
..szi

WWfWWH41.59%;

PREFACE

This is no t a novel, nor have we attempted to make it read like one. It’s a Reference
Manual for beginners in personal computing, and it covers the complex subject of com‑
puter programming in ATARI" BASIC. A computer is unique in the world of machines. It
has no specific design function, but rather is intended to do what its user tells it to!
Therefore the new programmer must learn a language that both he and the computer can
understand!

This language is called BASIC, which is short for Beginners All-Purpose Symbolic Instruc‑
t ion Code. This BASIC computer language is what this book is all about. ATARI BASIC
differs somewhat from ”traditional” or “standard” BASIC for the purpose of accen‑
tuating the particular capabilities of the ATARI Personal Computers.

Just like applications for a home computer, users come in all varieties! They also come at
all levels of skill and experience and with all levels of need for information. If you have
had previous programming experience in BASIC, y o u will find many features of ATARI
BASIC that are old friends. There are also some new ones that are used only with ATARI
Personal Computer Systems.

This BASIC ReferenceManual is our attempt to cover all the material most owners could
want, to cover it at all levels of user experience and skill, and simultaneously to try to pu t
all this information into a single easy-to-read, “handy" format. Big job! Hopewe succeeded!

Hope you enjoy using your ATARI Personal Computer, and have fun with our little tour
through what we call “BASlCland”. Good luck and happy computing!

CHAPTER 1

INTRODUCTION
1.1General Information 1
A thorough study of this chapter and Appendix F(covering use of the keyboard) is strong‑
ly recommended. They will tell you about the organization of the Manual and how to
find what you need. This chapter will give you the ”keys" that will unlock some of the
esoteric terminology of the computer world, (see also Appendix C, the Glossary) and will
point up the major features of ATARI BASIC that are unique or unusual. Probably the
most deserving of your immediate attention is the section that tells you about the nota‑
tion conventions used in this book to describe commands, functions, and other BASIC
statements. Once you really understand these conventions, you will find the rest of the
book (and most other computer software reference books) easy to read and understand.
Each BASIC term is discussed using a certain format asexplained in the notation conven‑
tions section of this chapter. There are program examples throughout the book that show
you how the statement under discussion might look when actually ”keyboarded" into
your computer. Just one more time: Study the section on notation conventions! A few
minutes invested here will save you hours of frustration later.

a

1.2 Features of ATARI BASIC
Some of the special features of ATARI BASIC include: Sound effects with up to four in‑
dependently controlled voices, five octave range, and programmer control of tonal
qualities and volume; three text modes and five graphics modes; full, 16 color graphics
control; string length limited only by memory capacity, similarly “unlimited” loop
nesting capability; special game controller access using BASIC commands (no t PEEK or
POKE); floating point functions to nine digits; device independent input/output opera‑
tions; and readily usable PEEK, POKE, and USR capabilities for those of you who want to
really get in there and meet your computer at its own machine language level! Variable
names limited only by line length are also unusual features, asare the "fingertip program‑
mable” special keyboard graphics characters. See Appendix F for information on the
keyboard and the editing system. The latter is in itself very different and very powerful!

1.3 Terminology: Stranger in a Strange Land?
Books on BASIC (and computers in general) are full of complex sounding terminology
that the beginner must either master at once or shake his head in wonder until he does.
The former is much to be preferred...besides, think of how y o u can impress y o u r friends

7

who haven't bought their ATARI Personal Computers yet! Seriously though, we will make
every attempt to keep the ”jargon” to a minimum, and to explain our terms as we go.
Hopefully, a quick side-tour now and then to the Glossary/Index in Appendix C will be
necessary only occasionally, and mostly for reference purposes (unless you just like side
tours). Let’s start with a few terms, presented as painlessly as possible:

BASIC Statement: Analogous to a sentence in English. A statement has a verb (such as
LET, PRINT, RUN, =, > =, etc.,) a subject (very often a variable or a constant), and
sometimes an object (usually an expression) All parts of a statement must, of course, be
”legal" in BASIC... that is, the computer must be able to recognize and interpret them
(hopefully asdesired by the programmer!) Sometimes parts of a statement may be omit‑
ted or ”implied” just as in an English sentence. For example, we may say ”Let usset the
value of X equal to one.” Or we may say (equally correctly) "Let X=1" . Or even “ X = 1".

' Many of the same sentence contractions are permissible in BASIC, as we shall see.

Variable: A variable is simply the use of a name for a numerical or other quantity which
may (or may not !) vary. Think of a variable as a little box in which we can store a value.
We can, for example, take the number 100 and store it in the variable named X. We do
this by saying LET X==100. We can store the 100 in any legal variable. Note here that
variable names (such asX in our example) m a y be up to 120 characters long. However, a
variable name must start with a capital letter, and m a y contain only capital letters and
numerical digits. No punctuat ion marks, graphics symbols, etc.. please! Here are a few
more examples of storing a value in a variable:

LET C123DVB =1.234
LET VARIABLE112= 267.543
LET A = 1
LET F5TH7 = 6.5
LET THISNO = 59.809

(Note: LET is optional and may be omitted)

Constant: This is iust a teeny tiny bit of "computerese": We normally think of a constant
as something that never changes (l ike the value of Pi). in our new electronic context,
however, a constant is just a value expressed as a number rather than represented by a
variable name! For example, if we tell the computer that X = 100. X is a variable and 100
is a constant.

Expression: This is like a phrase in English it can be evaluated to a numerical quantity? For
example, the following is an expression: 4 + 5 - 6+10 . lt evaluates to the numerical
q u a n t i t y 13. An expression may be either logical or (as in our example) arithmetic. It m a y
be made up of any legal combination of variables, constants, operators, and functions
used together to c o m p u t e a value. Note that expressions are usually (but no t always]
found t o the right o f a n = sign a si n the typical LET statement: X = 4 + 5 ‐ 6 + 1 0 .

8

Function: A function is a computation built into the computer’s system so that it can be
called for by the user in a program. A function is NOT a statement! Either it is an expres‑
sion, is part of one, or is usedwith an expression. It is really a subroutine used to compute
the value of the function, which is then "returned” to the main program when the
subroutine returns (more on subroutines in Chapter 3). But a function does nothing in and
of itself that the user can see. COS (cosine), RND (random), FRE (unused memory space),
and INT (integer) are examples of functions. Since functions do no more than return a
value to the program, we must always tell the computer to do something with the value
returned. in many cases the value issimply assigned to avariable (stored in a variable) for
later use. In other cases it may be printed ou t on the screen immediately. See Chapters 6
and 7 for more on functions. Meanwhile, here are a couple of examples of functions as
they might appear in programs:

, 10 PRINT RND(0) (print ou t the random number returned)
10 X=100+COS(45) (add the value returned to 100 and

store the total in variable X)

String: A string is a group of characters “strung” together and enclosed in quotation
marks: "ABRACADABRA" is a string. So is "ATARI MAKES HAPPY COMPUTERS".
Likewise “123456789” is a string. A string ismuch like a constant, for it too , may be stored
in a variable! A string variable is a little different, though, for its name must end in the
character 5. For example, the string ”ATARI 800” may be assigned to avariable called As
using (optional) LET like this:

1 0 LET A $ = “ ATA R | 800" (note quotat ion marks)
OR

1 0 A $ = “ ATA R I 800" (LET i s optional, the quotes are r e
quired!)

Because the quotation marks are used to tell the computer that a string is being started or
stopped (called "delimiting" in computerese), quotation marks may not be used within
the string itself. See Chapter 7 for a complete dissertation on strings!

Arrays and Array Variables: Think of an array asa list of places where data can be filed
away for future use. Each of these places is called an ”element", and the whole arrayor
any element is an array variable. For example, let’s consider an array that we will call “ a r ‑
ray A" as having 6 elements. These elements are referred to by the use of subscripted
variables such asA(2), AB), M4) , etc. A number can be stored in each of these elements.

9

This may be accomplished element by element (using the LET statement), or asa part of a
FORINEXT loop (see Chapter 8).

Note: Don't leave any blanks between the element number in parentheses and the name
of the arrayl This will cause your computer all kinds of confusion, which it will throw
right back into your face!

Do it like this: Never like this:

A(23) A (23)
ARRAY(3) ' ARRAY (3)
X123(38) X123 (38)

These spaces are “no~nos"!

1.4 Notation Conventions Used in this Manual
The following conventions are applied throughout this Manual. If the reader will take a
little time before proceeding to learn the conventions, he will have much less trouble
understanding some of the format explanations used throughout the rest of the text.

Line Format: The format of a line in a BASIC program includes a line number (ab‑
breviated to lineo) at the beginning of the line, followed by a statement keyword, follow‑
ed by the body of the statement, and ending with a line terminator command. The ter‑
minator in the case of the ATARI Personal Computers is simply pushing the key.
In an actual program, the four elements might look like this:

Line Number t Keyword Body Terminator
100 PRINT AlX* (Z+4 .567)

Remember: Every line in BASlC program must begin with a line number and must end
with the terminator command m .

C ‘ ‑

CAPITAL LETTERS: In this book, CAPITAL LETTERS denote keywords which must be
typed by the user in upper case form exactly asthey are printed in this text. Reverse‐video .
characters will not work. Here are a few examples:

PRINT RUN LIST END GOTO GOSUB FOR NEXT If

(See Appendix B for a complete listing of all BASIC keywords.) As a practical mat te r, we
can say that in a program, all alphabetical characters used other than within quotation
marks (i.e., in strings) must be capitalized and must not be reverse video characters.

Lower Case letters: In this Manual, lower case letters are used to denote the various
classes of items which may be used in a program, such as variables (var), expressions
(exp). and the like. The abbreviations used for these classes of items are shown in Table
1.1 below.

Items in Brackets: Square brackets like these [1contain optional items which may be
used but are not required. These brackets must n o t be confused with parentheses like
these() which are entirely different!

Items in Brackets followed by Three Dots [exp...]: These items are optional, but may be
used in any number desired. Thus [, exp, exp, exp] and so on. The dots just mean (in this
case) that any number of expressions m a y be ”tacked on " as needed, but none are re‑
quired. Note that the leading comma is used only if the brackets are used. I t , too, is op ‑
tional, but must be used between each pair of exps.

Itemsstacked vertically in braces: Items stacked vertically in braces mean that any one of
the stacked items may be used, but that only one at a time is permissible. Here’s a good
example of this:

GOTOIlineno {GOSUB } lineno

(Here either GOTO or GOSUB m a y be used, but n o t both!)

11 ‘

TABLE 1.1

ABBREVIATIONS USED IN THIS MANUAL 1'

Abbreviations

3V3 !

5V3 !

I D V J I

V I I

aexp

Iexp

sexp

aop

lop

12

Explanation and Discussion of Items

Arithmetic Variable: A locationwhere a numericvalue is stored.
Variable names may be from 1 to 120 alphanumeric characters,
but must start with an alphabetic character, and all alpha
characters must be unreversed, upper case.

String Variable: A location where a string of characters may be
stored. Same name rules asavar except that the last character in
the variable name must be a 5.

Matrix Variable: (Also called asubscripted variable). An element
oi an array or matrix. The variable name for the array or matrix
as a whole m a y be any legal variable name such asA, X,Y, ZIP,
K, or whatever: The subscripted variable (name for the par‑
ticular element) starts with the matrix variable, and then uses a
number, variable, or expression in parentheses immediately
fol lowing (w i thou t a space!) the array or matrix variable. For ex‑
ample, A(ROW), A(1), A (x+1) .

Variable: Any variable.Ma y be mvar, avar, or svar.

Arithmetic Expression: Generally composed of "aexp aop aexp"
where each aexp m a y be an lexp, avar, mvar, constant. or
arithmetic function. Any arithmetic expression...

Logical Expression: Cenerally composed of aexp lop aexp or
sexp lop sexp. Such an expression evaluates to either a l (logical
t rue) or a 0 (logical false).

For example, the e x p r e s s i o n 1 < 2 evaluates t o the value 1 (t rue)
while the expressmn "LEMON" = "ORANGE" evaluates to a
zero (false) as the two strings are no t equal,

String Expression: Can consist of a string variable, string literal
(constant) , or a function that returns a string value. No operators
are allowed in sexp.

The arithmetic opera to r signs: +, -, ', /, <. < = , =. > =.
<>. A ‘
The logical opera to rs : AND, OR, NOT (the latter is a specnal
case: NOT is a unary operator)

Hneno

exp

adata

“filespec”

A constant that identifies a particular program line in a deferred
mode BASIC program.

Any expression, whether sexp or aexp.

Data expressed in ATASCII code. (See Chapter 5 and Appendix
E.) Quotation marks are ”thrown ou t ” by the computer, asare
leading blanks.

Reference to a particular file, usually on disk. "file spec" always
appears in quotes, and contains information on the type of ”0
device, its number, a colon, an optional file name. and an op‑
tional filename extender.

Example filespec: “D1:NATAL|E.ED”

. (See Chapter 5, especially Figure 5.2) '

1.5 And Now! ONWARD! Into BASICIand!
Welcome to the strange and wonderful place called BASICIand! You know enough now
to begin a serious study of the language spoken here, for you have been introduced to a
few of the words. More important, you know how to use the handy guide-book.

In the rest of this book, y o u will get a guided tour of the place, and you will meet a few of
the natives. Luckily, most of these are friendly, and your relationships will be helped
along by the time you have spent studying this introductory material.

‐‐ Have a Nice Trip! ‑

U

CHAPTER 2

BEGINNINGS IN BASIC:
PROGRAM AND SEQUENCE CONTROLS

3rd Stop:
Learn

7 BASIC
keywon'ds

1st Stop:
DIRECT

and DEFERRED
programs

Go to next
page

2nd Stop:
INTRO

TO THE BASIC
lANGUAGE

#3 CONT

2.1 Direct and Deferred Programs
Before we get into the myster ious realm of the BASIC computer language, we need to
look at the two "modes” that most computers including ATARI Personal Computer
Systems using BASIC can employ. I n compu te r lingo a "mode" i s a method, type, o r class
of operation. The term is used like this: Input mode (as opposed to output mode),
graphics mode (as opposed to text mode), and in the case we are about to examine Direct
Mode (as opposed to Deferred Mode).

Remember in Chapter 1 when we discussed the format of a BASIC line, we said that the
first en t ry on such a line was the line number? True, in DeferredMode, where execution is
delayed until the computer is commanded to RUN. But there is also a Direct Mode
(similar to a calculator, but much more powerful) which RUNs executable statements as
ooon asthe [m key is pressed. In Direct Mode, line numbers are no t used, and that's
how the compute r is told to use this mode. The number of statements that can be entered
in a single Direct Mode program is limited by the length of the logical line. Several
statements can be entered, separated by a colon (2). Here is an example of a Direct Mode
program: ,.‘

READY (computer prints)
LET x=1 : lET Y=2: PRINT X+Y w (you type)
3 (computer prints)
READY (computer prints)

Here’s another example:
READY (computer prints)
PRINT “MY OWNER LOVES ME!" man (you type)
MY OWNER lOVES ME (computer prints)
READY (computer prints)

)4

Note: This would be a good t i m e for y o u to "power u p " you r systemand practice enter‑
i n g a few simple Direct Mode programs. Remember to press m when you are ready
to RUN you r program, and remember that i t won ' t show y o u anything (except perhaps an
ERROR message!) unless y o u tell it to PRINT what y o u wan t to see on the screen.

16

You are quite limited in Direct Mode, but you will find it very handy for calculator-type
operations, and for making calculations during times when you are entering a program in
Deferred Mode. It is also useful when there is already a program stored in memory that
you don't want to disturb to do a calculation. Remember that you can use Direct Mode
asmuch asyou like without disturbing what is stored in the computer’s memory, provid.
ed you don’t use the same variables in both modes at the same time!

The drawbacks of Direct Mode are its program length limitations (120 characters max‑
imum), and the fact that each time you wish to RUN y o u r program you must retype the
whole thing into the machine prior to hitting the key. The cure for all this is the
Deferred Mode.

If y o u use line numbers, the computer will automatically place itself (and you!) in Defer‑
red Mode. This means that the program can be as long as y o u like (limited only by the
amount of memory y o u have purchased), need only be entered once, can be stored using
the program recorder or diskette and re‐run any t ime y o u desire, and can bemodified for
different purposes at anytime without having to retype the whole thing.

Now t ry a couple of little programs in Deferred Mode. If y o u are a beginner, just type
them into the computer without worrying at this poin t about what the words really mean.
We’ll cover every BASIC keyword in the rest of this manual. For now. just familiarize
yourself with the Deferred programming Mode.

Examples Of A Simple Program In Deferred Mode

READY (computer displays)
10 A = 3 (you type)
2 0B = A + 2 (you type)
3 0PRINT “ H M S - 5 + 5 ” ; A + B w (you type)
RUN (you type)
8 (computer displays)
READY (computer diSplays)

READY (computer displays)
NEW w (you t ype - Note no line number)
10 A = 4 5 damn (you type)
20 x =5 (you type)
30 PRINT "A DIVIDED BY X IS ”; AIX w. (you type - Note one space after " is”

and before closing quote)
RUN w (you type)
A DIVIDED BY X IS 9 (computer displays)
READY , (computer displays)

i,

Notes on the above routines: Consult Appendix Fof this manual for information on the
keyboard. Try changing the values of A and X in the above program. The words NEW
(which clears ou t the old program from memory) and RUN (which causes the compute r to
execute your program), are commands normally performed in Direct Mode and require
no line numbers. If y o u placed them in numbered lines, they wouldn’t work immediately.
You would have to repeat them later in direct mode (no line numbers) anyhow.
Remember, through, that any BASIC statement is " legal" in both modes.

2.2 A Few More Introductory Remarks About BASIC
Before we discuss the actual BASIC commands and.‘other keywords, we should briefly
review a few items and comment on a couple morez’Remember that.in Deferred Mode.
each BASIC line requires a line number, a BASIC statement or keyword, the body of the
statement, and the pressing of the m key, in that order. However, we should also
be aware that just as in Direct Mode, we can enter more than one BASIC program state‑
ment on each line in DeferredMode. In this case, too, we must use a colon (z) to separate
the statements. For example:

1 0X=3 :Y=X+2 : Z=X+Y:PR INTZ RETURN

Line numbering: Note that the line number used can be any number between 0 and
32767 Fractional line numbers (such as 40.6 or 60.3) are rounded off to the nearest whole
in teger (n o t rounded down asWith the INT function!) Also, no negative(-) line numbers,
please...

The line numbers determine the order of program execution. There are several ways in
which the sequence can be modified (wi th COTO, GOSUB, TRAP, e tc) , but without such
”out5ide" direction, the c om p u t e r Will execu te the program in the numerical order of the
line numbers. This is true regardless of the order in which you type in the lines! For exam‑
ple, if y o u use the order 100, 10, 20, 200, and 30when you enter source program material
through the keyboard, the sequence of execution will still be 10, 20, 30, 100, 200.

No te in the ab0ve example that line numbers need n o t be consecutive integers, that is,
spaces of unused numbers may be left between the numbers actually used. This is good
practice as in this w a y additional p rog ram lines can be inserted into these gaps at a later
time Without having to renumber the other program lines. Mos t BASIC programmers use
the numbers 10, 20, 30, 40, and so forth in numbering their lines.

)5

Special Note: When working with array or subscripted variables, (see Chapter 8) do not
leave a space between the variable name and the opening parentheses in front of the
subscript number or letter Examples:

Always do it this way! Never do it this way!
10 D IM A(10) 10 D IM A (10)
20 IF A(X)=5 THEN PRINT Y 20 IF A (X)=5 THEN PRINT Y

These spaces are "no-nos"!

I f y ou ignore o r forget this note and leave the ”no-no” space, the compu te r probably will
ignore the parenthesis between the subscript variable and the variable used to name the
matrix or array. You will get a message from the computer that you may no t like. (I t will
tell you that y o u have caused an ERROR and you had better mend your "errant" ways!)

"Dummy" Variables: As we saw in Chapter 1, a function is a "built-in” computat ion or ex‑
pression. Two other items are needed to make a function into a useful statement: First,
weneed to tell the computer what it is to do with the value returned by the function. Nor‑
mally a BASIC keyword like PRINT or ET isused for this. Second, the function must have
some value on which to operate. This value follows the function call keyword immedi‑
ately and in parentheses. For example, the following statement is a typical use of the
RND (random) function:

10 LET X= RND(0)

As we shall see when we discuss functions in Chapter 6, the 0 in this case is called a
"dummy" variable because any value can be entered without changing the value return ‑
ed by the random (RND) function. The only rule is that some number must be used
following RND in parentheses. RND(1000) is exactly the same to the compute r as RNDlO)

Important Note: All BASIC statements that will RUN in Deferred Mode will also work
fine in Direct Mode and vice-versa.

l9

2.3 And now...Let’s Continue Our)ourney into BASICland!
We’ll begin by discussing the commands (and one function), that are used for the crea~
tion and execution of BASlC programs on ATARI Personal Computers. These commands,
and the function FRE, do not alter the program itself, but enable the programmer to use
and control the program he has created. We can say that the commands LIST. RUN,
NEW, CONT, the function FRE, and the REM keyword are primarily for the benefit of the
programmer rather than the computer. They allow him to control the computer and the
program, and to get information that may be valuable to him but no t to the compute r. “

Note that each of the six keywords mentioned above will be discussed using a format
speCificaton, (i f y o u get in trouble, review the Notation Conventions section in Chapter
1), the abbreviation, if any. that may be used to save y o u t y p i n g time, one or more pro‑
gram examples that show the keywords the way they might appear in a real program, a
description of what the keyword does and how it might be used, and finally any special
rules that must be followed when using the keyword.

5

0Any t i m e you ' re ready“. let’s dive right in.. it’s not really t o o deep!

RUN
Format: RUN m (Note: nolineno isused‐but see also
Program Example: RUN m Chapter 5!)

Description: The command RUN is used to cause the compu te r to begin execution of a
program Since it is usually used in the Direct Mode without a line number, the command
is executed immediately upon pressing the RETURN key, All variables are set to zero, and
all files and peripheral devices that were OPEN are CLOSEd. All arrays and matrices are
eliminated (n o t reset to zero), Unless TRAP is used, should any error be discovered while
the program is RUNning, an error message will be printed on the screen, and execution
wrll S T O P, (See Appendix C for a list of the error codes used with your ATARI Personal
Computer System) Like the other commands, RUN can be used during a program (as par t
of a line With a number) in Deferred Mode This would be accomplished in the following
manner:

Format: lineno RUN m (see Chapter 5 for more info on
"chaining" programs)

5 PRINT "OVER AND OVER AGAIN”
10 RUN w

NOTE: To begin a RUN at other than the first program line number, use COTO lineno
m ,

20

NEW
Format: NEW (direct mode)
Program Example: NEW (direct mode)

Description: This command erases everything stored in RAMmemoryl Therefore, be sure
you SAVE or CSAVE (see Chapter 5 on Input/Output operations) any program you may
wish to recover and RUN later! The NEW command is used when you are done with an
old program and wish to enter a new one.

Be careful with NEW or you may lose a valuable program!

J

CONT
Format: CONT ' .
Program Example: CONT (mode used)

Description: Typing CONT and hitting the key causes execution of a program to
resume after t h e - k e y has been hit or the program has encountered 3 STOP state‑
ment. Execution resumes at the next sequential line number following the statement in
which the program was stopped. Note that if the statement interrupted by t h e - ,
STOP, or END command is followed by other statements on the same line, the rest of the
statements on the line will not be executed when the command CONT is used. Execution
resumes on the next numbered line.

v

If a is received during execution of the early part of a looping routine (see
Chapter 3), and CONT is used to continue the program, since the execution is restarted on
the next program line it is possible that the loop will no t be terminated properly and er‑
rors may result later in the program. (See POP-Chapter 3). For example:

100 INPUT A: (- occurs here.) NEXT I

21

FRE
Format: FRE(dummy) m
Program Example: PRINT FREM) m

Description: Normally used in Direct Mode, this function is used to get the number of
bytes of free (unused) RAM memory. Like all functions, some other command must be
used to make use of or to display the value "returned” by the function. In the case of
FRE, PRINT is mos t often used. For example:

PRINT FRE(0) man

would cause the compu te r to display the amount of memory available (unused) at the
time the m key is depressed.

Rules: FRE, like most functions, ma y be used in Direct or Deferred Mode; however, it is
seldom used within a program.

REM
Format: lineno REM followed by te l t of remarks... m
Program Example: 100 REM ROUTINE TO CALCULATE x m a y

Description: REM and everything on the same line following REM, is ignored by the com‑
pu t e r, [i t is a no o p e r a t i o n statement) . However, when the programmer LlSTs his program,
the REM statement ISLlSTed along with all other numbered lines. This gives the program‑
mer a place to make a self-prompt no te , or a REMark about the program or par t of the
program. Obviously, REM statements are inviSible unless the program is LlSTed, and the
compu t e r doesn’t even not ice their presence.

Rules: Don't t r y to p u t other statements on a line following a REM statement! Since the
first word o n the line i s REM, the c ompu t e r simply passes along t o the next line number,
i g n o r i n g everything that follows the word REM!

12

LIST
Format: List [filespec] [linen01[,lineno2]]
Abbreviation: L.
Program Examples: LIST 10,100 (prints program list from line 10 to

line 100, inclusive)
LIST (prints entire program list)
LIST 10 (prints source program line 10 only)
LIST "P:", 10,100 (list lines 10 through 100 on printer)

Description: LIST displays the source version (as you typed i t) of all lines currently in
memory, or just those lines you request with the HST statement. For example, LIST 100

will cause the computer to display line 100 only. LIST 100, 150 will br‑
ing you a printout of lines 100 through 150 on the screen. The statement LIST used
without line numbers following it will cause the entire program to be LlSTed.

Rules: LIST ma y be used in DeferredMode but seldom is. You might wan t to use it in that
mode aspar t of an error trapping routine, though, and you should be aware that it can be
so used. (SeeTRAP in Chapter 3.)

The above are commands and functions that will help you steer you r way around
BASlCland, and get your ATARI Personal Computer to give you information y o u may
need in your navigation. You now know how to RUN, - j u s t push t h e ‐ k e y) , ‑
CONT (cont inue a stopped program), LIST (display what y o u have entered), check you r
remaining memory capacity with FRE, clear all memory with NEW, and make notes in
you r " t r i p diary" using the REM statement. We’ve come a long way into deep, dark
BASlCland!

This would be an excellent time for beginning computerists to review Appendix F, which
fully describes the use of the keyboard. See Appendix A, also. Type in a sample program
or two to get y ou started. When you're ready for another BASlCland adventure, just turn
the page and take a tour of the keywords used for program sequence control and bran‑
ching! ‘

‘23

CHAPTER 3

PROGRAM SEQUENCE
CONTROL AND BRANCHING
Ready for more treks through BASICland, huh? Got to admire your perseverance! This
chapter will make things easier for you. Matter of fact, each little tour you complete by
studying a chapter in this book makes the next excursion less trying and more fun!

This chapter’s a little like the steering mechanism on our tour bus. The statements
" u n w e d w i l l a ive y o u control over y o u r program and allow you to tell it where to go next.

3.1 Branching
Remember that the BASIC program follows a sequence of line numbers, in numerical
order? That's true, but also remember that the only design function of any user‑
programmable computer is to do what you, the Master, tell it to do. So there must be
some way to alter the sequence of Operation... and there is!

In fact, there are two general methods, both of which can be lumped under the generic
name "branching”. Branching simply means jumping backwards or ahead any number of
lines and transferring control of the program to the line you specify. For example, if we
are at line 100, and we want to repeat a computation or other action back at line 50, we
can tell the computer to do just that: Co to 50. Likewise, we can tell it to skip certain pro‑
gram lines and branch forward (over them). (Actually, all statements and keywords in
BASIC must be typed into the computer in all caps, and the word is shortened by remov‑
ing the space between " g o ” and " t o “ .) The result is the 0 0 1 0 statement which we will
discuss in this chapter. But y o u get the idea of branching. It just means going back to an
earlier line number of skipping forward over some intervening lines to the one specified.

In general, we can speak of t w o m a j o r types of branching: These are the unconditional
kind (like the GOTO statement we mentioned briefly above), which will happen under
any circumstances, and the conditional type of branching which occurs only IF certain
conditions are met.

25

3.2 Down the Loop Trail...
Before we begin our discussion of the various branching statements themselves, we need
to discuss one more concept . This is the idea of looping. By use of an unconditional
branch statement (l ike GOTO) , we can cause the program to branch back to an earlier
line number, repeat the pa r t of the program between the line number and the GOTO
sta tement , branch back again. etc. The reason this is called looping becomes rather ob‑
vious at this point! A n y statements or commands contained in lines between the GOTO
statement and the ”target" line number Will be repeated each time the program makes
another trip through the loop.

This looping is.not only a very powerful programming tool, it enables the computer to do
many of the repetitious and menial tasks that a human used to have to do by hand.

1NOTE: A loop started and controlled by an unconditional branch statement such as
GOTO, once RUNning, can be exited only by either powering down the computer (and
consequently losing y o u r entire program), or by hitting t h e - k e y (gently, please!)
The latter simply stops execution, which may be restarted simply by executing either
RUN or CONT.

Here is a Simple Looping Program:

1 o x = x + 1 m m
z o P R I N T “ X = " ; X m m
3 0 c o m m
RUN man
(When y o u get tired of seeing it c o u n t , press t h e - key)

3.3 Branching and Program Control
As we discussed, unconditional branching is a skipping backward or forward over p a r t of
the program to a specific line number (which we will call the " target ” line number). Con‑
trol of the program iStransferred directly to the target line number by the branch state‑
m e n t , and e x e c u t i o n continues from the target point. This means that the entire line
beginning with the target line number Will be executed immediately after the branch
statement is encountered. '

It

Very Important Note: If multiple statements must be executed on the line that carries the
branch statement, the branch statement must be placed as the last statement on that
line. Likewise, the target line must not carry any statement that you don’t want executed
when the branch occursl

Since some of the statements discussed in this section cause unconditional branching, a
method must be found to "escape” from the resulting program loop, even if it is only by
p r e s s i n g - -

GOTO
Statement: lineno GOTO aexp (aexp evaluates to the
Abbreviation: G. “target" line number)
Program Example: 100 GOTO 50

500 0 0 1 0 (H Y)

Description: The GOTO statement immediately transfers program control to the target
line number. The target may be anywhere in the program, but an embarrassing error will
result if the program is told to GOTO a line number that doesn’t exist! Statements be‑
tween the GOTO statement and the target line number are ignored. Statements on the
same line as a GOTO but following it will not be executed. Any backwards branching
GOTO statement may cause a loop to be started. If this is unintentional, or if y o u desire
to stop the loop, just hit the - k e y . Note that a conditional branching statement
such as the IFITHEN statement can be used to break ou t of a GOTO loop. This will be
discussed a little later on.

GOSUB and RETURN ,‑
Statement: lineno GOSUB aexp (aexp is the target)

lineno RETURN (returns to main program)
Abbreviations: COS.

RET.
Program Example: 100 GOSUB 2000

2000 ‐ subroutine starts on
2120 RETURN line 2000

27

Description: These statements allow the use of subroutines in BASIC. A subroutine is a
program or routine used to compute a certain value or do other work. It isgenerally used
when an operation must be repeated several times using the same or different values.
Thus, instead of burning up our own typing time (no t to mention the computer's memory
space), we can pu t in a subroutine once and then "cal l" it repeatedly usingGOSUB (short
for go to subroutine). The first line of the subroutine is the target line specified with the
GOSUB statement. The last line of the subroutine ends with the RETURN statement,
which sends the program back to the next line number following the line on which the
COSUB statement occured. For this reason, multiple statements that follow GOSUB on
the same line would not be executed.

Programmers should no te that when using subroutines, care must be taken to avoid hav‑
ing the main program reach its last statement and then continue executing a subroutine
because that subroutine’s numbers are sequentially "next” in the program. The easiest
way to prevent this is to get in the habit of always placing an END statement immediately
before your subroutine's first line For example, if the subroutine starts on line 2000, line
l999 should look like this; 1999 END W

Here's a short program that will illustrate the use of Subroutines:

5 REM EXAMPLE USE OF GOSUBIRETURN
10x=100 [fi l m
20 GOSUB 1000 m
30X=120 m
40 GOSUB 1000 W Main Program
sox=so m
60 GOSUB 1000 m
999 END m
1000 Y = 3 * X m
1010 X=X+Y [m 3
1020 PRINT X,Y m Subroutines
1030 RETURN
RUN m
400 300
480 360
200 150
READY

Note: See Section 3 4 for important in.
formation on the GOSUBIFOR stack and
the POP statement!

25

In this example, the subroutine is called three times to compute and print o u t different
values of X and Y. Generally, a subroutine can do anything that can be done in a program.
It is used to save memory and program-entering time and to make our programs easier to
read and "debug”.

FOR, NEXT, and STEP

Format: lineno FOR avar = aexp1 to aexp2 [STEP aexp 3]
- lineno NEXT avar (avar same asavar above)

Abbreviations: FOR: F.
NEXT: N.
STEP: none

Program Examples: 100 FOR X = 1 TO 10 STEP 2 m
110 NEXT X RETURN
100 FOR INDEX = Y TO 100*Y STEP Z RETURN
110 NEXT INDEX RETURN

Note: STEP aexp3 is optional and defaults to 1 if not used.

Description: The FORINEXTlSTEP statement is used for one purpose only: It sets up a
loop and determines how many times that loop will be executed. The loop variable (avar)
is initialized to the value of aexp1. Each time a pass through the loop is completed, the
NEXT statement is encountered, the loop variable is incremented, and if there are more
passes to be made, the program control is transferred back to the start of the loop. The
value of the loop variable (avar) is increased by the value of the STEP (aexp3). The loop
then runs again, encounters the NEXT statement, e tc . Eventually, the value of the loop
variable will exceed the value of aexp2. When this happens, the looping stops. The pro‑
gram then executes the statement immediately following the NEXT statement; it may be
on the same line or the next sequential line.

I:

Other Rules: The STEP statement is optional, and should be used only if it suits your par‑
ticular programming needs. If STEP is no t used the computer will automatically assign a
value of 1. Thus it will count sequentially if y o u don’t tell it otherwise. (See examples
below). Something called a “GOSUBIFOR stack" is used to keep track of the looping
operation. This "stack” is really a group of memory locations. Information can beplaced
on top of the stack, (pushing) and pulled off again (poping). When a FORINEXT loop is ter‑
minated the loop information is popped, thus clearing the stack for use in another loop
later in the program. It is no t essential that the beginning “tourist" understands this bit of
BASlCland flora/fauna. But it isessential to know that if an”unnatural" departure from

29

the loop ismade (by a branch statement) the loop information remains on the stack, and
future errors may result! See the description of the POP statement in Section 3.4. It will
tell you how to POP your stack so the computer won’t "blow i t " later!

Here are some examples of the FORINEXTISTEP statements at work:

READY
10 FOR A = 1 TO 100 m (Pass through loop 100 times)
20 Z = Z +A m (Add loop number to previous total)
30 NEXT A m (See if any more loops to do: If so, do
40 PRINT Z ' am one: If no t , proceed to next line)
RUN w (Print ou t total of all numbers between

0 and 100 inclusive)
5050 (Answer i s 5050: 1 +2+3 . . . 1 0 0)
READY Comment: Try that on your $9.95 hand‑

held calculator, Chuml

Now change line 10 only by adding the words “STEP 2":

1 0 FOR A = 1 TO 1 0 0 $ T E P 2
And RUN it again!
READY
RUN mam
2500
READY

What has it done? Well, since it started with 1, then added 2 to each pass through the
loop, the second pass must have been with A = 3, the third pass with A: 5, e t c , The last
pass had A equal to 99, So it added up all the odd numbers between 1 and 100 (inclusive)!
If y o u don't believe this. add the statement PRINT A; ” " (no te semicolon is important
here) at line 25, Now it will pr in t o u t all the values of A as it encounters them! And they
were all the odd numbers between 1 and 100, right? Here’s what the program change was
and a typical RUN:

Add to Program... Note: The (railing semicolon causes results to
25 PRINT A; “ "; m be printed in lines instead of one value on

each line. The quotation marks enclose one
blank This provides one space between the
numbers.

30

RU N RETURN ‘
1 3 5 7 9 11 13 15 17 19 21 23 “
25 27 29 31 33 35 37 39 41 43
45 47 49 51 53 55 57 59 61 63
65 67 69 71 73 75 77 79 81 83
85 87 89 91 93 95 97 99 2500
READY

(See, it did add up only the odd numbers! And it stopped at 99because adding 2 ascalled
for by the STEP 2 statement would have put it above the 100 called for in the FOR state‑
ment. Pretty smart of it to resolve the “conflict" all by itselfl)

Here's a handy tip: Occasionally, you may want to run a FORINEXT loop backwards (say,
from 50 to 20). The statement for this would be

i

100 FOR X= 50 TO 20 STEP -1 (note minus sign)

And another: STEPS can be decimals or fractional numbers. Like this:

100 FOR Z = 1 TO 100 STEP .789

Nesting loops: We’ll conclude this little tour of the unconditional branch statements and
the resulting loops by describing how one loop can be “nested” inside another for some
REAL computing powerl

Would you believe we can print ou t every possible multiplication problem that will result
in an integer (whole number... no decimals) product between 1 and 100, with the answers?
And do it with a program that has only 5 lines and no multiple statements on any line? We
can with nesting! Here it is:

.1}.

READY
10FORA=1TO10 m
20FORB=1T010 many30 PRINT A;ll'II;B;Il=H;AIB;H H; m
40 NEXT 3
50 NEXT A
READY

Now RUN it and gaze in amazement as the computer does what y ou told it to do! First it
says to itself ”5 = 1 ” , passes to line 20, sets 8 equal to 1 also, goes on to line 30, does the
multiplication and printout, and proceeds to line 40which tells it to take the next 8. So it
branches back to line 20, increments B to 2, goes. to line 30, does the multiplication and
printout... etc., etc.... until it finally gets to the largt B value (10). At that point, instead of
branching from line 40 back to line 20, it proceec‘s to 50, which tells it to take the NEXT
A(A now equals 2). Now the 8 loop starts again, friziml to 10. Run this one a few times, ex‑
amine the screen carefully, and note how this nesting procedure works.

You can "nest” any number of loops, one inside tl've other, subject only to memory limita‑
t ions and execution time requirements. The only hard and fast rule is that you must make
sure the nesting is complete... that is, each loopméist be completely and totally inside the
next one. This is done by making sure that the NE;XT statements are proper: Each loop is
closed before the one outside of i t is. The little drazwing below shows a better "picture" of
the the nests and how they fit together.

NESTING OF FORINEXT LOOPS

1 0FOR A = 1 T 0 1 0
2 0FOR B = 1 T 0 1 o
30 PRINT A ; “ ' " ;B “ ’ = " ;A i 8 ; u n ;
40 NEXT B
50 NEXT A

OUTER NEST “ A "
(Opened first, closed 2nd)

INNER NEST “ B "
(Opened second, closed 1st)

31

SOME MISCELLANEOUS COMMENTS ON FORINEXT LOOPS

0 Every FORINEXT loop is executed at least once, even if aexp1 is greater
than aepol

0 When the STEP size (aexp3) is less than 0 (i.e. is negative), then the loop ter~
minates when aexp1 is less than aexp2.

0 The value of aexp2 is stored on the GOSUBIFOR stack, and is evaluated once
(when the loop is entered).

0 The loop variable (avar) may be changed during the loop. To terminate a loop
prematurely, for example, y ou can use an lFITHEN or other conditional s ta te
ment to reset avar so that it is greater than aexp2 if the condition is met. The
loop will then end and the program will continue with the line following the one
onwhicthEXT appears.

0 Any time the loop variable becomes larger than aexp2, the loop will stop, and
control passes to the line following the one on which NEXT appears.

That concludes our ”circular tour“ of FOR/NEXT loops and nesting. Let’s take a break
now, and after our (optional) lunch, we’ll take a tour of the conditional branch
statements!

3.4 Conditional Branch Statements: General
A conditional branch statement ismuch like the unconditional kind we discussed earlier
but can bemuch more powerful. A conditional branch occurs if (and only if) certain con‑
ditions are met. These conditions may be either logical or arithmetical‐The computer
doesn’t care which, for it evaluates everything arithmetically anyhow! If the arithmetic
expression (aexp) that follows the branch statement keyword evaluates to a logic zero
(false), control passes to the next line number in sequence, and nothing on the condi‑
tional branch line is executed. If the expression evaluates to anything other than zero
(true), then the statements on the rest of the line are executed. These statements may be
used to send the program off to another line (branching), or they may be executed as
multiple statements on the same line as the conditional statement keyword and expres‑
sion. This will become clearer with a little thought and a few examples. First, we’ll ex‑
amine the lHTHEN statement. '

JJ

lFITHEN
Statement: lineno lF exp THEN statement2 [: statement3]...
Abbreviations: None
Program Examples: 100 IF X=100 THEN 150

100 I F A $ = “ K AT Y BAR THE DOOR!" THEN 190
100 IF AA=145 AND BB=1 THEN PRINT AA, AB
100 IF X=100 THEN X=0 ammo

Description: IFITHEN works exactly as we described in our discussion of conditional
branching in general. The computer evaluates the branch condition expression (called
”exp" in our statement format) to see whether it is equal to zero (false) or to any other
number (true). If y o u are a beginner, don’t worry at this point how it does this... just ac~
cept i t for what i t is: A miracle! I f the condition expression isme t (true, or ”non-zero") the
program carries ou t the branch or other statement following THEN. If the condition ex‑
pression is false ("0 ") , control simply passes to the next line number in numerical se‑
quence as usual.

\

OK, we now know all about lFlTHEN, realize it is a powerful tool, and that it will be
something we can surely use someday, right? Let’s convert that feeling right now into one
that says ”Hey, that’s fabulous! l ' l l use that in every program I ever write!” Maybe anvex‑
ample program or two will do the job...

Prime Number Generator Program
We’ve finally got ten to the point where we can start having a little more fun with our pro‑
gram examples! This one no t only shows the lF/THEN statement at work, it also
demonstrates the "computer approach” to problem solving, and the incredible "thinking
power" o f the compu te r that comes with the ability t o loop back to an earlier pa r t o f the
program and repeat calculations. This gives the machine the capability to run trial and er‑
ror solutions to problems; Try a calculation, test it for acceptability, and if no t within the
programmed parameters , reiect it and t ry another calculation! Now keep doing it until all
the correct solutions are found and printed out .

14

Prime Number Generator

Note: A prime number is any number greater than one that has no factors except itself
and one. Obviously, two is the lowest prime number (factors are itself and 1). 4 is the
lowest positive number that is not prime (factors are 2 and 2). S is prime, 6 is no t (factors 2
and 3) and so forth. But let’s go get ou r computer .to do the work...

10on. o m
20 PRINT " PRIME NUMBER GENERATOR" (6 spaces after first ")
39 PRINTIPRINT "START GENERATING AT W
HAT NUMBER?”
40 INPUT X
50 IEX < 2 OR .NOT X = INT(X) THEN GOT
0 1° .1
60 If X = 2 THEN PRINT "2 "
70 II: XI: = INT(XI2) THEN X = X + 1
80 FOR Y = 2 To SQR(X)
90 IF XIY = INT (XIV) THEN GOTO 120
100 NEXT Y
110 PRINT x
120 REM SKIP EVEN NUMBERS
130 x = x + 2
149 6 0 1 0 8 0

Here’s how the Prime Number program works: Line 10 places the computer in Graphics
Mode 0. When you look at Chapter 9 you’ll see that this is the normal text mode and that
without another GRAPHICS command, the system “defaults” to Mode 0 anyhow. Sowhy
tell it to go into Mode 0? Simple! Every time we tell it to change modes, it clears the
screen! Sothis is just a super-slick way of clearing the screen at the start of our program.
Lines 20-40 title the program on the screen and ask you to input the number where y o u
want the program to start looking for primes. Note the 6 spaces following the first ” in
line 20'. This is to center the title. Note that the variable X is used to store the number
you input as the starting point. Line 50 simply says that if the starting number is less than
2, start the whole program over! That’s to catch faulty input. If ”human error” is present
(the starting point is less than 2), the computer n o w craftily starts over and asks y o u to
enter the data again...but without the usual embarrassing error message! Line 60 just tells
the computer to print out the known fact that the number 2 is prime... but only i f your
starting point is 2.

We know that an even number cannot be prime, for it is always evenly divisible by 2, and
2 is thus a factor. Therefore, line 70 says that the computer is to increment (add one) to
the first number being tested if it is even. Note that if a number divided by two is the
same asthe WT function of that number divided by two, the original number MUST be

15

evenl (See Chapter 6 for a description of the INT function, which simply rounds any
number with a decimal fraction down to the next lower whole number or integer.

Line 80 starts a FORINEXT loop that will run from 2 to the square root of the number you
told it to start with in line 40. Line 90, which is in the loop, tells the program to check X/Y
and lNT(X/Y) to see if this division "comes ou t even”. If so, then the program jumps to
line 120. If the division does not “come ou t even”, then Y is not a factor, and the leap is
run again with a different value of Y.

Once all the possible values of Y (f rom 2 to the square root of X)have been checked, the
program arrives at line 110, having determined that there are no factors of the number
stored in X. This means that the number mus t be prime, so line 110 tells the computer to
print ou t the number. Line 120 is a remarks (REM) line that tells the programmer that this
is the part of the program that weeds ou t all even numbers. Since the number printed at
line 110 isprime, it must also be odd! So incrementing X by 2 means that the value of the
number stored in X is now the next consecutive odd number higher than the last prime
disc0vered. The program is now directed by line 140 back to line 80, the new value of X
(which we already know is an odd number) is checked for prime, and so forth...

The program will just keep on grinding ou t pr ime numbers "until the cows come home”,
the power fails, or (most likely) you get tired of watching it.

Ah, the awesome power of Looping! (Didn ’ t he used to play for the Dallas Cowboys?)

ONIGOTO
ONIGOSUB

Statement: lineno ON iexp GOTOlGOSUB lineno [, lineno...]
Abbreviations: None
Program Examples: 100 ON X GOTO 200. 300, 400, 500

100 ON A GOSUB 1000, 2000
100 ON SQR(X) GOTO 30, 10, 100

Description: The ONIGOTO statement is much like lFlTHEN but with more powe r added.
As y ou can see, there is a list of line numbers. There is also an expression called " i exp "
which means an arithmetic expression that evaluates to a number which is then rounded

36

to the nearest positive integer (whole number) value up to 255. If the resulting number is
1, the program control is transferred to the first target line number in the list. If it is 2,
control goes to the second number, and so forth. Very powerful stuff indeed! if the
number evaluates to zero or is greater than the number Of line numbers in the target list,
then the test fails and control passes to the next sequential line number. As with other
GOTO or GOSUB statements, multiple statements following ONIGOTO or
ONIGOSUBon the same will not be executed. ‑

Here is a little routine that will demonstrate ONIGOTO:

10 X=X+1 RETURN‑
20 ON X GOTO 100, 200. 300. 400. 500
30 IE x=s THEN PRINT “THAT’S ALL EOLKS! MY 103 Is DONE
3" ' m
40 GOTO 19
we PRINT “ N O W WORKING AT LINE 1oo":GOTO II I
200 PRINT " N O W WORKING AT LINE an": GOTO To
309 PRINT “ N O W WORKING AT LINE 300": GOTO 10
490 PRINT “ N O W WORKING AT LINE 400": GOTO 19

Now "RUN" it and see what happens. Sure works fast, doesn’t i t !

TRAP

Format: lineno TRAP aexp (aexp is target line number)
Abbreviation: T.
Program Example: 100 TRAP aexp

Description: The TRAP statement is used to direct the program to a specified line number
if an error is detected. Without the TRAP statement, when an error is discovered execu‑
tion stops and an error message is printed. This can be annoying, to say the least, when
y o u are inputt ing data into your computer, make a typo, hit m and the thing
comes up with a rude message. The worst part, though, is that y o u would then have to
RUN the whole program again, and make all those typing inputs ” jus t one more t ime! "
TRAP can prevent all that bother...

37

By inserting a TRAP statement before each INPUT statement, and telling the machine
that if an error is made it should go to a certain line and ask for the input to be repeated,
it will simply ask yOu for a repeat of what you ”blew” the first time! Here’s an example
routine:

10 TRAP 20 (sends program back to 20 in case of error)
20 INPUT X (See Ch. 5) (prompts you to enter a number)
30 PRINT “THE VALUE OF X HAS BEEN SET AT “;

NOTE: Since you ' re ge t t i ng to be qu i t e a programmer n ow, we will stop ”prompting" you
to hit the W key after each line has been typed in. You will forget a few times, but
hopefully you are in the habit of doing it by now...

First RUN this little program, entering the number 2 (don’t f o r g e t) . If all goes
well, t r y entering a letter rather than a number (this would result in an error, as the
variable X is a numeric variable, no t a string variable.) Cave y o u the old " l " , didn’t it?
Well, it's better than an error message any time!

Rules: The TRAP statement works on any error that m a y occur after the statement. But
once an error has been detected and TRAPped, we mus t "reset" the trap with another
TRAP statement. For this reason, if y o u wan t to TRAP e'rrors every time, it is sensible
(memory capability permitting) to TRAP each statement that exposes your computer to
”human error" possibilities. The statement you TRAP to could be used (in part) to reset
the TRAP!

No te , too. that it is NOT necessary to "TRAP” directly back to the input line. For exam‑
ple, y o u could send the program off to a little routine that prints a humorous message
like "Whatsa wrong wit’ you, you just nacherly dumb?” or some such and then (with the
GOTO statement) returns the program to the input line. You could also TRAP back to the
TRAP statement, thus resetting the TRAP! Lots of possibilities... use your imagination!
After all, that’s all y o u have between those ears that your compu te r doesn’t have better
and faster in its electronic innards!

That concludes our little tou r of the program sequence controls available to y o u in
ATARI BASIC. With the six statements we have discussed you can do anything you'd like
in the way of directing your program We'll pick up three more program control
statements next. as these help us allocate memory and organize our programs for best
execution at "RUN time”.

I.

POP
Format: Iineno POP (this isa real toughiel)
Abbreviation: None
Program Example: 1000 POP (see?)

Description:Wediscussed this briefly before, and the mechanical/electronic workings of
the computer are beyond the scope of a software book anyway. But remember that
"stack” of memory locations we mentioned? All you really need to know is that the
number of loops to beexecuted, and the RETURN target line in aGOSUB, are controlled
by the top entry in the stack. Thus, if a GOSUB is no t terminated by the execution of
RETURN, or a FOR statement is not followed by an executed NEXT statement, the top
memory locationon the stack isstill “loaded” with some number. In case another loop or
GOSUB is executed, that top location needs to be cleared: Thedata byte there needs to
be wiped out. We call this "POPping” it off the stack. (The opposite, also mentioned
earlier, is called "pushing" data onto the stack.) Naturally enough, the statement POP is
used to clean up our stack and prepare it for the next loop or GOSUB.

Rules: POP must be used according to the following rules:
1. It must be in the execution path of the program.
2. It must follow the termination of any FORINEXT loop if the program exits the loop

without completing the number of loops called for by the FOR statement; in other
words, the exit is made by a separate branch statement. (See example program
below.)

3. It must follow the execution of any GOSUB statement that is no t brought back to the
main program by a RETURN statement.

Perhaps a couple of examples will help clear up the confusion for you:

10 FOR INDEX= 1 TO 100
20 PRINT "THIS IS A FORINEXT LOOP WIT
H INDEX = "; INDEX
30 IF INDEX = 10 THEN GOTO 50
40 NEXT INDEX: END
50 PRINT “THIS LOOP WAS PREMATURELY T
ERMINATED & NEEDS 'POP'"
60 POP

As you can see, the program goes through the loop 10 times and then is forced to exit by
the IFITHEN statement on line 30. The FOR statement called for 100 passes through the
loop, and this unnatural exit calls for use of POP.

Here‘s an example of POP used with GOSUB (without the RETURN executed):

10 GOSUB 1000
15 REM lINE 20 WILL NOT BE EXECUTED
20 PRINT "NORMAL RETURN PRINTS THIS ME
SSAGE":END . .
30 PRINT "ABNORMAL EXIT FROM SUBROUTIN
E PRINTS THIS”
40 POP
999 END (prevents program from ”crashing" into subroutine)

1000 PRINT "NOW EXECUTING SUBROUTINE”
1010 GOTO 30
1020 RETURN

In this example. line 10 sends the p r O g r a m to the subroutine at 1000. At that point, the
computer prints the subroutine message, passes on to 1010 which ”abnormally” exits
from the subroutine, going back to the main program. Note that the RETURN statement
on line 1020 is never executed, and this means that we need the POP statement to ”clean
u p ” stack operations in case future loops follow. The main program is re-entered at line
30, which prints the "ABNORMAL EXIT" message, passes on to the POP statement on line
40, and finally ENDS on line 999 (thus preventing re~execution of the subroutine).

Looking back on our litt le trip, this chapter has brought us a long way. Your tour is n o t ye t
complete, though, for there is much more to know and see. Hope you've enjoyed yourself
so far!

DANCER! MATHEMATICS AHEAD.

40

CHAPTER 4

MORE ON VARIABLES AND
MATHEMATICAL MONKEY MOTION
Welcome back to your guided tour of BASIClandI Today we’ll be in jungle count ry. We'll
shoot the rapids on our Floating Point, have another look at variables, and pick up a few
glimpses of computerized mathematical monkey motion. We’ll see the order that the
computer uses to conduct evaluations of expressions (depending on the operator or sign
used). By the time our little side tour into the Numerical Wilderness is complete, we’ll be
ready for tomorrow’s jaunt into the Land of Inputs! Got your cameras and notebooks
ready? Let’s begin.

)

4.1 Number Crunching: How FloatingPoint Numbers are Manipulated
Floating Point is really a short way of saying floating decimal point. That means that
ATARI Personal Computers can take care of decimal points without you having to worry
about them. BASlCaIly, you can enter numbers into the computer by simply putting them
in the keyboard in a normal way (meaning a human way). Simply type 3.4567, and the
computer will track the decimal point for you. You can tell it to add, subtract, multiply,
and divide, and it will locate and handle the decimal point.

The floating decimal point arithmetic can handle numbers between :t9.99999999E+97
and 11.0E - 9 8 , including of course, zero. Now all we have to do is learn how to transfer
our own thought process into the kind of scientific notation the computer uses. For those
of you who already know scientific notation, 1.456E+ 3 isexactly the same as1.456X 10’.
Somuch for you smart guys! For the rest of us, let’s take a more down to earth approach.
The actual digits or figures we need worry about are the ones before the E In the above
example, these are 1450. But where does the decimal po i n t gotI In scientific (o r computer)
n o t a t i o n , i t always goes after the first digit o f the figure w e a re dealing With I n this ca‘se,
our number is1.456. The E stands for ”exponent" which just means that power of ten that
we must multiply the basic number by to get the decimal point in the right place. Again,
let’s stress that the computer will do this for us, and all this is by way of explanation of
how it works. Saying E+ 03 is exactly the same as saying " " 1 0 ” or ”times ten to the third
power". Let’s t r y it.

We know that our actual figure is1.456, and that the exponentIE) is +03. Since ten raised
to the third power i s a thousand (10 *10 *10) , we must move the decimal i n our number
just as if we had multiplied it by 1000. This means move it to the right three places. We
get 1456. Now let’s tell the computer (in direct mode) to PRINT 1.456E+03. Betcha it
printed 1456! It did if you remembered to hit m.

C‘I

The compute r can take an ent ry in computer notation and translate it into our system so
we can understand it easily. But there are limits.to everything! If you ask it for more than
9 significant figures it will "lapse" into scientific notation. For example, if you tell it to
PRINT 15000000000, it will give you back 1.5E+10. This means you really ought to'know ’
what those numbers mean. There’s a simple rule, and here it is:

To convert scientific notation to conventional notation, move the decimal to the right, if
the exponent is positive. the number of places shown by the exponent.Move it to the left
if the exponent is negative.

Examples:

1.34E+12 is the same as 1340000000000.0
2.4359E-10 is the same as 0.000003000024359

More experienced readers will be interested to learn that a special kind of binary coded
decimal storage is used by ATARl Personal Computers. The exponent is stored separately
from the digits in the actual number, which are stored in hexadecimal notation (but the
hex numbers represent decimal numbers, so we can PEEK into the location a number is
stored in, and ’_'read” the number in decimal form.) This can be a powerful debugging
tool. (See Chapter 6 for description of the PEEK statement.)

4.2 On the Nature and Naming of Variables

Wa y back in Chapter 1, we discussed variables. A few more words on the subject are in
order at this po in t . Think of a variable as a place to put data. Each time we equate (LET it
equal) a variable and a number, string, or whatever, we are really storing that string or
number in a location represented by the variable’s name. As you can see, this must only
be done once, (unless the value of the variable is to be changed) and from that point on,
referring to the variable by name is the same to the compute r as referring to the data
stored in that variable. This may seem unimportant, but i t is not. We should develop an
au toma t i c thought process in our own minds. We do not set the variable A equal to a
number! We store the number in the location represented by variable A!

Naming variables can raise all sorts of good and bad side-effects. It’s always nice that we
have the capability to name a variable with a jawbreaker that’s up t0120 characters long,
and can mix numbers and alphabetical (upper case) characters, but the first character

41

must be a letter. The first thing that usually occurs to a beginner is to use memory joggers
asvariable names. For example, in a checkbook balancing program, we could use CHECK
or CHECKNO or OLDBAL. This is a fine idea. as it makes our programs more ”human"
and easier to RUN, debug, modify, and read. Remember, though, that each character
used costs us one byte of memory, and that spaces and characters other than upper case
(capital) letters and numbers are no-nos (so are blank spaces!). For example CHECK BAL
is illegal. (The space will give your computer the shivering fits.)

The second thing that happens is that we start using variables like GOTO or GOSUB or
FOR (because they are used on lines that use these BASIC keywords.) This is a sure-fire
method of hopelessly confusing your poor computer. Don't ever use any "reserved"
words 'as variables. It won’t work, so don’t even bother to try it. (Reserved words may,
however, be used within quotation marks, in PRINT statements, and m a y be used
anywhere in a line beginning with REM).

i

NOTE: Appendix B is a list of all Reserved BASIC words, and should be consulted if you
think you may be using a Reserved word asa variable. One last word to the wise: don’t!

Here's an example showing why we don’t ever use reserved BASIC words as variable
names! ‑

Run this on your own computer. You’ll note that the poor thing gets hopelessly confused
and can actually be “conned” into giving out a wrong answer: Great shame for a com‑
puter!

. 10 B = 0
20 NOTB = 2
30 PRINT NOTB
RUN
1

Here’s what happened: in line 10, the value 0 is assigned to the variable 8. In line 30, the
value 2 is stored in the variable NOTB. In the PRINT statement in line 20, the variable
NOTB is picked up by the computer as a logical NOT. Since 8 is 0, by computer logic,
NOT B must be 1! We have the poor baby mixed up between variable names and logical
operators! The computer prints the ” 1 ” faithfully.

‘1

lesson To Be Learned: Don' t ever use variable names that have reserved BASlC words as
a part of them, and most especially no t if the variable name starts with a reserved BASlC
word (such as NOT).

4.3 Now for the Arithmetic Operators
As we have seen, an expression conducts mathematical evaluations which result in
numerical answers (yes, this is t rue of string evaluations, too... more on this in Chapters 6
and 7). A statement may also consist of mathematical operators (you are used to seeing
them called ”signs”, but "operators” is a much better word as the computer uses them to
see what Operation is to be conducted). Logic operators also perform mathematical
evaluations, but in a somewhat different way. If we state that the sky is blue, and tell the
computer that the variable name SKY is equal to string "BLUE”, we would have to do i t
like this. 100 SKY$ = "BLUE" (note 5 indicates string variable) Now if we came back later
and asked it whether the sky is blue, it would evaluate our question, see that the answer is
yes, and print whatever we told it to. Try this program:

100 sxvs = “BLUE" .
110 IF sxvs = “BLUE" THEN PRINT "YES, THE SKY IS BLUE"

Here’s how it does this crafty little trick of logic: Since the variable SKYS is equal to the
string ”BLUE", the IFITHEN statement in line 110 is evaluated to a 1 (true), and the
message is PRINTed. If we had said in line 110 IF SKYS = “RED" THEN PRINT "YES, THE
SKY 15BLUE" the evaluation would have come up with a zero (false),and the program
would have tried to go on to the nex t line, found none, and quit.

As y o u can see, these ” log ic" opera t ions are handled somewhat differently (bu t no& real‑
ly very much) from pure arithmetic ones. It isworth bearing in mind that computers use
numbers (1’s and 0’s) the wa y we use letters and words. When we "feed” it words. the
c ompu t e r immediately translates or " interprets" them as numbers, performs the calcula‑
t i ons necessary, and then interprets the result back to us as either words or numbers of a
t ype we can use. Remember that in the language of our ATARI Personal Computer, 1
means true, while 0 means false, (a t least in most cases).

‘4

Addition: The conventional addition sign (+) is used as the operator here. For example:

100 A = 1+ 3 + 6 + 8 (Add 1,3,6 and 8 together. Store the
result in the variable named A)

100 PRINT 2+2 (Add 2 and 2, get 4, and PRINT i t)

Subtraction: Again, the normal (- -) sign is the operator.
u,

Multiplication: The asterisk (1c) is used instead of the normal " x ” which might be confus‑
ed by the computer or the programmer with the letter X. Thus, to multiply 2 time 3, we
write:

100 X = 2 * 3
or _
100 PRINT 2 * 3

Division: The slash-mark (I) is used in the “normal" way to mean the division operation.
Thus:

100 Y = 2I3
or
100 PRINT 2I3

The Equal Operator and the LET Statement: Our old friend the equal Sign (=) is a bit
tricky, as it has two totally separate meanings in BASIC. It may be used with the (op‑
t ional) LET statement to set a variable name equal to a value. This looks like the follow‑
mg:

100 LET X = 3.142‘16 (No te LET is optional)

‘5

You should see here that we are no t telling the computer that something is really true or
equal, but giving it a command to LET it be so. That’s how we can say apparently illogical
things like:

100 X = X + 1

and get away with it. Remember we are not discussing a logical operator here; we are
storing a piece of information in a location designated for computer reference purposes
with a variable name (X in this case).

The other use of the equal operator is to perform logical or arithmetic operations. The
IFITHEN statement is often used for this purpose:

100 IFA=100 THEN PRlNT A
100 IF A ‐ B = C - D THEN PRINT "Your Deal”

Note that in the latter examples we are performing logic operations, and not storing data!

Exponentiation: The up arrow sign (A) is used to denote raising a number to a power
(squaring, Cubing, e t c) . This is usually .done as an expression or as part of one. The
number immediately before the arrow (this ma y be a variable where a number is stored)
desrgnates the number to be manipulated, while the number or variable following the up
arrow indicates the power to which the first number is to be raised. Thus:

10” X= 3 4
100 PRINT 10A3

j u s t in case y o u didn’t take higher (?) math in high school (w i th things like exponents and
p0wers): An exponen t indicates how ma n y times the number must be multiplied times
itself to get the value of the expression. For example:

10/\ 3 is exactly the same as saying 10 ' 10 ' 10
(and so is 1000, which is the ”real” value).

46

“i

More Notes on Raising a Number to a Power Using A : The computer’s Floating Point
arithmetic and the internal methods used to handle it can cause some interesting side ef‑
fects: Try this:

PRINT 2 A3 (Direct Mode... The answer should be 2’
or 8)

7.99999991 (Computer Prints)
READY (this at least is true!)

Well, folks, it’s no t really wrong. And this is probably close enough for government work.
And we do have two ways to “beat the house". First, we can tell it to take 2 * 2 * 2 and it
will be happy to print ou t “ 8 ” for you! An even slicker way is with a bit of BASIC pro‑
gramming. Like this:

10 PRINT INT((2 A 3) + .5) (Deferred Mode... you can do it in
direct, just as well. Try i t !)

So if i t bothers y o u that there is apparent inaccuracy in the 8th or 9th decimal place, use
one of these simple fixes. The world is full of compromises, and even computers aren't
perfect!

Comparison Operators: Numbers or strings, and the variables where they are stored, m a y
be compared to see if they are equal, no t equal, greater than, less than, greater-than-or‑
equal-to, or less-than-or~equal-to each other. The operators for these are shown here:

Operator Operator Description
< Less than

< = Less than or equal to
= Equal to

> = Greater than or equal to
> Greater than

< > N o t equal to

47

Except for =, which we have already discussed, and its two meanings in BASIC, the
above comparison operators are very simple and straightforward. They do just what they
should do with no tricks as long aswe remember that they are logical operators and can‑
not be used to store data in a particular place that is to be identified by a variable name.
For example, we cannot state to the computer : 100 A _< > 3 ‑

What we can and will do is use statements or expressions that associate a number with a
variable, and then use the comparison operators to compare that variable with others.
For example:

10 LET A = 3 ' (store 3 in the location designated by
the variable name A)

20 If A) 5 THEN PRINT “A is greater than 5”
30 IF A< 5 THEN PRINT “5 is greater’ than A”

Finally, we have the logical operators AND, OR, and NOT. Again, these are straight‑
forward and simple. They, (except for NOT) . are used to compare two expressions. Here is
an example of the AND operator at work:

100 A = 1 : 8 : 2
110 IF (A < 3) AND (B = A + 1) THEN PRINT "THE AND STATEMENT IS TRUE"

AND requires that BOTH of two expressions be true, in order to evaluate to a ” 1 " (true).

OR is even easier, If either of t wo expressions OR both are true, the OR comparison yields
a “ 1 " (true). A " 0 ” (false) is the result only if both statements are false "(0)” ‘ For example:

100 A = 1 : 8 : 2
110 IF A = 1 OR B = 1 THEN PRINT "THIS OR STATEMENT IS TRUE"

OI

NOT can be a little trickier (but no t much!) If NOT is applied to an expression which is
true, a zero will be the result of the evaluation. If the expression isfalse, the result will be .
a ”1”. Thus: '

100 A = 1
110 PRINT “NOT A = " ; NOT A
RUN
NOT A=0

4.4 Order of Execution of Arithmetic Operations |
ATARI Personal Computers do their arithmetic in the following numerical order of priori‑
t y. Operators on the same line in the Table have equal priorities, and in the case of two or
more signs of equal priority, the one on the left (closest to the BASIC line number) takes
precedence.

Precedence

1 < , < = , = , > = , > , < >

2 .‑

3 A

4 *I
5 + ‑
6 < , < = , = , = . > , < >

7 NOT
8 AND
9 OR

Operators English “Translations”

Less than, less than or equal to, equal to ,
greater than or equal to, greater than, no t
equal to
Minus sign: Unary minus
Exponentiation - Raise a number to the
specified power.
Multiplication, division
Plus, minus (used as binary operators)
Less than, less than or equal to, equal to,
greater than or equal to, greater than, no t
equal to
Logical NOT
Logical AND
Logical OR

Note: It is important to understand the above priorities (called precedence) in computer
work. Here’s a good example of why this is t r u e ,

09

What Will it Print? What Will it Print This Way?
1 0 A = 5 + 6 * 3 1 0 A = 3 * S + 6
20 PRINT A 20 PRINT A
30 END 30 END
it will print 23 This way it will print 21

(The correct answer depends on the programmer!)

However, if the programmer should forget the order of precedence”: and / take priority
over + and -) . parentheses could be used as follows:

W = (XIA) + W * 5 9 8

The next expression, however, will no t give us the answer we want. Rather, it will take the
sum of A and W and divide the result into X. That result will then be multiplied by 598.

YY = XI(A + W) * 598

Try evaluating the t w o above expressions by using the following simple routine on your
Atari Personal Computer:

10 X=1000
2 0 A = 2
3 0 W = 8
40 YY= (insert the right side of the expression here)
50 PRINT "I WILL {ASSIGN THE VALUE ";
YY; " TO THE VARIA§3LE YY."‘~

Change line 40to e x p e r i m e n t with the use of pareiitheses. Remember that your compu te r
ISn o t solving an equation. It is a55igning the value of the expression on the right side of
the equal sign to the variable name on the .‘eft side. lt does this by performing
arithmetical operations according to the signs y o u give it in the expression, in the order
that ATARI has told it to use. You can vary that order with parentheses.

SO

- As much as we love it, and aswonderful as it is, you , the programmer, are the master of
your computer, and it will do only what you tell i t to.

4.5 Precedence Control by Use of Parentheses
The normal sequence of arithmetic operations described above can be altered by use of
parentheses (). Placing an expression or a piece of an expression inside parentheses
causes that expression (or piece) to be evaluated at the top of the priority list for that
logical line. If several parentheses are “nested" inside one another, the innermost pair
contains the expression that will be evaluated first, and so forth. Here are a couple of ex‑
amples of use of parentheses:

Example#1: We want to set Xequal to the sum of 2 and 14 divided by 4. We know that ex‑
pressions in parentheses are evaluated first, and that division will be carried out ahead of
addition. Thus, if we wrote “X = 2 + 14 I 4” the computer would first divide 4 into 14
(and get 3.5) and then add 2, getting a value of 5.5 which would be set equal to X.
Therefore Xwould = 5.5. We wan t it to do the addition first, and then the division, sowe
place the addition par t of the expression in parentheses like this:

i

X = (2 + 1 4) I 4

Now the computer sees it like this: "First add 2 and 14 and get 16. Take the 16 and divide
it by 4, coming up with 4 as the answer."

The beginning computerist should bear in mind that precedence problems most often
account for strange results or wrong answers when the program otherwise appears to be
running correctly. learn and use parentheses!

Example #2: Write an expression that will set the variable YY equal to the sum of X divid‑
ed by A and W times 598.

LET Y Y= XIA + W * 5 9 8

51

Note here that no parentheses are needed because the normal order of precedence is to
be followed.

Table 4.1 Evaluation of Logical Expressions
This Section describes the logical or relational operations (words and signs) that the
ATARI Personal Computer can use.

Operator
Sign Definition Example of Use
or '

Symbol

= Is equal To A= B (A is equal to B)
< Is Less Than A< B(A is less thann)

< = is Less Than or Equal To A< = B (A is less than or equal to B)
> Is Greater Than A> B (A is greater than B)
= is Greater Than or Equal To A> = B (A is greater than or equal to B)

< > Is N o t Equal To A< >8 (A is n o t equal to 8)
NOT Logical Negative NOT A (Statement is true i f A is false)
AND Logical Both A AND 8 (Statement is true only if both A AND

B are true)
on Logical Or A OR B (Statement is true if either A OR B or

both are true)

Order of Precedence: Same asarithmetical operators. followed in order of precedence by
N O T, AND, and OR.

Parentheses: Parentheses are used to change the normal order of execution pr ior i ty, just
as with arithmetic expressions. "Nesting” parentheses is perfectly acceptable.

51

” M y ‐ ‘ _ _ . . ~ _ _ - v H - _ _ L . ,

CHAPTER 5

THE INSTAND OUTS OF IT ALL:
l/O OPERATIONS
Ladies and Gentlemen! If we can get back on the bus, we have a long way to go today!
All aboard, please, for our ATARI tour of peripheral devices, and all the ways we have to
get them to cooperate with us! Let’s go!

Input/Output (or just I IO) operations are one of the least understood and most important
phases o f compu te r science. We can have the fastest, smartest system in the world (wi th
megabytes of memory storage, chrome wire wheels, air conditioning and steel-belted
radial tires) but if we can’t get a program in and the answers out, it’s about as useful as
gills on a butterfly!

I/O operations are often misunderstood, and the subject is avoided when possible, This is
not because it is difficult, but because there are often somanycontrol words and conve‑
niencefeatures that most systems are less than perfectly logical in their approach to the
most important single part of the system: you! The human operator!

The ATARI Personal Computer System is relatively simple, internally consistent and
logical, and the keywords are generally applicable, regardless of the particular ”0 device
being used.

5.1 The IIO Peripherals
It seems in order at this point to take a very short side-tour of the devrces that can be
used with your ATARI Personal Computer System. The hardware-side is well covered in
the individual manuals furnished with each device, so we will concent ra te here on the
programmer’s viewpoint. Figure 51 shows a "full-blown" ATARI 800 system, Let's br iefly
describe each piece of equipment (hardware) in the sys tem:

Keyboard: This is the only " p u r e ” input device available at present for ge t t i n g i n f o rma ‑
t i o n i n t o the compu te r. By "pu re " we mean asopposed to a device that can conduct both
i n p u t and ou tpu t operations But you can’t get information out of the compu t e r through
the keyboard!

Important Note: When diswssing l/O ope r a t i o n s and peripheral devrces, bear i n mind
that the words Input and Output are used in relation to the computer. We are always
speaking of gett ing data in to or o u t of the central processrng u n i t (CPU or M P U)

S]

l ine Printer: The ATARI 820'M and ATARI 825'M Printers are the only ”pure" ou tpu t
devices. (Even the TV screen is no t thought of this way, aswe shall see). There is no way a
printer can send information into the computer! It is for ou t pu t only. (For you folks with
printer experience, the ATARI 820 and ATARI 825 Printers are dot matrix impact-type
printers.)

Program Recorder: The ATARI 410'“ cassette Program Recorder (which will work with
either ATARI 400 or ATARI 800 Personal Computer Systems)

is both an input and an ou t pu t device! Programs or data can be recorded
from RAM onto cassette tape, and then later can be reloaded into RAM from the tape.
This is a dandy way to save programs so they don’t have to be constantly retyped into the
keyboard each time y o u wan t to RUN them. Actually, this is a customcassette tape deck
that uses two tracks for sound and program recording purposes.

Disk Drives: From one to four ATARI 810”“ Disk Drive units may be used with systems
with 16K RAMor more installed. These units perform functions similar to those perform‑
ed by the Program Recorder, but they do it in seconds instead of minutes. (See your
ATARI dealer for more information on these extremely rapid data and program file
storage devices.) r

1‘

Screen Editor: A t ype of direct m e m o r y access (DMA) is used in the ATARI Personal Com‑
pu t e r Systems, and the editor memory is considered ” j u s t another" IlO device. In the
split-screen graphics modes (see Chaper 9), the editor l/O device handles the four text
lines at the bottom of the screen. We must train ourselves to think of this editor as a
typical ”0 device capable of normal I/O operations. and no t " j u s t " a pa r t of the com‑
pu te r, even though the device “lives" in the compu te r console and no additional hard‑
ware is required.

TV Monitor: Uses DMA also. so the compu te r can consult RAM at any t i m e to "read”
what is displayed on the screen. In this sense, at least, an input operation is possible,
although we humans will probably per5ist in thinking of the TV screen as an ou tpu t
deVice Those of y o u With some e x p e r i e n c e in the ways of compute rs and peripherals WI“
understand that when we say that "memory-mapped l/O is used", we can and should
think of the m o n i t o r screen as an input devrce aswell as a pure display of information.
Note that in the graphics modes With split-screen, the screen I/O devrce (S) is used With
the graphics (larger. t o p por t ion of the screen) while the Editor deVice(E.) handles the text
mndow (Again, please see Chapter 9 for a complete description of the graphics modes
Also see 'MJDL‘ndIX F, c o v e r i n g the keyboa rd and ed i t o r)

\ o u can bet that more |/O or ”peripheral" dewces Will be forthcoming for y o u r ATARI
Personal Computer Sys t em ' And that's the beau ty of the " s y s t e m approach" These WI”
be e a s y ror y o u to use and understand if y o u Will take the t i m e to dexelop a "p i c tu re " of
IO ()(K'TCLIIOI'TS in general

Figure 5.1 is a graphic representation of the various currently available l/O peripherals
you can use with your personal computer. Note that you already have (even i f you have
the ATARI 400) the Editor, Screen. and Keyboard devices!

Figure 5.1:

INPUTIOUTPUT (IIO) OPERATIONS

Fully Developed ATARI System

(INPUT ONLY DEVICES)

Keyboard‘

Device Type
K:

(BOTH INPUT and OUTPUT DEVICES)

TV Monitor
Buller'

Device Type
S:

Screen
Editor"

Device Type
E:

ATARI 810

@
Device Type D:

410 Program
Recorder

Q9DeviceType

ATARI
PERSONAL
COMPUTER

(CPU)

(OUTPUT ONLY DEVICES)

ATARI 820
Printer’

Device Type
F:

1 “Hardware” is part of Computer Console.
2 Up to 4 Disk Drives may be used with the ATARI 800 Personal Computer System.
3 Only one Printer should be connected.

5.2 Software Control of All That Hardware:
1

When we consider compute r control of six or more peripheral devices. we have to
wonder how the central processing unit (CPU) can control them all. It sounds very com‑
plicated but really isn't! Let's t ry to p u t ourselves " i n the shoes" of that t iny lump of
silicon that has to do the job, and t r y to ascertain just what it needs to "know" to do this
control job. (Just how "smart” do y o u have to be to ”boss" six or more l/O operations at
once, and even more importantly, just what do y o u have to know?)

1. Well, if i were a CPU, first l ’d want to know what kind of device will do the job my
master wants done)

2. Oh' A disk drive, huh? Which one shall I use? (I am a lucky CPU: | get to boss four
disk drives.)
How can I tell if this is to be an input or an output operation?
Is i t really an ”0 operat ion at all? Maybe the boss just wants me to generate all those
income tax figures for my own information.

5. Gotcha. Boss! You want me to "wri te" all that on to disk #3. OK. but I’ l l need to know
the file name so I can’ get it in the right place on the disk.

We can summarize this dialogue with a CPU as follows:

Is this to be an IIO operation?
Input or Output?
Device type to use?
Which device (i f more than one of the same type)?
File to get info from or store it in? File name?

(See Figure 5.2)

~ * ‐ - ‐ ‐ ‐ ‑

53:303.253:2:5:32.:2:

van.3815“ta...£23325;=a.2:2.02

ant2on.5!99:239.23::

.:<_.<.7nquOU"no:352a..a...«£32:.2.

03:.xnmt32.9::3.5:0chassis‐2?.

:‘h‘lwwfiOU"NO:6d.2.2:08‐.

"mam‐\‘(xH$2800.:

m<5.afit2mmOa::<~<.ZwuaaOU

"mg."«(23833.:act:aan$030.98on>2::uonmoE:.3:cm?:02

3.3.U_m<m_¢<._.<.256...5..53:5:9::

coubm>h”m

ahuwwnnwwm" u “25:32.00:

8:3a 8.€9.13.Us:

8.339"U

.35:‐u.‑

nbuBEEaa953c‑

aveat.330a3:38223:..8.A;

a-p

.33.23:u.‐hmDZ20:0.=< uphDLhDO

..u=o_aon5325822.9.2:oz<z.

50822.99.35:..23?a2pmuses“aban‐~30

.39.vFDA‐z.

.2292alau35:553....-n2c' HmuGOU

cow‐3:0.0623.:H9.330..3.82;.

LL

:92.3.:: .32.:.052..2:098::

h<2¢0ud<¢m2m0.h2m2uh<hm2mm0HI...-Nd2:»:

.2533893:.3322:?>=~E3.:>2:

15252.3.32:was.35.5503:5:30:39:.295»29>am.39:57.:

2302‐..2.32302:32.:3.£5.3 “comma.2:..p5329E.3583“.

33:32.82:10:91:213:22.520:;03$35.9.o333::5”."=02

w

5.3 The OPEN Statement
The OPEN statement is the BASIC key to the whole ”0 system. Once it has been
thoroughly absorbed and understood, and you see what can be done with it , it will open
the door to the other I/O concepts we will cover later. For this reason, we will devote an
entire section to OPEN.

OPEN
Format: lineno OPEN # aexp, aexpl, aexp2, "filespec”

Note that ”filespec” may be a string variable!
Abbreviation: 0.
Program Example: 100OPEN #2, 8; 0, “D1:ATARIBOO.BAS"

or '
100AS = "D1UEATARI800.BAS"
110 OPEN #2, 8.. 0, AS

Notes On OPEN

1. lineno is the normal ATARI BASIC line number
2. OPEN is the BASIC keyword
3 3 ISa mandatory character which must be typed m
4 aexp is an expression that evaluates to the number that will be used later to refer to

the same set of parameters.
5 aexpl m a y evaluate to 4, 8, or 12. If 4, an input (t o computer) operat ion Will take place,

if 8, an ou t p u t operation”, and it 12, both i n pu t and ou t p u t ma y occur
(2 aexp2 ISan auxuliary printer control code. It no auxil iary code ISdesared, a 0 (zero)

mus t be entered
/ tilespec ISa specutic file desagnation The q u o t a t i o n marks arOund filespec are re‑

qunred unless a s t r i ng variable ISused
8 The commas (see format and program examples above) mus t also be typed into the

compu t e r
9 filespec, it used, consrsts ot the devuce code (see Figure 5 2) followed by a number

between I and 8 followed by a requnred colon [I followed in tu rn by the tilename
and extender Example DI FILENAME Ex)"

10 The filename m a y c o n t a i n up to 8 alphanumeric characters and must start wrth an
alphabetic character (a capital letter} For example, "FILEONE", "ZIPZAP",
“A l l l l l l l ” , and "DISKFILE" are all legal tilonames No lower case or non ‑
alphanumeric characters ma y be used.

11. Optionally. a file extender may be “tacked on ” to the end of a filename by placing a
period immediately (no spaces) after the filename and then adding the extender im‑
mediately after the filename and period. The file extender may consist of any three
(or less) alphanumeric characters. For example "MAUREEN9.339” is legal, as are
"KENT921.61" and "KAREN711.63".

All this ismostly by way of introducing the concept of an ”0 systemthat controls all con‑
nected devices using the same BASIC keywords and format. Here’s a list of the device
type codes used:

FIGURE 5.2 DEVICE CODES
Code Device

D Disk Drive
C Cassette (Program Recorder)
K Keyboard ,.
E Editor ‘
S (default device) Monitor (Screen)
P Printer

See 9 above for use of the device codes. Note that these are actually codes that tell the
computer what kind of device is to be used, no t which of several disks, for example, is to
be used.

Program Examples:

100OPEN #3, 4, "D1:lEAN.W"

Translation: Open for input disk file "Dl:JEAN.W” and assign to the reference number
that the expression #3 evaluates to (3, of cou rse !) The whole set of parameters can now
be referred to by the number #3. more on this later!

100OPEN #1, 8, “D1:CHEKBOOK.BAL”

Translation: Open for outpu t to disk no. 1 the file that will be referred to in the future
Simply as #1, and which is titled "01 ;CHEKBOOK.BAL” on the disk

59

Once ag a i n , remember that things are not really this complicated, for the ” fu l l " OPEN
statement protocol is seldom if ever used other than with disks. There are short-cuts and
other BASIC l/O keywords yet to be covered that will simplify matters tremendously. It is
very important, however,that you "latch on" to the concept of centralized inputloutput
operations with a system that is consistent, even though there are many shortcuts that
work with specific devices.

Let’s sum~up our knowledge of the OPENstatement by saying that it is used to establish a
reference number so we don’t have to go through the whole routine more that once. tells
the computer whether it wil l be an input or an ou t pu t operation, establishes what t ype of
device will be used, controls which of several devicesilof the same type) will be con~
trolled, and tells the compu t e r what the filespec (file specification) is on the particular
disk. Note: Filenames are no t used with the program recorder.

We should also realize at this p a i n t that more than one I/O operation may be OPEN at
any given time.

CLOSE

Format: lineno CLOSE # aexp
Abbreviation: CL
Program Example: 100 CLOSE #2

This simply CLOSEs files that have been previously OPENed No te that the number to
which aexp evaluates will be the same number as that of the aexp following the # symbol
in the OPEN statement that the programmer now Wishes to CLOSE. Here’s an example:

10 OPEN #4, 4, o, “D1:XXXXXXXX.YYY" (OPEN the file for
read
(input) Operations)

20 (HO statements)
30 (HO statements)
40 CLOSE #4

Now you see what that first aexp (the one following the ll) was really for! It saves ushav‑
ing to go through the whole routine for CLOSE that we did for OPEN. Well, things will get
even easier, Folks! .

It should be noted at this point that NEW, END, and RUN perform the CLOSE operation
automatically, and that once a file has been CLOSEd, the OPEN statementis ”forgotten”
by the computer. If the same file must be re‐OPENed, this must be done in the same way
in which it was OPENed originally. Of course a different reference number may be used if
desired.

Try this little program on your system. It will be both fun and educational!

NEW (don’t forget this when writ ing a new
program)

READY (says the trusty computer)
10 OPEN #1, 4, 0, “K:" (Open the keyboard device for input)
20 GR.0 (Clear screen for action!)
30 PRINT “ ": GET#1, X (Input the byte of the key that was

pressed) (More on GET later)
40 FOR N= 1 TO 1000: NEXT N (Time delay loop)
50 PRINT X r (Print the key pressed)
60 PRINT CHRS(X)
70 FOR N= 1 TO 1000: NEXT N (Another delay loop)
80 GOTO 20 (Go back and do it again)

RUN this program in the normal way. The cursor will appear. Now press one letter or
other symbol on the keyboard, but do not pressm . Watch the sc r een , About t w o
seconds after you press any key, it will be printed alongwith its numerical ATASCII code)
on the screen. Now you can press another key and repeat the process. Note that y o u are
entering letters one at a time into the computer without pressing the m key.
without using string variables, and without automatically printing the letters on the
screen asyou enter them! A new way to exercise you r skill asthe "master”. You should be
able to think of all kinds of uses for this! Bear in mind that it is the HOcapabilities of your
system that make all this possible.

One more point on the OPEN statement and its shadow the CLOSE statement The
GRAPHICS statement (see Chapter 9 covering ATARI Graphics) automatically OPENS the
screen (5:) as reference #6.

h)

5.4 The PRINT Statement: Another Generalized IIO Control

PRINT

Format: lineno PRINT #aexp ; exp
Abbreviation: ?

exp... i

Program Examples:

100 PRINT "THE VALUE OF X IS "; X
100PRINT “COMMAS” , "CAUSE", “COLUMN", ”SPACING"
100 PRINT X, Y, 2, AS

To simplify just a bit. we can say that a PRINT statement is like a command to “ p u t "
something somewhere. if we do a PRINT to a printer, we get hard copy. If we PRINT to
the screen we get a picture on the TV set. Normally we use PRINT only for those two
things. but no t always! The aexp following the it in the statement is the (optional) file
specifier between 1 and 7 that controls to which device the PRINT will be done. If no
aexp is used here, the "default" mode will choose the TV screen. We should note at this
p om t that either a comma or a semicolon may be used separating two PRINTed items,
and that quota t ion marks may be used, too.

Use of Punctuation: A comma following anything to be PRINTed causes tabbing to the
next tab location before PRINTing resumes (even if the next item to be printed is on the
following numbered line). In contrast, the semicolon following something PRINTed (or
separat ing two PRINTed i tems) causes the succeeding printed items to be “ jammed”
against the preceding one (again, even i f i t i s on another line number!) I f no punc tua t ion
mark follows the last PRINTed item, the next PRINT will start on the followmg line.

Quotation Marks: Quotation marks around any item to be PRINTed will NOT themselves
bePRINTed. They mean to the compu te r that it is to PRINT, character for character. ex‑
actlv what I Sbetween the two q u o t a t i o n marks.

Thus

NEW
10X=1 : Y=2 : Z = 320 PRINT uxn;uyn;uzn
RUN
XYZ

* READV

If we remove the quotation marks, we get this:

NEW
10X=1= Y=2z Z = 3
20 PRINT X;Y;Z
RUN
123
READY

We can change line 20 to read like this: 20 PRINT X; " “ ;Y;“ ";Z. Now, the blank space we
p u t in the quotat ion marks will be printed, and this will leave blanks between_the
numbers:

RUN
1 2 3
READY

Or, we can use commas instead of the semicolons and remove the quotat ion marks

20 PRINT X,Y,Z
RUN
1 2 3
READY

A1

5.5 “Shortcut” Controls for Specific Devices
We have now discussed the OPEN and CLOSE statements. and have learned that PRINT is
another generalized I/O statement. We have seen that there is a pattern in all this! We
can choose any l/O device with an OPEN statement, assign it a reference number. get in‑
formation in or o u t of the device, CLOSE the HOOperation. and then OPEN another. (We
can have several reference numbers OPEN at the same time, too.)

But that sounds like an awful lot to remember just to p r i n t ou t one line on our printer,
record a program on tape. or load a program into RAM from our disk drive. Isn’t there a
quncker way?

Naturally! You bought a first class compu te r when you bought your ATARI Personal
Computer System! Let’s look at the v a r i o u s devices y o u will be making the most use of,
and discuss the statements you’ l l need to control them "the easy way" :

LPRlNT

Format: Iineno LPRINT epoE} exp {Elm}

Abbreviation: LP.
Program Example: LPRINT “THE QUICK BROWN FOX IUMPED OVER

THE LAZY? DOG"

100 LPRINT X;“ " ;Y; “ " ;Z

This statement causes the c ompu t e r to o u t p u t to the p r i n t e r rather than the screen. The
LPRINT statement requnes no OPEN or CLOSE statements and no file specifier. lust tell i t
what y o u want it to LPRINT

In case y o u were wondering, the L in LPRINT stands for " l ine”. We are dealing here With a
line p r i n t e r (as oppowd to a screen printer)

But how do I get a program LIST o u t of ll for my notebook? Easy again' Just tell it (i n
direct mode) to LIST“P: I t Will now faithful ly "gr ind ou t ” a complete listing or' y o u r latest
bl’dln‘Chlld Of c 0 u r s e LIST“P: can be used in deferred mode (i f you lust have to) by add‑
i n g a line number We l l come back to LIST later, and discuss it in coniunction With i ts
sister" s t a t emen t , ENTER

TABLE 10.1
TABLE OF PITCH VALUES FOR THE MUSICAL SCALE

HICH
NOTES

MIDDLE C

LOW NOTES

29
31
33
35
37

42
45
47
50
53
S7

72
76
81
85
91
96
102
108
11 4

121
128
136
144
153
162
173
182

193
204
217
230
243

1 3]

” C " SCALE MUSIC PROGRAM
This little program will demonstrate some of your computer’s musical talents, and will
show the use of the READ...DATA statements in musical programming:

10 READ A (read the data for variable A)
20 IF A = 256 THEN END
30 SOUND a, A, 10, 10 (1st voice, pitch A, normal tone,

slightly louder than normal volume)
40 FOR W = 1 TO 4&0: NEXT W
so PRINT A (print the value of pitch being played)
60 GOTO 10 (loop back for next note)
70 DATA 29,31,35,40,45,47,53,60, (data to be read in line 10)
64,72,81,91,96,108,121

86 DATA 128,144,162,182,193,
217,243,256 1 (256 is end of data marker)

Note that this program will end when the last data statement (256) is READ by line 10 and
line 20 is executed. Also note that all DATA statements are at the end of the program.
Actually, DATA statement can be placed anywhere in the program.

10.3 And Now, the Game Controller Functions
This may come asa surprise to some of you: No t only can you ”plug in ” ATARI game car‑
tridges and other programs that you can operate using the keyboard, paddle controllers,
and ioysticks, but you can use these controls to RUN programs for games (or whatever)
that you write in BASIC! How’s that for a nice way to end our evening ou t and wind up
our tour of BASICland?

ATARI calls the control knob or wheel a "paddle” controller (because it was originally
used to control the paddles displayed in the PONC®games We at ATARI still think of it as
the ”paddle” controller, so that’s what we’ll call it in this book.) The following two func‑
tions (yes, they are true functions, as values are "returned”) are for use with the paddle
controller devices:

134

PADDLE
Format: PADDLE (aexp)
Abbreviation: None
Program Example: 100 PRINT PADDLE(3)

w

This function returns the status of a particular numbered controller (The controllers are
numbered0-7 from left to right). This can be used in conjunction with other functions and
statements to cause "things to happen" like sound, graphics controls, etc. For example,
IF PADDl.E(3)=14 THEN PRINT “PADDLE ACTIVE!" Note that the number returned by
the PADDLE function will be between 1 and 228, with the number increasing in size as the
knob on the controller is rotated counterclockwise.

PTRIG (Paddle Trigger Funct ion)
Format: PTRIG (aexp)
Abbreviation: None
Program Example: 100 IF“PTRIG(4) = 0 THEN PRINT "MISSILES

FlREDi”

(aexp must evaluate to a value between 0 and 7)

PTRIG returns a number that represents the status of the trigger button on the particular
paddle controller. ” 1 " is returned at all times unless the button is pressed. In that case.
PTRIG returns a ” " . 0

STICK and STRIG are to the joystick iontroller what PADDLE and PTRIG are to the pad‑
dle controller, and they work exactly the same way Figure 10.1 shows the numbers that
will be returned when the joystick is pushed in any direction. Note that like PADDLE and
PTRIG, STICK and STRIG have no abbreviations.

US

FIGURE 10.1 PADDLE, STICK, PTRIG, and STRIG
14

1o 6%® 7
9 85

13 '

Note: STRIG and PTRIG both return a " 1 ” until trigger button is pressed, at which time
“ 0 ” is returned.

228 ' 1

The imaginative programmer will think of many uses for the four functions described in
this section, as they are the easiest and most direct way to access the computer while a
program is actually running. These functions may be used to produce musical notes,
graphic effects, and the like. The controllers may even be connected to external
mechanical devices so that outside events can be fed directly to the computer for pro‑
cessing and control purposes. These unusual input features may be used in any way you
like, and the only real limitation is your own human imagination! in fact, the answer to
most questions about computers is “Yes, it can do that...” The limiting factor is nearly
always between the programmer’s ears!

Hope you enjoyed tonight’s special tour! Sound and games are one of the most in‑
teresting and entertaining areas of the computer world. Tomorrow we’ll end our tour of
BASlClandwith a few advanced programming concepts and ”hints & kinks” that will help
y o u tie everything you’ve learned about the ATARI personal computers together a bit
better. See y o u in the morning!

136

CHAPTER 11

ADVANCED PROGRAMMING
TECHNIQUES IN BASIC
Well, folks, that about does it! You’ve had your tour of ATARI BASlCland, with all the
stops along the way. That means we only need to spend one more day to help you tie it
all together, introduce a few more advanced statements and functions, talk a little about
memory conservation, and pass on some tips for good programming.

11.1 PEEK, POKE, and USR

We’ve mentioned these BASIC keywords during other parts of our tou r, but we’ve been
saving their full use for the end. This is not because they are any harder to master than
the rest, but because there are certain restrictions or limitations involved with their use.
For example, USR is a function that ”calls" program resident in RAM in machine code.
POKE allows usto directly alter the contents of a particular memory location, and this ex‑
poses us to potential damage to a long program that is in RAM. PEEK is really a compa‑
nion of POKE, and the two belong together. Let’s take ‘em as they come:

PEEK

Format: PEEK (aexp)
Program Example: 100 PRINT “LEFT MARGIN IS "; PEEK(82)

This function allows the user to PEEK into a particular m emo r y location and "see” the
byte stored there. In the above program example, the number returned will be the setting
for the left margin of the screen display. This number ”defaults” to 2, so if 36 is returned,
the programmer would know that this margin has been changed for some reason. Any
memory address (in decimal form) in ROM or RAM may be PEEKed without changing the
data stored in i t , So PEEK away (usually in direct mode) to you r heart’s content!

Note that both aexp and the number returned by PEEK are in decimal (no t hex) form!

137

POKE

Format: lineno POKE aexp1, aexp2
Program Example: 100 POKE 82, 10

This is really the opposite of PEEK. Instead of a “passive” PEEK into a memory location
(aexp1) to see what is there, this is an aggressive insertion or modification of data stored
in the memory location. In the format example above, aexpi is the address (again,
decimal form) of the location. Note that aexp2 isalso in decimal format and isbetween0
and 255. If you t ry the program example given above (do it in direct mode, without a line
number), you will see that POKEing memory location 82 with the number 10 will change
the left screen margin from its default (2) position to 10; that is, the margin Vi‘rill move 8
spaces to the right. (H i t - V t o restore the margin to normal.)

-)

Like other BASIC keywords, PEEK and POKE can be used in direct as well as deferred
mode. Remember that performing a POKE actually alters a byte stored in RAM(you can't
POKE ROM locations, so don’t try!), so if the wrong location is POKEd, or if the wrong
byte is POKEd into the right location, the computer is likely to respond by saying
"Ouch!” in its own inimitable fashion by doing strange things to your precious program!
lndiscriminate POKEing is to be avoided for this reason. You may well find yourself with
a machine that is “hung up ” or with a ”crashed" BASIC system. In these cases, you will
be unable to communicate with the computer at all; an “offended" computer will just ig‑
nore everything you do! Try first pressing . If this works, your program will
still be in RAM and can be LISTed or RUN again. If all else fails, power down by turning
the computer off, wait about 5 seconds, and power up again. This will re-establish con‑
tact between you and the machine, but your program (and anything else stored in RAM)
will, or course, be lost!

REMEMBER:
Do your experiments with POKE when y o u do not have valuable data stored in RAM! It is
impossible to hurt the computer’s hardware by anything you may do at the keyboard, but
data and programs can easily be lost if y o u “POKE" around without knowing what you are
doing!

In practical programming, y o u will find that ATARI BASIC is a very flexible and versatile
programming language, and it is good practice to resort to POKEing only when dealing
with very special considerations that are beyond the capabilities of BASIC!

One last t ip when preparing to use the POKE command: PEEK first! Jot down the by te
that was in the particular location. Then, if the POKE doesn’t work ou t as v - n ' , m r
ticipated, you can POKE the original byte back in there where it ”belongs!"
I] !

USR (Function "Calls” a User 6502 machine-language subroutine and returns the
result of its execution)

Format: USR (aexp1 [, aexp2 [, aexp3...m
Abbreviation: None

Notes: aexp1 is an integer or arithmetic expression that evaluates to an integer which
represents the decimal memory address of the machine language routine to be performed.

\

aepo, aexp3 etc. are the optional input arguments (an argument is really nothingmore than
the value of a variable that is passed to the subroutine, so don’t let the new terminology
scare you) for the subroutine. These should be arithmetic expressions which evaluate to an
integer between 0 and 65535 inclusive, but a non-integer value may be used. (I t will be round.
ed to the nearest integer.) These values will be converted from BASlC’s BCD floatingopoint
number format to a two-byte binary number, and then they will be pushed onto what is call‑
ed the ”hardware stack". This stack is a group of RAM memory locations under the direct
control of the 6502 microprocessor chip, and we can think of the stack as looking like Figure
11.1 below.

FIGURE 11.1 THE HARDWARE STACK

(TOP OF STACK) N (Number of arguments on the s tacx , wmcn me we
zero)

. (High byte of argument X)
1 (Low byte of argument X)
1 (High byte of argument Y)

(Low byte of argument Y)
, (High byte of argument Z)
, (Low byte of argument Z)

, (High byte of m address)
(Low byte of m address)

Note: X is the first argument foll0wing the address of the routine, Y 's ‘ 1 - x
mm and so on There are N pairs of bytes.

The ADR function (see Chapter 6)may beused to pass data that isstored in arrays or strings
to asubroutine in machine language. Use the ADR function to get the address of the array or
string, and then use this address as one of the USR input arguments. See Appendix I for a
much easier BASIC way to do this!

Before it returns to BASIC, the assembly language routine must POP the number bf input
arguments (N) (top item on stack) off the stack. If this number is not 0. then all of the input
arguments must be POPped off the stack also. See Figure 11.1.

The subroutine should end by placing the low byte of its result in location 212 decimal in
RAM and the high byte in location 213 decimal, and then return to BASIC using an RTS
(return from subroutine) instruction. The BASIC interpreter will convert the 2-byte binary
number stored in locations 212 and 213 into an integer between0 and 65535 in floating-point
format to obtain the value returned by the USR function.

One way to get an assembly-language routine into memory is to read it into an array, one
byte at a t ime First, the routine must be assembled either by hand or with a 6502 assembler
program. such as ATARI’s Assembler Editor cartridgewhich simply plugs into your ATARI
Personal Computer System console This program-cartridge will provide the hexadecimal
values required in your machine-level subroutine. These are next converted to decimal and
placed in a DATA statement. The address of the array is then obtained by using a DIM state‑
ment with a string DlMensioned to length 1 followed by the array DIM. The address of the
array isobtained by adding 1 to the address of the string...like this:

100 DIM ASH), A M)
110 PRINT ADR(A$) + 1

The object file (machine code) from the Assembler cartridge (o r whatever) may be stored
on disk or cassette, then entered into memory either with the use of DOS (Disk Operating
System) or with the GET statement in BASIC. See the manual furnished with the
Assembler-Editor cartridge for the format of the object file. (See
also Appendix I)

See Appendix D for Decimal vs. Hexadecimal conversion tables. ”Hexadecimal" is com‑
puterese for the base 16 numbering system.
no 1,4vailaél'c last :4dc

USR, like POKE, involves a certain amount of knowledge of machine language program‑
ming and should no t be attempted without some advanced study. We recommend the
purchase of the ATARI Assembler Editor cartridge and careful study of ATARI's publica‑
tion for newcomers to the strangeworld of machine language programming.

Like POKE, the USR function can be mistreated and may cause your computer to go off
by itself and sulk (and not even speak to you!) Try , and if this fails, turn it
off, wait about 5 seconds, and power up again (Sure hope you had that program on tape
before you started fooling around with USR and POKE..)(See Appendix I for more on
U51! and executable program examples)

11.2 On The Conservation of Memory
Your RAMmemory (no matter how much you have) will always be just barely enough for
the program you want to write, provided you are very careful, even stingy at times. This is
one of those “laws" like the one about how a par t that can be installed backwards will be
so installed. Computer or human, none of usever has enough memory ! The world of the
personal compu te r is often quite limited in this regard, since RAM is expensive, so it
behooves us to know our equipment and the techniques we can use to conserve valuable
RAM without sacrificing the human element in our programs. The latter is very impor‑
tant. as one of the major differences between you r ATARI computer and a hand-held
calculator is the computer's ability to simulate “human" thinking. Unless memory is
severely limited, we should take a humanistic approach to programming. So let's learn
how to save memory where doing so ”won‘t show".

1. In many small computers, eliminating blank spaces between words and characters as
they are typed into the keyboard will save memory. This is not true of the ATARI Per‑
sonal Computer Systems. This means you can write as if y o u were using a typewriter,
This will prove enlightening both to humans who must work'with your programs and
to your computer!

Spaces should be used (just as in typing on a conventional typewriter) between suc‑
cessive keywords and between keywords and variable names. Here is an example:

10 IF A = 5 THEN PRINT A

Note the spaces between IF and A and between THEN and PRINT. In most cases, a
statement will be interpreted correctly by the compu t e r even if all spaces are left

1C1

1 ‘ 2

out, but this is not always true. Almost as important, you will find it much easier to
work with your program if you use conventional spacing. Note, too, that when you
give the command lIST, the computer will p u t in its own spacing, regardless of how
many spaces you typed in originally. This is a very smart computer! If you don’t
believe this, t r y typing in a line leaving extra spaces (use deferred mode) and then tell
your electronic friend to LIST!

You can easily confuse the poor thing if you pu t spaces in the middle of variable
names, keywords, or numbers. Do not pu t a space between an array variable name
and the left parenthesis that follows it!

Do it This Way: Never This Way:
M 0) A (0)

A

Each new line number represents the beginning of what is called a new "logical line”.
Each logical line eats up 6 byte}; of ”overhead", whether it is used to full capacity or
not. Adding an additional BASng statement by using a colon (z) to separate each pair
of statements on the same |ine‘~”costs” only 3 bytes.

If You Need To Save Memory,

AV O I D PROGRAMS LIKE THIS:

10 x
20 v
so 2 .-
40 PRINT z_,
so GOTO 19

CONSOLIDATE l lNES LIKE THIS:

1 0 X = X + 1 : Y = Y + 1 : Z = X + Y : P R
INT Z:
GOTO 10

(NOTE: 12 bytes were saved)

If memory is not a problem, then you m a y want to p u t most statements on separate
numbered lines in the interests of programmer convenienceand readability.

Variables and constants should be "managed” for savings, too. Each time a constant
(4, 5, 16, 3.14159, etc.) is used, it "costs” 7 bytes. Defining a new variable requires 8
bytes plus the length of the variable name (in characters). But each time it is used
after being defined, it takes only 1 byte, regardless of its length! Thus, if a constant
(such as 3.14159) is used more than once or twice in a program, it should be defined
as a variable, and the variable name used throughout the program. For example:

10 PI = 3.14159
20 PRINT "AREA OF A CIRCLE IS THE RADI
US SQUARED TIMES "; PI
RUN
AREA OF A CIRCLE IS THE RADIUS SQUARED
TIMES 3.14159
READY

Strings require 2 bytes overhead and 1 byte for each character (including all spaces)
in the string. (See string variables below.)

‘i

String variables cost 9 bytes each plus thfia length of the variable name (including
spaces) plus the space eaten up‘by the DélM statement, plus the size of the string
itself (1 byte per character, including spaces) when they are defined. Obviously, the
use of string variables is very costly in terms of RAM.

,i

\

Arrays and matrices are also memory burners, but in many cases are good in‑
vestments from other standpoints. (Much of our computing power comes from array/
matrix operations.) Definition of a new matrix requires 15 bytes plus the length of the
matrix variable name plus the space needed for the D IM statement plus 6 times the
size of the matrix (product of the number of rows and the number of columns). Thus,
a 25 row by 4 column matrix would require 15 + approximately 3 (for Variable name)
+ approximately 10 (for the DIM statement) + 6 times 100 (the matrix size), or about
630 bytes!

Many programmers use a lot of REM statements during the creation of a new pro‑
gram, For both memo r y conservation and increasing execution speed, these may be
removed once the program is "RUNing" properly. Remember, though, that you r
remarks will help others to understand you r program,

i,

Many times, certain operations must be repeated on different variables or constants ,
t iming loops are used, and other oft-used sections of the status, and called with
GOSUB when needed. Storing each of these routines only once in the program will
save quite a bit o f memory, not to mention your own typing time!

1 ‘]

W

Unnecessary use of parentheses costs you one byte per character. But be sure y o u
know where you can safely remove these before you start doing “parenthessec'
tomies" on your programs! Review Chapter 4.

The above information and suggestions are included for the information of the
reader, for it is no t ATARl’s intent to create a sub-race of byte-obsessed compulsive .
memory counters! We do, of course, realize that many computer hobbyists are in‑
terested in such things, and since all memory has limits, it makes common sense to be
aware of ways to conserve it.

11.3 Good Practices and Hints for Better Programming
1

As usual, experience is the best teacher. However, there are many traps and pitfalls o u t
there in BASICland that are due to the literal nature of computers. If you could com‑
mand (in BASIC) your computer to "JUMP”, i t would almost surely present you with an
error message to the effect that y o u haven’t told it how high! Here are some good pro‑
gramming practices and helpful "dos and don'ts" that will help y o u take your computing
fun as seriously as we at ATARI do.

1. Never use variables that look like BASIC keywords like RUN, POKE, GOTO, and the
like. This will eventually confuse both the programmer and the poor computer!

2. Beaware of the order of arithmetic and logical execution, and make judicious use of
parentheses (). If y ou have trouble, refer back to Chapter 4. And if in doubt, use
parentheses, even though they “cos t “ a byte each. Chances are you havememory “ t o
burn” anyhow!

11.4 PEEKs, POKEs, Pulses and Programs

Note: Many of these locations are of primary interest to expert programmers and are in‑
cluded here as a convenience.

This section contains a few more hints and bits and pieces of information that ma y prove
useful to your programming efforts:

I“

1. Timing Operations: You can obtain clock pulses derived from the crystal controlled
oscillator that serves to time your computer‘s internal workings. These are stored in
memory locations 18, 19, and 20 (decimal). Location 20 changes with each TV
monitor frame, or 60 times per second, Location 19 changes every 4.27 seconds, and
18 changes every 65536 TV frames, or 18.2 minutes. Use of the algorhythm shown
below as line 100 in a hypothetical program will get you a count that increments by
one with each second that passes:

100 SECONDS = INT((PEEK(18) * 65536+PEEK(19) * 256+PEEK(20DIGO)‘

2. Controlling the Program Recorder Motor: The statement POKE 5401852 will turn on
the Cassette Recorder mo t o r, while POKE 54018.60 returns the motor to its normal
off state. This m a y be used in direct mode or in a program to play tape recorded
music during a program or for any other purpose. Music or data on cassette will be
played through the TV set’s loudspeaker, and may be controlled by the TV’s volume
control.

1 i

TABLE OF POTENTIALLY USEFUL MEMORY LOCATIONS
DECIMAI. COMMENTS AND DESCRIPTION
LOCATION ' ’

14, 15 Highest location used by BASIC (LSB, MSB)
18,19,20 TV frame counter (1/60 sec.) (LSB, NSB, MSB) see above
65 Noisy l/O Flag (O=quiet)
77 Attract Mode Flag (128 = Attract Mode)
82,83 Left, Right Margin (Defaults 2, 39)
84 Current row on which cursor rests (0-23)
85, 86 Current cursor column (0-39)
90 Previous cursor row (0-23)
91, 92 Previous cursor ve r t , column (0-39)
93 Data under cursor
96 Cursor row to which DRAWTO will go
97,98 Cursor column to which DRAWTO goes
106 Actual top of m e m o r y (# of pages)
564 Light PenJHorizontal value
565 Light Pen Vertical value

HS

704
705
706
707
708
709
71 0
71 1
71 2
741,742
752
755
756

763
764
765
766
767
794
832
1664-1791

186-187
195
201
21 2,21 3

251

Player-missile 0 color
Player-missile1 color
Player-missile 2 color
Player-missile 3 color
Color field 0 color

, Color field 1 color
Color field 2 color
Color field 3 color
Backgr0und color
Top of available user memory (LSB,MSB)
Cursor inhibit (0=cursor on)
Character mode register
Character base register (defaults to 224)
(224 = upper case, 226 = lower case characters)
Last ATASCII character
Last keyboard key pressed; int. code;(255 = no key)
Fill data for graphic DRAWTO/FILL
Display Flag (0 = execute control character)
Start/Stop flag for paging (0 = normal listing)
Handler address table (3 bytes/handler)
I/O control blocks‘(16 bytes/IOCB)
Spare RAM

BASIC PEEKS (NO POKES!)

Line # at which STOP occurred
Error # for display to user
Print tab width (defaults to 10)
Low and high bytes of value to be returned to BASIC
from USR function
RAD/DEC flag (0 = radians, 6 = degrees)

3. Most programs can be RUN using the computer console, the ATARI 410'M Program
Recorder, and any good quality (preferably color) TV set‘ However, y o u should con‑
sider the various optional ATARI peripherals such as the ATARI 810‘M Disk Drive, the
ATARI 820““ 40-column or ATARI 825‘M 80-column Printers, and the ATARI 830'M
Modern. While we're getting this ”word from our sponsor”, we should also mention
that additional plug-in RAM memory is available in 8K or 16K increments (ATA R I 800
only). The 400 must be upgraded by an ATARI service facil i ty, and its RAM may be in‑
creased up to a total of 16K.

1“

We think you’ll find that these accessories and peripherals will save you programm‑
ing time, and will allow even greater flexibility in the use of your total ATARI system.

4 Try to bear in mind the nature of computers when planning and writ ing your pro‑
grams. Computers are unique among machines, for they have no specific function,
but instead can be programmed to do literally th0usands of different things. Pro‑
grams that are well-defined and planned allow the compu te r to maximize its efficien‑
cy in performing its many‐faceted tasks.

5. Finally, t r y to remember that a Human Being (you or someone else), will have to deal
with your programmilng efforts. Most programs allow the computer to communicate
with a user (or player, in the case of game programs). If the user must rely on his very
fallible human memory, errors will result that will be blamed on your pride and joy!
Provide lots of "prompts” that will tell the user or player what to do next. Build in
”error traps”. t oo , that will tell the forgetful human what he did wrong.Also, remind
yourself periodically that human beings, even programers, have one thing that no
computer (yet) possesses: A sense of humor-l

And that completes our tou r of BASICland! Hope you learned a lot and enjoyed yourself.
There’s one thing that sets this tour apart: You can always come back, and by picking up
this book, look up material y o u missed the first time around or have forgotten. Use the
tou r book as a reference, and we feel that y o u will find the answers to almost all of your
programming questions. You may want to start your own notebook of computer-oriented
material such as the newsletters that ATARI mails o u t to owners who have returned war‑
ran ty cards on systems and peripherals. Every scrap of knowledge you can glean from
any reliable source will make you a better programmer. And you’ll be amazed to find
that your own thinking processes becomes less cluttered and more straight-forward
because you know how a computer would go about solving a particular problem! You’ll
soon realize that y o u don‘t really know how to do something unless y o u can write a pro‑
gram that will let a c ompu t e r do it. Your personal computer will literally change your
whole pattern of life! Wait and see...

MEANWHILE, JUST ENIOY!

“7

‘ APPENDIX A

A COLLECTION OF PROGRAMS YOU
CAN ”PUNCH UP” AND RUN
The programs and rou t i nes rn this appendix were selected to allow the new computerist to t ry ou t
hlS A [A R I 400 or 800 Personal Computer System, and to give him some idea of its tremendous
possibilities. Most of these programs are "bare bones” routines that fair ly c ry ou t to be
"embellished”. For example, the routines that use SOUND could also incorporate color graphics
and VlCe versa.

Just key the routine's in to you r Atari Personal Computer. RUN them asoften as y o u like, and if
y o u find some that y o u m a y want to RUN in the future, record them on disk or cassette.

Whatever else y 0 u ma y do with these routines, please do enjoy yourselfl

USER PROGRAM #1
PROGRAM TO CHECK HEARINGIHEARING AIDS

1. Type this program into your ATARI 400/800:
5 GRAPHICS 0
10FORS = 1 T040
20 PRINT S
30 SOUND 0, S, 10, 10
40 FOR N = 1 TO 1000: NEXT N
50 NEXT 5
60 PRINT ”TEST COMPLETE - RECORD NUMB
ER FIRST HEARD"

2 . Now “RUN” with your hearing aid (i f any) Off. Record the number from the screen that you I
saw when you first heard the very high pitched sound.

3 . Repeat the test with your hearing aid (i f y o u wear one) on and operating. Again, record the
number from the screen when y o u first heard the tone.

4 . Compare the two numbers. The higher the number, the lower the sound you were first able to
hear. ‑

NOTE: A person with “normal" hearing can usually hear the note at numbers 3-6.

5 . If there’s a significant difference between what you hear with and withoutayour hearing aid,
this would seem to indicate) that it isfiunctioning at least to some extent.

USER. PROGRAM #2
ALPHA-NUMERIC SORTING ROUTINE USING LEN FUNCTION

About this program: This program allows y o u to input (by keyboard) as many numbers or words
as you want (entries may be mixed numbers and words, tOO!), and the computer will then p u t all
the numbers in numerical order and all the words in alphabetical order. The numbers will be
printed ou t first, followed by the words.

1

Note: If you don’t have a printer, simply omit the starred (*) lines in the program, and the monitor
screen will then carry the output! The ordered items will be printed o u t in a vertical co lumr,
unless more than 20 are entered (which runs y o u o u t Of room on the TV screen). In this case, they
will be printed out across the screen in the normal manner.

150

PROGRAM LIST COMMENTS

to OR. 0: PRINT " ALPHANUM Clear screen, program title (6 spaces between”
ERIC SORT":PRINT and ALPHANUMERIC)
20 D IM A5(2000), 35(50), C$(50):SETCOLOR DIM the 3 strings, set color register 2.
2,122: A $ = “ " make A5 a null string
30 PRINT "HOW MANY ITEMS TO SORT?”:INP Asks for number of entries
UT W ‘
35 W = W + 1 Increment items by 1
40 FOR I = 1 TO W Start looping W times
30 IF | = 1 THEN 8 5 : “ ": GOTO 80 Skip to 80 if l is 1
60 PRINTzPRlNT “ENTER AN ITEM PLEASE
" . Asks for an entry
70 INPUT BS Takes entry, assigns to BS
‘75 LPRINT 85 PRINT 35 on p r i n te r
80 BS(LEN(B$)+1)=" (10 I ” Initialize to blanks
90 A$(lEN(AS)+ 1);:qu») Tack 3s onto end of AS
lice NEXT I Go back to 40 for next I value

"' 110 FOR | = 1 1 T0 10*W STEP 10 Start loop with I set from ten times W
_ 120 FOR L = 11 TO 10*W STEP 10 Next second loop inside first

no IF A$(L,L+9)\‐AS(L-10,L) THEN GOSUB If sort required. goto subrout.
1000
140 NEXT 1.: NEXT 1 Completes both loops
150GR.0 Clear screen by ”changing” modes
1601f W>20 THEN 200 lf more than 20 times goto 200
170 GOSUB 2000 Jump down to subroutine at 2000
200 PRINT AS Print ou t the sorted items
'205 LPRINT: LPRINT: LPRINT 3 blank lines on printer
'210 LPRINT AS Hard copy print of sorted items
220 COSUB 3000 Jump to subroutine at line 3000
999 END Keeps program separated from subroutine
1000C S : AS(L,L+9) Assign A3 (10 spaces) to CS
1010 AS(L,L+9)=A$(L-10,L) Move spaces in A5 back 10 spaces
1020 AS(L-10,L)=CS CS now follows characters m0ved back
1030 RETURN Jump back to main program
1999 END (See 999)
2000POKE 82,11: POKE 83,20 Set margins so words are output 1 at a time in

vertical column
2010 RETURN
2999 END
3’ WPOKE 82,3: POKE 83,36 Return margins to normal setting
30.0 RETURN

’\
'Note : If you are not using a printer, then eliminate the starred lines (75, 205, 210). This will give you
screen output .

15!

USER PROGRAM #3
CHECKBOOK BALANCER PROGRAM
This is one of the ”traditional" programs that every beginning computerist writes. You might
want to t ry your hand at this one first, and if y ou get "stuck” or if you want to compare your el‑
forts with someone else’s, then have a look at this one. Basically, this little program just takes
your old balance, asks y o u to input your checks by number and amount , and then uses an
entered "0 ” to indicate that you are through entering checks. It then does the same for deposits.
All entries are pu t in a three column matrix, where column 1 is the check or deposit number, col‑
umn 2 is the amount , and column 3 is the computed balance.

If you have someone in you r family who laughs at you r computer and wonders about its prac‑
tical value_(if any), key this one up and show it to him! Then CSAVE it for use later.

PROGRAM LISTING ' COMMENTS

10 GRJ: I “ CHECKBOOK BALANCER": I 9 spaces between Tst "and CHECKBOOK"
20 DIM A(100,3) Matrix is 100 rows by 3 columns

‘ 30? “Enter 0 after last check or depos
it is in the computer":I" R= 0 Note lower case printing.
40 SETCOLOR 2,113 Make background green
100 REM INPUT OLD BALANCE Remarks help document the program!
110 I "OLD BALANCET": INPUT OB:
A(R,3)=08: I : R = 1 ' R is counter variable
20G REM INPUT CHECKS BY NUMBER 8:
AMOUNT More documentation
21o TRAP 210 If error in input, return to 210
220 ?:?“CHECK NUMBERI": INPUT CN Ask for number, take inpu t
230 IF CN=0 THEN 300 If 0 is entered, goto 300
240 I “AMOUNT OF CHECKT": INPUT CA Enter a check
250 A(R,1)=CN: A(R,2)=CA Assign check to matr ix variables
260 REM GET RUNNING BALANCE IN COL. 3 Figure the balance
270 A(R,3)=A((R-1),3)-A(R,2) Subtract check from old balance
280 R: R+1:T=R:GOTO 219 Increment counter, do it again.
300 REM INPUT DEPOSITS Remarks to document program
310 TRAP 310 Faulty input? Do it again!
320 ?:I"IF LAST DEPOSIT DONE, TYPE 0,
OTHERWISE TYPE 1": INPUT DN Enter 0 when done with deposits
325 IF DN = 0 THEN 400 If all entered, jump to pr intout
330? "AMOUNT OF DEPOSIT?”:|NPUT
DA:A(R,2)=DA:A(R,1)=0 Get deposit, assign to matrix
340 REM GET RUNNING BALANCE IN COL. 3 more documentation!
350 A(R,3) = A((R-1),3+A(R,2) Add deposit to old balance
360 R=R+1zT=R:GOT0 310 Increment coun te r, do it again

1 5]

- 400 REM PRINT OUT ENTIRE MATRIX And still more comments!
410 CR.0:?“OLD BALANCE WAS ” ;OB: I Clear screen, begin print ou t
420 ! "NUMBER”,”AMOUNT","BALANCE”:? Headings for 3 column o u t p u t
430 FOR R = 0 T0 T4 So that‘s what T and R do...!
440 i A(,R1),A(R,2),A(R,3) Print out each matrix element
450 NEXT R
4601:! “NOTE: 0 in column 1 indicates a
deposit. .
470 END This line is optional...END is required in

many BASICS...

Hope your deposits exceed y o u r checks!

USER PROGRAM #4
SUBROUTINE FOR EXTRACTING "EVEN" CUBE ROOTS

Sooner or later, you will run into a program that wants the cube root of a number only if it
"comes ou t even”, that is, without decimals. This is a little subroutine that will do the job for

f‘ v 0 u . It has been kept as simple as possible, and no attempt has been made to ”speed u p ” the ex‑
ecut ion by eliminating certain numbers,numbers above a certain value, etc. We leave that up to

~ y o u . Besides, the slow execution t i m e is kind of fun, and will give y o u a new appreciation for the
m a n y Functions in BASIC that do this kind of thing for y o u almost instantaneously (by machine‑
language routines).

PROGRAM LIST COMMENTS, ETC.

1OCR1! " ‘ear the screen. Note this par t of the pro‑
gram rust ”calls" the subroutine that starts at

-e 9000
20 PRINT " WHAT IS THE NUMBER"
30 INPUT X Assrgn the number typed to variable X
40 GOSUB 9000 ' Cal'“ the subroutine at line 9000
8’499 END Prevents calling program from “crashing”

i n t o the subroutine
29EM CUBE ROOT SUBROUTINE Documents what r o u t i n e does

9 ‘ O R Y: 1 TO INT(0.3 * X) Try numbers up to Approx “3 X
‘5 IF Y =INT(0 .3 * 3) THEN PRINT ” N O EV I f 3 * X is reached, pr in t out .

,‘~ CUBE ROOT": END 8: qu i t
‘29 I FX = Y * Y * Y THEN POP: G O TO 9040 See Chapter 3 for more o n ‘ V

‘s’tXT Y
‘vPRINT "THE CUBE ROOT OF “;X;"IS";

7'50 RETURN

USER PROGRAM #5
"LIGHT SHOW"
Here's a little graphics routine that demonstrates most of the ATARI Mode 7 color Graphics
capabilities, is fun all by itself, or can serve asa “nugget” of a program you create. It’l l take you
about 5 minutes to key in (there are only 7 lines]. An interesting programming feature is the use
of one FOR/NEXT loop to control the STEP variable of another loop, while the color selected is
controlled by the same variable! Hope this one leads you on to all kinds of creative
embellishments!

PROGRAM LIST PROGRAMMER’S COMMENTS

10 FOR ST=1 TO 8:GR. 7 Start loop for step variable (ST)
20 1:!” Atari’s Special Light Shawl”: SETCOLOR i
2,0,0 Use reverse video lower case wiiere text is in

italics. Make background & text window black
30 SETCOLOR 1, 2 *ST, 8: COLOR 2 Vary plotted color w;th ST
40FOR DR=0TO80STEP ST STis the step variable changed in 10
50 PLOT 0,0:DRAWTO 100,DR_ Draw the pattern on the screen
60 NEXT DR:FOR N = 1 TO 80¢:NEXT N: NEXT 51' All loops now proper y nexted and closed.
70 FOR N = 1 TO 2000:NEXT N: GOTO 10 Delay for 2000 count, then start over.

Note use of lower case letters and inverse video in line 20. You can do this any time in a print s t a t e
ment when the characters involved are between quotation marks!

/ r '

USER PROGRAM #6
TYPE-A‐TUNE PROGRAM
This is a little piece of pure fun, and totally without redeeming social importance! It lets you play
m u S l C by pressing the keys (top line of the keyboard). The keyboard isscanned. and the letter pressed
is compared with the contents of two matrices. If a match is found, the correct note is produced by
the SOUND statement in line 130. this is a "bare bones" program that needs your own creative input!

PROGRAM LIST

5 GRAPHICS 0
10 DIM CHORD(37)
20 DIM TUNE(12)
30 FOR X = 1 TO 37:READ A: CHORD(X)=A:
NEXT X

COMMENTS, ETC.

DIM the variables CHORD and TUNE.
Load matr ix CHORD from DATA statements

40 FOR X = 1 TO 1i: READ A: TUNE(X)=A: NEXT Loacfmatrix TUNE from DATA statements
X
50 OPEN #1, 4, 0. "K:" i

60 IF PEEK(764)= 255 THEN 60
/ ‘ 7 0 A = P E E K (7 6 4)

‘ 80 Z =PEEK(53775}
90 X=1
TOOIF TUNE(X)=A THEN 130

no X=X+1:IF x = 1 3 THEN so
120 c o m 100 . .
130 SOUND 0,CHORD(X),10,8
no if PEEK(53775)<:>TZ THEN 170
150 IF PEEK(764)<‘§ A THEN 70
150 (3 0 1 0 n o
170 POKE 764,255

1th SOUND 0,0,0,0
190 GOTO 60
180 SOUND 0,0,0,0
190 GOTO 60
200 DATA 243,230,217,204,193,
182,171162,153,144,136,128,121,114,10
8,102,96,91,85,81,76,72,68,64,6$
210 DATA 57,53,50,47,4S,42,
40,37,35,33,31,29
220 DATA 31,30,26,24,29,27,51,
33,48,505455

l.
1 OPEN the keyboard for input as device #1 (See

Ch. 5).
Check for keystroke: If none, repeat.
If there has been a keystroke. store its code in
A.
Store contents of location 53775 in 2
Do we have to say more?
Look through matrix TUNE for note played. If
found go to 130 and play it. If no t , t ry next
element.

The SOUND command!
If this has changed, go to 170
If this has changed, go back to 70
Has anything changed yet?
If Z has changed, return 764 to 255, which is
the " n o keystroke" code.
Turn off the music mathine! Note over.

Turn off the music machine! Note over.
Loop back to 60 and look for next no te . .
The three DATA statements hold the pitch

values for the various notes.

15$

USER PROGRAM #7
“GRAPHITI”

This is a1 to 4 player game that allows the players to draw lines and designs on the screen in up
to 4 colors (white, red, blue, and black). It uses the joysticks, and provides some excellent ex‑
amples of the GRAPHICS modes and the game controller commands (STICK, STRIC, etc.) We
think you’ll enjoy the game itself and will learn from working with the BASIC program!

PROGRAM LIST COMMENTS, ETC.

1OGRAPHICS 0 Clear the screen
20! “ VIDEO GRAPHITI" . Print the program title
30 REM ARRAYS X & Y HOLD COORDINATES Documenting program with remarks
40 REM FOR UP TO 4 PLAYER POSITIONS
50 REM COLR ARRAY HOLDS COLORS -‘
60 D IM A50LXI3LYI3LCOLRI3) DlMension the 3 arrays and 1 string
70! "Use Joysticks to Draw Pictures”
80? "Press Trigger Buttons to Change Instructions to la ersColors" p y

V 90 I "INITIAL COLORS:"
100? ”Joystick 2 is White" Print color info to players
110? "Joystick 3 is Blue”
120? “Joystick 4 is Background Color”
130? "INITIAL COLORS:"
140? "BLACK LOCATION INDICATED BY BRI
EFFLASH 0F RED"
150? "IN GRAPHICS 8, IOYSTICKS 1 & 3
ARE WHITE AND 4 IS BLUE"
1601"How many players (1-4)?"
170INPUT AS:IF LEN(A$)=0 THEN A $ = " 1 "
180]OYMAX=VAL(A$)" -1
190W IOYMAX<0 OR IOYMAX> =-=4 THEN 138 IOYMAX 8: JOYIN are variable names
200? "GRAPHICS 3 (40x24), 5(80X40)," '
21or "7 (160x96), OR 8 (320x192)z";
220INPUT AS:IF LEN(A$)=0 THEN A $ = " 3 "
230A=VAL (A$)
240 IFA = 3 THEN XMAX=40:YMAX=24:GOTO 2 Establishing "wraparound” values
90
2501s A = S THEN XMAX=80=YMAX=48:GOTO 2
90
260 IF A = 7 THEN XMAX=160:YMAX=96:GOTO
290
270 IF A=8 THEN XMAX = 3202YMAX = 192:GOTO
290
156

w - . . W , - _ - . 7

ZBOGOTO 200:REM A NOT VALID Choose Graphics Mode A withOut Text
290 GRAPHICS A+16 Window
300 FOR l = 0 TO IOYMAX:X(I)= XMAX12+1:Y(
I)=YMAXI2+1:NEXT |:REM START NEAR CENTER
OF SCREEN
310 IF A < > 8 THEN 350 If A is not CR8. go to line 350
320 FOR I: 0 TO 2:COLR(I)= I + L:NEXT I I H
330 SETCOLOR 1,9,14zREM LIGHT BLUE Setting color registers
340 GOTO 380
350 FOR I = 0 TO 2:COLR(I)= |+ LzNEXT I
360 SETCOLOR 9,4,6:REM RED
370 SETCOLOR 1,0,1&:R£M WHITE
380 COLR(3)=9
390 FOR I = 0 TO 3
‘00 FOR I = 0 TO IOYMAX:REM CHECK JOYSTI 2
-KS 7
410 REM CHECK TRIGGER
420 IF STR|C(I) THEN 470
430 IF A < > 8 THEN 460
440COLR(I)=COLR(I)+1:IF COLR(|)=2 THE
N COLR(|)=0:REM TWO-COLOR MODE
«ISOGOTO 470
460 COLR(I)=COLR(I)+1:IF COLR(I)=4 THE Color control statements
N COLOR (|]=0:REM FOUR-COLOR MODE
470”: I > 0THEN COLOR COLR(I):GOTO 500
480”: COLR(I)=0 THEN COLOR 1:GOTO 500
490 COLOR 0:REM BLINK CURRENT SQUARE O
N AND OFF
500 PLOT X(I),Y(I)
51OIOYIN= STICKU):REM READ IOYSTICK34 Rear'ing joystick positions and plotting the
0 IF)OYIN=15 THEN S30:REM NO MOVEMENT Craghics points on the screen
SZOIOYIN= STICKU):REM READ JOYSTICK34
0 IF IOY|N=15 THEN 530:REM NO MOVEMENT
530 COLOR COLR(|):REM MAKE SURE COLOR
IS ON
540 PLOT XII),Y(I)
550 IF IOYIN> =8 THEN 600
560 X(|]=X(I)S1:REM MOVE RIGHT

’0 REM IF OUT OF RANGE THEN WRAPAROUN Control of "wraparound" game feature
0
580 IF X(I)=XMAX THEN X(I)=0
S90 COTO 630
600 I F I O Y I N) =12 THEN 630

i

157

mo X(l)=X(l)‐1:REM MOVE LEFT
620 IF xm<o THEN X(|)=XMAX‐-1
630 IEJOYIN< > 5 AND IOYIN< >.9 AND 1 0 q u
<> 13 THEN 560
640 vm=vm+1:IF Y(I)= YMAX THEN m) :
0:REM MOVE DOWN
650GOTO 680
660 IEIOYIN< > 6 AND JOYIN<>10 AND 10v:
N<>14 THEN 680
670 Y(l)=Y(I)‐1:IF Y(1)<0 THEN ya)= YM
AX-1:REM MOVE up '
680PLOT xmxm
690NEXT I ~
mo NEXT]
71660To 390

15 .

APPENDIX B

ALPHABETICAL DIRECTORY OF
BASIC RESERVED WORDS

2° WOW Q.afgo- 43‘“ 51%“.
Q‘ ‘50 P.% C“ BRIEF SUMMARY OF BASIC STATEMENT

ABS 6 Function returns absolute value (unsigned) of the variable
_ or expression.

ADR 6 Function returns memory address of a string or a numeric
array.

AND 4 Logical operator: Statement IS true only if both
substatements joined by AND are true.

A ASC 7 String Function‘returns the numeric value of a single str‑
ing character,

ATN 6 Function returns the arctangent of a number or expres‑
sion in radians or deg

BYE 8. Exit from BASIC 8. return to the resident operating
system o r console p r o c e s s o r

CLOAD CLOA. 5 Loads data from Ping-'2 Re= ‘ll’dEl’ into RAM. Includes
the OPEN sta temen '

CHRS 7 String function rezums s gie str ing byte equivalent to a
n u m e r i c values betw‘ c w) and 255 , n ATASC11 code.

CLOSE CL. S 1/0 statement 48C ‘i close a file at the conclusion of
[/ 0 o p e r a t i o n

CLR 8 The opposite; D I M " n o ” v ‘ : t - n s n " a ' st: ~gs; matrices.
COLOR C. 9 Chooses color '9? i “€ " We. * 1r graphics work
(" ‘ N " CON. 2 Continue causes . mm 2 - ' execu t io r ‘ an the

next line Milo» l‐ C»52 .~ ' ev o" , -(‘u-‘ts>rin8
a STOP m the m u g ‘1

i 6 Function . e t s the L o s - ; 'r ‘ “we 1‘ exprwsron
(degrees or swans}

S Outputs ,2 R A M ~ 4 " R e" ' o r
tape str {1, ‘ r ; ent

" ' " F . 5 . l /O c o n ‘ 3 ‘ , , g " = »:9.
r ‘kpniz- ‘c c ’ '

159

DATA D.

DEG DE.

D I M DI .

DOS DO.

DRAWTO DR.

END

EXP

FOR F.

FRE

GET GE.

GOSUB COS.

GOTO G.
GRAPHICS GR.

IF

(see 005;

Manual) ‘

5,9

BRIEF SUMMARY OF BASIC STATEMENT

Part of READ...DATA combination. Used to identify the
succeeding items (which must be separated by commas)
as individual data items.
Statement DEG tells computer to perform trigonometric
functions in degrees instead of radians. (Default is ra~
dians)
Reserves the specified amount of memory for matrix, array,
or string. All strilng variables, arrays, matrices must be
DlMed. '
Reserved word for disk operations. Causes the menu to
be displayed. .

Draws a straight line between a PlOTted point and
specified point.
Stops program execution. Program may be restarted using
CONTQ(Note; END m a y be used more than once in a pro‑
gram) .-
Functiigin returns e (2.7182818) raised to the Specified
power.
Used with NEXT to est iblish FOR...NEXT loops. In‑
troduces the range that the loop variable will operate in
during the execution of: loop.
Function returns the amount of user memory remaining
(in bytes.)
Used mostly with disk operations to input'a single byte
of da ta} :

Branch to a subroutine beginning at the specified line
number.
Unconditional branch to a specified line number.
Specifies which of the eight graphics modes is to be us‑
ed. GR.0 may be used to clear screen.
Returns a 1 only if the statement is true, otherwise
returns 0. M a y be used to cause conditional branching or
to execute another statement on the same line (only IF
the first statement is true).

INPUT

lNT

LEN

LET

LIST
LOAD
|OCATE

LOG
LPRINT

NEW
NEXT

NOT

NOTE
ON

OPEN
ON

PADDLE
P‘EK

PLOT

LE.

LO.
LOC.

LP.

NO.

PL.

10
11

‐ - ‐ ‐ ‐ ‐ u ‐ ‐ ~ o . . ' - m _

Causes computer to ask for inpu t from keyboard. Execu‑
tion continues only when key is pressed after in‑
putt ing data. (Pressing m without keyboard-entered
data is an error.)
Function returns the next lowest whole integer below the
specified value. Rounding is always downward, even
when number is (‐) .
String function returns the length of the specified string ..
in bytes or characters (1 byte contains 1 character). "'
Assigns a value to a specific variable name LET is op‑
tional in ATARI BASIC, and may be simply omitted!
Display or otherwise ou tpu t the program LIST.
Input from disk, etc. into the compu te r. Included OPEN.
Graphics: Stores in .51 specified variable, the color register
it that controls a specified graphics point.

. mural _Function returns the‘logarithm of a number
"Shortcut" command to lineprinter to print the specified
message. Includes tl‘e OPEN statement.
Erases all contents of user RAM. Be careful with NEW!!!
Causes a FOR...NEXT loop to terminate or continue
depending on the particular variables or expressions. All
" loops are executed at least once.
A " 1 ” is returned only if the ’statement is NOT true. If it
is true, a ” 0 ” is returned.
See DOSIFMS Manual...used only in disk operations.
Used with GOTO or GOSUB for branching purposes.
Multiple branches to different line numbers are possible
depending on the value of the ON variable or expression.
Opens the specified file for input or ou tpu t operations.
Logical opera tor used between two statements. If either
one is t rue, a " 1 ” isevaluated. A ” 0 ” results only if both are
false.
Function returns posit ion of the paddle game controller.
Function returns decimal form of contents of specified
memory location (R AM or ROM).
Causes 3 single point to be plotted at the X,Y location
specified.

161

POINT P.

POKE POK.

POP

POSITION POS.
PRINT ?

PTRIG

PUT PU.

RAD

READ REA.

REM R.

RESTORE IRES.

RETURN RET.

RND

RUN RU.

SAVE S.

162

Vt
W’s‘o (‘6‘p.2"“5" BRIEF SUMMARY OF BASIC STATEMENT

(See Used with Disk operations only.
DOS/FMS
Manual)
11 Insert the specified byte into the specified memory loca‑

t ion. M a y be used only with RAM. Don't t ry to POKE
ROM! You’ll get an ERROR!
Removes the loop variable from the FORIGOSUB stack.
Used when departure from the loop is made in other
than normal manner.

9 Sets the cursor to the specified screen position.
[/ 0 cor'rgmand causes output from the computer to the
specified output device. Default is to the TV screen.

10 Function returns status of the trigger button on game
controllers.

'5, 9 Causes output of a single byte of data from the com‑
puter to the specified device.

6 Specifiesthat information is in radians rather than
degrees when using the trigonometric functions. Default
is to RAD. (See DEG).

Read the next i tem in the DATA list and assign to
specified variable.

2 Remarks; This statement does nothing, but comments
m a y be Minted within the program ”51' for future
referenc}: by the programmer. Statements on a line that
starts with REM are not executed.
Allows DATA to be READ more than once.

3 RETURN from subroutine to the line immediately follow‑
i n g the one on which COSUB appeared.

6 Function returns a random number between 0 and 1, but
never 0 or 1.

2 Execute the program. Sets normal variables to 0, unDlMs
arrays, strings; string variables set to ATASCll 0() when
DlMed:

5 "Shortcut” l/O statement causes data or program to be
recorded on disk under filespec provided with SAVE ln‑
cludes OPEN.

SETCOLOR SE.

SGN

SIN

SOUND

SQR
STEP

STICK
STRIC

STOP

STRS

THEN

TO

TRAP

USR

VAL
XIO

SO.

STO.

10
10

11,

App. l

Store hue and luminance color data in a particular color
register.
Function returns +1 if value is positive, 0 if zero, -1 if
negative

Function returns trigonometric sine of given value (DEG
or RAD)

Controls register, sound pitch, distortion, and volume of
a tone or note.
Function returns the square roo t of the specified value.
Used with FOR...NEXT. Determines quantity to be skip‑
ped between each pair of loop variable values.
Function returns position of stick game controller.
Function returns 1 if stick trigger button not pressed, 0 if
pressed. =
Causes execution to stop but does no t reset arrays, other
variables
Function returns a character string equal to numeric
value given. For example: STRS (65) returns 65 as a string.
Used with i f : If statement is true, the THEN statement is
executed. If the statement is false, control passes to next
line.
Used with FOR as in ”FOR X = 1 TO 10”. Separates the
loop range expressions.
Takes control of program in case of an INPUT error and
directs execution toga specified line number.
Function returns resi'ults of a machirfae-language
subroutine to the
specified variable.
Function returns the equivalent numeric value of a string.
General ”0 statement used with disk operations (see
DOS/FMS Manual) and in graphics work (FILL).

Note The period is mandatory after all abbreviated keywords. "'

TU

APPENDIX C

ERROR MESSAGE
NUMBER CODES

2 M e m o r y insufficient to store the statement or the new variable name or to DIM a new string
variable. '2

3 Value Error: A value expected to be a positive integer is negative, 6.value expected to be less
than 256 is no t , or a value that was expected to be within a spetific range is not.

4 Too Many Variables: A maximum of 128 different variable names is allowed.
5 String Length Error: Attempted to store beyond the DlMensioned string length.
6 O u t of Data Error: READ statement requires more data items; than supplied by DATA

Statementfs).

7 Number greater than 32768: Value is no t a positive integer or is greater than 32768.
Input Statement Error: Attempted to INPUT a non-numeric valurl: into a numeric variable.

9 Array or String D I M Error: DIM size is greater than 32767 or an arizay/matrix reference is o u t
of the range of the DlMensioned size, or the array/matrix or string has been already DIMen‑
Stoned. -:

10 Argument Stack Overflow: There are too many COSUBs or too huge an expression.
11 Floating Point Overflow Error: Attempted to divide by zero or refer to a number larger than

1x10” or smaller than 1x10”.
12 Line N o t Found: A COSUB. COTO. or THEN was referenced to a non-existent line number.
13 No Matching FOR Statement: A NEXT was encountered without z~previous FOR, or nested

FOR NEXT statements do n o t match properly. (Error is reported a the NEXT statement, n o t
at FOR).

14 Line Too Long Error: The statement is t o o complex or t o o long for BASIC to handle.
15 COSUB or FOR Line Deleted: A NEXT or RETURN statement was encountered and the cor‑

responding FOR or COSUB has been deleted since the last RUN.
Tb RETURN Error: A RETURN was encountered without a matching COSUB.
17 Garbage Error: Execution of ”garbage" (bad RAM bits) was attempted. This error code m a y

indicate a hardware problem, but m a y also be the result of faulty use of POKE. Try typing
NEW or powering down, then re-enter the program without any POKE commands.

18 Invalid String Character: String does n o t start with a valid character, or string in VAL state‑
m e n t is n o t a numeric string.

NOTE: The following are INPUTIOUTPUT errors that result during the use of disk drives, printers,
or other accessory devices. Further information is provided with the auxiliary hardware.

19 LOAD Program Too Long: Insufficient m e m o r y remains to complete LOAD.
1 6 $

, _ . _ _ _ . I . _ _ _ _ _ . _ _ _ , . ‑

20
21

128
129
130
1 31
132
133
134
135
136

137
138
139
140
141
142
143
144
145
146
147
160
161
‘ 6 2
”3

.54
5

' Sui;

Device Number larger Than 7.
LOAD File Error: Attempted to LOAD a non-LOAD file.
BREAK Abort: User hit BREAK key during l/O operation.
IOCB Already Open.
Nonexistent Device specified.
lOCB Write Only. READ command to a write‐only device (printer).
Invalid Command: The command is invalid for this device.
Device of File not Open: No OPEN specified for the device,

Bad IOCB Number: Illegal device number.
IOCB Read Only Error: WRITE command to a read-ognIy device.
EOF: End of File read has been reached. (NOTE: This message‘may occur when using
cassette files.) ‑

Truncated Record: Attempt to read a record longer than 256 characters.
Device Timeout...Device doesn’t respond
Device NAK: Garbage at serial po r t or bad disk drive
Serial bus input framing error '
Curser out of range for particular mogle
Serial bus data fram overrun
Serial bus data frame checksum error
Device done error (invalid “done" byte)
Read after write compare error (disk handler)
Function not implemented in handler
Insufficient RAM for operating selected Graph (: 5 Mode
Drive # error
Too many OPEN files (no sector buffer availa'. Ze
Disk full (no free sectors)

Unrecoverable system data IIO error
File # mismatch
"ile same error
" 0 l e data length error

‘le locked

168 Command invalid (special operation code)

169 Directory full (64 files)
170 File not found
171 POINT invalid

Words to Live by:

”Computers do no t make errors! Computers only repor t errors made by human beings. Humans
are notoriously imperfect..."

‘67

APPENDIX I

PROGRAMMING IN MACHINE LANGUAGE
What Is Machine Language?
It BASIC is a "high level” language, then machine language is the lowest! Machine language is
wri t ten entirely in binary code, meaning that only the digits 0 and 1 may be used. We can think of
a 0 asbeing something "false" (or something true!) Same with 1! Or we can represent‘numbers in
binary by saying that binary 0 is the same asdecimal 0, 001 is1,010 is2,011 is 3,100 is4,101 isS,
110 is 6, and so forth. The limit of our count is the number of binary 1's and 0’s (called "b i ts") we
have available. Most computers (like yours), use§8 bit bytes, or words. This means that any
number up to 11111111 (eight 1’s) in binary (or dei j imal 255) may be expressed in a single byte.

We can also say that 0 indicates a circuit or par t that is switched "o f f " while 1 represents a cir‑
cmt that is "on”. We can (and do) represent letter; and other symbols with code numbers (See
the ATASCII Code in Appendix E). Indeed. wlven broken dots/n to the lowest common
denominator, evervthing y o u r computer does, it dc'es in binary digiE's or bits, each of which may
be either a 1 or a 0'! . -,

Hexadecimal:
Hexadecimal, or base 16numbers are also used a lot with computers, because it is relatively easy
for us poo r humans to think in hex (compared With all those'dumb1's and 0‘s!) and more impor‑
t an t , because hex converts easily and directly to binary! Hex is just like decimal (i f you’re missing
four toes or have six extra fingers!) It goes like this: 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,C, D, E,F. Obvious‘
l y, the A represents 10, B i s 11... F is 15. 16 in hex is represented just like in decimal; By starting
over again at 1 and adding a zero to get 10. But don't wor ry about learning to conver t hex to
deumal: You won’t need to because we've included a handy table in Appendix 0, along with a
simple conversion program so your compu t e r can do the work! (Humans should no t stoop to this
kind of mathematical scut‐work!) As for converting to binary and vice-versa, just remember that
g r o w s of four bits can be converted easily in the head. 1111 is F in hex. 0011 is 3, and so forth.
Here‘s a simple table you can use:

Binary Hexadecimal Decimal Binary Hexadecimal Decimal
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B - 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15
1000 8 8

195

The simplicity of converting the hex system to and from binary should now be obvious, and the
fact that the highest number representable by four bits (half a byte) is also representable as the
highest number possible with a single hex digit (why don't we call it a “h i t " if a binary digit’s a
"bit”?) is very useful. Obviously, hexadecimal FF(binary 11111111) is the largest number we can
represent using only one byte, (8 bits). The same number in decimal form is 255.

Theoretically, then, we could write a program using groups of 1’s and 0's. Doesn’t sound like
much fun, though. Even hex codes aren’t! But at least it’s possible to ”hand assemble” a program
using hex. You can do this if you’re willing to study the 6502 microprocessor chip and its instruc‑
tion set. The result of this kind of program (way beyond the scope of a BASIC Reference Manual
like this one) is a whole bunch of hex numbers which n o w somehow mus t befed to you r com‑
puter. Two problems immediately rear their ugly heads. Where in memory will they go? (We must
know sowe can feed the address to the USR- function when we RUN the program) And how can
the computer use hex codes when the operating system converts everything to floating point,
binary coded decimal notation? Sounds like we can learn to hand assemble a program using the
650?.instruction set, which will give us hexadecimal machine code, but we can't get it into our
computer to RUN it !

Of course we can conver t each hex number to decimal...Hey, wai t a minute! Isn’t that grist fo.
our computerized mill? You bet a bunch of bits it is! Then what if we entered the converted
numbers into a DATA statement so we can record the program on tape.. .we could then READ the
converted machine codes into an array...but how will we know the addresses of the array
elements in actual, physical memory? Why not POKE each value into the place in memory where
we want it and can find it?.Let's see, if we p u t the POKEcommand and the READ command into a
FORINEXT loop...We’re even starting to talk like real programmers!

We have all kinds of confidence in your programming abilities. But just to save y o u time, we’ve
developed a simple BASIC program that will do all these things! First it’ l l let y o u enter your
machine codes in hexadecimal form. It will conver t each hex number to decimal, and store the
decimal in an array. Finally, the converted codes are printed ou t in a line that looks for all the
world like a DATA statement! It starts with the number 1500 just like a line number, then says
DATA followed by the hex codes y o u entered, converted to decimals and separated by c omma s ,
The final entry on this line is the number 999. The 999 is our "end of file flag”, and this just tells
the computer that the number before the 999 was the last code in your program. But i t isn’t re
ally a program line...not qui te yet. because you the programmer haven’t personally entered it!
Do it by placing the cursor anywhere on the printed DATA line, (See Appendix F), and while
the cursor is on the line with the DATA , hit Em . Now tell it to LIST 1500. Son of a gun!
You've computed output to the screen,and caused that output to become part of the program
that produced the output! If we had any ham we could have ham and eggs if we had any eggs!
Some computer y o u bought...Next thing you know it’ll be programming itself. Then we’re all in
trouble, ’cause it may just be smarter than we are!

~ Take a good look at the program we call Hex Code Loader Input. Then look at the expanded ver‑
sion called “NOTHING" which is really a fully developed example of how this Hex Code
196

_ _ _ _ _ . _ _ - . ‐ ‐ ‐ ‐ ‐ ~ ~ - - A ‐ ‐ ‐ ~ ‐ ‐ ‐ - ‐ ‐ - ‐ ‐ ‐ - ~ ~ v ~ » ‐ - ‐ ‐ . ~ ‐ - ‐ ‐ - ‐ ‐ - - « ‐ - - r - ~ - - - ‘ - - - v - ‐ = ~ ~ o .- »

"Loader" program works. This example, when you tell it to GOTO1000in direct mode, prints the
words "NOTHING ISMOVING" and the machine program changes the colors so fast you’ll be
amazed. You’ll be even more amazed when y o u see that line 1160 contains a time delay loop!
Without it, the colors change so fast that they blend together (to the eye) and can hardly be
noticed!

v

The second example program first does a BASIC graphics design. then shifts into high gear and
changes colors using machine code! We think you'll be impressed by the speed, so try it!

We know youre confused, and we realize we can't teach you to program in machine code in a
few pages That’5why we recommend that you purchase a copy of the 6502 machine instruction
set and the ATARI Assembler-Editor Cartridge(with the book that explains how to write
machine/assembly language programs). Meanwhile, do RUN the tw >examples that follow! We
hope they lead you into further study into the incredible speed of :he machipe'5world!

)

How To Use The Hexcode Loader Program
1, Type NEW and h i t n Then enter the programon the next page, called the"lnput

Program”. When the“program is in RAM type RUN and m.

2. As a test of your program, enter the hexadecimal numbers A, 0 1, 9, and FF. am after
each number. Finally, type "DONE” andm i

3, You should see a pr in tout on the screen that looks like this;

1500 DATA 10,0,1,9,255,999
STOPPED AT LINE 230'

AT THIS POINT, DO NOT GIVE ANY OTHER COMMANDS. FOLLOW THE INSTRUC‑
TIONS GIVEN BELOWOR YOU MAY LOSE YOUR PROGRAM!!!

4. CSAVE the program on cassette or SAVE it on disk, If y o u use cassette, remember to write
down where on the tape (by the tape counter) the program is! In the future, we will refer to
this master program as the Input Program.

5. Now add the BASIC language par t of you r program, including the USR function that calls
the machine language subroutine, beginning at line 1080, Remember the DATA statement
wrll occupy line 1500.

0 Count the total number of hex codes to be entered Enter this number on line 1000, replac‑
i n g any number that ma y already be there. For example, if y o u have 15 hex code instruc‑
t i o n s , line 1000 should look like this:

1000 CLR: BYTES= 1 5
4 .

‘ c . , . . , , - . r ' , 197

‘ J u - a n m ‑

10.

11.

Now CSAVE or SAVE the resident program again. Write down where it is on the tape, if
cassette is used. Note that at this point, there is no line 1500! If one is found, eliminate It
before CSAVE by typing 1500 and then hitting (m .

You are now ready to enter your machine language subroutine. Tell the computer to RUN,
and enter the hex codes, o n e at a t ime, each one followed by m .

When the last hex code has been entered and @333 has been pressed, type the word
DONE and hit m again. You should n o w get your print ou t of line 1500.

Until you instruct it to, y o u r computer will n o t accept line 1500 as an actual program line!
Once y o u have read it carefully and are convinced that the hex codes are properly con ‑
verted to decimal numbers, and that the format is correct for a DATA statement , y o u can
absorb the line into your program by moving the cursor (use with the arrows as
described in Appendix F)o n t o the line occupied by the printout. If there is more than one
line, any line occupied by a p a r t of the DATA printout will do. With the cursor in place,
release the control key and once. N o w tell the computer to MST 1500 and

again. How about that f o r computing power? The thing almost wrote it’s o w n p r o
gram, didn't it?

Now CSAVE or SAVE the completed program. This is very important, because if the routin
gets into a loop it cannot get o u t of, y o u may find yourself with a ”locked u p ” system
which y o u wil l have to power down to “unlock”. Powering down, Ofcourse, wipes o u t your
program in RAM. This w a y y o u can always reload it again without all that typing...

After the program has been recorded on disk or tape, y o u can execute it and see what hap‑
pens. T o d o this, tell i t " (S O T O 10007 i n direct mode. Sure i s faster than BASIC, isn't it?

l‘lave fun!!!

BASIC Hex-Code Loader Input Program

10 CR. 0: ?" HEXACODE LOADER PROGRAM":? 6 spaces before word HEXCODE
20 REM ALLOWS INPUT OF 6502 HEX CODES.
STORES DECIMAL EQUIVALENTS IN ARRAY A, OUTPU programmer's documentation
TS IN PRINTED ‘DATA STATEMENT’ AT LINE 1500
30 REM USER THEN FLA? CURSOR ON PRIN Y
TED OUTLINE LINE, STRI‘ KES “RE- Learn to do this!
TURN", AND ENTERS RE T OF BASIC PROGRAM I N c .
USR STATEMENT
4o D I M A(50I, HEXStS) ,
so REM INPUT, CONVERSION, STORAGE OF D ATA ’*
so N=0:1“ENTER ONE HEX CODE. IF LAST ONE IS IN ,
ENTER DONE"
1 9 .

M ~ u m ‐ ‐ ~ - ‐ - ‐ ‐ n _ W

70 INPUT HEXS
80 I F HEX$= “DONE " THEN N=999z GOTO 130
90 FOR I = 1 TO LEN(HEX$)
100 I FHEX$(I,I) < = " 9 " THEN N=N * 1 6 +VAL I f hexcode i s9 o r less. leave i t
(HEX$(|,I)): GOTO 120 i alone.
110 N = N * 1 6+ ASC(HEX$(I,I))- ASC(“A") + 10 Otherwise convert to decimal
120 NEXT I
130 PRINT N: C = C $ 1 Print ou t converted number
140 A(C)=N
150 If N =999 THEN GOTO 200 End of file flag means job done
160GOTO 60
190 REM PRINT OUT ’DATA LINE 1500'?
200 GR.0: I "1500 DATA" ; Format data line
210C = 0 . .
220 C= C+ 1
230 IF A(C)=999 THEN PRINT "999":STOP Stop at end of file flag
240 I M072" ;
250 A(C)=0 '
260 COTO 220
300 STOP

NOTE: PROGRAM WILL STOP AT THIS POINT WHILE YOU INCORPORATE THE DATA LINE
AT LINE 1500 BY PUTTING CURSOR ON THE PRINTOUT AND HITTING RETURN

990 REM EXECUTION MODULE
1000 CLR: BYTES = 00 (Be sure this number agrees with

the no. of hex codes you will
.enter!)

1010 TRAP 1550: D I M E$(1), E(BYTES)
1020 REM PUT MACHINE CODE IN ARRAY E
1030 FOR I = I To , res .
1040 READ A: IF ss THEN c o m 1060
1050 POKE ADRIESH‐ I, A' ' (Store date in known memory

locat ion)
1060 NEXT I .
1070 REM BASIC PART OF USER’S PROGRAM ' (Put your BASIC program in from
FOLLOWS (LINES1080 UP TO 1490) 1080 to 1490‘. Don’t forget the

USR function)
1530 PRINT ”PUT CORRECT NO. OF HEX BYTES IN LINE
1000"

Note: To exeCUte a completed program, command in direct mode, GOTO 1000

Note: Two Sample Machine Code programs on follow.
I”

Sample Machine Code Program #1
Once the BASIC hexcode loader input program is in RAM, y o u need only do two more things to
run the t w o sample machine programs that follow:.

'1. Add the following lines to your BASIC hex code loader input program:

;

1080 GR.7+16 1180 IF CR =4 THEN C R = 1
1090 SETCOLOR 0,9,4 1190 NEXT -X
1100 SETCOLOR 1,9,8 1200 X= U$R(ADR(E$)+1
1110 SETCOLOR 2,9,4 1210 FOR I ‘ = l TO 15: NEXT l
1120 CR-‘=1 v 1220 COTQ 1200
1130 FOR x=o TO 159
1140COLOR INT(CR) "
1150 PLOT 80,0
1160 DRAWTO X, 95
1170CR=CR+0.125

HERE ARE THE HEX CODES TO "FEED" THE MACHINE
l

A2 0 AC 2 BD ' c5 2 ‘90
E8 E0 2 rs ac C6 2 " 60

(Line 1000 should read 1000 CLR & BYTES = 21)

200

Feed the machine the actual hex codes First star t the program with the usual R U N com‑
mand. It will ask y o u for a hex code. After each e n t r y, hit -, and the machine wrll ask
y o u for another one. When all have been entered, t y p e DONE and h 1 t _ . A DATA
line will be printed ou t . Now place the cursor a few 5:a c e after the' ast DATA ent ry number,
which will be 999 Press m. Now LlST1500 and { o n w‘” s e ‘ the iata that has now
been placed in your program. LIST 1000 to v r te fr»? Jmaer fol'owing the words
BYTES = - _ _ _ . Count the number o f 9 1 t h : Wade " f "3x codes, and change the
number to match the number of entries 30 1'‘ '1 ’ 3 h r . 399 s“ y o u r count .)

. “ W u . - .

595::3.5902van“335:.a38:0322.8.36:.a

,1‘

AIIIIIIII.2.35.55383?:2:«£5

NZ<Ihmm:52ththOUmwhmawmx”=$00..

mIC>>~35..mex“.0mPZmHZOUwm<m<<OU$20003x9353.xththSBzUZ.5:903.xmIbOmmN

A:Mari‐.0mum.¥U<hmm0m

mmu~50<02.52pm<<<¢UO~EwZ_IU<<<

«58»HN10400

_ museHP«OJOU

“womenHO«OJOUmummmzogx33550222.130th<h0¢u¢<9.0400m.awrboz<OF«3903.uZO20w:

<...<DKOJOU55.010...mZEJOz

05.352355.on<532202sza .02“z:_ 385503359‘

220:5323.5:533BEEommt.

mi

. . . ~ . _ . _ 7 .

K
I n n ‐ ' 3 , . - ‐ u _ _ ‐ m . . u - v r r w ‐ w n h w ‘ A - A a - c ‐ I ‐ l b

fl

Sample Machine _C_ode Program #2

1080 CR. 1+16
1090 FOR I = I TO 6
1100 PRINT #6;“nothing is moving!" (Use CAPS/LOWR for this)
1110 PRINT #6; "NOTHING IS MOVING! ” (Use SHIFT CAPS/LOWR)
1120 PRINT #6;”nothing is moving!" '
1130 PRINT #6;"NOTHING IS MOVING!"
1140 NEXT I
1150Q = USR(ADR(E$)+ 1)
1160 FOR | = 1 T0 25:NEXT I: GOTO 1150
1170

Check that Line 1000 reads like this: IOOO‘CLR: BYTES = 21. If it doesn’t, fix it

Now enter the hex codes as-shown in the following list:

68 A2 0 AC C4 2 BD C5 2 9D C4 2 E8 E0 |
3 90 F5 8C C7 2 60

‘When done, enter DONE and hit m. Now place cursor after last en t ry (999) on printout
DATA line and hit -.
Now you can RUN your program by typing GOTO 1000 and hitting m.

255::$5523mea«236:.a38:03Sat3.36:.a

2.:

A.I.L|.|l|l.l.|l.l.$3330$3682:2:«55I'll!All.|25$I;|I|Y

9.35558959..Cetus‐3::350ma..558;E:_EEEomfix

mZCDOszm#33mZ_IU<<<50¢“.251.3.mmOJOUz.o«OJOUm><m

N25.:m3.‐w¢<thwHZOU13.305.xn:mood

N1:3awhmawxx”.0ththOUm¢<m<<OU

$20005«whmawxxmzh#232552.

8

395:

$8~8w
cw

Squaw

Nomuom

Nevuu<

8~<

3

m¢OJOU

LOO;

ma
x.o¢O..OUx.5.0.50

9.0.50

Q.

Manamax3.3.Ome.

A:awhm<IUwwfl¥U<hmm0m

‐ ox0..OUm><m

mmw¢DO<025¢<hm<<<¢UO~EwZ_IU<E

953

hymenn«OJOUoUSa"N«O4OUmUmoaHrx0400nus»Ho«040Ummmmw¢00<thm>m02:.(mmm0

QwhifiOxw¢<mm048v

KthOZ<Oh«95.03.wZO20x”.

<h<0£040UwblfiOxOHwZEDO¢

59530333.3952533535034‘

__pA

10]

APPENDIX J

PEEKs, POKES, Pulses and Programs

Note: M a n y of these locations are of primary interest to expert programmers and are included
here as a conven i en ce .

Here are a few more hints and bits and pieces of information that may prove useful to your p r o
g r a mm i n g efforts.

TABLE OF POTENTIALLY USEFUL MEMQRY LOCATIONS i
DECIMAL
LOCATION COMMENTS AND DESCRIPTION

14, 15 Highest location used by BASIC (LSB, MSB)
18,19,20 TV frame counter (1/60 sec.) (LSB, NS8, MSB) see above
65 Noisy l/O Flag (O=qu ie t)
77 Attract Mode Flag (128 = Attract Mode)
82,83 Left, Right Margin (Defaults 2, 39)
84 Current row on which cursor rests (0-23)
85, 86 Current cursor column (0-39)
90 Previous cursor row (0-23)
91, 92 Previous cursor vert. column (0-39)
93 Data under cursor
96 Cursor row to which DRAWTO will go
97,98 Cursor column to which DRAWTGI goes
106 Actual t op of memo r y (# of pages !
564 Light PeniHorizontal value I
565 Light Pen Vertical value
704 Player-missile 0 color
705 Player-missile 1 color)
706 Player-missile 2 color
707 Player‘missile 3 color
708 Color field 0 color
709 Color field 1 color
710 Color field 2 color
711 Color field 3 color
712 Background color

. - , ' . ’ , . I 105

741,742 Top of available user memory (LSB,MSB)
752 Cursor inhibit (O : cursor on)
755 Character mode register
756 Character base register (defaults to 224)

(224 = upper case, 226 = lower case characters)
763 Last ATASCH character '
764 Last keyboard key pressed; int. code;(255 = no key)
765 Fill data for graphic DRAWTO/FILL
766 DiSplay Flag (0 = execute control character)
767 Start/Stop flag for paging (0 = normal listing)
794 - Handler address table (3 bytes/handler)
832 HO control blocks (16 bytes/IOCB)
1664-1791 Spare RAM .
54018 Program Recorder Control

5

BASIC PEEKS (NO 'POKES!)

186-187 Line # at which STOP occurred
195 Error # for display to user
201 Print tab width (defaults to 10)
212,213 Low and high bytes of value to be returned to BASIC from USR

function
251 RAD/DEC flag (0 = radians, 6 = degrees)

206

