
«

?

//////7/////////

AATARI- |T BAS'c;
Sourcebook
and Tutorial

A Programming Language
for the ST™ Computer

////////////////
Every effort has been made to ensure the accuracy of the product documentation
in this manual. However, because we are constantly improving and updating our
computer software and hardware, Atari Corp. is unable to guarantee the accuracy _
of printed material after the date of publication and disclaims liability for changes,
errors, and omissions. '

ATARI, ST, ST BASIC, TOS, and 520ST are trademarks or registered trademarks of _
Atari Corp,

GEM is a trademark of Digital Research Inc.

VT is a trademark of Digital Equipment Corporation. "^

No reproduction of this document or any portion of its contents is allowed without
the specific written permission of Atari Corp., Sunnyvale, CA 94086.

A ATARI*
©1986 Atari Corp. All Rights Reserved.

~

ft

m

-

pi

m

IBuoinj.pub

^ooqeojnos

ruOisvais

96en6uB-|6u!Wwej6ojdV

®WV1VY

////////////////

r

—

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

s§

////////////////
INTRODUCTION

J BASIC is the most commonly used computer programming
language. It is easy-to-learn, yet still a powerful programming tool.

u ST BASIC is very similar to the mainstream dialects of BASIC, but
it takes advantage of the windows, drop-down menus, and graphic
icons of the GEM™ Desktop. This version of BASIC also takes

-" advantage of the speed and graphic capabilities of the
ST™ Computer System.

How To Use This Manual
The ST BASIC Sourcebook and Tutorial is set up for easy access
to all the information a programmer needs. Both the first-time pro
grammer and the professional will find all the information to satisfy
their level of programming expertise. It is recommended that you
use this manual as a companion to your ATARI ST Owner's
Manual.

w Chapter 1, Getting Started With ST BASIC, is intended for use by
all programmers. The chapter explains how to load the ST BASIC
program and demonstrates the unique aspects of the program. For
the experienced programmer, the section on "Writing an ST BASIC
Program" is a short course on programming, showing how ST
BASIC works within the GEM operating environment.

J

u

w

U

Chapter 2, Programming With ST BASIC, is a tutorial on ST
BASIC showing the beginning programmer how to use and
enjoy this unique version of the BASIC language.

Chapter 3, ST BASIC Menus, provides a detailed description of
each ST BASIC menu. All menu options and Dialog Boxes that are
accessible from the ST BASIC Desktop are individually described.

The Appendices to this manual provide a comprehensive reference
source for every aspect of ST BASIC. Appendices A, B, C, D, and I
are the primary references for most programmers. Appendix A
lists every reserved word in the language. Appendix B details ST
BASIC'S operators, order of precedences, and reviews the syntax
of the language. Appendix C defines and explains every ST BASIC
command, function, and statement. Appendix D lists and describes
each ST BASIC Error Message. And Appendix I, the Glossary, is

////////////////':
a convenient resource for all programmers. The remainder of the
appendices offer specialized information for different levels
of programming needs, including sample programs for beginning
and advanced programmers.

Note: Advanced programmers can refer to the descriptions
of GEMSYS and VDISYS in Appendix C of this manual for an
introduction to the operating system interface.

The manual also has an Index to help you find information quickly
and efficiently. And if you have any additional questions, refer to
the Customer Support section.

For your convenience, a tear-out template showing the uses of
the special function keys on the ST keyboard has been provided.
Simply follow the instructions and attach the template to your
computer. _

*•>

r>

~

~

—

u

////////////////
TABLE OF CONTENTS
CHAPTER 1: GETTING STARTED WITH ST BASIC 1
Loading ST BASIC 1

With One Disk Drive 1
With Two Disk Drives 1

Touring the ST BASIC Desktop • 2
Windows 3
Menus '

Dialog Boxesand Error Messages •• 7
Special Features 8

Writing an ST BASIC Program 9
Entering a Program 9
Running a Program 10
Editing a Program 11
Debugging a Program 15
Saving a Program 17
Loading a Program 18
Merging Programs 18
Deleting a Program 19
Leaving ST BASIC 19

— Typing Commands 19
Enhancing ST BASIC'S Memory 20

u With Buffered Graphics •• 20
U Without Buffered Graphics 20

CHAPTER 2: PROGRAMMING WITH ST BASIC 21
w Commands, Statements, and Functions 21

Commands 21
w Statements 21
\j Functions 22

Input and Output (I/O) 22
^ Data Statements 24

Program Control 25
Loops 26

U Logical Operators 29
ON... GOTO 31
GOSUB ... RETURN 33
ON . .. GOSUB ... RETURN 33

Programming Tips and Shortcuts 34
The Guessing Game 34

\j Graphics 36
Screen Resolution 36

- GraphicsStatements 37

WKM

////////////////
Sound 46
Storing Information On Disk 47

Sequential Files 47
Random Access Files 49

Numeric Variables 49
Arrays 50

Advanced Concepts 54
DEFFN 54
Chaining Programs 55
Binary Files 55
Random Access Files 56

CHAPTER 3: ST BASIC MENUS 61
Desk 61

About ST BASIC 61
File 62
Load 62
Save As 63
Delete File 63
Merge 64
Quit 64

Run 64
Run 64
Break 64
Stop 65
Continue 65
Step 65
Buf Graphics 65

Edit 66
Start Edit 66
Exit Edit 66
Help Edit 67
Goto Line 67
Delete Lines 68
Insert Space 68
Delete Char 68
Insert Line 68
Remove Line 68
Page Up 68
Page Down 69
Load Text 69
Save Text 69
New Buffer 69
List 69

r\

s~\

_

•ar ^r ^r ////////

Debug 69
Tron 70
Troff 70
Trace 71
Untrace 71

APPENDIX A: ST BASIC RESERVED WORDS 73
APPENDIX B: OPERATORS, ORDER OF PRECEDENCE,
AND FUNCTION SUMMARY 75
APPENDIX C: COMMANDS, FUNCTIONS, AND STATEMENTS 81
APPENDIX D: ERROR MESSAGES 205

APPENDIX E: ST ASCII CHARACTER SET 207

APPENDIX F: ASSEMBLY LANGUAGE MODULES 211

APPENDIX G: DERIVED FUNCTIONS 213

APPENDIX H: SAMPLE PROGRAMS 215

APPENDIX I: GLOSSARY 229

CUSTOMER SUPPORT 235
INDEX 237

U

u

u

u

u

u

J

f
(
(
(
(
(
(
(
(
(
(

C
(
(
(
(
(
(
(
(
(

C
(
(
(
(
(
(

f
(

(
(

(

•'•5

A

id

u

w

u

u

u

u

////////////////
CHAPTER 1
GETTING STARTED WITH ST BASIC
This chapter provides a general introduction to ST BASIC and
demonstrates how the language works within the desktop
environment of the ST Computer System.

The chapter is divided into four main parts:

• Loading ST BASIC
• Touring the ST BASIC Desktop
• Writing an ST BASIC Program
• Enhancing ST BASIC'S Memory

Note: Before you begin programming with ST BASIC, you should
make a backup copy of the ST Language disk. Having a backup
disk provides security against accidentally erasing or damaging
your ST Language disk. Refer to the ATARI ST Owner's Manual
for complete instructions on making a backup disk.

LOADING ST BASIC
To begin using ST BASIC, you need to load the language program
into your ST Computer. Follow the instructions shown below to
load ST BASIC. If you have a one-drive system, follow the instruc
tions labeled, "With One Disk Drive." If you have a two-drive

U system, follow the instructions labeled, "With Two Disk Drives."

With One Disk Drive
w 1. With the ST Computer turned on and the GEM Desktop on the

video display screen, double-click on the Floppy Disk B icon.

2. When the Dialog Box prompts you to insert Disk B into Drive A,
place the ST Language disk into Drive A and press the [Return] key.

3. When the Floppy Disk window opens, double-click on the
BASIC.PRG icon or filename. The ST BASIC Desktop will appear
on the video display screen.

With Two Disk Drives
1. With the ST Computer turned on and the GEM Desktop on the
video display screen, insert the ST Language disk into Drive B and
double-click on the Floppy Disk B icon.

/ / / •/////// ///

2. When the Floppy Disk B window opens, double-click on the
BASIC.PRG icon or filename. The ST BASIC Desktop will appear
on the video display screen.

Desk File Run Edit Debug
LIST OUTPUT

ilk I

!♦

The ST BASIC Desktop is the main point of reference for all your
work with ST BASIC. The next two sections of this chapter show
how to write a simple program in ST BASIC and how the ST BASIC
Desktop works with the programming language.

Note: The ST BASIC screens in this manual are reproduced in
high-resolution mode. If you are working in low-resolution, the
screens will look differently on your display screen.

TOURING THE ST BASIC DESKTOP
ST BASIC uses the standard operating procedures of the GEM
Desktop. The procedures for accessing menu items, selecting
options, manipulating windows, and loading applications are
explained in detail in the ATARI ST Owner's Manual.

Note: ST BASIC programs can be written in either upper- or
lowercase characters. The program listings in this manual
are presented in uppercase letters, but you can enter and run
the programs in whichever case you choose.

m

m

w

////////////.
Windows
The ST BASIC programming environment includes four windows:
Command, Output, List, and Editor. After you load the ST BASIC
program and the ST BASIC Desktop appears on the screen, the
Command Window is active, and all four windows are available.
(The Edit Window is available, but only a small part is visible under
the List and Output Windows.)

The procedures for sizing, moving, opening, closing, scrolling, and
managing multiple windows are identical to the methods described
in Chapter 4 of the ATARI ST Owner's Manual. Please refer
to that manual for specific information.

The Command Window

ST BASIC commands and program lines are entered in the Com
mand Window. The Ok prompt indicates that ST BASIC is ready
for your command. Type:

PRINT"HELLO"

and press the [Return] key. The word HELLO will appear in the
Output Window. Type your name and press [Return] to see how
it works.

Desk File Run Edit Debug

Ok PRINT "HELLO"

Ok I

LIST OUTPUT

HELLO

///////.///<
Note: If you type something ST BASIC doesn't understand,
you will see the Error Message, "Something is wrong", in the
Command Window. An up caret symbol(A) will point to the place
in the program statement where ST BASIC found an error. For a
complete list of ST BASIC Error Messages, refer to Appendix D.

Your computer can function as a calculator by using the PRINT
command. Type: ~

print 2+2 [Return]

or use a question mark (?), the abbreviation for the PRINT
statement. Type: m

? 2+2 [Return]

The answer, 4, appears in the Output Window.

You can also use the numeric keypad for calculations. Type:

? [Space]

then use the keypad to enter:

cs+3J*t6+2J/4+2 [Enter]

The answer, 18, is in the Output Window. Notice how ST BASIC
handles arithmetic operations. The order of precedence is: Mul
tiply, Divide, Add, Subtract. (Think of "My Dear Aunt Sally.")

Note: Whenever a word like [Return] or [Esc] is enclosed
in square brackets in a programming example, press the
corresponding key on the ST Computer keyboard.

The Output Window
ST BASIC uses the Output Window to display the results of com
mands or program operations. All program input prompts(?) and all
output to the monitor appear in this window.

Type:

INPUT A

n

//////////. '//
When you press [Return.], a question mark will appear in the
Output Window. Type the number 2 and it appears in the Output
Window. Now press [Return]. The Ok prompt will reappear in the
Command Window.

Type:

18 PRINT "HELLO" [Return]

You have just written a one-line program in ST BASIC! Type:

run [Return]

The word HELLO will appear in the Output Window.

Desk File Run Edit Debug

LIST OUTPUT

HELLO

urn
t :«:

Dk IB PRINT "HELLO"
Ilk RUN
Dkl
0 4> s

//////////////A
The List Window

Type:

list [Return]

Your one-line program will appear in the List Window. This window
displays the program it has in memory. If you have a printer, you
can print a listing of your program by typing LLIST

Desk File Run Edit Debug

LIST

IB PRINT "HELLO"

Dk 16 PRINT "HELLO"

Dk RUN

Dk LIST

Dk I

OUTPUT

HELLO

The Edit Window
Type:

edit [Return]

Your program will appear in the Edit Window. All editing is done
in this window. Refer to "Writing an ST BASIC Program" for
more information on the Edit Window. Press the [F10] key to
leave the editor.

r\

~

_

/////////,
Desk File Run Edit Debug

LIST

38 PRINT "HELLO"

16

Dk IB

Dk RUN.

Dk LIST

Dk EDIT

J

OUTPUT

m.

Menus
The Menu Bar is located along the top edge of the ST BASIC
Desktop. The menu headings are Desk, File, Run, Edit, and Debug.
Each heading has its own menu. To see the options within any
menu, point at the menu heading with the mouse pointer. The
menu will automatically drop down. If you don't want to select a
menu item, click anywhere else on the ST BASIC Desktop. The
menu will pop back up. Refer to Chapter 3 for a description of
each menu.

Dialog Boxes and Error Messages
Dialog Boxes appear in the center of the ST BASIC Desktop
whenever the program requires information that is not being pro
vided in the program listing. Whenever an Error Message appears,
information concerning an ST BASIC format or procedure will be
displayed. For a complete listing of ST BASIC Error Messages,
refer to Appendix D.

To exit from a Dialog Box, point at one of the Exit buttons (either
the Ok or Exit button) and click on the left mouse button. If the
Exit button has an enlarged border, you can press the [Return] key
on the ST Computer keyboard rather than using the left mouse button.

////////////////
Special Features
ST BASIC has three special features to make entering and reading
your programs easier: AUTO Line Number Function, RENUM
Function, and Labels. _

AUTO Line Number Function m
Type:

auto [Return] 41

Two asterisks and the number 10 will appear in the Command
Window. The 10 is the first line number that generates the AUTO
number function. The asterisks indicate that there is already a
line 10 in memory.

Press [Return]. ST BASIC is now ready for you to enter line 20.
You haven't entered a line 20 yet, so there aren't any asterisks. ~

Type:

PRINT "I'M YOUR FAITHFUL ATARI COMPUTER" [Return]

You now have a two-line program in memory. To stop the AUTO
number function, press and hold down [Control], then press [G].

The Ok prompt will reappear in the Command Window. Type LIST
to list your program. Since line 20 is too long for the List Window,
click on the Size Box at the lower right edge of the List Window
and stretch the window until it is long enough to incorporate the
entire program listing.

RENUM Function

ST BASIC has a RENUM command that allows you to renumber
your program automatically. RENUM uses your disk drive, so be
sure you have a disk in it.

Note: This function will not work with a write-protected disk. To
use the RENUM function, push the write-protect tab on the disk to
the unprotected position. For more information on write protection,
refer to Chapter 6 of the ATARI ST Owner's Manual.

Type:

renum 30..1O..5 [Return]

8

^>

m

- ////////////////
When your disk drive stops and the Ok prompt reappears, list your

_ program by typing LIST. The old line 10 has become line 30. The
line number increment is 5, so the next line number is 35.

When you use the RENUM command, a copy of the renumbered
program is automatically saved under the filename BASIC.WRK.

- The RENUM command is explained in detail in Appendix C.

Labels
ST BASIC lets you use symbolic labels to help identify program
lines and subroutines. For example, using a statement like GOTO
DONE instead of GOTO 300 makes for more readable listings and
makes it easier to identify what each program line does for your
program.

WRITING AN ST BASIC PROGRAM
This section shows you how to write and use simple programming
techniques within the GEM Desktop environment. Follow the
instructions carefully.

Note: When you load the ST BASIC program, the default (or boot-
up) condition is lowercase letters for the ST BASIC programs. You
can change this to uppercase by pressing the [Caps Lock] key.

Entering a Program
If there is a program listing in the List Window, clear it by typing:

clearh i [Return]

Then type:

new [Return]

This clears any current program from memory. Type:

list [Return]

The LIST Window will now be blank. Type:

auto [Return]

and enter the program on the following page. Notice that the line
numbers are provided by ST BASIC. You do not have to enter

U the numbers.

9

//

10 REM COUNT. BAS

20 C=0

39 COUNT: • INCREMENT THE VARIABLE C

40 C=C + 1

50 PRINT C;

60 IF C=5 THEN PRINT "AGAIN !" :GOTO 20

70 GOTO COUNT

Now you have the COUNT.BAS program in memory.

Press [Control] [G] to stop the AUTO function.

This simple program illustrates a few ST BASIC features.

Line 10 has a REMark to help identify its function. The REMark is
ignored by ST BASIC. You can begin REMarks with a single quote
('), as in line 30.

Line 30 is identified by the label COUNT; line 70 uses the same
label in a GOTO statement. A label must be followed by a colon (:)
when defined; it must not be an ST BASIC reserved word; it must
begin with a letter; and it can't have any spaces in the label name.

Line 60 shows how to use the colon to put more than one com
mand on a program line. You can put as many commands as you
want on one line as long as you separate them with colons and
the line is no longer than 249 characters. Multiple commands on
a program line are referred to as a compound statement.

Running a Program
Select the Run menu from the Menu Bar.

Desk File | | Edit Debug
Run

Break

Stop
Continue
Step

V* But Braphlcs

OUTPUT

10

u

u

/////////////.
Click on the Run option. You will see:

12 3 4 5 AGAIN!

printing continuously in the Output Window. To stop the program,
click on the Break option in the Run menu. The message
— Break —at line . . . tells you where the program stopped run
ning. Type STOP [Return] to get out of Break mode. When your
program is in Break mode you can still use programming commands.

You can step (move) your program one line at a time by selecting
the Step option from the Run menu. Each time you press [Return],
the program will be stepped forward. Notice that the program lines
appear in the Command Window as they are executed. Type:

end [Return]

to cancel the STEP option.

Editing a Program
ST BASIC has an easy-to-use editor that allows you to make
changes in your program without having to re-enter an entire
program line. To edit your program, select the Edit menu.

Desk File Run •WW Debug

L Start Edit
Exit Edit

Help Edit
Soto Line ,.
Delete Lines

Insert Space
Delete Char

Insert Line

Resove Line
Page Up
Page Down
Load Text

Save Text
Hew Buffer

List

OUTPUT

9 t"--~r~^r—= -•- H

Click the Start Edit option (or type ED).

When you edit, you use the cursor keys to move the cursor to the
place on the screen where you want to insert or delete a
character or add or delete space.

11

///////////////A
Use the cursor controls keys to put the cursor on the first "A" in
the word "AGAIN" in line 60. You can now type over the word
"AGAIN". Type MORE. Notice that the type style changes to pre
sent a "ghost line". The "ghost lines" show you which lines have
been edited but not put into the program memory. Press [Return].
You still need to discard the "N" in "MOREN." Line 60 changes
back to the regular type style, indicating that the statement is
again part of the program.

Select the Help Edit option in the Edit menu.

HELP EDIT!

Insert Space - Fl
Delete Char - F2
Insert Line - F3
Delete Line - F4
Page Up - F5
Page Dowi - F6

Load Text - F7
Save Text - F8
New Buffer - F5
Exit Edit - FIB

J1 Ok

The Help Edit Dialog Box describes the function key commands
available with ST BASIC.

Click on the Ok button to continue.

In the following example, use the function keys to edit the
program. However, if you prefer, you can use the mouse and
the Edit menu options.

Delete Char/Insert Space
With the cursor on the "N" in MOREN, press the [F2] key. The
"N" disappears. Any time you press [F2], the character within the
cursor is deleted and the text to the right of the cursor is moved
one space to the left.

Move the cursor to the

11 times. Type:

DO IT SOME

12

'M" in the word "MORE". Press [F1]

////////////////
The line now reads:

60 IF C=5 THEN PRINT "DO IT SOME MORE ! " :GOTO 20

Press [Return] to enter the statement.

New Buffer
When you press [Return], the program lines you see in the Edit
Window are put into the program memory buffer. To see what is
actually in program memory, press [F9], New Buffer. The program
memory is now duplicated in the Edit Window. If you haven't
already pressed [Return], your original program will be in the
Edit Window.

Insert Line/Delete Line
Move the cursor to line 30. Press [F4]. Line 30 is deleted from the
program memory as indicated by the "ghost" type style. However,
the line remains in the Edit Window until you press New Buffer

w [F9]. This feature makes it easy to correct your mistakes. Simply
w place the cursor on line 30 and press [Return]. Once you press

New Buffer, the deleted line is erased from both the program
w memory and the Edit buffer. Press New Buffer. Line 30 is

now erased.

^ Move the cursor to line 50 and press [F3], Insert Line. Now there
is room to enter a new line. Type:

45 print "count"; [Return]

u You can press New Buffer to see that the new line is in program
memory.

The line numbers are beginning to get ragged, so renumber them.
mm

Make room for a new line by pressing [F3]. Then type RENUM
[Return]. When the cursor reappears, press New Buffer [F9]
and the program is renumbered.

The program now has a mistake (a bug). Line 70 says GOTO
COUNT, but you deleted the line labeled COUNT:.

Edit line 30 to read:

30 COUNT:C=C + 1

13

////////////////
You can RUN the program from the Edit Window by making room
for a line and typing:

run [Return]

Press [Control] [C] to stop the program and return to the Edit Window.

Note: When a progam is requesting INPUT, use [Control] [G]
to stop the program.

Load Text/Save Text

The ST BASIC editor will save the contents of the Edit Window
to your disk. But the editor can only save 24 lines of text. If the
program is longer than 24 text lines, none of the program lines
outside the window will be saved.

Note: This function is different from the Save As function in the
File menu. The Save As function saves complete programs which
can be loaded and RUN. With Load Text/Save Text, you can't
specify a filename, and the text saved doesn't necessarily have
to be an ST BASIC program.

Press [F8], Save Text. When the disk stops, your text has been saved.

Note: When you use the Save Text function, a file named
BASIC.BUF is saved.

Make room for a blank line and type NEW [Return], The NEW
command clears the program area. Press New Buffer [F9]. The ~
program area and Edit Windows are empty. To load the program
back into the Edit Window, press [F7]. The program text is back!
Remember, the program memory is still empty! Press New Buffer.
The program display disappears. The program moves from the Edit
Window to the program memory only when you press [Return]
after each line. _

Press [F7], Load Text. Now press [Return] for each program line.
Press New Buffer. Now your program is in both the Edit Window
and the program memory.

Page Up/Page Down '
The Page Up [F5] and Page Down [F6] functions allow you to edit
programs that are larger than the program window. Page Up [F5]
allows you to look at program lines toward the beginning of a pro
gram. Page Down [F6] takes you towards the end of a program.

14

~

r\

rs

w

-

u

////////////////
Note: The maximum visible line length is 80 characters in medium
or high resolution. If you type off of the edge of the visible window,
the text in the screen will move to the left so you can see what
you're typing. You can type up to 80 characters in the Edit Win
dow. If you attempt to edit a program that has lines longer than 80
characters, the part of the line beyond character 80 will be printed
on the line below the first part of the line. It will only be included
as part of the program line if the first character on the second line
is a space. Otherwise, you must edit the line segments so that you
can enter them as separately numbered program lines.

Leave the Editor by clicking the Exit Edit function or pressing [F10],

Debugging a Program
With the ST BASIC Debug menu, debugging a program is a simple
process. Two options in the Debug menu help you see what a
program is doing and what the problem might be. These options
are Trace and Tron.

Select the Debug menu.

Desk File Run Edit |
LIST Tron

Troff

Trace

Untrace

OUTPUT

Click on the Trace option.

TRACE: debugging on lines...

I

BB | Lines Entered I

I OR I I CflHCEL I

15

////////////////'.
Click on the Ok button in the Dialog Box.

Now run your program. As each program line is executed, the
Trace option displays the entire line in the Command Window.

To exit the Trace option, stop your program, select the Debug
menu, and click on the Untrace option. Click on the OK button
in the Trace Dialog Box.

Click on the Tron option in the Debug menu.

TROH: Debugging on lines..,

I Lines Entered

I OK I I CANCEL [

The Tron option displays the program's line number in the
Command Window as each program line is executed.

Click on the Ok button in the Dialog Box.

Run your program again. As each program line is executed, Tron
prints its line number in the Command Window.

To exit the Tron option, stop your program, select the Debug menu,
and click on the Troff option. Click the Ok button in the Dialog Box.

TRACE and TRON are explained in detail in Appendix C.

Note: The FOLLOW command is a debugging tool used in
conjunction with TRACE and TRON. Refer to Appendix C.

16

^>

u

U

_

—

u

u

\J

////////////////
Saving a Program
To save your program to disk, select the File menu from the Menu Bar.

Desk I I Run Edit Debug
Load

Save fls

Delete File
Herge
Quit

OUTPUT

Click on the Save As option.

ITEM SELECTOR

Directory:
*.BftS

ite&ifi *.BftS

0

0

^~""

Selection:

I Cancel J

Type COUNT in the Item Selector Dialog Box. Notice that ST
BASIC appends a .BAS extender to your filename. The extender
tells ST BASIC that the file is an ST BASIC program file. To store
the file on the disk, click the OK button. When the Ok prompt
appears, your file is saved.

You can also save the program by typing:

save count [Return]

ST BASIC will save the program as COUNT.BAS.

17

////////////////:
Note: The Save As option will replace (write over) an existing file
with the same filename. If you type SAVE in the Command
Window, you cannot save over a file that has the same filename.

Loading a Program
Type NEW [Return] to clear your program from memory. Then type
LIST to insure that it's gone.

To load the program from disk, select the File menu and click on
the Load option. COUNTBAS will appear in the Item Selector
Dialog Box. Select COUNT.BAS with the mouse pointer by clicking
once on the program name, then click on the OK button. When the ,_.
Ok prompt appears, your program will be in memory. To make
sure, list it by typing LIST. The heading, "List of \COUNT.BAS",
tells you the program is stored under the filename COUNT.BAS.

You can also load the program by typing:

LOAD COUNT

Merging Programs
Sometimes it's more convenient to write a program in smal
modules (parts) and assemble them at a later time. The
Merge function allows you to do that.

Enter and save the following program as BOTTOM.BAS:

o

20 PRINT "MADE LONGER BY MERGING"

30 END

Type NEW and enter this program: _

10 PRINT "THIS IS A SHORT PROGRAM"

20 END

Type RUN to run the program. ^

Select the Merge option from the File menu. Then select
BOTTOM.BAS from the Item Selector Dialog Box and click
on the Ok button.

List the program. As you can see, the two program segments are
merged. Notice what happened to line 20. In the original program
it was 20 END. The merged program's line 20 has replaced it.
When you merge program segments, you need to plan your line
numbers carefully.

18

/->

u

u

_

~

^

—

M

////////////////
Deleting a Program
To delete a program, select the File menu and click on the Delete
File option. Click on the name of the file you want to delete. For
example, click on BOTTOM.BAS. Then click on the Ok button.
When the Ok prompt appears, the file has been deleted.

Leaving ST BASIC
To leave the ST BASIC programming environment, select the File
menu and click on the Quit option. You can also leave ST BASIC
by typing SYSTEM or QUIT.

Typing Commands
If you prefer, you can type programming commands from the ST
keyboard instead of using the mouse. The typed commands are:

AUTO

[Control] [G] (To stop a program, to stop AUTO line numbering,
or to place program into Break mode)

[Control] [C] (To stop and exit program without being able to
continue)

CONT or [Return]
DELETE < line number list>
EDIT or ED (To enter edit)
ERA <filename> (To delete a file)
LOAD <filename>

~ MERGE <filename>

NEW

OLD <filename>

QUIT

REPLACE <filename>

RUN <filename>

SAVE <filename>
STEP

SYSTEM

TRACE

TROFF

TRON

UNTRACE

A complete list of ST BASIC reserved words is provided in Appendix A.

19

ENHANCING ST BASIC'S MEMORY
If you have a 520ST™ Computer System with TOS on a TOS m
System disk, use the instructions in this section to increase the
available memory space for programming.

After you load TOS from the TOS System disk and ST BASIC from
the ST Language disk, you will have a limited amount of memory _
space available for programming. This limitation is especially
critical if you want to use the buffered graphics capabilities of
the ST Computer.

If you have any ST Computer System with TOS in ROM, you can
still increase the available memory space for programming by
following the instructions under "Without Buffered Graphics" below.

With Buffered Graphics
If you want to use buffered graphics, 30,000 bytes of memory can
be found by disabling the GEM desk accessories. There are two
simple methods for disabling the desk accessories:

1. Delete the desk accessories from the TOS backup disk. Simply,
open the TOS disk window and place the DESK.ACC file in the
trash. Remember, you still have the file on the original language
disk if you want to re-install and use the accessories.

2. Rename the desk accessory files. Select a DESK.ACC file, point
at the File heading on the Menu Bar, and select the Show Info
option. The Show Info Dialog Box displays a cursor at the end
of the filename. Press the [Backspace] key on the keyboard
until DESK.ACC is deleted. Rename the file to any name you
wish as long as it does not have an .ACC extender.

Note: For detailed information on deleting and renaming files,
refer to the ATARI ST Owner's Manual.

Without Buffered Grahics
If you don't want to use buffered graphics, you can add another
32,000 bytes of memory by turning off the Buffer Graphics option.

Point at the Run menu on the ST BASIC Desktop and see whether
there is a check mark in front of Buf Graphics. If the check mark
is present, select Buf Graphics. When the Dialog Box appears,
click on the Ok button to turn off the Buffer Graphics option. ^

Note: If you turn off the Buffer Graphics option while you have ~
a program in memory, the program will be lost from memorv.

20

r>

-

When you write or use an ST BASIC program, you are instructing
the computer to perform a task. ST BASIC is an interpretive lan
guage. You write the program in ST BASIC; ST BASIC then
translates your instructions into machine code, the programming
language the ST Computer understands.

////////////A
CHAPTER 2
PROGRAMMING WITH ST BASIC

w

COMMANDS, STATEMENTS, AND FUNCTIONS
y The ST BASIC language uses three types of reserved (or key)

words: commands, statements, and functions.
~

M

_

Each reserved word has a specific meaning in the ST BASIC
language. It can only be used to express that meaning. You can't
use a reserved word as a label, as a name for a program variable,
or for any other purpose within a program.

Commands
A command tells the ST BASIC program to perform a function (i
load a program file or edit a program in memory) and lets you
control ST BASIC while you are writing or debugging your pro
gram. However, you can't use a command within an ST BASIC
program. For example, you can't use the LOAD command to
load another program into memory while an ST BASIC program
is running.

Statements
Statements tell the computer what function you want your program
to perform. ST BASIC uses three types of statements: program
statements, executable statements, and non-executable
statements.

u

>^

_

A program statement causes ST BASIC to do something while a
program is running. The CHAIN statement, for example, instructs
ST BASIC to bring another program into memory while the current
program is running.

Executable statements (i.e., PRINT, INPUT, and GOTO) perform
calculations. You can use executable statements within a program
or enter them directly from the keyboard to the Command Window.

21

////////////A/// \
A statement made directly from the keyboard is a direct statement
(made in "direct mode"). A statement executed within a program
is an indirect statement (made in "indirect mode").

Non-executable statements aren't instructional. For example, the
REM statement (short for REMark) tells ST BASIC to ignore the
remainder of a program line rather than perform a new function.
Non-executable statements are never used in the direct

programming mode.

Functions
Functions assign values to variables. A variable is the name you ^
assign to a value that changes as a result of calculations made
during program execution. If you wanted to keep track of a total
that changes its value as you add numbers to it in a program, you
could assign the variable name TOTAL to that changeable value.

The function INT, for example, returns the whole number, or in
teger, value of a calculation. The program instruction, MYSHARE
= INT (5/2), returns the number 2 because 2 goes into 5 twice

with a fraction left over. The variable MYSHARE is assigned the
value 2.

Functions have to be used in a complete ST BASIC sentence. For
example, INT (5/2) by itself doesn't have any meaning. Used in a
complete sentence, however, MYSHARE = INT (5/2) means
"MYSHARE is equal to the whole number arrived at by dividing
5 by 2."

In ST BASIC, you declare a variable simply by using it with a func
tion or statement. You can use any word as a variable name as
long as it begins with a letter and isn't an ST BASIC reserved word
(refer to Appendix A). MYSHARE, in the program example, is a
variable because its value can be made to change, or vary, within
a program.

You can use functions within programs or enter them directly from
the keyboard.

INPUT AND OUTPUT (I/O)
Input is the information you enter into the computer. Output is the
information the computer sends to you. Input is entered from a
number of sources, including the keyboard, disk drive, modem, or
MIDI port. Output is usually sent to the video monitor or a printer.

22

r\

r>

r\

_

u

_

m

The INPUT statement takes input from the keyboard; the PRINT
statement prints characters on the monitor; and the LPRINT
statement prints characters on a printer.

Enter this program:

10 PRINT "EXCUSE ME. . . "

20 PRINT "HHAT •S YOUR NAME" .:

30 INPUT NAMES

40 PRINT "HELLO.." " JNAMES.:".. IT'S NICE TO MEET YOU. "

run [Return]

Notice the punctuation of the PRINT statement. Line 20 has a
semicolon. Line 10 does not. When you run this sample program,
the words between the quotation marks in line 10 are printed on
one line followed by a line feed and a carriage return. Line 20
prints the words between the quotation marks because the

w semicolon stops the printer from going to the next line.

U Notice also the question mark after "WHAT'S YOUR NAME". It's
in the Output Window, but not in the program. INPUT prints the
question mark in the Output Window as a prompt and waits for input.

INPUT has to refer to a variable. In the program, NAMES is used
w as a string variable. A string variable is any series of characters

that isn't interpreted as a number in the calculations. Putting a
$ after a variable name designates it a string variable.

Line 40 shows the versatility of the PRINT statement. First, the
string within the quotation marks is printed. Next, the string vari
able NAMES prints on the same line (because of the semicolon).
And then the last string within quotation marks is printed. ST
BASIC places a carriage return and a line feed at the end of the
program line because there isn't a semicolon after the last string.

— The strings within the quotation marks are called string constants
because they can't be modified by the INPUT statement.

_

u The GOTOXY statement lets you print anywhere in the Output Win
dow. The Output Window can hold 24 lines of text, each up to 80

• characters long. If you consider the leftmost print column to be
column 0 and the top line to be line 0, you can specify any print
position in the window with two numbers. For example, 0,0 means

U column 0 in line 0; 5,8 means column 5 in line 8, and so on.

^

23

Enter this program:

10 • MOgPRINT.BAS _

20FULLM2: CLEARM2: • THIS CLEARS THE OUTPUT WINDOW

30 GOTOXY O..0: PRINT "I'M GOING TO PRINT"

40 GOTOXY 5 ..5: PRINT "HERE"

50 GOTOXY 10..10: PRINT " . . .AND HERE"

60 GOTOXY 5..12: PRINT " . ..AND HERE! " ~

The previous two programs show how the statements, PRINT,
INPUT, and GOTOXY are used. You'll learn variations of PRINT m
and INPUT in programming examples later in this chapter. For
more information, look up the related reserved words in Appendix C.

DATA STATEMENTS I
When you want to put different values into a variable, use a DATA -,
statement.

Enter this program:

10 DATA 10..15..25..45 _

20 READ NUMBER

30 PRINT NUMBER ~

40 READ NUMBER

50 PRINT NUMBER

60 READ NUMBER fQ
70 PRINT NUMBER

80 READ NUMBER

30 PRINT NUMBER

1O0 END

RUN

The program prints the numbers in the same order as they appear
in the DATA statement. Each READ statement puts a DATA value
into the variable NUMBER. Since NUMBER doesn't have a $ at
the end, it's a numeric variable, not a string variable.

Remember that a variable is the name given to information that
can change during a program's operation.

•msamm ~
24

HP ~

_

DATA statements can mix strings and numbers. Edit the previous
U program as shown and then run the program:

w 10 DATA ARTIE.,15^ NEIL.,45

y 20 READ NAMES
30 PRINT NAMES..

~ 40 READ SCORE

50 PRINT SCORE

60 READ NAMES

U 70 PRINT NAMES/
80 READ SCORE

90 PRINT SCORE

U 100 END
RUN

_

Notice how the comma in the PRINT line causes SCORE to tab.

u If you have a printer, you can direct output to it from the program
by changing PRINT to LPRINT.

U

The RESTORE statement lets you use a DATA list more than once
in a program. Without the RESTORE statement, the program would

^ use all the items in the DATA statement and the Error Message,
"Out of data," would appear. Error Messages are computer
messages that tell you something has gone wrong while the

U program is running.

u Make the following change in line 100 in the program:

100 RESTORE 10

U 110 GOTO 20

- The program will continue to print until you press [Control] [G],

PROGRAM CONTROL
Your computer will continue a calculation until you instruct it to
stop. In the previous programming example, your computer could
have read and printed an infinite number of names and scores.
However, you would tire of typing the following data lines over and
over again:

y
20 READ NAMES

g 30 PRINT NAMES..

u

40 READ SCORE

SO PRINT SCORE

25

'///
You can use a programming technique called a loop to avoid
tedious data input repetitions. The GOTO statement you added
to the previous program is an example of a loop. r*

Loops
A loop is a program segment that repeats. Enter the following
short program:

10 PRINT "HELLO" —
20 GOTO 10

This is an example of an infinite loop with no exit condition. Most
loops have built-in exit conditions so they can be controlled.

Press [Control] [G] to stop the loop.

FOR ... NEXT Loops

The FOR . . . NEXT loop allows you to repeat a program segment
a set number of times. Look at the following example:

10 FOR COUNT=l to 4

20 READ NAMES.. SCORE

30 PRINT NAMES.. SCORE

40 NEXT COUNT

50 PRINT "DONE"

60 END

70 DATA BILL.. 20.. ADAM.. 30.. MICHAEL,. 40,. CHUCK.. 45

m

The statements in lines 20 and 30 are the looping part of the pro
gram. Lines 10 and 40 set the loop conditions and boundaries.

When ST BASIC sees the FOR statement, it sets the variable
COUNT to a starting value, in this case, 1. ST BASIC also notes
that the maximum value of COUNT is 4.

After executing lines 20 and 30, ST BASIC encounters the NEXT
statement in line 40. ST BASIC checks to see whether the value of
COUNT is equal to or greater than the maximum given in the FOR
statement. If COUNT is less than the maximum value, ST BASIC
adds 1 to COUNT and goes to iine 20.

When COUNT is equal to or greater than the given maximum,
ST BASIC goes to the statement after NEXT.

I)

26

^

o

u

u

-

X X v//////////
FOR . . . NEXT loops are extremely versatile. You can use any
numeric variable name in the FOR statement and any valid
numbers to set the lower and upper limits of the loop. You can
also tell ST BASIC to add a number other than 1 to the variable

each time it passes through the loop. The following examples are
legitimate FOR statements:

y FOR SPEED=3 TO 7

FOR DAY = 5 TO 20

~ FOR C0UNT=2 TO 10 STEP 2

u

m The following example tells ST BASIC to count backwards:

~ FOR COUNT = 10 TO O STEP -1

Variable Limits

You can use a variable to set the loop limit. This lets you change
_ the data in your program without changing the FOR statement.

The following program shows a way to make the FOR . . . NEXT
w loop more flexible.

-

y

-

The last example tells ST BASIC to add a number other than 1 to
the variable.

Edit the program as follows:

10 READ MAXIMUM

20 FOR COUNT = l TO MAXIMUM

30 READ NAMES.. SCORE

40 PRINT NAMES.. SCORE

50 NEXT COUNT

60 PRINT "DONE"

70 END

80 DATA 5.. BILL/ 20/ ADAM.. 30/ MICHAEL.. 40.. CHUCK.. 45/

BARB/ 50

The first value in the DATA statement, 5, is the number of name
and score pairs in the DATA list. ST BASIC assigns the first value
in the DATA statement to the variable MAXIMUM. Then it proceeds
through the FOR . . . NEXT loop.

J

U

27

WHILE ... WEND Loops
Enter this program:

10 READ NAMES.. SCORE

20 WHILE NAMES <> "STOP"

30 PRINT NAMES.. SCORE ft

40 READ NAMES/ SCORE

50 WEND

60 PRINT "DONE" f|
70 END

80 DATA BILL.. 20.. ADAM.. 30.. MICHAEL/ 40.. CHUCK.. 45..
BARB.. SO.. STOP,. O <|

The program illustrates how a WHILE . . . WEND loop works.
When ST BASIC sees the WHILE statement, it checks to see
if the stated entry condition is true.

In the program, the entry condition is that NAMES is not equal to
STOP. (The symbols < and > mean "less than" and "greater
than." Used together, they mean "not equal to.") As long as the M
entry condition is true, ST BASIC will execute the statements
between WHILE and WEND. When the entry condition is no longer
true and NAMES is equal to STOP, ST BASIC goes to the next
statement after WEND. Note that WHILE requires a value to
check, so the program reads NAMES and SCORE before entering
the loop (at line 20) as well as within the loop (at line 40).

Note: An important difference between WHILE and FOR is that ,•>
WHILE checks conditions before executing a loop and FOR
checks conditions after executing it.

Conditional Loops
You can make your loop conditional by using the IF . . . THEN and
GOTO statements.

IF . . .THEN statements are conditional statements. If a condition ^
is met, then ST BASIC will perform a designated task.

Enter this program:

10 FOR COUHT=l TO 5 ,_,
20 IF C0UNT=3 THEN PRINT "LOOK! A "

30 PRINT COUNT O

40 NEXT COUNT

50 END

28

///////////////i

Adding ELSE gives the program more flexibility. Edit the program
-^ as follows:

w 10 FOR COUNT=l TO 5

y 20 IF C0UNT=3 THEN PRINT "LOOK! A " ; ELSE PRINT

"HO-HUM. A BORING " .:

w 30 PRINT COUNT

40 NEXT COUNT

50 END

GOTO directs ST BASIC to a program line. Using IF . . . THEN and
GOTO, you can make a loop.

Enter this program:
w

10 READ NAMES.. SCORE

^ 20 IF NAMES="STOP" THEN GOTO 60
U 30 PRINT NAMES.. SCORE

40 READ NAMES.. SCORE

w 50 GOTO 20

60 PRINT "DONE"

70 END

~ 80 DATA BILL.. 20/ ADAM/ 30.. MICHAEL.. 40.. CHUCK/ 45..

BARB . 50 . STOP . 0

U This program runs exactly like the program you wrote to
demonstrate WHILE . . . WEND.

LOGICAL OPERATORS
Logic is the mechanics of valid decision making. Logical
statements in programs allow you to reach valid conclusions
from a set of premises. You can perform formal logic using
the terms AND, OR, and NOT.

AND
AND tests for the condition that all of its terms are true. For example:

1© IF 2 + 2 = 4 AND 3 + 2 = 6 THEN PRINT "BRILLIANT! ! " ELSE

PRINT "NOT BRILLIANT"

W

u
Run this program and it will print NOT BRILLIANT because one of
the arguments, 3 + 2 = 6, is not true. Change the argument to
3 + 2 = 5, and the program will print BRILLIANT!

U

U 29

..«-"

You can string more than two arguments together with AND.

5 AS="GOODBYE"

10 IF 2 + 2=4 AND 3 + 2=5 AND AS="HELLO" THEN ?

"BRILLIANT! ! " ELSE PRINT "NOT BRILLIANT"

This program will print NOT BRILLIANT. Change A$ to HELLO and
the program will print BRILLIANT! !.

OR

OR tests for the condition that any of its terms are true. For example:

10 IF 2 + 2=4 OR 3 + 2=6 THEN PRINT "BRILLIANT! ! " ELSE

PRINT "NOT BRILLIANT"

If you run this program, it will print BRILLIANT! ! because one
of the arguments, 2 + 2 = 4, is true. Change the argument to
2 + 2 = 5, and the program will print NOT BRILLIANT.

You can string more than two arguments together with OR.
For example:

5 AS="GOODBYE"

10 IF 2 + 2=5 OR 3 + 3=5 OR AS="HELLO" THEN ?

"BRILLIANT! !" ELSE ? "NOT BRILLIANT"

This program will print NOT BRILLIANT. Change AS to "HELLO'
and it will print BRILLIANT! !.

NOT

NOT negates logical statements. For example:

—

5 AS="GOODBYE"

10 IF 2 + 2=5 OR 3 + 3=5 OR NOT AS="HELLO" THEN ?

"BRILLIANT! !" ELSE ? "NOT BRILLIANT"

Because it is not true that A$ = "HELLO", the statement NOT
A$ = "HELLO" is true. The program prints BRILLIANT! ! Look
carefully at this program argument and run it to be certain
that it is clear.

30

u

u

u

U

U

u

u

X X//xxx//

IMP

IMP is the abbreviation for implication. IMP checks the validity
of conclusions drawn from premises.

IMP insures that you don't draw false conclusions from true
premises. You can draw true conclusions from true premises, false
conclusions from false premises, or true conclusions from false
premises. For example:

10 IF 2 + 2=4 IMP 3 + 3=6 THEN PRINT

ELSE ? "FALSE IMPLICATION"

20 IF 2 + 2=3 IMP 3 + 3=7 THEN PRINT

ELSE ? "FALSE IMPLICATION"

30 IF 2 + 2=3 IMP 3 + 3=6 THEN PRINT

ELSE ? "FALSE IMPLICATION"

40 IF 2 + 2=4 IMP 3 + 3=7 THEN PRINT

ELSE ? "FALSE IMPLICATION"

This program prints:

'TRUE IMPLICATION'

'TRUE IMPLICATION'

'TRUE IMPLICATION"

'TRUE IMPLICATION"

TRUE IMPLICATION

TRUE IMPLICATION

TRUE IMPLICATION

FALSE IMPLICATION

ST BASIC can also perform logical operations on the bits of a
byte. Bits, short for binary digits, are the logical building blocks
used to represent letters and numbers in your computer. Each
bit represents a 1 or a 0; eight bits make up a byte. A byte is a
computer "word" — the amount of information it takes to express
an integer from 1 to 255 or an alphabetic character.

Refer to Appendix B for an explanation of bitwise logic.

ON ... GOTO
The ON . . . GOTO statement lets you run different parts of a
program depending upon the value of a variable.

31

y

Enter this program:

—-

10 CLEARW 2 : REM PICK A PRIZE GAME ~

20 INPUT "ENTER A NUMBER BETWEEN 1 AND 5 TO SEE WHAT YOU

WIN!"/ PRIZE

30 ON PRIZE GOTO 50/ 60/ 70.. 80/ 90 r->

40 PRINT "WATCH MY LIPS. . . " GOTO 10

50 PRINT "A HOUSE AND ".:

60 PRINT "A CAR AND "; —
70 PRINT "A VACATION AND '.:

80 PRINT "A TV AND ";

90 PRINT "A STICK OF GUM"

10O INPUT "WANT TO TRY AGAIN CY/NJ".: ANSWERS

110 IF ANSWERS="Y" THEN GOTO 20 ~

120 IF ANSWERS="N" THEN END '
130 GOTO 10O

Since there are five line numbers after the ON . . . GOTO state
ment, the numbers from 1 to 5 will send program execution to
different lines. Any number outside that range lets ST BASIC
go to the line after the ON . . . GOTO statement.

You can put the GOTO line numbers in any order and they will
be selected in that listed order.

Change line 30 to:

30 ON PRIZE GOTO 90.. 80/ 70/ 60/ 50

This program example demonstrates a few new programming
techniques.

Line 10 contains a remark statement. REM tells ST BASIC to
ignore the rest of the line. REM lines let you put comments in
a program to help clarify what the program is doing.

Lines 20 and 100 contain INPUT statements with assigned
prompts. Remember, you can replace the ? prompt with your
own prompt. These lines demonstrate two variations on the
INPUT statement.

The comma after the prompt string in line 20 tells ST BASIC to
print your prompt with no space or question mark after it.

32

n

n

n

/////X X / ;

In line 100, the semicolon tells ST BASIC to print a question mark
and a space after your prompt.

These punctuation marks allow you to prompt with directions or
U questions within your program.

GOSUB ... RETURN
w The GOSUB . . . RETURN statement lets you use part of a pro

gram and then return to normal program flow without having to
concern yourself with GOTO statements. Enter this program:

10 PRINT "THIS IS NORMAL PROGRAM FLOW. "

20 GOSUB 60

30 PRINT "THIS IS THE REST OF NORMAL PROGRAM FLOW. "

40 GOSUB 70

50 END

60 PRINT "THIS IS: "

70 PRINT "A SUBROUTINE."

u

~

When ST BASIC sees the GOSUB statement, it goes to the
specified program line. This is similar to GOTO, but ST BASIC
remembers where the GOSUB statement occurred. When ST

BASIC sees the RETURN statement, it returns to the statement
U immediately following GOSUB.

_

w

u

J

88 RETURN

A program segment ending with RETURN is called a subroutine.

The previous example demonstrates that it isn't important where
the GOSUB statement sends the ST BASIC program. As soon as
ST BASIC encounters RETURN, it returns to the main program.
Within the limits of available memory, you can have as many
subroutines as you want in a ST BASIC program. However, each
GOSUB must end with a RETURN statement.

ON ... GOSUB ... RETURN
The ON . . . GOSUB statement is identical to ON . . . GOTO except
that it sends the ST BASIC program to a subroutine instead of to a
different program line.

33

Examine the following program to see how ON . . . GOSUB ...
RETURN functions.

10 FOR 1=1 TO 4

20 PRINT "THIS IS " }

30 ON I GOSUB 60/ 70/ 80/ 90 ^
40 NEXT I

50 END

60 PRINT "SUBROUTINE 1" _

65 RETURN

70 PRINT "SUBROUTINE 2"

75 RETURN

80 PRINT "SUBROUTINE 3"

85 RETURN f|

90 PRINT "SUBROUTINE 4"

95 RETURN ~

PROGRAMMING TIPS AND SHORT CUTS
The Guessing Game
The Guessing Game program demonstrates some ST BASIC n
features that can make your programs more compact.

Enter this program:

10 REM A GUESSING GAME _

20 ANSWERS="Y"

30 WHILE ANSWERS <> "N" *

40 COUNT=0 : CLEARW 2 : REM ***** CLEAR THE OUTPUT _

WINDOW *****

45 REM ***** [: 1 ALLOWS MULTIPLE STATEMENTS ON

1 LINE *****

50 READ NUMBER: IF NUMBER=-1 THEN RESTORE: GOTO SO

60 PRINT: PRINT "I'M THINKING OF A NUMBER BETWEEN

1 AND 20.": PRINT

70 TRY : INPUT "YOUR GUESS : " / GUESS : ' ***** TRY IS A

LABEL ***** ^
80 COUNT=COUNT + l: • COUNT GUESSES

90 IF GUESS = NUMBER THEN GOTO OK: ****** OK IS A LABEL o

USED WITH GOTO ***** ^

100 IF GUESS > NUMBER THEN GOTO HIGH

110 ?: PRINT "NOPE. TOO LOW. TRY AGAIN. "; : GOTO TRY: "

***** ? MEANS PRINT *****

34

w

^

U

w

//////////f

120 HIGH : ? : ? "YOU GUESSED TOO HIGH . TRY AGAIN . " .: :

GOTO TRY

130 OK: ?: ?" CONGRATULATIONS! YOU GOT IT IN " ; COUNT;

" GUESSES!"

140 INPUT "DO YOU WANT TO PLAY AGAIN tY/N J"J ANSWERS

ISO IF ANSWERS <> "Y" AND ANSWERS <> "N" THEN GOTO 140

160 WEND

170 CLEARW 2: ? "THANKS FOR PLAYING! " : END

180 • ***** THE NUMBERS COME FROM THE NEXT LINE *****

190 DATA 15/ 4/ 19/ 8/ 10/ 7, 17/ 3/ 14/ 13/ 5/ 12/ 1..
16/ 11/ 9/ 12/ 6j

Look at the example carefully. You should understand how it
works. Look up any unfamiliar ST BASIC words in Appendix C.

Labels
Instead of using line numbers in GOTO and GOSUB statements,
you can specify a label (LABEL:) for a particular line and refer to
the line by its name. This makes programs easier to read. When
you look at a program months after it has been written, the labels
will help you understand what you did.

REMarks (')
REMarks also help to make a program easier to read. Putting com
ments in your work will help you to remember the purpose of a
particular routine. The apostrophe (') is a convenient substitute
symbol for REM. REMarks take up memory space, so make them
brief. All text entered in a statement after the REM (') will not be
executed as part of the statement.

PRINT (?)
You can use the question mark instead of the word PRINT in an ST
BASIC program. The question mark symbol (?) is easy to type and
quickens program entry.

Multiple Line Statements (:)
Entering multiple statements after a single line number makes
short subroutines easier to read. Be sure to separate the
statements with colons (:).

Note: Statements which follow an IF . . . THEN statement will only
be executed after the conditional IF .. .THEN is satisfied.

U

~ 35

//////////////// ~

NEXT

for. . .next is generally expressed as:

FOR 1=1 TO 10 : NEXT I

You can also express FOR . . . NEXT as:

FOR 1=1 TO 10: NEXT

You can leave off the variable reference after NEXT. (After NEXT
the previous FOR will be executed.) When you have a nested
loop — a loop running within a loop—be certain that each FOR has
a corresponding NEXT statement. Although you do not have to
have a variable reference after each NEXT, within nested loops it
is sometimes advisable to keep the variable references as they
allow you to trace the loop when you edit or debug the program.

END

The END statement should be the last statement executed in an
ST BASIC program. It ensures that files and variables are left in an
orderly state. END is an optional statement, but leaving a program
in a disorderly state can cause unexpected problems during pro
gram debugging.

GRAPHICS
Before you begin drawing graphs and pictures, you need to
understand how the display screen functions.

Screen Resolution
The Output Window is divided into elements called pixels. Pixels
are the spots on the screen that ST BASIC uses to plot lines and
draw circles. Imagine the window to be a sheet of grid paper. Each
box corresponds to a pixel. Pixels are counted beginning at the top
left corner. The number of pixels available when the window is at
full size depends upon the screen resolution you have selected.

Low Resolution

The window is 303 pixels wide by 166 pixels high.

Medium Resolution

The window is 607 pixels wide by 166 pixels high.

36

**

o

•

~

_

////////////////
High Resolution

_ The window is 615 pixels wide by 344 pixels high.

ST BASIC can also draw in colors. The number of colors available

also depends upon the screen resolution you use.

- Low Resolution

16 colors.

Medium Resolutiony

^ 4 colors

_

CLEARW

FULLW

_

y

u

High Resolution
Black and white.

Graphics Statements
The ST BASIC graphics statements are:

COLOR

FILL

CIRCLE

PCIRCLE

ELLIPSE

PELLIPSE

LINEF

CLEARW

In the previous program example, CLEARW 2 cleared the Output Win
dow. CLEARW can also clear the Command, List, and Edit Windows.

CLEARW 0 Clears the Edit Window.

CLEARW 1 Clears the List Window.

CLEARW 2 Clears the Output Window.

CLEARW 3 Clears the Command Window.

37

////////////////1
FULLW

FULLW makes a window full-screen size. The screen numbers are
the same as for CLEARW:

FULLW 0 Makes the Edit Window full size.

m
FULLW 1 Makes the List Window full size.

FULLW 2 Makes the Output Window full size.

FULLW 3 Makes the Command Window full size. j»

COLOR

The COLOR command controls three parameters: jd

1. The color of the text printed to the screen.

2. The FILL color used for filling shapes and window background.

3. The color used for lines drawn in the Output Window.

Note: In the following programs the screen is usually set for _
medium resolution. Set the resolution to low and see how the
program looks. —

The following program illustrates the COLOR command:

10 COLOR l/O/l

20 PRINT "BLACK LETTERS" ^

30 COLOR 2/0/1

40 PRINT "RED LETTERS"

50 COLOR 3/0/1 a

60 PRINT "GREEN LETTERS"

70 FOR 1=1 TO 50O0 : NEXT

75 COLOR l/O/l ^
80 END

38

n

n

u The first number changes the color of text. The color stays the
same until the next COLOR command. Edit the program as
follows:

10 COLOR 0/0/1

20 PRINT "WHITE LETTERS"

- 30 COLOR 2/0/1

40 PRINT "RED LETTERS"

50 COLOR 3/0/1

60 PRINT "GREEN LETTERS"

70 FOR 1=1 TO 5O0O: NEXT

w 75 COLOR l/O/l
y 80 END

~ The second number changes the FILL color used for background
color and PCIRCLE and PELLIPSE statements. The third number

sets the color for drawing pictures and graphs.

-

u

J

Enter this program:

10 REM COLORS. BAS

20WHITE=O: BLACK=l: RED=2: GREEN=3

30 COLOR BLACK/RED/GREEN

4B FULLW 2: CLEARW 2: FILL O/O: • **** SETS BACKGROUND

TO FILL COLOR CRED)

w SO PRINT "BLACK TEXT/ RED FILL/ GREEN CIRCLE.. ";

60 CIRCLE 1O0/8O/50

w 70 GOSUB DELAY

_ 80 COLOR BLACK/WHITE/GREEN: ****** MAKE FILL WHITE

90 PCIRCLE 10O/80/50/O/450: • ***** WE 'LL EXPLAIN

PCIRCLE LATER

100 PRINT "WHITE WEDGE";

110 GOSUB DELAY: GOSUB DELAY

y 120 END
130 DELAY: FOR 1=1 TO 250O: NEXT: RETURN

U

39

////////////////
The following chart shows the numbers for colors in different
screen resolutions:

COLOR RESOLUTION
Color

WHITE

BLACK

RED

GREEN

BLUE

DARK BLUE

BROWN
DARK GREEN

GREY

DARK GREY

LIGHT BLUE 10 X

Number Low Med High

0 X X X

1 X X X

2 X X

3 X X

4 X

5 X

. 6 X

7 X

8 X

9 X

10 X

11 X

12 X

13 X

14 X

15 X

BLUE GREEN

LIGHT PURPLE

DARK PURPLE

LIGHT YELLOW

DARK YELLOW

Note: The colors listed in the chart are the default colors, the
colors in the palette when you turn on the computer. They
can be changed with the Control Panel or by writing an ST BASIC
program that specifically changes the colors.

The COLOR command can also select patterns to replace the solid
fill color. Enter and RUN this program:

5 • PATTERNS.BAS

10 COLOR 1/3/1/4/4: ' ***** FILL SCREEN WITH GREEN

FUJIS n
20 FULLW 2: CLEARW 2: FILL6..6

30 FOR P=2 TO 4

40 FOR 1=1 TO 5

45 GOTOXY 8/13: ? " COLOR 1..2/1/JI;IjP

50 COLOR 1/2..1/I/P: • I AND P CHOOSE PATTERN. FILL IS

RED ^
60 PCIRCLE 150/80..8O: ' ***** PCIRCLE USES FILL COLOR

70 FOR D=l TO 70O :NEXT D : • ***** A DELAY LOOP

80 NEXT I

90 NEXT P

95 COLOR l/O/l/l/l: ****** RETURN TO DEFAULT COLORS ^
1O0 END

40

r\

////////////////
FILL

w The FILL command allows you to fill a shape with color or a
\j pattern. Enter and RUN this program:

5 • PATTERNS.BAS

10 COLOR 1/3/1/1/1: •***** GREEN WINDOW

20 FULLW 2: CLEARW 2: FILLO/O

30 COLOR 1/2/1/1/1: •***** SOLID RED FILL

40 CIRCLE 15O/80/80

~- 50 FILL ISO/80

y| 60 FOR D=l TO 700 : NEXT
70 COLOR 1/1/1/4/4: " ***** BLACK PATTERN FILL

w 80 FILL 150/80

90 END

s> The FILL command is explained in detail in Appendix C.

CIRCLE and PCIRCLE

w Drawing the outlines of circles and arcs is easy with ST BASIC.
Simply locate the center of a circle and decide on its radius. The
location of the center is specified in pixels. So is the radius. If you
want the center 100 pixels to the right and 80 pixels down from the
top left corner, you would say the center is located at 100,80. To
draw a circle at that location, enter the following program:

_

~

10 COLOR 1/0/1..1/1: FULLW 2: CLEARW 2

w 20 CIRCLE 100/8O/50
_ 30 FOR 1=1 TO 50O0 : NEXT

40 END

w

The first two parameters of the CIRCLE command give the
horizontal and vertical position of the center. The third parameter
is the radius. CIRCLE 100,80,50 places a circle at 100 pixels to the
right and 80 pixels down from the top left corner, then draws the
circle with a radius of 50 pixels.

The exact size and position of your circle depend upon the screen
resolution you select. Most of the examples look best in medium
resolution. The following program, which makes circles in all the
colors available, is written to be run in low resolution. Run it in
medium resolution to see the variation.

41

////////////////
13 COLOR l/O/l: FULLW 2 : CLEARW 2 : R=l: • ***** RADIUS

IS 1 *****

20 FOR C=0 TO 15 : ' ***** 16 COLORS ***** —.

30 COLOR 1/0.. C

40 FOR 1=1 TO 5 : ' ***** 5 CIRCLES PER COLOR *****

50 CIRCLE 150/ 80.. R rs
60 R=R+ 1

70 NEXT

80 NEXT

90 FOR 1=1 TO 5OO0 : NEXT : • ***** PAUSE *****

loo end m

You can use circles to make interesting patterns. The following
program example shows how to draw multiple circles using
different centers and changing radii:

o
10 COLOR 1..0/1: FULLW 2: CLEARW 2

20 PRINT " MORE PATTERNS";

30 V = 80: R=1O0

48 FOR H=20O TO 400 STEP 2

50 CIRCLE H/ U/ R

60 NEXT

70 H=30O

SO FOR R=l TO 98 STEP 2 —

90 CIRCLE H/ V/ R _
100 NEXT

110 FOR 1=1 TO 5OO0 : NEXT : END m

The CIRCLE command can also draw arcs. Enter this program: ph

5 REM SEMICIRC .BAS

10 COLOR l/O/l: FULLW 2: CLEARW2

20 FOR 1=20 TO 20O STEP 20

30 CIRCLE 3O0/100/I/0/1800 n
40 NEXT

SO FOR 1=1 TO 5O0O: NEXT

60 END

The CIRCLE command's last two parameters specify the starting
and ending angles of an arc. Zero degrees is to the right of the
Output Window; 180 degrees is to the left. Ninety degrees is at the
top. Notice that the angles are in tenths of a degree — the 180
degrees is written as 1800.

H
Note: PCIRCLE is similar to CIRCLE except that it draws solid
figures and segments rather than outlines of figures.

«•>

42

—

u

U

////////////////
ELLIPSE and PELLIPSE
The ELLIPSE command is similar to CIRCLE except that an ellipse

y has both a horizontal and vertical radius.

— ELLIPSE 200,80,80,20 draws a horizontal ellipse.

— ELLIPSE 200,80,20,80 draws a vertical one.

The ELLIPSE command can also draw arcs. Enter this program:

5 • SEMELIPS.BAS

"" 10 COLOR 1/0..1: FULLW 2: CLEARW 2

y 20 FOR 1=10 TO 100 STEP 10
30 ELLIPSE 300/100..I/50..0/1800

— 40 NEXT

50 END

U Just as with CIRCLE, the last two parameters are the starting and
ending angles in tenths of a degree.

Note: PELLIPSE is similar to ELLIPSE except that it draws solid
figures instead of outlines of figures. The figures are drawn in the
color specified by the second parameter of the previous COLOR
statement.

_ Edit the previous program as shown:

— 5 • SPELLIPS.BAS

10 COLOR 1..1/1: FULLW 2: CLEARW 2

20 FOR 1=10 TO 100 STEP 10

M 30 PELLIPSE 300/100..I/5O/0/1800

40 NEXT: COLOR l/O/l

w SO END

u

LINEF

The LINEF command draws lines. To draw a line, you specify the
beginning and ending points. LINEF 50,50,100,100 draws a line be
tween the points located at 50,50 and 100,100. Enter this program:

y) 5 FULLW 2
10 CLEARW 2

~ 20 LINEF 50/50/100/1O0

30 FOR 1 = 1 TO 5000: NEXT: END

- •.-•;•• ••...".-:• •

43

///, y/////////-
The following program displays a parade of lines in different colors:

10 C=0: T0P=40: B0TT0M=120 ~

20 FOR H=20 TO 580 STEP 20

30 COLOR 1/O/C

40 LINEF H/TOP/H..BOTTOM

50 IF C<4 THEN C=C + 1 ELSE C=l

60 NEXT f\

70 FOR 1=1 TO 5OO0 : NEXT : END

The following program uses color, text, and lines to graph
monthly sales:

10 COLOR 1/0..1: FULLW 2: CLEARW 2

15 • ***** FOUR SPACES AT THE BEGINNING.. ONE AT

THE END *****

20 ? " JAN FEB MAR APR MAY JUN JUL AUG SEP OCT

NOV DEC".:

30 LINEF 27/92..4S3/92 —
40 FOR C=32 TO 384 STEP 32 : • ***** C IS COLUMN

COUNTER *****

50 READ SALES: AVERAGE = AVERAGE+SALES ^
60 IF SALES<60 THEN COLOR 1/1/2 ELSE COLOR 1/1/3

70 TOP=SALES: GOSUB BAR

80 NEXT _

90 AVERAGE=AVERAGE/12

lOO IF AVERAGE<60 THEN COLOR 2..1..2 ELSE COLOR 3..1/3

110 ? "AVG"}

120 TOP=AVERAGE: C=424: GOSUB BAR

130 FOR D=l TO 50OO: NEXT r>

140 COLOR 1/0..1: END

150 DATA 50/ 70.. 60.. 56/ 50.. 45.. 70,. 90.. lOO.. 80,. 70.. 59

160 BAR: FOR P=l TO 24: ****** DRAWS VERTICAL ~

BAR *****

165 • ***** SUBTRACT VALUE FROM BOTTOM OF GRAPH TO

MAKE IT RIGHT SIDE UP **** —

170 LINEF C + P.. 152-T0P..C+P..152

180 NEXT

190 RETURN

44

r\

-

u

////////////////
You can use the LINEF command to draw almost any shape. By
supplying a series of points, you can make LINEF form shapes by
"connecting the dots." You can assemble different shapes into
pictures and vary the location of a shape series. The following

U program shows how to draw a house wherever you want to put it
in the Output Window. By adding the horizontal offset (HO) and
vertical offset (HO) values, you can move the picture around

U the screen.

U 10 •***** DRAW A PICTURE *****
15 CLEARW 2

20 INPUT "POSITION CX/YJ"; HO/ VO

U 30 COLOR 1/0..1
40 READ COUNT

50 FOR PART=1 TO COUNT

_ 60 GOSUB DRAW

70 NEXT

80 FOR 1=1 TO 50O0 : NEXT : END

90 DRAW: • ***** DRAW A SHAPE *****

lOO READ H1..V1..H2/V2

110 WHILE H2 <> 999

120 LINEF H0 + H1..V0-V1..H0 + H2..V0-V2

130 H1 = H2: V1 = V2

— 140 READ H2..V2

y ISO WEND
160 RETURN

— 170 DATA 5

180 ' ***** FRAME *****

19© DATA 0/ 12/ O.. 0/ 40/ O.. 40/ 12/ 999/ O

M 200 ' ***** ROOF *****

210 DATA -4/ 10/ 20.. 27/ 44/ 10/ 999/ O

*" 220 ' ***** CHIMNEY *****

y 230 DATA 0.. 12.. O.. 22/ 4/ 22.. 4/ 15/ 999/ 0

240 • ***** WINDOW *****

w 250 DATA 4.. 3.. 4.. 9/ 20/ 9/ 20/ 3/ 4/ 3/ 999/ O

260 ' ***** DOOR *****

270 DATA 26.. O.. 26.. 9.. 36.. 9.. 36/ 0/ 999/ O

45

///// '/////////
SOUND
The SOUND command lets you create tones or play music with
your ST Computer.

The SOUND command controls three musical voices and a noise
channel. You can select a voice and control the voice's volume, the
notes played, the note's octave, and the note's duration. ^
To write music, you should understand octaves and the relation
ship of the notes in a scale to your ST Computer's terms. The
notes C, C#, D, D#, E, F, F#, G, G#, A, A#, B. are read as 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12 by the computer. Your computer numbers
the octaves 1 through 8. As a point of reference, the 440Hz note
A is note 10 of octave 4.

The following program example plays a song that's a favorite
among computers:

10VOICE=l: V0LUME=8

20 READ VOLUME..NOTE/OCTAVE/DURATION
30 WHILE NOTE <> 0

40 SOUND VOICE/VOLUME/NOTE/OCTAVE..DURATION
50 SOUND I/O : • ***** TURNS VOICE 1 OFF *****

60 READ VOLUME..NOTE/OCTAVE..DURATION f\
70 WEND

80 END

90 DATA 8/12/4/25/ 8/9/4/25/ 8/5/4/25/ 8/12/3/25/
8/2/4/5

lOO DATA 8..4/4/5/ 8/5/4/5/ 8/2/4..15/ 8..5/4..5..
8/12/3/30/0/1/4/15

110 DATA 8..7/4/25/ 8/12/4/25/ 8/9/4/25/ 8/5/4/25/
8/2/4/5

120 DATA 8/4/4/5/ 8/5/4/5/ 8/7/4/15.. 8/9..4/S/ —
8/7/4/30/ 0/1/4/15

130 DATA 8/9/4/5/ 8/10/4/5/ 8/9/4/5/ 8/7..4/S/
8/12/4/15/8/9/4/5

140 DATA 8/7/4/15/ 8/5/4/5/ 0/1/4/15
ISO DATA 8/7/4/5/ 8/9/4/15/ 8..5/4/S/ 8/2/4/15/
8/5/4/5

160 DATA 8/2/4/5/ 8/12/3/15/ 0/1/4/15
170 DATA 8/12/3/5/ 8/5/4/15/ 8/9/4/5/ 8/7/4/15
ISO DATA 8/12/3/5/ 8/5/4/15/ 8/9/4/5/ S/7/4..5
190 DATA 8/9/4/5/ 8/10/4/5/ 8/12/4/5
20O DATA 8/9/4/5/ 8/5/4/5/ 8/7/4/15 ^
210 DATA 8/12/3/5/ 8/5/4/15/ O/O/O/O

» r\

46

r>

r\

r\

o*

_

u

////////////////
Using the noise channel requires a thorough understanding of
sound theory. Appendix C provides an explanation of the SOUND
and WAVE commands.

STORING INFORMATION ON DISK
ST BASIC stores information in files held on your diskettes. Just
as in a physical file, you have to OPEN a disk file to INPUT
information from it, or PRINT information to it.

ST BASIC uses the following commands to control data access:

OPEN

INPUT

PRINT*

CLOSE

INPUT*

LINE INPUT*

WRITE*
_

The most common uses of these commands are explained in the
section on "Sequential Files." For a detailed explanation of each

U command, refer to Appendix C.

u Sequential Files
Sequential files are files whose records must be read in the order
they were written. Their structure can be compared to a stack of
file cards that has no dividers. To find a particular card, you must
look through the stack in sequential order, starting from the first card.

The following program example shows how to output names
to a file:

~

U 10 CLEARW 2

20 OPEN "O"/ Bl/ "TESTFILE 0" FOR OUTPUT

30 WHILE NAMES <> "*"

40 INPUTS 1/ NAMES

SO PRINTtt 1/ NAMES: • ***** PRINTS PUTS DATA INTO FILE

^ 60 WEND
y 70 CLOSE Bl

80 END

U

This program takes input from the keyboard and sends it to a disk
w file named TESTFILE.

_

47

'//,

Line 20 opens TESTFILE as file number 1. The O tells ST BASIC to
open TESTFILE to prepare it for output from the computer.

PRINT* 1 sends NAMES to the disk drive just as the LPRINT
command sends it to a printer.

The WHILE loop ends when you enter an asterisk (*) in the pro
gram. Line 80 closes the file. Look at the program carefully. In
the next program example, you'll learn how to receive INPUT
from a disk file.

The file created by the following program is a sequential file. You
must read its contents in the same order as they were put into the file.

The following program reads the files from the disk:

10 CLEARW 2

20 OPEN "I".. »1.. "TESTFILE1' ' "I" FOR INPUT

30 INPUTn 1.. NAMES

40 WHILE NOT EOFC1) : • ***** EOF MEANS END OF FILE

50 PRINT NAMES

60 INPUTB 1.. NAMES

70 WEND

80 CLOSE Bl

90 END

Line 20 opens TESTFILE, as file number 1, to prepare it for INPUT
to the computer. "I" means input.

The input loop uses the same technique you've used with DATA
statements. Instead of DATA, you use the INPUT* statement. The
WHILE loop ends when file #1 from the OPEN statement meets —
the EOF (End of File) condition.

When the loop is finished, line 80 closes the file.

Sequential files have the following important features: ^

• When you OPEN a file for output, its current contents are lost.

• If you open a nonexistent file for output, OPEN will create a
file using the name you give. ^

• If you attempt to OPEN a nonexistent file for INPUT, ST BASIC
will display an Error Message.

r\

irnnhJi*M*'' iM^MI r>
•*•»

48

-~

r>

^^ ^^ -^ .^ ^9^
• Files are assigned numbers to make it easier to refer to them in

a program. Up to three different files can be open at once.

Random Access Files
ST BASIC can also create files that are accessed randomly by
record. A random access file can be compared to a stack of index
cards with labeled dividers. To find the first, tenth, or hundredth
card, you go directly to the divider labeled one, ten, or one hundred.

You can search these files more rapidly than sequential files.
Using random access files requires an understanding of numeric
variables, arrays, and strings. These are described in the following
sections. The last section, "Advanced Concepts," provides more
details about random access files.

Note: When you enter records to be saved to disk as a random
access file, the first record must be number 1 (one) and all sub
sequent records must be incremented by 1 (one). This is most
easily accomplished by using a FOR . . . TO . . . NEXT loop (e.g.,
FOR RECORD = 1 to 2000; IF RECORD = 0 THEN CLOSE #1 :END).

NUMERIC VARIABLES
Most programs work with units of data expressed as numbers or

u strings. Names are usually assigned to units of data to help clarify
their use. For example, you might want to total a list of sales and

° expenses by saying that TOTAL = TOTAL + SALES - EXPENSES.
Since the values of SALES, EXPENSES, and the TOTAL vary, they
are variables.

You can enter a string of data, such as a name, into a string
• variable. And remember that a string is any kind of data, such
y as text, that is not to be interpreted as a number.

- ST BASIC can represent numbers as real numbers and as integers.

— Real numbers can have fractional values. Pi (3.1416) is a real num-
y ber. So is 5.00, because it has a decimal point in its expression.

U Integers are whole numbers with no fractional parts. The number
5 is an integer; so is 5,729,346.

y If you don't specify a variable as either a real number or an
integer, ST BASIC interprets it as an integer. ST BASIC also

^ converts integers to real numbers whenever necessary.

J
49

////////////////
You can specify numeric type using % and !.

TOTAL% An integer variable.

TOTAL! A real number variable.

When you declare a variable's type, ST BASIC does not convert
it to another type unless you designate the change.

You can convert a numeric variable's type using the following
statements:

CINT (TOTAL) Converts TOTAL to an integer.

BALANCE = INT The integer value of TOTAL is assigned to
(TOTAL) BALANCE, but TOTAL is unchanged.

BALANCE = FIX BALANCE is assigned the whole number part
(TOTAL) of TOTAL with any decimal part removed. The

decimal isn't rounded; it's cut off.

Arrays
Any arrangement of information into rows and columns is called
an array.

Whenever you arrange numbers into rows and columns, as in a
spreadsheet, you create an array. A printed page of text is an
array of characters (rows) and lines (columns). You can arrange
variables into arrays by defining their row and column limits when
you name them.

10 CLEARW 2: COUNT=0 ^

20 INPUT "ENTER SCORE:

30 WHILE SCORE > O

40 TALLY£COUNT)=SCORE

50 INPUT "ENTER SCORE:

60 COUNT=COUNT + l

70 WEND

80 CLEARW 2

90 KOR I=0 TO COUNT

lOO AVERAGE=AVERAGE+TALLYCIJ: NEXT:

AVERAGE=AVERAGE/COUNT

110 PRINT "THE AVERAGE FOR "jCOUNTj" SCORES IS:
.: AVERAGE

50

-~

'">

""

X X X XX X /

120 PRINT: INPUT "WHICH SCORE WOULD YOU LIKE TO SEE'

SELECTION

130 WHILE SELECTION > O AND SELECTION < COUNT + 1

140 PRINT "SCORE "^SELECTION;" IS:

".: TALLY(SELECTION J

150 PRINT: INPUT "WHICH SCORE WOULD YOU LIKE TO SEE'

SELECTION

160 WEND

170 END

_

Enter up to 10 scores. When you are through, enter a 0 or
a negative score to exit the entry loop (see line 30).

Using an array allows you to keep many entries in memory and
access them easily.

In the previous program, TALLY is an array with one dimension
(i.e., one row of several columns). Arrays can have more than one
dimension. If you wanted to make a record of sales and commis
sions, you could write a program similar to the following example:

10 CLEARW 2: COUNT=0

20 INPUT "ENTER SALES:

• ***** INPUT DIRECTLY TO ARRAY *****

30 WHILE SALESCCOUNT/0) > -0

<J 40 SALEStCOUNT/lJ=SALEStCOUNT..0J*0.O8:

• ***** COMPUTE COMMISSION *****

~ 50 INPUT "ENTER SALES: "/ SALES(COUNT..O J

_ 60 COUNT=COUNT+l

70 WEND

w 80 CLEARW 2

90 PRINT "ENTRY SALES COMMISSION"

lOO FOR I=0 TO COUNT

U 110PRINT 1/ 5ALESCI/0J.. SALEStl/lJ
120 NEXT

130 END

_ RUN

51

Y/////////////
DIM

ST BASIC establishes the size of an array the first time you refer
to it. The default size of an array is 10 rows by 10 columns (10,10).
You can declare your own array dimensions with the DIM state
ment. DIM TOTAL (5,50) defines TOTAL as an array with 5 rows
and 50 columns. DIM RECORD (5,50,100) defines RECORD as an
array of 5 rows, 50 columns, and 100 planes. Each number within
the parentheses refers to a dimension. ST BASIC allows up to 15
dimensions in an array. The number of elements and dimensions
you can use depends on the amount of memory you have
available for a particular program.

Option Base
The arrays in the previous programs start at element (0,0). This
means that item 1 is in position (0,0). It is awkward to address an
element as (0,0). ST BASIC allows you to specify (1,1) as the base
element of an array. Look at the following programs:

10 OPTION BASE 1

20 DIM P0INTSC10/53

The first element of the array POINTS is (1,1).

30 OPTION BASE O

40 DIM VALUE5C10/5)

The first element of the array VALUES is (0,0).

Both arrays are the same size.

Character Strings
A string is a special type of array. The first dimension of a string is
its length. DIM A$(40) sets a string length of 40 characters. The
following ST BASIC reserved words manipulate strings:

LEFTS
LSET

RIGHTS
RSET

MID$

52

r\

<*>

r\

~

////////////////
Enter this program:

10 CLEARW 2

20 AS=" JAN TOM BRANDON"

30 BS=LEFTS CAS/3 J : PRINT BS : ' ***** PRINTS LEFT
3 CHARACTERS *****

40 BS=MIDS tAS/5/3 J : PRINT BS : ****** PRINTS 3

CHARACTERS STARTING AT CHARACTER 5 *****

SO BS=RIGHTS tAS/7 J : PRINT BS : ' ***** PRINTS RIGHT

7 CHARACTERS *****

LSET and RSET left-justify and right-justify strings. Enter this example:

10 FULLW 2: CLEARW 2

20 AS=" " : "20 SPACES

30 BS=" JOHN PHILLIP SOUZA"

40 LSET AS=RIGHTS CBS/7J

50 PRINT AS

60 RSET AS=LEFTS CBS/4J

70 PRINT AS

80 END

LSET and RSET change the content of A$ without changing its
length. Use them to maintain fixed field lengths in data entry
routines and random access disk files.

LEFTS accesses characters from the left portion of a string. You
can assign the characters to another string or print them without
changing the string.

MID$ and RIGHTS take characters from the mid and right portions
of the string. They can be assigned to another string or printed.

Converting String Variables
You can convert string variables to numeric variables using STRS:

AS=STRS CTOTAL)

The VAL function converts numeric variables back to string
variables:

TOTAL=VAL CASJ

53

/////////*

After a program finishes performing computations with numbers,
you may want to include those numbers in a word processing pro
gram. In a text (word processing) file, it's easier to treat the num
bers as strings. Or you may want to perform computations with
numbers taken from a text file. The STRS and VAL functions con
vert values so that you can use them in both text and data files.

ADVANCED CONCEPTS
ST BASIC lets you incorporate custom functions, chained overlays,
and custom assembly-language modules into your programs. m

DEFFN
Occasionally you may need a function that doesn't exist in
ST BASIC. You can define your own functions in ST BASIC
with the DEF FN statement. Enter this program:

10 DEF FNCOST=QUANTITY * PRICE

20 INPUT "QUANTITY: "/QUANTITY

30 INPUT "PRICE: "/ PRICE

40 PRINT "COST IS " Ji FNCOST

50 END

This program defines FNCOST as the result of the computation:

QUANTITY * PRICE

You can also define a function and pass a value to it. Enter this program:

10 DEF FNPAY (SALESJ=SALES * COMMISSION - O.02*SALES

20 INPUT "COMMISSION: "/ COMMISSION

30 INPUT "SALES: ", SALES

40 WHILE SALES > 0

50 PRINT "PAY IS "} FNPAY (SALESJ

60 INPUT "SALES: "/ SALES

70 WEND

80 END

In this program, the number you assign to FNPAY will be used to
compute the function result. Notice that in both program examples,
global variables like QUANTITY or COMMISSION get their values
from outside the function statement. The same is true for prede
fined functions such as +, where the result of LENGTH + WIDTH
would depend on previously set values for LENGTH and WIDTH.

54

~

r>

/////////////
Chaining Programs
One ST BASIC program can run another one. The program line:

lOO CHAIN "NEXTPROG"

causes the program NEXTPROG.BAS to be loaded and run,
replacing the current program and destroying all current variables.

The program line

1O0 CHAIN MERGE "NEXTPROG"

loads NEXTPROG.BAS, but leaves current variables intact. CHAIN
MERGE replaces current program lines with similarly numbered
lines in NEXTPROG.BAS. The program does not replace the lines
whose numbers are not duplicated in NEXTPROG.BAS.

The following programming rules apply to CHAIN and CHAIN MERGE:

• CHAIN destroys the current program and variable values.

• CHAIN MERGE does not alter variable values. It only replaces
duplicate lines.

Binary Files
A binary file is made up of data bytes that are not interpreted as
either numbers or text as they are read into memory. They are
loaded as 8-bit bytes into memory.

You can save parts of memory directly to disk (in binary format) or
read binary files directly into memory. This is useful for saving and
loading screen images and machine language modules.

A machine language module is a binary file containing program
codes that can be read and executed directly by the 68000
microprocessor in your ST Computer.

The program line:

BSAVE "ARRAY"/10O/65O"

saves 650 bytes, beginning at address 100, to a file named ARRAY.

55

X / XXX

The program line:

BLOAD "ARRAY"..180 _

loads the file ARRAY into memory beginning at address 23. m

If your binary file is a machine language module, you can run
it from ST BASIC using the CALL command. Look at the following —
example:

100 PL0T=23

110 CALL PLOTtX/Y/ZJ

The lines assign the starting address of a routine to the variable
PLOT and tell ST BASIC to run the routine, passing the variables f*
X, Y and Z to the program.

Refer to Appendix E for more information about how to use ~
assembly language modules with ST BASIC.

Random Access Files

You can access information more quickly in a random access file
than a sequential file. Random access files must have fixed-length
fields because they may use more memory to store text than
sequential files. However, random access files are more efficient
for storing numbers than sequential files because they store num
bers in binary format, whereas sequential files use ASCII format.

Note: ASCII stands for American Standard Code for Information
Interchange. ASCII is the standard translation code of computer
data into printable characters.

The following reserved words control random access files: _

OPEN

CLOSE

EOF

LSET

RSET

FIELD

PUT ^
GET

LOC ^

56

OPEN, CLOSE, and EOF are familiar to you from the section on
sequential files. LSET and RSET were described in the section on
strings. FIELD, PUT, GET, and LOC are new commands.

FIELD specifies the format of a random access file. Each record
in the file will consist of the data FIELD you specify.

You PUT records into a file and GET records from a file. Each

record consists of the same number and types of fields. The fields
are defined in the FIELD statement of the program that created
the file. Any program reading the records must define records that
match those already in the file. (The number and types of fields
must be the same.) You do not have to use the same variable
names in each program.

LOC lets you know your location in a file. A = LOC(1) sets
A equal to the number of bytes read from a sequential file or the
current record number in a random access file.

— The following program shows how to access and modify records
in a random access file:

„ 10 • ***** RPUTGET .BAS BY RUSS G .

20 CLEARW 2 : FULLW 2

*• 30 OPEN "R"/ «1/ "TESTFILE" : '***** OPEN FOR RANDOM
y ACCESS

35 • ***** EACH RECORD TO HAVE 3 FIELDS

- 40 FIELD ttl/20 AS VS/10 AS XS/30 AS NS : ' 20 SPACES

RESERVED FOR VS/10 FOR XS/ ETC.

45 • ***** LEFT JUSTIFY VS AND XS

50 LSET VS = "HELLO"

60 LSET XS="THIS"

65 • ***** RIGHT JUSTIFY NS

U 70 RSET NS="IS RECORD 1"

75 PRINT VS/XS^NS

80 PUT «1: ' ***** PUT FIRST RECORD INTO FILE

90 RSET NS="IS RECORD 2"

95 PRINT VS^XS^NS

100 PUT »1: ' ***** PUT SECOND RECORD INTO FILE

HO CLOSE 1

115 PRINT

120 OPEN "R"/ «!/ "TESTFILE"

_

_

57

////////////,X

130 FIELD Kl/20 AS AS/10 AS BS..30 AS CS : ' ***** NOTICE

NEW VARIABLE NAMES

140 GET «l/2 : • ***** GET SECOND RECORD FIRST

150 PRINT ASjBSjCS

160 GET Hl/1: • ***** GET FIRST RECORD NEXT

170 PRINT AS^BSjCS m
180 CLOSE 1

190 END

You can retrieve records from the file in any order.

The following program adds a record to the end of the file:

10 • ***** RAPPEND.BAS

20 CLEARW 2 : FULLW 2

30 OPEN "R" / «1/ "TESTFILE" : • ***** OPEN FOR RANDOM

ACCESS

35 • ***** EACH RECORD TO HAVE 3 FIELDS

40 FIELD «l/20 AS VS/10 AS XS/30 AS NS m
50 LSET VS = "HELLO"

60 LSET XS="THIS"

65 '***** RIGHT JUSTIFY NS n
70 RSET NS="IS RECORD 3"

75 PRINT VS;XS^NS

80PUT«l/3: ****** PUT RECORD INTO FILE _

90 CLOSE 1

lOO OPEN "R"/ «1/ "TESTFILE"

110 FIELD «l/20 AS AS/10 AS BS/30 AS CS

120 FOR 1=1 TO 3

130GETB1/I: ****** GET RECORD r\

140 PRINT VS.:XS.:NS : • ***** PRINT RECORD

150 NEXT

160 CLOSE 1

170 END

58

u

xxxxxxxxxxxxxxxx
The next program replaces a record in the middle of the file:

10 • ***** RINSERT.BAS

20 CLEARW 2 : FULLW 2

_ 30 OPEN "R"/ ttl/ "TESTFILE" : ****** OPEN FOR RANDOM

ACCESS

35 • ***** EACH RECORD TO HAVE 3 FIELDS

40 FIELD O1..20 AS VS/10 AS XS/30 AS NS

50 LSET VS = "HELLO"

^ 60 LSET XS="THIS"

65 • ***** RIGHT JUSTIFY NS

70 RSET NS="IS THE MIDDLE RECORD"

^ 75 PRINT VS;XS;NS

80 PUT ttl/2: • ***** REPLACE SECOND RECORD

90 CLOSE 1

10O OPEN "R"/ «1/ "TESTFILE"

110 FIELD ttl/20 AS AS/10 AS BS/30 AS CS

120 FOR 1=1 TO 3

_ 130GETH1/I: ****** GET RECORD

140 PRINT VS;XS;NS : ' ***** PRINT RECORD

150 NEXT

_

u

^

_ 160 CLOSE 1

170 END

y Numbers In Random Access Files
In a random access file, it's most efficient to represent numbers in
pure binary form. The following ST BASIC reserved words convert
integers and real numbers to and from binary format:

— MKI$ Converts integers to 2-byte strings.
MKS$ Converts real numbers to 4-byte strings.
MKD$ Converts real numbers to 8-byte strings.

CVI Converts 2-byte strings to integers.
- CVS Converts 4-byte strings to real numbers.

_

Ul

CVD Converts 8-byte strings to real numbers.

J
59

///////////////A
The following program shows why binary numbers can be used —
more efficiently than ASCI I-formatted numbers in a random
access file: f\

10 • RPUTNUM.BAS

20 FULLW 2: CLEARW 2 .

30 OPEN "R"/ «1/ "TESTFILE"

40 FIELD ttl/20 AS NAMES/2 AS AGES/30 AS JOBS

50 INPUT "NAME: "/ NS _

60 WHILE NS <> "*"

70 INPUT "AGE: "/ AGE "

80 INPUT "JOB: "/ JS

90 LSET NAMES=NS: LSET JOBS=JS

95 AGES=MKIS (AGE) : ****** CONVERT AGE TO 2 BYTE STRING ft
100 PUT «1

HO INPUT "NAME: ".. NAMES

120 WEND 01
130 CLOSE 1

140 PRINT

150 OPEN "R"/ »1/ "TESTFILE" -

160 FIELD ttl/20 AS NAMES/2 AS AGES/30 AS JOBS
170 FOR 1=1 TO 3

180GETH1..I _

190 AGE=CVI (AGES) : ' ***** CONVERT AGES TO INTEGER AGE

2O0 PRINT NAMES;AGE.: JOBS

210 NEXT

220 CLOSE 1

230 END l>

Note: Random access files can have no more than 4096 bytes
in a record and 32767 records in a single file. n

You should now have a good understanding of the vocabulary and
syntax of ST BASIC. Remember to use the Appendices to learn
more about the language. Using Appendices A, B, and C will
provide you with all the information you need to experiment with
ST BASIC and your ST Computer.

60

u

U

u

u

//////XX//X//y
CHAPTER 3
ST BASIC MENUS

This chapter describes the menus available from the ST BASIC
Desktop. The Menu headings are Desk, File, Run, Edit and Debug.
They are located along the top edge of the ST BASIC Desktop in
the Menu Bar. Each heading has its own menu. To access a menu,
point at the menu heading. The word will become shaded and the
menu will pop down. If you don't want to select a menu item, click
anywhere else on the ST BASIC Desktop and the menu will pop
back into the Menu Bar.

DESK
The Desk menu contains options that are available from ST BASIC
and from within most applications programs that run on the
ST Computer.

MSI File Run Edit Debug
About ST Basic OUTPUT

UT5Z Enulator
Control Panel

Set RSZ32 Conflg.
Install Printer

About ST BASIC

This option is the billboard for the applications program. Copyright
and general program information are displayed. Select the About
ST BASIC option and the following Dialog Box is displayed:

61

Atari ST Basic
Copyright (c) 1985

Atari Corp,

All Rights Reserved

DO

////////////////
The other options in the Desk menu—VT™52 Emulator, Control
Panel, Set RS232 Config., and Install Printer—are explained in
detail in the ATARI ST Owner's Manual. Refer to the section
on each option in Chapter 5 of that manual.

FILE
The File menu contains options that let you read information from
or write information to the disk drive.

Desk I | Run Edit Debug
Load

Save As
Delete File
Herge
Oult

OUTPUT

Load
The Load option reads a file that has been stored on a floppy disk.
Select the Load option and the following Dialog Box is displayed:

ITEM SELECTOR

Directory:
*.BAS

n *.m

62

lection:• Se

o I—

run

1Cancel |

u

U

u

u

////////////////
To select a file listed in the Item Selector Box, point at a filename
and double-click the left mouse button. You can also select a file
by clicking once on an item and then clicking once on the
Ok button.

The current directory is displayed at the top of the Item Selector
Box under the heading "Directory". If the file you want to access
is stored in a different directory, you can change the directory.
Click on the Directory heading, use the [Backspace] key to erase
the current directory name, and type in the name of the directory
you want to use. To view a listing of the files under the new
directory, simply click anywhere inside the Directory Window
and the new directory listing will appear.

Note: One hundred out of a possible 112 files can be displayed at
one time in the Directory Window. Use the Scroll Bar to view the
remaining directory listings.

If you decide not to load a particular file, or if the file you want is
not present, you can exit the Item Selector Box by clicking on the
Cancel button.

Save As
The Save As option creates a new file. You can also use this
option to make a copy of a file using a different name. Each
time you select the Save As option, the Item Selector Box
will be displayed.

To enter the filename of a new file in the Item Selector Box, type
the filename on the line indicated in the Item Selector Box. If you
are replacing an existing file, select the name from the list of
filenames in the directory.

Note: The Save As option executes a REPLACE command,
replacing the program on disk with the program of the same
name in memory.

Delete File
The Delete File option deletes an ST BASIC program from a floppy
disk. When you select the Delete File option, the Item Selector
Box will be displayed. To delete a file, either double-click on the
filename, or click on the filename once and then click on the Ok
button.

63

////////////////.
Merge
The Merge option loads an ST BASIC program into memory
without erasing the program already in memory. It is most often
used to merge small program modules into one larger program.

When you select the Merge option, the Item Selector Box will be
displayed. Select the program to be merged and click on the Ok
button. List the program to insure that the program segments have
been merged properly.

Quit
The Quit option lets you exit ST BASIC and returns you to the GEM
Desktop. When you use this option, the program in memory is not
saved before exiting ST BASIC.

RUN
The Run menu provides options that are used to control the
starting and stopping of the procedures you use with ST BASIC.

Desk File pnTil Edit Debug
Run
Break

Stop
Continue

Step
•/ Buf graphics

OUTPUT

Run
The Run option runs the ST BASIC program currently in memory.

Break
The Break option halts an ST BASIC program. If you are in Edit
mode, selecting the Break option from the Run menu returns
control of the program to the screen editor. Selecting the Break
option in any other circumstance places the program in Break
mode. While in Break mode, you can pause, examine and modify
variables, or continue program operation.

64

It

—

u

u

_

u

u

_

u

xxxxxxxxxxxxxxxx
Stop
The Stop option halts program execution from within the
Break mode.

Continue
The Continue option restarts program execution from the position
where the Break option was selected.

Step
The Step option lets you execute a program procedure one step at
a time. When you select the Step option, the following Dialog Box
is displayed:

♦
Hit <CR> to Execute
each line.

GOD

Click on the Ok button to acknowledge the Step procedure. Each
time you press the [Return] key, the next program line is
executed. Press [Control] [G] to exit the Step option.

Buf Graphics
When the Buf Graphics option is implemented, memory space is
reserved for graphics created in the Output Window. A buffer
space is established. The buffer takes up 32,000 bytes of memory
and reduces the amount of memory space available for
program data.

The Buf Graphics option is implemented when the check mark is
in front of the option in the Run menu. If you want to select or turn
off the Buf Graphics option, click on the Buf Graphics option.

65

////////////////:
When you select or turn off the Buf Graphics option, the following
Dialog Box is displayed:

<• A HEH operation mil
be executed.

I OK I ICANCEL I

Click on one of the exit buttons to either select or turn off the
buffer. ST BASIC will execute a NEW command and erase the
program memory each time the buffer is turned on or off.

EDIT
The Edit menu controls the editing capabilities of. ST BASIC.

Desk File Run KW1 Debug
Start Edit
Exit Edit

Help Edit
5ota Line ,,
Delete Lines
Insert Space
Delete Char
Insert Line
Reftove Line
Page Up
Page Dawn
Load Text

Save Text
Sew Buffer
List

Start Edit
The Start Edit option lets you enter the Edit mode.

Exit Edit
The Exit Edit option lets you exit the Edit mode.

66

OUTPUT

n

*>

J

U

J

////////////////
Help Edit
Select the Help Edit option and the following Dialog Box is
displayed:

HELP EDIT:

Insert Space - Fl

Delete Char - F2

Insert Line - F3

Delete Line - F4
Page Up - F5

Page Dowi - F6

Load Text - F7

Save Text - F8
MeM Buffer - F3

Exit Edit - FIB

J1 Ok

Each item in the Help Edit Dialog Box corresponds to an option
in the Edit menu. The function key designations —F1 through
F10—correspond to the function keys on the ST Computer
keyboard. Each function can be accomplished either through
the menu option or by pressing the correct function key.

Goto Line
The Goto Line option moves the cursor to the line number you
enter in the Dialog Box. Select the Goto Line option and the
following Dialog Box is displayed:

Display basic line nunber:

I OK I I CBHCEL I

Type in the line number you want the cursor moved to. Click on
either the OK or CANCEL button to exit to the Edit mode.

67

////////////////
Delete Lines
The Delete Lines option deletes the range of program lines you
enter in the Dialog Box. Select the Delete Lines option and the
following Dialog Box is displayed:

Delete progran lines

Fron line:

To line:

I OK I I CANCEL I
o

Type in the beginning program line number you want deleted, then
point to the heading "To line" and type in the ending line number.
Click on either the OK or CANCEL button to exit to the
Edit mode. ^

Insert Space
The Insert Space option inserts a space at the cursor position.

Delete Char
The Delete Char option deletes the character underneath the
cursor and moves all characters to the right of the cursor one
space to the left.

Insert Line
The Insert Line option inserts a blank line at the cursor position.

Remove Line n
The Remove Line option removes the line at the cursor position.
After the Remove Line option is selected, the program statement
is shown in lighter text. Placing the cursor on this line and pressing n
[Return] adds the statement to the program. If you want to remove
the line from the program and the screen, place the cursor on the
line with lighter text and click on the Remove Line option.

Page Up
The Page Up option moves the cursor to the top of the previous
window in the program.

. r-\
68

//////XX//X//X//
Page Down
The Page Down option moves the cursor to the top of the next
window in the program.

Load Text
The Load Text option loads the contents of a file named
BASIC.BUF into the Edit Window.

Save Text
The Save Text option places the text from the current Edit Window
into a file named BASIC.BUF. Twenty-four lines of text are saved
with this option. The text, however, does not have to be an
ST BASIC program.

New Buffer
The New Buffer option places the current ST BASIC program into
the Edit Window.

List
The List option places the current ST BASIC program into the
List Window.

DEBUG
The Debug menu controls the debugging features of ST BASIC
that are controllable through the ST BASIC menus.

Desk File Run Edit WHini

LIST Tron

Troff
Trace

Untrace

OUTPUT

69

////////////////
Tron
The Tron option of ST BASIC prints the current line number as
the ST BASIC program is running. Select the Tron option and
the following Dialog Box is displayed:

TROH: Debugging on lines...

Lines Entered

| OK I ICANCEL

Type in the line numbers of the program lines that you want to
follow as the program is running. Click on the Ok button in the
Dialog Box.

Troff
The Troff option turns off the Tron option. Select the Troff option
and the following Dialog is displayed:

TROFF: Disable on lines...

ILines Entered

ICANCEL I

Click on the Ok button in the Dialog Box and the Tron option will
be turned off.

70

*>

-

JF ^ JF JF jF J?

Trace
The Trace option prints the current program line as the ST BASIC
program is executed. Select the Trace option and the following
Dialog Box is displayed:

TRACE: debugging on lines...

Lines Entered

I OK I ICANCEL I

Type in the line numbers you want to trace in the Dialog Box. Click
on the Ok button to start the Trace option.

Untrace
The Untrace option turns off the Trace option. Select the Untrace
option and the following Dialog Box is displayed:

UHTRACE: Disable on lines..

Lines Entered

I OK | I CANCEL I

Click on the Ok button in the Dialog Box and the Trace option wil
be turned off.

71

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
<

(
(
(
(
(
(
(
(
(
(
(
(

%
:

v

y

U

w

_

w

XXXXXXXXXXXXXX/
APPENDIX A
ST BASIC RESERVED WORDS

The reserved words used in ST BASIC are listed below. If you use
any of these words as a variable name, the Error Message,
"Something is wrong," will appear on the screen.

ABS DEFSNG IF

ALL DEFSTR IMP

AND DELETE INKEY$
AS DIM INP

ASC DIR INPUT

ATN DO INPUT#

AUTO EDIT INPUTS

BASE ELLIPSE INSTR

BLOAD ELSE INT

BREAK END INTIN

BSAVE EOF INTOUT

CALL ERA KILL

CDBL ERASE LEFTS

CHAIN ERL LEN

CHR$ ERR LET

CINT ERROR LINE

CIRCLE EQV LINEF

CLEAR EXP LIST

CLEARW FIELD LLIST

CLOSE FIELD* LOAD

CLOSEW FILL LOC

COLOR FIX LOF

COMMON FLOAT LOG

CONT FOLLOW LOG10

CONTRL FOR LPOS

COS FRE LPRINT

CSNG FULLW LSET

CVD GB MERGE

CVI GEMSYS MID$

CVS GET MKD$
DATA GET# MKI$

DEF GO MKS$
DEF FN GOSUB MOD

DEFDBL GOTO NAME

DEFINT GOTOXY NEW

DEFSEG HEX$ NEXT

73

(
(
(
(
(
(
(
(
(

C
(
(
(
(

C
(
(
(
(
(
(
(
(
(

C
(
(
(
(
(
(
(

(

^N
>

\\\

(3
C
D

C
L
Q

m<
L
U

DC
^

CO
CO

CO
en

L
U

W
Z

H
I-

Q
_,

LU
O

O
-
l
Z

Q
.

z
o

O
O

O

O

<
_
i
o

L
U

LL.
L
U
_
J
<

.
_

O
ll.
z
£
O

rr
^

c
c
c
o

-
^

*
|
—
>
-

Q
L
U
I

L
U
L
U

.
>

-
T

>
<

<
iO

c
tir

r
Z

Z
Z

c
o

^
Q

<
|^

iy
c
io

C
O

C
O

C
O

C
O

C
O

^
^

1
—

•—
•—

l- a
;
L

r
^

'^
^

'-
'-

|
<

<
L

j
^

^
^

^
;
^

t
i
:
t
t
c
j

L
U

ix
i

C
O

a
.

i
-

h
-

L
U

NO

L
U

:
0

!
<

L
U

D
C

,_

U
J
I
-
3

D
C

O
C

O
C

O

L
U

'
<

«
Q

WL
U

O
o

lu
h

i-
E

C
L

l
C

D
n

O
O

O
O

d
-

C
L

0
-

fee
u

iZ
i^

c
o

Z
Z

^
^

l_
tz

<
2

Z
Q

.c
o

S
„
p

:^
Q

u
jZ

>
e
3

Z
z
3

^
o

c
c
u

J
o

c
r

i
i
i
L

u
O

O
n

r
r
i
-
i
-
3

D
<

^
^

L
U

L
U

L
U

L
U

w
^

-
Z

c
o

D
<

u
j
(
5

±
O

c
L

Q
.O

i
-
i
-
i
-

C
L

Q
-
D

_
D

_
C

L
C

L
C

L
D

.Q
-
O

L
r
L

r
L

r
L

r
L

r
c
c
ix

r
r
r
x

ir
c
c
c
c
c
c
c
o

c
o

c
o

c
o

w
s

_

u

~

^

///////////.
APPENDIX B
OPERATORS, ORDER OF PRECEDENCE,
AND FUNCTION SUMMARY

LOGICAL OPERATORS
The logical operators recognized by ST BASIC are NOT, AND, OR,
XOR, IMP and EQV These logical operators work on the flags
resulting from logical expressions. A TRUE flag equals -1 and a
FALSE flag equals 0. Thus the statement A = 1: B = 2: PRINT
A = B prints 0, while the statement A = 1: B = 2: PRINT A< >B
prints -1.

The result of AND is TRUE when both arguments are TRUE:
2 + 2 = 4 AND 3 + 2 = 5 is TRUE.

The result of OR is TRUE when either argument is TRUE: 2 + 2 = 4
OR 3 + 2 = 7 is TRUE.

IMP is the abbreviation for implication. IMP works on logical
expressions to check the validity of premises and conclusions.
IMP is TRUE in all cases except where a premise is TRUE and
a conclusion is FALSE.

The statement 2 + 2 = 4IMP3 + 2 = 6is FALSE.

The following statements are valid implications and are considered
TRUE:

2 + 2 = 4 IMP3 + 3 = 6

2 + 2 = 3 IMP3 + 3 = 6

2 + 2 = 3 IMP3 + 3 = 7

The following operators work bitwise on single byte integer
numbers according to the following:

AND produces a result in which a bit is equal to 1 only where
there is a 1 in both arguments. A% = 5: B% = 3: C% = A% AND
B% makes C% equal 1.

OR produces a result in which a bit is equal to 1 where there is a 1
in either argument. A% =5: B% =3: C% = A% OR B% makes
C% equal 7.

75

XXXXXXj

XOR produces a result in which a bit is equal to 1 where there is a ^
1 in either argument, but not in both arguments. A% = 5: B% =3:
C% = A% XOR B% makes C% equal 6. «

EQV produces a result where a bit is equal to 1 where there is a 1
in both arguments, or where there is a 0 in both arguments. A bit
is equal to 0 where the bits in the argument differ. A% =5:
B% = 3: C% = A% EQV B% makes C% equal -7.

Truth Table
NOT

X NOTX

OR

IMP

EQV

76

0 1

1 0 -

ANC ^

X Y X AND Y

0 0 0

0 1 0

1

1

0

1

0

1

X Y X OR Y

0 0 0

0 1 1

1 0 1

1 1 1

X Y X XOR Y

0 0 0

0 1 1

1

1

0

1

1

0

X Y X IMP Y

0 0 1

0 1 1

1 0 0

1 1 1

X Y X EQV Y

0 0 1

0 1 0

1 0 0

1 1 1

XOR ~

u

_

///////x////////

ARITHMETIC OPERATORS
Symbol Name Example

+ Addition X + Y
— Subtraction X - Y

* Multiplication X * Y

/ Division X/Y

MOD Modulus X MOD Y

A

RELATIO

Exponentiation

NAL OPERATORS

X A Y

Symbol Meaning Example

= Equals X = Y

< > Does not equal X <> Y

< Is less than X < Y

> Is greater than X > Y

< = Is less than or equal to X <= Y

> = Is greater than or equal to X >= Y

ORDER OF PRECEDENCE FOR OPERATORS
Operator Explanation

() Items in parentheses have highest priority
A Exponentiation

- Negation
* Multiplication
/ Floating-point and integer division
MOD Modulus

+ , - Addition, subtraction

= , <>

<,> Relational operators
< = , > =

NOT, AND
OR, XOR Logical operators, in c rder given
IMP EQV

77

XXX//XXXXXX//////////////////

SUMMARY OF ST BASIC FUNCTIONS
Functions operate on constants and variables to produce values
for variables. A constant is a number, such as 250.4 or a string
such as HELLO. A variable is a named numeric value, such as
TOTAL or a named string value, such as NAMES.

Variable Names
Variable names cannot contain spaces. They can be as long as
you like, but only the first 31 characters are used by ST BASIC
to distingush them from one another.

Numeric Variables
There are different types of numeric variables. The following table

r>

summarizes var able types: •

Character Type Example —

$ String NAMESS >~\

% Integer RECORD.NUMBER%
! Real Nurr ber TOTAL.PROFIT!

*>

Type Declarations
The following statements declare variable types in ST BASIC
(see definitions in Appendix C):

DEFSTR declares string variables.
DEFINT declares integer variables.
DEFSNG declares real number variables.

Numeric Functions
The numeric functions available in ST BASIC are shown below:

Function Explanation

ABS Returns the absolute value of a number.

ATN Returns the arctangent of a number.
COS Returns the cosine of a number.
EXP Returns to the power of a given value.
LOG Returns the natural logarithm of a number.
LOG10 Returns the base-10 logarithm of a number.
RND Generates a sequence of random numbers.
SIN Returns the sine of a number in radians.
SQR Returns the square root of a number.
TAN Returns the tangent of a number in radians.

78

^

~

-

u

u

-

u

_

u

J

u

u

u

u

u

u

////////////////
String Functions
Strings may be concatenated using + as in A$ = B$ + C$.
Other string functions are available in ST BASIC as shown in the
following table.

Function

INSTR

LEFTS
LEN

MIDS

RIGHTS
SPACES
STRS
STRINGS

Arrays
ST BASIC supports numeric and string arrays. The DIM statement
dimensions the variables. When referencing arrays, subscripts
refer to rows, columns, and planes—in that order. Subscript values
may be any valid numeric constant, variable, or expression.
Integer values are the most efficient, as real numbers are con
verted to integers when used as subscripts in an array. Arrays
accept input directly and may be used as would any variable
in a BASIC statement.

Two-Dimensional Array

Explanation

Finds the first occurrence of a particular
sequence of characters within a string and
returns its position.
Returns the leftmost characters in a string.
Returns the number of characters in a string.
Extracts a string from within a string, begin
ning at whatever point you specify.
Returns the rightmost characters in a string.
Returns a string of spaces.
Converts a number to a string.
Returns a string of a given length.

(0) (1) (2)

(0) (0.0) (0.1) (0.2)

(1) (1.0) (1.1) (1.2)

(2) (2.0) (2.1) (2.2)

(3) (3.0) (3.1) (3.2)

(4) (4.0) (4.1) (4.2)

(5) (5.0) (5.1) (5.2)

(6) (6.0) (6.1) (6.2)

6 AM 2 PM 10 PM

79

SUN

MON

TUE

WED

THU

FRI

SAT

///////////////j
XXxXXXXXXXX^XX^X m

The maximum number of elements in an array is limited by ^
available memory. Elements of different data types use memory
differently, as shown below:

INTEGER elements use 2 bytes.
REAL NUMBER elements use 4 bytes. ~
STRING elements use 6 bytes.

Line Format
The line format for ST BASIC is as follows:

<line number> <label:> <statement> <:statement>
<:'remark>

<~>

The optional label may be used instead of the line numbers as the
line descriptor in a GOTO or GOSUB statement.

Filename Conventions
ST BASIC program lines use the extension .BAS to identify them
as BASIC programs. Filenames cannot exceed 8 characters in
length and they may use an extension of no more than 3
characters. For example, the filename FILENAME.DAT is a
valid filename.

r\

n

80

u

•w

u

—

u

u

u

APPENDIX C
COMMANDS, FUNCTIONS,
AND STATEMENTS
This Appendix describes the ST BASIC commands, functions, and
statements in alphabetical order. The following format is used to
present each term:

• Definition of term.

• Syntax example.
• Explanation of how the term is used in ST BASIC.
• Cross reference to other ST BASIC terms.
• Program example.

The syntax formats in this section conform to the following
typographical conventions:

• Words in angle brackets, < >, describe the kind of data you
must insert in their places. They are self-explanatory. For exam
ple, <variable>, means that when you are writing a statement,
you write a variable in <variable>'s place.

• Items enclosed in square brackets, [], are optional and cannot
be repeated.

• Items enclosed in parentheses, (), are optional and can
be repeated.

• Words in uppercase are ST BASIC keywords.

81

V ///////

/\BS The ABS function returns the absolute value of a number which
is always positive or zero.

Syntax:

X= ABS(< numeric expression >)

X=AB3CH)

Explanation:

ABS returns an integer value for an integer argument. For real
numbers, the value returned has the same precision as the
argument.

Example:

Ok 10 IX=flB5C-9J

Ok 28 PRINT IX

Ok 30 X!=ABSC325556.244 J

Ok 40 PRINT X!

Ok 50 END

OK RUN

9

325556

Ok

r\

y\5Q The ASC function returns the ASCII value of the first character
in a string.

Syntax:

I% = ASC(< string expression >)

IK=ASCCA51

Explanation:

ASC returns an integer between 0 and 255. The string must con
tain at least one character. If the string expression is a null string,
an error number 5 occurs.

The CHRS function is the inverse of ASC. See Appendix E for —
a list of ASCII characters and corresponding numeric values.

82

xxxxxxxxxxxxxxxx
Example:
Ok lO flS="Murphy/ Janes'

Ok 20 PRINT ASC(A$J

Ok RUN

77

Ok

flrj| The ATN function returns the arctangent of a number.

Syntax:

X! =ATN(<numeric expression>)

!=ATNCNK)

Explanation:

The ATN function returns a real number. The number is an angle
in radians that ranges from -PI/2 to PI/2. The TAN function is the
inverse of ATN.

Example:

Ok 10 RADIANS!=ATNCO.333331

Ok 20 PRINT "THE ANGLE IN RADIANS IS " .:RADIANS !

Ok 30 PRINT

Ok 40 PI=3.14159

Ok SO DEGREES=RADIANS! »188/PI

Ok 60 PRINT "THE ANGLE IN DEGREES IS" ;CINT(DEGREES i

Ok RUN

THE ANGLE IN RADIANS IS .785393

THE ANGLE IN DEGREES IS 45

Ok

83

r\////////////////
AUTO Tne AUTO command generates a line number each time you press

the [Return] key. A [Control] [G] turns AUTO off. A line number
may not have a value greater than 65535. The AUTO command
may not be executed from the editor.

Syntax:

AUTO [<starting line number>] [,<increment>]

AUTO

AUTO 50..25

AUTO ..26

AUTO 50

Explanation:

You specify the first line number to generate and the number to
add to generate each following line number. If you do not specify
the starting line number, AUTO starts at line 10. If you do not
specify an increment, AUTO uses either 10 or the last increment
specified by an AUTO command.

If a line number already exists, AUTO prints two asterisks before it
(**10). If you enter a new program line, it will replace the original
one when you press [Return]. If you simply press [Return], the old
program line will remain undisturbed.

A [Control] [G] stops AUTO. But it does not perform the same
function as [Return]. A [Control] [G] does not enter a program
line and it will not change an existing line. m

Example: fn
080k AUTO _

rs
10

20 fk,

30

OK AUTO SO.. 25 ^

50

75 H
100

r\

84 Jk

-

_

u

u

~ BLOAD The BLOAD statement loads a file into memory.

~ Syntax:

U BLOAD <filespec>[,<address>]

• BLOAD TESTFILE. DAT.. 250

Explanation:

- BLOAD is used to load machine language programs, and arrays
and their contents. BLOAD can also display screen images.

U BLOAD loads a file into memory at the address you give. The
filespec is the full name of the file including file type. The address

•* is the numeric expression where you want loading to begin.

If you omit the address, the address specified with BSAVE is
— assumed. The file loads into the same address it came from.

w BLOAD does not check addresses. Although it is possible to
y BLOAD anywhere, do not BLOAD over ST BASIC'S data areas or

your program. If you do, you will most likely crash your program.

Note: BLOAD works in conjunction with the BSAVE command.

w Example:
Ok 110 BLOAD "ARRAY" .23

85

M

///X/XXX/XX//X//
Ok AUTO .. 20

10

30

SO

Ok AUTO 50

50

70

90

////////////////
BREAK Tne BREAK command stops program execution.

Syntax:

BREAK [< list of line numbers >]

BREAK -40

BREAK 10-40

BREAK 40.. 125

BREAK

BREAK 40

Explanation:

BREAK, by itself, causes the program to stop execution after every
line. Both the program line and any output are printed. A [Return]
or the CONT command will cause the next fine to execute. This is

the same as the STEP command.

If you specify line numbers, program execution stops only at the
specified lines.

<~\

To exit BREAK mode, type STOP or END.

The UNBREAK command stops BREAK.

Example:

Ok 10 N=5

Ok 20 FOR X=l TO 5

Ok 30 N=N-1

Ok 40 PRINT N

Ok 50 NEXT X

Ok BREAK 50

Ok RUN

4

b 50 NEXT X

Br

BSAVE The'BSAVE statement saves part of memory to a file.

Syntax:

BSAVE <filespec>,<address>,<length> ^

BSAUE TESTFILE. DAT, 25O..500 /-\

86

/

M

u

—

u

U

U

_

U

U

////////////////
Explanation:

BSAVE saves machine-language programs, data, or screen
images. The filespec is the name of your file and the address
is a numeric expresson.

Example:

Ok 110 BSAUE "ARRAY" ,23,650

fJAU The CALL statement transfers control to a machine language
subroutine.

Syntax:

CALL <numeric variable> [(<parameter list>)]

CALL DRAHCX, Y, Z)

Explanation:

-~ The numeric variable is the starting memory address of the
machine language routine. The routine can be loaded into memory
using BLOAD.

The optional parameter list consists of expressions that serve
as arguments to pass data between the main program and the
assembly routine. The parameter list is enclosed in parentheses
and must be separated by commas.

Example:

Ok 5O0 BLOAD "ASHLER",185800

w Ok 550 CHART = 185666

Ok 600 CALL CHARTCIX, AS, X)

Note: The assembler routine called using the CALL command will
find two parameters on the user stack (A7). The first parameter is

- a 2-byte integer that specifies the number of formal parameters
passed from the user's program. (In the case of the above exam
ple line 600, it will be three). The second parameter on the stack is
a 4-byte pointer to an array that contains the current value of the
formal parameters. Each such value occupies 4 bytes in the array
regardless of the type of the formal parameter (i.e., integer,
double). In each case a string variable is used as formal
parameter, the 4-byte value in the array will contain a pointer
to the memory location containing that string.

87

CHAIN The CHAIN statement transfers control and passes variables to
another program. A .BAS extender is assumed unless otherwise
specified.

Syntax:

CHAIN < filespec>[,<line descriptor•>][,ALL]
CHAIN MERGE <filespec>[,<line descriptor>]
[,DELETEKline descriptor list>]

CHAIN NEHPROG, 100, ALL

CHAIN MERGE NEHPROG, 100, DELETE 500-60O

Explanation:

The program you specify in the CHAIN statement replaces the
original program in memory. The program chained to is sometimes
called an overlay, because it overwrites all or part of the original
program. The filespec is the name of the new program. It can be
any string expression of a legal filename. —

The MERGE option merges a program with an existing program
instead of replacing it. CHAIN MERGE saves all variables, type
declarations, statements, and options. If you omit the MERGE
option, you must restate all DEF statements in each newly chained
program. The MERGE option overlays the statements in the new
program with the statements in the original program. If some of
the same line numbers in the new program are the same as in
the original, the new program lines replace the original ones.

You can specify a line descriptor after the filespec indicating
where to begin execution in the new program. Otherwise,
execution begins with the first executable statement.

The ALL option indicates that all variables in the original program
are passed to the new program. ALL is not valid with CHAIN
MERGE.

If you omit the ALL option, you must use the COMMON statement
to declare which variables the original program and the new
program can share.

See: COMMON

Use the DELETE option only with CHAIN MERGE. The DELETE op
tion allows you to remove parts of the old program from memory
to make room for the new program. The DELETE option deletes

88

r\

r>

r~s

/-v

u

//X//XXXXXXXXXX/
lines from the current program before merging the program
specified by <filespec>. Specify the line numbers to delete
after the DELETE keyword.

Example:

The following statement chains to a program named CALCS.BAS:

Ok 400 CHAIN "CALCS"

The following statement chains to the CALCS.BAS program and
begins execution at line 1200. All program variables can pass
from the original program to the new program.

Ok 400 CHAIN "CALCS", 1200, ALL

The following statement merges the lines from an overlay named
TOTAL.OVR with the program already in memory. Execution begins
at line 900. Before loading the merged file, the statement deletes
the list ranging from line 900 through line 2000.

u

Ok 710 CHAIN MERGE "TOTAL .OUR" , 900, DELETE 900-2606

u

CHR$ Tne CHR$ function returns the ASCII character that corresponds
to the specified ASCII decimal value.

Syntax:

A$ = CHR$(<ni/me/7C expression>)

AS=CHR${97J

Explanation:

CHR$ returns a one-character string.

The numeric expression must evaluate to a legal integer.

The ASCII value of the character returned is <expression> MOD
256. This means that the expression will be converted to a number
between 0 and 256. If the expression is greater than 256, it will be
treated as the remainder of a division by 256.

y CHRS converts real numbers to integers.

89

////////////////
Use the CHRS function to send special characters, such as line
feeds or carriage returns, to an output device. The CHRS function
is the inverse function of ASC.

Example:

Ok 10 PRINT CHRSC83)

Ok 20 PRINT CHRSClOOl

Ok 30 PRINT CHRSC356)

Ok RUN

S

d

d

Ok

CINT The CINT function rounds a number to the nearest integer.

Syntax:

I% = CINT(< numeric expression >)

IXrCINTCNJ „

Explanation:

The numeric expression must be between -32768 to 32767.
Otherwise, an overflow error occurs.

See: FIX, INT

Example:

Ok 18 PRINT CINTC5.2)

Ok 20 PRINT CINTC62.89J

Ok 30 PRINT CINTC-456.61J

Ok RUN

5 63

-457

Ok

r\

90

XXXXXXXXXXXXXX/.
CIRCLE The CIRCLE statement draws circles and arcs.

Syntax:

CIRCLE <horizontal center,vertical center,radius>
[<,start angle,end angle>]

CIRCLE 50,80,50

CIRCLE 50,88,50,900,1800

Explanation:

CIRCLE draws a circle whose center is located at the point
specified by,the first two parameters: horizontal center and
vertical center. The positions are in pixels starting from the
upper left corner of the Output Window.

The third parameter, radius, is also expressed in pixels. The
horizontal and vertical pixel count is dependent upon the resolu
tion selected and the size of the output window. The circle is
drawn in the plot color (parameter 3 of the COLOR statement.)

The last two parameters, start angle and end angle, are optional.
If they are not specified, CIRCLE draws a circle. If they are
specified, CIRCLE draws the part of a circle that lies between
them. CIRCLE draws an arc, not a solid colored pie-shaped seg
ment. Angles are expressed in degrees times 10. You would
specify 45 degrees as 450, 180 degrees as 1800, etc. Zero degrees
is to the right of the window, 90 degrees is toward the top, 180
degrees to the left, and 270 degrees at the bottom. CIRCLE
100,30,30,0,3600 draws a full black circle.

See: PCIRCLE, ELLIPSE, PELLIPSE

Example:

Ok 10 COLOR 1,0,1: CLEARM2

Ok 20 CIRCLE 100,50,40

Ok 30 COLOR 1,0,2

Ok 40 CIRCLE 100,50,40,300,900

Ok RUN

[Output Window will show black circle with 60 degree red arc at
30 degrees]
Ok

~

_

w

u

91

M^

//////////////.
CLEAR The CLEAR statement frees all memory used for program data

without erasing the program currently in memory.

Syntax:

CLEAR

CLEAR

Explanation:

CLEAR sets all numeric variables to zero and string variables
to null. The CLEAR command undefines all arrays.

Example:

The following example clears all data from memory without
erasing the original program:

Ok CLEAR

CLEARW The CLEARW statement clears ST BASIC windows.

Syntax:

CLEARW <numeric expression>

CLEARW2

Explanation:

CLEARW clears the specified window. The windows are as follows:

0 = The Edit Window.

1 = The List Window.

2 = The Output Window.
3 = The Command Window.

Example:

Ok 10 CLEARW 2

OK 20 PRINT "HELLO"

OK RUN

92

n

n

m

~

w

XX/X//XX/XXX/X//
CLOSE The CLOSE statement closes open disk files, concluding any input

or output.

Syntax:

U CLOSE [#]<file number>

*j

CLOSE

CLOSE Bl

CLOSE 1,3,4

Explanation:

The CLOSE statement closes open files, releases the file numbers,
^ and frees all buffer space that the files use. The files must have

been opened with the OPEN statement.

u

~

-

_

-

-

The file number is the identification number you assign to a file in
the OPEN statement. You can specify any number of file numbers
in the optional CLOSE statement and separate file numbers with commas.

A pound sign, #, in front of the file number is optional.

File numbers can be any numeric expression. The expression must
evaluate to a number between 1 and 15, the maximum number of
files allowed, or a "Bad File Number" error occurs. If file numbers
evaluate to real values, CLOSE converts them to integers.

If you do not specify file numbers after the keyword CLOSE, the
statement closes all files that have been opened.

Note: NEW, END, RUN, LOAD, OLD, QUIT, and SYSTEM close all
open files automatically. The STOP statement does not close disk files.

Example:

U The following statement closes all open disk files:

Ok 310 CLOSE

The following statement closes the open disk files that have been
m assigned the file numbers 3 and 7:

Ok 600 CLOSE «3, «7

u

93

CLOSEW

COLOR

////////////////
The CLOSEW statement closes one ST BASIC window.

Syntax:

CLOSEW <window number>

CLOSEW 1

Explanation:

Used to close one of four ST BASIC windows. This call has to be

made separately to close each window. < Window number>
specifies windows as follows:

0 - The Edit Window.

1 - The List Window.

2 - The Output Window.
3 - The Command Window.

Note: CLOSEW does certain bookkeeping chores internal to the
ST BASIC interpreter that allow the system to keep track of the
window status. Therefore, do not close ST BASIC windows using
direct calls to AES.

The COLOR statement sets text, fill, and plot colors and fill patterns.

Syntax:

COLOR [<text color, fill color, line color, index, style>]

COLOR 1,0,1,1,1

Explanation:

COLOR sets the colors of text printed to the output window, the
output window background color (fill color), and the color of lines
drawn in the output window as well as the color and pattern used
to fill shapes. COLOR affects subsequent PRINT and graphics
colors but does not change the color of text or graphics already
in the output window.

94

u

_

u

U

u

u

_

///X//XX/.
The table below shows the numbers for colors in different resolutions:

Color
NUMBER LOW MED H

WHITE 0 X X X

BLACK 1 X X X

RED 2 X X

GREEN 3 X X

BLUE 4 X

DARK BLUE 5 X

BROWN 6 X

DARK GREEN 7 X

GREY 8 X

DARK GREY 9 X

LIGHT BLUE 10 X

BLUE GREEN 11 X

LIGHT PURPLE 12 X
DARK PURPLE 13 X

LIGHT YELLOW 14 X

DARK YELLOW 15 X

The following chart shows the patterns selected by parameter
numbers 4 and 5 and shows the available fill styles. Under each
rectangle are two numbers, separated bv a comma. The number
to the right of the comma corresponds to the style: Hollow, Pattern,
or Hatch. The number to the left of the comma corresponds to
the index for the particular pattern or hatch.

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8

m s mm hi m in
Z , 9 2 .. 18 2 , 11 2 , 12 2 , 13 2 , 14 2 , 15 2 , 16

| a mSSSS K5S
I - J moc

&WM WiW?\ |Xw;v]
mm mm mm

2 , 17 2 , 13 2 , 19 2 , 20 2 , 21 2 , 22 2 , 23 2 , U

1,1 3,2 3,3 3-, 4 3,5 3 , 6

E3 VIA ESS LTD
3,7 3,8 3,9 3 , 10 3 , 11 3 , 12

95

// .!#'

Example 1:

Ok 10 COLOR 1,0,1

Ok 20 PRINT "BLACK"

Ok 30 COLOR 2,0,1 m
Ok 40 PRINT "RED"

Ok 50 COLOR 1,0,1

Ok RUN

BLACK w*»w ih BLACK »*»**

RED **** IN RED *»**

Ok

Example 2: ~

10 COLOR 1,2,3,1,1

20 FULLW 2 : CLEARW 2

30 K=£K + 10> MOD 3600 r>

40 FOR 1=3 TO 11

50 COLOR 1,1,1,1,2

60 J = I*40O ^

70 PCIRCLE 150,80,80,CJ+ K +3600) MOD 3600,

CJ+K+400J MOD 3600

80 NEXT ^

90 GOTO 30

COMMON Ttie C0MM0N statement declares the variables that a program
can pass to a chained program. ^

Syntax:

COMMON <variable>,<variable>

COMMON AS, COUNT, N

Explanation:

ST BASIC treats all COMMON statements in a program as one
consecutive list of variables. A program can contain any number
of COMMON statements.

COMMON statements can appear anywhere in a program. It is
good practice to place them at the beginning of a program.

Use COMMON with CHAIN.

See: CHAIN

96

~

w

—

jT Jr jF f / S <r jf jjf Jr

Example:

The following example chains to a program named EMPLOYEE
and passes the variables VAL!, NAMES, and the array variable
SCALE():

Ok 350 COMMON UAL! NAMES, SCALEC J

Ok 360 CHAIN "EMPLOYEE"

CONT The CONT command resumes program execution from the BREAK
mode.

Syntax:

CONT

CONT

Explanation:
A BREAK, a STOP statement in a program, or [Control] [G] (unless
trapped) puts ST BASIC in Break mode. In Break mode, you can
use direct mode statements to change intermediate program
values.

U

Use CONT to continue execution.

u You can also use a direct mode GOTO statement to direct exe
cution to a particular line in the program.

_

Example:

Ok 10 N=5

y Ok 20 FOR X=l TO 5

Ok 30 N = N-1

Ok 40 PRINT N

Ok 50 NEXT X

Ok RUN

4

3
2

[press [Control] [G]]
— Break — at line 30

Br CONT

1

0

Ok

97

COS Tne cos function returns the cosine of a number.

Syntax: _

X= COS(< numeric expression >)

X=COS(YJ _

Explanation: -^

The COS function returns a real number. The number is the cosine —
value of the angle in the numeric expression.

m

All ST BASIC trigonometric functions require that you specify
angles in radians.

Example:

Ok 10 PI=3.14159

Ok 20 DEGREES = 180 r\

Ok 30 RADIAHS=DEGREES*(PI/180)

Ok 40 ANS!=COSCRADIANS)

Ok 50 PRINT "THE COSINE IS " ; ANSI —
Ok RUN

THE COSINE IS -1

Ok _

CVD The CVD, CVI, and CVS functions convert byte strings to numeric
CVI variable types. Used to convert ASCII numbers read from random

CVS files
Syntax:

CVD(<8-byte string>)
CVI(< 2-toyfe string >)
CVS(<4-oyfe string >)

CUDCA53 AS=8-byte string

CVICBSJ B5=2-byte string M

CUStCSJ CS=4-byte string

Explanation: ^

ST BASIC stores numbers in a random file as strings of bytes. To
read the numbers from the file, the strings must be converted to
the proper numeric data type. The functions do not change the r\

** —— ~
98

y///y/.
value of the number, only the data type. These strings are the

U exact byte representation of the stored numbers. They are not
printable character strings.

The CVD function converts an 8-byte string into a real number.

y The CVI function converts a 2-byte string into an integer.

^ The CVS function converts a 4-byte string to a real number.

If the string read from the file is shorter than the length required
y for conversion, it is padded to the right with binary zeroes.

~ The MKDS, MKIS, and MKSS functions are the reverse of the CVD,
CVI, and CVS functions.

_ Example:

Ok 10 OPEN "R",ttl,"NUMBERS"

Ok 20 FIELD ttl, 2 AS AS,4 AS BS,8 AS CS

_ Ok 30 GET «1,RECX

Ok 40 IX=CUICASJ

Ok 50 X!=CUSCBSJ

Ok 60 Ytt=CUDCCSJ

Ok 70 PRINT IX,X! ,Y»

Ok 80 CLOSE ttl

y Ok 90 END

~ If you run this program, you will get one set of numbers from the
file and print them.

DATA The DATA statement defines a list of constants that a READ
statement can assign to variables.

~

Syntax:

DATA <constant>,<constant>

DATA 25,15,925,word

Explanation:

DATA statements allow you to assign fixed values to variables.
They are assigned according to their order in a DATA statement.

99

/////////////x.
Every DATA constant must have a corresponding READ variable,
and vice versa. The constants and variables match according to
the order in which they are listed; the first DATA constant relates
to the first READ variable, and so on.

DATA constants can be integers, real numbers, or strings, in any
combination. The data types for the constants in the DATA list,
however, must match the variables assigned them in a READ
statement. Do not put quotation marks around strings in a DATA
statement.

DATA statements can be as long as you like, but you cannot write
other statements on the same line as a DATA statement.

Though every constant must have a corresponding variable, you
do not need a READ statement for every DATA statement. You can
have many DATA statements in a program and you can assign
them variables in a single READ statement. In that case, they
match first according to the constants' order in the program,
then by their order within the lines. -

The RESTORE statement points READ statements to DATA
statement lines.

See: READ, RESTORE

Example: -

Ok 10 READ X

Ok 20 DATA 33. 3,5, ALLOW ROOM FOR GROWTH

Ok 30 PRINT X m

0k40READX,YS

OR SO PRINT X,YS

Ok RUN

33.3

5 ALLOW ROOM FOR GROWTH

r\

~

100

/////////////,
DEF FN The DEF FN statement defines user specified functions.

u

Syntax:

DEF FN<function name>[(<parameter,parameter>)]-
~ < definition >

—

DEF FN(A)=A*2 + 5

Explanation:

DEF FN allows you to define your own ST BASIC function for use in a
U program. The name of the function can be any legal variable name.

~ The variable list in parentheses is optional. You can use any
variable type except arrays. These variables are local to the func
tion you define and do not affect variables of the same name

— elsewhere in the program. The variables in parentheses can be
regarded as place holders for the values you pass to the function
when you call it. The values you pass to your function must match

_ those in parentheses in type and number.

—

_

~

You can use any global variables in your program within the func
tion definition. They will be treated exactly as the function defini
tion states. If you change their values within the function, they will
take on their new values throughout the program.

The definition is an expression that defines what the function does.
The description is limited to one program line. If the function name
includes a type specification, such as FNAS, the definition may not
conflict with that type. The parameters passed to the function (in
parentheses) must also conform to that type.

Example:

Ok 10 INPUT "WIDTH OF MATERIAL IN INCHES".:

MATERIAL.WIDTH

Ok 20 INPUT "WIDTH OF WINDOWSILL IN INCHES" ;

WINDOW.WIDTH

Ok 30 PANELS.NEEDED=HINDOH.WIDTH/MATERIAL.WIDTH

U Ok 40 INPUT "LENGTH OF WINDOWSILL IN INCHES".:
WINDOW.LENGTH

Ok 50 YARDAGE.NEEDED=PANELS.NEEDED*WINDOW.LENGTH

y Ok 60 INPUT "PRICE OF MATERIAL PER YARD" .: PRICE .YARD !

U

101

////////////////
Ok 70 DEF FNSLACK=YARDAGE.NEEDED/15 + YARDAGE.NEEDED

Ok 80 DEF FNC0ST!=CPRICE.YARD!/36)*FNSLACK

Ok 90 PRINT "YOU NEED M;FNSLACK^" INCHES OF

"^MATERIAL. WIDTH.:" INCH MATERIAL ." :PRINT

"YOUR COST IS: ".iFNCOST!

Ok lOO DEF FNINYARDS=FNSLACK/36

Ok 110 PRINT FNSLACKJ "INCHES IN YARDS IS ";FNINYARDS

Ok RUN

WIDTH OF MATERIAL IN INCHES? 30 _

WIDTH OF WINDOWSILL IN INCHES? 60

LENGTH OF WINDOWSILL IN INCHES? 60

PRICE OF MATERIAL PER YARD? 2.00

YOU NEED 128 INCHES OF 30 INCH MATERIAL .

YOUR COST IS 7 .11111

128 INCHES IN YARDS IS 3 .55555 _

Ok

r\

DEF SEG Tne DEF SEG statement establishes the mode of operation
of PEEK and POKE and the offset used by the commands.

Syntax:

DEF SEG [<numeric expression>]

DEF SEG 0

DEF SEG 1 ~

Explanation:

The modes of operation are defined according to the following:

If DEF SEG > 0, then 1 byte is PEEKed or POKEd, and the value
of the numeric expression used in DEF SEG is used as the offset
of the address specified in PEEK and POKE.

If DEF SEG = 0, then 2 bytes are PEEKed or POKEd, and the
value of the numeric expression used in DEF SEG is used as the
offset of the address specified in PEEK and POKE.

If DEF SEG = 0 and the address is specified by DEFDBL, then
4 bytes (long integer) are PEEKed and POKEd.

102

u

X x/xx/

Example 1:

10 DEF SEG=0

20 DEFDBL S :S=SYSTAB + 20 : 'GRAPHICS BUFFER POINTER

30 X=PEEK(S) : • X IS A 4 BYTE VALUE

40 RESET: 'PUTS CURRENT SCREEN INTO GRAPHICS BUFFER

50 BSAUE "SCREEN",X,32767

60 CLEARW 2 : ' CLEAR SCREEN IMAGE

w 70 BLOAD "SCREEN" ,X :'RETURN SCREEN TO GRAPHICS BUFFER
y 80 OPENW 2 : •TRANSFER GRAPHICS BUFFER TO WINDOW

~ Example 2:

10 DEF 5EG=166

20 PRINT PEEKC500)

Note: Will print a 1-byte integer from absolute location 600.

y Example 3:

10 DEF SEG=0

20 LOCtt=175OO0

U 30 PRINT PEEKCLOCtt)

Note: Will print a 4-byte long integer from location 175000.

DEFDBL Tne DEFDBL statement declares a range of letters as defining real
numbers.

u

u

u

Syntax:

DEFDBL <letter>-<letter>

DEFDBL A

DEFDBL A-D

Explanation:

The DEFDBL statement declares that the variables whose names

start with any of the given letters are real numbers. You can use a
single letter as a parameter-or a range of letters, such as A-D.

Type declaration characters always overrule DEFDBL statements.
DEFDBL statements can only be entered as the first statements in
a program. DEFDBL is always used in conjunction with DEFSEG,
PEEK, or POKE.

103

//////////////A
See: DEFSEG ^

Caution: DEFDBL statements alter the ST BASIC interpretation
of program lines.

Example: m
Ok lO DEFDBL X-Y

Ok 20 X=123123412345123456

Ok 30 Y=&H333

Ok 40 PRINT X,Y

RUN

1. 23123392D+ 617 819 ^

Ok

DEFINT The DEFINT statement declares a range of letters as defining integers.

Syntax:

DEFINT <letter>-<letter>

DEFINT A

DEFINT A-D

Explanation:

The DEFINT statement declares that the variables whose names

start with one of the given letters are integers. You can use one
letter as a parameter or a range of letters, such as M-Z.

Type declaration characters overrule DEFINT statements.

Caution: DEFINT statements alter the ST BASIC interpretation of
program lines. If you declare a variable as integer with a DEFINT
statement, ST BASIC treats it as integer even if you erase the
DEFINT statement.

104

,:,,A

//XX/XXX/XX//X//
Example:

Ok 18 DEFINT X-Y

Ok 20 X=78.9

Ok 38 Y=78.1

Ok 40 PRINT X,Y

Ok RUN

78 78

Ok

DEFSNG The DEFSNG statement declares a range of letters as defining
real numbers.

Syntax:

DEFSNG <letter>-<-letter>

DEFSNG A

DEFSNG A-D

Explanation:

The DEFSNG statement defines the variable names that start with

one of the given letters as real numbers. You can use one letter as
a parameter or a range of letters, such as A-D.

Type declaration characters always overrule DEFSNG statements.

Caution: DEFSNG statements alter the ST BASIC interpretation of
program lines.

Example:

Ok 10 DEFSNG X-Y

~ Ok 20 X=23D + 16

_ Ok 30 Y=456654456654

_

Ok 40 PRINT X,Y

Ok RUN

2.3E+17 4.56654E+11

105

DEFSTR

DELETE

J / fj / J / , \ 4 V XX J 4

The DEFSTR statement declares a range of letters as defining strings.

Syntax:

DEFSTR <letter>-<letter>

DEFSTR A

DEFSTR A-D

Explanation:

The DEFSTR statement declares that all variables whose first

letters are on the parameter list are strings. The parameters can
be a single letter or a range of letters, such as M-Z.

A type declaration character always overrules a DEFSTR state
ment. The default type of variables is real numeric.

Caution: DEFSTR statements alter the ST BASIC interpretation of
program lines. If you declare a variable as a string with a DEFSTR
statement, ST BASIC treats it as real numeric even if you erase
the DEFSTR statement.

Example:

Ok 10 DEFSTR A-C

Ok 20 A="12.7.42"

Ok 30 B="1066"

Ok 40 C="4.12.XXM

Ok 50 PRINT A,B,C

Ok RUN

12.7.42 1066 4.12.XX

Ok

The DELETE command erases program lines from memory.

Syntax:

DELETE <line number list>

DELETE -40

DELETE 20

DELETE 20, 30

DELETE -30

106

ry

r\

^

///xxxxx/xx/xxxx
Explanation:

DELETE erases the lines you specify. It is more efficient to delete
a single line by typing the line number and pressing [Return],

U Example:

U

w

Ok 10 x=l0

Ok 20 Z = 20

Ok 30 PRINT X,Z

Ok DELETE 20-30

Ok LIST

10 X=10

Ok

Q||y| The DIM statement defines the number of dimensions and the
number of elements in an array.

Syntax:

DlM <array name > (<subscript>, <subscript>)
(,<array name>[Ksubscript>])

U DIMASC5)

DIM XC5,10,4)

DIM BSC10),CSC20)

V DIM XC5,10,4J,YC1,2,8J

— Explanation:

y The DIM statement reserves space for a string or numeric array
by specifying the number of dimensions and the upper bound of

w elements in each. The number of dimensions depends upon the
number of subscripts. One subscript means one dimension, two
subscripts means two dimensions. The number of elements

— and dimensions you can specify is dependent upon available
memory, but the maximum number of dimensions in any case is 15.

I—••

U The lower bound of each dimension is 0 or 1, depending upon the
OPTION BASE.

U

DIM automatically sets the initial value of the elements at zero or null

U

U

107

J

////////////////
In ST BASIC, arrays are dynamic. You can dimension the array
with DIM, erase the array later in the program, and declare it
again with DIM using the same name but with new dimensions.
With dynamic arrays, you can also use a numeric variable to
dimension the array.

—

You can use an array without declaring it first with a DIM state
ment. If you do, the array is declared automatically with a default
upper bound of 10 elements in each dimension. For example, if the
first reference to ARRAY A is

ARRAY AC7..3J

the array is set up as if it had been declared with

DIMAC10,10) ^

The default number of dimensions allowed is 4 for integers and
3 for strings and real numbers.

Note: ST BASIC allows one-third of the free memory to be «,
declared as arrays. However, the total size of all arrays can't
exceed 32K, regardless of the amount of free memory.

Example:

Ok lO DIM H0USESSC1,1,11

Ok 20 HOUSESSC0,0,O)="FLOORPLAN1" —
Ok 30 HOUSESS(0,0,1) = "FLOORPLAN3"

Ok 40 HOU5ESSC0,1,0J = "FLOORPLAN3" m
Ok 50 HOUSESS(0,1,1J = "FLOORPLAN3"

Ok 60 HOUSES$C1,0,O) = "FLOORPLAN1"

Ok 70 HOUSESSC1,0,1J="FLOORPLAN2" —

Ok 80«OUSESSC1,1,1) = "FLOORPLAN2"

Ok 90 IF HOUSESSC1,0,O> = "FLOORPLAN2" THEN GOTO 366

n

108

DIR

//yy/yyy/yy/yyyy
The DIR command lists the files on a disk.

Syntax:

DIR [< disk drive: >][< filename, filetype >]

DIR

DIR A:

DIR B:BAS.PRG

DIR B:*.PRG

DIR B:BA5.*

DIR B:*.*

DIR B: BAS. PR?

Explanation:

The DIR command displays the directory of the disk in the current
drive.

You can specify which drive and what files you want displayed.
The * and ? act as wild card designators.

* indicates a "don't care" specification for an arbitrary field, such
as: *.BAS (for any file of type .BAS) or FIG.* (for any type file
named FIG.) or B*.BAS (for any type.BAS file beginning with a B).

? acts as a single character "don't care" designator, such as:
7IG.BAS (for any file with a 3 letter name ending in IG.BAS. —
FIG.BAS, PIG.BAS, BIG.BAS).

Example:

Ok DIR

Ok DIR A:

Ok DIR B:BAS.PRG

Ok DIR B:«. PRG

Ok DIR B:BAS.«

Ok DIR B:*.*

Ok DIR B! BAS. PR?

109

Directory of all files on the
current disk

Directory of all files on Disk A
Checks for file BAS.PRG on
Disk B

Directory of all type .PRG
files on Disk B

Directory of all files named
BAS of any type on Disk B
Directory of all files of any
type on Disk B
Directory of files on Disk B
beginning with BAS and with
an extender beginning with
PR.

////////////////
EDIT The EDIT command invokes the ST BASIC editor.

Syntax:

EDIT Kline number> ED Kline number>

EDIT ED

EDIT 30 ED 30

Explanation:

The EDIT command invokes the ST BASIC editor. You can specify
a line number to begin editing. If you don't, EDIT begins at the first
line of the program currently in memory.

ELLIPSE The ELLIPSE statement draws ellipses and elliptical arcs.

Syntax:

ELLIPSE <horizontal center,vertical center.horizontal
radius,vertical radius>[<,start angle,end angle>]

-

n

•

-

ELLIPSE 50,88,100,50

ELLIPSE 50,80,100,50,900,1800

Explanation:

ELLIPSE draws an ellipse whose center is located at the point
specified by the first two parameters: horizontal center and
vertical center. The positions are in pixels starting from the
upper left corner of the Output Window.

The third and fourth parameters, horizontal and vertical radii, are also
expressed in pixels. The horizontal and vertical pixel count is dependent
upon the resolution selected and the size of the Output Window.

The ellipse is drawn in the plot color (parameter 3 of the COLOR
statement.)

110

-

•

^

xxxxxxxxxxxxxxxx
The last two parameters, start angle and end angle, are optional.
If they are not specified, ELLIPSE draws a full ellipse. If they are
specified, ELLIPSE draws the part of an ellipse that lies between
them. ELLIPSE draws an arc, not a solid colored pie-shaped segment.

Angles are expressed in degrees times 10. You would specify 45
degrees as 450, 180 degrees as 1800, etc. Zero degrees is to the
right of the window, 90 degrees is toward the top, 180 degrees to the
left, and 270 degrees at the bottom. ELLIPSE 100,80,40,50,0,3600
draws a full ellipse.

See: PELLIPSE, CIRCLE, PCIRCLE

Example:

Ok 10 COLOR 1,0,1 :CLEARW 2

Ok 20 ELLIPSE 100,80,40,80

Ok 30 COLOR 1,0,2

~ Ok 40 ELLIPSE 100,80,40,80,300,900

Ok RUN

[Output Window will show black ellipse with 60 degree
~ red arc at 30 degrees]

Ok

END The END statement stops program execution, closes all files, and
returns to command level.

Syntax:

END

END

Explanation:

You can put an END statement anywhere you want to return to
command level. An END at the end of the program is optional.

END differs from STOP in that it closes all files, returns to
command level, and does not produce a STOP message.

111

////////////////
Example:

Ok 10 PRINT

Ok 20 PRINT

Ok 30 PRINT

Ok 40 PRINT

Ok 50 PRINT

Ok 60 END

Ok 70 PRINT "PROGRAM"

Ok RUN «

THE PROGRAM

IS RUNNING

BUT WILL NEVER -

REACH THE LAST

WORD OF THIS

Ok

m

EQp The EOF function returns true (-1) at the end of a sequential or
random access file.

Syntax:

X= E0F(<f/7e number>)

X=E0FC1J

Explanation:

When you write to a sequential file, its end is automatically
marked. If you attempt to read past the end of a file, an error
results. You can test whether you are at the end of a file with EOF.

EOF returns -1 if you are at the end of a file, 0 if not.

Example: m
Ok 100 INPUT "FILE " ;FS

Ok 110 IF LENCFS1=0 THEN END

Ok 120 ON ERROR GOTO 28000 -

Ok 130 OPEN "I",1,FS

Ok 140 WHILE NOT E0FC1J

Ok 150 LINE INPUT ttl,R$:?RS ^
Ok 160 WEND

Ok 200 ? : CLOSE 1: GOTO 100

Ok 200OO IF ERR=53 THEN ?"FILE ".:FS;

"NOT FOUND" : RESUME 100 ELSE ON ERROR GOTO 100

112

THE PROGRAM"

IS RUNNING"

BUT WILL NEVER1

REACH THE LAST1

WORD OF THIS"

///X//XX/XX//X//
ERA The ERA command deletes a file from the disk.

Syntax:

ERA [< disk drive: >] < filename >

ERA MYFILE.TXT

ERA BiMYFILE.TXT

Explanation:

The ERA command erases all files matching the filename from the
drive specified. An erased file is not recoverable.

U ERASE The ERASE statement erases arrays.

— Syntax:

ERASE < array name> ,< array name>

U ERASE AS, BS, C

Explanation:

ERASE erases an array so that you can redimension it or reclaim its
memory space. You must erase arrays before you redimension them.

See: DIM

Example:

Ok 10 DIM PAYROLLSC10,10)

Ok 20 PAYROLL$C0,0J = "BECKWITH, JOSEPHINE1

Ok 30 ERASE PAYROLLS

Ok 40 DIM PAYR0LL$C5,5,5)

113

///////////////A
ERL The ERL and ERR variables are reserved variables used in error
ERR handling subroutines.

Syntax:

X = ERL

X=ERR

X=ERL

X = ERR

Explanation:

ERL contains the line number where an error occurred. ERR con

tains the error code. ERL and ERR are reserved variables; you
cannot write them on the left of the equal sign in an assignment
statement.

If the statement or command in which the error occurred is in

direct mode, the value of ERL is zero. If an error occurs in direct
mode, the program always halts.

If the statement is in indirect mode, write IF statements as follows:

IF ERL= <error line> THEN <executable statement>
IF ERR= <error code> THEN <executable statement>

See: ERROR statement for details on error trapping and examples
of ERL and ERR in an error trapping subroutine.

ERROR The ERROR statement simulates an ST BASIC run time error and
transfers control to an error trapping routine.

Syntax:

ERROR < numeric expression >

ERROR X -.

Explanation: -

You can define errors and error messages in your programs with —
the ERROR statement. ERROR assigns an error code number to
an error. The number must be an integer expression.

114

-

_

~

////////////////
Every time the error occurs, the program refers to the error code
number. If the error code corresponds to an ST BASIC error code,
the ST BASIC error message prints. If an error trap that you have
written is in effect, control passes to your error trap routine.

Two predefined variables are associated with the ERROR
statement: ERL and ERR.

When an error occurs, ERR contains the error code constant. You
can use it to write error messages. For example: IF ERR = 100
THEN PRINT "PLEASE CHECK THE NUMBER AND REENTER"

U ERL contains the line number where the error happened.

- If no user error trap is set, the message corresponding to the
value in ERR is printed and the program halts. This occurs if an
ERROR statement is executed in direct mode whether you set a

w trap or not.

~ If you set a trap, the program enters the error-trapping routine.
U You can use ERR and ERL as you would any numeric variable. To

exit the error trap, use RESUME, whether you entered the trap
w because of a trappable ST BASIC error or an ERROR statement.

If the error code equals a predefined ST BASIC error code, the pro-
U gram simulates the error and prints the error message for that code.

When you define your own errors, it's a good idea to give your
error codes values that are much greater than the ST BASIC
codes. That way, you will not need to change your program
even if the ST BASIC error codes are revised in the future.

See: ON ERROR, GOTO, RESUME

You can simulate errors in both direct and indirect mode. Here is
— an example in direct mode

_

Ok ERROR 55

You cannot OPEN or KILL a file already open

115

EXP

The following example is in indirect mode:

Ok 500 ON ERROR GOTO 550

Ok 510 INPUT "DO YOU WISH TO RECEIVE EARNED INCOME

CREDIT";ES

Ok 515 IF ES="NO" THEN GOTO 600

Ok 520 INPUT "IS THE AMOUNT LISTED ON LINE 33 LESS

THAN S10,00O",'XS

Ok 525 IF XS="NO" THEN ERROR 200

Ok 530 IF ERR=2O0 THEN

Ok 535 PRINT "YOU ARE INELIGIBLE FOR EARNED

INCOME CREDIT."

Ok 540 IF ERL=525 THEN GOTO 600

Ok 550 RESUME

Ok RUN

DO YOU WISH TO RECEIVE EARNED INCOME CREDIT? YES

IS THE AMOUNT LISTED ON LINE 33 LESS THAN S1O,0O0? NO
YOU ARE INELIGIBLE FOR EARNED INCOME CREDIT.

The EXP function returns the constant e raised to an exponent.

Syntax:

X= EXP(< numeric expression >)

X=EXPCY)

Explanation:

The constant e is the base of natural logarithms, approximately
equal to 2.7182. EXP returns a real number.

The numeric expression must evaluate to < = 43.6682.

116

i

////////////////
Example:

Ok 10 X = EXPC3.254)

Ok 20 Y=EXPC8.97J

Ok 30 PRINT X,Y

Ok RUN

25.8937 7863.59

Ok

FIELD The FIELD statement allocates variable space in random file buffers.

Syntax:

FIELD #Kfile number>,Kfield width> AS <string variable>
K,field width> AS <string variable>

FIELD ttl,8 AS XS,4 AS YS,2 AS SS

Explanation:

You must write a FIELD statement to transfer information between
random file disks and random buffers. The FIELD statement only
allocates variable space; it does not move data.

The file number is the number you gave the file when you opened
it. The field width defines the number of bytes to give to the string
variable. For example, FIELD #10, 20 AS X$, 30 AS Z$ allocates
the first 20 bytes of space X$ and the next 30 bytes to Z$.

You cannot allocate more space than you created when you
opened the file. The default record length is 128 bytes. For any
file, you can write as many FIELD statements as you want.

Reallocating field space does not cancel the original mapping;
rather, the two maps co-exist. For example, if you specify

FIELD ttl0,20 AS XS,40 AS ZS,10 AS YS

and

FIELD ttlO,70 AS NS

the first 20 bytes of N$ are also in X$, the next 40 also in Z$,
and the final 10 also in Y$.

117

/////////////,
Do not use INPUT or LET to input into a variable that was ^
declared in a FIELD statement. If you do, the variable's pointer
moves to string space instead of to the buffer.

Example:

Ok10O OPEN "R",»5,"TAXES",40

0 110 FIELD tt5,20 AS IS,10 AS DS,10 AS ES

PILL The FILL statement fills shapes with colors or patterns.

Syntax: m
FILL <numeric X expression>,<numeric Y expression>

FILL 150,80 o

Explanation: m
Fills drawn shapes with shapes or patterns defined in a previous ^
COLOR statement. The X and Y coordinates provide the starting
position for FILL.

See: COLOR

Example:

10 COLOR 1,2,1

20 CIRCLE 150,80,80 £|
30 FILL 150,88

40 COLOR 1,1,1,4,4

50 FILL 150,8© m

p|X The FIX function truncates a real number to an integer.

Syntax:

X=FIX(number)

X=FIXCY>

Explanation:

FIX does not round off numbers; it simply truncates any decimal
part. The integer expression must be between -32768 and 32767.

118

XX/X//X/,
See: CINT, INT

U

Example:

Ok 10 X=239.77

U Ok 20 PRINT FIXCXJ

Ok 30 PRINT FIXC-678.3J

Ok RUN

U 239

_

_

J

u

-678

Ok

FLOAT The FLOAT function converts an integer to a real number.

Syntax:

X= FLOAT(< integer expression >)

X=FLOATCYJ

Explanation:

FLOAT does not change the appearance of the integer, but assigns
it more room in memory. The integer expression must be between
-32768 and 32767.

Example:

Ok 10 X = FL0ATC97)

Ok 20 PRINT X

Ok RUN

97

119

///.
FOLLOW The FOLLOW command follows the values of program variables.

Syntax: _

FOLLOW <variable>[,<variable>]

FOLLOW N

FOLLOW N, B

Explanation:

The FOLLOW command is a debugging tool that keeps track of all
program variables. Each time the value of a specified variable m
changes, FOLLOW prints the varjable name, its value, and the
number of the program line on which it changed. The UNFOLLOW
command stops FOLLOW.

Example:

Ok 10 FOR X=l TO 3

Ok 20 N=N + 1

Ok 30 B=B+1 —
Ok 40 PRINT N

Ok 50 PRINT B

Ok 60 NEXT X ~

Ok RUN

1

1

2

2 fl|

3
• •

3

Ok FOLLOW N,B ~

Ok RUN

N! = 1 at line 20

B! = 1 at line 30 ~

1

1

N!=2 at line 20 „

B! =2 at 1 ine 30

2 m

2

N!=S at line 20

B!=3atline30 r>

3

3

Ok UNFOLLOW -

Ok

120

—

FOR The FOR statement creates a loop that executes a given number
of times.

Syntax:

F:OR < counter variable > = < numeric expression > TO
<numeric expression> [STEP<numeric expression>]

FOR 1=1 TO 5 STEP 1

Explanation:

The FOR statement sets the starting and ending values of a
counter variable and the value to be added to it each time the
FOR . . . NEXT loop executes.

The value added to the counter variable is 1 unless otherwise
specified by STEP. The STEP can be positive or negative.

The NEXT causes the instructions between FOR and NEXT to
repeat if the value of the counter variable is not greater than the
end value specified by TO. When the counter's absolute value is
greater than the end absolute value, program execution passes
to the line after NEXT.

km

y You can nest FOR/NEXT statements. In other words, you can have
a loop within a loop. When you nest loops, the NEXT statement for

~ the inner loop must come before that of the outer loop.

See: NEXT

Example:

w Ok 10 FOR X=l TO 5

Ok 20 PRINT X

Ok 30 NEXT

~ Ok 40 PRINT "THE VALUE OF THE COUNTER VARIABLE IS'X

Ok RUN

1

u 2

3

4

U 5

THE VALUE OF THE COUNTER VARIABLE IS 6

u Ok

- 121

FRE

Ok

Ok

Ok

Ok

Ok

Ok

Ok

Ok

2

1

2

2

2

3

2

4

2

5

1

1

1

2

1

3

4

1

5

Ok

jf xx XX X j

10 FOR X=2 TO 1 STEP -1

28 FOR Y=l TO 5

30 PRINT X

40 PRINT Y

SO NEXT Y

60 NEXT X

RUN

The FRE function returns the number of unused bytes in memory.

Syntax:

X= FRE(<dummy argument>)

X=FREtOJ

Explanation:
FRE requires a dummy argument. Use any argument to find the
number of free bytes in memory.

122

0*

m

u

FULLW

xxxxxxxxxxxxxxxx
Example:

Ok PRINT FRECOl

43O0O

Note: The size of ST BASIC arrays is limited to 32 Kilobytes
regardless of the amount of free memory. The arrays must not
exceed a third of the total size of free memory.

The FULLW statement sets ST BASIC windows to full screen size.

Syntax:

FULLW <numeric expression>

FULLW 2

Explanation:

Sets the specified window to full screen. The windows are as
follows:

0 = The Edit Window.

1 = The List Window.

2 = The Output Window.
3 = The Command Window.

Example:

Ok 10 FULLW 2 :CLEARW 2

OK 20 PRINT "HELLO"

OK RUN

GEMSYS The GEMSYS function allows the user to access the operating
system's AES interface.

Syntax:

GEMSYS(<AES Op Code>)

GEMSYSCX)

Explanation:

The AES control arrays can be accessed through the GB
structure, using the PEEK command.

123

XXxXXxXxXX,XXX••••••••• '••••• .;•••

M1 M &

Example: —

10 REM PRINT MOUSE X, Y POSITION AND BUTTON STATES

20 Att=GB

30 CONTROL^PEEKCAttJ ^

40 GLOBAL=PEEKCAtt+43

50 GINTIN=PEEKCAtt+8)

60 GINT0UT=PEEKCA»+12J

70 ADDRIN=PEEKCAtt+ 16)

80 ADDR0UT=PEEKCAtt+ 20)

90 GEMSYSC79J ^

lOO PRINT PEEKCGINTOUT + 23

118 PRINT PEEKCGINTOUT+43

120 PRINT PEEKCGINTOUT+ 6)

130 PRINT PEEKCGINTOUT+ 8)

(JET The GET statement reads a record from a random disk file into a
file buffer.

Syntax:

GET [#]Kfile number> [,<record number>]

GET ttl,5

Explanation:

The file number is the number you gave the file when you opened
it. The record number is optional. If you leave it out, the next
record after the first GET or PUT goes into the buffer. The greatest
record number you can have is 32767.

See: OPEN for an example of GET in context.

Example:

Ok lOO IF XS="YES" THEN GETttS,TYPES'.: GOTO 200

124

y

sj

XXXXXXA
GOSUB The GOSUB statement passes program control to a subroutine.

Syntax:

GOSUB Kline number> or GOSUB Klabel name>

GOSUB 250

GOSUB ENTRY

Explanation:

The GOSUB statement is paired with the RETURN statement,
which passes control back to the program statement immediately
following GOSUB.

The line number or symbolic label indicates the line on which the
subroutine begins.

You can call a subroutine from another subroutine. Subroutines

can't be nested more than 16 deep, however.

You can write more than one RETURN statement into your
subroutine. If you are testing for conditions that determine a
program's progress, you might have several RETURNS in a
subroutine.

Note: It is advisable to use symbolic labels rather than line
numbers with the GOSUB statement.

w Example:

_ Ok 10 GOSUB lOO

Ok 20 REM RETURN POINT OF SUBROUTINE

Ok 30 PRINT A

U Ok 40 END
Ok lOO REM START OF SUBROUTINE

~ Ok 110 GOSUB BOO

y Ok 120 A=5*5

Ok 130 RETURN

— Ok 140 BOO: PRINT "BOO! "

Ok 150 RETURN

Ok RUN

~ BOO!

25
Ok

U

w 125

/////////A
GOTO The GOTO statement passes program control unconditionally to

a given line number.

Syntax:

GOTO Kline number> or GOTO <label name>

GOTO 50

GOTO ENTRY

Explanation:

The GOTO statement passes program control to a specified line
and resumes execution from there. If you GOTO a nonexecutable
statement, execution begins at the first executable statement after
the specified statement.

Note: It is advisable to use symbolic labels rather than line
numbers with the GOTO statement.

Example:

Ok 10 TOP : INPUT "PLEASE ENTER BENEFICIARY •S

NAME",! NAMES

Ok 10O INPUT "DO YOU WISH TO END THIS PROGRAM" }ANSWERS
Ok 120 IF ANSWERS="YES" THEN GOTO 200

Ok 130 GOTO TOP

Ok 20O END

GOTOXY The GOTOXY statement places output cursor at column and
row position. —

Syntax: —

GOTOXY < Column Position >, < Row Position >

GOTOXY X,Y —

Explanation: in

GOTOXY places output cursor at the column and row position
specified by the two parameters.

126

X x X / s s jf f x sf

Example:

10 GOTOXY 2,3

20 PRINT "C0LUMN2,R0W3'

— HEX$ Tne HEX$ function returns a string that is the hexadecimal
representation of a number.

w

u

Syntax:

X= HEXS(numeric expression)

X=HEXStYJ

U Explanation:

~

A hexadecimal number is a base 16 integer. Hexadecimal numbers
are written using the digits 0 through 9 and the characters A
through F to represent the values 1 through 15.

• HEXS does not add a leading &H to the hexadecimal number it
U returns. If you want to use the value in a program, you must prefix

it with &H to establish that it is in hexadecimal notation.

HEXS rounds real numbers to integers before evaluating them.

\j The normal legal range for integers is -32768 to 32767.

U Attempting to assign an address expression to an integer variable
leads to an integer overflow error, unless you assign the value to
the variable using VAL (see following example).

U
Example:
Ok 10 AX=VALC"&H"+HEXSCFRE(OJJ J

s_ Ok 20 PRINT AX

Ok RUN

- -22536

U Ok

U

U

u
127

IF The IF statement sets conditions that determine program flow. m
Syntax:

IF <logical expression> THEN Kstatement> K:statement>
[ELSE Kstatement> K:statement>]

IF X=Y THEN PRINT A :GOTO 250

ELSE GOTO 30

Explanation:

The IF statement evaluates an expression that is either true (not
zero) or false (0). If the expression is true, the statements following
THEN are executed. If false, execution continues at the statement
after ELSE. If there is no ELSE, execution continues at the next
executable line.

You can use IF statements within IF statements. Each ELSE
matches with the nearest THEN. THEN or ELSE clauses are
valid only within the context of an IF statement.

f*

You can write a FOR or WHILE loop within the THEN or ELSE
clause of an IF statement. The FOR or WHILE statement must be
complete within the THEN or ELSE clause: the matching NEXT
must be in the same clause as the FOR statement and the
matching WEND must be in the same clause as the WHILE
statement. See the first example below.

When you use an IF statement within a FOR or WHILE statement
(all as part of the same statement line), the closing NEXT or
WEND also closes the IF construct. See the second example
below. -

Example 1: -

Ok 5 AX=5 ^

Ok 10 IF AX>3 THEN FOR KX=1 TO

5 :PRINT AX*KX :NEXT ELSE FOR

KX=1 TO 5 :PRINT AX/KX :NEXT _

Ok RUN

5

10

15

20

25

Ok

128

y

y

y

y

y

y

_

y

y

//////////////
Example 2:

Ok 10 FOR X=l TO 5 :IF X<3 THEN PRINT X*X: NEXT :PRINT
"DONE"

Ok RUN

1

4

DONE

(The NEXT is always executed)

INP The INP function returns a byte value from a selected input port.

Syntax:

X = INP(< port number >)

X=INPC3)

Explanation:

The port number must be in the range 0 to 65535. The INP
function is the complement of the OUT statement.

y
To read the port status, use a negative port value (INP (-3)). A 0

^ indicates no character available; -1 indicates a character
available.

_ The following port assignments apply to the ATARI ST Computer:

~ 0 = PRINTER (Parallel Port)
1 = AUX (RS-232)
2 = CONSOLE (Keyboard)

^ 3 = MIDI (Musical Instrument Digital Interface)

— Example:

Ok 200 Y=INPC3)

Ok 210 IF INP(3)>X THEN GOTO 200

129

INPUT The INPUT statement lets you enter data.while the program is
running and assigns the data to program variables.

Syntax:

INPUT [;] [Kprompt string> <; or, >] Kvariable> ,Kvariable>

130

A

r\
INPUT AS

INPUT "NAME: " ,AS

INPUT "NAME";AS

INPUT X,Y,Z

INPUT "Height, Weight, Age", X,Y,Z

Explanation:

The INPUT statement prompts you for input during program execu
tion and waits for your response. After you type a response, press
[Return] to pass it to the program.

The prompt string is a string constant, and must be in quotes. The
variables can be string or numeric. Your responses must match
the type of the variables. String responses are not placed within
quotes.

If you use a prompt string, the INPUT statement prints it on the
screen as the prompt. The prompt string appears as a question
or a statement, depending on whether you use a comma or a
semicolon.

If you separate the prompt string from the variables with a
semicolon, the INPUT statement adds a question mark and a
space to the end of the prompt string.

If you separate the prompt string from the variables with a com
ma, the prompt prints without a question mark, and without a m
space after the last character in your prompt string. You type your
response on the same line. For this reason, you need to include a
space as the last character in your prompt string if you want a
space between the prompt and your response.

If you do not write a prompt string, or if you write a null string,
INPUT prints a question mark and a space and awaits your input.

The INPUT statement prints a prompt for each variable, and each
response corresponds to an INPUT variable. If the number of
variables and responses differ, an error occurs.

r\

r^

y

y

^,

y

y

y

y

yyyyyyxy/yy/////
You must separate individual responses with commas. You can
also use commas in your response if you enclose the response
string in quotation marks.

You can enter one line of characters in response to an INPUT
request. A carriage return or line-feed ends the line of input.
The maximum line length is 255 characters.

Example:

Ok 10 INPUT "ENTER TODAY'S DATE: ",XS

Ok 20 INPUT "ENTER YOUR IDENTIFICATION NUMBER: ",ZS

Ok 30 IF ZS="359152" THEN GOTO lOO

Ok 40 PRINT "ACCESS DENIED" :END

Ok 108 PRINT "YOU •RE IN ! " :END

Ok RUN

ENTER TODAY •S DATE : 9 JULY 1983

ENTER YOUR IDENTIFICATION NUMBER: 359152

YOU'RE IN!

_ Ok

y

y

INPUT# The INPUT# statement reads data from a sequential disk file to
program variables.

_

Syntax:

INPUT# < file number>, < variable >, < variable >

INPUTttl,AS,X

Explanation:

The file number is the number you give the file when you open it.
You assign the data in the file to variables. The types of a variable
and its assigned data must match.

The INPUT# statement works much like the INPUT statement,
except that it does not prompt. Before assigning the data item you
enter to the variable, INPUT* skips any leading spaces, tabs,
carriage returns, and line feeds you enter with the data. The first
character that is not one of these is taken as the start of the data.
A space, a carriage return, line feed, comma, or reaching 255
characters signals the end of the data.

131

There are three kinds of data for the INPUT* statement: numbers
in any of the numeric formats, quoted strings, and unquoted
strings. ^

Data is interpreted as a number if the variable you assign to it is
numeric; otherwise it is taken as a string. Numbers are ended by —
reaching end-of-file or 255 characters, or by a line feed, carriage
return, comma, or any character that is not a valid part of a
number.

Strings are treated as quoted if the first non-space character is
a quotation mark. Everything within a pair of quotation marks is
taken as data in quoted strings. You cannot use a quotation mark
as a character within the quoted string because the second quota- —
tion mark ends the string. Quoted strings are also ended by
reaching end-of-file or 255 characters.

Unquoted strings can include quotation marks. They are ended by
a carriage return, line feed, comma, reaching end-of-file or 255
characters. Trailing spaces in unquoted strings are ignored.

Example:

Ok 18 OPEN "I",ttl,"BILLING"

Ok 20 INPUTttl,CUSTOMERS,INVOICEX,DATES

INPUT$ The INPUTS function returns a specified number of characters
from the keyboard or a data file.

Syntax:

XS = INPUT$(<number of characters>[,[#]< file number>])

XS=INPUTSC6)

XS=INPUTSC6,»1)

Explanation:

INPUTS reads the specified number of characters from the key
board or a file, and returns a string containing these characters.
All characters are returned without translation, exactly as they are
entered, without exception. For example, [Control] [G] from the
terminal and [Control] [Z] from a data file are passed to the string.

132

m

y

y

y

xxxxxxxx/xx/////
If you input the string from a file, you must specify an open file
number. If you attempt to read beyond the end of the file, an
error results.

See: EOF

y Example:

Ok 20 XS=INPUTSC6)

Ok 30 IF XS="GEORGE" THEN lOOO ELSE PRINT "WRONG" :END

U Ok lOOO PRINT "OK"
Ok RUN

ARNOLD

y WRONG
Ok

y

y

INSTR The INSTR function searches for one string within another and
- returns its position.

w Syntax:

~ X= INSTR([KStartingpoint>,] Ktarget string expression>, Kpat-
tern string >)

y X=INSTRC3,AS,"D0")
X=INSTRC3,AS,B$)

_

_

Explanation:

INSTR looks for the first occurrence of a pattern string within
a target string and returns its position.

You can specify a starting point for the search. The optional
starting point is an integer between 1 and 255.

The target string and pattern strings can be string constants,
expressions, or variables.

INSTR returns 0 if the pattern string is longer than the target
string, if the target string is a null string, or if the pattern string
is not in the target string.

If the pattern string is null, INSTR returns a zero.

133

////////////////
Example:

Ok 10 XS="HOW DO YOU DO?"

Ok 20 X=INSTRC3,XS,"D0"}

Ok 30 PRINT X

Ok RUN

5

Ok

|NJ The INT function converts a number or expression to an integer.

Syntax:

X= INT(numeric expression)
-

X=INTCYJ m

Explanation: —

INT truncates decimal places.

Example: ~-

Ok 10 X=INTC2.999) _

Ok 20 PRINT X

Ok RUN

Ok

KILL The KILL statement deletes a disk file.

Syntax:

KILLKString expression>

KILL "FILE.DAT"

Explanation:

The string expression evaluates to a filename. KILL deletes the file
associated with that filename. For example, KILL AS deletes the
file specified by AS. You can KILL any kind of disk file. You cannot
KILL a file that is open at the time; an error occurs if you try.

134

xxxx/xxxxxxxxxxx
The example creates a file named CALC.BAS. The file is then
deleted by KILL.

Unlike ERA, KILL can be used within an ST BASIC program
(i.e., 10 KILL "DATA.1").

Example:

Ok NEW

Ok 10 A=45:B=56

y

Ok 20 PRINT A + B

Ok 30 END

Ok SAVE CALC

Ok B$="CALC.BAS'

Ok KILL BS

Ok

w LEFTS The LEFTS function returns a string that contains the leftmost
characters of a string.

y Syntax:

XS = LEFT$(<?a/-gef string> <number of characters>)

y XS=LEFTfA,5J

y Explanation:

\j LEFTS starts at the leftmost character and returns as many con
secutive characters as you specify. The number of characters

^ must be a positive number between 1 and 255. Real expressions
convert to integers.

u The target string can be a string constant, variable, or expression.

— If the number of characters is greater than the length of the target
string, LEFTS returns the entire target string. If the number of
characters is zero, LEFTS returns a null string.

y

y

y

_

y

135

LEN

////////////////
Example: _

Ok 10 INPUT "RADIUS" .: R

Ok 20 PRINT 3 .1416*R^2

Ok 30 INPUT "ANOTHER AREA" ;CS ,^>

Ok 40 IF LEFTSCCS,1)="Y" THEN 10

Ok 50 END

RUN ~

RADIUS ?3

28.2735 f\

ANOTHER AREA ?Y

RADIUS ?

The LEN function returns the length of a string. ^

Syntax:

Z = LEN(< string expression >)

X=LOCtl)

Explanation:

LEN returns the number of characters in a string as an integer.
If the expression is a null string, LEN returns zero. m

Example 1:
Ok 10 ADDRESSS="2114 PARKER ST, BIRDLAND, NEW YORK"

Ok 20 FOR X=l TO LENCADDRESSS3

Ok 30 PRINT CHRSC42) J

Ok 40 NEXT X

Ok RUN

Ok

Example 2: m
10 AS="THIS STRING IS 33 CHARACTERS LONG"

28 PRINT AS

30 PRINT LENCAS)

RUN

THIS STRING IS 33 CHARACTERS LONG ,*>

33

136

—

~

y

y

xxxxxxxxxxxxxxxx
LET The LET statement assigns a value to a variable or array variable.

Syntax:

LET < variable> - Kexpression>

LET X = Y

LET XC1J=Y

Explanation:

Using LET to assign values to variables is optional. For example,
LET X = Y and X = Y are identical in meaning. The variable and the
expression can be strings or numbers. For numeric variables and
expressions, the type of the expression converts to match the type
of the variable.

Example:

Ok 10 LET NAMES="ALYSON"

Ok 20 TICKETOFFICES="BATH, ENGLAND"

Ok 30 LET DESTINATIONS="CANTERBURY"

Ok 40 DATE.OF.DEPARTURE=4.1

Ok 50 DATE.OF.ARRIVAL=4.8

Ok 60 LENGTH.OF.TRIP=DATE.OF.ARRIVAL -

DATE.OF.DEPARTURE

Ok 70 PRINT NAMES

Ok 80 PRINT TICKETOFFICES

Ok 90 PRINT "DESTINATION: "DESTINATIONS

Ok lOO PRINT "LENGTH OF TRIP: " LENGTH.OF.TRIP

Ok RUN

ALYSON

y BATH,ENGLAND
DESTINATION: CANTERBURY

LENGTH OF TRIP: .7

Ok

LINE INPUT The LINE INPUT statement requests input from the keyboard and
assigns it to a string variable.

Syntax:

LINE INPUT[;] [Kprompt>[,or ;]]Kstring variable>

INPUT LINE INPUT "NAME? " JAS

LINE INPUT;"NAME? "JAS

- 137

////////////////,
Explanation:

LINE INPUT is similar to the INPUT statement in that it asks you
to enter data at the keyboard, but it accepts an entire line of up to
255 characters as a response. Your response is assigned to the
string variable. A carriage return or line feed ends your input and
sends it to the computer.

The optional prompt is a string that you write as an input request;
LINE INPUT prints it in the Output Window and waits for your
response. LINE INPUT does not automatically add a question mark
or a space after the prompt, but you can write a question mark or
space within the prompt string. Including a space is advisable,
because otherwise your input will run together with the prompt,
on the same line.

/~\

Example:

Ok 10 LINE INPUT "REASON FOR RETURNING

MERCHANDISE";RS ^

OK 20 PRINT "THANK YOU . WE ARE PROCESSING YOUR

COMPLAINT"

Ok RUN

REASON FOR RETURNING MERCHANDISE?

WRONG SIZE, WRONG COLOR, TASTELESS STYLE.

THANK YOU . WE ARE PROCESSING YOUR COMPLAINT . -

Ok

a

r\

LINE INPUT# The LINE iNpUT# statement requests input from a sequential disk
file and assigns it to a string variable.

Syntax:

LINE INPUT#<f/7e number>, KString variable>

LINE INPUTttl,AS r\

Explanation:

Like LINE INPUT, LINE INPUT* assigns a line of up to 254
characters as input to a string variable, but the input comes from
a sequential disk file. The file number is the number you gave the
file when you opened it.

138

/">

y

y

xxxxx/xx/x//////
LINE INPUT* reads all characters in a sequential file until it
comes to a carriage return, and assigns them to the string
variable. The next LINE INPUT* statement starts where the first
left off, and assigns the next line, up to a carriage return, to the
next string variable.

If a line feed immediately precedes a carriage return, they are
treated as regular characters and do not end the line.

Example:

Ok 10 OPEN "0",B4,"SCORES"

Ok 20 LINE INPUT "GIVE TEAMS, WINNERS, AND

SCORES.",SS

Ok 30 PRINT«4,SS

Ok 40 CLOSE H4

Ok 50 OPEN "I",tt4,"SCORES"

Ok 60 LINE INPUTtt4,SS

Ok 70 PRINT SS

Ok 80 CLOSE »4

Ok RUN

GIVE TEAMS, WINNERS, AND SCORES.

USC& UCLA: USC. 50-3; CPSLO& FRESNO: CPSLO. 33-20
USC& UCLA: USC. 50-3; SPSLO& FRESNO: SPSLO. 33-20

Ok

— LINEF The LINEF statement draws a line.

~ Syntax:

y LINEF <point pair, point pair >

y LINEF 30,50,90,100

— Explanation:

m LINEF draws a line between the two point pair coordinates
specified. The points are pixel positions counted from the upper
left corner of the Output Window (0,0). The number of points

_ available horizontally and vertically is dependent upon the
system resolution chosen.

y

y

139

y

'///,
Example:

Ok 10 COLOR 1,0,1: CLEARW 2

Ok 20 LINEF 50,50,80,88 %\
Ok RUN

[Output Window will show line drawn between
two coordinate positions]
Ok

n

m

•
LIST The LIST command displays program lines in the List Window.

Syntax:

LIST [Kline descriptor list>]

^>

LIST

LIST 10-5O

LIST 10,30,50

LIST 10-30,70-90

LIST -30

Explanation:

LIST displays specified lines of the current program in the List

LIST 10-30, 70-90 lists two groups of lines from 10 through 30
and 70 through 90.

LIST - 30 lists all lines up to line 30.

Pressing [Control] [G] stops LIST and returns to the Command
Window.

140

Window.

LIST displays the entire program from beginning to end.

LIST 10 displays the single line number 10 of the program.

LIST 10-50 displays lines 10 through 50 of the program.

LIST 10, 30, 50 displays lines 10, 30 and 50 of the program.

n

ry

y

y

y

~

u

y

_

yyyyyyxx/yy/////
LLIST Tne LLIST command lists the program to your printer.

Syntax:

LLIST [Kline descriptor list>]

LLIST

LLIST 10-5O

LLIST 10,30,50

LLIST 10-30,70-90

LLIST -30

Explanation:
LLIST works the same way as LIST, but prints the specified lines
on your printer.

The WIDTH LPRINT command sets the line width for your printer.
ST BASIC sets line width to 72 characters. WIDTH LPRINT 40
would set it to 40 characters.

If a printer is not connected when the LLIST command is
executed, ST BASIC will time out.

LOAD The L0AD command LOADs program files.

Syntax:

LOAD < filename >

LOAD MYPROG

Explanation:
LOAD brings ST BASIC program files into memory. LOAD assumes
a .BAS extender unless you specify otherwise. When you LOAD a
program, any current program and its variables are cleared from
memory.

Same as: OLD

141

XXXXXXXXXXXXXXy
LOC The LOC function returns either a record number or the number

of bytes read from or written to a file.

Syntax:

X= LOC{k file number>)

X=L0C(1J

n

Explanation:

When used after a GET or PUT to a random disk file, LOC returns
the number of the record most recently read or written with GET
or PUT. For example:

GET ttl ^

PUT ttl,LOCCiJ

replaces record #1 in the slot from which it is read.

Used with sequential files, LOC returns the number of bytes read
or written since the file was opened.

Example:

Ok 10 OPEN "R",tt8,"FILE"

Ok 20 FIELD «8,20 AS ZS,3 AS VS

Ok 30 GET »8,CX ^

Ok 40 IF L0CC81>25 THEN GOTO 90

LOF The LOF function returns the number of bytes in the file.
r-\

Syntax:

X=LOF(<f/7e number>)
r\

X=L0F(1J

Explanation:

For a file just opened for output, the number of bytes is zero.
ry

Example:

Ok lOO X=L0FCtt5J

110 IF X>1O0 THEN PRINT "OPEN NEW FILE" : r\

GOTO 20O

142

S Jr X V/A
y

LOG The LOG function returns the natural logarithm of a number.

Syntax:

X= LOG(<numeric expression>)

X=LOGCNl

y Explanation:

The numeric expression must be greater than zero.

y Example:
Ok 10 PRINT L0GC23J/L0G(2J

Ok RUN

— 4.52356

Ok

L0G10 Tne LOG10 function returns the base 10 logarithm of a number.

^

Syntax:

X= LOG10(Knumeric expression>)

X=LOG10(YJ

y Explanation:

The numeric expression must be greater than zero.

_ Example:

Ok 10 H = LOG10f100O3

Ok 20 PRINT X

— Ok RUN

3

y

_

y

y

y

143

m

LPOS The LPOS function returns the position of the line printer print
head within the line printer buffer.

•
Syntax:

LPOS(X)

LPOSCX)

Explanation: _

The position returned is the number of the characters printed since
the last carriage return character. The backspace counts as -1. If
you have printer control characters that alter the position of the
print head, LPOS will not reflect the true position of the print head.

Example:

Ok 10 X=90

Ok 20 IF LP0SCX)>45 THEN GOTO lOO

m

LPRINT The LPRINT statement directs output to a printer.

Syntax:

LPRINT [Klist of expressions>]
LPRINT USING < format string expression>;<list of
expressions >

LPRINT AS;" = ";x

LPRINT USING FS;AS,X

n

Explanation:

The LPRINT statement works like the PRINT and PRINT USING

statements in this section, except that output goes to a line
printer. You can set the assumed width of the line printer with the
WIDTH LPRINT statement. Initially, it is 72 characters. The format
string expression must be separated from the variable list with a
semicolon. The listed expressions must be separated by commas.

See: WIDTH, LPRINT

Example:

Ok 10 LPRINT "THIS PRINTS ON THE PRINTER1

144

r\

~

—

_

y

_

LSET The LSET statement moves a string into a specified string variable
without reassigning the string variable.

Syntax:

LSETKstring variable> = Kstring expression>

LSET AS=BS

Explanation:

LSET is commonly used to move data to file buffers by LSETing
into variables mapped into file buffers by a previous FIELD
statement. LSET is not limited to this use, however.

U

If the string expression takes fewer bytes than you assigned to the
string variable in a FIELD statement, LSET justifies the left margin
and pads the string to the right with spaces.

If the string is longer than the destination, LSET ignores the extra
characters.

If a string takes more bytes than you assigned it in the FIELD
statement, characters to the right are dropped.

You must convert numbers and numeric variables to strings with
MKDS, MKI$, or MKSS before you LSET them.

The counterpart of LSET is RSET.

Example:

Ok 10 OPEN "I",«2,"TEST",5

Ok 20 FIELD «2,5 AS SS

Ok 30 LSET NS=NNS

145

MERGE The MERGE command inserts a ST BASIC disk file into a program
in memory.

m
Syntax:

MERGE Kfilename>

m
MERGE MYPROG

Explanation:

The MERGE command assumes a .BAS extender unless otherwise
specified and inserts a file on disk into a file already in memory.
As long as the line numbers of the two files are different, MERGE -
does not erase the original file. If any line numbers in the disk file
duplicate line numbers in the file in memory, the disk lines replace
the memory lines.

See: CHAIN

Example: m

Ok 10 PRINT "THIS IS THE ORIGINAL PROGRAM"

Ok 20 PRINT "THIS LINE WILL BE DELETED BY

THE MERGE"

Ok 30 PRINT "THIS LINE STAYS BECAUSE IT HAS A

UNIQUE LINE NUMBER"

Ok SAVE ORIGINAL

OK NEW ^
Ok 15 PRINT "THIS IS THE OVERLAY"

Ok 20 PRINT "THIS LINE REPLACES LINE 20 IN THE

ORIGINAL PROGRAM"

Ok SAVE OVERLAY

Ok LOAD ORIGINAL

Ok MERGE OVERLAY

Ok RUN

THIS IS THE ORIGINAL PROGRAM r>

THIS IS THE OVERLAY

THIS LINE REPLACES LINE 20 IN THE ORIGINAL

PROGRAM -

THIS LINE STAYS BECAUSE IT HAS A UNIQUE LINE NUMBER

OK

146

w AT AT A* A* at at

y

MID$ The MIDS function returns a segment of a string.
U

Syntax:

XS = MIDS(<sfmg expression>, Kstarting point>,[klength>])

XS=MIDSCAS,5,10)

MIDSCAS,5,5)="HELLO"

STATEMENT:

Assigns a value to a string segment.
y

Explanation:
• MIDS returns a segment of a string. The starting point is a
y numeric expression pointing to the beginning of the segment.

The length is a numeric expression specifying the length of the
w segment to the right of the starting point. If you omit the length
y parameter, MIDS returns all the characters after the starting point.

y If the starting number is greater than the string length, MIDS

y
returns a null string.

If the length of the segment is greater than the number of
characters to the right of the starting point, all the characters
after the starting point are returned.

MIDS can also be used to define a string segment.

See: RIGHTS, LEFTS

Example:
y

Ok 10 XS="MR . JAMES GRAHAM SCOTT1

— Ok 20 YS=MIDSCX$,18,5)

Ok 30 PRINT YS

Ok RUN

SCOTT

Ok
_

y

y

y

y

y

y
147

////////////////

MKD$ The MIDS, MKIS, and MKSS functions convert ASCII strings repre-
MKI$ senting numbers to byte strings for use in random file buffers.
MKS$ Syntax:

XS = MKD$(k numeric expression >)
X$ = MKI$(</nfege/->)
X$ = MKS$(< numeric expression >)

xs=mkdscai A is a numeric value.

xs=mkiscb) B is an integer value.
xs=mkssco C is a numeric value. £

Explanation:

MKIS returns a 2-byte string. MKSS returns a 4-byte string. MKDS
returns an 8-byte string.

You must convert ASCII numbers to strings with these functions
before you can move them into a random file buffer with RSET or
LSET. The CVD, CVI, and CVS functions are the reverse of the
MKDS, MKI$, and MKSS functions.

Example:

Ok lOO FINAL=C1OO/'X)*C100-Y}

Ok 110 FIELD M2,5 AS ZS,5 AS BS
Ok 120 LSET ZS=MKISCFINAL)

Ok 130 LSET BS = TS

Ok 140 PUT It 2 ^

m

NAME The NAME statement renames a file. ,->

Syntax:

NAME Kold string expression> AS Knew string expression>

NAME "AUG.DAT" AS "LAST.DAT"

Explanation:

NAME simply gives a new name to a file that already exists. NAME
does not alter the file or disk space in any way. Be sure the old file
exists and the new name does not; otherwise, an error occurs.

Example: _

Ok NAME "VERSI0N2.BAS" AS "FINAL.BAS"

148

~

"

r>

////////////////
y

NEW The NEW command clears a file from memory, and optionally
w names the new program.
y

Syntax:

~ NEW [NAME]

NEW NEWPROG.BAS

y
Explanation:

Use NEW in preparation for writing a new program. If you have
y not saved the current file, you will lose it. If you use the NAME

option, you can use the SAVE command later without a name.
y

Example:

Ok lO X=5QRC25J

~ Ok 20 PRINT X

„ Ok NEW

Ok LIST

— Ok

~

y

y

y

NEXT Tne NEXT statement marks the end of a FOR/NEXT loop.

Syntax:

NEXT [Kcounter>] .counter

NEXT X

NEXT X,Y

Explanation:

The NEXT statement in a FOR/NEXT loop sends program control
to the beginning of the loop. The loop runs again if the counter
variable is not greater than the limit set in a FOR statement.

Supplying the name of the counter variable is optional. The NEXT
statement assumes the nearest counter variable.

If you have nested loops, you must specify which counter variable
you are returning to at the end of the loop's execution. Use NEXT
to direct execution first to the nested loop, then to the outer loop,
by specifying first the nested counter variable, then the outer.

See: FOR

149

0CT$

Example:

Ok 10 FOR Z=l TO 3

Ok 20 PRINT "Y"

Ok 30 FOR Q=l TO 2

Ok 40 PRINT "X"

Ok 50 NEXT Q,Z

Ok RUN

Y

X

Y

X

X

Y

X

X

Ok

XAT V^ aT aT J
/ / X /

The OCTS function returns the string expression of an octal
(base 8) number.

Syntax:

XS = OCTS(k numeric expression >)

XS=OCT$CY)

Explanation:

OCTS returns a string that is the base 8 equivalent of a decimal
or hexadecimal value. The value of the decimal or hexadecimal

expression is rounded to an integer before conversion. It must
be between -32768 and 32767.

See: HEXS, STRS

Example:

Ok 10 X$=0CT$C3.4)

Ok 20 PRINT XS

Ok RUN

3

150

_

^ ^ X jf AaF JF jF a* at *t jT

OLD The OLD command loads an existing program file into memory.

Syntax:

OLD Kfilename>

OLD TEST

y Explanation:

w

_

y

_

~

y

OLD closes all open files and erases any variables or data in
memory before loading the named file from disk. Any ST BASIC
program in memory is cleared by OLD.

The filename is the name you gave the file when you saved it. You
need not include the default file type .BAS.

Same as: LOAD

Example:

- Ok OLD TEST

Ok

The pro9ran TEST. BAS is now in prograw KieHory,

ON The ON statement transfers program control to one of a list of
program lines depending on the computed result of the numeric
expression. The ON statement has two forms.

y Syntax:
ON knumeric expression> GOTO Kline descriptor> [Kline
descriptor >]

y ON Knumeric expression> GOSUB Klabel> [,klabel>]

~ ON X GOTO INIT, lOO, ENTRY, DONE

ON X GOSUB INIT, 100, ENTRY, DONE
I—-

y Explanation:

The value of the numeric expression determines where program
execution transfers. If the expression evaluates to 1, ON branches
to the first label. If it evaluates to 2, ON branches to the second
label, and so on.

y

y

151

Test the value before writing an ON statement. r^

Non-integer values round to the nearest whole number. r>

In the ON GOSUB statement, each numeric expression must be
the number of the first line of a subroutine. The RETURN state
ment in the subroutine returns control to the first executable
statement following the ON statement.

o

You can use any valid line descriptor in an ON statement, and you
can write an ON statement anywhere in your program. ry

10 ON X GOTO 20O,PAINT,400 ">

If the value of X is 1 the program will jump to the line 200; if it is 2
it will jump to the statement labeled PAINT

Example:

Ok 10 X=l —

Ok 2© ON X GOTO 70,88,90,990

Ok 70 PRINT "SEASON TO DATE: "X + 1

Ok 80 PRINT "SEASON TO DATE: "X + 2 ~

Ok 90 PRINT "SEASON TO DATE: "X + 3

Ok 120 X=X + 1: GOTO 20

Ok 990 END —
Ok RUN

SEASON TO DATE: 2 ~

SEASON TO DATE: 3

SEASON TO DATE: 4

SEASON TO DATE: 4 A

SEASON TO DATE: 5

SEASON TO DATE: 6

Ok

ON ERROR The ON ERROR GOTO statement provides a mechanism to detect
run time errors and pass control to a line number when an
error occurs. f%

Syntax:

ON ERROR GOTO Kline descriptor> r>

ON ERROR GOTO 200 ~

152

GOTO

y

y

Explanation:

ON ERROR GOTO lets you handle run time errors by jumping to a
given line number when ST BASIC detects an error. A line number,
not a label, must be used as a parameter.

You can disable error handling, or restore ST BASIC'S own error
handling in an error routine, by using ON ERROR GOTO 0.

When you use ON ERROR GOTO 0 in an error trapping routine,
ST BASIC prints its original error message. It is a good practice
to always use ON ERROR GOTO 0 in an error trapping routine
so that you can trap unexpected errors.

See: RESUME

Example:

Ok 80 ON ERROR GOTO lOO

OPEN Tne OPEN statement lets you input and output to a file or device.

Syntax:

OPEN <mode>,[#]<file number>,Kfilename>
[,<record length>]

OPEN "0",ttl,"FILE.DAT",128

OPEN "I",ttl, "FILE. DAT",128

OPEN "R",ttl,"FILE.DAT",128

Explanation:

You must OPEN a disk file before you can move data into or out of
it. The OPEN statement assigns the file an I/O buffer and deter
mines the mode under which the file is accessible to I/O.

The file number is an integer expression with a value between 1
and 15. A file number belongs to a file for as long as it is open.
Closing a file frees its number for reassignment. The record length
is an integer expression that sets the record length for random
files. It is optional. The default length is 128 bytes. A record length
given for a sequential file is ignored.

153

The file mode is either sequential output or sequential input, or
random input and output. Specify the mode with one of the
following initials:

O Output for sequential files
I Input for sequential files ~

R Input and output for random files

These letters must be uppercase. r>

When you enter/input random access records, the first record
number must be entered as 1 and all following record numbers
must be sequential. That is, the first record is 1, the second record
is 2, the third record is 3, and so on. This can be done with a FOR
. . . NEXT loop. Records entered out of order cause the program to
error out. Once the file is established, the records can be called
(GET *1 ,VAR) in any order.

Example:

Ok 10 OPEN "R",ttl,"FUNDS"

Ok 20 FIELD ttl,10 AS VS,10 AS XS,30 AS NS
Ok 30 INPUT "ENTER A 4-DIGIT CODE" ,CODE !

Ok 40 GET HI,CODE! ^

OPENW The OPENW statement opens one ST BASIC window.

Syntax: «

OPENW Kwindow number>

OPENW 2 £

Explanation:

Used to open one ST BASIC window that was previously closed ^
using the CLOSEW command. The window opened will be the top
one on the screen. If the window has already been opened, the
window will remain the top window on the screen. KWindow
number> specifies the ST BASIC windows as follows:

0 - The Edit Window.

1 - The List Window.

2 - The Output Window. ^
3 - The Command Window.

i->

154 ^

XXXXXXXXXXA
Note: OPENW does certain bookkeeping chores internal to the ST
BASIC interpreter that allow the system to keep track of the win
dow status. Therefore, do not open ST BASIC windows (that were
closed using CLOSEW) using direct calls to AES.

OPTION BASE The OPTION BASE statement sets the base for array dimensions.

y

u
OPTION BASE 0

y OPTION BASE 1

w Explanation:

You use OPTION BASE to set the minimum value for array sub
scripts within a dimension. The default base is zero; thus the first
element in an array has a subscript of zero. You can set the array
dimensions so they begin at 1 or reset them to zero.

You can use OPTION BASE as many times as required.

See: DIM

_

y

_

y

y

Syntax:

OPTION BASE k1 or0>

Example:

Ok 10 OPTION BASE 1

Ok 20 DIM AXCIO)

Ok 30 OPTION BASE 0

Ok 40 DIM BXC10)

A% now has 10 elements, 1-10. B% has 11 elements, 0-10.

155

XXXXXXXXX

OUT The OUT statement sends a byte to an output port.

Syntax: —
OUT < integer expression >, < integer expression >

OUT 2,X ^

Explanation: fll

The first integer expression is the port number. The second ex- ^
pression is the byte you are sending to the port; it must evaluate
to an integer between 0 and 255.

ATARI ST Computer ports are assigned as follows:

0 = PRINTER (Parallel Port)
1 = AUX (RS-232)
2 = CONSOLE (Keyboard) _
3 = MIDI (Musical Instrument Digital Interface)

/->

Example:

Ok lOO IF XX>5 THEN OUT 9,tX-2)

PCIRCLE The PCIRCLE statement draws solid circles and pie shapes. —

Syntax:

PCIRCLE Khorizontal center,vertical center,radius> a
[k,start angle,end angle>]

PCIRCLE 50,80,50 —
PCIRCLE 50,88,50,900,1800

Explanation:

PCIRCLE draws a solid color or patterned circle whose center is
located at the point specified by the first two parameters: horizon
tal center and vertical center. The positions are in pixels starting
from the upper left corner of the Output Window.

The third parameter, radius, is also expressed in pixels. The hori
zontal and vertical pixel count is dependent upon the resolution
selected. The circle is drawn in the FILL color (parameter 2 of
the COLOR statement.)

156

^

y

y

xxxxxxxxxx
The last two parameters, start angle and end angle, are optional.
If they are not specified, PCIRCLE draws a circle. If they are
specified, PCIRCLE draws the part of a circle that lies between
them. PCIRCLE draws a solid colored pie shaped segment, not an
arc. Angles are expressed in degrees times 10. You would specify
45 degrees as 450, 180 degrees as 1800, and so on. Zero degrees
is to the right of the window, 90 degrees is towards the top, 180
degrees to the left, and 270 degrees at the bottom. COLOR
1,3,1 PCIRCLE 100,30,30,0,3600 draws a solid green circle.

See: CIRCLE, ELLIPSE, PELLIPSE

Example:

Ok 10 COLOR 1,0,1:CLEARW2

Ok 20 CIRCLE 100,50,40

Ok 30 COLOR 1,2,1

Ok 40 PCIRCLE 100,50,40,300,900

Ok RUN

[Output Window will show black circle with 60 degree red
wedge at 30 degrees]
ok

PEEK The PEEK function returns the content of a memory location.

Syntax:

X = PEEK(< memory location >)

X=PEEKCY)

Explanation:

PEEK returns the value at the specified memory location. The type
of value returned is dependent upon the last DEF SEG statement
as follows:

If DEF SEG >0, PEEK returns a byte regardless of how the location
to PEEK is specified. The location specified in PEEK will be offset
by the value specified in the last DEF SEG statement.

y

y

y

157

If DEF SEG = 0, PEEK returns a 2-byte word if location to PEEK
is specified as a FLOAT expression.

xxxxxxx/xxxxxxxx
IF DEF SEG = 0 and the address is specified by DEFDBL, PEEK
returns a 4-byte long integer.

You must specify the memory address using a variable, as in the
following example, rather than a constant.

See: POKE, DEF SEG

Note: When PEEKing, the 520ST Computer is switched into super
visory mode, meaning that you can access any location in memory
including protected memory.

Example:

Ok lOO BYTEX=PEEKC234J

PELLIPSE The PELLIPSE statement draws SOLID ellipses and elliptical
pie shapes.

Syntax:

PELLIPSE <horizontal center,vertical
center.horizontal radius, vertical
radius>[K,start angle,end angle>] __

PELLIPSE 50,80,100,50

PELLIPSE 50,80,100,50,900,1880

Explanation:

PELLIPSE draws an ellipse whose center is located at the point
specified by the first two parameters: horizontal center and ver- m
tical center. The positions are in pixels starting from the upper left
corner of the output window. The third and fourth parameters,
horizontal and vertical radii, are also expressed in pixels. The
horizontal and vertical pixel count depends upon the resolution
selected. The ellipse is drawn in the FILL color (parameter 2 of
the COLOR statement.)

The last two parameters, start angle and end angle, are optional.
If they are not specified, PELLIPSE draws a full ellipse. If they are
specified, PELLIPSE draws the part of an ellipse that lies between
them. PELLIPSE draws a solid colored pie-shaped segment.

158

p\

m

~

r>

-

y

y

y

y

XXXXXXX//X/X////
Angles are expressed in degrees times 10. You would specify 45
degrees as 450, 180 degrees as 1800 and so on. Zero degrees is
to the right of the window, 90 degrees is towards the top, 180
degrees to the left, and 270 degrees at the bottom. COLOR
1,3,1 PELLIPSE 100,50,50,50,0,3600 draws a solid green ellipse.

See: ELLIPSE, CIRCLE, PCIRCLE

Example:

Ok 10 COLOR 1,0,1:CLEARW2

Ok 20 ELLIPSE 100,80,40,80

Ok 30 COLOR 1,2,1

Ok 40 PELLIPSE 100,80,40,80,300,900

Ok RUN

[Output Window will show black ellipse with 60 degree
red wedge at 30 degrees]
ok

POKE Tne POKE statement writes data to POKE to the memory.

Syntax:

POKE</ocaf/on to poke>,Kdata to poke>

POKE 1565,X

Explanation:

POKE stores a value of the data to POKE in a memory location.
The location to POKE is an absolute address given as a numeric
expression. The data type is defined by the last previous DEF SEG
statement and the manner in which the location to POKE is

specified.

If DEF SEG > 0, data is a byte regardless of how location to
POKE is specified. The location specified in POKE will be offset
by the value specified in the last DEF SEG statement.

If DEF SEG = 0, data is 2:byte word if location to POKE is
specified as a FLOAT expression.

If DEF SEG = 0 and address is specified by DEFDBL, data is a
4-byte long integer.

159

XXXXXXXXXXXXXXX/z
If the data expression evaluates outside the range 0 to 255, POKE
stores the low-order byte of the result. For example:

Ok 5 DEF SEG=3O0O00

Ok 10 POKE XX,257 r%

has the same effect as

Ok 5 DEF SEG=30000O

Ok 10 POKE XX, 1 m

The complement of POKE is PEEK. You can use PEEK and POKE
for passing arguments and data to machine language subroutines.

Fy

m

See: PEEK, DEF SEG *

Example:

Ok lOO FOR LOCX=l TO LENCOUT,MSGSl ft

Ok 120 POKE

MSG.LOCX +LOCX, ASCtMIDS COUT, MSGS..LOCS,))

Ok 130 NEXT LOCX

Note: While POKEing or PEEKing, the computer is switched into
supervisory mode, where you can access any location in the
memory including protected memory. The system will crash if you
POKE locations used by the TOS Operating System. Reboot the
system if a crash occurs.

•

POS The POS function returns the current position of the cursor on the
screen or printer.

Syntax:

X= POS(<dummy argument>)
ry

X=POS(0)

Explanation:

The leftmost position of the cursor is zero. POS does not
necessarily give the physical position of the print head.

See: LPOS

160

>—\

F>

Fy

y

y

^

w

~

^

////////////////
Example:

Ok 40 X=POSC01

Ok 50 PRINT "THE PRINT HEAD IS AT COLUMN: ";X

Ok 60 IF WIDTH .LINE<POSCO) THEN WIDTH .CHR=X

PRINT The PRINT statement prints data to the Output Window.

Syntax:

PRINT [<expression> k, or ;> Kexpression>[K, or ;>]]

PRINT X,Y

PRINT X;Y

PRINT AS

?AS

Explanation:

PRINT sends expressions to the output window. You can use any
number of expressions with the PRINT statement, separated by a
comma or semicolon.

The punctuation used to separate the expressions determines the
position of the expressions on the screen. ST BASIC divides a line
into print zones consisting of 14 spaces each. When you use a
comma to separate the expressions in the PRINT statement, ST
BASIC prints each expression in the next available print zone. If
you use a semicolon, ST BASIC prints string expressions con
secutively, with no spaces separating them. Numeric expressions
are printed together, with a space for the sign.

If you end a list of expressions with a comma, ST BASIC spaces to
the next print zone, but does not move to a new line. If you end a
list with a semicolon, ST BASIC leaves the cursor at the end of the
last expression.

A question mark ? can be used in ST BASIC programs in place of
PRINT. ? A means the same as PRINT A.

161

PRINT#

///////////////A
Example:

Ok 10 PRINT "TESTING ST BASIC"

Ok 20 PRINT

Ok 30 AS="ONE":BS= "TWO":C$= "THREE'

Ok 40 A = 23:B=567!C=5

Ok 50 PRINT A$,BS,CS

Ok 60 PRINT AS;BS;CS

Ok 70 PRINT A,B,C

Ok 88 PRINT A;B;C;

Ok 90 END

Ok RUN

TESTING ST BASIC

ONE TWO THREE

ONETWOTHREE

23 567 5

23 567 5

Ok

The PRINT* statement outputs data to a disk file.

Syntax:

PRINT* Kfile number>,Kexpression>,kexpression>

PRINTtt 1,AS,X

?tt

Explanation:

The PRINT* statement writes expressions to the file specified by
the file number. The file number is the number you gave the file
when you opened it. Each PRINT* statement creates a single
record. Each expression used in the PRINT* statement creates
a single field.

You can use any number of expressions with the PRINT* state
ment and separate each one with a comma or semicolon.

PRINT* writes the data to the file exactly as it would print on the
screen using the PRINT statement.

You must express exactly how you want the data to appear on disk
by punctuating it properly.

162

n

-

ry

m

ft

m

F*\

^

~

XxxxX/xXXxxX/fx/
For example:

XS="Lewis"

ZS="C. 5. "

and you want to write

Lewis,C.S.

to disk. Since neither variable contains a comma, either before
"Lewis" or after "C.S", the statement

Ok PRINTttl,XS;ZS

writes the data to disk as

Lewis C.S .

If you want to insert a comma as a delimiter, you must use the
statement

Ok PRINTttl,XS.:",";ZS

with the comma as a literal string in quotation marks.

Example:

Ok 50 PRINTttFIVE . TEX; AS,BS,CS

PRINT USING Tne PRINT USING statement prints output according to a format.

y Syntax:

PRINT USING<sfr/ng expression>;<list of expression">;
PRINT*<f/7e number>,USING< "string expression">;

U < list of expressions >

~ PRINT USING FORMS;X,Y,Z

PRINTtt 1,USING FORMS;X,Y,Z

?USING

^

Explanation:

The PRINT USING statement prints the data on the screen. The
PRINT* USING statement prints the data on a disk file. You can
print strings or numbers with either statement. For the PRINT*
USING statement, the file number is the number you give the

— file when you open it.

_

y

163

//A//AAA/A/AA/A/:
For both statements, the string expression in quotation marks is a
list of characters that determines the fields and formats of printed
data. The list of expressions contains the items to print, separated
by commas or semicolons. If the list ends with a semicolon, the
cursor is left at the end of the last expression.

The characters in the format specification are replaced by the
data in the print list, unless they are literal characters.

The following tables summarize the ST BASIC formatting
characters: r>

STRING FIELD FORMATTING CHARACTERS

Character Explanation

-

! Tells the statement to print the first character
of each specified string.

\chars\ chars plus 2 indicates the total number of
characters to print from the specified string.

& Specifies a variable length string field.

NUMERIC FIELD FORMATTING CHARACTERS

Character Explanation
Represents each digit position in a numeric
field.

Inserts a zero to fill digit positions as
necessary.

+ Prints the sign of the number, plus or minus,
before the printed number.

- Prints negative numbers with a trailing minus
sign.

** Fills leading spaces in the numeric field with
asterisks.

$$ Prints a dollar sign to the immediate left of the
printed number.

164

n

m

ry

y

m

////////,
**$ Fills leading spaces with asterisk and inserts a

dollar sign to the left of the number.

, Inserts a comma between every third digit on
the left side of the decimal point.

aaaa Specifies exponential format.

— Prints the next character as a literal character.

You can include string constants in the format string, as shown in
the following example.

Example:

— Ok 10 PRINT USING "THIS IS FILE -tttttt" ;4

Ok RUN

THIS IS FILE tt 4

Ok

PUT The PUT statement writes a record from a buffer to a random
disk file.

y Syntax:

y

PUT [#]Kfile number>,Krecord number>

PUT ttl,5

Explanation:

The file number is the number you gave the file when you OPENed
it. The record number is optional. If included, the record number
must begin at one and proceed in sequential order. A FOR TO NEXT
loop is an ideal way to assign record numbers in a file. If you do
not give a record number, PUT uses the next record number in
sequence after the last GET or PUT. The largest valid record
number is 32767.

You should use LSET or RSET before a PUT to place the data into
the random buffer.

Example:

Ok lOO LSET QS=XS

Ok 120 PUTtt2,RC0RDX

165

AAAAAAAAAAAAAAA/ :
QUIT The QUIT command leaves ST BASIC and returns to GEM. m

Syntax: —

QUIT

QUIT

Explanation:

QUIT closes all files and returns you to GEM command level.
Any program in memory is lost.

Same as: SYSTEM

Example: ry
Ok QUIT

~

RANDOMIZE The RANDOMIZE statement seeds the random number generator.

Syntax: -

RANDOMIZE [<numeric expression>] m

RANDOMIZE X

Explanation:

You use RANDOMIZE with the RND function to generate random
numbers. If you omit the optional numeric expression, ST BASIC
asks for a random seed number on which to base RANDOMIZE.

~

If you do not use RANDOMIZE with a zero as a parameter at the
beginning of a program that relies on random numbers, the RND
function returns the same sequence of numbers every time you
run the program. ~

See: RND function for further information on generating random
numbers.

166

y

Example:

Ok lO RANDOMIZE O

Ok 20 FOR X = l TO 10

Ok 30 PRINT RND

Ok 40 NEXT X

Ok RUN

.957395

.427143

.806267

.0206223

.86628

.886706

.435054

.199773

•505868

.801594

Ok

READ The PEAO statement assigns values from a DATA statement
to variables.

Syntax:

READ < variable >, < variable >

READ A,B,AS

Explanation:

The READ statement and DATA statement are always used
together. READ assigns the values listed in DATA to a correspond
ing list of variables one by one. The variables can be numeric or
string. They must agree in type with the constant values in the
DATA statement; otherwise, an error results.

You can use one READ with several DATA statements, or vice
versa. If the number of values in the DATA statement is greater
than the number of variables in the READ statement, the next
READ statement picks up fhe remaining constants where the first
left off, and assigns them to the variables in its-list. If there are
no subsequent READ statements, the extra data is ignored.

167

1 ,11

If there are fewer values in the DATA statement than in the READ

statement, the next data statement is found and read. If there is
none, an out-of-data error results. ~

You can use the RESTORE statement to reread DATA items from

the start of a specified line number. m

See: DATA, RESTORE

Example:

Ok 10 READ X,Y,Z £
Ok 20 RESTORE

Ok 30 AVERAGE=CX + Y + ZJ/3

Ok 40 DATA 23.4,89.2,77 ^

Ok 50 PRINT AVERAGE

Ok 60 READ X,Y,Z

Ok 70 PRODUCT = X*Y*Z

Ok 80 PRINT PRODUCT

Ok 90 END

Ok RUN _

63.2

160720

Ok

•

REM The REM statement introduces a remark.

Syntax:

REM Kremark>

REM THIS IS A REMARK

• THIS IS A REMARK

Explanation:

REM statements help clarify the logic of a program. Remarks ap
pear in the program listing as written, but they are not executable.
Remarks can be as long as 245 characters. If you write a remark
longer than the width of the screen, you can extend the line with
a line feed.

">

If you branch into a REM line with a GOTO or GOSUB statement,
the program continues executing at the first executable line after
the REM.

168
~

~

y

y

y

y

y

y

y

////////////ff

The single apostrophe character has the same effect as REM.
For example,

Ok 100 'this is a connent

is a valid statement.

Example:

Ok 10 REM THIS PROGRAM FINDS THE SQUARE OF A NUMBER

Ok 20 INPUT "ENTER A NUMBER TO BE SQUARED";X

Ok 38 S=X*X

Ok 40 PRINT S

Ok 50 'RETURN FOR ANOTHER NUMBER

Ok 60 GOTO 20

Ok 70 END

y RUN

_

y

y

y

— RENUM The RENUM statement renumbers program lines.

Syntax:

RENUM [Knew first line>][,Kstarting line>][,Kincrement>]

y

U
Explanation:
If your program line numbers are irregular because you have
inserted new lines between existing lines, you can renumber
the entire program without having to change GOTO or othery

RENUM 50,10,28

_ address-dependent statements.

_ Used alone, RENUM numbers the first line of the program 10,

y
and increments succeeding lines by 10.

You can supply a new first line number. You can also supply a
starting line, which is the current line number where you want

» the renumbering to begin.

y

y

y

y
169

AA/.xxxxxxxxxxxxxxxx m
m

You can also specify an increment for line numbering. For example: _

RENUM 10,30,10

begins numbering at the old line 30, assigns it the line number 10,
and sets an increment of 10. The following line numbers are 20,
30, 40, and so on.

You can also specify an increment for line numbering. For example:

RENUM 10,30,20

begins numbering at the old line 30, assigns it the line number 10,
and sets an increment of 20. The following line numbers are 30,
50, 70, and so on.

ry

F>

You can use any of the RENUM options alone. However, if you
specify only an increment, leave commas as place markers to
show you are supplying an incremental value rather than a new
first number or new first line.'For example, RENUM ,,20.

RENUM adjusts all line number references in GOTO, GOSUB, IF. . .
THEN . . . ELSE, ON . . . GOTO, and ON . . . GOSUB statements to
reflect the new line numbers. If you have a nonexistent line in one
of these statements, it remains unchanged.

You cannot use RENUM to change the order of program lines.

RENUM creates a file called BASIC.WRK on the current disk.

Note: The disk must not be write protected. a

Example:

Ok 15 X=5

Ok 20 Z=3

Ok 25 Y=10

Ok 30 PRINT X + Y-Z

Ok RENUM

LIST

10 X=5

20 Z=3

30 Y=10

40 PRINT X + Y-Z

Ok

170

ry

ry

ry

ry

rs

~

r*

^

y

y

y

y

y

y

y

y

>y

y

y

_

XXXXXXXXXXXXXX/
REPLACE The REPLACE statement replaces an old version of a file with

a new version.

Syntax:

REPLACE [Kfilename>][,Kline number list>]

REPLACE MYPROG .BAS

REPLACE MYPROG .BAS,100-8OO

Explanation:

You use REPLACE with OLD or LOAD. After you have loaded an
old file and revised it, REPLACE sends the revised version onto
disk, replacing the old version.

If you specify a filename, REPLACE saves the source program in
Kfilename>, rather than the current program name. You can save
parts of a program by specifying a line number list.

REPLACE works exactly like SAVE, except that with REPLACE, the
name of the file you want to save can already belong to another
file. The example brings program COUNTPROG into working
storage, adds or replaces line 130, and stores the revised pro
gram in permanent storage on disk.

Example:

Ok OLD COUNTPROG

Ok 130 IF X=10 THEN END

Ok REPLACE

Ok

RESET The RESET statement places the contents of the Output Window
into the graphics buffer.

Syntax:

RESET

RESET

171

J-

Explanation:

When buffered graphics is enabled, RESET duplicates the current
contents of the Output Window in the graphics buffer. This allows a
graphics image to be stored onto disk, or restored to the output _
window after subsequent graphics operations. The OPENW state
ment restores the contents of the graphics buffer to the Output
Window. _.

Example: —

10 COLOR 1,1,1,1,l:FULLW2

28 CIRCLE 100,100,50

30 RESET: • PUTS IMAGE INTO BUFFER ~

40 CLEARW 2

58 PCIRCLE 100,108,50

68 FOR 1=1 TO 1O0O: NEXT —

70 OPENW 2

80 END

RESTORE The RESTORE statement rereads DATA statements.

Syntax:

RESTORE Kline descriptor>

RESTORE 20O

Explanation:

RESTORE lets you specify which DATA statement to use with
READ statements. RESTORE finds the first item in the first DATA
statement at or after the specified line and establishes it as the
starting point for the next READ statement. ~

You can specify any DATA statement in a program as the object of
a RESTORE statement by giving its line number. The line descrip
tor you give with RESTORE does not have to refer to DATA state
ment, or even exist. The next READ statement finds the next DATA
statement after or equal to the line descriptor specified.

n

172

~

y

y

y

xxxxxxxxxxxxxx//
Example:

Ok 10 READ X,Y,Z

Ok 20 RESTORE

Ok 30 AVERAGE=CX+Y+ZJ/3

Ok 40 DATA 23.4,89.2,77

Ok 50 PRINT AVERAGE

Ok 60 READ X,Y,Z

Ok 70 PRODUCT=X*Y*Z

Ok 80 PRINT PRODUCT

Ok 90 END

Ok RUN

63.2

160720

Ok

RESUME The RESUME statement continues execution after an error.

Syntax:

RESUME (0)
RESUME NEXT

RESUME Kline descriptor>

RESUME CO)

RESUME NEXT

RESUME 20O

Explanation:

After an error has been detected and trapped, RESUME restores
the program to normal execution. You write a RESUME statement
at the end of an error trapping routine, and only there. A RESUME
statement executed anywhere except in an active error trap
causes an untrappable error.

RESUME used by itself or followed by a zero sends program
control back to the statement where the error occurred.

RESUME NEXT sends program control to the statement following
the one that caused the error.

173

////////////////

RESUME Kline descriptor> sends program control to a given
line number.

n
Example:

Ok lOO ON ERROR GOTO 700

Ok 700 IF CERR=3O0) AND CERR=1501 THEN PRINT

"MINIMUM NUMBER OF DEPENDENTS IS 1" :RESUME 140

ry

Fy

RETURN The RETURN statement transfers control from a subroutine to the
statement following the last GOSUB.

r*.

Syntax:

RETURN

1
RETURN

Explanation:

RETURN transfers execution of a program to the first executable
statement in the main program following a subroutine call. The
subroutine call can be a GOSUB or ON . . . GOSUB statement.

Example: ry

Ok 10 GOSUB ALPHA

Ok 20 REM RETURN POINT OF SUBROUTINE

Ok 30 PRINT A -

Ok 40 GOTO 200

Ok lOO ALPHA :REM START OF SUBROUTINE

Ok 110 A=5*6

Ok 120 RETURN

Ok 200 END

Ok RUN -

30

Ok

ry

n

~

174

/////////////A
y

y

y

y

y

y

y

RIGHTS The RIGHTS function returns the rightmost characters of a string.

Syntax:
X$ = RIGHT$(<fargef string>, Knumber of characters>)

XS=RIGHTSCAS,5)

Explanation:

RIGHTS assigns the number of characters you specify on the right
of a target string to a new string variable. If the number of charac
ters you ask for is greater than or equal to the length of the string,
the entire string returns. If you ask for zero characters, a null
string returns.

Example 1:

Ok lO AS="Marketin9 Strategies"

Ok 20 BS="Re9ional Response"

Ok 30 CS="Test Results"

Ok 40 INPUT "CATALOG NUMBER";CATALOGS

Ok 50 IF RIGHTStCATALOGS,lJ="l" THEN PRINT "YOU HAVE

CHOSEN"

Ok 60 PRINT "TESTPRO CATALOG SERIES1"

Ok 70 PRINT "PLEASE CHOOSE FROM THE FOLLOWING

HEADINGS:"

Ok 80 PRINT AS

Ok 98 PRINT BS

Ok lOO PRINT CS

Ok RUN

CATALOG NUMBER? CASPAR BLEEBLEBOX CATALOG 201

YOU HAVE CHOSEN

TESTPRO CATALOG SERIES1.

PLEASE CHOOSE FROM THE FOLLOWING HEADINGS :

Marketing Strategies

Regional Response

Test Results

Ok

Example 2:

10 AS="5T BASIC"

20 BS=RIGHTSCAS,5) 30 PRINT BS

RUN

BASIC

Ok

175

YXAX J > A J / / / r / r A , S J

RND The RND function generates and returns a random number.

Syntax:

X= RND [(knumeric expression>)]

X=RND

X=RNDCY1

X=RND(0)

X=RNDt-YJ

Explanation: g
RND returns a uniformly distributed random number in the open
interval between zero and 1. Unless you write a RANDOMIZE
statement before the RND statement, the same sequence of
random numbers generates on every run.

RND acts differently depending upon whether the numeric expres
sion evaluates to a positive number, negative number, or zero.

RND (<positive expression>) returns the next number in the
current sequence.

RND (0) returns the last random number generated, without
affecting the current sequence.

RND (<negative expression>) reseeds the random number
generator with the negative number and'returns the first random
number in the new sequence.

The numeric expression is optional. If you do not give one, RND
acts as if you had given a positive expression as an argument.

Note: See RANDOMIZE for information about seed number.

Example:

Ok IB RANDOMIZE

Ok 28 X=RND

Ok 30 ROLLS="TAILS"

Ok 40 IF X> .5 THEN ROLLS="HEADS"

Ok 50 INPUT "HEADS OR TAILS";RS

Ok 60 IF RS=ROLLS THEN PRINT "YOU WIN" ELSE PRINT

"YOU LOSE"

Ok RUN

176

m

ry

rs

Fy

Fy

ry

ry

X X

RandoM nunber seed C-32768 to +32767)? 2

HEADS OR TAILS? TAILS

YOU WIN

OK

w RSET The RSET statement moves a string into a specified string variable
without reassigning the string variable.

y Syntax:

RSET < string variable > = < string expression >

RSET AS=BS

^ Explanation:

_ RSET is commonly used to move data to file buffers by resetting
them into variables dropped into file buffers by a previous FIELD

- statement.

If the string being moved is shorter than the destination, RSET
right justifies the string and pads the left with spaces. If the string
is longer than the destination, RSET ignores the extra characters.

y

y

You must RSET or LSET numbers before you can use them with
MKSS, MKIS, or MKD$.

Example:

Ok 10 OPEN "R",tt3,"TEST"

Ok 20 FIELD «3,20 AS AS,20 AS BS

Ok 30 RSET AS=XS

Ok 40 RSET BS=STRESSS

RUN The RUN command begins program execution.

Syntax:

RUN

RUN Kjine descriptor>
RUN Kfilename>

177

AW aW
aT /AA/A

RUN

RUN ,200

RUN MYPROG.BAS g

Explanation:

RUN executes a program currently in memory or in a disk file.
Program execution begins with the first line of the program unless
you specify otherwise. When the program to be run is in a disk
file, RUN clears any current program from memory before loading
the specified program.

Program output appears in the Output Window.

To stop program execution and enter the Break mode, type ^
[Control] [G] or click the Break option in the Run menu.

To continue program execution, type CONT or press [Return].

To exit the Break mode and discontinue program execution, type ^
STOP or END. To discontinue program execution and return to
ST BASIC, type [Control] [C].

n

SAVE The SAVE command saves program lines to disk.

Syntax:

SAVE [< filename >], [< line descriptor list>] m

SAVE MYFILE

SAVE MYFILE, 20-30 ^

SAVE MYFILE, 10,30,70,80

SAVE MYFILE, -30

Explanation:

SAVE puts a program, or specified lines from it, into a disk file.
SAVE assumes file type .BAS unless you specify otherwise. If you _
attempt to SAVE a program using a name already on the disk, an
error occurs. SAVE will not replace a disk file with a current
program.

Use REPLACE to save a program into an existing disk file.

178

y

m

y

XXXXXXXXXXXA
SGN The SGN function returns the sign of a number.

Syntax:

X= SGN(<numeric expression >)

X=SGNCY)

Explanation:

SGN returns 1 if the numeric expression is positive; -1 if the
expression is negative; and 0 if the expression evaluates to zero.

Example:

Ok 18 X=SGNC-3J

Ok 20 Y=SGNC0]

Ok 30 Z=SGN£2J

w Ok 40 PRINT X

y Ok 50 PRINT Y

Ok 68 PRINT Z

Ok RUN

-1

0

1

Ok

SIN The SIN function returns the sine of its argument expressed in radians.
-—-

Syntax:

X= SIN(< numeric expression >)

X=SINCYJ

y Explanation:

The SIN function assumes the expression is an angle in radians. To
convert degrees to radians, multiply by pi/180, where pi = 3.141593.

y SIN converts integers to real numbers and returns a real number.

y Example:

_ Ok lO PRINT SINC233

Ok RUN

u

y

-.84622

Ok

179

AAAAAAAAAAA//
SOUND The SOUND statement controls the 3 sound channels. ^

Syntax: a
SOUND knumeric expression>, knumeric expression>, —
< numeric expression >, Knumeric expression >, <
numeric expression >

SOUND VOICE, VOLUME, NOTE, OCTAVE, DURATION

Explanation:

SOUND makes musical notes.

—

VOICE is the number of the sound channel used (1-3).
0

VOLUME controls loudness (0 = OFF, 15 is loudest).

NOTE and OCTAVE control the pitch of a note. You select an —
octave number from 1 to 8 and a note number from 1 to 12. The
note numbers correspond to the note positions in a musical scale.
A 440 Hz A is note 10 in octave 4. _

DURATION is the time in 1/50 second counts that a note will be
held before the beginning of the next sound. The last sound state
ment for each voice should turn off the sound (e.g., SOUND
3,0,0,0,0). You can use the SOUND statement as a timing function
by setting volume to 0 and the duration to the delay you want.

Example:

10 SOUND 1,8,12,4,25

28 SOUND 1,8,9,4,25

38 SOUND 1,0,0,8,0 -

•

SPACES The SPACES function returns a string of spaces.

Syntax: a
X$ = SPACE$(< numeric expression >)

XS=SPACEStYJ 0

Explanation: ry

SPACES returns as many spaces as you specify in the numeric _
expression. The value of the expression must be from 0 to 255.

180

~

y

y

_

y

////////////////,
Note: If you want to generate a number of spaces purely for
printing, it is more efficient to use the SPC (X) function.

Example:

Ok 10 x=io

Ok 20 FOR V=l TO 5

Ok 38 PRINT SPACEStXJ;"l"

Ok 40 NEXT V

Ok 50 FOR Z=l TO 21

Ok 68 PRINT "-";

Ok 70 NEXT Z

Ok RUN

SPQ The SPC function outputs spaces to a PRINT statement.

Syntax:

PRINT SPC(<numeric expression>)

PRINT SPCtXJ

Explanation:

SPC prints the number of spaces you specify in the numeric
expression. The expression must evaluate to the range -32768
to +32767.

If the number of spaces you specify is greater than the declared
width of the printer, the value used is the numeric expression MOD
width.

For example, if the width is 72 and the numeric expression equals
U 100, SPC will insert 28 spaces.

y If the numeric expression is greater than 255, the number of
spaces inserted is the numeric expression MOD 255.

y

181

///A///////.
Note: Use SPC only with PRINT, LPRINT, and PRINT*. _

Example: —

Ok 10 PRINT "ALPHABET"

Ok 20 PRINT

Ok 30 PRINT "A"SPCC3J"a"SPCC7) ft

"B"SPCC3J"b"SPCC7J"C"SPCC3)"C"

8k RUN

ALPHABET —

A a B b C C

SQR The SQR function returns the square root of a number.

Syntax:

X = SQR(< numeric expression >)

X=SQRCY)

Explanation:

The number must not be negative. SQR returns a real number.

m

m

t

m

m

Example: -
Ok lO PRINT SQRC9) _

Ok RUN

3

Ok

STEP The STEP command executes a program line by line. ^

Syntax:

STEP

STEP K.line descriptor >
STEP Kfilename>

STEP

STEP,20O

STEP MYPROG. BAS

182

ry

~

////////////////
Explanation:

STEP runs a program one line at a time, printing each line along
with any output and waiting for a [Return] before proceeding to
the next line.

To exit from STEP, use the CONT command to begin normal
execution, or the END command to stop altogether.

Example:

Ok 10 X=9

y Ok 20 PRINT X
Ok 30 PRINT "HOW DO YOU DO?1

Ok 40 END

y Ok STEP,10
S10 X=9

BR [Return]

y S 20 PRINT X

BR [Return]

- S30 PRINT "HOW DO YOU DO?1

y BR [Return!

HOW DO YOU DO?

U S 40 END
y BR[Return]

OK

y

STOP Tne STOP statement stops program execution and transfers the
control of ST BASIC to the Command Window.

Syntax:

STOP

STOP

Explanation:

After a STOP, the program is at Break level. You can stop
a program anywhere. Unlike END, STOP leaves files open, enters
Break mode, and can be continued. It also prints the message
"STOP".

CONT or [Return] resumes program execution.

183

AAAAAAAAAAAAAAA/
Example: _

Ok 10 A=4:B=6:C=8

Ok 20 PRINT A,A*B

Ok 30 STOP ~

Ok 40 PRINT C*A

Ok 50 END

Ok RUN _

4 24

Stop at line 30

Br CONT

32

Ok -

Fy

m

STR$ Tne STR$ function returns a string containing the decimal
character representation of its argument.

Syntax:
XS = STRS(<numeric expression >) —

XS=STR$tYJ

Explanation:

The string returned contains the standard representation of the
expression. It contains the characters that would print if a PRINT
statement were executed.

For positive numbers, STRS adds a leading blank for the plus sign,
and STRS deletes any space that follows a number.

VAL is the complementary function to STRS.

See: OCTS, HEXS
ry

Example:

Ok 10 ZIPC0DE=91899

Ok 20 PRINT STRSCZIPCODEJ+'CCALIFORNIA)"

Ok RUN

91899 (CALIFORNIA}

Ok

184

////////////////
STRINGS Tne STRINGS function returns a string of a given length. The

characters are defined by the second argument.

Syntax:
X$ = STR\NG$(k numeric expression>, Knumeric or string
expression >)

XS=STRINGSCY,AS)

XS=STRINGStY,NJ

Explanation:

The first numeric expression is the length of the string that
STRINGS returns. It must be in the range 0 to 255.

You can use a numeric or string expression for the second
parameter. A numeric expression must be an ASCII code for
a character. A string character can be of any kind.

STRINGS returns a string of the specified length consisting of the
character for the specified ASCII code or the first character of the
string expression.

STRINGS produces less memory fragmentation and works signifi
cantly faster than concatenation. When building a string containing
a number of different characters, it is more efficient to use
STRINGS or SPACES to create a string of the required length and
then use MIDS to move individual characters into the string than
to concatenate strings.

Example:

Ok 10 ZS=STRINGSC20,"*"J
Ok 20 PRINT ZS

Ok RUN

Ok

185
•^••:.N'f!.::|:::;:j::.:::'

AAAAAAAAAAAAAAA/ :
SWAP Tne SWAP statement trades the values of two variables. m

Syntax: —

SWAP < first variable >, < second variable > -

SWAP X,Y g|

Explanation:

You can swap any type of variable, but the variables must be of
the same type. You can swap array variables, but not arrays
themselves:

r\

swap axc3j,bxc7,sj is okay
swap ax(),bxci doesn't work •

Example:

Ok IB XS="TOM BRENTMEYER"

Ok 20 YS=' SUSAN STEIGER"

Ok 30 0$=' FORMER"

Ok 40 C$="CURRENT"

Ok 50 MS= "MARKETING MANAGER: "

Ok 60 print os;m$;x$

Ok 78 SWAP XS,YS

Ok 88 SWAP OS,CS

OK 90 PRINT OS;MS;XS

Ok RUN ry

FORMER MARKETING MANAGER : TOM BRENTMEYER

CURRENT MARKETING MANAGER: SUSAN STEIGER

Ok ,-v

SYSTAB Tne SYSTAB is the beginning memory location of a table of system
parameters and pointers.

r\

Syntax:
X= PEEK(SYSTAB + OFFSET)

X=PEEKCSYSTAB+OFFSET)

Explanation:
With the exception of SYSTAB+ 2, which is a READ/WRITE loca
tion, SYSTAB is a READ/ONLY location. Except for SYSTAB+ 20,

186

/A//////////////
the graphics buffer pointer, SYSTAB contains 2-byte values.

w SYSTAB + 20 contains a 4-byfe long integer address.

The graphics buffer is 32768 bytes long. SYSTAB is organized
y as follows:

~ Offset Function

y 0 Graphics Resolution (Planes) 1 = HI, 2 = MED, 4 = LO
2 Editor Ghost Line Style.

~ *4 EDIT AES Handle

y *6 LIST AES Handle
*8 OUTPUT AES Handle

*10 COMMAND AES Handle

12 EDIT Open Flag (0 = CLOSED, 1 = OPEN)
14 LIST Open Flag (0 = CLOSED, 1 = OPEN)
16 OUTPUT Open Flag (0 = CLOSED, 1 = OPEN)
18 COMMAND Open Flag (0 = CLOSED, 1 = OPEN)
20 Graphics Buffer (4 byte pointer to 32768 byte buffer

when BUFFERED GRAPHICS enabled)
**24 GEMFLAG (0 = NORMAL, 1 = OFF)

y Bit Description

0 Thickened

1 Intensity
— 2 Skewed

3 Underlined

4 Outline

~ 5 Shadow

• * Use of these handles requires knowledge of the TOS Operating
g System.

y ** GEMFLAG can be used to turn ST BASIC'S interaction with
GEM off to increase processing speed. When ST BASIC is off, no
ST BASIC functions involving the screen, mouse, or keyboard will

_ work. Disk I/O and processing functions are available. Your pro
gram must turn the interaction on again before it can take any

" form of user input.

M

Example:

POKE SYSTAB+24,1: •** TURNS OFF GEM

POKE SYSTAB+24,0 : •»* TURNS ON GEM

187

AAAAAAAAAAAAAAA
SYSTEM Tne SYSTEM command leaves ST BASIC and returns to GEM.

Syntax:

SYSTEM m

SYSTEM

Explanation:

SYSTEM closes all files and returns you to GEM command level.
Any program in memory is lost. —

Same as: QUIT —

Example: m
Ok SYSTEM ~

r^

TAB The TAB function moves the cursor to a specified tab position.

Syntax:

PR INT TAB(< tab position >)

PRINT TABCYJ

Explanation:

TAB is used with PRINT, LPRINT, and PRINT*.

The tab position must evaluate to the range -32768 to + 32767. If
the current print position is already beyond the tab position you
specify, TAB goes to the next line and stops at the tab position you
specify. The leftmost position is space 1; the rightmost is defined
by a WIDTH statement. If the position evaluates to greater than
255, the position is computed Mod 256. If the position is greater
than or equal to the width, it is computed Mod (width).

188

XXXXX X X X XXX X X X X X
yj

Example:
Ok 10 PRINT "1985 QUARTERLY EARNINGS"

y Ok 28 PRINT

Ok 30 PRINT TABflO}"WINTER"

Ok 40 PRINT TABt70}"TOO FAR"

y Ok 50 PRINT TABC1O0} "SUMMER"

Ok 60 END

w Ok RUN

1985 QUARTERLY EARNINGS

WINTER

~ TOO FAR

SUMMER

y

y

TAN The TAN function returns the tangent of a number.

y Syntax:

X= TAN (< angle in radians >)

y X=TANCY)

-

y

_

y

y

y

_

All ST BASIC trigonometric functions require that you specify
angles in radians.

Explanation:

The TAN function operates on radian values and returns a real
number. To convert degrees to radians, multiply them by pi/180,
where pi = 3.141593.

Example:

Ok 18 RADIAN!=34

Ok 20 TANGENT!=TAN(RADIAN!}

Ok 6 PRINT TANGENT!

RUN

-.6235

Ok

189

///// '//'/ '/s X
TRACE The TRACE command follows program execution line by line and ^

selectively prints the entire line.

Syntax:

TRACE [Kline descriptor list>]
r~\

TRACE

TRACE 20,40

TRACE 20-40 ^

TRACE -40

Explanation:
ry

You can use the TRACE command during debugging to print
program lines as they run.

TRACE prints each line before executing it.
r\

TRACE 20, 40 prints lines 20'and 40 each time they execute.
F\

TRACE 20-40 prints lines 20 through 40 each time they execute.
ry

UNTRACE cancels TRACE. ^

See: TRON, FOLLOW

Example:

Ok 10 FOR X=l TO 2 —

Ok 20 N=N + 1

Ok 30 B = B + 1

Ok 40 PRINT N ~

Ok 50 PRINT B

Ok 60 NEXT X

Ok RUN m
1

i m

2
2

Ok TRACE tt

Ok RUN

T 10 FOR X=l TO 2

T 20 N=N + 1 ^

T 30 B=B + 1

T 40 PRINT N

1 ^

190

^

_

_

y

_

////////A.
T 50 PRINT B

1

T 60 NEXT X

T 20 N=N + 1

T 30 B=B+ 1

T 40 PRINT N

2

T 50 PRINT B

2

T 60 NEXT X

Ok UNTRACE

Ok

TROFF Tne TROFF command cancels the TRON command.

Syntax:

TROFF [Kline descriptor list>]

TROFF

TROFF 10,40

TROFF 10-4O

TROFF -40

Explanation:

TROFF cancels TRON either completely or for selected lines.

See: TRON

TRON The TR0N command selectively traces program execution line by
line and prints the line numbers.

Syntax:

TRON [Kline descriptor list>]

TRON

TRON 20,40

TRON 20-4O

TRON -40

191

A//A///AAAA//AA/ -
n

Explanation:

Use TRON during debugging to follow the course of the program
line by line.

TRON prints each line number of the program as it executes and
traces the values of variables. The line descriptor appears in
square brackets.

TROFF cancels TRON.

See: TRACE, FOLLOW

Example:

Ok 10 FOR X=l TO 3 ry
Ok 20 N=N + 1

Ok 30 B = B + 1

Ok 40 PRINT N ry

Ok 50 PRINT B

Ok 60 NEXT X

Ok RUN m
1

1

1
3

3

Ok TRON

Ok RUN £
[10]

[20]

[30] —
[40] i (Appears in Output Window)
[SO] l (Appears in Output Window)
[60]

[20]

[30] £

[40] 2 (Appears in Output Window)
[so] 2 (Appears in Output Window)
[60] —

[20]

C30]

192

^

~

—

XXXXXXXXXX/.
[40] 3 (Appears in Output Window)
[SO] 3 (Appears in Output Window)
[60]

Ok TROFF

Ok

UNBREAK The UNBREAK command selectively cancels a BREAK command.

Syntax:

UNBREAK [Kline, descriptor list>]

UNBREAK

UNBREAK 20,50

UNBREAK -50

UNBREAK 20-5O

Explanation:

UNBREAK cancels BREAK either completely or for selected lines.

See: BREAK

UNFOLLOW The UNFOLLOW command cancels the FOLLOW command.

Syntax:

UN FOLLOW [< variable >],[< variable >]

UNFOLLOW

UNFOLLOW X,Y

Explanation:

UNFOLLOW cancels FOLLOW either completely or for selected
variables.

See: FOLLOW

193

UNTRACE Tne UNTRACE command cancels the TRACE command.

Syntax: —
UNTRACE [Kline descriptor list>]

UNTRACE

UNTRACE 10,40,70

UNTRACE 10-40

UNTRACE -40 •

Explanation: £
UNTRACE cancels TRACE either completely or for selected lines.

See: TRACE

y^|_ The VAL function scans a string of characters and converts them _
to a real number.

ry

Syntax:

X= VAL(< digit string expression >)

X=VALCAS) „

Explanation: ^

VAL scans the string from left to right, skipping leading tabs,
spaces, and line feeds, until it reaches the end of the string or
finds a character that is not a digit. VAL scans strings in the same
way that the INPUT* statement reads into a numeric variable.

If the first character of the string is not a valid part of a number,
VAL returns a zero.

VAL is the complement to STRS.

Example:

Ok 10 READ IDS

Ok 20 IF VALCIDSX30O THEN 30

Ok 30 EXPIRATIONS="JAN 1, 1985" ~

Ok 40 IF VALCIDS)>300 THEN 50

Ok 50 EXPIRATIONS="JAN 1, 1990"

194

r\

Fy

~

_

y

y

xxxxxxxxxxxxxxxx
VARPTR The VARPTR function returns the address of a variable.

Syntax:

X = VARPTR(Kvariable>)
X= VARPTR(#</77e number>)

X=VARPTRCYJ

X=VARPTRCttl)

Explanation:

You can use VARPTR to find the address of a variable so that you
can pass it to an assembly language subroutine. The variable can
be of any type, including array, but you must have assigned it a
value before you can find its address with VARPTR. VARPTR
returns a value which is the absolute address of the first byte
of the named variable.

In the case of files, the file number is the number you assigned a
disk file when you opened it. VARPTR returns the starting address
of the file's input/output buffer.

Example:

Ok 50 X=VARPTRCMATERIALS)

VDISYS The VDISYS function allows the user to access the operating
system's VDI interface.

Syntax:

VD\SYS(K DummyArgument>)

VDISYStlJ

Explanation:

To access the VDI interface, POKE the CONTRL, INTIN, and PTSIN
arrays with the proper values before making the VDISYS call. Out
put from the VDI level can be accessed through the INTOUT and
PTSOUT arrays.

195

A' /' 4X A* jf

Example:

10 REM DRAW A CIRCLE AT 50,50 WITH RADIUS 25

20 COLOR 1,1,1,1,1 :FULLW2

30 POKE CONTRL,11

40 POKE CONTRL +2,3

50 POKE CONTRL+6,0

60 POKE CONTRL +10,4

70 POKE PTSIN,SO

80 POKE PTSIN +2,50

90 POKE PTSIN +8,25 —

lOO VDISYSC1J

m

WAIT The WAIT statement halts the program while waiting for an I/O
port to develop a bit pattern.

Syntax:

WAIT Kport number> ,kinteger expression>[,Kinteger
expression >]

WAIT 208,X,Y -

Explanation:

WAIT stops program execution until a given bit pattern develops
in a machine input port. The logical operator XOR tests the data
from the port to determine whether it corresponds to the optional
second integer expression. If you omit the optional expression, it
is assumed zero.

Fy

The AND operator then tests the data against the first integer
expression. If the result of the text is zero, execution loops back
and grabs the next data at the port. When the result is non-zero,
execution goes on to the next statement.

If WAIT does not finds a bit pattern that results in zero, it loops
infinitely, and you must reboot the machine.

•~~-

Example:

Ok lOO WAIT 5,&H2,&H3

Ok 110 PRINT "NUMBER FOUND"

196

~

ry

////////////////
WAVE The WAVE statement controls the waveforms used in SOUND

statements.

Syntax:

WAVE k numerical expression >, < numerical expression >,
k numerical expression >, < numerical expression >,
Knumerical expression >,

WAVE ENABLE, ENVELOPE, SHAPE, PERIOD, DELAY

Explanation:

ENABLE is the mixer register of the sound generator. A 0 on bits
0-2 enables voice 1-3. A 0 on bits 3-5 places the noise on voice
1-3. More than one voice can be selected at once.

ENVELOPE is the envelope generator register. A 1 on bits 0-2
enables the envelope for voice 1-3. More than one can be
enabled.

SHAPE is the envelope shape and cycle control register. Bits 0-3
are used as shown in the chart on the next page.

PERIOD sets the period of the envelope.

DELAY sets the time in 1/50 second increments before BASIC
resumes execution.

Example:

5 REM THANKS R.K.

10 FOR 1=1000 to 120O:WAVE 1,1/100,1000,1000,10:NEXT

197

////////A/

REGISTER $0D WAVEFORM CONTROL
•

Control Bits
~

B3 B2 B1 BO Selected Waveform Shape

C

A

L
m

D 0 T
r-\

E N A E
m

C T T R

1 I T N H ry

M

A

N

U

A

C

A

T
0

L
f\

L E K E D

V

t%

0

4

8

9

10

11

12

0

0

0

1

0

0

0

0

1

X

X

0

0

1

1

0

X

X

0

0

1

0

~-

S\ m

\i\r\r\r\NNN\i\ -

•

13 1 0 1 y
14 1 1 0 -

15 1 1 1 s\ m

0 -Off • I M Envelope Period
Fy

1 -On

X - Not Us ed
(duration of one cycle) m

m

ry

%

•

r\

'->

198

^

—

AAAAAA//A/.
WEND The WEND statement signals the end of a WHILE/WEND loop.

Syntax:

WEND

WEND

Explanation:

WEND is used solely with WHILE to direct program flow back to
the WHILE statement. A nested WEND associates with the nearest
WHILE.

See: WHILE

Example:

Ok 10 X=8

Ok 20 WHILE X

Ok 30 PRINT "S"J

Ok 40 X=X-1

U Ok 50 WEND
Ok 60 END

Ok RUN

\j ssssssss

Ok

WHILE The WHILE statement states a condition that controls a
WHILE/WEND loop.

Syntax:

WHILE <logical expression>

WHILE A<B

Explanation:

WHILE initiates a WHILE/WEND loop that continues running until
the logical expression is false (i.e., 0). The statements between
WHILE and WEND execute while the conditional expression in
the WHILE statement is true.

199

The WEND statement at the end of the loop sends program flow
back to the WHILE condition. The condition at the WHILE loop is
evaluated and the loop repeats while the condition is true (not
zero). When the condition is false, execution continues at the
statement following WEND.

n

m

m

You can nest WHILE/WEND loops. Each WEND matches the most
recent WHILE. A WHILE without a WEND or a WEND without a
WHILE causes an error. m

See: WEND

Example:

Ok lO M=10

Ok 20 P=5 _

Ok 30 WHILE M>P

Ok 40 PRINT "COUNT LOOP"

Ok 50 M=M-1

Ok 60 WEND

Ok 70 END n

Ok RUN

COUNT LOOP

COUNT LOOP

COUNT LOOP

COUNT LOOP

COUNT LOOP ry

Ok

fy

ry

ry

WIDTH The WIDTH statement sets the line width of the screen or printer.

Syntax:

WIDTH [LPRINT] <integer expression>
ry

WIDTH 72

WIDTH LPRINT 72

Explanation:

The default width of the screen and printer is 72 characters. You
can change it with WIDTH. ry

F+y

F>

200

^

—

y

////////A.
The integer expression is the line width in characters; it must be in
the range 14 to 255. The LPRINT option sets the line width for the
printer. Otherwise, the line width is set for the screen.

When printing, ST BASIC prints a carriage return before any char
acter that would otherwise print past the line width limit. To pre
vent unwanted carriage returns in your output, set the line width to
255. ST BASIC then assumes the device has infinite width and

does not insert carriage returns.

See: POS, LPOS

Example;

Ok lO WIDTH 33

Ok 20 FOR 1=1 TO SO

Ok 30 PRINT "-";

Ok 40 NEXT

Ok RUN

Ok

WRITE The WRITE statement outputs data to the terminal.

Syntax:

WRITE [<expression>], <expression>

WRITE X,Y,AS

Explanation:

Like PRINT, WRITE sends output to the screen, but WRITE prints
commas between the items and quotation marks around strings.

Each item is separated from the next on the terminal with
a comma.

String values print with quotation marks, and after the last item,
the cursor spaces down to the start of the next line.

WRITE sends a blank line to the terminal if you do not specify a
list of expressions to output.

See: PRINT, PRINT*

201

Example 1: ~

Ok 180 XS="HAPPY MOTORING"

OK 110 Z=O10583

Ok 120 WRITE Z ft
Ok 130 WRITE

Ok 140 WRITE XS

Ok RUN -

10583

ry

"HAPPY MOTORING1

Ok

WRITE# The WRITE# statement outputs data to a sequential file.

Syntax:

WRITE* [<expression>], <expression>

WRITE ttl,X,Y,AS

Explanation:
WRITE* is similar to WRITE but sends the data to a sequential file,
not the terminal. The file number is the number you opened the
file with. You must have opened the file in 0 mode. ^

WRITE* is preferable to PRINT* when you plan to read the data
back with a series of INPUT* statements. The output from WRITE*
is in the form required to read back the data accurately.

The rules for forming the expression are the same as those for
PRINT*.

See: PRINT, PRINT*

Example:

Ok 10 KWH=34.275

Ok 20 KS="AVERAGE KILOWATT HOURS PER WEEK" g
OK 30 WRITE tt2,KS,KWH

202

y

y

y

Close the file, reopen for input, then read the file:

y Ok 40 INPUT«2,KS,KWH

— "AVERAGE KILWATT HOURS PER WEEK" to KS and 34 .275 to BS

y

y

y

y

xxxxxxxxxxx
This writes to disk as:

"AVERAGE KILOWATT HOURS PER WEEK" ,34 .275

203

/////////A////A
r\

-

a

-

m

•

1

m

m

m

~

•

-

m

y

y

y

y

XXXXXXXXXXX//X//

APPENDIX D
ERROR MESSAGES

Number Message
2 Something is wrong.
3 RETURN statement needs matching GOSUB.
4 READ statement ran out of data.

5 Function call not allowed.

6 Number too large.
7 Not enough memory.
8 A statement or a command refers to a nonexistent

line.

9 Subscript refers to element outside the array.
10 You defined an array more than once.
11 You cannot divide by zero.
12 Statement is illegal in direct mode.
13 Types of values do not match,

y 14 Undefined error.
15 Strings cannot be over 255 characters long.

~ 16 Expression is too long or too complex.
y 17 CONT works only in Break mode.

18 Function needs prior definition with DEF FN.
w 19 Undefined error.

20 RESUME statement found before error routine

entered.

~ 21 Undefined error.

22 Expression has operator with no following operand.
23 Program line too long.

U 24-29 Undefined error.
30 Window number invalid.

31 Argument out of range.
^ 32 Command cannot be executed from the editor.

33 Line is too complex.
u 34-49 Undefined error.
_ 50 FIELD statement caused overflow.

51 Device number invalid.

w 52 File number or filename invalid.

53 File not found on disk drive specified.
54 File mode is not valid.

- 55 You cannot OPEN or KILL a file already open.
56 Undefined error.
57 Disk input/output error.

~ 58 File exists.

:....iBHHr
205

X
JF 4

jf aT X S S aT aT

59-60 Undefined error.

61 Disk is full.
62 You have reached end-of-file. ^
63 The record number in PUT or GET is more than

32767 or zero.

64 Invalid filename. _

65 Invalid character character in program file.
66 Program file has statement with no line number.

67-98 Undefined error.
99 —Break—.

100 Undefined error. —

101 Program has too many lines.
102 ON statement is out of range.
103 Invalid line number. ~
104 A variable is required.
105 Undefined error.
106 Line number does not exist. —

107 Number too large for an integer.
108 Input data is not valid, restart input from first item.
109 Stop.
110 You have nested subroutine calls too deep.
111 invalid BLOAD file.

112-201 Undefined error. _

202 Command not allowed here.
203 Line number is required.
204 FOR statement needs a NEXT or WHILE statement

needs a WEND.

205 NEXT statement needs a FOR or WEND statement ~
needs a WHILE.

206 A comma is expected.
207 A parenthesis is expected.
208 Option Base must be 0 or 1.
209 Statement end is expected.
210 Too many arguments in your list. —
211 Not used.
212 Cannot redefine variable(s).
213 Function defined more than once. _

214 You are trying to jump into a loop.
215-220 Undefined error.

221 System error #X, please restart.
222 Program not run.
223 Too many FOR loops. ry

206
~

~

xxxxxxxxxxxxxxxx
APPENDIX E

; ST ASCII CHARACTER SET
U The following tables show the complete character sets available

on the ST Computer. To print any of these characters from ST
BASIC, input and run the following program:

U
5 • THIS PROGRAM PRINTS A LIST OF ALL ST ASCII

~ CHARACTERS

6 ' AND THEIR CODES.

10 FULLW 2: CLEARW 2

U 20 GOTOXY 1,2:?"LIST OF ST ASCII
CHARACTERS":GOTOXY 0,4

30 P=0:l=O

y 40 FOR C=l TO 255

58 IF P>4 THEN P=0:1=1+ 1:?

60 IF 1=18 THEN GOTOXY 1,14: INPUT "PRESS

\J [Return] TO CONTINUE. ..",AS
70 IF 1=18 THEN 1=0 :GOTOXY 0,4

~ 88 IF C=18 THEN ? "10=CReturn3"; :GOTO 12©
U 98 IF C=7 THEN ? "7=CBell3"; :GOTO 120

100 IF C=251 THEN GOTOXY 0,14

w 118 ?CJ"= "JCHRSCCJ;" ";
\J 120 P=P+1

130 NEXT C

- 140 GOTOXY 1,16: INPUT "PRESS [Return] TO
EXIT...",AS

150 END

There are two character tables. The first is set up for 8 x 8
characters; the second for 8x16 characters. The different
character set sizes are used with different screen resolutions.

207

AAA/, //,

decimal

value ii 0 16 32 48 64 80 96 112 128 144 160 176 192 2Q8 224 240

n

hexu
decimal

value

n

0 1 A-1 3 4 5 6 7 8 g fl B c D E F

1

2

1

2 1
1111111

• 1
n

-M-B-
• 1

3

4

3

4 % 1S 11111111 111
5 5 H ft St if jf Hi
6

7

6

7
11 I1 :iiii 1

8

g

8

g m
inn

If | 1 If
10 R

i i %m i i

XHBtX

Tl 111 r

MBit!0l B 11 i §1
ii B JftH • B
12 C

BH| BttS t nt -ffli+nifflit 1 P13

14

D

E

lTT^BE
rrtTTTTTSlil IPTTTTTTT H ffl-rrrl nffllK

^^rrFF

fWtt
ri t i t i rr

Ira fft
15 F

rTTTTTTT mmmtttttt Wm

208

~

0
5

oC
M

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

AAAAAAAAAA/XXXaX

210

ry

F*

i

y

y

AAAAAAAAAAA/.
APPENDIX F
ASSEMBLY LANGUAGE MODULES

The CALL statement in ST BASIC allows the use of assembly lan
guage modules. To use a module, you must load it into memory with
a BLOAD statement, assign its starting address to a variable, and
CALL it from ST BASIC (passing any necessary parameters to it):

Parameters are passed from ST BASIC to assembler programs in
the following manner. The machine language module will find two
parameters on the user stack (A7). The first is a 2-byte integer
specifying/the number of parameters being passed. (In the exam
ple below, it is 3.) The second is a 4-byte pointer to an array that
contains the parameters. Each parameter in the array will occupy
8 bytes, regardless of its type. In the case of a string variable, the
8-byte value is a pointer to the string.

Before returning to ST BASIC, the assembler program can put any
parameters it wants to pass to ST BASIC into a given memory
location. Later, the ST BASIC program can PEEK at these
parameters.

Example:

5O0 DIM ASC8) :IK=70 :X=22

510 CHART=18566: •START ADDRESS OF THE

ASSEMBLER LANGUAGE CODE

530 CALL CHARTCIX, AS, XJ

211

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

I
(
(
(
(

(

:

y

U

//AAAAAAAAAAAAAA
APPENDIX G
DERIVED FUNCTIONS

Derived Functions

Secant

Cosecant

Inverse Sine

Inverse Cosine

Inverse Secant

Inverse Cosecant

Derived Functions in Terms of ATARI Functions

DEF FNSEC(X)=1/COS(X)

DEF FNCSC(X) = 1/SIN(X)

DEF FNARCSIN(X) = ATN(X/SQR(-X*X+1))

DEF FNARCCOS(X) = -ATN(X/SQR(-X*X + 1)+
CONSTANT

DEF FNARSEC(X) = ATN(SQR(X*X-1)) +
(SGN(X-1)*CONSTANT

DEF FNARCCSC(X) = ATN(1 /SQR(X*X-1)) +
(SGN(X-1)*CONSTANT

Inverse Cotangent DEF FNARCCOT(X) = ATN(X) + CONSTANT

Hyperbolic Sine DEF FNSINH(X) = (EXP(X)-EXP(X))/2

Hyperbolic Cosine DEF FNCOSH(X) = (EXP(X) + EXP(-X)/2

Hyperbolic Tangent DEF FNTANH(X) = -EXP(-X)/(EXP(X) +
EXP(-X))*2 + 1

Hyperbolic Secant DEF FNSECH(X) = 2/(EXP(X) + EXP(-X))

DEF FNCSCH(X) = 2/(EXP(X)-EXP(-X))Hyperbolic
Cosecant

Hyperbolic
Cotangent

DEF FNCOTH(X) = EXP(-X)/(EXP(X)-
EXP(-X))*2 + 1

Inverse Hyperbolic DEF FNARCSINH(X) = LOG(X + SQR(X*X +1))
Sine

Inverse Hyperbolic DEF FNARCCOSH(X) + LOG(X + SQR(X*X-1))
Cosine

Inverse Hyperbolic DEF FNARCTANH(X) = LOG((1 +X)/(1-X))/2
Tangent

213

AAAAAAAAAAAAAAA/:
Inverse Hyperbolic
Secant

Inverse Hyperbolic
Cosecant

Inverse Hyperbolic
Contangent

DEF FNARCSECH(X) = LOG
((SQR(-X*X+1) + 1)/X)

DEF FNARCCSCH(X) = LOG
((SGN(X)*SQR(X*X + 1) + 1)/X)

DEF FNARCCOTH(X) = LOG((X + 1)/(X-1))/2

Note: In this chart, the variable X in parentheses represents the
value or expression to be evaluated by the derived function. Any
variable name is permissible as long as it represents the number
or expression to be evaluated.

214

m

•

m

•

F*

F»

xxxxxxxxxxxxxxxx

APPENDIX H
SAMPLE PROGRAMS
BOXES

An interesting example of the RND statement using color graphics.
Run this program in low-resolution color mode.

10 • FILL BOXES SYMMETRICALLY

20 randoMize O : c=0

30 colorl,0,l,l,l:fullw2: clearw 2

40 for x=18 to 284 step 19

58 linef x,0,x,166

60 next x

70 for y=13 to 153 step 14

80 1inef 0,y,303,y

90 next y

lOO c=c + l: if c=16 then c=l

110 color l,c,l

120 col=int(rnd*16)*19+9:row=intlrnd*12}*14+7

130 fill col,row,1

140 if col>l51 then cenc=col-151:f ill

col-Ccenc*2J,row,l

150 if col<152 then colh=302-col:fill colh,row,l

160 if row>82 then rowh=row-C Crow-82J*2J :f i 11

col,rowh,l

170 if row<83 then rowh=164-row: fill col ,rowh,l

ISO if col>l51 then fill col-Ccenc*2J,rowh,l else

fill colh,rowh,l

190 goto lOO

215

CIRCLE OF PATTERNS

This program divides a circle into segments and then 1
segments with patterns. To vary the program, change

120 pellipse x,y,x,y,b,b+100

10 • CIRCLE WITH 36 PATTERNED SEGMENTS

20 color 1,0,1,1,1: fullw 2: clearw 2

30 if peekCsystab)=l then 60

40 if peek(systabl=2 then 70

50 goto so

60 x=306:y=i72:s=i7O:goto 90

70 x=304:y=83:s=182:goto 90

88 x=151:y=83:s=91

90 a=24:i=2:b=0

lOO for p=l to a

110 color 1,1,1,p, i

120 pcircle x,y,s,b,b+lOO

130 b=b+100

140 next P

150 if i=3 then end

160 i=3:a=12:goto lOO

216

lis the

ine 120 to:

n

pi

-

H

m

Ml

n

-

ry

X X X X X
y

U GRID OF PATTERNS
-~ This program selects the screen resolution automatically, then
\j displays 36 fill patterns.

~ 10 ' DISPLAY GRID WITH 36 FILL PATTERNS

20 colorl,0,i,i,i:fullw2:clearw2
30 if peek(systab)=l then 60

y 40 if peekCsystab)=2 then 70

so goto 80

60 x=102:y=56:a=28:b=308:c=56:d=51:e=56l:
\J f=102:goto90

70 x=l02:w=28:a=i4:b=l54:c=28:d=51:e=561:
• f=l82:goto 90

g 80 x=51:y=28:a=l4:b=154:c=28:d=25:e=280:f=51
90 for x=f to e-d step f

~ lOO linef x,0,x,345
HO next x

120 for y=c to b-a step c

- 130 linef 0,y,615,y

140 next y

ISO i=2:p=l

WJ 10 for y=a to b step c
170 for x=d to e step f

ISO color 1,1,1,p,i :fin x,y,l
y 190 p=p+i:if p=25 then p=l:i=i+i

200 if i=4 then end

210 next x,y

y

217

y

xxxxx
LOW RESOLUTION DEMO

An interesting demonstration of low-resolution shapes and colors.
--

10 color 1,0,1,1,1:fullw 2:clearw2

20 PIE: c=l

30 for b=0 to 3360 step 240

40 colorl,c,l

50 pcircle 151,83,91,b,b+248
60 C=C+1 r^
70 next b

80 gosub DELAY

98 OUAL: C=l

lOO for b=0 to 3360 step 240

110 color l,c,l

120 pell ipse 151,83,151,83,b,b+240

130 C=C+1

140 next b ~

150 gosub DELAY

160 FILLPTNS: c=l:a=24:i=2

170 for p=l to a ry

188 clearw2

190 for x=61 to 244 step 61

200 linefx,0,x,166 ry

210 next x

220 for y=55 to 11© step 55

230 1inef O,y,303,y ^

240 next y

250 y=2

260 for x=30 to 270 step 66 ^
270 color l,C,l,p,i

280 fill X,y,l fl

290 c=c + l: if c=16 then c=l

300 next x

310 y=y+55: if y=l67 then 330

320 goto 260

330 next P

340 if i=3 then 360 g
350 a=l2:i=3:goto 170

360 gosub DELAY

370 COLORFULCIRCLE: C=l:r=91

380 for b=0 to 3600 step 200

390 color l,c,l

400 pcircle 151,83,r,b,b+200

~

~

-

~

-

~

r\

218

xxxxxxxxxxxxxxxx
410 c=c+l: if c=l6 then c=l

420 next b

430 r=r-l: if r=0 then 450

440 goto 380

458 gosub DELAY

460 COLORFULELLIPSE:C=l:X=151:y=83

478 for b=0 to 3600 step 240

480 color l,c,l

490 pellipsel51,83,x,y,b,b+240

5O0 c=c+l: if c=16 then c=l

510 next b

520 x=x-2:y=y-2: if y=3 then 540

530 goto 470

540 gosub DELAY

550 end

560 DELAY: for z=l to 3000 :next

570 color 1,0,1,1,1:clearw2

588 return

219
,."r; -•.'•..••••

/////////////A. :
MEDIUM RESOLUTION DEMO

This program demonstrates the medium-resolution color palette of
your ST Computer.

M

lO color 1,0,1,1,1: fullw 2: clearw 2

20 PIE: c=l

30 for b=0 to 3360 step 240

40 color l,c,l

50 pcircle 304,83,182,b,b+240

68 c = c + l: if c=4 then c=l

70 next b

80 gosub DELAY a

90 OUAL: C = l

lOO for b=0 to 3360 step 240

110 colorl,c,l ,-,

120 pellipse 3O4,83,3O4,83,b,b+240

130 c=c + l: if c=4 then c=l

140 next b ^
150 gosub DELAY

160 FILLPTNS: c=l:a=24:i=2

170 for p=l to a ^

180 clearw2

190 for x=203 to 609 step 203

200 color l,c,l,p, i

210 linef x,0,x, 170

220 fill X-2,2 ~

230 c=c + l: if c=4 then c=l

240 next x,p

250 if i=3 then 270 ^
260 a=l2:i=3:goto 170

270 gosub DELAY

280 end _

290 DELAY: for z=l to 3O00: next

300 color 1,0,1,1,1: clearw 2

310 return _

HIGH RESOLUTION DEMO

Show off your high-resolution monochrome monitor with this
program! ry

10 f ul lw 2: clearw 2 ~

20 SQUARES: a=2:b=3:L=61:w=56

38 x=a:y=b

220

^

AAAA/AAA////////
40 linefx,y,x+L,y

50 1inefx+L,y,x+L,y+w

60 1inef x+L,y+w,x,y+w

70 linef x,y+w,x,y

80 x=x+61

90 if x>60O then x=a :y=y+56

100 if y>320 then 120

110 goto 40

120 a=a+2:b=b+2:L=L-4:w=w-4

130 if w<0 then 150

140 goto 30

ISO gosub DELAY

160 LINES: x=0:y=o

170 While x<614

180 linef 307,172,x,y

190 X=X+5

200 wend

210 whiley<344

220 linef 307,172,x,y

23© y=y+3

240 wend

250 While x>0

260 linef 307,172,x,y

270 X=x-5

280 wend

290 while y>0

300 linef 307,172,x,y

310 y=y-3

320 wend

330 gosub DELAY

340 DESIGN: xl=l:x2=614:yl=l:y2=343

350 linef xl,yl,x2,yl

360 linefx2,yl,x2,y2

370 linef x2,y2,xl,y2

380 linefxl,y2,xl,yl

390 xl=xl+2:x2=x2-2:yl=yl+2:y2=y2-2

400 if y2>-22 then 350

410 gosub DELAY

420 end

430 DELAY: for z=l to 5000: next

440 clearw 2 :return

221

3 X X jXX X j-
r////////////

TRIGONOMETRY

Use this program to graph any trigonometric function.

10

20

30

40

50

60

70

80

90

100

110

120

130

140

ISO

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

366

370

380

222

1 TRIG GRAPHS

• BY ROB COLLIER

pi=3.1415926

fullw 2: color 1,0,1: clearw 2

SCREEN:

if peekCsystab)=4 then goto LOW

if peekCsystab)=2 then goto MEDIUM

if peekf systabJ=l then goto HIGH

INIT: t=0:L=O

lng=r/4:inc=pi/lng:off=b/4

FUNCTION: ualue=-2*pi

clearw 2

print "choose a function:":print

print "U sine"

print "2J cosine"

print "3J tangent"

print "4J cosecant"

print "51 secant"

print "6J cotangent"

print: input choice

if choice>0 and choice<7 then goto GRAPH

?"pick one of these numbers, please. "

goto FUNCTION

PLOT:

value=-2*pi

x=L:xl=L:yl=b/2

on choice gosub

SINE,COSINE,TANGENT,COSECANT,SECANT,COTANGENT

y=off*y:y=b/2-y

if y<t or y>b goto Skip

if x<l or x>r goto SkIP

linef xl,yl,x,y

SkIP: xl=x

yl=y:x=x+l

ualue=ualue+inc

if ualue>2*pi then goto DONE

goto 270

DONE: input waitS

9oto 120

f\

r-y

~

m

m

m

fy

ry

m

ry

n

ry

ry

ry

y

y

_

yj

y

JF X X

390 GRAPH: color i,bg,gr: clearw 2

400 linefL,b/2,r,b/2

410 linef r/2,t,r/2,b

420 color l,bg,In

430 goto PLOT

440 SINE: y=sin(value):return

450 COSINE: y=costvalue):return

460 TANGENT: y=tan(value):return

470 COSECANT: hold=sin(value)

488 if hold=0 then return

490 y=l/hold:return

500 SECANT: hold=cosCvalue)

510 \f hold=o then return

520 y=l/hold:return

530 COTANGENT:hold=tanCvalue)

540 if hold=0 then return

550 y=l/hold:return

560 LOW: r=303:b=167

576 9r=2:ln=14:bg=4

580 goto INIT

590 MEDIUM: r=608:b=167

600 gr=l:ln=2:bg=3

610 goto INIT

620 HIGH: r=615:b=343

630 gr=l:ln=l:bg=0

640 goto INIT

223

///

224

0\

ft

EFFECTIVE INTEREST RATE *

Use this program to analyze finance packages. —

lO 'Effective interest rate program by Richard

Lauck ^

20 'The program uses a form of Newton •s method for

estimating roots.

30 •In effect the program uses calculas within

the epsilon, "E" defined at line 1O0 .

40 'The formulas consider each payment to be made

at the end of a period.

50 clearw 2: fullw 2:?

60 ? "FINAL LUMP SUM PAYMENT = " } : INPUT R

70 ? "MONTHLY PAYMENT = "J :INPUT A

80 ? "COST IF BOUGHT NOW =",:: INPUT C

98 ? "NUMBER OF PAYMENTS = " J :INPUT N —

lOO Z=l2:I=0.01:E=0.Ol:k=0

110 ?: PRINT " THE EFFECTIVE INTEREST RATE WITH: "

120 PRINT " "

130 PRINT "A FINAL LUMP SUM PAYMENT OF S" ;R

140 PRINT "A MONTHLY PAYMENT OF S" ;A

150 PRINT "AND PAYMENTS NUMBERING - ";N

160 GOSUB 250

170 F=F+5.OE-03:F=10O*F:F=INTCF):F=F/100

188 F1=F1+5.0E-03:F1=10O*F1:F1=INTCF1):

F1=F1/1O0

190 I=Il:k=k+l Q
200 IF ABSCF)-E>0 THEN 166

210 PRINT " "

220 X=Z*I: PRINT "THE EFFECTIVE INTEREST RATE IS

";100*XJ" X"

230 PRINT " "

240 END m
250 T=C1+I)aN

260 F=C-R/T-A«tl-l/T)/I (
270 T2=T*C1+I)

280 F1=R*N/T2 + A*C1-1/T-I»N/'T2)/I/I

290 I1=I-F/F1 |B

3O0 RETURN

Fy

r>

ry

SJ

XXXj

NUMBER GAME

This program is a self-prompting number game. Enter a number,
then the computer chooses a number between your number and
zero. You then have the chance to guess the computer's number.

10 ' A make it easy or hard on yourself game, by

Rich Lauck.

20 fullw 2: clearw 2

30 gotoxy O,0

40 ?" Let's play GUESS MY NUMBER. "

50 ? " You enter a number and press "

60 ? " Return. Then I'll pick a number"

70 ?" between your number and ";

88 ?"zero."

90 ? " Go ahead, enter a number "

lOO INPUT " and press Return. ",TOP

110 ? :? "And now try to, GUESS MY NUMBER "

120 RANDOMIZE 0

130 ANSWER =INTCRND»CTOP))

140 ?:? " You guess and I" 11 give hints. " :goto 188

ISO ?: input " Y to play again, any other to quit • ",

againS:?

160 if again$="Y" or againS="y" then 90

170 end

180 input guess

198 if guess < answer then ?"To low try

higher.":goto 180

200 if guess > answer then ?"To high try

lower.":goto 180

210 ? "You got my number. " :goto ISO

225

yd

BOX DEMO

This low-resolution color program uses the AES and VDI to draw
multi-colored boxes on a screen Ideation of your choice.

AES (Applications Environment Services) is the part of GEM that
allows for drop-down menus, multiple windows, and Dialog Boxes.
VDI (Virtual Device Interface) is the part of GEM that contains
graphics and text routines.

fy

Follow these steps to use the program:

1. RUN the program. ry

2. With the mouse, point to the location on the screen where you
want to draw the box. _

3. Press the right mouse button to draw the box. —

4. Press the left mouse button to exit from the program.

5 at* = 9b

10 control = peek Catt) «

20 global = peekCan + 4)

30 gintin = peekCatt + 8)

48 gintout = peektatt + 12) *m

58 addrin = peek Catt + 16)

60 addrout = peekCatt + 20)

lOO clearw 2: fullw 2 _,

1070 poke systab+24,1

1071 poke contrl,122: poke contrl+2,0 :poke con-

trl+6,1

1072 poke intin,0:vdisysCl)

1074 mouse =1

1075 gemsysC79)

2060 x = peektgintout + 2)

201O y = peek cgintout + 4) m.

2020 key = peek fgintout + 6)

2025 if key = 2 then gosub 3000

2027 if key = 1 then poke systab+24,0send ^

2028 if key = O then gosub 3115

2030 goto 1075

3O0O rem „

301O rem draw a box using vdi ~

226

pi

i—•

xxxxxxxxxxxxxx/.
^

3020 rem

3022 color l,Crnd*15)+l,l,rnd*25,2

3024 if mouse=0 then 3040

y 3030 mouse=o

3835 poke contr 1,123: poke contrl+2,0 :poke con-

trl+6,0

3037 vdisysCl)

3040 poke contrl,ll

3050 poke contrl + 2,2

3060 poke contrl + 6,0

3070 poke contrl +10,1

3088 poke ptsin,x

y

y

_

3090 poke ptsin + 2,y

3095 poke ptsin + 4,x+50

— 3100 poke ptsin + 6,y+56

3110 vdisysCl)

3112 return

_ 3115 if mouse=l then return

3116 poke contrl,122:pokecontrl+2,0:poke

contrl+6,0

~ 3117 poke intin,0:vdisysCl)

3120 mouse =1: return

3130 end
-

w

227

xxxxxxxxxxxxxx
xxxxxxxxxxxxxxy

r\

Fy

ry

F^

f>\

ry

fy

ry

ry

ry

fy

01

—

////////////////

APPENDIX I
I GLOSSARY

AES Applications Environment Services. The part of GEM that
allows drop-down menus, multiple windowing, and Dialog Boxes.

- See GEM.

Alphanumeric The alphabetic letters A-Z and a-z, the numbers
U 0-9, and some symbols. Does not include punctuation marks

or graphics symbols.

y
Array A list of numerical values stored in a series of memory
locations. Arrays of more than 10 elements must be set up with
a DIM statement.

u ASCII American Standard Code for Information Interchange. A
w numeric code used to represent letters, numbers, and other symbols.

_ Assembler Routine See Machine Language Routine.

- BASIC Beginner's All-purpose Symbolic Instruction Code. A high
j level programming language developed by Kemeny and Kurtz at

Dartmouth College in 1963.

Binary A number system using base two. The only possible
digits are 0 and 1, which may be used in a computer to represent

U true and false, on and off.

y Bit Short for Binary Digit. The smallest unit of data with which a
computer can work. A bit may be used to represent true or false,
whether a circuit is on or off, or any other type of either/or concept.

Bug A mistake or error usually in the software of a program.
^^

Byte Usually eight bits (enough to represent the decimal number
255 or 11111111 in binary notation). A byte of data can be used to

— represent an ASCII character or a number in the range of 0 to 255.

w Code Instructions written in a language understood by a computer.

Command Mode An instruction to ST BASIC that is executed
y immediately. An example is the ST BASIC command RUN. See

Statement.

229

y

/////////////AXX

Concatenation The process of joining two or more strings
together to form one longer string. ST BASIC uses the plus sign
(+) to concatenate strings.

230

~

m

m

Constant A value not contained in a variable. A constant is
stated explicitly by its existence.

Cursor A square, rectangle, or vertical line displayed on the video
display screen that shows where the next typed character will
appear. If you move the mouse controller, an arrow-shaped cursor
also appears, and remains until you use the keyboard again. —

Data Information of any kind. ry

Debug The process of locating and correcting mistakes and
errors in a program. ^

Default A mode or condition assumed by the computer until it is
told to do something else. Default input and output devices are the
keyboard and screen, which ST BASIC uses for INPUT and PRINT
statements unless told to use other I/O devices. n

Device Usually a piece of hardware (also known as a peripheral)
used by a computer for input and/or output. Common examples of m
devices are printers, disk drives, and monitor screens.

-

Dialog Box Appears on the screen if an error condition occurs,
such as trying to save a program on a nonexistent disk. Text in the
box prompts your next action. ry

Direct Mode Refers to instructions to the computer that are
executed immediately upon entry. See Command.

Editing Making corrections or changes in a program or data.

Error Messages Appear in the Command Window when
something is wrong. You can create your own Error Messages with
the ERROR statement.

>~y

Execute To do what a program or command specifies. To RUN a
program or portion thereof.

Expression A combination of variables, numbers, and operators
that can be evaluated to a single quantity. The quantity may be a f>
string or a number.

—

xxxxxxxxxxxxxxxx
u Format To specify the form in which something is to appear.

GEM Graphics Environment Manager. GEM is the part of TOS
w that contains the VDI and AES.

w Hard Copy Printed output as opposed to temporary screen
display.

U Increment Increase in value (usually) by adding one. Often used
for counting (as in the number of repetitions through a loop).
Opposite of decrement.

Indirect Mode The instructions to the computer that are con-
~- tained within a program. Indirect statements are not executed

immediately upon entry. See Statement.

U Initialize Set to an initial or starting value. In ST BASIC, all non-
array variables and strings are initialized to zero when the
command RUN is given. Array elements, both string and numeric,
are not initialized.

U Input Information transfer to the computer. Input can come from
a mouse, joystick, keyboard, digitizer, disk drive, and other
devices.

Integer A number between -32768 and 32767, represented
~ internally with two bytes. ST BASIC performs arithmetic faster
_ with integers than with real numbers.

U Interface The electronics used to allow two devices to
communicate. Also used to describe the part of a program with
which the user interacts.

y
I/O Short for input/output. I/O is used to describe any

U communication to or from the computer.
_ K Kilo meaning "times 1000." One Kbyte is actually 1024 (2 to

the tenth power) bytes.

•~ Keyword A word that has meaning as a command, function, or

~

statement in a computer language, and must not be used as a
variable name or at the beginning of a variable name.

Language A set of conventions specifying how to tell a
computer what to do.

y

~ 231

^,

////////////////-.
Logical Operator Used to control a program's decision-making
ability. Logical operators work on the flags resulting from logical
expressions. See, Appendix B.

Machine Language Routine A program written in machine
language (the computer's most fundamental language) that can
be used by an ST BASIC program with the CALL statement. Often
used where speed is paramount.

Memory The part of a computer (usually RAM or ROM) that
stores data or information. —

Menu A list of options from which the user may choose.

Microcomputer A computer based on a microprocessor chip.
The ATARI ST uses a Motorola 68000.

Null String A string containing no characters at all. If you use
the INPUT statement to accept a string from a user at the
keyboard, and the user only presses the [Return] key, a null string
is returned.

Operator A symbol that permits arithmetic or logical mani
pulation of data. Examples of operators are + - * / > < .

m

—

F>

OS Operating System. A collection of programs that allows the
user to control the computer. The ATARI ST OS is TOS, "The
Operating System".

Output Information transfer away from the computer. Examples
of output devices are monitor, printer, and disk drive.

Parameters Quantities passed between a program and a routine;
usually presented in a list of variables and/or constants separated
with commas.

ry

Parallel Two or more things occurring simultaneously. A parallel
interface controls a number of distinct electrical signals at the
same time. See Serial. m

Peripheral An I/O device. See Device.

Pixel Picture Element. One point in the screen display. Pixel size
depends on the screen resolution mode being used.

232

////////////////
Precedence Rules that determine the priority in which opera-

— tions occur, especially with regard to the arithmetical/logical
operators.

y Program A sequence of instructions to the computer. A program
must be written in a language that the particular computer can

- understand.

Prompt A symbol that appears on the video display screen that
indicates the computer is ready to accept keyboard input. In ST
BASIC, this takes the form of the word Ok. A ? may also be used
by your program to prompt a user to enter (input) information or
take other appropriate action.

U

RAM Random Access Memory. The main memory in most
computers. RAM is used to store both programs and data.

Random File A disk file whose records may be accessed in any
order. In order to make efficient use of random files, your program
must maintain a separate index of such files.

y

U

y

y

y

y

Record An item of data in a random or sequential disk file.

Reserved Word See Keyword.

ROM Read Only Memory. Contains information stored by the
manufacturer that cannot be changed by the user.

Save To copy a program or data into some location other than
~ RAM, usually to a disk drive.

Screen The video display screen.

Sequential File A disk file containing data that must be
accessed in sequence. For example, in order to read the fifth
record in a sequential file, you must first read the first through
the fourth records.

Serial Refers to things happening one at a time in sequence. A
serial interface, such as the RS232C port used by the ST for
telecommunications, passes each byte of information one bit at a
time. See Parallel.

y

Stack A LIFO (last-in, first-out) structure in the computer's
memory used for temporary storage and quick retrieval of data.
Often compared to a cafeteria spring-loaded dish stacker.

233

//////////A/A
Statement An instruction to the computer, usually contained
within a program. A statement must contain a line number, at least
one keyword, and usually a value to be operated on. See Command.

String A sequence of characters that may contain letters,
numbers, and punctuation, and begins and ends with a quotation „
sign. A string may be stored in a string variable, which usually
ends in $.

Subroutine A part of a program to which the main program can
branch (jump) and return many times. Subroutines permit the pro
grammer to save memory by reusing the same routine without
having to repeat it in the program. Subroutines are very powerful,
and are used at just about every level of programming. m

Variable A variable may be thought of as a box in which a value
may be stored. Such values are typically numbers and strings.

VDI Virtual Device Interface. That part of GEM that contains
graphics and text routines.

Window A portion of the monitor display devoted to a specific
purpose. ST BASIC uses four variable-size windows; one each for
Listing, Editing, Output, and Commands.

TOS See Operating System.

234

m

ry

ry

—

-

-

•

•

m

m

y

y

_

y

y

-

X X X X

CUSTOMER SUPPORT
Atari Corp. welcomes any questions you might have about your
ATARI Computer product.

Write to:

Atari Customer Relations

P.O. Box 61657

Sunnyvale, CA 94088

~ Please write the subject of your letter on the outside of the
envelope.

We suggest that you contact your local Atari User Groups. They
are outstanding sources of information on how to get the most out
of your ATARI Computer. To receive a list of Atari User Groups in

M your area, send a self-addressed, stamped envelope to:

_ Atari User Group List
g P.O. Box 61657

Sunnyvale, CA 94088

235

////////////////•

m

m

•

m

1

m

m

~

m

m

m

m

-

m

m

-

-

m

XXXXXXXXXXXXX/
y

y

INDEX
A CINT function, 50

u About ST BASIC option, 61 CIRCLE command, 41

u AND operator, 29 Circles, plotting, 41
Arcs, plotting, 42 CLEARW statement, 37

_ Arithmetic operations, 4 CLOSE statement, 47

y Arithmetic operators, 77 Colon (:) in compound statements
Array, COLOR command, 38

y Definition, 50 Color resolution, 40

y
Dimensions of, 51, 79 Command Window, 3

ASCII, Commands,
M Character set, 207 Definition, 21

Definition, 56 List of, 19
~ Format, 56 Conditional loops, 28
y Assembly language modules, 55, 211 Continue option, 65

-

AUTO command, 8 Control Panel option, 62
AUTO line number function, 8 Converting string variables, 53

y Customer support, 235
B CVD function, 59

- Backup copy, 1 CVI function, 59

y BASIC.BUF file, 69
BASIC.PRG file, 1

CVS function, 59

U BASIC.WRK file, 9 D

u Binary files, 55 Data statements, 24
Bit, 31 Data, storing on disk, 47

y Bitwise logic, 75 Debug menu, 15, 69
BLOAD statement, 56 DEF FN statement, 54

>^

Break option, 11, 64 Delete Char,
U BSAVE statement, 55 Function, 12

Buf Graphics option 20, 65 Option, 68
y Byte, 31 Delete File option, 19, 63

Delete Line,
Function, 13
Option, 68

Derived functions, 213
Desk menu, 61
DESK.ACC files, 20
Desktop, 2
Dialog box,

Definition, 7
Exiting, 7

DIM statement, 52
Direct statements, 22

Calculator, using ST BASIC as, 4
CALL statement, 56
Cancelling program action,

With [Control] [C], 14
With [Control] [G], 8

CHAIN MERGE statement, 55
CHAIN statement, 55
Chaining programs, 55
Character set, 207
Character strings, 52

237

10, 35

XXX

Directory window, 63
Disks, storing information on, 47

Edit menu,
Exiting, 15
Functions, 11, 66

Edit Window, 6
Editing a program, 11
ELLIPSE command, 43
Ellipses, plotting, 43
ELSE statement, with IF . . . THEN, 28
END statement, 11, 36
Enhancing ST BASIC'S memory, 20
Entering a program, 9
EOF function, 48
Error messages, 4, 7, 25, 205
Executable statements, 21
Exit Edit,

Function, 15
Option, 66

Exiting ST BASIC, 19

FIELD statement, 57
File menu, 17, 62
Filename conventions, 80
Files,

Binary, 55
Random access, 56
Sequential, 47

FILL command, 41
FIX function, 50
FOR statement, 27
FOR . . . NEXT loop, 26
Fractional values, 49
FULLW statement, 38
Functions,

Definition, 22
Summary of, 78

GEM Desktop, 2
GET statement, 57

238

GOSUB . . . RETURN statement, with ON, 33
Goto Line option, 67
GOTO statement,

With IF. . .THEN, 28
With ON, 31

GOTOXY statement, 23
Graphics,

Colors, 38
Effective memory space, 20
Screen resolution, 36

Graphics statements,
CLEARW, 37
CIRCLE, 41
COLOR, 38
FILL, 41
FULLW, 38
ELLIPSE, 43
LINEF, 43
PCIRCLE, 41
PELLIPSE, 43

H

Help Edit Dialog Box, 12, 67
Help Edit option, 12, 67

I

I/O (input and output), 22
IF. . .THEN statement, 28
IMP operator, 31
Indirect statements, 22
Input and output (I/O), 22
INPUT statement, 23, 32
INPUT# statement, 48
Insert Line,

Function, 13
Option, 68

Insert Space,
Function, 12
Option, 68

Install Printer option, 62
INT function, 22, 50
Integers, 49

Converting to real numbers, 50 .
Item Selector Box, 63

ry

ry

ry

-

~-

fy

r<

ry

—

Jr *w JF

Labels, 9, 35
Leaving ST BASIC, 19
LEFT$ function, 53
Line format, 80
LINE INPUT# statement, 47
LINEF command, 43
LIST command, 6
List option, 69
List Window, 6
LLIST command, 6
LOAD command, 18
Load option, 62
Load Text,

Function, 14
Option, 69

Loading ST BASIC, 1
LOC function, 57
Logical operators, 75

AND, 29
IMP, 31
NOT, 30
On bits, 31
OR, 30

Loops,
Conditional, 28
FOR . . . NEXT 26
Nested, 36
WHILE . . .WEND, 28

LPRINT statement, 23
LSET statement, 53

M

Machine language module, 55, 211
Memory, enhancing, 20
Menu Bar, 7
Menus,

Debug,15, 69
Desk, 61
Edit, 11, 66
File, 17, 62
How to use, 7
Run, 10, 64

239

Merge option, 18, 64
MIDS statement, 53
MKDS function, 59
MKIS function, 59
MKSS function, 59
Multiple commands on one line, 10
Multiple line statements, 35
Musical notes, with SOUND command, 46

N

Nested loops, 36
New Buffer,

Function, 13
Option, 69

NEW command, 9
NEXT statement, with FOR, 26, 36
Noise channel, 46
Non-executable statements, 22
NOT operator, 30
Notes, with SOUND command, 46
Numbers,

ASCII format, 56
Binary, 59
Converting to other types, 59
In random access files, 59
Integer, 49
Real, 49

Numeric functions, 78
Numeric keypad, 4
Numeric variables, 49, 78

Ok button, 12
OLD command, 18
ON . . . GOSUB . . . RETURN statement, 33
ON . . . GOTO statement, 31
OPEN command, 47, 48
OPTION BASE statement, 52
OR operator, 30
Order of precedence for operators, 77
Output Window, 4
Output, 22

X

Page Down,
Function, 14
Option, 69

Page Up,
Function, 14
Option, 68

PCIRCLE command, 41
PELLIPSE command, 43
Pixel, 36
Plotting lines and circles, 43
PRINT statement, 3, 35
PRINT* statement, 48
Program statements, 21
Program,

Control, 25
Loops, 26

PUT statement, 57

Quit option, 19, 64

Random access files,
Accessing, 49
ASCII-format numbers, 56
Binary-format numbers, 59
Converting strings to numbers, 59
Maximum size, 60

READ statement, 24
Real numbers, 49

Converting to integers, 50
Relational operators, 77
REM statement, 10, 32, 35
Remove Line option, 68
RENUM statement, 8
REPLACE command, 63
Reserved words,

Definition, 21
List of, 73

RESTORE statement, 25
RETURN statement,

With GOSUB, 33
With ON . . . GOSUB, 33

240

RIGHTS function, 53
RSET statement, 53
Run menu, 10, 64
Run option, 11, 64

Save As option, 14, 17, 63
SAVE command, 17
Save Text,

Function, 14
Option, 69

Saving a program on disk, 17
Saving information on disk, 47
Screen resolution,

Low, 36
Medium, 36
High, 36

Sequential files, 47
Set RS232 Config option, 62
Show Info option, 20
Size box, 8
SOUND command, 46
ST ASCII character set, 207
ST BASIC functions, summary, 78
ST BASIC reserved words,

Definition, 21
List of, 73

Start Edit option, 11, 66
Statements, definition, 21
STEP command, 27
Step option, 11, 65
Stop option, 65
STOP statement, 11
Stopping program action,

With [Control] [C], 14
With [Control] [G], 8

Storing information on disk, 47
STRS function, 53
String functions, 79
String variable, 24, 49

Conversion of, 53

m

m

m

1

•

m

m

~

m

m

m

m

m

•

I

i

T

THEN statement, with IF 28
Trace option, 16, 71
Troff option, 70
Tron option, 16, 70
Two-dimensional arrays, 79
Type declaractions, 78
Typing commands, 19

mm
U

y Untrace option, 16, 71

y
V

~ VAL function, 53
Variable limits in loops, 27

^^,

Variable, 22
_ VT52 Emulator option, 62

„ W

y WEND statement, with WHILE, 28
WHILE statement, 28
WHILE . . .WEND loop, 28

U Whole numbers, 49
Windows,

y
Comand, 3

y Edit, 6
List, 6

y Output, 4
y WRITE* statement, 47

241

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

\V

~

^

~

r X

FUNCTION KEYS TEMPLATE

With the function keys template attached to your ST keyboard, it
will be easy to remember the editing function of each special
function key.

Assembling and attaching the template is simple, just follow
these steps:

1. Tear out the two perforated pieces of the template.

2. Tape the pieces together with clear tape.

3. Place on keyboard housing as shown in the illustration. Attach
template to keyboard with clear tape.

I=r. | g | r[=TT\ a | a | § | a I a I

I I
I

IIllHLinilljlLTl^^ r= (jp i n jn im n
i^j^uj^ltjili^^ Sn§ LJ r-1

^^tMHHHHEjD]^^ Bhh q • H

- DHilHHOTHnKPQ
a til i-

Insert

Space
Delete

Char

Insert

Line

Delete

Line

Page
Up

Page
Down

Load

Text

Save

Text

New

Buffer

Exit

Edit

(
(
(
(
(
(
(
(
(
(
(
(

(
C

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

c
<

i

'

\%
%

HELP FOR YOUR ATARI® COMPUTER
Get the most from your computer with Atari®
Explorer™ and save 50° off the cover price.

n~ Atari doesn't just make great computers—we publish the very best
magazine for users of our computers. Straight from the source. With
access to the same wizards who designed the computers.

— Each issue of Atari Explorer brings:

O • NEWS on products, services, and trends—with the accent
on how this will effect you.

— • REVIEWS of software, hardware, and books—you'll know what
the best products are and exactly what they can do.

• TUTORIALS on all aspects of computing—for beginners and
for experts.

• COLUMNS on user groups, Logo programming, telecomputing,
education, and more.

• THE INSIDE STORY on what's happening in the new Atari Corp.
• PROGRAMS to type in and use on your computer.
• UPDATES to manuals and product announcements —no one is

more timely and more accurate.
• APPLICATIONS you might not have thought of to help you make

the most from your computer system.

We're not just a magazine about machines—Atari Explorer is for
people who use computers and we make sure that there is plenty

^ of interesting material in every issue.

^ Take advantage of this special offer. Subscribe now and save 50
cents off the newsstand price—or save even more with an 18

w issue subscription to the only magazine published by Atari for you.

y

y

y

ATARI EXPLORER
P.O. BOX 3427

POSTAGE WILL BE PAID BY ADDRESSEE

ATARI EXPLORER
P.O. BOX 3427

SUNNYVALE, CA 94088-3427

ll.l...l..lll...l..l.l..l.l.i..l.l..l,l„ll„„l„ll

NO POSTAGE
NECESSARY

IF MAILED
IN THE

^ I UNITED STATI

BUSINESS REPLY CARD
FIRST CLASS PERMITNO. 7283 SUNNYVALE, CA

YES, enter my subscription to the ATARI EXPLORER:
D 6 issues ... $15.00* • 18 issues ... $39.95* SAVE 25%

• Payment Enclosed

Name

Address.

City

State

Acct No.

Expiration Date

Signature

• Visa • MasterCard

Zip.

*This rate limited to USA and its Possessions. Canadian subscriptions, add $5
for postage and handling. Overseas subscriptions, add $10.00/6 issues;
$30.00/18 issues. Payment due in US funds.

r\

r

r

n

r\

F>

r

~

r\

m

r>

-

r

-

r\

ry

F*

C
)C

C
(

(
C
C

(
C

(
(
(
C

(
C

(
(
(
(
(
(
(
C

(
C

(
(
C

C
(
C

l

f>

r^

A ATARI*
Atari Corp., Sunnyvale, CA 94086 Printed in Taiwan f\)
© 1986 Atari Corp. CO26220 „
All Rights Reserved. C026166

Rev. B K. I.8.1986

	Front Cover
	Introduction
	Contents
	1: Getting Started with ST BASIC
	2: Programming with ST BASIC
	3: ST BASIC Menus
	A: ST BASIC Reserved Words
	B: Operators, Order of Precedence and Function Summary
	Logical Operators
	Arithmetic Operators
	Relational Operators
	Order of Precedence for Operators
	Summary of ST BASIC Functions

	C: Commands, Functions and Statements
	A-G
	A
	ABS
	ASC
	ATN
	AUTO

	B
	BLOAD
	BREAK
	BSAVE

	C
	CALL
	CHAIN
	CHR$
	CINT
	CIRCLE
	CLEAR
	CLEARW
	CLOSE
	CLOSEW
	COLOR
	COMMON
	CONT
	COS
	CVD, CVI, CVS

	D
	DATA
	DEF FN
	DEF SEG
	DEFDBL
	DEFINT
	DEFSNG
	DEFSTR
	DELETE
	DIM
	DIR

	E
	EDIT
	ELLIPSE
	END
	EOF
	ERA
	ERASE
	ERL, ERR
	ERROR
	EXP

	F
	FIELD
	FILL
	FIX
	FLOAT
	FOLLOW
	FOR
	FRE
	FULLW

	G
	GEMSYS
	GET
	GOSUB
	GOTO
	GOTOXY

	H-N
	H
	HEX$

	I
	IF
	INP
	INPUT
	INPUT#
	INPUT$
	INSTR
	INT

	K
	KILL

	L
	LEFT$
	LEN
	LET
	LINE INPUT
	LINE INPUT#
	LINEF
	LIST
	LLIST
	LOAD
	LOC
	LOF
	LOG
	LOG10
	LPOS
	LPRINT
	LSET

	M
	MERGE
	MID$
	MKD$, MKI$, MKS$

	N
	NAME
	NEW
	NEXT

	O-T
	O
	OCT$
	OLD
	ON
	ON ERROR GOTO
	OPEN
	OPENW
	OPTION BASE
	OUT

	P
	PCIRCLE
	PEEK
	PELLIPSE
	POKE
	POS
	PRINT
	PRINT#
	PRINT USING
	PUT

	Q
	QUIT

	R
	RANDOMIZE
	READ
	REM
	RENUM
	REPLACE
	RESET
	RESTORE
	RESUME
	RETURN
	RIGHT$
	RND
	RSET
	RUN

	S
	SAVE
	SGN
	SIN
	SOUND
	SPACE$
	SPC
	SQR
	STEP
	STOP
	STR$
	STRING$
	SWAP
	SYSTAB
	SYSTEM

	T
	TAB
	TAN
	TRACE
	TROFF
	TRON

	U-Z
	U
	UNBREAK
	UNFOLLOW
	UNTRACE

	V
	VAL
	VARPTR
	VDISYS

	W
	WAIT
	WAVE
	WEND
	WHILE
	WIDTH
	WRITE
	WRITE#

	D: Error Messages
	E: ST ASCII Character Set
	F: Assembly Language Modules
	G: Derived Functions
	H: Sample Programs
	I: Glossary
	Customer Support
	Index
	Function Keys Template
	Atari Explorer Subscription Card
	Back Cover

