

MA HINE
LAN UAGE

FOR
BEGINNERS

Machine Language Programming
For BASIC Language Programmers

Richard Mansfield

guQM~~a!~~~En~s?l~S9ctions/lnc .•
Greensboro, North Carolina

"A few entry puints, uriginaVupgrad e ROM " and "Plotting With the CBM 2022 Printer"
were originally publi shed in COMPUTE' M,lgazine, Jan uary/Februa ry 1980, copyright
1980, Sma ll System Services, Inc. "BASIC 4.0 Memo ry Map" and " PET 4.0 ROM
Routines" were origina ll y published in COMPUTE! Magazine, November/December
1980, copyright 1980, Small System Services, Inc. " More VI C Maps" was o rigina ll y pub
lished in COM PUTE' Magazi ne, March]982, copyright 1982, Sma ll System Services, Inc.
"Commodore 64 Memory Map" was originally publi sh ed in COMPUTE! Magazin e,
October 1982, copyright 1982, Small Sys te ill Services, In c. "Shoot" was originally pub
lished in COMPUTE' Magazine, Septe mber 1981, copyright 1981 , Small Systc lll Scrvices,
Inc. "SUPERMON: A Primary Tool For Machine Language Programming" was origina lly
published in COMPUTE' Magazine, Deccmber 1981, copyright 1981 , Small System
Services, Inc. "MICROMON: An Enhanced Machine Language Munitor" was origina lly
publis hed in COMPUTE' Magazine, January 1982, copyright 1982, Small System Services,
Inc. " VIC Micromon" was origina lly publi shed in COMPUTE' Magazi ne, November
1982, copyright 1982, Sma li Systcm Services, Inc. "Superm on 64" was originally published
in COMPUTE! Magazine, January 1983, copyri ght 1983, Sma ll System Services, Inc.

Copyright © 1983, Small System Services, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections
107 and 108 of the United States Copyright Act without t he permission of the copyright
owner is unlawful.

Printed in the United States of America

ISBN 0-942386-11-6

10 9 8 7 6 5 4

ii

Table of Contents

Preface v

Introduction - Why Machine Language? vii

Chapter I : How To Use This Book

Chapter 2: The Fundamentals 7

Chapter 3: The Monitor . 23

Chapter 4: Addressing. .. 37

Chapter 5: Arithmetic. .. 53

Chapter 6: The Instruction Set 63

Chapter 7: Borrowing from BASIC. 91

Chapter 8: Building A Program. 97

Chapter 9: ML Equivalents
Of BASIC Commands .. I 21

Appendices

A: Instruction Set. .. 149

B: Maps 167

C: Assembler Programs . ,. 223

D: Disassembler Programs 237

E: Number Charts 243

F: Monitor Extensions . 253

G: The Wedge 335

Index 339

iii

Preface

Something amazing lies beneath BASIC.
Several years ago I decided to learn to program in

machine language, the computer's own language. I
understood BASIC fairly well and I realized that it was simply
not possible to accomplish all that I wanted to do with my
computer using BASIC alone . BASIC is sometimes just
too slow.

I faced the daunting (and exhilarating) prospect of
learning to go below the surface of my computer, of finding out
how to talk directly to a computer in its language, not the
imitation-English of BASIC. I bought four books on 6502
machine language programming and spent several months
practicing with them and puzzling out opcodes and
hexadecimal arithmetic, and putting together small machine
language programs.

Few events in learning to use a personal computer have
had more impact on me than the moment that I could instantly
fill the TV screen with any picture I wanted because of a
machine language program I had written. I was amazed at its
speed, but more than that, I realized that any time large
amounts of information were needed on screen in the future -
it could be done via machine language. I had, in effect, created
a new BASIC "command" which could be added to any of my
programs. This command - using a SYS or USR instruction to
send the computer to my custom-designed machine language
routine - allowed me to have previously impossible control
over the computer.

BASIC might be compared to a reliable, comfortable car. It
will get you where you want to go. Machine language is like a
sleek racing car - you get there with lots of time to spare .
When programming involves large amounts of data, music,
graphics, or games - speed can become the single most
important factor .

After becoming accustomed to machine language, I
decided to write an arcade game entirely without benefit of

v

BASIC. It was to be in machine language from start to finish. I
predicted that it would take about twenty to thirty hours. It
was a space invaders game with mother ships, rows of aliens,
sound ... the works. It took closer to 80 hours, but I am
probably more proud of that program than of any other I've
written.

After I'd finished it, I realized that the next games would
be easier and could be programmed more quickly. The
modules handling scoring, sound, screen framing, delay, and
player/enemy shapes were all written. I only had to write new
sound effects, change details about the scoring, create new
shapes. The essential routines were, for the most part, already
written for a variety of new arcade-type games. When creating
machine language programs you build up a collection of
reusable subroutines . For example, once you find out how to
make sounds on your machine, you change the details, but not
the underlying procedures, for any new songs.

The great majority of books about machine language
assume a considerable familiarity with both the details of
microprocessor chips and with programming technique. This
book only assumes a working knowledge of BASIC. It was
designed to speak directly to the amateur programmer, the
part-time computerist. It should help you make the transition
from BASIC to machine language with relative ease.

This book is dedicated to Florence, Jim, and Larry. I
would also like to express my gratitude to Lou Cargile for his
many helpful suggestions; to Torn R. Halfhill and Charles
Brannon of the COMPUTE! Magazine editorial staff for their
contributions - both direct and indirect - to this book; and to
Robert Lock and Kathleen Martinek for their encouragement,
comments, and moral support. And special thanks to Jim
Butterfield for his maps, programs, and constant encourage
ment to everyone who decides to learn 6502 machine language
programming.

vi

In
tr

o
d

u
ct

io
n

W
h

y
 M

ac
h

in
e

L
an

g
u

ag
e?

S

o
o

n
er

 o
r

la
te

r,
 m

an
y

 p
ro

g
ra

m
m

er
s

fi
n

d
 t

h
at

 t
h

ey
 w

an
t

to
 l

ea
rn

m

ac
hi

ne
 l

an
gu

ag
e.

 B
A

S
IC

 is
 a

 f
in

e
g

en
er

al
-p

u
rp

o
se

 t
oo

l,
 b

u
t

it
h

as
 it

s
li

m
it

at
io

ns
.

M
ac

hi
ne

 l
an

g
u

ag
e

(o
ft

en
 c

al
le

d
as

se
m

bl
y

la
ng

ua
ge

)
p

er
fo

rm
s

m
u

ch
 f

as
te

r.
 B

A
S

IC
 is

 f
ai

rl
y

ea
sy

 t
o

le
ar

n,
 b

u
t

m
o

st

b
eg

in
n

er
s

d
o

 n
o

t r
ea

li
ze

 t
h

at
 m

ac
hi

ne
 la

n
g

u
ag

e
ca

n
 a

ls
o

b
e

ea
sy

.
A

n
d

,
ju

st
 a

s
le

ar
ni

ng
 I

ta
li

an
 g

oe
s

fa
st

er
 if

 y
o

u
 a

lr
ea

d
y

 k
n

o
w

 S
p

an
is

h
,

if
 a

 p
ro

g
ra

m
m

er
 a

lr
ea

dy
 k

n
o

w
s

B
A

S
IC

,
m

u
ch

 o
f

th
is

 k
n

o
w

le
d

g
e

w
il

l
m

ak
e

le
ar

n
in

g
 m

ac
hi

ne
 l

an
g

u
ag

e
ea

si
er

.
T

he
re

 a
re

 m
an

y
 s

im
il

ar
it

ie
s.

T

hi
s

b
o

o
k

 is
 d

es
ig

n
ed

 to
 t

ea
ch

 m
ac

h
in

e
la

n
g

u
ag

e
to

 t
h

o
se

 w
h

o

h
av

e
a

w
o

rk
in

g
 k

n
o

w
le

d
g

e
of

 B
A

S
IC

.
F

or
 e

xa
m

pl
e,

 C
h

ap
te

r
9

is
 a

 li
st

of

 B
A

S
IC

 s
ta

te
m

en
ts

. F
ol

lo
w

in
g

ea
ch

 is
 a

 m
ac

h
in

e
la

n
g

u
ag

e
ro

u
ti

n
e

w
hi

ch
 a

cc
om

pl
is

h
es

 t
h

e
sa

m
e

ta
sk

.
In

 th
is

 w
ay

,
if

 y
o

u
 k

n
o

w
 w

h
at

 y
o

u

w
an

t
to

 d
o

 i
n

 B
A

S
IC

,
y

o
u

 c
an

 f
in

d
o

u
t

h
o

w
 t

o
d

o
 it

 i
n

 m
ac

h
in

e
la

ng
ua

ge
.

T
o

m
ak

e
it

 e
as

ie
r

to
 w

ri
te

 p
ro

g
ra

m
s

in
 m

ac
h

in
e

la
n

g
u

ag
e

(c
al

le
d

"M
L

"
fr

om
 h

er
e

on
),

 m
o

st
 p

ro
g

ra
m

m
er

s
us

e
a

sp
ec

ia
l p

ro
g

ra
m

 c
al

le
d

an
 a

ss
em

bl
er

. T
hi

s
is

 w
h

er
e

th
e

te
rm

"
as

se
m

bl
y

la
n

g
u

ag
e"

 c
om

es

fr
om

. M
L

 a
n

d
 a

ss
em

bl
y

la
n

g
u

ag
e

p
ro

g
ra

m
s

ar
e

b
o

th
 e

ss
en

ti
al

ly
 th

e
sa

m
e

th
in

g.
 U

si
ng

 a
n

as
se

m
bl

er
 to

 c
re

at
e

M
L

 p
ro

g
ra

m
s

is
 f

ar
 e

as
ie

r
th

an
 b

ei
ng

 f
or

ce
d

to
 l

oo
k

u
p

 a
n

d
 t

h
en

 P
O

K
E

 e
ac

h
 b

yt
e

in
to

 R
A

M

m
em

or
y.

 T
h

at
's

 t
h

e
w

ay
 it

 u
se

d
 to

 b
e

d
o

n
e,

 w
h

en
 t

h
er

e
w

as
 t

oo
 li

tt
le

m

em
o

ry
 in

 c
o

m
p

u
te

rs
 to

 h
o

ld
 la

ng
ua

ge
s

(l
ik

e
B

A
S

IC
 o

r
A

ss
em

bl
er

s)
 a

t
th

e
sa

m
e

ti
m

e
as

 p
ro

gr
am

s
cr

ea
te

d
by

 th
o

se
 l

an
g

u
ag

es
. T

h
at

 o
ld

 s
ty

le

h
an

d
-p

ro
g

ra
m

m
in

g
 w

as
 v

er
y

la
bo

ri
ou

s.

T
he

re
 is

 a
n

 a
ss

em
bl

er
 (

in
 B

A
S

IC
)

at
 t

h
e

en
d

 o
f

th
is

 b
oo

k
w

h
ic

h

w
il

l w
o

rk
 o

n
 m

o
st

 c
o

m
p

u
te

rs
 w

hi
ch

 u
se

 M
ic

ro
so

ft
 B

A
S

IC
,

in
cl

ud
in

g
th

e
A

pp
le

,
P

E
T

/C
B

M
,

V
IC

,
an

d
 t

he
 C

o
m

m
o

d
o

re
 6

4
. T

h
er

e
is

 a
ls

o
a

se
p

ar
at

e
ve

rs
io

n
fo

r
th

e
A

ta
ri

.
It

 w
ill

 l
et

 y
o

u
 t

y
p

e
in

 M
L

 i
ns

tr
uc

ti
on

s
(l

ik
e

IN
C

 2
)

an
d

 w
ill

 t
ra

ns
la

te
 t

h
em

 i
nt

o
th

e
ri

g
h

t
n

u
m

b
er

s
an

d
 P

O
K

E

th
em

 f
or

 y
o

u
 w

h
er

ev
er

 in
 m

em
o

ry
 y

ou
 d

ec
id

e
y

o
u

 w
an

t y
o

u
r

M
L

p

ro
g

ra
m

.
In

st
ru

ct
io

ns
 a

re
 li

ke
 B

A
S

IC
 c

o
m

m
an

d
s;

 y
o

u
 b

u
il

d
 a

n
 M

L

p
ro

g
ra

m
 u

si
n

g
 t

he
 M

L
 "

in
st

ru
ct

io
n

 s
et

."
 A

 c
o

m
p

le
te

 ta
bl

e
of

 a
ll

th
e

65
02

 M
L

 i
ns

tr
uc

ti
on

s
ca

n
 b

e
fo

u
n

d
 i

n
A

p
p

en
d

ix
 A

.
It

's
 a

 l
it

tl
e

p
re

m
at

u
re

,
bu

t i
f y

o
u

'r
e

cu
ri

ou
s,

 I
N

C
 2

 w
il

l
in

cr
ea

se

th
e

n
u

m
b

er
 in

 y
o

u
r

co
m

p
u

te
r'

s
se

co
n

d
 m

em
o

ry
 c

el
l b

y
 o

n
e.

 I
f t

h
e

n
u

m
b

er
 in

 c
el

l
2

is
 1

5,
 i

t w
il

l
be

co
m

e
a

16
 a

ft
er

 I
N

C
 2

.
T

h
in

k
 o

f
it

 a
s

"i
n

cr
em

en
t a

d
d

re
ss

 t
w

o.
"

vi
i

Introduction

Throughout the book we'll be learning how to handle a variety
of ML instructions, and the "Simple Assembler" program will be of
great help. You might want to familiarize yourself with it. Knowing
what it does (and using it to try the examples in this book), you will
gradually build your understanding of ML, hexadecimal numbers,
and the new possibilities open to the computerist who knows ML.

Seeing It Work
Chapters 2 through 8 each examine a major aspect of ML where it
differs from the way BASIC works. In each chapter, examples and
exercises lead the programmer to a greater understanding of the
methods of ML programming. By the end of the book, you should be
able to write, in ML, most of the programs and subroutines you will
want or need.

Let's examine some advantages of ML, starting with the main
one - ML runs extremely fast.

Here are two programs which accomplish the same thing. The
first is in ML, and the second is in BASIC. They get results at very
different speeds indeed, as you'll see:

Machine Language

169 1 160 0 153 0 128 153 0 129 153 0
130 153 0 131 200 208 241 96

BASIC
5 FOR 1=1 TO 1000: PRINT II A";: NEXT I

These two programs both print the letter " A" 1000 times on the
screen. The ML version takes up 28 bytes of Random Access Memory
(RAM). The BASIC version takes up 45 bytes and takes about 30 times
as long to finish the job . If you want to see how quickly the ML
works, you can POKE those numbers somewhere into RAM and run
the ML program with a SYS (Commodore computers) or USR (Atari)
or CALL (Apple). In both BASIC and ML, many instructions are
followed by an argument. The instructions SYS and CALL have
numbers as their arguments. In these cases, the instruction is going to
turn control of the computer over to the address given as the
argument. There would be an ML program waiting there. To make it
easy to see this ML program's speed, we'll load it into memory
without yet knowing much about it.

A disassembly is like a BASIC program's LISTing . You can give
the starting address of an ML program to a disassembler and it will
translate the numbers in the computer's memory into a readable
series of ML instructions . See Appendix 0 for a disassembler that you
can use to examine and study ML programs.

viii

Introduction

Here's what the PET/CBM version looks like when it has been
translated by a disassembler:

A Disassembly

Program I-I . Disassembly.

· , 0360 A9 01 LOA #$01
· , 0362 AO 00 LOY #$00
· , 0364 99 00 BO STA $BOOO,y
· , 0367 99 00 Bl STA $Bl00,y
· , 036A 99 00 B2 STA $B200,y
· , 0360 99 00 B3 STA $B300,y
· , 0370 CB INY
· , 0371 00 Fl BNE $0364
· , 0373 60 RTS

The following BASIC programs (called loaders) POKE the ML
instructions (and their arguments) into memory for you:

Program 1-2. PET Version.

1 REM PET VERSION
BOO FOR AD=B64TOBB3:REAO DA:POKE AO

,DA:NEXT AD
810 PRINT"SYS B64 TO ACTIVATE"
820 OATA169,01,160,0,153,0
B30 DATA12B,153,0,129,153,0
840 DATA130,153,0,131,200,20B
850 DATA241,96

Program 1-3. VIC Version.

1 REM VIC VERSION
800 FOR AD=864T0885:READDA:POKEAO,0

A:NEXTAD
805 PRINT"SYS 864 TO ACTIVATE"
810 DATA 160 , 0 , 169, 1, 153, °
820 DATA 30, 153, 0, 31 , 169, 6
830 DATA 153, 0 , 150, 153, 0, 151
840 DATA 200, 208, 237, 96

ix

Introduction

Program 1-4.64 Version.
Newer lIlodel64's Ileed to flilve tfle color registers set before rUlllling tilis progral1l

to see the effect 011 the full screen .

1 REM COMMODORE 64 VERSION
800 FOR AD=40000T040019:READDA:POKE

AD,DA:NEXTAD
805 PRINT"SYS 40000 TO ACTIVATE"
810 DATA169,1,160,0,153,O
820 DATA4,153 , 0,5,153,0
830 DATA6,153,O,7 ,200,208
840 DATA241 ,96

Program 1-5. Apple Version.

100 FOR I = 770 TO 789: READ A: POKE I,A: NE
XT

110 PRINT "CALL 770 TO ACrIVATE "
120 DATA 169,129,162,0,157,0,4 , 157,0,5,157,0

,6,157,0,7,202,208,241,96

Program 1-6. Atari Version.

100 FOR 1=1536 TO 1561:READ A:POKE I,A:NEXT I
110 PRINT "A=USR(l536) TO ACTIVATE "
120 DATA 165,88 ,133,0,165,89,133,1,169
130 DATA 33,162,4,160,0,145,0,200,208,251,230
140 DATA 1,202,208,244 , 104,96

After running this program, type the SYS or USR or CALL as
instructed and the screen will instantly fill. From now on, when we
mention SYS, Atari owners should mentally substitute USR and
Apple owners should think CALL.

BASIC stands for Beginners All-purpose Symbolic Instruction
Code. Because it is all-purpose, it cannot be the perfect code for any
specific job. The fact that ML speaks directly to the machine, in the
machine's language, makes it the more efficient language. This is
because however cleverly a BASIC program is written, it will require
extra running time to finish a job.

For example, PRINT involves BASIC in a series of operations
which ML avoids. BASIC must ask and answer a series of questions.
Where is the text located that is to be PRINTed? Is it a variable? Where

x

Introduction

is the variable located? How long is it? Then, it must find the proper
location on the screen to place the text. However, as we will discover,
ML does not need to hunt for a string variable. And the screen
addresses do not require a complicated series of searches in an ML
program. Each of these tasks, and others, slow BASIC down because
it must serve so many general purposes. The screen fills slowly
because BASIC has to make many more decisions about every action
it attempts than does ML.

Inserting ML For Speed
A second benefit which you derive from learning ML is that your
understanding of computing will be much greater. On the abstract
level, you will be far more aware of just how computers work. On the
practical level, you will be able to choose between BASIC or ML,
whichever is best for the purpose at hand. This choice between two
languages permits far more flexibility and allows a number of tasks to
be programmed which are clumsy or even impossible in BASIC.
Quite a few of your favorite BASIC programs would benefit from a
small ML routine, " inserted" into BASIC with a SYS, USR, or CALL,
to replace a heavily used, but slow, loop or subroutine. Large sorting
tasks, smooth animation, and many arcade-type games must involve
ML.

BASIC Vs. Machine Language
BASIC itself is made up of many ML programs stored in your
computer's Read Only Memory (ROM) or sometimes loaded into
RAM from disk. BASIC is a group of special words such as STOP or
RUN, each of which stands for a cluster of ML instructions. One such
cluster might sit in ROM (unchanging memory) just waiting for you
to type LIST. If you do type in that word, the computer turns control
over to the ML routine which accomplishes a program listing. The
BASIC programmer understands and uses these BASIC words to
build a program. You hand instructions over to the computer relying
on the convenience of referring to all those pre-packaged ML routines
by their BASIC names. The computer, however, always follows a
series of ML instructions. You cannot honestly say that you truly
understand computing until you understand the computer's
language: machine language.

Another reason to learn ML is that custom programming is then
possible. Computers come with a disk operating system (DOS) and
BASIC (or other "higher-level" languages) . After a while, you will
likely find that you are limited by the rules or the commands available
in these languages. You will want to add to them, to customize them.
An understanding of ML is necessary if you want to add new words
to BASIC, to modify a word processor (which was written in ML), or
to personalize your computer - to make it behave precisely as you
want it to.

xi

Introduction

BASIC's Strong Points
Of course, BASIC has its advantages and, in many cases, is to be
preferred over ML. BASIC is easier to analyze, particularly because it
often includes REM statements which reveal the functions of the
program's parts. REMs also make BASIC easier to modify . This could
make it the language of choice if the program must frequently be
partially rewritten or updated to conform to changing conditions. For
example, a program which calculates a payroll might well have at the
beginning a series of data statements which contain the tax rates.
BASIC DATA statements can be easily altered so that the program
will reflect the current rates. If the payroll program runs fast enough
in BASIC, there is no advantage to translating it into ML.

BASIC is also simpler to debug (to get all the problems ironed out
so that it works as it should). In Chapter 3 we will examine some ML
debugging techniques which work quite well, but BASIC is the easier
of the two languages to correct. For one thing, BASIC often just
comes out and tells you your programming mistakes by printing out
error messages on the screen .

Contrary to popular opinion, ML is not necessarily a memory
saving process. ML can use up about as much memory as BASIC does
when accomplishing the same task. Short programs can be somewhat
more compact in ML, but longer programs generally use up bytes fast
in both languages. However, worrying about using up computer
memory is quickly becoming less and less important. In a few years,
programmers will probably have more memory space available than
they will ever need. In any event, a talent for conserving bytes, like
skill at trapping wild game, will likely become a victim of technology .
It will always be a skill, but it seems as if it will not be an everyday
necessity.

So, which language is best? They are both best - but for
different purposes. Many programmers, after learning ML, find that
they continue to construct programs in BASIC, and then add ML
modules where speed is important. But perhaps the best reason of all
for learning ML is that it is fascinating and fun.

xii

I

How To Use This Book
Although anyone wishing to learn 6502 machine language (ML) will
likely find this book instructive and worthwhile, the specific example
programs are written to work on five popular personal computers:
Apple, Atari, VIC, Commodore 64, and the PET ICBMs. If your
computer uses the 6502 microprocessor, but is not one of these
machines, you will need to find a "memory map" for your particular
machine . These maps - widely available in books and magazines,
and from user groups - will allow you to follow and practice with the
examples of 6502 machine language throughout this book.

In particular, there are several memory addresses which are
used in many of the examples presented in this book. Their addresses
are given for the five computers mentioned above, but if you have a
different computer, you should look them up in a map of your
machine:

1. "Which key is pressed?" This is an address, usually somewhere
in the first 256 addresses, which is always holding the value of the
most recently pressed key on the keyboard.

2. Starting Address of RAM Screen Memory. This is the address in
your computer where, if you POKEd something into it from BASIC,
you would see the effect in the upper left-hand corner of your screen.

3. Print a Character. This address is within your BASIC ROM
memory itself. It is part of the BASIC language, but written in ML. It
is the starting address of a routine which will put a character on the
screen.

4. Get a Character. Also part of BASIC in ROM memory, this ML
routine accepts a character from the keyboard and stores it.

5. A safe place. You must know where, in your computer, you
can construct ML programs without interfering with a BASIC
program or anything else essential to the computer's normal
operations . The best bet is often that memory space designed to serve
the cassette player called the cassette buffer. While practicing, you
won't be using the cassette player and that space will be left alone by
the computer itself.

Here are the answers to give the Simple Assembler (Appendix
C) when it asks for" Starting Address ." These are hexadecimal
numbers about which we'll have more to say in the next chapter. For
now, if you've got an Atari, type in 0600. If you use a PET ICBM,
answer 0360. For VIC or Commodore 64, type: 0340. If you have an

1

I How To Use This Book

Apple, use 0300. For other computers, you'll need to know where
there are about 100 RAM memory addresses that are safe.

All through this book, the examples will start at various arbitrary
addresses (1000,2000,5000, for example). You should substitute the
addresses which are safe in your computer. Just as it doesn't matter
whether you start a BASIC program at line number 10 or line 100, it
makes no difference whether a ML program starts at address 1000 or
0340, as long as you are putting it in a safe memory zone.

So, start all of the examples you assemble for practice in the
same convenient, safe memory location for your machine. In fact, the
Simple Assembler (SA) was designed to be modified and customized.
See the introduction to Appendix C for more detailed instructions on
customizing. Because you can make the SA conform to your needs,
you might want to replace the line with the INPUT that requests the
starting address (variable SA) with a specific address. In this way,
you can work with the examples in the book without having to
specify the safe address each time.

The First Step: Assembling
Throughout this book there are many short example ML programs.
They vary in length, but most are quite brief and are intended to
illustrate a ML concept or technique. The best way to learn something
new is most often to just jump in and do it. Machine language
programming is no different. Machine language programs are written
using a program called an assembler, just as BASIC programs are
written using a program called' 'BASIC."

In Appendix C there is a program called the "Simple
Assembler." Your first step in using this book should be to type in the
Microsoft version; it will work correctly on all personal computers
using Microsoft BASIC. (If you have an Atari, type in the Atari
version.)

Once you've typed this program into your computer, you can
save it to tape or disk and use it w henever you want to construct a ML
program. The example ML routines in this book should be entered
into your computer using the Simple Assembler and then modified,
examined, and played with.

Frequently, the examples are designed to do something to the
screen. The reason for this is that you can tell at once if things are
working as planned. If you are trying to send the message " TEST
STRING" and it comes out "test string" or "TEST STRIN" or "TEST
STRING@" - you can go back and reassemble it with the SA until
you get it right. More importantly, you'll discover what you did
wrong.

What you see on the screen when you POKE a particular
number to the screen will differ from computer to computer. In fact, it
can vary on different models of the same computer. For this reason,

2

How To Use This Book I

the examples in the book are usually given in standard ASCII codes
(explained later) .

Chances are that your computer uses a particular code for the
alphabet which is not ASCII. The Commodores use what's called
"PET ASCII" and the Atari uses ATASCII, for ATari ASCII. It's not
that bad, however, since once you 've found the correct number to
show the letter " A" on screen, the letter "B" will be the next higher
number. If you don't have a chart of the character codes for your
computer's screen POKEs, just use this BASIC program and jot down
the number which is used to POKE the uppercase and lowercase
'IA."

10 FOR 1=0 TO 255: POKE (your computer's start-of-screen
RAM address), I: NEXT

With that knowledge, you can easily achieve the exact, predicted
results for the examples in the book by substituting your computer's
code.

A Sample Example
The following illustrations will show you how to go about entering
and testing the practice examples in the book. At this point, of course,
you won't recognize the ML instructions involved. The following
samples are only intended to serve as a guide to working with the
examples you will come upon later in the text.

After you've typed in and saved the SA, you can RUN it (it's a
BASIC program which helps you to write ML). The first thing it does
is ask you where you want to start your ML program - where you
want it stored in memory. This is why you need to know of a safe
place to put ML programs in your computer.

Of course you use line numbers when creating a BASIC
program. Line numbers are not used in ML programming. Instead,
you can think of memory addresses as "line numbers." So, if you are
using the Atari, you w ill tell the SA that you are going to start your
ML program at 0600. It will then print 0600 on the screen as if it were a
line number, and you enter a ML program instruction, one per line,
like this:

0600 PLA

0601 LOY

0603 LOA
0605 STA
0608 RTS
0609 END

(This PLA is always required in the Atari when
you use USR.)

#00 (Stay in the hexadecimal mode for this
example.)

#21
(58)Y

3

I How To Use This Book

The SA will automatically print each "line number" address
when you are programming. You just type in those now mysterious
ML instructions. This program will put the letter " A" on screen.
After you are finished with an example, you type the word "END"
and the SA will tell you the starting address of your ML program in
RAM memory.

The next step is to try out the ML program you've written to see
that it will work as planned. On the Atari, you could type:

x= USR(1536) (and hit RETURN)

and this will "RUN" your ML program. You will have sent control of
the computer from BASIC to your new ML program via the USR
command. Be sure to remember that the Atari requires the PLA as the
first instruction of each ML program that you plan to go to from
BASIC by using the USR command. In all the examples in this book, type
in a PLA as the first instruction before continuing with the rest of the
example if you use an Atari.

Most personal computers use Microsoft BASIC, and the PLA is
not necessary . Here's how the same example would look on a
PET/CBM after you answered 0360 as the starting address when the
SA asked for it:

0360
0362
0364
0367
0368

LDY
LDA
STA
RTS
END

#01
#41
8000

(The word "END" isn't a 6502 ML instruction; it's
a special signal to the SA to stop constructing a
program and exit the SA program. Such special
words are called pseudo-ops.)

Then you could test it in direct mode (just typing in the
instruction onto the screen with no line number and not as part of a
BASIC program) by typing:

SYS 864 and you should see the " A" on the screen.

Notice that the Atari and PET versions are similar, but not
identical. All 6502 based computers will work with the same
"instruction set" of commands which the 6502 chip can understand.
The major differences occur when you need to specify something
which is particular to the design of your computer brand. An example
would be the location in memory of your computer's screen. The
instructions at 0605 in the Atari example and 0364 in the PET example
send the code for the letter" A" to the different screen locations for
these two computer brands. Also, the letter" A" itself is signified by
the number 41 on a PET and by J he number 21 on an Atari.

But we'll go into these things further on. The main thing to learn
here is how to use the SA to practice the examples. If you type in 0600

4

How To Use This Book I

as the starting address as in the Atari example above, the SA will
print the number 0600 on screen and wait for you to type in a 6502
instruction (PLA in this case) and hit RETURN. Then it will print the
next memory address just as if you were using an automatic line
numbering routine when programming in BASIC. After you hit
RETURN, the SA will print 0601 and wait for you to type in LDY #00 .

5

2

The Fundamentals
The difficulty of learning ML has sometimes been exaggerated. There
are some new rules to learn and some new habits to acquire . But most
ML programmers would probably agree that ML is not inherently
more difficult to understand than BASIC. More of a challenge to
debug in many cases, but it's not worlds beyond BASIC in
complexity. In fact, many of the first home computerists in the 1970's
learned ML before they learned BASIC. This is because an average
version of the BASIC language used in microcomputers takes up
around 12,000 bytes of memory, and early personal computers (KIM,
AIM, etc.) were severely restricted by containing only a small amount
of available memory . These early machines were unable to offer
BASIC, so everyone p rogrammed in ML.

Interestingly, some of these pioneers reportedly found BASIC to
be just as difficult to grasp as ML. In both cases, the problem seems to
be that the rules of a new language simply are" obscure" until you
know them. In general, though, learning either language probably
requires roughly the same amount of effort.

The first thing to learn about ML is that it reflects the
construction of computers. It most often uses a number system
(hexadecimal) which is not based on ten. You will find a table in
Appendix E which makes it easy to look up hex, decimal, or binary
numbers.

We count by tens because it is a famili ar (though arbitrary)
grouping for us. Humans have ten fingers. If we h ad eleven fingers,
the odds are that we would be counting by elevens .

What's a Natural Number?
Computers count in groups of twos . It is a fact of electronics that the
easiest way to store and manipulate information is by ON-OFF states.
A light bulb is either on or off. This is a two-group, it's bil1anj, and so
the powers of two become the natural groupings for electronic
counters. 2, 4, 8, 16, 32, 64, 128, 256. Finger counters (us) h ave been
using tens so long that we have come to th ink of ten as natural, like
thunder in April. Tens isn't natural at all. What's more, twos is a
more efficient way to count.

To see how the powers of two relate to computers, we can run a
short BASIC program which will give us some of these powers .
Powers of a number are the number multiplied by itself. Two to the

7

2 The Fundamentals

power of two (22) means 2 times 2 (4) . Two to the power of three (23)

means 2 times 2 times 2 (8).

10 FOR 1=0 to 16
20 PRINT 2 /\ I
30 NEXT I

ML programming can be done in decimal (based on ten
groupings) , but usually is not. Most ML programming involves hex
numbers. This means groups of 16 rather than 10.

Why not just program in the familiar decimal numbers (as
BASIC does)? Because 16 is one of the powers of two . It is a
convenient grouping (or base) for ML because it organizes numbers
the way the computer does . For example, all computers work, at the
most elementary level, with bits . A bit is the smallest piece of
information possible: something is either on or off, yes or no, plus or
minus, true or false . This two-state condition (binary) can be
remembered by a computer's smallest single memory cell . This single
cell is called a bit. The computer can turn each bit" on" or " off" as if
it were a light bulb or a flag raised or lowered .

It's interesting that the word bit is frequently explained as a
shortening of the phrase BInary digiT. In fact, the word bit goes back
several centuries. There was a coin which was soft enough to be cut
with a knife into eight pieces . Hence, pieces of eight. A single piece of
this coin was called a bit and, as with computer memories, it meant
that you couldn't slice it any further. We still use the word bit today as
in the phrase two bits, meaning 25 cents.

Whatever it's called, the bit is a small, essential aspect of
computing. Imagine that we wanted to remember the result of a
subtraction. When two numbers are subtracted, they are actually
being compared with each other. The result of the subtraction tells us
which number is the larger or if they are equal. ML has an instruction,
like a command in BASIC, which compares two numbers by
subtraction. It is called CMP (for compare) . This instruction sets
"flags" in the CPU (Central Processing Unit), and one of the flags
always remembers whether or not the result of the most recent action
taken by the computer was a zero. We'll go into this again later. What
we need to realize now is that each flag -like the flag on a mailbox
has two possible conditions: up or down. In other words, this
information (zero result or not-zero) is binary and can be stored within
a single bit. Each of the flags is a bit. Together they make up one byte .
That byte is called the Status Register .

Byte Assignments
Our computers group these bits into units of eight, called bytes. This
relationship between bits and bytes is easy to remember if you think
of a bit as one of the " pieces of eight." Eight is a power of two also

8

The Fundamentals 2

(two, to the third power). Eight is a convenient number of bits to
work with as a group because we can count from zero to 255 using
only eight bits.

This gives us enough room to assign all 26 letters of the alphabet
(and the uppercase letters and punctuation marks, etc.) so that each
printed character will have its particular number. The letter" A"
(uppercase) has been assigned the number 65. "B" is 66, and so on.
Throughout this book, examples will follow the ASCII code for letters
of the alphabet. Most microcomputers, however, do not adhere
strictly to the ASCII code. If you get unexpected results when trying
the example programs, check your BASIC manual to see if POKEing
to the screen RAM uses a different code than ASCII. If that is the
case, substitute your screen POKE code for the values given in the
examples.

These" assignments" form the convention called the ASCII
code by which computers worldwide can communicate with each
other. Text can be sent via modems and telephone lines and arrive
meaning the same thing to a different computer. It's important to
visualize each byte, then, as being eight bits ganged together and able
to represent 256 different things. As you might have guessed, 256 is a
power of two also (two, to the power of eight).

So, these groupings of eight, these bytes, are a key aspect of
computing. But we also want to simplify our counting from 0 to 255.
We want the numbers to line up in a column on the screen or on
paper. Obviously, the decimal number five takes up one space and the
number 230 takes up three spaces.

Also, hex is easier to think about in terms of binary numbers -
the on-off, single-bit way that the computer handles numbers:

Decimal
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Hex
01
02
03
04
05
06
07
08
09

(note new digits)--> OA
OB
Oc
00
OE
OF

(note new column--> 10
in the hex) 11

Binary
00000001
00000010
00000011 (1 and 2)
00000100
00000101 (4 and 1)
00000110 (4 and 2)
00000111 (4+2+ 1)
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001

9

2 The Fundamentals

See how hex $10 (hex numbers are usually preceded by a dollar
sign to show that they are not decimal) looks like binary? If you split a
hex number into two parts, 1 and 0, and the binary (it' s an eight-bit
group, a byte) into two parts, 0001 and 0000 - you can see the
relationship.

The Rationale For Hex Numbers
ML programmers often handle numbers as hexadecimal digits,

meaning groups of sixteen instead of ten . It is usually just called hex.
You should read over the instructions to the Simple Assembler and
remember that you can choose between working in hex or decimal
with that assembler. You can know right from the start if you're
working with hex or decimal, so the doIIar sign isn't used with the
Simple Assembler.

DECIMAL 0 1 2 3 4 5 6 7 8 9 then you start over
with 10

HEX 00 01 02 03 04 05 06 07 08 09 OA OB OC 00 OE
OF then you start over with 10

Progt'am 2-1. Microsoft Hex-Decimal Converter.

1 HE$="01234S6789ABCDEF"
2 PRINT"{CLEAR}{03 DOWN}PLEASE CHOOSE:
4 PRINT" {03 DOWN} {03 RIGHTl1 -INPUT HEX &

GET DECIMAL BACK .
S REM NEW LINE HERE
6 PRINT"{02 DOWN} 2-INPUT DECIMAL TO G

ET HEX BACK.
7 GETK:IFK=0THEN7
9 PRINT I {CLEAR}":0N KGOT0200,400
100 H$="":FORM=3T00STEP- 1:N%=DE/(16

A

M):DE=
DE-N%*16 A M:H$=H$+MID$(HE$,N%+l , l)
: NEXT

101 RETURN
102 D=0:Q=3:FORM=lT04: FORW=0T015:IFMID$(H$

,M , l)=MID$(HE$, W+1,1)THEN104
103 NEXTW
104 D1=W*(16 A (Q»:D=D+D1 :Q=Q-1:NEXTM
105 DE=INT(D) : RETURN
200 INPUT"{ 02 DOWN}HEX"iH$:GOSUB102:PRINTS

PC(ll)"{UP}= {REV}"DE "[LEFT} "
210 GOT0200
400 INPUT"{02 DOWN}DECIMAL"iDE:GOSUB100:PR

10

The Fundamentals 2

INTSPC(l4)"{UP}= {REV} "H$" "
410 GOT0400

Program 2-2. Atari Hex-Decimal Converter.

100 DIM H$(23),N$(9):OPEN#1,4,0,"K:"
130 GRAPHICS 0
140 PRINT" PLEASE CHOOSE:"
150 PRINT"l- INPUT HEX AND GET DECIMAL BAC

K. "
160 PRINT"2- INPUT DECIMAL AND GET HEX BAC

K. "
170 PRINT:PRINT"==>"~:GET#l,K
180 IFK<490R>50THEN170
190 PRINTCHR$(K):ONK-48 GOTO 300,400
300 H$="@ABCDEFGHIIIIIIIIJKLMNO"
310 PRINT"HEX"~ :INPUT N$:N=0
320 FORI=lTOLEN(N$)
330 N=N*16+ASC(H$(ASC(N$(I»-47»-64:NEXTI

340 PRINT"$"~N$~"="~N:PRINT:PRINT:GOT0140
400 H$="0123456789ABCDEF"
410 PRINT"DECIMAL"~ :INPUTN:M=4096
420 PRINTN; "=$" ~
430 FORI=lT04:J=INT(N/M)
440 PRINTH$(J+1,J+1);:N=N-M*J:M=M/16
450 NEXTI:PRINT:PRINT:GOT0140

The first thing to notice is that instead of the familiar decimal
symbol 10, hex uses the letter " A" because this is where decimal
numbers run out of symbols and start over again with a one and a
zero. Zero always reappears at the start of each new grouping in any
number system: 0, 10, 20, etc. The same thing happens with the
groupings in hex: 0, 10, 20, 30, etc. The difference is that, in hex, the 1
in the "tens" column equals a decimal 16. The second column is now a
"sixteens" column. 11 means 17, and 21 means 33 (2 times 16 plus
one). Learning hex is probably the single biggest hurdle to get over
when getting to know ML. Don't be discouraged if it's not
immediately clear what's going on. (It probably never will be totally
clear - it is, after all, unnatural .) You might want to practice the

11

2 The Fundamentals

exercises at the end of this chapter. As you work with ML, hex will
gradually seem less and less alien.

To figure out a hex number, multiply the second column by 16
and add the other number to it. So, 1A would be one times 16 plus 10
(recall that A stands for ten) .

Hex does seem impossibly confusing when you come upon it for
the first time. It will never become second nature, but it should be at
least generally understood. What is more, you can program in ML
quite easily by looking up the hex numbers in the table at the end of
this book. You need not memorize them beyond learning to count
from 1 to 16 -learning the symbols . Be able to count from 00 up to
OF. (By convention, even the smallest hex number is listed as two
digits as in 03 or OB. The other distinguishing characteristic is that
dollar sign that is usually placed in front of them: $05 or $OE.) It is
enough to know what they look like and be able to find them when
you need them.

The First 255
Also, most ML programming involves working with hex numbers
only between 0 and 255. This is because a single byte (eight bits) can
hold no number larger than 255. Manipulating numbers larger than
255 is of no real importance in ML programming until you are ready
to work with more advanced ML programs. This comes later in the
book. For example, all 6502 ML instructions are coded into one byte,
all the "flags" are held in one byte, and many" addressing modes"
use one byte to hold their argument.

To learn all we need know about hex for now, we can try some
problems and look at some ML code to see how hex is used in the
majority of ML work. But first, let's take an imaginary flight over
computer memory . Let's get a visual sense of what bits and bytes and
the inner workings of the computer's RAM look like.

The City Of Bytes
Imagine a city with a single long row of houses . It's night. Each house
has a peculiar Christmas display : on the roof is a line of eight lights .
The houses represent bytes; each light is a single bit. (See Figure 2-1.)
If we fly over the city of bytes, at first we see only darkness . Each byte
contains nothing (zero), so all eight of its bulbs are off. (On the
horizon we can see a glow, however, because the computer has
memory up there, called ROM memory, which is very active and
contains built-in programs.) But we are down in RAM, our free user
memory, and there are no programs now in RAM, so every house is
dark. Let's observe what happens to an individual byte when
different numbers are stored there; we can randomly choose byte
1504. We hover over that house to see what information is
"contained" in the light display. (See Figure 2-2.)

12

The Fundamentals 2

\

13

~
~

.~ z

2 The Fundamentals

Figure 2·2.

Like all the rest, this byte is dark. Each bulb is off. Observing this, we
know that the byte here is "holding" or representing a zero. If
someone at the computer types in POKE 1504, 1- suddenly the
rightmost light bulb goes on and the byte holds a one instead of a
zero :

Figure 2·3.

" ' / " -Qj,
This rightmost bulb is in the l's column (just as it would be in our

usual way of counting by tens, our familiar decimal system). But the
next bulb is in a 2's column, so POKE 1504,2 would be:

Figure 2·4.

And three would be one and two:

Figure 2-5.
\ I / I, , II",. " ... ' ,

~
In this way - by checking which bits are turned on and then adding
them together - the computer can look at a byte and know what
number is there. Each light bulb, each bit, is in its own special

14

The Fundamentals 2

position in the row of eight and has a value twice the value of the one
just before it:

Figure 2-6.

Eight bits together make a byte. A byte can "hold" a number
from 0 through 255 decimal. We can think of bytes, though, in any
number system we wish - in hex, decimal, or binary. The computer
uses binary, so it's useful to be able to visualize it. Hex has its uses in
ML programming. And decimal is familiar. But a number is still a
number, no matter what we call it. After all, five trees are going to be
five trees whether you symbolize them by 5, $05, or 00000101.

A Binary Quiz
BASIC doesn't understand numbers expressed in hex or binary . The
Simple Assembler contains two subroutines to translate a number
from decimal to hex or vice versa . You might want to take a look at
how it's done as a way of getting a better feel for these different
numbers systems. The subroutines are located at lines 4000 and 5000.
Binary, for humans, is very v isual. It forms patterns out of zeros and
ones. The following program will let you quiz yourself on these
patterns.

Here is a game, for all computers, which will show you a byte as
it looks in binary. You then try to give the number in decimal:

Program 2-3. Binary Quiz for A ll Computers.

100 REM BINARY QUIZ
110 C1=20:C0=111 : REM FOR ATARI ONLY
120 C1=88:C0=79: REM FOR APPLE ONLY
130 Cl=209:C0=215:REM FOR COMMODORE ONLY
140 X=INT(256*RND(l)): D = X: P = 128
150 PRINT CHR$(125);: REM ATARI ONLY
160 PRINT CHR$(147);: REM COMMODORE ONLY
170 HOME: REM APPLE ONLY
180 FOR I = 1 TO 8
190 IF INT(D/P) = 1 THEN PRINT CHR$(C1);:

D = D-P: GOTO 210

15

2 The Fundamentals

200 PRINT CHR$(C0);
210 P = P/2: NEXT I: PRINT
220 PRINT" WHAT IS THIS IN DECIMAL?"
230 INPUT Q: IF Q = X THEN PRINT

"CORRECT": GOTO 250
240 PRINT "SORRY, IT WAS";X
250 FOR T = 1 TO 1000: NEXT T
260 GOTO 140

This program will print out the entire table of binary numbers
from 0 to 255:

Program 2-4.

100 REM COMPLETE BINARY TABLE
110 L=8:B=2:C=1
120 FORX=0T0255:PRINTX;
140 IFXAND1THENK(C)=49:GOT0160
150 K(C)=48
160 C=C+1:IFBANDXTHENK(C)=49:GOT0180
170 K(C)=48
180 B=B*2:IFC)8THEN200
190 GOT0160
200 FORI=0T07:PRINTSTR$(K(L)-48)i:L=L-1
210 NEXT
220 C=0:PRINT
260 L=8:B=2:C=1:NEXTX

Examples And Practice
Here are several ordinary decimal numbers. Try to work out the hex
equivalent:

1. 10
2. 15
3. 5
4. 16
5. 17
6. 32
7. 128
8. 129

16

The Fundamentals 2

9. 255
10. 254

We are not making an issue of learning hex or binary . If you
needed to look up the answers in the table at the end of the book,
fine . As you work with ML, you will familiarize yourself with some of
the common hex numbers. You can write most ML programs without
needing to worry about binary . For now, we only want to be able to
recognize what hex is . There are even some pocket "programmer"
calculators which change decimal to hex for you and vice versa.
Another way to go about " hexing" is to use a BASIC program which
does the translation . A problem with BASIC is that you will be
working in ML and your computer will be tied up. It is often
inconvenient to crank up a BASIC program each time you need to
work out a hex number. However, the Simple Assembler will do the
translations for you any time you need them.

One other reason that we are not stressing hex too much is that
ML is generally not programmed without the help of an assembler.
The Simple Assembler provided in this book will handle most of your
input automatically . It allows you to choose whether you prefer to
program in hex or decimal. You make this decision by changing line
10 before starting to assemble. After that, you can put in hex or
decimal without worrying that there will be any confusion about your
intentions.

This little BASIC program is good for practicing hex, but also
shows how to change a small part and make it work for two-byte hex
numbers. It will take decimal in and give back the correct hex. It is
designed for Microsoft BASIC computers, so it will not work on the
Atari.

10 H$= "0123456789ABCDEF"
20 PRINT "ENTER DECIMAL NUMBER";:INPUT X
30 IF X > 255 GOTO 20: REM NO NUMBERS BIGGER
THAN 255 ALLOWED
40 FORI=1 TOO STEP-]
50 N%=X!(161'1): X=X-N% * 161'1
60 HE$ = HE$ + MID$(H$,N% + 1,1)
70 NEXT
80 PRINTHE$
90 GOT020

For larger hex numbers (up to two, to the power of 16 - which is
65536), we can just change the above program. Eliminate line 30 and
change line 40 to: FOR 1=3 TO 0 STEP -1. This will give us four-place
hex numbers (used only as addresses) but which will also become
recognizable after some ML practice.

17

2 The Fundamentals

65535 is an interesting number because it represents the limit of
our computers ' memories. In special cases, with additional hardware,
memory can be expanded beyond this . But this is the normal upper
limit because the 6502 chip is designed to be able to address (put bytes
in or take them out of memory cells) up to $FFFF.

Ganging Two Bytes Together To Form An Address
The 6502 often sets up an address by attaching two bytes together and
looking at them as if they formed a unit. An address is most
commonly a two-byte number. $FFFF (65535) is the largest number
that two bytes can represent, and $FF (255) is the most that one byte
can hold. Three-byte addressing is not possible for the 6502 chip.
"Machine language" means programming which is understood
directly by the 6502 chip itself. There are other CPU (Central
Processing Unit) chips, but the 6502 is the CPU for VIC, Apple, 64,
PET/CBM, and Atari. It's the one covered in this book.

Reading A Machine Language Program
Before getting into an in-depth look at " monitors," those bridges
between you and your machine 's language - we should first learn
how to read ML program listings . You've probably seen them often
enough in magazines. Usually, these commented, labeled, but very
strange-looking programs are called source code. They can be
examined and translated by an assembler program into an ML program.
When you have an assembler program run through source code, it
looks at the key words and numbers and then POKEs a series of

. numbers into the computer. This series is then called the object code.
Source programs contain a great deal of information which is of

interest to the programmer. The computer only needs a list of
numbers which it can execute in order. But for most people, lists of
numbers are only slightly more understandable than Morse code. The
solution is to replace numbers with words. The primary job of an
assembler is to recognize an ML instruction. These instructions are
called mnemonics, w hich means" memory aids." They are like BASIC
words, except that they are always three letters long.

If you type the mnemonic)MP, the assembler POKEs a 76 into
RAM memory. It' s easier to remember JMP than 76. The 76 is the
number that clues the computer that it's supposed to perform a JMP.
The 76 is called an opcode, for "operation code." The three-letter
words we use in ML programming, the mnemonics, were designed to
sound like what they do. JMP does a JUMP (like a GOTO in BASIC) .
Some deluxe assemblers also let you use labels instead of numbers -
as long as you define your labels at the start of the source code. These
labels can refer to individual memory locations, special values like the
score in a game, or entire subroutines.

18

The Fundamentals 2

Four Ways To List A Program
Labeled, commented source code listings' are the most elaborate kind
of ML program representation. There are also three other kinds of ML
listings . We can use a simple addition example program to show how
it looks when represented in each of the four ML program listing
styles. The first two styles are simply ways for you to type a program
into the computer. The last two styles show you what to type in, but
also illustrate what is going on in the ML program. First let's look at
the most elementary kind of ML found in books and magazines: the
BASIC loader.

Program 2-6. BASIC Loader.

10 FOR ADDRESS = 4096 TO 4103
20 READ BYTE
30 POKE ADDRESS, BYTE
40 NEXT ADDRESS
50 DATA 169,2 ,1 05 , 5 ,14 1,160,15 ,96

This is a series of decimal numbers in DATA statements which is
POKEd into memory starting at decimal address 4096. When these
numbers arrive in RAM, they form a little routine which puts the
number 2 into the accumulator - a special location in the computer
that we'll get to later - and then adds 5. The result of the addition is
then moved from the accumulator to decimal address 4000. If you try
this program out, you can SYS 4096 to execute ML program and then
? PEEK (4000) and you'll see the answer: seven. BASIC loaders are
convenient because the user doesn't need to know how to enter ML
programs. The loader POKEs them in and all the user has to do is SYS
or USR or CALL to the right address and the ML transfers control
back to BASIC when its job is done.

Getting even closer to the machine level is the second way you
might see ML printed in books or magazines: the hex dump. On
some computers (PET, Apple) there is a special "monitor" program
in ROM which lets you list memory addresses and their contents as
hex numbers. More than that, you can usually type over the existing
values on the screen and change them. That's what a hex dump
listing is for. You copy it into your computer's RAM by using your
computer's monitor. How you enter the monitor mode differs on
each computer and we'll get to monitors in the next chapter.

The hex dump, like the BASIC loader, tells you nothing about
the functions or strategies employed within an ML program. Here's
the hex dump version of the same 2+5 addition program:

19

2 The Fundamentals

Program 2-7.

1000 A9 02 69 05 80 AO OF 60

The third type of listing is called a disassembly. It's the opposite of
an assembly because another program called a disassembler takes
machine language (the series of numbers, the opcodes in the
computer's memory) and translates it into the words, the
mnemonics, which ML programmers use. The instruction you use
when you want to load the accumulator is called LDA, and you can
store what's in the accumulator by using an STA. We'll get to them
later. In this version of our example addition routine, it's a bit clearer
what's going on and how the program works. Notice that on the left
we have the hex numbers and, on the right, the translation into ML
instructions. ADC means ADd with Carry and RTS means ReTurn
from Subroutine.

Program 2-8.

1000 A9 02 LOA #$02
1002 69 05 AOC #$05
1004 80 AO OF STA $OFAO
1007 60 RTS

The Deluxe Version
Finally we come to that full, luxurious, commented, labeled, deluxe
source code we spoke of earlier. It includes the hex dump and the
disassembly, but it also has labels and comments and line numbers
added, to further clarify the purposes of things. Note that the
numbers are all in hex. On the far left are the memory addresses
where this routine is located. Next to them are the hex numbers of the
instructions. (So far, it resembles the traditional hex dump.) Then
come line numbers which can be used the way BASIC line numbers
are: deleted, inserted, and so on. Next are the disassembled
translations of the hex, but you can replace numbers with
labels (see Program 2-10). You could still use numbers, but if you've
defined the labels early on, they can serve as a useful reminder of
what the numbers represent. Last, following the semicolons, are the
comments. They are the same as REM statements. (See Programs 2-9
and 2-10.)

20

N

.

P
ro

gr
am

 2
·9

. A
 F

ul
l

A
ss

em
b

ly
 L

is
ti

ng
.

r
-
-
-

-
-
-
-
-

S
o

u
rc

e
C

o
d

e
-
-
-
-
-
-
,

M
em

o
ry

O

b
je

ct

L
in

e
D

is
as

se
m

b
ly

A

d
d

re
ss

C

o
d

e
N

u
m

b
er

0
0

0
5

.B

A

$
1

0
0

0

1
0

0
0

-
A

9
0

2

0
1

0
0

LO

A

#
$

0
2

1

0
0

2
-

69

0
5

0

1
1

0

A
D

C
#

$
0

5

1
0

0
4

-
8

0

AO

O
F

0
1

2
0

ST

A

$O
FA

O

1
0

0
7

-
60

0

1
3

0

R
T

S
0

1
4

0

.E
N

P
ro

gr
am

 2
·1

0.
 L

ab
el

le
d

A
ss

em
b

ly
.

0
0

0
5

.B

A

$
1

0
0

0

0
0

1
0

TW

O
.D

E

2
0

0
2

0

A
D

D
ER

.D

E

5
0

0
3

0

ST
O

R
A

G
E

.D

E

$O
FA

O

0
0

4
0

1

0
0

0
-

A
9

0
2

0

1
0

0

ST
A

R
T

LO

A

#T
W

O

1
0

0
2

-
69

0

5

0
1

1
0

A

D
C

#A
D

D
E

R

1
0

0
4

-
8

0

AO

O
F

0
1

2
0

ST

A

ST
O

R
A

G
E

1

0
0

7
-

60

0
1

3
0

R

T
S

0
1

4
0

.E

N

LA
B

EL

F
IL

E
:

A
D

D
ER

=

0
0

0
5

ST

A
R

T

=
1

0
0

0

TW
O

=
0

0
0

2

C
o

m
m

en
ts

ST
A

R
T

A

D
D

R
$

1
0

0
0

(4

0
9

6
)

LO
A

D

A
 W

IT
H

2

A
D

D

5
ST

O
R

E

A
T

D
E

C
IM

A
L

4

0
0

0

R
ET

U
R

N

EN
D

O

F
A

SS
E

M
B

L
Y

i
ST

A
R

T

A
D

D
R

$

1
0

0
0

(4

0
9

6
)

iD
E

F
IN

E

L
A

B
E

L

"T
W

O
"

A
S

2
.

iD
E

F
IN

E

"A
D

D
E

R
"

A
S

A

5
.

iD
E

F
IN

E

ST
O

R
A

G
E

A

D
D

R
.

LO
A

D

A
 W

IT
H

2

A
D

D

5
ST

O
R

E

A
T

D
E

C
IM

A
L

4

0
0

0

R
ET

U
R

N

EN
D

O

F
A

SS
E

M
B

L
Y

ST
O

R
A

G
E

=O

FA
O

~

::r

It
) ."

r:: :::
I C
o
~
 3 It

) :::
I lit ii
i

t-
J

2 The Fundamentals

Program 2-11. The Source Code By Itself.

.BA $1000 ; START ADDR $1000 (4096)
TWO
ADDER
STORAGE
,
START

.DE 2

. DE 5

.DE $OFAO

LOA #TWO
ADC #ADDER
STA STORAGE
RTS
.E N

;DEFINE LABLE "TWO" AS
;DEFINE "ADDER" AS A 5 •
;DEFINE STORAGE ADDR.

LOAD A WITH 2
ADD 5
STORE AT DECIMAL 4000
RETURN
END OF ASSEMBLY

2.

Program 2-11 illustrates just the source code part. The object code has
not yet been generated from this source code. The code has not been
assembled yet. You can save or load source code via an assembler in the
same way that you can save or load programs via BASIC. When 2-11
is in the computer, you could type" ASSEMBLE" and the assembler
would translate the instructions, print them on the screen, and POKE
them into memory.

The Simple Assembler operates differently . It translates, prints,
and POKEs after you hit RETURN on each line of code. You can save
and load the object, but not the source code.

Before we get into the heart of ML programming, a study of the
instruction mnemonics and the various ways of moving information
around (called addressing), we should look at a major ML
programming aid: the monitor. It deserves its own chapter.

ANSWERS to quiz: OA, OF, 05, 10, 11,20,80, 81, FF, FE

22

3

The Monitor
A monitor is a program which allows you to work directly with your
computer's memory cells. When the computer "falls below" BASIC
into the monitor mode, BASIC is no longer active . If you type RUN, it
will not execute anything. BASIC commands are not recognized. The
computer waits, as usual, for you to type in some instructions. There
are only a few instructions to give to a monitor. When you're working
with it, you're pretty close to talking directly to the machine in
machine language.

The PET and Apple II have monitors in ROM. This means that
you do not need to load the monitor program into the computer; it's
always available to you. (PETs with Original ROM sets do not have a
ROM monitor; you must load in the monitor from a tape or disk.)
Atari and VIC computers have a monitor as part of a larger
"Assembler Editor" plug-in cartridge. The monitor on the Atari
cartridge is called the "Debugger." That's a good name for it:
debugging is the main purpose of a monitor. You use it to check your
ML code, to find errors .

The various computers have different sets of instructions which
their monitors recognize. However, the main functions are similar, so
it is worth reading through all of the following descriptions, even if
the discussion is not specifically about the monitor for your
computer. On the PET/CBM, VIC, ang 64 you can add many of these
functions with a monitor" extension" program called Micraman or
Superman (about which more later) . These monitors are included in
Appendix F. The monitors on the Apple II and available in the Atari
Assembler Editor Cartridge do not need" extending. " They contain
most of the significant features required of a monitor. However, the
special extensions in Appendix F for the Commodore computers add
considerably to the Commodore ML programmer's repertoire .

The Apple II
You enter the Apple monitor by typing CALL -151. You will see the
"*" monitor prompt and the cursor immediately after it. Here are the
monitor instructions :

1. Typing an address (in hex) will show you the number
contained in that memory cell. *2000 (hit RETURN) will show 2000 -
FF (if, in fact, 255 decimal ($FF, hex) is in that location).

2. You can examine a larger amount of memory in hex (this is

23

3 The Monitor

called a memory dump or a hex dump) . The Apple monitor remembers
the address of the last number displayed. This can be used as a
starting address for the dump. If you type the instruction in number
one above, and then type * .2010, you will see a dump of memory
between 2001 and 2010. The only difference between this and
instruction one is the period (.) before the requested address.

3. You can directly cause a dump by putting the period between
two addresses: *2000.2010 combines the actions of instructions one
and two above.

4. Hitting RETURN will continue a dump, one line at a time.
5. The last displayed memory location can be changed by using

the colon (:). This is the equivalent of BASIC's POKE. If *2000 results
in FF on the screen, you can change this FF to zero by typing *:00. To
see the change, type *2000 again. Or you could type *2000:00 and
make the change directly .

The Apple II reference manual contains excellent descriptions of
the monitor instructions. We will list the rest of them only briefly
here:

6. Change a series of locations at once: *2000: 00 69 15 65 12.
7. Move (transfer) a section of memory: *4000 < 2000.2010M will

copy what's between 2000 and 2010 up to address 4000 . (All these
addresses are hex.)

8. Compare two sections of memory: *4000 <2000.2010Y. This
looks like Move, but its job is to see if there are any differences
between the numbers in the memory cells from 2000-2010 and those
from 4000-4010. If differences are found, the address where the
difference occurs appears on screen. If the two memory ranges are
identical, nothing is printed on the screen .

9. Saving (writing) a section of ML to tape: *2000.2010W. This is
how you would save an ML program. You specify the addresses of
the start and end of your program.

10. Loading (reading) a section of memory (or an ML program)
back into the computer from tape: *2000.2010R will put the bytes
saved, in instruction nine, above, back where they were when you
saved them.

An interesting additional feature is that you could send the bytes
to any address in the computer. To put them at 4000, you would just
type *4000.4010R. This gives you another way to relocate subroutines
or entire ML programs (in addition to the Move instruction, number
seven above). If you move an ML program to reside at a different
address from the one it was originally intended during assembly, any
JMP or JSR (Jump To Subroutine, like BASIC's CaSUS) instructions
which point to within your program must be adjusted to point to the
new addresses . If your subroutine contained an instruction such as
2000 JSR 2005, and you loaded at 4000, it would still say 4000 JSR
2005. You would have to change it to read 4000 JSR 4005. All the BNE,

24

The Monitor 3

BPL, BEQ, branching instructions, though, will make the move
without damage. They are relative addresses (as opposed to the
absolute addressing of JSR 2005). They will not need any adjusting.
We'll go into this in detail later.

11. Run (go): *2000G will start executing the ML program which
begins at address 2000. There had better be a program there or the
machine is likely to lock up, performing some nonsense, an endless
loop, until you turn off the power or press a RESET key . The program
or subroutine will finish and return control of the computer to the
monitor when it encounters an RTS . This is like BASIC's SYS
command, except the computer returns to the monitor mode.

12. Disassemble (list): *2000L will list 20 lines of ML on the
screen. It will contain three fields (a field is a "zone" of information) .
The first field will contain the address of an instruction (in hex). The
address field is somewhat comparable to BASIC's line numbers . It
defines the order in which instructions will normally be carried out.

Here's a brief review of disassembly listings. The second field
shows the hex numbers for the instruction, and the third field is
where a disassembly differs from a "memory" or "hex" dump (see
numbers one and two, above) . This third field translates the hex
numbers of the second field back into a mnemonic and its argument .
Here's an example of a disassembly:

2000 A9 41 LOA
2002 8D 23 32 STA
2005 A4 99 LDY

#$41
$3223
$99

Recall that a dollar sign ($) shows that a number is in
hexadecimal. The pound sign (#) means "immediate" addressing
(put the number itself into the A register at 2000 above) . Confusing
these two symbols is a major source of errors for beginning ML
programmers. You should pay careful attention to the distinction
between LOA #$41 and LOA $41. The second instruction (without the
pound sign) means to load A with whatever number is found in
address $41 hex . LOA #$41 means put the actual number 41 itself into the
accumulator. If you are debugging a routine, check to see that you've
got these two types of numbers straight, that you've loaded from
addresses where you meant to (and, vice versa, you've loaded
immediately where you intended).

13. Mini-assembler. This is an assembler program, though it is
not part of the monitor ROM. It is in the Integer BASIC ROM, so
systems using firmware Applesoft II cannot use it although the Apple
II Plus can, in the INT mode. Like the Simple Assembler, this mini
assembler cannot use labels or calculate forward branches. (The
Simple Assembler can be used for forward branches, however, as
we'll see later.) You enter the Apple mini-assembler by typing the

25

3 The Monitor

address, mnemonic, and argument of your first instruction. The! is
printed by the computer:

!2000:LDA #15

This will be disassembled, and then you type in the next line,
using spaces between each field:

! LDY #01

14. Step and Trace . These are very useful ways to isolate and fix
errors. Remember that ML does not have much in the way of error
messages . In fact, unless you are using a very complex assembler
program, the only error that an assembler can usually detect is an
impossible mnemonic. If you mistyped LOA as LDDA, your
assembler would print??? or, in the Apple, sound a beep and put a
circumflex (/\) near the error. In any case, you are not going to get
elaborate SYNTAX ERROR messages . The Simple Assembler will
type the word ERROR on the screen. Try it.

We'll examine step and trace debugging methods under
numbers 10 and 11 of the discussion of the Atari cartridge below. The
Atari Assembler Cartridge and the Commodore Monitor Extension
programs both allow step and trace, too.

IS . Changing registers. *(CONTROL) E will display the
contents of the Accumulator, the X and Y registers, the status register
(P) and the stack pointer (S) . You can then change the contents of
these registers by typing them in on screen, following a colon . Note
that to change the Y register, you must type in the A and X registers
as well :

* (CONTROL) E

You'll see: A =01 X=OS Y =FF P=30 S =FE (whatever's in the
registers at the time).

To change the Y register to 00, you type in the A, X, and then the
new version of Y:

*:01 05 00 (and hit RETURN)

16. Going back to BASIC. You can use * (CONTROL) B to go to
BASIC (but it will wipe out any BASIC program that might have been
there). Or you can use * (CONTROL) C to go back to BASIC,
non-destructively .

The Atari Monitor
To enter the monitor on the Atari, you put the assembler cartridge
into the left slot. The Atari does not have a monitor in ROM; you
need the cartridge. As mentioned at the start of this chapter, the
monitor mode in Atari is called DEBUG and is a part of the larger
program within the assembler cartridge . There are three parts (or

26

The Monitor 3

modes) within the cartridge: EDIT, ASM (assembler), and DEBUG.
Before looking at the commands available in the DEBUG mode, let's
briefly explore how an ML program is created using the EDIT mode
followed by ASM. The cartridge provides the Atari with a more
advanced assembler than the Simple Assembler or the mini
assemblers available within the Apple II monitor or the Commodore
monitor extension programs. The cartridge allows labels, comments,
and line numbers .

Until now, we've discussed ML programming which uses three
fields (zones) . Here's an example program which shows these three
simple fields. We will print ten" A's" on the screen (the numbers are
decimal):

Address Field
2000
2002
2004

2007
2008
2010

Instruction Field
LDY
LDA
STA

DEY
BNE
RTS (or BRK)

Argument (Operand) Field
#10
#33

(88),Y
(The screen location is
remembered by the Atari

in addresses 88 and 89.)

2004

When you are in Atari's EDIT mode, you construct a program
somewhat differently than you do with the Simple Assembler (or
with mini-assemblers) . Here 's the same program using the Atari's
additional fields:

Line # Label Instruction Argument Comments
100 START LDY #10 Set up counter for loop
110 LDA #33 "A" in ATASCII
120 LOOP STA (88), Y
130 DEY
140 BNE LOOP Loop until zero

Notice that labels allow us to use the word LOOP instead of the
specific address we want to loop back to. In addition to all this, there
are pseudo-ops which are instructions to the assembler to perform
some task. A pseudo-op does not become part of the ML program
(it's not a 6502 instruction), but it affects the assembly process in

27

3 The Monitor

some way. We would need two pseudo-ops in the above program to
allow it to be assembled properly. Add these lines:

10 * = $0600 (tells the assembler that this program should be
assembled starting at address $0600. The $ means hexadecimal.)
160 .END (tells the assembler that it should stop assembling
here .)

The example above with line numbers and labels is called source
code because it is the source from which the assembler gets its
information when it assembles object code (object code is an actual ML
program which could be run, or executed). You cannot run the
program above as is . It must first be assembled into 6502 ML. For one
thing, the label LOOP has to be replaced with the correct branch back
to line 120. Source code does not put bytes into memory as you write
it (as a more elementary assembler like the Simple Assembler does).

More Than A Monitor
To make this into object code which you can actually execute, you

type ASM (for assemble), and the computer will put the program
together and POKE the bytes into memory, showing you on screen
what it looks like.

To test the program, type BUG to enter the DEBUG mode, clear
the screen, and RUN it by typing G600 (for GO $0600). You'll see
AAAAAAAAAA on screen. It works!

All this isn't, strictly speaking, a monitor. It 's a full assembler.
The part of the assembler cartridge program which is equivalent to
the monitor programs on Apple II and PET is the DEBUG mode .
There are a number of commands in DEBUG with which you can
examine, test, and correct ML code . As on the other computers, the
DEBUG (monitor) mode allows you to work closely with single bytes
at a time, to see the registers, to trace program flow. All numbers you
see on screen (or use to enter into the computer) are in hex. You enter
the DEBUG mode by typing BUG when the Assembler Cartridge is in
the Atari . (To go back to EDIT mode, type X.) Here are the commands
of DEBUG:

1. Display the registers: type DR (RETURN) and you will see
whatever is in the various registers .

A = 01 X = 05 Y = OF P = 30 S = FE (P is the status register and S
is the stack pointer.)

2. Change the registers: type CR < 6,2 (RETURN) and you will
have put a six into the accumulator and a two into the X register. To
put a five into the status register, you must show how far to go by
using commas: CR < ",5 would do it . CR < 5 would put five into the
accumulator.

3. Dump memory: type 02000 and you w ill see the eight hex
numbers which start at address 2000 in memory .

28

The Monitor 3

02000
2000 FF 02 60 20 FF 02 00 00
02000,2020 (would dump out memory between these two

addresses)

4. Change memory: type C2000 < 00,00 to put zeros into the first
two bytes following address 2000.

5. Transfer (move) memory: type M1000 < 2000,2010 and you
will non-destructively copy what's between 2000-2010 down into
1000-1010.

6. Compare (verify) memory: type V1000 < 2000,2010 and any
mismatches will be printed out.

7. Disassemble (list): type L2000 and you will see 20 lines of
instructions displayed, the mnemonics and their arguments.

8. Mini-assemble: the DEBUG mode allows you to enter
mnemonics and arguments one at a time, but you cannot use labels.
(The pseudo-ops BYTE, DBYTE, and WORD are available, though.)
This is similar to the Simple Assembler and the mini-assemblers
available to Apple II and PET monitor users .

You type 2000 < LDA $05 and the computer will show you the
bytes as they assemble into this address. Subsequent instructions can
be entered by simply using the less-than sign again: < INC $05. To
return to the DEBUG mode, you can hit the RETURN key on a blank
line.

9. Go (RUN a program): type G2000 and whatever program
starts at address 2000 will run. Usually, you can stop the RUN by
hitting the BREAK key . There are cases, though, (endless loops)
which will require that you turn off the computer to regain control.

10. Trace: type T2000 and you will also RUN your program, but
the registers, bytes of ML code, and the disassembled mnemonics
and arguments are shown as each instruction is executed. This is
especially useful since you can watch the changes taking place in the
registers and discover errors. If you have an LDA $03 and you then
expect to find the accumulator to have the number three in it - you'll
notice that you made that very common mistake we talked about
earlier. Following LDA $03, you will see that the accumulator has,
perhaps, a ten in it instead of the three you thought you'd get. Why?
Because you wanted to write LDA #03 (immediate). Instead, you
mistakenly loaded A with the value in address three, whatever it is.

Seeing unexpected things like this happen during trace allows
you to isolate and fix your errors . Trace will stop when it lands on a
BRK instruction or when you press the BREAK key.

11 . Step: type S2000 and you will "step" through your program
at 2000, one instruction at a time. It will look like trace, but you move
slowly and you control the rate. To see the following instruction, you
type the S key again. Typing S over and over will bring you through

29

3 The Monitor

the program.
12. Return to EDIT mode: type X.

PET, VIC, And Commodore 64 Monitors
The resident monitor on the PET/CBM computer is the simplest of
monitors . You enter it from BASIC by typing SYS 4 when no program
is RUNning. This lands on a BReaK instruction; address 4 always
contains a zero which is the opcode for BRK. You are then in monitor
mode. Original ROM PETs, the earliest models, do not have a
monitor in ROM, but one is available on tape, called TIM. Everything
is done with hexadecimal numbers .

There are only six monitor commands:
1. Go (RUN) : type G 2000 and the program starts at address

2000. It will continue until it lands on a BRK instruction . There is no
key you can type to stop it .

2. LOAD (from tape or disk) : type L "0:NAME",08 and a
program called "name" on disk drive zero will be loaded at the
address from which it was SAVEd. There is no provision to allow you
to LOAD to a different address . L "NAME",Ol will LOAD from tape.

3. SAVE (to a tape or disk) : type S "0:NAME",08,2000,2009 and
the bytes between hex 2000 and 2008 will be saved to disk drive zero
and called "name." Important note: you should always be aware that a
SAVE will not save the highest byte listed in your SAVE instruction. You
always specify one byte more than you want to save . In our example
here, we typed 2009 as our top address, but the monitor SAVEd only
up to 2008. S "NAME",01,2000,2009 will SAVE to tape.

An interesting trick is to save the picture on your screen. Try this
from the monitor (for a disk drive) : S "0:SCREEN",08,8000,8400
(with a tape drive: S "SCREEN",01,8000,8400) . Then, clear the
screen and type: L "0:SCREEN",08 (tape: L "SCREEN",Ol). This
illustrates that an ML SAVE or LOAD just takes bytes from within
whatever range of memory you specify; it doesn't care what those
bytes contain or if they make ML sense as a program.

4. See memory (memory dump): type M 2000 2009 and the
bytes between these addresses will be displayed on screen. To change
them, you use the PET cursor controls to move to one of these hex
numbers and type over it. Hitting the RETURN key makes the change
in the computer's memory (the same way you would change a line in
BASIC).

Machine Language Registers
5. See the registers: type R and you will see something like this

on screen (the particular numbers in each category will depend on
what's going on in your computer whenever you type R):

PC IRQ SR AC XR YR SP
2000 E62E 30 00 05 FF FE

30

The Monitor 3

The PC is the program counter: above, it means that the next
instruction the computer would perform is found at address 2000. If
you typed G (for RUN), this is where it would start executing . The
IRQ is the interrupt request. The SR is the status register (the
condition of the flags). The AC is the accumulator, the XR and YR are
the X and Y registers. The SP is the stack pointer. We'll get into all
this later.

6. Exit to BASIC: type X.
That's it. Obviously, you will want to add trace, step, transfer,

disassemble, and other useful monitor aids. Fortunately, they are
available . Two programs, Superman and Micraman, can be LOADed
into your Commodore computer and will automatically attach
themselves to your "resident" monitor. That is, when you're in the
monitor mode, you can type additional monitor commands.

Both Micraman and Superman are widely available through user
groups (they are in the public domain, available to everyone for free).
If there is no user group nearby, you can type them in yourself .
Superman appeared in COMPUTE! Magazine, December 1981, Issue
#19, on page 134. Microman appeared in COMPUTE!, January 1982,
Issue #20, page 160. A Microman for VIC can be found in COMPUTE!,
November 1982. Because of their value, particularly when you are
debugging or analyzing ML programs, you will want to add them to
your program library. Several of these monitor extensions can be
found in Appendix F.

Using The Monitors
You will make mistakes. Monitors are for checking and fixing ML
programs. ML is an exacting programming process, and causing bugs
is as unavoidable as mistyping when writing a letter. It will happen,
be sure, and the only thing for it is to go back and try to locate and fix
the slip-up . It is said that every Persian rug is made with a deliberate
mistake somewhere in its pattern. The purpose of this is to show that
only Allah is perfect. This isn't our motivation when causing bugs in
an ML program, but we'll cause them nonetheless. The best you can
do is try to get rid of them when they appear.

Probably the most effective tactic, especially when you are just
starting out with ML, is to write very short sub-programs
(subroutines). Because they are short, you can more easily check each
one to make sure that it is functioning the way it should . Let's assume
that you want to write an ML subroutine to ask a question on the
screen. (This is often called a prompt since it prompts the user to do
something.)

The message can be: "press any key." First, we'll have to store
the message in a data table. We'll put it at hex $1500. That's as good a
place as anywhere else. Remember that your computer may be using
a different screen RAM POKE code to display these letters. POKE the

31

3 The Monitor

letter II A" into your screen RAM to see what number represents the
start of your screen alphabet and use those numbers for any direct-to-
screen messages in this book . t., b.<-

ASCII ATA~ j.""'lJ'itf.Jo.-J h, Ivf
1500 80 P 48 ~0 Jet,.."
1501 82 R 50 32-
1502 69 E 37 I ~5"
1503 83 S 51 ,33
1504 83 S 51)3
1505 32 0 0
1506 65 A 33).1

1507 78 N 46 ;).t
1508 89 Y 57 3"/
1509 32 0 0
150A 75 K 43 .)g
150B 69 E 37 CJ.!>
150C 89 Y 57 W.
1500 00 255 fi(the delimiter,

the signal that the message is
finished . Atari must use
something beside zero which is
used to represent the space
character.)

We'll put the subroutine at $1000, but be warned! This
subroutine will not work as printed. There are two errors in this
program. See if you can spot them:

1000 LOY #$00
1002 LOA $1500, Y
1005 CMP $00 (is it the delimiter?)
1007 BNE $100A (if not, continue on)
1009 RTS (it was zero, so quit and return to whatever

JSRed , or called, this subroutine)
100A STA $8000, Y (for PET)
1000 INY
100E IMP $1000 (always JMP back to $1000)

Make the following substitutions if you use one of these machines:

Atari: 1005 CMP $FF (That's hex for 255.)
Atari: 100A STA ($88), Y
Apple : 100A STA $0400, Y

Since we haven't yet gone into addressing or instructions much,
this is like learning to swim by the throw-them-in-the-water method.
See if you can make out some of the meanings of these instructions
anyway.

32

The Monitor 3

This subroutine will not work. There are two errors and they are
two of the most common bugs in ML programming. Unfortunately,
they are not obvious bugs. An obvious bug would be mistyping: LOS
when you mean LOA. That sort of bug would be caught by your
assembler, and it would print an error message to let you know that
no such instruction as LOS exists in 6502 ML.

The bugs in this routine are mistakes in logic. If you disassemble
this, it will also look fine to the disassembler, and no error messages
will be printed there either. But, it will not work the way you wanted
it to. Before reading on, see if you can spot the two errors. Also see if
you can figure out how this routine would execute its instructions.
Where does the computer go after the first pass through this code?
When and how does it finish the job?

Two Common Errors
A very common bug, perhaps the most common ML bug, is caused
by accidentally using zero page addressing when you mean to use
immediate addressing. We mentioned this before, but it is the cause of
so much puzzlement to the beginning ML programmer that we'll go
over it several times in this book. Zero page addressing looks very
similar to immediate addressing. Zero page means that you are
addressing one of the cells in the first 256 addresses . A page of
memory is 256 bytes. The lowest page is called zero page and is the
RAM cells from number zero through 255. Page one is from 256-511
(this is the location of the "stack" which we'll get to later). Addresses
512-767 are page three and so on up to the top memory, page 255.

Immediate addressing means that the number is right within the
ML code, that it's the number which follows (which is the operand or
the argument of) an instruction. LOA #13 is immediate. It puts the
number 13 into the accumulator. LOA $13 is zero page and puts
whatever number is in address 13 into the accumulator. It's easy and
very common to mix up these two, so you might look at these
instructions first when debugging a faulty program. See that all your
zero page addressing is supposed to be zero page and that all your
immediate addressing is supposed to be immediate.

In the prompt example above, the LOY #00 is correct - we do
want to set the Y register counter to zero to begin printing the
message. So we want an immediate, the actual number zero. Take a
good look, however, at the instruction at location $1005. Here we are
not asking the computer to compare the number in the accumulator
to zero. Instead, we are asking the computer to compare it to
whatever might be in address zero - with unpredictable results. To fix
this bug, the instruction should be changed to the immediate
addressing mode with eMP # O.

The second bug is also a very common one. The subroutine, as
written, can never leave itself. It is an endless loop. Loop structures

33

3 The Monitor

are usually preceded by a short initialization phase. The counters
have to be set up before the loop can begin. Just as in BASIC, where
FOR I = 1 TO 10 tells the loop to cycle ten times, in ML, we set the Y
register to zero to let it act as our counter. It kills two birds with one
stone in this subroutine. It is the offset (a pointer to the current
position in a list or series) to load from the message in the data table
and the offset to print to the screen. Without Y going up one (lNY)
each time through the loop, we would always print the first letter of
the message, and always in the first position on the screen.

What's the problem? It's that JMP instruction at $100E. It sends
us back to the LDY # 0 address at 1000. We should be looping back to
address 1002. As things stand, the Y register will always be reset to
zero, and there will never be any chance to pick up the delimiter and
exit the subroutine. An endless cycle of loading the "P" and printing
it will occur. Y will never get beyond zero because each loop jumps
back to 1000 and puts a zero back into Y. To see this, here's the same
bug in BASIC:

10 T=5
20 T=T+1
30 IF T= 10 THEN 50
40 GOTO 10

Tracking Them Down
The monitor will let you discover these and other errors. You can
replace an instruction with zero (BRK) and see what happens when
you execute the program up to the BRK. Better yet, you can single
step through the program and see that, for example, you are not
really computing CMP #00 where you thought you were . It would
also be easy to see that the Y register is being reset to zero each time
through the loop. You are expecting to use it as a counter and it's not
cooperating, it's not counting up each time through the loop. These
and other errors are, if not obvious, at least discoverable from the
monitor.

Also, the disassembler function of the monitor will permit you to
study the program and look, deliberately, for correct use of #00 and
$00. Since that mix-up between immediate and zero page addressing
is so common an error, always check for it first.

Programming Tools
The single most significant quality of monitors which contributes to
easing the ML programmer's job is that monitors, like BASIC, are
interactive. This means that you can make changes and test them right
away, right then. In BASIC, you can find an error in line 120, make
the correction, and RUN a test immediately.

It's not always that easy to locate and fix bugs in ML: there are
few, if any, error messages, so finding the location of a bug can be

34

The Monitor 3

difficult. But a monitor does allow interactivity: you make changes
and test them on the spot. This is one of the drawbacks of complex
assemblers, especially those which have several steps between the
writing of the source code and the final assembly of executable object
code (ML which can be executed).

These assemblers often require several steps between writing an
ML program and being able to test it. There are linkers, relocatable
loaders, double-pass assembly, etc. All of these functions make it
easier to rearrange ML subroutines, put them anywhere in memory
without modification, etc. They make ML more modular (composed
of small, self-sufficient modules or subroutines), but they also make it
less interactive. You cannot easily make a change and see the effects
at once.

However, using a mini-assembler or the Simple Assembler, you
are right near the monitor level and fixes can easily and quickly be
tested. In other words, the simpler assemblers sometimes gain in
efficiency what they lose in flexibility. The simpler assemblers
support a style of programming which involves less pre-planning,
less forethought, less abstract analysis. If something goes awry, you
can just try something else until it all works.

Plan Ahead Or Plunge In?
Some find such trial and error programming uncomfortable, even
disgraceful. The more complicated assemblers discourage
interactivity and expect careful preliminary planning, flowcharts,
even writing out the program ahead of time on paper and debugging
it there. In one sense, these large assemblers are a holdover from the
early years of computing when computer time was extremely
expensive . There was a clear advantage to coming to the terminal as
prepared as possible . Interactivity was costly. But, like the
increasingly outdated advice urging programmers to worry about
saving computer memory space, it seems that strategies designed to
conserve computer time are anachronistic. You can spend all the time
you want on your personal computer.

Complex assemblers tend to downgrade the importance of a
monitor, to reduce its function in the assembly process. Some
programmers who've worked on IBM computers for 20 years do not
use the word monitor in the sense we are using it. To them, monitors
are CRT screens. The deluxe assembler on the SuperPet, for example,
does have a monitor, but it has no single-step function and has no
provision for SAVEing an ML program to disk or tape from the
monitor.

Whether or not you are satisfied with the interactive style of
simple, mini-assemblers and their greater reliance on the monitor
mode and on trial and error programming is your decision. If you
want to graduate to the more complicated assemblers, to move closer

35

3 The Monitor

to high-level languages with labels and relocatable code, fine. The
Atari assembler is fairly high-level already, but it does contain a full
featured monitor, the" debugger," as well. The choice is ultimately a
matter of personal style.

Some programmers are uncomfortable unless they have a fairly
complete plan before they even get to the computer keyboard. Others
are quickly bored by elaborate flowcharting, "dry computing" on
paper, and can't wait to get on the computer and see-what-happens
if. Perhaps a good analogy can be found in the various ways that
people make telephone calls. When long-distance calls were
extremely expensive, many people made lists of what they wanted to
say and carefully planned the call before dialing. They would also
watch the clock during the call . (Some still do this today.) As the costs
of phoning came down, most people found that spontaneous
conversation was more satisfying. It's up to you.

Computer time, though, is now extremely cheap. 1£ your
computer uses 100 watts and your electric company charges five cents
per KWH, leaving the computer on continuously costs about 12 cents
a day.

36

4

Addressing
The 6502 processor is an electronic brain. It performs a variety of
manipulations with numbers to allow us to write words, draw
pictures, control outside machines such as tape recorders, calculate,
and do many other things. Its manipulations were designed to be
logical and fast. The computer has been designed to permit
everything to be accomplished accurately and efficiently.

If you could peer down into the CPU (Central Processing Unit),
the heart of the computer, you would see numbers being delivered
and received from memory locations all over the computer.
Sometimes the numbers arrive and are sent out, unchanged, to some
other address . Other times they are compared, added, or otherwise
modified, before being sent back to RAM or to a peripheral.

Writing an ML program can be compared to planning the
activities of this message center. It can be illustrated by thinking of
computer memory as a city of bytes and the CPU as the main post
office. (See Figure 4-1.) The CPU does its job using several tools: three
registers, a program counter, a stack pointer, and seven little one-bit
flags contained in a byte called the Status Register. We will only
concern ourselves with the "C" (carry) flag and the "Z" (it equals
zero) flags. The rest of them are far less frequently needed for ML
programming so we ' ll only describe them briefly. (See Figure 4-1 .)

Most monitors, after you BRK (like BASIC's STOP) out of a
program, will display the present status of these tools. It looks
something like this:

Program 4-1. Current Status Of The Registers.

PC IRQ SR AC XR YR SP
0005 E455 30 00 5E 04 F8

The PC is the Program Counter and it is two bytes long so it can
refer to a location anywhere in memory. The IRQ is also two bytes
and points to a ROM ML routine which handles interrupts, special
priority actions. A beginning ML programmer will not be working
with interrupts and need not worry about the IRQ . You can also more
or less let the computer handle the SP on the end. It's the stack

37

~

5T
AT

US
 R

EG
I57

BK

fL
AG

S +

D~
pf

. O
f

~~
[f
~

m
J_

@
f1

]'if

F
ig

ur
e

4-
1.

P

os
ta

l
E

xe
cu

ti
ve

s
A

t
W

or
k

 O
n

A
n

In
st

ru
ct

io
n:

 2
12

54
 S

T
A

 3
30

0,
Y

.

C
Jf

pr
. O

F

~
&
1
~

.&:
00 » Q
.

Q
. ~ Ia. ~ OQ

Addressing 4

pointer. The SP keeps track of numbers, usually return-from
subroutine addresses which are kept together in a list called the stack.

The computer will automatically handle the stack pointer for us .
It will also deal with IRQ and the program counter. For example, each
ML instruction we give it could be one, two, or three bytes long. TYA
has no argument and is the instruction to transfer a number from the
Y register to the accumulator. Since it has no argument, the PC can
locate the next instruction to be carried out by raising itself by one. If
the PC held $4000, it would hold $4001 after execution of a TYA. LOA
#$01 is a two-byte instruction . It takes up two bytes in memory so the
next instruction to be executed after LOA #$01 will be two bytes
beyond it. In this case, the PC will raise itself from $4000 to $4002. But
we can just let it work merrily away without worrying about it .

The Accumulator: The Busiest Register
The SR, AC, XR, and YR, however, are our business. They are all
eight bits (one byte) in size . They are not located in memory proper.
You can't PEEK them since they have no address like the rest of
memory. They are zones of the CPU. The AC, or A register, but most
often called the accumulator, is the busiest place in the computer. The
great bulk of the mail comes to rest here, if only briefly, before being
sent to another destination .

Any logical transformations (EOR,AND) or arithmetic
operations leave their results in the accumulator. Most of the bytes
streaming through the computer corne through the accumulator. You
can compare one byte against another using the accumulator . And
nearly everything that happens which involves the accumulator will
have an effect on the status register (SR, the flags) .

The X and Y registers are similar to each other in that one of their
main purposes is to assist the accumulator. They are used as
addressing indexes. There are addressing modes that we'll get to in a
minute which add an index value to another number. For example,
LOA $4000,X will load into A the number found in address $4005, if
the X register is currently holding a five. The address is the number
plus the index value . If X has a six, then we load from $4006. Why not
just LOA $4006? It is far easier to raise or lower an index inside a loop
structure than it would be to write in each specific address literally.

A second major use of X and Y is in counting and looping . We'll
go into this more in the chapter on the instruction set.

We'll also have some things to learn later about the SR, the
Status Register which holds some flags showing current conditions.
The SR can tell a program or the CPU if there has been a zero, a carry,
or a negative number as the result of some operation, among other
things . Knowing about carry and zero flags is especially significant in
ML.

For now, the task at hand is to explore the various "classes" of
mail delivery, the 6502 addressing modes.

39

4 Addressing

Aside from comparing things and so forth, the computer must
have a logical way to pick up and send information. Rather like a
postal service in a dream - everything should be picked up and
delivered rapidly, and nothing should be lost, damaged, or delivered
to the wrong address.

The 6502 accomplishes its important function of getting and
sending bytes (GET and PRINT would be examples of this same thing
in BASIC) by using several" addressing modes." There are 13
different ways that a byte might be "mailed" either to or from the
central processor.

When programming, in addition to picking an instruction (of the
56 available to you) to accomplish the job you are working on, you
must also make one other decision. You must decide how you want to
address the instruction - how, in other words, you want the mail sent
or delivered. There is some room for maneuvering. You will probably
not care if you accidentally choose a slower delivery method than you
could have. Nevertheless, it is necessary to know what choices you
have: most addressing modes are designed to aid a common
programming activity.

Absolute And Zero
Let's picture a postman's dream city, a city so well planned from a
postal-delivery point of view that no byte is ever lost, damaged, or
sent to the wrong address. It's the City of Bytes we first toured in
Chapter 2. It has 65536 houses all lined up on one side of a street (a
long street). Each house is clearly labeled with its number, starting
with house zero and ending with house number 65535. When you
want to get a byte from, or send a byte to, a house (each house holds
one byte) - you must" address" the package. (See Figure 4-2.)

Here's an example of one mode of addressing. It's quite popular
and could be thought of as "First Class." Called absolute addressing,
it can send a number to, or receive one from, any house in the city .
It's what we normally think of first when the idea of "addressing"
something comes up. You just put the number on the package and
send it off. No indexing or special instructions. If it says 2500, then it
means house 2500 .

1000 STA $2500
or

1000 LDA $2500
These two, STore A and LoaD A, STA and LOA, are the

instructions which get a byte from , or send it to, the accumulator. The
address, though, is found in the numbers following the instruction.
The items following an instruction are called the instruction's
argument. You could have written the address several ways. Writing it
as $2500 tells your assembler to get it from, or send it directly to, hex
$2500. This kind of addressing uses just a simple $ and a four-digit

40

""
F

ig
ur

e
4-

2.
 T

h
e

F
ir

st
 F

ew
 A

d
d

re
ss

es
 O

n
 A

 S
tr

e
e
t W

it
h

 6
55

36
 H

ou
se

s.

~

ZE
RO

PA

GE

Hf
l61

1r
s

>

c..

c..
 "" til la. ::::

I
O

Q

~

4 Addressing

number. You can send the byte sitting in the accumulator to
anywhere in RAM memory by this method. Remember that the byte
value, although sent to memory, also remains in the accumulator. It's
more a copying than a literal sending.

To save time, if you are sending a byte down to address 0
through 255 (called the "zero page"), you can leave off the first two
numbers: 1000 STA $07. This is only for the first 256 addresses, but
they get more than their share of mail . Your machine' s BASIC and
operating system (OS) use much of zero page for their own
temporary flags and other things. Zero page is a busy place, and there
is not much room down there for you to store your own ML pointers
or flags (not to mention whole routines).

Heavy Traffic In Zero Page
This second way to address, using only two hex digits, any hex
number between $00 and $FF or a decimal number between 0 and
255, is called, naturally enough, zero page addressing. It's pretty fast
mail service: the deliverer has to decide among only 256 instead of
65536 houses, and the computer is specially wired to service these
special addresses . Think of them as being close to the post office .
Things get in and out fast at zero page . This is why your BASIC and
operating system tend to use it so often .

These two addressing modes - absolute and zero page - are
very common ones. In your programming, you will probably not use
zero page as much as you might like . You will notice, on a map of
your computer's flags and temporary storage areas, that zero page is
heavily trafficked. You might cause a problem storing things in zero
page in places used by the as (operating system) or BASIC. Several
maps of both zero page and BASIC in ROM can be found in
Appendix B.

You can find safe areas to store your own programs ' pointers
and flags in zero page. A buffer (temporary holding area) for the
cassette drive or for BASIC's floating point numbers might be used
only during cassette loads and saves or during BASIC RUNs to
calculate numbers . So, if your flags and pointers were stored in these
addresses, things would be fine unless you involved cassette
operations . In any case, zero page is a popular, busy neighborhood.
Don't put any ML programs in there. Your main use of zero page is
for the very efficient "indirect Y" addressing we'll get to in a minute .
But you've always got to check your computer's memory map for
zero page to make sure that you aren ' t using bytes which the
computer itself uses .

By the way, don't locate your ML programs in page one (256-511
decimal) either. That's for the " stack," about which more later. We'll
identify where you can safely store your ML programs in the various
computers . It's always OK to use RAM as long as you keep BASIC

42

Addressing 4

programs from putting their variables on top of ML, and keep ML
from writing over your BASIC assembler program (such as the
Simple Assembler).

Immediate
Another very common addressing mode is called immediate
addressing - it deals directly with a number. Instead of sending out
for a number, we can just shove it immediately into the accumulator
by putting it right in the place where other addressing modes have an
address. Let's illustrate this :

1000 LOA $2500
1000 LOA #$09

(Absolute mode)
(Immediate mode)

The first example will load the accumulator with whatever
number it finds at address $2500. In the second example, we simply
wanted to put a 9 into the accumulator. We know that we want the
number 9. So, instead of sending off for the 9, we just type a 9 in
where we would normally type a memory address . And we tack on a
symbol to show that the 9 is the number we're after. Without the #,
the computer will load the accumulator with whatever it finds at
address number 9 (LOA $09). That would be zero page addressing,
instead of immediate addressing.

In any case, immediate addressing is very frequently used, since
you often know already what number you are after and do not need
to send for it at all. So, you just put it right in with a #. This is similar
to BASIC where you define a variable (10 VARIABLE =9) . In this
case, we have a variable being given a known value. LOA #9 is the
same idea. In other words, immediate addressing is used when you
know what number you want to deal with; you're not sending off for
it. It's put right into the ML code as a number, not as an address.

To illustrate immediate and absolute addressing modes working
together, let's imagine that we want to copy a 15 into address $4000 .
(See Program 4-2.)

Implied
Here's an easy one. You don't use any address or argument with this
one.

This is among the more obvious modes. It's called implied,
since the mnemonic itself implies what is being sent where: TXA
means transfer X register's contents to the Accumulator. Implied
addressing means that you do not put an address after the instruction
(mnemonic) the way you would with most other forms of addressing.

It's like a self-addressed, stamped envelope. TYA and others are
similar short-haul moves from one register to another. Included in
this implied group are the SEC, CLC, SED, CLO instructions as well.
They merely clear or set the flags in the status register, letting you

43

:t

P
ro

gr
am

 4
-2

.
P

ut
ti

ng
 A

n
Im

m
ed

ia
te

 I
S

In
to

 A
b

so
lu

te
 A

d
d

re
ss

 4
00

0.

0
0

1
0

0

0
2

0

0
0

3
0

2

0
0

0
-

A
9

O
F

0
0

4
0

2

0
0

2
-

8
0

00

40

0

0
5

0

0
0

6
0

0

0
7

0

0
0

8
0

0

0
9

0

0
1

0
0

0

1
1

0

.B
A

$

2
0

0
0

M

L
PR

O
G

R
A

M

IS

$
2

0
0

0

("
B

A
"

;
ST

A
R

T
IN

G

A
D

D
R

E
SS

O

F
T

H
IS

"B

E
G

IN
N

IN
G

A

D
D

R
E

S
S

")
.

LO
A

#

1
5

ST

A

$
4

0
0

0

N
O

TE

TH
A

T
IN

SO

M
E

A
SS

E
M

B
L

E
R

S
YO

U
SW

IT
C

H

B
ET

W
EE

N

H
E

X
 A

N
D

D

E
C

IM
A

L
.

1
5

IS

D

E
C

IM
A

L
,

TH
E

4
0

0
0

IS

H

E
X

.
L

IT
E

R
A

L

H
EX

1

5

W
O

U
LD

B

E
W

R
IT

T
E

N

.E
N

LO
A

D

A
 W

IT
H

L

IT
E

R
A

L
L

Y

1
5

ST

O
R

E

IT

IN

A
D

D
R

ES
S

4
0

0
0

CA
N

TH

E
A

#

$
1

5
.

~
 ~ c.
 m. ~ O

Q

Addressing 4

and the computer keep track of whether an action resulted in a zero,
if a "carry" has occurred during addition or subtraction, etc.

Also "implied" are such instructions as RTS (ReTurn from
Subroutine), BRK (BReaK), PLP, PHP, PLA, PHA (which "push" or
"pull" the processor status register or accumulator onto or off the
stack). Such actions, and increasing by one (incrementing) the X or Y
register's number (INX, INY) or decreasing it (OEX, DEY), are also
called "implied. " What all of these implied addresses have in
common is the fact that you do not need to actually give any address.
By comparison, an LOA $2500 mode (the absolute mode) must have
that $2500 address to know where to pick up the package. TXA
already says, in the instruction itself, that the address is the X register
and that the destination will be the accumulator. Likewise, you do
not put an address after RTS since the computer always memorizes
its jump-off address when it does a JSR (Jump to SubRoutine). NOP
(No OPeration) is, of course, implied mode too .

Relative
One particular addressing mode, the relative mode, used to be a real
headache for programmers . Not so long ago, in the days when ML
programming was done "by hand," this was a frequent source of
errors. Hand computing - entering each byte by flipping eight
switches up or down and then pressing an ENTER key - meant that
the programmer had to write his program out on paper, translate the
mnemonics into their number equivalents, and then "key" the whole
thing into the machine. It was a big advance when computers would
accept hexadecimal numbers which permitted entering OF instead of
eight switches: 00001111. This reduced errors and fatigue .

An even greater advance was when the machines began having
enough free memory to allow an assembler program to be in the
computer while the ML program was being written . An assembler
not only takes care of translating LOA $2500 into its three (eight
switch binary) numbers: 10101101 00000000 00100101, but it also
does relative addressing. So, for the same reason that you can
program in ML without knowing how to deal with binary numbers -
you can also forget about relative addressing. The assembler will do it
for you.

Relative addressing is used with eight instructions only: BVS,
BVC, BCS, BCC, BEQ, BMI, BNE, BPL. They are all "branching"
instructions . Branch on: overflow flag set (or cleared), carry flag set
(or cleared), equal, minus, not-equal, or plus. Branch if Not-Equal,
like the rest of this group, will jump up to 128 addresses forward or
backward from where it is or 127 addresses backward (if the result of
the most recent activity is " not equal"). Note that these jumps can be
a distance of only 128, or 127 back, and they can go in either direction .

45

4 Addressing

You specify where the jump should go by giving an address within
these boundaries. Here 's an example:

1000 LDX #$00
1002 INX
1003 BNE 1002
1005 BRK

(The X register will count up by ones until it hits 255 decimal and
then it resets itself to zero.)

This is what you type in to create a ML FOR-NEXT loop . You are
branching, relative to address 1003, which means that the assembler
will calculate what address to place into the computer that will get
you to 1002. You might wonder what's wrong with the computer just
accepting the number 1002 as the address to which you want to
branch . Absolute addressing does give the computer the actual
address, but the branching instructions all need addresses which are
"offsets" of the starting address. The assembler puts the following
into the computer:

1000 A2 00
1002 E8
1003 DO FO
1005 00

The odd thing about this piece of code is that "FO" at 1004. How
does FO tell the computer to Branch back to 1002? (Remember that X
will increment up to 255, then reset to zero on the final increment.)
$FD means 253 decimal. Now it begins to be clear why relative
addressing is so messy. If you are curious, numbers larger than 127,
when found as arguments of relative addressing instructions, tell the
computer to go back down to lower addresses. What's worse, the
larger the number, the less far down it goes. It counts the address 1005
as zero and counts backwards thus:

1005=0
1004=255
1003=254
1002=253

Not a very pretty counting method! Luckily, all that we
fortunate assembler users need do is to give the address (as if it were
an absolute address), and the assembler will do the hard part. This
strange counting method is the way that the computer can handle
negative numbers. The reason it can only count to 128 is that the
leftmost bit is no longer used as a 128th's column. Instead, this bit is
on or off to signify a positive or negative number.

46

Addressing 4

When you are using one of the branch instructions, you
sometimes branch forward . Let's say that you want to have a
different kind of FOR-NEXT loop :

1000 LOX #0
1002 INX
1003 BEQ 100A
1005 IMP 1002
1008 BRK
1009 BRK
100A BRK

When jumping forward, you often do not yet know the precise
address you want to branch to. In the example above, we really
wanted to go to 1008 when the loop was finished (when X was equal
to zero), but we just entered an approximate address (100A) and
made a note of the place where this guess appeared (1004) . Then,
using the POKE function on the assembler, we can POKE the correct
offset when we know what it should be . Forward counting is easy.
When we finally saw that we wanted to go to 1008, we would POKE
1004,3. (The assembler would have written a five because that's the
correct offset to branch to 100A, our original guess.)

Remember that the zero address for these relative branches is
the address immediately following the branch instructions. For
example, a jump to 1008 is three because you count: 1005 a zero,
1006 = 1, 1007 = 2, 1008 = 3. All this confusion disappears after writing
a few programs and practicing with estimated branch addresses.
Luckily, the assembler does all the backwards branches. That's lucky
because they are much harder to calculate .

Unknown Forward Branches
Also, the Simple Assembler will do one forward ("not-yet-known")
branch calculation for you . If you look at the BASIC program listing of
the Simple Assembler, you will see that the pseudo-ops (fake
operations) are located from line 241 up. You could add additional
forward-resolving pseudo-ops if you just give them new names like
F1 resolved later by Rl. Alternatively, you can type a guess in for the
forward branches, as we just did in the example above. Then, when
you find out the exact address, simply exit from the assembler, give
1004 as your starting address for assembly, and write in BEQ 1008 and
let the assembler calculate for you. Either way, you will soon get the
hang of forward branching.

We'll get into pseudo-ops later. Essentially, they are instructions
to the assembler (such as "please show me the decimal equivalent of
the following hex number"), but which are not intended to be
thought of as mnemonics which get translated into ML object code .
Pseudo-ops are "false" operations, not part of the 6502 instruction set.

47

4 Addressing

They are requests to the assembler program to perform some extra
service for the programmer.

Absolute,X And Absolute, Y
Another important addressing mode provides you with an easy way
to manipulate lists or tables. This method looks like absolute
addressing, but it attaches an X or a Y to the address. The X or Y
stands for the X or Y registers, which are being used in this technique
as offsets. That is, if the X register contains the number 3 and you
type: LOA 1000, X, you will LoaD the Accumulator with the value
(the number) which is in memory cell 1003. The register value is added to
the absolute address .

Another method called Zero Page,X works the same way:
LOA OS,X. This means that you can easily transfer or search through
messages, lists, or tables . Error messages can be sent to the screen
using such a method. Assume that the words SYNTAX ERROR are
held in some part of memory because you sometimes need to send
them to the screen from your program. You might have a whole table
of such messages. But we'll say that the words SYNTAX ERROR are
stored at address 3000 . Assuming that your screen memory address is
32768 (8000 hex), here's how you would send the message:

1000 LOX #$00 (set the counter register to zero)
1002 LOA $3000,X (get a letter at 3000 + X)
1005 BEQ $100E (if the character is a zero, we've

1007
100A

100B

100E

STA
INX

JMP

BRK

$8000,X

$1002

reached the end of message,
so we end the routine)

(store a letter on the screen)
(increment the counter so the next
letter in the message, as well as the
next screen position, are pointed
to)

(jump to the load instruction to
fetch the next character)

(task completed, message
transferred)

This sort of indexed looping is an extremely common ML
programming device. It can be used to create delays (FOR T = 1 TO
5000: NEXT T), to transfer any kind of memory to another place, to
check the conditions of memory (to see, for example, if a particular
word appears somewhere on the screen), and to perform many other
applications. It is a fundamental, all-purpose machine language
technique.

Here's a fast way to fill your screen or any other area of memory.
This example uses the Commodore 64 Screen RAM starting address.
Just substitute your computer's screen-start address. This is a full

48

Addressing 4

source code for the demonstration screen-fill we tried in Chapter 1.
See if you can follow how this indexed addressing works. What bytes
are filled in, and when? At ML speeds, it isn't necessary to fill them in
order - nobody would see an irregular filling pattern because it all
happens too fast for the eye to see it, like magic. (See Program 4-3.)

Compare this to Program 1-2 to see the effects of using a
different screen starting address and how source code is an expansion
of a disassembly.

Indirect Y
This one is a real workhorse; you'll use it often. Several of the
examples in this book refer to it and explain it in context. It isn't so
much an address in itself as it is a method of creating an address. It
looks like this:

$4000 ST A ($80), Y

Seems innocent enough. But watch out for the parentheses.
They mean that $80 is not the real address we are trying to store A
into. Instead, addresses $80 and $81 are holding the address we are
really sending our byte in A to. We are not dealing directly with $0080
here; hence the name for this addressing mode: indirect Y.

If $80,81 have these numbers in them:

$0080 01
$0081 20

and Y is holding a five, then the byte in A will end up in address
$2006! How did we get $2006?

First, we've got to mentally switch the numbers in $80,81. The
6502 requires that such " address pointers" be held in backwards
order. So visualize $80,81 as forming $2001, a pointer. Then add the
value in Y, which is five, and you get $2006.

This is a valuable tool and you should familiarize yourself with
it. It lets you have easy access to many memory locations very quickly
by just changing the Y register or the pointer. To go up a page, add
one to the number in $0081 . To go down four pages, subtract four
from it. Combine this with the indexing that Y is doing for you and
you've got great efficiency. The pointers for this addressing mode
must be stored in zero page locations.

When an address is put into a pointer, you can see that it was
split in half. The address $2001 was split in the example above. It ' s a
two-byte number and ML terminology distinguishes between the
bytes by saying that one is the LSB (least significant byte) and the
other is the MSB (most significant byte). The $01 is the least
significant. To grasp what is meant by" significant," imagine
chopping a decimal number such as 5015 in half. Since the left half,
50, stands for fifty 100' s and the right half stands for 15 ones,

49

U
l

P
ro

g
ra

m
 4

-3
.

Ilo
C

Io
.

0

» ~ ~
0

0
1

0

.B
A

4

0
0

0
0

;

(N
O

T
IC

E

IT
'S

D

E
C

IM
A

L
)

., ID

0
0

2
0

11

\
11

\

0
0

3
0

C

H
A

R
.A

.D

E

$
4

1

C
H

A
R

A
C

T
E

R

"A
"

:;.

OQ

0
0

4
0

9

C
4

0
-

AO

00

0
0

5
0

LO

Y

#
$

0
0

S

E
T

C

O
U

N
TE

R

TO

Z
E

R
O

.
9

C
4

2
-

A
9

4
1

0

0
6

0

LO
A

#C

H
A

R
.A

9

C
4

4
-

99

00

0
4

0

0
7

0

LO
O

P
ST

A

$
0

4
0

0
,Y

9

C
4

7
-

99

00

0
5

0

0
8

0

ST
A

$

0
5

0
0

,y

9
C

4
A

-
99

00

06

0

0
9

0

ST
A

$

0
6

0
0

,y

9C
4D

-
99

00

0

7

0
1

0
0

ST

A

$
0

7
0

0
,y

9C

S
O

-
C

8
0

1
1

0

IN
Y

R

A
IS

E

Y
 B

Y

l.

9

C
S

1
-

DO

F
l

0
1

2
0

B

N
E

LO
O

P
IF

N

O
T

Z
E

R
O

,
K

E
E

P
G

O
IN

G
.

9
C

S
3

-
60

0

1
3

0

R
T

S
0

1
4

0

.E
N

Addressing 4

obviously the leftmost half, the 100's, is more significant. Likewise,
the left half of a two-byte hex number like $2001 is the most
significant byte . The $20 stands for 32 times 256 (in decimal terms) .
It 's easy to multiply double-byte numbers by decimal 256 by just
adding one to the MSB. This would be a quick way of moving
through the "pages" in memory.

The other thing to remember about MSB, LSB is that they are
reversed when broken up and used as an address pointer: LSB,MSB .

Indirect X
Not often used, this mode makes it possible to set up a group of
pointers (a table) in page zero. It's like Indirect Y except the X register
value is not added to the address pointer to form the ultimate address
desired . Rather, it points to which of the pointers to use. Nothing is
added to the address found in the pointer.

It looks like this:

$5000 STA ($90,X)

To see it in action, let's assume that part of zero page has been
set up to point to various parts of memory. A table of pointers, not
just one:

$0090 $00
$0091 $04
$0092 $05
$0093 $70
$0094 $EA
$0095 $80

Pointer #1
(it points to $0400)
Pointer #2
($7005)
Pointer #3
(pointing to $80EA)

If X holds a two when we STA $(90,X), then the byte in A will be
sent to $7005 . If X holds a foUf, the byte will go to $80EA.

All in all, this has relatively little merit. It would be useful in rare
situations, but at least it's there if you should find you need it.

Accumulator Mode
ASL, LSR, ROL, and ROR shift or manipulate the bits in the byte in
the accumulator. We'll touch on them in the chapter on the
instruction set. They don't have much to do with addressing, but
they are always listed as a separate addressing mode.

Zero Page,Y
This can only be used with LOX and STX. Otherwise it operates just
like Zero Page, X discussed above.

There you have them, thirteen addressing modes to choose
from. The six you should focus on and practice are: Immediate,
Absolute (plus Absolute, Y and ,X), Zero Page, and Indirect Y. The
rest are either automatic (implied) or not really worth bothering with
until you have full command of the six common and useful ones.

Now that we've surveyed the ways you can move numbers
around, it's time to see how to do arithmetic in ML.

51

5

Arithmetic
There'll be many things you'll want to do in ML, but complicated
math is not one of them. Mathematics beyond simple addition and
subtraction (and a very easy form of elementary division and
multiplication) will not be covered in this book. For most games and
other ML for personal computing, you will rarely need to program
with any complex math. In this chapter we will cover what you are
likely to want to know. BASIC is well-suited to mathematical
programming and is far easier to program for such tasks.

Before we look at ML arithmetic, it is worth reviewing an
important concept: how the computer tells the difference between
addresses, numbers as such, and instructions . It is valuable to be able
to visualize what the computer is going to do as it comes upon each
byte in your ML routine.

Even when the computer is working with words, letters of the
alphabet, graphics symbols and the like - it is still working with
numbers. A computer works only with numbers . The ASCII code is a
convention by which the computer understands that when the
context is alphabetic, the number 65 means the letter A. At first this is
confusing. How does it know when 65 is A and when it is just 65? The
third possibility is that the 65 could represent the 65th cell in the
computer's memory.

It is important to remember that, like us, the computer means
different things at different times when it uses a symbol (like 65). We
can mean a street address by it, a temperature, the cost of a milk
shake, or even a secret code. We could agree that whenever we used
the symbol "65" we were ready to leave a party . The point is that
symbols aren't anything in themselves . They stand for other things,
and what they stand for must be agreed upon in advance. There must
be rules. A code is an agreement in advance that one thing
symbolizes another.

The Computer's Rules
Inside your machine, at the most basic level, there is a stream of
input . The stream flows continually past a "gate" like a river through
a canal. For 99 percent of the time, this input is zeros. (BASICs differ;
some see continuous 255 's, but the idea is the same.) You turn it on
and the computer sits there. What's it doing? It might be updating a
clock, if you have one, and it's holding things coherent on the TV

53

5 Arithmetic

screen - but it mainly waits in an endless loop for you to press a key
on your keyboard to let it know what it's supposed to do. There is a
memory cell inside (this, too, varies in its location) which the
computer constantly checks. On some computers, this cell always has
a 255 in it unless a key is pressed. If you press the RETURN key, a 13
will replace the 255. At last, after centuries (the computer's sense of
time differs from ours) here is something to work with! Something
has come up to the gate at long last.

You notice the effect at once - everything on the screen mov.es
up one line because 13 (in the ASCII code) stands for carriage return.
How did it know that you were not intending to type the number 13
when it saw 13 in the keyboard sampling cell? Simple. The number
13, and any other keyboard input, is always read as an ASCII number.

In ASCII, the digits from 0 through 9 are the only number
symbols. There is no single symbol for 13. So, when you type in a 1
followed immediately by a 3, the computer's input-from-the
keyboard routine scans the line on the screen and notices that you
have not pressed the "instant action" keys (the STOP, BREAK, ESC,
TAB, cursor-control keys, etc.). Rather, you typed 1 and 3 and the
keyboard sampling cell (the "which key pressed" address in zero
page) received the ASCII value for one and then for three. ASCII
digits are easy to remember in hex: zero is 30, 1 is 31, and up to 39 for
nine. In decimal, they are 48 through 57.

The computer decides the "meaning" of the numbers which
flow into and through it by the numbers' context. If it is in
"alphabetic" mode, the computer will see the number 65 as "a"; or if
it has just received an "a," it might see a subsequent number 65 as an
address to store the" a". It all depends on the events that surround a
given number. We can illustrate this with a simple example:

2000 LOA #65 A9 (169) 41 (65)
2000 STA $65 85 (133) 41 (65)

This short ML program (the numbers in parentheses are the
decimal values) shows how the computer can "expect" different
meanings from the number 65 (or 41 hex). When it receives an
instruction to perform an action, it is then prepared to act upon a
number. The instruction comes first and, since it is the first thing the
computer sees when it starts a job, it knows that the A9 (169) is
not a number. It has to be one of the ML instructions from its set of
instructions (see Appendix A) .

Instructions And Their Arguments
The computer would no more think of this first 169 as the number 169
than you would seal an envelope before the letter was inside. If you
are sending out a pile of Christmas cards, you perform instruction
argument just the way the computer does: you (1) fill the envelope

54

Arithmetic 5

(instruction) (2) with a card (argument or operand). All actions do
something to something. A computer's action is called an instruction
(or, in its numeric form inside the computer's memory it's called an
opcode for operation code). The target of the action is called the
instruction's argument (operand) . In our program above, the
computer must LoaD Accumulator with 65. The # symbol means
"immediate"; the target is right there in the next memory cell
following the mnemonic LDA, so it isn't supposed to be fetched from
a distant memory cell.

Then the action is complete, and the next number (the 133 which
means STore Accumulator in zero page, the first 256 cells) is seen as
the start of another complete action. The action of storing always
signals that the number following the store instruction must be an
address of a cell in memory to store to .

Think of the computer as completing each action and then
looking for another instruction. Recall from the last chapter that the
target can be "implied" in the sense that INX simply increases the X
register by one. That " one" is "implied" by the instruction itself, so
there is no target argument in these cases. The next cell in this case
must also contain an instruction for a new instruction-argument cycle.

Some instructions call for a single-byte argument. LDA #65 is of
this type . You cannot LoaD Accumulator with anything greater than
255. The accumulator is only one byte large, so anything that can be
loaded into it can also be only a single byte large. Recall that $FF (255
decimal) is the largest number that can be represented by a single
byte. STA $65 also has a one byte argument because the target
address for the STore Accumulator is, in this case, in zero page.
Storing to zero page or loading from it will need only a one byte
argument - the address. Zero page addressing is a special case, but
an assembler program will take care of it for you. It will pick the
correct opcode for this addressing mode when you type LDA $65.
LDA $0065 would create ML code that performs the same operation
though it would use three bytes instead of two to do it.

The program counter is like a finger that keeps track of where
the computer is located in its trip up a series of ML instructions. Each
instruction takes up one, two, or three bytes, depending on what
type of addressing is going on.

Context Defines Meaning
TXA uses only one byte so the program counter (PC) moves ahead
one byte and stops and waits until the value in the X register is moved
over to the accumulator. Then the computer asks the PC, "Where are
we?" and the PC is pointing to the address of the next instruction. It
never points to an argument. It skips over them because it knows
how many bytes each addressing mode uses up in a program.

Say that the next addresses contain an LDA $15. This is two
bytes long (zero page addressing) . The PC is raised by two . The

55

5 Arithmetic

longest possible instruction would be using three bytes, such as LDA
$5000 (absolute addressing). Here the argument takes up two bytes.
Add that to the one byte used by any instruction and you have a total
of three bytes for the PC to count off. Zero page LDA is represented
by the number A5 and Absolute LDA is AD. Since the opcodes are
different, even though the mnemonics are identical, the computer
can know how many bytes the instruction will use up .

Having reviewed the way that your computer makes contextual
sense out of the mass of seemingly similar numbers of which an ML
program is composed, we can move on to see how elementary
arithmetic is performed in ML.

Addition
Arithmetic is performed in the accumulator. The accumulator holds
the first number, the target address holds the second number (but is
not affected by the activities), and the result is left in the accumulator.
So:

LDA #$40 (remember, the # means immediate, the $ means
hex)

ADC #$01

will result in the number 41 being left in the accumulator. We could
then STA that number wherever we wanted. Simple enough. The
ADC means ADd with Carry. If this addition problem resulted in a
number higher than 255 (if we added, say, 250 + 6), then there would
have to be a way to show that the number left behind in the
accumulator was not the correct result. What's left behind is the carnI
What would happen after adding 250 + 6 is that the accumulator
would contain a 1. To show that the answer is really 256 (and not 1),
the "carry flag" in the status register flips up . So, if that flag is up, we
know that the real answer is 255 plus the 1 left in the accumulator.

To make sure that things never get confused, always put in a
CLC (CLear Carry) before any addition problems. Then the flag will
go down before any addition and, if it is up afterward, we'll know
that we need to add 256 to whatever is in the accumulator. We'll
know that the accumulator holds the carry, not the total result.

One other point about the status register : there is another flag, .
the" decimal" flag . If you ever set this flag up (SED), all addition and
subtraction is performed in a decimal mode in which the carry flag is
set when addition exceeds 99. In this book, we are not going into the
decimal mode at all, so it's a good precaution to put a CLear Decimal
mode (CLD) instruction as the first instruction of any ML program
you write. After you type CLO, the flag will be put down and the
assembler will move on to ask for your next instruction, but all the
arithmetic from then on will be as we are describing it .

56

Arithmetic 5

Adding Numbers Larger Than 255
We have already discussed the idea of setting aside some memory
cells as a table for data . All we do is make a note to ourselves that,
say, $80 and $81 are declared a zone for our personal use as a storage
area. Using a familiar example, let's think of this zone as the address
that holds the address of a ball-like character for a game. As long as
the addresses are not in ROM, or used by our program elsewhere, or
used by the computer (see your computer's memory map), it's fine to
declare any area a data zone. It is a good idea (especially with longer
programs) to make notes on a piece of paper to show where you
intend to have your subroutines, your main loop, your initialization,
and all the miscellaneous data - names, messages for the screen,
input from the keyboard, etc. This is one of those things that BASIC
does for you automatically, but which you must do for yourself in
ML.

When BASIC creates a string variable, it sets aside an area to
store variables. This is what DIM does. In ML, you set aside your own
areas by simply finding a safe and unused memory space and then
not writing a part of your program into it. Part of your data zone can
be special registers you declare to hold the results of addition or
subtraction. You might make a note to yourself that $80 and $81 will
hold the current address of the bouncing ball in your game. Since the
ball is constantly in motion, this register will be changing all the time,
depending on whether the ball hit a wall, a paddle, etc. Notice that
you need two bytes for this register. That is because one byte could
hold only a number from 0 to 255 . Two bytes together, though, can
hold a number up to 65535 .

In fact, a two-byte register can address any cell in most
microcomputers because most of us have machines with a total of
65536 memory cells (from zero to 65535). So if your ball is located (on
your screen) at $8000 and you must move it down one, just change
the ball-address register you have set up. If your screen has 40
columns, you would want to add 40 to this register.

The ball address register now looks like this: $0080 00 80
(remember that the higher, most significant byte, comes after the LSB,
the least significant byte in the 6502'5 way of looking at pointers). We
want it to be: $0080 28 80. (The 28 is hex for 40.) In other words,
we're going to move the ball down one line on a 40-column screen.

Remember the "indirect Y" addressing mode described in the
previous chapter? It lets us use an address in zero page as a pointer to
another address in memory. The number in the Y register is added to
whatever address sits in 80,81, so we don't STA to $80 or $81, but
rather to the address that they contain. STA ($80), Y or, using the
simplified punctuation rules of the Simple Assembler: STA (80)Y.

57

5 Arithmetic

Moving A Ball Down
How to add $28 to the ball address register? First of all, CLC, clear the
carry to be sure that flag is down. To simplify our addition, we can set
aside another special register which serves only to hold the $28 as a
double-byte number all through the game: $4009 28 00. This is the
size of one screen line in our 40-column computer and it won't
change. Since it moves the ball down one screen line, it can be used
equally well for a subtraction that would move the ball up one screen
line as well. Now to add them together:

1000 CLC (1000 is our "add 40 to ball address"
subroutine)

1001 LOA $80 (we fetch the LSB of ball address)
1003 AOC $4009 (LSB of our permanent screen line size)
1006 STA $80 (put the new result into the ball address)
1008 LOA $81 (get the MSB of ball address)
100A AOC $400A (add with cam) to the MSB of screen value)
1000 STA $81 (update the ball address MSB)

That's it. Any carry will automatically set the carry flag up
during the ADC action on the LSB and will be added into the result
when we ADC to the MSB. It's all quite similar to the way that we
add ordinary decimal numbers, putting a carry onto the next column
when we get more than a 10 in the first column. And this carrying is
why we always CLC (clear the carry flag, putting it down) just before
additions. If the carry is set, we could get the wrong answer if our
problem did not result in a carry. Did the addition above cause a
carry?

Note that we need not check for any carries during the
MSB + MSB addition. Any carries resulting in a screen address greater
than $FFFF (65535) would be impossible on our machines . The 6502 is
permitted to address $FFFF tops, under normal conditions.

Subtraction
As you might expect, subtracting single-byte numbers is a snap:

LOA #$41
SBC #$01

results in a $40 being left in the accumulator.<\s before, though, it is
good to make it a habit to deal with the carry 11ag before each
calculation. When subtracting, however, you set the carry flag: SEC.
Why is unimportant. Just always SEC before any subtractions, and
your answers will be correct. Here's double subtracting that will
move the ball up the screen one line instead of down one line :

$1020 SEC ($1020 is our "take 40 from ball address"
subroutine)

1021 LOA $80 (get the LSB of ball address)

58

Arithmetic 5

1023 SBC $4009 (LSB of our permanent screen line value)
1026 STA $80 (put the new result into the ball address)
1028 LOA $81 (get the MSB of ball address)
102A SBe $400A (subtract the MSB of screen value)
1020 STA $81 (update the ball address MSB)

Multiplication And Division
Multiplying could be done by repeated adding. To multiply 5 x 4, you
could just add 4 + 4 + 4 + 4 + 4. One way would be to set up two
registers like the ones we used above, both containing 04, and then
loop through the addition process five times. For practical purposes,
though, multiplying and dividing are much more easily accomplished
in BASIC. They simply are often not worth the trouble of setting up in
ML, especially if you will need results involving decimal points
(floating point arithmetic) . Perhaps surprisingly, for the games and
personal computing tasks where creating ML routines is useful, there
is little use either for negative numbers or arithmetic beyond simple
addition and subtraction.

If you find that you need complicated mathematical structures,
create the program in BASIC, adding ML where super speeds are
necessary or desirable . Such hybrid programs are efficient and, in
their way, elegant. One final note: an easy way to divide the number
in the accumulator by two is to LSR it. Try it . Similarly, you can
multiply by two with ASL. We'll define LSR and ASL in the next
chapter .

Double Comparison
One rather tricky technique is used fairly often in ML and should be
learned. It is tricky because there are two branch instructions which
seem to be worth using in this context, but they are best avoided. If
you are trying to keep track of the location of a ball on the screen, it
will have a two-byte address. If you need to compare those two bytes
against another two-byte address, you need a "double compare"
subroutine . You might have to see if the ball is out of bounds or if
there has been a collision with some other item flying around on
screen . Double compare is also valuable in other kinds of ML
programming.

The problem is the BPL (Branch on PLus) and BMI (Branch on
MInus) instructions. Don't use them for comparisons. In any
comparisons, single- or double-byte, use BEQ to test if two numbers
are equal; BNE for not equal; BCS for equal or higher; and Bee for
lower. You can remember BCS because its "S" is higher and BCC
because its "C" is lower in the alphabet. To see how to perform a
double-compare, here ' s one easy way to do it. (See Program 5-1.)

59

a-
P

ro
g

ra
m

 5
-1

.
D

o
u

b
le

 C
o

m
p

a
re

.
I I

 U1

0

» "'
I

0
0

0
5

.B

A

$
1

0
1

0

;;.- ::r

0
0

1
0

-
-
-
-
-
-
-

ST
O

R
A

G
E

A

R
EA

S
-
-
-
-
-
-
-

3 (I
)

0
0

2
0

T

E
ST

E
D

.D

E

$
1

0
0

0

~
 n'

0
0

3
0

SE

C
O

N
D

.D

E

$
1

0
0

2

0
0

4
0

TE

M
P

.D
E

$

1
0

0
8

0

0
5

0

0
0

6
0

-
-
-
-
-
-
-

L
A

N
D

IN
G

PL

A
C

E
S

-
-
-
-
-
-

0
0

7
0

LO

W
ER

.D

E

$
1

0
0

4

0
0

8
0

EQ

U
A

L
.D

E

$
1

0
0

5

0
0

9
0

H

IG
H

E
R

.D

E

$
1

0
0

6

0
1

0
0

1

0
1

0
-

38

0
1

1
0

ST

A
R

T

SE
C

1

0
1

1
-

AD

00

10

0
1

2
0

LO

A

T
E

ST
E

D

C
O

M
PA

R
E

TH
E

LO
W

B

Y
T

E
S

1
0

1
4

-
ED

02

10

0

1
3

0

SB
C

SE

C
O

N
D

1

0
1

7
-

80

08

10

0
1

4
0

ST

A

TE
M

P
1

0
1

A
-

AD

01

10

0
1

5
0

LO

A

T
E

S
T

E
D

+
1

C
O

M
PA

R
E

TH
E

H
IG

H

B
Y

T
E

S
1

0
1

0
-

ED

03

10

0
1

6
0

SB

C

SE
C

O
N

D
+1

1

0
2

0
-

00

08

10

0
1

7
0

O

RA

TE
M

P
1

0
2

3
-

pO

EO

0
1

8
0

B

EQ

EQ
U

A
L

T
E

ST
E

D

=
 S

EC
O

N
D

1

0
2

5
-

90

no

0
1

9
0

B

C
C

LO

W
ER

T

E
ST

E
D

<

 S
EC

O
N

D

1
0

2
7

-
BO

DO

0

2
0

0

B
C

S
H

IG
H

E
R

T

E
ST

E
D

>

 S
EC

O
N

D

0
2

1
0

.E

N

Arithmetic 5

This is a full-dress, luxurious assembler at work. With such assem
blers you can use line numbers and labels, add numbers to labels (see
TESTED + 1 in line 150), add comments, and all the rest . To try this out,
type in the hex bytes on the left, starting at address $1010, which make
up the program itself. Then fill bytes $1000-100f with zeros - that's your
storage area for the numbers you are comparing as well as a simulated
"landing place" where your computer will branch, demonstrating that
the comparison worked correctly.

Now try putting different numbers into the two-byte zones called
TESTED and SECOND. TESTED, at $1000, is the first, the tested, num
ber. It's being tested against the second number, called SECOND. As
you can see, you've got to keep it straight in your mind which number
is the primary number. There has to be a way to tag them so that it
means something when you say that one is larger (or smaller) than the
other.

When you've set up the numbers in their registers ($1000 to $1003),
you can run this routine by starting at $1010. All that will happen is that
you will land on a BRK instruction . Where you land tells you the result
of the comparison. If the numbers are equal, you land at $1005. If the
TESTED number is less than the SECOND number, you'll end up at
$1004. If all you needed to find ou twas whether they were unequal,
you could use BNE. Or you could leave out branches that you weren't
interested in . Play around with this routine until you've understood
the ideas involved.

In a real program, of course, you would be branching to the
addresses of subroutines which do something if the numbers are equal
or greater or whatever. This example sends the computer to $1004,
$1005, or $1006 just to let you see the effects of the double-compare sub
routine. Above all, remember that comparing in ML is done with BCS
and BCC (not BPL or BMI) .

61

6

The Instruction Set
There are 56 instructions (commands) available in 6502 machine
language. Most versions of BASIC have about 50 commands. Some
BASIC instructions are rarely used by the majority of programmers:
USR, END, SGN, TAN, etc . Some, such as END and LET, contribute
nothing to a program and seem to have remained in the language for
nostalgic reasons. Others, like TAN, have uses that are highly
specialized. There are surplus commands in computer languages just
as there are surplus words in English. People don't often say
culpability. They usually say guilt . The message gets across without
using the entire dictionary. The simple, common words can do the
job.

Machine language is the same as any other language in this
respect. There are around 20 heavily used instructions . The 36
remaining ones are far less often used. Load the disassembler
program in Appendix 0 and enter the starting address of your
computer's BASIC in ROM. You can then read the machine language
routines which comprise it. You will quickly discover that the
accumulator is heavily trafficked (LOA and STA appear frequently),
but you will have to hunt to find an ROR, SED, CLY, RTI, or BYe.

ML, like BASIC, offers you many ways to accomplish a given
job. Some programming solutions, of course, are better than others,
but the main thing is to get the job done. An influence still lingers
from the early days of computing when memory space was rare and
expensive . This influence - that you should try to write programs
using up as little memory as possible - is usually safely ignored.
Efficient memory use will often be low on your list of objectives . It
could hardly matter if you used up 25 instead of 15 bytes to print a
message to your screen when your computer has space for programs
which exceeds 30,000 bytes.

Rather than memorize each instruction individually, we will
concentrate on the workhorses . Bizarre or arcane instructions will get
only passing mention. Unless you are planning to work with ML for
interfacing or complex mathematics and such, you will be able to
write excellent machine language programs for nearly any application
with the instructions we'll focus on here.

For each instruction group, we will describe three things before
getting down to the details about programming with them. 1. What

63

6 The Instruction Set

the instructions accomplish. 2. The addressing modes you can use
with them. 3. What they do, if anything, to the flags in the Status
Register. All of this information is also found in Appendix A.

The Six Instruction Groups
The best way to approach the "instruction set" might be to break it
down into the following six categories which group the instructions
according to their functions: 1. The Transporters 2. The Arithmetic
Group 3. The Decision-makers 4. The Loop Group 5. The Subroutine
and Jump Group and 6. The Debuggers. We will deal with each group
in order, pointing out similarities to BASIC and describing the major
uses for each.

As always, the best way to learn is by doing. Move bytes
around. Use each instruction, typing a BRK as the final instruction to
see the effects. If you LDA #65, look in the A register to see what
happened. Then STA $12 and check to see what was copied into
address $12. If you send the byte in the accumulator (STA), what's
left behind in the accumulator? Is it better to think of bytes as being
copied rather than being sent?

Play with each instruction to get a feel for it. Discover the effects,
qualities, and limitations of these ML commands.

I. The Transporters:
LOA, LOX, LOY
STA, STX, STY
TAX, TAY
TXA, TYA

These instructions move a byte from one place in memory to
another. To be more precise, they copy what is in a source location
into a target location. The source location still contains the byte, but
after a "transporter" instruction, a copy of the byte is also in the
target. This does replace whatever was in the target.

All of them affect the Nand Z flags, except STA, STX, and STY
which do nothing to any flag.

There are a variety of addressing modes available to different
instructions in this group. Check the chart in Appendix A for
specifics .

Remember that the computer does things one at a time. Unlike
the human brain which can carry out up to 1000 different instructions
simultaneously (walk, talk, and smile, all at once) - the computer
goes from one tiny job to the next. It works through a series of

64

The Instruction Set 6

instructions, raising the program counter (PC) each time it handles an
instruction .

If you do a TYA, the PC goes up by one to the next address and
the computer looks at that next instruction. STA $80 is a two-byte
long instruction, it's zero page addressing, so the PC = PC + 2. STA
$8500 is a three-byte long absolute addressing mode and PC = PC + 3.

Recall that there 's nothing larger than a three-byte increment of
the Pc. However, in each case, the PC is cranked up the right amount
to make it point to the address for the next instruction. Things would
get quickly out of control if the PC pointed to some argument,
thinking it was an instruction. It would be incorrect (and soon
disastrous) if the PC landed on the $15 in LDA $15.

If you type SYS 1024 (or USR or CALL), the program counter is
loaded with $0400 and the computer "transfers control" to the ML
instructions which are (we hope!) waiting there . It will then look at
the byte in $0400, expecting it to be an ML instruction. It will do that
job and then look for the next instruction. Since it does this very fast,
it can seem to be keeping score, bouncing the ball, moving the
paddle, and everything else - simultaneously. It's not, though. It's
flashing from one task to another and doing it so fast that it creates
the illusion of simultaneity much the way that 24 still pictures per
second look like motion in movies.

The Programmer's Time Warp
Movies are, of course, lots of still pictures flipping by in rapid
succession. Computer programs are composed of lots of individual
instructions performed in rapid succession.

Grasping this sequential, step-by-step activity makes our
programming job easier: we can think of large programs as single
steps, coordinated into meaningful, harmonious actions. Now the
computer will put a blank over the ball at its current address, then
add 40 to the ball' s address, then print a ball at the new address. The
main single-step action is moving information, as single-byte
numbers, from here to there, in memory . We are always creating,
updating, modifying, moving and destroying single-byte variables.
The moving is generally done from one double-byte address to
another. But it all looks smooth to the player during a game.

Programming in ML can pull you into an eerie time warp. You
might spend several hours constructing a program which executes in
seconds . You are putting together instructions which will later be
read and acted upon by coordinated electrons, moving at electron
speeds. It's as if you spent an afternoon slowly and carefully drawing
up pathways and patterns which would later be a single bolt of
lightning.

65

6 The Instruction Set

Registers
In ML there are three primary places where variables rest briefly on
their way to memory cells: the X, the Y, and the A registers. And the
A register (the accumulator) is the most frequently used. X and Yare
used for looping and indexing. Each of these registers can grab a byte
from anywhere in memory or can load the byte right after its own
opcode (immediate addressing) :

LOX $8000 (puts the number at hex address 8000 into X,
without destroying it at $8000)

LOX #65 (puts the number 65 into X)
LOA and LOY work the same.

Be sure you understand what is happening here. LOX $1500
does not copy the "byte in the X register into address $1500." It's just
the opposite. The number (or "value" as it's sometimes called) in
$1500 is copied into the X register.

To copy a byte from X, Y, or A, use STX, STY, or STA. For these
"store-bytes" instructions, however, there is no immediate
addressing mode. No STA #15 . It would make no sense to have STA
#15. That would be disruptive, for it would modif1j the ML program
itself. It would put the number 15 into the next cell beyond the STA
instruction within the ML program itself.

Another type of transporter moves bytes between registers -
TAY, TAX, TYA, TXA. See the effect of writing the following. Look at
the registers after executing this :

1000 LOA #65
TAY
TAX

The number 65 is placed into the accumulator, then transferred
to the Y register, then sent from the accumulator to X. All the while,
however, the A register (accumulator) is not being emptied. Sending
bytes is not a "transfer" in the usual sense of the term" sending."
It's more as if a Xerox copy were made of the number and then the
copy is sent. The original stays behind after the copy is sent.

LOA #15 followed by TAY would leave the 15 in the
accumulator, sending a copy of 15 into the Y register.

Notice that you cannot directly move a byte from the X to the Y
register, or vice versa. There is no TXY or TYX.

Flags Up And Down
Another effect of moving bytes around is that it sometimes throws a
flag up or down in the Status Register. LOA (or LOX or LOY) will
affect the Nand Z, negative and zero, flags.

We will ignore the N flag. It changes when you use "signed
numbers," a special technique to allow for negative numbers . For our
purposes, the N flag will fly up and down all the time and we won't

66

The Instruction Set 6

care. If you're curious, signed numbers are manipulated by allowing
the seven bits on the right to hold the number and the leftmost bit
stands for positive or negative. We normally use a byte to hold values
from a through 255. If we were working with "signed" numbers,
anything higher than 127 would be considered a negative number
since the leftmost bit would be "on" - and an LOA #255 would be
thought of as -1. This is another example of how the same things (the
number 255 in this case) could signify several different things,
depending on the context in which it is being interpreted.

The Z flag, on the other hand, is quite important. It shows
whether or not some action during a program run resulted in a zero.
The branching instructions and looping depend on this flag, and
we'll deal with the important zero-result effects below with the BNE,
INX, etc., ·instructions.

No flags are affected by the STA, STX, or STY instructions .

The Stack Can Take Care Of Itself
There are some instructions which move bytes to and from the stack.
These are for advanced ML programmers. PHA and PLA copy a byte
from A to the stack, and vice versa. PHP and PLP move the status
register to and from the stack. TSX and TXS move the stack pointer to
or from the X register. Forget them. Unless you know precisely what
you are doing, you can cause havoc with your program by fooling
with the stack. The main job for the stack is to keep the return
addresses pushed into it when you JSR (Jump To Subroutine). Then,
when you come back from a subroutine (RTS), the computer pulls the
addresses off the stack to find out where to go back to.

The one major exception to this warning about fiddling with the
stack is Atari's USR instruction. It is a worthwhile technique to
master. Atari owners can move between BASIC and ML programs
fairly easily, passing numbers to ML via the stack. The parameters
(the passed numbers) must be pulled off the stack when the ML
program first takes control of the computer.

For most ML programming, on the other hand, avoid stack
manipulation until you are an advanced programmer. If you
manipulate the stack without great care, you'll give an RTS the wrong
address and the computer will travel far, far beyond your control. If
you are lucky, it sometimes lands on a BRK instruction and you fall
into the monitor mode. The odds are that you would get lucky
roughly once every 256 times. Don't count on it. Since BRK is rare in
your BASIC ROM, the chances are pretty low. If your monitor has a
FILL instruction which lets you put a single number into large
amounts of RAM memory, you might want to fill the RAM with
"snow." FILL 1000 8000 00 would put zeros into every address from
1000 to 8000. This greatly improves the odds that a crash will hit a
BRK.

67

6 The Instruction Set

As an aside, there is another use for a blanket of "zero page
snow." Many Atari programs rely on the fact that the computer
leaves page six ($0600-06FF) pretty much alone. The PET doesn't
make much use of the second cassette buffer. So, you can safely put
an ML subroutine in these places to, for example, add a routine which
customizes an ML word processor. Does your Atari's ML word
processing program use any memory space in page six? Probably.
What locations does it use? Fill page six with OO's, put the word
processor through its paces, then look at the tracks, the non-zeros, in
the snow.

2. The Arithmetic Group:
ADC, SBC, SEC, CLC

Here are the commands which add, subtract, and set or clear the
carry flag. ADC and SBC affect the N, Z, e, and V (overflow) flags.
CLC and SEC, needless to say, affect the C flag and their only
addressing mode is Implied.

ADC and SBC can be used in eight addressing modes:
Immediate, Absolute, Zero Page, (Indirect,X), (Indirect), Y, Zero
Page,X, and Absolute,X and Y.

Arithmetic was covered in the previous chapter. To review,
before any addition, the carry flag must be cleared with CLC. Before
any subtraction, it must be set with SEC. The decimal mode should
be cleared at the start of any program (the initialization): CLD. You
can multiply by two with ASL and divide by two with LSR. Note that
you can divide by four with LSR LSR or by eight with LSR LSR LSR.
You could multiply a number by eight with ASL ASL ASL. What
would this do to a number : ASL ASL ASL ASL? To multiply by
numbers which aren ' t powers of two, use addition plus
multiplication . To multiply by ten, for example: copy the original
number temporarily to a vacant area of memory. Then ASL ASL ASL
to multiply it by eight. Then multiply the stored original by two with
a single ASL. Then add them together.

If you're wondering about the V flag, it is rarely used for
anything. You can forget about the branch which depends on it, BVC,
too . Only five instructions affect it and it relates to "twos
complement" arithmetic which we have not touched on in this book.
Like decimal mode or negative numbers, you will be able to construct
your ML programs very effectively if you remain in complete
ignorance of this mode. We have largely avoided discussion of most
of the flags in the status register: N, V, B, D, and I. This avoidance
has also removed several branch instructions from our consideration:
BMI, BPL, BVe, and BVS. These flags and instructions are not

68

The Instruction Set 6

usually found in standard ML programs and their use is confined to
specialized mathematical or interfacing applications. They will not be
of use or interest to the majority of ML programmers.

The two flags of interest to most ML programmers are the Carry
flag and the Zero flag. That is why, in the following section, we will
examine only the four branch instructions which test the C and Z
flags . They are likely to be the only branching instructions that you'll
ever find occasion to use.

3. The Decision-Makers:
CMP, BNE, BEQ, BCC, BCS

The four "branchers" here - they all begin with a "B" - have
only one addressing mode. In fact, it's an interesting mode unique to
the "B" instructions and created especially for them: relative
addressing . They do not address a memory location as an absolute
thing; rather, they address a location which is a certain distance from
their position in the ML code. Put another way, the argument of the
"B" instructions is an offset which is relative to their position. You
never have to worry about relocating "B" instructions to another part
of memory. You can copy them and they will work just as well in the
new location. That's because their argument just says" add five to the
present address" or "subtract twenty-seven," or whatever argument
you give them. But they can't branch further back than 127 or further
forward than 128 bytes.

None of the brancher instructions have any effect whatsoever on
any flags; instead, they are the instructions which look at the flags.
They are the only instructions that base their activity on the condition
of the status register and its flags. They are why the flags exist at all.

CMP is an exception. Many times it is the instruction that comes
just before the branchers and sets flags for them to look at and make
decisions about. Lots of instructions - LDA is one - will set or
"clear" (put down) flags - but sometimes you need to use CMP to
find out what's going on with the flags. CMP affects the N, Z, and C
flags. CMP has many addressing modes available to it: Immediate,
Absolute, Zero Page, (lndirect,X), (Indirect), Y, Zero Page,X, and
Absolute,X and Y.

The Foundations Of Computer Power
This decision-maker group and the following group (loops) are the
basis of our computers' enormous strength. The decision-makers
allow the computer to decide among two or more possible courses of
action. This decision is based on comparisons. If the ball hits a wall,
then reverse its direction. In BASIC, we use IF-THEN and ON-GOTO

69

6 The Instruction Set

structures to make decisions and to make appropriate responses to
conditions as they arise during a program run .

Recall that most micros use memonJ mapped video, which means
that you can treat the screen like an area of RAM memory. You can
PEEK and POKE into it and create animation, text, or other visual
events. In ML, you PEEK by LOA $VIDEO MEMORY and examine
what you've PEEKed with CMP. You POKE via STA $VIOEO
MEMORY.

CMP does comparisons. This tests the value at an address
against what is in the accumulator. Less common are CPX and CPY.
Assume that we have just added 40 to a register we set aside to hold
the current address-location of a ball on our screen during a game.
Before the ball can be POKEd into that address, we'd better make
sure that something else (a wall, a paddle, etc.) is not sitting there.
Otherwise the ball would pass right through walls .

Since we just increased the location register (this register, we
said, was to be at $80,81), we can use it to find out if there is blank
space (32) or something else (like a wall). Recall that the very useful
"indirect Y" addressing mode allows us to use an address in zero
page as a pointer to another address in memory. The number in the Y
register is added to whatever address sits in 80,81; so we don't LOA
from 80 or 81, but rather from the address that they contain, plus Y's
value.

To see what's in our potential ball location, we can do the
following:

LOY #0 (we want to fetch from the ball address itself, so we
don't want to add anything to it. Y is set to zero.)

LOA (80), Y (fetch whatever is sitting where we plan to next
send the ball . To review Indirect, Y addressing once
more: say that the address we are fetching from here
is $1077. Address $80 would hold the LSB ($77) and
address $81 would hold the MSB ($10). Notice that
the argument of an Indirect, Y instruction only
mentions the lower address of the two-byte
pointer, the $80. The computer knows that it has to
combine $80 and $81 to get the full address - and
does this automatically.)

At this point in your game, there might be a 32 (ASCII for the
space or blank character) or some other number which we would
know indicated a wall, another player, a paddle, etc. Now that this
questionable number sits in the accumulator, we will CMP it against a
space. We could compare it with the number which means wall or the
other possibilities - it doesn't matter. The main thing is to compare it:

70

2000 CMP #32
2002 BNE 200A

The Instruction Set 6

(is it a space?)
(Branch if Not Equal [if not 32] to address 200A,
which contains the first of a series of
comparisons to see if it's a wall, a paddle, etc .
On the other hand, if the comparison worked, if
it was a 32 (so we didn't Branch Not Equal),
then the next thing that happens is the
instruction in address 2004. We "fall through"
the BNE to an instruction which jumps to the
subroutine (JSR), which moves the ball into
this space and then returns to address 2007,
which jumps over the series of comparisons for
wall, paddle, etc.)

2004 JSR 3000 (the ball printing subroutine)
2007 JMP 2020 (jump over the rest of the comparisons)
200A CMP #128 (is it our paddle symbol?)
200C BNE 2014 (if not, continue to next comparison)
200E JSR 3050 (do the paddle-handling subroutine and .. .)
2011 JMP 2020 (jump over the rest, as before in 2007)
2014 CMP #144 (is it a wall ... and so forth with as many

comparisons as needed)

This structure is to ML what ON-COTO or ON-COSUB is to
BASIC. It allows you to take multiple actions based on a single LOA.
Doing the CMP only once would be comparable to BASIC's IF-THEN.

Other Branching Instructions
In addition to the BNE we just looked at, there are BCC, BCS, BEQ,
BMI, BPL, BVe, and BVS . Learn BCC, BCS, BEQ, and BNE and you
can safely ignore the others.

All of them are branching, IF-THEN, instructions. They work in
the same way that BNE does . You write BEQ followed by the address
you want to go to. If the result of the comparison is "yes, equal-to
zero is true," then the ML program will jump to the address which is
the argument of the BEQ. "True" here means that something EQuals
zero. One example that would send up the Z flag (thereby triggering
the BEQ) is: LOA #00. The action of loading a zero into A sets the Z
flag up.

You are allowed to "branch" either forward or backward from
the address that holds the "B-" instruction. However, you cannot
branch any further than 128 bytes in either direction. If you want to
gc further, you must JMP (JuMP) or JSR (Jump to SubRoutine). For all
practical purposes, you will usually be branching to instructions
located within 30 bytes of your "B" instruction in either direction .
You will be taking care of most things right near where a CoMPare, or
other flag-setting event, takes place.

71

6 The Instruction Set

If you need to use an elaborate subroutine, simply JSR to it at the
target address of your branch:

2000 LOA 65
2002 CMP 85 (is what was in address 65 equal to what was in

address 85?)
2004 BNE 2009 (if Not Equal, branch over the next three bytes

which perform some elaborate job)
2006 JSR 4000 (at 4000 sits an elaborate subroutine to take care

of cases where addresses 65 and 85 turn out to
be equal)

2009 (continue with the program here)

If you are branching backwards, you've written that part of your
program, so you know the address to type in after a BNE or one of the
other branches . But, if you are branching forward, to an address in
part of the program not yet written - how do you know what to give
as the address to branch to? In complicated two-pass assemblers, you
can just use a word like "BRANCHTARGET", and the assembler will
"pass" twice through your program when it assembles it. The first
"pass" simply notes that your BNE is supposed to branch to
"BRANCHTARGET," but it doesn ' t yet know where that is.

When it finally finds the actual address of "BRANCHTARGET,"
it makes a note of the correct address in a special label table. Then, it
makes a second "pass" through the program and fills in (as the next
byte after your BNE or whatever) the correct address of .
"BRANCHTARGET". All of this is automatic, and the labels make
the program you write (called the source code) look almost like English.
In fact, complicated assemblers can contain so many special features
that they can get close to the higher-level languages, such as BASIC:
(These initial definitions of labels TESTBYTE = 80
are sometimes called "equates.") NEWBYTE=99

2004 LOA TESTBYTE
2006 CMP NEWBYTE
2008 BNE BRANCHTARGET
200A JR SPECIALSUBROUTINE

BRANCHTARGET 2000 ... etc.

Instead of using lots of numbers (as we do when using the
Simple Assembler) for the target/argument of each instruction, these
assemblers allow you to define (" equate' ') the meanings of words like
"TESTBYTE" and from then on you can use the word instead of the
number. And they do somewhat simplify the problem of forward
branching since you just give (as above) address 2000 a name,
"BRANCHTARGET," and the word at address 2009 is later replaced
with 2000 when the assembler does its passes.

This is how the example above looks as the source code listing
from a two-pass, deluxe assembler:
72

2j

P
ro

g
ra

m
 6

-1
 .

2
0

0
4

-
A

9
8

0

2
0

0
6

-
C

5
9

9

2
0

0
8

-
DO

0

3

2
0

0
A

-
20

1

0

20

2
0

0
0

-
A

D

00

04

2
0

1
0

-
A

D

21

00

0
0

1
0

0

0
2

0

0
0

3
0

0

0
4

0

0
0

5
0

0

0
6

0

0
0

7
0

0

0
8

0

0
0

9
0

0

1
0

0

O
ll

O

0
1

2
0

0

1
3

0

0
1

4
0

0

1
5

0

0
1

6
0

T
E

ST
B

Y
T

E

N
EW

B
Y

TE

ST
A

R
T

.B
A

$

2
0

0
4

.D

E

$
8

0

.D
E

$

9
9

LD
A

#T

E
S

T
B

Y
T

E

C
M

P
*N

E
W

B
Y

T
E

;

(Z
E

R
O

B

N
E

B
R

A
N

C
H

T
A

R
G

E
T

JS

R

S
P

E
C

IA
L

S
U

B
R

O
U

T
IN

E

;
(I

M
M

E
D

IA
T

E

A
D

O
R

E
PA

G
E

A
D

D
R

E
S

S
IN

G
)

(R
E

L
A

T
IV

E

A
D

O
R

E
S

B
R

A
N

C
H

T
A

R
G

E
T

LO

A

$
4

0
0

;

Y
O

U

C
A

N

FR
E

E
L

Y

M
IX

L

A
B

L
E

S
A

N
D

S

U
B

R
O

U
T

IN
E

S
.

A
L

S
O

,
C

O
M

M
EN

TS

W
IL

L

B
E

IG
N

O
R

E
D

BY

TH

E
A

SS
E

M
B

L
E

R

A
N

D

C
A

N

B
E

ST
U

C
K

A

N
Y

W
H

ER
E,

A

S
Y

O
U

S

E
E

.

S
P

E
C

IA
L

S
U

B
R

O
U

T
IN

E

LO
A

33

;

E
T

C
.

E
T

C
.

.E
N

-i

-:r

~
 - :::l 1/

1 ,.,. ., c: n ,.,. S·

:::
l

(I
)

~
 ,.,. 0
-

6 The Instruction Set

Actually, we should note in passing that a 2000 will not be the
number which finally appears at address 2009 to replace
"BRANCHTARGET". To save space, all branches are indicated as an
"offset" from the address of the branch. The number which will
finally replace "BRANCHTARGET" at 2009 above will be three. This
is similar to the way that the value of the Y register is added to an
address in zero page during indirect Y addressing (also called
"indirect indexed"). The number given as an argument of a branch
instruction is added to the address of the next instruction. So,
200A + 3 = 2000. Our Simple Assembler will take care of all this for
you. All you need do is give it the 2000 and it will compute and put
the 3 in place for you.

Forward Branch Solutions
There is one responsibility that you do have, though . When you are
writing 2008 BNE 2000, how do you know to write in 200D? You can' t
yet know to exactly which address up ahead you want to branch.
There are two ways to deal with this . Perhaps easiest is to just put in
BNE 2008 (have it branch to itself) . This will result in a FE being
temporarily left as the target of your BNE. Then, you can make a note
on paper to later change the byte at 2009 to point to the correct
address, 2000. You've got to remember to "resolve" that FE to
POKE in the number to the target address, or you will leave a little
bomb in your program - an endless loop . The Simple Assembler has
a POKE function. When you type POKE, you will be asked for the
address and value you want POKEd. So, by the time you have
finished coding 2000, you could just type POKE and then POKE
2009,3 .

The other, even simpler, way to deal with forward branch
addresses will come after you are familiar with which instructions use
one, two, or three bytes. This BNE-JSR-TARGET construction is
common and will always be six awayfrom the present address, an
offset of 6. If the branch instruction is at 2008, you just count off three:
200A, 200B, 200C and write BNE 200D. Other, more complex
branches such as ON-GOTO constructions will also become easy to
count off when you're familiar with the instruction byte-lengths. In
any case, it's simple enough to make a note of any unsolved branches
and correct them before running the program.

Alternatively, you can use a single "unresolved" forward
branch in the Simple Assembler; see its instructions. You just type
BNE FORWARD.

Recall our previous warning about staying away from the
infamous BPL and BMI instructions? BPL (Branch on PLus) and BMI
(Branch on MInus) sound good, but should be avoided. To test for
less-than or more-than situations, use BCC and BCS respectively.
(Recall that BCC is alphabetically less-than BCS - an easy way to

74

The Instruction Set 6

remember which to use.) The reasons for this are exotic. We don't
need to go into them. Just be warned that BPL and BMI, which sound
so logical and useful, are not. They can fail you and neither one lives
up to its name. Stick with the always trustworthy BCC, BCS .

Also remember that BNE and the other three main "B" group
branching instructions often don't need to have a CMP come in front
of them to set a flag they can test. Many actions of many opcodes will
automatically set flags during their operations. For example, LOA $80
will affect the Z flag so you can tell if the number in address $80 was
or wasn't zero by that flag. LOA $80 followed by BNE would branch
away if there were anything besides a zero in address $80. If in doubt,
check the chart of instructions in Appendix A to see which flags are
set by which instructions. You'll soon get to know the common ones.
If you are really in doubt, go ahead and use CMP.

4. The Loop Group:
DEY, DEX, INY, INX, INC, DEC

INY and INX raise the Y and X register values by one each time
they are used . If Y is a 17 and you INY, Y becomes an 18. Likewise,
DEY and DEX decrease the value in these registers by one. There is
no such increment or decrement instruction for the accumulator.

Similarly, INC and DEC will raise or lower a memory address by
one . You can give arguments to them in four addressing modes:
Absolute, Zero Page, Zero Page,X and Absolute,X. These instructions
affect the Nand Z flags.

The Loop Group are usually used to set up FOR-NEXT
structures. The X register is used most often as a counter to allow a
certain number of events to take place. In the structure FOR 1=1 TO
10: NEXT I, the value of the variable 1 goes up by one each time the
loop cycles around. The same effect is created by:

2000 LOX #10
2002 OEX ("DEcrement" or "DEcrease X" by 1)
2003 BNE 2002 (Branch if Not Equal [to zero] back up to

address 2002)

Notice that DEX is tested by BNE (which sees if the Z flag, the
zero flag, is up) . DEX sets the Z flag up when X finally gets down to
zero after ten cycles of this loop. (The only other flag affected by this
loop group is the N [negative] flag for signed arithmetic.)

Why didn't we use INX, INcrease X by I? This would parallel
exactly the FOR 1=1 TO 10, but it would be clumsy since our starting
count which is #10 above would have to be #245. This is because X
will not become a zero going up until it hits 255 . So, for clarity and

75

6 The Instruction Set

simplicity, it is customary to set the count of X and then DEX it
downward to zero. The following program will accomplish the same
thing as the one above, and allow us to INX, but it too is somewhat
clumsy:

2000 LDX #0
2002 INX
2003 CPX #10
2005 BNE 2002

Here we had to use zero to start the loop because, right off the
bat, the number in X is INXed to one by the instruction at 2002. In any
case, it is a good idea to just memorize the simple loop structure in
the first example . It is easy and obvious and works very well.

Big Loops
How would you create a loop which has to be larger than 256 cycles?
When we examined the technique for adding large numbers, we
simply used two-byte units instead of single-byte units to hold our
information. Likewise, to do large loops, you can count down in two
bytes, rather than one. In fact, this is quite similar to the idea of
"nested" loops (loops within loops) in BASIC.

2000 LDX #10 (start of 1st loop)
2002 LDY #0 (start of 2nd loop)
2004 DEY
2005 BNE 2004 (if Y isn't yet zero, loop back to DEcrease Y

again - this is the inner loop)
2007 DEX (reduce the outer loop by one)
2008 BNE 2002 (if X isn't yet zero, go through the entire DEY

loop again)
200A (continue with the rest of the program . ..)

One thing to watch out for: be sure that a loop BNE's back up to
one address after the start of its loop . The start of the loop sets a number
into a register and, if you keep looping up to it, you'll always be
putting the same number into it . The DEcrement (decrease by one)
instruction would then never bring it down to zero to end the
looping. You'll have created an endless loop.

The example above could be used for a "timing loop" similarly
to the way that BASIC creates delays with: FOR T = 1 TO 2000: NEXT
T. Also, sometimes you do want to create an endless loop (the BEGIN
... UNTIL in "structured programming"). A popular "endless"
loop structure in BASIC waits until the user hits any key: 10 GET K$:
IF K$=" "THEN 10.

10 IF PEEK (764) = 255 THEN 10 is the way to accomplish this on
the Atari; it will cycle endlessly unless a key is pressed. The simplest
way to accomplish this in ML is to look on the map of your computer

76

The Instruction Set 6

to find which byte holds the " last key pressed" number. On Upgrade
and 4.0 CBM/PET, it's address 151. On Atari, it's 764. On Apple II,
it's -16384. On VIC and Commodore 64, it' s 203 with a 64 in that
location if no key is pressed. In any event, when a key is pressed, it
deposits its special numerical value into this cell. If no key is pressed,
some standard value stays there all the time . We'll use the CBM as
our model here . If no key is pressed, location 151 will hold a 255:

2000 LOA 151
2002 CMP #255
2004 BEQ 2000

If the CMP is EQual, this means that the LOA pulled a 255 out of
address 151 and, thus, no key is pressed . So, we keep looping until
the value of address 151 is something other than 255. This setup is
like GET in BASIC because not only does it wait until a key is
pressed, but it also leaves the value of the key in the accumulator
when it's finished .

Recall that a CMP performs a subtraction . It subtracts the number
in its argument from whatever number sits in the accumulator at the
time . LOA #12 CMP $15 would subtract a 5 from 12 if 5 is the number
"held" in address 15. This is how it can leave flags set for testing by
BEQ or BNE. The key difference between this" subtraction" and SBC
is that neither the accumulator nor the argument is affected at all by
it . They stay what they were . The result of the subtraction is "thrown
away," and all that happens is that the status flags go up or down in
response to the result. If the CMP subtraction causes an answer of
zero, the Z flag flips up. If the answer is not zero, the Z flag flips
down. Then, BNE or BEQ can do their job - checking flags.

Dealing With Strings
You've probably been wondering how ML handles strings. It's pretty
straightforward. There are essentially two ways: known-length and
zero-delimit. If you know how many characters there are in a
message, you can store this number at the very start of the text:
"5ERROR." (The number 5 will fit into one byte, at the start of the
text of the message.) If this little message is stored in your "message
zone" - some arbitrary area of free memory you've set aside to hold
all of your messages - you would make a note of the particular
address of the "ERROR" message. Say it's stored at 4070. To print it
out, you have to know where you "are" on your screen (cursor
position) . Usually, the cursor address is held in two bytes in zero
page so you can use Indirect, Y addressing.

Alternatively, you could simply set up your own zero-page
pointers to the screen. For Apple II and Commodore 64, the screen
memory starts at 1024; for CBM/PET it's 32768. In any case, you'll be
able to set up a "cursor management" system for yourself . To

77

6 The Instruction Set

simplify, we'll send our message to the beginning of the Apple's
screen:

2000 LOX 4070 (remember, we put the length of the message
as the first byte of the message, so we load our
counter with the length)

2003 LOY #0 (Y will be our message offset)
2005 LOA 4071, Y (gets the character at the address plus Y. Y is

zero the first time through the loop, so the
"e" from here lands in the accumulator. It
also stays in 4071. It ' s just being copied into
the accumulator.)

2008 STA 1024, Y (we can make Y do double duty as the offset
for both the stored message and the screen
printout. Y is still zero the first time through

2011 INY
this loop, so the "e" goes to 1024.)
(prepare to add one to the message-storage
location and to the screen-print location)

2012 OEX (lower the counter by one)
2013 BNE 2005 (if X isn't used up yet, go back and get-and-

print the next character, the "r")

If The Length Is Not Known
The alternative to knowing the length of a string is to put a special
character (usually zero) at the end of each message to show its limit.
This is called a delimiter. Note that Atari users cannot make zero the
delimiter because zero is used to represent the space character . A zero
works well for other computers because, in ASCII, the value 0 has no
character or function (such as carriage return) coded to it.
Consequently, any time the computer loads a zero into the
accumulator (which will flip up the Z flag), it will then know that it is
at the end of your message . At 4070, we might have a couple of error
messages: "Ball out of rangeOTime nearly up!O". (These are numeric,
not ASCII, zeros. ASCII zero has a value of 48.)

To print the time warning message to the top of the CBM/PET
screen (this is in decimal) :

78

2000 LOY #0
2002 LOA 4088,Y
2005 BEQ 2005

2007 STA 32768,Y

(get the "T")
(the LOA just above will flip the zero flag up if
it loads a zero, so we forward branch out of our
message-printing loop . "BEQ 2005" is a
dummy target, used until we know the actual
target and can POKE it into 2006.)
(we're using the Y as a double-duty offset
again)

The Instruction Set 6

2010 INY
2011 IMP 2002 (in this loop, we always jump back. Our exit

from the loop is not here, at the end. Rather, it
is the Branch if EQual which is within the
loop .)

2014 (continue with another part of the program)

By the way, you should notice that the Simple Assembler will
reject the commas in this example and, if you've forgotten to set line
10 to accept decimal , it will not accept the single zero in LOY #0. Also,
if you get unpredictable results, maybe decimal 2000 is not a safe
address to store your ML. You might need to use some other practice
area.

Now that we know the address which follows the loop (2014),
we can POKE that address into the "false forward branch" we left in
address 2006. What number do we POKE into 2006? Just subtract 2007
from 2014, which is seven. Using the Simple Assembler, type POKE
and you can take care of this while you remember it. The assembler
will perform the POKE and then return to wait for your next
instruction .

Both of these ways of handling messages are effective, but you
must make a list on paper of the starting addresses of each message.
In ML, you have the responsibility for some of the tasks that BASIC
(at an expense of speed) does for you. Also, no message can be larger
than 255 using the methods above because the offset and counter
registers count only that high before starting over at zero again.
Printing two strings back-to-back gives a longer, but still under 255
byte, message:

2000 LOY #0
2002 LOX #2 (in this example, we use X as a counter which

represents the number of messages we are
printing)

2004 LOA 4000, Y (get the "B" from "Ball out of. .. ")
2007 BEQ 2016 (go to reduce [and check] the value of X)
2009 STA 32768, Y (we're using the Y as a double-duty offset

2012 INY
2013 IMP 2004
2016 INY

20170EX

2018 BNE 2004

again)

(we need to raise Y since we skipped that step
when we branched out of the loop)

(at the end of the first message, X will be
a "1"; at the end of the second message,
it will be zero)

(if X isn' t down to zero yet, re-enter the loop to
print out the second message)

79

6 The Instruction Set

To fill your screen with instructions instantly (say at the start of a
game), you can use the following m ass-move. We'll assume that the
instructions go from 5000 to 5400 in memory and you want to transfer
them to the PET screen (at $8000). If your computer ' s screen RAM
moves around (adding memory to VIC will move the screen RAM
address), you will need to know and substitute the correct address for
your computer in these examples which print to the screen. This is in
hex :

2000 LDY #0
2002 LDA 5000, Y
2005 STA 8000, Y
2008 LDA 5100, Y
200B STA 8100, Y
200E LDA 5200, Y
2011 STA 8200,Y
2014 LDA 5300, Y
2017 STA 8300,Y
201AINY
201B BNE 2002 (if Y hasn't counted up to zero - which comes

just above 255 - go back and load-store the
next character in each quarter of the large
message)

This technique is fast and easy any time you want to mass-move
one area of memory to another. It makes a copy and does not disturb
the original memory . To mass-clear a memory zone (to clear the
screen, for example), you can use a similar loop, but instead of
loading the accumulator each time with a different character, you
load it at the start with the character your computer uses to blank the
screen. (Commodore including VIC and Apple = decimal 32;
Atari=O):

2000 LDA #20 (this example, in hex, blanks the PET screen)
2002 LDY #0
2004 STA 8000, Y
2007 STA 8100,Y
200A STA 8200,Y
200D STA 8300,Y
2010 DEY
2011 BNE 2004

Of course, you could simply JSR to the routine which already
exists in your BASIC to clear the screen. In Chapter 7 we will explore
the techniques of using parts of BASIC as examples to learn from and
also as a collection of ready-made ML subroutines. Now, though, we
can look at how subroutines are handled in ML.

80

The Instruction Set 6

5. The Subroutine and jump Group:
jMP, jSR, RTS

JMP has only one useful addressing mode: Absolute . You give it a
firm, two-byte argument and it goes there. The argument is put into
the Program Counter and control of the computer is transferred to
this new address where an instruction there is acted upon. (There is a
second addressing mode, JMP Indirect, which, you will recall, has a
bug and is best left unused .)

JSR can only use Absolute addressing.
RTS's addressing mode is Implied. The address is on the stack,

put there during the JSR.
None of these instructions has any effect on the flags.
JSR (Jump to SubRoutine) is the same as GOSUB in BASIC, but

instead of giving a line number, you give an address in memory
where the subroutine sits. RTS (ReTurn from Subroutine) is the same
as RETURN in BASIC, but instead of returning to the next BASIC
command, you return to the address following the JSR instruction
(it's a three-byte-long ML instruction containing JSR and the two-byte
target address) . JMP (JuMP) is GOTO. Again, you JMP to an address,
not a line number. As in BASIC, there is no RETURN from a JMP.

Some Further Cautions About The Stack
The stack is like a pile of coins . The last one you put on top of the pile
is the first one pulled off later. The main reason that the 6502 sets
aside an entire page of memory especially for the stack is that it has to
know where to go back to after GOSUBs and JSRs.

A JSR instruction pushes the correct return address onto the
" stack" and, later, the next RTS "pulls" the top two numbers off the
stack to use as its argument (target address) for the return. Some
programmers, as we noted before, like to play with the stack and use
it as a temporary register to PHA (PusH Accumulator onto the stack).
This sort of thing is best avoided until you are an advanced ML
programmer. Stack manipulations often result in a very confusing
program. Handling the stack is one of the few things that the
computer does for you in ML. Let it .

The main function of the stack (as far as we're concerned) is to
hold return addresses. It's done automatically for us by "pushes"
with the JSR and, later, "pulls" (sometimes called pops) with the RTS.
If we don't bother the stack, it will serve us well. There are thousands
upon thousands of cells where you could temporarily leave the
accumulator - or any other value - without fouling up the orderly
arrangement of your return addresses.

Subroutines are extremely important in ML programming. ML
programs are designed around them, as we'll see. There are times

81

6 The Instruction Set

when you'll be several subroutines deep (one will call another which
calls another); this is not as confusing as it sounds. Your main Player
input routine might call a print-message subroutine which itself calls
a wait-until-key-is-pressed subroutine. If any of these routines PHA
(PusH the Accumulator onto the stack), they then disturb the
addresses on the stack. If the extra number on top of the stack isn't
PLA-ed off (PulL Accumulator), the next RTS will pull off the number
that was PHA' ed and half of the correct address. It will then merrily
return to what it thinks is the correct address: it might land
somewhere in the RAM, it might go to an address at the outer reaches
of your operating system - but it certainly won't go where it should.

Some programmers like to change a GOSUB into a GOTO (in
the middle of the action of a program) by PLA PLA. Pulling the two
top stack values off has the effect of eliminating the most recent RTS
address. It does leave a clean stack, but why bother to JSR at all if you
later want to change it to a GOTO? Why not use JMP in the first
place?

There are cases, too, when the stack has been used to hold the
current condition of the flags (the Status Register byte). This is
pushed/pulled from the stack with PHP (PusH Processor status) and
PLP (PulL Processor status). If you should need to "remember" the
condition of the status flags, why not just PHP PLA STA $NN?
("NN" means the address is your choice.) Set aside a byte
somewhere that can hold the flags (they are always changing inside
the Status Register) for later and keep the stack clean. Leave stack
acrobatics to FORTH programmers . The stack, except for advanced
ML, should be inviolate.

FORTH, an interesting language, requires frequent s tack
manipulations . But in the FORTH environment, the reasons for this
and its protocol make excellent sense. In ML, though, stack
manipulations are a s ticky business.

Saving The Current Environment
There is one exception to our leave-the-stack-alone rule. Sometimes
(espeCially when you are "borrowing" a routine from BASIC) you
will want to take up with your own program from where it left off.
That is, you might not want to write a "clear the screen" subroutine
because you find the address of such a routine on your map of
BASIC. However, you don't know what sorts of things BASIC will do
in the meantime to your registers or your flags, etc. In other words,
you just want to clear the screen without disturbing the flow of your
program by unpredictable effects on your X, Y, A, and status
registers. In such a case, you can use the following "Save the state of
things" routine:

82

2000 PHP (push the status register onto the stack)
2001 PHA

The Instruction Set 6

2002 TXA
2003 PHA
2004 ITA
2005 PHA
2006 JSR (to the clear-the-screen routine in BASIC. The RTS

will remove the return address [2009], and you'll
have a mirror image of the things you had pushed
onto the stack . They are pulled out in reverse order,
as you can see below . This is because the first pull
from the stack will get the most recently pushed
number. If you make a little stack of coins, the first
one you pull off will be the last one you put onto the
stack.)

2009 PLA (now we reverse the order to get them back)
2010 TAY
2011 PLA
2012 TAX
2013 PLA (this one stays in A)
2014 PLP (the status register)

Saving the current state of things before visiting an uncharted,
unpredictable subroutine is probably the only valid excuse for playing
with the stack as a beginner in ML. The routine above is constructed
to leave the stack intact. Everything that was pushed on has been
pulled back off.

The Significance Of Subroutines
Maybe the best way to approach ML program writing - especially a
large program - is to think of it as a collection of subroutines. Each of
these subroutines should be small. It should be listed on a piece of
paper followed by a note on what it needs as input and what it gives
back as parameters. "Parameter passing" simply means that a
subroutine needs to know things from the main program
(parameters) which are handed to it (passed) in some way.

The current position of the ball on the screen is a parameter
which has its own "register" (we set aside a register for it at the start
when we were assigning memory space on paper). So, the "send the
ball down one space" subroutine is a double-adder which adds 40 or
whatever to the" current position register." This value always sits in
the register to be used any time any subroutine needs this
information. The "send the ball down one" subroutine sends the
current-position parameter by passing it to the current-position
register.

This is one way that parameters are passed. Another illustration
might be when you are telling a delay loop how long to delay. Ideally,
your delay subroutine will be multi-purpose. That is, it can delay for

83

6 The Instruction Set

anywhere from liz second to 60 seconds or something. This means
that the subroutine itself isn't locked into a particular length of delay.
The main program will " pass" the amount of delay to the subroutine.

3000 LDY #0
3002 INY
3003 BNE 3002
3005 DEX
3006 BNE 3000
3008 RTS

Notice that X never is initialized (set up) here with any particular
value. This is because the value of X is passed to this subroutine from
the main program. If you want a short delay, you would:

2000 LDX #5 (decimal)
2002 JSR 3000

And for a delay which is twice as long as that:

2000 LDX #10
2002 JSR 3000

In some ways, the less a subroutine does, the better. If it's not
entirely self-sufficient, and the shorter and simpler it is, the more
versatile it will be. For example, our delay above could function to
time responses, to hold sounds for specific durations, etc. When you
make notes, write something like this : 3000 DELAY LOOP (Expects
duration in X. Returns 0 in X.) . The longest duration would be LDX
#0. This is because the first thing that happens to X in the delay
subroutine is DEX. If you DEX a zero, you get 255 . If you need longer
delays than the maximum value of X, simply:

3000 LDX #0
3002 JSR 3000
3005 JSR 3000 (notice that we don't need to set X to zero this

second time. It returns from the subroutine
with a zeroed X.)

You could even make a loop of the JSR' s above for extremely
long delays . The point to notice here is that it helps to document each
subroutine in your library: what parameters it expects, what
registers, flags, etc., it changes, and what it leaves behind as a result.
This documentation - a single sheet of paper will do - helps you
remember each routine's address and lets you know what effects and
preconditions are involved.

JMP
Like BASIC's GOTO, JMP is easy to understand . It goes to an
address: JMP 5000 leaps from wherever it is to start carrying out the

84

The Instruction Set 6

instructions which start at 5000. It doesn't affect any flags. It doesn't
do anything to the stack. It's clean and simple. Yet some advocates of
"structured programming" suggest avoiding JMP (and GOTO in
BASIC). Their reasoning is that JMP is a shortcut and a poor
programming habit.

For one thing, they argue, using GOTO makes programs
confusing. If you drew lines to show a program's "flow" (the order
in which instructions are carried out), a program with lots of GOTO's
would look like boiled spaghetti. Many programmers feel, however,
that JMP has its uses. Clearly, you should not overdo it and lean
heavily on JMP. In fact, you might see if there isn't a better way to
accomplish something if you find yourself using it all the time and
your programs are becoming impossibly awkward. But JMP is
convenient, often necessary in ML.

A 6502 Bug
On the other hand, there is another, rather peculiar JMP form which
is hardly ever used in ML: JMP (5000) . This is an indirect jump which
works like the indirect addressing we've seen before. Remember that
in Indirect, Y addressing (LOA (81), Y), the number in Y is added to
the address found in 81 and 82. This address is the real place we are
LOAing from, sometimes called the effective address. If 81 holds a 00,
82 holds a 40, and Y holds a 2, the address we LOA from is going to be
4002 . Similarly (but without adding Y), the effective address formed
by the two bytes at the address inside the parentheses becomes the
place we JMP to in JMP (5000).

There are no necessary uses for this instruction. Best avoid it the
same way you avoid playing around with the stack until you're an
ML expert. If you find it in your computer's BASIC ROM code, it will
probably be involved in an "indirect jump table," a series of registers
which are dynamic. That is, they can be changed as the program
progresses. Such a technique is very close to a self-altering program
and would have few uses for the beginner in ML programming.
Above all, there is a bug in the 6502 itself which causes indirect JMP to
malfunction under certain circumstances. Put JMP ($NNNN) into the
same category as BPL and BMI. Avoid all three.

If you decide you must use indirect JMP, be sure to avoid the
edge of pages: JMP ($NNFF). The "NN" means" any number."
Whenever the low byte is right on the edge, if $FF is ready to reset to
00, this instruction will correctly use the low byte (LSB) found in
address $NNFF, but it will not pick up the high byte (MSB) from
$NNFF plus one, as it should . It gets the MSB from NNOO!

Here's how the error would look if you had set up a pointer to
address $5043 at location $40FF:

$40FF 43
$4100 50

85

6 The Instruction Set

Your intention would be to IMP to $5403 by bouncing off this
pointer. You would write IMP ($40FF) and expect that the next
instruction the computer would follow would be whatever is written
at $5043. Unfortunately, you would land at $0043 instead (if address
$4000 held a zero). It would get its MSB from $4000.

6. Oebuggers:
BRKandNOP

BRK and NOP have no argument and are therefore members of that
class of instructions which use only the Implied addressing mode.
They also affect no flags in any way with which we would be
concerned. BRK does affect the I and B flags, but since it is a rare
situation which would require testing those flags, we can ignore this
flag activity altogether.

After you've assembled your program and it doesn't work as
expected (few do), you start debugging. Some studies have shown that
debugging takes up more than fifty percent of programming time.
Such surveys might be somewhat misleading, however, because
"making improvements and adding options" frequently takes place
after the program is allegedly finished, and would be thereby
categorized as part of the debugging process.

In ML, debugging is facilitated by setting breakpoints with BRK
and then seeing what's happening in the registers or memory . If you
insert a BRK, it has the effect of halting the program and sending you
into your monitor where you can examine, say, the Y register to see if
it contains what you would expect it to at this point in the program.
It's similar to BASIC's STOP instruction:

2000 LDA #15
2002 TAY
2003 BRK

If you run the above, it will carry out the instructions until it gets
to BRK when it will put the program counter plus two on the stack, put
the status register on the stack, and load the program counter with
whatever is in addresses $FFFE, $FFFF. These are the two highest
addresses in your computer and they contain the vector (a pointer) for
an interrupt request (IRQ).

These addresses will point to a general interrupt handler and, if
your computer has a monitor, its address might normally be found
here. Remember, though, that when you get ready to CONT, the
address on the top of the stack will be the BRK address plus two.
Check the program counter (it will appear when your monitor
displays the registers) to see if you need to modify it to point to the

86

The Instruction Set 6

next instruction instead of pointing, as it might be, to an argument .
Some monitors adjust the program counter when they are BRKed to
so that you can type g (go) in the same way that you would type
CONT in BASIC. See the instructions for your particular monitor.

Debugging Methods
In effect, you debug whenever your program runs merrily along and
then does something unexpected. It might crash and lock you out.
You look for a likely place where you think it is failing and just insert a
BRK right over some other instruction . Remember that in the monitor
mode you can display a hex dump and type over the hex numbers on
screen, hitting RETURN to change them. In the example above,
imagine that we put the BRK over an STY 8000. Make a note of the
hex number of the instruction you covered over with the BRK so you
can restore it later. After checking the registers and memory, you
might find something wrong. Then you can fix the error.

If nothing seems wrong at this point, restore the original STY
over the BRK, and insert a BRK in somewhere further on. By this
process, you can isolate the cause of an oddity in your program.
Setting breakpoints (like putting STOP into BASIC programs) is an
effective way to run part of a program and then examine the
variables.

If your monitor or assembler allows single-stepping, this can be an
excellent way to debug, too. Your computer performs each
instruction in your program one step at a time . This is like having
BRK between each instruction in the program. You can control the
speed of the stepping from the keyboard. Single-stepping automates
breakpoint checking. It is the equivalent of the TRACE command
sometimes used to debug BASIC programs.

Like BRK ($00), the hex number of NOP ($EA) is worth
memorizing. If you're working within your monitor, it will want you
to work in hex numbers . These two are particularly worth knowing.
NOP means No OPeration. The computer slides over NOP's without
taking any action other than increasing the program counter. There
are two ways in which NOP can be effectively used.

First, it can be an eraser. If you suspect that STY 8000 is causing
all the trouble, try running your program with everything else the
same, but with STY 8000 erased. Simply put three EA's over the
instruction and argument. (Make a note, though, of what was under
the EA's so you call restore it.) Then, the program will run without
this instruction and you can watch the effects .

Second, it is sometimes useful to use EA to temporarily hold
open some space. If you don't know something (an address, a
graphics value) during assembly, EA can mark that this space needs
to be filled in later before the program is run. As an instruction, it will

87

6 The Instruction Set

let the program slide by. But, remember, as an address or a number,
EA will be thought of as 234 . In any case, EA could become your "fill
this in" alert within programs in the way that we use self-branching
(leaving a zero after a BNE or other branch instruction) to show that
we need to put in a forward branch's address.

When the time comes for you to "tidy up" your program, use
your monitor's "find" command, if it has one . This is a search
routine: you tell it where to start and end and what to look for, and it
prints out the addresses of any matches it finds . It's a useful utility; if
your monitor does not have a search function, you might consider
writing one as your first large ML project. You can use some of the
ideas in Chapter 8 as a starting point.

Less Common Instructions
The following instructions are not often necessary for beginning
applications, but we can briefly touch on their main uses. There are
several "logical" instructions which can manipulate or test individual
bits within each byte. This is most often necessary when interfacing.
If you need to test what's coming in from a disk drive, or translate on
a bit-by-bit level for I/O (input/output), you might work with the
"logical" group.

In general, this is handled for you by your machine's operating
system and is well beyond beginning ML programming. I/O is
perhaps the most difficult, or at least the most complicated, aspect of
ML programming. When putting things on the screen, programming
is fairly straightforward, but handling the data stream into and out of
a disk is pretty involved. Timing must be precise, and the
preconditions which need to be established are complex.

For example, if you need to "mask" a byte by changing some of
its bits to zero, you can use the AND instruction. After an AND, both
numbers must have contained a 1 in any particular bit position for it
to result in a 1 in the answer. This lets you set up a mask: 00001111
will zero any bits within the left four positions. So, 00001111 AND
11001100 result in 00001100. The unmasked bits remained
unchanged, but the four high bits were all masked and zeroed. The
ORA instruction is the same, except it lets you mask to set bits (make
them a 1).11110000 ORA 11001100 results in 11111100. The
accumulator will hold the results of these instructions.

EOR (Exclusive OR) permits you to "toggle" bits. If a bit is one it
will go to zero. If it's zero, it will flip to one . EOR is sometimes useful
in games. If you are heading in one direction and you want to go back
when bouncing a ball off a wall, you could "toggle." Let's say that
you use a register to show direction: when the ball's going up, the
byte contains the number 1 (00000001), but down is zero (00000000).
To toggle this least significant bit, you would EOR with 00000001.
This would flip 1 to zero and zero to 1. This action results in the

88

The Instruction Set 6

complement of a number. 11111111 EOR 11001100 results in 00110011.
To know the effects of these logical operators, we can look them

up in "truth tables" which give the results of all possible
combinations of zeros and ones:

BIT Tests

AND
o AND 0=0
OAND 1=0
1ANDO=0
1 AND 1=1

OR
o OR 0=0
o OR 1=1
10RO=1
10R1=1

EOR
OEORO=O
OEOR1=1
1EORO=1
1EOR1=0

Another instruction, BIT, also tests (it does an AND), but, like CMP,
it does not affect the number in the accumulator - it merely sets flags
in the status register. The N flag is set (has a 1) if bit seven has a 1 (and
vice versa). The V flag responds similarly to the value in the sixth bit.
The Z flag shows if the AND resulted in zero or not. Instructions, like
BIT, which do not affect the numbers being tested are called non
destructive.

We discussed LSR and ASL in the chapter on arithmetic: they
can conveniently divide and multiply by two. ROL and ROR rotate the
bits left or right in a byte but, unlike with the Logical Shift Right or
Arithmetic Shift Left, no bits are dropped during the shift. ROL will
leave the 7th (most significant) bit in the carry flag, leave the carry flag
in the Oth (least significant bit), and move every other bit one space to
the left :

ROL 11001100 (with the carry flag set) results in
10011001 (carry is still set, it got the leftmost 1)

If you disassemble your computer's BASIC, you may well look
in vain for an example of ROL, but it and ROR are available in the
6502 instruction set if you should ever find a use for them. Should
you go into advanced ML arithmetic, they can be used for
multiplication and division routines.

Three other instructions remain: SEI (SEt Interrupt), RTI
(ReTurn from Interrupt), and CLI (CLear Interrupt). These operations
are, also, beyond the scope of a book on beginning ML programming,
but we ' ll briefly note their effects. Your computer gets busy as soon as
the power goes on. Things are always happening: timing registers are
being updated; the keyboard, the video, and the peripheral
connectors are being refreshed or examined for signals. To
" interrupt" all this activity, you can SEI, perform some task, and
then eLI to let things pick up where they left off.

SET sets the interrupt flag . Following this, all maskable
interruptions (things which can be blocked from interrupting when
the interrupt status flag is up) are no longer possible . There are also

89

6 The Instruction Set

non-maskable interrupts which, as you might guess, will jump in
anytime, ignoring the status register.

The RTI instruction (ReTurn from Interrupt) restores the
program counter and status register (takes them from the stack), but
the X, Y, etc., registers might have been changed during the
interrupt. Recall that our discussion of the BRK involved the above
actions. The key difference is that BRK stores the program counter
plus two on the stack and sets the B flag on the status register. CLI
puts the interrupt flag down and lets all interrupts take place.

If these last instructions are confusing to you, it doesn't matter.
They are essentially hardware and interface related . You can do
nearly everything you will want to do in ML without them. How
often have you used WAIT in BASIC?

90

7

Borrowing From BASIC
BASIC is a collection of ML subroutines. It is a large web of hundreds
of short, ML programs. Why not use some of them by JSRing to
them? At times, this is in fact the best solution to a problem.

How would this differ from BASIC itself? Doesn't BASIC just
create a series of JSR 's when it RUNs? Wouldn't using BASICs ML
routines in this way be just as slow as BASIC?

In practice, you will not be borrowing from BASIC all that much.
One reason is that such JSRing makes your program far less portable,
less easily RUN on other computers or other models of your
computer. When you JSR to an address within your ROM set to save
yourself the trouble of re-inventing the wheel, you are,
unfortunately, making your program applicable only to machines
which are the same model as yours . The subroutine to allocate space
for a string in memory is found at $0302 in the earliest PET model. A
later version of PET BASIC (Upgrade) used $D3CE and the current
models use $C61D. With Atari, Texas Instruments, Sinclair and other
computers as exceptions, Microsoft BASIC is nearly universally used
in personal computers. But each computer's version of Microsoft
differs in both the order and the addresses of key subroutines .

Kernals And Jump Tables
To help overcome this lack of portability, some computer
manufacturers set aside a group of frequently used subroutines and
create a Jump Table, or kernal, for them. The idea is that future,
upgraded BASIC versions will still retain this table. It would look
something like this:

FFCF 4C 15 F2 (INPUT one byte)
FFD2 4C 66 F2 (OUTPUT one byte)
FFD5 4C 01 F4 (LOAD something)
FFD8 4C DO F6 (SAVE something)

This example is part of the Commodore kernal.
There is a trick to the way this sort of table works. Notice that

each member of the table begins with 4C. That's the JMP instruction
and, if you land on it, the computer bounces right off to the address
which follows. $FFD2 is a famous one in Commodore computers. If
you load the accumulator with a number (LOA #65) and then JSR
FFD2, a character will be printed on the screen. The screen location is

91

7 Borrowing From BASIC

incremented each time you use it, so it works semi-automatically. In
other words, it also keeps track of the current" cursor position" for
you.

This same" output" routine will work for a printer or a disk or a
tape - anything that the computer sees as an output device .
However, unless you open a file to one of the other devices (it's
simplest to do this from BASIC in the normal way and then SYS,
USR, or CALL to an ML subroutine), the computer defaults to
(assumes) the screen as the output device, and FFD2 prints there.

What's curious about such a table is that you JSR to FFD2 as you
would to any other subroutine . But where' s the subroutine? It's not
at FFD5. That's a different JMP to the LOAD code. A naked JMP
(there is no RTS here in this .jump table) acts like a rebound: you hit
one of these JMP's in the table and just bounce off it to the true
subroutine.

The real subroutine (at $F266 in one BASIC version's $FFD2's
JMP) will perform what you expect. Why not just JSR to F266 directly?
Because, on other models of Commodore computers - Original
BASIC, for example - the output subroutine is not located at F266 . It's
somewhere else. But a JSR to FFD2 will rebound you to the right
address in any Commodore BASIC. All Commodore machines have
the correct JMP for their particular BASIC set up at FFD2. This means
that you can JSR to FFD2 on any Commodore computer and get
predictable results, an output of a byte.

So, if you look into your BASIC code and find a series of JMP' s
(4C xx xx 4C xx xx), it 's a jump table. Using it should help make your
programs compatible with later versions of BASIC which might be
released . Though this is the purpose of such tables , there are never
any guarantees that the manufacturer will consistently observe them.
And, of course, the program which depends on them will certainly
not work on any other computer brand.

What's Fastest?
Why, though, is a JSR into BASIC code faster than a BASIC program?
When a BASIC program RUNs, it is JSRing around inside itself. The
answer is that a program written entirely in ML, aside from the fact
that it borrows only sparingly from BASIC prewritten routines,
differs from BASIC in an important way. A finished ML program is
like compiled code; that is, it is ready to execute without any overhead.
In BASIC each command or instruction must be interpreted as it
RUNs. This is why BASIC is called an "interpreter." Each instruction
must be looked up in a table to find its address in ROM. This takes
time . Your ML code will contain the addresses for its JSR's . When ML
runs, the instructions don't need the same degree of interpretation by
the computer .

There are special programs called compilers which take a BASIC

92

Borrowing From BASIC 7

program and transform ("compile") it into ML-like code which can
then be executed like ML, without having to interpret each
command . The JSR's are within the compiled program, just as in ML.
Ordinarily, compiled programs will RUN perhaps 20 to 40 times
faster than the BASIC program they grew out of. (Generally, there is
a price to pay in that the compiled version is almost always larger
than its BASIC equivalent.)

Compilers are interesting; they act almost like automatic ML
writers. You write it in BASIC, and they translate it into an ML-like
program. Even greater improvements in speed can be achieved if a
program uses no floating point (decimal points) in the arithmetic.
Also, there are "optimized" compilers which take longer during the
translation phase to compile the finished program, but which try to
create the fastest, most efficient program design possible. A good
compiler can translate an 8K BASIC program in two or three minutes.

GET And PRINT
Two of the most common activities in a computer program are getting
characters from the keyboard and printing them to the screen. To
illustrate how to use BASIC from within an ML program, we'll show
how both of these tasks can be accomplished from within ML.

For the Atari, $F6E2 works like BASIC's GET#. If you JSR $F6E2,
the computer will wait until a key is pressed on the keyboard. Then,
when one is pressed, the numerical code for that key is put into the
accumulator, and control is returned to your ML program. To try this,
type:

2000 JSR $F6E2
2003 BRK

Then run this program and hit a key on the keyboard . Notice
that the code number for that letter appears in the accumulator.

Another location within Atari ' s BASIC ROM will print a
character (whatever's in the accumulator) to the next available
position on the screen. This is like PUT#6. Try combining the above
GET# with this:

2000 JSR $F6E2 (get the character)
2003 JSR $F6A4 (print to the screen)
2006 BRK

Using $F6A4 changes the numbers in the X and Y registers
(explained below).

For the Apple, there are BASIC routines to accomplish these
same jobs. Apple Microsoft BASIC's GET waits for user input.
(Commodore 'S GET doesn ' t wait for input.)

2000 JSR $FDOC (GET a byte from the keyboarq)
2003 RTS (the character is in the accumulator)

93

7 Borrowing From BASIC

This address, $FDOC, will wait until the user types in a
character. It will position a flashing cursor at the correct position .
However, it will not print an " echo," an image of the character on the
screen.

To print to the screen:

2000 LDA # 65 (put "a" into the accumulator)
2002 JSR $FBFD (print it)

For Commodore computers (VIC, 64, and PET/CBM) which also use
Microsoft BASIC, the two subroutines are similar:

2000 JSR $FFE4 (GET whatever key is being pressed)
2003 BEQ 2000 (if no key is pressed, a zero is in the

accumulator, so you BEQ back and try for a
character again)

2005 RTS (the character's value is in the accumulator)

The $FFE4 is another one of those "kernal" jump table locations
common to all Commodore machines . It performs a GET.

An ML routine within your BASIC which keeps track of the
current cursor position and will print things to the screen is often
needed in ML programming.

The VIC, 64, and PET/CBM use the routine called by $FFD2.
Apple uses $FDED. Atari uses $F6A4.

You can safely use the Y register to print out a series of letters (Y
used as an index) in any BASIC except Atari' s. You could print out a
whole word or block of text or graphics stored at $1000 in the
following way. (See Program 7-1.)

Atari's BASIC alters the X and Y registers when it executes its
"print it" subroutine so you need to keep count some other way.
Whenever you borrow from BASIC, be alert to the possibility that the
A, X, or Y registers, as well as the flags in the status register, might
well be changed by the time control is returned to your ML program.
Here's one way to print out messages on the Atari . (See Program 7-2.)

If you look at Appendix B you will see that there are hundreds of
freeze-dried ML modules sitting in BASIC. (The maps included in
this book are for VIC, PET, Atari, and Commodore 64. Appendix B
contains information on how to obtain additional maps for Apple and
Atari.)

It can be intimidating at first, but disassembling some of these
routines is a good way to discover new techniques and to see how
professional ML programs are constructed. Study of your computer's
BASIC is worth the effort, and it's something you can do for yourself.
From time to time, books are published which go into great detail
about each BASIC routine. They, too, are often worth studying.

94

P
ro

g
ra

m
 7

-1
.

0
0

1
0

;

C
O

M
M

O
D

O
R

E
&

 A
PP

L
E

V

E
R

S
IO

N

0
0

2
0

.B

A

$
2

0
0

0

0
0

3
0

.O

S

;
(O

U
T

PU
T

SO

U
R

C
E

C

O
D

E
)

0
0

4
0

C

O
U

N
T

E
R

.D

E

$
5

5

;
(W

IL
L

H

O
LD

IN

D
E

X
)

2
0

0
0

-
53

5

5

5
0

0

0
5

0

S
T

R
IN

G

.B
Y

'S

U
P

E
R

D
U

P
E

R
'

;
ST

O
R

E

T
H

IS

T
E

X
T

S

T
R

IN
G

2

0
0

3
-

45

52

4
4

2

0
0

6
-

55

50

4
5

2

0
0

9
-

52

0
0

6
0

LE

N
G

TH

.D
E

I
I

;
S

T
R

IN
G

IS

1

0

C
H

A
R

S
.

LO
N

G

0
0

7
0

0

0
8

0

P
R

IN
T

IT

.D
E

$F

F
D

2
;

(C
O

M
M

O
D

O
R

E)

0
0

9
0

0

1
0

0

;
(F

O
R

A

PP
L

E

U
SE

$F

D
E

D
)

0
1

1
0

2

0
0

A
-

AO

0
0

0

1
2

0

ST
A

R
T

LO

Y

#
$

0
0

2

0
0

C
-

B
9

00

2
0

0

1
3

0

LO
O

P
LO

A

S
T

R
IN

G
,Y

2

0
0

F
-

20

0
2

F

F

0
1

4
0

JS

R

P
R

IN
T

IT

2
0

1
2

-
C

8
0

1
5

0

IN
Y

OJ

0

2
0

1
3

-
CO

0

8

0
1

6
0

C

PY

#L
E

N
G

T
H

;

(N
O

T
E

LE

N
G

TH

IS

PL
U

S
O

N
E

.
., .,

2
0

1
5

-
DO

F

5
0

1
7

0

B
N

E
LO

O
P

0 !.
2

0
1

7
-

60

0
1

8
0

R

T
S

~

0
1

9
0

.E

N

O
Q

E
N

D
PA

SS

'T
I ., 0

L
A

B
E

L

F
IL

E
:

3
C

O
U

N
T

E
R

=

0
0

5
5

LE

N
G

TH

=
0

0
0

8

L
O

O
P

=
2

0
0

C

OJ

~

P
R

IN
T

IT

=
F

F
D

2
ST

A
R

T

=
2

0
0

A

S
T

R
IN

G

=
2

0
0

0

!!!

n
-.

0

I
I
~

U
1

-.
0

P

ro
gr

am
 7

·2
.

0
0

1
0

A

T
A

R
I

V
E

R
SI

O
N

.....

.
a-

-
0

0
2

0

.B
A

$

0
6

0
0

tr:J

0
0

3
0

.O

S

;
(O

U
T

PU
T

SO

U
R

C
E

C
O

D
E

)
0 ""

I
""

I
0

0
4

0

C
O

U
N

TE
R

.D

E

$
5

5

;
(W

IL
L

H

O
LD

IN

D
E

X
)

0

0
6

0
0

-
53

55

50

0

0
5

0

S
T

R
IN

G

.B
Y

'S

U
P

E
R

D
U

P
E

R
'

;
ST

O
R

E

T
H

IS

T
E

X
T

S

T
R

IN
G

~.

0

6
0

3
-

45

52

44

:::
l

OQ

0
6

0
6

-
55

50

45

" ""

I

0
6

0
9

-
52

0

0
0

6
0

LE

N
G

TH

. D
E

1
1

;

S
T

R
IN

G

IS

10

C
H

A
R

S
.

LO
N

G

3
0

0
7

0

tr:J

l>

0
0

8
0

P

R
IN

T
IT

.D

E

$F
6A

4
;

(A
T

A
R

I)

~

0
0

9
0

n

0
6

0
A

-
A

9
00

0

1
0

0

ST
A

R
T

LO

A

#
0

0

0
6

0
C

-
8

5

55

0
1

1
0

ST

A

*C
O

U
N

T
E

R

(A
N

Y

FR
E

E

ZE
R

O

PA
G

E
)

0
6

0
E

-
AO

55

0

1
2

0

LO
O

P
LO

Y

#C
O

U
N

T
E

R

0
6

1
0

-
B

9
00

06

0

1
3

0

LO
A

S

T
R

IN
G

,Y

0
6

1
3

-
20

A

4
F

6
0

1
4

0

JS
R

P

R
IN

T
IT

0

6
1

6
-

E
6

55

0
1

5
0

IN

C

*C
O

U
N

T
E

R

0
6

1
8

-
A

9
OB

0

1
6

0

LO
A

#L

E
N

G
T

H

0
6

1
A

-
C

5
55

0

1
7

0

CM
P

*C
O

U
N

T
E

R

0
6

1
C

-
DO

FO

0

1
8

0

B
N

E
LO

O
P

0
6

1
E

-
60

0

1
9

0

R
T

S
0

2
0

0

.E
N

EN

D
 P

A
SS

 L
A

B
E

L

F
IL

E
:

C
O

U
N

T
E

R

=
0

0
5

5

LE
N

G
TH

=O

O
O

B

LO
O

P
=

0
6

0
E

P

R
IN

T
IT

=

F
6A

4
ST

A
R

T

=
06

0A

S
T

R
IN

G

=
0

6
0

0

8

Building A Program
Using what we've learned so far, and adding a couple of new
techniques, let's build a useful program. This example will
demonstrate many of the techniques we've discussed and will also
show some of the thought processes involved in writing ML.

Among the computer's more impressive talents is searching. It
can run through a mass of information and find something very
quickly. We can write an ML routine which looks through any area of
memory to find matches with anything else. If your BASIC doesn't
have a FIND command or its equivalent, this could come in handy.
Based on an idea by Michael Erperstorfer published in COMPUTE!
Magazine, this ML program will report the line numbers of all the
matches it finds.

Safe Havens
Before we go through some typical ML program-building methods,
let's clear up the "where do I put it?" question. ML can't just be
dropped anywhere in memory. When the Simple Assembler asks
"Starting Address?", you can't give it any address you want to. RAM
is used in many ways. There is always the possibility that a BASIC
program might be residing in part of it (if you are combining ML with
a BASIC program). Or BASIC might use part of RAM to store arrays
or variables. During execution, these variables might write (POKE)
into the area that you placed your ML program, destroying it. Also,
the operating system, the disk operating system, cassette/disk loads,
printers - they all use parts of RAM for their activities. There are
other things going on in the computer beside your hard-won ML
program.

Obviously, you can't put your ML into ROM addresses. That's
impossible. Nothing can be POKEd into those addresses. The 64 is an
exception to this. You can POKE into ROM areas because a RAM
exists beneath the ROM. Refer to the Programmer 's Reference Guide or
see Jim Butterfield's article on 64 architecture (COMPUTE! Magazine,
January 1983) for details.

Where to put ML? There are some fairly safe areas.
If you are using Applesoft in ROM, 768 to 1023 ($0300 to $03FF)

is safe . Atari's page six, 1536 to 1791 ($0600 to $06FF) is good. The 64
and VIC's cassette buffer at 828 to 1019 ($033C to $03FB) are good if
you are not LOADing or SAVEing from tape.

97

8 Building A Program

The PET/CBM makes provision for a second cassette unit. In
theory, it would be attached to the computer to allow you to update
files or make copies of programs from Cassette #1 to Cassette #2. In
practice, no one has mentioned finding a use for a second cassette
drive. It is just as easy to use a single cassette for anything that a
second cassette could do . As a result, the buffer (temporary holding
area) for bytes streaming in from the second cassette unit is very safe
indeed. No bytes ever flow in from the phantom unit so it is a perfect
place to put ML.

The "storage problem" can be solved by knowing the free
zones, or creating space by changing the computer's understanding
of the start or end of BASIC programs. When BASIC is running, it
will set up arrays and strings in RAM memory. Knowing where a
BASIC program ends is not enough. It will use additional RAM.
Sometimes it puts the strings just after the program itself. Sometimes
it builds them down from the " top of memory," the highest RAM
address. Where are you going to hide your ML routine if you want to
use it along with a BASIC program? How are you going to keep
BASIC from overwriting the ML code?

Misleading The Computer
If the ML is a short program you can stash it into the safe areas listed
above . Because these safe areas are only a couple of hundred bytes
long, and because so many ML routines want to use that area, it can
become crowded. Worse yet, we've been putting the word "safe" in
quotes because it just isn't all that reliable. Apple uses the "safe"
place for high-res work, for example. The alternative is to deceive the
computer into thinking that its RAM is smaller than it really is. This is
the real solution.

Your ML will be truly safe if your computer doesn' t even suspect
the existence of set-aside RAM . It will leave the safe area alone
because you've told it that it has less RAM than it really does.
Nothing can overwrite your ML program after you misdirect your
computer's operating system about the size of its RAM memory .
There are two bytes in zero page which tell the computer the highest
RAM address. You just change those bytes to point to a lower
address.

These crucial bytes are 55 and 56 ($37,38) in the 64 and VIC.
They are 52,53 ($34,35) in PET/CBM Upgrade and 4.0 BASIC. In the
PET with Original ROM BASIC, they are 134,135 ($86,87). The Apple
uses 115,116 ($73,74), and you lower the Top-of-BASIC pointer just as
you do in Commodore machines .

The Atari does something similar, but w ith the bottom of RAM. It
is easier with the Atari to store ML just below BASIC than above it.
Bump up the "lomem" pointer to make some space for your ML. It's
convenient to start ML programs which are too long to fit into page

98

Building A Program 8

six ($0600-06FF) at $IFOO and then put this address into lomem. The
LSB and MSB are reversed, of course, as the 6502 requires its pointers
to be like this :

$02E7 00
$02E8 IF

$02E7,8 is Atari's low memory pointer. You should set up this
pointer (LDA $00, STA $02E7, LDA #$IF, STA $02E8) as part of your
ML program. Following that pointer setup, JMP $AOOO which
initializes BASIC. If you are not combining ML with a BASIC
program, these preliminary steps are not necessary .

Safe Atari zero page locations include $00-04, $CB-DO, $D4-D9
(if floating point numbers are not being used); $0400 (the printer and
cassette buffer), $0500-057F (free), $0580-05FF (if floating point and
the Editor are not being used), $0600-06FF (free) are also safe. No
other RAM from $0700 (Disk Operating System) to $9FFF or $BFFF is
protected from BASIC.

To repeat: address pointers such as these are stored in LSB, MSB
order. That is, the more significant byte comes second (this is the
reverse of normal, but the 6502 requires it of address pointers). For
example, $8000, divided between two bytes in a pointer, would look
like this:

0073 00
0074 80

As we mentioned earlier, this odd reversal is a peculiarity of the
6502 that you just have to get used to . Anyway, you can lower the
computer's opinion of the top-of-RAM-memory, thereby making a
safe place for your ML, by changing the MSB . If you need one page
(256 bytes) : POKE 116, PEEK (116)-1 (Apple). For four pages (1024
bytes) on the Upgrade and 4.0 PETs : POKE 53, PEEK (53) -4. Then
your BA or start of assembling could begin at (Top-of-RAM-255 or
Top-of-RAM-I023, respectively. You don't have to worry much about
the LSB here . It's usually zero. If not, take that into account when
planning where to begin storage of your object code.

Building The Code
Now we return to the subject at hand - building an ML program.
Some people find it easiest to mentally break a task down into several
smaller problems and then weave them into a complete program.
That's how we'll look at our search program. (See Program 8-1.)

For this exercise, we can follow the PET/CBM 4.0 BASIC version
to see how it is constructed. All the versions (except Atari's) are
essentially the same, as we will see in a minute. The only differences
are in the locations in zero page where addresses are temporarily
stored, the "start-of-BASIC RAM" address, the routines to print a

99

.....

a a
P

ro
g

ra
m

 8
-1

.
P

E
T

 S
ea

rc
h

 (
4.

0
B

A
S

IC
 V

er
si

o
n

) .

0
3

6
0

-
AD

01

04

0

3
6

3
-

85

BA

0
3

6
5

-
AD

02

04

0

3
6

8
-

85

BB

0
0

1
0

0

0
1

5

0
0

1
6

0

0
1

7

0
0

1
8

0

0
2

0

0
0

3
0

0

0
4

0

0
0

5
0

0

0
6

0

0
0

7
0

0

1
0

0

0
1

1
0

0

1
2

0

0
1

2
1

0

1
3

0

0
1

4
0

0

1
5

0

0
1

6
0

0

1
7

0

0
1

8
0

0

1
8

1

0
1

8
2

0

1
8

3

0
1

8
4

SE
A

R
C

H

TH
R

O
U

G
H

B

A
S

IC

PE
T

4

.0

V
E

R
SI

O
N

,-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

-
;

-0
-

D
E

F
IN

E

V
A

R
IA

B
L

E
S

BY

G
IV

IN
G

TH

EM

L
A

B
E

L
S

.

L
1L

.D

E

$B
A

;S

T
O

R
E

T

H
E

SE

IN

L
2L

.D

E

$B
C

;U

N
U

SE
D

ZE

R
O

PG

A

R
EA

FO

U
N

D

.D
E

$

3
6

B

A
S

IC

.D
E

$

0
4

0
0

P

R
IN

T

.D
E

$F

F
D

2
P

R
IN

T

A
 C

H
A

R
.

P
L

IN
E

.D

E

$C
F

7F

P
R

IN
T

L

IN
E

.B

A

$
0

3
6

0

2N
D

C

A
SS

E
T

T
E

B

U
FF

E
R

.O

S

i-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-0
-

IN
IT

IA
L

IZ
E

P

O
IN

T
E

R
S

.

LO
A

B

A
S

IC
+

l
ST

A

*L
1L

LO

A

B
A

S
IC

+
2

ST
A

*

L
1

L
+

l

;G
E

T

A
D

D
R

O
F

N
EX

T
;B

A
S

IC

L
IN

E

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-0
-

SU
B

R
O

U
T

IN
E

TO

C

H
EC

K

FO
R

2

Z
E

R
O

S
.

IF

W
E

D
O

N
'T

F

IN
D

TH

EM
,

W
E

A
R

E
N

O
T

A
T

TH
E

EN
D

O

F
TH

E
PR

O
G

R
A

M
.

Q
I)

OJ

c:: ~

~

O
Q

 » ."

"'
I ~

"'
I I»
 3

0
3

6
A

-
AO

00

0

1
9

0

R
E

A
D

L
IN

E

LO
Y

#

$
0

0

0
3

6
C

-
B

l
BA

0

2
0

0

LO
A

(L

1
L

)
,Y

0

3
6

E
-

DO

06

0
2

1
0

B

N
E

G
O

.O
N

N

O
T

EN
D

O

F
L

IN
E

0

3
7

0
-

C
8

0
2

2
0

IN

Y

0
3

7
1

-
B

l
BA

0

2
3

0

LO
A

(L

lL
)

,Y

0
0

0

0

EN
D

O

F
PR

O
G

.
0

3
7

3
-

DO

01

0
2

4
0

B

N
E

G
O

.O
N

0

3
7

5
-

60

0
2

5
0

EN

D

R
T

S
iR

E
T

U
R

N

TO

B
A

S
IC

0

2
5

1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
2

5
2

-0

-
SU

B
R

O
U

T
IN

E

TO

U
PD

A
T

E

P
O

IN
T

E
R

S

TO

TH
E

N
EX

T
L

IN
E

0

2
5

3

A
N

D

ST
O

R
E

TH

E
C

U
R

R
E

N
T

L

IN
E

N

U
M

B
ER

IN

C

A
SE

W

E
0

2
5

4

F
IN

D

A
 M

A
TC

H

A
N

D

N
EE

D

TO

P
R

IN
T

TH

E
L

IN
E

#

.
0

2
5

5

A
L

S
O

,
W

E
A

D
D

4

TO

TH
E

C
U

R
R

E
N

T

L
IN

E

P
O

IN
T

E
R

SO

TH

A
T

0
2

5
6

W

E
A

R
E

PA
ST

TH

E
L

IN
E

A
N

D

"P
O

IN
T

E
R

-T
O

-N
E

X
T

-L
IN

E
"

0
2

5
7

IN

F
O

R
M

A
T

IO
N

.
W

E
A

R
E

TH
EN

P

O
IN

T
IN

G

A
T

TH
E

1S
T

C

H
A

R
.

0
2

5
8

IN

TH

E
C

U
R

R
E

N
T

L

IN
E

A

N
D

C

A
N

C

O
M

PA
R

E
IT

TO

TH

E
S

A
M

P
L

E
.

0
2

5
9

0

3
7

6
-

AO

00

0
2

6
0

G

O
.O

N

LO
Y

#

$
0

0

0
3

7
8

-
B

l
B

A

0
2

7
0

LO

A

(L
1

L
)

,Y

G
ET

N

EX
T

L
IN

E

0
3

7
A

-
8

5

B
C

0

2
8

0

ST
A

*

L
2

L

A
D

D
R

E
SS

A

N
D

0

3
7

C
-

C
8

0
2

9
0

IN

Y

ST
O

R
E

IT

IN

L

2L

C':
I

0
3

7
0

-
B

l
BA

0

3
0

0

LO
A

(L

1
L

),
Y

c

0
3

7
F

-
8

5

BD

0
3

1
0

ST

A

*
L

2
L

+
l

Q
:

0
3

8
1

-
C

8
0

3
2

0

IN
Y

:::

I

0
3

8
2

-
B

l
B

A

0
3

3
0

LO

A

(L
1

L
)

,Y

PU
T

L

IN
E

OQ

~

0
3

8
4

-
8

5

36

0
3

4
0

ST

A

*F
O

U
N

D

IN

ST
O

R
A

G
E

TO

O

."

0
3

8
6

-
C

8
0

3
5

0

IN
Y

IN

C

A
SE

IT

""

I 0
0

3
8

7
-

B
l

BA

0
3

6
0

LO

A

(L
lL

),
Y

N

E
E

D
S

TO

B
E

OQ

""
I

0
3

8
9

-
8

5

3
7

0

3
7

0

ST
A

*F

O
U

N
D

+
l

iP
R

IN
T

E
D

O

U
T

L
A

T
E

R

III

>
-'

0
3

8
B

-
A

5
BA

0

3
8

0

LO
A

*

L
1

L

3
0 >

-'
0

0

>
-'

o tv

0

3
8

D
-

1
8

0

3
8

E
-

6
9

04

0

3
9

0
-

8
5

BA

0

3
9

2
-

A
5

B
B

0

3
9

4
-

6
9

00

0

3
9

6
-

8
5

B

B

0
3

9
8

-
AO

00

0

3
9

A
-

B
l

BA

0
3

9
C

-
FO

lC

0

3
9

E
-

CD

06

04

0
3

A
l-

FO

04

0
3

A
3

-
C

8
0

3
A

4
-

4C

9A

03

0
3

9
0

0

4
0

0

0
4

1
0

0

4
2

0

0
4

3
0

0

4
4

0

0
4

4
1

0

4
4

2

0
4

4
3

0

4
4

4

0
4

4
5

0

4
4

6

0
4

4
7

0

4
4

8

0
4

4
9

0

4
5

0

0
4

5
1

0

4
6

0

0
4

7
0

0

4
8

0

0
4

9
0

0

5
0

0

0
5

1
0

0

5
1

1

0
5

1
2

0

5
1

3

0
5

1
4

0

5
1

5

0
5

1
6

0

5
1

7

C
L

C

A
D

C
#

$
0

4

ST
A

*

L
1

L

LD
A

*

L
1

L
+

l
A

D
C

#
$

0
0

ST

A

*
L

1
L

+
l

M
O

V
E

FO
R

W
A

R
D

TO

1S

T

PA
R

T

O
F

B
A

S
IC

T

E
X

T

(P
A

S
T

L

IN
E

A
N

D

O
F

N
EX

T
L

IN
E

)

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
0

-
SU

B
R

O
U

T
IN

E

TO

C
H

E
C

K

FO
R

ZE

R
O

(L

IN
E

IS

F

IN
IS

H
E

D
?)

LO
O

P

A
N

D

TH
EN

C

H
EC

K

1
S

T

C
H

A
R

A
C

T
E

R

IN

B
A

S
IC

L

IN
E

A

G
A

IN
ST

1S

T

C
H

A
R

A
C

T
E

R

IN

SA
M

PL
E

S

T
R

IN
G

A

T
L

IN
E

0

:.

IF

TH
E

1
S

T

C
H

A
R

A
C

T
E

R
S

M
A

T
C

H
,

W
E

M
O

V
E

TO

A

FU
L

L

S
T

R
IN

G

C
O

M
PA

R
IS

O
N

IN

TH

E
SU

B
R

O
U

T
IN

E

C
A

L
L

E
D

"S

A
M

E
."

IF

1

S
T

C

H
A

R
S

.
D

O
N

'T

M
A

T
C

H
,

W
E

R
A

IS
E

TH

E
"Y

"
C

O
U

N
T

E
R

A

N
D

C

H
E

C
K

FO

R

A
 M

A
TC

H

IN

TH
E

2N
D

C

H
A

R
.

O
F

TH
E

C
U

R
R

E
N

T

B
A

S
IC

L

IN
E

'S

T
E

X
T

.

LD
Y

#

$
0

0

LD
A

(L

1
L

),
 Y

B

EQ

S
T

O
P

L
IN

E

C
M

P
B

A
S

IC
+

6
B

EQ

SA
M

E
IN

Y

JM
P

LO
O

P

ZE
R

O

=
 L

IN
E

F

IN
IS

H
E

D

SA
M

E
A

S
1S

T

SA
M

PL
E

C

H
A

R
?

Y
E

S
?

C
H

E
C

K

W
H

O
LE

S

T
R

IN
G

N

O
?

C
O

N
T

IN
U

E

SE
A

R
C

H

i-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
0

-
SU

B
R

O
U

T
IN

E

TO

LO
O

K

A
T

EA
C

H

C
H

A
R

A
C

T
E

R

IN

B
O

TH

TH
E

SA
M

PL
E

(L

IN
E

0)

A

N
D

TH

E
T

A
R

G
E

T

(C
U

R
R

E
N

T

L
IN

E
)

TO

S
E

E

IF

T
H

E
R

E

IS

A

P
E

R
F

E
C

T

M
A

TC
H

.
Y

K

E
E

PS

TR
A

C
K

O

F
T

A
R

G
E

T
.

X

IN
D

E
X

E
S

S
A

M
P

L
E

.
IF

W

E
F

IN
D

A

 M
IS

M
A

T
C

H

B
E

FO
R

E

A

L
IN

E
-E

N
D

Z

E
R

O
,

W
E

FA
L

L

TH
R

O
U

G
H

TO

L

IN
E

5

9
0

A

N
D

JU

M
P

B
A

C
K

U

P
TO

4

6
0

W

H
ER

E
W

E
C

O
N

T
IN

U
E

ON

=

\JJ
 E.

Q
:

::l

O
Q

 » " d O
Q

 ii1 3

C
J5

18

L
O

O
K

IN
G

FO

R

1S
T

C

H
A

R

M
A

TC
H

ES

IN

TH
E

C
U

R
R

E
N

T

L
IN

E
.

0
5

1
9

0

3
A

7
-

A
2

00

0
5

2
0

SA

M
E

LD
X

#

$
0

0

C
O

M
PA

R
E

SA
M

PL
E

TO

0

3
A

9
-

E
8

0
5

3
0

C

O
M

PA
R

E
IN

X

'rA
R

G
E

T

03
A

A
-

C
8

0
5

4
0

IN

Y

0
3

A
B

-
BD

06

04

0

5
5

0

LD
A

B

A
S

IC
+

6
,X

0

3
A

E
-

FO

07

0
5

6
0

B

EQ

P
E

R
F

E
C

T

L
IN

E

EN
D

S
SO

P

R
IN

T

0
3

B
O

-
D

1
BA

0

5
7

0

C
M

P
(L

1
L

),
Y

0

3
B

2
-

FO

F
5

0
5

8
0

B

EQ

C
O

M
PA

R
E

C
O

N
T

IN
U

E

C
O

M
PA

R
E

0
3

B
4

-
4C

9A

03

0

5
9

0

JM
P

L
O

O
P

N
O

M

A
TC

H

0
3

B
7

-
20

C

5
03

0

6
0

0

P
E

R
F

E
C

T

JS
R

P

R
IN

T
O

U
T

0

6
0

1

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0
6

0
2

-0

-
S

U
B

R
O

U
T

IN
E

TO

R

E
PL

A
C

E

"C
U

R
R

E
N

T

L
IN

E
"

P
O

IN
T

E
R

0

6
0

3

W
IT

H

T
H

E

"N
E

X
T

L

IN
E

"
P

O
IN

T
E

R

W
E

SA
V

E
D

IN

TH

E
SU

B
R

O
U

T

0
6

0
4

S

T
A

R
T

IN
G

A

T
L

IN
E

2

6
0

.
0

6
0

5

TH
EN

JU

M
P

B
A

C
K

TO

T

H
E

ST

A
R

T

W
IT

H

TH
E

C
H

E
C

K

FO
R

TH

E
0

6
0

6

E
N

D
-O

F-
PR

O
G

R
A

M

D
O

U
B

L
E

Z

E
R

O
.

T
H

IS

IS

T
H

E

L
A

ST

SU
B

R
O

U
T

0

6
0

7

IN

T
H

E

M
A

IN

L
O

O
P

O
F

TH
E

PR
O

G
R

A
M

.
0

6
0

8

0
3

B
A

-
A

5
B

C

0
6

1
0

S

T
O

P
L

IN
E

LD

A

*
L

2
L

T

R
A

N
SF

E
R

N

EX
T

L
IN

E

DJ

0
3

B
C

-
85

B

A

0
6

2
0

ST

A

*
L

1
L

A

D
D

R
E

SS

P
O

IN
T

E
R

TO

c

0
3

B
E

-
A

5
BD

0

6
3

0

LD
A

*

L
2

L
+

1

C
U

R
R

E
N

T

L
IN

E

P
O

IN
T

E
R

c::

0
3

C
O

-
85

B

B

0
6

4
0

ST

A

*
L

1
L

+
1

TO

G

E
T

R

EA
D

Y

TO

R
EA

D

:f OQ

0
3

C
2

-
4C

6A

0

3

0
6

5
0

JM

P

R
E

A
D

L
IN

E

TH
E

N
EX

T
L

IN
E

.
~

0
6

5
1

i-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
"

0
6

5
2

-0

-
S

U
B

R
O

U
T

IN
E

TO

P

R
IN

T

O
U

T
A

B

A
S

IC

L
IN

E

N
U

M
B

E
R

.
""

I 0
0

6
5

3

IN

M
IC

R
O

S
O

F
T

IT

T

A
K

E
S

T
H

E

N
U

M
B

ER

ST
O

R
E

D

IN

$
3

6
,3

7

OQ

""
I

0
6

5
4

A

N
D

T

H
E

RO

M

R
O

U
T

IN
E

P

R
IN

T
S

TH

E
N

U
M

B
ER

A

T
TH

E
N

EX
T

III

.....

0
6

5
5

C

U
R

SO
R

P

O
S

IT
IO

N

O
N

S

C
R

E
E

N
.

TH
EN

W

E
P

R
IN

T

A

B
LA

N
K

3

0 w

co

>
-'

~

0
3

C
5

-
20

7F

C

F

0
3

C
8

-
A

9
20

0

3
C

A
-

20

0
2

F

F

0
3

C
D

-
6

0

0
6

5
6

0

6
5

7

0
6

5
8

0

6
6

0

0
6

6
1

0

6
6

2

0
6

7
0

0

6
8

0

0
6

9
0

0

6
9

1

0
6

9
2

0

7
0

0

L
A

B
E

L

F
IL

E
:

B
A

S
IC

=

0
4

0
0

FO

U
N

D

=
0

0
3

6

L
2L

=O

O
B

C

P
L

IN
E

=

C
F

7F

R
E

A
D

L
IN

E

=
03

6A

SP
A

C
E

A

N
D

R

E
T

U
R

N

TO

L
IN

E

6
1

0

TO

C
O

N
T

IN
U

E

O
N

W

IT
H

TH

E
M

A
IN

L

O
O

P
A

N
D

F

IN
D

M

O
R

E
M

A
T

C
H

E
S.

PR
IN

T
O

U
T

JS

R

P
L

IN
E

;

RO
M

R

O
U

T
IN

E

P
R

IN
T

S

;
A

L

IN
E

N

U
M

B
ER

FR

O
M

TH

E
V

A
L

U
E

S
FO

U
N

D

;
IN

"F

O
U

N
D

"
($

3
6

,3
7

).

LO
A

#

$
2

0

P
R

IN
T

A

 B
LA

N
K

JS

R

P
R

IN
T

SP

A
C

E

B
ET

W
EE

N

#S

R
T

S
;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

.E
N

C
O

M
PA

R
E

=
03

A
9

G
O

.O
N

=

0
3

7
6

LO

O
P

=
0

3
9

A

P
R

IN
T

=

F
F

D
2

SA
M

E
=

03
A

7

EN
D

=

0
3

7
5

L

lL

=O
O

B
A

P

E
R

F
E

C
T

=

0
3

B
7

P

R
IN

T
O

U
T

=

0
3

C
5

S

T
O

P
L

IN
E

=

03
B

A

0
0

Dl
I S.
 a:: :r O

Q
 » ."

d O
Q

 ~ 3

Building A Program 8

character and to print a line number, and the RAM where it's safe to
store the ML program itself. In other words, change the defined
variables between lines 20 and 100 in Program 8-1 and you can use the
program on another computer.

We will build our ML program in pieces and then tie them all
together at the end. The first phase, as always, is the initialization.
We set up the variables and fill in the pointers . Lines 20 and 30 define
two, two-byte zero page pointers. LlL is going to point at the address
of the BASIC line we are currently searching through. L2L points to
the starting address of the line following it.

Microsoft BASIC stores four important bytes just prior to the
start of the code in a BASIC line. Take a look at Figure 8-1. The first
two bytes contain the address of the next line in the BASIC program.
The second two bytes hold the line number. The end of a BASIC line
is signaled by a zero. Zero does not stand for anything in the ASCII
code or for any BASIC command. If there are three zeros in a row,
this means that we have located the "top," the end of the BASIC
program. (The structure of Atari BASIC is significantly different. See
Figure 8-2.)

But back to our examination of the ML program. In line 40 is a
definition of the zero page location which holds a two-byte number
that Microsoft BASIC looks at when it is going to print a line number
on the screen. We will want to store line numbers in this location as
we come upon them during the execution of our ML search program.
Each line number will temporarily sit waiting in case a match is
found. If a match is found, the program will JSR to the BASIC ROM
routine we're calling " PLINE," as defined in line 70. It will need the
" current line number" to print to the screen.

Line 50 establishes that BASIC RAM starts at $0400 and line 60
gives the address of the "print the character in the accumulator"
ROM routine . Line 100 says to put the object code into the PET's (all
BASIC versions) second cassette buffer, a traditional "safe" RAM
area to store short ML programs. These safe areas are not used by
BASIC, the operating system (OS), or, generally, by monitors or
assemblers. If you are working with an assembler or monitor,
however, and keep finding that your object code has been messed up
- suspect that your ML creating program (the monitor or assembler)
is using part of your " safe" place. They consider it safe too. If this
should happen, you'll have to find a better location.

Refer to Program 8-1 to follow the logic of constructing our
Microsoft search program. The search is initiated by typing in line
zero followed by the item we want to locate. It might be that we are
interes ted in removing all REM statements from a program to shorten
it. We would type O:REM and hit RETURN to enter this into the
BASIC program. Then we would start the search by a SYS to the

105

.....

o '"
F

ig
u

re
 8

-1
.

A
 B

A
S

IC
 P

ro
g

ra
m

's
 S

tr
u

ct
u

re
.

N
o

th
in

g
 I

s
P

o
in

te
d

 T
o

N
o

w

I
-~

I
l

10
 I

 P
O

IN
T

E
R

 I
 L

IN
E

 #
 I

B
A

S
IC

C
O

D
E

 fO
Jp

on
~T

iE
Rr

Lr
NE

 #
I 2

N
D

 B
A

S
IC

 L
IN

E
 1

0
10

 1
0

I
I

I
S

ta
rt

 o
f

E
n

d
 o

f
L

in
e

P
ro

gr
am

B

A
S

IC

E
nd

s

10
 P

R
IN

T
"H

I"

20
 E

N
D

04
00

04

0B

04
11

OO

OB

04
 O

A

00

99

22

48

49

22
 0

0
11

 0
4

14
 0

0
80

00

00

00

L

IN
E

?
"

H
I
"

L
IN

E

E
N

D

10

20

=

O
J 5.
 a: ~

OQ
 » ~ ., o OQ
 ~ 3

.... o '1

F
ig

ur
e

8-
2.

 A
ta

ri
 B

A
SI

C
 S

tr
u

ct
u

re
.

S
in

g
le

 S
ta

te
m

e
n

t
L

in
es

S
T

A
R

T
P

P
oi

nt
s

to
 f

ir
st

 l
in

e

$8
8

$8
9

1
r

=
e
n

t
l

1
L

IN
E

 O
F

F
S

E
T

S

T
M

T
 O

F
F

S
E

T

I
T

O
K

E
N

IZ
E

D
 C

O
D

E

F
IR

S
T

 B
A

S
IC

 L
IN

E

T
O

K
E

N
S

S
E

C
O

N
D

 B
A

S
IC

 L
IN

E

I I

L
IN

E
 O

F
F

S
E

T

L
in

e

32
76

8
M

ea
n

s
E

nd
 o

f
P

ro
gr

am

DJ

I:
 c: :r O

Q

~

-a
 .., o O

Q
 ~ 3 0

1
)

>
-' a O
J

10
 P

R
IN

T
 "

H
I"

2

0
E

N
D

10
 B

Y
T

E
S

E
X

A
M

P
L

E

6
B

Y
T

E
S

I
I

p
,j

i.

i.
~
 :

::t
;~

H

I
E

O
L

E

N
D

O
A

,o
oT

D
A

jO
A

[2
0

[O
F
r4

8[
49

b6
[1

4~
Or
06
 [

06
 [

lS
[1

6[

00
,8

0

L
IN

E

L
IN

E
/S

T
M

T

10

O
F

F
S

E
T

L

IN
E

20

M
U

L
T

I-
S

T
A

T
E

M
E

N
T

 L
IN

E
S

E
O

L

32
76

8

I
L

IN
E

 #
 I

 L
IN

E
 O

F
F

S
E

T

I
S

T
M

T
 O

F
F

S
E

T
 I

 T
O

K
E

N
S

 1
S

T
 S

T
M

T
 II

 r-2-N
-D

-O
-F

-F
-S

-E
T-

--'
-I-

TO
-K

-E
-N

-S
-2

-N
-D

-S
-T

-M
-T

--'
1

II
t

I
I

E
O

L

16

0
0

OJ

!: c:: 5- O
Q

~
 " ""I o O

Q

""
I 11
/ 3

Building A Program 8

starting address of the ML program. In the PET 4.0 version of
Program 8-1, it would be SYS 864 (hex $0360).

By entering the " sample" string or command into the BASIC
program as line zero, we solve two problems. First, if it is a string, it
will be stored as the ASCII code for that string, just as BASIC stores
strings. If it is a keyword like REM, it will be translated into the
" tokenized," one-byte representation of the keyword, just as BASIC
stores keywords. The second problem this solves is that our sample is
located in a known area of RAM. By looking at Figure 8-1, you can tell
that the sample's starting address is always the start of BASIC plus
six. In Program 8-1 that means 0406 (see line 550).

Set Up The Pointers
We will have to get the address of the next line in the BASIC program
we are searching. And then we need to store it while we look through
the current line . The way that BASIC lines are arranged, we come
upon the link to the next line 's address and the line number before
we see any BASIC code itself . Therefore, the first order of business is
to put the address of the next line into UL. Lines 150 through 180
take the link found in s tart-of-BASIC RAM (plus one) and move it to
the storage pointer "UL."

Next, lines 190 to 250 check to see if we have reached the end of
the BASIC program. It would be the end if we had found two zeros in
a row as the pointer to the next line's address. If it is the end, the RTS
sends us back to BASIC mode.

The subroutine in lines 260 through 440 saves the pointer to the
following line 's address and also the current line number. Note the
double-byte addition in lines 390-440. Recall that we CLC before any
addition. If adding four to the LSB (line 400) results in a carry, we
want to be sure that th e MSB goes up by one during the add-with
carry in line 430. It might seem to make no sense to add a zero in that
line . What's the point? The addition is with cam); in other words, if
the carry flag has been se t up by the addition of four to the LSB in line
400, then the MSB will go up by one . The carry w ill make this
happen.

First Characters
It's better to just compare the first character in a word against each
byte in the searched memory than to try to compare the entire sample
word. If you are looking for MEM, you don ' t want to stop at each byte
in memory and see if M-E-M starts there. Just look for M's. When you
come upon a M, then go through the full string comparison. If line
490 finds a first-character match, it transfers the program to " SAME"
(line 520) which will do the entire comparison. On the other hand, if
the routine s tarting at line 451 comes upon a zero (line 470), it knows
that the BASIC line h as ended (they all end w ith zero).. It then goes
down to "STOPLINE" (line 610) which puts the " next line" address

109

8 Building A Program

pointer into the "current line" pointer and the whole process of
reading a new BASIC line begins anew.

If, however, a perfect match was found (line 560 found a zero at
the end of the O:REM line, showing that we had come to the end of
the sample string) - we go to "PERFECT" and it makes a JSR to print
out the line number (line 660). That subroutine bounces back (RTS) to
"STOPLINE" which replaces the "current line" (LlL) pointer with
the "next line" pointer (L2L) . Then we JMP back to "READLINE"
which, once again, pays very close attention to zeros to see if the
whole BASIC program has ended with double zeros. We have
returned to the start of the main loop of this ML program.

This sounds more complicated than it is . If you've followed
this so far, you can see that there is enormous flexibility in
constructing ML programs. If you want to put the "STOPLINE"
segment earlier than the "SAME" subroutine - go ahead. It is quite
common to see a structure like this:

INITIALIZATION
LDA #15
STA $83
MAIN LOOP
STARTJSR 1

JSR2
JSR3

BEQ START (until some index runs out)
RTS (to BASIC)
SUBROUTINES
1
2 (each ends with RTS back to the MAIN LOOP)
3
DATA
Table 1
Table 2
Table 3

The Atari FIND Utility
The second source listing, Program 8-2, adds a FIND command to
Atari BASIC. You access it with the USR command. It is written to
assemble in page six (1536 or $0600) and is an example of a full-blown
assembly. You'll need the assembler/editor cartridge to type it in.

After you've entered it, enter" ASM" to assemble it into
memory. After it is finished, use the SAVE command to store the
object (executable ML) code on tape or disk. Use:

110

SAVE#C: >0600,067E for tape
SAVE#D:FIND.OBJ < 0600 067E for disk

Building A Program 8

You can then put the BASIC cartridge in and enter the machine
language with the BASIC loader program, or with the L command of
DOS.

Using FIND from BASIC is simple. Say you want to search a
master string, A$ for the substring "hello". If B$ contains "hello",
the USR call would look like:

POS= USR (1536,ADR(A$),LEN(A$),ADR(B$),LEN(B$))

POS will contain the position of the match. It will be a memory
location within the ADRress of A$. To get the character position
within A$, just use POS-ADR(A$) + 1. If the substring (B$) is not
found, POS will be zero.

It's easy to add commands like this to Atari BASIC. Also see
"Getting The Most Out Of USR" in the November 1982 issue of
COMPUTE! Magazine (p. 100).

64, Apple, & VIC Versions

Versions of the search routine for the Commodore 64 and VIC-20
and the Apple II are provided as BASIC loader programs.
Remember from Chapter 2 that a loader is a BASIC program
which POKEs a machine language program (stored in DATA
statements) into memory. Once you have entered and run the
BASIC programs, you can examine the ML programs using a
disassembler. (See Appendix D.)

These versions are similar to the PET Version outlined in
Program 8-1. The characters to be searched for are typed in line O.
To start the search in the 64 version (Program 8-3), type SYS
40800. Use CALL 768 to activate the Apple version (Program 8-4).
The VIC version (Program 8-5) is activated with SYS 828.

As your skills improve, you will likely begin to appreciate, and
finally embrace, the extraordinary freedom that ML confers on the
programmer. Learning it can seem fraught with obscurity and rules .
It can even look menacing . But there are flights you will soon be
taking through your computer. Work at it. Try things. Learn how to
find your errors. It 's not circular - there will be considerable
advances in your understanding. One day, you might be able to sit
down and say that you can combine BASIC with ML and do pretty
much anything you want to do with your machine.

111

.....

P
ro

gr
am

 8
-2

 •
II

 co

.....

tv

D:
I !:.

0
1

0
0

.=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
-

c:
I

I

0
1

1
0

F

IN
D

U

ti
li

ty

S·

OQ

0
1

2
0

S

u
b

s
tr

in
g

S

e
a
rc

h

~

0
1

3
0

fo

r
A

ta
ri

B

A
S

IC

."
 .,

0
1

4
0

C

o
m

p
le

te
ly

re

lo
c
a
ta

b
le

0 OQ

0

1
5

0

j=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

i
., III

0

1
6

0

3
0

1
7

0

:
0

1
8

0

:V
a
ri

a
b

le
s

in

z
e
ro

p

a
g

e

fo
r

sp
e
e
d

0

1
9

0

00
C

B

0
2

0
0

SA

D
R

L
=

$C
B

:A

d
d

re
ss

00

C
C

0

2
1

0

SA
D

R
H

=

$C
C

:o

f

s
e
a
rc

h

00
C

D

0
2

2
0

SL

E
N

L

=$
C

D

:L
e
n

g
th

o

f
0

0
C

E

0
2

3
0

SL

E
N

H

=
$C

E

:s
e
a
rc

h

sp
a
c
e

0
2

4
0

0

0
C

F

0
2

5
0

FN

D
L

=
$C

F

:S
e
a
rc

h

a
d

d
re

s
s

0
0

D
0

0

2
6

0

FN
D

H

=
$D

0
:a

n
d

0

0
D

l
0

2
7

0

FN
D

LE
N

=

$
D

l
:l

e
n

g
th

0

2
8

0

00
D

2
0

2
9

0

F
IR

S
T

C
H

A
R

=

$D
2

00
D

3
0

3
0

0

SI
N

D
E

X

=
$D

3
0

0
D

4

0
3

1
0

FR

0
=

$D
4

:R
e
tu

rn

00
D

6
0

3
2

0

FI
N

D
E

X

=
$D

6
:S

o
u

rc
e

in
d

e
x

00

D
7

0
3

3
0

TA

D
R

L
=

$D
7

:T
em

p

a
d

d
r

00
D

8
0

3
4

0

TA
D

R
H

=$

D
B

00

D
9

0
3

5
0

EN

D
LO

O
P

=
$D

9
0

3
6

0

0
3

7
0

;S

y
n

ta
x

d

o
c
u

m
e
n

ta
ti

o
n

0

3
8

0

0
3

9
0

;F

IN
D

:F
in

d

T

e
x

t
0

4
0

0

;X
=

U
S

R
(F

IN
D

,A
,B

,C
,D

)
0

4
1

0

;F
IN

D
:A

d
d

re
ss

o

f
u

ti
li

ty

(1
5

3
6

)
0

4
2

0

; A
:

W
h

er
e

to

s
ta

r
t

s
e
a
rc

h

0
4

3
0

i
B

:
W

h
er

e
to

q

u
it

s
e
a
rc

h
in

g

0
4

4
0

; c

:
S

e
a
rc

h

s
tr

in
g

a
d

d
re

s
s

0
4

5
0

; D

:
L

e
n

g
th

o

f
s
e
a
rc

h

s
tr

in
g

0

4
6

0

; X
:

P
o

s
it

io
n

fo

u
n

d

(=
0

i
f

n
o

m

a
tc

h
)

0
0

0
0

0

4
7

0

*=

$
0

6
0

0

0
4

8
0

j-

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

0
4

9
0

;T

h
is

p

o
rt

io
n

s
e
ts

u

p

th
e

p

a
ra

m
e
te

rs

0
5

0
0

;f

o
r

th
e

s
e
a
rc

h

b
y

p

u
ll

in
g

th

e

v
a
lu

e
s

0
5

1
0

;p

a
s
s
e
d

b

y

B
A

S
IC

o

ff

th
e

s
ta

c
k

D

'
0

5
2

0

c

0
5

3
0

F

IN
D

c:: ::J

0

6
0

0

6
8

0

5
4

0

PL
A

;C

o
u

n
t

b
y

te

OQ

0
6

0
1

6

8

0
5

5
0

PL

A

; h
i

b
y

te
,

S
o

u
rc

e

s
ta

r
t

» ""C
I

0
6

0
2

85

C
C

0

5
6

0

ST
A

SA

D
R

H

., 0
0

6
0

4

6
8

0

5
7

0

PL
A

;1

0

b

y
te

,
S

o
u

rc
e

s
ta

r
t

OQ
 .,

0
6

0
5

8

5
cB

0

5
8

0

ST
A

SA

D
R

L
III

>-

'
0

6
0

7

6
8

0

5
9

0

PL
A

jh

i
b

y
te

,
S

o
u

rc
e

e
n

d

3
>-

'
v.>

co

.....
.

10
61

08

8
5

C
E

10

61
01

0
S

T
A

S

L
E

N
H

OC

I
.....

.
~

D
'

el
6e

lA

6
8

10

61
10

P

L
A

~
l
o

b
y

te
,

S
o

u
rc

e

e
n

d

s:
el

6e
lB

8

5
C

D

10
62

10

S
T

A

S
L

E
N

L

s::
el

6e
lD

6

8

10
63

10

P
L

A

~
h

i
b

y
te

,
S

e
a
rc

h

s
tr

in
g

5·

O

Q

06
el

E

8
5

D
0

06

41
0

S
T

A

FN
D

H

»
10

61
10

6

8

10
65

0
P

L
A

~
1

0

b

y
te

,
S

e
a
rc

h

s
tr

in
g

" .,

10
61

1
8

5
C

F

10
66

0
S

T
A

FN

D
L

0 O
Q

10

61
3

6
8

10

67
0

P
L

A

~
h
i

b
y

te
,

S
e
a
rc

h

le
n

g
th

., 11

/
10

68
10

~
I
g
n
o
r
e

i
t

3
10

61
4

6
8

10

69
10

P

L
A

~
l
o

b
y

te
,

S
e
a
rc

h

le

n
g

th

0
6

1
5

8

5
D

l
10

70
10

S

T
A

FN

D
L

E
N

10

71
10

10

72
10

--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
I

07
31

0
iT

h
is

is

th

e

m
a
in

lO

o
p

.
W

e
10

74
10

is

e
a
rc

h

th

ro
u

g
h

th

e

s
e
a
rc

h

s
p

a
c
e

10
75

10

il
o

o
k

in
g

fo

r
th

e

f
i
r
s
t

c
h

a
r
a
c
te

r

10
76

10

~
o
f

th
e

s
e
a
rc

h

s
tr

in
g

.
W

e
10

77
10

~
l
o
o
k

th
ro

u
g

h

e
n

ti
r
e

2
5

6
-b

y
te

10

78
10

~
b
l
o
c
k
s
.

I
f

th
e

f
i
r
s
t

c
h

a
r
a
c
te

r

10
79

10

~
i
s

fo
u

n
d

,
w

e
e
x

it

to

a

f
u

ll

10
81

01
0

~
s
t
r
i
n
g

c
o

m
p

a
ri

s
o

n

r
o

u
ti

n
e

.
10

81
10

10

82
10

~
I
f

th
e

s
tr

in
g

is

n

e
v

e
r

fo
u

n
d

,
10

83
10

iw

e

ju
s
t

r
e
tu

r
n

a

z
e
ro

to

B

A
S

IC

10
84

0

0
6

1
7

A

00
0

0
8

5
0

LO

Y

#
0

0

6
1

9

B
1C

F
0

8
6

0

LO
A

(F

N
O

L
)

I
Y

iS

e
t

u
p

f
ir

s
t

0
6

1
B

8

5
0

2

0
8

7
0

ST

A

F
IR

S
T

C
H

A
R

ic

o
m

p
a
ri

so
n

0

8
8

0

0
6

1
0

A

6C
E

0

8
9

0

LO
X

SL

E
N

H

iL
e
s
s

th
a
n

2

5
5

0

6
1

F

F
0

1
8

0

9
0

0

B
EQ

SH

O
R

T

ib
y

te
s
?

0
9

1
0

N

X
T

SR
C

H

0
6

2
1

A

9F
F

0

9
2

0

LO
A

#

2
5

5

iS
e
le

c
t

e
n

d

0
9

3
0

SE

A
R

C
H

2
0

6
2

3

8
5

0
9

0

9
4

0

ST
A

EN

O
LO

O
P

0
6

2
5

A

00
0

0
9

5
0

LO

Y

#0

0
9

6
0

SE

A
R

C
H

L
O

O
P

0
6

2
7

B

1C
B

0

9
7

0

LO
A

(S

A
O

R
L

)
I
Y

0

6
2

9

C
50

2
0

9
8

0

CM
P

F
IR

S
T

C
H

A
R

iF

o
u

n
d

a

m
a
tc

h
?

0
6

2
B

F

0
1

7

0
9

9
0

B

EQ

FO
U

N
O

l
iy

e
s

1
0

0
0

N

O
TF

O
U

N
O

0

6
2

0

C
8

1
0

1
0

IN

Y

in
o

0

6
2

E

C
40

9
1

0
2

0

C
PY

EN

D
 L

O
O

P
tJ:

I

0
6

3
0

0

0
F

5

1
0

3
0

B

N
E

SE
A

R
C

H
L

O
O

P
ic

o
n

ti
n

u
e

c: is:

1
0

4
0

:::

l
0

6
3

2

E
6C

C

1
0

5
0

IN

C

SA
D

R
H

iN

e
x

t
b

lo
c
k

OQ

0
6

3
4

C

A

1
0

6
0

O

EX

;O
o

n
e
?

» ."

0
6

3
5

3

0
0

6

1
0

7
0

B

M
I

E
X

IT

iy
e
s

""
r 0

0
6

3
7

0

0
E

8

1
0

8
0

B

N
E

N
X

T
SR

C
H

in

o
p

e

OQ

""
r

1
0

9
0

SH

O
R

T
I»

 3
'"""

'
0

6
3

9

A
5C

O

1
1

0
0

LO

A

SL
E

N
L

iS

e
t

u
p

la

s
t

>
-'

<.

n
co

.....
.

0
6

3
B

D

0E
6

1
1

1
0

B

N
E

SE
A

R
C

H
2

;s
c
a
n

CC

I
.....

.
a.

.
."

1

1
2

0

E
X

IT

I:

0
6

3
D

A

90
0

1
1

3
0

LD

A

#1
3

;
re

tu
rn

is:

0

6
3

F

8
5

D
4

1

1
4

0

ST
A

F

R
0

;
=

0
:i"

0

6
4

1

85
D

5
1

1
5

0

ST
A

FR

!Z
i+

l
,n

Q

s
t
r
i
n
~

OQ

~

0
6

4
3

6

0

1
1

6
0

R

T
S

;
fo

u
n

d

"U

1
1

7
0

.., 0

1
1

8
0

--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
OQ

 ..,
I

11
/

1
1

9
0

;H

e
re

is

w

h
e
re

w

e
c
h

e
c
k

fo

r
a

3
1

2
0

0

;f

u
ll

m

a
tc

h
,

s
ta

r
ti

n
g

w

it
h

th

e

1
2

1
0

;s

e
c
o

n
d

c
h

a
ra

c
te

r
o

f
th

e

s
e
a
rc

h

s
tr

in
g

1

2
2

0

;W
e

h
a
v

e

to

u
se

tw

o

"p
se

u
d

o
"

r
e
g

is
te

r
s

1
2

3
0

;i

n

m
em

o
ry

,
s
in

c
e

th

e

sa
m

e
Y

r
e
g

is
te

r

1
2

4
0

;i

s

n
e
e
d

e
d

to

a
c
c
e
s
s

b
o

th

a
re

a
s

o
f

m
em

o
ry

1

2
5

0

;
(s

e
a
rc

h

sp
a
c
e

a
n

d

s
e
a
rc

h

s
tr

in
g

)
1

2
6

0

1
2

7
0

FO

U
N

D
1

0
6

4
4

84

D
4

1
2

8
0

ST

Y

F
R

0
;S

a
v

e

Y

0
6

4
6

84

D
3

1
2

9
0

ST

Y

S
IN

D
E

X

;S
o

u
rc

e

in
d

e
x

0

6
4

8

A
00

1
1

3
0

0

LD
Y

#1

0

6
4

A

84
D

6
1

3
1

0

ST
Y

F

IN
D

E
X

;F

in
d

in

d
e
x

1

3
2

0

1
3

3
0

;W

e
u

se

a
te

m
p

o
ra

ry

a
d

d
re

s
s
,

s
in

c
e

w
e

d
o

n
't

w

a
n

t
1

3
4

0

;t
o

c
h

a
n

g
e

th
e

a
d

d
re

s
s

in

SA
D

R

(s
o

w

e
c
a
n

c
o

n
ti

n
u

e

th
e

1
3

5
0

;s

e
a
rc

h

if

n

o

m
a
tc

h

fo
u

n
d

)
1

3
6

0

0
6

4
C

A

5C
B

1

3
7

0

LD
A

SA

D
R

L

iC
O

p
y

to

0

6
4

E

85
D

7
1

3
8

0

ST
A

TA

D
R

L
it

e
m

p

a
d

d
r

0
6

5
0

A

5C
C

1

3
9

0

LD
A

SA

D
R

H

0
6

5
2

85

D
8

1
4

0
0

ST

A

TA
D

R
H

1

4
1

0

1
4

2
0

C

O
N

T
SR

C
H

1

4
3

0

1
4

4
0

iA

s
lo

n
g

a
s

e
a
c
h

c
h

a
ra

c
te

r
m

a
tc

h
e
s,

w

e
1

4
5

0

ic
o

n
ti

n
u

e

to

c
o

m
p

a
re

u

n
ti

l
w

e
g

e
t

a
fa

il
e
d

c
o

m
p

a
ri

so
n

1

4
6

0

io
r

re
a
c
h

th

e

e
n

d

o

f
th

e

s
e
a
rc

h

s
tr

in
g

,
1

4
7

0

iw
h

ic
h

in

d
ic

a
te

s

a
m

a
tc

h
.

1
4

8
0

0

6
5

4

A
4D

6
1

4
9

0

LD
Y

FI

N
O

E
X

0

6
5

6

C
4D

l
1

5
0

0

C
PY

FN

O
LE

N

iP
a
s
t

e
n

d
?

0
6

5
8

F

0
1

6

1
5

1
0

B

EQ

FO
U

N
02

i
y

e
s-

m
a
tc

h
l

0
6

5
A

B

1C
F

1
5

2
0

LD

A

(F
N

D
L

),
 Y

iC

h
a
ra

c
te

r
n

0
6

5
C

E

6D
6

1
5

3
0

IN

C

FI
N

D
E

X

i
n

o
,

in
c
re

m
e
n

t
0

6
5

E

A
4D

3
1

5
4

0

LO
Y

S

IN
D

E
X

iC

o
m

p
a

re

to

OJ

0
6

6
0

C

8
1

5
5

0

IN
Y

is

o
u

rc
e

c

0
6

6
1

D

00
2

1
5

6
0

B

N
E

S
K

IP
 IN

C

iH
it

p

a
g

e

b
o

u
n

d
?

c:: ~

0
6

6
3

E

6
0

8

1
5

7
0

IN

C

TA
D

R
H

OQ

1
5

8
0

S

K
IP

 IN
C

~

"1:
1

0
6

6
5

84

D
3

1
5

9
0

ST

Y

SI
N

D
E

X

;U
p

d
a
te

"'

I 0
0

6
6

7

D
1D

7
1

6
0

0

CM
P

(T
A

D
R

L
),

Y

ie
q

u
a
l

so

fa
r?

OQ

"'

I

0
6

6
9

F

0
E

9

1
6

1
0

B

EQ

C
O

N
T

SR
C

H

;y
e
s
,

c
o

n
ti

n
u

e

~

.....

1
6

2
0

jC

o
m

p
a
ri

so
n

fa

il
u

re
,

3
.....

.
'-

l
(1

)

'-
'

16
31

0
;R

e
tu

rn

to

m

a
in

lo

o
p

0

0

'-
'

co

o:J

el
66

B

A
4D

4
16

41
0

LD
Y

FR

IO

=.
el

66
D

1

8

16
51

0
C

LC

;U
se

d

in

p

la
c
e

0:

el
66

E

9e
lB

D

16
61

0
B

C
C

N

O
T

FO
U

N
D

; o

f
JM

P
(r

e
lo

c
a
ta

b
le

)
:i"

O

Q

16
71

0
.

»
,

16
81

0
;M

a
tc

h
l

-g

16
91

0
;R

e
tu

rn

a
d

d
re

s
s

in

FR
IO

to

B

A
S

IC

., 0 O
Q

17

10
10

FO

U
N

D
2

., ~

10
67

10

1
8

17

11
0

C
LC

3

10
67

1
A

5D
4

17
21

0
LD

A

FR
IO

10

67
3

65
C

B

17
31

0
A

D
C

SA
D

R
L

10
67

5
8

5
D

4

1
7

4
0

ST

A

FR
IO

10

67
7

A
5C

C

17
51

0
LD

A

SA
D

R
H

10

67
9

69
10

10

17
61

0
A

D
C

#1

0
el

67
B

85

D
5

17
71

0
ST

A

FR
el

+1

el
67

D

61
0

17
81

0
R

T
S

17
91

0
el

67
E

18

10
10

.E

N
D

=e
le

lC
B

SA

D
R

L

=e
lIO

CC

SA
D

R
H

=e

le
lC

D

SL
E

N
L

=e

lIO
C

E
SL

E
N

H

=e
le

lC
F

FN
D

L
=e

lIO
DI

O
FN

D
H

=e

lIO
D

l
FN

D
L

E
N

=e

le
lD

2
F

IR
S

T
C

H
A

R

=e
le

lD
3

SI
N

D
E

X

=e
le

lD
4

FR
IO

=e

le
lD

6
F

IN
D

E
X

=e

le
lD

7
TA

D
R

L
=e

le
lD

8
TA

D
R

H

=e
le

lD
9

EN
D

 L
O

O
P

10
61

01
0

F
IN

D

10
63

9
SH

O
R

T

10
62

1
N

X
T

SR
C

H

10
62

3
SE

A
R

C
H

2
10

62
7

SE
A

R
C

H
L

O
O

P
10

64
4

FO
U

N
D

I
el

62
D

N

O
T

FO
U

N
D

06

3D

E
X

IT

10
65

4
C

O
N

T
SR

C
H

10

67
10

FO

U
N

D
2

0
6

6
5

S

K
IP

IN
C

Building A Program 8

Program 8-3. 64 Search BASIC Loader.

799 X=PEEK(55) :POKE55,X-1:REM PROTECT ML
800 FOR ADRES=40800T040913:READ DATTA:

POKE ADRES,DATTA:NEXT ADRES
900 PRIN'r"SYS40800 TO ACTIVATE"
4096 DATA 162, 0, 173, 1, 8, 133
4102 DATA 165, 173, 2, 8, 133, 166
4108 DATA 160, 0, 177, 165, 208, 6
4114 DATA 200, 177, 165, 208, I, 96
4120 DATA 160, o , 177, 165, 141, 167
4126 DATA 0, 200, 177, 165, 141, 168
4132 DATA 0, 200, 177, 165, 133, 57
4138 DATA 200, 177, 165, 133, 58, 165
4144 DATA 165, 24, 105, 4, 133, 165
4150 DATA 165, 166, 105, 0, 133, 166
4156 DATA 160, 0, 177, 165, 240, 28
4162 DATA 205, 6, 8 , 240, 4, 200
4168 DATA 76, 158, 159, 162, 0, 232
4174 DATA 200, 189, 6, 8, 240, 7
4180 DATA 209, 165, 240, 245, 76, 158
4186 DATA 159, 32, 201, 159, 165, 167
4192 DATA 133, 165, 165, 168, 133, 166
4198 DATA 76, 108, 159, 32, 201, 189
4204 Dl> .. TA 16.9, 32, 32, 210, 255, 96
READY.

Program 8-4. Apple Version.

700 FOR AD=768T0900: READ DA:POKE A
D,DA:NEXT AD

768 DATA169,76,141,245,3,169
774 DATA16,141,246,3,169,3
780 DATA141,247,3,96,162,0
786 DATA173,l,8,133,l,173
792 DATA2,8,133,2,160,0
798 DATA177,l,208,6,200,177
804 DATA1,208,1,96,160,0
810 DATA177,l,133,3,200,177
816 DATA1,133,4 f 200,177,1
822 DATA133,117,200,177,l,133

119

8 Building A Program

828 DATAI18,165,1,24,105,4
834 DATAI33,1,165,2,105,0
840 DATAI33,2,160,0,177,1
846 DATA240,28,205,6,8,240
852 DATA4,200,76,76,3,162
858 DATAO,232,200,189,6,8
864 DATA240,7,209,1,240,245
870 DATA76,76,3,76,119,3
876 DATAI65,3,133,1,165,4
882 DATAI33,2,76,28,3,169
888 DATAI63,32,237,253,32,32
894 DATA237,169,160,32,237,253
900 DATA76,108,3

Program 8-5. VIC-20 Search BASIC Loader.

800 FOR ADRES=828T0941:READ DATTA:POKE
ES,DATTA:NEXT ADRES

810 PRINT"SYS 828 TO ACTIVATE"
828 DATA 162, 0, 173, I, 16, 133
834 DA'rA 187, 173, 2, 16, 133, 188
840 DATA 160, 0, 177 , 187, 208, 6
846 DATA 200, 177, 187, 208, 1, 96
852 DATA 160, 0, 177, 187, 141, 190
858 DATA 0, 200, 177, 187 , 141, 191
864 DATA 0, 200, 177, 187 , 133, 57
870 DATA 200, 177, 187, 133, 58, 165
876 DATA 187, 24, 105, 4, 133, 187
882 DATA 165, 188, 105, 0, 133, 188
888 DATA 16O, 0, 177, 187, 24O, 28
894 DATA 205, 6, 16, 24O, 4, 200
900 DATA 76, 122, 3 , 162, 0, 232
906 DATA 20O, 189, 6, 16, 240, 7
912 DATA 209, 187, 240, 245, 76, 122
918 DATA 3, 32 , 165, 3, 165 , 19O
924 DATA 133 , 187, 165, 191, 133, 188
93O DATA 76, 72, 3, 32, 194, 221
936 DATA 169, 32, 32, 210, 255, 96

120

ADR

9

ML Equivalents Of
BASIC COl11rnands

What follows is a small dictionary, arranged alphabetically, of the
major BASIC commands. If you need to accomplish something in ML
- TAB for example -look it up in this chapter to see one way of
doing it in ML. Often, because ML is so much freer than BASIC, there
will be several ways to go about a given task. Of these choices, one
might work faster, one might take up less memory, and one might be
easier to program and understand. When faced with this choice, I
have selected example routines for this chapter which are easier to
program and understand. At ML speeds, and with increasingly
inexpensive RAM memory available, it will be rare that you will need
to opt for velocity or memory efficiency.

CLR
In BASIC, this clears all variables. Its primary effect is to reset
pointers. It is a somewhat abbreviated form of NEW since it does not
"blank out" your program, as NEW does.

We might think of CLR, in ML, as the initialization routine which
erases (zeros) the memory locations you've set aside to hold your ML
flags, pointers, counters, etc. Before your program RUNs, you may
want to be sure that some of these "variables" are set to zero. If they
are in different places in memory, you will need to zero them
individually:

2000 LOA # 0
2002 STA 1990 (put zero into one of the "variables")
2005 STA 1994 (continue putting zero into each byte which

needs to be initialized)

On the other hand, maybe you've got your tables, flags, etc., all
lined up together somewhere in a data table at the start or end of your
ML program. It's a good idea. If your table is in one chunk of RAM,
say from 1985 to 1999, then you can use a loop to zero them out:

2000 LOA # 0
2002 LOY # 15 (Y will be the counter. There are 15 bytes to zero out in

this example.)

121

CONT

2004 STA 1985, Y (the lowest of the 15 bytes)
2007 DEY
2008 BNE 2004 (let Y count down to zero, BNEing until Y is zero,

then the Branch if Not Equal will let the program
fall through to the next instruction at 2010)

CONT
This word allows your program to pick up where it left off after a
STOP command (or after hitting the system break key). You might
want to look at the discussion of STOP, below. In ML, you can't
usually get a running program to stop with the BREAK (or STOP)
key. If you like, you could write a subroutine which checks to see if a
particular key is being held down on the keyboard and, if it is, BRK:

3000 LOA 96 (or whatever your map says is the "key currently
depressed" location for your machine)

3002 CMP # 13 (this is likely to be the RETURN key on your
machine, but you'll want CMP here to the value
that appears in the "currently pressed" byte for
the key you select as your STOP key. It could be
any key. If you want to use" A" for your" stop"
key, try CMP #65.)

3004 BNE 3007 (if it's not your target key, jump to RTS)
3006 BRK (if it is the target, BRK)
3007 RTS (back to the routine which called this subroutine)

The 6502 places the Program Counter (plus two) on the stack
after a BRK.

A close analogy to BASIC is the placement of BRK within ML
code for a STOP and then typing . G or GO or RUN - whatever your
monitor recognizes as the signal to start execution of an ML program
-toCONT.

DATA
In BASIC, DATA announces that the items following the word DATA
are to be considered pieces of information (as opposed to being
thought of as parts of the program) . That is, the program will
probably use this data, but the data are not BASIC commands . In ML,
such a zone of "non-program" is called a table. It is unique only in
that the program counter never starts trying to run through a table to
carry out instructions. Program control is never transferred to a table
since there are no meaningful instructions inside a table. Likewise,
BASIC slides right over its DATA lines.

To keep things simple, tables of data are usually stored together
either below the program or above it in memory . (See Figure 9-1.)

122

DIM

From within the p rogram, tables can be used to print messages
to the screen, update or examine flags, etc. If you disassemble your
BASIC in ROM, you'll find the words STOP, RUN, LIST, and so
forth, gathered together in a table. You can suspect a data table when
your disassembler starts giving lots of error messages . It cannot find
groups of meaningful opcodes wi thin tables .

Figure 9·1. Typical ML program organization with data tables
one at top or bottom of program .

DATA

INITIALIZATION

MAIN
LOOP

DATA

DIM

•
•

•

Bottom of Memory

Start Of M L Program

Subroutines

With its automatic string handling, array management, and error
messages, BASIC makes life easy for the programmer. The price you
pay for this " hand-holding" is that a program is slow when it's RUN.
In ML, the DIMensioning of space in memory for variables is not
explicitly handled by the computer. You must make a note that you
are setting aside memory from 6000 to 6500, or whatever, to hold
variables. It helps to make a simple map of this" dimensioned"
memory so you know where permanent strings, constants, variable
strings, and variables, flags, etc., are within the dimensioned zone.

A particular chunk of memory (where, and how much, is up to
you) is set aside, that 's all. You don't write any instructions in ML to
set aside the memory; you just jot it down so you won't later use the
reserved space for some other purpose. Managing memory is left up
to you. It 's not difficult, but it is your responsibility.

123

END

END
There are several ways to make a graceful exit from ML programs.
You can look for the "warm start" address on your particular
computer (in the map of its BASIC locations) and }MP to that address.
Or you can go to the "cold start" address. This results in the
computer resetting itself as if you had turned the power off and then
back on again.

If you went into the ML from BASIC (with a USR or SYS), you
can return to BASIC with an RTS. Recall that every JSR matches up
with its own RTS. Every time you use a JSR, it shoves its " return
here" address onto the top of the stack. If the computer finds another
JSR (before any RTS's), it will shove another return address on top of
the first one. So, after two JRS's, the stack contains two return
addresses . When the first RTS is encountered, the top return address
is lifted from the stack and put into the program counter so that the
program returns control to the current instruction following the most
recent JSR.

When the next RTS is encountered, it pulls its appropriate return
(waiting for it on the stack) and so on. The effect of a SYS or USR
from BASIC is like a JSR from within ML. The return address to the
correct spot within BASIC is put on the stack. In this way, if you are
within ML and there is an RTS (without any preceding JSR), what's
on the stack had better be a return-to-BASIC address left there by SYS
or USR when you first went into ML.

Another way to END is to put a BRK in your ML code . This
drops you into the machine 's monitor. Normally, you put BRKs in
during program development and debugging. When the program is
finished, though, you would not want to make this ungraceful exit
any more than you would want to end a BASIC program with STOP.

In fact, many ML programs, if they stand alone and are not part
of a larger BASIC program, never END at all! They are an endless
loop . The main loop just keeps cycling over and over. A game will not
end until you turn off the power. After each game, you see the score
and are asked to press a key when you are ready for the next game .
Arcade games which cost a quarter will ask for another quarter, but
they don't end. They go into" attract mode. " The game graphics are
left running on screen to interest new customers.

An ML word processor will cycle through its main loop, waiting
for keys to be pressed, words to be written, format or disk
instructions to be given. Here, too, it is common to find that the word
processor takes over the machine, and you cannot stop it without
turning the computer off. Among other things, such an endless loop
protects software from being easily pirated. Since it takes control of
the machine, how is someone going to save it or examine it once it's

124

FOR-NEXT

in RAM? Some such programs are" auto-booting" in that they cannot
be loaded without starting themselves running.

BASIC, itself a massive ML program, also loops endlessly until
you power down. When a program is RUNning, all sorts of things are
happening. BASIC is an interpreter, which means that it must look up
each word (like INT) it comes across during a RUN (interpreting it, or
translating its meanings into machine-understandable JSRs). Then
BASIC executes the correct sequence of ML actions from its collection
of routines.

In contrast to BASIC RUNs, BASIC spends 99 percent of its time
waiting for you to program with it. This waiting for you to press keys
is its "endless" loop, a tight, small loop indeed. It would look like our
"which key is pressed?" routine .

2000 LOA 96 (or wherever your machine's map shows that the
"which key down" value is stored)

2002 CMP #255 (or whatever value is normally left in this address
by default when no key is being pressed)

2004 BEQ 2000 (if it says "no key down," cycle back and wait for
one)

FOR-NEXT
Everyone has used " delay loops" in BASIC (FOR T = 1 TO 1000:
NEXT T) . These are small loops, sometimes called do-nothing
loops because nothing happens between the FOR and the NEXT
except the passage of time . When you need to let the user read
something on the screen, it's sometimes easier just to use a delay loop
than to say "When finished reading, press any key."

In any case, you'll need to use delay loops in ML just to slow ML
itself down. In a game, the ball can fly across the screen. It can get so
fast, in fact , that you can' t see it. It just" appears" when it bounces
off a wall. And, of course, yo u'll need to use ioops in many other
situations . Loops of all kinds are fundamental programming
techniques.

In ML, you don't have that convenient little counter ("T" in the
BASIC FOR/NEXT example above) which decides when to stop the
loop. When Tbecomes 1000, go to the instructions beyond the word
NEXT. Again, you must set up and check your counter variable by
yourself.

If the loop is going to be smaller than 255 cycles, you can use the
X register as the counter (Y is saved for the very useful indirect indexed
addressing discussed in Chapter 4: LDA (96), Y) . So, using X, you can
count to 200 by :

2000 LOX #200 (or $C8 hex)
20020EX
2003 BNE 2002

125

FOR-NEXT -STEP

For loops involving counters larger than 255, you'll need to use
two bytes to count down, one going from 255 to zero and then
clicking (like a gear) the other (more significant) byte. To count to 512:

2000 LOA #2
2002 STAO

2004 LOX #0

20060EX
2007 BNE 2006

(put the 2 into address zero, our MSB, Most
Significant Byte, counter)

(set X to zero so that its first OEX will make it 255.
Further OEX's will count down again to zero,
when it will click the MSB down from 2 to 1 and
then finally 0)

2009 DEe 0 (click the number in address zero down 1)
2011 BNE 2006

Here we used the X register as the LSB (least significant byte)
and address zero as the MSB. We could use addresses zero and one to
hold the MSB/LSB if we wanted. This is commonly useful because
then address zero (or some available, two-byte space in zero page)
can be used for LOA (0), Y. You would print a message to the screen
using the combination of a zero page counter and LOA (zero page
address),Y.

FOR-NEXT-STEP
Here you would just increase your counter (usually X or Y) more than
once. To create FOR 1= 100 TO 1 STEP -2 you could use:

2000 LOX # 100
20020EX
20030EX
2004 Bee 2002

For larger numbers you create a counter which uses two bytes
working together to keep count of the events . Following our example
above for FOR-NEXT, we could translate FOR 1= 512 TO a STEP -2:

126

2000 LOA #2
2002 STA 0 (this counts the MSB)
2004 LOX # 0 (X counts the LSB)
20060EX
2007 DEX (here we click X down a second time, for -2)
2008 BNE 2006
2010 DECO
2012 BNE 2006

GET

To count up, use the CoMPare instruction. FOR 1=1 TO 50
STEP 3:

2000 LOX #0
2002INX
2003INX
2004INX
20G5 CPX # 50
2007 BNE 2002

For larger STEP sizes, you can use a nested loop within the larger
one. This would avoid a whole slew of INX's. To write the ML
equivalent of FOR 1=1 TO 50 STEP 10:

2000 LOX #0
2002 LOY #0
2004INX
2005INY
2006 CPY #10
2008 BNE 2004
2010 CPX #50
2012 BNE 2002

GET
Each computer model has its own "which key is being pressed?"
address, where it holds the value of a character typed in from the
keyboard . To GET, you create a very small loop which just keeps
testing the first address in the buffer.

For Atari (in decimal):

2000 LOA 764 ("which key pressed " decimal address. In
advanced assemblers, you could freely mix
decimal with hex, but not in the Simple
Assembler.)

2003 CMP #255 (when an FF value is in this address, it means
that no key is pressed)

2005 BEQ 2000 (keep going back and looking until there is some
key pressed)

For PET (Upgrade and 4.0) (in decimal)

2000 LOA 151 ("which key pressed " decimal address)
2003 CMP #255
2005 BEQ 2000

For PET (Original):

2000 LOA 515 ("which key pressed" decimal address)
2003 CMP #255
2005 BEQ 2000

127

GOSUB

For Apple II (hex):

2000 LOA COOO ("which key pressed" - note: this is in hex)
2003 BPL 2000
2005 STA COlO (clears the keyboard)
2008 AND #7F (to give you the correct character value)

For VI C and 64 (decimal):

2000 LOA 197
2003 CMP #255
2008 BEQ 2000

The Commodore computers have a GET routine similar to the
one illustrated by these examples, which is built in at $FFE4 which
can be used for all ROM versions (all models of CBM) because it is a
fixed JMP table which does not change address when new BASIC
versions are introduced . See your BASIC's map for Print a Byte to the
Screen, GET a Byte, and other routines in the Commodore Jump
Tables. They start at $FFBO.

The examples above do not conform to PET BASIC's GET. In
this version of BASIC, the computer does not "wait" for a character.
If no key is being held down during a GET, the computer moves on
and no GET takes place. In our ML GETs above, we loop until some
character is actually pressed.

For most programming purposes, though, you want to wait
until a key has actually been pressed. If your program is supposed to
fly around doing things until a key is pressed, you might use the
above routines without the loop structure . Just use a CMP to test for
the particular key that would stop the routine and branch the
program somewhere else when a particular key is pressed. How you
utilize and construct a GET-type command in ML is up to you. You
can, with ML's flexibility, make special adjustments to use the best
kind of GET for each different application.

GOSUB
This is nearly identical to BASIC in ML. Use JSR $NNNN and you
will go to a subroutine at address NNNN instead of a line number, as
in BASIC. ("NNNN" just means you can put any hex number in
there you want to.) Some assemblers allow you to give "labels,"
names to JSR to instead of addresses. The Simple Assembler does not
allow labels. You are responsible (as with DATA tables, variables,
etc.) for keeping a list on paper of your subroutine addresses and the
parameters involved.

Parameters are the number or numbers handed to a subroutine to
give it information it needs. Quite often, BASIC subroutines work
with the variables already established within the BASIC program. In
ML, though, managing variables is up to you. Subroutines are useful

128

GOTO

because they can perform tasks repeatedly without needing to be
programmed into the body of the program each time the task is to be
carried out. Beyond this, they can be generalized so that a single
subroutine can act in a variety of ways, depending upon the variable
(the parameter) which is passed to it.

A delay loop to slow up a program could be general in the sense
that the amount of delay is handed to the subroutine each time. The
delay can, in this way, be of differing durations, depending on what
it gets as a parameter from the main routine. Let's say that we've
decided to use address zero to pass parameters to subroutines . We
could pass a delay of "five" cycles of the loop by:

2000 LDA#5
The Main Program 2002 STA 0

2004 ISR 5000

The Subroutine 5000 DECO
5002 BEQ 5012 (if address zero has

counted all the way down
from five to zero, RTS back
to the Main Program)

5004 LOY # 0
5006 DEY
5007 BNE 5006
5009 IMP 5000
5012 RTS

A delay which lasted twice as long as the above would merely
require a single change: 2000 LOA # 10.

GOTO

In ML, it's JMP. JMP is like JSR, except the address you leap away
from is not saved anywhere. You jump, but cannot use an RTS to find
your way back. A conditional branch would be CMP #0 BEQ 5000. The
condition of equality is tested by BEQ, Branch if EQual. BNE tests a
condition of inequality, Branch if Not Equal. Likewise, BCC (Branch if
Carry is Clear) and the rest of these branches are testing conditions
within the program.

GOTO and JMP do not depend on any conditions within the
program, so they are unconditional. The question arises, when you use
a GOTO: Why did you write a part of your program that you must
always (unconditionally) jump over? GOTO and JMP are sometimes
used to patch up a program, but, used without restraint, they can
make your program hard to understand later. Nevertheless, JMP can
many times be the best solution to a programming problem . In fact, it
is hard to imagine ML programming without it.

129

GOTO

One additional note about JMP: it makes a program non
relocatable. If you later need to move your whole ML program to a
different part of memory, all the JMP's (and JSR's) need to be checked
to see if they are pointing to addresses which are no longer correct
(JMP or JSR into your BASIC ROM's will still be the same, but not
those which are targeted to addresses within the ML program). This
can be an important consideration if you are going to use an ML
subroutine in other programs where the locations might well differ.
Fully relocatable ML routines can be convenient if you like to program
by drawing from a personal collection of solved problems.

2000 JMP 2005
2003 LOY #3
2005 LOA #5

If you moved this little program up to 5000, everything would
survive intact and work correctly except the JMP 2005 at address 2000.
It would still say to jump to 2005, but it should say to jump to 5005,
after the move . You have to go through with a disassembly and check
for all these incorrect JMP's . To make your programs more
"relocatable," you can use a special trick with unconditional
branching which will move w ithout needing to be fixed:

2000 LOY #0
2002 BEQ 2005 (since we just loaded Y w ith a zero, this Branch

if-EQual-to-zero instruction w ill always be true
and will always cause a pseudo-JMP)

2004NOP
2005 LOA #5

This works because we set the Z flag. Then, when BEQ tests the
zero flag, it will pass the test, it will find that flag "up" and will
branch. If you load X, Y, or A with a zero, the zero flag goes up.

Various monitors and assemblers include a "move it" routine,
which will take an ML program and relocate it somewhere else in
memory for you. On the Apple, you can go into the monitor and type
*5000 < 2000.2006M (although you will have to give the monitor these
numbers in hex). The first number is the targe t address. The second
and third are the start and end of the program you want to move .

On CBM computers, the built-in monitor (the VIC-20 and the
Original 2001 ROM set do not have a built-in monitor) does not have a
Move it command. However, it is easy to add a "monitor extension"
program to the built-in monitor. Superman and Microman are such
extensions. The format for Moveit in Commodore machines is .T 2000
20065000 (start and end of the program to be moved, followed by the
target address). Again, these numbers must be in hex. The T stands
for transfer.

The Atari Assembler Editor Cartridge follows a convention
similar to Apple's: M 5000<2000,2006.

130

INPUT

IF-THEN
This familiar and primary computing structure is accomplished in ML
with the combination of CMP-BNE or any other conditional branch:
BEQ, BCe, etc. Sometimes, the IF half isn't even necessary. Here's
how it would look:

2000 LOA 57 (what's in address 577)
2002 CMP #15 (is it IS?)
2004 BEQ 2013 (IF it is, branch up to 2013)
2006 LOA #10 (or ELSE, put a 10 into address 57)
2008 STA 57
2010 IMP 2017 (and jump over the THEN part)
2013 LOA #20 (THEN, put a 20 into address 57)
2015 STA 57
2017 (continue with the program ...)

Often, though, your flags are already set by an action, making
the CMP unnecessary. For example, if you want to branch to 2013 if
the number in address 57 is zero, just LOA 57 BEQ 2013 . This is
because the act of loading the accumulator will affect the status
register flags. You don' t need to CMP #0 because the zero flag will be
set if a zero was just loaded into the accumulator. It won't hurt
anything to use a CMP, but you'll find many cases in ML
programming where you can shorten and simplify your coding. As
you gain experience, you will see these patterns and learn how and
what affects the status register flags .

INPUT
This is a series of GETs, echoed to the screen as they are typed in,
which end when the typist hits the RETURN key. The reason for the
echo (the symbol for each key typed is reproduced on the screen) is
that few people enjoy typing without seeing what they've typed. This
also allows for error correction using cursor control keys or DELETE
and INSERT keys. To handle all of these actions, an INPUT routine
must be fairly complicated. We don ' t want, for example, the DELETE
to become a character within the string. We want it to immediately act
on the string being entered during the INPUT, to erase a mistake.

Our INPUT routine must be smart enough to know what to add
to the string and what keys are intended only to modify it. Here is the
basis for constructing your own ML INPUT. It simply receives a
character from the keyboard, stores it in the screen RAM cells, and
ends when the RETURN key is pressed. This version is for Upgrade
and 4.0 CBM/PETs and we'll write it as a subroutine. That simply
means that when the 13 (ASCII for carriage return) is encountered,

131

LET

we'll perform an RTS back to a point just following the main program
address which JSRed to our INPUT routine:

5000 LOY #0 (Y will act here as an offset for storing the
characters to the screen as they come in)

5002 LOA 158 (this is the "number of keys in the keyboard buffer"
location. If it's zero, nothing has been typed yet)

5004 BNE 5002 (so we go back to 5002)
5006 LOA 623 (get the character from the keyboard buffer)
5009 eMP #13 (is it a carriage return?)
5011 BNE 5014 (if not, continue)
5013 RTS (otherwise return to the main program)
5014 STA 32768, Y (echo it to the screen)
5017INY
5018 LOA #0
5020 STA 158
5022 IMP 5002

(reset the "number of keys" counter to zero)
(continue looking for the next key)

This INPUT could be made much larger and more complex. As it
stands, it will contain the string on the screen only. To save the string,
you would need to read it from screen RAM and store it elsewhere
where it will not be erased. Or, you could have it echo to the screen,
but (also using Y as the offset) store it into some safe location where
you are keeping string variables. The routine above doe1? not make
provisions for DELETE or INSERT either. The great freedom you
have with ML is that you can redefine anything you want. You can
softkey: define a key's meaning via software; have any key perform
any task. You might use the $ key to DELETE.

Along with this freedom goes the responsibility for organizing,
writing, and debugging these routines.

LET
Although this word is still available on most BASICs, it is a holdover
from the early days of computing. It is supposed to remind you that a
statement like LET NAME = NAME +4 is an assignment of a value to a
variable, not an algebraic equation . The two numbers on either side of
the "equals" sign, in BASIC, are not intended to be equal in the
algebraic sense. Most people write NAME=NAME+4 without using
LET. However, the function of LET applies to ML as well as to BASIC:
we must assign values to variables.

In the Atari, VIC, and Apple, for example, where the address of
the screen RAM can change depending on how much memory is in
the computer, etc. - there has to be a place where we find out the
starting address of screen RAM. Likewise, a program will sometimes
require that you assign meanings to string variables, counters, and the
like. This can be part of the initialization process, the tasks performed

132

LET

before the real program, your main routine, gets started . Or it can
happen during the execution of the main loop. In either case, there
has to be an ML way to es tablish , to assign, variables . This also means
that you must have zones of memory set aside to hold these variables.

For strings, you can think of LET as the establishment of a
location in memory . In our INPUT example above, we might have
included an instruction which would have sent the characters from
the keyboard to a table of strings as well as echoing them to the
screen. If so, there would have to be a way of managing these strings.
For a discussion on the two most common ways of dealing with
strings in ML, see Chapter 6 under the subhead "Dealing With
Strings. "

In general, you will probably find that you program in ML using
somewhat fewer variables than in BASIC. There are three reasons for
this:

1. You will probably not write many programs in ML such as
data bases where you manipulate hundreds of names, addresses, etc.
H might be somewhat inefficient to create an entire data base
management program, an inventory program for example, in ML.
Keeping track of the variables would be a nightmare . An important
benefit of ML is its speed of execution, but a drawback is that it slows
programming down . So, for an inventory program, you could write
the bulk of the program in BASIC and simply attach ML routines for
sorting and searching tasks within the program.

2. Also, the variables in ML are often handled within a series of
instructions (not held elsewhere as BASIC variables are). FOR 1=1
TO 10: NEXT I becomes LOY #1, INY, CPY #10, BNE. Here, the
BASIC variable is counted for you and stored outside the body of the
program. The ML "variable," though, is counted by the program
itself. ML has no interpreter which handles such things. If you want a
loop, you must construct all of its components yourself.

3. In BASIC, it is tempting to assign values to variables at the
start of the program and then to refer to them later by their variable
names, as in: 10 BALL= 79. Then, any time you want to PRINT the
BALL to the screen, you could say, PRINT CHR$(BALL). Alterna
tively, you might define it this way in BASIC: 10 BALL$ = "0". In
either case, your program will later refer to the word BALL. In this
example we are assuming that the number 79 will place a ball
character on your screen.

In ML we are not free to use variable names except when using a
complicated, advanced assembler. With the Simple Assembler, you
will find it easier just to LOA #79, STA (screen position) each time.
Some people like to put the 79 into their zone of variables (that
arbitrary area of memory set up at the start of a program to hold
tables, counters, and important addresses). They can pull it out of
that zone whenever it 's needed. That is somewhat cumbersome,

133

LIST

though, and slower. You would LOA lOIS, STA (screen position),
assuming you had put a 79 into this "ball" address earlier.

Obviously a value like BALL will remain the same throughout a
program. A ball will look like a ball in your game, whatever else
happens. So, it's not a true variable, it does not vary. It is constant. A
true variable must be located in your" zone of variables," your
variable table. It cannot be part of the body of your program itself (as
in: LOA #79) because it will change. You don't know when writing
your program what the variable will be. So you can't use immediate
mode addressing because it might not be a #79. You have to LOA 1015
(or whatever) from within your table of variables.

Elsewhere in the program you have one or more STA 1015's or
INC 1015's or some other manipulation of this address which keeps
updating this variable. In effect, ML makes you responsible for
setting aside areas which are safe to hold variables. What's more, you
have to remember the addresses, and update the variables in those
addresses whenever necessary . This is why it is so useful to keep a
piece of paper next to you when you are writing ML. The paper lists
the start and end addresses of the zone of variables, the table. You
also write down the specific address of each variable as you write
your program.

LIST
This is done via a disassembler. It will not have line numbers (though,
again, advanced assembler-disassembler packages do have line
numbers). Instead, you will see the address of each instruction in
memory. You can look over your work and debug it by working with
the disassembler, setting BRKs into problem areas, etc. See
Appendix D.

LOAD
The method of saving and loading an ML program varies from
computer to computer. Normally, you have several options which
can include loading: from within the monitor, from BASIC, or even
from an assembler. When you finish working on a program, or a
piece of a program, on the Simple Assmbler you will be given the
starting and ending addresses of your work. Using these, you can
save to tape or disk in the manner appropriate to your computer. To
LOAD, the simplest way is just to LOAD as if you were bringing in a
BASIC program. Unfortunately, this only works on Commodore
machines. You'll get your ML program, not a BASIC program, so it
won't start at the normal starting address for BASIC unless you wrote
and saved it at that address. You should type NEW after loading it,
however, to reset some pointers in the computer. That will not NEW
out the ML program.

134

NEW

To save from within the monitor on Commodore machines:

.S "PROGRAM NAME",Ol,NNNN,NNNN* (for tape)

.L "PROGRAM NAME",Ol (for tape)

.S "O:PROGRAM NAME",08,NNNN,NNNN* (for disk)

.L "O:PROGRAM NAME",08 (for disk)

*You should add one to the hex number for the end of your
program or the SAVE will clip off the last byte. If your program exists
in RAM from $0300 to $0350, you save it like this: .S "PROGRAM
NAME" ,01,0300,0351.

On the Apple, you must BLOAD from disk . On the Atari, if you
have DOS you can use the "L" command from the DOS menu to
LOAD in an ML program. If you don't, you need to use a short
BASIC program that grabs in the bytes via a series of GETs:

10 OPEN#1,4,0, "C:"
20 GET#1,NN~GET#1,NN: REM DISCARD THE HEADER
30 GET#1,LO:GET#1,HI: REM START ADDRESS
40 START = LO+256*HI
50 GET#l, LO:GET#1,HI: REM ENDING ADDRESS
60 FIN = LO + 256*HI
70 TRAP 100
80 FORI = START TO FIN: GET#l,A: POKEI,A:NEXTI
90 GOTO 30
100 END

Note: This will not work correctly if the START and FIN
addresses overlap this BASIC program in memory. It would
then load in on top of itself.

NEW
In Microsoft BASIC, this has the effect of resetting some pointers
which make the machine think you are going to start over again. The
next program line you type in will be put at the" start-of-a-BASIC
program" area of memory. Some computers, the Atari for example,
even wash memory by filling it w ith zeros. There is no special
command in ML for NEWing an area of memory, though some
monitors have a "fill memory" option which will fill a block of
memory as big as you want with whatever value you choose.

The reason that NEW is not found in ML is that you do not
always write your programs in the same area of memory (as you do in
BASIC), building up from some predictable address. You might have
a subroutine floating up in high memory, another way down low,
your table of variables just above the second subroutine, and your
main program in the middle. Or you might not . We've been using

135

ON GOSUB

2000 as our starting address for many of the examples in this book
and 5000 for subroutines, but this is entirely arbitrary.

To "NEW" in ML, just start assembling over the old program.
Alternatively, you could just turn the power off and then back on
again. This would, however, have the disadvantage of wiping out
your assembler along with your program.

ON GOSUB
In BASIC, you are expecting to test values from among a group of
numbers: 1,2,3,4,5 The value of X must fall within this narrow
range: ON X COSUB lOa, 200, 300 ... (X must be 1 or 2 or 3 here) . In
other words, you could not conveniently test for widely separated
values of X (18,55,220). Some languages feature an improved form of
ON COSUB where you can test for any values. If your computer
were testing the temperature of your bathwater:

CASE
80 OF GOSUB HOT ENOOF
100 OF GOSUB VERYHOT ENOOF
120 OF GOSUB INTOLERABLE ENOOF

ENOCASE

ML permits you the greater freedom of the CASE structure.
Using CMP, you can perform a multiple branch test :

2000 LOA 150 (get a value, perhaps input from the keyboard)
2002CMP#80
2004 BNE 2009
2006 JSR 5000 (where you would print "hot," following your

2009 CMP # 100
2011 BNE 2016

example of CASE)

2013 JSR 5020 (print "very hot")
2016 CMP # 120
2018 BNE 2023
2020 JSR 5030 (print "intolerable")

Since you are JSRing and then will be RTSing back to within the
multiple branch test above, you will have to be sure that the
subroutines up at 5000 do not change the value of the accumulator. If
the accumulator started out with a value of 80 and, somehow, the
subroutine at 5000 left a 100 in the accumulator, you would print
"hot" and then also print "very hoL " One way around this would be
to put a zero into the accumulator before returning from each of the
subroutines (LDA #0). This assumes that none of your tests, none of
your cases, responds to a zero .

136

PRINT

ON GOTO
This is more common in ML than the ON COSUB structure above. It
eliminates the need to worry about what is in the accumulator when
you return from the subroutines . Instead of RTSing back, you jump
back, following all the branch tests .

2000 LOA 150
2002 CMP #80
2004 BNE 2009
2006 JMP 5000 (print "hot")
2009 CMP # 100
2011 BNE 2016
2013 JMP 5020 (print "very hot")
2016 CMP # 120
2018 BNE 2023
2020 JMP 5030
2023

(print" intolerable")
(all the subroutines IMP 2023 when they finish)

Instead of RTS, each of the subroutines will IMP back to 2023,
which lets the program continue without accidentally "triggering"
one of the other tests with something left in the accumulator during
the execution of one of the subroutines.

PRINT
You could print out a message in the following way:

2000 LOY #0
2002 LOA #72 (use whatever your computer's screen POKE

value is for the letter "H")
2004 STA 32900, Y (an address on the screen)
2007INY
2008 LOA #69 (the letter "E")
2010 STA 32900, Y
2013 INY
2014 LOA #76 (the letter "L")
2016 STA 32900,Y
2019INY
2020 LOA #76 (the letter "L")
2022 STA 32900, Y
2025INY
2026 LOA #79 (the letter "0")
2028 STA 32900,Y

But this is clearly a cumbersome, memory-eating way to go
about it. In fact, it would be absurd to print out a long message this
way. The most common ML method involves putting message strings
into a data table and ending each message with a zero. Zero is never a

137

PRINT

printing character in computers (excepting Atari which cannot use
the technique described here). To print the ASCII number zero, you
use 48: LDA #48, STA 32900. So, zero itself can be used as a delimiter
to let the printing routine know that you've finished the message . In
a data table, we first put in the message "hello". Recall that you
should substitute your own computer's screen POKE code:

100072 H
100169 E
100276 L
100376 L
1004790
1005 0 (the delimiter, see Chapter 6)
100672 H
100773 I (another message)
1008 0 (another delimiter)

Such a message table can be as long as you nee<i; it holds all
your messages and they can be used again and again:

2000 LOY #0
2002 LOA 1000, Y
2005 BEQ 2012 (if the zero flag is set, it must mean that we've

reached the delimiter, so we branch out of this
printing routine)

2005 STA 39000, Y (put it on the screen)
2008INY
2009 JMP 2002
2012

(go back and get the next letter in the message)
(continue with the program .)

Had we wanted to print "HI," the only change necessary would
have been to put 1006 into the LDA at address 2003. To change the
location on the screen that the message starts printing, we could just
put some other address into 2006. The message table, then, is just a
mass of words, separated by zeros, in RAM memory.

The easiest way to print to the screen , especially if your program
will be doing a lot of printing, is to create a subroutine and use some
bytes in zero page (addresses 0 to 255) to hold the address of the
message and the screen location you want to send it to. This is one
reason why hex numbers can be useful. To put an address into zero
page, you will need to put it into two bytes. It's too big to fit into one
byte. With two bytes together forming an address, the 6502 can
address any location from $0000 to the top $FFFF. So, if the message
is at decimal location 1000 like " HELLO" above, YO ll should turn
1000 into a hex number. It 's $03E8.

Then you split the hex number in two. The left two digits, $03,
are the MSB (the most significant byte) and the right digits, $E8, make

138

PRINT

up the LSB (least significant byte). If you are going to put this target
address into zero page at 56 (decimal):

2000 LOA #232 (LSB, in decimal)
2002 STA 56
2004 LOA #3 (MSB)
2006 STA 57
2008 JSR 5000 (printout subroutine)

5000 LOY #0
5002 LOA (56), Y
5004 BEQ 5013 (if zero, return from subroutine)
5006 STA 32900,Y (to screen)
5009INY
5010 JMP 5002
5013 RTS

One drawback to the subroutine is that it will always print any
messages to the same place on the screen . That 32900 (or whatever
you use there) is frozen into your subroutine. Solution? Use another
zero page pair of bytes to hold the screen address. Then, ym.u calling
routine sets up the message address, as above, but also sets up the
screen address.

The Atari contains the address of the first byte of the screen
addresses in zero page for you at decimal 88 and 89. You don't need
to set up a screen address byte pair on the Atari . We are using the
Apple II's low resolution screen for the examples in this
book, so you will want to put 0 and 4 into the LSB and MSB
respectively. The PET's screen is always located in a particular place,
unlike the Atari, Apple, VIC, and 64 screen RAM locations which can
move, so you can put a $00 and an $80 into LSB and MSB for PET.
The following is in decimal:

2000 LDA #232 (LSB)
2002 STA 56 (set up message address)
2004 LOA #3 (MSB)

(LSB for PET and Apple)
2006 STA 57
2008 LOA #0
2010 STA 58

2012 LOA #4
2014 STA 59
2016 JSR 5000

(we'll just use the next two bytes in zero page
above our message address for the screen address)

(this is for Apple II; use 128 ($80) for PET)

5000 LOY #0
5002 LOA (56), Y
5004 BEQ 5013 (if zero, return from subroutine)

139

READ

5006 STA (58),Y (to screen)
5009INY
5010 IMP 5002
5013 RTS

For Atari: 5006 STA (88), Y. You have less flexibility because you
will always be printing your messages to the first line on screen,
using address 88 as your screen storage target. To be able to put the
message anywhere on screen, Atari users will have to use some other
zero page for the screen address , as we did for Apple II and PET
above. Atari users would have to keep track of the " cursor position"
for themselves in that case.

READ
There is no reason for a reading of data in ML. Variables are not placed
into ML "DATA statements." They are entered into a table when you
are programming. The purpose of READ, in BASIC, is to assign
variable names to raw data or to take a group of data and move it
somewhere, or to manipulate it into an array of variables. These
things are handled by you, not by the computer, in ML programming.

If you need to access a piece of information, you set up the
addresses of the datum and the target address to which you are
moving it. See the "PRINT" routines above. As always, in ML you
are expected to keep track of the locations of your variables. You keep
a map of data locations, vectors, tables, and subroutine locations. A
pad of paper is always next to you as you program in ML. It seems as
if you would need many notes. In practice, an average program of say
1000 bytes could be mapped out and commented on, using only one
sheet.

REM
You do this on a pad of paper, too. If you want to comment or make
notes about your program - and it can be a necessary, valuable
explanation of what's going on - you can disassemble some ML code
like a BASIC LISTing . If you have a printer, you can make notes on
the printed disassembly. If you don't have a printer, make notes on
your pad to explain the purpose of each subroutine, the parameters it
expects to get, and the results or changes it causes when it operates.

Complex, large assemblers often permit comments within the
source code. As you program with them, you can include REMarks
by typing a semicolon, or parentheses, or some other signal to the
assembler to ignore the REMarks when it is assembling your
program . In these assemblers, you are working much closer to the
way you work in BASIC. Your remarks remain part of the source
program and can be listed out and studied .

140

RUN

RETURN
RTS works the same way that RETURN does in BASIC: it takes you
back to just after the JSR (COSUB) that sent control of the program
away from the main program and into a subroutine. JSR pushes, onto
the stack, the address which immediately follows the JSR itself. That
address then sits on the stack, waiting until the next RTS is
encountered. When an RTS occurs, the address is pulled from the
stack and placed into the program counter. This has the effect of
transferring program control back to the instruction just after the JSR.

RUN
There are several ways to start an ML program. If you are taking off
into ML from BASIC, you just use SYS or USR or CALL. They act just
like JSR and will return control to BASIC, just like RETURN would,
when there is an unmatched RTS in the ML program. By unmatched
we mean the first RTS w hich is not part of a JSR/RTS pair. USR and
SYS and CALL can be used either in immediate mode (directly from the
keyboard) or from within a BASIC program as one of the BASIC
commands.

USR is just like SYS and CALL except that you can "send" values
from BASIC to ML by attaching them to the USR () within the
parentheses. In Microsoft BASIC (Apple, PET/CBM, etc.), you must
set up the location of your target ML program in special USR
addresses, before exiting BASIC via USR . For example, to "gosub" to
an ML routine located, at $0360 (hex), you want to put a $60 (hex) into
address 1 and an 03 into address 2. The 03 is obvious, just POKE 2,3.
Atari goes from BASIC to ML via USR. The USR's argument may
place several parameters on the stack along with the" count," the
number of parameters which were passed.

The hex 60 means that you would multiply 16 x 6, since the
second column in hex is the "16's" column. So you would POKE 1,
96. Recall that we always set up ML addresses to be used by "indirect
indexed addressing" (LDA (00), Y) by putting the LSB (least
significant byte) first. To set up 0360, then, you first separate the hex
number into its two bytes, 03 60. Then you translate them into
decimal since we're in BASIC when we use USR: 3 96. Then you
switch them so that they conform tg the correct order for ML:
LSB/MSB 96 3. Finally, you POKE them into memory locations 1
and 2.

If this seems rather complex, it is. In practice, Microsoft BASIC
users rarely use USR. The number which is "passed" to ML from
within the parentheses is put into the floating point accumulator.
Following this you must JSR to FPINT, a BASIC ROM routine which
converts a floating point value into an integer that you could work

141

RUN

with in ML. As we mentioned, working with floating point arithmetic
in ML is an arcane art. For most applications which must pass
information from BASIC to ML, it is far easier to use ordinary
"integer" numbers and just POKE them into some predetermined
ML variable zone that you've set aside and noted on your workpad .
Then just SYS to your ML routine, which will look into the set-aside,
POKEd area when it needs the values from BASIC.

In Atari BASIC, USR works in a more simplified and more
convenient way. For one thing, the target ML address is contained
within the argument of the USR command: USR (address) . This
makes it nearly the exact parallel of BASIC's GOSUB. What's more,
USR passes values from BASIC by putting them on the stack as a two
byte hex number. USR (address,X) does three things. 1. It sends
program controi to the ML routine which starts at "address." 2. It
pushes the number X onto the stack where it can be pulled out with
PLA's.3. Finally, it pushes the total number of passed values onto the
stack. In this case, one value, X, was passed to ML. All of these
actions are useful and make the Atari version of USR a more sensible
way of GOSUBing from BASIC to ML.

If you are not going between BASIC and ML, you can start
(RUN) your ML program from within your "monitor." The PET/CBM
and the Apple have built-in monitor programs in their ROM chips .
On the Atari, a monitor is available as part of a cartridge . On the
"Original" PET/CBM (sometimes called BASIC 2.0), there is no built
in monitor. A cassette with a program called TIM (terminal interface
monitor) can be LOADed, though , and used in the same way that the
built-in versions are on later models. Neither the VIC nor the 64 has a
built-in monitor.

To enter "monitor mode" (as opposed to the normal BASIC
mode), you can type SYS 1024 or SYS 4 on the PET/CBM. These
locations always contain a zero and, by "landing" on a zero in ML,
you cause a BRK to take place . This displays the registers of your 6502
and prints a dot all. the screen while waiting for your instructions to
the monitor. To enter the monitor on Apple II, type CALL -151 and
you will see an asterisk (instead of PET's period) as your prompt .
From within Atari's Assembler Cartridge, you would type BUG to
enter the equivalent of the Apple and PET monitor. The Atari will
print the word DEBUG and then the cursor will wait for your next
instruction.

To RUN an ML program, all five computers use the abbreviation
G to indicate "goto and run" the hex address which follows the G.
Unfortunately, the format of the ML RUN (G), as always, differs
between machines. To run a program which starts at address $2000:

Apple II, you type: 2000G (8192 in decimal)
PET, VIC,64, you type: G 2000
Atari, you type : G 2000

142

STOP

One other difference: the Apple II expects to encounter an
unmatched RTS to end the run and return control to the monitor. Put
another way, it will think that your ML program is a subroutine and
2000G causes it to]SR to the subroutine at address (in hex) 2000. The
Commodores and the Atari both look for a BRK instruction (00) to
throw them back into monitor mode.

SAVE
When you SAVE a BASIC program, the computer handles it
automatically. The starting address and the ending address of your
program are calculated for you. In ML, you must know the start and
end yoursel£ and let the computer know . From the Apple II monitor,
you type the starting and ending address of what you want saved,
and then "W" for write:

2000.2010W (This is only for cassette and these commands are
in hex. These addresses are 8192.8208, in decimal.)

From BASIC to disk use:

BSAVE Name,A,L (A = address, L=length)

On the VIC, 64, and PET, the format for SAVE is similar, but
includes a filename:

.S "PROGRAM NAME",Ol,2000,2010 (the 01 is the "device
number" of the tape piayer)

To save to disk, you must change the device number to 08 and
start the filename with the number of the drive you are SAVEing to:

.S "0:NAME",08,2000,2010

(Always add one to the "finish" address; the example
above saves from 2000 to 200F.)

With the Atari Assembler Cartridge, you:

SAVE#C:NAME < 2000,2010 (do this from the EDIT, not
DEBUG, mode). The NAME is not required with cassette.

To write Atari sou rce code to cassette, type: SAVE#C. For disk,
type SAVE#D:FILENAME.EXT or use DOS.

STOP
BRK (or an RTS with no preceding]SR, on the Apple) throws you
back into the monitor mode after running an ML program. This is
most often used for debugging programs because you can set
"breakpoints" in the same way that you would use STOP to examine
variables when debugging a BASIC program.

143

ASC

String Handling
ASC
In BASIC, this will give you the number of the ASCII code which
stands for the character you are testing. ? ASC(" A") will result in a 65
being displayed. There is never any need for this in ML. If you are
manipulating the character A in ML, you are using ASCII already. In
other words, the letter A is 65 in ML programming. If your computer
stores letters and other symbols in nonstandard ways (such as
Commodore character codes for lowercase, and Atari's ATASCII) ,
you will need to write a special program to be able to translate to
standard ASCII if you are using a modem or some other peripheral
which uses ASCII . See your computer's manual, the Atari BASIC
Reference Manual for example, for information on your computer's
internal character code.

CHRS
This is most useful in BASIC to let you use characters which cannot
be represented within normal strings, will not show up on your
screen, or cannot be typed from the keyboard. For example, if you
have a printer attached to your computer, you could "send"
CHR$(13) to it, and it would perform a carriage return. (The correct
numbers which accomplish various things sometimes differ, though
decimal 13 - an ASCII code standard - is nearly universally
recognized as carriage return.) Or, you could send the combination
CHR$(27)CHR$(8) and the printer would backspace.

Again, there is no real use for CHR$ within ML. If you want to
specify a carriage return, just LOA #13. In ML, you are not limited to
the character values which can appear on screen or within strings .
Any value can be dealt with directly.

The following string manipulation instructions are found in
Microsoft BASIC:

LEFTS
As usual in ML, you are in charge of manipulating data. Here's one
way to extract a five-character-Iong "substring" from out of the left
side of a string as in the BASIC statement: LEFT$ (X$,5)

144

2000 LOY #5
2002 LOX #0 (use X as the offset for buffer storage)
2004 LOA 1000, Y (the location of X$)
2007 STA 4000,X (the "buffer, " or temporary storage area for

the substring)
2010INX
2011 DEY
2012 BNE 2004

RIGHTS

LEN
In some cases, you will already know the length of a string in ML.
One of the ways to store and manipulate strings is to know
beforehand the length and address of a string. Then you could use
the subroutine given for LEFT$ above. More commonly, though, you
will store your strings with delimiters (zeros, except in Atari) at the
end of each string. To find out the length of a certain string:

2000 LOY #0
2002 LOA 1000, Y (the address of the string you are testing)
2003 BEQ 2009 (remember, if you LOA a zero, the zero flag is set.

So you don't really need to use a eMP #0 here to
test whether you've loaded the zero delimiter)

2005INY
2006 BNE 2002 (we are not using a JMP here because we assume

that all your strings are less than 256 characters
long.)

2008 BRK (if we still haven't found a zero after 256 INY's, we
avoid an endless loop by just BRKing out of the
subroutine)

2009 DEY (the LENgth of the string is now in the Y register)

We had to DEY at the end because the final INY picked up the
zero delimiter. So, the true count of the LENgth of the string is one
less than Y shows, and we must DEY one time to make this
adjustment.

MIDS
To extract a substring which starts at the fourth character from within
the string and is five characters long (as in MID$(X$,4,5)):

2000 LOY #5 (the size of the substring we're after)
2002 LOX #0 (X is the offset for storage of the substring)
2004 LOA 1003, Y (to start at the fourth character from within the

X$ located at 1000, simply add three to that
address. Instead of starting our LOA, Y at
1000, skip to 1003. This is because the first
character is not in position one. Rather, it is at
the zeroth position, at 1000.)

2007 STA 4000,X (the temporary buffer to hold the substring)
2010INX
2011 DEY
2012 BNE 2004

RIGHTS
This, too, is complicated because normally we do not know the
LENgth of a given string. To find RICHT$(X$,5) if X$ starts at 1000,

145

RIGHTS

we should find the LEN first and then move the substring to our
holding zone (buffer) at 4000:

2000 LOY #0
2002 LOX #0
2004 LOA 1000, Y
2007 BEQ 2013 (the delimiting zero is found, so we know LEN)
2009INY
2010 JMP 2004
2013 TYA
2014 SEC
2015 SBC #5

2017TAY

2018 LOA 1000, Y

(put LEN into A to subtract substring size from it)
(always set carry before subtraction)
(subtract the size of the substring you want to
extract)

(put the offset back into Y, now adjusted to point to
five characters from the end of X$)

2021 BEQ 2030 (we found the delimiter, so end)
2023 STA 4000,X
2026INX
20270EY
2028 BNE 2018
2030 RTS

The above does not apply to Atari since it cannot use zero as a
delimiter.

SPC
This formatting instruction is similar to TAB. The difference is that
SPC(lO) moves you ten spaces to the right from wherever the cursor
is on screen at the time . TAB(lO) moves ten spaces from the left-hand
side of the screen. In other words, TAB always counts over from the
first column on any line; SPC counts from the cursor's current
position.

In ML, you would just add the amount you want to SPC over. If
you were printing to the screen and wanted ten spaces between A
and B so it looked like this (A B), you could write:

146

2000 LOA #65 (A)
2002 STA 32768 (screen RAM address)
2005 LOA #66 (B)
2007 STA 32778 (you've added ten to the target address)

Alternatively, you could add ten to the Y offset:

2000 LOY #0
2002 LOA #65
2004 STA 32768, Y
2007 LOY #10 (add ten to Y)

2009 LOA #66
2011 STA 32768,Y

TAB

If you are printing out many columns of numbers and need a
subroutine to correctly space your printout, you might want to use a
subroutine which will add ten to the Y offset each time you call the
subroutine:

5000TYA
5001 CLC
5002 AOC #10
5004 TAY
5005 RTS

This subroutine directly adds ten to the Y register whenever you
JSR 5000. To really do this job, however, you should use a two-byte
register to keep track of the cursor.

TAB
Quite similar to src, except that you don't add the offset from the
cursor position (whatever location you most recently printed).
Rather, TAB(X) moves ten over from the left side of the screen, or, if
you are using a printer, from the left margin on the piece of paper.
There is no particular reason to use TAB in ML. You have much more
direct control in ML over where characters are printed out.

147

Appendix A

ADC Add Memory To Accumulator With Carry

Status Flags N Z C I 0 V
• • • •

Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate ADC #Arg 69 2
Zero Page ADCArg 65 2
Zero Page, X ADCArg, X 75 2
Absolute ADCArg 60 3
Absolute, X ADC Arg, X 70 3
Absolute, Y ADC Arg, Y 79 3
(Indirect, X) ADC (Arg, X) 61 2
(Indirect), Y ADC (Arg), Y 71 2

AND " AND" Memory With Accumulator

Status Flags N Z C I 0 V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate AND # Arg 29 2
Zero Page ANDArg 25 2
Zero Page, X AND Arg,X 35 2
Absolute ANDArg 20 3
Absolute, X AND Arg, X 3D 3
Absolute, Y AND Arg, Y 39 3
(Indirect, X) AND (Arg, X) 21 2
(Indirect) , Y AND (Arg),Y 31 2

149

ASL

ASL Shift Left One Bit

Status Flags N Z e I D V
• • •

Addressing Mnemonics Opcode Size
Mode In Bytes

Accumulator ASLA OA 1
Zero Page ASL Arg 06 2
Zero Page, X ASLArg, X 16 2
Absolute ASLArg OE 3
Absolute, X ASL Arg, X IE 3

BCC Branch On Carry Clear

Status Flags N Z e I D V

Addressing Mnemonics Opcode Size
Mode In Bytes

Relative BeeArg 90 2

BCS Branch On Carry Set

Status Flags N Z e I D V

Addressing Mnemonics Opcode Size
Mode In Bytes

Relative BeS Arg BO 2

150

BNE

BEQ Branch On Zero

Status Flags N Z C I D V

Addressing Mnemonics Opcode Size
Mode In Bytes

Relative BEQ Arg FO 2

BIT Test Bits In Memory Against Accumulator

Status Flags N Z C I D V
• • •

Addressing Mnemonics Opcode Size
Mode In Bytes

Zero Page BIT Arg 24 2
Absolute BIT Arg 2C 3

BMI Branch On Minus

Status Flags N Z C I D V

Addressing Mnemonics Opcode Size
Mode In Bytes

Relative BMI Arg 30 2

BNE Branch On Anything But Zero

Status Flags N Z C I D V

Addressing Mnemonics Opcode Size
Mode In Bytes

Relative BNE Arg DO 2

151

BPL

BPL Branch On Plus

Status Flags N Z e I 0 V

Addressing Mnemonics Opcode Size
Mode In Bytes

Relative BPLArg 10 2

BRK Break

Status Flags N Z e I 0 V
•

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied BRK 00 1

Bve Branch On Overflow Clear

Status Flags N Z e I 0 V

Addressing Mnemonics Opcode Size
Mode In Bytes

Relative BVe Arg 50 2

BVS Branch On Overflow Set

Status Flags N Z e I 0 V

Addressing Mnemonics Opcode Size
Mode In Bytes

Relative BVS Arg 70 2

152

elV

CLC Clear Carry Flag

Status Flags N Z C 1 0 V
•

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied CLC 18 1

CLD Clear Decimal Mode

Status Flags N Z C J 0 V
•

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied CLD 08 1

CLI Clear Interrupt Disable Bit

Status Flags N Z C r 0 V
•

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied CLI 58 1

CLV Clear Overflow Flag

Status Flags N Z C I 0 V
•

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied CLV 88 1

153

CMP

CMP Compare Memory And Accumulator

Status Flags N Z C I 0 V
• • •

Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate CMP # Arg C9 2
Zero Page CMP Arg C5 2
Zero Page, X CMPArg, X 05 2
Absolute CMPArg CO 3
Absolute, X CMP Arg, X DO 3
Absolute, Y CMP Arg, Y 09 3
(Indirect, X) CMP (Arg, X) C1 2
(Indirect), Y CMP (Arg), Y 01 2

CPX Compare Memory Against X Register

Status Flags N Z C I 0 V
• • •

Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate CPX # Arg EO 2
Zero Page CPXArg E4 2
Absolute CPX Arg EC 3

Cpy Compare Memory Against Y Register

Status Flags N Z C I 0 V
• • •

Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate CPY # Arg CO 2
Zero Page CPY Arg C4 2
Absolute CPY Arg CC 3

154

DEY

DEC Decrement Memory By One

Status Flags N Z C I 0 V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Zero Page DECArg C6 2
Zero Page, X DEC Arg, X 06 2
Absolute DEC Arg CE 3
Absolute, X DEC Arg, X DE 3

DEX Decrement X Register By One

Status Flags N Z C I 0 V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied DEX CA 1

DEY Decrement Y Register By One

Status Flags N Z C I 0 V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied DEY 88 1

155

EOR

EOR Exclusive-Or Memory With Accumulator

Status Flags N Z C I 0 V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate EOR # Arg 49 2
Zero Page EOR Arg 45 2
Zero Page, X EORArg, X 55 2
Absolute EORArg 40 3
Absolute, X EORArg, X 50 3
Absolu te, Y EOR Arg, Y 59 3
(Indirect, X) EOR (Arg, X) 41 2
(Indirect), Y EOR (Arg) , Y 51 2

INC Increment Memory By One

Status Flags N Z C I 0 V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Zero Page INC Arg E6 2
Zero Page, X INC Arg, X F6 2
Absolute INC Arg EE 3
Absolu te, X INC Arg, X FE 3

INX Increment X Register By One

Status Flags N Z C I 0 V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied INX E8 1

156

JSR

INY Increment Y Register By One

Status Flags N Z C I D V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied INY C8 1

JMP Jump

Status Flags N Z C I D V

Addressing Mnemonics Opcode Size
Mode In Bytes

Absolute JMP Arg 4C 3
Indirect JMP (Arg) 6C 3

JSR Jump To New Location, But Save Return Address

Status Flags N Z C I D V

Addressing Mnemonics Opcode Size
Mode In Bytes

Absolute]SR Arg 20 3

157

LOA

LDA Load Accumulator With Memory

Status Flags N Z C I D V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate LDA # Arg A9 2
Zero Page LDAArg A5 2
Zero Page, X LDAArg, X B5 2
Absolute LDAArg AD 3
Absolute, X LDAArg, X BD 3
Absolute, Y LDAArg, Y B9 3
(Indirect, X) LDA (Arg, X) Al 2
(Indirect), Y LDA (Arg) , Y Bl 2

LDX Load X Register

Status Flags N Z C I D V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate LDX # Arg A2 2
Zero Page LDX Arg A6 2
Zero Page, Y LDX Arg, Y B6 2
Absolute LDXArg AE 3
Absolute, Y LDXArg, Y BE 3

158

NOP

LDY Load Y Register

Status Flags N Z C I D V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate LDY # Arg AO 2
Zero Page LDY Arg A4 2
Zero Page, X LDY Arg, X B4 2
Absolute LDY Arg AC 3
Absolute, X LDY Arg, X BC 3

LSR Shift Right One Bit In Either Memory Or Accumulator

Status Flags N Z C I D V
• • •

Addressing Mnemonics Opcode Size
Mode In Bytes

Accumulator LSRA 4A 1
Zero Page LSRArg 46 2
Zero Page, X LSRArg, X 56 2
Absolute LSR Arg 4E 3
Absolute, X LSR Arg, X 5E 3

NOP No Operation

Status Flags N Z C I D V

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied NOP EA 1

159

ORA

ORA OR Memory With Accumulator

Status Flags N Z C I D V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate ORA #Arg 09 2
Zero Page ORAArg 05 2
Zero Page, X ORA Arg,X 15 2
Absolute ORAArg OD 3
Absolute, X ORA Arg, X ID 3
Absolute, Y ORA Arg, Y 19 3
(Indirect, X) ORA (Arg, X) 01 2
(Indirect), Y ORA (Arg), Y 11 2

PHA Push Accumulator Onto The Stack

Status Flags N Z C I D V

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied PHA 48 1

PHP Push Processor Status Onto The Stack

Status Flags N Z C I D V

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied PHP 08 1

160

ROL

PLA Pull Accumulator From The Stack

Status Flags N Z C I 0 V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied PLA 68 1

PLP Pull Processor Status From The Stack

Status Flags N Z C I 0 V
From Stack

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied PLP 28 1

ROL Rotate One Bit Left In Memory Or The Accumulator

Status Flags N Z C r 0 V
• • •

Addressing Mnemonics Opcode Size
Mode In Bytes

Accumulator ROLA 2A 1
Zero Page ROLArg 26 2
Zero Page, X ROLArg, X 36 2
Absolu te ROLArg 2E 3
Absolute, X ROLArg, X 3E 3

161

ROR

ROR Rotate One Bit Right In Memory Or The Accumulator

Status Flags N Z C I 0 V
• • •

Addressing Mnemonics Opcode Size
Mode In Bytes

Accumulator RORA 6A 1
Zero Page RORArg 66 2
Zero Page, X RORArg, X 76 2
Absolute RORArg 6E 3
Absolute, X RORArg, X 7E 3

RTI Return From Interrupt

Status Flags N Z C I 0 V
From Stack

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied RTI 40 1

RTS Return From Subroutine

Status Flags N Z C I 0 V

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied RTS 60 1

162

SED

SBC Subtract Memory From Accumulator, With Borrow

Status Flags N Z C I D V
• • • •

Addressing Mnemonics Opcode Size
Mode In Bytes

Immediate SBC # Arg E9 2
Zero Page SBCArg E5 2
Zero Page, X SBCArg, X F5 2
Absolute SBCArg ED 3
Absolute, X SBCArg, X FD 3
Absolute, Y SBC Arg, Y F9 3
(Indirect, X) SBC (Arg, X) El 2
(Indirect) , Y SBC (Arg), Y Fl 2

SEC Set Carry Flag

Status Flags N Z C I D V
•

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied SEC 38 1

SED Set Decimal Mode

Status Flags N Z C I D V
•

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied SED F8 1

163

SEI

- -
SEI Set Interrupt Disable Status

Status Flags N Z C I 0 V
•

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied SEI 78 1

STA Store Accumulator In Memory

Status Flags N Z C I 0 V

Addressing Mnemonics Opcode Size
Mode In Bytes

Zero Page STAArg 85 2
Zero Page, X STA Arg, X 95 2
Absolute STA Arg 80 3
Absolute, X STA Arg, X 90 3
Absolute, Y STAArg, Y 99 3
(Indirect, X) STA (Arg, X) 81 2
(Indirect), Y STA (Arg), Y 91 2

STX Store X Register In Memory

Status Flags N Z C I 0 V

Addressing Mnemonics Opcode Size
Mode In Bytes

Zero Page STXArg 86 2
Zero Page, Y STXArg, Y 96 2
Absolute STXArg 8E 3

164

TSX

STY Store Y Register In Memory

Status Flags N Z e I D V

Addressing Mnemonics Opcode Size
Mode In Bytes

Zero Page STY Arg 84 2
Zero Page, X STY Arg, X 94 2
Absolute STY Arg 8e 3

TAX Transfer Accumulator To X Register

Status Flags N Z e I D V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied TAX AA 1

TAY Transfer Accumulator To Y Register

Status Flags N Z e I D V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied TAY A8 1

TSX Transfer Stack Pointer To X Register

Status Flags N Z e I D V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied TSX BA 1

165

TXA

TXA Transfer X Register To Accumulator

Status Flags N Z C I D V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied TXA 8A 1

TXS Transfer X Register To Stack Pointer

Status Flags N Z C I D V

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied TXS 9A 1

ITA Transfer Y Register To Accumulator

Status Flags N Z C I D V
• •

Addressing Mnemonics Opcode Size
Mode In Bytes

Implied TYA 98 1

166

Appendix B
These mnps, prilllnrili; the work of filii BllItel field , all origillally appeared in COMPUTE!

Magazille. (See the copi/ righl page for refcre llces. !

Map I. PET Original And Upgrade BASIC.

ORIG

C357
C359
C38B
C3AC
C430
C433
C480
C522
C553
C56A
C59A
C6B5
C863
C9CE
C9D2
CA27
CA20
CA49
CEll
CE13
CE1C
0079
DOA7
0278
0679
0680
06C4
073C
D8FO
09B4
OA74
DB1B
OC9F
DCA9

UPGR

C355
C357
C389
C3AB
C439
C442
C495
C52C
C55D
C572
C5A7
C6C4
C873
C90E
C9E2
CAlC
CA22
CA45
COF8
COFA
CE03
0069
D09A
0260
067B
068F
06C6
0773
0934
09EE
OAAE
OB55
OC09
DCE3

DESCRIPTION

?OUT OF MEMORY
Send BASIC error message
Warm start, BASIC
Crunch & insert line
Fix chaining & READY
Fix chaining
Crunch tokens
Find line in BASIC
Do NEW
DoCLR
Reset BASIC to start
Continue BASIC execution
Get fixed-point number from BASIC
Send Return, LF if in screen mode
Send Return, Linefeed
Print string
Print precomputed string
Print character
Check for comma
Check for specific character
' SYNTAX ERROR'
Bump Variable Address by 2
Float to Fixed conversion
Fixed to Float conversion
Get byte to X reg
Evaluate String
Ge t two parameters
Add (from memory)
Multiply by memory location
Multiply by ten
Unpack memory variable to Accum #1
Completion of Fixed to Float conversion
Print fixed-point value
Print floating-point value

167

Appendix B

DCAF DCE9 Convert number to ASCII string
E3EA E3D8 Print a character

na E775 Output byte as 2 hex digits
na E7A7 Input 2 hex digits to A
na E7B6 Input 1 hex digit to A

FOB6 FOB6 Send 'talk ' to IEEE
FOB A FOBA Send 'listen' to IEEE
FI2C FI28 Send Secondary Address
E7DE FI56 Send canned message
FI67 FI6F Send character to IEEE
FI7A FI7F Send 'untalk'
FI7E FI83 Send 'unlisten'
FI87 F18C Input from IEEE
F2C8 F2A9 Close logical fi le
F2CD F2AE Close logical file in A
F32A F301 Check for Stop key
F33F F315 Send message if Direct mode
na F322 LOAD subroutine

F3DB F3E6 ?LOADERROR
F3E5 F3EF Print READY & reset BASIC to start
F3FF F40A Print SEARCHING .. .
F411 F4ID Print file name
F43F F447 Get LOAD/SAVE type parameters
F462 F466 Open IEEE channel for output
F495 F494 Find specific tape header block
F504 F4FD Get string
F52A F52I Open logical file from input parameters
F52D F524 Open logical file
F579 F56E ?FILE NOT FOUND, clear 110
F57B F570 Send error message
F5AE F5A6 Find any tape header block
F64D F63C Get pointers for tape LOAD
F667 F656 Set tape buffer s tart address
F67D F66C Set cassette buffer pointers
F6E6 F6FO Close IEEE channel
F78B F770 Set input device from logical file number
F7DC F7BC Set output device from LFN
F83B F8I2 PRESS PLAY . . ; wait
F87F F855 Read tape to buffer
F88A F85E Read tape
F8B9 F886 Write tape from buffer
F8CI F883 Write tape, leader length in A
F913 F8E6 Wait for I/O complete or Stop key
FBDC FB76 Reset tape 1/0 pointer
FDlB FC9B Set interrupt vector

168

FFC6
FFC9
FFCC
FFCF
FFD2
FFE4

FFC6
FFC9
FFCC
FFCF
FFD2
FFE4

Set input device
Set output device
Restore default 110 devices
Input character
Output character
Get character

Appendix B

Map 2. Upgrade PET ICBM Map.

0000-0002 0-2
0003 3
0004 4
0005 5
0006 6
0007 7
0008 8
0009 9

OOOA 10
OOOB 11
OOOC 12
0000 13
OOOE 14
0011-0012 17-18
0013 19
0014-0015 20-21
0016-001E 22-30
001F-0020 31-32
0021-0022 33-34
0023-0027 35-39
0028-0029 40-41
002A-002B 42-43
002C-002D 44-45
002E-002F 46-47
0030-0031 48-49
0032-0033 50-51
0034-0035 52-53
0036-0037 54-55
0038-0039 56-57
003A -003B 58-59
003C-003D 60-61
003E-003F 62-63
0040-0041 64-65

USR Jump instruction
Search character
Scan-between-quotes flag
BASIC input buffer poin ter;#subscripts
Default DIM flag
Type : FF = string, 00 = numeric
Type: 80 = integer, 00 = floating point
DATA scan flag; LIST quote flag;
memory flag
Subscript flag; FNx flag
O=input; 64=get; 152=read
ATN sign flag; comparison evaluation flag
input flag; suppress output if negative
current 1/0 device for prompt-suppress
BASIC integer address (for SYS, GOTO, etc .)
Temporary string descriptor stack pointer
Last temporary string vector
Stack of descriptors for temporary strings
Pointer for number transfer
Mise. number pointer
Product staging area for multiplication
Pointer: Start-of-BASIC memory
Pointer: End-of-BASIC, Start-of-Variables
Pointer: End-of-Variables, Start-of-Arrays
Pointer: End-of-Arrays
Pointer: Bottom-of-strings (moving down)
Utility string pointer
Pointer: Limit of BASIC Memory
Current BASIC line number
Previous BASIC line number
Pointer to BASIC statement (for CO NT)
Line number, current DATA line
Pointer to current OAT A item
Input vector

169

Appendix B

0042-0043 66-67
0044-0045 68-69
0046-0047 70-71
0048 72
004A 74
004B-004C 75-76
004D-0050 77-80
0051-0053 81-83
0054-0058 84-88
0059-005D 89-93
005E-0063 94-99
0064 100
0065 101
0066-006B 102-107
006C 108
006D 109
006E-006F 110-111
0070-0087 112-135
0088-008C 136-140
008D-008F 141-143
0090-0091 144-145
0092-0093 146-147
0094-0095 148-149
0096 150
0097 151
0098 152
0099-009A 153-154
009B 155
009C 156
009D 157
009E 158
009F 159
OOAO 160
00A1 161
00A3-00A4 163-164
OOA5 165
00A6 166
00A7 167
00A8 168
00A9 169
OOAA 170
OOAB 171
OOAC 172
OOAD 173
OOAE 174

170

Current variable name
Current variable address
Variable pointer for FOR/NEXT
Y save register; new-opera tor save
Comparison symbol accumulator
Mise. numeric work area
Work area; garbage yardstick
Jump vector for functions
Mise. numeric storage area
Mise. numeric storage area
Accumulator#l:E,M,M,M,M,S
Series evaluation constant pointer
Accumulator hi-order propagation word
Accumulator #2
Sign comparison, primary vs. secondary
low-order rounding byte for Acc #1
Cassette buffer length/Series pointer
Subrtn: Get BASIC Char; 77,78 = pointer
RND storage and work area
Jiffy clock for TI and TI$
Hardware interrupt vector
Break interrupt vector
NMI interrupt vector
Status word ST
Which key depressed : 255=no key
Shift key: 1 if depressed
Correction clock
Keyswitch PIA: STOP and RVS flags
Timing constant buffer
Load=O, Verify = 1
#characters in keyboard buffer
Screen reverse flag
IEEE-488 mode
End-of-line-for-input poin ter
Cursor log (row, column)
PBD image for tape I/O
Key image
0 = fl ashing cursor, else no cursor
Countdown for cursor timing
Character under cursor
Cursor blink flag
EOT bit received
Input from screen/input from keyboard
X save flag
How many open files

OOAF 175
OOEO 176
00E1 177
00E2 178
00E4 180
00E5 181
00E7 183
00E9 185
OOEA 186
OOEE 187
OOSC 188
OOED 189
OOEE 190
OOSF 191
OOCO 192
00C1 193
00C2 194
00C3 195
00C4-00C5 196-197
00C6 198
00C7 -00C8 199-200
00C9-00CA 201-202
OOCE-OOCC 203-204
OOCD 205
OOCE 206
OOCF 207
OODO 208
00D1 209
00D2 210
00D3 211
00D4 212
OOD5 213
00D6-00D7 214-215
00D8 216
00D9 217
OODA-OODE 218-219
OODC 220
OODD 221
OODE 222
OODF 223
00EO-00F8 224-248
00F9 249
OOFA 250
OOFE-OOFC 251-252
0l00-010A 256-266

Appendix B

Input device, normally 0
Output CMD device, normally 3
Tape character parity
Byte received flag
Tape buffer character
Pointer in file name transfer
Serial bit count
Cycle counter
Countdown for tape write
Tape buffer #1 count
Tape buffer #2 count
Write leader count; Read pass l/pass 2
Write new byte; Read error flag
Write start bit; Read bit seq error
Pass 1 error log pointer
Pass 2 error correction pointer
0= Scan; 1-15 = Count; $40 = Load; $80 = End
Checksum
Pointer to screen line
Position of cursor on above line
Utility pointer: tape buffer, scrolling
Tape end address/end of current program
Tape timing constants
00 = direct cursor, else programmed cursor
Timer 1 enabled for tape read; 00 = disabled
EOT signal received from tape
Read character error
characters in file name
Current logical file number
Current secondary addrs, or R/W command
Current device number
Line length (40 or 80) for screen
Start of tape buffer, address
Line where cursor lives
Last key input; buffer checksum; bit buffer
File name pointer
Number of keyboard INSERTs outstanding
Write shift word/Receive input character
blocks remaining to writelread
Serial word buffer
Screen line table: hi order address & line wrap
Cassette #1 status switch
Cassette #2 status switch
Tape start address
Binary to ASCII conversion area

171

Appendix B

0100-013E 256-318
0100-01FF 256-511
0200-0250 512-592
0251-025A 593-602
025B-0264 603-612
0265-026E 613-622
026F-0278 623-632
027 A-0339 634-825
033A-03F9 826-1017
03FA-03FB 1018-1019
0400-7FFF 1024-32767
8000-8FFF 32768-36863
9000-BFFF 36864-49151
COOO-EOF8 49152-57592
EOF9-E7FF 57593-59391
E810-E813 59408-59411
E820-E823 59424-59427
E840-E84F 59456-59471
FOOO-FFFF 61440-65535

Tape read error log for correction
Processor stack area
BASIC input buffer
Logical file number table
Device number table
Secondary address, or R /W cmd, table
Keyboard input buffer
Tape #1 buffer
Tape #2 buffer
Vector for Machine Language Monitor
Available RAM including expansion
Video RAM
Available ROM expansion area
Microsoft BAS1C interpreter
Keyboard, Screen, Interrupt programs
PIA1- Keyboard 1/0
PIA2 - IEEE-488 1/0
VIA - 1/0 and Timers
Reset, tape, diagnostic monitor

Map 3. PET/CBM 4.0 BASIC. Zero Page.

Hex
0000-0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
OOOC
OOOD-OOOF
0010
001 1-001 2
00 13-01)15
0016-001E
001F-0022
0023-0027
0028-0029
002A-002B
002C-002D
002E-002F
0030-0031
0032-0033
0034-0035
0036-0037
0038-0039
003A-003B

172

Decimal
0-2
3
4
5
6
7
8
9

10
11
12
13-15
16
17-1 8
19- 21
22-30
3 1- 34
35-39
40-41
42-43
44-45
46-47
48- 1-19
50-51
52-53
54-55
56-57
58-59

Description
USR jump
Searc h cha r acte r
Scan-betw een-quotes fl ag
Input buffer pointer; # of subscripts
Defa ult DIM flag
Type: FF=string, OO=numeric
Type: 80 =i ntege r, OO=floating point
Flag: DATA scan ; LIS T quote; memory
Subscript flag; FNX flag
O=IN PUT; $40 =GE T; $98 =READ
ATN sign/Comparison Evaluation flag
Disk status DS$ desc riptor
Curr ent 1/0 device for prompt-suppress
Integer value (for SYS, GOTO etc)
Pointers fo r descriptor s tac k
Desc ript or s tack(temp str ings)
Utility painter area
Product area for mul tip licati o n
Pointer: Star t- of-Basic
Pointer: S ta rt -of-Va ri ab les
Poin ter: Star t- of-Arr ays
Pointer: End-of-Arrays
Pointer: Stri ng-storage(moving down)
Utility string pOinte r
Pointer: Limit - of - memo r y
Cur rent Basic line number
Pr ev ious Basic line number
Pointer: Basic s tatement for CONT

003C-003D
003E-003F
0040-0041
0042-0043
0044-0045
0046 - 0047
00 48- 0049
004A
004B- 0050
005 1-0053
005 4-005D
005E
005F- 0062
0063
0064
0065
0066-006B
006C
006D
006E-0 06F
0070-0087
0077 - 0078
0088-008C
008D-00 8F
0090-0091
0092-0093
0094-0095
0096
0097
0098
0099-009A
009B
009C
009D
009E
009F
OOAO
OOAl
00A3-00A4
00A5
00A6
00A7
00A8
00A9
OOAA
OOAB
OOAC
OOAD
OOAE
OOAF
OOBO
OOB l
00B2
00B3
00B4
00B5
00B7
00B9

60-61
62-63
64-65
66-67
68 - 69
70 - 7 1
72-73
74
75-80
81-83
84-93
94
95-98
99

100
101
102-1 07
108
106
110-111
112- 135
119- 120
136 - 140
141-143
144- 145
146-147
148-149
150
151
152
15 3-154
155
156
157
158
159
160
161
163-164
165
166
167
168
169
17 0
171
17 2
173
174
175
176
177
17 8
179
180
181
183
185

Appendix B

Current DATA line numb e r
Current DA TA address
Input vector
Cu rr ent var i ab l e name
Current variable address
Variable pOinter f o r FOR/NEXT
Y- save; op-save; Basic pOinter save
Compar i son symbo l acc umulato r
Misc work area, pOinters, etc
J ump vector for functions
Misc numeric work area
Accumlll : Exponent
Accumll l : Man ti ssa
Accumlll: Si g n
Se r ies evaluation constant pointer
Accumlll hi - order (overflow)
Accuml12 : Exponent, etc.
Sign compar ison, Acclll vs 112
Accumlll la-o r der (rounding)
Cassette buff len /Series painter
CHRGET subroutine; get Basic char
Basic pointer (within subrtn)
Random number seed.
Jiffy clock for TI and TI $
Hardware interrupt vector
BRK interrupt vector
NMI interrupt vector
Status l.Jord ST
Which key down; 255 =n o key
Shift key: 1 if depressed
Correction clock
Keyswitch PIA: STOP and RVS f lags
Timing constant for tape
Load =O, Verify =l
Number of characters in keybd buffer
Sc reen reverse flag
IEEE output; 255 =char acte r pending
End - of-line-for-in put pOinter
Cursor log (row, column)
IEEE output buffer
Key image
O=flash cu rsor
Cursor timing countdown
Character unde r cursor
CUrsor in blink phase
EOT re ce ived from tape
Input from screen/from keyboard
X save
How many open files
Input device, normally 0
Output CMD device, normally 3
Tape character parity
Byte r eceive d flag
Logical Address temporary save
Tape buffer character; MLH command
File name pOinter; MLM flag, counter
Serial bit count
Cycl e counter

173

Appendix B

OOBA
OOBB-OOBC
OOBD
OOBE
OOBF
oOCO-OOC l
00C2
00C3
00C4-00C5
00C6
00C7-00C8
00C9 - 00CA
OOCB-OOCC
OOCD
OOC E
OOCF
OODO
OODl
00D2
00D3
00D4
00D5
00 D6-00D7
00D8
00D9
OODA-OODB
OODC
OODD
OODE
OOD F
00EO-00F8
OOEO-OOEl
00E2
00E3
00E4
00E5
00E6
00E7
00E8
00E9-00EA
OOEB-OOEC
00F9-00FA
OOFB-OOFC
OOFD-OOFE
0 100-0 10A
0 100-0 13E
0 100 -01FF
0200 - 0250
025 1-025A
025B-0 264
0265-026E
026F-0278
027A-0 339
033A-03F9
033A
033B
033C
033D

174

186
187- 188
189
190
191
192 -1 93
194
195
196- 197
198
199-200
20 1-202
203 - 204
205
206
207
208
209
2 10
211
212
2 13
214-215
2 16
2 17
2 18-219
220
221
222
223
224-248
224 - 225
226
227
228
229
230
23 1
232
233-234
235-236
249-250
25 1-252
253-254
256 - 266
256-3 18
256-5 11
512-592
593 -6 02
603-612
6 13-622
623-632
634-825
826-1017
826
827
828
829

Tape wri ter co untdown
Tape buffer pointers, #1 and #2
Write l eade r count; read pass l /2
Wri te new byte; read error flag
Write start bit; read bit seq error
Error log pOinters, pass l /2
0=Scan/1- 15=Count/$40= Load/$80 =En d
Write leader l eng th; read checksum
Pointer to screen line
Position of curso r on above li ne
Utility pointer: tape, scroll
Tape end addrs/End of current program
Tape timing constants
O=direct curso r, else progr ammed
Tape read timer 1 e nabled
EOT received from tape
Read character e rror
characters in fi l e name
Current file logica l address
Cur rent file secondary ad drs
Cur rent file device number
Right-hand window or lin e margin
Pointer: start of tape buffer
Line where cursor l ives
Last key/checksum/misc.
File name pOinter
Numb er of INSERTs outstanding
Write shift word/read character in
Tape block s rem ain ing to write/read
Se rial word buffer
(40-column) Sc reen lin e wrap table
(80 - column) Top, bottom of window
(80-column) Left window marg in
(80 - column) Limit of keybd buffer
(80-column) Key repeat f l ag
(80-column) Repeat cou ntd own
(80-column) New ke y marker
C80-column) Chime time
(80-co lumn) HOME count
(80-co l umn) Input vector
(80-column) Output vector
Cassette status, #1 and #2
MLM pOinter/Tape start address
MLM , DOS pOinter, misc .
STR$ work area, MLM work
Tape read e rror log
Processor stack
MLM work area ; Input buffer
File logi ca l address table
File device number table
File secondary ad ds tabl e
Keyboard input buffer
Tape# l input buffer
Tape#2 input buffer
DOS characte r pointer
DOS driv e 1 fl ag
DOS drive 2 flag
DOS length/write f l ag

Appendix B

033E
033F-0340
0341
0342-0352
0353-0380
03EE-03F7
03FA-03FB
03FC
0400-7FFF
8000-83FF
8000-87H
9000-AFH
BOOO-DFH
EOOO-E7H
E810-E813
E820-E823
E840-E84F
E880-E881
FOOO-FFFF

830
831-832
833
834-850
851-896

1006-1015
10 18-1 019
1020
1024-32767

32768-33791
32768 -34 815
36864-115055
45056-57343
57344-59391
59408-59411
59424-59427
59456-59471
59520-59521
6 1440-65 535

DOS syntax flags
DOS disk ID
DOS command string count
DOS file name buffer
DOS command string buffer
C80-column) Tab stop table
Monitor extens ion vector
IEEE timeout defeat
Available RAM including expansion
C40-column) Video RAM
C80-column) Video RAM
Available ROM expans ion a rea
Basic , DOS, Machine Lang Monitor
Screen, Keyboard, Interrupt programs
PIA 1 - Keyboard I/O
PIA 2 - IEEE-488 I/O
VIA - I/O and timers
C80-column) CRT Controller
Reset, I/O handlers, Tape routines

Map 4. PET/CBM 4.0 BASIC ROM Routines.

Description
Action addresses for primary keywords
Action addresses for functions

BOOO-B065
B066-B093
B094-BOB1
BOB2-B20C
B20D-B321
B322-B34F
B350-B392
B393-B39F
B3AO-B3CC
B3CD
B3FF-B41E
B41F-B4B5
B4B6-B4E1
B4E2-B4FA
B4FB-B5A2
B5A3-B5D1
B5D2
B5EC-B621
B622-B62F
B630-B6DD
B6DE-B784
B785-B7B6
B7B7 -B7C5
B7C6-B7ED
B7EE-B807
B808-B812
B813-B82F
B830-B85C
B85D

Hierarchy and action addresses for operators
Table of Basic keywords
Basic messages, mostly error messages
Search the stack for FOR or GOSUB activity
Open up space in memory
Test: stack too deep?
Check available memory
Send canned error message, then:
Warm start; wait for Basic command
Handle new Basi c line input
Rebuild chaining of Basic lines
Receive line from keyboard
Crunch keywords into Basic tokens
Search Basic for given line number
Perform NEW, and;
Perform CLR
Reset Basic execution to start
Perform LIST
Perform FOR
Execute Basic statement
Perform RESTORE
Perform STOP or END
Perform CONT
Perform RU N
Perform GOSUB
Perform GOTO
Perform RETURN, then:

175

Appendix B

BBB3-BB90
BB91
BB94-BBB2
BBB3
BBc6-BBD5
BBD6-BBF5
BBF6-B92F
B930-BAB7
BABB-BABD
BABE-BAA 1
BAA2-BB1C
BB 1D-BB39
BB3A-BB4B
BB4C-BB79
BB7 A-BBA3
BBA4-BBBD
BBBE-BBF4
BBF5-BC01
BC02-BC F6
BCn -BD1B
BD19-BD71
BD72-BD97
BD9B
BEE9
BEEF
BFOO-BFOB
BFBC-C046
C047-COB5
COB6-COB5
COB6 -C 11 D
C11 E-C12A
C12B-C1BF
C1CO-C2C7
C2CB-C2DB
C2D9-C2DC
C2DD-C2FB
C2FC-C4A7
C4AB
C4BC-C4CB
C4C9-C4CE
C4CF-C4DB
C4DC-C509
C50A-C51 C
C51D-C5BD
C5BE-C59D
C59E-C5AF
C5BO-C61C
C6 1D- C669
C66A-C74E
C74F-C7BB
C78C-C7B4
C7B5-C8 10

176

Perform DATA: skip statement
Scan for next Basi c statement
Scan for next Basic line
Perform IF, and pe rhaps:
Perform REM : skip line
Perform ON
Accept fixed-point number
Per'form LET
Perform PRINTII
Perform CMD
Perform PRINT
Print string from memory
Pr in t single format character
Handle bad input data
Perform GET
Perform INPUTIF
Perform INPUT
Prompt and receiv e input
Perform READ
Canned Input error me ssages
Perform NE XT
Check type mismat c h
Evaluate expression
Evaluate expression within parentheses
Check parenthesis, comma
Syntax error exit
Variable name setup
Set up function references
Perform OR, AND
Perform comparisons
Perform DIM
Search for variable
Create new variable
Setup array pointer
3276B in floating binary
Evaluate integer express i on
Find or make array
Perform FRE, and:
Convert fixed-to-floating
Perform POS
Check not Direct
Perform DEF
Check FNx sy ntax
Evaluate FNx
Perform STR$
Do st rin g vector
Scan, set up stri ng
Allocate space for string
Garbage collection
Concatenate
Store st:-ing
Disc a rd unwanted string

CB11-CB21
CB22-CB35
CB36-CB61
CB62-CB6C
CB6D-CB96
CB97-CBBl
CBB2-CBB7
CB BB-CBCO
CBC1-C8DO
CBD1-CBE2
CBE3-C920
C921-C92C
C92D-C942
C943-C959
C95A-C962
C963-C97E
C97F-C9B5
C9B6
C99B-CA7C
CA7D-CAB3
CAB4-CABB
CAB9-CAFl
CAF2-CB 1F
CB20
CB5E-CBC l
CBC2-CBEC
CBED-CC09
cCOA-CC17
CC1B-CC2E
CC2F-CC33
CC34
CC3D
CC45-CCD7
CCDB-CCFC
CCFD-CD31
CD32-CD41
CD42-CD50
CD51-CD60
CD6 1- CD6E
CD6F-CDBD
CD8E -CD 90
CD91-CDDO
CDD1-CE01
CE02-CE2B
CE29-CEB3
CEB4-CEEB
CEE9-CEF8
cn8
CF7F-CF92
CF93-DOC6
DOC7 -D1 07
D10 8

Appendix B

Clean descriptor stack
Perform CHR$
Perform LEFT$
Perform RIGHT$
Perform lHD$
Pull string data
Perform LEN
Switch string to numeric
Perform ASC
Get byte parameter
Perform VAL
Get two parameters for POKE or WAIT
Convert floating-to-fixed
Perform PEEK
Perf or m POKE
Perform WAIT
Add 0.5
Perform subtraction
Perform addition
Complement accum#1
Overflow exit
I<lul tiply-a-byte
Constants
Perform LOG
Perform multiplication
Unpack memory into accum#2
Test & adjust accumula tors
Handle overflow and underflow
Mul tiply by 10
10 in floating binary
Divide by 10
Perform divid e-by
Perform divide-i nto
Unpack memory into accum#1
Pack accum#1 into memory
Move accum#2 to #1
Move accum#1 to #2
Round accumll1
Get 2ccum!t1 sign
Perform SGN
Perform ABS
Compare accum#1 to memory
Floating-to-fixed
Perform INT
Convert string to floating-point
Get new ASCII digit
Constan ts
Print IN, then:
Print Basic line #
Convert floating-point to ASC I I
Constants
Perform SQR

177

Appendix B

D112 Perform power function
D14B-D155 Perform negation
D156-D183 Constants
D184-D1D6 Perform EXP
D1D7-D220 Series evaluation
D221-D228 RND constants
D229-D281 Perform RND
D282 Perform COS
D289-D2D1 Perform SIN
D2D2-D2FD Perform TAN
D2FE-D32B Constants
D32C-D35B Perform ATN
D35C-D398 Constants
D399-D3B5 CHRGET sub for zero page
D3B6-D471 Basic cold start
D472-D716 Machine Language Monitor
D717-D7AB MLM subroutines
D7AC-D802 Perform RECORD
D803-D837 Disk parameter checks
D838-D872 Dummy disk control messages
D873-D919 Perform CATALOG or DIRECTORY
D91A-D92E Output
D92F-D941 Find spare secondary address
D942-D976 Perform DOPEN
D977-D990 Perform APPEND
D991-D9D1 Get disk status
D9D2-DA06 Perform HEADER
DA07-DA30 Perform DCLOSE
DA31-DA64 Set up disk record
DA65-DA7D Perform COLLECT
DA7E-DAA6 Perform BACKUP
DAA7-DAC6 Perform COPY
DAC7-DAD3 Perform CON CAT
DAD4-DBOC Insert command string values
DBOD-DB39 Perform DSAVE
DB3A-DB65 Perform DLOAD
DB66-DB98 Perform SCRATCH
DB99-DB9D Check Direct command
DB9E-DBD6 Query ARE YOU SURE?
DBD7-DBEO Print BAD DISK
DBE1-DBF9 Clear DS$ and ST
DBFA-DC67 Assemble disk command string
DC68-DE29 Parse Basic DOS command
DE2C-DE48 Get Device number
DE49-DE86 Get file name
DE87-DE9C Get small variable parameter
** Entry points only for EOOO-E7FF **
EOOO Register/screen initialization
EOA7 Input from keyboard
E116 Input from screen
E202 Output character
E442 Main Interrupt entry

178

E455
E600
**
FOOO-FODl
FOD2
FOD5
FOD7
Fl09-F142
F143-F150
F151-F16B
F16C-F16F
F170-F184
F1 85-F192
F193-F19D
F19E-F1AD
F1AE-F1BF
F1CO-F204
F205-F214
F215-F265
F266-F2Al
F2A2
F2A6-F2CO
F2Cl-F2DC
F2DD-F334
F335-F342
F343-F348
F349-F350
F351-F355
F356-F400
F401-F448
F449-F46c
F46D-F47C
F47D-F4A4
F4A5-F4D2
F4D3-F4F5
F4F6-F50C
F50D-F55F
F560-F5E4
F5E5-F618
F619-F67A
F67B-F694
F695-F6AA
F6AB-F6C2
F6C3-F6CB
F6CC-F6DC
F6DD-F767
F768-F7 AE
F7AF-F7FD
F7FE-F84A
F84B-F856
F857-F879

Appendix B

Interrupt: clock, cursor, keyboard
Exit from Interrupt

File messages
Send 'Talk'
Send 'Li sten'

**

Send IEEE command character
Send byte to IEEE
Send byte and clear ATN
Option: timeout or wait
DEVICE NOT PRESENT
Timeout on read, clear control lines
Send canned file message
Send byte, clear contro l lines
Send normal (deferred) IEEE char
Drop IEEE device
Input byte from IEEE
GET a byte
INPUT a byte
Output a byte
Abor t fil es
Restore default I /O devices
Find /se tup file data
Perform CLOSE
Test STOP key
Acti on STOP key
Send message if Direct mode
Test if Direct mode
Program load subroutine
Perform LOAD
Print SEARCHING
Print LOADING or VERIFYING
Get Load/Save parameters
Send name to IEEE
Find specific tape header
Perform VERIFY
Get Open/Close parameters
Perform OPEN
Find any tape header
Write tape header
Get start/end addrs from header
Se t buffer address
Set buffer start & end addrs
Perform SYS
Set tape write start & end
Perform SAVE
Update cl ock
Connect inpu t device
Connect output device
Bump tape buffer pointer
Wai t for PLAY

179

Appendix B

F87A-F88B Test cassette switch
F88C-F899 Wait for RECORD
FB9A Initiate tape read
F8CB Initiate tape write
FSEO-F92A Common tape I/O
F92B-F934 Test I/O complete
F935-F944 Test STOP key
F945-F975 Tape bit timing adjust
F976-FA9B Read tape bits
FA9C-FBBA Read tape characters
FBBB-FBC 3 Reset tape read address
FBC4-FBC B Flag error into ST
FBC9-FBD7 Reset counters for new byte
FBDS-FBF3 Write a bit to tape
FBF4-FCS5 Tape write
FCS6-FCBF Write tape leader
FCCO-FCDA Terminate tape; r es tore interrupt
FCDB-FCEA Set interrupt vector
FCEB-FCFS Turn off tape motor
FCF9-FDOA Checksum calculation
FDOB-FD15 Advance load/ save pointer
FD16-FD4B Power-on Reset
FD4C-FD5C Table of interrupt vectors
** Jump tabl e: **
FF93-FF9E CONCAT,DOPEN,DCLOSE,RECORD
FF9F-FFAA HEADER,COLLECT,BA CKUP ,COPY
FFAB-FFB6 APPEND,DSAVE,DLOAD, CATALOG
FFB7-FFBC RENAME,SCRATCH
FFBD Get disk status
FFCO OPEN
HC3 CLOSE
FFC6 Set input device
FFC9 Set output device
FFCC Restore default I/O devices
FFCF INPUT a byte
FFD 2 Output a byte
FFD5 LOAD
FFDS SAVE
HDB VERIFY
FFDE SYS
FFEl Test stop key
FFE4 GET byte
FFE7 Abort all files
FFEA Update clock
FFFA-FFFF Hard vectors: NMI, Reset, INT

180

.....
.

0
0

.....

.

M
ap

 5
.

V
IC

 Z
e

ro
 P

ag
e

A
n

d
 B

A
S

IC
 R

O
M

s
.

H
ex

0

0
0

0
-0

0
0

2

0
0

0
3

-0
0

0
4

0

0
0

5
-0

0
0

6

00
07

00

08

00
09

OO

OA

OO
OB

OO

OC

OO
OD

OO

OE

O
O

O
F

00
10

00

11

00
12

00

13

0
0

1
4

-0
0

1
5

00

16

00
17

-0
01

t5

0
0

1
9

-0
0

2
1

0

0
2

2
-0

0
2

5

0
0

2
6

-0
0

2
A

00

2B
-0

02
C

D
ec

im
al

0

-2

3
-4

5

-6

7 8 9
10

1

1
12

1 3

14

15

16

17

18

19

20

-2
1

22

2
3

-2
4

2

5
-3

3

3
4

-3
7

3

8
-4

2

4
3

-4
4

D
e
sc

ri
p

ti
o

n

U
SR

ju

m
p

F
lo

a
t-

F
ix

e
d

v

e
c
to

r
F

ix
e
d

-F
lo

a
t

v
e
c
to

r
S

e
a
rc

h

c
h

a
ra

c
te

r
S

c
a
n

-q
u

o
te

s
fl

a
g

TA

B
co

lu
m

n

sa
v

e
O

=L
O

A
D

,
1=

V
E

R
IF

Y

In
p

u
t

b
u

ff
e
r

p
o

in
te

r/
#

su

b
sc

rp
t

D
e
fa

u
lt

D

IM

fl
a
g

T

y
p

e:

F
F

=
st

ri
n

g
,

O
O

=
nu

m
er

ic

T
y

p
e:

8

0
=

in
te

g
e
r,

O

O
=

fl
o

at
in

g

p
o

in
t

D
A

TA

sc
an

/L
IS

T

q
u

o
te

/m
em

ry

fl
a
g

S

u
b

sc
ri

p
t/

F
N

x

fl
a
g

0=

IN
P

U
T

;$
40

=
G

E
T

;$
98

=
R

E
A

D

AT
N

si
g

n
/C

o
m

p
a
ri

so
n

e
v

a
l

fl
a
g

C

u
rr

e
n

t
I/

O

p
ro

m
p

t
fl

a
g

In

te
g

e
r

v
a
lu

e

P
o

in
te

r:

te
m

p
o

ra
ry

s
tr

g

st
a
c
k

L

a
st

te

m
p

s
tr

in
g

v

e
c
to

r
S

ta
c
k

fo

r
te

m
p

o
ra

ry

s
tr

in
g

s

U
ti

li
ty

p

O
in

te
r

a
re

a

P
ro

d
u

ct

a
re

a

fo
r

m
u

lt
ip

li
c
a
ti

o
n

P

o
in

te
r:

S

ta
rt

-o
f-

B
a
s
ic

l>

"t
J

"t
J tD

::::J
 c..
 x' O

J

.....
.

0
0

N

00

2D
-0

02
E

0

0
2

F
-0

0
3

0

0
0

3
1

-0
0

3
2

0

0
3

3
-0

0
3

4

0
0

3
5

-0
0

3
6

0

0
3

7
-0

0
3

8

00
39

-0
03

A

00
3B

-0
03

C

00
3D

-0
03

E

0
0

3
F

-0
0

4
0

0

0
4

1
-0

0
4

2

0
0

4
3

-0
0

4
4

0

0
4

5
-0

0
4

6

0
0

4
7

-0
0

4
8

00

49
-0

04
A

00

4
B

-0
04

 C

00
4D

00

4E
-0

05
3

0
0

5
4

-0
0

5
6

00

57
 -

0
0

6
0

00

61

0
0

6
2

-0
0

6
5

00

66

00
67

00

68

0
0

6
9

-0
0

6
E

4
5

-4
6

47

 -
4

8

4
9

-5
0

5

1
-5

2

5
3

-5
4

5

5
-5

6

57
 -5

1)

5
9

-6
0

6

1
-6

2

6
3

-6
4

6

5
-6

6

67
-6

1)

6
9

-7
0

7

1
-7

2

7
3

-7
4

7

5
-7

6

77

7
8

-8
3

8

4
-8

6

87
 -

9
6

97

98

-1
01

10

2
10

3
10

4
1

0
5

-1
1

0

P
o

in
te

r:

S
ta

rt
-o

f-
V

a
ri

a
b

le
s

P
o

in
te

r:

S
ta

rt
-o

f-
A

rr
a
y

s
P

o
in

te
r:

E

n
d

-o
f-

A
rr

a
y

s
P

o
in

te
r:

S

tr
in

g
-s

to
ra

g
e
(m

o
v

in
g

do

w
n)

U

ti
li

ty

s
tr

in
g

p

O
in

te
r

P
o

in
te

r:

L
im

it
-o

f-
m

em
o

ry

C
u

rr
e
n

t
B

a
si

c

li

n
e

nu
m

be
r

P
re

v
io

u
s

B
a
si

c

li

n
e

nu
m

be
r

P
o

in
te

r:

B
a
si

c

st
a
te

m
e
n

t
fo

r
CO

N
T

C
u

rr
e
n

t
D

A
TA

li

n
e

nu
m

be
r

C
u

rr
e
n

t
D

A
TA

a
d

d
re

ss

In
p

u
t

v
e
c
to

r
C

u
rr

e
n

t
v

a
ri

a
b

le

na
m

e
C

u
rr

e
n

t
v

a
ri

a
b

le

a
d

d
re

ss

V
a
ri

a
b

le

p
o

in
te

r
fo

r
FO

R
/N

EX
T

Y
-s

av
e;

o

p
-s

a
v

e
;

B
a
si

c

p
O

in
te

r
sa

v
e

C
o

m
p

ar
is

o
n

sy

m
bo

l
ac

cu
m

u
la

to
r

M
is

c
w

or
k

a
re

a
,

p
O

in
te

rs
,

e
tc

Ju

m
p

v
e
c
to

r
fo

r
fu

n
c
ti

o
n

s
M

is
c

n
u

m
er

ic

w
or

k
a
re

a

A
cc

um
#1

:
E

x
p

o
n

en
t

A
cc

um
#1

:
M

an
ti

ss
a

A
cc

um
#1

:
S

ig
n

S

e
ri

e
s

e
v

a
lu

a
ti

o
n

c
o

n
st

a
n

t
p

o
in

te
r

A
cc

um
#1

h

i-
o

rd
e
r

(o
v

e
rf

lo
w

)
A

cc
um

#2
:

E
x

p
o

n
en

t,

e
tc

.

» "'C

"'C
 m

:::I

0
- x' I:P

.....

0
0

w

00
6F

00

70

0
0

7
1

-0
0

7
2

00

73
-0

0S
A

00

7
A

-0
07

 B

O
O

SB
-O

O
SF

00

90

00
91

00

92

00
93

00

94

00
95

00

96

00
97

00

98

00
99

00

9A

00
9B

00

9C

00
9D

00

9E

00
9F

00

A
O

-0
0A

2
00

A
3

00
A

4
00

A
5

11
1

11
2

1
1

3
-1

1
4

1

1
5

-1
3

S

1
2

2
-1

2
3

1

3
9

-1
4

3

14
4

14
5

14
6

14
7

14
 S

14

9
15

0
15

1
15

2
15

3
15

4
15

5
15

6
15

7
15

 S

15
9

1
6

0
-1

6
2

16

3
16

4
16

5

S
ig

n

co
m

p
ar

is
o

n
,

A
cc

#1

v
s

#2

A
cc

um
#1

lo

-o
rd

e
r

(r
o

u
n

d
in

g
)

C
a
ss

e
tt

e

b

u
ff

le

n
/S

e
ri

e
s

p
o

in
te

r
CH

RG
ET

su

b
ro

u
ti

n
e
;

g
e
t

B
a
si

c

c
h

a
r

B
as

ic

p
o

in
te

r
(w

it
h

in

su
b

rt
n

)
RN

D
se

ed

v
a
lu

e

S
ta

tu
s

w
or

d
ST

K

ey
sw

it
ch

P

IA
:

ST
O

P
an

d
RV

S
fl

a
g

s
T

im
in

g
c
o

n
st

a
n

t
fo

r
ta

p
e

L
 oa

 d
 =

 0,

V
 e r

 i
 f

y
=

 1
S

e
ri

a
l

o
u

tp
u

t:

d
e
fe

rr
e
d

c
h

a
r

fl
a
g

S

e
ri

a
l

d
e
fe

rr
e
d

c
h

a
ra

c
te

r
T

ap
e

EO
T

re
c
e
iv

e
d

R

e
g

is
te

r
sa

v
e

H
ow

m

an
y

o
p

en

fi
le

s

In
p

u
t

d
e
v

ic
e
,

n
o

rm
al

ly

0
O

u
tp

u
t

CM
D

d
e
v

ic
e
,

n
o

rm
al

ly

3
T

ap
e

c
h

a
ra

c
te

r
p

a
ri

ty

B
y

te
-r

e
c
e
iv

e
d

fl

a
g

D

ir
ec

t=
$S

O
/R

U
N

=
O

o

u
tp

u
t

c
o

n
tr

o
l

Tp

P
as

s
1

e
rr

o
r

lo
g

/c
h

a
r

b
u

ff
e
r

Tp

P
as

s
2

e
rr

lo

g

c
o

rr
e
c
te

d

J
if

fy

C
lo

ck

HM
L

S
e
ri

a
l

b
it

co

u
n

t/
E

O
I

fl
a
g

C

y
cl

e
c
o

u
n

t
C

o
u

n
td

o
w

n
,t

ap
e

w
ri

te
/b

it

co
u

n
t

~

"'C

"'C

~

:::
l c..

>C
'

OJ

~

00
A

6
00

A
7

00
A

8
00

A
9

OO
AA

OO

AB

O
O

A
C-

O
O

A
D

O

O
A

E-
O

O
A

F
00

B
O

-0
0B

1
00

B
2-

00
B

3
00

B
4

00
B

5
00

B
6

00
B

7
00

B
8

00
B

9
OO

BA

O
O

BB
-O

O
BC

OO

BD

O
O

BE

O
O

BF

OO
CO

00

C
1-

0u
C

2
00

C
3-

00
C

4
00

C
5

00
C

6

16
6

16
7

16
8

16
9

17
0

17
1

17
2

-
17

3
1

7
4

-1
7

5

1
7

6
-1

7
7

1

7
8

-1
7

9

18
0

18
1

18
2

18
3

18
4

18
5

18
6

1
~
7
-
1
8
8

18
9

19
0

19
1

19
2

1
9

3
-1

9
4

1

9
5

-1
9

6

19
7

19
8

T
ap

e
b

u
ff

e
r

p
o

in
te

r
Tp

W

rt

ld

r
c
o

u
n

t/
R

d

p

a
s
s
/i

n
b

it

Tp

W
rt

ne

w

b
y

te
/R

d

e
rr

o
r/

in
b

it

c
n

t
W

rt

s
ta

rt

b
it

/R
d

b

it

e
r
r
ls

tb
it

T

p
S

c
a
n

;C
n

t;
L

d
;E

n
d

/b
y

te

a
ss

y

W
r

le
a
d

le

n
g

th
/R

d

c
h

e
c
k

su
m

/p
a
ri

ty

P
o

in
te

r:

ta
p

e

b
u

fr
,

s
c
ro

ll
in

g

T
ap

e
en

d
ad

d
s/

E
n

d

o
f

p
ro

g
ra

m

T
ap

e
ti

m
in

g

c
o

n
st

a
n

ts

P
n

tr
:

s
ta

rt

o
f

ta
p

e

b
u

ff
e
r

1=
T

p
ti

m
e
r

e
n

a
b

le
d

;
b

it

c
n

t
T

p
E

O
T

/R
S

23
2

n
e
x

t
b

it

to

se
n

d

R
ea

d
c
h

a
ra

c
te

r
e
rr

o
r/

o
u

tb
y

te

b
u

f

c
h

a
ra

c
te

rs

in

fi

le

na
m

e
C

u
rr

e
n

t
lo

g
ic

a
l

fi
le

C

u
rr

e
n

t
se

cn
d

y

a
d

d
re

ss

C
u

rr
e
n

t
d

e
v

ic
e

P
o

in
te

r
to

fi

le

na
m

e
W

r
s
h

if
t

w
o

rd
/R

d

in
p

u
t

c
h

a
r

b

lo
c
k

s
re

m
a
in

in
g

to

W

r/
R

d
S

e
ri

a
l

w
or

d
b

u
ff

e
r

T
ap

e
m

o
to

r
in

te
rl

o
c
k

I/

O

s
ta

rt

ad
d

s
K

er
n

el

se
tu

p

p
o

in
te

r
L

a
st

k

ey

p
re

ss
e
d

c
h

a
rs

in

k

ey
b

d

b
u

ff
e
r

: 't
J tD

~
 c..

;:0

~

.... 0
0

(J

l

00
C

7
00

C
8

00
C

9-
00

C
A

OO

CB

O
O

CC

OO
CD

O

O
CE

O

O
CF

OO

DO

00
D

1-
00

D
2

00
D

3
00

D
4

00
D

5
00

D
6

00
D

7
00

D
8

00
D

9-
00

F
O

00

F1

00
F

2
0

0
F

3
-0

0
F

4

0
0

F
5

-0
0

F
6

00

F
7

-0
0

F
8

00

F
9-

00
F

A

00
F

F
-0

10
A

1
9

9

20
0

2
0

1
-2

0
2

20

3
20

4
20

5
20

6
20

7
20

8
2

0
9

-2
1

0

21
1

21
2

21
3

21
4

21
5

21
6

2
1

7
-2

4
0

24

1
24

2
2

4
3

-2
4

4

2
4

5
-2

4
6

2

4
7

-2
4

8

2
4

9
-2

5
0

2

5
5

-2
6

6

S
cr

ee
n

re

v
e
rs

e

fl
a
g

E

n
d

-o
f-

li
n

e

fo
r

in
p

u
t

p
o

in
te

r
In

p
u

t
c
u

rs
o

r
lo

g

(r
o

w
,

co
lu

m
n

)
W

hi
ch

k

ey
:

64

if

no

k
ey

O

=
fl

as
h

c
u

rs
o

r
C

u
rs

o
r

ti
m

in
g

co

u
n

td
o

w
n

C

h
a
ra

c
te

r
u

n
d

e
r

c
u

rs
o

r
C

u
rs

o
r

in

b
li

n
k

p

h
as

e
In

p
u

t
fr

o
m

sc

re
e
n

/f
ro

m

k
ey

b
o

ar
d

P

o
in

te
r

to

sc
re

e
n

li

n
e

P
o

si
ti

o
n

o

f
c
u

rs
o

r
on

ab

o
v

e
li

n
e

O
=

d
ir

e
c
t

c
u

rs
o

r,

e
ls

e

p
ro

g
ra

m
m

ed

C
u

rr
e
n

t
sc

re
e
n

li

n
e

le
n

g
th

Ro

w

w
h

er
e

c
u

ro
sr

li

v
e
s

L
a
st

in

k
e
y

/c
h

e
c
k

su
m

/b
u

ff
e
r

o

f
IN

S
E

R
T

s
o

u
ts

ta
n

d
in

g

S
cr

ee
n

li

n
e

li
n

k

ta
b

le

D
um

m
y

sc
re

e
n

li

n
k

S

cr
ee

n

ro
w

m

ar
k

er

S
cr

ee
n

c
o

lo
r

p
o

in
te

r
K

ey
b

o
ar

d

p
o

in
te

r
R

S
-2

32

R
cv

p

n
tr

R

S
-2

32

Tx

p
n

tr

F
lo

a
ti

n
g

to

A

S
C

II

w
o

rk

a
re

a

~

"'C

"'C

(I
) ::::
I C
o)C
'

m

>
-'

F
F

8A
-F

F
F

5
6

5
4

1
8

-6
5

5
2

5

Ju
m

p
T

a
b

le
,

In
c
lu

d
in

g
:

l>

0
0

0

'-
~

FF
C

6
-

S
et

In

p
u

t
c
h

a
n

n
e
l

~

tD

FF
C

9
-

S
et

O

u
tp

u
t

c
h

a
n

n
e
l

::I

Q
.

FF
C

C

R
e
st

o
re

d

e
fa

u
lt

I/

O

c
h

a
n

n
e
ls

)(

"
FF

C
F

-
IN

PU
T

D
J

FF
D

2
-

PR
IN

T

F
F

E
I

-
T

e
st

S

to
p

k

ey

FF
E

4
-

G
ET

cO
O

O

RO
M

c
o

n
tr

o
l

v
e
c
to

rs

c4
9

c
H

an
d

le

ne
w

li

n
e

cO
O

c
K

ey
w

or
d

a
c
ti

o
n

v

e
c
to

rs

c5
3

3

R
e-

ch
ai

n

li

n
e
s

c0
5

2

F
u

n
c
ti

o
n

 v
e
c
to

rs

c5
6

0

R
ec

ei
v

e
in

p
u

t
li

n
e

c0
80

O

p
er

at
o

r
v

e
c
to

rs

c5
7

9

C
ru

n
ch

to

k
e
n

s
c0

g
e

K
ey

w
or

ds

c6
1

3

F
in

d

B
a
si

c

li

n
e

c1
g

e
E

rr
o

r
m

es
sa

g
es

c6

4
2

P

er
fo

rm

[N
EW

]
c3

28

E
rr

o
r

m
es

sa
g

e
v

e
c
to

rs

c6
5

e
P

er
fo

rm

[C
L

R
]

c3
65

M

is
c
e
ll

a
n

e
o

u
s

m
es

sa
g

es

c6
8

e
B

ac
k

up

te

x
t

p
o

in
te

r
c3

8
a

S
ca

n

st
a
c
k

 f
o

r
FO

R
/G

O
SU

B

c6
9

c
P

er
fo

rm

[L
IS

T
]

c3
b8

M

ov
e

m
em

or
y

c7
4

2

P
er

fo
rm

[F

O
R

]
c3

fb

C
he

ck

st
a
c
k

d

e
p

th

c7
ed

E

x
ec

u
te

st

a
te

m
e
n

t
c4

08

C
he

ck
 m

em
or

y
sp

a
c
e

c8
1

d

P
er

fo
rm

[R

E
ST

O
R

E
]

c4
35

'O

U
T

O
F

M
EM

O
RY

'
c8

2
c

B
re

ak

c4
37

E

rr
o

r
ro

u
ti

n
e

c
8

2
f

P
er

fo
rm

[S

T
O

P]

c4
6

9

B
re

ak

e
n

tr
y

c8

3
1

P

er
fo

rm

[E
N

D
]

c4
74

'R

E
A

D
Y

.
'

c8
5

7

P
er

fo
rm

[C

O
N

T]

c4
80

R

ea
dy

fo

r
B

a
si

c

c8
7

1

P
er

fo
rm

[R

U
N

]

c8
83

P

er
fo

rm

[G
O

SU
B

]
c
e
fl

E

v
a
lu

a
te

 w
it

h
in

b

ra
c
k

e
ts

c8

aO

P
er

fo
rm

[G

O
TO

]
ce

f7

C
he

ck

fo
r

')
 ,

c8
d

2

P
er

fo
rm

[R

ET
U

R
N

]
c
e
ff

C

he
ck

fo

r
co

m
m

a
c8

f8

P
er

fo
rm

[D

A
TA

]
cf

0
8

S

y
n

ta
x

 e
rr

o
r

c9
06

S

ca
n

fo
r

n
e
x

t
st

a
te

m
e
n

t
cf

1
4

C

he
ck

ra

n
g

e
c9

28

P
er

fo
rm

[I

F
]

cf
2

8

S
ea

rc
h

fo

r
v

a
ri

a
b

le

c9
3

b

P
er

fo
rm

[R

EM
]

cf
a7

S

et

up

FN

re
fe

re
n

c
e

c9
4

b

P
er

fo
rm

[O

N
]

cf
e6

P

er
fo

rm

[O
R

]
c9

6
b

G

et

fi
x

e
d

p

o
in

t
nu

m
be

r
cf

e9

P
er

fo
rm

[A

N
D

]
c9

a5

P
e
rf

 o
rm

[L

E
T

]
dO

l6

C
om

pa
re

ca

80

P
er

fo
rm

[P

R
IN

T
#]

d0

81

P
er

fo
rm

[D

IM
]

ca
8

6

P
er

fo
rm

[C

M
D

]
d0

8b

L
o

ca
te

v

a
ri

a
b

le

ca
aO

P

er
fo

rm

[P
R

IN
T

]
d

l1
3

C

he
ck

a
lp

h
a
b

e
ti

c

c
b

le

P
ri

n
t

m
es

sa
g

e
fr

Q
m

(y

, a
)

d
ll

d

C
re

a
te

v

a
ri

a
b

le

cb
3

b

P
ri

n
t

fo
rm

at

c
h

a
ra

c
te

r
d

l9
4

A

rr
ay

p

o
in

te
r

su
b

ro
u

ti
n

e

cb
4

d

B
ad

-i
n

p
u

t
ro

u
ti

n
e
s

d
la

5

V
al

u
e

32
76

8
cb

7
b

P

e
rf

 o
rm

[G

E
T

]
d

lb
2

F

lo
a
t-

fi
x

e
d

c
o

n
v

e
rs

io
n

cb

a5

P
er

fo
rm

[I

N
PU

T

]
d

ld
l

S
et

up

a
rr

a
y

cb

b
f

P
er

fo
rm

[I

N
PU

T
]

d2
45

'B

A
D

SU

B
SC

R
IP

T
'

cb
f9

P

ro
m

pt

&

in
p

u
t

d2
48

'IL

L
E

G
A

L

Q
U

A
N

T
IT

Y
'

cc
0

6

P
er

fo
rm

[R

EA
D

]
d

3
4

c
C

om
pu

te

a
rr

a
y

s
iz

e

c
c
fc

In

p
u

t
e
rr

o
r

m
es

sa
g

es

d
3

7
d

P

er
fo

rm

[F
R

E
]

»
c
d

le

P
er

fo
rm

[N

EX
T]

d3

91

F
ix

e
d

-f
lo

a
t

c
o

n
v

e
rs

io
n

"C

"C

cd

7
8

T

y
p

e-
m

at
ch

ch

ec
k

d

3
g

e
P

er
fo

rm

[P
O

S]

~

~

cd
g

e
E

v
a
lu

a
te

e
x

p
re

ss
io

n

d3
a6

C

he
ck

d

ir
e
c
t

c..

>
-'

)C
"

0
0

ce

a8

C
o

n
st

an
t

-
P

I
d3

b3

P
er

fo
rm

[D

E
F]

'.

J

O
J

...
d

3
e
l

C
h

ec
k

FN

s
y

n
ta

x

d
8

2
4

P

e
rf

o
rm

[P

O
K

E
]

»
0

0

0
0

d
3

f4

P
e
rf

o
rm

[F

N
]

d
8

2
d

P

e
rf

o
rm

[W

A
IT

]
~

~

d
4

6
5

P

e
rf

o
rm

[S

T
R

$]

d
8

4
9

A

dd

0
.5

~

;:,

d
4

7
5

C

a
lc

u
la

te

s
tr

in
g

v

e
c
to

r
d

8
5

0

S
u

b
tr

a
c
t-

fr
o

m

c..

)C
'

d
4

8
7

S

e
t

u
p

s
tr

in
g

d

8
5

3

P
e
rf

o
rm

[S

U
B

T
R

A
C

T
]

0:1

d
4

f4

M
ak

e
ro

o
m

fo

r
s
tr

in
g

d

8
6

a

P
e
rf

 o
rm

[A

D
D

]
d

5
2

6

G
a
rb

a
g

e

c
o

ll
e
c
ti

o
n

d

9
4

7

C
o

m
p

le
m

en
t

fa
c
#

l
d

5
b

d

C
h

ec
k

s
a
lv

a
g

e
a
b

il
it

y

d
9

7
e

'O
V

E
R

FL
O

W
'

d
6

0
6

C

o
ll

e
c
t

s
tr

in
g

d

9
8

3

M
u

lt
ip

ly

b
y

z
e
ro

b

y
te

d

6
3

d

C
o

n
c
a
te

n
a
te

d

g
e
a

P
e
rf

o
rm

[L

O
G

]
d

6
7

a

B
u

il
d

s
tr

in
g

to

m

em
o

ry

d
a
2

b

P
e
rf

o
rm

[M

U
L

T
IP

L
Y

]
d

6
a3

D

is
c
a
rd

u

n
w

a
n

te
d

s
tr

in
g

d

a5
9

M

u
lt

ip
ly

-a
-b

it

d
6

d
b

C

le
a
n

d

e
s
c
ri

p
to

r
s
ta

c
k

d

a
8

c

M
em

or
y

to

F
A

C
#2

d

6
e
c

P
e
rf

o
rm

[C

H
R

$]

d
ab

7

A
d

ju
st

F

A
C

#
1

/#
2

d

7
0

0

P
e
rf

 o
rm

[L

E
F

T
$]

d

ad
4

U

n
d

e
rf

lo
w

/o
v

e
rf

lo
w

d

7
2

c

P
e
rf

o
rm

[R

IG
H

T
$]

d

a
e
2

M

u
lt

ip
ly

b

y

1
0

d

7
3

7

P
e
rf

o
rm

[M

ID
$]

d

a
f9

+

10

in

fl

o
a
ti

n
g

p

t
d

7
6

l
P

u
ll

s
tr

in
g

p

a
ra

m
e
te

rs

d
a
fe

D

iv
id

e

b
y

1

0

d
7

7
c

P
e
rf

o
rm

[L

E
N

]
d

b
1

2

P
e
rf

o
rm

[D

IV
ID

E
]

d
7

8
2

E

x
it

st

ri
n

g
-m

o
d

e

d
b

a2

M
em

or
y

to

fa
c
 #

1
d

7
8

b

P
e
rf

o
rm

[A

SC
]

d
b

c7

F
A

C
#

l
to

m

em
o

ry

d
7

9
b

In

p
u

t
b

y
te

p

a
ra

m
e
te

r
d

b
fc

F

A
C

#2

to

fa
c
#

l
d

7
a
d

P

e
rf

o
rm

[V

A
L

]
d

cO
c

F
A

C
#

l
to

F

A
C

#2

d
7

e
b

G

et

p
a
ra

m
s

fo
r

p
o

k
e
/w

a
it

d

c
lb

R

o
u

n
d

F

A
C

#
l

d
7

f7

F
lo

a
t-

fi
x

e
d

d

c
2

b

G
e
t

s
ig

n

d
8

0
d

P

e
rf

o
rm

[P

E
E

K
]

d
c3

9

P
e
rf

o
rm

[S

G
N

]

>
-'

0
0

-.

0

dc
58

dc

5b

d
c9

b

d
cc

c
d

cf
3

d

d
7

e
dd

dd

d
f1

6

d
f3

a
d

f7
1

d

f7
b

d

fb
4

d

fe
d

e0

40

e0
56

e0

94

eO
f6

e1

27

e1
53

e1

62

e1
65

e
lb

b

e
lc

4

e
ld

l
e2

03

e2
0

b

P
er

fo
rm

[A

B
S]

C

om
pa

re

FA
C

#l

to

m
em

F

lo
a
t-

fi
x

e
d

P

er
fo

rm

[I
N

T
]

S
tr

in
g

to

fa

c

G
et

a
s
c
ii

d

ig
it

F

lo
a
t

to

a
s
c
ii

D

ec
im

al

c
o

n
st

a
n

ts

T
I

co
 n

st
a
n

 ts

P
e
rf

 o
rm

[S

Q
R

]
P

er
fo

rm

[P
O

W
ER

]
P

er
fo

rm

[N
E

G
A

T
IV

E
]

P
er

fo
rm

[E

X
P]

S

e
ri

e
s

e
v

a
lu

a
te

1

S
e
ri

e
s

e
v

a
lu

a
te

2

P
er

fo
rm

[R

N
D

]
??

B

re
a
k

p
o

in
ts

??

P

er
fo

rm

[S
Y

S]

P
er

fo
rm

[S

A
V

E]

P
er

fo
rm

[V

E
R

IF
Y

]
P

er
fo

rm

[L
O

A
D

]
P

er
fo

rm

[O
PE

N
]

P
er

fo
rm

[C

L
O

SE
]

P
ar

am
et

er
s

fo
r

lo
a
d

/s
a
v

e

C
he

ck

d

e
fa

u
lt

p

a
ra

m
e
te

rs

C
he

ck

fo
r

co
m

m
a

e2
1

6

e2
6

1

e2
6

8

e
2

b
l

e3
0

b

e3
7

8

e3
8

7

e3
a4

e4

2
9

e4

4
f

e4
5

b

e4
6

7

e4
7

6

e4
aO

e4

a9

e4
b

2

e4
b

c
e5

0
0

e5

0
5

e5

0
a

e5
1

8

e5
4

c
e5

5
f

e5
8

1

e5
8

7

e5
b

b

P
a
ra

m
e
te

rs

fo
r

o
p

e
n

/c
lo

se

P
e
rf

 o
rm

[C

O
S]

P

er
fo

rm

[S
IN

]
P

er
fo

rm

[T
A

N
]

P
e
rf

 o
rm

[A

TN
]

In
it

ia
li

z
e

CH
RG

ET

fo
r

z
e
ro

p

ag
e

In
it

ia
li

z
e

B

a
si

c

P
o

w
er

-u
p

 m
es

sa
g

e
V

e
c
to

rs

fo
r

$3
00

In

it
ia

li
z
e

v

e
c
to

rs

W
ar

m

re
s
ta

rt

P
ro

g
ra

m

p
a
tc

h

a
re

a

S
e
ri

a
l

o
u

tp
u

t
'1

'
S

e
ri

a
l

o
u

tp
u

t
'0

'
G

et

s
e
ri

a
l

in
p

u
t

&
 c

lo
c
k

P

ro
g

ra
m

p

a
tc

h

a
re

a

S
et

6

5
2

2

a
d

d
rs

S

et

sc
re

e
n

li

m
it

s

T
ra

ck

c
u

rs
o

r
lo

c
a
ti

o
n

In

it
a
li

z
e

I/
O

N

o
rm

al
iz

e
sc

re
e
n

C

le
a
r

sc
re

e
n

H

or
ne

c
u

rs
o

r
S

e
t

sc
re

e
n

p

o
in

te
rs

S

e
t

I/
o

d

e
fa

u
lt

s

~

"0

"0

ID

::
l c..
 XO

OJ

.....
 cg

e5
c3

e5

cf

e6
4

f
e6

b8

e6
c5

e6

ea

e
7

l5

e7
2

d

e7
42

e8

c3

e8
d8

e8

e8

e8
fa

e
9

l2

e9
2

l
e9

29

e9
75

eg

ee

ea
5

6

ea
6

e
ea

7
e

ea
8

d

e
a
a
l

e
a
a
a

ea
b

2

ea
b

f

S
et

v

ic

c
h

ip

d

e
fa

u
lt

s
In

p
u

t
fr

om

k
ey

b
o

ar
d

In

p
u

t
fr

om

sc
re

e
n

Q

u
o

te
 m

ar
k

te
s
t

S
et

up

sc

re
e
n

p

ri
n

t
A

dv
an

ce

c
u

rs
o

r
R

e
tr

e
a
t

c
u

rs
o

r
B

ac
k

in
to

 p
re

v
io

u
s

li
n

e

O
u

tp
u

t
to

sc

re
e
n

G

o
to

n

ex
t

li
n

e

D
o

I
RE

TU
RN

 I
C

he
ck

li

n
e

d
ec

re
m

en
t

C
he

ck

li

n
e

in
cr

em
en

t
S

et

c
o

lo
u

r
co

d
e

C
o

lo
u

r
co

d
e

ta
b

le

C
od

e
c
o

n
v

e
rs

io
n

S

c
ro

ll

sc

re
e
n

O

pe
n

sp
ac

e
on

sc

re
e
n

M

ov
e

sc
re

e
n

 l
in

e

S
yn

ch

c
o

lo
u

r
tr

a
n

s
fe

r
S

et

s
ta

rt
-o

f-
li

n
e

C
le

a
r

sc
re

e
n

 l
in

e

P
ri

n
t

to

sc
re

e
n

S

to
re

on

sc

re
e
n

S

yn
ch

c
o

lo
u

r
to

c
h

a
r

In
te

rr
u

p
t

(I
R

Q
)

e
b

le

ec
O

O

ec
4

6

ec
5

e
e
d

2
l

ed
30

ed

5
b

ed

6
a

ed
a3

ed

e4

e
d

fd

e
e
l4

e
e
l7

e
e
lc

ee

4
9

ee

b
7

ee

cO

ee
c5

e
e
c
e

ee
e4

e
e
f6

ef

0
4

e
fl

9

ef
8

4

e
f8

d

ef
9

6

C
he

ck

k
ey

b
o

ar
d

S

et

te
x

t
m

od
e

K
ey

b
o

ar
d

v

e
c
to

rs

K
ey

b
o

ar
d

 m
ap

s
G

ra
p

h
ic

s/
te

x
t

c
o

n
tr

o
l

S
et

g

ra
p

h
ic

s
m

od
e

W
ra

p
up

sc

re
e
n

li

n
e

S
h

if
te

d

k
ey

m

a
tr

ix

C
o

n
tr

o
l

k
ey

m

a
tr

ix

V
ic

c
h

ip

d

e
fa

u
lt

s
S

cr
ee

n

li

n
e

ad
d

s
lo

w

S
en

d
't

a
lk

'
S

en
d

'l
is

te
n

'
S

en
d

c
o

n
tr

o
l

c
h

a
r

S
en

d
to

s
e
ri

a
l

b
u

s
T

im
eo

u
t

on

s
e
ri

a
l

S
en

d
li

s
te

n

SA

C
le

a
r

A
TN

S

en
d

ta
lk

SA

S

en
d

s
e
ri

a
l

d
e
fe

rr
e
d

S

en
d

'u
n

ta
lk

'
S

en
d

'u
n

li
s
te

n
'

R
ec

ei
v

e
fr

o
m

s
e
ri

a
l

b
u

s
C

lo
ck

li

n
e

on

C
lo

ck

li

n
e

o
ff

D

el
ay

1

m
s

~

"0

"0

ID

::l

0
- ;("

D:
J

.....
 '"

e
fa

3

e
fe

e

f0
1

6

f0
2

7

f0
3

6

f0
5

b

f0
9

d

fO
a2

fO

a5

fO
a8

fO

b9

fO
bc

fO

ed

fl
1

6

fl
4

f
fl

6
0

fl

7
4

fl

e
2

fl

f5

f2
0

5

f2
0

e
f2

5
0

f2

7
a

f2
9

0

f2
c7

f3

0
9

R
S2

32

se
n

d

(N
M

I)

N
ew

R

S2
32

b

y
te

se

n
d

E

rr
o

r
o

r
q

u
it

C

om
pu

te

b

it

c
o

u
n

t
R

S2
32

re

c
e
iv

e

(N
M

I)

S
et

u
p

to

re

c
e
iv

e

R
ec

ei
v

e
p

a
ri

ty

e
rr

o
r

R
ec

ei
v

e
o

v
e
rr

u
n

e
rr

o
r

R
ec

ei
v

e
b

re
a
k

e
rr

o
r

R
ec

ei
v

e
fr

am
e

e
rr

o
r

B
ad

d

e
v

ic
e

F
il

e

to

R

S2
32

S

en
d

to

R
S2

32

b
u

ff
e
r

In
p

u
t

fr
om

R

S2
32

b

u
ff

e
r

G
et

fr

om

R
S2

32

b
u

ff
e
r

C
he

ck

s
e
ri

a
l

b
u

s
id

le

M
es

sa
g

es

P
ri

n
t

if
 d

ir
e
c
t

G
et

 •
•

••
 f

ro
m

R

S2
32

In

p
u

t
G

et
 •

•
ta

p
e
/s

e
ri

a
l/

R
S

2
3

2

O
u

tp
u

t •
•

••
 t
o

ta

p
e

S
et

in

p
u

t
d

e
v

ic
e

S
et

o

u
tp

u
t

d
e
v

ic
e

f3
4

a
f3

c
f

f3
d

f
f3

e
f

f3
f3

f4

0
a

f4
9

5

f4
c7

f5

4
2

f6

4
7

f6

5
9

f6

6
a

f6
7

5

f7
2

8

f7
3

4

f7
6

0

f7
6

7

f7
7

0

f7
7

e
f7

a
f

f7
e7

f8

4
d

f8

5
4

f8
6

7

f8
8

a

C
lo

se

F
in

d

fi

le

S
e
t

fi
le

v

a
lu

e
s

A
b

o
rt

a
ll

fi

le
s

R
e
st

o
re

d

e
fa

u
lt

I/

O

D
o

fi
le

o

p
en

in
g

S

en
d

SA

O
pe

n
R

S2
32

L

oa
d

p
ro

g
ra

m

'S
E

A
R

C
H

IN
G

'
P

ri
n

t
fi

le

na
m

e
'L

O
A

D
IN

G
/V

E
R

IF
Y

IN
G

'
S

av
e

p
ro

g
ra

m

'S
A

V
IN

G
'

B
um

p
c
lo

c
k

G

et

ti
m

e
S

e
t

ti
m

e
A

c
ti

o
n

st

o
p

k

ey

F
il

e

E
rr

o
r

M
es

sa
g

es

F
in

d

an
y

ta

p
e

h
ea

d
er

W

ri
te

ta

p
e

h
e
a
d

e
r

G
et

b

u
ff

e
r

a
d

d
re

ss

S
e
t

b
u

ff
e
r

s
ta

rt
,

en
d

p

o
in

te
rs

F

in
d

s
p

e
c
if

ic

h
e
a
d

e
r

B
um

p
ta

p
e

p
o

in
te

r

» "'C

"'C

m

::s c..

)C
•

D:
!

>
-'

-D

N

f8

9
4

f8

ab

f8
b

7

f8
cO

f8

e3

f8
f4

f9

4
b

f9

5
d

f9

8
e

fa
a
d

fb

d
2

fb

d
b

fb

e
a

fc
0

6

fc
O

b
fc

9
5

fc

c
f

fc
f6

fd

0
8

fd

ll

fd
lb

fd

2
2

fd

3
f

fd
5

2

I
PR

E
SS

PL

A
Y

••

I

C
he

ck

c
a
s
s
e
tt

e

s
ta

tu
s

I
PR

E
SS

RE

CO
RD

••

In

it
ia

te

ta
p

e

re
a
d

In

it
ia

te

ta
p

e

w

ri
te

C

om
m

on

ta
p

e

re
a
d

/w
ri

te

C
he

ck

ta
p

e

st
o

p

S
et

ti

m
in

g

R
ea

d
b

it
s

(I
R

Q
)

S
to

re

c
h

a
ra

c
te

rs

R
e
se

t
p

o
in

te
r

N
ew

ta

p
e

c
h

a
ra

c
te

r
se

tu
p

T

o
g

g
le

ta

p
e

D
at

a
w

r i
te

T

ap
e

w
ri

te

(I
R

Q
)

L
ea

d
er

w

ri
te

(I

R
Q

)
R

es
to

r
e

v
e
c
to

rs

S
et

v

e
c
to

r
K

il
l

m
o

to
r

C
he

ck

re
a
d

/w
ri

te

p

o
in

te
r

B
um

p
re

a
d

/w
ri

te

p

o
in

te
r

P
ow

er
up

e
n

tr
y

C

he
ck

A

-r
om

S

et

k
e
rn

a
l2

fd
8

d

fd
fl

fd

f9

fe
4

9

fe
5

0

fe
5

7

fe
6

6

fe
6

f
fe

7
3

fe

8
2

fe

9
1

fe

a
9

fe

d
2

fe

d
e

ff
5

6

ff
5

c

ff
7

2

ff
8

a

ff
fa

In
it

ia
li

z
e

sy
st

em

c
o

n
st

a
n

ts

IR
Q

v

e
c
to

rs

In
it

ia
li

z
e

I/
O

re

g
s

S
av

e
d

a
ta

na

m
e

S
av

e
fi

le

d

e
ta

il
s

G
et

s
ta

tu
s

F
la

g

ST

S
e
t

ti
m

e
o

u
t

R
e
a
d

/s
e
t

to
p

o

f
m

em
or

y
R

e
a
d

/s
e
t

b
o

tt
o

m

o
f

m
em

or
y

T
e
st

m

em
or

y
lo

c
a
ti

o
n

N

H
I

in
te

rr
u

p
t

e
n

tr
y

R

E
SE

T
/S

T
O

P
w

ar
m

s
ta

rt

N
M

I
R

S
23

2
se

q
u

e
n

c
e
s

R
e
st

o
re

&

e
x

it

R
S

23
2

ti
m

in
g

ta

b
le

M

ai
n

IR
Q

e
n

tr
y

Ju

m
bo

ju

m
p

ta

b
le

H

ar
d

w
ar

e
v

e
c
to

rs

~

"C

"C

/I
) ::
l

C
.

)C
. =

Map 6. Commodore 64 Memory Map.

V1 V2 V3

0400 0407 040E
0401 0408 040F

0402 0409 0410
0403 040A 0411

0404 040B 0412

0405 040C 0413

0406 0400 0414

0415
0416

SID (6581) Commodore 64

-- Frequency

Pu lse Width

---------- - --,
I
I

0 0 0 0 :
Voice Type

NSE PUL SAW TRI I
Attack Time OecayTime
2 ms - 8 sec I 6 ms - 24 sec

Sustain Level I
Release Time
6 ms - 24 sec

1

Voices
(Write Only)

o 000 0 I
I ____________ 1

Fi lter Freq uency

Resonance
Filter Voices

L
-

H

L
-

H

Key

L

-
H

041 7 I EXT V3 V2 V1

0418 V3
Off

Passband Master

Hi Bd La I
Volume

Fi lter & Volume
(Write On ly)

Appendix B

VI V2 V3

54272 54279 54286
54273 54280 54287

5427454281 54288
54275 54282 54289

54276 54283 54290

54277 54284 54291

54278 54285 54292

54293
54294

54295

54296

193

Appendix B

0419 Paddle X 54297

041A Paddle Y 54298

041B Noise 3 (Random) 54299

041C Envelope 3 54300

(Read Only)
Sense

Special voice features (TEST, RING MOO, SYNC) are omitted from the above diagram.

$0000

$D001

$0002

$0003

$0004
$0005

$0006
$0007

$DOOO

$OOOE

$DOOF

194

CIA 2 (NMI) (6526) Commodore 64

Serial Clock Serial Clock ATN RS-232
In In Out Out Out Out I I

OSR I CTS I
In In

I OCO* I RI* I DTR I RTS* I RS-232
In In Out Out In

Parallel User Port

IN IN Out Out Out Out Out Out
$3F

$06 For RS-232

-
Timer A

-
Timer B

I RS
I
-;32 I I Timer Timer

B I A

Timer
I A Start

Timer
B Start

I

*Connected but not used by sys tem.

PRA 56576

PRB 56577

DDRA 56578

ODRB 56579

TAL 56580
TAH 56581

TBL 56582
TBH 56583

ICR 56589

CRA 56590

CRB 56591

$0000

$0001

$DCOO

$DCOl

$DC02

$DC03

$DC04

$DC05

$DC06

$DC07

$DCOD

$DCOE

$DCOF

Appendix B

Processor I/O Port (6510) Commodore 64

IN I IN Out I IN lOut Out Out Out
I I DDR 0

Tape Tape Tape D-Rom EF.RAM AB.RAM
Motor Sense Write Switch Switch Switch

PR 1

I I

CIA 1 (IRQ) (6526) Commodore 64

Paddle SE~J l Joystick 0
A B R L D U
----- -- ---------- --- --- PRA 56320

Keyboard Row Select (Inverted)

T Joystick 1
--------- ------ PRB 56321

Keyboard Column Read

$FF - All Output DDRA 56322

$00 - All Input DDRB 56323

TAL 56324
- -

Timer A TAH 56325

TBL 56326
- -

TimerB TBH 56327

I Tape I I
Timer lnterr.

I I
Input

I B I A
ICR 56333

One Out Time Timer
PB6

Shot Mode Out I A Start
CRA 56334

One Out Time Timer
Shot Mode PB7 B Start

CRB 56335

Out
I I I I

195

>
-'

 '" ""
64

 M
e

m
o

ry
 M

ap

H
ex

0

0
0

0

0
0

0
1

0

0
0

3
-0

0
0

4

0
0

0
5

-0
0

0
6

0

0
0

7

0
0

0
8

0

0
0

9

O
O

O
A

O

O
O

B

O
O

O
C

O

O
O

D

O
O

O
E

O
O

O
F

0
0

1
0

0

0
1

1

0
0

1
2

0

0
1

3

0
0

1
4

-0
0

1
5

0

0
1

6

0
0

1
7

-0
0

1
8

0

0
1

9
-0

0
2

1

0
0

2
2

-0
0

2
5

0

0
2

6
-0

0
2

A

0
0

2
B

-0
0

2
C

D
e
c
im

a
l

o 1 3
-4

5

-6

7 8 9
1

0

1
1

1

2

1
3

1

4

1
5

1

6

1
7

1

8

1
9

2

0
-2

1

2
2

2

3
-2

4

2
5

-3
3

3

4
-3

7

3
8

-4
2

43

-4
4

D
e
s
c
ri

p
ti

o
n

C

h
ip

d

ir
e
c
ti

o
n

a
l

r
e
g

is
te

r

C
h

ip

I/
O

;
m

em
o

ry

&
 t

a
p

e

c
o

n
tr

o
l

F
lo

a
t-

F
ix

e
d

v

e
c
to

r
F

ix
e
d

-F
lo

a
t

v
e
c
to

r
S

e
a
rc

h

c
h

a
ra

c
te

r
S

c
a
n

-q
u

o
te

s

fl
a
g

TA

B

c
o

lu
m

n

sa
v

e

O
=

L
O

A
D

,
l=

V
E

R
IF

Y

In
p

u
t

b
u

ff
e
r

p
o

in
te

r/
#

s
u

b
s
c
rp

t
D

e
fa

u
lt

D

IM

fl
a
g

T

y
p

e
:

F
F

=
s
tr

in
g

,
O

O
=

n
u

m
er

ic

T
y

p
e
:

8
0

=
in

te
g

e
r,

O

O
=

fl
o

a
ti

n
g

p

o
in

t
D

A
TA

sc

a
n

/L
IS

T

q
u

o
te

/m
e
m

ry

fl
a
g

S

u
b

s
c
ri

p
t/

F
N

x

fl
a
g

0

=
IN

P
U

T
;$

4
0

=
G

E
T

;$
9

8
=

R
E

A
D

A

TN

s
ig

n
/C

o
m

p
a
ri

s
o

n

e
v

a
l

fl
a
g

C

u
rr

e
n

t
I/

O

p
ro

m
p

t
fl

a
g

In

te
g

e
r

v
a
lu

e

P
o

in
te

r:

te
m

p
o

ra
ry

s
tr

g

s
ta

c
k

L

a
s
t

te
m

p

s
tr

in
g

v

e
c
to

r
S

ta
c
k

fo

r
te

m
p

o
ra

ry

s
tr

in
g

s

U
ti

li
ty

p

o
in

te
r

a
re

a

P
ro

d
u

c
t

a
re

a

fo
r

m
u

lt
ip

li
c
a
ti

o
n

P

o
in

te
r:

S

ta
rt

-o
f-

B
a
s
ic

~

"C

"C

~

:::
I C
.

)C
'

0
'

,....

-.
0

 "

0
0

2
D

-0
0

2
E

0

0
2

F
-0

0
3

0

0
0

3
1

-0
0

3
2

0

0
3

3
-0

0
3

4

0
0

3
5

-0
0

3
6

0

0
3

7
-0

0
3

8

0
0

3
9

-0
0

3
A

0

0
3

B
-0

0
3

C

0
0

3
D

-0
0

3
E

0

0
3

F
-0

0
4

0

0
0

4
1

-0
0

4
2

0

0
4

3
-0

0
4

4

0
0

4
5

-0
0

4
6

0

0
4

7
-0

0
4

8

0
0

4
9

-0
0

4
A

0

0
4

B
-0

0
4

C

0
0

4
D

0

0
4

E
-0

0
5

3

0
0

5
4

-0
0

5
6

0

0
5

7
-0

0
6

0

0
0

6
1

0

0
6

2
-0

0
6

5

0
0

6
6

0

0
6

7

0
0

6
8

4
5

-4
6

4

7
-4

8

4
9

-5
0

5

1
-5

2

5
3

-5
4

5

5
-5

6

5
7

-5
8

5

9
-6

0

6
1

-6
2

6

3
-6

4

6
5

-6
6

6

7
-6

8

6
9

-7
0

7

1
-7

2

7
3

-7
4

7

5
-7

6

77

7
8

-8
3

8

4
-8

6

8
7

-9
6

97

9

8
-1

0
1

1

0
2

1

0
3

1

0
4

P
o

in
te

r:

S
ta

rt
-o

f-
V

a
ri

a
b

le
s

P
o

in
te

r:

S
ta

rt
-o

f-
A

rr
a
y

s

P
o

in
te

r:

E
n

d
-o

f-
A

rr
a
y

s
P

o
in

te
r:

S

tr
in

g
-s

to
ra

g
e
(m

o
v

in
g

d

o
w

n
)

U
ti

li
ty

s
tr

in
g

p

o
in

te
r

P
o

in
te

r:

L
im

it
-o

f-
m

e
m

o
ry

C

u
rr

e
n

t
B

a
si

c

li
n

e

n
u

m
b

er

P
re

v
io

u
s

B
a
si

c

li
n

e

n
u

m
b

er

P
o

in
te

r:

B
a
si

c

s
ta

te
m

e
n

t
fo

r
C

aN
T

C

u
rr

e
n

t
D

A
TA

li

n
e

n
u

m
b

er

C
u

rr
e
n

t
D

A
TA

a
d

d
re

ss

In
p

u
t

v
e
c
to

r
C

u
rr

e
n

t
v

a
ri

a
b

le

na
m

e
C

u
rr

e
n

t
v

a
ri

a
b

le

a
d

d
re

s
s

V
a
ri

a
b

le

p
o

in
te

r
fo

r
FO

R
/N

E
X

T

Y
-s

a
v

e
j

o
p

-s
a
v

e
j

B
a
si

c

p
o

in
te

r
sa

v
e

C
o

m
p

a
ri

so
n

sy

m
b

o
l

a
c
c
u

m
u

la
to

r
M

is
c

w
o

rk

a
re

a
,

p
o

in
te

rs
,

e
tc

Ju

m
p

v

e
c
to

r
fo

r
fu

n
c
ti

o
n

s

M
is

c
n

u
m

e
ri

c

w
o

rk

a
re

a

A
cc

u
m

#
l:

E

x
p

o
n

e
n

t
A

cc
u

m
#

l:

M
a
n

ti
s
s
a

A
cc

u
m

#
l:

S

ig
n

S

e
ri

e
s

e
v

a
lu

a
ti

o
n

c
o

n
s
ta

n
t

p
o

in
te

r
A

cc
u

m
#

l
h

i-
o

rd
e
r

(o
v

e
rf

lo
w

)

» "t
J

"t
J ~

::l

a- x" D:
I

.....

-0

(7
J

0
0

6
9

-0
0

6
E

0

0
6

F

0
0

7
0

0

0
7

1
-0

0
7

2

0
0

7
3

-0
0

8
A

0

0
7

A
-0

0
7

B

0
0

8
B

-0
0

8
F

0

0
9

0

0
0

9
1

0

0
9

2

0
0

9
3

0

0
9

4

0
0

9
5

0

0
9

6

0
0

9
7

0

0
9

8

0
0

9
9

0

0
9

A

0
0

9
B

0

0
9

C

0
0

9
D

0

0
9

E

0
0

9
F

0

0
A

O
-0

0
A

2

0
0

A
3

1
0

5
-1

1
0

I
I
I

1
1

2

1
1

3
-1

1
4

1

1
5

-1
3

8

1
2

2
-1

2
3

1

3
9

-1
4

3

1
4

4

1
4

5

1
4

6

1
4

7

1
4

8

1
4

9

1
5

0

1
5

1

1
5

2

1
5

3

1
5

4

1
5

5

1
5

6

1
5

7

1
5

8

1
5

9

1
6

0
-1

6
2

1

6
3

A
cc

u
m

#
2

:
E

x
p

o
n

e
n

t,

e
tc

.
S

ig
n

c
o

m
p

a
ri

so
n

,
A

c
c
#

l
v

s
#

2

A
cc

u
m

#
l

lo
-o

rd
e
r

(r
o

u
n

d
in

g
)

C
a
s
s
e
tt

e

b
u

ff

le
n

/S
e
ri

e
s

p
o

in
te

r
C

H
R

G
E

T

s
u

b
ro

u
ti

n
e
;

g
e
t

B
a
s
ic

c
h

a
r

B
a
s
ic

p

o
in

te
r

(w
it

h
in

s
u

b
rt

n
)

R
N

D

se
e
d

v

a
lu

e

S
ta

tu
s

w
o

rd

S
T

K

e
y

sw
it

c
h

P

IA
:

S
T

O
P

a
n

d

R
V

S
fl

a
g

s

T
im

in
g

c
o

n
s
ta

n
t

fo
r

ta
p

e

L
o

ad
=

O
,

V
e
ri

fy
=

l
S

e
ri

a
l

o
u

tp
u

t:

d
e
fe

rr
e
d

c
h

a
r

fl
a
g

S

e
ri

a
l

d
e
fe

rr
e
d

c
h

a
ra

c
te

r
T

ap
e

EO
T

re
c
e
iv

e
d

R

e
g

is
te

r
sa

v
e

H
ow

m

an
y

o

p
e
n

f
il

e
s

In
p

u
t

d
e
v

ic
e

,
n

o
rm

a
ll

y

0
O

u
tp

u
t

CM
D

d

e
v

ic
e
,

n
o

rm
a
ll

y

3
T

a
p

e

c
h

a
ra

c
te

r
p

a
r
it

y

B
y

te
-r

e
c
e
iv

e
d

fl

a
g

D

ir
e
c
t=

$
8

0
/R

U
N

=
0

o

u
tp

u
t

c
o

n
tr

o
l

T
p

P

a
s
s

1
e
rr

o
r

lo
g

/c
h

a
r

b
u

ff
e
r

T
p

P

a
s
s

2
e
rr

lo

g

c
o

rr
e
c
te

d

J
if

f
y

C

lo
c
k

H

M
L

S
e
ri

a
l

b
it

c
o

u
n

t/
E

O
I

fl
a
g

» "'C

"'C

m

:l

0.
.

;C
o

OJ

0
0

A
4

0

0
A

5

0
0

A
6

0

0
A

7

0
0

A
8

0

0
A

9

O
O

A
A

O

O
A

B

O
O

A
C

-O
O

A
D

O

O
A

E
-O

O
A

F
O

O
B

O
-O

O
B

I
0

0
B

2
-0

0
B

3

0
0

8
4

0

0
B

5

0
0

B
6

0

0
B

7

0
0

B
8

0

0
B

9

O
O

B
A

O

O
B

B
-O

O
B

C

O
O

B
n

O
O

B
E

O
O

B
F

O
O

C
O

~

0
0

C
I-

0
0

C
2

'-

0

1
6

4

1
6

5

1
6

6

1
6

7

1
6

8

1
6

9

1
7

0

1
7

1

1
7

2
-1

7
3

1

7
4

-1
7

5

1
7

6
-1

7
7

1

7
8

-1
7

9

1
8

0

1
8

1

1
8

2

1
8

3

1
8

4

1
8

5

1
8

6

1
8

7
-1

8
8

1

8
9

1

9
0

1

9
1

1

9
2

1

9
3

-1
9

4

C
y

c
le

c
o

u
n

t
C

o
u

n
td

o
w

n
,t

a
p

e

w

r
it

e
/b

it

c
o

u
n

t
T

ap
e

b
u

ff
e
r

p
o

in
te

r
T

p

W
rt

Id

r
c
o

u
n

t/
R

d

p
a
s
s
/i

n
b

it

T
p

W
rt

n

ew

b
y

te
/R

d

e
r
r
o

r
/i

n
b

it

c
n

t
W

rt

s
ta

r
t

b
it

/R
d

b

it

e
r
r
/s

tb
it

T

p

S
c
a
n

iC
n

t;
L

d
;E

n
d

/b
y

te

a
s
s
y

W

r
le

a
d

le

n
g

th
/R

d

c
h

e
c
k

s
u

m
/p

a
ri

ty

P
o

in
te

r:

ta
p

e

b
u

fr
,

s
c
r
o

ll
in

g

T
a
p

e

e
n

d

a
d

d
s/

E
n

d

o
f

p
ro

g
ra

m

T
ap

e
ti

m
in

g

c
o

n
s
ta

n
ts

P

n
tr

:
s
ta

r
t

o
f

ta
p

e

b
u

ff
e
r

l=
T

p

ti
m

e
r

e
n

a
b

le
d

;
b

it

c
o

u
n

t
T

p

E
O

T
/R

S
2

3
2

n

e
x

t
b

it

to

se
n

d

R
ea

d

c
h

a
ra

c
te

r
e
rr

o
r/

o
u

tb
y

te

b
u

f

c
h

a
ra

c
te

rs

in

f
il

e

n
am

e
C

u
rr

e
n

t
lo

g
ic

a
l

f
il

e

C
u

rr
e
n

t
se

c
n

d
y

a
d

d
re

s
s

C
u

rr
e
n

t
d

e
v

ic
e

P
o

in
te

r
to

f
il

e

n
am

e
W

r
s
h

if
t

w
o

rd
/R

d

in
p

u
t

c
h

a
r

b

lo
c
k

s

re
m

a
in

in
g

to

W

r/
R

d

S
e
ri

a
l

w
o

rd

b
u

ff
e
r

T
a
p

e

m
o

to
r

in
te

rl
o

c
k

I/

O

s
ta

r
t

a
d

d
re

s
s

» "C

"C

II
) :J

C
o >c
o

0:1

8
0

0
C

3
-0

0
C

4

0
0

C
5

0

0
C

6

0
0

C
7

0

0
C

8

0
0

C
9

-0
0

C
A

O

O
C

B

O
O

C
C

O

O
C

D

O
O

C
E

O
O

C
F

O
O

D
O

O

O
D

I-
0

0
D

2

0
0

D
3

00

D
4

O
D

D
S

00
D

6
00

D
7

00
D

8
0

0
D

9
-0

0
F

2

0
0

F
3

-0
0

F
4

0

0
F

5
-0

0
F

6

0
0

F
7

-0
0

F
8

0

0
F

9
-0

0
F

A

0
0

F
F

-O
I0

A

1
9

5
-1

9
6

1

9
7

1

9
8

1

9
9

2

0
0

2

0
1

-2
0

2

2
0

3

2
0

4

2
0

5

2
0

6

2
0

7

2
0

8

2
0

9
-2

1
0

2

1
1

2

1
2

2

1
3

2

1
4

2

1
5

2

1
6

2

1
7

-2
4

2

2
4

3
-2

4
4

2

4
5

-2
4

6

2
4

7
-2

4
8

2

4
9

-2
5

0

2
5

5
-2

6
6

K
e
rn

e
l

s
e
tu

p

p

o
in

te
r

L
a
s
t

k
e
y

p

re
s
s
e
d

c
h

a
rs

in

k

e
y

b
d

b

u
ff

e
r

S
c
re

e
n

re

v
e
rs

e

fl
a
g

E

n
d

-o
f-

1
in

e

fo
r

in
p

u
t

p
o

in
te

r
In

p
u

t
c
u

rs
o

r
lo

g

(r
o

w
,

c
o

lu
m

n
)

W
h

ic
h

k

e
y

:
64

if

n

o

k
e
y

0

=
f1

a
sh

c
u

rs
o

r
C

u
rs

o
r

ti
m

in
g

c
o

u
n

td
o

w
n

C

h
a
ra

c
te

r
u

n
d

e
r

c
u

rs
o

r
C

u
rs

o
r

in

b
li

n
k

p

h
a
se

In

p
u

t
fr

o
m

s
c
re

e
n

/f
ro

m

k
e
y

b
o

a
rd

P

o
in

te
r

to

s
c
re

e
n

li

n
e

P
o

s
it

io
n

o

f
c
u

rs
o

r
o

n

a
b

o
v

e

li
n

e

O
=

d
ir

e
c
t

c
u

rs
o

r,

e
ls

e

p
ro

g
ra

m
m

e
d

C

u
rr

e
n

t
s
c
re

e
n

li

n
e

le
n

g
th

R

ow

w
h

e
re

c
u

ro
s
r

li
v

e
s

L
a
st

in

k
e
y

/c
h

e
c
k

s
u

m
/b

u
ff

e
r

o

f
IN

S
E

R
T

s
o

u
ts

ta
n

d
in

g

S
c
re

e
n

li

n
e

li
n

k

ta
b

le

S
c
re

e
n

c
o

lo
r

p
o

in
te

r
K

e
y

b
o

a
rd

p

o
in

te
r

R
S

-2
3

2

R
cv

p

n
tr

R

S
-2

3
2

T

x
p

n
tr

F

lo
a
ti

n
g

to

A

S
C

II

w
o

rk

a
re

a

~

"C

"C

ID

:::
l

Q
.

>c
o

0:1

tv

C
>

>-

-'

0
1

0
0

-0
1

3
E

0

1
0

0
-0

1
F

F

0
2

0
0

-0
2

5
8

0

2
5

9
-0

2
6

2

0
2

6
3

-0
2

6
C

0

2
6

D
-0

2
7

6

0
2

7
7

-0
2

8
0

0

2
8

1
-0

2
8

2

0
2

8
3

-0
2

8
4

0

2
8

5

0
2

8
6

0

2
8

7

0
2

8
8

0

2
8

9

02
8A

0

2
8

B

0
2

8
C

0

2
8

D

0
2

8
E

0

2
8

F
-0

2
9

0

0
2

9
1

0

2
9

2

0
2

9
3

0

2
9

4

2
5

6
-3

1
8

2

5
6

-5
1

1

5
1

2
-6

0
0

6

0
1

-6
1

0

6
1

1
-6

2
0

6

2
1

-6
3

0

6
3

1
-6

4
0

6

4
1

-6
4

2

6
4

3
-6

4
4

6

4
5

6

4
6

6

4
7

6

4
8

6

4
9

6

5
0

6

5
1

6

5
2

6

5
3

6

5
4

6

5
5

-6
5

6

6
5

7

6
5

8

6
5

9

6
6

0

T
ap

e
e
rr

o
r

lo
g

P

ro
c
e
s
s
o

r
s
ta

c
k

a
re

a

B
a
s
ic

in

p
u

t
b

u
ff

e
r

L
o

g
ic

a
l

f
il

e

ta
b

le

D
e
v

ic
e

ta

b
le

S

e
c

A
d

d
s

ta
b

le

K
ey

b
d

b

u
ff

e
r

S
ta

r
t

o
f

B
a
si

c

M
em

o
ry

T

o
p

o

f
B

a
si

c

M
em

o
ry

S

e
ri

a
l

b
u

s
ti

m
e
o

u
t

fl
a
g

C

u
rr

e
n

t
c
o

lo
r

c
o

d
e

C
o

lo
r

u
n

d
e
r

c
u

rs
o

r
S

c
re

e
n

m

em
o

ry

p
a
g

e

M
ax

s
iz

e

o
f

k
e
y

b
d

b

u
ff

e
r

R
e
p

e
a
t

a
ll

k

e
y

s
R

e
p

e
a
t

sp
e
e
d

c
o

u
n

te
r

R
e
p

e
a
t

d
e
la

y

c
o

u
n

te
r

K
e
y

b
o

a
rd

S

h
if

t/
C

o
n

tr
o

l
fl

a
g

L

a
s
t

s
h

if
t

p
a
tt

e
rn

K

e
y

b
o

a
rd

ta

b
le

s
e
tu

p

p

o
in

te
r

K
e
y

b
o

a
rd

s
h

if
t

m
o

d
e

O
=

s
c
ro

ll

e
n

a
b

le

R
S

-2
3

2

c
o

n
tr

o
l

re
g

R

S
-2

3
2

co

m
m

an
d

re
g

~

"t
:I

"t
:I (I
) :::
l c..

)CO

~

N
 a N

0
2

9
5

-0
2

9
6

0

2
9

7

0
2

9
8

0

2
9

9
-0

2
9

A

0
2

9
B

0

2
9

C

02
9D

0

2
9

E

0
2

9
F

-0
2

A
O

0

2
A

l
02

A
2

02
A

3
02

A
4

02
A

5
0

2
C

O
-0

2
F

E

0
3

0
0

-0
3

0
1

0

3
0

2
-0

3
0

3

0
3

0
4

-0
3

0
5

0

3
0

6
-0

3
0

7

0
3

0
8

-0
3

0
9

0

3
0

A
-0

3
0

B

0
3

0
C

03

0D

0
3

0
E

0

3
0

F

6
6

1
-6

6
2

6

6
3

6

6
4

6

6
5

6

6
7

6

6
8

6

6
9

6

7
0

6

7
1

-6
7

2

6
7

3

6
7

4

6
7

5

6
7

6

6
7

7

7
0

4
-7

6
6

7

6
8

-7
6

9

7
7

0
-7

7
1

7

7
2

-7
7

3

7
7

4
-7

7
5

7

7
6

-7
7

7

7
7

8
-7

7
9

7

8
0

7

8
1

7

8
2

7

8
3

B
it

ti

m
in

g

R
S

-2
3

2

s
ta

tu
s

b

it
s

to

se
n

d

R
S

-2
3

2

sp
e
e
d

/c
o

d
e

R
S

2
3

2

re
c
e
iv

e

p
o

in
te

r
R

S
2

3
2

in

p
u

t
p

o
in

te
r

R
S

2
3

2

tr
a
n

s
m

it

p
o

in
te

r
R

S
2

3
2

o

u
tp

u
t

p
o

in
te

r
IR

Q

sa
v

e

d
u

ri
n

g

ta
p

e

I/
O

C

IA

2
(N

M
I)

In

te
rr

u
p

t
C

o
n

tr
o

l
C

IA

1
T

im
er

A

c
o

n
tr

o
l

lo
g

C

IA

1
In

te
rr

u
p

t
L

og

C
IA

1

T
im

er

A

e
n

a
b

le
d

fl

a
g

S

c
re

e
n

ro

w

m
a
rk

e
r

(S
p

ri
te

1

1
)

E
rr

o
r

m
e
ss

a
g

e

li
n

k

B
a
si

c

w
ar

m

s
ta

r
t

li
n

k

C
ru

n
c
h

B

a
si

c

to
k

e
n

s
li

n
k

P

ri
n

t
to

k
e
n

s
li

n
k

S

ta
rt

ne

w

B
a
si

c

c
o

d
e

li
n

k

G
e
t

a
ri

th
m

e
ti

c

e
le

m
e
n

t
li

n
k

SY

S
A

-r
e
g

sa

v
e

SY
S

X
-r

e
g

sa

v
e

SY
S

Y
-r

e
g

sa

v
e

SY
S

s
ta

tu
s

re
g

sa

v
e

» ~ ~ tD

~

0.
.

)CO

OJ

0
3

1
0

-0
3

1
2

7

8
4

-7
8

5

U
SR

fu

n
c
ti

o
n

ju

m
p

(B

2
4

8
)

0
3

1
4

-0
3

1
5

7

8
8

-7
8

9

H
ar

d
w

ar
e

in
te

rr
u

p
t

v
e
c
to

r
(E

A
3

1
)

0
3

1
6

-0
3

1
7

7

9
0

-7
9

1

B
re

a
k

in

te
rr

u
p

t
v

e
c
to

r
(F

E
6

6
)

0
3

1
8

-0
3

1
9

7

9
2

-7
9

3

N
M

I
in

te
rr

u
p

t
v

e
c
to

r
(F

E
4

7
)

0
3

1
A

-0
3

1
B

7

9
4

-7
9

5

O
PE

N

v
e
c
to

r
(F

3
4

A
)

0
3

1
C

-0
3

1
D

7

9
6

-7
9

7

C
L

O
SE

v

e
c
to

r
(F

2
9

1
)

0
3

1
E

-0
3

1
F

7

9
8

-7
9

9

s
e
t-

in
p

u
t

v
e
c
to

r
(F

2
0

E
)

0
3

2
0

-0
3

2
1

8

0
0

-8
0

1

S
e
t
-
~
u
t
p
u
t

v
e
c
to

r
(F

2
5

0
)

0
3

2
2

-0
3

2
3

8

0
2

-8
0

3

R
e
st

o
re

I/

O

v
e
c
to

r
(F

3
3

3
)

0
3

2
4

-0
3

2
5

8

0
4

-8
0

5

IN
P

U
T

v

e
c
to

r
(F

1
5

7
)

0
3

2
6

-0
3

2
7

8

0
6

-8
0

7

O
u

tp
u

t
v

e
c
to

r
(F

IC
A

)

0
3

2
8

-0
3

2
9

8

0
8

-8
0

9

T
e
st

-S
T

O
P

v

e
c
to

r
(F

6E
D

)

0
3

2
A

-0
3

2
B

8

1
0

-8
1

1

G
E

T

v
e
c
to

r
(F

1
3

E
)

0
3

2
C

-0
3

2
D

8

1
2

-8
1

3

A
b

o
rt

I/

O

v
e
c
to

r
(F

3
2

F
)

0
3

2
E

-0
3

2
F

8

1
4

-8
1

5

W
ar

m

s
ta

r
t

v
e
c
to

r
(F

E
6

6
)

0
3

3
0

-0
3

3
1

8

1
6

-8
1

7

LO
A

D

li
n

k

(F
4

A
5

)

0
3

3
2

-0
3

3
3

8

1
8

-8
1

9

SA
V

E
li

n
k

(F

5E
D

)

0
3

3
C

-0
3

F
B

8

2
8

-1
0

1
9

C

a
s
s
e
tt

e

b
u

ff
e
r

0
3

4
0

-0
3

7
E

8

3
2

-8
9

4

(S
p

ri
te

1

3
)

0
3

8
0

-0
3

B
E

8

9
6

-9
5

8

(S
p

ri
te

1

4
)

0
3

C
O

-0
3

F
E

9

6
0

-1
0

2
2

(S

p
ri

te

1
5

)
:J>

0

4
0

0
-0

7
F

F

1
0

2
4

-2
0

4
7

S

c
re

e
n

m

em
o

ry

"'C

"'C

0
8

0
0

-9
F

F
F

2

0
4

8
-4

0
9

5
9

B

a
si

c

RA
M

m

em
o

ry

~

:::I

8
0

0
0

-9
F

F
F

3

2
7

6
8

-4
0

9
5

9

A
lt

e
rn

a
te

:
RO

M

p
lu

g
-i

n

a
re

a

Q
.

)C
'

N

0
0:1

U

J

~
A

O
O

O
-B

F
F

F

4
0

9
6

0
-4

9
1

5
1

R

O
M

:
B

a
si

c

A
O

O
O

-B
F

F
F

4

9
0

6
0

-4
9

1
5

1

A
lt

e
rn

a
te

:
RA

M

C
O

O
O

-C
F

F
F

4

9
1

5
2

-5
3

2
4

7

RA
M

m

em
o

ry
,

in
c
lu

d
in

g

a
lt

e
r
n

a
te

D

O
O

O
-D

02
E

5

3
2

4
8

-5
3

2
9

4

V
id

e
o

C

h
ip

(6

5
6

6
)

D
4

0
0

-D
4

1
C

5

4
2

7
2

-5
4

3
0

0

S
o

u
n

d

C
h

ip

(6
5

8
1

S

ID
)

D
8

0
0

-D
B

F
F

5

5
2

9
6

-5
6

3
1

9

C
o

lo
r

n
y

b
b

le

m
em

o
ry

D

C
O

O
-D

C
O

F
5

6
3

2
0

-5
6

3
3

5

In
te

rf
a
c
e

c
h

ip

1
,

IR
Q

(6

5
2

6

C
IA

)
D

D
O

O
-D

D
O

F
5

6
5

7
6

-5
6

5
9

1

In
te

rf
a
c
e

c
h

ip

2
,

N
M

I
(6

5
2

6

C
IA

)
D

O
O

O
-D

F
F

F

5
3

2
4

8
-5

7
3

4
3

A

lt
e
rn

a
te

:
C

h
a
ra

c
te

r
s
e
t

E
O

O
O

-F
F

F
F

5

7
3

4
4

-6
5

5
3

5

R
O

M
:

O
p

e
ra

ti
n

g

S
y

st
e
m

E

O
O

O
-F

F
F

F

5
7

3
4

4
-6

5
5

3
5

A

lt
e
rn

a
te

:
RA

M

F
F

8
1

-F
F

F
5

6

5
4

0
9

-6
5

5
2

5

Ju
m

p

T
a
b

le
,

In
c
lu

d
in

g
:

F
F

C
6

-
S

e
t

In
p

u
t

c
h

a
n

n
e
l

F
F

C
9

-
S

e
t

O
u

tp
u

t
c
h

a
n

n
e
l

FF
C

C

-
R

e
st

o
re

d

e
fa

u
lt

I/

O

c
h

a
n

n
e
ls

F

F
C

F

-
IN

PU
T

F

F
D

2
-

P
R

IN
T

F

F
E

l
-

T
e
st

S

to
p

k

e
y

F

F
E

4
-

G
ET

~

"t
J

"t
J ~

::J
 c..
 x" o:J

M
a

p
 7

.
A

ta
ri

 M
e

m
o

ry
.

PA
GE

ZE

RO

RA
M

AS
S

IG
N

M
EN

TS

00
00

LI

 N
ZB

S
$0

00
0

;L
IN

BU
G

RA

M
(W

IL
L

BE

RE
PL

A
CE

D

BY

M
ON

IT
OR

RA

M
)

TH
E

S
E

 L
O

CA
TI

O
N

S
AR

E
NO

T
CL

EA
RE

D

00
02

C

A
SI

N
I

$0
00

2
;C

AS
S

ET
T

E
 I

N
 IT

LO

CA
TI

O
N

00

04

R
A
t
~
L
O

$0
00

4
;R

AM

PO
IN

TE
R

FO
R

M
EM

OR
Y

TE
ST

00

06

TR
AM

SZ

$0
00

6
;T

EM
PO

RA
RY

R

EG
IS

TE
R

FO
R

RA
M

SI
Z

E

00
07

TS

TD
AT

$0

00
7

;R
AM

TE

ST

DA
TA

RE

G
IS

TE
R

(

CL
EA

R
ED

ON

CO

LD

ST
A

RT

ON
LY

00

08

\
~
A
R
M
S
 T

$0

00
8

;
W
A
R
~
l

S
TA

RT

FL
AG

00

09

BO
OT

Q
$0

00
9

;S
U

CC
ES

S
FU

L
BO

OT

FL
AG

<W

AS

BO
O

T?
>

nO
DA

DO

SV
EC

$O

OO
A

;D
IS

K
SO

FT
W

AR
E

 S
TA

RT

FL
AG

OO

OC

D
O

SI
N

I
$O

OO
C

;D
IS

K

SO
FT

W
A

RE
 I

N
IT

AD

DR
ES

S
OO

OE

A
P
P
~
I
H
I

$O
UO

E
;A

PP
LI

C
A

TI
O

N
S

M
EM

OR
Y

H
I

LI
M

IT

CL
EA

RE
D

ON

A
 C

OL
D

OR

W
AR

M
ST

A
RT

00

10

IN
TZ

BS

$0
0

10

; H
JT

EH
RU

PT

HA
ND

LE
R

00
10

PO

KM
SK

$0

01
0

;S
Y

ST
EM

M

AS
K

FO
R

PO
KE

Y
IR

Q

HA
ND

LE
R

00
11

BR

KK
EY

$0

01
1

;B
RE

A
K

KE

Y
FL

AG

00
12

RT

CL
OC

K
$0

01
2

;R
EA

L
TI

M
E

CL
OC

K
(I

N

16

M
SE

C
U

N
IT

S)

00
15

BI

JF
AD

R
$0

01
5

;IN
D

IR
EC

T
B

U
fF

ER

A
D

D
RE

SS

R
EG

IS
TE

R

Ill>
 " "

00
17

IC

CO
M

T
$0

01
7

;C
OM

M
AN

D
FO

R
VE

CT
OR

~

::
l c..

N

00
18

DS

KF
M

S
$0

01
8

;D
IS

K

FI
LE

M

AN
AG

ER

PO
IN

TE
R

)(

0
D:

I
U

1

N

O
O

lA

OS
KU

TL

$O
O

lA

;O
IS

K

U
T

IL
IT

IE
S

PO
IN

TE
R

l>

0 0-

-
"t

:I

PT
IM

O
T

$O

O
lC

;P

R
IN

TE
R

TI

M
E

OU
T

R
EG

IS
TE

R

"t
:I

O
O

lC

(l
)

00
10

PB

PN
T

$0
01

0
;P

R
IN

TE
R

BU

FF
ER

PO

IN
TE

R

;:,

0
-

D
O

lE

PB
U

FS
Z

$O
O

lE

;P
R

IN
T

BU

F
FE

R
SI

Z
E

)("

00

1F

PT
EM

P
$O

O
lF

;T

EM
PO

RA
RY

R

EG
IS

TE
R

0:1

00
20

ZI

O
C

B

$0
02

0
;Z

ER
O

PA

G
E

 1
/0

CO

NT
RO

L
BL

OC
K

00
10

IO

CB
SZ

16

;N

UM
BE

R
OF

BY

TE
S

PE
R

10
C

B

00
80

M

AX
IO

C
8"

IO
C

B
SZ

;L

EN
G

TH

OF

TH
E

IO
CB

AR

EA

00
20

IO

CB
A

S
$0

02
0

00
20

IC

H
IO

Z
$0

02
0

;H
A

N
O

LE
R

lN
O

EX

NU
M

BE
R

(F
F

==

IO
CB

FR

EE
)

00
21

IC

O
N

O
l

$0
02

1
;D

EV
IC

E
NU

M
BE

R
(D

R
IV

E
NU

M
BE

R)

00
22

IC

CO
M

Z
$0

02
2

;·C
OM

I'lA
ND

CO

DE

00
23

IC

ST
A

Z
$0

02
3

;S
TA

TU
S

OF

LA
ST

IO

CB

A
CT

IO
N

00

24

IC
BA

LZ

$0
02

4
;B

U
FF

ER

A
D

D
RE

SS

LO
W

BY

TE

00
25

IC

BA
H

Z
$0

02
5

;S
U

FF
ER

A

D
D

RE
SS

H

IG
H

BY

TE

00
26

IC

PT
LZ

$0

02
6

;P
U

T
BY

TE

RO
U

TI
N

E
A

D
D

RE
SS

-

1
00

27

IC
PT

H
Z

$0
02

7
00

28

IC
BL

LZ

$0
02

B

;B
U

FF
ER

LE

NG
TH

LO

W

BY
TE

00

29

IC
BL

H
Z

$0
02

9
00

2A

I C
AX

 1
Z

$O
OZ

A
;A

U
X

IL
IA

R
Y

IN

FO
RM

A
TI

O
N

FI

R
ST

BY

TE

00
2B

IC

A
X

2Z

$0
02

B

00
2C

IC

SP
R

Z
$0

02
C

;T

W
O

SP
A

RE

BY
TE

S
(C

IO

LO
CA

L
U

SE
)

00
2E

IC

ID
N

O

IC
SP

R
Z+

2
;IC

O
B

NU

M
BE

R
X

 1
6

00
2F

CI

O
CH

R
IC

SP
R

Z+
3

;C
H

A
RA

CT
ER

BY

TE

FO
R

CU
RR

EN
T

O
PE

RA
TI

O
N

00
30

ST

A
T

US

$0
03

0
;IN

TE
R

N
A

L
ST

A
TU

S
ST

O
RA

G
E

00
31

CH

KS
UM

$0

03
),

;C
HE

CK
SU

M

(S
IN

G
LE

BY

TE

SU
M

W

IT
H

CA
RR

Y
)

00
32

BU

FR
LO

$0

03
2

;P
O

IN
TE

R

TO

DA
TA

BU

FF
ER

(L

O

BY
TE

)
00

33

BU
FR

H
I

$0
03

3
;P

O
IN

TE
R

TO

DA
TA

BU

FF
ER

(H

I
BY

TE
)

00
34

BF

EN
LO

$0

03
4

;N
EX

T
BY

TE

PA
ST

EN

D
OF

DA

TA

BU
FF

ER

(L
O

BY

TE
)

00
35

BF

EN
H

I
$0

03
5

;N
EX

T
BY

TE

PA
ST

EN

D
OF

DA

TA

B
U
F
F
E
~

(H
I

BY
TE

)
00

36

CR
ET

RY

$0
03

6
;N

UM
BE

R
or

CO

MM
AN

D
FR

AM
E

R
ET

R
IE

S
00

37

DR
ET

RY

$0
03

7
;
N
U
M
B
E
~

OF

D
EV

IC
E

R
ET

R
IE

S
00

38

BU
FR

FL

$0
03

8
;D

A
TA

BU

FF
ER

FU

LL

FL
AG

00

39

RE
CV

DN

$0
03

9
;R

EC
IE

V
E

DO
NE

FL

AG

00
3A

XM

TD
ON

$0

03
A

;T

RA
N

SM
IS

SI
O

N

DO
NE

FL

AG

00
3B

CH

KS
NT

$0

03
B

;C

flE
CK

SU
M

SE

N
T

 F
LA

G
00

3C

NO
CK

SM

$0
03

C

;N
O

CH

EC
KS

UM

FO
LL

OW
S

DA
TA

FL

AG

00
30

BP

TR

$0
03

0
00

3E

FT
YP

E
$0

03
E

00

3F

FE
OF

$0

03
F

00
40

FR

EQ

$0
04

0
00

41

SO
UN

DR

$0
04

1
;N

O
IS

Y

1
/0

FL

AG

(Z
ER

O

IS

QU
IE

T
)

00
42

C

R
IT

IC

$0
04

2
;D

EF
IN

ES

CR
IT

IC
AL

SE

C
TI

O
N

(C

R
IT

IC
A

L
 I

F
N

O
N

-Z
ER

O
)

;
00

43

FM
SZ

PG

$0
04

3
;T

OT
AL

OF

7

BY
TE

S
FO

R
D

IS
K

FI

LE

M
AN

AG
ER

ZE

RO

PA
GE

00
4A

CK

EY

$0
04

A

;F
LA

G
SE

T
W

HE
N

GA
M

E
ST

A
RT

PR

ES
SE

D

00
4B

CA

SS
BT

$0

04
B

;C

A
SS

ET
TE

BO

OT

FL
AG

00

4C

OS
 T

AT

$0
04

C

;D
IS

PL
A

Y

ST
A

TU
S

00
40

AT

RA
CT

$0

04
0

;A
TR

AC
T

FL
AG

00

4E

DR
KM

SK

$0
04

E

;D
AR

K
AT

RA
CT

FL

AG

00
4F

CO

LR
SH

$0

04
F

;A
TR

A
CT

CO

LO
R

SH
IF

TE
R

(E

O
R

'D

W
IT

H
PL

A
Y

FI
EL

D

CO
LO

RS
)

I»

't:
I

;L
EO

G
E

2
;L

M
A

RG
N

'S

VA
LU

E
AT

CO

LD

ST
A

RT

't:
I ID

;R
EO

GE

39

:l

00
50

TM

PC
HR

$0

05
0

c..

IV

)C
"

0
00

51

H
O

L0
1

$0
05

1
"

IJ:
I

N

o O
:l

00
52

00

53

00
54

00

55

00
57

00

58

00
5A

00

58

00
5D

DO

SE

00
60

00

61

00
63

00

64

00
66

00

68

00
6A

00

68

00
6C

00

6E

00
78

00

7C

LH
AR

GN

RH
AR

GN

RO
W

CR
S

CO
LC

RS

DH
JD

EX

SA
VH

SC

OL
DI

IO
W

OL

DC
OL

OL

DC
HR

OL

DA
DR

N
E
\
~
R
O
W

NE
W

CO
L

LO
GC

O
L

A

D
RE

SS

~1
L

TT
H

P
SA

VA
DR

RA

tH
O

P
ElU

I:
CN

T
8U

FS
TR

8I

TM
SK

;

LO
TS

S\<

JP
 F

 LG

HO
LD

CH

$0
05

2
$0

05
3

$
0

0
5

4

$0
05

5
$0

05
7

$
0

0
5

8

$0
05

A

$
0

0
5

8

$0
05

D

$0
05

E

$
0

0
6

0

$0
06

1
$0

06
3

$
0

0
6

4

$
0

0
6

6

$0
06

8
$0

06
A

$

0
0

6
8

$0

06
C

$0

06
E

OF

RA

ND
OH

TE

H
PS

$0

07
8

$0
07

C

;L
EF

T
H

A
RG

IN

(S
ET

TO

ON

E
AT

PO

W
ER

O

N
)

;R
IG

H
T

H
A

RG
IN

(S

ET

TO

ON
E

AT

PO
W

ER

ON
)

;C
U

RS
O

R
CO

UN
TE

RS

;D
A

TA

UN
DE

R
CU

RS
OR

;P
O

IN
T

DR
AW

GO

ES

TO

;P
O

IN
TS

AT

CO

LU
HN

IN

LO

G
IC

A
L

LI
N

E

;R
A

H

SI
Z

E

D
EF

IN
ED

BY

PO

W
ER

ON

LO

G
IC

;B

U
FF

ER

CO
UN

T
;E

D
IT

O
R

G
ET

CH

PO
IN

TE
R

; B
IT

~
1
A
S
K

;N
O

N
-O

IF

TX

T
AN

D
RE

GU
LA

R
RA

M

IS

SW
A

PP
ED

;C

H

IS

HO
VE

D
HE

RE

IN

KG
E

TC
H

B
E

fo
re

C

N
IL

&

 S
H

IF
T

PR

OC

80

-
FF

AR

E
FO

R
FP

,
U

SE
R

,
FM

S
AN

D
DO

S

PA
GE

1

--
ST

A
CK

/

>

"C

"C

~

::l
 c..

)C
'

0:1

PA
GE

TW

O
RA

M
A

SS
IG

N
M

EN
TS

02
00

IN

TA
BS

$0

20
0

; I
N

TE
RR

U
PT

RA

M
02

00

VD
BL

ST

$0
20

0
;D

IS
PL

A
Y

LI

ST

NM
I

VE
CT

OR

02
02

VP

RC
ED

$0

20
2

;P
RO

CE
ED

LI

N
E

IR
Q

VE

CT
OR

02

04

V
IN

TE
R

$0
20

4
;IN

TE
R

R
U

PT

LI
N

E
IR

Q

VE
CT

OR

02
06

VB

R
EA

K
$0

20
6

;S
O

FT
W

A
RE

BR

EA
K

(0
0)

IN

ST
RU

CT
IO

N

IR
Q

VE

CT
OR

02

08

VK
EY

BD

$0
20

8
;P

O
K

EY

KE
YB

OA
RD

IR

Q

VE
CT

OR

02
0A

V

SE
RI

N

$0
20

A

;P
O

K
EY

SE

R
IA

L
IN

PU
T

RE
AD

Y
IR

Q

02
0C

VS

ER
OR

$0

20
C

;P

OK
EY

SE

R
IA

L
OU

TP
UT

RE

AD
Y

IR
Q

02

0E

VS
ER

OC

$0
20

E

;P
O

K
EY

SE

R
IA

L
OU

TP
UT

CO

M
PL

ET
E

IR
Q

02

10

V
TI

M
Rl

$0

21
0

;P
O

K
EY

TI

M
ER

IR

Q

02
12

V

TI
M

R2

$0
21

2
;P

O
K

EY

TI
M

ER

2
IR

Q

02
14

V

TI
M

R4

$0
21

4
;P

O
K

EY

TI
M

ER

4
IR

Q

02
16

V

IM
IR

Q

$0
21

6
;IM

M
ED

IA
TE

IR

Q

VE
C

TO
R

02
18

CD

TM
V1

$0

21
8

;C
O

UN
T

DO
W

N
TI

M
ER

1

02
1A

CD

TM
V2

$0

21
A

;C

O
U

N
T

DO
W

N
TI

M
ER

2

02
1C

CD

TM
V3

$0

21
C

;C

O
U

N
T

DO
W

N
TI

M
ER

3

02
1E

CD

TM
V4

$0

21
E

;C

OU
N

T
 D

OW
N

TI
M

ER

4
02

20

CD
TM

V5

$0
22

0
;C

O
U

N
T

DO
W

N
TI

M
ER

5

02
22

VV

AL
KI

$0

22
2

;IM
M

ED
IA

TE

V
ER

TI
CA

L
BL

AN
K

NM
I

VE
CT

OR

02
24

VV

BL
KD

$0

22
4

;D
EF

ER
RE

O

V
ER

TI
CA

L
 B

LA
NK

NM

I
VE

CT
OR

02

26

CD
TM

A1

$0
22

6
;C

O
U

N
T

DO
W

N
TI

M
E

R
 1

 J
SR

AD

DR
ES

S
02

28

CD
TM

A2

$0
22

8
;C

O
U

N
T

DO
W

N
TI

M
ER

2

JS
R

AD

DR
ES

S
02

2A

CD
TM

F3

$0
22

A

;C
O

U
N

T
DO

W
N

TI
M

ER

3
FL

AG

02
2B

SR

TI
M

R
$0

22
8

;S
O

FT
W

A
RE

RE

PE
A

T
TI

M
ER

02

2C

CD
TM

F4

$0
22

C

;C
O

U
N

T
DO

W
N

TI
M

ER

4
FL

AG

~

02
2E

CD

TM
F5

$0

22
E

;C

O
U

N
T

DO
W

N
TI

M
ER

5

FL
AG

., .,

02
2F

SD

M
C

n
$0

22
F

;S
A

V
E

DM
AC

TL

R
EG

IS
TE

R

~

02
30

SD

LS
TL

$0

23
0

;S
A

V
E

D
IS

PL
A

Y

LI
ST

LO

W

BY
TE

::

l c..

N

02
31

SD

LS
TH

$0

23
1

;S
A

V
E

D
IS

PL
A

Y

LI
ST

 H
IG

H

BY
TE

)C

.
0

02
32

SS

K
CT

L
$0

23
2

;S
K

C
TL

RE

G
IS

TE
R

RA
M

D:
I

-.
0

~

N

If
.....

0

02
34

LP

EN
H

$0
23

4
;L

IG
H

T
PE

N
H

O
RI

ZO
N

TA
L

VA
LU

E
02

35

LP
EN

V

$0
23

5
; L

IG
H

T
PE

N

V
ER

TI
C

A
L

VA
LU

E
:::s

 c..

02
6F

G

PR
IO

R
$2

6F

;G
lo

b
al

p

ri
o

ri
ty

c
e
ll

I I

 >C
.

D:
!

PO
TE

N
TI

O
M

ET
ER

S

02
70

PA

DD
LO

$0

27
0

02
71

PA

D
D

L1

$0
27

1
02

72

PA
D

D
L2

$0

27
2

02
73

PA

D
D

L3

$0
27

3
02

74

PA
D

D
L4

$0

27
4

02
75

PA

D
D

L5

$0
27

5
02

76

PA
D

D
L6

$0

27
6

02
77

PA

D
D

L7

$0
27

7

JO
Y

ST
IC

K
S

02
78

ST

IC
K

O

$0
27

8
02

79

ST
IC

K
1

$0
27

9
02

7A

ST
IC

K
2

$0
27

A

02
,6

ST

IC
K

3
$0

27
6

PA
DD

LE

TR
IG

G
ER

02
7C

PT

RI
G

O

$0
27

C

02
70

PT

R
IG

l
$0

27
0

02
7E

PT

R
IG

2
$0

27
E

02

7
F

PT
R

IG
3

$0
27

F
02

80

PT
R

IG
4

$0
28

0
02

81

PT
R

IG
5

$0
28

1
02

82

PT
R

IG
6

$0
28

2
02

83

PT
R

IG
7

$0
28

3

JO
Y

ST
IC

K

TR
IG

G
ER

02
84

ST

RI
G

O

$0
28

4
02

85

ST
R

IG
l

$0
28

5
02

86

ST
R

IG
2

$0
28

6
02

87

ST
R

IG
3

$0
28

7

M
an

y
ra

nd
om

OS

v

a
ri

a
b

le
s.

th

e
fo

ll
o

w
in

g

w
er

e
co

m
m

en
te

d

02
90

TX

TR
OW

$0

29
0

;T
ex

t
ro

w
er

s
02

91

TX
TC

OL

$0
29

1
;T

ex
t

c
o

lc
rs

02

93

TI
N

D
EX

$0

29
3

;T
ex

t
in

d
ex

02

94

TX
TM

SC

$
02

94

;f
o

o
ls

co

n
v

er
t

in
to

ne

w

m
sc

l>

02

96

TX
TO

LD

$0
29

6
;o

ld
ro

w

an
d

o
ld

co
l

fo
r

te
x

t
(e

tc
.)

't

'
02

A
2

ES
CF

LG

$0
2A

2
;[

sc
ap

e
fl

a
g

't

' tD

02
B

2
LO

GM
AP

$0

28
2

;L
o

g
ic

al

li
n

e

s
ta

rt

b
it

m

ap

::J
 c..

02
86

IN

V
FL

A
G

$0

28
6

;I
n

v
er

se

v
id

eo

fl
a
g

(t

o
g

g
le

d

by

A
ta

ri

ke
y)

>C

.
N

02

87

FI
LF

L.
G

$0

2B
7

;F
il

l
fl

a
q

fo

r
dr

aw

.....

g:
,

.....

N

02
BB

SC

RF
LG

$0

2
BB

;S

et

if

sc
ro

ll

o
cc

u
re

s

Ilf
r-

'
N

02

BE

SH
FL

O
K

$0

2B
E

;S
h

if
t

lo
ck

02

BF

BO
TS

CR

$0
2B

r
;B

ot
to

m

o
f

sc
re

en
:

24

N
or

m
,

4
S

p
li

t.

:::s
 c..

>co

CO
LO

RS

II t
o

02
CO

PC

OL
RO

$0

2C
O

;P

O

CO
LO

R
02

C
1

PC
O

LR
1

$0
2C

1
;P

l
CO

LO
R

02
C

2
PC

O
LR

2
$

02
C

2
;P

2
CO

LO
R

02
C

3
PC

O
LR

3
$0

2C
3

;P
3

CO
LO

R
02

C
4

CO
LO

RO

$
02

C
4

;C
O

LO
R

0
02

C
5

CO
LO

Rl

s.D
2C

5
;C

O
LO

R
1

02
C

6
CO

LO
R2

$0

2C
6

;C
O

LO
R

2
02

C
7

CO
LO

R3

$0
2C

7
;C

O
I.O

R
3

02
C

8
CO

LO
R4

$0

2C
8

;C
O

LO
R

4

GL
OB

AL

V
A

RI
A

BL
ES

02
E4

RA

M
S

IZ

$0
2E

4
;R

A
M

 S
IZ

E

(H
I

BY
TE

O

N
LY

)
02

E5

M
E
~
I
T
O
P

$0
21

:5

;T
OP

O

f
A

V
A

IL
A

BL
E

US
ER

M

EM
OR

Y
02

E7

ME
M

LO

$0
2E

7
,B

Or
TO

M

O
F

AV
A

IL
A

BL
E

US
ER

ME

MO
RY

02

EA

DV
ST

AT

$0
2

EA

; S
TA

TU
S

BU
FF

ER

02
 F

O
CR

SI
N

H

$0
2F

0
;C

U
RS

O
R

IN
H

IB
IT

(0

0
=

 C
UR

SO
R

O
N

)
02

F
l

K E
YD

EL

$0
2F

l
;K

ey

d
el

ay

02
F3

CH

AC
T

$0
2

F3

;C
H

A
CT

L
R

EG
IS

TE
R

RA

M
02

F4

CH
BA

S
$O

ZF
4

;C
H

BA
S

R
EG

IS
TE

R

RA
M

02
FD

FI

LD
A

T
$0

2F
D

;R

IG
H

T
FI

L
L

DA

TA

(D
RA

W
)

02
FB

AT

AC
HR

$0

2F
B

;A

ta
sc

ii

c
h

a
ra

c
te

r
02

fC

CH

$0
2f

C

;g
lo

ba
l

v
a
ri

a
b

le

fo
r

k
ey

b
o

ar
d

02

FE

D
SP

fL
A

$0

2F
E

;D

IS
PL

A
Y

fL

AG
:

D
IS

PL
A

Y
S

CN
T

LS

If

NO
N

ZE
RO

;
0

2
ff

SS

fL
A

G

$0
2f

F
;S

ta
rt

/s
to

p

fl
ag

fo

r
p

ag
in

g
(C

NT
L

1
).

C

le
ar

ed

by

B
re

a

P
ag

e
th

re
e

RA
M

as

si
g

n
m

en
ts

D
ev

ic
e

co
n

tr
o

l
b

lo
ck

s
(S

ID
)

03
00

DC

B
$0

30
0

;D
ev

ic
e

co
n

tr
o

l
b

lo
ck

03

00

D
O

EV
IC

$0

30
0

;P
e
ri

p
h

e
ra

l
U

n
it

1

bu
s

1
.0

.
nu

m
be

l'
03

01

OU
N

IT

$
03

01

;U
ni

t
nu

m
be

r
03

02

D C
O

r'IN
D

$0
30

2
;B

us

co
m

m
an

d
03

03

D
ST

A
TS

$0

30
3

;C
om

m
an

d
T

yp
e

/s
ta

tu
s

re
tu

rn

03
04

O

BU
fL

O

$0
30

4
;O

at
a

b
u

ff
e

p
o

in
te

lo

w

03
05

D

B
U

fH
I

$0
30

5
03

06

OT
IM

LO

$0
30

6
;O

ev
ic

e
ti

m
e

o
u

t
in

1

se
co

nd

u

n
it

s
03

08

OB
YT

LO

$0
30

8
;N

um
be

r
o

f
b

y
te

s
to

be

tr

an
sv

er
ed

lo

w
 b

y
te

03

09

DB
YT

H
I

$0
30

9
03

0
A

OA

U
X1

$0

30
A

;C

om
m

an
d

A
ux

b

y
te

1

03
 D

B
DA

UX
2

$0
30

B

03
40

IO

C
B

$0

34
0

03
40

IC

rtI
O

$0

34
0

;H
an

d
le

r
in

d
e

x
nu

m
be

r
(F

F
=

 I
O

CB

fr
e
e
)

03
41

IC

O
N

O

$0
34

1
;O

ev
ic

e
nu

m
be

r
(d

ri
v

e

nu
m

be
r)

l>

03

42

IC
CO

M

$0
34

2
;C

om
m

an
d

co
de

"C

03

43

IC
ST

A

$0
34

3
;S

ta
tu

s
of

la

st

rO
CB

a
c
ti

o
n

"C

~

03
44

IC

BA
L

$0
34

4
;B

u
ff

er

ad
d

re
ss

lo

w

b
y

te

::
l C
o

03
45

IC

BA
H

$0
34

5
)C

.
N

.

03
46

IC

PT
L

$0
34

6
;P

u
t

b
y

te

ro
u

ti
n

e
ad

d
re

ss

-
1

0:1

w

N
 '"""
' ""

03
47

03

48

03
49

03

4A

03
4B

03

4C

03
CO

03
FO

04
80

08
00

08
E6

09

A
A

09
20

O

A
60

O

A
66

OA

OB

O
B2

8
00

89

IC
PT

H

IC
B

ll

Ie
B

lH

IC
A

X
1

IC
A

X
2

IC
SP

R

$0
34

7
$f

)3
41

3
$0

34
9

S0
34

A

$0
34

B

$0
34

C

;B
u

ff
er

le

n
g

th

lo
w

b

y
te

;A
u

x
il

ia
ry

in

fo
rm

at
io

n

fi

rs
t

b
y

te

;f
o

u
r

s
p
~
r
?

b
y

te
s

PR
NB

UF

$0
3C

O

;P
ri

n
te

r
b

u
ff

er

(4
0

b
y

te
s)

(2

1
sp

ar
e

b
y

te
s)

Pa
ge

F

ou
r

Ra
m

A

ss
ig

nm
en

ts

CA
SB

UF

$0
3F

O

;C
a
ss

e
tt

e

B
u

ff
er

(1

31

b
y

te
s)

US
AR

EA

A
FP

FA
SC

IF

P

FP
I

FS
UB

FA

OO

H
1

U
l

FO
IV

FL

OO
R

$0
48

0
(0

48
0

th
ru

05

FF

fo
r

th
e

u
se

r)

(e
x

ce
p

t
fo

r
fl

o
a
ti

n
g

p

o
in

t .
..

)

FL
O

A
TI

N
G

PO

IN
T

RO
M

RO
U

TI
N

ES

IF

CA
RR

Y
IS

US

ED

TH
EN

CA

RR
Y

CL
EA

R
=>

NO

ER

RO
R,

CA

RR
Y

SE
T

=>

ER
RO

R

$0
80

0

$0
8E

6
$D

9A
A

$0
92

0
$O

A
60

$O

A
66

$O

AO
B

$O
B

28

$0
08

9

;A
SC

II

->

FL
O

A
TI

N
G

PO

IN
T

(F
P

)
IN

BU
FF

+

 C
IX

 -
>

FR
O

,
C

IX
,

CA
RR

Y
;F

P
->

A

SC
II

FR

O
->

FO

R
,F

O
O

+1
,

CA
RR

Y
; I

N
TE

G
ER

->

FP

O

-$
FF

FF

(L
SB

,
M

SB
)

IN

fR
O

,F
R

O
+1

->
FR

O

;F
P

->

IN
TE

G
ER

FR

O
->

FR

O
,F

R
O

+1
,

CA
RR

Y
; F

RO

<
-

FR
O

-
FR

1,

CA
RR

Y
;F

RO

<
-

FR
O

+

FR
l

,C
AR

RY

;F
RO

<

-
FR

O
•

FR
1

,C
A

RR
Y

;F

RO

<
-

FR
O

/
FR

1
,C

A
RR

Y

;F
LO

A
TI

N
G

LO

AD

RE
GO

FR

O
<

-
(X

,Y
)

J>
 " " (1

) ::I

Q
. x" D
'

00
80

FL

DO
P

$0
08

0
FR

O
<

-
(F

L
PT

R
)

00
98

FL

D
IR

$0

09
8

FR
I

<
-

(X
.Y

)
DD

9C

FL
D

IP

$D
D

9C

FR
I

<
-

(F
L

PT
R

)
DD

AI

FS
TO

R
$D

DA
7

;F
LD

A
TI

N
G

ST

O
RE

RE

GO

(X
.Y

)
<

-
FR

O
DD

AB

FS
TO

P
$D

DA
B

(F
L

T
PT

R
)<

-
FR

O
DD

B6

F
r
~
O
V
E

$D
D

B6

;F
R

I
<-

FR
O

00
40

PL

YE
VL

$0

04
0

;F
RO

<-

P
(Z

)
SU

M
(I

=
 N

 T
O

0)

(A
(I

)
·Z

··
I)

CA

RR
Y

IN
PU

T
:

(X
.Y

)
=

 A
(N

).

A
(N

-l
)
..

.
A

(O
)

->

PL
YA

RG

AC
C

OF

C

O
EF

FI
C

IE
N

TS

=
 D

EG
RE

E
+

1

FR
O

Z

DD
CO

EX

P
$D

DC
O

;F
RO

<-

E"
"F

R
O

=

 E
X

PI
O

(F
R

O

•
L

O
G

I0
(E

))

CA
RR

Y
DD

CC

EX
PI

O

$D
DC

C
;F

RO

<
-

10
"

"F
RO

CA

RR
Y

DE
CO

LO

G
$D

EC
D

;F

RO

<-
LN

(F
R

O
)

=
 L

O
G

I0
(F

R
O

)
/

L
O

G
I0

(E
)

CA
RR

Y
DE

DI

LO
GI

O
$D

ED
I

;F
RO

<-

LO
G

IO
(F

R
O

)
CA

RR
Y

TH
E

FO
LL

OW
IN

G
AR

E
IN

TH

E
B

A
SI

C

CA
RT

RI
D

G
E:

BD
81

SI

N

$6
08

1
;F

RO

<-
SI

N
(F

R
O

)
D

EG
FL

G
=O

=>

RA

D
S.

6=

>D
EG

.
CA

RR
Y

BD
73

CO

S
$B

D
73

;F

RO

<-
C

O
S(

FR
O

)
CA

RR
Y

BD
43

AT

AN

$B
Q

43

;F
RO

<

-
A

TN
(F

R
O

)
CA

RR
Y

BE
Bl

SQ

R
$B

E
fll

;F

RO

<
-

SQ
U

A
RE

RO
O

T(
FR

O
)

CA
RR

Y

FL
O

A
TI

N
G

PO

IN
T

RO
U

TI
N

ES

ZE
RO

PA

GE

(N
EE

D
ED

ON

LY

IF

F
.P

.
» "C

RO

U
TI

N
ES

AR

E
CA

LL
ED

)
"C

II

)
00

04

FR
O

$0
00

4
;F

P
RE

GO

:::J

OD
ED

FR

I
$0

0[
0

;F
P

RE
G1

C

o
~

00
F2

CI

X

$0
0F

2
;C

U
RR

EN
T

IN
PU

T
IN

DE
X

;Co

....,

U
1

'"

IV

00
F3

IN

BU
FF

$0

0F
3

;P
O

IN
TS

TO

US

ER
'S

LI

N
E

IN
PU

T
BU

FF
ER

Ilf
.....

0'

<
OO

FB

RA
OF

LG

$O
OF

[l
;0

=

 R
A

D
IA

N
S

,
6

=
 D

EG
RE

ES

OO
FC

FL

TP
TR

$O

O
FC

;P

O
IN

TS

TO
 U

SE
RS

FL

OA
TI

N
G

PO

IN
T

NU
M

BE
R

:J

Q
. >eo

FL
OA

TI
N

G

PO
IN

T
RO

U
TI

N
ES

'
N

O
N

-Z
P

RA
M

I
I

o:J

(0
57

E
 t

o

05
FF

)

05
80

LB

UF
F

$0
58

0
; L

IN
E

BU
FF

ER

05
EO

PL

YA
RG

LB

U
FF

+
$6

0
;P

O
LY

NO
M

JL
A

AR
GU

M
EN

TS

CO
LL

EE
N

M
NE

M
ON

IC
S

02
00

P O

K
EY

$0

20
0

; V
B

LA
NK

A

CT
IO

N
:

D
ES

C
R

IP
TI

O
N

:
02

00

PO
TO

PO

K
EY

+O

;P
O

TO
--

>
PA

DO
LO

0-

22
7

IN
 R

AM

CE
LL

02

01

PO
Tl

PO

K
EY

+l

;P
O

T
1-

->
PA

D
O

L
1

0-
22

7
IN

RA

M
C

EL
L

02
02

PO

T2

PO
KE

Y+
2

;P
O

T
2-

->
PA

DO
L2

0-

22
7

IN

RA
M

CE
LL

02

03

PO
T3

PO

K
EY

+3

;P
O

T3
--

>P
AO

OL
3

0-
22

7
IN

 R
AM

CE

LL

D2
04

PO

T4

PO
KE

Y
+4

;P

O
T

4-
->

PA
O

O
L4

0-

22
7

IN
 R

AM

C
EL

L
02

05

PO
T5

PO

K
EY

+5

;P
O

T5
--

>P
AO

O
L5

0

--2
27

IU

RA

M
CE

LL

02
06

PO

T6

PO
KE

Y
+6

; P

OT
fl

--
>

PA
D

D
L6

0-

22
7

IN

RA
M

CE
LL

02

07

PO
T7

PO

KE
Y+

7
; P

O
T

7-
->

PA
OD

L7

0-
2

27

IN

RA
M

C
EL

L

02
08

AL

LP
OT

PO

K
EY

+8

; ?
?

l
02

09

KA
CO

OE

PO
K

EY
+9

02

0A

RA
NO

OM

PO
K

EY
+l

0
02

08

PO
TG

O
PO

K
EY

+1
1

;S
tr

o
b

ed

n
/a

02

00

SE
R

IN

PO
K

EY
+1

3
02

0E

IR
Q

ST

PO
K

EY
+1

4
02

0F

SK
S

TA
T

PO
K

EY
+1

5

02
00

AU

OF
1

PO
KE

Y+
O

02
01

A

U
O

Cl

PO
K

EY
+l

0

20
2

AU
OF

2
PO

K
EY

+2

0
20

3
AU

DC
2

PO
KE

Y
+3

02

04

AU
OF

3
PO

K
EY

+4

02
05

AU

OC
3

PO
K

EY
+5

02

06

AU
OF

4
PO

K
EY

+6

02
07

AU

OC
4

PO
K

EY
+7

02

08

AU
OC

T
PO

K
EY

+8

;N
ON

E

AU
DC

TL
<-

-[
S

IO
]

02
09

S T

IM
ER

PO

K
EY

+9

02
0A

SK

RE
S

PO
K

EY
+l

0
;N

ON
E

S
K

R
E

S
<

--
[S

IO
]

D2
0B

PO

TG
O

PO
K

EY
+l

l
02

00

SE
RO

UT

PO
K

EY
+1

3
;N

ON
E

SE

R
O

U
T

<-
-[

SI
O

]
02

0E

IR
Q

EN

PO
K

EY
+1

4
;P

O
K

M
SK

-->
IR

Q
EN

(A

FF
E

CT
ED

BY

O

PE
N

S
:

OR

E
:)

02

0F

SK
CT

L
PO

K
EY

+1
5

;S
SK

C
TL

--
>S

K
C

TL

SS
K

C
TL

<-
-[

S
IO

]

00
00

CT

IA

$0
00

0
00

00

HP
OS

PO

CT
IA

+O

l>

00
01

H

PO
SP

l
C

T
IA

+l

.,
00

02

H
PO

SP
2

C
TI

A
+2

., tD

00

03

H
PO

SP
3

C
TI

A
+3

::

l C
o

00
04

HP

OS
M

O
C

TI
A

+4

)CO

N

00
05

H

PO
SM

l
C

TI
A

+5

OJ

'-
l

N

00
06

HP

OS
M

2
C

TI
A

+6

>

.....

0
0

00

07

HP
OS

M
3

C
TI

A
+7

"'C

"'C

00

08

SI
ZE

PO

C
TI

A
+8

~

::::
l

00
09

S

IZ
E

P
l

C
TI

A
+9

c..

DO

OA

SI
Z

E
P2

C

T
IA

+l
0

;r
DO

OB

SI
Z

E
P3

C

T
IA

+
ll

to

DO

OC

SI
ZE

M

C
TI

A
+1

2
00

0
0

GR
AF

PO

C
TI

A
+1

3
DO

OE

G
R

A
FP

l
C

T
IA

+1
4

DO
OF

G

RA
FP

2
C

TI
A

+1
5

00
10

G

RA
FP

3
C

T
IA

+1
6

00
11

GR

AF
M

C

TI
A

+1
7

00
12

CO

LP
M

O
C

TI
A

+1
8

;P
C

O
LR

O
-->

C
O

LP
M

O

W
IT

H
AT

TR
AC

T
M

OD
E

00
13

CO

LP
M

l
C

TI
A

+1
9

; E
TC

.N

D
01

4
CO

LP
M

2
C

TI
A

+2
0

00
15

CO

LP
M

3
C

TI
A

+2
1

00
16

CO

LP
FO

C

TI
A

+2
2

00
17

C

O
LP

Fl

C
TI

A
+2

3
00

18

CO
LP

F2

C
TI

A
+2

4
00

19

CO
LP

F3

C
TI

A
+2

5
D

01
A

CO

LB
K

C
TI

A
+2

6
D

01
B

PR
IO

R
C

TI
A

+2
7

D
O

lC

VD
EL

AY

C
TI

A
+Z

8
00

10

GR
AC

TL

C
TI

A
+Z

9
D

O
lE

H

IT
CL

R
C

TI
A

+3
0

D
01

F
CO

NS
OL

C

TI
A

+3
1

;$
08

--
>C

O
N

SO
L

TU
RN

O

FF

SP
EA

K
ER

00
00

M

OP
F

CT
IA

+O

D
00

2
M

ZP
F

C
TI

A
+Z

00

03

M
3P

F
C

TI
A

+3

00
04

PO

PF

C
T

IA
+

4
D

00
5

P1
PF

C

T
IA

+
5

00
06

P2

PF

C
T

IA
+

6
00

07

P3
PF

C

T
IA

+
7

00
08

t,1

0P
L

C
T

IA
+

8
00

09

M
1P

L
C

T
II

I+
9

OO
OA

~1

2P
L

C
T

IA
+

l0

OO
OB

M

3P
L

C
T

IA
+

ll

OO
OC

PO

PL

C
T

IA
+

12

DO
DD

P1

PL

C
T

IA
+-

13

oa
O

E
P2

PL

C
T

IA
+

14

[)O
O

F
P3

PL

C
T

IA
'"

15

0
0

1
0

TR

IG
O

C

T
IA

+
16

;T

R
IG

O
--

>
S

T
R

IG
l

0
0

1
1

T

R
IG

l
C

T
IA

+
17

;E

T
C

.
0

0
1

2

T
R

IG
2

C
T

IA
+

18

0
0

1
3

T

R
IG

3
C

T
IA

+
19

0

0
1

4

PA
L

C
T

IA
+

20

0
4

0
0

A

N
TI

C

$
0

4
0

0

0
4

0
0

O
~
I
A
C
H

A
N

TI
C

+O

;O
M

A
C

T
L

<-
-S

O
M

C
T

L

ON

O
PE

N

S
:

OR

E
:

0
4

0
1

CH

A
RC

TL

A
N

T
IC

+
l

; C
H

A
C

T
L

<-
-C

H
A

cr

ON

O
PE

N

S
:

OR

E
:

0
4

0
2

O

L
IS

H

A
N

T
IC

+2

; O
L

IS
T

L
<

-
-S

O
L

ST
L

ON

O

PE
N

S

:
OR

E

:

0
4

0
3

O

L
IS

T
H

A

N
T

IC
+3

; O

L
IS

T
H

<
-

-S
O

L
ST

H

ON

O
PE

N

S
:

OR

E
:

0
4

0
4

H

SC
RO

L
A

N
T

IC
+4

» "C

0

4
0

5

V
SC

RO
L

A
N

T
IC

+5

"C

0
4

0
7

PM

BA
SE

A

N
T

IC
+7

til

::::s

0

4
0

9

CH
BA

SE

A
N

T
IC

+9

; C
H

[J
,II

SE
<-

-C
H

B
A

S
ON

O

PE
N

S

:
OR

E

:
~

IV

;r
'""' '-0

tI:

I

tv

tv

a
D

40
A

D

40
B

D
40

C
D

40
D

D

40
E

D
40

F
D

40
F

E4
00

E4

10

E4
20

E4

30

E4
40

E4

59

E4
5C

00
01

00

02

00
03

00

04

00
05

00

06

00
07

E4
5F

E4

62

E4
65

W
SY

NC

A
N

TI
C

+1
0

VC
OU

NT

A
N

TI
C

+1
1

PE
NH

A

N
TI

C
+1

2
PE

NV

A
N

TI
C

+1
3

NM
IE

N
A

N
TI

C
+1

4
;N

M
IE

N
<-

-4
0

NM
IR

ES

A
N

TI
C

+1
5

;S
TR

O
BE

D

N
M

IS
T

A
N

TI
C

+1
5

ED
IT

RV

$E
40

0
; E

D
IT

O
R

SC
RE

NV

$E
41

0
; T

EL
E

V
IS

IO
N

SC

RE
EN

KE

YB
DV

$E

42
0

;K
EY

BO
AR

D
PR

IN
TV

$E

43
0

; P
R

IN
TE

R

CA
SE

TV

$
E4

40

;C
A

SS
ET

TE

S
IO

V
$E

45
9

;s
e
r
ia

l
in

p
u

t
o

u
tp

u
t

ro
u

ti
n

e
SE

TV
BV

$E

45
C

;s

e
t

sy
st

em

ti
m

er
s

ro
u

ti
n

e
W

ith

re
sp

ec
t

to

SE
TV

BV
,

th
e

ca
l

l
se

q
u

en
ce

is

X

 -
M

SB

o
f

v
ec

to
r/

t
im

er

Y
 -

LS
B

of

v
e
c
to

r/
ti

m
er

A

 -

of

v
ec

to
r

to

ha
ck

SF

.T
M

Rl

1
;T

im
er

1 2 3 4 5

SE
TM

R2

2
S[

TM
R3

3

SE
TM

R4

SE
TM

R
5

SE
T

IM
M

SE

TD
EF

SY
SV

BV

X
IT

V
BL

SI

O
IN

V

4 5 6 7 $E
45

F
$E

45
2

$E
46

5

;I
m

m
8d

ia
te

VB

LA
NK

;O

ef
fe

re
d

VB

LA
NK

;S
Y

ST
EM

V

ER
TI

CA
L

BL
AN

K
CA

LC
U

LA
TI

O
N

S
;E

X
IT

VE

RT
IC

A
L

B
L
A
N
~

CA
LC

U
LA

TI
O

N
S

;S
ER

IA
L

IN
PU

T
OU

TP
UT

IN

IT
IA

L
iZ

A
T

IO
N

» "'
0

"'
0 (D

::l

 c..

PO
W

ER

ON

AN
D

[S
ET

V
B

V
]

>eo

D:
I

Appendix B

For Further Reference

Apple: What 's Where In The Apple, William Luebbert, Micro Ink,
Inc., 34 Chelmsford St., Chelmsford, MA 01824, 1981.

Atari : Mapping Til e Atan, Ian Chadwick, COMPUTE! Books,
P.O. Box 5406, Greensboro, NC 27403, 1983. (This covers the
operating system and provides lengthy cross-referenced
explanations of Atari's memory addresses.)

Atari: Th e Atari BASIC SOllrcebook, Bill Wilkinson, COMPUTE! Books,
P.O. Box 5406, Greensboro, NC 27403, 1983. (Complete
commented source code of Atari BASIC, with explanatory text.)

221

AppendixC
Simple Assembler

Notes On Assembling

This program is written in BASIC because there is no reason not to.
Since the program runs quickly enough and there is some
complicated arithmetic involved, BASIC is the language of choice.
There are assemblers in ML which make two "passes" through the
source code and do need the extra speed . But this is a simple, "one
pass" assembler. The virtue of simplicity is that you can easily and
quickly make small ML routines, test them, and debug them. An
added bonus is that modifying the Simple Assembler is easy in
BASIC. We'll see how you can customize it in a minute.

The assembler accepts your opcodes and their arguments,
translates them into the correct numeric values, and POKEs them into
RAM memory. You have a choice between using hex or decimal
during your ML programming on the Simple Assembler (SA). If you
remove line 10, the SA will accept only decimal numbers as
arguments, will print all addresses in decimal, and will display the
object code (the numbers it is POKEing) in decimal. Leaving line 10 in
the program will result in the SA accepting, addressing, and
displaying only hexadecimal numbers.

The circumflex in lines 4010 and 5030 - the character following
the number 16 - means "to the power of" and generally appears on
computer keyboards as an arrow pointing up. Since this is not a
complicated assembler, a decision had to be made concerning
whether or not to include two of the conventions which have been
traditional in ML programming. They were left out because it saves
programming time to avoid them and they are unnecessary.

The first one is the dollar sign ($). When an assembler can accept
either hex or decimal simultaneously it must have a way to tell, if you
type in "10", whether you mean decimal 10 or hex 10 (decimal 16).
The convention requires that you write decimal ten as "10" and hex
as "$10."However, this can quickly become a burden. In the SA, you
let it know which kinds of numbers you are using by setting H in line
ten. After that, just type in the numbers. No $ is used. The second
convention that is not included in the SA is the use of the comma.
Again, there is no particular reason to use commas, but it has been
the tradition to include them for certain addressing modes. They, too,
can become burdensome when you are programming. Also, each line

223

Appendix C

of your ML program is brought into the computer via the INPUT
statement in line 240 . Microsoft BASIC's INPUT statement dislikes
seeing commas. So, it is expedient in several ways to drop the comma
convention. There is just no reason to use them.

One additional note. The SA does not accept the indirect jump:
JMP ($OFFF). You could add it if you wish, but because of a bug in the
6502, it is far safer to avoid it.

Here is a list of the traditional conventions used in most
assemblers compared to the simplified conventions of the SA. Notice
that each addressing mode has its own appearance, its own
punctuation . This is how an assembler knows which addressing
mode you mean to use.

Spaces are important .

Addressing Mode
Conventions

Immediate
Absolute
Zero Page

Accum ulator
Zero Page, X
Zero Page, Y
Absolute, X
Absolute, Y
Indexed Indirect
Indirect Indexed

Simple Assembler

LOA #15
LOA 1500
LOA 15

ASL
LOA 15X
LOX 15Y
LOA 1500X
LOA 1500Y
LOA (15X)
LOA (15)Y

Customizing The Simple Assembler

Traditional

LOA #$15
LOA $1500
LOA $15
(sometimes

LOA *$15)
ASLA
LOA$15,X
LOX$15,Y
LOA $1500,X
LOA $1500,Y
LOA ($15,X)
LOA ($15), Y

An assembler is only supposed to get your typed opcodes and their
arguments, translate them into the right numbers, and put them in
memory for you. Nevertheless, the assembler is there for your benefit
and it is a computer program. It can be taught to do whatever else
would assist you in your ML programming. This is where "pseudo
ops" come in. They are not part of the 6502 ML instruction set. They
are false opcodes. When you enter one of these, the assembler
doesn't put it into 6502 and POKE it. It can't. It does something for
you like figure out the hex equivalent of a decimal number or
whatever.

The SA has four built-in pseudo-ops and you can add others.
Following the input of the opcode (line 240) there is a short quiz. The
first question the computer asks itself is: " did they type the word
'FORWARD'?" If so, it means that you are planning to branch
forward, but you don't yet know how far. It will make a mental note
of this and later, when you type in another pseudo-op, "RESOLVE,"

224

Appendix C

it will go back and put in the correct address for the branch. Also, you
can hand-POKE in any number in any address by typing the pseudo
op "POKE". And, when you are finished with a program, type
"END" and the assembler will quit, reporting the starting and
ending addresses of your program in decimal.

A full-featured assembler can include dozens of pseudo-ops.
Let's briefly examine several popular ones to see if there are some
that you might want to add to the SA. Then we'll add a hex/decimal
pseudo-op to the SA to show how it's done.

BA - Begin Assembly. The SA asks you directly for the starting
address (variable SA$). BA signifies the location in RAM memory
where you want the object code to start. Example: BA $0400

BY - Bytes. This is for the creation of data tables. The BY is
followed by numbers or text characters which are POKEd into
memory at the current address. You put these BYtes at the start or
end of a program (it could result in havoc if it were in the middle of a
program; they would likely be meaningless as instructions). Example:
BY 46 46 48 42 12 11 or BY " THIS IS A MESSAGE"

DE - Define a label. Labels require a two-pass assembler that
goes through the source code first to create a table of labels which
would look something like this:

START
LETTER.A
PRINTROUTINE

1500
65
64422

Then, the second time through your source code, the assembler
would replace all the labels with their correct values. This is called
"resolving" the labels . DE is usually part of the initialization process.
A number of the example programs in this book start off with a series
of DE pseudo-ops, telling the assembler the meaning of various
important labels that will be used later in the source code instead of
literal numbers. Example: START DE 1500 or LETTER.A DE 65.

EN - The end of the source program. Stop assembling at this
point. The SA uses END.

MC - Move code. This interesting pseudo-op takes care of a
problem that sometimes comes up when you want your object code
to be ultimately used in an address that is now being used by the
assembler itself or cannot be directly POKEd at this time with the
object code. For instance, if your computer's RAM memory starts at
address 2048 like the Commodore 64, and you want to put your final
ML object code there, what do you do? If the SA was told to start
assembly there, it would begin to nibble away at itself. It's in RAM
starting at 2048.

225

AppendixC

To allow you to store object code elsewhere, but have it assembled
appropriately for final use in 2048, you could instruct the assembler:

Me 25000 (temporarily store it here)
BA 2048 (but make internal JMPs, JSRs, and table references

correct for this starting address) ,
You can add your own pseudo-ops to the SA following line 240.

Many times when you are working along in hex you will want to
know the decimal equivalent of a number and vice versa . It's nice to
be able to just ask for the translation right during assembling. The
answer is printed on the screen and you continue on with your
programming. The assembler will do nothing to the ML during all
this; it's just giving you an answer.

If you are working in the hex mode and want a decimal number,
just type DECIMAL and the computer will accept a hex number from
you and give back its decimal equivalent. Conversely, type HEX and
give a decimal number for that translation.

To include this pseudo-op in the SA, add the following lines:

Program C-I. Adding The Conversion Pseudo-op.

245 IFMN$="HEX"THENGOT07000
246 IFMN$="DECIMAL"THENGOT07200
7000 PRINT"ENTER DECIMAL NUMBER";:INPUTDE:IFD

E>255THENSZ=3:GOT07020
7010 SZ=l
7020 GOSUB4000: PRINT" $

"H$:GOT0230
7200 PRINT"ENTER HEX NUMBER"; :INPUTH$
7210 SX=LEN(H$):BK$="000":H$=LEFT$(BK$,4-SX)+

H$
7220 GOSUB5000: PRINT" = "

DE:GOT0230

The Simple Assembler has a few error messages that it will print
when it can't make sense out of something. The primary
responsibility for finding errors, however, is yours . You can create
and save ML routines and then look at them with the Disassembler to
see if they look like they should. SA takes up about 4.SK so it will not
run on an unexpanded VIC. A 3K RAM expansion will provide 2000
bytes for storage of your ML routines.

226

AppendixC

Program C-2. Simple Assembler (VIC, PET, Apple, 64 Version).

10 H=l:REM IF H = 0 THEN ASSEMBLY IS IN DEC
IMAL

50 HE$="0123456789ABCDEF":SZ=1:Z0$="000"
100 PRINT" SIMPLE ASSEMBLER CONVENTIONS

"
110 DIMM$(56),TY(56),OP(56)
120 FORI=lT056:READM$(I)
122 ROP$=MID$(M$(I),4,1):TY(I)=VAL(ROP$)
1240P$=RIGHT$(M$(I),3):OP(I)=VAL(OP$)
126 M$(I)=LEFT$(M$(I),3)
140 NEXTI: PRINT
150 PRINT"IMMEDIATE LOA #15
155 PRINT"ABSOLUTE LOA 1500
160 PRINT"ZERO PAGE LOA 15
165 PRINT"ACCUMULATOR ASL
170 PRINT"INDIRECT X LOA (15X)
175 PRINT"INDIRECT Y LOA (15)Y
177 PRINT"ZERO PAGE X LOA 15X
179 PRINT"ZERO PAGE Y LOX 15Y
180 PRINT"ABSOLUTE X LOA 1500X
185 PRINT"ABSOLUTE Y LOA 1500Y
189 PRINT:PRINT" ENTER ALL NUMBERS IN "
190 IFH=l THENPRINT"HEX":GOT0200
195 PRINT"DECIMAL"
200 PRINT:PRINT"PLEASE INPUT STARTING ADORES

S FOR ML PROGRAM": INPUT SA$
210 IFH=lTHENH$=SA$:GOSUB5000:SA=DE:GOT0220
215 SA=VAL(SA$)
220 TA=SA:PRINT"{CLEAR}":REM CLEAR THE SCREE

N
230 IFH=lTHENDE=SA:SZ=3:GOSUB4000:PRINTH$~:G

OT0240
235 PRINTSA" "~
240 INPUTMN$:PRINT"{UP}"SPC(20)~:REM GO UP 0

NE LINE AND OVER 20 SPACES
241 REM ADD NEW PSEUDO-OPS HERE
242 IFRIGHT$(MN$,7)="FORWARD"THENFB=SA
243 IFRIGHT$(MN$,7)="RESOLVE"THENFR=SA-FB:PO

KEFB+l,FR-2:PRINT" OK":GOT0230
244 IFRIGHT$ (1Il\N$, 4) = "POKE "'rHENPRINT" ADDR, NUM

BER(DEC)"; :INPUTADR,NUM:POKEADR,NUM
:GOT0230

227

AppendixC

250 IFMN$="END"THENPRINT:PRINT" PROGRAM
IS fROM"TA"TO"SA:END

260 L=LEN(MN$):L$=LEFT$(MN$,3)
270 FORI=lT056:IFL$=M$(I)THEN300
280 NEXTI
290 GOT0850
300 REM PRIMARY OPCODE CATEGORIES
301 TY=TY(I):OP=OP(I)
305 IFFB=SATHENTN=0:GOT02010
310 IFTY=0THENGOT01000
320 IFTY=3THENTY=1:IFL=3THENOP=OP+8:GOT01000
330 R$=RIGHT$(MN$,L-4):IFH=lTHENGOSUB6000
340 LR$=LEFT$(R$,l):LL=LEN(R$):IFLR$="#"THEN

480
350 IFLR$=" ("THEN520
360 IFTY=8THEN600
370 IFTY=3THENOP=OP+8:GOT01000
380 IFRIGHT$(R$,l)="X"ORRIGHT$(R$,l)="Y"THEN

630
390 IFLEFT$(L$,l)="J"THEN820
400 TN=VAL(R$):IFTN>255THEN430
410 IFTY=10RTY=30RTY=40RTY=5THENOP=OP+4
420 GOT02000
430 H%=TN/256:L%=TN-256*H%:IFTY=20RTY=7THENO

P=OP+8:GOT0470
440 IFTY=10RTY=30RTY=40RTY=5THENOP=OP+12:GOT

04713
450 IFTY=60RTY=9THEN470
460 GOT0850
4713 GOT03000
480 TN=VAL(RIGHT$(R$,LL-l))
490 IFTY=lTHENOP=OP+8:GOT02000
500 IFTY=40RTY=5THENGOT02000
510 GOT0850
520 IFRIGHT$(R$,2)=")y"THEN540
5 30 I FRIGHT$ (R$, 2) = "X) "'rHEN5 70
540 TN=VAL(MID$(R$,2,LL-3))
550 IFTY=lTHENOP=OP+16:GOT02000
560 GOT0850
570 TN=VAL(MID$(R$,2,LL-3))
580 IFTY=lTHENGOT02000
590 GOT0850
600 TN=VAL(R$):TN=TN-SA-2:IFTN<-1280RTN>127T

HENPRINT"'roo FAR "i :GOT0850

228

Appendix C

610 IFTN<0THENTN=TN+256
620 GOT02000
630 IFRIGHT$(R$,2)=")y"THEN540
640 IFRIGHT$(R$,1)="X"THEN720
6 50 REM *ZERO Y
660 TN=VAL(LEFT$(R$,LL-1)):IFTN>255THEN680
670 IFTY=20RTY=5THEN730
675 IFTY=1THEN760
680 GOSUB770:IFTY=1THENOP=OP+24:GOT0710
690 IFTY=5THENOP=OP+28:GOT0710
700 GOT0850
710 GOT03000
720 TN=VAL(LEFT$(R$,LL-1)):I FTN>255 THENGOSUB

770:GOT0780
730 IFTY=2THENOP=OP +16:GOT07 60
740 IFTY=10RTY=30RTY=5THENOP=OP+20:GOT0760
750 GOT0850
760 GOT02000
770 H%=TN/256:L%=TN-256*H%:RETURN
780 IFTY=2THENOP=OP+24:GOT0810
790 IFTY=10RTY=30RTY=5THENOP=OP+28:GOT0810
800 GOT0850
810 GOT03000
820 TN=VAL(R$)
830 GOSUB770
840 GOT0710
850 PRINT"(REV} ERROR ":GOT0230
1000 REM 1 BYTE INSTRUCTIONS
1010 POKESA,OP:SA=SA+1:IFH=lTHEN 1030
1020 PRINTOP:GOT0230
1030 DE = OP:GOSUB4000:PRINTH$:GOT0230
2000 REM 2 BYTE INSTRUCTIONS
2005 IFTN>256THENPRINT" INCORRECT ARGUMENT.

#5 IN HEX IS #05)":GOT0230
2010 POKESA,OP:POKESA+1,TN:SA=SA+2:IFH=lTHEN2

030
2020 PRINTOPiTN:GOT0230
2030 DE = OP:GOSUB4000:PRINTH$" "i

2040 DE = TN:GOSUB4000:PRINTH$:GOT0230
3000 REM 3 BYTE INSTRUCTIONS
3010 POKESA,OP:POKESA+l,L%:POKESA+2,H%:SA=SA+

3:IFH=lTHEN3030
3020 PRINTOPiL%iH%:GOT0230
3030 DE = OP:GOSUB4000:PRINTH$" "

229

Appendix C

3040 DE = L%:GOSUB4000:PRINTH$" ";
3050 DE = H%:GOSUB4000:PRINTH$:GOT0230
4000 REM DECIMAL TO HEX (DE TO H$)
4010 H$="": FORM=SZT00STEP-l:N%=DE/(16

A

M):DE=D
E-N%*16 A M:H$=H$+MID$(HE$,N%+1,1)

4020 NEXT:SZ=l:RETURN
5000 REM HEX TO DECIMAL (H$ TO DE)
5010 D=0:Q=3:FORM=lT04:FORW=0T015:IFMID$(H$,M

,1)=MID$(HE$,W+l,1)THEN5030
5020 NEXTW
5030 Dl=W*(16

A

(Q)):D=D+Dl:Q=Q-l:NEXTM:DE=INT(
D) : RETURN

6000 REM ACCEPT HEX OPCODE INPUT AND TRANSLAT
E IT TO DECIMAL

6010 IFLEFT$ (R$, 1) =" # "THENH$= "00 "+RIGH'r$ (R$, 2
):GOSUB5000:R$="#"+STR$(DE):RETURN

6020 LS=LEN(R$) :AZ$=LEFT$(R$,l):ZA$=MID$ (R$,L
S,1):IFAZ$<>"("THEN6050

6030 IFZA$="y"THENH$="00"+MID$(R$,2,2):GOSUB5
000: R$= II ("+STR$ (DE) +")y" : RETURN

6040 IFZA$=")"THENH$="00"+MID$(R$,2,2):GOSUB5
000: R$=" ("+STR$ (DE) +"X)": RETURN

6050 IFZA$="X"ORZA$="y"THEN60713
6060 H$=LEFT$(ZO$,4-LS)+R$:GOSUB5000:R$=STR$(

DE) : RETURN
6070 IFLS=5THENH$=LEFT$(R$,4):GOT06090
6080 H$="00"+LEFT$(R$,2)
60913 GOSUB50013:R$=STR$(DE)+ZA$:RETURN
20000 DATAADC1097,AND1033,ASL3002,BCC8144,

BCS8176,BEQ8240,BIT7036,BMI8048
20010 DATABNE8208,BPL8016,BRK0000,BVC8080,BVS8

112,CLC0024,CLD0216,CLI0088
20020 DATACLV0184,CMPl193,CPX4224,CPY4192,DEC2

198,DEX0202,DEY0136,EOR1065
20030 DATAINC2230,INX0232,INY0200,JMP6076,JSR9

032,LDAl161,LDX5162,LDY5160
20040 DATALSR3066,NOP0234,ORA1001,PHA0072,PHP0

008,PLA0104,PLP0040,ROL3034
20050 DATAROR3098,RTI0064,RTS0096,SBC1225,SEC0

056,SED0248,SEI0120,STAl129
20060 DATASTX2134,STY2132,TAX0170,TAY0168,TSX0

186,TXA0138,TXS0154,TYA0152

230

Appendix C

Program C-3 . Simple Assembler: Atari Version.

10 HX=l:REM IF HX = 0 THEN ASSEMBLY I
S IN DECIMAL

2 Q! DIM H E $ (1 6) • Z 0 $ \ 3) • F: $ (1 Q!) • M N $ (1 2)
.ZA$(l} ~AZ$(l) .L$(3) .SA$(4) ~H$(4}
,LR$(l)

3i2! OPEN #1 ~ 12.0. "E:"
5 (2! HE .$ = " 0 1 2345 6789 ABC D E F " : S Z = 1 : Z 0 $ = "

i2! iZi i~! "
1 i21f21 PR I NT "{:::' ~~} FJlII:I:J.;;;I

{3 ~1!i~} t.:..~-1:3.:L3"3: !!t]:C'J3:i.iO!l~

0" ;
1 h:1 DIM t-Ui (56*3). T Y (56). OP (56)
120 FOR 1=1 TO 56:READ MN$:M$(1*3-2~

I*3} =MI'·J$ (1 .3)
177 TY(I)=VAL (MN$(4.4»:OP (I)=VA L (MN

$ (5))

1 3~1 NE X T I
14i21 PRINT :7
15i-:1 PRINT" Immedi ate{5 SPACES}LDA #1

"'" " ...J

1 5 5 P R I NT" A b sol ute { 6 SPACES::: L D A 1 5121
QI"

1 6 121 P R I NT" Z e r 0 p c3 g e {5 SPA C E S ::: L D A 1 5

165 PRINT "AccufTlulc3to,{3 SPACES}ASL"
1 7 121 P R I NT" I n d ir e C t X (4 SPA C E S } L D A

15 X) "

i F"'"
f ...J PRINT

15) Y "
177 PRINT

15X"
179 PRINT

15Y"
18i2! PRINT

50121 X "
185 PRINT

50(2IY"

"Indirec t

" Ze,a page

" Zero page

"Ab so l ute

"Ab so l ute

SPACES}LDA

X fc S P ACES}LDA \. "_.

Y r ..,.. SPACES}LDX '- . ..,:.

X { 4 SPACES}LDA 1

YUl- SPACES}LDA 1

189 PRINT :PF:INT
1 numbers in

"{4 SPACES}Enter 031
" -.

1 9 ~I I F H X = 1 THE N P R I NT" I i't=->=£ II ;

231

AppendixC

1 95 P R I NT" r: t::xOWi :1::1]"
197 7 :7 "Addr-esses:U se 1536 - 1791 ($

i~!6i2H2!-$Q!6FF) " : 7 : 7
200 PRINT "{ 2 DEL LINE}Please enter

star-ting" :7 "addr-ess for- ML prog
ram";:INPUT SA$:IF SA$="" THEN 7

" {2 UP::;";: GOT 0 2 !~! ~I

210 IF HX=l THEN H$=SA$:GOSUB 5000 : S
A=DE:GOTO 217

215 SA=VAL{SA$)
217 IF SA < 256 OR SA > = 4~2196 !~1 THEN '7 If

{4 UP}Not IPAGE or- RONI":7 :GOTO
2 Q!i21

2 212! T A = SA: P R I N T II {C LEA F~} II : GOT 0 2 3 i2i
225 '7 : 7 "{ BEL L::; _i!:I:l~.:iliI!TIW1f : '7 : IF

HX=1 THEN -;:. "(e.g. #5 should be
#fZ~5) II:?

230 IF HX=1 THEN DE =S A:S Z=3:G OSUB 4 0
12!Q!: PRINT H$: " : II ~: GOTO 24i21

2 3 5 PRINT SA:": ";
2 4 i2! T RAP 2 2 5: I N PUT # 1 ; M N -0$: '7 II {U P ::; II ; :

POI< E 8 5 ~ 20: I F 1'1 N $ = II;' THE N -;:. II

{DEL LINE } "::GOTO 23~)

241 REN ADD NEW PSEUDO - OP S HERE
242 IF LENCMN$»6 THEN IF MN$(LEN(MN

$) -6) = II FOF~ WARD II THEN FB=SI-i
243 IF MN$="RESOLVE" THEN FR=SA-FB:P

o V E F B + 1 ~ F F~ - 2 : P R I N T II 0 r.: If : GOT 0
231~!

244 IF NN$=" pm::: E II THEN PR I I'H "ADDR _, N
UMBER (DE C) ": : INPUT ADDR, NUM: POI<E
ADDR ~ NUM :GOTO 230

25 Q! I F M i'-.I $ = .. END" THE N 8 I2H2li.2!
260 L=LEN(MN$):L$=MN$ (1 .3)
27121 FOF~ 1=1 TO 56:IF L$=M$<I:+:3-2.I:+:3

) THE N 3 i2! Q!
28~! NE XT I
29~~! GOTO 85 i2!
300 REM PRINARY OPCODE CATEGORIES
301 TY=TY- (I): OP=OP (I)
305 IF FB=SA THEN TN =0:G OTO 2 010
310 IF TY=0 THEN GO TO 1000

232

Appendix C

3 2 ~I 1FT Y = 3 :- H E ~,j T Y = 1 : I F L = 3 THE N 0 P
= 0 F' + 8 : GOT 0 t u () ;)

330 R$=MNS(5): IF HX=l THEN GOSUS 600
l-~!

:::.40 LR$=R$ ~ 1.1) : LL :-:: LEN :F:$): IF LF$= "#
TYEN 480

3 5 121 I F L P $ =" (" THE N 5 2 0
360 IF TY=8 THEN 600
370 IF TY=3 THEN OP=oP+8:GoTO 1000
38(21 IF R$(LL)="X" OR R$(LL)="Y" THEN

630
3 9 G I F L S (1 ~ 1) = " J" THE N 8 2 l~!

40 0 TN=VAL(RS): IF TN~255 THEN 430
410 IF TY=1 OR TY=3 OR TY=4 OR TY=5

THEN oP=oF'+4
4 2 l21 GOT 0 2 l2! (21 \21
430 H=INTITN!256):L=(TN - 256* H) :IF TY

=2 OR TV=7 THEN OP=OF'+8:GoTO 470
440 IF TY =1 OR TY= 3 OR TY=4 OR TY=5

THEN OP=oP+12:GOTO 470
450 IF TY=6 OR TY=9 THEN 470
46121 GoTO 850
4 7 l21 GOT 0 3 ~~I ~:I (2)
4 8 f'i T N = \,) A L (R $ (2)

490 IF T V=1 THEN 0F'=oP~8:GoTO 2000
500 IF TY=4 OR TY = ~ THEN GOTO 2000
5 1 eGO T C 8 5):
52QI
53Q;

IF R$(L.L - l)=") Y"
IF RS(LL - l)="X)"

THEN
THEN

540 TN=VAL(PS(2.LL - 1}}
57 Qj

550 IF TY=l THEN OP=OF'+16:GOTO 2000
5 6 Ql GOT 0 8 5 Ql
5 7 \21 T N = V A L (F: S (2 " L L -- 1) }
580 IF T Y= 1 THEN GOTo 2000
59~) GoTo 850
600 TN=VAL(PS):TN=TN - SA-2 : IF TN ~- 128

OF: TN ::- 1 27 THE N P F: I l'.~ T "~~" ;

: GOTD 85121
6 1 (I 1FT N -< 0 THE N TN = T I'! + 2 5 6
6 2 0 GOT 0 2 ~:I QI ~~5
63QI IF R$(LL - l)=")Y" THEI'~ 540
6 4 0 I F R '$ (L L - 1) = " X" THE N -: 2 (21

233

AppendixC

65121 REM *IEFO Y
T N = \l A L (R $ (1 ~ L L - 1 } } : 1FT N :: 2 5 5
N 68i21

670 IF TV = 2 OR TY =5 THEN 730
675 IF TV=! THEN 760

THE

680 GOSUB 77 0 :IF TV= l THEN OP=OP+2~:
GOTO 71.0

690 IF TY=5 TH E N OP=OP+28:G OTO 710
n~lQl GO TO 85Q)
71 i2! GOTO 3(:H~H~)

720 TN=VAL(RS(l , LL - 1)1:IF TN) 255 THE
N GOSUB 770:GOTO 780

730 IF TY=2 THEN OP=OP+16:GOTO 760
740 IF TY=1 OR TV=3 OR TY=5 THEN OP=

o P + 2 QI : GOT 0 7 6 i~!
751~1 GOTO 85~~i

7 6 !~) GOT 0 2 i2; ~~! !21

770 H=INT(TN/256}:L=TN-256*H:RETURN
780 IF TV=2 THEN OP=OP +2 4:GOTO 810
790 IF TY=1 OR TY=3 OR TY=5 THEN OP=

OF' +28: GO TO 8 i i~l

8 !Zli2! GOT 0 8 5 (21

8 1 Q! GOT 0 3 i~H~H2;

8 2 ~! T N = \) A L (F: $)

830 GOSUB 77(,~!

84~! GOTO 71 G
85H PRINT .. {BELL}13;~:t.J:.": GOTO 23121
1000 REM 1 BYTE INSTRUCTIONS
1010 POKE SA.OP:SA=SA+l:IF HX=l THEN

1 QI3 ~~!
1020 PRINT OP:GOTO 230
1030 DE=OF':GOSUB 4000:PRINT HS:GOTO

23l-~1

2000 REM 2 BYTE INSTRUCTIONS
2 0 QI 5 1FT N ;- 2 5 6 T HE N '") : 'J "E I I 0 .. - - " : T

N; ">256 ($1 ~~!i2!) .. : GOTO 23lZ1
2010 POKE SA , OP:POKE SA+l,TN:SA=SA+2

:IF HX=l THEN 2030
2!~12y-1 PR I NT OF'; " "; TN: GOTO 23125
2 ~I 3 y-! D E = 0 F' : GO SUB 4 !2! ~:! 0 : F' R I NTH S: ,
2040 DE=TN:GOSUB 4000:F'RINT H$:GOTO

23i~!

234

Appendix C

3000 REM 3 BYTE INSTRUCTIONS
3010 POKE SA.OP:POKE SA+l,L:POKE SA+

2.H:SA=SA+3:IF HX=1 THEN 3030
3 !~I 2 f! P R I N TOP;" "; L;" "; H : GOT 0 2 3 ~!
3 ~~I 3 ~! D E = 0 P : G 0 SUB 4 ~H~H~! : F' R I NTH $:" ";
3i~!4Q! DE=L: GOSUB 4i2!Q!i~!: PR I NT H$;" ";
3050 DE=H:GOSUB 4000:PRINT HS:GOTO 2

3~~!

4000 REM DECIMAL TO HEX (DE TO HS)
4 i~! 1 fl H S = " " : A = I N T (DEi 2 56) : I FA> QI THE N

AH=INT(A/16):AL=A-AH*16:HS=HE$
(AH+l,AH+l):H$(2)=HE$(AL+l,AL+l
)

4020 A=DE-A*256:AH=INT(AiI6):AL=A-AH
*16:H$(LEN(H$)+1)=HE$(AH+l,AH+l
):H$(LEN(HS)+I}=HES(AL+l,AL+l):
SI=l:RETURN

5000 REM HEX TO DECIMAL (HS TO DE)
5010 D=0:Q=3:FOR M=l TO 4:W=ASC(H$(M

»-48:IF W>9 THEN W=W-7
5030 D=D*16+W:NEXT M:DE=INT(D):RETUR

N
6000 REM ACCEPT HEX OPCODE INPUT AND

TRANSLATE IT TO DECIMAL
6 0 1 i~! I F R $ (1 , 1) = .. #" THE N H S = " ~~I QI " : H $ (

3) = R $ (2) : G 0 SUB 5 !2! f! (:1 : R S = " # " : R S (2
)=STR$(DE):RETURN

6020 LS=LEN(RS):AZS=RS(I,I):ZA$=R$(L
S): IF AZ$< ::O " (" THEN 6!215~)

6 f2! 3f!1 IF Z A$=" Y" THEN HS=" QIQ!" : H$ (3) =F:
$(2,4) :GOSUB 50~JO:R·$=" (":RS(2)=
STRS (DE) : R$ (LEN (R$) + 1) =" } Y" : RET
URN

6 ~~! 4 0 I F Z A $ = ") " THE N H $ = " 12; Q! .. : H S (3) = R
$(2 , 4) : G 0 SUB 5 121 Q!!2! : R S =" (" : R $ (2) =
STRS(DE) :RS(LEN(RS)+l)="X) ":RET
URN

6Q!5fl IF ZAS="X" OR ZA$="Y" THEN 6f2!7~!

6!2!6(! H$="": IF LS<4 THEN H$=ZO$ (1, 4-L
5)

6065 H$(LEN(H$)+l)=RS:GOSUB 5000:RS=
5TRS(DE):RETURN

235

AppendixC

6070 IF LS=5 THEN H$=R$(I,4}:GOTO 60
9fl

6 fl 8 QI H $ = If QI QI .. : H $ (3) = R $ (1 ~ 2)
6090 GOSUB 50 00:R$=STR$(DE):R$(LEN(R

$)+l)=ZA$:RETURN
8 ~~li2H21 P R I NT: P R I N T If * S TAR T S If; T A; : S Z =

3:DE=TA:GOSUB 4(21i!H~!:PRINT If ($";
H$; ;.) "

8 0 1 !Zi P R I NT" END S -:: 3 SPA C E S} " ; SA; : D E =
SA:SZ=3:GOSUB 4f!~~I~~I:PRINT" ($";
H$;"}":END

20000 DATA ADC1097,AND1033,ASL3002,B
CC8144,BCS8176.BED8240.B IT7036
~ BM I 8fl48

20010 DATA BNE8208.BPL8016,BRK0000,B
VC8080,BVS8112,CLC0024,CLD0216
, CL I iZH2188

20020 DATA CLV 0184.CM P1193,CPX4224,C
PY4192,DEC2198~DEX0202,DEY0136

. EOR 1 (2!65
20030 DATA INC2230,INX0232.INY0200,J

MP6076 .JSR 4 032.LDA1161,LDX5162
, LDY516 f!

20040 DATA LSR3066,NOP0234,ORA1001.P
HA0072, PHP0008,PLA0104. PLP0040
, ROL3!2!34

20050 DATA ROR3098,RTI0064.RTS0096,S
BC1225 ,SEC0056.SED0248,SEI0120
,STAl129

20060 DATA STX2134,STY2132.TAX0170,T
AY0168,TSX0186 ,TXA013 8 . TXS0154
, TYA~~! 15 2

236

Appendix D

Note: The /\ means" to the power of" as in 2 /\ 2 = 4.

Program 0-1. Disassembler (VIC, PET, Apple, 64 Version).

1 HE$="0123456789ABCDEF"
2 L$="--- ---------------------------------

"
4 J$=" --->"
13 PRINT" DISASSEMBLER
14 PRINT
16 DIMM$(15,15)
17 FORI=0T015:FORB=0T014:READM$(I,B):NEXTB:

NEXTI
25 REM START MAIN LOOP
30 PRINT"STARTING ADDRESS (DECIMAL)"; : INPUT

SA:TA=SA
31 PRINT"START ADDRESS HEX "; :DE=SA:ZX=3:G

OSUB1200: PRINTH$" II

35
41

IFSA<0THENEND
I=SA

45 REM PRINT ADDRESS
46 PRINTI" ";
50 X=PEEK(I)
55 GOSUB5000
56 IFL%=150RM$(H%,L%)="0"THENPRINT" '(

X:CK=0:LN=LN+1:GOT070
58 PRINTM$(H%,L%)i
60 GOSUB6000:IFEQTHENEQ=0
70 1=1+1
72 IFLN=20THENLN=0:GOT02000
80 GOT045
600 IFCK=12THEN603

II

601 B=PEEK(I+1):IFB>127THENB=((NOTB)AND255)+
l:B=-B

602 BAD=I+2+B:PRINT" "BAD:I=I+1:RETUR
N

603 IFH%>8THEN800
604 IFH%=2THENJ=1:GOT0850
605 IFH%=6THENPRINT:PRINTL$:EQ=1:RETURN

237

Appendix 0

606 IFH%=6THENRETURN
607 PRINT
608 RETURN
610 IFCK=12THEN615
611 PRINT" ("PEEK (1+1) ") I y"
612 I=I+1:RETURN
615 PRINT" ("PEEK(I+1)" ,X)"
616 I=I+1:RETURN
630 IFCK=12THEN635
631 PRINT" "PEEK(I+1)" ,X"
632 I=I+1:RETURN
635 PRINT" "PEEK(I+1)
636 I=I+1:RETURN
640 IFCK=12THEN645
641 PRINT" "PEEK(I+1)",X"
642 I=I+1:RETURN
645 PRINT" "PEEK(I+1)
646 I=I+1:RETURN
660 IFCK=12THEN645
661 IFH%=90RH%=11THENPRINT" "PEEK(I+1)", y"
662 IFH%=70RH%=150RH%=50RH%=3THEN640
663 IFH%=13THEN631
664 PRINT:GOT0642
680 PRINT: RETURN
690 IFCK=12THEN800
691 I$="Y":GOT0850
720 IFCK=12THEN725
722 I$="X":GOT0850
7 25 IFH%=6THENPRINT" (IND. ";: 1=1+1
726 IFH%=2THEN850
727 IFH%=4THENPRINTJ$;:GOT0850
728 IFH%=80RH%=100RH%=120RH%=14THEN850
729 GOT0610
730 IFCK=12THEN850
731 I$="X":GOT0850
740 IFCK=12THEN850
741 IFH%=11THENI$="Y":GOT0850
742 I$="X":GOT0850
800 PRINT" #"PEEK(I+1)
801 I=I+1:RETURN
850 N=PEEK(I+1)+PEEK(I+2)*256
860 IFI$=" "THEN900
870 IFI$="X"THENPRINT" "N" ,X"
880 IFI$="y"THENPRINT" "N" I y"

238

890 I$="":I=I+2:RETURN
900 PRINT" "N: 1=1+2
906 RETURN

Appendix 0

1000 DATABRK,ORA,0,0,0,ORA,ASL,0,PHP,ORA,ASL,
0,0,ORA,ASL,BPL,ORA,0,0,0,ORA,ASL

1010 DATA0,CLC,ORA,0,0,0,ORA,ASL,JSR,AND,0,0,
BIT, AND, ROL, 0, PLP, AND, ROL, 0, BI'1'

1020 DATAAND,ROL,BMI,AND,0,0,0,AND,ROL,0,SEC,
AND,0,0,0,AND,ROL,RTI,EOR,0,0,0

1030 DATAEOR,LSR,0,PHA,EOR,LSR,0,JMP,EOR,LSR,
BVC,EOR,0,0,0 , EOR,LSR,0,CLI,EOR,0

1040 DATA0,0,EOR,LSR,RTS,ADC,0,0,0,ADC,ROR,0,
PLA,ADC

1045 DATAROR,0,JMP,ADC,ROR,BVS,ADC,0,0,0
1050 DATAADC,ROR,0,SEI,ADC,0,0,0,ADC,ROR,0,ST

A
1055 DATA0,0,STY,STA,STX,0,DEY,0,TXA,0,STY,ST

A
1060 DATASTX,BCC,STA,0,0,STY,STA,STX,0,TYA,ST

A,TXS,0,0,STA,0,LDY,LDA,LDX,0
1070 DATALDY,LDA,LDX,0,TAY,LDA,TAX,0,LDY,LDA,

LDX,BCS,LDA,0,0,LDY,LDA,LDX,0
1080 DATACLV,LDA,TSX,0
1090 DATALDY,LDA,LDX,CPy,CMP,0,0,CPY,CMP,DEC,

0,INY,CMP,DEX,0,CPY,CMP,DEC
1095 DATABNE,CMP,0,0,0,CMP,DEC,0,CLD,CMP,0,0,

0,CMP,DEC;CPX,SBC,0,0,CPX,SBC,INC
1098 DATA0,INX,SBC,NOP,0,CPX,SBC,INC,BEQ,SBC,

0,0,0,SBC,INC,0,SED,SBC,0,0,0,SBC
1099 DATAINC
1200 REM MAKE DECIMAL INTO HEX
1201 H$= 1111: FORM=ZXT00STEP-1 : N%=DE/ (16 AM) : DE=D

E-N%*16 AM:H$=H$+MID$(HE$,N%+1,1)
1202 NEXT:RETURN
2000 PRINT"TYPE C TO CONTINUE FROM" I
2001 GETK$:IFK$=""THEN2001
2002 IFK$="C"THENSA=I:TA=SA:GOT035
2003 INPUTSA:TA=SA:GOT035
5000 REM ANALYZE H & L OF OPCODE
5010 H%=X/16:L%=X-H%*16
5020 :RETURN
6000 REM FIND ADDRESS TYPE & GOSUB
6020 CK=H%/2:IFCK=INT(CK)THENCK=12
6025 L%=L%+l

239

Appendix 0

6030 ONL%GOSUB600,610,800,6050,640,640,660,60
50,680,690,680,6050,720,730,740

6040 CK=0
6045 LN=LN+l
6050 RETURN

Program 0-2. Atari Disassembler.

1 (lOR E M e ~)lIja-J:j3..-J -':;1 ;1. 3 :.
1 0 5 G RAP H I C SO: P 0 SIT ION 1 1 ~ 0: ':> If eli:i-til

e.>Ija-J:;as.-4J3:;1.3.3:." :? : ':> "L 0 a din 9 op C

odes ... "
110 DIM OPCODES(256*10)~LN(255)~NB(25

5) ~TS(10} ~DS(5)
120 FOR 1=0 TO 255
125 READ T$~NB
130 LN(I)=LEN(TS)
140 GPCODES(I*10+1,I*10+LN(I»=TS
150 NB(I)=NB
160 NEXT I
1 70 G RAP H I C S (I: PO SIT ION 1 1 ~ (I:? "eli:"i#tI I

e~) Ija-J:'i'--s.-J 3:;1 .3 • 3 :."
180':> :?
190 TRAP 190:? "{UP}{DEL LINE}Star-tin

9 Addr-ess (Decimal)";:INPUT ADDR:
TRAP 40000

200 IF ADDR(O OR ADDR}65535 THEN 190
210 OP=PEEK(ADDR):NB=NB(OP}
220 TS=OPCODES(OP*I(1+1~OP*10+LN(OP)}
230 PRINT ADDR;:POKE 85,10:PRINT OP;:

POKE 85,15
240 ON NB+2 GOTO 242~244~250,260,270
242 NB=2:T=PEEK(ADDR+l}:IF T}128 THEN

T=T-256
243 PRINT T;:POKE 85~20:PRINT TS;"

;ADDR+2+T:GOTO 300
244 ? "llfifl::l£j('::;::t=Uii($": NB= 1 : GOTO 300
246 PRINT TS;" ";ADDR+2+T:GOTO 300
250 POKE 85,20:PRINT TS:GOTO 300
260 PRINT PEEK(ADDR+l);:POKE 85~20:DS

=STRS(PEEK(ADDR +l)}:GOSUB 400:GOT
o 300

240

Appendix D

270 PRINT PEEK(ADDR+l);:POKE 85~15:PR
INT PEEK(ADDR+2);:POKE 85~20

280 D$=STR$«PEEK(ADDR+l)+256*PEEK(AD
DR+2»):GOSUB 400

300 ADDR=ADDR+NB:IF ADDR {O THEN ADDR=
65536-T

310 IF ADDR } 65535 THEN ADDR=T
320 IF PEEK(53279)=7 THEN 210
330 GOTO 190
400 ? T$(1~4+(LN(OP)}4»;D$;T$(4+2*(L

N(OP) } 5»:RETURN
500 DATA BRK~I~ORA (X)~2~?~0~?~0~?~0~

ORA ~ 2~ASL ~2~?~0~PHP~I~ORA #
2

510 DATA ASL A~I,?~O~?~O~ORA ~3~ASL

,3~?~0~BPL~-I,ORA ()Y~2~?~0~?~0

520 DATA ?~O~ORA X,2~ASL X~2,?~0~CL

C,I~ORA Y~3~?~0,?~0~?~0~ORA X~3
530 DATA ASL ~2~?~0,JSR ~3~AND (X)~2

~?~O~?~O~BIT ,2,AND ~2~ROL ~2~?,0

540 DATA PLP~I~AND # ~2~ROL A~I~?~O~B

IT ,3~AND ~3,ROL ~3~?~0~BMI~-I~AN

D ()Y~2

X~2,ROL

2~?~0~SEC~I~AND Y~3~CLI~I~?~0

560 DATA ?~O,AND X,3~ROL X~3~?~0~RT

I~I~EOR (X)~2~?~0~?~0~?~0~EOR ~2
570 DATA LSR ~2~?,O~PHA~I~EOR # ~2,L

SR ~3~?~0,JMP ~3~EOR ~3~LSR

3,?,0
580 DATA BVC~-I~EOR ()Y,2,?~0~?~0~?~0

~EOR X~2~LSR X~2~?~0~CLI~I~EOR

Y~2

590 DATA ?~O~?,O~?~O~EOR X~3~LSR X~

3,?~0~RTS~ I~ADC (X) ~2~?,0~?~0
600 DATA ?~O~ADC ~2~ROR ~2~?~0,PLA,

1 ~ ADC # ,2 ~ ROR A, 1 , ?, (I ~ J MP () ~ 108
, ADC ~ 3

610 DATA ROR ~3,?~0~BVS~-I~ADC ()Y~2

~?,O~?,O,?,O~ADC X,2~ROR X,2,?~

o

241

Appendix 0

620 DATA SEI,l,ADC Y,3,?,0,?,0,?,0,A
DC X,3,ROR X,3,?,0,?,0,STA (X),
2

,2,STA
,2,?,0,DEY,1,?,0,TXA,1,?,0

640 DATA STY ,3,STA ,3,STX ,3,?,0,
BCC,-l,STA (}Y,2,?,0,?,0,STY X,2
,STA X,2

650 DATA STX Y,2,?,0,TYA,1,STA Y,3,
TXS,l,?,O,?,O,STA X,3,?,0,?,0

660 DATA LDY # ,2,LDA (X},2,LDX # ,2,
?,O,LDY ,2,LDA ,2~LDX ,2,?,0,T
AY,l,LDA # ,2

670 DATA TAX,l,?,O,LDY ,3,LDA ,3,LD
X ,3,?,0,BCS,-I,LDA (}Y,2,?,0,?,

° 680 DATA LDY X,2,LDA X,2,LDX Y,2,?
,0,CLV,1,LDA Y,3,TSX,I,?,0,LDY
X,3,LDA X,3

690 DATA LDX Y,3,?,0,CPY # ~2,CMP (X
},2,?,0,?,0,CPY ,2,CMP ,2,DEC
,2,?,0

700 DATA INY,I,CMP # ,2,DEX,I,?,0,CPY
,3,CMP ,3,DEC ,3,?,0,BNE,-1,C

MP () Y, 2
710 DATA ?,O,?,O,?,O,CMP X,2,DEC X,

2,?,0,CLD,1,CMP Y,3,?,0,?,0
720 DATA ?,O,CMP X,3,DEC X,3,?,0,CP

X # ,2,SBC (X) ,2~?,0,?,0,CPX ,2,
SBC " , .L..

730 DATA INC ,2,?,0,INX,I,SBC # ,2,N
OP,l,?,O,CPX ,3,SBC ,3,INC ,3,
?,O

740 DATA BEQ,-1,SBC
,SBC

Y,3
X~ 2 , INC

(Y},2,?,0,?,O,?,0
X,2,?,0,SED,I,SBC

750 DATA ?,O,?,O,?,O,SBC X,3,INC X,
3,?,0

242

Appendix E
Number Tables

This lookup table should make it convenient when you need to
translate hex, binary, or decimal numbers. The first column lists the
decimal numbers between 1 and 255. The second colum n is the
hexadecimal equivalent. The third column is the decimal equivalent
of a hex most significant byte or "MSB." The fourth column is the
binary.

If you need to find out the decimal equivalent of the hex number
$FDI5, look up $FD in the MSB column and you'll see that it's 64768.
Then look up the $15 in the LSB column (it's 21 decimal) and add
21+64768 to get the answer: 64789.

Going the other way, from decimal to hex, you could translate
64780 into hex by looki ng in the MSB column for the closest number
(it must be smaller, however). In this case, the closest smaller number
is 64768 so jot down $FD as the hex MSB. Then subtract 64768 from
64780 to get the LSB: 12. Look up 12 in the decimal column (it is $OC
hex) and put the $FD MSB together with the $OC LSB for your
answer: $FDOC.

With a little practice, you can use this chart for fairly quick
conversions behveen the number systems. Most of your translations
will only involve going from hex to decimal or vice versa with the LSB
of hex numbers, the first 255 numbers, which require no addition or
subtraction. Just look them up in the table.

Table E-!.

IDecimal I (r;~) I
Hex

Binary (MSB)

1 01 256 00000001
2 02 512 00000010
3 03 768 00000011
4 04 1024 00000100
5 05 1280 00000101
6 06 1536 00000110
7 07 1792 00000111
8 08 2048 00001000
9 09 2304 00001001

10 OA 2560 00001010

243

Appendix E

Binary

11 OB 2816 00001011
12 OC 3072 00001100
13 00 3328 00001101
14 OE 3584 00001110
15 OF 3840 00001111
16 10 4096 00010000
17 11 4352 00010001
18 12 4608 00010010
19 13 4864 000 leo 0 11
20 14 5120 00010100
21 15 5376 00010101
22 16 5632 00010110
23 17 5888 00010111
24 18 6144 00011000
25 19 6400 00011001
26 1A 6656 00011010
27 1B 6912 00011011
28 1C 7168 00011100
29 10 7424 00011101
30 1E 7680 00011110
31 1F 7936 00011111
32 20 8192 00100000
33 21 8448 00100001
34 22 8704 00100010
35 23 8960 00100011
36 24 9216 00100100
37 25 9472 00100101
38 26 9728 00100110
39 27 9984 00100111
40 28 10240 00101000
41 29 10496 00101001
42 2A 10752 00101010
43 2B 11008 00101011
44 2C 11264 00101100
45 20 11520 00101101
46 2E 11776 00101110
47 2F 12032 00101111
48 30 12288 00110000
49 31 12544 00110001

244

Appendix E

Binary

50 32 12800 00110010
51 33 13056 00110011
52 34 13312 00110100
53 35 13568 00110101
54 36 13824 00110110
55 37 14080 00110111
56 38 14336 00111000
57 39 14592 00111001 -
58 3A 1484 8 00111010
59 3B 15104 00111011
60 3C 15360 00111100
61 3D 15616 00111101
62 3E 15872 00111110
63 3F 16128 00111111
64 40 16384 01000000
65 41 16640 01000001
66 42 16896 01000010
67 43 17152 01000011
68 44 17408 01000100
69 45 17664 01000101
70 46 17920 01000110
71 47 18176 01000111
72 48 18432 01001000
73 49 18688 01001001
74 4A 18944 01001010
75 4B 19200 01001011
76 4C 19456 01001100
77 40 19712 01001101
78 4E 19968 01001110
79 . 4F 20224 01001111
80 50 20480 01010000
81 51 20736 01010001
82 52 20992 01010010
83 53 21248 01010011
84 54 21504 01010100
85 55 21760 01010101
86 56 22016 01010110
87 5 7 22272 01010111
88 58 22528 01011000

245

Appendix E

Binary

89 59 22784 01011001
9 0 5A 23040 01011010
91 5B 23296 01011011
92 5C 23552 01011100
9 3 50 23808 01011101
9 4 5E 24064 01011110
95 5F 24320 01011111
9 6 60 24576 01100000
97 61 24832 01100001
98 62 25088 01100010
99 63 25344 01100011

100 64 25600 01100100
101 65 25856 01100101
102 66 26112 01100110
103 67 26368 01100111
104 6 8 26624 01101000
105 69 26880 01101001
106 6A 27136 01101010
107 6B 27392 01101011
108 6C 27648 01101100
109 60 27904 01101101
110 6E 28160 01101110
111 6F 28416 01101111
112 70 28 672 01110000
113 71 28928 01110001
114 72 29184 01110010
115 73 29440 01110011
116 74 29696 01110100
117 75 29952 01110101
118 76 30208 01110110
119 77 30464 01110111
120 78 30720 01111000
121 79 30976 01111001
122 7A 31232 01111010
123 7B 31488 01111011
124 7C 31744 01111100
125 70 32000 01111101
126 7E 32256 01111110
127 7F 32512 01111111

246

Appendix E

Binary

128 80 32768 10000000
129 81 33024 10000001
130 82 33280 10000010
131 83 33536 10000011
132 84 33792 10000100
133 85 34048 10000101
134 86 34304 10000110
135 87 34560 10000111
136 88 34816 10001000
137 89 35072 10001001
138 8A 35328 10001010
139 8B 35584 10001011
140 8C 35840 10001100
141 80 36096 10001101
142 8E 36352 10001110
143 8F 36608 10001111
144 90 36864 10010000
145 91 37120 10010001
146 92 37376 10010010
147 93 37632 10010011
148 94 37888 10010100
149 95 38144 10010101
150 96 38400 10010110
151 97 38656 10010111
152 98 38912 10011000
153 99 39168 10011001
154 9A 39424 10011010
155 9B 39680 10011011
156 9C 39936 10011100
157 90 40192 10011101
158 9E 40448 10011110
159 9F 40704 10011111
160 AO 40960 10100000
161 ~ , 41216 10100001 ~J..

162 A2 41472 10100010
163 A3 41728 10100011
164 A4 41984 10100100
165 AS 42240 10100101
166 A6 42496 10100110

247

Appendix E

Binary

167 A7 42752 10100111
168 A8 43008 10101000
169 A9 43264 10101001
170 AA 43520 10101010
171 AB 43776 10101011
172 AC 44032 10101100
173 AD 44288 10101101
174 AE 44544 10101110
175 AF 44800 10101111
176 80 45056 10110000
177 Bl 45312 10110001
178 B2 45568 10110010
179 B3 45824 10110011
180 B4 46080 10110100
181 B5 46336 10110101
182 B6 46592 10110110
183 B7 46848 10110111
184 B8 47104 10111000
185 B9 47360 10111001
18.6 BA 47616 10111010
187 BB 47872 10111011
188 BC 48128 10111100
189 BD 48384 10111101
190 BE 48640 10111110
191 BF 48896 10111111
192 CO 49152 11000000
193 Cl 49408 11000001
194 C2 49664 11000010
195 C3 49920 11000011
196 C4 50176 11000100
197 C5 50432 11000101
198 C6 50688 11000110
199 C7 50944 11000111
200 C8 51200 11001000
201 C9 51456 11001001
202 CA 51712 11001010
203 CB 51968 11001011
204 CC 52224 11001100

248

Appendix E

Binary

205 CO 52480 11001101
206 CE 52736 11001110
207 CF 52992 11001111
208 DO 53248 11010000
209 01 53504 11010001
210 02 53760 11010010
211 03 54016 11010011
212 04 54272 11010100
213 05 54528 11010101
214 06 54784 11010110
215 07 55040 11010111
216 08 55296 11011000
217 09 55552 11011001
218 OA 55808 11011010
219 DB 56064 11011011
220 DC 56320 11011100
221 DO 56576 · 11011101
222 DE 56832 11011110
223 OF 57088 11011111
224 EO 57344 11100000
225 E1 57600 11100001
226 E2 57856 11100010
227 E3 58112 11100011
228 E4 58368 11100100
229 E5 58624 11100101
230 E6 58880 11100110
231 E7 59136 11100111
232 E8 59392 11101000
233 E9 59648 11101001
234 EA 59904 11101010
235 EB 60160 11101011
236 EC 60416 11101100
237 ED 60672 11101101
238 EE 60928 11101110
239 EF 61184 11101111
240 FO 61440 11110000
241 F1 61696 11110001
242 F2 61952 11110010

249

Appendix E

IDeCimal1 (r;~) I (~~~) I Binary

243 F3 62208 11110011
244 F4 62464 11110100
245 F5 62720 11110101
246 F6 62976 11110110
247 F7 63232 11110111
248 F8 63488 11111000
249 F9 63744 11111001
250 FA 64000 11111010
251 FB 64256 11111011
252 FC 64512 11111100
253 FD 64768 11111101
254 FE 65024 11111110
255 FF 65280 11111111

The following program will print copies of this number table .
You might need to make some adjustments to the printout
conventions of your computer's BASIC and your printer itself. This
program is for Microsoft BASIC and will not work on the Atari.

Program E-I. Microsoft Table Printer.

10 OPEN4,4:REM OPEN CHANNEL TO PRINTER
100 HE$="0123456789ABCDEF"
110 FORX=lT0255
120 B=2:C=1
122 IFX<10THENPRINT#4," ": : GOT0130
124 IFX<100THENPRINT#4," ":
130 PRINT#4,X:" "::DE=X:GOSUB240
135 REM CREATE BINARY
140 IFXAND1THENK$(C)="1":GOT0160
150 K$(C)="0"
160 C=C+1:IFBANDXTHENK$(C)="1":GOT0180
170 K$(C)="0"
180 B=B*2:IFC>8THEN200
190 GOT0160
200 FORI=8T01STEP-1:PRINT#4,K$(I)::NEXTI

250

Appendix E

220 PRINT#4:NEXTX
230 END:REH TRANSFORM TO HEX
240 H$="I1:FORM=lT00STEP-l:N%=DE/(16"M):DE=DE

-N%*16"M
250 H$=H$+MID$(HE$,N%+l,l):NEXT
260 PRINT#4,H$" "i :DE=X*256
262IFDE<1000THENPRINT#4," "i :GOT0270
264 IFDE<10000THENPRINT#4," II

270 PRINT#4,DE" "i:RETURN

251

Appendix F
SUPERMON For PET

Tile' fallmpillg //Iollilor exlel lsiall s are til f il'O rk a/severail'rogmllllllers alld were previull siy
I'u/,lisir ed ill COMPUTE! Magazille. (See lir e cOl'yrigirl page for references.)

Here is the legendary Supermon - a version for Upgrade (3.0 or
"New ROM") and 4.0 PETs, all keyboards, all memory sizes, 40 or 80
column screens. You need not yet know how to program in machine
language (ML) to enter this program - or to use it. In fact, exploring
with Superman, you will find that the mysterious world of your
computer's OWl/language becomes gradually understandable. You
will find yourself learning ML.

Many ML programmers with PET/CBM machines feel that
Superman is the essential tool for developing programs of short to
medium length. All Upgrade and 4.0 machines have a "resident"
monitor, a program within the computer's ROM which allows you to
type SYS 1024 and see the registers, load and save and run ML
programs, or see a memory dump (a list of numbers from the
computer's memory cells). But to program or analyze ML easily,
disassembler, assembler, hunt, and single-step functions are all
practical necessities. Superman provides these and more .

Even if you've never assembled a single instruction and don't
know NOP from ROL, this appendix will lead you step-by-step
through the entry and SAVE of Supermon.

How To Enter Supermon
1. Type in the BASIC program (Program 1). It is the same for all

versions. Then save it normally by typing SAVE "CONTROL". This
program will be used later to automatically find your memory size,
transfer Superman to the top, and report to you the SYS address you
use to activate it.

2. Now the hard part: type SYS 1024 which enters you into the
machine language monitor. You will see something like the
following:

Figure I.
B*

. ,
PC IRQ SR AC XR YR SP

0401 E455 32 04 5E 00 EE

Then type: M 0600 0648 and you will see something similar to this
(the numbers will be different, but we are going to type over them
which, after hitting RETURN on each line, will enter the new
numbers into the computer's memory):

253

Appendix F

Figure 2.

oM 0600 0648
o • 0600 28 58 FF FF 00 08 06 AD
o • 0608 FF FC 00 2 1 06 03 AD A9
.. 0610 CB 85 1F A9 0C 85 20 AS
o • 0618 34 85 2 1 AS 35 85 22 A0
o • 0620 00 93 06 06 00 16 20 38
o • 0628 06 F0 11 85 23 20 38 06
o • 063(1 18 65 34 AA AS 23 65 35
o • 0638 20 43 06 8A 20 43 06 20
o • 0640 50 06 90 DB 60 EA EA AS
o • 0648 1F 00 02 C6 20 C6 1F B1

We have divided Superman into 21 blocks with 80 hexadecimal
numbers per block to make typing easier. There is a final, shorter
block with 64 numbers. Type right over the numbers on the screen so
that line 0600 looks like it does in Program 2. Then hit RETURN and
cursor over to the AS on line 0608. (Set a TAB to this position if your
keyboard has a TAB key.) Then type over the numbers in this line and
so on. When you have finshed typing your RETURN on line 0648,
type in: M 0650 0698 and the next block will appear for you to type
over. Continue this way until you finish entering the new version of
line OCC8 at the end. (Hope that no lightning or fuses blow.)

3. If you have Upgrade ROMs, you will need to correct the lines
listed in Program 3 at this point. To change line 0600, simply type M
06000600 and it will appear so that you can type over it and

. RETURN as in step 2.
4. Now Supermon is in your memory and you must SAVE it.

Hit RETURN so that you are on a new line and type :
S"SUPERMON", 01,0600,OCCC (to SAVE to tape) or type:
S"O:SUPERMON" ,08,0600,OCCC (to SAVE to disk drive 0) .

5. Finally, you will want to use the Checksum program to see if
you made any errors during the marathon. You probably did, but to
make it as painless as possible, the Checksum program will flash
through your Superman and let you know which blocks need to be
corrected. So, type in Program 4 (or if you have Upgrade ROMs, use
the first three lines from Program 5) . SAVE Checksum just in case.
Then LOAD "SUPERMON" (an ordinary LOAD as with a BASIC
program will slide it in starting at address 1536, above the end of
Checksum). Then RUN. Incorrect blocks will be announced. When
you know where the errors are, type SYS 1024 and then M XXXX
XXXX for the starting and ending addresses of the bad block. Check

254

Appendix F

the numbers against Program 2 (or Program 3) and in all corrections.
If, despite everything, you cannot find an error within a block, make
sure that the corresponding number within the DATA statement of
the Checksum p rogram is correc t. Then SAVE the good version
"SUPERMON]" as in step 4.

6. Your reward is near. LOAD "CONTROL" and then LOAD
SUPERMONI. Then type RUN and hold your breath. If all goes well,
you should see :

Figure 3.

SUP E R ~1 0 N 4 !

DISSASSEMBLER BY WOZNIAK/BAUM
SINGLE STEP

BY,] H'I R U S S 0
MOST OTHER STUFF ,BY BILL SEILER

TIDIED & WRAPPED BY JIM BUTTERFIELD

LINK TO MONITOR -- SYS 31283

SAVE WITH MLM:
.S "SUPERMON" ,01,7A33,8000

READY.

And you should be able to use all the commands listed in the
Supermon Summary. If some, or all, of the commands fail to
function, check the last, short block of code to see if there are any
errors.

After Supermon is relocated to the top of your memory, use a
ML SAVE to save it in its final form . Instructions are on screen after
RUN.

SUPERMON SUMMARY

COMMODORE MONITOR INSTRUCTIONS:
G GO RUN
L LOAD FROM TAPE OR DISK
M MEMORY DISPLAY
R REGISTER DISPLAY
S SAVE TO TAPE OR DISK
X EXIT TO BASIC

255

Appendix F

256

SUPERMON ADDITIONAL INSTRUCTIONS:
A SIMPLE ASSEMBLER
D DISASSEMBLER
F FILL MEMORY
H HUNT MEMORY
I SINGLE INSTRUCTION
P PRINTING DISASSEMBLER
T TRANSFER MEMORY
SUPERMON WILL LOAD ITSELF INTO THE
TOP OF MEMORY .. WHEREVER THAT HAPPENS
TO BE ON YOUR MACHINE.

YOU MAY THEN SAVE THE MACHINE CODE
FOR FASTER LOADING IN THE FUTURE.
BE SURE TO NOTE THE SYS COMMAND WHICH
LINKS SUPERMON TO THE COMMODORE
MONITOR.

SIMPLE ASSEMBLER
.A 2000 LOA #$12
.A 2002 STA $8000,X
.A 2005 (RETURN)

IN THE ABOVE EXAMPLE THE USER
STARTED ASSEMBLY AT 2000 HEX. THE
FIRST INSTRUCTION WAS LOAD A REGISTER
WITH IMMEDIATE 12 HEX. IN THE SECOND
LINE THE USER DID NOT NEED TO TYPE THE
A AND ADDRESS. THE SIMPLE ASSEMBLER
PROMPTS WITH THE NEXT ADDRESS. TO EXIT
THE ASSEMBLER TYPE A RETURN AFTER THE
THE ADDRESS PROMPT. SYNTAX IS THE SAME
AS THE DISASSEMBLER OUTPUT.

DISASSEMBLER
.0 2000
(SCREEN CLEARS)
., 2000 A9 12 LOA #$12
., 2002 90 00 80 STA $8000,X
., 2005 AA TAX
., 2006 AA TAX
(FULL PAGE OF INSTRUCTIONS)

DISASSEMBLES 22 INSTRUCTIONS
STARTING AT 2000 HEX. THE THREE BYTES
FOLLOWING THE ADDRESS MAY BE MODIFIED.

Appendix F

USE THE CRSR KEYS TO MOVE TO AND MODIFY
THE BYTES. HIT RETURN AND THE BYTES
IN MEMORY WILL BE CHANGED. SUPERMON
WILL THEN DISASSEMBLE THAT PAGE AGAIN.

PRINTING DISASSEMBLER
.P 2000,2040
2000 A9 12
2002 90 00 80
2005 AA

LDA #$12
STA $8000,XY.
TAX

203F A2 00 LOX #$00
TO ENGAGE PRINTER, SET UP BEFOREHAND:

OPEN 4,4:CMD4
ON 4.0, ACCESS THE MONITOR VIA A CALL
SYS 54386 (*NOT* A BREAK) COMMAND

SINGLE STEP
. I

ALLOWS A MACHINE LANGUAGE PROGRAM
TO BE RUN STEP BY STEP.
CALL REGISTER DISPLAY WITH .R AND SET
THE PC ADDRESS TO THE DESIRED FIRST
INSTRUCTION FOR SINGLE STEPPING.
THE .1 WILL CAUSE A SINGLE STEP TO
EXECUTE AND WILL DISASSEMBLE THE NEXT.
CONTROLS:

< FOR SINGLE STEP;
RVS FOR SLOW STEP;
SPACE FOR FAST STEPPING;
STOP TO RETURN TO MONITOR.

[ON BUSINESS KEYBOARDS-
USE 8 , ~ ,6 AND STOP].

FILL MEMORY
.F 1000 1100 FF

FILLS THE MEMORY FROM 1000 HEX TO
1100 HEX WITH THE BYTE FF HEX.

GO RUN
.G

GO TO THE ADDRESS IN THE PC
REGISTER DISPLAY AND BEGIN RUN CODE.
ALL THE REGISTERS WILL BE REPLACED
WITH THE DISPLAYED VALUES .
. G 1000

257

Appendix F

258

GO TO ADDRESS 1000 HE X AND BEGIN
RUNNING CODE.

HUNT MEMORY
.H C000 D000 'READ

HUNT THRU MEMORY FROM C000 HEX TO
D000 HEX FOR THE ASCII STRING READ AND
PRINT THE ADDRESS WHERE IT IS FOUND. A
MAXIMUM OF 32 CHARACTERS MAY BE USED •
. H C000 D000 20 D2 FF

HUNT MEMORY FROM C000 HE X TO D000
HEX FOR THE SEQ UENCE OF BYTES 20 D2 FF
AND PRINT THE ADDRESS. A MAXIMUM OF 32
BYTES MAY BE USBD.

LOAD
• L

LOAD ANY PROGRAM FROM CASSETTE #1 •
• L "RAM TEST"

LOAD FROM CASSETTE #1 THE PROGRAM
NAMED RAM TE ST .
• L "RAM TEST",08

LOAD FROM DISK (DEVICE 8) THE PROGRAM
NAMED RAM TE ST.
THIS COMMAND LE AVES BASIC POINTERS
UNCHANGED.

MEMORY DISPLAY
.M 0000 0080
.. 0000 00 0 1 02 03 04 05 06 07
.. 0008 08 09 0A 0B 0C 0D 0E 0F

DISPLAY MEMORY FROM 0000 HE X TO
0080 HEX. THE BY TE S FOLLOWING THE ..
CAN BE ALTERED BY TYPING OVER THEM
THEN TYPING A RETURN.

REGISTER DISPLAY
.R

PC IRQ SR AC XR YR SP
.; 0000 E62E 0 1 02 03 04 05

DISPLAYS THE REGISTER VALUES SAVED
WHEN SUPERMON WAS ENTERED. THE VALUES
MAY BE CHANGED WITH THE EDIT FOLLOWED
BY A RETURN.

Appendix F

USE THIS INSTRUCTION TO SET UP THE
PC VALUE BEFORE SINGLE STEPPING WITH
. I

SAVE
.S "PROGRAM NAME " ,01,0800,0C8rJ

SAVE TO CASSETTE #1 MEMORY FROM
0800 HEX UP TO BUT NO T INCLUDING 0C80
HEX AND NAME IT PROGRAM NAME •
• S "0:PROGR AM NAME ",0 8 ,1 200 ,1F50

SAVE TO DISK DRIVE #0 MEMORY FROM
1 200 HEX UP TO BUT NOT IN CLUDING 1F50
HEX AND NAME IT PROGRAM NAME.

TRANSFER MEMORY
.T 100 0 110 0 5000

TRANSFER MEMORY IN THE RANGE 1000
HEX TO 1100 HE X AND START STORING IT AT
ADDRESS 5000 HEX.

EXIT TO BASIC
.X

RETURN TO BASIC READY MODE.
THE STACK VALUE SAVED WHEN ENTERED WILL
BE RESTORED. CA RE SHOULD BE TAKEN THAT
THI S VALUE IS THE SAME AS WHEN THE
MONITO R WAS ENTER ED. A CLR IN
BASIC WILL FIX ANY STACK PROBLEMS.

Program I. CONTROL.

100 PRINT"{CLEAR}{02 DOWN} {REV} SUP
ERMON! !"

110 PRINT"{DOWN }
{REV}D{OFF} BY
M

DISSASSEMBLER -
WOZNIAK/BAU

120 PRINT" S INGLE STEP {REV}I
{OFF} BY JIM RUSSO

130 PRINT"MOST OTHER STUFF {REV},HA
LT{OFF} BY BILL SEILER

150 PRINT"{DOWN}TIDIED & WRAPPED BY
JIM BUTTERFIELD"

259

Appendix F

170 L=PEEK(52)+PEEK(53)*256:SYS1536
:M=PEEK(33) :N=PEEK(34)

180 POKE52,M:POKE53,N:POKE48,M:POKE
49,N:N=M+N*256

210 PRINT"{02 DOWN}LINK TO MONITOR -
-- SYS";N

220 PRINT:PRINT"SAVE WITH I"1LM: "
230 PRINT".S ";CHR$(34) ;"SUPERMON";

CHR$(34);" ,01"; :X=N/4096:G
OSUB250

240 X=L/4096:GOSUB250:END
250 PRINT","; :FORJ=lT04:X%=X:X=(X-X

%)*lG:IFX%>9THENX%=X%+7
260 PRINTCHR$(X%+48); :NEXTJ:RETURN

Program 2. SUPERMON 4.0

· . 0600 A9 CB 85 iF A9 0C 85 20
· . 0608 A5 34 85 21 A5 3S 85 22
· . 0610 A0 00 20 38 06 D0 16 20
· . 0618 38 06 F0 11 85 23 20 38
· . 0620 06 18 65 34 AA A5 23 65
· . 0628 35 20 43 06 8A 20 43 06
· . 0630 20 50 06 90 DB 60 EA EA
· . 0638 A5 iF D0 02 C6 20 C6 iF
· . 0640 Bl iF 60 48 A5 21 D0 02
· . 0648 C6 22 C6 21 68 91 21 60

· . 0650 A9 80 C5 iF A9 06 E5 20
· . 0658 60 AA AA AA AA AA AA AA
· . 0660 AA AA AA AA AA AA AA AA

· . 0668 AA AA AA AA AA AA AA AA
· . 0670 AA AA AA AA AA AA AA AA
· . 0678 AA AA AA AA AA AA AA AA
· . 0680 AD FE FF 00 85 34 AD FF
· . 0688 FF 00 85 35 AD FC FF 00
· . 0690 8D FA 03 AD FD FF 00 8D
· . 0698 FB 03 00 00 A2 08 DD DE

· . 06A0 FF 00 D0 0E 86 B4 8A 0A

260

Appendix F

· . 06A8 AA BO E9 FF 00 48 BO E8
· . 06B0 FF 00 48 60 CA 10 EA 4C
· . 06B8 9A FA 00 A2 02 2C A2 00
· . 06C0 00 84 FB 00 08 B4 FC 00
· . 06C8 02 E() OE 06 FC 06 FB 60
· . 0600 20 98 07 C9 20 F0 F9 60
· . 0608 A9 00 00 80 00 00 01 20

· . 06E0 79 FA 00 20 6B 07 20 57

· . 06E8 07 90 09 60 20 98 07 20

· . 06F0 54 0 7 B0 OE AE 06 02 9A
· . 06F8 4C A4 07 20 31 05 CA 00

· . 0700 FA 6 0 E6 FO 00 02 E6 FE
· . 0708 60 A2 02 B5 FA 48 BO 0A

· . 0710 02 95 FA 68 90 0A 02 CA

· . 0718 00 F1 60 AO 0B 02 AC 0C

· . 0720 02 4C CE FA 00 AS FO A4

· . 0728 FE 38 E5 FB 80 1B 02 98

· . 0730 E5 FC A8 00 1B 02 60 20
· . 0738 81 FA 00 20 44 07 20 92

· . 0740 FA 00 20 AF FA 00 20 92

· . 0748 FA 00 20 CA FA 00 20 44

· . 075 0 07 90 15 A6 OE 00 65 20

· . 0758 C1 FA 00 90 60 A1 FB 81

· . 0760 FO 20 A8 FA 00 20 39 05
· . 0768 00 EB 20 C1 FA 00 18 AO
· . 0770 1 8 02 05 FO 85 FO 98 65
· . 0 77 8 FE 85 FE 20 AF FA 00 AG
· . 0780 DE 00 3D A1 FB 81 FO 20

· . 0788 C1 FA 00 B0 34 20 65 FA

· . 0790 00 20 68 FA () 0 4C 1B FB
· . 0 79 8 00 20 31 FA 00 20 44 07
· . 07A0 20 9 2 FA 00 20 44 07 20
· . 07A8 98 07 20 63 07 90 14 85
· . 0780 B5 A6 DE 00 11 20 CA FA
· . 0788 00 90 0C 1\5 BS 81 FB 20
· . 07C0 39 05 00 EE 4C 9A FA (J 0

· . 07C8 4C BA 04 20 8 1 FA 00 20
· . 0700 44 0 7 2 ~3 92 FA 00 20 44

· . 0708 07 20 98 07 A2 o vJ 00 20

261

Appendix F

· . 07E0 98 07 C9 27 00 14 20 98
· . 07E8 07 90 10 02 E8 20 CF FF
· . 07F0 C9 00 F0 22 E0 20 00 F1
· . 07F8 F0 1C 8E 00 00 01 20 GB
· . 0800 07 90 C6 90 10 02 E8 20
· . 0808 CF FF C9 00 F0 09 20 63
· . 0810 07 90 86 E0 20 00 EC 86
· . 0818 B4 20 34 05 A2 00 00 A0
· . 0820 00 00 81 FB DO 10 02 00
· . 0828 0C C8 E8 E4 84 00 F3 20

, . 0830 17 07 20 31 05 20 39 05
· . 0838 A6 OF: D0 92 20 CA FA 00
· . 0840 B0 DO 4C BA 04 20 81 FA
· . 084 tl 00 80 00 02 AS FC 80 0E
· . 0850 02 A9 04 A2 00 00 80 09
· . 0858 02 8E 0A 02 A9 93 20 02
· . 0860 FF A9 16 85 B5 20 06 Fe
· . 0868 00 20 64 FC 00 8S FB 84
· . 0870 FC C6 135 00 F2 A9 91 20
· . 0878 02 FF 4C BA 04 A0 2C 20

· . 0880 79 05 20 17 07 20 31 05
· . 0888 A2 00 00 A1 FB 20 74 FC
· . 0890 00 48 20 BB FC 00 68 20
· . 0898 03 FC 00 A2 06 E0 03 00

· . 08A0 13 AC 1C 02 F0 0E AS FF
· . 08A8 C9 E8 B1 FB B0 1C 20 5C
· . 08B0 FC 00 88 00 F2 06 FF 90
· . 08B8 0E BO 51 FF 00 20 45 FO
· . 08C0 00 BO S7 FF 00 F0 03 20
· . 08C8 45 FO 00 CA 00 04 60 20

· . 0800 68 FC 00 AA E8 00 01 C8
· . 0808 98 20 5C FC 00 8A 86 B4
· . 08E0 20 22 07 A6 B4 60 AD 1C
· . 08E8 02 38 A4 FC AA 10 01 88
· . 08F0 65 FB 90 01 C8 60 A8 4A
· . 08F8 90 0B 4A 80 17 C9 22 F0
· . 0900 13 29 07 09 80 4A AA BO
· . 0908 00 FF 00 80 04 4A 4A 4A

262

Appendix F

· . 0910 4A 29 0F 00 04 A0 80 A9

· . 0918 00 00 AA 80 44 FF 00 85

· . 0920 FF 29 03 80 lC 02 98 29
· . 0928 8F AA 98 A0 03 E0 8A F0

· . 0930 08 4A 90 08 4A ~l\ 09 20

· . 0938 88 00 FA C8 88 00 F2 60

· . 0940 81 F8 20 5C FC 00 A2 01

· . 0948 20 Al FA 00 CC lC 02 C8

· . 0950 90 F0 A2 03 CC 09 02 90
· . 0958 F0 60 A8 89 5E FF 00 80

· . 0960 08 02 89 9E FF 00 80 0C

· . 0968 02 A9 00 00 A0 05 0E 0C

· . 0970 02 2E 08 02 2A 88 00 F6

· . 0978 69 3F 20 02 FF CA 00 EA
· . 0980 4C 3 1 05 20 81 FA 00 20
· . 0988 44 07 20 92 FA 00 20 44

· . 0990 07 A9 04 A2 00 00 80 09

· . 0998 02 8 E 0A 02 20 34 05 20

· . 09A0 08 FC 00 20 64 FC 00 85

· . 09A8 F8 84 FC 20 35 F3 F0 05

· . 0980 20 CA FA 00 80 E9 4C 8A

· . 0988 04 20 81 FA 00 A9 03 85

· . 09C0 B5 20 98 07 20 08 05 00
· . 09C8 F8 AO 00 02 85 FE AD 0E
· . 0900 02 85 FC 4C E7 FB 00 co
· . 0908 0A 02 F0 03 20 02 FF 60

· . 09E0 A9 03 A2 24 80 09 02 8E
· . 09E8 0A 02 20 34 05 78 AO FA
· . 09F0 FF 00 85 90 AD FB FF 00
· . 09F8 85 9 1 A9 A0 80 4E E8 CE
· . 0A00 13 E8 A9 2E 80 48 E8 A9
· . 0A08 00 00 80 49 E8 AE 06 02

· . 0A10 9A 4C 55 D6 20 C0 FC 68
· . 0A18 80 05 02 68 80 04 02 68
· . 0A 20 80 03 02 68 8D 02 02 68

· . 0A28 8D 01 02 68 80 00 00 02
· . 0A30 BA 8E 06 02 58 20 34 05

263

Appendix F

· . 0A38 20 23 05 85 85 A0 00 00
· . 0A40 20 FE 04 2 (j 3 1 05 AD 00
· . 0A48 00 02 85 FC AD 0 1 02 85

· . 0A50 F8 20 1 7 07 20 0E FC 00
· . 0A58 20 35 F3 C9 F7 F0 F9 20

· . 0A60 35 F3 00 03 4C BA 04 C9
· . OA68 FF F0 F4 4C 58 FO 00 20

· . 0A70 81 FA 00 20 44 07 8E 11
· . 0A78 02 A2 03 20 79 FA 00 48
· . 0A80 CA 00 F9 A2 03 68 38 E9
· . 0A88 3F A0 05 4A 6E 11 02 6E
· . 0A90 10 02 88 00 F6 CA 00 ED
· . 0A98 A2 132 20 Cf FF C9 00 Fe!
· . 0AA0 lE C9 20 F0 F5 20 F7 FE
· . 0AA8 00 80 0F 20 78 07 A4 F8

· . 0A80 84 FC 85 FB A9 30 90 10
· . 0A88 02 E8 90 10 02 E8 00 DB

· . 0AC0 8E 0B 02 A2 00 00 86 DE
· . 0AC8 F0 04 E6 DE F0 78 A2 00

0AOO 00 oc 35 AS DE 20 "7 ~ lI'~ · . uU ''"'' ,. '--

· . 0A08 00 A6 FF 8E 0C 02 AA BC
· . 0AE0 5E FF 00 BO 9E FF 00 20
· . 0AE8 E0 FE 00 00 E2 A2 0G E0
· . 0AF0 03 DO 1A AC lC 02 f0 15
· . 0AF8 AS Ff C9 E8 A9 30 B0 21

· . 0800 20 E6 FE: 00 DO CA 20 E8
· . 0808 FE 00 00 C5 88 DO E8 06
· . 0810 FF 90 08 8C 57 FF 00 80

· . 0818 51 FF 00 20 E0 FE 00 00

· . 0820 B3 CA 00 DO FO 0A 20 OF

· . 0828 FE 00 00 A9 20 OF FE 00
· . 0830 00 A4 AD 0B 02 C5 B5 00
· . 0838 90 20 44 07 AC lC 02 F0

· . 0840 2 F AD 0C 02 C9 90 00 20

· . 0B48 20 CA FA 00 90 08 98 00

· . 0850 05 AE 18 02 10 08 4C 9A
· . 0858 FA 00 C8 00 FA AE 18 02

264

Appendix F

· . 0860 10 F5 CA CA 8A AC lC 02

· . 0868 00 03 89 FC 00 00 91 F8
· . 08 7 0 88 00 F8 AS OE 91 F8 20
· . 0878 64 FC 00 85 F8 84 FC A0
· . 0B80 41 20 79 05 20 17 07 20

· . 0888 31 05 4C 08 FO 00 A8 20

· . 0890 E6 FE 00 00 11 98 F0 0E
· . 0898 86 84 A6 85 00 10 02 08

· . 0BA0 E8 86 85 A6 84 28 60 C9
· . 08A8 30 90 03 C9 47 60 38 60
· . 0880 40 02 45 03 00 08 40 09

· . 0888 30 22 45 33 00 08 40 09
· . 08C0 40 02 45 33 00 08 40 09
· . 08C8 40 02 45 83 00 08 40 09
· . 0800 00 00 22 44 33 00 8C 44

· . 0808 00 00 11 22 44 33 00 8C
· . 08ECl 44 9A 10 22 44 33 00 08
· . 08E8 40 09 10 22 44 33 00 08

· . 08F0 40 09 62 13 78 A9 00 00
· . 08F8 21 81 82 00 00 00 00 59

· . 0C00 40 91 92 86 4A 85 90 2C

· . 0(:08 29 2C 23 28 24 59 00 00

· . 0C10 58 24 24 00 00 l C 8A lC

· . 0C18 23 50 88 18 Al 9D 8A ID
· . 0C20 23 90 8B 10 Al 00 00 29

· . 0C28 19 AE 69 A8 19 23 24 53

· . 0C30 18 23 24 53 19 Al 00 00

· . 0C38 l A 58 58 AS 69 24 24 AE

· . 0C40 AE A8 AO 29 00 00 7C 00

· . 0C48 00 15 9C 60 9C AS 69 29

· . 0CS0 53 84 13 34 11 AS 69 23

· . 0CS8 A0 08 62 SA 48 26 62 94

· . 0C60 88 54 44 C8 54 68 44 E8

· . 0C68 94 00 00 B4 08 84 74 84

· . 0C70 28 GE 74 F4 CC 4A 72 F2

· . 0C78 A4 8A 00 00 AA A2 A2 74

· . 0C80 74 74 72 44 68 82 32 82

· . 0C88 00 00 22 00 00 lA lA 26

265

Appendix F

· . 0C90 26 72 72 88 C8 C4 CA 26
· . 0C98 48 44 44 A2 C8 54 46 48
· . 0CA0 44 50 2C 41 49 4E 00 00
· . 0CA8 OB FA 00 30 FB 00 5E FB

· . 0CB0 013 01 FB 00 F8 FC 00 28

· . 0CB8 FO 00 04 FO 00 40 FO 00

· . 0CC0 B9 04 7F FO 00 4A FA 00

· . 0CC8 33 FA 00 AA AA AA AA AA

Program 3. Changes For SUPERMON 3.0.

· . 0600 20 EB E7 C9 20 F0 F9 60 · · . 06E0 79 FA 00 20 BE E7 20 AA

· . 06E8 E7 90 09 60 20 EB E7 20

· . 06F0 A7 E7 B0 DE AE 06 02 9A

· . 06F8 4C F7 E7 20 CD FO CA 00 · · . 0738 81 FA 00 20 97 E7 20 92 · · . 0748 FA 00 20 CA FA 130 20 97

· . 0750 E7 90 15 A6 OE 00 65 20
· · . 0760 FO 20 A8 FA 00 20 05 FO
· · . 0798 00 20 81 FA 00 20 97 E7

· . 07A0 20 92 FA 00 20 97 E7 20

· . 07A8 EB E7 20 B6 E7 90 14 85
· · . 07C0 05 FO 00 EE 4C 9A FA 00

· . 07C8 4C 56 FO 20 81 FA 00 20

· . 0700 97 E7 20 92 FA 00 20 97
· . 0708 E7 20 EB E7 A2 00 00 20

· . 07E0 EB E7 C9 27 00 14 20 EB

· . 07E8 E7 90 10 02 E8 20 CF FF
· · . 07F8 F0 lC 8E 00 00 01 20 BE

· . 0800 E7 90 C6 90 10 02 E8 20
· . 0808 CF FF C9 00 F0 09 20 B6
· . 0810 E7 90 B6 E0 20 00 EC 86
· . 0818 B4 20 00 FO A2 00 00 A0
· · . 0830 6A E7 20 CO FO 20 05 FO
· · . 0840 B0 DO 4C 56 FO 20 81 FA

266

Appendix F

· . 0878 D2 FF 4C 56 FD A0 2C 20
· . 0880 15 FE 20 6A E7 20 CD FD

· . 08E0 20 75 E7 A6 B4 60 AD lC · · . 0980 4C CD FO 20 81 FA 00 20
· . 0988 97 E7 20 92 FA 00 20 97
· . 0990 E7 A9 04 A2 00 00 8D 09
· . 0998 02 8E 0A 02 20 D0 FD 20 · · . 09A8 FB 84 FC 20 01 F3 F0 05
· . 09B0 20 CA FA 00 B0 E9 4C 56
· . 09B8 FD 20 81 FA 00 A9 03 85
· . 09C0 B5 20 EB E7 20 A7 FD D0 · · . 09E8 0A 02 20 D0 FD 78 AD FA

· . 0AHl 9A 4C Fl FE 20 7B FC 68 · · . 0A30 BA 8E 06 02 58 20 D0 FD
· . 0A38 20 BF FD 85 B5 A0 00 00
· . 0A40 20 9A FD 20 CD FD AD 00 · · . 0A50 FB 20 SA E7 20 0E FC 00
· . 0A58 20 01 F3 C9 F7 F0 F9 20
· . 0A60 01 F3 D0 03 4C 56 FD C9 · · . 0A70 81 FA 00 20 97 E7 8E 11 · · . 0AA8 00 B0 0F 20 CB E7 A4 FB · · . 0B38 90 20 97 E7 AC lC 02 F0 · · . 0B80 41 20 15 FE 20 6A E7 20
· . 0B88 CD FD 4C 08 FD 00 A8 20 · · . 0CC0 55 FD 7F FD 00 4A FA 00

Program 4. SUPERMON 4.0 Checksum.

100 REM SUP ERMON 4 CHECKSUM
110 OATA7331,12186,10071,10387,1082

9,9175,10314,9823,9715,871
4,8852

120 DATA8850,9748,7754,10247,10423,
1094 8, 10075,6093,5492,7805
:S=153G

267

Appendix F

13 0 FOR8=lT021 : READX :FORI=S TOS +79:N
=PEEK (I) : Y=Y+N

140 NEXTI:IFY <>X THENPRINT"ERROR IN -
BLOCK #"B :GOT01 60

15 0 PR INT" BLOCK # " 8 " I S CORREC T"
160 S= I: Y=0:NEXTB:PRINT"CHECK THE F

I NAL, SHORT l'3 LOC K BY HAND"

Program S. Changes For SUPERMON 3.0 Checksum.

100 REM SUPERMON 3 CHE CKS UM

268

11 0 DATA7331,1 2 186, 1 0 4 67 ,1 0880 ,111 2
4,10005,1 0906, 1 0196 ,9951,8
813

12 0 DATA8852 , 9329 ,1 0239 , 8457 ,1 033 4,
104 23 ,11047,1 03 11, 6093 ,549
2 ,780 5 : S=15 36

Appendix F

PET MICROMON
An Enhanced Machine

Language Monitor
Micromon is for Upgrade and 4 .0 BASICs, all memory sizes, all
keyboards and is in the public domain. If you have enough memory,
you can add the additional commands of "Micromon Plus" as well.
"Plus" is from $5BOO to $5F48 and you will want to move Micromon
from $1000 up to $6000.

There is quite a bit of typing here so there are two checksum
programs which will find and flag any errors. See the instructions for
typing in Supermon.

Micromon Instructions

SIMPLE ASSEMBLER
.A 2000 LOA #$12
.A 2002 STA $8000,X
.A 2005 OEX:GARBAGE

In the above example, the user started assembly at 2000 hex . The first
instruction was load a register with immediate 12 hex. In the second
line the user did not need to type the A and address. The simple
assembler retypes the last entered line and prompts with the next
address. To exit the assembler, type a return after the address
prompt. Syntax is the same as the Disassembler output. A colon (:)
can be used to terminate a line.

BREAK SET
.B 1000 OOFF

The example sets a break at 1000 hex on the FF hex occurrence of the
instruction at 1000. Break set is used with the QUICK TRACE
command. A BREAK SET with count blank stops at the first
occurrence of the break address.

COMPARE MEMORY
.C 1000 2000 COOO

Compares memory from hex 1000 to hex 2000 to memory beginning at
hex COOO. Compare will print the locations of the unequal bytes.

DISASSEMBLER
.0 2000 3000
., 2000 A9 12 LOA #$12
., 2002 90 00 80 STA $8000,X
., 2005 AA TAX

269

Appendix F

Disassembles from 2000 to 3000. The three bytes following the
address may be modified . Use the CRSR KEYS to move to and
modify the bytes. Hit return and the bytes in memory will be
changed. Micromon will then disassemble that line again.

Disassembly can be done under the control of the cursor. To
disassemble one at a time from $1000 .

. 0 1000

If the cursor is on the last line, one instruction can be disassembled
for each pressing of the cursor down key. If it is held down, the key
will repeat and continuous disassembly will occur. Disassembly can
even be in reverse! If the screen is full of a disassembly listing, place
the cursor at the top line of the screen and press the cursor up key.

EXIT MICROMON
.E

Combine the killing of Micromon and exit to BASIC.

FILL MEMORY
.F 1000 1100 FF

Fills the memory from 1000 hex to 1100 hex with the byte FF hex.

GO RUN
.G

Go to the address in the PC Register display and begin run code. All
the registers will be replaced with the displayed values .

. G 1000

Go to address 1000 hex and begin running code.

HUNT MEMORY
.H cooo 0000 'READ

Hunt through memory from COOO hex to 0000 hex for the ASCII
string "read" and print the address where it is found. Maximum of
32 characters may be used .

. H cooo 0000 20 02 FF

Hunt memory from COOO hex to DOOO hex for the sequence of bytes 20
02 FF and print the address. P. iOCt ,"(ir.uLlln of 32 bytes may be used .
Hunt can be stopped with the STOP key.

KILL MICROMON
.K

Restore the Break vector and IRQ that was saved before Micromon
was called and break into the TIM monitor. A return to Micromon can
be done with a Go to the value in the PC register.

LOAD
.L "RAM TEST",08

270

Appendix F

Load the program named RAM TEST from the disk. Note for cassette
users: To load or save to casse tte. Kill Micromon with the K command
to return to the TIM monitor. Then use the TIM monitor Land S
commands to load and save to th e cassettes. This has to be done
because of the repeat keys of Micromon . BASIC 4.0 users then can
return to Micromon with a Go command to the PC value, but BASIC
2.0 users should return to BASIC, then SYS to Micromon because the
TIM overwrites the IRQ value for loads and saves w ith a filename.

MEMORY DISPLAY
.M 0000 0008
.: 0000 30 31 32 33 34 35 36 37 1234567
. : 0008 38 41 42 43 44 45 46 47 89ABCDE

Display memory from 0000 hex to 0008 in hex and ASCII . The bytes
following the address may be modified by editing and then typing a
RETURN.

Memory display can also be done with the cursor control keys.

NEW LOCATER
.N 1000 17FF 6000 1000 1FFF
.N lFBO 1FFF 6000 1000 1FFF W

The first line fixes all three byte instructions in the range 1000 hex to
IFFF hex by adding 6000 hex offset to the bytes following the
instruction. New Locater will not ad just any instruction outside of the
1000 hex to 1FFF h ex range. The second line adjusts Word values in
the same range as the first line. New Locater stops and disassembles
on any bad op code.

CALCULATE BRANCH OFFSET
.0 033A 033A FE

Calculate the offset for branch instructions. The first address is the
starting address and the second address is the target address. The
offset is then displayed.

QUICK TRACE
.Q
.Q 1000

The first example begins trace at the address in the PC of the register
display. The second begins at 1000 hex . Each instruction is executed
as in the WALK command, but no disassembly is shown . The Break
Address is checked for the break on Nth occurrence. The execution
may be stopped by pressing the STOP and = (left arrow on business)
keys at the same time .

REGISTER DISPLAY
.R

PC IRQ SR AC XR YR SP
.: 0000 E455 01 02 03 04 05

271

Appendix F

Displays the register values saved when Micromon was entered. The
values may be changed with the edit followed by a RETURN.

SAVE
.S "l:PROGRAM NAME",08,0800,OC80

Save to disk drive #1 memory from 0800 hex up to, but not including,
OC80 hex and name it PROGRAM NAME. See note in LOAD
command for cassette users.

TRANSFER MEMORY
.T 1000 1100 5000

Transfer memory in the range 1000 hex to 1100 hex and start storing it
at address 5000 hex.

WALK CODE
.W

Single step starting at address in register Pc.
.W 1000

Single step starting at address 1000 hex. Walk will cause a single step
to execute and will disassemble the next instruction. Stop key stops
walking. The J key finishes a subroutine that is walking, then
continues with the walk.

EXIT TO BASIC
.X

Return to BASIC READY mode. The stack value saved when entered
will be restored. Care should be taken that this value is the same as
when the monitor was entered. A CLR in BASIC will fix any stack
problems. Do not X to BASIC then return to Micromon via a SYS to
the cold start address. Return via a SYS to BRK (SYS 1024) or SYS to
the Warm start of Micromon (Warm start = Cold start + 3). An X and
cold start will write over the TIM break vector that was saved.

CHANGE CHARACTER SETS
.Z

Change from uppercase/graphics to lower/uppercase mode or vice
versa.

HEX CONVERSION
.$4142 16706 A B 0100 0001 0100 0010

A hex number is input and the decimal value, the ASCII for the two
bytes, and the binary values are returned. The ASCII control values
are returned in reverse.

Hex conversion can also be scrolled with the cursor control keys.

DECIMAL CONVERSION
.#16706 4142 A B 0100 0001 0100 0010

272

Appendix F

A decimal number is inpu t and th e hex value, the ASCII for the two
bytes, and the binary va lues are returned.

BINARY CONVERSION
.%0100000101000010 4142 16706 A B

A binary number is inpu t and th e hex value, the decim al number, and
the ASCII values are re turned .

ASCII CONVERSION
." A 41 65 0100 0001

An ASCII character is input and th e h ex value, decimal value, and
binary values are returned . Because of the quote , the control characters
can be determined also.

ADDITION
. + 1111 2222 3333

The two hex numbers input are added , and the sum displayed .

SUBTRACTION
.-3333 1111 2222

The second number is subtracted from the first number and the
difference displayed .

CHECKSUM
.& AOOO AFFF 67E2

The checksum betwee n the two addresses is calculated and
displayed .

MICROMON INSTRUCTIONS:
A
B
C
D
E
F
G
H

SIMPLE ASS EMBLE
BREAK SET
COMPARE M EMORY
DISASSEMBLER
EXIT MICROMON
FILL MEMORY
GORUN
HUNT MEMORY

K KILL MICROMON
L LOAD
M MEMORY DISPLAY
N NEW LOCATER
o CALCULATE BRANCH
Q QUICK TRACE
R REGISTER DISPLAY
S SAVE
T TRANSFER M EMORY
W WALK CODE
X EXIT TO BASIC
Z CHANGE CHARACTER SETS
$ HEX CONVERSION

DECIMAL CONVERSION

273

Appendix F

% BINARY CONVERSION
ASCII CONVERSION

+ ADDITION
SUBTRACTION

& CHECKSUM

Micromon also has repeat for all keys.
Micromon is executed by the following: SYS 4096 as listed in

Program 2, where it resides in $1000 to $lFFF.
For 8032, make the following changes for Micromon operation .

In location the X stands for the start of Micromon. Values in hex.

Location Old Value

X3E7 08
X3EC 08
X3F6 08
X427 08
XD18 08
XDA3 08
XCFC 28
XD7B 28
XE16 83
XE20 28
XE24 CO
XE26 04
XE37 27
XE46 28
X681 24

Micromon Plus Instructions

PRINTING DISASSEMBLER
. (Shift) D 1000 lFFF

New Value

10 To display 16 instead
10 of 8 bytes .
10
10
10
10
50 To fix scroll.
50
87
50
80
08
4F
50
00 To print all characters
in Walk command .

The same as the Disassembler but no ., printed before each line. Also
the ASCII values for the bytes are output at the end of the line.

FORM FEED SET
.1

Sets a form feed for printout . Gives 57 printed lines per page . Works
with the Shift D and Shift M commands .

.I "Heading"

Sets form feed with a message to be printed at the top of each page .
. 1 x

Cancels form feed .

PRINT LOAD ADDRESS
.J "File name"

Read the load address of the file and print it in hex. Device number 8
is used.

274

Appendix F

KILL MICROMON ADDITIONS
. (Shift) K

Kill Micromon and its additions and BRK to the TIM monitor. This is
the same as the unshifted K command except now a G command will
reinitialize Micromon and the additions .

LOAD FROM DISK
.(Shift) L "filename"

This is the same as the normal load command except that the disk
(device #8) is used as the default, not the cassette.

PRINTING MEMORY DUMP
.(Shift) M FOOO FlOO

The same as the normal Memory dump, but does not print the .: r:nd
prints out 16 hex bytes and the ASCII for them.

PRINT SWITCHER
.r

If the output is to the CRT then switch the output to the printer
(device #4). If the output is not to the CRT then clear the output
device and restore the output to the CRT.

.r06

Make device #6 the output device if the current output is to the CRT .

SEND TO PROM PROGRAMMER
. U 06 7000 7FFF

This command will send out bytes to a PROM programmer on the
IEEE bus . The first byte is the device number and the two addresses
are the range of memory to output. A CHR$(2) is sent first to start the
programmer. This is followed by the memory bytes as ASCII
characters separated by spaces. After all bytes have been sent, a
CHR$(3) is sent to stop th e programmer. Micromon then does a
checksum on the range to compare against the programmer
checksum. Although this is for a particular programmer, it could be
modified for others.

SPECIFY LOAD ADDRESS
.Y 7000 "Filename"

This command allows a file to be loaded starting at the address you
specify and not the load address it would normally load into. The disk
(device #8) is used for loading.

TEXT FLIP FOR 8032 & FAT 40's
.(Shift) Z

This is for 8032 and Fat 40's to go from Text to Graphics mode or vice
versa .

275

Appendix F

DOS SUPPORT
.@or.>

This reads the error channel from disk device number 8 .
. @ disk command or . > disk command

This sends the disk command to disk device number 8 .
. @$Oor. > $O

This reads the directory from disk device number 8. The SPACE BAR
will hold the display, any other key will start it again, and the STOP
key will return to command mode.

CONTROL CHARACTERS
.(Up arrow)g

This command will print the control character of the ASCII character
input.

Examples of controls:
g Ring bell

Tab set and clear
M Insert line
n Text mode
N Graphics mode
q Cursor down
Q Cursor up
s Home cursor
S Clear screen
u Delete line
v Erase end
V Erase begin

MICROMON PLUS INSTRUCTIONS

276

(Shift) 0
I
J

(Shift) K
(Shift) L
(Shift) M

P
U
Y

(Shift) z
>
@

(Up arrow)

PRINTING DISASSEMBLER
HEADING AND FORM FEED CONTROL
PRINT LOAD ADDRESS
KILL MICROMON ADDITIONS
LOAD FROM DISK
PRINT MEMORY DISPLAY
PRINTER SWITCHING
SEND TO PROM PROGRAMMER
SPECIFY LOAD ADDRESS
TEXT/GRAPHICS FLIP
DOS SUPPORT COMMANDS
DOS SUPPORT COMMANDS
CONTROL CHARACTERS

Appendix F

Program I. Checksum For Micromon.

1 0 DATA 1 5463,14894, 14 290, 11897,12
453,13919,14116,11715,1257
5,14571

20 DATA 13693,11853, 1 2903, 1 45 13,1 2
137,15006,1 2654, 1 3291,1243
6,13899

30 DAT A 15366,9999,11834,13512,128
92,14475,1514 9 , 14896,15782
,9511

40 DATA 1 2 171,8985
100 Q=409 6
110 FOR BLOCK =lT032
1 20 FOR BYTE =0T0 1 27
1 30 X=PEEK(Q+BYTE) :CK=CK+X
140 NEXT BYTJ::
1 50 READ SUM
1 60 IF SUM <> CK THEN PIHNT" ERROR -

IN BLOCK # " BLOCK:GO T0 17 0
165 PRINT"

BLOCK " IS CORREC T
1 70 CK = 0:Q=Q +1 28
180 NE XT BLOCK

Program 2. Micromon.

1 000 4C 0C 1 0 4C 6F
1 008 FF 4C 02 FF 7 8
1010 93 80 E5 02 8E
101 8 F6 IF AE F7 IF
1 020 8E E4 02 AD F0
1028 lF 85 92 86 93
1030 9 1 CO EE lF 00
1 038 l F F0 1 0 8 0 9E
104 0 02 AD EE lF AE
1048 90 86 91 AD EC
1 050 lF E0 80 B0 08
1 058 35 85 30 86 31
10 60 84 02 80 85 02

BLOC K"

1 0 4C CF
A5 92 A6
E6 02 AD
80 E3 02
iF AE Fl
A5 90 A6
05 EC EF
02 8E 9 F
EF lF 85
iF AE ED
85 34 86
A9 1 0 80
A9 00 80

277

•

Appendix F

H168 86 02 8D A2 02 58 00 38
1070 AD 7B 02 E9 01 8D 7B 02
1078 AD 7A 02 E9 00 8D 7A 02

1080 20 55 19 A2 42 A9 2A 20
1088 29 18 A9 52 D0 23 A9 3F
1090 20 09 10 20 55 19 A9 2E
1098 20 09 10 A9 00 8D 94 02
10A0 8D A2 02 A2 FF 9A 20 A4
10A8 18 C9 2E F0 F9 C9 20 F0
10B0 F5 A2 ID DD 92 1F D0 13
10B8 8D 87 02 8A 0A AA BD B0
10C0 IF 85 FB BD Bl IF 85 FC
10C8 6C FB 00 CA 1 0 E5 6C E3
10D0 02 A2 02 D0 02 A2 00 B4
10D8 FB D0 09 B4 FC D0 03 EE
10E0 94 02 D6 FC D6 FB 60 A9
10E8 00 8D 8C 02 20 4F 12 A2
10F0 09 20 52 19 CA D0 FA 60
10F8 A2 02 B5 FA 48 BD 91 02

1100 95 FA 68 9D 91 02 CA D0
1108 Fl 60 AD 92 02 AC 93 02
1110 4C 17 11 A5 FD A4 FE 38
1118 E5 FB 8D 91 02 98 E5 FC
1120 A8 0D 91 02 60 A9 00 F0
1128 02 A9 01 8D 95 02 20 E6
1130 17 20 55 19 20 13 11 20
1138 3C 18 90 IB 20 0A 11 B0
1140 03 4C C5 11 20 7F 11 E6
1148 FD D0 02 E6 FE 20 3B 19
1150 AC 94 02 D0 45 F0 E5 20
1158 0A 11 18 AD 91 02 65 FD
1160 85 FD 98 65 FE 85 FE 20
1168 F8 10 20 7F 11 20 0A 11
1170 B0 53 20 Dl 10 20 D5 10
1178 AC 94 02 D0 ID F0 EB A2

278

Appendix F

1180 00 Al F8 AC 95 02 F0 02
1 100 .J.vv 81 FO C1 FO FO 08 '){;\ 13 <"'1.I

1190 18 20 52 19 20 AE 18 F0
1198 01 60 4C 93 10 20 01 18
llA0 20 0B 18 20 A4 18 20 6F
llA8 18 90 17 80 89 02 AE 94
llB0 02 D0 12 20 13 11 90 0D
1188 AD 89 02 81 F8 20 38 19
llC0 00 EC 4C 8E 10 4C 93 10
llC8 20 01 18 20 0B 18 20 A4
1100 18 A2 00 20 A4 18 C9 27
1108 00 14 7.0 A4 18 90 A3 02
l1E0 E8 20 06 10 C9 0D F0 22
l1E8 E0 20 00 Fl F0 lC 8E 97
llF0 02 20 77 18 90 CC 90 A3
llF8 02 E8 20 06 10 C9 00 F0

1200 09 20 6F 18 90 BC E0 20
1 208 00 EC 8E 88 02 20 55 19
1210 A2 00 A0 00 Bl F8 DO A3
1218 02 00 0A C8 E8 EC 88 02
1220 00 F2 20 8E 11 20 38 19
1228 AC 94 02 00 05 20 13 11
1 230 B0 DE 4C 93 1 0 20 39 14
1238 20 13 11 90 00 A0 2C 20
1240 E7 10 20 A8 12 20 AE 18
1248 00 EE 20 83 15 00 E3 20
1250 47 19 20 13 18 20 52 19
1 258 20 0E lE 48 20 08 13 68
1260 20 22 13 A2 06 E0 03 00
12 68 14 AC 8B 02 F0 OF AD 96
1270 02 C9 E8 81 FB 80 lD 20
1 278 A1 12 88 00 Fl 0E 96 02

1280 90 0E BO E9 1E 20 AD 15
1288 80 EF 1E F0 03 20 AD 15
1290 CA 00 02 60 20 87 12 AA
1298 E8 00 01 C8 98 20 Al 12
1 2AO 8A 8E 88 02 20 lA 18 AE
12A8 88 02 60 AD 8B 02 20 86
12B0 12 85 F8 84 FC 60 38 A4

279

Appendix F

1288 FC AA HJ 01 88 65 F8 90
12C0 01 C8 60 A8 4A 90 08 4A
12C8 80 17 C9 22 F0 13 29 07
1200 09 80 4A AA BO 98 lE 80
1208 04 4A 4A 4A 4A 29 elF 00
12E0 04 A0 80 A9 00 AA 80 DC
12E8 lE 80 96 02 29 03 80 88
12F0 02 98 29 8F AA 98 A0 03
12F8 E0 8A F0 08 4A 90 08 4A

1300 4A 09 20 88 00 FA C8 88
1308 00 F2 60 81 F8 20 Al 12
1310 A2 01 20 Fl 10 CC 88 .02
1318 C8 90 F0 A2 03 C0 03 90
1320 Fl 60 A8 89 F6 lE 80 92
1328 02 89 36 IF 80 93 02 A9
1330 00 A0 05 0E 93 02 2E 92
1338 02 2A 88 00 F6 69 3F 20
1340 09 10 CA 00 EA 4C 52 19
1348 20 01 18 A9 03 20 AC 13
1350 A0 2C 4C 50 15 80 05 01
1358 CO F8 IF 00 08 80 06 01
1360 CO F9 IF 00 03 20 07 18
1308 AS 97 ",..., 83 02 F0 0A 8D ~u

1370 83 02 A9 10 80 84 02 00
1378 24 C9 FF F0 20 AD 84 02

1380 F0 05 CE 84 02 00 16 CE
1388 85 02 00 11 A9 02 80 85
1390 02 AS 9E 00 08 A9 00 85
1398 97 A9 02 85 A8 AD F3 IF
13A0 48 AD F2 IF 48 08 48 48
13A8 48 6C 9E 02 80 89 02 48
1380 20 A4 18 20 19 19 00 F8
1388 68 49 FF 4C AE 12 20 39
13C0 14 AE 94 02 00 00 20 13
13C8 11 90 08 20 06 13 20 AE
1300 18 00 EE 4C 4A 12 20 55
1308 19 A2 2E A9 3A 20 29 18
13E0 20 52 19 20 13 18 A9 08

280

Appendix F

13E 8 20 03 19 A9 08 20 B9 13
13F0 A9 12 20 09 10 A0 08 A2
13F8 00 Al FB 29 7F C9 20 80

1400 02 A9 2E 20 09 10 C9 22
1408 F0 04 C9 62 00 0A A9 14
1410 20 09 10 A9 22 20 09 10
1418 20 3B 19 88 00 DB A9 92
1420 4C 09 10 20 01 18 A9 08
1428 20 AC 13 20 B3 15 20 06
1430 13 A9 3A 80 6F 02 4C 5C
1438 15 20 01 18 85 FO 86 FE
1440 20 06 10 C9 00 F0 03 20
1448 06 18 4C 55 19 20 4C 18
1450 85 FO 86 FE A2 00 8E A4
145 8 02 20 A4 18 C9 20 F0 F4
14 60 90 80 02 E8 E0 03 00 Fl
1468 CA 30 14 BO 80 02 38 E9
1470 3F A0 05 4A 6E A4 02 6E
1478 A3 02 88 00 F6 F0 E9 A2

1480 02 20 06 10 C9 00 F0 22
1488 C9 3A F0 lE C9 20 F0 Fl
149 0 20 A4 15 B0 01" 20 84 18
1498 A4 FB 84 FC 85 FB A9 30
14A0 90 A3 02 E8 90 A3 02 E8
14A8 00 07 8E 92 02 A2 00 8E
14B0 94 02 A2 00 8E 89 02 AD
14 B8 94 02 20 C3 12 AE 96 02
14C0 8E 93 0 2 AA BO 36 IF 20
14C8 84 15 BO F6 lE 20 84 15
1400 A2 06 E0 03 00 14 AC 8B
1408 02 F0 0F AD 96 02 C9 E8
14E0 A9 30 B0 lE 20 81 15 88
14 E8 00 Fl 0E 96 02 90 0E BO
14F0 E9 1E 2 0 84 15 BO EF 1E
14 F8 F0 03 20 84 IS CA 00 02

15 00 F0 06 20 8 1 15 20 81 15
15 08 AD 9 2 02 CD 89 02 F0 03

281

Appendix F

1510 4C 9 1 :i 5 20 3C 18 AC 88
151 8 02 F0 2E AD 93 02 C9 9[1
1 520 00 IF 20 13 11 90 0A 98
1 528 00 SF AE 91 02 30 6A 1 0
15 30 08 C8 00 65 AE 91 02 1 0
l538 60 CA

,.... GA .r- 88 02 D(J \- /""\ M\-

1540 03 B9 FC 00 91 FB 88 00
15 48 F8 AD 94 02 9 1 FB A0 4 1
155 0 8C 6F 02 20 B3 15 20 E7
l558 10 20 A8 12 A9 20 80 70
15 60 02 80 75 02 A5 FC 20 88
1 568 1 5 8E 71 02 80 72 02 A5
1570 FB 20 B8 15 8E 73 02 80
157 8 74 ~j 2 A9 07 85 9E 4C 93

1 580 10 20 84 15 8E 88 02 AE
15 88 89 02 DO A3 02 F0 00 68
1590 68 EE 94 02 F0 03 4C 82
15 98 14 4C BE 10 E8 8E 89 02
15 A0 AE 88 02 60 C9 30 90 03
15A8 C9 47 60 38 60 CD 8C 02
15 80 00 03 60 A9 9 1 4C 09 10
1588 48 4A 4A 4 l>. 4A 20 32 18
15C 0 AA 68 29 0 F 4C 32 18 8 0
15C8 70 02 08 68 29 EF 8 0 7C
1500 02 8E 7E 02 8C 7F 02 68
1508 18 69 0 1 80 7B 02 68 69
15E0 00 80 7A 02 A9 80 80 86
15E8 02 00 21 AD 13 E8 10 03
15F0 4C 55 1 3 08 68 80 7F 02
15F8 68 80 7E 02 68 8D 7D 02

1600 68 80 7C 02 68 80 78 02
1608 68 80 7A 02 A5 90 80 82
1610 02 A5 9 1 80 8 1 02 8A 8E
161 8 80 02 20 07 18 AD 12 E8
162 0 58 AD 7C 02 29 10 Fel 03
1628 4C 6F 1 0 2C 86 02 50 IF
1630 AD 7A 02 CD 99 02 D0 6 D
1638 AD 78 02 CD 98 02 00 65

282

Appendix F

1640 AD 9C 02 D0 5D AD 9D 02
1648 D0 55 A9 80 8D 86 02 30
1650 14 4E 86 02 90 D2 AE 80
1658 02 9A AD F5 1F 48 AD F4
1660 1F 48 4C 1F 17 20 55 19
1668 20 30 19 8D 89 02 A0 00
1670 20 0B 19 AD 7B 02 AE 7A
1678 02 85 FB 86 FC 20 52 19

1680 A9 24 8D 8C 02 20 52 12
1688 20 E4 FF F0 FB C9 03 D0
1690 03 4C 93 10 C9 4A D0 56
1698 A9 '11 8D 86 02 D'1 4F CE
16A0 9D 02 CE 9C 02 AD 12 E8
16A8 C9 EE F0 '14 C9 6F D0 3E
16B0 A2 53 4C 85 10 A9 '10 F'1
16B8 12 AD 9A 02 AE 9B '12 8D
16C0 9C '12 8E 9D '12 A9 40 D'1
16C8 02 A9 8'1 8D 86 02 20 '16
16D 0 10 C9 '1D F0 11 C9 20 D0
16D8 5C 2'1 6'1 18 20 FC 18 20
16E'1 06 10 C9 0D D0 4F 20 55
16E8 19 AD 86 02 F0 22 78 A9
16F0 A0 8D 4E E8 CE 13 E8 2C
16F8 12 E8 AD F0 1F AE F1 1F

17'10 8D 82 02 8E 81 02 A9 3B
1708 A2 00 8D 48 E8 8E 49 E8
1710 AE 80 '12 9A 78 AD 81 02
1718 85 91 AD 82 '12 85 90 AD
172'1 7A 02 48 AD 7B '12 48 AD
1728 7C 02 48 AD 7D '12 AE 7E
1730 '12 AC 7F '12 40 4C 8E 10
1738 20 4C 18 8D 98 02 8E 99
174'1 02 A9 '10 8D 9A 02 8D 9B
1748 02 20 5D 18 8D 9A 02 8E
1750 9B 02 4C 93 1'1 20 E6 17
175 8 8D A0 02 8E A1 02 20 5D
1760 18 8D 8D 02 8E 8E '12 20
1768 5D 18 8D 8F 02 8E 90 '12

283

Appendix F

177 0 20 06 1 0 C9 00 F0 0A 20
177 8 06 1 0 C9 57 00 03 EE 8C

17 80 02 20 3C 18 AE 94 02 00
17 88 1 8 20 0A 11 90 1 3 AC 8C
17 90 02 00 11\ Bl FB 20 C3 1 2
17 98 AA BD F6 I E 00 06 20 E7
17A0 1 0 4C 93 10 AC 8B 02 C0
17A8 02 00 33 F0 03 8C 8B 02
17 B0 88 38 Bl FB AA ED 8D 02
17B 8 C8 Bl FB ED 8E 02 90 IE
17C0 88 AD 8F 02 Fl FB C8 AD
17C8 90 02 Fl FB 90 10 88 18
17D0 8A 60 A0 02 9 1 FB C8 Bl
17D8 FB 60 Al 02 9 1 FB 20 3B
17E0 1 9 88 1 0 FA 30 9E 20 4C
17E8 1 8 85 FD 86 FE 20 50 18
17F0 8 0 92 02 8E 93 02 20 A4
17F8 1 8 20 60 18 85 FB 86 FC

180 0 60 20 4C 18 B0 F6 20 60
1 808 1 8 B0 03 20 50 1 8 85 FO
1 8 10 86 FE 60 AS FC 20 l A 1 8
1818 AS FB 48 4A 4A 4A 4A 20
18 20 32 1 8 AA 68 29 0F 20 32
182 8 18 48 8A 20 09 10 68 4C
1830 09 10 18 69 F6 90 02 69
183 8 06 69 3A 60 A2 02 85 FA
1840 48 B5 FC 95 FA 68 95 FC
184 8 CA 00 F3 60 A9 00 80 97
1850 02 20 A4 18 C9 20 F0 F9
1 858 20 84 18 80 08 20 A4 18
1 860 20 6 F 18 90 07 AA 20 6 F
186 8 18 90 0 1 60 4C 8E 1 0 A9
1870 00 80 9 7 02 20 A4 18 C9
1878 20 D0 09 20 A4 18 C9 20

1880 00 0F 18 60 20 99 18 0A
188 8 0A 0A 0A 80 97 02 20 A4

284

Appendix F

189 0 18 20 99 18 0D 97 02 38
189 8 60 C9 3A 08 29 0 F 28 90
18A0 02 69 08 60 20 06 10 C9
J. 8A8 0D 00 F8 4C 93 1 0 AS 9B
18B0 C9 EF 00 07 08 20 CC FF
18 B8 85 9E 28 60 20 C6 18 AD
18C0 13 E8 6A 90 F7 60 20 AE
18C8 18 D0 08 20 D7 18 A9 133
18013 85 80 A9 00 85 AF 613 138
18D8 78 AD 40 E8 09 113 80 40
18E0 E8 A9 7F 80 4E E8 A9 3C
18ES SD 11 ES A9 3D 8D 13 E8
18F0 AD EE IF 85 90 AD EF IF
18F8 85 91 28 613 80 7B 132 8E

19 130 7A 132 613 8D 89 02 Aa 1313
1908 213 52 19 Bl FB 20 lA 18
1910 20 3B 19 CE 89 02 00 F0
1918 613 20 6F 18 90 0B A2 013
19 20 81 FB Cl FB F0 03 4C 8E
1928 10 213 3B 19 CE 89 132 60
19 30 A9 7C 85 FB A9 132 85 FC
1938 A9 05 60 E6 FB 00 07 E6
19413 FC 013 133 EE 94 02 613 98
1948 48 213 55 19 68 A2 2E 213
195 13 29 18 A9 213 2C A9 aD 4C
195 8 09 10 A2 00 BD 76 IF 20
19613 09 10 E8 E0 lC 00 F5 A0
1968 3B 213 47 19 AD 7A 02 20
1970 lA 18 AD 7B 132 20 lA 18
1978 20 52 19 AD 81 132 20 lA

1980 18 AD 82 02 20 lA 18 20
19 88 30 19 20 03 19 4C 93 10
1990 4C 8E 113 213 4C 18 20 FC
1998 18 20 50 18 80 82 02 8E
19A0 8 1 02 20 30 19 80 89 02
19A8 20 A4 18 20 19 19 00 F8
1980 F0 DB 20 613 lC AE 813 02
19B8 9A 6C 94 013 4C 8E 10 A0

285

Appendix F

19C0 01 84 04 88 84 01 84 96
19C8 84 90 A9 02 85 DB A9 A3
1900 85 OA 20 06 10 C9 20 F0
1908 F9 C9 0D F0 lA C9 22 00
19E0 DB 20 06 10 C9 22 F0 36
19E8 C9 00 F0 0B 91 OA E6 01
19F0 C8 C0 10 F0 C7 00 EA AD
19F8 87 02 C9 4C 00 El AD 00

lA00 C0 C9 40 00 06 20 22 F3
lA08 4C 12 lA C9 4C 00 AD 20
lA10 56 F3 20 BC 18 AS 96 29
lA18 10 00 El 4C 93 10 20 06
lA20 10 C9 00 F0 02 C9 2C 00
lA28 F0 20 6F 18 29 0F F0 C3
lA30 C9 03 F0 FA 85 04 20 06
lA38 10 C9 00 F0 BA C9 2C 00
lA40 E6 20 F9 17 20 06 10 C9
lA48 2C 00 F4 20 60 18 85 C9
lA50 86 CA 20 06 10 C9 20 F0
lA58 F9 C9 00 00 EC AD 87 02
lA60 C9 53 00 F7 AD 00 C0 C9
lA68 40 00 06 20 A4 F6 4C 93
lA70 10 C9 4C 00 04 20 E3 F6
1A78 4C 93 10 20 01 18 20 3B

lA80 19 20 3B 19 20 0B 18 20
lA88 52 19 20 13 11 90 0A 98
1A90 00 15 AD 91 02 30 10 10
lA98 08 C8 D0 0B AD 91 02 10
lAA0 06 20 lA 18 4C 93 10 4C
lAA8 8E 10 20 01 18 20 C0 lA
lAB0 4C 93 10 20 55 19 A2 2E
lAb8 A9 24 20 29 18 20 13 18
lAC0 20 2F lB 20 E6 1A 20 52
lAC8 19 20 CC lA 20 CF lA 20
lAD0 52 19 A2 04 A9 30 18 0E
lA08 92 02 2E 93 02 69 00 20
lAE0 09 10 CA 00 EF 60 AS FC
lAE8 A6 FB 80 93 02 8E 92 02

286

Appendix F

lAF0 20 52 19 A5 FC 20 FA lA
lAF8 AS FB AA 20 52 19 8A 29

IB00 7F C9 20 08 B0 0A A9 12
IB08 20 09 10 8A 18 69 40 AA
IB10 8A 20 09 10 C9 22 F0 04
IB18 C9 62 00 0A A9 14 20 09
IB20 10 A9 22 20 09 10 28 B0
IB28 05 A9 92 20 09 10 60 20
IB30 52 19 A6 FB A5 FC AC 00
IB38 C0 C0 40 00 03 4C 09 DC
IB40 C0 4C 00 03 4C 83 CF 4C
IB48 8E 10 20 5B IB B0 F8 20
IB50 52 19 20 13 18 20 C3 lA
IB58 4C 93 10 A2 04 A9 00 85
IB60 FC 20 17 lC 20 83 IB 85
IBb8 FB 20 78 IB 20 92 IB CA
IB70 00 F7 08 20 52 19 28 60
IB78 20 06 10 C9 00 F0 0F C9

IB80 20 F0 0B C9 30 90 C0 C9
IB88 3A B0 BC 29 0F 60 68 68
IB90 18 60 85 FE AS FC 48 AS
IB98 FB 48 06 FB 26 FC 06 FB
IBA0 26 FC 68 65 FB 85 FB 68
IBA8 65 FC 85 FC 06 FB 26 FC
IBB0 AS FE 65 FB 85 FB A9 00
1 BB8 65 FC 85 FC 60 20 17 lC
IBC0 8D 93 02 48 48 20 52 19
18C8 20 52 19 68 20 lA 18 20
IBD0 52 19 68 AA A9 00 20 36
IB08 IB 20 52 19 20 CC lA 4C
IBE0 93 10 20 F4 IB 20 52 19
IBE8 20 13 18 20 2F IB 20 E6
IBF0 lA 4C 93 10 A2 0F A9 00
IBF8 85 FB 85 FC 20 17 lC 20

lC00 83 IB 20 11 lC 20 78 IB
1C08 20 11 lC CA 00 F7 4C 52

287

Appendix F

lC10 19 4A 26 FB 26 FC 60 20
lC18 A4 18 C9 20 F0 F9 60 A9
lC20 02 40 4C E8 80 4C E8 4C
lC28 93 10 20 0B 18 4C F6 17
lC30 20 2A lC 18 AS FB 65 FO
lC38 85 FB A5 FC 65 FE 85 FC
lC40 4C 50 lC 20 2A lC 20 13
lC48 11 84 FC AD 91 02 85 FB
lC50 20 52 19 20 13 1 8 4C 93
lC58 10 20 60 lC 00 6C EC IF
lC60 78 AO E5 02 AE E6 02 8 5
lC68 92 86 93 AD 9E 02 AE 9F
lC710 02 85 90 86 91 58 60 20
lC78 2A lC 20 3C 18 20 52 19

lC80 A0 00 8C 92 02 8C 93 02
le88 210 13 11 90 10 AD 94 02
lC90 00 18 A0 00 18 Bl FB 60
lC98 92 02 80 92 02 98 60 93
lCA0 02 80 93 02 20 3B 19 4C
lCA8 88 lC AO 93 02 20 l A 18
lCB0 AO 92 02 20 l A 18 4C 93
lCB8 10 AO A2 02 00 04 AS 9E
lCC0 00 06 68 A8 68 AA 68 40
lCC8 AO 6F 02 C9 11 00 70 AS
lC00 08 C9 18 00 EO A5 C4 85
lC08 FO AS C5 85 FE A9 19 80
lCE0 9C 02 A0 01 20 8C IE C9
lCE8 3A F0 lA C9 2C F0 16 C9
lCF0 24 F0 12 CE 9C 02 F0 CA
lCF8 38 AS FO E9 28 85 FO B0

1000 El C6 FE 00 DO 80 87 102
1008 20 45 IE B0 B5 AO 87 02
1010 C9 3A 00 11 18 A5 FB 69
1018 08 85 FB 90 02 E6 FC 20
1020 06 13 4C 39 10 C9 24 F0
1028 lA 210 0E IE 20 AB 1 2 A9
1030 00 80 8C 02 A0 2C 20 4F
1038 12 A9 00 85 9E 4C 4A 12

288

Appendix F

1040 4C C2 lC 20 3B 19 20 B3
1048 lA 4C 39 10 C9 9 1 00 F0
1050 AS 08 00 EC A5 C4 85 FO
ID58 A5 C5 85 FE A9 19 80 9C
10G0 02 A0 01 20 8C lE C9 3A
1068 F0 lA C9 2C F0 16 C9 24
1070 F0 12 CE 9C 02 F0 15 1 8
1078 A5 FO 69 28 85 FO 90 El

1080 E6 FE 00 00 80 87 02 20
1088 45 lE 90 03 4C C2 lC AO
ID90 87 02 C9 3A F0 06 C9 24
1098 F0 10 00 27 20 15 lE 38
IDA0 AS FB E9 08 85 FB B0 02
10A8 C6 FC 20 09 13 A9 00 85
10B0 9E 20 40 lE 4C 96 10 20
10B8 15 lE 20 05 1 0 20 B6 lA
10C0 4C AO 10 20 15 lE A5 FB
10C8 A6 FC 85 FO 86 FE A9 1 0
1000 80 9C 02 38 A5 FO EO 9C
1008 02 85 FB A5 FE E9 00 85
10E0 FC 20 0E lE 20 AB 12 20
10E8 13 11 F0 07 B0 F3 CE 9C
10 F0 02 00 E0 EE 8B 02 AO 8B
10F8 02 20 B9 13 A2 00 Al FB

lE00 8E 8C 02 A9 2C 20 40 19
lE08 20 52 12 4C AD 10 A2 00
lE10 Al FB 4C C3 12 A9 83 85
lE18 C8 85 FE A9 00 85 C7 A9
lE 20 28 85 FO A0 C0 A2 04 88
lE28 Bl C7 91 FO 98 00 F8 C6
lE30 C8 C6 FE CA 00 Fl A2 27
lE38 A9 20 90 00 80 CA 10 FA
lE40 A9 13 4C 09 10 C0 28 00
l E48 02 38 60 20 8C lE C9 20
lE50 F0 F3 88 20 75 lE AA 20
lE 58 75 lE 85 FB 86 FC A9 FF
lE60 80 A2 02 85 A7 A5 AA F0
lE68 0A AS A9 A4 Cb 91 C4 A9

289

Appendix F

lE70 00 85 AA 18 60 20 BC lE
lE78 20 99 18 0A 0A 0A 0A 80

lE80 97 02 20 8C lE 20 99 18
lE88 00 97 02 60 81 FO C8 29
lE9f2J 7F C9 20 80 02 09 40 60
lE98 40 02 45 03 00 08 40 09
lEA0 30 22 45 33 00 08 40 09
lEA8 40 02 45 33 00 08 40 09
lE80 40 02 45 83 00 08 40 09
lE88 00 22 44 33 00 8e 44 00
lEC0 11 22 44 33 00 8C 44 9A
lEC8 10 22 44 33 00 08 40 09
lED0 10 22 44 33 00 08 40 09
lE08 62 13 78 A9 00 2l 81 82
lEE0 00 00 59 40 91 92 86 4A
lEE8 85 90 2C 29 2C 23 28 24
lEF0 59 00 58 24 24 00 lC 8A
lEF8 lC 23 50 88 18 Al 90 8A

1F00 10 23 90 88 10 Al 00 29
1F08 19 AE 69 A8 19 23 24 53
1F10 18 23 24 53 19 A1 00 lA
IF18 58 58 A5 69 24 24 AE AE
IF20 A8 AD 29 00 7e 00 15 9C
IF28 6D ge A5 69 29 53 84 13
IF30 34 11 A5 69 23 A0 D8 62
IF38 5A 48 26 62 94 88 54 44
IF40 C8 54 68 44 E8 94 00 84
1F48 08 84 74 84 28 6E 74 F4
IF50 CC 4A 72 F2 .\4 8A 00 AA
1F58 A2 A2 74 74 74 72 44 68
IF60 82 32 82 00 22 00 lA lA
1F68 26 26 72 72 88 C8 e4 CA
IF70 26 48 44 44 A2 C8 00 20
1F78 20 20 20 50 43 20 20 49

290

Appendix F

IF80 52 51 2 0 20 53 52 20 41
1 F88 43 2 0 58 5 2 20 59 52 20
IF90 53 50 41 42 43 44 46 47
IF98 48 4C 40 4E 51 52 53 54
IFA0 57 58 2C 3A 3B 24 23 22
IFA8 2B 20 4F 5A 4B 25 26 45
IFB0 40 14 38 17 25 11 35 12
IFB8 90 11 85 16 C8 11 BF 19
IFC0 BE 13 55 17 B9 16 5A 19
IFC8 BF 19 29 11 C9 16 B5 19
IF00 48 13 23 14 93 19 AA lA
IF08 4A IB Bo IB 30 lC 43 lC
IFE0 7B lA IF lC 59 lC E2 IB
IFE8 77 lC B2 19 00 10 55 13
IFF0 EB 15 B9 lC C6 15 8E 10
1 FF8 BC 18 30 35 32 37 38 31

Program 3. Checksum For Micromon Plus.

10 DATA 15965,14778,13059,14282,14
416,17693,12979,12903,1767
6,21760

20 DATA 14416,17693,12979,12903
100 Q==23296
110 FOR BLOCK==IT08
120 FOR BYTE==0TOI27
130 X==PEEK(Q+BYTE) :CK==CK+X
140 NEXT BYTE
150 READ SUM
160 IF SUM <> CK THEN PRINT" ERROR -

IN BLOCK #"BLOCK:GOTOI70
165 PRINT" BLOCK"

BLOCK" IS CORRECT
170 CK==0:Q==Q+128
180 NEXT BLOCK
190 PRINT"ANY REMAINING PROBLEMS AR

E EITHER WITHIN THE FINAL"

200 PRINT"SHORT BLOCK OR WITHIN OAT
A STATEMENTS IN THIS PROGR
AM. "

291

Appendix F

Program 4. Micromon Plus.

5800 78 A5 90 A6 91 CO EE 6F
5808 00 05 EC EF 6F F0 30 80
5810 9E 02 8E 9F 02 AD EE 6F
5818 AE EF 6F 85 90 86 91 A5
5820 92 A6 93 80 E5 02 8E E6
5828 02 AD 3C 5F AE 3D 5F 80
5830 E3 02 8E E4 02 AD F0 6F
5838 AE Fl 6F 85 92 86 93 AO
5B40 3E 5F AE 3F 5F E0 80 80
5848 08 85 34 86 35 85 30 86
5850 31 A9 10 80 84 02 80 85
5858 02 A9 00 80 86 02 80 A2
5860 02 80 E7 02 80 E8 02 58
5B68 00 A2 0C DO 15 5F 00 13
5870 80 87 02 8A 0A AA 80 22
5878 5F 85 F8 80 23 5F 85 FC

5880 6C F8 00 CA 10 E5 4C 8E
5888 60 20 39 64 20 13 61 90
5890 17 20 EF 60 8E 8C 02 20
5898 52 62 20 A8 58 20 A8 62
5BA0 20 93 5C 20 AE 68 00 E4
58A8 4C 98 60 A2 lE 20 Fl 60
5880 A0 00 81 F8 20 60 5C CC
5888 88 02 C8 90 F5 60 A5 80
58C0 C9 03 00 19 20 06 60 AA
58C8 A9 04 E0 00 F0 09 20 6F
5800 68 29 iF C9 04 90 AF 20
5808 E3 58 4C 98 60 20 CC FF
58E0 4C 93 60 85 80 85 b4 20
58E8 09 5C AE 00 C0 E0 40 00
58F0 08 20 8A F0 20 20 Fl A5
58F8 96 00 E2 60 E0 4C 00 50

5C00 20 05 F0 20 48 F1 4C F7
5C08 58 A9 00 85 96 80 FC 03
5C10 85 00 80 E8 02 60 20 39

292

Appendix F

5C18 64 AE 94 02 00 10 20 13
5C20 61 90 08 20 31 5C 20 93
5C28 5C 20 AE 68 00 E8 4C A8
5C30 58 A2 05 20 Fl 60 20 13
5C38 68 A2 02 20 Fl 60 A9 1 0
5C40 20 03 69 A9 10 20 89 63
5C48 A2 04 20 Fl 60 A0 10 A2
5C50 00 Al FE 20 60 5C 20 38
5C58 69 88 00 F5 60 4C 8E 60
5C60 29 7F C9 20 80 02 A9 20
5C68 4C 09 60 20 06 60 C9 00
5C70 F0 19 C9 20 00 03 20 17
5C78 6C C9 58 F0 50 20 71 50

5C80 8E E8 02 A2 02 20 A7 5C
5C88 4C 98 60 A2 04 20 Cl 5C
5C90 4C 98 60 20 55 69 AE E7
5C98 02 F0 31 CE E7 02 00 2C
5CA0 AE £8 02 F0 lA A2 06 20
5CA8 Cl 5C A2 14 20 Fl 60 8D
5C80 A3 02 20 09 60 E8 EC E8
5C88 02 00 F4 A2 03 OVl 02 A2
5CC0 09 20 55 69 CA 013 FA A9
5CC8 39 80 E7 02 60 A9 00 80
5C00 E7 02 80 E8 02 4C 98 60
5C08 20 09 5C 20 CC FF 20 06
5CE0 60 C9 00 FO 16 C9 24 F0
5CE8 24 48 20 9E 50 68 20 09
5CF0 60 2 0 06 60 C9 00 00 F6
5CF8 4C DO 5B 20 52 69 213 C5

5000 50 20 06 60 C9 00 F0 F0
5008 20 09 60 00 F4 A2 00 20
5010 82 50 20 88 50 20 55 69
5018 20 55 69 A0 03 00 02 A0
5020 02 84 01 A9 08 85 AF 20
5028 06 60 AA A4 96 00 36 20
5030 06 60 A4 96 00 2F C6 01
5038 00 ED 20 36 68 20 52 69
5040 20 06 60 F0 05 20 09 60

293

Appendix F

SD48 D0 F6 20 55 69 A9 00 85
SDS0 AF 20 E4 FF F0 C9 D0 05
SD58 20 E4 FF F0 F8 C9 20 F0
5D60 F7 C9 03 D0 8A 20 12 5E
5D68 20 55 69 4C 93 60 20 17
5D70 6C C9 22 D0 78 A2 00 20
5078 06 60 C9 00 F0 0C C9 22

5D80 F0 08 90 A3 02 E8 E0 40
5D88 90 EO 60 86 01 A9 A3 85
5090 DA A9 02 85 D8 20 CC FF
5098 20 F3 50 4C C9 50 A9 08
50A0 85 D4 85 80 AC 00 Cel C0
SDA8 40 00 08 20 8A F0 A9 6F
5D80 20 28 F1 4C F7 58 C0 4C
5088 D0 36 20 D5 F0 A9 6F 20
50C0 43 F1 4C F7 58 A9 6F 85
5DC8 D3 A9 08 85 04 85 AF AC
5DD0 00 C0 C0 40 00 08 20 86
SOD8 F0 A5 03 20 64 F1 4C F7
50E0 58 C0 4C 00 08 20 02 F0
5DE8 A5 03 20 93 F1 4C F7 58
SOF0 4C 8E 60 A9 08 85 04 A9
50F8 60 85 03 AD 00 C0 C9 40

5E00 00 06 20 66 F4 4C F7 58
5E08 C9 4C 00 E4 20 AS F4 4C
5E10 F7 58 A9 00 85 AF AO 00
5E18 C0 C9 40 00 03 4C 8F F3
5E20 C9 4C 00 CC 4C CE F3 A9
SE28 02 2C 4C E8 08 A9 0E 28
5E30 F0 02 09 80 20 09 60 4C
5E38 93 60 20 09 5C 20 6E 50
5E40 20 88 50 20 06 60 80 F8
5E48 00 20 06 60 80 FC 00 20
5E50 12 5E 20 52 69 A9 24 A2
SES8 20 20 29 68 20 13 68 4C
5E60 93 60 20 60 6C 00 6C 3E
5E68 5F A0 08 84 04 A0 4C 8C

294

Appendix F

5E70 R7 02 AVl VlVl 4C C4 69 20
5E78 17 6C 29 9F 4C 34 5E 4C

5E80 8E 60 20 A4 68 20 6F 68
5E88 29 IF C9 04 90 F1 85 04
5E90 20 2A 6C AS FO A6 FE 80
5E98 92 02 8E 93 02 20 3C 68
5EA0 AS D4 20 E3 58 A9 02 20
5EA8 09 60 20 52 69 20 13 61
5E80 90 0F AE 94 02 00 0A Al
SE88 F8 20 l A 68 20 38 69 00
5EC0 E9 A9 03 20 09 60 20 EF

. SEC8 60 20 CC FF 20 F8 60 4C
5E00 70 6C 20 09 5C 20 01 68
5E08 20 6E 50 86 01 20 04 SF
5EE0 20 80 50 20 06 60 20 06
5EE8 60 A9 00 85 AF AO 00 C0
5EF0 C9 40 00 06 20 52 F3 4C
5EF8 01 SF C9 4C 00 81 20 8C

5F00 F3 4C 12 6A AD 00 C0 C9
5F08 40 00 03 4C 0A F4 C9 4C
5F10 00 EA 4C 49 F4 50 C4 49
SF18 co 40 3E OA 4A C8 CC 5E
SF20 55 59 8E 58 89 58 68 SC
SF28 16 SC 08 SC 08 SC 27 SE
SF30 3A SE 62 SE 69 SE 77 SE
SF38 82 SE 02 5E 69 58 00 58
5F40 31 30 32 31 38 31 AA AA

295

Appendix F

VIC Micromon
VIC machine language programmers: here's one of the most valuable
tools there is for working in machine language. Thirty-four
commands are at your disposal including single-step, hex conversion,
search, EPROM routines, and a relocator. If you aren' t yet working
with machine language, the instructions for entering and using this
program are easy to follow. As presented, this program takes up 4K
of memory from $4000 (16384 decimal) to $4FFF (20479), but there are
instructions for locating it elsewhere in RAM memory . To enter
Micromon directly, see the Tiny PEEKer/POKEr program with
Supermon 64 (in this Appendix). The commands for VIC Micromon
are the same as the PET/CBM version except as noted below .

VIC Micromon Instructions

Initialize Memory And Screen Pointers
.I 1000 1EOO 1E

Define low memory as $1000 and high memory as $lEOO regardless of
the memory present. The screen is defined to start at the $lE page of
memory. The screen memory should always be on an even page
within the range of $1000 to $lEOO. Odd page values result in
incorrect setup and operation of th e VIC display. Although 3K of
RAM can be added at $400 to $FFF, this memory is not accessible for
use as screen memory.

Memory pages at $000 and $200 are accessible, but are not usable
since they are used for BASIC and kernal storage, working buffers,
and stack area. If the screen page is within the low to high memory
range specified, there can be usage conflict of the screen memory
pages . If the ''1'' command is used and exit is made to BASIC, the
NEW command must be invoked in the BASIC environment to clean
up the memory pointers used by BASIC.

Jump To Micromon Subroutine
.J 2000

The subroutine at $2000 is called while remaining in the VIC
Micromon environment. The assembly language subroutine should
exit by using a RTS instruction, which causes a return to the
command input section of VIC Micromon. The machine im~ge as
shown by the Register display command is not used, nor is it
disturbed when the subroutine returns to the VIC Micromon.

Load
.L 2000 "TEST FILE" 01

Search for and, if found, load into memory the data file on device #1
named TEST FILE. If the name is not specified, the first file found is

296

Appendix F

loaded. The data is loaded into memory starting at location $2000.
The last address loaded is determined by the length of the binary data
file. If the device number is not specified, it defaults to device #1,
which is the VIC cassette tape. The original memory addresses and
name of the last file read can be inspected by doing a Memory display
of the tape buffer which is at $375 for VIC Micromon.

Print Switcher
.r

If the output is to the screen, then switch the ouput to the RS-232
channel (device #2). If the output is not to the screen, restore the
output to the screen with the RS-232 channel left active until the
RS-232 output buffer is drained. Note that opening the RS-232
channel grabs 512 bytes for 110 buffering from the top of memory .

. r 0000

Regardless of the output, clear the RS-232 channel and set
output to the screen .

. r CCBB

If the output is to the screen, set CC into the RS-232 command
register at location $294 and BB into the RS-232 control register at
location $293. Output is then switched to the RS-232 channel. This
command is invalid if output is not currently to the screen .

Command Register Format

Field Use Value Descri£tion
7,6,5 Parity Options --0 Parity disabled

001 Odd parity
011 Even parity
101 Mark transmitted
111 Space transmitted

4 Duplex 0 Full duplex
1 Half duplex

3,2,1 Unused
0 Handshake 0 3 line

1 x line

297

Appendix F

Control Register Format

Field Use -- Value Description

7 Stop Bits 0 1 stop bit
1 2 stop bits

6,5 Word Length 00 8 bits
01 7 bits
10 6 bits
11 5 bits

4 Unused
3,2,1,0 Baud Rate 0000 User rate

COOl 50 Baud
0010 75
0011 110
0100 134.5
0101 150
0110 300
0111 600
1 000 1200
1001 1800
1010 2400

Save
.5 2000 3000 "TEST FILE" 01

Save memory from $2000 up to, but not including, $3000 onto device
#1, which is the VIC cassette tape. If the dev!ce number is not
specified, it defaults to device #1. The name TEST FILE is placed in
the file header for the file saved.

Verify
. v 2000 " TEST FILE" 01

Search for and verify, if found, the data file on device #1 named
"TEST FILE." If the name is not specified, the first file found is
verified. The data is verified by reading the fil e and comparing it to
the data in memory starting at location $2000. If not specified, the
device defaults to device #1. If there is a mismatch , the message
ERROR is output to the screen at the end of th e fil e verification .

Command End Tone
.(

Enable the command end tone. A continuous tone will be generated
at the end of execution of the next command. The tone can be turned
off but still be enabled by just hitting the carriage return. No tone is

298

Appendix F

generated Lf there is a syntax error while inputting the next
command .

.)
Disable the command end tone.

Program EPROM
.7r 2800 2FFF 00

Program the 2716 type EPROM via the EPROM programmer on the
VIC User 1/0 port with data read from memory starting at location
$2800 and ending at location $2FFF . The last input parameter specifies
in hex the starting 256 byte page offse t on the EPROM. If the low
order byte of th e s tarting memory address is zero and the offset is
zero, then the programming starts with the first byte of the EPROM.
For example, to program only the last byte of the 2K EPROM with a
data byte from location $2FFF in memory, the command would be:

.7r 2FFF 2FFF 07

During programming, a compare of EPROM to memory is done
for each data byte just after it is written to the EPROM. Any mismatch
due to failure to program the EPROM results in output to the screen
of the mismatched memory location. If programming must be
terminated early, just hit the STOP key. No other means should be
used to abort EPROM programming. A warm restart or power down
while programming can damage the EPROM.

Read EPROM
.£ 2000 27FF 00

Load mem ory starting at loca tion $2000 and ending at location $27FF
with data read from the EPROM via the EPROM programmer on the
VIC User 1/0 port. The las t input parameter specifies in hex the
starting 256 byte page offse t on the EPROM . If the low order byte of
the starting memory address is zero and the offset is zero, then
reading s tarts with the first byte of the EPROM . For example, to read
only the las t byte of the 2K EPROM and load that byte into memory at
location $10FF, the command would be:

.f 10FF 10FF 07

During memory load, a co mpare of EPROM to memory is done
for each data byte jus t after it is wri tten to memory . Any mismatch
because of failure to write the memory with data from the EPROM
results in output to the screen of th e mismatched memory location.
The STOP key can be used to terminate the command early.

Compare EPROM
. = 3000 37FF 00

Compare memory starting at location $3000 and ending at location
$37FF with data read from the EPROM via the EPROM programmer
on the VIC User I/O port . The last input parameter specifies in hex

299

Appendix F

the starting 256 byte page offset on the EPROM. If the low order byte
of the starting memory address is zero and the offset is zero, then the
reading starts with the first byte of the EPROM . For example, to read
only the last byte of the 2K EPROM and compare that with the data
byte in memory at location $37FF, the co mmand would be:

. = 37FF 37FF 07

Any mismatch between the EPROM and corresponding memory
data results in output to the screen of the mismatched memory
location. The STOP key can be used to terminate the command early.

Commands for VIC Micromon

VIC Micromon Instruction
SIMPLE ASSEMBLER
BREAK SET
COMPARE MEMORY
DISASSEMBLER
EXIT VIC MICROMON
FILL MEMORY
GO RUN
HUNT MEMORY
INITIAL MEMORY & SCREEN PTRS
JUMP TO SUBROUTINE
LOAD MEMORY FROM DEVICE
MEMORY DISPLAY
NEW LOCATER
OFFSET OR BRANCH CALCULATE
PRINT SWITCHER
QUICK TRACE
REGISTER DISPLAY
SAVE MEMORY TO DEVICE
TRANSFER MEMORY
VERIFY MEMORY FROM DEVICE
WALK CODE
EXIT TO BASIC
ASCII CONVERSION
DECIMAL CONVERSION
HEXADECIMAL CONVERSION
BINARY CONVERSION
CHECKSUM MEMORY
COMMAND END TONE ENABLE
COMMAND END TONE DISABLE
ADDITION
SUBTRACTION
LOAD MEMORY FROM EPROM
PROGRAM EPROM FROM MEMORY
COMPARE EPROM TO MEMORY

300

Command
A
B
C
D
E
F
G
H
I
J
L
M
N
o
P
Q
R
S
T
V
W
X

$

0/0

&
(
)

+

£

Appendix F

Of the set of commands available on the PET version of
Micromon, only t\,VO were removed in the conversion to the VIC
These were the K (Kill Micromon) and Z (change character sets)
commands. The K command is not necessary since the VIC doesn't
have the TIM monitor. The function of the Z command, which is to
change character sets, is already provided for on the VIC by pressing
the VIC shift and Commodore keys at the same time, The rest of the
commands described for the PET Micromon (see elsewhere in this
appendix) all apply identically to the commands for VIC Micromon,
with the exception of the LOAD and SAVE commands, which have
different formats,

VIC Micromon is always en tered from VIC BASIC by a SYS
16384 when it resides at $4000 to $4FFF. Either the E (Exit VIC
Micromon) or the X (Exit to BASIC) command would be used to exit
VIC Micromon and return to the BASIC environment. The difference
between these two commands is that the X command leaves the VIC
Micromon vectors in the IRQ and BRK interrupt vector locations
while in the BASIC environment. Also, the tape buffer is left defined
as beginning at $375, Thus, certain IRQ interrupt conditions such as
the moving of th e cursor to the top or bottom of the screen with
output from aD, M, or $ command displayed will cause scrolling and
reentry into VIC Micromon, Also, if a BRK instruction is executed,
VIC Micromon will be reentered via its BRK interrupt handler.

The E command restores the IRQ and BRK interrupt vectors and
resets the tape buffer pointer to a value of $33C prior to exit to the VIC
BASIC environment. Thus all active linkages and vectors to VIC
Micromon are removed, and the VIC behaves as if VIC Micromon
never existed. In particular, the E command should be used to exit
VIC Micromon when the normal VIC cassette tape LOAD, SAVE, and
VERIFY commands are to be used in the BASIC environment.
Otherwise, invalid results are likely to occur with some tape
operations ,

Both the E and X commands expect the stack pointer value (as
shown for SP by the Register display command) to be the same as
when VIC Micromon was first entered via the BASIC SYS command,
If the value of SP or the part of the stack pointed to by SP is
overwritten, such as by the execution of faulty code, a clean exit to
BASIC by the E and X commands is unlikely. However, both the E
and X commands do check if BASIC has been initialized, and if not,
exit to BASIC is via an indirect jump to the address given at location
$COOO, The address given in location $COOO is $E378, which is the
en try to initialize BASIC In this case, the value of SP and the
contents of the stack aren ' t impor tant. Once in BASIC and regardless
of how the exit from VIC Micromon was made, any subsequent
access to VIC Micromon at $4000 is always by a SYS16384,

301

Appendix F

VIC Micromon as given here is located from $4000 to $4FFF. It
can be relocated to any 256 byte page boundary by making the
changes, as shown in the following example, which relocate VIC
Micromon from $4000 to $6000 .

The example begins with VIC Micromon at $4000 and ends with
a relocated VIC Micromon in RAM at $6000 as well as the original at
$4000 .

. T 4000 4FFF 6000

.N 6000 6003 2000 4000 4FFF

.N 6012 6E6D 2000 4000 4FFF

.N 6FB5 6FFE 2000 4000 4FFF W

Location Old Value

6018 45
602A 43
6392 4C
6650 45
66E7 45
6897 43

New Value

65
63
6C
65
65
63

In order to access the relocated VIC Micromon at $6000, exit
using the E command and then from BASIC use SYS24576.

Cartridge And Checksum
The VIC-20 treats cartridge programs located at $AOOO in a special
way. On power-up, a test is made for the existence of the $AOOO
cartridge program, and if one exists, an indirect jump is made to the
address specified at location $AOOO. This jump is made after the stack
pointer is initialized, but before anything else is done. Because kernal
initializa tion has not occurred, any cartridge program using kernal
I/O routines must do kernal initialization before using those routines.

VIC Micromon as presented here has the kernnl initialization
calls built in so that it can easily be relocated and used as a cartridge
program at $AOOO. Besides making the changes to relocate it to $AOOO,
the only additional changes are to the first four bytes of VIC
Micromon.

Location Contents

AOOO 09
A001 AO
A002 C7
A003 FE

302

Appendix F

Power-up with VIC Micromon installed as a cartridge at $AOOO will
result in immediate entry into VIC Micromon. Because BASIC is not
initialized when the E or X command is used after power-up, the exit
to BASIC will be via an indirect jump to the address given in location
$COOO, which is the entry to initialization of BASIC. Once in BASIC,
subsequent access of VIC Micromon at $AOOO must be made to
location $A012, which is done via a SYS40978.

There is one last point, or rather one last byte, in VIC Micromon
which is not used for anything other than to make the 4K byte
checksum of VIC Micromon come out to a rounded up page value.
For example, the VIC Micromon from $4000 to $4FFF has a data byte
value of $E6 at location $4FFF that results in a checksum of $BFOO.
This provides an easy way to verify the integrity of VIC Micromon
without having to memorize or look up a checksum.

Three Notes On VIC Micromon
Using the VIC Micromon tape commands L, S, and V on a VIC-20
with 3K of RAM installed at $400 to $FFF will result in overwrite of
$400 to $438 with file header characters (blanks). This is due to the
tape buffer being relocated to $375 while in VIC Micromon from the
normal $33C. The normal VIC cassette commands will work properly
and not overwrite this area when you EXIT from VIC Micromon. This
is because VIC Micromon restores the tape buffer pointer value to
$33C when an EXIT is done. This problem does not occur if the 3K
RAM at $400 to $FFF is not installed.

If the I (Initialize memory and screen pointers) command was
used in VIC Micromon and you EXIT, then the RUN/STOP plus
RESTORE should be used in addition to the NEW command to clean
up the BASIC environment .

Any binary image saved on cassette tape with the VIC
Micromon "S" command can be loaded in the normal VIC-20 BASIC
environment by using the command: LOAD"", 1, 1 which looks for
the next program on tape and LOADs it into the same part of memory
that it came from (see page 9 of VIC-20 Programmer's Reference Guide).

Checksum
There's a good amount of typing to do to enter the VIC Micromon
program. Use the following BASIC program (after you've SAVEd a
copy of your efforts) to locate any errors you might have made.

Program I. Micromon Checksum.

1 IFPEEK(20478)=67ANDPEEK(20479)=73THENRUN10
2 PRINT"VIC20 !'1ICROMON LOAD &":PRINT"VERIFIC

ATION PROGRAM.":PRINT

303

Appendix F

3 PRINT:PRINT:PRINT"AT LEAST 4K BYTES OF":PR
INT"RAM MUST BE INSTALLED"

4 PRINT"AT 16384 ($4000) ELSE":PRINT"LOAD WI
LL FAIL.":PRINT

5 PRINT"IF LOADED & VERIFIED":PRINT"OK, MICR
OMON WILL BE":PRINT"ENTERED AUTOMATIC
ALLY . "

6 LOAD"",1,1
10 DATA 13328 , 16867,15061,13732,14507,13829,1

3267,12747,16288,13920
20 DATA 14355,11977,11877,13583,11338 , 15173,1

2337,14852,14051,15713
30 DATA 13442,15242,14746,15059 , 13134,15848,1

5858,17856,13327,860 1
40 DATA 12171,10074
H10 Q=16384
110 FOR BLOCK=1T032
120 FOR BYTE=0T0127
130 X=PEEK(Q+BYTE) :CK=CK+X
140 NEXT BYTE
150 READ SUM
160 IF SUM <> CK THEN PRINT"ERROR IN BLOCK #"B

LOCK:ERR=1:GOT0170
165 PRINT"BLOCK #"BLOCK" OK"
170 CK=0:Q=Q+128
180 NEXT BLOCK
190 IFERR=1THENPRINT"LOAD FAILED":END
200 SYS16384

Program 2. VIC Micromon.

4000 78 4C 15 40 41 30 C3 C2
4008 CD 20 8D FD 20 52 FD 20
4010 18 E5 20 F9 FD A9 DF A2
4018 45 80 16 03 8E 17 03 AD
4020 14 03 AE 15 03 C9 91 D0
4028 04 E0 43 F0 09 80 60 03
4030 8E 61 03 20 94 48 A9 75
4038 85 B2 A9 80 8D 8A 02 85
4040 9D A2 D6 20 50 4E 8E 48
4048 03 8E 64 03 58 00 CE 3D
4050 03 D0 03 CE 3C 03 20 AE

304

Appendix F

4058 45 A2 42 A9 2A 4C 3D 49
4060 A9 3F 20 02 FF A9 00 2C
4068 A9 0F 80 0E 90 20 AE 45
4070 A9 2E 20 02 FF A9 00 80
4078 4E 03 80 56 03 80 64 03

4080 A2 7F 9A 20 8C 48 C9 2E
4088 F0 F9 C9 20 F0 F5 A2 24
4090 DO 90 4F 00 13 80 49 03
4098 8A 0A AA BO B5 4F 85 FB
40A0 BD B6 4F 85 FC 6C FB 00
40A8 CA 10 E5 4C 60 40 A2 02
40B0 00 02 A2 00 B4 FB 00 09
40B8 B4 FC 00 03 EE 56 03 06
40C0 FC 06 FB 60 A9 00 80 4E
40C8 03 20 13 42 A2 09 20 38
4000 49 CA 00 FA 60 A2 02 B5
4008 FA 48 BO 53 03 95 FA 68
40E0 90 53 03 CA 00 Fl 60 AD
40E8 54 03 AC 55 03 4C F4 40
40F0 A5 FO A4 FE 38 E5 FB 80
40F8 53 03 98 E5 FC A8 00 53

4100 03 60 A9 00 F0 02 A9 01
4108 80 57 03 20 CB 47 20 AE
4110 45 20 F0 40 20 21 48 90
4118 18 20 E7 40 90 7F 20 59
4120 41 E6 FO 00 02 E6 FE 20
4128 IF 49 AC 56 03 00 6E F0
4130 E8 20 E7 40 18 AD 53 03
4138 65 FO 85 FO 98 65 FE 85
4140 FE 20 05 40 20 59 41 20
4148 E7 40 B0 51 20 AE 40 20
4150 B2 40 AC 56 03 DVl 46 P0
4158 EB A2 00 Al FB AC 57 03
4160 F0 02 81 FO Cl FO F0 0B
4168 20 F8 47 20 38 49 20 El
4170 FF F0 2A 60 20 E6 47 20
4178 Al 49 F0 IE AE 56 03 00

305

Appendix F

4180 ' ,... '. n F0 40 90 17 6 0 20 .LI.- ':;1()

4188 54 48 80 4B 03 20 7C 41
4190 AO 4B 03 81 FB 20 IF 49
4198 013 F3 4C 613 413 4C 68 40
41A0 213 74 41 213 8C 48 C9 27
41A8 00 12 213 8C 48 90 65 03
41B13 E8 213 A4 49 Fc) 2 ,~ E13 213
41B8 00 F3 F13 lA BE 59 133 20
41C0 5F 48 90 06 90 65 133 E8
41C8 20 A4 49 F0 09 20 57 48
4100 90 C8 E0 213 00 EE 8E 4A
4108 133 20 AE 45 A2 00 A0 00
41E0 B1 FB DO 65 133 D0 0A C8
41E8 E8 EC 4A 03 00 F2 20 68
41F0 41 20 IF 49 20 7C 41 B0
41F8 E3 213 2B 44 20 F0 40 90

4200 00 A13 2C 20 C4 413 213 6F
4208 42 20 E1 FF 00 EE 20 B6
4210 45 013 8A 20 20 49 20 F8
4218 47 213 38 49 20 C9 40 48
42213 213 CF 42 68 20 E6 42 A2
4228 136 E0 133 00 14 AC 40 03
42313 F13 0F AO 58 03 C9 E8 Bl
4238 FB B0 10 20 65 42 88 013
4240 F1 13E 58 03 913 13E BO E9
4248 4E 213 99 45 BO EF 4E F13
42513 133 213 99 45 CA D0 D2 60
4258 20 7B 42 AA E8 D0 01 C8
4260 98 213 65 42 8A 8E 4A 133
4268 213 FF 47 AE 4A 03 60 AO
42713 40 03 20 7A 42 85 FB 84
4278 FC 60 38 A4 FC AA 10 01

42813 88 65 FB 913 01 C8 60 A8
4288 4A 913 13B 4A B0 17 C9 22
42913 F0 13 2 9 137 09 80 4A AA
4298 BO 98 4E 813 134 4A 4A 4A
42A13 4A 29 13F 00 134 A0 813 A9
42A8 130 AA BO OC 4E 80 58 133
42B0 29 03 80 40 03 98 29 8F

306

Appendix F

42B8 AA 98 A0 03 E0 8A F0 0B
42C0 4A 90 08 4A 4A 09 20 88
42C8 00 FA C8 88 00 F2 60 Bl
4200 FB 20 65 42 A2 01 20 CE
4208 40 CC 40 03 C8 90 F0 A2
42E0 03 C0 03 90 Fl 60 A8 B9
42E8 F6 4E 80 54 03 B9 36 4F
42F0 80 55 03 A9 00 A0 05 0E
42F8 55 03 2E 54 03 2A 88 00

4300 F6 69 3F 20 02 FF CA 00
4308 EA 4C 38 49 20 E6 47 A9
4310 03 20 9E 43 A0 2C 4C 3C
4318 45 00 00 00 A9 3C 8D 13
4320 91 20 3A 43 A9 FF 80 12
4328 91 A5 FB A0 18 20 34 43
4330 A5 FF A0 14 80 10 91 8C
4338 11 91 A0 lC 8C 11 91 60
4340 20 54 48 85 FF 20 AE 45
4348 20 6E 41 20 7C 41 20 lC
4350 43 AD 49 03 0A 08 90 17
4358 Al FB 80 10 91 78 A9 C4
4360 8D 19 91 A9 3C 8D 11- 91
4368 A9 20 2C 10 91 F0 FB 20
4370 3A 43 58 8E 12 91 A9 0C
4378 80 11 91 AD 10 91 28 B0

4380 04 10 02 81 FB C1 FB F0
4388 03 20 68 41 20 IF 49 D0
4390 B7 A9 4C 48 A9 77 48 08
4398 48 48 48 6C 60 03 8D 4B
43A0 03 48 20 8C 48 20 00 49
43A8 00 F8 68 49 FF 4C 72 42
43B0 20 2B 44 AE 56 03 D0 0D
43B8 20 F0 40 90 08 20 C8 43
43C0 20 E1 FF 00 EE 4C 0E 42
43C8 20 AE 45 A2 2E A9 3A 20
43D0 0E 48 20 38 49 20 F8 47
43D8 A9 08 20 EA 48 A9 08 20
43E0 AB 43 20 38 49 20 38 49
43E8 A9 12 20 02 FF A0 08 A2

307

Appendix F

43F0 00 Ai FB 29 7F C9 20 B0
43F8 02 A9 2E 20 02 FF A9 00

4400 85 04 EAEA EA EA EA EA
4408 EA EA EA EA 20 iF 49 88
4410 00 OF 4C OF 4A 20 E6 47
4418 A9 08 20 9E 43 20 B6 45
4420 20 C8 43 A9 3A 80 77 02
4428 4C 48 45 20 E6 47 85 FO
4430 86 FE 20 A4 49 F0 03 20
4438 EB 47 4C AE 45 20 31 48
4440 85 FO 86 FE A2 00 8E 66
4448 03 20 8C 48 C9 20 F0 F4
4450 90 4F 03 E8 E0 03 00 F1
4458 CA 30 14 BO 4F 03 38 E9
4460 3F A0 05 4A 6E 66 [3 6E
4468 65 03 88 00 F6 F0 E9 A2
4470 02 20 A4 49 F0 22 C9 3A
4478 F0 1E C9 20 F0 F3 20 90

4480 45 B0 0F 20 6C 48 A4 FB
4488 84 FC 85 FB A9 30 90 65
4490 03 E8 90 65 03 E8 00 09
4498 8E 54 03 A2 00 8E 56 03
44A0 A2 00 8E 4B 03 AD 56 03
44A8 20 87 42 AE 58 03 8E 55
44B0 03 AA BO 36 4F 20 70 45
44B8 BO F6 4E 20 70 45 A2 06
44C0 E0 03 00 14 AC 40 03 F0
44C8 0F AD 58 03 C9 E8 A9 30
4400 B0 1E 20 60 45 88 00 F1
4408 0E 58 03 90 0E BO E9 4E
44E0 20 70 45 BO EF 4E F0 03
44E8 20 70 45 CA 00 02 P0 06
44F0 20 60 45 20 60 45 AD 54
44F8 03 CD 4B 03 00 7F 20 21

4500 48 AC 40 03 F0 2F AD 55
4508 03 C9 90 00 20 20 F0 40
4510 90 01 88 C8 00 6F 98 2A

308

Appendix F

4518 AE 53 03 E0 82 A8 00 03
4520 80 03 38 80 60 CA CA 8A
4528 AC 40 03 00 03 89 FC 00
4530 91 F8 88 00 F8 AD 56 03
4538 91 F8 A0 41 8C 77 02 20
4540 86 45 20 C4 40 20 6F 42
4548 A9 20 80 78 02 80 70 02
4550 A5 FC 20 9F 45 8E 79 02
4558 80 7A 02 A5 F8 20 9F 45
4560 8E 78 02 80 7C 02 A9 07
4568 85 C6 4C 68 40 20 70 45
4570 8E 4A 03 AE 48 03 DO 65
4578 03 F0 00 68 68 EE 56 03

4580 F0 03 4C A0 44 4C 60 40
4588 E8 8E 48 03 AE 4A 03 60
4590 C9 30 90 03 C9 47 60 38
4598 60 CD 4E 03 00 1A 60 48
45A0 4A 4A 4A 4A 20 17 48 AA
45A8 68 29 0F 4C 17 48 A9 00
4580 20 02 FF A9 0A 2C A9 91
4588 4C 02 FF 80 3F 03 08 68
45C0 29 EF 80 3E 03 8E 40 03
45C8 8C 41 03 68 18 69 01 80
4500 3D 03 68 69 00 80 3C 03
4508 A9 80 80 48 03 00 26 A9
45E0 C0 80 2E 91 A9 3F 80 2E
45E8 91 20 94 48 08 68 80 41
45F0 03 68 80 40 03 68 8D 3F
45F8 03 68 80 3E 03 68 80 3D

4600 03 68 80 3C 03 AD 14 03
4608 80 44 03 AD 15 03 80 43
4610 03 8A 8E 42 03 58 AD 3E
4618 03 29 10 F0 03 4C 4E 40
4620 2C 48 03 50 1F AD 3C 03
4628 CD 58 03 00 68 AD 3D 03
4630 CD 5A 03 00 63 AD 5E 03
4638 D0 58 AD SF 03 00 53 A9
4640 80 80 48 03 30 12 4E 48

309

Appendix F

4648 03 90 02 AE 42 03 9A A9
4650 45 48 A9 BA 48 4C 06 47
4658 20 AE 45 20 14 49 80 4B
4660 03 A0 00 20 F2 48 AD 3D
4668 03 AE 3C 03 85 FB 86 FC
4670 20 38 49 A9 24 80 4E 03
4678 20 16 42 20 E4 FF F0 FB

4680 C9 03 00 03 4C 68 40 C9
4688 4A 00 4E A9 01 80 48 03
4690 00 47 CE 5F 03 CE 5E 03
4698 AD 21 91 C9 FE 00 3A A2
46A0 53 4C 5B 40 A9 00 F0 12
46A8 AD 5C 03 AE 50 03 80 5E
4680 03 8E 5F 03 A9 40 00 02
4688 A9 80 80 48 03 20 A4 49
46C0 F0 0F C9 20 00 56 20 45
46C8 48 20 E3 48 20 A4 49 00
4600 4B 20 AE 45 AD 48 03 F0
4608 IF 78 A9 A0 80 2E 91 A9
46E0 5F 80 2E 91 A9 OF A2 45
46E8 80 44 03 8E 43 03 A9 49
46F0 A2 00 80 28 91 8E 29 91
46F8 AE 42 03 9A 78 AD 44 03

4700 AE 43 03 20 98 48 AD 3C
4708 03 48 AD 3D 03 48 AD 3E
4710 03 48 AD 3F 03 AE 40 03
4718 AC 41 03 40 4C 60 40 20
4720 31 48 8D 5A 03 8E 58 03
4728 A9 00 8D 5C 03 8D 50 03
4730 20 42 48 80 5C 03 8E 50
4738 03 4C 68 40 20 CB 47 80
4740 62 03 8E 63 03 20 42 48
4748 80 4F 03 8E 50 03 20 42
4750 48 80 51 03 8E 52 03 20
4758 A4 49 F0 0A 20 CF FF C9
4760 57 00 03 EE 4E 03 20 21
4768 48 AE 56 03 00 18 20 E7
4770 40 90 13 AC 4E 03 00 lA
4778 81 F8 20 87 42 AA BD F6

310

Appendix F

4780 4E 00 06 20 C4 40 4C 68
4788 40 AC 40 03 C0 02 00 33
4790 F0 03 8C 40 03 88 38 Bl
4798 FB AA ED 4F 03 C8 Bl FB
47A0 ED 50 03 90 IE 88 AD 51
47A8 03 Fl FB C8 AD 52 03 Fl
47B0 FB 90 10 88 18 8A 60 62
47B8 03 91 FB C8 Bl FB 60 63
47C0 03 91 FB 20 IF 49 88 10
47C8 FA 30 9E 20 31 48 85 FO
4700 86 FE 20 42 48 80 54 03
4708 8E 55 03 20 8C 48 20 45
47E0 48 85 FB 86 FC 60 20 31
47E8 48 B0 F6 20 45 48 B0 03
47F0 20 42 48 85 FO 86 FE 60
47F8 A5 FC 20 FF 47 A5 FB 48

4800 4A 4A 4A 4A 20 17 48 AA
4808 68 29 0F 20 17 48 48 8A
4810 20 02 FF 68 4C 02 FF 18
4818 69 F6 90 02 69 06 69 3A
4820 60 A2 02 B5 FA 48 B5 FC
4828 95 FA 68 95 FC CA 00 F3
4830 60 A9 00 80 59 03 20 8C
4838 48 C9 20 F0 F9 20 6C 48
4840 B0 08 20 8C 48 20 57 48
4848 90 07 AA 20 57 48 90 01
4850 60 4C 60 40 20 74 41 A9
4858 00 80 59 03 20 8C 48 C9
4860 20 00 09 20 8C 48 C9 20
4868 00 0F 18 60 20 81 48 0A
4870 0A 0A 0A 80 59 03 20 8C
4878 48 213 81 48 00 59 03 38

4880 60 C9 3A 08 29 0F 28 90
4888 02 69 08 60 20 A4 49 00
4890 FA 4C 65 40 A9 91 A2 43
4898 80 14 03 8E 15 03 60 20
48A0 A4 49 F0 37 20 E6 47 AS
48A8 FB 05 FC F0 22 A5 9A C9
48B0 03 00 9E A5 FB 80 93 02

311

Appendix F

48B8 A5 FC 8D 94 02 A9 02 AA
48C0 A8 20 BA FF 20 C0 FF A2
48C8 02 20 C9 FF 4C 75 40 A9
48D0 02 20 C3 FF A9 03 85 9A
48D8 4C 68 40 A5 9A C9 03 F0
48E0 DC D0 Fl 8D 3D 03 8E 3C
48E8 03 60 8D 4B 03 A0 00 20
48F0 38 49 81 FB 20 FF 47 20
48F8 IF 49 CE 4B 03 D0 F0 60

4900 20 57 48 90 08 A2 00 81
4908 FB Cl FB D0 69 20 IF 49
4910 CE 4B 03 60 A9 3E 85 FB
4918 A.9 03 85 FC A9 05 60 E6
4920 FB D0 09 E6 FF E6 FC D0
4928 03 EE 56 03 60 98 48 20
4930 AE 45 68 A2 2E 20 0E 48
4938 A9 20 4C D2 FF 20 0E 48
4940 A2 00 BD 76 4F 20 D2 FF
4948 E8 E0 IC D0 F5 A0 3B 20
4950 2D 49 AD 3C 03 20 FF 47
4958 AD 3D 03 20 FF 47 20 38
4960 49 AD 43 03 20 FF 47 AD
4968 44 03 20 FF 47 20 14 49
4970 20 EA 48 4C 68 40 4C 60
4978 40 20 31 48 20 E3 48 20

4980 42 48 8D 44 03 8E 43 03
4988 20 14 49 8D 4B 03 213 8C
49913 48 20 11'13 49 DQJ F8 FQJ DB
4998 213 CF FF C9 213 F0 1"9 D0
49A0 06 20 F0 47 20 CF FF C9
49A8 13D 60 A13 01 84 BA A9 00
49B0 A2 65 A0 133 20 BD FF A8
49B8 213 E6 47 AD 49 03 C9 53
49C0 D13 08 213 A4 49 F0 AF 213
49C8 E8 47 20 98 49 F0 29 C9
49D0 22 D0 A320 CF FF C9 22
49D8 F0 08 91 BB E6 B7 C8 C0
49E0 51 90 F0 B0 91 20 A4 49

312

Appendix F

49E8 F0 0E 20 57 48 29 IF F0
49F0 85 85 BA 20 98 49 D0 D9
49F8 A9 00 85 B9 AD 49 03 C9

4A00 53 00 0C A9 FB A6 FO A4
4A08 FE 20 08 FF 4C 68 40 49
4A10 4C F0 02 A9 01 A6 FB A4
4A18 FC 20 05 FF A5 90 29 10
4A20 F0 EA A9 69 A0 C3 20 IE
4A28 CB 4C 60 40 20 E6 47 20
4A30 A5 40 4C 68 40 20 E6 47
4A38 20 IF 49 20 IF 49 20 F0
4A40 47 20 38 49 20 F0 40 90
4A48 0A 98 00 15 AO 53 03 30
4A50 10 10 08 C8 00 0B AO 53
4A58 03 10 06 20 FF 47 4C 68
4A60 40 4C 60 40 20 E6 47 20
4A68 7A 4A 4C 68 40 20 AE 45
4A70 A2 2E A9 24 20 0E 48 20
4A78 F8 47 20 EA 4A 20 A0 4A

4A80 20 38 49 20 86 4A 20 89
4A88 4A 20 38 49 A2 04 A9 30
4A90 18 0E 54 03 2E 55 03 69
4A98 00 20 02 FF CA 00 EF 60
4AA0 A5 FC A6 FB 80 55 03 8E
4AA8 54 03 20 38 49 A5 FC 20
4AB0 B4 4A A5 FB AA 20 38 49
4AB8 8A 29 7F C9 20 08 B0 0A
4AC0 A9 12 20 02 FF 8A 18 69
4AC8 40 AA 8A 20 02 FF A9 00
4AD0 85 D4 EA EA EA EA EA EA
4A08 EA EA EA EA 28 B0 C0 A9
4AE0 92 2C A9 14 2C A9 22 4C
4AE8 02 FF 20 38 49 A6 FB A5
4AF0 FC 4C CO 00 20 05 4B B0
4AF8 41 20 38 49 20 F8 47 20

4B00 70 4A 4C 68 40 A2 04 A9
4B08 00 85 FC 20 C2 4B 20 2B

313

Appendix F

4B10 4B 85 FB 20 22 4B 20 3D
4B18 4B CA 00 F7 08 20 38 49
4B20 28 60 20 A4 49 F0 0F C9
4B28 20 F0 0B C9 30 90 0B C9
4B30 3A B0 07 29 0F 60 68 68
4B38 18 60 4C 60 40 85 FE A5
4B40 FC 48 A5 FB 48 06 FB 26
4B48 FC 06 FB 26 FC 68 65 FB
4B50 85 FB 68 65 FC 85 FC 06
4B58 FB 26 FC A5 FE 65 FB 85
4B60 FB A9 00 65 · FC 85 FC 60
4B68 20 C2 4B 80 55 03 48 48
4870 20 38 49 20 38 49 68 20
4B78 FF 47 20 38 49 68 AA A9

4B80 00 20 Fl 4A 20 38 49 20
4888 86 4A 4C 68 40 20 9F 4B
4B90 20 38 49 20 F8 47 20 EA
4B98 4A 20 A0 4A 4C 68 40 A2
4BA0 0F A9 00 85 FB 85 FC 20
4BA8 C2 4B 20 2B 4B 20 BC 4B
4BB0 20 22 4B 20 BC 4B CA 00
4BB8 F7 4C 38 49 4A 26 FB 26
4BC0 FC 60 20 8C 48 C9 20 F0
4BC8 F9 60 20 54 48 80 88 02
4B00 A6 FB A4 FC 20 8A FE A6
4B08 FO A4 FE 20 7B FE 20 18
4BE0 E5 20 A4 E3 4C 68 40 20
4BE8 F0 47 4C DB 47 20 E7 4B
4BF0 18 A5 FB 65 FO 85 FB A5
4BF8 FC 65 FE 85 FC 4C 00 4C

4C00 20 E7 4B 20 F0 40 84 FC
4C08 AD 53 03 85 FB 20 38 49
4C10 20 F8 47 4C 68 40 A9 F0
4C18 2C A9 00 80 0B 90 4C 65
4C20 40 78 20 52 FO 58 A9 3C
4C28 85 B2 AE 42 03 9A A5 73
4C30 C9 E6 F0 95 6C 00 C0 20
4C38 E7 4B 20 21 48 20 38 49
4C40 A0 00 8C 54 03 8C 55 03

314

Appendix F

4C48 20 F0 40 90 IB AC 56 03
4C50 D0 16 18 Bl FB 6D 54 03
4C58 8D 54 03 98 6D 55 03 8D
4C60 55 03 20 IF 49 4C 48 4C
4C68 AD 55 03 20 FF 47 AD 54
4C70 03 20 FF 47 4C 68 40 AD
4C78 64 03 D0 04 A5 C6 D0 03

4C80 4C 56 FF AD 77 02 C9 11
4C88 D0 7D A5 D6 C9 16 D0 F0
4C90 A5 Dl 85 FD A5 D2 85 FE
4C98 A9 17 8D 5E 03 A0 01 20
4CA0 51 4E C9 3A F0 lA C9 2C
4CA8 F0 16 C9 24 F0 12 CE 5E
4CB0 03 F0 CD 38 A5 FD E9 16
4CB8 85 FD 80 El C6 FE D0 DD
4CC0 8D 49 03 20 0A 4E B0 B8
4CC8 AD 49 03 C9 3A D0 11 18
4CD0 A5 FB 69 08 85 FB 90 02
4CD8 E6 FC 20 C8 43 4C F4 4C
4CE0 C9 24 F0 lA 20 C9 4D 20
4CE8 6F 42 A9 00 8D 4E 03 A0
4CF0 2C 20 13 42 A9 00 85 C6
4CF8 4C 0E 42 4C 56 FF 20 IF

4D00 49 20 6D 4A 4C F4 4C C9
4D08 91 D0 F0 A5 D6 D0 EC A5
4D10 D1 85 FD A5 D2 85 FE A9
4D18 17 8D 5E 03 A0 01 20 51
4D20 4E C9 3A F0 1A C9 2C F0
4D28 16 C9 24 F0 12 CE 5E 03
4D30 F0 15 18 A5 FD 69 16 85
4D38 FD 90 E1 E6 FE D0 DD 8D
4D40 49 03 20 0A 4E 90 03 4C
4D48 56 FF AD 49 03 C9 3A F0
4D50 06 C9 24 F0 1D D0 27 20
4D58 D0 4D 38 A5 FB E9 08 85
4D60 FB B0 02 C6 FC 20 CB 43
4D68 A9 00 85 C6 20 05 4E 4C
4D70 70 40 20 D0 4D 20 B2 40
4D78 20 70 4A 4C 68 4D 20 D0

315

Appendix F

4080 40 A5 FB A6 FC 85 FO 86
4088 FE A9 10 80 5E 03 38 A5
4090 FO EO 5E 03 85 FB A5 FE
4098 E9 00 85 FC 20 C9 40 20
40A0 6F 42 20 F0 40 F0 07 B0
40A8 F3 CE 5E 03 00 E0 EE 40
40B0 03 AO 40 03 20 AB 43 A2
40B8 00 Al FB 8E 4E 03 A9 2C
40C0 20 33 49 20 16 42 4C 68
4DC8 40 A2 00 Al FB 4C 87 42
40D0 A6 02 20 07 40 A6 F4 E8
4008 86 AO 86 FE A2 00 86 AC
40E0 A9 2C 85 FO A0 CE E8 88
40E8 Bl AC 91 FO 98 00 F8 C6
40F0 AO C6 FE CA 10 Fl A9 20
40F8 A6 02 86 FE 84 FO A0 2B

4E00 91 FO 88 10 FB A9 13 4C
4E08 02 FF C0 16 00 02 38 60
4E10 20 51 4E C9 20 F0 F3 88
4E18 20 3A 4E AA 20 3A 4E 85
4E2QJ FB 86 FC A9 FF 80 64 03
4E28 85 CC A5 CF F0 0A A5 CE
4E3QJ A4 03 91 01 A9 QJ0 85 CF
4E38 18 60 20 51 4E 20 81 48
4E4QJ 0A 0A 0A 0A 80 59 03 20
4E48 51 4E 20 81 48 00 59 03
4E50 60 Bl FO C8 29 7F C9 20
4E58 B0 02 09 40 60 BO 98 40
4E60 20 02 FF E8 00 F7 60 00
4E68 00 00 00 00 00 00 00 56
4E70 49 43 32 30 20 40 49 43
4E78 52 4F 40 4F 4E 20 56 31

4E8r21 2E 32 2121 20 2121 42 49 4C
4E88 4C 20 5945 45 2121 32 32
4E9r21 20 4A 414E 20 20 38 33
4E98 40 02 45 03 00 08 40 09
4EA0 30 22 45 33 00 08 40 09
4EA8 40 02 45 33 00 08 40 09
4EB0 40 02 45 B3 00 08 40 09

316

Appendix F

4E88 00 22 44 33 00 8C 44 00
4EC0 11 22 44 33 00 8C 44 9A
4EC8 10 22 44 33 00 08 40 09
4ED0 10 22 44 33 00 08 40 09
4E08 62 13 78 A9 00 21 81 82
4EE0 00 00 59 40 91 92 86 4A
4EE8 85 90 2C 29 2C 23 28 24
4EF0 59 00 58 24 24 00 1C 8A
4EF8 1C 23 50 88 18 A1 90 8A

4F00 10 23 90 88 10 A1 00 29
4F08 19 AE 69 A8 19 23 24 53
4F10 18 23 24 53 19 A1 00 1A
4F18 58 58 A5 69 24 24 AE AE
4F20 A8 AD 29 00 7C 00 15 9C
4F28 60 9C A5 69 29 53 84 13
4F30 34 11 A5 69 23 A0 08 62
4F38 5A 48 26 62 94 88 54 44
4F40 C8 54 68 44 E8 94 00 84
4F48 08 84 74 84 28 6E 74 F4
4F50 CC 4A 72 F2 A4 8A 00 AA
4F58 A2 A2 74 74 74 72 44 68
4F60 82 32 82 00 22 00 1A 1A
4F68 26 26 72 72 88 C8 C4 CA
4F70 26 48 44 44 A2 C8 00 20
4F78 20 20 20 50 43 20 20 49

4F80 52 51 20 20 53 52 20 41
4 F88 43 20 58 52 20 59 52 20
4F90 53 50 41 42 43 44 46 47
4F98 48 4C 40 4E 51 52 28 54
4FA0 57 58 2C 3A 3H 24 23 22
4FA8 2B 20 4F 49 4A 25 26 45
4F80 56 29 3D 5C FF AA 49 9F
4F88 48 3D 44 1F 47 02 41 F9
4FC0 41 87 41 A4 46 A0 41 AA

317

Appendix F

4FC8 49 BeJ 43 3C 47 A8 46 40
4F00 49 16 4C eJ6 41 88 46 2A
4F08 4C eJC 43 15 44 79 49 64
4FE0 4A F4 4A 68 48 ED 48 eJeJ
4FE8 4C 35 4A CA 48 2C 4A 80
4FF0 48 37 4C 21 4C AA 49 19
4FFB 4C 40 43 40 43 40 43 49

318

Appendix F

Supermon64
Supermon64 is your gateway to machine language programming on
the Commodore 64. Supermon, in several versions, has been popular
over the years as a major programming tool for Commodore users.
Supermon64 itself is in machine language, but you can type it in
without knowing what it means . Using the Tiny PEEKer/POKEr
(Program 1), or via the built-in monitor of a PET, type it in and SAVE
it. The fastest way to check for errors is to type in Program 3 on a
regular PET. Then load Supermon64 into the PET. It will come in
above your BASIC. Then RUN the checksum and it will report the
location of any errors. Type POKE 8192,0 and hit RETURN. Then
type POKE 44,32 followed by NEW .

Enter the following:

Program I. Tiny PEEKer/POKEr.

11010 PRINT "TINY PEEKER/POKER"
1110 X$="*":INPUT X$:IF X$="*" THEN END
1210 GOSUB 51010
1310 IF E GOTO 2810
1410 A=V
1510 IF J>LEN(X$) GOTO 31010
1610 FOR 1=10 TO 7
1710 P=J:GOSUB 5510
1810 C(I)=V
1910 IF E GOTO 2810
21010 NEXT I
2Hl T=IO
2210 FOR 1=10 TO 7
2310 POKE A+I,C(I)
2410 T=T+C(I)
2510 NEXT I
2610 PRINT "CHECKSUM=";T
2710 GOTO 1110
2810 PRINT ~lID$(X$,l,J);"??":GOTO 1110
31010 T=IO
3110 FOR 1=10 TO 7
3210 V=PEEK(A+I)
3310 T=T+V
3410 V=V/16
3510 PRINT " "
3610 FOR J=l TO 2
3710 V%=V

319

Appendix F

380 V=(V-V%)*16
390 IF V%>9 THEN V%=V%+7
400 PRINT CHR$ (V %+48);
410 NEXT J
420 NEXT I
430 PRINT " / ";T
440 GOTO 110
500 P=l
510 L=4
520 GO TO 600
550 P=J
560 L=2
600 E=0
610 V=0
620 FOR J=P TO LEN(X$)
630 X=ASC(MID$(X$,J))
640 IF X=32 THEN NEXT J
650 IF J>LEN(X$) GOTO 790
660 P=J
670 FOR J=P TO LEN(X$)
680 X=ASC(MID$(X$,J))
690 IF X<>32 THEN NEXT J
7 00 IF J-P<>L GOTO 790
710 FOR K=P TO J-1
720 X=ASC(MID$(X$,K))
730 IF X<58 THEN X=X-48
740 IF X>64 THEN X=X-55
750 IF X<0 OR X>15 GOTO 790
760 V=V*16+X
770 NEXT K
780 RETURN
790 E=-l
800 RETURN

This program is a very tiny monitor. It will allow you to enter
information into memory, eight bytes at a time . To do this: wait for
the question mark, and then type in monitor-format the address and
contents:

? 0800 00 lA 08 64 00 99 22 93

The program will return a checksum value to you, which you
can use to insure that you have entered the information correctly. To
view memory, type in only the address: the contents will be
displayed.

320

Appendix F

Completing The Job
When you have finished entering all that data, you can make
Supennon64 happen quite easily . Three last POKE commands and a
CLR:

POKE 44,8

POKE 45, 235

POKE 46,17

CLR

You have Supermon64. Save it with a conventional BASIC SAVE
before you do anything else.

Now you may RUN it - and learn how to use it.

NaTE: Before entering the hex numbers with Tiny PEEKer/POKEr,
type in the memonJ partitioning POKES: POKE 8192,0 and POKE
44,32, and then type NEW When you've finished entering all the hex
numbers, type: POKE 44,8: POKE 46,17: CLR. You can then SAVE
Supermon64 in the ordinary, BASIC way, to tape or disk. It's ready now
to LOAD or RUN. Note also that the checksum program on page 333
checks 129 bytes at a time. This can have the effect of attributing a typing
error to the wrong block if the error occurs near the beginning or the end
ofa block.

• Simple assembler

.A 2000 LOA #$12

.A 2002 STA $8000,x

.A 2005 (RETURN)

In the above example the user started assembly at 2000 hex. The
first instruction was load a register with immediate 12 hex. In the
second line the user did not need to type the A and address. The
simple assembler prompts with the next address. To exit the
assembler type a return after the address prompt. Syntax is the same
as the disassembler output.

• Disassembler

.0 2000
(SCREEN CLEARS)
2000 A9 12 LOA #$12

321

Appendix F

2002 90 00 80
2005 AA
2006 AA

(Full page of instructions)

STA $8000,X
TAX
TAX

Disassembles 22 instructions starting at 2000 hex. The three
bytes following the address may be modified. Use the CRSR keys to
move to and modify the bytes. Hit return and the bytes in memory
will be changed. Supermon64 will then disassemble that page again.

• Printing disassembler

.P 2000,2040
2000 A9 12
2002 90 00 80
2005 AA

203F A2 00

LOA #$12
STA $8000,X
TAX

LOX #$00

To engage printer, set up beforehand:

OPEN 4,4:CMD4

• Fill memory

.F 1000 1100 FF

Fills the memory from 1000 hex to 1100 hex with the byte FF hex.

• Go run

.G

Go to the address in the PC register display and begin RUN
code. All the registers will be replaced with the displayed values .

. G 1000

Go to address 1000 hex and begin running code.

• Hunt memory

.R C000 0000 'READ

Hunt through memory from COOO hex to DOOO hex for the ASCII
string read and print the address where it is found. A maximum of 32
characters may be used.

322

Appendix F

.H C000 D000 20 D2 FF

Hunt through memory from COOO hex to 0000 hex for the
sequence of bytes 20 02 FF and print the address. A maximum of 32
bytes may be used.

• Load

.L

Load any program from cassette #1 .

. L "RAM TEST"

Load from cassette #1 the program named RAM TEST .

. L "RAM TEST",08

Load from disk (device 8) the program named RAM TEST. This
command leaves BASIC pointers unchanged.

• Memory display

.M 0000 0080

.: 0000 00 01 02 03 04 05 06 07
• 0008 08 09 0A 08 0C 0D 0E 0F

Display memory from 0000 hex to 0080 hex. The bytes following
the.: can be altered by typing over them, then typing a return.

• Register display

.R

PC IRQ SR AC XR YR SP
0000 E62E 01 02 03 04 05

Displays the register values saved when Supermon64 was
entered. The values may be changed with the edit followed by a
return.

• Save

.S "PROGRAl'-1 NAME",01,0800,0C80

SAVE to cassette #1 memory from 0800 hex up to but not
including OC80 hex and name it PROGRAM NAME.

323

Appendix F

• S "0: P ROG RAM NAME", 0 8 , 1 2 0 0 , 1 F 5 0

SAVE to disk drive #0 memory from 1200 hex up to but not
including 1F50 hex and name it PROGRAM NAME .

• Transfer memory

.T 1000 1100 5000

Transfer memory in the range 1000 hex to 1100 hex and start
storing it at address 5000 hex.

• Exit to BASIC

.x
Return to BASIC ready mode . The stack value SAVEd when

entered will be restored. Care should be taken that this value is the
same as when the monitor was entered. A CLR in BASIC will fix any
stack problems.

Program 2. Supermon64.

0800 00 lA 04 64 00 99 22 93
0808 12 10 10 10 10 53 55 50
0810 45 52 20 36 34 20 40 4F
0818 4E 00 31 04 6E 00 99 22
0820 11 20 20 20 20 20 20 20
0828 20 20 20 20 20 20 20 20
0830 00 48 04 78 00 99 22 11
0838 20 2E 2E 4A 49 40 20 42
0840 55 54 54 45 52 46 49 45
0848 4C 44 00 66 04 82 00 9E
0850 28 C2 28 34 33 29 AA 32
0858 35 36 AC C2 28 34 34 29
0860 AA 31 32 37 29 00 00 00
0868 AA AA AA AA AA AA AA AA
0870 AA AA AA AA AA AA AA AA
0878 AA AA AA AA AA AA AA AA

324

Appendix F

0880 AS 20 85 22 AS 2E 85 23
0888 AS 37 85 24 AS 38 85 25
0890 A0 00 AS 22 00 02 C6 23
0898 C6 22 Bl 22 00 3C AS 22
08A0 00 02 C6 23 C6 22 B1 22
08A8 F0 21 85 26 AS 22 00 02
08B0 C6 23 C6 22 B1 22 18 65
0888 24 AA A.5 26 65 25 48 AS
08C0 37 00 02 C6 38 C6 37 68
08C8 91 37 8A 48 AS 37 00 02
0800 C6 38 C6 37 68 91 37 18
0808 90 B6 C9 4F 00 ED AS 37
08E0 85 33 AS 38 85 34 6C 37
08E8 00 4F 4F 4F 4F AD E6 FF
08F0 00 80 16 03 AD E7 FF 00
08 F8 80 17 03 A9 80 20 90 FF

0900 00 00 08 68 80 3E 02 68
0908 80 3D 0 2 68 80 3C 02 68
0910 80 3B 02 68 AA 68 A8 38
0918 8A E9 02 80 3A 02 98 E9
0920 00 00 80 39 02 BA 8E 3F
0928 02 20 57 FO 00 A2 42 A9
0930 2A 20 57 FA 00 A9 52 00
0938 34 E6 Cl 00 06 E6 C2 00
0940 02 E6 26 60 20 CF FF C9
0948 00 00 F8 68 68 A9 90 20
0950 02 FF A9 00 00 85 26 A2
0958 00 A9 2E 20 57 FA 00 A9
0960 05 20 02 FF 20 3E F8 00
0968 C9 2E F0 F9 C9 20 F0 F5
0970 A2 0E DO B7 FF 00 00 0C
0978 8A 0A AA BO C7 FF 00 48

325

Appendix F

326

0980 BD C6 FF 00 48 60 CA 10
0988 EC 4C ED FA 00 AS C1 8D
0990 3A 02 AS C2 8D 39 02 60
0998 A9 08 85 1D AVl 00 00 20
09A0 54 FD 00 B1 C1 20 48 FA
09A8 00 20 33 F8 00 C6 1D D0
09B0 F1 60 20 88 FA 00 90 0B
09B8 A2 00 00 81 C1 C1 C1 F0
09C0 03 4C ED FA 00 20 33 F8
09C8 00 C6 1D 60 A9 3B 85 C1
09D0 A9 02 85 C2 A9 05 60 98
09D8 48 20 57 FO 00 68 A2 2E
09E0 4C 57 FA 00 A9 90 20 D2
09E8 FF A2 00 00 BO EA FF 00
09F0 20 02 FF E8 E0 16 00 F5
09F8 A0 3B 20 C2 F8 00 AO 39

0A00 02 20 48 FA. 00 AD 3A 02
0A08 20 48 FA 00 20 B7 F8 00
0A10 20 80 F8 00 F0 5C 20 3E
0A18 F8 00 20 79 FA 00 90 33
0A20 20 69 FA 00 20 3E F8 00
0A28 20 79 FA 00 90 28 20 69
0A3'" FA 00 A9 90 20 02 FF 20
0A38 E:1 FF F0 3C A6 26 D0 38
0A40 AS C3 C5 C1 AS C4 E5 C2
0A48 90 2E A0 3A 20 C2 F8 00
0A50 20 41 FA 00 20 8B F8 00
0P.58 F0 E0 4C ED FA 00 20 79
0A60 FA 00 90 03 20 80 F8 00
0A68 20 B7 F8 00 D0 07 20 79
0A70 FA 00 90 EB A9 08 35 1D
0A.78 20 3E F8 00 20 A1 F8 00

0A80 D0 F8 4C 47 F8 00 20 CF
0A88 FF C9 00 F0 0C C9 20 00
0A90 D1 20 79 FA 00 90 03 20

Appendix F

0A98 80 F8 00 A9 90 20 02 FF
0AA0 AE 3F 02 9A 78 1'.0 39 02
0AA8 48 AD 3A 02 48 AD 38 02
0AB0 48 AD 3C 02 AE 3D 02 AC
0A88 3E 02 40 A9 90 20 02 FF
0AC0 AE 3F 02 9A 6C 02 A0 A0
0AC8 01 84 8A 84 89 88 84 B7
0A00 84 90 84 93 A9 40 85 B8
0A08 A9 02 85 BC 20 CF FF C9
0AE0 20 F0 F9 C9 00 F0 38 C9
0AE8 22 00 14 20 CF FF C9 22
0AF0 F0 10 C9 00 F0 29 91 88
0AF8 E6 B7 C8 C0 10 00 EC 4C

0800 ED FA 00 20 CF FF C9 00
0808 F0 16 C9 2C 00 DC 20 88
'1810 FA 00 29 0F F0 E9 C9 03
0818 F0 E5 85 8A 20 CF FF C9
0820 00 60 6C 30 03 6C 32 03
0828 20 96 F9 00 00 04 A9 90
083'1 20 02 FF A9 00 00 20 EF
0838 f9 00 A5 90 29 10 00 C4
0840 4C 47 F8 00 20 96 F9 00
0848 C9 2C 00 8A 20 79 FA 00
0850 20 69 FA 00 20 CF FF C9
0858 2C 00 AD 20 79 FA '10 AS
0860 Cl 85 AE AS C2 85 AF 20
0868 69 FA 00 20 CF FF C9 00
0870 00 98 A9 90 20 02 FF 20
0878 F2 F9 00 4C 47 F8 00 AS

0880 C2 20 48 FA 00 AS Cl 48
0888 4A 4A 4A 4A 20 60 FA 00
0B90 AA 68 29 0F 20 60 FA 00
0898 48 8A 20 02 FF 68 4C 02
08A0 FF 09 30 C9 3A 90 02 69
08A8 06 60 A2 02 85 C0 48 BS

327

Appendix F

0880 C2 95 C0 68 95 C2 CA 00
0888 F3 60 20 88 FA 00 90 02
08C0 85 C2 20 88 FA 00 90 02
08C8 85 C1 60 A9 00 00 85 2A
0800 20 3E F8 00 C9 20 00 09
0808 20 3E F8 00 C9 20 00 0E
08E0 18 60 20 AF FA 00 0A 0A
08E8 0A 0A 85 2A 20 3E F8 00
08F0 20 AF FA 00 05 2A 38 60
0BF8 C9 3A 90 02 69 08 29 0F

0C00 60 A2 02 2C A2 00 00 B4
0C08 C1 00 08 B4 C2 00 02 E6
0C10 26 0 6 C2 06 C1 60 20 3E
0C18 F8 00 C9 20 F0 F9 60 A9
0C20 00 00 80 00 00 01 20 CC
0C28 FA 00 20 8F FA 00 20 7C
0C30 FA 00 90 09 60 20 3E F8
0C38 00 20 79 FA 00 80 DE AE
0C40 3F 02 9A A9 90 20 02 FF
0C48 A9 3F 20 0 2 FF 4C 47 F8
0C50 00 20 54 FO ~0 CA 00 FA
0C58 60 E6 C3 00 02 E6 C4 60
0C60 A2 02 B5 C0 48 B5 27 95
0C68 C0 68 95 27 CA 00 F3 60
0C70 A5 C3 A4 C4 38 E9 02 B0
0C78 0E 88 90 0B A5 28 A4 29

0C80 4C 33 FB 00 A5 C3 A4 C4
0C88 38 E5 C1 8 5 1E 98 E5 C2
0C90 A8 05 1E 60 20 04 FA 00
0C98 20 69 FA 00 20 E5 FA 00
0CA0 20 tilC FB 00 20 E5 FA 00
0CA8 20 2F FB 00 20 69 FA 00
0CB0 90 15 A6 26 00 64 20 28
0CB8 FB 00 90 5F A1 C1 81 C3
0CC0 20 05 FB 00 20 33 F8 00
0CC8 00 EB 20 28 FB 00 18 A5
0C00 1E 65 C3 85 C3 98 65 C4
0C08 85 C4 20 0C FB 00 A6 26
0CE0 00 3D A1 C1 81 C3 20 28

328

Appendix F

0CE8 FB 00 B0 34 20 B8 FA 00
0CF0 20 BG FA 00 4C 70 FB 00
0CF8 20 04 FA 00 20 69 FA 00

0000 20 E5 FA 00 20 69 FA 00
0008 20 3E F8 00 20 88 FA 00
0010 90 14 85 10 A6 26 00 11
0018 20 2F FB 00 90 0C A5 10
0020 81 C1 20 33 F8 00 00 EE
0028 4C ED FA 00 4C 47 F8 00
0030 20 04 FA 00 20 69 FA 00
0038 2 0 E5 FA 00 20 69 FA 00
0040 20 3E F8 00 A2 00 00 20
0048 3E F8 00 C9 27 00 14 20
0050 3E F8 00 90 10 02 E8 20
0058 CF FF C9 00 F0 22 E0 20
0060 00 Fl F0 IC 8E 00 00 01
0068 20 8F FA 00 90 C6 90 10
0070 02 E8 20 CF FF C9 00 F0
0078 09 20 88 FA 00 90 B6 E0

0080 20 00 EC 86 1C A9 90 20
0088 02 FF 20 57 FO 00 A2 00
0090 00 A0 00 00 Bl Cl 00 10
0098 02 00 0C C8 E8 E4 lC 00
00A0 F3 20 41 FA 00 20 54 FO
00A8 00 20 33 F8 00 A6 26 00
00B0 80 20 2F FB 00 B0 00 4C
00B8 47 F8 00 20 04 FA 00 85
00C0 20 A5 C2 85 21 A2 00 00
00C8 86 28 A9 93 20 02 FF A9
0000 90 20 02 FF A9 16 85 10
0008 20 6A FC 00 20 CA FC 00
00E0 85 C1 84 C2 C6 10 00 F2
00E8 A9 91 20 02 FF 4C 47 F8
00F0 00 A0 2C 20 C2 F8 00 20
00F8 54 FO 00 20 41 FA 00 20

0E00 54 FO 00 A2 00 00 A1 C1
0E08 20 09 FC 00 48 20 1F FO

329

Appendix F

0E10 00 68 20 35 FO 00 A2 06
0E18 E0 03 00 12 A4 IF F0 0E
0E20 AS 2A C9 E8 Bl Cl B0 lC
0E28 20 C2 FC 00 88 00 F2 06
0E30 2A 9 0 0E BO 2A FF 00 20
0E38 AS FO 00 BO 30 FF 00 F0
0E40 03 20 AS FO 0 0 CA 00 05
0E48 60 20 CD FC 00 AA E8 00
0ES0 01 C8 98 20 C2 FC 00 8A
0E58 86 lC 20 48 FA 00 A6 lC
0E60 60 AS IF 38 A4 C2 AA 10
0E68 01 88 65 Cl 90 01 C8 60
0E70 A8 4A 90 0B 4A B0 17 C9
0E78 22 F0 13 29 07 09 80 4A

0E80 AA BO 09 FE 00 B0 04 4A
0E88 4A 4A 4A 29 0F 00 04 A0
0E90 80 A9 00 00 AA BO 10 FF
0E98 00 85 2A 29 03 8S IF 98
0EA0 29 8F AA 98 A0 03 E0 8A
0EA8 F0 0B 4A 90 08 4A 4A 09
0EB0 20 88 00 FA C8 88 00 F2
0EB8 60 Bl Cl 20 C2 FC 00 A2
0EC0 01 20 FE FA 00 C4 IF C8
0EC8 90 Fl A2 03 C0 04 90 F2
0E00 60 A8 B9 37 FF 00 85 28
0E08 B9 77 FF 00 85 29 A9 00
0EE0 00 A0 05 06 29 26 28 2A
0EE8 88 00 F8 69 3F 20 02 FF
0EF0 CA 00 EC A9 20 2C A9 00
0EF8 4C 02 FF 20 04 FA 00 20

0F00 69 FA 00 20 E5 FA 00 20
0F08 69 FA 00 A2 00 00 86 28
0F10 A9 90 20 02 FF 20 57 FO
0F18 00 20 72 FC 00 20 CA FC
0F20 00 85 Cl 84 C2 20 El FF
0F28 F0 05 20 2F FB 00 1::\0 E9
0F30 4C 47 F8 00 20 04 FA 00
0F38 A9 03 8S 10 20 3E F8 00

330

Appendix F

0F40 20 Al F8 00 00 F8 AS 20
0F48 85 Cl AS 21 85 C2 4C 46
0F50 FC 00 C5 28 F0 03 20 D2
0F58 FF 60 20 04 FA 00 20 69
0F60 FA 00 8E 11 02 A2 03 20
0F68 CC FA 00 48 CA D0 F9 A2
0F70 03 68 38 E9 3F A0 05 4A
0F78 6E 11 02 6E Hl 02 88 00

0F80 F6 CA 00 ED A2 02 20 CF
0F88 FF C9 00 F0 1E C9 20 F0
0F90 F5 20 00 FE 00 B0 0F 20
0£o'98 9C FA 00 A4 C1 84 C2 85
0FA0 C1 A9 30 90 10 02 E8 90
0FA8 1 0 02 E8 D0 DB 86 28 A2
0FB0 00 00 86 26 F0 04 E6 26
0FB8 F0 75 A2 00 00 86 10 AS
0FC0 26 20 09 FC 00 A6 2A 86
0FC8 29 AA BC 37 FF 00 BO 77
0F00 FF 00 20 B9 FE 00 00 E3
0F08 A2 06 E0 03 00 19 A4 1F
0FE0 F0 lS AS 2A C9 E8 A9 30
0FE8 B0 21 20 BF FE 00 D0 CC
0FF0 20 C1 FE 00 00 C7 88 D0
0FF8 EB 06 2A 90 0B BC 30 FF

1000 00 BO 2A FF ~0 20 B9 FE
1008 00 00 5S CA 00 01 F0 0A
1010 20 B8 FE 00 00 AB 20 B8
1018 FE 00 00 A6 AS 28 CS 10
10 20 D0 A0 20 69 FA 00 A4 1F
1028 F0 28 AS 29 C9 9D 00 1A
1030 20 1C FB 00 90 0A 98 D0
103 8 04 AS 1E 10 0A 4C ED FA
10 40 00 C8 00 FA AS 1E 10 £0'6
104 8 A4 iF 00 03 B9 C2 00 00
10S 0 91 C1 88 00 F8 AS 26 91
10 S8 C1 20 CA FC 00 85 C1 84
1060 C2 A9 90 20 02 FF A0 41
106 8 20 C2 F8 00 20 S4 FO 00

331

Appendix F

1070 20 41 FA 00 20 54 FO 00
1078 A9 05 20 02 FF 4C B0 FO

1080 00 A8 20 BF FE 00 00 11
1088 98 F0 0E 86 1C A6 10 00
109 0 1 0 02 08 E8 86 10 A6 1C
1 098 28 60 C9 30 90 03 C9 47
10A0 60 38 60 40 02 45 03 00
10A8 08 40 09 30 22 45 33 00
10B0 08 40 09 40 02 45 33 00
1 0B8 08 40 09 40 02 45 B3 00
10C0 08 40 09 00 00 22 44 33
1 0C8 00 8C 44 00 00 11 22 44
1000 33 00 8C 44 9A 1 0 22 44
10 0 8 33 00 08 40 09 10 22 44
10E0 33 00 08 40 09 62 13 78
10E8 A9 00 00 21 81 82 00 00
10F0 00 00 59 40 91 92 86 4A
10F8 85 90 2C 29 2C 23 28 24

1100 59 00 00 58 24 24 00 00
1108 l C 8A lC 23 50 8B I B A1
1110 90 8A 10 23 90 8B 10 Al
1118 00 00 29 19 AE 69 A8 19
1120 23 24 53 IB 23 24 53 19
1128 Al 00 00 lA 5B 58 AS 69
1130 24 24 AE AE A8 AO 29 00
1138 00 7C 00 00 15 9C 60 9C
1140 AS 69 29 53 84 13 34 11
1148 AS 69 23 A0 08 62 SA 48
1150 26 62 94 88 54 44 C8 54
1158 68 44 E8 94 00 00 B4 08
116 0 84 74 B4 28 6E 74 F4 CC
1168 4A 72 F2 A4 8A 00 00 AA
117 0 A2 A2 74 74 74 7 2 44 68
117 8 B2 32 B2 00 00 22 00 00

11 80 lA lA 26 26 7 2 72 88 C8
1188 C4 CA 26 48 44 44 A2 C8

332

Appendix F

1190 3A 3B 52 4D 47 58 4C 53
1198 54 46 48 44 50 2C 41 42
11A0 F9 00 35 F9 00 CC F8 00
11A8 F7 F8 00 56 F9 00 89 F9
11B0 00 F4 F9 00 0C FA 00 3E
11B8 FB / 00 92 FB 00 C0 FB 00
11C0 38 FC 00 5B FD 00 8A FD
11C8 00 AC FD 00 46 F8 00 FF
11D0 F7 00 ED F7 00 0D 20 20
11D8 20 50 43 20 20 53 52 20
11E0 41 43 20 58 52 20 59 52
11E8 20 53 50 AA AA AA AA AA

Program 3. Supermon64 Checksum.
100 REM SUPERMON64 CHECKSUM PROGRAM
110 DATA 10170,13676,15404,14997,15136,

16221,16696,12816,16228,14554
120 DATA14677,15039,14551,15104,15522,

16414,15914,8958,11945 :S=2048
130 FORB=1T019:READX:FORI=STOS+128:N=P

EEK(I):Y=Y+N
140 NEXTI: IFY<>XTHENPRINT"ERROR IN

BLOCK # "B:GOT0160
150 PRINT"BLOCK #"B" IS CORRECT"
160 S=I:Y=0:NEXTB:REM CHECK LAST SHORT

BLOCK BY HAND

333

AppendixG
The Wedge

One of the best reasons to learn machine language is that it can
improve your BASIC programming significantly. There are two main
ways that machine language can assist BASIC programming: adding
commands to BASIC itself and replacing parts of a BASIC program
with a high-velocity machine language subroutine. To add an ML
subroutine to a BASIC program, you SYS, USR, or CALL (from
Microsoft, Atari, or Apple BASICs respectively). That's fairly
straightforward. To make changes to the BASIC language itself,
however, we need to wedge into BASIC somehow.

You can make BASTC a customized language with a wedge. Do
you want auto-numbering when writing a program in BASIC? Add it.
Does your BASIC lack a RENUMBER facility? You can give it one. Do
you want a\l your BASIC programs to contain a REM line with your
name in it? This could be automatically put into each of your
programs if you know machine language. Using a wedge to a
machine language program, you can communicate directly to your
machine, bypass BASIC's limitations, and do pretty much what you
want to do.

How To Wedge In
Adding commands to BASIC is a matter of interrupting a loop. This is
often referred to as adding a wedge into BASIC. Under the control of
the BASIC language, the computer is looking to see if a BASIC word
has been typed in, followed by a hit on the RETURN key. Or, during
a RUN, the computer examines the program in memory to see what
you want accomplished .

These, then, are th e two contexts in which the computer
analyzes a BASIC word: in a program or in "direct mode." In direct
mode, you can type the word " LIST" onto the screen and hit the
RETURN key. The computer looks up the meaning of "LIST" in a
table of words which includes the addresses of the appropriate ML
subroutines . It then JSR' s (Jumps to a SubRoutine) somewhere in the
vast ML of your computer's BASIC. This subroutine performs the
actions necessary to provide you with a listing of the program in your
computer's memory. If you could add some additional words to this
table, you could add to BASIC. You could customize it.

Here's how. When you first turn on a computer which uses
Microsoft BASIC, one of the first things that happens is that the
operating system puts some important ML instructions into a zone in

335

AppendixG

the firs t 256 m em ory loca tions (this area of RAM is called zero page).
Th ese instructions are pu t into zero page to h an dle the loop - often
called th e CHRG ET loop (wh ich m eans " ch aracter ge t") - wh ere the
op era ting sys tem w ill forever after jump while power is on . This
loca tion is of great importance to BASIC; it is th e " did they typ e any
BASIC into th e comp uter?" su brou tine . It's w h ere BASIC an alyzes
wh at it finds on screen or in a program, looking a t some thing
ch aracter by character to see w hat it adds u p to.

If you typ e "LIST, " this little zero page ML subroutine looks at
the "L" then the " I" and so on . Th e exact location of CHRGET
diffe rs on the variou s computers:

PET (Original BASIC):
PET /CBM (Upgrade & 4.0):
VIC:
64:
Apple:

decimal address 194-217
112-135
115-138
115-138
177-200

Th e CHRGET ML p rogram looks like this:

0070 E6 77 INC $77
0072 DO 02 BNE $0076
0074 E6 78 INC $78
0076 AD 03 02 LOA $ 0203
0079 C9 3A CMP #$3A
007B BO OA BCS $0087
0070 C9 20 CMP #$20
007F FO EF BEQ $0070
0081 38 SEC
0082 E9 30 SBC #$30
0084 38 SEC
0085 E9 DO SBC #$00
0087 60 RTS

This is put into your zero p age RAM withi n the fi rst few seconds
after you turn on the computer. You can ch ange it (RAM me mory can
be changed) to jump OMP) to your own ML program by replacing the
first three bytes of code. In our example above, we w ill replace th e
three bytes a t h exadecimal location 0070 (the exact address w ill vary
according to the CHRGET loca tion as listed above for the d ifferent
computers). Here is h ow the replacement looks in the example
CHRGET routine:

0070 4C 00 75 JMP $7500
0073 02 ???

336

)

Appendix G

0074 E6 78 INC $78
0076 AD 02 02 LDA $0202
0079 C9 3A CMP #$3A
007B BO OA BCS $0087
007D C9 20 CMP #$20
007F FO EF BEQ $0070
0081 38 SEC
0082 E9 30 SBC #$30
0084 38 SEC
0085 E9 DO SBC #$DO
0087 60 RTS

The effect that this has is dramatic. Whenever the computer
looks for a character in BASIC mode, it will jump first (because you
forced it to) to your personal ML "wedged " routine located at $7500.
The subroutine at $7500 could be anything you wanted it to be,
anything you've put at address $7500. For an example, we've caused
an" A" to appear on the PET/CBM screen:

7500 E6 77 INC $77
7502 DO 02 BNE $7506
7504 E6 78 INC $78
7506 A9 41 LDA #$41
7508 8D 00 80 STA $8000
750B 4C 76 00 JMP $0076

Notice that we had to first perform the actions that the CHRGET
would have performed. Before we can start our LDA #$41 to put an
"A" on screen, we had to replace the early part of CHRGET that we
wrote over (see 7500 to 7505 in Example 3). And, after we're done
with our custom routine, we jump back into CHRGET at 750B.

Adding a wedge to Atari BASIC is somewhat more involved. A
clear and complete exposition of the techniques involved appears in
an article by my colleague Charles Brannon, "The Atari Wedge"
(COMPUTE! Magazine, November 1982).

337

Index

A
A or AC register (see Accumulator)
Absolute addressing 25,40-42, 45,46, 48, 51, 56, 68,69, 75, 81
Absolute, X and Absoute, Y addressing 48,51, 68, 69, 75, 81
Accumulator 19, 26,31,33,39,56,66
Accum ul ator mode 51
ADC 20, 56, 58, 68, 149
Addresses 1, 2, 19, 20, 47, 54, 77, 85, 99, 124, 127, 128, 130, 139, 140,

146
get a character add ress 1
las t key pressed 77
safe place address 1, 2
start of RAM 1, 99
s tart print address 1
wh ich key is pressed? 1, 54, 127, 128

Add ressing 18, 22, 40
Address ing modes 12, 33-34, 37-51, 68, 69, 75, 81, 149-166,223, 224

Absolute 25, 40-42, 45, 46, 48, 51, 56, 68, 69, 75, 81
Absolute, X and Absolute, Y 48, 51, 68, 69, 75, 81
Accumul ator mode 51
Immed ia te 25, 33, 34, 43, 51, 66, 68, 69
Implied 43-45, 55, 81
Ind irect Indexed 74,125, 141
Ind irect X 51, 68, 69
Indirect Y 42,49, 51,57, 58,69, 70, 74, 77, 85
Relative 25,45-47, 69
Zero Page 33, 34, 42-43, 51, 55, 65 , 68, 69, 75
Zero Page, X 48, 68, 69, 75
Zero Page, Y 51

"Alph abe tic" mode 54
AND 39,88,89,149
Arcade ga me programm ing in ML vi
Argument viii , 40, 55, 69, 70, 77, 81, 223, 224
ASCn code 3,9,53, 70, 78, 131, 144
ASL 51, 59, 68, 89, 149
ASM mode (A tari moni tor) 27, 28, 110
Assembler vii , 2, 35, 45, 46, 61, 140,223

assembler program 18
traditional conven tions, lis t of 224
two-pass assemblers 72, 223, 225

339

Index

Assembler Editor (Atari) 23, 26, 28, 110, 130, 143
Assembly language vii (see machine language)
Assignment of value (see LET)
Atari monitor (see Assembler Editor; DEBUG)
Atari source code 143
ATASCII 3,144
Attract mode 124
Auto-booting 125

B
BASIC v-vi , vii-xii , 1-4, 7, 19, et pass im

advantages of xii

340

commands vii, 63, 121-147
ASC 144
CHR$144
CLR 121-22
CONT86, 122
DATA xii, 122-23, 140
DIM 123
END 63, 124-25
FOR-NEXT 125-26
FOR-NEXT-STEP 126-27
GET 40,93, 127-28, 131
GOSUB 81, 128-29, 141, 142
GOTO 18, 84, 85, 129-30
IF-THEN 69, 71, 131
INPUT 131-32, 133
LEFT$ 144, 145
LEN 145
LET 132-34
LIST xi , 134
LOAD 30, 92, 134-35
MID$145
NEW 121, 135-36
ON GOSUB 71, 136, 137
ON GOTO 69, 71, 74, 137
PRINT x, 40, 137-40
READ 140
REM 140
RETURN 5, 131, 141
RIGHT$145-46
RUN 141-43
SAVE 30, 110, 143
SPC 146-47
STOP 122, 124, 143

TAB 146,147
loaders 19

Index

Microsoft BASIC vii, 2, 4, 17, 91, 93, 105, 135, 141, 144,224,335
words xi

BCC 45, 59, 61, 69, 71, 74, 75, 131, 150
BCS 45, 59, 61, 69, 71, 74, 75, 150
BEQ 25, 45, 47, 59, 69, 71, 77, 131, 151
Binary numbers 7, 8, 9, 15, 243-50

program for printing table of 16
BIT 89, 151
Bits and bytes 8, 9, 10,12-15
BMI45, 59, 61, 68, 71, 74, 75, 151
BNE 24, 45, 59, 61, 69, 71, 72, 74, 75, 77, 131, 151
BPL 24, 45,59,61,68,71, 74,75, 152
Branch address 47
Branches:

ON-GOTO 74
forward 78

Branching instructions 25, 45, 46, 47, 59, 67, 68, 69, 71-72, 73, 88
BRANCHTARGET 72, 74
Breakpoints 86, 87, 143
BRK 29,30,34, 37, 45, 61, 67, 86-87, 90, 122, 124, 134, 143, 152
Buffer 42, 98
BUG 28,142
Bugs 31, 33-34
BVC 45, 63, 68, 71, 152
BVS 45, 68, 71, 152

c
CALL instruction viii, x, xi, 23, 65, 141
Carriage return 54, 144
Carry flag 37,39, 45, 56, 58, 68, 69
Cassette buffer 1
CHRGET loop 336
CHRGET ML program 336
Circumflex 26,223
CLC 43,56,58,68, 109, 153
CLD 43, 56, 68, 153
CLI 89,153
CLV 63,153
CMF instruction 8, 33, 34, 61, 69, 70, 71, 75, 77, 89, 127, 128, 131, 136,

145, 154
Code 53
"Cold start" address 124

341

Index

Comma, use of 79,223-24
Commands:

BASIC 63, 121-47
machine language 63, 64-90, 149-66

Commodore character codes 144
Commodore Monitor Extension 26
Comparisons 70
Compiled code 92
Compilers 92-93
Conditional branch 129, 131
Control characters 273, 276
Counter variable 125
Counters 125-26
CPU (central processing unit) 8, 18,37,39
CPX 70,154
CPY 70,154
Cursor address 77
Cursor controls (PET) 30
Cursor management 77
Cursor position 140, 147

D
Data table 31, 121, 225
Debug xii
DEBUG (Atari monitor mode) 26,28,29, 142, 143

commands in 28-30
Debugger 23,36
Debugging 86

methods 87-88
DEC 75, 155
Decimal address 19
Decimal flag 56
Decimal numbers 8,9, 10, 14, 16, 243-50
Default 92
Delay loop 83-84, 125-26, 129
Delimiter 78, 138, 145, 146
DEX 45, 75, 84, 155
DEY 45, 75, 155
Dimensioned memory 123
Direct mode 4, 335
Disassembler viii, 20, 134
Disassembly viii, ix, 20, 140
Disassembly listings 25
Dollar sign ($) 10, 12, 28, 223
Do-nothing loop (see Delay loop)

342

Index

DOS (disk operating system) xi, 135
Double compare 59

E
Echo 131
EDIT mode (Atari monitor) 27,28,30, 143
Effective address 85
END 4 (see Pseudo-ops)
Endless loop 33,54,74, 76, 124, 125, 145
EOR 39,88, 156
Equates 72
Error messages 26, 48,77

F
Fields 25,27
Filename 143
FILL instruction 67
"Fill memory" option 135
FIND command (Atari) 110-118
Flags 8, 12,31, 37, 39, 45, 56, 61, 66-67, 68, 69, 77, 131

B flag 68,86

G

C or Carry flag 37,39,45,56,58, 68, 69
D flag 68
I flag 68,86
interrupt flag 89
N or Negative flag 64,66,68,69,75,89
status register flags 68, 131
V or overthrow flag 45, 68,89
Z or Zero flag 39, 64, 66, 67, 68, 69, 71, 75, 77, 78, 89, 130,

131, 138, 145
Floating point accumulator 141
Floating point arithmetic 59, 142

GET#93

H
Hexadecimal numbers viii, 1-2, 7, 8, 9, 10, 11-12, 16-17, 45, 243-50

conventions of 12
Hex dump 19,20,24

343

Index

I
Immediate addressing 25, 33, 34, 43, 51, 66, 68, 69
Immediate mode 141
Implied addressing 43-45, 55, 81
INC 75,156
Indirect-indexed addressing 74, 125, 141
Indirect jump 85,224
Indirect X addressing 51, 68, 69
Indirect Y addressing 42, 49, 51,57, 68, 69, 70, 74, 77, 85
Initialization routine 121
"Instant action" keys 54
Instruction field (see Fields)
INT mode 25
Interactivity 34-35
Interpreter 125, 133
Interrupt request 31,86
Interrupts:

maskable 89
non-mask able 90

INX 45,55,75, 156
INY 45, 75, 157
IRQ 31, 37, 39, 86

J
]MP instruction 18, 24, 34, 81, 82, 84-85, 91, 128, 129, 130, 157
]SR24,25, 45, 67, 71, 72, 80, 81, 82, 91, 92, 124, 129, 130, 136, 141, 143,

157

K
Kernal91
Kernal jump table 91, 92, 94, 128

L
Label table 72
Languages vii, xi

FORTH 82
(see also BASIC; Machine language)

LDA 20,25,26,29,33,39,40,43,45,48, 55,61,63,64,66,69, 71, 158
LDX 51, 64, 66, 158
LDY 33,34,64,66, 159
Loaders ix-x

344

Index

Loops 67, 75-84, 125-28, 335
delay 83-84, 125-26, 129
endless 33, 54, 74, 76, 124, 125, 145
FOR-NEXT 46, 47, 75, 125-26
indexed 48
nested 76, 127
timing 76

LSB (Least Significant Byte) 49, 51, 58, 70, 85, 126, 139, 141, 243-50
LSR 51, 59, 68, 89, 159

M
Machine language (ML)

advantages of viii, xi
equivalents of BASIC commands 121-47
INPUT subroutine 131-32
instruction groups 64-90

arithmetic 39, 68-69
debuggers 86-90
decision-makers 69-75
loop 75-81
subroutine and jump 81-86
transporters 64-68

instructions vii, 121-47, 149-66
monitor 253,269-333
strings 77-80, 144-47
subroutines 31, 91-96

Maps 42
Atari Memory Map 205
Commodore 64 Memory Map 193-204
PET/CBM 4.0 BASIC ROM Routines 175-80
PET/CBM 4.0 BASIC. Zero Page 172-75
PET Original and Upgrade BASIC 167-69
Upgrade PET/CBM 169-72
VIC Zero Page and BASIC ROMs 181-92

Masking 88-89
Mass-move 80
Memory addresses 1, 2, 20
Memory dump, 24, 28-29, 30, 275
Memory map 1 (see also Maps)
Memory mapped video 70
Memory zones 133
Message table 138
Message zone 77
Micromon 23, 31, 130, 269-333

VIC Micromon 296-318

345

Index

Mnemonics 18,20, 149-66
Modes:

BASIC mode 142
monitor mode 19,26, 142, 143
(see also Addressing modes)

Monitor 18, 22, 23-37
Apple II monitor 23-26, 143
Atari monitor 26-28 (see also ASM; Assembler Editor; Debugger)
interactive monitors 34-35
monitor extensions 253-334
PET, VIC, and Commodore 64 monitor 30
"resident" monitor 30,253
(see also Micromon; Supermon)

"Move it" routine 130
MSB (Most Significant Byte) 49,51,58, 70,85,99, 126, 138, 139, 141,

243-50
Multiple branch test 136

N
Natural numbers 7
NOP 45,86, 169

uses of 87-88
Number tables (hex, binary, decimal) 243-50

o
Object code 18, 22, 28, 47, 225, 226
Opcode 18,20, 55, 66, 223, 224
Operand 55 (see Argument)
ORA 160
OS (operating system) 42

p
Page 33

page one 42
page six 68, 110
page zero 33,42,51,56,57, 98, 139, 140, 336

Parameters 67, 83, 128, 141
PET ASCII 3
PHA 45,67,81, 82, 160
PHP 45,67, 160
PLA 3, 4,5, 45, 67, 82, 161
PLP 45, 67, 161

346

Pointers 49,51,57, 98, 109
zero page 77

Pound sign (#) 25,43,55
Powers of a number 7-9
PRINT routines 140
Program counter 37,39, 55, 65, 141
Programs:

Adding the Conversion Pseudo-op 226
Apple Version (of Search BASIC Loader) 119-20
Atari Disassembler 240-42
Atari Hex-Decimal Converter 11
BASIC Loader 19
Binary Quiz for All Computers 15-16
CHRGET ML program 336
Decimal to Hex, Microsoft BASIC 17
Disassembler 237-40
Double Compare 60
FIND Utility for Atari BASIC 112-18
for printing out table of binary numbers 16
Full Assembly Listing 21
Labelled Assembly 21
Micromon 269-333
Microsoft Hex-Decimal Converter 10-11
Microsoft Table Printer 250-51
PET Search (4.0 BASIC Version) 100-104
Simple Assembler 227-36

Atari Version 231-36
VIC, PET, Apple, 64 Version 227-30

64 Search BASIC Loader 119
The Source Code by Itself 22
Supermon 253-68
Supermon64319-33
VIC Micromon 303-18
VIC-20 Search BASIC Loader 120

Prompts 31
Pseudo-ops 4,27, 28, 29,47, 224-26
PUT#693

R

Index

RAM (Random Access Memory) viii, xi, 1, 2, 4, 9, 12, 19,31,33,37,
42,80,97,98, 225

Reference sources 221
Registers 26, 28, 30-31, 57, 66, 70, 82
Relative addressing 25, 45-47, 69
REM statements xii, 20
"Resolving" labels 225

347

Index

ROL 51,89, 161
ROM (Read Only Memory) xi, 1, 12, 23, 25, 26, 128, 253
ROR 51, 63, 89, 162
RTI 63,89, 90, 162
RTS 20 25, 45, 67, 81, 124, 129, 136, 141, 143, 162

s
Safe areas 2-3,42, 68, 97-98, 99, 105
SBC 61, 68, 163
Screen address 139, 140
Screen position (see STA)
Search bloader 119-20
Search routine 88
SEC 43,58,61,68, 163
SED 43, 56, 63, 163
SEI89-90, 164
SGN command 63
Simple Assembler 1, 2, 3, 4, 5, 10, 17, 22, 25, 26, 27, 28, 35, 43, 47, 57,

73, 74, 79, 223-36
Single-stepping 87
6502 machine language (see Machine language)
Softkey 132
Source code 18, 19, 22, 28, 49, 72, 225
Source program 140,225
Spaces, important 224
STA20, 40, 49, 51, 55, 56, 57, 63, 64, 65, 67, 164
Stack 42,67-68,81-83, 141
Stack pointers 26, 28, 37, 39
Status Register 8, 26, 28, 31, 39, 56, 66, 68, 82
Ster 26, 29-30, 31, 126-27
String handling 77-80, 144-47
Structured programming 85
STX 51, 64, 67, 164
STY 64, 67, 165
Subroutines 31, 91-96
Supermon 23,31, 130,253-68
Supermon64319-333
Symbols 53
SYS instruction v, viii, x, xi, 19, 25, 30, 65, 124, 141

T
TAN command 63
Target address 130, 139, 146
TAX 64, 66, 165

348

TAY 64,66, 165
TIM (terminal interface monitor) 142, 270, 271, 272, 275
Toggle 88-89
Trace 26,29, 31
TRACE 87
Transfer 130
"Truth tables" 89
TSX 67, 165
Two-pass assemblers 72, 223, 225
TXA 43, 45, 55, 64, 66, 166
TXS 67, 166
TYA 39,43, 64, 65, 66, 166

u
Unconditional branch 129, 130
Unmatched RTS 141, 143
Upward arrow 223 (see also Circumflex)

Index

USR instruction v, viii , x, xi, 3, 4, 19, 63, 64, 67, 110, 111, 124, 141, 142

v
Variable x-xi, 132-34, 140

storing 57
Vector 86

w
"Warm start" address 124
Wedge 335-37

x
X register 46, 51, 67, 75, 125, 126
X and Y registers 26, 31, 39, 45, 48, 66, 75, 93, 94

y
Y register 26, 34, 39, 57, 70, 147

z
Zero address 47
Zero page 33, 42, 51, 55, 56, 57, 98, 139, 140, 336

349

Index

Zero page addressing 33, 34,42-43, 51, 55, 65, 68, 69, 75
Zero page locations 49, 99
Zero page snow 68
Zero page, X addressing 48,68,69,75
Zero page, Y addressing 51
Zone of variables 133, 134

350

)

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!

For Fastest SeNice,
Call Our Toll-Free US Order Line

800 .. 334-0868
In NC call 919-275-9809

COMPUTE!
P.o. Box 5406
Greensboro. NC 27403

My Computer Is: o PET 0 Apple 0 Atori 0 VIC 0 Other ---0 Don't yet have one ...

o $20.00 One Yeor US Subsc ription o $36.00 Two Yeor US Subscription o $54.00 Three Yeor US Subsc ription

Subscription rates outside the US:
o $25.00 Canada o $38.00 Europe, Austra lia, New Zealand/Air De livery o $48.00 Middle East. North Afri ca, Centra l America/Air Mail
0$68.00 Elsewhere/Ai r Mail o $25.00 International Surface Mail (lengthy, unreliable delivery)

Name

Address

City

Country

State Zip

Payment must be in US Funds drawn on a US Bank; Inte rnational Money
Order, or chorge cord.
o Payment Enc losed
o MasterCord
Acc t. No.

233111

o VISA
o American Express

Expires

If you've enjoyed the articles in this book, you' ll find
the same style and quality in every monthly issue of
COMPUTE!'s Gazette for Commodore.

For Fastest Service
Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!'s GazeHe
PO Box 5406
Greensboro. NC 27403

My computer is:
o VIC-20 0 Commodore 64 0 Othe r _______ _
o $20 One Year US Subscription
0$36 Two Year US Subscription o $54 Three Year US Subscription

Subscription rates o utside the US:

o $25 Canada o $45 Air Mail Del ivery o $25 Inte rnational Surface Mai l

Name

Address

City

Country

State Zip

Payment must be in US Funds d rawn on a US Bank, International Money
Order, or charge card

o Payment Enclosed
o MasterCard
Acct. No.

233111

o VISA o American Express
Expires

COMPUTE! Books
PO Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books, If he or she
has sold out, order directly from COMPUTE!

Quantity

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868
In Ne call 919-275-9809

Title Price

The Beginner's Guide to Buying A Personal
Computer $ 3.95**

COMPUlE"s Fi rst Book of Atari $12.95*

Inside Atari DOS $19.95*

COMPUTErs First Book of PET/CBM $12.95*

Programming the PET/CBM $24.95***

Every Kid's First Book o f Robots and
Computers $ 4.95**

COMPUTE!'s Second Bqok of Atari $12.95*

COMPUlE"s First Book of VIC $12.95*

COMPUTE!'s First Book of Atari Graphi cs $12.95*

Mapping the Atari $14.95*

Home Energy Applications On Your
Personal Computer $14.95*

Machine Language for Beginners $12.95*

• I\dd 52 ship p ing a nd handling. Outside US add $LI ail mail. 52
surtace marl

•• Add S1 shipPing and tlondtlng Ou tside US odd S4 a ir mail: S2
su rtace mOil

••• I\dd 53 shipping ond hondllng . Outside US odd 59 o il moil; 53
sU ltoce mall

Ptease add shipping and handting for each book
ordered.

Totat enclosed or to be charged.

All o rders must be p repaid (money o rder, check, or c harge). All
payments must be in US funds. NC reside nts add 4% sales tax.

Total

o Payment enclosed Please charge my: 0 VISA 0 Maste rCard
o American Express Acc'! No. Exp ires I

Name

Address

City State Zip

Country
Allow 4-5 weeks fo r delivery.

	Cover
	Contents
	Preface
	Introduction
	How to use This Book
	The Fundamentals
	The Monitor
	Addressing
	Arithmetic
	The Instruction Set
	Borrowing from BASIC
	Building a Program
	ML Equivalents of BASIC Comannds
	Appendix
	Opcodes
	Memory Maps
	Simple Assembler
	Dissasembler
	Number Tables
	Supermon for PET
	PER Micromon
	VIC Micromon
	Supermon64
	The Wedge

	Index

