)^{\frac{1}{2}}
\]

\[| \epsilon(x) | < 2.5 \cdot 10^{-4}\]

Examples:

What is the right-tail value when the t-value is 2.921 and there are 16 degrees of freedom?

What is the right-tail value when the t-value is 11.178 and there are 5 degrees of freedom?

STUDENT'S T-DISTRIBUTION

(To END PROGRAM ENTER 0)

T VALUE? 2.921
DEGREES OF FREEDOM? 16
RIGHT TAIL VALUE = 4.87140558E-03

T VALUE? 11.178
DEGREES OF FREEDOM? 5
RIGHT TAIL VALUE = 2.07763234E-04

T VALUE? 0

5 GRAPHICS 0
10 PRINT "STUDENT'S T-DISTRIBUTION"
20 PRINT
30 PRINT "(TO END PROGRAM ENTER 0)"
40 PRINT "T VALUE;"
50 INPUT T
60 IF T=0 THEN 340
70 PRINT "DEGREES OF FREEDOM";
80 INPUT D
90 X=1
100 Y=1
110 T=T^2
119 REM - COMPUTE USING INVERSE FOR SMALL VALUES
120 IF T<1 THEN 170
130 S=Y
140 R=D
150 Z=T
160 GOTO 200
170 S=D
180 R=Y
190 Z=1/T
200 J=2/9/S
210 K=2/9/R
219 REM - COMPUTE USING APPROXIMATION FORMULAS
220 L=ABS(((1-K)*Z^((1/3)-1)+J)/SQR(K*(Z^((2/3)+J)))
230 IF R<=4 THEN 270
240 X=0.25/(1+L*(0.196854+L*(0.115194+L*(3.44E-04+L*0.019527))))^4
260 GOTO 290
270 L=L*(1+0.08*L^4/R^3)
280 GOTO 240
289 REM - ADJUST IF INVERSE WAS COMPUTED
290 IF T>=1 THEN 310
300 X=1-X
310 PRINT "RIGHT TAIL VALUE = ";X
320 PRINT
330 GOTO 40
340 END
Student's t-distribution Test

This program calculates the t-statistic and degrees of freedom for Student's t Distribution. The calculations can be based on any one of three hypotheses.

The first hypothesis assumes that one population mean is equal to a given value. You must enter the elements of the sample and the value of the mean.

The remaining hypotheses compare two populations. In both tests the means of the two populations are equal, but the standard deviations may be equal or unequal. For these hypotheses you must enter the elements of each sample.

The dimension statement at line 30 limits the size of the samples you may enter. You can change the limit according to the following scheme:

```
30 DIM P(N,2)
```

where $N =$ maximum sample size.

Examples:

A sample of children's IQs was taken, the results being 101, 99, 120, 79, 111, 98, 106, 112, 87, and 97. Calculate the t-statistic assuming the population mean is 100.

A second sample was taken, the results being 101, 95, 130, 150, 75, 79, 111, 100, 98, and 91. Calculate the t-statistic based on the hypothesis that the two samples have equal means and standard deviations.

Student's T-Distribution Test

TEST 1: MEAN = X
TEST 2: MEAN = MEAN, SD = SD
TEST 3: MEAN = MEAN, SD <> SD

WHICH HYPOTHESIS? 1

SAMPLE 1:

NUMBER OF ELEMENTS? 10

- ELEMENT 1? 101
- ELEMENT 2? 99
- ELEMENT 3? 120
- ELEMENT 4? 79
- ELEMENT 5? 111
- ELEMENT 6? 98
- ELEMENT 7? 106
- ELEMENT 8? 112
- ELEMENT 9? 87
- ELEMENT 10? 97

VALUE OF MEAN? 100

T-VALUE = 0.2615130568

DEGREES OF FREEDOM = 9
5 GRAPHICS 0
10 PRINT "STUDENT'S T-DISTRIBUTION TEST"
20 PRINT
28 REM - LIMIT SAMPLE SIZE TO P(N,2)
29 REM - WHERE N=MAXIMUM SAMPLE SIZE
30 DIM P(10,2)
40 DIM V(2),R(2),M(2),D(2)
50 PRINT "TEST 1: MEAN = X"
60 PRINT "TEST 2: MEAN = MEAN, SD = SD"
70 PRINT "TEST 3: MEAN = MEAN, SD < SD"
80 PRINT
85 PRINT "WHICH HYPOTHESIS;"
90 INPUT T
100 PRINT
108 REM - INPUT 1 OR 2 SAMPLES
109 REM - DEPENDING ON HYPOTHESIS
110 FOR I=1 TO SGN(T-1)+1
120 V(I)=0
130 D(I)=0
140 PRINT "SAMPLE ":I:" :
150 PRINT " NUMBER OF ELEMENTS;"
160 INPUT X
162 R(I)=X
170 FOR J=1 TO R(I)
180 PRINT " ELEMENT ":J:
190 INPUT X
192 P(J,I)=X
199 REM - ACCUMULATE SAMPLES
200 V(I)=V(I)+P(J,I)
210 D(I)=D(I)+P(J,I)^2
220 NEXT J
229 REM - COMPUTE INTERMEDIATE VALUES
230 M(I)=V(I)/R(I)
240 V(I)=(D(I)-V(I)^2/R(I))/(R(I)-1)
250 NEXT I
260 PRINT
270 IF T=2 THEN 340
280 IF T=3 THEN 380
289 REM - INPUT GIVEN VALUE FOR FIRST HYPOTHESIS
290 PRINT "VALUE OF MEAN;"
300 INPUT M
309 REM - COMPUTE T AND DEGREES OF FREEDOM FOR FIRST HYPOTHESIS
310 A=(M(I)-M)*SQR(R(I)/V(I))
320 B=R(I)-1
330 GOTO 420
339 REM - COMPUTE T AND DEGREES OF FREEDOM FOR SECOND HYPOTHESIS
340 A=(M(I)-M)/SQR(1/R(I)+1/R(2))
350 B=R(I)+R(2)-2
360 A=A*SQR(((R(I)-1)*V(I)+(R(2)-1)*V(2))/B)
370 GOTO 420
390 B=(V(I)/R(I)+V(2)/R(2))^2
410 B=INT(B+0.5)
420 PRINT
430 PRINT "T-VALUE = ";ABS(A)
440 PRINT "DEGREES OF FREEDOM = ";B
450 END
F-distribution

This program calculates percentile values for given values on an F-distribution curve. You must provide the value of F, the degrees of freedom in the numerator and the degrees of freedom in the denominator.

The F-distribution

The area of the shaded region represents the percentile.

The F-distribution function is approximated using the following formula:

$$\text{percentile} = 1 - \frac{1}{2}(1 + a_1 y + a_2 y^2 + a_3 y^3 + a_4 y^4)^{-4} + \epsilon(y)$$

where:

- $a_1 = 0.196854$
- $a_2 = 0.115194$
- $a_3 = 0.000344$
- $a_4 = 0.019527$

$$y = \left(F^{\frac{1}{4}} \left(1 - \frac{2}{9d_2} \right) - \left(1 - \frac{2}{9d_1} \right) \right) \left(\frac{2}{9d_1} + F^{\frac{1}{4}} \cdot \frac{2}{9d_2} \right)^{-\frac{1}{4}}$$

- d_1 = degrees of freedom in numerator
- d_2 = degrees of freedom in denominator

$$| \epsilon(y) | < 2.5 \cdot 10^{-4}$$

Examples:

What is the percentile on an F-distribution curve when the F-value is 0.474 and the degrees of freedom are 1 and 18?

What is the percentile when the F-value is 23.7 and the degrees of freedom are 3 and 6?

F-DISTRIBUTION

(TO END PROGRAM ENTER 0)

F-VALUE? 0.474
DEGREES OF FREEDOM IN NUMERATOR? 1
DEGREES OF FREEDOM IN DENOMINATOR? 18
PERCENTILE = 0.4937

F-VALUE? 23.7
DEGREES OF FREEDOM IN NUMERATOR? 3
DEGREES OF FREEDOM IN DENOMINATOR? 6
PERCENTILE = 0.9984

F-VALUE? 0
F-DISTRIBUTION

5 GRAPHICS 0
10 PRINT "F-DISTRIBUTION"
20 PRINT
30 PRINT "(TO END PROGRAM ENTER 0)"
40 PRINT "F-VALUE;"
50 INPUT F
60 IF F=0 THEN 340
70 PRINT "DEGREES OF FREEDOM IN NUMERATOR;"
80 INPUT D1
90 PRINT "DEGREES OF FREEDOM IN DENOMINATOR;"
100 INPUT D2
110 X=1
119 REM - COMPUTE USING INVERSE FOR SMALL F-VALUES
120 IF F<1 THEN 170
130 S=D1
140 T=D2
150 Z=F
160 GOTO 200
170 S=D2
180 T=D1
190 Z=1/F
200 J=2/9/S
210 K=2/9/T
219 REM - COMPUTE USING APPROXIMATION FORMULAS
220 Y=ABS((1-K)*Z^((1/3)-1+J)/SQR(K*Z^((2/3)+J))
230 IF T<4 THEN 270
240 X=0.5/(1+Y*(0.196854+Y*(0.115194+Y*(3.44E-04+Y*0.019527))))^4
250 X=INT(X*10000+0.5)/10000
260 GOTO 290
270 Y=Y*(1+0.08*Y^4/T^3)
280 GOTO 240
289 REM - ADJUST IF INVERSE WAS COMPUTED
290 IF F<=1 THEN 310
300 X=1-X
310 PRINT "PERCENTILE = ";1-X
320 PRINT
329 REM - RESTART PROGRAM
330 GOTO 40
340 END

OPTION

You may prefer to compute the tail-end value (the area of the unshaded region in the figure above). The necessary program changes are listed following the examples below.

Examples:

What is the tail-end value on an F-distribution curve when the F-value is 0.474 and the degrees of freedom are 1 and 18?

What is the tail-end value when the F-value is 23.7 and the degrees of freedom are 3 and 6?
F-DISTRIBUTION

(TO END PROGRAM ENTER 0)
F-VALUE? 0.474
DEGREES OF FREEDOM IN NUMERATOR? 1
DEGREES OF FREEDOM IN DENOMINATOR? 18
TAIL END VALUE = 0.5063

F-VALUE? 23.7
DEGREES OF FREEDOM IN NUMERATOR? 3
DEGREES OF FREEDOM IN DENOMINATOR? 6
TAIL END VALUE = 1.6E-03

F-VALUE? 0

1 REM - OPTION 310
5 GRAPHICS 0
10 PRINT "F-DISTRIBUTION"
 :
300 X=1-X
310 PRINT "TAIL END VALUE = ";X
320 PRINT
329 REM - RESTART PROGRAM
330 GOTO 40
340 END
Linear Correlation Coefficient

This program computes the coefficient of correlation between two variables. A linear relationship is assumed between the variables. You must enter the coordinates of a group of data points forming the regression line.

Example:

The height of twelve men and their sons is recorded in the table below. What is the coefficient of correlation between the heights of fathers and the heights of their sons?

<table>
<thead>
<tr>
<th>Father</th>
<th>65</th>
<th>63</th>
<th>67</th>
<th>64</th>
<th>68</th>
<th>62</th>
<th>70</th>
<th>66</th>
<th>68</th>
<th>67</th>
<th>69</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Son</td>
<td>68</td>
<td>66</td>
<td>68</td>
<td>65</td>
<td>69</td>
<td>66</td>
<td>68</td>
<td>65</td>
<td>71</td>
<td>67</td>
<td>68</td>
<td>70</td>
</tr>
</tbody>
</table>

Height in Inches

LINEAR CORRELATION COEFFICIENT

5 GRAPHICS 0
10 PRINT "LINEAR CORRELATION COEFFICIENT"
20 PRINT
30 PRINT "NUMBER OF POINTS":
40 INPUT N
99 REM - ENTER COORDINATES OF DATA POINTS
100 FOR I=1 TO N
110 PRINT "X,Y OF POINT ";I:
120 INPUT X,Y
129 REM - ACCUMULATE INTERMEDIATE VALUES
130 J=J+X
140 K=K+Y
150 L=L+X^2
160 M=M+Y^2
170 R=R+X*Y
180 NEXT I

CORRELATION COEFFICIENT = 0.7027844323
189 REM - CALCULATE COEFFICIENT, PRINT
190 R2=(N*R-J*K)/SQR((N*L-J^2)*(N*M-K^2))
200 PRINT
210 PRINT "CORRELATION COEFFICIENT = ";
215 PRINT R2
220 END
Linear Regression

This program fits a straight line to a given set of coordinates using the method of least squares. The equation of the line, coefficient of determination, coefficient of correlation, and standard error of estimate are printed. Once the line has been fitted, you may predict values of y for given values of x.

Example:

The table below shows the height and weight of 11 male college students. Fit a curve to these points. How much would the average 70 inches and 72 inches male student weigh?

<table>
<thead>
<tr>
<th>Height (inches)</th>
<th>71</th>
<th>73</th>
<th>64</th>
<th>65</th>
<th>61</th>
<th>70</th>
<th>65</th>
<th>72</th>
<th>63</th>
<th>67</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (pounds)</td>
<td>160</td>
<td>183</td>
<td>154</td>
<td>168</td>
<td>159</td>
<td>180</td>
<td>145</td>
<td>210</td>
<td>132</td>
<td>168</td>
<td>141</td>
</tr>
</tbody>
</table>

LINEAR REGRESSION

NUMBER OF KNOWN POINTS? 11

x,y OF POINT 1? 71, 160
x,y OF POINT 2? 73, 183
x,y OF POINT 3? 64, 154
x,y OF POINT 4? 65, 168
x,y OF POINT 5? 61, 159
x,y OF POINT 6? 70, 180
x,y OF POINT 7? 65, 145
x,y OF POINT 8? 72, 210
x,y OF POINT 9? 63, 132
x,y OF POINT 10? 67, 168
x,y OF POINT 11? 64, 141

$F(x) = -106.808628 + (4.04747608 * x)$

COEFFICIENT OF DETERMINATION (R^2):
0.5562451056

COEFFICIENT OF CORRELATION:
0.7458184133

STANDARD ERROR OF ESTIMATE:
15.41444264

INTERPOLATION: (ENTER X=0 TO END)

$x =$? 70
$y =$ 176.514697

$x =$? 72
$y =$ 184.609649

$x =$? 0
5 GRAPHICS 0
10 PRINT "LINEAR REGRESSION"
20 PRINT
30 PRINT "NUMBER OF KNOWN POINTS":
40 INPUT N
99 REM - LOOP TO ENTER COORDINATES OF POINTS
100 FOR I=1 TO N
110 PRINT "X,Y OF POINT ";I:
120 INPUT X,Y
129 REM - ACCUMULATE INTERMEDIATE SUMS
130 J=J+X
140 K=K+Y
150 L=L+X^2
160 M=M+Y^2
170 R2=R2+X*Y
180 NEXT I
189 REM - COMPUTE CURVE COEFFICIENT
190 B=(N*R2-K*J)/(N*L-J^2)
200 A=(K-B*J)/N
210 PRINT
220 PRINT "F(X) = ";A," + (";B:" + X)"
229 REM - COMPUTE REGRESSION ANALYSIS
230 J=B*(R2-J*K/N)
240 M=M-K^2/N
250 K=M-J
260 PRINT
270 R2=J/M
280 PRINT "COEFFICIENT OF DETERMINATION (R^2):"
282 PRINT R2
283 PRINT
290 PRINT "COEFFICIENT OF CORRELATION:";
291 PRINT SQR(R2)
292 PRINT
300 PRINT "STANDARD ERROR OF ESTIMATE:";
301 PRINT SQR(K/(N-2))
310 PRINT
319 REM - ESTIMATE Y-COORDINATES OF POINTS WITH ENTERED X-COORDINATES
320 PRINT "INTERPOLATION: ";
321 PRINT "(ENTER X=0 TO END)"
330 PRINT "X = ";
340 INPUT X
349 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
350 IF X=0 THEN 390
360 PRINT "Y = ";A+B*X
370 PRINT
380 GOTO 330
390 END
Multiple Linear Regression

This program finds the coefficients of a multiple variable linear equation using the method of least squares. The equation is of the following form:

\[y = c + a_1x_1 + a_2x_2 + \ldots + a_nx_n \]

where: \(y \) = dependent variable
\(c \) = constant
\(a_1, a_2, \ldots, a_n \) = coefficients of independent variables \(x_1, x_2, \ldots, x_n \)

The constant and the coefficients are printed.
You must provide the \(x \) and \(y \) coordinates of known data points. Once the equation has been found using the data you enter, you may predict values of the dependent variables for given values of the independent variables.
The dimension statement at line 30 limits the number of known data points the equation may contain. You can change this limit according to the following scheme:

30 DIM X(N+1),S(N+1),T(N+1),A(N+1, N+2)

where \(N \) = the number of known data points.

Example:

The table below shows the age, height, and weight of eight boys. Using weight as the dependent variable, fit a curve to the data. Estimate the weight of a seven-year old boy who is 51 inches tall.

<table>
<thead>
<tr>
<th>Age</th>
<th>8</th>
<th>9</th>
<th>6</th>
<th>10</th>
<th>8</th>
<th>9</th>
<th>9</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>48</td>
<td>49</td>
<td>44</td>
<td>55</td>
<td>51</td>
<td>55</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>59</td>
<td>55</td>
<td>50</td>
<td>80</td>
<td>61</td>
<td>75</td>
<td>67</td>
<td>58</td>
</tr>
</tbody>
</table>

MULTIPLE LINEAR REGRESSION

NUMBER OF KNOWN POINTS? 8
OF INDEPENDENT VARIABLES? 2
POINT 1
 VARIABLE 1? 8
 VARIABLE 2? 48
 DEPENDENT VARIABLE? 59
POINT 2
 VARIABLE 1? 9
 VARIABLE 2? 49
 DEPENDENT VARIABLE? 55
POINT 3
 VARIABLE 1? 6
 VARIABLE 2? 44
 DEPENDENT VARIABLE? 50
POINT 4
 VARIABLE 1? 10
 VARIABLE 2? 59
DEPENDENT VARIABLE? 80
POINT 5
 VARIABLE 1? 8
 VARIABLE 2? 55
 DEPENDENT VARIABLE? 61
POINT 6
 VARIABLE 1? 9
 VARIABLE 2? 51
 DEPENDENT VARIABLE? 75
POINT 7
 VARIABLE 1? 9
 VARIABLE 2? 55
 DEPENDENT VARIABLE? 67
POINT 8
 VARIABLE 1? 7
 VARIABLE 2? 50
 DEPENDENT VARIABLE? 58

EQUATION COEFFICIENTS:
 CONSTANT: -15.70212763
 VARIABLE (1): 3.68085107
 VARIABLE (2): 0.9432624108
 COEFFICIENT OF DETERMINATION (R^2):
 0.7157091735
 COEFFICIENT OF MULTIPLE CORRELATION:
 0.8459959654
 STANDARD ERROR OF ESTIMATE:
 6.42869322

INTERPOLATION: (ENTER 0 TO END PROGRAM)
 VARIABLE 1? 7
 VARIABLE 2? 51
 DEPENDENT VARIABLE = 58.17021281

 VARIABLE 1? 0

5 GRAPHICS 0
10 PRINT "MULTIPLE LINEAR REGRESSION"
20 PRINT
29 REM - SET ARRAY LIMITS TO X(N+1), S(N+1), T(N+1), A(N+1,N+2)
30 DIM X(9),S(9),T(9),A(9,10)
40 PRINT "NUMBER OF KNOWN POINTS";
50 INPUT N
60 PRINT "# OF INDEPENDENT VARIABLES";
70 INPUT V
80 X(1)=1
90 FOR I=1 TO N
100 PRINT "POINT ";I
110 FOR J=1 TO V
119 REM - ENTER INDEPENDENT VARIABLES FOR EACH POINT
120 PRINT " VARIABLE ";J
130 INPUT X1
132 X(J+1)=X1
140 NEXT J
149 REM - ENTER DEPENDENT VARIABLE FOR EACH POINT
150 PRINT " DEPENDENT VARIABLE";
160 INPUT X1
162 X(V+2)=X1
169 REM - POPULATE A MATRIX TO BE USED IN CURVE FITTING
170 FOR K=1 TO V+1
172 FOR L=1 TO V+2
174 A(K,L)=A(K,L)+X(K)*X(L)
180 S(K)=A(K,V+2)
190 NEXT L
200 NEXT K
205 S(V+2)=S(V+2)+X(V+2)^2
210 NEXT I
215 REM - STATEMENTS 250 TO 500 FIT CURVE BY SOLVING THE SYSTEM OF:
216 REM - LINEAR EQUATIONS IN MATRIX A()
220 FOR I=2 TO V+1
224 T(I)=A(1,I)
230 NEXT I
235 FOR I=1 TO V+1
240 J=I
245 IF J=I THEN 300
250 IF A(J,I)<0 THEN 340
255 J=J+1
260 IF J<=V+1 THEN 300
265 PRINT "NO UNIQUE SOLUTION"
270 GOTO 810
275 FOR K=1 TO V+2
280 B=A(I,K)
285 A(I,K)=A(J,K)
290 A(J,K)=B
295 NEXT K
300 Z=1/A(I,I)
310 FOR K=1 TO V+2
315 A(I,K)=Z*A(I,K)
320 NEXT K
325 IF J=I THEN 490
330 Z=-A(J,I)
340 FOR K=1 TO V+2
345 A(J,K)=A(J,K)+Z*A(I,K)
350 NEXT K
355 NEXT I
360 PRINT "EQUATION COEFFICIENTS:"
365 PRINT " CONSTANT: ";A(1,V+2)
370 FOR I=2 TO V+1
375 PRINT "VARIABLE (";I-1;"): ";A(I,V+2)
380 NEXT I
385 P=0
390 FOR I=2 TO V+1
395 P=P+A(I,V+2)*(S(I)-T(I)*S(1)/N)
400 NEXT I
405 R=S(V+2)-S(1)^2/N
410 Z=R-P
415 L=N-V-1
420 I=P/V
640 PRINT
650 I=P/R
660 PRINT "COEFFICIENT OF DETERMINATION (R^2):"
662 PRINT I
670 PRINT "COEFFICIENT OF MULTIPLE CORRELATION:"
675 PRINT SQR(I)
680 PRINT "STANDARD ERROR OF ESTIMATE:"
681 PRINT SQR(ABS(Z/L))
690 PRINT
699 REM - ESTIMATE DEPENDENT VARIABLE FROM ENTERED INDEPENDENT VARIABLES
700 PRINT "INTERPOLATION:"
701 PRINT "(ENTER 0 TO END PROGRAM)"
710 P=A(1,V+2)
720 FOR J=1 TO V
730 PRINT "VARIABLE ";J;
740 INPUT X
749 REM - TEST FOR END OF PROGRAM
750 IF X=0 THEN 810
760 P=P+A(J+1,V+2)*X
770 NEXT J
780 PRINT "DEPENDENT VARIABLE = ";P
790 PRINT
799 REM - RETURN FOR MORE DATA
800 GOTO 710
810 END
Nth Order Regression

This program finds the coefficients of an Nth order equation using the method of least squares. The equation is of the following form:

\[y = c + a_1 x + a_2 x^2 + \ldots + a_n x^n \]

where:
y = dependent variable
c = constant
\(a_1, a_2, \ldots, a_n\) = coefficients of independent variables \(x, x^2, \ldots, x^n\), respectively

The equation coefficients, coefficient of determination, coefficient of correlation, and standard error of estimate are printed. You must provide the \(x\) and \(y\) coordinates for known data points. Once the equation has been computed you may predict values of \(y\) for given values of \(x\).

The dimension statement at line 30 limits the degree of the equation. You can change this limit according to the following scheme:

\[30 \text{ DIM A(2*D+1), R(D+1, D+2), T(D+2)} \]

where \(D\) = maximum degree of equation.

Example:

The table below gives the stopping distance (reaction plus braking distance) of an automobile at various speeds. Fit an exponential curve to the data. Estimate the stopping distance at 55 m.p.h.

<table>
<thead>
<tr>
<th>M.P.H.</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stopping distance</td>
<td>54</td>
<td>90</td>
<td>138</td>
<td>206</td>
<td>292</td>
<td>396</td>
</tr>
</tbody>
</table>

NTH ORDER REGRESSION

DEGREE OF EQUATION? 2
NUMBER OF KNOWN POINTS? 6
\(x, y\) OF POINT 1? 20, 54
\(x, y\) OF POINT 2? 30, 90
\(x, y\) OF POINT 3? 40, 138
\(x, y\) OF POINT 4? 50, 206
\(x, y\) OF POINT 5? 60, 292
\(x, y\) OF POINT 6? 70, 396

CONSTANT = 41.753171
1 DEGREE COEFFICIENT = -1.09477737
2 DEGREE COEFFICIENT = 0.0878468501

COEFFICIENT OF DETERMINATION (R^2):
0.9999250511
CORRELATION COEFFICIENT:
0.9999625248
STANDARD ERROR OF ESTIMATE:
1.44933317
INTERPOLATION: (ENTER 0 TO END)
X = 55
Y = 247.277127

X = 0

5 GRAPHICS 0
10 PRINT "N'TH ORDER REGRESSION"
20 PRINT
28 REM - SET LIMITS OF DEGREE OF EQUATION TO A(2D+1), R(D+1), D+2, T(D+2),
29 REM - (WHERE D=MAXIMUM DEGREE OF EQUATION)
30 DIM A(13), R(7,8), T(8)
40 PRINT "DEGREE OF EQUATION":
50 INPUT D
52 FOR X=1 TO 2*D+1
53 A(X)=0
54 NEXT X
55 FOR X=1 TO D+2
56 T(X)=0
57 NEXT X
60 PRINT "NUMBER OF KNOWN POINTS":
70 INPUT N
80 A(1)=N
89 REM - ENTER COORDINATES OF DATA POINTS
90 FOR I=1 TO N
100 PRINT "X,Y OF POINT ";I;
110 INPUT X,Y
119 REM - LINES 120 TO 200 POPULATE MATRICES WITH A SYSTEM OF EQUATIONS
120 FOR J=2 TO 2*D+1
130 A(J)=A(J)+X^(J-1)
140 NEXT J
150 FOR K=1 TO D+1
160 R(K,D+2)=T(K)+Y*X^(K-1)
170 T(K)=T(K)+Y*X^(K-1)
180 NEXT K
190 T(D+2)=T(D+2)+Y^2
200 NEXT I
209 REM - LINES 210 TO 490 SOLVE THE SYSTEM OF EQUATIONS IN THE MATRICES
210 FOR J=1 TO D+1
220 FOR K=1 TO D+1
230 R(J,K)=A(J+K-1)
240 NEXT K
250 NEXT J
260 FOR J=1 TO D+1
270 FOR K=J TO D+1
280 IF R(K,J)<0 THEN 320
290 NEXT K
300 PRINT "NO UNIQUE SOLUTION"
310 GOTO 790
320 FOR I=1 TO D+2
330 S=R(J,I)
340 R(J,I)=R(K,I)
350 R(K,I)=S
360 NEXT I
370 Z=1/R(J,J)
380 FOR I=1 TO D+2
390 R(J,I)=Z*R(J,I)
400 NEXT I
410 FOR K=1 TO D+1
420 IF K=J THEN 470
430 Z=-R(K,J)
440 FOR I=1 TO D+2
450 R(K,I)=R(K,I)+Z*R(J,I)
460 NEXT I
470 NEXT K
480 NEXT J
490 PRINT
495 PRINT "CONSTANT = ":
496 PRINT R(1,D+2)
497 REM - PRINT EQUATION COEFFICIENTS
500 FOR J=1 TO D
510 PRINT J:" DEGREE COEFFICIENT = ":
511 PRINT R(J+1,D+2)
520 NEXT J
530 PRINT
539 REM - COMPUTE REGRESSION ANALYSIS
540 P=0
550 FOR J=2 TO D+1
560 P=P+R(J,D+2)*(T(J)-A(J)*T(1)/N)
570 NEXT J
580 Q=T(D+2)-T(1)^2/N
590 Z=Q-P
600 N=N-D-1
620 PRINT
630 J=P/Q
640 PRINT "COEFFICIENT OF DETERMINATION (R^2): ":
642 PRINT J
650 PRINT "CORRELATION COEFFICIENT:"
651 PRINT SQR(J)
660 PRINT "STANDARD ERROR OF ESTIMATE:"
661 PRINT SQR(Z/I)
670 PRINT
679 REM - COMPUTE Y-COORDINATE FROM ENTERED X-COORDINATE
680 PRINT "INTERPOLATION: ":
681 PRINT "(ENTER 0 TO END)"
690 P=R(1,D+2)
700 PRINT "X = ":
710 INPUT X
720 IF X=0 THEN 790
730 FOR J=1 TO D
740 P=P+R(J+1,D+2)*X^J
750 NEXT J
760 PRINT "Y = "; P
770 PRINT
780 GOTO 690
790 END
Geometric Regression

This program fits a geometric curve to a set of coordinates using the method of least squares. The equation, coefficient of determination, coefficient of correlation, and standard error of estimate are printed.

You must provide the x and y coordinates of known data points. Once the curve has been fitted you may predict values of y for given values of x.

Example:

The table below give the pressures of a gas measured at various volumes in an experiment. The relationship between pressure and volume of a gas is expressed by the following formula:

\[PV^K = C \]

where:
- \(P \) = pressure
- \(V \) = volume
- \(C \) and \(K \) are constants

This formula can be rewritten in standard geometric form:

\[P = CV^{-K} \]

Note the exponent is negative, which accounts for the negative exponents the program calculates.

Fit a geometric curve to the data and estimate the pressure of 90 cubic inches of the gas.

<table>
<thead>
<tr>
<th>Volume</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.1</td>
<td>57.0</td>
</tr>
<tr>
<td>60.7</td>
<td>51.0</td>
</tr>
<tr>
<td>73.2</td>
<td>39.2</td>
</tr>
<tr>
<td>88.3</td>
<td>30.2</td>
</tr>
<tr>
<td>120.1</td>
<td>19.6</td>
</tr>
<tr>
<td>187.5</td>
<td>10.5</td>
</tr>
</tbody>
</table>

GEOMETRIC REGRESSION

NUMBER OF KNOWN POINTS? 6
X,Y OF POINT 1? 56.1,57
X,Y OF POINT 2? 60.7,51
X,Y OF POINT 3? 73.2,39.2
X,Y OF POINT 4? 88.3,30.2
X,Y OF POINT 5? 120.1,19.6
X,Y OF POINT 6? 187.5,10.5

F(X) = 16103.5638 * X^-1.40154885

COEFFICIENT OF DETERMINATION (R^2):
0.9999860276

COEFFICIENT OF CORRELATION:
0.9999930137

STANDARD ERROR OF ESTIMATE:
2.674833175E-03

INTERPOLATION:(X=0 TO END)
X =? 90
Y = 29.3734994
X = ? 0

5 GRAPHICS 0
10 PRINT "GEOMETRIC REGRESSION"
20 PRINT
30 PRINT "NUMBER OF KNOWN POINTS";
40 INPUT N
99 REM - ENTER COORDINATES OF DATA POINTS
100 FOR I=1 TO N
110 PRINT "X,Y OF POINT ";I;
120 INPUT X,Y
129 REM - ACCUMULATE INTERMEDIATE VALUES
130 Y=LOG(Y)
140 X=LOG(X)
150 J=J+X
160 K=K+Y
170 L=L+X^2
180 M=M+Y^2
190 R2=R2+X*Y
200 NEXT I
209 REM - CALCULATE AND PRINT COEFFICIENTS OF EQUATION
210 B=(N*X2-K*J)/(N*L-J^2)
220 A=(K-B*J)/N
230 PRINT
240 PRINT "F(X) = EXP(A)*X";B
249 REM - CALCULATE REGRESSION ANALYSIS
250 J=B*(R2-J*K/N)
260 M=M-K^2/N
270 K=M-J
280 PRINT
290 R2=J/M
300 PRINT "COEFFICIENT OF DETERMINATION (R^2):"
305 PRINT R2
306 PRINT
310 PRINT "COEFFICIENT OF CORRELATION:" ...
311 PRINT SQR(R2)
315 PRINT
320 PRINT "STANDARD ERROR OF ESTIMATE:" ...
325 PRINT SQR(K/(N-2))
326 PRINT
330 PRINT
339 REM - ESTIMATE Y-COORDINATE FROM ENTERED X-COORDINATE
340 PRINT "INTERPOLATION:";
341 PRINT "(X=0 TO END)"
350 PRINT "X =";
360 INPUT X
369 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
370 IF X=0 THEN 410
380 PRINT "Y = EXP(A)*X^B"
390 PRINT
399 REM - RETURN FOR MORE DATA
400 GOTO 350
410 END
Exponential Regression

This program finds the coefficients of an equation for an exponential curve. The equation is in the following form:

\[f(x) = ae^{bx} \]

where \(a \) and \(b \) are the calculated coefficients.

The equation coefficients, coefficient of determination, coefficient of correlation, and standard error of estimate are printed.

You must provide the \(x \) and \(y \) coordinates for known data points. Once the curve has been fitted you may predict values of \(y \) for given values of \(x \).

Example:

The table below shows the number of bacteria present in a culture at various points in time. Fit an exponential curve to the data and estimate the number of bacteria after seven hours.

<table>
<thead>
<tr>
<th>Number of Hours</th>
<th>Number of Bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>89</td>
</tr>
<tr>
<td>4</td>
<td>135</td>
</tr>
<tr>
<td>5</td>
<td>206</td>
</tr>
<tr>
<td>6</td>
<td>315</td>
</tr>
</tbody>
</table>

EXponential REgression

NUMBER OF KNOWN POINTS? 7
X,Y OF POINT 1? 0,25
X,Y OF POINT 2? 1,38
X,Y OF POINT 3? 2,58
X,Y OF POINT 4? 3,89
X,Y OF POINT 5? 4,135
X,Y OF POINT 6? 5,206
X,Y OF POINT 7? 6,315

A = 24.9616401
B = 0.4223753793

COEFFICIENT OF DETERMINATION (R^2):
1.00000505

COEFFICIENT OF CORRELATION:
1.00000252

STANDARD ERROR OF ESTIMATE:
2.247665456E-03

INTERPOLATION:
(X=0 TO END)
X = 7
Y = 480.087256
X = 0
5 GRAPHICS 0
10 PRINT "EXPONENTIAL REGRESSION"
20 PRINT
30 PRINT "NUMBER OF KNOWN POINTS";
40 INPUT N
50 J=0
60 K=0
70 L=0
80 M=0
90 R2=0
99 REM - ENTER COORDINATES OF DATA POINTS
100 FOR I=1 TO N
110 PRINT "X,Y OF POINT ":I;
120 INPUT X,Y
129 REM - ACCUMULATE INTERMEDIATE VALUES
130 Y=LOG(Y)
140 J=J+X
150 K=K+Y
160 L=L+X^2
170 M=M+Y^2
180 R2=R2+X*Y
190 NEXT I
199 REM - CALCULATE AND PRINT COEFFICIENTS OF EQUATION
200 B=(N*R2-K*J)/(N*L-J^2)
210 A=(K-B*J)/N
220 PRINT
230 PRINT "A = ":EXP(A)
240 PRINT "B = ":B
249 REM - CALCULATE REGRESSION TABLE VALUES
250 J=B*(R2-J*K/N)
260 M=M-K^2/N
270 K=M-J
280 PRINT
290 R2=J/M
300 PRINT "COEFFICIENT OF DETERMINATION (R^2):"
302 PRINT R2
306 PRINT
310 PRINT "COEFFICIENT OF CORRELATION:"*
312 PRINT SQR(R2)
316 PRINT
320 PRINT "STANDARD ERROR OF ESTIMATE:"*
322 PRINT SQR(ABS(K/(N-2)))
326 PRINT
330 PRINT
339 REM - ESTIMATE Y-VALUE FROM ENTERED X-VALUE
340 PRINT "INTERPOLATION:"*
341 PRINT "(X=0 TO END)"
350 PRINT "X =";
360 INPUT X
370 IF X=0 THEN 410
380 PRINT "Y = ";EXP(A)*EXP(B*X)
390 PRINT
399 REM - RETURN FOR MORE DATA
400 GOTO 350
410 END
System Reliability

This program calculates the reliability of an operating system that is subject to wearout and chance failure. You must enter the system's operating time and the wearout time and failure rate of each component.

Example:

Compute the reliability of a computer system operating for 1000 hours with the components shown in the list below.

<table>
<thead>
<tr>
<th>Component</th>
<th>Wearout (hours)</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>15,000</td>
<td>0.00020</td>
</tr>
<tr>
<td>Terminal</td>
<td>3,000</td>
<td>0.00010</td>
</tr>
<tr>
<td>Disk</td>
<td>3,000</td>
<td>0.00015</td>
</tr>
<tr>
<td>Printer</td>
<td>1,500</td>
<td>0.00015</td>
</tr>
</tbody>
</table>

SYSTEM RELIABILITY

(TO END PROGRAM ENTER 0)
OPERATING TIME IN HOURS? 1000
NUMBER OF COMPONENTS? 4

COMPONENT 1
AVERAGE WEAROUT TIME? 15000
AVERAGE FAILURE RATE? 2E-04

COMPONENT 2
AVERAGE WEAROUT TIME? 3000
AVERAGE FAILURE RATE? 1E-04

COMPONENT 3
AVERAGE WEAROUT TIME? 3000
AVERAGE FAILURE RATE? 1.5E-04

COMPONENT 4
AVERAGE WEAROUT TIME? 1500
AVERAGE FAILURE RATE? 1.5E-04

SYSTEM RELIABILITY = 0.1353352872

OPERATING TIME IN HOURS? 0

5 GRAPHICS 0
10 PRINT "SYSTEM RELIABILITY"
20 PRINT
30 PRINT "(TO END PROGRAM ENTER 0)"
40 PRINT "OPERATING TIME IN HOURS";
50 INPUT T
59 REM - TEST FOR END OF PROGRAM
60 IF T=0 THEN 230
70 PRINT "NUMBER OF COMPONENTS";
80 INPUT N
90 Z=0
99 REM - ENTER DATA FOR EACH COMPONENT
100 FOR I=1 TO N
105 PRINT
110 PRINT "COMPONENT "; I
120 PRINT "AVERAGE WEAROUT TIME";
130 INPUT W
140 PRINT "AVERAGE FAILURE RATE";
150 INPUT F
159 REM - INCLUDE EACH COMPONENT IN RELIABILITY
160 Z=Z+1/W+F
170 NEXT I
180 PRINT
189 REM - CALCULATE RELIABILITY, PRINT
190 Z=EXP(-Z*T)
200 PRINT "SYSTEM RELIABILITY = ":Z
210 PRINT
219 REM - RESTART PROGRAM
220 GOTO 40
230 END
Average Growth Rate, Future Projections

This program calculates the average growth rate of a company, then projects figures for future years. The growth rate and projections could be computed for any aspect of a company, such as sales, earnings, number of employees, or patronage. You must provide established figures for a past series of years.

The dimension statement at line 30 limits the number of past figures you may enter. Any alteration of this limit should be done in the following manner:

30 DIM S(N)

where \(N \) = the number of years for which figures are known.

Example:

The borrowing records for Claremount County Library are tabulated in the graph below. What is its average growth rate? How many books can it expect to lend in its tenth and twentieth years of service?

![Bar chart showing borrowing records for Claremount County Library from year 1 to year 9.](image)

AVERAGE GROWTH RATE, FUTURE PROJECTIONS

NUMBER OF YEARS FIGURES ESTABLISHED? 9

FIGURE:
- **YEAR 1:** 26
- **YEAR 2:** 35
- **YEAR 3:** 42
- **YEAR 4:** 45
- **YEAR 5:** 41
- **YEAR 6:** 51
- **YEAR 7:** 60
- **YEAR 8:** 62
- **YEAR 9:** 74

AVERAGE GROWTH RATE = 11.89%
(ENTER 0 TO END PROGRAM)
PROJECTED SALES FOR YEAR? 10
 = 81.29
PROJECTED SALES FOR YEAR? 20
 = 249.87
PROJECTED SALES FOR YEAR? 0

5 GRAPHICS 0
10 PRINT "AVERAGE GROWTH RATE,"
15 PRINT "FUTURE PROJECTIONS"
20 PRINT
29 REM - SET ARRAY S TO THE NUMBER OF YEARS FOR WHICH FIGURES ARE KNOWN
30 DIM S(20)
40 PRINT "NUMBER OF YEARS FIGURES ESTABLISHED";
50 INPUT N
60 FOR I=1 TO N
70 IF I>1 THEN 100
80 PRINT "FIGURE: YEAR ",I;";
90 GOTO 110
100 PRINT " YEAR ",I;
110 INPUT X
112 S(I)=X
120 NEXT I
129 REM - INITIALIZE VARIABLES FOR FIRST YEAR
130 T=LOG(S(1))
140 V=0
149 REM - LOOP FOR REMAINING YEARS OF HISTORY
150 FOR I=2 TO N
160 L=LOG(S(I))
170 T=T+L
180 V=V+(I-1)*L
190 NEXT I
199 REM - CALCULATE AVERAGE GROWTH RATE
200 A=6*(2*V/(N-1)-T)/(N)/(N+1)
210 G=EXP(A)-1
219 REM - ROUND OFF, PRINT
220 PRINT "AVERAGE GROWTH RATE = ";
225 PRINT INT(G*10000+0.5)/100;"%"
230 PRINT
239 REM - CALCULATE AVERAGE ANNUAL GROWTH FACTOR
240 S=EXP(T/N-A*(N-1)/2)
250 PRINT "(ENTER 0 TO END PROGRAM)"
259 REM - INPUT YEAR NUMBER
260 PRINT "PROJECTED SALES FOR YEAR";
270 INPUT Y1
279 REM - TEST FOR END OF PROGRAM
280 IF Y1=0 THEN 320
289 REM - CALCULATE PROJECTED SALES FIGURE
290 S1=S*(1+G)^(Y1-1)
299 REM - ROUND OFF, PRINT
300 PRINT " = ";
305 PRINT INT(S1*100+0.5)/100
309 REM - RETURN FOR MORE DATA
310 GOTO 260
320 END
Federal Withholding Taxes

This program calculates the amount of federal income and FICA taxes withheld from one's earnings. You must provide employee information regarding marital status, the number of exemptions claimed, the amount of taxable pay, and year-to-date taxable pay.

The number of pay periods per year is established at line 80. If your pay period is other than monthly, you must alter this statement to set N equal to the number of pay periods per year.

There is a considerable amount of tax information which may change from year to year. The values listed in the data tables at lines 30 and 40 are among those that may need periodic revision. The annual values for single and married persons should be compared each year with those listed in Table 7 of the current IRS Circular E.

The annual FICA rate, the FICA cutoff amount, and the annual amount of withholding allowance may also need revision. The values established at lines 50, 60, and 70 should also be compared to those listed in the current IRS circular.

Annual rates and cutoffs are used irrespective of your actual pay period frequency. The program automatically adjusts them to match your pay period.

Examples:

Judy earns $900.00 per month. The payroll clerk is figuring her March paycheck. Judy is single and claims only herself as as a dependent. What amounts are withheld from her paycheck?

Dr. Berger has earned $2600.00 this month. So far this year she has grossed $26,000.00. She is married and claims four dependents. What amounts will be withheld this month for the federal government?

FEDERAL WITHHOLDING TAXES

MARITAL STATUS (1=SINGLE, 2=MARRIED)? 1
WITHHOLDING TAX EXEMPTIONS? 1
TAXABLE PAY? 900
YTD TAXABLE PAY? 1800
TAXABLE = $900
INCOME TAX = $128.5
FICA = $55.17
MORE DATA (1=YES, 0=NO)? 1

MARITAL STATUS (1=SINGLE, 2=MARRIED)? 2
WITHHOLDING TAX EXEMPTIONS? 4
TAXABLE PAY? 2600
YTD TAXABLE PAY? 26000
TAXABLE = $2600
INCOME TAX = $471.42
FICA = $0
MORE DATA (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "FEDERAL WITHHOLDING TAXES"
20 PRINT
25 REM - THE FOLLOWING DATA CONTAINS
26 REM - THE 1980 TAX TABLES FROM IRS
27 REM - CIRCULAR E, PERCENTAGE METHOD,
28 REM - TABLE 7 (ANNUAL PAYROLL) FOR
29 REM - SINGLE PERSONS
30 DATA 15, 1420, 18, 3300, 21, 6800, 26
31 DATA 10200, 30, 14200, 34, 17200, 39
32 DATA 22500
33 REM - FOR MARRIED PERSONS
34 DATA 15, 2400, 18, 6600, 21, 10900, 24
35 DATA 15000, 28, 19200, 32, 23600, 37
36 DATA 28900
37 REM - F1=FICA RATE AS DECIMAL
38 F1=.0613
39 REM - F2=FICA CUT-OFF AMOUNT
40 F2=25900
41 REM - W1=AMOUNT OF WITHHOLDING ALLOWANCE(ANNUAL PAYROLL)
42 W1=1000
43 REM - N=NUMBER OF PAY PERIODS PER YEAR
44 N=12
45 REM - LOAD THE TAX TABLE ARRAYS FROM DATA TABLES
46 DIM F1(28)
47 FOR I=1 TO 28
48 READ F
49 F(I)=F
50 NEXT I
51 PRINT
52 REM - STATEMENTS 140 TO 210 REQUEST PERTINENT EMPLOYEE DATA
53 PRINT "MARRITAL STATUS (1=SINGLE, 2=MARRIED)";
54 INPUT S
55 PRINT "WITHHOLDING TAX EXEMPTIONS";
56 INPUT W
57 PRINT "TAXABLE PAY";
58 PRINT "YTD TAXABLE PAY";
59 PRINT "ANNUALIZE CURRENT TAXABLE PAY, ADJUST FOR EXEMPTIONS"
60 G=P*N-W1*W
61 T1=0
62 REM - CALCULATE INCOME TAX
63 FOR I=2 TO 7
64 X=2*I+14*(S-1)-1
65 IF G<=F1(X-1) THEN 330
66 IF G>F1(X+1) THEN 300
67 T1=T1+(G-F1(X-1))*F1(X-2)/100
68 GOTO 330
69 T1=T1+(F1(X+1)-F1(X-1))*F1(X-2)/100
70 NEXT I
71 T1=T1+(F1(X+1)-F1(X-1))*F1(X)/100
72 REM - ROUND OFF TO NEAREST CENT
73 T1=INT((T1/N)*100+0.5)/100
74 T2=0
75 REM - CALCULATE FICA
76 IF Y>F2 THEN 400
77 IF Y+F1>F2 THEN 390
370 T2=INT((P*F1)*100+0.5)/100
380 GOTO 400
389 REM - ROUND OFF TO NEAREST CENT
390 T2=INT(((F2-Y)*F1)*100+0.5)/100
399 REM - PRINT RESULTS
400 PRINT "TAXABLE = $";P
410 PRINT "INCOME TAX = $";T1
420 PRINT "FICA = $";T2
430 PRINT
439 REM - RESTART OR END PROGRAM?
440 PRINT "MORE DATA (1=YES, 0=NO)";
450 INPUT S
460 IF S=1 THEN 130
470 END
Tax Depreciation Schedule

This program tabulates annual depreciation amounts. You can use the sum of digits method or any declining balance percentage method. You must know the purchase price (initial value), salvage value at the end of the depreciable life, and the life of the item being depreciated. If you are doing declining balance depreciation, you must also know the percentage method.

Examples:

The Miracle Corporation put a new roof on their office building for $27,000.00. They expect to replace it in nine years. What would the annual depreciation amounts be, using the sum of digits?

Heavenly Bank built a new home office building for $1.2 million. Run a tax depreciation schedule on the building using 150% declining balance method with a 30 year life. Assume a salvage value of $250,000. You will notice that the depreciation falls below straight line ($31,666.67 per year) at year nine.

TAX DEPRECIATION SCHEDULE

PURCHASE PRICE? 27000
SALVAGE VALUE? 0
LIFE IN YEARS? 9
ENTER 1 FOR SUM OF DIGITS,
2 FOR DECLINING BALANCE? 1
SUM OF DIGITS TAX DEPRECIATION
PRICE $27000
SALVAGE VALUE $0
NET DEPRECIATED $27000
LIFE 9 YEARS

<table>
<thead>
<tr>
<th>YEAR</th>
<th>DEPRECIATION</th>
<th>BALANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5400</td>
<td>21600</td>
</tr>
<tr>
<td>2</td>
<td>4800</td>
<td>16800</td>
</tr>
<tr>
<td>3</td>
<td>4200</td>
<td>12600</td>
</tr>
<tr>
<td>4</td>
<td>3600</td>
<td>9000</td>
</tr>
<tr>
<td>5</td>
<td>3000</td>
<td>6000</td>
</tr>
<tr>
<td>6</td>
<td>2400</td>
<td>3600</td>
</tr>
<tr>
<td>7</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>8</td>
<td>1200</td>
<td>600</td>
</tr>
<tr>
<td>9</td>
<td>600</td>
<td>0</td>
</tr>
</tbody>
</table>

MORE DATA? (1=YES, 0=NO)? 1

PURCHASE PRICE? 12000000
SALVAGE VALUE? 2500000
LIFE IN YEARS? 30
ENTER 1 FOR SUM OF DIGITS,
2 FOR DECLINING BALANCE? 2
METHOD IN %? 150
DECLINING BALANCE TAX DEPRECIATION
PRICE $1200000
SALVAGE VALUE $250000
NET DEPRECIATED $950000
LIFE 30 YEARS
METHOD 150%

YEAR DEPRECIATION BALANCE
1 47500 902500
2 45125 857375
3 42868.75 814506.25
4 40725.31 773780.94
5 38689.05 735091.89
6 36754.59 698337.3
7 34916.87 663420.43
8 33171.02 630249.41
9 31512.47 598736.94
10 29936.85 568800.09
11 28440 540360.09
12 27018 513342.09

ENTER 'C' TO CONTINUE? C

13 25667.1 487674.99
14 24383.75 463291.24
15 23164.56 440126.68
16 22006.33 418120.35
17 20906.02 397214.33
18 19860.72 377353.61
19 18867.68 358485.93
20 17924.3 340561.63
21 17028.08 323533.55
22 16176.68 307356.87
23 15367.84 291989.03
24 14599.45 277389.58
25 13869.48 263520.1
26 13176.01 250344.09
27 12517.2 237826.89
28 11891.34 225935.55
29 11296.78 214638.77
30 10731.94 203906.83

MORE DATA? (1=YES, 0=NO)? 0

5 GRAPHICS 0
6 DIM W$(1)
10 PRINT "TAX DEPRECIATION SCHEDULE"
20 PRINT
29 REM - ENTER INITIAL VALUE AND ROUND OFF TO NEAREST CENT
30 PRINT "PURCHASE PRICE";
40 INPUT V
50 V=INT(V*100+0.5)/100
59 REM - ENTER END VALUE AND ROUND OFF TO NEAREST CENT
60 PRINT "SALVAGE VALUE";
70 INPUT S
80 S=INT(S*100+0.5)/100
89 REM - COMPUTE AMOUNT TO DEPRECIATE
90 D=S
99 REM - ENTER LENGTH OF DEPRECIATION
100 PRINT "LIFE IN YEARS";
110 INPUT Y
119 REM - CHOOSE DEPRECIATION METHOD
120 PRINT "ENTER 1 FOR SUM OF DIGITS,";
125 PRINT "2 FOR DECLING BALANCE";
130 INPUT X
140 IF X=2 THEN 450
150 IF X<>1 THEN 120
158 REM - BY SUM OF DIGITS METHOD
159 REM - R1 IS THE CUMULATIVE AMOUNT DEPRECIATED
160 R1=0
170 N=1
260 GRAPHICS 0
262 PRINT "SUM OF DIGITS TAX DEPRECIATION"
270 PRINT "PRICE $";V
280 PRINT "SALVAGE VALUE $";S
290 PRINT "NET DEPRECIATED $";
291 PRINT V-S
300 PRINT "LIFE ";Y;" YEARS"
310 PRINT
320 PRINT "YEAR DEPRECIATION BALANCE"
322 N=11
325 FOR I=1 TO Y
326 REM - CHECK FOR FULL SCREEN (23 LINES)
327 IF N<23=INT(N/23) THEN GOSUB 800
329 REM - COMPUTE DEPRECIATION AND ROUND OFF TO NEAREST CENT
330 R=2*D*(Y-I+1)/((Y+1)*Y)
340 R=INT(R*100+0.5)/100
349 REM - ACCUMULATE DEPRECIATION
350 R1=R1+R
359 REM - COMPUTE BALANCE TO DEPRECIATE
360 B=D-R1
369 REM - TEST FOR COMPLETE DEPRECIATION
370 IF B<>0 THEN 410
380 R1=R1+R
400 B=0
410 PRINT I,R," ";B
420 N=N+1
430 NEXT I
440 GOTO 700
448 REM - BY DECLINING BALANCE METHOD
449 REM - ENTER DECLING BALANCE PERCENT
450 PRINT "METHOD IN %";
460 INPUT M
469 REM - CONVERT PERCENT TO DECIMAL
470 M=M/100
479 REM - N COUNTS THE LINES PRINTED ON EACH PAGE
489 REM - R IS THE AMOUNT TO DEPRECIATE
490 R=D
500 GRAPHICS 0
570 PRINT "DECLINING BALANCE ";
571 PRINT "TAX"
575 PRINT "DEPRECIATION"
580 PRINT "PRICE ";V
590 PRINT "SALVAGE VALUE ";S
600 PRINT "NET DEPRECIATED ";
601 PRINT V-S
610 PRINT "LIFE ";Y;" YEARS"
620 PRINT "METHOD ";M*100;"%
630 PRINT
640 PRINT "YEAR DEPRECIATION BALANCE"
642 PRINT
643 N=11
645 FOR I=1 TO Y
649 REM - COMPUTE DEPRECIATION AND ROUND OFF TO THE NEAREST CENT
650 R1=INT((R*M/Y)*100+0.5)/100
659 REM - ACCUMULATE REMAINING BALANCE
660 R=R-R1
670 PRINT I,R1," ";R
675 N=N+1
677 REM - CHECK FOR FULL SCREEN (23 LINES)
680 IF N/23=INT(N/23) THEN GO TO SUB 800
690 NEXT I
700 PRINT
709 REM - RESTART OR END PROGRAM?
710 PRINT "MORE DATA? (1=YES, 0=NO)";
720 INPUT X
730 IF X=1 THEN 20
740 END
800 REM - SUBROUTINE TO WAIT FOR OPERATOR CUE TO GO TO NEXT SCREEN
805 PRINT
810 PRINT "ENTER 'C' TO CONTINUE";
820 INPUT W$
825 PRINT
830 RETURN
840 END
Check Writer

This program prints a check. You must provide the date, amount, and payee of the check. The program translates the date and amount to words and prints providing spacing within the check.

You should regard the program listed below as a sample of a check-writing program. Very few checks will conform exactly to the spacing provided in this program. The method of translating words from numbers is generally applicable. Spacing should be altered to conform to your own check format.

When the program asks the question KEY RETURN WHEN READY? it is prompting you to insert a blank check in your printing device. The check should be set one line above the line on which the date is to be printed.

Once the check is set up, key RETURN (no other entry is required) and the check will be printed.

Example:

Among the checks that Miracle Corporation must write are one to Osborne & Associates for $4975.89 and one to Freida Alexander for $103.75. Print the checks using the computer.

CHECK WRITER

DATE (MMDYY)? 30881
 foolish (TO END PROGRAM ENTER 'END') foolish--
FIRST NAME OF PAYEE? OSBORNE &

LAST NAME OF PAYEE? ASSOCIATES

AMOUNT OF CHECK? 4975.89

KEY RETURN WHEN READY?

HEAVENLY BANK
EMERYVILLE OFFICE
4120 ASHBY AVENUE
EMERYVILLE, CA 94601

MARCH 8 1981
AMOUNT $4975.89

PAY TO THE ORDER OF OSBORNE & ASSOCIATES

FOUR THOUSAND NINE HUNDRED SEVENTY-FIVE DOLLARS AND 89 CENTS

MIRACLE CORPORATION
1111 COUNTRY ROAD
COUNTRYVILLE, CA 94137

1328252158
FIRST NAME OF PAYEE? FREIDA

LAST NAME OF PAYEE? ALEXANDER

AMOUNT OF CHECK? 103.75

HEAVENLY BANK
EMERYVILLE OFFICE
4120 ASHYB AVENUE
EMERYVILLE, CA 94601

MARCH 8 1981

AMOUNT $ 103.75

PAY TO THE ORDER OF FREIDA ALEXANDER

ONE HUNDRED THREE DOLLARS AND 75 CENTS

MIRACLE CORPORATION
1111 COUNTRY ROAD
COUNTRYVILLE, CA 94132

1328252158

FIRST NAME OF PAYEE? END

5 GRAPHICS 0
6 DIM F$(20),L$(20),X$(10),Z$(3)
7 REM - YOU MUST OPEN A CHANNEL TO YOUR OUTPUT DEVICE.
8 REM - HERE WE OUTPUT TO THE SCREEN ("S:"),
9 REM - YOU MAY WANT TO OUTPUT TO THE PRINTER ("P:"),
10 REM - OR ANOTHER PORT ("Rn:"),
11 REM - IF YOU OUTPUT TO ANOTHER PORT ("Rn"),
12 REM - YOU MUST ADD THE FOLLOWING LINE
13 REM - TO THIS PROGRAM:
14 REM - "19 XIO 40,#1,0,0,"Rn;"
15 REM
16 OPEN #1,9,0,"S;"
20 PRINT "CHECK WRITER"
25 PRINT
30 DATA ONE,TWO,THREE,FOUR,FIVE,SIX
40 DATA SEVEN,EIGHT,NINE, TEN,ELEVEN
41 DATA TWELVE,THIRTEEN,FOURTEEN
50 DATA FIFTEEN,SIXTEEN,SEVENTEEN
51 DATA EIGHTEEN,NINETEEN,TWENTY
60 DATA THIRTY,FOURTY,FIFTY,SIXTY
61 DATA SEVENTY,EIGHTY,NINETY
70 DATA JANUARY,FEBRUARY,MARCH,APRIL
71 DATA MAY,JUNE,JULY,AUGUST,SEPTEMBER
80 DATA OCTOBER,NOVEMBER,DECEMBER
88 REM - ENTER DATE WITHOUT COMMAS.
89 REM - DAY AND YEAR MUST CONTAIN TWO DIGITS
90 PRINT "DATE (MMDDYY)";
100 INPUT B
110 PRINT "-----TO END PROGRAM ";
111 PRINT "ENTER 'END'-----"
120 PRINT "FIRST NAME OF PAYEE";
130 INPUT FS
135 PRINT
139 REM - END PROGRAM?
140 IF FS="END" THEN 790
150 PRINT "LAST NAME OF PAYEE";
160 INPUT LS
165 PRINT
170 PRINT "AMOUNT OF CHECK";
180 INPUT A
185 PRINT
188 REM - INSERT BLANK CHECK IN PRINTING DEVICE,
189 REM - KEY RETURN WHEN READY TO PRINT CHECK
190 PRINT "KEY RETURN WHEN READY";
200 INPUT ZS
209 REM - SEPARATE DATE INTO MONTH, DAY, YEAR FIGURES
210 D1=INT(D/10000)
220 D2=INT((D-D1*10000)/100)
230 D3=INT(D-(D1*100+D2)*100)
235 D3=D3+1900
240 RESTORE
241 REM - READ THROUGH DATA TO CORRECT MONTH
242 FOR K=1 TO 27+D1
243 READ X$;
244 NEXT K
259 REM - PRINT DATE
260 PRINT #1,,"",";D2;",",";D3
269 REM - PRINT DATE TWICE; FIRST TIME FOR SHADOWED BOX
270 PRINT #1,",";A
280 PRINT #1,,"",";A
290 PRINT #1
300 PRINT #1,,"",";L$
310 PRINT #1
319 REM - IS AMOUNT OF CHECK VALID?
320 IF A<=0 THEN 770
330 A1=A
339 REM - AMOUNT IN THOUSANDS?
340 N1=INT(A1/1000)
349 REM - CAN'T PRINT AMOUNT OVER 99999.99
350 IF N1>99 THEN 770
360 IF N1=0 THEN 390
370 GOSUB 640
380 PRINT #1,"THOUSAND ";
390 A1=A1-N1*1000
399 REM - AMOUNT IN HUNDREDS?
400 N1=INT(A1/100)
410 IF N1=0 THEN 440
420 GOSUB 640
430 PRINT #1,"HUNDRED ";
440 A1=A1-N1*100
449 REM AMOUNT IN ONES OR TENS?
450 N1=INT(A1)
460 IF N1>0 THEN 490
470 IF A>=1 THEN 500
480 GOTO 510
490 GOSUB 640
500 PRINT #1:"DOLLARS ";
510 A1=A1-N1
519 REM - ANY CENTS?
520 IF A1<0.01 THEN 600
529 REM - IF AMOUNT IS CENTS ONLY, DON'T PRINT 'AND'
530 IF A<1 THEN 550
540 PRINT #1:"AND ";
550 A1=INT(A1*100)+0.5/100
559 REM - CENT$ ARE PRINTED IN NUMERIC FORM
560 PRINT #1:INT(A1);" CENT$"
569 REM SPACE OFF OF CHECK
570 PRINT #1
580 PRINT #1
590 PRINT #1
600 PRINT #1
610 PRINT #1
620 PRINT #1
629 REM - RESTART PROGRAM
630 GOTO 120
639 REM - SUBROUTINE TO GET WORD$ FOR NUMBERS
640 IF N1<21 THEN 730
650 RESTORE
651 FOR K=1 TO (N1-20)/10+20
652 READ X$
653 NEXT K
670 PRINT #1:X$;
680 A3=N1-INT(N1/10)*10
690 IF A3=0 THEN 760
700 PRINT #1:"-";
710 RESTORE
711 FOR K=1 TO A3
712 READ X$
713 NEXT K
720 GOTO 750
730 RESTORE
731 FOR K=1 TO N1
732 READ X$
733 NEXT K
750 PRINT #1:X$;" ";
759 REM - END OF SUBROUTINE
760 RETURN
770 PRINT ","***VOID*****
780 GOTO 570
790 END
Recipe Cost

This program calculates the cost and the cost per serving of a single recipe. For each ingredient you must provide the purchase price, the amount purchased, the amount used in the recipe, and the number of recipe units per purchase unit.

Example:

Listed below is a recipe for strawberry shortcake. Calculate the cost of the recipe and the cost per serving. What would the cost per serving be if one cake serves 12? The conversion factors and price per ingredient are supplied.

Strawberry Shortcake
8 servings

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Purchase Price</th>
<th>Amount</th>
<th>Recipe Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 c. flour</td>
<td>$1.59</td>
<td>2.5 c./lb</td>
<td>5 lb.</td>
</tr>
<tr>
<td>3 1/2 tsp. baking powder</td>
<td>0.43</td>
<td>15 tsp./oz.</td>
<td>4 oz.</td>
</tr>
<tr>
<td>1/2 c. sugar</td>
<td>1.24</td>
<td>2 c./lb.</td>
<td>5 lb.</td>
</tr>
<tr>
<td>1 1/4 tsp. salt</td>
<td>0.29</td>
<td>6 tsp./oz.</td>
<td>1 lb.</td>
</tr>
<tr>
<td>1/2 c. butter</td>
<td>1.49</td>
<td>2 c./lb.</td>
<td>1 lb.</td>
</tr>
<tr>
<td>1 egg</td>
<td>0.75</td>
<td>12/dz.</td>
<td>1 doz.</td>
</tr>
<tr>
<td>1/2 c. milk</td>
<td>0.40</td>
<td>4 c./qt.</td>
<td>1 qt.</td>
</tr>
<tr>
<td>3 pt. strawberries</td>
<td>0.49</td>
<td>-</td>
<td>1 pt.</td>
</tr>
<tr>
<td>1/2 pt. whipping cream</td>
<td>0.59</td>
<td>-</td>
<td>1/2 pt.</td>
</tr>
</tbody>
</table>

RECIPE COST

NUMBER OF INGREDIENTS? 9

INGREDIENT 1:
STORE COST FOR BULK UNIT? 1.59
NUMBER OF UNITS IN BULK? 5
RECIPE UNITS PER BULK UNIT? 2.5
NUMBER OF RECIPE UNITS NEEDED? 3

INGREDIENT 2:
STORE COST FOR BULK UNIT? 0.43
NUMBER OF UNITS IN BULK? 4
RECIPE UNITS PER BULK UNIT? 15
NUMBER OF RECIPE UNITS NEEDED? 3.25

INGREDIENT 3:
STORE COST FOR BULK UNIT? 1.24
NUMBER OF UNITS IN BULK? 5
RECIPE UNITS PER BULK UNIT? 2
NUMBER OF RECIPE UNITS NEEDED? 0.25

INGREDIENT 4:
STORE COST FOR BULK UNIT? 0.29
NUMBER OF UNITS IN BULK? 1
RECIPE UNITS PER BULK UNIT? 96
NUMBER OF RECIPE UNITS NEEDED? 1.25
INGREDIENT 5:
STORE COST FOR BULK UNIT? 1.49
NUMBER OF UNITS IN BULK? 1
RECIPE UNITS PER BULK UNIT? 2
NUMBER OF RECIPE UNITS NEEDED? 0.5

INGREDIENT 6:
STORE COST FOR BULK UNIT? 0.75
NUMBER OF UNITS IN BULK? 1
RECIPE UNITS PER BULK UNIT? 12
NUMBER OF RECIPE UNITS NEEDED? 1

INGREDIENT 7:
STORE COST FOR BULK UNIT? 0.4
NUMBER OF UNITS IN BULK? 1
RECIPE UNITS PER BULK UNIT? 4
NUMBER OF RECIPE UNITS NEEDED? 0.6666667

INGREDIENT 8:
STORE COST FOR BULK UNIT? 0.49
NUMBER OF UNITS IN BULK? 1
RECIPE UNITS PER BULK UNIT? 1
NUMBER OF RECIPE UNITS NEEDED? 3

INGREDIENT 9:
STORE COST FOR BULK UNIT? 0.59
NUMBER OF UNITS IN BULK? 1
RECIPE UNITS PER BULK UNIT? 1
NUMBER OF RECIPE UNITS NEEDED? 1

NUMBER OF SERVINGS? 8

TOTAL COST FOR ONE RECIPE = $3
COST PER SERVING = $0.38
CHANGE NUMBER OF SERVINGS
(1=YES, 0=NO)? 1
NUMBER OF SERVINGS? 12

TOTAL COST FOR ONE RECIPE = $3
COST PER SERVING = $0.25

CHANGE NUMBER OF SERVINGS
(1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "RECIPE COST"
15 PRINT
19 REM - STATEMENTS 30 TO 180 REQUEST USER INPUT
20 PRINT "NUMBER OF INGREDIENTS";
30 INPUT N
39 REM - LOOP TO REQUEST DATA FOR EACH INGREDIENT
40 FOR I=1 TO N
50 PRINT
60 PRINT "INGREDIENT ":I: ":";
70 PRINT "STORE COST FOR BULK UNIT";
80 INPUT C
90 PRINT "NUMBER OF UNITS IN BULK";
100 INPUT U
110 PRINT "RECIPE UNITS PER ";
111 PRINT "BULK UNIT";
120 INPUT F
130 PRINT "NUMBER OF RECIPE ";
131 PRINT "UNITS NEEDED";
140 INPUT R
149 REM - SUM COST OF EACH INGREDIENT PER AMOUNT USED
150 P=P+C/U/F*R
160 NEXT I
165 PRINT
170 PRINT "NUMBER OF SERVINGS";
180 INPUT S
190 PRINT
199 REM - ROUND OFF COSTS TO NEAREST CENT, PRINT RESULTS
200 PRINT "TOTAL COST FOR ";
201 PRINT "ONE RECIPE = ";
205 PRINT INT(P*100+0.5)/100
210 PRINT "COST PER SERVING = ";
215 PRINT INT(P/S*100+0.5)/100
220 PRINT
229 REM - CALCULATE ALTERNATIVE PRICE PER SERVING
230 PRINT "CHANGE NUMBER OF SERVINGS"
231 PRINT "(1=YES, 0=NO) ";
240 INPUT N
250 IF N=1 THEN 170
260 END

OPTION

As you become familiar with the operation of this program you may wish to shorten it by entering the information required for each ingredient on one line. The necessary program changes are listed following the example below.

Example:

Calculate the cost per serving of strawberry shortcake in the previous example when it is served without cream.

RECIPE COST

NUMBER OF INGREDIENTS? 8

INGREDIENT 1:
? 1.59, 5, 2.5, 3
INGREDIENT 2:
? 0.43,4.15,3.25

INGREDIENT 3:
? 1.24,5,2,0.25

INGREDIENT 4:
? 0.29,1,96,1.25

INGREDIENT 5:
? 1.49,1,2,0.5

INGREDIENT 6:
? 0.75,1,12,1

INGREDIENT 7:
? 0.4,1,4,0.6666667

INGREDIENT 8:
? 0.49,1,1,3

NUMBER OF SERVINGS? 8

TOTAL COST FOR ONE RECIPE = $2.41
COST PER SERVING = $0.3

CHANGE NUMBER OF SERVINGS
(1=YES, 0=NO)? 1

NUMBER OF SERVINGS? 12

TOTAL COST FOR ONE RECIPE = $2.41
COST PER SERVING = $0.2

CHANGE NUMBER OF SERVINGS
(1=YES, 0=NO)? 0

1 REM - OPTION 55-70
5 GRAPHICS 0
10 PRINT "RECIPE COST"
..
50 PRINT
55 REM - ENTER C,U,F,R
56 REM - WHERE C=cost for bulk unit
57 REM - U=number of units in bulk unit
58 REM - F=recipe units per bulk unit
59 REM - R=number recipe units called for
60 PRINT "INGREDIENT ";I:"
70 INPUT C,U,F,R
149 REM - sum cost of each ingredient per amount used
..
260 END
Survey Check (Map Check)

This program calculates the error of closure and area of a plot for which a traverse of the perimeter is available. The program will also calculate how far North and East the end of an open traverse is from its origin (the Northing and Easting). The local coordinates of the origin can be entered for an open traverse. Negative values of Northing and Easting are South and West, respectively, of the 0,0 origin of the survey.

The individual legs of the traverse may be either straight lines or arcs of circles. To compute the traverse, you must have the bearing and length of each straight leg. You also need the radius, bearing of chord, and length of chord (or radius, arc measure, and bearing of a tangent) for each curved leg.

For a closed survey, pick any intersection of legs as a starting point, and number the lines and arcs, starting with one, in a clockwise direction around the perimeter. If any arc is 180 degrees or more, it must be broken into smaller arcs, each less than 180 degrees.

By convention, surveyors measure bearings East and West of North and South, as shown in the following figure. This convention was established in the days before computers, so that trigonometric functions could be easily looked up in tables not exceeding 90 degrees. For each leg, you must enter the quadrant number and the degrees, minutes, and seconds East or West of the North-South axis. The program will indicate the direction of the leg (e.g., SW), and will convert the quadrant, degrees, etc. to an azimuth angle. Azimuth is measured clockwise from North to 360 degrees.

A curved leg, or arc, is defined by two auxiliary legs, each of which is a radius of the arc. The bearing of the first auxiliary leg is the direction of the radius from the first encountered end of the arc to the center of the arc. You can compute this bearing from the bearing of the arc’s tangent at that point, since the radius is perpendicular to the tangent. The survey may show the bearing of the tangent. If not, you can compute it by adding one half the angular extent of the arc to the bearing of the arc’s chord, as shown in the next figure.
The bearing of the second radius is from the center of the arc to the other end, and the distance is entered as a negative number to signal to the computer that this and the prior leg are not perimeter legs, but auxiliary legs of an arc.

The program asks you for the bearing and distance of each leg by number. Legs are entered in sets of ten (or less). Following the last entry in a set, you can correct any leg in the set. You must enter both auxiliary legs of an arc in the same set. You can enter a bearing of zero to end one set, and then enter more legs on the next set.

When you have corrected a set, a traverse table is printed for the set. This includes each leg number, direction, azimuth angle, and distance, and incremental and cumulative Northing and Easting. The cumulative Northing and Easting after the last leg on a closed survey gives the error of closure. Arc angle, radius, sector area, chord length, and tangent length are printed between the two auxiliary legs of each curved leg.

Following the printout of the last leg of a closed survey, the area of the plot will be printed, both in square feet and in acres. The area computed is very accurate provided two conditions are met:

1. The error of closure is small (0.01 feet is usual for a house lot), and
2. The area is sufficiently small that curvature of the earth does not become significant. Surveys covering several tens of miles have to account for this latter factor.

Example:

The figure below illustrates the boundaries of a lot with one curved side. The leg numbers are circled. Bearings and distances are shown for each leg. Find the error of closure and lot area.

MAP CHECK

OPEN (1) OR CLOSED (0) SURVEY? 0

NEXT SET OF LEGS:

LEG NO. 1
QUADRANT, DEGREES, MINUTES, SECONDS
? 2, 39, 0, 0
DISTANCE (NEGATIVE IF OUTWARD RADIUS)? 149.83
LEG NO. 2
QUADRANT, DEGREES, MINUTES, SECONDS
? 2, 39, 0, 0
DISTANCE
(NEGATIVE IF OUTWARD RADIUS)? 50

LEG NO. 3
QUADRANT, DEGREES, MINUTES, SECONDS
? 4, 85, 23, 53
DISTANCE
(NEGATIVE IF OUTWARD RADIUS)? -50

LEG NO. 4
QUADRANT, DEGREES, MINUTES, SECONDS
? 4, 85, 23, 53
DISTANCE
(NEGATIVE IF OUTWARD RADIUS)? 114.32

LEG NO. 5
QUADRANT, DEGREES, MINUTES, SECONDS
? 1, 15, 0
DISTANCE
(NEGATIVE IF OUTWARD RADIUS)? 132.78

LEG NO. 6
QUADRANT, DEGREES, MINUTES, SECONDS
? 1, 46, 0, 0
DISTANCE
(NEGATIVE IF OUTWARD RADIUS)? 14

LEG NO. 7
QUADRANT, DEGREES, MINUTES, SECONDS
? 2, 39, 0, 0
DISTANCE
(NEGATIVE IF OUTWARD RADIUS)? 25.46

LEG NO. 8
QUADRANT, DEGREES, MINUTES, SECONDS
? 0, 0, 0, 0
CORRECT WHICH LEG IN THIS SET
(0 = NO MORE CHANGES)? 0
ORIGIN 0 / 0

LEG/DIR. 1 / SE
AZIMUTH/DIST. = 141 0 0 / 149.83
DEL N/DEL E = -116.43968 / 94.29119616
NORTHING/EASTING = -116.43968 / 94.29119616

LEG/DIR. 2 / SE
AZIMUTH/DIST. = 141 0 0 / 50
DEL N/DEL E = -38.85726511 / 31.46606025
NORTHING/EASTING = -155.296945 / 125.757256

PRESS ‘RETURN’ FOR NEXT SET OF LEGS?
ARC: 46 23 53
R= 50 A= 2024.497063 C= 39.39263084 T= 54.3985565

LEG/DIR. 3 / NW
AZIMUTH/DIST. = 274 36 7 / 50
DEL N/DEL E = 4.01158153 / -49.83881252
NORTHING/EASTING = -151.285364 / 75.918444

LEG/DIR. 4 / NW
AZIMUTH/DIST. = 274 36 7 / 114.32
DEL N/DEL E = 9.17208002 / -113.95146
NORTHING/EASTING = -142.113284 / -38.033016

PRESS 'RETURN' FOR NEXT SET OF LEGS?

LEG/DIR. 5 / NE
AZIMUTH/DIST. = 1 4 60 / 132.78
DEL N/DEL E = 132.756285 / 2.51041923
NORTHING/EASTING = -9.357019 / -35.52259677

LEG/DIR. 6 / NE
AZIMUTH/DIST. = 46 0 0 / 14
DEL N/DEL E = 9.72521719 / 10.07075725
NORTHING/EASTING = 0.36819819 / -25.45183952

PRESS 'RETURN' FOR NEXT SET OF LEGS?

LEG/DIR. 7 / SE
AZIMUTH/DIST. = 91 0 0 / 25.46
DEL N/DEL E = -0.444338241 / 25.45612243
NORTHING/EASTING = -0.0761356341 / 4.28291E-03

ANY MORE LEGS (1=YES, 0=NO)? 0
PLOT AREA IS 13347.6721 SQ. FT.

PLOT AREA IS 0.30642039 ACRES

5 GRAPHICS 0
6 DIM W$(1)
10 REM - SURVEY CHECK
12 REM - FOR CLOSED SURVEY FOLLOW TRAVERSE CLOCKWISE
13 REM - KEEP PLOT TO RIGHT OF EACH PERIMETER LEG
14 REM - COMPUTE AUXILIARY LEGS AS RADIi AT EACH
15 REM - END OF ARC, ARCC180 DEGREES
16 REM
19 REM - KO = NUMBER OF LEGS PER SET
20 KO=10
30 DIM B(10),L(10)
49 REM - R IS THE CONVERSION FACTOR FOR DEGREES TO RADIANS
50 R=0.0174532925
52 REM - VALUE OF PI; PI=3.14159265
55 P1=3.14159265
60 PRINT "MAP CHECK":PRINT
70 PRINT "OPEN (1) OR CLOSED (0) SURVEY";
80 INPUT F
90 IF F=0 THEN 120
100 PRINT "ORIGIN: NORTHING, EASTING";
110 INPUT N,E
120 PRINT
122 PRINT "NEXT SET OF LEGS:"
124 PRINT
125 G=H
130 FOR K=1 TO KO
139 REM - INPUT BEARING AND DISTANCE FOR NEXT LEG
140 GOSUB 2000
149 REM - IF BEARING IS 0, END INPUT FOR THIS SET
150 IF G=0 THEN 170
155 G=G+1
160 GOTO 240
169 REM - ZERO UNUSED LEGS IN THIS SET
170 IF K=KO THEN 230
180 FOR J=K+1 TO KO
190 B(J)=0
200 L(J)=0
210 NEXT J
230 K=KO
240 NEXT K
260 PRINT "CORRECT WHICH LEG IN THIS SET"
261 PRINT " (0=NO MORE CHANGES)";
270 INPUT K
279 REM - NO CHANGES IF 0 INPUT
280 IF K=0 THEN 310
285 K=K-H
290 GOSUB 2000
300 GOTO 260
309 REM - COMPUTE VALUES AND PRINT TRAVERSE TABLE
310 GRAPHICS 0
320 PRINT "ORIGIN ";N," / ";E
340 PRINT
350 FOR K=1 TO KO
360 L1=L(K)
361 Z=Z+1
369 REM - CHECK FOR ARC
370 IF L1<0 THEN 1100
380 IF L1=0 THEN 900
388 REM - COMPUTE NORTHING/EASTING INCREMENT (CONVERT BEARINGS FROM
389 REM - DEGREES TO RADIANS)
390 L=L(K)*COS(B(K)*R)
400 D=L(K)*SIN(B(K)*R)
410 N=N+L
420 E=E+D
429 REM - INCREMENT AREA
430 A=A-E*L+N*D
440 PRINT "LEG/DIR. ";H+K," / ";
449 REM - FROM BEARING, DETERMINE DIRECTION
450 IF B(K)=0 THEN 470
460 GOTO 490
470 PRINT "N"
480 GOTO 830
490 IF B(K)<90 THEN 510
500 GOTO 530
510 PRINT "NE"
520 GOTO 830
530 IF B(K)=90 THEN 550
540 GOTO 570
550 PRINT "E"
560 GOTO 830
570 IF B(K)<180 THEN 590
580 GOTO 610
590 PRINT "SE"
600 GOTO 830
610 IF B(K)=180 THEN 630
620 GOTO 650
630 PRINT "S"
640 GOTO 830
650 IF B(K)<270 THEN 670
660 GOTO 690
670 PRINT "SW"
680 GOTO 830
690 IF B(K)=270 THEN 710
700 GOTO 730
710 PRINT "W"
720 GOTO 830
730 IF B(K)<360 THEN 750
740 GOTO 770
750 PRINT "NW"
760 GOTO 830
770 IF B(K)=360 THEN 790
780 GOTO 810
790 PRINT "N"
800 GOTO 830
810 B(K)=B(K)-360
820 GOTO 450
829 REM - BREAK BEARING INTO DEGREES, MINUTES, SECONDS
830 D1=INT(B(K))
840 M1=(B(K)-D1)*60
850 M=INT(M1)
860 S=INT((M1-M)*60+0.5)
870 PRINT "AZIMUTH/DIST. = ";
872 PRINT D1; "°;M1; "°S;" / ";L(K)
880 PRINT "DEL N/DEL E = ";
881 PRINT L1; / ";I D
882 PRINT "NORTING/EASTING = ";
883 PRINT N; / ";E
885 PRINT
890 L(K)=L1
891 IF Z<2 THEN 900
895 PRINT "PRESS 'RETURN' FOR NEXT SET OF LEGS";
896 INPUT W$
897 PRINT
898 Z=0
900 NEXT K
910 H=G
920 PRINT "ANY MORE LEGS (1=YES, 0=NO)";
930 INPUT U
940 IF U<>0 THEN 120
949 REM - NO AREA FOR OPEN SURVEY
950 IF F<>0 THEN 1000
960 A=ABS(A/2)
970 PRINT "PLOT AREA IS ";A; " SQ. FT."
980 PRINT
990 PRINT "PLOT AREA IS ";INT(A/43560*100000000+0.5)/100000000; " ACRES"
1000 GOTO 2280
1099 REM - CALCULATE CURVED LEG AND PRINT ON TRANSVERSE TABLE:
1100 C=ABS(B(K)-B(K-1))
1110 C=ABS(180-C)
1120 D=-L1
1130 L(K)=D
1140 A1=C/180*PI*D*D
1150 C1=2*D*SIN(C/2*R)
1160 T=D*(SGN(C/2*R)/COS(C/2*R))
1170 B9=B(K)-B(K-1)
1180 IF B9<-180 THEN 1210
1190 IF B9>180 THEN 1210
1200 IF B9>0 THEN 1230
1210 A=A+A1
1220 GOTO 1240
1230 A=A-A1
1240 D1=INT(C)
1250 M1=(C-D1)*60
1260 M=INT(M1)
1270 S=INT((M1-M)*60+0.5)
1280 PRINT "ARC: ";
1281 PRINT D1; " ;M1; " ;S
1282 PRINT "R= ";D1; " A= " ;A1;
1290 PRINT "C= ";C1; " T= ";T
1300 PRINT
1320 GOTO 390
1999 REM - INPUT DATA FOR ONE LEG
2000 B(K)=0
2010 L(K)=0
2020 PRINT "LEG NO. ";H+K
2021 PRINT "QUADRANT, DEGREES, ";
2022 PRINT "MINUTES, SECONDS"
2030 INPUT Q,D,M,S
2040 IF Q=0 THEN 2270
2050 IF Q>4 THEN 2020
2060 IF Q<0 THEN 2020
2070 IF D<0 THEN 2020
2080 IF M<0 THEN 2020
2090 IF S<0 THEN 2020
2100 B(K)=D+(M+S/60)/60
2110 IF B(K)<-90 THEN 2020
2120 IF Q=1 THEN 2220
2130 IF Q=2 THEN 2150
2140 GOTO 2170
2150 B(K)=180-B(K)
2160 GOTO 2220
2170 IF Q=3 THEN 2190
2180 GOTO 2210
2190 B(K)=180+B(K)
2200 GOTO 2220
2210 IF @<4 THEN 2220
2215 B(K)=360-B(K)
2220 PRINT "DISTANCE "
2221 PRINT "(NEGATIVE IF OUTWARD RADIUS)"
2230 INPUT X
2232 L(K)=X
2234 PRINT
2240 IF L(K)>0 THEN 2270
2250 IF ABS(L(K))<ABS(L(K-1)) THEN 2220
2270 RETURN
2280 END
Day of the Week

This program calculates the day of the week that a given date falls on. It will figure, for example, that December 25, 1985 will be a Wednesday.

You must enter the date in numeric form and in the order of month, day, year. September 12, 1975 will be entered as 9,12,1975, making certain that commas, not slashes or dashes, separate the figures.

Examples:

Cindy's birthdate is March 4, 1953. On what day was she born?

Uncle Lon has an appointment on September 30, 1977. What day does that fall on?

DAY OF THE WEEK

(ENTER 0,0,0 TO END PROGRAM)
MONTH, DAY, YEAR? 3,4,1953
WEDNESDAY

MONTH, DAY, YEAR? 9,30,1977
FRIDAY

MONTH, DAY, YEAR? 0,0,0

5 GRAPHICS 0
10 PRINT "DAY OF THE WEEK"
20 PRINT
29 REM - REQUEST USER INPUT
30 PRINT "(ENTER 0,0,0 TO END PROGRAM)"
40 PRINT "MONTH, DAY, YEAR;"
50 INPUT M,D,Y
59 REM - TEST FOR END OF PROGRAM
60 IF M>0 THEN 100
70 IF D>0 THEN 100
80 IF Y>0 THEN 100
90 GOTO 360
99 REM - NEED TO ADJUST INPUT FOR CALCULATIONS?
100 IF M>2 THEN 130
109 REM - ADJUST INPUT
110 M=M+12
120 Y=Y-1
129 REM - CALCULATE DAY NUMBER
130 N=D+2*M+INT(.6*(M+1))+Y+INT(Y/4)-INT(Y/100)+INT(Y/400)+2
140 N=INT((N/7-INT(N/7))*7+0.5)
149 REM - FIND CORRECT DAY NUMBER, TRANSLATE TO DAY, PRINT
150 IF N>0 THEN 180
160 PRINT "SATURDAY"
170 GOTO 340
180 IF N>1 THEN 210
190 PRINT "SUNDAY"
200 GOTO 340
210 IF N>2 THEN 240
220 PRINT "MONDAY"
230 GOTO 340
240 IF N>3 THEN 270
250 PRINT "TUESDAY"
260 GOTO 340
270 IF N>4 THEN 300
280 PRINT "WEDNESDAY"
290 GOTO 340
300 IF N>5 THEN 330
310 PRINT "THURSDAY"
320 GOTO 340
330 PRINT "FRIDAY"
340 PRINT
349 REM - RESTART PROGRAM
350 GOTO 40
360 END
Days Between Two Dates

This program calculates the number of days between two given dates. Leap years are taken into account.

The program assumes there is one day between today and tomorrow. For instance, there are two days between March 1 and March 3 of the same year.

There are a few precautions to assure the proper use of this program. First, you must be certain to enter the earlier date first. Second, dates must be entered in number form (3, not MARCH) and in the correct order (month, day, year, i.e., 3,17,1976). Commas, not slashes or dashes, must separate the figures. Third, the year must not be abbreviated (1976, not 76), even if both dates are in the same century. Finally, the month entered must not be greater than 12 and the days no greater than the number of days in the particular month. If such is the case, the message UNREAL DATE is printed to alert you to the fact that an unreal date (such as 14,32,1975) has been entered. An incorrect answer is likely to result.

Example:

John's birthdate is August 8, 1951. How many days old will he be on his 30th birthday?

DAYS BETWEEN TWO DATES

FIRST DATE? 8,8,1951
SECOND DATE? 8,8,1981
DIFFERENCE = 10958 DAYS

MORE DATA (1=YES, 0=NO)? 0

5 GRAPHICS 0
10 PRINT "DAYS BETWEEN TWO DATES"
20 PRINT
29 REM - STATEMENTS 30 TO 60 REQUEST USER INPUT
30 PRINT "FIRST DATE";
40 INPUT M1,D1,Y1
50 PRINT "SECOND DATE";
60 INPUT M2,D2,Y2
69 REM - SET VARIABLES TO BE USED IN SUBROUTINE
70 M=M1
80 D=D1
90 Y=Y1
100 GOSUB 230
109 REM - SAVE COMPUTED NUMBER OF DAYS IN N
110 N=A
119 REM - SET VARIABLES TO BE USED IN SUBROUTINE
120 M=M2
130 D=D2
140 Y=Y2
150 GOSUB 230
159 REM - CALCULATE DIFFERENCE AND PRINT
160 N=A-N
170 PRINT "DIFFERENCE = ";N;" DAYS"
180 PRINT
189 REM - RESTART OR END PROGRAM? USER INPUT REQUIRED
190 PRINT "MORE DATA (1=YES, 0=NO)";
200 INPUT X
210 IF X=1 THEN 20
219 REM - END PROGRAM
220 GOTO 460
227 REM - SUBROUTINE TO COMPUTE NUMBER OF DAYS FROM 0/0/0/ TO M/D/Y
228 REM - START WITH TEST FOR UNREAL DATE
229 REM - GO TO CORRECT TEST DEPENDING ON NUMBER OF DAYS IN THE MONTH
240 PRINT "UNREAL DATE"
249 REM - STOP CALCULATIONS, RETURN TO MAIN PROGRAM
250 RETURN
259 REM - MONTH HAS 31 DAYS
260 IF D>31 THEN 240
270 GOTO 350
279 REM - MONTH IS FEBRUARY; A LEAP YEAR?
280 IF Y/4<>INT(Y/4) THEN 310
290 IF Y/400=INT(Y/400) THEN 320
300 IF Y/100<>INT(Y/100) THEN 320
309 REM - NOT A LEAP YEAR; MONTH HAS 28 DAYS
310 IF D>28 THEN 240
319 REM - A LEAP YEAR; MONTH HAS 29 DAYS
320 IF D>29 THEN 240
330 GOTO 350
339 REM - MONTH HAS 30 DAYS
340 IF D>30 THEN 240
349 REM - TABLE OF NUMBER OF DAYS FROM FIRST OF YEAR TO FIRST OF EACH
350 MONTH
351 DATA 0,31,59,90,120,151,181,212
352 DATA 243,273,304,334
360 RESTORE
361 FOR O=1 TO M
362 READ A
363 NEXT O
369 REM - GET NUMBER OF DAYS FROM JANUARY 1 TO FIRST OF MONTH FROM DATA
370 TABLE
379 REM - COMPUTE NUMBER OF DAYS FROM 0/0/0 TO M/D/Y
380 A=A+Y*365+INT(Y/4)+D+1-INT(Y/100)+INT(Y/400)
389 REM - POSSIBLY A LEAP YEAR?
390 IF INT(Y/4)<Y/4 THEN 450
409 REM - CONTINUE TEST FOR LEAP YEAR
410 IF Y/400=INT(Y/400) THEN 430
420 IF Y/100=INT(Y/100) THEN 440
428 REM - IF MONTH IS JANUARY OR FEBRUARY, ADJUST CALCULATED NUMBER OF
430 DAYS
430 IF M>2 THEN 450
440 A=A-1
449 REM - END OF SUBROUTINE, RETURN TO MAIN PROGRAM
450 RETURN
460 END
OPTION

To shorten this program you may wish to omit the test for unreal dates. It should be noted that if a month of more than 12 is entered when this test is omitted, an input error will result. The program lines which may be deleted are listed following the example below.

Example:

How many days are there between July 4 and Christmas?

DAYS BETWEEN TWO DATES

FIRST DATE? 7,4,1977
SECOND DATE? 12,25,1977
DIFFERENCE = 174 DAYS

MORE DATA (1=YES, 0=NO)? 0

1 REM - OPTION 100, 150, 228-340
5 GRAPHICS 0
10 PRINT "DAYS BETWEEN TWO DATES"
...
90 Y=Y1
100 GOSUB 350
109 REM - SAVE COMPUTED NUMBER OF DAYS IN N
...
140 Y=Y2
150 GOSUB 350
159 REM - CALCULATE DIFFERENCE AND PRINT
...
227 REM - SUBROUTINE TO COMPUTE NUMBER OF DAYS FROM 0/0/0 TO M/D/Y
(Delete lines 228-340)
349 REM - TABLE OF NUMBER OF DAYS FROM FIRST OF YEAR TO FIRST OF EACH
MONTH
...
450 RETURN
460 END
Anglo to Metric

This program converts a measure given in anglo units to metric units. The conversions available in this program are as follows:

1. Inches to centimeters
2. Feet to centimeters
3. Feet to meters
4. Yards to meters
5. Miles to kilometers
6. Teaspoons to cubic centimeters
7. Tablespoons to cubic centimeters
8. Cups to liters
9. Pints to liters
10. Quarts to liters
11. Gallons to liters
12. Bushels to liters
13. Pecks to liters
14. Ounces to grams
15. Pounds to kilograms
16. Tons to kilograms
17. Degrees Fahrenheit to degrees Celsius

You must provide the value of the anglo measurement and the number of the conversion (1 - 17 as listed above) which you wish to perform.

Example:

Perform the following conversions:

8.5 miles to kilometers
75° Fahrenheit to degrees Celsius
10 gallons to liters

ANGLO TO METRIC

(TO END PROGRAM TYPE 0)
WHICH CONVERSION DO YOU NEED? 5

VALUE TO BE CONVERTED? 8.5

8.5 MILES = 13.6765 KILOMETERS

WHICH CONVERSION DO YOU NEED? 17

VALUE TO BE CONVERTED? 75

75 DEGREES FAHRENHEIT
= 23.88888888 CELSIUS

WHICH CONVERSION DO YOU NEED? 11
VALUE TO BE CONVERTED? 10

10 GALLONS = 37.85 LITERS

WHICH CONVERSION DO YOU NEED? 0

5 GRAPHICS 0
10 PRINT "ANGLO TO METRIC"
20 PRINT
29 REM - ESTABLISH VARIABLES FOR 17 CONVERSION FACTORS
30 DIM C(17)
39 REM - LOOP TO ASSIGN CONVERSION FACTORS INTO C()
40 FOR N=1 TO 17
50 READ X
52 C(N)=X
60 NEXT N
69 REM - DATA TABLE OF SEVENTEEN CONVERSION FACTORS
70 DATA 2.540,30.480,.3048,.9144
71 DATA 1.609,4.929,14.788,.2366
72 DATA .4732,.9463,3.785,35.24
73 DATA 8.809,28.3495,.4536,907.2
80 DATA .6214
89 REM - GET NUMBER OF CONVERSION FROM PROGRAM DESCRIPTION
90 PRINT "(TO END PROGRAM TYPE 0)"
100 PRINT "WHICH CONVERSION ";
101 PRINT "DO YOU NEED":
110 INPUT N:PRINT
119 REM - END PROGRAM?
120 IF N=0 THEN 540
129 REM - CONVERSION AVAILABLE?
130 IF N>17 THEN 100
140 PRINT "VALUE TO BE CONVERTED";
150 INPUT I
152 PRINT
159 REM - PERFORM CONVERSION USING PROPER CONVERSION FACTOR
160 R=I*C(N)
169 REM - DIRECT PROGRAM TO PROPER CONVERSION UNITS, PRINT RESULTS
170 IF N<10 THEN 175
173 ON N-9 GOTO 360,380,400,420,440,460,480,500
175 ON N GOTO 180,200,220,240,260,280,300,320,340
180 PRINT I;" INCHES = ";R;" CENTIMETERS"
190 GOTO 520
200 PRINT I;" FEET = ";R;" CENTIMETERS"
210 GOTO 520
220 PRINT I;" FEET = ";R;" METERS"
230 GOTO 520
240 PRINT I;" YARDS = ";R;" METERS"
250 GOTO 520
260 PRINT I;" MILES = ";R;" KILOMETERS"
270 GOTO 520
280 PRINT I;" TSP. = ";R;" CUBIC CENTIMETERS"
290 GOTO 520
300 PRINT I;" TBSP. = ";R;" CUBIC CENTIMETERS"
310 GOTO 520
320 PRINT I;" CUPS = ";R;" LITERS"
330 GOTO 520
340 PRINT I:" PINTS = ";R:" LITERS"
350 GOTO 520
360 PRINT I:" QUARTS = ";R:" LITERS"
370 GOTO 520
380 PRINT I:" GALLONS = ";R:" LITERS"
390 GOTO 520
400 PRINT I:" BUSHELS = ";R:" LITERS"
410 GOTO 520
420 PRINT I:" PECKS = ";R:" LITERS"
430 GOTO 520
440 PRINT I:" OUNCES = ";R:" GRAMS"
450 GOTO 520
460 PRINT I:" POUNDS = ";R:" KILOGRAMS"
470 GOTO 520
480 PRINT I:" TONS = ";R:" KILOGRAMS"
490 GOTO 520
499 REM -- CONVERT FROM DEGREES FAHRENHEIT TO CELSIUS
500 R=(I-32)*5/9
510 PRINT I:" DEGREES FAHRENHEIT"
511 PRINT ";R:" CELSIUS"
520 PRINT
522 PRINT
529 REM -- RESTART PROGRAM
530 GOTO 100
540 END
Alphabetize

This program alphabetizes a list of words or phrases. Numbers may be part of an alphanumeric phrase. However, they will not be put into numeric order unless they contain the same number of digits. Numbers with fewer digits must be justified to the right by prefixing zeros. Thus, if the numbers you are sorting range into the hundreds, the number 13 would be entered as 013.

To save memory space, the value of \(Y \) at statement 65 should be limited to the number of characters of the longest item you wish alphabetized. The statement should be altered in the following manner:

\[
65 \quad Y = L
\]

where \(L \) = length of largest item to be entered.

Example:

Alphabetize the following names:

Robert Wilson
Susan W. James
Kent Smith
Michael Mitchell
Ann T. McGowan
Alexander Lee II
Mary Mitchell
David Bowers
Steven Evans
Carol Jameson
Linda North

ALPHABETIZE

(TO END PROGRAM ENTER 0)

NUMBER OF ITEMS? 11
ITEM 1? WILSON ROBERT
ITEM 2? JAMES SUSAN W.
ITEM 3? SMITH KENT
ITEM 4? MITCHELL MICHAEL
ITEM 5? MCGOWAN ANN T.
ITEM 6? LEE ALEXANDER II
ITEM 7? MITCHELL MARY
ITEM 8? BOWERS DAVID
ITEM 9? EVANS STEVEN
ITEM 10? JAMESON CAROL
ITEM 11? NORTH LINDA
BOWERS DAVID
EVANS STEVEN
JAMES SUSAN W.
JAMESON CAROL
LEE ALEXANDER II
MCGOWAN ANN T.
M Mitchell Mary
M Mitchell Michael
N North Linda
S Smith Kent
W Wilson Robert

NUMBER OF ITEMS? 0

5 GRAPHICS 0
10 PRINT "ALPHABETIZE"
11 REM - CHANGE LINE 65 TO REFLECT CORRECT VALUE OF Y
12 REM - WHERE Y = LENGTH OF LONGEST ITEM TO BE ENTERED
20 PRINT
30 PRINT "(TO END PROGRAM ENTER 0)"
40 PRINT "NUMBER OF ITEMS";
50 INPUT N
60 IF N=0 THEN 330
65 Y=30
70 DIM A$(Y), B$(Y), A(N,Y), W$(1)
80 FOR I=1 TO N
90 PRINT "ITEM ":I;
100 INPUT A$
101 REM - STORE ITEM IN ARRAY 'A'
102 FOR J=1 TO LEN(A$)
103 A(I,J)=ASC(A$(J,J))
104 NEXT J
105 REM -*FILL UNUSED CHARACTERS WITH SPACES
106 IF LEN(A$)<Y THEN 110
107 FOR J=LEN(A$)+1 TO Y
108 A(I,J)=32
109 NEXT J
110 NEXT I
120 M=N
125 REM - THE SORT TECHNIQUE USED COMPARES DATA ITEMS IN
126 REM - DIMINISHING INCREMENTS. THE FIRST PASS COMPARES ITEMS
127 REM - N/2 ELEMENTS APART, THE SECOND (N/2)/2 ELEMENTS APART
128 REM - AND SO ON UNTIL THE INCREMENT IS EXHAUSTED.
130 M=INT(M/2)
135 IF M=0 THEN 280
140 K=N-M
145 J=1
150 I=J
155 L=I+M
160 REM - CONVERT TWO VALUES TO STRINGS
165 FOR X=1 TO Y
166 A$(X,X)=CHR$(A(I,X))
167 B$(X,X)=CHR$(A(L,X))
170 NEXT X
175 REM - COMPARE THE STRINGS
176 IF A$<B$ THEN 250
180 REM - EXCHANGE IF NOT IN ORDER
185 FOR X=1 TO Y
190 Z=A(I,X)
195 A(I,X)=A(L,X)
200 A(L,X)=Z
205 NEXT X
226 REM
230 I=1 TO N
240 IF I>=1 THEN 180
250 J=J+1
260 IF J>=K THEN 130
270 GOTO 170
275 REM SORT COMPLETE, OUTPUT RESULTS
280 FOR I=1 TO N
281 REM - CHECK FOR FULL SCREEN (20 LINES)
282 IF I/20>=INT(I/20) THEN 290
283 REM - WAIT FOR OPERATOR CUE TO GO TO NEXT SCREEN
284 PRINT "PRESS 'RETURN' TO CONTINUE";
285 INPUT W$
286 REM VALUES OUTPUT ONE CHARACTER AT A TIME
290 FOR X=1 TO Y
292 PRINT CHR$(A(I,X))
294 NEXT X
296 PRINT
300 NEXT I
310 PRINT
319 REM - UNDIMENSION ARRAYS, RESTART PROGRAM
320 CLR
325 GOTO 40
330 END

OPTION

You may wish your list alphabetized in reverse, or from highest to lowest. The necessary program changes are listed following the example below.

Example:

The scores on a math test range from 82 to 117. Put the students in order according to their scores, from highest to lowest.

89 Bowers
102 Evans
111 James
100 Jameson
99 Lee
117 McGowan
102 Mitchell
82 Mitchell
97 North
91 Smith
108 Wilson

ALPHABETIZE

(TO END PROGRAM ENTER 0)
NUMBER OF ITEMS? 11
ITEM 1? 089 BOWERS
ITEM 2? 102 EVANS
ITEM 3? 111 JAMES
ITEM 4? 100 JAMESON
ITEM 5? 099 LEE
ITEM 6? 117 MCGOWAN
ITEM 7? 102 MITCHELL
ITEM 8? 082 MITCHELL
ITEM 9? 097 NORTH
ITEM 10? 091 SMITH
ITEM 11? 108 WILSON

117 MCGOWAN
111 JAMES
108 WILSON
102 MITCHELL
102 EVANS
100 JAMESON
099 LEE
097 NORTH
091 SMITH
089 BOWERS
082 MITCHELL

NUMBER OF ITEMS? 0

1 REM - OPTION 195
5 GRAPHICS 0
10 PRINT "ALPHABETIZE"
...
190 NEXT X
195 IF A$>B$ THEN 250
198 FOR X=1 TO 30
...
330 END
References

Other OSBORNE/McGraw-Hill Publications

An Introduction to Microcomputers: Volume 0 — The Beginner's Book
An Introduction to Microcomputers: Volume 1 — Basic Concepts, 2nd Edition
An Introduction to Microcomputers: Volume 2 — Some Real Microprocessors
An Introduction to Microcomputers: Volume 3 — Some Real Support Devices
Osborne 4 & 8-Bit Microprocessor Handbook
Osborne 16-Bit Microprocessor Handbook
8089 I/O Processor Handbook
CRT Controller Handbook
68000 Microprocessor Handbook
8080A/8085 Assembly Language Programming
6800 Assembly Language Programming
Z80 Assembly Language Programming
6502 Assembly Language Programming
Z8000 Assembly Language Programming
6809 Assembly Language Programming
Running Wild — The Next Industrial Revolution
The 8086 Book
PET and the IEEE 488 Bus(GPIB)
Business System Buyer's Guide
OSBORNE CP/M® User Guide
Apple II® User's Guide
Microprocessors for Measurement & Control
Some Common BASIC Programs
Some Common BASIC Programs — PET/CBM Edition
some Common BASIC Programs — TRS-80™ Level II Edition
Practical BASIC Programs
Payroll with Cost Accounting
Accounts Payable and Accounts Receivable
General Ledger
8080 Programming for Logic Design
6800 Programming for Logic Design
Z80 Programming for Logic Design
Some Common BASIC Programs

Atari® Edition

You can key these 76 short programs directly into your Atari® 400 or 800 computer and own a powerful collection of financial, statistical, and mathematics programs. Each program is presented with complete source listings, documentation, and sample execution. They will provide a rich addition to your programming library.

Other Osborne/McGraw-Hill publications for your Atari® computer include:

- Atari® 400/800™ User Guide
- 6502 Assembly Language Subroutines
- 6502 Assembly Language Programming

Atari 400/800 are trademarks of Atari, Inc.