
Programming tb

Rodnay Zaks
SYBEX

PROGRAMMING

THE 6502

PROGRAMMING

THE 6502

RODNAY ZAKS

FOURTH EDITION

Incorporating Answers to the Exercises

SYBEX

BERKELEY • PARIS • DUSSELDORF

Cover art: Daniel Le Noury

Every effort has been made to supply complete and accurate information. However,

Sybex assumes no responsibility for its use, nor for any infringements of patents or other

rights of third parties which would result. No license is granted by the equipment manufac

turers under any patent or patent right. Manufacturers reserve the right to change circuitry

at any time without notice.

Copyright © 1983 SYBEX Inc. 2344 Sixth Street, Berkeley, CA 94710. World rights

reserved. No part of this publication may be stored in a retrieval system, copied, transmit

ted, or reproduced in any way, including, but not limited to photocopy, photography, mag

netic or other recording, without the prior agreement and written permission of the

publisher.

ISBN 0-89588-135-7

Library of Congress Card Number: 83-61686

First Edition published 1978. Fourth Edition 1983

Printed in the United States of America

10 98765432

CONTENTS

PREFACE v/7

I. BASIC CONCEPTS

Introduction. What is Programming? Flowcharting. Information

Representation.

II. 6502 HARDWARE ORGANIZATION 38

Introduction. System Architecture. Internal Organization of the 6502. The

Instruction Execution Cycle. The Stack. The Paging Concept. The 6502

Chip. Hardware Summary.

III. BASIC PROGRAMMING TECHNIQUES 53

Introduction. Arithmetic Programs. BCDArithmetic. Important Self-Test.

Logical Operations. Subroutines. Summary.

IV. THE 6502 INSTRUCTION SET 99

PARTl-OVERALL DESCRIPTION

Introduction. Classes of Instructions. Instructions Available on the 6502.

PART2-THEINSTRUCTIONS

Abbreviations. Description ofEach Instruction.

V. ADDRESSING TECHNIQUES 188

Introduction. Addressing Modes. 6502 Addressing Modes. Using the 6502

Addressing Modes. Summary.

VI. INPUT/OUTPUT TECHNIQUES 211

Introduction. Input/Output. Parallel Word Transfer. Bit Serial Transfer.

Basic I/O Summary. Communicating with Input/Output Devices.

Peripheral Summary. Input/Output Scheduling. Summary. Exercises.

VII. INPUT/OUTPUT DEVICES 254

Introduction. The Standard PIO (6520). The Internal Control Register.

The 6530. Programming a PIO. The 6522. The 6532. Summary.

VIII. APPLICATION EXAMPLES 262

Introduction. Clear a Section of Memory. Polling I/O Devices. Getting

Characters In. Testing a Character. Bracket Testing. Parity Generation.

Code Conversion: ASCII to BCD. Find the Largest Element of a Table.

Sum of N Elements. A Checksum Computation. Count the Zeroes. A

String Search. Summary.

IX. DATA STRUCTURES 275

PART J-DESIGN CONCEPTS

Introduction. Pointers. Lists. SearchingandSorting. Summary. Data Structures.

PART2-DESIGNEXAMPLES

Introduction. Data Representation for the List. A Simple List. Alphabetic

List. Binary Tree. A Hashing Algorithm. Bubble-Sort. A Merge Algorithm.

Summary.

X. PROGRAM DEVELOPMENT 343

Introduction. Basic Programming Choices. Software Support. The Pro

gram Development Sequence. The Hardware Alternatives. Summary of

Hardware Alternatives. Summary ofHardware Resources. The Assembler.

Macros. Conditional Assembly. Summary.

XI. CONCLUSION 368

Technological Development. The Next Step.

APPENDICES 371

A. Hexadecimal Conversion Table

B. 6502 Instruction-Set: Alphabetic

C. 6502 Instruction-Set: Binary

D. 6502 Instruction-Set: Hexadecimal and Timing

E. ASCII Table

F. Relative Branch Table

G. HexOpcodeListing

H. Decimal to BCD Conversion

I. Answers to the Exercises

INDEX 402

vi

PREFACE

This book has been designed as a complete self-contained text

to learn programming, using the 6502. It can be used by a person

who has never programmed before, and should also be of value to

anyone using the 6502.

For the person who has already programmed, this book will

teach specific programming techniques using (or working around)

the specific characteristics of the 6502. This text covers the

elementary to intermediate techniques required to start pro

gramming effectively.

This text aims at providing a true level of competence to the

person who wishes to program using this microprocessor. Nat

urally, no book will teach effectively how to program, unless one

actually practices. However, it is hoped that this book will take

the reader to the point where he feels that he can start program

ming by himself and solve simple or even moderately complex

problems using a microcomputer.

This book is based on the author's experience in teaching more

than 1000 persons how to program microcomputers. As a result,

it is strongly structured. Chapters normally go from the simple to

the complex. For readers who have already learned elementary

programming, the introductory chapter may be skipped. For

others who have never programmed, the final sections of some

chapters may require a second reading. The book has been de

signed to take the reader systematically through all the basic

concepts and techniques required to build increasingly complex

programs. It is, therefore, strongly suggested that the ordering of

the chapters be followed. In addition, for effective results, it is

important that the reader attempt to solve as many exercises as

possible. The difficulty within the exercises has been carefully

graduated. They are designed to verify that the material which

has been presented is really understood. Without doing the pro

gramming exercises, it will not be possible to realize the full

value of this book as an educational medium. Several of the exer

cises may require time, such as the multiplication exercise for

example. However, by doing these, you will actually program and

learn by doing. This is indispensable.

For those who will have acquired a taste for programming when

reaching the end of this volume, companion volumes are available:

vtf

—"6502 Applications" covers input/output.

—"Advanced 6502 Programming" covers complex algorithms.

Other books in this series cover programming for other popular

microprocessors.

For those who wish to develop their hardware knowledge, it is

suggested that the reference books "From Chips to Systems" (ref.

C201A) and "Microprocessor Interfacing Techniques" (ref. C207) be

consulted.

The author would like to thank Rockwell International, who pro

vided access to one of the first ASM65 development systems.

The contents of this book have been checked carefully and are

believed to be reliable. However, inevitably, some typographical

or other errors will be found. The author will be grateful for any

comments by alert readers so that future editions may benefit from

their experience. Any other suggestions for improvements, such as

other programs desired, developed, or found of value by readers,

will be appreciated.

PREFACE TO THE FOURTH EDITION

In the five years since this book was originally published, the audience

of 6502 microprocessor users has grown exponentially, and it continues

to grow. This book has expanded with its audience.

The Second Edition increased in size by almost 100 pages, with most

of the new material being added to Chapters 1 and 9. Additional

improvements have been made continually throughout the book. In this

Fourth Edition, answers to the exercises have been included as an appen

dix (Appendix I). These answers appear in response to the request of

many readers, who wanted to make sure that their knowledge of 6502

programming was thorough.

I would like to thank the many readers of the previous editions who

have contributed valuable suggestions for improvement. Special

acknowledgements are due to Eric Novikoff and Chris Williams for their

contributions to the answers to the exercises, as well as to the complex

programming examples in Chapter 9. Special thanks also go to Daniel J.

David, for his many suggested improvements. A number of changes and

enhancements are also due to the valuable analysis and comments pro

posed by Philip K. Hooper, John Smith, Ronald Long, Charles Curlay,

N. Harris, John McClenon, Douglas Trusty, Fletcher Carson, and Pro

fessor Myron Calhoun.

viu

Acknowledgements

The author would like to express his appreciation to Rockwell Interna

tional and, in particular, to Scotty Maxwell, who made available to him

one of the very first system 65 development systems. The availability of

this powerful development tool, at the time the first version of this book

was being written, was a major help for the accurate and efficient check

out of all the programs. I would also like to thank Professor Myron

Calhoun for his contributions.

1

BASIC CONCEPTS

INTRODUCTION

This chapter will introduce the basic concepts and definitions re

lating to computer programming. The reader already familiar with

these concepts may want to glance quickly at the contents of this

chapter and then move on to Chapter 2. It is suggested, however,

that even the experienced reader look at the contents of this intro

ductory chapter. Many significant concepts are presented here in

cluding, for example, two's complement, BCD, and other represen

tations. Some of these concepts may be new to the reader; others

may improve the knowledge and skills of experienced programmers.

WHAT IS PROGRAMMING?

Given a problem, one must first devise a solution. This solution,

expressed as a step-by-step procedure, is called an algorithm. An

algorithm is a step-by-step specification of the solution to a given

problem. It must terminate in a finite number of steps. This

algorithm may be expressed in any language or symbolism. A sim

ple example of an algorithm is:

1—insert key in the keyhole

2—turn key one full turn to the left

3—seize doorknob

4—turn doorknob left and push the door

PROGRAMMING THE 6502

At this point, if the algorithm is correct for the type of lock in

volved, the door will open. This four-step procedure qualifies as an

algorithm for door opening.

Once a solution to a problem has been expressed in the form of

an algorithm, the algorithm must be executed by the computer.

Unfortunately, it is now a well-established fact that computers

cannot understand or execute ordinary spoken English (or any

other human language). The reason lies in the syntactic ambiguity

of all common human languages. Only a well-defined subset of

natural language can be "understood" by the computer. This is

called a programming language.

Converting an algorithm into a sequence of instructions in a pro

gramming language is called programming. To be more specific,

the actual translation phase of the algorithm into the program

ming language is called coding. Programming really refers not just

to the coding but also to the overall design of the programs and

"data structures" which will implement the algorithm.

Effective programming requires not only understanding the

possible implementation techniques for standard algorithms, but

also the skillful use of all the computer hardware resources, such as

internal registers, memory, and peripheral devices, plus a creative

use of appropriate data structures. These techniques will be

covered in the next chapters.

Programming also requires a strict documentation discipline, so

that the programs are understandable to others, as well as to the

author. Documentation must be both internal and external to the

program.

Internal program documentation refers to the comments placed

in the body of a program, which explain its operation.

External documentation refers to the design documents which

are separate from the program: written explanations, manuals,

and flowcharts.

FLOWCHARTING

One intermediate step is almost always used between the

algorithm and the program. It is called a flowchart. A flowchart is

simply a symbolic representation of the algorithm expressed as a

sequence of rectangles and diamonds containing the steps of the

algorithm. Rectangles are used for commands, or "executable

statements." Diamonds are used for tests such as: If information

BASIC CONCEPTS

X is true, then take action A, else B. Instead of presenting a formal

definition of flowcharts at this point, we will introduce and discuss

flowcharts later on in the book when we present programs.

Flowcharting is a highly recommended intermediate step be

tween the algorithm specification and the actual coding of the solu

tion. Remarkably, it has been observed that perhaps 10% of the

programming population can write a program successfully with

out having to flowchart. Unfortunately, it has also been observed

that 90% of the population believes it belongs to this 10%! The

result: 80% of these programs, on the average, will fail the first

time they are run on a computer. (These percentages are naturally

not meant to be accurate.) In short, most novice programmers sel

dom see the necessity of drawing a^flowchart. This usually results

in "unclean" or erroneous programs. They must then spend a long

time testing and correcting their program (this is called the

READ ACTUAL ROOM TEMPERATURE "R*

1ST LESS
THANR

OR EQUAL/" (ROOM

(OPTIONAL DELAY) (OPTIONAL DELAY)

Fig. 1-1: A Flowchart for Keeping Room Temperature Constant

PROGRAMMING THE 6502

debugging phase). The discipline of flowcharting is therefore

highly recommended in all cases. It will require a small amount of

additional time prior to the coding, but will usually result in a clear

program which executes correctly and quickly. Once flowcharting

is well understood, a small percentage of programmers will be able

to perform this step mentally without having to do it on paper. Un

fortunately, in such cases the programs that they write will usual

ly be hard to understand for anybody else without the documenta

tion provided by flowcharts. As a result, it is universally recom

mended that flowcharting be used as a strict discipline for any

significant program. Many examples will be provided throughout

the book.

INFORMATION REPRESENTATION

All computers manipulate information in the form of numbers or

in the form of characters. Let us examine here the external and

internal representations of information in a computer.

INTERNAL REPRESENTATION OF INFORMATION

All information in a computer is stored as groups of bits. A bit

stands for a binary digit ("0" or "1"). Because of the limitations

of conventional electronics, the only practical representation of infor

mation uses two-state logic (the representation of the state "0" and

"1"). The two states of the circuits used in digital electronics

are generally "on" or "off, and these are represented logi

cally by the symbols "0" or "1". Because these circuits are

used to implement "logical" functions, they are called "binary

logic." As a result, virtually all information-processing today is

performed in binary format. In the case of microprocessors in

general, and of the 6502 in particular, these bits are structured in

groups of eight. A group of eight bits is called a byte. A group of

four bits is called a nibble.

Let us now examine how information is represented internally in

this binary format. Two entities must be represented inside the

computer. The first one is the program, which is a sequence of

instructions. The second one is the data on which the program will

operate, which may include numbers or alphanumeric text. We will

discuss below three representations: program, numbers, and alpha-

numerics.

10

BASIC CONCEPTS

Program Representation

All instructions are represented internally as single or multiple

bytes. A so-called "short instruction" is represented by a single

byte. A longer instruction will be represented by two or more

bytes. Because the 6502 is an eight-bit microprocessor, it fetches

bytes successively from its memory. Therefore, a single-byte

instruction always has a potential for executing faster than a two-

or three-byte instruction. It will be seen later that this is an impor

tant feature of the instruction set of any microprocessor and in

particular the 6502, where a special effort has been made to pro

vide as many single-byte instructions as possible in order to im

prove the efficiency of the program execution. However, the limita

tion to 8 bits in length has resulted in important restrictions which

will be outlined. This is a classic example of"the compromise be

tween speed and flexibility in programming. The binary code used

to represent instructions is dictated by the manufacturer. The

6502, like any other microprocessor, comes equipped with a fixed

instruction set. These instructions are defined by the manufac

turer and are listed at the end of this book, with their code. Any

program will be expressed as a sequence of these binary instruc

tions. The 6502 instructions are presented in Chapter 4.

Representing Numeric Data

Representing numbers is not quite straightforward, and several

cases must be distinguished. We must first represent integers, then

signed numbers, i.e., positive and negative numbers, and finally we

must be able to represent decimal numbers. Let us now address

these requirements and possible solutions.

Representing integers may be performed by using a direct

binary representation. The direct binary representation is simply

the representation of the decimal value of a number in the binary

system. In the binary system, the right-most bit represents 2 to

the power 0. The next one to the left represents 2 to the power 1,

the next represents 2 to the power 2, and the left-most bit

represents 2 to the power 7 = 128.

5b4b3b2b xb0

represents

b727 + b626 + b525 + b424 + b323 + b222 + b.21 + bo2°

11

PROGRAMMING THE 6502

The powers of 2 are:

27 = 128, 26 = 64, 25 = 32, 24 = 16, 28 = 8, 22 = 4, 21 = 2, 2° = 1

The binary representation is analogous to the decimal representa

tion of numbers, where "123" represents:

1 X 100 = 100

+ 2 X 10 = 20

+3X1= 3

= 123

Note that 100 = 102, 10 = 101, 1 = 10°.

In this "positional notation," each digit represents a power of 10.

In the binary system, each binary digit or "bit" represents a power

of 2, instead of a power of 10 in the decimal system.

Example: "00001001" in binary represents:

1

0

0

1

0

0

0

0

in decimal:

X

X

X

X

X

X

X

X

1 = 1

2 = 0

4 = 0

8 = 8

16 = 0

32 = 0

64 = 0

128 = 0

= 9

(2°)

(21)

(2*)

(2s)

(2<)

(26)

(28)

(27)

Let us examine some more examples:

"10000001" represents:

1

0

0

0

0

0

0

1

in decimal:

X

X

X

X

X

X

X

X

1 =

2 =

4 =

8 =

16 =

32 =

64 =

128 =

_

1

0

0

0

0

0

0

128

129

"10000001" represents, therefore, the decimal number 129.

12

BASIC CONCEPTS

By examining the binary representation of numbers, you will

understand why bits are numbered from 0 to 7, going from right to

left. Bit 0 is "b0" and corresponds to 2°. Bit 1 is "b/; and cor

responds to 2\ and so on.

Decimal

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
•

•

•

31

Binary

00000000

00000001

00000010

00000011

00000100

00000101

00000110

00000111

00001000

00001001

00001010

00001011

00001100

00001101

00001110

00001111

00010000

00010001

00011111

Decimal

32

33

•

•

•

63

64

65
•

•

127

128

129

•

•

•

254

255

Binary

00100000

00100001

00111111

01000000

01000001

01111111

10000000

10000001

11111110

11111111

Fig. 1-2: Decimal-Binary Table

The binary equivalents of the numbers from 0 to 255 are shown

in Fig. 1-2.

Exercise 1.1: What is the decimal value of "11111100"?

13

PROGRAMMING THE 6502

Decimal to Binary

Conversely, let us compute the binary equivalent of "11" decimal:

11-5-2=5 remains 1 —♦I (LSB)

5-^-2=2 remains 1—^1

2-^2=1 remains 0—^0

1-^-2=0 remains 1 —^ 1 (MSB)

The binary equivalent is 1011 (read right-most column from bottom
to top).

The binary equivalent of a decimal number may be obtained by dividing
successively by 2 until a quotient of 0 is obtained.

Exercise 1.2: What is the binary for 257?

Exercise 1.3: Convert 19 to binary, then back to decimal.

Operating on Binary Data

The arithmetic rules for binary numbers are straightforward. The rules
for addition are:

0+0= 0

0+1= 1

1+0= 1

where (1) denotes a "carry" of 1 (note that "10" is the binary equivalent
of "2" decimal). Binary subtraction will be performed by "adding the

complement" and will be explained once we learn how to represent
negative numbers.

Example:

(2) 10

+(1) +01

=(3) 11

Addition is performed just like in decimal, by adding columns, from
right to left:

Adding the right-most column:

10

+01

(0 + 1 = 1. No carry.)

14

BASIC CONCEPTS

Adding the next column:

10

11 (1+0 =1. No carry.)

Exercise 1.4: Compute 5 + 10 in binary. Verify that the result is 15.

Some additional examples of binary addition:

0010 (2) 0011 (3)

+0001 (1) +0001 (1)

=0011 (3) =0100 (4)

This last example illustrates the role of the carry.

Looking at the right-most bits: 1 + 1 = (1) 0

A carry of 1 is generated, which must be added to the next bits:

001 — column 0 has just been added

+000 -

+ 1 (carry)

= (1)0 — where (1) indicates a new

carry into column 2.

The final result is: 0100

Another example:

0111 (7)

+0011 + (3)

1010 =(10)

In this example, a carry is again generated, up to the left-most co

lumn.

Exercise 1.5: Compute the result of:

1111

+0001

15

PROGRAMMING THE 6502

Does the result hold in four bits?

With eight bits, it is therefore possible to represent directly the

numbers "00000000" to "11111111," i.e., "0" to "255". Two

obstacles should be visible immediately. First, we are only

representing positive numbers. Second, the magnitude of these

numbers is limited to 255 if we use only eight bits. Let us address

each of these problems in turn.

Signed Binary

In a signed binary representation, the left-most bit is used to in

dicate the sign of the number. Traditionally, "0" is used to denote

a positive number while "1" is used to denote a negative number.

Now "11111111" will represent -127, while "01111111" will

represent +127. We can now represent positive and negative

numbers, but we have reduced the maximum magnitude of these

numbers to 127.

Example: "0000 0001" represents +1 (the leading "0" is " + ",

followed by "000 0001" = 1).

"1000 0001" is -1 (the leading "1" is "-").

Exercise 1.6: What is the representation of "—5" in signed binary?

Let us now address the magnitude problem: in order to represent

larger numbers, it will be necessary to use a larger number of bits.

For example, if we use sixteen bits (two bytes) to represent

numbers, we will be able to represent numbers from —32K to

+32K in signed binary (IK in computer jargon represents 1,024).

Bit 15 is used for the sign, and the remaining 15 bits (bit 14 to bit

0) are used for the magnitude: 215 = 32K. If this magnitude is still

too small, we will use 3 bytes or more. If we wish to represent large

integers, it will be necessary to use a larger number of bytes inter

nally to represent them. This is why most simple BASICs, and

other languages, provide only a limited precision for integers. This

way, they can use a shorter internal format for the numbers which

they manipulate. Better versions of BASIC, or of these other

languages, provide a larger number of significant decimal digits at
the expense of a large number of bytes for each number.

Now let us solve another problem, the one of speed efficiency.

We are going to attempt performing an addition in the signed

16

BASIC CONCEPTS

binary representation which we have introduced. Let us add " —5"

and"+7".

+7 is represented by 00000111

-5 is represented by 10000101

The binary sum is: 10001100, or —12

This is not the correct result. The correct result should be +2. In

order to use this representation, special actions must be taken, de

pending on the sign. This results in increased complexity and re

duced performance. In other words, the binary addition of signed

numbers does not "work correctly." This is annoying. Clearly, the

computer must not only represent information, but also perform

arithmetic on it.

The solution to this problem is called the two's complement

representation, which will be used instead of the signed binary

representation. In order to introduce two's complement let us first

introduce an intermediate step: one's complement.

One's Complement

In the one's complement representation, all positive integers are

represented in their correct binary format. For example "+3" is

represented as usual by 00000011. However, its complement "—3"

is obtained by complementing every bit in the original representa

tion. Each 0 is transformed into a 1 and each 1 is transformed into

a 0. In our example, the one's complement representation of "—3"

will be 11111100.

Another example:

+2 is 00000010

-2 is 11111101

Note that, in this representation, positive numbers start with a

"0" on the left, and negative ones with a "1" on the left.

Exercise 1.7: The representation of "+6" is "00000110". What is

the representation of "—6" in one's complement?

As a test, let us add minus 4 and plus 6:

17

PROGRAAAAAING THE 6502

-4 is 11111011

+6 is 00000110

the sum is: (1) 00000001 where (1) indicates a

carry

The "correct result" should be "2", or "00000010".

Let us try again:

-3is 11111100

-2is 11111101

(1) 00000001
The sum is:

or "1," plus a carry. The correct result should be "-5." The repre

sentation of "-5" is 11111010. It did not work.

This representation does represent positive and negative

numbers. However the result of an ordinary addition does not

always come out "correctly." We will use still another representa

tion. It is evolved from the one's complement and is called the

two's complement representation.

Two's Complement Representation

In the two's complement representation, positive numbers are

still represented, as usual, in signed binary, just like in one's com

plement. The difference lies in the representation of negative

numbers. A negative number represented in two's complement is

obtained by first computing the one's complement, and then ad

ding one. Let us examine this in an example:

+3 is represented in signed binary by 00000011. Its one's com

plement representation is 11111100. The two's complement is ob

tained by adding one. It is 11111101.

Let us try an addition:

(3) 00000011

+(5) +00000101

=(8) =00001000

The result is correct.

18

BASIC CONCEPTS

Let us try a subtraction:

(3) 00000011

(-5) +11111011

=11111110

Let us identify the result by computing the two's complement:

the one's complement of 11111110 is 00000001

Adding 1 + 1

therefore the two's complement is 00000010 or +2

Our result above, "11111110" represents "—2". It is correct.

We have now tried addition and subtraction, and the results were correct

(ignoring the carry). It seems that two's complement works!

Exercise 1.8: What is the two's complement representation of "+127"?

Exercise 1.9: What is the two's complement representation of "-128"?

Let us now add +4 and —3 (the subtraction is performed by add

ing the two's complement):

+4 is 00000100

-3 is 11111101

The result is: (1) 00000001

If we ignore the carry, the result is 00000001, i.e., "V' in decimal. This

is the correct result. Without giving the complete mathematical proof,

let us simply state that this representation does work. In two's comple

ment, it is possible to add or subtract signed numbers regardless of the

sign. Using the usual rules of binary addition, the result comes out

correctly, including the sign. The carry is ignored. This is a very signifi

cant advantage. If it were not the case, one would have to correct the

result for sign every time, causing a much slower addition or subtraction

time.

For the sake of completeness, let us state that two's complement is

simply the most convenient representation to use for simpler processors

such as microprocessors. On complex processors, other representations

may be used. For example, one's complement may be used, but it requires

special circuitry to "correct the result."

19

PROGRAMMING THE 6502

From this point on, all signed integers will implicitly be represented

internally in two's complement notation. See Fig. 1-3 for a table of

two's complement numbers.

Exercise 1.10: What are the smallest and the largest numbers which one

may represent in two's complement notation, using only one byte?

Exercise 1.11: Compute the two's complement of 20. Then compute the

two's complement ofyour result. Do youfind20 again?

The following examples will serve to demonstrate the rules of two's

complement. In particular, C denotes a possible carry (or borrow)

condition. (It is bit 8 of the result.)

V denotes a two's complement overflow, i.e., when the sign of the

result is changed "accidentally" because the numbers are too

large. It is an essentially internal carry from bit 6 into bit 7 (the

sign bit). This will be clarified below.

Let us now demonstrate the role of the carry "C" and the overflow

"V".

The Carry C

Here is an example of a carry:

(128)

+(129)

10000000

+10000001

(257) = (1) 00000001

where (1) indicates a carry.

The result requires a ninth bit (bit "8", since the right-most bit is

"0"). It is the carry bit.

If we assume that the carry is the ninth bit of the result, we

recognize the result as being 100000001 = 257.

However, the carry must be recognized and handled with care.

Inside the microprocessor, the registers used to hold information

are generally only eight-bit wide.When storing the result, only bits 0 to

7 will be preserved.

A carry, therefore, always requires special action: it must be

detected by special instructions, then processed. Processing the

carry means either storing it somewhere (with a special instruc

tion), or ignoring it, or deciding that it is an error (if the largest

authorized result is "11111111").

20

BASIC CONCEPTS

+

+ 127

+ 126

+ 125

+ 65

+ 64

+ 63

+ 33

+ 32

+ 31

+ 17

+ 16

+ 15

+ 14

+ 13

+ 12

+ 11

+ 10

+ 9

+ 8

+ 7

+ 6

+ 5

+ 4

+ 3

+ 2

+ 1

+ 0

2's complement

code

01111111

01111110

01111101

01000001

01000000

00111111

00100001

00100000

00011111

00010001

00010000

00001111

00001110

00001101

00001100

00001011

00001010

00001001

00001000

00000111

00000110

00000101

00000100

00000011

00000010

00000001

00000000

-128

-127

-126

-125

-65

-64

-63

-33

-32

-31

-17

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

2's complement

code

10000000

10000001

10000010

10000011

10111111

11000000

11000001

11011111

11100000

11100001

11101111

11110000

11110001

11110010

11110011

11110100

11110101

11110110

11110111

11111000

11111001

11111010

11111011

11111100

11111101

11111110

11111111

Fig. 1-3:2's Complement Table

21

PROGRAMMING THE 6502

Overflow V

Here is an example of overflow:

bit 6

bit 7

01000000 (64)

+01000001 +(65)

= 10000001 =(-127)

An internal carry has been generated from bit 6 into bit 7. This is

called an overflow.

The result is now negative, "by accident." This situation must

be detected, so that it can be corrected.

Let us examine another situation:

11111111 (-1)

+ 11111111 +(-1)

=(1) 11111110 =(-2)

Y
carry

In this case, an internal carry has been generated from bit 6 into

bit 7, and also from bit 7 into bit 8 (the formal "Carry" C we have

examined in the preceding section). The rules of two's complement

arithmetic specify that this carry should be ignored. The result is

then correct.

This is because the carry from bit 6 into bit 7 did not change the

sign bit.

This is not an overflow condition. When operating on negative

numbers, the overflow is not simply a carry from bit 6 into bit 7.

Let us examine one more example.

11000000 (-64)

+ 10111111 (-65)

=(1) 01111111 (+127)

carry

This time, there has been no internal carry from bit 6 into bit 7, but

there has been an external carry. The result is incorrect, as bit 7

has been changed. An overflow condition should be indicated.

22

BASIC CONCEPTS

Overflow will occur in four situations:

1—adding large positive numbers

2—adding large negative numbers

3—subtracting a large positive number from a large negative
number

4—subtracting a large negative number from a large positive

number.

Let us now improve our definition of the overflow:

Technically, the overflow indicator, a special bit reserved for this

purpose, and called a "flag," will be set when there is a carry from

bit 6 into bit 7 and no external carry, or else when there is no carry

from bit 6 into bit 7 but there is an external carry. This indicates

that bit 7, i.e., the sign of the result, has been accidentally

changed. For the technically-minded reader, the overflow flag is

set by Exclusive ORing the carry-in and carry-out of bit 7 (the sign

bit). Practically every microprocessor is supplied with a special

overflow flag to automatically detect this condition, which re

quires corrective action.

Overflow indicates that the result of an addition or a subtraction

requires more bits than are available in the standard eight-bit

register used to contain the result.

The Carry and the Overflow

The carry and the overflow bits are called "flags." They are pro

vided in every microprocessor, and in the next chapter we will

learn to use them for effective programming. These two indicators

are located in a special register called the flags or "status"

register. This register also contains additional indicators whose

function will be clarified in Chapter 4.

Examples

Let us now illustrate the operation of the carry and the overflow

in actual examples. In each example, the symbol V denotes the

overflow, and C the carry.

If there has been no overflow, V = 0. If there has been an

overflow, V = 1 (same for the carry C). Remember that the rules of

two's complement specify that the carry be ignored. (The

mathematical proof is not supplied here.)

23

PROGRAMMING THE 6502

Positive-Positive

00000110 (+6)

+ 00001000 (+8)

= 00001110 (+ 14) V:0 C:0

(CORRECT)

Positive-Positive with Overflow

01111111 (+ 127)

+ 00000001 (+1)

= 10000000 (-128) V:l C:0

The above is invalid because an overflow has occurred.

(ERROR)

Positive-Negative (result positive)

00000100 (+4)

+ 11111110 (-2)

=(1)00000010 (+2) V:0 C:l (disregard)

(CORRECT)

Positive-Negative (result negative)

00000010 (+2)

+ 11111100 (-4)

= 11111110 (-2) V:0 C:0

(CORRECT)

Negative-Negative

11111110 (-2)

+ 11111010 (-4)

=(1)11111010 (-6) V:0 C:l (disregard)

(CORRECT)

Negative-Negative with Overflow

10000001 (-127)

+ 11000010 (-62)

=(1)01000011 (67) V:l C:l

(ERROR)

24

BASIC CONCEPTS

This time an "underflow" has occurred, by adding two large

negative numbers. The result would be -189, which is too large to
reside in eight bits.

Exercise 1.12: Complete the following additions. Indicate the
result, the carry C, the overflow V, and whether the result is correct
or not:

10111111 () 11111010 ()
-hi 1000001 () +11111001 ()

= V: C: = V: C:

□ CORRECT [_] ERROR □ CORRECT D ERROR

00010000 () 01111110 ()

+01000000 () +00101010 ()

= V: C: = V: C:

D CORRECT I]ERROR □ CORRECT G ERROR

Exercise 1.13: Can you show an example of overflow when adding a

positive and a negative number? Why?

Fixed Format Representation

Now we know how to represent signed integers. However, we
have not yet resolved the problem of magnitude. If we want to
represent larger integers, we will need several bytes. In order to

perform arithmetic operations efficiently, it is necessary to use a
fixed number of bytes rather than a variable one. Therefore, once
the number of bytes is chosen, the maximum magnitude of the
number which can be represented is fixed.

Exercise 1.14: What are the largest and the smallest numbers

which may be represented in two bytes using two's complement?

The Magnitude Problem

When adding numbers we have restricted ourselves to eight bits

because the processor we will use operates internally on eight bits

at a time. However, this restricts us to the numbers in the range

—128 to +127. Clearly, this is not sufficient for many applications.

Multiple precision will be used to increase the number of digits

which can be represented. A two-, three-, or N-byte format may

25

PROGRAMMING THE 6502

then be used. For example, let us examine a 16-bit, "double-pre

cision" format:

00000000 00000000 is "0"

00000000 00000001 is "1"

01111111

11111111

11111111

11111111

11111111

11111110

is

is

is

"32767

"—2"

Exercise 1.15: What is the largest negative integer which can be

represented in a two's complement triple-precision format?

However, this method will result in disadvantages. When adding

two numbers, for example, we will generally have to add them

eight bits at a time. This will be explained in Chapter 4 (Basic Pro

gramming Techniques). It results in slower processing. Also, this

representation uses 16 bits for any number, even if it could be

represented with only eight bits. It is, therefore, common to use 16

or perhaps 32 bits, but seldom more.

Let us consider the following important point: whatever the

number of bits N chosen for the two's complement representation,

it is fixed. If any result or intermediate computation should

generate a number requiring more than N bits, some bits will be

lost. The program normally retains the N left-most bits (the most

significant) and drops the low-order ones. This is called truncating

the result.

Here is an example in the decimal system, using a six digit

representation:

123456

X 1.2

246912

123456

= 148147.2

The result requires 7 digits! The "2" after the decimal point will be

dropped and the final result will be 148147. It has been truncated.

Usually, as long as the position of the decimal point is not lost, this

method is used to extend the range of the operations which may be

performed, at the expense of precision.

The problem is the same in binary. The details of a binary multi-

26

BASIC CONCEPTS

plication will be shown in Chapter 4.

This fixed-format representation may cause a loss of precision,

but it may be sufficient for usual computations or mathematical

operations.

Unfortunately, in the case of accounting, no loss of precision is

tolerable. For example, if a customer rings up a large total on a

cash register, it would not be acceptable to have a five figure

amount to pay, which would be approximated to the dollar.

Another representation must be used wherever precision in the

result is essential. The solution normally used is BCD, or

binary-coded decimal.

BCD Representation

The principle used in representing numbers in BCD is to encode

each decimal digit separately, and to use as many bits as necessary

to represent the complete number exactly. In order to encode each

of the digits from 0 through 9, four bits are necessary. Three bits

would only supply eight combinations, and can therefore not en

code the ten digits. Four bits allow sixteen combinations and are

therefore sufficient to encode the digits "0" through "9". It can

also be noted that six of the possible codes will not be used in the

BCD representation (see Fig. 1-3). This will result later on in a po

tential problem during additions and subtractions, which we will

have to solve. Since only four bits are needed to encode a BCD

CODE

0000

0001

0010

0011

0100

0101

0110

0111

BCD

SYMBOL

0

1

2

3

4

5

6

7

CODE

1000

1001

1010

1011

1100

1101

1110

nil

BCD

SYMBOL

8

9

unused

unused

unused

unused

unused

unused

Fig. 1-4: BCD Table

27

PROGRAMMING THE 6502

digit, two BCD digits may be encoded in every byte. This is called

"packed BCD."

As an example, "00000000" will be "00" in BCD. "10011001"

will be "99".

A BCD code is read as follows:

001

BCD digit "2" **-*

BCD digit "1" *+—

BCD number "21"

Exercise 1.16: What is the BCD representationfor "29"? "91"?

Exercise 1.17: Is "10100000" a validBCD representation? Why?

As many bytes as necessary will be used to represent all BCD

digits. Typically, one or more nibbles will be used at the beginning

of the representation to indicate the total number of nibbles, i.e.,

the total number of BCD digits used. Another nibble or byte will

be used to denote the position of the decimal point. However, con

ventions may vary.

Here is an example of a representation for multibyte BCD in

tegers:

Obytes)3 +

number

3f digits

2 2 1

number "221"

(up to 255) sign

This represents +221

(The sign may be represented by 0000 for +, and 0001 for -, for

example.)

Exercise 1.18: Using the same convention, represent "-23123". Show

it in BCDformat, as above, then in binary.

Exercise 1.19: Show the BCDfor "222" and "111", then for the result

of222 x 111. (Compute the result by hand, then show it in the above

representation.)

The BCD representation can easily accommodate decimal

numbers.

28

BASIC CONCEPTS

For example, +2.21 may be represented by:

J~\ I 221

3 digits "."is on the +

left of digit 2

The advantage of BCD is that it yields absolutely correct

results. Its disadvantage is that it uses a large amount of memory

and results in slow arithmetic operations. This is acceptable only

in an accounting environment and is normally not used in other

cases.

Exercise 1.20: How many bits are required to encode '9999" in BCD?

And in Two's complement?

We have now solved the problems associated with the represen

tation of integers, signed integers and even large integers. We

have even already presented one possible method of representing

decimal numbers, with BCD representation. Let us now examine

the problem of representing decimal numbers in a fixed length for

mat.

Floating-Point Representation

The basic principle is that decimal numbers must be represented

with a fixed format. In order not to waste bits, the representation

will normalize all the numbers.

For example, "0.000123" wastes three zeros on the left of the

number, which have no meaning except to indicate the position of

the decimal point. Normalizing this number results in .123 X 103.

".123" is called a normalized mantissa, "—3" is called the expo

nent. We have normalized this number by eliminating all the meaning

less zeros on the left of it and adjusting the exponent.

Let us consider another example:

22.1 is normalized as .221 x 102

or M X 10E where M is the mantissa, and E is the exponent.

29

PROGRAMMING THE 6502

It can be readily seen that a normalized number is characterized
by a mantissa less than 1 and greater or equal to .1 in all cases
where the number is not zero. In other words, this can be repre
sented mathematically by:

.1 < M < 1 or 10-1 < M < 10°

Similarly, in the binary representation:

21<M<2° (or .

Where M is the absolute value of the mantissa (disregarding the
sign).

For example:

111.01 is normalized as: .11101 X 23.

The mantissa is 11101.

*The exponent is 3.

Now that we have defined the principle of the representation,
let us examine the actual format. Atypical floating-point represen
tation appears below.

31 24 23 16 15

1 1 T

S EXP

I

MANTISSA

Fig. 1-5: Typical Floating-Point Representation

In the representation used in this example, four bytes are used

for a total of 32 bits. The first byte on the left of the illustration is

used to represent the exponent. Both the exponent and the man

tissa will be represented in two's complement. As a result, the

maximum exponent will be -128. "S" in Fig. 1-5 denotes the sign
bit.

Three bytes are used to represent the mantissa. Since the first

bit in the two's complement representation indicates the sign, this

leaves 23 bits for the representation of the magnitude of the man
tissa.

30

BASIC CONCEPTS

Exercise 1.21: How many decimal digits can the mantissa repre

sent with the 23 bits?

This is only one example of a floating point representation. It is

possible to use only three bytes, or it is possible to use more. The

four-byte representation proposed above is just a common one

which represents a reasonable compromise in terms of accuracy,

magnitude of numbers, storage utilization, and efficiency in

arithmetic operation.

We have now explored the problems associated with the rep

resentation of numbers and we know how to represent them in in

teger form, with a sign, or in decimal form. Let us now examine

how to represent alphanumeric data internally.

Representing Alphanumeric Data

The representation of alphanumeric data, i.e. characters, is com

pletely straightforward: all characters are encoded in an eight-bit

code. Only two codes are in general use in the computer world, the

ASCII Code, and the EBCDIC Code. ASCII stands for *'American

Standard Code for Information Interchange," and is universally

used in the world of microprocessors. EBCDIC is a variation of

ASCII used by IBM, and therefore not used in the microcomputer

world unless one interfaces to an IBM terminal.

Let us briefly examine the ASCII encoding. We must encode 26

letters of the alphabet for both upper and lower case, plus 10

numeric symbols, plus perhaps 20 additional special symbols. This

can be easily accomplished with 7 bits, which allow 128 possible

codes. (See Fig. 1-6.) All characters are therefore encoded in 7 bits.

The eighth bit, when it is used, is the parity bit Parity is a tech

nique for verifying that the contents of a byte have not been ac

cidentally changed. The number of l's in the byte is counted and

the eighth bit is set to one if the count was odd, thus making the

total even. This is called even parity. One can also use odd parity,

i.e. writing the eighth bit (the left-most) so that the total number of

l's in the byte is odd.

Example: let us compute the parity bit for "0010011" using even

parity. The number of l's is 3. The parity bit must therefore be a 1

so that the total number of bits is 4, i.e. even. The result is

10010011, where the leading 1 is the parity bit and 0010011 iden

tifies the character.

31

PROGRAMMING THE 6502

The table of 7-bit ASCII codes is shown in Fig. 1-6. In practice, it

is used "as is," i.e. without parity, by adding a 0 in the left-most

position, or else with parity, by adding the appropriate extra bit on

the left.

Exercise 1.22: Compute the 8-bit representation of the digits "0"

through "0", using even parity. (This code will be used in applica

tion examples of Chapter 8.)

Exercise 1.23: Same for the letters "A " through 44F".

Exercise 1.24: Using a non-parity ASCII code (where the left-most

bit is "0'7, indicate the binary contents of the 4 bytes below:

BIT NUMBERS

\

br

\

\

b.

\

♦
b.

\ J
0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

b>

\
0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

b,

\
0

0

1

1

0

0

1

1

0

0

1

J

0

0

1

1

b.

1
0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

\HEX1

HEXOS.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

0

0

0

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

0

0

1

1

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EAA

SUB

ESC

FS

GS

RS

US

0

1

0

2

SP

1

#

$

%

&

(

)

•

+

-

/

0

3

0

1

2

3

4

5

6

7

8

9

<

-

>

?

1

0

0

4

m

A

B

C

D

E

F

G

H

1

J

K

L

M

N

0

1

0

1

5

P

Q

R

S

T

U

V

W

X

Y

Z

[

V
]

A

_

1

1

0

6

a

b

c

d

e

f

9

h

•

i

k

1

m

n

0

1

1

1

7

P

q

r

s

t

u

V

w

X

y

z

{

1

}

<^

DEL

Fig. 1-6: ASCII Conversion Table

In specialized situations such as telecommunications, other

codings may be used such as error-correcting codes. However they

are beyond the scope of this book.

32

BASIC CONCEPTS

We have examined the usual representations for both program

and data inside the computer. Let us now examine the possible ex

ternal representations.

EXTERNAL REPRESENTATION OF INFORMATION

The external representation refers to the way information is pre

sented to the user, i.e. generally to the programmer. Information

may be presented externally in essentially three formats: binary,

octal or hexdecimal, and symbolic.

1. Binary

It has been seen that information is stored internally in bytes,

which are sequences of eight bits (O's or l's). It is sometimes

desirable to display this internal information directly in its binary

format and this is called binary representation. One simple exam

ple is provided by Light Emitting Diodes (LEDs) which are essen

tially miniature lights, on the front panel of the microcomputer. In

the case of an eight-bit microprocessor, a front panel will typically

be equipped with eight LEDs to display the contents of any inter

nal register. (A register is used to hold eight bits of information

and will be described in Chapter 2). A lighted LED indicates a one.

A zero is indicated by an LED which is not lighted. Such a binary

representation may be used for the fine debugging of a complex

program, especially if it involves input/output, but is naturally

impractical at the human level. This is because in most cases, one

likes to look at information in symbolic form. Thus "9" is much

easier to understand or remember than "1001". More convenient

representations have been devised, which improve the person-

machine interface.

2. Octal and Hexadecimal

"Octal" and "hexadecimal" encode respectively three and four

binary bits into a unique symbol. In the octal system, any

combination of three binary bits is represented by a number be

tween 0 and 7.

"Octal" is a format using three bits, where each combination of

three bits is represented by a symbol between 0 and 7:

33

PROGRAMMING THE 6502

binary

000

001

010

Oil

100

101

110

111

octal

0

1

2

3

4

5

6

7

Fig. 1-7: Octal Symbols

For example, "00 100

Y T
0 4

or "044" in octal.

Another example: 11

Y

3

or "377" in octal.

100" binary is represented by:

Y
4

111

Y

. 7

111 is:

Y

7

Conversely, the octal "211" represents:

010 001 001

or "10001001" binary.

Octal has traditionally been used on older computers which were

employing various numbers of bits ranging from 8 to perhaps 64.

More recently, with the dominance of eight-bit microprocessors,

the eight-bit format has become the standard, and another more

practical representation is used. This is hexadecimal

In the hexdecimal representation, a group of four bits is en

coded as one hexadecimal digit. Hexadecimal digits are

represented by the symbols from 0 to 9, and by the letters A, B, C,

D, E, F. For example, "0000" is represented by "0", "0001" is

represented by "1" and "1111" is represented by the letter "F"

(see Fig. 1-8).

34

BASIC CONCEPTS

DECIMAL

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

BINARY

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

HEX

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

OCTAL

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

Fig. 1-8: Hexadecimal Codes

35

PROGRAMMING THE 6502

Example: 1010 0001 in binary is represented by

A 1 in hexadecimal.

Exercise 1.25: What is the hexadecimal representation of

"10101010?"

Exercise 1.26: Conversely, what is the binary equivalent of "FA "

hexadecimal?

Exercise 1.27: What is the octal of "01000001"?

Hexadecimal offers the advantage of encoding eight bits into on

ly two digits. This is easier to visualize or memorize an# faster to

type into a computer than its binary equivalent. Therefore, on

most new microcomputers, hexadecimal is the preferred method of

representation for groups of bits.

Naturally, whenever the information present in the memory has

a meaning, such as representing text or numbers, hexadecimal is

not convenient for representing the meaning of this information

when it is brought out for use by humans.

Symbolic Representation

Symbolic representation refers to the external representation of

information in actual symbolic form. For example, decimal num

bers are represented as decimal numbers, and not as sequences of

hexadecimal symbols or bits. Similarly, text is represented as

such. Naturally, symbolic representation is most practical to the

user. It is used whenever an appropriate display device is

available, such as a CRT display or a printer. (A CRT display is a

television-type screen used to display text or graphics.) Unfortu

nately, in smaller systems such as one-board microcomputers, it is

uneconomical to provide such displays, and the user is restricted

to hexadecimal communication with the computer.

Summary of External Representations

Symbolic representation of information is the most desirable

since it is the most natural for a human user. However, it requires

an expensive interface in the form of an alphanumeric keyboard,

plus a printer or a CRT display. For this reason, it may not be

36

BASIC CONCEPTS

available on the less expensive systems. An alternative type of rep
resentation is then used, and in this case hexadecimal is the domi

nant representation. Only in rare cases relating to fine de-bugging

at the hardware or the software level is the binary representation

used. Binary directly displays the contents of registers of memory

in binary format.

(The utility of a direct binary display on a front panel has always

been the subject of a heated emotional controversy, which will not

be debated here.)

We have seen how to represent information internally and exter

nally. We will now examine the actual microprocessor which will

manipulate this information.

Additional Exercises

Exercise 1,28: What is the advantage of two's complement over other

representations used to represent signed numbers?

Exercise 1.29: How wouldyou represent "1024" in direct binary? Signed

binary? Two's complement?

Exercise 1.30: What is the V-bit? Should theprogrammer test it after an

addition or subtraction?

Exercise 1.31: Compute the two's complement of "+16", "+17",

"+18", "-16", "-17", "-18".

Exercise 1.32: Show the hexadecimal representation of the following

text, which has been stored internally in ASCIIformat, with no parity:

= "MESSAGE".

37

6502 HARDWARE ORGANIZATION

INTRODUCTION

In order to program at an elementary level, it is not necessary

to understand in detail the internal structure of the processor

that one is using. However, in order to do efficient programming,

such an understanding is required. The purpose of this chapter is
to present the basic hardware concepts necessary for understan

ding the operation of the 6502 system. The complete microcompu

ter system includes not only the microprocessor unit (here the

6502), but also other components. This chapter presents the 6502

proper, while the other devices (mainly input/output) will be pre
sented in a separate chapter (Chapter 7).

We will review here the basic architecture of the microcomputer
system, then study more closely the internal organization of the

6502. We will examine, in particular, the various registers. We will

then study the program execution and sequencing mechansim.
From a hardware standpoint, this chapter is only a simplified
presentation. The reader interested in gaining detailed understanding
is referred to our book ref. C201 ("Microprocessors," by the same
author).

SYSTEM ARCHITECTURE

The architecture of the microcomputer system appears in Figure

2-1. The microprocessor unit (MPU), which will be a 6502 here,

appears on the left of the illustration. It implements the functions

38

6502 HARDWARE ORGANIZATION

of a central processing unit (CPU) within one chip: it in
cludes an arithmetic-logical-unit (ALU), plus its internal registers,

and a control-unit (CU) in charge of sequencing the system.

Its operation will be explained in this chapter.

8-BIT DATA BUS

ir
ROM

(PRO

GRAM)

RAM

(DATA)

16-BIT ADDRESS BUS

CONTROL LINES

Fig. 2-1: Architecture of a Standard Microprocessor System

The MPU creates three buses: an 8-bit bi-directional data-bus,

which appears at the top of the illustration, a 16-bit mono-

directional address-bus and a control-bus which appears at the

bottom of the illustration. Let us describe the function of each of

the buses.

The data-bus carries data being exchanged by the various

elements of the system. Typically, it will carry data from the

memory to the MPU, from the MPU to the memory, or from

the MPU to an input/ouput chip. (An input/output chip is a com

ponent in charge of communicating with an external device.)

The address-bus carries an address generated by the MPU,

which will select one internal register within one of the chips

attached to the system. This address specifies the source, or the

destination, of the data which will transit along the data-bus.

The control-bus carries the various synchronization signals re

quired by the system.

39

PROGRAMMING THE 6502

Having described the purpose of the busses, let us now connect the ad
ditional components required by a complete system.

Every MPU requires a precise timing reference, which is supplied by a

clock and a crystal. In most * 'older' ' microprocessors, the clock-oscilla
tor is external to the MPU and requires an extra chip. In most recent mi

croprocessors, the clock oscillator is usually incorporated within the

MPU. The quartz crystal, however, because of its bulk is always external
to the system. The crystal and the clock appear on the left of the MPU
box in the illustration.

Let us now turn our attention to the other elements of the system. Go

ing from left to right on the illustration, we distinguish:

The ROM is the read-only-memory and contains the program for the
system. The advantage of the ROM is that its contents are permanent

and do not disappear whenever the system is turned off. The ROM,

therefore, always contains a bootstrap or a monitor program (their func
tion will be explained later) to permit initial system operation. In a pro

cess-control environment, nearly all the programs will reside in ROM as

they will probably never be changed. In such case, the industrial user has

to protect the system against power failures: programs may not be vola
tile. They must be in ROM.

However, in a hobbyist environment, or in a program-development
environment (when the programmer tests the program), most of the pro

grams will reside in RAM so that they can easily be changed. Later, they

may remain in RAM, or be transferred into ROM, if desired. RAM,

however, is volatile. Its contents are lost when power is turned off.

The RAM (random-access-memory) is the read/write memory for the
system. In the case of a control system, the amount of RAM will typi

cally be small (for data only). On the other hand, in a program-develop
ment environment, the amount of RAM will be large, as it will contain

programs plus development software. All RAM contents must be loaded
prior to use from an external device.

Finally, the system will contain one or more interface chips so that it

may communicate with the external world. The most frequently used in

terface chip is the "PIO" or parallel-input-output chip. It is the one

shown in the illustration. This PIO, like all other chips in the system,

connects to all three busses and provides at least two 16-bit ports for

communication with the outside world. For more details on how an ac

tual PIO works, refer to book C201 or else, for specifics of the 6502 sys

tem, refer to Chapter 7 (Input/Output devices).

40

6502 HARDWARE ORGANIZATION

All these chips are connected to all three busses, including the
control bus. However, to clarify the illustration, the connections be

tween the control bus and these various chips are not shown on the

diagram.

The functional modules which have been described need not

necessarily reside on a single LSI chip. In fact, we will use combina

tion chips which include both a PIO and a limited amount of ROM

or RAM. For more details refer to Chapter 7.

Still more components will be required to build a real system. In

particular, the busses usually need to be buffered Also decoding

logic may be used for the memory RAM chips, and finally some

signals may need to be amplified by drivers. These auxiliary circuits

will not be described here as they are not relevant to programming.

The reader interested in specific assembly and interfacing tech

niques is referred to book C207 ''Microprocessor Interfacing Tech

niques. "

INTERNAL ORGANIZATION OF THE 6502

A simplified diagram of the internal organization of the 6502 ap

pears in Figure 2-2.

The arithmetic logical unit (ALU) appears on the right of the il

lustration. It can easily be recognized by its characteristic "V"

shape. The function of the ALU is to perform arithmetic and logical

operations on the data which is fed to it via its two input ports. The
two input ports of the ALU are respectively the "left input" and the

"right input." They correspond to the top extremities of the "V"
shape. After performing an arithmetic operation such as an addition

or subtraction, the ALU outputs its contents at the bottom of the il

lustration.

The ALU is equipped with a special register, the accumulator (A).

The accumulator is on the left input. The ALU will automatically
reference this accumulator as one of the inputs. (However, a bypass
also exists.) This is a classic accumulator-based design. In

arithmetic and logical operations, one of the operands will be the ac

cumulator, and the other will typically be a memory location.
The result will be deposited in the accumulator. Referencing the ac
cumulator as both the source and the destination for data is the
reason for its name: it accumulates results. The advantage of this
accumulator-based approach is the possibility of using very short
instructions-just a single byte (8 bits) to specify the "opcode" i.e.

41

PROGRAMMING THE 6502

P = PROCESSOR

STATUS

MUX = MULTIPLEXER

ALU = ARITHMETIC-

LOGIC UNIT

Fig. 2-2: Internal Organization of the 65O2

the nature of the operation performed. If the operand had to be

fetched from one of the other registers (other than an accumulator),

it would be necessary to use a number of extra bits to designate this

register within the instruction. The accumulator architecture there

fore, results in improved execution speed. The disadvantage is that

the accumulator must always be loaded with the desired data prior
to its use. This may result in some inefficiency.

Let us go back to the illustration. By the side of the ALU, to its

left, appears a special 8-bit register, the processor status-flags (P).
This register contains 8 status bits. Each of these bits, physically
implemented by a flip-flop inside the register is used to denote a
special condition. The function of the various status bits will be ex

plained progressively during the programming examples presented
in the next chapter, and will be described completely in Chapter
4, which presents the complete instruction set. As an example,
three such status flags are the N, Z, and C bits.

42

6502 HARDWARE ORGANIZATION

N stands for "negative." It is bit 7 (i.e., the left-most) of regis

ter P. Whenever this bit is one it indicates that the result of the

operation through the ALU is negative.

Bit Z stands for zero. Whenever this bit (bit position 1) is a one,

it denotes that a zero result was obtained.

Bit C, in the right-most position (position 0), is a carry bit.

Whenever two 8-bit numbers are added and the result cannot be

contained in 8 bits, bit C is the ninth bit ofthe result. The carry is

used extensively during arithmetic operations.

These status bits are automatically set by the various instruc

tions. A complete list of the instructions and the way in which

they affect the status bits of the system appears in Appendix A, as

well as in Chapter 4. These bits will be used by the programmer to

test various special or exceptional conditions, or else to test

quickly for some erroneous result. As an example, testing bit Z

may be accomplished with special instructions and will im

mediately tell whether the result of a previous operation was 0

or not. All decisions in an assembly language program, i.e. in all

the programs that will be developed in this book, will be based on

the testing of bits. These bits will be either bits that will be read

from the outside world, or else the status bits of the ALU. It is

therefore very important to understand the function and use of all

status bits in the system. The ALU here is equipped with a status

register containing these bits. All other input/output chips in the

system will also be equipped with status bits. These will be

studied in Chapter 7.

Let us now move leftwards of the ALU on illustration 2-2. The

horizontal rectangles represent the internal registers ofthe 6502.

PC is the program counter. It is a 16-bit register and is physi

cally implemented as two 8-bit registers: PCL and PCH. PCL

stands for the low half of the program counter, i.e., bits 0 through

7. PCH stands for the high part of the program counter, i.e., bits 8

through 15. The program counter is a 16-bit register which con

tains the address of the next instruction to be executed. Every

computer is equipped with a program counter so that it knows

which instruction to execute next. Let us review briefly the mem

ory access mechanism in order to illustrate the role of the pro

gram counter.

43

PROGRAMMING THE 6502

ROM

PC:

Fig. 2-3: Fetching an Instruction from the Memory

THE INSTRUCTION EXECUTION CYCLE

Let us refer now to Figure 2-3. The microprocessor unit appears
on the left, and the memory appears on the right. The memory
chip may be a ROM or a RAM, or any other chip which happens to
contain memory. The memory is used to store instructions and
data. Here, we will fetch one instruction from the memory to
illustrate the role of the program counter. We assume that the

program counter has valid contents. It now holds a 16-bit address

which is the address of the next instruction to fetch in the mem
ory. Every processor proceeds in three cycles:

1 — Fetch the next instruction

2 — Decode the instruction

3 — Execute the instruction

Fetch

Let us now follow the sequence. In the first cycle, the contents of
the program counter are deposited on the address bus and gated

to the memory (on the address bus). Simultaneously, a read signal
may be issued on the control bus of the system, if required. The
memory will receive the address. This address is used to specify
one location within the memory. Upon receiving the read signal,

44

6502 HARDWARE ORGANIZATION

the memory will decode the address it has received, through

internal decoders, and will select the location specified by the
address. A few hundred nanoseconds later, the memory will de

posit the 8-bit data corresponding to the specified address on its

data-bus. This 8-bit word is the instruction that we want to fetch.
In our illustration, this instruction will be deposited on top of the

data bus.

Let us briefly summarize the sequencing. The contents of the

program counter are output on the address bus. A read signal is

generated. The memory cycles. Perhaps 300 nanoseconds later,

the instruction at the specified address is deposited on the data-

bus. The microprocessor then reads the data-bus and deposits its

contents into a specialized internal register, the IR register. The
IR register is the instruction-register. It is 8 bits wide and is used

to contain the instruction just fetched from the memory. The fetch

cycle is now completed. The 8 bits of the instruction are now physi

cally in the special internal register of the 6502, the IR register.

This IR register appears on the left of Figure 2-4.

Decoding and Execution

Once the instruction is contained in IR, the control-unit of the

microprocessor will decode the contents and will be able to gen

erate the correct sequence of internal and external signals for the

execution of the specified instruction. There is, therefore, a short

decoding delay followed by an execution phase, the length of

which depends on the nature of the instruction specified. Some

instructions will execute entirely within the MPU. Other instruc

tions will fetch or deposit data from or into the memory. This is

why the various instructions of the 6502 require various lengths

of time to execute. This duration is expressed as a number of

(clock) cycles. Refer to the Appendix for the number of cycles re

quired by each instruction. A typical 6502 uses one-megahertz

clock. The length of each cycle is therefore 1 microsecond. Since

various clock rates may be used with different components, speed

of execution is normally expressed in number of cycles rather

than in number of nanoseconds.

In the case of the 6502, its clock is internal, represented by the in

ternal oscillator (see Fig. 2-1).

45

PROGRAMMING THE 6502

Fetching the Next Instruction

We have now described how, using the program counter, an

instruction can be fetched from the memory. During the execution

of a program, instructions are fetched in sequence from the mem

ory. An automatic mechanism must therefore be provided to fetch

instructions in sequence. This task is performed by a simple in-

crementor attached to the program counter. This is illustrated in

Figure 2-4. Every time that the contents of the program counter
(at the bottom of the illustration) are placed on the address-bus,

its contents will be incremented and written back into the pro

gram counter. As an example, if the program counter did contain

the value 0, the value 0 would be output in the address bus. Then

the contents of the program counter would be incremented and

the value 1 would be written back into the program counter. In
this way, the next time that the program counter is used, it is the

instruction at address 1 that will be fetched. We have just imple

mented an automatic mechanism for sequencing instructions.

Fig. 2-4: Automatic Sequencing

46

6502 HARDWARE ORGANIZATION

It must be stressed that the above descriptions are simplified.

In reality, some instructions may be 2- or even 3-bytes long so that

successive bytes will be fetched in this manner from the memory.

However, the mechanism is identical. The program counter is

used to fetch successive bytes of an instruction, as well as to fetch

successive instructions themselves. The program counter, to

gether with its incrementer, provides an automatic mechanism

for pointing to successive memory locations.

Other 6502 Registers

One last area on Figure 2-2 has not yet been explained. It is the

set of three registers labeled X, Y and S. Registers X and Y are

called index registers. They are 8 bits wide. They may be used to

contain data on which the program will operate. However, they

normally are used as index registers.

The role of index registers will be described in Chapter 5 on

addressing techniques. Briefly, the contents of these two index

registers may be added in several ways to any specified address

within the system to provide an automatic offset. This is an im

portant facility for retrieving data efficiently when it is stored in

tables. These two registers are not completely symmetrical, and

their roles will be differentiated in the chapter on addressing

techniques.

The stack register S is used to contain a pointer to the top of the

stack area within the memory.

Let us now introduce the formal concept of a stack.

THE STACK

A stack is formally called an LIFO structure (last-in, first-out). A

stack is a set of registers, or memory locations, allocated to this

data structure. The essential characteristic of this structure is

that it is a chronological structure. The first element introduced

into the stack is always at the bottom of the stack. The element

most recently deposited in the stack is on the top of the stack. The
analogy can be drawn to a stack of plates on a restaurant

counter. There is a hole in the counter with a spring in the bottom.

Plates are piled up in the hole. With this organization, it is
guaranteed that the plate which has been put first in the stack
(the oldest) is always at the bottom. The one that has been placed

47

PROGRAMMING THE 6502

most recently on the stack is the one which is on top of it. This

example also illustrates another characteristic of the stack. In

normal use, a stack is only accessible via two instructions: "push"

and "pop" (or "pull"). The push operation results in depositing one

element on top of the stack. The pull operation consists of remov

ing one element from the stack. In practice, in the case of a mic

roprocessor, it is the accumulator that will be deposited on top of

the stack. The pop will result in a transfer of the top element of

the stack into the accumulator. Other specialized instructions

may exist to transfer the top of the stack between other spe

cialized registers, such as the status register.

The availability of a stack is required to implement three pro

gramming facilities within the computer system: subroutines, in

terrupts, and temporary data storage. The role of the stack during

subroutines will be explained in Chapter 3 (Basic Programming

Techniques). The role of the stack during interrupts will be ex

plained in Chapter 6 (Input/Output Techniques). Finally, the role

of the stack to save data at high speed will be explained during

specific application programs.

We will simply assume at this point that the stack is a required

facility in every computer system. A stack may be implemented

in two ways:

1. A fixed number of registers may be provided within the mi

croprocessor itself. This is a "hardware stack." It has the advan

tage of high speed. However, it has the disadvantage of a limited
number of registers.

2. Most general-purpose microprocessors choose another ap

proach, the software stack, in order not to restrict the stack to

a very small number of registers. This is the approach chosen in

the 6502. In the software approach, a dedicated register within

the microprocessor, here register S, stores the stack pointer, i.e.,
the address of the top element of the stack (or more precisely, the

address of the top element of the stack plus one). The stack is then

implemented as an area of memory. The stack pointer will therefore
require 16 bits to point anywhere in the memory.

However, in the case of the 6502, the stack pointer is restricted
to 8 bits. It includes a 9th bit, in the left-most position, always set
to 1. In other words, the area allocated to the stack in the case of
the 6502 ranges from address 256 to address 511. In binary, this is
"100000000" to "111111111." The stack always starts at address
111111111 and may have up to 255 words. This may be viewed

48

6502 HARDWARE ORGANIZATION

as a limitation of the 6502 and will be discussed later in this book.

In the 6502, the stack is at the high address, and grows

"backwards"; the stack pointer is decremented by a PUSH.

In order to use the stack, the programmer will simply initialize

the S register. The rest is automatic.

The stack is said to reside in page 1 of the memory. Let us now

introduce the paging concept.

^MICROPROCESSOR

r REGISTER
7 MEMORY 0

| PUSH

81 ADDRESS"!0

SP I—

I POP_

i r

i

BASE

Fig. 2-5: The 2 Stack Manipulation Instructions

THE PAGING CONCEPT

The 6502 microprocessor is equipped with a 16-bit address-bus.

16 binary bits may be used to create up to 216 = 64K combinations

(IK equals 1,024). Because of addressing features of the 6502

which will be presented in Chapter 5, it is convenient to partition

the memory into logical pages. A page is simply a block of 256

words. Thus, memory locations 0 to 255 are page 0 of the memory.

It will be used for "page zero" addressing.Page 1 of the memory

includes memory locations 256 through 511. We have just estab

lished that page 1 is normally reserved for the stack area. All

other pages in the system are unconstrained by the design and

may be used in any way. In the case of the 6502, it is important to

keep in mind the page organization of the memory. Whenever a

page boundary has to be crossed, it will often introduce an extra

cycle delay in the execution of an instruction.

PROGRAMMING THE 6502

15

ADDRESS

8 7

PAGE*

0

LOCATION

0

255

256

511

512

LOCATION 1

WITHIN

PAGE Jf

MEMORY

PAGEO

PAGE1

WORD

Fig. 2-6: The Paging Concept

THE 6502 CHIP

To complete our description of the diagram, the data bus at the up

per part of Figure 2-2 represents the external data bus. It will be used to

communicate with the external devices, and the memory in particular.

AO-7 and A8-15 represent respectively the low-order and the high-order

part of the address-bus created by the 6502.

For completeness, we present here the actual pin-out of the

6502 microprocessor. You need not read it to understand the rest

ofthis book. However, ifyou intend to connect devices to a system,

this description will be valuable.

The actual pin-out of the 6502 appears in Figure 2-7. The data

bus is labeled DB0-7 and is easily recognizable on the right of the

illustration. The address bus is labeled A0-11 and A12-15. It comes

50

6502 HARDWARE ORGANIZATION

[Power Ground)

(Ready)

(Clock)

(Interrupt Request)

(Non-Maskable

Interrupt)

(Synchronize)

(Power: +5V)

(Memory Bus ^uy

Lines 0 to 11)

vss

RDY •»

01 —

IRQ ■»

—

RMI »-

SYNC •■

VCC

■<=

i

2

3

4

5

6

7

8

9-20

40

39

38

37

36

35

34

26-33

22-25

21

- RES

r-

-*— 00

-

^ R/W

^ *^-

— VSS

(Reset)

(Clock)

(Clock)

(Read/Write)

DB0-7 (Data Bus)

(Memory Bus

A12-'5 Lines 12 to 15)

(Power Ground)

Flg.2-7:65O2Pinout

from pins 9 to 20 on the left of the chip, and pins 22 to 25 on its

right.

The rest of the signals are power and control signals.

The control signals

—R/W: the READ/WRITE line controls the direction of data

transfers on the data-bus.

—IRQ and NMI are "Interrupt Request" and "Non-Maskable

Interrupt". They are two interrupt lines and will be used in

Chapter 7.

—SYNC is a signal which indicates an opcode fetch to the exter

nal world.

—RDY is normally used to synchronize with a slow memory: it

will stop the processor.

—SO sets the overflow flag. It is normally not used.

—0o, 0i and 02 are clock signals.

—RES is RESET, used to initialize.

—Vgg and Vcc are for power (5V).

51

PROGRAMMING THE 6502

HARDWARE SUMMARY

This completes our hardware description of the internal organi

zation of the 6502. The exact internal bussing structure of the

6502 is not important at this point. However, the exact role of

each of the registers is important and should be fully understood

before the reader proceeds. If you are familiar with the concepts

that have been presented, read on. If you do not feel sure about

some of them, it is suggested that you read again the relevant

sections of this chapter, as they will be needed in the next chap

ters. It is suggested that you look again at Figure 2-2 and make

sure that you understand the function of every register in the

illustration.

52

3

BASIC PROGRAMMING

TECHNIQUES

INTRODUCTION

The purpose of this chapter is to present all the basic tech

niques necessary to write a program using the 6502. This chapter

will introduce additional concepts such as register management,

loops, and subroutines. It will focus on programming techniques

using only the internal 6502 resources, i.e., the registers. Actual

programs will be developed such as arithmetic programs. These

programs will serve to illustrate the various concepts presented

so far and will use actual instructions. Thus, it will be seen how

instructions may be used to manipulate the information between

the memory and the MPU, as well as manipulate information

within the MPU itself. The next chapter will then discuss in com

plete detail the instructions available on the 6502. Chapter 6 will

present the techniques available to manipulate information out

side the 6502: the input/output techniques.

In this chapter, we will essentially learn by "doing." By examining

programs of increasing complexity, we will learn the role of the

various instructions and of the registers and will apply the concepts

developed so far. However, one important concept will not be

presented here; it is the concept of addressing techniques. Because of

its apparent complexity, it will be presented separately in chapter 5.

Let us immediately start writing some programs for the 6502.

We will start with arithmetic programs.

53

PROGRAMMING THE 6502

ARITHMETIC PROGRAMS

Arithmetic programs cover addition, subtraction, multiplication,

and divisioa The programs that will be presented here will operate on

integers. These integers may be positive binary integers or may be ex

pressed in two's complement notation, in which case the left-most bit

is the sign bit (See Chapter 1 for a reminder of the two's complement

notation.)

8-Bit Addition

We will add two 8-bit operands called OP1 and OP2, re

spectively stored at memory address ADR1 and ADR2. The sum

will be called RES and will be stored at memory address ADR3.

This is illustrated in Figure 3-1. The program which will perform

this addition is the following:

LDA

ADC

STA

ADRl

ADR2

ADR3

ADRl

ADR2

ADR3

ADDRESSES

LOAD OP1 IN A

ADD OP2 TO OP1

SAVE RES AT ADR3

MEMORY

OP1

OP2

RES

(FIRST OPERAND)

(SECOND OPERAND)

(RESULT)

Fig. 3-1:8-Bit Addition Res=OPl + OP2

54

BASIC PROGRAMMING TECHNIQUES

This is a three-instruction program. Each line is one instruc

tion, in symbolic form. Each such instruction will be translated by

the assembler program into 1, 2, or 3 binary bytes. We will not

concern ourselves with the translation here and only look at the

symbolic representation. The first line specifies an LDA instruc

tion. LDA means "load the accumulator A from the address which

follows."

The address specified on the first line is ADR1. ADR1 is a sym

bolic representation for an actual 16-bit address. Somewhere else

in the program, the ADR1 symbol will be defined. It could be, for

example, address 100.

The instruction LDA specifies "load accumulator A" (inside the

6502) from memory location 100. This will result in a read opera

tion from address 100, the contents of which will be transmitted

along the data-bus and deposited inside the accumulator. You

will recall that arithmetic and logical operations operate on the ac

cumulator as one of the source operands. (Refer to the previous

chapter for more details.) Since we wish to add the two values

OP1 and OP2 together, we first load OP1 into the accumulator.

Then we will be able to add the contents ofthe accumulator (OP1)

to OP2.

The right-most field of this instruction is called a comment field.

It is ignored by the processor, but it is provided for program

readability. In order to understand what the program does, it is of

paramount importance to use good comments.

This is called documenting a program. Here the comment is self

explanatory: the value of OP1, which is located at address ADR1,

is being loaded in accumulator A.

The result of this first instruction is illustrated by Figure 3-2.

(—OP1)

(ADR1)

Fig. 3-2: LDA ADR1: OP1 is Loaded from Memory

55

PROGRAMMING THE 6502

The second instruction of our program is:

ADC ADR2

It specifies "add the contents of memory location ADR2 to the

accumulator." Referring to Figure 3-1, the contents of memory

location ADR2 are OP2, our second operand. The actual contents of

the accumulator now OP1, our first operand. As a result ofthe

execution of the second instruction, OP2 will be fetched from the

memory and added to OP1. The sum will be deposited in the

accumulator. The reader will remember that the results of an

arithmetical operation, in the case of the 6502, are deposited back

into the accumulator. In other microprocessors, it may be possible

to deposit these results in other registers or back into the memory.

The sum of OP1 and OP2 is now in the accumulator. We have

just to transfer the contents ofthe accumulator into memory loca

tion ADR3 in order to store the results at the specified location.

Again, the right-most field of the second instruction is simply a

comment field which explains the role of the instruction (add OP2
to A).'

Fig.3-3:ADCADR2

The effect of the second instruction is illustrated by Figure 3-3.

It can be verified in Figure 3-3 that, initially the accumulator

contained OP1. After the addition, a new result has been written

into the accumulator. It is OP1 + OP2. The contents of any regis

ter within the system, as well as any memory location, remain the

same when a read operation is performed. In other words, reading

the contents of a register or a memory location does not change its

contents. It is only, and exclusively, a write operation that will

56

BASIC PROGRAMMING TECHNIQUES

change the contents of a register. In this example, the contents of

memory locations ADR1 and ADR2 are unchanged. However,

after the second instruction of this program, the contents of the

accumulator have been modified because the output of the ALU

has been written into the accumulator. Its previous contents are
then lost.

Let us now save this result at address ADR3 and we will have

completed our simple addition.

The third instruction specifies: STA ADR3. This means "Store

the contents of accumulator A at the address ADR3." This is self-
explanatory and is illustrated in Figure 3-4.

6502

DATA BUS ^

ADR3:

(ADR3) K

ADDRESS BUS K

/MEMORY

Fig. 3-4: STAADR3 (Save Accumulator in Memory)

6502 Peculiarities

The above three-instruction program would indeed by the com

plete program for most microprocessors. However, two

peculiarities of the 6502 exist, which will normally require two

additional instructions.

First, the ADC instruction really means "add with carry'9

rather than "add." The difference is that a regular add instruction

adds two numbers together. An add-with-carry adds two numbers

together plus the value of the carry bit. Since we are adding here

8-bit numbers, no carry should be used, and at the time we start

the addition we do not necessarily know the condition of the carry

bit (it may have been set by a previous instruction), so we must clear

it, i.e., set it to zero. This will be accomplished by the CLC instruc

tion: *'clear carry."

57

PROGRAMMING THE 6502

Unfortunately, the 6502 does not have both types of addition

operations. It has only an ADC operation. As a result, for single

8-bit additions, a necessary precaution is to always clear the carry

bit. This is no significant disadvantage but should not be forgot

ten.

The second peculiarity of the 6502 lies with the fact that it is

equipped with powerful decimal instructions, which will be used

in the next section on BCD arithmetic. The 6502 always operates

in one of two modes: binary or decimal. The state it is in is con

ditioned by a status bit, the WD" bit (of register P). Since we are

operating in binary mode in this example, it is necessary to make

sure that the D bit is correctly set. This will be done by a CLD

instruction, which will clear the D bit. Naturally, if all arithmetic

within the system is done in binary, the D bit will be cleared once

and for all at the beginning of the program, and it will not be

necessary to set it every time. Therefore, this instruction may, in

fact, be omitted in most programs. However, the reader, who will

practice these exercises on a computer, may go back and forth

between BCD and binary exercises, and this extra instruction has

been included here as it must appear at least once before any

binary addition is performed.

To summarize: our complete, and safe, 8-bit program is now:

CLC

CLD

LDA

ADC

STA

ADR1

ADR2

ADR3

CLEAR CARRY BIT

CLEAR DECIMAL BIT

LOAD OP1 IN A

ADD OP2 TO OP1

SAVE RES AT ADR3

Actual physical addresses may be used instead ofADR1, ADR2,

and ADR3. If one wishes to keep symbolic addresses, it will be

necessary to use so-called "pseudo-instructions" which specify the

value of these symbolic addresses so that the assembly program

may, during translation, substitute the actual physical addresses.

Such pseudo-instructions would be, for example:

ADR1 = $100

ADR2 = $120

ADR3 = $200

Exercise 3.1: Now close this book. Refer only to the list of instruc

tions at the end of the book. Write a program which will add two

58

BASIC PROGRAMMING TECHNIQUES

numbers stored at memory locations LOCI and LOC2. Deposit the

results at memory location LOC3. Then, compare your program to

the one above.

16-Bit Addition

An 8-bit addition will only allow the addition of 8-bit numbers, i.e.,

numbers between 0 and 255, if absolute binary is used. For most prac

tical applications it is necessary to use multiplepreoision and to add

numbers having 16 bits or more. We will present here examples of

arithmetic on 16-bit numbers. They can be readily extended to 24,

32 bits,or more. (One always uses multiples of 8 bits.) We will assume

that the first operand is stored at memory locations ADR1 and

ADR1 -1. Since OP1 is a 16-bit number this time, it will require two

8-bit memory locations. Similarly, OP2 will be stored at ADR2 and

ADR2-1. The result is to be deposited at memory addresses ADR3

and ADR3 -1. This is illustrated in Figure 3-5.

ADR1-1

ADR1

ADR2-1

ADR2

ADR3-1

ADR3

MEMORY

(OPl)H

(OP1)L

(OPR2)H

(OPR2)L

(RES)H

(RES)L

Fig. 3-5:16 Bit Addition: The Operands

59

CLC

CLD

LDA

ADC

STA

LDA

ADC

STA

ADR1

ADR2

ADR3

ADR1-1

ADR2-1

ADR3-1

PROGRAMMING THE 6502

The logic of this program is exactly analogous to the previous

one. First, the lower half of the two operands will be added, since

the microprocessor can only add on 8 bits at a time. Any carry

generated by the addition of these low order bytes will be au

tomatically stored in the internal carry bit ("C"). Then, the high

order half of the two operands will be added together along with

any carry, and the result will be saved in the memory. The pro

gram appears below:

LOW HALF OF OP1

(OP1 + OP2) LOW

SAVE LOW HALF OF RES

HIGH HALF OF OP1

(OP1 + OP2) HIGH + CARRY

SAVE HIGH HALF OF RES

The first two instructions of this program are used to be safe: CLC,

CLD. Their roles have been explained in the previous section. Let us

examine the program. The next three instructions are essentially iden

tical to the ones for the 8-bit addition. They result in adding the least

significant half (bits 0 through 7) of OP1 and OP2. The sum, called

RES, is stored at memory location ADR3.

Automatically, whenever an addition is performed, any result

ing carry is saved in the carry bit of the flags register (register P).

If the two 8-bit numbers do not generate any carry, the value of

the carry bit will be zero. If the two numbers do generate a carry,

then the C bit will be equal to 1.

The next three instructions of the program are also essentially

identical to the previous 8-bit addition program. They add to

gether the most significant half (bits 8 through 15) of OP1 and

OP2, plus any carry, and store the results at address ADR3-1.

After this program has been executed, the 16-bit result is stored

at memory locations ADR3 and ADR3-1.

It is assumed here that no carry will result from this 16-bit

addition. It is assumed that the result is, indeed, a 16-bit number.

If the programmer suspects for any reason that the result might

have 17 bits, then additional instructions should be inserted that

would test the carry bit after this addition.

60

BASIC PROGRAMMING TECHNIQUES

The location of the operands in the memory is illustrated in Fig

ure 3-5.

Note that we have assumed here that the high part of the operand

is stored "on top of the lower part, i.e., at the lower memory ad

dress. This need not necessarily be the case. In fact, addresses

are stored by the 6502 in the reverse manner: the low part is first

saved in the memory and the high part is saved in the next

memory location. In order to use a common convention for both

addresses and data, it is recommended that data also be kept with

the low part on top of the high part. This is illustrated in Figure

3-6A.

EMORY

ADR1

ADR1 ♦ 1

ADR2

ADR2 + 1

ADR3

ADR3+1

(O 1)1

(OPRI)H

(0PR2)L

|OPR2)H

(RES)l

Fig. 3-6A: Storing Operands in Reverse Order

Exercise 3.2: Rewrite the 16-bit addition program above with the mem

ory layout indicated in Figure 3-6A.

Exercise 3.3: Assume now thatADR1 does notpoint to the lower halfof

OPR1 (see Figure 3-6A), but points to the higherpart ofOPRl. This is

illustrated in Figure 3-6B. Again, write the correspondingprogram.

61

PROGRAMMING THE 6502

ADR1-I

ADR1

ADR2-1

ADR2

ADR3 1

ADR3

MEMORY

lOPRI)L

(OPRI)H

(OPR2)l

(OPR2)H

(RES)L

(RES)H

Fig. 3-6B: Pointing to the High Byte

It is the programmer, i.e., you, who must decide how to store 16-bit

numbers (low part or high part first) and also whether your address

references point to the lower or to the higher half of such numbers.

This is the first of many choices which you will learn to make when

designing algorithms or data structures.

We have now learned to perform a binary addition. Let us turn

to the subtraction.

Subtracting 16-Bit Numbers

Doing an 8-bit subtract would be too simple. Let us keep it as an ex

ercise and directly perform a 16-bit subtract. As usual, our two

numbers, OPR1 and OPR2, are stored at addresses ADR1 and ADR2.

The memory layout will be assumed to be that of Figure 3-6A. In order

to subtract, we will use a subtact operation (SBC) instead of an add

operation (ADC). The only other change, when comparing it to the

addition, is that we will use an SEC instruction at the beginning of the

62

CLD

SEC

LDA

SBC

STA

LDA

SBC

ADR1

ADR2

ADR3

ADR1 + 1

ADR2 + 1

BASIC PROGRAMMING TECHNIQUES

program instead of a CLC. SEC means "set carry to 1." This in
dicates a "no-borrow" condition. The rest of the program is identical
to the one for addition. The program appears below:

SET CARRY TO 1

(OPR1) L INTO A

(OPR1) L -(OPR2)L

STORE (RESULT)L

(OPR1) H INTO A

(OPR1) H -(0PR2)H

STA ADR3 + 1 STORE (RESULT)H

Exercise 3.4: Write the subtraction programfor 8-bit operands.

It must be remembered that in the case of two's complement

arithmetic, the final value of the carry flag has no meaning. If an

overflow condition has occurred as a result of the subtraction,

then the overflow bit (bit V) of the flags register will have been

set. It can then be tested.

The examples just presented are simple binary additions. How

ever, another type of addition may be necessary; it is the BCD

addition.

BCDArithmetic

8-Bit BCD Addition

The concept of BCD arithmetic has been presented in Chapter 1.

It is used essentially for business applications where it is impera

tive to retain every significant digit in a result. In the BCD nota

tion, a 4-bit nibble is used to store one decimal digit (0 through 9).

As a result, every 8-bit byte may store two BCD digits. (This is

called packed BCD.) Let us now add two bytes containing two

BCD digits each.

In order to identify the problems, let us try some numeric

examples first.

Let us add "01" and "02":

"01" is represented by 0000 0001.

63

PROGRAMMING THE 6502

"02" is represented by 0000 0010.

The result is 0000 0011.

This is the BCD representation for "03". (If you feel unsure of the

BCD equivalent, refer to the conversion table at the end of the

book.) Everything worked very simply in this case. Let us now try

another example.

"08" is represented by 0000 1000.

"03" is represented by 0000 0011.

Exercise 3.5: Compute the sum of the two numbers above in the

BCD representation. What do you obtain? (answer follows)

If you obtain 0000 1011, you have computed the binary sum of

"8" and "3". You have indeed obtained "11" in binary. Unfortu

nately, "1011" is an illegal code in BCD. You should obtain the

BCD representation of "11", i.e., "0001 0001"!

The problem stems from the fact that the BCD representation

uses only the first ten combinations of 4 digits in order to encode

the decimal symbols "0" through "9". The remaining six possible

combinations of4 digits are unused, and illegal "1011" is one such

combination. In other words, whenever the sum of two binary

digits is greater than "9", then one must add "6" to the result in

order to skip over the unused 6 codes. Add the binary representa
tion for "6" to "1011":

1011 (illegal binary result)

+ 0110 (+6)

The result is: 0001 0001.

This is, indeed, "11" in the BCD notation! We now have the

correct result.

This example illustrates one of the basic difficulties of the BCD

mode. One must compensate for the six missing codes. On most

microprocessors, a special instruction, called "decimal adjust,"

must be used to adjust the result of the binary addition (add 6 if

result greater than 9). In the case of the 6502, the ADC instruc

tion does it automatically. This is a clear advantage of the 6502

when doing BCD arithmetic.

The next problem is illustrated by the same example. In our

example, the carry will be generated from the lower BCD digit

64

BASIC PROGRAMMING TECHNIQUES

(the right-most one) into the left-most one. This internal carry

must be taken into account and added to the second BCD digit.

The addition instruction for the 6502 takes care of this automati

cally. However, it is often convenient to detect this internal carry

from bit 3 to bit 4 (the "half-carry"). No flag is provided in the

6502.

Finally, just as in the case of the binary addition, the usual

SED and CLC instructions must be used prior to executing the

BCD addition proper. As an example, a program to add the BCD

numbers "11" and "22" appears below:

CLC

SED

LDA

ADC

STA

#$11

#$22

ADR

CLEAR CARRY

SET DECIMAL MODE

LITERAL BCD "11"

LITERAL BCD "22"

In this program, we are using two new symbols: "#" and "$".

The "#" symbol denotes that a "literal" (or constant) follows. The

"$" sign within the operand field of the instruction specifies that

f
\

1 ».

1

2

LDA

1

I

ADC

1

(RESULT)

1

2

Fig. 3-7: Storing BCD Digits

65

PROGRAMMING THE 6502

the data which follows is expressed in hexadecimal notation. The

hexadecimal and the BCD representations for digits "0" through

"9" are identical. Here we wish to add the literals (or constants)

"11" and "22". The result is stored at the address ADR. When the

operand is specified as part of the instruction, as it is in the above

example, this is called immediate addressing. (The various ad

dressing modes will be discussed in detail in Chapter 5.) Storing

the result at a specified address, such as STA ADR, is called abso

lute addressing when ADR represents a regular 16-bit address.

Exercise 3.6: Could we move the CLC instruction in the program

below the instruction LDA ?

BCD Subtraction

BCD subtraction appears to be complex. In order to perform a

BCD subtraction, one must add the 10's complement of the num

ber, just like one adds the 2's complement of a number to perform

a binary subtract. The 10's complement is obtained by comput

ing the complement to 9, then adding 1. This typically requires

three to four operations on a standard microprocessor. However,

the 6502 is equipped with a special BCD subtraction instruction

which performs this in a single instruction! Naturally, and just as

in the binary example, the program will be preceded by the in

structions SED, which sets the decimal mode, unless it has been

previously set, and SEC, which sets the carry to 1. Thus, the pro

gram to subtract BCD "25" from BCD "26" is the following:

SED

SEC

LDA

SBC

STA

#$26

#$25

ADR

SET DECIMAL MODE

SET CARRY

LOAD BCD 26

MINUS BCD 25

STORE RESULT

16-Bit BCD Addition

16-bit addition is performed just as simply as in the binary

case. The program for such an addition appears below:

CLC

SED

LDA ADR1

66

BASIC PROGRAMMING TECHNIQUES

ADC

STA

LDA

ADC

STA

ADR2

ADR3

ADR1-1

ADR2-1

ADR3-1

Exercise 3.7: Compare the program above to the one for the 16-bit

binary addition. What is the difference?

Exercise 3.8: Write the subtraction program for a 16-bit BCD. (Do

not use CLC and ADC!)

BCD Flags

In BCD mode, the carry flag during an addition indicates the

fact that the result is larger than 99. This is not like the two's

complement situation, since BCD digits are represented in true

binary. Conversely, the absence of the carry flag during a subtrac

tion indicates a borrow.

Programming HintsforAdd andSubtract

—Always clear the carry flag before performing an addition.

—Always set the carry flag to 1 before performing a subtrac

tion.

—Set the appropriate mode: binary or decimal.

Instruction Types

We have now used three types of microprocessor instructions.

We have used LDA and STA, which respectively load the ac

cumulator from the memory address and store its contents at the

specified address. These two instructions are data transfer in

structions.

Next, we have used arithmetic instructions, such as ADC and

SBC. They perform respectively an addition and a subtraction

operation. More ALU instructions will be introduced in this chap

ter soon.

Finally, we have used instructions such as CLC, SEC and others,

which manipulate the flag bits (respectively the carry and the de

cimal bits in our examples). They are status manipulation or con

trol instructions. A comprehensive description of the 6502 instruc-

67

PROGRAMMING THE 6502

tions will be presented in Chapter 4.

Still other types of instructions are available within the micro

processor which we have not yet used. They are in particular

the "branch" and "jump" instructions, which will modify the order

in which the program is being executed. This new type of instruc

tion will be introduced in our next example.

Multiplication

Let us now examine a more complex arithmetic problem: the

multiplication of binary numbers. In order to introduce the al

gorithm for a binary multiplication, let us start by examining a

usual decimal multiplication: We will multiply 12 by 23.

12 (Multiplicand) (MPD)

x23 (Multiplier) (MPR)

36 (Partial Product) (PP)

+ 24

=276 (Final Result) (RES)

The multiplication is performed by multiplying the right-most digit

of the multiplier by the multiplicand, i.e., "3" x "12". The partial

product is "36." Then one multiplies the next digit of the multi

plier, i.e., "2," by "12." "24" is then added to the partial pro

duct.

But there is one more operation: 24 is offset to the left by one

position. We will say that 24 is being shifted left by one position.

Equivalently, we could have said that the partial product (36) had

been shifted one position to the right before adding.

The two numbers, correctly shifted, are then added and the sum

is 276. This is simple. Let us now look at the binary multiplica

tion. The binary multiplication is performed in exactly the same

way.

Let us look at an example. We will multiply 5x3:

(5) 101 (MPD)

(3) xOll (MPR)

101 (PP)

101

000

(15) 01111 (RES)

68

BASIC PROGRAMMING TECHNIQUES

In order to perform the multiplication, we operate exactly as

we did above. The formal representation of this algorithm ap

pears in Figure 3-8. It is a flowchart for the algorithm, our first

flowchart. Let us examine it more closely.

LEFT SHIR (1)MPD

OR RIGHT SHIFT (1) RES

DONE

Fig. 3-8: The Basic Multiplication Algorithm: Flowchart

This flow-chart is a symbolic representation ofthe algorithm we

have just presented. Every rectangle represents an order to be

carried out. It will be translated into one or more program in

structions. Every diamond-shaped symbol represents a test being

performed. This will be a branching point in the program. If the

test succeeds, we will branch to a specified location. If the test

does not succeed, we will branch to another location. The concept

of branching will be explained later in the program itself. The

reader should now examine this flow-chart and ascertain that it

does indeed represent the algorithm exactly. Note that there is an

arrow coming out of the last diamond at the bottom of the flow

chart, back to the first diamond on top. This is because the same

portion of the flow-chart will be executed eight times, once for

69

PROGRAMMING THE 6502

every bit of the multiplier. Such a situation where execution will

restart at the same point is called a program loop, for obvious
reasons.

Exercise 3.9: Multiply "4" by "7" in binary using the flow chart,

and verify that you obtain "28? Ifyou do not, try again. It is only if

you obtain the correct result that you are ready to translate this flow
chart into a program.

Let us now translate this flow-chart into a program for the

6502. The complete program appears in Figure 3.9. We are now go

ing to study it in detail. As you will recall from Chapter 1, pro

gramming consists here of translating the flowchart of Figure

3-8 into the program of Figure 3-9. Each of the boxes in the flow

chart will be translated by one or more instructions.

It is assumed that MPR and MPD already have a value.

LDA

STA

STA

STA

LDX

MULT LSR

BCC

LDA

CLC

ADC

STA

LDA

ADC

STA

NOADD ASL

ROL

DEX

BNE

#0

TMP

RESAD

RESAD+1

#8

MPRAD

NOADD

RESAD

MPDAD

RESAD

RESAD+1

TMP

RESAD+1

MPDAD

TMP

MULT

ZERO ACCUMULATOR

CLEAR THIS ADDRESS

CLEAR

CLEAR

X IS COUNTER

SHIFT MPR RIGHT

TEST CARRY BIT

LOAD A WITH LOW RES

PREPARE TO ADD

ADD MPD TO RES

SAVE RESULT

ADD REST OF SHIFTED MPD

SHIFT MPD LEFT

SAVE BIT FROM MPD

DECREMENT COUNTER

DO IT AGAIN IF COUNTER #0

Fig. 3-9:8x8 Multiply

The first box ofthe flow-chart is an initialization box. It is neces

sary to set a number of registers or memory locations to "0," as

this program will require their use. The registers which will be

used by the multiplication program appear in Figure 3-10. On the

left of the illustration appears the relevant portion of the 6502

microprocessor. On the right of the illustration appears the rele-

70

BASIC PROGRAMMING TECHNIQUES

vant section of the memory. We will assume here that memory

addresses increase from the top to the bottom of the illustration.

Naturally, the reverse convention could be used. The X register on

the far left (one ofthe two index registers ofthe 6502) will be used

as a counter. Since we are doing an 8-bit multiplication, we will

have to test 8 bits of the multiplier. Unfortunately, there is no in

struction in the 6502 which allows us to test those bits in se

quence. The only bits that can conveniently be tested are the

flags in the status register. As a result of this limitation of most

microprocessors, in order to test successively all the bits of the

multiplier, it will be necessary to transfer the multiplier value

into the accumulator. Then, the contents of the accumulator will

be shifted right. A shift instruction moves every bit in the regis

ter by one position to the right or to the left. The bit which falls

off the register drops into the carry bit of the status register. The

effect of a shift operation is illustrated in Figure 3-11. There are

many variations possible depending upon the bit that comes into

the register, but these differences will be discussed in Chapter 4

(6502 instruction set).

'1

BUS

MTCAO,

(IMP)

MfOAO)|

(RESAD)

MPR

MPO

MS.IO

«S.H,

-D

Fig. 3-1O: Multiplication: The Registers

Let us go back to the successive testing of each of the 8 bits of

the multiplier. Since one can easily test the carry bit, the multi

plier will be shifted by one position 8 times. Every time its right

most bit will fall into the carry bit, where it will be tested.

The next problem to be solved is that the partial product which

is accumulated during the successive additions will require

16 bits. Multiplying two 8-bit numbers may yield a 16-bit re-

71

PROGRAMMING THE 6502

suit. This is because 28x28=216. We need to reserve 16 bits for this
result. Unfortunately, the 6502 has very few internal registers, so
that this partial product cannot be stored within the 6502 itself.
In fact, because of the limited number of registers, we are unable
to store the multiplier, the multiplicand, or the partial product

within the 6502. They will all be stored in the memory. This will
result in a slower execution than if it were possible to store them
all in internal registers. This is a limitation inherent in the 6502.

The memory area used for the multiplication appears on the right
of Figure 3-10. On top one can see the memory word allocated for
the multiplier. We will assume, for example, that it contains "3" in
binary. The address of this memory location is MPRAD. Below it,
we find a "temporary" whose address is TMP. The role of this

location will be clarified below. We will shift the multiplicand left
into this location prior to adding it to the partial product. The
multiplicand is next and will be assumed to contain the value "5"
in binary. Its address is MPDAD.

Finally, at the bottom of the memory, we find the two words

allocated for the partial product or the result. Their address is
RESAD.

SHIFT LEFT

r\

CARRY

ROTATE LEFT

r\r r\ r\

Fig. 3-ll:Shiff and Rotate

72

BASIC PROGRAMMING TECHNIQUES

These memory locations will be our "working registers/' and

the word "register" may be used interchangeably with "location"

in this context.

The arrow which appears on the top right of the illustration

coming out of MPR into bit C is a symbolic way of showing how

the multiplier will be shifted in the carry bit. Naturally, this carry

bit is physically contained within the 6502 and not within the

memory.

Let us now go back to the program of Figure 3-9. The first five

instructions are initialization instructions:

The first four instructions will clear the contents of "registers"

TMP, RESAD, and RESAD+1. Let us verify this.

LDA#0

This instruction loads the accumulator with the literal value "0."

As a result of this instruction, the accumulator will contain

* '00000000."

The contents of the accumulator will now be used to clear the

three "registers" in the memory. It must be remembered that

reading a value out of a register does not empty it. It is possible to

read as many times as necessary out of a register. Its contents are

not changed by the read operation. Let us proceed:

STA TMP

This instruction stores the contents of the accumulator in mem

ory location TMP. Refer to Figure 3-10 to understand the flow of

data in the system. The accumulator contains "00000000." The

result of this instruction will be to write all zeroes in memory

location TMP. Remember that the contents of the accumulator

remain 0 after a read operation on the accumulator. It is unchanged.

We are going to use it again.

STA RESAD

This instruction operates just like the one before and clears the

contents of address RESAD. Let us do it one more time:

STA RESAD+1

We finally clear memory location RESAD+1 which has been re

served to store the high part of the result. (The high half is bits

£-15; the low part is bits 0-7.)

Finally, in order to able to stop shifting the multiplier bits

73

PROGRAMMING THE 6502

at the right time, it is necessary to count the number ofshifts that

have to be performed. Eight shifts are necessary. Register X will

be used as a counter and initialized to the value "8." Every time

that the shift will have been performed, the contents of this

counter will be decremented by 1. Whenever the value of this

counter reaches "0," the multiplication is finished. Let us ini

tialize this register to "8":

LDX#8

This instruction loads the literal "8" into register X.

Referring back to the flow chart of Figure 3-8, we must test the

least significant bit of the multiplier. It has been indicated above

that this test cannot be performed in a single instruction. Two instruc

tions must be used. First the multiplier will be shifted right, then the

bit which fell out of it will be tested. It is the carry bit. Let us perform

these operations:

LSR MPRAD

This instruction is a "Logical Shift Right" of the contents of

memory location MPRAD.

Exercise 3.10: Assuming that the multiplier in our example is

"3," which bit falls off the right end ofmemory locationMPRAD?

(In other words, which will be the value of the carry after this

shift?)

The next instruction tests the value of the carry bit:

BCC NOADD

This instruction means "Branch if Carry Clear" (i.e. equals zero)

to the address NOADD.

This is the first time we encounter a branch instruction. All the

programs we have considered so far have been strictly sequential.

Each instruction was executed after the previous one. In order to

be able to use logical tests such as testing the carry bit, one must

be able to execute instructions anywhere in the program after the

test. The branch instruction performs just such a function. It will

test the value of the carry bit. If the carry was "0," i.e., if it was

cleared, then the program will branch to address NOADD. This

means that the next instruction executed after the BCC will be

the instruction at address NOADD if the test succeeds.

74

BASIC PROGRAMMING TECHNIQUES

Otherwise, if the test fails, no branch will occur and the in

struction following BCC NOADD will be normally executed.

One more explanation is in order about NOADD: this is a sym

bolic label It represents an actual physical address within the

memory. For the convenience of the programmer, the assembler

program allows using symbolic names instead of actual addres

ses. During the assembly process, the assembler will substitute

the real physical address instead of the symbol "NOADD." This

improves the readability of the program substantially and also

allows the programmer to insert additional instructions between

the branch point and NOADD, without having to rewrite every

thing. These merits will be studied in more detail in Chaper 10 on

the assembler.

If the test fails, the next sequential instruction in the program

is executed. We will now study both alternatives:

Alternative 1: the carry was "1!'

If the carry was 1, the test specified by BCC has failed and the next

instruction after BCC is executed.

LDA RESAD

Alternative 2: the carry was "0!'

The test succeeds, and the next instruction is the one at label

"NOADD."

Referring to Figure 3-8, the flow-chart specifies that if the carry

bit was 1, the multiplicand must be added to the partial product

(here, the RES registers). Also, a shift must be performed. The

partial product must be moved by one position to the right or else

the multiplicand must be moved by one position to the left. We

will adopt here the usual convention in performing multiplica

tions by hand, and we will move the multiplicand by one position

to the left.

The multiplicand is contained in registers TMP and MPDAD.

(To simplify, we call memory locations "registers," a usual term.)

The 16 bits of the partiarpr°duct are contained in memory ad
dresses RESAD and RESAD+1.

In order to illustrate this, let us assume that the multiplicand

was "5." The various registers appear in Figure 3-10.

We simply have to add two 16-bit numbers. This is a problem

that we have learned to solve. (If you have any doubts, refer to

the section on 16-bit addition above.) We are going to add the low-

75

PROGRAMMING THE 6502

order bytes first, and then the high-order bytes. Let us proceed:

LDA RESAD

The accumulator is loaded with the low part of RES.

CLC

Prior to any addition, the 6502 requires that the carry bit be

cleared. It is important to do so here as we know that the carry bit
had been set to 1. It must be cleared.

ADC MPDAD

The multiplicand is added to the accumulator, which contains
(RES)LOW

STA RESAD

The result of the addition is saved at the appropriate memory

location, (RES)LOW The second half of the addition is then per

formed. When checking execution of this program later by hand,

do not forget that the addition will set the carry bit. The carry will

be set to either "0" or "1" depending on the results of the addition.

Any carry that might have been generated will automatically be

carried forward into the high-order part of the result.

Let us now finish the addition:

LDA RESAD+1

ADC TMP

STA RESAD+1

These three instructions complete our 16-bit add. We have now

added the multiplicand to RES. We still have to shift it by one

position to the left in anticipation of the next addition. We could

also have considered shifting the multiplicand by one position

to the left before adding, except for the first time. This is one of many

programming options which are always open to the programmer.

Let us shift the multiplicand to the left:

NOADD ASL MPDAD

This instruction is an "Arithmetic Shift Left." It will shift by one

position to the left the contents of memory location MPDAD

which happens to contain the low part of the multiplicand. This is

not enough. We cannot afford to lose the bit which falls off the left

76

BASIC PROGRAMMING TECHNIQUES

end of the multiplicand. This bit will fall into the carry bit. It
should not be stored there permanently since it can be destroyed

by any arithmetic operation. This bit should be saved in a

"permanent" register. It should be shifted into memory location

TMP. This is precisely accomplished by the next instruction:

ROL TMP

This specifies: "Rotate Left" the contents of TMP.

One interesting observation can be made here. Wejust used two

different kinds of shift instructions to shift a register by one posi

tion to the left. The first one is ASL. The second one is ROL.

What is the difference?

The ASL instruction shifts the contents of the register. The

ROL instruction is a rotate instruction. It does shift the contents

of the register by one position to the left, and the bit falling offthe

left end goes into the carry bit, as usual. The difference is that the

previous contents of the carry bit are forced into the right-most posi

tion. This is called a circular rotation in mathematics (a 9-bit

rotation). This is exactly what we want. As a result of the ROL,

the bit which had been shifted out of MPDAD on the left and pre

served in the carry bit C will land in the right-most position of

register TMP. It works.

We are now finished with the arithmetic portion of this pro

gram. We still have to test whether we have performed the opera

tion eight times, i.e., whether we are finished. As usual in most

microprocessors, this test will require two instructions:

DEX

This instruction decrements the contents of register X. If it con

tained 8, its contents will be 7 after execution of this instruction.

BNE MULT

This is another test-and-branch instruction. It specifies "branch if

result is not equal to 0 to location MULT." As long as our counter-

register decrements to a non-zero integer, there will be an au

tomatic branch back to label MULT. This is called the multiplica

tion loop. Referring back to the multiplication flow-chart, this corre-

ponds to the arrow coming out of the last box. This loop will be

executed 8 times.

Exercise 3.11: What happens when X decrements to 0? What is

77

PROGRAMMING THE 6502

the next instruction to be executed?

In most cases, the program that we just developed will be a

subroutine and the final instruction in the subroutine will be

RTS. The subroutine mechanism will be explained later in this
chapter.

IMPORTANT SELF-TEST

If you wish to learn how to program, it is extremely important

that you understand such a typical program in complete detail.

We have introduced many new instructions. The algorithm is rea

sonably simple, but the program is much longer than the previous

programs that we have developed so far. // is very strongly sug

gested that you do the following exercise completely and correctly

before you proceed in this chapter. If you do it correctly, you will

have really understood the mechanism by which instructions

manipulate the contents of memory and of the microprocessor
registers and how the carry flag is being used. If you do not, it is

likely that you will experience difficulties in writing programs
yourself. Learning to program does involve actually programming.

Please pause to take a piece of paper and do the following exer
cise.

Exercise 3.12: Every time that a program is written, one should

verify it by hand, in order to ascertain that its results will be correct

We are going to do just that: the purpose of this exercise is to fill in
the table ofFigure 3-12.

You can write directly on it or else make a copy of it. The

purpose is to determine the contents of every relevant register

and memory location in the system after each instruction is exe

cuted by this program, from beginning to end. You will find hori

zontally on Figure 3-12 all the register locations used by the

program: X, A, MPR, C (the carry bit flag), TMP, MPD, RESADL,

RESADH. On the left part of the illustration you must fill in the

label, if applicable, and the instruction being executed. At the

right of the illustration you must write the contents of every reg

ister after execution of that instruction. Whenever the contents

of a register are indefinite, we will use dashes. Let us start filling

78

L
A
B
E
L

I
N
S
T
R
U
C
T
I
O
N

X
A

M
P
R

C
T
E
M
P

M
P
D

(
R
E
S
A
D
)
L

(
R
E
S
A
D
)
H

Fi
g.

3-
12
:
F
o
r
m
T
o
B
e

Fi
ll

ed
O
u
t
Fo

r
E
x
e
r
c
i
s
e
3
-
1
2

O T
3

T
O 8 O n z o

PROGRAMMING THE 6502

in this table together. You will have to fill in the remainder alone.
The first line appears below:

LABEl INSTRUCTION X A MPR C TEMP MPO

00000101

Fig. 3-13: First Instruction of Multiplication

The first instruction to be executed is LDA #0.

After execution of this instruction, the contents of register X
are unknown. This is indicated by dashes. The contents of the
accumulator are all zeroes. We also assume that the multiplier
and the multiplicand had been loaded by the programmer prior to
execution of this program. (Otherwise, additional instructions
would be needed to set the contents ofMPR and MPD.) We find in
MPR the binary value for «3." We find in MPD the binary value
for "5." The carry bit is undefined. Register TMP is undefined.
And both registers used for RESAD are undefined. Let us now fill
the next line. It appears below; the only difference is that the con
tents of register TMP have been set to "0." The next instruction

will set the contents of RESAD to "0" and the one after will set
the contents of RESAD +1 to "0."

INSTRUCTION

STATEMP

X

A
MPR C TEMP

00000000

MPO (KSAOH

—

(MIAOU

Fig. 3-14: First Two Lines of Multiplication

The fifth instruction, #8, will set the contents of X to "8." Let

us do one more instruction set (see Figure 3-15).

The LSR MPRAD instruction will shift the contents ofMPRAD

right by one position. You can see that after the shift the contents
of MPR are "0000 0001." The right-most "1" of MPR has fallen

80

BASIC PROGRAMMING TECHNIQUES

IABEI

MUIT

INSTRUCTION

IDA ffO

STATEMP

STARESAD

STARESAD+1

IDX*8

ISRMPRAO

BCCNOAOO

lOARESAO

CIC

AOCMPOAO

STARESAO

LDARESAD+I

ADC TEMP

STARESAD+ 1

ASIMPOAD

ROlTEMP

DEX

BNE MUIT

ISRMPRAO

x

00001000

?nd ITERATIOI

A

00000101

)

MPR

—,

C

0

TEMP MPO

00001010

(«SAOX (OSAOIH

Fig. 3-15: Partially Completed Form For Exercise 3-12

into the carry bit. Bit C is now set to 1. Other registers are un

changed.

It is now your turn. Please fill in the rest of this table com

pletely. It is not difficult, but it does require attention. Ifyou have

doubts about the role of some instructions, you may want to refer

to Chapter 4 where you will find each of them listed and de

scribed, or else to the Appendix section of this book where they

are listed in table form.

The final result of your multiplication should be "15" in binary

form, contained in registers RESAD low and high. RESAD high should

be set to "0000 0000." RESAD low should be "0000 1111." If you

obtained this result, you won. If you did not, try one more time.

The most frequent source of errors is a mishandling of the carry

bit. Make sure that the carry bit is changed every time you per

form an arithmetic instruction. Do not forget that the ALU will

set the carry bit after each addition operation.

Programming Alternatives

The program that we have just developed is one of many

ways in which it could have been written. Every programmer can

find ways to modify and sometimes improve a program. For

example, we have shifted the multiplicand left before adding. It

would have been mathematically equivalent to shift the result by

one position to the right before adding it to the multiplicand. The

advantage is that we would not have required register TMP, thus

saving one memory location. This would be a preferred method in

a microprocessor equipped with enough internal registers so that

81

PROGRAMMING THE 6502

MPR, MPD, and RESAD could be contained within the microproces

sor. Since we were obliged to use the memory to perform these

operations, saving one memory location is not relevant. The ques

tion is, therefore, whether the second method might result in a

somewhat faster multiplication. This is an interesting exercise:

Exercise 3.13: Now write an 8x8 multiply, using the same al

gorithm, but shifting the result by one position to the right instead of

shifting the multiplicand by one position to the left. Compare it to

the previous program and determine whether this different ap
proach would befaster or slower than the preceding one.

One more problem may come up: In order to determine the

speed of the program, you may want to refer to the tables in the

Appendix section which list the number of cycles required by

each instruction. However, the number of cy&es required by

some instructions depends on where they are located. A special

addressing mode exists for the 6502 called the Direct Addressing

Zero Page Mode, where the first page (memory location 0 to 255)

is reserved for fast execution. This will be explained in Chapter 5

on addressing techniques. Briefly, all programs that require a

fast execution time will use variables located in page 0 so that in

structions require only two bytes to address memory locations

(addressing 256 locations requires only one byte), whereas instruc

tions located anywhere else in the memory will typically require

3-byte instructions. Let us defer this analysis until after Chap

ter 5.

An Improved Multiplication Program

The program we have just developed is a straightforward

translation of the algorithm into code. However, effective pro

gramming requires close attention to detail so that the length of

the program can be reduced and so that its execution speed can be

improved. We are now going to present an improved implementa

tion of the same algorithm.

One of the tasks which consume instructions and time is the

shifting of the result and the multiplier. A standard "trick" used

in the multiply algorithm is based on the following observation:

every time that the multiplier is shifted by one bit position to the

right, a bit position becomes available on the left. Simultane

ously, we can observe that the first result (or partial product) will

82

BASIC PROGRAMMING TECHNIQUES

use, at most, 9 bits. After the next multiply shift, the size of the

partial product will be increased by one bit again. In other words,

we can just reserve, initially, one memory location for the partial

product and then use the bit positions which are being freed by

the multiplier as it is being shifted.

We are now going to shift the multiplier right. It will free one bit posi

tion to the left. We are going to enter the right-most bit of the partial

product into this bit position that has been freed. Let us now consider the

program.

Let us now also consider the optimal use of registers. The inter

nal registers of the 6502 appear in Fig. 3-16. X is best used as a

counter. We will use it to count the number of bits shifted. The

accumulator is (unfortunately) the only internal register which

can be shifted. In order to improve efficiency, we should store in

it either the multiplier or the result.

c

0

ACCUMULATOR

INDEX REGISTERS

STACK POINTER

0

I PROGRAM COUNTER

|n|v|-|b|d|i|z|c| flags

Fig. 3-16:65O2 Registers

Which one should we put in the accumulator? The result must be

added to the multiplicand every time a 1 is shifted out. Since the

6502 also always adds something to the accumulator only, it is the

result which will reside in the accumulator.

The other numbers will have to reside in the memory (see Fig-

gure 3-17).

A and B will hold the result. A will hold the high part of the

result, and B will hold the low part of the result. A is the ac

cumulator, and B is a memory location, preferably in page 0. C

will hold the multiplier (a memory location). D holds the multipli-

83

PROGRAMMING THE 6502

1

Fig. 3-17: Register Allocation (Improved Multiply)

cand (a memory location). The program appears below:

MULT

LOOP

NOADD

IDA

STA

LDX

LSR

BCC

CLC

ADC

ROR

ROR

DEX

BNE

B

#8

C

NOADD

D

A

B

LOOP

INITIALIZE RESULT TO ZERO (HIGH)
INITIALIZE RESULT (LOW)
X IS SHIFT COUNTER
SHIFT MPR

CARRY WAS ONE. CLEAR IT
A = A + MPD

SHIFT RESULT

CATCH BIT INTO B

DECREMENT COUNTER

LAST SHIFT?

Rg. 3-18: Improved Multiply

Let us examine the program. Since A and B will hold the result,
they must be initialized to the value 0. Let us do it:

MULT LDA #0

STAB

We will then use register X as a shift counter and initialize it to

the value 8:

LDX #8

We are now ready to enter the main multiplication loop as

before. We will first shift the multiplier, then test the carry bit

which holds the right-most bit of the multiplier, which has fallen

off. Let us do it:

LOOP LSR C

BCC NOADD

84

BASIC PROGRAMMING TECHNIQUES

Here we shift the multiplier right as before. This is equivalent

to the previous algorithm because the addition operation is said

to be communicative.

Two possibilities exist: if the carry was 0, we will branch to

NOADD. Let us assume that the carry was 1. We will proceed:

CLC

ADC D

Since the carry was 1, it must be cleared, and we then add the

multiplicand to the accumulator. (The accumulator holds the re

sults, 0 so far.)

Let us now shift the partial product:

NOADD RORA

RORB

The partial product in A is shifted right by one bit. The right

most bit falls into the carry bit. The carry bit is captured and

rotated into register B, which holds the low part of the result.

We simply have to test whether we are finished:

DEX

BNE LOOP

If we now examine this new program, we see that it has been

written in about half the number of instructions of the previous

program. It will also execute much faster. This shows the value of

selecting the correct registers to contain the information.

A straightforward design will result in a program that works. It

will not result in a program that is optimized. It is, therefore, of

significant importance to use the available registers and memory

locations in the best possible way. This example illustrates a ra

tional approach to register selection for maximum efficiency.

Exercise 3.14: Compute the speed of a multiplication operation

using this last program. Assume that a branch will occur in fifty

percent of the cases. Look up the number ofcycles required by every

instruction in the table at the end of the book. Assume a clock rate

of one cycle = 1 microsecond.

85

PROGRAMMING THE 6502

Binary Division

The algorithm for binary division is analogous to the one which

has been used for multiplication. The divisor is successively

subtracted from the high order bits of the dividend. After each

subtraction, the result is used instead of the initial dividend. The

value of the quotient is simultaneously increased by 1 every time.

Eventually, the result of the subtraction is negative. This is called

an overdraw. One must then restore the partial result by adding

the divisor back to it. Naturally, the quotient must be simultane

ously decremented by 1. Quotient and dividend are then shifted

by one bit position to the left and the algorithm is repeated.

The method just described is called the restoring method. A

variation of this method which yields an improved speed of execu

tion is called non-restoring method.

END (REMAINDER IS IN LEFT (DIVIDEND)]

Fig. 3-19:8 Bit Binary Division Flowchart

The 16-bit Division

The non-restoring division for a 16-bit dividend, and an 8-bit divisor

will now be described. The result will have 8 bits. The register and memory

86

BASIC PROGRAMMING TECHNIQUES

location for this program are shown in Fig. 3-22. The dividend is con

tained in the accumulator (high part) and in memory location 0, called B

here. The result is contained in Q (memory location 1). The divisor is

contained in D (memory location 2). The result will be contained in Q and

A (A will contain the remainder).

The program appears on Fig. 3-21, the corresponding flow chart is

shown in Fig. 3-20.

Exercise 3.15: Verify the correct operation of this program by

performing the division by hand and exercising the program, as

you did in Exercise 3.12. Divide 33 by 3. The result naturally

should be 11, with a remainder ofO.

LOGICAL OPERATIONS

The other class of instructions that the ALU inside the micro

processor can execute is the set of logical instructions. They in

clude: AND, OR and exclusive OR (EOR). In addition, one can also

include there the shift operations which have already been

utilized, and the comparison instruction, called CMP for the 6502.

The individual use of AND, ORA, EOR, will be described in Chap

ter 4 on the 6502 instruction set. Let us now develop a brief

program which will check whether a given memory location

called LOC contains the value "0," the value "1," or something

else. The program appears below:

NONE FOUND

ZERO

ONE

LDA

CMP

BEQ

CMP

BEQ

LOC

#$00

ZERO

#$01

ONE

READ CHARACTER IN LOC

COMPARE TO ZERO

IS IT A 0?

1?

The first instruction: LDA LOC reads the contents of memory

location LOC. This is the character we want to test.

CMP #$00

87

PROGRAMMING THE 6502

OUT

Fig. 3-20: 16 by 8 Division Flowchart

BASIC PROGRAMMING TECHNIQUES

LINE

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

ft LOC

0000

0000

0001

0002

0003

0200

0202

0203

0205

0206

0208

020A

020B

020C

020E

0210

0213

0215

0216

0218

021A

021C

021D

021F

0220

CODE

A0 08

38

E5 02

08

26 01

06 00

2A

28

9005

E5 02

4C1502

65 02

88

DO ED

BO 03

65 02

18

26 01

00

LINE

B

Q

D

DIV

LOOP

ADD

NEXT

LAST

* = $0

* = * + 1

* = * + 1

* = * + 1

* = $200

LDY08

SEC

SBCD

PHP

ROLQ

ASLB

ROLA

PLP

BCC ADD

SBCD

JMP NEXT

ADCD

DEY

BNE LOOP

BCS LAST

ADCD

CLC

ROLQ

BRK

END

Fig. 3-21: Program

(A) J
(ALSO REAAAINDER)

, 00

I

01

(B)

^ I

(Q)

(D)

Pig. 3-22:16 by 8 Division Registers and Memory Map (non-restoring 8-bit result)

89

PROGRAMMING THE 6502

This instruction compares the contents of the accumulator with

the literal hexadecimal value "00" (i.e., the bit pattern

"00000000"). This comparison instruction will set the Z bit in the

flags register, which will then be tested by the next instruction:

BEQ ZERO

The BEQ instruction specifies "branch if equal." The branch

instruction will determine whether the test succeeds by examin

ing the Z bit. If set, the program will branch to ZERO. If the test

fails, then the next sequential instruction will be executed:

CMP #$01

The process will be repeated against the new pattern. If the test

succeeds, the next instruction will result in a branch to location

one. If it fails, the next sequential instruction will be executed.

Exercise 3.16: Write a program which will read the contents of

memory location "24" and branch to the address called "STAR" if

there were a "*" in memory location 24. The bit pattern for a "*" in

assembly language notation is represented by "00101010".

SUMMARY

We have now studied most of the important instructions of the

6502 by using them. We have transferred values between the

memory and the registers. We have performed arithmetic and

logical operations on such data. We have tested it, and depending

on the results of these tests, we have executed various portions of

the program. We have also introduced a structure called the loop,

in the multiplication program. An important programming struc

ture will be introduced now: the subroutine.

SUBROUTINES

In concept, a subroutine is simply a block of instructions which

has been given a name by the programmer. From a practical

standpoint, a subroutine must start with a special instruction

called the subroutine declaration, which identifies it as such for

the assembler. It is also terminated by another special instruction

called a return. Let us first illustrate the use of subroutines in the

program in order to demonstrate its value. Then, we will examine

how it is actually implemented.

90

BASIC PROGRAMMING TECHNIQUES

MAIN PROGRAM

CAll SUB

CALL SUB

8

7

—srl

cm RETURN

Fig. 3-23: Subroutine Calls

The use of a subroutine is illustrated in Figure 3-23. The main

program appears on the left of the illustration. The subroutine is

represented symbolically on the right. Let us examine the sub

routine mechanism. The lines of the main program are executed

succesively until a new instruction, CALL SUB, is met. This

special instruction is the subroutine call and results in a transfer

to the subroutine. This means that the next instruction to be

executed after the CALL SUB is the first instruction within the

subroutine. This is illustrated by arrow 1 in the illustration.

Then, the subprogram within the subroutine executes just like

any other program. We will assume that the subroutine does not

contain any other calls. The last instruction ofthis subroutine is a

RETURN. This is a special instruction which will cause a return

to the main program. The next instruction to be executed after

the RETURN is the one following the CALL SUB. This is illus

trated by arrow 3 in the illustration. Program execution con

tinues then as illustrated by arrow 4.

In the body of the main program a second CALL SUB appears.

A new transfer occurs, shown by arrow 5. This means that the

body of the subroutine is again executed following the CALL SUB

instruction.

Whenever the RETURN within the subroutine is encountered,

a return occurs to the instruction following the CALL SUB in

question. This is illustrated by arrow 7. Following the return to

the main program, program execution proceeds normally, as illus

trated by arrow 8.

The role of the two special instructions CALL SUB and RE-

91

PROGRAMMING THE 6502

TURN should now be clear. What is the value of the subroutine?

The essential value of the subroutine is that it can be called

from any number of points in the main program and used re

peatedly without rewriting it. A first advantage is that this ap

proach saves memory space and there is no need to rewrite the

subroutine every time. A second advantage is that the pro

grammer can design a specific subroutine only once and then use

it repeatedly. This is a significant simplification in program de

sign.

Exercise 3.17: What is the main disadvantage of a subroutine?

The disadvantage of the subroutine should be clear just from

examining the flow of execution between the main program and

the subroutine. A subroutine results in a slower execution, since

extra instructions must be executed: the CALL SUB and the RE

TURN.

Implementation of the Subroutine Mechanism

We will examine here how the two special instructions, CALL

SUB and RETURN, are implemented internally within the processor.

The effect of the CALL SUB instruction is to cause the next instruct

ion to be fetched at a new address. You will remember (or else read

Chapter 1 again) that the address of the next instruction to be ex

ecuted in a computer is contained in the program counter (PC). This

means that the effect of the CALL SUB is to substitute new contents

in register PC. Its effect is to load the start address of the subrou

tine in the program counter. Is that really enough?

To answer this question, let us consider the other instruction

which has to be implemented: the RETURN. The RETURN must

cause, as its name indicates, a return to the instruction that fol

lows the CALL SUB. This is possible only if the address of this

instruction has been preserved somewhere. This address happens

to be the value of the program counter at the time that the CALL

SUB was encountered. This is because the program counter is

automatically incremented every time it is used (read Chapter 1

again?). This is precisely the address that we want to preserve so

that we can later perform RETURN.

The next problem is: where can we save this return address?

92

BASIC PROGRAMMING TECHNIQUES

This address must be saved in a reasonable location where it is

guaranteed that it will not be erased. However, let us now consi

der the following situation, illustrated by Figure 3-24: in this

example, subroutine 1 contains a call to SUB2. Our mechanism

should work in this case as well. Naturally, there might even be

more than two subroutines, say N "nested" calls. Whenever a

new CALL is encountered, the mechanism must therefore store

the program counter again. This implies that we need at least 2N

memory locations for this mechanism. Additionally, we will need

to return from SUB2 first and SUB1 next. In other words, we need

a structure which can preserve the chronological order in which

data will have been saved.

The structure has a name. We have already introduced it. It is

the stack. Figure 3-26 shows the actual contents of the stack

during successive subroutine calls. Let us look at the main pro

gram first. At address 100, the first call is encountered: CALL

SUB1. We will assume that, in this microprocessor, the subroutine

call uses 3 bytes. The next sequential address is therefore not

CAtl SUB 1

Nl

SUBI

Oil SUB 2

RETURN K

SUB 2

RETURN

Fig. 3-24: Nested Calls

"101", but"103."The CALL instruction uses addresses "100",

"101", and "102". Because the control unit of the 6502 "knows* that it

is a 3-byte instruction, the value ofthe program counter when the

call has been completely decoded will be "103". The effect of the

call will be to load the value "280" in the program counter. "280"

is the starting address of SUBI.

The second effect of the CALL will be to push into the stack (to

preserve) the value "103" of the program counter. This is illus

trated at the bottom left of the illustration which shows that at

time 1, the value "103" is preserved in the stack. Let us move to

the right of the illustration. At location 300, a new call is encoun-

93

PROGRAMMING THE 6502

tered. Just as in the preceding case, the value "900" will be

loaded in the program counter. This is the starting address of

SUB2. Simultaneously, the value "303" will be pushed into the

stack. This is illustrated at the bottom left of the illustration

where the entry at time 2 is "303". Execution will then proceed

to the right of the illustration within SUB2.

We are now ready to demonstrate the effect of the RETURN

instruction and the correct operation of our stack mechanism.

Execution proceeds within SUB2 until the RETURN instruction

is encountered at time 3. The effect of the RETURN instruction is

simply to pop the top of the stack into the program counter. In

other words, the program counter is restored to its value prior to

the entry into the subroutine. The top of the stack in our example

is "303." Figure 3-26 shows that, at time 3, value "303" has been

removed from the stack and has been put back into the program

counter. As a result, instruction execution proceeds from address

"303." At time 4, the RETURN of SUB1 is encountered. The value

on top of the stack is "103." It is popped and is installed in the

program counter. As a result, the program execution will proceed

from location "103" on within the main program. This is, indeed,

(AAAIN)

(SUB1)

© 900

®\

(SUB 2)

RETURN

Fig. 3-25: The Subroutine Calls

the effect that we wanted. Figure 3-26 shows that at time 4 the

stack is again empty. The mechanism works.

94

BASIC PROGRAMMING TECHNIQUES

The subroutine call mechanism works up to the maximum di

mension of the stack. This is why early microprocessors, which

had a 4 or 8-register stack, were essentially limited to 4 or 8 levels

of subroutine calls. In theory, the 6502, which is restricted to 256

memory locations for the stack (Page 1), can therefore accommo

date up to 128 successive subroutine calls. This is true only if

there are no interrupts, if the stack is used for no other purpose,

and if no register needs be stored within the stack. In practice,

fewer subroutine levels will be used.

Note that, on illustrations 3-24 and 3-25, the subroutines

have been shown to the right of the main program. This is only for

the clarity of the diagram. In reality, the subroutines are typed by

the user as regular instructions of the program. On a sheet of

STACK: TIME (1 j

103

TIME (2)

103

303

TIME (3)

103

TIMEU]

Fig. 3-26: Stack vs. Time

paper, in a listing of the complete program, the subroutines may

be at the beginning of the text, in its middle, or at the end. This is

why they are preceded by a subroutine declaration: they must be

identified. The special instructions tell the assembler that what

follows should be treated as a subroutine. Such assembler di

rectives will be presented in Chapter 10.

6502 Subroutines

We have now described the subroutine mechanism, and how the

stack is used to implement it. The subroutine call instruction for

the 6502 is called JSR (jump to subroutine). It is, indeed, a 3-byte

instruction. Unfortunately, it is an unconditionaljump: it does not

test bits. Explicit branches must be inserted prior to a JSR if a

test need be performed.

The return from subroutine is the RTS instruction (Return

from subroutine). It is a 1-byte instruction.

PROGRAMMING THE 6502

Exercise 3.1S:Why is the return from a subroutine as long as the

CALL? (Hint: if the answer is not obvious, look again at the stack

implementation of the subroutine mechanism and analyze the

internal operations that must be performed.)

Subroutine Examples

Most of the programs that we have developed and are going to

develop would usually be written as subroutines. For example,

the multiplication program is likely to be used by many areas of

the program. In order to facilitate program development and

clarify it, it is therefore convenient to define a subroutine whose

name would be, for example, MULT. At the end of this subroutine

we would simply add the instruction, RTS.

Exercise 3,19: If MULT is used as a subroutine, would it "damage"

any internal flags or registers?

Recursion

Recursion is a word used to indicate that a subroutine is calling

itself. If you have understood,the implementation mechanism,

you should now be able to answer the following question:

Exercise 3.20: Is it legal to let a subroutine call itself? (In other

words, will everything work even if a subroutine calls itself?) If

you are not sure, draw the stack and fill it with the successive ad

dresses. You will physically verify whether it works or not This
will answer the question. Then, look at the registers and memory
(see Exercise 3.19) and determine ifa problem exists.

Subroutine Parameters

When calling a subroutine, one normally expects the sub
routine to work on some data. For example, in the case of the
multiplication, one wants to transmit two numbers to the sub
routine which will perform the multiplication. We saw in the case

of the multiplication routine that this subroutine expected to find
the multiplier and the multiplicand in given memory locations.This
illustrates the first method of passing parameters: through mem
ory. TWo other techniques are used, and parameters can be passed
in three ways:

1. Through registers

96

BASIC PROGRAMMING TECHNIQUES

2. Through memory

3. Through the stack

—Registers can be used to pass parameters. This is an advan

tageous solution, provided that registers are available, since

one does not need to use a fixed memory location. The sub

routine remains memory-independent. If a fixed memory loca

tion is used, any other user of the subroutine must be very

careful that he uses the same convention and that the memory

location is indeed available (look at Exercise 3-20 above). This is

why, in many cases, a block of memory locations is reserved,

simply to pass parameters between various subroutines.

—Using memory has the advantage of greater flexibility (more data),

but results in poorer performance and also in tying up the sub

routine to a given memory area.

—Depositing parameters in the stack has the same advantage as using

registers: it is memory-independent. The subroutine simply knows that

it is supposed to receive, say, two parameters which are stored on top

of the stack. Naturally, it has a disadvantage: it clutters the stack with

data and, therefore, reduces the number of possible levels of sub

routine calls.

The choice is up to the programmer. In general, one wishes to

remain independent from actual memory locations as long as pos

sible.

If registers are not available, the next best solution is usually

the stack. However, if a large quantity of information should be

passed to a subroutine, then this information will have to reside

in the memory. An elegant way around the problem of passing a

block of data is to simply transmit a pointer to the information. A

pointer is the address at the beginning of the block. A pointer can

be transmitted in a register (in the case of the 6502, this limits

the pointer to 8 bits), or else in the stack (two-stack iocations can

be used to store a 16-bit address).

Finally, if neither of the two solutions is applicable, then an

agreement may be made with the subroutine that the data will be

at some fixed memory location (the "mailbox").

Exercise 3.21: Which of the three methods above is best for recur

sion?

97

PROGRAMMING THE 6502

Subroutine Library

There is a strong advantage to structuring portions of a pro

gram into identifiable subroutines: they can be debugged inde

pendently and can have a mnemonic name. Provided that they

will be used in other areas of the program, they become shareable,

and one can thus build a library of useful subroutines. However,

there is no general panacea in computer programming. Using

subroutines systematically for any set of instructions that can be

grouped by function may also result in poor efficiency. The alert

programmer will have to weigh the advantages vs. the disadvan

tages.

SUMMARY

This chapter has presented the way information is manipulated

inside the 6502 by instructions. Increasingly complex algorithms

have been introduced, and translated into programs. The main

types of instructions have been used.

Important structures such as loops, stacks and subroutines

have been defined.

You should now have acquired a basic understanding of pro

gramming, and of the major techniques used in standard applica

tions. Let us study the instructions available.

98

THE 6502 INSTRUCTION SET

PART 1 - OVERALL DESCRIPTION

INTRODUCTION
This chapter will first analyze the various classes of instruc

tions which should be available in a general purpose computer. It

will then analyze one by one all of the instructions available for

the 6502, and explain in detail their purpose and the manner in

which they affect flags, or can be used in conjunction with the

various addressing modes. A detailed discussion of addressing

techniques will be presented in Chapter 5.

CLASSES OF INSTRUCTIONS

Instructions may be classified in many ways, and there is no

standard. We will distinguish here five main categories of instruc

tions:

1. data transfers

2. data processing

3. test and branch

4. input/output

5. control

Let us now examine in turn each of these classes of instruc

tions.

Data transfers

Data transfer instructions will transfer 8-bit data between two

99

PROGRAMMING THE 6502

registers, or between a register and memory, or between a register

and an input/output device. Specialized transfer instructions may

exist for registers which play a special role, for example, a push

and pull operation, for efficient stack implementation. They will

move a word of data between the top of the stack and the ac

cumulator in a single instruction, while automatically updating the

stack-pointer register.

Data Processing

Data processing instructions fall into four general categories:

- arithmetic operations (such as plus/minus)

- logical operations (such as AND, OR, exclusive OR)

- skew and shift operations (such as shift, rotate, swap)

- increment and decrement

It should be noted that for efficient data processing, it is desir

able to have powerful arithmetic instructions, such as multiply and

divide. Unfortunately, this is not available on most microprocessors.

It is also desirable to have powerful shift and skew instructions, such

as shift n bits, or a nibble exchange, where the right half and the

left half of the byte are exchanged. These are also unavailable on

most microprocessors.

Before examining the actual 6502 instructions, let us recall the

difference between a shift and a rotation. The shift will move the

contents of a register or a memory location by one bit-location to

the left or to the right. The bit falling out of the register will go

into the carry bit. The bit coming in on the other side will be a "0."

In the case of a rotation, the bit coming out still goes in the

carry. However, the bit coming in is the previous value which was

in the carry bit. This corresponds to a 9-bit rotation. It would often

be desirable to have a true 8-bit rotation where the bit coming in

on one side is the one falling off on the other side. This is not us

ually provided on microprocessors. Finally, when shifting a word

to the right, it is convenient to have one more type of shift called

a sign-extension or an "arithmetic shift right". When doing opera

tions on two's complement numbers, particularly when implement

ing floating-point routines, it is often necessary to shift a negative

number to the right. When shifting a two's complement number to

the right, the bit which must come in on the left side should be a 1

(the sign bit should get repeated as many times as needed by the suc-

100

6502 INSTRUCTION SET

SHIFT LEFT

CARRY

ROTATE LEFT

Fig. 4-1: Shift and Rotate

cessive shifts). Unfortunately, this type of shift does not exist in the

6502. It exists in other microprocessors.

Test and Branch

The test instructions will test all bits of the flags register of "0"

or "1," or combinations. It is, therefore, desirable to have as many

flags as possible in this register. In addition, it is convenient to be

able to test for combinations of such bits with a single instruction.

Finally, it is desirable to be able to test any bit position in any

register, and to test the value of a register compared to the value of

any other register (greater than, less than, equal). Microprocessor

test instructions are usually limited to testing single bits of the

flags register.

The jump instructions that may be available generally fall into

three categories:

- the jump proper, which specifies a full 16-bit address,

- the branch, which often is restricted to an 8-bit displacement

field,

- the call, which is used with subroutines.

101

PROGRAMMING THE 6502

It is convenient to have two- or even three-way branches, de

pending, for example, on whether the result of a comparison is

"greater than," "less than," or "equal" It is also convenient to

have skip operations, which will jump forward or backwards by a

few instructions. Finally, in most loops, there is usually a decre

ment or increment operation at the end, followed by a test and

branch. The availability of a single-instruction increment/

decrement plus test and branch is, therefore, a significant advan

tage for efficient loop implementation. This is not available in

most microprocessors. Only simple branches, combined with sim

ple tests, are available. This naturally complicates programming,

and reduces efficiency.

Input/Output

Input/output instructions are specialized instructions for the

handling of input/output devices. In practice, nearly all micro

processors use memory-mapped I/O. This means that input/output

devices are connected to the address-bus, just like memory chips,
and addressed as such. They appear to the programmer as mem

ory locations. AH memory-type operations can then be applied to

desired devices. This has the advantage of providing a wide vari

ety of instructions which can be applied. The disadvantage is that

memory-type operations normally require 3 bytes and are, there

fore, slow. For efficient input/output handling in such an envi

ronment, it is desirable to have a short addressing mechanism

available so that I/O devices whose handling speed is crucial may

reside in page 0. However, if page 0 addressing is available, it is

usually used for RAM memory, and therefore prevents its effec
tive use for input/output devices.

Control Instructions

Control instructions supply synchronization signals and may
suspend or interrupt a program. They can also function as a break

or a simulated interrupt. (Interrupts will be described in Chapter
6 on Input/Output Techniques.)

INSTRUCTIONS AVAILABLE ON THE 6502

Data Transfer Instructions

The 6502 has a complete set of data transfer instructions, ex-

102

6502 INSTRUCTION SET

cept for the loading of the stack pointer, which is restricted in

flexibility. The contents of the accumulator may be exchanged

with a memory location with the instructions LDA (load) and

STA (store). The same applies to registers X and Y. These are,

respectively, instructions LDX LDY, and STX STY. There is no

direct loading for S. Inter-register transfers are naturally pro

vided: the instructions are TAX (transfer A to X), TAY, TSX,

TXA, TXS, TYA. There is a slight asymmetry, since the stack

contents may be exchanged with X, but not with Y.

There is no 2-address memory to memory operation, such as "add

contents of LOCI and LOC2."

Stack Operations

Two "push" and "pop" operations are available. They transfer

register A or the status register (P) to the top of the stack in the

memory while updating the stack pointer S. They are PHA and

PHP. The reverse instructions are PLA and PLP (pull A and pull

P), which transfer the top of the stack respectively into A or P.

Data Processing

Arithmetic

The usual (restricted) complement of arithmetic, logical and

shift functions is available. Arithmetic operations are: ADC,

SBC. ADC is an addition with carry, and there is no addition

without carry. This is a minor nuisance as it requires a CLC

instruction prior to any addition. The subtraction is performed by

SBC.

A special decimal mode is available which allows the direct

addition and subtraction of numbers expressed in BCD. In many

other microprocessors only one of these BCD instructions is av

ailable as a separate instruction code. The presence ofthe decimal

flag multiplies by two the effective number of arithmetic opera

tions available.

Increment/Decrement

Increment and decrement operations are available on the

memory, and on index registers X and Y, but not on the ac

cumulator. They are respectively: INC and DEC, which operate on

the memory; INX, INY and DEX, DEY, which operate on index

registers X and Y.

103

PROGRAMMING THE 6502

Logical Operations

The logical operations are the classic ones: AND, ORA, EOR.

The role of each of these instructions will be clarified.

AND

Each logical operation is characterized by a truth table, which

expresses the logical value of the result in function of the inputs.

The truth table for AND appears below:

0 AND 0 = 0

0 AND 1 = 0

1 AND 0 = 0

1 AND 1 = 1

The AND operation is characterized by the fact that the output

is "1" only if both inputs are "1." In other words, if one of the

inputs is "0," it is guaranteed that the result is "0." This feature is

used to zero a bit position in a word. This is called "masking."

One of the important uses of the AND instruction is to clear or

mask out one or more specified bit positions in a word. Assume, for

example, that we want to zero the right-most four-bit positions in a

word. This will be performed by the following program:

LDA WORD WORD CONTAINS 10101010'

AND #%11110000 '11110000' IS MASK

Let us assume that WORD is equal to '10101010/ The result of

this program is to leave in the accumulator the value '1010 0000.'

"%" is used to represent a binary number.

Exercise 4.1: Write a three-line program which will zero bits 1 and
6 of WORD.

Exercise 4.2: What happens with a mask: MASK = '11111111'?

ORA

This instruction is the inclusive OR operation. It is charac-

104

6502 INSTRUCTION SET

terized by the following truth table:

0 OR 0 = 0

0 OR 1 = 1

1 OR 0 = 1

1 OR 1 = 1

The logical OR is characterized by the fact that if any one of the

operands is "1", the result is to set any bit in a word to='T\

LDA #W0RD

ORA #%00001111

Let us assume that WORD did contain 10101010.' The final

value of the accumulator will be '10101111.'

Exercise 4.3: What would happen if we were to use the instruction

ORA #%10101111?

Exercise 4.4: What is the effect of ORing with "FF" hexadecimal?

EOR

EOR stands for "exclusive OR." The exclusive OR differs from the

inclusive OR, that we have just described, in one respect: the result is " 1"

only if one, and only one, of the operands is equal to " 1." If both operands

are equal to "1," the normal OR would give a "1" result. The exclusive

OR gives a "0" result. The truth table is:

0 EOR 0 = 0

0 EOR 1 = 1

1 EOR 0 = 1

1 EOR 1=0

The exclusive OR is used for comparisons. If any bit is different,

the exclusive OR oftwo words will be non-zero. In addition, in the

case of the 6502, the exclusive OR is used to complement a word,

since there is no specific complement instruction. This is done by

performing the EOR of a word with all l's. The program appears

below:

LDA #WORD

EOR #%11111111

105

PROGRAMMING THE 6502

Let us assume that WORD did contain "10101010." The final

value of the accumulator will be "01010101." We can verify that

this is the complement of the original value.

Exercise 4.5: What is the effect of EOR #$00?

Shift Operations

The standard 6502 is equipped with a left shift, called ASL

(arithmetic shift left), and a right shift, called LSR (logical shift

right). They will be described below.

However, the 6502 has only one rotate instruction, to the left

(ROD.

Warning: newer versions of the 6502 have an extra rotate instruction.

Check the manufacturer's data to verify this fact. (ROR=rotate right)

Comparisons

Registers X, Y, A can be compared to the memory with instruc

tions CPX, CPY, CMP.

Test and Branch

Since testing is almost exclusively performed on the flags regis

ter, let us examine now the flags available in the 6502. The con

tents of the flags register appear in Figure 4-2 below.

7 6 5 4 3 2 10

N V B

SIGN

(NEGATIVE)
BREAK INTERRUPT

OVERFLOW

CARRY

DECIMAL ZERO

Fig. 4-2: The Flags Register

106

6502 INSTRUCTION SET

Let us examine the function of the flags from left to right.

Sign

The N flag is identical to bit 7 of the accumulator, in most cases.

As a result, bit 7 of the accumulator is the only bit that one can

test conveniently with a single instruction. To test any other bit of

the accumulator, it is necessary to shift its contents. In all cases

where one wants to test the contents of the word quickly, the

preferred bit position will, therefore, be bit 7. This is why input/

output status bits are normally connected to position 7 of the

data-bus. When reading the status of an I/O device, one will simply

read the contents of the external status register into the ac

cumulator and then test bit N.

The left-most bit is the sign bit, or negative bit. Whenever N is

1, it indicates that the value of a result is negative in two's com

plement representation. In practice, flag N is identical to bit 7 of a

result. It is set, or reset, by all data transfers and data processing

instructions.

The bit within the accumulator which is the next easiest to test

is bit Z (zero). However, it requires a right shift by 1 into the carry

bit so that it can be tested.

Instructions that set N are: ADC, AND, ASL, BIT, CMP, CPY,

CPX, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY,

LSR, ORA, PLA, PLP, ROL, ROR, TAX, TAY, TXS, TXA, TYA.

Overflow

The role of the overflow has already been discussed in Chapter

3 in the section on arithmetic operations. It is used to indicate

that the result of the addition or subtraction of two's complement

numbers might be incorrect because of an overflow from bit 6 to

bit 7, i.e., into the sign bit. A special correction routine must be

used whenever this bit is set. If one does not use two's complement

representation, but direct binary, the overflow bit is equivalent to

a carry from bit 6 into bit 7.

107

PROGRAMMING THE 6502

A special use of this bit is made by the BIT instruction. A result
of this instruction is to set the "V" bit identical to bit 6 of the data
being tested.

The V flag is conditioned by ADC, BIT, CLV, PLP, RTI, SBC.

Break

This break flag is automatically set by the processor if an inter

rupt is caused by the BRK command. It differentiates between a

programmed break and a hardware interrupt. No other user in
struction will modify it.

Decimal

The use of this flag has already been discussed in Chapter 3 in
the section on arithmetic programs. Whenever D is set to "1", the
processor operates in BCD mode, and whenever it is set to "0", it

operates in binary mode. This flag is conditioned by four instruc
tions: CLD, PLP, RTI, SED.

Interrupt

This interrupt-mask bit may be set explicitly by the programmer with
the SEI or PLP instructions, or by the microprocessor during the reset or
during an interrupt.

Its effect is to inhibit any further interrupt.

Instructions which condition this bit are: BRK, CLI, PLP, RTI,
SEI.

Zero

The Z flag indicates, when set (equal to "1"), that the result of

a transfer or an operation is a zero. It is also set by the comparison

instruction. There is no specific instruction which will set or clear

108

6502 INSTRUCTION SET

the Z bit. However, the same result can easily be accomplished. In

order to set the zero bit, one can, for example, execute the follow

ing instruction:

LDA #0

The Z bit is conditioned by many instructions: ADC, AND,

ASL, BIT, CMP, CPY, CPX, DEC, DEX, DEY, EOR, INC, INX,
INY, LDA, LDX, LDY, LSR, ORA, PLA, PLP, ROL, ROR, RTI,

SBC, TAX, TAY, TXA, TYA.

Carry

It has been seen that the carry bit is used for a dual purpose. Its
first purpose is to indicate an arithmetic carry or borrow during
arithmetic operations. Its second purpose is to store the bit "falling
out" of a register during the shift or rotate operations. The

two roles do not necessarily need be confused, and they are not on

larger computers. However, this approach saves time in the mi
croprocessor, in particular for the implementation of a multiplica
tion or a division. The carry bit can be set or cleared explicitly.

Instructions which will condition the carry bit are: ADC, ASL,
CLC, CMP, CPX, CPY, LSR, PLP, ROL, ROR, RTI, SBC, SEC.

Tkst and Branch Instructions

In the 6502, it is not possible to test every bit of the flags regis

ter for one or zero. There are 4 bits which can be tested, and there are,

therefore, 8 different branch instructions. They are:

— BMI (branch on minus), BPL (branch on plus). These two

instructions, naturally, test the N bit.

— BCC (branch on carry clear) and BCS (branch on carry set):

they test C.

— BEQ (branch when result is null) and BNE (branch on

result not zero). They test Z.

— BVS (branch when overflow is set) and BVC (branch on

overflow clear). They test V.

109

PROGRAMMING THE 6502

These instructions test and branch within the same instruction.
All branches specify a displacement relative to the current in
struction. Since the displacement field is 8 bits, this allows a
displacement of -128 to +127 (in two's complement). The dis
placement is added to the address ofthe first instruction following
the branch.

Since all branches are 2 bytes long, this results in an effective
displacement of -128 + 2 = -126 to +127 +2 = +129.

Two more unconditional instructions are available: JMP and
JSR. JMP is a jump to a 16-bit address. JSR is a subroutine call. It
jumps to a new address and automatically preserves the program
counter into the stack. Being unconditional, these two instructions
are usually preceded by a "test and branch" instruction.

Two returns are available: RTI, a return from interrupt, which
will be discussed in the interrupt section, and RTS, a return from
subroutine, which pulls a return address from the stack (and in
crements it).

Two special instructions are provided especially for bit-testing
and for comparisons.

The BIT instruction performs an AND between the memory
location and the accumulator. One important aspect is that it does
not change the contents of the accumulator. The flag N is set to the
value of bit 7 of the location tested, while the V flag is set to
bit 6 of the memory location being tested. Finally, bit Z indicates
the result of the AND operation. Z is set to "1" if the result is "0".
Typically a mask will be loaded in the accumulator, and successive
memory values will then be tested using the BIT instruction.

If the mask contains a single "1" for example, this will test
whether any given memory word does contain a "1" in that posi
tion. In practice, this means that a mask should be used only
when one is testing memory bit locations "0" to "5". The reader
will remember that bit locations "6" and "7" are automatically
stored respectively, in the "V" flag and in the "N" flag. They do not
need to be masked.

The CMP instruction will compare the contents of the memory
location to those of the accumulator by subtracting it from the ac

cumulator. The result of the comparison will be indicated, there-

110

6502 INSTRUCTION SET

fore, by bits Z and N. One can detect equality, greater than, or less

than. The value of the accumulator is not changed by the compar

ison. CPX and CPY will compare to X and Y respectively.

Input/Output Instructions

There are no specialized input/output instructions in the 6502.

Control Instructions

Control instructions include specialized instructions to set or

clear the flags. They are: CLC, CLD, CLI, CLV, which clear re

spectively bits C, D, I and V; and SEC, SED, SEI, which set re

spectively in bits C, D, and I.

The BRK instruction is the equivalent of a software interrupt

and will be described in Chapter 7 in the interrupt section.
The NOP instruction is an instruction which has no effect and is

commonly used to extend the timing of a loop. Finally, two special

pins on the 6502 will trigger an interrupt mechanism, and this will

be explained in Chapter 6 on input/output techniques. It is a hard

ware control facility (IRQ and NMI pins).

Let us now examine each instruction in detail.

In order to truly understand the various addressing modes, the reader

is encouraged to read the following section quickly the first time, and

then in more detail the second time after studying Chapter 5 on

Addressing Techniques.

ill

PROGRAMMING THE 6502

PART 2 - THE INSTRUCTIONS

ABBREVIATIONS

A

M

P

S

X

Y

DATA

HEX

PC

PCH

PCL

STACK

V

A

V

•

()

M6)

Accumulator

Specified address (memory)

Status register

Stack pointer

Index register

Index register

Specified data

Hexadecimal

Program counter

Program counter high

Program counter low

Contents of top of stack

Logical or

Logical and

Exclusive or

Change

Receives the value of (assignment)

Contents of

Bit position 6 at address M

112

6502 INSTRUCTION SET

ADC Add with carry

Function:

Format:

(A) + DATA + C

OllbbbOl ADDR/DATA ADDR

_j

Description:

Add the contents of memory address or literal to the ac

cumulator, plus the carry bit. The result is left in the ac

cumulator.

Remarks:

—ADC may operate either in decimal or binary mode: flags

must be set to the correct value

—To ADD without carry, flag C must be cleared (CLC).

Data Paths:

Addressing Modes:

HEX

BYTES

CYCIES

bbb

ft///'
6D

3

4

on

y*
65

2

3

001

/
69

2

2

010

7D

3

4*

m

79

3

4*

no

61

2

6

000

74
71

2

5*

100

W//////
75

2

4

101

: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags: N

•

V

•

B D 1 Z C

• •

113

PROGRAAAMING THE 6502

Instruction Codes:

ABSOLUTE 01101101

bbb= Oil

bbb= 010

b^ 110

bbb-= 101

16-BIT ADDRESS

I

HEX= 6D CYCLES = 4

ZERO-PAGE

IMMEDIATE

01100101

bbb= 001

01101001

ADDR

HEX-: 65

DATA

HEX ■= 69 CYCLES = 2

ABSOLUTE, X

ABSOLUTE, Y

bbb

01111101

- Ill

01111001

HEX

16-BIT

= 7D

16-BIT

ADDRESS

CYCLES =

1

ADDRESS

4*

79 CYCLES = 4*

(IND. X)

(IND),Y

7ERO-PAGE, X

bbb

bbb

01100001

= 000

01110001

- 100

01110101

ADDR

HEX- 61

ADDR

HEX - 71

ADDR

75 CYCLES^ 4

•: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

114

6502 INSTRUCTION SET

AND Logical AND

Function: A^-(A) A DATA

Format: ADDR/DATA ADDR

Description:

Perform the logical AND ofthe accumulator and specified data.

The result is left in the accumulator.

The truth table is:
a\m

0

,1

0

0

0

1

0

1

Data Paths:

Addressing Modes:

HEX

BYTES

CYCLES

bbb

V*
2D

3

4

Oil

ft///*/*
25

2

3

001

29

2

2

010

3D

3

4*

in

39

3

4*

110

21

2

6

000

Vi
31

2

5*

100

y*
35

2

4

101

7<
*/,
/*

•: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:
N

•

V B 0 I Z

•

c

115

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE 00101101

bbb= Oil

16-BIT ADDRESS

HEX= 2D CYCLES = 4

bbb- 010

ZERO-PAGE

IMMEDIATE

00100101

bbb= 001

00101001

ADDR

HEX =

DATA

25

HEX- 29 CYCLES = 2

ABSOLUTE

ABSOLUTE,

X

Y

00111101

bbb - 111

00111001

HEX

16-BIT

= 3D

16-BIT

1

ADDRESS

CYCLES =

ADDRESS

4*

HEX = 39 CYCLES = 4*

(IND, X)

(IND),Y

ZERO PAGE, X

00100001

bbb= 000

0011001

bbb * 100

00110101

ADDR

HEX = 21

ADDR

HEX ■■- 31

ADDR

bbb - 101 HEX - 35 CYCLES = 4

•: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

116

6502 INSTRUCTION SET

ASL

Function:

Arithmetic shift left

Format:

7 6 5 4 3 2 10 » 0

OOObbbiO ADDR

,

I ADDR

- J

Description:

Move the contents of the accumulator or of the memory location

left by one bit position. 0 comes in on the right. Bit 7 falls into the

carry. The result is deposited in the source, i.e. either accumulator

or memory.

Data paths:

Addressing Modes:

HEX

BYTES

CYCIES

bbb

OA

i

2

010

OE

3

6

on

06

2

5

001

IE

3

7

111

16

2

6

101

Flags:
N

•

V B D 1 Z

•

c

•

117

PROGRAMMING THE 6502

Instruction Codes:

ACCUMULATOR

ABSOLUTE

ZERO-PAGE

ABSOLUTE, X

ZERO-PAGE, X

00001010

bbb=010

bbb=011

bbb=001

bbb =111

bbb =

HEX= 0A CYCLES= 2

000011 10 ADDRESS

I

HEX= 0E

000001 10 ADDR

HEX= 06

CYCLES = 6

CYCLES = 5

000111 10

1

ADDRESS

HEX= IE

000101 10 ADDR

HEX= 16

CYCLES = 7

CYCLES = 6

118

6502 INSTRUCTION SET

BCC Branch on carry clear

Function:

Go to specified address if C = 0

Format:
1001000 DISPLACEMENT

Description:

Test the carry flag. If C = 0, branch to the current address plus

the signed displacement (up to 4-127 or -128). If C = 1, take no

action. The displacement is added to the address of the first in

struction following the BCC. This results in an effective dis

placement of +129 to -126.

Data Paths:

BCC

+ 12

NEXT ADDR1

Addressing Mode:

Relative only:

HEX = 90, bytes = 2, cycles = 2 + 1 if branch succeeds

+ 2 if into another page

Flags:

N V B 0 1 z c

(NO ACTION)

119

PROGRAMMING THE 6502

BCS Branch on carry set

Function:

Go to specified address if C = 1

Format: 10110000 DISPLACEMENT

Description:

Test the carry flag. If C = 1, branch to the current address plus

the signed displacement (up to +127 or -128). If C = 0, take no

action. The displacement is added to the address of the first instruc

tion following the BCS. This results in an effective displacement of

+129 to -126.

Data Paths:

BCS

ADDR1

Addressing Mode:

Relative only:

HEX = B0, bytes = 2, cycles = 2 + 1 if branch succeeds

+2 if into another page

Flags:

N V B D 1 Z C

(NO ACTION)

120

6502 INSTRUCTION SET

BEQ Branch if equal to zero

Function:

Go to specified address if Z= 1 (result = 0).

Format: 111 10000 DISPLACEMENT

Description:

Test the Z flag. If Z = 1, branch to the current address plus the

signed displacement (up to +127 or -128). If Z = 0, take no
action.

The displacement is added to the address of the first instruction
following the BEQ. This results in an effective displacement of
+ 129 to -126.

Data Paths:

BEQ

A0DR1

Addressing Mode:

Relative only:

HEX = FO, bytes = 2, cycles = 2 +1 if branch succeeds

+2 if into another page

Flags:

N V B 0 I Z c

(NO ACTION)

121

PROGRAMMING THE 6502

BIT Compare memory bits with accumulator

Function:

Z-«-(A) A (M) ,

Format: 001Ob100 ADDR ADDR

Description:

The logical AND of A and M is performed, but not stored. The result

of the comparison is indicated by Z. Z = 1 if the comparison fails; 0

otherwise. In addition, bits 6 and 7 of the memory data are transferred

into V and N of the status register. It does not modify the contents of A.

Data Paths:

p

N, V, Z

fM
l\V
> 1

BITS 6 AND 7

Addressing Modes:

HEX

BYTES

CYCLES

bbb

2C

3

4

Oil

24

2

3

001

f////////

Flags:

odes:

ABSOLUTE

N

M7

V

Me

B

00101100

0 1 z

•

16-BIT

c

ADDRESS

HEX= 2C CYaES=

00100100 ADDR

HEX= 24 CYQES= 3

122

6502 INSTRUCTION SET

BMI Branch on minus

Function:

Go to specified address if N = 1 (result < 0).

Format: DISPLACEMENT

Description:

Test the N flag (sign). If N = 1, branch to the current address

plus the signed displacement (up to +127 or -128). IfN = 0, take
no action.

The displacement is added to the address of the first instruction

following the BMI. This results in an effective displacement of

+ 129 to - 126.

Data Paths:

+ 12

NEXT

Addressing Mode:

Relative only:

HEX = 30, bytes = 2, cycles = 2 +1 if branch succeeds

+2 if into another page

Flags:

N V B D I Z c

(NO ACTION)

123

PROGRAMMING THE 6502

BNE Branch on not equal to zero

Function:

Go to specified address if Z = 0 (result * 0).

Format: 11010000 DISPLACEMENT

Description:

Test the result (Z flag). If the result is not equal to 0 (Z = 0),

branch to the current address plus the signed displacement (up to

+127 to -128). If Z = 1, take no action.

The displacement is added to the address of the first instruction

following the BNE. This results in an effective displacement of

+ 129 to -126.

Data Paths:

BNE

NEXT ADDR1

Addressing Mode:

Relative only:

HEX = DO, bytes = 2, cycles = 2 +1 if branch succeeds

+ 2 if into another page

Flags:

N V B D 1 Z c

(NO ACTION)

124

6502 INSTRUCTION SET

BPL Branch on plus

Function:

Go to specified address if N = 0 (result

Format: DISPLACEMENT

0).

Description:

Test the N flag (sign). If N = 0 (result positive), branch to the

current address plus the signed displacement (up to +127 or

-128). If N = 1, take no action.

The displacement is added to the address of the first instruction

following the BPL. This results in an effective displacement of

+129 to -126.

Data Paths:

BPL

+ 12

NEXT ADDR1

Addressing Mode:

Relative only:

HEX = 10, bytes = 2, cycles = 2 +1 if branch succeeds

+2 if into another page

Flags:

N V B D 1 Z c

(NO ACTION)

125

PROGRAMMING THE 6502

BRK Break

Function:

STACK (PC) + 2, STACK (P), PC -*-(FFFE,FFFF)

Format: 00000000

Description:

Operates like an interrupt: the program counter is pushed on

the stack, then the status register P. The contents of memory

locations FFFE and FFFF are then deposited respectively in PCL

and PCH. The value ofP stored in the stack has the B flag set to 1,
to differentiate a BRK from an IRQ.

Important: unlike an interrupt, PC + 2 is saved. This may not

be the next instruction, and a correction may be necessary. This is
due to the assumed use of BRK to patch existing programs where BRK

replaces a 2-byte instruction. When debugging a program, BRK is gen

erally used to cause exit to monitor. Then, BRK often replaces the first

byte of an instruction.

Data Paths:

Addressing Mode:

Implied only:

HEX = 00 , byte = 1, cycles = 7

Flags:
D I Z C

1

Note: B is set in before P is pushed in the stack.

126

6502 INSTRUCTION SET

BVC Branch on overflow clear

Function:

Go to specified address if V = 0.

Format: 0101000 DISPLACEMENT

Description:

Test the overflow flag(V). Ifthere is no overflow (V = 0), branch

to the current address plus the signed displacement (up to +127

or -128). If V = 1, take no action.

The displacement is added to the address of the first instruction

following the BVC. This results in an effective displacement of

+129 to -126.

Data Paths:

+ 12

NEXT ADDR1

Addressing Mode:

Relative only:

Hex = 50, bytes = 2, cycles = 2 + 1 if branch succeeds

+2 if into another page

Flags:

N V B D 1 Z c

(NO ACTION)

127

PROGRAMMING THE 6502

BVS Branch on overflow set

Function:

Go to specified address if V = 1.

Format: omoooo DISPLACEMENT

Description:

Test the overflow flag (V). If an overflow has occurred (V = l),

branch to the current address plus the signed displacement (up to

+127 or -128). If V = 0, take no action.

The displacement is added to the address of the first instruction

following the BVS. This results in an effective displacement of

+ 129 to -126.

Data Paths:

NEXT

Addressing Mode:

Relative only:

HEX = 70, bytes = 2, cycles = 2

Flags:

+1 if branch succeeds

+2 if into another page

N V B D I Z c

(NO ACTION)

128

6502 INSTRUCTION SET

CLC

Function:

Clear carry

Format: 00011000

Description:

The carry bit is cleared. This is often necessary before an ADC.

Addressing Mode:

Implied only

HEX = 18, byte = 1, cycles= 2

Flags:
N V B 0 1 2 C

129

PROGRAAAMING THE 6502

CLD

Function:

Format:

Description:

The D flag is

SBC.

Clear decimal flag

11011000

cleared, setting the binary mode for ADC and

Addressing Mode:

Implied only:

HEX = D8, byte = 1, cycles= 2

Flags:
N V B 0

0
1 Z

|
c

130

6502 INSTRUCTION SET

CLI

Function:

Clear interrupt mask

Format: 01011000

Description:

The interrupt mask bit is set to 0. This enables interrupts. An

interrupt handling routine must always clear the I bit, or else

other interrupts may be lost.

Addressing Mode:

Implied only:

HEX = 58, byte= 1, cycles= 2

Flags:

0

131

PROGRAMMING THE 6502

CLV Clear overflow flag

Function:

Format:
10111000

Description:

The overflow flag is cleared.

Addressing Mode:

Implied only:

HEX = B8, byte = 1, cycles = 2

Flags:
N V B D I Z C

101 1 |

132

CMP

6502 INSTRUCTION SET

Compare to accumulator

Function:

(A)-DATA—NZC:
+ (A>DATA)

-01

s

on

- (A<0ATA)

-00

Format: llObbbOl ADDR/DATA ADDR

Description:

The specified contents are subtracted from A. The result is not

stored, but flags NZC are conditioned, depending on whether the

result is positive, null or negative. The value of the accumulator

is not changed. Z is set by an equality, reset otherwise; N is set;

reset by the sign (bit 7), C is set when (A) > DATA. CMP is usual

ly followed by a branch: BCC detects A < DATA, BEQ detects A

= DATA, BCS detects A > DATA, and BEQ followed by BCS

detects A > DATA.

Data Paths:

p

\v

7

Addressing Modes:

HEX

BYTES

CYCLES

bbb

CO

3

4

Oil

C5

2

3

001

C9

2

2

010

DO

3

4*

111

D9

3

4*

110

C1

2

6

000

01

2

5*

100

D5

2

4

101

•: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:
N

•

V B D 1 Z

•

C

•

133

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE

bbb= Oil

bbb= 010

bbb= 110

16-BIT ADDRESS

I

HEX= CD CYCLES = 4

ZERO-PAGE

IMMEDIATE

bbb

11000101

= 001

11001001

ADDR

HEX =

DATA

C5

HEX= C9 CYCLES = 2

ABSOLUTE,

ABSOLUTE,

X

Y

bbb =

11011101

111

11011001

HEX =

16-BIT

DD

16-BIT

ADDRESS

i

CYCLES =

ADDRESS

I

4*

(IND.X)

(IND),Y

ZERO-PAGE, X

bbb =

bbb =

11000001

000

11010001

100

11010101

ADDR

HEX =

ADDR

HEX =

ADDR

Cl

D1

bbb= 101

HEX= D9 CYCLES = 4*

CYCLES = 6

CYCLES = 5*

HEX= D5 CYCLES = 4

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

134

6502 INSTRUCTION SET

CPX

Function:

X-DATA

Format:

Compare to register X

+(X> DATA)

-01

=

on

-(X<DATA)

-00

1110bb00 ADDR/DATA ADDR

J

Description:

The specified contents are subtracted from X. The result is not

stored, but flags NZC are conditioned, depending on whether the

result is positive, null or negative. The value of the accumulator

is not changed. CPX is usually followed by a branch: BCC detects X<

DATA, BEQ detects X = DATA, and BEQ followed by BCS detects

X>DATA. BCS detects X > DATA.

Data Paths:

p

T

1

1

M—•■

-.

! !

DATA

Addressing Modes:

HEX

BYTES

CYCLES

bb

/'///i
EC

3

4

11

E4

2

3

01

V/AAAVffl'A
EO

2

2

00

'A

Flags:
N

•

V B D 1 Z

•

c

•

135

PROGRAAAMING THE 6502

Instruction Codes:

ABSOLUTE 11101100

bb= 11

bb= 00

16-BIT ADDRESS

I

HEX= EC CYCLES = 4

ZERO-PAGE

IMMEDIATE

bb =

11100100

01

11100000

ADDR

HEX= E4

DATA

HEX= EO CYCLES = 2

136

6502 INSTRUCTION SET

CPY

Function:

Compare to register Y

(Y) - DATA -*-NZC:

Format:

+(Y>DATA)

-01

=

on

-(Y<DATA)

-00

UOObbOO ADDR'DATA ADDR

Description:

The specified contents are subtracted from Y. The result is not

stored, but flags NZC are conditioned, depending on whether the
result is positive, null or negative. The value of the accumulator
is not changed. CPY is usually followed by a branch: BCC detects

Y < data, BEQ detects Y = data, and BEQ followed by BCS

detects Y > data. BCS detects Y ^ data.

Data Paths:

p

\v

T

Addressing Modes:

HEX

BYTES

CYCLES

bb

cc

3

4

11

C4

2

3

01

CO

2

2

00

Flags:.
N

•

V B D 1 Z

•

c

•

137

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE

ZERO-PAGE

IMMEDIATE

11001100

bb= 11

11000100

bb= 01

11000000

bb= 00

16-BIT

HEX= CC

ADDR

HEX= C4

DATA

HEX= CO

ADDRESS

1

CYCLES = 4

CYCLES = 3

CYCLES = 2

138

DEC

Function:

Format:

6502 INSTRUCTION SET

Decrement

llObbUO ADDR

ADDR

Description:

The contents of the specified memory address are decremented

by 1. The result is stored back at the specified memory address.

Data Paths:

DATA-M5ATA-1

Addressing Modes:

HEX

BYTES

CYCLES

■■ bb

CE

3

6

01

C6

2

5

00

DE

3

7

n

'/iff/*
D6

2

6

10

*ft

Flags:
N V

•I.
B D 1 Z

•

C

139

PROGRAAAAAING THE 6502

Instruction Codes:

ABSOLUTE

ZERO-PAGE

11001110 ADDRESS
i

bb=01

bb=00

HEX= CE CYCLES = 6

11000110 ADDR

HEX= C6 CYCLES = 5

ABSOLUTE, X 11011110 ADDRESS

bb = 1 HEX= DE CYCLES = 7

ZERO-PAGE, X 11010110 ADDR

bb-10 HEX= D6 CYCLES = 6

140

6502 INSTRUCTION SET

DEX

Function:

X -*- (X) - 1

Format:

Decrement X

11001010

Description:

The contents ofX are decremented by 1. Allows the use ofX as

a counter.

Data Paths:

X

N

Z
-1

A-

N-i

1

Addressing Mode:

Implied only:

HEX = CA, byte= 1, cycles = 2

Flags:

N

•

V B D 1 Z

•

C

141

PROGRAMMING THE 6502

DEY

Function:

Y ^-0

Format:

Decrement Y

10001000

Description:

The contents of Y are decremented by 1. Allows the use of Y as
a counter.

Data Paths:

Y

N

Z

{}?
-1

L_

Addressing Mode:

Implied only:

HEX = 88, byte = 1, cycles = 2

Flags:

N

•

V B D 1 Z

•

c

142

6502 INSTRUCTION SET

EOR Exclusive—OR with accumulator

Function:

A**- (A) V DATA

Format:
OlObbbOl ADDR/DATA ADDR

Description:

The contents of the accumulator are exclusive -ORed with the

specific data. The truth table is:

0

1

0

0

1

1

1

0

Note: EOR with "-1" may be used to complement.

Data Paths: A

Addressing Modes:

HEX

BYTES

CYCLES

bbb

/'//A
4D

3

4

Oil

/ / *
45

2

3

001

49

2

2

010

'A
5D

3

4*

111

59

3

4*

110

41

2

6

000

'A
51

2

5*

100

ft/*
55

2

4

101

•: PIUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:
N

•

V B D 1 Z

•

c

143

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE 01001101

bbb= Oil

bbb= 010

bbb= 110

bbb ■= 101

16-BIT ADDRESS

I

HEX= 4D CYCLES = 4

ZERO-PAGE

IMMEDIATE

bbb

01000101

= 001

01001001

ADDR

HEX = 45

DATA

HEX = 49 CYCLES = 2

ABSOLUTE

ABSOLUTE,

X

Y

bbb

01011101

= 111

01011001

HEX

16-BIT

■= 5D

16-BIT

1

ADDRESS

CYCLES^

ADDRESS

4*

HEX-= 59 CYCLES-= 4*

(IND,

(IND)

'AGE,

X)

, Y

X

bbb =

bbb--

01000001

000

01010001

100

010101-01

ADDR

HEX =

ADDR

HEX •--

ADDR

41

51

HEX = 55 CYCLES = 4

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

144

6502 INSTRUCTION SET

INC

Function:

M -«- (M) +1

Format:

Increment memory

lllbbilO ADDR ADDR I

j

Description:

The contents of the specified memory location are incremented

by one, then redeposited into it.

Data Paths:

s—\
\l—?

M »-

1

i 1

! ;

DATA DATA-*OATA+1

Addressing Modes:

HEX

BYTES

CYCLES

bb

EE

3

6

01

E6

2

5

00

FE

3

7

11

F6

2

6

10

Flags:

N

•

V B D 1 Z

•

c

145

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE momo ADDRESS

HEX= EE CYCLES = 6

ZERO-PAGE 11100110 ADDR

bb = 0O HEX= E6 CYCLES = 5

ABSOLUTE, X 11111110 ADDRESS

bb=ll HEX= FE CYCLES = 7

ZERO-PAGE, X 11110110 ADDR

bb=10 HEX= F6 CYCLES = 6

146

6502 INSTRUCTION SET

INX

Function:

X-*-(X) +1

Format:

Increment X

11101000

Description:

The contents of X are incremented by one. This allows the use

of X as counter.

Data Paths:

+ 1

1

/>—

Addressing Mode:

Implied only:

HEX = E8, byte = 1, cycles = 2

Flags:

N

•

V B D 1 Z

•

C

147

PROGRAMMING THE 6502

INY

Function:

Format:

1

Increment Y

11001000

Description:

The contents of Y are incremented by one. This allows the use

of Y as counter.

Data Paths:

Addressing Mode:

Implied only:

HEX = C8, byte = 1, cycles = 2

Flags:

N

•

V B D 1 Z

•

c

148

6502 INSTRUCTION SET

Jump to addressJMP

Function:

PC^- ADDRESS

Format:

Description:

A new address is loaded in the program counter, causing ajump

to occur in the program sequence. The address specification may

be absolute or indirect.

Data Paths:

OlbOllOO ADDRESS

1 _

(ABSOLUTE)

Addressing Modes:

HEX

BYTES

CYCLES

b

4C

3

3

0

AC

3

5

1

Flags:

N V B 0 1 2 C

(NO EFFECT)

149

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE

INDIRECT

b

oioonoo

=0

01101100

HEX = 4C

ADDRESS

CYCLES = 3

ADDRESS

HEX=6C CYCLES=5

(INDIRECT)

p c

— ADDRESS —

JMP

FINAL ADDRESS

150

6502 INSTRUCTION SET

JSR Jump to subroutine

00100000

1

ADDRESS

i

Function:

STACKS- (PC) +2

PC-«- ADDRESS

Format:

Description:

The contents of the program counter +2 are saved into the

stack. (This is the address of the instruction following the JSR).

The subroutine address is then loaded into PC. This is also called

a "subroutine CALL."

Data Paths:

©

©

ADDR

Addressing Mode:

Absolute only:

HEX = 20, bytes = 3, cycles = 6

Flags:

N V B D 1 Z C

(NO EFFECT)

151

PROGRAMMING THE 6502

Load accumulatorLDA

Function:

A^-DATA

Format:

Description:

The accumulator is loaded with new data.

Data Paths:

lOlbbbOl ADDR/DATA ADDR

Addressing Modes:

AD

3

4

on

AS

2

3

001

A9

2

2

010

BD

3

4*

111

B9

3

4*

no

A1

2

6

000

Bt

2

5"

100

B5

2

4

101

•: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:

152

Instruction Codes:

ABSOLUTE 10101101

6502 INSTRUCTION SET

16-BIT ADDRESS

HEX = AD CYCLES = 4

bbb-- 010

ZERO-PAGE

IMMEDIATE

bbb

10100101

■•= ooi

10101001

ADDR

HEX^=

DATA

A5

HEX= A9 CYCLES = 2

ABSOLUTE,

ABSOLUTE,

X

Y

bbb

10111101

^ 111

10111001

HEX

16-BIT

- BD

16-BIT

ADDRESS

CYCLES-

ADDRESS

4*

bbb- 110 HEX= B9 CYCLES = 4*

(IND, X)

(IND).Y

7ERO-PAGE, X

bbb

bbb

10100001

- 000

10110001

■- ioo

10110101

ADDR

HEX^=

ADDR

HEX -■•

ADDR

A1

Bl

bbb - 101 HEX = B5 CYCLES = 4

: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

153

PROGRAMMING THE 6502

LDX

Function:

X-*- DATA

Format:

Load register X

lOlbbblO ADDR/DATA ADDR j

Description:

Index register X is loaded with data from the specified address.

Data Paths:

W///////////A Wf///////////,

Addressing Modes:

HEX

BYTES

CYCLES

bbb

^ / £y / / ® / <S / T / > / a

AE

3

4

on

A6

2

3

001

A2

2

2

000

BE

3

4*

111

B6

2

4

110

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:
N

•

V B 0 1 Z

•

c

154

Instruction Codes:

ABSOLUTE 10101110

bbb -- 011

bbb = 000

ABSOLUTE, Y

ZERO PAGE. Y

10111110

bbb 111

6502 INSTRUCTION SET

16-BIT ADDRESS

HEX - AE CYCLES - 4

ZtRO-PAGE

IMMEDIATE

bbb

10100110

- 001

10100010

ADDR

HEX - A6

DATA

HEX -- A2 CYCLES "■ 2

16-BIT ADDRESS

I

HEX BE CYCLES = 4*

10111010 ADDR

HEX • B6 CYCIES : 4

•: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

155

PROGRAMMING THE 6502

LDY

Function:

Y^- DATA

Format:

Load register Y

lOlbbbOO ADDR/DATA ADDR

.1

Description:

Index register Y is loaded with data from the specified address.

DataPaths:

WW////M W////////'///,

Addressing Modes:

AC

3

4

Oil

M

2

3

00)

A0

2

2

000

BO

3

4*

III

B4

4

4

101

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:

N

•

V B D 1 Z

•

c

156

Instruction Codes:

6502 INSTRUCTION SET

ABSOLUTE

ZERO-PAGE

IMMEDIATE

ABSOLUTE, X

ZERO-PAGE, X

10101100

bbb= 011

10100100

bbb=001

10100000

bbb= 000

10111100

bbb =111

10110100

1

16-BIT

HEX= AC

ADOR

HEX= A4

DATA

HEX=A0

16-BIT

HEX=BC

ADDR

ADDRESS

CYCLES = 4

CYCLES = 3

CYCLES = 2

ADDRESS

__

CYCLES = 4*

bbb =101 HEX= B4 CYCLES ^

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

157

PROGRAMMING THE 6502

LSR Logical shift right

Function: <t>—*- 7 6 5 4 3 2 1 t

Format:
OlObbblO ADDR/DATA

Description:

Shift the specified contents (accumulator or memory) right by

one bit position. A "0" is forced into bit 7. Bit 0 is trafosferred to

the carry. The shifted data is deposited in the source, i.e., either

accumulator or memory.

Data Paths:

1

1

1

I

1

1

1

DATA

Addressing Modes:

HEX

BYTES

CYCLES

bbb

4A

1

2

010

4E

3

6

011

46

2

5

001

AA
5E

3

7

111

7*ytA
56-:

2

6

101

AAA

Flags:
N V B D I 2 C

0| • •

158

Instruction Codes:

6502 INSTRUCTION SET

ACCUMULATOR

ABSOLUTE

01010110

bbb=010

bbb=011

HEX=4A CYCLES = 2

01011110

— -1

ADDRESS

HEX= 4E CYCLES = 6

ZERO-PAGE 01001110 ADDR

bbb=001 HEX =46 CYCLES =5

ABSOLUTE, X 01111110 ADDRESS

bbb= 1 HEX=5E CYCLES =7

ZERO-PAGE, X 01101110 ADDR

bbb=101 HEX = 56 CYCLES = 6

159

PROGRAAAMING THE 6502

NOP No operation

Function:

None

Format: 11101010

Description:

Does nothing for 2 cycles. May be used to time a delay loop or to
fill patches in a program.

Addressing Mode:

Implied only:

HEX = EA, byte = 1, cycles = 2

Flags:

N V B D 1 Z c

(NO ACTION)

160

6502 INSTRUCTION SET

ORA

Function:

A^- (A) V DATA

Format:

Inclusive OR with accumulator

OOObbbOl ADDR/DATA

Description:

Performs the logical (inclusive) OR ofA and the specified data.

The result is stored in A. May be used to force a "1" at selected bit

locations.

Truth table:

Data Paths:

0

1

0

0

1

1

1

1

Addressing Modes:

00

3

4

011

05

2

3

001

09

2

2

010

ID

3

4*

111

19

3

4*

110

01

2

6

000

11

2

5*

100

15

2

4

101

•: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:
N

•

V B

1
0 1 z

•

c

161

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE 00001101

bbb=011

00000101

bbb=001

IMMEDIATE 00001001

bbb=010

bbb= 110

(IND, X)

(IND),Y

ZERO-PAGE, X

00000001

bbb=OOO

00010001

bbb=100

00010101

bbb= 101

16-BIT ADDRESS

I

HEX=0D CYCLES = 4

ADDR

HEX= 05 CYCLES = 3

DATA

HEX =09 CYCLES =2

ABSOLUTE, X

ABSOLUTE, Y

00011101

bbb=111

00011001

16-BIT

HEX=1D

16-BIT

I

ADDRESS

CYCLES =

1

ADDRESS

4*

HEX =19 CYCLES = 4*

HEX =01 CYCLES =6

HEX=11 CYCLES =5*

ADDR

HEX =15 CYCLES = 4

•: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

162

6502 INSTRUCTION SET

PHA

Function:

STACKS- (A)

Push A

Format: 01001000

Description:

The contents of the accumulator are pushed on the stack. The

stack pointer is updated. A is unchanged.

Data Path:

mm®

I

1

+

STACK^1

Addressing Mode:

Implied only:

HEX = 48, byte = 1, cycles = 3

Flags:

N V B 0 1 Z c

(NO EFFECT)

163

PROGRAMMING THE 6502

PHP

Function:

STACKS- (P)

Push processor status

Format: 00001000

Description:

The contents of the status register P are pushed on the stack.

The stack pointer is updated. A is unchanged.

Data Path:

Addressing Mode:

Implied only

Hex = 08, byte = 1, cycles= 3

Flags:

N V B D 1 z C

(NO EFFECT)

164

6502 INSTRUCTION SET

PLA

Function:

A^- (STACK)

S^- (S) +1

Pull accumulator

Format: 01101000

Description:

Pop the top word of the stack into the accumulator. Increment

the stack pointer.

Data Paths:

Addressing Mode:

Implied only:

HEX = 68, byte = 1, cycles = 4

Flags:

N V B D I Z C

165

PROGRAMMING THE 6502

PLP

Function:

P^- (STACK)

Pull processor status from stack

Format: 00101000

Description:

The top word of the stack is popped (transferred) into the status

register P. The stack pointer is incremented.

Data Paths:

Addressing Mode:

Implied only:

HEX = 28, byte = 1, cycles = 4

Flags:

N V B D 1 Z c

166

6502 INSTRUCTION SET

ROL

Function:

Rotate left one bit

6 5 i\ 3

C

2 1 0

Format: OOlbbbiO ADDR

1

ADDR I

Description:

The contents of the specified address (accumulator or memory)

are rotated left by one position. The carry goes into bit 0. Bit 7

sets the new value of the carry. This is a 9-bit rotation.

Data Paths:

Addressing Modes:

HEX

BYTES

CYCLES

bbb

M
2A

1

2

010

7*
2E

3

6

011

f/f///i/'/f/t/f/f/f/t/
26

2

5

001

3E

3

7

111

36

2

6

101

Flags:
N

•

V B D 1 Z

•

C

•

167

PROGRAAAMING THE 6502

Instruction Codes:

ACCUMULATOR

ABSOLUTE

ZERO-PAGE

ABSOLUTE, X

ZERO-PAGE, X

00101010

bbb=010

00101110

bbb=011

00100110

bbb=001

00111110

bbb = lll

00110110

bbb= 101

HEX=2A CYCLES=2

16 BIT-ADDRESS

i

HEX=2E CYCLES =6

ADDR

HEX =26 CYCLES =5

16BIT-AI)DRESS

HEX = 3E CYCLES= 7

ADDR

HEX =36 CYCLES = 6

168

6502 INSTRUCTION SET

ROR Rotate right one bit

Warning: This instruction may not be available on older 6502's;

also, it may exist but not be listed.

Function:

7 6 5 4 3

C

2 1 0

Format: OlibbblO ADDR

Description:

The contents of the specified address (accumulator or memory)

are rotated right by one bit position. The carry goes into bit 7. Bit 0

sets the new value of the carry. This is a 9-bit rotation.

Data Paths:

Addressing Modes:

HEX

BYTES

CYCIES

bbb

/'A
6A

1

2

010

'A
6E

3

6

011

'/'A
66

2

5

001

/t//*/i/f/f/f/t/
71

3

7

111

76

2

6

101

Flags:
N

•

V B D 1 Z

•

c

•

169

PROGRAMMING THE 6502

Instruction Codes:

ACCUMULATOR

ABSOLUTE

ZERO-PAGE

ABSOLUTE, X

ZERO-PAGE, X

01101010

bbb=010

bbb=011

bbb=001

bbb = 111

HEX=6A CYCLES=2

01101110 16 BIT-ADDRESS

I

HEX=6E

01100110 ADDR

HEX= 66

CYCLES =6

CYCLES =5

01111110 16 BIT-ADDRESS

HEX= 7E

01110110 ADDR

bbb =101 HEX= 76

CYCLES =7

CYCLES =6

170

6502 INSTRUCTION SET

RTI

Function:

P ^- (STACK)

S -«-(S)+l

PCL -«- (STACK)

S ««-(S)+l

PCH -*- (STACK)

S ^-(S)+l

Return from interrupt

Format: 01000000

Description:

Restore the status register P and the program counter (PC)

which had been saved in the stack. Adjust the stack pointer.

Data Paths:

Addressing Mode:

Implied only:

HEX = 40, byte = 1, cycles = 6

Flags:
N V B D 1 Z c

171

PROGRAMMING THE 6502

RTS

Function:

PCL^-(STACK)

S -«-(S)+l

PCH-«- (STACK)

S ^-(S)+l

PC -*-(PC + 1)

Return from subroutine

Format: 01100000

Description:

Restore the program counter from the stack and increment it

by one. Adjust the stack pointer.

Data Paths:

PC Jr
PCL

PCH

Addressing Mode:

Implied only:

HEX = 60, byte = 1, cycles = 6

Flags:

N V B D 1 z c

(NO EFFECT)

172

6502 INSTRUCTION SET

SBC Subtract with carry

Function:

A^- (A) -DATA -C (C is borrow)

Format: lllbbbOl

Description:

Subtract from the accumulator the data at the specified ad

dress, with borrow. The result is left in A. Note: SEC is used for a

subtract without borrow.

SBC may be used in decimal or binary mode, depending on bit

D of the status register.

Addressing Modes:

HEX

BYTES

CYCLES

bbb

ED

3

4

Oil

/
E5

2

3

001

E9

2

2

010

FD

3

4*

111

F9

3

4*

110

El

2

6

000

F1

2

5*

100

</i/iA
F5

2

4

101

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

Flags:

173

PROGRAMMING THE 6502

Instruction Codes:

ABSOLUTE 11101101

bbb=011

16-BIT ADDRESS

HEX = ED CYCLES =4

bbb=010

ZERO-PAGE

IMMEDIATE

11100101

bbb-=001

11101001

ADDR

HEX = E5

DATA

HEX=E9 CYCLES = 2

bbb=110

ABSOLUTE

ABSOLUTE,

X

Y

11111101

bbb = 111

11111001

HEX -

16-BIT

-w

16-BIT

1

1

ADDRESS

CYCLES =

ADDRESS

4*

HEX=F9 CYCLES = 4*

(IND, X)

(IND),Y

ZERO-PAGE, X

11100001

bbb = 000

11110001

bbb ^100

11110101

ADDR

HEX-El

ADDR

HEX= F1

ADDR

CYCLES = 6

bbb= 101 HEX=F5 CYCLES =4

*: PLUS 1 CYCLE IF CROSSING PAGE BOUNDARY.

174

6502 INSTRUCTION SET

SEC

Function:

Set carry

Format: 00111000

Description:

The carry bit is set to 1. This is used prior to an SBC to perform

a subtract without carry.

Addressing Modes:

Implied only:

HEX = 38, byte = 1, cycles= 2

Flags: N V B D 1 Z C

1

175

PROGRAMMING THE 6502

SED

Function:

Set decimal mode

Format:

11111000

Description:

The decimal bit of the status register is set to 1. When it is 0,

the mode is binary. When it is 1, the mode is decimal for ADC and

SBC.

Addressing Modes:

Implied only:

HEX = F8, byte = 1, cycles = 2

Flags: N V B D

1

I Z c

176

6502 INSTRUCTION SET

SEI

Function:

Format:

Set interrupt disable

01111000

Description:

The interrupt mask is set to 1. Used during an interrupt or a system

reset.

Addressing Modes:

Implied only:

HEX = 78, byte = 1, cycles = 2

Flags: N V B D 1

1

2 C

177

PROGRAMMING THE 6502

STA

Function:

M^-(A)

Format:

Store accumulator in memory

lOObbbOl ADDRESS

Description:

The contents of A are copied at the specified memory location.

The contents of A are not changed.

Data Paths:

Addressing Modes:

HEX

BYTES

CYCIES

bbb

80

3

4

Oil

ft///'
85

2

3

001

90

3

111

yr/i
99

3

110

81

2

000

W////////
91

2

100

95

2

101

Flags:

N V

1
B 0 1 Z c

(NO EFFECT)

178

Instruction Codes:

6502 INSTRUCTION SET

ABSOLUTE 10001101

bbb=011

ZERO-PAGE 10000101

bbb= 001

bbb=110

bbb= 101

16-BIT ADDRESS

I

HEX=8D CYCLES = 4

ADDR

HEX= 85 CYCLES = 3

(IND, X)

(IND),Y

ZERO-PAGE, X

10000001

bbb = 000

10010001

bbb= 100

10010101

ADDR

HEX =81

ADDR

HEX = 91

ADDR

HEX= 99 CYCLES = 5

CYCLES = 6

CYCLES- 6

HEX =95 CYCLES =4

ABSOLUTE,

ABSOLUTE,

X

Y

10011101

bbb=lll

10011001

16-BIT

HEX = 9D

16-BIT

ADDRESS

CYCLES =5

ADDRESS

_J .

179

PROGRAMMING THE 6502

STX

Function:

M«*-(X)

Format:

Store X in memory

lOObbllO ADDRESS

Description:

Copy the contents of index register X at the specified memory

location. The contents of X are left unchanged.

Data Paths:

AA

Addressing Modes:

Flags:

Instruction Codes:

N V B D 1 2 C

(NO EFFEa)

ABSOLUTE

ZEROPAGE

ZERO PAGE. V

.bb

bb

100011

=01

10000

=00

100101

10

10

0

HEX = BE

A00R

HEX-66

ADDR

ADORE SS

CYCLES

CYCLES

<

3

HfX

BY1F5

CYCIE5

hi*

Mft
8£

3

4

01

'/f/Z/t/t/f/i/f/f/f/t/
86

2

3

00

96

2

4

10

180

6502 INSTRUCTION SET

STY

Function:

M^-(Y)

Format:

Store Y in memory

lOObblOO ADDRESS

Description:

Copy the contents of index register Y at the specified memory

location. The contents of Y are left unchanged.

Data Paths:

wwm<mWy<

Addressing Modes:

HEX

BYTES

CYCLES

bb

8C

3

4

01

84

2

3

00

94

2

4

10

Flags: N V B 0 1 Z c

(NO EFFECT)

Instruction Codes:

ABSOIUIE

ZERO-PAGE

ZERO-PAGE. X

bb

bb

10001100

=01

10000100

=00

10010100

hex* ec

ADDR

HEX " 84

ADDR

ADDRESS

CVCIES= 4

CYCIES= 3

M!X= 94 CVCIES"

181

PROGRAMMING THE 6502

TAX

Function:

X^-(A)

Format:

Transfer accumulator into X

10101010

Description:

Copy the contents of the accumulator into index register X. The

contents of A are left unchanged.

Data Paths:

Addressing Mode:

Implied only:

HEX = AA, byte = 1, cycles = 2

Flags:
N

•

V B D 1 2

•

C

182

TAY

6502 INSTRUCTION SET

Transfer accumulator into Y

Function:

Format: j 10101000 |

Description:

Transfer the contents of the accumulator into index register Y.

The contents of A are left unchanged.

Data Paths:

Addressing Mode

Implied only:

HEX = A8, byte = 1, cycles = 2

Flags:
N

•

V B D 1 z

•

C

183

PROGRAMMING THE 6502

TSX

Function:

X^-(S)

Format:

Transfer S into X

10111010

Description:

The contents of the stack pointer S are transferred into index

register X. The contents of S are unchanged.

Data Paths:

Addressing Mode:

Implied only:

HEX = BA, byte = 1, cycles = 2

Flags:

N

•

V B D 1 Z

•

c

184

6502 INSTRUCTION SET

TXA

Function:

A^-(X)

Transfer X into accumulator

Format: | 10001010 [

Description:

The contents of index register X are transferred into the ac
cumulator. The contents of X are unchanged.

Data Paths:

Addressing Mode:

Implied only:

HEX = 8A, byte = 1, cycles = 2

Flags:
N

•

V B D 1 Z

•

C

185

PROGRAMMING THE 6502

TXS

Function:

Transfer X into S

Format: 10011010

Description:

The contents of index register S are transferred into the stack

pointer. The contents of X are unchanged.

Data Paths:

Addressing Mode:

Implied only:

HEX = 9A, byte = 1, cycles = 2

Flags:

N V B D 1 Z c

(NO ACTION)

186

6502 INSTRUCTION SET

Transfer Y into ATYA

Function:

A^-(Y)

Format: [10011000 |

Description:

The contents of index register Y are transferred into the ac

cumulator. The contents of Y are unchanged.

Data Paths:

Addressing Mode:

Implied only:

HEX = 98, byte = 1, cycles = 2

Flags:
N

•

V B D 1 Z

•

c

187

5

ADDRESSING TECHNIQUES

INTRODUCTION

This chapter will present the general theory of addressing, with

the various techniques which have been developed to facilitate

the retrieval of data. In a second section, the specific addressing

modes which are available in the 6502 will be reviewed, along

with their advantages and limitations, where they exist. Finally,

in order to familiarize the reader with the various trade-offs pos

sible, an applications section will show possible trade-offs be

tween the various addressing techniques by studying specific ap

plication programs.

Because the 6502 has no 16-bit register, other than the program

counter, which can be used to specify an address, it is necessary

that the 6502 user understand the various addressing modes, and

in particular, the use of the index registers. Complex retrieval

modes, such as a combination of indirect and indexed, may be

omitted at the beginning stage. However, all the addressing

modes are useful in developing programs for this micro

processor. Let us now study the various alternatives available.

ADDRESSING MODES

Addressing refers to the specification, within an instruction, of

the location of the operand on which the instruction will operate.

The main methods will now be examined.

188

ADDRESSING TECHNIQUES

IMPLICIT/IMPLIED

IMMEDIATE

DIRECT/SHORT

ENDED/ABSOLUTE

INDEXED

•

r

i

OPCODE A 1 R

OPCODE

LITERAL

LITERAL |
- -J

OPCODE

SHORT ADDRESS

OPCODE

FULL 16-BIT

ADDRESS

OPCODE X REG

DISPLACEMENT

OR ADDRESS |
_ J

Rg. 5-1: Addressing

189

PROGRAMMING THE 6502

Implicit Addressing

Instructions which operate exclusively on registers normally

use implicit addressing. This is illustrated in Figure 5-1. An im

plicit instruction derives its name from the fact that it does not

specifically contain the address of the operand on which it oper

ates. Instead, its opcode specifies one or more registers, usually

the accumulator, or else any other register(s). Since internal reg

isters are usually few in number (say a maximum of 8), this will

require a small number of bits. As an example, three bits within

the instruction will point to 1 out of 8 internal registers. Such in

structions can, therefore, normally be encoded within 8 bits. This

is an important advantage, since an 8-bit instruction normally

executes faster than any two- or three-byte instruction.

An example of an implicit instruction for the 6502 is TAX which

specifies "transfer the contents of A to X."

Immediate Addressing

Immediate addressing is illustrated in Figure 5-1. The 8-bit

opcode is followed by an 8- or a 16-bit literal (a constant). This

type of instruction id needed, for example, to load an 8-bit value

to an 8-bit register. If the microprocessor is equipped with 16-bit

registers, it may be necessary to load 16-bit literals. This depends

upon the internal architecture of the processor. An example of an

immediate instruction is ADC #0.

The second word of this instruction contains the literal "0",

which is added to the accumulator.

Absolute Addressing

Absolute addressing refers to the way in which data is usually

retrieved from memory, where an opcode is followed by a 16-bit

address. Absolute addressing, therefore, requires 3-byte instruc

tions. An example of absolute addressing is STA $1234.

It specifies that the contents of the accumulator are to be stored

at the memory location'' 1234'' hexadecimal.

The disadvantage of absolute addressing is to require a 3-byte

instruction. In order to improve the efficiency of the microproces

sor, another addressing mode may be made available, where only

one word is used for the address: direct addressing.

190

ADDRESSING TECHNIQUES

Direct Addressing

In this addressing mode, the opcode is followed by an 8-bit

address. This is illustrated in Figure 5-1. The advantage of this

approach is to require only 2 bytes instead of 3 for absolute ad

dressing. The disadvantage is to limit all addressing within this

mode to addresses 0 to 255. This is page 0. This is also called

short addressing, or 0-page addressing. Whenever short addressing

is available, absolute addressing is often called extended addressing

by contrast.

Relative Addressing

Normal jump or branch instructions require 8 bits for the op

code, plus the 16-bit address which is the address to which the

program has to jump. Just as in the preceding example, this has

the inconvenience of requiring 3 words, i.e., 3 memory cycles. To

provide more efficient branching, relative addressing uses only a

two-word format. The first word is the branch specification,

usually along with the test it is implementing. The second word is

a displacement. Since the displacement must be positive or nega

tive, a relative branching instruction allows a branch forward to

128 locations (7-bits) or a branch backwards to 128 locations (plus

or minus 1, depending on the conventions). Because most loops

tend to be short, relative branching can be used most of the time

and results in significantly improved performance for such short

routines. As an example, we have already used the instruction

BCC, which specifies a "branch on carry clear" to a location

within 127 words of the branch instruction.

Indexed Addressing

Indexed addressing is a technique specifically useful to access

successively the elements of a block or of a table. This will be

illustrated by examples later in this chapter. The principle of

indexed addressing is that the instruction specifies both an index

register and an address. In the most general scheme, the contents

of the register are added to the address to provide the final ad

dress. In this way, the address could be the beginning of a table in

the memory. The index register would then be used to access

successively all the elements of the table in an efficient way. In

practice, restrictions often exist and may limit the size of the

191

PROGRAMMING THE 6502

index register, or the size of the address or displacement field.

Pre-indexing and Post-indexing

Two modes of indexing may be distinguished. Pre-indexing is

the usual indexing mode where the final address is the sum of a

displacement or address and the contents of the index register.

Post-indexing treats the contents of the displacement field like

the address of the actual displacement, rather than the displace

ment itself. This is illustrated in Figure 5-2. In post-indexing, the

final address is the sum of the contents of the index register plus

the contents of the memory word designated by the displacement

field. This feature utilizes, in fact, a combination of indirect ad

dressing and pre-indexing. But we have not defined indirect ad

dressing yet, so let us do that now.

PAGE ZERO Y (index)

OPCODE

SHORT ADDRESS

POI

^

NTER=BASE

MEMORY

DATAN

N

FINAL

A

16-BIT

DDRESS

I
s
•■)
J

Fig. 5-2: Indirect Post-Indexed Addressing

192

ADDRESSING TECHNIQUES

Indirect Addressing

We have already seen the case where two subroutines may wish

to exchange a large quantity of data stored in the memory. More

generally, several programs, or several subroutines, may need ac

cess to a common block of information. To preserve the generality

of the program, it is desirable not to keep such a block at a fixed

memory location. In particular, the size of this block might grow

or shrink dynamically, and it may have to reside in various

areas of the memory, depending on its size. It would, therefore,

be impractical to try to have access to this block using absolute

addresses.

The solution to this problem lies in depositing the starting ad

dress of the block at a fixed memory location. This is analogous

to a situation in which several persons need to get into a house,

INSTRUCTION MEMORY

OPCODE

INDIRECT

ADDRESS A.

(A.)

-

FINAL

ADDRESS (A2)

DATA

Rg. 5-3: Indirect Addressing

193

PROGRAMMING THE 6502

and only one key exists. By convention, the key to the house

will be hidden under the mat. Every user will then know where to

look (under the mat) to find the key to the house (or, perhaps, to
find the address of a scheduled meeting, to have a more correct

analogy). Indirect addressing, therefore, uses an 8-bit opcode fol

lowed by a 16-bit address. Simply, this address is used to retrieve

a word from the memory. Normally, it will be a 16-bit word (in our

case, two bytes) within the memory. This is illustrated by Figure

5-3. The two bytes at the specified address, Al, contain A2. A2 is

then interpreted as the actual address of the data that one wishes

to access.

Indirect addressing is particularly useful any time that pointers

are used. Various areas of the program can then refer to these

pointers to access conveniently and elegantly a word or a block of

data.

Combinations of Modes

The above addressing modes may be combined. In particular, it

should be possible in a completely general addressing scheme to

use many levels of indirection. The address A2 could be inter

preted as an indirect address again, and so on.

Indexed addressing can also be combined with indirect access.

That allows the efficient access to word n of a block of data, pro

vided one knows where the pointer to the starting address is.

We have now become familiar with all usual addressing modes

that can be provided in a system. Most microprocessor systems,

because of the limitation on the complexity of an MPU, which

must be realized within a single chip, do not provide all possible

modes but only a small subset of these. The 6502 provides an

unusually large subset of possibilities. Let us examine them now.

6502 ADDRESSING MODES

Implied Addressing (6502)

Implied addressing is used by a single byte instruction which

operates on internal registers. Whenever implicit instructions

operate exclusively in internal registers, they require only two

clock cycles to execute. Whenever they access memory, they re

quire three cycles.

Instructions which operate exclusively inside the 6502

194

ADDRESSING TECHNIQUES

are: CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP, SEC, SED?

SEI, TAX, TAY, TSX, TXA, TXS, TYA.

Instructions which require memory access are: BRK, PHA,

PHP, PLA, PLP, RTI, RTS.

These instructions have been described in the preceding chap

ter, and their mode of operation should be clear.

Immediate Addressing (6502)

Since the 6502 has only 8-bit working registers (the PC is not a

working register), immediate addressing in the case ofthe 6502 is

limited to 8-bit constants. All instructions in immediate addressing

mode are, therefore, two bytes in length. The first byte contains

the opcode, and the second byte contains the constant or literal

which is to be loaded in a register or used in conjunction with one

of the registers for an arithmetic or logical operation.

Instructions using this addressing mode are: ADC, AND, CMP,

CPX, CPY, EOR, LDA, LDX, LDY, ORA, SBC.

Absolute Addressing (6502)

By definition, absolute addressing requires three bytes. The

first byte is the opcode and the next two bytes are the 16-bit

address specifying the location of the operand. Except in the case

of a jump absolute, this address mode requires four cycles.

Instructions which may use absolute addressing are: ADC,

AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR,

LDA, LDX, LDY, LSR, ORA, ROL, ROR, SBC, STA, STX, STY.

Zero-Page Addressing (6502)

By definition zero-page addressing requires two bytes: the first

one is for the opcode; the second one is for the 8-bit, or short

address.

Zero-page addressing requires three cycles. Because zero-page

addressing offers significant speed advantages as well as shorter

code, it should be used whenever possible. This requires careful

memory management by the programmer. Generally speaking,

the first 256 locations of memory may be viewed as the set of

working registers for the 6502. Any instruction will essentially

execute on these 256 "registers" in just three cycles. This space

should, therefore, be carefully reserved for essential data that

195

PROGRAMMING THE 6502

needs to be retrieved at high speed.

Instructions which can use zero-page addressing are those

which can use absolute addressing, except for JMP and JSR

(which require a 16-bit address).

The list of legal instructions is: ADC, AND, ASL, BIT, CMP,

CPX, CPY, DEC, EOR, INC, LDA, LDX, LDY, LSR, ORA,

ROL, ROR, SBC, STA, STX, STY.

Relative Addressing (6502)

By definition, relative addressing uses two bytes. The first one

is a jump instruction, whereas the second one specifies the dis

placement and its sign. In order to differentiate this mode from

the jump instruction, they are here labeled branches. Branches,

in the case of the 6502, always use the relative mode. Jumps

always use the absolute mode (plus, naturally, the other sub-

modes which may be combined with those, such as indexed and

indirect). From a timing standpoint, this instruction should be

examined with caution. Whenever a test fails, i.e., whenever there

is no branch, this instruction requires only two cycles. This is be

cause the next instruction to be executed is pointed to by the pro

gram counter. However, whenever the test succeeds, i.e., whenever

the branch must take place this instruction requires three cycles: a

new effective address must be computed. The updating of the

program counter requires an extra cycle. However, if a branch

occurs through a page boundary, one more updating is necessary

for the program counter, and the effective length of the instruc

tion becomes four cycles.

From a logical standpoint, the user does not need to worry about

crossing a page boundary. The hardware takes care of it. However,

because an extra carry or borrow is generated whenever one crosses

a page boundary, the execution time of the branch will be changed.

If this branch was part of an exact timing loop, caution must be

exercised.

A good assembler will normally tell the programmer at the

time the program is assembled that a branch is crossing a page

boundary, in case timing might be critical.

Whenever one is not sure whether the branch will succeed, one

must take into consideration the fact that sometimes the branch

196

ADDRESSING TECHNIQUES

will require two cycles, and sometimes three. Often an average

time is computed.

The only instructions which implement relative addressing are the

branch instructions. There are 8 branch instructions which test flags

within the status register for value "0" or "1". The list is: BCC,

BCS, BEQ, BMI, BNE, BPL, BVC, BVS.

Indexed Addressing (6502)

The 6502 does not provide a completely general capability, but

only a limited one. It is equipped with two index registers. How

ever, these registers are limited to 8 bits. The contents of an index

register are added to the address field of the instruction. Usually,

the index register is used as a counter in order to access ele

ments of a block or a table successively. This is why specialized

instructions are available to increment or decrement each one of

the index registers separately. In addition, two specialized in

structions exist to compare the contents of the index registers

against a memory location, an important facility for the effective

use of the index registers to test against limits.

In practice, because most user tables are normally shorter than

256 words, the limitation ofthe index registers to 8 bits is usually

not a significant limitation.

The indexed addressing mode can be used not only with regular

absolute addressing, i.e., with 16-bit address fields, but also with

the zero-page addressing mode, i.e., with 8-bit address fields.

There is only one restriction. Register X can be used with both

types of addressing. However, register Y allows only absolute in

dexed addressing and not zero-page indexed addressing (except for

LDX and STX instructions, which can be modified by register Y).

Absolute indexed addressing will require four cycles, unless the

page boundary is being crossed, in which case five cycles will be

required.

Absolute indexed instructions can use either registers X or Y to

provide the displacement field. The list of instructions which may

use this mode are:

- with X: ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY,

LSR, ORA, ROL, ROR, SBC, STA, (not STY).

197

PROGRAMMING THE 6502

-with Y: ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC, STA

(not ASL, DEC, LSR, ROL, ROR).

In the case of zero-page indexed addressing, register X is the

legal displacement register, except for LDX and STX. Legal in

structions are: ADC, AND, ASL, CMP, DEC, EOR, INC, LDA,

LDY, LSR, ORA, ROL, ROR, SBC, STA, STY.

Indirect Addressing (6502)

The 6502 does not have a fully general indirect addressing

capability. It restricts the address field to 8 bits. In other words,

all indirect addressing uses the sub-mode ofzero page addressing.

The effective address on which the opcode is to operate is then the

16 bits specified by the zero-page address of the instruction. Also,

no further indirection may occur. This means that an address

retrieved from page zero must be used as is, and cannot be used as

a further indirection.

Finally, all indirect accesses must be indexed, except for JMP.

For fairness, it should be noted that very few microprocessors

provide any indirect addressing at all. Further, it is possible to

implement a more general indirect addressing using a macro

definition.

Two modes of indirect addressing are possible: (pre) indexed indirect

addressing, and indirect indexed addressing (post-indexed), except

with JMP, which uses pure indirect.

Indexed Indirect Addressing

This mode adds the contents ofindex register X to the zero-page

address to retrieve the final 16-bit address. This is an efficient way to
retrieve one of several possible data pointed to by pointers whose

number is contained in index register X. This is illustrated in Figure

5-4.

In this illustration, page zero contains a table of pointers. The

first pointer is at the address A, which is part of the instruction. If

the contents of X are 2N, then this instruction will access pointer

numberNofthis tableandretrieve thedatait is pointing to.

Indexed indirect addressing requires 6 cycles. It is naturally

less efficient time-wise than any direct addressing mode. Its ad

vantage is the flexibility which may result in coding, or the overall

speed improvement.

198

ADDRESSING TECHNIQUES

OPCOOE(X)

2N

/
\

ADDRESS A

1
ENTRY* N

= 16 BIT ADDRESS

REST Of

MEMORY

Fig. 5-4: Pre-lndexed Indirect Addressing

Permissible instructions are: ADC, AND, CMP, EOR, LDA,

ORA, SBC, STA.

Indirect Indexed Addressing

This corresponds to the post-indexing mechanism which has

been described in the preceding section. There, the indexing is

performed after the indirection, rather than before. In other

words, the short address which is part of the instructions is used

to access a 16-bit pointer in page zero. The contents of index

register Y are then added as a displacement to this pointer. The

final data are then retrieved, (see Fig. 5-2.)

In this case, the pointer contained in page zero indicates the

base of a table in the memory. Index register Y provides a dis

placement. It is a true index within a table. This instruction is

particularly powerful for referring to the nth element of a table,

provided that the start address of the table is saved in page zero.

199

PROGRAMMING THE 6502

It can do so in just two bytes.

Legal instructions are: ADC, AND, CMP, EOR, LDA, ORA, SBC,

STA.

Exception: Jump Instruction.

The jump instruction may use indirect absolute. It is the only

instruction that may use this mode.

USING THE 6502 ADDRESSING MODES

Long and Short Addressing

We have already used branch instructions in various programs

that we have developed. They are self explanatory. One interest

ing question is: what can we do if the permissible range for

branching is not sufficient for our needs? One simple solution is to

use a so-called long branch. This is simply a branch to a location

which contains a jump specification:

BCC +3 BRANCH TO CURRENT ADDRESS

+3 IF C CLEAR

JMP FAR OTHERWISE JUMP TO FAR

(NEXT INSTRUCTION)

The two-line program above will result in branching to location

FAR whenever the carry is set. This solves our long branch

problem. Let us therefore now consider the more complex addres

sing modes, i.e. indexing and indirection.

Use of indexing for sequential block accesses

Indexing is primarily used to address successive locations

within a table. The restriction is that the maximum displacement

must be less than 256 so that it can reside in an 8-bit index

register.

We have learned to check for the character f*\ Now we will

search a table of 100 elements for the presence of a **\ The start

ing address for this table is called BASE. The table has only 100

elements. It is less than 256 and we can use an index register. The

program appears below:

200

ADDRESSING TECHNIQUES

SEARCH

NEXT

NOTFOUND

STARFOUND

LDX

LDA

CMP

BEQ

INX

CPX

BNE

...

#0

BASE, X

r*

STARFOUND

#100

NEXT

The flowchart for this program appears in Figure 5-5. The equiva

lence between the flowchart and the program should be verified.

The logic of the program is quite simple. Register X is used to

point to the element within the table. The second instruction of

the program:

NEXT LDA BASE, X

uses absolute indexed addressing. It specifies that the accumu

lator is to be loaded from the address BASE (16-bit absolute ad

dress) plus contents of X. At the beginning, the contents of X are

"0." The first element to be accessed will be the one at address

BASE. It can be seen that after the next iteration, X will have the

value "1," and the next sequential element of the table will be

accessed, at address BASE + 1.

The third instruction of the program, CMP #'* compares the value

of the character which has been read in the accumulator with the code

for "*." The next instruction tests the results of the comparison. If a

match has been found, the branch occurs to the label STARFOUND:

BEQ STARFOUND

Otherwise, the next sequential instruction is executed:

INX

201

PROGRAMMING THE 6502

The index counter is incremented by 1. We find by inspecting the
bottom of the flow-chart of Figure 5.5 that the value of our index
register at this point must be checked to make sure that we are

not going beyond the bounds of the table (here 100 elements).
This is implemented by the following instruction:

CPX #100

INITIALIZE

TO ELEMENT 0

READ NEXT

ELEMENT

YES
STARFOUND

POINT TO

NEXT ELEMENT

NO
LAST ELEMENT?

NOT FOUND

Fig. 5-5: Character Searching Table

This instruction compares register X to the value $100. If the test

fails we must again fetch the next character. This is what occurs

with:

BNENEXT

This instruction specifies a branch to the label NEXT if the test

has failed (the second instruction in our program). This loop will

be executed as long as a "*" is not found, or as long as the value

"100" is not reached in the index. Then the next sequential in-

202

ADDRESSING TECHNIQUES

struction to be executed will be "NOT FOUND". It corresponds to

the case where a "*" has not been found.

The actions taken for "*" found and not found are irrelevant

here and would be specified by the programmer.

We have learned to use the indexed addressing mode to

access successive elements in a table. Let us now use this new

skill and slightly increase the difficulty. We will develop an im

portant utility program, capable of copying a block from one area

of the memory into another. We will initially assume that the

number of the elements within the block is less than 256 so that

we can use index register X. Then we will consider the general

case where the number of elements in the block is greater than

256.

A Block Transfer Routinefor less than 256 elements

We will call "NUMBER" the number ofelements in the block to

be moved. , The number is assumed to be less than 256. BASE is

the base address of the block. DESTINATION is the base of the

memory area where it should be moved. The algorithm is quite simple:

we will move a word at a time, keeping track of which word we are

moving by storing its position in index register X. The program

appears below:

NEXT

Let us examine it:

LDX*

LDX

LDA

STA

DEX

BNE

#NUMBER

BASE, X

DEST.X

NEXT

t NUMBER

This line of the program loads the number N of words to be trans

ferred in the index register. The next instruction loads word #N of

the block within the accumulator and the third instruction depo

sits it into the destination area. See Figure 5-6.

CAUTION: this program will work correctly only if the base

pointer is assumed to point just below the block, just like the

destination register. Otherwise a small adjustment to this

program is needed.

203

PROGRAMMING THE 6502

After a word has been transferred from the origin to the desti

nation area, the index register must be updated. This is per

formed by the instruction DEX, which decrements it. Then the

program simply tests whether X has decremented to O. If so, the

program terminates. Otherwise, it loops again by going bade to

location NEXT.

You will notice that when X = 0, the program does not loop.

Therefore, it will not transfer the word at location BASE. The last

word to be transferred will be at BASE+1. This is why we have

assumed that the base was just below the block.

Exercise 5.1: Modify the program above, assuming that

BASE and DEST point to the first entry in the block.

This program also illustrates the use of loop counters. You will

notice that X has been loaded with the final value, then decre

mented and tested. At first sight, it might seem simpler to start

with "0" in X, and then increment it until it reaches the maxi

mum value. However, in order to test whether X has attained its

maximum value, one extra instruction would be needed (the com

parison instruction). This loop would then require 5 instructions

instead of 4. Since this transfer program will normally be used for

large numbers of words, it is important to reduce the number of

instructions for the loop. This is why, at least for short loops, the

index register is normally decremented rather than incremented.

A Block Transfer Routine (more than 256 elements)

Let us now consider the general case of moving a block which

may contain more than 256 elements. We can no longer use a

single index register as 8 bits do not suffice to store a number

greater than 256. The memory organization for this program is

illustrated in Figure 5-7. The length of the memory-block to be

transferred requires 16 bits, and therefore is stored in memory.

The high-order part represents the number of 256-word blocks:

"BLOCKS". The rest is called "REMAIN" and is the number of

words to be transferred after all the blocks have been transferred.

The address for the source and the destination will be memory

locations FROM and TO. Let us first assume that REMAIN is

204

ADDRESSING TECHNIQUES

i SOURCE BLOCK

i DESTINATION BLOCK

Fig. 5-6: Memory Organization for Block Transfer

FROM-*-

TO ■

MEMORY

y//y//////////////////
^DEPARTURE AREA #%

Fig. 5-7: Memory Map for General Block Transfer

205

PROGRAMMING THE 6502

zero, i.e., that we are transferring 256 word blocks. The program
appears below:

LDA #SOURCELO

STA FROM

LDA #SOURCEHI

STA FROM+1 STORE SOURCE ADDRESS
LDA #DESTLO

STA TO

LDA #DESTHI

STA TO+1 STORE DEST ADDRESS
LDX #BLOCKS HOW MANY BLOCKS
LDY #0 BLOCK SIZE

NEXT LDA (FROM), Y READ ELEMENT

STA (TO), Y TRANSFER IT

DEY UPDATE WORD POINTER
BNE NEXT FINISHED?

NEXBLK INC FROM+1 INCREMENT BLOCK POINTER
INC TO+1 SAME

DEX BLOCK COUNTER
BMI DONE

BNE NEXT

LDY #REMAIN

BNE NEXT

The 16-bit source address is stored by the first four instructions at

memory address "FROM." The next four instructions do the
same thing for the destination, which is stored at address "TO".

Since we have to transfer a number ofwords greater than 256, we

will simply use two 8-bit index registers. The next instruction

loads register X with the number ofblocks to be transferred. This

is instruction 9 in the program. The next instruction loads the

value zero in index register Y in order to initialize it for the

transfer of 256 words. We will now use indexed indirect address

ing. It should be remembered that indexed indirect will result

first in an indirection within page zero, then an indexed access to

the 16-bit address specified by the index register. Look at the
program:

NEXT LDA (FROM), Y

The instruction loads the accumulator with the contents of the

memory location whose address is the source plus the index regis

ter Y's contents. Look at Figure 5-7 for the memory map. Here,

the content ofregister Y is initially 0. "A" will therefore be loaded

from memory address "SOURCE." Note that here, unlike in our

206

ADDRESSING TECHNIQUES

previous example, we assume that "SOURCE" is the address of

the first word within the block.
Using the same technique, the next instruction will deposit the

contents ofthe accumulator (the first word ofthe block we want to

transfer) at the appropriate destination location:

STA (TO), Y

Just as in the preceding case, we simply decrement the index

register, then we loop 256 times. This is implemented by the

next two instructions:

DEY

BNE NEXT

Caution: a programming trick is used here for compact pro

gramming. The alert reader will notice that the index register Y
is decremented. The first word to be transferred will, therefore, be
the word in position 0. The next one will be word 255. This is
because decrementing 0 yields all Ts in the register (or 255). The
reader should also ascertain that there is no error. Whenever

register Y decrements to 0, a transfer will not occur. The next

instruction to be executed will be: NEXBLK. Therefore, exactly
256 words will have been transferred. Clearly this trick could

have been used in the previous program to write a shorter pro

gram.

Once a complete block has been transferred, it is simply a mat

ter of pointing to the next page within our original block and our

destination block. This is accomplished by adding "1" to the
higher order part ofthe address for source and destination. This is

performed by the next two instructions in the program:

NEXBLK INC FROM+1

INC TO+1

After having incremented the page pointer, we simply check

whether or not we should transfer one more block by decrement

ing the block counter contained in X. This is performed by:

DEX

If all blocks have been transferred, we exit from the program by

branching to location DONE:

207

PROGRAMMING THE 6502

BMI DONE

Otherwise, we have two possibilities: Either we have not de
cremented to 0 or else we have exactly decremented to zero. If we
have not yet decremented to 0, we branch to location NEXT:

BNE NEXT

If we have decremented exactly to 0, we still have to transfer
the words specified by REMAIN. This is the last part of our
transfer. This is accomplished by:

LDY #REMAIN

which loads index Y with the transfer count.
We then branch back to location NEXT:

BNE NEXT

The reader should ascertain that, during this last loop where
the branch instruction to NEXT will be executed, the next time
we re-enter NEXBLK, we will, indeed, exit for good from this

program. This is because the index X had the value 0 prior to
entering NEXBLK. The third instruction of NEXBLK will
change it to -1, and we will exit to DONE.

Adding Two Blocks

This example will provide a simple illustration of the use of an

index register for the addition of two blocks of less than 256

elements. Then, the next program will make use of the indirect
indexed feature to address blocks whose address is known to re

side at the given location, but whose actual absolute address is
not known. The program appears below:

BLKADD

NEXT

LDY

CLC

LDA

ADC

STA

DEY

BPL

#NBR -1

PTR1,Y

PTR2,Y

PTR3,Y

NEXT

LOAD COUNTER

READ NEXT ELEMENT

ADD THEM

STORE RESULT

DECREMENT COUNTER

FINISHED?

Index Y is used as an index counter and is loaded with the

number of elements minus one. We assume that pointer PTR1

points to the first element of Block 1, PTR2 to the first element of

208

ADDRESSING TECHNIQUES

Block 2, and PTR3 points to the destination area where the re

sults should be stored.

The program is self-explanatory. The last element of Block 1 is

read in the accumulator, then added to the last element of Block

2. It is then stored at the appropriate location ofBlock 3. The next

sequential element is added, and so on.

Same Exercise Using Indexed IndirectAddressing

We assume here that the addresses PTR1, PTR2, PTR3 are not

known initially. However, we know that they are stored in Page 0

at addresses LOCI, LOC2, LOC3. This is a common mechanism

for passing information between subroutines. The corresponding

program appears below:

BLKADD LDY #NBR-1

NEXT CLC

LDA (LOCI), Y

ADC (LOC2), Y

STA (LOC3), Y

DEY

BPL NEXT

The correspondence between this new program and the previous

one should now be obvious. It illustrates clearly the use of the

indexed indirect mechanism whenever the absolute address is not

known at the time that the program is written, but the location of the

information is known. It can be rioted that the two programs

have exactly the same number of instructions. An interesting

exercise is now to determine which one will execute faster.

Exercise 5.2: Compute the number of bytes and the number of

cycles for each of these two programs, using the tables in the Ap

pendix section.

SUMMARY

A complete description of addressing modes has been presented.

It has been shown that the 6502 offers most of the possible mecha

nisms, and its features have been analyzed. Finally, several ap

plication programs have been presented to demonstrate the value

of each of the addressing mechanisms. Programming the 6502

requires an understanding of these mechanisms.

209

PROGRAMMING THE 6502

EXERCISES

5.3: Write a program to add the first 10 bytes ofa table stored at

location "BASE." The result will have 16 bits. (This is a

checksum computation).

5.4: Can you solve the same problem without using the indexing
mode?

5.5: Reverse the order of the 10 bytes of this table. Store the re
sult at address "REVER."

5.6: Search the same table for its largest element. Store it at
memory address "LARGE."

5.7: Add together the corresponding elements of three tables,

whose bases are BASE1, BASE2, BASE3. The length of

these tables is stored in page zero at address "LENGTH."

210

INPUT/OUTPUT TECHNIQUES

INTRODUCTION

We have learned so far how to exchange information between the

memory and the various registers of the processor. We have

learned to manage the registers and to use a variety of instruc

tions to manipulate the data. We must now learn to communicate

with the external world. This is called the input/output.

Input refers to the capture of data from outside peripherals

(keyboard, disk, or physical sensor). Output refers to the transfer

ofdata from the microprocessor or the memory to external devices

such as a printer, a CRT, a disk, or actual sensors and relays.

We will proceed in two steps. First, we will learn to perform the

input/output operations required by common devices. Second, we

will learn to manage several input/output devices simultaneously,

i.e., to schedule them. This second part will cover, in particular,

polling vs. interrupts.

INPUT/OUTPUT

In this section we will learn to sense or to generate simple

signals, such as pulses. Then we will study techniques for enforc

ing or measuring correct timing. We will then be ready for more

complex types of input/output, such as high-speed serial and par

allel transfers.

211

PROGRAMMING THE 6502

Generate a Signal

In the simplest case, an output device will be turned off (or on)

from the computer. In order to change the state of the output

device, the programmer will merely change a level from a logical

"0" to a logical "1", or from "1" to "0". Let us assume that an

external relay is connected to bit "0" of a register called "OUT1."

In order to turn it on, we will simply write a "1" into the appropri

ate bit position of the register. We assume here that OUT1 repre

sents the address of this output register within our system. The

program which will turn the relay on is:

TURNON LDA #%00000001

STA OUT1

We have assumed that the state of the other 7 bits of the regis

ter OUT1 is irrelevant. However, this is often not the case.

These bits might be connected to other relays. Let us, therefore,

improve this simple program. We want to turn the relay on, with

out changing the state of any other bit within this register. We

will assume that it is possible to read and write the contents of

this register. Our improved program now becomes:

TURNON LDA OUT1 READ CONTENTS OF OUT1

ORA #%00000001 FORCE BIT 0 TO "1"

STA OUT1

The program first reads the contents of location OUT1, then

performs an inclusive OR on its contents. This changes only bit

position 0 to "1", and leaves the rest of the register intact. (For

more details on the ORA operation, refer to Chapter 4). This is

illustrated by Figure 6-1.

Pulses

Generating a pulse is accomplished exactly as in the case of

the level above. An output bit is first turned on, then later turned

off. This results in a pulse. This is illustrated in Figure 6-2. This

time, however, an additional problem must be solved: one must

generate the pulse for the correct length oftime. Let us, therefore,

study the generation of a computed delay.

212

INPUT/OUTPUT TECHNIQUES

<=>

AFTER

-Illlllll
RELAY

Fig. 6-1: Turning on a Relay

OUTPUT PORT

REGISTER

0

0

0

0

0

0

1
0— 1

THE PROGRAM:
REGISTER WITH PATTERN

WAIT (LOOP FOR NUSEC)

LOAD OUTPUT PORT WITH ZERO

RETURN

Rg. 6-2: A Programmed Pulse

Delay Generation and Measurement

A delay may be generated by software or by hardware methods.

We will study here the way to perform it by program, and later

show how it can also be accomplished with a hardware counter,

called a programmable interval timer (PIT).

Programmed delays are achieved by counting. A counter regis

ter is loaded with a value, then is decremented. The program

loops on itself and keeps decrementing until the counter reaches

the value "0". The total length of time used by this process will

implement the required delay. As an example, let us generate a

delay of 37 microseconds.

213

PROGRAMMING THE 6502

DELAY LDY #07

NEXT DEY

BNE NEXT

Y IS COUNTER

DECREMENT

TEST

This program loads index register Y with the value 7. The next

instruction decrements Y, and the next instruction will cause a

branch to NEXT to occur as long as Y does not decrement to "0."

When Y finally decrements to zero, the program will exit from

this loop and execute whatever instruction follows. The logic of

the program is simple and appears in the flow chart of Figure 6-3.

YES

OUT

Fig. 6-3: A Delay Flowchart

Let us now compute the effective delay which will be im

plemented by the program. Looking at the Appendix section of the

book, we will look up the number of cycles required by each of

these instructions:

LDY, in the immediate mode, requires 2 cycles. DEY will use 2

cycles. Finally, BNE will use 3 cycles. When looking up the

number of cycles for BNE in the table, verify that 3 possibilities

exist; if the branch does not occur, BNE will only require 2 cycles.

If the branch does succeed, which will be the normal case during

the loop, then one more cycle is required. Finally, if the page

boundary is being crossed, then one extra cycle will be required.

We assume here that no page boundary will be crossed.

The timingis, therefore, 2 cycles for the first instruction, plus 5

214

INPUT/OUTPUT TECHNIQUES

cycles for the next 2, multiplied by the number of times the loop

will be executed, minus one cycle for the last BNE:

Delay = 2 + 5x7-1 = 36.

Assuming a 1-microsecond cycle time, this programmed delay

will be 36 microseconds.

We can see that the maximum definition with which we can

adjust the length of the delay is 2 microseconds. The minimum

delay is 2 microseconds.

Exercise 6.1: What is the maximum delay which can be imple

mented with these three instructions? Can you modify the pro

gram to obtain a one microsecond delay?

Exercise 6.2: Modify the program to obtain a delay of about 100

microseconds.

If one wishes to implement a longer delay, a simple solution is

to add extra instructions in the program, between DEY and BNE.

The simplest way to do so is to add NOP instructions. (The

NOP does nothing for 2 cycles).

Longer Delays

Generating longer delays by software can be achieved by using

a wider counter. Two internal registers, or, better, two words in the

memory, can be used to hold a 16-bit count. To simplify, let us

assume that the lower count is "0." The lower byte will be loaded

with "255," the maximum count, then go through a decrementa

tion loop. Whenever it is decremented to "0," the upper byte ofthe

counter will be decremented by 1. Whenever the upper byte is

decremented to the value "0," the program terminates. If more

precision is required in the delay generation, the lower count can

have a non-null value. In this case, we would write the program

just as explained and add at the end the three-line delay genera

tion program, which has been described above.

Naturally, still longer delays could be generated by using more

than two words. This is analogous to the way an odometer works

on a car. When the right-most wheel goes from "9" to "0," the next

wheel to the left is incremented by 1. This is the general principle

when counting with multiple discrete units.

However, the main objection is that when one is counting long

delays, the microprocessor will be doing nothing else for hundreds

of milliseconds or even seconds. If the computer has nothing else

215

PROGRAMMING THE 6502

to do, this is perfectly acceptable. However, in the general case,

the microcomputer should be available for other tasks so that

longer delays are normally not implemented by software. In fact,

even short delays may be objectionable in a system if it is to

provide some guaranteed response time in given situations.

Hardware delays must then be used. In addition, if interrupts are

used, timing accuracy may be lost if the counting loop can be

interrupted.

Exercise 6.3: Write aprogram to implement a 100 ms delay (for a

Teletype).

Hardware Delays

Hardware delays are implemented by using a programmable

interval timer, or "timer" for short. A register of the timer is loaded

with a value. The difference is that, this time, the timer will

automatically decrement this counter periodically. The period is

usually adjustable or selectable by the programmer. Whenever

the timer will have decremented to "0," it will normally send an

interrupt to the microprocessor. It may also set a status bit which

can be sensed periodically by the computer. The use of interrupts

will be explained later in this chapter.

Other timer operating modes may include starting from "0" and

counting the duration of the signal, or else counting the number

of pulses received. When functioning as an interval timer, the

timer is said to operate in a one-shot mode. When counting pulses,

it is said to operate in a pulse-counting mode. Some timer devices

may even include multiple registers and a number of optional

facilities which are program-selectable. This is the case, for

example, with the timers contained in the 6522 component, an I/O

chip described in the next chapter.

Sensing Pulses

The problem of sensing pulses is the reverse problem of gener

ating pulses, plus one more difficulty: whereas an output pulse is

generated under program control, input pulses occur asynchron-

ously with the program. In order to detect a pulse, two methods

may be used: polling and interrupts. Interrupts will be discussed

later in this chapter.

Let us consider now the polling technique. Using this technique,

the program reads the value of a given input register continu-

216

INPUT/OUTPUT TECHNIQUES

ously, testing a bit position, perhaps bit 0. It will be assumed that

bit 0 is originally "0." Whenever a pulse is received, this bit will

take the value "1" The program monitors bit 0 continuously until

it takes the value "1." When a "1" is found, the pulse has been

detected. The program appears below:

POLL

AGAIN

LDA

BIT

BEQ

#$01

INPUT

AGAIN

ON

Conversely, let us assume that the input line is normally "1"

and that we wish to detect a "0." This is the normal case for

detecting a START bit when monitoring a line connected to a

Teletype. The program appears below:

POLL LDA #$01

NEXT BIT INPUT

BNE NEXT

START

Monitoring the Duration

Monitoring the duration of the pulse may be accomplished in

the same way as computing the duration of an output pulse.

Either a hardware or a software technique may be used. When

monitoring a pulse by software, a counter is regularly in

cremented by 1, then the presence of the pulse is verified. If the

pulse is still present, the program loops upon itself. Whenever the

pulse disappears, the count contained in the counter register is

used to compute the effective duration of the pulse. The program

appears below

DURTN LDX #0 CLEAR COUNTER

LDA #$01 MONITOR BIT 0

AGAIN BIT INPUT

BEQ AGAIN

LONGER INX

BIT INPUT

BNE LONGER

Naturally, we assume that the maximum duration of the pulse

will not cause register X to overflow. If this were the case, the

217

PROGRAMMING THE 6502

program would have to be longer to take this into account (or else

it would be a programming error!)

Since we now know how to sense and generate pulses, let us

capture or transfer larger amounts of data. Two cases will be

distinguished: serial data and parallel data. Then we will apply

this knowledge to actual input/output devices.

COUNT

STATUS

INPUT

PAGE*

PAGE1

VALID

8 BITS

Fig. 6-4: Parallel Word Transfer: The Memory

PARALLEL WORD TRANSFER

It is assumed here that 8 bits of transfer data are available in

parallel at address "INPUT." The microprocessor must read the

data word at this location whenever a status word indicates that

it is valid. The status information will be assumed to be contained

in bit 7 of address "STATUS." We will here write a program

218

INPUT/OUTPUT TECHNIQUES

which will read and automatically save each word of data as it

comes in. To simplify, we will assume that the number of words

to be read is known in advance and is contained in location

"COUNT." If this information were not available, we would test

for a so-called break character, such as a rubout, or perhaps the

character "*." We have learned to do this already.

POLLING OR SERVICE REQUEST

TRANSFER

WORD

DECREMENT

COUNTER

NO

YES

OUT

Fig. 6-5: Parallel Word Transfer: Flowchart

The flowchart appears in Figure 6-5. It is quite straightfor

ward. We test the status information until it becomes "1," indi

cating that a word is ready. When the word is ready, we read

it and save it at an appropriate memory location. We decre

ment the counter and then test whether it has decremented to

219

PROGRAMMING THE 6502

"0." If so, we are finished; if not, we read the next word. The

program which implements this algorithm appears below:

PARAL LDX COUNT COUNTER

WATCH LDA STATUS BIT 7 IS «1" IF DATA VALID

BPL WATCH DATA VALID?

LDA INPUT READ IT

PHA SAVE IT IN THE STACK

DEX

BNE WATCH

The first two instructions of the program read the status infor

mation and cause a loop to occur as long as bit 7 of the status

register is "0." (It is the sign bit, i.e. bit N).

WATCH LDA STATUS

BPL WATCH

When BPL fails, data is valid and we can read it:

LDA INPUT

The word has now been read from address INPUT where it was,

and must be saved. Assuming that the number of words to be trans

ferred is small enough, we use:

PHA

If the stack is full, or the number of words to be transferred is lafee,

we could not push them on the stack and we would have to transfer

them to a designated memory area, using, for example, an indexed

instruction. However, this would require an extra instruction to in

crement or decrement the index register. PHA is faster.

The word of data has now been read and saved. We will simply

decrement the word counter and test whether we are finished:

DEX

BNE WATCH

We keep looping until the counter eventually decrements to "0."

This 6-instruction program can be called a benchmark. A benchmark

program is a carefully optimized program designed to test the cap

abilities of a given processor in a specific situation. Parallel trans

fers are one such typical situation. This program has been designed

for maximum speed and efficiency. Let us now compute the maximum

220

INPUT/OUTPUT TECHNIQUES

transfer speed of this program. We will assume that COUNT is con

tained in page 0. The duration of every instruction is determined by

inspecting the table at the end of the book and is found to be the

following:

CYCLES

LDX

WATCH LDA

BPL

LDA

PHA

DEX

BNE

COUNT

STATUS

WATCH

INPUT

WATCH

3

4

2/3 (FAIL/SUPCEED)

4

3

2

2/3 (FAIL/SUCCEED)

The minimum execution time is obtained by assuming that

data is available every time that we sample STATUS. In other

words, the first BPL will be assumed to fail every time. Timing is

then: 3 + (4+2+4+3+2+3) x COUNT.

Neglecting the first 3 microseconds necessary to initialize the

counter register, the time used to transfer one word is 18 mi

croseconds.

The maximum data transfer rate is, therefore,

1

18(10-6)

= 55 K bytes per second.

Exercise 6.4: Assume that the number of words to be transferred

is greater than 256. Modify the program accordingly and deter-

mine the impact on the maximum data transfer rate.

We have now learned to perform high-speed parallel transfers.

Let us consider a more complex case.

BIT SERIAL TRANSFER

A serial input is one in which the bits of information (0's or

l's) come in successively on a line. These bits may come in at

regular intervals. This is normally called synchronous transmis

sion. Or else, they may come as bursts of data at random inter

vals. This is called asynchronous transmission. We will develop a

program which can work in both cases. The principle of the cap

ture of sequential data is simple: we will watch an input line,

which will be assumed to be line 0. When a bit of data is detected

on this line, we will read the bit in, and shift it into a holding reg

ister. Whenever 8 bits have been assembled, we will preserve the

221

PROGRAMMING THE 6502

PAGE I

PAGE1

STATUS OR CLOCK

^r-SERIAL DATA

Fig. 6-6: Serial to Parallel Conversion

byte of data into the memory and assemble the next one. In order

to simplify, we will assume that the number ofbytes to be received

is known in advance. Otherwise, we might, for example, have to

watch for a special break character, and stop the bit-serial

transfer at this point. We have learned to do that. The flow-chart

for this program appears in Figure 6-7. The program appears

below:

BIT 7 IS STATUS, "0" IS DATA

BIT RECEIVED?

SHIFT IT INTO C

SAVE BIT IN MEMORY

CONTINUE IF CARRY = "0"

SAVE ASSEMBLED BYTE

RESET BIT COUNTER

DECREMENT WORD COUNT

ASSEMBLE NEXT WORD

SERIAL

LOOP

LDA

STA

LDA

BPL

LSR

ROL

BCC

LDA

PHA

LDA

STA

DEC

BNE

#$00

WORD

INPUT

LOOP

A

WORD

LOOP

WORD

#$01

WORD

COUNT

LOOP

222

INPUT/OUTPUT TECHNIQUES

This program has been designed for efficiency and will use new

techniques which we will explain. (See Fig. 6-6.)

The conventions are the following: memory location COUNT is

assumed to contain a count of the number of words to be trans

ferred. Memory location WORD will be used to assemble 8 con

secutive bits coming in. Address INPUT refers to an input regis

ter. It is assumed that bit position 7 ofthis register is a status flag,

or a clock bit. When it is "0 " data is not valid. When it is "1" the

data is valid. The data itself will be assumed to appear in bit

position 0 of this same address. In many instances, the status

information will appear on a different register than the data reg-

POLLING OR SERVICE REQUEST

STORE BIT

INCREMENT COUNTER

YES

STORE WORD

RESET BIT COUNTER

DECREMENT WORD COUNT

Fig. 6-7: Bit Serial Transfer: Flowchart

223

PROGRAMMING THE 6502

ister. It should be a simple task, then, to modify this program

accordingly. In addition, we will assume that the first bit of data

to be received by this program is guaranteed to be a "1." It indi

cates that the real data follows. If this were not the case, we will

see later an obvious modification to take care of it. The program

corresponds exactly to the flowchart of Figure 6-7. The first few

lines of the program implement a waiting loop which tests
whether a bit is ready. Tb determine whether a bit is ready, we

read the input register then test the sign bit (N). As long as this

bit is "0," the instruction BPL will succeed, and we will branch

back to the loop. Whenever the status (or clock) bit will become
true ("1"), then BPL will fail and the next instruction will be
executed.

Remember that BPL means "Branch on Plus," i.e. when bit 7
(the sign bit) is "0." This initial sequence of instructions corre

sponds to arrow 1 on Figure 6-6.

At this point, the accumulator contains a "1" in bit position 7

and the actual data bit in bit position 0. The first data bit to arrive

is going to be a "1." However, the following ones may be either "0"

or "1." We now wish to preserve the data bit which has been

collected in position 0. The instruction:

LSRA

shifts the contents of the accumulator right by one position. This

causes the right-most bit of A, which is our data bit, to fall into

the carry bit. We will now preserve this data bit into the memory

location WORD (this is illustrated by arrows 2 and 3 in Fig. 6-6):

ROL WORD.

The effect of this instruction is to read the carry bit into the

right-most bit position of address WORD. At the same time, the

left-most bit of WORD falls into the carry bit. (If you have any
doubts about the rotation operation, refer to Chapter 4!)

It is important to remember that a rotation operation will both
save the carry bit, here into the right-most bit position, and also
recondition the carry bit with the value of bit 7.

Here, a "0" will fall into the carry. The next instruction:

BCC LOOP

tests the cany and branches back to address LOOP as long as the

carry is "0." This is our automatic bit counter. It can readily be

224

INPUT/OUTPUT TECHNIQUES

seen that as a result of the first ROL, WORD will contain

"00000001." Eight shifts later, the "1" will finally fall into the

carry bit and stop the branching. This is an ingenious way to

implement an automatic loop counter without having to waste an

instruction to decrement the contents of an index register. This

technique is used in order to shorten the program and improve its

performance.

Whenever BCC finally fails, 8 bits have been assembled into lo

cation WORD. This value should be preserved in the memory. This

is accomplished by the next instructions (arrow 4 in Fig. 6-6):

LDA WORD

PHA

We are here saving the WORD of data (8 bits) into the stack.

Saving it into the stack is possible only if there is enough room in

the stack. Provided that this condition is met, it is the fastest way

to preserve a word in the memory. The stack pointer is updated

automatically. If we were not pushing a word in the stack, we

would have to use one more instruction to update a memory

pointer. We could equivalently perform an indexed addressing

operation, but that would also involve decrementing or incre

menting the index, using extra time.

After the first WORD ofdata has been saved, there is no longer

any guarantee that the first data bit to come in will be a "1." It can

be anything. We must, therefore, reset the contents of WORD to

"00000001" so that we can keep using it as a bit counter. This is

performed by the next two instructions:

LDA #$01

STA WORD

Finally, we will decrement the word counter, since a word has

been assembled, and test whether we have reached the end of the

transfer. This is accomplished by the next two instructions:

DEC COUNT

BNE LOOP

The above program has been designed for speed, so that one

may capture a fast input stream of data bits. Once the program

terminates, it is naturally advisable to immediately read away

from the stack the words'that have been saved there and transfer

them elsewhere into the memory. We have already learned to

225

PROGRAMMING THE 6502

perform such a block transfer in Chapter 2.

Exercise 6.5: .Compute the maximum speed at which this pro
gram will be able to read serial bits. To compute this speed, as

sume that addresses WORD and COUNTare kept in Page 0. Also,

assume that the complete program resides within the same page.

Look up the number ofcycles required by every instruction, in the

table at the end of this book, then compute the time which will

elapse during execution of this program. To compute the length

of time which will be used by a loop, simply multiply the total

duration of this loop, expressed in microseconds, by the number

of times it will be executed Also, when computing the maximum

speed, assume that a data bit will be ready every time that the in

put location is sensed

This program is more difficult to understand than the previous

ones. Let us look at it again (refer to Figure 6-6) in more detail,

examining some trade-offs.

A bit of data comes into bit position 0 of "INPUT" from

time to time. There might be, for example, three "IV in succession.

We must, therefore, differentiate between the successive bits com

ing in. This is the function of the "clock" signal.

The clock (or STATUS) signal tells us that the input bit is

now valid.

Before reading a bit, we will therefore first test the status bit.

If the status is "0", we must wait. If itis"l", then the data

bit is good.

We assume here that the status signal is connected to bit 7

of register INPUT.

Exercise 6.6: Can you explain why bit 7 is used for status, and
bit 0 for data?

Once we have captured a data bit, we want to preserve it in

a safe location, then shift it left, so that we can get the next bit.

Unfortunately, the accumulator is used to read and test both data

and status in this program. If we were to accumulate data in the

accumulator, bit position 7 would be erased by the status bit.

Exercise 6.7: Can you suggest a way to test status without eras

ing the contents of the accumulator (a special instruction)? If this

226

INPUT/OUTPUT TECHNIQUES

can be done, could we use the accumulator to accumulate the suc

cessive bits coming in?

Exercise 6.8: Re-write the program, using the accumulator to

store the bits coming in. Compare it to the previous one in terms

ofspeed and number ofinstructions.

Let us address two more possible variations:

We have assumed that, in our particular example, the very first bit to

come in would be a special signal, guaranteed to be "1." However, in

the general case, it may be anything.

Exercise 6.9: Modify the program above, assuming that the very

first bit to come in is valid data (not to be discarded), and can be

"0" or "1 ."Hint- our "bit counter" should still work correctly,

ifyou initialize it with the correct value.

Finally, we have been saving the assembled WORD in the stack, to

gain time. We could naturally save it in a specified memory area:

Exercise 6.10: Modify the program above, and save the assem

bled WORD in the memory area starting at BASE.

Exercise 6.11: Modify the program above so that the transfer

will stop when the character "S" is detected in the input stream.

The Hardware Alternative

As usual for most standard input/output algorithms, it is possi

ble to implement this procedure by hardware. The chip is called a

UART. It will automatically accumulate the bits. However, when

one wishes to reduce the component count, this program, or a

variation of it, will be used instead.

Exercise 6.12: Modify the program assuming that data is avail
able in bitposition 0 oflocation INPUT, while the status informa

tion is available in bitposition 0 ofaddress INPUT + 1.

227

PROGRAMMING THE 6502

BASIC I/O SUMMARY

We have now learned to perform elementary input/output op

erations as well as to manage a stream of parallel data or serial

bits. We are ready to communicate with real input/output devices.

COMMUNICATING WITH INPUT/OUTPUT DEVICES

In order to exchange data with input/output devices, we will

first have to ascertain whether data is available, if we want to

read it, or whether the device is ready to accept data, ifwe want to

send it. Two procedures may be used: handshaking and inter
rupts. Let us study handshaking first.

Handshaking

Handshaking is generally used to communicate between any

two asynchronous devices, i.e., between any two devices which

are not synchronized. For example, if we want to send a word to a

parallel printer, we must first make sure that the input buffer of

this printer is available. We will, therefore, ask the printer: Are

you ready? The printer will say "yes" or "no." If it is not ready we

will wait. If it is ready, we will send the data. (See Fig. 6-8.)

(READ

STATUS)
STATUS

REGISTER

OUTPUT

DEVICE

Fig. 6-8: Handshaking (Output)

Conversely, before reading data from an input device, we will

verify whether the data is valid. We will ask: "Is data valid?" And

the device will tell us "yes" or "no." The "yes" or "no" may be
indicated by status bits, or by other means. (See Fig. 6-9.)

228

INPUT/OUTPUT TECHNIQUES

MPU

CHARACTER

READY?

YES/NO

| 1

INPUT

REGISTER

STATUS

REGISTER

<^
INPUT

DEVICE

Fig. 6-9: Handshaking (Input)

In short, whenever you wish to exchange information with

someone who is independent and might be doing something else

at the time, you should ascertain that he is ready to communicate

with you. The usual courtesy rule is to shake his hand. Data

exchange may then follow. This is the procedure normally used in

communicating with input/output devices.

Let us illustrate this procedure now with a simple example:

Sending a Character To The Printer

The character will be assumed to be contained in memory loca

tion CHAR. The program to print it appears below:

CHARPR LDX CHAR READ CHARACTER

WAIT LDA STATUS BIT 7 IS "READY"

BPL WAIT

TXA

STA PRINTD

Register X is first loaded from the memory with a character to

be printed. Then we test the status bit of the printer to determine

that it is ready to accept the character. As long as it is not ready to
print, however, we branch back to address WAIT, and we loop.

Whenever the printer indicates that it is ready to print by setting

its ready-bit (here bit 7 by convention of address STATUS), we

can send the character. We transfer the character from register X

to register A:

TXA

229

PROGRAMMING THE 6502

and we send it to the printer's output register address, called here
PRINTD.

STA PRINTD

Exercise 6.13: Modify the program above to print a string of n
characters, where n will be assumed to be less than 255.

Exercise 6.14: Modify the above program to print a string of
characters until a "carriage-return" code is encountered

Let us now complicate the output procedure by requiring a code

conversion and by outputting to several devices at a time:

D

Fig. 6-10: Seven Segment LED

Output to a 7-Segment LED

A traditional 7-segment light-emitting-diode (LED) may dis
play the digits "0" through "9," or even "0" through "F" hexadec
imal by lighting combinations of its 7 segments. A 7-segment

LED is shown in illustration 6-10. The characters that may be gen
erated with this LED appear in Figure 6-11. The segments of an LED
ARE LABELLED "A" through "G" in Figure 6-10.
For example, "0" will be displayed by lighting the segments

230

INPUT/OUTPUT TECHNIQUES

"ABCDEF." Let us assume, now, that bit "0" of an output port is

connected to segment "A," that "1" is connected to segment "B,"

and so on. Bit 7 is not used. The binary code required to light up

"FEDCBA" (to display "0") is, therefore, "0111111." In hexa

decimal this is "3F." Do the following exercise.

■L

D

A

7

n
n

i

b
i_

r

i

j

n
o

i

u

u

n
i

r

n
u
r
r

Fig. 6-11: Characters Generated with a 7-Segment LED

Exercise 6.15: Compute the 7-segment equivalent for the hexa

decimal digits "0" through "F. "Fill out the table below:

Hex LED code Hexl LED code |Hex | LED code |Hex | LED code

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Let us now display hexadecimal values on several LEDs.

Driving Multiple LEDs

An LED has no memory. It will display the data only as long as

its segment lines are active. In order to keep the cost of an LED
display low, the microprocessor will display information in turn

on each of the LEDs. The rotation between the LEDs must be fast
enough so that there is no apparent blinking. This implies that
the time spent from one LED to the next is less than 100 milli-

231

PROGRAMMING THE 6502

seconds. Let us design a program which will accomplish this.

Register Y will be used to point to the LED on which we want to

display a digit. The accumulator is assumed to contain the

hexadecimal value to be displayed on the LED. Our first concern

is to convert the hexadecimal value into its 7-segment repre

sentation. In the preceding section, we have built the equivalence

table. Since we are accessing a table, we will use the indexed

addressing mode, where the displacement index will be provided

by the hexadecimal value. This means that the 7-segment code for

hexadecimal digit #3 is obtained by looking up the third element

of the table after the base. The address of the base will be called

SEGBAS. The program appears below:

LEDS TAX USE HEX VALUE AS INDEX

LDA SEGBAS,X READ CODE IN A

LDX #$00

STX SEGDAT TURN OFF SEGMENT DRIVERS

STA SEGDAT DISPLAY DIGIT

LDX #$70 ANY LARGE NUMBER

STY SEGADR

DELAY DEX

BNE DELAY

DEY POINT TO NEXT LED
BNE OUT

LDY LEDNBR

OUT RTS

The program assumes that register Y contains the number of the

LED to be illuminated next, and that register X contains the digit
to be displayed.

The program first looks up the 7-segment code corresponding to

the hexadecimal value contained in the accumulator with its first
two instructions. The next two instructions load "00" as the value

of the segments to be displayed, i.e., turn them off. The next

instruction then selects the appropriate LED segments for dis
play: STY SEGADR.

A three-instruction loop delay is then implemented before
switching to the next LED. Finally, the LED pointer is de
cremented. (It could be incremented).

If the LED pointer decrements to "0," it must be reloaded with
the highest LED number. This is accomplished by the next two

instructions. It is assumed here that this is a subroutine and the
last instruction is an RTS: "return from subroutine."

232

INPUT/OUTPUT TECHNIQUES

STOP1ST0P2
l I

HARK

SPACE 1 |l1!S8'n ' '

9.09 ms

Fig. 6-12: Format of a Teletype Word

Exercise 6.16: Assuming that the aboveprogram is a subroutine,

you will notice that it uses registers X and Y internally and mod

ifies their contents. Assuming that the subroutine may freely use

the memory area designated by address Tl, T2, T3, T4, T5, could

you add instructions at the beginning and at the end of this pro

gram which will guarantee that, when the subroutine returns, the

contents of registers X and Y will be the same as when the sub

routine was entered?

Exercise 6.17: Same exercise as above, but assume that the

memory area Tl, etc. is not available to the subroutine. (Hint: re

member that there is a built-in mechanism in every computer for

preserving information in a chronological order).

We have now solved common input/output problems. Let us

consider the case of a real peripheral: the Teletype.

Teletype Input/Output

The Teletype is a serial device. It both sends and receives words

of information in a serial format. Each character is encoded in ah

8-bit ASCII format (the ASCII table appears at the end of this

233

PROGRAAAAAING THE 6502

YES

WAIT 4.5 ms

ECHO START BIT

WAIT 9.09 ms

SHIFT IN DATA BIT

ECHO IT

WAIT 9.09 ms

OUTPUT STOP BIT

WAIT 13.59 ms

Fig. 6-13: TTY Input with Echo

234

INPUT/OUTPUT TECHNIQUES

book). In addition, every character is preceded by a "start" bit,

and terminated by two "stop" bits. In the so-called 20-milliamp

current loop interface, which is most frequently used, the state of
the line is normally a "1." This is used to indicate to the processor

that the line has not been cut. A start is a "l"-to-"0" transition. It
indicates to the receiving device that data bits follow. The standard

Teletype is a 10-characters-per-second device. We have just es

tablished that each character requires 11 bits. This means that

the Teletype will transmit 110 bits per second. It is said to be a 110-
baud device. We will design a program to serialize bits in from the

Teletype at the correct speed.

One hundred and ten bits per second implies that bits are sepa

rated by 9.09 milliseconds. This will have to be the duration ofthe

delay loop to be implemented between successive bits. The format

of a Teletype word appears in Figure 6-12. The flowchart for bit

input appears in Figure 6-13. The program follows:

TTYN

NEXT

LDA

BPL

JSR

LDA

STA

JSR

LDX

LDA

STA

LSR

ROL

JSR

DEX

BNE

LDA

STA

JSR

RTS

STATUS

TTYIN

DELAY

TTYBIT

TTYBIT

DELAY

#$08

TTYBIT

TTYBIT

A

CHAR

DELAY

NEXT

TTYBIT

TTYBIT

DELAY

USUAL STATUS POLL

WAIT

START BIT

ECHO BACK

BIT COUNTER

SAVE INPUT

ECHO BACK

SAVE BIT IN CARRY

SAVE BIT IN CHAR

NEXT BIT

STOP BIT

Fig. 6-14: Input from Teletype

Note that this program differs slightly from the flowchart of Fig. 6-13.

235

PROGRAMMING THE 6502

The program should be examined with attention. The logic is quite

simple. The new fact is that, whenever a bit is read from the Tele

type (at address TTYBIT), it is echoed back to the Teletype. This

is a standard feature of the Teletype. Whenever a user presses a key,
the information is transmitted to the processor and then back to the
printing mechanism of the Teletype. This verifies that the transmis
sion lines are working and that the processor is operating when a
character is, indeed, printing correctly on the paper.

MEMORY + i/O

A

X

c

H x 1
I CHAR

STATUS

TTYBIT

X

X

TELETYPE

Fig. 6-15: Teletype Input

The first two instructions are the waiting loop. The program waits

for the status bit to become true before it starts reading bits in.

As usual, the status bit is assumed to come in bit position 7,

since this position can be tested in one instruction by BPL (Branch

on Plus-this is the sign bit).

JSR is the subroutine jump. We use a DELAY subroutine to

implement the 9.09 ms delay. Note that DELAY can be a delay loop,
or can use the hardware timer, if our system has one.

The first bit to come in is the start bit. It should be echoed to the

Teletype, but otherwise ignored This is done by instructions 4 and 5.
Again, we wait for the next bit. But, this time, it is a true

data bit, and we must save it. Since all shift instructions will
drop a bit in the carry flag, we need two instructions to preserve

our data bit (the X in Figure 6-15): one to drop it into C (LSR A),

236

INPUT/OUTPUT TECHNIQUES

and one to preserve it into memory location CHAR (ROL).
Beware of one problem: the "ROL" will destroy the contents of

C. If we want to echo the data bit back, a precaution must be tak

en to preserve it before it disappears into CHAR. Finally, we echo
the data bit (STA TTYBIT) and wait for the next one (JSR
DELAY) until we accumulate all eight data bits (DEX).

Whenever we decrement to zero, all 8 bits are in CHAR. We

just have to echo the STOP bits, and we are finished.

Exercise 6.18: Write the delay routine which results in the 9.09

millisecond delay. (DELAY subroutine)

ENTER

SEND START

BIT

SEND DATA

BITS

SEND STOP

BIT

EXIT

ENTER

Fig. 6-16: Teletype Output

237

PROGRAAAAAING THE 6502

Exercise 6.19: Using the example of the program developed
above, write a PRINTCprogram which will print on the Teletype
the contents ofmemory location CHAR.

Exercise 6.20: Modify theprogram so that it waits for a START
bit instead ofa STATUS bit

Printing a String of Characters

We will assume that the PRINTC routine (see Exercise 6-18)
takes care of printing a character on our printer, display, or any
output device. We will here print the contents of memory loca
tions START + N to START.

We will naturally use the indexed addressing mode and the
program is straight-forward:

PSTRING

NEXT

LDX

LDA

JSR

DEX

BPL

#N

START+N

PRINTC

NEXT

NUMBERS OF WORDS

MEMORY

COUNTER

OUTPUT REGISTER
TO PRINTER

Fig. 6-17: Print a Memory Block

PERIPHERAL SUMMARY

We have now described the basic programming techniques used

to communicate with typical input/output devices. In addition to

the data transfer, it will be necessary to condition one or more

238

INPUT/OUTPUT TECHNIQUES

control registers within each I/O device in order to condition cor

rectly the transfer speeds, the interrupt mechanism, and the var

ious other options. The manual for each device should be con

sulted. (For more details on the specific algorithms to exchange

information with all the usual peripherals, the reader is referred
to our book,"C207, Microprocessor Interfacing Techniques.")

We have now learned to manage single devices. However, in a

real system, all peripherals are connected to the busses, and may

request service simultaneously. How are we going to schedule the

processor's time?

INPUT/OUTPUT SCHEDULING

Since input/output requests may occur simultaneously, a

scheduling mechanism must be implemented in every system to

determine in which order service will be granted. Three basic

input/output techniques are used, which can be combined.
They are: polling, interrupt, DMA. Polling and interrupts

will be described here. DMA is purely a hardware tech-

MEMORY

MPU

DATA BUS

, 0
— »| I/O

L.

J ?

:> POLLING

MPU

J

INTI

HOLD

MPU

MEMORY

1

J

| MEMORY

* I 1 *

1 1 _11

I/O

t INT

1

DMA

I/O |

t JNT

_f * .

j_l-1

INTERRUPT

Fig. 6-18: Three Methods of I/O Control

239

PROGRAMMING THE 6502

nique, and as such will not be described here. (It is covered in
the reference books C201 and C207).

Polling

Conceptually, polling is the simplest method for managing multiple

peripherals. With this strategy, the processor interrogates the devices
connected to the buses in turn. If a device requests service, the service

is granted. If it does not request service, the next peripheral is exam
ined. Polling is not just used for the devices, but for any device service
routine.

^^wcERVICE? ^^^

^^^ REQUI
^^^-^SERV

^^REQUE
^*^w SERV

f
NO

__^

.STING^^V

NO

^^

STING ^*
ICE?^^^^*^

NO

YES

1

SERVICE ROUTINE

FOR DEVICE A

1

YES

SERVICE ROUTINE

FOR DEVICE B

1

YES

* 1
SERVICE ROUTINE

FOR DEVICE C

1

Fig. 6-19: Polling Loop Flow-chart

As an example, if the system is equipped with a Teletype, a tape re

corder, and a CRT display, the polling routine would interrogate the

Teletype: "Do you have a character to transmit?" It would interrogate

the Teletype output routine, asking: "Do you have a character to send?"

Then, assuming that the answers are negative so far, it would interro

gate the tape recorder routines, and finally the CRT display. In the case

that only one device is connected to a system, polling will be used as

240

INPUT/OUTPUT TECHNIQUES

SET READER

ENABLE ON

NO

YES

READ CHARACTER

Fig. 6-2O: Reading from a Paper-Tape Reader

LOAD PUNCH

OR PRINTER

BUFFER

TRANSMIT

DATA

Fig. 6-21: Printing on a Punch or Printer

241

PROGRAMMING THE 6502

well to determine whether it needs service. As an example, the flow

charts for reading from a paper-tape reader and for printing on a print

er appear in Figures 6-20 and 6-21.

Example: a polling loop for devices 1, 2, 3, 4, (see Fig. 6-18):

POLL4 LDA STATUS1 SERVICE REQUEST IS BIT 7

BMI ONE

LDA STATUS2 DEVICE2?

BMI TWO

LDA STATUS3 DEVICE3?

BMI THREE

LDA STATUS4 DEVICE4

BMI FOUR

JMP POLL4 TEST AGAIN

Bit 7 of the status register for each device is "1" when it wants

service. When a request is sensed, this program branches to the

device handler, at address ONE for device 1, TWO for device 2, etc.

The advantages of polling are obvious: it is simple, does not

require any hardware assistance, and keeps all input/output syn

chronous with the program operation. Its disadvantage is just as

obvious: most of the processor's time is wasted looking at devices

that do not need service. In addition, the processor might give

service to a device too late, by wasting so much time.

Another mechanism is, therefore, desirable which guarantees

that the processor's time can be used to perform useful computa

tions, rather than polling devices needlessly all the time. How

ever, let us stress that polling is used extensively whenever a

microprocessor has nothing better to do, as it keeps the overall

organization simple. Let us now examine the essential alterna

tive to polling: interrupts.

Interrupts

The concept of interrupts is illustrated in Figure 6-18. A spe

cial hardware line is available, the interrupt line, which is con

nected to a specialized pin of the microprocessor. Multiple input/

output devices may be connected to this interrupt line. When any

one of them needs service, it sends a level or a pulse on this line.

An interrupt signal is the service request from an input/output

242

INPUT/OUTPUT TECHNIQUES

STACK PC, P

SET I

LOAD PC FROM

(FFFE, FFFF)

JUMP

YES ^ IGNORE
INTERRUPT

Fig. 6-22: Interrupt Processing

243

PROGRAMMING THE 6502

device to the processor. Let us examine the response of the proc

essor to this interrupt.

In any case, the processor completes the instruction that it was

currently executing, or else this would create chaos inside the

microprocessor. Next, the microprocessor should branch to an

interrupt handling routine which will process the interrupt. Branching

to such a subroutine implies that the contents of the program counter

must be saved on the stack. An interrupt must, therefore, cause

the automatic preservation of the program counter on the stack.

In addition, the status register (P) should also be automatically

preserved, as its contents will be altered by any subsequent in

struction. Finally, if the interrupt handling routine should modify

any internal registers, these internal registers should also be pre

served on the stack.

After all these registers have been preserved, one can branch to

the appropriate interrupt handling address. At the end of this

routine, all the registers should be restored, and a special inter

rupt return should be executed so that the main program will

resume execution. Let us examine in more detail the two inter

rupt lines of the 6502.

6502 Interrupts

The 6502 is equipped with two interrupt lines, IRQ and NMI.

IRQ is the regular interrupt line, while NMI is a higher priority

non-maskable interrupt. Let us examine their operation.

IRQ is the level-activated interrupt. The status of the IRQ line

will be sensed or ignored by the microprocessor depending upon

the value of its internal flag I (interrput-mask flag). We will ini

tially assume that interrupts are enabled. Whenever IRQ is

activated, the interrupt will be sensed by the microprocessor. As

soon as the interrupt is accepted (upon completion of the instruc

tion currently executing), the internal I flag is automatically set.

This will prevent the microprocessor from being interrupted

again at a time when it is manipulating internal registers. The

6502 then automatically preserves the contents of PC (the pro

gram counter) and P (the status register) into the stack. The

aspect of the stack after an interrupt has been processed is illus

trated by Figure 6-23.

Next, the 6502 will automatically fetch the content of memory

locations "FFFE" and "FFFF." This 16-bit memory location will

244

INPUT/OUTPUT TECHNIQUES

PCL

PCH

Fig. 6-23:65O2 Stack After Interrupt

contain the interrupt-vector. The 6502 will fetch the contents of

this address, then branch to the specified 16-bit vector. The user is

responsible for depositing this vectoring address at "FFFE"-

"FFFF". However, several devices may be connected to the IRQ

line. In this case, we are branching to a single interrupt handling

routine. How are we going to differentiate between the various

devices? This will be studied in the next section.

The NMI interrupt is essentially identical to IRQ except that it

FFFD

FFFE

FFFF

Fig. 6-24: Interrupt Vectors

245

PROGRAMMING THE 6502

cannot be masked by the I bit. It is a higher priority interrupt,

typically used for power failures. Its operation is otherwise iden

tical except that the processor branches automatically to the con

tents of "FFFA"-"FFFB". This is illustrated in Figure 6-24.

The return from an interrupt is accomplished by instruction

RTI. This instruction transfers back into the microprocessor the

top three words of the stack which contains P and PC (the 16-bit

program counter). The program which had been interrupted can

then resume. The internal state of the machine is exactly identi

cal to the one at the time that the interrupt occurred. The effect

has been to introduce a delay in the execution of the program.

Prior to returning from an interrupt, the programmer is re

sponsible for clearing the interrupt that it has now serviced, and

restoring the interrupt disable flag. In addition, should the inter

rupt handling routine modify the contents of any register, such as

X or Y, the programmer is specifically responsible for preserving

these registers in the stack prior to executing the interrupt han

dling routine. Otherwise, the contents of these registers will be

modified, and when the interrupted program resumes execution,

it will not be correct.

Assuming that the interrupt handling routine will use regis

ters A, X, and Y, five instructions will be necessary within the

interrupt handler to preserve these registers. They are:

SAVAXY PHA

TXA

PHA

TYA

PHA

PUSH A IN

TRANSFER

PUSH IT

TRANSFER

PUSH IT

THE STACK

XTOA

YTOA

Unfortunately, the 6502 may only directly push the contents of A or

P on the stack. As a result, preserving X and Y is time-consuming; it

requires 4 instructions. This is illustrated in Figure 6-25.

Upon the completion of the interrupt handling routine, these

registers must be restored and the interrupt handler must termi

nate with the sequence of six instructions:

246

INPUT/OUTPUT TECHNIQUES

PLA

TAY

PLA

TAX

PLA

RTI

PULL Y FROM STACK

RESTORE Y

PULLX

RESTORE X

RESTORE A

EXIT

PCL

PCH

STACK

Fig. 6-25: Saving all the Registers

Exercise 6.21: Using the table indicating the number of cycles

per instruction, in the Appendix, compute how much time will be

lost by saving and then restoring registers A, X, and Y.

For a graphic comparison of the polling process vs. the interrupt

process, refer to Figure 6-18, where the polling process is illustrated

on the top, and the interrupt process underneath. It can be seen that

in the polling technique, the program wastes a lot of time waiting.

Using interrupts, the program is interrupted, the interrupt is serviced,

then the program resumes. However, the obvious disadvantage of an

interrupt is to introduce several additional instructions at the beginning

and at the end, resulting in a delay before the first instruction of the

device handler can be executed. This is additional overhead.

247

PROGRAMMING THE 6502

Having clarified the operation of the two interrupt lines, let us

now consider two important problems remaining:

1. How do we resolve the problem of multiple devices trigger

ing an interrupt at the same time?

2. How do we resolve the problem of an interrupt occurring

while another interrupt is being serviced?

Multiple Devices Connected to a Single Interrupt Line

Whenever an interrupt occurs, the processor automatically

branches to an address contained at "FFFE-FFFF" (for an IRQ),

or at "FFFA-FFFB" (for an NMI). Before it can do any effective

processing, the interrupt handling routine must determine which

device triggered the interrupt. Two methods are available to iden

tify the device, as usual: a software method and a hardware

method.

INT 1 POLLING INTERRUPT VECTORED

POLLING

ROUTINE

SERVICE
ROUTINE

SERVICE

ROUTINE N

Fig. 6-26: Polled vs. Vectored Interrupt

In the software method, polling is used: the microprocessor in

terrogates each of the devices in turn and asks them, "Did you

trigger the interrupt?" If not, it interrogates the next one. This

process is illustrated in Figure 6-26. A sample program is:

LDA

BMI

LDA

BMI

STATUS 1

ONE

STATUS 2

TWO

248

INPUT/OUTPUT TECHNIQUES

The hardware method uses additional components but provides

the address of the interrupting device simultaneously with the

interrupt request. The device now universally used to provide this

facility is called a "PIC," or priority-interrupt-controller. Such a

PIC will automatically place on the data bus the actual required

branching address for the interrupting peripheral. When the

6502 goes to "FFFE"-"FFFF," it will fetch this vectoring address.

This concept is illustrated in Figure 6-26.

In most cases, the speed of reaction to an interrupt is not cru

cial, and a polling approach is used. If response time is a primary

consideration, a hardware approach must be used.

HPU

INT

I—H r—1
I/O ... I/O

INTERFACE 1 | INTERFACE n

LULL. JlNTi

Fig. 6-27: Several Devices May Use the Same interrupt Line

Multiple Interrupts

The next problem which may occur is that a new interrupt can

be triggered during the execution of an interrupt handling

routine. Let us examine what happens and how the stack is used

to solve the problem. We have indicated in Chapter 2 that this

was another essential role of the stack, and the time has come

now to demonstrate its use. We will refer to Figure 6-28 to illus

trate multiple interrupts. Time elapses from left to right in the

illustration. The contents of the stack are shown at the bottom of

the illustration. Looking at the left, at time TO, program P is in

execution. Moving to the right, at time Tl, interrupt II occurs. We

will assume that the interrupt mask was enabled, authorizing II.

Program P will be suspended. This is shown at the bottom of the

illustration. The stack will contain the program counter and the

status register of Program P, at least, plus any optional registers

that might be saved by the interrupt handler or II itself.

At time Tl, interrupt II starts executing until time T2. At time

T2, interrupt 12 occurs. We will assume that interrupt 12 is con

sidered to have a higher priority than interrupt II. If it had a

249

PROGRAMMING THE 6502

TIME To

PROGRAM P »—

INTERRUPT 1,

INTERRUPT 1,

INTERRUPT 1,

STACK

□ QQQ

Fig. 6-28: Stack During Interrupts

lower priority, it would be ignored until II had been completed. At

time T2, the registers for II are stacked, and this appears at the

bottom of the illustration. Again, the contents of the program

counter and P are pushed into the stack. In addition, the routine

for 12 might decide to save an additional few registers. 12 will now

execute to completion at time T3.

When 12 terminates, the contents of the stack are automati

cally popped back into the 6502, and this is illustrated at the

bottom of Figure 6-28. Automatically, interrupt II thus resumes

execution. Unfortunately, at time T4, an interrupt 13 of higher

priority occurs again. We can see at the bottom of the illustration

that the registers for II are again pushed into the stack. Interrupt

13 executes from T4 to T5 and terminates atT5. At that time, the

contents of the stack are popped into 6502, and interrupt II re

sumes execution. This time it runs to completion and terminates

at T6. At T6, the remaining registers that have been saved in the

stack are popped into the 6502, and program P may resume execu

tion. The reader will verify that the stack is empty at this point.

In fact, the number of dashed lines indicating program suspen

sion indicates at the same time the number of levels there are in the

stack.

Exercise 6.22: If we assume that every time an interrupt occurs

the program counter PC, the register P, and the accumulator will

be saved, this will be a minimum of four locations. (In practice9X

250

INPUT/OUTPUT TECHNIQUES

and Y may be saved as well, resulting in six locations used).As

suming, therefore, that three registers only are saved in the stack,

how many interrupt levels does the 6502 allow? ^Remember that

the stack is limited to 256 locations with Page 1).

Exercise 6.23: Assuming this time that 5 registers may be pre

served in the stack, what is the maximum number of simultane

ous interrupts that can be handled? Will any otherfactor reduce even

further the number ofsimultaneous interrupts?

It must be stressed, however, that, in practice, microprocessor

systems are normally connected to a small number of devices

using interrupts. It is, therefore, unlikely that a high number of

simultaneous interrupts will occur in such a system.

We have now solved all the problems normally associated with

interrupts. Their use is, in fact, simple and they should be used to

advantage even by the novice programmer. Let us complete our

analysis of the 6502 resources by introducing one more instruc

tion whose effect is identical to that of a synchronous interrupt:

Break

The BRK command in the 6502 is the equivalent of a software

interrupt. It can be inserted in a program and results, just as in

the case of IRQ, in the automatic preservation of PC and P, and

an indirect branch to "FFFE"-"FFFF." This instruction can be

used to advantage to generate programmed interrupts during the de

bugging of a program. This will result in creating a breakpoint, halt

ing the program at a predetermined location, and branching to a

routine which will typically allow the user to analyze the pro

gram. Since the net effect of the break and an interrupt are iden

tical after they have occurred, a means must be provided for the

programmer to determine whether it was an interrupt or a break.

The 6502 will set a B-flag in register P (saved in the stack) to "1" if

it was a break and to "0" if it was an interrupt. Testing the status

of this bit may be accomplished by the following simple program:

BTEST PLA READ TOP OF STACK INTO A

PHA WRITE IT BACK

AND #$10 MASK B-BIT

BNE BRKPRG GO TO BREAK PROGRAM

251

PROGRAMMING THE 6502

This test program is normally inserted at the end of the polling

sequence which determines the nature of the device that

triggered the interrupt.

Caution: A feature of the break is to preserve the contents of

the program counter plus 2 automatically. Since the break is only

a 1-byte instruction, the programmer may sometimes have to adjust

the contents of the program counter in the stack by using an

incrementing or decrementing instruction in order to resume

execution of the correct address. In particular, the break is exten

sively used during debugging by writing it over another instruc

tion in the program. If the program is reassembled prior to execu

tion, the contents of the program counter which have been saved

will normally have to be decremented by 1.

SUMMARY

We have presented in this chapter the range of techniques used

to communicate with the outside world. From elementary input/

output routines to more complex programs to communicate with

actual peripherals, we have learned to develop all the usual pro

grams and have even examined the efficiency of benchmark pro

grams in the case of a parallel transfer and a parallel-to-serial

conversion. Finally, we have learned to schedule the operation of

multiple peripherals by using polling and interrupts. Naturally,

many other exotic input/output devices might be connected to a

system. With the array of techniques which have been presented

so far, and with an understanding of the peripherals involved, it

should be possible to solve most usual problems.

In the next chapter, we will examine the actual characteristics

of the input/output interface chips usually connected to a 6502.

Then, we will consider the basic data structures that the pro

grammer may consider using.

EXERCISES

Exercise 6.24: A 7-segment LED display can also display digits

other than the hex alphabet Compute the codes forH,I,J,L,OtP,S,

252

INPUT/OUTPUT TECHNIQUES

Exercise 6.25: The flow-chart for interrupt management appears

in Figure 6-29 below. Answer the following questions:

a-What is done by hardware, what is done by software?

b- What is the use ofthe mask?

c-How many registers should bepreserved?

d-How is the interrupting device identified?

e-What does the RTI instruction do? How does it differ from

a subroutine return?

f-Suggest a way to handle a stack overflow situation,

g- What is the overhead ("lost time") introduced by the interrupt

mechanism?

RETURN

Fig. 6-29: Interrupt Logic

253

7

INPUT/OUTPUT DEVICES

INTRODUCTION

We have learned how to program the 6502 microprocessor in

most usual situations. However, we should make a special men

tion of the input/output chips normally connected to the micro

processor. Because of the progress in LSI integration, new chips

have been introduced which did not exist before. As a result, pro

gramming a system requires, naturally, first programming a mi

croprocessor itself, but also programming the input/output chips.

In fact, it is often more difficult to remember how to program the

various control options of an input/output chip than to program

the microprocessor itself! This is not because the programming in

itself is more difficult, but because each of these devices has its

own idiosyncrasies. We are going to examine here first the most

general input/output device, the programmable input/output chip

(in short a "PIO"), then''improvements" over this standard PIO,

now frequently used with the 6502: the 6520, 6530, 6522 and

6532. The complete details are presented in reference D302.

The Standard PIO (6520)

There is no "standard PIO." However, the 6520 device is essen

tially analogous in function to all similar PIOs produced by other

manufacturers for the same purpose. The purpose of a PIO is to

provide a multiport connection for input/output devices. (A "port"

is simply a set of 8 input/output lines). Each PIO provides at least

254

INPUT/OUTPUT DEVICES

two sets of 8-bit lines for I/O devices. Each I/O device needs a data

buffer in order to stabilize the contents of the data bus on output

at least. Our PIO will, therefore, be equipped at a minimum with

a buffer for each port.

In addition, we have established that the microcomputer will

use a handshaking procedure, or else interrupts to communicate

with the I/O device. The PIO will also use a similar procedure to

communicate with the peripheral. Each PIO must, therefore, be

equipped with at least two control lines per port to implement the

handshaking function.

The microprocessor will also need to be able to read the status

of each port. Each port must be equipped with one or more status

bits. Finally, a number of options will exist within each PIO to

configure its resources. The programmer must be able to access a

special register within the PIO to specify the programming op

tions. This is the control register. In the case of the 6520, the

status information is part of the control register.

DATA BUS

IRQB

CRA DDRA PORA

Is!

REGISTER

SELECT

Irqa

*J

-^

RSO

RSI

CRB DDRB PDRB

PORT A

PORTB

Fig. 7-1: Typical PIO

One essential faculty of the PIO is the fact that each line may

be configured as either an input or an output line. The diagram of

a PIO appears in illustration 7-1. The programmer may specify

whether any line will be input or output. In order to program the

direction of the lines, a data direction register is provided for each

port. A "0" in a bit position of the data direction register specifies

an input. A "1" specifies an output.

255

PROGRAMMING THE 6502

It may be surprising to see that a "0" is used for input and a "1"

for output when really "0" should correspond to Output and "1" to

Input. This is quite deliberate: whenever power is applied to the

system, it is of great importance that all the I/O lines be confi

gured as input. Otherwise, if the microcomputer is connected to

some dangerous peripheral, it might activate it by accident.

When a reset is applied, all registers are normally zeroed and that

will result in configuring all input lines of the PIO as inputs. The

connection to the microprocessor appears on the left of the illus

tration. The PIO naturally connects to the 8-bit data bus, the mi

croprocessor address bus, and the microprocessor control bus.

The programmer will simply specify the address of any register

that it wishes to access within the PIO. The 6520, which is com

patible with Motorola's 6820, has inherited one of its peculiari

ties: it is equipped with 6 internal registers. However, one can

specify only one out of four registers! The way this problem is

solved is by switching bit position 2 of the control register. When

this bit is a "0," the corresponding data direction register may be

selected. When it is a "1," the data register may be selected.

Therefore, whenever the programmer wants to write data into the

data direction register, he will first have to make sure that bit 2

of the appropriate control register is zero, before he can select

this register. This is somewhat awkward to program, but it is im

portant to remember in order to avoid painful difficulties.

CRA IRQA1 IRQA2 CA2 CONTROL
DDRA I CA1
ACCESS I CONTROL

READ-ONLY READ/WRITE BY MPU

Fig. 7-2: PIA Control Word Format

RSI

0

0

0

1

1

1

RSO

0

0

1

0

0

1

CRA 2

1

0

-

-

-

CRB2

-

-

-

1

0

-

REGISTER SELECTED

PERIPHERAL REGISTER A

DATA DIRECTION REGISTER A

CONTROL REGISTER A

PERIPHERAL REGISTER B

DATA DIRECTION REGISTER B

CONTROL REGISTER B

Fig. 7-3: Addressing PIA Registers

256

INPUT/OUTPUT DEVICES

Td clarify the effect of the address selection on the 6520, the

address selection table appears above. RSO and RSI are two

register-selection signals which are derived from the address bus.

In other words, they represent two bits of the address specified by

the programmer. CRA is the control register for port A. CRA (2)

is bit 2 of this register. CRB is the control register for port B.

The Internal ControlRegister

The Control Register of the 6520 specifies, as we have seen, in

bit position 2, a selection mode for the internal registers of the

port. In addition, it provides a number of options for generating or

sensing interrupts, or for implementing automatic handshake

functions. The complete description of the facilities provided is

not necessary here. Simply, the user ofany practical system which

uses the 6520 will have to refer to the data sheet showing the

effect of setting the various bits of the control register. Whenever

the system is initialized, the programmer will have to load the

control register of the 6520 with the correct contents for the ex

pected application.

PAO

VSS VCC

Fig. 7-4: 653O Pinout

257

PROGRAMMING THE 6502

The 6530

The 6530 implements a combination of four functions, RAM,

ROM, PIO, and TIMER. The RAM is a 64x8 memory. The ROM

is a 1Kx8 memory. The timer provides the programmer with mul

tiple interval timing facilities. The PIO section is essentially ana

logous to the 6520, which we have described: There are two ports,

each with a data register and a data direction register. A "0" in a

given bit position of the direction register specifies an input,

while a "1" specifies an output.

The programmable interval timer can be programmed to count

up to 256 intervals (it has 8 bits internally). The programmer may

specify the time period to be 1, 8, 64, or 1024 times the system dock.

Whenever the count is reached, the interrupt flag of the chip will be

set to a logic "1". The contents of the timer are set by means of the

data bus. The four possible time intervals must be specified on lines

A0 and Al of the address bus.

Three pins of port B have a dual role: PB5, PB6, and PB7 may

be used for control functions. Pin PB7, for example, may be pro
grammed as an interrupt input.

This chip is used, in particular, on the KIM board. (Note:

on the KIM, PB6 is not available.)

Programming a PIO

As an example, here is a program to use a 6520 or a 6522.

(\flfe assume that the control register has already been set).

LDA #FF SET DATA DIRECTION

STA DDRB CONFIGURE B FOR OUTPUT

LDA #00

STA IORB GENERATE ZERO OUTPUT

DDRB is the address of the Data Direction Register of port B for this

PIO. IORB is the Input/Output or data register for port B;

"FF" hexadecimal is "11111111" binary = all outputs.

The 6522

The 6522, also called "versatile interface adapter" (VIA), is an

improved version ofthe 6520. In addition to the capabilities of the

258

INPUT/OUTPUT DEVICES

IRQA

D0-D7

IRQB

Fig. 7-5: Using a PIA: Load Control Register

IRQA

D0-D7,

IRQB'

CONTROL

(CRB)

► PB0-PB7

. CB 1

»CB 2

Fig. 7-6: Using a PIA Load Data Direction

259

PROGRAMMING THE 6502

IRQA .

IRQB .

Fig. 7-7: Using a PIA: Read Status

IRQA .

D0-D7 ,

CSO-

CS1 -

CS2-

RSO-

RS1 -

R/W-

EN-

IRQB •«-

260

pATABUS
BUFFER

BUS INPUT

CONTROL

CHIP SELECT

I REGISTER
SELECT

PERIPHERAL

INTERFACE B

DATA DIRECTION

(DDRB)

CONTROL

(CRB)

► PA0-PA7

PB0-PB7

CB 1

-CB 2

Fig. 7-8: Using a PiA: Read Input

INPUT/OUTPUT DEVICES

6520, it provides two programmable interval timers and a serial-

to-parallel, plus parallel-to-serial converter, plus input data latch

ing. The detailed hardware description of this component is be

yond the scope of this book. Simply, with the description which

has been provided for the previous components, it should be

simple for the programmer to familiarize himself with the ad

dressing of the internal registers of this component as well as its

programming. This information is supplied in the manufacturer's

data sheets.

The 6532

The 6532 is a combination chip which includes one 128x8 RAM,

a PIO with two bi-directional ports, and a programmable interval

timer. It is used on the SYM board, manufactured by Synertek

Systems, which is analogous to the KIM board, manufactured

by MOS Technology and by Rockwell. Again, the user should

carefully examine the data sheets for this component in order to

learn how to address and use the various internal registers.

SUMMARY

Unfortunately, in order to make effective use of such compo

nents, it will be necessary to understand in detail the function of

every bit, or group of bits, within the various control registers.

These complex new chips automate a number of procedures that

had to be carried out by software or special logic before. In par

ticular, many of the handshaking procedures are automated with

in components such as a 6522. Also, some interrupt handling

and detection may be internal. With the information that has

been presented in the preceding chapter, the reader should be able

to read the corresponding data sheets and understand what the

functions of the various signals and registers are. Naturally, still

new components are going to be introduced which will offer a

hardware implementation of still more complex algorithms.

For a comprehensive description of I/O devices and techniques, the

reader is referred to the companion volume D302.

261

8

APPLICATION EXAMPLES

INTRODUCTION

This chapter is designed to test your new programming skills by
presenting ^ collection of utility programs. These programs, or

"routines," are frequently encountered in applications and are generally
called "utility routines." They will require a synthesis of the knowledge
and techniques presented so far.

We are going to fetch characters from an I/O device and process

them in various ways. But first, let us clear an area of the memory

(this may not be necessary; each of these programs is only presented as
a programming example).

CLEARA SECTION OP MEMORY

We want to clear (zero) the contents of the memory from ad
dress BASE + 1 to address BASE + LENGTH, where
length is less than 256.

The program is:

262

APPLICATION EXAMPLES

ZEROM LDX #LENGTH

LDA#0

CLEAR STA BASE, X

DEX

BNE CLEAR

RTS

Note that register X is used as an index to point to the current

location of the memory section to be zeroed.

The accumulator A is loaded only once with the value 0 (all O's),

then written at successive memory locations:

BASE + LENGTH, BASE + LENGTH - 1, etc., until X dec

rements to zero. When X=0, the program returns.

In a memory test for example, this program could be used to zero

a block, then verify its contents.

Exercise 8.1: Write a memory testprogram which will zero a 256-word

block and verify that each location is 0. Then, it will write all 19s and

verify the contents of the block. Next, it will write 01010101 and verify

the contents. Finally, it will write 10101010 and verify the contents.

Let us now poll our I/O devices to find which one needs service.

POLLING I/O DEVICES

We will assume that 3 I/O devices are connected to our system.

Their status registers are located at addresses I0STATUS1,

IOSTATUS2, and IOSTATUS3.

If their status bits are in bit position 7, we will just read the status

registers, and test their sign bits. If the status bits are anywhere else,

we will take advantage of the BIT instruction of the 6502:

263

PROGRAMMING THE 6502

TEST LDA

BIT

BNE

BIT

BNE

BIT

BNE

(failure

MASK

IOSTATUS1

FOUND1

IOSTATUS2

FOUND 2

IOSTATUS3

FOUND3

exit)

The MASK will contain, for example, "00100000" if we test bit

position 5. As a result of the BIT instruction, the Z bit of the

status flap will be set to 0 if "MASK AND IOSTATUS" is non

zero i.e. if the corresponding bit of IOSTATUS matches the one

in MASK. The BNE instruction (branch if non-equal to zero)

will then result in a branch to the appropriate FOUND routine.

GETTING CHARACTERS IN

Assume we have just found that a character is ready at the key

board. Let us accumulate characters in a memory area called

buffer until we encounter a special character called SPC, whose

code has been previously defined.

The subroutine GETCHAR will fetch one character from the

keyboard (see Chapter 6 for more details) and leave it in the ac

cumulator. We assume that a maximum of 256 characters will be

fetched before an SPC character is found.

INITIALIZE INDEX TO ZERO

IS IT THE BRK CHAR?

IF SO, FINISHED

NO: SAVE CHAR

INCREMENT POINTER

GET NEXT CHAR

STRING

NEXT

OUT

LDX

JSR

CMP

BEQ

STA

INX

JMP

RTS

#0

GETCHAR

#SPC

OUT

BUFFER, X

NEXT

264

APPLICATION EXAMPLES

Exercise 8.2: Let us improve this basic routine:

a-Echo the character back to the device (for a Teletype, for example)

b-Check that the input string is no longer than 256 characters

We now have a string of characters in a memory buffer. Let us

process them in various ways.

TESTING A CHARACTER

Let us determine if the character at memory location LOC is

equal to 0,1, or 2:

ZOT LDA

CMP

BEQ

CMP

BEQ

CMP

BEQ

JMP

LOC

#$00

ZERO

#$01

ONE

#$02

TWO

NOTFND

We simply read the character, then use the CMP instruction to check

its value.

Let us run a different test now.

BRACKET TESTING

Let us determine if the ASH character at memory location LOC

is a digit between 0 and 9:

BRACK

OUT

LDA

ADC

LDA

ORA

CMP

BCC

CMP

BEQ

BCS

CLC

CLV

RTS

#$40

#$40

LOC

#$80

#$B0

TOOLOW

#$B9

OUT

TOOHIGH

FORCE OVEF

SET BIT 7=1

ASCII 0

ASCII 9

9 EXACTLY

265

PROGRAMMING THE 6502

TOOLOW SEC SET C TO ONE

CLV

RTS

TOOHIGH RTS (CISONE)

ASCII 0 is represented in hexadecimal by "BO"

ASCII 9 is represented in hexadecimal by "B9"

Remember that when using a CMP instruction, the carry bit will be

set if the value of the literal that follows is less than or equal to the

accumulator. It will be reset (0) if greater.

If BO is greater than the character, our character is too low, and

a branch occurs.

We then compare it against B9. If it is less than or equal to 9,

all is well, and we exit. Otherwise, we go to TOOHIGH.

When we exit from this program, we want to know if the number

is TOOLOW, TOOHIGH, or else between 0 and 9. This will be

indicated by the flags C and V. V is not altered by CMP, whereas Z, N

and C are.

When returning from the subroutine, a"0"in V indicates "too low," a

"1" in V indicates "too high," and a "0" in C indicates a correct digit

between 0 and 9.

Naturally, other conventions could be used, such as loading a digit
in the accumulator to indicate the result of the tests.

Exercise 8.3: Simplify the above program by testing against the

ASCII character which follows "9" instead of testing against 9

exactly.

Exercise 8.4: Determine if an ASCII character contained in the
accumulator is a letter of the alphabet

266

APPLICATION EXAMPLES

When using an ASCII table, you will notice that parity is often

used. (The example above does not use parity.) For example, the

ASCII for "0" is "0110000," a 7-bit code. However, if we use odd
parity,! for example we guarantee that the total number of ones

in a word is odd), then the code becomes "10110000." An extra

"1" is added to the left. This is "B0" in hexadecimal. Let us there

fore develop a program to generate parity.

PARITY GENERATION

This program will generate an even parity in bit position 7:

PARITY

NEXT

ONE

ZERO

LDX

LDA

STA

LDA

ROL

ROL

BCC

INC

DEX

BNE

ROL

ROL

LSR

ROR

RTS

#$07

#$00

ONECNT

CHAR

A

A

ZERO

ONECNT

NEXT

A

A

ONECNT

A

BIT COUNT

COUNT OF l'S

READ CHARACTER

DISCARD BIT 7

NEXT BIT

IS IT A 1?

DECREMENT BIT COUNT

LAST BIT?

RESTORE BIT 0

DISCARD BIT

RIGHTMOST BIT IS PARITY

PUT IT IN A

Register X is used to count bits as they are shifted left from the

accumulator. Every time that a "1" is shifted off the left of A

(it is tested by BCC), the one-counter is incremented. When 8

bits have shifted (the program ignores bit 7 which will be

the parity bit), A is shifted left two more times so that bit 6 is on

the left of A.

The correct parity bit is the right-most bit ofONECNT; it is installed

into the carry bit by LSR and becomes bit 7 of A. Another ROR

A copies this bit back into position 7 of A, and we are finished.

267

PROGRAMMING THE 6502

Exercise 8.5: Using the above program as an example, verify the
parity ofa word You must compute the correct parity, then com
pare it to the one expected.

CODE CONVERSION: ASCII to BCD

Converting ASCII to BCD is very simple. We will observe that
the hexadecimal representations of ASCII characters 0 to 9 are BO to B9

with parity, or 30 to 39 without parity. The BCD representation is
simply obtained by dropping the "B"; that is, by masking off the left
nibble (4 bits):

LDA CHAR

AND #$OF MASK OFF LEFT NIBBLE
STA BCDCHAR

Exercise 8.6: Write aprogram to convertBCD to ASCII

Exercise 8.7: (more difficult) Write a program to convert BCD to
binary.

Hint: N3 N2 Ni No in BCD is (((Na x 10) + N2) x 10 + Ni) x 10
+ No in binary.

To multiply by 10, use a left shift (=x2), another left shift (=x4),
an ADC (=x5), and another left shift(=xlO).

In full BCD notation, the first word may contain the count of

BCD digits, the next nibble may contain the sign, and every successive

nibble may contain a BCD digit. (We assume no decimal point).The last
nibble of the block may be unused.

FIND THE LARGEST ELEMENT OFA TABLE

The beginning address of the table is contained at memory ad

dress BASE in page zero. The first entry of the table is the num

ber of bytes it contains. This program will search for the largest

element of the table. Its value will be left in A, and its position

will be stored in memory location INDEX.

268

MAX LDY

LDA

TAY

LDA

STA

LOOP CMP

BCS

LDA

STY

NOSWITCH DEY

BNE

RTS

#0

(BASE), Y

#0

INDEX

(BASE), Y

NOSWITCH

(BASE), Y

INDEX

LOOP

APPLICATION EXAMPLES

This program uses registers A and Y, and will use indirect addressing,

so that it can search any table anywhere in the memory.

THIS IS OUR INDEX TO TABLE

ACCESS ENTRY 0=LENGTH

SAVE IT IN Y

MAX VALUE INITIALIZED TO ZERO

INITIALIZE INDEX TO ZERO

IS CURRENT MAX ELEMENT?

YES?

LOAD NEW MAX

LOCATION OF MAX

POINT TO NEXT ELEMENT

KEEP TESTING?

FINISH IF Y=0

This program tests the Nth entry first. If it is greater than 0, it
goes in A, and its location is remembered into INDEX. The (N-l)st

entry is then tested, etc.

This program works for positive integers.

Exercise 8.8: Modify the program so that it works also for nega

tive numbers in two's complement.

Exercise 8.9: Will this program also work forASCII characters?

Exercise 8.10: Write a program which will sort N numbers in as

cending order.

Exercise 8.11: Write a program which will sort N names (3 char

acters each) into alphabetical order.

SUM OF N ELEMENTS

This program will compute the 16-bit sum of N entries of a table.

The starting address of the table is contained at memory address

BASE in page zero. The first entry of the table contains the num

ber of elements N. The 16-bit sum will be left in memory locations

SUMLO and SUMHI. If the sum should require more than 16

bits, only the lower 16 will be kept. (The high-order bits are said to be

truncated.)

269

PROGRAMMING THE 6502

This program will modify registers A and Y. It assumes 256
elements maximum.

LDA

STA

STA

TAY

LDA

TAY

CLC

ADLOOP LDA

ADC

STA

BCC

INC

CLC

NOCARRY DEY

BNE

RTS

#0

SUMLO

SUMHI

(BASE), Y

(BASE), Y

SUMLO

SUMLO

NOCARRY

SUMHI

ADLOOP

INITIALIZE SUM

INITIALIZE SUM

INITIALIZE SUM

INITIALIZE Y TO ZERO
GETN

INTOY

CLEAR CARRY FOR ADC

GET NEXT ELEMENT

ADD IT TO SUMLO
SAVE RESULT

CARRY?

ADD IT TO SUMHI

FOR NEXT SUM

NEXT ELEMENT

AGAIN IF Y NOT ZERO

This program is straightforward and should be self-explanatory.

Exercise 8.12: Modify thisprogram to compute:
a) a 24-bit sum,

b) a 32-bit sum,

c) to detect any overflow.

A CHECKSUM COMPUTATION

A checksum is a digit, or set of digits, computed from a block of

successive characters. The checksum is computed at the time the

data is stored and put at the end. In order to verify the integrity

of the data, the data is read and the checksum is recomputed and
compared against the stored value. A discrepancy indicates an error
or a failure.

270

APPLICATION EXAMPLES

Several algorithms are used. Here, we will sxclusive-OR all bytes
in a table of N elements, and leave the result in the accumulator.

As usual, the base of the table is stored at the address BASE in
page zero. The first entry of the table is its number of elements N.

The program modifies A and Y. N must be less than 256.

CHECKSUM LDY

LDA

TAY

LDA

CHLOOP EOR

DEY

BNE

RTS

#0 POINT TO FIRST ENTRY

(BASE),Y GETN
STORE IT IN Y

#0 INITIALIZE CHECKSUM

(ADDR), Y EOR NEXT ENTRY

POINT TO NEXT

CHLOOP KEEP GOING

COUNT THE ZEROES

This program will count the number of zeroes in our usual table,

and leave it in register X.

It modifies A,X,Y:

ZEROES

ZLOOP

NOTZ

LDY

LDA

TAY

LDX

LDA

BNE

INX

DEY

BNE

RTS

#0 POINT TO FIRST ENTRY

(ADDR), Y GETN

STORE IT IN Y

#0 INITIALIZE NO. OF ZEROES

(ADDR), Y GET NEXT ENTRY

IS IT ZERO?

YES. COUNT IT

POINT TO NEXT

KEEP GOING

NOTZ

ZLOOP

Exercise 8.13: Modify this program to count:

a-the number ofstars (the character "*")

b-the number of letters of the alphabet

c-the number of digits between 0 and 9

A STRING SEARCH

A string of characters is stored in the memory, as indicated in
Fig 8-1 We will search the string for the occurrence of a shorter
one, called a template (TEMPLT), of length TPTLEN.The length
of the original string is STRLEN, and the program will return

271

PROGRAMMING THE 6502

with register X containing the location where the TEMPLT was

found, and FF hexadecimal otherwise. The flowchart for the pro
gram is shown in Fig. 8-2. The string is first scanned for the oc

currence of the first character in TEMPLT. If this first character

is never found, the program will exit with a failure. If this first
character is found, the second character will be matched against
the next one in the string. If that fails, the search is restarted for
the first character since there might be another occurrence of this
first character within the original string. If the first and the sec
ond one match, the search will proceed with the following charac
ters of TEMPLT in the same manner. The corresponding pro
gram is shown in Fig. 8-3. Note that Register X is used as the

running pointer during the search pointing to the current element

of string. Indexed addressing is naturally used to retrieve the
current element of string.

0

$10

$20

$50

$FF

STRING LENGTH

TEMPLATE LENGTH

(SEARCH START POINTER

Fig: 8-1: String Search: The Memory

272

APPLICATION EXAMPLES

Fig. 8-2: Program Flowchart: String Search

273

PROGRAMMING THE 6502

LINE

0002

0003

0004

0005

0004

O007

O008

O009

ooto

00tl

0012

O013

OOH

O015

0016

0017

O0I8

O019

O020

0021

0022

O023

0024

O02S

O026

0027

0028

0029

0030

0031

O032

0033

0034

O03S

O036

0037

0038

0039

0040

0041

1 IOC

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0010

0011

0012

0013

0014

0200

0202

0204

0206

0208

0209

0206

020D

020F

0210

0212

0212

0214

0216

0218

021A

021C

02IE

0220

0223

0225

0228

022A

022C

0220

A2

AS

OS

FO

E8

E4

DO

A2

60

86

A9

83

E6

E6

A4

C4

FO

19

A4

09

DO

FO

60

CODE

00

SO

20

08

12

F5

ff

11

00

10

11

10

10

13

OC

SO 00

11

20 00

0E

EA

LINE

;STIING SEARCH.

JFINDS LOCATION IN STRING OF LENfTI 'STRLEN'

{STARTING AT 'STUMS' OF A TEMPLATE OF

;len8th 'tptlen' stAtTine at 'tehply', and

;RETURNS VITN X-LOCATION OF TEMPLATE

('IN STRIN8 IF FOUND,

t

STRIN6 >

TEHPLT i

CHKPTR <

TENPTR i

STRLEN *

TPTLEN <

' 120

> ISO

> * 110

»••♦!

>*♦♦!

>■♦♦!

>«•♦!

► « 1200

L0X 10

NXTPOS L0A TENPLT

CNP STRIN6VX

DEO CHECK

NXTSTR INX

CPX STRLEN

0NE NXTPOS

L0X BIFF

RTS

CHECK 8TX TENPTR

OR X'fFF IF NOT FOUND.

;1ST LOCATIOi OF STRING.

;1ST LOCATION OF TEMPLATE.

;lensth of string.

;LEN6TH OF TEMPLATE.

,'RESET SEARCH START POINTER.

JIS FIRST ElENENT OF TEMPLATE...

;« CURRENT STRIN6 ELENENTT

,'IF YES, CHECK FOR REST OF MATCH.

f*INCREMENT SEARCH START COUNTER.

;IS IT EQUAL TO STRIN8 LEN6TN?

;no, check next string position.

JVES, SET 'NOT FOUND' INDICATOR.

;RETURNi ALL CHRS CHECKED.

:let tenporary pointer*

,'CURRENT 8TRIN6 POINTER.

L0A 80

8TA CHKPTR

CHKLP INC TENPTR

INC CHKPTR

LDY CHKPTR

CPY TPTLEN

0EO FOUND

LDA TENPLT,Y

LDY TEHPTR

CNP STRIN6,Y

DNE NXTSTR

BEO CHKLP

FOUND RTS

END

;keset template pointer.

;INCRENENT TENPORARY POINTER.

;INCRENENT TENPLATE POINTER.

;D0E8 TENPLATE POINTER=TENPLATE LENG

;IF YES, TENPLATE HATCHED.

JLOAD TENPLATE ELENENT.

;COHPARE TO STRING CHR.

f'IF NO NATCH, CHECK NEXT STtllG CNR.

V'IF NATCH, CHECK NEXT CNR.

;done.

Fig. 8-3: String Search Program

SUMMARY

In this chapter, we have presented common utility routines which use

combinations of the techniques described in previous chapters. These

routines should now allow you to start designing your own programs.

Many of them have used a special data structure, the table. However,

other possibilities exist for structuring data, and these will now be

reviewed.

274

DATA STRUCTURES

PART I: DESIGN CONCEPTS

INTRODUCTION

The design of a good program involves two tasks: algorithm

design and data structures design. In most simple programs, no

significant data structures are involved, so the main problem that

must be surmounted to learn programming is learning how to

design algorithms and code them efficiently in a given machine lan

guage. This is what we have accomplished here. However, design

ing more complex programs also requires an understanding of data

structures. Two data structures have already been used through

out the book: the table, and the stack. The purpose of this chapter

is to present other, more general, data structures that you may

want to use. This chapter is completely independent from the

microprocessor, or even the computer, selected. It is theoretical

and involves logical organization of data in the system. Specialized

books exist on the topic of data structures, just like specialized

books exist on the subject of efficient multiplication, division or

other usual algorithms. This single chapter, therefore, should be con

sidered as an overview, and it will be necessarily limited to the essentials

only. It does not claim to be exhaustive.

Let us now review the most common data structures:

POINTERS

A pointer is a number which is used to designate the location of

the actual data. Every pointer is an address. However, every ad-

275

PROGRAMMING THE 6502

dress is not necessarily called a pointer. An address is a pointer on

ly if it points at some type of data or at structured information. We

have already encountered a typical pointer, the stack pointer,

which points to the top of the stack (or usually just over the top of

the stack). We will see that the stack is a common data structure,

called a LIFO structure.

As another example, when using indirect addressing, the in

direct address is always a pointer to the data that one wishes to

retrieve.

Exercise 9.1: Examine Figure 9-1. At address 15 in the memory,

there is a pointer to Table T. Table T starts at address 500. What

are the actual contents of the pointer to T?

500

— POINTER TO T —

TABLE T

Fig 9-1: An Indirection Pointer

LISTS

Almost all data structures are organized as lists of various

kinds.

Sequential Lists

A sequential list, or table, or block, is probably the simplest data

structure, and one that we have already used. Tables are normally

276

DATA STRUCTURES

ordered in function of a specific criterion, such as, for example,

alphabetical ordering, or numerical ordering. It is then easy to

retrieve an element in a table, using, for example, indexed address

ing, as we have done. A block normally refers to a group of data

which has definite limits but whose contents are not ordered. It

may, for example, contain a string of characters. Or it may be a

sector on a disk. Or it may be some logical area (called segment) of

the memory. In such cases, it may not be easy to access a random

element of the block.
In order to facilitate the retrieval of blocks of information, directories

are used.

Directories

A directory is a list of tables, or blocks. For example, the file

system will normally use a directory structure. As a simple exam

ple, the master directory of the system may include a list of the

users' names. This is illustrated in Figure 9-2. The entry for user

"John" points to John's file directory. The file directory is a table

which contains the names of all of John's files and their location.

This is, again, a table of pointers. In this case, we have just de

signed a two-level directory. A flexible directory system will allow

the inclusion of additional intermediate directories, as may be

found convenient by the user.

USER DIRECTORY

JOHN

JOHN'S

FILE DIRECTORY

ALPHA

SIGMA

JOHN'S FILE

ALPHA

DATA

Fig. 9-2: A Directory Structure

277

PROGRAMMING THE 6502

Linked List

In a system there are often blocks of information which repre

sent data, or events, or other structures, which cannot be easily

moved. If they could be easily moved, we would probably assemble

them in a table in order to sort them or structure them. The

problem now is that we wish to leave them where they are and

still establish an ordering between them such as first, second,

third, and fourth. A linked list will be used to solve this pro

blem. The concept of a linked list is illustrated by Figure 9-3. In

the illustration, we see that a list pointer, called FIRSTBLOCK,

points to the beginning of the first block. A dedicated location

within Block 1, such as, perhaps, the first or the last word of it,

contains a pointer to Block 2, called PTRl. The process is then re

peated for Block 2 and Block 3. Since Block 3 is the last entry in

the list, PTR3, by convention, contains a special "nil" value, or

else points to itself, so that the end of the list can be detected. This

structure is economical as it requires only a few pointers (one per

block) and prevents the user from having to physically move the

blocks in the memory.

FIRST

BLOCK
BLOCK 1 BLOCK 2

Fig. 9-3: A Linked List

BLOCK 3

Let us examine, for example, how a new block will be inserted.

This is illustrated by Figure 9-4. Let us assume that the new block

is at address NEWBLOCK, and is to be inserted between Block 1

and Block 2. Pointer PTRl is simply changed to the value NEW-

BLOCK, so that it now points to Block X. PTRX will contain the

former value of PTRl (i.e., it will point to Block 2). The other

pointers in the structure are left unchanged. We can see that the inser

tion of a new block has simply required updating two pointers in

the structure. This is clearly efficient.

Exercise 9.2: Draw a diagram showing how Block 2 would be

removed from this structure.

Several types of lists have been developed to facilitate specific

278

DATA STRUCTURES

NEW BLOCK ■

FIRST^

BLOCK

BLOCK 1 Jl
BLOCK X

h
BLOCK 2

|PTR21
BLOCK 3

|PTR31
Fig. 9-4: Inserting a New Block

types of access or insertions or deletions to or from the list. Let us

examine some of the most frequently used types of linked lists:

Queue

A queue is formally called a FIFO, or first-in-first-out list. A

queue is illustrated in Figure 9-5. To clarify the diagram, we can

assume, for example, that the block on the left is a service routine

for an output device, such as a printer. The blocks appearing on the

right are the request blocks from various programs or routines, to

print characters. The order in which they will be serviced is the

Fig. 9-5: AQueue

279

PROGRAMMING THE 6502

order established by the waiting queue. It can be seen that the

next event which will obtain service is Block 1, then Block 2, and finally

Block 3. In a queue, the convention is that any new event arriving in the

queue will be inserted at the end of it. Here it will be inserted after

PTR3. This guarantees that the first block to have been inserted in the

queue will be the first one to be serviced. It is quite common in a com

puter system to have waiting queues for a number of events whenever

they must wait for a scarce resource, such as the processor or some

input/output device.

Stack

The stack structure has already been studied in detail through

out the book. It is a last-in-first-out structure (LIFO). The last ele

ment deposited on top of it is the first one to be removed. A stack

may be implemented as a sorted block, or else it may be imple

mented as a list. Because most stacks in microprocessors are used

for high speed events, such as subroutines and interrupts, a contin

uous block is usually allocated to the stack rather than using a

linked list.

Linked List vs. Block

Similarly, the queue could be implemented as a block of reserved

locations. The advantage of using a continuous block is fast

retrieval and the elimination of the pointers. The disadvantage is

that it is usually necessary to dedicate a fairly large block to ac

commodate the worst-case size of the structure. Also, it makes it

difficult or impractical to insert or remove elements from within

the block. Since memory is traditionally a scarce resource, blocks

have been traditionally reserved for fixed-size structures or else

structures requiring the maximum speed of retrieval, such as the

stack.

Circular List

"Round robin" is a common name for a circular list. A circular

list is a linked list where the last entry points back to the first one.

This is illustrated in Figure 9-6. In the case of a circular list, a

current-block pointer is often kept. In the case of events or pro

grams waiting for service, the current-event pointer will be moved

by one position to the left or to the right every time. A round-robin

usually corresponds to a structure where all blocks are assumed to

280

DATA STRUCTURES

have the same priority. However, when performing a search a circular

list may also be used as a subcase of other structures simply to facilitate

the retrieval of the first block after the last one.

As an example of a circular list, a polling program usually goes

around in a round-robin fashion, interrogating all peripherals and

then coming back to the first one.

U- EVENT 1 |"H EVENT 2 ""*" * * * ~"*" EVENT N |

CURRENT EVENT

Fig. 9-6: Round-Robin is Circular List

Trees

Whenever a logical relationship exists between all elements of a

structure (this is usually called a syntax), a tree structure may be

used. A simple example of a tree structure is a descendant tree or a

genealogical tree. This is illustrated in Figure 9-7. It can be seen

that Smith has two children: a son, Robert, and a daughter, Jane.

Jane, in turn, has three children: Liz, Tom and Phil. Tom, In turn

has two more children: Max and Chris. However, Robert, on the

left of the illustration, has no descendants.

This is a structured tree. We have, in fact, already encountered

an example of a simple tree in Figure 9-2. The directory structure

is a two-level tree. Trees are used to advantage whenever elements

may be classified according to a fixed structure. This facilitates in

sertion and retrieval. In addition, trees may establish groups of infor

mation in a structured way. Such information may be required for later

processing, such as in a compiler or interpreter design.

Doubly-Linked Lists

Additional links may be established between elements of a list.

The simplest example is the doubly-linked list. This is illustrated

in Figure 9-8. We can see that we have the usual sequence of links

from left to right, plus another sequence of links from right to left.

281

PROGRAMMING THE 6502

Fig. 9-7: Genealogical Tree

The goal is to allow easy retrieval of the element just before the

one which is being processed, as well as the one just after it. This costs

an extra pointer per block.

BLOCKl BLOCK 2 BLOCK 3

Fig. 9-8: Doubly-Linked List

SEARCHING AND SORTING

Searching and sorting elements of a list depend directly on the

type of structure which has been used for the list. Many searching

algorithms have been developed for the most frequently used data

structures. We have already used indexed addressing. This is pos

sible whenever the elements of a table are ordered in function of a

known criterion. Such elements may then be retrieved by their
numbers.

Sequential searching refers to the linear scanning of an entire

block. This is clearly inefficient but, for lack of a better technique, may

have to be used whenever the elements are not ordered.

282

DATA STRUCTURES

Binaryt or logarithmic searching, attempts to find an element in a

sorted list by dividing the search interval in half at every step.

Assuming, for example, that we are searching an alphabetical list,

one might start in the middle of a table and determine if the name

for which we are looking is before or after this point. If it

is after this point, we will eliminate the first half of the table and

look at the middle element of the second half. We again compare

this entry to the one for which we are looking, and restrict our search

to one of the two halves, and so on. The maximum length of a

search is then guaranteed to be log2n, where n is the number of

elements in the table.

Many other search techniques exist.

SUMMARY

This section was intended as only a brief presentation of typical

data structures which may be used by a programmer. Although

most common data structures have been rationalized in types and

given a name, the overall organization of data in a complex system

may use any combination of them, or require the programmer to

invent more appropriate structures. The array of possibilities is

limited only by the imagination of the programmer. Similarly, a

number of well-known sorting and searching techniques have been

developed to cope with the usual data structures. A comprehensive

description is beyond the scope of this book. The contents of this

section were intended to stress the importance of designing appro

priate data structures for the data to be manipulated and to pro

vide the basic tools to that effect.

283

DATA STRUCTURES

PART II: DESIGN EXAMPLES

INTRODUCTION

Actual design examples will be presented here for typical data

structures: table, linked list, sorted tree. Practical sorting, search

ing and insertion algorithms will be programmed for these struc

tures. Additional advanced techniques such as hashing and merg

ing will also be described.

The reader interested in these advanced programming tech

niques is encouraged to analyze in detail the programs presented

in this section. However, the beginning programmer may skip this

section initially, and come back to it when he feels ready for it.

A good understanding of the concepts presented in the first part

of this chapter is necessary to follow the design examples. Also,

the programs will use all the addressing modes of the 6502, and

integrate many of the concepts and techniques presented in the

previous chapters.

Four structures will now be introduced: a simple list, an alpha

betical list, a linked list plus directory, and a tree. For each struc

ture, three programs will be developed: search, enter and delete.

In addition, three specialized algorithms will be described separately

at the end of the section: hashing, bubble-sort, and merging.

284

DATA STRUCTURES

ENTLEN

TABLEN

TAB BASE

ENTRY

H LABEL —

DATA

LENGTH OF ENTRY

NUMBER OF ENTRIES

M BYTES

ENTER NEW ELEMENT

Fig. 9-9: The Table Structure

ELEMENT

1

ELEMENT

2

LABEL

DATA

LABEL

DATA

ENTLEN

ENTLEN

Fig 9-10: Typical List Entries in the Memory

285

PROGRAMMING THE 6502

DATA REPRESENTATION FOR THE LIST

Both the simple list and the alphabetic list will use a common re

presentation for each list element:

c c c D D D D

3-byte label data

Each element or "entry" includes a 3-byte label and an n-byte

block of data with n between 1 and 253. Thus, each entry uses, at

most, one page (256 bytes). Within each list, all elements have the

same length (see Fig. 9-10). The programs operating on these two

simple lists use some common variable conventions:

ENTLEN is the length of an element. For example, if each ele

ment has 10 bytes of data, ENTLEN = 3 + 10 = 13 bytes

TABASE is the base of the list or table in the memory

POINTR is a running pointer to the current element

OBJECT is the current entry to be inserted or deleted

TABLEN is the number of entries

All labels are assumed to be distinct. Changing this convention

would require a minor change in the programs.

A SIMPLE LIST

The simple list is organized as a table of n elements. The

elements are not sorted (see Fig. 9-11).

When searching, one must scan through the list until an entry is

found or the end of the table is reached. When inserting, new en

tries are appended to the existing ones. When an entry is deleted,

the entries in higher memory locations, if any, will be shifted down

to keep the table continuous.

Searching

A serial search technique is used. Each entry's label field is com

pared in turn to the OBJECT'S label, letter by letter.

The running pointer POINTR is initialized to the value of

TABASE.

The index register X is initialized to the number of entries con

tained in the list (stored at TABLEN).

286

DATA STRUCTURES

IlENGTH =

ENTLEN

OBJECT

TO BE INSERTED

Fig. 9-11: The Simple List

The search proceeds in the obvious way, and the corresponding

flowchart is shown in Fig. 9-12. The program appears in Fig.

9-16 at the end of this section (program "SEARCH").

Element Insertion

When inserting a new element, the first available memory block

of (ENTLEN) bytes at the end of the list is used (see Fig. 9-11).

The program first checks that the new entry is not already in the

list (all labels are assumed to be distinct in this example). If not, it

increments the list length TABLEN, and moves the OBJECT to

the end of the list. The corresponding flowchart is shown on Fig.

9-13.

The program is shown on Fig. 9-16 at the end of this section. It is

called "NEW" and resides at memory locations 0636 to 0659.

Element Deletion

In order to delete an element from the list, the elements follow

ing it at higher addresses are merely moved up by one element position.

The length of the list is decremented. This is illustrated in Fig. 9-14.

287

PROGRAMMING THE 6502

SEARCH

COUNTER =

NUMBER OF ENTRIES

COUNTER = COUNTER - 1

FAILURE EXIT

FOUND

(SET A TO "FF")

FAILURE EXIT

Fig. 9-12: Table Search Flowchart

288

DATA STRUCTURES

EXIT

END

Fig. 9-13: Table Insertion Flowchart

The corresponding program is straightforward and appears in

Fig. 9-16. It is called "DELETE" and resides at memory ad

dresses 0659 to 0686. The flowchart is shown in Fig. 9-15.

Memory location TEMPTR is used as a temporary pointer point

ing to the element to be moved up.

Index register Y is set to the length of a list element, and used to

automate block transfers. Note that indirect indexed addressing is

used:

(0672) LOOPE DEY

LDA

STA

CPY

BNE

(TEMPTR), Y

(POINTR), Y

#0

LOOPE

During the transfer, POINTR always points to the "hole" in the

list, i.e. the destination of the next block transfer.

The Z flag is used to indicate a successful deletion upon exit.

289

PROGRAMMING THE 6502

DELETE •

TEAAPTR •

BEFORE

©

©

0

©

MOVE

MOVE

AFTER

©
0

©

Fig. 9-14: Deleting An Entry (Simple List)

ALPHABETIC LIST

The alphabetic list, or "table" unlike the previous one, keeps all

its elements sorted in alphabetic order. This allows the use of

faster search techniques then the linear one. A binary search is

used here.

Searching

The search algorithm is a classical binary search. Let us recall

that the technique is essentially analogous to the one used to find a

name in a telephone book. One usually starts somewhere in the middle

of the book, and then, depending on the entries found there, goes either

backwards or forwards to find the desired entry. This method is fast,

and it is reasonably simple to implement.

The binary search flowchart is shown in Fig. 9-17, and the pro

gram is shown in Fig. 9-22.

This list keeps the entries in alphabetical order and retrieves

them by using a binary or "logarithmic" search. An example is

shown in Fig. 9-18.

290

DATA STRUCTURES

FIND ENTRY

■► OUT

DECREMENT TABLE LENGTH

FIND NBR OF ENTRIES

AFTER OBJECT IN TABLE

DECREASE COUNT OF

ENTRIES REMAINING

AFTER THE ONE SHIFTED

EXIT

OUT

Fig. 9-15: Table Deletion Flow Chart

291

PROGRAMMING THE 6502

LINE

0002

0009

0004

OOOS

0004

0007

0001

0009

ooto

0011

0012

0013

0014

O01S

0016

0017

0011

001?

O020

O02I

0022

0023

0024

O02S

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

O038

0039

0040

0041

O042

0043

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

0054

0055

0056

O057

0058

0059

0060

0061

O062

O063

0064

0065

0066

O067

0068

• IOC

0000

0000

0000

ooot

OOM

0000

0000

0000

0600

0600

0602

0604

0606

0608

060ft

06K

060E

0610

0612

0614

0615

0617

0619

0611

061C

061E

0620

0622

0623

0625

0627

0628

062A

062C

062E

0630

0633

0635

0636

0636

0636

0636

0639

063B

0630

063F

0641

0642

0644

0646

0648

064A

064C

064E

0650

0652

0654

0655

0656

0658

0659

0659

0659

0659

065C

065E

0660

AS

85

AS

85

A4

ro

AO

•1

11

10

C8

11

11

10

ct

11

PI

FO

CA

FO

AS

18

65

65

90

E6

4C

A9

60

20

SO

A6

FO

A5

18

65

85

90

E6

E6

AO

A6

B1

91

C8

CA

90

60

20

FO

C6

CA

CUE

10

12

11

13

14

29

H

15

12

OE

IS

12

07

15

12

11

10

17

12

12

DE

13

OC 06

rr

00 06

ID

14

OB

12

17

12

02

13

14

00

17

15

12

F8

00 06

20

14

HIE

TAM8E • »10

POINTR > 112

TAKE! > 114

OBJECT - US

ENTLEN « $17

TENPTR > 118
•

•H400

SEARCH IDA TABASE

STA POINT*

LBA TABASE*1

STA POINTR*1

LBI TABLE*

BEO OUT

ERTRT LIT 10

LBA (OBJECT)

CMP (POINTR)

BNE N0600B

INY

LBA (OBJECT)

CMP (POINTR)

BNE N0600B

INY

LBA (OBJECT)

CNP (POINTR)

ICO FOUND

N0600D BEX

BEO OUT

LBA ENTLEN

CLC

ABC POINTR

STA POINTR

BCC ENTRY

INC POINTR*1

JHP ENTRY

FOUNB LOA ItFF

OUT RTS

;

•

NEU JSR SEARCH

BNE OUTE

LBX TABLEN

BEO INSERT

LDA POINTR

CLC

ABC ENTLEN

STA POINTR

BCC INSERT

INC POINT**!

INSERT INC TABLEN

LOT 10

LBX ENTLEN

LOOP LBA (OBJECT),

STA (POINTR),

INY

DEX

BNE LOOP

)UTE RTS

)ELETE JSR SEARCH

BEO OUTS

BEC TABLEN

DEX

,Y

tY

,Y

,Y

,Y

,Y

Y

Y

;INITIALIZE POUTER

.'STORE TAKER AS A VARIABLE

;CNECK FOR 0 TABLE

{COMPARE FIRST LETTERS

;C6HPARE SECSNB LETTERS

;CONPARE TNIRB LETTERS

;SEE NOU RAfY ERNIES ARE LEFT

;A0P ENTLEN TO POINTER

JCLEAR Z FLAS IF FOUND

{SEE IF OBJECT 18 THERE

{CHECK FOR 0 TABLE

{POINTER IS AT LAST ENTRY

;..NU8T NOVE IT TO END OF TABLE

{INCREMENT TABLE LENGTH

;hove object to end of table

;Z SET IF UA8 DONE

JFIHB HHERE BBJECT IS

{EXIT IF NOT FOUN)

{DECREMENT TABLE LENGTH

;8EE HOW MANY ENTRIES ARE

Fig. 9-16: Simple List Programs: Search, Enter, Delete

292

DATA STRUCTURES

0049

0070

0071

0072

0073

0074

O075

0076

0077

0078

007?

0080

008)

0082

0063

0084

0085

0086

0087

O088

008?

00?0

Of?1

00?2

O0?3

O0?4

0661

0663

0665

0666

0668

066A

066C

066E

0670

0672

0673

0675

0677

067?

067B

067C

067E

0680

0682

0684

0686

068?

0681

068C

068C

068C

F0

AS

18

65

65

A?

65

85

A4

88

B1

91

CO

DO

CA

FO

AS

85

AS

85

4C

A9

60

26

12

17

18

00

13

19

17

18

12

00

F7

OB

18

12

19

13

63 06

FF

ADDEN

LOOPE

DONE

OUTS
;

i

BEO BONE

LBA POINTR

CLC

ABC ENTLEN

STA TENPTR

LBA 10

ABC POINTR+1

STA TENPTR*1

LBY ENTLEN

BEY

LBA <TENPTR),Y

STA (POINTR)rY

CPY 10

BNE LOOPE

BEX

BEG BONE

LBA TENPTR

STA POINTR

LBA TEHPTR*1

STA P0INTR41

JHP A0OEH

LDA IIFF

RTS

.END

;..AFTER ONE TO BE DELETED

;ab» entlcn to pointer and

J..SAVE AT TENP STORAGE

{ADO CARRY TO HIGH BYTE

;SHIFT ONE ENTRY OF HEHOftY DOWN

DECREMENT ENTRY COUNTER

;NOVE TENP TO POINTER

;CLEAR Z FLA6 IF IT VAS BONE

ERRORS * 0000 <0000>

SYNB8L TABLE

SYNBOL VALUE

AI9EN 0663 DELETE 065? BONE 068? fNTLEN 0117
ENTRY 060C FOUNB 0633 INSERT 064A LOOP 0650
LBOPE 0672 NEU 0636 N0800D 0622 OBJECT 0019
<WT 0635 OUTE 0658 OUTS 068B POINTR 0112
SEARCH 0600 TABASE 0010 TABLEN 0014 TENPTR O»1I

ENB OF A88EHBLY

Fig. 9-16: Simple List Programs: Search, Enter, Delete (cont.)

293

PROGRAMMING THE 6502

FLAGS = 0

POINT TO TABLE BASE

LOGICAL POSITION = INCREMENT VALUE

= TABLE LENGTH/2

POINT TO MIDDLE OF TABLE

INCREMENT COUNTER= INCREMENT COUNTER/2

PRESERVE CARRY (SIGN OF COMPARISON)

INTO COMPRES FLAG

- (ENTRY)

YES

(LAST ONE)

Fig. 9-17: Binary Search Flowchart

294

DATA STRUCTURES

(NEXT) (IASTONE)

NOT

FOUND

Fig. 9-17: Binary Search Flowchart (cont.)

295

PROGRAMMING THE 6502

The search is somewhat complicated by the need to keep track of

several conditions. The major problem to be avoided is searching for an

object that is not there. In such a case, the entries with the immediately

higher and lower alphabetic values could be alternately tested forever.

To avoid this, a flag is maintained in the program to preserve the value

of the carry flag after an unsuccessful comparison. When the INCMNT

value, which shows by how much the pointer will next be incremented,

reaches a value of "1", another flag called "CLOSE" is set to the value
of the CMPRS flag. Thus, since all further increments will be "1," if

the pointer goes past the point where the object should be, CMPRES

will not longer equal CLOSE, and the search will terminate. This fea

ture also enables the NEW routine to determine where the logical and

physical pointers are located, relative to where the object will go.

Thus, if the OBJECT searched for is not in the table, and the

running pointer is incremented by one, the CLOSE flag will be set.

On the next pass of the routine, the result of the comparison will be

opposite to the previous one. The two flags will no longer match,

and the program will exit indicating "not found."

OBJECT

"SYB"

TABASE

BAC

TES

(NO)

TES

XYZ

(NO)

FIRST TRY

SEARCH INTERVAL = 5
SECOND TRY

SEARCH INTERVAL = 2

Fig. 9-18: A Binary Search

296

DATA STRUCTURES

The other major problem that must be dealt with is the possibili

ty of running off one end of the table when adding or subtracting

the increment value. This is solved by performing an "add" or

"subtract" test using the logical pointer and length value to determine

the actual number of entries, rather than using physical pointers to

determine their mere physical positions.

In summary, two flags are used by the program to memorize in

formation: CMPRES and CLOSE. The CMPRES flag is used to

preserve the fact that the carry was either "0" or "1" after the

most recent comparison. This determines if the element under test

was larger or smaller than the one to which it was compared. Whenever

the carry C is "1," the entry is smaller than the object, and CMPRES

is set to "1." Whenever the carry C is "0," the entry is greater than the

object, and CMPRES will be set to "FF."

Also note that when the carry is "1", the running pointer will point

to the entry below the OBJECT.

The second flag used by the program is CLOSE. This flag is set

equal to CMPRES when the search increment INCMNT

becomes equal to "1." It will detect the fact that the element has

not been found if CMPRES is not equal to CLOSE the next time

around.

Other variables used by the program are:

LOGPOS,which indicates the logical position in the table (ele

ment number).

INCMNT, which represents the value by which the running

pointer will be incremented or decremented if the next comparison

fails.

TABLEN represents, as usual, the total length of the list.

LOGPOS and INCMNT will be compared to TABLEN in order to

ascertain that the limits of the list are not exceeded.

The program called "SEARCH" is shown in Fig. 9-22. It resides

at memory locations, 0600 to 06E3, and deserves to be studied

with care, as it is much more complex than in the case of a linear

search.

An additional complication is due to the fact that the search

interval may at times be either even or odd. When it is even, a cor

rection must be introduced. It cannot, for instance, point to the middle

element of a 4-element list.

When it is odd, a "trick" is used to point to the middle element:

the division by 2 is accomplished by a right shift. The bit "falling

out'1 into the carry after the LSR instruction will be "1" if the in-

297

PROGRAMMING THE 6502

terval was odd. It is merely added back to the pointer:

(0615) DIV LSR A DIVIDE BY TWO

ADC #0 PICK UP CARRY

STA LOGPOS NEW POINTER

The OBJECT is then matched against the entry in the middle of

the new search interval. If the comparison succeeds, the program

exits. Otherwise ("NOGOOD"), the carry is set to 0 if the OB

JECT is less than the entry. Whenever the INCMNT becomes "1",

the CLOSE flag (which had been initialized to "0") is then checked

to see if it was set. If it was not, it gets set. If it was set, a check is

run to determine whether we passed the location where the OB

JECT should have been but was not found.

Element Insertion

In order to insert a new element, a binary search is conducted. If

the element is found in the table, it does not need to be inserted.

(We assume here that all elements are distinct). If the element was

not found in the table, it must be inserted. The value of the CMPRES

flag after the search indicates whether this element should be inserted

immediately before or immediately after the last element to which it

was compared. All the elements following the new location where it is

going to be placed are then moved down by one block position, and the

new element is inserted.

The insertion process is illustrated in Figure 9-19 and the corres

ponding program appears on Figure 9-22.

The program is called "NEW", and resides at memory locations

06E3 to 075E.

Note that indirect indexed addressing is used again for block

transfers:

(072A)

ANOTHR

LDY

DEY

LDA

STA

CPY

BNE

ENTLEN

(POINTR), Y

(TEMP), Y

#0

ANOTHR

Observe the same at memory location 0750.

298

DATA STRUCTURES

BEFORE AFTER

TABASE- AAA

ABC

BAT

TAR

ZAP

OBJECT- BAC

AAA

ABC

BAC

BAT

TAR

ZAP

—NEW
ELEMENT

MOVE DOWN

Fig. 9-19: Insert: "BAC"

Element Deletion

Similarly, in order to delete an element, a binary search is conducted

to find the object. If the search fails, it does not need to be deleted. If

the search succeeds, the element is deleted, and all the following ele

ments are moved up by one block position. A corresponding example is

shown in Fig. 9-20, and the program appears in Figure 9-22. The flow

chart is shown in Fig. 9-21.

It is called "DELETE," and resides at memory addresses

075F to 0799.

LINKED LIST

The linked list is assumed to contain, as usual, the three alpha

numeric characters for the label, followed by 1 to 250 bytes of data,

followed by a 2-byte pointer which contains the starting address of

the next entry, and lastly followed by a 1-byte marker. Whenever this

1-byte marker is set to "1," it will prevent the insert-routine from

substituting a new entry in the place of the existing one.

299

PROGRAMMING THE 6502

Further, a directory contains a pointer to the first entry for each

letter of the alphabet, in order to facilitate retrieval. It is assumed

in the program that the labels are ASCII alphabetic characters.

All pointers at the end of the list are set to a NIL value which has

been chosen here to be equal to the table base, as this value should
never occur within the linked list.

The insertion and the deletion program perform the obvious pointer

manipulations. They use the flag INDEXD to indicate if a pointer

pointing to an object came from a previous entry in the list or

from the directory table. The corresponding programs are shown in

Fig. 9-27. the data structure is shown in Fig. 9-23.

An application for this data structure would be a computerized

address book, where each person is represented by a unique

3-letter code (perhaps the usual initials) and the data field contains

a simplified address, plus the telephone number (up tq/250
characters).

BEFORE AFTER

MOVE UP

AAA

ABC

BAC

BAT

TAR

ZAP

AAA

ABC

BAT

TAR

ZAP

DELETE

Fig. 9-2O: Delete: "BAC"

300

DATA STRUCTURES

DELETE

COUNT HOW MANY

ELEMENTS FOLLOW THE

ONE TO BE DELETED

RESULT « COUNTER

LOGPOS

POINT TO NEXT ENTRY

POINTER = TEMP (SOURCE)

TRANSFER IT UP ONE BLOCK

NO

-► OUTS

YES

POINT TO NEXT ENTRY

POINTER = POINTER (DESTINATION)

DECREMENT LOGPOS

(DECER)

SET 2 FLAGS

RTS

Fig. 9-21: Deletion Flowchart (Alphabetic List)

301

PROGRAMMING THE 6502

LINE • IOC CODE

O002 0000

0003 0000
0004 0000

0003 0000

0006 0000

O007 0000

O008 0000

0009 0000

0010 0000

00It 0000

0012 0000

O013 0000

0014 0600

OOtS 0600 A9 00

0016 0602 85 10

0017 0604 85 11

0016 0606 AS 12

0019 0608 85 14

0020 060A AS 13
0021 060C 85 15

O022 060E AS 16
0023 0610 DO 03

0024 0612 4C CO 06
O025 0615 4A

O026 0616 69 00
0027 0618 85 \7

0028 061A 85 18

0029 06IC A6 17
0030 06 IE CA

0031 06IF FO OE

0032 0621 AS 18

0033 0623 18

0034 0624 65 14

O035 0626 85 14

0036 0626 90 02

O037 062A £6 15

0038 062C CA

0039 0620 00 F2

O040 062F A5 18

0041 0631 4A

O042 0632 69 00

0043 0634 85 18

0044 0636 AO 00

O045 0638 11 1C

O046 063A 01 14

0047 063C DO 11

0048 063E C8

O049 063F Bl 1C

0050 0641 D1 H

0051 0643 00 OA

0052 0645 C8

0053 0646 Bl 1C

O054 0648 01 14

0055 064A 00 03

0056 064C 4C E? 06
O057 064F AO FF

0058 0651 90 02

O059 0653 AO 01

0060 0655 84 11

O06I 0657 A4 18

O062 0659 88

0063 065A 00 10

0064 065C A5 10

0065 065E FO 08

0066 0660 38

0067 0661 E5 11

0068 0663 FO 07

LINE

CLOSE = 110

CHPRES * $11

TAIASE « %\2
POINTR « fM

TAKEN • t16

L06P0S * %\7

INCRNT * *16

TEMP * t19

ENTLEN * I!B

OBJECT * SIC

• b $600

SEARCH LOA NO

STA CLOSE

STA CNPRES

L>A TABASC

STA POINTR

LOA TA8ASE+1

STA POINTR*!

LOA TA6LEN

BNE OIV

JNP OUT

OIV LSR A

AOC 10

STA L06P0S

STA INCMNT

LOX L06P0S
OEX

BEQ ENTRY

LOOP LOA ENTLEN

CLC

ADC POINTR

STA POINTR

BCC LOPP

INC POINTRM
LOPP OEX

BNE LOOP

ENTRY LOA INCHNT

LSR A

AOC SO

STA INCNNT

LOT 10

LOA (OBJECT),r

CMP (POINTR),Y

BNE N06000
INY

LOA (OBJECT),Y

CNP (POINTR),Y

BNE N06000
INY

IDA (OBJECT),Y

CMP (POINTR),Y

BNE N0600D
JNP FOUND

N0600D LOY VfFF

BCC TESTS

LOY III

TESTS STY CNPRES

LOY INCNNT

OEY

BNE NEXT

LOA CLOSE

BEQ NAKCLO

SEC

SBC CNPRES

BEQ NEXT

,'ZERO FLAGS

;INITIALIZ6 POINTER

;get table length

.'DIVIDE IT BY 2

;ado back in i-s bit

JSTORE AS LOGICAL POSITION
,• STORE AS INCREMENT VALUE
MULTIPLY ENTLEN BY LOSPOS

,*..ADDING RESULT TO POINTER

,-DIVIDE INCREMENT VALUE BY 2

,'COHPARE FIRST LETTERS

,-CONPARE 2ND LETTERS

.'COMPARE 3RD LETTERS

,*SET COMPARE RESULT FLAG

;IF 08J < POINTR : C-0

;IS 1NCR. VALUE A I?

,'CMECK CLOSE fLUG IF IT UAS

,'IF CLOSE FLAG NOT SET, GO DO IT

;SEE IF GAVE PASSED UHFRK OBJ.

,-..SHOULD BE BUT ISNT

Fig. 9-22: Alphabetic List Programs: Binary Search, Delete, Insert

302

DATA STRUCTURES

0069

0070

0071

0072

0073

O074

O07S
0074

0077

0078

0079

0080

O081

O082

O083

O084

0083

O086

0087

O088

0089

0090

O091

0092

0093

O094

O09S

0096

O097

0098

0099

0100

0101

0102

0103

0104

0105

0106

0107

0108

0109

0110

0111

0112

0(13

0114

0113

0116

0117

0118

0119

0120

0121

0(22

0123

0124

0123

0126

0127

0128

0129

0130

0131

0132

0133

0134

0135

0136

0137

0138

0665

0668

066A

066C

066t

0670

0672

0673

0673

0677

0679

0671

067D

067F

0680

0682

0684

0686

0688

0689

0681

0686

068E

0690

0692

0693

0697

0699

069A

069C

069E

06AO

06A2

06A5

06A7

06A6

06AA

06AC

06AE

0610

0662

0614

0615

0617

0669

0666

0666

066E

06C0

06C3

06C5

06C6

06C8

06CA

06CC

06C6

06CF

0661

0663

0665

0667

0669

0666

0666

06E0

06E2

06E3

06E3

06E3

06E3

4C EO 06

AS 11

85 10

24 11

30 35

A5 16

38

E5 17

FO 69

E5 18

90 1A

A6 18

A5 II

18

65 14

85 14

90 02

E6 IS

CA

60 F2

AS 17

18

65 18

85 17

4C 2F 06

E6 \7

AS II

18

65 14

85 14

90 35

E6 15

4C 65 06

AS 17

38

E5 18

FO 17

90 15

85 17

A6 18

AS 14

38

ES II

85 14

80 02

C6 IS

CA

60 F2

4C 2F 06

A6 17

CA

FO (8

C6 17

A3 14

38

E5 18

85 14

60 02

C6 15

A9 01

85 IB

AS 11

85 10

4C 2F 06

A2 FF

60

NEXT

JHP OUT

HAKCLO IDA CNPRES

STA CLOSE

BIT CNPRES

INI SUIIT

L6A TA8LEN

SEC

S6C LOGPOS

IEQ OUT

86C INCNNT

6CC TOOHI

L6X INCNNT

L6A ENTLEN

CLC

ADC POINTR

STA POINTR

6CC A61

INC POINTR+t

6EX

6NE ADDER

L6A L08P08

CLC

A6C INCHNT

STA L08P08

JHP ENTRY

INC L08P08

L6A ENTLEN

CLC

A6C POINTR

STA POINTR

8CC SETCLO

INC POINTRH

JNP SETCLO

L6A LOGPOS

SEC

S6C INCNNT

IE8 TOOLOU

8CC TOOLOU

STA L08P08

L6X INCHNT

SU6L0P L6A POINTR

SEC

S6C ENTLEN

STA POINTR

8CS 8U60

6EC POINTR+t

6EX

8NE SU6L0P

JHP ENTRY

TOOLOU L6X L08P08

6EX

6E8 OUT

6EC L08P0S

L6A POINTR

SEC

S8C ENTLEN

STA POINTR

6C8 SETCLO

6EC POINTRH

SETCLO L6A II

STA INCHNT

L6A CNPRES

STA CLOSE

JHP ENTRY

OUT L6X IIFF

F0UN6 RTS

A66ER

A61

TOOHI

SU6IT

SU60

;8ET CLOSE FLAB TO CNPRES

;SEE IF A6DITI10I OF INCNNT

;..UILL RUN PAST END OF TABLE

JCHECK TO SEE IF IT END OF TABLE ILREIDY

JIS ALL RIGHT, INC POINTEI IY

{..PROPER AHOUNT

;INCREMENT LOGICAL POSITION

;INCR. LOGICAL POSITION

;HOVE POINTER UP ONE ENTRY

;SEE IF INC WILL GO OFF BOTTON

;.. OF TABLE

;SAVE NEU L08ICAL POSITION

{SUBTRACT PROPER ANT. FRON POINTER

;SEE IF POS IS ALREADY 1

}SUB 1 ENTRY FROM POINTER

20 00 06 NEU JSR SEARCH

,*Z BET IF FOUND

;SEE IF OBJECT IS ALREADY THERE

Fig. 9-22: Alphabetic List Programs: Binary Search, Delete, Insert (cont.)

303

PROGRAMMING THE 6502

0139 06E6 FO 76

0140 06E8 AS 16

0141 06EA FO 62

0142 06EC 24 11

0143 06EE 10 05

0144 06F0 C6 17

0145 06F2 4C 00 0?

0146 06F5 A5 IB

0147 06F7 18

0148 06F8 65 14

0149 06FA 85 14

0150 06FC 90 02

0151 06FE E6 15

0152 0700 A5 16

0153 0702 38

0154 0703 E5 \7

0155 0705 FO 47

0156 0707 AA

0157 0708 A8

0158 0709 88

0159 070A FO OE

0160 070C AS IS

0161 070E 18

0162 070F 65 14

0163 0711 85 14

0164 0713 90 02

0165 0715 E6 15

0166 0717 88

0167 0718 DO F2

0168 071A A5 14

0169 071C 18

0170 07ID 65 IB

0171 071F 83 19

0172 0721 90 01

0173 0723 C8

0174 0724 98

0175 0725 18

0176 0726 65 15

0177 0728 85 1A

0178 072A A4 IB

0179 072C 88

0180 072D Bl 14

0181 072F 91 J9

0182 0731 CO 00

0183 0733 DO F7

0184 0735 A5 14

0185 0737 38

0186 0738 E5 IB

0187 073A 85 14

0188 073C BO 02

0189 073E C6 15

0190 0740 CA

019J 0741 DO D7

0192 0743 A5 IB

0193 0745 18

0194 0746 65 14

0195 0748 85 14

0196 074A 90 02

0197 074C E6 15

0198 074E AO 00

0199 0750 A6 IB

0200 0752 Bf IC

0201 0754 91 14

0202 0756 C8

0203 0757 CA

0204 0758 DO F8

0205 075A E6 16

0206 075C A2 FF

BEO OUTE

IDA TABLEN

BEO INSERT

BIT CHPRES

BPL LOSIDE

DEC LOGPOS

JHP SETUP

LOSIDE IDA ENTLEN

CLC

ADC POINTR

STA POINTR

BCC SETUP

INC POINTR*!

SETUP LDA TABLEN

SEC

SBC LOGPOS

BEO INSERT

TAX

TAY

DEY

BEO SETEHP

LDA ENTLEN

CLC

ADC POINTR

STA POINTR

BCC SETO

INC POINTR+I

DEY

ME UfLOOP

LDA POINTR

CLC

ADC ENTLEN

STA TEMP

BCC SET1

INY

TVA

CLC

ADC POINTR*I

STA TEHP+I

LDY ENTLEN

DEY

LDA (POINTR),r

STA <TEHP),Y

CPY 10

BNE ANOTHR

LDA POINTR

SEC

SBC ENTLEN

STA POINTR

BCS Ml

DEC POINTR+1

DEX

BNE SETEMP

LBA ENTLEN

CLC

ADC POINTR

STA POINTR

BCC INSERT

INC POINTR+1

LDY 10

LDX ENTLEN

LDA (OBJECT),r

STA (POINTR)tY

INY

DEX

BNE INNER

INC TABLEN

LDX ItFF

UPLOOP

SETO

SETENP

SETI

HOVER

ANOTHR

INSERT

iHHER

.'CHECK FOR 0 TABLE

;TEST LAST COHPARE RESULT

.'SET LOGICAL POSITION SO

,'..SUB WORKS LATER

,'SET POINTER ABOVE WHERE

;..OBJECT UILL 60

.'SEE HOU rtANY ENTRIES THERE

;..ARE AFTER UHERE OBJ. UILL GO

;see if already pointing fo
.'..last entry

;nove pointer to last entry

JADD ENTLEN TO POINTER

;..STORE AT TEMP

IT HAS ALBE«£ir 0

.'SET i FOR SHIFT

,'HOVE A BYTE

;decr. pointer and temp

;..by entlen

JHOVE POINTER BACK TO

,'UHERE OBJ. UILL 60

;nove object into table

[INCREMENT TAILE LENGTH

Fig. 9-22: Alphabetic Ust Programs: Binary Search, Delete, Insert (cont.)

304

DATA STRUCTURES

0207

0208

0209

0210

0211

VZ12

0213

0214

0213

0216

0217

0218

0219

0220

0221

0222

0223

0224

0225

O22«

0227

0228

0229

0230

0231

0232

0233

0234

0239

0236

0237

0238

0239

0240

0241

0242

0243

07SE

075F

075F

075F

07SF

0762

0764

0766

0767

0769

076B

076D

076F

0770

0772

0774

0776

0778

077A

077C

077E

0780

0782

0783

0764

0786

0788

0789

078t

0789

078F

0791

0793

079S

0797

0799

079A

60

20

00

AS

38

ES

F0

85

AS

18

65

65

A?

65

85

A6

AO

•1

91

C8

CA

DO

AS

16

65

85

90

E6

C6

DO

C6

A9

60

00 06

to

16

17

2A

(7

1D

14

19

00

15

(A

11

00

19

14

F8

II

14

14

02

15

17

08

16

00

OUTE

;

;

;
DELETE

DI6L0P

IVTE

D2

DECER

OUTS

RTS

J8R SEARCH

INE OUTS

LDA TADLEN

SEC

SIC L06P0S

IEO IECER

STA L06P0S

LDA ENTLEN

CLC

ADC POINTR

STA TEHP

LDA 10

AIC P0INTR*1

STA TEHP*!

LDX ENTLEN

LIT 10
LIA <TEHP),Y

8TA (POINTR),V

1NY

IEX

•NE IYTE

LDA ENTLEN

CLC

AIC POINTR

STA POINTR

ICC 12

INC PIINTR*1

6EC L08P0S

INE II6L0P

DEC TABLE!

LDA 10

RTS

.END

;Z SET IF NOT DINC

;6ET ADD! OF OBJECT IN TAILS

;SEE IF IT IS THERE

;SEE HOU NANY ENTRIES ARE

;..LEFT AFTER 01J. IN TAKE

}STORE RESULT A8 A COUNTER

;8ET TEHP a ENTRY AIOVE 1 El

;8ET COUNTERS

;hove a iyte

,'IS BLOCK NIVEI YETT

;Z SET IF HAS IONE

ERRORS • 0000 <0000>

8YHB0L

STNIOL

All

BYTE

DECER

ENTRY

INSERT

L08IIE

OUT

SEARCH

SETEHP

SUILOP

TESTS

END OF

TABLE

VALBE

0688

077E

0795

062F

074E

06F5

06E3

06E0

0600

071A

06B2

0655

ASSENDLY

ADDER

CLOSE

DELETE

FOUND

L06P0S

HI

NEXT

OUTE

SETO

SETUP

TABASE

TOOHI

0671
0010

075F

06E2

0017

0740

066C

075E

0717

0700

0012

0695

AN9THR

CHPRES

DIV

INCHNT

LOOP

NAKCLO

N0800D

OUTS

SET1

SUIO

TAILEN

TOOLOU

072C

0011

0615

0018

0621

0668

064F

0799

0724

06ID

0016

06C3

BIGLOP

02

ENTLEN

INNER

LOPP

HOVER
OBJECT

POINTR

SETCLO

SUBIT

TEHP

UPLOOP

076D

0791

O01I

0752

062C

072A

OOU

0014

0615

06AS

O01f

O70C

Fig. 9-22: Alphabetic List Programs: Binary Search, Delete, Insert (cont.)

305

PROGRAMMING THE 6502

Let us examine the structure in more detail in Fig. 9-23.

The entry format is:

c c c D D D P P 0

unique label data (1 to 250 bytes) pointer to

(ASCII) next
occupied

As usual the conventions are:

ENTLEN: total element length (in bytes)

TABASE: address of base of list

TABLEN: number of entries (1 to 256)

Here, REFBASE points to the base address of the directory, or

* 'reference table."

Each two-byte address within this directory points to the first

occurrence of the letter to which it corresponds in the list. Thus

each group of entries with an identical first letter in their labels ac

tually form a separate list within the whole structure. This feature

facilitates searching and is analogous to an address book. Note

that no data are moved during an insert or a delete. Only pointers

are changed, as in every well-behaved linked list structure.

DIRECTORY

A"

P"

POINTER

POINTER

i A

POINTER

R

NIL

NIL

Fig. 9-23: Linked List Structure

306

DATA STRUCTURES

If no entry starting with a specific letter is found, or if there is no

entry alphabetically following an existing one, their pointers will

point to the beginning of the table (= "NIL"). At the bottom of the

table, by convention, a value is stored such that the absolute value

of the difference between it and "Z" is greater than the difference

between "A" and "Z." This represents an End Of Table (EOT)

marker. The EOT value is assumed here to occupy the same

amount of memory as a normal entry but could be just one byte if

desired.

The letters are assumed here to be alphabetic letters in ASCII

code. Changing this would require changing the constant at the

PRETAB routine.

The End Of Table marker is set to the value of the beginning of

the table ("NIL").

By convention, the "NIL pointers," found either at the end of a

string or within a directory location which does not point to a string,

are set to the value of the table base to provide a unique identifica

tion. Another convention could be used. In particular, a different

marker for EOT would result in some space savings, as no NIL

entries need be kept for nonexisting entries.

Insertion and deletion are performed in the usual way (see Part I

of this chapter) by merely modifying the required pointers. The

INDEXD flag is used to indicate if the pointer to the object is in

the reference table or another string element.

Searching

The SEARCH program resides at memory locations 0600 to

0650. In addition, it uses subroutine PRETAB at address 06F8.

The search principle is straightforward:

1_ Get the directory entry corresponding to the letter of the

alphabet in the first position of the OBJECT'S label.

2— Get the pointer out of the directory. Access the element. If NIL,

the entry does not exist.

3— If not NIL, match the element against the OBJECT. If a

match is found, the search has succeeded. If not, get the pointer to

the next entry down the list.

4— Go back to 2.

An example is shown in Fig. 9-24.

307

PROGRAMMING THE 6502

A-POINTER

BPOINTER

(?)
AAA

_r
AAZ

(4 STEPS REQUIRED)

©

_r
ABC

NIL

(FOUND)

Fig. 9-24: Linked List: A Search

Element Insertion

The insertion is essentially a search followed by an insertion

once a "NIL" has been found. A block of storage for the new entry

is allocated past the EOT marker by looking for an occupancy

marker set at "available". The program is called "NEW" and

resides at addresses 0651 to 06BD. An example is shown in Fig.

9-25.

Ji
CAB

_r
CZZ

Nil

CBS

Nit

A-POINTER

Lfi
L

Fig. 9-25: Linked List: Example of Insertion

308

DATA STRUCTURES

Element Deletion

The element is deleted by setting its occupancy marker to "available"

and adjusting the pointer text from either the directory or the

previous element. The program is called "DELETE" and resides

at addresses 06BE to 06F7. An example of a deletion is shown in Fig.

9-26.

Lr

-

DOC POINTER

r ■

1

(AFTER)

DAF

"DOC-

NIL

NOTE DAF IS NOT ERASED. BUT "INVISIBLE"

Fig. 9-26: Example of Deletion (Linked List)

309

PROGRAMMING THE 6502

LINE • LOC COIE

0#02

0103

0104

O005

0004

0007

0008

0009

OOfO

0011

0012

0013

0014

O01S

0016

0017

0018

0019

O020

0021

O022

O023

O024

O025

0026

0027

0028

O029

O030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

O044

0045

0046

O047

0048

0049

O050

0051

0052

0053

O054

0055

0056

0057

0058

0059

0060

0061

0062

0063

0064

O065

O066

0067

O068

O069

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0600

0400

0602

0604

0607

0609

060B

060C

060E

0610

0612

0614

0616

0618

061A

061C

061E

0620

0621

0623

0625

0627

0629

062A

062C

062E

0630

0632

0634

0636

0638

063A

063C

063E

063F

0640

0642

0644

0645

A447

0649

064B

064E

0650

0651

0651

0651

0651

0654

0656

0658

0659

065B

0650

065F

0661

0663

A9 01

85 10

20 F8 06

• 1 11

85 13

C8

II 11

85 14

AO 00

II 13

C9 7C

FO 36

II 15

PI 13

90 30

BO 12

C8

61 15

01 13

90 27

00 09

C8

II 15

01 13

90 IE

FO IE

A5 14

85 1C

A5 13

85 IB

A4 IF

B1 13

AA

C8

B1 13

85 14

8A

85 13

A9 00

85 10

4C 10 06

A9 FF

60

20 00 06

FO 67

A5 ID

18

69 01

85 17

A9 00

65 IE

85 18

A4 IF

HIE

INDCXI

INILOC

POINTR

OIJECT

TEW

REFIAS

Oil

TAfASE

ENTLEN

110

• 11

• 13

• 15

• 17

• 19

• II

• II

• IF

* no©

SEARCH ID*

STA

JSR

LOA

STA

INY

LIA

STA

ENTRY LIT

LIA

CMP

BED

LDA

CUP

BCC

INE

INY

LBA

CUP

BCC

BNE

INY

LBA

CHP

BCC

BEG

N0600D LOA

STA

LOA

STA

LOT

LOA

TAX

INY

LOA

STA

TXA

STA

LOA

STA

JHP

NOTFNO LDA

FOUND RTS

II

INiEXI
PRETAB

(INDLOO.Y

POINTR

(INDLOC)fY

POINTR*1

10

(POINTR)VY

•I7C

NOTFNI

(OBJECT),Y

(POINTR),Y

NOTFND

N0600D

(OIJECT),Y

(POINTR)tY

NOTFND

N0600D

(OBJECT),Y

(POINTR),Y

NOTFND

FOUND

POINTft+l

OLD+1

POINTR

OLD

ENTLEN

(POINTR),Y

(POINTR),Y

P0INTR*1

POINTR

•0

INOEXD

ENTRY

••FF

.'INITIALIZE FU6S

;6ET REF. POINTER FOR START

,'PUT IT IN POINTR

,'SEE IF ENTRY IS EOT VALUE

;COMPARE FUST LETTERS

,'COMPARE SECOND LETTERS

;CO*PARE THIRI LETTERS

;save poiiti rot possible ref.

f'OET POINTER FROM ENTRY ANB

;..LOAO IT INTO POINTR

NEU JSR SEARCH

BEO OUTE

IDA TABASE

CLC

ADC II

STA TEMP

LDA 10

ADC TABASE*I

STA TEHP+1

LOT ENTLEN

,* RESET FLA6

;Z SET IF FOUND

JSEE IF OIJ. IS ALREADY THERE

JLOOK FOR UNOCCUPIED ENTRY

,'.. BLOCK

JJUMP PAST EOT VALUE

;SET Y TO POINT TO OCCUPAICY

Fig. 9-27: Linked List Program

310

DATA STRUCTURES

O070

0071

0072

0073

0074

0075

0076

O077

0078

0079

0080

0081

0082

0083

0084

O08S

O086

0087

O088

0089

0090

0091

0092

0093

0094

O095

0096

0097

O098

0099

0100

0101

0102

0103

0104

0105

0106

0107

0108

0109

0110

0111

0112

0113

0114

0115

0116

0117

0118

0119

0120

0121

0122

0123

0124

0129

0126

0127

0128

0129

0130

0131

0132

0133

0134

0139

0134

0137

0131

0665

0666

0667

0669

066B

066D

066F

0670

0672

0674

0676

0678

067A

067C

0*7E

0680

0683

0684

0685

0686

0688

068A

068C

066E

0690

0692

0694

0695

0697

0499

069A

069C

069E

06A0

06A2

06A3

06A5

06A7

06A8

06AA

06AC

06AF

06B2

06B4

06B6

06B7

06B9

06BB

06B0

060E

060E

060E

040E

04C1

04C3

04C5

04C7

04C9

04CA

04CC

04CE

04CF

0401

0403

0409

•407

04BA

04BB

040F

C8

C8

A9

01

DO

AS

18

65

90

E6

69

85

A9

65

85

4C

88

88

88

B1

91

CO

00

A4

AS

91

C8

AS

91

C8

A9

91

AS

DO

88

AS

91

88

AS

91

4C

20

AS

91

C8

AS

91

A9

60

20

00

A4

01

09

CO

01

•9

C8

01

17

16

17

IF

02

18

03

17

00

18

IB

67

15

17

00

f7

IF

13

17

14

17

01

17

10

00

18

10

17

10

OB

FB

17

11

18

11

FF

00

34

IF

13

17

13

18

A9 00

91

A9

FO

20

4C

AS

11

13

10

04

F8

EA

10

06

06

06

06

04

•4

LOOP

NORE

INSERT

LOPE

8ETINX

BONE

OUTE

i

;

OaETE

PREINX

INY

INY

LDA

CUP

BNE

LDA

CLC

ADC

BCC

INC

ADC

STA

LIA

ABC

STA

JAP

DEY

DEY

DEY

LDA

STA

CPY

BNE

LDY

LDA

STA

INY

LDA

STA

INY

LDA

STA

LDA

BNE

DEY

LDA

STA

BEY

LDA

STA

JHP

JSR

LOA

STA

INY

LDA

STA

LOA

RT8

JSR

ONE

LOT

LOA

STA

INY

LOA

STA

INY

LOA

STA

LOA

0E8

JSR

JNP

LDA

CLC

11

(TENP)fY

INSERT

TENP

ENTLEN

NORE

TEHPH

13

TEHP

NO

TEMP+t

TENP+1

LOOP

(OBJECT),Y

(TEHP),Y

•0

LOPE

ENTLEN

POINTR

(TEHP),Y

POINTRH

<TEHP),Y

11

(TEHP),Y

INDEXD

SETINX

TEHPM

(OLD),Y

TEHP

<OLD),Y

DONE

PRETAB

TEHP

(INDLOC),Y

TEHP+1

(INOLOC),Y

IIFF

SEARCH

OUTS

ENTLEH

(POINTR)fY

TEHP

(POINTR),f

TEHP+1

10

(POINTR),Y

INDEXO

PREINX

PRETAO

HOVEIT

OLD

{..HARKER OF AN EHTKT

;test for occupancy barker

JIF IS USED, ROVE TEHP TO NEXT

,*..ENTRY BLOCK

JSET Y BACK TO P0INTIN8 TO

{..TOP OF DATA

{HOVE OBJECT INTO SPACE

;PUT THE VALUE OF POINTR, THE

{ENTRY AFTER OOJECT, INTO

{POINTER AREA OF OOJECT

{SET OCCUPANCY MARKER

{TEST TO SEE IF REF. TABLE

{..NEEDS READJUSTING

{NO, CHAN6E PREVIOUS ENTRY'S

{..POINTER

{GET ADDRESS IF UNATS TO IE Cl

{LOAD ADDR. OF OOJ. THERE

;l CLEAR IF DONE

{GET ADDR OF OOJ.

{STORE POINTEI AT END

{..OF OOJECT

{CLEAR OCCUPAICY MARKER

{SEE IF REF. TABLE NEEDS

{..READJUSTINS

{SET FOR CHAMIIIG PREVIOUS

{..ENTRY

Fig. 9-27: Linked list Program (cont.)

311

PROGRAMMING THE 6502

0119

0141

0141

0142

0141

0144

0149

014A

0147

0141

0149

0191

0191

0192

0191

0194

0199

0156

0197

0191

0199

0160

01 At

0162

0163

0164

016S

0166

0167

0AE0

•AE2

0AE4

OAEA

OAEI

IAEA

06EC

•AEE

•AFO

OAFI

•AFI

0AF9

0AF7

tAFt

OAFI

•AFI

•AFI

•AFA

•AFC

•AFI

•AFF

•7M

0701

0703

0705

0707

0709

070B

070C

A9 IF

•9 11

A9 00

A9 1C

19 12

A9 17 1

AO 00

91 It

Cl

A9 11

91 11

Af 00

AO (

AlC ENTLEN

STA INILOC

LIA 10

AlC 0LI*1

STA INILOC*1

IOVEIT LIA TENP ;(HAN8E UIAT lEEDt CHANGI
LIT 10

8TA (INILOC),Y
INY

LIA TEHP*1

STA (INILOC)fY

LM ••

JUTS ITS ,-Z SET IF IOXE

AO 00 PRETAB LIT 10

11 19

II

E9 41
•A

11

A9 19
85 11

A9 00

63 1A

8S 12

60

LIA (OBJECT),?

8EC ,-RENOVE ASCII LEADER FRON
IK IM1 ;..FIRST LETTER IN OBJECT
AIL A MULTIPLY IY 2
CLC

AK REFIA8 ;INDEX INTO REF. TABLE
STA I-DLOC

LDA 10

ADC F'CFBASH

STA INDLOCH

*TS

.EMD

ERRORS = 0000 '0000

SYMBOL TABLE

SYMBOL VALUE

DELETE 06IE DONE

FOUNB 0650 INDEXO

LOOP 0667 LOPE

NEU 0651 N0600D

OLD 0011 OUTE

06IB ENTLEN 001F ENTRY 0*1»

0010 IHOLOC 0011 INSERT 0613

0685 MORE 0676 HOVEIT OAEA

0632 NOTFNO 064E OBJECT 001S

06BD OUTS 06F7 POINTR O01J

PREINX 06BD PRETAB 06F8 REFBAS 0019

SETINX 06AF TABA8E 0010 TEMP 0017

END OF A8SEHBLY

SEARCH 0600

Fig. 9-27: Linked List Program (cont.)

312

DATA STRUCTURES

BINARY TREE

We will now develop typical tree management routines. Our simple

structure is shown in Fig. 9-28. It is a binary tree, and the nodes are

names of persons. Names will be internally sorted by "tags" which will

be the first three letters of every name. The memory representation of

this tree structure is shown in Fig. 9-29. The contents of the nodes are

shown, as well as the two links. The first link, to the left of the name, is

the "left sibling" and thejnext link, to its right, is the "right sibling."

For example, the entry for Jones contains two links: "2" and "4". This

indicates that its left sibling is entry number 2 (Anderson), and its right

sibling is entry number 4 (Smith). A "0" in the link field indicates no

sibling. A left sibling's tag comes alphabetically before its parent. A

right sibling's tag comes after.

ANDERSON SMITH

ALBERT BROWN

« CO

MURRAY

CO

TIMOTHY

/CO
ZORK

(8)
Fig. 9-28: Binary Tree

The two main routines for tree management are the tree builder

and the tree traverser. The element to be inserted will be placed in

a buffer. The tree builder will insert the content of the buffer into

the tree at the appropriate node. The tree traverser is said to

traverse the tree recursively, and prints the contents of each of its

nodes in alphanumeric order. The flowchart for the tree builder is

shown in Fig. 9-30, and the flowchart for the tree traverser is shown in

Fig. 9-31.

313

PROGRAMMING THE 6502

■'

1

2

3

4

5

6

7

8

LEFT

JONES

ANDERSON

BROWN

SMITH

MURRAY

ZORK

ALBERT

TIMOTHY

2

7

0

5

0

8

0

0

RIGHT

4

3

0

6

0

0

0

0

ORDER

OF INSERTION

Fig. 9-29: Representation In Memory

314

DATA STRUCTURES

B

Fig- 9-3O: The Tree Builder Flowchart

315

PROGRAMMING THE 6502

LEFT

POINTER OF

CURRENT

NODE = 0

ADD BUFFER

CONTENTS TO

TOP OF TREE

[POINTED TO

BY FREEPTR]

WORKPTR =

RIGHTPTR OF

CURRENT NODE

LfFT POINTER

OF CURRENT NODE

= FREEPTR

SET POINTERS OF

NEW NODE = 0

FREEPTR = FREEPTR

+ ENTLEN + 4

[RETURN 1

Fig. 9-30: The Tree Builder Flowchart (cont.)

316

DATA STRUCTURES

| WORKPTR - STARTPTR j

| PRINT TREE (WORKPTR)]

mOMCPTR «= RIGHTPTR (WORKPTR)]

Fig. 9-31: Tree Traverser Flowchart

317

PROGRAAAAAING THE 6502

Since the routine for the traversal is recursive, it does not lend itself well

to flowchart representation. Another description of the routine in a high-

level format is therefore shown in Fig. 9-32. An actual node of the tree

is shown in Fig. 9-33. It contains data of length ENTLEN, then two 16-

bit pointers (the right pointer and the left pointer). In order to avoid a

possible confusion, note that the representation of Fig. 9-29 has been

simplified and that the right pointer appears to the left of the left

pointer in the memory. The memory allocation used by this program is

shown in Fig. 9-34, and the actual program appears in Fig. 9-37.

The INSERT routine resides at addresses 0200 to 0282. The tag

of the object to be inserted is compared to that of the entry. If greater,

one moves to the right. If smaller, to the left, down by one position.

The process is then repeated until either an empty link is found or a

suitable "bracket" is found for the new node (i.e., one node is greater

and the next one smaller, or vice versa). The new node is then inserted

by merely setting the appropriate links.

PROGRAM TREETRAVERSER;

BEGIN

CALL SEARCH (STARTPOINTER);

END.

ROUTINE SEARCH (WORKPOINTER);

BEGIN

IF WORKPOINTER = OTHEN RETURN;

SEARCH [LEFTPTR (WORKPOINTER)];

PRINT TREE (WORKPOINTER);

SEARCH [RIGHTPTR (WORKPTR)];

RETURN;

END.

Fig. 9-32: Tree Traversal Algorithm

318

DATA STRUCTURES

DATA: 'ENTLEN' BYTES
RIGHT PTR

1 , H

LEFT

L

PTR

H

(n) (n + ENTLEN + 4)

Fig. 9-33: Data Units, or "Nodes" of Tree

PAGEO

$10

$17

$37

FREPTR (LO)

FREPTR (HI)

WRKPTR (LO)

WRKPTR (HI)

ENTLEN

STRTPT (LO)

STRTPT (HI)

BUFFER

HIGH MEMORY

PROGRAM

TREE

$200

$600

TOP OF TREE

Fig. 9-34: Memory Maps

319

PROGRAMMING THE 6502

The TRAVERSE routine resides at addresses 0285 to 02D6. The
utility routines OUT, ADD and CLRPTR reside at addresses 0207
to 02FE (see Fig. 9-37).

An example of a tree insertion is shown in Fig. 9-35, and an ex
ample of a tree traversal in Fig. 9-36.

SEARCH

ALBERT

-

ANDERSON

\
BROWN

TOM

JONES
2 INSERT

Fig. 9-35: Inserting an Element in the Tree

320

DATA STRUCTURES

ALBERT ANDERSON BROWN JONES MURRAY

SMITH ZORK

TIMOTHY

Fig. 9-36: Listing the Tree

Note on Trees

Binary trees may be constructed and traversed in many ways.

For example, another representation for our tree could be:

ALBERT

ANDERSON MURRAY

BROWN
SMITH TIMOTHY

ZORK

Fig. 9-38 : Tree in Preorder

It would then have to be traversed in "preorder":

1— list the root

2— traverse left subtree

3— traverse right subtree

Many other techniques and conventions exist.

321

PROGRAMMING THE 6502

0002

0003

0004

0005

0006

O007

0008

0009

OOtO

0011

0012

0013

OOH

O01S

0016

0017

0018

0019

0020

0021

O022

0023

0024

O025

O026

O027

0028

0029

0030

0031

0032

0033

O034

0035

0036

0037

0038

0039

O040

0041

0042

O043

O044

O045

0046

0047

0048

0049

0050

O051

0052

0053

0054

0055

0056

O057

0058

0059

0060

O061

O062

O063

0064

0065

0066

0067

0068

0069

O070

0071

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

ooto

0012

0012

0014

0015

0017

0026

002B

0200

0200

0200

0200

0200

0200

0202

0204

0206

0208

020A

020C

020E

0210

0212

0214

0217

021A

021B

0210

0220

0222

0224

0224

0226

0228

0228

0229

022B

022D

022F

0231

0233

0234

0236

0238

023A

023C

0230

023F

0241

0244

0247

0248

024A

024C

024D

024E

0250

0252

0254

00 06

A5 15

85 12

A5 16

85 13

A5 10

C5 15

00 OP

AS 11

C5 16

00 07

20 07 02

20 E4 02

60

AO 00

69 17 00

01 12

90 33

FO 02

80 05

C8

C9 04

00 FO

A4 14

81 12

00 15

C8

81 12

00 10

AS 11

91 12

88

AS 10

91 12

20 07 02

20 E4 02

60

A4 14

81 12

AA

C8

61 12

85 13

86 12

4C II 02

;TREE NANA6EHENT PROGRAH.

t*2 ROUTINES! ONE, WHEN CALLED. PLACES

;THE CONTENTS OF. THE 8UFFER INTO THE

,'tree; and the second traverses

;the tree recursively, printing its

;node contents in alphanumeric order.

,'note: 'entlen' must be initialized

;and -freptr' nust be set eoual to

t"strtptr' before either routine is used.

FREPTR *=«*2 {FREE SPACE POINTER: POINTS TO
{NEXT FREE LOCATION IN MEMORY.

WRKPTR ****2 {W0RKIN6 POINTER, POINTS TO CURRENT NODE.
ENTLEN •«•♦! {TREE ENTRY LENGTH, IN BYTES.
STRTPT .WORD 1600

BUFFER «s«*20 {I/O BUFFER.

♦ = $200

{ROUTINE TO BUILD TREE: ADOS ONE DATA UNIT,

{OR NODE, TO TREE. MUST BE CALLED

{WITH DATA UNIT TO BE ADDED IN 'BUFFER'.

INSERT LOA STRTPT

STA URKPTR

LOA STRTPT*!

STA URKPTR+1

LDA FREPTR

CMP STRTPT

BNE INLOOP

LOA FREPTR*1

CNP STRTPT+1

BNE INLOOP

JSR ADD

JSR CLRPTR

RTS

INLOOP LOY 10

CHPLP LDA BUFFER.Y

CMP (URKPTR),Y

BCC LESSTN ;IUFR TA6 LOWER: ADD BUFFER TO
{LEFT SIDE OF TREE.

NXT {TAGS EQUAL, TRY NEXT CHR. IN TAGS.

GRTNEO {BUFR TAG GREATER, ADD BUFR TO
{RIGHT SIDE OF TREE.

{WORKPOINTER <= FREEPOINTER.

.'IF FREEPOINTER <>

{STARTING LOCATION POINTER,

J60T0 INSERTION LOOP.

JLOAD BUFFER INTO CURRENT POSITION.

{SET POINTERS OF CURRENT NODE TO 0.
{DONE ADDING 1ST NODE.

{COMPARE BUFFER TA6 TO TAG OF CURRENT
{LOCATION...

BCS

NXT INY

CNP

BNE

GRTNEO LDY

LDA

BNE

INY

LDA

BNE

LDA

STA

DEY

LDA

STA

JSR

JSR

RTS

NXRNOD LDY

LDA

TAX

INY

LDA

STA

STX

JNP

M ;3 CHRS. COMPARED*
CNPLP JNO, CHECK NEXT CHR.

ENTLEN {DOES

(URKPTR),Y {RIGHT POINTER OF CURRENT NODf = 0

NXRNOD ;IF NOT, MOVE DOWN/RIGHT IN TREE.

(URKPTR),Y

NXRNOD

FREPTRH {SET RIGHT POINTES OF CURRENT

(URKPTR),Y {NODE = FREEPOINTER.

FREPTR

(URKPTR),Y

ADD ;ADD BUFFER TO TREE.

CLRPTR {CLEAR POINTERS OF NtU NODE.

{PONE, NEU RIGHT NODE ADDED.

ENTLEN {SET WORKING POINTER

<WRKPTRt,Y{ RI6HT POINTER OF CURRENT NODE.

(WRKPTR).Y

URKPTR+!

WRKPTR

INLOOP ;TRY NEU CURRENT NODE.

Fig. 9-37: Tree Search Programs

322

DATA STRUCTURES

0072

0*73

0*74

Of75

0076

0077

0071

0079

0082

0083

0084

O085

0186

0087

0088

0089

0090

0091

O092

0093

0094

O095

0096

0097

O098

0099

0100

0101

oto:

O103

0104

0105

0106

0107

0108

0109

0110

0111

0112

0113

0114

0115

0116

0117

0118

0119

0120

0121

0122

0123

0124

0125

0126

0127

0128

0129

0130

0131

0132

0133

0134

0135

0136

0t37

0138

0139

,0140

02S7

0259

025A

02SI

02SI

02SF

0260

0242

0264

0246

0248

0269

0261

0260

0270

0273

0274

0276

0277

0278

027A

0271

027C

027E

0280

0282

0285

0285

0285

0285

0285

0285

0285

0287

0289

028B

028D

028F

0291

0293

0295

0297

029A

029B

029C

0290

029F

02AO

02A1

02A3

02A4

02A5

02A?

02A9

02AB

02AE

02AF

02B1

02B2

02B4

02B7

02B9

02BB

02BC

02BD

02BF

02C1

02G3

02C6

A4 14

C8

C8

11 12

•0 19

Cl

•I 12

•0 10

AS II

91 12

88

AS 10

91 12

20 17 02

20 E4 02

60

A4 14

C8

C8

II 12

AA

C8

II 12

85 13

86 12

4C II 02

AS IS

85 12

A5 16

85 13

AS 13

A6 12

00 07

A4 13

DO 03

4C C6 02

48

8A

48

A4 14

C8

C8

II 12

AA

C8

B1 12

85 13

86 12

20 8D 02

66

85 12

68

85 13

20 C7 02

A4 14

B1 12

AA

C8

B1 12

85 13

86 12

20 80 02

60

LESSTN LIT

INT

INT

LIA

ME

INT

LIA

ME

LIA

8TA

IEY

LIA

STA

JSR

JSR

ITS

NXLRdl LIT
INT

INT

LIA

TAX

INT

LIA

STA

STX

JNP

ENTLEN ,*IOES LEFT POINTEI OF

;CURRENT NOIE * 0 ?

(URKPTR),Y

NXLNOI

<URKPTR>,T

NXLNOI

FREPTR*1

(VRKPTR),T

FIEFTR

<WRKPTR),Y

All

CLRPTR

ENTLEN

<URKPTR),T

(URKPTR),Y

URKPTR*1

URKPTR

IHIOOP

;if so, move ioin/left in tree.

JSET LEFT POINTER OF CURRENT IOIE TO

;POINT TO m NOIE.

;*oi new noie contents.

;clear pointers of new noie.

;ione, nem left noie addeb.

;set u0rkin6 pointer *

;left pointer of current node.

{TRY NEW CURRENT NODE.

;TREE TRAVERSER t LISTS NODES OF TREE

;IN ALPHAMMERICAL ORDER.

;OUTPUT ROUTINE TO XFER IUFFER TO OUTPUT

DEVICE 18 NEEIEI.

TRVRSE LIA

STA

LIA

STA

SEARCH LOA

LIX

INE

LIT

INE

JNP

OK PHA

TXA

PHA

LOT

INT

INT

LDA

TAX
INY

LIA

STA

STX

JSR

PLA

STA

PLA

STA

JSR

LDY

LOA

TAX

INY

LOA

STA

STX

JSR

RETN RTS

8TRTPT

URKPTR

STRTPU1

URKPTR*1

URKPTR*1

URKPTR

OX

URKPTR*1

OX

RETN

ENTLEN

{WORKING POINTER <= START POUTER.

;IF U0RKIN6 POINTER <> 0,

{CONTINUE;

{ELSE, RETURN.

;PUSH WORKING POUTER

;ONTO STACK.

f*SET U0RKIN6 POINTER =

;left pointer of current node.

(URKPTR)VY

(URKPTR)J

URKPTR*1

URKPTR

SEARCH

URKPTR

URKPTR*1

OUT

ENTLEN

(URKPTR),Y

(URKPTR)fY

URKPTR*t

URKPTR

SEARCN

;SEARCH NEW NODE, RECURSIVELY.

•POP OLD CURRENT NODE INTO U0IKIN6 POINTER.

{OUTPUT CURRENT NODE CONTENTS.

JSET U0RKIN6 POINTER =

{CURRENT NODE'S RI6HT POINTER.

{SEARCH NEW NODE.

{DONE, RETURN.

Fig. 9-37: Tree Search Programs (cont.)

323

PROGRAMMING THE 6502

0141

0142

0143

0144

0145

0146

0147

0148

014?

0150

0151

0152

0(53

0154

0155

0156

0157

0158

0159

0160

0161

0162

0163

0164

0165

0166

0167

0168

0169

0170

0171

0172

0173

0174

0175

0176

0177

0176

0179

0180

0181

0182

0183

0184

0185

02C7

02C7

02C7

02C7

02C9

02CI

02CE

02CF

02D1

02D3

0264

02D5

02D6

02D7

02D7

0207

02D7

02D7

02D9

02DC

02DE

020F

02E1

02E3

02E4

02E4

02E4

02E4

02E4

02E6

02E6

02Efi

02EA

02EC

02E0

02EE

02F0

02F2

02F3

02F5

02F7

02F9

02FB

02FD

02FE

AO

B1

99

C8

C4

DO

EA

EA

EA

60

AO

B9

91

CB

C4

DO

60

A4

A9

A2

91

C8

CA

DO

AS

18

69

65

90

E6

85

60

00

12

17 00

14

F6

00

\7 00

10

14.

F6

14

00

04

10

FA

14

04

10

02

11

10

j

;IUFFER OUTPUT ROUTINE.

{
OUT

XFR

•

LDY 10

LDA <URKPTR),Y

STA BUFFER,Y

INY

CPY ENTLEN

INE XFR

NOP

NOP

NOP

RTS

{ROUTINE UHICH PLACES I

{CONTENTS IN NEU NODE.

;

ADD

NOV

•

LDY 10

LDA BUFFER,Y

STA (FREPTR),Y

INY

CPY ENTLEN

8NE NOV

RTS

;get chr. from current node.

;PUT IN BUFFER.

{REPEAT UNTIL...

{ALL CHARACTERS XFERRED.

{INSERT CALL TO SUBROUTINE

{UHICH OUTPUTS BUFFER HERE.

{DONE.

IUFFER

{GET CHR. FROM BUFFER.

{STORE IN NEU NODE.

{REPEAT UNTIL...

{ALL CHR6 XFERREB.

{DONE.

{ROUTINE TO CLEAR P0INTEI8 OF NEU NOTE,

,-and i

{

UPDATE FREE SPACE

CLRPTR LDY ENTLEN

CLRLP

CC

;to

LDA 10

LDX 14

STA (FREPTR)fY

INY

DEX

m clrlp

LDA ENTLEN

CLC

ADC 14

ADC FREPTR

BCC CC

INC FREPTR*1

STA FREPTR

RTS

.END

POINTER.

{SET UP INDEX TO POINT

TOP OF POINTER LOCATIONS.

{LOOP 4X TO CLEAR POINTERS

{CLEAR POINTER LOCATION.

{POINT TO NEXT POINTER LOCATION

{LOOP IF NOT DONE.

{6ET ENTRY LENGTH,

{AND ADD 4 FOR POINTER SPACE.

{ADD TO FREE SPACE POINTER TO

{UPDATE IT.

{TAKE CARE OF OVERFLOWS.

{RESTORE UPDATED FREE SPACE PTR

{DONE.

ERRORS = 0000 <0000>

END OF ASSENBLY

Fig. 9-37: Tree Search Programs (cont.)

324

DATA STRUCTURES

A HASHING ALGORITHM

A common problem when creating data structures is how to place

identifiers within a limited amount of memory space in a sys

tematic way so that they can be retrieved easily. Unfortunately,

unless identifiers are distinct sequential numbers (without gaps),

they do not lend themselves to placement in the memory with

out gaps. In particular, if names were to be placed in the memoiv so

that they could be most easily retrieved (i.e., if they were placed

alphabetically), this would require a huge amount of memory;

a single memory block would have to be reserved for every possible

name. This is clearly not acceptable. To solve this problem, a hashing

algorithm can be used to allocate a unique (or almost unique) number

to every name which has to be entered into memory. The mathematical

function used to perform the hashing should be simple so that the algo

rithm can be fast, yet sophisticated enough to randomize the distri

bution of the possible names over the available memory space. The re

sulting number can then be used as an index to the actual location, and

fast retrieval will be possible. It is for this reason that hashing is com

monly used for directives of alphabetic names.

Since no algorithm can guarantee that two names will not hash

into the same memory location (a "collision") a technique must be

devised to resolve the problem of collisions. A good hashing algor

ithm will spread names evenly over the available memory space,

and will allow efficient retrieval of their values once they have been

stored in a table. The hashing algorithm used here is a very simple

one, where we perform the exclusive OR of all the bytes of the key.

A rotation is performed after every addition to improve the ran

domization.

The technique used to resolve collisions is a simple sequential
one. It is technically called a "sequential open addressing tech

nique; " the next sequentially available block in the table is

allocated to the entry. This can be compared to a pocket address

book. Let us assume that a new entry must be entered for SMITH.

However, the "S" page is full in our small address book. We will

use the next sequential page ("T" here). Note that there will not

necessarily be another collision with a new entry starting with a "T";

the entry for "S" may be removed ("whited out," in our comparison)

before a * *T" ever needs to be entered.

Also note that there could be a chain of collisions. If the chain is

long, and the table is not full, the hashing algorithm is a bad de

sign.

325

PROGRAMMING THE 6502

Since it is convenient to use a power of two for the data format,

the length of the data is eight characters; six are allocated to the

key, and two to the data. This is a typical situation when creating,

for example, the symbol table for an assembler. Up to six hexa

decimal symbols are allocated to the symbol, and two are allocated
to the address it represents (2 bytes).

When retrieving elements from the hashing table, the time re

quired by the search does not depend on the table size, but on the

degree to which the table has been filled. Typically, keeping the
table less than 80%full will insure a high access time (one or two

tries). It is the responsibility of the calling routine to keep track of the

degree of fullness of the table and prevent overflow.

The increase of the access time versus table fullness is shown in

Fig. 9-39. The main routines used by the program are the initialize

subroutine (INIT), shown in Fig. 9-40; the store routine, shown in

Fig. 9-41; the retrieve routine, shown in Fig. 9-42; and the hash routine,

shown in Fig. 9-43. The memory allocation is shown in Fig. 9-44,

and the program is given in Fig. 9-45. The program is intended to demon

strate all the main algorithms used in an actual hashing

mechanism. If these programs are to be imbedded in an actual imple

mentation, it is strongly suggested that the usual housekeeping

ACCESS
TIME

TABLE FULLNESS

Fig. 9-39: Access Time vs. Relative Fullness

326

DATA STRUCTURES

Fig. 9-4O: Initialize Subroutine

Fig. 9-41: "Store" Routine

327

PROGRAMMING THE 6502

j START]

HASH KEY IN BUFFER

PUT RESULT IN INDX

KEY AT TABLE (PTR) "S^ N

MATCHES KEY IN BUFFER?

1—*
INDEX = INDEX - ENTNUM

PLACE DATA UNIT AT

TABLE (PTR) IN BUFFER

[DONE j

INDEX = INDEX + 1

Fig. 9-42: Retrieve Routine, "Find"

328

DATA STRUCTURES

CLEAR A

i
Y = 5

\
A = (A) EXCLUSIVE

OR TABLE [PTR + Y]

A =

N

Y =

< Y

I
A * 2

\
= Y- 1

= -1? ^>

INDEX = A

i
[DONE]

Fig. 9-43: Hash Routine

329

PROGRAMMING THE 6502

functions required to prevent unexpected situations be added. In
particular, one should guard against the possibility of a full table

or of an incorrect key since these might cause infinite loops to oc
cur in the program. The reader is strongly encouraged to study
this program. Not only will it demystify a hashing algorithm, but
it will also solve an important practical problem encountered when
designing an assembler, or any other structure where tables of
names with their equivalent values must be kept in an efficient
way.

PAGEO
HIGH MEMORY

$200

Fig. 9-44: Hash Store/Retrieve: Memory Maps

330

DATA STRUCTURES

LINE I LOC COIE LINE

0002 OOOO ;PtMRAN Tl ITOW MSCMMLCI SVHMIS II *
0003 0000 .'TAILE, ACCESSES IT NASMN8. TNC STHMIS
0004 0000 ;AR£ A CMS, IATA 2. THE HAXINM HOMER OF
0005 0000 ;8-ITTE WITS TO K ITMEI IN THE TAILE
0006 0000 ;SNOULI IE IN 'ENTNUN', SE8INNIN0 ADWESB OF
0007 0000 ;"ILE SNOULI IE IN 'TAME'. NOTE THAT
0008 0000 ;TAILE HUBT IE INITIALIZEI WITH ROUTINE

OOOf 0000 JIN"' PRIOR TO USE.
0010 0000 ;IT IS THE RESPONSIBILITY OF THE CALLINS

0011 0000 JPR06RM NO TO EICEEI THE TAtU SHE.

0012 0000 •
/JO 11 AAAA • « 110

0 1 0010 00 04 TAHE .yORI «6W ;STARTM8 ADMESS OF TABLE.
O01S 0012 INM •••♦! jWW OF IATA UNIT TO BE ACCESSED.
oft a 0013 PTR •••♦2 ;fOINTER TO MTA UNIT IN TAHE.
2" 2iS MTifJ •—I INURIER OF ENTRIES IN TMU 129* MAX)
0018 0016 IUFFER •«•♦• ;INPUT/ OUTPUT IOFFER.

0019 001E •

0020 00IE • ■ •*••

2» 0200 IwUTINE 'INIT' i INITIALIZES TAtLE
0023 0200 ;T0 ZEROES.

0024 0200 ;

Zl °022°0°2 '2 !53 IM" s" RT IB1K • .F ENTRIES » POINTER
0027 0204 20 72 02 JSR SHAH ;«JLTIF1T PTRtl, All TAHE PIINHR.
0028 0207 A2 00 LDX 10 ;CLEAR X FOR INHRECT AHRESSWS.

0029 0209 A9 00 CLRLP LDA 10 JSET CLEARINO CONSTANT

Toll SS 2 n m « iir ptr o o, nkt decreient hi im.
2» 020F C6 14 DECPTR*! JIECRENENT NI ITTE OF POINTER.
0033 0211 C6 13 BECR DEC PTR ;KCRENENT LO ITTE.
0034 0213 81 13 STA (PTRVX> JCLEAR LOCATION.
0035 02 5 A5 3 LIA PTR JCHECK IF POWER - TAILE POWER,
0036 0217 C5 10 CHP TAILE |lF UNEOUAL, CLEAR NEXT LOCATION.
0037 0219 00 EE INE CLRLP

0038 0218 AS 14 LIA PTR*1

0039 021D C5 11 CHP TAILEM

0040 021F 80 E8 INE CLRLP

0041 0221 60 MS

0043 0222 -ROUTINE 'STORE'S PLACES BUFFER C0NTENT8 IN
0044 0222 ;TA8LE, U8IN8 1ST 6 CMS. OF tWFER AS A
0045 0222 ;'KEY' TO OETERNINE NA8HSI AIIRESI XI

0046 0222 {TAILE.

0048 0222 A2 00 STORE LDX 10 JCLEAR X FOR INKXED AD9REI8IN0.
0049 0224 20 90 02 JSR HASH JBET HA8NEI INIEX..
0050 0227 20 62 02 CHPR1 JSR LINIT ;NAKE SORE INIEX IS HITHII I0IM8.
0091 022A A1 13 LIA (PTRfX) JCHECK IATA UNIT...

0052 022C F0 05 IEO ENPTT JJUNP IF HPTT.
0053 022E E6 12 INC INIX ;TRT NEXT UNIT.
O094 0230 4C27 02 JHP CHPRI ;CHECX FOR NEXT WIT INDEX VALID.
0U3 0233 A0 07 ENPTY LIT 17 ;LOOP OX TO LOAI IATA UNIT.

0096 0239 19 16 00 FILL LIA BUFFER,Y ;8ET CHR FROM IUFFER,
0097 0238 9113 STA (PTR),Y ;PLACE ITU IUFFER.

0098 023A 18 IEY
0099 0231 10 F8 IPL FILL ;XFER NEXT CRR.
0060 0238 60 RTS ;AIIITION DINC.

0061 023E ;

0062 023E {ROUTINE 'FINI' I

0063 023E ;FINIS ENTRY VHOSE KEY IS IN BUFFER.

0064 023E ,'EKTRY, UHEN FOUNIV IS COPIEB INTO
0*69 023E ;IUFFER, AL0N8 WITH 2 IVTEI OF DATA.

0066 023E \
0067 023E A2 00 FINI LDX 80 ;CLEAR X FOR IWIIECT AIDIE88IH8.

0061 0240 20 90 02 JSR HASH ;OET HASH PROWCT.
0A69 0243 20 62 02 CHPR2 JSR LIMIT JHAKESURE RESULT IS UXTHIN LIMITS

Fig. 9-45: Hashing Program

331

PROGRAMMING THE 6502

0070

0071

0072

0073

0074

0075

0076

0077

0078

007?

0080

0061

0082

O083

0084

008S

0086

0087

0088

008?

0090

0091

0092

O093

0094

0095

0096

0097

0098

0099

otoo

otot

0102

0103

0104

0105

0106

0107

0108

0109

0110

0111

0112

0113

0114

0115

0116

0117

0118

0119

0120

0121

0122

0123

0124

0125

0126

0127

ERRORS

SYHBOL

SYMBOL

BAD

CHPR1

ENTNUN

HASH

NATCH

STORE

END OF

0246

0248

024A

024D

024F

0250

0252

0254

0256

0259

025A

025C

025D

025F

0262

0262

0262

0262

0262

0262

0262

0264

0266

0268

0269

026B

026E

0270

0272

0274

0276

0278

027A

027C

027E

0280

0282

0283

0285

0287

0289

028B

028D

026F

0290

0290

0290

0290

0290

0292

0293

0295

0298

0299

029A

029C

029E

029F

AC

B1

D9

DO

88

10

AO

B1

99

88

10

60

E6

4C

A5

C5

90

38

ES

4C

85

85

A9

85

06

26

06

26

06

26

18

AS

65

85

A5

65

85

60

A9

18

AO i

59

2A

88

10 1

85

60

' OS

13

16 00

OE

F6

07

13

\6 00

F8

12

43 02

12

15

06

15

64 02

13

12

00

14

13

14

13

14

13

14

10

13

13

11

14

14

00

D5

16 00

F9

12

« 0000 <0000>

TABLE

VALUE

025D

022?

0015

0290

025

022

•»

2

ASSEMBLY

BUFFER

CHPR2

EXOR

INDX

OK

TABLE

CHKLP

NATCH

XFER

BAD

LDY 15

LDA <PTR),Y

CMP BUFFER,Y

BNE BAD

DEY

BPL CHKLP

LDY 17

LDA (PTR)fY

STA BUFFER,Y

DEY

BPL XFER

RTS

INC INDX

JHP CNPR2

,'ROUTINE TO HAKE SURE

;BOUNDS SET BY ENTNUN
t'BY 8, AND ADD IT TO

t'RESULT IS PLACED IN

$

LIMIT

TEST

OK

SHADD

•

LDA INDX

CNP ENTNUN

BCC OK

SEC

SBC ENTNUN

JHP TEST

STA PTR

STA INDX

LDA 10

STA PTRM

ASL PTR

ROL PTR*t

ASL PTR

ROL PTR+1

ASL PTR

ROL PTR+1

CLC

LDA TABLE

ADC PTR

STA PTR

LDA TABLE*1

ADC PTR+1

STA PTRM

RTS

;LO0P 6X TO CONPARE BUFFER TO DATA
;6ET CNR FRON TABLE.
;IS IT a BUFFER CHR?

,'IF NOT, TRY NEXT DATA UNIT.

;CHECK NEXT CHRS.

;loop sx to xrER chrs to buffer.
,*6ET CHR. FRON TABLE.

{STORE IN BUFFER.

;LOOP TO XFER CHRS.

.'DONE sDATA UNIT FOUND, IN BUFFER.
;not found, try next data unit.

.'VALIDATE H€U DATA UNIT INDEX.

DATA INDEX IS UITHIN

, THEN NULTIPLY INDEX

TABLE POINTER. THE

'PTR' AS DATA UNIT ADDRESS.

;get index.

;INDEX > NUMBER OF DATA ITEMS?
;JUNP IF NOT.

;yes -

;SUBTRACT 1 Or ITEMS UNTIL

;INDEX UITHIN BOUNDS.

f'STORE 600D INDEX IN POINTER.

;SAVE UPDATED INDEX.

,• CLEAR UPPER POINTER FOR SHIFT.

,'SHIFT PTR 3X LEFT - MULTIPLY BY 8.

;add pointer and table start

;address and place result in pointer

{ROUTINE TO 6ENERATE DATA UNIT INDEX IN TABLE
;BY HASHING 'KEY', OR

HASH

EXOR

0016

0243

0295

0012

026E

0010

LDA 10

CLC

LDY IS

EOR BUFFER,Y

ROL A

DEY

BPL EXOR

STA INDX SAVE H

RTS

.END

CHKLP 0240

DECR 0211

FILL 0235

INIT 0200

PTR 0013

TEST 0264

CHRS OF LABEL.

;CLEAR LOCATION FOR INDEX.

;PREPARE TO ADD.

JLOOP 6X FOR EXCLUSIVE ORS.

;exclusive-or accun. uith buffer chr

;MULTIPLY ACCUN. BY 2.

,'COUNT DOUN CHRS.

,'6ET NEXT CHR.

IASH PRODUCT AS INDEX.

;done.

CLRLP 020r

EMPTY 0233

FIND 023E

LIHIT 0262

SHADD 0272

XFER 0254

Fig. 9-45: Hashing Program (cont.)

332

DATA STRUCTURES

BUBBLE-SORT

Bubble-sort is a sorting technique used to arrange the elements
of a table in ascending or descending order. The bubble-sort tech
nique derives its name from the fact that the smallest element
"bubbles up" to the top of the table. Every time it "collides" with

a "heavier" element, it jumps over it.
A practical example of bubble-sort is shown in Fig. 9-46. The list

to be sorted contains: 10, 5, 0, 2, and 100, and must be sorted in
descending order ("0" on top). The algorithm is simple, and the

flowchart is shown in Fig. 9-47.

The top two (or bottom two) elements are compared. If the
lower one is less ("lighter") than the top one they are exchanged.
Otherwise, they remain the same. For practical purposes, the exchange,

if it occurs, will be noted for future use. Then, the next pair of elements

will be compared, etc., until all elements have been compared two by two.

This first pass is illustrated by steps 1, 2, 3, 4, 5, and 6 in Fig. 9-47,
going from the bottom up. (Equivalently, we would go from the top

down.)

If no elements have been exchanged in one pass, the sort is complete.

If an exchange has occurred, we start all over again.

Looking at Fig. 9-47, it can be seen that four passes are neces

sary in this example.

The process described above is simple, and is widely used.

One additional complication resides in the actual mechanism of

the exchange. When exchanging A and B, one may not write:

A = B

B = A

as this would result in the loss of the previous value of A. (try it on

an example.)

The correct solution is to use a temporary variable or location to

preserve the value of A:

TEMP = A

A =B

B = TEMP

It works. (Again, try it on an example.) This is called a circular permu

tation., and it is the way all programs implement the exchange. The

technique is illustrated in the flowchart of Fig. 9-47.

333

PROGRAMMING THE 6502

10

5

0

2

100

100>2:

NO CHANGE

*— 1-4

«*— 1 = 5

10

5

0

2

100

2>0

NO CHANGE

*+— 1 3

■* 1 4

10

5

0

2

100

0<5

EXCHANGE'

«*— 1 • 2

"^— 1 3

© ©

0

0

10

2

5

100

2<10:

EXCHANGED

"*— 1 = 2

«*— 1=3

10

0

5

2

100

EXCHANGED

©

0

10

5

2

100

100>2:

NO CHANGE

n

«* 1 = 4

■*— 1 = 5

10

0

5

2

100

0< 10:

EXCHANGEE

0

10

5

2

100

2<5:

EXCHANGED

©

10

100

"*-l

EXCHANGED

1 -1

1 = 2

E

E

= 3

= 4

0

10

5

2

100

n

EXCHANGED
ND OF PASS 1

©
ND OF PASS 1

0

10

2

5

100

n

EXCHANGED

©

0

2

10

5

100

•*— 1 = 1

<*— 1 = 2

2>0:

NO CHANGE

U2J

END OF PASS 2

Fig. 9-46: Bubble-Sort Example

334

DATA STRUCTURES

10

100

1=4

1 = 5

100>5:

NO CHANGE

10

100

1=3

1 = 4

5<10:

EXCHANGED

10

100

EXCHANGED

(\5)

10

100

1 = 2

1=3

5>2:

NO CHANGE

10

100

•1 = 1

1=2

2>0:

NO CHANGE

10

100

1=4

1 = 5

100 > 10:

NO CHANGE

END OF PASS 3

10

100

1 = 3

1 = 4

10>5:

NO CHANGE

10

100

1=2

1=3

5>2:

NO CHANGE

10

100

2>0:

NO CHANGE

END

Fig. 9-46: Bubble-Sort Example (cont.)

335

PROGRAMMING THE 6502

GET NUMBER OF

ELEMENTS N
I=N

EXCHANGE E AND E
TEMP = E(l)

Fig. 9-47: Bubble-Sort

336

DATA STRUCTURES

The memory map corresponding to the bubble-sort program is

shown in Fig. 9-48. In this program, every element will be an 8-bit
positive number. The program resides at addresses 200 and follow

ing. Register X is used to memorize the fact that an exchange has

or has not occurred, while register Y is used as the running pointer
within the table. TAB is assumed to be the beginning address of

the table. The actual program appears in Fig. 9-49. Indirect in

dexed addressing is used throughout for efficient accessing. Note

how short the program is, due to the efficiency of the indirect ad

dressing mode of the 6502.

0000

0001

— TABLE PTR —

PROGRAM

NUMBER n

ELEMENT 1

ELEMENT 2

ELEMENT n

|—
CURRENT ELEMENT

] C

Fig. 9-48: Bubble-Sort: Memory Map

337

PROGRAMMING THE 6502

SORT PAGE OOOI

LINE

O002

0003

O004

O005

O006

O007

0006

O009

0010

0011

O012

0013

O014

0015

0016

0017

O0I8

0019

0020

0021

O022

O023

O024

O025

O026

O027

0028

0029

0030

1 LOC

0000

0000

0000

0000

0000

0002

0002

0200

0200

0202

0204

0205

0207

0208

020A

020C

020E

020F

0211

0212

0214

0215

0216

0218

02IA

02IC

02ID

021F

0220

00

A2

At

A8

Bt

68

FO

D1

BO

AA

Bt

C8

91

8A

68

91

A2

DO

8A

DO

60

CODE

06

00

00

00

12

00

F7

00

00

00

01

E9

Ef

LIME

j

•

TAB
j

•

SORT

LOOP

EXCH

FINISH

BUBBLE SORT m

• * »0

.UORD 1600

• * 1200

LDX 10

LDA <TAB,X>

TAY

LDA (TAB),Y

DEY

BEQ FINISH

CMP <TAB),Y

BCS LOOP

TAX

LDA <TAB),Y

INY

STA <TAB),Y

TXA

DEY

STA <TAB),Y

LDX It

BNE LOOP

TXA

BNE SORT

RTS

.END

NifcrtN

,'SET EXCHANGE 0' TO 0

;nuhber of elements is in y

;read element e(d

JDECREMENT NUMBER OF ELEMENTS TO READ.

;END IF NO MORE ELEMENTS

ICOHPARE TO EMI)

;GET NEXT ELEMENT IF E(I»E'U>

{EXCHANGE ELEMENTS

;SET EXCHANGED TO 1

;get next element

.-SHIFT EXCHANGED TO A REG. FOR C0MP4

JIF SOME EXCHANGES MADEf DO ANOTHER H

ERRORS - 0000 <0000>

SYMBOL TABLE

SYMBOL VALUE

EXCN 020E FINISH 021C LOOP

TAB 0000

EMD OF ASSEMBLY

0205 SORT O2O0

Fig. 9-49: Bubble-Sort Program

338

DATA STRUCTURES

NO ^ PTR1> \ YES

TABLEl (0)?

Fig. 9-5O: Merge Flowchart

339

PROGRAMMING THE 6502

A MERGE ALGORITHM

Another common problem consists in merging two sets of data
into a third one. We will assume here that two tables of data have
been previously sorted, and we want to merge them into a third table. The

length of each of the two original tables will be limited to 256 bytes (one
page). The first entry of every table contains the length of the table
of the table.

The algorithm for merging two tables is shown in Fig. 9-50. The
corresponding memory organization is shown in Fig. 9-51, and the
program appears in Fig. 9-52. Remember to set 'TABLE1"

"TABLE2," and "DESTBL" before using it.

The algorithm itself is straightforward. Two running pointers
PTR1 and PTR2, point to the two source tables. PTR3 points to
the resulting table.

Fig. 9-51: Merge Memory Map

340

DATA STRUCTURES

LINE 1

0992

0003

0004

0909

000*

0907

0998

0909

0910

0911

0912

0913

0014

0019

001*

0017

0018

0919

0920

0921

0922

0923

0924

0929

092*

0927

0928

0929

0930

0931

0932

0933

0934

0939

093*

0037

0939

0939

0040

0941

0942

0943

0044

0949

094*

0947

0048

0949

0990

0991

0992

0993

0994

0999

009*

0997

0999

0999

09*0

09*1

09*2

09*3

09*4

09*9

09**
09*7

09*8

09*9

1 L8C

9000

9000

9000

9000

0000

0090

9000

0000

0000

0090

0000

9010

0012

0014

001*

0017

0018

001A

901A

0200

0200

0202

0204

020*

0208

020A

020C

020E

0210

0212

0214

021*

0218

021A

921C

021E

0220

0222

0224

0224

922*

9228

022A

022C

022F

0231

0233

9239

0237

0239

923B

023B

023F

0241

9243

0249

9247

0249

924B

024B

924E

0290

0292

0294

029*

0298

929A

0251

A9

89

A9

89

A9

89

89

A2

A1

C9

90

A1

C9

90

A4

B1

A4

B1

90

A4

B1

E*

4C

A4

B1

E6

81

E*

BO

E*

A1

C9

BO

A1

C9

BO

A9

89

18

A1

61

89

90

A9

89

60

COBE

11

19

10

18

91

1*

17

00

14

17

19

12

1*

OA

1*

12

17

14

99

17

14

17

39 92

1*

12

1*

18

18

92

19

12

1*

CB

14

17

C7

00

19

12

14

18

04

01

19

LINE

;2-p*GJ

;tares

• RERBE.

2 BATA TABLES PREVIONSLY 8SRTEB,

{ANB HEROES THEN INTO

;EACN SOORCE TABLE CAI

{PA8E i

A TNIRB TABLE.

1 BE OP TO BNE

[29* BYTES) IN LENOTN.

;tne first elenent of

;TABLE!

{'PTR3'

THE IOBRCE

1 MIST CONTAIN THE TABLE LEHBTN.

' CONTAINS TNE LENGTH BF TRE

{BESTINATION TABLE AT
•

BESTBL

TABLE1

TABLE2

PTR1

PTR2

PTR3
•

•

CONPR

TRTB2

TRTB1

STORE

CC

ccc

• « 110

•■•♦2

•■•♦| j

•«•♦! ;

♦■•♦2 j

• ■ 9200

LBA IE8TILH

STA PTR3*1

LBA BESTBL

STA PTR3

LBA 11

STA PTR1

STA PTR2

LBX 19

LBA (TABLE2,X)

CNP PTR2

BCC TRTB1

LBA (TABLE1,X)

CRP PTR1

BCC TKTB2

LIT PTR1

LBA (TABLED,Y

LBY PTR2

CRP (TABLE2),T

RETNRN.

{POINTER TO BE8INNIN6 OF DESTINATION TABLE

{POINTER TO SOURCE TABLE 1.

{POINTER TO SOURCE TAILE 2.

! TABLE 1 INBEX.

! TABLE 2 INDEX.

IBESTINATIBN TAILE INIEX.

{PTR3 - TABLE3

{SET SOURCE TABLE POINTERS TO BEGIRNIRG,

{SRIPPIN8 TABLE LENOTNS.

{CLEAR X FOR INBIRECT ABDIES8ING.

{IS TABLE 2 LENGTH <

{TABLE 2 POINTER?

{IF YES, SET BYTE FROM TABLE 1.

{II TABLE 1 LEN8TN <

{TABLE 1 POINTER?

{IF YES, 6ET IYTE FROM TABLE 2

{SET POINTER FOR TAILE 1.

{USE IT TO FETCH IYTE.

{OET POINTER FOR TABLE 2,

{USE IT TO FINB BYTE TO CORPARE

;T0 TABLE 1 BYTE.

BCC TKTB1

LIT PTR2

LIA (TAILE2),T

IRC PTR2

JRP STORE

LBY PTR1

LIA (TABLED,T

IRC PTR1

STA (PTR3,X)

IRC PTR3

BHE CC

IRC PTR3*1

LIA (TABLE1,X)

CHP PTR1

IC8 CONPR

LIA (TABLE2,X>

CHP PTR2

ICS CONPR

LM 19

STA PTR3+1

CLC

LIA (TABLE1,X)

ABC (TABLE2,X)

STA PTR3

ICC CCC

LBA 11

STA PTR3*1

RTS

.END

UF TABLE 1 BYTE LES8. TARE IT.

{GET POINTER FOR TABLE 2.

{8ET NEXT BYTE FRON TABLE 2.

{IRCREHENT POINTER FOR TABLE 2.

{00 STORE BYTE IN BE8TIHATI0N TABLE.

{SET POINTER 1...

{ARB U8E IT TO GET BYTE FROM TABLE.

{IRCREHEHT POINTER FOR TABLE 1.

{STORE BYTE AT REXT LOCATION IN TABLE 3.

{IRCRENENT LO ORBER TABLE 3 POINTER.

{IF RO OVERFLOW, SKIP

{IRCRENENT NI ORDER TABLE 3 PIIRTER.

{IS TABLE 1 LEHOTN 8REATER

{THAR OR EQUAL TO POIHTER 1?

{IF YES, SET IEXT BYTE.

{IS TABLE 2 LEN8TH GREATER

{THAR OR EQUAL TO POINTER 2?

{IF YES, SET IEXT BYTE.

{CLEAR PTR3 NI BRDER.

{HER6E BORE, ROU..

{AID TABLE 1 ANI 2 LERGTHI.

{STORE 8UH IN TABLE 3 TEMPORARY POINTER.

.{AND..

{OVERFLOU IN...

{HI ITTE.

ERRORS > 0000 <0000>

ERB OF ASSEMBLY

Fig. 9-52: Merge Program

341

PROGRAMMING THE 6502

The current entries in TABLE1 and TABLE2 are compared two

at a time. The smaller one is copied into TABLE3 and the corresponding

running pointer is incremented. The process is repeated and terminates

when both PTRl and PTR2 have reached the bottom of their respective

tables.

SUMMARY

The basic concepts relative to common data structures, as well

as actual implementation examples have been presented.

Because of its powerful addressing modes, the 6502 lends itself

well to the management of complex data structures. Its efficiency

is demonstrated by the terseness of the programs shown.

In addition, special techniques have been presented for hashing,

sorting and merging, which are typical of those required to solve

complex problems involving actual data structures.

The beginning programmer need not concern himself yet with

the details of data structures implementation and management.

However, for efficient programming of non-trivial algorithms, a good

understanding of data structures is required. The actual examples

presented in this chapter should help the reader achieve such an under

standing and solve all the common problems encountered with reason

able data structures.

342

10

PROGRAM DEVELOPMENT

INTRODUCTION

All the programs we have studied and developed so far have

been developed by hand without the aid of any software or

hardware resources. The only improvement we have used over

straight binary coding has been the use of mnemonic symbols,

those of the assembly language. For effective software develop

ment, it is necessary to understand the range of hardware and

software development aids. It is the purpose of this chapter to

present and evaluate these aids.

BASIC PROGRAMMING CHOICES

Three basic alternatives exist: writing a program in binary or

hexadecimal, writing it in assembly-level language, or writing it

in a high-level language. Let us review these alternatives.

1. Hexadecimal Coding

The program will normally be written using assembly lan

guage mnemonics. However, most low-cost, one-board computer

systems do not provide an assembler. The assembler is the pro

gram which will automatically translate the mnemonics used for

the program into the required binary codes. When no assembler is

available, this translation from mnemonics into binary must be

performed by hand. Binary is unpleasant to use and error-prone,

so that hexadecimal is normally used. It has been shown in Chap-

343

PROGRAMMING THE 6502

ter 1 that one hexadecimal digit will represent 4 binary bits. TWo

hexadecimal digits will, therefore, be used to represent the con

tents of every byte. As an example, the table showing the

hexadecimal equivalent of the 6502 instructions appears in the
Appendix.

In short, whenever the resources of the user are limited and no

assembler is available, he will have to translate the program by

hand into hexadecimal. This can reasonably be done for a small

number of instructions, such as, perhaps, 10 to 100. For larger

programs, this process is tedious and error-prone, so that it tends

not to be used. However, nearly all single-board microcomputers

require the entry of programs in hexadecimal mode. They are not

equipped with an assembler and are not equipped with a full

alphanumeric keyboard, in order to limit their cost.

In summary, hexadecimal coding is not a desirable way to enter

a program in a computer. It is simply an economical one. The cost

of an assembler and the required alphanumeric keyboard is

traded-off against increased labor to enter the program in the

memory. However, this does not change the way the program it

self is written. The program is still written in assembly-level language

so that it can be not only meaningful, but also capable of inspection

and examination by the human programmer.

2. Assembly Language Programming

Assembly-level programming covers programs that may be entered

in hexadecmial, as well as those that may be entered in symbolic

assembly-level form, in the system. Let us now directly examine the

entry of a program, in its assembly language representation. An

assembler program must be available. The assembler will read each of

the mnemonic instructions of the program and translate it into the re

quired bit pattern using 1, 2 or 3 bytes, as specified by the encoding of

the instructions. In addition, a good assembler will offer a number of

additional facilities for writing the program. These will be reviewed in

the section on the assembler below. In particular, directives are available

which will modify the value of symbols. Symbolic addressing may be used,

and a branch to a symbolic location may be specified. During the

344

PROGRAM DEVELOPMENT

debugging phase where a user may remove instructions or add

instructions, it will not be necessary to re-write the entire pro

gram if an extra instruction is inserted between a branch and the

POWER OF

THE

LANGUAGE

SYMBOLIC

APL

COBOL

FORTRAN

PL/M

PASCAL

BASIC

MINI-BASIC

MACRO

CONDITIONAL

ASSEMBLY

HEXADECIMAL/

OCTAL

BINARY

HIGH-LEVEL

ASSEMBLY-LEVEL

MACHINE-LEVEL

Fig. 1O-1: Programming Levels

point to which it branches, as long as symbolic labels are used.

The assembler will automatically adjust all of the labels during the

translation process. In addition, an assembler allows the user to debug

his/her program in symbolic form. A disassembler may be used to

examine the contents of a memory location and reconstruct the

assembly-level instruction that it represents. The various software re

sources normally available on a system will be reviewed below. Let us

now examine the third alternative.

3. High-Level Language

A program may be written in a high-level language such as

BASIC, APL, PASCAL, or others. Techniques for programming in

these various languages are covered by specific books and will not

345

PROGRAMMING THE 6502

be reviewed here. We will, therefore, only briefly review this mode

of programming. A high-level language offers powerful instruc

tions which make programming much easier and faster. These

instructions must then be translated by a complex program into

the final binary representation that a microcomputer can execute.

Typically, each high-level instruction will be translated into a

large number of individual binary instructions. The program

which performs this automatic translation is called a compiler or

an interpreter. A compiler will translate all the instructions of a

program in sequence into object code. In a separate phase, the

resulting code will then be executed. By contrast, an interpreter

will interpret a single instruction and execute it, then

"translate" the next one and execute it. An interpreter offers the

advantage of interactive response, but results in low efficiency

compared to a compiler. These topics will not be studied further

here. Let us revert to the programming of an actual microproces

sor at the assembly-level language.

SOFTWARE SUPPORT

We will review here the main software facilities which are (or

should be) available in the complete system for convenient

software development. Some of the programs have already been intro

duced, and definitions of these will be summarized below. Definitions

of other important programs will also be provided before we proceed.

The assembler is the program which translates the mnemonic

representation of instructions into their binary equivalent. It

normally translates one symbolic instruction into one binary in

struction (which may occupy 1,2, or 3 bytes). The resulting binary

code is called object code. It is directly executable by the mi

crocomputer. As a side effect, the assembler will also produce a

complete symbolic listing of the program, as well as the equiva

lence tables to be used by the programmer and the symbol oc

currence list in the program. Examples will be presented later in

this chapter.

A compiler is the program which translates high-level lan

guage instructions into their binary form.

An interpreter is a program similar to a compiler. It also trans

lates high-level instructions into their binary form, but instead

346

PROGRAM DEVELOPMENT

of keeping the intermediate representations, it executes the instruc

tions immediately. In fact, if often does not even generate any inter

mediate code, but rather executes the high-level instructions directly.

A monitor is an indispensable program for using the hardware

resources of this system. It continuously monitors the input devices

for input and also manages the rest of the devices. As an example,

a minimal monitor for a single-board microcomputer, equipped with

a keyboard and with LEDs, must continuously scan the keyboard for

user input and display the specified contents on the light-emitting-

diodes. In addition, it must be capable of understanding a number of

limited commands from the keyboard, such as START, STOP, CON

TINUE, LOAD MEMORY, and EXAMINE MEMORY. On a large

system, the monitor is often qualified as the executive program. When

complex file management or task scheduling is also provided, the

overall set of facilities is called an operating system. In the case in

which files may be resident on a disk, the operating system is quali

fied as the disk operating system, or DOS.

An editor is the program designed to facilitate the entry and

the modification of text or programs. It allows the user to conve

niently enter characters, append them, insert them, add lines, re

move lines, and search for characters or strings. It is an important

resource for convenient and effective text entry.

A debugger is a facility necessary for debugging programs.

Typically, when a program does not work correctly, there may

be no indication whatsoever of the cause. The programmer, there

fore, wishes to insert break-points in his program in order to sus

pend the execution of the program at specified addresses and to

be able to examine the contents of registers or memory at these

points. This is the primary function of a debugger. The debugger

allows for the possibility of suspending a program, resuming

execution, examining, displaying and modifying the contents of

registers or memory. A good debugger will be equipped with a

number of additional facilities, such as the possibility of examin

ing data in symbolic form, hex, binary, or other usual representa

tions, as well as entering data in this format.

A loader, or linking loader, will place various blocks of object

347

PROGRAMMING THE 6502

code at specified positions in the memory and adjust their respect

ive symbolic pointers so that they can reference each other. It is

used to relocate programs or blocks in various memory areas.

A simulator, or an emulator program is used to simulate the opera

tion of a device, usually the microprocessor, in its absence, when

developing a program on a simulated processor prior to placing it

on the actual board. Using this approach, it becomes possible to suspend

the program, modify it, and keep it in RAM memory. The disadvantages

of a simulator are that:

1. It usually simulates only the processor itself, not input/

output devices.

2. The execution speed is slow, and one must operate in simulated

time. It is therefore impossible to test real-time devices, which may

result in synchronization problems even though the logic of the

program may be found to be correct.

An emulator is actually a simulator in real time. It uses one

processor to simulate another one, and simulates it in complete
detail.

Utility routines are essentially all of the routines that the user

wishes the manufacturer had provided! They may include multi

plication, division and other arithmetic operations, block move

routines, character tests, input/output device handlers (or "driv

ers"), and more.

THE PROGRAMDEVELOPMENT SEQUENCE

We will now examine a typical sequence for developing an

assembly-level program. In order to demonstrate their value, we will

assume that all the usual software facilities are available. If all of

them should not be available in a particular system, it would still be

possible to develop programs, but the convenience would be de

creased, and therefore, the amount of time necessary to debug the

program would most likely be increased.

348

PROGRAM DEVELOPMENT

The normal approach is to first design an algorithm and define

the data structures for the problem to be solved. Next, a com

prehensive set of flow-charts is developed which represents the

program flow. Finally, the flow-charts are translated into the as

sembly-level language for the microprocessor; this is the coding

phase.

Next, the program has to be entered on the computer. We will

examine in the following section the hardware options to be used in

this phase.

The program is entered in RAM memory of the system under

the control of the editor. Once a section of the program, such as a

subroutine, has been entered, it will be tested.

First, the assembler will be used. If the assembler does not al

ready reside in the system, it will be loaded from an external

memory, such as a disk. Then, the program will be assembled, i.e.,

translated into a binary code. This results in the object program,

ready to be executed.

One does not normally expect a program to work correctly the

first time. To verify its correct operation, a number of breakpoints

will normally be set at crucial locations where it is easy to test

whether the intermediate results are correct. The debugger will

be used for this purpose. Breakpoints will be specified at selected

locations. A "Go" command will then be issued so that program

execution is started. The program will automatically stop at each

of the specified breakpoints. The programmer can then verify, by

examining the contents of the registers, or memory, that the data

so far is correct. If it is correct, we proceed until the next break

point. Whenever we find incorrect data, an error in the program

has been found. At this point the programmer normally refers to

his program listing and verifies whether his coding has been cor

rect. If no error can be found in the programming, the error might

be a logical one that refers back to the flowchart. We will

assume here that the flow-charts have been checked by hand and

are assumed to be reasonably correct. The error is likely to come

from the coding. It will, therefore, be necessary to modify a sec

tion of the program. If the symbolic representation of the program

is still in the memory, we will simply re-enter the editor and

modify the required lines, then go through the preceding se

quence again. In some systems, the memory available may not be

349

PROGRAMMING THE 6502

large enough, so that it is necessary to flush out the symbolic

representation of the program onto a disk or cassette prior to

executing the object code. Naturally, in such a case, one would

have to reload the symbolic representation of the program from

its support medium prior to entering the editor again.

The above procedure will be repeated as long as necessary until

the results of the program are correct. Let us stress that preven

tion is much more effective than cure. A correct design will typi

cally result very quickly in a program which runs correctly once

the usual typing mistakes or obvious coding errors have been

removed. However, sloppy design may result in programs which

will take an extremely long time to be debugged. The debugging

time is generally considered to be much longer than the actual

design time. In short, it is always worth investing more time in

the design in order to shorten the debugging phase.

Although using this approach makes it possible to test the overall or

ganization of the program, it does not lend itself to testing the pro

gram in terms of real time and input/output devices. If input/output

devices are to be tested, the direct solution consists of transferring the

program onto EPROMs and installing it on the board where it can

be watched to see whether it works or not.

There is an even better solution, and that is the use of an in-circuit

emulator. An in-circuit emulator uses the 6502 microprocessor (or

any other microprocessor) to emulate a 6502 in (almost) real time. It

emulates the 6502 physically. The emulator is equipped with a cable

terminated by a 40-pin connector, exactly identical to the pin-out of a

6502. This connector can be inserted on the real application board that one

is developing. The signals generated by the emulator will be

exactly those of the 6502, only perhaps a little slower. The essen

tial advantage is that the program under test will still reside in

the RAM memory of the development system. It will generate the

real signals which will communicate with the real input/output

devices that one wishes to use. As a result, it becomes possible to

keep developing the program using all the resources of the devel

opment system (editor, debugger, symbolic facilities, file system)

while testing input/output in real time.

In addition, a good emulator will provide special facilities, such

as a trace. A trace is a recording of the last instructions or status

350

PROGRAM DEVELOPMENT

of various data busses in the system prior to a breakpoint. In

short, a trace provides the film of the events that occurred prior to

the breakpoint or the malfunction. It may even trigger a scope at

a specified address or upon the occurrence of a specified combina

tion of bits. Such a facility is of great value, since when an error is

found it is usually too late. The instruction, or the data, which

caused the error has occured prior to the detection. The availability

of a trace allows the user to find which segment of the program

caused the error to occur. If the trace is not long enough, we can

simply set an earlier breakpoint.

BOOTSTRAP

KEYBOARD

DRIVER

DISPLAY

DRIVER

TTY

DRIVER

CASSETTE

DRIVER

COMMAND

INTERPRETER

UTILITY

ROUTINES

ELEMENTARY

DEBUGGER

ELEMENTARY

EDITOR

ASSEMBLER

OR

COMPILER

OR

INTERPRETER

DOS

EDITOR

OR

DEBUGGER

OR

SIMULATOR

SYSTEM

WORKSPACE

(AND STACK)

USER

PROGRAM

USER

WORKSPACE

Flg.lO-2:ATyp

This completes our description of the usual sequence of

events involved in developing a program. Let us now review the

hardware alternatives available for developing programs.

351

PROGRAMMING THE 6502

THE HARDWARE ALTERNATIVES

1. Single-Board Microcomputer

The single-board microcomputer offers the lowest cost approach

to program development. It is normally equipped with a hexadec

imal keyboard, some function keys, and 6 LEDs which can display

address and data. Since it is equipped with a small amount of

memory, no assembler is usually available. At best, it has a small

monitor and no editing or debugging facilities, except for a very

few commands. All programs must, therefore, be entered in hex

adecimal form. They will also be displayed in hexadecimal form on

the LEDs. A single-board microcomputer has, in theory, the

same hardware power as any other computer. However, because

of its restricted memory size and keyboard, it does not support all

the usual facilities of a larger system, and this makes program

developmentmuch longer. The tediousness of developing programs

in hexadecimal format makes a single-board microcomputer

best suited for educational and training purposes where programs

of limited length are desirable. Single-boards are probably the

cheapest way to learn programming by doing. However, they

cannot be used for complex program development, unless additional

memory boards are attached and the usual software aids are made

available.

2. The Development System

A development system is a microcomputer system equipped

with a significant amount of RAM memory (32K- 48K)as well as

the required input/output devices, such as a CRT display, a

printer, disks, and usually a PROM programmer, as well as,

perhaps, an in-circuit emulator. A development system is

specifically designed to facilitate program development in an in

dustrial environment. It normally offers all, or most, of the
software facilities that we have mentioned in the preceding sec

tion. In principle, it is the ideal software development tool.

The limitation of a microcomputer development system is that
it may not be capable of supporting a compiler or an interpreter.

352

PROGRAM DEVELOPMENT

Fig. 1O-3: SYM 1 is a Typical Microcomputer Board

Fig. 1O-4-. Rockwell System 65 is a Development System

353

PROGRAMMING THE 6502

This is because a compiler typically requires a very large amount

of memory, often more than is available in the system. However,
for developing programs in assembly-level language, the development

system offers all the required facilities. Unfortunately, because

development systems sell in relatively small numbers compared to.

hobby computers, their cost is significantly higher.

3. Hobby-Type Microcomputers

The hobby-type microcomputer hardware is analogous to that of a

development system. The main difference lies in the fact that the

hobby-type microcomputer is normally not equipped with the

sophisticated software development aids which are available on

an industrial development system. As an example, many hobby-

type microcomputers offer only elementary assemblers, minimal

editors, minimal file systems, no facilities to attach a PROM pro

grammer, no in-circuit emulator, no powerful debugger. They rep

resent, therefore, an intermediate step between the single-board

microcomputer and the full microprocessor development system.

For a user who wishes to develop programs of modest complexity,

they are probably the best compromise since they offer the advan

tage of low cost and a reasonable array of software development

tools, even though they are quite limited as to their convenience.

4. Time - Sharing Systems

Several companies rent terminals that can be connected to time

sharing computer networks. These terminals share the time of the

larger computer and benefit from all the advantages of large installa

tions. Cross assemblers are available for all microcomputers in

virtually all commercial time-sharing systems. A cross assembler is

simply an assembler for, say, a 6502, which resides, for example, in

an IBM370. Formally, a cross assembler is an assembler for micro

processor X, which resides on processor Y. The nature of the com

puter being used is irrelevant. The user still writes a program in 6502

assembly-level language, and the cross assembler translates it into the

appropriate binary pattern. The only difficulty lies in the fact that this

program cannot be executed immediately. It can be executed by a

354

PROGRAM DEVELOPMENT

simulated processor, if one is available, but only if the program does

not use any input/output resources. Because of this drawback, there

fore, time-sharing is practical only in industrial environments.

5. In-House Computer

Whenever a large in-house computer is available, cross as

semblers may also be available to facilitate program devel

opment. If such a computer offers time-sharing service, this option

is essentially analogous to the one above. If it offers only batch

service, this is probably one of the most inconvenient methods of

program development, since submitting programs in batch mode

at the assembly level for a microprocessor results in a very long

development time.

Front Panel or No Front Panel?

The front panel is a hardware accessory often used to facilitate

program debugging. It has been the traditional tool for displaying the

binary contents of a register, or of memory, conveniently. However,

most of the functions of the control panel may now be accomplished

from a terminal through a CRT display. The CRT, with its ability to

display the binary value of bits, thus offers a service almost equiva

lent to the control panel. The additional advantage of using the CRT

display is that one can switch at will from binary representation to

hexadecimal, to symbolic, to decimal (if the appropriate conversion

routines are available, naturally). The main disadvantage of the CRT

is that instead of turning a knob, one must hit several keys to obtain

the appropriate display. However, since the cost of providing a

control panel is quite substantial, most recent microcomputers have

abandonned this debugging tool in favor of the CRT. The value of

the control panel, then, is often evaluated more in function of

emotional arguments based on one's own past experience rather than

by a rational choice. It is not indispensable.

SUMMARY OF HARDWARE RESOURCES

Three broad cases may be distinguished. If you have only a

minimal budget, and if you wish to learn how to program, buy a

355

PROGRAMMING THE 6502

one-board microcomputer. Using it, you will be able to develop all

the simple programs of this book and many more. Eventually,

however, when you want to develop programs of more than a few

hundred instructions, you will feel the limitations of this ap

proach.

If you are an industrial user, you will need a full development

system. Any solution short of the full development system will

cause a significantly longer development time. The trade-off is

clear: hardware resources vs. programming time. Naturally, ifthe

programs to be developed are quite simple, a less expensive ap

proach may be used. However, if complex programs are to be

developed, it is difficult to justify any hardware savings when
buying a development system; the resultant programming costs will

far exceed any such savings.

For a personal computerist, a hobby-type microcomputer will

typically offer sufficient, although minimal, facilities. Good de

velopment software is still to come for most of the hobby com

puters. The user will have to evaluate his system in view of the

comments presented in this chapter.

Let us now analyze in more detail the most indispensable re
source: the assembler.

THE ASSEMBLER

We have used assembly-level language throughout this book

without presenting the formal syntax or definitions of assembly-

level language. The time has come to present these definitions.

An assembler is designed to provide a convenient symbolic repre

sentation of the user program, while at the same time providing a

simple means of converting these mnemonics into their binary
representation.

Assembler Fields

When typing in a program for the assembler, we have seen that

fields are used. They are:

The label field, optional, which may contain a symbolic address

for the instruction that follows.

The instruction field, which includes the opcode and any oper
ands. (A separate operand field may be distinguished.)
The comment field, to the far right, which is optional and is

intended to clarify the program.

356

to

8

PROGRAM DEVELOPMENT

<

GD

1

O

Fig. 1O-5: Microprocessor Programming Form

357

PROGRAAAAAING THE 6502

Once the program has been fed to the assembler, the assembler will

produce a listing of it. When generating a listing, the assembler will

provide three additional fields, usually on the left of the page. An

example appears in Fig. 10-6. On the far left is the line number. Each

line which has been typed by the programmer is assigned a symbolic

line number.

The next field to the right is the actual address field, which shows

in hexadecimal the value of the program counter which will point to

that instruction.

The next field to the right is the hexadecimal representation of the

instruction.

This shows one of the possible uses of an assembler. Even if we are

designing programs for a single-board microcomputer which accepts

only hexadecimal, we can still write the programs in assembly-level

language, providing we have access to a system equipped with an as

sembler. We can then run the programs on the system, using the as

sembler. The assembler will automatically generate the correct hexa

decimal codes, which we can simply type in on our system. This

shows, in a simple example, the value of additional software resources.

Tables

When the assembler translates the symbolic program into its binary

representation, it performs two essential tasks:

1. It translates the mnemonic instructions into their binary encoding.

2. It translates the symbols used for constants and addresses into

their binary representation.

In order to facilitate program debugging, the assembler shows at

the end of the listing each symbol used and its equivalent hexadecimal

value. This is called the symbol table.

Some symbol tables will not only list the symbol and its value, but

also the line numbers where the symbol occurs, an additional facility.

ErrorMessages

During the assembly process, the assembler will detect syntax er

rors and list them as part of the final listing. Typical diagnostics in

clude: undefined symbols, label already defined, illegal op-

358

PROGRAM DEVELOPMENT

code, illegal address, illegal addressing mode. Many more de

tailed diagnostics are naturally desirable and usually provided.

They vary with each assembler.

TheAssembly Language

Opcodes have already been defined. We will define here the

symbols, constants and operators which may be used as part of

the assembler syntax.

LINE

0057

00S8

0059

0060

0061

0062

0063
0064

0065

0066
0067

0068

006?

0070

0071

0072

0073

0074

007S

0076
0077

0078
0078

0078

0076
0079

0079

0079
0079

0080

0080
0080

0080

0081.
0081

0081

0081
0082

0082

0082
0082

0083

ooaa
0083

0083

0084
0084

0084

0084
0085

0085

0085
0085
0086

0086

LINE

608tf.

0086

0087

£087

0087

0087

ooaa

• LOC

0342

0344

0347

034A

034C

034F

0350
0352

0353

03SS
0355

0355

0357

0358

035A

035C

03SD

035D

035D

035D

035D

035D

035E

035F

0360
0361

0362

0363

0364

0365

0366.

0367

0368

0369.
O36A

036B

036C

036D

036E

036EL
0370
0371

0372

0373

0374

0373

0376

0377

0378

0379

037A

037B
037C

037D

037E

• LOC

A37E

0380

0381

0382

0383

0384

43BS

A9

8D

8D

A2

20

CA

DO

4C

CODE

00

OB fkO

OB AC

20

55 03

FA

0? 03

A9 FF

38

E9 01

DO FB

60

13

02

76

01
CD

02

01

CD

02

76

01

CD.
02

53

01
89

02

?E

01

89

02

76

01

£2
02

53

Al
4B

02

SE

01

4B

0?

26

01

4B

02

S3

01

SYMBOL I6BLE

SYMBOL VALUE

ACR1

DIGIT

AOOB

0302

QEFDEL 0020
riCH
T2LH

A005
AC07

CODE

ACR2

NOEND

.on.
T1LH

T2LL

LINE

OFF

(THIS

DELAY

UAIT

1

»THIS

LDA MOO

STA ACR1 fTURN B01H TIMERS OFF

STA ACR2

LDX «OFFOEL *CET TONES-OFF DELAY CONSTANT

JSR DELAY »DELAY UHILE TONE IS OFF
DEX

BNE OFF
My DIGIT IGO BACK FOR NEXT DIGIT OF PHONE NU

IS A SIMPLE DELAY ROUTINE FOR THE TONE ON AND OFK PE

LDA «DELCON IGET DELAY CONSTANT

SEC 1DELAY FOR THAT LONG
SBC ♦»01

BNE UAIT

RTS

IS A TABLE OF THE CONSTANTS FOR THE TONE FREQUENCIES

IFOR EACH TELEPHONE DIGIT. THE CONSTANTS ARE TWO BYTES
ILONGf

1

TABLE

LINE

ACOB
030A

C3SC
A007

AC04

LOU BYTE FIRST.

«BYIE 413**02.*76»*01 1 TWO TONES FOR '0'

.BYTE «CDt*02f*9E»*01 »TUO TONES FOR '1'

.BYTE »CD»»02>»76»«01 » '2'

.BYTE l£JDttQ2jA53«t01 I '3'

.BYTE *89»»02ft9E»«01 » '4'

.BYTE «89t*02»*76f*01 I '5'

»£YTE-tfl9i»Q2»»53»A01 1 'A'

.BYTE *4Br*02>«9Ef«01 t '7'

.BYTE *4Bf«02r$76>«01 f '8'

.BYTE »4B>»02»«53f*01 1 '9'

•END

DELAY 03f7 DELCON OOFF

NUMPTR OOlO OFF 034C

£NDEL 0040 BHQHl 020Q
TILL A004 T2CH *C05

TABLE 035D UAIT 0357

END OF ASSEMBLY

Fig. 1O-6: Assembler Output: An Example

359

PROGRAMMING THE 6502

Symbols

Symbols are used to represent numerical values, either data or

addresses. Traditionally, symbols may include 6 characters, the

first one being alphabetical. One more restriction exists: the 56

opcodes utilized by the 6502 and the names of the registers

i.e., A, X, Y, S, P may not be used as symbols.

Assigning a Value to a Symbol

Labels are special symbols whose values need not be defined

by the programmer. They will automatically correspond to the

line number where they appear. However, other symbols used

for constants or memory addresses must be defined by the

programmer prior to their use. The equal sign is used for that

purpose, or else a special "directive." It is an instruction to the

assembler which will not be translated into an executable state

ment; it is called an assembler directive.

As an example, the constant ALPHA will be defined as:

ALPHA = $A000

This assigns the value "A000" hexadecimal to variable

ALPHA. The assembler directives will be examined in a later

section.

Constants or Literals

Constants are traditionally expressed in either decimal, hexadecimal,

octal or binary. Except in the case of a decimal number, a prefix

is used to differentiate between a constant and the base used to re

present a number. To load 18 into the accumulator we will simply write:

LDA #18 (where # denotes a literal)

A hexadecimal number will be preceded by the symbol $.

An octal symbol will be preceded by the symbol @

A binary symbol will be preceded by %.

For example, to load the value "11111111" into the ac

cumulator, we will write:

Literal ASCII characters may also be used in a literal field. In

older assemblers, it was traditional to enclose the ASCII symbol

360

PROGRAM DEVELOPMENT

in quotes. In more recent assemblers, in order to have fewer charac
ters to type in, the alphanumeric type is indicated by a single
quote that precedes the symbol.

For example, to load the symbol "S" in the accumulator (in

ASCII) we will write:

LDA #'S

In order to be able to load the quote symbol itself, the conven

tion is:

LDA #"'

Exercise 10.1: Will the following two instructions load the same

value in the accumulator: LDA #'5 and LDA #$5?

Operators

In order to further facilitate the writing of symbolic programs,

assemblers allow the use of operators. At a minimum they should
allow plus and minus so that one can specify, for example:

LDA ADR1, and

LDXADR1+ 1

It is important to understand that the expression ADR1 +1 will be
computed by the assembler in order to determine what is the

actual memory address which must be inserted as the binary

equivalent. It will be computed at assembly-time, not at program

execution time.

In addition, more operators may be available, such as multiply
and divide, a convenience when accessing tables in memory. More

specialized operators may also be available, such as, greater

than and less than, which truncate a 2-byte value respectively

into its high and low byte.
Naturally, an expression must evaluate to a positive value.

Negative numbers are not usually used and should be expressed in a

hexadecimal format.

Finally, a special symbol is traditionally used to represent the

current value of the address of the line:*. This symbol should be

interpreted as "current location" (value of PC).

Exercise 10.2: What is the difference between the following in

structions?

LDA%10101010

LDA #%10101010

361

PROGRAMMING THE 6502

Exercise 10.3: What is the effect of the following instruction?
BMI * -2?

Assembler Directives

Directives are special orders given by the programmer to the

assembler. Some of these orders result in the storage of values in

symbols or in the memory. Others are used to control the execution
or printing modes of the assembler.

To provide a specific example, let us review here the nine as

sembler directives available on the Rockwell Development Sys

tem ("System 65"). They are: =, .BYT, .WOR, .GBY, .PAGE,

.SKIP, .OPT, .FILE and .END.

Equate Directive

An equal sign is used to assign a numeric value to a symbol. For
example:

BASE = $1111

* = $1234

The effect of the first directive is to assign the value 1111

hexadecimal to BASE.

The effect of the second instruction is to force the line address to

the hexadecimal value "1234." In other words, the next execut

able instruction encountered will be stored at memory location

1234.

Exercise 10.4: Write a directive which will cause the program to
reside at memory location 0 and up.

Directives to Initialize Memory

Three directives are available for this purpose: .BYT, .WOR, .GBY.

.BYT will assign the characters or values that follow in con

secutive memory bytes.

Example: RESERV .BYT 'SYBEX/

This will result in storing the letters "SYBEX" in consecutive

memory locations.

.WOR is used to store 2-byte addresses in the memory, low byte

first.

Example: .WOR $1234, $2345

.GBY is identical to .WOR, except that it will store a 16-bit

362

PROGRAM DEVELOPMENT

value, high byte first. It is normally used for 16-bit data rather

than 16-bit addresses.

The next three directives are used to control the input/output:

Input/Output Directives

The input/output directives are: .PAGE, .SKIP, .OPT.
PAGE causes the assembler to finish the page, i.e., move to the

top of the next page. In addition a title may be specified for the

page. For example: .PAGE "page title."

SKIP is used to insert blank lines in the listing. The number of

lines to be skipped may be specified. For example: .SKIP 3.

OPT specifies four options: list, generate, errors, symbol. List

will generate a list. Generate is used to print object code for

strings with the .BYT directive. Error specifies whether error

diagnostics should be printed. Symbol specifies whether the sym

bol table should be listed.

The last two directives control the assembler listing format:

.FILE and .END Directives

In the development of a large program, several portions of the

program will typically be written and debugged separately. At
some point it will be necessary to assemble these files together.

The last statement of the first file will then include the directive

.FILE NAME/1, where 1 is the number of the disk unit, and

NAME is the name of the next file. The next file may be linked, in

turn, to more files. At the end of the last file, there will be the

directive: .END NAME/1, which is a pointer back to the first one.

Finally, a facility exists for inserting additional comments with

the listing: ";"

";" may be used to enter comments at will within a line rather

than enter an instruction. This is an important facility if pro

grams are to be correctly documented.

MACROS

A macro facility is currently not available on most existing

6502 assemblers. However, we will define a macro here and

explain its benefits. It is hoped that a macro facility will

363

Fig. 1O-7: AIM65 is a Board with Mini-Printer and Full Keyboard

Fig. 1O-8: Ohio Scientific is a Personal Microcomputer

364

PROGRAM DEVELOPMENT

soon be available on most 6502 assemblers.
A macro is simply a name assigned to a group of instructions.

It is essentially a convenience to the programmer. For exam

ple, if a group of five instructions is used several times in a pro
gram, we could define a macro instead of always haying to write
these'five instructions. As an example, we could write:

SAVREG MACRO PHA

TXA

PHA

TYA

PHA

ENDM

Thereafter, we could write the name SAVREG instead of the above

instructions.
Any time that we write SAVREG, the five corresponding lines

will get substituted instead of the name. An assembler equipped
with a macro facility is called a macro assembler. When the
macro assembler encounters SAVREG, it will perform a mere

physical substitution of the equivalent lines.

Macro or Subroutine?

At this point, a macro may seem to operate in a way analogous
to a subroutine. This is not the case. When the assembler is used
to produce the object code, any time that a macro name is encoun

tered, it will be replaced by the actual instructions that it stands
for. At execution time, the group of instructions will appear as

many times as the name of the macro did.
By contrast, a subroutine is defined only once, and then it can

be used repeatedly: the program will jump to the subroutine ad
dress. A macro is called an assembly-time facility. A subroutine is

an execution-time facility. Their operation is quite different.

Macro Parameters

Each macro may be equipped with a number of parameters. As

an example, let us consider the following macro:

SWAP MACRO M, N, T

LDA M

STA T

LDA N

STA M

365

PROGRAMMING THE 6502

LDA T

STA N

ENDM

This macro will result in swapping (exchanging) the contents of
memory locations M and N. A swap between two registers, or two
memory locations, is an operation which is not provided by the
6502. A macro may be used to implement it. "TV in this instance,
is simply the name for a temporary storage location required by
the program. As an example, let us swap the contents of memory
locations ALPHA and BETA. The instruction which does this ap
pears below:

SWAP ALPHA, BETA, TEMP

In this instruction, TEMP is the name ofsome temporary storage
location which we know to be available and which can be used by
the macro. The resulting expansion of the macro appears below:

LDA ALPHA

STA TEMP

LDA BETA

STA ALPHA

LDA TEMP

STA BETA

The value of a macro should now be apparent: it is a tremendous

convenience for the programmer to be able to use pseudo-instructions

which have been defined with macros. In this way, the apparent

instruction set of the 6502 can be expanded at will. Unfortunately,

one must bear in mind that each macro directive will expand into what

ever number of instructions were used. A macro will, therefore, run

more slowly than any single instruction. Because of its conven
ience for the development of any long program, a macro facility
is highly desirable for such an application.

Additional Macro Facilities

Many other directives and syntactic facilities may be added to a
simple macro facility. For instance, macros may be nested, i.e., a

macro-call may appear within a macro definition. Using this facility,

a macro may modify itself with a nested definition! A first call will

produce one expansion, whereas subsequent calls will produce a
modified expansion of the same macro.

366

PROGRAM DEVELOPMENT

CONDITIONAL ASSEMBLY

Conditional assembly is another assembler facility which is
so far lacking on most 6502 assemblers. A conditional assem

bler facility allows the programmer to use the special instructions
"IF," followed by an expression, then (optionally) "ELSE," and

terminated by "ENDIF." Whenever the expression following the IF

is true, then the instructions between the IF and the ELSE, or the IF

and the ENDIF (if there is no ELSE), will be assembled. In the case

in which IF followed by ELSE is used, either one of the twc blocks of

instructions will be assembled, depending on the value of the ex

pression being tested.

With a conditional assembler facility, the programmer can de

vise programs for a variety of cases, and then conditionally assem

ble the segments of codes required by a specific application. As

an example, an industrial user might design programs to take

care of any number of traffic lights at an intersection for a vari
ety of control algorithms. He/she will then receive the specifications

from the local traffic engineer, who specifies how many traffic
lights there should be, and which algorithms should be used. The

programmer will then simply set parameters in his/her program, and

assemble conditionally. The conditional assembly will result in a
"customized" program which will retain only those routines

which are necessary for the solution to the problem.
Conditional assembly is, therefore, of specific value to indus

trial program generation in an environment where many options

exist and where the programmer wishes to assemble portions of

programs quickly and automatically in response to external para

meters.

SUMMARY

This chapter has presented an explanation of the techniques and the

hardware and software tools required to develop a program, along with

the various trade-offs and alternatives.

These range at the hardware level from the single-board micro
computer to the full development system. At the software level
they range from binary coding to high-level programming. You
will have to select from these tools and techniques in accordance

with your goals and budget.

367

CHAPTER 11

CONCLUSION

We have now covered all important aspects of programming,

including the definitions and basic concepts, the internal manipula

tions of the 6502 registers, the management of input/output devices,
and the characteristics of software development aids. What is the
next step? Two views can be offered, the first one relating to the de

velopment of technology, the second one relating to the development
of your own knowledge and skill. Let us address these two points.

TECHNOLOGICAL DEVELOPMENT

The progress of integration in MOS technology makes it pos

sible to implement more and more complex chips. The cost of im

plementing the processor function itself is constantly decreasing.

The result is that many of the input/output chips, as well as the
peripheral-controller chips, used in a system, now incorporate a

simple processor. This means that most LSI chips now used in the

system are becoming programmable. An interesting conceptual

dilemma is thus developing. In order to simplify the software de
sign task as well as to reduce the component count, the new I/O

chips now incorporate sophisticated programmable capabilities:

many programmed algorithms are now integrated within the

chip. However, as a result, the development of programs is com

plicated by the fact that all these input/output chips are very

different and need to be studied in detail by the programmer!

Programming the system is no longer programming the micro-

368

Fig. 11-1: PET is an Integrated Unit

Fig. 11-2: APPLE II uses a conventional TV

PROGRAMMING THE 6502

processor alone, but also programming all the various other chips

attached to it The learning time for every chip can be significant.

Naturally, this is only an apparent dilemma. Ifthese chips were
not available, the complexity of the interface to be realized, as

well as the corresponding programs, would be still greater. The

new complexity that is introduced is that one has to program

more than just a processor, and learn the various features of the
different chips in a system to make effective use of them. How
ever, it is hoped that the techniques and concepts presented in
this book should make this a reasonably easy task.

THE NEXT STEP

You have now learned the basic techniques required in order to

program simple applications on paper. This was the goal of this

book. The next step is to actually practice. There is no substitute
for it. It is impossible to learn programming completely on paper,

and experience is required. You should now be in a position to
start writing your own programs. It is hoped that this journey
will be a pleasant one.

For those who feel they would benefit from the guidance of addi
tional books, the companion volume to this one in the series is the
"6502 Applications Book" (ref D302), which presents a range of

actual applications which can be executed on a real microcompu

ter. Next is the "6502 Games Book" (ref G402), which presents program

ming techniques for complex algorithms. A 6502 assembler, writ
ten in standard Microsoft BASIC is also available.

370

APPENDIX

APPENDIX A

HEXADECIMAL CONVERSION TABLE

HEX

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

1

1

17

33

49

65

81

97

113

129

145

161

177

193

209

225

241

2

2

18

34

50

66

82

98

114

130

146

162

178

194

210

226

3

3

19

35

51

67

83

99

115

131

147

163

179

195

211

227

242 243

4

4

20

36

52

68

84

100

116

132

148

164

180

196

212

228

244

5.

5

21

37

53

69

85

101

117

133

149

165

181

197

213

229

245

6.

6

22

38

54

70

86

102

118

134

150

166

182

198

214

230

246

7

7

23

39

55

71

87

103

119

135

151

167

183

9

8

24

40

56

72

88

104

120

136

152

168

184

199 200

215

231

247

216

9

9

25

41

57

73

89

105

•T21

137

153

169

185

201

217

232 233

248 249

A.

10

26

42

58

74

90

106

122

138

154

170

186

202

218

234

250

B

11

27

43

59

75

91

107

123

139

155

171

187

203

219

g

12

28

44

60

76

92

108

124

140

156

172

188

204

220

235 236

251 252

p

13

29

45

61

77

93

109

125

141

157

173

189

205

221

237

253

E,

14

30

46

62

78

94

110

126

142

158

174

190

206

222

238

254

F

15

31

47

63

79

95

111

127

143

159

175

191

207

223

239

255

00

0

256

512

768

1024

1280

1536

1792

2048

2304

2560

2816

3072

•3328

3584

3840

000

0

4096

8192

12288

16384

20480

24576

28672

32768

36864

40960

45056

49152

53248

57344

61440

HEX

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

5

| DEC
0

1,048,576

2,097,152

3,145,728

4,194,304

5,242,880

6,291,456

7,340,032

8,388,608

9,437,184

10,485,760

11,534,336

12,582,912

13,631,488

14,680,064

15,728,640

HEX

0

1

4

5

6

7

8

9

A

B

C

D

E

F

4

| DEC

0

65,536

131,072

196,608

262,144

327,680

393.216

458,752

524,288

589,824

655,360

720,896

786,432

851,968

917,504

983,040

HEx|
0

1

4

5

6

7

8

9

A

B

C

D

E

F

3

DEC

0

4,096

8,192

12,288

16,384

20,480

24,576

28,672

32,768

36,864

40,960

45,056

49,152

53,248

57,344

61,440

HEX

0

1

4

5

6

7

8

9

A

B

C

D

E

F

2

| DEC

0

256

512

768

1,024

1,280

1,536

1,792

2,048

2,304

2,560

2,816

3,072

3,328

3,584

3,840

HExl
0

1

4

5

6

7

8

9

A

B

C

D

E

F

1

DEC

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

HEX

0

1

4

5

6

7

8

9

A

B

C

D

E

F

0

DEC

0

1

4

5

6

7

8

9

10

11

14

15

371

PROGRAMMING THE 6502

APPENDIX B

6502 INSTRUCTIONS-ALPHABETIC

ADC

AND

ASL

BCC

BCS

BEQ

BIT

BMI

BNE

BPL

BRK

BVC

BVS

CLC

CLD

CLI

CLV

CMP

CPX

CPY

DEC

DEX

DEY

EOR

INC

INX

INY

JMP

Add with carry

Logical AND

Arithmetic shift left

Branch if carry clear

Branch if carry set

Branch if result = 0

Test bit

Branch if minus

Branch if not equal to 0

Branch if plus

Break

Branch if overflow clear

Branch if overflow set

Clear carry

Clear decimal flag

Clear interrupt disable

Clear overflow

Compare to accumulator

Compare to X

Compare to Y

Decrement memory

Decrement X

Decrement Y

Exclusive OR

Increment memory

Increment X

Increment Y

Jump

JSR

LDA

LDX

LDY

LSR

NOP

ORA

PHA

PHP

PLA

PLP

ROL

ROR

RTI

RTS

SBC

SEC

SED

SEI

STA

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA

Jump to subroutine

Load accumulator

LoadX

Load Y

Logical shift right

No operation

Logical OR

Push A

Push P status

Pull A

Pull P status

Rotate left

Rotate right

Return from interrupt

Return from subroutine

Subtract with carry

Set carry

Set decimal

Set interrupt disable

Store accumulator

Store X

Store Y

TVansfer A to X

TVansfer A to Y

Transfer SP to X

Transfer X to A

Transfer X to SP

TVansfer Y to A

372

APPENDIX

APPENDIX C

BINARY LISTING OF 6502 INSTRUCTIONS

ADC

AND

ASL

BCC

BCS

BEQ

BIT

BMI

BNE

BPL

BRK

BVC

BVS

CLC

CLD

CLI

CLV

CMP

CPX

CPY

DEC

DEX

DEY

EOR

INC

INX

INY

JMP

OllbbbOl

OOlbbbOl

OOObbblO

10010000

10110000

11110000

OOlOblOO

00110000

11010000

00010000

00000000

01010000

01110000

00011000

11011000

01011000

10111000

HObbbOl

HlObbOO

HOObbOO

HObbllO

11001010

10001000

HObbbOl

lllbbllO

11101000

11001000

OlbOHOO

JSR

LDA

LDX

LDY

LSR

NOP

ORA

PHA

PHP

PLA

PLP

ROL

ROR

RTI

RTS

SBC

SEC

SED

SEI

STA,

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA

00100000

lOlbbbOl

lOlbbblO

lOlbbbOO

OlObbblO

OlbbbllO

OOObbbOl

01001000

00001000

01101000

00101000

OOlbbblO

OllbbblO

01000000

01100000

lllbbbOl

00111000

11111000

01111000

lOObbbOl

lOObbllO

lOObblOO

10101010

10101000

10111010

10001010

10011010

10011000

373

PROGRAMMING THE 6502

APPENDIX D

6502-INSTRUCTION SET: HEX AND TIMING

n=number of cycles # = number of bytes

MNEMONIC

ADC

AND

A S L

B C C

B C S

B E Q

B 1 T

B M 1

B N E

B P I

BRK

B V C

B V S

C L C

C L D

C L 1

C L V

C MP

C P X

C P Y

D E C

D E X

D £ Y

E O R

I.NC

(1)

(!)

(2)

(2)

U)

(2)

a)

w

(2)

(2)

(1)

IMPLIED

OP

00

18

D8

58

B8

CA

88

7

2

2

2

2

2

2

U

1

1

1

1

1

1

ACCUM.

OP

OA 2 1

ABSOLUTE

OP

6D

2D

OE

2C

CD

EC

CC

CE

4D

EE

4

4

6

4

4

4

6

4

6

n

3

3

3

3

3

3

3

3

3

ZERO PAGE

OP

65

25

06

24

C5

E4

C6

45

E6

3

3

5

3

3

3

5

3

5

•

2

2

2

2

2

2

2

2

2

2

IMMEDIATE

OP

69

29

C9

EO

CO

49

2

2

2

2

2

2

2

2

2

2

2

2

ABS. X

OP

7D

3D

IE

OD

DE

5D

FE

4

4

7

4

7

4

7

#

3

3

3

3

3

3

3

ABS. Y

OP

79

39

09

59

n

4

4

4

4

tt

3

3

3

3

1 N Y

J M P

J S R

L D A

L D X

L D Y

L S R

NO P

O R A

P H A

PHP

P L A

P L P

R O L

R OR

R T 1

R T S

SBC
S E C

S E D

. S E 1

S T A

S T X

STY

TAX

T A Y

T S X

T X A

T X S

T Y A

(1)

(1)

(1)

(1)

IT
C8

EA

48

08

68

28

40

60

38

F8

78

AA

A8

BA

8A

9A

98

—

2

2

3

3

4

4

6

6

2

2

2

2

2

2

2

2

2

4A

2A

6A

2

2

1

1

1

4C

20

AD

AE

AC

4E

0D

2E

6E

ED

8D

8E

8C

3

6

4

4

4

6

4

6

6

4

4

4

4

3

3

3

3

3

3

3

3

3

3

45

A6

A4

46

05

26

66

E5

85

86

B4

3

3

3

5

3

5

5

3

2

2

2

2

2

2

2

2

2

2

2

A9

A2

A0

09

E9

2

2

2

2

2

2

2

2

2

2

BD

BC

5E

ID

3E

FD

90

4

4

7

4

7

7

4

5

1

3

3

3

3

3

3

3

R9

BE

19

F9

99

4

4

4

A

5

3

3

3

3

3

(i) Add ? fo n if crossing page boundary

374

APPENDIX

(IND. X)

OP

61

21

Cl

41

n

6

6

6

0

2

2

2

(IND)Y

OP

71

D1

51

n

5

5

5

0

2

2

Z. PAGE. X

OP

75

35

16

D5

D6

55

F6

n

4

4

6

4

«6

4

6

#

2

2

2

2

RELATIVE

OP

90

BO

FO

30

DO
10

50

70

n

2

2

2

2

2

2

*

2

2

2

2

2

2

2

2

INDIRECT

OP n #

Z. PAGE. Y

OP 0

PROCESSOR

STATUS CODES

N V B D 1 Z C

:

Mr* .

0

0

0
0

MNEMONIC

ADC

AND

A S L

B C C

BC S

B E Q

B 1 T

B M 1

B N E

B P L

B R K

B VC

B VS

C LC

C L D

C I 1

C L V

C MP

CPX

CPY

DEC

DEX

DE Y

EOR

" NC

01

El

6

6

?

2

11

F1

S

5

?

2

2

B5

B4

56

15

3r»

ft

F5

95

94

4

4

6

4

6

6

4

4

4

2

2

2

2

7

7

2

2

2

6C 5 3

B6

96

4

4

2

2

• •

• •

• •

• •

• •

0 ••

• •

• •

••••••••

• ••

• • •

• • • •
1

1
1

• •

• •

• •

• •

• •

i N X

1 N Y

J M P

J S R

L DA

1 D X

1 D Y

L S R

NO P

OR A

P H A

PHP

PL A

PL P

ROl

R OR

R T 1

RT S

SBC
S E C
SED

S E 1

S T A

ST X

ST Y

TAX

T A Y

TSX

T X A

T X S
T Y A

*2> Add 1 to n if branch within page

Add 2 to n if branch to another page

375

PROGRAMMING THE 6502

APPENDIX E

ASCII CONVERSION TABLE

CODE

00

01

02

03

04

05

06

07

08

09

0A

0B

OC

0D

Ofif
OF

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

IF

CHAR

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

TAB

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

CODE

201

21

22

23

24

25

26

27a

28

29

2A

2B

2C3

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

CHAR

!

"

H

$

%

&

'

(

)
*

+

-

/

0

1

2

3

4

5

6

7

8

9

;

<

=

>

CODE

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F4

CHAR

@

A

B

C

D

E

F

G

H

1

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

t

\

]

<-

CODE

605

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D6

7E

7F

CHAR

a

b

c

d

e

f

g

h

i

i

k

1

m

n

o

P

q

r

s

t

u

V

w

X

y

z

{
1

}

RUBOUT

'space

'single quote

'comma

4or underline

'accent mark

6or ALT MODE

7or DEL

376

APPENDIX

APPENDIX F

RELATIVE BRANCH TABLES

FORWARD RELATIVE BRANCH

NASD

0

1

2

3

4

5

6

7

0

0

16

32

48

64

80

96

112

1

1

17

33

49

65

81

97

113

2

34

50

66

82

98

114

3

3

19

35

51

67

83

99

115

4

4

20

36

52

68

84

100

116

5

5

21

37

53

69

85

101

117

6

6

22

38

54

70

86

102

118

7

7

23

39

55

71

87

103

119

8

8

24

40

56

72

88

104

120

9

9

25

41

57

73

89

105

121

A

10

26

42

58

74

90

106

122

B

11

27

43

59

75

91

107

123

C

12

28

44

60

76

92

108

124

D

13

29

45

61

77

93

109

125

E

14

30

46

62

78

94

110

126

F

15

31

47

63

79

95

111

127

BACKWARD RELATIVE BRANCH TABLE

N^LSD

nvsdN,
8

9

A

B

C

D

E

F

0

128

112

96

80

64

48

32

16

1

127

111

95

79

63

47

31

15

2

126

110

94

78

62

46

30

14

3

125

109

93

77

61

45

29

13

4

124

108

92

76

60

44

28

12

5

123

107

91

75

59

43

27

11

6

122

106

90

74

58

42

26

10

7

121

105

89

73

57

41

25

9

8

120

104

88

72

56

40

24

8

9

119

103

87

71

55

39

23

7

A

118

102

86

70

54

38

22

6

B

117

101

85

69

53

37

21

5

C

116

100

84

68

52

36

20

4

D

115

99

83

67

51

35

19

3

E

114

98

82

66

50

34

F

113

97

81

65

49

33

17

1

377

PROGRAAAMING THE 6502

APPENDIX G:

HEX OPCODE LISTING

Sasd

MSD\,

0

1

)

0

BRK

BPl

JSR

BMI

RTI

BVC

RTS

BVS

BCC

IDY-IMM

BCS

CPYIMM

BNE

CPX-IMM

BEO

1

ORA-I.

ORAI.

AND-I.

ANDI.

EORI.

EORI,

ADCI.

ADCI.

STA-I.

STA.I.

IDAI.

IDA-I.

CMP-I,

CMP-I.

SBC-I.

SBC-I. Y

2

LDXIMM

3 4

BIT.0P

STY-0P

STY-0P. X

IOY0-P

IDY0-P. X

CPY0P

CPX-0-P

5

ORA0-P

ORA-0P. X

AND-0P

AND0P. X

EOR-0P

EOR-0P. X

ADC-0-P

AOC-0P. X

STA-0-P

STA-0P. X

IDA-0.P

IDA-0P. X

CMP-0-P

CMP-0-P. X

SBC-0P

SBC-0P. X

6

ASI-0-P

ASI-0-P. X

ROI-0-P

ROL-0P. X

LSR-0-P

LSR-0-P, X

ROR-0P

STX.0P

STX.0P. Y

IOX-0P

IDX-0P. Y

DEC-0P

DEC-0-P, X

INC-0-P

INC-0-P. X

7

8

PHP

CLC

PIP

SEC

PHA

CLI

PIA

SEI

MY

TYA

TAY

CLV

INY

CLD

INX

SED

9

ORA-IMM

ORA.Y

AND-IAAAA

AND. Y

EOR-IMAA

EOR. Y

ADC-IMM

AOC.Y

STA.Y

LDA-IAAM

IDA.Y

CMP-IMM

CAAP, Y

SBC-IMM

SBC, Y

A

ASLA

ROL-A

LSRA

ROR-A

TXA

TXS

TAX

TSX

DEX

NOP

B C

BIT

JMP

JMP-I

STY

IDY

LDY, X

CPY

CPX

D

ORA

ORA, X

AND

AND. X

EOR

EOR. X

ADC

ADC.X

STA

STA.X

IDA

IDA.X

CMP

CMP, X

SBC

SBC. X

E

ASl

ASl.X

ROL

ROL.X

LSR

LSR.X

ROR

STX

LDX

LDX, Y

DEC

DEC.X

INC

INC. X

F

0

1

2

3

4

5

6

7

8

9

A

B

c

D

E

F

I = indirect

fP= zeropage

378

APPENDIX

APPENDIX H:

DECIMAL TO BCD CONVERSION

DECIMAL

0

1

2

3

4

5

6

7

8

9

BCD

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

DEC

10

11

12

13

14

15

16

17

18

19

BCD

00010000

00010001

00010010

00010011

00010100

00010101

00010110

00010111

00011000

00011001

DEC

90

91

92

93

94

95

96

97

98

99

BCD

10010000

10010001

10010010

10010011

10010100

10010101

10010110

10010111

10011000

10011001

379

PROGRAMMING THE 6502

APPENDIX I

EXERCISE ANSWERS

CHAPTER 1

1.1: 252

1.2: 100000001

1.3: 19 + 2 = 9 remainder 1 -► 1

9 + 2 = 4 remainder 1 -♦ 1

4 + 2 = 2 remainder 0 -♦ 0

2 + 2 = 1 remainder 0 -* 0

1+2 = 0 remainder 1 -*■ 1

Answer: 10011

1x1=1

1x2=2

0x4=0

Ox 8=0

+ 1 x 16 = 16

Answer:

1.4: 0101 =

+ 1010 =

1111 =

1 x 1

1 x2

1 x4

+ 1x8

19

= 5

= 10

= 15

= 1

= 2

= 4

= 8

Answer: 15

380

APPENDIX

1.5: 1111

+ 0001

(1)0000

Answer: No, the result does not hold in 4 bits.

1.6: +5 = 00000101

-5 = 10000101

1.7: +6 = 00000110

-6= 11111001

1.8: +127 = 01111111

1.9: + 128 = 10000000

01111111 (one's complement)

+ 1

-128 = 10000000 (two's complement)

1.10: Smallest: -128

Largest: +127

1.11: +20 = 00010100

11101011 (one's complement)

+ 1

-20= 11101100 (two's complement)

00010011 (one's complement)

+ 1

20 = 00010100

Answer: Yes

1.12: 10111111

+ 11000001

10000000

V:0 C:l

IE CORRECT

381

PROGRAMMING THE 6502

11111010

+ 11111001

11110011

V:0 C:l

SI CORRECT

00010000

+ 01000000

01010000

V:0 C:0

SI CORRECT

01111110

+ 00101010

10101000

V:l C:0

SI ERROR

1.13: No, you cannot generate an overflow when adding a positive and a

negative number, because they will tend to cancel each other; thus,

the result will always be within range of 1 byte.

1.14: Largest: 32767

Smallest: -32768

1.15: -8388608

1.16: 29 = 00101001

91 = 10010001

1.17: 10100000 is not a valid BCD representation, because the high order

nibble is 1010, which is unused.

5 - 2 3 1 2 3
1.18: -23123 =

= 00000101 00010010 00110001 00100011

382

APPENDIX

1.19: 222 =

111 =

222 X 111 = 24642

24642 =

3

3

+

+

2

1

2

1

2

1

5 + 2 4 6 4 2

1.20: 9999 in BCD: 24 bits (3 bytes):

4 + 9 9 9 9

9999 in two's complement: 14 bits (~ 2 bytes)

1.21: 223 - 1 = 8388607. This is 6 digits of absolute accuracy, or 6+

digits.

1.22: 0 = 00110000

1 = 10110001

2 = 10110010

3 = 00110011

4= 10110100

5 = 00110101

6 = 00110110

7 = 10110111

8 = 10111000

9 = 00111001

1.23: A = 01000001

B = 01000010

C = 11000011

D = 01000100

E = 11000101

F = 11000110

1.24: "A" =01000001

"T" = 01010100

"S" =01010011

"X" =01011000

1.25: 10101010 = AA (hexadecimal)

383

PROGRAMMING THE 6502

1.26: FA = 11111010

1.27: 01000001 = 101 (octal)

1.28: Negative numbers represented in two's complement produce

results that do not need to be corrected when added.

1.29: 1024= 10000000000 (direct binary)

= 01000000000 (signed binary)

= 01000000000 (two's complement)

1.30: The overflow (V) flag is set when the carry out of bit 6 does not

equal the carry out of bit 7 (exclusive OR). It should be tested after

any addition or subtraction involving numbers represented in two's

complement notation.

1

1

.31:

.32:

+

+

+

—

—

—

M

E

S

S

A

G

E

16

17

18

16

17

18

=

=

=

=

CHAPTERS

3.1:

= 010000

= 010001

= 010010

= 110000

= 101111

= 101110

4D

45

53

53

41

47

45

Left to reader.

384

APPENDIX

3.2: CLC

CLD

LDA

ADC

STA

LDA

ADC

STA

3.3: CLC

CLD

LDA

ADC

STA

LDA

ADC

STA

3.4: CLD

SEC

LDA

SBC

STA

3.5: See text.

ADR1

ADR2

ADR3

ADR1 + 1

ADR2+1

ADR3 + 1

ADR1-1

ADR2-1

ADR3-1

ADR1

ADR2

ADR3

ADR1

ADR2

ADR3

3.6: Yes, the CLC instruction only has to be executed before the

addition.

3.7: The only difference is that here the D flag is set, not clear, which

will affect the way the final answer is computed.

3.8: SEC

SED

LDA

SBC

STA

LDA

SBC

STA

ADR1

ADR2

ADR3

ADR1 -1

ADR2-1

ADR3-1

385

PROGRAMMING THE 6502

3.9: 0100 MPD

xOlllMPR

0100

0100

0100

0000

1

2

4

8

16

32

X

X

X

X

X

X

0= 0

0= 0

1 = 4

1 = 8

1 =16

0=_0

28 V

3.10: Carry will equal 1.

3.11: When X decrements to zero, the next instruction to be executed is

'BNE MULT', but the branch will not occur.

3.12: Fill table (see text).

3.13: LDA

STA

STA

LDX

MULT LSR

BCC

LDA

CLC

ADC

STA

NOADD ROR

ROR

DEX

BNE

#0

RESAD

RESAD +

#8

MPRAD

NOADD

RESAD+

MPDAD

RESAD+

RESAD +

RESAD

MULT

1

1

1

1

CLEAR ADDRESSES

SET COUNTER

GETAMULTIPLIER BIT

TEST FORA 1

ADD MULTIPLICAND

TO RESULT

SHIFT RESULT RIGHT

(RECOVERS CARRY)

DECREMENTCOUNTER

TEST FOR ZERO

This approach is faster, because the add of the partial product to

the result is eight bits instead of sixteen.

3.14: 157)L(sec., assuming all addresses zero page, no page crossings, and

alMHzclock.

386

APPENDIX

3.15: Left for reader.

3.16: TEST LDA

CMP

BEQ

$24

#$2A

STAR

3.17: A subroutine requires a fixed overhead time in which to manipu

late the stack.

3.18: In the case of both the call and the return, the same number of
values must be transferred to/from the stack in memory.

3.19: Yes. MULT modifies the X and A registers plus several flags.

3.20: A subroutine may call itself if it was designed to do so. It must

store data in the stack, though, to preserve it, as the registers will be

reused on each call. Also, there must be a conditional statement

that will limit the number of calls made; otherwise, the stack area

in memory will overflow.

3.21: Stack parameters are best for recursion. Fixed registers and mem

ory locations will be changed by each iteration of the subroutine.

The stack can accommodate a string of parameters.

CHAPTER 4

4.1: LDA WORD

AND #%01000010

STA WORD

4.2: No effect.

4.3: The final value of the accumulator would be 10101 111.

4.4: The result would always be $FF.

4.5: No effect.

387

PROGRAAAMING THE 6502

CHAPTERS

5.1:

NEXT

DONE

LDX

DEX

BNE

LDA

STA

JMP

#NUMBER

DONE

BASE.X

DEST.X

NEXT

OR

NEXT

LDX

DEX

LDA

STA

TXA

BNE

5.2: BLKADD LDY

NEXT

Bytes

2

1

3

3

3

1

2

CLC

LDA

ADC

STA

DEY

BPL

Cycles

2

-1

#NUMBER

BASE.X

DEST.X

NEXT

#NBR-1

PTR1.Y

PTR2.Y

PTR3.Y

NEXT

2

4

4

5

2

3,

> Repeated NBR

times

15 20XNBR+1 20 Ooop total)

388

APPENDIX

5.3:

BLKADD

NEXT

Bytes

2

1

2

2

2

1

2

> LDY

CLC

LDA

ADC

STA

DEY

BPL

Cycles

2

-1

12 23XNBR+1

ADDLP

LDA

STA

STA

LDY

CLC

LDA

ADC

STA

BCC

INC

CLC

NOCARRY DEY

BPL

RTS

#NBR-1

(LOCl).Y

(LOC2),Y

(LOC3),Y

NEXT

2

5

5

6

2

_3

23

m INITIALIZE SUM

SUMLO

SUMHI

H9 Y IS COUNTER

BASE.Y ADD

SUMLO

SUMLO

NOCARRY TRANSFER CARRY

TO NEXT BYTE

SUMHI

ADDLP

5.4: Yes. However, this method would be cumbersome, requiring 10

additions.

389

PROGRAMMING THE 6502

5.5:

5.6:

5.7:

LOOP

Left to reader.

Left to reader.

CHAPTER6

LDX

LDY

LDA

STA

INX

DEY

BPL

RTS

#0

#9

BASE.X

REVER.Y

LOOP

INITIALIZE INDEX REGISTERS

6.1: 2 4- 5 x 255 - 1 = 1,276 jisec or 1.276 msec.

The minimum possible delay is 6 ptsec; therefore, 1 jisec delay is

not possible.

6.2: 2 + 5 x

NEXT

6.3:

NEXT

LOOP

20- 1 =

LDY

DEY

BNE

LDX

LDY

DEY

BNE

DEX

BNE

Execution time =

6.4:

WATCH

LDY

LDA

BPL

STA

INC

DEC

BNE

= 101

#20

NEXT

#$9C

#$7F

LOOP

NEXT

99997 /n sec or 99.997

#0

STATUS

WATCH

(POINTER),Y

POINTER

COUNT

WATCH

msec.

Cycles

2

2

2

6

5

5

3/2

(FAIL)

390

APPENDIX

The total number of cycles for the input loop, assuming that the

status is always true, is 2 + 2 + 6 + 5 + 5 + 3 = 23, or 23 \xsec with a 1

MHz clock. This implies an input rate of

1 = 43.35K bytes/sec
23 ji sec

The actual difference in rates is

\ - —\— = 12.08K bytes/sec
18jisec 23/isec

or less than 22%.

6.5: 146/nsec/byte

-6.8K bytes/sec

6.6: Bit 7 is used for status because it can be easily tested through the sign

flag. Bit 0 is used for data because it can be easily shifted into the

carry.

6.7: Assuming status is represented in bit 7 of a memory location, the

BIT instruction would transfer it into the sign flag without affecting

the accumulator.

6.8: LDA

LOOP BIT

BPL

LSR

ROL

BCC

PHA

LDA

DEC

BNE

#$00

INPUT

LOOP

INPUT

A

LOOP

#$01

COUNT

LOOP

Original: 146 \jl sec/byte; 25 bytes

New version: 149 \i sec/byte; 18 bytes

6.9: START LDA #$01

LOOP BIT INPUT

BPL LOOP

LSR INPUT

391

PROGRAMMING THE 6502

6.10:

START

LOOP

6.11:

START

LOOP

DONE

6.12: SERIAL

LOOP

ROL

BCC

PHA

DEC

BNE

LDX

LDA

BIT

BPL

LSR

ROL

BCC

STA

INX

DEC

BNE

LDX

LDA

BIT

BPL

LSR

ROL

BCC

CMP

BEQ

STA

INX

DEC

BNE

.

LDA

STA

LDA

LSR

BCC

LDA

A

LOOP

COUNT

START

#0

#$01

INPUT

LOOP

INPUT

A

LOOP

BASE.X

COUNT

START

#0

#$01

INPUT

LOOP

INPUT

A

LOOP

#$53

DONE

BASE.X

COUNT

START

#$00

WORD

INPUT+1

A

LOOP

INPUT

392

APPENDIX

6.13: CHARPR

LOOP

WAIT

6.14: CHARPR

LOOP

WAIT

DONE

LSR

ROL

BCC

LDA

PHA

LDA

STA

DEC

BNE

LDX

LDA

BIT

BPL

STA

DEX

BNE

LDX

LDA

BIT

BPL

STA

CMP

BEQ

DEX

BNE

•

6.15: Hex LED Code

0

1

2

3

4

5

6

7

8

3F

06

5B

4F

66

6D

7D

07

FF

A

WORD

LOOP

WORD

#$01

WORD

COUNT

LOOP

#N

CHAR.X

STATUS

WAIT

PRINTD

LOOP

#N

CHAR.X

STATUS

WAIT

PRINTD

#$0D

DONE

LOOP

Hex LED Code

9

A

B

C

D

E

F

67

77

7C

39

5E

79

71

393

PROGRAMMING THE 6502

6.16: LEDS

OUT

6.17: LEDS

STX

STY

LDX

LDY

RTS

TXA

PHA

TYA

PHA

Tl

T2

Tl

T2

OUT

6.18:

NEXT

LOOP

PLA

TAY

PLA

TAX

RTS

LDX

LDY

DEY

BNE

DEX

BNE

#$5A

#$13

LOOP

NEXT

Execution time: 9.09 msec

6.19: PRINTC

NEXT

LDA

STA

JSR

LDX

ROR

ROL

STA

JSR

DEX

BNE

#$00

TTYBIT

DELAY

#$08

CHAR

A

TTYBIT

DELAY

NEXT

OUTPUT START BIT

9.09 MSEC DELAY

BIT COUNTER

GETA BIT

INTO ACCUMULATOR

OUTPUT IT

WORD TRANSMITTED

394

6.20: TTYIN

LDA

STA

JSR

STA

JSR

RTS

LDA

LSR

BCS

ROL

STA

JSR

#$01

TTYBIT

DELAY

TTYBIT

DELAY

TTYBIT

A

TTYIN

A

TTYBIT

DELAY

APPENDIX

YES, OUTPUT STOP BITS

TEST FOR START BIT

RECOVER BIT

OUTPUT IT

6.21: 26 \x sec lost.

6.22: 256 locations

4 locations/interrupt

= 64 interrupts

6.23: 256 locations = 42 interrupts

6 locations/interrupt

6.24: Left for reader.

6.25: a) Hardware senses the interrupt request, compares with the

mask, sets mask, and preserves regiser (P,PC). Software

unsets the mask, preserves registers (A,X,Y), identifies the

device, executes the routine, restores registers, and returns.

b) The mask inhibits unwanted interrupts.

c) All registers that are changed by the interrupt routine should

be preserved.

d) The interrupt device is usually identifed by polling if there is

more than one possiblity.

395

PROGRAMMING THE 6502

e) The RTI instruction restores processor status while the RTS

does not.

f) Inhibiting interrupts would allow those executing to finish

and withdraw their addresses from the stack.

g) The overhead is the stack manipulations and the running of

the routine itself, both of which detract from the speed of the

mainline program.

CHAPTER8

8.1:

CHECK

LOOP

NEXT

DONE

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

JMP

LDX

STA

DEX

BNE

CMP

BNE

DEX

BNE

RTS

m

CHECK

#$FF

CHECK

#$55

CHECK

#$AA

CHECK

DONE

#0

BASE.X

LOOP

BASE.X

ERROR

NEXT

ERROR

8.2: STRING

NEXT

LDX

JSR

CMP

BEQ

#0

GETCHAR

#SPC

OUT

396

APPENDIX

OUT

JSR

STA

INX

BNE

RTS

SENDCHAR ECHO CHARACTER

BUFFER.X

NEXT IF X IS BACKTO ZERO,

RETURN

8.3:

OUT

BCC

CMP

BCS

CLC

TOOLOW

#$BA

TOOHIGH

8.4: Left to reader.

8.5: JSR

AND

CMP

RTS

8.6: LDA

AND

STA

8.7: LDA

TAX

AND

STA

TXA

LSR

LSR

LSR

LSR

STA

ASL

PARITY

#$80 MASK ALL BUT 7 BIT

EXPECT IS PARITY THE ONE EXPECTED?

Z FLAG HOLDS ANSWER

BCDCHAR

#$30 SET LEFT NIBBLE TO 3

CHAR

BCDCHAR

#$OF MASK OFF HIGH NIBBLE

BINCHAR

A

A

A

A

TEMP

A

SHIFT HIGH NIBBLETO LOWORDER

STOREX

X TIMES 2

397

PROGRAMMING THE 6502

ASL

ADC

ASL

ADC

STA

8.8: MAX

LOOP

SAME

A

TEMP

A

BINCHAR

BINCHAR

LDY

STY

LDA

TAY

LDA

STA

EOR

BPL

LDA

BPL

JMP

LDA

CMP

BCS

SWITCH LDA

STA

STY

NOSWITCH DEY

BNE

RTS

X TIMES 4

X TIMES 5

X TIMES 10

ADD LOW NIBBLE

STORE BINARY RESULT

#0

INDEX

(BASE),Y

#$80 MOST NEGATIVE NUMBER
BIG

(BASE),Y COMPARE SIGN BITS
SAME

BIG IF + / - INVOLVED,

NOSWITCH CHECK IFMAX IS POSITIVE

SWITCH

BIG

(BASE),Y

NOSWITCH

(BASE),Y

BIG

INDEX

LOOP

8.9: Yes, the program will work on ASCII characters with a consistent
parity bit (always 0 or 1).

8.10: See Figure 9.49.

8.11: Left for reader.

8.12: (c)

BCC

LDA

NO CARRY

#0

398

APPENDIX

ADC

BCS

NOCARRY DEY

BNE

CLV

RTS

OVER LDA

ADC

RTS

SUMHI

OVER

ADLOOP

#$40

#$40

INCREMENT SUMHI

SUCH THAT CARRY

IS AFFECTED

FORCE OVERFLOW

ERROR: RETURN

8.13: (b)

ZLOOP

NOTZ

LDA

AND

CMP

BCC

CMP

BCS

INX

DEY

(ADDR),Y

#$7F MASK OUTPARITY BIT

#$41 'A' CHARACTER

NOTZ

#$5B '[' CHARACTER

NOTZ

CHAPTER 9

9.1: Address Contents

15 00

16 05

9.2: FIRST

BLOCK 1
i BLOCK2 *• BLOCK 3

BLOCK

399

PROGRAMMING THE 6502

CHAPTER 10

10.1: No. LDA #'5 will load hexadecimal value 35 as a representative of

the ASCII character "5*. LDA #$5 will load the numerical value of 5
into the accumulator.

10.2: LDA %10101010 loads the accumulator with the contents of the

memory location AA16. LDA #% 10101010 loads the accumulator

with the actual value AA16.

10.3: Assuming the N flag is set, the program counter will be jumped to

the memory location where the branch instruction starts. This will
result in an infinite loop.

10.4: * = 0

400

PROGRAMMING THE 6502

INDEX

A 187

abbreviations 112

absolute 197

absolute addressing 66,190,191,195

accumulator 41,48,55,110,122,133,143,

152,165,178,182,183,185,190,263

ADC 62,113

addition 54,59,67

address 39,149,188,189,191,192,306

address bus 39,44,45,49

address field 358

addressing 188,189

addressing modes 188,200

addressing techniques 188

algorithm 7,8,69,275,318,320,340

alphabetic list 290,301,302,303,304,305

alphabetical order 269,372

alphanumeric 31

ALU ' 39,41

AND 87,104,110,115

APL 345

arithmetic 41,67,100,103,117

arithmetic logical unit 39,41

arithmetic operation 41,100

arithmetic programs 54

ASCII 31, 32,267,268, 360, 376

ASL 106,117

assembler 55,343, 345,346, 356,358,359

assembler directives 362

assembly level language 344,356,358,359

assembly time 361,365

asynchronous 216,221,228

B

BASIC

basic concepts

baud

BCC

BCD

16, 345

7

235

74,109,119

26,27,64, 65,103,268, 379

BCD addition

BCD flags

BCD mode

BCD subtraction

BCS

benchmark

BEQ

63,66

67

67,108

66

109,120

220

109,121

binary 12,13,14,33,34,35,36,37,64,

343,346,358,361,373

binary digit 10,12

binary division 86

binary mode 108

binary representation 12,33,358

binary searching 283,290,294,295,

296,299

binary tree structure 313,320

BIT 110,122

bit 10,12,33, 54,59,100,122,167,169

bit serial transfer 221,223

block 203,204,205,208,276,277,279,280

block transfer routine 203,204,205

BMI 109,123,208

BNE 77,109, 124, 207,208,264

bootstrap 40

BPL 109,125

bracket testing 265

branch 101,119,120,121,123,124,125,

127,128,191,196,264

branches

branching

branching point

break

break point

BRK

bubble sort

buffer

buffered

busses

BVC

BVS

byte

196

191

69

102,108,126,251

108,251,349

108,111,126,251

333, 334,335, 336, 337, 338

255

41

39

109.127

109.128

10,11,27,62

402

INDEX

C 43

call 101

carry 19, 21, 22,43, 57, 75,109,113,119,

120, 129,173,175,191

central processing unit

characters

checksum

chronological structure

circular list

classes of instruction

CLC

CLD

clear

CLI

clock

CLV

CMP

code conversion

coding

collision

combination chips

combinations

commands

comment field

comparisons

compiler

complement

conditional assembly

constants

control bus

control instructions

control lines

control register

control signals

control unit

counter

counting

CPU

CPX

CPY

cross assemblers

crystal

current location

D

D

39

31,265,266

270

47

280, 281

99

57,63,67,129

58,130

57,58,111,119,127,129,130,

131,132,191

131

40,45,73

132

110,133

268

8,349

321

41

194

8

55,356

106

346

14, 30, 54

367

66, 360

39

102,111

255

255, 257

51

39,45

71,214

213

39

111,135

111,137

354

40

361

58,108

data

data bus

data direction register

data processing

data structures

data transfer

data transfer rate

data units

debugger

debugging

DEC

decimal 12,13,14

decimal adjust

decimal mode

decoding logic

39,255

39,45

255,256,259

100,103

275, 284, 300

67,99,102

221

319

347

10, 347

139

., 35, 36, 58,108,

130,176, 379

64

176

41,45

decrement 100,103,139,141,142,207,214

delay

deleting

design examples

destination

development system

device handler

DEX

DEY

direct addressing

direct binary

directive

directories

disassembler

disk operating system

displacement

DMA

documenting

DOS

doubly linked lists

drivers

duration

213,214

287,301,309

284

39

352

248, 348

77,141,207

142, 207

82, 190,191

11,37

95, 360, 362

277, 306

345

347

110,189,191

239

55

347

281,282

41

217

EBCDIC

echo

editor

element deletion

element insertion

emulator

31

234,237

347

299

298

348, 350

403

PROGRAMMING THE 6502

EOR

error messages

executive

execution speed

exponent

extended addressing

external device

22, 87, 104,

42,45

105, 143

358, 363

347, 360

, 82, 348

28,29

191

39

fetch

fields

FIFO

file system

flags 22,102,

flip-flop

floating point

flow charting 8,9,

44,45,46,47

356

279

277

,106,130,132,297

42

28,29,31,100

10,69, 86, 89,214,

219,223,240,273, 288,289,291,

294,301,

front panel

G

generate a signal

H

half carry

handshaking

hardware concepts

hardware delays

hardware stack

hashing algorithm ■

hexadecimal 33.34.

315,316,317,339

33,355

212, 363

65

228,229,255,261

38, 227,239,355

216

48

J20, 321, 322,329,

330, 331, 332

,35.343.358.361.

371,374,375

hexadecimal coding 36,343,344

high level language 345

hobby type microcomputers 354

I

immediate addressing

implicit addressing

implied addressing

improved multiplication

INC

244

66,190,195

190

194

82

145,207

incircuit emulator 350, 352

inclusive OR 161

increment 100, 103, 145,147,148

indexed addressing 191, 197, 238

indexed indirect addressing 198,199,209

index registers 47,191,200,289

indirect addressing 193,194,198,276

indirect indexed addressing 192,199

indirection pointer 276

initialization 70

input/output 102,211,228,239, 363

input/output devices 39,102,211,228,

238,239,254, 263

input/output instructions 111

input ports

inserting

instruction

instruction field

instruction register

instruction set

instruction types

interface chips

internal control register

internal organization

interpreter

interrupt 48,102,108,131,171,177,216,

242,243,255

interrupt handling routine 249

interrupt levels

41

287, 298, 308, 320

11,55,112,372,373

356

45

99,374, 375

67

40

190,257

10,41,42

346

interrupt-mask

interrupt request

interrupt vector

INX

INY

IR

IRQ

iteration

JMP

JSR

jump

K

K

keyboard
KIM

251

108, 244

51

245, 248

147

148

45

51,111,244,245

201

110,149
95,110,151

95,101,149,151,200

16,49

264

261

404

INDEX

L

label field

largest element

LDA

LDX

LDY

LED

level activated

levels

LIFO

light emitting diode

line number

linked list

308,

linking loader

listing

lists 276,285,286,

literal 65

load 55,152,

loader

location

logarithmic searching

logical

logical operations

long branch

longer delays

loops

LSR

M

macros

macro parameters

main program

mantissa

masking

master directory

55

278,

309,

95,

287,

,66,

154,

41,

memory 39,44,45, 55,57,

178,180,181,218,

memory mapped I/O

memory test

merge

mnemonics

monitor

MOS Technology

MPU

multiple interrupts

multiple precision

272,

, 67, 152,

33, 230,

47, 276,

280,299,

310,311,

356

268

268

154

156

231

244

95

280

230

358

306

312

347

322, 359, 378

292, 293,

189,190,

156, 257,

283,

104,115,

41,87,

53,191,

106,

363,365,

363

360

259

347

73

290

158

100

200

215

240

158

366

365

91

28,29,31

197,122,

276,285,

102,337,

263,

339, 340,

343,

40,

38, 3<

248,

131

277

145,

314

351

319

341

358

347

261

>,40

249

59

multiplicand

multiplication

N

N

negative

nested

nested calls

next instruction

nibble

NMI

nodes

75,77,81,83

68,69, 80, 82

43,107,110

16,17,18,23,43

366

93

43,46

10, 27,100

51,111,244,245

319

non-maskable interrupt 51,244

NOP

normalize

normalized mantissa

r\

object code

octal

oneK

one's complement

one-shot

opcode

operand

operand field

operating system

operators

ORA

oscillator

overflow 20,

overhead

p

P

packed BCD

pageO

paging

111, 160

28

28

346

33,34, 35,36,360

49

17,19

216

41, 189

41,54,59,61,356

356

147

361

87,104,161

40

21,22,23 51,107,

127,128,132

247, 253

60,244

27,63

49

49,50

parallel input/output chips 40

parallel word transfer

parameters

parity

parity generation

partial product

PASCAL

218,219

365

31,32,267

267

71,72

345

405

PROGRAMMING THE 6502

PC

PCH

PCL

PHA

PHP

physical address

PIA

PIC

PIO

PIT

PLA

PLP

pointers

polling

pop

port

positional notation

positive

post indexing

power failures

precision

pre-indexing

printer

printing a string

43, 244, 361

43

43

163

164

75

256, 257, 259, 260

249

40, 254, 255,256, 258

213

165

166

97, 194, 275, 276, 278, 297

216,219,240,247,248,263

48

40, 254, 255

12

16,17, 23, 269

192

40

27

192

35,229,241,279

238

245, 246

249

40

8,40

7,8,81

priority

priority interrupt controller

process control

program

programming

program counter 43,45,47,244, 358

program development 343,348

program loop 70

programmable interval timer 213

programming alternative

programming form

programming hints

programming language

programming techniques

PROM programmer

pseudo instructions

pull

pulse counting

pulses

push

quartz

queue

81

357

67

8,345

53

354

58

48,100,165,166

216

212,213,217

48,100,163,164

40

279,280

RAM 40,41,44,

Random Access Memory

RDY

read only memory

read write memory

recursion

register 33,39,73,75,83,96,

135, 154, 156,190,

register management

regular interrupt line

relative addressing

relay

representation of information

RES

reset

restoring method

retrieval

return

Rockwell

ROL

ROM

ROR

rotate

rotation

routines

round robin

RTI

RTS

RW

90,

72,77,101,

110,171,

95,

349, 352

40

51

40, 256

40,256

96

97, 106,

247,256

53

244

191,196

212

33,35

51

256

86

280, 328

171,172

261,353

167

40,44

169

167, 169

77,100

262

280,281

245, 246

110,172

51

S 47,184,186

SBC 62,173

scheduling 239

scope 351

searching and sorting 282

search techniques 283,286,290,307

SEC 63,175

SED 67,176

SEI 177

sending a character 229

sensing pulses 216

sequencing 38,46

sequential block access 200

sequential lists 276

sequential searching 282

406

INDEX

serial search 286

set 120,128,175,176,177

shift 71,72,76,77, 100, 101, 117, 158

shift operations

short address

sign

signed binary

sign extension

simulator

simultaneous interrupts

simple list

single board microcomputer

6502

6502 peculiarities

6522

6530

6532

skew

skip

SO

software stack

software support

sort

source

STA

106

189,195, 200

107

16,17,18

100

348

249

286,290

344,352

38,194, 350, 372

57

258

257,258

261

100

102

51

48

346

269

39

67,103,178,207

stack 47,97,166,244,250,275,280

stack operations

stack overflow

standard PIO

start bit

status flags

status manipulation

status register

stop bit

store

string

STX

STY

subroutines

subroutine call

subroutine level

subroutine library

subtract

subtraction

sum of n elements

SYM

symbol

symbolic label

symbolic representation

49,103

253

254

235,236,255

42

67

244

235

103,178,180,181,327

230,271,272

180

181

48,90,92,95,96,151,

172,327, 365

91,95

95,96

98

62,173

14,67

269

261

360, 363

75, 345

symbol table

SYNC

synchronization

synchronous

Synertek Systems

syntax

system architecture

system 65

358

51

39,102,348

221

261

281

38

362

table 191,197,202,276,277,285,288,

289,290,291,326,358,377

TAX 182

TAY 183

teletype input-output 233,235,236,237

ten's complement 66

test and branch 102,106,109

testing 8

timer 216,258

time sharing system 354

trace 350,351

transfer 182,183,184,185,186,187

translation 55

tree builder 313,315,316

tree search 323,324,325

trees 281,282, 313, 319,320,321,322

tree traverser

truncations

TSX

two's complement

TXA

TXS

TYA

U

UART

unconditional jump

underflow

utility programs

utility routines

313,317,318,320

25

184

17,18,19,29,63,

100, 107

185

186

187

227

95

24

262

262,348

35,356

versatile interface adapter

VIA

volatile

258

258

40

407

PROGRAMMING THE 6502

W

working registers 73,195

X

X 47, 135, 141,147, 154,180, 182,184

185,186

Y

Y 47,137,142,148,156,181,183,187,207

Z 43,107,108,110

zero 43,108,121,124,271

zero page addressing 195

408

The SYBEX Library

YOUR FIRST COMPUTER
by Rodnay Zaks 264 pp., 150 illustr., Ref. 0-045

DON'T (or How to Care for Your Computer)
by Rodnay Zaks 222 pp., 100 illustr., Ref. 0-065

INTERNATIONAL MICROCOMPUTER DICTIONARY
140 pp., Ref. 0-067

FROM CHIPS TO SYSTEMS:
AN INTRODUCTION TO MICROPROCESSORS

by Rodnay Zaks 558 pp., 400 illustr., Ref. 0-063

YOUR TIMEX SINCLAIR 1000™ AND ZX81™
by Douglas Hergert 176 pp., illustr., Ref. 0-099

YOUR COLOR COMPUTER
by Doug Mosher 350 pp., illustr., Ref. 0-097

INTRODUCTION TO WORD PROCESSING
by Hal Glatzer 216 pp., 140 illustr., Ref. 0-076

THE FOOLPROOF GUIDE TO SCRIPSIT™
by Jeff Berner 225 pp., illustr., Ref. 0-098

INTRODUCTION TO WORDSTAR™
by Arthur Naiman 208 pp., 30 illustr., Ref. 0-077

MASTERING VISICALC®
by Douglas Hergert 224 pp., illustr., Ref. 0-090

DOING BUSINESS WITH VISICALC®
by Stanley R. Trost 200 pp., Ref. 0-086

DOING BUSINESS WITH SUPERCALC™
by Stanley R. Trost 300 pp., illustr., Ref. 0-095

VISICALC® FOR SCIENCE AND ENGINEERING
by Stanley R. Trost & Charles Pomernacki 225 pp., illustr., Ref. 0-096

EXECUTIVE PLANNING WITH BASIC
by X. T. Bui 192 pp., 19 illustr., Ref. 0-083

BASIC FOR BUSINESS
by Douglas Hergert 250 pp., 15 illustr., Ref. 0-080

YOUR FIRST BASIC PROGRAM
by Rodnay Zaks 200 pp., illustr., Ref. 0-092

FIFTY BASIC EXERCISES
by J. P. Lamoitier 236 pp., 90 illustr., Ref. 0-056

BASIC EXERCISES FOR THE APPLE
by J. P. Lamoitier 230 pp., 90 illustr., Ref. 0-084

BASIC EXERCISES FOR THE IBM PERSONAL COMPUTER
by J. P. Lamoitier 232 pp., 90 illustr., Ref. 0-088

INSIDE BASIC GAMES
by Richard Mateosian 352 pp., 120 illustr., Ref. 0-055

THE PASCAL HANDBOOK
by Jacques Tiberghien 492 pp., 270 illustr., Ref. 0-053

INTRODUCTION TO PASCAL (Including UCSD Pascal™)
by Rodnay Zaks 422 pp., 130 illustr., Ref. 0-066

DOING BUSINESS WITH PASCAL
by Richard Hergert & Douglas Hergert 380 pp., illustr., Ref. 0-091

APPLE® PASCAL GAMES
by Douglas Hergert and Joseph T. Kalash 376 pp., 40 illustr., Ref. 0-074

CELESTIAL BASIC: Astronomy on Your Computer
by Eric Burgess 320 pp., 65 illustr., Ref. 0-087

PASCAL PROGRAMS FOR SCIENTISTS AND ENGINEERS
by Alan R. Miller 378 pp., 120 illustr., Ref. 0-058

BASIC PROGRAMS FOR SCIENTISTS AND ENGINEERS
by Alan R. Miller 326 pp., 120 illustr., Ref. 0-073

FORTRAN PROGRAMS FOR SCIENTISTS AND ENGINEERS
by Alan R. Miller 320 pp., 120 illustr., Ref. 0-082

PROGRAMMING THE 6809
by Rodnay Zaks and William Labiak 520 pp., 150 illustr., Ref. 0-078

PROGRAMMINGTHE 6502
by Rodnay Zaks 388 pp., 160 illustr., Ref. 0-046

6502 APPLICATIONS
by Rodnay Zaks 286 pp., 200 illustr., Ref. 0-015

ADVANCED 6502 PROGRAMMING
by Rodnay Zaks 292 pp., 140 illustr., Ref. 0-089

PROGRAMMING THE Z80
by Rodnay Zaks 626 pp., 200 illustr., Ref. 0-069

Z80 APPLICATIONS
by James W. Coffron 300 pp., illustr., Ref. 0-094

PROGRAMMING THE Z8000
by Richard Mateosian 300 pp., 124 illustr., Ref. 0-032

THE CP/M® HANDBOOK (with MP/M™)
by Rodnay Zaks 324 pp., 100 illustr., Ref. 0-048

MASTERING CP/M®
by Alan R. Miller 320 pp., Ref. 0-068

INTRODUCTION TO THE UCSD p-SYSTEM™
by Charles W. Grant and Jon Butah 250 pp., 10 illustr., Ref. 0-061

A MICROPROGRAMMED APL IMPLEMENTATION
by Rodnay Zaks 350 pp., Ref. 0-005

THE APPLE® CONNECTION
by James W. Coffron 228 pp., 120 illustr., Ref. 0-085

MICROPROCESSOR INTERFACING TECHNIQUES
by Rodnay Zaks and Austin Lesea 458 pp., 400 illustr., Ref. 0-029

FOR A COMPLETE CATALOG

OF OUR PUBLICATIONS

U.S.A. FRANCE GERMANY

SYBEX, Inc. SYBEX SYBEX-VERLAG

2344 Sixth Street 4PlaceF6lix-Ebou6 Heyestr.22

Berkeley, 75583 Paris Cedex 12 4000Diisseldorf 12

California 94710 France West Germany

Tel: (800)227-2346 Tel: 1/347-30-20 Tel: (0211)287066

Telex: 336311 Telex: 211801 Telex: 08588163

COMPUTERBOOKS ARE DIFFERENT.

Here is why...

At SYBEX, each book is designed with you in mind. Every manuscript is

carefully selected and supervised by our editors, who are themselves com

puter experts. Programs are thoroughly tested for accuracy by our techni

cal staff. Our computerized production department goes to great lengths

to make sure that each book is designed as well as it is written. We publish

the finest authors, whose technical expertise is matched by an ability to

write clearly and to communicate effectively.

In the pursuit of timeliness, SYBEX has achieved many publishing firsts.

SYBEX was among the first to integrate personal computers used by

authors and staff into the publishing process. SYBEX was the first to

publish books on the CP/M operating system, microprocessor interfacing

techniques, word processing, and many more topics.

Expertise in computers and dedication to the highest quality in book pub

lishing have made SYBEX a world leader in microcomputer education.

Translated into fourteen languages, SYBEX books have helped millions of

people around the world to get the most from their computers. We hope

we have helped you, too.

Programming the

65O2
"... if you need to know the 65O2, you may

not be able to find a text easier to under

stand than this one."

— CREATIVE COMPUTING

"The style is clear and direct and the con

tents well organized ... more importantly,

this one (book) scores high on readability."

-EDN

"... it contains sufficient material and is well

enough organized for use as a reference

text ..."

"Zaks' book is solution oriented."

- KILOBAUD

Dr. Rodnay Zaks, president of Sybex, Inc.,

has a PhD in Computer Science from the

University of California, Berkeley. He has

been responsible for the design and instal

lation of computers for industrial control,

educational and scientific applications,

as well as business and home use. He is the

author of numerous books on all facets of

computers, including the best selling YOUR

FIRST COMPUTER.

ISBN D-flTSflfi-13S-7

